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Summary

One of the central questions of modern systems biology is the role of microscopic

parameters of a single cell in the behavior of a cell population. Multiscale models

help to address this problem, allowing to understand population behavior from the

information about single-cell molecular components and reactions. This goal requires

models that are su�ciently detailed to capture central intracellular processes, but at

the same time enable simulation of entire cell populations.

In this work a novel multiscale (hybrid) model is presented, which describes chemo-

tactic Escherichia coli bacterium by a combination of heterogeneous mathematical

approaches in one platform: rapid-equilibrium (algebraic) models, ordinary di�eren-

tial equations, and stochastic processes. The multiscale approach is based on time-

scale separation of key reactions. The resulting model of chemotactic bacterium de-

scribes signal processing by mixed chemoreceptor clusters (MWC model), adaptation

through methylation, running and tumbling of a cell with several �agellar motors.

The model is implemented in a program RapidCell. It outperforms the present sim-

ulation software in reproducing the experimental data on pathway sensitivity, and

simulates bacterial populations in a computationally e�cient way.

The model was used to investigate chemotaxis in di�erent gradients. A theoreti-

cal analysis of the receptor cluster (MWC) model suggested a new, constant-activity

type of gradient to systematically study chemotactic behavior of bacteria in silico.

Using the unique properties of this gradient, it is shown that the optimal chemotaxis

is observed in a narrow range of CheA kinase activity, where concentration of the

response regulator CheYp falls into the operating range of �agellar motors. Simula-

tions further con�rm that the CheB phosphorylation feedback improves chemotactic
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e�ciency in a number of gradients by shifting the average CheYp concentration to �t

the motor operating range.

Comparative simulations of motility in liquid and porous media suggest that

adaptation time required for optimal chemotaxis depends on the medium. In liq-

uid medium, the variability in adaptation times among cells may be evolutionary

favourable to ensure co-existence of subpopulations that will be optimally tactic in

di�erent gradients. However, in a porous medium (agar) such variability appears to

be less important, because agar structure poses mainly negative selection, against

subpopulations with low levels of adaptation enzymes.

A detailed model of cell motion predicts existence of an additional mechanism of

gradient navigation in E. coli. Based on the experimentally observed dependence of

cell tumbling angle on the number of clockwise-rotating motors, the model suggests

that not only the tumbling frequency, but also the angle of reorientation during a

tumble depends on the swimming direction along the gradient. Although the di�er-

ence in mean tumbling angles up and down the gradient predicted by the model is

small, it results in a dramatic enhancement of the cellular drift velocity along the

gradient. This result demonstrates a new level of optimization in E. coli chemotaxis,

which arises from collective switching of several �agellar motors and a resulting �ne

tuning of tumbling angle. Similar strategy is likely to be used by other peritrichously

�agellated bacteria, and indicates a yet another level of evolutionary optimization in

bacterial chemotaxis.

Concluding, multiscale models as the one presented here can be an important

research instrument for understanding the cell behavior. They re�ect the most im-

portant experimental knowledge about the biological system, and allow to carry out

computational experiments of high complexity, which may be too complicated for ex-

perimental trials. Currently, there is abundant experimental data on signal transduc-

tion in living organisms, but there is no general mathematical framework to integrate

heterogeneous models over the wide range of scales present in most biological systems.

This thesis is a new stone in the work aimed to "bridge the scales" in biology.



Kurzfassung

Multi-Skalen Modellierung und Simulation in der Biologie sind notwendig, um zel-

lul�are Funktionalit�at auf der Basis molekularer Komponenten und Reaktionen zu

verstehen. Dazu sind mathematische Modelle erforderlich, die intrazellul�are Prozesse

hinreichend detailliert beschreiben, gleichzeitig aber e�zient numerische Simulatio-

nen von ganzen Zellpopulationen erlauben. Zu diesem Zweck wird in dieser Arbeit

ein multiskaliges Hybrid-Modell entwickelt, welches die Chemotaxis bei Escherichia

coli Bakterien beschreibt. Das Modell vereinigt klassische heterogene mathematis-

che Ans�atze zur Modellierung: schnelle Gleichgewichtsannahmen (algebraische Gle-

ichungen) auf der Basis von Zeitskalenseparation, gew�ohnliche Di�erentialgleichungen

und stochastische Prozesse. Das resultierende Gesamtmodell der bakteriellen Chemo-

taxis beschreibt die Signalprozessierung auf der Basis von gemischten Clustern von

Chemorezeptoren (MWC Modell), Adaptation durch Rezeptormethylierung, sowie

Translationsbewegung und Taumeln der Zellen gesteuert durch mehrere Flagellen-

motoren. Das Modell wird im Softwarepaket RapidCell implementiert. Die Soft-

ware verbessert bestehende Chemotaxis-Modelle signi�kant hinsichtlich Reproduzier-

barkeit experimenteller Daten und numerischer E�zienz.

Mit Hilfe des in dieser Arbeit entwickelten Multi-Skalen Modells wird die Chemo-

taxis bei E. coli in verschiedenen Gradienten untersucht. Eine theoretische Analyse

des Rezeptorclustermodells (MWC) ergibt einen neuartigen Gradienten ½konstanter

Aktivit�at�, der sich besonders zur systematischen in silico Studie von chemotak-

tischen Bakterien eignet. Mit Hilfe der speziellen Eigenschaften dieses Gradienten

wird gezeigt, dass optimale Chemotaxis in einem engen Aktivit�atsbereich der CheA

Kinase beobachtet wird, f�ur den die Konzentration des Regulatorproteins CheYp
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im Operationsbereich des Flagellenmotors liegt. Simulationen best�atigen weiter-

hin, dass Feedback-Regulation durch CheB Phosphorylierung die Chemotaxise�zienz

verbessert, indem die mittlere CheYp-Konzentration in den Operationsbereich des

Motors verschoben wird.

Vergleichende Simulationen der Bakterienmotilit�at in Fl�ussigmedium und por�osen

Medien deuten darauf hin, dass Zell-zu-Zell-Variabilit�at in den Adaptationszeiten

ein evolution�arer Vorteil ist, der Bakterienpopulationen in ��ussigen Medien durch

die Koexistenz von Subpopulationen optimale Chemotaxise�zienz in verschiedenen

Gradienten erm�oglicht. In por�osen Medien (Agar) erweist sich diese Variabilit�at als

weniger bedeutsam, da die Porenstruktur des Mediums eine negativen Selektion von

Subpopulationen mit geringem Expressionsniveau von Adaptationsenzymen bewirkt.

Ein detailliertes Modell der Zellfortbewegung durch Flagellenmotorrotation weist

auf die Existenz eines zus�atzlichen Mechanismus der Navigation von E. coli Bakterien

in Gradienten hin. Auf der Basis experimenteller Beobachtungen zur Abh�angigkeit

des Taumelwinkels von der Zahl der CW(clockwise)-rotierenden Flagellenmotoren

zeigt das Modell, dass nicht nur die Taumelfrequenz, sondern auch der Reorien-

tierungswinkel nach dem Taumeln von der Orientierung der Translationsbewegung

beim Schwimmen im Gradienten abh�angt. Obwohl die Di�erenz der mittleren Taumel-

winkel in Aufw�arts- bzw. Abw�artsrichtung des Gradienten, die das Modell vorher-

sagt, klein ist, resultiert ein deutlicher Anstieg der zellul�aren Driftbewegung entlang

des Gradienten. Dieses Ergebnis demonstriert ein neues Optimalit�atsprinzip bei der

Chemotaxis von E. coli, welches auf koordiniertem Schalten mehrerer Flagellenmo-

toren beruht und eine Feinregulation des Taumelwinkels erm�oglicht. �Ahnliche Strate-

gien werden sehr wahrscheinlich auch bei anderen peritrichen Flagellenbakterien eine

Rolle spielen und weisen auf eine weitere Ebene evolution�arer Optimierung der bak-

teriellen Chemotaxis hin.

Die vorliegende Arbeit demonstriert, dass Multi-Skalen Modelle vom Typ des

hier entwickelten Chemotaxis-Modells ein wichtiges wissenschaftliches Instrument

sein k�onnen, um zellul�ares Verhalten zu studieren. Das Chemotaxis-Modell re�ek-

tiert experimentell verf�ugbares Wissen und erm�oglicht in silico Experimente hoher

Komplexit�at, welche experimentell aus verschiedensten Gr�unden ggf. undurchf�uhrbar
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sind. Gegenw�artig werden in den Biowissenschaften detaillierte und zunehmend quan-

titative Daten �uber Signaltransduktionsmechanismen in lebenden Organismen akku-

muliert, aber in der Regel gibt es keinen allgemeing�ultigen mathematischen Rahmen,

um heterogene Modellierungsans�atze biologischer Systeme �uber verschiedene Skalen

hinweg zu integrieren. Diese Arbeit liefert einen neuen Baustein zur L�osung der

Aufgabe dieser Skalen�uberbr�uckung.



Ïîñâÿùàåòñÿ ìîåé Ìàòåðè, êîòîðàÿ âñåãäà âäîõíîâëÿëà äâèãàòüñÿ âïåðåä

(Dedicated to my Mother, who always inspired me to move forward)



Acknowledgements

I would like to say many thanks to my principal supervisor, Prof. Dr. Victor Sourjik,

for outstanding attention to all questions, for encouraging ideas, and for his help.

In his lab at ZMBH, I had a great experience of working with biologists of highest

expertise, sincere and nice people, in a friendly and creative atmosphere.

The project was also supported by my second supervisor, Priv.-Doz. Dr. Dirk Lebiedz,

who provided stimulating discussions and computational facilities in IWR, Reactive

�ows group, where I carried out my simulations and enjoyed a very friendly environ-

ment.

