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Abstract

Numerous serpentinite seamounts on the forearc of the Izu-Bonin-Mariana (IBM) subduction zone

present the only known locations worldwide where mantle wedge serpentinites and blueschist-facies

metamafic fragments can be directly sampled. These fragments have been transported diapirically in

a low temperature fluid-mud matrix from within this active subduction zone from a depth of >20 km

below seafloor, i.e., directly from the slab-mantle-interface. At South Chamorro Seamount (ODP Leg

195), ~85 km distal from the trench axis, the slab surface is at ~27 km depth, where estimated

temperatures are <350 °C, typical for blueschist-facies, sub-forearc subduction zone environments.

This is the first study which combines high-resolution results on light element (Li, Be, B) and 11B

distribution of both slab-derived metamafic rocks and serpentinized mantle rocks from an active

subduction zone. Mobile in aqueous fluids and sensitive as tracers of fluid source and mobilization,

Li, Be and B in (Na-)amphibole, phengite, chlorite and serpentine provide (i) information to quantify

devolatilization of the subducting mafic oceanic crust in shallow regions and (ii) information about

fluid infiltration into the forearc mantle peridotite due to fluid transfer from the dehydrating slab into

the overlying mantle wedge.

Analyses of Li, Be and B contents and B isotope ratios were performed using secondary ion mass

spectrometry (SIMS). Light element distribution maps were made using Time-of-Flight SIMS.

Micro-Raman was used to identify serpentine polymorphs and brucite in serpentinites.

The fine-grained metamafic fragments (<5 mm in diameter) comprise a large variety of mineral

assemblages. These assemblages indicate a range of protoliths that have been subjected to mechanical

mixing and metasomatism within a mélange zone at surprisingly shallow depths. Minerals such as

chlorite, Na- and Ca-amphibole, phengite, epidote and Na-pyroxene in paragenesis with pumpellyite

correlate with blueschist-facies conditions at ~27 km depth (at ~300 °C). The main Li, Be and B

carriers are phengite > chlorite + amphibole. Estimated concentrations of light elements in bulk rocks

are in the same range as in altered oceanic crust and subducting sediments, demonstrating that the

major amount remains in the subducting slab and is not released with fluids. However, moderate B

loss is suggested by the light 11B values of phengite, chlorite and amphibole (–6 ± 4 ‰). As B

fractionation is most effective at low temperatures, this light B isotope signature can be explained by

low fluid losses from the shallow slab, which originally had a slightly positive average 11B value.

Due to B isotope fractionation, the released (Li- and B-enriched) slab-fluids that correlate with a slab-

residue with –6 ± 4 ‰, are positive reaching a 11B  value of up to ~ +20 ‰.

In variably serpentinized peridotites, the serpentine polymorphs lizardite, chrysotile and polygonal

serpentine together with minor brucite are preferentially distributed between textures or serpentine

generations. Li, Be and B abundances are variable and serpentine minerals show an enrichment for Li

and B but also a depletion for Li compared to depleted mantle values. Be contents in serpentine are

low and similar to primary minerals olivine, orthopyroxene and clinopyroxene. These results

demonstrate that serpentinization contributes to a general light element enrichment in the mantle

wedge.
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Early serpentine textures have high Li abundances (up to 30 μg/g) compared to the later

serpentine, B abundances are variable. The dominant polymorph is lizardite, which indicates

relatively low fluid-rock ratios. Late (youngest) serpentine generations are dominated by chrysotile,

which indicates high fluid-rock ratios during serpentinization. This serpentine has lower Li

abundances and is relatively enriched in B. The varying fluid-rock ratios between serpentine

generations are suggested to be the key to explaining the large range in 11B values of –14 ‰ to

+24‰ found in serpentine. During early peridotite hydration, all fluid is completely consumed in

small-scale serpentine areas and the averaging (~25 mm spot size) SIMS analyses reveal the positive

B isotope signature of the slab-derived fluids. The negative 11B values in serpentine can be well

explained by strong B fractionation between fluid and serpentine at the low temperature and neutral

to basic pH.
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Kurzfassung

Die zahlreichen Serpentinit-Vulkane auf dem Forearc der Izu-Bonin-Mariana (IBM)

Subduktionszone sind die weltweit einzigen bekannten Fundorte, wo Serpentinite des Mantelkeils

und Blauschiefer-fazielle metamafische Fragmente direkt beprobt werden können. Diese Fragmente

wurden diapirisch in einer Fluid-Schlamm-Matrix niedriger Temperatur innerhalb dieser aktiven

Subduktionszone aus einer Tiefe von >20 km unter dem Meeresboden, also direkt von der Platten-

Mantel-Grenze, befördert. Am South Chamorro Seamount (ODP Leg 195), ~85 km entfernt vom

Graben, liegt die Oberfläche der subduzierenden Platte bei ~27 km Tiefe, wo Temperaturen <350 °C

herrschen, typisch für eine Blauschiefer-fazielle Sub-Forearc-Subduktionszonen-Umgebung.

Dies ist die erste Studie, die hochauflösende Ergebnisse über die Verteilung leichter Elemente (Li,

Be, B) und 11B in Gesteinen der metamafischen Platte und des serpentinisierten Mantels einer

aktiven Subduktionszone vereint. Mobil in wässrigen Phasen und empfindlich als Tracer für Fluid-

Quellen und –mobilisierung, liefern Li, Be und B in (Na-)Amphibol, Phengit, Chlorit und Serpentin

a) Informationen, um die Entwässerung der subduzierenden mafischen ozeanischen Kruste in

oberfläschen-nahen Regionen zu quantifizieren und b) Informationen über Fluid Infiltration in den

Forearc-Mantel-Peridotiten auf Grund von Fluid-Transfer von der entwässernden Platte in den

darüber liegenden Mantelkeil.

Li-, Be- und B-Konzentrationen und B-Isotopenverhältnisse wurden mit dem Sekundär-Ionen-

Massen-Spektrometer (SIMS) gemessen. Aufnahmen der Verteilung der leichten Elemente wurden

mit dem Time-of-Flight SIMS (Flugzeitmassenspektrometer) erstellt. Mit dem Mikro-Raman wurden

Serpentin Polymorphe und Brucit in den Serpentiniten bestimmt.

Die feinkörnigen metamafischen Fragmente (<5mm) bestehen aus einer Vielzahl von

Mineralparagenesen. Diese Paragenesen deuten auf eine Reihe von Ausgangsgesteinen hin, die

mechanischer Vermengung und Metasomatose innerhalb einer Mélange-Zone in erstaunlich niedriger

Tiefe ausgesetzt waren. Minerale wie Chlorit, Na- und Ca-Amphibol, Phengit, Epidot und Na-

Pyroxen in Paragenese mit Pumpellyit entsprechen Blauschiefer-faziellen Bedingungen in ~27 km

Tiefe (bei ~300 °C). Die hauptsächlichen Li-, Be- und B-Träger sind Phengit > Chlorit + Amphibol.

Abgeschätzte Gesamtgesteins-Konzentrationen leichter Elemente liegen im Bereich alterierter

ozeanischer Kruste und subduzierender Sedimente; dies zeigt, dass der größte Teil der leichten

Elemente in der subduzierenden Platte verbleibt und nicht mit Fluiden abgegeben wird. Jedoch

deuten die leichten 11B Werte von Phengit, Chlorite und Amphibol (–6 ± 4 ‰) auf einen mäßigen B-

Verlust hin. Da B-Isotopen-Fraktionierung bei niedrigen Temperaturen am stärksten ist, kann dieser

negative 11B Wert durch Fluid-Verlust von der Platte in niedriger Tiefe erklärt werden, welche einen

im Mittel leicht positiven 11B Ausgangswert hatte. Aufgrund von B-Isotopen-Fraktionierung haben

die von der subduzierenden Platte freigesetzten (Li- und B-reichen) Fluide, die mit einem Residuum

mit  –6 ± 4 ‰ 11B korrelieren, eine positive Isotopie von bis zu ~ +20 ‰.

In den unterschiedlich stark serpentinisierten Peridotiten sind die Serpentin Polymorphe Lizardit,

Chrysotil und polygonaler Serpentin zusammen mit wenig Brucit unterschiedlich zwischen Texturen
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und Serpentin-Generationen verteilt. Li-, Be- und B-Häufigkeiten sind variabel und Serpentin

Minerale zeigen sowohl An- als auch Abreicherung an Li und Anreicherung in B im Vergleich zum

verarmten Mantel. Be Konzentrationen sind niedrig und ähnlich wie in Primärmineralen Olivin,

Orthopyroxen und Klinopyroxen. Diese Ergebnisse zeigen, dass Serpentinisierung zu einer

allgemeinen Anreicherung leichter Elemente im Mantelkeil führt.

Frühe Serpentin Texturen haben hohe Li Konzentrationen (bis zu 30 μg/g) im Vergleich zu spät

gebildetem Serpentin, die B Gehalte sind variabel. Das dominierende Polymorph ist Lizardit, was auf

ein relativ niedriges Fluid-Gesteins-Verhältnis hinweist. Späte (also junge) Serpentin-Generationen

sind von Chrysotil dominiert, was auf ein hohes Fluid-Gesteins-Verhältnis während der

Serpentinisierung hinweist. Dieser Serpentin has niedrige Li-Konzentrationen und ist relativ mit B

angereichert. Die wechselnden Fluid-Gesteins-Verhältnisse zwischen Serpentin-Generationen sind

die naheliegenste Erklärung für die große Spannweite der 11B Werte von –14 ‰ bis +24‰ in

Serpentin. Während früher Hydratisierung des Peridotits wird das Fluid komplett in kleinräumigen

Serpentin-Bereichen aufgezehrt; somit weisen die SIMS Analysen, bei einer Messpunktgröße von

~25 mm, eine im Mittel positive B-Isotopie des von der subduzierenden Platte kommenden Fluids

hin. Die negativen 11B Werte im Serpentin können durch starke B-Isotopen-Franktionierung

zwischen Fluid und Serpentin bei niedriger Temperatur und neutralem bis basischem pH-Wert erklärt

werden.
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Chapter 1

Introduction

1.1 Aims and scope of the thesis

Subduction zones are the most dynamic and complex global structures in the Earth’s interior. At

these convergent plate margins, several input ‘materials’ (inputs) and output ‘materials’ (outputs)

characterize geochemical cycling. Serpentinites of subducting variously altered oceanic crust and

overlaying sediments are important repositories of light elements. Recently, their inventory is more

and more being constrained (Bonatti et al., 1984; Ryan & Langmuir, 1987; Ishikawa & Nakamura,

1993; Decitre et al., 2002; Vils et al., 2008, 2009). Studies on arc-volcanoes revealed that light

element concentrations and isotopic ratios change with increasing depth of the slab and/or distance

from the subduction zone and that light element contents are enriched compared to unmetasomatized

mantle (e.g., Tatsumi, 1989; Ishikawa & Nakamura, 1994; Ryan et al., 1995; Leeman, 1996; Rose et

al., 2001; Chan et al., 1999, 2002b; Ryan, 2002; Tomascak et al., 2002). Recent light element studies

on enriched mantle wedge serpentinites, serpentinite muds, slab-derived pore waters, and metamafic

rocks (Maekawa et al., 1992, 1993; Maekawa, 1995; Fryer et al., 1999; Benton et al., 2001, 2004;

Mottl et al., 2003, 2004; Savov et al., 2005b, 2007) stress the importance to understand the processes

which control the light element mobilization, distribution and recycling within the ‘Subduction

Factory’.

To provide one of the first comprehensive working models for active subduction and backarc

spreading, the NSF-MARGINS ‘Subduction Factory Initiative’ formed. The ‘Subduction Factory’

has received substantial attention from both the US and Japanese geoscience communities over the

last decade. One focused investigation is the ‘Ocean Drilling Program’ research in the Izu-Bonin-

Mariana (IBM) subduction system; large geophysical characterization (swath bathymetry, gravity and

magnetics, deep magnetotellurics, computer modeling, and broadband and multichannel passive and

active seismics) and geochemical studies (magmatic volatiles, volcanic gas sampling, cross-chain

dredge sampling, forearc drilling) are integrated to model processes in active subduction zones.

To contribute to this initiative is the aim of the present PhD thesis. During this project, the

abundance of light elements (Li, Be, B), their small-scale distribution and the B isotope systematics in

rock-forming minerals of serpentinized mantle wedge peridotites and blueschist-facies metamafic

slab rocks were studied. These samples are from the collection of I.P. Savov, who already studied

serpentinites and metamafic bulk rocks for their light element inventory (Savov et al., 2005a,b, 2007).

To gain insight into the mobilization of fluids and associated light elements during prograde

metamorphism with a related fluid transfer from the dehydrating slab into the overlying mantle

wedge in the shallow region of subduction zones (~27 km), samples from Mariana serpentinite mud

volcanoes have been studied: blueschist-facies mafic rock fragments and serpentinized harzburgites

from South Chamorro Seamount (ODP Leg 195, Site 1200) and Conical Seamount (ODP Leg 125,

Site 779).
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This detailed study of various slab- and mantle-derived lithologies by petrologic, geochemical and

B isotope geochemical means is the first systematic high quality dataset on the light element

inventory of serpentinized harzburgite and blueschist-facies mafic rocks from an active subduction

zone. These data will influence the understanding of mass fluxes and geochemical interchanges at the

slab-mantle-interface, i.e., the décollement (e.g., Kastner & Elderfield, 1993; Carson & Westbrook,

1995; Maltman et al., 1997), as the non-accretionary Mariana margin is a unique locality, where the

natural processes of serpentinite mud volcanism bring serpentinized mantle wedge peridotites and

blueschist-facies metamafics from great depths (~27 km) directly from the slab-mantle-interface to

the surface (Fryer et al., 2000; Mottl et al., 2004). The results can be compared to ancient subduction

zones in regions where erosion has exposed mélange zones, such as the Franciscan formation in

California (e.g., Essene & Fyfe, 1967; Coleman & Clark, 1968; Bebout, 1995). Furthermore, the

detailed in-situ study on the serpentinite light element inventory in combination with serpentine

textures, generations and serpentine polymorphs potentially contributes to the understanding of small-

to large-scale Li and B redistribution during serpentinization of the mantle wedge. The combination

of the results obtained from H2O-rich slab- and mantle-rocks clearly influences existing models of the

light element behavior  and B isotope evolution in the ‘Subduction Factory’.

1.2 Thesis outline

This thesis is subdivided into six chapters, starting with this introduction including aims and scope

of the thesis, a review on the geochemical behavior of the light elements Li, Be and B and of the B

isotope systematics with the emphasis on processes related to the subduction cycle, and a geological

overview of the IBM subduction zone. Chapter 2 is a detailed description of all analytical methods

applied for this study. Chapter 3 presents a manuscript about the B incorporation into serpentine

providing a basis for the light element analysis of serpentinites in Chapter 4.  As the thesis is based on

the investigation of serpentinites on one hand and high-pressure metamorphic rocks on the other

hand, the results and discussions are separated into two chapters. Chapter 4 provides a detailed

petrological description of the mantle wedge serpentinites including textures, major element

compositions and polymorphs identification. The main study concentrates on the light element

inventory of serpentine and the discussion on the mobility of light elements during hydration.

Chapter 5 provides a detailed petrological description of the slab-derived high-pressure rocks

including mineral paragenesis, major elements and estimated bulk rock composition. The main study

concentrates on the light element and boron isotope signature of the mineral phases with the aim to

give an overview of the light element behavior during progressive metamorphism and fluid release

during subduction. Chapter 6 is a synthesis of all results. A summary of the Li and B distribution and

behavior in combination with B isotope signatures is given. The Appendix includes data tables,

complementary images such as back-scattered electron images with spots of EPMA, micro-Raman

and SIMS. Furthermore, the appendix provides results of the study which are not necessary for the

previous discussion but yield important information and the basis for continuing research.
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1.3 Li, Be and B geochemistry

In the last decade light elements, their behavior and cycle through the Earth have become an

important topic for geochemists. Lithium (Li), berryllium (Be), and boron (B) are powerful tracers of

the geochemical processes occuring at the interface between the different Earth´s reservoirs. Li and B

are highly fluid-mobile elements. Each has two isotopes with a large relative mass difference and

with a large isotopic fractionation in nature. Be is rather fluid-immobile and mostly of low

abundance. The incompatibility during magmatic processes and extreme mobility in hydrous fluids of

the light elements under a wide range of temperatures give information on the transfer of chemical

components during fluid or melt metasomatism and also during hydrothermal alteration. Light

elements and their isotopes can hence be used to monitor many geological processes.

Lithium is a monovalent (Li+) alkali metal with the atomic number 3 and an atomic mass of

6.941 u. It has two stable isotopes, 6Li and 7Li, with a natural abundance of 7.59 % and 92.41 %,

respectively. Due to the mass difference between the two isotopes, isotopic fractionation in nature is

relatively large (up to 60 ‰). The atomic radius of Li+ in 6-fold coordination is 0.76 Å and thus can

substitute for octahedrally coordinated Mg2+ (0.72 Å) and Fe2+ (0.76 Å) in silicates. In minerals like

feldspar and amphibole, Li+ can substitute for Na+ and K+ on larger coordination sites (7, 8, 12).

Major Li-bearing minerals are lipidolite (mica), spodumen (Li-pyroxene), and lithium carbonates. In

hydrous fluids, lithium is tetrahedrally coordinated to four H2O molecules (Olsher et al., 1991).

Beryllium is a divalent (Be2+) alkaline metal with the atomic number 4 and an atomic mass of

9.012 u. The atomic radius of Be2+ is 0.26 Å, similar to that of Si4+ (0.27 Å). Due to the high charge

difference, direct substitution of Be2+ and Si4+ is rare. In nature, Be is tetrahedrally coordinated to

oxygen in minerals (Hawthorne & Huminicki, 2002) and generally substitutes for Al3+ (0.39 Å) or B3+

(0.11 Å) on the tetrahedral site. Be also can be incoporated into minerals in vacant tetrahedral sites

(Hawthorne & Huminicki, 2002). Although twelve isotopes of beryllium exist, it has only one stable

isotope 9Be and one cosmogenic isotope 10Be. Be (together with B) is relevant as an important tracer

for subduction zones, as it partitions into slab-derived fluids that can be subsequently transported into

the mantle wedge or the region of arc magma genesis (Tatsumi & Isoyama, 1988; Domanik et al.,

1993). The most abundant Be-containing mineral is beryl.

Boron is a trivalent (B3+) non-metallic element with the atomic number 5 and an atomic mass of

10.811 u. It has thirteen known isotopes of which the two stable ones 10B and 11B have natural

abundances of 19.9 % and 80.1 %, respectively. The atomic radius of B3+ is 0.11 Å in tetrahedral

coordination and 0.01 Å in trigonal coordination. In minerals, melts and fluids, B can be trigonally or

tetrahedrally coordinated to oxygen (Hawthorne et al., 1996). Substitution in silicates is limited to

Si4+ and Al3+ on tetrahedral sites, which in case of Si4+ requires charge balancing and some distortion

of the TO4 units due to the small ionic radius of B3+. B is mostly bound to O, forming B(OH)3 or

B(OH)4. The coordination of B in fluids is highly pH-dependent; at low pH, B is trigonally (3-fold)

coordinated to H2O, while at high pH, B is tetrahedrally (4-fold) coordinated to H2O (Schmidt et al.,

2005). After Palmer & Swihart (1996) significant concentrations of tetrahedrally coordinated boron

complexes are present in fluids only at pH >8, at pH <6 B(OH)4 is absent in the fluid. Alteration



Chapter 1 - Introduction

4

processes may enrich or deplete 11B in fluids compared to their residues. This geochemical behavior

results in a wide range of natural fractionation (~60 ‰) of B isotopes. Boron-containing minerals are

boron silicates (e.g., tourmaline) and evaporite minerals (e.g., probertite, rivadavite, borax).

1.4 Boron isotope fractionation

Isotopes of an element, which is characterized by the same number of electrons and protons, have

different numbers of neutrons and thus different masses (e.g., 10B and 11B). Stable isotopes fractionate

between different phases (minerals or fluids), e.g., during incorporation of elements in minerals.

Certain isotopes are preferred in different phases, which leads to fractionation in favor of one isotope.

Equilibrium (not kinetic) stable isotope fractionation of an element is based on the different structural

position in which it is incorporated in the various phases. If the coordination polyhedra of the element

between the two phases is different, fractionation effects are notably large. In the case of B,

coordination to oxygen is either trigonally or tetrahedrally in minerals, melts and fluids. Isotopic

fractionation between different phases may therefore be large. 11B is preferentially incorporated into

the trigonal sites compared to the tetrahedral site, due to the higher bond strength of the trigonal

coordination (Chacko et al., 2001), which leads to a relative enrichment of the light isotope 10B in the

phase with tetrahedrally coordinated B (Palmer & Swihart, 1996). Therefore, equilibrium

fractionation can be expressed by an exchange reaction of the isotopic composition of different

phases (mineral-fluid or mineral-mineral in equilibrium). The fractionation factor between two

isotopes is expressed as ‘alpha’ ( ). For B isotopes the fractionation factor is

A-B
 =  A

11B
10B

 

 
  

 

 
  

B

11B
10B

 

 
  

 

 
  

(1.1)

The ratio of isotope abundance in a two-isotope system is commonly expressed in the delta

notation (e.g., 11B). It reflects the isotope ratio in a sample relative to the same ratio in a standard in

permil (‰) (equation 1.2).

11B = 1000 

11B/10B( )
sample

11B/10 B( )
standard

 1

 

 

 
 
 

 

 

 
 
 
 (1.2)

The formula is defined by the element of interest (here boron) and the mass numbers of the

heavier and the lighter isotope (11B/10B). For different isotope systems different standards are used.

The common international isotope standard for B is boric acid NIST-SRM951 (H3BO3) with an
11B/10B isotope ratio of 4.043627 (Catanzaro et al., 1970). The isotope fractionation between two

phases A and B is expressed either by the fractionation factor A-B or by the difference between 11B

values of the two phases (equation 1.3).
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A BB  =  11

AB  ±  11
BB  (1.3)

For natural samples and natural B isotope fractionation, the error introduced by the approximation

11B  1000 ln (1.4)

is negligible. Hence, both terms are often used equivalently.

Fractionation of isotopes is dependent on the water-rock interaction, but is also pH, temperature

(T) and pressure (P) dependent. At low pH values, B is trigonally coordinated, at high pH the

dominant B coordination is tetragonal (Spivack & Edmond, 1987; Boschi et al., 2008). The

possibility of B incorporation even changes with changes in polymorph coordination, e.g., trigonally

coordinated B is incorporated in calcite, tetrahedrally coordinated B in aragonite. In melts, B can be

coordinated both trigonally and tetrahedrally.

The influence of T is much greater than that of P and the amount of fractionation decreases with

increasing P and T. The temperature dependance of B isotopic fractionation between phases of

different B coordination (e.g., mica, amphibole, melt, fluid, tourmaline) has been experimentally

studied in several studies (Fig. 1.1; e.g., Peacock & Hervig, 1999; Williams et al., 2001; Hervig et al.,

2002; Wunder et al., 2005).
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Fig. 1.1: Comparison of the temperature-dependence of the 11Bmineral[4]–fluid[3] equilibrium fractionation
determined experimentally by Williams et al. (2001), Hervig et al. (2002) and Wunder et al. (2005).
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The amount of fractionation decreases systematically between silicates and hydrous fluids with

increasing temperature; calculated boron fractionation factors are:

11B = –10.12 (1000/T[K]) +2.44 (Williams et al., 2001) (1.5a)
11B = –10.29 (1000/T[K]) +5.68  (Hervig et al., 2002) (1.5b)
11B(solid[4] fluid[3] ) = –10.69 (1000/T[K]) + 3.88 (Wunder et al., 2005) (1.5c)

In the most relevant temperature range in subduction zone metamorphic processes (300 to

700 °C), these models predict – within ±1 ‰ – the same fractionation. Strongly basic conditions or

the fluid-tourmaline system have a fractionation factor smaller by a factor of ~0.5 % (Palmer et al.,

1992; Wunder et al., 2005).

1.5 Light elements in the Earth

1.5.1 Light elements in the subduction cycle

Subduction zones, also known as ‘Subduction Factory’, are undoubtedly the most dynamic and

complex global structures in the Earth’s interior. Geologic processes at these convergent plate

margins control geochemical cycling, seismicity, and deep biosphere activity within subduction

zones. At a convergent plate boundary, variously altered oceanic crust, often together with overlaying

sediments, is subducted into the Earth's mantle. As the slab descends, pressure and temperature

increase continuously and H2O-rich fluids are released progressively from the slab; H2O-rich fluid is

squeezed out of pores, removed from mineral surfaces and crystal-bound H2O is released by

dehydration reactions. This dehydration of the subducting slab continues to depths of more than

100 km. The expelled fluids migrate upwards, hydrate and metasomatize (i.e., serpentinize) the

overlying mantle wedge, and escape in forms of hotsprings and serpentine-mud volcanoes

(seamounts) within the forearc system. Furthermore, subducted material is recycled and carried back

to the surface by arc magmatism, which is the result of fluid-triggered melting of the hot section of

the mantle wedge above the subducting plate and buoyant rise of magma. A fraction of elements and

fluids is not released from the subducting slab and will be transported down to great depths. On a

global scale, deeply recycled parts of ancient subducted plates form chemical heterogeneties within

the Earth’s mantle, which are sampled by ocean island volcanoes.

The H2O-rich fluids are capable of transporting a wide range of elements, which causes large-scale

redistribution of material between the different subduction zone entities. The chemical and isotopic

signatures of subduction related island arc volcanics (e.g., the enrichment of fluid-mobile elements

Cs, Ba, K, Sr, U, Pb with respect to MORB) are interpreted as a result of metasomatism of the

magma source by slab-derived fluids or melts underneath the volcanic front (e.g., McCulloch &

Gamble, 1991; Tatsumi & Eggins, 1995; Elliott et al., 1997; Plank & Langmuir, 1998; Elliott, 2003).

Geophysical observations provide evidence that the subduction related mantle wedge can be highly

serpentinized (Bostock et al., 2002; Kamimura et al., 2002; Okino et al., 2004). New subduction

models incorporate a trace element laden serpentinized mantle dragged down by viscous coupling
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(e.g., Hattori & Gulliot, 2003) into the source region of island arc volcanics. This complexity

increases the number of variables but can explain signatures of the subduction zone component such

as non-mantle 7Li and 11B values of serpentinites (Benton et al., 2001, 2004), high 18O values in

some island arc rocks (Dorendorf et al., 2000) and the enrichment of fluid-mobile trace elements (B,

Cs, Li, As and Sb) in forearc serpentinites thought to be lost during early dehydration (Hattori &

Guillot, 2003; Savov et al., 2007).

Experimentally determined mineral/fluid partition coefficients increase in the order DB < DLi <<

DBe (clinopyroxene; Brenan et al., 1998a), while mineral/melt partition coefficients increase in the

order DB  DBe << DLi (olivine, orthopyroxene, clinopyroxene; Ryan & Langmuir, 1988; Brenan et

al., 1998b; Blundy & Dalton, 2000). Abundances and isotopic systematics of light elements Li, Be,

and B in subduction-related rocks can give important constraints on the mechanisms of slab-to-mantle

transfer and slab-mantle-interaction.

Figure 1.2 shows a schematic cross-section through a Mariana-type subduction zone with

indicated light element concentrations of the major subduction cycle compounds. Preferentially, data

from the Mariana subduction zone are given.

fresh MORB
Li 5.4-6.9 μg/g
Be 0.2-2.4 μg/g
B 0.3-11.1 μg/g
δ11B -3 ‰

primitive mantle
Li 1.6 μg/g
Be 0.05-0.07 μg/g
B 0.2-0.3 μg/g
δ11B /

depleted mantle
Li 0.7 μg/g
Be 0.025 μg/g
B 0.06 μg/g
δ11B /

eclogites
Li 1.4-72.3 μg/g
Be 1.8-2.9 μg/g
B 2.2-4.8 μg/g
δ11B /

Island Arc

volcanic arc basalt
Li 1-23 μg/g
Be 0.1-10 μg/g
B 0.7-90 μg/g
δ11B +4.5 to +12.0 ‰ (Izu Arc)

pelagic sediment
Li 2.1-95.7 μg/g
Be 0.3-2.8 μg/g
B 15-132 μg/g
δ11B -6.6 to +10.5 ‰

seawater
Li 0.18 μg/g
Be 4.4-4.6 μg/g
B 0.0002 ng/g
δ11B +39.52 ‰

altered basalt
Li 3-97 μg/g
Be 0.05-120 μg/g
B 0.06-6 μg/g
δ11B +0.8 to +5.9 ‰
 (+29.6 to +40.5 ‰)

vent fluids
Li 0.2-2.8 μg/g
Be 0.012-0.091 ng/g
B 0.3-5.2 μg/g
δ11B +25 to +30 ‰

subduction-related fluids
(serpentine Smt pore fluids)
Li 0.003-0.01 μg/g
Be /
B 34.6-42.2 μg/g
δ11B +8.7 ‰

blueschist-facies 
(metasediments)
Li 10.2-41.2 μg/g
Be 0.2-1.4 μg/g
B 7.5-59.0 μg/g
δ11B -9 to -2 ‰

Progressive loss of Li, Be and B during prograde 

metamorphism

Crust

Lithosphere

Mid-ocean ridge

serpentinized 

mantle wedge
hydrothermal
alteration

serpentinized mantle
Li 0.3-18.9 μg/g
Be 0.001-0.009 μg/g
B 4.1-57.5 μg/g
δ11B +5.4 to +25.3 ‰

Fig. 1.2: Schematic vertical cross-section through a non-accretionary Mariana-type subduction zone,
displaying the geochemical cycle of Li, Be and B on Earth. Modified after Vils (2009) and Pelletier
(2008). See text for references.
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The light element contents of the primitive mantle were estimated on the basis of element partition

coefficients and are extremely low: 1.6 μg/g Li, 0.05–0.07 μg/g Be, and 0.2–0.3 μg/g B (Ryan &

Langmuir, 1993; McDonough & Sun, 1995; Ottolini et al., 2004; Palme & O´Neill, 2004;

Lyubetskaya & Korenaga, 2007a).

Salters & Stracke (2004) estimated a depleted mantle composition (as a residue after extraction of

modern basalt) of 0.7 μg/g Li, 0.025 μg/g Be and 0.06 μg/g B. Estimates for Li and B isotope ratios

of primitive or depleted mantle do not exist. However, mid-ocean ridge basalt (MORB) values should

be representative of the underlying mantle, as no fractionation between source material and magma

occurs. Hart et al. (1999) give a 11B value of –3 ‰ for N-MORB, Spivack (1986) and Smith et al.

(1995) also give a 11B value of –3 ±1‰ for upper mantle. Fresh MORB has light element

concentrations of 5.4–6.9 μg/g Li (Chan et al., 1992), 0.2–2.4 μg/g Be (Ryan & Langmuir, 1987) and

0.3–11.1 μg/g B (Ryan & Langmuir, 1993 and references therein).

The subduction input comprises mainly serpentinized oceanic crust and the overlying,

predominantly pelagic sediments. Altered, i.e., serpentinized basaltic crust has variable light element

composition. Serpentinized harzburgites from the Mid-Atlantic ridge ODP Leg 209 have 7–33 μg/g

Li, 2–120 μg/g Be and 0.06–2.3 μg/g B (e.g., Vils et al., 2008). Oceanic crust at IODP 1256D has B

contents of 0.9–6 μg/g (Sano et al., 2001). Kelley et al. (2003) analyzed altered crust at ODP Site 801

in the Western Pacific by ICP-MS and give Li and Be concentrations of 3–97 μg/g and

0.05–3.1 μg/g, respectively. Ophiolitic altered oceanic crust studied by Smith et al. (1995) has B

contents of 2.7–26 μg/g and a boron isotope ratio between +0.8 and +5.9 ‰. Serpentinized oceanic

crust from ODP 209 yields 11B values from +29.6 to +40.5 ‰ (Vils et al., 2009).

Hydrothermal vent fluids that are expelled from the oceanic crust after seawater perculating

through the rock have light element concentrations of 0.2–2.8 μg/g Li and 0.3–5.2 μg/g B with 11B

values of +25 to +30 ‰ (Douville et al., 2002; Foustoukos et al., 2004, 2008; Boschi et al., 2006;

Schmidt et al., 2007;). Beryllium concentrations are only availabe from hydrothermal fluids of the

Guaymas Basin: 0.012–0.094 μg/g (von Damm et al., 1985).

Sediment input in the Mariana subduction zone is limited. The composition of pelagic sediments

was given by Ishikawa & Nakamura (1993) with 2.1–95.7 μg/g Li and 15–132 μg/g B. Ryan &

Langmuir (1987) summarized various Be literature data for marine sediments and give a range of

0.3–2.8 μg/g Be. Boron isotope ratios of pelagic sediments range between –6.6 and +10.5 ‰

(Ishikawa & Nakamura, 1993). Spivack et al (1987) report 11B values between –4.3 and +2.8 ‰ in

marine sediments (non-desorbable fraction).

Various studies on dredged abyssal peridotites have shown that reaction with seawater can enrich

the lithospheric mantle in B (e.g., Thompson & Melson, 1970; Bonatti et al., 1984; Vils et al., 2008),

because B is abundant in seawater (4.4–4.6 μg/g; Quinby-Hunt & Turekian, 1983; Spivack &

Edmond, 1987; Jean-Baptise et al., 1991; Mottl et al., 2004) compared to depleted mantle. Li and Be

concentrations of seawater are 25–26 μmol/kg, i.e., 0.18 μg/g Li (Quinby-Hunt & Turekian, 1983;
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Jean-Baptise et al., 1991; Douville et al., 2002) and 0.2 ng/kg Be, i.e., 0.0002 ng/g (Quinby-Hunt &

Turekian, 1983). The boron isotope composition is +39.52 ‰ (Spivack & Edmond, 1987).

In subduction zones, there is a progressive release of Li and B from the subducted altered oceanic

crust during dehydration reactions (Moran et al., 1992; Bebout et al., 1993, 1999; Domanik et al.,

1993; You et al., 1995; Peacock & Hervig, 1999; Chan & Kastner, 2000; Benton et al., 2001). Be can

be released by melting (Johnson & Planck, 1999), but also by dehydration during high pressure and

temperature metamorphism of the subducted altered oceanic crust (e.g., Marschall et al., 2007a).

Studies of volcanic arc rocks have shown that the magma source region was modified by slab-

derived fluids or melts, indicated by an enrichment in Li, Be, and B compared to the

unmetasomatized mantle (Tatsumi, 1989; Ishikawa & Nakamura, 1994; Leeman, 1996; Chan et al.,

1999, 2002a; Rose et al., 2001; Ryan, 2002; Tomascak et al., 2002). The light element compositions

are variable with 1–23 μg/g Li, 0.1–2.6 μg/g Be (10 μg/g Be, Ryan, 2002) and 0.7–90 μg/g B (Ryan

& Langmuir, 1988 and references therein; Ryan & Langmuir, 1993 and references therein; Leemann

et al., 1994; Ryan et al., 1995; Smith et al., 1997; Rose et al., 2001; Ryan, 2002; Straub & Layne,

2002; Tomascak et al., 2002). Boron isotope ratios range between –5.3 and +1.8 ‰ (Smith et al.,

1997) for the Lesser Antilles and between +4.5 and +12.0 ‰ for the Izu Arc (Ishikawa & Nakamura,

1994; Straub & Layne, 2002).

Slab-derived fluids are known to hydrate the overlying mantle wedge. Partly serpentinized

peridotites from the Mariana subduction zone, recovered from serpentine seamounts, have

0.3–8.9 μg/g Li and 4.1–39.8 μg/g B at South Chamorro Seamount and 1.6–18.9 μg/g Li and

6.8–57.5 μg/g B at Conical Seamount (Benton et al., 2001, 2004; Savov et al., 2005b; Savov et al.,

2007). Be contents of South Chamorro serpentinites are very low (0.001–0.009 μg/g; Savov, personal

communication). Boron isotope compositions vary between +5.4 and +25.3 ‰ at Conical Seamount

(Benton et al., 2001) and between +10.6 and +18.1 ‰ at South Chamorro Seamount (Savov et al.,

2004).

Pore fluids, upwelling at Conical (C. Smt.) and South Chamorro (S. Ch. Smt.) Seamount have

enriched B but low Li concentrations: 34.6 μg/g B at C. Smt. and 42.2 μg/g B at S. Ch. Smt.;

0.003 μg/g Li at C. Smt. and 0.01 μg/g Li at S. Ch. Smt. (Mottl et al., 2003, 2004 and references

therein). The boron isotope signature of the upwelling fluids is positive with +8.7 ‰ (Savov et al.,

2004). Beryllium values for pore fluids are not reported.

During subduction, the slab reaches higher pressure and temperature regions and rocks in

blueschist- and eclogite-facies are formed. Blueschist-facies metasedimentary rocks from onland

studies (Catalina Schist) reveal a light element variation of 10.2–41.2 μg/g Li, 0.2–1.4 μg/g Be, and

7.5–59.0 μg/g B (Bebout et al., 1993, 1999; King et al., 2007). Boron isotope ratios range from –9 to

–2 ‰ (King et al., 2007). Eclogite-facies rocks have variable Li contents of 1.4–72.3 μg/g, Be and B

contents are 1.8–2.9 μg/g and 2.2–4.8 μg/g, respectively (Zack et al., 2003; Marschall, 2005;

Marschall et al., 2007a and references therein).
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1.6 Geological setting

1.6.1 The geography of the Izu-Bonin-Mariana (IBM) subduction zone

The Izu-Bonin-Mariana (IBM) subduction zone is a non-accretionary convergent plate margin,

which ranges over ~2800 km from near Tokyo, Japan, to south of Guam, Mariana Islands (Fig. 1.3a).

It lies along the eastern margin of the Philippine Sea Plate in the Western Pacific Ocean and formed

as a result of subduction of the Western Pacific Plate. The southern boundary is located where the

IBM trench meets the Palau-Kyushu Ridge at 11°N, the northern boundary is at 35°20’N close to

southern Honshu (Stern et al., 2003). The eastern boundary extends along a great trench (Fig. 1.3),

which is almost 11 km deep in the Challenger Deep and less than 3 km, where the Ogasawara Plateau

enters the trench (Fig. 1.3a; Stern et al., 2003).

The IBM arc system can be morphologically divided into three segments, where forearc, active

arc and back-arc are expressed differently; the Sofugan Tectonic Line (~29°30’N) separates the Izu

and Bonin segments, and the northern end of the Mariana Trough back-arc basin (~23°N) marks the

boundary between the Bonin and Mariana segments (Stern et al., 2003).

The IBM forearc is very narrow in the south, but ~200 km wide between Guam and Honshu and

differs from many other forearcs by not having an accretionary prism (Horine et al., 1990). The

Mariana magmatic arc is mostly defined by volcanic islands (e.g., Asuncion, Anatahan, Rota;

Fig. 1.3b) in the Central Island Province and is submarine to the north and south (Bloomer et al.,

1989a,b). Volcanoes erupting lavas of unusual composition – the shoshonitic province - are found in

the transition between the Bonin and Mariana arc segments (Stern et al., 2003).

The back-arc region of the three IBM segments varies markedly; (i) in the Izu segment several

volcanic cross-chains extend SW away from the magmatic front (Ishizuka et al., 1998), (ii) the Bonin

arc has no back-arc basin, inter-arc rift or rear-arc cross chains, (iii) the Mariana segment comprises

an active back arc basin (Fryer, 1995), the Mariana Trough, which shows seafloor spreading south of

19°15’ and rifting farther north (Martinez et al., 1995; Gribble et al., 1998). South and west of Guam,

the forearc region is very narrow and the intersection of the backarc basin spreading axis with the arc

magmatic system is complex (Stern et al., 2003).

Fig. 1.3 (following page): a) Bathymetry color map of the Izu-Bonin-Mariana arc-basin system (from and
after Fryer & Salisbury, 2006), black rectangle indicates the area of figure b), b) Bathymetry map
showing volcanic islands and serpentinite mud volcanoes, seamounts relevant for this study are Conical
and South Chamorro Seamount (modified after Snyder et al., 2005).
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a)

b)
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Fig. 1.4: Simplified history of the IBM arc system.
Shaded areas are magmatically inactive, cross-hatched
areas are magmatically active, from Stern et al.
(2003).

1.6.2 History of the IBM arc system

The IBM region developed since the Early-Middle Eocene (48 Ma ago) with the onset of

westward subsidence of old, dense Jurassic-Cretaceous Pacific lithosphere beneath the Eocene

Philippine Sea Plate (Fig. 1.4; Seno & Maruyama, 1984; Stern & Bloomer, 1992; Bloomer et al.,

1995; Cosca et al., 1998). Igneous activity (depleted tholeiites, boninites and associated low-K

rhyodacites; Hickey & Frey, 1982; Stern et

al., 1991, 2004; Taylor et al., 1994;

Bloomer et al., 1995; Macpherson & Hall,

2001) in the forearc allowed the sub-forearc

mantle to stabilize and cool in the Late

Eocene or Early Oligocene (Stern et al.,

2003).

True subduction with down-dip motion

of the lithosphere began ~43 Ma ago, when

the Pacific plate changed from a northerly

to more westerly motion, indicated by the

formation of the magmatic arc ~200 km

away from the trench, close to its present

position (Richards & Lithgow-Bertelloni,

1996). The arc stabilized until ~30 Ma ago,

when the formation of an intra-oceanic

volcanic arc rift induced the formation of

the Parece Vela Basin in the south (Stern et

al., 2003). In the Early Oligocene, ~26 Ma

ago, spreading in the northern part of the

IBM arc began and propagated south to

form the Shikoku Basin (Kobayashi et al.,

1995).

The rifting split the arc and subsequent backarc spreading isolated the Kyushu-Palau Ridge

remnant arc from the active Izu-Bonin-Mariana Arc. The systems, particularly the Parece Vela and

Shikoku Basin spreading systems, rejoined 23 Ma ago and both basins shared a common spreading

axis until 17–15 Ma ago (Stern et al., 2003).

In the Late Miocene, the southern part of the arc was disrupted again and subsequent spreading

occurred in the Mariana backarc basin. This lead to isolation of the West Mariana Ridge remnant arc

from the active Mariana Arc to form a separate magmatic system. Arc volcanism in the northern IBM

is characterized by more depleted compositions compared to the relatively enriched compositions in

the southern IBM (Bryant et al., 1999). During subduction along the Nankai Trough in younger

periods, at ~15 Ma, the northernmost IBM collided with Honshu (Stern et al., 2003).
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The Bonin Arc is in a still ongoing episode of rifting to form the Mariana Trough back-arc basin,

which began sometime <10 Ma ago with seafloor spreading starting at ~3–4 Ma ago (Bibee et al.,

1980; Yamazaki & Stern, 1997). Then, ~2 Ma ago the Izu inter-arc rifts began to form (Taylor,

1992).

1.6.3 Current subduction in the Mariana Arc

Currently, mid-Jurassic to Early Cretaceous lithosphere, younger in the north and older in the

south (including the oldest, ~170 Ma old oceanic crust) is being subducted and is a type example of

an intra-ocean convergent margin. Converging rates of the Pacific plate were modeled by Seno et al.

(1993) and reach ~20 mm/yr moving in NW direction at 12°N and ~60 mm/yr moving WNW at

34°N. In consequence, motions at the locations of Conical and South Chamorro Seamount should be

43 mm/yr and 23 mm/yr, respectively. The Mariana Trough is opening with a spreading rate of

30–50 mm/yr (Bibee et al., 1980; Hussong & Uyeda, 1982; Yamazaki & Stern, 1997).

Engdahl et al. (1998) provided an earthquake catalogue of the IBM ‘Subduction Factory’. The

results show that the dip of the Wadati-Benioff Zone steepens smoothly from ~40° to ~80°

southwards and that seismicity diminishes between depths of ~150 and ~300 km. Deep earthquakes,

seismic events 300 km, are common beneath parts of the IBM arc system, though less frequent than

for most other subduction zones with deep seismicity (e.g., Tonga/Fiji/Kermadec and South America;

Stern et al., 2003). Katsumata & Sykes (1969) outlined a lack of deep ( 300 km) events beneath the

Volcano Islands adjacent to the junction of the Izu-Bonin and Mariana trenches and a region of

reduced shallow seismicity ( 70 km).

Similarly, beneath the southern IBM, a double seismic zone was detected at 80 to 120 km depth

(with the two zones separated by 30–35 km) generated either by unbending a plate which was

originally deformed anelastically or by thermal stresses, where the curvature of the slab is greatest

(Samowitz & Forsyth, 1981). Abers (1996) suggest that compositional variations in the subducting

slab may also contribute to double seismic zones and Peacock (2001) proposes that double seismic

zones represent the location of serpentine dehydration in the slab.

Currently, the Pacific plate in the Mariana segment descends at a ~20° dip angle to ~60 km

depths, while at depths >100 km it sinks abruptly (almost vertically) beneath the Philippine Sea Plate

(Engdahl et al., 1998). Studies using several analysis techniques such as seismic anisotropy or travel-

time tomography conclude that the cold, seismically fast slab beneath the northern IBM stagnates

near the upper-lower mantle boundary (~660 km) leading to a depression of this discontinuity,

whereas the slab beneath the southern and central IBM descends steeply through the upper mantle

and appears to penetrate into the lower mantle to depths of 900–1000 km (Creager & Jordan, 1986;

van der Hilst & Seno, 1993; Fukao et al., 1992; Fouch & Fischer, 1996; Brudzinski et al., 1997;

Castle & Creager, 1998, 1999; Stern et al., 2003).
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Strong arc-parallel slip rates in the northern Mariana forearc of up to 30 mm/yr are fast enough to

produce geologically significant effects such as unroofing of high-grade metamorphic rocks

(McCaffrey, 1996). However, convergence in the Mariana Arc is nearly orthogonal, which could

explain why the southern IBM forearc is tectonically more active. The IBM arc system south of the

Ogasawara Plateau is bathymetrically ‘rough’ (Stern et al., 2003), dominated by crude alignments of

seamounts, atolls and islands defining three large, WNW-ESE trending chains, namely the Marcus-

Wake-Ogasawara Plateau, the Magellan Chain and the Caroline Islands Ridge from N to S (Fig. 1.5;

Winterer et al., 1993). The first two chains formed by off-ridge volcanism during the Cretaceous and

border the Pigafetta Basin, an abyssal plain. The Caroline Islands chain formed over the past 20 Ma

during westward passage of the Pacific plate over a mantle hot-spot, marks the southern border of the

East Mariana Basin, and comprises the only high volcanic islands on the NW Pacific plate (Stern et

al., 2003).

Seismic investigations of the southern Mariana subduction zone result in models that suggest a

depth to the slab of roughly >20 km below sea level, i.e., >17 km below seafloor (kmbsf) at ~85 km

distance from the trench (below South Chamorro Smt; e.g., Oakley et al., 2008). Though the

incoming Pacific plate includes numerous 2–3 km high seamounts inferring the Mariana subduction

zone, there is a lack of a significant deformation of the Mariana forearc crust (Oakley et al., 2008).

Besides igneous intrusions, these seamounts may be responsible for the thickened oceanic crust in the

Mariana region, which reaches ~7 km (Oakley et al., 2008).

It is not possible to directly study the subducted materials that entered the trench 4–10 Ma ago and

that are presently being processed by the IBM ‘Subduction Factory’ in 130 km depth, a possibility to

fully understand the subduction processes beneath the IBM. Since the composition of the Western

Pacific seafloor-oceanic crust (sediments, crust and mantle lithosphere) varies sufficiently

systematically, it is possible to understand what is currently being processed by studying the material

east of the IBM trench (Stern et al., 2003). The Pacific plate is the oldest known crust on Earth,

yielding MORB basement Ar-Ar ages of 167 ±5 Ma (Pringle, 1992) and a sediment age of Callovian

or latest Bathonian (Jurassic, ~162 Ma, at Site 801C, Leg 129; Harland et al., 1990). During

subduction, seamount chains and aseismic ridges (see above) collided only with the Mariana and

southern Izu-Bonin arcs. Yet, the IBM trench is devoid of a significant sediment cover (e.g.,

Bellaiche, 1980); the ~500 m thick sediment cover observed at Site 801C is completely subducted

with the downgoing plate (Shipboard Scientific Party, 1990c).

The MORB crust in the Pigafetta Basin (see above) is typically affected by low-temperature

hydrothermal alteration and is overlain by a >3 m thick hydrothermal deposit (Alt et al., 1992) and

~60 m alkali olivine basalt (157.4 ±0.5 Ma; Pringle, 1992). The sediment sequence is dominated by

chert, pelagic clay with little carbonate and volcaniclastic turbidites (Stern et al., 2003). Investigation

at Site 802 (Leg 129) in the East Mariana Basin provides (i) tuff in the first 238 m below seafloor

interlayered by either pelagic clay or redeposited calcareous claystone and chalk and (ii) nanofossil

chalk down to at least 310 m (Pratson et al, 1992). Strong seafloor currents probably are responsible

for the erosion or non-deposition of considerable sediment loads (Stern et al., 2003).
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The outer rise outboard of the trench elevates ~300 m above the surrounding seafloor and is

characterized by intensive trench parallel normal faults with step-like fault blocks promoting

infiltrating fluids to be introduced deep into the soon-to-be-subducted plate (Bellaiche, 1980;

Peacock, 2001; Stern et al., 2003) allowing e.g. seawater to penetrate deeply into mantle lithosphere

to generate serpentinites that carry substantial amounts of water into the ‘Subduction Factory’

(Peacock, 2001; Ranero et al., 2003). This deep crustal hydration and the lack of significant sediment

load suggests that during subduction, the amount of water released by pore space compaction of

incoming sediments is insignificant compared to the amount of water contained in the subducting

altered igneous oceanic crust (Oakley et al., 2008).

Fig. 1.5: Simplified geologic and magnetic map of the western Pacific from Stern et al. (2003): based on
the work of Nakanishi et al. (1992). Relative motion of the Pacific plate with respect to the Philippine Sea
Plate is shown with arrows, numbers correspond to velocities (mm/year), after Seno et al. (1993).
Numbers with asterisks represent scientific drilling sites, especially Ocean Drilling Project and Deep Sea
Drilling Program drillsites.
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1.6.4 Serpentine mud volcanism and sample location

The Mariana forearc between the trench and the arc is pervasively faulted by tectonic activity and

only minor sediment accretion occurred along the margin (Horine et al., 1990; Salisbury et al., 2002).

As the Pacific plate descends, oceanic upper mantle, oceanic crust, overlaying sediment, and water

are transported into the deep mantle (Forsyth & Uyeda, 1975; Stern, 2002). Some material might be

transferred from the subducting plate to the overlying plate, not being reincorporated into the Earth’s

interior. In the shallow to intermediate supra-subduction zone (SSZ) region, H2O-rich fluid is

squeezed out of pores during porosity compaction, removed from mineral surfaces and dehydration

reactions release pore fluids from bound volatiles in oceanic sediments and basalts of the downgoing

plate as higher pressures and temperatures are encountered (e.g., Fryer & Fryer, 1987; Peacock, 1987,

1990; Mottl, 1992; Liu et al., 1996).

On the one hand, these released volatiles affect the physical properties in the contact region

between the plates (the décollement) by the metamorphic formation of talc and serpentine (Peacock

& Hyndman, 1999). Since acting directly and/or indirectly as lubricants, the presence or absence of

fluids controls the occurrence of destructive earthquakes in shallow regions (up to 60 km depth) in

subduction zones. The addition of fluids to these deeper regions (<60 km) lowers the melting

temperature in the overlying mantle, generates arc and backarc magmas and affect the composition of

these magmas that bouyantly rise from the deep and hot sections in the mantle wedge resulting

subsequently in explosive (fluid-rich) volcanism at the Earth’s surface.

On the other hand, large amounts of fluid rise along a steep pressure gradient through faults and

fractures, carrying with it dissolved constituents from the subducting slab. In some cases fluids can

vent as cold springs in the forearc (Mottl et al., 2004). However, these slab-derived fluids hydrate and

serpentinize the SSZ mantle peridotite. Recent geophysical investigations confirm that at least part of

the Mariana forearc mantle wedge is indeed serpentinized (Bostock et al., 2002; Kamimura et al.,

2002; Okino et al., 2004). Within the deep reaching faults of the forearc, serpentinite fault gouges

mix with the rising slab-derived fluids.

This mud-rock-mixture buyoantly rises in conduits along the fault planes until it ultimately

protrudes on the seafloor to form numerous km-scale seamounts, i.e., mud volcanoes, primarily

composed of sedimentary serpentinite, situated on the outer forearc of the Mariana margin (e.g.,

Hussong & Fryer, 1982; Fryer 1992). They are located in a trench-parallel zone ~30 to 100 km

arcward of the trench axis (between trench and arc) and can reach up to 30–40 km in diameter and

over 2 km in height (Fryer, 1992; Fryer et al., 2000).

Unconsolidated flows of clay- to silt-sized serpentinite mud enclose up to boulder-sized clasts of

variably serpentinized mantle peridotite and subordinately blueschist-facies clasts (Fryer & Hussong,

1982; Fryer et al., 1990; Maekawa et al., 1992; Maekawa, 1995; Fryer & Todd, 1999; Fryer et al.,

2000; Shipboard Scientific Party, 2002a). Hence, these compounds permit the direct sampling of

slab-derived material (Fryer et al., 1985; 1987; 1990; Mottl, 1992). The upwelling rates of such

serpentinite muds are unknown. However, upwelling must be fast enough to maintain large boulder-
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sized clasts of serpentinized peridotite suspended in its matrix, which is probably facilitated by the

muds low density, apparently low yield strength, high ductility and overpressured and volatile-rich

pore fluids at depth (e.g., Phipps & Ballotti, 1992; Fryer et al., 2006). Aragonite chimneys on the

summit of the seamounts (e.g., South Chamorro and Conical Seamount) have vent a fluid chemistry

suggesting components derived by dehydration processes occuring in the subducting Pacific plate at

the décollement zone (Mottl, 1992; Mottl et al., 2003).

Since intra-ocean convergent margins hold not only thinner, denser and more refractory crust

compared to Andean-type margins (e.g., Japan or Andes), but also have a continuous thin

sedimentary cover due to large distance or isolation from continents, the IBM subduction zone allows

a confident assessment of mantle-to-crust fluxes and processes by studying e.g., melts and fluids

(Stern et al., 2003). In this study samples from two serpentine mud volcanoes from the Mariana

forearc region, South Chamorro and Conical Seamount, were investigated.

The South Chamorro Seamount is located at 13°47´N, 146°00´E, ~125 km east of Guam Island

(Fig. 1.3b) and 85 km west of the trench and it was drilled by ODP during Leg 195 (Shipboard

Scientific Party, 2002). It is a partly collapsed, roughly conical, structure ~2 km high and ~20 km

wide with active serpentine/blueschist mud volcanism (e.g., Maekawa 1995; Fryer et al, 2000;

Shipboard Scientific Party, 2002a,b). The subducting slab beneath this seamount is in ~26.5 km depth

(Fryer et al., 2000; Mottl et al., 2004).

Conical Seamount (Fig. 1.3b) was drilled by ODP during Leg 125 (together with Torishima

Seamount; Fryer, 1992). It is located at 19°35´N, 146°40´E, ~80 km west of the Mariana trench axis.

It is situated ~30 km above the subducting Pacific plate and is a cone-shaped, 1500 m high structure

with a diameter of 20 km (Fryer, 1992).
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Chapter 2

Analytical Techniques

2.1 Sample documentation

Samples investigated in this study are from the two serpentine mud volcanoes Conical Seamount

(Smt.) and South Chamorro Seamount and were provided by I.P. Savov. They had been collected

during two Ocean Drilling Program expeditions to the Mariana forearc basin: sampling of Conical

Smt. (Site 779, Leg 125) took place during a cruise from 15-Feb to 17-Apr 1989 of the Drilling

Vessel JOIDES Resolution (Fryer et al., 1990) and South Chamorro Smt. (Site 1200, ODP Leg 195)

was sampled from 2-Mar to 2-May 2001 during cruises of the Drilling Vessel JOIDES Resolution

(Salisbury et al., 2002). Figure 2.1 illustrates the different depths of the investigated samples from

drill holes 1200D, 1200E, and 1200F.

Fig. 2.1: Schematic depths profiles of drill sites 1200D, 1200E, and 1200F (from Shipboard Scientific Party,
2002b). The locations of investigated samples are marked by red stars. Similar detailed profiles for sites
1200A and 779A are not available.

Larger rock fragments, i.e., of several cm in diameter, were already extracted from the recovered

(drilled) serpentinite muds during the cruises. Clasts of serpentinized peridotite as well as metamafic

rocks (e.g., chlorite-amphibole-schists) vary in size from <1 mm up to several cm. Serpentinite muds,
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recovered as whole-round cores, were squeezed to mud-pellets and the pore waters were analyzed

onboard (e.g., Shipboard Scientific Party, 2002a). Selected mud-pellets, typically brownish or gray to

blue-gray when less altered, were dissolved in distilled water and fragments of interest for this study

(mainly only a few mm in diameter) were hand-picked and then sorted using a Leica WILD M10

binocular microscope.

This time-consuming procedure was necessary due to the weak texture of most fragments.

Approximately 500 serpentinite and metamafic clasts were chosen and prepared in 1-inch round

polished microsections or slightly thickened (~40 μm) 1-inch round thin sections (Fig. 2.2), to meet

the technical requirements of the SIMS (see section 2.3).

Out of these, about 50 fragments with well-preserved mineral assemblages (Table 2.1) were

chosen for electron probe micro analyses (EPMA) and secondary ion mass spectrometry (SIMS).

a)                b)

Fig. 2.2: Examples of 1-inch round samples: a) micro-section F1H4-2, b) thin-section A012R01W(3-5),
partly serpentinized areas appear green, entirely serpentinized and brucite-bearing areas appear brownish
to yellow.

Micro-analysis by electron probe and SIMS require detailed petrographic documentation of the

samples (e.g., serpentinite textures and mineral compounds) to choose appropriate analyzing areas;

thin sections were pre-investigated by polarizing microscopy in combination with a digital camera

and both thin sections and polished microsections were characterized by back-scattered electron

(BSE) imaging using a LEO 440 scanning electron microscope (SEM) at the Institut für

Geowissenschaften, Universität Heidelberg, Germany. The applied accelerating voltage for BSE

images was 15 kV and probe current was ~2–5 nA.
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Table 2.1:  Summary of intervals investigated of holes 1200A, D, E, and F (South Chamorro Seamount) and
hole 779A (Conical Seamount).

ODP 
Leg Hole Core Section Interval depth in 

mbsf* label sample type serpentinite 
fragments

metamafic 
fragments

          
125 779A 10R 02 33-34 79.26 10R02 serpentinite-clast x  
125 779A 26R 02 72-75 208.16 26R02 serpentinite-clast x  
125 779A 34R 01 62-64 284.32 034-3 serpentinite-clast x  

          
195 1200A 003R 01W 81-84 19.01 A003R01 serpentinite-clast x  
195 1200A 007R 01W 38506 51.14 A007R01 serpentinite-clast x  
195 1200A 007R 02W 38474 51.72 A007R02 serpentinite-clast x  
195 1200A 007R 02W 40-43 52.09 7R-2-40 serpentinite-clast x  
195 1200A 009R 01W 38569 70.46 A009R01 serpentinite-clast x  
195 1200A 010R 01W 95-97 80.85 A010R01 serpentinite-clast x  
195 1200A 011R 01W 40-42 89.8 A011R01-40 serpentinite-clast x  
195 1200A 011R 01W 69-72 90.09 A011R01 serpentinite-clast x  
195 1200A 012R 01W 38474 108.73 A012R01 serpentinite-clast x  
195 1200A 013R 01W 25-27 108.95 A013R01-25 serpentinite-clast x  
195 1200A 013R 01W 90-92 109.6 13R-1-90 serpentinite-clast x  
195 1200A 013R 02W 40877 110.07 A013R01-12 serpentinite-clast x  
195 1200A 015R 01W 40117 128.01 A015R01 serpentinite-clast x  
195 1200A 017G 02W 26-28 > 147.20 17G-2-26 serpentinite-clast x  
195 1200A 017G 02W 76-79 > 147.20 A017G02 serpentinite-clast x  

          
195 1200D 001H 04WR 130-140 5.8 D1H4 mud-pellet x x
195 1200D 003H 01WR 130-140 11.2 D3H1 mud-pellet x x

          
195 1200E 001H 03WR 130-140 4.3 E1H3 mud-pellet x x
195 1200E 002H 02WR 130-140 8.9 E2H2 mud-pellet x x
195 1200E 004H 01WR 130-140 13.3 E4H1 mud-pellet x x
195 1200E 004H 02WR 130-140 14.8 E4H2 mud-pellet x x
195 1200E 005H 02W 81-83 19.86 E005H02 serpentinite-clast x  
195 1200E 007H 02WR 130-140 28.7 MAK / E7H2 mud-pellet x x
195 1200E 010H 02W 63-65 54.53 E010H02 serpentinite-clast x  

          
195 1200F 001H 01WR 90-105 0.9 F1H1 mud-pellet x x
195 1200F 001H 03WR 140-150 4.4 F1H3 mud-pellet x x
195 1200F 001H 04WR 140-150 5.9 F1H4 mud-pellet x x
195 1200F 002H 02WR 140-150 10.6 F2H2 mud-pellet x x

          

* meters below see floor, data from http://iodp.tamu.edu/janusweb/coring_summaries/  

2.2 Electron probe micro analysis (EPMA)

Major element compositions of minerals in serpentinized peridotites and metamafic fragments

were determined using a Cameca SX 51 electron probe micro analyzer equipped with five

wavelength-dispersive spectrometers at Institut für Geowissenschaften, Universität Heidelberg,

Germany. Spot size was 1 μm with an accelerating voltage of 15 kV, a probe current of 20 nA and

counting times of generally 10 s for peak and 5 s for background for all elements using the setup label

‘genani’. Synthetic and natural oxides and silicates were used as reference materials (Table 2.2).

Matrix correction is based on the PAP-algorithm after Pouchou & Pichoir (1984).
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Table 2.2: Analytical setup and parameters used for electron probe micro analyses.

Atomic 
number Element Spectrometer 

Crystal
Reference 
Material

Counting 
time (s)

         
11 Na TAP Albite 8.71%  Na 10 0.04%  Na2O

12 Mg TAP MgO 60.31%  Mg 20 0.05%  MgO
13 Al TAP Al2O3 52.93%  Al 30 0.03%  Al2O3

14 Si TAP Wollastonite 24.08%  Si 20 0.02%  SiO2

19 K PET Orthoclase 12.18%  K 10 0.03%  K2O

20 Ca PET Wollastonite 34.12%  Ca 30 0.02%  CaO
22 Ti PET TiO2 59.95%  Ti 20 0.05%  TiO2

24 Cr TAP Cr2O3 68.42%  Cr 20 0.05%  Cr2O3

25 Mn TAP Rhodonite 33.68%  Mn 10 0.08%  MnO
26 Fe TAP hematite 100.00%  Fe 10 0.11%  Fe2O3

28 Ni TAP NiO 78.58%  Ni 30 0.07%  NiO
         

    

Concentration (wt%) in 
reference material

Detection limit (wt%) at 
15 kV and 20 nA

2.3 Secondary ion mass spectrometry (SIMS)

Concentrations of Li, Be and B of minerals, as well as Sr concentrations in some cases were

analyzed by secondary ion mass spectrometry (SIMS) with a modified Cameca ims 3f ion

microprobe, equipped with a primary beam mass filter (Institut für Geowissenschaften, Universität

Heidelberg, Germany), following the procedure of Marschall & Ludwig (2004). In order to obtain B

concentration data close to the detection limit of the SIMS (~1–5 ng/g) and to avoid surface

contamination, the following procedure was implemented: (1) B-free glycol was used as a lubricant

during thin section preparation, (2) sample surfaces were thoroughly wiped clean with acetone and

then ultrasonic bathed in distilled water and finally in Milli-Q water (Millipore) for 2x15 min before

gold coating, (3) every spot is pre-sputtered for six minutes by the primary ion beam, and (4) only the

innermost 12 μm (later improvement of the machine by selecting a field aperture enabled analyses of

smaller 6 μm) of secondary ions from an ~30 μm spot are allowed through the field aperture to

minimize contamination from the rim of the crater produced during ion sputtering. This detection

field enables the analyses of even very small sized minerals.

Analyses were performed using a 14.5 keV / 10–50 nA 16O- primary ion beam. The energy

window was set to 40 eV. Energy filtering with 75 eV offset to the nominal secondary accelerating

voltage of 4.5 kV at a mass resolution (m/ m) of about 1040 was applied to suppress interfering

molecules and to minimize matrix effects (Ottolini et al., 1993). Each analysis had 10 cycles and a

total integration time of 220 s (for ‘LiBeBSi’; 247 s for ‘LiBeBSiSr’). For all silicates, secondary ion

intensities of 7Li, 9Be, 11B (and for some analyses 86Sr and 88Sr) were normalized to the count rate of
30Si (SiO2 concentration measured by EPMA) and calibrated against the NIST SRM 610 glass

reference material using the concentrations (preferred averages) from Pearce et al., 1997.

Accuracy for Li and B analyses is estimated to be better than 10% for concentrations in excess of

0.1 μg/g. Background near mass 11 was 10-2 cps ( 1 ng/g). The setup used and the background of

0.02 ions/s lead to a detection limit (critical value) of 1.9 ng/g (Li), 1.8 ng/g (Be), 6.9 ng/g (B), and

20.2 ng/g (Sr) (Currie, 1968; Marschall & Ludwig, 2004). Results were not corrected for background.
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Two strontium isotopes (86Sr and 88Sr) were detected to have the possibility to examine the reliability

of the Sr concentration with respect to inferences.

2.4 Determination of boron isotope ratios by SIMS

Boron isotope ratios of serpentine, amphibole, chlorite and phengite were determined using the

Cameca ims 3f ion microprobe at the Institut für Geowissenschaften, Universität Heidelberg,

Germany. To avoid contamination, cleaning and analyses was done following the procedure of

Marschall & Ludwig (2004). Primary ion beam was 16O- accelerated to 10 keV with a beam current of

10–20 nA, resulting in count rates for 11B of ~ 40–60000 cps and ~10–16000 cps for 10B (in

serpentine), collected by a single electron multiplier. The diameter of the 10 nA spot was <20 μm and

increased to ~40 μm with 20 nA beam current. The energy window was set to 100 eV without offset

to the secondary accelerating voltage. Mass resolution (m/ m) was 1175. On each analysis spot 400

cycles were measured (in some cases only 200) with counting times of 2x1.66 s and 1.66 s on 10B and
11B, respectively. Presputtering time was 4 min resulting in a total analysis time for one spot of

approximately 40 min (for 400 cycles). Reproducibility for standard analyses was ~0.5 ‰ (1 ).

