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Zusammenfassung

Der starke Gravitationslinseneffekt kann sowohl entfernte Lichtquellen vergrößert abbilden
also auch die Massenverteilung zwischen einer entfernten Quelle und dem Beobachter
sondieren, und hat sich daher zu einem wichtigen astronomischen Hilfsmittel entwick-
elt, welches verwendet wird um kosmologische Parameter einzugrenzen, die projizierte
Massenverteilung von Galaxienhaufen zu rekonstruieren und deren Dynamik zu analysieren.
Die statistischen Anzahldichten von durch den starken Gravitationslinseneffekt an Galax-
ienhaufen in Bögen projizierten Hintergrundgalaxien zu bestimmen könnte zu unserem
Verständniss der kosmologischen Strukturbildung beitragen; diese Bogenstatistik wird durch
potentiell erhebliche systematische Effekte in der Auswahl von als Linsen wirkenden Galax-
ienhaufen aber wesentlich erschwert. Um eine größere Menge von Gravitationslinsen,
die nicht durch undefinierte Systematiken belastet ist, bereitzustellen, wurde im Rahmen
dieser Doktorarbeit ein effizientes, automatisiertes Bogenerkennungsprogramm und eine
neue Methode zur Erkennung von länglichen Strukturen in Bildern entwickelt. Der Detek-
tionsalgorithmus bedient sich dabei lokal kohärenter Strukturen und kann selbst lichtschwache
Bögen effizient erkennen. Algorithmen zur weiteren Klassifikation von Detektionen und zur
Entfernung von Fehldetektionen wurden ebenfalls entwickelt. Zur Kalibrierung und um die
Empfindlichkeit des Programmes auf Bögen mit verschiedenen scheinbaren Helligkeiten zu
bestimmen wurde das fertige Programm auf simulierte Bilder angewandt. Die Anwendung
auf reale ACS Bilder resultierte in 24 neuen potentiellen galaktischen Gravitationslinsen.

Abstract

Strong gravitational lensing can magnify distant sources and also provides a direct probe
of the mass density between source and observer. For these reasons, it has become an
important tool in astronomy. Among other applications, it is used to constrain cosmological
parameters, reconstruct the projected mass distribution of galaxy clusters and study their
dynamics. Determining the statistical abundance of background galaxies projected into
heavily distorted arcs by galaxy cluster lenses could improve our understanding of large
scale structure formation, but arc statistics is particularly difficult due to possibly significant
biases in the selection of galaxy cluster lenses. In order to provide a larger, unbiased sample
of strong lenses, an efficient, automated arc detection software that uses a novel approach to
detect elongated structures in images was developed for this PhD thesis. The new detection
algorithm is based on locally coherent features and is capable of detecting even faint arcs
with high computational efficiency. Postprocessing algorithms were developed to classify
the detections and to remove false positives. For calibration and to determine its sensitivity
to arcs of different magnitudes the completed software was applied to simulated images.
The application to real ACS images resulted in 24 new galaxy-type lens candidates.
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1 Introduction

Light from distant astronomical sources reacts to the mass distribution encountered on its
way to the observer and is deflected towards massive objects acting as gravitational lenses.
Next to the precession of the perihelion of Mercury, the shift in the apparent position of a
star due to gravitational light deflection on the Sun, measured in 1919 during a solar eclipse,
became one of the first observational tests for Einstein’s general theory of relativity (Dyson
et al. 1920).

1.1 Scientific Relevance of Giant Arcs

Today, we often distinguish between three classes of gravitational lensing, each associated
with specific physical properties of the lensing system and scientific analysis methods.

1.1.1 General Classes of Gravitational Lensing

In the strong lensing regime, sources are projected into heavily distorted, magnified and
even multiple images1. Background galaxies distorted into strongly elongated giant arcs by
an interjacent galaxy cluster are a typical example, which is illustrated in Figure 1.1 with
one of the first observations of gravitational lensing arcs (Narayan & Bartelmann 1997).
This is the class of lensing this thesis is concerned with, and applications will be discussed
at a later point.

Weak lensing in contrast cannot create multiple images of the same source and distortions
are not significant for single sources. However, by averaging over the distortions of large
numbers of weakly lensed galaxies, we obtain a powerful observational tool that can be ap-
plied to reconstruct projected cluster mass densities (Kaiser & Squires 1993; Bartelmann &
Schneider 2001) and infer cosmological parameters from a statistical cosmic shear analysis
(Heavens 2003; Castro et al. 2005; Heavens et al. 2006).

Microlensing events fall into the strong lensing regime, but the angular separations between
lens and source images are too small to be resolved by current instruments. Systems with
changing lensing configuration are still accessible to light curve measurements, however,
which can be used to study binary systems or search for extrasolar planets (Wambsganss
2006).

1Although images can appear considerably magnified, the surface brightness is conserved by gravitational
lensing.
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CHAPTER 1. INTRODUCTION

Figure 1.1: In 1986, the first arcs were independently dis-
covered near the cores of the cluster lenses
Abell 370 and CL 2244-02 (Soucail et al. 1987;
Lynds & Petrosian 1986). This figure shows
the prominent giant arc in A370 in a zoom into
the original CFHT R-band observation.

1.1.2 Cluster Reconstruction

One possible application of strong lensing makes use of its magnification effect to study
some of the earliest galaxies, by chance strongly lensed by a foreground galaxy or galaxy
cluster (Allam et al. 2007). The precise layout of arc images, conversely, can be used
to study the lens itself, where it turns out to be helpful to consider also data from weak
lensing:

Reconstructing projected cluster mass densities by weak lensing alone is limited in two
ways. The first is the so called mass sheet degeneracy: weak lensing reconstruction tech-
niques considering only distortion in contrast to distortion and magnification are oblivious
to a transformation Σ → λΣ + (1 − λ) of the projected mass density for any scalar value
λ. Second, cluster cores are inaccessible to such an analysis, since smaller scales need to
be resolved, background galaxies blend with galaxies in the cluster core and the lensing
properties are more complex and inhomogeneous than in the weak lensing regime.

Since the configurations of strongly lensed images are highly sensitive to the mass distri-
butions in cluster cores in particular, their constraints are complementary to the ones from
weak lensing. Several combined weak and strong reconstruction techniques are developed
(Broadhurst et al. 2005; Leonard et al. 2007; Merten et al. 2009) that aim at a detailed study
of clusters, their dynamics and evolution, and in extension a greater understanding of large
scale structure formation. Using the redshift of lensed sources and the reconstructed mass
densities, the cosmological mass density ΩM can be inferred (Soucail et al. 2004; Broad-
hurst et al. 2005). However, a larger number of good lensing systems is desirable to improve
the results’ accuracy and generality.

1.1.3 Arc Statistics

The total number of giant arcs observable in the sky mainly depends on

1. the number density and redshift distribution of extended sources.
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1.1. SCIENTIFIC RELEVANCE OF GIANT ARCS

2. the abundance of sufficiently compact and massive galaxy clusters.

3. the strong lensing cross-sections of galaxy clusters.

Only the distribution of distant galaxies with redshift z & 1.0 that act as sources is fairly
well known through observations. The abundance of massive clusters surpassing the critical
surface mass density for strong lensing probes the steep high-mass end of the galaxy cluster
mass function, and is therefore sensitive to the normalisation of the power spectrum and
non-linear structure formation. Strong lensing cross-sections are significantly enhanced by
asymmetries and irregularities in the central density distributions of clusters (Grossman &
Narayan 1988; Kovner 1989; Miralda-Escude 1993; Bartelmann et al. 1995).

During the last decade, there has been an ongoing debate over whether theoretical estimates
can reproduce the number of observed arcs in the sky or not:

Using cosmological dark matter simulations and simulated sets of in total nine galaxy clus-
ters in three projections each, Bartelmann et al. (1998) estimated a total number of approxi-
mately 280 giant arcs in a ΛCDM cosmology, and noted that this result is nearly an order of
magnitude less than the observational value of 1500 − 2300 extrapolated from observed arc
counts in clusters taken from the Einstein Extended Medium Sensitivity Survey (EMSS).

While Bartelmann et al. (1998) found a strong dependence of the arc abundance on the cos-
mic dark energy density ΩΛ, analytical calculations using singular isothermal spheres by
Cooray (1999) and Kaufmann & Straumann (2000) find near degeneracy towards ΩΛ and
dispute the numerical results. However, Meneghetti et al. (2003) used improved analyti-
cal models and found considerable discrepancies between the cross-sections derived from
analytical models and realistic numerical simulations.

The low theoretical estimate for the arc abundance was attributed to a steep dependence on
source redshift by Wambsganss et al. (2004), yet Li et al. (2005) and Fedeli et al. (2006)
noted that the light bundle magnification used by Wambsganss et al. (2004) to approximate
the number of giant arcs is not a good estimator and the redshift dependence of the strong
lensing cross-section is shallower than assumed.

By increasing the density of background galaxies and decreasing the extrapolated arc count,
Dalal et al. (2004) reproduced the number of observed arcs using the lensing cross-sections
determined in Bartelmann et al. (1998). This does not appear to be a valid solution, though,
given a comparatively high number of arcs observed in distant clusters (Thompson et al.
2001; Gladders et al. 2003; Zaritsky & Gonzalez 2003).

Horesh et al. (2005) took five of the simulated clusters used by Bartelmann et al. (1998),
again in three principle projections, and found that a new theoretical estimate that uses real
Hubble Deep Field galaxies as background sources, realistic cluster foreground and an arc
detection algorithm based on the SExtractor software is in agreement with arc abundances
in a sample of 10 observed clusters.

Also, after applying a semi-analytic method to model the influence of triaxiality on lens-
ing cross-sections, Oguri et al. (2003) claimed that the order of magnitude increase in the
predicted number of arcs solves the arc statistics problem.

3



CHAPTER 1. INTRODUCTION

However, Li et al. (2006) and Fedeli et al. (2008) found that a steep dependence on the power
spectrum normalisation σ8 again causes almost a magnitude discrepancy of predicted and
observed arc abundances when a low value of approximately 0.8 consistent with current
5-year WMAP results (Dunkley et al. 2009) is considered. In particular, the discrepancy
does not appear to be resolved by the findings in the earlier studies noted above, as they
unanimously assumed a high normalisation value of σ8 ≥ 0.9.

Several studies were untertaken on which cluster properties are most relevant to strong
lensing. Flores et al. (2000) concluded that cluster galaxies have a negligible effect on the
cross-section, although Meneghetti et al. (2000) noted that a central cluster cD galaxy can
enhance lensing by about 50%. Puchwein et al. (2005) used several increasingly complex
gas models to describe the effect of intracluster gas on lensing, and concluded that it can
enhance cross-sections significantly in models that include cooling and star formation, al-
though there was some overcooling that could account for part of the increase in central
density and consequently also lensing. Torri et al. (2004) and Fedeli et al. (2006) deter-
mined that ongoing mergers can double the cross-section of a cluster for a time, after which
it goes back to the pre-merger level.

Since cluster dynamics clearly have a large impact on the lensing cross-section, selecting a
sufficiently random cluster sample for observations of arc abundances might be problematic.
Bartelmann & Steinmetz (1996) and Fedeli & Bartelmann (2007) concluded that extrapo-
lating the number of observed arcs from those found around clusters selected by their x-ray
luminosity or optical richness is likely to produce a biased result. Also, an observer bias is
unavoidable at the moment because all known giant arcs in galaxy clusters were detected
by manual inspection of clusters. To avoid these biases, an automatic detection and classi-
fication algorithm that can be applied both to observations and simulated data is required.

1.2 Recent Arc Detection Algorithms

The amount of astronomical data suitable for arc detection is rapidly increasing, calling for
efficient arc detection algorithms2 even if the observer bias were to be discounted. Current
arc detection algorithms either focus on the lens and process galaxy spectra and image
data in order to detect possible strong lensing features in the immediate surrounding of a
lens, or they focus on the sources and attempt to detect arc features independently, without
processing data on the lens explicitly. Algorithms pursuing the first approach are typically
concerned with galaxy-scale lenses and can be very sensitive for this important type of
lensing, but their dependence on spectral or multi-band data limits the range of applications.
The second approach is suitable to find galaxy cluster or galaxy group type lenses, can
principally be used to detect dark clusters lenses – if they exist – and can operate blindly on
available survey data without a priory information. However, since lens and arc features are
not processed together, it is generally less sensitive to arcs in close proximity to a galaxy
lens. Follow up observations are generally necessary to verify initial detections.

2or armies of fresh astronomers inspecting the data manually
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1.2. RECENT ARC DETECTION ALGORITHMS

Without aspiring to be complete, I will present some recent automatic arc detection algo-
rithms in the following.

1.2.1 Lens Based Algorithms

Though not strictly an arc detection algorithm, the method proposed by Bolton et al. (2004)
does detect strong gravitational lensing in galaxies. They used spectroscopic data from
about 51000 luminous red galaxies (LRG) in the Sloan Digital Sky Survey (SDSS) to search
for redshifted O(3728Å) emission features in their residual spectra, determined by mod-
elling the spectrum of each foreground LRG and subtracting the model from the original
spectrum. If a significant and sufficiently redshifted O line and at least two lines out of the
corresponding Hβ(4863Å), O(4960Å) and O(5008Å) lines were found, the galaxy was
counted as a lens candidate. In the SDSS sample, 163 such initial candidates were further
analysed to remove spurious detections, after which 49 likely lensing systems remained.

The RING routine developed by Cabanac et al. (2007) was successfully applied to the Cana-
dian France Hawaii Telescope (CFHT) Legacy Survey, where the algorithm found 12 pre-
viously unknown Einstein rings. The principle idea of this method is to produce residual
images for catalogued E/S0 galaxies by subtracting α times their i′ band image from the
respective g′ band observation, and select residual objects above the image’s noise level in
a 0.5” to 2.5” annulus around the galaxy as arc candidates. The algorithm was reported to
be sensitive to most rings with radius larger than 0.8”. Final candidates were checked bye
eye in order to remove spurious detections.

