%0 Generic %A Mihailovic, Nenad %D 2007 %F heidok:7786 %K Algorithmische ZufälligkeitAlgorithmic Randomness , Martin-Löf Randomness , Kolmogorov Complexity , Martingale , Computability , Lowness , Triviality %R 10.11588/heidok.00007786 %T Algorithmic Randomness %U https://archiv.ub.uni-heidelberg.de/volltextserver/7786/ %X We consider algorithmic randomness in the Cantor space C of the infinite binary sequences. By an algorithmic randomness concept one specifies a set of elements of C, each of which is assigned the property of being random. Miscellaneous notions from computability theory are used in the definitions of randomness concepts that are essentially rooted in the following three intuitive randomness requirements: the initial segments of a random sequence should be effectively incompressible, no random sequence should be an element of an effective measure null set containing sequences with an “exceptional property”, and finally, considering betting games, in which the bits of a sequence are guessed successively, there should be no effective betting strategy that helps a player win an unbounded amount of capital on a random sequence. For various formalizations of these requirements one uses versions of Kolmogorov complexity, of tests, and of martingales, respectively. In case any of these notions is used in the definition of a randomness concept, one may ask in general for fundamental equivalent definitions in terms of the respective other two notions. This was a long-standing open question w.r.t. computable randomness, a central concept that had been introduced by Schnorr via martingales. In this thesis, we introduce bounded tests that we use to give a characterization of computable randomness in terms of tests. Our result was obtained independently of the prior test characterization of computable randomness due to Downey, Griffiths, and LaForte, who defined graded tests for their result. Based on bounded tests, we define bounded machines which give rise to a version of Kolmogorov complexity that we use to prove another characterization of computable randomness. This result, as in analog situations, allows for the introduction of interesting lowness and triviality properties that are, roughly speaking, “anti-randomness” properties. We define and study the notions lowness for bounded machines and bounded triviality. Using a theorem due to Nies, it can be shown that only the computable sequences are low for bounded machines. Further we show some interesting properties of bounded machines, and we demonstrate that every boundedly trivial sequence is K-trivial. Furthermore we define lowness for computable machines, a lowness notion in the setting of Schnorr randomness. We prove that a sequence is low for computable machines if and only if it is computably traceable. Gacs and independently Kucera proved a central theorem which states that every sequence is effectively decodable from a suitable Martin-Löf random sequence. We present a somewhat easier proof of this theorem, where we construct a sequence with the required property by diagonalizing against appropriate martingales. By a variant of that construction we prove that there exists a computably random sequence that is weak truth-table autoreducible. Further, we show that a sequence is computably enumerable self-reducible if and only if its associated real is computably enumerable. Finally we investigate interrelations between the Lebesgue measure and effective measures on C. We prove the following extension of a result due to Book, Lutz, and Wagner: A union of Pi-0-1 classes that is closed under finite variations has Lebesgue measure zero if and only if it contains no Kurtz random real. However we demonstrate that even a Sigma-0-2 class with Lebesgue measure zero need not be a Kurtz null class. Turning to Almost classes, we show among other things that every Almost class with respect to a bounded reducibility has computable packing dimension zero.