Special thanks to my brother Egor Vladimirov, who inspired me to come to Germany

and to do a PhD in this beautiful country.

The work was �nancially supported by the Bioquant Graduate Program `Molecular

machines: mechanisms and functional interconnections` and Landesgraduiertenf�orde-

rung of Land Baden-W�urttemberg.

vii



Contents

Summary i

Kurzfassung iii

Acknowledgements vii

1 Introduction 1

1.1 Overview of chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Signal transduction in bacterial chemotaxis . . . . . . . . . . . . . . . 3

1.2.1 Receptor clusters . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Signal ampli�cation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Experimental methods in bacterial chemotaxis . . . . . . . . . . . . . 9

1.4 Models of bacterial chemotaxis . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Population-scale models . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Single-cell models . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3 Robustness and noise . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.4 Simulation software . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.5 Multiscale models . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Methods and Algorithms 33

2.1 Hybrid model of chemotaxis pathway in E. coli . . . . . . . . . . . . 33

2.1.1 MWC model of mixed receptor cluster . . . . . . . . . . . . . 33

viii



CONTENTS ix

2.1.2 Adaptation model . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.3 Kinase activity and CheY phosphorylation . . . . . . . . . . . 36

2.1.4 CheB phosphorylation . . . . . . . . . . . . . . . . . . . . . . 37

2.1.5 Time-scale separation . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.6 Motor switching . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.7 Model veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Bacterial motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Running and tumbling: Model 1 . . . . . . . . . . . . . . . . . 44

2.2.2 Tumbling angle distribution (isotropic) . . . . . . . . . . . . . 44

2.2.3 Running and tumbling: Model 2 . . . . . . . . . . . . . . . . . 45

2.2.4 Anisotropic tumbling . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Model of the environment . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Constant-activity gradient . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Constant-activity and exponential time ramps . . . . . . . . . 49

2.3.3 Simulations in constant-activity and other gradients . . . . . . 49

2.4 RapidCell program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Java class �les . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.2 Computational costs . . . . . . . . . . . . . . . . . . . . . . . 54

3 Results 55

3.1 Chemotaxis in gradients of di�erent shape and steepness . . . . . . . 56

3.1.1 Response of the MWC model to time ramps of Asp . . . . . . 57

3.1.2 Chemotactic e�ciency of populations in di�erent gradients . . 58

3.2 Optimal adaptation rates (in a liquid medium) . . . . . . . . . . . . . 59

3.2.1 E�ect of [CheR]/[CheB] ratio on chemotactic e�ciency . . . . 62

3.2.2 E�ect of CheB phosphorylation on chemotactic e�ciency . . . 63

3.3 Chemotaxis in a porous medium (agar) . . . . . . . . . . . . . . . . . 65

3.3.1 Swarm plate model . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Optimal [CheR,CheB] in agar � experiments and simulations . 66

3.3.3 Population in liquid medium and in agar . . . . . . . . . . . . 67



x CONTENTS

3.3.4 Experimental measurement of [CheR,CheB] in individual cells

in di�erent parts of swarm rings . . . . . . . . . . . . . . . . . 69

3.4 Fine-tuning of tumbling angle and its e�ect on drift velocity . . . . . 73

4 Discussion 79

5 Conclusions 86

Bibliography 88

A Running the RapidCell program 103

A.0.1 Analysis of individual cell behavior in Matlab . . . . . . . . . 104

A.0.2 Changing the parameters of simulation . . . . . . . . . . . . . 105

B Versions of RapidCell program 106

B.1 Detailed model of motor switching: version 1.2 . . . . . . . . . . . . . 106

C Derivation of the formula for constant-activity gradient 109

D Mathematics of cell motion in 3D space 112

E Publications in peer-reviewed journals 115

F Texts of the publications and manuscripts 116



List of Tables

1 Rates of reactions involved in the chemotaxis pathway . . . . . . . . 38

2 Parameters used in RapidCell-1.0 . . . . . . . . . . . . . . . . . . . . 39

3 Models used in RapidCell-1.0. . . . . . . . . . . . . . . . . . . . . . . 40

4 Run and tumble times for cells with voting model of tumbling . . . . 45

5 Additional parameters used in RapidCell-1.1 with anisotropic tumbling 46

6 Computational costs of RapidCell . . . . . . . . . . . . . . . . . . . . 54

7 Comparison of the RapidCell-1.1 output and the tracking data from

Berg and Brown, 1972 . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Changes in RapidCell-1.2. . . . . . . . . . . . . . . . . . . . . . . . . 108

xi



List of Figures

1 E. coli chemotaxis as a biased random walk . . . . . . . . . . . . . . 2

2 Chemotaxis pathway of E. coli . . . . . . . . . . . . . . . . . . . . . . 4

3 Chemotactic response to step changes of attractant concentration . . 7

4 The MWC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Veri�cation of RapidCell using FRET experiments and StochSim . . 41

6 Veri�cation of RapidCell using experiments on tethered cells . . . . . 42

7 Swimming orientation and tumbling angle . . . . . . . . . . . . . . . 43

8 Probability density function of tumbling angles (isotropic) . . . . . . 45

9 Scheme of RapidCell algorithm . . . . . . . . . . . . . . . . . . . . . 53

10 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11 MWC model response to the constant-activity and exponential ramps

of aspartate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12 Simulations of chemotactic population in gradients of di�erent shape 58

13 Average CheYp levels in three constant-activity gradients . . . . . . . 59

14 Chemotaxis at di�erent adaptation rates in constant-activity gradients 60

15 Optimal chemotactic behavior at di�erent adaptation rates . . . . . . 61

16 E�ect of altered CheR concentration on chemotactic e�ciency . . . . 62

17 E�ect of CheB phosphorylation on chemotactic e�ciency. . . . . . . 63

18 Model of motility in a porous medium (agar) . . . . . . . . . . . . . . 65

19 Swarm-plate assay at di�erent concentration of CheR and CheB . . . 67

20 Simulation of a population in a liquid medium and in agar . . . . . . 68

xii



LIST OF FIGURES xiii

21 Experimental measurement of CheR and CheB in individual cells at

di�erent points in the swarm ring (pBAD promoter) . . . . . . . . . . 70

22 Chemotactic e�ciency in agar as a function of highly over-expressed

CheR and CheB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

23 Experimental measurement of CheR and CheB in individual cells at

di�erent points of the swarm ring (pTrc promoter) . . . . . . . . . . . 72

24 Anisotropic model of E. coli tumbling . . . . . . . . . . . . . . . . . . 74

25 Behavior of cells with anisotropic tumbling model . . . . . . . . . . . 75

26 E�ects of tumbling angle adjustment and rotational di�usion on chemo-

tactic e�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

27 Enhancement of chemotactic e�ciency due to anisotropic tumbling . 78

28 Geometric and arithmetic mean as an estimate of K∗ . . . . . . . . . 111



xiv LIST OF FIGURES



Chapter 1

Introduction

1.1 Overview of chemotaxis

Many motile unicellular organisms are known to direct their movement toward or

away from gradients of speci�c chemicals � the process called chemotaxis. Chemotac-

tic eukaryotic cells are able to sense shallow gradients across their cell body (Chung

et al., 2001), and chemotaxis plays a key role in many physiological processes. Angio-

genesis, the blood vessel formation of a growing tumor, is mediated by chemotactic

migration of endothelian cells toward the tumor. Immune response involves chemo-

tactic motion of leukocytes to the sources of in�ammation (Snyderman and Goetzl,

1981). Another well-studied example of eukaryotic chemotaxis is the slime mold Dic-

tyostelium discoideum (Dicty) (Manahan et al., 2004).

While eukaryotic cells are able to sense the gradients by direct comparison of

concentrations across the cell body, bacteria employ a more original mechanism �

temporal comparisons along their swimming trajectories (Berg and Brown, 1972;

Macnab and Koshland, 1972). Theoretical analysis suggested that such a strategy

is superior to direct spatial comparisons for objects of bacterial size and swimming

speed (Berg and Purcell, 1977). This mechanism plays an important role in the

microbial population dynamics. Chemotactic bacteria in a nonmixed environment �

that is in presence of nutrient gradients � have signi�cant growth advantage (Kennedy

and Lawless, 1985; Kennedy, 1987). Modeling of microbial population dynamics
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2 CHAPTER 1. INTRODUCTION

indicates that motility and chemotactic ability can be as important for evolutionary

competition as cell growth rate (Kelly et al., 1988; Lau�enburger, 1991).

Figure 1: E. coli chemotaxis as a biased random walk. The cell moves in a random walk,
consisting of long runs (about 1 s) and short tumbles (∼0.1 s). The direction of a new
run is assumed to be chosen randomly, while the run length is longer if the cell encounters
positive change of attractant concentration, or negative change of repellent concentration.
This allows to follow attractant and avoid repellent gradients (insets). Longer runs in a
favorable direction are shown by '+', normal (unbiased) runs by '-'.

E. coli bacterium has several �agellar motors distributed in its membrane. Each

motor is bound to a long �lament (�agellum), which propels or de�ects the cell body,

depending on the direction of motor rotation. Bacteria have two swimming modes:

runs, which are periods of long straight swimming, and tumbles, in which bacterium

stops and abruptly changes its orientation (Figure 1). When all �agellar motors

rotate counter-clockwise (CCW), their �agella form a bundle that works like a screw

to propel the cell forward, and the cell performs a long run. Switching of one or

several �agellar motors to clockwise (CW) rotation results in a tumble. During the

tumble, cell rapidly changes its orientation, because one or more CW-rotating �agella
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break out of the bundle and rotate as separate rigid screws, de�ecting the cell body to

a new direction (Turner et al., 2000; Darnton et al., 2007). The runs of a swimming

bacterium are interrupted by tumbles, therefore the bacterium moves in a random

walk. In response to attractant gradient, this random walk becomes biased: the

runs are longer up the gradient, and the cells migrate toward the attractant. On the

contrary, in repellent gradient the runs are longer down the gradient (Tsang et al.,

1973), allowing the cell to avoid repellent.

