%0 Generic %A Meggendorfer, Stefan %C Heidelberg %D 2023 %F heidok:33521 %K Poroelastizität, Homogenisierendes Multiskalen-Mehrgitter %R 10.11588/heidok.00033521 %T Multilevel Schwarz Methods for Porous Media Problems %U https://archiv.ub.uni-heidelberg.de/volltextserver/33521/ %X In this thesis, efficient overlapping multilevel Schwarz preconditioners are used to iteratively solve Hdiv-conforming finite element discretizations of models in poroelasticity, and an innovative two-scale multilevel Schwarz method is developed for the solution of pore-scale porous media models. The convergence of two-level Schwarz methods is rigorously proven for Biot’s consolidation model, as well as a Biot-Brinkman model by utilizing the conservation property of the discretization. The numerical performance of the proposed multiplicative and hybrid two-level Schwarz methods is tested in different problem settings by covering broad ranges of the parameter regimes, showing robust results in variations of the parameters in the system that are uniform in the mesh size. For extreme parameters a scaling of the system yields robustness of the iteration counts. Optimality of the relaxation factor of the hybrid method is investigated and the performance of the multilevel methods is shown to be nearly identical to the two-level case. The additional diffusion term in the Biot-Brinkman model yields a stabilization for high permeabilities. Additionally, a homogenizing two-scale multilevel Schwarz preconditioner is developed for the iterative solution of high-resolution computations of flow in porous media at the pore scale, i.e., a Stokes problem in a periodically perforated domain. Different homogenized operators known from the literature are used as coarse-scale operators within a multilevel Schwarz preconditioner applied to Hdiv-conforming discretizations of an extended model problem. A comparison in the numerical performance tests shows that an operator of Brinkman type with optimized effective tensor yields the best performance results in an axisymmetric configuration and a moderately anisotropic geometry of the obstacles, outperforming Darcy and Stokes as coarse-scale operators, as well as a standard multigrid method, that serves as a benchmark test.