Internal precision of single analyses is always plotted as 2  in diagrams. The B6 Obsidian standard

was used as reference material for the B isotope analyses with SIMS (Tonarini et al., 2003).

2.5 Matrix correction for 11B analysis by SIMS

SIMS analyses of boron isotope ratios are very dependent on the matrix of the sample and values

can differ from e.g., TIMS values (Rosner et al., 2008; Fig. 2.3). With the SIMS in Heidelberg, B

isotopes have already been successfully analyzed for tourmaline and phengite. The results were cross-

calibrated and thus matrix-matched with the same sample material analyzed by TIMS (Altherr et al.,

2004; Marschall et al., 2006).

For this study, matrix corrections are particularly necessary for SIMS analyses of silicates such as

serpentine, amphibole and phengite. In order to evaluate the 11B matrix correction for serpentine,

two pure serpentine crystal separates of known composition from two localities were chosen; ‘geiss’

from Geisspfad, Alps and ‘21826’ from Schweden. These samples each comprise numerous crystals

with homogeneous (Li and B) compositions (Table 2.3; Fig. 2.3a). Using the B6 Obsidian as a

standard, SIMS analyses give apparent compositions of –14.2 ‰ and –18.1 ‰ for ‘geiss’ and

‘21826’, respectively. The reference B isotope ratios of both samples analyzed at the TIMS

laboratory in Pisa (by Sonia Tonarini) are –8.12 ‰ and –12.05 ‰ for ‘geiss’ and ‘21826’,

respectively (Table 2.3; Fig. 2.3a). The offset between SIMS and TIMS analyses suggests a

systematic shift of ~6 ‰ for serpentine SIMS values against TIMS values towards lower values

(Fig. 2.3a). To confirm this result, serpentine SIMS and bulk rock serpentinite TIMS data of two

ODP 209 samples (studied by Flurin Vils; Vils et al., 2009) are evaluated (Fig. 2.3a). Serpentines

from the Mariana mantle wedge serpentinites have a very heterogeneous light element composition

(see section 4.4). The bulk rock B isotope TIMS ratio of sample A013R01 (serpentine + Ol, Opx,
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Cpx) is +19.4 ‰ (analyzed by Sonia Tonarini). B contents of serpentine in this sample is variable

(~25–240 μg/g) and B isotope values analyzed by SIMS average at +12.7 ‰. This SIMS-TIMS

difference further supports a required matrix correction of ~6 ‰ (Fig. 2.3a).

Matrix correction for phengite and amphibole analyses was applied after repeated analyses of

several chemically homogeneous crystals of amphibole ‘21805’ and phengite ‘Phe-80-3’ (both

samples provided by Thomas Zack, Mainz). As shown in table 2.3 and Fig. 2.3b, the discrepancy

between SIMS and TIMS 11B values suggests an offset of 2.8 ‰ for amphibole and 1.3 ‰ for

phengite. As amphibole ‘21805’ is the more homogeneous sample, +3 ‰ matrix correction for both

phengite and amphibole will be applied for SIMS data.

The 11B values presented in the following chapters are matrix-corrected.
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Fig. 2.3: Comparison of boron isotope ratios analyzed by TIMS versus SIMS for a) serpentine standards
‘geiss’ and ‘21826’ and various serpentine textures of two ODP Leg 209 serpentinites and A013R01
serpentinite (rose square is the mean), b) amphibole ‘21805’ and phengite ‘Phe-80-3’. Dashed lines indicate
a matrix correction for SIMS analyses of +6 ‰ for serpentine and +3 ‰ for amphibole and phengite.

Table 2.3: Comparison of B isotope analyses by SIMS and TIMS.

Srp 'geiss' Srp '21826' Am '21805' Phe '80-3'

SIMS
mean Li content (μg/g) 5.7 7.8 0.09 32.1
1 0.7 3.2 0.02 4.5

mean B content (μg/g) 7.2 16.9 11.7 27.1
1 0.7 1.0 1.2 1.3

mean 11B (‰), N  = 36 -14.1 -18.1 -3.1 -14.8
1  2.0 1.4 1.9 2.8
N = 14 36 15 10

TIMS
11B (‰) -8.1 -12.1 -0.3 -13.5

1  0.3 0.4 0.4 0.3

deviation SIMS-TIMS -6.0 -6.1 -2.8 -1.3

SIMS analyses were performed with 10–25 nA beam current and calibrated to B6 Obsidian.

a) b)
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2.6 Time-of-flight Secondary Ion Mass Spectrometry (ToF-SIMS)

Element distribution maps were obtained using the ION-TOF TOF-SIMS IV instrument at the

Smithsonian Institution in Washington D.C., USA. ToF-SIMS is a surface-sensitive spectrometry that

uses a pulsed low current primary ion beam (typically Ga+, Cs+ and O-) to remove molecules from the

surface of the sample. Secondary ions or cluster ions are removed from atomic monolayers on the

surface and then electrostatically accelerated into a ‘flight tube’ (field-free drift region), where a

variety of mass ions are mass separated. Their mass is determined by measuring the exact time at

which they reach the detector (i.e., time-of-flight) to give a secondary ion mass spectrum. Data

acquisition reveals modes such as depth profiles, and by rastering the finely focused beam across the

sample surface, elemental maps are generated and presented as multi-color images.

For this study, a 25 kV 69Ga+ primary ion column was operated in ‘burst alignment’ single

crossover mode with a cycle time of 50 μs, allowing for optimum lateral resolution of ~300 nm. To

remove surface contamination, the mapping area was sputter-cleaned with a 3 keV Ar+ ion beam. For

silicates, the sensitivity for the detection of Li+ is about 17 times higher than for B+ (Stephan, 2001).

2.7 Micro-Raman spectroscopy

Preliminary analyses were performed with a DILOR LabRam 2 micro-Raman spectrometer at the

‘Universität Tübingen’. Finally, to identify particularly serpentine polymorphs, micro-Raman

measurements were completed using a Horiba Jobin Yvon LabRam HR-UV 800 spectrometer with

attached Olympus BX42 microscope at the ‘Institut für Geowissenschaften’, Universität Göttingen,

Germany. Using the 488 nm excitation of an air cooled Ar+ laser (25 mW laser power at the laser

exit), a holographic grating with 600 lines/mm and a Peltier-cooled CCD detector with 1024x256

pixels yielded a spectral dispersion of better than 2 cm-1. Using a 100x objective with a numerical

aperture of 0.9 and closing the confocal hole to 100 μm yielded a lateral resolution of about 1 μm and

a depth resolution of about 4 μm (high confocality).

Correct calibration of the instruments was verified by checking the position of the Si band at

~520.4 cm-1. To optimize the signal to noise ratio, spectra were acquired using 2 scans of 10 seconds

for each spectral range. The characteristic spectral regions of serpentine minerals, 1200–100 cm-1 and

4000–3000 cm-1, were considered. The similarity of serpentine polymorphs at lower wavenumbers

requires the detection of the OH-vibrational bands at high wavenumbers (3000–4000 cm-1), as they

show the difference in asymmetry between chrysotile and lizardite peaks in this range (Auzende et

al., 2004). Spectra were processed by an automatic baseline subtraction using the Horiba Jobin Yvon

LabRam software. The serpentine polymorphs were discriminated by comparison with published data

(e.g., Rinaudo et al., 2003; Auzende et al., 2004; Groppo et al., 2006; Andreani et al. 2008).

Figure 2.5 shows the typical Raman spectra and Tables 2.4 and 2.5 summarize the bands for Mg-

brucite, Fe-brucite, chrysotile, lizardite, antigorite, and polygonal serpentine. The variation of typical

wavenumbers in this study can be ±2 cm-1.
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a) Chrysotile produces typical Raman bands at 232, 388, (525), 694, and 3699 cm-1. The low

wavenumber bands can be related to O-H-O vibrations, to symmetric SiO4 and asymmetric Si-Ob-Si

stretching vibtrations, respectively (Kloprogge et al., 1999; Rinaudo et al., 2003; Groppo et al.,

2006), and the high wavenumber bands to OH-vibrations (Kloprogge et al., 1999; Auzende et al.,

2004). Many spectra show an additional peak of variable intensity at the left shoulder of the OH-

vibrational band.

b) Typical Raman bands for lizardite at lower wavenumbers are 231, 385, (526), 690 cm-1, very

similar to chrysotile. OH-vibrational bands are 3687 and 3705 cm-1 and are easily discriminated from

the chrysotile peak.

c) It has been discussed that polygonal serpentine is a complex assembly of lizardite layers

arranged as an outer shell around chrysotile fibers (Cressey & Zussman, 1976; Middleton &

Whittaker, 1976; Cressey, 1979). It can easily determined by X-ray diffraction of serpentine powder

(Whittaker & Zussman, 1956). Typical Raman bands for polygonal serpentine at lower wavenumbers

are 230, 384, and 693 cm-1, very similar to chrysotile and lizardite. For the OH-vibrational bands at

high wavenumbers, polygonal serpentine is characterized by a ‘mixed’ spectra between chrysotile and

lizardite, as was already suggested by Auzende (personal communication, 2003). The strongest

lizardite and chrysotile peaks at 3691 cm-1 and 3702 cm-1, respectively, decrease in intensity and form

an irregular broad band.

d) Similar to polygonal serpentine, antigorite shows a band shift of the symmetric SiO4 band to

380 cm-1. Other bands at lower wavenumbers are at 240, 530, and 690 cm-1. Furthermore, antigorite is

characterized by an additional band at 1050 cm-1. Two typical distinct OH-vibrational bands are at

~3660 and ~3700 cm-1.

e) Micro-Raman spectroscopy of brucite is often hindered by strong fluorescence, which leads to

relatively weak brucite spectra. Nevertheless, the analyses show that Fe- and Mg-rich brucite can be

easily identified (Table 2.5). All brucite has a characteristic band at 444 cm-1. Fe-rich brucite has

additional bands at about 531 cm-1 and 705 cm-1. OH-vibrational bands are at lower wavenumbers

compared to serpentine: at ~3638 cm-1 for Mg-rich brucite and ~3640 and ~3649 cm-1 for Fe-rich

brucite.

The similarities of the serpentine polymorphs in their lower wavenumbers obviously demonstrate

the importance to detect the OH-vibrational bands at higher wavenumbers (3000–4000 cm-1), as

already discussed by Auzende et al. (2004). These bands are the major key for an easy

characterization of any serpentine polymorph and even brucite, as is demonstrated with this study on

natural samples.
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Table 2.4: Raman band positions (cm-1) of serpentine polymorphs from Mariana mantle wedge serpentinites.
Literature data with band assignments are reported for comparison.

Ctl Liz Pol Atg Ctl (3) Atg (3) Liz (3) Ctl (2) Ctl (1) Band assignment for serpentine (1,3)

This study Literature data
- - - - - - - - 199 Al gmode of Mg(O,OH)6
232 231 230 240 231 230 233 - 231 Vibrations of O-H-O groups
- - - - - - - - 304 Bending of SiO4
- - - - - - - - 318
- - - - 345 - 350 - 345
- - - - - - - - 374 Symmetric Mg-OH vibrations
388 385 384 380 389 375 388 389 388 Symmetric v5(e) SiO4
- - - - - - - 432 432 Antisymmetric Mg-OH translation
- - - - - - - - 458 v3(a1)SiO4
- - - - - - - - 466 Mg-OH translation + v6(e) SiO2
(525) (526) - 530 - 520 510 (506, - - SiO4 - AlO4 deformation modes
- - - - - - - - 607 Vibration of inner Mg-OH
- 620 622 Antisymmetric OH-Mg-OH translation 
- 629
- - 635 630
694 690 693 690 692 683 690 - 692 vs Si-Ob-Si
- 705 Mg-OH outer symmetric translation
- - 709 modes
- - - 1050 - 1044 - -  v a Si-Ob-Si
- - - - 1105 - 1096 - 1102 v as Si-Onb
          
- - - 3660 - - - - 3643 Inner OH-stretch
- 3678 OH-stretch
- 3687 3691 3686
3699 3705 3702 3700 - - - - 3696 External OH-stretch
         

Liz: lizardite, Ctl: chrysotile, Pol: polygonal serpentine, Atg: antigorite
(1) Kloprogge et al. (1999), (2) Lewis et al. (1996), (3) Rinaudo et al. (2003)

Table 2.5: Raman band positions (cm-1) of Fe-rich and Mg-rich brucite from Mariana mantle wedge
serpentinites in comparison to literature data.

Fe(OH)2 Mg(OH)2 Fe(OH)2 Mg(OH)2

281 281 260 (1) 280 (4,5)
360 (5)
384 (5)

407 (1) 408 (5)
444 444 443 (4) 445 (5)
531
705

725 (4) 728 (5)
3640 3638 3573 (1) 3572 (2) 3655 (3) 3652 (5)
3649 3576 (1) 3661 (5)

(1) Lutz et al. (1994), (2) Speziale et al. (2005), (3) Kruger et al. (1989), 
(4) Dawson et al. (1973), (5) Duffy et al. (1995).

This study Literature data
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Fig. 2.5: Examples of micro-Raman spectra for the serpentine polymorphs antigorite (Atg), lizardite (Liz),
chrysotile (Ctl), polygonal serpentine (Pol), and brucite (Brc). Most indicative for serpentine polymorphs are
the OH-sensitive Raman bands between 3500 and 3800 cm-1. Brucite can be clearly distinguished from
serpentine by a lower wavenumber OH-sensitive band (~3649 cm-1) and bands at 281 and 444 cm-1. If
brucite is Fe-rich (amakinite endmember), additional strong bands at 531 cm-1 and 3649 cm-1 appear.
Hence, brucite or amakinite admixtures to serpentine can be easily identified. Additional spectra can be
found in Appendix B5.



29

Chapter 3

Evidence for boron incorporation into the serpentine crystal structure

3.1 Introduction

Boron (B) is a highly fluid-mobile trace element incompatible during high temperature magmatic

processes. Hence, B contents and B isotope composition of fluids and a wide variety of rocks (e.g.,

high-pressure metamorphics, mantle wedge peridotites, trench sediments, arc and backarc volcanics)

have been used as records for the elemental and isotope recycling processes and mass fluxes during

subduction (e.g., Smith et al., 1995; Ryan et al., 1996b; Palmer & Helvaci, 1997; Benton et al., 2001;

Tonarini et al., 2001; Snyder et al., 2005; Marschall et al., 2006; Savov et al., 2007;). Aqueous fluids

released from the subducting slab can serpentinize the overlying depleted mantle; recent studies on

variably serpentinized Mariana peridotites, exhumed at large serpentinite seamounts drilled during

ODP Legs 125 and 195, give evidence that, within supra subduction zones, forearc serpentinites are a

major sink for various trace elements such as B, Li, As, Sb, I and Cs (e.g., Fryer et al., 1990; Benton

et al., 2001; Mottl et al., 2003; Savov et al., 2007). Since primary minerals in serpentinized

peridotites, such as olivine and pyroxene, are virtually devoid of B, minerals of the serpentine group

(e.g., chrysotile, lizardite and antigorite) have been presumed to be the main B sink in ultramafic

rocks (e.g., Bonatti et al., 1984; Benton et al., 2001; Ottolini et al., 2004). Nonetheless, it remained

still unclear, if and where B can be fixed in the serpentine crystal structure.

Serpentine [Mg3Si2O5(OH)4] is a tri-octahedral sheet silicate made up of stacked layers of a

pseudo-hexagonal network of linked SiO4 tetrahedra with a joining brucite-like [Mg(OH)2] layer

(Deer et al., 1992). Boron hosted in-between the serpentine sheets, along grain boundaries or in

microfractures would be leached out by infiltrating fluids at any temperature, while B incorporated in

the serpentine crystal structure would only be released through serpentine recrystallization or

breakdown reactions having major implications for B recycling and geodynamic models in

subduction zones.

We have examined serpentine from Mariana mantle wedge serpentinites using micro-Raman

spectroscopy, secondary ion mass spectrometry (SIMS) spot analysis traverses and time-of-flight

(ToF)-SIMS elemental imaging. While it is impossible to examine single B atoms in a crystal

structure, we combine these high spatial resolution methods and present, for the first time, evidence

that B can indeed be sited in the serpentine crystal structure.

3.2 Analytical Techniques

To study the B incorporation into serpentine minerals on a micron scale, thoroughly cleaned,

coarse-grained and well-crystallized mineral grains are essential. Detailed optical and scanning

electron microscopy, electron microprobe analyses and micro-Raman spectroscopy ensured later
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analyses devoid of mineral inclusions (e.g., magnetite), fractures and serpentine-brucite-intergrowths.

We selected well-crystallized serpentine by large (>40 μm) serpentine areas showing optical

continuity and sharp Raman spectral bands. For serpentine polymorph identification and crystallinity

tests we applied the Horiba Jobin Yvon LabRam HR-UV 800 micro-Raman at the Universität

Göttingen with a lateral resolution of <1 μm using a 488 nm excitation source.

 In-situ B and Li concentrations were determined with a modified Cameca ims 3f ion microprobe

(magnetic sector SIMS) at the Universität Heidelberg, following procedures outlined in Marschall &

Ludwig (2004). The lateral resolution of the SIMS analyses were ~5 μm. Accuracy for analyses is

better than 10 % for B concentrations in excess of ~0.1 μg/g. Secondary ion images were performed

with the ION-TOF TOF-SIMS IV instrument at the Smithsonian Institution in Washington D.C. with

a lateral resolution of ~0.3 μm. The detection limits for B and Li are ~1 μg/g.

3.3 Petrography and mineral compositions

We selected two representative highly serpentinized (up to 80 %) harzburgite clasts (~2 cm in

diameter) recovered from the South Chamorro Seamount during ODP Leg 195, Site 1200 (Salisbury

et al., 2002): 1200A-013R-01-25-27 (1-25 hereafter) drilled from depths of 108.95 mbsf (meters

below sea floor) and 1200A-013R-02-12-15 (2-12 hereafter) from 110.07 mbsf. Olivine (avg Mg#

91.4) and enstatite are partly replaced by mesh textured serpentine and bastites (serpentine ± brucite),

respectively. Diopside and primary Cr-spinels (Cr# ~42–63) are rare (<5 vol%) and much less

affected by serpentinization. Both samples are crosscut by several generations of 1 μm – 3 mm broad

serpentine (± brucite) veins. Fine grained magnetite is enriched along former olivine grain boundaries

and sporadically in serpentine mesh centers and veins. Serpentine major element compositions vary

with textural type (Table 3.1); serpentine has Mg# of 81.8–95.3 in sample 1-25 and 84.6–94.9 in

sample 2-12.

In this study we investigated i) a ~850 μm broad zoned serpentine vein (sample 1-25; Fig. 3.1a),

intersected by ‘Frankenstein’-type veins (Fryer et al., 1990), with a chrysotile marginal zone and a

chrysotile and lizardite+spinel central zone (Table 3.1; Fig. 3.1 and 3.2), and ii) a serpentine area

(sample 2-12; Fig. 3.1d) of homogeneous chrysotile mesh rims and lizardite mesh centers (Table 3.1;

Fig. 3.1 and 3.2). All serpentine areas chosen for further detailed inspection are brucite-free.

The very sharp micro-Raman bands (Fig. 3.2) indicate a fully-crystalline serpentine structure (e.g.,

Schenzel et al., 2005; Strahm et al., 2007). The optical continuity of the chrysotile vein and lizardite

mesh center confirms the coarse-grained and well-crystallized character of the selected serpentines

(Fig. 3.1b, c, e).
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Fig. 3.1: a) Backscattered electron (BSE) image of a zoned serpentine vein (~850 μm thick), intersected
perpendicularly by ‘Frankenstein’-type veins, sample 1-25. b) Optical microscope image (crossed polars) of
a Au-coated thin-section with SIMS analyzing spots (bright). The two vein rim zones are optically
continuous. Vein zones indicated by their respective numbers. c) Zoomed area of b) with SIMS analyzing
spots within well-crystallized serpentine (optically continuous). Red circles: ~25 μm SIMS spots surrounded
by a primary beam halo, blue circles: ~5 μm actual analyzing spotsize. d) BSE image of serpentine mesh
texture with relict olivine (white), sample 2-12. Yellow square: ToF-SIMS mapped area (cf. Fig. 3.3), red
circles: SIMS spots. e) Optical microscope image (crossed polars) of a Au-coated thin-section with SIMS
analyzing spots of optically continuous mesh centers. f) SIMS boron (B) concentrations. Compositions within
the two chrysotile rim zones are homogenous along distance with (1) high B contents in the outer rim (~76
μg/g), (2) only ~60 μg/g B in the inner rim, and variable B-enrichment in the irregularly zoned vein centre
with the lowest concentration in the lizardite + spinel zone.
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Fig. 3.2: Micro-Raman spectra of lizardite and chrysotile in different serpentine textures.

3.4 Intragrain boron distribution in serpentine

The serpentinite specimens in this study contain diverse serpentine textures with variable B

concentrations (~40–200 μg/g). The light element in-situ SIMS data (Table 3.1) reveal a

homogeneous B distribution within large areas. The broad vein in sample 1-25 contains substantial

amounts of B (Fig. 3.1f); the vein rim can be divided into a high-B (~76 μg/g) and an intermediate-B

(60 μg/g) zone (Fig. 3.1f). The vein centre is erratically zoned and has lower B concentrations

(42–61 μg/g); here, the lowest B abundances appear to be associated with lizardite. SIMS traverses in

the chrysotile vein rim zones show that along distances of up to ~1 mm the B compositions are

homogeneous (see discussion; Table 3.2). The lizardite mesh centers in sample 2-12 have constant

high B concentrations of ~200 μg/g. The thin mesh rims (and former grain boundaries) show

intermediate B contents (~85 μg/g). However, the B concentrations in relict olivine are very low

(0.1 μg/g), consistent with the B-poor nature of mantle peridotites (0.07–0.1 μg/g; Ottolini et al.,

2004).

  

Fig. 3.3:  ToF-SIMS false color elemental maps of a 150x150 μm mesh texture pseudomorphing olivine,
sample 2-12. B is homogeneously distributed in the serpentine (mesh centers), while Li is only enriched in
thin mesh rims along former olivine grain boundaries. Olivine (indicated by white contours) is extremely B-
poor. The scale to the right represents the number of ions counted (increasing from bottom to top).



Chapter 3 - Boron incorporation into serpentine

33

The light element ToF-SIMS images of the area containing lizardite replacing olivine in sample 2-

12 (Fig. 3.1d and Fig. 3.3) is in agreement with the B (and Li) concentrations from SIMS spot

analyses: B is homogeneously distributed within the serpentinized area at high concentrations (apart

from former grain boundaries), whereas Li, shown for contrast, is enriched only in the thin mesh rims

along former grain boundaries (Li ~6 μg/g; Table 3.1, Fig. 3.3). A relatively heterogeneous Li

distribution in serpentinites was already observed by Benton et al. (2004) and explained by a Li

‘concentration front’ with highest concentrations near serpentine veins. Relict olivine is extremely

depleted in Li and B.

Table 3.1: Representative electron microprobe analyses and in-situ Li and B SIMS data of selected mineral
phases of the serpentinized peridotites investigated from South Chamorro Seamount.

hole-core-section-interval

vein - center vein - rim olivine Cr-spinel mesh center mesh rim olivine Cr-spinel

(wt%)
SiO2 41.40 41.04 41.21 0.00 39.66 40.79 41.18 0.01
TiO2 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.02
Al2O3 0.15 0.22 0.01 24.09 0.02 0.01 0.00 19.37
Cr2O3 0.00 0.01 0.00 43.14 0.00 0.00 0.00 47.65

FeO 3.65 7.14 8.15 20.53 4.98 4.79 8.34 24.12

MnO 0.05 0.14 0.08 0.06 0.02 0.06 0.07 0.21

MgO 39.03 36.33 50.67 11.12 39.81 38.44 50.33 8.95

CaO 0.18 0.21 0.02 0.00 0.15 0.22 0.00 0.01
Na2O 0.05 0.08 0.02 0.03 0.02 0.03 0.00 0.01
K2O 0.01 0.02 0.00 0.01 0.01 0.00 0.00 0.00

NiO 0.04 0.06 0.39 0.07 0.41 0.13 0.43 -

Total 84.56 85.25 100.53 99.07 85.07 84.47 100.35 100.34

oxygens 14 14 4 4 14 14 4 4

Si 4.01 4.01 1.00 0.00 3.86 3.98 1.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al 0.02 0.03 0.00 0.89 0.00 0.00 0.00 0.73

Cr 0.00 0.00 0.00 1.07 0.00 0.00 0.00 1.21
Fe2+ 0.30 0.58 0.16 0.54 0.41 0.39 0.17 0.65

Mn 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01

Mg 5.63 5.30 1.82 0.52 5.78 5.59 1.82 0.43

Ca 0.02 0.02 0.00 0.00 0.02 0.02 0.00 0.00

Na 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ni 0.01 0.02 0.03 0.01 0.14 0.04 0.04 0.00

sum 10.00 9.99 3.02 3.03 10.21 10.04 3.02 3.03

Mg# 94.95 89.88 91.66 93.42 93.39 91.44

Cr# 54.58 62.27

Li (μg/g) 0.49 7.90 1.26 N.D.# 0.44 6.24 1.24 N.D.#

B (μg/g) 56.0 76.8 0.10 N.D.# 196.8 85.4 0.11 N.D.#

   *mbsf = meters below sea floor.
    # N.D. = not determined.

A-013R-01-25-27 A-013R-02-12-15

108.95  (mbsf)* 110.07 (mbsf)*
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3.5 Discussion and Conclusion

The high spatial resolution ToF-SIMS boron distribution mapping reveals, within counting

statistics, (i) absence of heterogeneities caused by B-rich inclusions, (ii) absence of B-enrichments in

small voids, fractures or grain-boundaries on a submicrometer-scale, and (iii) a homogeneous B

distribution within serpentine (Fig. 3.3).

A measure of homogeneity can be obtained by comparing the scatter in the SIMS dataset (lateral

and depth) with the (statistical) variation that can be expected for a homogenous sample. (i) Depth or

single spot variation. (Dynamic) SIMS is an in-depth analysis, where in the course of a single analysis

with N cycles (here N = 10) the sample is successively analyzed in deeper regions; typically 0.2–1 μm

deep. The relative standard error of the mean (RSEM) of a single flawless N-cycle analysis on a

perfectly homogeneous sample can be predicted by counting statistics: RSEMcount = 1/ m, where m is

the total number of B ions that were counted. For multiple, flawless analyses on such a sample the

average ratio r = RSEM/RSEMcount has to be rmean = 1. For all B analyses of the zoned vein in sample 1-

25, the average ratio is r = 0.92 ± 0.21 (1 ). (ii) Lateral or spot-to-spot variation. For multiple

flawless N-cycle analyses on a perfectly homogeneous sample, the standard deviation SD has to be

equal to the average standard error of the mean (SEM) of these analyses: SD = SEMmean. The analyses

of the outer vein rim (n=6) yield an average B concentration of 75.8 ± 2.5 μg/g (SEM = 0.93 μg/g)

and of the inner vein rim (n=7) 60.0 ± 2.1 μg/g (SEM = 0.72 μg/g). In both cases SD is only slightly

higher than SEMmean, indicating minor inhomogeneities (  3 %) within these regions (Table 3.2).

Both in-situ SIMS traverses and ToF-SIMS mappping display an even boron distribution in single

serpentine crystals. Hypothetically, the serpentine structure itself could be B-free and such

homogeneous B distribution could result from periodic B-rich interlayers between the ~7 Å thick

serpentine sheets. While this is not resolvable by in-situ SIMS analyses, TEM (transmission electron

microscopy) imaging is capable to show variations in the serpentine sheet spaces. Serpentine from B-

rich serpentinites (10–50 μg/g; King et al., 2004) from the Santa Ynez Fault in the Franciscan

subduction mélange (California) was examined by TEM and present regularly spaced serpentine

layers without non-serpentine interlayers or inclusions (Andreani et al., 2004).

By analogy, we can assume that B distribution in the form of B-rich interlayers is unlikely for the

studied Mariana forearc serpentines. Furthermore, chrysotile nanotubes have been shown to

accumulate Cl (Brearley et al., 2007). Although B concentrations differ between serpentine textures

and serpentine polymorphs in Mariana forearc serpentinites, particularly high and homogenously

distributed B contents were found in both chrysotile (nanotubes, cylindrical structure) and lizardite

(planar structure). Hence, it is unlikely that chrysotile nanotubes are the dominant site for B, although

small amounts of nanotube-bound B cannot be precluded.

Examination of a variety of serpentine textures by micro-Raman spectroscopy and high spatial

resolution ToF-SIMS ion imaging and in-situ SIMS shows that B concentrations are not caused by (i)

B hosted on mineral surfaces in cracks, (ii) interlayers or nanotubes, or (iii) μm-scale B-rich
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“clusters”. Rather, our results consistently indicate that B resides in the serpentine crystal structure.

Since brucite coexisting with serpentine in Mariana forearc serpentinites is B-poor (~1.4 μg/g B; see

4.4.2), we reason that brucite-like layers cannot assign the highly enriched boron concentrations in

serpentine.

Due to its small ionic size and high charge (+3), B should favor the crystallographic site of silica

(Si) or aluminum (Al). In sheet silicates like borocookeite (a chlorite group mineral) and

boromuscovite (mica), B partly replaces Al in tetrahedral coordination ([4]Al) (Foord et al., 1991;

Zagorsky et al., 2003), in manandonite (another chlorite group mineral) B3+ predominantly enters the
[4]Si4+ site (Ranorosoa et al., 1989). Compared to sheet silicates, nesosilicates like olivine have less

stretched crystal structure and exotic trace elements cannot fit well. However, Kent & Rossman

(2002) indicated a B-Si substitution in an unusual B-enriched (>10 μg/g) olivine.

Table 3.2: SIMS B concentrations in the zoned vein in sample 2-12 with predicted error, standard deviation
of the man and their ratio.

zone analysis B concentration std. dev. of the mean predicted error r  =

(μg/g)  (N =10 cycles) RSEM count RSEM  / RSEM coun

RSEM
outer rim A013R01-54 77.67 1.67% 1.31% 1.27
inner rim A013R01-53 61.87 1.71% 1.49% 1.14
zoned central vein A013R01-52 61.29 1.49% 1.50% 0.99
zoned central vein A013R01-51 60.19 0.86% 1.57% 0.55
zoned central vein A013R01-50 61.41 1.31% 1.76% 0.74
zoned central vein A013R01-49 49.56 2.55% 2.03% 1.25
zoned central vein A013R01-48 42.34 1.60% 1.90% 0.84
zoned central vein A013R01-47 56.00 1.64% 1.53% 1.07
inner rim A013R01-45 61.76 1.32% 1.36% 0.97
inner rim A013R01-44 57.98 1.49% 1.50% 0.99
inner rim A013R01-43 62.71 1.13% 1.33% 0.85
inner rim A013R01-42 57.80 0.89% 1.37% 0.65
inner rim A013R01-38 58.88 1.12% 1.30% 0.86
inner rim A013R01-37 58.72 0.77% 1.27% 0.60
mixed analysis A013R01-46 69.70 1.42% 1.37% 1.04
outer rim A013R01-36 73.51 1.03% 1.12% 0.92
outer rim A013R01-35 73.18 1.18% 1.16% 1.02
outer rim A013R01-41 79.32 1.25% 1.20% 1.04
outer rim A013R01-40 74.27 1.51% 1.48% 1.02
outer rim A013R01-39 76.92 0.72% 1.15% 0.63

inner rim

average 59.96 1.20% 1.37% 0.87

SD 2.07 0.33% 0.09% 0.19

RSD 3.45%
SEM count 0.72

outer rim

average 75.81 1.23% 1.24% 0.98

SD 2.51 0.34% 0.14% 0.21

RSD 3.31%
SEM count 0.93
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Our results strongly indicate that B is directly incorporated into the serpentine crystal structure in

tetrahedral coordination ([4]B) by the coupled substitution B(OH)(Si4+,Al3+)-1O-1. The mechanism of B

incorporation into serpentine is independent of the degree of serpentinization, and also of serpentine

polymorph or textural type. Being structurally bound into serpentine, B can only be extracted from

serpentinized peridotites at high temperatures, which has major implications for B distributions,

transfer mechanisms between deep source rocks (<60 km) within subduction zones and for modeling

of the efficiency of cross arc fluid mobile element recycling in the Marianas and in other subduction

zones with highly hydrated forearc mantle.
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Chapter 4

Serpentinization of the Mariana forearc mantle wedge: light elements
as tracers for the hydration history

4.1 Introduction

The serpentinite mud volcanoes situated on the extant oceanic forearc of the Izu-Bonin-Mariana

(IBM) subduction zone are entities where serpentinized peridotites can be studied. They represent

supra subduction zone mantle wedge material serpentinized by fluids derived from the dehydrating

slab. The samples for this study are from suite of rocks recovered by drilling of South Chamorro and

Conical Seamounts during Ocean Drilling Programs (ODP) Leg 195 and Leg 125. Most of the

samples are rock fragments (clasts) and small in size, bedded in serpentine mud matrix. Therefore,

interpretation of serpentinization environments and emplacement in the mantle wedge are ambiguous.

This chapter begins with the petrology, mineralogy and major element composition of

serpentinites by micro-Raman and electron microprobe analyses. The main focus of the study lies on

the light element geochemistry (Li, Be, B) and boron isotope ( 11B) composition of serpentine

minerals. A great amount of these serpentinites were investigated for bulk geochemistry including

light element and isotopic studies (Benton et al., 2001; Savov et al., 2004, 2007). These studies

emphasize the importance of Li-B- 11B analyses to understand element transport in active subduction

zones. Therefore, the high-resolution investigation of the light element distribution via ToF-SIMS

and SIMS in various serpentines and textures will allow a better understanding of the complex nature

of serpentinization, the behavior of light elements and B isotope evolution during serpentinization of

the mantle wedge. Furthermore, correlations between serpentine polymorph – textural site –

composition will be evaluated. These results will shed light on the nature and evolution of forearc

mantle serpentinization in the intra-oceanic supra subduction zone  environment of the Marianas.

4.2 Petrography of serpentinites and serpentine textures

This section gives a description of serpentinized peridotite fragments from different drill holes and

sections (i.e., different depths) within the serpentinite mud volcanoes South Chamorro Seamount

(ODP Leg 195, Site 1200) and Conical Seamount (ODP Leg 125, Site 779) on the Mariana forearc.

The majority of samples are derived from South Chamorro Sites 1200A and 1200E. The rocks exhibit

various stages of serpentinization. They are medium to heavily serpentinized (~ 40–100 %) with

generally lower degrees of serpentinization in the larger clasts (several cm in diameter). Serpentinites

are rocks composed of serpentine minerals, accessory magnetite, brucite and restitic primary Mg- and

Ca-Al-silicates. In the samples studied these primary mantle minerals are preserved: orthopyroxene

(Opx), clinopyroxene (Cpx), olivine (Ol) and spinel (Spl). Stronger serpentinized clasts are weaker

and broken into smaller pieces. In handspecimen and thinsections, the less serpentinized peridotites

have dark green color. Samples change to orange-brown color with increasing degree of
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serpentinization and amount of brucite-rich veins. All larger harzburgite clasts have massive

porphyroclastic fabrics. Foliation or deformation textures with some clastic disruptures can be

observed only in some small completely serpentinized fragments (e.g., E7H2).

The estimated original modal mineralogy of the rocks (for modal estimates only clasts >1 cm were

used) is 75–99 % Ol, up to 20 % Opx, up to 5 % Cpx and up to 5 % Spl (Table 4.1). This mineralogy

is typical for spinel harzburgite and dunite, visually presented in the ternary Ol-Opx-Cpx CIPW

normative classification diagram for peridotites in Fig. 4.1 (orange field). Previous geochemical

analyses of serpentinites from Site 1200 have shown that the serpentinite protoliths are dominantly

harzburgites with minor dunites (and one lherzolite; Shipboard Scientific Party, 2002c; blue dots in

Fig. 4.1).

The formation of serpentine can be described by a number of general reactions including olivine

and orthopyroxene (e.g., Johannes, 1967, 1968; Allen & Seyfried, 2003; Evans, 2004). In a purely

magnesian system, the reactions most commonly referred to are:

2Mg2SiO4    +    3H2O    =    Mg3Si2O5(OH)4    +    Mg(OH)2 (1)
  olivine             water               serpentine              brucite

Mg2SiO4    +    MgSiO3    +    2H2O    =    Mg3Si2O5(OH)4 (2)
  olivine      orthopyroxene     water              serpentine

In an iron containing system, the serpentinization reaction leads to the formation of secondary

spinel, i.e., magnetite. It is present as small opaque grains. The serpentinization reaction including

magnetite can be written as (e.g., Mével, 2003):

6(Mg,Fe)2SiO4  +  7H2O    =    3(Mg,Fe)3Si2O5(OH)4  +  Fe3O4  +  H2 (3)

    olivine              water              serpentine                magnetite   hydrogen

Fig. 4.1: CIPW normative compositions
of serpentinites from Site 1200 plotted in
the International Union of Geological
Societies (IUGS) classification system
for ultramafic rocks. Most of the Site
1200 clasts are harzburgites or dunites.
Orange field: visually estimated
composition of samples in this study,
blue dots: results from Shipboard
Scientific Party (2002c).
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Table 4.1: List of studied serpentinite fragments with visually estimated mineral modes (vol%).

Site Core and
Section

Interval and
piece number

Depth Ø Srp Ol Opx Cpx Cr-Al-
Spl

Brc

[mbsf] [mm] Vol %
125-
779A 10R-02 33-34 #1 79.26 15 98 - - - 2 x
779A 26R-02 72-75 #1 208.16 17 99 - - - 1 x
779A 34R-01 62-64 #1 284.32 15 98 - - - 2 x
195-
1200A 003R-01 81-84 #1 19.01 20 75 14 5 1 5 x
1200A 007R-01 4-6 #1 51.14 20 17 54 7 <1 2 x
1200A 007R-02 3-5 #1 51.72 18 71 25 2 <1 2 x
1200A 007R-02 40-42 #1 52.09 17 71 10 10 3 1 5
1200A 009R-01 6-8 #1 70.46 17 79 - 10 - 1 10
1200A 010R-01 95-97 #1 80.85 19 96 - - 2 2 x
1200A 011R-01 40-42 89.80 17 80 - - - <1 20
1200A 011R-01 69-72 90.09 16 73 20 5 <1 1 x
1200A 012R-01 3-5 108.73 16 52 32 12 4 <1 x
1200A 013R-01 25-27 108.95 17 79 12 6 <1 1 2
1200A 013R-01 90-92 109.60 16 70 26 - 2 2 x
1200A 013R-02 12-15 110.07 19 80 20 - - <1 x
1200A 015R-01 11-13 128.01 20 69 - - - 1 30
1200A 017G-02 76-79 > 147.20 17 51 40 3 1 5 x
1200E 005H-02 81-83 19.86 18 98 - - - 1 1
1200E 010H-02 63-65 54.53 14 80 - - - <1 20
1200D 001H-04 130-140 #1c 5.80 6 88 - - - 2 10
1200D 001H-04 130-140 #3f - " - 7 93 - - - 2 5
1200D 001H-04 130-140 #4f - " - 4 97 - - - 3 -
1200D 001H-04 130-140 #4g - " - 3 100 - - - - x
1200D 001H-04 130-140 #6a - " - 13 100 - - - - x
1200D 003H-01 130-140 #6a 11.20 4 75 5 - - - 20
1200E 001H-03 130-140 #1C 4.30 6 95 - - - 5 x
1200E 001H-03 130-140 #2H - " - 5 95 - - - - 5
1200E 001H-03 130-140 #3C - " - 3 95 - - - - 5
1200E 004H-01 130-140 #1C 13.30 6 100 - - - sulfide x
1200E 004H-01 130-140 #1D - " - 6 99 - - - 1 x
1200E 004H-01 130-140 #4 - " - 9 94 5 - - 1 x
1200E 004H-02 130-140 #1 14.80 12 95 - - - <1 5
1200E 004H-02 130-140 #2D - " - 4 100 - - - <1 x
1200E 004H-02 130-140 #4 - " - 12 80 - - - <1 20
1200E 004H-02 130-140 #5D - " - 3 95 - - - - 5
1200E 004H-02 130-140 #6 - " - 15 56 15 15 2 2 10
1200E 007H-02 130-140 #1c 28.70 6 94 - - - 1 5
1200E 007H-02 130-140 #2b - " - 6 80 - - - - 20 vein
1200E 007H-02 130-140 #2c - " - 8 80 - - - - 10
1200E 007H-02 130-140 #2e - " - 5 100 - - - <1 x
1200E 007H-02 130-140 #3b - " - 9 95 - - - <1 5
1200E 007H-02 130-140 #3e - " - 8 80 - - - - 20
1200E 007H-02 130-140 #4 - " - 24 83 5 10 2 <1 x
1200E 007H-02 130-140 #5a - " - 5 99 - - - - 1
1200E 007H-02 130-140 #5b - " - 6 95 - - - - 5
1200E 007H-02 130-140 #7a - " - 5 100 - - - - x
1200E 007H-02 130-140 #8d - " - 2 95 - - - - 5
1200E 007H-02 130-140 #8g - " - 2 94 - - - 1 5
1200E 007H-02 130-140 #8m - " - 2 100 - - - - x
1200E 007H-02 130-140 #8p - " - 2 85 - - - 10 5
1200E 007H-02 130-140 #8s - " - 2 100 - - - - x
1200F 002H-02 140-150 #2B 10.60 2.5 90 5 - 5 - x

(x = only in traces)
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The serpentine textures of the studied samples are described using the terminology of Wicks &

Whittaker (1977). Serpentinization in the samples is pervasive (see Hébert et al., 1990) and resulted

in the formation of mesh texture after olivine (= mesh rims and mesh centers) and the formation of

pseudomorphs after orthopyroxene (= bastites), both ‘replacing’ serpentinization (Fig. 4.2a–d).

Furthermore, often due to stress in the mantle rock, in opening fissures serpentine crystallized in

veins: in all serpentinite fragments several types and generations of serpentine veins cross the rock.

As the typical order of replacement is olivine - orthopyroxene - clinopyroxene - spinel, olivine

appears to be the mineral most intensively serpentinized and, in some samples, is entirely altered into

characteristic mesh textures with partly hourglass texture at the expense of olivine. Serpentinization

starts along fractures (see veins) and olivine grain boundaries producing a mesh or web of serpentine

veins separating (relict) olivine grains (e.g., Shipboard Scientific Party, 1990d). Between such

serpentine rims, i.e., along the former olivine grain boundaries, thin serpentine veins or median lines

are typically present, generally enriched in magnetite grains ± brucite. These boundary veins outline

crude polygons (Fig. 4.2a,b). In some samples, these polygons exhibit some distinct orientation (e.g.,

E7H2-5B) and/or preferred orientation. Finally, areas of entirely serpentinized olivines exhibit tablets

of mesh rim and mesh center serpentines. The pseudomorphing mesh rims can either be very thin and

vein-like or quite broad around olivine. Fine-grained magnetite occasionally is concentrated in mesh

centers, in rare cases, mesh centers are overgrown by brucite (Fig. 4.2c). Remnants of fresh olivine

have irregularly rounded shape and the generally small crystals (‘neoblasts’) can exceed 200 μm in

diameter (with lobate grain boundaries).

Serpentinization of orthopyroxene begins along its exsolution lamellae (vein-like). Intensively

serpentinized orthopyroxene is typically replaced by serpentine bastites ± brucite with brucite-veins

along the former cleavage planes. Relict orthopyroxene is irregularly shaped and often occurs as

porphyroblasts (>1 mm; Fig. 4.2g,h). Clinopyroxene is less abundant (generally <5 vol%) and is

hardly affected by the serpentinization. It has small grain size (<0.5 mm) with irregular shape and is

often associated with orthopyroxene (Fig. 4.2d,g). Primary spinel is hardly serpentinized, but is

irregularly rounded and the crystals have variable diameter of 0.1–2 mm (Fig. 4.2e,f). Only fragment

D1H4-4F contains large spinel grains which reacted to surrounding serpentine coronas (Fig. 4.2s).

Some clinopyroxene occurs as interstitial discrete lobed to vermicular grains at triple junctions

between (now serpentinized) olivine grains. These clinopyroxene grains may occur in symplectitic

association with tiny grains of spinel (Fig. 4.2e,f,h) and sulfide (e.g., Gréau et al., 2007). Further

observations are clinopyroxene-filled ‘en echelon’ microfractures that cross the serpentinized olivine

matrix in discontinuous parallel veinlets extending over several millimeters, often linked by spinel

veinlets (Fig. 4.2l). Sometimes, small clinopyroxene prisms or spindle-shaped grains grew on or

replaced the thin and regular clinopyroxene exsolution lamellae within orthopyroxene (Fig. 4.2i,k). In

some samples, serpentinization reached 100 % and even serpentinized the clinopyroxenes; these can

be now identified by their former rounded and lobate shape (Fig. 4.2m,n).

Most orthopyroxene crystals have no exsolution lamellae and are partly serpentinized along their

cleavage planes (Fig. 4.2d). Others have unserpentinized Cpx exsolution lamellae, even in the same
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sample together with the Opx without exsolution lamellae (Fig. 4.2i,j). Kink-banding also can be

observed in some orthopyroxenes (Fig. 4.2j).

   

   

   

Fig. 4.2: Back-scattered electron (BSE) images of characteristic textures in serpentinites from the Mariana
forearc mantle wedge.
a) Relict Ol cores (bright) surrounded by magnetite-free serpentine mesh rims and former grain boundaries
with Mt (bright dots), sample A012R01(3-5),
b) Transition between a partly serpentinized area with relict Ol (bright) and a completely serpentinized area
(lower half), sample A003R01,
c) Completely serpentinized brucite-rich area, the bright mesh center is amakinite, sample A011R01(40-42),
d) Partly serpentinized Opx and Cpx (brighter phase in the centre), sample A007R01,
e) Cpx with adjacent spinel (brighter phase in the centre) surrounded by mesh serpentine, sample A007R01,
f) Cpx with adjacent spinel (brighter phase in the centre) surrounded by mesh serpentine, sample A010R01.

(a) (b)

(c)                                (d)

(e) (f)
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Fig. 4.2 (continued): BSE images of characteristic textures in serpentinites from the Mariana forearc mantle
wedge.
g) Cpx in association with Opx, slightly serpentinized, sample A017G02,
h) Opx serpentinized along cleavage planes, Cpx exsolution lamellae in Opx (lower part), sample 7R01-4,
i) Cpx exsolution lamellae in Opx, sample 7R1-4,
j) Kink banding in Opx, sample 7R1-4,
k) Cpx crystals along serpentinized exsolution lamellae in Opx, sample A003R01,
l) Strings of spinel grains in mesh serpentine matrix, sample A012R01W.

(g)      (h)

(i)      (j)

(k)      (l)
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(m)      (n)

(o)      (p)

(q)      (r)

(s) Fig. 4.2 (continued): BSE images of
characteristic textures in serpentinites from the
Mariana forearc mantle wedge. m ) Entirely
serpentinized Cpx, D1H4-6A, n)  Entirely
serpentinized Opx, D1H4-4C, o)  Broad
‘Frankenstein’-type vein with stitches veins,
A011R01(49), p) Late chrysotile vein intruding
the clast from the outside, sample A007R01, q)
Serpentine ± brucite veins, displacements
indicate deformation during serpentinization,
E7H2-2C, r) Broad serpentine vein associated
with brucite/amakinite blades, mesh texture
(lower half), E7H2-2B, and s) Serpentine after
spinel, bright cores are relict spinel, D1H4-4F.
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The most variable structural features in the serpentinized peridotites are veins. Several generations

of veining can be recognized in all serpentinized clasts. The earliest serpentine veins formed during

the first serpentinization steps when cracks in the mantle opened and aqueous fluids entered the

peridotite. Some of these large veins are zoned; in the centre of the old vein serpentine crystallized

out of later fluids (Fig. 4.2o). This kind of veining indicates further extension of the rock during

ongoing serpentinization. Typically, these veins contain variable amounts of brucite and magnetite

and are often zoned parallel to the vein boundaries.

Another consequence of such extension are so-called ‘Frankenstein’ textures; these large early

veins have been intersected by a series of roughly perpendicular veins that extend across the

serpentinization veins and a short distance into the surrounding rocks (Fig. 4.2o). This veining type,

already described by Shipboard Scientific Party (1990c), was interpreted as indicating that the stress

mechanism may be the expansion of the adjoining, less-serpentinized rock as it continues to

serpentinize and expand. As the already existing serpentine vein cannot expand further, it experiences

brittle failure in extension and the opening cracks fill with serpentine cross-fibers, resulting in

‘Frankenstein’ textures.

Later veins are generally thinner and with irregular orientation and paths within the rocks

(Fig. 4.2p,q). They always cut through the textures already serpentinized. The latest veins, formed by

fibrous serpentine, thin out from the outside to the inside of single clasts and are interpreted to have

formed during ascent of the clasts within the serpentine mud (Fig. 4.2p). Some veins are even

associated with brucite-veins (Fig. 4.2q,r) or comprise brucite-admixtures and/or magnetite. All the

described veins crystallized as serpentine minerals out of an aqueous fluid, rather than having

replaced former serpentine textures.

4.2.1 Identification and discrimination of serpentine polymorphs and brucite

Serpentine minerals in ultramafic rocks are characteristically abundant in a wide variety of

microtextures, reflecting different P-T-fluid-strain conditions and fluid-rock ratios during formation

(e.g., Wicks & Whittaker, 1977; Moody, 1979; O’Hanley et al., 1992, O’Hanley, 1996; O’Hanley &

Wicks, 1995; Wunder et al., 2001; Evans, 2004; Frost & Beard, 2007; Seyfried et al., 2007). Factors

like similar geochemistry, similar optical properties and fine-grained intergrowths of serpentine make

it difficult to distinguish the various serpentine polymorph parageneses.

From crystallographic perspective, serpentine [Mg3Si2O5(OH)4] is a tri-octahedral sheet/layer

silicate consisting of alternating infinite sheets of 4-coordinated Si and 6-coordinated Mg. Serpentine

can crystallize as four different polymorphs which are characterized by different wrapping modes of

tetrahedral (T) and octahedral (O) sheets in response to their geometrical misfit, as the lateral

dimension of O layers is 3 to 5 % greater than that of T layers (e.g., Wicks & Whittaker, 1975; Deer

et al., 1992). The polymorphs are lizardite (planar structure), chrysotile (scrolled cylindrical

structure), antigorite (modulated structure; the 1:1 layer periodically reverses, resulting in the loss of

an octahedrally coordinated site) and polygonal serpentine (tubular with a polygonized section)
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(Wicks & O’Hanley, 1988; Mével, 2003; Andreani et al., 2007). After Whittaker & Zussman (1956),

chrysotile can further be subdivided into the three structural varieties ortho-, clino- and

parachrysotile. Polygonal serpentine is a complex assembly of lizardite and chrysotile, where layers

of lizardite are arranged as an outer shell around chrysotile fibers (Cressey & Zussman, 1976;

Middleton & Whittaker, 1976). Due to their different crystalline structures, serpentine polymorphs

can be identified by their XRD patterns and TEM images. However, micro-Raman spectroscopy

proved to be a quick, easy and reliable method and has been used as a technique complementary to

optical microscopy and SEM-EDS for rapid determination of serpentine polymorphs (e.g., Rinaudo et

al., 2003; Groppo et al., 2006). This technique not only allows the discrimination of the four major

serpentine polymorphs, but also the identification of associated phases like brucite (and excluding the

existence of other secondary phases such as talc).

Optical examination and X-ray diffraction analyses of Mariana mantle wedge serpentinites reveal

that chrysotile and lizardite are the most abundant serpentine polymorphs (Fryer et al., 1990;

Shipboard Scientific Party, 2002c). Preliminary bulk rock powder diffraction (XRD) analyses of

South Chamorro serpentinites investigated in the present study, kindly performed by Ilse Glass

(‘Institut für Geowissenschaften’, Universität Heidelberg) confirm this observation revealing the

mineral assemblages clinochrysotile + lizardite + magnetite.

Micro-Raman spectra were obtained from selected areas of mineral grains that had previously

been characterized by optical and electron (SEM-EDS) microscopy. Typical spectra for identified

antigorite, lizardite, chrysotile, polygonal serpentine and brucite are summarized in Fig. 2.5, Chapter

2. Additional spectra are given in Appendix B6. Representative positions (i.e., wavenumbers) of the

micro-Raman bands related to the different polymorphs are presented in Table 2.4, Chapter 2.

The micro-Raman examination on Mariana serpentinites shows that serpentine polymorphs are

lizardite > chrysotile > polygonal serpentine >> antigorite, in order of decreasing abundance.

Antigorite was only identified in serpentinite from ODP Leg 125, Conical Seamount (10R02,

26R02), but not in serpentinites from ODP Leg 195, South Chamorro Seamount. The serpentine

polymorphs occur in different microstructural positions and can be ‘mixed’ or intergrown with

brucite.

4.2.2 Serpentine polymorphs and brucite correlated with their textural position

The results of micro-Raman spectroscopy (Appendix B6) suggest that in the serpentinites recovered at

South Chamorro Seamount the serpentine polymorphs chrysotile (Ctl), lizardite (Liz) and polygonal

serpentine (Pol) can be assigned to different serpentine textures. However, the correlations are

different between single clasts which may indicate different ‘sample localities’ within the

serpentinized mantle wedge. The polymorph-texture correlation is an important observation that

could indicate PT-conditions during formation and has rarely been described before. By contrast,

Pelletier (2008) observed that in serpentinites from three different geological environments (oceanic,

ophiolitic, alpine) texture and serpentine polymorph are not correlated.
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A characteristic correlation valid for all studied Mariana mantle wedge serpentinites cannot be

determined given the great variety of serpentinites. This variety can be explained by the broad range

of serpentinization degree and, more significant, differences in the location in the mantle wedge and

the moment (i.e., the relative point in time) of serpentinization. Hence in the following representative

examples will be described, whereas deviations in the polymorph-texture correlation are expected in

the natural open system of the forearc mantle.

Sample A003R01 (Table 4.2) comprises (i) partly serpentinized regions with relict olivine grains

(Fig. 4.3a) and (ii) regions that are completely serpentinized (Fig. 4.3b). Veins are relatively thin

(<20 μm) and texturally late compared to mesh textures as they cross-cut mesh centres. These veins

probably formed as a reaction to the volume expansion of the rock during serpentinization. One broad

dominant vein through the studied fragment is slightly zoned by alternating lizardite/brucite

abundances and zones of Cr-Spl enrichment (Fig. 4.3d). In areas with abundant relict olivine, former

crystal boundaries (texturally early) are predominantly composed of brucite. Mesh rims around relict

olivines are composed of chrysotile (+ bucite). Mesh centers are chrysotile (Fig. 4.3a,b). Bastites

(here veins through restitic Opx) are composed of lizardite (with tiny scattered Cr-Spl grains;

Fig. 4.3c). Where the rock was serpentinized to a higher degree, former grain boundaries are

composed of brucite with a lizardite component (Fig. 4.3b); a variable but Liz+Brc composition of all

crystal boundaries in the fragment is characteristic. Mesh rims around serpentine mesh centers are

lizardite.

Sample A007R01 (Table 4.2) comprises (i) mainly areas with relict primary minerals (Ol, Opx,

Cpx) and to a lesser extend (ii) entirely serpentinized parts (Fig. 4.4). The oldest textures are fibrous

veins that must have crystallized out of the earliest fluids entering the rock; they are typically made

up of chrysotile and cut irregularly into the fragment (Fig. 4.4c,d; from the outside to the inside). A

broad zoned vein crosses the fragment and also crosses thinner lizardite + brucite veins which

represent younger fluid generations (Fig. 4.4e). The zonation of the broad vein implies stepwise fluid

pulses of changing composition leading to the assemblage polygonal serpentine + brucite of varying

abundance ratios (Fig. 4.4e). Mesh rims around relict primary minerals (particularly Ol) are mixtures

of lizardite and brucite (Fig. 4.4a). However, when serpentinization proceeds, mesh center olivine is

replaced by lizardite and polygonal serpentine, mesh rims are mineral mixtures of lizardite and

brucite (Fig. 4.4b). Magnetite grains exist along former grain boundaries which are composed of

brucite with minor lizardite (Fig. 4.4a).

In sample A013R01(25-27) lizardite has a strong tendency to crystallize in mesh rims and of

chrysotile to grow in veins. Polygonal serpentine can be identified in all textures. In sample

A011R01(69-72), mesh rims are composed of lizardite and mesh centers are composed of pure

chrysotile. Bastite serpentines and former grain boundaries (now thin serpentine veins) are composed

of polygonal serpentine.
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Fig. 4.3: Back-scattered electron (BSE) images of
sample A003R01 indicating micro-Raman
characterized mineral assemblages (table 4.2). a)
Relict olivine core within Ctl mesh centers
surrounded by Ctl + Brc mesh rims, b) entirely
serpentinized area with Ctl mesh centers
surrounded by Liz mesh rims and Brc + Liz along
former crystal boundaries, c)  Opx slightly
serpentinized by Liz and Ctl mesh rim around
olivine, and d) irregularly zone vein composed of
Liz + Brc and Mt grains crossed by a thin Mt-rich
vein.



Chapter 4 - Mantle Wedge Serpentinites

48

As described above, the serpentinized peridotites from South Chamorro Seamount comprise a

great variety of textures that are representative for early to late serpentinization stages. The micro-

Raman investigation (see also Appendix B5) suggests the following serpentine polymorph + brucite

distribution between textures:

a) The serpentinite fragments are commonly crosscut by early and late veins. Early veins are

broad and zoned, often known as ‘Frankenstein’-veins. In A013R01(25-27), chrysotile is the

dominant serpentine in the broad vein, with lizardite in a thin central zone comprising also spinel. A

zoned broad vein in A003R01 is brucite-rich and serpentine is lizardite. The same mineral

polymorphs are observed in a zoned vein in A007R01 in alternation with polygonal + brucite vein

Fig. 4.4: Back-scattered electron (BSE) images of
sample A007R01 micro-Raman characterized
mineral assemblages (Table 4.2). a) Area with
relict Ol, mesh rims are composed of Liz + Brc,
mesh centers are Pol ±Brc, former crystal
boundaries are composed of Brc + Liz, b) entirely
serpentinized area with Liz and Pol mesh centers,
c) fibrous Ctl veins, d) thin Liz veins crossed by a
fibrous Ctl vein, and e) broad vein zoned by
polygonal serpentine and Brc, crossing veins are
Liz.
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zones: perpendicularly crossing veins are lizardite + brucite. Another type of vein irregularly crosses

most serpentinite fragments, entering from the outside: fibrous chrysotile veins. These veins can be

interpreted as the latest, i.e., youngest serpentine generation (e.g., Viti & Mellini, 1998). Serpentine in

veins with brucite or magnetite is predominantly lizardite.

b) Former grain boundaries are the first textural feature, when serpentinization of mainly olivine

grains begins. As observed in sample A003R01, early thin grain boundaries are composed of brucite.

As the degree of serpentinization increases, these veins are composed of brucite + lizardite. Similarly,

lizardite with minor brucite but abundant magnetite is observed along former grain boundaries in

sample A007R01. In entirely serpentinized areas like in samples A013R01(25-27) and A011R01(69-

72), a transformation into polygonal serpentine can be observed. The mineralogy of these thin veins

implies that early, Fe-rich (because of magnetite formation) fluids pass along grain boundaries and

crystallize brucite + lizardite. Slow ongoing fluid percolation through the rock leads to

pseudomorphosis of lizardite into polygonal serpentine.

c) Further serpentinization results in the formation of mesh rim textures around and replacing

olivine grains. Changes from partly to entirely serpentinized zones in a clast indicate fluids that

slowly percolate through the rock and use grain boundaries and cracks as pathways inducing

serpentinization fronts. Early mesh rims around relict olivine are composed either of chrysotile ±

brucite (A003R01), or lizardite ± brucite (A007R01). Mesh rims around serpentine mesh centers, i.e.,

in entirely serpentinized areas, are composed of lizardite (± brucite). Also in other samples, lizardite ±

brucite can be observed as the predominant assemblage in mesh rims.

d) Mesh centers form as pseudomorphs after relict olivine cores which are surrounded by already

formed serpentine (± brucite) mesh rims. Early mesh centers are chrysotile or polygonal serpentine.

e) Bastites are pseudomorphs after orthopyroxene. Early serpentinization veins through Opx are

composed of lizardite with tiny scarce Cr-spinel grains (A003R01, A007R01). In samples with

advanced serpentinization, bastites are composed of polygonal serpentine (A011R01(69-72)).

In summary, the micro-Raman evaluation reveals that the investigated Mariana forearc

serpentinites are characterized by a tendency of different serpentine polymorphs to crystallize in

certain textures. As a simplified model, the following serpentinization steps are proposed:

• early ‘Frankenstein’-veins: chrysotile, less lizardite (with spinel or brucite due to restitic fluids)

or polygonal serpentine + brucite

• thin veins along former grain boundaries (early): brucite + lizardite

• mesh rims (early): predominantly lizardite ± brucite (rarely chrysotile ± brucite)

• bastites: polygonal serpentine with lizardite lamellae

• mesh centers (late): chrysotile ± magnetite (little polygonal serpentine)

• veins perpendicular to early veins (‘Frankenstein’ stitches): fibrous chrysotile (due to expansion,

high water-rock-ratio)

• veins entering the clast from the outside, mostly late: fibrous chrysotile (due to high water-rock-

ratios)



Chapter 4 - Mantle Wedge Serpentinites

50

Ta
bl

e 
4.

2:
 E

xa
m

pl
ar

y 
m

in
er

al
 p

ha
se

s 
id

en
ti

fi
ed

 b
y 

m
ic

ro
-R

am
an

 s
pe

ct
ro

m
et

ry
 w

it
h 

th
ei

r 
te

xt
ur

al
 s

it
e 

an
d 

re
la

te
d 

m
aj

or
 e

le
m

en
t c

om
po

si
ti

on
 (

w
t%

).
N

um
be

rs
 o

f S
IM

S,
 R

am
an

 a
nd

 E
P

M
A

 a
re

 g
iv

en
 fo

r 
or

ie
nt

at
io

n.

ar
ea

 w
it

h
 r

el
ic

t 
m

in
er

al
s

ar
ea

 e
n

ti
re

ly
 s

er
p

en
ti

n
iz

ed

S
am

p
le

A
00

3(
81

-8
4)

A
00

3(
81

-8
4)

S
IM

S
 N

o
27

29
17

18
20

16
21

30
19

8
10

12
9

13

R
am

an
 N

o
9

8
2

3
4

1
6

7
5

10
12

13
11

14

E
P

M
A

27
41

5
14

37
1

42
46

33
9

38
18

-1
9

44
-4

6
11

te
xt

u
re

b
as

ti
te

C
p

x
cr

ys
t 

b
o

u
n

d
m

es
h

 
ce

n
te

r
m

es
h

 
ce

n
te

r
m

es
h

 r
im

m
es

h
 r

im
m

es
h

 r
im

O
l

cr
ys

t 
b

o
u

n
d

m
es

h
 

ce
n

te
r

m
es

h
 

ce
n

te
r

m
es

h
 r

im
m

es
h

 r
im

p
o

ly
m

o
rp

h
L

iz
C

p
x

B
rc

C
tl

C
tl

C
tl

+B
rc

C
tl

+B
rc

C
tl

O
l

B
rc

+L
iz

C
tl

C
tl

L
iz

L
iz

S
iO

2
41

.9
3

57
.0

3
7.

74
42

.9
2

42
.6

6
42

.5
2

42
.8

8
43

.0
8

41
.1

6
8.

01
41

.2
5

41
.4

7
42

.3
5

42
.6

3

Ti
O

2
0.

00
0.

00
0.

01
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

01
0.

00
0.

00

A
l 2

O
3

1.
14

1.
53

0.
00

0.
00

0.
02

0.
00

0.
01

0.
07

0.
00

0.
26

0.
22

0.
17

0.
12

0.
09

C
r 2

O
3

0.
38

0.
68

0.
03

0.
04

0.
00

0.
02

0.
01

0.
05

0.
00

0.
01

0.
00

0.
03

0.
00

0.
00

F
eO

10
.3

3
5.

60
10

.4
2

7.
89

7.
55

5.
00

3.
89

5.
43

8.
36

11
.5

0
4.

54
4.

81
5.

57
5.

13

M
n

O
0.

25
0.

15
0.

08
0.

14
0.

24
0.

11
0.

08
0.

08
0.

10
0.

13
0.

13
0.

15
0.

04
0.

08

M
g

O
32

.5
8

35
.3

8
60

.9
6

33
.6

6
33

.9
8

37
.6

2
38

.3
8

38
.1

0
50

.3
9

55
.9

5
36

.5
3

36
.6

1
37

.6
8

38
.1

2

C
aO

0.
58

0.
37

0.
11

0.
74

0.
77

0.
19

0.
32

0.
27

0.
01

0.
13

0.
52

0.
46

0.
19

0.
18

N
a

2O
0.

09
0.

00
0.

02
0.

06
0.

06
0.

09
0.

07
0.

06
0.

04
0.

36
0.

06
0.

04
0.

04
0.

07

K
2O

0.
04

0.
00

0.
00

0.
12

0.
12

0.
02

0.
05

0.
07

0.
01

0.
04

0.
05

0.
03

0.
04

0.
05

N
iO

0.
04

0.
08

0.
04

0.
25

0.
27

0.
04

0.
18

0.
09

0.
38

0.
05

0.
07

0.
08

0.
04

0.
00

To
ta

l
87

.3
7

10
0.

81
79

.3
9

85
.8

2
85

.6
6

85
.6

1
85

.8
7

87
.3

0
10

0.
45

76
.4

4
83

.3
6

83
.8

7
86

.0
6

86
.3

4

ox
yg

en
s

14
6

14
14

14
14

14
14

4
14

14
14

14
14

S
i

4.
06

1
1.