The method proposed by Marshall et al. (2009) produces residual images by subtracting
elliptically symmetric models from original galaxy images preselected by their colour and
signal-to-noise ratio. The lensing system is then modelled by a singular isothermal sphere
galaxy with external shear by projecting the residual pixels into the source plane and as-
sessing the consistency of each source image given the possible lensing configurations. For
the best fit lens model, (1) the deviation of the residual image from the back projection of
the source plane into the image plane, (2) the magnitude of the reconstructed source and
(3 and 4) two quantifiers for the uncertainty of the Einstein radius are combined into a data
vector d. To relate a scalar value to the four-dimensional d, visual inspection was used to
assign a scalar H ranging from 0: ’definitely not a lens’ to 3: ’definitely a lens’ to the galax-
ies in a training set of 97 bright red galaxies in the Extended Groth Strip (EGS) Hubble
Space Telescope (HST) survey, and a posterior probability distribution

P(H|d) = P(d|H)P(H)

was constructed from the d and H values of each galaxy. Applied on new data, the classifi-
cation ’robot’ then determines average values

Hr =

∑
H HP(H|d)∑

H P(H|d)
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CHAPTER 1. INTRODUCTION

for the calculated vectors d that are used to select lens candidates. In one of the presented
search strategies, they expect to find approximately 672 lens candidates among 10000
LRGs, including 8.9 out of 10 galaxy-scale lenses, in a one deg2 field observed with the
HST, an estimate consistent with a blind test on EGS data they conducted.

1.2.2 Source Based Algorithms

Algorithms searching for arcs explicitly include the method developed by Lenzen et al.
(2004), which filters an image I uses anisotropic diffusion ∂tI(t, x)−div(D(x, I,∇I)∇I(t, x)) =

0 to enhance edges in the image. The diffusion matrix D is calculated using a smoothed
structure tensor

Jµ(x) =
(
Kµ ∗

[
(∇(Kσ ∗ I))(∇(Kσ ∗ I))T

])
(x) ,

where Kµ, Kσ are isotropic smoothing kernels and ∗ denotes the convolution operation:
local averaging is applied not only on the image but also the edge orientation contained in
the eigenvectors and eigenvalues of the structure tensor. Arc candidates are selected using
a watershed method on the filtered image.

Horesh et al. (2005) developed an algorithm that uses repeated SExtractor segmentation on
the same image for six different sets of object extraction parameters. Objects below a set
length-to-width ratio are removed from the segmentation images in each step, and every
second SExtractor operation is applied on an image where objects extracted in the previous
segmentation and below the corresponding length-to-width threshold were masked. The
final output is a combination of the three resultant segmentation masks. The algorithm was
applied on simulated and real cluster lenses as discussed in 1.1.3 above.

The ARC detector presented by Alard (2006) uses second order moments in small areas of
side length M, set to approximately three times the seeing, to determine a local orientation
e at each image coordinate x in a Mexican-hat filtered image. This is used to compute two
intensity profiles

I‖(ξ) =

∫ M

−M
I(x + λe + ξe⊥)dλ and

I⊥(ξ) =

∫ M

−M
I(x + ξe + λe⊥)dλ ,

where ‖ and ⊥ denotes the direction of integration relative to the orientation e. These are
then used to estimate the local elongation as

Q(x) =
1

2M
I‖(0)

supM
ξ=−M(I⊥(ξ))

.

If I‖(0) is integrated following the ridge line of an arclet at position x, the corresponding
Q(x) is naturally expected to be large. Arc candidates are constructed as continuous areas
with large values of Q. 24 good arc candidates were selected in the CFHT Legacy Survey

6



1.2. RECENT ARC DETECTION ALGORITHMS

(CFHTLS) using this method (Cabanac et al. 2007).

Kubo & Dell’Antonio (2008) used SExtractor segmentation by pixel thresholding (Bertin
& Arnouts 1996) to obtain a list of general objects in the four square degree F2 field of the
Deep Lens Survey (DLS), and determined octopole moments and ellipticities (as in 2.2.3) to
identify galaxy-scale lenses among them. Octopoles were measured in a coordinate system
aligned with the major axis of each feature, and two octopole moments were used to define
’arcness’ and ’anti-arcness’. An initial number of about 40000 spurious detections was
subjected to further parameter cuts and visual inspection, after which 2 good candidates
remained.

Moldovan (2009) applied the Gentle AdaBoost (Freund & Schapire 1996; Friedman et al.
1998) algorithm to construct a classifier from polar shapelet coefficients (Massey & Re-
fregier 2005) of 100x100 pixel training images including 10000 simulated galaxy-scale
lenses, 10000 simulated ’spurious’ galaxy pairs and 100000 actual background patches from
the Deep Lens Survey (DLS). Using a sliding 100x100 pixel window, the algorithm is then
applied to the DLS and selects approximately 500 spurious detections and one good galaxy-
type lens candidate.
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2 Image Analysis

Initial data analysis is performed on astronomical images using the information contained
in a single spectral band without a-priori information on likely arc positions. Postprocess-
ing optionally includes data in the form of star and galaxy catalogues to remove detections
caused by diffraction spikes (see 2.1.1 and 2.3.9) and spiral galaxies, as well as galaxy and
cluster catalogues to obtain the vicinity and orientation of a detection relative to a poten-
tial lens. The following section remarks, on a basic level, on data properties that become
relevant in data postprocessing; it can be safely skipped for the purpose of understanding
the initial detection algorithm, which is detailed in 2.2. Section 2.3 deals with postprocess-
ing steps that aim to significantly reduce the amount of spurious detections and to classify
detections for the creation of an arc candidate catalogue.

2.1 The Data

For the science grade images used, each pixel is the end result of several contributory effects
and processing steps. For the purpose of understanding the input data, I will summarise
the most common sources of image degradation and noise before describing the arcfinder
processing pipeline.

2.1.1 Image Degrading Effects

When working with astronomical observations, one has to content with photons other than
those from the relevant sources and blended objects close to the line of sight: photons scat-
tered by dust in our Solar System – the so called zodiacal light – the galactic foreground,
cosmic rays, both thermal emissions and reflections in the telescope optics and stray light
from the Moon are important light polluting effects. Ground based observations are af-
fected by thermal emission and stray light in the atmosphere, originating for example in
nearby cities. These effects produce an additive non-uniform signal, and while some can be
corrected for by subtracting their mean contribution to the image, the Poisson distributed
noise they introduce remains and reduces the signal-to-noise ratio of the observation.

In addition to the atmospheric seeing that affects ground based observations, all photons
passing through the telescope are subject to diffraction and other optical aberration effects
in the telescope which, depending on the photon energy, result in a shift of the final position
on the detector and causes point sources to be projected into extended diffraction patterns.
The cumulative effect is usually described by a point spread function (PSF) that is convolved
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CHAPTER 2. IMAGE ANALYSIS

with the image and results in a specific form of blurring that limits the maximum amount
of information in an observation regardless of the pixel size. A common approximation
for the PSF is the Airy disk (see 2.3.9), which is the exact solution for diffraction on a
circular aperture, but the precise form of the PSF is dependent on the colour of the observed
object and the observation time, due to thermal expansion in the telescope and variations
in the detector position. Seeing and optical aberrations are problematic for arc detection
because the smoothing effect blends nearby objects together and reduces the signal-to-noise
ratio for barely resolved sources. Also, diffraction on the metal bars holding the secondary
mirror results in extended optical artefacts appropriately termed diffraction spikes, which
are clearly visible for bright stars. In particular if they extend far beyond the star, the faint
end of these spikes also resembles straight arc segments (see 2.3.9).

Only a fraction of the incoming photons pass the telescope assembly and induce current in
a photo diode on the charge-coupled device (CCD) detector, which increases the charge in
one pixel element. This depends primarily on the colour filters used and the CCD quantum
efficiency. Altogether, the peak efficiency of this process is commonly between 0.1 to 0.5.
The quantum efficiency of the CCD is a function of the photon energy and typically assumes
values between 0.2 and 0.8 for the relevant spectral range. Since each CCD element can only
take a finite charge, termed saturation charge level, sensor response at some point becomes
nonlinear when this charge is approached. If the saturation level is exceeded, charge can
be transferred to adjacent pixels, preferentially in the same transfer row, creating stripes
of oversaturated pixels. Similar to the diffraction spikes above, the blooming effect can
cause spurious arc detections, but these can be trivially avoided by masking areas above
a limiting intensity threshold. Oversaturation and blooming are mainly problematic when
attempting to estimate the flux and position of bright stars. During read-out, each pixel
charge is converted into a digitally stored value: a DN, for digital number, or ADU, for
analogue digital unit. This value is the starting point for any digital image processing.

There are other CCD related effects aside from saturation that introduce noise or deteriorate
the image quality: Dark current describes charge from thermally excited electrons accumu-
lating on each pixel at a different rate and is subtracted using dark frames. The conversion of
charge into a digital number involves the CCD transfer efficiency from one row to another,
different gain ratios for the conversion of electron counts into digital values, amplifier bias
levels and electronic noise during read-out. The transfer efficiencies, gain ratios and bias
levels are usually well known, and again, everything but the noise can be removed.

2.1.2 Dithering / Drizzling

It is often advantageous to stack several astronomical images taken within a fraction of the
total exposure time together instead of using a single observation, and to spatially offset the
individual images by small shifts, a process known as dithering in astronomy. First, mul-
tiple smaller exposures might be necessary simply to avoid pixel oversaturation. Second,
it becomes possible to identify and remove variable features like cosmic rays and satellite
tracks. Third, by shifting the pointing by few pixels for each exposure, hot pixels and other
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single pixel defects on the CCD can be removed while retaining most of the information,
and imperfections in the dark current and flat field subtraction are smoothed out. Finally,
sub-pixel shifts can be used to sample the PSF of an instrument even if it is not sufficiently
resolved by the CCD pixels (see Figure 2.1).

A popular algorithm to reconstruct observations from dithered images is drizzling1, imple-
mented in the MultiDrizzle software (Fruchter & Hook 1997; Fruchter et al. 2009).

Figure 2.1: To illustrate the drizzling algorithm, an example image is shown in the upper
left, the same image after PSF convolution in the upper right, the image sampled
by CCD pixels in the lower left and the linear reconstruction of several dithered
samples in the lower right segment (images were made by Fruchter & Hook
(1997)).

By design, pixels in the reconstructed image are superpositions of original pixels normalised
by the respective area overlap and a weighting factor, which is the inverse variance in the sta-
tistically optimal case. Unfortunately, this removes statistical independence of pixel inten-
sities: the intensity variance on a flat background is reduced and does not increase linearly
with the number of pixels anymore (Casertano et al. 2000). The resultant pixel correlations
additionally generate connected regions of similar intensity on a very small scale that can
generate spurious detections when searching for arclets at the limit of the image resolution
and can connect point sources which then appear as extended features.

1or more informally: variable-pixel linear reconstruction
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CHAPTER 2. IMAGE ANALYSIS

2.2 Arcfinder Detection Algorithm

Similar to other automated arc detection methods in the optical, the initial detection routine
for the arcfinder algorithm attempts to locate all strongly elongated features in an image
brighter than their local background. Colour information is not used in the current imple-
mentation. The immense amount of data in recent and upcoming optical surveys combined
with the requirement of running ’blind’, that is without a priori data on lens positions, de-
mands an efficient detection algorithm. In this section I will describe a solution to this image
processing problem that is effective also for objects with low signal-to-noise ratios (see also
Seidel & Bartelmann (2007)). An integral part of the presented method is to segment the
image into cells instead of processing each pixel individually, which increases its compu-
tational efficiency significantly. The price is a loss of elegance in describing the detection
characteristics: in order to account for all possible degradating effects, we have to calibrate
the algorithm using realistic lensing simulations. Some basic statistical properties will be
discussed in the following, however.

Intuitively, the underlying idea is to

1. uniformly throw ’needles’ on the image (see 2.2.1),

2. attract them to locally bright features (see 2.2.2),

3. align them parallel to these features using second moments (see 2.2.3) and then to

4. look for ’paths’ formed of similarly oriented needles, ignoring areas where they point
into random directions (see 2.2.4 and 2.2.5).

The immediate consequences of such a scheme are that:

• significantly fewer ’needles’ than pixels are required, which reduces the computa-
tional footprint.

• it is independent of large scale variations in the background, since it relies only on
local feature properties.

• the computation of second moments inside an area A enhances the signal-to-noise
ratio by approximately

√
A compared to the signal of a single pixel.

This method is fast and well suited to find faint and separate features, but there are note-
worthy limitations: it is not well adapted to detect corners and disentangle closely packed
features, a task for which other image processing methods may be preferable.

Needles will henceforth be called cells. A cell is defined as the set of all pixels A inside a
minimal radius d0/2 from its variable centre point xc. The scale size d0 is a shared property
for all cells and the main user defined parameter that depends on the scale of the features
that are to be detected. Further cell properties like the centre of brightness x̄ and the second
brightness moments Qi j are computed at run time over the set of pixels A.

12



2.2. ARCFINDER DETECTION ALGORITHM

2.2.1 Cell Placement

In an initial step, cells are distributed uniformly on the image area such that the union of
cell sets A covers the complete image. Naturally, both requirements might be loosened if a
priori data on arc positions are available. For the sake of simplicity I use a square grid with
characteristic grid distance d1 < d0 aligned with the image coordinate system, although
other possibilities including a hexagonal grid could be considered to increase isotropy. We
find that it is useful to specify d1 not directly but through a proportionality factor d1/d0 in
relation to the scale size, which ensures a constant pixel coverage for varying scale sizes. In
most cases, it is not necessary to adapt the ratio d1/d0 to different feature scales.

In first approximation, the cell density and the number of pixels in each cell has a direct
influence on the computational efficiency, and the execution time of the initial detection
algorithm increases with (d0/d1)2. The total complexity including postprocessing steps, on
the other hand, will also depend on the number and size of the preliminary detections.

