eprintid: 35906 rev_number: 39 eprint_status: archive userid: 8698 dir: disk0/00/03/59/06 datestamp: 2025-02-03 11:54:33 lastmod: 2025-02-19 08:56:58 status_changed: 2025-02-03 11:54:33 type: preprint metadata_visibility: show creators_name: Kollenz, Philipp creators_name: Herrle, Carina creators_name: Göhringer, Leonard creators_name: Wickenhäuser, Tom creators_name: Pernice, Wolfram creators_name: Klingeler, Rüdiger creators_name: Deschler, Felix title: Excited State Reservoir Computing using Hybrid Perovskite Electrochemically-Gated Luminescent Cells subjects: ddc-530 subjects: ddc-540 subjects: ddc-600 divisions: i-120300 divisions: i-130700 abstract: Physical reservoir computing aims to increase computational efficiency of machine learning tasks by shifting the computational burden to a physical system. Reservoirs based on ion dynamics are of particular interest due to the non-linear and integrative nature of ion transport. Here, we demonstrate all-optical operation of a physical reservoir based on electrochemical Li-ion doping of lead halide perovskite microcrystals. Optical excitation changes lithium ion insertion kinetics, which in turn modulate the luminescence response. The heterogenous structure of the crystals leads to a large internal state space of the reservoir. The device can be fabricated using solution-based fabrication and operated using LED illumination, reducing fabrication cost. Our proof-of-concept results demonstrate optically excited state dynamics and ion transport as a promising platform for physical reservoir computing. date: 2025 id_scheme: DOI id_number: 10.11588/heidok.00035906 ppn_swb: 1917576277 own_urn: urn:nbn:de:bsz:16-heidok-359061 language: eng bibsort: KOLLENZPHIEXCITEDSTA full_text_status: public place_of_pub: Heidelberg citation: Kollenz, Philipp ; Herrle, Carina ; Göhringer, Leonard ; Wickenhäuser, Tom ; Pernice, Wolfram ; Klingeler, Rüdiger ; Deschler, Felix (2025) Excited State Reservoir Computing using Hybrid Perovskite Electrochemically-Gated Luminescent Cells. [Preprint] document_url: https://archiv.ub.uni-heidelberg.de/volltextserver/35906/7/Kollenz_Excited_State_Reservoir_2025.pdf