94
8

0.
93

9
4.

16
8

4.
14

8
4.

08
3

4.
08

1
4.

06
7

0.
99

6
1.

01
8

4.
06

7
4.

06
8

4.
05

8
4.

06
3

Ti
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
0

0.
00

0

A
l

0.
13

0
0.

06
2

0.
00

0
0.

00
0

0.
00

3
0.

00
0

0.
00

1
0.

00
8

0.
00

0
0.

03
8

0.
02

5
0.

02
0

0.
01

4
0.

01
0

C
r

0.
02

9
0.

01
8

0.
00

2
0.

00
3

0.
00

0
0.

00
1

0.
00

1
0.

00
4

0.
00

0
0.

00
1

0.
00

0
0.

00
2

0.
00

0
0.

00
0

F
e

2+
0.

83
7

0.
16

0
1.

05
8

0.
64

0
0.

61
4

0.
40

2
0.

31
0

0.
42

9
0.

16
9

1.
22

2
0.

37
4

0.
39

4
0.

44
6

0.
40

9

M
n

0.
02

0
0.

00
4

0.
00

8
0.

01
1

0.
02

0
0.

00
9

0.
00

6
0.

00
6

0.
00

2
0.

01
4

0.
01

1
0.

01
2

0.
00

3
0.

00
7

M
g

4.
70

4
1.

80
2

11
.0

27
4.

87
3

4.
92

6
5.

38
5

5.
44

5
5.

36
1

1.
81

8
10

.5
93

5.
36

8
5.

35
4

5.
38

2
5.

41
6

C
a

0.
06

0
0.

01
4

0.
01

4
0.

07
7

0.
08

0
0.

02
0

0.
03

3
0.

02
7

0.
00

0
0.

01
8

0.
05

4
0.

04
9

0.
01

9
0.

01
8

N
a

0.
01

7
0.

00
0

0.
00

4
0.

01
1

0.
01

2
0.

01
7

0.
01

2
0.

01
1

0.
00

2
0.

08
8

0.
01

1
0.

00
8

0.
00

8
0.

01
3

K
0.

00
5

0.
00

0
0.

00
0

0.
01

5
0.

01
5

0.
00

2
0.

00
6

0.
00

9
0.

00
0

0.
00

6
0.

00
6

0.
00

4
0.

00
5

0.
00

6

N
i

0.
01

4
0.

00
9

0.
01

8
0.

08
8

0.
09

3
0.

01
5

0.
06

1
0.

03
1

0.
03

3
0.

02
3

0.
02

6
0.

02
8

0.
01

3
0.

00
0

To
ta

l
9.

87
8

4.
01

7
13

.0
70

9.
88

7
9.

91
0

9.
93

3
9.

95
7

9.
95

3
3.

02
1

13
.0

21
9.

94
3

9.
94

0
9.

94
8

9.
94

1

M
g

#
84

.5
8

91
.6

5
91

.1
9

88
.2

0
88

.6
1

92
.9

1
94

.5
1

92
.5

0
91

.3
9

89
.5

6
93

.3
1

92
.9

4
92

.3
0

92
.8

8

C
tl 

- 
ch

ry
so

til
e,

 L
iz

 -
 li

za
rd

ite
, P

ol
 -

 p
ol

yg
on

al
, B

rc
 -

 b
ru

ci
te

, O
l -

 o
liv

in
e,

 C
px

 -
 c

lin
op

yr
ox

en
e 

/ c
ry

st
 b

ou
nd

 -
 f

or
m

er
 c

ry
st

al
 b

ou
nd

ar
y.



Chapter 4 - Mantle Wedge Serpentinites

51

Ta
bl

e 
4.

2 
(c

on
tin

ue
d)

:
 E

xa
m

pl
ar

y 
m

in
er

al
 p

ha
se

s 
id

en
ti

fi
ed

 b
y 

m
ic

ro
-R

am
an

 s
pe

ct
ro

m
et

ry
 w

it
h 

th
ei

r 
te

xt
ur

al
 s

it
e 

an
d 

re
la

te
d 

m
aj

or
 e

le
m

en
t

 c
om

po
si

ti
on

 (
w

t%
).

 N
um

be
rs

 o
f S

IM
S,

 R
am

an
 a

nd
 E

P
M

A
 a

re
 g

iv
en

 fo
r 

or
ie

nt
at

io
n.

b
ro

ad
 v

ei
n

 t
h

ro
u

g
h

 t
h

e 
cl

as
t

ar
ea

 w
it

h
 r

el
ic

t 
m

in
er

al
s

S
am

p
le

A
00

3(
81

-8
4)

A
00

7

S
IM

S
 N

o
6

5
4

3
1

16
(9

)
-

6
in

 2
0

in
 5

2
3

7

R
am

an
 N

o
15

16
17

18
19

24
34

41
33

35
36

38
37

39

E
P

M
A

29
22

18
10

1
12

3
33

16
6

29
25

3
21

46

te
xt

u
re

ve
in

ve
in

ve
in

ve
in

ve
in

C
p

x
cr

ys
t 

b
o

u
n

d
m

es
h

 
ce

n
te

r
m

es
h

 r
im

m
es

h
 r

im
m

es
h

 r
im

m
es

h
 r

im
o

liv
in

e
m

es
h

 r
im

p
o

ly
m

o
rp

h
L

iz
B

rc
+L

iz
L

iz
+B

rc
L

iz
+B

rc
L

iz
C

p
x

B
rc

+L
iz

P
o

l(
+B

rc
+

O
l)

L
iz

+B
rc

L
iz

+B
rc

L
iz

+B
rc

L
iz

 (
+B

rc
)

O
l

L
iz

(+
B

rc
 

+O
l)

S
iO

2
42

.5
4

38
.3

8
7.

74
27

.4
1

42
.8

6
53

.9
2

32
.8

0
36

.4
2

37
.9

3
38

.5
1

19
.9

6
38

.8
8

40
.7

3
37

.6
4

Ti
O

2
0.

02
0.

00
0.

01
0.

01
0.

00
0.

02
0.

01
0.

00
0.

01
0.

00
0.

00
0.

00
0.

01
0.

00

A
l 2

O
3

0.
09

0.
05

0.
01

0.
03

0.
07

1.
33

0.
00

0.
01

0.
01

0.
02

0.
00

0.
02

0.
00

0.
00

C
r 2

O
3

0.
00

0.
00

0.
02

0.
00

0.
00

0.
35

0.
02

0.
00

0.
00

0.
00

0.
00

0.
03

0.
01

0.
00

F
eO

5.
52

4.
71

13
.4

8
9.

25
4.

51
1.

76
6.

31
6.

45
5.

39
5.

26
22

.2
9

4.
85

8.
56

4.
97

M
n

O
0.

11
0.

11
0.

23
0.

11
0.

08
0.

10
0.

05
0.

04
0.

08
0.

05
0.

42
0.

04
0.

17
0.

03

M
g

O
37

.2
3

43
.7

7
61

.3
6

46
.1

9
38

.4
0

18
.0

3
42

.2
3

42
.0

0
40

.7
8

41
.6

7
42

.6
9

41
.1

8
50

.7
5

41
.4

0

C
aO

0.
20

0.
18

0.
05

0.
09

0.
17

24
.6

0
0.

09
0.

07
0.

14
0.

13
0.

30
0.

10
0.

00
0.

10

N
a

2O
0.

10
0.

13
0.

05
0.

07
0.

07
0.

08
0.

02
0.

00
0.

04
0.

00
0.

01
0.

03
0.

00
0.

00

K
2O

0.
04

0.
02

0.
01

0.
00

0.
04

0.
00

0.
00

0.
02

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

N
iO

0.
02

0.
06

0.
00

0.
17

0.
05

0.
03

0.
31

0.
39

0.
34

0.
40

0.
32

0.
32

0.
39

0.
32

To
ta

l
85

.8
7

87
.4

0
82

.9
3

83
.3

1
86

.2
5

10
0.

23
81

.8
4

85
.4

0
84

.7
1

86
.0

4
86

.0
0

85
.4

5
10

0.
62

84
.4

6

ox
yg

en
s

14
14

14
14

14
6

14
14

14
14

14
14

4
14

S
i

4.
08

3
3.

66
6

0.
91

4
2.

90
6

4.
07

4
1.

95
4

3.
41

2
3.

59
9

3.
73

8
3.

73
2

2.
26

3
3.

78
0

0.
98

6
3.

71
5

Ti
0.

00
1

0.
00

0
0.

00
0

0.
00

1
0.

00
0

0.
00

1
0.

00
1

0.
00

0
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

A
l

0.
01

0
0.

00
5

0.
00

1
0.

00
3

0.
00

8
0.

05
7

0.
00

0
0.

00
2

0.
00

2
0.

00
2

0.
00

1
0.

00
2

0.
00

0
0.

00
0

C
r

0.
00

0
0.

00
0

0.
00

1
0.

00
0

0.
00

0
0.

01
0

0.
00

1
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
2

0.
00

0
0.

00
0

F
e

2+
0.

44
3

0.
37

6
1.

33
2

0.
82

1
0.

35
9

0.
05

3
0.

54
9

0.
53

3
0.

44
4

0.
42

7
2.

11
4

0.
39

5
0.

17
3

0.
41

0

M
n

0.
00

9
0.

00
9

0.
02

3
0.

01
0

0.
00

6
0.

00
3

0.
00

5
0.

00
3

0.
00

6
0.

00
4

0.
04

1
0.

00
3

0.
00

3
0.

00
2

M
g

5.
32

7
6.

23
3

10
.8

02
7.

30
2

5.
44

1
0.

97
4

6.
54

9
6.

18
6

5.
99

2
6.

02
0

7.
21

4
5.

96
8

1.
83

2
6.

09
0

C
a

0.
02

1
0.

01
8

0.
00

6
0.

01
0

0.
01

7
0.

95
5

0.
01

0
0.

00
7

0.
01

5
0.

01
3

0.
03

7
0.

01
0

0.
00

0
0.

01
1

N
a

0.
01

9
0.

02
4

0.
01

1
0.

01
3

0.
01

3
0.

00
6

0.
00

4
0.

00
0

0.
00

7
0.

00
1

0.
00

2
0.

00
5

0.
00

0
0.

00
0

K
0.

00
5

0.
00

2
0.

00
1

0.
00

0
0.

00
4

0.
00

0
0.

00
0

0.
00

2
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
0

0.
00

0

N
i

0.
00

8
0.

01
9

0.
00

0
0.

06
4

0.
01

5
0.

00
4

0.
11

8
0.

13
8

0.
12

1
0.

13
8

0.
13

1
0.

11
3

0.
03

4
0.

11
5

su
m

9.
92

6
10

.3
53

13
.0

91
11

.1
30

9.
93

9
4.

01
7

10
.6

48
10

.4
71

10
.3

24
10

.3
37

11
.8

03
10

.2
78

3.
03

0
10

.3
43

M
g

#
92

.1
8

94
.1

8
88

.8
5

89
.7

9
93

.7
2

94
.5

3
92

.2
1

92
.0

2
93

.0
1

93
.3

2
77

.0
0

93
.7

6
91

.2
0

93
.6

6

C
tl 

- 
ch

ry
so

til
e,

 L
iz

 -
 li

za
rd

ite
, P

ol
 -

 p
ol

yg
on

al
, B

rc
 -

 b
ru

ci
te

, O
l -

 o
liv

in
e,

 C
px

 -
 c

lin
op

yr
ox

en
e 

/ c
ry

st
 b

ou
nd

 -
 f

or
m

er
 c

ry
st

al
 b

ou
nd

ar
y.



Chapter 4 - Mantle Wedge Serpentinites

52

4.3 Major element contents of serpentinite forming minerals

The studied samples contain some primary and secondary minerals. Relict primary minerals are

olivine, orthopyroxene, clinopyroxene and spinel. Secondary minerals are pseudomorphing

serpentine, brucite/amakinite and magnetite. Further products of serpentinization are Ca-(OH)-rich

phases and ‘dark serpentine’. Major elements contents of minerals have been determined via electron

probe micro analyses (EPMA). The results are listed in tables B2.1-B2.4 in Appendix B. Data were

normalized assuming Fe as Fe2+ in all minerals, except for spinel where Fe2+ and Fe3+ were calculated.

Mg# was calculated as 100xMg/(Mg + Fe2+), Cr# was calculated as 100xCr/(Cr + Al).

4.3.1 Olivine

Olivine is the most abundant primary mineral in Mariana forearc peridotites and occurs as more or

less rounded grains with a diameter of up to ~200 μm. The forsterite (Fo) composition of olivine is

very restricted in the range 90.3 to 92.8 (mean value of 91.4), typical for depleted upper mantle

peridotites (Bonatti & Michael, 1989; Ishii et al., 1992; Fig. 4.5). In particular, the mean Fo (= Mg#)

of olivine is 91.4 in A003R01 and A007R01 and 91.3 in A011-69-72, A013-1-25 and A017G02.

Values are the same as reported by e.g., D’Antonio & Kristensen (2004; Mg# = 91.5-92.5). If

comparing the Fo of olivine with the Cr# of chromian spinel (see later), the harzburgites plot in the

olivine-spinel mantle array (Arai 1994; Fig. 4.5b). NiO contents are variable between 0.28 and

0.53 wt% (mean value of 0.41 wt%) which coincides well with the compositional range of mantle

olivines (Takahashi et al., 1987; Fig. 4.5a).
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Fig. 4.5: a) Fo-content vs. NiO (wt%) in olivine from Mariana mantle wedge serpentinites. Solid lines show
the compositional range of mantle olivines defined by those in mantle-derived xenoliths (Takahashi et al.,
1987). b) Cr-number in spinel vs. Fo-content in olivine from Mariana mantle wedge serpentinites. The light
grey field represents values for oceanic SSZ peridotites and the dark grey field those for abyssal ocean ridge
peridotites (from Pearce et al., 2000 and references therein). OSMA, olivine-spinel mantle array after Arai
(1994) and partial melting trend after Pearce et al. (2000 and references therein). FFM: fertile MORB
mantle, SSZ: supra subduction zone. Modified after Pearce et al. (2000) and references therein.
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4.3.2 Pyroxenes

Porphyroclasts of primary orthopyroxene (Opx) display a large compositional range within the

field of enstatite and are variably affected by serpentinization. Mg# ranges from ~91 to ~92

(Fig. 4.6b). Some outlier at lower Mg#, can be interpreted as evidence for melt infiltration (Pelletier,

2008). Cr2O3 contents are low but variable with up to 0.8 wt% and correlate with Al2O3. Al2O3

contents range between 0.3 and 2.4 wt% (Fig. 4.6c). Al and Cr contents decrease with a drop in

pressure and temperature. Na2O concentrations are well below 0.2 wt% (Fig. 4.6a). Cr2O3 contents of

Opx from sample A017G02 are higher at the same Al2O3 content compared to other Opx (Fig. 4.6c).

Some orthopyroxenes have clinopyroxene exsolution lamellae.
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Clinopyroxenes (Cpx) are generally smaller than Opx crystals, are lobate and rounded and occur

in much lower abundance (<5 vol%), mostly associated with Opx. Mg# of Cpx ranges from 92.4 to

95.5 (Fig. 4.6b). The composition varies in the field of Mg-rich diopside for the serpentinites with

low Na2O and Cr2O3 concentrations. Only Cpx in clast A017G02 is enriched in jadeite component,

indicated by Na2O >0.6 wt%. It is also enriched in chromian compared to other Cpx (Cr2O3 >1 wt%;

Fig. 4.6a,c). Na increase in Cpx is usually assumed to indicate high-pressure melting; hence, sample

Fig. 4.6a:  Cr2O3 (wt%) vs. Na2O (wt%) contents
of opx (diamonds) and cpx (squares). Note the
positive correlation between Cr and Al and lower
Cr2O3 abundances in opx.

Fig. 4.6b:  Mg# vs. Al2O3 (wt%) contents for opx
(diamonds) and cpx (squares) in Mariana mantle
wedge serpentinites.

Fig. 4.6c: Cr2O3 (wt%) vs. Al2O3 (wt%) contents
of opx (diamonds) and cpx (squares). Note the
positive correlation between Cr and Al and the
enriched Cr2O3 abundances in A017G02 Cpx.
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A017G02 may have originated from a deeper mantle portion or did not experience significant

reequilibration (e.g., Blundy et al., 1995; Bazylev, 1996). The Al2O3 content varies between 0.5 and

2.1 wt% which is in the same range as for orthopyroxene. The higher contents are represented by the

A017G02 Cpx with Al2O3 >1.7 wt% and correlate positively with the Cr2O3 content (Fig. 4.6c). The

TiO2 contents are below 0.15 wt% and typical for a highly depleted peridotite.

Both orthopyroxene and clinopyroxene compositions are in good agreement with other subduction

zone related peridotites and previously investigated South Chamorro harzburgites (e.g., Mg# =

90.1–92.4 for Opx and 92.2–95.6 for Cpx; D’Antonio & Kristensen, 2004; Zanetti et al., 2006).

4.3.3 Spinel

The majority of the peridotites contains unaltered Cr-Al-spinel which appears to be the most

resistant mineral during serpentinization and alteration. It is commonly the only original phase

remaining in the otherwise strongly serpentinized rocks. The Cr# of primary spinel in all serpentinite

samples varies within the range of 28.0 and 70.2 (Fig. 4.7a), reflecting the refractory origin of these

rocks (Ishii et al., 1992). The Mg# ranges widely from 50.2 to 64.0. Similar Mg# and Cr# data for

South Chamorro Seamount spinel are reported by Zanetti et al. (2006): Mg# = 40.3–60.4, Cr# =

37–66.
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Fig. 4.7: a) TiO2 (wt%) and NiO (wt%) contents for Cr-Al-spinel in Mariana mantle wedge serpentinites. b)
Mg# vs. Cr# for Cr-Al-spinel in Mariana mantle wedge serpentinites. Field for spinel from forearc
peridotites: Ishii et al. (1992), Parkinson & Pearce (1998), field for spinel from abyssal spinel peridotite:
Dick & Fisher (1984). Cr# = Cr/(Cr+Al), Mg# = Mg/(Mg+Fe2+).

As shown in Fig. 4.7a, the Mg# and Cr# of the Cr-Al-spinel in the Mariana mantle wedge

serpentinites shows a linear relationship and plot in the compositional field defined by spinel from

forearc peridotites (Ishii et al., 1992; Parkinson & Pearce, 1998). Within the Cr-Al-range, Cr#
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increases with increasing degrees of partial melting in the mantle (Dick & Bullen, 1984). For

comparison, spinel from abyssal peridotites (Dick & Fisher, 1984; Dick & Bullen, 1984) has a

composition at lower Cr# (well below 69) but higher Mg# (>60). TiO2 contents of Cr-Al-spinel

increase with increasing Cr#, while NiO contents decrease. The low TiO2 concentrations are typical

for spinel harzburgites. Cr-Al-spinel in sample A017G02 is enriched in TiO2 and characterized by the

Cr# >60 (Fig. 4.5b and Fig. 4.7a).

Due to the generally very small grain size  of magnetite (<3 μm), EPM analyses are difficult, but

the grains were identified as pure magnetite confirming observations of D’Antonio & Kristensen

(2004).

4.3.4 Brucite / Amakinite

During serpentinization, iron in olivine may redistribute, entering the structure of the serpentine

minerals or brucite, or forming separate opaque phases: magnetite, awaruite, pentlandite, ferrit-

chromite, etc. (Ashley, 1975). Brucite (Br) composition in the serpentinized peridotites rarely

coincides with that of the pure endmember Mg(OH)2, but always contains a significant amount of

amakinite (Am) – Fe(OH)2 – and insignificant amounts of pyrochroite (Py) – Mn(OH)2 –. In both

veins and mesh textures these (Fe-Mg-)hydroxy-minerals occur as pure phases, i.e., without

serpentine admixtures. Pure brucite should contain ~30.9 wt% H2O, whereas lower water contents

down to 21.6 wt% are expected in the Fe-Mn-rich varieties (D’Antonio & Kristensen, 2004). Thus,

totals in the range 69–78 % are expected for natural brucite minerals, confirmed by EPM analyses in

the present study.

Various early studies have already documented intensive substitution of iron for magnesium in

brucite during serpentinization; 6 to 72 mole% with an average of about 15 mole% Fe(OH)2 has been

recorded (e.g., Hostetler et al., 1966; Mumpton & Thompson, 1966, 1975; Page, 1967a; Wicks &

Plant, 1979). D’Antonio & Kristensen (2004) recently described Fe-bearing brucite in serpentinized

peridotites from South Chamorro Seamount reporting compositions between Br89Am11 and Br60Am40

with most analyses between Br89 and Br83. Compositions higher than Br76 were all analyzed along a

single vein. Compared to these data, this new study of South Chamorro Seamount serpentinites shows

a much wider range in brucite-amakinite compositions between Br88Am12 and very Fe-rich brucite,

i.e., amakinite with Br30Am70 (Fig. 4.8). High iron abundances are mainly detected in veins.

The highest iron concentrations documented in literature was found in amakinite from the Daldyn-

Alakit kimberlite field in Russia; 58.85 wt% FeOtot (30.4 wt% FeO + 31.58 wt% Fe2O3) with

additional 3.63 wt% MnO and 10.10 wt% MgO (= Br14Am81Py5; Kozlov & Levshov, 1962).

However, the amakinite analyzed in the presented Mariana forearc serpentinites has maximum MnO

concents of 2.3 wt% (=Br60Am37Py3). Therefore, maximum total iron contents are higher compared to

literature amakinite values in a Mn-poor system (Fig. 4.8).
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4.3.5 Serpentine

The general formula of serpentines is Mg5[Si2O5](OH)4. Substitution of Al and Fe3+ for Si may

occur in tetrahedral sites, and that of Fe2+, Fe3+, Cr, Al, Ni and Mn for Mg in octahedral sites. It has

been shown that lizardite tends to accept more substitution components than chrysotile and is

typically more enriched in Al, although their compositions overlap (Wicks & Whittaker, 1975;

Moody, 1976b; Wicks & O’Hanley, 1988; O’Hanley & Wicks, 1995). According to stoichiometry,

pure serpentine minerals lizardite and chrysotile should contain ~13 wt% H2O, whereas antigorite

contains only ~12 wt% (e.g., D’Antonio & Kristensen, 2004). Deer et al. (1992) reported H2O

contents in the range 12.2–15.2 wt%, with lizardite and chrysotile showing the highest contents.

Since water cannot be determined by electron microprobe, we take the difference from 100 wt% as a

rough estimation for the amount of water present in the analyzed serpentine.

Serpentine minerals from the Mariana mantle wedge have variable chemical composition,

especially concerning their MgO, FeOtot, Al2O3 and Cr2O3 contents. The Mg# of all serpentines spans

a total range of ~88 to ~97, although the majority of serpentine has a Mg# between 90 and 94. The

Mg# is not consistent because it may be controlled by external factors such as the oxygen fugacity

which influences magnetite formation and the Fe3+/Fe2+ and Fe/Mg ratios in serpentine and associated

phases (see 4.6.3.1). Cr2O3 and Al2O3 contents are primarily controlled by the composition of the

minerals replaced; serpentine formed after olivine is low in both Al2O3 and Cr2O3 compared to

bastites formed after orthopyroxene. Also serpentine after spinel can be highly enriched in Al2O3 and

Cr2O3. FeOtot and MgO concentrations are similar in all serpentine textures. Serpentine mixed with
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varying amounts of brucite and to a lower extend amakinite (Fe-brucite) shows mainly occurs in

mesh rims, former grain boundaries and veins, as previously shown by micro-Raman analyses. These

mineral mixtures are characterized by lower silica and higher magnesia and/or iron contents relative

to pure serpentine minerals (with a chemical composition lying between the two minerals). They have

already been described in other serpentinites and were attributed to brucite impurities in serpentine or

to very fine-scale intergrowth of serpentine plus brucite (e.g., Wicks & Plant, 1979; O’Hanley &

Dyar, 1993; Dilek et al., 1997).

Si-Mg-Fe mole fraction ternary diagrams represent well the variability and range of serpentine

compositions (e.g., Wicks & Plant, 1979; D’Antonio & Kristensen, 2004). Figure 4.9 presents a

summary of >2400 electron microprobe analyses in the Si4+-Mg2+-Fe2+ system, showing variable

serpentine compositions of Mariana mantle wedge serpentinites with intensive brucite and/or

amakinite admixtures.

Fig. 4.9: Ternary diagram of molar % Fe2+-Mg2+-Si4+ (according to Wicks & Plant, 1979; Bach et al., 2006)
showing the chemical variability of serpentine minerals and serpentine + brucite mixtures from Site 1200
serpentinites. (n = 2450)

One of the first reactions during serpentinization is the formation of veins along mineral  grain

boundaries (e.g., Fryer et al. 1990). As can be seen in Fig. 4.10a, such former grain boundaries have

compositions lying between serpentine and brucite with Mg# 90. These thin grain boundary veins are

Fe-rich in sample E4H2-6, with compositions between serpentine and Fe-rich brucite (Mg# 55).



Chapter 4 - Mantle Wedge Serpentinites

58

Fe3+
2Si2O5(OH)4 

Fe3Si2O5(OH)4 

Mg0.9Fe0.1(OH)2 Mg0.45Fe0.55(OH)2 

Fe(OH)2 

Mg0.75Fe0.25(OH)2 

80 40 0 

20 

100 

60 

A003
A007
A011(40-42)
A011-69-72)
A012(3-5)
A013-1-25
A017G02
D1H4
E4H2-6
E4H2-5
E7H2

Fe3+
2Si2O5(OH)4 

Fe3Si2O5(OH)4 

Mg2Fe3+SiFe3+O5(OH)4 

Mg0.9Fe0.1(OH)2 Mg0.48Fe0.52(OH)2 

Fe(OH) 2 

Mg0.75Fe0.25(OH)2 

80 40 0 

20 

100 

60 

A003
A007
A011(40-42)
A011(69-72)
A012(3-5)
A013-1-25
A017G02
D1H4
E4H2-6
E4H2-5
E7H2

Mg2Fe3+SiFe3+O5(OH)4 

Mg0.9Fe0.1(OH)2 
Mg0.6Fe0.4(OH)2 Mg0.75Fe0.25(OH)2 

60 30 0 

40 

100 

70 

Fe3+
2Si2O

5(OH)
4 

Fe3Si2O5(OH)4 

A011(69-72)
A011(69-72)
A013-1-25
A013-1-25
D1H4-4C
D1H4 after spl
D1H4-6
E4H2-6
E7H2

Fe3+
2Si2O5(OH)4 

Fe3Si2O5(OH)4 

Mg0.9Fe0.1(OH)2 
Mg0.78Fe0.22(OH)2 

80 40 0 

20 

100 

60 

Mg3Si4O10(OH)4 - talc 

Mg0.95Fe0.5Si2O5(OH)4 - serpentine 

Mg3Si2O5(OH)4 - Mg-serpentine 

a 

b 

c 

d 

veins & former grain boundaries

mesh rims

mesh centers

bastites

Si4+

Fe2+ Mg2+

Si4+

Fe2+ Mg2+

Si4+

Fe2+ Mg2+

Si4+

Fe2+ Mg2+

Fig. 4.10: Ternary diagram of mole% Fe2+-Mg2+-Si4+ showing the chemical variability of serpentine
(+brucite) in a) veins (dashes) and crystal boundaries (stars). (n = 592), b) mesh rims. (n = 962), c) mesh
centers. (n = 627), and d) bastites. (bastites: n = 101; serp after spl: n = 6).



Chapter 4 - Mantle Wedge Serpentinites

59

Also thin veins, crossing this sample, have Fe-rich composition. Veins in different E7H2 clasts are

brucite-rich with a broad variety in Fe-Mg contents. Veins in E7H2-3B, a quite deformated clast,

have Fe-rich serpentine composition (pink dashes in Fig. 4.10a). Veins and grain boundaries of

sample A011R01(69-72) plot on a compositional line between brucite with Mg# 75 and the major

trend of all grain boundaries towards brucite with Mg# 90 (Fig. 4.10a; rose). One vein in

A013R01(25-27) has low MgO content with high FeOtot content (14.92 wt%) and is enriched in CaO

and Al2O3 (3.67 and 1.02 wt%, respectively), though the SiO2 content is still high with 43.35 wt%

(blue dash in Fig. 4.10a).

When serpentinization proceeds, static replacement of olivine forms mesh rims around relic

olivine cores. Generally, the mesh rims of all studied serpentinites have quite similar composition of

Mg-rich serpentine with a tendency to mix with a Mg-rich brucite component (Mg# 75–90;

Fig. 4.10b). Only the mesh rims of sample E4H2-6 have a more Fe-rich brucite component, similar to

veins and crystal boundaries in this sample.

Further hydration serpentinizes relic olivine cores and forms serpentine ± brucite or ± magnetite.

Although the majority of mesh centers have a composition around Mg# ~92, in some samples mesh

center serpentine tends to mix with a different brucite composition (Fig. 4.10c). Sample E4H2

contains some mesh centers with a mixing composition between serpentine and very Fe-rich brucite

(Mg# 45). Furthermore, for samples A011R01(40-42) and D1H4 mixing trends between serpentine

and brucite with Mg# 78 and Mg# 75, respectively can be observed. Serpentinites A011R01(69-72),

A013R01(25-27), and A017G02 contain mesh centers with compositions between serpentine (Mg#

~92) and Mg-rich brucite (Mg# 88). Mesh centers of sample A003 cluster around a more Si-rich

composition.

Generally, serpentine minerals in all textures are Al-poor. Though, serpentine in bastites, i.e., after

orthopyroxene, has elevated Al2O3 and Cr2O3 concentrations. In this case, Al and Cr substitute for Si.

Since Al and Cr are not considered in the Si-Mg-Fe ternary diagram, Si concentrations consequently

are shifted to overestimated values in Fig. 4.10d. Furthermore, bastite serpentine is characterized by

lower Mg# in some samples compared to other serpentine textures.

As a rare finding, serpentinization after Cr-spinel can be observed in sample D1H4-4F. This

serpentine is also enriched in both Al and Cr contents due to the primary spinel composition.

4.3.6 Ca-(OH)-rich phase  in serpentinites

Some harzburgite samples contain irregular round blasts of ‘Ca-(OH)-rich serpentine’ (Fig. 4.11).

This phase overgrows the existing serpentine mesh textures and partly contains small magnetite

grains. Electron probe micro analyses have low totals (~74–79 %) indicating a hydrous mineral. The

low sums similar to brucite minerals imply high amounts of water and/or CO2 of up to ~26 %.

However, SiO2 concentrations are high and similar to serpentine minerals, MgO concentrations are

<30 wt%, FeO contents vary in the range of ~3 to ~5 wt%. Hence, the Mg# are in the same range as
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the other serpentinite minerals (e.g., Srp, Ol, Opx): ~91 to ~95. CaO concentrations are high between

~10 and ~15 wt%. A possible composition, using 12 oxygens per formula, would be:

Ca1.3Mg4.3Fe0.4Si3O10(OH)2. Micro-Raman analyses were performed without success due to strong

fluorescence.

O’Hanley (1996) described a similar ‘phase’ as carbonate overprinting lizardite in weathered

serpentinite. It is not related to any serpentine textures, indicating that carbonate alteration must

postdate serpentinization (O’Hanley, 1996). Furthermore, Mével (2003) summarized that carbonates

(aragonite/calcite in veins and breccia matrix) in serpentinites correspond to very late stages and are

not in equilibrium with the serpentine minerals. Thus, the formation of these Ca-rich phases in the

serpentinized harzburgites could be interpreted as a late fluid related crystallization. This possibility is

supported by the particular occurrence of this phase at the end of veins (Fig. 4.11). As fluids after

serpentinization are known to be Ca-enriched (Palandri & Reed, 2004), they could explain an

increased Ca concentration in the end of cracks. These ‘restitic’ fluids possibly ‘overprint’ the already

formed serpentine.

Nevertheless, the final identification and explanation of this phase (or these phases) is beyond the

scope of this thesis.

     

Fig. 4.11: Back-scattered electron (BSE) images of a) a mesh serpentine area with Ca-rich hydrous phase
(bright) ‘overprinting’ serpentine at the end of a serpentine vein (E7H2-8S), and b) Ca-rich phase (bright)
‘overprinting’ the mesh serpentine, the former serpentine textures are still visible (D1H4-6A).

4.3.7 Black serpentine

Strongly serpentinized harzburgites contain a finegrained and smooth mineral mixture with low

EPMA sums of down to 60 wt%, but a Si/(Mg+Fe) ratio typical for serpentine. In back-scattered

electron images, this phase is darker than serpentine (Fig. 4.12). In mesh centers, this phase contains

also magnetite grains (like the mesh center serpentine), but has a deep topography with shrinking

cracks (Fig. 4.12b). In some samples, this dark phase also occurs along the outer parts of broad veins;

fine grained serpentine (even), ‘black serpentine’ and brucite also can be found in broad veins in

alternation. Under the microscope, serpentine is colourless, the ‘black serpentine’, in mesh centers, is
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dirty brown. Textural relationships suggest that the ‘black serpentine’ is the latest feature occuring in

the samples (e.g., 4.12a).

Micro-Raman analyses were not successful due to strong fluorescence, even with a laser of higher

wavelength. Preliminary semi-quantitative analyses by SIMS on sample E7H2-5B (Fig. 4.12a) were

made; calibration with dolomite at a given C/Mg ratio and the known MgO content of the ‘black

serpentine’ resulted in CO2 contents of up to 22 wt% which seems to be the missing portion for a sum

of 100. Further work with a special SIMS setup and the selection of an appropriate and well

characterized standard with either high MgO or SiO2 content and high carbon concentration (e.g.,

dolomite) are needed. A short-time ToF-SIMS element mapping of an area in sample E7H2-6 showed

that carbon is enriched in these dark (in BSE images) areas (Fig. 4.12c).

However, these investigations are beyond the scope of this thesis, but a highly interesting point for

future work. This phase will not be considered for the following discussions to avoid any secondary

phase influences.

  

   

4.4 Light element (Li, Be, B) contents of rock-forming minerals

4.4.1 Light element mappings by ToF-SIMS

Light element ToF-SIMS images of serpentinites provide qualitative information about the

distribution of elements in a mapped area (see chapter 3). Mapped samples include A013R-2-12,

E4H2-6 and E7H2-2. Thin mesh rims and veins along former grain boundaries are strongly enriched

in Li, whereas mesh centers after olivine have low Li content. B is generally homogeneously

Fig. 4.12: Back-scattered electron (BSE) images of a) slightly deformed
mesh textures of E7H2-5B fragment, the dark areas present the ‘black
serpentine’, b) mesh texture area with serpentine mesh rims and ‘dark
serpentine’ mesh centers (E7H2-6), and c) ToF-SIMS mapping for
(CH3)

+ of an area in sample E7H2-6, 250x250 μm, see Fig. 4.15. The
scale to the right represents the number of ions counted (increasing
from bottom to top).



Chapter 4 - Mantle Wedge Serpentinites

62

distributed within the serpentinized area at high concentrations (apart from former grain boundaries)

(see Fig. 3.3). The same Li and B distribution for serpentine after olivine is found in all mapped

serpentinites (Fig. 4.13–4.16). Also serpentine veins through orthopyroxene, i.e., along cleavage

planes, are enriched in Li compared to bastite serpentine or Li-poor Opx (Fig. 4.14 and 4.15). All

bastites, serpentinized cleavage planes and mesh serpentine are similarly enriched in B.

The mapped areas of most samples contain ‘black serpentine’ mesh centers (which should be

excluded from further discussions, see 4.3.7); however, to demonstrate the Li enrichment in mesh

rims and early veins, these examples are shown (e.g., Fig. 4.13). Various veins in E4H2-6 have

similar Li and B contents compared to mesh serpentine (Fig. 4.16). Relict olivine is extremely

depleted in Li and B (Fig. 3.3 in chapter 3 and 4.15), orthopyroxene is B-poor (Fig. 4.15).

The results of the high resolution element mappings are in agreement with the B and Li

concentrations detected by SIMS spot analyses (see chapter 3 and following pages).

a)      b)   

Fig. 4.13:  a) Back-scattered electron image of partly serpentinized sample E4H2-6 with ‘black serpentine’
mesh centers, b) Li and B distribution, 250 x 250 μm (low counting time). The scale to the right represents
the number of ions counted (increasing from bottom to top).

a) 

Fig. 4.14:  a) Back-scattered electron image of entirely serpentinized sample E7H2-2E with bastite and
‘black serpentine’.
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b)   

Fig. 4.14 (continued): b) ToF-SIMS images of sample E7H2-2E, Li and B distribution, 500 x 500 μm
(512x512 pixel, low aquisition time).

a) 

b)   

Fig. 4.15: a) Back-scattered electron image of partly serpentinized sample E4H2-6 with relict olivine and
orthopyroxene. b) Li and B distribution, 500 x 500 μm (512x512 pixel, low aquisition time).
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a) 

b)   

Fig. 4.16:  a) Back-scattered electron image of partly serpentinized sample E4H2-6 with different vein
generations and few ‘black serpentine’, b) Li and B distribution, 500 x 500 μm (512x512 pixel, low
aquisition time).

4.4.2 Light element SIMS analyses

Lithium (Li), beryllium (Be) and boron (B) concentrations of texturally well defined serpentine

and primary minerals from South Chamorro and Conical Seamount (Smt.) mantle wedge harzburgites

are given in Appendix B3 and are graphically presented in Fig. 4.17. Rigorous analytical control

avoided analyses of mineral mixtures (e.g., Srp-Ol; see chapter 2).

Interstitial clinopyroxene has the highest Li contents of the primary minerals, ranging from 3.6 to

3.9 μg/g (Fig. 4.17a). Primary clinopyroxene (sample A017G02) has only 2.1 μg/g Li (Fig. 4.17b). Li

concentrations in olivine and orthopyroxene overlap: 0.6–1.3 μg/g in olivine and 0.3–2.6 μg/g in

orthopyroxene. B concentrations in olivine and pyroxenes are low and range from below the

detection limit up to <4 μg/g in some minerals (Fig. 4.17a,b). Furthermore, these minerals have

extremely low Be concentrations ranging from <0.1 μg/g down to <0.001 μg/g, reaching the Be

detection limit (Fig. 4.17c). No correlation between Li, Be and B contents can be identified for

olivine and pyroxene. The low light element abundances in primary minerals coincide well with

primitive mantle rock values (Ryan & Langmuir, 1993; Ottolini et al., 2004) or estimated depleted
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mantle values (0.7 μg/g Li, 0.06 μg/g B; Fig. 4.17a; Salters & Stracke, 2004). Hence, as stated before

by other studies on serpentinites (Pelletier et al. 2008a, 2008b; Vils et al., 2008) serpentinization has

no influence on the composition of primary phases.
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Fig. 4.17: a) Li vs. B concentration for Mariana serpentine and primary minerals (Ol, Opx, Cpx) in
comparison to fluids compositions (for references see text), depleted mantle (estimated by Salters & Stracke,
2004), MORB (Ryan & Langmuir, 1987; 1993) and bulk rock composition of serpentinites from South
Chamorro Smt. (Savov et al., 2005b, 2007), b) Li vs. B concentration of Mariana serpentine and primary
minerals, different symbols indicate different textural sites, c) Be vs. B concentration, for symbols see a) and
b), and d) Li vs. B concentration of serpentine and primary minerals in sample A007R01 to emphasize the
different compositions between textures and serpentine generations.

The serpentines pseudomorphing olivine and pyroxene are characterized by generally high B,

variable Li and low Be contents. A summary of all serpentine texture compositions (e.g., vein, mesh

center) shows a distinct ‘cloud’ of compositions at medium to high B content (~2 to ~400 μg/g) and

variable Li content (<0.001 to <30 μg/g; Fig. 4.17a). The majority of serpentine minerals shows B

abundances between ~20 and ~120 μg/g and an average Li abundances of ~2 μg/g (Fig. 4.17a,b). Be



Chapter 4 - Serpentinites

66

concentrations of mesh serpentine are 0.1 μg/g with an average of ~0.03 μg/g. As the Be content of

serpentine is identical to primary minerals and similar to depleted mantle compositions (Fig. 4.17c),

thus serpentinization has no influence on the beryllium composition of mantle peridotites and will

therefore not be considered in the discussion. Brucite minerals are strongly depleted in both Li and B,

Be abundances are below detection limit. Several veins of platy Fe-Mg-brucite in sample E7H2-2B

are large enough for SIMS analyses; light element contents are low with 1.19–1.63 μg/g B and

0.6–1.6 μg/g Li.

B concentrations of serpentine minerals are much higher than those of primary minerals and

relative to depleted mantle values (Fig. 4.17a). The average Li and B contents in primary minerals

and serpentine agree with the B enrichment detected in bulk rock serpentinites from Conical Smt.

(15.0 μg/g B) and South Chamorro Smt. (15.4 μg/g B) in greater depth below the seafloor (Benton et

al., 2001; Savov et al., 2005b; Savov et al., 2007; Fig. 4.17a). Down-hole B abundances in Conical

Smt. serpentinites are generally highest near the seafloor (Benton et al., 2001; Savov et al., 2005b)

due to the uptake of B from seawater (4.4–4.6 μg/g, Quinby-Hunt & Turekian, 1983; Spivack &

Edmond, 1987; Jean-Baptise et al., 1991; Mottl et al., 2004) by serpentine after emplacemen.

However, no simple positive correlation between the degree of serpentinization (= LOI) and B (and

Li) whole rock contents was observed for South Chamorro peridotites (Savov et al., 2005b).

The Li contents of serpentine minerals are both lower and higher than those of mantle minerals

olivine, orthopyroxene and clinopyroxene (Fig. 4.17a,b). The Li contents in serpentine are within the

whole rock Li range measured in serpentinites from Conical Smt. (~4.6 μg/g Li; Benton et al., 2004;

Savov et al., 2005b) and South Chamorro Smt. (~2.5 μg/g; Savov et al., 2007), indicating a modest Li

enrichment relative to depleted mantle values (Fig. 4.17a).

The serpentinites were carried in a water-mud-rock mixture to the surface. The corresponding

pore fluids have B concentrations similar to serpentinites (34.6 μg/g B at Conical Smt. and 42.2 μg/g

B at South Chamorro Smt.). Compared to serpentine, primary minerals and seawater, these pore

fluids have very low Li contents (0.003 μg/g Li at Conical Smt. and 0.01 μg/g Li at South Chamorro

Smt.; Mottl et al., 2003, 2004 and references therein; Fig. 4.17a).

Similar to the major element compositions it is possible, though in a limited way, to distinguish

light element contents for mesh textures, bastites and even veins (see section 4.3.5). Considering all

serpentine minerals analyzed, the majority of serpentine mesh rims have a tendency to higher Li

concentrations, whereas the majority of mesh centers tends to lower Li contents (Fig. 4.1b). Though

highly variable, B abundances in mesh centers tend to higher B values. Bastite serpentines have a

smaller compositional range around medium Li contents (~0.2–4 μg/g) and lower to medium B

contents (~20–150 μg/g). Thin serpentine veins along former grain boundaries tend to high Li

contents (~0.3–17 μg/g) at medium B contents (~3–90 μg/g) (Fig. 4.17b).

Serpentine veins have a quite variable light element concentration showing a broad trend from

high B - high Li down to low B - low Li concentrations. Both mesh and bastite serpentines have low

Be concentrations of <0.001 to ~0.09 μg/g (Fig. 4.17c) which is in the same range as the Be contents
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of olivine and pyroxene. Generally, Be concentrations in veins and crystal boundaries are similar to

mesh textures and bastites. However, some late veins reach high Be contents of up to >5 μg/g. These

high Be contents were detected in (i) a serpentinite clast from Conical Seamount (10R02-3: 2.01 μg/g

Li, 0.25 μg/g Be, 23.55 μg/g B and 10R02-14: 1.68 μg/g Li, 5.28 μg/g Be, 26.43 μg/g B), and (ii) in

South Chamorro clast E7H2-2B (coarse-grained veins E7H2-2B-1: 0.69 μg/g Li, 0.34 μg/g Be,

34.66 μg/g B and E7H2-2B-14: 0.51 μg/g Li, 0.96 μg/g Be, 32.39 μg/g B). Currently there is no

model to explain this observation.

4.5 Boron isotope composition ( 11B) of serpentine by SIMS

Boron isotope bulk rock data of Mariana serpentinites were already discussed by Benton et al.

(2001). As bulk rock analyses cannot give information about the internal boron isotope variability of

a sample, this study focusses on high lateral resolution SIMS analyses to evaluate the B isotope

signature of single serpentine textures. The results demonstrate the compositional variability and

textural complexity of serpentinized peridotites. Therefore, insights into the fluid-rock-interactions

during serpentinization can be gained.

B isotope values ( 11B) in serpentine minerals show considerable variation between very negative

values of ~ –12 ‰ and very positive values of ~ +24 ‰ (Fig. 4.18). Though different serpentine

textures tend to have different Li and B concentrations, this trend is hardly seen for 11B.

Nevertheless, most of the veins and former grain boundaries tend to have more negative 11B values,

whereas most mesh serpentines have more positive B isotope values (Fig. 4.18).
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& Stracke (2004).



Chapter 4 - Serpentinites

68

Serpentine after orthopyroxene has variable positive 11B values between ~ +3 and +22 ‰. Some

mesh centers have a very negative 11B value of down to –14 ‰ and most of these mesh centers are

highly enriched in B. Also late veins show negative 11B values (Fig. 4.18a). Strongly serpentinized

samples show a tendency to have more negative 11B values in serpentine. Although all samples

include a broad range in 11B values, the majority of serpentine textures has positive 11B values.

Within single clasts, e.g., A007R01, high 11B values correlate with high Li contents in early

serpentine, such as mesh rims (Fig. 4.19). Late serpentine, however, has low Li contents at relatively

negative B isotope ratios.
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Fig. 4.19:  a )  11B vs. B and b)  11B vs. Li of serpentine in sample A007R01. Arrows indicate the
compositional change from early to late serpentine, i.e., between serpentine generations.

Based on the abundance of single serpentine textures and their B concentrations, estimated

average bulk rock 11B values are positive with ~ +16 ‰. This value is consistent with the positive

signature between of +10 to +20 ‰ in bulk serpentinites and +8 to +11 ‰ in serpentinite muds from

ODP 195 Site 1200 (Benton et al., 2001; Savov et al., 2004). The depleted mantle clearly has a lower

B concentration and 11B value of ~0 (e.g., Salters & Stracke, 2004). The results indicate that

serpentinization of the Mariana mantle wedge peridotite leads to a strong increase in B concentration

with, in average, positive 11B values.

4.6 Interpretation of serpentine textures and mineral chemistry

The previous sections provided geochemical and textural evidence that the serpentinized spinel

harzburgites from the Mariana mantle wedge experienced a complex history of deformation, melt

infiltration, cooling and hydration. Finally, the forearc peridotite underwent serpentinization by slab-

derived fluids, modifying the initial Li, Be and B content of the supra subduction zone mantle wedge.

The distribution of light elements, B isotope signatures and serpentine polymorphs yields information

about the hydration process and conditions within the mantle wedge.
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4.6.1 Estimates of the degree of partial melting

Primary mineral and bulk rock compositions of Mariana forearc serpentinites (South Chamorro

and Conical Seamount) indicate a more depleted nature than those of abyssal peridotites (this study

and e.g., Ishii et al., 1992; Shipboard Scientific Party, 2002a,c; Zanetti et al., 2006). The serpentinites

preserve a geochemical record of extensive partial melting of the upper mantle at spinel-facies

conditions in the supra subduction zone mantle (e.g., Jaques & Green, 1980; Pearce et al., 2000;

Hellebrand et al., 2001, 2002). According to the Cr# of spinel (28.0 to 70.2) and the Mg# of olivine,

the degree of partial melting was 18 and 31 % (see section 4.3) which implies a strong refractory

nature of these mantle peridotites. The highest degree of melting is found for sample A017G02, a

sample with extremely Cr-rich spinel and Na2O-rich Cpx. These results agree with the literature data;

according to HREE and major element compositions, the Mariana ultramafic rocks experienced

15–30 % partial melting of depleted MORB mantle which has subsequently been modified by

interaction with boninitic melt within the mantle wedge (Ishii et al., 1992; Parkinson & Pearce, 1998;

Shipboard Scientific Party, 2002a; Zanetti et al., 2006). The initial partial melting event usually can

be followed by metasomatizing by mafic alkaline to carbonatitic melts (e.g., Grégoire et al., 2000).

4.6.2 Melt impregnation (refertilization / metasomatism )

The serpentinized South Chamorro harzburgites show various textural and chemical evidence that

the peridotite was infiltrated by melts prior to serpentinization (see Elthon, 1992; Niu, 1997; Niu &

Hékinian, 1997). One textural indication for the presence of melt is interstitial clinopyroxene (+ Spl)

that crystallized at triple junctions between olivine grains (Fig. 4.2d-e in section 4.2). These Cpx(-

Spl) clusters are reminiscent of a quench texture and indicate that part of this melt has crystallized

under lithospheric (cold) conditions. Small Cpx prisms or spindle-shaped grains in Opx exsolution

lamellae (Fig. 4.2k in section 4.2) can be interpreted as having crystallized from incompletely

extracted interstitial melts (Seyler et al., 2001).

The light element contents of the interstitial clinopyroxene provides further evidence for a rock-

interaction with interstitial melts. Li contents are higher compared to olivine and orthopyroxene and

compared to normal mantle clinopyroxene. This Li enrichment in Cpx with a trend towards the

MORB field (Fig. 4.17) can be related to metasomatism by mafic silicate melts or hydrous fluids

(Seitz & Woodland, 2000). The preferential incorporation of Li in clinopyroxene during impregnation

of peridotite by mafic melt was also reported by other studies (e.g., McDade et al., 2003; Ottolini et

al., 2004; Woodland et al., 2004; Pelletier et al., 2008b; Vils et al., 2008). Li enrichment in

clinopyroxene could alternatively be explained by fractionation upon cooling, leading to a Li

depletion in olivine and orthopyroxene by inter-mineral diffusive re-equilibration (Coogan et al.,

2005; Jeffcoate et al., 2007; Vils et al., 2008).

However, olivine and orthopyroxene have Li concentrations similar to depleted mantle (Fig. 4.17

in section 4.4.2). Serpentinite A017G02 contains clinopyroxene grains with grain-to-grain borders to

orthopyroxene. These clinopyroxenes have lower Li contents of ~2 μg/g, indicating a primary origin

for Cpx which is an arguments against fractionation upon cooling. However, the Li enrichment in
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interstitial clinopyroxene was principally controlled by impregnating melts except for clinopyroxene

from sample A017G02 which does not show melt-related textures and composition.

4.6.3 Temperature conditions and fluid-rock ratios

B uptake during serpentinization and in analogy Li incorporation in serpentine is favored at

temperatures below 350 °C (Seyfried & Dibble, 1980; Bonatti et al., 1984; Seyfried et al., 1998;).

Furthermore, the potential role of pH on element enrichment/depletion during serpentinization was

emphasized by several authors (e.g., Palmer et al., 1987). As especially B isotope compositions in

serpentinites are highly pH dependent (see section 4.6.7; Boschi et al., 2008; Vils et al., 2009) the

discussion of temperature, pH and fluid-rock ratios are important for the interpretation of element

fluxes within the serpentinites.

4.6.3.1 Fe-distribution between serpentine-brucite-magnetite: evidence for
serpentinization conditions

Progressive serpentinization of peridotite produces mostly SiO2-undersaturated minerals (e.g.,

Evans, 2008). The Mariana mantle wedge serpentinites comprise abundant magnetite grains in

serpentine, intergrowth of serpentine with brucite/amakinite, and pure brucite/amakinite.

Additionally, it is documented in natural serpentinite samples (e.g., Hostetler et al., 1966; Moody,

1976a,b, 1979; Wicks & Plant, 1979; Ishii et al., 1992; Bach et al., 2004, 2006; D’Antonio &

Kristensen, 2004; Evans, 2004, 2008) and shown by experiments in ultramafic systems (e.g., Allen &

Seyfried, 2003 and references therein) that hydration of olivine can produce serpentine with brucite.

Due to the stability of forsteritic olivine, this reaction does not occur at temperatures above 350 °C at

500 bars (Allen & Seyfried, 2003). Older studies have placed the temperature of the reaction of

forsterite into Mg-rich brucite together with chrysotile and ±magnetite at 350 to 450 °C and pressures

below 2 GPa (e.g., Moody, 1976b).

Compositions of serpentinites and serpentine minerals show that natural systems always involve

an Fe-component. If the process of serpentinization is basically isochemical for Si, total Fe, and Mg

(e.g., O’Hanley, 1996; Shervais et al., 2004), the growth of serpentine ± brucite from olivine and

orthopyroxene with high Mg# requires the precipitation of an additional Fe-rich mineral like

magnetite (or nickel-iron) for mass balance (Evans, 2008). The serpentinization of the fayalitic

component of olivine therefore results in the precipitation of magnetite with attendant production of

dissolved H2 and SiO2 (Mével, 2003). It has been suggested that iron contents of serpentine and

brucite minerals as well as the assemblage with magnetite may not only be an indication of the initial

iron content of the replacing mineral (e.g., olivine), but also can give further insight into the PT-

conditions during serpentinization (e.g., Hostetler et al., 1966; Barnes et al., 1972; Moody, 1976a,b;

Foustoukos et al.,  2008 ).

The highest FeO content for pure serpentine in this study is 12.8 wt% (pure serpentine with

Si/(Mg+Fe) = 0.67). Though, in Mariana mantle wedge serpentinites from South Chamorro
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Seamount serpentine with even 14.5 wt% FeO were reported (D’Antonio & Kristensen, 2004) found

These high concentration exceed the general FeO range reported in the literature for most serpentines

in metaperidotites (Wicks & Plant, 1979).

In the investigated Mariana samples, serpentine mesh rims have lower Fe/(Mg+Fe) ratios (Fe#)

than the parent olivines, if magnetite occurs near the mesh rim along former grain boundaries

(Fig. 4.20a; Fe# 0.07). Magnetite-free mesh centers have the same Fe# than the parent olivine

(Fig. 4.20a; Fe# 0.09). If serpentine mesh centers are magnetite-bearing, the Fe# is lower than in the

parent olivines (Fig. 4.20b; Fe# 0.07 vs Fe# 0.09 in Ol).

Bastite serpentine can have both higher and lower Fe contents than the parent orthopyroxene. In

sample E7H2-2B, a vein of large blades of Fe-rich brucite (up to 33 wt% FeO), i.e., amakinite

coexists with a magnetite-free serpentine vein (Fig. 4.20c). The FeO content of this serpentine vein is

lower (1.8–2.6 wt%) than the associated Mg-brucite- and magnetite-bearing mesh serpentine in this

sample. Another vein in this sample, next and parallel to the low-Fe serpentine vein, is composed of

coarse serpentine fibers and is free of brucite and magnetite (Fig. 4.20c). Serpentine FeO contents are

between 4.1 and 5.2 wt%.

 

  

Fig. 4.20: Back-scattered electron images,
numbers present the Fe# = Fe/(Mg+Fe) in the
phases.
 a) Partly serpentinized area with relict olivine
in sample E4H2-6, b) entirely serpentinized
mesh center with magnetite with lower Fe#
compared to the former olivine, sample
A003R01, and c) serpentine vein with low Fe#
is associated with Fe-rich brucite, sample
E7H2-2B.
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These observations correlate with other studies on serpentine compositions (e.g., Hostetler et al.,

1966): serpentines possess lower Fe/(Mg+Fe) ratios than the parent olivines and pyroxenes, while

coexisting brucite is richer in iron. Furthermore, high amounts of magnetite are associated with less

iron in coexisting serpentine and olivine or, after Moody (1976a) even brucite minerals. In addition,

in this study it was observed that availabe iron goes into magnetite or brucite minerals and serpentine

rather is Fe-poor, when serpentine directly forms out of fluids (veins).

The observed Fe-allocation between serpentine, brucite and magnetite suggest the following

serpentinization conditions.

(i) During magnetite precipitation accompanied by lower Fe# in serpentine, Si-activities were low,

while magnetite-free serpentine (more Fe-rich) formed at higher Si-activity (Frost & Beard, 2007).

The magnetite formation at low Si-activity further requires high f(O2) or higher temperatures. Lower

temperatures favor the iron substitution into brucite and lizardite rather than the formation of

magnetite (Moody, 1976a). This explains the Fe-rich brucite in the vein coexisting with magnetite-

free serpentine. Nevertheless, in an open system sufficient fluid flow will induce changes in rock

composition by mass transfer of elements and a change in silica activity and f(O2) (at constant P and

T) (Normand et al., 2002; Frost & Beard, 2007; Evans, 2008).

(ii) Moreover, amakinite (Fe-rich brucite) forms at decreasing temperature, while the assemblage

magnetite + Mg-rich brucite forms at the expense of amakinite at the high temperature end of the

brucite stability field (for the same values f(H2) and f(H2O); Moody, 1976a,b). Amakinite is most

stable at temperatures well below 350 °C and at low f(O2) (Moody, 1976a, b). Recently, Foustoukos

et al. (2008) showed that Fe-rich brucite (25–30 % Fe(OH)2) appears to be stable at temperatures

lower than 250 °C which further limits the efficiency of magnetite formation and the extent of H2(aq)

generation during serpentinization. It therefore can be concluded that the late amakinite veins in the

serpentinites investigated formed at relatively low temperatures.

(iii) The high pH of the reacting fluid and the relatively low temperatures in 27 km depth (at the

slab-mantle-interface) favors the uptake of B into serpentine during serpentinization (see next

section). Foustoukos et al. (2008) suggest that Mg-bearing hydroxides might also be possible as

mineral phases for in BO3 enriched sites and enhance fractionation with tetragonal B in solution. In

addition, Pokrovsky et al. (2005) suggest a strong affinity of brucite to adsorb B(OH)3(aq) at low

temperatures (25 °C). However, brucite in the samples has very low B contents limiting the major B-

containing phase to serpentine.

Mineral compounds, textures and the serpentine polymorphs lizardite and chrysotile indicate that

serpentinization of the Mariana mantle wedge peridotite took place at relatively low temperatures of

<350 °C. This low temperature during serpentinization first of all favors the precipitation of Fe into

magnetite, causing serpentine to have a lower Fe# compared to the parent olivine. Nevertheless,

brucite is a common secondary mineral in the samples which occurs as fine-grained and intimately

intergrowth with e.g., lizardite in mesh textures and as monomineralic Fe-rich brucite veins. Brucite

compositions of the samples show a very broad range of Fe-Mg composition from 12–70 % Fe(OH)2.
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The variable assemblages of serpentine – brucite – magnetite with changing Fe-distribution indicate

that serpentinization in the Mariana mantle wedge is characterized by an open system with sufficient

fluid flow accompanied by changes in temperature, silica activity and f(O2).

4.6.3.2 Serpentine polymorph distribution: evidence for variable fluid-rock ratios

Lizardite (Liz) and chrysotile (Ctl) were identified as the major serpentine polymorphs in Conical

(C. Smt.) and South Chamorro Seamount (S. Ch. Smt.) serpentinites and occur together with variable

amounts of magnetite and brucite (see previous section). Serpentinites from S. Ch. Smt. are

antigorite-free, whereas in samples from C. Smt., antigorite (Atg) is present. During the last years it

got commonly accepted that the direct transformation of olivine to serpentine and magnetite

preferentially takes place below 250–300 °C (Wunder et al., 2001; Allen & Seyfried, 2003; Mével,

2003; Bach et al., 2004;). Particularly, Ctl formation takes place within temperature limits of 180 °C

(Mével, 2003) or even lower (Barnes et al., 1967) and 250 °C (stable reaction; 450 °C for metastable

reactions; Mével, 2003). Within this temperature range, Evans (2004) argued that Ctl is a metastable

phase whose occurrence is more determined by circumstances of growth rather than temperature and

pressure. Liz appears to be the more stable phase over wide PT-ranges (Mével, 2003) and olivines in

the rocks are directly pseudomorphed to Liz rather than to Ctl (O’Hanley, 1996), facilitated by its

crystallographic texture (Evans, 2004).

The appearance of Fe-rich brucite limits the maximum temperature to 250°C (Foustoukos et al.,

2008) in some regions of the mantle wedge. Atg is known as a ‘higher grade’ serpentine polymorph

(Berman, 1988; Ulmer & Trommsdorff, 1995; Wunder & Schreyer, 1997); it is stable under

conditions up to 1.5 GPa and 650 °C (Evans et al., 1976) or up to 7 GPa and 500 °C, respectively

(e.g., Ulmer & Trommsdorff, 1995; Peacock & Hervig 1999). Therefore, Atg is the most stable

serpentine (with brucite or talc) above 310 °C (at 1 bar) (Evans, 2004). Its formation is shifted to

lower temperatures for higher pressures during retrograde metamorphism (Evans et al., 1976). So far,

the PT-relations between serpentine polymorphs are still not sufficiently well known and their

stability fields partially overlap. Thus, they give no precise indication of the serpentinization

temperature (see discussion by Bach et al., 2004), but at least a rough estimation.

However, the high abundance of lizardite and chrysotile with a lack of high-temperature minerals

talc and antigorite clearly suggests a rather low temperature environment during serpentinization. A

maximum temperature of 350 °C for the hydration of the Mariana mantle wedge can be estimated

(within a transitional zone of coexisting Liz and Atg + Brc), as the serpentine polymorphs Ctl and Liz

are not stable at higher temperatures (e.g., Allen & Seyfried, 2003; Evans, 2004). The occurrence of

Atg in C. Smt. serpentinites may suggest higher ‘sampling depths’ at higher temperatures; the slab is

slightly deeper below C. Smt., situated at a greater distance from the trench compared to S. Ch. Smt.

(e.g., Mottl et al., 2004).

The serpentine polymorphs identified in the Mariana mantle wedge serpentinites do not only

provide information about the PT-conditions, but also can be indicative for the fluid-rock ratios
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during their formation. The variability of serpentine polymorphs between different textures

emphasizes the importance of fluid-rock ratios during serpentine growth. The preferred growth of

lizardite and chrysotile requires different conditions (Evans, 2004). Firstly, the existence of space and

enough fluids promotes crystallization of chrysotile, i.e., oriented serpentine fibers (e.g., Evans, 2004;

Andreani et al., 2005). This observation is comparable to field observations in low-temperature

sheared serpentinites that indicate an increase of chrysotile abundance with increasing deformation

degree (Coleman & Keith, 1971; Wicks, 1984). Low fluid-rock ratios should support slow lizardite

growth (Evans, 2004). Furthermore, Evans (2004) interpreted the small grain size and poor

crystallinity of rock-forming lizardite to be caused by low temperature crystallization at the site of

serpentinization.

Since lizardite is the most abundant serpentine polymorph in the samples, serpentinization in the

Mariana forearc must have occured at generally low fluid-rock ratios. First intensive fluid pulses

produced cracks in the fresh rock and triggered the formation of crack-filling chrysotile (with minor

polygonal serpentine). These cracks eventually act as important fluid pathes. However, serpentinites

are dominated by early in-situ pseudomorphs such as mesh rims. The existence of lizardite in these

textures suggests that the fluid-rock ratios were relatively low, i.e., that the fluid was completely

‘soaked’ and consumed by the rock. Further fluid pulses increased the fluid-rock ratios and enabled

chrysotile (with minor polygonal serpentine) pseudomorphs after relict minerals. Serpentinization

weakened the rock and chrysotile vein formation indicates even late high fluid-rock ratios in the

mantle wedge due to ongoing fluid pulses released from the subducting slab. The widespread

occurrence of polygonal serpentine, due to its more evolved nature compared to chrysotile (Baronnet

& Devouard, 1996), may reflect some ‘recrystallization’ or ‘reorganization’ of the serpentine

polymorph structures (e.g., Andreani et al., 2005, 2007) more or less independent from fluid pulses or

fluid-rock ratios.

Serpentinization in the Mariana mantle wedge is characterized by 1) complete fluid consumption

associated with the formation of lizardite and 2) phases of high fluid-rock ratios leading to direct

chrysotile and crack-filling chrysotile vein formation. These changing fluid-rock ratios at low

serpentinization temperatures, reflected by different textural types, also have influence on the light

element composition of the serpentines (see following sections).

4.6.4 Correlation between serpentine textures and their light element composition

Though the major element composition of serpentine is primarily controlled by the composition of

the mineral it replaces, the type of serpentine polymorph (e.g., lizardite or chrysotile) and the Fe

distribution between mineral phases (serpentine, brucite, magnetite) is controlled by pH, temperature

and the fluid-rock ratio in combination with the textural site and by the serpentine generation (early or

late). The variable light element (Li, Be, B) concentrations in serpentine minerals suggested that it is

possible to distinguish between different serpentine textures (e.g., mesh rims, bastites, veins), i.e., that

different textures may have characteristic light element signatures. Although compositions of single

serpentinite clasts strongly overlap, the serpentinized peridotites are characterized by different
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generations of serpentine that have typical Li and B contents for certain textures within single clasts

(see section 4.4.2). B contents can be variable even within similar textures, whereas the Li abundance

is more dependent on the textural position, i.e., the serpentine generation.

Early fluid pulses, released from the subducting slab, migrate through cracks in the peridotite

mantle wedge and along grain boundaries (e.g., around olivine). Consequently, serpentinization

begins with fracture-filling veins and the formation of mesh rims replacing olivine. These early

serpentines are characterized by relatively high Li concentrations of generally >2 μg/g and high B

concentrations (~40–80 μg/g) (Fig. 4.21). While concentrations vary between serpentinite fragments,

they are consistent within a fragment. Nevertheless, brucite admixtures in mesh rims lead to a

decrease in Li concentration (e.g., A007).
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Fig. 4.21: a) Back-scattered electron (BSE) image of a zoned ‘Frankenstein’ vein (sample A013R01(25-27)),
b) Li and B contents (μg/g) in the zoned vein: the vein rim is enriched in Li and B, c) BSE image of partly
serpentinized area with relict olivine cores (sample E4H2-6), and d) BSE image of a completely
serpentinized area with serpentine mesh center (sample A003R01). Li and B contents are noted in c) and d).