1.2 Signal transduction in bacterial chemotaxis

The frequency of tumbles is controlled by the chemotaxis network through switching

of individual motors. The CW motor rotation is induced by the phosphorylated pro-

tein CheY (CheYp), which binds to the motor protein FliM and changes the motor

bias in a highly sensitive mode (Cluzel et al., 2000). CheYp itself is a small molecule

which freely di�uses in the cytoplasm between the receptor clusters and �agellar mo-

tors. CheY is phosphorylated by the histidine kinase CheA, which is bound to clusters

of transmembrane receptors and the adaptor protein CheW (Figure 2). Each recep-

tor can be in either active or inactive conformation, depending on ligand binding to

its outer (periplasmic) domain and the methylation level of its inner (cytoplasmic)

domain. The active receptor promotes CheA autophosphorylation, eliciting down-

stream phosphorylation of the response regulator CheY. CheYp is dephosphorylated

by its phosphatase CheZ, which increases the CheYp turnover. Receptors are methy-

lated by the enzyme CheR and demethylated by its counteracting partner CheB, and

methylation regulates the receptor activity. For reviews, see (Sourjik, 2004; Wadhams

and Armitage, 2004).
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Figure 2: Chemotaxis pathway of E. coli. Changes in attractant or repellent concentrations
are sensed by a protein complex consisting of transmembrane receptors, an adaptor protein
CheW, and a histidine kinase CheA. Transmembrane receptors can be of �ve types (Tar, Tsr,
Tap, Trg, Aer). Autophosphorylation activity of CheA is inhibited by attractant binding
and enhanced by repellent binding to receptors. The phosphoryl group is transferred from
CheA to the response regulator CheY. Phosphorylated CheY (CheYp) di�uses through the
cytoplasm and binds the �agellar motors, thereby changing the direction of motor rotation
from counterclockwise to clockwise and promoting tumbles. CheZ phosphatase, localized to
sensory complexes through binding to CheA, ensures a rapid turnover of CheYp, which is
essential to quickly re-adjust bacterial behaviour. Adaptation is mediated by two enzymes,
methyltransferase CheR and methylesterase CheB, which add or remove methyl groups at
four speci�c glutamate residues on each receptor monomer. Receptor modi�cation increases
CheA activity and decreases sensitivity to attractants. Feedback is provided by CheB phos-
phorylation through CheA that increases CheB activity.

1.2.1 Receptor clusters

E. coli can sense a variety of amino acids, sugars and dipeptides, as well as pH,

temperature and redox state using �ve types of receptors. Most abundant and best

studied receptors are those for aspartate (Tar) and serine (Tsr). Receptors anchor

the complex in the inner membrane and transmit signals from the periplasmic ligand-

binding domain to the cytoplasmic part. The cytoplasmic part of the receptor dimer

is a four-helix bundle, with highly conserved domain containing four to six speci�c

glutamate residues that are methylated by CheR and demethylated by CheB. The

receptor homodimers are organized in trimers by interaction at their helical hairpin
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tips, and trimers form the minimum functional units. Receptors are predicted to be

organised in large allosteric clusters of about 20 homodimers (Sourjik and Berg, 2004),

and these clusters form a high-order structure of thousands of receptors localized at

the cell poles. For reviews on function and intracellular organization, see (Sourjik,

2004; Kentner and Sourjik, 2006; Hazelbauer et al., 2008).

The signaling clusters contain receptors, histidine kinase CheA and additional

protein CheW (Figure 2). The system functioning can be explained quantitatively by

the notion that signaling complexes stay in equilibrium between two conformational

states, 'on' and 'o�'. In the adapted state, the probabilities of both states are nearly

equal. An increase of attractant concentration shifts the equilibrium to 'o�' state,

decreasing the CheA activity and hence CheYp level. A removal of attractant shifts

the system to the 'on' state that activates CheA autophosphorylation and hence the

downstream CheY phosphorylation.

The response of clusters with homogeneous (Sourjik and Berg, 2004) and hetero-

geneous (Mello and Tu, 2005) receptor population is cooperative and can be �tted by

the classical Monod-Wyman-Changeux (MWC) model of allosteric proteins (Monod

et al., 1965). An alternative Ising model of receptor cluster comprises an extended

two-dimensional lattice of interacting receptors (Shimizu et al., 2003). Both models

are discussed in detail further in this chapter.
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1.2.2 Signal ampli�cation

The sensory system of E. coli demonstrates extreme sensitivity. It is able to respond

to the addition of as little as 3 nM aspartate (Mao et al., 2003), which corresponds to

only several molecules in a volume of a cell. An increase in attractant concentration

that changes the receptor occupancy by 0.2% results in a 23% change in the bias

of motor rotation (Segall et al., 1986; Sourjik and Berg, 2002a), indicating signal

ampli�cation by a factor of ∼ 100. This paradox of chemotactic sensitivity was

resolved recently by showing that the main signal ampli�cation (∼ 35) arises from

the cooperative interactions of neighbouring receptors in clusters (Sourjik and Berg,

2002a). Another ampli�cation step is located in the end of pathway, where CheYp

binds to FliM molecules in the motor ring in a highly cooperative manner, with a Hill

coe�cient of about 10 (Cluzel et al., 2000). When combined, these two ampli�cation

steps are su�cient to explain the observed gain.

1.2.3 Adaptation

The chemotaxis network has an amazing property of nearly perfect adaptation to stim-

uli, which means that after addition or removal of an attractant the system gradually

returns to its prestimulus values in terms of CheA activity, CheYp concentration, and

motor bias. The change in ligand binding is compensated by receptor methylation,

which provides the mechanism of adaptation.

The adaptation enzyme CheR consitutively methylates receptors at four glutamate

residues located in the cytoplasmic domain. Methylation increases receptor ability

to stimulate CheA activity (Borkovich et al., 1992). As a result, when attractant

is added and CheA activity rapidly drops down, it then slowly recovers back to the

steady state due to methylation of receptors (Figure 3). Methylation also decreases

the a�nity of the receptor complex to attractants (Borkovich et al., 1992; Li and

Weis, 2000; Levit and Stock, 2002), thereby regulating the ligand binding to receptor

complexes.

CheB enzyme works in the way opposite to CheR, removing methyl groups from

receptors. The outcome of demethylation is inhibition of CheA activity. This allows
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Figure 3: Chemotactic response to step changes of attractant concentration. Step-wise ad-
dition of saturating amount of attractant results in an initial fast (less than 0.1 s) decrease
in kinase activity that is followed by a slow CheR-dependent adaptation. Adaptation time
is proportional to the change in receptor occupancy. Next, removal of attractant results
in an initial fast increase in kinase activity followed by CheB-dependent adaptation. Ki-
nase activity below the steady state causes longer runs, above the steady state � frequent
tumbling.

adaptation to negative stimuli, such as removal of an attractant or addition of a

repellent. Therefore, counteraction of CheR and CheB returns CheA activity to its

pre-stimulus value after any type of stimulation, positive or negative.

Adaptation time can span from several seconds to minutes, depending on the

strength of a stimulus. The underlying methylation mechanism makes it additive:

the adaptation time for a step stimulus from L1 to L3 is the sum of the adaptation

times for step stimuli from L1 to L2 and from L2 to L3 (Spudich and Koshland, 1975;

Berg and Tedesco, 1975).

Methylation and demethylation occur at much slower time scales than other reac-

tions involved in the network, thereby providing a memory mechanism which allows

a cell to remember its recent past state and compare its present situation to the past.

The role of adaptation is crucial. Bacteria retain high sensitivity for some at-

tractants from nanomolar to millimolar concentrations, spanning �ve to six orders of
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magnitude (Berg and Tedesco, 1975; Segall et al., 1986; Kim et al., 2001). To en-

able high sensitivity over such a wide range, the signal ampli�cation must be coupled

with the adaptation. In the absence of adaptation, a 100-fold signal ampli�cation

will saturate the system response at 1% receptor occupancy, and the accomplishment

of signal ampli�cation with adaptation is a necessary setup of natural signaling sys-

tems (Koshland, 1981; Pugh and Lamb, 1990; Kaupp and Koch, 1992; Zufall and

Leinders-Zufall, 2000).

Adaptation time depends on the concentration of adaptation enzymes (Alon et al.,

1999). Overexpression of CheR decreases the adaptation time to attractant stimuli

and increases the steady-state tumbling frequency because of the raised CheYp con-

centration (CheA activity). Coordinated overexpression of both CheR and CheB

decreases the adaptation time alone, without altering of the steady-state tumbling

frequency (Kollmann et al., 2005).
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1.3 Experimental methods in bacterial chemotaxis

To follow the ideas of a great man is

the most exciting science.

A.S. Pushkin

The �rst man who discovered motile bacteria was Antonie van Leeuwenhoek. On

September 17, 1683, Leeuwenhoek wrote to the Royal Society about his observations

of bacteria: 'I then most always saw, with great wonder, that in the said matter there

were many very little living animalcules, very prettily a-moving. The biggest sort ...

had a very strong and swift motion, and shot through the water (or spittle) like a pike

does through the water. The second sort ... oft-times spun round like a top ... and

these were far more in number ' (Ford, 1991). However, only in the late XIX century

german scientists T.W. Engelmann and W.F. Pfe�er discovered that bacteria are able

to move in a certain preferred direction, toward or away from speci�c chemicals, the

process called chemotaxis (Engelmann, 1881; Pfe�er, 1881, 1888).

