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Zusammenfassung

Diese Doktorarbeit beschreibt Untersuchungen der stellaren Feinstruktur in den Randgebieten
der Milchstraße (MS), wobei die Analyse von SDSS Daten mit theoretischen Modellen verbun-
den wurde. Solche Feinstruktur, welche entweder aus gebundenen Sternhaufen und Satellitenga-
laxien oder aus durch Gezeitenkräfte zerrissenen Objekten in Form von Sternenströmen besteht,
liefert wertvolle Aufschlüsse über die Dynamik und Entstehungsgeschichte der MS. Basierend
auf SDSS-Katalogen habe ich eine Methode entwickelt, um nach stellaren Überdichten im Halo
der MS zu suchen. Dies führte zu der Entdeckung der kleinsten und sternärmsten (∼ 1000L�)
Kugelsternhaufen, mit Relaxationszeiten � tHubble. Durch die detaillierte Analyse von SDSS-
Daten eines bekannten Sternenstroms (GD-1) war ich imstande, dessen 6-D Phasenraumstruk-
tur über 60 Grad am Himmel zu kartieren. Durch Modellierung des Orbits dieses Stroms konnte
ich das galaktische Potential stark eingrenzen, u.a. Vcirc(R0) = 224±13 km/s. Die Anwendung
der algorithmischen Suche nach stellaren Überdichten auf den SDSS-Datensatz sowie auf Pseu-
dodatensätze erlaubte es mir, die gravierende radiale Unvollständigkeit bei der erfolgreichen
Suche nach ultraschwachen Zwerggalaxien zu verstehen und dadurch die Leuchtkraftfunktion
von Satellitengalaxien der MS bis zu Leuchtkräften von MV ≈ −3 zu bestimmen. Um die Vor-
hersagen des CDM-Modells für die Satellitenpopulation der Milchstraße mit Beobachtungen zu
vergleichen, verwendete ich ein semi-analytisches Modell. Dieser Vergleich hat gezeigt, dass die
derzeitig wachsende Zahl von Satellitengalaxien der MS, ein besseres Verständnis der radia-
len Unvollständigkeit sowie die Unterdrückung der Sternentstehung nach der Reionisation das
“missing satellite problem” vollständig zu lösen imstande sind.

Abstract

This thesis presents an extensive study of stellar substructure in the outskirts of the Milky
Way(MW), combining data mining of SDSS with theoretical modeling. Such substructure,
either bound star clusters and satellite galaxies, or tidally disrupted objects forming stellar
streams are powerful diagnostics of the Milky Way’s dynamics and formation history. I have
developed an algorithmic technique of searching for stellar overdensities in the MW halo, based
on SDSS catalogs. This led to the discovery of unusual ultra-faint ∼ (1000L�) globular clusters
with very compact sizes and relaxation times � tHubble. The detailed analysis of a known
stellar stream (GD-1), allowed me to make the first 6-D phase space map for such an object
along 60 degrees on the sky. By modeling the stream’s orbit I could place strong constraints
on the Galactic potential, e.g Vcirc(R0) = 224 ± 13 km/s. The application of the algorith-
mic search for stellar overdensities to the SDSS dataset and to mock datasets allowed me to
quantify SDSS’s severe radial incompleteness in its search for ultra-faint dwarf galaxies and to
determine the luminosity function of MW satellites down to luminosities of MV ≈ −3. I used
the semi-analytical model in order to compare the CDM model predictions for the MW satellite
population with the observations; this comparison has shown that the recently increased census
of MW satellites, better understanding of the radial incompleteness and the suppression of star
formation after the reionization can fully solve the “Missing satellite problem”.





To my high school teachers: Galina Ionovna Eseleva, Dmitriy Genrihovich

Kuznetsov and Rudolf Karlovich Bega
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Introduction

Nowadays the field of observational cosmology is developing very rapidly. New datasets

are coming from different instruments and surveys such as WMAP, 2dF, HST, HESS,

SDSS, SWIFT (Aharonian et al., 2006; Colless et al., 2001; Gehrels et al., 2004; Riess

et al., 2004; Spergel et al., 2007; York et al., 2000) and others. These datasets are

confronting the existing cosmological models and theories, which in turn, are evolving

and adapting to the new data (Benson et al., 2002; Bower et al., 2006; Gnedin et al.,

2004; Somerville and Primack, 1999; Tegmark et al., 2006). Despite the significant im-

provements both in the theoretical cosmology and in the observations, many questions

about galaxy formation and evolution are still waiting to be answered.

One of the keystones of the existing theories of galaxy formation is the Cold Dark

Matter (CDM) paradigm. The basic concepts of the CDM paradigm of galaxy forma-

tion have been around for thirty years (Fall and Efstathiou, 1980; White and Rees,

1978) and their creation was motivated by the growing amount of evidence (Rubin

et al., 1978; Zwicky, 1933) that all galaxies are baryon condensates at the bottom of

massive dark halos (White and Rees, 1978). Despite the fact that the nature of the

matter constituting dark halos is still unknown (Bergström, 2000; Bertone et al., 2005,

and references therein), the CDM paradigm has been very successful in explaining

observations and making observational predictions.

In the ΛCDM (i.e. CDM + dark energy) universe baryonic structure formation

starts at redshift ∼1000 when the ionized hydrogen recombines (Blumenthal et al.,

1984; Dicke et al., 1965; Peebles, 1968). Before the recombination, baryons were in

quasi-equilibrium with the radiation field and were distributed almost uniformly, but
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1. INTRODUCTION

after the recombination baryons do not feel radiation pressure anymore and start to

fall in the potential wells formed by dark matter (White and Rees, 1978), which started

to collapse much earlier than the epoch of recombination. As the baryons cooled and

formed the first molecular clouds in the most massive dark matter halos, first stars

formed at a redshift of ∼ 20− 50. These stars are thought to be formed in dark matter

halos with masses of ∼ 105 − 106M� (see Abel et al., 2002, and references therein).

Due to the absence of metals in the early universe, the first stars were very hot, massive

and short-lived. When these stars formed, they started to ionize and chemically enrich

the surrounding interstellar and intergalactic medium. As the number of stars in the

Universe increased, the Strömgren spheres from the first galaxies started to overlap.

And finally the whole universe became ionized again at redshift ∼ 7 − 11 (Barkana

and Loeb, 2001; Fan et al., 2006; Gnedin and Ostriker, 1997). Subsequent growth and

evolution of galaxies takes place by continuing accretion of baryons and star formation

in the centers of dark matter halos following the picture of White and Rees (1978)

combined with hierarchical merging. The important effects modulating the galaxy

formation within that picture are gas cooling efficiency in the presence of UV ionizing

background (Quinn et al., 1996; Thoul and Weinberg, 1996), stellar feedback (Dekel and

Silk, 1986; Martin, 1999), AGN feedback (Springel et al., 2005, and references therein),

environmental effects occurring in dense environments leading to gas stripping and star

formation quenching (Abadi et al., 1999; Grebel et al., 2003), and satellite accretion

(Abadi et al., 2003; Hernquist and Mihos, 1995). As a result of these complicated

processes the star formation efficiency and therefore the galaxy properties are strong

functions of dark matter halo masses (Benson et al., 2003; van den Bosch et al., 2007):

star formation seems to be inefficient both at the very massive end of the dark matter

halo mass function and at its low-mass end, although current model predictions for

low-mass galaxy formation are quite uncertain.

ΛCDM is particularly successful in the explanation of large scale structure (Cole

et al., 2005; Eisenstein et al., 2005) and the Cosmic Microwave Background (CMB)

(Dunkley et al., 2009). But a number of ΛCDM predictions on small scales were

found to be discrepant from the observations. The perfect test-bed for testing CDM

predictions at small scales is the Milky Way and when, in 1999, Klypin et al. (1999) and

Moore et al. (1999) compared the number of MW satellites predicted by CDM with the

number of actually observed MW satellites they found that CDM predicted hundred

2



times too many subhalos around the MW (see also Kauffmann et al., 1993), compared

to the known (at the time) MW satellite galaxies. This problem has been called the

“missing satellite” problem and has been a major issue for the CDM paradigm for

the last decade. Furthermore, in the CDM galaxy formation picture the hierarchical

nature of galaxy formation predicted that the MW halo should be filled with, or even

constituted of remnants of accreted smaller systems (e.g. stellar streams Bullock and

Johnston, 2005), when only one stellar stream was known in the MW halo (Sagittarius)

by 2000. The apparent lack of substructure in the MW halo lead to both theoretical

attempts to reduce the amount of small scale structure in the models (Bode et al., 2001;

Narayanan et al., 2000; Zentner and Bullock, 2003) and to observational attempts to

discover the predicted substructures with the advent of large homogenous sky surveys

such as 2MASS, SDSS. The observational searches for substructure in these surveys

turned out to be very successful, and significant substructure such as globular clusters,

dwarf galaxies and stellar streams have been found in the halos of the Milky Way

and other nearby galaxies (e.g. Belokurov et al., 2006c, 2007c; Ferguson et al., 2002;

Grillmair and Dionatos, 2006b; Ibata et al., 2001; Majewski et al., 2003; Odenkirchen

et al., 2001). This slightly alleviated the substructure problem in the CDM, but did

not fully solve it.

The search and analysis of the substructure in halos of galaxies is particularly

important because it gives us clues to the history of the accretion process and the

build-up of the Galaxy. The pioneering work in the field was the paper of Searle and

Zinn (1978) who used the metallicities of globular clusters to infer the formation history

of the MW halo. Since then the field of “galactic archaeology” has achieved important

results (see e.g Fellhauer et al., 2006; Helmi, 2004; Helmi et al., 1999; Ibata et al., 2001;

Koch et al., 2006; Koposov et al., 2009a). Through the study of substructure we also

have a unique chance to see the lowest-luminosity galaxies formed in the early universe

and through them probe the star formation process at high redshifts (Koposov et al.,

2009b; Ricotti and Gnedin, 2005).

Another interesting aspect of studying the substructure in the MW halo is related to

stellar dynamics. It is important to understand that the dynamics of stellar structures

in the halo may constitute a regime opposite to “classical dynamics”, where everything

is phase-mixed and virialized. Instead (see e.g. Bell et al., 2008; Grillmair, 2009; Kle-

ment et al., 2009), the halo seems to consist of large numbers of different structures

3



1. INTRODUCTION

possibly originating from different accretion events, which are not mixed, because the

mixing time is of the order of the Hubble time. It turns out that the study of these

unrelaxed substructures in the MW halo may be very helpful in order to trace the

Galactic potential (Fellhauer et al., 2006; Koposov et al., 2009a). Proper analysis of

these structures in the MW halo is important because the era of the GAIA (Perry-

man et al., 2001) space mission is coming, and we will have soon a multi-dimensional

phase-space picture of the MW halo with a much larger number of substructures.

This thesis is devoted to the analysis and the understanding of some of the galaxy

formation and CDM problems mentioned above, by studying our MW: a possible so-

lution of the substructure problem in CDM models based on new data and a better

understanding of observational uncertainties (Chapters 4, 5), new models of the for-

mation of low-mass galaxies (Chapter 5), and new methods of the analysis of stellar

substructures in the MW halo (Chapters 2, 3).

The thesis is structured as follows: In Chapter 2 we present the discovery of two

highly unusual globular clusters in the SDSS that resulted from the first application

of our algorithmic substructure search. We determine the properties of these clusters

such as their ages, relaxation times and distances to these objects. We discuss the

possible evolutionary status of the discovered objects and their possible association to

the Sagittarius stellar stream. In Chapter 3 we analyse the properties of the halo stellar

stream named GD-1, presumed to be the remnant from the accretion of a globular

cluster in the MW halo. We use the SDSS data as well as our own observations in

order to construct the 6-dimensional map of the stream in phase space. We fit this 6-D

map of the stream by a single test-particle orbits in different Galactic potentials. Later

we use these fits in order to put strong constraints on the parameters of the potential,

such as its flattening (of the overall potential) and the circular velocity at the Sun’s

position. We also try to put constraints on the flattening of the MW dark matter

halo. Chapters 4 and 5 are devoted to our attempts to solve the “missing satellite”

problem with the SDSS data. In Chapter 4 we describe the methods employed to

search for substructure in the MW halo, the determination of the incompleteness of

these searches and the measurement of the luminosity function of the MW satellites

after correcting for incompleteness. We illustrate that the searches for dwarf galaxies

are significantly incomplete at the faint end of the luminosity function and that the

luminosity function of dwarf galaxies is much flatter than the mass function of DM

4



halos, which suggests some suppression of star formation in these low mass DM halos.

In Chapter 5 we use a semi-analytical model for star formation in dwarf galaxies in

order to reproduce the observed number and properties of the MW satellites. In the

comparison with observations we take into account the incompleteness effects analyzed

in Chapter 4. In our semi-analytical model we consider different important physical

effects such as the suppression of star formation after the epoch of reionization due

to the UV background, the suppression of star formation in small dark matter halos

before the epoch of reionization due to the destruction of H2 molecules, or feedback

effects. By comparing the predictions of our models with observations we confirm the

importance of the suppression of star formation in low-mass dark matter halos. Finally

we find that our model can fully reproduce the observed number and properties of the

MW satellites, thereby giving the possible solution to the “missing satellite” problem.

Chapter 6 concludes the thesis and discusses the possible improvements and future

prospects of the methods presented in the thesis.
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2

The discovery of two globular

clusters

This chapter reproduces the paper: S. Koposov, J. T. A. de Jong, V. Belokurov, H.-

W. Rix, D. B. Zucker, N. W. Evans, G. Gilmore, M. J. Irwin, and E. F. Bell. “The

Discovery of Two Extremely Low Luminosity Milky Way Globular Clusters” published

in ApJ, volume 669, page 337-342, November 2007.

2.1 Introduction

The population of globular clusters around the Milky Way has been studied extensively

and the current census finds the majority at low latitudes in the inner Galaxy (RGC <

20 kpc). Globular clusters are almost universally “old” (tage ≈ 0.5− 1× tHubble), show

no convincing evidence for dark matter, and have characteristic luminosities of 105L�

(MV ∼ −8) and typical sizes of 3 pc. Yet, the observed range of structural properties

(e.g. mass, size, and concentration) is quite wide. This range is of great interest, as

it appears to be determined by a set of astrophysical processes: the initial structure

and orbit; subsequent external processes, such as galactic tides and dynamical friction;

and ensuing mass segregation, evaporation and core collapse (see e.g., Gnedin and

Ostriker, 1997; Meylan and Heggie, 1997). Indeed, there has long been a sense that the

observed population of Galactic globular clusters mainly reflects the subset of objects

that could survive for ∼ tHubble. In individual cases, there is clear evidence for internal

reshaping processes (as in M15, Sosin and King, 1997) and tidal disruption (as in Pal5,

7



2. THE DISCOVERY OF TWO GLOBULAR CLUSTERS

Odenkirchen et al., 2001). Within this context, identification and study of globulars

with extreme properties is undoubtedly of great interest.

Our census of objects at the outskirts of the Milky Way has increased rapidly in

the last few years, mostly based on large-area CCD surveys like the Sloan Digital Sky

Survey (SDSS; York et al., 2000). Recent searches for Galactic halo objects have not

only found many dwarf galaxies (Belokurov et al., 2007c; Irwin et al., 2007; Willman

et al., 2005b; Zucker et al., 2006b), but also added 2 faint and extended objects that

may be Milky Way globulars. The newcomers, Willman 1 and Segue 1, both have

distorted irregular isopleths, perhaps indicating ongoing tidal disruption. Willman 1

seems to show some evidence for dark matter and metallicity spread (Martin et al.

2007 in prep.), casting some doubt on whether it is a globular cluster at all.

Here, we announce the discovery of two new, distant, extremely faint and compact

(∼ 3 pc) globular clusters, named Koposov 1 and Koposov 2, first detected in SDSS

Data Release 5 (DR5) and subsequently confirmed with deeper imaging at Calar Alto.

The total luminosity of Koposov 2 appears to be ∼ −1m, lower than that of the faintest

Galactic globular known to date, AM 4 (−1.4m, Inman and Carney, 1987). Koposov 1

is not much brighter: at MV,tot ∼ −2m, it has the third-lowest luminosity. In total, only

3 out of the previously-known ∼ 160 Galactic clusters, have comparably low luminosity

and small sizes: AM 4, Palomar 1, and Whiting 1 (Whiting et al., 2002). Willman 1

and Segue 1 also have extremely low luminosities but are an order-of-magnitude larger.

Here, we describe the deep follow-up data confirming the discoveries and give es-

timates of the structural parameters of the new objects. We argue that the discovery

of these two low-mass globulars in less than 1/5 of the sky may mean a substantial

population of such clusters lurks in the outer halo of the Milky Way.

2.2 Discovery and observations

The two new globular clusters were originally selected amongst other candidates in the

course of our systematic search for small-scale substructure in the Milky Way halo. The

aim of the search was to detect all significant small-scale stellar overdensities above the

slowly-varying Galactic background that are likely to be either dwarf spheroidal galaxies

or globular clusters. A detailed description of the algorithm and its efficiency will be

provided in next chapters, and we only present here a brief outline of the method. The

8



2.2 Discovery and observations

algorithm is based on the so-called Difference of Gaussians method, first developed in

Computer Vision (Babaud et al., 1986; Lindeberg, 1998). Starting from a flux-limited

catalog of stellar positions, the number-counts map in (α, δ) plane is convolved with

a filter optimized for the detection of overdensities, namely the difference of two 2-D

Gaussians (Koposov et al., 2008b). Having zero integral, the kernel guarantees that the

convolution with a constant (or slowly varying) background will result in zero signal.

When the data contains an overdensity with a size comparable to the size of the inner

Gaussian, the filter will be close to optimal.

We applied this filtering procedure to the entire stellar subset of the DR5 source

catalog with r < 22m, g − r < 1.2m. In our analysis we used the photometry cleaned

by switching on quality flags as described in SDSS SQL pages 1 This minimizes the

influence of various artefacts including those caused by proximity of very bright or

extended objects. In the resulting map that had been convolved with a 2′ kernel, we

found two very compact objects among other overdensities ranked highly according to

their statistical significance. Figure 2.1 shows the SDSS images and Figure 2.2 shows

the spatial distribution of extracted sources, where central concentrations of stars are

clearly visible. These concentrations are detected at high level of significance. The areas

of 1′ radius marked by circles centered on Koposov 1 and 2 plotted in Figure 2.2 contain

22 objects and 23 objects respectively while mean density of g−r < 0.6m r > 20m stars

should produce approximately 2.5 objects, which implies a high statistical significance

of the overdensities – for pure Poisson distribution of objects, the probability to find

such group of stars in all DR5 is around 10−9.

The differential Hess diagrams for stars within 2′.5 radius centered on the objects

are shown in Figure 2.3. There is a clear excess of blue stars (g − r < 0.5), which

we interpret as main sequence turn-off stars at r ∼ 22, which roughly corresponds to

distances of ∼ 50 kpc.

To confirm the nature of discovered candidates and quantify their structural and

population properties, we acquired follow-up GTO observations in January 2007 on the

2.2m telescope at Calar Alto using the CAFOS camera. This camera has a 2k × 2k

CCD with a 16′ × 16′ field of view and a pixel scale of 0′′.5/pix. We observed each

object for a total of 2 hours in Johnson B and 1.5 hours in Cousins R. The integrations

were split in 5 individual dithered exposures for cosmic ray and bad pixel rejection.
1http://cas.sdss.org/dr5/en/help/docs/realquery.asp#flags
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2. THE DISCOVERY OF TWO GLOBULAR CLUSTERS

Figure 2.1: 3′×3′ SDSS cutout images of Koposov 1 and 2. The bright star in the center
of Koposov 1 is a foreground star with V ∼ 14.5m and large proper motion (µα, µδ) ∼
(−32,−12) mas/yr, according to the USNO-B1.0 catalog (Monet et al., 2003). The bright
extended object near the center of Koposov 2 is a background galaxy.

Figure 2.2: The spatial distribution of the objects in the area of Koposov 1 and Koposov
2. All objects classified as stars with colors (g − r) < 0.6m and r > 20m in the area
0.3◦ × 0.3◦ are shown. The circles with 1′ radii centered on the objects are overplotted.

10



2.2 Discovery and observations

Figure 2.3: The residual g − r versus g Hess diagrams of the clusters from the SDSS
data. In each case the residual Hess diagram is constructed by subtracting the normalized
background Hess diagram from the Hess diagram of stars lying within 2′.5 radius from the
centers of objects

The observations were carried out in good photometric conditions with a seeing of

1′′ − 1.3′′. The data was bias-subtracted and flat-fielded. The individual frames were

WCS-aligned, drizzled and median-combined using our software and the SCAMP and

SWARP programs (Bertin, 2006). The combined B band images of the objects are

shown in Figure 2.4.

The central stellar overdensities are clearly corroborated by the Calar Alto pho-

tometry, which is nearly 2 magnitudes deeper than the original SDSS data. While

the follow-up data are quite deep, the stars are subject to significant crowding, due

to the compactness of the clusters. Therefore, for the purposes of robust source de-

tection and photometry, we used the DAOPHOT/ALLSTAR software (Stetson, 1987).

To get the absolute calibration of the photometry from each frame, we cross-matched

the DAOPHOT sources with the SDSS catalog using the Virtual Observatory resource

SAI CAS 1 (Koposov et al., 2007a). To convert the Sloan g and r magnitudes into the

Johnson-Cousins photometric system, we used the conversion coefficients from Smith

1http://vo.astronet.ru/cas
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2. THE DISCOVERY OF TWO GLOBULAR CLUSTERS

et al. (2002). The resulting B versus B − R color-magnitude diagrams of the central

regions of the objects together with the color-magnitude diagrams of the comparison

fields, extending to B ∼ 23.5m − 24m, are shown in the Figure 2.5. The median pho-

tometric accuracy of the data is 0.05–0.1 magnitude. The color magnitude diagrams

clearly show the presence of the main sequences near the centers of the objects, while

they are absent in the the comparison fields. Also, the statistical significance of the

overdensities is clearly supported by the new data. The CMD diagram of objects within

2′ from the center of Koposov 1 contain 96 objects, while the background density in-

ferred from the comparison field should give around 23 objects, which gives a 15 sigma

deviation. For Koposov 2 , the number of objects within 1.2′ is 92 while the background

density from the comparison field should produce around 24 objects, which gives a 14

sigma deviation. In the next section we will discuss the properties of the objects which

can be derived from the follow-up data.

2.3 Properties

Figure 2.4: B band Calar Alto view of Koposov 1 and Koposov 2. The 2′ × 2′ images
are centered on the clusters (North is up, East is left).

The color-magnitude diagrams (CMDs) of the objects from the Calar Alto data

(Figure 2.5) clearly show a distribution of stars which can be attributed quite convinc-

ingly to an old main sequence. In the case of Koposov 1, the MS turn-off is clear-cut,

while for the second cluster, it is not so well defined. To estimate the distances to the
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Figure 2.5: Left panel (left half): B versus B − R CMDs derived from the Calar Alto
data for stars lying within 2′ of Koposov 1 with 8 Gyr and [Fe/H]= −2 Girardi et al.
(2000) isochrones overplotted. Left panel (right half): for comparison, the CMDs of stars
in the annulus centered on Koposov 1 defined by radii 3.2′ and 3.7′. Right panel (left
half) : B versus B − R CMDs of stars lying within 1.′2 of Koposov 2 with 8Gyr and
[Fe/H]= −2 Girardi et al. (2000) isochrones overplotted. Right panel (right half): for
comparison, the CMDs of stars in the annulus centered on Koposov 2 defined by radii 2′

and 2.3′.

objects, we overplot in Figure 2.5 the 8 Gyr [Fe/H]= −2 isochrones from Girardi et al.

(2000). For Koposov 1, this gives a distance of 50 kpc. For Koposov 2, the estimate is

40±5 kpc, but it is not well constrained due to a lack of MS turn-off stars. The angular

diameters of the clusters are < 0.5′, which translates into a physical size of r ∼ 5 pc.

Unfortunately, the number of stars detected in the central regions is not enough to

measure precisely half-light radii of the objects; our best estimate is rh ∼ 3 pc. For

Koposov 1, we subtracted the bright foreground star near the center, integrated the

light of the whole cluster in apertures and fitted it to a Plummer profile with rh = 3pc.

For Koposov 2, rh we performed a maximum likehood fit with rh ∼ 3 pc. Moreover, the

minuscule number of stars in both clusters does not allow us to establish firmly their

total luminosities. Our estimate of −1 & MV & −2 is based on the absence of the giants

in these clusters and the visible similarity of the CMDs to that of the lowest luminosity

globular AM4 (MV = −1.6, Inman and Carney, 1987). We checked that estimate by

simple Monte-Carlo experiment: using the Salpeter IMF and Girardi isochrones we

simulated fake clusters and deduced that the clusters with −1 & MV & −2 have the

number of stars within 1.5-2 magnitudes below the turn-off is close to the observed

number of stars (50-70) in our objects. We must say also that due to the intrinsic

faintness of the clusters and low number of stars in them the estimates of the total lu-
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minosity and especially the age have large uncertainties. But with the existing data we

can not do any better. Much deeper and accurate photometry may be required to get

precise age/luminosity measures. The spectroscopic observations would be interesting

in constraining the metallicity of these objects, which is currently completely unknown.

We note that the CMD of Koposov 1 shows several stars brighter and bluer than

the tentative MS turn-off, which we interpret as blue stragglers. This hypothesis is not

implausible considering the low luminosity of the cluster and taking into account the

observed anti-correlation between the frequency of blue stragglers and the luminosity

of the globular cluster (Piotto et al., 2004).

The distance and the position of Koposov 1 suggest that this cluster may be related

to the Sagittarius tidal stream. Its location is a good match to the distant tidal arm

discovered in Belokurov et al. (2006c). Figure 2.6 shows the arms of the Sagittarius

stream in the DR5 slice around δ ∼ 10◦ and the position of Koposov 1.

Figure 2.6: Right ascension versus distance for the A and C branches of the Sagittarius
Stream (see Belokurov et al., 2006c). The position of Koposov 1 is marked by a star.
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Parameter Koposov 1 Koposov 2

Coordinates (J2000) 11:59:18.5 +12:15:36 07:58:17.00 +26:15:18
Coordinates (`, b) (260.98◦, 70.75◦) (195.11◦, 25.55◦)

Distance ∼ 50 kpc ∼ 40 kpc
Size ∼ 3 pc ∼ 3 pc
MV ∼ −2m ∼ −1m

Relaxation Time ∼ 70 Myrs ∼ 55 Myrs
Tidal radius ∼ 11 pc ∼ 9 pc

Table 2.1: Globular cluster parameters

2.4 Discussion

Figure 2.7 shows Koposov 1 and 2 on the size-luminosity plane along with other Galactic

globular clusters. This illustrates how unusual Koposov 1 and 2 are in their structural

properties. It appears that the detection of these clusters contributes to growing evi-

dence for a large population of small and extremely faint objects (including Palomar 1,

AM 4, E3 and Whiting 1). There is a clear indication as well that this sub-population

of globulars may have significantly younger ages compared to classical globulars: Palo-

mar 1 (Sarajedini et al., 2007) and Whiting 1 (Carraro et al., 2007) have ages between

4 and 6Gyrs. The current estimate of age for Koposov 1 is ≈ 8 Gyrs, and the age of

E3 globular is ≈ 10 Gyrs. This group of clusters is also quite apparent on the Galacto-

centric distance versus luminosity plane shown in Figure 2.8). At least 2 out of these 5

unusual clusters (Whiting 1 and Koposov 1) seem to be associated with the Sagittarius

dwarf galaxy.