Textural relationships indicate that bastite formation after orthopyroxene already starts during

early olivine serpentinization. Indeed, Li concentrations of thin early veins through bastites are high

(similar to mesh rim compositions) and B concentrations are slightly lower compared to mesh rims

(see above). Also early serpentine veins tend to have mesh texture compositions with high Li and

high B concentrations (Fig. 4.21). The high Li contents in first generation serpentines suggest that Li
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partitions immediately into the serpentine minerals. All these early textures, i.e., the first generation

serpentines, reflect the composition of the first fluids that entered the rock, as this fluid got

completely ‘soaked’ by the serpentine formation. Thus, the initial slab-derived fluids were enriched in

light elements.

Continuing serpentinization is typically characterized by high fluid-rock ratios and the formation

of mesh centers replacing restitic olivines. These mesh centers generally tend to lower Li

concentrations (Fig. 4.21), but may also have compositions similar to the mesh rims and bastites

formed earlier. However, the mesh rim composition is not changed by the continuing

serpentinization; Li concentration remains high in mesh rims around entirely serpentinized mesh

centers and indicates that light element compositions in already formed serpentine are not changed by

ongoing serpentinization. The B content in mesh rims is often higher compared to early serpentine

(Fig. 4.21). Texturally late veins, some of them brucite-bearing, tend to compositions more depleted

in both B and Li. However, most veins and mesh centers are depleted in Li relative to primary

minerals (depleted mantle composition) implying a depletion during late serpentinization in these

cases.

Fluids released from the subducting slab have variable composition due to the mineralogical

heterogeneity of the slab. The presented data reveal that these serpentinizing fluids can change their

composition in the mantle wedge by element loss into serpentine and are modified by new fluid

pulses coming from below. Serpentinization of the mantle wedge is very heterogeneous on all scales.

Nevertheless, fluid pulses at relatively low fluid-rock ratios lead to Li-rich early serpentines, whereas

late serpentine is characterized by serpentine polymorphs and light element compositions triggered by

massive fluid supply. These differences should have influences not only on the light element

concentrations, but also on the B isotope distribution in different serpentine generations.

4.6.5 Boron isotope evolution (serpentinizing fluid pulses)

The Pacific plate subducts beneath the Mariana forearc and dehydrates. The released water

hydrates, i.e., serpentinizes the overlaying mantle wedge. This is not a sudden process but rather a

series of stepwise reaction fronts fed by separate fluid pulses through the rock. The mud volcanoes

are even formed by multiple episodes of mud depositions at the seafloor, an evidence for episodic

discharge of serpentinite mud (Fryer et al., 2006; Bickford et al., 2008). These fluid pulses can have

changing, constantly evolving composition.

Furthermore, as discussed above, the fluid-rock ratios during serpentinization can be highly

variable which is the main reason for e.g., the formation of lizardite and chrysotile in different

textural sites (e.g., mesh, vein). Also, serpentine textures or generations, respectively, can be

correlated to distinct Li and B concentrations. Batches of fluid penetrate the mantle wedge and are

either consumed or continously evolve during interaction with the surrounding peridotite rock. This

process is in line with the variation in light element contents and B isotope values of excess fluids that
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ascend and are emitted through the Mariana forearc serpentinite mud volcanoes and exit as cold

springs at their summits.

The distinctive composition of the interstitial water recovered from South Chamorro, Conical and

Torishima Seamounts implies an origin by dehydration of the subducting Pacific Plate (Mottl et al.,

2003 and references therein). The temperature of the water emitted by springs on the seafloor is very

low (~2°C; Mottl et al., 2003 and references therein), while the initial temperature of the slab

originating fluids is ~150–250 °C at ~0.8 GPa and ~27–29 km depth at the top of the subducting

Pacific Plate, estimated by steady state thermal models for the Mariana arc (Hussong & Fryer, 1982;

Kincaid & Sacks, 1997; Peacock & Wang, 1999; Mottl et al., 2003 and references therein; Peacock,

2003). These temperatures coincide with the temperature range not exceeding 200–300 °C estimated

based on the lizardite and chrysotile dominance in association with Fe-rich brucite assemblages in

South Chamorro and Conical Seamount peridotites (this study; Fryer & Mottl, 1992; Heling &

Schwarz, 1992; Shipboard Scientific Party, 2002a; D’Antonio & Kristensen, 2004).

Fluid directly released from the subducting slab has a neutral pH with the potential for large B

isotope fractionation factors during serpentine formation. Pore fluids from Conical and South

Chamorro Seamounts have high pH (~12.5), except near the seafloor, where the pH decreases to

seawater values (Benton et al., 2001; Mottl et al., 2003). As serpentinization temperature in the

Mariana forearc mantle wedge is very low and upwelling pore fluids have high pH, B can be assumed

to be tetrahedrally coordinated [B(OH)4] in both serpentine and fluids (see chapter 1; Spivack &

Edmond, 1987). Temperature ranges and pH favor the B uptake into serpentine at this supra

subduction zone setting, leading to the observed elevated B contents in the serpentinized peridotites.

According to Foustoukos et al. 2008; and references therein), fluids in equilibrium with peridotite

have nearly basic pH at >250 °C and relatively low fluid-rock ratios and even acidic pH at high

water-rock ratios (e.g., w/r = 10). Cooling of the fluid will increase the pH.

Hence, slab-derived fluids with neutral pH cool during ascend to the seafloor and the pH increases

during this path. Although significant concentrations of B(OH)4 complexes are present in fluids at pH

>8 (Palmer & Swihart, 1996), a changing pH during serpentine formation could be responsible for the

observed 11B variation (Boschi et al., 2008). The variation in Li and B contents as well as B isotope

ratios in serpentine within and between samples cannot be satisfyingly explained by the pH and

degree of serpentinization (e.g., hydration = B enrichment). Rather, the light element budget and B

isotope distribution should strongly depend on the water-rock ratios during serpentinization.

Early serpentine in the highly serpentinized Mariana peridotites is characterized by high Li

contents and high 11B values, whereas late serpentine has relatively low Li contents with low 11B

values of down to –14 ‰ (Fig. 4.22). Compositions vary between clasts, but the highest 11B values

in early serpentine are ~ +15 to +24 ‰. The broad range of serpentine 11B values indicates variable

fluid-rock ratios and varying fluid composition.

As described above, early serpentine formed during conditions with low fluid-rock ratios with the

fluid getting completely consumed by serpentine. During olivine hydration the B fractionates and
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forms serpentine of varying 11B values. This early serpentines, however, are found along thin vein

rims and small-scaled mesh rims around olivine cores (<30 μm). Therefore, SIMS spot analyses

(~25 μm) give an average composition which consequently reflects the average 11B value from the

serpentinizing fluid. As the early serpentine has high 11B values, the slab-released fluid is expected

to have variable but highly positive 11B of up to ~ +20 ‰.
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Fig. 4.22: 11B vs Li and 11B vs B for samples A007R01(a + c) and A013R01 (b + d). Vein serpentine tends
to lower B isotope ratios compared to mesh serpentine. Further diagrams in Appendix B.

The high degrees of serpentinization and the high abundance of serpentine veins suggest a

generally high fluid-rock ratio. During such periods of high fluid-rock ratios, texturally late serpentine

formed (see above). These high amounts of fluid allow B fractionation during B incorporation into

newly formed serpentine. In order to estimate 11B compositions of coexisting fluids, fractionation

factors between serpentine and fluid have to be considered in this case. The fractionation factor 11B

(during fluid-from-slab release) is ~ –14 ‰, as pH is basic and temperatures are around 300 °C (e.g.,

Wunder et al., 2001). In order to produce serpentine with the observed negative 11B values, a fluid

with neutral to positive 11B values is required.
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Chapter 5

Metamafic blueschist-facies rocks from the Mariana forearc: reactions
at the slab-mantle interface

5.1 Introduction

Studies on metamafics from the Mariana subduction zone are rare (Maekawa, 1992, 1993, 1995;

Fryer, 1999, 2000; Gharib, 2006) and focussed on petrologic descriptions and major element mineral

compositions. For the first time, this study presents a detailed inventory of a large number of different

metamafic clasts including petrology, PT-conditions of the metamorphic formation and the light

element (Li, Be, B) contents and boron isotope composition of the rock-forming minerals. Major,

trace and light element (Li, Be, B & 11B) compositions of minerals were analyzed to investigate the

geochemical characteristics of slab metamorphism and mélange formation along the active Mariana

subduction zone slab–mantle interface.

To estimate the loss of fluid and fluid-mobile elements of the oceanic crust at a depth of >20 km,

the trace element abundances of the blueschist-facies clasts can be compared to the compositions of

basaltic oceanic crust, which is influenced by hydrothermal and ocean-floor alteration. The B isotope

system is a widely applied and meaningful tracer of recycling processes occurring during subduction,

primarily recording the thermal and fluid evolution of the subducting slab. During fluid loss the

heavier B isotope is preferentially enriched in the fluid, leaving behind an isotopically lighter

residual. As this process is most effective at low temperatures (Hervig et al., 2002), large and

measurable effects in the blueschist-facies mafic clasts are expected.

The only location where such slab-derived rocks are carried to the surface/ocean floor in an active

subduction zone are the the Mariana forarc serpentinite seamounts (Maekawa et al., 1992, 1993;

Maekawa, 1995; Fryer et al., 1999, 2000; Gharib, 2006). The compositional variations of seamount

muds and slab-derived fluids (e.g., Mottl et al., 2004) suggest that the mafic material originates from

the décollement region between the subducting Pacific Ocean lithosphere and the overlying forearc

mantle wedge entrained into the rising serpentinite mud (e.g., Fryer, 1992; Maekawa et al., 1992;

Mottl, 1992; Fryer et al. 1999). Therefore, these rocks offer a unique window into processes in the

subducting slab.

Previous studies of metamorphosed mafic rocks recovered from a serpentinite forearc seamount in

the Mariana region (e.g., Maekawa et al., 1993) recognized two types of metamorphism on the basis

of mineral parageneses of the metamorphic rocks; one at low pressure and one at high pressure, the

latter providing direct evidence of blueschist facies subduction zone metamorphism (Maekawa,

1995). The investigation of these incipient blueschist-facies rocks allowed the first empirical

geochemical pressure and temperature estimates for sub-forearc subduction conditions from a modern

subduction zone.
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5.2 Mineral Chemistry (major elements)

Nearly 40 different types of metamafic rocks out of mud-pellets recovered from South Chamorro

Seamount (ODP Leg 195, Site 1200) were studied. Most of the clasts are smaller than 0.5 mm in

diameter and have a schistose foliation marked by oriented planar (Chl, Phe) and acicular (Am)

minerals. Very fine-grained schists can be strongly folded. Other clasts have a patchy appearance of

‘intermingling’ mineral phases. The aligned metamorphic textures are a result of directed stress

during metamorphism of the rock. The major mineral constituents of the studied rocks are amphibole,

chlorite, phengite, epidote and titanite. Some samples contain low amounts of talc, others are nearly

pure talc-aggregates. Minor minerals, present in some of the clasts, are ilmenite, magnetite, apatite,

pyroxene, garnet, rutile, zircon and pumpellyite. Quartz and albite infrequently occur as inclusions in

epidote.

Mineral compositions are specified in the following. Mineral nomenclature will be used according

to Kretz (1983). Complementary back-scattered electron images with electron microprobe spots

indicated are presented in Appendix B.

5.2.1 Amphibole

The amphiboles [(Na,K)0-1(Na,Ca)2(Mg,Fe3+,Fe2+,AlVI)5(SiAlIV)8O22(OH,Cl,F)2] often form acicular

crystals in a chlorite matrix. According to the classification of Leake et al. (1997, 2004), they include

calcic amphiboles (tremolite, actinolite, magnesio-hornblende, edenite, kaersutite), sodic-calcic

amphiboles (richterige, barroisite), and sodic amphiboles (magnesio-riebeckite) (Fig. 5.1).

Ca-Am Na-Ca amphiboles

Na-Am

Na-Ca-Mg-Fe-Mn-Li

Mg-Fe-Mn-Li

(Mg, Fe, Mn, Li) 2

Ca Na22

amphiboles

amphiboles

In sample D1H4-1A, few amphibole cores have a mangano-cummingtonite composition (Ca-Na-

poor, ~9.9 wt% MnO). Typically, most of the metamafic clasts contain discontinuously zoned

crystals with relatively calcic cores and more sodic rims. Some amphiboles show patchy zonation

Fig. 5.1:  Amphibole analyses plotted
following the amphibole classification by
Leake et al. (2004) for the five main
groups of amphibole.
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with variable sodic-calcic composition. The Na content of the amphiboles in this study (up to

7.2 wt% Na2O) range as high as sodic amphiboles in the onland blueschist locality Syros (7.4 wt%

Na2O; Marschall et al., 2006).

Forneris & Holloway (2004) empirically demonstrated that relative abundances of Ca, Na, AlIV,

and AlVI in amphiboles change approximately with pressure and temperature. A positive correlation

between AlIV and AlVI in calcic amphiboles (Fig. 5.2a), which are assumed to be from earlier lower

pressure metamorphic regimes, indicates increasing temperatures (Forneris & Holloway, 2004).

Sodic amphiboles have a large range in AlVI and little AlIV. The calcic-sodic amphiboles have

transitional composition and plot chemically between the calcic and sodic ones (Fig. 5.2a). In general,

Na/Ca ratios in amphibole increase with pressure (Fig. 5.2b; Spear, 1993). Therefore, the Na-rich

rims indicate crystallization with increasing PT and that the rise of the rocks to the seafloor was too

rapid for significant retrograde metamorphism or metasomatism to more calcic rims.
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Fig. 5.2: a) AlVI vs AlIV in amphiboles. Calcic amphiboles show temperature-related trends, sodic amphiboles
show pressure-related trends. b) Al# [100*Al/(Al+Si)] vs Na# [100*Na/(Na+Ca)] variation in amphiboles
from Mariana metamafics.

5.2.2 Phengite

Phengite in the Mariana metamafic rocks occurs as platy to very long sheaves together with

chlorite and amphibole. Phengite is a high-Si, -Mg, and -Fe variety of muscovite that is stable at

elevated pressures. It forms an incomplete solid solution between the muscovite and celadonite end-

members (Fig. 5.3). This compositional range is defined by the reverse Tschermak substitution

(Fe2+MgSi  AlVIAlIV) with increasing Si, Mg and Fe as pressure increases (e.g., Bucher & Frey,

2002; Fig. 5.3). One problem for formula calculation is the under-occupancy of the X-position

(K+Na+Ca). The average composition for phengite in the metamafic rocks is:

(Na0.06K0.87)Al1.46[(Mg0.32Fe0.32Ti0.02)](Si3.32Al0.68)O10(OH)2
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Si occupies ~3.32 pfu at an average celadonite composition of 0.32 in the muscovite-celadonite

solid solution.
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5.2.3 Chlorite

In greenschist facies assemblages, chlorite is a common metamorphic mineral. It is one of the

primary minerals and gives this facies its characteristic green color. The Mariana metamafic rocks

contain platy chlorites with variable composition near to the Mg-rich clinochlore end-member on the

clinochlore (Mg5Al)(AlSi3)O10(OH)8 and chamosite (Fe5Al)(AlSi3)O10(OH)8 solid solution

(Tschermak substitution; Fig. 5.4a).
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Fig. 5.4:  a) Mg vs Fe (pfu) and b) Mg# (= Mg/(Mg+Fe)) vs AlVI (pfu) for chlorite and talc in South
Chamorro Seamount metamafic clasts. Calculation of formula units are based on 11 O for talc (Fe+Mg=3)
and 12 O for chlorite (Fe+Mg=5).

Fig. 5.3:  Si (pfu) vs Al, K, Mg and
Fe (pfu) for phengite minerals. Si,
Mg and Fe increase with pressure.
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Further substitution occurs between AlIVAlVI-SiMg (Fig. 5.4b). The ideal chlorite formula does not

have significant octahedral vacancies, is not Si-rich and (Fe+Mg)-poor and has nearly equal amounts

of tetrahedral and octahedral Al. However, quite common in the metamorphic chlorite minerals

analyzed are measurable amounts of Ca, Na + K (up to: 1.0 wt% CaO, 0.7 wt% Na2O, 0.6 wt% K2O),

possibly due to smectite-layer ‘impurities’. Analyses with CaO >1 wt% are not considered as they

might be analyses of chlorite mixed with other phases (e.g., Amp).

5.2.4 Talc

In some metamafic samples talc is associated with the matrix chlorite. Talc can be the dominant

matrix forming mineral instead of chlorite implying metasomatic reactions. The composition

averages around (Mg2.9Fe0.1)Si4O10(OH) with a minor Mg-Fe substitution (Fig. 5.4).

5.2.5 Epidote and Allanite

Epidote is found in eight metamafic samples. Its presence together with sodic amphibole is

diagnostic of the epidote-blueschist facies (Evans, 1990). Even within a single clast, epidote shows

different zonation patterns with a strong variation between the octahedral Al and Fe (Fig. 5.5). The

solid solution between the clinozoisite (Ca2Al3Si3O12(OH)) and pistacite (Ca2(Al2Fe3+)Si3O12(OH))

end-members in the epidote group is defined by an AlVI and Fe3+ substitution.
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Differences in composition are expressed by the pistacite end-member (Xps) calculated as

Fe3+ / (Al + Fe3+). Thereafter, epidote has a composition of Xps from 0.17 to 0.33. Please note that Xps

is only reported for epidotes and not for the epidote group mineral allanite, which shows low EPMA

totals and are bright in back-scattered images.

Fig. 5.5: AlVI (pfu) vs Fe3+ (pfu) for
epidote minerals. Increasing Fe3+

correlates with low temperatures or
early crystallization.
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Furthermore, epidote has variable MnO contents in the range of 0.07–1.84 wt% and MgO content

in the range of 0–0.37 wt%. Typical epidote cores and zonations are defined by allanite, with the

general formula of Ca(LREE)Al2(Fe2+,Fe3+)(SiO4)(Si2O7)O(OH).

The epidotes can be assigned to the following groups defined by composition, zonation type and

inclusions. Each epidote group includes epidote from several samples.

Epidote 1 (Xps = 0.29 in F2H2-1a): low-Fe epidote cores (Xps = 0.17) with quartz, epidote rim is

irregular with some allanite zones.

Epidote 2 (Xps = 0.25 in E1H3 and 0.27 in F2H2-1a): epidote cores are compositionally

homogeneous followed by an allanite-rich zone and an epidote outer rim.

Epidote 3 (Xps = 0.26–0.33): epidote with titanite inclusions and allanite cores, strongly resorbed

rims, often in contact with titanite.

Epidote 4 (Xps = 0.33): epidote of irregular habitus with allanite, albite and magnetite inclusions,

partly reaction to or overgrowth by titanite (F1H4-3a).

Epidote 5 (Xps = 0.27, E4H2-2b): single grains without zonation or inclusions, few core-like areas

have lower iron but higher alumina contents (Xps = 0.20).

5.2.6 Pyroxene

Na-rich pyroxene in the metamafic samples has a narrow range in jadeite content (from

~7–26 mol%; see Fig. 5.6a) and is Fe3+-rich. These clinopyroxenes are aegirineaugite and aegirine

with a broad spread along the path Q – ~Jd15Ac85 (Fig. 5.6a).
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F2H2-4A
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F2H2-5A

Q

Jd Ac

Jadeite
Aegirine
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Aegirineaugite

Ca-Fe-Mg-
pyroxene

NaAlSi2O6 NaFe3+Si2O6

(Wo, En, Fs)

E2H2-4B
F1H1-3E
F2H2-4D
F2H2-5C
E7H2-10F

Wo

Pigeonite

Enstatite

Hedenbergite

Augite

Mg2Si2O6 Fe2Si2O6

Ca2Si2O6

Diopside

Ferrosilite

MgCaSi2O6 FeCaSi2O6

FsEn

(a)

(b)

Fig. 5.6:  a) Ternary diagram for Na-rich
pyroxene from 4 South Chamorro
metamafic samples. Compositions are
aegirine and aegirine-augite. b) Ternary
diagram for Ca-rich pyroxene from 5
South Chamorro metamafic samples.
Compositions are augite and diopside.
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Other samples also contain Ca-rich clinopyroxene of diopside and augite composition.

Clinopyroxenes of individual samples form distinct compositional clusters (Fig. 5.6b). Magmatic

clinopyroxene is regularly zoned (samples F2H2-5C and E7H2-10F) with Ti-rich cores.

5.2.7 Garnet

Garnet occurs with a chlorite-epidote rich mineral assemblage in one metamafic sample (E1H3-

4C). The garnet shows zonation typical for growth under prograde conditions, characterized by

increasing Mg# and MnO content and decreasing CaO content from core to rim (Fig. 5.8a). Central

areas contain apatite inclusions. Nevertheless, the garnet compositions plots in a narrow field in the

Ca-Fe-Mg triangle (Fig. 5.8b). Two other samples contain idiomorph andradite or Cr-rich ‘hydrous’

andradite with picotite (spinel) cores in a serpentine matrix (Fig. 5.8b).
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Fig. 5.7:  a) (above) Profiles through 5
garnets in sample E1H3-4C showing a
core-rim zonation with increasing Al, Mn
and Mg content at decreasing Ca content.
b) (right) Ca-Fe-Mg ternary diagram for
garnet compositions in 3 metabasites from
South Chamorro Seamount. Compositions
are andradite and spessartine-rich garnet
(blue circles).
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Andradite in association with serpentine is know in metamorphosed oceanic mantle rocks in Idria,

central California (reference) and in alpine-type serpentine schists (Tröger, 1959). Hydroandradite

occurs in ophicalcites accompanying a partly serpentinized alpine-type peridotite from the Totalp

serpentine complex, Davos, Switzerland (Peters, 1965).

5.2.8 Ti-phases (titanite, rutile, ilmenite, titano-magnetite)

Titanite is a calcium titanium silicate (CaTiSiO5) common in most of the metamafic samples

investigated and has an Al2O3 content of up to 5.2 wt%. In the amphibole dominated chlorite-schists

of this study, titanite occurs as single grains, in epidote-bearing rocks in assemblage with rutile,

pumpellyite and magnetite (e.g., E1H3-4B). Rutile (with up to 2.6 wt% FeO), ilmenite and titano-

magnetite appear in most metamafic samples studied, often in assemblages of rutile + ilmenite +

titanite + pumpellyite or epidote.

5.2.9 Other phases (pumpellyite, apatite, quartz, plagioclase, zircon)

In one metamafic sample (E1H3-4b), pumpellyite appears as single minerals and in assemblage

with magnetite, titanite and rutile. The pumpellyite has Fe-rich composition between pumpellyite-

(Mg) and pumpellyite-(Fe). However, it is less Fe-rich than common pumpellyite from zeolite and

prehnite-pumpellyite facies. Apatite is a quite abundant mineral, which appears in various lithologies

of the metamafic rocks. Quartz and the plagioclase albite have been identified (and verified by micro-

Raman analyses); they occur only as inclusions in epidote.

5.3 Petrography

The metamafic rock fragments from South Chamorro Seamount comprise a great variety of

mineral assemblages, i.e., various rock types. Clasts that show the same mineral content and textures

and that were recovered from the same mud-pellet are summarized to one rock sample. Using these

procedures, 50 fragments representing 38 different rock types were characterized. Petrographic

comparison with lithologies described in literature suggests a rough classification of the Mariana

metamafic fragments into amphibole-(talc-)chlorite-schists, epidote-schists and -rocks and phengite-

schists.

To estimate the volume fraction of the minerals, gray-scale back-scattered images were evaluated

using the visualizing software ImageJ 1.39t (National Institutes of Health, USA). Modal abundances

of mineral assemblages in the recovered mafic clasts are reported in Table 5.1. Although the size of

the rock fragments is very small, the volume% estimations are statistically representative due to the

very small mineral grain size within the fragments. Figure 5.8 presents the volume% for each rock

type as a color bar chart.
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To date, a limited number of metamafic samples from Pacman, Big Blue, Conical and South

Chamorro Seamounts were studied; the latter contains the significantly highest amount of metamafic

clasts, the lowest amount is found in Big Blue seamount and no high pressure minerals were

recovered from seamounts closer to the trench (<70 km; Maekawa et al., 1992; Maekawa, 1995;

Savov et al., 2005a; Gharib, 2006). This suggests a potential depth-control on the advection of solid

material that derives from the slab with a greater lithostatic load at greater depth combined with

overpressured fluids controlling the eruptive frequency (Gharib, 2006). Mixing trends between

serpentinite and metabasites compared to the serpentine mud composition recovered at Conical and

South Chamorro Seamounts reveals that the muds contain only  up to 5 % metabasites (Savov et al.,

2005a).
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Fig. 5.8: Bar chart showing the modal composition (vol%) for metamafic rock types.

Mineralogical and texturally similar rocks are described from onland mélange zones such as

Catalina Schist (Sorensen, 1988; Bebout & Barton, 2002; King et al., 2006) and Syros (Marschall et

al., 2006, 2007a,b; Miller et al., 2009). These comprise ‘endmember’- and ‘rind’-rocks related to

high-pressure metasomatic reactions and mechanical mixing between meta-basalts, meta-sediments

and adjacent mantle peridotite. Hence, on the basis of the mineral abundance and assemblages in the

Mariana metamafic samples, these fragments can be assigned to different entities within the

subduction mélange. However, in addition to these slab-derived metamafic rocks, some fraction may

include mafic forearc crust (Johnson, 1992). This might be the case for fragments containing

magmatic clinopyroxene in a chlorite matrix (e.g., E7H2-10f), a fact that will be discussed later.

5.3.1 Amphibole-Talc-Chlorite-Schists

Most metamorphic schists are dominated by the paragenesis amphibole + chlorite (+ talc) of

varying abundance. In addition, minerals as apatite, spinel, titanite, zircon, pyroxene, rutile and

magnetite are present in some samples. Most rock fragments can be classified as metamorphic or
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metasomatic rinds similar to rock types from the Catalina Schist and Syros mélange zones (e.g.,

Sorensen, 1988; Bebout & Barton, 2002; King et al., 2006; Miller et al., 2009).

5.3.1a) metasomatic rind of ultra-mafite, i.e., serpentinized peridotite

#1: Talc-zone (Talc-fels, blackwall)

E2H2-5j (Tlc >> Cr-Mag) is a talc aggregate

composed of dominantly talc and minor

chromian magnetite (3 wt% Cr2O3). Nearly

monomineralic talc zones are typically found as

blackwall zones due to SiO2 transport around

serpentinites (King et al., 2003).

Fig. 5.9:  Back-scattered electron (BSE) image of
clast E2H2-5J: talc blades with large Cr-magnetite
grains. 

#2: Tlc + tremolite, decreasing Tlc abundance (tremolite-dominated, blackwall)

F1H3-2f (Tlc > Am) consists of a talc matrix with fine-grained tremolite (Am) without any

accessory minerals. The variably sized anhedral tremolite needles are embedded into this matrix with

no preferred orientation (Fig. 5.10a).

F1H3-2c (Tlc >> Am > Chl + Mt) is a talc-amphibole-schist dominated by a fine-grained matrix

that is composed of talc with few up to 80 μm large blades of chlorite and tiny amphibole grains. Up

to 120 μm long subhedral unzoned calcic amphibole (tremolite) needles are embedded in this matrix

with a slight orientation (Fig. 5.10b). The trace mineral is magnetite.

     

Fig. 5.10: BSE images of a) F1H3-2f, a talc-dominated amphibole schist and b) F1H3-2c, tremolite needles
in a chlorite-talc-amphibole matrix.
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#3: Chl-Am-schist, foliated

E1H3-5-mud (Chl > Am) is a small unconsolidated schist-fragment still embedded in serpentine

mud and only consists of predominantly chlorite with amphibole (Fig. 5.11a). Amphibole is unzoned

subhedral tremolite.

F1H4-5 (Chl + Am) is a schist-fragment solitary composed of subhedral, up to 100 μm sized

amphibole, which is irregularly distributed in a chlorite matrix (Fig. 5.11b). The thin amphibole rims

have actinolite composition, cores and smaller grains are tremolitic.

F1H1-3f (Chl + Am) is a schistous fragment with subhedral amphibole in a chlorite + fine-grained

amphibole matrix without accessory mineral phases (Fig. 5.11c). Some larger amphiboles (~150 μm)

have cores of edenite composition, the fibrous rims or single, tiny unzoned crystals are tremolite to

actinolite (in one case).

F1H1-3c (Chl + Am) is a schist similar to F1H1-3f with subhedral amphibole needles in a chlorite

(+ fine-grained amphibole) matrix without accessory mineral phases (Fig. 5.11d). Some amphiboles

are zoned with an actinolite core and tremolite rim, other amphibole needles have either actinolite or

tremolite composition. The two latter fragments indicate deformation by slight alignment of the

amphibole needles.

     

     

Fig. 5.11:  BSE images of a) E1H3-5, Chl-Am-schist, b) F1H4-5, Chl-Am-schist, c) F1H1-3f, foliated Am-
Chl-schist, d) F1H1-3c, foliated Am-Chl-schist.
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D1H4-2d (Chl > Am > Ttn + Ap + Zrc) is a

coarse-grained hardly foliated schist fragment.

Matrix is made of platy chlorite. Amphibole

occurs either as relative coarse subhedral

unzoned grains (up to 200 μm) or as fine-

grained crystal aggregates in the chlorite

matrix, and has solely homogeneous actinolite

composition. Titanite and apatite crystals are

anhedral, whereas titanite also occurs as

inclusions in amphibole. Of particular interest

are tiny (size) zircon grains (Fig. 5.12).

#4: amphibole aggregates

F2H2-4d (Am > Chl > Px with inclusions of

Ap + Tit) schist consists of euhedral unzoned

amphibole crystals (actinolite) with two

different types of chlorite occuring between

amphibole. Chl 1 has a high Si/Al ratio and

Chl 2 has lower Si/Al and a lower Mg# (see

data in Appendix). At the border of the schist-

fragment, a large diopside crystal with chlorite-

filled cracks is embedded. Apatite and titanite

are found as inclusions in this pyroxene

(Fig. 5.13).

Fragments E2H2-4j and F2H2-3f are pure amphibole-aggregates of tremolite and actinolite

composition, respectively (Fig. 5.14). In the former, the crystals are quite large, in the latter they are

fine-grained.

     

Fig. 5.14: Back-scattered electron (BSE) images of amphibole aggregates: a) E2H2-4j and b) F2H2-3f.

Fig. 5.12: BSE image of sample D1H4-2d, dominant
phases are Am+Chl, minor minerals are Ttn+Ap.

Fig. 5.13: BSE image of F2H2-4d, an Am-dominated
fragment with a large diopside crystal (bottom).
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5.3.1b) metasomatic rind of mafic slab

#1: Tlc + tremolite-actinolite, decreasing Tlc abundance

E2E2-5d (Am > Chl + Tlc > Ap) is a schist composed of predominantly amphibole needles and

euhedral unzoned large Am-crystals of up to 180 μm interfingering with a matrix composed of

chlorite, talc, and small amphibole crystals (Fig. 5.15a). Apatite occurs as large euhedral crystals (up

to 180 μm). Amphibole composition varies between actinolite, magnesio-hornblende and winchite

(one small grain).

D1H4-1A (Am + Chl >> Tlc) is a small bluish schist fragment composed of variably sized (up to

100 μm wide) mostly spiculeous amphibole with patchy zonation, embedded in a matrix of platy

chlorite ±talc (Fig. 5.15b). Amphibole compositions vary between actinolite/tremolite through

magnesio-riebeckite to winchite (Na2O up to 7 wt%). Bright (in BSE image) amphibole cores were

identified as magnesio-cummingtonie (~10 wt% MnO). The schist is free of any accessory minerals.

     

Fig. 5.15:  BSE images of a) E2H2-5d, an Am-dominated schist with large apatite-grains, b) D1H4-1a,
amphibole-chlorite(-talc)-schist with large Na-rich Am-needles.

#2: Chl-Amph-schist, foliated

E7H2 (MAK-1A,B,2A,8A) (Am > Chl >>

Ap + Ttn > Mag in Ap) greenish-bluish schist

fragments, which comprise fine-grained

anhedral amphibole and chlorite with minor

anhedral titanite and euhedral apatite

(Fig. 5.16). The texture is schisteous with

plication. Titanite and apatite are often

concentrated in layers, magnetite may be found

as inclusions in apatite. Single apatite grains can

reach sizes of ~100 μm. Amphibole reaches

>100 μm length; generally there are coarser

grained areas within the fine grained fragments.

Fig. 5.16:  BSE image of E7H2-1A, strongly foliated
fine-grained Am-Chl-schist with Ap- and Ttn-rich
bands.
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The amphibole has a patchy zonation between actinolite and tremolite. Many amphiboles also

have magnesio-hornblende or edenite composition. Amphibole cores are generally Fe-richer than the

rims. However, there are also amphiboles with opposite composition of Fe-poorer cores and Fe-rich

rims. Few amphibole has winchite composition. Chlorite composition shows strong Tschermak

substitution.

#3: Chl-dominated

F2H2-4f,j (Chl >> Am > Tlc) are chlorite-amphibole-schists dominated by platy well-

chrystallized and chemically homogeneous chlorite with minor, irregularly distributed amphibole

needles and interstitial talc (Fig. 5.17a). Amphibole has tremolite composition, one analysis shows

actinolite composition. Talc is coarse but poorly crystallized.

F2H2-4e,g,5g (Chl >> Am > Tlc + Ap + Ttn + Spl + Zrc) are chlorite-amphibole-schist with a

matrix made up of platy well-chrystallized chlorite with minor interstitial talc. Thin unzoned

amphibole needles are irregularly distributed in this matrix (Fig. 5.17b) and have tremolite

composition. Trace minerals are subhedral ilmenite, titanite, zircon, and apatite grains in the chlorite.

     

Fig. 5.17:  BSE images of a) F2H2-4f, large Chl blades with Am needles, b) F2H2-4e, large Chl blades with
minor Am needels and some ilmenite and talc.

#4: massive Chlorite-Titanite-rocks

Chlorite-aggregate E7H2-6a (Chl 1 > Chl 2 >> Ttn) is composed of two different chlorite

varieties that interfinger irregularly (Chl 2 seems to be later; Fig. 5.18a). Chlorite 1 is relatively fine-

grained to massy with a Si-rich (Si/Al of 2.3) and Fe-poor (Fe/Mg of 0.3) composition (dark in BSE).

Chlorite 2 is more platy and well-crystallized with a Si-poorer (Si/Al of 1.8) but Fe-richer (Fe/Mg of

0.9) f composition (bright in BSE). Titanite (3 vol%) occurs as irregular grains in both chlorites.

Clast D1H4 (Chl 1+2 >> Ttn) consists of titanite irregularly intergrown with fine-grained chlorite

(Chl 1; Fig. 5.18b). This assemblage is intergrown with a more felty chlorite (Chl 2; darker in BSE

image). Chl 1 (early) has a higher Si/Al compared to Chl 2 (later).
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F1H3-2d (Chl >> Ttn) is dominated by massy to felty fine-grained Si-Mg-rich chlorite. Titanite

occurs as irregular grains with reaction cores replacing chlorite (Fig. 5.18c).

     

#5: pyroxene-bearing schist

F1H1-3e (Chl + Am >> Ap + Ttn + Px + Rt) has a chlorite matrix. Therein are predominantly

unhedral and unzoned amphiboles of magnesio-hornblendite to actinolite composition. Euhedral

apatite (~4 vol%; up to 200 μm) and titanite (~4 vol%) grains are intensively intergrown with the

amphibole. Pyroxene (5 vol%) occurs as tiny interstitial grains of En41Fs13Wo46 composition.

Pyroxene can also be found as inclusions in amphibole. Accessory rutile is found as inclusions in

titanite. Foliation is defined by amphibole and pyroxene (Fig. 5.19a), whereas amphibole seems to be

the latest grown mineral phase.

E2H2-4b (Chl 1 > Chl 2 > Am + Px > Ap + Ttn) is a very fine-grained unfoliated schist that is

dominated by two different types of chlorite; fine fibres of Chl 1 (high Si/Al with Fe/Mg of 0.2) and

platy Chl 2 (low Si/Al with Fe/Mg 0.6). Embedded or intergrown with this matrix (Fig. 5.19b) are

unzoned anhedral amphiboles of actinolite to magnesio-hornblende composition and pyroxene fibers

of augite-diopside composition. Traces of euhedral apatite and titanite are found in the chlorite

matrix.

Fig. 5.18 a):  BSE images of E7H2-6a, Chl-
aggregate with Ttn grains, of b) D1H4, Chl-
Ttn-intergrowth and c) F1H3-2d, chlorite
with irregular Ttn.
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Fig. 5.19: BSE images of a) F1H1-3e, coarse-grained Am-Chl-schist with large Ap, b) E2H2-4b, intergrowth
of Chl + Am + Px with Ttn and Ap grains.

#6: massive Chlorite-Amph-rocks

In E4H1-2a (Chl + Am >> Mag) chlorite

surrounds an amphibole aggregate (Fig. 5.20);

again two different chlorite compositions can be

identified with a Mg# between 69.7 and 87.4.

Amphibole has a composition between Mg-

hornblende, actinolite and edenite. Tiny trace

magnetite grains occur along the amphibole rim.

Fig. 5.20:  BSE image of a Chl-Am-aggregate,
E4H1-2a. 

5.3.2 Chlorite-Epidote-Rocks

The chlorite-epidote rocks are characterized by epidote porphyroblasts in a chlorite matrix

together with predominantly (Na-rich) amphibole and a great variety of further minerals such as

ilmenite, titanite, apatite and garnet. Apatite, titanite, allanite, zircon and ilmenite are common trace

minerals, whereas magnetite is relatively rare.

5.3.2a) blueschist-facies meta-basalt / endmember

#1: albite-bearing

F1H4-3a (Chl + Ep + Ttn + Mag + Aln in Ep + Alb in Ep) is chlorite-epidote-schist, which is

composed of fibrous chlorite with composition between 0.6 Fe/Mg and 0.2 Fe/Mg. Epidote occurs as

up to 200 μm large hypidiomorph crystals (Fig. 5.21). Smaller grains form lineations with fine-

grained titanite flakes (>3 vol%). Magnetite and albite occur as μm scale rounded inclusions in
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epidote. Furthermore, patchy titanite forms inclusions in or overgrowths epidote and partly surrounds

allanite. Epidote is characterized by a homogeneous pistacite composition (Xps = 0.33).

#2: pumpellyite-bearing

The schist-fragment E1H3-4b (Am Chl Ep Phe Aln Ttn Ilm Px Pmp Rt Zrc Mag) offers a unique

sample for studying complex metamorphic reactions (Fig. 5.22). The unfoliated clast is composed of

dominantly amphibole with major chlorite, minor epidote (plus allanite), rutile, titanite, and traces of

ilmenite, phengite, pyroxene, pumpellyite, zircon and magnetite. The matrix is made of chlorite with

overgrown amphibole. Amphibole predominantly forms barely zoned, subhedral crystals of

compositions varying between pargasite/Mg-hastingite and more frequently edenite embedding large

rutile-ilmenite and epidote crystals. Some μm sized parts within the edenite have actinolite

composition. Patchy amphibole with Na-richer spots is Mg-hornblende. Rims of amphibole needles

and some internal ‘stripes’ have Na-rich composition of winchite and richterite.

     

Fig. 5.22: Mineral parageneses showing various metamorphic stages and reactions in sample E1H3-4b. a)
and b) show the reaction of Rt + Ilm  Ttn + Pmp + Mag (+Chl).

Fig. 5.21:  Back-scattered electron (BSE)
image of a large epidote grain with
inclusions of magnetite, albite, allanite and
titanite (F1H4-3a).
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Fig. 5.22 (continued): Mineral parageneses showing various metamorphic stages and reactions in sample
E1H3-4b. c) Rt, Pmp and Mag in Ttn with a resorption-like boundary to Ep+Aln, d) epidote with allanite and
Rt+Zrc cores in assemblage with Rt, Ttn and Pmp.

Rutile and ilmenite always occur together, whereas ilmenite seems to be an exsolution from rutile

(Fig. 5.22a,b,c). This assemblage partly reacted to (i) titanite, which surrounds the rutile, and (ii)

larger titanite areas, which include patches of pumpellyite and minor chlorite. Pumpellyite can

contain magnetite grains. The breakdown of Rt + Ilm to Ttn + Pmp + Mag requires Ca, which most

likely comes from the consumption of the surrounding amphibole. Epidote has allanite cores and also

has inclusions of rutile + zircon. Zircon also is found as single grains in the amphibole. Epidote is

characterized by a heterogenous Fe3+ / (Al + Fe3+) ratio of 0.30 (0.26–0.33), slightly lower compared

to sample F1H4-3a. The assemblage epidote + allanite occurs with boundaries to the Rt-Ttn-Pmp-

Mag assemblage. Pyroxene is in assemblage with amphibole and chlorite as euhedral crystals

(Fig. 5.22d) and has variable aegirine-augite composition. Tiny phengite needles are aligned in

amphibole near epidote assemblages (Fig. 5.22d).

#3: garnet-bearing

Fragment E1H3-4c (Chl Ep Ap Grt Am Ttn Spl Aln Rt Zrc) is composed of a great variety of

mineral assemblages. The dominant phase is platy matrix chlorite with irregularly distributed epidote,

minor apatite, garnet, amphibole, titanite, spinel and trace amounts of rutile, zircon and allanite.

Epidote grains are sub- to euhedral and sized up to 200 μm. It is Al-rich with a homogeneous Xps of

0.25. Some grains show a zonation of allanite-rich zones. Garnet occurs as single euhedral grains,

often surrounded by epidote, titanite and chlorite, while it seems to replace epidote (Fig. 5.23a).

Apatite occurs sub- to euhedral together with epidote, but is even found as inclusions in epidote and

as tiny round inclusions in the garnet. The average garnet composition is

Mn1.4Ca0.6Mg0.4Fe0.6Al1.9Fe0.1[SiO4]3. Garnet zonation profiles reveal (see section 5.2) that cores are

enriched in FeO and CaO, but depleted in Al2O3, MgO and MnO.

Round apatite inclusions are found in the centre of the garnets. Cracks cutted through the epidote

and garnet grains are filled with chlorite. Zircon grains are found as inclusion in chlorite, apatite, and
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epidote. Rutile and ilmenite inclusions are found in titanite, which on the other hand includes patches

of epidote (Fig. 5.23b). Amphibole occurs as aggregates of small anhedral needles of winchite

composition. Rutile and ilmenite had been described as relict inclusions in large titanite grains in

blueschist-facies hybrid rocks from Syros (Greece) by Miller et al. (2009). This assemblage occurs in

chlorite-rich rocks of a reaction zone between epidote-bearing rock and serpentinite; chlorite +

titanite replace glaucophane and epidote as the dominant assemblage (Miller et al., 2009).

     

Fig. 5.23:  BSE images of E1H3-4c with a) large Grt grains in assemblage with epidote and apatite, b)
mineral paragenesis dominated by Chl, Ep, Ap, Ttn and Grt.

#4: quartz-bearing

Fragment F2H2-1a (Am Chl Ep+Aln Ap Ttn Zrc Qtz) is the only quartz-bearing one of all

samples investigated. Coarse-grained major minerals are amphibole, epidote (plus trace amounts of

allanite) and apatite embedded in a matrix of platy chlorite. Besides traces of titanite, further minerals

are zircon and quartz (inclusions in epidote; Fig. 5.24a). Amphiboles are elongated and irregularly

zoned crystals, some of them are a little bit patchy in the centre. Compositions vary from Mg-

hornblende in the cores to glaucophane in the rim and a zonation between actinolite-winchite. Other

Am-crystals have edenite cores surrounded by an actinolite-winchite zonation. Aside from

amphibole-rich areas, there are epidote-apatite-rich areas in the sample.

Three different types of epidote can be identified (Fig. 5.24a-c; see section 5.2: epidote 1, 2 and

3). Epidote compositions range between 0.26 and 0.31 XPs (avg 0.28), one dark (in BSE image) zone

has an XPs of only 0.17. Round μm sized quartz-inclusions are found within the epidote cores.

Allanite zonation in epidote is restricted to the outer zones of epidote 2. Epidote 3, with titanite

inclusions, has irregular resorption boundaries and may border to titanite. In the Ep-Ap-rich area,

epidote occurs with titanite and large (~100 μm) subhedral apatite crystals. Apatite and titanite also

occur as single grain inclusions in amphibole.
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#5: epidote-apatite-titanite-aggregate

E4H2-2b (Ep + Chl + Ap + Ttn) is a sample

composed of variably sized epidote grains

distributed in a chlorite matrix (Fig. 5.25). Up to

50 μm large apatite grains occur together with

the epidote and titanite as accumulates in some

areas of the sample. Epidote has a XPs of 0.27

(type 5) and 0.20 in some core areas.

Fig. 5.25: BSE image of epidote grains in a chlorite
matrix with few apatite and accumulations of
titanite, E4H2-2b. 

5.3.3 Am-Chl-Phe-schists

5.3.3a) meta-sediment

Fragment F2H2-5a (Am > Phe > Chl > Ttn + Px + Zrc + Ap + Rt) is composed of elongated

amphibole needles, phengite sheaves and minor pyroxene crystals with an interstitial chlorite matrix

(Fig. 5.26a). Titanite occurs as interstitial irregular formed grains. Amphibole is very patchy with

Fig. 5.24:  BSE images of sample F2H2-1a
showing a) epidote type 1 with a low-Fe
zone, allanite occurs along the epidote rim,
quartz-inclusions are found in the Ep
center, b) epidote type 3 with titanite in
paragenesis with resorped epidote +
allanite cores, c)  epidote type 2 with
allanite zones in paragenesis with apatite.
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compositions between actinolite, magnesio-hornblende and magnesio-riebeckite. Pyroxene has

aegirine composition with up to 28% Jd component, the highest pyroxene Na2O content in all

samples investigated. Trace minerals are rutile as inclusions in titanite and amphibole, apatite as

inclusions in amphibole and tiny zircon grains. The fragment shows a foliation defined by oriented

phengite and amphibole.

Fragments F2H2-4a,b,h (Am > Phe > Chl >> Ttn + Px + Zrc + Ap) are schists composed of

patchy amphibole of up to >100 μm size with intersitial phengite sheaves (Fig. 5.26b). Spaces are

filled with chlorite. Titanite occurs as interstitial irregular formed grains. Na-rich pyroxene (aegirine

with ~19% jadeite component) occurs as crystal aggregates. Amphibole is generally very Na-rich:

core-like areas are actinolite with rare Mg-hornblende, rim-like areas are Mg-riebeckite, and thin

fissure-like veins in amphibole are winchite. Trace minerals are zircon and apatite as inclusions in

titanite. The fragment is folitated by oriented phengite and amphibole.

E1H3-4a (Chl + Phe > Am > Ap + Ttn + Ilm + Rt + Ep) is a fine-grained fragment that consists of

chlorite with interstitial phengite sheaves and amphibole crystals (Fig. 5.27). Large apatite grains

occur in minor amounts, irregularly shaped ilmenite occurs in assemblages with titanite and epidote.

Rutile, epidote and titano-magnetite occur as inclusions in ilmenite, epidote also in apatite.

Amphibole is unzoned with winchite – Mg-riebeckite composition. Epidote inclusion in apatite has a

XPs of 0.25, epidote in ilmenite 0.28. Phengite and amphibole form an oriented texture.

     

Fig. 5.26: BSE images showing a) F2H2-5a, Am-Phe-Chl-schist, b) F2H2-4a, Phe-Am-schist with zircon.

     

Fig. 5.27: BSE images of E1H3-4a showing a) large apatite grains and b) Ilm-Ep-Ttn-assemblages.
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5.3.3b) rind of meta-sediment

#1: large Phe sheaves (near rind)

Fragment E1H3-4d (Am > Phe > Chl >> Ttn) is a phengite shist dominated by ~1 mm long, well-

crystallized, large phengite sheaves with interstital amphibole in a chlorite matrix. Large titanite

grains are also intergrown with amphibole (Fig. 5.28a). The K concentration is slightly higher in the

center of the phengite crystals. Mg-hornblende amphibole crystals are anhedral, unzoned and slightly

oriented along and around the phengite.

#2: Chl >> Phe (metasomatic rind)

Chlorite-schist F1H1-3d (Chl + Phe + Spl) is dominated by platy, well-crystallized chlorite

(Fig. 5.28b). Phengite sheaves therein are irregularly distributed with little spinel.

     

Fig. 5.28: BSE images showing a) E1H3-4d, large phengite sheaves with amphibole and titanite in a chlorite
matrix, b) F1H1-3d, small Phe-sheaves in Chl.

5.3.4 Rocks of magmatic origin

#1: Pyroxene-chlorite-rocks with magmatic relicts, Chl + Px

Pyroxene-chlorite rocks are defined by three clasts, namely F2H2-5c,d and E7H2-10f (Fig. 5.29).

Note, that the fragments representing the same rock, although they were sampled from different

places within the serpentinite seamount. F2H2-5c and 5d are dominated by chlorite with pyroxene

and few spinel. E7H2-10f is composed of pyroxene in chlorite and little spinel. The quite large sub-

to euhedral and intensively zoned pyroxene minerals are irregularly distributed within the fine-

grained chlorite matrix.

Such zoned clinopyroxenes in a fine-grained chlorite matrix are typical for volcanic rocks. The Px

cores are Ti-rich diopside and the cpx rims are low-Ti diopside, which may imply magma mixing

with a differentiated restitic melt of MORB.
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One possible origin for such rock fragments is the Island Arc; erosion transports material from the

arc into the trench. Another possible origin of these rocks are the volcanic seamounts situated on the

subducting Pacific Plate. Nevertheless, the intensively zoned clinopyroxene with no evidence for

higher-grade metamorphic overprint suggests that these samples did not experience subduction

metamorphism at all, but rather originate from altered oceanic crust material. However, though

representative, for further discussion these sample will not be considered as they don’t seem to be

slab-derived mafic material.

     

Fig. 5.29:  BSE images showing oned magmatic clinopyroxene in fine-grained chlorite matrix, a) E7H2-10f
and b) F2H2-5c.

#2: Chl > Am, magmatic amphibole

Fragment E1H3-3d (Chl >> Am + Ap) is dominated by a fine-grained chlorite matrix with few

subhedral amphibole grains and rare apatite (Fig. 5.30). Amphibole minerals have large cores, which

had been identified as kaersutite. Apatite grains can be found as inclusions in these cores. The

amphibole rims are feather-like with a

composition changing from actinolite/tremolite

to Mg-hornblende to winchite.

Kaersutite is an igneous amphibole found in

upper mantle-derived peridotites and in alkalic

rocks (Aoki, 1963; Pichler & Schmitt-Riegraf,

1997; Kesson & Price, 1972; McCubbin et al.,

2006), and even in alkaline plutonic complexes

(Satoh et al., 2004). As it is present mostly as

phenocrysts but never occurs in the groundmass

of these rocks, P and T were high when the

kaersutite crystallized from the magma (Aoki,

1963). Furthermore, kaersutite represents an

important phase in the fractionation of basic alkaline liquids over a wide range of pressures (Kesson

& Price, 1972; Sr ranges from 532 to 1060 μg/g). Kaersutite often occurs in paragenesis with titan-

augite, olivine, plagioclase, and apatite (Pichler & Schmitt-Riegraf, 1997).

Fig. 5.30:  Back-scattered electron (BSE) image of a
large amphibole with kaersutite core and winchite
rim, E1H3-3d.
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Kaersutite and apatite in fragment E1H3-3d can be interpreted as the primary minerals in the rock

before metamorphism. Metamorphism during subduction formed the chlorite matrix and the

actinolite-winchite rims around irregular kaersutite cores.

5.3.5 Andradite-bearing serpentinites (Grt + Srp) and Bt-Chl-rocks

Fragments E2H2-4g,5h are characterized by idiomorph garnet minerals of andradite composition

(Ca3Fe2Si3O12) irregularly distributed in a fine-grained serpentine matrix (Fig. 5.31a). Micro-Raman

analyses confirm andradite and show that the serpentine is antigorite, the high temperature

polymorph.

Most garnets from ultramafic rocks have high pyrope and subordinate almandine contents (e.g.,

Gustafson, 1974). However, idiomorph andradite crystals associated with serpentine have been found

also in metamorphosed oceanic mantle rocks in Idria, central California (Fig. 5.31b) and in alpine-

type serpentine schists (e.g., Zermatt). Frost (1975) described various metaperidotite assemblages

from the Paddy-Go-Easy Pass, Central Cascades; among these are serpentinites that contain relict

chromite, chrome-magnetite and andradite or hydro-andradite. Further, hydroandradite occurs in

ophicalcites accompanying a partly serpentinized alpine-type peridotite from the Totalp serpentine

complex, Davos, Switzerland (Peters, 1965). The garnets occur with calcite, serpentine minerals

(chrysotile and lizardite) and commonly with magnetite, which formed during serpentinization of

peridotite, indicating the presence of considerable amounts of H2O.

     

Fig. 5.31:  a) Back-scattered electron image of sample E2H2-5H with andradite garnet crystals within an
antigorite matrix, b) photograph of up to 5 mm large andradite crystals associated with serpentine, from
metamorphosed oceanic mantle rocks, Idria, central California © 2004 Andrew Alden, licensed to
About.com [http://geology.about.com/od/minerals/ig/minpicgarnets/minpicandradite.htm].

Fragment E4H2-2a is characterized by ± idiomorph ‘hydrous Cr-garnet’ grains, which are

distributed in the center of a serpentine matrix (Fig. 5.32). The garnet crystallized after spinel, as the

cores of garnet are picotite. To the rim of the serpentine clast, calcite or aragonite (CaCO3) needles

are radially embedded in the serpentine with increasing grain-size to the outside (up to 50x250 μm).

This sample might be similar to a finding within the Jijal Complex (northern Pakistan), where green
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chromian andradite occurs associated with chrysotile in a chromitite layer. This garnet was formed

during retrograde greenschist-facies metamorphism (Jan et al., 1984).

     

Fig. 5.32:  BSE images of a) sample E4H2-2a serpentine matrix with calcite and b) andradite-uvarovite
garnet  with picotite cores embedded in this serpentine matrix.

Fragment D3H1-8c (Chl + Bt + Grt + Spl) is

strongly foliated with an intergrowth of chlorite

and biotite (Fig. 5.33). It also may be a

replacement of biotite by chlorite. Tiny

andradite grains are accumulated in some

chlorite areas. Spinel occurs as accessory grains.

Fig. 5.33:  BSE image of strongly foliated Chl-Bt
with andradite grains (bright), D3H1-8c. 

5.4 Light element (Li, Be, B) contents and boron isotopic composition ( 11B)
of (rock forming) minerals

5.4.1 ToF-SIMS element maps

Distribution of Li and B of selected fragments was mapped in order to qualifiy their distribution

between phases. As the ToF-SIMS is used in this study as a qualitative mapping technique with μm-

scale resolution, the sensitivity of Li and B depends on the mineral, e.g., identical Li contents produce

higher count-rates in olivine than in serpentine (see chapter 3). In some cases, acquisition time was

too short resulting in low total counts for some elements. Some images were processed into inverse

color images with white background to visually intensify the element counts distribution. Chlorite

and phengite were found to be the major Li- and B-carriers, whereas more variable and relatively

lower Li and B count rates were found in amphibole. In the following, four sample metamafic rocks

are shown.
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Example 1: E1H3-4d

Figure 5.34a shows a ToF-SIMS multi-element map (500x500 μm) of sample E1H3-4d

combining count rates for K (red color), Mg (green) and Na (blue). The bright green phase is chlorite,

zoned amphibole is darker green to blue. The red sheaves are phengite. On the left is titanite (black).

Figures 5.34b+c show Li and B distribution maps. The contours indicate boundaries of mineral

phases. Chlorite and amphibole have low B contents, whereas phengite is strongly enriched in B. The

highest Li concentration is found in chlorite and phengite, Li concentration in amphibole is lower.

A second area in the same rock (E1H3-4d) reveals the same results (Fig. 5.35, following page): Li

and B are enriched in phengite and chlorite and less abundant in amphibole.

    

Fig. 5.34 a)  Multi-element map obtained
by ToF-SIMS, K(red)Mg(green)Na(blue).
Red needles are Phe, bright green is Chl
and dark green to blue is Am.
(500x500 μm).

(below) ToF-SIMS element distribution
maps (500x500 μm) of b) lithium and c)
boron. The scale to the right represents
the number of ions counted (increasing
from bottom to top).
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Example 2: E1H3-4b

Figure 5.36a shows a ToF-SIMS multi-element map (500x500 μm) of sample E1H3-4B

combining count rates for K (red color), Mg (green) and Na (blue). The red sheaves in the upper left

are phengite. Deep blue areas are Na-rich pyroxene (aegirin-augite: Jd19Ac41Q40), light blue areas of

amphibole (dark green) have Na-rich composition (winchite-richterite). The light green phase is

chlorite. Dark areas are Rt, Ttn, Ilm, Ep, Aln and Pmp (compare Fig. 5.22). Figures 5.36b+c show the

B and Li distribution of the same area. The contours indicate boundaries of major minerals or mineral

assemblages. Chlorite and phengite are generally enriched in B, whereas some chlorite areas have

lower B contents (upper left in Fig. 5.36b). Li is highly enriched in chlorite and phengite, but less in

amphibole.

Another mapped area of sample E1H3-4b is given in Fig. 5.37 (500x500 μm). To distinguish the

phases Chl, Am, Phe, Ep+Aln and Rt a Mg-counts mapping is shown (Fig. 5.37a). Li concentrations

are high in chlorite and phengite and lower in amphibole (Fig. 5.37b). Ep+Aln and Rt are virtually Li-

free. Aquisition time in this case was too short to collect enough ions for a B distribution map.

Fig. 5.35 a): ToF-SIMS mapping
(500x500 μm) of E1H3-4d showing the Na
distribution between phengite, chlorite
and amphibole.

(below) ToF-SIMS element distribution
maps (500x500 μm) of b) the lithium and
c) boron distribution. Chl and Phe are
enriched in both Li and B.
The scale to the right represents the
number of ions counted (increasing from
bottom to top).
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Fig. 5.37: ToF-SIMS mapping (500x500 μm) of sample E1H3-4b showing a) Mg count rates, major mineral
phases can be easily distinguished, b) lithium count rates: Li is enriched predominantly in Chl.

Fig. 5.36 a): ToF-SIMS mapping (500x500 μm)
of E1H3-4b showing a multi-element distribution
of K(red)Mg(green)Na(blue), the red phase is
Phe, bright green is Chlm dark green is Am, blue
is Na-Px.

(below): ToF-SIMS element distribution maps
(500x500 μm) of b) the lithium and c) boron
distribution. The scale to the right represents the
number of ions counted (increasing from bottom
to top).
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Example 3: E1H3-4a

ToF-SIMS element mapping (500x500 μm) was performed for two areas in sample E1H3-4a

(Fig. 5.38 and 5.39). Amhibole, chlorite and phengite phases can be well distinguished by Fe and Mg

counts (Fig. 5.38a & 5.39a). A multi-element image combining Li and B counts in inverse color scale

(Fig. 5.38b) shows that Chl and Phe are both enriched in Li and B, whereas Ap and Ttn are Li- and B-

free.

Due to the very low acquisition time for the second mapped area in the sample (Fig. 5.39a), the

count rate of B was too low to yield a map. As shown in Fig. 5.39b, Li is enriched in Chl and Phe

relative to amphibole.

  

    

Fig. 5.38 a): T o F - S I M S  m a p p i n g
(500x500 μm) of E1H3-4a showing the Fe
count rates, major mineral phases can be
easily distinguished.

(below) ToF-SIMS element distribution maps
(500x500 μm) of b) the lithium and c) boron
distribution. The scale to the right represents
the number of ions counted (increasing from
bottom to top).
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Fig. 5.39:  ToF-SIMS maps (500x500 μm) showing a) Mg count intensities to distinguish between Chl, Am
and Phe, b) Li counts distribution  with inverse color scale).

Example 4: E1H3-4c

In sample E1H3-4C, a chlorite-rich epidote-bearing area was mapped (500x500 μm; Fig. 5.40a)

Again, the aquisition time in this case was too short to collect enough ions for a B map. However,

total Li counts were high (Fig. 5.40b) and the distribution map indicates a Li enrichment in chlorite.

Garnet show few Li, while epidote, titanite and apatite are virtually Li-free.

    

Fig. 5.40: ToF-SIMS maps (500x500 μm) showing a) the Mg counts distribution to distinguish the major
phases and b) the lithium distribution. The scale to the right represents the number of ions counted
(increasing from bottom to top).
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5.4.2 SIMS analyses: budgets of Li, Be and B

SIMS analyses reveal that phengite and chlorite are the major Li- and B-bearing phases

confirming the results of the qualitative ToF-SIMS mapping. Furthermore, amphibole and phengite

are the major Be carrier in the metamafic rocks embedded in Mariana forearc serpentine mud of

South Chamorro Seamount (Fig. 5.41). Analyses are given in Appendix C3.

Amphibole has variable Li and B concentrations with Li contents reaching ~40 μg/g and B

reaching ~20 μg/g. Be contents vary between 0.07–10 μg/g. Amphibole from the magmatic samples

(kaersutite core composition) has distinct Li and Be (~1 μg/g; Fig. 5.41) and B contents (<0.5 μg/g)

lower to most other amphiboles.

Chlorite has similar B contents compared to amphibole (0.2–11 μg/g), but higher Li contents up to

105 μg/g (Fig. 5.41a). Be contents are below 10 μg/g. The compositional field of chlorite partly

overlaps with compositions of amphibole.

Talc is enriched in Li and B (~10 μg/g). Be contents are similar to the average Be content in

chlorite (~0.2 μg/g).

Phengite composition plot in a relatively distinct field in the Li-B correlation diagram (Fig. 5.41);

phengite has high Li (30–120 μg/g) and B (20-70 μg/g) contents. Be contents are similar to Be-rich

chlorite and to the average amphibole Be contents (>1 to 2 μg/g).

Pyroxene has a narrow range in Li contents (0.04–3 μg/g), but has variable B contents between

0.03–10 μg/g. Be compositions are in the range as for amphibole and chlorite. The very low Be and B

contents are found in the calc-alkaline pyroxenes (volcanic sample). A linear positive correlation

between Li-B, Be-B and Li-Be can be observed.

Some epidote (epidote in E4H2-2B) is similarly and even stronger enriched in B as phengite

(Fig. 5.41). All other epidote has low B contents of <3 μg/g down to even 0.05 μg/g. Li contents are

usually low 0.004–1 μg/g (one exception: 7 μg/g), with a tendency to higher contents with higher B.

Also Be  concentrations, ranging between 0.01 and 1 μg/g, increase with increasing B concentrations.

Pumpellyite has a high B content in the range of the highest B contents in Chl and Am. The Li

content is ~3 μg/g, Be content is high with 8 μg/g.

Garnet within serpentine matrix (andradite) has B contents between 1 and 3 μg/g, low Li contents,

and is depleted in Be. Garnet in assemblage with Ep, Ttn, Ap and Chl (E1H3-4c) is Be- and B-

depleted, but is Li-rich (4.4 μg/g).
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5.4.3 SIMS analyses: 11B

In the blueschist-facies fragments recovered from South Chamorro Seamount, phengite, chlorite

and amphibole  are relatively B-rich (with decreasing B contents from Phe > Chl > Am). Also some

epidotes and pyroxenes are B-rich. Due to the very small mineral grain size (generally <50 μm) a

beam current of only 10 nA was chosen trading spot size for precision.

The B isotope analyses (Appendix C3) show that phengite of different samples define a narrow

range between –2 and –10 ‰ 11B at high B concentrations. The majority of amphibole and chlorite

confirms this negative B isotope signature which averages at –6 ± 4 ‰ (Fig. 5.42). However, 11B

values of amphibole, chlorite and epidote can be more negative or more positive relative to the range

defined by phengite.

B isotope ratios vary significantly between minerals in a single fragment; 11B may be higher in

amphibole compared to chlorite, in other samples amphibole has silimar or even lower 11B relative

Fig. 5.41:  a) Li vs. B content, b) Be vs. B
contents and c ) Li vs. Be contents of
minerals found in slab-derived blueschist
facies clasts. Phengite is the major B
carrier, phengite and some chlorite are the
major Li carrier. Amphibole and phengite
are the major Be hosts. Note that Px and
Am of volcanic origin have distinct
compositions.
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to chlorite (Appendix C3). However, this variation does not influence the average B isotope signature

of –6 ‰ defined by the B-rich minerals in the metamafic rocks.
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5.5 Geothermobarometry

In subduction-related complexes blueschist and greenschist facies rocks generally occur in

intimate, even interlayered association (Bröcker, 1990). It has been established that during

metamorphism, rocks and mineral compositions typically record ambient PT-conditions. Hence,

mineral assemblages that are stable and in chemical equilibrium define metamorphic facies.

Subduction zones are characterized by greenschist- and blueschist-facies metamorphic rocks that

formed under moderate-P/moderate-T or high-P/low-T conditions, respectively. Greenschist-facies

minerals commonly include chlorite, actinolite, epidote, and albite in metamorphic rocks of basaltic

primary rocks composition (Table 5.2; e.g., Evans, 1990). Temperatures range from ~350 to 500 °C

at pressures between 0.2 and 1 GPa (~5–35 km depth). The blueschist-facies can be considered to

form under pressures equivalent to a depth of 15–18 km and a temperature range from 200 to 500 °C.

Common minerals associated with the blueschist-facies include sodic amphiboles (glaucophane),

lawsonite or epidote, jadeite, albite or chlorite, garnet, aragonite and phengite (e.g., Ernst, 1973;

Miyashiro, 1973; Evans, 1990). However, mineral formation is strongly influenced by factors such as

water pressure, f(O2) and bulk rock composition (e.g., Liou et al., 1985; Maruyama et al., 1986;

Evans, 1990) which can lead to the intercalation of blue- and greenschist, depending e.g., on bulk

compositions of the protoliths.

The metamafic rocks from South Chamorro Seamount comprise mainly (Na-)amphibole-schists

and epidote-rocks and minor metasediments. To estimate the temperature and pressure conditions

present during the formation of these metamafic rocks, sodic amphibole, chlorite, phengite, epidote,

Fig. 5.42: B isotope ratios vs B
concentrations for phengite, chlorite and
amphibole in blueschist facies clasts by
SIMS analyses. The correlation shows
that bulk blueschists average at about
–6 ‰ 11B. Analyses of magmatic
samples (e.g., some pyroxene and
kaersutite amphibole) were excluded, as
the samples relevant for later discussion
and interpretation are restricted to slab-
derived metamafic ones.
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pumpellyite, and rutile + ilmenite can be considered. First of all, there is no evidence for retrograde

reactions such as replacement of blue amphibole by more calcic amphiboles (e.g., Bröcker, 1990).