Capillary assay. The use of a capillary tube was the earliest method to observe

chemotaxis. In the 1880s Pfe�er observed bacterial chemotaxis inserting the capillary

containing a solution of test chemical into a bacterial suspension and then looking

microscopically for accumulation of bacteria at the mouth of and inside the capillary.

Many decades later, this procedure was converted by J. Adler into an objective, quan-

titative assay by measuring the number of bacteria accumulating inside a capillary

containing attractant solution (Adler, 1969). The number of cells inside the capillary

is counted by serial dilutions. Capillary assays were later improved and parallelized

(Berg and Turner, 1990; Bainer et al., 2003), which allowed measuring chemotaxis for

many strains and/or under many conditions with high accuracy.

Swarm plate assay. A petri dish containing metabolizable attractant, salts needed

for growth, and soft agar (a low enough concentration so that the bacteria can swim)

is inoculated in the center with the bacteria. As the bacteria grow, they consume the

local supply of attractant, thus creating a gradient, which they follow to form a ring
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surrounding the inoculum (Adler, 1966). Measuring the diameter of the swarm ring

after a �xed time gives an estimate of chemotactic e�ciency of the bacteria.

De�ned gradients. Quantitative analysis of bacterial migration has been achieved

by making de�ned gradients of attractant or repellent, and then determining the

distribution of bacteria in the gradient by measuring scattering of light by the bacteria

(Dahlquist et al., 1972; Tsang et al., 1973; Ford et al., 1991; Lewus and Ford, 2001).

The method allows the experimenter to vary the shape and steepness of the gradient.

Imaging. The motion of bacteria can be recorded by microcinematography, or fol-

lowed as tracks that form on photographic �lm after time exposure (Macnab and

Koshland, 1972; Spudich and Koshland, 1975). An improvement of these methods

was delivered by �uorescent labelling of cells and �laments, and usage of CCD camera

to follow the �agella transformations and cell movement in high contrast and time

resolution (Turner et al., 2000; Darnton et al., 2007).

Tracking microscope. Swimming bacteria move rapidly out of focus plane and

view�eld, which makes their behavior di�cult to track. A breaking progress was

made after invention of an automatic tracking microscope, which allowed objective,

quantitative, and much faster observations (Berg, 1971; Berg and Brown, 1972). This

method allowed to demonstrate that bacteria migrate in a biased random walk con-

sisting of long runs and short tumbles (originally called 'twiddles'), and that the

frequency of tumbles shifts the random walk toward attractants and away from re-

pellents. Despite the long time passed since the construction of tracking microscope

in 1971 and its obvious advantages, it did not have successors due to its technical

complexity, though the original tracking microscope is still in use (Frymier et al.,

1995; Lewus and Ford, 2001).

Tethering experiments. Addition of attractants to E. coli cells, tethered to glass

by �agella with antibody, results in a counterclockwise rotation of the cell body as

viewed from above (Larsen et al., 1974). Addition of repellents causes clockwise

rotation of the cells. The response magnitude and adaptation time can be accurately
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measured in terms of motor bias. The method is widely used for measuring the

behavior of individual cells and single motors (Segall et al., 1986; Alon et al., 1998;

Khan et al., 2004; Korobkova et al., 2004).

Microchambers. Modern microfabrication techniques open up the possibilities of

making spatially complex habitat landscapes and to investigate how bacteria prolif-

erate and communicate through chemotaxis and quorum sensing (Park et al., 2003;

Keymer et al., 2006b). The microfabricated chemostats contain rectangular volumes,

corridors or mazes, with input and output channels that supply bacteria with nutri-

tion medium and oxygen, and remove bacterial wastes and excessive biomass, there-

fore supporting stable conditions of the microenvironment. This technique allows

novel approach to study bacterial populations in fabricated ecological environments.

Micro�uidics experiments have further been used to analyse bacterial responses to

well-de�ned gradient on microscopic scale (Mao et al., 2003; Stocker et al., 2008;

Kalinin et al., 2009).

FRET experiments. Fluorescence resonance energy transfer (FRET) is a tech-

nique that measures the separation of two �uorescently labelled proteins (and hence

their interaction) in cells. It relies on the distance-dependent energy transfer from an

excited donor �uorophore to an acceptor �uorophore. Because FRET-based measure-

ments are quantitative and non-invasive, FRET is particularly useful for observing

transient protein interactions involved in signal transduction. In the chemotaxis path-

way, phosphorylation-dependent interactions of the response regulator CheY fused to

YFP (CheY-YFP) with its phosphatase CheZ fused to CFP (CheZ-CFP) were used

to monitor the activity of the receptor-kinase complexes (Sourjik and Berg, 2002a,

2004).
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1.4 Models of bacterial chemotaxis

From the �rst quantitative experiments by Julius Adler, chemotaxis always attracted

exceptional interest of theoreticians. Depending on the considered scale, the models

can be classi�ed as population and individual-scale models. A short introduction into

di�erent methods of chemotaxis modeling can be found in (Ritter, 2004). For detailed

reviews, refer to (Tindall et al., 2008b,a).

1.4.1 Population-scale models

Keller-Segel model. The motion of bacterial bands in swarm plate and capillary

assays is described by the population models in terms of mass conservation law (con-

tinuum models). One of the �rst models of such kind was suggested by Keller and

Segel (1971), who were the �rst to reproduce in model the formation of chemotactic

bands observed by Adler (1966). The generalized Keller-Segel (K-S) system consists

of two partial di�erential equations (PDE)

∂u
∂t

= Du∆u︸ ︷︷ ︸
diffusion

−∇(χ(C)u∇C)︸ ︷︷ ︸
chemotaxis

+g(u, C)︸ ︷︷ ︸
growth

−d(u, C)︸ ︷︷ ︸
death

∂C
∂t

= Dc∆C︸ ︷︷ ︸
diffusion

−h(u, C)︸ ︷︷ ︸
consumption

(1)

Here u(x, t) is the density of bacteria, C(x, t) is the concentration of chemoattrac-

tant, Du and Dc are di�usion coe�cients, χ(C) is the chemotactic coe�cient, while

functions g(u, C), d(u, C), and h(u, C) denote cell growth, death, and attractant con-

sumption, respectively. System (1) is solved with appropriate initial and bound-

ary conditions, depending on the assay being modeled. A vast number of studies

demonstrated that the Keller-Segel model is quantitatively consistent with chemo-

taxis experiments, under proper choice of functional forms and coe�cients. A good

introduction into population models can be found in Chapter 5 of (Murray, 2003).

For a detailed review of Keller-Segel system and its applications, refer to (Horstmann,

2003a,b).
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The PDE models of Keller-Segel type can be studied analytically, for example, by

travelling wave or perturbation analysis. However, numerical simulations are most

often employed to solve PDE systems and to compare results with experimental data.

To solve PDE systems numerically, method of lines (MOL) can be used (Schiesser,

1991). In this method, spatial domain is discretized, for example, by a regular square

grid. Every PDE is substituted by a matrix of ODEs on the grid (one ODE per grid

node), and the resulting ODE system is solved numerically.

The Keller-Segel system is widely used not only for bacteria modeling, but also for

other biological systems exhibiting chemotaxis (Murray, 2003). For mathematicians,

the Keller-Segel system remains a rich source of theoretical insights, in both numerical

and analytical aspects. For example, the solution of Keller-Segel equation can be

manipulated to form a user-de�ned pattern, such as Gaussian or parabolic function,

by dynamical control of the boundary conditions (Lebiedz and Brandt-Pollmann,

2003; Lebiedz and Maurer, 2004). A number of extensive theoretical works on the

theory of partial di�erential equations were inspired by the Keller-Segel system and

bacterial chemotaxis in general (Alt, 1980; Othmer and Stevens, 1997; Hillen and

Othmer, 2000). Since its �rst formulation, the Keller-Segel model became a general

framework of population models for more than 30 years, and still remains an actual

topic of scienti�c research because of its complexity.

There were many outstanding theoretical works aimed to couple the microscopic

behavior of a single bacterium to the population behavior in terms of Keller-Segel

model. One of the �rst systematic work in this direction was made by Lovely and

Dahlquist (1975), who derived expressions for a direction correlation function, dif-

fusion constant, persistence time, and average drift velocity in terms of individual

cell parameters. A solid theoretical work was further performed by Alt (1980), who

considered a general stochastic chemosensitive system (leukocytes or bacteria) and

derived its governing integro-di�erential equation at the continuum level. Alt carried

out asymptotic analysis of the governing equation, and showed that it is approxi-

mately described by the Keller-Segel equation. He further derived the di�usion and

chemotactic coe�cients from microscopic parameters: mean trajectory duration, cell

swimming speed and receptor-attractant dissociation constant. Chen et al. (1999)
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carried out perturbation analysis of the Alt's governing equation and derived a chemo-

tactic coe�cient similar to that obtained previously by Rivero et al. (1989):

χ(C) =
2v

3
tanh

(
χ0

2v

KD

(KD + C)2

∂C

∂x

)
(2)

where C(x) is the chemoattractant concentration at the cell position x, KD is the

receptor-attractant dissociation constant, and v is the cell swimming speed. Note

that here ∇C is already included into the chemotactic coe�cient. The use of tanh()

function is necessary for steep gradients, because it limits possible extreme growth of

the chemotactic coe�cient. This expression for chemotactic coe�cient was used in

many macroscopic models, and it �ts well the abundant experimental data (Ford and

Lau�enburger, 1991; Marx and Aitken, 1999, 2000; Pedit et al., 2002).