Two quantities that are crucial for the long term evolution and survival of Koposov

1 and 2 are the relaxation time and the expected tidal radius. For the half-mass

relaxation time, we find using Eq. 2-63 of Spitzer (1987) or Eq. 72 of Meylan and

Heggie (1997),

trh = 0.14
M

1/2
tot Rhl

3/2

〈m∗〉G1/2 ln(Λ)
= 70 and 55 Myr

respectively for Koposov 1 and Koposov 2. Here, we have assumed L ≈ 200L�, M/L ≈
1.5, 〈m∗〉 ≈ 0.6M� and N= 500 for Koposov 2, whilst for Koposov 1, we have assumed

twice as many stars, using the observational estimates of section 2.3. This means

that both clusters have extremely short relaxation times, less than 1% of tHubble and
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2. THE DISCOVERY OF TWO GLOBULAR CLUSTERS

Figure 2.7: The size versus absolute magnitude plot for Galactic globular clusters. The
data from the Harris (1996) catalog are plotted with diamonds. Squares mark the locations
of the recently discovered globular clusters Willman 1, Segue 1 and Whiting 1. Koposov 1
and 2 are shown as stars.
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Figure 2.8: The galactocentric distance versus magnitude plot for Galactic globular clus-
ters. The symbols are as in Figure 2.7.
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trh ≈ 0.01tage,∗. The most immediate effect of two-body relaxation is mass segregation,

which should be quite drastic given the apparent stellar population age. The expected

tidal truncation of these clusters occurs at (see e.g., Innanen et al., 1983)

rt = 0.43
(

Mcluster

MMW

)1/3

×Rperi = 11 and 9 pc

where we have assumed an orbital eccentricity of 0.5, and that the clusters are now near

apocenter (hence Rperi ≈ 16 kpc), a Milky Way circular speed of 190 km/s at 16 kpc and

a cluster (stellar) mass of 600 and 300 M� for Koposov 1 and 2, respectively. Hence, the

detectable extent of the globular clusters (3 pc) falls well within the tidal limit. From

this argument, the clusters are under no threat of destruction by tidal forces. Although

formal profile fits are not feasible with so few stars, the stellar distributions (see Fig-

ures 2.1 and 2.4) are well localized, but not centrally concentrated by globular cluster

standards; a core to tidal radius ratio of the observed stellar distribution of 4 seems

reasonable, implying a concentration parameter of c ≡ log(rt/rc) ≈ 0.5. For such low

concentrations, the evaporation timescale tev, which is the time-scale over which two-

body relaxation drives stars to beyond the escape velocity, is tev ≈ 1.5tcc ≈ 12trh(where

tcc is core collapse time) (Figure 17 and 19 in Gnedin et al., 1999)For Koposov 1 and

2, this implies evaporation time-scales of 0.7 Gyrs and 1.1 Gyrs, respectively. This es-

timate of tev ∼ 0.1tHubble may be an underestimate, if the brightest stars which we

observe are more concentrated than the faint stars due to mass segregation; then the

total mass and half-mass radius can be larger. Nonetheless, this estimate makes it

clear that the present structural and dynamical state cannot have prevailed, even ap-

proximately, for a time-span of ∼ 10 Gyrs. The above arguments hold irrespective of

whether Koposov 1 and Koposov 2 were once part of a satellite galaxy, because they

are mostly derived from internal evolution factors. This discrepancy of time-scales is

more pronounced in Koposov 1 and 2, because their relaxation time-scales are shorter

than those of Palomar 1 and Whiting 1, which in any case have accurate photometry

suggesting younger ages ∼ 4− 6 Gyr.

At face value, Koposov 1 and 2 have survival times in their current state of ∼
0.1tHubble, and were found in a search of 20% of the whole sky (SDSS DR5). The naive

multiplication of these factors points to a large parent population of ∼ 100 objects. The

most likely reservoir for this parent population is the globular clusters, and possibly

even old open clusters, in satellite galaxies that have been accreted, like the Sagittarius.
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2.4 Discussion

In objects like Koposov 1 and 2, it is clear that the very short relaxation and evaporation

times must lead to drastic mass segregation and the expulsion of basically all low-mass

stars (this line of reasoning lead us to the modest M/L ≈ 1.5) . This gives new life to

the view that truly many of the accreted globular clusters must have been destroyed.

Yet, it is also clear that the actual dynamical prehistory and future of these clusters

requires much more careful modelling. The small number of stars makes them ideal

subjects of direct N-body calculations. But regardless of their dynamical evolution,

these clusters manifestly demonstrate the parameter space of globular clusters in the

Milky Way is not yet fully explored.
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3

Constraining the MW potential

with a 6-D phase-space map of

the GD-1 stream

This chapter reproduces the paper: Koposov, S. E., Rix, H.-W., & Hogg, D. W. 2009

“Constraining the Milky Way potential with a 6-D phase-space map of the GD-1 stellar

stream” submitted to ApJ in july 2009, arXiv:0907.1085

3.1 Introduction

The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopy survey which

mapped quarter of the sky near the North Galactic Cap. The data have proven ex-

tremely useful for the understanding of the Milky Way halo. In addition to a large

list of MW satellites (Belokurov et al., 2007c; Irwin et al., 2007; Koposov et al., 2007b;

Walsh et al., 2007) several extended stellar sub-structures in the MW halo have been

found in the SDSS data, such as the tidal tail of the Palomar 5 globular cluster (Grill-

mair and Dionatos, 2006a; Odenkirchen et al., 2001), the Monoceros ring (Newberg

et al., 2002), two tidal arms of the disrupting Sagittarius galaxy (Belokurov et al.,

2006c), the so called “Orphan” stream (Belokurov et al., 2007b; Grillmair, 2006), the

Aquila overdensity (Belokurov et al., 2007a) and the very long thin stellar stream called

GD-1 (Grillmair and Dionatos, 2006b). Streams are presumed to be remnants of tidally

disrupted satellite galaxies and clusters. They provide important insights into the his-
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tory of accretion events and the physics of Galaxy formation. The tidal debris from

disrupted satellites (clusters) spreads out in orbital phase on a path that is close to the

orbit of the progenitor. Streams tracing out orbits therefore provide opportunities to

constrain the Milky Way’s gravitational potential.

After initial searches for tidal tails of globular clusters (e.g. Grillmair et al., 1995)

it was the extended Sagittarius tidal tail that first made deriving such constraints

practical (see e.g. Helmi, 2004; Ibata et al., 2001; Johnston et al., 2005; Law et al.,

2005). However, the tidal tail of the Sagittarius galaxy is quite wide and contains a

considerable mixture of stellar orbits, making it complex to model. For constraining

the gravitational potential, a stellar stream that is very thin but of large angular extent,

is ideal, because it permits precise orbital models.

The first studies of globular cluster tidal debris only revealed short (. 1◦) signs of

tails, but in recent years with the advent of large photometric surveys such as SDSS

and 2MASS and significant advances in the techniques used to find streams, significant

progress has been made. The matched filter technique (Odenkirchen et al., 2001; Rock-

osi et al., 2002) has revealed the beautiful tidal stream of Palomar 5. Detailed analysis

of the Pal 5 stream, including kinematics (Odenkirchen et al., 2003, 2009, 2001), have

shown the promise of this approach, but also revealed that data over more than 10◦

on the sky are needed to place good constraints on the potential. Grillmair (2006),

Grillmair and Dionatos (2006a,b), Grillmair and Johnson (2006) were successful in the

detection of very long stellar streams using this technique, including the 63◦ long stellar

stream GD-1 . Besides the stream length and the approximate distance, most of the

properties of GD-1 were unknown. Since the stream is long but relatively thin, with

no apparent progenitor remnant, it was suggested that it arose from a globular clus-

ter. Here we make an attempt to determine all possible properties of the GD-1 stream

including distance, position on the sky, proper motion, and radial velocity and try to

constrain the Milky Way potential using that information. This work goes in parallel

with the work done by Willett et al. (2009), but we are able to get a full 6-D phase

space map of the stream and are able to use that map to provide significant constraints

on the MW potential. See also Eyre and Binney (2009) for theoretical discussion of

using thin streams in order to constrain the MW potential.

In performing this study we have obtained the first 6-D phase-space map for a

kinematically cold stellar stream in the Milky Way. We view our present analysis in
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same sense as a pilot study for the GAIA (Perryman et al., 2001) age, when this ESA

space mission will deliver dramatically better data on streams such as GD-1.

This chapter is organized as follows: In Section 3.2 we discuss the analysis of the

SDSS photometry, which entails mapping the GD-1 stream in 3D as well as determining

its stellar population properties. In Section 3.3 we present the kinematics, with proper

motions from SDSS/USNO-B1.0 and line-of-sight velocities from SDSS and Calar Alto.

In Section 3.4 we combine this information in an iterative step that involves improved

stream membership probabilities, which in turn affects the estimates of proper motions

and distances. This procedure results in the most comprehensive 6-D data set for

a stellar stream in our Milky Way. In Section 3.5 we model the stream data by a

simple orbit in a simple parametrized gravitational potential. We measure the potential

circular velocity and find that the overall Milky Way potential at the GD-1 stream

position is somewhat flattened, but that much of that flattening can be attributed to

the disk.

3.2 Stellar population of the stream

The probability that a star is a member of the GD-1 stream depends on its 6-D position

and its metallicity. In the space of photometric observables, this means that it depends

on (α, δ), magnitude and color. In practice, the determination of the stream’s angular

position, distance and metallicity (presuming it is ’old’) is an iterative process which

we detail here.

Grillmair and Dionatos (2006b) made the initial map of the stream using a matched

color-magnitude filter based on the CMD of M13 observed in the same filters. Not

presuming a particular metallicity (e.g. that of M13), we start our analysis with a simple

color-magnitude box selection for stars (0.15 < g − r < 0.41 and 18.1 < r < 19.85).

The resulting distribution is shown in Fig. 3.1. That particular color-magnitude box

was selected as appropriate to find metal-poor main sequence (MS) stars at a distance

of ∼ 10 kpc, and indeed the stream is marginally discernible in the Figure. With just a

color-magnitude box, however, the detection fidelity of that stream is noticeably lower

than that achieved by Grillmair and Dionatos (2006b)(their Fig. 1). The distribution

of stars on Figure 3.1 is plotted in a rotated spherical coordinate system (φ1, φ2),

approximately aligned with the stream, where φ1 is longitude and φ2 is the latitude.
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The north pole of that coordinate system is located at αp=34◦.5987, δp = 29◦.7331,

the zero-point for φ1 is located at α = 200◦, and we will use this coordinate system for

convenience throughout the chapter to describe stream positions. The transformation

matrix from (α, δ) to (φ1, φ2) is :cos(φ1) cos(φ2)
sin(φ1) cos(φ2)

sin(φ2)

 =

−0.4776303088 −0.1738432154 0.8611897727
0.510844589 −0.8524449229 0.111245042
0.7147776536 0.4930681392 0.4959603976

×
cos(α) cos(δ)

sin(α) cos(δ)
sin(δ)


If we integrate the low-contrast 2D map in Fig. 3.1 along the φ1 axis, creating a

one-dimensional profile of the stream, the presence of the stream becomes very clear.

Figure 3.2 shows this profile for stars with 0.15 < g − r < 0.41, 18.1 < r < 19.85

and with −60◦ < φ1 < −10◦. In that Figure we also overplot the Gaussian fit to this

profile with ∼ 760 stars and Gaussian width (σφ2) of ∼ 12′. This number of stars

corresponds to a total stellar mass of M∗ ≈ 2 × 104M�, if we assume a distance of ∼

10 kpc(see below), and a Chabrier IMF (Chabrier, 2001) with an old, metal-poor stellar

population. Given that number of stars, we expect to see around 3000 stream stars in

SDSS with r <22.

�80�60�40�20 0 20 40 60�
1 , [deg]

�60

�40

�20

0

20
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Figure 3.1: The number density of SDSS DR7 stars with 0.15 < g − r < 0.41 and
18.1 < r < 19.85, shown in the rotated spherical coordinate system that is approximately
aligned with the GD-1 stream. The map was convolved with a circular Gaussian with
σ = 0.2◦. The gray arrows point to the stream, which is barely visible in this representation,
extending horizontally near φ2 = 0◦, between φ1 = −60◦ and 0◦.
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Figure 3.2: One-dimensional stellar density profile across the stream using the stars with
0.15 < g − r < 0.41 18.1 < r < 19.85 across the φ2 = 0◦ axis, integrated along the stream
in the interval −60◦ < φ1 < −10◦. The Gaussian fit with ∼ 760 stars and σ=12′ is shown
in red.

Figure 3.3: Color magnitude (or Hess) diagrams of the stream derived by statistical
background subtraction using the Eq. 3.1 fit, in different filters (u − g vs g, g − r vs r,
r − i vs i and i− z vs z (from left to right). The grayscale shows the number of stars per
rectangular bins. All the magnitudes are extinction corrected. Overplotted are theoretical
isochrones for age = 9 Gyrs, log(Z/Z�) = −1.4, distance = 8.5 kpc.
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Figure 3.4: (u − g) − (g − r) color-color diagram of the stream, which constitutes a
photometric metallicity estimator (following Ivezić et al., 2008, Eq. 4), shown after statis-
tical background subtraction as for Fig. 3.3. All the magnitudes were extinction corrected.
The grayscale shows the number of stars per bin, with a distinct concentration of stars at
(0.8,0.35), that implies a well defined metallicity [Fe/H] = −1.9± 0.1.

We expand this approach to the determination of the CMD of the stream. The data

and the fit shown in Figure 3.2 was obtained for a fairly wide color-magnitude selection

box. But we can construct such a profile for any other (e.g.) color magnitude box and

that profile can then be fitted by

Nobs(φ2|CMD) = NBG(CMD) +

Nstream(CMD)× 1√
2πσφ2

exp

(
−0.5

(
φ2 − φ2,0

σφ2

)2
)

(3.1)

, where CMD refers to a given color-magnitude bin, and where we assume that both

center (φ2,0) and width (σφ2) of the stream are fixed at 0 and 12 arcminutes. A fit of the

Eq. 3.1 model to the observed data Nobs(φ2|CMD) can be performed in χ2 sense. As

a result Nstream(CMD), the number of stream stars (and its error), can be determined

for each given color-magnitude bin, resulting in a Hess diagram for each set of filters.

Figure 3.3 shows the resulting Hess diagram of the stream derived in several bands.

These clearly show a main sequence(MS). The location of the MS turn-off cannot be

clearly identified, although there may be a hint at g = 18.5, u−g = 1. On Figure 3.3 we

also overplot the Marigo et al. (2008) isochrones with age= 9 Gyrs, log(Z/Z�) = −1.4
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3.2 Stellar population of the stream

at 8.5 kpc, which seem to match quite well. Ivezić et al. (2008) recently showed that

the location of MS stars in the (u− g)− (g − r) color-color plane is a good metallicity

diagnostic. Therefore, we construct the (u − g) − (g − r) color-color diagram of the

stream stellar population shown in Fig. 3.4, which exhibits a distinct concentration of

stars at (0.8,0.3). This argues for a population of single or a dominant metallicity and

we can convert this color location to a metallicity using Eq. 4 from Ivezić et al. (2008):

[Fe/H]phot = −1.9± 0.1. This provides a metallicity estimate that is directly linked to

SDSS spectral metallicity estimate.
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Figure 3.5: Isochrone fits to the color magnitude diagrams (Fig. 3.6) in u, g, r, i, z bands
for the stream integrated over −60◦ < φ1 < −10◦. The contours show the formal 90%,
99%, 99.9% confidence regions as a function of distance, age and metallicity respectively.
Filled circles show the location of the best goodness of fit point.

To derive the metallicity, age, and distance of stream stars in a systematic way,

we fit the color-magnitude diagrams using a grid of isochrones populated realistically

according to the IMF (de Jong et al., 2008; Dolphin, 2002). We focus on fits to the

color-magnitude diagrams in u, g and g, r filters, since that the u− g color of the MS

turn-off is a good metallicity indicator (Ivezić et al., 2008). We create the synthetic

Hess diagrams for a grid of model stellar populations (Girardi et al., 2000; Marigo

et al., 2008)1 with different ages (3 − 12 Gyr), metallicities (Z = 0.0001 − 0.025), dis-

tances (6 − 14 kpc), and a Chabrier IMF (Chabrier, 2001). We then explore that

grid by computing log-likelihood of the distribution of stars in color-magnitude space.

Figure 3.5 shows the 2D profile likelihoods contours of the age vs metallicity, age vs

1To retrieve the isochrones we used the web interface provided by Leo Girardi at the Astronomical

Observatory of Padua http://stev.oapd.inaf.it/cgi-bin/cmd 2.1
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Figure 3.6: Distance variation along the stream. The CMD diagrams of the stream for
two different parts of the stream, −40◦ < φ1 < −20◦ (left), −10◦ < φ1 < 10◦ (right). The
isochrones for the the best fit model log(Z/Z�) = −1.4, age= 9Gyr were shifted to the dis-
tance of 8.5 kpc on the left panel and to 11 kpc on the right panel. Some distance variation
apparent, with the stellar population shown on the right located at greater distances.

distance and distance vs metallicity planes. The filled circle indicates the best fit model:

age= 9 Gyrs, log(Z/Z�) = −1.4 and distance= 8 kpc. Clearly the age is the least well

constrained parameter; the distance seems to be relatively well constrained, but has

a covariance with [Fe/H]. We will revisit this issue later, as the analysis of Fig. 3.4

implies a lower metallicity. Fig. 3.3 shows that the isochrones are reproducing the ob-

served Hess diagrams well, and hence further we will use t= 9 Gyrs, log(Z/Z�) = −1.4

as the baseline model for the stream’s stellar population. It should be noted that the

distance measurement from Fig. 3.5 represents the averaged distance along the stream

from −50◦ < φ1 < −20◦. In section 3.4 we will present estimates of the distance to

different parts of the stream.

It is noticeable that the metallicity derived from the CMD fitting is higher than

from the estimate based on empirical calibration of Ivezić et al. (2008)(see above) and

higher than the measurement based on the SDSS spectra given by Willett et al. (2009).

This discrepancy is understandable given the known inaccuracies of the isochrones in

the SDSS photometric system (An et al., 2008). In particular the Figure 19 of An et al.

(2008) paper clearly shows a mismatch between fiducial isochrone derived for the M92
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globular cluster (which is used elsewhere as a good approximation of old metal-poor

stars in the halo) and the theoretical isochrones. For main sequence stars below the

turn-off (which are of the most interest here), the mismatch can be approximated by a

distance shift of ∼ 10%. Therefore in our analysis we reduce all the distances derived

on the basis of the CMD fit by 10%.

Splitting the CMD data into φ1 bins shows that there is a distance gradient along

the stream: Figure 3.6 shows two Hess diagrams obtained for two different pieces of the

stream, on the left −40◦ < φ1 < −20◦, and on the right -10◦ < φ1 < 10◦. The baseline

isochrone is shifted to distances of 8.5 kpc(left) and 11 kpc(right) respectively. Clearly,

the part of the stream at −10◦ < φ1 < 10◦ is further from the Sun, (as already noted

by Grillmair and Dionatos, 2006b; Willett et al., 2009).

The determination of the CMD properties for the stream allows us to select the

possible stream member stars with much less background contamination, compared to

a simple color magnitude box. Figure 3.7 shows the map of the stream (in φ1, φ2 coor-

dinates) after applying a matched filter based on the CMD of the stream. For Fig. 3.7

each star in the SDSS dataset was weighted by the ratio of the stream membership

probability and the background probability Pstream(u−g,g−r,r−i,r)
PBG(u−g,g−r,r−i,r) ,where Pstream(u −

g, g− r, r− i, r) have been computed based on the stellar population fit (Fig. 3.5), and

PBG(u − g, g − r, r − i, r) was computed empirically from the regions adjacent to the

stream (see e.g. Rockosi et al., 2002, for the application of similar method). The result-

ing image after the CMD weighting shows the stream with obviously greater contrast

than Figure 3.1.

3.3 Kinematics

In this section we describe how we derived estimates of the 3D kinematics of the stream

by looking at the proper motions and radial velocities of the probable stream members.

3.3.1 Proper motion

Despite the distance of ∼ 10 kpc to the GD-1 we demonstrate in this section that it

is possible to derive good constraints on its proper motion. The analysis is based on

proper motions derived from combining USNO-B1.0 (Monet et al., 2003) with SDSS

data (Munn et al., 2004, 2008), which we take from SDSS DR7 (Abazajian et al., 2009).
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Figure 3.7: Map of stream stars in the rotated coordinate system after applying the
matched CMD filter from Section 3.2. The figure shows the histogram of stars in φ1, φ2,
where each star has been weighted by the CMD weight Pstream(u−g,g−r,r−i,r)

PBG(u−g,g−r,r−i,r)

At a distance of ∼ 10 kpc a stream that is moving transversely at approximately

constant distance from us, should have a proper motion in the order ∼ 4 mas/yr (where

200 km/s was taken as a characteristic velocity in the halo). Hence the expected proper

motion is comparable to the precision of individual proper motion measurements. As

stream member stars that are adjacent on the sky should have (nearly) identical proper

motions, we can, however, determine statistical proper motions for ensembles of stars.

We start by deriving the ~µ-distribution of likely member stars, by extending the

analysis of Section 3.2 and using both the angular position on the sky (specifically φ2)

and the location in CMDs for each star to evaluate its stream membership probability.

Specifically, we determine for each proper motion ’pixel’ (~µ, ~δµ) Nstream(~µ|φ2, CMD)

(number of stream stars) by integrating along the stream direction φ1 and fitting the

φ2 distribution with the Eq. 3.1 for the stars with high membership probabilities in

the CMD (u-g,g-r,r-i,i) space Pstream/PBG & 0.1. The resulting distribution Nobs(~µ) is

shown in Fig. 3.8. The grayscale in the left panel of the Figure shows the proper motion

distribution of µα, µδ of probable stream member stars (Nstream) integrated along the

stream, while the contours show the proper motion distribution of the background stars

selected with the same color-magnitude criteria (corresponding to NBG from Eq. 3.1).

It is clear that the stream stars are on average moving differently than the bulk of

background stars. However, the observed proper motions contain the reflex motion of
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Sun’s motion in the Galaxy. We can account for this and then convert ~µ to (µφ1 , µφ2),

the proper motion along the stream µφ1 ≡ µalong and proper motion across the stream

µφ2 in the Galactic rest-frame (where φ1, φ2 are the stream coordinates introduced in

Section 3.2). The proper motion component arising from the Sun’s movement in the

Galaxy can be easily computed for each star.

~µreflex =
1

4.74 |~r|
(~V� − (~V� · ~r)

~r

|~r|2
)

where ~V is a 3D velocity of the sun (∼ 220 km/s) and ~r is the vector from the sun

towards each star. As we approximately know the distance to the stream, this correction

µφ1,2,c = µα,δ−µreflex can be done. We will discuss the consequences of the uncertainties

in the Sun’s motion and the stream differences in Section 3.4.

The right panel of Fig. 3.8 shows the distribution of µφ1 , µφ2 of the stream stars.

The contours show the corresponding distribution of background stars with the sim-

ilar color-magnitudes to the stream stars. Reassuringly we see that stream stars are

moving approximately along φ1, i.e. along the stream orbit, an important plausibility

check for the correctness of the proper motion measurement. In contrast, the proper

motion distribution of the background stars after subtracting the proper motion due

to sun’s movement is centered around (µφ1 , µφ2) = (0, 0), which appears reasonable

since with our color-magnitude selection we are selecting primarily the halo stars at

distances ∼ 10 kpc. Those show little net rotation (Carollo et al., 2007; Xue et al.,

2008). The estimate 〈µφ1〉 ≈ −8 mas/yr also immediately implies that the stream is

going retrograde with respect to the Milky Way’s disk rotation.

In Figure 3.9 we illustrate the proper motion variation along the stream. These

plots, showing only µφ1(φ1) were derived the same way as Fig. 3.8, except that we did

not integrate in φ1 along the entire stream but only in φ1 intervals. The left panel of

Fig. 3.9 shows the distribution of the proper motions along the stream of the background

stars. The right panel of the Figure shows the distribution of proper motions of likely

stream member stars as a function of angle along the stream (the proper motion due

to the Sun’s motion was subtracted). The right panel reveals a slight, but significant

gradient in 〈µφ1〉, of the order of 3 to 5 mas/yr. Note that the decrease of the proper

motions towards φ1 = 0 coincides with the distance increase to the stream (see Fig. 3.6).

Having determined the stream proper motions, we can further improve the CMD-

filtered map of the GD-1 stream (Fig. 3.7) by requiring that the proper motions of the
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stars are consistent with the proper motion of the stream. That is shown in Fig. 3.10.

and discussed in Section 3.3.2.

Figure 3.8: Proper motion of the stream. The left panel shows the proper motion
in right ascension and declination µα, µδ (as observed, e.g. no correction for the Solar
motion in the Galaxy was made). The right panel shows the proper motion in the rotated
coordinate system (φ1, φ2) (φ1 is oriented along the stream) and after the subtraction of the
proper motion due to the Sun’s motion in the Galaxy (assuming for now Vc = 220 km/s).
The grayscale in each of the panels shows the number of stars per proper motion bin.
Contours shows the the proper motion distribution for the field stars. with similar colors
and magnitudes to the stream stars. The proper motions of the stream stars are clearly
distinguishable from the proper motions of the background stars. The right panel confirms
the fact that the stream stars are moving approximately along its orbit (µφ2 ≈ 0 mas/yr),
while the mean proper motions of background stars after subtracting Sun’s motion are
consistent with zero.

3.3.2 Radial velocities

To construct the 6-D phase space distribution of the stream, the radial velocities are the

remaining datum. By necessity the actual sample for which spectra, and hence radial

velocities, will be available, will differ from the photometric sample just described. In

this section we will use both the data from the SDSS/SEGUE survey (Yanny et al.,

2009) as well as radial velocities obtained by us with the TWIN spectrograph on Calar

Alto, specifically targeting likely stream member stars.
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Figure 3.9: Variation of the proper motions along the stream (corrected for the Solar
reflex motion, assuming V0 = 220 km/s). The left panel shows the distribution of µφ1 for
the stream candidate stars as a function of φ1. The right panel shows the distribution of
µφ1 of the field stars selected using the same color-magnitude criteria as the stream stars.
The variation of proper motions of stream stars with φ1 is clearly visible in the left panel.
Near φ1 ∼ 0◦ the proper motion of the stream is around −5 mas/yr, while at φ1 ∼ −50◦ it
is around −8 mas/yr.

