TY - GEN A1 - Gerken, Manuel CY - Heidelberg Y1 - 2022/// UR - https://archiv.ub.uni-heidelberg.de/volltextserver/31719/ N2 - This thesis reports on the exploration of p-wave Feshbach resonances in ultracold Li-6 and Li-6-Cs-133 gases where the pair rotation angular momentum is l=1. An improved experimental apparatus is presented, allowing atom loss spectroscopy with a magnetic field resolutions down to several milli-Gauss on three Li-6, and five Li-6-Cs-133 Feshbach resonances. A doublet structure is observed for the first time on three Li-6 p-wave Feshbach resonances. We assign the splittings to spin-spin interactions where the projection of the pair rotation angular momentum m_l splits the resonance into m_l=0 and |m_l|=1. For the first time we report on observation of spin-rotation interaction on three Li-6-Cs-133 p-wave Feshbach resonances. Here the pair-rotation couples to the atomic spins, leading to an additional splitting of the m_l=-1 and m_l=+1 projections. Via coupled channel calculations we determine the dimensionless spin rotation constant to be |gamma|=0.566(50)x10^(-3). With a simple model we show that the strength of spin-rotation coupling depends significantly on the short-range part of the electron wave functions, highlighting the potential of Feshbach resonances to provide precise information on electron and nuclear wave functions at short internuclear distance. In an additional exploratory study of losses close to a single component Fermi \pwave\, Feshbach resonance we find changes in qualitative loss behavior depending on the density and temperature of the gas. We separate two regimes depending on the dominance of either elastic or inelastic collisions showing three- or two-body loss behavior, respectively. Collisional losses with possible cooling efficiencies similar to classic evaporative cooling are predicted. AV - public ID - heidok31719 TI - Exploring p-wave Feshbach Resonances in Ultracold Lithium and Lithium-Cesium Mixtures ER -