Rather, amphibole rims are generally sodic-rich compared to the cores, indicating prograde

metamorphism at blueschist-facies conditions. Chloritoid ± glaucophane alter to paragonite + chlorite

during retrograde paths (Bröcker, 1990); as phases such as paragonite were not observed in this study,

retrograde reactions seem to be of minor importance.

Table 5.2: Metamorphic facies paragenesis in the system NCMASH after Evans (1990).

Facies Stable paragenesis

Epidote Blueschist (EBS) Na-amph + Epd + Qtz + H2O

Lawsonite Blueschist (LBS) Na-amph + Laws

Pumpellyite-Actinolite (PA) Pmp + Act + Chl + Ab + Qtz + H2O

Greenschist (GS) Ab + Chl + Act + Ep + Qtz + H2O

Eclogite (E) (Jd + Diop?) Omp + Grt + Qtz + H2O

Albite-Epidote-Amphibolite (AEA) Jd ± Alb + Grt + Trem + Parag + Epd

Amphibolite (A) Ab + Act/Hbl + Ep + absence of:

Na-amph, Pl, Greenschist

paragenesis (Ab + Chl + Ep + Act + Qtz)

Previous PT estimations for the metamafic fragments recovered at several seamounts in the

Mariana forearc region are availabe in literature. Minerals in metamafic fragments from Conical

Seamount include lawsonite, pumpellyite, calcic amphibole, incipient sodic pyroxene, phengite,

chlorite and aragonite, some of them as secondary products (Maekawa et al., 1992). Metamorphic

conditions for these high-pressure minerals were estimated to be ~150–250 °C

(lawsonite+pumpellyite stability field) and 0.5–0.6 GPa (e.g., aragonite-calcite phase transition)

(Maekawa et al., 1992). Maekawa et al. (1993) inferred that these metamorphic conditions are

equivalent to depths of 16 to 21 km below seafloor. This is only slightly shallower than the slab depth

of 29 km estimated for Conical Seamount, based on earthquake depths (Hussong & Fryer, 1982; Seno

& Maruyama, 1984). Fryer et al. (2000) suggested similar conditions of ~350 °C and ~0.8 GPa,

equivalent to a depth of ~26 km for South Chamorro Seamount, close to the 27 km estimated by

Mottl et al. (2004).

Mineral paragenesis generally used for PT estimations (at blueschist-facies conditions) include

minerals such as prehnite, lawsonite, quartz and albite. However, the diagnostic mineral of this PT

subduction zone metamorphism, i.e., the blueschist-facies, is sodic amphibole. It can be observed that

calcic amphibole undergoes systematic compositional changes becoming more sodic with increasing

pressure (e.g., Evans, 1990). Using the geobarometer from Maruyama et al. (1986) which is based on

the influence of pressure on the Al2O3 contents in sodic amphibole, Gharib (2006) estimated pressures

of ~0.45 to ~0.57 GPa for the Mariana metamafic rocks. Na2O contents in these amphiboles are

comparable to values measured in this study. However, as most rocks studied are free of albite and

quartz, pressure estimations using the amphibole composition are just a rough approach. Furthermore,
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jadeitic pyroxene of metamafic fragments in this study reach ~33% Jd. This value coincides with

results from Maekawa et al. (1992) and confirms the PT estimations mentioned above.

Gharib (2006) evaluated several geothermometers for chlorite and concluded that for the Mariana

metamafic clasts the temperatures after Cathelineau & Niveau (1985) and Xie et al. (1997) yield

similar values; ~260 °C and ~280 °C, respectively. Chlorite from Conical Seamount samples

(Maekawa et al., 1992) yield a temperature of ~270 °C when applying the Cathelineau equation,

(Gharib, 2006). However, geothermometers are calibrated for high temperatures which are well

above the conditions expected at ~27 km depth. Therefore, T estimations on chlorite will not be

considered in this study.

Epidote is typical for higher temperature blueschists, i.e., the epidote-blueschist facies (e.g.,

Taylor & Coleman, 1968; Muryama et al., 1986; Evans, 1990). Because of their wide range of PT

stability, epidote group minerals of variable composition may form in a single rock during several

stages of metamorphic reequilibration. Especially at low temperatures, slow rates of intra-crystalline

Al-Fe3+ exchange preserve complex zonation patterns in individual grains, providing evidence for

continuous or discontinuous prograde and retrograde reactions (Grapes & Hoskin, 2004). Hence, relic

lower grade epidote is typically Fe-rich, whereas higher grade epidotes, often forming rims, are less

Fe-rich (Grapes & Hoskin, 2004). Maruyama et al. (1986) calculated a series of eqilibria for the ferric

component of epidote along a continuous reaction between magnesio-riebeckite and glaucophane and

found a positive PT-correlation with decreasing Xps. According to Maruyama et al. (1986 and Enami

et al. (2004), Gharib (2006) applied isobars corresponding to glaucophane and pistacite Xps

components (0.23–0.29 Xps) and suggested PT conditions of ~0.4 to ~0.5 GPa and ~240 to ~290 °C.

However, compositional range is similar to the one observed in epidote from the present study (0.25

to 0.33 Xps, 0.17 in some epidote cores). However, these epidote compositions are comparable to

blueschist-facies epidote from three Black Butte rocks (Xps = 0.28–0.33; Brown & Ghent, 1983) and

hence confirm a blueschist-facies origin of the metamafic clasts studied.

Maekawa et al. (1992) and Maekawa (1995) described lawsonite in samples recovered from

Conical Seamount. However, in the metamafic rocks Conical and South Chamorro Seamounts,

lawsonite was not identified (this study; Gharib, 2006).

This study documents the existence of pumpellyite (sample E1H3-4b) in (i) association with

titanite, magnetite, rutile, ilmenite and epidote surrounded by a chlorite + (Na)–amphibole (± Na-Px)

matrix, as well as (ii) single pumpellyite crystals in amphibole. The comparative study of onland

metamorphic terranes by Brown (1977) gives a petrogenetic grid for relative PT-range estimations

(Fig. 5.43). Although the limiting phase relationships require quartz and albite, which do not occur in

the Pmp-bearing sample, the Black Butte blueschist in the Franciscan includes the phase assemblage

of Pmp + Ep + Na-Am (Fig. 5.43). Temperatures for these blueschists are 250–300 °C (Brown &

Ghent, 1983) at about 0.7 GPa.
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Fig. 5.43: Summary of PT-estimates and phase relations in the system Al-Ca-Fe3+ (from Brown, 1977).

5.6 Calculated modal compositions: bulk rock and potential source material

To compare the metamafic rocks from the Mariana forearc region with literature data, the bulk

rock composition of the mafic clasts was calculated and is reported in Table 5.3; combining the

modal abundance and compositions of relevant mineral phases yields the bulk rock composition of

each sample. The FeO content of minerals was recalculated to Fe2O3 and rock compositions were

calculated water-free to have consistency with literature data. It is important to note that calculated,

i.e., estimated bulk rock compositions are afflicted with a large error due to visual mineral vol%

estimation and averaging of heterogeneous, i.e., variable mineral compositions. The mineral

assemblages and calculated bulk rock compositions are significantly more variable compared to

samples investigated by Gharib (2006) indicating a large range of slab and slab-mantle-interface

rocks sampled by South Chamorro Seamount.

The metamafic rocks show a wide range from Si-depleted and Al-enriched to Si-enriched and Al-

depleted compositions (Fig. 5.44a), equivalent to Si-undersaturated andesitic and trachybasaltic rocks

in the TAS (total alkali vs silica) diagram (Fig. 5.44b). The large range in silica content (31–65 wt%)

is caused by a large amount of nearly mono-mineralic fragments (e.g., Chl, Am, Tlc). Talc- and/or

amphibole-rich rocks have the highest SiO2 contents, chlorite- and/or epidote-rich rocks are relatively

silica-poor (Table 5.3). The estimated Mg# ranges from 39 to 92.
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The average water-free composition (av LOI = 8.42 wt%) of all investigated metamafic clasts is

basaltic. Mean weight percents are: SiO2 = 45.57 ±8.4, TiO2 = 0.79, Al2O3 = 10.3 ±6.5, Cr2O3 = 0.13,

Fe2O3 = 10.35, MnO = 0.39, MgO = 24.21 ±7.8, CaO = 7.00 ±5.5, Na2O = 0.58, K2O = 0.54, NiO =

0.14, P2O5 = 0.6. A similar average composition of Mariana metamafic rocks was already reported by

Gharib (2006). However, the range in calculated bulk compositions of the metamafic rocks studied

correlates well with previously analyzed metamafic fragments from Conical and South Chamorro

Seamounts (Fig. 5.44) which have similar major and trace element composition to metabasalt and

metadiabase (Johnson, 1992; Savov et al., 2005a). Low Ni and Cr values, but high TiO2 abundances

in most of the samples (not this study) suggest that they were derived from mid-ocean-ridge basalt

(MORB-like) protoliths (Savov et al., 2005a).
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Fig. 5.44:  Calculated bulk rock compositions of metamafic clasts from South Chamorro Seamount (open
diamonds): a) SiO2 vs Al2O3 contents and b) TAS diagram. Compositions of metabasites from Conical and
South Chamorro Seamounts studied by Savov et al. (2005a; closed diamonds) are plotted for comparison. All
values are based on LOI-free composition. The average composition of metabasites of this work is basaltic
(large circle).

The composition of all studied metabasites is variable and similar to those of volcanic turbidites

(Plank & Langmuir, 1998) in the sediment sequence being subducted at the Mariana convergent plate

margin. Gharib (2006) illustrated that compositions are more similar to other subduction related rocks

such as mid-ocean ridge basalt (MORB), basalts and associated phases from Sites 801 and 1149

outboard of the IBM margin (Kelley et al., 2003), altered basalts from the Mid-Atlantic Ridge, a

1.8 km section of upper ocean crust drilled at ODP Hole 504B, seawater-altered basalt (Mottl, 1983;

Alt et al., 1986) and mean alkalic ocean island basalts (OIB) (Engel et al., 1965).

The compositional range between samples suggests small scale heterogeneity of the sampled solid

slab materials, i.e., oceanic crust material which was subducted and then returned to the seafloor via

serpentinite mud volcanoes.

Strong differences are found between phengite-rich rocks (high K2O content) and epidote-rich

rock (high CaO). The high MgO content in talc- and amphibole-rich rocks, higher than in basalt,

could be explained by Mg-metasomatism, during which Mg in solution is taken up by the rock,
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typically into Mg-silicate clays. Such a Mg uptake during metasomatism is typical for high-

temperature seawater-driven basalt alteration and is accompanied by leaching of major elements into

the solution (e.g., Mottl, 1983). The metamorphic rocks with typical volcanic clinopyroxene or

amphibole suggest precursors such as hydrothermally altered OIBs from seamounts that were likely

ripped off the subducting slab and incorporated into the fault gouge that erupted via the serpentinite

mud volcano (e.g., Sample & Karig, 1982; Yamazaki & Okamura, 1989; Shipley et al., 1992; Cloos

& Shreve, 1996; Scholz & Small, 1997; Mottl et al., 1998).

Additionally to major elements compositions, Li and B concentrations of bulk rocks were

estimated (Table 5.3). The Li and B contents are strongly controlled by their major carrier minerals

phengite, chlorite and amphibole. Concentrations range from <1 μg/g (Li and B) up to ~70 μg/g Li

and up to ~33 μg/g B (~44 μg/g B in the Srp+Grt-rock) (Fig. 5.45). Although the Li and B

concentrations are rough approximations, the values coincide well with Mariana metamafic rocks

analyzed for bulk rock compositions by Savov et al. (2005a; Fig. 5.45).
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Fig. 5.45: Li vs. B of estimated bulk rock concentrations (open diamonds) compared to metamafic fragments
from Conical and South Chamorro Seamounts studied by Savov et al. (2005a; closed diamonds).

Lithologies from onland blueschist occurances that compose of various schist-assemblages (e.g.,

Fransiscan; Elekdag, Turkey; Syros) have bulk rock compositions varying between oceanic basalt

and mantle wedge harzburgites (Altherr et al., 2004; King et al., 2007; Marschall et al., 2007a). They

originate from the interior of the slab or from a décollement region situated at the base of an

accretionary wedge. These décollement regions, known as a mélange zones, are a serpentinite-rich

and fluid-rich environment affected by strong mechanical mixing (e.g., Bebout & Barton, 1989,

2002). The large amount of metamafic fragments which are composed of a variety of mineral

assemblages, have an average composition suggesting that they originate from a broad region in the

zone between the top of the subducting slab and the serpentinized ultramafic material of the Mariana

forearc mantle wedge.
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So far, geochemical subduction zone models are based on onland blueschist deposits. Most of

these onland blueschist-facies metabasites have not been transported through a supra-subduction

mantle and due to tectonic uprise/exposure they experienced retrograde metasomatism. Therefore,

they do not completely reflect actual top-of-slab conditions. A direct sampling of this slab-mantle

interface is uniquely possible in the Mariana subduction zone.

5.7 Slab-mantle-interaction: evidence for an active subduction zone mélange
formed by tectonic and metasomatic mixing

One of the most characteristic features of subduction is the region known as a tectonic mélange

which is found in most orogenic belts (e.g., King et al., 2006). Within accretionary prisms, this

mélange forms highly deformed metasedimentary collages typical of incipient metamorphism (e.g.,

Fisher, 1996). In forearc to sub-arc regions, the mélange is characterized by chaotic hybridized

mixtures of peridotite, basalt and sediment produced at blueschist-, amphibolite-, or eclogite-facies

conditions (e.g., Bebout & Barton, 1989, 2002; Bebout et al., 1993; Fisher, 1996; King et al., 2003,

2006). The existence of mélange zones in active subduction settings is highly probable; Abers et al.

(2006) reported seismic evidence for 1–7 km thick zones of anomalously slow material above

subducting slabs which may represent hydrated mélange zones dominated by chlorite + talc (Bebout

& Barton, 2002). The presence of such rheologically weak minerals formed during metamorphism

(Reinen et al., 1994; Peacock & Hyndman, 1999; Reinen, 2000) allows distributed deformation and

the formation of mélange along the slab-mantle shear zone (Bebout & Barton, 1989, 2002; Bebout et

al., 1993) and affects the rheology and seismicity near the slab-mantle interface (Peacock &

Hyndman, 1999).

Mélange formation appears intimately linked to reactive fluid flow leading to metasomatic

processes accompanying mechanical deformation/mixing (e.g., King et al., 2006). Most observations

so far were made on onland locations such as the Catalina Schist and Syros. Commonly, large blocks,

sites of restricted or no fluid flow, are associated with areas that experienced strong metasomatism

due to high fluid-flow and digestion of tectonic blocks (e.g., Sorensen & Grossmann, 1989; Breeding

et al., 2004; King et al., 2006).

Across the slab-mantle interface, i.e., the mélange zone, there are severe contrasts in the chemical

potentials, most notably for incompatible major and trace elements and their isotopic ratios, as well as

volatile components. Thus, mélange zones act as a chemical bridge between the depleted peridotites

of the mantle wedge and the evolved components of the subducting slab with fluids as agents of mass

transfer to resolve the chemical gradient (King et al., 2006). Metasomatic reactions observed in the

onland Catalina mélange complex form metasomatic ‘rinds’ that are composed of minerals such as

talc, chlorite and amphiboles replacing e.g., olivine, pyroxenes and plagioclase of less ‘digested’ core

material (Bebout & Barton, 1989, 2002; Sorensen & Grossmann, 1989; Breeding et al., 2004; King et

al., 2006). Metasomatic rinds of SiO2-undersaturated serpentinized peridotite blocks are characterized

by talc- and finally amphibole-rich assemblages (King et al., 2003). The mineral assemblages suggest

that metasomatism is characterized by the infiltration of Si-rich, slab-derived hydrous  fluids during
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subduction (Manning, 1997). This results in hybridized rock types or black-wall reaction zones that

are not representative of any subduction input, i.e., pre-subduction protolith (King et al., 2003;

Breeding et al., 2004; Miller et al., 2009). Mechanical mixing in the mélange zones concentrates on

the metasomatized rheological weaker minerals and is presented by deformation along these

metasomatic reaction zones which enclose blocks of basalt, sediment, and peridotite.

Estimated major element compositions for the metamafic fragments show strong variations.

Similar variations were observed for the Catalina Schist mélange rocks (e.g., Sorensen, 1988;

Sorensen & Grossmann, 1989; Bebout & Barton, 2002; King et al., 2006), without considering

pegmatites and metasedimentary rocks from the Catalina Schist amphibolite unit (Sorensen &

Grossmann, 1989). Bebout & Barton (2002) defined two ‘endmembers’ for the mélange interactions:

a mafic endmember with a composition taken from the ‘non-migmatic blocks’ (Sorensen &

Grossman, 1989) and an ultramafic endmember with the composition of serpentinite blocks. The

strong mineralogical and textural similarities of the metamafic lithologies presented with metasomatic

rocks from terrestrial subduction-related mélange settings Catalina Schist and Syros (Bebout &

Barton, 1989; Sorensen & Grossman, 1989; Bebout et al., 1993; Manning, 1997; Breeding et al.,

2004; Marschall, 2005; Miller et al., 2009) gives reason to classify the various metamafic fragments

from South Chamorro Seamount into ‘endmember’- and ‘rind’-groups; Figure 5.46 shows a

schematic assembly of the metamafic rock types with the three endmembers ‘serpentinite’, ‘epidote-

rocks’ (~ subducted oceanic crust) and ‘meta-sediments’. This classification was already applied for

the rock description in section 5.3. In detail, eclogite-rich metabasites are interpreted as the mafic

endmember, though showing a broad compositional range. Schistose phengite-rich fragments are

classified as meta-sediments and associated metasomatic rinds (Fig. 5.46).
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The ultramafic endmember in the zone of slab-mantle-interaction is the mantle wedge serpentinite

(Chapter 4). Serpentinites from Conical and South Chamorro Seamount (Savov et al., 2005a,b, 2007)

are used as endmember composition for the element variation diagrams (Fig. 5.47 and 5.48).

Chlorite-amphibole-rich fragments are interpreted as metasomatic ‘rinds’ or mélange matrix,

respectively. In the following, the compositional characteristics of the main lithologies are

summarized:

1) The ultramafic endmember is the serpentinized mantle peridotite (see chapter 4) with an

average composition of 43 wt% SiO2 and Mg# of 91–93 (Savov et al., 2005a,b, 2007). The associated

metasomatic rinds have a similar mineral inventory as described by authors like Sorensen &

Grossmann (1989) and King et al. (2003). Representative samples of such rinds are the talc-‘fels’ and

talc-dominated rocks with tremolitic to actinolitic amphibole (Fig. 5.46 and Fig. 5.47; see section

5.3.1). The petrological investigation of these metabasites suggests that the talc abundance decreases

and chlorite becomes the major phase together with amphibole with distance to the serpentinite. Other

rind parts are dominated by nearly monomineralic amphibole (see section 5.3.1).

2) The mafic endmember, i.e., the metamorphosed oceanic crust, is represented by epidote-rich

rocks which are enriched in Al2O3 and CaO, but relatively depleted in SiO2 (Fig. 5.48). Mineral

paragenesis are dominated by chlorite, Na-amphibole, apatite, titanite and garnet. Some samples even

contain rutile, pumpellyite, Na-pyroxene and garnet. All these phases do not necessarily occure

together. Chlorite-rich Ca-Na-amphibole-schists with occasional talc and apatite ± titanite and

chlorite-dominated schists with scarce tremolitic amphibole, talc and trace minerals (e.g., apatite,

titanite, zircon) are interpreted as metasomatic rinds that formed along the slab-mantle-interface,

around epidote-rich mafic blocks (Fig. 5.46). Rocks with intergrown chlorite + titanite give evidence

for tectonic mixing in the mélange matrix.

3) Phengite-rich amphibole-chlorite schists with pyroxene + titanite ± zircon ± apatite ± rutile ±

epidote represent the meta-sedimentary rocks of the subducting slab. Similar mineral assemblages

were described by Breeding et al. (2004) for meta-sedimentary rocks from Syros. These rocks are

enriched in Al2O3, Na2O and K2O, but have low CaO (Fig. 5.47 and Fig. 5.48). Samples with

predominantly chlorite and little phengite (F1H1-3d) are interpreted to be the related metasomatic

rind zone (Fig. 5.46).

4) The Catalina Schist and Syros subduction complexes are characterized by a mélange matrix.

Such a mélange matrix was formed by mechanical and geochemical mixing processes and

consequently these zones are composed of weak material (see above). If such mélange material

existed along the Mariana slab-mantle-interface, it probably was disaggregated in the uprising fluid-

serpentine-mud mixture. However, evidence for strong tectonic mixing is given by the strongly

foliated sample D3H1-8C; chlorite is intergrown with biotite, tiny andradite + spinel grains are

concentrated in chlorite layers. The large amount of fine-grained amphibole-chlorite-schist fragments

recovered at South Chamorro Seamount may represent the actual mélange matrix, although these

samples are interpreted as metasomatic rinds in this study.
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Fig. 5.47: Chemical discrimination diagrams, demonstrating the conceptual model for mixing in the mélange
zone. a) MgO vs Al2O3, b) SiO2 vs Al2O3. Left diagrams: data of this study differentiated by lithology, right
diagrams: comparison of the data from this study with literature data.

5) Some metamafic fragments give evidence for an OIB origin: zoned clinopyroxene crystals

(augite-diopside) are embedded in a chlorite matrix. The Ti-rich core and Ti-poor rim composition of

these clinopyroxenes suggests magma mixing during island arc formation. These samples likely are

reworked clastic fragments from island arc erosion that were deposited in the trench region and then

introduced into the subduction zone. Thick layers of turbidites of volcanic clasts are described for the

sediment load of the Pacific plate (Stern et al., 2003). Another sample gives evidence for an upper

mantle origin; apatite and kaersutite amphibole of magmatic origin, the latter with Na-rich rims of
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HP-metamorphic origin are embedded in a chlorite matrix. However, the high amount of chlorite in

these samples is responsible for a major element composition similar to other chlorite-amphibole

schists. Garnet-rich serpentinite samples will not be considered in the discussion, as their origin is not

yet resolved.
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Fig. 5.48: Chemical discrimination diagrams, demonstrating the conceptual model for mixing in the mélange
zone. a) MgO vs Na2O, b) MgO vs CaO. Left diagrams: data of this study differentiated by lithology, right
diagrams: comparison of the data from this study with literature data.

To study the slab-mantle-interaction in the Mariana forearc region, the compositional variation

between metabasites recovered from South Chamorro Seamount is compared to onland equivalents

from the Catalina Schist. The variation diagrams (Fig. 5.47 and 5.48) are separated in plots showing

(i) the data of metabasites of the present study with different symbols for each rock and (ii) the data of

this study compared to literature metabasite data. South Chamorro Seamount metabasites correlate

compositionally with the trend from high to low Al2O3 contents at increasing MgO and SiO2 contents

of the mélange zone compositions reported from Catalina Schist samples (Fig. 5.47). The mafic slab

rocks, including meta-sediments, have the highest Al2O3 contents, while rind-related rocks decrease
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in Al2O3 contents (with distance to the slab endmember). Ultramafic rocks, i.e., serpentinized

peridotites, have the highest MgO contents. Rind formation (talc-rich rocks) is characterized by a

decrease of MgO and increase of SiO2 contents at constant Al2O3 content (Fig. 5.47).

Na2O contents of all metabasites are relatively low. Meta-sediments and eclogite-rich metabasites

have the largest spread in Na2O contents at low MgO (Fig. 5.48). Amphibole-chlorite-rich schists are

characterized by low Na2O contents below 1 wt%. These concentrations match matrix mélange

values of the Catalina Schist (Bebout & Barton, 2002). The CaO vs MgO distribution for the studied

Mariana metabasites also matches the composition described for the Catalina Schist mélange

(Fig. 5.48). Metamafic slab samples and meta-sediments are characterized by parallel compositional

trends for Ca-Mg during rind formation (Fig. 5.48). Talc-rich samples correlate geochemically with

metasomatic rinds formed after ultramafic serpentinites, a compositional trend already suggested by

Bebout & Barton (2002). Due to low Na2O, MnO, TiO2, Cr2O3 and Fe2O3 bulk concentrations,

endmembers and rinds are hardly identifiable on the basis of these elements.

Although the metamafic fragments do not give any information about their local relationship to

each other, the mineralogy and calculated bulk rock composition yield the evidence that they derived

from the slab-mantle interface. Major element correlations of the Mariana samples indicate chemical

and mechanical mixing between crustal components and an ultramafic component (see also Bebout &

Barton, 2002) by rind formation around metamafic and ultramafic rocks, comparable to the Catalina

Schist mélange rocks (e.g., Sorensen & Grossman, 1989; Bebout et al., 1993). King et al. (2006)

interpreted those compositional trends as a direct result of metasomatic weakening of blocks through

rind production (Sorensen & Grossman, 1989; Bebout et al., 1993) and mechanical incorporation of

these comparatively weak metasomatic minerals into the developing mélange matrix (Bebout &

Barton, 2002).

5.8 Light element behavior during dehydration and mélange metasomatism

During progressive metamorphism in a subduction zone environment, the light elements Li, Be

and B are important tracers of mass transfer. The bulk rock light element concentrations of the

Mariana metabasites strongly vary from nearly zero to ~70 μg/g Li and ~35 μg/g B (Fig. 5.49). The

average bulk composition is estimated to be ~23 μg/g Li and ~8 μg/g B. Mariana metabasites

analyzed by Savov et al. (2005a) have higher bulk rock B contents (Fig. 5.49b). This discrepancy

suggests that calculated light element abundances of the metamafic rocks investigated in this work

have to be used carefully. Due to the very small size (<2 mm) of the fragments and the visual

approximation of mineral abundances, calculated bulk element concentrations may not be sufficiently

representative for light elements, but rather may be over- or under-estimated. Additionally, bulk rock

analyses (Savov et al., 2005a) include Li and B bound in cracks and along grain boundaries. Note that

bulk light element calculations are not available for all samples.

The Al2O3 abundance of the metamafic fragments turned out to be most indicative to discriminate

between ‘endmember’ slab-derived metabasites and metasomatic rinds within the slab-mantle-
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interface mélange (see previous section). As phengite > chlorite + amphibole are the major hosts of

B, metabasites rich in these phases have the highest B concentration (Fig. 5.49). Rind formation is

characterized by decreasing Li and B abundance from epidote- and phe-rich rocks to rind-related

amphibole-chlorite-schists (± phe ± tlc) (Fig. 5.49a,b). The metasomatic rinds have Li and B

abundances of <10 μg/g. Highest calculated Li whole-rock abundances are found in few phengite-

rich and amph-chl-schist samples: >48 μg/g (Fig. 5.49a). The average Be concentrations of the

metamafic rocks is considerably <1 μg/g.

The Li, Be and B abundances in bulk metamafic rocks are variable, though in the same range as

for altered oceanic crust (AOC) and sediments being subducted (Fig. 5.49). The average composition

of the subducting slab can hardly be estimated due to the fact that it is not possible to determine the

volume% of AOC and sediments ‘sampled’ by the metamafic fragments in this study. The smallest

variation is given for AOC directly east of the Mariana trench with 0.05–3.1 μg/g B (Kelley et al.,

2003; Fig. 5.49b). Variable amounts of sediments are expected to be added to the subducting load,

which would increase the average B contents of the slab, i.e., of the precursor of the metabasites

studied. Nevertheless, as average B contents of metamafics are also low, a strong B-loss by

dehydration during subduction until 27 km depth below South Chamorro Seamount can be excluded.

Li concentrations in AOC and sediments strongly vary. Therefore, an estimation about Li-loss hardly

is possible.
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This very low light element loss, nevertheless, is understandable, as the metamorphic grade is

relatively low compared to metamorphic conditions suggested for most onland mélange zones. The

results of the Li and B bulk inventory in Mariana metabasics can be compared to literature; Bebout et
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al. (1993, 1999) examined Li, Be and B whole rock abundances of metasediments and metamafic

rocks from the Catalina Schist which demonstrate a range in metamorphic grade from lawsonite-

albite via greenschist and epidote-amphibolite facies. With increasing metamorphic grade, mean B

abundances in metasediments decrease from 92 μg/g to 15 μg/g implying a possible B loss of ~85 %

during prograde metamorphism. Large amounts of B along with other highly fluid-mobile elements

are lost from subducting sediments already at shallow depths. Li and Be bulk rock abundances (0.1 to

~5 μg/g Be and ~6 to ~45 μg/g Li) and B/Be ratios (<30) in these metamafic rocks do not change

significantly with metamorphic grade. This implies that B is preferentially removed from the

subducting slab relative to Be and Li and the high B/Be ratios typically found in oceanic sediments

and altered oceanic crust are not retained to subarc depths (Moran et al. 1992; Bebout et al., 1999).

The Li, Be and B abundances of the Mariana metabasites are in the same range as in altered

oceanic crust and sediments. Nevertheless, their average abundances imply that most of the Li and Be

remained in the subducting Pacific slab and was not released with hydrous fluids, while B contents

slightly decreased during progressive subduction until the ‘sampled’ depth of ~27 km below the

South Chamorro Seamount.

5.9 Boron fractionation ( 11B) during slab dehydration and slab-mantle-
interaction (fractionation along the slab-mantle interface)

Boron isotope systematics have proven to be important tracers in studies about material recycling

in subduction zones, i.e., in the ‘Subduction Factory’. In hydrous fluids and in silicate melts Li and B

are relatively mobile and element concentrations in the slab are decreasing with increasing depth of

subduction, due to dehydration and fluid release. Be is relatively immobile in hydrous fluids but

mobile in silicate melts. B redistribution and the fractionation of its isotopic species strongly depends

on the thermal evolution and resulting devolatilization history of subducted materials (e.g., Moran et

al., 1992; Bebout et al., 1993, 1999; Peacock & Hervig, 1999; Nakano & Nakamura, 2001; Bebout &

Nakamura, 2003; Marschall et al., 2007a; King et al., 2007). The preferential loss of the heavier

isotope 11B (Leeman & Sisson, 2002; Ryan, 2002; Palmer & Swihart, 1996) results in decreasing 7Li

and 11B values in the subducting material. B concentrations and 11B values in subduction-related

volcanic rocks decrease across-arc, from trench to back-arc (e.g., Ryan & Langmuir, 1987, 1988,

1993).

Fresh mantle and magmatic rocks show very low Li, Be and B concentrations and no isotopic

anomalies. Subducting sediments (enriched in Be), altered (serpentinized) oceanic crust and

serpentinized ultramafic rocks (mantle wedge) are important reservoirs for the light elements and

show 11B values higher than MORB (or mantle), due to a preferential enrichment of the heavy

isotopes during the interaction with seawater or slab-derived fluids. Therefore, the hydrous portion of

the subducting slab introduces large amounts of Li and B into the subduction zone (Zack et al., 2003;

Marschall et al., 2006).



Chapter 5 - Metamafic blueschist-facies rocks

127

The mineral assemblages of the studied blueschist-facies clasts are diverse; major components are

Na-amphibole, chlorite, phengite and also epidote and rutile. Some rare findings are pumpellyite and

Na-rich pyroxene (Acm-Di-Jd). SIMS and ToF-SIMS analyses show that in the shallow subducted

slab Li resides in phengite  chlorite > amphibole and that B preferentially resides in both phengite

and chlorite. B isotope ratios of the dominant minerals Na-amphibole, phengite and chlorite are

negative: mean 11B values are –6 ‰ with a variation from –10 to –2 ‰ for most analyses

(Fig. 5.42).

The B isotopic composition of oceanic crust may vary between –4.3 ‰ to +24.9 ‰ depending on

fluid-rock ratios, temperature, the extent of alteration and other parameters during seafloor

metamorphism (Oman and Cyprus ophiolites; Smith et al., 1995). The average B content of altered

oceanic crust is assumed to be 5.2 ± 1.7 μg/g with an average 11B of +3.4 ± 1.1 ‰ (Smith et al.,

1995). The B isotope signature of seafloor pelagic sediments range from –6.6 to +11 ‰ with B

concentrations of 80–160 μg/g (Ishikawa & Nakamura, 1993), 11B values for trench turbidites range

from –6 to –1 ‰ (You et al., 1995). Marschall et al. (2007a) presented a model for the quantification

of trace element release during dehydration of progressively subducting oceanic crust and used

altered oceanic crust as a starting material with a B isotope ratio of +0.8 ‰ and a B concentration of

26 μg/g. Also King et al. (2007) modelled the B isotope fractionation during progressive fluid loss

during subduction. Thereafter, to summarize a model for the subducted Mariana slab, we assume an

altered oceanic subducting crust, i.e., the slab, with a 11B of ~ +4.3 ‰ (Smith et al., 1995). During

progressive metamorphism, in the metamafic epidote-rich rocks from South Chamorro Seamount,

i.e., the metamafic slab endmember in the mélange zone, and in the phengite-bearing metasediment B

isotope composition is lowered to a value of ~ –6 ‰ with mean B concentrations of ~8 μg/g as it

reaches blueschist facies conditions at ~27 km depth.

This B isotope value is considerably lower than compositional ranges of mantle and MORB.

Consequently, during subduction-related dehydration reactions the heavy B (11B) must have been

preferentially and progressively removed from the slab minerals by released B-rich aqueous fluids.

The B isotopes fractionate by Rayleigh fractionation (Peacock & Hervig, 1999), thereby increasing

the 11B in the fluid fraction and lowering 11B in the subducting slab. To discuss the B fractionation

for the Mariana subduction, a temperature of 300–350 °C at ~27 km depth at the slab-mantle-

interface is applied, as has been estimated above. At such temperatures, a B isotope fractionation

value ( 11B) between boromuscovite and fluid of –14.8 and –13.3 ‰ (stronger fractionation at lower

temperature) has been experimentally determined by Wunder et al. (2005). This is in agreement with

experimentally derived isotope fractionation factor of B between silicates (B[4]) and water (B[3])

between –15.2 and –13.8 ‰ at 300 and 350 °C, respectively (Williams et al., 2001).

The progressive removal of B from the rock during subduction decreased the 11B values of the

rock and the released fluid. Peacock & Hervig (1999) calculated that the removal of 50% of the B

decreases the 11B value of the rock from 0 to –8 ‰ for the case where the evolved fluid is enriched

in 11B by a constant 10‰ relative to the rock. This B isotope fractionation model implies a general B-

loss in order to explain the low observed 11B values of the metamafic blueschists from the Mariana

forearc. Applying a 11B of –14 ‰, the fluids released from the blueschist-facies slab with a negative
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11B (–6 ‰) carry a positive 11B of +8 ‰, with a variation of ±4 ‰ due to slab composition

variability. However, it has to be considered that the altered oceanic slab, i.e., the blueschist-facies

fragments have a variable B and B isotope composition. Furthermore, slab dehydration begins

already in lower depths at moderate PT conditions. At temperatures of 200 °C, 11B is ~ –21 ‰

(Williams et al., 2001; Wunder et al., 2005) producing fluids with an even stronger positive 11B

signature.

This study presents for the first time B isotope data of high-pressure metamorphic rocks of a

currently subducting slab. Previous studies were only based on onland exposed metamorphic

complexes and experiments (Bebout et al., 1999; Peacock & Hervig, 1999; Marschall et al., 2006;

King et al., 2007). Previous studies have estimated the 11B value of subducted sediments to be –8 or

–10 ‰ (Ishikawa & Tera, 1997; Smith et al., 1997). Metabasalt samples studied by Peacock &

Hervig (1999) have undergone subduction zone metamorphism and show 11B values of –3 to –7 ‰.

Blueschist-facies rocks from the Catalina Schist have B concentrations of 7.5–9 μg/g and 11B values

of –2 to –9 ‰ (Bebout et al., 1992, 1999; King et al., 2007). These isotope values are substantially

lower than those for altered oceanic crust.

Combined with data from this study, a consistent pattern emerges where the release of aqueous

fluids from subducted sediments and subducted basaltic oceanic crust will decrease the 11B value of

the rocks during slab metamorphism, i.e., metamorphic dehydration reactions. The moderately

negative 11B composition of the metamafic slab-derived rocks (–6 ‰) implies that slab-released

fluids are B-rich with a positive 11B signature due to a large fractionation at ~27 km depth and the

given temperatures. These fluids infiltrate and serpentinize the overlying mantle wedge peridotite,

where B further fractionates between fluid and serpentine.
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Chapter 6

Synthesis

Fluid-rock interaction and light element recycling in the
Mariana forearc

This chapter presents a synthesis of the studies on 1) variably serpentinized Mariana forearc

mantle wedge peridotites and 2) blueschist-facies metamafic samples directly from the active

subducting Pacific slab.

Light element concentrations and 11B values of bulk rocks already provided information that

helpes to understand the rock and fluid chemical evolution within the Mariana ‘Subduction Factory’.

To date, no (published) micro-analytical light element data exist on serpentinites and metamafic

fragments from any serpentinite mud volcano; this study fills the gap. The results of this study make

it possible to create a model of the light element distribution and behavior in an active subduction

zone, in particular between the subducting slab and the overlying mantle wedge (Fig. 6.1).

Fig. 6.1: Cross-section of the non-accretionary Mariana subduction zone in the area of the South Chamorro
Seamount, modified after Stern et al. (2002) and Mottl et al. (2007). The top of the downgoing Pacific Plate
and the top of the Philippine Sea Plate were located bathymetrically and seismically by Oakley et al. (2008).
The dipping angle of the subducting slab is about 12° and 4° E’ of the trench. The location of the South
Chamorro Seamount is equivalent with the westernmost serpentinite mud volcano in the sketch, ~85 km W’ of
the trench and above the slab in~27 km. The white box indicates the likely origin of the metamafic rocks and
serpentinites studied in this work.
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6.1 Subduction input - metamafic high-pressure rocks

Several geochemical studies on high-pressure metamorphic rocks and adjacent serpentinites exist

(e.g., Sorensen & Grossmann, 1989; Bebout, 1995; King et al., 2006; Marschall et al., 2006; Pelletier

et al., 2008b). Such rock suites are only outcropping in regions where erosion has exposed an ancient

subduction zone, accompanied by retrograde metasomatism, such as the Franciscan formation

(California), Syros (Greece), and Elekdag (Turkey) (e.g., Essene & Fyfe, 1967; Coleman & Clark,

1968; Bebout, 1995; Altherr et al., 2004; Breeding et al., 2004; Marschall et al., 2007; Miller et al.,

2009). Therefore, the Mariana forearc serpentinite seamounts offer a unique opportunity for detailed

petrological investigation of a great variety of slab-derived metamafic rocks with the focus on light

element and B isotope micro-analyses of blueschist-facies minerals such as amphibole, chlorite,

phengite and epidote. The results can be summarized in the following main facts.

1) The metamafic rock types from South Chamorro Seamount are often composed of similar

single clasts from different locations in the serpentinite volcano. Hence, the suite of rock

types can be assumed to be representative for the lithology of the subducting Pacific slab or

the slab-mantle-interface. The amphibole-chlorite-schists and phengite- to epidote-dominated

rocks comprise a great variety of lithologies with minerals including phengite, chlorite, talc,

jadeitic pyroxene, Ca- and Na-amphiboles, epidote, garnet, pumpellyite, ilmenite, rutile,

zircon, sphene, apatite and even albite and quartz (the latter two as inclusions in epidote).

Similar lithologies and mineral parageneses are found in exhumed old subduction zones; e.g.,

typical occurences in the Franciscan formation are talc- and tremolite-dominated blackwall-

rocks as well as Na-Am-Chl-Lws-dominated blueschist-facies metamafic rocks (e.g., King et

al., 2006). Na-rich amphibole together with jadeitic pyroxene and the mineral assemblage

Pmp-Ttn-Rt-Ilm-Ep in the Mariana metamafic rocks indicate blueschist-facies conditions at a

temperature of ~150–350 °C and a pressure of ~0.4–0.6 GPa (Maekawa et al., 1992; Gharib,

2006), equivalent to minimum depths of 12 to 18 km below seafloor. Fryer et al. (2000)

estimated that the metamafic fragments from South Chamorro Seamount derived from a

region of ~350 °C at ~0.8 GPa. The latter conditions are equivalent to depths of <26 to

~27 km depth of the subducting slab surface (Fryer et al., 2002; Mottl et al., 2004). These PT

estimates closely match lithologically similar blueschist-facies rocks from Black Butte,

California (Brown & Ghent, 1983).

2) On the one hand, the geochemistry of the metamafic rocks, though highly variable, indicates

that the average protoliths of these rocks were oceanic basalts with minor sediments (see

section 5.5). On the other hand, the major element variation in estimated bulk rock

compositions tells us that the metabasics present rocks and schists of a mélange zone, where

mechanical mixing and metasomatism along the slab-mantle-boundary change the mineral

assemblages and rock compositons (see section 5.6; Bebout & Barton, 2002; Breeding et al.,

2004; Bebout et al., 2007). The latter interpretation is based on comparison with onland

‘subduction zone’ sections from the Catalina Schist sequence (California) and Syros

(Greece). The mélange metasomatism influences the major element concentrations; rind

formation due to the slab-mantle-interaction produced a chemical gradient with increasing
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Mg and decreasing Si contents from the ‘endmembers’ mafic slab and meta-sediments to

their rinds. Decreasing Mg with increasing Si and constant Al contents are observed during

(talc-, chl-, tremolite-) rind formation around serpentinite. The observations indicate that

mélange formation is already significant at relatively low depth (only ~27 km in the Mariana

forearc region).

3) The study presented provides further significant information about the Li and B distribution

between minerals. Li and B are variably but strongly enriched in the metamafic minerals.

The main Li carriers are chlorite (up to 105 μg/g) and phengite (30–120 μg/g). B is variably

enriched in chlorite (0.2–11 μg/g) and amphibole (up to 40 μg/g), the highest B values are

found in phengite (20–70 μg/g). Some epidotes and pyroxenes are enriched in B, but less in

Li (see section 5.3.2). Estimated bulk rock concentrations are variable between ~0 and

~70 μg/g for both Li and B (chapter 5.5). The protolith of the metamafic rocks is the

subducting Pacific plate which experienced low temperature reactions of seawater alteration

and hence is enriched in Li and B compared to depleted mantle (Thompson & Melson, 1970;

Bonatti et al., 1984; Spivack & Edmond, 1987; Kelley et al., 2003; Salters & Stracke, 2004;

Sano et al., 2004; Vils et al., 2008). Additionally, the subducting sediments are also enriched

in Li, but less in B (Ishikawa & Nakamura, 1993). The average composition of this

subducting load is variable. As the light element concentrations in the metamafic rocks are

still high and as B is the more fluid-mobile element, the prograde metamorphism and slab

dehydration on the way down to ~27 km depth is characterized by low B-loss and very

limited Li-loss (see 5.7) and most Li and B is yet to be released with the fluids during further

subduction.

4) Furthermore, this study presents 11B values of micro-analyses in the B-rich phases. These B

isotope results are the first documented in metamafic rocks from the Mariana forearc, i.e.,

from an active subducting slab. The SIMS data were matrix corrected (chapter 2.5), thus

providing reliable information about the 11B inventory of the subducting slab at blueschist-

facies conditions. Phengite minerals are the B-richest phase in the metamafics studied; their
11B values give a limited range of –6 ± 4 ‰ (Fig. 6.2). Although B contents of most

amphiboles and chlorites are much lower, their 11B values correlate well with this phengite-

defined range (chapter 5.3). However, some minerals have lower or higher 11B values

suggesting earlier or later dehydration (and B fractionation) of these single minerals.

5) During subduction and progressive fluid loss, the average positive slab 11B signature for the

slightly altered oceanic crust (~ +3.4 ‰; Smith et al., 1995) with minor volcaniclastic and

pelagic sediments (~ –7 to +11 ‰) will evolve by Rayleigh fractionation: the released fluids

extract B from the dehydrating slab and carry a more positive 11B value, while the residual

rock retains a more negative 11B value (Fig. 6.2; Peacock & Hervig, 1999; Benton et al.,

2001; Williams et al., 2001; Rosner et al., 2003). The degree of B fractionation decreases

with increasing temperature and depth; at ~27 km depth and low temperatures (~200 °C) a

fractionation ( 11B) of –21 ‰ is expected between sheet silicates and fluids of neutral to

basic pH (e.g., Wunder et al., 2005a). The 11B values of phengite, amphibole and chlorite
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can therefore be explained by temperature-dependant B isotope fractionation models between

slab-fluid and slab-restite (Fig. 6.2): taking the altered oceanic crust (AOC) as the starting

material with a 11B value of +3.4 ‰, progressive dehydration of the suducting slab with

increasing metamorphic grade (increasing PT) more and more lowers the 11B value of both

the released fluids and the slab. Thereafter, the fluid released from the slab minerals (at

~27 km depth), i.e., predominantly phengite, chlorite and amphibole (–6 ± 4 ‰), will have a

positive average B isotope value of +14 ± 4 ‰. As the mineral compositions are variable and

fluid release is heterogeneous (rather than constant and homogeneous), the fluid composition

is variable and might reach even values of >20 ‰, if chlorite and amphibole with a positive

B isotope signature dehydrates (chapter 5.3).
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(King et al., 2007)
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Fig. 6.2: The evolution of 11B as a function of metamorphic temperature (=increase of fluid loss) for the
metamafic minerals Phe, Am and Chl from South Chamorro Seamount, Mariana forearc (pink box) and
comparison to the field of lawsonite-blueschist facies rocks from of the Catalina Schist (King et al., 2007).
The temperature dependence of fractionation lines of the residual slab and slab-derived fluids were modeled
by Peacock & Hervig (1999), Benton et al. (2001), Bebout & Nakamura (2003) and Rosner et al. (2003).
AOC marks the approximate 11B of altered oceanic crust (+3.4 ± 1 ‰; Smith et al., 1995).

6.2 Serpentinites of the forearc mantle wedge

Serpentinites from the Mariana forearc region in the southern part of the Izu-Bonin-Mariana

‘Subduction Factory’ have long been of interest in various petrological studies (e.g., Fryer et al.,

1990, 1992, 2006; Mottl et al., 2003, 2004; D’Antonio et al., 2004; Savov et al., 2007; Benton et

al., 2001, 2004). The two serpentinite mud volcanoes Conical Seamount and South Chamorro

Seamount provide variably serpentinized spinel-harzburgites comprising a variety of textures and

different serpentine [Mg3Si2O5(OH)4] polymorphs (lizardite > chrysotile > polygonal serpentine

>> antigorite). Relict primary minerals are olivine, orthopyroxene, clinopyroxene and Cr-spinel,

with decreasing grade of serpentinization. The detailed petrologic serpentinite investigation leads

to the following main results which are summarized in Table 6.1 and schematically pictured in

Fig. 6.3.
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Table 6.1: Schematic summary of the relationship between polymorphs, textural location, brucite
composition, Li and B contents and 11B values.

fluid/rock after olivine veins brucite Li conc. B conc. 11B

early:
low, complete

consumption

Liz ± Brc

(mesh rim)
Liz Mg-rich high

medium to

high
up to +24 ‰

late: high
Ctl >> Liz

(mesh center)
Ctl Fe-rich low variable down to -14 ‰

1. The serpentine major element composition of the various textures (e.g., mesh rims, veins) is

predominantly dependent on the mineral which is replaced (Ol, Opx) as well as dependent on

possible brucite admixtures and magnetite abundance in the serpentine. For instance,

serpentine after orthopyroxene has higher Al and Cr contents compared to other serpentine.

The variable degrees of serpentinization, the variety of textures and the different degrees of

mantle melting suggest that the peridotitic mantle was sampled at different locations (i.e.,

depths). The predominance of lizardite and chrysotile together with Fe-rich brucite and the

absence of antigorite (aside from Conical Seamount serpentinites) limits the temperature

range of extensive hydration to well below 350 °C down to <250 °C.

2. Previous studies (e.g., Allen & Seyfried, 2003; Evans, 2008; Foustoukos et al., 2008; Frost &

Beard, 2007; Moody, 1976a, 1976b, 1979) have shown that pH, T, Si-activity and oxygen-

fugacity have a strong influence on the Fe/Mg ratio, i.e. the Fe distribution between

serpentinization-related mineral phases. The samples reveal that mesh rim serpentine after

olivine has Fe/Mg ratios of the former olivine (e.g., 0.09) and that mesh rims have enriched

Fe/Mg ratios due to brucite-admixtures. Mesh center serpentine is dominated by lower

Fe/Mg ratios than the former olivine, if magnetite is abundant. Magnetite-free mesh centers

can also contain brucite of different Fe-concentration which varies between samples.

However, low-Fe serpentine, also in veins, is associated with Fe-precipitation into magnetite

and/or brucite. The variable assemblages of serpentine – brucite – magnetite with changing

Fe-distribution indicate that serpentinization in the Mariana mantle wedge is characterized by

an open system with sufficient fluid flow accompanied by changes in temperature, silica

activity and f(O2).

3. Further, serpentine polymorphs chrysotile (Ctl), lizardite (Liz) and polygonal serpentine

(Pol) correlate with certain serpentine textures (microstructural positions) and serpentine

generations. This serpentine polymorph distribution in the samples reveals crucial

information about the fluid-rock ratios apparent during serpentinization of the forarc mantle

wedge. Liz predominantly occures in early serpentine textures such as former crystal

boundaries, veins and mesh rims. This polymorph forms at relatively low fluid-rock ratios

and complete fluid consumption. Later serpentinization, characterized by the formation of

mesh center and late veins, crystallized Ctl which predominantly occurs at high fluid-rock

ratios. Pol, e.g., in serpentine after orthopyroxene, suggests ‘medium’ conditions or
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polymorph transformation due to further fluid supply. These results show that

serpentinization in the Mariana forearc mantle wedge is characterized by changing fluid-rock

ratios fed by recurring (fresh) fluid pulses (released from the subducting Pacific plate). This

range in fluid-rock ratios likely has an influence on the chemistry of serpentine.

4. The examination of a variety of serpentine textures by micro-Raman spectroscopy and high

spatial resolution ToF-SIMS ion imaging and SIMS shows that B concentrations are not

caused by (i) B hosted on mineral surfaces in cracks, (ii) interlayers or nanotubes, or (iii)

μm-scale B-rich ‘clusters’. Therefore it can be concluded that B measurements in serpentine

of this work are a reliable indicator of B in the crystal structure.

5. The Li and B contents of serpentine minerals result from the low temperature interaction of

the depleted forearc mantle wedge peridotite with slab fluids derived from early dehydration

of the subducting slab (Hattori & Guillot, 2003). Previous studies on bulk rock serpentinites

already demonstrated large but selective fluid-mobile element enrichment patterns (e.g., Li,

B, As, Cs, Sb) in serpentinites and serpentinized muds (e.g., Benton et al., 2001, 2004; Savov

et al., 2005a, 2007). However, those averaging bulk rock element concentrations cannot give

sufficient information for understanding the course of serpentinization and the element

distribution between different serpentine types or generations. The present study shows that

especially Li and B are variably enriched in serpentine relative to depleted mantle (minerals).

Compositions of different serpentine textures overlap in the range of ~ 0–20 μg/g Li and

~ 2–200 μg/g B. Nevertheless, within single serpentinite clasts, a systematic texture-related

variation of Li and B concentrations is observed, predominantly between early and late

serpentine. Early thin veins along former grain boundaries, mesh rims around relict olivine

and thin veins through orthopyroxene have variable B, but enriched Li contents. Late mesh

centers and late veins can have higher B contents, but are significantly depleted in Li relative

to mesh rims (see model summary). The early mesh serpentines, and also texturally early

veins, are the first serpentinization products; serpentinization during this period of complete

fluid consumption (see above) seems to favor the uptake of Li into the serpentine minerals.

Continuing serpentinization does not change the (light element) content of the once formed

serpentine (e.g., mesh center serpentinization via mesh rims); Li concentrations remain

unchanged in mesh rims and along former crystal boundaries during ongoing

serpentinitzation. This clearly shows that (Li) compositions of serpentine once formed (early

generation) do not change.

A relatively heterogeneous Li distribution in serpentinite bulk rocks was already observed by

Benton et al. (2004) and explained by a Li ‘concentration front’ with highest concentrations

near serpentine veins. Nevertheless, the results presented show that the Li distribution within

serpentinites is predominantly controlled by the fluid-rock ratios, i.e., early or late

serpentinization events which also might be true for the B and 11B distribution.

6. SIMS analyses of serpentine from the mantle wedge serpentinites reveal that B isotope

fractionation is not only controlled by pH and temperature, but also by water-rock ratios.
11B ranges from very negative to very positive values considering all serpentinites: from
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–14 ‰ to +24 ‰. Though ranges are different between serpentinite clasts, 11B tends to high

values in association with high Li contents in early serpentine textures, whereas the lowest,

most negative 11B values are found in late serpentine textures, e.g., late veins (Table 6.1; see

Fig. 4.19 in chapter 4). Bulk rock compositions reveal positive 11B values (~ +15 ‰; Benton

et al., 2001; Savov et al., 2004) which correlate with the weighted mean of single serpentine
11B. The variability in 11B values suggests changing fluid composition during

serpentinization as well as fresh fluid supply from depth, rather than a differentiation path or

constant fluid evolution. The ‘Subduction Factory’ is an open and variable system; therefore,

the serpentinizing fluids released from the slab must have a well defined but still variable

(light element) composition and B isotope signature (see chapter 5).

youngest (4)(3)

(2)oldest (1)

depleted mantle wedge
serpentinite,

olivine + orthopyroxene
+ clinopyroxene 

+ spinel
Lithium
Boron

first fluid pulses,
crack-filling 
serpentine

serpentinization along
grain boundaries,

mesh Srp

Ol

Opx

Cpx

Spl

Ol

Ol

Fig. 6.3: Schematic model of peridotite serpentinization steps with color indicated Li and B infiltration: 1)
juvenile mantle peridotite, only primary minerals Ol, Opx, Cpx and Spl, 2) first veins with high Li and B
contents in the rims, 3) continuing serpentinzation affects rims of olivine grain producing Li-rich serpentine
with variable B content associated with complete fluid consumption, and 4) late serpentine veins and mesh
centers form and have typically enriched B contents and relatively low Li contents.
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6.3 Boron isotope evolution along the slab-mantle interface in the Mariana
forearc

The results of the light element study on blueschist-facies slab-derived metamafic rocks and

variably serpentinized mantle wedge peridotites from the Mariana forearc region (Fig. 6.4) allows to

explain the Li and B distribution in serpentinite textures and the B isotope evolution in rocks and

fluids during subduction, slab-dehydration and mantle hydration.

As demonstrated above, the metamafic slab-derived rocks have a 11B spread from –10 ‰ to

–2 ‰ (–6 ± 4‰) and are enriched in Li and B. This B isotope signature can be explained by

progressive fluid loss during subduction. The sediments and hydrated oceanic crust carry large

quantities of H2O. The major fraction of H2O is bound in hydrous minerals, such as chlorite,

amphibole and phengite. As the subducting altered oceanic crust has a positive 11B value (~ +3 ‰),

fluids released at the onset of dehydration, where temperatures are very low and B fractionation is

large, have positive 11B values, significantly above the ranges of mantle and MORB (Marschall et

al., 2007). When subduction proceeds, the 11B values of the released fluids decrease and reach

negative 11B values, even lower than those of the mantle, while the 11B value of the slab also

decreases. As temperatures increase with depths, the B fractionation factor will decrease (Peacock &

Hervig, 1999; Wunder et al., 2005). Consequently, at the temperature of 200–350 °C in ~27 km

depth, a slab-released fluid with positive 11B (+14 ‰) can be expected, leaving behind the slab with

a 11B of –6 ‰. The metamafic rocks from the slab-mantle-interface in the Mariana forearc are

characterized by a lithology typical for a mélange zone. Therefore, a compositional heterogeneity of

the fluids can be expected. These fluids are available for the hydration of the overlying mantle wedge

and their positive B isotopic signature explains the 11B value of upwelling fluids (~ +9 to +13 ‰;

Benton et al., 2001; Savov et al., 2004). Consistently, Mottl et al. (2003, 2004) already suggested a

single deep fluid source for these fresh upwelling fluids such as dehydration of sediment and altered

basalt at the top of the subducting Pacific Plate.

However, these relatively low-temperature slab-derived fluids are likely to be B- and Li-rich and

hydrate the depleted mantle. The Mariana serpentinites record a variable Li and B enrichment and a

large range of 11B values (–14 to +24 ‰) in serpentine minerals. This weighted mean of this well

represents the average bulk serpentinite rock compositions of ~ +15 ‰ (Benton et al., 2001; Savov et

al., 2004). In order to explain this range, the question whether the mafic rocks subducted are the

direct source for the serpentinizing fluids can be raised.

The variability of 11B values and their correlation with different serpentine generations strongly

implies that the fluid-rock ratio is the major key to explain the light element distribution in

serpentinites. One can envision that during earliest serpentinization (e.g., mesh rims) and complete

consumption of fluid by olivine to serpentine transformation, B as well is fully consumed and the

fluid composition is virtually ‘taken’ up by the serpentine structure. As a matter of course, the B

fractionates during olivine hydration and forms serpentine of varying 11B values. This early

serpentines, however, are found along thin vein rims and small-scaled mesh rims around olivine cores

(<30 μm); SIMS spot analyses (~25 μm) consequently give an average composition which therefore



Chapter 6 - Synthesis

137

reflects the average 11B value from the serpentinizing fluid. Such a model can explain the formation

of early serpentine with the very positive 11B values of up to +24 ‰.

Texturally late serpentine that forms at high fluid-rock ratios, predominantly triggered by

recurring fluid pulses, incorporates B via strong Reyleigh fractionation. At the low temperatures and

neutral to basic pH in the deep mantle wedge near the subducting slab, the fractionation factor 11B

varies between ~ –14 ‰ (at 350°C) and ~ –21 ‰ (at 200 °C; e.g., Hervig & Peacock, 1999; Winter et

al., 2001; Wunder et al., 2005) and therefore enable to produce serpentine with very negative 11B

values, when starting with a positive 11B in the hydrating slab-derived fluids.

The results of this thesis are an important contribution to the investigation of ‘Subduction

Factories’, as the Mariana forearc mafic and ultramafic rocks are a link between input materials (e.g.,

altered oceanic crust), deep subduction related lithologies such as eclogites and output materials such

as arc magmas.
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Fig. 6.4: Schematic presentation of the Marinana forearc. White circles indicate sampling locations, zoomed
images present the characteristic serpentinite textures (left) and the metamafic lithologies of the slab or slab-
mantle-mélange (right).
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A1: Documentation of reference minerals for 11B SIMS analyses and matrix
correction

a)      b) 

c)      d) 

Fig. A1: Scans of 1-inch round samples with embedded crystals, a) serpentine 21826, b) serpentine ‘21826’
and ‘geiss’, c) phengite 80-3, and d) amphibole ‘21805’.

 

Fig. A2: Back-scattered electron (BSE) images of serpentine ‘21826’.
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Fig. A3: Back-scattered electron (BSE) images of serpentine ‘geiss’.

 

Fig. A4: Back-scattered electron (BSE) images of amphibole ‘21805’.

 

Fig. A5: Back-scattered electron (BSE) images of phengite ‘Phe 80-3’.
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A2: Composition of reference minerals

Table A1: Representative composition of serpentine minerals ‘geiss’.

Analysis geiss geiss geiss geiss geiss geiss geiss geiss geiss geiss geiss geiss geiss

SiO2 43.34 43.12 42.87 42.85 43.03 42.88 42.46 42.48 42.29 42.75 43.11 42.68 45.81
TiO2 0.02 0.02 0.02 0.03 0.04 0.06 0.03 0.03 0.05 0.01 0.02 0.02 0.02
Al2O3 2.10 2.32 2.22 2.22 2.22 2.21 2.49 2.45 2.56 2.35 2.38 2.16 2.07
Cr2O3 0.14 0.12 0.15 0.13 0.11 0.14 0.11 0.12 0.14 0.11 0.09 0.11 0.11
FeO 4.90 4.89 4.88 5.11 4.94 4.93 5.30 5.20 5.21 5.07 4.80 4.87 4.76
MnO 0.12 0.07 0.19 0.09 0.09 0.05 0.11 0.13 0.12 0.20 0.04 0.08 0.10
NiO 36.21 36.46 36.30 36.81 36.46 36.60 36.60 36.74 36.68 36.68 36.33 36.25 35.82
MgO 0.05 0.07 0.05 0.06 0.07 0.07 0.06 0.04 0.02 0.05 0.10 0.05 0.05
CaO 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.01 0.01 0.01 0.01 0.02
Na2O 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.03 0.00
K2O 0.22 0.21 0.24 0.19 0.18 0.14 0.16 0.16 0.11 0.19 0.17 0.19 0.20
Total 87.12 87.27 86.92 87.51 87.16 87.06 87.32 87.37 87.17 87.42 87.06 86.46 88.96

Si 4.066 4.039 4.036 4.013 4.039 4.031 3.991 3.990 3.982 4.009 4.045 4.039 4.182
Ti 0.002 0.001 0.001 0.002 0.003 0.004 0.002 0.002 0.003 0.001 0.001 0.002 0.002
Al 0.232 0.256 0.246 0.245 0.246 0.244 0.275 0.271 0.284 0.260 0.264 0.241 0.223
Cr 0.010 0.009 0.011 0.010 0.008 0.010 0.008 0.009 0.010 0.008 0.007 0.008 0.008
Fe 0.385 0.383 0.384 0.400 0.387 0.388 0.417 0.408 0.410 0.398 0.377 0.386 0.363
Mn 0.009 0.005 0.015 0.007 0.007 0.004 0.009 0.010 0.009 0.015 0.003 0.007 0.008
Mg 5.064 5.091 5.095 5.139 5.101 5.128 5.129 5.145 5.148 5.128 5.082 5.113 4.875
Ca 0.005 0.007 0.005 0.006 0.007 0.007 0.006 0.004 0.002 0.005 0.010 0.005 0.005
Na 0.001 0.000 0.000 0.003 0.003 0.000 0.000 0.004 0.001 0.001 0.001 0.002 0.004
K 0.002 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.002 0.004 0.000
Ni 0.074 0.069 0.083 0.065 0.062 0.046 0.054 0.055 0.037 0.065 0.058 0.065 0.064
Total 9.850 9.862 9.876 9.891 9.864 9.861 9.891 9.898 9.887 9.890 9.849 9.870 9.735

Mg# 92.78 92.91 92.73 92.65 92.82 92.91 92.35 92.49 92.47 92.54 93.04 92.87 92.93

Cation calculation is based on 14 oxygen.

Table A2: Representative composition of serpentine minerals ‘21826’.

Analysis 21826 21826 21826 21826 21826 21826 21826 21826 21826 21826 21826 21826 21826

SiO2 43.05 42.76 43.32 43.40 43.66 43.42 42.99 43.20 43.13 42.80 43.13 43.00 43.17
TiO2 0.04 0.01 0.03 0.05 0.03 0.04 0.03 0.03 0.06 0.05 0.01 0.03 0.03
Al2O3 2.69 2.40 2.26 2.40 2.15 2.27 2.39 2.65 2.85 2.73 2.42 2.76 2.74
Cr2O3 0.12 0.12 0.16 0.13 0.14 0.15 0.13 0.11 0.12 0.12 0.12 0.11 0.12
FeO 3.53 3.46 3.46 3.29 3.60 3.46 3.64 3.44 3.36 3.51 3.52 3.54 3.37
MnO 0.08 0.07 0.09 0.05 0.04 0.01 0.06 0.04 0.10 0.09 0.00 0.07 0.06
NiO 37.57 37.53 37.70 37.63 37.81 37.73 37.71 37.45 37.44 37.52 37.68 37.41 37.47
MgO 0.02 0.02 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.02 0.02
CaO 0.11 0.12 0.14 0.07 0.04 0.10 0.02 0.11 0.12 0.08 0.14 0.11 0.14
Na2O 0.15 0.21 0.44 0.09 0.10 0.12 0.10 0.16 0.16 0.17 0.28 0.27 0.25
K2O 0.14 0.18 0.15 0.17 0.13 0.12 0.18 0.08 0.17 0.12 0.13 0.15 0.15
Total 87.49 86.88 87.75 87.29 87.70 87.44 87.26 87.28 87.53 87.20 87.44 87.45 87.52

Si 4.004 4.007 4.024 4.035 4.045 4.035 4.009 4.022 4.004 3.995 4.015 4.002 4.011
Ti 0.003 0.001 0.002 0.003 0.002 0.003 0.002 0.002 0.004 0.003 0.001 0.002 0.002
Al 0.295 0.265 0.247 0.263 0.235 0.249 0.263 0.290 0.311 0.300 0.266 0.303 0.300
Cr 0.008 0.009 0.012 0.010 0.010 0.011 0.010 0.008 0.009 0.009 0.009 0.008 0.008
Fe 0.275 0.271 0.269 0.256 0.279 0.269 0.284 0.268 0.261 0.274 0.274 0.276 0.262
Mn 0.007 0.005 0.007 0.004 0.003 0.001 0.005 0.003 0.008 0.007 0.000 0.005 0.005
Mg 5.209 5.242 5.220 5.214 5.224 5.227 5.241 5.198 5.182 5.221 5.229 5.191 5.190
Ca 0.001 0.002 0.000 0.000 0.001 0.001 0.002 0.001 0.003 0.002 0.001 0.002 0.002
Na 0.020 0.022 0.026 0.013 0.007 0.018 0.004 0.019 0.022 0.015 0.025 0.019 0.026
K 0.017 0.025 0.052 0.011 0.012 0.014 0.011 0.019 0.019 0.020 0.033 0.031 0.030
Ni 0.045 0.060 0.050 0.058 0.044 0.039 0.061 0.028 0.058 0.039 0.045 0.051 0.050
Total 9.883 9.909 9.909 9.867 9.861 9.867 9.891 9.860 9.881 9.885 9.898 9.891 9.885

Mg# 94.88 94.99 94.98 95.25 94.88 95.09 94.79 95.04 95.07 94.90 95.01 94.86 95.11

Cation calculation is based on 14 oxygen.
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Table A3: Representative composition of amphibole minerals ‘21805’.