3.3.2.1 SDSS radial velocities

SEGUE and SDSS only provide sparse spatial sampling of high latitude stars. SEGUE

did not target any GD-1 member stars specifically. Therefore we have to search through

the existing SEGUE spectra to identify likely, or possible, member stars by position on

the sky, CMD position and proper motion. In the previous section we described that

we used the ratio of the stream/background probabilities Pstream(u−g,g−r,r−i,r)
PBG(u−g,g−r,r−i,r) to select

high probability members of the stream. Now additionally to that we also select the

stars within the µα, µδ box (see Fig. 3.8). That allows us to have a sample of stream

stars with much less background contamination, although the overall size of that sample

is significantly smaller, since the the SDSS/USNO-B1.0 measurements of the proper

motions were done for stars with r . 20 (Munn et al., 2004). To illustrate how good

the proper motion selection is when combined with the color-magnitude selection we

show map of high probability stream member stars on Figure 3.10. The stream is now

clearly seen in individual stars. In Figure 3.10 we also overplot the location of existing

SEGUE DR7 pointings, some of which cover the stream. Therefore we may expect to

find some stream members among the SEGUE targets in these fields.

Figure 3.11 shows the SDSS/SEGUE radial velocity distribution as a function of

φ1 for those stars whose proper motions and color-magnitude position are consistent

with stream membership, and which are located within 3 degrees from the center of the
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stream. The filled red circles in this Figure show the subset of stars located within 0◦.3

from the center of the stream and therefore represent the subset with very high member-

ship probability, while the open black circles represent(spatially selected, |φ2| > 0.3◦)

background stars with similar proper motion and color magnitude. The filled symbols

in Fig. 3.11 clearly delineate the radial velocity of the stream. Clumps of red circles are

visible at (φ1, Vrad)≈(-25◦,-100 km/s), (-30◦,-80 km/s), (-47◦,0 km/s), (-55◦,40 km/s).

In order to perform the formal measurements of the radial velocities we performed a

maximum likelihood fit by a model, consisting from two Gaussians one (wide) Gaussian

was representing the background distribution, while the second (narrow) was modeling

velocity distribution of stream stars. This fit gave us the following results: (φ1, Vrad)=(-

56◦,39±14 km/s), (-47◦,-7±10 km/s), (-28◦,-61±6 km/s), (-24◦, -83±9 km/s).

Figure 3.10: Stars that match the expectations for stream members with regards to
proper motions, colors and magnitudes (but no φ2 filter), used in the candidate selection for
radial velocity measurements. The stream can be clearly seen in distribution of individual
stars. The locations of the SEGUE DR7 pointings are shown by gray circles.

3.3.2.2 Calar Alto radial velocities

Since the SDSS/SEGUE radial velocities only provide constraints at a few points of the

stream, we decided to obtain additional radial velocity information with targeted ob-

servations. We based the target selection for likely stream members on all the available

information discussed in the previous sections: position on the sky, color-magnitude

location and proper motions. We selected 34 stars likely members with r . 19 for the

observations. All these stars are within the sample plotted in the Figure 3.10.
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Figure 3.11: Radial velocities of likely stream stars (filled circles). The Figure shows
the radial velocities drawn from the SDSS/SEGUE (red circles) and Calar Alto spectra
(blue circles). The red and blue symbols reflect the radial velocities of all stars matching
in color, magnitude and proper motion that have positions with |φ2| < 0.3◦. The open
circles represent SDSS/SEGUE velocities of similar stars but with |φ2| > 0.3◦. The radial
component of the Solar reflex motion (taking V0 = 220 km/s) was subtracted from all
datapoints.

The observations were performed the TWIN spectrograph on the 3.5m telescope at

Calar Alto observatory, during several nights of service observing in February 2009. We

used the blue and red arms of the spectrograph at a resolution of 4000-5000 to observe

the Hβ, Mgb lines and CaII near-IR triplet respectively. The standard data reduction

steps were applied to the dataset using custom written routines in Python language.

We used both the blue and the red spectra to compute the radial velocity of each

star. The radial velocity of each star was derived by minimizing χ2 as a function of

velocity shift of the template convolved with the appropriate Line Spread Function

(LSF). The χ2 for each star was a sum of the χ2 for the blue and the red part of the

spectra. As template in the blue spectral range we used the spectra from the ELODIE

database (Prugniel et al., 2007) for stars of similar color and magnitude to the targeted

ones and with low metallicity [Fe/H] ∼ −2. In the red spectral range the template

spectra was simply consisting from three lines of Ca triplet at 8498.02Å 8542.09Å and

8662.14Å. The error of each velocity measurement was determined using the condition

∆(χ2(V )) = 1.

The Calar Alto measurements of the velocities together with their errors are over-

plotted in blue symbols in Fig. 3.11. It is apparent from Fig. 3.11 that for −50◦ < φ1 <

35



3. CONSTRAINING THE MW POTENTIAL WITH A 6-D
PHASE-SPACE MAP OF THE GD-1 STREAM

−10◦ the targeting strategy was very successful, nicely delineating the projected veloc-

ity gradient along the stream. Overall out of 34 observed stars ∼ 24 stars belong to the

stream and ∼ 5 didn’t have enough S/N for the velocity determination. Unfortunately

the targeting near φ1 ≈ +5◦ failed to identify stream members, probably because the

stream there is less intense and further away.

3.4 Modeling

In the previous section we described the derivation of different stream properties such

as distance, position on the sky, proper motion separately. In this Section we will

map the stream in 6-D position-velocity space in a more consistent way, using all the

available information (see e.g. Cole et al., 2008, for the application of similar, although

simpler method to Sgr stream). This will provide us with a set of orbit constraints

along different sections of the GD-1 stream, which we will then model by an orbit to

derive potential constraints.

3.4.1 Positions on the sky and distances to the stream

We start by characterizing the projected stream position and its distance from the

Sun through a maximum likelihood estimate for a parametrized model of the stream

Pstream(r, g − r, φ1, φ2) that describes it in 4-dimensional space of photometric observ-

ables r,g − r,φ1,φ2:

Pstream(r, g − r, φ1, φ2) = CMD(r, g − r, D(φ1))×

×I(φ1)×
1√

2 πσφ2(φ1)
exp

(
−(φ2 − φ2,0(φ1))2

2 σ2
φ2

(φ1)

)
(3.2)

Here φ2,0(φ1) is the φ2 position of the stream center on the sky as a function of φ1,

σφ2(φ1) is the projected width of the stream in φ2, I(φ1) is the “intensity” (i.e. the num-

ber density) of the stream as a function of φ1, and D(φ1) is the distance to the stream.

Further, CMD(r, g − r, D(φ1)) is the normalized Hess diagram (i.e. the probability

distribution in CMD space) expected for the stream’s stellar population at a distance

of D(φ1) after accounting for the observational errors. We construct that CMD based

on the age and metallicity obtained in Section 3.2 and the isochrones from Girardi et al.
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(2000); Marigo et al. (2008) (assuming that d[Fe/H]
dφ1

=0 and d(age)
dφ1

=0). In this model,

Pstream depends on four functions – I(φ1), φ2,0(φ1), σφ2(φ1), D(φ1) – which we take to

be piecewise constant; i.e. for intervals δφ1 they simply become four parameters.

For the field stars, PBG(r, g − r, φ1, φ2) the analogous 4D distribution is

PBG(r, g − r, φ1, φ2) = IBG(φ1, φ2)× CMDBG(r, g − r, φ1)

, where IBG(φ1, φ2) is the 2D number density distribution of the field stars around the

stream and CMDBG(r, g − r, φ1) the corresponding color-magnitude diagram. These

functions are determined empirically from the data in adjacent parts of the sky (|φ2| &

0.5◦). IBG(φ1, φ2) is determined by fitting the density of the stars in the φ1, φ2 space by

a polynomial. CMDBG(r, g − r, φ1) is determined by constructing the Hess diagrams

using all the stars with 0.3◦ < |φ2| < 5◦ in several φ1 bins.

To simplify the determination of PBG(r, g − r, φ1, φ2) and Pstream(r, g − r, φ1, φ2),

we split the stream in several φ1 pieces, and consider I(φ1), σφ2 , D(φ1) and φ2,0(φ1)

as constants within them. The log-likelihood for the mixture of the Pstream and PBG

distribution can be written as (here for convenience we introduce α as a fraction of

stream stars instead of I(φ1)):

ln(L) =
∑
stars

2 ln(α Pstream(ri, gi − ri, φ1,i, φ2,i) +

(1− α)PBG(ri, gi − ri, φ1,i, φ2,i)) (3.3)

and should be maximized with respect to the parameters (σφ2 , D(φ1), φ2,0(φ1) and

α). The maximization is performed using the Truncated Newton method(Nash, 1984).

The parameter errors are obtained by using the δ(ln(L)) criteria (e.g. Cash, 1979).

The left and central panels of Figure 3.12 show the resulting estimates of the pro-

jected position and the distance of the stream, the parameters used in the subsequent

orbit fitting. We do not use the number density of stream stars, as it varies noticeably

along the stream (see Fig. 3.7) and the reason of these variations is not clear. It is

apparent from Fig. 3.10 that the projected stream position is very well defined, and

that a distance gradient exists along the stream.

37



3. CONSTRAINING THE MW POTENTIAL WITH A 6-D
PHASE-SPACE MAP OF THE GD-1 STREAM

3.4.2 Proper motions

The likelihood maximization just described also results in stream membership prob-

abilities for any given star i, Pstream(ri, gi − ri, φ1,i, φ2,i). This information can then

be used to estimate via maximum likelihood the mean proper motions of different

stream pieces, thereby extending the observational estimates to the full 6-D space

(r,g − r,φ1,φ2,µφ1 ,µφ2).

Pstream,µ(r, g − r, φ1, φ2, µφ1 , µφ2) =

Pstream(r, g − r, φ1, φ2)×
1

2 π σ2
µ

×

exp
(
−

(µφ1 − µφ1,0(φ1))2 + (µφ2 − µφ2,0(φ1))2

2 σ2
µ

)
(3.4)

where we simply take the previously determined Pstream as a prior, to be modified

by the Gaussian distribution in the 2D proper motions space. Here, the proper motion

distribution is characterized by three functions, µφ1,0(φ1), µφ2,0(φ1) and σµ, which

again we take to be piecewise constant. The distribution of the background stars in

the 6-D space PBG,µ(r, g − r, φ1, φ2, µφ1 , µφ2) is obtained empirically by binning the

observational data. Then we construct again the logarithm of likelihood, considering

variations in four parameters: the number of stream stars, the proper motion of the

stream in φ1 and φ2 and the proper motion spread σµ. This likelihood is then maximized

and we determine the µφ1 , µφ2 and σµ for different stream pieces. The right panel of

the Figure 3.12 shows the resulting proper motion estimates as a function of φ1. These

proper motions have not been corrected here for the Sun’s reflex motion, which we will

model in Section 3.5.

Overall, the analysis presented in the previous sections has resulted in the best and

most extensive set of 6-D phase-space coordinate map for a cold stream of stars in the

Milky Way.

3.5 Orbit fitting

If we can assume that all the stream stars lie close to one single test-particle orbit, then

our phase space map of the GD-1 stream should not only define this orbit, but at the

same time constrain the Milky Way’s potential. The assumption that the stream stars
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Star φ1 φ2 Vrad

deg deg km/s

SDSS J094105.35+315111.6 −45.23 −0.04 28.8± 6.9
SDSS J094705.26+332939.8 −43.17 −0.09 29.3± 10.2
SDSS J095740.48+362333.0 −39.54 −0.07 2.9± 8.7
SDSS J095910.43+363206.6 −39.25 −0.22 −5.2± 6.5
SDSS J100222.01+374113.3 −37.95 0.00 1.1± 5.6
SDSS J100222.02+374049.2 −37.96 −0.00 −11.7± 11.2
SDSS J101033.02+393300.8 −35.49 −0.05 −50.4± 5.2
SDSS J101110.08+394453.9 −35.27 −0.02 −30.9± 12.8
SDSS J101254.83+395525.6 −34.92 −0.15 −35.3± 7.5
SDSS J101312.05+400613.3 −34.74 −0.08 −30.9± 9.2
SDSS J101702.15+404747.3 −33.74 −0.18 −74.3± 9.8
SDSS J101951.76+412701.5 −32.90 −0.15 −71.5± 9.6
SDSS J102216.20+415534.7 −32.25 −0.17 −71.5± 9.2
SDSS J103003.87+434351.7 −29.95 −0.00 −92.7± 8.7
SDSS J104341.92+460224.7 −26.61 −0.11 −114.2± 7.3
SDSS J104840.98+464922.1 −25.45 −0.14 −67.8± 7.1
SDSS J105036.96+472000.1 −24.86 0.01 −111.2± 17.8
SDSS J110711.27+494415.9 −21.21 −0.02 −144.4± 10.5
SDSS J114242.08+533841.4 −14.47 −0.15 −179.0± 10.0
SDSS J114724.59+535546.8 −13.73 −0.28 −191.4± 7.5
SDSS J115116.08+542142.7 −13.02 −0.21 −162.9± 9.6
SDSS J115326.06+542930.6 −12.68 −0.26 −217.2± 10.7
SDSS J115404.06+543511.4 −12.55 −0.23 −172.2± 6.6

Table 3.1: Radial velocities from the Calar Alto observations
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φ1 φ2

deg deg

−60.00 −0.64± 0.15
−56.00 −0.89± 0.27
−54.00 −0.45± 0.15
−48.00 −0.08± 0.13
−44.00 0.01± 0.14
−40.00 −0.00± 0.09
−36.00 0.04± 0.10
−34.00 0.06± 0.13
−32.00 0.04± 0.06
−30.00 0.08± 0.10
−28.00 0.03± 0.12
−24.00 0.06± 0.05
−22.00 0.06± 0.13
−18.00 −0.05± 0.11
−12.00 −0.29± 0.16
−2.00 −0.87± 0.07

Table 3.2: Stream positions

φ1 Distance
deg kpc

−55.00 7.20± 0.30
−45.00 7.59± 0.40
−35.00 7.83± 0.30
−25.00 8.69± 0.40
−15.00 8.91± 0.40

0.00 9.86± 0.50

Table 3.3: Stream distances
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Figure 3.12: Summary of photometrically derived stream properties based on maximum
likelihood fits to chunks of the stream, drawing on SDSS photometry and astrometry
(see Section 3.4). The left panel shows the positions of the stream on the sky in φ1,φ2

coordinates. The middle panel show the measurements of the distances as a function of
φ1. The right panel shows the statistical proper motions of the stream stars (without the
correction for the Solar motion); red circles show the µφ1 (the proper motion along the
stream), blue squares show the µφ2 (the proper motion perpendicular to the stream).

φ1 µφ1 µφ2 σµ

deg mas/yr mas/yr mas/yr

−55.00 −13.6 −5.7 1.3
−45.00 −13.1 −3.3 0.7
−35.00 −12.2 −3.1 1.0
−25.00 −12.6 −2.7 1.4
−15.00 −10.8 −2.8 1.0

Table 3.4: Stream proper motions
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are moving along the same orbit is plausible , especially if the stream is near pericenter

(Dehnen et al., 2004, & private communication) . But it is not straightforward to

quantify the quality of such an approximation. For now we simply fit an orbit to our

6-D map of available observational data: the position on the sky, φ2(φ1), proper motion

~µ(φ1), distance to the stream D(φ1) and radial velocity Vrad(φ1). For each assumed

potential, we will determine the best fit orbit, but then marginalize over the orbits to

determine the range of viable gravitational potentials. This analysis extends earlier

efforts by Grillmair and Dionatos (2006b) and Willett et al. (2009) who have presented

orbit solutions for GD-1 . However, we can now draw on a much more extensive set

of observational constraints. We also explore the fit degeneracies. Given that our 6-D

phase-space map of the GD-1 stream spans only a limited range in R and z (as seen from

the Galactic center), it proved useful to consider very simple parametrized potentials

at first. Further it proved necessary to consider what prior information we have on the

Sun’s (i.e. the observers) position and motion, as well as on our Milky Way’s stellar

disk mass.

3.5.1 One component potential

The stream is located at Galactocentric (R, z) ≈ (12, 6) kpc, a regime where presumably

both the stellar disk and the dark halo contribute to the potential , and its flattening.

Of course, the stream dynamics are solely determined by the total potential, and there-

fore we consider first a simple single-component potential, the flattened logarithmic

potential

Φ(x, y, z) =
V 2

c

2
ln

(
x2 + y2 +

(
z

qΦ

)2
)

, (3.5)

which has only two parameters: the circular velocity Vc and the flattening qΦ. Note that

(1 − qdensity) ≈ 3(1 − qΦ) for moderate flattening (e.g. p.48 of Binney and Tremaine,

1987). Such a simple potential seems justified as the stream stars are only probing a

relatively small range in R and z.

In practice, we fit an orbit to the 6-D stream map by considering a set of trial

starting points in the Galaxy, specified by the initial conditions ( ~X(0), ~̇X(0)) in stan-

dard Cartesian Galactic coordinates. Together with an assumed gravitational potential

this predicts ( ~X(t), ~̇X(t)), which can be converted to the observables, φ2(φ1), ~µ(φ1),

D(φ1), Vrad(φ1) and then compared to the 6-D observations (Fig. 3.13). For each
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Figure 3.13: The data-model comparison for the best fit orbit in a flattened logarithmic
potential (Eq. 3.5 with Vc = 220 km/s and qΦ=0.9. The color data points with error bars
shows the observational data, while the black lines show the model predictions for the
orbit with ~X(0) = (−3.41, 13.00, 9.58) kpc, ~̇X(0) = (−200.4,−162.6, 13.9) km/s. The top
left panel shows the positions on the sky, the top right panel shows the proper motions, the
bottom left panel shows the distances, the bottom right panel shows the radial velocities.
On the top right panel, red circles and thin line show µφ1 , while blue squares and thick
line show µφ2 .
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[( ~X(0), ~̇X(0)|Φ( ~X)] we can evaluate the quality of the fit by calculating χ2, summing

over all data points, shown in Fig. 3.13. For any given Φ( ~X), χ2 can be then mini-

mized with respect to the orbit, i.e. ( ~X(0), ~̇X(0)), providing the ’best fit’ orbit in this

potential and the plausibility of that potential. The minimization is performed using

the MPFIT code (Markwardt, 2009) implementing the Levenberg-Marquardt technique

(Marquardt, 1963) translated into Python1. The data used to constrain the potential

are given in the Tables 3.1, 3.2, 3.3, 3.4 (except the SDSS measurements of the radial

velocities which are given in the end of Section 3.3).

It is crucial to note that the conversion of ( ~X(t), ~̇X(t)) to the space of observables

depends on the position and motion of the observer, i.e. on distance from the Sun to the

Galactic center (R0) and on the 3D velocity of the Sun in the Galaxy rest-frame (~V0). At

this stage we adopt R0 = 8.5 kpc based on recent determinations (e.g. Ghez et al., 2008),

but later we will relax this. The second parameter ~V0 ≡ ~VLSR +∆~VLSR (where VLSR is

the velocity of the Local Standard of Rest and ∆~VLSR is the Sun’s velocity relative to

the LSR) is linked to the fitting not only through conversion of the observable relative

stream velocities to the GC rest system, but also conceptually through the plausible

demand that Φ( ~X) and in particular Vc(R0, 0) also reproduces ~VLSR. In this way,

constraints on the potential flattening can be derived by considering r dΦ
dr in the disk

plane (~VLSR) and the plane of the GD-1 stream. The velocity of the Sun relative to

the Local Standard of Rest (LSR) ∆~VLSR is quite well known from the HIPPARCOS

measurements (Dehnen and Binney, 1998): ∆~VLSR[km/s] = 10~ex + 5.25~ey + 7.17~ez.

The velocity of the LSR, i.e. Vc(R0, 0) has a considerable uncertainty (Brand and

Blitz, 1993; Ghez et al., 2008; Reid et al., 2009; Xue et al., 2008). Initially we will

consider the velocity of the LSR simply a consequence of the assumed potential, i.e.

VLSR ≡ Vc(R0, 0).

Figure 3.13 illustrates the result of such fitting, by overplotting the best fit orbit

for the plausible potential with Vc = 220 km/s and qΦ = 0.9 over observational data.

It is clear that even for the simple flattened logarithmic potential, an orbit can be

found that reproduces the observables well. This fit and Figure serve to illustrate a few

generic points that also hold for orbit fits in differing potentials: the stream moves on a

retrograde orbit and it is near pericenter, where the stream is expected to approximate

an orbit well (Dehnen et al., 2004). After fitting a first orbit, we may also note its

1http://code.google.com/astrolibpy/
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global parameters (see Fig. 3.17 for a 3D map of the orbit): pericenter is at 14 kpc from

the GC; apocenter is at 26 kpc; and the inclination is 39◦.

For any given potential Φ( ~X|Vc, qΦ) we can find best-fit orbit by marginalizing over

( ~X(0), ~̇X(0)) to see what our 6-D map of GD-1 implies about the relative plausibility

of different Vc and qΦ: Figure 3.14 shows the log-likelihood surface for the potential

parameters (Vc, qΦ); note again that this fit neglects all other prior information on Vc at

the Sun’s position. The contours show 1σ, 2σ, 3σ confidence regions on the parameters,

derived from the δ(ln(L)) values for two degrees of freedom (i.e. a two parameter fit)(see

e.g. Lampton et al., 1976). The insets at the left and bottom show the marginalized

distributions for single parameters. The best fit values with the 2-sided 68% confidence

intervals are Vc = 221+16
−20 km/s and qΦ = 0.87+0.12

−0.03. Figure 3.14 illustrates that the

flattening parameter qΦ is quite covariant with the equatorial circular velocity Vc. An

extreme example may serve to explain this covariance qualitatively. If the stream went

right over the pole (z-axis), then the local force gradient would be proportional to

Vc× qΦ (Eq. 3.5). Information about the potential flattening must therefore come from

combining kinematics and dynamics in the disk plane with the information from GD-1 .

The fit shown in Fig. 3.14 asks the data not only to constrain the potential at the

stream location and determine the stream orbit, but also to infer the Sun’s motion

(or at least VLSR) from its reflex effect on the data. Clearly providing a prior on

Vc(R0, 0) is sensible, especially if we care about constraints on the potential flattening.

We consider the constraints that arise from the Sun’s reflex motion with respect to the

Galactic center the most robust and sensible prior in this context. Ghez et al. (2008)

recently combined radio data (Reid and Brunthaler, 2004) with near-IR data on the

Galactic center kinematics to arrive at Vc(R0, 0) = 229± 18 km/s. It is also noticeable

that our own constraint on Vc(R0, 0) from Fig. 3.14, 221+16
−20 km/s, is close both in value

and uncertainty to the estimate of Ghez et al. (2008), which is based on a completely

disjoint dataset and approach.

Fig. 3.15 shows the resulting log-likelihood contours and 1σ, 2σ, 3σ confidence

regions after applying this prior on the Vc (229±18 km/s). Note that likelihood on

Fig. 3.15 is also marginalized over R0 with a Gaussian prior (R0 = 8.4± 0.4 kpc Ghez

et al., 2008).

Fig. 3.15 shows that the posterior probability distribution on Vc has slightly changed

to Vc(R0) = 224+12
−14 km/s with noticeably smaller error bar compared to the value from
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Figure 3.14: The log-likelihood surface of the orbit fit for the family of flattened loga-
rithmic potentials (Eq. 3.5) with different circular velocities Vc and flattenings qΦ with a
flat prior on Vc. Note that Vc enters both into the model velocities of the stream stars and
into the correction of all three velocity components for the Sun’s motion. The contours
show the 1σ, 2σ and 3σ confidence regions. The inset panels at the bottom and on the left
show the 1D marginalized posterior probability distributions for Vc, qΦ respectively. The
gray line in the bottom panel shows the probability distribution for the Vc from Ghez et al.
(2008), which we shall use as a prior in Fig. 3.15.
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Figure 3.15: The log-likelihood surface of the orbit fit for the family of flattened loga-
rithmic potentials (Eq. 3.5) with different circular velocities Vc and flattenings qΦ, but now
with a prior on the Vc of 229±18 km/s from Ghez et al. (2008). The likelihood was also
marginalized over the Gaussian prior on R0 = 8.4± 0.4 kpc. As on Fig. 3.14 the contours
show the 1σ, 2σ and 3σ confidence regions. The inset panels at the bottom and on the left
show the 1D marginalized posterior probability distributions for Vc, qΦ respectively. The
gray line in the bottom panel shows the adopted prior distribution for the Vc from Ghez
et al. (2008)
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Figure 3.16: The data-model comparison for a set of best-fit orbits in different loga-
rithmic potentials (Eq. 3.5) with three different (Vc, qΦ) parameters values (180 km/s, 1.1),
(220 km/s, 0.9), (260 km/s, 0.8.) The colored data points with error bars show the obser-
vational data, while the black lines show the model predictions (different line styles show
the orbit models in different potentials). The top left panel shows the positions on the sky,
the top right panel shows the proper motions, the bottom left panel shows the distances,
the bottom right panel shows the radial velocities. On the top right panel, red circles and
thin lines show µφ1 , while blue squares and thick lines show µφ2 .
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Ghez et al. (2008). Fig 3.15 also shows us the slightly improved comparing to Fig. 3.14

flattening constraints: qΦ = 0.87+0.07
−0.04. This means that the total potential appears to

be oblate (in the radial range probed); this may not be surprising, as the stellar disk –

which is manifestly very flattened – contributes to the total potential.

Fig. 3.16 illustrates how well the best-fit orbits for different potentials Φ( ~X|Vc, qΦ)

can mimic one another other in the space of observables. This is the source of the

parameter covariances shown in Fig. 3.14 and 3.15.

The fitting of the orbit shown in Fig. 3.13 allows us to make an estimate of the

line-of-sight velocity dispersion in the stream, by comparing the dispersion of the ra-

dial velocity residuals with the accuracy of individual radial velocities. This gives an

estimate of ∼ 7 km/s, which should be interpreted as an upper-limit for the velocity

dispersion of the stars in the stream.

Before we aim at separating possible flattening contributions from the halo and

disk, it is worth commenting on the accuracy and limitations of our estimate of qΦ. In

the range (R, z) ≈ (12, 6) kpc no other direct observational constraints on the potential

shape exist in the literature, and hence our estimate of qΦ = 0.87+0.07
−0.04 is a new and

important contribution. On the other hand, an error of δqΦ ∼ 0.05, especially when

translated into the flattening error of the equivalent scale-free mass distribution, may

not appear as particularly helpful in model discrimination, or as impressively accurate.

Especially as a manifestly cold stellar stream spanning over 60◦ on the sky may seem

ideal for mapping the potential at first glance.

3.5.2 Constraints on the shape of the dark matter halo from a bulge,

disk, halo 3-component potential

In the previous section we constrained the parameters of a simplified MW potential,

the spheroidal logarithmic potential. It is clear that the MW potential at the position

of the stream must depend explicitly on the sum of baryonic Galaxy components (bulge

and disk) and on the dark matter halo. We now explore whether our constraint on the

shape of the overall potential, qΦ ∼ 0.9, permits interesting statements about the shape

of the DM potential itself. At the distance of (R, z) ≈ (12, 6) kpc the contribution of the

disk to the potential should still be relatively large, weakening or at least complicating

inferences on the shape of the DM distribution.
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Figure 3.17: 2D projections of the orbit in the Galactic rectangular coordinates. The
position of the Sun is shown by a red circle. The Galaxy is shown by a cloud of points and
the gray arrow shows the direction of the galactic rotation. The black arrow shows the
direction of the orbital movement of the stream stars. The orbit is the best fit orbit for the
Vc = 220 km/s, qΦ = 0.9 logarithmic potential (Eq. 3.5). The orbit for the 3-component
potential (Eqns. 3.6, 3.7, 3.8) is almost undistinguishable from the orbit in logarithmic
potential.
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We adopt a three-component model of the Galaxy potential, choosing one that is

widely used in the modeling of the Sgr stream (Fellhauer et al., 2006; Helmi, 2004; Law

et al., 2005) and reproduces the galactic rotation curve reasonably well.