2.2.2 Cell Transport

The second step in the algorithm is to attract cells to locally bright features, where we
assume that an elongated feature is for a significant part of its length brighter than its local
background. It is achieved by iterative transport of each cell to its weighted first moments
respectively centre of brightness

x̄ =

∫
A xq(I(x)) d2x∫
A q(I(x)) d2x

. (2.1)

Here, I(x) is the intensity at position x = (x1, x2) and q a weight function, which is set to

q(I) =

{
I − Ī, for I > Ī

0, else
(2.2)

where Ī is the average brightness
∫

A I(x) d2x/A.

The main advantage in employing the centre of brightness in contrast to an image gradient
method is numerical robustness. Under most circumstances, a cell’s position xc converges
on the nearest local intensity maximum eventually if it is transported towards x̄ in each step
of the iteration. The rate of convergence is invariant both under translation and scaling of
I. In the following, I briefly mention a few considerations that are useful when varying the
number of steps. Empirically, a fixed number of three iterations appears to be a good choice
for arc detection in the optical.

If discretisation errors from the finite pixel size can be neglected for a moment, the distance
traversed in one dimension in a single step can be evaluated analytically. Without loss of
generality, I use a coordinate system centred on the previous cell position xc,t and a scale
size of two. For the purpose of this example, let the intensity function be I(x) = x. Then
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CHAPTER 2. IMAGE ANALYSIS

Figure 2.2: Zeroth and third cell transport iteration in a cutout of an HST WFPC2 obser-
vation of Abell 2390. Each cell is marked by a point, and every second row /

column of cells by a square of side-length d0.

q(I(x)) = 0 for x ≤ 0, q(I(x)) = x for x ≥ 0 and without noise the cell shifts by exactly

xc,t+1 = x̄t =

∫ 1
−1 xq(I(x)) dx∫ 1
−1 q(I(x)) dx

=

∫ 1
0 x2 dx∫ 1
0 x dx

=
2
3
. (2.3)

In order to include noise, we integrate over I in addition to x using a probability density
function f (I, Is(x)), where Is(x) is the unperturbed signal intensity. With the previous sim-
plifications and Gaussian distributed noise with standard deviationσ, the probability density
is proportional to exp(−(I − Is(x))2/2σ2) = exp(−(I − x)2/2σ2) for I > 0. Since q(I) = 0
for I ≤ 0 it suffices to integrate only over positive intensities and the term for the cell shift
reads

xc,t+1 = x̄t =

∫ 1
−1

∫ ∞
0 xIe−(I−x)2/2σ2

dxdI∫ 1
−1

∫ ∞
0 Ie−(I−x)2/2σ2 dxdI

. (2.4)

This result is easily transferred to the more general case with arbitrary scale size d0 and an
intensity Is(x) = I0 + xdxI by inserting a σ value divided by dxI and by multiplying the
result in Eq. 2.4 with 1

2 d0. Figure 2.3 contains the resulting one-step distances for varying
noise levels. As expected, the distance traversed by a cell decreases with decreasing signal-
to-noise values.

In order to ensure that neighbouring cells move sufficiently close to the ridge line of an
arc, which shall be defined as the smooth curve running through its full length, the required
number of steps to reach a set distance from a feature increases with decreasing signal-to-
noise levels ∝ dxI/σ. A more realistic calculation would employ the same principles, but
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Figure 2.3: Cell transport distance for a signal with constant slope dxI and Gaussian dis-
tributed noise for varying noise levels.

use feature models instead of a constant intensity slope for the intensity profile. Accounting
for the steps described in 2.2.3, it would also take into account the transition point from
perpendicular to parallel orientation relative to the ridge line, which happens earlier for
wider brightness profiles, and the correlation measure in 2.2.4.

Considering finite pixel sizes, what is the mean absolute distance a cell travels in a purely
noise dominated signal? Let us assume a Gaussian distributed signal I(x) with mean I0 and
standard deviationσ from the noise, consider only one dimension x ∈ −1

2 (d0 − 1), ..., 1
2 (d0 − 1)

and a number of n transport iterations. The mean random walk distance under these assump-
tions can be approximated by ξn = 1

2

√
n(1 − 1/π)(d0 − 1/d0)/6 ∝

√
nd0 with an error of

less than 5% compared to numerical results for scale sizes d0 ≥ 3. This estimate can be mo-
tivated with a short calculation and several rough approximations. Assuming the measured
average Ī ≈ I0, the weight

q(I) =

{
I − I0, for I > I0

0, else
(2.5)

shares – aside from a different mean value – a normal distribution with the signal I for
positive values and is cut off below zero. Since the probability for one pixel of I > 0 is 1

2 and
we sum over d0 pixels, the expected value for the total weight is

E

∑
x

q

 =
d0

2
1
2

∫ ∞

0
I

1
√

2πσ
e−

I2

2σ2 dI =
d0

2

√
2
π
σ . (2.6)

The
√

2/π factor is noteworthy because it converts from the standard deviation to the av-
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erage absolute value in a normal distributed variable. The mean of the first moment term∑h
x=−h xq(I(x)) – where h = 1

2 (d0 − 1) – is zero, but the expected absolute distance traversed
can be determined through the variance

Var

∑
x

xq

 = lim
N→∞

1
N

N∑
i=1

 h∑
x=−h

xqi(x)


2

(2.7)

= lim
N→∞

1
N

N∑
i=1

h∑
x=−h

h∑
y=−h

xyqi(x)qi(y)

= lim
N→∞

1
N

N∑
i=1

 h∑
x=−h

x2q2
i (x) +

h∑
x=−h

∑
y,x

xyqi(x)qi(y)

 .
The averaging can now be applied to the innermost terms, where products of dependent and
independent random variables have been separated:

. . . = lim
N→∞

 h∑
x=−h

x2 1
N

N∑
i=1

q2
i (x) +

h∑
x=−h

∑
y,x

xy
1
N

N∑
i=1

qi(x)qi(y)


=

h∑
x=−h

x2 1
2
σ2 +

h∑
x=−h

∑
y,x

xy
1
4

(
2
π
σ2

)

=
σ2

6
h(h + 1)(2h + 1)

(
1 −

1
π

)
=
σ2

24

(
1 −

1
π

)
d0(d2

0 − 1) .

In calculating the averages, I apply that the probability P(q > 0) = 1
2 , E(q2) = σ2 and for

x , y the probability P(q(x) > 0 ∧ q(y) > 0) = 1
4 . The general rule that E(q(x)q(y)) =

E(q(x))E(q(y)) for independent variables is employed, and we note that E(q) =
√

2/πσ (see
Eq. 2.6). For two normal distributed random variables X and Y with means µx/y, standard
deviations σx/y and correlation ρ the variance of their ratio can be estimated as

Var(Y/X) ≈ σ2
xµ

2
y/µ

4
x + σ2

y/µ
2
x − 2ρσxσyµy/µ

3
x (2.8)

under certain conditions (Hayya et al. 1975). Let Y =
∑

x xq and X =
∑

x q. The estimate
applies because both random variables are roughly normal distributed for d0 ≥ 3, the coef-
ficient of variation σy/µy is infinite, σx/µx =

√
(π − 1)/d0 is sufficiently small at least for

d0 � 1 and X ≥ 0. Y =
∑

xq is sufficiently mixed to be independent from X =
∑

q, hence
ρ ≈ 0, and the first term drops out with µy = 0. It follows that the variance of the combined
variable

Var

∑
x

xq
/ ∑

x

q

 ≈ Var

∑
x

xq

 / E2

∑
x

q

 =
π

12

(
1 −

1
π

) (
d0 −

1
d0

)
. (2.9)

16
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Multiplying its square root with
√

2n
π gives the mean distance estimate for a random walk

with n steps as above:

ξn =

√
n
6

(
1 −

1
π

) (
d0 −

1
d0

)
. (2.10)

The necessary transport distance depends on the initial cell placement, where we chose a
square grid with grid distance d1. Therefore, the maximal distance of an extended ridge line
to a cell in the first iteration is 1

2 d1, for a straight horizontal or vertical feature. The maximal
distance on one particular side is d1, however. If there is a chance that the brightness profile
of a feature is significantly perturbed by a neighbouring object, for example for a galaxy-
type lens where an arc is situated inside the lensing galaxy, it is sensible to consider the
larger distance d1 as the worst case and choose appropriately small values for d1.

The number of steps is limited from above as well: since a large fraction of arcs do not dis-
play a uniform intensity distribution along their length, an arc’s substructure can eventually
pull all surrounding cells towards it given enough iterations. Yet the second moments in
A used to determine the orientation of cells (see 2.2.3) do not vary strongly on scales sig-
nificantly smaller than d0. Therefore, a cluster of cells in close proximity to a single point
contains little more information than one cell, and exactly as much if all cells accrete on a
single point. In contrast, it is ideal for the evaluation of features in 2.2.4 if cells are equally
distributed over the length of a feature, where the amount of information contained in the
cells becomes maximal.

Optionally, this step also contains a filter: cells near to bright features such as stars and
foreground galaxies are continuously transported into the direction of the feature’s centre
even if their initial distance is well above the scale size, and the resulting cell aggregates
are likely to produce false positives. Hence an upper limit for the transport distance set by
the user can be used to disregard these cells from the start. A typical threshold distance
would be dmax ≈ 0.7d0. However, using this filter can remove unusually bright arcs from
consideration as well.

Finally, I use the Chebyshev distance maxi(|xi − xc,i|) ≤ 1
2 d0 to determine the pixel set A for

the two-dimensional integrals, which is computationally efficient but enhances the average
diagonal step-size by a factor of 3/2

√
2 ≈ 1.06 compared to the horizontal or vertical

step-size for the same absolute slope – and diagonal respectively horizonal and vertical
intensity gradients. Empirically, this small bias compared to using an Euclidean metric can
be neglected.
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2.2.3 Cell Orientation

A straightforward way to determine the orientation of any image feature is to use the com-
plex ellipticity constructed from the tensor of second brightness moments

Qi j =

∫
A(xi − x̄i)(x j − x̄ j)q(I(x)) d2x∫

A q(I(x)) d2x
, (2.11)

where i, j ∈ {1, 2}. Using Qi j, the complex ellipticity is defined as

χ =
Q11 − Q22 + 2iQ12

Q11 + Q22
(2.12)

and in the idealised case that A actually contains an ellipse with q(I) > 0 and background
level q(I) = 0, its axis ratio r ≤ 1 and orientation of the semi-major axis relative to the x1
axis ϑ can be obtained through the relation:

χ =
1 − r2

1 + r2 exp(2iϑ) . (2.13)

Among other applications, these relations were used to measure the ellipticities of galaxies
by Kaiser & Squires (1993) in their seminal work on weak lensing mass reconstruction.
Instead of measuring the orientation of a complete image object, we use it to determine
the local orientation inside each cell’s area, which ideally coincides with the orientation of
an arc’s ridge line for the cells that were transported sufficiently close to it, and to align
each cell’s orientation. As ϑ is invariant under q(I) translation, our implementation of the
algorithm uses the minimal intensity Imin in A instead of Ī to constrain the influence of
intensity outliers:

q(I) =

{
I − Imin, for I > Imin

0, else.
(2.14)

There are perhaps two things worthy of note regarding this third step in the detection routine:

First, the phase of χ in C is twice the angle ϑ in image space (see 6.1 for an illustration),
which is compatible with ellipses being invariant under 180◦ in contrast to 360◦ rotations.
A numerically sound method to bisect the phase and obtain a vector e parallel to the semi-
major axis is to compute

d =

(χ1 + |χ|, χ2) for χ1 ≥ 0
(χ2, |χ| − χ1) for χ1 < 0

and e =
d
|d|

, (2.15)

where the orientation e = (e1, e2) is stored for each cell (see 6.1).

Second, a determination of the complex ellipticity in a noisy image inside a square aperture
A introduces a significant bias in the phase of χ towards the diagonal direction in image
space. Responsible is the noise in the four corners of the square outside the 1

2 d0 radius disk
around xc that is intrinsically isotropic: the corners are dominated by points with low |x2

1−x2
2|
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and high |x1x2| contribution to the integral terms for Q11 − Q22 and 2iQ12 respectively. To
give an idealised example, I ’integrate’ only over the four diagonal points x1 = ±1 and
x2 = ±1 around x̄ = 0:

Q11 =
1

Itotal

+1∑
x1=−1

+1∑
x2=−1

x2
1 I(x) =

1
Itotal

(I−− + I−+ + I+− + I++) =1

Q22 =
1

Itotal

+1∑
x1=−1

+1∑
x2=−1

x2
2 I(x) =

1
Itotal

(I−− + I−+ + I+− + I++) =1 (2.16)

Q12 =
1

Itotal

+1∑
x1=−1

+1∑
x2=−1

x1x2I(x) =
1

Itotal
(I−− − I−+ − I+− + I++) =?

Since Q11 = Q22 regardless of the individual intensities, only the imaginary part of χ = iQ12
survives with phase 90◦ or 270◦ respectively orientation parallel to 45◦ or 135◦ in the image.
An increased level of noise necessarily results in greater intensity variations along the two
diagonals and therefore an enhanced bias.

The apparent solution is to use the Euclidean instead of the Chebyshev distance metric.
However, particularly for small radii of the integration disk A and correspondingly a large
fraction of pixels on its border, the algorithm now has to account for pixels which are only
partly covered by the disk. This is implemented in the form of an additional weighting factor
Ap(x) for the pixel coverage and appropriately modified centre coordinates (xp

1 (x), xp
2 (x)) for

each pixel:

Qi j =

∑
x∈A(xp

i − x̄i)(xp
j − x̄ j)q(I(x))Ap(x)∑

x∈A q(I(x))Ap(x)
. (2.17)

To save processing time, the above weighting factors are computed only once, at the afford-
able expense of having to use discrete values for the cells’ centre coordinates. I give the
integrals pertaining to the necessary weighting factors in 6.2.