Analysis mg-kato mg-kato barroisite mg-kato mg-kato barroisite mg-kato mg-kato barroisite mg-kato mg-kato barroisite mg-kato

21805 21805 21805 21805 21805 21805 21805 21805 21805 21805 21805 21805 21805

SiO2 58.26 58.32 58.23 58.96 58.22 57.90 57.90 58.14 57.82 58.58 58.62 57.03 58.62
TiO2 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.05 0.00 0.01 0.02 0.00 0.02
Al2O3 0.11 0.14 0.17 0.12 0.12 0.12 0.15 0.12 0.11 0.05 0.03 0.93 0.12
Cr2O3 0.01 0.01 0.01 0.00 0.03 0.01 0.00 0.00 0.02 0.01 0.00 0.03 0.01
Fe2O3 3.03 2.79 3.54 3.03 2.79 3.54 3.03 2.79 3.54 3.03 2.79 3.54 3.03
FeO 11.03 10.61 6.46 11.03 10.61 6.46 11.03 10.61 6.46 11.03 10.61 6.46 11.03
MnO 0.20 0.19 0.18 0.15 0.23 0.18 0.16 0.19 0.20 0.19 0.08 0.19 0.19
MgO 21.52 21.74 21.70 21.78 21.07 21.03 21.73 21.02 21.02 22.21 22.61 22.66 21.81
CaO 12.68 12.56 12.51 12.62 12.61 12.55 12.69 12.65 12.66 13.15 13.17 12.09 12.84
Na2O 0.02 0.06 0.08 0.06 0.04 0.07 0.05 0.06 0.03 0.05 0.05 0.07 0.08
K2O 0.04 0.04 0.03 0.01 0.05 0.05 0.04 0.06 0.02 0.02 0.02 0.05 0.06
H2O 2.05 2.03 2.06 2.05 2.03 2.06 2.05 2.03 2.06 2.05 2.03 2.06 2.05

Total 99.16 98.02 97.28 99.16 98.02 97.28 99.16 98.02 97.28 99.16 98.02 97.28 99.16

T-site
Si 7.031 7.121 7.454 7.031 7.121 7.454 7.031 7.121 7.454 7.031 7.121 7.454 7.031
Al(IV) 0.969 0.879 0.546 0.969 0.879 0.546 0.969 0.879 0.546 0.969 0.879 0.546 0.969
C-site
Al(VI) 0.433 0.475 0.354 0.433 0.475 0.354 0.433 0.475 0.354 0.433 0.475 0.354 0.433
Ti 0.057 0.047 0.011 0.057 0.047 0.011 0.057 0.047 0.011 0.057 0.047 0.011 0.057
Fe3+ 0.334 0.310 0.387 0.334 0.310 0.387 0.334 0.310 0.387 0.334 0.310 0.387 0.334
Cr 0.026 0.004 0.016 0.026 0.004 0.016 0.026 0.004 0.016 0.026 0.004 0.016 0.026
Mg 2.844 2.900 3.467 2.844 2.900 3.467 2.844 2.900 3.467 2.844 2.900 3.467 2.844
Mn 0.050 0.043 0.089 0.050 0.043 0.089 0.050 0.043 0.089 0.050 0.043 0.089 0.050
Fe2+ 1.257 1.220 0.675 1.257 1.220 0.675 1.257 1.220 0.675 1.257 1.220 0.675 1.257
B-site
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2+ 0.095 0.088 0.111 0.095 0.088 0.111 0.095 0.088 0.111 0.095 0.088 0.111 0.095
Ca 1.352 1.389 1.388 1.352 1.389 1.388 1.352 1.389 1.388 1.352 1.389 1.388 1.352
Na 0.552 0.523 0.501 0.552 0.523 0.501 0.552 0.523 0.501 0.552 0.523 0.501 0.552
A-site
Na 0.582 0.470 0.258 0.582 0.470 0.258 0.582 0.470 0.258 0.582 0.470 0.258 0.582
K 0.032 0.048 0.008 0.032 0.048 0.008 0.032 0.048 0.008 0.032 0.048 0.008 0.032

Total 15.615 15.518 15.266 15.615 15.518 15.266 15.615 15.518 15.266 15.615 15.518 15.266 15.615

FeO, Fe2O3, and H2O were calculated stoichiometrically. Cation calculation is based on 22 oxygen and 2 OH.
mg-kato = magnesio-katophorite

Table A4: Composition of phengite minerals ’80-3’.

Analysis Phe-80-3 Phe-80-3 Phe-80-3 Phe-80-3 Phe-80-3 Phe-80-3 Phe-80-3 Phe-80-3 Phe-80-3 Phe-80-3

SiO2 52.88 50.79 50.95 49.93 30.65 51.48 51.46 51.33 51.72 50.83
TiO2 0.39 0.35 0.38 0.38 0.23 0.42 0.42 0.41 0.39 0.38
Al2O3 25.60 25.74 25.13 26.32 15.33 24.81 25.49 24.84 25.49 25.04
Cr2O3 0.04 0.05 0.03 0.04 0.04 0.03 0.03 0.04 0.05 0.02
FeO 1.35 1.31 1.23 1.11 0.80 1.20 1.32 1.24 1.05 1.39
MnO 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00
NiO 0.05 0.05 0.06 0.04 0.03 0.07 0.00 0.06 0.05 0.03
MgO 4.79 4.02 4.01 3.69 2.35 4.12 3.97 3.92 4.07 4.20
CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Na2O 0.50 0.57 0.48 0.61 0.26 0.50 0.47 0.48 0.45 0.39
K2O 9.13 9.63 9.89 9.58 4.62 9.72 9.75 9.74 9.65 9.34
H2O 4.53 4.40 4.38 4.37 2.62 4.40 4.42 4.39 4.44 4.37
Total 99.26 96.91 96.55 96.06 56.94 96.77 97.32 96.43 97.36 96.01

Si 3.497 3.458 3.484 3.428 3.504 3.507 3.487 3.510 3.495 3.487
Al(IV) 0.503 0.542 0.516 0.572 0.496 0.493 0.513 0.490 0.505 0.513
Al(VI) 1.493 1.524 1.510 1.558 1.570 1.499 1.523 1.511 1.525 1.511
Ti 0.020 0.018 0.020 0.019 0.019 0.022 0.021 0.021 0.020 0.020
Cr 0.002 0.002 0.002 0.002 0.004 0.002 0.001 0.002 0.002 0.001
Fe2+ 0.075 0.075 0.070 0.064 0.076 0.068 0.075 0.071 0.059 0.080
Mn 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000
Mg 0.472 0.408 0.409 0.378 0.400 0.418 0.401 0.400 0.410 0.430
Ca 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Na 0.064 0.076 0.064 0.081 0.058 0.065 0.061 0.063 0.059 0.051
K 0.770 0.837 0.863 0.840 0.673 0.844 0.842 0.850 0.832 0.817
Total 6.896 6.940 6.938 6.942 6.802 6.920 6.925 6.917 6.908 6.911

FeO, Fe2O3, and H2O were calculated stoichiometrically. Cation calculation is based on 11 oxygen and 2 OH.
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Fig. A6: B vs 11B of reference minerals ‘21826’, ‘geiss’, ‘21805’, and ‘Phe 80-3’. The 11B analyses
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A3: List of mineral abbreviations

Ab Albite
Act Actinolite
Alm Almandine
Aln Allanite
Am Amphibole
Andr Andradite
Ap Apatite
Atg Antigorite
Brc Brucite
Bt Biotite
Cc Calcite
Chl Chlorite
Cpx Clinopyroxene
Ctl Chrysotile
Di Diopside
Enst Enstatite
Ep Epidote
Fa Fayalite
Fs Ferrosilite
Gln Glaucophane
Grs Grossular
Grt Garnet
Ilm Ilmenite
Jd Jadeite
Laws Lawsonite
Liz Lizardite
Mag Magnetite
Ol Olivine
Opx Orthopyroxene
Phe Phengite
Plg Plagioclase
Pmp Pumpellyite
Pol Polygonal serpentine
Px Pyroxene
Qtz Quartz
Rt Rutile
Spl Spinel
Sps Spessartine
Srp Serpentine
Ttn Titanite
Tlc Talc
Zrc Zircon
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B1: Sample BSE images with EPMA, SIMS and Raman spots
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B2: Electron probe micro analyses

B2.1: Serpentine and brucite minerals

Table B2.1: Representative composition of brucite and serpentine (in wt%), further analyses in electronic
appendix.
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B2.2: Spinel

Table B2.2: Representative composition of spinel (in wt%), further analyses in electronic appendix.

Analysis A3R1W-
l1 A12R1-l1 A13R01_

73 A12R1-l1 A12R1-l1 A13R01_
03 

A13R01_
09 

A017G0
2-line 

A017G0
2-line 

A017G0
2-line 

A017G0
2-line 

A017G0
2-line 

A017G0
2-line 

TiO2 0.00 0.02 0.00 0.02 0.00 0.01 0.03 0.07 0.10 0.08 0.10 0.08 0.08
Al2O3 0.00 0.35 0.00 23.51 23.57 26.09 32.38 20.36 20.30 20.54 20.67 19.97 19.67
Cr2O3 0.04 3.35 0.01 43.14 43.40 42.83 34.56 50.01 49.73 49.59 49.72 50.00 50.58
Fe2O3 67.60 66.02 68.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 29.84 30.73 30.70 20.88 20.19 18.13 19.30 17.46 17.14 17.01 17.50 18.60 18.30
MnO 0.09 0.01 0.06 0.19 0.17 0.15 0.17 0.10 0.16 0.16 0.07 0.10 0.17
MgO 0.29 0.45 0.07 11.28 10.59 12.50 12.36 12.20 12.18 12.18 12.37 11.83 11.45
CaO 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Total 97.85 100.95 99.53 99.02 97.91 99.72 98.80 100.19 99.61 99.57 100.42 100.58 100.25

Ti 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.002
Al 0.000 0.016 0.000 0.871 0.882 0.940 1.148 0.748 0.750 0.758 0.757 0.735 0.728
Cr 0.001 0.100 0.000 1.073 1.090 1.035 0.822 1.233 1.232 1.227 1.221 1.235 1.256
Fe3+ 1.999 1.883 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2+ 0.980 0.974 0.993 0.549 0.536 0.464 0.486 0.455 0.449 0.445 0.455 0.486 0.480
Mn 0.003 0.000 0.002 0.005 0.005 0.004 0.004 0.003 0.004 0.004 0.002 0.003 0.005
Mg 0.017 0.025 0.004 0.529 0.502 0.570 0.554 0.567 0.569 0.569 0.573 0.551 0.536
Ca 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Total 3.000 3.000 3.000 3.028 3.014 3.012 3.015 3.008 3.007 3.005 3.009 3.013 3.006

FeO, Fe2O3were calculated stoichiometrically. Cation calculation based on 4 oxygens.

B2.3: Olivine

Table B2.3: Representative composition of olivine (in wt%), further analyses in electronic appendix.

Analysis A3R1-l3 A3R1-l3 A007R01
_21 

A007R01
_26 

A011R01
W-line 

A011R01
W-line 

A011R01
W-line 

A017G0
2-line 

A017G0
2-line 

E4H2-
6_53 

E4H2-
6_49 A12R1-l2 A12R1-l2 

SiO2 41.16 41.67 40.73 40.21 41.08 41.23 40.97 41.37 41.57 40.50 40.63 40.72 40.54
TiO2 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Al2O3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.03 0.02 0.00 0.01 0.00
Cr2O3 0.00 0.00 0.01 0.00 0.03 0.03 0.00 0.03 0.03 0.02 0.01 0.00 0.01
FeO 8.36 8.07 8.56 8.50 8.42 8.49 8.66 8.17 8.78 8.31 8.41 7.91 7.58
MnO 0.10 0.19 0.17 0.18 0.04 0.10 0.12 0.13 0.07 0.10 0.08 0.14 0.11
MgO 50.39 50.88 50.75 50.81 50.78 50.90 50.75 50.92 51.11 50.93 50.67 51.17 50.95
CaO 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.06 0.00 0.00 0.00 0.01 0.01
Na2O 0.04 0.00 0.00 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.04
K2O 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.01
NiO 0.38 0.38 0.39 0.42 0.45 0.47 0.36 0.30 0.41 0.38 0.41 0.43 0.39
Total 100.45 101.18 100.62 100.15 100.81 101.21 100.88 101.04 102.01 100.26 100.21 100.39 99.63

Si 0.996 0.999 0.986 0.979 0.991 0.991 0.990 0.995 0.992 0.984 0.987 0.986 0.987
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Al 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe 0.169 0.162 0.173 0.173 0.170 0.171 0.175 0.164 0.175 0.169 0.171 0.160 0.154
Mn 0.002 0.004 0.003 0.004 0.001 0.002 0.002 0.003 0.001 0.002 0.002 0.003 0.002
Mg 1.818 1.819 1.832 1.845 1.826 1.824 1.827 1.826 1.819 1.844 1.835 1.846 1.850
Ca 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Na 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.002
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Ni 0.033 0.033 0.034 0.036 0.039 0.041 0.031 0.026 0.035 0.033 0.036 0.037 0.034
Total 3.021 3.017 3.030 3.039 3.028 3.029 3.026 3.018 3.025 3.033 3.031 3.033 3.031

Mg# 91.39 91.66 91.20 91.26 91.46 91.36 91.16 91.62 91.14 91.52 91.41 91.89 92.19

Cation calculation based on 4 oxygens.
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B2.4: Clinopyroxene and Orthopyroxene

Table B2.4: Representative composition of clinopyroxene (in wt%), further analyses in electronic appendix.

Analysis A3R1-l4 A3R1-l4 A3R1-l4 A3R1-l4 A007R01
_121 

A007R01
_123 

A13R01_
13 

A13R01_
14 

A13R01_
16 

A017G0
2-line 

A017G0
2-line 

A017G0
2-line 

A017G0
2-line 

SiO2 50.45 53.63 54.41 54.28 54.06 53.92 54.14 54.34 54.13 53.42 54.27 53.51 53.62
TiO2 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.03 0.06 0.06 0.05 0.07
Al2O3 1.09 1.41 1.03 1.27 1.37 1.33 1.50 1.52 1.53 1.67 1.95 1.87 2.04
Cr2O3 0.60 0.70 0.57 0.67 0.48 0.35 0.59 0.63 0.64 0.98 1.16 1.24 1.17
FeO 4.32 2.09 1.67 2.04 1.74 1.76 1.96 2.15 1.96 2.20 2.10 2.49 2.17
MnO 0.11 0.07 0.00 0.05 0.02 0.10 0.09 0.05 0.06 0.04 0.05 0.10 0.03
MgO 19.36 18.93 17.90 17.86 17.80 18.03 17.64 17.59 17.70 17.99 17.27 18.00 17.60
CaO 21.95 23.52 25.19 24.70 24.86 24.60 24.12 24.31 24.33 21.84 22.54 21.87 21.68
Na2O 0.06 0.09 0.03 0.04 0.09 0.08 0.10 0.14 0.11 0.64 0.68 0.72 0.76
K2O 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
NiO 0.05 0.06 0.03 0.04 0.01 0.03 0.08 0.07 0.03 0.10 0.06 0.00 0.08
Total 98.01 100.52 100.83 100.96 100.46 100.22 100.22 100.81 100.51 98.96 100.14 99.84 99.20

Si 1.861 1.928 1.957 1.952 1.950 1.948 1.961 1.958 1.954 1.950 1.964 1.936 1.954
Ti 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.002 0.001 0.001 0.002
Al 0.048 0.060 0.043 0.054 0.058 0.057 0.064 0.065 0.065 0.072 0.083 0.080 0.087
Fe3+ 0.133 0.063 0.027 0.025 0.034 0.042 0.003 0.010 0.016 0.041 0.002 0.061 0.020
Cr 0.017 0.020 0.016 0.019 0.014 0.010 0.017 0.018 0.018 0.028 0.033 0.035 0.034
Fe2+ 0.000 0.000 0.023 0.036 0.019 0.011 0.056 0.054 0.043 0.026 0.062 0.014 0.046
Mn 0.003 0.002 0.000 0.002 0.001 0.003 0.003 0.001 0.002 0.001 0.001 0.003 0.001
Mg 1.064 1.015 0.960 0.957 0.957 0.971 0.952 0.945 0.952 0.979 0.932 0.971 0.956
Ca 0.868 0.906 0.971 0.952 0.961 0.952 0.936 0.939 0.941 0.854 0.874 0.848 0.847
Na 0.004 0.006 0.002 0.003 0.006 0.006 0.007 0.010 0.008 0.046 0.048 0.051 0.053
K 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Total 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000

Mg# 100.00 100.00 97.68 96.35 98.06 98.92 94.41 94.56 95.68 97.44 93.78 98.54 95.44

Wo 44.9 47.2 49.7 48.9 49.6 49.2 48.1 48.4 48.6 45.9 46.8 46.2 45.8
En 55.1 52.8 49.1 49.2 49.4 50.2 49.0 48.8 49.2 52.7 49.9 53.0 51.7
Fs 0.0 0.0 1.2 1.9 1.0 0.5 2.9 2.8 2.2 1.4 3.3 0.8 2.5

Cation calculation based on 6 oxygens.



Appendix B

172

Table B2.4: Representative composition of orthopyroxene (in wt%), further analyses in electronic appendix.

Analysis A3R1-l4 A3R1-l4 A11R01-
line 

A11R01-
line 

A13R01_
11 

A13R01_
10 

A13R01-
line 

A13R01_
08 

A017G0
2-line 

A017G0
2-line 

E4H2-
6_25 

E4H2-
6_99 

E4H2-
6_61 

SiO2 55.34 57.03 56.35 56.73 55.22 56.38 53.05 53.27 53.16 54.02 56.92 57.71 56.69
TiO2 0.00 0.00 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.03 0.00 0.01 0.01
Al2O3 1.45 1.53 1.95 1.99 1.56 1.37 0.85 0.56 1.12 1.67 2.21 1.68 2.07
Cr2O3 0.45 0.68 0.68 0.67 0.40 0.24 0.07 0.04 0.34 0.62 0.75 0.34 0.61
FeO 5.82 5.60 5.52 5.75 6.35 6.24 5.91 7.43 5.22 7.09 5.64 5.83 5.46
MnO 0.14 0.15 0.19 0.18 0.14 0.16 0.05 0.19 0.20 0.17 0.17 0.15 0.18
MgO 34.66 35.38 34.70 34.90 34.58 35.20 35.80 34.54 36.19 33.02 35.05 35.64 34.80
CaO 1.18 0.37 1.11 0.70 0.64 0.50 0.28 0.41 0.98 0.55 0.54 0.22 0.55
Na2O 0.03 0.00 0.01 0.01 0.03 0.01 0.08 0.02 0.10 0.12 0.02 0.00 0.01
K2O 0.02 0.00 0.01 0.01 0.01 0.02 0.02 0.06 0.02 0.04 0.00 0.01 0.00
NiO 0.05 0.08 0.10 0.10 0.06 0.08 0.07 0.06 0.06 0.03 0.13 0.06 0.16
Total 99.13 100.81 100.60 101.05 99.01 100.21 96.20 96.61 97.39 97.35 101.43 101.63 100.53

Si 1.932 1.948 1.934 1.937 1.932 1.944 1.911 1.924 1.893 1.931 1.934 1.953 1.941
Ti 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000
Al 0.059 0.062 0.079 0.080 0.064 0.056 0.036 0.024 0.047 0.070 0.088 0.067 0.083
Cr 0.012 0.018 0.018 0.018 0.011 0.007 0.002 0.001 0.009 0.018 0.020 0.009 0.016
Fe 0.170 0.160 0.158 0.164 0.186 0.180 0.178 0.225 0.156 0.212 0.160 0.165 0.156
Mn 0.004 0.004 0.005 0.005 0.004 0.005 0.002 0.006 0.006 0.005 0.005 0.004 0.005
Mg 1.804 1.802 1.775 1.776 1.803 1.809 1.922 1.860 1.921 1.760 1.775 1.798 1.776
Ca 0.044 0.014 0.041 0.026 0.024 0.018 0.011 0.016 0.037 0.021 0.020 0.008 0.020
Na 0.002 0.000 0.001 0.001 0.002 0.001 0.006 0.001 0.007 0.008 0.001 0.000 0.001
K 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.000 0.000 0.000
Ni 0.007 0.009 0.012 0.012 0.007 0.010 0.010 0.008 0.008 0.004 0.016 0.007 0.019
Total 4.036 4.017 4.024 4.020 4.035 4.030 4.078 4.069 4.086 4.031 4.021 4.012 4.019

Mg# 91.40 91.85 91.81 91.54 90.66 90.96 91.52 89.23 92.51 89.24 91.73 91.59 91.91

Cation calculation based on 6 oxygens.
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B3: SIMS data

Ta
bl

e 
B

3:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
  a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

ba
st

ite
D

1H
4-

4C
_1

0
0.

51
6.

2%
0.

01
6

33
.5

%
22

.6
1

5.
7%

2.
03

9.
6%

-
ba

st
ite

D
1H

4-
4C

_1
1

0.
35

6.
8%

0.
00

7
69

.7
%

20
.2

0
0.

7%
2.

04
13

.5
%

-
ba

st
ite

D
1H

4-
4C

_1
3

0.
82

6.
9%

0.
01

0
65

.0
%

30
.9

7
4.

1%
1.

22
20

.3
%

-
se

rp
 1

D
1H

4-
4F

-6
0.

17
16

.8
%

0.
00

9
57

.2
%

51
.8

7
3.

9%
1.

47
15

.3
%

-
se

rp
 2

D
1H

4-
4F

-2
1.

00
4.

2%
0.

00
8

63
.2

%
65

.2
9

1.
7%

0.
48

25
.3

%
-

se
rp

 2
D

1H
4-

4F
-4

0.
05

18
.2

%
0.

00
2

96
.6

%
29

.3
9

3.
5%

0.
32

37
.6

%
-

se
rp

 2
D

1H
4-

4F
-5

0.
26

10
.5

%
0.

00
4

11
6.

4%
47

.5
0

1.
3%

0.
59

24
.9

%
-

m
es

h
D

1H
4-

4C
_3

0.
23

8.
5%

0.
02

6
32

.6
%

70
.0

9
2.

2%
1.

71
26

.0
%

-
m

es
h

D
1H

4-
4C

_4
0.

24
8.

6%
0.

03
0

28
.4

%
81

.2
8

1.
6%

1.
60

13
.7

%
-

m
es

h
D

1H
4-

4C
_1

2
0.

28
11

.5
%

0.
02

7
34

.9
%

67
.5

5
2.

4%
1.

88
12

.5
%

-
m

es
h

D
1H

4-
4G

-5
0.

13
15

.4
%

0.
00

6
49

.3
%

20
.7

8
1.

7%
1.

67
12

.4
%

-
m

es
h

D
1H

4-
4G

-7
0.

47
7.

0%
0.

01
0

38
.2

%
41

.8
6

1.
4%

1.
02

24
.2

%
-

ba
st

ite
D

1H
4-

4C
_2

0.
59

4.
2%

0.
02

3
35

.8
%

91
.4

3
3.

0%
2.

35
14

.7
%

-
ba

st
ite

D
1H

4-
4C

_5
0.

48
5.

8%
0.

02
8

25
.6

%
80

.9
4

2.
6%

2.
50

9.
7%

-
ba

st
ite

D
1H

4-
4C

_6
0.

55
8.

4%
0.

03
0

32
.1

%
83

.1
5

4.
2%

1.
78

13
.1

%
-

ve
in

 1
D

1H
4-

4G
-2

0.
16

12
.8

%
0.

00
4

84
.7

%
31

.3
1

1.
9%

0.
66

19
.3

%
-

ve
in

 1
D

1H
4-

4G
-4

0.
19

15
.9

%
0.

01
5

62
.0

%
55

.1
4

2.
2%

1.
30

12
.1

%
-

ve
in

 1
D

1H
4-

4G
-6

0.
19

9.
8%

0.
01

0
36

.3
%

64
.7

6
2.

8%
2.

36
16

.1
%

-
ve

in
 3

D
1H

4-
4G

-9
0.

19
9.

5%
0.

00
4

84
.5

%
14

.8
2

2.
2%

0.
38

41
.8

%
-

ve
in

26
R

02
-1

0.
24

11
.0

%
0.

02
6

37
.5

%
9.

41
3.

9%
0.

58
24

.6
%

26
R

02
-1

30
40

0
3.

81
1

1.
05

4
4.

01
6

-0
.8

0
0.

32
%

ve
in

26
R

02
-2

0.
29

11
.1

%
0.

06
4

20
.8

%
10

.2
6

3.
5%

0.
45

20
.4

%
26

R
02

-2
30

40
0

3.
81

8
1.

05
4

4.
02

4
1.

16
0.

32
%

ve
in

26
R

02
-3

0.
31

13
.7

%
0.

05
1

35
.6

%
11

.3
4

2.
7%

0.
31

42
.4

%
-

ve
in

26
R

02
-4

0.
23

16
.3

%
0.

04
7

24
.8

%
8.

26
3.

1%
0.

56
32

.4
%

26
R

02
-3

30
40

0
3.

82
1

1.
05

4
4.

02
7

1.
77

0.
38

%
ve

in
26

R
02

-5
0.

26
10

.7
%

0.
05

7
21

.1
%

8.
83

2.
4%

0.
53

26
.6

%
26

R
02

-4
30

40
0

3.
83

3
1.

05
4

4.
03

9
4.

89
0.

36
%

ve
in

26
R

02
-6

0.
21

11
.5

%
0.

04
2

25
.7

%
8.

52
1.

7%
0.

38
42

.9
%

26
R

02
-5

30
40

0
3.

83
0

1.
05

4
4.

03
7

4.
26

0.
38

%
ve

in
26

R
02

-7
0.

21
13

.4
%

0.
05

1
28

.1
%

9.
12

2.
7%

0.
80

23
.0

%
-

ve
in

26
R

02
-8

0.
25

14
.4

%
0.

04
4

19
.8

%
8.

66
3.

2%
1.

38
23

.5
%

26
R

02
-6

30
40

0
3.

83
2

1.
05

4
4.

03
9

4.
82

0.
38

%
ve

in
26

R
02

-9
0.

21
7.

6%
0.

03
4

42
.3

%
8.

24
2.

5%
1.

25
16

.5
%

26
R

02
-7

30
40

0
3.

83
6

1.
05

4
4.

04
2

5.
65

0.
40

%
ve

in
26

R
02

-1
0

1.
01

6.
7%

0.
00

6
84

.9
%

32
.0

2
2.

1%
0.

99
22

.3
%

-
ve

in
26

R
02

-1
1

0.
72

5.
3%

0.
04

0
35

.1
%

34
.1

6
1.

4%
1.

68
11

.0
%

26
R

02
-8

30
40

0
3.

82
3

1.
05

4
4.

02
9

2.
49

0.
22

%
ve

in
26

R
02

-1
3

0.
05

21
.7

%
b.

d.
l.

92
.3

8
0.

6%
1.

32
21

.4
%

26
R

02
-1

1
30

40
0

3.
83

6
1.

05
4

4.
04

3
5.

87
0.

12
%

ve
in

26
R

02
-1

4
0.

29
13

.4
%

0.
07

9
28

.4
%

48
.3

0
1.

2%
3.

20
18

.3
%

-
ve

in
26

R
02

-1
5

0.
31

13
.0

%
0.

05
6

24
.7

%
16

.8
6

2.
0%

0.
91

17
.0

%
-

m
es

h 
te

xt
ur

e
26

R
02

-1
6

0.
42

8.
9%

0.
04

5
39

.3
%

38
.8

5
1.

3%
3.

59
11

.4
%

26
R

02
-1

2
30

40
0

3.
82

9
1.

05
4

4.
03

5
3.

92
0.

18
%

ve
in

26
R

02
-1

7
0.

10
17

.4
%

b.
d.

l.
91

.3
8

0.
9%

2.
83

11
.6

%
26

R
02

-1
3

30
40

0
3.

83
6

1.
05

4
4.

04
2

5.
67

0.
10

%
ve

in
26

R
02

-1
8

1.
01

3.
6%

0.
03

9
33

.5
%

38
.4

3
2.

7%
1.

14
36

.7
%

-
ve

in
26

R
02

-1
9

0.
81

4.
8%

0.
00

3
96

.6
%

27
.3

4
1.

4%
0.

67
34

.9
%

26
R

02
-1

4
30

40
0

3.
83

4
1.

05
4

4.
04

1
5.

30
0.

22
%

ve
in

26
R

02
-2

0
0.

05
33

.9
%

b.
d.

l.
83

.4
8

0.
7%

4.
79

12
.3

%
26

R
02

-1
0

30
40

0
3.

84
2

1.
05

4
4.

04
9

7.
35

0.
12

%
ve

in
26

R
02

-2
2

0.
66

6.
3%

0.
00

2
12

6.
5%

28
.7

2
2.

1%
0.

51
46

.0
%

-
ve

in
26

R
02

-2
3

0.
63

6.
3%

0.
00

2
12

6.
5%

23
.6

8
2.

1%
0.

32
46

.0
%

26
R

02
-2

0
30

40
0

3.
85

2
1.

05
4

4.
05

9
9.

89
0.

20
%

ve
in

26
R

02
-2

4
0.

87
4.

6%
0.

00
1

18
9.

7%
28

.5
5

1.
6%

0.
84

32
.8

%
-

ve
in

26
R

02
-2

5
0.

72
5.

7%
0.

07
0

25
.9

%
25

.5
2

2.
0%

0.
87

12
.0

%
- #  =

 m
at

rix
 c

or
re

ct
ed



Appendix B

174

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

ve
in

26
R

02
-2

6
0.

85
7.

4%
0.

00
1

18
9.

7%
27

.6
1

3.
7%

0.
87

22
.2

%
26

R
02

-1
9

30
40

0
3.

83
9

1.
05

4
4.

04
6

6.
69

0.
18

%
ve

in
26

R
02

-2
7

0.
23

20
.0

%
0.

05
2

30
.9

%
11

.4
0

3.
1%

0.
73

27
.5

%
26

R
02

-1
7

30
40

0
3.

83
8

1.
05

4
4.

04
4

6.
21

0.
36

%
ve

in
26

R
02

-2
8

0.
85

5.
4%

0.
00

1
18

9.
7%

19
.7

0
1.

6%
0.

89
35

.8
%

26
R

02
-1

8
30

40
0

3.
84

6
1.

05
4

4.
05

3
8.

39
0.

22
%

ve
in

26
R

02
-2

9
0.

20
13

.2
%

0.
02

3
34

.9
%

9.
86

2.
6%

0.
79

32
.3

%
26

R
02

-1
6

30
40

0
3.

83
8

1.
05

4
4.

04
4

6.
17

0.
34

%
ve

in
26

R
02

-3
1

0.
21

15
.8

%
0.

07
0

31
.1

%
5.

95
3.

2%
0.

53
32

.2
%

26
R

02
-1

5
30

40
0

3.
86

4
1.

05
4

4.
07

2
13

.0
1

0.
44

%

ve
in

10
R

02
-1

3.
77

2.
4%

0.
00

1
18

9.
7%

46
.0

7
0.

7%
2.

89
15

.3
%

10
R

02
-1

30
20

0
3.

87
3

1.
04

6
4.

05
1

7.
77

0.
17

%
ve

in
10

R
02

-2
3.

83
1.

9%
0.

00
2

96
.6

%
49

.2
6

0.
4%

2.
21

6.
0%

10
R

02
-2

30
20

0
3.

87
4

1.
04

6
4.

05
1

7.
82

0.
15

%
ve

in
10

R
02

-3
2.

01
3.

9%
0.

25
4

19
.9

%
23

.5
5

1.
1%

1.
00

19
.2

%
10

R
02

-3
30

20
0

3.
82

1
1.

04
6

3.
99

6
-5

.8
7

0.
21

%
ve

in
10

R
02

-4
4.

58
2.

5%
0.

00
3

77
.5

%
42

.4
7

1.
2%

3.
91

13
.0

%
10

R
02

-4
30

20
0

3.
87

2
1.

04
6

4.
05

0
7.

55
0.

16
%

ve
in

10
R

02
-5

2.
35

4.
5%

0.
00

1
12

6.
5%

44
.1

6
1.

1%
2.

29
9.

5%
10

R
02

-5
30

20
0

3.
86

5
1.

04
6

4.
04

2
5.

49
0.

16
%

ve
in

10
R

02
-6

20
.4

7
1.

7%
0.

00
4

84
.6

%
36

.8
0

1.
7%

3.
43

12
.3

%
10

R
02

-6
30

20
0

3.
88

0
1.

04
6

4.
05

8
9.

45
0.

17
%

m
es

h 
te

xt
ur

e
10

R
02

-7
4.

91
1.

3%
0.

00
4

96
.7

%
76

.2
7

0.
7%

8.
41

1.
9%

10
R

02
-7

30
20

0
3.

85
2

1.
04

6
4.

02
8

2.
14

0.
11

%
ve

in
10

R
02

-8
5.

54
1.

7%
0.

00
3

77
.5

%
38

.2
1

1.
0%

3.
82

8.
1%

10
R

02
-8

30
20

0
3.

87
1

1.
04

6
4.

04
9

7.
24

0.
17

%
ve

in
10

R
02

-9
3.

37
2.

7%
0.

00
1

18
9.

7%
14

.5
8

2.
6%

2.
64

10
.6

%
-

m
es

h 
te

xt
ur

e
10

R
02

-1
0

1.
78

3.
7%

0.
00

3
77

.5
%

70
.7

5
1.

1%
0.

70
16

.6
%

10
R

02
-9

30
20

0
3.

86
9

1.
04

6
4.

04
6

6.
60

0.
13

%
ve

in
10

R
02

-1
1

1.
45

3.
1%

0.
06

2
39

.4
%

11
.4

2
1.

7%
0.

71
24

.3
%

10
R

02
-1

0
30

20
0

3.
86

0
1.

04
6

4.
03

7
4.

43
0.

34
%

ve
in

10
R

02
-1

2
5.

36
1.

7%
0.

00
3

14
5.

2%
39

.1
1

2.
1%

3.
42

7.
9%

-
ve

in
10

R
02

-1
3

4.
70

2.
3%

b.
d.

l.
40

.2
4

1.
0%

4.
20

7.
0%

10
R

02
-1

1
30

20
0

3.
87

3
1.

04
6

4.
05

0
7.

58
0.

15
%

ve
in

10
R

02
-1

4
1.

68
3.

3%
5.

28
2

10
.1

%
26

.4
3

5.
3%

6.
22

11
.9

%
10

R
02

-1
2

30
20

0
3.

85
5

1.
04

6
4.

03
2

3.
14

0.
23

%
ve

in
10

R
02

-1
5

3.
26

2.
0%

0.
00

2
13

5.
1%

61
.7

3
0.

9%
1.

38
17

.6
%

10
R

02
-1

3*
30

20
0

3.
87

7
1.

04
6

4.
05

5
8.

76
0.

15
%

m
es

h 
te

xt
ur

e
10

R
02

-1
6

0.
48

4.
6%

0.
02

5
44

.5
%

38
.7

6
1.

6%
8.

47
5.

4%
-

ve
in

10
R

02
-1

7
0.

82
6.

1%
0.

00
6

10
1.

2%
18

.5
1

1.
6%

14
7.

05
5.

0%
-

ba
st

ite
E

4H
2-

59
1.

19
5.

8%
0.

01
9

47
.7

%
84

.6
3

5.
1%

4.
46

8.
0%

-
ba

st
ite

E
4H

2-
16

2.
75

2.
8%

b.
d.

l.
53

.5
3

1.
1%

31
.1

7
4.

5%
-

cr
ys

ta
l b

ou
nd

ar
y

E
4H

2-
20

3.
17

2.
5%

0.
00

1
18

9.
7%

62
.6

4
1.

6%
38

.1
2

5.
3%

-
ve

in
E

4H
2-

60
3.

19
3.

1%
b.

d.
l.

22
.0

9
1.

7%
26

.3
4

4.
1%

E
4H

2-
21

30
20

0
3.

89
0

1.
04

6
4.

06
9

12
.2

0
0.

18
%

C
px

E
4H

2-
1

3.
45

3.
2%

0.
00

1
18

9.
7%

0.
29

23
.2

%
0.

35
42

.1
%

E
4H

2-
20

*
30

40
0

3.
79

4
1.

04
6

3.
96

7
-1

2.
87

1.
00

%
C

px
E

4H
2-

62
3.

94
2.

2%
0.

00
1

18
9.

7%
0.

08
28

.2
%

0.
43

24
.6

%
-

O
l

E
4H

2-
24

0.
97

3.
5%

0.
00

2
12

6.
5%

0.
05

44
.0

%
0.

35
30

.5
%

-
O

l
E

4H
2-

25
0.

80
5.

0%
0.

00
1

18
9.

7%
0.

05
50

.3
%

0.
40

40
.8

%
E

4H
2-

9*
30

40
0

3.
76

2
1.

04
6

3.
93

4
-2

1.
06

2.
32

%
O

l
E

4H
2-

46
0.

73
4.

7%
b.

d.
l.

0.
03

43
.7

%
0.

39
46

.5
%

-
op

x 
re

lic
t

E
4H

2-
3

1.
26

5.
0%

b.
d.

l.
0.

08
24

.6
%

0.
23

37
.8

%
E

4H
2-

19
*

30
40

0
3.

92
0

1.
04

6
4.

09
9

19
.8

1
0.

71
%

op
x 

re
lic

t
E

4H
2-

45
0.

75
4.

9%
b.

d.
l.

0.
04

52
.5

%
0.

04
96

.6
%

E
4H

2-
25

*
30

40
0

3.
80

0
1.

04
6

3.
97

4
-1

1.
16

1.
68

%
op

x 
re

lic
t

E
4H

2-
48

0.
54

11
.3

%
b.

d.
l.

0.
06

34
.8

%
0.

08
70

.5
%

-
op

x 
re

lic
t

E
4H

2-
57

1.
56

5.
9%

0.
00

1
18

9.
7%

0.
37

15
.2

%
0.

57
32

.8
%

E
4H

2-
22

*
30

40
0

3.
81

1
1.

04
6

3.
98

6
-8

.2
8

1.
27

%
op

x 
re

lic
t

E
4H

2-
58

1.
41

4.
5%

0.
00

2
12

6.
5%

0.
18

13
.6

%
0.

24
44

.6
%

-
op

x 
re

lic
t

E
4H

2-
61

1.
52

3.
0%

b.
d.

l.
0.

05
29

.4
%

0.
13

59
.8

%
-

re
dd

is
h 

ve
in

E
4H

2-
50

0.
08

13
.2

%
0.

00
1

18
9.

7%
22

.0
4

7.
6%

3.
73

16
.5

%
-

re
dd

is
h 

ve
in

E
4H

2-
31

0.
13

16
.0

%
0.

00
2

12
6.

5%
69

.9
3

3.
0%

39
.3

8
3.

3%
E

4H
2-

7
30

20
0

3.
83

4
1.

04
6

4.
01

0
-2

.4
0

0.
16

%
re

dd
is

h 
ve

in
E

4H
2-

39
0.

14
10

.4
%

0.
00

2
96

.6
%

28
.6

8
3.

4%
38

.6
6

4.
9%

E
4H

2-
2

30
20

0
3.

85
2

1.
04

6
4.

02
8

2.
24

0.
19

%
re

dd
is

h 
ve

in
E

4H
2-

51
0.

15
16

.6
%

0.
00

4
85

.1
%

37
.6

8
4.

0%
15

.4
1

10
.7

%
- #  =

 m
at

rix
 c

or
re

ct
ed



Appendix B

175

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

re
dd

is
h 

ve
in

E
4H

2-
12

0.
18

8.
0%

0.
00

1
18

9.
7%

60
.7

9
0.

8%
12

.4
6

5.
4%

E
4H

2-
14

30
20

0
3.

83
4

1.
04

6
4.

01
0

-2
.4

4
0.

12
%

re
dd

is
h 

ve
in

E
4H

2-
38

0.
20

12
.3

%
0.

00
4

77
.5

%
66

.6
9

1.
1%

23
.8

1
7.

2%
E

4H
2-

3
30

20
0

3.
84

0
1.

04
6

4.
01

6
-0

.9
3

0.
17

%
re

dd
is

h 
ve

in
E

4H
2-

41
0.

32
7.

7%
0.

00
2

12
6.

7%
57

.6
3

2.
0%

15
2.

10
2.

5%
E

4H
2-

1
30

20
0

3.
83

8
1.

04
6

4.
01

4
-1

.3
8

0.
14

%
re

dd
is

h 
ve

in
E

4H
2-

7
0.

72
5.

9%
0.

00
1

18
9.

7%
57

.3
3

0.
9%

9.
76

6.
8%

E
4H

2-
17

30
20

0
3.

81
9

1.
04

6
3.

99
4

-6
.2

3
0.

13
%

re
dd

is
h 

ve
in

E
4H

2-
11

1.
91

5.
6%

0.
00

3
96

.6
%

94
.3

8
1.

0%
55

.9
9

2.
6%

E
4H

2-
15

30
20

0
3.

85
3

1.
04

6
4.

02
9

2.
48

0.
12

%
m

es
h 

ce
nt

er
E

4H
2-

54
0.

06
10

.9
%

0.
00

9
65

.3
%

12
3.

22
1.

2%
4.

61
9.

3%
E

4H
2-

23
30

20
0

3.
85

3
1.

04
6

4.
03

0
2.

59
0.

09
%

m
es

h 
ce

nt
er

E
4H

2-
10

0.
18

16
.3

%
0.

00
1

18
9.

7%
11

3.
53

0.
6%

4.
84

9.
5%

-
m

es
h 

ce
nt

er
E

4H
2-

30
0.

97
5.

8%
0.

00
2

12
6.

5%
11

7.
16

0.
9%

6.
17

8.
9%

-
m

es
h 

ce
nt

er
E

4H
2-

55
0.

25
9.

4%
0.

00
8

73
.5

%
16

0.
13

0.
9%

5.
45

10
.3

%
-

m
es

h 
ce

nt
er

E
4H

2-
35

1.
25

5.
3%

0.
00

3
96

.6
%

10
3.

41
1.

3%
4.

63
8.

6%
-

m
es

h 
ce

nt
er

E
4H

2-
23

0.
11

14
.5

%
b.

d.
l.

11
9.

76
0.

8%
23

.7
9

4.
4%

-
m

es
h 

ce
nt

er
E

4H
2-

36
0.

60
9.

2%
0.

00
5

70
.0

%
13

4.
37

0.
9%

3.
73

16
.0

%
-

m
es

h 
ce

nt
er

E
4H

2-
32

0.
03

36
.3

%
b.

d.
l.

13
0.

09
0.

8%
4.

87
8.

9%
E

4H
2-

6
30

20
0

3.
87

5
1.

04
6

4.
05

3
8.

29
0.

10
%

m
es

h 
ce

nt
er

E
4H

2-
6

1.
40

5.
9%

0.
00

2
12

6.
5%

98
.7

6
2.

1%
21

.4
7

5.
7%

-
m

es
h 

rim
E

4H
2-

47
0.

79
6.

2%
b.

d.
l.

96
.3

4
0.

9%
8.

60
9.

1%
-

m
es

h 
rim

E
4H

2-
63

1.
98

4.
8%

0.
00

2
12

6.
5%

60
.6

0
1.

3%
51

.6
5

3.
5%

-
m

es
h 

rim
E

4H
2-

18
2.

36
2.

7%
b.

d.
l.

83
.4

5
1.

1%
27

.9
7

7.
8%

E
4H

2-
11

30
20

0
3.

89
3

1.
04

6
4.

07
1

12
.7

6
0.

13
%

m
es

h 
rim

E
4H

2-
19

2.
99

1.
5%

b.
d.

l.
63

.4
5

1.
1%

25
.0

4
4.

7%
E

4H
2-

10
30

20
0

3.
87

1
1.

04
6

4.
04

9
7.

30
0.

11
%

m
es

h 
rim

E
4H

2-
22

3.
65

2.
6%

b.
d.

l.
49

.8
7

0.
7%

38
.9

7
3.

5%
-

m
es

h 
rim

E
4H

2-
53

4.
34

2.
7%

0.
01

1
55

.8
%

65
.9

5
2.

8%
4.

54
9.

3%
-

m
es

h 
rim

E
4H

2-
4

0.
62

8.
6%

0.
00

3
96

.6
%

10
5.

56
1.

1%
22

.3
5

5.
3%

-
m

es
h 

rim
E

4H
2-

26
3.

11
4.

7%
b.

d.
l.

11
8.

79
1.

4%
5.

52
19

.4
%

-
m

es
h 

rim
E

4H
2-

40
2.

26
3.

8%
0.

00
5

96
.1

%
84

.7
6

0.
7%

2.
56

12
.8

%
-

m
es

h 
rim

E
4H

2-
17

0.
95

6.
3%

0.
00

2
12

6.
5%

10
4.

60
0.

5%
38

.8
4

3.
4%

E
4H

2-
12

30
20

0
3.

88
1

1.
04

6
4.

05
9

9.
71

0.
10

%
m

es
h 

rim
E

4H
2-

13
0.

42
8.

2%
0.

00
1

18
9.

7%
91

.1
0

1.
2%

75
.4

7
2.

7%
E

4H
2-

13
30

20
0

3.
90

1
1.

04
6

4.
08

0
14

.9
2

0.
10

%
m

es
h 

rim
E

4H
2-

2
1.

28
12

.8
%

0.
00

1
18

9.
7%

12
0.

79
2.

9%
16

.3
7

7.
8%

-
m

es
h 

rim
E

4H
2-

33
2.

64
3.

3%
0.

00
1

18
9.

7%
68

.7
5

1.
1%

4.
47

16
.1

%
E

4H
2-

5
30

20
0

3.
86

4
1.

04
6

4.
04

1
5.

44
0.

13
%

m
es

h 
rim

E
4H

2-
28

3.
11

4.
4%

0.
00

1
18

9.
7%

78
.8

3
1.

1%
5.

79
6.

7%
-

m
es

h 
rim

E
4H

2-
37

3.
91

2.
9%

0.
00

6
70

.8
%

74
.6

3
1.

0%
4.

31
17

.7
%

E
4H

2-
4

30
20

0
3.

88
2

1.
04

6
4.

06
0

10
.0

9
0.

09
%

m
es

h 
rim

E
4H

2-
27

4.
81

3.
3%

0.
00

1
18

9.
7%

48
.3

1
1.

5%
27

.5
2

6.
0%

E
4H

2-
8

30
20

0
3.

87
8

1.
04

6
4.

05
6

9.
06

0.
12

%
m

es
h 

rim
E

4H
2-

5
0.

53
4.

6%
0.

00
1

18
9.

7%
93

.8
0

2.
0%

17
.5

9
4.

5%
E

4H
2-

18
30

20
0

3.
87

8
1.

04
6

4.
05

5
8.

90
0.

10
%

ve
in

E
4H

2-
9

0.
08

15
.2

%
0.

00
1

18
9.

7%
29

.1
3

1.
3%

1.
07

18
.9

%
E

4H
2-

16
30

20
0

3.
84

6
1.

04
6

4.
02

2
0.

62
0.

24
%

ve
in

E
4H

2-
8

0.
11

15
.3

%
0.

00
1

18
9.

7%
36

.2
5

1.
9%

1.
02

16
.0

%
-

ve
in

E
4H

2-
56

0.
13

19
.4

%
0.

00
6

57
.8

%
64

.3
5

2.
9%

1.
43

16
.4

%
-

ve
in

E
4H

2-
52

0.
04

25
.5

%
0.

00
2

13
5.

2%
18

.9
3

5.
0%

0.
66

27
.8

%
E

4H
2-

24
30

20
0

3.
85

5
1.

04
6

4.
03

1
2.

92
0.

21
%

ve
in

E
4H

2-
49

0.
07

15
.2

%
0.

00
2

12
6.

5%
20

.2
2

3.
0%

1.
50

22
.2

%
-

ba
st

ite
E

4H
2-

6-
66

3.
47

3.
8%

b.
d.

l.
42

.0
4

2.
5%

39
.4

6
6.

4%
-

cr
ys

ta
l b

ou
nd

ar
y

E
4H

2-
6-

88
0.

82
8.

3%
0.

01
0

10
2.

0%
75

.4
2

2.
2%

14
.6

7
14

.3
%

E
4H

2-
6-

88
20

40
0

3.
81

3
1.

04
8

3.
99

7
-5

.6
1

0.
11

%
O

l
E

4H
2-

6-
68

0.
66

11
.6

%
0.

00
3

18
9.

7%
0.

18
37

.6
%

0.
29

67
.2

%
-

O
px

E
4H

2-
6-

72
0.

78
9.

4%
b.

d.
l.

0.
01

10
5.

1%
0.

09
10

4.
9%

-
O

px
E

4H
2-

6-
64

1.
01

4.
5%

b.
d.

l.
0.

04
65

.9
%

0.
18

69
.0

%
-

O
px

E
4H

2-
6-

73
1.

05
7.

2%
b.

d.
l.

0.
16

37
.6

%
0.

55
50

.5
%

-
O

px
E

4H
2-

6-
65

1.
26

7.
4%

0.
00

2
18

9.
7%

0.
01

18
9.

7%
0.

16
90

.9
%

- #  =
 m

at
rix

 c
or

re
ct

ed



Appendix B

176

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

m
es

h 
rim

E
4H

2-
6-

71
0.

56
8.

1%
0.

00
2

18
9.

7%
12

1.
27

1.
0%

12
.5

7
8.

0%
-

m
es

h 
rim

E
4H

2-
6-

69
2.

77
3.

3%
b.

d.
l.

61
.6

8
1.

0%
32

.1
6

5.
7%

-
m

es
h 

rim
E

4H
2-

6-
84

3.
41

5.
2%

0.
00

9
85

.3
%

69
.6

6
1.

4%
9.

22
14

.7
%

-
m

es
h 

rim
E

4H
2-

6-
67

3.
59

4.
2%

0.
00

2
18

9.
7%

56
.0

2
2.

8%
19

.9
1

9.
5%

-
m

es
h 

rim
E

4H
2-

6-
83

3.
89

4.
0%

0.
00

9
63

.2
%

60
.1

8
1.

4%
5.

90
14

.4
%

-
m

es
h 

rim
E

4H
2-

6-
91

3.
99

2.
7%

0.
00

7
77

.5
%

79
.6

1
1.

7%
7.

24
13

.6
%

E
4H

2-
6-

90
20

40
0

3.
83

1
1.

04
8

4.
01

6
-0

.8
3

0.
11

%
m

es
h 

rim
E

4H
2-

6-
79

4.
17

1.
5%

0.
00

4
12

6.
5%

75
.4

9
2.

3%
2.

75
8.

5%
E

4H
2-

6-
79

20
40

0
3.

85
7

1.
04

8
4.

04
3

5.
88

0.
13

%
m

es
h 

rim
E

4H
2-

6-
89

4.
28

4.
4%

0.
00

7
77

.5
%

54
.1

9
2.

0%
11

.1
2

14
.3

%
-

m
es

h 
rim

E
4H

2-
6-

78
4.

68
2.

2%
0.

00
5

96
.6

%
57

.5
4

1.
3%

3.
98

12
.6

%
-

m
es

h 
rim

E
4H

2-
6-

90
5.

75
4.

2%
0.

01
3

70
.7

%
71

.7
6

2.
5%

3.
65

16
.7

%
-

m
es

h 
rim

E
4H

2-
6-

75
4.

30
5.

3%
0.

00
2

18
9.

7%
71

.5
0

1.
7%

32
.4

9
5.

2%
-

ve
in

E
4H

2-
6-

86
0.

06
24

.8
%

0.
00

2
18

9.
7%

16
.7

6
4.

4%
0.

98
28

.5
%

-

ve
in

 d
en

se
M

A
K

2B
-1

5
0.

03
36

.6
%

0.
00

1
18

9.
7%

7.
23

3.
5%

0.
06

10
5.

0%
M

A
K

2B
-1

10
40

0
3.

77
0

1.
05

4
3.

97
3

-1
1.

35
0.

40
%

ve
in

 d
en

se
M

A
K

2B
-1

6
0.

04
31

.0
%

0.
00

2
12

6.
5%

8.
07

2.
5%

0.
05

96
.6

%
M

A
K

2B
-2

10
40

0
3.

78
1

1.
05

4
3.

98
4

-8
.6

4
0.

38
%

ve
in

 d
en

se
M

A
K

2B
-1

7
0.

03
39

.3
%

b.
d.

l.
6.

30
4.

6%
0.

16
48

.8
%

M
A

K
2B

-3
10

40
0

3.
76

8
1.

05
4

3.
97

1
-1

2.
05

0.
38

%
ve

in
 d

en
se

M
A

K
2B

-3
0.

04
26

.2
%

0.
00

1
18

9.
7%

9.
82

2.
7%

0.
16

65
.4

%
-

ve
in

 d
en

se
M

A
K

2B
-4

0.
03

17
.9

%
b.

d.
l.

10
.5

0
3.

0%
0.

13
49

.2
%

-
ve

in
 d

en
se

M
A

K
2B

-5
0.

10
17

.2
%

0.
00

4
10

4.
9%

39
.9

1
4.

8%
0.

40
45

.7
%

-
ve

in
 d

en
se

M
A

K
2B

-6
0.

08
21

.2
%

b.
d.

l.
24

.0
5

2.
4%

0.
16

70
.1

%
-

m
es

h 
ce

nt
er

M
A

K
2B

-7
0.

28
9.

2%
0.

02
1

42
.2

%
39

.8
7

1.
8%

2.
35

13
.2

%
M

A
K

2B
-6

10
40

0
3.

81
1

1.
05

4
4.

01
6

-0
.8

3
0.

16
%

m
es

h 
rim

M
A

K
2E

-8
4.

32
2.

4%
0.

00
6

84
.7

%
70

.7
1

1.
5%

3.
63

12
.2

%
-

m
es

h 
rim

 +
 c

en
te

r
M

A
K

2B
-1

2
0.

17
12

.3
%

0.
00

8
77

.6
%

36
.5

1
1.

3%
1.

30
19

.8
%

M
A

K
2B

-5
10

40
0

3.
80

7
1.

05
4

4.
01

2
-1

.7
6

0.
16

%
m

es
h 

rim
 +

 c
en

te
r

M
A

K
2B

-1
3

0.
36

9.
0%

0.
01

6
50

.7
%

36
.2

6
1.

6%
1.

42
25

.8
%

M
A

K
2B

-4
10

40
0

3.
80

1
1.

05
4

4.
00

6
-3

.3
3

0.
16

%
m

.r
im

 +
 c

r.b
ou

nd
.

M
A

K
2E

-1
0.

46
13

.8
%

0.
00

3
12

6.
5%

59
.3

2
1.

1%
5.

14
10

.2
%

-
m

.r
im

 +
 c

r.b
ou

nd
.

M
A

K
2E

-6
0.

66
9.

0%
0.

00
4

12
6.

6%
40

.3
5

1.
5%

14
.0

8
21

.9
%

-
m

.r
im

 +
 c

r.b
ou

nd
.

M
A

K
2E

-7
0.

33
11

.2
%

0.
01

0
81

.4
%

45
.8

7
2.

7%
4.

38
19

.3
%

-
co

ar
se

 fi
be

rs
M

A
K

2B
-9

0.
44

13
.8

%
0.

00
2

12
6.

5%
48

.2
9

3.
4%

1.
76

15
.8

%
M

A
K

2B
-8

10
40

0
3.

82
9

1.
05

4
4.

03
5

3.
96

0.
16

%
ve

in
 c

oa
rs

e
M

A
K

2B
-1

0.
69

6.
0%

0.
34

4
9.

5%
34

.6
6

2.
1%

2.
10

13
.8

%
-

ve
in

 c
oa

rs
e

M
A

K
2B

-1
1

0.
50

6.
3%

0.
01

2
46

.0
%

25
.3

3
1.

5%
1.

22
17

.7
%

-
ve

in
 c

oa
rs

e
M

A
K

2B
-1

4
0.

51
5.

4%
0.

95
8

10
.2

%
32

.3
9

1.
5%

1.
58

27
.3

%
-

ba
st

ite
A

00
3R

01
-2

7
13

.7
1

1.
7%

b.
d.

l.
40

.9
1

1.
6%

27
.5

8
6.

9%
A

00
3R

01
-2

7
10

40
0

3.
89

9
1.

04
5

4.
07

3
13

.2
6

0.
28

%
ba

st
ite

A
00

3R
01

-2
8

4.
50

3.
2%

b.
d.

l.
26

.0
6

2.
2%

17
.7

6
7.

2%
-

cr
ys

ta
l b

ou
nd

ar
y

A
00

3R
01

-1
7

0.
33

6.
6%

b.
d.

l.
6.

21
3.

4%
2.

70
5.

7%
-

cr
ys

ta
l b

ou
nd

ar
y

A
00

3R
01

-8
0.

04
21

.9
%

0.
00

1
18

9.
7%

2.
45

7.
4%

1.
46

12
.6

%
A

00
3R

01
-7

10
40

0
3.

84
2

1.
04

5
4.

01
4

-1
.3

0
0.

32
%

cr
ys

ta
l b

ou
nd

ar
y

A
00

3R
01

-1
4

0.
66

13
.8

%
b.

d.
l.

12
.5

0
4.

8%
4.

31
20

.0
%

A
00

3R
01

-1
4

10
40

0
3.

90
6

1.
04

5
4.

08
1

15
.1

8
0.

42
%

m
es

h 
ce

nt
er

A
00

3R
01

-1
8

15
.9

7
1.

2%
0.

00
2

18
9.

7%
85

.4
1

0.
9%

41
.5

6
6.

2%
-

m
es

h 
ce

nt
er

A
00

3R
01

-2
0

9.
67

1.
8%

b.
d.

l.
92

.7
5

3.
3%

43
.8

8
1.

1%
A

00
3R

01
-2

0
10

40
0

3.
89

3
1.

04
5

4.
06

7
11

.8
1

0.
19

%
m

es
h 

rim
A

00
3R

01
-1

3
10

.8
4

1.
9%

b.
d.

l.
82

.1
3

1.
8%

9.
78

8.
1%

A
00

3R
01

-1
3

10
40

0
3.

87
9

1.
04

5
4.

05
2

8.
08

0.
23

%
m

es
h 

rim
A

00
3R

01
-1

5
11

.3
1

1.
9%

b.
d.

l.
43

.9
3

2.
1%

8.
38

11
.1

%
A

00
3R

01
-1

5
10

40
0

3.
90

8
1.

04
5

4.
08

2
15

.5
9

0.
29

%
m

es
h 

rim
A

00
3R

01
-1

6
14

.4
7

3.
0%

b.
d.

l.
42

.5
5

1.
7%

11
.4

9
6.

9%
A

00
3R

01
-1

6
10

40
0

3.
91

5
1.

04
5

4.
09

0
17

.5
5

0.
23

%
m

es
h 

rim
A

00
3R

01
-2

1
16

.6
3

1.
2%

0.
00

2
18

9.
7%

52
.3

8
1.

8%
14

.6
0

6.
6%

- #  =
 m

at
rix

 c
or

re
ct

ed



Appendix B

177

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

m
es

h 
rim

A
00

3R
01

-2
2

12
.4

7
2.

3%
b.

d.
l.

38
.8

2
1.

8%
11

.0
4

9.
9%

-
m

es
h 

rim
A

00
3R

01
-3

0
16

.1
5

4.
2%

b.
d.

l.
36

.3
3

3.
7%

17
.1

1
4.

1%
A

00
3R

01
-3

0
10

40
0

3.
92

4
1.

04
5

4.
10

0
19

.8
4

0.
31

%
m

es
h 

rim
A

00
3R

01
-7

13
.9

6
1.

9%
0.

00
2

18
9.

7%
57

.2
7

1.
6%

10
.1

1
11

.1
%

A
00

3R
01

-8
10

40
0

3.
87

3
1.

04
5

4.
04

6
6.

66
0.

21
%

m
es

h 
rim

A
00

3R
01

-9
17

.6
4

1.
8%

0.
00

2
18

9.
7%

46
.7

2
1.

6%
8.

09
9.

6%
A

00
3R

01
-9

10
40

0
3.

88
9

1.
04

5
4.

06
3

10
.7

0
0.

25
%

O
l

A
00

3R
01

-1
9

0.
60

10
.2

%
b.

d.
l.

0.
08

34
.6

%
0.

40
47

.1
%

-
O

px
A

00
3R

01
-2

5
2.

10
5.

8%
b.

d.
l.

1.
97

6.
7%

0.
37

37
.8

%
-

O
px

A
00

3R
01

-2
6

2.
26

5.
2%

b.
d.

l.
1.

75
12

.0
%

0.
53

39
.6

%
A

00
3R

01
-2

6
10

40
0

3.
90

0
1.

04
5

4.
07

5
13

.7
4

1.
54

%
O

px
A

00
3R

01
-2

9
2.

61
3.

9%
0.

00
2

18
9.

7%
0.

43
14

.9
%

0.
18

58
.2

%
A

00
3R

01
-2

9
10

40
0

3.
89

1
1.

04
5

4.
06

5
11

.2
1

1.
31

%
ve

in
A

00
3R

01
-1

7.
30

2.
2%

0.
00

2
18

9.
7%

40
.0

6
1.

7%
9.

22
12

.7
%

A
00

3R
01

-1
10

40
0

3.
90

0
1.

04
5

4.
07

4
13

.5
2

0.
28

%
ve

in
A

00
3R

01
-3

3.
72

4.
1%

b.
d.

l.
33

.7
6

2.
0%

7.
48

6.
8%

A
00

3R
01

-3
10

40
0

3.
88

3
1.

04
5

4.
05

6
9.

17
0.

33
%

ve
in

A
00

3R
01

-4
0.

20
14

.5
%

b.
d.

l.
12

.6
3

4.
5%

4.
00

18
.6

%
A

00
3R

01
-4

10
40

0
3.

85
4

1.
04

5
4.

02
7

1.
85

0.
38

%
ve

in
A

00
3R

01
-5

1.
10

5.
3%

0.
00

2
18

9.
7%

43
.3

9
4.

8%
12

.0
7

7.
2%

A
00

3R
01

-5
10

40
0

3.
86

1
1.

04
5

4.
03

4
3.

68
0.

34
%

ve
in

A
00

3R
01

-6
7.

10
1.

9%
b.

d.
l.

45
.5

5
1.

2%
10

.1
6

9.
0%

A
00

3R
01

-6
10

40
0

3.
88

7
1.

04
5

4.
06

1
10

.2
9

0.
27

%
ve

in
A

00
3R

01
-2

0.
46

8.
0%

b.
d.

l.
35

.4
3

4.
9%

8.
63

7.
6%

-

m
es

h 
ce

nt
er

A
00

7R
01

-6
0.

21
36

.9
%

b.
d.

l.
13

0.
40

2.
9%

A
00

7R
01

-6
10

40
0

3.
89

5
1.

04
5

4.
07

1
12

.7
1

0.
25

%
m

es
h 

rim
A

00
7R

01
-1

4
0.

68
20

.4
%

0.
01

5
96

.6
%

15
4.

74
2.

8%
A

00
7R

01
-1

4
10

40
0

3.
89

3
1.

04
5

4.
06

9
12

.3
7

0.
20

%
m

es
h 

rim
A

00
7R

01
-2

0.
40

19
.9

%
0.

00
4

18
9.

7%
13

2.
70

2.
2%

A
00

7R
01

-2
10

40
0

3.
90

3
1.

04
5

4.
08

0
14

.8
8

0.
25

%
m

es
h 

rim
A

00
7R

01
-1

0
0.

43
30

.1
%

0.
00

5
18

9.
7%

12
7.

45
2.

3%
-

m
es

h 
rim

A
00

7R
01

-1
1

0.
30

26
.8

%
b.

d.
l.

14
2.

34
3.

3%
-

m
es

h 
rim

A
00

7R
01

-5
0.

34
19

.8
%

0.
00

4
18

9.
7%

35
.5

8
2.

3%
A

00
7R

01
-5

10
40

0
3.

91
4

1.
04

5
4.

09
1

17
.6

4
0.

29
%

m
es

h 
rim

A
00

7R
01

-1
2

1.
27

16
.5

%
b.

d.
l.

10
8.

45
3.

3%
-

m
es

h 
rim

A
00

7R
01

-4
1.

29
19

.5
%

b.
d.

l.
14

3.
34

2.
8%

A
00

7R
01

-4
10

40
0

3.
93

2
1.

04
5

4.
11

0
22

.4
9

0.
23

%
m

es
h 

rim
A

00
7R

01
-8

2.
25

11
.0

%
0.

02
6

84
.6

%
63

.3
6

3.
0%

-
m

es
h 

rim
A

00
7R

01
-9

0.
67

16
.5

%
b.

d.
l.

11
3.

34
2.

8%
-

m
es

h 
rim

A
00

7R
01

-7
0.

83
17

.1
%

0.
01

1
12

6.
5%

62
.3

4
4.

6%
A

00
7R

01
-7

10
40

0
3.

91
1

1.
04

5
4.

08
8

16
.9

1
0.

25
%

O
l

A
00

7R
01

-1
1.

16
15

.2
%

0.
01

4
96

.6
%

0.
06

96
.6

%
-

O
l

A
00

7R
01

-1
3

0.
83

19
.1

%
0.

03
1

12
6.

5%
0.

62
63

.3
%

-
O

l
A

00
7R

01
-3

0.
79

24
.2

%
0.

00
9

18
9.

7%
0.

28
78

.3
%

-
O

px
A

00
7R

01
-1

5
1.

81
8.

3%
0.

00
5

18
9.

7%
0.

81
27

.9
%

-
ve

in
A

00
7R

01
-1

7
0.

22
46

.7
%

0.
01

1
12

6.
5%

22
.1

7
8.

0%
A

00
7R

01
-1

7
10

40
0

3.
88

4
1.

04
5

4.
06

0
9.

99
0.

46
%

ve
in

A
00

7R
01

-1
8

0.
14

50
.8

%
0.

00
5

18
9.

7%
20

.6
2

5.
0%

-
ve

in
A

00
7R

01
-1

9
0.

23
36

.6
%

b.
d.

l.
24

.6
7

6.
3%

-
m

es
h 

rim
A

00
7R

01
-2

0
5.

13
5.

7%
0.

00
5

18
9.

7%
78

.6
1

3.
3%

A
00

7R
01

-2
0

10
40

0
3.

92
4

1.
04

5
4.

10
2

20
.3

6
0.

19
%

m
es

h 
rim

A
00

7R
01

-2
1

0.
47

34
.2

%
0.