The model consists of a halo, represented by the logarithmic potential

Φhalo(x, y, z) =
v2
halo

2
ln

(
x2 + y2 +

(
z

qΦ,halo

)2

+ d2

)
, (3.6)

where we have adopted d = 12 kpc from the previous authors. The disk is represented

by a Miyamoto-Nagai potential (Miyamoto and Nagai, 1975),

Φdisk(x, y, z) =
GMdisk√

x2 + y2 + (b +
√

z2 + c2)2
(3.7)

with b = 6.5 kpc, c = 0.26 kpc. The bulge is modeled as a Hernquist potential:

Φbulge(x, y, z) =
GMb

r + a
(3.8)

with Mb = 3.4× 1010M�, a = 0.7 kpc

As in the previous section, for any given set of potential parameters, we can find

the best-fitting stream orbit and compute χ2 of the fit. Currently we do not make

any attempts to fully fit all the parameters of the MW potential, but we try to make

an estimate of the MW DM halo flattening. We take the 3-component potential and

fix all but 3 parameters — disk mass Mdisk, circular velocity of the halo vhalo and

the flattening of the halo qΦ,halo. On a 3D grid of these parameters we perform a

χ2 fit. Figure 3.18 shows the results of such fit after marginalization over the orbital

parameters ( ~X(0), ~̇X(0)), circular velocity of the halo vhalo with a Gaussian prior from

Xue et al. (2008) and a Gaussian prior on the circular velocity at the Sun’s radius from

Ghez et al. (2008). The Figure clearly illustrates that in the case of the 3-component

potential, the current data is unable to give a significant new insights on the flattening

of the DM halo. We can only say that at 90% confidence qΦ,halo > 0.89. We note

however that for the future analysis, if a multi-component model for the potential is

used then more prior information is required, i.e. not only on VLSR and vhalo but on

Mdisk and other parameters of the potential.
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Figure 3.18: The log-likelihood surface of the orbit fit for a 3-component potential
(Eq. 3.6, 3.7 and 3.8) with different disk masses Mdisk, halo circular velocities vhalo and
halo flattenings qΦ,halo. The likelihood was marginalized over the circular velocity of the
halo vhalo with the Gaussian prior on vhalo = 170 ± 15 km/s from Xue et al. (2008) and
the Gaussian prior on VLSR = 229±18 km/s) from Ghez et al. (2008) . The contours show
the 1σ, 2σ and 3σ confidence regions. The inset panels at the bottom and on the left show
the 1D marginalized posterior probability distributions for Mdisk, qΦ,halo respectively.

3.6 Discussion and Conclusions

In this chapter we have presented a thorough analysis the GD-1 stream combining

the publicly available SDSS and SEGUE data with follow-up spectroscopic obser-

vations from Calar Alto. The combination of the photometric SDSS observations,

SDSS/USNO-B1.0 proper motions, SDSS, SEGUE and Calar Alto radial velocities al-

lowed us to construct a unprecedented 6-D phase-space map of the stream. The 6-D

phase-space map of the stream, spanning more than 60◦ on the sky, provided the op-

portunity not only to fit the orbit as Grillmair and Dionatos (2006b) and Willett et al.

(2009) have done previously but to explore what constraints can be placed on the MW

potential.

The analysis is based on the assumption that the stream stars occupy one orbit. In

detail, of course, different stars on the stream have slightly different values of conserved

quantities and therefore lie on slightly different orbits. Effectively, our analysis depends

on these being small when compared with an orbital uncertainties. The magnitude of

the departure of the stream from a single orbit will, in detail, be a function of the

progenitor and the disruption process; as these details became understood the model
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can be refined.

We found that the distribution of stream stars in phase space can be well fit by an

inclined eccentric orbit in the spheroidal logarithmic potential. After marginalization

over the stream orbital parameters we derive a circular velocity Vc = 221+16
−20 km/s

and flattening qΦ = 0.87+0.12
−0.03. This measurement has been made without the use of

any information other than that in the GD-1 stream itself. It is important that the

information available in the observations of the stream is very sensitive to the Vc, the

circular velocity at the Sun’s position. The reason for that is that the stream extends

more then 60◦ on the sky and therefore both the radial velocities and the proper motions

have components coming from the projection of the Sun’s motion.

If we combine our circular velocity measurement with existing prior on the Vc from

Ghez et al. (2008) and also marginalize over the distance from the Sun to the Galactic

center using the Ghez et al. (2008) prior (R0 = 8.4 ± 0.4 kpc), we further tighten the

error bar on Vc = 224+12
−13 km/s and on the flattening of the potential qΦ = 0.87+0.07

−0.04.

Our measurement of the Vc is the best constraint to date on the circular velocity at

the Sun’s position, and the measurement of qΦ is the only strong constraint on qΦ at

galactocentric radii near R ∼ 15 kpc.

The measurement of the flattening of the potential qΦ = 0.87+0.07
−0.04 describes only the

flattening of the overall Galaxy potential at the stream’s position (R, z) ≈ (12, 6) kpc

where the disk contribution to the potential is presumably large. Unfortunately the

data on the GD-1 stream combined with the Ghez et al. (2008), Xue et al. (2008)

priors on Vc and vhalo are not enough for separating the flattening of the halo from the

flattening of the total Galaxy potential. So we are unable to place strong constraints on

flattening of the MW DM halo; we put a 90% confidence lower limit at qΦ,halo > 0.89.

Despite the negative result on the measurement of the MW DM halo flattening,

we note that the data from the GD-1 stream is able to give strong constraints on two

important Galaxy parameters. We claim that that our dataset on the GD-1 stream

should now be combined with all the available data in order to tighten the existing

constraints on the Galaxy parameters. It is important that the constraints on Galaxy

potential based on the GD-1 stream dataset are, to large extent, model-independent

and purely kinematic i.e. the constraints on the Vc come to large extent from the

projection effects and manifest themselves in proper motions and radial velocities.
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It is important that while the observed part of the orbit spans ∼ 70◦ on the sky

from the Sun’s point of view, the orbital phase spanned by the stars as seen from

the Galactic center, is only ∼ 40◦. That makes it plausible why orbits of different

eccentricities, and hence of different azimuthal velocities at their pericenter, can match

so closely the same set of 6-D coordinates. Since very cold streams take many orbits to

spread a substantial fraction of 2π in orbital phase (see e.g. also Pal 5; Grillmair and

Dionatos, 2006a; Odenkirchen et al., 2001), all future analyses of yet-to-be discovered

streams will particularly need to consider the trade-off between the conceptual and

practical attractiveness of ’cold’ streams and the near-inevitable limitations of their

phase coverage.

In addition to the weakness coming from phase coverage, our analysis at this point

must rely on photometric distance estimates; these have random errors of ∼10%, after

an empirical distance correction to the best fit isochrones that is of the same magnitude

(see Section 3.2). While the proper motions that we derived for ensembles of stream

stars are unprecedented for a stellar stream in the Milky Way’s outer halo; yet, the

corresponding velocity precision, especially when compounded by distance errors, is

still the largest single source of uncertainty in the fitting (e.g. our tests have shown

that overestimating heliocentric distances to the stream leads to the overestimated

measurement of Vc).

We suggest that future observations of radial velocities of the stream and improve-

ments in proper motion precision should be able to reduce the error bars on Galaxy

parameters significantly. It is also important to calibrate properly the distance to the

stream, which may be possible via several probable BHB candidates in the stream.

Another way to improve the constraints on the Galactic potential is by understanding

how much the stream deviates from a single test particle orbit.

We suggest that any attempt to fit the Galaxy potential now should not ignore the

dataset on GD-1 and should incorporate it into their fits.

The orbital parameters, which we measured for the GD-1 stream, are more or less

consistent with those from Willett et al. (2009): pericenter is at 14 kpc from the GC, the

apocenter is at 26 kpc, the orbit inclination with respect to the Galactic plane is 39◦.

We also estimate the total stellar mass associated with the stream to be ∼ 2× 104M�,

which together with the stream width of ∼ 20 pc unambiguously confirms that the
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progenitor of the stream was a globular cluster. We also measured the upper limit for

the velocity dispersion of the stars in the stream ∼ 7 km/s.

Overall in this chapter we have illustrated a method of analyzing the thin stellar

stream using all the available information on it and further utilizing that to constrain

the Galaxy potential. We believe that in the epoch of Pan-STARRS, LSST and espe-

cially GAIA, which will give us a wealth of new information on the MW halo, stream-

fitting like that presented in this chapter will be extremely useful and productive.
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4

Luminosity Function of MW

satellites

This chapter reproduces the paper: S. Koposov, V. Belokurov, N. W. Evans, P. C.

Hewett, M. J. Irwin, G. Gilmore, D. B. Zucker, H.-W. Rix, M. Fellhauer, E. F. Bell,

and E. V. Glushkova. “The Luminosity Function of the Milky Way Satellites” published

in ApJ, volume 686, page 279-291, October 2008a.

4.1 Introduction

In Cold Dark Matter (CDM) models, large spiral galaxies like the Milky Way and M31

form within extensive dark matter halos from the merging and accretion of smaller

systems. Although CDM models have had many successes on larger scales, one of the

most serious challenges facing CDM models is the so-called “missing satellite” problem.

First identified by Klypin et al. (1999) and Moore et al. (1999), the problem manifests

itself through the prediction by CDM models of at least 1-2 orders of magnitude more

low-mass subhalos at the present epoch compared to the observed abundance of dwarf

galaxies surrounding the Milky Way and M31.

There have been a number of theoretical proposals to solve this problem. For

example, the satellites that are observed could be embedded only in the rarer, more

massive dark subhalos (Stoehr et al., 2002), or, the satellites may form only in the

rare peaks of halos that were above a given mass at reionization (Diemand et al.,

2005; Moore et al., 2006). Alternatively, star formation in low mass systems could
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be inhibited by photoionization in the early Universe (Benson et al., 2002; Bullock

et al., 2001b; Somerville, 2002). All these ideas do not alter the abundance of dark

matter subhalos, but propose to solve the observed discrepancy by producing a smaller

number of directly observable satellites, thus breaking any simple relationship between

mass and luminosity.

The known Milky Way dwarf spheroidal (dSph) satellites have been discovered

by a variety of methods. The first seven were discovered serendipitously by visual

inspection of photographic plates, the Sextans dSph was found using automated scans

of photographic plates and the Sagittarius dSph in a radial velocity survey of the Milky

Way bulge. All-sky photographic surveys cover most of the sky away from the Zone

of Avoidance, but searches of plates are limited to surface brightnesses of ∼ 25.5 mag

arcsec−2 (Whiting et al., 2007). The sample of known dSphs has long been bedeviled

with selection effects, which are difficult to model with any accuracy. This situation has

changed recently with the advent of very large area, homogeneous, photometric surveys

such as the Sloan Digital Sky Survey (SDSS; York et al., 2000). The SDSS makes it

possible to carry out a systematic survey for satellite galaxies, which are detectable

through their resolved stellar populations down to extremely low surface brightnesses.

In essence, SDSS greatly facilitates systematic searches for overdensities of stars in

position-color-magnitude space.

Willman et al. (2002) carried out the first SDSS–based survey for resolved Milky

Way satellites, subsequently discovering a new dwarf galaxy, Ursa Major (Willman

et al., 2005b) as well as an unusually large globular cluster, Willman 1 (Willman et al.,

2005a) – although later evidence may favor its interpretation as a dark matter domi-

nated dwarf galaxy with multiple stellar populations (Martin et al., 2007). The color

image “Field of Streams” (Belokurov et al., 2006c), composed of magnitude slices of the

stellar density in the SDSS around the North Galactic Cap, proved to be a treasure-

trove for dwarf galaxies, as Canes Venatici, Bootes I and Ursa Major II (Belokurov

et al., 2006b; Zucker et al., 2006a,b) were all found in quick succession. A systematic

search in the “Field of Streams” led to the discovery of five more satellite galaxies,

Canes Venatici II, Leo IV, Hercules, Coma, and Leo T, as well as another large globu-

lar cluster, Segue 1 (Belokurov et al., 2007c; Irwin et al., 2007). Very recently, Walsh

et al. (2007) discovered another low luminosity satellite, Bootes II.
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As the faintest Milky Way satellites currently constitute our best markers of sub-

halos, the faint end of the satellite luminosity function of the Milky Way satellites can

provide stringent constraints on the process of galaxy formation, and can distinguish

between a number of dark matter, structure formation and reionization models. So, it

is important not merely to carry out a systematic survey of the star overdensities in

SDSS data for the discoveries per se, but also to compute the detection limits. These

detection limits are the basis for a volume corrected luminosity function estimate and

ultimately for a quantitative connection of satellite frequency and subhalo abundance.

Such is the purpose of this chapter. It is important to note that for a volume-corrected

estimate of the luminosity function, it is not necessary to use exactly the same de-

tection algorithms as Belokurov et al. (2007c) or Willman et al. (2005b). Similarly,

the detection scheme does not need to be optimal for every individual dwarf galaxy.

Provided the automated algorithm is able to detect all the Milky Way satellites, and

the completeness properties of the algorithm are quantified, an estimate of the true

luminosity function can be derived.

4.2 Detection of Satellite Galaxy Candidates in SDSS DR5

The SDSS Data Release 5 (DR5) covers ∼ 1/5 of the sky, or ∼ 8000 square degrees

around the North Galactic Pole. SDSS imaging data are produced in five photometric

bands, u, g, r, i, and z (Adelman-McCarthy et al., 2006; Fukugita et al., 1996; Gunn

et al., 1998, 2006; Hogg et al., 2001). The data are automatically processed through

pipelines to measure photometric and astrometric properties (Lupton et al., 1999; Pier

et al., 2003; Stoughton et al., 2002; Tucker et al., 2006). All magnitudes quoted in this

chapter have been corrected for reddening due to Galactic extinction using the maps

of Schlegel, Finkbeiner, and Davis (1998). Sometimes it is convenient to report our

results in the V band, for which we use the transformation V = g − 0.55(g − r)− 0.03

given by Smith et al. (2002).

The SDSS data with the source catalogs used in this chapter was downloaded from

the SAI CAS Virtual Observatory data center1(Koposov et al., 2007a) and was stored

locally in the PostgreSQL database. To perform queries rapidly on the large dataset,

we used the Q3C plugin for the spatial queries (Koposov and Bartunov, 2006).

1http://vo.astronet.ru
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Figure 4.1: The number of stars brighter than r ' 22.5 in random realizations of Milky
Way satellites of luminosity Mr ∼ −3,−5,−7 (from bottom to top) with M92-like stellar
populations, as a function of distance from the Sun. The approximate number of stars
required for a significant detection (by the algorithm described in Section 4.2) is '30.

All the recent SDSS discoveries of dSph around the Milky Way, bar Leo T, are

not directly visible in the flux-limited images, but were detected as overdensities of re-

solved stars within certain magnitude and color ranges. This makes it straightforward

to automate a detection method and assess its efficiency. The essence of any detection

algorithm is to count the number of stars in a certain (angular) region on the sky,

satisfying specified color and magnitude criteria, and compare the number to the back-

ground value. The excess of stars depends on the satellite’s luminosity and distance.

For a given luminosity, the distance fixes the number of stars brighter than the SDSS

limiting magnitude, which is given by an integral over the stellar luminosity function.

A simple illustration of the detectability of objects with a luminosity function like that

of M92 is shown in Figure 4.1. The curves show the number of stars brighter than

r = 22.5 for satellites of three different absolute magnitudes. The maximal distance

probed by surveys like SDSS is controlled by the apparent magnitude of the brightest

stars in the satellite. For intrinsically luminous objects, like CVn I (MV = −7.9) ,

we can detect stars at the tip of the red giant branch at distances of up to ∼1 Mpc.

However, for satellites with many fewer stars, like Hercules (MV = −5.7), the giant

branch tip is simply not populated and we can only detect objects at distances up to
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∼300 kpc.

Figure 4.2: Differential convolution kernel applied to the stellar catalog to identify
overdensities of a particular scale. A one-dimensional slice of the two-dimensional kernel is
shown, where the width, or σ, of the inner Gaussian is 6′ and of the outer Gaussian is 60′.

To identify the excess number of stars associated with a satellite, a common ap-

proach is to convolve the spatial distribution of the data with window functions or

filters 1. To estimate the star density on different scales, we use a Gaussian of width

σ, that is,

L(x, y, σ) = I(x, y) ∗ g(x, y, σ), (4.1)

where

g(x, y, σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(4.2)

and I(x, y) is the distribution of sources

I(x, y) =
∑

i

δ(x− xi, y − yi) (4.3)

This allows us to see the stellar density distribution at different spatial scales. For

example, structures with a characteristic size of 1′ will be more prominent when the
1This idea has a long history, particularly in algorithms for searching for features and clusters in

imaging data. Widely used in astronomy are kernel-based density estimation methods, in which the

density is obtained by convolving all the data points (interpreted as delta-functions) with smoothly

decaying kernels, which can be Gaussians (see e.g. Silverman, 1986). A variant of this is used for feature

detection in digital images in so-called scale-space science (Babaud et al., 1986; Lindeberg, 1993, 1998).
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4. LUMINOSITY FUNCTION OF MW SATELLITES

stellar map is convolved with a 1′ kernel, and less prominent when the map is convolved

with 10′ and 0.1′ kernels. The resulting “blobs”, or overdensities, can be easily identified

on the differential image maps, namely

∆L = L(x, y, σ1)− L(x, y, σ2)

= I(x, y) ∗ (g(x, y, σ1)− g(x, y, σ2)) (4.4)

Such differential image maps are generally convolutions of the original distribution with

the kernel, which is a difference of two Gaussians. A one-dimensional slice of a kernel is

shown in Figure 4.2. When we convolve the map I(x, y) with such a kernel, we obtain

an estimate of the local density minus an estimate of the local background (L(x, y, σ2)).

This interpretation allows us to quantify the significance as

S(x, y, σ1, σ2) =
∆L

σL
(4.5)

where σ2
L is the variance of L(x, y, σ1).

σ2
L = V ariance(L(x, y, σ1)) = V ariance(I(x, y) ∗ g(x, y, σ1)) =

= I(x, y) ∗ g2(x, y, σ1) =
∑
i,j

I(xi, yj) g2(x− xi, y − yj , σ1) ≈

≈
∑
i,j

L(x, y, σ2) g2(x− xi, y − yj , σ1) = L(x, y, σ2)
∫ ∫

g2(x, y, σ1) dxdy =

=
L(x, y, σ2)

4πσ2
1

(4.6)

S(x, y, σ1, σ2) =
√

4πσ1
∆L√

L(x,y,σ2)
, (4.7)

Under the assumption that σ2 >> σ1 and a Poisson distribution of the initial set of

datapoints, the variance of S(x, y) is unity. This fact allows us to use the map of S(x, y)

to identify overdensities above a specified significance threshold.

4.3 Application to SDSS data

SDSS’s morphological parameters (Lupton et al., 2001) derived from the imaging data

allow robust discrimination between stars and galaxies down to r = 21.5. For 21.5 <

r . 22.5, the discrimination is still reasonably reliable, but it becomes increasingly un-

trustworthy below r = 22.5. Moreover, the catalog is 95% complete at r = 22.2 (Stoughton
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Figure 4.3: The segmentation of the DR5 area into 17 32◦× 32◦ fields, used for the stellar
overdensity search described in the text.

Figure 4.4: A sample 22◦× 22◦area in the convolved maps of the SDSS DR5 stellar (left)
and galaxy (right) catalogs. The positions of objects Ursa Major I and Willman 1 are
marked by circles. The positions of galaxy clusters Abell 773 and Abell 1000 are marked
by diamonds, and demonstrate that galaxy clusters may lead to significant peaks in the
stellar map. The linear diagonal structures seen in both images are caused by SDSS stripes.
The images were produced using a kernel specified by σ1 = 4′ and σ2 = 60′. We reject
peaks in the convolved stellar map if they coincide with significant peaks in the galaxy
distribution.
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Figure 4.5: Left: The distribution of pixel values in the convolved star map (solid line)
and galaxy map (dashed line) for one of our 17 fields in DR5. The Gaussian model curves
with width of 1.0 and 2.3 centered on zero are shown in red. Right: The standard deviation
in the galaxy map normalized by a Poissonian standard deviation as a function of kernel
size.

Figure 4.6: Distribution of Milky Way satellite detections in the Sstar versus Sgal plane.
The circles mark the known Milky Way satellites, the triangles are RC3 galaxies, and the
rhomboids are galaxy clusters. Objects towards the top left of the figure are likely the
result of contamination by galaxy clusters or spatially extended galaxies. The decision
boundary is shown as a dashed line; objects to the right and below the dashed line are
selected as candidate satellites.
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Right ascension Declination Sstar Sgal Name

205.539 28.382 170.13 8.24 NGC 5272
168.355 22.148 170.08 19.16 Leo II
198.220 18.159 165.00 16.48 NGC5024
152.100 12.289 123.86 14.94 Leo I
199.104 17.696 122.09 5.59 NGC 5053
211.359 28.527 121.91 5.61 NGC 5466
229.006 −0.130 115.10 19.48 Pal5
260.038 57.914 100.02 15.64 Draco
250.426 36.467 94.10 2.80 NGC 6205
322.483 12.147 87.58 13.30 NGC7078
182.516 18.544 79.40 7.58 NGC 4147
260.008 57.765 75.07 11.27 Draco
114.534 38.873 72.28 6.80 NGC 2419
323.212 −0.865 65.52 −1.75 NGC 7089
187.670 12.395 59.69 3.25 NGC 4486
202.011 33.549 44.12 1.68 CVn I
187.419 8.003 37.18 0.93 NGC 4472
149.834 30.742 28.13 12.65 Leo A
190.698 2.682 27.73 5.51 NGC 4636
114.608 21.581 25.88 −6.25 NGC 2420
259.027 43.063 22.76 −5.60 NGC 6341
183.904 36.310 20.43 7.49 NGC 4214
185.036 29.286 17.28 0.63 NGC 4278
210.010 14.503 16.95 0.32 Boo I
190.773 11.598 16.84 −1.52 NGC 4647/4637/4638
186.368 12.909 14.28 0.76 NGC 4374
178.814 23.371 13.90 19.34 Abell 1413
186.444 33.539 13.10 16.06 NGC 4395
148.904 69.081 13.08 19.85 NGC 3031
162.325 51.051 13.07 0.11 Willman 1
242.741 14.956 12.52 −0.07 Pal 14

Table 4.1: Objects detected and their significances
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Right ascension Declination Sstar Sgal Name

186.315 18.181 11.59 −3.72 NGC 4382
132.830 63.124 11.40 0.92 UMa II
186.745 23.913 11.22 −1.02 Coma Berenices
143.721 17.058 10.96 3.85 Leo T
188.911 12.544 10.91 −0.97 NGC 4552
210.691 54.332 10.67 13.53 NGC 5457
151.369 0.070 10.64 4.11 Pal 3
186.109 7.294 9.85 −0.76 NGC 4365
172.319 28.961 9.53 0.26 Pal 4
247.764 12.789 8.91 1.05 Hercules
197.870 −1.335 8.23 22.00 Abell 1689
194.292 34.298 7.39 −4.61 CVn II
196.743 46.569 7.30 8.29 Abell 1682
193.379 46.415 6.71 −2.41 Candidate X
168.146 43.440 6.52 −3.22 Candidate Y
352.182 14.714 6.39 1.47 Pegasus
202.388 58.404 6.37 −0.59 NGC 5204
225.323 1.672 6.34 1.36 NGC 5813
187.038 44.090 6.13 −2.49 NGC 4449
173.235 −0.554 6.10 2.92 Leo IV
0.807 16.097 6.09 −2.66 NGC 7814

179.144 21.049 6.05 1.14 Candidate Z
184.843 5.786 6.04 −1.25 NGC 4261
149.993 5.316 6.03 2.12 Sextans B
139.470 51.718 5.97 17.86 Abell 773
179.223 23.379 5.96 5.22 galaxy cluster
158.695 51.918 5.95 3.72 UMa I

Table 4.2: Objects detected and their significances (continuation)
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Figure 4.7: Left to right: Hess diagrams for Candidates X, Y and Z listed in Tables 4.1
and 4.2

et al., 2002) and drops quickly below this magnitude. At the faint end, the “stellar” cat-

alog of unresolved sources is polluted by faint galaxies which are intrinsically strongly

clustered. We will see shortly that the main task in providing a clean sample of dwarf

galaxy candidates is removal of the extragalactic contaminants, for which we will em-

ploy the SDSS galaxy catalog.

To proceed with the convolution (Eq. 4.4), the DR5 field of view is split into 17

segments as shown in Figure 4.3. The division is for computational convenience and to

minimize distortion in the gnomonic projections. In practice, we select stars and galax-

ies with a magnitude cut-off of r < 22.5. Due to the properties of the kernel, we expect

edge effects at the boundaries of the DR5 footprint and we discard all overdensities

within 1◦ of a boundary. We use a color-cut of g− r < 1.2 and kernel sizes with σ1 = 4′

and σ2 = 60′. The color cut is chosen to be as conservative as possible as regards

inclusion of the tip of the red giant branch stars for metal-poor populations, whilst the

kernel size is of the order of the angular size of the known dwarfs (see next section for

details). The color magnitude cut used in this work may not be optimal for the detec-

tion of each individual dwarf galaxy (e.g. the isochrone masks should definitely work

better), but the primary goal here is not to define an optimal algorithm, but rather to

develop a consistent algorithm that can detect known objects, for which the detection

efficiency can be determined. Figure 4.4 provides an example of the application of the

detection pipeline to the stellar and galaxy catalogs of SDSS DR5. The method suc-

cessfully removes the varying background to leave underdensities (black regions) and
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overdensities (white regions). The sample field of view chosen for Figure 4.4 contains

the already known Milky Way satellites Willman 1 and Ursa Major I (Willman et al.,

2005a,b). They are both recovered in the stellar map with significances of Sstar = 13.07

and 5.95 respectively. However, as we see in Figure 4.4, unresolved sources in rich

galaxy clusters such as Abell 773 and 1000, visible as prominent overdensities in the

galaxy map, also show up in the stellar map as significant peaks.

In order to remove false positives caused by galaxy clustering, we need to under-

stand the significance Sgal of overdensities in the map derived from the galaxy catalog.

Equation (4.7) does not hold, because the underlying distribution is no longer Poisso-

nian (Figure 4.5). The left panel shows the distributions of Sstar and Sgal for all pixels

in the same field of view as Figure 4.4. For the stars, the convolved source count dis-

tribution is almost a Gaussian with unit standard deviation, whilst the distribution for

the galaxies is broader. The right panel shows how the width of the Sgal distribution

grows with increasing kernel width as the convolution samples coherent structures on

larger scales. To assign significance to the overdensities in galaxies, we rescale Sgal,

dividing by its standard deviation.