Continuing the e�orts of bridging the di�erent scales, Erban and Othmer (2004)

used a simpli�ed model of excitation and adaptation, described by two ordinary

di�erential equations, to derive a macroscopic description of bacterial chemotaxis in

1D space. Authors incorporated basic parameters of microscopic behavior (excitation

and adaptation time) into the evolution equation for the macroscopic density. They

derived the following form for chemotaxis sensitivity:

χ(C) = g′(C(x))
bv2ta

λ0(1 + 2λ0ta)(1 + 2λ0te)
(3)

where g(x) is the function that describes the `cartoon` excitation and adaptation dy-

namics, λ0 is the tumbling frequency of unstimulated cells, te and ta are the excitation

and adaptation constants, respectively, b is the constant of tumbling sensitivity. These

results were further generalized to 2D and 3D cases (Erban and Othmer, 2005). This

outstanding theoretical work provides a bridge between simpli�ed microscopic model

of signal transduction and the macroscopic population model of Keller-Segel type.

However, the microscopic properties of signal transduction model can be included

into PDE coe�cients only in a form of cartoon model so far, because of enormous

complexity of the resulting analytical expressions. Due to this complexity, a single-

cell numerical approach seems more promising way to understand bacterial behavior,
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aided by the increasing power of modern computers.

1.4.2 Single-cell models

Early models

In parallel to population models, developed mainly by theoreticians, the experimen-

talists who worked with chemotactic bacteria sought to suggest single-cell models of

signal transduction that could account for the observed cell behavior. Macnab and

Koshland (1972) were the �rst to suggest a model of signal transduction mechanism,

though most of its molecular details were unknown at that time. In their model,

authors considered a response regulator X (essentially CheYp), which is produced

from W (CheY) and transformed to Y (also CheY, as was revealed later) by two

hypothetical enzymes. Five years later, Koshland extended this model, assuming

that covalent modi�cation of receptors by methylation is controlling the activity of

response regulator X (Koshland, 1977). In his paper, Koshland suggested a threshold

model, in which regulator suppresses tumbling when it rises above the threshold and

increases tumbling when it falls below the threshold.

Block, Segall, and Berg studied the response of tethered bacteria to brief pulses

of attractant and repellent, and the corresponding times of excitation and adaptation

(Block et al., 1982). While the addition of attractant results in almost immediate re-

sponse (excitation), it disappears with time gradually, even if the attractant is present

(adaptation). Analysis of the probability of CCW motor rotation in response to at-

tractant showed that excitation and adaptation occurred at very di�erent timescales,

su�ciently di�erent to propose that they are controlled by distinct molecular mecha-

nisms. The timescale of response indicated that bacterium is able to integrate stimuli

over several seconds. According to their measurements, the impulse response demon-

strates band-pass properties: the cell is maximally sensitive to frequencies at which

the low-pass and high-pass contributions overlap. Authors further suggested a two-

state model of motor switching. According to the model, switching between CCW

and CW is determined by alternate con�gurations of a regulatory protein or a sim-

ilar mechanism. The transitions between two states are governed by �rst order rate
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constants, kr and kt, which are the probabilities per unit time of terminating a run

or a tumble, respectively.

In their next paper, Block et al. (1983) studied response of tethered bacteria to

gradual concentration changes (time ramps), which had exponential or sine wave

forms. They demonstrated that the change in motor bias is proportional to the

change of receptor occupancy dP/dt, therefore bacteria must be able to compare the

present level of receptor occupancy to the recent past. Importantly, authors were the

�rst to suggest a model of signal transduction by considering the change in receptor

occupancy and adaptation via methylation, which layed the groundwork for the sub-

sequent single-cell models. However, at that time the molecular mechanisms under-

lying the chemotaxis pathway remained obscure. There were three major challenges

to resolve for the next two decades: the mechanism of precise adaptation through

receptor methylation, the signal transduction through phosphorylation cascade and

the extreme sensitivity of the pathway.

The problem of adaptation was vividly formulated in (Goldbeter and Koshland,

1982): The phenomenon of adaptation itself places an enormous constraint on math-

ematical theories. Stated brie�y, an absolutely adapting system, which is obtained in

the chemotactic and visual systems, requires that the behavior return to normal despite

the fact that the stimulus is altered to a new background level. In their paper, Gold-

beter and Koshland analyzed several plausible models of adaptation, and compared

them to available experimental data. The resulting four-state model could account for

some key system properties observed in experiments: namely, the response times in

relation to stimulus changes, the proportionality of receptor modi�cation to receptor

occupancy, and the additivity of response times.

An alternative, two-state model was proposed by Asakura and Honda (1984). In

their model, receptor exists in a rapid equilibrium between conformations S (from

smooth swimming) and T (tumbling). Methylation shifts the equilibrium to T. At-

tractant binds only to S, while repellent binds only to T, and both types of ligand

shift the S-T equilibrium. Finally, the tumbling frequency is determined by the ratio

between S and T. This model has yielded a background for development of many

other models. A modi�ed two-state model of receptor is now a standard assumption
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in the chemotaxis simulations, starting from (Barkai and Leibler, 1997).

Models of phosphorylation and methylation

The phosphorylation cascade was �rst simulated by Bray and colleagues (Bray et al.,

1993), who implemented their model in a program BCT (Bacterial ChemoTaxis).

The authors simulated phosphorylation cascade by a system of ODEs, and correctly

reproduced excitation behavior of most known E. coli mutants, in which chemotactic

genes were deleted and/or overexpressed. The model incorporated CheB phosphory-

lation, binding of CheYp to a motor, and dephosphorylation of CheYp by CheZ. In

their ODE system, Bray et al. used realistic components concentrations and reaction

rates from available experimental data. The model was able to correctly reproduce

the pathway excitation to aspartate (attractant) and nickel (repellent), but did not

include adaptation, which was added in later versions of BCT (Levin et al., 1998).

However, the system of ODEs used in BCT was unable to explain the high sensitivity

(gain) of the cell response (Bray, 2002). The program BCT is discussed in detail in

the section Simulation Software.

In the model of Hauri and Ross (1995), authors also simulated the phosphorylation

pathway, including the phosphorylation of CheY and CheB and their dephosphory-

lation. The receptor complex was described in ten states (�ve attractant-bound and

�ve attractant-free). Due to a lack of experimental data, Hauri and Ross did not

include interaction between CheYp and �agellar motor. However, they assumed that

frequency of CCW rotation is a Hill function of CheYp, according to experiments of

(Kuo and Koshland, 1989). The model was mainly based on known reaction rates and

protein concentrations. Whenever possible, rate coe�cients were �rst assigned exper-

imentally measured values. Authors permitted variation in these rate coe�cients to

obtain values that were su�cient to explain initial response to stimuli (excitation)

and an eventual return of behavior to baseline (adaptation). The model simulations

agreed well with experiments, in particular the timescale of initial excitation. Also,

the model demonstrated exact adaptation for both attractant (aspartate) and repel-

lent (nickel). Authors simulated swimming of model bacteria in a Gaussian gradient

of aspartate, but the cells failed to response the applied gradient with given Hill
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coe�cient of CheYp-motor interaction. A signi�cant increase of it, from 5.5 to 15,

allowed the cells to respond to the gradient. The model failed to account for the

experimentally observed sensitivity and gain, as well as the timescale of adaptation.

Alterations of rate constants changed the adaptation precision, thus the model was

not robust.

Spiro and colleagues (Spiro et al., 1997) also incorporated attractant binding,

methylation, phosphorylation and CheYp-motor interaction into their model. A mini-

mal number of three methylation states was assumed, and the rate of phosphorylation

increased with the methylation state. The rate constants were tuned by trial and error

to achieve adaptation over a large range of ligand concentrations. The simulated

ramp, step and saturation responses to aspartate showed precise adaptation and a

reasonable timescale. The main focus was made on analysis of gain, which was de�ned

as g = −db
d(ln p)

, where b is the motor bias, and p is the rate of CheY phosphorylation,

in contrast to earlier de�nition as a change of bias per percent change in receptor

occupancy (Segall et al., 1986). Authors argued that a cooperativity in CheYp-motor

binding, an activity-dependent dephosphorylation by CheZ, or a receptor-receptor

interactions might account for the observed high gain.

A major advance in chemotaxis modeling was achieved by Barkai and Leibler

(1997), who suggested a simple and elegant model that exhibited robust adaptation

as its generic characteristic. In their model, authors used a two-state model of re-

ceptor complex following (Asakura and Honda, 1984): receptor can be either active

or inactive, and the probabilities of both states are determined by methylation level

and ligand occupancy. The key assumption of this model is that CheB demethylates

only active receptors, thus providing a feedback to bring the system to its steady

state. The methylating enzyme CheR was assumed to act on both active and in-

active receptors. The feedback provided by CheB depends only from the system

output A (CheA activity), and therefore the system retains perfect adaptation at

various ligand concentrations and methylation levels. Yi et al. (2000) further studied

the Barkai-Leibler model analytically, and derived all conditions for perfect adapta-

tion within the Barkai-Leibler model beyond those reported in the original article.

Later, Mello and Tu (2003a) performed theoretical analysis of a full ODE system with
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phosphorylation cascade included, and formulated conditions necessary for a perfect

adaptation and the e�ects of their violation.

In contrast to deterministic models mentioned above, Morton-Firth and Bray

suggested a fully stochastic model of chemotaxis pathway (Morton-Firth and Bray,

1998). The stochastic approach was motivated by necessity to simulate the stochastic

nature of motor switching, as reported in (Block et al., 1982, 1983). The receptor

model followed the two-state paradigm of (Asakura and Honda, 1984; Barkai and

Leibler, 1997). The ligand binding, methylation and phosphorylation reactions were

simulated stochastically. The motor bias was de�ned as a Hill function of CheYp.