2.2.4 Finding Coherent Features

The fourth step in the initial sketch of the algorithm is to locate paths of similarly oriented
cells, where we utilise the orientation e of each cell and its spatial location xc. Since all
cells are organised in an array with corresponding index running from left to right and
top to bottom over the complete square grid during initial cell placement, and relative cell
distances do not change significantly during cell transport, the efficient selection of cell
neighbours is trivial. Henceforth, I enumerate cells with superscripts i and j and write N i

for the neighbourhood of cell i.

For any choice of d0 and d1 a square of cells encompassing dN = 1+2 max(1, bd0/d1c) rows
and columns in the initial cell grid centred onto cell i is included into the neighbourhood
N i, excluding cell i itself. Assuming that cells overlap, or d1 ≤ d0, this effectively collects
cells up to an initial distance of d0.
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Figure 2.4: Cell orientations for a giant
arc in Abell 2390. Cells with
coherence values above 1

2 are
marked in yellow.

To write down a measure of spatial coherence, we introduce slashed coordinates in a Carte-
sian coordinate frame centred on xi

c and with first and second axes parallel to ei and ei
⊥ B

(−ei
2, e

i
1) respectively. The distance ∆ of a cell j in the neighbourhood of cell i in this

coordinate frame is:

∆ = x j
c − xi

c and ∆′ =

(
∆1ei

1 + ∆2ei
2

−∆1ei
2 + ∆2ei

1

)
. (2.18)

If cells i and j are on a common path aligned with the orientation of cell i, we clearly expect
a low perpendicular distance ∆′2. We normalise this distance with the initial cell distance d1
to get a measure of coherence

ci j
∆

=

1 −
|∆′2 |

d1
for |∆′2| < d1

0 else
. (2.19)

To get a measure of cell alignment, we simply use the scalar product between orientation
vectors:

ci j
e = |ei · e j| . (2.20)

Since both coherence measures are constructed to live in the interval [0, 1] – where 0 denotes
minimal coherence – we write the total coherence between cells i and j as the product of
each,

ci j = ci j
∆

ci j
e , (2.21)

whose arithmetic mean we use to determine for any particular cell i its coherence with its
cell neighbourhood N i:

ci =
1
|N i|

∑
j∈N i

ci j . (2.22)

At this point, different weighting factors can be considered, for example one could weight
cells with low ∆′1 less to account for the lack in information such a cell can provide. Since
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this is a matter of some arbitrariness, it is more fruitful to look at the general behaviour of
the coherence coefficients.

Using the pixel weighting discussed in 2.2.3 and on a flat background with uncorrelated
pixel noise, the orientational coherence ci j

e has a mean value of 2/π ≈ 0.637 and a stan-
dard deviation of

√
1/2 − 4/π2 ≈ 0.308 for non-overlapping cells. If the cell distance falls

below d0, however, the second moments of each cell will no longer be independent; the
expected value finally reaches unity if both cells occupy the same position. For partial over-
lap, I numerically estimated the expected value and the standard deviation of ci j

e assuming
uncorrelated and Gaussian pixel noise, and we see the results in Figure 2.5.
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c e
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mean ce

Figure 2.5: Mean orientational coherence ci j
e versus relative cell distance ∆/d0 on a flat but

noisy background. The 1σ standard deviation is indicated by the shaded area.

Due to the anisotropy of the initial cell distribution, it is difficult not to suspect a bias in the
spatial coherence. To determine this and the general statistics of the coherence on a flat,
random background, let us first observe the mean spatial coherence ci j

∆
.

Using the above estimate of the mean absolute displacement of a cell ξn = 1
2

√
n(1 − 1/π)(d0 − 1/d0)/6

(see Eq. 2.10), the general ansatz from Eq. 2.4 can be applied again: the mean spatial coher-
ence of each cell j ∈ N i is the integral of the ci j

∆
coherence value weighted with a probability

density function f i j(x) in an area {x
∣∣∣|x′2| < 1 }. Neglecting the approximately 6% bias to-

wards diagonal cell transport and under the assumption of independent random walks, the
probability density functions take the form of two-dimensional Gaussian functions centred
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on the initial cell positions x j
c:

f i j(x) =
1

2π2ξ2
n

e
−

(x−x j
c)2

2πξ2n , (2.23)

where I applied that the standard deviation of f i j equals ξn multiplied by
√
π/2 (see Eq. 2.6)

and multiplied by
√

2 to account for the uncertainty in relative positions between cell i and
its neighbours in contrast to the uncertainty in absolute positions. Figure 2.6 illustrates
the necessary integration area for eight cells in N i. In order to solve the integrals it is
convenient to go into the slashed coordinate system and employ the isotropy of f i j and its
product form to reduce the two-dimensional integral terms ci j

∆
(x) f i j(x) to one-dimensional

terms dependent only on x2, which can be solved analytically.

Figure 2.6: Cell i with 8 neighbours and as-
sociated probability density func-
tions. To determine the bias in
c∆, the integration is carried out
in-between the two diagonal lines
where the ci j

∆
> 0.

In approximation I assume that ce and c∆ are independent and carry out the integral over
f i jci j

e separately. This assumption is violated when extended features are present or cell
distances are small compared to d0, but on a flat background the error is negligible compared
to the noise contribution. The relevant results are shown in Figure 2.7 for a realistic scenario
of an initial cell distance d1 = (d0− 1)/2 and correspondingly |N i| = 24 neighbours: on the
left side, we see for two exemplary scale sizes and for d0 → ∞ how the mean coherence
varies from a minimal value for horizontally and vertically aligned cells to a maximum
value for diagonal orientations. It is evident from the plot on the right side that the angular
average does not vary significantly and is approximately 0.125 for most scales. The standard
deviation in c was calculated correspondingly and can be approximated roughly by c/d1/3

0 .
As the upper limit for ci j

e ≤ 1 limits its maximal positive error, I also included the standard
deviation of the spatial coherence alone in the blue shaded region. Also on the right side,
the ratio of maximal to minimal mean coherence is displayed and increases with increasing
scale size on account of the square root dependency of xin on d0, up to a rather significant
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bias of approximately 1.4 for a – extremely large – scale size of 99.
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Figure 2.7: Mean coherence c on a flat, random background. Left: variation of c with the
angle spanned by ei and the x1 axis for scale sizes 5 and 31 and in the limit
of an infinite scale size where the mean displacement ξn → 0. Right: bias
c(45◦)/c(0◦) (left ordinate) and angular average c̄ (right ordinate) ± the angular
average of the standard deviation (green shaded) for scale sizes 3 to 99. The blue
shaded region accounts only for the standard deviation in the spatial coherence
assuming ci j

e ≡ 1.

The bias, unfortunately, cannot be completely accounted for by simply rescaling the spatial
coherence for each orientation in ei, since the bias in the accretion velocity onto image fea-
tures is comparatively low with approximately 6% (see 2.2.2) and the accretion distance is
often greater than d1, where the anisotropy in neighbouring cell counts diminishes. Increas-
ing the normalisation distance in c∆ to higher values than d1 reduces the bias, but increases
the noise contribution from cells not on a ridge line. However, modifying the initial cell
distribution to increase isotropy, for example by using a hexagonal grid, will alleviate this
potential problem and might allow for fainter detections under some conditions. That said,
the background bias was not an apparent influence in the arcfinder applications carried out
for this thesis.

A lower threshold cth is set by the user to indicate what level of coherence ci suggests
an underlying feature and marks a cell as valid. All other cells are excluded from further
processing. From the above analysis, it is immediately apparent that scale sizes d0 < 10
– assuming d1/d0 ≈

1
2 – require relatively high threshold settings of cth ≈ 0.35 to avoid a

large number of spuriously valid cells even on a perfectly flat background with uncorrelated
noise, while for example a low threshold of cth ≈ 0.25 will ensure that less than one in 80
cells is falsely counted as valid for a scale size of d0 = 31 and above. A reasonable value
for the threshold is cth ≈ 0.5.

23



CHAPTER 2. IMAGE ANALYSIS

2.2.5 Object Generation

The final act in the initial detection algorithm is the creation of preliminary detections by
grouping cells into objects, using in principle a friends of friends algorithm.

As indicated in the first paragraph of 2.2.4, cells are organised in an array and the index
i = ix + iynx can be decomposed into ix- and iy- coordinates on the square grid, where nx

is the number of cells in one row. For each valid cell i with ci ≥ cth, we can therefore
apply a modified Bresenham’s line-drawing algorithm (Bresenham 1965) to create a new
neighbourhood Ñ i of cells extended by 2 ·max(1, bd0/d1c) cells into the directions parallel
to the cell’s orientation ei and by 1 + 1

2 max(1, bd0/d1c) cells perpendicular to it. As above,
i < Ñ i.

To facilitate the friends of friends algorithm, each cell i is assigned an object index ki which
is initially set to −1, and a new threshold c̃th is set by the user equivalent to a linking
radius. With these ingredients, the actual scheme of combining coherent cells into objects
is straightforward, as is shown in Listing 2.1.

Listing 2.1: pseudo code for object generation

f o r each v a l i d c e l l i
f o r each v a l i d c e l l j i n Ñ i

ci j = c o h e r e n c e ( i , j )
i f ci j < c̃th

c o n t i n u e / / on t o t h e n e x t c e l l
i f ki < 0 and k j < 0

c r e a t e o b j e c t O( k )
add i t o O( k )
add j t o O( k )
ki = k j = k

e l s e i f k j < 0
add j t o O( ki )
k j = ki

e l s e i f ki < 0
add i t o O( k j )
ki = k j

e l s e
add a l l c e l l s i n O( k j ) t o O( ki )
d e l e t e o b j e c t O( k j )

The result of these steps is illustrated in Figure 2.8. Before the actual postprocessing starts,
objects with few cells and low estimated length are deleted, where both thresholds Ncells
and Lmin can be set by the user to avoid obvious spurious detections. The length estimate
follows the method detailed in (the appendix of) Seidel & Bartelmann (2007).
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Figure 2.8: Seven initial detections in
the vicinity of Abell 2390
in an HST WFPC2 observa-
tion. Two spurious detections
are generated by an extended
diffraction spike and three
more by cluster foreground
(postprocessing as described
in 2.3 reliably removes these
spurious detections).

2.3 Postprocessing

The aim of the subsequent postprocessing methods is to filter out false positives, and to
characterise detections beyond the number, location and orientation of the cells they are
composed of. Spurious detections are caused by a range of image degrading effects as well
as astronomical objects other than strongly lensed galaxies. This is reflected in the number
of different sub-algorithms used to detect them, which are discussed in 2.3.2, 2.3.3, 2.3.9
and 2.3.10. The most common arc descriptors require the shape of the area in the image that
the lensed galaxy is projected into, but the cells in a valid detection are selected so that they
are part only of its ridge line: by construction, they contains no information on its width.
The graph generation and active contour segmentation methods used to obtain the projected
area shapes are discussed in 2.3.5 and below.

2.3.1 Background & Noise Estimation

The previous image analysis required neither the background intensity Ibg(x) nor the noise
σ(x) in the image. Some of the postprocessing methods (see 2.3.5 in particular) however
rely on their values. Since noise respectively χ2 images from the data reduction pipeline are
not always available, both values are computed as part of the arcfinder algorithm.

The algorithm typically does not need to know the background and noise for all image pixels
and hence they are computed only when needed. For each coordinate x, the image attributes
are linearly interpolated between up to four – less if x is on the border of the image – closest
square areas S with side-length 10 ·d0 whose the background and noise levels are estimated
only once and stored for later recall.

The evaluation inside each square S again involves a segmentation into at most 10 × 10
squares S ′ of at least 10 pixels side-length each and average intensities I′bg. The back-
ground intensity Ibg(S ) of S is then set to the supremum of the faintest 20% intensities
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I′bg = F−1
I (0.2) in order to avoid including bright features2, where F−1

I is the inverse of the
cumulative distribution function of I in S ′.

Each square S ′ is locally flat-fielded using two-dimensional linear regression, resulting in
intensities I′

ff
with zero mean and no apparent slope in S ′. Using these intensities, noise

levels are determined as σ′2(x) = (1/|S ′|)
∑

x I′2
ff

(x). If small scale pixel correlations with
an approximate correlation length dcorr ∈ N are present, they are trivially accounted for
by including only pixels whose coordinates fulfil the conditions x1 mod dcorr = 0 and
x2 mod dcorr = 0, at the expense of some certainty in σ′ and by using larger sub-squares
S ′ if necessary. The noise σ(A) is set to the median over all σ′ values.

2.3.2 Histogram Equalisation

We find that it is convenient to scale the intensity inside the disc shaped area A of a cell by
histogram equalisation before any further analysis is applied (see 2.3.3 below). In general,
histogram equalisation maps each intensity I(x) to the normalised fraction F(I) of pixels
in A at or below that intensity, where F is the cumulative distribution function. Using the
characteristic function

χS (x) =

{
1, for x ∈ S
0, for x < S

(2.24)

where S is a subset of A and x ∈ A, this can also be written in the form:

IH(Iref) =
1
|A|

∑
x∈A

χI(x)≤Iref . (2.25)

Unless some pixels have identical intensities, all intervals of length 1/|A| in IH contain one
pixel: the histogram of IH is a constant function. More importantly, this scaling maps all
kernels whose intensity drops isotropically – respectively symmetrically – with distance into
the same function. This is illustrated in Figure 2.9: the first two of the four plots display
histogram scaling on two symmetrically and with respect to |x − 50| strictly monotonously
falling functions. Despite their significant difference in width, the result is equal.

By definition, this is true for all intensity distributions where the fraction F(I) of pixels
below an intensity I(x) share the same dependence on x, or in this case the distance |x −
xcentre| from the centre coordinate xcentre = 50. The third plot illustrates histogram scaling
for a heavily skewed intensity distribution, where the flat interval on the right forces a steep
increase on the left side of the scaled function. The effect of oscillations is shown in the final
plot: they clearly disturb the intermediate intensity segment of the scaled function while
they leave the lower and higher segments intact. It should be noted that the triangular shape
of the scaled function is characteristic for intensity distributions varying in one dimension,
while similar isotropic functions in two dimensions are scaled to one minus a parabola.