Next, we remove obvious false positives by rejecting all objects within the region

marked by dashed lines in Figure 4.6, namely the intersection of the regions Sstar < 20

and Sgal > 2. This removes most, but not all, the false positives caused by galaxy

clusters. Additionally, there remains contamination from galaxies with large angular

size. The SDSS photometric pipeline mis-classifies HII regions and stellar clusters in

these galaxies as stars. We remove the contaminants by cross-correlating with the

positions of galaxies in the Third Reference Catalogue (RC3) of de Vaucouleurs et al.

(1991). Even so, there still remain objects at a moderately high level of significance

whose nature is unclear. Most of these are probably caused by galaxy clusters or

photometry artifacts, as judged from examination of Hess diagrams and SDSS image

cut-outs, but there may still be a very small number of genuine Milky Way satellites.

We detect all the known Milky Way satellites, except Boo II, in a catalog with

magnitude limit r < 22.5, analyzed using a kernel with σ1 = 4′. The most marginal

detections are Leo IV and Ursa Major I, which have significances Sstar = 6.10 and 5.95

respectively. Objects above the threshold are listed in Table 4.1, and include three

likely false positives, which are “Candidates” X, Y and Z. The Hess diagrams of these

three detections are shown in Figure 4.7. The Hess diagrams offer little evidence to
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support identification of the candidates as genuine satellites. Deeper data are needed

to provide definitive classification of the candidates but for the purpose of determining

the satellite luminosity function we exclude all three candidates, as false positives, from

further consideration.

It is prudent to search for candidate satellites on the map convolved with different

inner kernels, since the kernel biases the algorithm towards objects of a preferred size.

Therefore, we performed a search on the map convolved with kernels of 2′ and 8′. In the

former case, setting the significance to Sstar > 6.5 results in the detection of all objects

except UMa I and no false positives; in the latter case, setting Sstar > 6.0 includes all

objects except CVn II, Leo IV, LeoT, UMa I and no false positives.

Boo II, found by Walsh et al. (2007), is problematic for our algorithm. Boo II

contains a very sparsely populated giant branch, and so the brightest stars are sub-

giants and turn-off stars at colors of g − r < 0.5. Given our preferred cuts, Boo II is

undetected. It can nonetheless be found with our algorithm, but only by optimizing

the color and magnitude cuts, for example, to g − r < 0.5 and 21 < r < 23.

Figure 4.8: Left: M92 color-magnitude data from Clem (2006) used as a template for
our simulated Milky Way satellites, together with the ridge line for the main sequence and
red giant branch. The ridge line for the horizontal branch is our fit to Clem’s (2006) data.
Center: The observed luminosity function of main-sequence and red giant branch stars
in M92, together with our model fit of the luminosity function used in the simulations.
Right: The photometric errors of the SDSS r-band photometry and our model fit used in
the simulations
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Figure 4.9: Simulated color-magnitude diagrams for hypothetical Milky Way satellite
galaxies with properties close to those of Canes Venatici I, Hercules and Ursa Major II—
the actual color-magnitude diagrams of these galaxies are given in Zucker et al. (2006a,b)
and Belokurov et al. (2007c).

4.4 Application to Simulated Data

To test our detection algorithm, we carry out an extensive set of simulations in which

we add mock dwarf galaxy satellites and globular clusters to the SDSS DR5 catalog.

In particular, we add to the catalog the g and r magnitudes of stars from the simu-

lated objects, at specified right ascensions and declinations. These augmented catalogs

are then fed through our automated pipeline, and the number of stellar overdensities

with significance above the threshold is calculated as a function of distance, size and

luminosity. We explore how changes in the g − r color cuts and kernel sizes (σ1 from

Eq. 4.7) affect the efficiency of the algorithm.

The g and r photometry of all simulated objects is based on that of the globular

cluster M92. The left panel of Figure 4.8 shows the color-magnitude diagram (CMD) of

M92, together with a main-sequence and red giant branch ridgeline from Clem (2006),

to which we have added a horizontal branch ridgeline. From the r-band data, we

construct a main-sequence and red giant branch luminosity function and approximate

it with a smooth fit, as shown in the middle panel of Figure 4.8. We also determine

the luminosity function for the stars on the horizontal branch ridgeline. We populate
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Figure 4.10: Detection efficiency maps for Milky Way satellites, shown as a function of
luminosity and size for different distance bins. White indicates 100% detection efficiency,
black indicates 0%. Red circles mark the locations of the known dwarf galaxies, red trian-
gles the known globular clusters (data taken from Harris (1996)). Notice that many of the
very recent SDSS satellite galaxy discoveries occur near the boundary, where the detection
efficiency is changing rapidly.
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Figure 4.11: Characterizing the satellite galaxy detectability: this illustrative figure
shows the model function ε(MV , µ) (from Eq. 4.8) used to fit the observed detection effi-
ciencies from the simulations and demonstrating the role played by the thresholds MV,lim

and µlim. The function parameters used to produce the plot were MV,lim = −2 mag,
µlim = 29.5 mag arcsec−2, σM = 1mag, σµ = 1mag

the ridgelines using the luminosity function. The choice is appropriate, as M92 (12

Gyrs, [Fe/H] ≈ −2) is typical of the old, metal-poor populations in the Milky Way

satellites (see e.g. van den Bergh, 2000). Additionally, we add a scatter in r- and

g- magnitudes, derived from a fit to the errors in the SDSS point-spread function

photometry, as illustrated in the right panel of Figure 4.8.

The spatial distribution of stars in the simulated objects is chosen to follow a Plum-

mer law, which is a reasonable fit to most of the Milky Way dwarf spheroidals (see e.g.

Irwin and Hatzidimitriou, 1995; Kleyna et al., 2002). For ellipticities less than 0.5 –

which corresponds to the most flattened of the SDSS discoveries, Hercules and Ursa

Major II (Belokurov et al., 2007c; Zucker et al., 2006a) – the detection efficiency of

objects barely changes with ellipticity. The Plummer radius, luminosity and distance

are chosen to cover uniformly in logarithmic space the following ranges: Plummer ra-

dius 1 pc < rh < 1 kpc, luminosity −11 . MV . 0 and heliocentric distance 10 kpc

< D < 1 Mpc. We generate 8000 galaxies with random right ascension and declination

within the DR5 footprint. We then split the simulated sample into 20 distance bins to

eliminate overlap between simulated objects. The stars from the simulated galaxies are
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Figure 4.12: The known satellites and globular clusters shown in two-dimensional plots
of Galactocentric distance versus absolute magnitude (left) and surface brightness (right).
Circles mark the locations of the known dwarf galaxies, triangles the globular clusters. The
error bars show either σM or σµ derived from our model fits (see Eq. 4.8). The detectability
of the objects depends on their location relative to the limiting absolute magnitude (left)
and surface brightness (right) as a function of Galactocentric distance for each kernel
size/color cut employed in the search. Upper panels: The three lines show the detection
limits for different sizes of the inner Gaussian in the kernel (blue – 2′, green – 4′, red – 8′).
Lower panels: The four lines show the detection limits for the different g − r color cuts
employed (black – 0.2, blue – 0.4, green – 0.6, orange – 0.9, red –1.2) and fixed kernel size
of 4′.
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added to the DR5 stellar catalog. Figure 4.9 shows mock CMDs for simulated objects

matching the recently discovered dwarf galaxies Canes Venatici I, Hercules and Ursa

Major II (Belokurov et al., 2007c; Zucker et al., 2006a,b). These are good approxima-

tions to the observed CMDs of these objects.

In our simulations, we test several inner kernel sizes. The reason is that for a given

distance, the kernel size gives rise to an optimum physical size of the detectable objects.

For example, at a distance of 50 kpc, a kernel size of 4′ corresponds to a physical size of

'60 pc. As we want our algorithm to be sensitive to objects of different sizes, we use

three different inner kernel sizes, namely σ1 = 2′, 4′ and 8′. An object is considered

to be detected if it is above a threshold on the map convolved with at least one of

the kernels (the threshold for the 2′ kernel is 6.50, for the 4′ kernel – 5.95 and for the

8′ kernel – 6.00, see Section 4.3). We refer to this procedure as the combined kernel.

This is equivalent to the algorithm used in the previous Section, because the list of

detections for 2′, 4′ and 8′ kernels includes all the known dwarfs.

Figure 4.10 shows two-dimensional efficiency maps as a function of luminosity and

size in seven distance bins spanning the range 8 kpc to 1 Mpc. For Figure 4.10, we

have used the color cut of g− r < 1.2 and the combined kernel, together with an outer

kernel of size σ2 = 60′. Black corresponds to zero detection efficiency, and white to

unit efficiency. The locations of the known Milky Way globular clusters and dwarf

galaxies in this parameter space are recorded as red triangles and circles. While a

number of known objects lie well within the efficiency boundary, some of the recent

discoveries lie close the boundary. It is evident that there is no steady gradient in

efficiency, but rather a steep boundary between detectability and non-detectability. In

fact, the primary contribution to the finite-extent of the gradient visible in the Figures

is produced by the significant extent of the individual distance bins (the width of the

distance bins is 0.3 dex). The pixel size in magnitude is 0.8, and in log rh, it is 0.3.

This means that there are typically 10 objects in each bin and so we expect moderate

fluctuations due to shot noise.

As the efficiency changes so quickly near the boundary, and as several objects lie

close to this zone, we carried out more detailed simulations on objects similar to the

known dwarfs. We created 1000 Monte Carlo realizations of each of the known dwarfs,

and fed them into the pipeline. Table 4.3 lists the derived detection efficiencies for
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each object. The detection efficiencies are & 50%, with the sole exception of Boo II,

confirming our assertion that the known satellites possess high detection probabilities.

For the regime in which objects are larger than the kernel size, some of the stars

belonging to the satellite are missed by the window function, and for such objects

the detectability is determined by the number of stars within the window function,

i.e. the surface brightness. This effect produces the surface brightness limit seen in

Figure 4.10. For objects smaller than the kernel size, all the stars are within the window

function regardless of the size of the objects, therefore for such objects, the detectability

doesn’t depend on physical size, but depends only on the total number of stars, i.e.

the luminosity. This effect produces the rapid change in detection efficiency at fixed

absolute magnitude evident in Figure 4.10. These two regimes can be modeled with

thresholds in surface brightness and absolute magnitude by adopting a functional form:

ε(MV , µ) = G

(
MV −MV,lim

σM

)
G

(
µ− µlim

σµ

)
, (4.8)

where G denotes the Gaussian integral, which is defined as

G(x) =
1√
2π

∫ ∞

x
exp(−t2/2)dt. =

1
2

erfc

(
x√
2

)
(4.9)

To describe the detectability in each distance bin, there are four parameters that are

fitted – namely the detection thresholds in surface brightness µlim and absolute mag-

nitude MV,lim, together with their widths σµ and σM . As an illustrative example, the

grey-scale map of the efficiency function ε(MV , µ) from Eq. 4.8 is shown in Figure 4.11,

with dashed lines indicating the thresholds. Note the shape of the detection bound-

ary, with the prominent “knee”, which corresponds to the boundary between the two

detection regimes for objects of different sizes at fixed distance, as described above.

The two key parameters for the detection pipeline are the inner kernel size σ1 and

the color cut applied to the source catalogs. The top two panels of Figure 4.12 show

the dependence of MV,lim and µlim on distance, when convolved with the three different

inner kernels. For a given kernel, the limiting magnitude declines roughly linearly with

the logarithm of distance. Objects at the limiting magnitude have an apparent size

that is smaller than the kernel size and their detection significance is reduced by the

background contribution. Shrinking the kernel size removes some of the background

and increases the significance of fainter satellites. The dependence of the MV,lim and
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µlim on distance for the combined kernel is not plotted, because in the top left panel

of Figure 4.12 the combined kernel basically follow the dependence of 2′ kernel and

in the top right panel of Figure 4.12 the combined kernel follow the dependence of 8′

kernel. This is illustrated in the top left panel of Figure 4.12, where it is clear that

a smaller kernel allows us to detect fainter objects. However, as the top right panel

shows, this is at the expense of satellite size. Larger kernels pick up more stars from

extended objects and hence reach fainter surface brightness. When combining different

kernels in the pipeline, the overall limits in surface brightness and absolute magnitude

(2′, 4′, 8′, see Section 4.3) can be approximated by the blue line in the top left panel of

Figure 4.12 and the red line in the top right panel of Figure 4.12. Smaller kernels allow

the detection of galaxies that are low in absolute magnitude, and larger kernels allow

the detection of galaxies that are fainter in surface brightness. It is also reassuring

to see that the error bars σM are of the same order as the difference in the limiting

magnitude moving to a neighboring bin.

We explore the effects of changing color cuts and report the results in the bottom two

panels of Figure 4.12. The color cut of g − r < 0.4 can improve slightly the magnitude

limit for nearby objects by selecting turn-off stars. This improvement deteriorates

rapidly as we exhaust the supply of turn-off stars. At larger distances, red color cuts

like g − r < 1.2 are more efficient at picking up giant stars. The same effect explains

the drop in µlim and MV,lim at large distances for bluish color cuts. Our choice of color

cut g − r < 1.2 is conservative, mostly eliminating thin disk stars, and is, overall, the

best-behaved and most robust. It also allows us to minimize the influence of metallicity

and age changes in the stellar population of the satellites.

4.5 The Luminosity Function

4.5.1 Analysis of the detection efficiency maps

With an understanding of which satellite galaxies can be detected in SDSS DR5, to-

gether with our sample of actual detections, we can now estimate the luminosity func-

tion of faint Milky Way satellites. We start by re-examining the efficiency maps in

Figure 4.10, where the locations of the known Milky Way globular clusters and dwarf

galaxies are overplotted as red triangles and circles respectively. We can conclude that

within the DR5 footprint there are certainly no bright satellites (either globulars or
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Object Efficiency

Bootes 1.00
Draco 1.00
Leo I 1.00
Leo II 1.00

SEGUE 1 1.00
Canes Venatici I 0.99

Willman I 0.99
Coma 0.97

Koposov 1 0.90
Leo IV 0.79

Ursa Major II 0.78
Leo T 0.76

Hercules 0.72
Ursa Major I 0.56
Koposov 2 0.48

Canes Venatici II 0.47
Boo II 0.20

Table 4.3: Detection efficiencies of simulated objects resembling known satellites.

Distance MV,lim µlim

kpc mag mag/�′′

11 0.6 27.5
22 0.4 28.7
45 −1.9 29.6
90 −3.4 30.0
180 −4.4 29.9
260 −5.9 29.9
720 −7.5 29.6

Table 4.4: Limiting satellite absolute magnitude and surface nrightness as a function of
distance
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4. LUMINOSITY FUNCTION OF MW SATELLITES

Figure 4.13: The accessible volume within the DR5 footprint for galaxies with different
luminosities and surface brightnesses µlim, µ . 30 mag/�′′ (see Figure 4.12. The volume
limited by the virial radius (280 kpc) and within DR5 is shown by the dashed line.

galaxies) nearby (D < 32 kpc) that have eluded discovery. However, the disrupting

galaxy UMa II (Zucker et al., 2006a) provides a clue as to the likely locations of rem-

nants. It is still possible that disrupted galaxies remain undiscovered nearby. They can

lurk in the black portions of the uppermost two panels of Figure 4.10.

All that has survived in the inner Galaxy (8 < D < 16 kpc) is a population of

globular clusters, which occupy a small region in the luminosity and size parameter

space. They are predominantly old globular clusters belonging to the bulge. Only the

densest survive against the disruptive effects of Galactic tides and shocking, which is

illustrated by the apparent size bias. Notice that the datapoints lie well away from

the detection boundary, suggesting that the sample is complete at least within 8 <

D < 16 kpc. Moving outwards (16 < D < 32 kpc), the globular clusters belong to the

halo and may have been accreted (Mackey and Gilmore, 2004). Their size distribution

is broader. Some of these objects are in the process of disruption, such as Pal 5

and NGC 5466 (Belokurov et al., 2006a; Dehnen et al., 2004; Fellhauer et al., 2007;

Odenkirchen et al., 2001). The very faint and distant globular clusters discovered

recently by Koposov et al. (2007b) are visible in the third panel of Figure 4.10 (32 <

D < 64 kpc) right on the border of detectability. Further such sparse globulars may
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Figure 4.14: The luminosity functions of Milky Way satellite galaxies within ∼280 kpc
(virial radius) inferred from our analysis under the assumption of two different radial
distributions of satellites, NFW-like (solid black line) and isothermal (dashed black line).
The calculation uses the satellite list and the volume correction factor obtained with the
pipeline using the cuts r < 22.5 and Sstar > 5.95. The arrows on error bars indicate that
there is only one galaxy in the particular bin, and so the Poisson error is formally 100%.
The theoretical prediction of Figure 1 of Benson et al. (2002) is shown in a red line, and
the prediction of Somerville (2002) for zreion = 10 is shown as a blue line. Additionally,
the luminosity function for the bright (MV < −11) satellites of the Milky Way sampled
over the whole sky together with the bright M31 satellites within 280 kpc from Metz and
Kroupa (2007) is plotted with filled small symbols (the list of plotted objects consists of
Sgr, LMC, SMC, Scu, For, LeoII, LeoI, M32, NGC 205, And I, NGC 147, And II, NGC
185, And VII, IC 10). The function dN/dMV = 10× 100.1 (MV +5) is shown in grey.
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remain undetected.

Beyond 30 kpc, the dwarf spheroidals begin to appear. The long-known dwarfs such

as Draco and Sculptor lie far from the boundary, in regions of the luminosity and size

parameter space where the DR5 search efficiency is unity. However, all the recent SDSS

discoveries, such as Canes Venatici I, Bootes and Hercules, lie close to the detection

boundary, where the efficiency declines rapidly from unity to zero. Belokurov et al.

(2007c) claimed that there is a paucity of objects with half-light radii between ∼ 40 pc

and ∼ 100 pc. Our calculations support the idea that the gap is real and not produced

by selection effects. If there were objects with radii between ∼ 40 pc and ∼ 100 pc,

there is a broad range of parameter space in which they would have been found.

Although most of the new detections lie in the gray areas of the plot, the empty

white regions with unit efficiency are telling us something important. There are swathes

of the parameter space in which we would have detected objects if they existed. For

example, there are very few bright objects (MV < −6). The absence of detections of

bright objects does by itself provide a strong constraint on the luminosity function of

Milky Way satellites. There also do not appear to be any analogues of the extended,

luminous star clusters found in M31 by Huxor et al. (2005). Although SDSS data may

still contain evidence for further, hitherto unknown, dwarf galaxies, it is unlikely that

their nature can be unambiguously established without substantial quantities of follow-

up imaging. We emphasize that, since we never probe fainter than a certain surface

brightness limit, an even larger population of very low surface brightness galaxies –

which can not be detected with SDSS – may exist.

4.5.2 Estimation of the Luminosity function

Figure 4.13 shows the accessible volume for galaxies of different luminosities probed

by our algorithm (which in practice is a function mostly of the luminosity) within the

SDSS DR5 footprint. As the logarithm of distance scales roughly linearly with limiting

magnitude (see Figure 4.12), so does the logarithm of the accessible volume. Using

this, and the fact that the SDSS survey covers ∼ 1/5 of the sky, we can convert the set

of known objects into a volume corrected luminosity function1.

1The existing data on the globular cluster population indicate that at least some globular clusters

have complicated metallicity, age distributions and kinematics and may in fact be stripped nuclei

of dwarf galaxies (Piotto et al., 2007; Zinnecker et al., 1988). The selection of such objects which
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The observed luminosity function is constructed using all the well-established dwarf

galaxies in DR5, namely Leo II, Draco, Leo I, CVn I, Boo I, Hercules, UMa II, Com,

CVn II, Leo T, UMa I, Leo IV as well as the possible dwarf Willman 1. Segue 1 is

not used because it is not in DR5 (Belokurov et al., 2007c), and Boo II is not used

because it is not detected with our adopted identification-pipeline parameters. All

the satellites included in our calculation have a surface brightness of at least 30 mag

arcsec−2. To relate the observed number of satellite galaxies in our sample to the total

number of satellites in the Milky Way halo, it is necessary to adopt an underlying radial

distribution of satellite galaxies (see Appendix A). In a given magnitude interval, we

know the observed number of satellites within Vmax(MV ) from Figure 4.13, together

with their detection efficiencies from Table 4.3. If we assume a number density law

n(r) for the satellites, then its normalization at each magnitude interval can be fixed

by integrating the density law out to Vmax. The total number of satellites within

280 kpc (the virial radius of the halo) is now the integral of the density law out to this

limit. Figure 4.14 shows the results of the calculation for two such density laws. The

dashed line shows the luminosity function assuming the satellites are distributed in an

isothermal sphere (namely, n(r) ∝ 1/r2). The solid line shows the luminosity function

if the density fall-off is steeper at large radii (n(r) ∝ 1/r3, analogous to Navarro-Frenk-

White profile, although to prevent the 1/r3 profile from diverging in the MW center

we use n(r) ∝ r−2(r + rc)−1 with the core radius rc = 10 kpc). Of course, the nature

of some of the objects we have included in the dwarf galaxy luminosity function is still

uncertain – in particular, Willman 1 may be a globular cluster, although Martin et al.

(2007) provide evidence for a metallicity spread and dark matter content. It is unclear

whether Leo T should be included or excluded, as it is most likely a transition object

with rather different properties from the other dwarf spheroidal galaxies in our sample.

The error bars in Figure 4.14 are given by the square root of the number of datapoints

in the absolute magnitude interval divided by the volume correction factor. At the

bright end, the error bars are large, since we have only two objects with MV < −9,

namely Leo I (MV = −11.5) and Leo II (MV = −9.6). At the faint end, the error bars

are also large because of the substantial volume correction factor. In Figure 4.14, we

show the luminosity function for satellites within 280 kpc (a proxy for a Milky Way

are considered as dwarf galaxies is an additional source of uncertainty in any luminosity function

determination.
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virial radius (Benson et al., 2002; Klypin et al., 2002)). To define the bright end of

the luminosity function, which cannot be reliably determined from our data since DR5

does not contain dwarfs brighter than MV ∼ −11, we have also included in Figure 4.14

the estimate of the luminosity function (filled points) for the bright satellites of the

Milky Way sampled over the full sky, together with the bright M31 satellites within

280 kpc from Metz and Kroupa (2007). In Figure 4.14, we also overplot the power-law

function dN/dMV = 10×100.1 (MV +5), which approximates the datapoints in the range

of −19 < MV < −2 (with probably some flattening at MV ∼ −4). The integration

of this power-law gives approximately 45 dwarfs brighter than −5.0, and 85 dwarfs

brighter than −2.0.

There are a number of theoretical predictions of the luminosity function of the

Local Group in the literature. For example, Somerville (2002) shows the results of

semi-analytic galaxy formation calculations, including the effects of supernova feedback

and photoionization. The luminosity function from Somerville (2002) for zreion = 10

(Page et al., 2007) are plotted with blue line in Figure 4.14. Although the numbers

of luminous satellites are in reasonable agreement with the data, the shape of the

luminosity function is not. All Somerville’s (2002) luminosity functions turn over at

MV ≈ −9 or brighter, depending on the epoch of reionization, whereas the luminosity

function derived in Figure 4.14 turns over fainter than MV ≈ −5, if at all. Therefore,

Somerville’s (2002) theoretical calculations overproduce Draco-like objects (MV ≈ −10)

by a factor of a few, and underproduce much fainter galaxies like Boo (MV ≈ −6) by

almost an order of magnitude.

Benson et al. (2002) also provides calculations of the luminosity function of the

Milky Way satellites, including the effects of tidal disruption as well as photoionization.

They report the luminosity functions for dwarfs with a range of of different central

surface brightness cuts, namely 18, 20, 22, 24 and 26 mag arcsec−2, the last of which is

plotted in Figure 4.14 in a red line. At first glance, the fit seems plausible, especially

given the size of the error bars on the datapoints. The turn over in Benson et al.’s

luminosity function is at MV ≈ −3 and the numbers of predicted satellites at faint

magnitudes are also consistent given the uncertainties. However, Benson et al.’s model

significantly underproduces the number of bright satellites. Additionally, Benson et al.’s

satellites have a much higher central surface brightness – our SDSS survey corresponds

to a surface brightness cut of ∼ 30 mag arcsec−2. Figure 2 of Benson et al. (2002)
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does show the luminosity function for all objects, irrespective of surface brightness.

Although there has been a large change in the luminosity function on moving from a

detection threshold of 22 to 26 mag arcsec−2, there is only a small change on moving

from 26 to ∞ mag arcsec−2.

4.6 Conclusions

There have been persistent discrepancies between the observed numbers of Milky Way

satellites and the predictions from numerical simulations of galaxy formation for a

number of years. Although here has been a cavalcade of discoveries of new Milky

Way satellites using the SDSS over the last two years, a systematic search – with

quantifiable detection limits and efficiencies – not been undertaken. In this chapter

we have presented a quantitative search methodology for Milky Way satellite galaxies

in SDSS data and have used this method to compute detection efficiency maps, which

ultimately allow the construction of the satellite galaxy luminosity function.

In our method, the star count map is convolved with a family of kernels which

are the difference of two Gaussians. Intuitively, this algorithm can be understood as

constructing an estimate of the local stellar density minus the background. By attaching

a statistical significance to the overdensities in the convolved image, this enables us to

construct a ranked list of candidates. Although this idea is simple enough, its practical

application is hampered by the fact that the separation between stars and galaxies

by the SDSS pipeline becomes unreliable at magnitudes fainter than r ' 22.5. The

resulting false positives must be removed by cross-correlating with galaxy catalogs. The

significance threshold of peaks in our survey is set by requiring the detection pipeline

to produce a “clean” list of Milky Way satellites.

To compute the detection efficiency, we create mock SDSS catalogs with stars from

simulated dwarf galaxies and use Monte Carlo methods to estimate recovery as a func-

tion of satellite galaxy parameters and heliocentric distance. There is a sharp boundary

between detectability and non-detectability. The efficiency maps make clear that there

are large domains in parameter space in which objects would have been detected had

they existed. In particular, even at heliocentric distances as great as 1 Mpc, objects

brighter than MV ∼ −8 would have been detectable in SDSS. Similarly, populations of
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extended, luminous star clusters would have been found in SDSS, if they existed in the

Milky Way.

With the efficiency in hand, we can – for the first time – correct the observed

luminosity function of the Milky Way satellites for selection effects and compute the

true luminosity function. The number density of satellite galaxies continues to rise

well below MV ∼ −8m; depending on the radial distribution model assumed it may

or may not flatten or turn over at MV & −5. Overall, the luminosity function of

all Milky Way satellites may be reasonably well described by a power-law, dN/dMV =

10×100.1(MV +5) from MV = −2 to −18. This power-law predicts ∼ 45 satellites brighter

than MV = −5, and ∼85 satellites brighter than MV = −2. The normalization of the

luminosity function is in reasonable agreement with the predictions of semi-analytic

modeling of galaxy formation, but the shape is not. There also remains a discrepancy

in the distribution of surface brightnesses of such objects, in the sense that the semi-

analytic models underproduce dwarfs with a central surface brightness fainter than

26 mag arcsec−2.
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5

A quantitative explanation of the

observed population of Milky

Way satellite galaxies.