Authors showed that CheYp �uctuates around an average corresponding to the de-

terministically calculated concentration. The average duration of �uctuations was

found to be 80.7 ms, which is much shorter than the observed alternations between

CW and CCW rotations of tethered bacteria (typically 2.6 s). Their results therefore

argued against a simple threshold-crossing model for motor switching, and suggested

that �ltering of the CheYp �uctuations by the motor can produce temporal run and

tumble distributions closer to the experimentally observed behaviour.

A principal novelty of the Morton-Firth and Bray model was the use of free en-

ergy calculations in respect to ligand binding and methylation of Tar complex, sug-

gesting a uni�ed approach for the undergoing transformations (Morton-Firth et al.,

1999). Robust adaptation was achieved by assumption that CheR binds only to in-

active receptor complexes and CheBp to active ones. Morton-Firth and colleagues

demonstrated close agreement of their model with experimentally observed duration

of adaptation response to aspartate over four orders of concentrations, reported by

Berg and Tedesco (1975). They also showed that sequential methylation of Tar is im-

portant for adaptation. The model was implemented in a StochSim program, which

is discussed in the section Simulation Software. The �rst stochastic model failed to

reproduce the high sensitivity at low aspartate concentrations, which was addressed

in further work (Shimizu et al., 2003).
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Models of receptor cooperativity

Apart from models of adaptation and phosphorylation, which were studied in detail

by late 1990-s, the problem of high gain remained unresolved. The sensory system of

E. coli demonstrates extreme sensitivity, with signal ampli�cation by a factor of 100

(see Signal Ampli�cation section above). The possible mechanisms of such a strong

signal ampli�cation were actively studied by both experimentalists and theoreticians.

Ising model. Cooperativity of receptors as a source of high gain was �rst sug-

gested by Bray et al. (1998). Shi and Duke (1998) proposed an Ising-type model of

receptor-receptor interactions, drawing parallels from a physical problem of magnetic

dipoles. A Ising model with two-dimensional lattice of interacting receptors was later

merged with stochastic simulator StochSim to give a fully stochastic model of E. coli

chemotaxis pathway (Shimizu et al., 2003). This spatially resolved model of receptor

cluster demonstrated fairly good agreement with FRET dose-response experiments

of Sourjik and Berg (2002a).

MWC model. An alternative model of receptor cooperativity was proposed by

Sourjik and Berg (2004), who �tted their experimental responses of homogeneous re-

ceptor clusters with a classical Monod-Wyman-Changeux (MWC) model of allosteric

protein interactions (Monod et al., 1965). The MWC model was further developed in

(Mello and Tu, 2005) to �t the experimentally measured responses of heterogeneous

receptors. In the MWC model of receptor cluster, there are two key assumptions: (1)

the inactive state of a receptor homodimer has a higher a�nity to attractant than the

active state; and (2) the entire complex exists with all of its N receptor homodimers

being either active or inactive. Generally speaking, cooperativity in the MWC model

can be characterized by the correlation length of the system, which depends on the

strength of the nearest-neighbour interactions in Ising-type models. In the MWC

model, the correlation length is e�ectively set by N, the size of the cluster, therefore

bypassing all of the complexity in determining the local interactions between recep-

tors. Also, the MWC model can be solved algebraically, making the analysis easier

and more intuitive. A comparative analysis of MWC and Ising models is given in
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(Skoge et al., 2006), where MWC is shown to be more consistent with the FRET

dose-response data of Sourjik and Berg for wild-type, CheR and CheRCheB mutants.

A detailed description of the MWC model for a heterogeneous receptor cluster will

be given in section Methods and Algorithms.

Endres and Wingreen (2006) simulated the MWC model with an assumption that

CheR and CheB can access �ve to seven receptors when tethered to a particular recep-

tor, as shown experimentally in (Li and Hazelbauer, 2005). Authors stochastically

simulate the e�ect of such an 'assistance neighbourhood', demonstrating that it is

necessary for precise adaptation in receptor cluster. For single receptor methylation,

authors adopted Barkai-Leibler model with the assumptions that CheR methylates

only inactive receptors, while CheBp demethylated only the active receptors. Un-

like the original BL model, the methylation level of a single receptor in a cluster is

poorly correlated with the overall cluster activity, thus leading to imprecise adap-

tation. Authors show that their extention of BL model with the assistance neigh-

bourhood yields precise adaptation: assistance neighbourhoods e�ectively increase

the ladder of methylation levels such that CheR and CheB rarely encounter fully

methylated or demethylated conditions, which essentially results in perfect adapta-

tion. Endres and Wingreen also predict two distinct limits of adaptation at high

attractant concentration: receptors either saturate and hence stop responding, or

receptors fully methylate and hence stop adapting.

1.4.3 Robustness and noise

Noise plays an important role in the bacterial world. The cell swims along curly tra-

jectories rather than straight lines because of the Brownian motion causing rotational

di�usion (Berg, 1993). The network itself is a�ected by the noise from receptor-ligand

binding, methylation, and variations in protein concentrations (gene noise). The va-

riety of noise sources that disturb the chemotactic navigation poses a question of

how this navigation is possible at all, taking into account the relative simplicity of

the system. Computer simulations and experimental methods resolved this question.
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Variation of E. coli network parameters does not break its property of precise adap-

tation because of its robustness (Barkai and Leibler, 1997; Alon et al., 1999). Later,

Morton-Firth et al. (1999), Yi et al. (2000) and Mello and Tu (2003a) demonstrated

in their models that precise adaptation is robust if methylation and demethylation

rates depend on receptor activity.

Computer analysis of several alternative chemotaxis network topologies demon-

strated that E. coli has the smallest network which maintains robustness against gene

expression noise (Kollmann et al., 2005). In particular, the topology of E. coli chemo-

taxis network ensures robustness of the output (concentration of CheYp) against con-

certed variations in protein levels, which is the dominant source of gene expression

noise. Uncorrelated variations in protein levels, which arise due to noise in protein

translation, are further compensated by the translational coupling of neighbouring

chemotaxis genes (Løvdok et al., 2009).

While adaptation precision remains robust upon variations in protein concentra-

tions and kinetic parameters, there are two other system properties that are sensitive

to perturbations: the steady-state behavior and the adaptation time (Alon et al.,

1999). The steady-state behavior variation in live cells is minimized by coupled ex-

pression of adaptation enzymes CheR and CheB. When their concentrations change

proportionally, the steady-state behavior remains unbiased. However, the adaptation

time is sensitive to such changes. This means that even genetically identical cells

can have variability in chemotactic behavior (Spudich and Koshland, 1976; Berg and

Tedesco, 1975).

Another intrinsic source of noise arises from slow reactions of receptors methyla-

tion. Notably, the cells appear to have been selected to maintain low CheR expres-

sion levels, which lead to high noise in methylation events and long-term variations

in system output. It was shown experimentally that such a noise provides long-term

variations in the cellular behavior, with long-term correlations of motor output (up

to 20 min) (Korobkova et al., 2004). Such variation in motor behavior, and hence

run length, can help the cell to explore the surrounding environment more e�ciently,

because the runs in adapted state are distributed as L�evy-�ights rather than exponen-

tial variables. In this case, the noise can be bene�cial for individual cells to explore
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new areas, also in the presence of gradient (Emonet and Cluzel, 2008).

However, most of the noise factors decrease the e�ciency of chemotactic naviga-

tion. But the chemotactic network can cope with that. Experiments and simulations

of the network input-output properties show that the pathway demonstrates proper-

ties of low-pass �lter coupled to a di�erentiator (Block et al., 1982; Andrews et al.,

2006; Tu et al., 2008). The system averages the signal over a certain time, and

then di�erentiates it to determine the steepness of the gradient in the current run

direction. In this way, the system follows the main signal (gradient) and �lters out

high-frequency noise. Moreover, Andrews et al. (2006) showed that bacterial signaling

system works close to the theoretical limit of precision (Rayleigh limit), demonstrating

the characteristics of nearly perfect molecular instrument.
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1.4.4 Simulation software

At present, most molecular mechanisms of chemotactic sensing are well understood,

and the reaction rates together with concentrations of components are known (http:

//www.pdn.cam.ac.uk/groups/comp-cell/Data.html). Therefore, the single-cell

behavior can be simulated in a quantitative way. The available programs of chemo-

taxis simulation arise from two main schools of mathematical modeling: ordinary

di�erential equations (ODE) and the stochastic (Monte-Carlo) simulations. The pro-

grams of both types are described and discussed below.

BCT

The ODE approach is best represented by Dennis Bray's BCT (Bray et al., 1993; Bray

and Bourret, 1995; Levin et al., 1998). BCT was the �rst program which simulated

chemotaxis pathway in a quantitative way. The program numerically solves ODE

that govern pre-assembling of ternary signaling complexes, ligand binding, receptor

methylation, and the phosphorylation cascade. Currently, the system consists of

about 90 di�erential equations. The most important features of the current version

(BCT 4.4) include:

• Detailed simulation of receptor complex preassembling and phosphorylation cas-

cade,

• Exact adaptation to the addition and removal of chemoe�ectors,

• Phenotypes of 63 out of 65 bacterial mutants are accurately reproduced,

• Response to two attractants (aspartate and serine), and to a repellent (nickel)

can be simulated,

• Individuality in swimming behaviour can be simulated.

The BCT program represented a great advance in the �eld of chemotaxis modeling.