01
5

96
.6

%
11

3.
94

3.
5%

A
00

7R
01

-2
1

10
40

0
3.

93
8

1.
04

5
4.

11
7

24
.0

4
0.

19
%

O
l

A
00

7R
01

-2
2

1.
24

16
.2

%
0.

01
3

12
6.

5%
0.

16
96

.6
%

-
m

es
h 

rim
A

00
7R

01
-2

3
2.

22
5.

6%
b.

d.
l.

58
.8

1
2.

3%
A

00
7R

01
-2

3
10

40
0

3.
90

7
1.

04
5

4.
08

4
15

.9
6

0.
24

%
ve

in
A

00
7R

01
-2

4
0.

13
47

.7
%

b.
d.

l.
27

.7
7

6.
4%

A
00

7R
01

-2
4

10
40

0
3.

84
2

1.
04

5
4.

01
6

-0
.8

1
0.

47
%

ve
in

A
00

7R
01

-2
5

0.
24

26
.5

%
0.

00
5

18
9.

7%
22

.5
4

5.
7%

A
00

7R
01

-2
5

10
40

0
3.

86
4

1.
04

5
4.

03
8

4.
69

0.
41

%
m

es
h 

ce
nt

er
A

00
7R

01
-2

6
0.

17
26

.4
%

b.
d.

l.
99

.7
4

0.
7%

30
.8

8
5.

4%
A

00
7R

01
-2

6
10

40
0

3.
88

5
1.

04
5

4.
06

1
10

.3
6

0.
22

%
m

es
h 

ce
nt

er
A

00
7R

01
-2

7
0.

06
28

.4
%

b.
d.

l.
89

.2
1

1.
3%

25
.6

8
5.

4%
A

00
7R

01
-2

7
10

40
0

3.
87

4
1.

04
5

4.
04

9
7.

38
0.

16
%

ba
st

ite
A

00
7R

01
-2

8
1.

07
9.

3%
0.

00
2

18
9.

7%
41

.4
9

2.
2%

16
.9

1
8.

7%
A

00
7R

01
-2

8
10

40
0

3.
89

5
1.

04
5

4.
07

1
12

.7
2

0.
28

%
ba

st
ite

A
00

7R
01

-2
9

3.
02

3.
4%

b.
d.

l.
39

.5
5

3.
6%

21
.6

2
9.

5%
A

00
7R

01
-2

9
10

40
0

3.
88

8
1.

04
5

4.
06

4
11

.1
4

0.
31

%

#  =
 m

at
rix

 c
or

re
ct

ed



Appendix B

178

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

ve
in

A
00

7R
01

-3
0

0.
36

5.
7%

0.
00

0
18

9.
7%

67
.0

3
1.

0%
7.

55
4.

0%
A

00
7R

01
-3

0
10

40
0

3.
87

7
1.

04
5

4.
05

2
8.

17
0.

27
%

ve
in

A
00

7R
01

-3
0b

0.
36

8.
6%

0.
00

2
18

9.
7%

65
.4

6
1.

6%
24

.3
3

25
.0

%
-

ve
in

A
00

7R
01

-3
1

1.
25

6.
1%

b.
d.

l.
63

.6
4

2.
1%

34
.6

5
2.

6%
A

00
7R

01
-3

1
10

40
0

3.
87

1
1.

04
5

4.
04

6
6.

61
0.

24
%

ve
in

A
00

7R
01

-3
2

0.
60

18
.9

%
b.

d.
l.

42
.5

5
2.

7%
24

.2
9

9.
2%

A
00

7R
01

-3
2

10
40

0
3.

87
5

1.
04

5
4.

05
0

7.
69

0.
31

%
ve

in
A

00
7R

01
-3

3
0.

34
12

.0
%

b.
d.

l.
61

.1
2

2.
0%

36
.9

8
5.

4%
A

00
7R

01
-3

3
10

40
0

3.
87

3
1.

04
5

4.
04

8
7.

10
0.

25
%

ve
in

A
00

7R
01

-3
4

0.
97

11
.7

%
b.

d.
l.

22
.8

1
2.

4%
13

.1
1

7.
5%

A
00

7R
01

-3
4

10
40

0
3.

88
4

1.
04

5
4.

05
9

9.
86

0.
45

%
ve

in
A

00
7R

01
-3

5
0.

19
19

.8
%

b.
d.

l.
21

.6
8

2.
7%

10
.0

0
10

.0
%

A
00

7R
01

-3
5

10
40

0
3.

88
8

1.
04

5
4.

06
4

11
.0

8
0.

60
%

ve
in

A
00

7R
01

-3
6

0.
23

17
.5

%
b.

d.
l.

39
.3

9
9.

7%
9.

78
12

.3
%

A
00

7R
01

-3
6

10
40

0
3.

89
5

1.
04

5
4.

07
2

12
.9

3
0.

35
%

ve
in

A
00

7R
01

-3
7

0.
28

11
.6

%
0.

00
1

18
9.

7%
49

.4
1

1.
4%

0.
88

22
.6

%
A

00
7R

01
-3

7
10

40
0

3.
86

7
1.

04
5

4.
04

2
5.

69
0.

23
%

ve
in

A
00

7R
01

-3
8

0.
47

10
.9

%
0.

00
4

12
6.

5%
64

.0
2

2.
0%

1.
93

24
.9

%
A

00
7R

01
-3

8
10

40
0

3.
85

4
1.

04
5

4.
02

8
2.

17
0.

21
%

m
es

h 
ce

nt
er

A
00

7R
01

-3
9

0.
11

17
.5

%
b.

d.
l.

12
5.

21
1.

4%
13

.1
3

16
.7

%
A

00
7R

01
-3

9
10

40
0

3.
89

1
1.

04
5

4.
06

7
11

.8
7

0.
17

%
A

01
1(

40
-4

2)
m

es
h 

ce
nt

er
A

01
1R

01
-1

4
2.

31
14

.5
%

b.
d.

l.
17

7.
25

12
.9

%
10

.7
3

9.
4%

-
ve

in
 m

aj
or

A
01

1R
01

-7
2.

55
5.

8%
b.

d.
l.

30
3.

57
2.

5%
6.

06
12

.4
%

A
01

1R
01

-7
10

40
0

3.
83

3
1.

04
5

4.
00

5
-3

.5
8

0.
11

%
ve

in
 m

aj
or

A
01

1R
01

-9
0.

48
9.

5%
0.

00
2

18
9.

7%
31

9.
48

3.
1%

1.
37

26
.4

%
A

01
1R

01
-9

10
40

0
3.

83
1

1.
04

5
4.

00
3

-4
.1

4
0.

11
%

m
es

h 
rim

A
01

1R
01

-1
3

3.
29

5.
8%

b.
d.

l.
11

9.
35

11
.0

%
14

.2
2

15
.6

%
A

01
1R

01
-1

3
10

40
0

3.
84

0
1.

04
5

4.
01

2
-1

.8
7

0.
18

%
m

es
h 

rim
A

01
1R

01
-1

5
1.

44
10

.6
%

b.
d.

l.
11

8.
39

9.
1%

11
.6

4
10

.7
%

A
01

1R
01

-1
5

10
40

0
3.

85
4

1.
04

5
4.

02
7

1.
81

0.
20

%
m

es
h 

rim
A

01
1R

01
-1

7
10

40
0

3.
83

5
1.

04
5

4.
00

6
-3

.2
3

0.
16

%
ve

in
 s

tic
he

s
A

01
1R

01
-3

0.
23

20
.5

%
0.

00
2

18
9.

7%
24

8.
47

0.
8%

1.
80

29
.1

%
A

01
1R

01
-3

10
40

0
3.

80
1

1.
04

5
3.

97
1

-1
1.

86
0.

08
%

ve
in

 s
tic

he
s

A
01

1R
01

-4
0.

26
12

.9
%

b.
d.

l.
26

8.
52

1.
6%

26
.5

8
5.

7%
A

01
1R

01
-4

10
40

0
3.

80
7

1.
04

5
3.

97
8

-1
0.

31
0.

10
%

ve
in

 s
tic

he
s

A
01

1R
01

-5
0.

30
9.

5%
0.

00
2

18
9.

7%
24

7.
48

1.
3%

34
4.

40
2.

5%
-

ve
in

 s
tic

he
s

A
01

1R
01

-6
0.

27
15

.5
%

b.
d.

l.
24

0.
26

0.
9%

47
.5

0
11

.5
%

-
ve

in
 s

tic
he

s
A

01
1R

01
-1

0.
27

21
.8

%
b.

d.
l.

32
3.

71
1.

2%
11

9.
08

4.
6%

-
69

-7
2)

40
-4

2)
ba

st
ite

A
01

1R
01

-1
2

0.
82

17
.7

%
b.

d.
l.

37
.0

9
6.

8%
*A

01
1R

01
-1

2
10

40
0

3.
85

4
1.

04
5

4.
02

8
2.

21
0.

24
%

ba
st

ite
A

01
1R

01
-1

3
2.

55
14

.8
%

b.
d.

l.
14

3.
20

2.
7%

A
01

1R
01

-1
3

10
40

0
3.

87
7

1.
04

5
4.

05
1

7.
71

0.
15

%
ba

st
ite

A
01

1R
01

-9
0.

57
19

.8
%

0.
00

6
12

6.
6%

32
.5

7
3.

5%
-

cr
ys

ta
l b

ou
nd

ar
y

A
01

1R
01

-6
11

.6
5

4.
2%

b.
d.

l.
45

.0
4

3.
6%

A
01

1R
01

-6
10

40
0

3.
89

5
1.

04
5

4.
07

0
12

.4
6

0.
29

%
cr

ys
ta

l b
ou

nd
ar

y
A

01
1R

01
-5

9.
36

5.
0%

b.
d.

l.
88

.9
3

2.
6%

*A
01

1R
01

-5
10

40
0

3.
88

8
1.

04
5

4.
06

4
10

.9
6

0.
24

%
cr

ys
ta

l b
ou

nd
ar

y
A

01
1R

01
-4

16
.3

0
4.

0%
0.

00
6

18
9.

7%
51

.4
7

5.
5%

*A
01

1R
01

-4
10

40
0

3.
89

6
1.

04
5

4.
07

3
13

.1
5

0.
26

%
m

es
h 

ce
nt

er
A

01
1R

01
-3

0
*A

01
1R

01
-3

0
10

40
0

3.
88

0
1.

04
5

4.
05

5
8.

82
0.

20
%

m
es

h 
ce

nt
er

A
01

1R
01

-1
0

1.
00

14
.7

%
0.

01
4

77
.5

%
11

3.
08

3.
0%

A
01

1R
01

-1
0

10
40

0
3.

89
9

1.
04

5
4.

07
3

13
.2

8
0.

21
%

m
es

h 
ce

nt
er

A
01

1R
01

-1
1

2.
80

7.
5%

0.
01

9
96

.0
%

11
6.

40
2.

3%
A

01
1R

01
-1

1
10

40
0

3.
88

0
1.

04
5

4.
05

4
8.

53
0.

17
%

m
es

h 
ce

nt
er

A
01

1R
01

-2
6

0.
84

14
.7

%
0.

02
3

84
.5

%
77

.8
8

2.
4%

*A
01

1R
01

-2
6

10
40

0
0.

00
0

1.
04

5
4.

05
4

7.
49

0.
00

%
m

es
h 

ce
nt

er
A

01
1R

01
-2

7
0.

32
11

.7
%

0.
00

2
96

.6
%

4.
61

3.
3%

-
m

es
h 

ce
nt

er
A

01
1R

01
-2

8
0.

69
12

.6
%

0.
03

0
54

.0
%

81
.6

4
1.

4%
-

m
es

h 
ce

nt
er

A
01

1R
01

-2
9

0.
40

16
.1

%
0.

01
5

84
.9

%
83

.0
5

2.
8%

-
m

es
h 

rim
A

01
1R

01
-7

5.
37

4.
0%

0.
00

5
12

6.
5%

50
.2

8
2.

6%
A

01
1R

01
-7

10
40

0
3.

90
7

1.
04

5
4.

08
2

15
.4

0
0.

21
%

m
es

h 
rim

A
01

1R
01

-3
2.

93
7.

3%
0.

00
5

12
6.

5%
10

8.
59

1.
8%

A
01

1R
01

-3
10

40
0

3.
90

0
1.

04
5

4.
07

5
13

.7
6

0.
24

%
m

es
h 

rim
A

01
1R

01
-8

1.
25

13
.7

%
0.

00
5

18
9.

7%
76

.2
4

2.
5%

*A
01

1R
01

-8
10

40
0

3.
88

6
1.

04
5

4.
06

2
10

.4
6

0.
19

%
m

es
h 

rim
A

01
1R

01
-2

5
2.

49
13

.3
%

0.
00

6
18

9.
7%

44
.2

5
6.

2%
*A

01
1R

01
-2

5
10

40
0

3.
86

8
1.

04
5

4.
04

3
5.

82
0.

26
%

m
es

h 
rim

A
01

1R
01

-2
3

0.
69

18
.0

%
0.

00
4

18
9.

7%
91

.2
8

3.
4%

*A
01

1R
01

-2
3

10
40

0
3.

84
4

1.
04

5
4.

01
7

-0
.4

8
0.

19
%

O
l

A
01

1R
01

-1
1.

28
10

.2
%

0.
00

6
18

9.
7%

0.
01

18
9.

7%
- #  =

 m
at

rix
 c

or
re

ct
ed



Appendix B

179

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

O
l

A
01

1R
01

-2
1.

19
14

.9
%

0.
00

9
96

.6
%

0.
01

18
9.

7%
-

O
px

A
01

1R
01

-2
4

2.
15

12
.1

%
b.

d.
l.

0.
0%

-
ve

in
A

01
1R

01
-1

5
1.

61
17

.6
%

0.
00

5
18

9.
7%

45
.0

5
5.

3%
-

ve
in

A
01

1R
01

-1
6

1.
70

9.
2%

0.
00

7
12

6.
5%

48
.5

1
2.

8%
-

ve
in

A
01

1R
01

-1
8

1.
55

15
.5

%
b.

d.
l.

48
.0

7
2.

4%
A

01
1R

01
-1

8
10

40
0

3.
85

5
1.

04
5

4.
02

8
2.

03
0.

26
%

ve
in

A
01

1R
01

-1
9

1.
25

14
.2

%
0.

00
5

18
9.

7%
49

.0
2

4.
4%

*A
01

1R
01

-1
9

10
40

0
3.

85
7

1.
04

5
4.

03
2

3.
05

0.
26

%
ve

in
A

01
1R

01
-1

4
1.

71
15

.4
%

0.
00

3
18

9.
7%

44
.9

7
2.

1%
-

6.
00

0.
00

%
ve

in
A

01
1R

01
-1

7
1.

62
16

.2
%

0.
01

7
77

.5
%

54
.6

5
2.

9%
A

01
1R

01
-1

7
10

20
0

3.
85

2
1.

04
5

4.
02

4
1.

20
0.

34
%

ve
in

A
01

1R
01

-2
1

1.
24

9.
8%

0.
00

8
12

6.
5%

53
.6

3
3.

9%
-

ve
in

A
01

1R
01

-2
0

1.
64

12
.8

%
0.

00
9

12
6.

5%
52

.4
0

2.
8%

-
ve

in
A

01
1R

01
-2

2
1.

70
14

.2
%

0.
01

5
77

.5
%

46
.8

8
3.

3%
*A

01
1R

01
-2

2
10

40
0

3.
83

9
1.

04
5

4.
01

2
-1

.7
5

0.
29

%

cr
ys

ta
l b

ou
nd

ar
y

A
01

2R
01

-8
3.

05
4.

4%
0.

00
2

18
9.

7%
51

.6
4

2.
2%

14
.6

9
6.

9%
A

01
2R

01
-8

 
10

40
0

3.
88

8
1.

04
5

4.
06

2
10

.4
9

0.
22

%
m

es
h 

ce
nt

er
A

01
2R

01
-4

7.
19

3.
3%

0.
00

4
12

6.
5%

95
.3

4
6.

2%
14

.0
3

8.
1%

A
01

2R
01

-4
10

40
0

3.
87

6
1.

04
5

4.
05

0
7.

53
0.

23
%

m
es

h 
ce

nt
er

A
01

2R
01

-7
7.

91
4.

5%
b.

d.
l.

11
3.

46
17

.2
%

16
.0

1
6.

9%
A

01
2R

01
-7

10
40

0
3.

89
7

1.
04

5
4.

07
2

12
.9

1
0.

20
%

m
es

h 
rim

A
01

2R
01

-1
14

.6
5

3.
5%

0.
00

3
18

9.
7%

70
.7

8
5.

9%
15

.9
1

7.
5%

-
m

es
h 

rim
A

01
2R

01
-2

12
.3

4
3.

1%
0.

00
2

18
9.

7%
51

.2
0

2.
5%

11
.6

3
8.

5%
-

m
es

h 
rim

A
01

2R
01

-3
0.

95
7.

7%
b.

d.
l.

48
.2

4
4.

5%
6.

91
7.

6%
A

01
2R

01
-3

10
40

0
3.

85
9

1.
04

5
4.

03
2

3.
10

0.
23

%
m

es
h 

rim
A

01
2R

01
-6

27
.7

2
1.

5%
b.

d.
l.

61
.7

2
2.

4%
7.

93
13

.5
%

A
01

2R
01

-6
10

40
0

3.
90

4
1.

04
5

4.
07

9
14

.6
9

0.
21

%
O

l
A

01
2R

01
-5

1.
10

10
.2

%
b.

d.
l.

1.
46

9.
8%

0.
47

37
.9

%
A

01
2R

01
-5

10
40

0
3.

84
1

1.
04

5
4.

01
2

-1
.7

4
2.

00
%

ba
st

ite
A

01
2R

01
-9

1.
40

10
.0

%
b.

d.
l.

46
.3

5
4.

3%
14

.1
8

8.
1%

A
01

2R
01

-9
10

40
0

3.
88

6
1.

04
5

4.
06

2
10

.5
7

0.
29

%
m

es
h 

rim
A

01
2R

01
-1

2
16

.5
9

2.
1%

0.
00

4
12

6.
5%

69
.9

8
1.

2%
2.

14
26

.8
%

A
01

2R
01

-1
2

10
40

0
3.

90
4

1.
04

5
4.

08
0

15
.0

6
0.

23
%

m
es

h 
rim

A
01

2R
01

-1
3

15
.3

3
2.

9%
0.

00
4

12
6.

5%
66

.1
0

1.
7%

2.
41

19
.3

%
A

01
2R

01
-1

3
10

40
0

3.
89

6
1.

04
5

4.
07

3
13

.2
1

0.
24

%
O

l
A

01
2R

01
-1

5
0.

74
10

.1
%

b.
d.

l.
0.

01
12

6.
5%

0.
25

58
.8

%
A

01
2R

01
-1

5
10

40
0

3.
85

9
1.

04
5

4.
03

4
3.

62
1.

01
%

O
l

A
01

2R
01

-1
9

0.
56

0.
00

2
0.

02
0.

36
-

O
px

A
01

2R
01

-1
4

1.
19

4.
7%

b.
d.

l.
0.

04
48

.9
%

0.
03

18
9.

7%
A

01
2R

01
-1

4
10

40
0

3.
89

7
1.

04
5

4.
07

4
13

.4
6

1.
71

%
O

px
A

01
2R

01
-2

0
1.

48
0.

00
2

0.
24

0.
10

-
ve

in
A

01
2R

01
-1

0
1.

17
5.

3%
b.

d.
l.

79
.7

7
6.

1%
14

.3
7

9.
8%

A
01

2R
01

-1
0

10
40

0
3.

85
5

1.
04

5
4.

03
0

2.
53

0.
19

%
ve

in
A

01
2R

01
-1

6
1.

42
6.

2%
b.

d.
l.

56
.4

9
2.

8%
3.

44
30

.2
%

A
01

2R
01

-1
6

10
40

0
3.

90
4

1.
04

5
4.

08
0

15
.1

0
0.

27
%

ve
in

A
01

2R
01

-1
7

1.
16

8.
5%

0.
00

2
18

9.
7%

29
1.

98
0.

8%
2.

88
11

.1
%

A
01

2R
01

-1
7

10
40

0
3.

80
6

1.
04

5
3.

97
8

-1
0.

15
0.

12
%

m
es

h 
ce

nt
er

A
01

3R
01

-1
2

1.
90

10
.3

%
0.

01
2

12
6.

5%
16

7.
37

2.
0%

16
.5

4
12

.4
%

A
01

3R
01

-1
2

10
40

0
3.

92
6

1.
04

6
4.

10
6

21
.4

7
0.

14
%

ba
st

ite
A

01
3R

01
-1

7
1.

32
7.

5%
0.

00
6

12
6.

5%
94

.1
7

2.
1%

6.
43

10
.5

%
A

01
3R

01
-1

7
10

40
0

3.
92

9
1.

04
6

4.
11

0
22

.4
1

0.
21

%
ve

in
A

01
3R

01
-3

0
0.

19
16

.2
%

b.
d.

l.
96

.2
3

1.
5%

2.
60

6.
9%

A
01

3R
01

-3
0

10
40

0
3.

86
5

1.
04

6
4.

04
2

5.
64

0.
17

%
ve

in
A

01
3R

01
-8

0.
39

11
.4

%
0.

00
3

18
9.

7%
69

.7
3

2.
1%

12
.4

7
5.

7%
A

01
3R

01
-8

10
40

0
3.

84
4

1.
04

5
4.

01
9

-0
.0

8
0.

26
%

ve
in

A
01

3R
01

-3
1

0.
31

15
.1

%
0.

00
2

18
9.

7%
34

.0
4

3.
8%

8.
04

13
.8

%
A

01
3R

01
-3

1
10

40
0

3.
89

1
1.

04
6

4.
07

0
12

.5
4

0.
30

%
ve

in
A

01
3R

01
-3

2
0.

33
16

.8
%

b.
d.

l.
26

.8
9

4.
7%

8.
24

12
.6

%
A

01
3R

01
-3

2
10

40
0

3.
87

4
1.

04
6

4.
05

2
8.

18
0.

21
%

ve
in

A
01

3R
01

-2
8

0.
36

14
.9

%
0.

00
2

18
9.

7%
57

.0
5

1.
7%

10
.2

3
8.

9%
A

01
3R

01
-2

8
10

40
0

3.
86

2
1.

04
6

4.
04

0
5.

02
0.

26
%

ve
in

A
01

3R
01

-2
7

6.
87

3.
4%

0.
00

7
10

4.
3%

62
.3

1
1.

3%
11

.0
9

11
.4

%
A

01
3R

01
-2

7
10

40
0

3.
88

4
1.

04
6

4.
06

3
10

.7
3

0.
21

%
ve

in
A

01
3R

01
-2

9
5.

80
2.

8%
0.

00
2

18
9.

7%
65

.5
2

0.
9%

10
.8

3
8.

9%
A

01
3R

01
-2

9
10

40
0

3.
90

0
1.

04
6

4.
08

0
14

.9
3

0.
22

%
m

es
h 

ce
nt

er
A

01
3R

01
-1

5
2.

52
6.

9%
0.

01
3

12
7.

0%
19

1.
65

1.
5%

11
.5

9
16

.3
%

A
01

3R
01

-1
5

10
40

0
3.

91
8

1.
04

6
4.

09
9

19
.5

7
0.

26
%

m
es

h 
ce

nt
er

A
01

3R
01

-1
8

0.
98

12
.1

%
0.

00
6

12
6.

5%
38

0.
13

1.
0%

15
.8

5
9.

6%
A

01
3R

01
-1

8
10

40
0

3.
91

9
1.

04
6

4.
09

9
19

.6
7

0.
17

%
m

es
h 

ce
nt

er
A

01
3R

01
-3

4.
29

10
.2

%
b.

d.
l.

89
.0

3
2.

8%
29

.0
9

19
.3

%
A

01
3R

01
-3

10
40

0
3.

90
6

1.
04

5
4.

08
4

15
.9

0
0.

32
%

#  =
 m

at
rix

 c
or

re
ct

ed



Appendix B

180

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

m
es

h 
rim

A
01

3R
01

-9
5.

41
2.

1%
0.

00
4

12
6.

5%
97

.2
9

1.
5%

13
.7

1
7.

3%
A

01
3R

01
-9

10
40

0
3.

92
0

1.
04

6
4.

10
0

20
.0

4
0.

13
%

m
es

h 
rim

A
01

3R
01

-1
0

3.
73

5.
9%

b.
d.

l.
18

7.
61

1.
4%

8.
49

7.
9%

A
01

3R
01

-1
0

10
40

0
3.

91
3

1.
04

6
4.

09
3

18
.2

0
0.

10
%

m
es

h 
rim

A
01

3R
01

-1
3

3.
95

6.
1%

0.
00

8
77

.5
%

23
7.

86
1.

3%
8.

66
12

.4
%

A
01

3R
01

-1
3

10
40

0
3.

92
2

1.
04

6
4.

10
2

20
.4

0
0.

13
%

m
es

h 
rim

A
01

3R
01

-1
4

4.
28

5.
0%

0.
00

2
18

9.
7%

23
3.

57
1.

3%
11

.1
2

10
.4

%
A

01
3R

01
-1

4
10

40
0

3.
92

9
1.

04
6

4.
11

0
22

.3
6

0.
12

%
m

es
h 

rim
A

01
3R

01
-1

9
2.

30
4.

1%
0.

00
4

18
9.

7%
26

0.
25

1.
1%

6.
83

10
.0

%
A

01
3R

01
-1

9
10

40
0

3.
91

8
1.

04
6

4.
09

8
19

.3
7

0.
12

%
m

es
h 

rim
A

01
3R

01
-4

1.
81

7.
7%

0.
00

8
96

.7
%

38
.6

4
2.

9%
10

.7
1

11
.5

%
A

01
3R

01
-4

10
40

0
3.

89
6

1.
04

5
4.

07
3

13
.1

6
0.

31
%

O
l

A
01

3R
01

-3
3

1.
26

9.
5%

b.
d.

l.
0.

10
26

.9
%

0.
25

37
.7

%
-

O
px

A
01

3R
01

-3
4

1.
29

5.
5%

b.
d.

l.
0.

29
24

.1
%

0.
12

84
.7

%
-

m
es

h
A

01
3R

01
-2

7.
08

3.
7%

0.
00

2
18

9.
7%

10
8.

79
2.

1%
13

.4
2

10
.0

%
A

01
3R

01
-2

10
40

0
3.

92
6

1.
04

5
4.

10
4

20
.9

7
0.

15
%

ba
st

ite
A

01
3R

01
-1

4.
30

2.
2%

0.
00

2
18

9.
7%

37
.2

9
2.

4%
17

.8
8

4.
5%

A
01

3R
01

-1
10

40
0

3.
90

4
1.

04
5

4.
08

1
15

.3
5

0.
25

%
ve

in
A

01
3R

01
-1

1
4.

36
4.

9%
0.

00
2

18
9.

7%
39

.7
5

1.
6%

8.
49

9.
2%

A
01

3R
01

-1
1

10
40

0
3.

90
1

1.
04

6
4.

08
0

15
.0

4
0.

36
%

ve
in

A
01

3R
01

-1
6

8.
26

3.
4%

0.
00

7
10

5.
3%

75
.0

9
1.

1%
4.

11
21

.5
%

A
01

3R
01

-1
6

10
40

0
3.

91
7

1.
04

6
4.

09
7

19
.2

3
0.

14
%

ve
in

A
01

3R
01

-2
0

3.
06

3.
6%

0.
00

5
12

6.
5%

29
.5

4
3.

7%
10

.8
4

13
.1

%
A

01
3R

01
-2

0
10

40
0

3.
88

9
1.

04
6

4.
06

8
11

.9
7

0.
32

%
ve

in
A

01
3R

01
-3

9
7.

90
6.

0%
b.

d.
l.

76
.9

2
1.

4%
ve

in
A

01
3R

01
-4

0
9.

55
5.

4%
0.

00
4

18
9.

7%
74

.2
7

3.
0%

ve
in

A
01

3R
01

-4
1

9.
19

4.
0%

0.
01

1
77

.5
%

79
.3

2
2.

5%
ve

in
A

01
3R

01
-3

5
9.

47
6.

2%
0.

01
4

84
.3

%
73

.1
8

2.
4%

ve
in

A
01

3R
01

-3
6

6.
22

6.
1%

b.
d.

l.
73

.5
1

2.
1%

ve
in

A
01

3R
01

-3
7

8.
25

2.
9%

0.
00

7
13

5.
0%

58
.7

2
1.

5%
ve

in
A

01
3R

01
-3

8
7.

00
4.

1%
b.

d.
l.

58
.8

8
2.

2%
ve

in
A

01
3R

01
-4

2
7.

43
4.

9%
0.

00
5

12
6.

5%
57

.8
0

1.
8%

ve
in

A
01

3R
01

-4
3

4.
82

8.
1%

0.
01

1
77

.5
%

62
.7

1
2.

3%
ve

in
A

01
3R

01
-4

4
5.

72
4.

0%
0.

00
3

18
9.

7%
57

.9
8

3.
0%

ve
in

A
01

3R
01

-4
5

6.
81

6.
5%

0.
00

3
18

9.
7%

61
.7

6
2.

6%
ve

in
A

01
3R

01
-4

6
9.

56
1.

9%
0.

00
9

96
.6

%
69

.7
0

2.
8%

ve
in

A
01

3R
01

-4
7

0.
49

19
.9

%
b.

d.
l.

56
.0

0
3.

3%
ve

in
A

01
3R

01
-4

8
0.

31
28

.1
%

0.
01

1
96

.6
%

42
.3

4
3.

2%
ve

in
A

01
3R

01
-4

9
0.

43
26

.4
%

0.
01

0
12

6.
5%

49
.5

6
5.

1%
ve

in
A

01
3R

01
-5

0
0.

27
41

.7
%

b.
d.

l.
61

.4
1

2.
6%

ve
in

A
01

3R
01

-5
1

0.
32

17
.5

%
0.

00
7

12
6.

5%
60

.1
9

1.
7%

ve
in

A
01

3R
01

-5
2

0.
41

20
.1

%
0.

00
6

12
6.

5%
61

.2
9

3.
0%

ve
in

A
01

3R
01

-5
3

3.
12

8.
8%

0.
00

7
12

6.
5%

61
.8

7
3.

4%
ve

in
A

01
3R

01
-5

4
10

.0
1

4.
0%

0.
01

0
96

.6
%

77
.6

7
3.

3%
m

es
h 

rim
A

01
3R

01
-5

5
1.

64
14

.1
%

0.
02

3
77

.5
%

20
0.

92
1.

9%
m

es
h 

ce
nt

er
A

01
3R

01
-5

6
2.

40
18

.3
%

b.
d.

l.
22

5.
18

1.
5%

C
px

A
01

7G
02

-1
5

2.
09

13
.5

%
0.

07
1

43
.9

%
0.

48
25

.1
%

-
cr

ys
ta

l b
ou

nd
ar

y
A

01
7G

02
-1

0
4.

15
11

.0
%

0.
00

5
18

9.
7%

48
.2

9
4.

2%
A

01
7G

02
-1

0
10

40
0

3.
88

5
1.

04
5

4.
05

9
9.

76
0.

37
%

cr
ys

ta
l b

ou
nd

ar
y

A
01

7G
02

-7
8.

63
9.

3%
b.

d.
l.

55
.3

3
4.

8%
A

01
7G

02
-7

10
40

0
3.

87
9

1.
04

5
4.

05
3

8.
29

0.
28

%
m

es
h 

ce
nt

er
A

01
7G

02
-1

1
0.

08
65

.6
%

0.
00

4
18

9.
7%

16
8.

90
1.

3%
-

m
es

h 
ce

nt
er

A
01

7G
02

-8
0.

11
43

.9
%

0.
00

4
18

9.
7%

13
0.

34
3.

1%
A

01
7G

02
-8

10
40

0
3.

85
9

1.
04

5
4.

03
1

2.
91

0.
17

%
m

es
h 

ce
nt

er
A

01
7G

02
-2

2.
06

9.
5%

0.
00

3
18

9.
7%

33
.7

1
4.

8%
A

01
7G

02
-2

10
40

0
3.

88
0

1.
04

5
4.

05
4

8.
49

0.
32

%
m

es
h 

ce
nt

er
A

01
7G

02
-3

0.
11

34
.8

%
b.

d.
l.

58
.4

0
3.

8%
- #  =

 m
at

rix
 c

or
re

ct
ed



Appendix B

181

Ta
bl

e 
B

3 
(c

on
tin

ue
d)

:
 L

i, 
B

e,
 B

, S
r 

co
nt

en
ts

 a
nd

 
δ

11
B

 v
al

ue
s 

of
 s

er
pe

nt
in

it
es

, a
na

ly
ze

d 
by

 S
IM

S,
 a

na
ly

se
s 

al
so

 in
 e

le
ct

ro
ni

c 
ap

pe
nd

ix
.

Te
xt

ur
e

A
na

ly
si

s
Li

 (
μg

/g
) 

2σ
m

ea
n

B
e 

(μ
g/

g)
 

2σ
m

ea
n

B
 (

μg
/g

) 
2σ

m
ea

n
S

r 
(μ

g/
g)

 
2σ

m
ea

n
A

na
ly

si
s

I P
 (

nA
)

n
11

B
/10

B
 

m
ea

su
re

d
α i

ns
t

11
B

/10
B

 
co

rr
ec

te
d

δ11
B

 (
‰

)#
2σ

m
ea

n

m
es

h 
ce

nt
er

A
01

7G
02

-4
0.

62
26

.8
%

0.
00

5
18

9.
7%

15
1.

47
3.

3%
-

m
es

h 
ce

nt
er

A
01

7G
02

-6
0.

19
30

.6
%

0.
01

1
13

4.
4%

10
9.

81
2.

5%
A

01
7G

02
-6

10
40

0
3.

85
8

1.
04

5
4.

03
1

2.
76

0.
17

%
m

es
h 

rim
A

01
7G

02
-9

0.
49

12
.4

%
0.

00
4

18
9.

7%
26

.9
4

3.
3%

A
01

7G
02

-9
10

40
0

3.
87

9
1.

04
5

4.
05

2
8.

13
0.

28
%

m
es

h 
rim

A
01

7G
02

-1
2

0.
08

79
.9

%
0.

01
1

12
6.

6%
57

.2
0

3.
8%

A
01

7G
02

-1
2

10
40

0
3.

88
6

1.
04

5
4.

06
0

10
.0

2
0.

25
%

m
es

h 
rim

A
01

7G
02

-1
4

0.
24

25
.8

%
0.

00
8

12
6.

5%
10

0.
18

1.
9%

-
m

es
h 

rim
A

01
7G

02
-1

7
0.

74
24

.1
%

0.
00

6
18

9.
7%

18
.5

6
6.

5%
A

01
7G

02
-1

7
10

40
0

3.
89

7
1.

04
5

4.
07

2
12

.9
7

0.
24

%
m

es
h 

rim
A

01
7G

02
-5

0.
22

32
.0

%
0.

00
3

18
9.

7%
30

.7
1

4.
1%

-
O

l
A

01
7G

02
-1

3
1.

02
16

.9
%

0.
00

5
18

9.
7%

0.
10

84
.8

%
-

O
l

A
01

7G
02

-1
1.

30
17

.5
%

b.
d.

l.
0.

03
12

6.
5%

-
O

px
A

01
7G

02
-1

6
0.

30
30

.5
%

0.
02

6
12

6.
3%

0.
07

77
.5

%
-

O
l

2-
12

-0
1

0.
94

10
.4

%
0.

00
3

18
9.

7%
0.

58
13

.8
%

0.
38

69
.1

%
-

m
es

h 
ce

nt
er

2-
12

-0
2

4.
58

4.
4%

0.
00

3
18

9.
7%

12
2.

25
2.

2%
12

.4
0

11
.2

%
-

m
es

h 
rim

 +
 c

ry
st

al
 b

2-
12

-0
3

6.
24

3.
9%

b.
d.

l.
85

.4
2

1.
9%

11
.7

7
9.

0%
2-

12
-0

3
10

40
0

3.
90

3
1.

04
6

4.
08

4
15

.9
1

0.
21

%
m

es
h 

ce
nt

er
2-

12
-0

4
1.

15
9.

8%
b.

d.
l.

20
3.

81
1.

6%
22

.2
1

11
.3

%
-

m
es

h 
rim

 +
 c

ry
st

al
 b

2-
12

-0
5

3.
80

6.
5%

0.
01

2
77

.5
%

11
0.

46
2.

0%
15

.3
0

11
.6

%
-

m
es

h 
ce

nt
er

2-
12

-0
6

0.
44

10
.1

%
0.

00
3

18
9.

7%
19

6.
82

1.
3%

2.
39

31
.7

%
2-

12
-0

6
10

40
0

3.
91

4
1.

04
6

4.
09

5
18

.6
7

0.
15

%
m

es
h 

rim
 (

+
 c

en
te

r ?
2-

12
-0

7
4.

32
7.

2%
0.

00
3

18
9.

7%
14

7.
34

2.
3%

8.
82

9.
8%

-
m

es
h 

rim
 +

 c
ry

st
al

 b
2-

12
-0

8
2.

39
10

.1
%

b.
d.

l.
10

2.
67

1.
6%

9.
76

11
.0

%
-

m
es

h 
rim

 +
 c

ry
st

al
 b

2-
12

-0
9

2.
32

5.
3%

0.
00

3
18

9.
7%

19
1.

89
1.

6%
11

.2
8

12
.2

%
2-

12
-0

9
10

40
0

3.
91

6
1.

04
6

4.
09

7
19

.1
5

0.
17

%

br
uc

ite
 v

ei
n

E
7H

2-
2C

-1
1.

99
4.

0%
b.

d.
l.

2.
17

8.
8%

10
.6

7
13

.1
%

-
br

uc
ite

 v
ei

n
E

7H
2-

2C
-2

1.
56

7.
3%

0.
00

2
18

9.
7%

2.
30

7.
6%

6.
91

9.
9%

-
br

uc
ite

, b
rig

ht
E

7H
2-

2B
-2

0.
88

12
.3

%
0.

00
4

12
6.

5%
1.

43
12

.8
%

3.
04

10
.9

%
-

br
uc

ite
, b

rig
ht

E
7H

2-
2B

-5
1.

40
5.

6%
b.

d.
l.

1.
56

8.
2%

9.
66

7.
0%

-
br

uc
ite

, b
rig

ht
E

7H
2-

2B
-7

1.
19

6.
1%

b.
d.

l.
1.

19
13

.4
%

5.
48

13
.2

%
-

br
uc

ite
, b

rig
ht

E
7H

2-
2B

-9
1.

30
11

.4
%

b.
d.

l.
1.

38
9.

0%
4.

12
17

.7
%

-
br

uc
ite

, b
rig

ht
E

7H
2-

2B
-1

2
0.

93
13

.5
%

b.
d.

l.
1.

83
7.

9%
3.

02
18

.9
%

-
br

uc
ite

, b
rig

ht
E

7H
2-

2B
-1

3
1.

60
5.

2%
0.

00
2

18
9.

7%
1.

34
12

.6
%

8.
83

9.
3%

-
br

uc
ite

, b
rig

ht
E

7H
2-

2B
-1

5
2.

08
4.

1%
b.

d.
l.

1.
77

9.
1%

1.
62

26
.3

%
-

br
uc

ite
, b

rig
ht

E
7H

2-
2B

-3
0.

78
6.

2%
0.

00
2

18
9.

7%
1.

90
6.

3%
1.

81
21

.3
%

-
br

uc
ite

, d
ar

k
E

7H
2-

2B
-6

1.
15

7.
8%

0.
00

2
18

9.
7%

1.
40

9.
5%

3.
33

19
.2

%
-

br
uc

ite
, d

ar
k

E
7H

2-
2B

-1
0

0.
59

12
.4

%
0.

00
2

18
9.

7%
1.

33
10

.3
%

0.
65

24
.4

%
-

br
uc

ite
, d

ar
k

E
7H

2-
2B

-1
4

1.
07

10
.3

%
b.

d.
l.

1.
63

12
.4

%
0.

94
37

.8
%

-
m

es
h 

ce
nt

er
E

7H
2-

2D
-1

0.
19

12
.3

%
0.

01
1

71
.8

%
46

.0
6

2.
0%

12
.2

1
10

.2
%

-
m

es
h 

ce
nt

er
E

7H
2-

2D
-2

0.
21

15
.6

%
0.

00
3

12
6.

5%
40

.1
8

3.
7%

8.
33

16
.1

%
-

ve
in

E
7H

2-
2B

-4
0.

06
27

.0
%

0.
00

1
18

9.
7%

6.
47

3.
7%

0.
12

77
.4

%
-

ve
in

E
7H

2-
2B

-8
0.

03
49

.1
%

0.
00

1
18

9.
7%

7.
89

4.
2%

0.
13

66
.7

%
-

ve
in

E
7H

2-
2B

-1
1

0.
04

22
.0

%
0.

00
1

18
9.

7%
6.

67
3.

5%
0.

10
57

.5
%

-
ve

in
E

7H
2-

2D
-3

0.
27

9.
0%

0.
00

6
85

.9
%

19
.6

9
1.

7%
2.

21
17

.5
%

- #  =
 m

at
rix

 c
or

re
ct

ed



Appendix B

182

B4: Light element variation diagrams for different serpentinite samples
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Fig. B4: Li vs B and 11B vs B of different serpentinite samples.
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Fig. B4 (continued): Li vs B and 11B vs B of different serpentinite samples.
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A012R01 (3-5)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100

mesh center
mesh rim
crystal boundary
primary
bastite
veins

A013R01

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100

mesh center
mesh rim
vein
primary
e.g. after opx

0.01

0.1

1

10

100

1000

-20 -10 0 10 20 30 40

A017G02

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100

mesh center
mesh rim
primary
cryst bound

0.01

0.1

1

10

100

1000

-20 -10 0 10 20 30 40

0.01

0.1

1

10

100

1000

-20 -10 0 10 20 30 40

δ11B (‰)

B
 (

μg
/g

)

Li (μg/g)

B
 (

μg
/g

)

δ11B (‰)

B
 (

μg
/g

)

Li (μg/g)

B
 (

μg
/g

)

δ11B (‰)

B
 (

μg
/g

)

Li (μg/g)

B
 (

μg
/g

)

Fig. B4 (continued): Li vs B and 11B vs B of different serpentinite samples.
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B5: Micro-Raman spectra of serpentine and brucite
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Fig. B5: Micro-Raman spectra of textures in sample A003R01.
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Fig. B5 (continued): Micro-Raman spectra of textures in sample A007R01.
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Fig. B5 (continued): Micro-Raman spectra of textures in sample A007R01.
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Fig. B5 (continued): Micro-Raman spectra of textures in samples A007R01 and A011R01(40-42).
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Fig. B5 (continued): Micro-Raman spectra of textures in sample A011R01(69-72).
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Fig. B5 (continued): Micro-Raman spectra of textures in sample A013R01(25-27).
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Fig. B5 (continued): Micro-Raman spectra of textures in sample A013R01(25-27).
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Fig. B5 (continued): Micro-Raman spectra of textures in sample A013R01(12-15).
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Fig. B5 (continued): Micro-Raman spectra of textures in samples A017G02 and 10R02.
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Fig. B5 (continued): Micro-Raman spectra of textures in samples E7H2 and E4H2.
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C1: Sample BSE-images with EPMA, SIMS and Raman spots
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Fig. C1:  Back-scattered electron (BSE) images of sample A003R01 with indicated spots of electron probe
micro analyses, secondary ion electron spectrometry and micro-Raman analyses. Further images in
electronic appendix.
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C2: Electron probe micro analyses

C2.1: Amphibole

              

Fig. C2: Amphibole classification (after Leake et al., 1997, 2004).
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Table C2.1: Representative composition of calcic amphiboles (in wt%), further analyses in electronic
appendix.

Analysis mg-hbl mg-hbl mg-hbl act act act trem trem mg-hast kaers kaers prg prg edenite

E1H3-
5_61 

E2H2-4B
04 

E1H3-
4B_100 

D1H4-
2D_09 

E1H3-
3D_23 

E1H3-
5_50 

E1H3-
5_59 

F1H1-3C
06 

E1H3-
4B_93 

E1H3-
3D_34 

E1H3-
3D_35 

E1H3-
4B_01 

E1H3-
4B_02 

E1H3-
4B_104 

SiO2 51.38 51.96 48.03 57.58 56.66 52.62 57.10 57.46 43.32 39.28 38.74 43.51 43.37 45.83
TiO2 0.20 0.36 0.48 0.07 0.09 0.08 0.00 0.04 0.50 5.26 6.02 0.67 0.47 0.53
Al2O3 6.01 3.38 7.99 0.28 0.18 4.13 0.49 0.44 12.33 12.46 13.54 12.22 12.40 10.59
Cr2O3 0.33 0.31 0.14 0.02 0.00 0.26 0.04 0.14 0.14 0.02 0.03 0.09 0.08 0.10
Fe2O3 4.09 1.36 4.84 1.77 2.43 3.27 0.38 2.80 7.74 2.37 1.96 3.01 2.91 2.91
FeO 3.85 8.89 7.61 4.62 5.83 3.75 4.28 3.82 4.48 9.12 9.59 8.08 8.19 7.07
MnO 0.96 0.24 0.28 0.26 0.20 0.73 0.61 0.35 0.32 0.14 0.15 0.25 0.33 0.39
MgO 18.04 17.03 15.19 20.33 19.53 18.78 21.65 20.24 15.02 13.24 12.76 14.10 14.04 15.32
CaO 10.47 12.37 9.72 11.33 10.50 10.54 11.83 10.56 10.69 10.91 11.11 11.59 11.57 11.67
Na2O 1.42 0.92 2.55 1.28 1.41 1.32 0.30 1.59 2.21 2.37 2.32 2.41 2.56 2.03
K2O 0.08 0.17 0.21 0.18 0.01 0.05 0.02 0.03 0.28 1.12 1.14 0.27 0.31 0.23
H2O 2.11 2.08 2.07 2.16 2.13 2.10 2.15 2.16 2.06 2.00 2.02 2.03 2.03 2.06

Total 98.94 99.06 99.10 99.87 98.96 97.62 98.84 99.61 99.09 98.28 99.37 98.22 98.26 98.74

T-site
Si 7.283 7.488 6.957 7.994 7.981 7.516 7.965 7.980 6.295 5.890 5.757 6.413 6.399 6.660
Al(IV) 0.717 0.512 1.043 0.006 0.019 0.484 0.035 0.020 1.705 2.110 2.243 1.587 1.601 1.340
C-site
Al(VI) 0.287 0.061 0.321 0.040 0.010 0.212 0.045 0.052 0.408 0.092 0.128 0.536 0.556 0.474
Ti 0.022 0.039 0.052 0.008 0.009 0.009 0.000 0.004 0.054 0.593 0.673 0.074 0.052 0.058
Fe3+ 0.436 0.147 0.527 0.185 0.258 0.351 0.040 0.292 0.846 0.268 0.219 0.334 0.323 0.318
Cr 0.037 0.035 0.016 0.002 0.000 0.029 0.004 0.015 0.016 0.003 0.003 0.010 0.009 0.011
Mg 3.812 3.658 3.278 4.208 4.101 3.999 4.501 4.190 3.254 2.959 2.827 3.098 3.087 3.318
Mn 0.115 0.029 0.035 0.031 0.023 0.088 0.072 0.041 0.039 0.018 0.019 0.031 0.042 0.047
Fe2+ 0.292 1.031 0.770 0.526 0.598 0.312 0.337 0.406 0.382 1.067 1.130 0.917 0.931 0.773
B-site
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2+ 0.165 0.041 0.152 0.010 0.089 0.136 0.162 0.038 0.162 0.076 0.062 0.079 0.080 0.086
Ca 1.590 1.910 1.508 1.685 1.584 1.613 1.769 1.572 1.664 1.753 1.770 1.831 1.829 1.817
Na 0.245 0.049 0.340 0.306 0.327 0.251 0.070 0.390 0.174 0.171 0.168 0.090 0.091 0.098
A-site
Na 0.144 0.209 0.377 0.038 0.059 0.116 0.012 0.037 0.448 0.517 0.499 0.598 0.642 0.475
K 0.015 0.032 0.038 0.031 0.001 0.009 0.004 0.005 0.052 0.215 0.216 0.050 0.058 0.043

Total 15.159 15.240 15.414 15.069 15.060 15.124 15.016 15.042 15.500 15.732 15.715 15.648 15.700 15.519

FeO, Fe2O3, and H2O were calculated stoichiometrically. Cation calculation is based on 22 oxygen and 2 OH.
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Table C2.1 (continued): Representative composition of sodic-calcic amphiboles (in wt%), further analyses in
electronic appendix.

Analysis winchite winchite winchite winchite winchite winchite winchite winchite winchite winchite mg-kat mg-kat barroisite barroisite

D1H4-
1A_02 

D1H4-
1A_03 

D1H4-
1A_04 

E1H3-
5_41 

F1H4-
5_10 

F2H2-1A-
05 

F2H2-1A
20 

F2H2-4H
21 

F2H2-4H
46 

MAK2A_
20 

E1H3-
4B_70 

E1H3-
4B_72 

E1H3-
5_32 

F2H2-1A-
16 

SiO2 55.96 56.98 56.27 55.42 54.88 55.37 53.78 55.03 53.71 56.45 47.98 48.28 51.30 46.59
TiO2 0.03 0.01 0.04 0.02 0.01 0.00 0.03 0.07 0.09 0.02 0.52 0.43 0.11 0.29
Al2O3 1.31 0.95 1.48 1.71 1.83 1.40 1.91 1.79 2.22 0.79 8.12 7.79 5.25 10.78
Cr2O3 0.11 0.07 0.04 0.09 0.13 0.01 0.00 0.00 0.04 0.02 0.22 0.03 0.14 0.04
Fe2O3 5.14 5.29 10.21 3.12 3.57 4.20 4.03 4.92 3.58 3.46 3.03 2.79 3.54 6.40
FeO 6.64 4.08 5.02 5.83 6.33 9.42 10.78 9.30 8.16 5.49 11.03 10.61 6.46 7.25
MnO 0.76 1.34 0.49 0.51 0.57 0.77 0.62 0.74 0.72 0.29 0.40 0.35 0.72 0.73
MgO 16.49 18.01 14.35 17.79 17.27 15.74 14.51 14.35 16.22 18.79 13.02 13.19 16.01 13.17
CaO 7.24 8.05 3.99 8.36 8.16 7.77 7.87 5.92 7.85 9.34 8.61 8.79 8.92 7.44
Na2O 3.33 2.94 4.96 2.77 2.85 2.91 3.04 4.39 2.48 2.24 3.99 3.47 2.70 3.22
K2O 0.11 0.04 0.03 0.08 0.09 0.07 0.10 0.07 0.07 0.02 0.17 0.26 0.04 0.93
H2O 2.11 2.15 2.11 2.10 2.09 2.10 2.06 2.08 2.06 2.13 2.05 2.03 2.06 2.06

Total 99.24 99.90 98.98 97.79 97.77 99.75 98.73 99.25 99.69 99.07 99.16 98.02 97.28 98.87

T-site
Si 7.943 7.962 7.994 7.915 7.876 7.903 7.821 7.944 7.817 7.951 7.031 7.121 7.454 6.785
Al(IV) 0.057 0.038 0.006 0.085 0.124 0.097 0.179 0.056 0.183 0.049 0.969 0.879 0.546 1.215
C-site
Al(VI) 0.162 0.118 0.242 0.203 0.185 0.139 0.149 0.249 0.198 0.082 0.433 0.475 0.354 0.636
Ti 0.003 0.001 0.004 0.002 0.001 0.000 0.004 0.008 0.009 0.002 0.057 0.047 0.011 0.031
Fe3+ 0.549 0.556 1.092 0.335 0.385 0.451 0.441 0.534 0.392 0.367 0.334 0.310 0.387 0.702
Cr 0.012 0.008 0.005 0.010 0.014 0.001 0.000 0.000 0.004 0.002 0.026 0.004 0.016 0.004
Mg 3.489 3.751 3.038 3.787 3.695 3.348 3.145 3.088 3.519 3.945 2.844 2.900 3.467 2.859
Mn 0.091 0.159 0.059 0.062 0.070 0.093 0.076 0.090 0.089 0.035 0.050 0.043 0.089 0.090
Fe2+ 0.695 0.408 0.560 0.601 0.650 0.967 1.185 1.031 0.789 0.567 1.257 1.220 0.675 0.679
B-site
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2+ 0.094 0.069 0.037 0.096 0.110 0.157 0.127 0.092 0.204 0.080 0.095 0.088 0.111 0.204
Ca 1.101 1.206 0.607 1.280 1.254 1.187 1.226 0.916 1.224 1.410 1.352 1.389 1.388 1.161
Na 0.805 0.725 1.356 0.625 0.636 0.656 0.647 0.992 0.571 0.510 0.552 0.523 0.501 0.635
A-site
Na 0.113 0.072 0.011 0.142 0.157 0.150 0.210 0.237 0.129 0.101 0.582 0.470 0.258 0.273
K 0.021 0.007 0.005 0.015 0.016 0.012 0.019 0.013 0.013 0.003 0.032 0.048 0.008 0.173

Total 15.133 15.080 15.015 15.157 15.173 15.161 15.229 15.250 15.142 15.104 15.615 15.518 15.266 15.446

FeO, Fe2O3, and H2O were calculated stoichiometrically. Cation calculation is based on 22 oxygen and 2 OH.
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Table C2.1 (continued): Representative composition of sodic amphiboles (in wt%), further analyses in
electronic appendix.

Analysis mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb mg-rieb

D1H4-
1A_20 

D1H4-
1A_40 

D1H4-
1A_46 

E1H3-
2D_03 

E1H3-
4A_68 

E1H3-
4C_10 

F1H4-
5_28 

F2H2-1A-
10 

F2H2-1A-
25 

F2H2-4A-
47 

F2H2-4B-
02 

F2H2-4H
05 

F2H2-4H
06 

F2H2-5A-
30 

SiO2 56.61 56.42 56.74 57.23 55.99 54.81 56.08 55.54 55.62 55.64 56.36 55.54 54.66 55.91
TiO2 0.13 0.07 0.02 0.03 0.38 0.06 0.05 0.06 0.05 0.06 0.02 0.05 0.02 0.02
Al2O3 1.70 1.91 1.68 2.51 1.91 1.82 3.56 1.80 1.75 2.80 2.69 2.76 1.89 2.51
Cr2O3 0.08 0.04 0.00 0.09 0.02 0.07 0.14 0.00 0.03 0.00 0.00 0.03 0.00 0.04
Fe2O3 12.59 11.41 12.51 13.75 12.53 11.42 10.41 12.53 12.76 9.79 11.08 11.19 14.25 11.97
FeO 6.10 6.09 5.11 3.88 6.48 7.71 4.75 7.87 8.03 6.97 5.61 6.57 8.15 7.21
MnO 0.20 0.44 0.45 0.23 0.28 0.53 0.21 0.44 0.96 0.31 0.44 0.49 0.25 0.40
MgO 12.92 13.02 13.14 12.73 11.72 11.85 12.67 11.33 11.14 12.29 12.69 12.12 9.63 11.38
CaO 1.75 2.40 2.41 0.75 1.53 2.03 1.52 1.60 1.44 2.46 2.13 1.44 0.38 1.45
Na2O 6.21 5.70 5.98 6.98 6.39 6.09 6.43 6.45 6.42 5.99 6.00 6.33 6.94 6.24
K2O 0.03 0.04 0.06 0.04 0.02 0.07 0.04 0.02 0.10 0.07 0.03 0.05 0.02 0.03
H2O 2.13 2.11 2.13 2.15 2.10 2.07 2.10 2.09 2.10 2.09 2.11 2.09 2.05 2.10

Total 100.46 99.64 100.24 100.35 99.36 98.52 97.96 99.72 100.39 98.47 99.16 100.64 101.06 99.67

T-site
Si 7.979 7.998 7.993 7.999 7.995 7.949 7.993 7.968 7.956 7.985 7.996 7.964 7.991 7.997
Al(IV) 0.021 0.002 0.007 0.001 0.005 0.051 0.007 0.032 0.044 0.015 0.004 0.036 0.009 0.003
C-site
Al(VI) 0.261 0.317 0.272 0.412 0.315 0.260 0.591 0.273 0.251 0.458 0.446 0.431 0.318 0.420
Ti 0.014 0.008 0.002 0.003 0.041 0.007 0.006 0.007 0.005 0.007 0.002 0.005 0.003 0.002
Fe3+ 1.335 1.218 1.326 1.446 1.347 1.247 1.117 1.353 1.373 1.058 1.183 1.208 1.567 1.289
Cr 0.009 0.005 0.000 0.010 0.003 0.008 0.016 0.000 0.003 0.000 0.000 0.004 0.000 0.004
Mg 2.715 2.752 2.760 2.651 2.495 2.563 2.691 2.423 2.374 2.629 2.684 2.590 2.099 2.427
Mn 0.024 0.052 0.053 0.027 0.034 0.065 0.026 0.053 0.116 0.038 0.053 0.059 0.031 0.048
Fe2+ 0.641 0.649 0.586 0.451 0.766 0.851 0.554 0.892 0.877 0.811 0.632 0.703 0.982 0.809
B-site
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2+ 0.078 0.073 0.016 0.002 0.008 0.084 0.012 0.052 0.084 0.025 0.034 0.085 0.014 0.053
Ca 0.265 0.365 0.363 0.112 0.234 0.316 0.232 0.245 0.220 0.378 0.323 0.222 0.060 0.223
Na 1.657 1.562 1.620 1.886 1.757 1.601 1.755 1.703 1.696 1.596 1.642 1.693 1.926 1.725
A-site
Na 0.040 0.003 0.014 0.006 0.012 0.111 0.022 0.092 0.084 0.069 0.008 0.068 0.042 0.005
K 0.004 0.006 0.012 0.007 0.003 0.012 0.007 0.003 0.018 0.013 0.005 0.009 0.003 0.005

Total 15.045 15.010 15.025 15.013 15.016 15.123 15.028 15.096 15.102 15.083 15.013 15.077 15.045 15.010

FeO, Fe2O3, and H2O were calculated stoichiometrically. Cation calculation is based on 22 oxygen and 2 OH.
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C2.2: Chlorite

Table C2.2: Representative composition of chlorite (in wt%), further analyses in electronic appendix.

Analysis D1H4-
1A_01 

D1H4-
1A_05 

D1H4-
1A_26 

D1H4-
2D_08 

D1H4-
2D_12 

D3H1-8C
01 

D3H1-8C-
07 

E1H3-
2F_01 

E1H3-
2F_02 

E1H3-
3D_39 

E1H3-
3D_40 

E1H3-
4A_05 

E1H3-
4A_06 

SiO2 29.68 30.21 31.20 32.65 32.05 35.48 35.33 31.43 30.41 32.48 33.77 29.70 29.26
TiO2 0.01 0.01 0.00 0.04 0.05 0.04 0.02 0.02 0.02 0.02 0.01 0.02 0.03
Al2O3 18.70 17.85 16.96 14.47 14.81 10.49 12.02 15.24 17.37 12.37 13.08 17.63 19.07
Cr2O3 0.50 0.46 0.29 0.01 0.00 0.50 0.40 0.19 0.23 0.01 0.03 0.05 0.06
FeO 9.41 9.50 9.11 9.46 9.78 6.75 7.25 9.41 9.75 8.75 8.42 15.03 11.07
MnO 1.11 0.88 0.88 0.19 0.19 0.07 0.03 0.42 0.36 0.25 0.18 0.54 0.58
NiO 0.12 0.21 0.25 0.27 0.17 0.31 0.26 0.22 0.19 0.03 0.05 0.05 0.05
MgO 26.84 27.15 28.11 29.49 29.32 32.79 31.86 27.07 27.46 30.06 30.50 24.13 26.33
CaO 0.03 0.05 0.18 0.04 0.07 0.02 0.02 0.43 0.22 0.20 0.18 0.06 0.07
Na2O 0.00 0.02 0.05 0.02 0.03 0.03 0.04 0.18 0.12 0.21 0.18 0.03 0.00
K2O 0.00 0.01 0.02 0.00 0.00 0.26 0.60 0.06 0.01 0.02 0.03 0.02 0.00
H2O 12.16 12.16 12.29 12.27 12.22 12.44 12.56 11.95 12.14 11.96 12.32 11.97 12.12
Total 98.57 98.49 99.33 98.90 98.69 99.16 100.38 96.61 98.27 96.36 98.74 99.22 98.64

Si 2.927 2.980 3.045 3.191 3.145 3.421 3.373 3.154 3.004 3.256 3.288 2.975 2.896
Ti 0.001 0.000 0.000 0.003 0.004 0.003 0.001 0.002 0.001 0.001 0.001 0.001 0.002
Al(IV) 1.073 1.020 0.955 0.809 0.855 0.579 0.627 0.846 0.996 0.744 0.712 1.025 1.104
Al(VI) 1.099 1.055 0.995 0.857 0.858 0.613 0.726 0.957 1.026 0.717 0.788 1.055 1.120
Cr 0.039 0.036 0.022 0.001 0.000 0.038 0.030 0.015 0.018 0.001 0.003 0.004 0.005
Fe2+ 0.776 0.784 0.744 0.773 0.802 0.544 0.579 0.790 0.805 0.733 0.686 1.259 0.916
Mn 0.093 0.073 0.073 0.015 0.015 0.006 0.002 0.036 0.030 0.022 0.015 0.046 0.048
Ni 0.010 0.016 0.019 0.021 0.014 0.024 0.020 0.017 0.015 0.002 0.004 0.004 0.004
Mg 3.946 3.992 4.090 4.296 4.290 4.713 4.535 4.050 4.043 4.492 4.427 3.602 3.884
Ca 0.003 0.005 0.019 0.004 0.008 0.002 0.002 0.046 0.023 0.021 0.018 0.006 0.007
Na 0.000 0.003 0.010 0.004 0.006 0.006 0.008 0.034 0.022 0.042 0.033 0.006 0.001
K 0.000 0.001 0.002 0.000 0.000 0.032 0.073 0.008 0.002 0.003 0.004 0.003 0.000
Total 9.966 9.966 9.975 9.975 9.997 9.980 9.975 9.956 9.986 10.034 9.979 9.986 9.988

Mg# 83.57 83.59 84.61 84.75 84.24 89.65 88.68 83.68 83.39 85.97 86.59 74.10 80.92
clinochlore 81.28 81.72 82.98 84.44 83.93 88.86 88.11 82.78 82.54 85.58 86.28 73.34 80.00
chamosite 15.98 16.04 15.09 15.19 15.70 10.26 11.24 16.14 16.44 13.97 13.36 25.63 18.86
Cr-fraction 0.80 0.73 0.45 0.02 0.00 0.72 0.59 0.31 0.37 0.02 0.05 0.08 0.09
pennantite (Mn) 1.91 1.50 1.48 0.30 0.30 0.11 0.04 0.73 0.62 0.41 0.29 0.93 0.99
Ti-fraction 0.02 0.01 0.00 0.05 0.08 0.05 0.02 0.04 0.03 0.02 0.01 0.03 0.05

H2O was calculated stoichiometrically; cation calculation is based on 10 oxygens and 4 OH; Fe2+ = FeNomenclature after Bayliss (1975).

Analysis E1H3-
4A_72 

E1H3-
4A_73 

E1H3-
4B_05 

E1H3-
4B_06 

E4H2-2B
02 

E4H2-2B
07 

E7H2-
2A_04 

E7H2-
2A_11 

F1H1-3C
13 

F1H1-3D
03 

F2H2-4F-
14 

F2H2-4F-
16 

F2H2-4G-
02 

SiO2 30.13 28.84 27.90 27.85 28.09 27.68 31.50 30.09 30.89 29.35 30.07 30.65 29.69
TiO2 0.01 0.00 0.03 0.03 0.07 0.03 0.02 0.03 0.01 0.00 0.04 0.03 0.03
Al2O3 17.29 19.75 19.55 19.82 19.17 18.92 16.64 18.05 16.46 18.71 17.91 16.86 17.86
Cr2O3 0.06 0.05 0.24 0.12 0.03 0.02 0.11 0.05 1.07 0.00 0.39 0.26 0.35
FeO 13.73 10.97 15.27 14.52 16.32 16.85 9.43 10.81 8.79 11.75 6.47 5.91 6.66
MnO 0.51 0.46 0.45 0.45 0.35 0.44 0.37 0.39 0.44 0.62 0.41 0.41 0.37
NiO 0.04 0.03 0.04 0.04 0.07 0.03 0.20 0.16 0.42 0.05 0.20 0.24 0.18
MgO 24.62 26.34 23.26 23.36 22.30 22.31 28.58 27.54 28.98 25.63 30.17 30.96 29.64
CaO 0.21 0.02 0.08 0.10 0.25 0.13 0.35 0.07 0.06 0.00 0.00 0.00 0.01
Na2O 0.02 0.00 0.01 0.04 0.05 0.00 0.13 0.02 0.00 0.00 0.00 0.00 0.00
K2O 0.01 0.02 0.02 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.00
H2O 11.98 12.12 11.88 11.86 11.80 11.72 12.34 12.24 12.29 12.03 12.27 12.26 12.13
Total 98.61 98.60 98.72 98.20 98.50 98.12 99.65 99.47 99.42 98.14 97.95 97.58 96.92

Si 3.017 2.853 2.817 2.816 2.855 2.833 3.062 2.949 3.014 2.927 2.939 2.999 2.934
Ti 0.001 0.000 0.002 0.002 0.005 0.002 0.001 0.002 0.001 0.000 0.003 0.002 0.002
Al(IV) 0.983 1.147 1.183 1.184 1.145 1.167 0.938 1.051 0.986 1.073 1.061 1.001 1.066
Al(VI) 1.058 1.155 1.144 1.178 1.150 1.117 0.968 1.033 0.907 1.126 1.002 0.943 1.015
Cr 0.005 0.004 0.019 0.010 0.002 0.002 0.008 0.004 0.082 0.000 0.030 0.020 0.028
Fe2+ 1.150 0.908 1.289 1.228 1.387 1.443 0.766 0.886 0.717 0.980 0.529 0.483 0.550
Mn 0.043 0.038 0.038 0.039 0.030 0.038 0.030 0.033 0.036 0.053 0.034 0.034 0.031
Ni 0.003 0.003 0.003 0.003 0.005 0.002 0.015 0.013 0.033 0.004 0.016 0.019 0.014
Mg 3.675 3.884 3.501 3.522 3.378 3.404 4.142 4.023 4.215 3.810 4.396 4.515 4.367
Ca 0.022 0.002 0.009 0.011 0.027 0.015 0.037 0.007 0.006 0.000 0.000 0.000 0.001
Na 0.004 0.000 0.002 0.007 0.010 0.000 0.024 0.004 0.000 0.001 0.000 0.001 0.000
K 0.001 0.002 0.003 0.003 0.001 0.000 0.000 0.003 0.002 0.000 0.001 0.000 0.000
Total 9.962 9.995 10.010 10.001 9.996 10.022 9.992 10.008 9.998 9.974 10.012 10.017 10.009

Mg# 76.17 81.05 73.09 74.15 70.89 70.24 84.39 81.95 85.46 79.54 89.26 90.33 88.81
clinochlore 75.40 80.35 72.19 73.37 70.33 69.64 83.71 81.30 83.44 78.67 88.06 89.32 87.72
chamosite 23.59 18.78 26.58 25.58 28.88 29.51 15.49 17.91 14.20 20.24 10.60 9.56 11.05
Cr-fraction 0.10 0.07 0.40 0.20 0.05 0.03 0.17 0.08 1.63 0.00 0.60 0.39 0.56
pennantite (Mn) 0.89 0.79 0.79 0.81 0.63 0.78 0.61 0.66 0.72 1.09 0.68 0.67 0.63
Ti-fraction 0.02 0.00 0.04 0.04 0.11 0.04 0.03 0.04 0.02 0.00 0.06 0.05 0.04

H2O was calculated stoichiometrically; cation calculation is based on 10 oxygens and 4 OH; Fe2+ = FeNomenclature after Bayliss (1975).
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C2.3: Talc

Table C2.3: Composition of talc (in wt%), analyses also in electronic appendix.