This chapter reproduces the paper: S. Koposov, J. Yoo , H.-W. Rix, D. H. Weinberg,

A. V. Macciò, J. Miralda-Escudé “The quantitative analysis of the observed population

of Milky Way satellite galaxies.”, published in ApJ, volume 696, page 2179-2194, May

2009.

5.1 Introduction

The inflationary cold dark matter scenario predicts an initial fluctuation spectrum with

power that continues down to small scales, and in consequence it predicts a mass func-

tion of dark matter halos that rises steeply towards low masses. A significant fraction

of these halos survive as gravitationally self-bound units long after falling into more

massive halos. As pointed out forcefully by Klypin et al. (1999) and Moore et al. (1999),

the predicted number of subhalos within a Milky Way-like galaxy halo greatly exceeded

the then known numbers of Milky Way or Local Group dwarf satellites, when subhalos

and observed dwarfs were matched based on velocity dispersion or corresponding cir-

cular velocity (see also Kauffmann et al., 1993). This discrepancy between predicted

and observed numbers has become known as the “missing satellite problem.”
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5. A QUANTITATIVE EXPLANATION OF THE OBSERVED
POPULATION OF MILKY WAY SATELLITE GALAXIES.

Proposed solutions fall into three general categories. The first modifies the proper-

ties of dark matter or the primordial fluctuations from inflation in a way that eliminates

the low mass dark matter subhalos themselves (e.g. Bode et al., 2001; Kamionkowski

and Liddle, 2000; Spergel and Steinhardt, 2000; Zentner and Bullock, 2003). The second

appeals to astrophysical mechanisms that suppress star formation in low mass halos so

that they do not become observable dwarf satellites; photo-heating by the meta-galactic

UV background is an attractive mechanism because it naturally introduces a cutoff at

approximately the correct velocity scale (Bullock et al., 2000; Kravtsov et al., 2004;

Somerville, 2002). The third possibility, arguably a variant of the second, is that the

numerous dwarf companions of the Milky Way actually exist but have been missed by

observational searches.

In this chapter we revisit the “missing satellite problem” with particular emphasis on

the role of the new dwarf companions discovered in imaging data from the Sloan Digital

Sky Survey (SDSS; York et al. 2000; Adelman-McCarthy et al. 2008). There are now

about a dozen of these (Belokurov et al. 2006b, 2007c; Irwin et al. 2007; Koposov et al.

2007b; Walsh et al. 2007; Willman et al. 2005b; Zucker et al. 2006b; a couple of systems

still have ambiguous status), most of them at least an order of magnitude less luminous

than the faintest of the previously known, “classical” satellites.1 Spectroscopic follow-

up (e.g. Geha et al., 2009; Martin et al., 2007; Simon and Geha, 2007) for many of

them indicates that they are indeed dark matter dominated systems, even though most

are fainter than typical globular clusters, as low as only ∼1000 L� (e.g. Belokurov

et al., 2007c; Martin et al., 2008). Remarkably, almost all of the newly found faint

satellite galaxies have stellar velocity dispersions in the range 3 − 10 km s−1, though

their luminosities vary widely. Similarly, the total masses within the inner 300 pc span

less than an order of magnitude (Strigari et al., 2008).

Since the SDSS imaging in which these satellites have been discovered covers only

∼ 20% of the sky, a naive accounting would increase the estimated number of Milky

Way companions by 5 × 12 = 60, in addition to the ten classical satellites. However,

Koposov et al. (2008a) use a well-defined identification algorithm to show that the

SDSS dwarfs are also subject to strong radial selection effects. Most of the newly

discovered objects could only have been found within distances of 50-100 kpc, much

1Throughout the chapter we use “faint” and “bright” to refer to intrinsic luminosity rather than

apparent brightness.
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smaller than the inferred virial radius of the Milky Way’s dark matter halo (∼ 280 kpc

for ρvir/ρ̄ = 340; Xue et al. 2008). The faintest SDSS dwarfs are detectable over

only 1/1000 of the halo virial volume (including the factor of five for sky coverage).

Walsh et al. (2009) have recently reached similar conclusions based on an independent

identification algorithm and independent Monte Carlo tests.

Such analyses are the basis for ‘volume corrections’ for the faint Milky Way satellite

population. With proper volume corrections applied, the luminosity function of faint

Milky Way satellite galaxies turns out to be a rather shallow power law in the range

−15 <MV < −3 (Koposov et al., 2008a). These results in turn imply that the number of

satellites brighter than MV = −3 is ∼ 80 or more, and the number above MV = 0 could

be a few hundred. Tollerud et al. (2008) reached a similar conclusion, adopting a radial

satellite distribution based on the Via Lactea simulation of Diemand et al. (2007).

Even this census counts only dwarfs that are above the effective surface brightness

threshold for SDSS detection. With the Koposov et al. (2008a) detection algorithm,

this threshold is approximately 30 mag arcsec−2 (V -band), with a weak dependence

on luminosity and distance. The dwarfs found in SDSS have surface brightnesses that

range from 24 to 30 mag arcsec−2.

Studies of the high redshift Lyα forest indicate that the small scale power expected

in the standard ΛCDM scenario (inflationary cold dark matter with a cosmological

constant) is indeed present in the primordial fluctuation spectrum (Abazajian, 2006;

Narayanan et al., 2000; Seljak et al., 2006; Viel et al., 2005). Astrophysical suppres-

sion of star formation, and photo-ionization suppression in particular, has emerged as

the most plausible and hence popular solution to the “missing satellite” conundrum.

Within this category, there have been different proposals about what subhalos host the

observed dwarf satellites. Bullock et al. (2000) suggested that the observed dwarfs are

those whose subhalos assembled a substantial fraction of their mass before reionization,

and thus before the onset of photo-ionization suppression. Stoehr et al. (2002) suggested

that the measured stellar velocity dispersions are well below the virial velocity disper-

sions of the dark matter subhalos, and that the observed dwarfs occupy subhalos that

are still above the velocity threshold where star-formation suppression occurs. Kravtsov

et al. (2004) used N-body simulations to show that roughly 10% of subhalos lose a large

fraction (∼ 90%) of their mass during dynamical evolution without being completely

disrupted; they suggested that the observed dwarfs occupy subhalos that were above
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the suppression threshold at the time they became satellites but have suffered exten-

sive mass loss since then. These papers and others (e.g., Orban et al. 2008; Somerville

2002; Strigari et al. 2007) focus on explaining the classical (pre-SDSS) dwarf spheroidal

population, with luminosities in the range −8 < MV < −15 (excluding the Magellanic

clouds) and stellar velocity dispersions in the range 8 km s−1 < σ∗ < 25 km s−1. The

recently discovered SDSS dwarfs have much lower luminosities (−8 < MV < −1.5),

lower surface brightness, and somewhat lower velocity dispersion (σ∗ ∼ 5 km s−1), so

they could have a distinct formation mechanism, or they could form a continuum with

the classical dwarf spheroidals.

The new SDSS discoveries and their quantified detectability are the basis for the

model-data comparison in this chapter. We construct and test models of the Milky Way

dwarf satellite population that incorporate Monte Carlo realizations of merger trees for

1012M� (main galaxy) halos, a detailed analytic model for the dynamical evolution

and disruption of subhalos, and a variety of recipes for assigning stellar masses to

these subhalos motivated by ideas in the existing literature. For most of our models,

we assume that a subhalo can only accrete gas to form stars (a) before the epoch of

reionization or (b) after reionization if its virial velocity exceeds a critical threshold

before it enters the Milky Way halo and becomes a satellite. The spirit of the exercise

is similar to that of Bullock et al. (2000), but the dynamical modeling of subhalos

is more sophisticated, and we are now in a position to include directly the (strong)

constraints imposed by the SDSS dwarfs accounting for the radial selection function

found by Koposov et al. (2008a). In contrast to most previous studies, we treat the

luminosity distribution as the primary test of models, rather than the stellar velocity

dispersions or central masses (Li et al., 2008; Macciò et al., 2009; Strigari et al., 2007,

2008), or the inferred but unobservable subhalo circular velocities. This emphasis is

motivated by the fact that the luminosity is the foremost quantity that matters for the

observational selection. We consider stellar velocity dispersions and central masses as

an additional test, but their interpretations are affected by the uncertainty in the dark

matter profiles of the subhalos associated with observed dwarfs.
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5.2 The Population of Dark Matter Subhalos in the Milky

Way

Our model for the Milky Way satellites is based on the cold dark matter scenario, with

each satellite forming initially in a separate dark matter halo that at some point falls

into the Milky Way’s dark matter halo. We refer to the bound dark matter satellites

orbiting in the Milky Way halo as subhalos. A subhalo may or may not correspond

to a dwarf satellite galaxy, depending on whether it contains an observable number of

stars. In this Section we describe our model for computing the dynamical evolution of

subhalos.

We use the dynamical dark-matter-only model of subhalos developed by Yoo et al.

(2007) to compute the subhalo population and its orbital distribution. This model

is described in detail in Yoo et al. (2007), where a much larger halo of 1015 M� was

considered as a model of a massive cluster of galaxies. Here we consider instead a

final halo of 1012 M� at the present time as a representation of the Milky Way galaxy.

Despite the change in the final halo mass, the model remains basically the same as

described in Yoo et al. (2007), so here we make only a brief summary of its description.

The model uses the extended Press-Schechter formalism to generate a Monte Carlo

merger tree of the parent halo at the present time (Bond et al., 1991; Press and

Schechter, 1974). We follow the dynamical evolution of all the subhalos with masses

Mh > 106 M� until they merge with the Milky Way and lose their mass below Mh =

105 M�. All halos start as isolated objects, and they grow in mass by accretion and

mergers for as long as they remain isolated. At some redshift, zsat, they merge into

a larger halo (either the Milky Way or another object that will become a Milky Way

subhalo). After this merger, the object has become a satellite or subhalo and it stops

growing in mass. It can subsequently lose mass by tidal stripping when it passes near

the center of its parent halo or undergoes encounters with other subhalos. The subhalo

is subject to dynamical friction, which tends to shrink its orbit, and to random encoun-

ters with other subhalos, which on average expand the orbit. The orbital eccentricity is

also subject to random variations. The model allows for the presence of subhalos within

other subhalos. When a subhalo is disrupted, any subhalos it contained are dispersed

into the new, larger parent halo. This simple analytic model is able to reproduce the

subhalo mass function, in reasonably good agreement with that found in numerical
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N -body simulations (Shaw et al., 2006; Yoo et al., 2007; Zentner et al., 2005). For the

present purpose, this approach has the advantage (over N-body) of easily affording the

required mass resolution and multiple halo realizations.

We adopt a flat ΛCDM cosmology with matter density Ωm = 0.24, baryon density

Ωb = 0.04, power spectrum normalization σ8 = 0.8, Hubble constant h = 0.7, and

a primordial spectral index ns = 0.95, consistent with recent measurements (Spergel

et al. 2007; Tegmark et al. 2006). The matter power spectrum is computed by using

the transfer function of Eisenstein and Hu (1999). We generate six Monte Carlo merger

trees of a Milky-Way sized halo. Each realization provides the subhalo mass function,

their orbital elements and density profiles at the present time. Our statistical results

are the average of the six different realizations.

The dynamical model of Yoo et al. (2007) uses the Jaffe profile and its velocity

dispersion to model subhalos and their dynamical interactions, for reasons of numerical

simplicity and because large galaxies that are tidally-limited satellites of a larger halo

are reasonably well modelled by a Jaffe sphere for their baryon plus dark matter density

profiles. However, the very low-mass dwarf satellites tend to be dominated by dark

matter even in their inner parts. We therefore make an adjustment to better connect

our Monte Carlo simulation results to the observed Milky Way dwarf galaxies: we

use the subhalo masses and orbital elements, which are the quantities most robustly

computed in the Yoo et al. (2007) model, but we calculate the density profiles and

velocity dispersions of subhalos assuming that they have an NFW profile (Navarro

et al., 1997). Using the standard spherical collapse model, the virial radius of an

isolated halo is assigned as

Rvir =
[

3 Mhalo

4 π ∆c ρ̄m(z)

] 1
3

, (5.1)

where ∆c = (18 π2 + 82 x − 39 x2)/(1 + x) (Bryan and Norman, 1998), x = −(1 −
Ωm)/(Ωm(1 + z)3 + 1 − Ωm), and the mean cosmic density is ρ̄m(z) = Ωmρc(1 +

z)3. The halo concentration c is computed using the relation from Bullock et al.

(2001a), scaled to σ8 = 0.8 according to Macciò et al. (2007), with c = 0.8 × 9 ×(
Mh/1013h−1M�

)−0.13
/(1 + z).

For the model in this chapter, we use in particular the subhalo masses at two

different special epochs: Mrei ≡ Mtot(z = zrei) when the universe reionizes and the
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photo-ionization background starts to suppress the star formation efficiency in low mass

halos, and Msat ≡ Mtot(zsat) at the epoch when a halo merges into a larger halo and we

presume that subsequent star formation and gas accretion is halted in the subhalo. We

shall also use below the halo circular velocity Vcirc, which is the virial circular velocity,

Vcirc ≡ [(G Mtot)/Rvir]1/2. (Here Mtot refers to the total mass including dark matter

and a universal fraction of baryons.)

In Figure 5.1 we show the distribution of Msubhalo at redshifts z = 0 (left panel),

z = zsat (middle panel) and z = 8, 11, and 14 (right panel). As expected, the mass

distribution is close to a power-law, except near the resolution limit of our simulations.

Also, in Figure 5.2 we show the accretion history of the MW subhalo population, by

plotting the halo masses of the present day MW subhalos at the time of accretion vs.

the redshift at which they became satellites of larger halos. We see that most of the

MW subhalos became satellites at z < 2. Most of the accreted satellites have small

circular velocities Vcirc < 20 km s−1, so they lie in a range where gas accretion and star

formation are likely to be suppressed after the epoch of reionization (Bullock et al.,

2000; Quinn et al., 1996; Thoul and Weinberg, 1996).

Figure 5.1: Mass distribution of dark matter subhalos at different epochs. Left panel:
The present-day (z = 0) mass function of subhalos within a Milky Way-like halo. This
histogram is repeated in the other two panels for reference. Middle panel: Distribution of
mass that present-day subhalos had at z = zsat, the epoch at which they became a satellite
within a larger halo (thin line); tidal stripping of satellite halos is manifesting important.
Right panel: Mass distribution of present day MW subhalos at the epoch of reionization,
for zrei = 8 (dotted), 11 (thin solid), and 14 (dashed). All panels reflect the average of six
different realizations of MW-like halos. The flattening below M = 106 h−1M� and the
sharp cut-off at M = 105 h−1M� arise from the mass resolution limits of our simulations.
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Figure 5.2: Epochs when (sub-)halos were accreted into larger halos, and masses at that
time. This Figure illustrates the results from one Monte-Carlo realization of the semi-
analytic model, with each point showing the redshift zsat at which a subhalo first became
a satellite in a larger halo against its total mass Msat at that epoch. The small panel on
the right shows the distribution of zsat. Solid and dashed lines show the locus of halos with
Vcirc(zsat) = 40 km s−1 and 20 km s−1, respectively.
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5.3 Populating the DM halos with Stars

5.3.1 Recipes to assign stellar masses to subhalos

To make direct observational predictions from these models, we populate each subhalo

in a given Monte-Carlo realization with stars according to a sequence of recipes, then

test how many of these satellites could have been found within the SDSS. Some of

these recipes are mathematically simple illustrations, while others are motivated by

the expected effects of ionization and cooling physics as discussed in the introduction.

For reference, the nomenclature of the recipes is summarized in Table 5.1. In all cases

we calculate the stellar mass based on the subhalo mass (dark matter plus baryons

in the universal fraction) at the accretion epoch zsat, denoted Msat. We implicitly

assume that satellites do not accrete new material to form additional stars and that

tidal stripping of the dark matter does not affect the stellar content of the satellite if it

survives to the present day. Simulations suggest that these assumptions are reasonable

but not perfect approximations (Peñarrubia et al., 2008; Simha et al., 2008).

We begin with the simplest model (denoted Model 1A), that the stellar mass is a

constant fraction of the subhalo mass at the time of accretion into the main halo:

M∗ = f∗ ×Msat. (5.2)

The arguments of Klypin et al. (1999) and Moore et al. (1999) suggest that this model

will fail badly, and we show that it does indeed fail despite the new satellite discoveries

and the radial selection biases that affect them. There is ample evidence that the

efficiency of star formation declines rapidly towards low masses even well above the

dwarf satellite regime (e.g., van den Bosch et al. 2007). In Model 1B, we allow the

stellar fraction to vary as a power law of Msat below a threshold M0:

M∗ = f∗ × min

((
Msat

M0

)α

, 1
)
×Msat . (5.3)

Our second approach to modeling stellar masses includes the effects of a pervasive

energetic radiation field after the epoch of reionization, which heats gas and hence keeps

it from accumulating at the centers of low-mass halos. Calculations by Quinn et al.

(1996) and Thoul and Weinberg (1996) showed that gas accretion in halos with the cir-

cular velocities below Vcirc ∼ 30−40 km s−1 is strongly suppressed, while substantially

larger halos are minimally affected (see also Gnedin 2000; Weinberg et al. 1997). In
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this spirit, we assume that halos below a critical circular velocity form no stars after

reionization, and we thus assign stellar masses

M∗ =

{
f∗ ×Msat if Vcirc(zsat) > Vcrit

f∗ ×Mrei if Vcirc(zsat) < Vcrit.
(5.4)

This model (Model 2) has three adjustable parameters — f∗, Vcrit, and zrei —

with expectations that Vcrit ∼ 20− 40 km s−1 and zrei ∼ 11 (e.g. Dunkley et al., 2009;

Weinmann et al., 2007). The approach is similar to that of Bullock et al. (2000), except

that we treat Vcrit as free parameter, and the stellar mass formed before the epoch of

reionization is assigned using M∗ = f∗ ×Mrei, instead of simply dividing galaxies into

“observable” or “unobservable” classes based on the fraction of the mass accreted by

zrei.

Our third class of models is similar to the second, but it replaces the sharp threshold

of equation (5.4) with the continuous transition found in numerical simulations by

Gnedin (2000), Hoeft et al. (2006), and Okamoto et al. (2008). The numerical results

in these papers can be described fairly well by a formula similar to that in Gnedin

(2000), with the fraction of baryons that cool in low mass halos suppressed by a factor

[1+0.26(Vcrit/Vcirc)3]−3; well after the reionization redshift, the critical velocity is found

to be approximately independent of redshift. Gnedin (2000) found Vcrit ∼ 40 km s−1,

but these results were artificially affected by numerical resolution (N. Gnedin, private

communication). Hoeft et al. (2006) and Okamoto et al. (2008) find Vcrit ∼ 25 −

30 km s−1. Including the pre-reionization contribution to M∗, this model (Model 3A)

becomes

M∗ =
f∗ × (Msat −Mrei)

(1 + 0.26 (Vcrit/Vcirc(zsat))3)3
+ f∗ ×Mrei . (5.5)

The assumption that all halos can form stars before zrei may not be justified because

in halos with virial temperature Tvir . 104 K (Vcirc . 10 km s−1) the gas does not get

hot enough to cool by atomic processes, and simulations that include molecular cooling

suggest that gas cooling and star formation is very inefficient in such halos (Barkana

and Loeb, 1999; Bovill and Ricotti, 2009; Haiman et al., 1997; Machacek et al., 2001;

O’Shea and Norman, 2008; Wise and Abel, 2007). We will therefore consider variant

models (Model 3B) that eliminate stellar mass in pre-reionization halos below a critical
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threshold Vcrit,r ∼ 10 km s−1.1 In Model 3B, halos with Vcirc(zrei) < Vcrit,r have stellar

mass

M∗ =
f∗ ×Msat

(1 + 0.26 (Vcrit/Vcirc(zsat))3)3
, (5.6)

while halos with Vcirc(zrei) > Vcrit,r have mass given by equation (5.5).

To determine very roughly the plausible range of values for the stellar mass fraction

f∗, we can refer to the results of Strigari et al. (2007), who derived M(< rtidal)/L) =

30 − 800M�/L� for the classical dwarfs, and Simon and Geha (2007), who measured

velocity dispersions for SDSS dwarfs and inferred total mass-to-light ratios of 140 −
1800M�/L�. For a stellar mass-to-light ratio M∗/LV = 1M�/L�, we infer plausible

values of f∗ ∼ 10−4 − 10−2, though these are very uncertain because all the dynamical

mass-to-light ratio determinations suffer from the fact that the stars in luminous bodies

of the dSphs probe only the inner parts of the dark matter potential wells. Another

line of argument comes from matching the mean space density of dark matter halos to

that of observed field dwarfs: Tinker and Conroy (2009) find f∗ ≈ 10−3.6 at absolute

magnitude Mr ≈ −10. In the rest of the chapter, we will frequently refer to the stellar

mass fraction normalized by the universal baryon fraction:

F∗ ≡
f∗

Ωb/Ωm
= 6.25f∗. (5.7)

Note that f∗ and F∗ refer to stellar fractions in halos where the efficiency is not sup-

pressed, i.e., Vcirc(zsat) > Vcrit. We will frequently refer to the quantity (M∗/Msat) ×
(Ωm/Ωb) as the “star formation efficiency,” by which we mean the efficiency with which

the halo converted the baryons available to it at zsat (for a universal baryon fraction)

into stars observable at z = 0.

5.3.2 Detectability and observable properties for the simulated satel-

lites

velocity

Color-magnitude diagrams for the faint dwarf spheroidal galaxies in the Milky Way

halo show that the stellar populations are predominantly ‘old’ (older than several Gyrs)

and metal poor ([Fe/H]. −1). To convert stellar masses to luminosities, we assume
1We will refer to these as models with “pre-reionization suppression,” but this simply means that

halos with Vcirc(zrei) below a critical threshold form stars with very low efficiency (too low to produce

observable satellites), most likely because of inefficient cooling rather than active feedback.
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Figure 5.3: Predicted stellar mass functions of all satellites within the MW’s virial ra-
dius (280 kpc), for a variety of models. Left panel: The solid, dotted, and dashed lines
represent, respectively, Model 1A with F∗ = 10−3 and Model 1B with (F∗,M0, α) =
(10−3, 1010 M�, 1) and (10−3, 1010 M�, 2). Middle panel: The two curves show predictions
of Model 2, with F∗ = 10−3, zrei = 11, and Vcrit = 40 km s−1 (solid), and Vcrit = 20 km s−1

(dashed). Right panel: Thin solid, dashed, and dotted lines represent Model 3A with
(F∗, Vcrit, zrei) = (10−3, 40 km s−1, 11), (10−3, 30 km s−1, 11), and (10−3, 40 km s−1, 8), re-
spectively. The thick solid curve shows model 3B with F∗ = 10−3, Vcrit = 40 km s−1,
zrei = 11, and Vcrit,r = 10 km s−1. All curves reflect the average of six realizations of MW
halos. These are the predicted complete satellite (stellar) mass functions, with no radial or
sky coverage selection effects.

Model Name Present-Epoch Stellar Mass

1A M∗ = f∗ ×Msat

1B M∗ = f∗ × min((Msat/M0)α, 1)×Msat

2 M∗ =

f∗ ×Msat if Vcirc(zsat) > Vcrit

f∗ ×Mrei if Vcirc(zsat) < Vcrit

3A M∗ = f∗×(Msat−Mrei)
(1+0.26 (Vcrit/Vcirc)3)3

+ f∗ ×Mrei

same as 3A for halos with Vcirc(zrei) > Vcrit,r,
3B for halos with Vcirc(zrei) < Vcrit,r

M∗ = f∗×Msat

(1+0.26 (Vcrit/Vcirc)3)3

Table 5.1: List of models used
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that all of our model dwarfs have a stellar mass-to-light ratio M∗/LV ≈ 1M�/L�

appropriate to an old, metal poor population (Bruzual and Charlot, 2003; Martin et al.,

2008). The light of the lowest luminosity dwarfs can be dominated by a handful of

bright stars and thus subject to stochastic variations. We ignore this complication;

our “luminosities” are simply scaled stellar masses: LV/L� = M∗/M�. This seems

appropriate, since the luminosities of the dwarfs galaxies are usually measured either

by integrating over the luminosity function of old stellar population matched to the

observed luminosity function of stars in dwarfs(Belokurov et al., 2006b) or by averaging

over possible stochastic variations of galaxy luminosity(Martin et al., 2008).

The detectability of a faint stellar MW satellite galaxy in an SDSS-like search

depends on its luminosity and its distance from the Sun, as quantified by Koposov

et al. (2008a) (see also Walsh et al., 2009). On the basis of these results (Figure 12 of

Koposov et al. 2008a) we model the detectability of each simulated satellite as a binary

decision using the criterion

log10(D�/1 kpc) < 1.1− 0.228MV (5.8)

Our simulations provide the current Galactocentric distance and orbital apocenter and

pericenter for each subhalo, but not the orientation of the orbit. We therefore assign

the heliocentric distance of the satellites

D� =
√

8.52 + D2
GC − 2× 8.5×DGC cos(φ) , (5.9)

where DGC is the Galactocentric distance (in kpc) from the simulations and cos(φ) is

a random variable uniformly distributed between −1 and 1 (φ is the angle between

radial vectors from the GC to the Sun and to the subhalo). This method assumes that

the satellite orbits are isotropically distributed across the sky (see Tollerud et al., 2008,

for discussion of the validity of this approximation). As expected from Koposov et al.

(2008a), accounting for the detectability of satellites causes the ‘observable’ population

to differ strongly from the ‘simulated’ one; only the brightest satellites are observable

throughout the virial volume.

Not surprisingly, the Koposov et al. (2008a) analysis also reveals a surface bright-

ness threshold for dwarf detection, which is approximately 30 mag arcsec−2 with little

dependence on distance. We assume that any model dwarf that passes the luminosity
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threshold also passes the surface brightness threshold. Many recent SDSS satellite dis-

coveries do lie near that survey’s surface brightness limit; this assumption can therefore

only be tested with the next generation of sky surveys. We discuss implications of this

assumption in §5.5.

With a model that assigns stellar luminosities to each satellite halo, we can predict

the expected stellar velocity dispersions for comparison with those measured for MW

satellites by Walker et al. (2007), Simon and Geha (2007), and Martin et al. (2007).

This can be done straightforwardly if we assume that the stars are test particles —

an assumption supported by the observed (M/L)dyn(< Reff) � (M/L)∗(< Reff) —

orbiting in an NFW potential with an isotropic velocity dispersion. Then we can use

the Jeans equation (Jeans, 1919) to derive the velocity dispersion profile of stars:

d(ν(r) σ2(r))
d r

+ ν(r)
G M(r)

r2
= 0, (5.10)

where ν is the density distribution of stars (see Strigari et al. 2007 for more detailed

treatment). Here we assume that the density of stars follows a Plummer profile ν ∝
[1+(r/rp)2]−2 (Plummer, 1911), which seems to fit observed density profiles reasonably

well (Belokurov et al., 2007c; Wilkinson et al., 2002). The mass profile M(r) used here

is computed based on the virial radii and concentrations at the redshift zsat of subhalo

accretion. While the outer parts of the subhalos are tidally stripped, Peñarrubia et al.