Based on experimentally determined component concentrations and reaction rates,

it was carefully analysed and adjusted to reproduce the experimental data on cell

http://www.pdn.cam.ac.uk/groups/comp-cell/Data.html
http://www.pdn.cam.ac.uk/groups/comp-cell/Data.html
http://www.pdn.cam.ac.uk/groups/comp-cell/BCT.html
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response, including many mutant E. coli strains. The main shortcoming of BCT is

that it fails to reproduce the high sensitivity (gain) provided by the receptor-receptor

cooperative interactions. To obtain the necessary sensitivity, an 'infectivity factor'

was introduced, which multiplies the signal strength. For users, the program which is

available online has one practical disadvantage: it is compiled and distributed only for

Macintosh, which limits its potential usage. The source codes are not web available.

Bray and colleagues used BCT as a core simulator to model individual cell swim-

ming in 2D space (Bray et al., 2007; Zonia and Bray, 2009). The program with

detailed graphical representation of a single bacterium (with �agella) is called E. solo,

while the graphical representation of many bacteria without �agella is called E. pluribus.

StochSim

As an alternative approach, stochastic model of chemotaxis pathway was implemented

in the program StochSim (Morton-Firth and Bray, 1998; Morton-Firth et al., 1999).

The program provides a general-purpose stochastic simulator of biochemical reactions,

in which each molecule is represented as an individual software object. Reactions be-

tween molecules occur stochastically, according to probabilities computed from known

rate constants. The program is able to represent multiple post-translational modi-

�cations and conformational states of individual molecules. In particular, the Tar

signaling complex is simulated with aspartate binding, methylation at di�erent sites,

binding of CheB, CheR and CheY. These reactions are represented by 12 binary �ags.

Each complex in the program �ips between two conformational states with a prob-

ability determined by its current combination of binary �ags. The most important

program features are listed below:

• Implementation of multiple states of individual molecule (for receptor, these

include covalent modi�cations and binding states),

• Implementation of individual molecular reactions and realistic protein copy

numbers,

• The model accurately reproduces adaptation time in chemotactic response to

di�erent concentrations of aspartate,

http://www.ebi.ac.uk/~lenov/stochsim.html
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• Open-source and well-documented program, with binaries precompiled for Win-

dows, MacOS and Linux.

In the �rst version of StochSim, the model was non-spatial, so that positions of

molecules were not taken into account, assuming uniformly mixed solution. Therefore,

StochSim 1.0 failed to reproduce the high sensitivity of chemotactic system. It was

addressed in (Shimizu et al., 2003), where authors implemented nearest-neighbour

interactions by a two-dimensional Ising model of receptor lattice. This allowed to

reproduce the experimental data on high sensitivity. A shortcoming of the purely

stochastic approach is its high computational costs. For example, a 500-s simulation

of a single bacterium with non-spatial StochSim requires several hours on a modern

desktop PC, while the same simulation with spatial StochSim (65x65 lattice) can

require up to two days.

AgentCell

StochSim was used as a core simulator in AgentCell (Emonet et al., 2005). AgentCell

is designed for simulation of stochastic e�ects on cellular behavior, and chemotaxis

was used as a test system. The program simulates individual chemotactic bacteria

swimming in 3D space. The output of StochSim, in number of CheYp molecules, is

used to determine the rotation direction of individual �agellar motors. The cell swims

or tumbles depending on the state of its �agella: bundled or apart, corresponding to

CCW or CW motor rotation, respectively.

On a single-cell level, AgentCell (StochSim) reproduces chemotactic response to

changes of attractant (aspartate). AgentCell is also capable to demonstrate �agellar

motor behavior according to power-law rather than exponential distribution, in agree-

ment with the intriguing experiments of Korobkova et al. (Korobkova et al., 2004).

On the population level, AgentCell demonstrates reasonable di�usion coe�cients of

bacterial population in the absence of gradients, and also realistic rate of population

drift in presence of attractant gradient. Rotational di�usion as a result of Brownian

motion is included into cell motion model.

For researchers, AgentCell provides rich opportunities: its core simulator StochSim

http://www.agentcell.org
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reproduces individual molecular reactions inside every cell, while its main algorithm

enables simultaneous tracking of many cells in 3D space in presence of ligand gradi-

ents and, potentially, in user-de�ned spatial geometries. From the programming side,

AgentCell is also well-designed: it is open-source, it has a clear and well-documented

structure, and it is platform-independent due to Java implementation. For the pur-

pose of large-scale simulations, however, the largest shortcoming of this program is

inherited from StochSim, which is computationally demanding. Therefore, simulation

of bacterial population requires massive parallel computations, preferably with 1 CPU

per bacterium, and such simulations can routinely run only on clusters. However,

AgentCell provides a perfect platform for further development of individual-based

chemotaxis models, because it is built of inter-changeable modules, and di�erent

models can be readily plugged in.

Smoldyn

Yet another level of intracellular modeling is implemented in Smoldyn (Lipkow et al.,

2005). Smoldyn is a general-purpose stochastic simulator, which simulates individ-

ual molecules stochastically in 3D cell volume, according to Smoluchowski dynamics

(Andrews and Bray, 2004). The molecule position is updated at regular time in-

tervals according to its di�usion coe�cient, current position and occurring events.

Bimolecular reactions are simulated using the proximity of two potential reactants:

two suitable molecules that come within each other's binding radius are made to re-

act. When applied to chemotaxis, Smoldyn simulates di�usion of individual CheYp

molecules in rectangular cell volume. For the input, Smoldyn uses BCT, which calcu-

lates concentration of autophosphorylated CheA molecules at the cell pole. Smoldyn

represents a major advance in simulation software, and its features are listed below:

• Spatially resolved simulation of individual molecules and reactions.

• Natural representation of CheYp gradient from signaling complex to �agellar

motors.

• E�ects of macromolecular crowding in cytoplasm.

http://www.smoldyn.org
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• E�ect of motor positioning in the cell wall.

• Open-source program.

• 3D graphical representation option.

Smoldyn represents the most detailed model of cytoplasmic events occurring in

chemotaxis system. A shortcoming of the current version is the usage of BCT module

� a use of spatially resolved StochSim would be probably more reasonable. Because

of their focus on single-molecule level, spatially-resolved models of signaling pathway

are also computationally expensive for simulation of bacterial populations. However,

such programs as Smoldyn and StochSim provide insights into molecular mechanisms

of the signal transduction, and therefore they can be very helpful for detailed analysis

of the system behavior on a molecular level.
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1.4.5 Multiscale models

Multiscale problems arise naturally from a certain level of understanding of a par-

ticular system, when its building blocks are already well understood, but the whole

system behavior over multiple levels of complexity remains obscure. Currently, there

is no general mathematical framework to integrate heterogeneous models over the

wide range of scales present in most biological, physical and engineering problems

(Colella et al., 2004). New ways of thinking in mathematics and computation are

required to �bridge the scales.�

There exist three major approaches to the multiscale problems: multiresolution

discretization methods, which resolve multiple scales within a single model system by

dynamically adjusting the resolution as a function of space, time, and data; closure

methods, which provide analytical representations from detailed microscopic models;

and hybrid methods, which couple di�erent models and numerical representations that

represent di�erent scales.

Multiresolution numerical methods include adaptive timestep methods for sti�

ordinary di�erential equations, di�erential-algebraic systems, and stochastic di�er-

ential equations; adaptive mesh re�nement (AMR) and front-tracking methods for

partial di�erential equations; and adaptive analysis-based methods for integral equa-

tions. These methods are widely used in physics, from quantum chemistry to su-

pernova simulations. In simulation of biochemical networks, a coarse-grained method

called tau-leaping has been proposed for acceleration of discrete stochastic simulations

(Gillespie, 2001; Cao et al., 2006).

Closure methods are derivation of macroscopic models from more detailed micro-

scopic models. Such problems include those that lack a strong separation of scales,

rare-event problems, and problems involving the reduction of high-dimensional state

spaces to a small number of degrees of freedom. The closure methods are used, for

example, in hydrodynamics of a multi�uid medium, material science and chemistry

of combustion. In biology closure methods are used to �nd the �rst two central

moments (mean and covariance) in stochastic models of noisy biochemical networks

(Gadgil et al., 2005; Lee et al., 2009).

Hybrid methods typically start from an analysis of a general mathematical model
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that describes the system at all relevant scales. Such an analysis yields either a hi-

erarchy of models that describe the system behavior on di�erent spatial scales (with

overlap in the range of validity), or a splitting of the unknowns into components cor-

responding to slow and fast dynamics. Hybrid methods are used in physics, chemistry

and earth science, e.g. for simulation of plasma in tokamaks, catalytic surface reac-

tions, and climate modeling. In biology hybrid models can be used, for example, in

simulation of intracellular reaction-di�usion systems using hybridization of stochas-

tic and deterministic methods, with appropriate spatial mesh discretization (Chiam

et al., 2006; Kalantzis, 2009).

Separation of system reactions into slow and fast components allows to perform

e�cient model reduction, which is especially relevant for high-dimensional systems in

physics, chemistry and biochemistry. Such a model reduction can be made automat-

ically using mathematical analysis of the underlying system of ordinary di�erential

equations. The model reduction methods include analysis of system eigenvalues or

computing the system trajectories that are close to slow attracting manifolds (Lebiedz,

2004; Lebiedz et al., 2008; Reinhardt et al., 2008).