2If no bright features are present, using the supremum of the faintest 20% I′bg values instead of the median can
systematically underestimate Ibg(S ), but not more than approximately 0.05σ.
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Figure 2.9: The top diagrams show four progressively irregular intensity functions I(x), and
the diagrams directly below the corresponding histogram equalised functions
rescaled by a constant factor of 100. Each horizontal line in the top diagram
marks an increase by 10 in the number of pixels below that intensity, which is
denoted also by the labels in-between, and a corresponding increase by 10 of
the histogram scaled function.

2.3.3 Cell Reevaluation

I mentioned in passing that groups of cells transported to the exact same location do not con-
tain more information than a single cell in the penultimate paragraph of 2.2.2. Nevertheless,
point sources such as distant and unresolved galaxies or faint stars pull together clusters of
cells none or few pixels apart that generate high coherence values c. Single clusters are re-
moved by the minimal length threshold applied at the end of the initial detection algorithm
(see 2.2.5), but pairs or groups of point sources can still generate extended objects.

It is therefore helpful to distinguish cells on a point source from those on a ridge line.
Our method is based on kernel fitting, where the advantage of mapping kernels of different
width into one by histogram equalisation becomes apparent, since it removes the width
from parameter space and thus gives a direct solution by linear regression for spatially fixed
kernels. We fit a function composed of a constant offset and two distinct kernels: a smoothed
line kernel to estimate how significant a ridge line feature is and an isotropic point kernel to
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fit the significance of a contained point-like source.

True to its name, the cell reevaluation method, including the initial histogram equalisation,
uses only pixels inside a disc shaped cell area A with radius rA = 1

2 d0 around xc. To reduce
the impact of noise, we subtract an offset of 0.6 from the histogram scaled intensities IH and
set all negative values to zero, resulting in intensities IC.

To construct both kernels, the centre of brightness x̄ (see Eq. 2.1) and the orientation e (see
Eqs. 2.11-2.15) are determined and define the centre of the point and the orientation of the
line kernel. Consequently, the point kernel Kpoint(x) follows a function Ipoint

0 − (x − x̄)2 and
the line kernel Kline(x) a function Iline

0 − e⊥ · (x− xc), where the kernel offsets Ipoint
0 and Iline

0
are set such that positive values cover an area of about 0.4A and negative values are set to
zero – corresponding to the rescaling of IH to IC that maps approximately 0.6|A| pixels to
zero. Both kernels are then normalised to a total intensity of one.

Using linear regression we model IC with I0 +cpointKpoint +clineKline, where cpoint, cline and I0
are free parameters. A positive value of the line kernel coefficient cline that is in the range of
or even larger than the point kernel coefficient cpoint generally calls for a strongly elongated
feature, while we consider it a good indicator for a point source if cline is small compared
to cpoint. However, if a negative cpoint balances a positive cline of similar absolute value, the
centre part of the line kernel component is often nullified by the point kernel to simulate
two local maxima: the negative point kernel component indicates a cell located between
two point sources. A significant intensity slope in A is conveniently fitted by a point kernel
located in the higher intensity side of A, which is used to invalidate cells that are pulled
towards bright stars or galaxies from a greater distance.

Empirically, we say a cell is valid if and only if

cline > 0 , (2.26)

(cline + cpoint)/cline ≥ 0.6 and (2.27)

(cline − cpoint)/cline ≥ Rline , (2.28)

where a good value for the ’ridgeness’ threshold is Rline ≈ −0.6.

To sort out cells generated by random background noise, the significance of a cell is esti-
mated by transforming the maximum of the signal component I0 + clineKline back into an
unscaled intensity Iline and computing the ratio

Iline − Ibg

σ
, (2.29)

where Ibg and σ are the background and pixel noise set in 2.3.1. Cells below a user set
threshold of S th ≈ 2.0 are invalidated.

After this step, the cell count and length filter mentioned at the very end of 2.2 are applied
again on the remaining valid cells to remove further spurious detections.
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2.3.4 Generation of Path Graphs

The focus of the detection up to this point was on the ridge lines of strongly elongated
features, but they were defined only by a set of cells distributed in a relatively undefined
fashion along its length during object generation (see 2.2.5). Certainly for the active contour
segmentation method described in 2.3.5, but also for the spiral galaxy filter (see 2.3.10), an
efficient method to generate path graphs from arbitrary sets of cells becomes necessary.

We use the Delaunay triangulation to construct a connected graph G including all valid cells
in the initial detection, and a modified Dijkstra’s algorithm to find the most probable ridge
lines as path subgraphs of G.

Delaunay Triangulation

The Delaunay triangulation (Delaunay 1934) subdivides the convex hull of an arbitrary set
of sites on a plane into triangles so that no site is inside the circumcircle of any triangle3

(see Figure 2.10). It also maximises the minimal angle in all the created triangles compared
to any other possible triangulation, hence avoiding extended, skinny triangles, and tends
to connect points which are close together: in fact, if there is a circle passing through two
points such that no further points are in its interior, those two points are connected by an
edge in the Delaunay triangulation. The cells on a ridge line are typically close neighbours,
therefore this property helps to create undisrupted paths through these cells and to conserve
the geometry of the ridge line.

Figure 2.10: Delaunay triangu-
lation of a small
object with eleven
cells, including
three outliers, and
corresponding
circumcircles.

3It follows that the Delaunay triangulation is the dual graph of the two-dimensional Voronoi tessellation.
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We construct Delaunay triangulations using Fortune’s sweepline algorithm (Fortune 1986;
Austin 2006), which has a low computational complexity of order N log N elemental oper-
ations.

Modified Dijkstra’s Algorithm

Dijkstra’s Algorithm (Dijkstra 1959) is a well known method for choosing the shortest
connection between two nodes in a graph with non-negative edge lengths. One possible
implementation, that we use, is given in Listing 2.2.

Listing 2.2: pseudo code for Dijkstra’s algorithm

f o r each node n i n g raph G / / i n i t i a l i s a t i o n s
d i s t a n c e [ n ] = ∞

p r e v i o u s [ n ] = −1
o r g a n i s e d [ n ] = f a l s e

d i s t a n c e [ nstart ] = 0 / / s t a r t a t d i s t a n c e z e r o
add nstart t o b o r d e r B / / a l l u n o r g a n i s e d nodes wi th . . .
w h i l e B i s n o t empty / / . . . f i n i t e d i s t a n c e s a r e i n B

n = node wi th minimal d i s t a n c e i n B
remove n from B
o r g a n i s e d [ n ] = t r u e
f o r each node n′ c o n n e c t e d wi th n

i f o r g a n i s e d [ n′ ] == t r u e
c o n t i n u e

n e w d i s t = d i s t a n c e [ n ] + l e n g t h o f edge between n and n′

i f n e w d i s t < d i s t a n c e [ n′ ] :
d i s t a n c e [ n′ ] = n e w d i s t
i f p r e v i o u s [ n′ ] < 0 / / n′ i s n o t a l r e a d y i n B

add n′ t o B
p r e v i o u s [ n′ ] = n

Dijkstra’s algorithm can be easily understood by an illustration: we imagine all the nodes
in the graph connected by edges instead as beads connected with strings whose lengths
are equal to the edges’ distances. If the graph is pulled up, hanging by its starting bead,
the shortest connection to any other bead is marked by the tense strings keeping it aloft.
The algorithm distincts three types of nodes: organised nodes with known shortest con-
nection, border nodes connected to an organised node, and unconsidered nodes. Similar to
slowly lifting up the graph by its starting bead, only the distances of nodes in the border
B connected to at least one organised node – a bead hanging in the air whose shortest path
is established – are considered in one iteration. At the start of each step, the node with
minimal distance from the starting node in B becomes organised – the bead is lifted from
the ground – and accordingly updates the distance of any node it is connected to with its
own distance plus the connecting edge’s length, unless the node was updated before with a
shorter distance, and adds it to the border if it was previously unconsidered.
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In Figure 2.10 the astute observer will immediately spot a path from the lowermost to the
topmost cell, passing through five intermediate cells slightly to the left. This example is
typical for the general case that the most probable path of a ridge line, which is smoothly
curved and contains a relatively large number of cells, is rarely the shortest path in an
Euclidean metric. We therefore choose a different distance measure, which incorporates
cell orientations:

Ledge =
∆′21 + ∆′22

|∆′1|

∆′′21 + ∆′′22

|∆′′1 |
, (2.30)

where ∆′ is the distance of two cells i and j in the coordinate frame of cell i (see Eq. 2.18)
and ∆′′ is the same distance in the corresponding coordinate frame of cell j. If the cells are
aligned, this length increases with distance squared.

It is not directly possible to include the angle between edges into the path length in the above
implementation, since it depends on the positions of three consecutive nodes. We therefore
modified the algorithm to store the distance, previous node and organised state of
each node separately in a sub-node for each preceding organised node. When the distance
between a sub-node and a node is determined, the length is penalised by a multiplier of
1 + (eedge 1 − eedge 2)2, where eedge 1/2 are normalised edge directions.

Path Finding

Using the above method, the shortest paths are determined between all starting cells in
a detection with no further object cells in one of the directions ±ei nearer than an upper
distance limit of 4d0. Among this set of paths P, the one with the maximum weight

wpath =

 ∑
(i, j)∈P

|xi − x j|


3/

n
∑

(i, j)∈P

(xi − x j)2 (2.31)

is chosen, where n is the number of valid cells in the path. This empirically determined
weighting function is maximal and equal to the total Euclidean length L of a path for evenly
spaced cells and equal to L/n in the worst case – if the goal is to find plausible ridge lines
– of two clusters of cells connected by one edge of length L. In practise, we implemented
a slightly more elaborate weighting function that also penalises changes in curvature in a
path.

In the rare case that two or more parallel paths with comparable weight are found, the initial
detection is separated into multiple objects.

2.3.5 Active Contour Segmentation

Initial detections trace the ridge line of an image object, yielding its position, orientation,
length and curvature, but obtaining the arc width, integrated flux and signal-to-noise ratios
requires further segmentation. Most lens reconstruction techniques also need the image
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area covered by the arc as input for the algorithm. To this end, the approximate shape of a
detection is determined using an active contour segmentation algorithm (Kass et al. 1988).
The mathematical principles of active contour segmentation are detailed in 2.3.6, and the
application to arc segmentation, the method of initialising the contour and the adaptions
used in the arcfinder algorithm in 2.3.7.

2.3.6 Basic Contour Evolution

For the purpose of this derivation, the contour C is defined as the closed curve c(s) ∈ R2,
with s ∈ [0, 1] and c(0) = c(1). The idea behind active contour evolution is to minimise
an energy functional EC to arrive at a smooth segmentation curve nestling up against the
object. Writing d

ds c(s) = c′(s) and d2

ds2 c(s) = c′′(s) for the first and second derivatives of the
contour function, contour evolution is governed by an energy functional

EC =

∫ 1

0

α(s)
2

c′2(s) +
β(s)

2
c′′2(s) + E(c(s)) ds. (2.32)

The α
2 c′2 term minimises the length and insures that c(s) is traversed uniformly in s, while

the β
2 c′′2 term minimises changes in curvature. The image energy E(c) connects the contour

with the image and is chosen such that it becomes small at the border of the detection: for
example, it could be set to the absolute difference between a threshold intensity and the pixel
value at position c. Calculus of variations gives the equation for the minimum condition for
each value of s. Omitting parameters s for brevity, we start out with

∂EC =

∫ 1

0
αc′∂c′ + βc′′∂c′′ +

∂E(c)
∂c

∂c ds. (2.33)

Partial integration and using ∂E(c)
∂c ∂c = ∇E∂c gives

∂EC = αc′∂c + βc′′∂c′ + ∇E∂c
∣∣∣1
0 −

∫ 1

0

∂(αc′)
∂s

∂c +
∂(βc′′)
∂s

∂c′ + ∇E∂c ds. (2.34)

Since the curve is closed, the leading integration term equals zero. Taking this into account
again and applying partial integration on the second term results in

∂EC =

∫ 1

0
−
∂(αc′)
∂s

∂c +
∂2(βc′′)
∂s2 ∂c + ∇E∂c ds. (2.35)

We can therefore write the Euler equations for EC as:

−
∂(αc′(s))

∂s
+
∂2(βc′′(s))

∂s2 + ∇E(c(s)) = 0. (2.36)
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It is convenient to discretise the equations at this point in order to solve them numerically. I
choose the following discretisation scheme:

∂(αc′(s))
∂s

→ αi+ 1
2
(ci+1 − ci) − αi− 1

2
(ci − ci−1), (2.37)

∂2(βc′′(s))
∂s2 → βi+1 (ci+2 − 2ci+1 + ci)

−2 βi (ci+1 − 2ci + ci−1)

+ βi−1 (ci − 2ci−1 + ci−2),

where I used integer plus 1
2 indices to illustrate that in this discretisation, the distance stress

controlled by e.g. αi+ 1
2

is located between successive nodes i and i + 1. Integer indices i
run from 0 to N − 1 and index terms j outside this range are mapped to j mod N to arrive
at a closed curve. Applying this discretisation to the Euler equations 2.36 and sorting by c
coefficients we arrive at N independent equations:

βi−1ci−2 + (−αi− 1
2
− 2βi − 2βi−1)ci−1

+ (αi− 1
2

+ αi+ 1
2

+ βi+1 + 4βi + βi−1)ci

+ (−αi+ 1
2
− 2βi+1 − 2βi)ci+1 + βi+1ci+2 + (∇E)i = 0. (2.38)

In order to get matrix equations the coefficients in 2.38 are collected in a matrix A with
entries

Ai,i−2 = βi−1, (2.39)

Ai,i−1 = −αi− 1
2
− 2βi − 2βi−1, (2.40)

Ai,i = αi− 1
2

+ αi+ 1
2

+ βi+1 + 4βi + βi−1, (2.41)

Ai,i+1 = −αi+ 1
2
− 2βi+1 − 2βi, (2.42)

Ai,i+2 = βi+1, (2.43)

that has a pentadiagonal form plus additional non-zero entries in the upper right and lower
left corners – remembering the j mod N index mapping due to the closed curve – and vectors

x = (c1i)i=0−(N−1), f x = (
∂

∂x1
Ei)i=0−(N−1), (2.44)

y = (c2i)i=0−(N−1), f y = (
∂

∂x2
Ei)i=0−(N−1) (2.45)

are constructed for the x1- and x2-components of the contour and the derivative of the ex-
ternal energy respectively. This gives the conveniently short notation:

Ax + f x = 0 Ay + f y = 0. (2.46)
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The external energy will depend on the position of the contour nodes on the underlying
image and its intensity distribution, but it is reasonable to assume that A, fx and fy will
be approximately constant for small changes in the contour. Hence one can use a mixed
explicit / implicit Euler method to solve the equations iteratively. The evolution equations
take the following form:

γ(xt+1 − xt) = −Axt+1 − f x,t γ(yt+1 − yt) = −Ayt+1 − f y,t (2.47)

⇓ ⇓

xt+1 = (A + γI)−1(γxt + f x,t) yt+1 = (A + γI)−1(γyt + f y,t). (2.48)

These equations can be solved in order N complexity due to the particular form of matrix
A + γI. A modified Gauss algorithm that considers only elements Ai j with either | j − i| ≤ 2,
i ≥ N − 3 or j ≥ N − 3 was implemented for this.