(2008) show that the stars and the inner part of the dark matter subhalo are stripped

only at a very late stage, when the subhalo is close to complete disruption. They also

show that the velocity dispersion in subhalos is a function of the total dark matter

mass remaining bound inside the luminous body and therefore remains nearly constant

until this late stage.

After numerically solving the Jeans Equation, we compute the expected light-

weighted velocity dispersion within the optical radius as

σ∗ =
∫

ν(r)σ(r) dx dy dz∫
ν(r) dx dy dz

, (5.11)

where the integration is done over a cylinder within a radius, R =
√

x2 + y2 equal

to the Plummer radius of the galaxy; the integral extends over ±∞ in z. The stellar

velocity dispersion depends on the radial extent of the stellar tracers, which cannot

be predicted within our simple modeling context (see also Benson et al., 2002). We
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therefore use the observed properties of the faint Milky Way satellites to choose stellar

radii, based on Martin et al. (2008). Specifically, we adopt Plummer radii rp = 150 pc

for MV < −5, and for fainter dwarfs we adopt a linear relation between log rp and MV

with rp rising from 20 pc at MV = 0 to 150 pc at MV = −5.

The additional important component of the detectability is the tidal disruption

of the satellite galaxies. Although our semi-analytic model of dark matter subhalo

evolution properly accounts for the tidal disruption of subhalos, it does not allow for

the possibility that stars have been dispersed in a tidal stream while a small core of

the subhalo survives. Here we simply classify a subhalo as unobservable if its current

tidal radius is less than the expected Plummer radius of the stellar body, which would

imply substantial tidal disruption of the stellar component. We also presume that a

satellite is unobservable if its host subhalo has lost more than 99% of its original mass

to tidal stripping.

5.4 Results

5.4.1 Stellar mass function of the full satellite populations

Figure 5.3 shows the predicted distribution of the stellar masses of satellites within

Rvirial = 280 kpc, assuming 4π sky coverage and complete satellite detectability. In

the left panel, the solid curve shows Model 1A with a constant F∗ = 10−3, making

the stellar mass function a scaled version of the dark matter subhalo mass function.

Introducing mass-dependent suppression, Model 1B with α = 1 (dashed) and α = 2

(dotted) lowers the low mass end of the stellar mass function as expected. Since this

model also adopts F∗ = 10−3 = const. above Msat = M0 = 1010M�, the high mass end

of the mass function is unchanged.

The middle panel of Figure 5.3 shows Model 2, with post-reionization suppression

of star formation in halos below a sharp circular velocity threshold, either Vcrit =

40 km s−1 (solid) or Vcrit = 20 km s−1 (dashed), where we have adopted F∗ = 10−3

and a reionization redshift zrei = 11. The resulting stellar mass functions for the satel-

lite galaxies are strongly bimodal, with the low mass portion corresponding to dwarfs

in which all stars formed before reionization and the high mass portion correspond-

ing to halos that exceeded the critical velocity threshold before becoming satellites,

Vcirc(zsat) > Vcrit. The low mass portion is just a scaled version of the subhalo mass
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function at z = zrei. Above M∗ ≈ 106.5M� the host halos are all massive enough to

have star formation after zrei, and the mass function is the same as that of Model 1.

If the velocity threshold is lowered to Vcrit = 20 km s−1, the high mass peak in the

distribution of satellite stellar masses extends to lower values before photo-ionization

suppression cuts it off.

The bimodal appearance of the middle panel of Figure 5.3 is a direct consequence of

the sharp Vcirc threshold for photo-ionization suppression. The right hand panel shows

predictions for several variants of Model 3A and 3B, with the Gnedin (2000) formula

(Eq. 5.5) used to describe photo-ionization suppression. With this smooth suppression,

the “pre-reionization” and “post-reionization” portions of the mass function join to

make a smooth overall mass function. The low mass end of the mass function is

now a mix of satellites that formed their stars before reionization and satellites with

Vcirc(zsat) < Vcrit whose post-reionization star formation was strongly suppressed but

not completely eliminated. Lowering the assumed reionization redshift from zrei = 11

to zrei = 8 boosts the stellar mass function below M∗ = 104M�. Conversely, if we

eliminate pre-reionization SF in dwarfs with Vcirc(zrei) < Vcrit,r = 10 km s−1 (thick

solid line, Model 3B), the number of satellites with M∗ ≤ 103M� drops by a large

factor, while at higher masses the stellar mass function is unaffected. The difference

between the thin and thick solid lines is the contribution of satellites that formed stars

primarily before reionization in halos with Vcirc(zrei) < 10 km s−1, for zrei = 11 and

Vcrit = 40 km s−1.

5.4.2 Distribution of observed dwarf satellite luminosities, N(MV )

Figure 5.4 illustrates the impact of selection effects on the observable satellite popu-

lation. For one realization of Model 3B (with parameters that yield a good match to

observations), filled circles show satellites that would be detectable in an all-sky, SDSS-

like survey (Koposov et al., 2008a), and open circles show un-detectable satellites. The

low end of the luminosity distribution, with MV & −5, is strongly affected by the radial

selection bias.

For direct comparison with observations, we therefore select only those model satel-

lites whose combination of luminosity and distance would make them detectable. At

the bright end, MV < −11, we assume that existing photographic surveys are com-

plete to D� = 280 kpc, and we thus compare the total number of dwarfs across the
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Figure 5.4: Detectability of the satellite galaxies predicted by our fiducial model (Model
3B), as a function of their heliocentric distance and stellar luminosity. Filled circles denote
galaxies that can be detected with SDSS-like all-sky surveys, and empty circles denote
those that cannot. The dashed line marks the approximate virial radius of the MW’s dark
matter halo; we will compare all model predictions to the observed MW satellite population
only within this radius. The galaxies shown were taken from one Monte-Carlo realization of
Model 3B with (Vcrit, F∗, zrei, Vcrit,r) = (35 km s−1, 10−3, 11, 10 km s−1). The right panel
shows the fraction of detectable galaxies as a function of luminosity.

whole sky to the total population of satellites within the virial radius in the simulation.

For MV ≥ −11, we randomly select 1/5 of the model galaxies to mimic the 20% sky

coverage of SDSS DR5, and we count only those satellites that would be detectable

according to the criteria of Koposov et al. (2008a). We focus our data-model compar-

ison on Nobs(MV ), the luminosity distribution of known MW satellites. We look at

additional tests against stellar velocity dispersions, central masses, and the heliocentric

radial distribution in § 5.4.3.

The luminosities, distances, and velocity dispersions of the observed Milky Way

satellites that we use in all subsequent model - data comparisons were taken from

various authors (Martin et al., 2008; Mateo, 1998; Metz and Kroupa, 2007) and are

compiled in Table 5.2. The sample of SDSS satellites used here consists of those systems

above the 50% completeness limits of Koposov et al. (2008a). We do not include two

systems, Boo II and Leo V (Belokurov et al., 2008; Walsh et al., 2007), which do

not formally satisfy the very conservative selection limits from Koposov et al. (2008a).

These limits were chosen to avoid the issue of significant ’false positive’ detections, at
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Figure 5.5: Model predictions for the observed satellite population, Nobs(MV ), including
radial selection effects for the SDSS dwarfs. Horizontal bars show the number of currently
known satellites (Table 2) in 2-magnitude bins; empty bins are plotted with an arrow. The
SDSS and classical dwarfs are separated by the vertical line at MV = −11; note that the
y-axes for these two populations differ by a factor of five so that the model predictions
(which incorporate a factor of 1/5 below MV = −11 to account for SDSS sky coverage) are
continuous across the boundary. Left Panel: Predictions of Model 1A, with M∗ ∝ Msat,
for three values of F∗. For F∗ = 10−4, the green band shows the bin-by-bin ±1σ range of
the predictions from multiple realizations; the logarithmic width of this band is similar for
other models. Model curves have been slightly smoothed with a polynomial filter. Right
Panel: Comparison of Model 1A (red curve) to Model 1B, where the stellar mass fraction
in halos with Msat < 1010M� is is F∗ ∝ Mα

sat, with α = 1 (green band) or α = 2 (blue
curve).
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Figure 5.6: Predictions for Model 2, in which post-reionization star formation
is sharply suppressed below a critical velocity Vcrit, in the same format as Fig-
ure 5.5. Blue, red, green, and orange curves/bands show the parameter combinations
(F∗, Vcrit, zrei) = (10−3, 35 km s−1, 11), (10−3, 25 km s−1, 11), (10−3, 35 km s−1, 14), and
(10−2, 35 km s−1, 11), respectively. This class of models predicts a bimodal distribution
of satellite luminosities, with the faint portion (MV > −8) coming entirely from pre-
reionization star formation. The predicted N(MV) differs grossly from the observations.
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Figure 5.7: Comparison of Model 2 and Model 3A, both with parameters F∗ = 10−3,
Vcrit = 35 km s−1, and zrei = 11, in the same format as Figure 5.5. Switching to the
continuous prescription for photo-ionization suppression fills in the gap between the two
peaks of Model 2, while leaving the predictions at the highest and lowest luminosities
unchanged.

the expense of leaving out 2 objects that deeper follow-up found to be ’real’. For the

analysis presented here it is most important that the same selection criteria are applied

to the mock satellite observations and the SDSS data. As our analysis subsequently

shows, such a small difference in sample size is smaller than the model halo to halo

variation of number of galaxies. Therefore the inclusion of omission of these two objects

does not affect our results significantly.

Anyway, as we will see later, the halo to halo variation of number of galaxies in our

models is noticeable, so we believe that the fact that we do not include two galaxies

should not affect our results significantly.

The left panel of Figure 5.5 compares our simplest model (M∗ ∝ Msat, Model 1A) to

the observed satellite counts, now including the satellite galaxy selection effects in the

model. We randomly sample each of the six Monte Carlo halo simulations five times

(choosing 1/5 of the faint satellites but always keeping the full set for MV < −11),

compute the mean model prediction as the mean of these 30 samplings, and compute

the rms dispersion among these 30 in each absolute magnitude bin. Despite the selection

bias against low luminosity satellites, this model fails drastically for any choice of F∗,
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Figure 5.8: Predicted Nobs(MV ) for Models 3A and 3B with a variety of parameter
choices, in the same format as Figure 5.5. In the first three panels, green bands show
Model 3A predictions for a reference parameter set F∗ = 10−3, Vcrit = 35 km s−1, zrei = 11.
Red and blue curves show the impact of changing the stellar mass fraction to F∗ = 10−2 or
10−4 (top left), the critical velocity threshold to Vcrit = 45 km s−1 or 25 km s−1 (top right),
or the reionization redshift to zrei = 8 or 14 (lower left). The lower right panel compares
the prediction of this reference model (now shown by the red curve) to predictions of
Model 3B with a pre-reionization critical threshold Vcrit,r = 6 km s−1 (green band) or
10 km s−1 (blue curve).
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Figure 5.9: Degeneracy between F∗ and Vcrit for Model 3B, in the format of Figure 5.5.
Blue, green, and red curves/bands show the parameter combinations (F∗, Vcrit) = (3 ×
10−4, 25 km s−1), (10−3, 35 km s−1), and (3 × 10−3, 45 km s−1), which all yield similar
levels of agreement with the observations. We adopt zrei = 11 and Vcrit,r = 10 km s−1 in
all cases.

predicting a much steeper luminosity function than observed. For example, the model

with F∗ = 10−4 matches the observed counts near MV = −9 but predicts far too many

satellites fainter than MV = −6. Selection effects and newly discovered satellites have

not altered this basic discrepancy, first emphasized by Klypin et al. (1999) and Moore

et al. (1999). The green band shows the 1σ dispersion in predicted counts, and it is

clear that statistical fluctuations will not resolve the discrepancy either.

In the right panel we apply our purely empirical modification, M∗/Msat ∝ Mα

below a halo mass Msat = M0 = 1010M� (Model 1B). With F∗ = 10−3 and α = 2,

this model achieves reasonable agreement with the the observed Nobs(MV ) over the

full range 0 ≥ MV ≥ −15. The agreement can be further improved by adjusting F∗

and M0, so it appears that this level of mass-dependent suppression is approximately

what is needed to explain the observed shape of Nobs(MV ). Linear suppression (α = 1,

green band) is not sufficient, predicting an excess of faint dwarfs when normalized to

the bright dwarfs. All of our models fail to match the brightest bin (comprised of the

SMC and LMC); we defer discussion of this discrepancy to the end of this Section.

Figure 5.6 shows the expected Nobs(MV ) distributions for Model 2, which has a
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sharp Vcrit threshold for the suppression of SF after reionization in small halos. As in

Figure 5.3, the predicted Nobs(MV ) is bimodal, with a bright peak corresponding to

halos that exceeded Vcrit before zsat and a faint peak corresponding to stars formed

before reionization. Raising the stellar fraction F∗ with other parameters fixed (orange

vs. blue) shifts both peaks horizontally to higher MV ; the faint peak also increases

in height because the brighter (though still faint) satellites can be seen over a larger

fraction of the MW virial volume. Lowering Vcrit with other parameters fixed (red vs.

blue) has no impact on the faint peak, but the bright peak extends to fainter magnitudes

and grows in height because lower mass halos can now be populated with stars after

reionization. Raising zrei (green vs. blue) with other parameters fixed has no impact

on the bright peak, but it shifts the faint peak downwards in amplitude and slightly

downwards in location because halos have accreted less mass by this higher redshift.

While photo-ionization suppression reduces the discrepancy with the number of faint

satellites seen in Model 1A, these sharp threshold models predict a gap between the

faint and bright satellites that is clearly at odds with the data.

Figure 5.7 compares the Model 2 predictions with those of Model 3A, which uses

the Gnedin (2000) formula to incorporate a smoothly increasing suppression of the

stellar mass fraction in halos with Vcirc(zsat) . Vcrit. In both cases we use parameters

F∗ = 10−3, Vcrit = 35 km s−1, zrei = 11. Model 3A is more physically realistic than

Model 2, with a mass-dependent suppression that is calibrated on numerical simulations

(and is approximately consistent with three independent numerical studies). Galaxies

formed in halos with Vcirc(zsat) . Vcrit now fill the gap that was present in Model 2,

producing a luminosity distribution that rises continuously from MV = −14 down

to MV = −2, before radial selection effects finally cut it off. With these parameter

choices, pre-reionization dwarfs dominate the counts (and exceed the observations) for

MV ≤ −4, but suppressed post-reionization dwarfs dominate the counts at all brighter

magnitudes.

Since Model 3 is both more physically realistic and more empirically successful than

Models 1 and 2, we focus on it for the remainder of the chapter, including Model 3B in

which pre-reionization star formation is suppressed below a circular velocity threshold.

Figure 5.8 systematically explores the impact of parameter variations in Models 3A

and 3B. In the first three panels, the green band shows the Model 3A predictions

for a fiducial set of parameter choices, F∗ = 10−3, Vcrit = 35 km s−1, and zrei = 11.
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Changing F∗ (top left) shifts the predicted distribution horizontally to higher or lower

luminosities, with some change in shape at the faint end because of the luminosity

dependence of radial selection effects. Changing Vcrit alters the predicted counts at

intermediate luminosities, −4 > MV > −11, while having little effect at the faint end

(where pre-reionization dwarfs dominate) or at the bright end (where most galaxies

exceed the highest threshold considered here). Changing zrei alters the height of the

pre-reionization peak at faint luminosities but has minimal impact for MV < −7.

With our fiducial parameter choices, Model 3A substantially overpredicts the num-

ber of satellites with MV ≈ −3. Raising the reionization redshift to zrei = 14 erases

this discrepancy, but this value of zrei seems implausible given the strong and rapidly

evolving opacity of the intergalactic medium at z ≈ 6 seen in quasar spectra (Fan

et al., 2006), and it is only marginally consistent with the WMAP5 results. In the

lower right panel, we return to zrei = 11 but suppress pre-reionization star formation

in halos with Vcirc(zrei) < 6 km s−1 (green) or 10 km s−1 (blue), motivated by the inef-

ficient gas cooling expected below the threshold for atomic line excitation (Model 3B).

The Vcrit,r = 10 km s−1 model yields acceptable agreement with the observed number

counts over the full range 0 ≥ MV ≥ −15. The Vcrit,r = 6 km s−1 model still yields an

excess of faint satellites; results for Vcrit,r = 8 km s−1 (not shown) are nearly identical

to those for 10 km s−1, indicating that an 8 km s−1 threshold is already sufficient to

essentially eliminate the contribution of pre-reionization dwarfs. This pre-reionization

suppression appears to be critical to explaining the number of dwarfs observed by the

SDSS.

Within Model 3B, there is strong degeneracy between the values of F∗ and Vcrit.

Figure 5.9 shows that the parameter combinations (F∗, Vcrit) = (3× 10−3, 45 km s−1),

(10−3, 35 km s−1), and (3×10−4, 25 km s−1) all yield similar predictions and acceptable

agreement with the observed number counts. The lower values of Vcrit are favored by the

numerical studies of Hoeft et al. (2006) and Okamoto et al. (2008). For the remainder

of the chapter we will adopt (F∗, Vcrit, zrei, Vcrit,r) = (10−3, 35 km s−1, 11, 10 km s−1) as

the fiducial parameter values for Model 3B.

For this fiducial model, Figure 5.10 illustrates in more detail the relative importance

of stars formed before and after reionization. For systems with Vcirc(zrei) > Vcrit,r, filled

circles show the fraction of their stars that formed before reionization. For systems

with Vcirc(zrei) < Vcrit,r, open circles show the fraction of stars that would have formed
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Figure 5.10: Fraction of pre-reionization stars in observable satellites of different lumi-
nosities, as predicted by the fiducial Model 3B. Filled circles show f∗M(zrei)/M∗(z =
0), the fraction of the stellar mass that formed by zrei, for systems that exceeded
the pre-reionization threshold, Vcirc(zrei) > Vcrit,r = 10 km s−1. Open circles show
f∗M(zrei)/M∗(z = 0) for systems with Vcirc(zrei) < Vcrit,r, but in the context of Model 3B
these systems do not form any stars before reionization. The curve shows the fraction of
satellites that formed more than 10% of their stars before the epoch of reionization, in bins
of luminosity.
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before reionization, but because of the Vcrit,r threshold these galaxies have no pre-

reionization stars in this model. At every satellite luminosity, the average fraction of

pre-reionization stars is small, or even zero, but albeit for different reasons at high

and low luminosities. The host halos for the brighter, “classical” dwarf satellites were

typically massive enough at zrei to exceed Vcrit, but that initial population of stars was

subsequently swamped by the much larger post-reionization population. In contrast,

the halos that now host the very faintest known satellites (MV > −4) did not exceed

Vcrit,r at zrei and hence — in Model 3B — did not form any stars before zrei. A small

fraction of the satellites with MV ≈ −5 have large populations of pre-reionization

stars; these are subhalos that just exceeded Vcrit,r at zrei but have low enough values

of Vcirc(zsat) that their post-reionization star formation was strongly suppressed. If

the pre-reionization threshold at Vcrit,r were smooth rather than sharp, then some

additional fainter systems might have significant fractions of pre-reionization stars.

However, the general conclusion that pre-reionization star formation should be a small

fractional contribution at all satellite luminosities seems fairly robust, provided this

star formation is suppressed in halos below the atomic cooling threshold, as seems to

be required to match the observed luminosity distribution.

Figure 5.11 shows the complete stellar luminosity function of MW satellites inside

400 kpc, in the absence of any selection effects or incompleteness, again for the fiducial

model. (We choose 400 kpc for ease of comparison to Tollerud et al. 2008.) In contrast

to other figures, it shows the luminosity function for the whole sky (4π sr) and in terms

of dN/dMV (i.e., in bins of 1 magnitude). Absent selection effects, the luminosity

function continues to rise toward faint magnitudes (as noted by Koposov et al., 2008a),

contrary to the almost flat luminosity distribution of observed dwarfs. The total number

of satellites within 400 kpc brighter than MV = 0 expected for the fiducial Model 3B is

230± 35. This value is somewhat lower than the 400 derived by Tollerud et al. (2008),

but since both estimates extrapolate the number of known dwarfs by a factor of ∼ 10,

we do not place much weight on this difference.

None of the models shown in Figures 5.5–5.9 reproduce the brightest observed

bin — i.e., they all fail to produce satellites as bright as the SMC and the LMC.

Our successful models have low stellar mass fractions, F∗ ∼ 10−3, even well above

the photo-ionization threshold Vcrit. The most massive subhalos in our Monte Carlo

realizations have typical mass Msat ∼ 1011M� (ranging from 1010.5M� to 1011.4M�),
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Figure 5.11: The predicted number of MW satellites per unit magnitude within 400 kpc
across the whole sky averaged from 6 MC realizations, using the fiducial model parameters
(Model 3B with F∗ = 10−3, Vcrit = 35 km s−1, Vcrit,r = 10 km s−1, and zrei = 11) and
assuming no observational incompleteness. The total number of satellites with stellar
luminosities brighter than MV = 0 is 230 ± 25. Note that this Figure gives counts in
1-magnitude bins rather than the 2-magnitude bins used in earlier Figures.

109



5. A QUANTITATIVE EXPLANATION OF THE OBSERVED
POPULATION OF MILKY WAY SATELLITE GALAXIES.

with second-ranked halos that are 0.2−0.4 dex less massive. Reproducing the ∼ 109M�

stellar masses of the Magellanic Clouds then requires much higher stellar mass fractions

F∗ ∼ 0.05. To reproduce the full satellite population, the efficiency of gas accretion and

star formation must continue to rise with halo mass above Vcrit, or at least it must be

higher for the SMC and LMC hosts. Since the number of bright SMC and LMC-like

objects in our model are determined mainly by one parameter F∗(because these objects

are not suppressed by the photo-ionization), that rise of star formation efficiency can not

be accommodated with our simple model without introducing additional parameters.

5.4.3 Velocity dispersions, central masses, and radial distributions

As discussed in §5.3.2, predicting stellar velocity dispersions requires assumptions be-

yond those needed to compute Nobs(MV ). In particular, we assume that the satellites’

host subhalos have NFW profiles with concentration given by the theoretically expected

mean c(M) relation at zsat, and that subsequent dynamical evolution (e.g., tidal strip-

ping) does not alter the mass distribution of the inner parts of the subhalo probed by

the stars. We also take the observed stellar radii (20− 150 pc, see § 5.3.2 for details) as

input rather than predicting them from a physical model. With these assumptions, the

right panel of Figure 5.12 shows the predicted distribution of stellar velocity disper-

sions for Model 3B with our fiducial parameter choices. The characteristic value and

narrow spread of velocity dispersions for the newly discovered SDSS dwarfs arises quite

naturally from these models, despite the large range of stellar luminosities and host

subhalo masses. The predicted distribution is more sharply peaked than the observed

one, probably because we did not include scatter in the halo concentration-mass rela-

tion and did not include observational uncertainties in the dispersion measurements.

The mean value of σ∗ differs by < 20% between data and model, but we consider this

small discrepancy is not worrisome, given the simplicity of our dynamical modeling.

The total masses of dwarf satellites are difficult to determine observationally because

of the small extent of the stellar distributions relative to the expected extent of the dark

matter subhalo. However, Strigari et al. (2008) show that the total mass (principally

dark matter) within a radius of 300 pc, M300, can be inferred robustly from observations

for nearly all of the known satellites. The top panel of Figure 5.13 compares the

fiducial model predictions of M300 to the Strigari et al. (2008) measurements. The

model (red diamonds) naturally reproduces the key result of Strigari et al. (2008): over
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Figure 5.12: Predictions of Model 3B with the fiducial parameters (F∗, Vcrit, zrei, Vcrit,r) =
(10−3, 35 km s−1, 11, 10 km s−1) compared to the observed distributions of absolute mag-
nitude (left) and stellar velocity dispersions (right). The format of the left panel is the
same as Figure 5.5. The right panel shows predicted and observed velocity dispersions only
for the SDSS dwarfs — i.e., those with MV > −11 — with data taken from Simon and
Geha (2007).
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Figure 5.13: Masses of the DM subhalos within the central 300 pc (top), their total
present-day masses (middle) and their masses at the time of accretion into larger ha-
los (bottom). We only show halos hosting observable satellites within the MW virial
radius, as a function of satellite luminosity. Red diamonds show all the observable
galaxies from six realizations of the fiducial Model 3B with (F∗, Vcrit, zrei, Vcrit,r) =
(10−3, 35 km s−1, 11, 10 km s−1). Blue filled circles show the predictions of Model 3A,
which includes pre-reionization dwarfs (or, equivalently, has Vcrit,r = 0). Error bars show
the estimates of M300 for observed MW satellites from (Strigari et al., 2008). Solid lines in
the bottom panel show, from top to bottom, M∗/Msat = 10−5, 10−4, and 10−3. Our mod-
els do not incorporate scatter in the concentration-mass relation; adding the theoretically
expected scatter would add roughly 0.15 dex of rms scatter to the M300 predictions.
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an enormous range of luminosities, the satellites have a narrow range of M300, tightly

concentrated around 107M�. The theoretical prediction is artificially tight because we

have not included scatter in halo concentrations, which would produce roughly 0.15

dex (rms) of scatter in M300 (see Macciò et al. 2009, figure 1). The model predicts a

weak trend of M300 with luminosity, which is not evident in the data (but is similar to

that predicted by Macciò et al. 2009).

While the M300 range of the satellites is low, the range of total subhalo masses

(at z = 0) is more than three orders of magnitude, as shown in the middle panel of

Figure 5.13. The trend of total mass with luminosity is much stronger than the trend

for M300, though there is a large scatter in mass at fixed luminosity because of tidal

stripping. The near constancy of M300 is a consequence of the density profiles of CDM

halos: NFW halos with the theoretically predicted c(M) relation have only a weak

dependence of M300 on total mass over the range ∼ 107 − 1010M� that hosts observed

Milky Way satellites (see Macciò et al. 2009 for further discussion). Thus our models

and the models of Macciò et al. (2009) are able to reproduce the narrow observed range

of M300 without much difficulty (see also Li et al. 2008, who examine M600 rather than

M300). We note, however, that if we also allow satellites to form stars with efficiency

F∗ = 10−3 before reionization (Model 3A), then the M300 range for the lowest lumi-

nosity dwarfs, with MV > −3, extends downwards to M300 ∼ 106.5M� (blue circles in

Figure 5.13). Thus, careful dynamical measurements for the faintest dwarfs could in

principle distinguish whether they arise mainly from pre-reionization star formation or

from highly suppressed post-reionization star formation in more massive halos. It is no-

ticeable that our model as well as the models of Macciò et al. (2009) and Li et al. (2008)

predicts that M300 or M600 should slightly increase with galaxy luminosity contradict-

ing the observations, where there is no correlation at all of M300 versus luminosity

(Strigari et al., 2008). The reason of this disagreement is yet to be understood. It

either can be caused by some problems with the data (selection effects or systematics

in M300 measurements) or by some astrophysical effects. For example Macciò et al.

(2009) eliminates the correlation of M300 versus luminosity by assuming that the inner

profile of the halos with low concentration (i.e. massive halos) is modified during the

process of tidal stripping (Kazantzidis et al., 2004).

Comparing the middle and upper panels shows that a small number of objects

have M(z = 0) lower than M300, which is possible because we calculate M300 based
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on the subhalo profile at accretion. The tidal radii of these systems are < 300 pc,

but they are all faint satellites for which the stellar Plummer radii are small. While

their true M300 values should be M(z = 0), the values calculated in the upper panel

are probably more directly comparable to the quantities estimated by Strigari et al.