Analysis D1H4-
1A_29 

E2H2-5D-
04 

E2H2-5D
06 

E2H2-5D
07 

E2H2-5D
16 

E2H2-5J-
02 

F1H3-2C
12 

F1H3-2C
21 

F1H3-2C
25 

F1H3-2C-
27 

F1H3-2C
31 

F1H3-2C
32 

F1H3-2C
35 

SiO2 64.14 63.20 63.12 62.35 62.96 63.12 63.82 63.10 61.27 61.69 62.31 62.34 61.37
TiO2 0.01 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Al2O3 0.18 0.11 0.11 0.12 0.12 0.12 0.09 0.08 0.16 0.13 0.16 0.03 0.03
Cr2O3 0.00 0.03 0.05 0.03 0.03 0.05 0.00 0.00 0.02 0.00 0.01 0.04 0.04
FeO 3.84 3.79 3.90 3.86 4.05 1.07 2.09 2.31 2.33 2.20 2.49 2.30 2.58
MnO 0.25 0.14 0.13 0.15 0.09 0.00 0.05 0.04 0.05 0.09 0.06 0.13 0.08
NiO 0.22 0.29 0.27 0.26 0.28 0.37 0.45 0.57 0.55 0.50 0.47 0.51 0.52
MgO 29.07 28.93 29.00 28.66 28.49 30.80 30.74 30.66 30.69 30.55 31.35 30.72 29.65
CaO 0.11 0.07 0.07 0.06 0.05 0.00 0.02 0.03 0.03 0.05 0.02 0.06 0.04
Na2O 0.03 0.04 0.05 0.04 0.02 0.04 0.01 0.01 0.01 0.00 0.00 0.02 0.00
K2O 0.00 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02
Total 97.85 96.64 96.69 95.52 96.08 95.59 97.28 96.80 95.11 95.21 96.88 96.16 94.32

Si 4.011 4.002 3.997 3.997 4.011 3.989 3.983 3.964 3.927 3.945 3.924 3.949 3.965
Ti 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Al 0.013 0.008 0.008 0.009 0.009 0.009 0.006 0.006 0.012 0.010 0.012 0.002 0.002
Cr 0.000 0.001 0.003 0.001 0.001 0.002 0.000 0.000 0.001 0.000 0.001 0.002 0.002
Fe2+ 0.201 0.201 0.206 0.207 0.216 0.057 0.109 0.121 0.125 0.117 0.131 0.122 0.140
Mn 0.013 0.008 0.007 0.008 0.005 0.000 0.003 0.002 0.003 0.005 0.003 0.007 0.004
Ni 0.049 0.066 0.061 0.060 0.065 0.083 0.102 0.130 0.128 0.115 0.107 0.117 0.121
Mg 2.709 2.731 2.738 2.739 2.706 2.901 2.860 2.872 2.932 2.912 2.943 2.902 2.856
Ca 0.007 0.005 0.005 0.004 0.003 0.000 0.001 0.002 0.002 0.004 0.001 0.004 0.002
Na 0.004 0.005 0.007 0.005 0.002 0.004 0.001 0.001 0.001 0.000 0.000 0.003 0.000
K 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
Total 7.009 7.029 7.031 7.031 7.017 7.048 7.066 7.098 7.131 7.108 7.123 7.108 7.094

Mg# 92.67 92.91 92.77 92.72 92.47 98.09 96.24 95.88 95.82 95.97 95.63 95.76 95.20

Cation calculation is based on 10 oxygens and 2 OH; Fe2+ = Fet.

Analysis F1H3-2F-
04 

F1H3-2F-
05 

F2H2-4E-
27 

F2H2-4E-
28 

F2H2-4F
04 

F2H2-4F-
05 

F2H2-4F-
13 

F2H2-4G-
06 

F2H2-4G-
22 

F2H2-4G-
24 

SiO2 59.91 60.44 60.98 62.13 62.66 62.60 60.73 62.89 61.50 61.14
TiO2 0.00 0.01 0.03 0.02 0.01 0.02 0.03 0.00 0.02 0.02
Al2O3 0.15 0.11 0.35 0.04 0.16 0.28 0.63 0.16 0.37 0.25
Cr2O3 0.04 0.00 0.04 0.02 0.05 0.01 0.05 0.03 0.00 0.01
FeO 1.67 2.03 2.44 2.13 2.50 2.27 2.63 2.50 2.48 2.56
MnO 0.04 0.06 0.13 0.12 0.13 0.08 0.18 0.07 0.10 0.08
NiO 0.32 0.37 0.29 0.13 0.20 0.19 0.22 0.24 0.27 0.30
MgO 32.53 30.99 30.08 29.97 29.94 30.06 29.66 30.27 29.37 29.88
CaO 0.07 0.15 0.04 0.01 0.02 0.01 0.02 0.03 0.04 0.02
Na2O 0.01 0.02 0.03 0.02 0.03 0.02 0.04 0.00 0.03 0.02
K2O 0.00 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.02 0.01
Total 94.72 94.19 94.42 94.58 95.67 95.55 94.20 96.21 94.19 94.27

Si 3.861 3.914 3.940 3.992 3.986 3.983 3.936 3.979 3.975 3.954
Ti 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.000 0.001 0.001
Al 0.011 0.008 0.027 0.003 0.012 0.021 0.048 0.012 0.028 0.019
Cr 0.002 0.000 0.002 0.001 0.002 0.001 0.002 0.002 0.000 0.001
Fe2+ 0.090 0.110 0.132 0.114 0.133 0.121 0.143 0.132 0.134 0.138
Mn 0.002 0.003 0.007 0.006 0.007 0.005 0.010 0.004 0.006 0.005
Ni 0.073 0.085 0.067 0.029 0.046 0.044 0.052 0.054 0.062 0.069
Mg 3.125 2.992 2.897 2.871 2.839 2.851 2.865 2.855 2.830 2.881
Ca 0.005 0.010 0.003 0.001 0.001 0.000 0.002 0.002 0.003 0.002
Na 0.001 0.002 0.004 0.002 0.004 0.003 0.005 0.000 0.003 0.002
K 0.000 0.001 0.002 0.000 0.000 0.001 0.000 0.001 0.001 0.001
Total 7.170 7.126 7.081 7.020 7.031 7.029 7.065 7.042 7.044 7.071

Mg# 97.14 96.35 95.44 95.96 95.31 95.78 94.94 95.44 95.29 95.28

Cation calculation is based on 10 oxygens and 2 OH; Fe2+ = Fet.
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C2.4: Pumpellyite, epidote and allanite

Table C2.4: Composition of pumpellyite (in wt%), analyses also in electronic appendix.

Analysis E1H3-
4B_43 

E1H3-
4B_51 

E1H3-
4B_53 

E1H3-
4B_54 

E1H3-
4B_59 

E1H3-
4B_60 

E1H3-
4B_63 

E1H3-
4B_65 

E1H3-
4B_66 

E1H3-
4B_75 

E1H3-
4B_76 

E1H3-
4B_84 

SiO2 35.83 35.98 35.88 36.12 36.13 37.70 36.14 36.89 36.80 35.97 35.91 35.68
TiO2 0.77 0.88 0.68 0.21 0.31 0.33 1.71 0.23 0.26 0.33 1.49 0.39
Al2O3 19.72 20.33 20.81 22.36 21.78 21.86 20.33 22.63 22.47 19.59 18.59 20.48
Cr2O3 0.92 1.82 1.20 0.01 0.04 0.02 0.28 0.01 0.05 0.70 1.57 0.20
Fe2O3 10.68 7.97 8.20 7.66 8.12 7.63 8.09 6.63 7.15 10.46 8.12 8.63
MnO 0.20 0.31 0.31 0.29 0.41 0.47 0.41 0.42 0.28 0.28 0.22 0.31
MgO 2.33 2.65 2.72 3.23 2.95 3.64 2.82 3.32 3.25 2.76 3.09 3.02
CaO 21.85 21.53 21.50 22.07 21.84 21.43 22.48 22.05 21.88 21.85 22.47 22.12
Na2O 0.22 0.30 0.28 0.21 0.18 0.31 0.23 0.21 0.25 0.13 0.18 0.19
K2O 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00
NiO 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.02 0.01 0.02 0.02 0.02
Total 92.50 91.79 91.59 92.17 91.78 93.40 92.49 92.40 92.40 92.09 91.65 91.04

Si 3.145 3.161 3.154 3.138 3.157 3.218 3.151 3.180 3.176 3.168 3.176 3.159
Al 2.041 2.104 2.156 2.289 2.243 2.199 2.089 2.299 2.286 2.033 1.937 2.138
Fe3+ 0.705 0.527 0.542 0.500 0.534 0.490 0.531 0.430 0.464 0.693 0.541 0.575
Ti 0.051 0.058 0.045 0.014 0.020 0.021 0.112 0.015 0.017 0.022 0.099 0.026
Cr 0.064 0.127 0.084 0.000 0.003 0.001 0.019 0.000 0.003 0.049 0.110 0.014
Mn 0.015 0.023 0.023 0.022 0.030 0.034 0.030 0.031 0.020 0.021 0.017 0.023
Mg 0.305 0.347 0.357 0.418 0.384 0.463 0.367 0.427 0.418 0.362 0.407 0.399
Ca 2.055 2.027 2.025 2.054 2.045 1.960 2.100 2.037 2.023 2.061 2.129 2.099
Na 0.037 0.051 0.048 0.036 0.031 0.051 0.038 0.036 0.042 0.023 0.031 0.032
K 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000
Ni 0.000 0.004 0.000 0.000 0.003 0.008 0.000 0.007 0.003 0.005 0.005 0.005
Total 8.417 8.430 8.434 8.472 8.451 8.445 8.437 8.462 8.453 8.437 8.449 8.470

Fe3+/(Al+Fe3+) 0.26 0.20 0.20 0.18 0.19 0.18 0.20 0.16 0.17 0.25 0.22 0.21

Cation calculation based on 13 (O,OH) and Fe3+ = Fet.

Table C2.4 (continued): Composition of epidote (in wt%), analyses also in electronic appendix.

Analysis D1H4_1
1 

E1H3-
4A_11 

E1H3-
4B_28 

E1H3-
4B_32 

E1H3-
4B_50 

E1H3-
4C_02 

E1H3-
4C_05 

E1H3-
4C_07 

E1H3-
4C_15 

F1H4-
3A_14 

F1H4-
3A_16 

F2H2-
1A-26 

F2H2-
1A-27 

SiO2 38.02 37.72 36.99 36.93 36.51 37.30 37.08 37.11 37.35 37.32 37.51 36.86 37.25
TiO2 0.15 0.25 0.07 0.09 0.33 0.19 0.05 0.05 0.27 0.17 0.05 0.06 0.10
Al2O3 25.30 23.60 22.94 22.10 23.18 23.78 24.36 23.72 23.61 21.24 21.36 21.63 22.95
Cr2O3 0.07 0.05 0.20 0.18 0.16 0.08 0.02 0.07 0.05 0.02 0.01 0.02 0.04
Fe2O3 10.65 14.03 14.06 14.91 12.83 12.67 11.75 12.50 12.58 15.54 15.69 15.17 13.46
MnO 0.17 0.24 0.20 0.32 0.20 1.08 0.87 0.96 0.98 0.38 0.30 0.70 1.22
MgO 0.10 0.02 0.02 0.00 0.03 0.04 0.11 0.10 0.13 0.00 0.00 0.13 0.09
CaO 22.73 22.76 23.00 22.75 23.05 22.27 22.17 22.23 22.19 22.77 22.76 21.89 22.48
Na2O 0.01 0.06 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.00 0.03 0.00
K2O 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.00 0.00
NiO 0.03 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.00
H2O 1.89 1.90 1.87 1.86 1.85 1.87 1.86 1.86 1.87 1.86 1.86 1.84 1.87
Total 99.14 100.63 99.36 99.14 98.14 99.28 98.31 98.60 99.05 99.34 99.55 98.33 99.47

Si 3.011 2.982 2.971 2.983 2.962 2.986 2.984 2.989 2.994 3.014 3.021 3.002 2.990
Al 2.362 2.199 2.172 2.104 2.216 2.244 2.311 2.251 2.230 2.022 2.027 2.076 2.171
Fe3+ 0.635 0.835 0.850 0.906 0.783 0.763 0.712 0.757 0.759 0.944 0.951 0.929 0.813
Ti 0.009 0.015 0.004 0.005 0.020 0.011 0.003 0.003 0.016 0.010 0.003 0.004 0.006
Cr 0.004 0.003 0.012 0.011 0.010 0.005 0.001 0.005 0.003 0.001 0.001 0.001 0.003
sum 3.009 3.052 3.039 3.027 3.029 3.023 3.027 3.016 3.009 2.978 2.982 3.011 2.993
Mn 0.012 0.016 0.014 0.022 0.013 0.073 0.059 0.065 0.066 0.026 0.020 0.049 0.083
Mg 0.012 0.002 0.002 0.000 0.003 0.005 0.013 0.012 0.016 0.000 0.000 0.016 0.011
Ca 1.929 1.928 1.980 1.969 2.003 1.910 1.912 1.918 1.906 1.971 1.964 1.910 1.934
Na 0.001 0.010 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.002 0.000 0.005 0.000
K 0.001 0.001 0.001 0.002 0.000 0.000 0.001 0.001 0.001 0.002 0.001 0.000 0.000
Ni 0.010 0.000 0.002 0.000 0.005 0.000 0.007 0.000 0.000 0.003 0.000 0.001 0.000
sum 1.973 1.973 1.973 1.973 1.973 1.989 1.994 1.997 1.993 2.004 1.985 1.980 2.028

Fe3+/(Al+Fe3+) 0.21 0.28 0.28 0.30 0.26 0.25 0.24 0.25 0.25 0.32 0.32 0.31 0.27

H2O was calculated stoichiometrically.Cation calculation based on 12.5 (O,OH) and Fe3+ = Fet.
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Table C2.4 (continued): Composition of allanite (in wt%), analyses also in electronic appendix.

Analysis E1H3-
4B_19 

E1H3-
4B_20 

E1H3-
4B_49 

E1H3-
4B_74 

F2H2-
1A-35 

F2H2-
1A-36 

F2H2-
1A-56 

F2H2-
1A-59 

E1H3-
4B_25 

E1H3-
4B_26 

E1H3-
4B_24 

F1H4-
3A_12 

F2H2-
1A-95 

SiO2 33.33 32.19 32.03 31.65 34.49 33.60 33.88 34.30 35.70 33.83 32.71 30.90 34.53
TiO2 0.16 0.17 0.27 0.26 0.07 0.00 0.05 0.17 0.09 0.09 0.11 0.23 0.01
Al2O3 19.24 18.55 18.26 17.68 18.97 17.92 18.39 18.75 22.62 20.22 18.56 17.04 19.01
Cr2O3 0.09 0.05 0.04 0.07 0.03 0.08 0.12 0.18 0.12 0.51 0.08 0.14 0.33
Fe2O3 11.16 11.17 11.18 11.23 15.96 16.29 16.18 15.93 11.61 11.20 11.20 16.60 14.11
MnO 0.33 0.33 0.35 0.40 0.78 0.80 1.10 0.90 0.27 0.26 0.35 1.24 0.85
MgO 1.31 1.62 1.65 1.70 0.08 0.12 0.10 0.19 0.41 0.90 1.49 0.22 0.14
CaO 16.35 15.68 15.36 14.95 19.05 17.99 17.98 18.59 20.34 17.83 16.06 14.02 18.61
Na2O 0.01 0.03 0.04 0.04 0.01 0.04 0.03 0.03 0.00 0.04 0.04 0.07 0.04
K2O 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
NiO 0.02 0.00 0.01 0.02 0.03 0.05 0.00 0.03 0.00 0.00 0.00 0.02 0.00
Total 82.01 79.79 79.18 77.98 89.48 86.88 87.83 89.06 91.16 84.88 80.61 80.48 87.63

Si 3.122 3.105 3.111 3.123 3.038 3.052 3.044 3.036 3.027 3.075 3.123 3.026 1.272
Al 2.125 2.108 2.090 2.057 1.969 1.918 1.947 1.956 2.261 2.166 2.089 1.967 0.825
Fe3+ 0.787 0.811 0.817 0.834 1.057 1.114 1.094 1.061 0.741 0.766 0.805 1.223 0.434
Ti 0.011 0.012 0.020 0.019 0.005 0.000 0.003 0.011 0.006 0.006 0.008 0.017 0.000
Cr 0.007 0.004 0.003 0.005 0.002 0.006 0.008 0.012 0.008 0.037 0.006 0.011 0.010
sum 2.929 2.935 2.930 2.916 3.034 3.038 3.053 3.041 3.016 2.975 2.908 3.217 1.269
Mn 0.026 0.027 0.028 0.033 0.058 0.062 0.084 0.067 0.020 0.020 0.028 0.103 0.027
Mg 0.183 0.232 0.239 0.249 0.010 0.016 0.014 0.025 0.052 0.122 0.212 0.032 0.007
Ca 1.641 1.620 1.599 1.580 1.797 1.751 1.731 1.763 1.848 1.737 1.643 1.471 0.734
Na 0.002 0.006 0.008 0.008 0.002 0.006 0.005 0.006 0.000 0.007 0.007 0.013 0.003
K 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Ni 0.008 0.000 0.003 0.007 0.010 0.015 0.001 0.009 0.000 0.001 0.000 0.005 0.000
sum 1.973 1.973 1.973 1.973 1.973 1.973 1.973 1.973 1.973 1.973 1.973 1.973 1.973

Fe3+/(Al+Fe3+) 0.27 0.28 0.28 0.29 0.35 0.37 0.36 0.35 0.25 0.26 0.28 0.38 0.34

Cation calculation based on 12.5 (O,OH) and Fe3+ = Fet.
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C2.5: Phengite and Biotite

Table C2.5: Representative composition of phengite and biotite (in wt%), further analyses in electronic
appendix.

Analysis E1H3-
4A_18 

E1H3-
4A_24 

E1H3-
4A_31 

E1H3-
4A_36 

E1H3-
4A_47 

E1H3-
4A_61 

E1H3-
4D_03 

E1H3-
5_53 

E1H3-
5_52 

E1H3-
5_27 

F1H1-3D
01 

F1H1-3D
02 

F1H1-3D
05 

SiO2 48.54 48.79 48.56 49.58 54.16 49.42 48.41 45.52 45.76 46.62 52.71 52.59 54.25
TiO2 0.54 0.48 0.47 0.41 0.13 0.53 0.63 0.34 0.34 0.41 0.16 0.12 0.09
Al2O3 27.31 27.01 27.17 24.65 21.63 26.54 25.84 32.25 32.44 31.24 23.82 23.46 24.44
Cr2O3 0.10 0.09 0.09 0.13 0.01 0.10 0.27 0.00 0.03 0.01 0.00 0.01 0.01
FeO 5.91 6.20 6.34 6.84 6.24 5.14 6.68 3.52 3.69 3.72 6.63 6.13 5.26
MnO 0.01 0.04 0.03 0.07 0.07 0.02 0.04 0.04 0.07 0.06 0.05 0.05 0.09
NiO 0.00 0.00 0.00 0.00 0.05 0.03 0.06 0.00 0.05 0.00 0.01 0.00 0.03
MgO 2.82 2.89 2.78 3.74 4.71 3.01 3.49 1.36 1.38 1.70 4.04 4.35 4.15
CaO 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.12 0.07 0.01
Na2O 0.40 0.42 0.35 0.19 0.07 0.43 0.23 1.38 1.32 1.29 0.14 0.14 0.10
K2O 10.22 10.05 10.34 10.71 10.72 10.46 9.74 9.04 9.06 9.16 8.66 9.31 10.36
H2O 4.43 4.43 4.43 4.41 4.53 4.43 4.39 4.38 4.41 4.41 4.50 4.49 4.61
Total 100.27 100.38 100.53 100.71 102.31 100.10 99.78 97.85 98.55 98.63 100.83 100.70 103.40

Si 3.289 3.303 3.290 3.370 3.588 3.343 3.305 3.116 3.112 3.167 3.510 3.514 3.525
Al(IV) 0.711 0.697 0.710 0.630 0.412 0.657 0.695 0.884 0.888 0.833 0.490 0.486 0.475
Al(VI) 1.470 1.458 1.460 1.344 1.277 1.459 1.384 1.718 1.711 1.669 1.380 1.361 1.397
Ti 0.027 0.024 0.024 0.021 0.006 0.027 0.032 0.018 0.018 0.021 0.008 0.006 0.004
Cr 0.005 0.005 0.005 0.007 0.000 0.005 0.015 0.000 0.002 0.000 0.000 0.001 0.000
Fe2+ 0.335 0.351 0.359 0.388 0.346 0.291 0.381 0.201 0.210 0.211 0.369 0.342 0.286
Mn 0.000 0.002 0.002 0.004 0.004 0.001 0.002 0.002 0.004 0.004 0.003 0.003 0.005
Mg 0.285 0.292 0.280 0.379 0.465 0.303 0.356 0.139 0.140 0.172 0.401 0.433 0.402
Ca 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.008 0.005 0.000
Na 0.052 0.055 0.046 0.024 0.009 0.056 0.031 0.183 0.174 0.170 0.018 0.018 0.012
K 0.884 0.868 0.893 0.928 0.906 0.903 0.848 0.789 0.786 0.794 0.736 0.793 0.859
Total 7.059 7.054 7.068 7.095 7.013 7.045 7.049 7.051 7.045 7.042 6.923 6.962 6.966

celadonite % 0.29 0.30 0.29 0.37 0.59 0.34 0.30 0.12 0.11 0.17 0.51 0.51 0.52

H2O was calculated stoichiometrically. Cation calculation is based on 11 oxygen and 2 OH.

Phengite Biotite

Analysis F1H4-
5_15 

F1H4-
5_20 

F2H2-4A-
12 

F2H2-4A-
13 

F2H2-5A-
05 

F2H2-5A-
07 

F2H2-5A-
27 

D3H1-8C
03 

D3H1-8C-
04 

D3H1-8C
05 

D3H1-8C-
06 

SiO2 48.89 44.63 47.64 50.82 51.23 49.27 54.24 42.78 42.77 42.81 42.67
TiO2 0.35 0.08 0.57 0.55 0.20 0.64 0.22 0.12 0.10 0.11 0.10
Al2O3 24.13 27.50 26.31 25.96 25.80 27.79 23.17 11.44 11.24 11.46 11.33
Cr2O3 0.00 0.04 0.04 0.07 0.01 0.07 0.09 0.57 0.55 0.53 0.57
FeO 6.59 4.68 6.03 5.63 6.62 5.89 5.15 4.32 4.07 3.84 4.08
MnO 0.03 0.08 0.00 0.07 0.07 0.02 0.01 0.03 0.03 0.00 0.00
NiO 0.04 0.00 0.00 0.00 0.00 0.04 0.02 0.27 0.25 0.23 0.29
MgO 3.56 3.84 2.95 3.48 3.40 2.91 4.43 27.69 27.66 27.14 27.03
CaO 0.00 0.02 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.02 0.06
Na2O 0.13 0.50 0.36 0.24 0.12 0.44 0.12 0.40 0.40 0.49 0.48
K2O 10.08 9.32 10.68 10.24 9.45 10.37 9.62 7.36 7.65 8.04 8.35
H2O 4.32 4.20 4.34 4.50 4.50 4.50 4.56 4.28 4.27 4.26 4.26
Total 98.11 94.89 98.92 101.57 101.40 101.98 101.65 99.25 98.99 98.93 99.23

Si 3.395 3.184 3.290 3.385 3.411 3.282 3.570 2.995 3.005 3.011 3.003
Al(IV) 0.605 0.816 0.710 0.615 0.589 0.718 0.430 0.944 0.931 0.950 0.940
Al(VI) 1.369 1.496 1.431 1.422 1.436 1.463 1.368
Ti 0.018 0.004 0.030 0.028 0.010 0.032 0.011 0.006 0.005 0.006 0.005
Cr 0.000 0.002 0.002 0.003 0.001 0.004 0.005 0.032 0.031 0.029 0.032
Fe2+ 0.382 0.279 0.348 0.313 0.368 0.328 0.283 0.253 0.239 0.226 0.240
Mn 0.002 0.005 0.000 0.004 0.004 0.001 0.001 0.002 0.002 0.000 0.000
Mg 0.368 0.408 0.304 0.346 0.338 0.289 0.435 2.890 2.897 2.846 2.836
Ca 0.000 0.001 0.000 0.000 0.000 0.003 0.001 0.000 0.000 0.002 0.005
Na 0.018 0.068 0.048 0.031 0.015 0.056 0.015 0.054 0.055 0.066 0.065
K 0.893 0.848 0.941 0.870 0.802 0.881 0.808 0.657 0.686 0.721 0.750
Total 7.050 7.113 7.103 7.018 6.975 7.058 6.927 7.833 7.849 7.858 7.876

celadonite % 0.39 0.18 0.29 0.38 0.41 0.28 0.57

H2O was calculated stoichiometrically. Cation calculation is based on 11 oxygen and 2 OH.
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C2.6: Garnet

Table C2.6: Representative composition of garnet (in wt%), further analyses in electronic appendix.

Analysis E1H3-4C
grt1 

E1H3-4C-
grt1 

E1H3-4C
grt1 

E1H3-4C
grt1 

E1H3-4C
grt1 

E1H3-4C
grt1 

E1H3-4C
grt1 

E1H3-4C
grt1 

E1H3-4C
grt2 

E1H3-4C-
grt2 

E1H3-4C
grt2 

E1H3-4C
grt2 

E1H3-4C
grt2 

SiO2 37.28 36.80 36.68 36.63 37.17 37.04 37.30 36.83 36.91 37.30 37.27 36.93 36.54
TiO2 0.10 0.08 0.45 0.41 0.31 0.22 0.14 0.07 0.07 0.09 0.18 0.37 0.38
Al2O3 20.29 20.44 19.26 19.38 19.95 20.11 20.43 20.65 20.72 20.62 20.43 20.00 19.92
Cr2O3 0.05 0.08 0.01 0.03 0.00 0.02 0.01 0.03 0.01 0.00 0.01 0.01 0.00
FeO 11.66 11.70 12.03 12.58 11.76 11.51 11.86 11.84 11.57 11.87 11.69 11.75 11.68
MnO 19.64 20.95 20.44 20.62 20.40 20.92 21.44 20.92 21.20 21.88 21.44 21.07 20.69
MgO 2.92 2.84 2.66 2.68 2.86 2.89 3.14 3.10 3.25 3.16 2.67 2.82 2.79
CaO 7.49 6.56 6.89 6.68 6.76 6.37 5.68 6.23 5.22 5.15 6.15 6.61 6.58
Na2O 0.04 0.03 0.06 0.01 0.02 0.01 0.02 0.03 0.03 0.01 0.02 0.05 0.05
K2O 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01
Total 99.47 99.47 98.48 99.00 99.24 99.09 100.02 99.70 99.00 100.08 99.86 99.60 98.62
FeO* 9.78 9.27 9.73 9.90 10.21 9.97 10.02 9.28 10.09 10.26 10.29 9.44 9.46
Fe2O3 * 2.09 2.70 2.55 2.97 1.73 1.71 2.04 2.85 1.64 1.79 1.55 2.57 2.47
Total 99.68 99.74 98.73 99.30 99.42 99.25 100.23 99.99 99.16 100.25 100.02 99.86 98.87

Si 2.987 2.949 2.939 2.935 2.978 2.968 2.989 2.951 2.957 2.989 2.986 2.959 2.928
Ti 0.006 0.005 0.027 0.025 0.019 0.013 0.008 0.004 0.004 0.005 0.011 0.022 0.023
Al 0.958 0.965 0.909 0.915 0.942 0.950 0.965 0.975 0.978 0.974 0.965 0.944 0.940
Cr 0.002 0.003 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Fe3+ 0.063 0.081 0.077 0.090 0.052 0.052 0.062 0.086 0.049 0.054 0.047 0.077 0.074
Fe2+ 0.655 0.621 0.652 0.663 0.684 0.668 0.671 0.622 0.676 0.688 0.690 0.633 0.634
Mn 1.333 1.422 1.387 1.399 1.385 1.420 1.455 1.420 1.439 1.485 1.455 1.430 1.404
Mg 0.348 0.339 0.318 0.321 0.341 0.345 0.376 0.370 0.388 0.377 0.319 0.337 0.334
Ca 0.643 0.563 0.591 0.573 0.580 0.547 0.488 0.535 0.448 0.442 0.528 0.567 0.565
Na 0.003 0.002 0.004 0.001 0.002 0.000 0.002 0.002 0.002 0.001 0.001 0.004 0.004
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001
Total 6.999 6.950 6.907 6.922 6.984 6.963 7.015 6.966 6.945 7.014 7.002 6.973 6.905

Mg# 34.70 35.32 32.79 32.58 33.28 34.03 35.87 37.29 36.47 35.42 31.61 34.74 34.47

Prp 11.7% 11.5% 10.8% 10.8% 11.4% 11.6% 12.6% 12.6% 13.2% 12.6% 10.7% 11.4% 11.4%
Alm 22.0% 21.2% 22.1% 22.5% 22.9% 22.5% 22.5% 21.2% 22.9% 23.0% 23.0% 21.4% 21.6%
Sps 44.7% 48.3% 47.1% 47.3% 46.3% 47.6% 48.7% 48.2% 48.8% 49.6% 48.7% 48.2% 47.9%
Grs 15.3% 11.1% 12.2% 10.4% 14.2% 13.2% 10.3% 9.9% 10.2% 9.6% 12.9% 11.5% 11.8%
Adr 6.1% 7.7% 7.8% 8.8% 5.2% 5.1% 5.9% 8.0% 4.9% 5.2% 4.7% 7.5% 7.3%
Uw 0.2% 0.2% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

FeO and Fe2O3 calculation is based on charge balance. Cation calculation based on 12 oxygens.

Formula calculation after Locock (2008).
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C2.7: Pyroxene

Table C2.7: Representative composition of pyroxene (in wt%), further analyses in electronic appendix.

Analysis E1H3-
4B_107 

E1H3-
4B_108 

E1H3-
4B_109 

E1H3-
4B_94 

E1H3-
4B_95 

F2H2-4A-
25 

F2H2-4A-
26 

F2H2-4H
01 

F2H2-4H
04 

F2H2-4H-
07 

F2H2-5A-
25 

F2H2-5A-
26 

F2H2-5A-
29 

SiO2 53.43 53.55 53.10 53.53 53.49 53.01 52.90 52.40 52.26 52.74 53.75 53.48 53.32
TiO2 0.04 0.24 0.16 0.17 0.01 0.51 0.42 0.00 0.02 0.36 0.02 0.10 0.01
Al2O3 3.17 3.20 2.18 3.38 3.27 3.70 3.43 4.50 4.62 4.46 4.41 4.23 2.29
Cr2O3 0.03 0.05 0.08 0.10 0.02 0.06 0.02 0.00 0.00 0.06 0.00 0.03 0.00
FeO 20.90 15.25 17.01 13.92 16.85 22.15 23.21 24.70 23.80 21.98 22.45 23.54 23.43
MnO 0.10 0.15 0.20 0.11 0.22 0.15 0.11 0.04 0.03 0.01 0.00 0.00 0.03
MgO 4.07 7.12 6.86 7.94 6.09 2.52 1.93 0.56 0.86 2.29 1.08 0.95 2.79
CaO 6.65 11.60 10.76 12.46 9.36 3.74 3.08 2.10 2.36 3.23 2.97 2.27 4.16
Na2O 10.15 7.66 7.67 7.15 8.67 11.74 11.87 12.75 12.48 11.73 12.41 12.08 11.35
K2O 0.00 0.02 0.00 0.01 0.00 0.02 0.04 0.01 0.01 0.02 0.02 0.03 0.02
Total 98.53 98.83 98.00 98.75 97.97 97.61 97.00 97.06 96.43 96.88 97.10 96.71 97.38

Si 1.985 1.977 1.987 1.973 1.989 1.981 1.996 1.973 1.978 1.984 2.017 2.026 2.007
Ti 0.001 0.007 0.004 0.005 0.000 0.014 0.012 0.000 0.000 0.010 0.000 0.003 0.000
Al 0.139 0.139 0.096 0.147 0.143 0.163 0.152 0.200 0.206 0.198 0.195 0.189 0.101
Fe3+ 0.619 0.441 0.475 0.405 0.503 0.693 0.701 0.778 0.752 0.669 0.674 0.641 0.713
Cr 0.001 0.001 0.002 0.003 0.001 0.002 0.001 0.000 0.000 0.002 0.000 0.001 0.000
Fe2+ 0.031 0.030 0.058 0.024 0.021 0.000 0.031 0.000 0.001 0.023 0.030 0.105 0.024
Mn 0.003 0.005 0.006 0.004 0.007 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.001
Mg 0.225 0.392 0.383 0.436 0.338 0.140 0.109 0.031 0.048 0.128 0.060 0.054 0.156
Ca 0.265 0.459 0.431 0.492 0.373 0.150 0.125 0.085 0.096 0.130 0.119 0.092 0.168
Na 0.731 0.549 0.557 0.511 0.625 0.851 0.868 0.931 0.916 0.855 0.903 0.888 0.828
K 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.001 0.001 0.001

Mg# 0.88 0.93 0.87 0.95 0.94 1.00 0.78 1.00 0.98 0.85 0.67 0.34 0.87

Aegerine 62.1 43.8 48.0 40.4 50.4 69.2 70.6 76.6 74.4 67.9 66.0 65.4 71.6
Jadeite 11.3 10.7 8.3 10.5 12.3 15.8 16.8 15.1 16.2 18.9 22.4 25.2 11.5
Diopside 26.6 45.6 43.6 49.1 37.4 15.0 12.6 8.4 9.4 13.2 11.7 9.4 16.8

FeO and Fe2O3 calculation is based on charge balance. Cation calculation based on 12 oxygens.

magmatic Px

Analysis E2H2-4B
13 

E2H2-4B-
24 

F1H1-3E-
05 

F1H1-3E-
08 

F2H2-4D
10 

F2H2-4D
11 

F2H2-4D
12 

F2H2-5C
06

F2H2-5C-
09

MAK10F-
01 

MAK10F-
02 

MAK10F-
03 

SiO2 53.02 52.64 53.21 54.14 52.96 53.38 52.95 52.22 45.46 44.68 47.73 49.58
TiO2 0.14 0.18 0.06 0.05 0.40 0.16 0.13 0.67 3.11 2.71 2.47 1.89
Al2O3 0.34 0.60 1.43 1.41 0.78 0.76 0.78 2.37 7.23 8.20 4.97 3.86
Cr2O3 0.05 0.10 0.18 0.13 0.22 0.12 0.21 0.87 0.06 0.00 0.10 0.34
FeO 11.47 10.90 8.03 7.34 7.52 6.91 6.88 4.74 8.26 11.31 8.43 6.81
MnO 0.27 0.28 0.71 0.56 0.21 0.16 0.15 0.10 0.18 0.11 0.13 0.11
MgO 13.80 13.85 14.72 13.97 15.40 15.62 15.26 16.66 12.86 10.87 13.84 14.86
CaO 20.68 20.80 18.34 19.54 22.27 22.59 22.64 21.95 20.98 21.04 21.59 21.57
Na2O 0.34 0.32 0.72 0.98 0.37 0.28 0.28 0.30 0.39 0.51 0.40 0.36
K2O 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.01
Total 100.11 99.67 97.40 98.12 100.13 99.97 99.28 99.90 98.52 99.46 99.63 99.39

Si 1.986 1.978 2.019 2.039 1.955 1.969 1.969 1.913 1.718 1.691 1.781 1.843
Ti 0.004 0.005 0.002 0.001 0.011 0.004 0.004 0.019 0.088 0.077 0.069 0.053
Al 0.015 0.026 0.064 0.063 0.034 0.033 0.034 0.102 0.322 0.366 0.219 0.169
Fe3+ 0.028 0.029 0.000 0.000 0.054 0.036 0.035 0.033 0.092 0.138 0.107 0.055
Cr 0.002 0.003 0.005 0.004 0.006 0.003 0.006 0.025 0.002 0.000 0.003 0.010
Fe2+ 0.331 0.314 0.255 0.231 0.178 0.177 0.180 0.113 0.169 0.220 0.156 0.156
Mn 0.009 0.009 0.023 0.018 0.007 0.005 0.005 0.003 0.006 0.003 0.004 0.003
Mg 0.771 0.776 0.833 0.784 0.848 0.859 0.846 0.910 0.724 0.613 0.770 0.824
Ca 0.830 0.837 0.746 0.788 0.881 0.893 0.902 0.861 0.850 0.853 0.863 0.859
Na 0.025 0.023 0.053 0.071 0.027 0.020 0.020 0.021 0.029 0.037 0.029 0.026
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001

Mg# 0.70 0.71 0.77 0.77 0.83 0.83 0.82 0.89 0.81 0.74 0.83 0.84

Wo 43.0 43.5 40.7 43.7 46.2 46.3 46.8 45.7 48.7 50.6 48.3 46.7
En 39.9 40.3 45.4 43.5 44.5 44.5 43.9 48.3 41.6 36.4 43.0 44.8
Fs 17.2 16.3 13.9 12.8 9.3 9.2 9.3 6.0 9.7 13.1 8.7 8.5

FeO and Fe2O3 calculation is based on charge balance. Cation calculation based on 12 oxygens.
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C2.8: Rutile, titanite, ilmenite, picotite and magnetite

Table C2.8: Representative composition of rutile (in wt%), further analyses in electronic appendix.

Analysis E1H3-
4B_10 

E1H3-
4B_12 

E1H3-
4B_13 

E1H3-
4B_44 

E1H3-
4B_46 

E1H3-
4B_79 

E1H3-
4C_16 

F2H2-5A-
21 

F2H2-5A-
24 

F1H1-3E-
18 

E1H3-
4A_08 

E1H3-
4A_10 

SiO2 0.00 0.03 0.00 0.01 0.01 0.08 0.05 0.08 0.04 2.26 0.00 0.00
TiO2 96.98 96.84 96.87 96.65 97.42 96.90 97.77 98.11 98.25 94.20 97.12 96.67
Al2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe2O3 1.69 1.16 1.19 1.11 1.17 1.23 0.80 1.27 1.17 0.71 2.47 2.92
Cr2O3 0.25 0.22 0.20 0.21 0.23 0.23 0.26 0.02 0.03 0.27 0.07 0.05
MnO 0.00 0.03 0.00 0.01 0.06 0.00 0.05 0.01 0.00 0.03 0.00 0.02
MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
CaO 0.11 0.02 0.07 0.23 0.03 0.66 1.18 0.29 0.78 3.21 0.03 0.08
Na2O 0.01 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.02
K2O 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.06 0.02 0.00 0.00
NiO 0.04 0.03 0.07 0.02 0.02 0.05 0.00 0.01 0.04 0.00 0.03 0.01
Total 99.08 98.32 98.40 98.27 98.94 99.16 100.11 99.83 100.38 100.71 99.73 99.77

Si 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.030 0.000 0.000
Ti 0.984 0.988 0.988 0.987 0.988 0.982 0.983 0.987 0.984 0.939 0.980 0.977
Al 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe3+ 0.017 0.012 0.012 0.011 0.012 0.013 0.008 0.013 0.012 0.007 0.025 0.029
Cr 0.003 0.002 0.002 0.002 0.002 0.002 0.003 0.000 0.000 0.003 0.001 0.001
Mn 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ca 0.002 0.000 0.001 0.003 0.000 0.010 0.017 0.004 0.011 0.046 0.000 0.001
Na 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
Ni 0.002 0.001 0.003 0.001 0.001 0.002 0.000 0.001 0.002 0.000 0.001 0.000
Total 1.008 1.005 1.007 1.006 1.005 1.011 1.011 1.006 1.011 1.026 1.008 1.009

Cation calculation based on 2 oxygens. Fe3+ = Fet.

Table C2.8 (continued): Representative composition of titanite, further analyses in electronic appendix.

Analysis D1H4-
2D_05 

D1H4-
2D_11 

D1H4-
2D_13 

E1H3-
4A_13 

E1H3-
4A_19 

E1H3-
4A_25 

E1H3-
4B_103 

E1H3-
4B_21 

E1H3-
4B_37 

E7H2-8A
06 

E7H2-8A
08 

E7H2-8A
11 

SiO2 30.47 30.63 30.28 30.57 30.09 30.49 30.07 30.10 30.07 29.59 30.85 30.22
TiO2 38.47 39.47 38.59 37.95 38.02 38.83 37.50 37.96 35.75 37.80 39.37 38.22
Al2O3 0.02 0.04 0.21 0.78 0.44 0.30 1.00 0.54 1.76 1.26 1.20 1.05
Fe2O3 0.06 0.02 0.01 0.00 0.04 0.00 0.05 0.09 0.20 0.00 0.05 0.07
Cr2O3 0.81 0.79 0.77 1.38 1.05 1.48 1.44 0.96 0.96 1.42 1.34 1.31
MnO 0.09 0.02 0.07 0.00 0.10 0.03 0.06 0.13 0.02 0.08 0.08 0.19
MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.33 0.15
CaO 28.08 28.05 27.72 28.26 27.45 28.19 28.14 27.86 28.11 28.10 26.39 27.51
Na2O 0.01 0.05 0.04 0.02 0.00 0.03 0.02 0.01 0.02 0.00 0.02 0.04
K2O 0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.00
NiO 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
Total 98.03 99.09 97.68 98.98 97.26 99.35 98.28 97.68 96.90 98.25 99.64 98.75

Si 1.015 1.009 1.011 1.009 1.010 1.004 1.001 1.007 1.012 0.986 1.005 0.999
Ti 0.964 0.978 0.970 0.942 0.960 0.962 0.939 0.955 0.905 0.948 0.965 0.950
Al 0.001 0.002 0.008 0.030 0.018 0.012 0.039 0.021 0.070 0.050 0.046 0.041
Fe3+ 0.002 0.000 0.000 0.000 0.001 0.000 0.001 0.002 0.005 0.000 0.001 0.002
Cr 0.020 0.020 0.019 0.034 0.027 0.037 0.036 0.024 0.024 0.036 0.033 0.032
Mn 0.002 0.000 0.002 0.000 0.003 0.001 0.002 0.004 0.000 0.002 0.002 0.005
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.007
Ca 1.003 0.990 0.992 0.999 0.987 0.995 1.003 0.999 1.014 1.003 0.921 0.974
Na 0.001 0.003 0.002 0.001 0.000 0.002 0.001 0.001 0.002 0.000 0.001 0.003
K 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ni 0.002 0.003 0.000 0.001 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000
Total 3.010 3.005 3.006 3.018 3.008 3.011 3.023 3.016 3.034 3.024 2.991 3.014

Cation calculation based on 5 oxygens. Fe3+ = Fet.
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Table C2.8 (continued): Composition of ilmenite (in wt%), analyses also in electronic appendix.
Ilmenite

Analysis E1H3-
4A_07 

E1H3-
4A_09 

E1H3-
4A_12 

E1H3-
4A_14 

E1H3-
4A_21 

E1H3-
4A_26 

E1H3-
4B_09 

E1H3-
4B_11 

E1H3-
4B_47 

E1H3-
4C_18 

F2H2-4E-
01 

F2H2-4E-
05 

F2H2-5G
01 

TiO2 5.54 5.82 2.08 4.84 6.04 1.05 11.95 10.39 10.66 1.21 5.25 4.61 9.58
Al2O3 0.01 0.04 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.07 0.04 0.06
Cr2O3 0.19 0.17 0.16 0.12 0.16 0.11 0.63 0.62 0.62 0.25 1.32 1.23 1.46
Fe2O3 85.10 84.72 88.72 86.30 93.42 89.00 86.99 72.43 63.60 98.07 93.03 93.37 87.15
FeO 8.51 8.47 8.87 8.63 0.00 8.90 0.00 16.29 24.53 0.00 0.00 0.00 0.00
MnO 0.09 0.09 0.01 0.00 0.02 0.01 0.09 0.10 0.07 0.06 0.09 0.05 0.00
MgO 0.02 0.01 0.00 0.02 0.01 0.00 0.00 0.04 0.01 0.00 0.00 0.02 0.02
CaO 0.02 0.00 0.03 0.00 0.06 0.02 0.03 0.01 0.02 0.24 0.03 0.04 0.00
Total 99.48 99.32 99.86 99.94 99.71 99.10 99.69 99.88 99.50 99.83 99.80 99.36 98.27

Ti 0.112 0.117 0.042 0.097 0.119 0.022 0.230 0.210 0.220 0.024 0.103 0.091 0.188
Al 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.002
Cr 0.004 0.004 0.003 0.003 0.003 0.002 0.013 0.013 0.014 0.005 0.027 0.026 0.030
Fe3+ 1.717 1.710 1.806 1.737 1.837 1.832 1.678 1.461 1.315 1.957 1.831 1.849 1.716
Fe2+ 0.191 0.190 0.201 0.193 0.000 0.204 0.000 0.365 0.564 0.000 0.000 0.000 0.000
Mn 0.002 0.002 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.001 0.002 0.001 0.000
Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mg 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001
Ca 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.000 0.001 0.007 0.001 0.001 0.000
Total 2.027 2.025 2.053 2.032 1.961 2.061 1.924 2.053 2.115 1.995 1.967 1.971 1.937

FeO, Fe2O3were calculated stoichiometrically for Ilm and Mag. Cation calculation based on 3 oxygens for Ilm, and Picotite and 4 oxygens for magnetite

Table C2.8 (continued): Composition of ilmenite, picotite and magnetite, analyses also in electronic
appendix.

Ilmenite Picotite Magnetite

Analysis E1H3-
4C_13 

E1H3-
4A_80 

D1H4mu
d_16 

E4H2-2A
05 

E4H2-2A
06 

D1H4mu
d_69 

E7H2mu
d_30 

E2H2-5J-
03 

E2H2-5J-
04 

E7H2mu
d_80 

F1H3-2C
14 

TiO2 2.95 13.83 0.03 0.07 0.05 0.03 0.07 0.02 0.01 0.89 0.00
Al2O3 0.00 0.00 19.26 21.57 21.38 19.48 8.96 0.01 0.00 0.17 0.02
Cr2O3 0.18 0.15 50.56 43.82 44.39 47.77 59.40 3.12 2.95 0.14 0.18
Fe2O3 87.27 70.05 13.04 21.37 20.34 20.24 19.72 65.49 65.35 61.18 67.79
FeO 8.73 15.76 5.03 0.00 0.00 0.00 1.97 30.89 30.82 28.85 29.38
MnO 0.01 0.00 0.17 0.13 0.05 0.10 0.11 0.05 0.00 0.04 0.06
MgO 0.01 0.01 11.91 11.52 11.64 11.35 9.63 0.02 0.00 0.18 0.59
CaO 0.50 0.03 0.00 0.48 0.57 0.02 0.01 0.01 0.00 0.08 0.08
Total 99.65 99.82 99.99 98.95 98.42 98.98 99.85 99.60 99.14 91.52 98.10

Ti 0.060 0.275 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.028 0.000
Al 0.000 0.000 0.520 0.577 0.575 0.526 0.254 0.000 0.000 0.009 0.001
Cr 0.004 0.003 0.916 0.787 0.801 0.865 1.129 0.095 0.091 0.005 0.005
Fe3+ 1.775 1.396 0.225 0.365 0.349 0.349 0.357 1.903 1.909 1.931 1.993
Fe2+ 0.197 0.349 0.096 0.000 0.000 0.000 0.040 0.998 1.000 1.012 0.960
Mn 0.000 0.000 0.003 0.002 0.001 0.002 0.002 0.002 0.000 0.001 0.002
Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mg 0.000 0.000 0.407 0.390 0.396 0.387 0.345 0.001 0.000 0.011 0.034
Ca 0.014 0.001 0.000 0.012 0.014 0.000 0.000 0.000 0.000 0.003 0.003
Total 2.051 2.025 2.169 2.134 2.137 2.130 2.129 3.000 3.000 3.000 3.000

FeO, Fe2O3were calculated stoichiometrically for Ilm and Mag. Cation calculation based on 3 oxygens for Ilm, and Picotite and 4 oxygens for magnetite
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C2.9: Apatite and zircon

Table C2.9: Representative composition of apatite (in wt%), further analyses in electronic appendix.

Analysis D1H4-
2D_37 

D1H4-
2D_39 

D1H4-
2D_43 

E1H3-
3D_14 

E1H3-
3D_18 

E1H3-
3D_32 

E2H2-4B
01 

E2H2-4B
30 

E2H2-5D
10 

E2H2-5D-
11 

F2H2-4E-
08 

F2H2-4E-
09 

F2H2-4H
25 

SiO2 0.05 0.23 0.21 11.44 4.91 0.28 0.33 0.50 0.03 0.02 0.10 0.16 0.20
TiO2 0.57 0.01 0.04 0.05 0.06 0.02 0.03 0.01 0.01 0.00 0.02 0.01 0.01
Al2O3 0.00 0.03 0.04 2.67 1.12 0.02 0.01 0.05 0.00 0.02 0.00 0.00 0.01
Cr2O3 0.04 0.04 0.06 0.95 0.36 0.06 0.04 0.00 0.03 0.01 0.04 0.03 0.00
FeO 0.29 0.22 0.18 3.26 1.27 0.93 0.78 0.95 0.06 0.11 0.35 0.30 0.46
MnO 0.03 0.00 0.01 0.05 0.15 0.04 0.09 0.09 0.13 0.00 0.17 0.25 0.05
MgO 0.00 0.00 0.05 3.11 1.14 0.40 0.20 0.25 0.00 0.00 0.03 0.01 0.02
CaO 52.25 53.98 54.14 40.15 48.34 52.32 53.90 53.06 55.06 55.06 54.57 54.88 55.00
Na2O 0.00 0.00 0.02 0.40 0.19 0.22 0.05 0.08 0.05 0.01 0.06 0.08 0.04
K2O 0.01 0.00 0.00 0.17 0.07 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.02
NiO 0.06 0.10 0.04 0.00 0.00 0.04 0.03 0.00 0.04 0.00 0.07 0.05 0.01
Total 53.29 54.60 54.79 62.25 57.62 54.35 55.46 54.97 55.41 55.22 55.41 55.76 55.82

Si 0.012 0.052 0.045 1.866 0.950 0.063 0.073 0.109 0.007 0.004 0.023 0.034 0.044
Ti 0.096 0.001 0.007 0.006 0.009 0.003 0.005 0.001 0.001 0.000 0.002 0.001 0.001
Al 0.001 0.007 0.010 0.514 0.255 0.004 0.003 0.012 0.000 0.004 0.001 0.000 0.003
Fe3+ 0.007 0.006 0.010 0.122 0.055 0.011 0.007 0.001 0.005 0.001 0.008 0.006 0.000
Cr 0.055 0.040 0.033 0.444 0.206 0.173 0.142 0.174 0.011 0.020 0.064 0.055 0.084
Mn 0.005 0.000 0.002 0.007 0.024 0.007 0.016 0.017 0.025 0.000 0.031 0.046 0.009
Mg 0.000 0.000 0.017 0.755 0.330 0.133 0.064 0.081 0.000 0.000 0.009 0.003 0.006
Ca 12.686 12.796 12.794 7.016 10.013 12.466 12.586 12.472 12.916 12.963 12.794 12.782 12.792
Na 0.000 0.000 0.009 0.127 0.073 0.097 0.020 0.033 0.020 0.003 0.026 0.032 0.015
K 0.004 0.001 0.001 0.035 0.017 0.008 0.002 0.000 0.003 0.000 0.000 0.000 0.006
Ni 0.049 0.077 0.029 0.000 0.000 0.031 0.023 0.000 0.030 0.000 0.055 0.040 0.010
Total 12.915 12.980 12.957 10.892 11.931 12.994 12.940 12.900 13.016 12.995 13.011 12.998 12.969

Cation calculation based on 13 oxygens. P2O5 was not analyzed.

Table C2.9 (continued): Composition of zircon (in wt%), analyses also in electronic appendix.

Analysis D1H4-
2D_31 

D1H4-
2D_38 

E1H3-
4B_16 

E1H3-
4B_17 

F2H2-4G-
01 

F2H2-1A-
62 

F2H2-1A
63 

F2H2-1A-
83 

F2H2-4A-
11 

SiO2 37.62 37.82 37.65 36.79 35.35 37.60 38.97 38.47 37.57
TiO2 0.22 0.03 0.01 0.00 0.02 0.00 0.01 0.01 0.01
Al2O3 0.48 0.70 0.52 0.00 0.02 0.19 0.32 0.39 0.99
Cr2O3 0.01 0.02 0.05 0.00 0.00 0.04 0.02 0.03 0.00
FeO 0.90 1.61 1.53 0.65 0.57 1.14 1.49 1.52 1.19
MnO 0.03 0.00 0.00 0.00 0.00 0.01 0.13 0.12 0.00
MgO 1.25 3.23 0.57 0.01 0.05 0.23 0.90 1.01 0.53
CaO 1.47 3.14 0.65 0.06 0.32 0.28 0.96 0.51 0.08
Na2O 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.00
K2O 0.00 0.00 0.03 0.01 0.00 0.00 0.01 0.02 1.49
NiO 0.00 0.01 0.00 0.06 0.03 0.00 0.00 0.01 0.01
Total 41.97 46.60 41.02 37.58 36.34 39.49 42.81 42.17 41.86

Si 1.866 1.749 1.903 1.980 1.972 1.949 1.895 1.895 1.885
Ti 0.008 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Al 0.028 0.038 0.031 0.000 0.001 0.011 0.018 0.023 0.058
Fe3+ 0.000 0.001 0.002 0.000 0.000 0.002 0.001 0.001 0.000
Cr 0.037 0.062 0.065 0.029 0.026 0.049 0.061 0.063 0.050
Mn 0.001 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.000
Mg 0.092 0.223 0.043 0.001 0.004 0.018 0.065 0.074 0.040
Ca 0.078 0.155 0.035 0.004 0.019 0.016 0.050 0.027 0.004
Na 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.008 0.000
K 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.001 0.095
Ni 0.000 0.002 0.000 0.011 0.005 0.000 0.000 0.001 0.001
Total 2.112 2.234 2.081 2.025 2.029 2.045 2.096 2.098 2.134

Cation calculation based on 4oxygens. ZrO was not analyzed.
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C2.10: Serpentine (antigorite)

Table C2.10: Composition of serpentine (in wt%), analyses also in electronic appendix.

Analysis E4H2-2A
01 

E4H2-2A
02 

E4H2-2A
09 

E4H2-2A
10 

E2H2-4G-
05 

E2H2-4G-
06 

E2H2-4G-
07 

E2H2-4G-
08 

E2H2-4G-
09 

E2H2-4G-
10 

E2H2-4G-
11 

E2H2-4G-
12 

E2H2-5H
08 

E2H2-5H
10 

E2H2-5H
11 

SiO2 38.69 38.56 35.54 36.63 43.78 43.25 41.24 42.39 40.01 43.43 38.67 41.51 41.75 41.45 40.67
TiO2 0.02 0.01 0.02 0.03 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.02 0.00
Al2O3 0.62 0.56 0.98 0.60 0.44 0.49 0.17 0.14 0.18 0.15 0.19 0.44 0.12 0.15 0.16
Cr2O3 0.82 0.89 0.94 0.87 0.01 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.00
FeO 5.54 5.37 5.48 4.62 5.85 5.83 4.52 3.75 4.57 4.01 4.68 5.77 3.57 3.34 3.68
MnO 0.05 0.08 0.19 0.10 0.12 0.05 0.07 0.16 0.05 0.07 0.03 0.06 0.09 0.11 0.10
MgO 37.71 37.11 35.06 35.01 37.14 37.14 36.97 36.66 37.06 40.05 35.02 36.72 38.67 37.79 39.37
CaO 0.25 0.20 0.08 0.04 0.11 0.08 0.07 0.05 0.06 0.09 0.11 0.08 0.22 0.14 0.17
Na2O 0.06 0.07 0.09 0.09 0.07 0.06 0.01 0.06 0.06 0.03 0.09 0.06 0.15 0.17 0.19
K2O 0.02 0.01 0.00 0.02 0.00 0.01 0.00 0.00 0.02 0.01 0.02 0.03 0.01 0.02 0.00
NiO 0.24 0.28 0.41 0.50 0.00 0.04 0.02 0.05 0.00 0.03 0.03 0.04 0.04 0.04 0.02
Total 84.01 83.14 78.78 78.50 87.52 86.98 83.07 83.27 82.02 87.87 78.82 84.71 84.61 83.24 84.36

Si 3.290 3.309 3.234 3.316 3.528 3.509 3.489 3.553 3.439 3.464 3.461 3.468 3.458 3.483 3.392
Ti 0.001 0.001 0.001 0.002 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Al 0.062 0.057 0.106 0.064 0.042 0.047 0.017 0.014 0.018 0.014 0.020 0.043 0.012 0.015 0.015
Cr 0.055 0.061 0.067 0.062 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Fe 0.394 0.386 0.417 0.350 0.394 0.396 0.320 0.263 0.329 0.267 0.350 0.403 0.247 0.234 0.256
Mn 0.003 0.006 0.014 0.008 0.008 0.004 0.005 0.011 0.003 0.005 0.002 0.004 0.006 0.008 0.007
Mg 4.779 4.746 4.756 4.724 4.462 4.491 4.662 4.581 4.750 4.763 4.672 4.573 4.775 4.733 4.895
Ca 0.022 0.019 0.008 0.004 0.009 0.007 0.006 0.004 0.005 0.007 0.010 0.007 0.020 0.013 0.015
Na 0.010 0.011 0.016 0.016 0.010 0.010 0.001 0.009 0.010 0.005 0.015 0.010 0.024 0.028 0.031
K 0.002 0.001 0.000 0.002 0.000 0.001 0.000 0.000 0.002 0.001 0.002 0.003 0.001 0.002 0.000
Ni 0.075 0.087 0.133 0.164 0.000 0.011 0.006 0.016 0.000 0.008 0.008 0.011 0.011 0.013 0.007
Total 8.694 8.681 8.752 8.711 8.455 8.477 8.506 8.452 8.557 8.535 8.541 8.522 8.554 8.530 8.619

Mg# 92.33 92.39 91.69 92.97 91.73 91.83 93.50 94.35 93.46 94.60 92.98 91.81 94.96 95.13 94.90

Cation calculation based on 12 oxygens.
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C3: SIMS data
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C4: Micro-Raman spectra of andradite garnet
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Fig. C4: Micro-Raman spectra of 2 garnet, which can be identified as andradite.
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D1: Sr - light element variation in blueschist minerals

Along with Li, Be, and B concentrations, strontium (Sr) was included in most SIMS analyses.

Strontium contents of chlorite, amphibole and phengite form a field at low concentrations (Fig. D3).

At little higher concentration of about 40–50 μg/g, pyroxene and garnet from serpentine-grt-rocks

form a distinct compositional field. Garnet from sample E1H3-4 has low Sr contents similar to

chlorite and amphibole. Highest Sr contents of analyzed minerals are found in epidote and kaersutite

amphibole.

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

Sr (µg/g)

B
 (

µg
/g

)

Amphibole Chlorite Garnet Epidote

Phengite Pyroxene Talc Pumpellyite

kaersutite

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

kaersutite

Sr (µg/g)

Li
 (

µg
/g

)

Fig. D1: Sr vs Li and B concentration of minerals found in slab-derived blueschist-facies clasts. Phengite,
chlorite and amphibole have a distinct Sr range at relatively low concentration, garnet and pyroxene have
higher Sr contents, epidote and kaersutite are Sr-enriched.

D2: Sr - light element variation in serpentinites

Strontium (Sr) concentrations of primary minerals Ol, Opx and Cpx are low (<1 μg/g; Fig. D2)

and lower than depleted mantle values (9.8 μg/g) estimated by Salters & Stracke (2004). These low

Sr values (<1 μg/g) in primary minerals coincide with concentrations in mantle minerals from Cr-

diopside-bearing harzburgite xenoliths from the Kerguelen Islands studied by Grégoire et al. (2000);

Sr concentrations in these rocks are <0.01–1.36 μg/g in olivines, <0.12–2.14 μg/g in orthopyroxenes

and 0.72–458 μg/g in clinopyroxenes.

Compared to depleted mantle, Sr contents in serpentine are variably enriched or even depleted.

Concentrations range from 0.05 μg/g in some veins to 700 μg/g. The majority of serpentine reveals Sr

contents between 1 and 60 μg/g (Fig. D2), which is an enrichment in Sr relative to primary minerals.

Sr contents in brucite range from 0.65 to 8.83 μg/g and correlate positively with Li contents.

The serpentine composition correlates with bulk rock compositions given for serpentinized

peridotites from South Chamorro (3.5–34 μg/g), Conical (2.8–5.3 μg/g) and Torishima Seamounts

(5.6–5.8 μg/g) (Zanetti et al., 2006). This bulk rock Sr enrichment was also reported by Savov et al.

(2005a, 2005b, 2007) for Mariana serpentinites. Mottl et al. (2003) suggested that serpentinization
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leads to Ca and Sr removal from the fluid by aragonite precipitation. Since the sampled studied are

free of aragonite, Sr instead is suggested to be consumed by the serpentine minerals.

No correlation is observed between Sr concentrations and 11B value in serpentine.
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D3: U concentration in rutile – a possibility for dating

Some metabasic rocks from the Mariana subduction mélange zone contain rutile-ilmenite +

titanite paragenesis in a (Na-)amphibole + chlorite matrix (Fig. D). In sample E1H3-4b, rutile grains

are large enough for SIMS analyses. Zr concentrations in rutile range from 245 to 446 μg/g

(Table D). Tomkins et al. (2007) formulated a thermometer based on the Zr contents of rutile at a

given pressure. The following equation is given in the a-quartz field:

T (°C) = ((83.9 + 0.410 P) / (0.1428 – R ln x)) – 273

in which x is μg/g Zr, P is in kbar and R is the gas constant, 0.0083144 kJ/K.

Applying this equation, the temperature calculated for the rutile-bearing Mariana blueschist-facies

rocks is ~650 °C at 0.7 GPa. Such high temperatures are unrealistic, as geothermometry on phase

relationships give evidence for conditions at 300–350 °C.

An unexpected result is the relatively high U concentration in rutile of 19–39 μg/g (Table D).

Though still low, this concentration allows dating – if the sample directly derived from the subducting

Fig. D2:  Sr vs. Li and B concentrations of serpentine and
primary minerals. Serpentine has variable but higly enriched B
concentrations compared to mantle values, Li concentrations of
serpentine can be both enriched and depleted. Sr contents of
primary minerals are depleted relative to the mantle,
serpentine are Sr-enriched compared to primary minerals.
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slab, we expect a relatively young age of <3 Ma (at ~3 cm/a subduction until ~27 km depth). The

small mineral size requires analytical conditions such as a small beam size (e.g., laser) and a low

detection limit. Furthermore, zircon grains reveal another possibility for U-Pb-dating, but the small

grain size requires high-resolution analytics.

Fig. D3: Rutile + ilmenite in (Na-)amphibole, sample E1H3-4b.

90Zr 93Nb 118Sn 120Sn 121Sb 123Sb 178Hf 181Ta 184W 186W 232Th 238U

E1H3-4B-1 rutile 330 3,222 93 104 99 113 12 68 131 149 0.07 28
E1H3-4B-2 rutile 392 3518 109 110 56 79 9 28 76 84 0.05 30
E1H3-4B-3 rutile 245 2,991 105 99 107 101 10 54 148 163 19
E1H3-4B-4 rutile 446 3,537 96 98 79 108 12 73 166 176 0.19 39
E1H3-4B-5 rutile 420 3,505 115 105 75 64 13 74 167 193 0.20 21

Table D3:  Rare earth element concentrations of rutile in E1H3-4B analyzed by SIMS (μg/g). 

D3.1 Analytic

Large rutile grains identified in some blueschist facies fragments were also analyzed by SIMS for

the following isotopes: 47Ti, 90Zr, 93Nb, 118Sn, 120Sn, 121Sb, 123Sb, 178Hf, 181Ta, 184W, 186W, 232Th, 238U.

Analyses were performed using a 14.5 keV / 10 nA 16O- primary ion beam. Positive secondary ions

were nominally accelerated to 4.5 keV. The energy window was set to ±40 eV and the energy

filtering technique was used with an offset of 90 eV at a mass resolution of ~400 m/ m (10%). Count

rates were normalized to 47Ti. Reference concentration was TiO2, asumed to be 100 wt% in rutile,

unless other elements exceeded 1 wt%. In such cases, TiO2 concentrations obtained by EMP were

used instead. Standard reference material was the SRM 610 glass (Pearce et al., 1997).
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