2.3.7 Arcfinder Image Segmentation

Three caveats quickly became apparent in our efforts to automatically distinguishing arcs
from their surrounding by image segmentation:

1. the signal-to-noise ratio of arcs is low on average. This is particularly felt by first
and second intensity derivatives. Additionally, the high noise contribution lets a large
fraction of pixels inside the area of a faint arc fall below the background intensity.
This precludes the application of straightforward intensity thresholding and the de-
fault solution, isotropic smoothing, has other disadvantages: it enhances blending
with neighbouring objects, reduces length-to-width ratios and smooths away faint
and narrow features, artificially separating objects with bright substructure.

2. the generally smooth intensity distributions of arcs do not lend themselves to seg-
mentation because they lack clearly defined edges and dominant arc substructure can
hide faint features belonging to an arc by raising a segmentation threshold defined by
average or median object intensity to their level.

3. the background underlying an arc is typically varying both along its length and per-
pendicular to it, partly due to the close proximity of the lens and blending with sep-
arate astronomical objects. In particular the total variation along the length of giant
arcs is often larger than the average arc intensity.

For true arc detections, their smooth features devoid of small curvature radii are in our favor.
Nevertheless, a robust segmentation algorithm is necessary in order to filter out spurious
detections with more irregular geometries, and implemented in the arcfinder algorithm using
active contour segmentation.

Adressing the first caveat, the curvature stress of the active contour method indirectly com-
bines the signal over an extended contour length and partly compensates for a low signal-to-
noise ratio locally. We combine a maximum gradient approach with intensity thresholding
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Figure 2.11: Initial contour around a (in
this instance deliberate) spu-
rious detection in a simulated
CFHT image, with node in-
dices for the first and final
contour nodes. Circles mark
points on the ridge line which
are initially in the centre of a
node pair.

by an adaptive isophote level to account for the second point. Regarding the third caveat, we
update an estimate for the arc background in each iteration of the contour evolution, using
averaged intensities and Catmull Rom splines (Catmull & Rom 1974) to avoid discontinu-
ities.

Contour Initialisation

As above, a contour C is defined by its contour nodes ci, i ∈ 0, . . . ,N − 1, tracing its perime-
ter counterclockwise. To create an initial contour, we place opposite nodes ci and cN−1−i

on each side of a ridge line path (see 2.3.4) so that their centres (ci + cN−1−i)/2 are equidis-
tantly distributed on the estimated ridge line with a pairwise distance of approximately 1

2 d0
– adjusted for the total length – between consecutive centre points. The initial distance of
individual nodes c from the path is set to ri = 1

2 d0, resulting in a contour width of d0 (see
Figure 2.11).

Since the curvature for the natural border of an arc will be large at both ends of its ridge,
which the active contour must emulate, we set the coefficients regulating the curvature at
these points, that is β0, βN/2−1, βN/2 and βN−1, to zero. During contour evolution, this results
in two smooth edges at the sides of a feature meeting at an arbitrarily sharp angle.

Image Energy Term

The image energy E(c) (see Eq. 2.32) of the contour relies on intensities IC(i, r) averaged
parallel to the path over one contour segment i for perpendicular distances r from the ridge
line, in effect introducing anisotropic smoothing, but more importantly noise fluctuations in
the node positions perpendicular to the path cause a counterforce from the curvature stress
β
2 c′′2 and therefore tend to cancel each other out in each iteration of the contour evolution
(see Eq. 2.48). The averaging in IC has the drawback of constraining node movement in
parallel to the path. However, as the intrinsic intensity variation along an arc is often low
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compared to the intensity variation induced by close or blended objects, it is sufficient – even
helpful – to consider only the force component Fi perpendicular to the path direction in the
image energy, even if this fixes the object length during contour evolution. All distance
stress coefficients α are set to zero: along both sides to compensate for the absence of
a parallel force extending the contour line and at the ends connecting the sides to avoid
artificially reducing the arc width.

We treat the image energy force as a composite of two distinct properties: the second deriva-
tive of the intensity perpendicular to the contour and its distance from an isophote. To re-
duce the impact of substructure and noise on the second derivative of IC , a simple adaptive
smoothing scheme is used where the convolution kernel takes the form

K2nd = −
(r − ri)2 − w2

σ4 e−
(r−ri)

2

2w2 (2.49)

with w = max(1, 1
3 ri). Assuming a feature has a constant Gaussian function intensity profile

IC ∝ exp(−r2/(2σ2)) of width σ along its length, the final distance r 1
2

from the ridge line
where each nodes second derivative force becomes zero can be determined analytically:

r 1
2

=

 3σ/
√

32 − 1 ≈ 1.06σ, for ri > 3
√
σ2 + 1, else.

(2.50)

Although this appears to be the straightforward solution, the isophote force is not deter-
mined by the gradient alone in order to avoid the influence of varying intensity gradients
from substructure and noise. Instead, the closest distance riso,i to ri where both IC(i, r)
crosses the isophote level Iiso(i) and the gradient ∂/∂rIC(i, r) < 0 is determined and the
force set to riso,i − ri. Both perpendicular force components Fgrad(i) and Fiso(i) are nor-
malised with the respective standard deviations σ2

Fgrad/iso =
∑

i F2
grad/iso(i) over all nodes

such that they share approximately equal influence on node shifts in each iteration.

Background Estimation and Termination

It is crucial to assign different isophote levels Iiso(i) to each node if the background intensity
is varying strongly along the length of an arc (see Figure 2.12). This background estimate is
obtained at a narrow range of pixels at least 1

2 d0 + 1 pixels outside the contour as supremum
F−1

I (0.25) of the 25% minimal intensities parallel to the ridge line for each pair of nodes4.
These values are then distributed on a set of fiducial points spaced approximately 10d0 pix-
els apart that provide the basis for a Catmull-Rom spline interpolation resulting in smooth
background intensities ICbg(i). The isophote levels for each node are computed as:

Iiso(i) = ICbg(i) + µ 1
2
(IC( j, r j) − ICbg( j)), j ∈ {0, . . . ,N − 1} , (2.51)

4We consciously avoid modelling background variations perpendicular to the detection as the variation scale
perpendicular to arcs blended with their lens is often too short for reliable estimates. As before, F−1 is the
inverse of the cumulative distribution function.
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Figure 2.12: The red line in the diagram on the right shows averaged intensities perpen-
dicular to the ridge line along the length (from bottom-right to top-left) of the
giant arc in Abell 2390 displayed on the left. As expected, it is brightest in the
centre, but it is also significantly brighter on its upper-left end. The green and
blue lines show the automatically determined isophote and background levels
respectively.

where µ 1
2
(X) ≡ X̃ ≡ F−1

X ( 1
2 ) denotes the median of a random variable X here and in the

following.

The contour evolution terminates when the total deviation in node shifts goes below 0.1
pixels (see Figure 2.13). Since both force components are normalised by their standard de-
viation, this would not happen under normal circumstances, therefore two additional multi-
pliers mL and mR are used that reduce the step size for each side L and R separately if their
average positions start to oscillate around one value. More precisely,

if
N/2−1∑

i=0

|ri(n) − ri(n − 2)| − |ri(n) − ri(n − 1)| ≤ 0 then mL →
1
2

mL (2.52)

if
N−1∑

i=N/2

|ri(n) − ri(n − 2)| − |ri(n) − ri(n − 1)| ≤ 0 then mR →
1
2

mR , (2.53)

where values n, n − 1 and n − 2 denote the iterative step.
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Figure 2.13: The initial contour in Figure 2.11 after 1, 4, 8, 12, 16 and 20 more itera-
tions, where the final contour is accepted in this case. Red arrows indicate
the isophote and blue arrows the second derivative force that maximises the
intensity gradient. The reduction in arrow lengths in the penultimate iteration
corresponds to a diminished mL and mR due to oscillations in the contour. The
curvature stress prevents the contour from following the isophote completely.
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2.3.8 Classification of Candidates

The final contours combined with the image background and noise determined earlier (see
2.3.1) provide the basis for the feature characteristics compiled into the catalogue of possi-
ble arc candidates. The (mean contour) position, length, total flux and signal-to-noise are
computed straightforwardly.

Following the approach from Meneghetti et al. (2008) we determine the width w as the
median width along the contour length and correct for the widening effect of the PSF by
setting

wcorr = f1

√
w2

f 2
1

+
FWHM2

f 2
2

, (2.54)

where f1 = 3√
32−1

(see Eq. 2.50), FWHM is the full width at half maximum of the PSF

in pixels and f2 = 2
√

2 ln 2 is a correction factor to determine the standard deviation of a
Gaussian function from the FWHM. While this procedure is the ideal analytical result only
for Gaussian intensity profiles, it appears to provide realistic estimates also for the profiles
observed (although further tests with simulated images are necessary, see also chapter 5).

The 1/r curvature of an arc is determined by fitting a circle through the complete ridge line
path.

2.3.9 Masking of Stellar Artefacts

Since stars other than the sun appear as point sources, their images correspond to the instru-
ment’s point spread function (PSF). Bright stars can additionally cause oversaturated pixels
and blooming artefacts (see Figure 2.3.9).

The central part of the PSF can usually be approximated by an Airy disc, the ideal diffraction
pattern of a circular telescope aperture:

IA(r) ∝
(
2J1(r)

r

)2

, (2.55)

where J1 is the Bessel function of the first kind of order one and r = 1
2 Dk sin θ with

wavenumber k = 2π/λ, aperture diameter D and observation angle θ. For most rele-
vant astronomical instruments, this is superimposed by diffraction spikes, extended features
caused by diffraction on the telescope’s secondary mirror spiders. Given spider widths w
and lengths l, the analytical solution for this diffraction pattern is (Harvey & Ftaclas 1995):

IS(x1, x2) ∝ sinc2
(
wx1

λ f

)
sinc2

(
lx2

λ f

)
, (2.56)

where sinc(x) = sin(x)/x, λ is a wavelength, f the telescope’s focal length and x1, x2 are
orthogonal coordinates in the image plane such that the spike extends in the x1 direction.
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Figure 2.14: Small patch from the COSMOS survey taken with the HST ACS containing
several bright stars, the brightest also causing a small amount of pixel bloom-
ing. On the right, the same stars are shown with their respective disk and spike
masks.

Since both variations in the Airy disc as well as extended diffraction spikes can give rise to
spurious detections, a simple masking routine invalidates detections overlapping either one
of them with more than one half of their total area. To determine the respective masking
areas for a star, its position and total flux must be known as well as the relative angles of
the diffraction spikes and the telescope characteristics. The program uses catalogue data to
obtain star positions and fluxes, but also includes basic star extraction and photometry al-
gorithms, where the user has to provide an intensity threshold Istar and a minimal saturation
intensity Isat. Photometry for bright stars can be challenging given the high probability of
oversaturated pixels hiding the bulk of the flux. I will therefore give a quick overview of the
procedure as applied to oversaturated stars.

To extract stars, all connected regions with intensities greater than Istar are found using
intensity thresholding. Region centres are determined inside iteratively shrinking apertures
as weighted centres of brightness cstar. For each region, a radial intensity profile is then
constructed from the median intensities in sets R(r) that contain all pixels at a distance of
approximately r from the centre with intensity below Isat:

I(r) = µ 1
2
(I(x)) − Ibg, x ∈ R(r) =

{
x
∣∣∣∣∣ I(x) < Isat ∧ r −

1
2
≤ |x − cstar| < r +

1
2

}
, (2.57)

where Ibg is the image background and I(r) is not defined – and not taken into account in
the algorithm – if R(r) is empty.

To obtain a realistic flux estimate even if I(r) > Isat for low r, we use that the central lobe of
the Airy disc containing most of the flux can be well approximated by a Gaussian function
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I(r) ≈ I0 exp(−r2/2σ2). Its normalisation and width is determined by linear regression:
fitting C0+r2C1 to ln(I(r2)) ≈ ln(I0)−r2/2σ2 inside an r-interval chosen so that 1

5 (Isat−Ibg) ≤
I(r) ≤ 4

5 (Isat − Ibg) we obtain the flux estimate Fstar ≈ 2πI0σ
2 with I0 = exp(C0) and

σ2 = −1/2C1.