(2008), who extrapolate to 300 pc for the faintest systems assuming that they are not

tidally truncated within this radius. To minimize the tidal effects one may also compute

the masses within 100 pc instead of 300 pc. For our simulated galaxies we also derive

M100, which are in the range 1 × 106 − 4 × 106 M� and are also consistent with the

M100 ≈ 1× 106 − 3× 106 M� measurements from Strigari et al. (2008)(supplementary

information).

The bottom panel of Fig. 5.13 shows the value of Msat as a function of luminosity.

The relation obviously reflects the underlying formula used to assign stellar masses to

the DM halos (eqn. 5.5), and the scatter caused by the range of accretion redshifts

(which affects the Msat − Vcirc mapping) is small. Even the faintest observable dwarfs

have Msat ∼ 108.5M�, but they have star formation efficiencies of only ∼ 10−5. The

difference between the middle and bottom panels illustrates the effect of tidal stripping.

Nearly all the spread of M(z = 0) at fixed MV comes from different degree of tidal

stripping.

Figure 5.14 compares the distribution of heliocentric distances of the MW satellites

found in the SDSS to the predicted distribution for MV > −11 satellites from our

fiducial model. We show one distribution for each of the six Monte Carlo halo realiza-

tions. There are significant halo-to-halo variations in the predicted distributions, and

the observed distribution follows the lower envelope of the predictions. The distance

distribution is strongly influenced by the radial selection effects (the model predictions

would be very different if we did not include them), but it also depends on the radial

profile of subhalos and the dependence of this profile on Msat and zsat, so matching the

observed distribution is a significant additional success of the model.

5.5 Conclusions

The satellite discoveries in the SDSS (Belokurov et al., 2006b, 2007c; Irwin et al., 2007;

Koposov et al., 2007b; Walsh et al., 2007; Willman et al., 2005b; Zucker et al., 2006b)

have transformed our understanding of the MW’s dwarf satellite population, extending
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Galaxy MV σ∗ D�

Name mag km/s kpc

Bootes −6.3 6.6 60
Canes Venatici II −4.9 4.6 150

Carina −9.4 6.8 100
Coma −4.1 4.6 45

Canes Venatici I −8.6 7.6 220
Draco −8.75 10.0 80
Fornax −13.2 10.5 138
Hercules −6.6 5.1 130

Leo I −11.5 8.8 250
Leo II −9.6 6.7 205
Leo IV −5.0 3.3 160
LMC −18.6 - 49

Sagittarius −12.1 11.4 24
Sculptor −11.1 6.6 80
Sextans −9.5 6.6 86
Segue 1 −1.5 4.3 23
SMC −17.2 - 58

Ursa Minor −9.0 9.3 66
Ursa Major I −5.5 7.6 100
Ursa Major II −4.2 6.7 30

Willman I −2.7 4.3 40

Table 5.2: Satellites used for the analysis and parameters adopted
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Figure 5.14: Comparison of the model predictions for the cumulative distance distribution
of the satellite galaxies with those observed in the SDSS (black line). The predictions of
the Model 3B with (F∗, Vcrit, zrei, Vcrit,r) = (10−3, 35 km s−1, 11, 10 km s−1) are shown as
red lines.

the luminosity range by two orders of magnitude and the implied number of systems

by a factor of 20. Careful quantification of the SDSS satellite detection efficiency (Ko-

posov et al., 2008a; Walsh et al., 2009) allows models that specify the relation between

dark matter subhalos and their stellar content to be tested quantitatively against the

observations. We have shown that CDM-based models incorporating previously advo-

cated, physically plausible mechanisms for suppressing the stellar content of low mass

halos can reproduce the observed properties of the known satellite population, includ-

ing their numbers, luminosity distribution, stellar velocity dispersions, central masses,

and heliocentric radius distribution. However, parameters of these models are tightly

constrained, and alternative assumptions lead to conflict with the data. In summarizing

our results, it is useful to review both what works and what doesn’t.

What works is a model in which the photo-ionizing background suppresses gas ac-

cretion onto halos with Vcirc(zsat) < Vcrit ≈ 35 km s−1 (Bullock et al., 2000; Quinn

et al., 1996; Thoul and Weinberg, 1996), with the smooth mass-dependent suppression

suggested by numerical simulations (eqn. 5.5; Gnedin 2000; Hoeft et al. 2006; Okamoto

et al. 2008), and inefficient molecular cooling (and/or stellar feedback) drastically re-

duces the efficiency of star formation in pre-reionization halos below the hydrogen
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atomic line cooling threshold Vcrit,r ≈ 10 km s−1 (Barkana and Loeb, 1999; Bovill and

Ricotti, 2009; Haiman et al., 1997; Machacek et al., 2001; O’Shea and Norman, 2008;

Wise and Abel, 2007). There is some degeneracy between this model’s two main pa-

rameters, Vcrit and F∗, as shown in Figure 5.9, but with either parameter fixed the

other is fairly well constrained (Figure 5.8). The other two parameters, zrei and Vcrit,r,

just need to be in a range that keeps pre-reionization star formation too low to affect

the observable luminosity function. For the values Vcrit = 25 − 35 km s−1 favored by

numerical simulations, F∗ must be . 10−3, so even subhalos above the Vcrit threshold

have star formation efficiency far lower than the values F∗ ≈ 0.1− 0.4 found for bright

galaxies (e.g., Dutton et al. 2007; Gnedin et al. 2007; Mandelbaum et al. 2006; Pizagno

et al. 2005; Xue et al. 2008).

If we assign stellar extents based on observations, and make the reasonable dy-

namical assumptions discussed in §5.3.2, then our fiducial model naturally explains the

characteristic value and narrow spread of stellar velocity dispersions found for SDSS

dwarfs by Simon and Geha (2007). It also explains the characteristic value and narrow

range of M300 values found by Strigari et al. (2008). The M300 values do not depend

on the assumed stellar extent, and their narrow range arises from the theoretically

predicted structure of CDM halos, which have a weak dependence of M300 on total

halo mass over the range Mhalo ∼ 108 − 1011M�. Thus any CDM-based model that

prevents formation of observable dwarfs in halos below ∼ 107M� should qualitatively

reproduce the Strigari et al. (2007, 2008) results (e.g., Li et al. 2008; Macciò et al.

2009). Tempering this success, however, is the fact that the total z = 0 subhalo masses

in our model span three orders of magnitude; some of this range is a consequence of

tidal stripping, but the span of Msat values is only slightly narrower. The model, in

combination with the radial selection biases found by Koposov et al. (2008a), also ex-

plains the observed heliocentric radius distribution of the SDSS dwarfs, which tests the

predicted Galactocentric radius distribution of subhalos and its dependence on mass

and accretion redshift.

Many alternative models fail badly in reproducing the observed luminosity distri-

bution. Models with constant M∗/Msat predict far too many faint satellites relative

to bright satellites. The SDSS discoveries and luminosity-dependent selection biases

do not in themselves resolve the “missing satellite” discrepancy highlighted by Klypin
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et al. (1999) and Moore et al. (1999); strong mass-dependent suppression of star for-

mation efficiency is still required to reconcile CDM predictions with observations. A

simple model in which M∗/Msat = 10−3(Ωb/Ωm)(Msat/1010M�)2 for Msat < 1010M� is

reasonably successful at matching the observations. This successful “empirical” model

has a mass dependence of star formation efficiency roughly like that of the successful,

physically motivated photo-ionization model (eqn. 5.5; note that Msat ∝ V 3
circ at fixed

zsat).

Models with sharp suppression of star formation below the photo-ionization thresh-

old Vcrit fail at intermediate luminosities, MV ∼ −8. Pre-reionization star formation

can provide the population of faint dwarfs in such a model, but there is an unacceptable

gap between the faint and bright populations (or, for parameter choices that fill the

gap, there is an excess of dwarfs at other luminosities). It is striking, therefore, that

the form of the mass-dependent photo-ionization suppression found in numerical simu-

lations is just that required to match the shape of the observed luminosity distribution.

However, the conversion of accreted baryons to stars must be very inefficient for our

fiducial model to work, and it is not obvious why this conversion efficiency should be

mass independent.

The most interesting of our “negative” conclusions is that star formation in halos

before reionization must be extremely inefficient to avoid producing too many satellites

in the range 0 & MV & −6. Examination of Figure 5.8 suggests that the upper

limit on the fraction of halo baryons converted to stars is a few ×10−4 for zrei = 11,

or 10−3 if reionization is pushed back to zrei = 14. Madau et al. (2008) have reached

exactly the same conclusion, with a similar numerical value for the efficiency limit, using

the Via Lactea II simulation instead of a semi-analytic method to predict the model

subhalo population. Suppression of star formation in halos below the hydrogen atomic

line cooling threshold is physically plausible, as the metallicity is low and molecular

cooling should be inefficient. For agreement with Nobs(MV ), we require pre-reionization

suppression in halos with Vcirc(zrei) < Vcrit,r ≈ 10 km s−1.

There are several caveats to these conclusions. First, as discussed in §5.4.2, repro-

ducing the Magellanic Clouds requires that the most massive subhalos have M∗/Msat ∼
0.05− 0.1, well above the F∗ ∼ 10−3 of our fiducial model. Thus, the photo-ionization

suppression described by equation (5.5) must join onto a continuing increase of star for-

mation efficiency with subhalo mass above Vcrit, an increase that is presumably driven
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by other physical mechanisms. Indeed, there is nothing about our results that necessar-

ily picks out photo-ionization as the suppression mechanism in low mass subhalos, but

it is a mechanism that comes in naturally (one might argue inevitably) at the desired

scale (Bullock et al., 2000), and the numerically calibrated form yields a good match

to the observed luminosity distribution.

In our fiducial model, even the faintest SDSS dwarfs form most of their stars after

reionization, but they have Vcirc(zsat) far enough below Vcrit that their star formation is

highly suppressed according to equation (5.5). The SDSS dwarfs are physically a con-

tinuum with the classical dwarfs, and their much lower luminosities are a consequence

of the highly non-linear relation between star formation efficiency and halo mass below

Vcrit. Halos with Vcirc(zrei) > Vcrit,r form pre-reionization stars, but in nearly all cases

they grow large enough by zsat that the post-reionization population dominates by a

large factor. A small number of systems with MV ≈ −5 could have large fractions of

pre-reionization stars, but at any luminosity such systems are rare. These conclusions

are robust within our framework, but if we allowed for departures from our adopted

prescriptions — in particular if photo-ionization suppression for Vcirc � Vcrit were more

aggressive than equation (5.5) implies and pre-reionization suppression weaker than we

have assumed — then it might be possible to construct models in which many dwarfs

with MV & −6 are pre-reionization “fossils.” The efficiency of converting halo baryons

to stars in these systems must still be ∼ 10−4 or less to avoid producing too many faint

satellites. Bovill and Ricotti (2009) and Salvadori and Ferrara (2009) have argued that

halos cooling by H2 before reionization naturally give rise to the physical and chem-

ical properties of the SDSS dwarfs. However, even the low star formation efficiencies

∼ 0.5%− 2% found by Salvadori and Ferrara (2009) appear far too high to be consis-

tent with the observed number counts. On the other hand, Busha et al. (2009) propose

a model in which post-reionization suppression of star formation is highly efficient (a

sharp threshold) but the star formation efficiency in pre-reionization halos is strongly

mass dependent, effectively spreading the low luminosity peak evident in our Figure 6

up towards higher luminosities so that it fills out the entire faint end of the luminosity

function.

A third caveat is that we do not explain the origin of the observed stellar extents; we

just show that once the observed extents are adopted as inputs, then the observed stellar

velocity dispersions emerge naturally. One possible explanation is that the baryons in
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low mass halos condense until they reach a scale at which the velocity dispersion is

a few km s−1, and that this minimum dispersion provides the conditions necessary

for star formation. We also have not attempted to explain the chemical abundance

distributions or star formation histories of the satellites (see, e.g., Orban et al. 2008;

Salvadori and Ferrara 2009; Salvadori et al. 2008).

A final caveat is that we have assumed that all dwarfs luminous enough to be found

in the SDSS also lie above the surface brightness threshold for detection, which is about

30 mag arcsec−2 (Koposov et al., 2008a). Since some of the known satellites approach

this threshold, it is possible that others fall below it. A large population of lower

surface brightness dwarfs would change the number counts that our model reproduces.

Note also that a large population of pre-reionization dwarfs would be observationally

allowed if they lie below the surface brightness threshold; however, even in this scenario

the pre-reionization dwarfs do not account for the presently known satellites. Deeper

large area imaging surveys, such as Pan-STARRS, the Dark Energy Survey, and LSST,

will show whether the MW satellite population includes a significant number of lower

surface brightness systems.

Our model makes several predictions that can be tested by these upcoming surveys

or by further follow-up studies of known dwarfs. Deeper surveys should reveal many

more satellites, more than 200 with MV < 0 and D� < 400 kpc over the full sky,

with the luminosity function shown in Figure 5.11. Deep imaging of Andromeda and

other nearby galaxies can show whether they have similar satellite systems, though

these searches will not reach the extremely low luminosities that can be probed in the

MW. Most satellites in our model have stellar extents that are substantially smaller

than the present-day tidal radius of their host halo. Tidal tails and tidal disruption

should be rare, an implication that may be challenged by photometric evidence on the

profiles and shapes of the ultra-faint galaxies, which have been interpreted as signs

of tidal distortion or disruption (e.g. Martin et al. 2008). Measurements of the total

subhalo masses of known dwarfs would provide a powerful test of the model predictions

in Figure 5.13, but the small stellar extents may make such measurements impossible.

Our models predict that satellites continue to form stars down to zsat or below, and

many observable systems should have zsat = 1− 2 (see Figure 5.2). These predictions

may be testable with detailed stellar population modeling.
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Our results greatly strengthen the argument (Benson et al., 2002; Bullock et al.,

2000; Kravtsov et al., 2004; Somerville, 2002) that photo-ionization naturally reconciles

the CDM-predicted subhalo population with the observed dwarf spheroidal population,

thus solving the “missing satellite problem” highlighted by Klypin et al. (1999) and

Moore et al. (1999). The fiducial model presented here offers a detailed, quantitative

resolution of this problem in light of new, greatly improved observational constraints,

while relying on previously postulated and physically reasonable mechanisms to sup-

press star formation in low mass halos. The MW satellites provide a fabulous labora-

tory for studying galaxy formation at the lowest mass scales, and much remains to be

understood about gas cooling, star formation, feedback, and chemical enrichment in

these systems. These issues provide challenging targets for numerical simulations and

semi-analytic models, whose predictions can be tested against detailed studies of the

dynamics and stellar populations of the known dwarf satellites and of the many new

satellites that will be revealed by the next generation of sky surveys.
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6

Conclusions and future prospects

6.1 Conclusions

The Milky Way is the galaxy which we can study in the most detail. Such studies have

demonstrated that the MW is a unique laboratory to learn about galaxy formation.

One of the most promising ways to study our Galaxy is through large surveys such

as the Sloan Digital Sky Survey. This survey has proven itself to be a treasure trove

for studies of the Milky Way and the understanding galaxy formation. In this thesis

I have demonstrated how we can learn more about the MW, especially its stellar sub-

structure, through data mining and discoveries in the SDSS dataset and how to use

these observational discoveries to better understand the process of galaxy formation.

The main results obtained in this thesis are that:

• I have developed a new algorithmic technique to search for localized stellar over-

densities in the Milky Way halo. The application of this technique to the SDSS

dataset allowed me to find two previously undiscovered globular clusters with

unusual properties. These clusters are two of the faintest observed in the halo

and are probably in the final stages of “self-evaporation”. Based on the expected

short life-times of these objects I suggested that the halo may be filled with such

tiny globular clusters, some of which must be in late stages of self-evaporation.

Since one of the globular clusters lies close to the Sagittarius tidal stream I also

suggested that it may have been torn from the Sgr dwarf galaxy.

• I have developed a novel set of techniques allowing the analysis of stellar streams

in the Galactic halo. I have used these techniques to study one particular long
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stellar stream named GD-1. This stream is extremely faint and contains only

around 2000 stars scattered along a 60-degree arc on the sky. After applying

advanced filtering and modeling techniques to the SDSS dataset, I have for the

first time determined the statistical proper motion of the stream stars, and their

3-dimensional positions. I have performed spectroscopic observations of a sample

of stars spread along the stream in order to determine the radial velocities along

the stream. Altogether, these data has allowed me to construct, for the first time,

a 6-D map of the stream along more than 60◦ on the sky. Under the assumption

that the GD-1 stellar stream traces one orbit in the Galactic potential, I have

constrained several parameters of the Galactic potential. Using the model of

a spheroidal logarithmic potential, I have derived its flattening qφ = 0.88+0.09
−0.06

(which is the only measurement of the shape of the potential at ∼15 kpc distance

from the Galactic center) and circular velocity at the Sun’s radius Vc = 224 ±

13 km/s (which is one of the most precise measurements to date). I have also

tried to constrain the flattening of the dark matter halo by using a 3-component

Galaxy model consisting of a disk, a bulge and a halo, but the existing data only

allowed me to determine the lower limit on the flattening of the dark matter halo:

qφ > 0.9 with 90% confidence.

• Using the technique I developed to find overdensities in stellar catalogues, I have

undertaken a systematic, automatic search for overdensities in the SDSS DR5

data. In order to understand its completeness limits, I have applied the same

techniques to an extensive mock dataset, which consisted of a large sample of

artificial galaxies and clusters with different sizes and luminosities, added to the

real SDSS DR5 data. This allowed me to determine the detection efficiency of

my algorithm for objects with different sizes, luminosities and located at different

distances. I have found that there is an almost distance-independent surface

brightness limit of ∼30 mag/sq.arcsec which does not allow fainter objects to

be discovered, and a distance-dependant luminosity limit. Using these results I

have derived the incompleteness-corrected luminosity function of MW satellites

which can be directly compared to the luminosity functions predicted by different

galaxy formation models.

124



6.2 Future prospects

• Understanding the SDSS incompleteness of the searches for dwarf galaxies in the

MW halo allowed me, for the first time, to make an accurate comparison of the

predictions of galaxy formation models for Milky Way satellites with observations

and constrain the models. I used a semi-analytical DM simulation and a set of

analytical recipes in order to assign stellar masses to individual DM halos and thus

predict what the population of dwarf galaxies in the MW halo should look like.

After taking into account the radial incompleteness of searches for dwarf galaxies

and tidal disruption, I could compare the distribution of different properties of

potentially observable galaxies in the simulations with the properties of observed

galaxies. Despite the recently increased sample of dwarf galaxies and despite

a thorough understanding of dramatic radial incompleteness of SDSS, a large

difference remains between the number of DM halos and the number of observed

galaxies, if all halos host galaxies. Additional ingredients in the galaxy formation

models, which suppress the formation of galaxies in small DM halos, are required

in order to solve the discrepancy. I have shown that if the photo-evaporation of

cold gas in low-mass DM halos after the epoch of reionization and the suppression

of H2 cooling before the epoch of reionization are included in the models, then

they can perfectly match the observations. Apart from reproducing the observed

luminosity function well these models also reproduce the radial distribution and

stellar velocity dispersion distributions of MW satellites. The model also correctly

predicts that the total mass within 300 pc from the center of satellites, M300, is

∼ 107 M�, which is consistent with recent measurements. On that basis I could

conclude that my model gives a physically motivated solution of the “missing

satellite” problem.

Overall the study of the MW using the data from the Sloan Digital Sky Survey

constitutes a considerable progress in understanding the Milky Way and its outskirts.

It also presents a range of data mining techniques that can be used when the data from

new surveys will come.

6.2 Future prospects

“Near-field cosmology” is a rapidly developing field and, with the advent of current

and future large surveys such as Pan-STARRS (Kaiser et al., 2002), GAIA (Perryman
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et al., 2001), LSST (Tyson, 2002), the work presented in this thesis can be continued

and expanded. In this section I present some future projects, which extend the ideas

presented in this thesis.

6.2.1 MW halo structure

Recently it has been demonstrated that the MW stellar halo has a great deal of substruc-

ture. Numerous stellar streams and dwarf satellites were found in it. The luminosity of

some of these satellites are extremely low (e.g. clusters from Chapter 2) and close to the

edge of the current detectability (see Chapter 4). Some of these low luminosity objects

may be undergoing tidal stripping or disruption. It seems that now our searches are

able to detect structures, of which is unclear, whether they are bona fide dwarfs or just

small, gravitationally unbound clumps of halo stars. Thus, the distribution of stars in

the halo on these small scales is not yet understood. To what extent is the MW halo

filled with gravitationally unbound small stellar clumps remnants of severely disrupted

satellites? Or is it relatively smooth on small scales? I think that a possible way to

tackle this problem is to use proper color-magnitude selection/filters, that will allow

the quantification of stellar population densities at certain distances. The statistical

properties of the stellar distribution can then be calculated properly and compared to

Poisson statistics. Another way of looking at this problem would be the measurement

of the correlation function of the halo stars. I think that a better understanding of

small scale structure in the MW halo is necessary to constrain the number of accretion

events in the MW halo and to understand the efficiency of tidal disruption and phase

mixing in the halo.

6.2.2 Searches for stellar streams

In the last few years several new stellar streams have been found, many by relatively

simplistic methods, or even by eye. Since our expectations from the models indicate

that the number of streams is potentially much larger than we seem to see now, we

need more advanced methods to search for streams, similar to the method presented in

Chapter 2 and used to find stellar clusters in the data. For example the Hough transform

or the generalized Hough transform (Duda and Hart, 1972; Koposov, 2008) seem to be

good candidates for finding streams. An experiments with these methods (Koposov,

2008) has shown that these methods are able to find known streams, and the detection
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of these streams may be done automatically. Thus, the idea of the future research

in that field is to use the Hough transform together with the proper color-magnitude

filter to detect stellar streams in SDSS and other surveys. In principal, if the final

stream searching method is fully automated, then its completeness properties can be

determined, enabling a direct comparison between the simulations and the number of

observed streams (as in Chapters 4 and 5).

6.2.3 Statistical proper motions

Our analysis of the GD-1 stream presented in Chapter 3 demonstrated for the first

time that proper motions can be effective “filters” to significantly enhance the contrast

of the structures in the MW halo. Although the proper motions in SDSS are only

measured for stars brighter than r = 20 and the precision of the individual proper

motion measurements is only ∼ 3 mas/yr, they allow us to study the MW halo within

10 kpc around the Sun. I believe that the search for substructure combining 5 band

photometry and proper motions has yet to reveal many interesting features in the halo.

6.2.4 Stream DM sub-halos interaction and the MW potential

Currently, we know several cold stellar streams in the MW halo, e.g the stream of Pal

5 and the GD-1 stream. The GD-1 stream is especially interesting since it spans ∼
60 degrees on the sky. As I showed in Chapter 5 MW halo is presumably filled with

many DM sub-halos without detectable stellar content. While orbiting the MW, all

the cold streams should become perturbed by these dark matter halos, become hotter,

more dispersed, tilted or getting strange density gradients along the streams. I am

interested in tackling the question of what observational signatures one could find of

interaction of a DM halo with the detailed structure of a cold stream (such as Pal 5

or GD-1). I envisage to study whether the streams’ orbits, velocity dispersions and

other properties require the presence of a disturbance from a simple orbit around the

MW. Evidence for the stream-DM halo interaction, if observed, would be an extremely

important confirmation of the success of the CDM paradigm.

It is clear that Milky Way (sub-)structure will remain an exciting, rapidly developing

field for the next decade, or even longer.
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Appendix A

The Calculation of the Correction

to the Luminosity Function

To calculate the luminosity function of Milky Way satellites within rLF = 280 kpc,

we select all the satellites within DR5 which are interior to rLF, and construct the

histogram of MV of these objects. From the simulations, we know that not all objects

are detected with 100% efficiency and the histogram h(MV ) is weighted with the object

detection efficiencies.

h(MV ) =
∑

i

1
εi

δ(MV ,MV,i)

where εi is the detection efficiency of i-th object, MV,i its luminosity, and δ(MV ,MV,i) =

1, if MV and MV,i are within one bin of the histogram, and 0 otherwise.

Figure 4.12, shows how the maximal accessible distance depends on the galaxy

luminosity (the rmax(MV ) function). From this function, we can construct the maximal

accessible volume within the DR5 footprint (which covers 1/5 of the sky) as a function

of galaxy luminosity, namely Vmax(MV ) = 4π/3 fDR5 r3
max(MV )(see Figure 4.13), where

fDR5 is the fraction of the sky covered by DR5 . Then we construct the incompleteness

correction c(MV ), using the probability distribution of the satellites n(r). When the

maximal accessible distance for a galaxy is greater than rLF, the correction is 1, if not it

is equal to the ratio of number of satellites within rmax(MV ) to the number of satellites
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within rLF:

c(MV ) =



rmax(MV )∫
0

n(r)r2 dr

rLF∫
0

n(r)r2 dr

if rmax(MV ) < rLF

1 if rmax(MV ) ≥ rLF

Finally, the luminosity function is obtained by dividing the histogram of luminosities

h(MV ) by the incompleteness correction c(MV )
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Hoeft, M., Yepes, G., Gottlöber, S., et al. Dwarf galaxies in voids: suppressing star

formation with photoheating. MNRAS, 371:401–414 (2006). doi:10.1111/j.1365-2966.

2006.10678.x. 92, 106, 116

Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J., et al. A Photometricity and Extinction

Monitor at the Apache Point Observatory. AJ, 122:2129–2138 (2001). doi:10.1086/

323103. 57

Huxor, A. P., Tanvir, N. R., Irwin, M. J., et al. A new population of extended,

luminous star clusters in the halo of M31. MNRAS, 360:1007–1012 (2005). doi:

10.1111/j.1365-2966.2005.09086.x. 78

Ibata, R., Lewis, G. F., Irwin, M., et al. Great Circle Tidal Streams: Evidence for

a Nearly Spherical Massive Dark Halo around the Milky Way. ApJ, 551:294–311

(2001). doi:10.1086/320060. 3, 22

Inman, R. T. and Carney, B. W. AM-4 - The poorest globular cluster? AJ, 93:1166–

1171 (1987). doi:10.1086/114398. 8, 13

Innanen, K. A., Harris, W. E., and Webbink, R. F. Globular cluster orbits and the

galactic mass distribution. AJ, 88:338–360 (1983). doi:10.1086/113320. 18

Irwin, M. and Hatzidimitriou, D. Structural parameters for the Galactic dwarf

spheroidals. MNRAS, 277:1354–1378 (1995). 70

139



REFERENCES

Irwin, M. J., Belokurov, V., Evans, N. W., et al. Discovery of an Unusual Dwarf Galaxy

in the Outskirts of the Milky Way. ApJ, 656:L13–L16 (2007). doi:10.1086/512183.

8, 21, 56, 84, 114
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Narayanan, V. K., Spergel, D. N., Davé, R., et al. Constraints on the Mass of Warm

Dark Matter Particles and the Shape of the Linear Power Spectrum from the Lyα

Forest. ApJ, 543:L103–L106 (2000). doi:10.1086/317269. 3, 85

Nash, S. G. Newton-type minimization via the Lánczos method. SIAM J. Numer.
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