To find the extent of the Airy disc, we note the asymptotic behaviour of the Bessel function
of the first kind J1

J1(r) ≈

√
2
πr

sin
(
r −

π

4

)
for r �

3
4

(2.58)

and insert the non-oscillating term into Eq. 2.55 to find an upper value for the Airy disc

I≥A(r) ≈ const.
Fstar

r3 , (2.59)

where we used that the intensity is proportional to the flux. If the highest acceptable inten-
sity that does not generate spurious detections is Imax,

I≥A(rA) ≤ Imax ⇒ rA & C′A

(
Fstar

Imax

)1/3

(2.60)

and similarly for diffraction spikes, setting x2 = 0, replacing x1 with rS and observing only
the maxima of the first sine in Eq. 2.56,

I≤S(rS) ≈ const.
Fstar

r2
S

≤ Imax ⇒ rS & C′S

√
Fstar

Imax
. (2.61)

Two constants CA and CS corresponding to C′A and C′S scaled to pixel coordinates must be
set by the user, as well as the angular orientation φi of diffraction spikes. Within the user
interface of the arcfinder software, this can be done interactively by visual cross-checks
of the resultant masks (Figure 2.3.9 is a screen capture of the main window, as are all
astronomical images illustrated in this thesis except when noted otherwise).

2.3.10 Spiral Galaxy Detection

To detect galaxy-type lenses, an efficient method to filter spurious detections is to invalidate
arc candidates by their distance and orientation to the closest galaxy. However, spurious
detections generated by the arms of spiral galaxies are highly resistant to such a filter: in
one spectral band, they can often be distinguished from arcs only by a faint connection to
the galactic centre.

For Cosmological Evolution Survey (COSMOS) Advanced Camera for Surveys (ACS) im-
ages (see 4), a filter was implemented that further classifies galaxies read from a catalogue
of COSMOS ACS observations and removes arc candidates it sees as spiral arms. The cata-
logue was compiled by (Leauthaud et al. 2007) using the SExtractor software and provides,
among other data, angular coordinates and a measure of the area inside the segmented area
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Figure 2.15: Another COSMOS ACS patch showing a foreground spiral galaxy on the left,
and the same galaxy where detected structures are marked by coherent cells
and routes through them starting at the galactic centre. Red cells mark paths
that the algorithm consideres as spiral galaxy arms. The algorithm does not
detect the tangential segment of the upper right arm as such and might consider
it an arc if the other two arms were not present.

of each object in the form of ISOAREA and ELONGATION entries. Inside this designated
isophotal area, the classification procedure proceeds to distribute cells of side length dglx on
a square grid as described in 2.2.1, with the galaxy in the centre of the grid. Mimicking the
initial arc detection algorithm described above (2.2.2 to 2.2.4), coherent cells are determined
and all cells below a threshold cglx removed from further consideration. The remaining cells
are treated as nodes in a graph, and shortest routes to all other nodes are determined from a
node set to the galaxy’s centre, using the spatial (Euclidean) cell distances for edge lengths
(see Figure 2.15).

A breadth-first search then goes through the possible routes, stopping when a route qualifies
as a spiral arm or is rejected, for example due to large gaps in the route. As the acceptance
mechanism is complicated but purely heuristic, I will not go into great detail and instead
present a short overview of the relevant route parameters and the acceptance condition. The
parameters are

• the route length L

• initial and final radii r1 and rn from the galaxy’s centre

• angles αi edges in the route span with a radius through them to determine if the route
changes the direction of its rotation
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• angles φ1 and φ2 covered by the route segments below and above the intermediate
radius (r1 + rn)/2

• the area A between the route and a mean radius through the route, integrated over
absolute arc lengths

A route is considered a spiral arm if

• its radius has increased from the starting radius by rn/r1 > 1 2
3 and

• the radial distance to length ratio (rn − r1)/L > 1
2 ,

• the minimum of both covered angles min(φ1, φ2) > 5◦, where using the minimum
of two separate covered angles was necessary in order to avoid filtering arcs with a
spurious radial connection to the lenses centre,

• its length is greater than the minimum of the initial radius and the scale size, L >

min(r0, dglx), and

• the ratio of the area between route and mean radius and the length A/L > 2.5.

Applied to COSMOS ACS images, this scheme eliminates over 90% of the spurious detec-
tions generated by apparent spirals.
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2.4 Summary of Detection and Filter Parameters

To conclude the description of the primary methods in the arcfinder algorithm, Table 2.1
contains the parameters set by the user that are relevant for the initial detection of elongated
features and postprocessing of arc candidates. The most important parameter determining
the sensitivity and the susceptibility to false positives in the initial detection algorithm is the
scale size d0, while many of the additional parameters generally do not require modification.
The parameters controlling stellar masking, Istar and Isat must be modified depending on
the instrument characteristics and normalisation. Excluded from the list are obvious filter
thresholds, for example lower limits for the arc candidate signal-to-noise and length-to-
width ratios. An optional deblending method that was implemented recently and is not
fully tested yet also requires an additional parameter.

parameter possible value short description

d0 11 scale size (2.2 & 2.2.1)
d1/d0 0.32 characteristic grid distance over scale size (2.2 & 2.2.1)
dmax 0.73 maximal cell transport distance in units of d0 (2.2.2)
cth 0.54 cell coherence threshold to determine cell validity (2.2.4)
c̃th 0.54 cell coherence threshold for object generation (2.2.5)
Ncells 5 minimal number of valid cells in an object (2.2.5)
Lmin 20 minimal length of arc candidates in pixels (2.2.5)
Rline -0.6 minimal cell ’ridgeness’ (2.3.3)
S th 5.0 minimal cell significance (2.3.3)
FWHM 0.0 fwhm of the point spread function in pixels (2.3.8)
Istar 10 star detection intensity (2.3.9)
Isat 80 lower bound of the pixel saturation intensity (2.3.9)
φi 0,90,87.7 angles of diffraction spikes in degrees (2.3.9)
CA 4.8 normalisation factor for Airy disc masking (2.3.9)
CS 4.3 normalisation factor for Spike masking (2.3.9)
dglx 11 scale size used in the spiral galaxy detection algorithm (2.3.10)
cglx 0.5 coherence threshold used for spiral galaxy detection (2.3.10)

Table 2.1: List of user set parameters controlling the detection and filter algorithms.
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3 Application to Simulated Images

To determine the completeness of the algorithm independent of a potentially biased arc
classification by human observers, we applied the arcfinder software on simulated images
with known arc positions. These were created for the CFHT, the projected Dark Universe
Explorer (DUNE), HST ACS and Subaru instruments with raytracing software developed
by Meneghetti et al. (2008). For all images, one numerically simulated cluster, one set of
foreground galaxies taken from the GOODS-ACS archive and three different source distri-
butions were assumed, and the images calculated in a 100x100 square arcsecond window.
The seeing for the four instruments was assumed to be 0.6” for the CFHT and Subaru,
0.23” for the DUNE and 0.12” for the HST. Band filter characteristic are in the infrared for
the most part: the simulated CFHT and Subaru operates with an i-band filter, the HST the
F814W filter and only DUNE a broad riz-band filter characteristic.

For each instrument and set of source distributions, a foreground image and an image of
the lensed sources was computed separately, taking into account the instrument and CCD
characteristics, the filter and the seeing (see Figure 3.1). To get a sample of arcs at various
magnitudes these images were combined, applying Poisson distributed photon noise con-
sistent with exposure times of 1000s, 1500s and 3000s and rescaling the arc image with
28 different weight factors Wsource ranging from 0.1 to 800 while the foreground image
remained unscaled.

Figure 3.1: The basis for the simulated images provide foreground and arc images for the
different instruments, here shown for Subaru with an I-band filter and seeing of
0.6”. The third image is the combined result with a scaling factor of 20 applied
to the second image and noise added.
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3.1 Preparing the Data

To automatise the completeness measurement, intensity thresholding was applied on the
original arc images to create arc masks for the four separate instruments and the three sets
of source distributions. Unfortunately, due to substructure and varying surface brightness
for the individual arcs, a global threshold resulted in merged objects for some higher in-
tensity arcs and separated substructures for fainter ones. Although a completely automated
procedure would have been prefered, small manual adjustments to the masks were therefore
necessary, but to remain objective, these were applied before applying any calibration steps
(see Figure 3.2).

The total flux of each arc is then determined by integrating over the area belonging to it
according to the mask in the original arc image. To obtain the flux in the combined image,
this initial flux is multiplied by the respective weight values Wsource. To convert into AB
magnitudes, a magnitude zero point is used that is assigned to each of the reconstructed
images and takes the combined instrument and detector efficiency for the respective filter
into account. The geometry of arcs is determined from the mask as well, applying the
principal methods in Meneghetti et al. (2008).

Note that using this method, the number of arcs for each instrument might be different, and
turns out to be lower for the ground based CFHT and Subaru instruments, where arcs that
can still be seen as separate entities with the HST and the DUNE are blended together. When
comparing the results, it is helpful to note that using the integrated flux to determine AB
magnitudes leads to lower surface brightnesses for extended sources compared to compact
sources of the same magnitude. Large giant arcs can therefore easily vanish in the image
noise even if their magnitude is in the range of a clearly visible star.

3.2 Regarding the Completeness and Spurious Detections

The statistical analysis of the data becomes straightforward after these preparatory steps.
I adopt the definition of completeness used in Marshall et al. (2009), that is the ratio of
detected over existing features in a set. The purity, here the ratio of true positives over the
total number of detections, unfortunately cannot be determined in a meaningful way inside
a small patch of 100x100 square arc seconds, but since spurious detections occur with some
frequency for one of the more peculiar scale sizes used with ACS images, the number
of spurious detections is counted for comparison with the other results. Since dithering
of multiple exposures and drizzling were not simulated, a systematic bias towards fewer
spurious detections for small scale sizes is expected as a result of missing pixel correlations.

For the test, the algorithm runs over the complete image sample, and records for each image
the list of included arcs, storing with each arc its current magnitude, the observing instru-
ment, the exposure time, the scale size d0 and a flag indicating whether it was detected,
which is set if at least one of the final arc candidates’ contours overlaps with its mask. Log-
ically, the completeness is determined later by counting the number of detected versus the
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Figure 3.2: Mask images for (from first to last row) CFHT, DUNE, HST and Subaru data
sets. Blue areas mark valid arcs, while red areas mark images not counted to-
wards the total arc number.
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total number of arcs for any particular instrument, exposure time, magnitude interval and
scale size d0. To obtain the number of spurious detections, the list of detections each with
instrument, exposure time, scale size d0 and a flag indicating whether it can be identified
with an arc by contour overlap is similarly recorded. As spurious detections are generally
caused by foreground objects, although perhaps only in some manifestations of the pixel
noise, their magnitude is not considered.

We plot the completeness in one-magnitude steps for i-band CFHT, riz-band DUNE, I-
band Subaru and F814W-band HST ACS images for exposure times of 1000s, 1500s and
3000s (see Figures 3.3 – 3.8). In each plot, the shaded areas correspond to the Poisson
error

√
Ndet/Narc in each sample. While blue tinted lines and areas illustrate the overall

completeness, green tinted lines and areas consider only arcs longer than 12” and with
length-to-width ratio greater than 7. We note that extended, thin arcs are more reliably
detected, as they are less likely to be obscured by foreground objects. This balances their on
average lower surface brightness compared to smaller arcs in the same magnitude range. As
expected, an increase in exposure time from 1000 to 3000 seconds has a marginal influence
in the higher magnitude range, but increases the number of detections at the magnitude limit
for all instruments.

The ratio of spurious detections over the total number of detections for one instrument and
one exposure time are indicated by a red arrow pointing to the left ordinate. For a scale size
of 9 pixels, neither CFHT nor Subaru images generated spurious detections in this small test
frame, but they appear prominently for the better resolved DUNE and HST images. These
spurious detections are caused by edge on galaxies in the dense cluster environment, which
appear to be more elongated in the higher resolution images. In particular for the large scale
size d0 = 29 in Figure 3.8, the cell reevaluation method tends to ’see’ ridge line structures
in foreground edge on galaxies, while smaller cells reject the comparatively large intensity
slope up to the centre of a foreground galaxy (see 2.3.3). On the other hand, small scale sizes
result in a lower signal to noise ratio in each cell’s area A and might therefore not notice an
underlying structure, resulting in a higher minimal flux for detection (see Figure 3.6).
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Figure 3.3: Detection ratio for i-band CFHT images, d0 = 9 pixels.
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Figure 3.4: Detection ratio for simulated broad riz-band DUNE images, d0 = 9 pixels.
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Figure 3.5: Detection ratio for simulated I-band SUBARU images, d0 = 9 pixels.
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Figure 3.6: Detection ratio for simulated HST ACS images in the F814W-band, applying a
scale size of d0 = 9 pixels.
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Figure 3.7: Detection ratio for simulated HST ACS images in the F814W-band, applying a
scale size of d0 = 15 pixels.
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Figure 3.8: Detection ratio for simulated HST ACS images in the F814W-band, applying a
scale size of d0 = 29 pixels.
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4 Application on COSMOS ACS Images

The algorithm was applied to images observed with the Hubble Space Telescope (HST)
Advanced Camera for Surveys (ACS) for the Cosmological Evolution Survey (COSMOS).
COSMOS aims to probe the formation and evolution of galaxies in relation to their large
scale structure environment. It is an HST Treasury project that surveys a field of approx-
imately two square degrees in the constellation of the Sextants up to IAB magnitudes of
27.2 in the F814W band. A dithering strategy with four exposures was used to filter cosmic
rays and bad pixels and to bridge the gap between ACS CCD arrays, and the MultiDrizzle
software was used for image reconstruction (see 2.1.2).

To adapt the algorithm to ACS images, its parameters were calibrated using galaxy-type
lenses found earlier by Faure et al. (2008). We therefore expected to find some galaxy-type
lenses similar to the ones found before, and possibly an arc from cluster lensing. Unfor-
tunately, we did not detect the latter, which is completely consistent with the size of the
field.

The final set of parameters determined during calibration can be found in Table 2.1; the
FWHM value is set to zero there only because the width correction was not yet imple-
mented. While the code ran in parallel, the estimated execution time on one processor
is 48.5 hours, corresponding to a processing speed of approximately 1.85 · 105 pixels per
second.

4.1 Galaxy Lens Candidates

Table 4.1 lists possible new arc candidates found among a large number of spurious detec-
tions (see 4.2), where detections coinciding with the arc candidates in Faure et al. (2008)
– having been used for calibration – were naturally removed from the detection catalogue.
Figures 4.1 – 4.24 show all candidates and the contours assigned to them during postpro-
cessing.

For candidates 14, 16, 17, 20, 22 and 24 we note that an observer might find longer contours
than the algorithm, which is primarily caused by cell invalidation controlled by the minimal
’ridgeness’ and significance thresholds Rline and S th (see 2.3.3). In the case of candidate 17,
a shorter segment below the displayed contour was initially detected, but rejected during
postprocessing due to its low signal-to-noise ratio in the relatively high intensity environ-
ment of the foreground galaxy. Multiple images might exist for candidates 1, 2, 7, 11, 20
and 24, but the algorithm is not designed to look for them specifically and in all of these
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CHAPTER 4. APPLICATION ON COSMOS ACS IMAGES

cases they fall short of the set length and length-to-width thresholds. In Figure 4.12 a radial
spurious detection is visible next to the arc candidate.

candidate RA (J2000) DEC (J2000) angular
index separation

01 09 58 02.46 02 24 25.90 1.44”
02 09 58 09.97 02 29 42.85 2.20”
03 09 58 29.89 01 37 37.42 2.90”
04 09 58 50.83 01 44 55.01 1.67”
05 09 58 55.33 02 08 50.79 0.89”
06 09 58 55.83 01 38 46.20 5.17”
07 09 59 30.96 02 34 28.39 0.83”
08 09 59 40.48 02 32 52.23 1.59”
09 09 59 54.13 02 30 38.72 1.30”
10 09 59 57.54 02 09 22.55 1.26”
11 10 00 00.79 02 43 07.70 1.60”
12 10 00 10.43 02 28 55.84 1.75”
13 10 00 11.61 02 35 29.82 2.68”
14 10 00 16.02 02 37 09.22 0.89”
15 10 00 16.59 02 25 05.22 2.70”
16 10 00 20.57 02 21 52.64 1.68”
17 10 00 23.83 02 52 23.42 0.59”
18 10 00 27.21 02 03 35.37 2.68”
19 10 01 03.62 02 16 08.98 2.07”
20 10 01 16.40 02 02 45.69 2.22”
21 10 01 32.42 02 48 13.49 0.90”
22 10 02 05.79 02 02 46.51 2.51”
23 10 02 35.20 01 52 42.46 1.24”
24 10 02 40.01 01 48 04.83 2.40”

Table 4.1: Possible new arc candidates in the COSMOS ACS survey.
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Figure 4.1: Candidate 1

Figure 4.2: Candidate 2

Figure 4.3: Candidate 3
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Figure 4.4: Candidate 4

Figure 4.5: Candidate 5

Figure 4.6: Candidate 6
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Figure 4.7: Candidate 7

Figure 4.8: Candidate 8

Figure 4.9: Candidate 9
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Figure 4.10: Candidate 10

Figure 4.11: Candidate 11

Figure 4.12: Candidate 12
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Figure 4.13: Candidate 13

Figure 4.14: Candidate 14

Figure 4.15: Candidate 15
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Figure 4.16: Candidate 16

Figure 4.17: Candidate 17

Figure 4.18: Candidate 18
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Figure 4.19: Candidate 19

Figure 4.20: Candidate 20

Figure 4.21: Candidate 21
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Figure 4.22: Candidate 22

Figure 4.23: Candidate 23

Figure 4.24: Candidate 24
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4.2. SPURIOUS DETECTIONS

4.2 Spurious Detections

Processing the 575 COSMOS ACS images containing approximately 3.2 · 1010 pixels in a
1.64 square degree field produced a total number of 10409 arc candidates with the settings
detailed in Table 2.1, an uncorrected length-to-width threshold of 3.5 and a minimal inte-
grated signal-to-noise ratio of 30. This number stands in relation to approximately 3.9 · 105

galaxies in the COSMOS weak lensing catalogue and a total of about 1.2 ·106 objects in the
complete COSMOS catalogue below a limiting F814W magnitude of about 26.5, but is still
about 400 times larger than the number of new arc candidates shown above (Figure 4.25
shows the distribution of all detections in the COSMOS ACS data).

Figure 4.25: All arc candidates detected in the COSMOS ACS survey. Some exceptionally
long diffraction spikes are noticeable.
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The majority of spurious detections, and possibly some of the new arc candidates presented
above, are edge on galaxies, which is consistent with the total number of galaxies in the
field. Further false positives are generated by blended galaxy images, barred galaxies, and
spiral galaxies that were not successfully masked (see 2.3.10). Another contribution comes
from exceptionally bright stars: successfully masking them is challenging both because
their diffraction spikes extend over long distances and because their total flux irrespective
of CCD oversaturation is difficult to estimate (see 2.3.9). Finally, groups of point sources
induce spurious detections in particular if they are connected by filaments of higher intensity
pixels manifested in the noise. The likelyhood of such features is increased due to pixel
correlations introduced by drizzling (see 2.1.2).

If the primary goal were to search for giant arcs, an upper length limit could drastically re-
duce the amount of spurious detections, as is illustrated by Figure 4.26, plotting the number
of spurious detection per length interval over the length in pixels. Only 327 detections are
above a length of 100 pixels, and 40 remain that are at least 200 pixels long.

Figure 4.26: Distribution of arc candidate
lengths in the COSMOS survey
for scale size 11.
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To find galaxy lenses, detections oriented tangentially or radially towards a catalogue item
that is closer than four times the detection’s length are flagged in the output catalogue. The
arc candidates above are the result of visually inspecting the 2044 detections flagged as
tangentially oriented.

Finally, an experimental routine was developed that finds clusters of arcs around a similar
centre, but while this method successfully identified the Abell 2218 and Abell 2390 cluster
lenses imaged by the HST WFPC2 instrument, it did not detect a lens in the COSMOS ACS
images.
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5 Summary, Conclusions and Outlook

Strong lensing magnifies background sources and directly probes the intermittent mass dis-
tribution between a source galaxy and the observer. Both effects can be used for a variety of
astrophysical and cosmological applications. These include exploiting the magnifying effect
of strong lensing to study the most distant observable galaxies and reconstructing the pro-
jected mass density of lensing galaxy clusters from the spatial distribution of source images
in combination with weak lensing data, which provides insights into the cluster dynamics
and evolution. Arc statistics has the potential to provide insights into non-linear large scale
structure formation, but the predicted and the observed number of giant arcs from cluster
lensing is currently inconsistent, which warrants further investigation. For any of these ap-
plications, it is both essential to increase the number of observed arcs without bias towards
a certain cluster population and to provide an objective arc classification method (see 1.1).
The goal of this thesis was therefore to develop an automated arc detection and classification
algorithm that can be applied to large scale surveys without a priori information on possible
lens positions.

5.1 Method and Results

We developed a novel image processing algorithm for detecting elongated features based
on an adaptive sampling method of second moments in image ’cells’ and an evaluation of
local coherence in the image orientations derived from the second moments.

This arcfinder algorithm first distributes cells of several pixels side length, defined by a scale
size parameter, uniformly over the complete image such that their respective areas overlap.
It then attracts these cells to locally bright features using the local centre of brightness in
each cell, and proceeds to determine the orientation of any underlying elongated structures
using second moments and the complex ellipticity derived from them. This aligns cells
with elongated features while cells on a noisy background receive random orientations.
This is used to mark cells which are spatially and orientationally aligned with the cells in
their neighbourhood. A friends of friends type algorithm is then used to combine coherent
cells into preliminary detections. This method is computationally efficient and extremely
sensitive even to faint features (see 2.2).

In order to remove false positive and to classify the initial detections, a number of postpro-
cessing algorithms were developed, including filters that further analyse the data contained
in cells, an algorithm that generates a graph marking the ridge line of each detection, an
active contour segmentation method that measures the shape of preliminary detections and
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algorithms that mask stellar diffraction spikes and other point spread function artefacts as
well as the arms of spiral galaxies (see 2.3).

We applied our software to simulated CFHT, DUNE, HST ACS and Subaru images and
obtained the completeness as a function of the arc magnitude for arcs hidden inside a cluster
foreground (see 3.2). It is apparent that in the same magnitude range, thin and extended arcs
are detected preferentially, which is largely due to them being less affected by blending with
galaxies in the cluster foreground.

As a proof of concept, the software was also applied to HST ACS images observed as part
of the COSMOS survey (see 4). As simulated images were not available at this point, it was
calibrated using galaxy-type lenses detected earlier by Faure et al. (2008). Among a large
number of spurious detections primarily generated by edge on galaxies, we find 24 new arc
candidates in the observed 1.64 square degree field.

The arcfinder software detects and further processes elongated features with approximately
3.8 · 105 pixels per second for a scale size of nine pixels up to 1.3 · 106 pixels per second for
a scale size of 29 pixels in simulated images (see 3). Applied to ACS images, the software
processes approximately 1.85 · 105 pixels per second for a scale size of 11 pixels. The
software’s high computational efficiency combined with the possibility to process several
sets of images in parallel makes it well suited for application to current and upcoming
surveys.

5.2 Outlook

With the arc detection software completed, the next logical step will be the application to
observational data. Immediately available is the CFHTLS-Wide survey (Tereno et al. 2005)
imaging a 170 square degree field in five bands down to i’ magnitudes of 24.5. Data from the
Pan-STARRS PS 1 instrument (Kaiser et al. 2002) will probably become available within
several months. While the Subaru telescope’s Hyper-Suprime Camera will not see first light
until late in 2011, calibrating the algorithm on simulated data for this instrument will allow
swift application in the future.

Where images in multiple bands are available, we expect that extending the algorithm to
include colour information can further reduce the amount of spurious detections primarily
by separating blended sources and by using photometric redshift information to discern
foreground from background objects.

Further tests on simulated images are necessary to determine the consistency of flux and
shape measurements, in particular the magnitude and the length-to-width ratio of arcs,
which are important measures for comparison with theoretical estimates from arc statis-
tics. To more accurately determine the selection function for varying arc characteristics, the
algorithm has to be applied to a larger data sample, including multiple foreground clusters
and projections. Large foreground images can be used to quantify the purity of the detected
arc candidates.
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5.2. OUTLOOK

Most importantly, detected cluster lenses can be used in two ways: first, systems with mul-
tiple images are promising candidates for cluster reconstruction in combination with weak
lensing data and second, a sufficient number of detected cluster lenses can be used to im-
prove the observational constraints for arc statistics.
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6 Appendix

6.1 Relation of the Ellipse Orientation and the Complex
Ellipticity

l l

l

ϑ

l

l

x2

x1

χ

2ϑ

Figure 6.1: Geometric construction of the orientation ϑ.

The complex ellipticity χ = 1−r2

1+r2 exp(2iϑ) and the real axis span the angle 2ϑ in C, twice
the angle ϑ between the x1-axis and the semi major axis of an underlying ellipse in image
space. Let (χ1, χ2) = (<(χ),=(χ)). We can obtain a vector parallel to the ellipse’s semi
major axis by computing the diagonal (χ1 + |χ|, χ2) of the rhombus with side length l = |χ|

seen on the right side of Figure 6.1.

Since the length of this diagonal approaches zero for 2ϑ→ π, this method is unsuitable for
bisecting angles 2ϑ close to π. Using Thales’ theorem we notice that the vector (χ1−|χ|, χ2)
and the semi major axis of the ellipse span an angle of π

2 (see slashed semicircle in Fig-
ure 6.1). Therefore, the perpendicular vector (χ2, |χ| − χ1) also bisects 2ϑ, although it
approaches zero for 2ϑ → 0. We can compute the orientation reliably using both com-
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0 x1

x2

Figure 6.2: Nine pixels and their overlap with a circular disk of radius two at the coordinate
origin. Dark shaded areas correspond to the integral Eqs. 6.1 – 6.3.

plementary methods where they are numerically stable:

d =

(χ1 + |χ|, χ2) for χ1 ≥ 0
(χ2, |χ| − χ1) for χ1 < 0

.

6.2 Pixel Reweighting to Account for a Partial Disc Overlap

In the final paragraph of 2.2.3 I remarked on the necessity to weight pixels and use modified
pixel centres xp(x) according to their overlap Ap(x) with a circular disc of radius R = 1

2 d0
in order to avoid a bias in the cell orientation e in the diagonal directions. Without loss of
generality, let the circle centre be at the coordinate origin as in Figure 6.2 and the vertical
pixel coordinate x2 ≥ 0. I denote the integration limits with a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2.
Then the integral terms separate into a trivial term for the rectangular segment and"

A
d2x =

∫ b1

a1

√
R2 − x2

1 − a2 dx1 (6.1)

=
1
2

x1

√
R2 − x2

1 + R2arctan

 x1√
R2 − x2

1


 − x1a2

∣∣∣∣∣∣∣∣∣
b1

a1
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for computing the non-rectangular segments of the overlap Ap, as well as"
A

x1d2x =

∫ b1

a1

x1

(√
R2 − x2

1 − a2

)
dx1 (6.2)

= −
1
3

(R2 − x2
1)3/2 −

x2
1a2

2

∣∣∣∣∣∣∣
b1

a1

and "
A

x2d2x =

∫ b1

a1

∫ √R2−x2
1

a2

x2 dx1dx2 (6.3)

=

∫ b1

a1

1
2

(R2 − x2
1 − a2

2)dx1 =
1
2

x1(R2 − a2
2) −

1
6

x3
1

∣∣∣∣∣b1

a1

for finding the modified pixel centre xp.
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