Some speci�c hybrid models were proposed for bacterial chemotaxis. Setayeshgar

et al. (2005) described the chemotactic excitation and adaptation with a simpli�ed

model of two ODEs. The motor is described by a two-state model, switching between

CCW and CW with rates depending on CheYp. The 'voting rule' of tumbling is used:

when the majority of motors rotate CW, the cell tumbles, as suggested in (Ishihara

et al., 1983; Segall et al., 1986). The simpli�ed model of signal transduction coupled

with voting model of tumbling is simulated using a Monte-Carlo scheme, with the

cells moving in 1D space. Authors apply a coarse integration scheme to compute the

bacterial density at given timepoints. The key assumption is that the system 'closes'

on the spatial density, that is it can be described on long time scales solely by the

spatial cell density distribution. The spatial distribution is thus extrapolated over

long time using short local full-scale Monte-Carlo simulations.

The model of Setayeshgar et al. (2005) was used by Erban and Othmer (2004,

2005) to incorporate the microscopic network dynamics to the coe�cients of Keller-

Segel equation, as described above in section Population-scale models.
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Multiscale problems can be addressed by a speci�c design of simulation software,

by using high-thoughput methods of data processing and storage. The program

AgentCell, discussed above, is designed with powerful methods to scale it up to popu-

lational simulations: high performance Java-based results logging system, Hierarchi-

cal Data Format 5 (HDF5) data storage system, and parallelization of computations

among many computers within a computing cluster.

Another multiscale platform for bacterial simulation is BacSim (Kreft et al., 1998),

which is an individual-based model of bacterial growth including substrate uptake,

metabolism, maintenance, cell division and death. The model quantitatively simu-

lates E. coli population growing in de�ned medium, with spatially-resolved individual

cells and surrounding medium. Though it does not include chemotaxis network, this

model shows a signi�cant step toward construction of multiscale platforms, aimed at

individual-based simulations of bacterial populations and multi-species bio�lms.

http://www.theobio.uni-bonn.de/people/jan_kreft/bacsim.html
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1.5 Motivation

During the last 40 years of extensive research, bacterial chemotaxis became the best

described signaling system in biology. Most molecular interactions, protein copy

numbers and reaction rates are known in detail. A number of mathematical models

was suggested to study the system properties of chemotaxis signaling network, to

reproduce its input-output behavior, and to simulate swimming of bacteria in arti�cial

gradients in silico. It was a large e�ort in the area of modeling during the recent

15 years that brought us to the quantitative understanding of bacterial chemotaxis

from elementary reactions. The next challenge is to quantitatively understand the

behavior of bacterial populations in their environment, and the roles of particular

system properties in di�erent spatial and temporal scales.

The overview of existing models demonstrates a lack of individual-based models

for simulation of bacterial populations. The available models are strongly focused on

molecular details of signal transduction in a single cell. They are either too detailed

and computationally demanding (AgentCell) or lack an accurate description of recep-

tor clusters (E. pluribus) to simulate bacterial populations quantitatively. This has

a methodological reason, because these models are based either on purely stochastic

methods, which are aimed to simulate individual molecules, or on ODE approach,

which is based on assumption of well-mixed system and mass action law. Multiscale

modeling requires combination of stochastic and deterministic methods to simulate

bacterial populations using quantitative models of individual cells.

To address this problem, in this work di�erent mathematical approaches are com-

bined into a hybrid model. The receptor cluster activity is described algebraically

by a mean-�eld approximation (MWC), the methylation is described by ODE, the

phosphorylation cascade is described algebraically assuming its rapid equilibrium,

and the �agellar motors are modeled as stochastic switches. Combination of di�er-

ent methods allowed to construct a highly e�cient and up-to-date model, which is

described in detail in the following section Methods and Algorithms. Based on this

model, simulations of bacterial populations allowed to reveal novel system properties

of E. coli chemotaxis, which are described in section Results.
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Methods and Algorithms

Everything must be made as simple as

possible. But not simpler.

Albert Einstein

2.1 Hybrid model of chemotaxis pathway in E. coli

2.1.1 MWC model of mixed receptor cluster

In order to simulate the receptor complex activity, a Monod-Wyman-Changeux (MWC)

model for a mixed receptor cluster was applied (Mello and Tu, 2005; Endres and

Wingreen, 2006; Keymer et al., 2006a). This model accounts for the observed expe-

rimental dose-response curves of adapted cells measured in vivo by FRET technique

(Sourjik and Berg, 2002a). According to the model, individual receptor homodimer

of type r (r = a for Tar, s for Tsr) is described as a two-state receptor, which can be

either 'on' or 'o�'. Receptors form clusters with all receptors in a cluster either 'on'

or 'o�' together (Figure 4). The clusters are composed of mixtures of Tar and Tsr

receptors. At equilibrium, the probability that a cluster will be active is

A =
1

1 + eF
(4)

33
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where F = F on − F off is the total free energy of the cluster, and F on/off is the

free energy of the cluster in the on/o� state, respectively. For a cluster composed

of na Tar and ns Tsr receptors, the total free-energy di�erence is, in the mean-�eld

approximation, F = nafa(m)+nsfs(m), which is the sum of the individual free-energy

di�erences between the two receptor states

fr(m) = f on
r (m)− f off

r = εr(m) + log

(
1 + [S]/Koff

r

1 + [S]/Kon
r

)
(5)

where [S] is the ligand concentration, K
on/off
r is the dissociation constant for the

ligand in the on and o� state, respectively. The methylation state of the receptor

enters via the 'o�set energy' εr(m), which is described below in detail.

Figure 4: The MWC model of receptor cluster. Each receptor homodimer is described by
a two-state model. The inactive state of a receptor has a higher a�nity to attractant than
the active state. The entire complex exists with all of its receptor homodimers either active
or inactive. As in the two-state model, the receptor and the kinase are tightly coupled, so
that the kinase is active when the receptor is active. The probability A that receptor cluster
is active is dependent on ligand concentration and the methylation state of the receptors.
CheB is assumed to demethylate only active receptors, while CheR methylates only inactive
ones.
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2.1.2 Adaptation model

Adaptation is modeled according to the mean-�eld theory of MWC model (Mello

et al., 2004; Endres and Wingreen, 2006). CheB demethylates only active receptors,

CheR methylates only inactive receptors, and both enzymes work at saturation. Each

bound CheR adds methyl groups at a rate a(1− A), and each bound CheB removes

methyl groups at a rate bA. Under these assumptions, the methylation rate is given

by
dm

dt
= a(1− A)[CheR]

[MCP ]

KR + [MCP ]
− bA[CheB]

[MCP ]

KB + [MCP ]
(6)

We further assume that both enzymes work at saturation:

dm

dt
≈ a(1− A)[CheR]− bA[CheB] (7)

Note that this equation does not imply a �rst-order reaction mechanism between

the adaptation enzymes and receptors � the enzymes work in the zero-order regime.

The linear products a(1 − A)[CheR] and bA[CheB] mean that a bound CheR and

CheB can only act if the receptor cluster is inactive (CheR) or active (CheB), with

probability (1 − A) and A, respectively (Endres and Wingreen, 2006; Hansen et al.,

2008).

A relative adaptation rate is de�ned by parameter k in equation

dm

dt
= k(a[CheR](1− A)− b[CheB]A) ≡ kV0 (8)

Parameter k denotes the adaptation rate relative to the wild-type adaptation rate V0.

In the cells with normal steady-state activity (A∗ = 1/3), the rates and concentrations

of the adaptation enzymes are equilibrated by assuming b[CheB] = 2a[CheR]. The

catalytic rates a and b remain unchanged, and the cell-to-cell variability in adaptation

rate k is caused by variability in their [CheR, CheB], provided that they change in

a coordinated manner with the �xed ratio: [CheR] : [CheB] = 0.16 : 0.28 (Li and

Hazelbauer, 2004). The latter ODE for methylation is integrated using the explicit
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Euler method, so that the average methylation level evolves in time as

m(t + ∆t) = m(t) + kV0∆t (9)

To achieve high computational e�ciency in the model, the average methylation level

m is assumed a continuously changing variable within the interval [0, 8], with linear in-

terpolation between the key o�set energies: εr(0), 1.0; εr(1), 0.5; εr(2), 0.0; εr(3),−0.3;

εr(4),−0.6; εr(5),−0.85; εr(6),−1.1; εr(7),−2.0; εr(8),−3.0, following (Endres and

Wingreen, 2006; Hansen et al., 2008).

2.1.3 Kinase activity and CheY phosphorylation

CheA kinase activity (Ap) is assumed to be equal to the activity of the receptor

complex (A). The di�erential equation for CheY phosphorylation is (Kollmann et al.,

2005)
dY p

dt
= kY Ap(Y T − Y p)− kZY pZ − γY Y p (10)

Here Y p is [CheYp], Y T � total [CheY ], ZT � total [CheZ], Ap � active [CheA], and

ky = 100 µM−1s−1, kZ = 30/[CheZ] s−1, γY = 0.1 are the rate constants according

to (Kollmann et al., 2005; Stewart et al., 2000; Sourjik and Berg, 2002b). The rate

of phosphotransfer from active CheA to CheY is much faster than the rate of CheA

autophosphorylation (Table 1). Therefore, the concentration of CheYp is obtained as

a function of active CheA from the steady-state equation:

Y p =
kY ApY T

kY Ap + kZZ + γY

(11)

In relative units, [CheY p] = 3 kY ksA
kY ksA+kZZ+γY

, where ks = 0.45 is a scaling coe�cient.

In this scaling, relative [CheY p] = 0, 1, 3 correspond to fully inactive, adapted

and fully active receptor cluster, respectively. The absolute concentration relates to

the relative as [CheY p]abs = 3.1[CheY p] (µM), following (Cluzel et al., 2000).
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2.1.4 CheB phosphorylation

To study the e�ect of kinase-dependent CheB phosphorylation, the concentration

of phosphorylated (active) CheB was assumed to follow the steady-state equation

(Kollmann et al., 2005; Mello and Tu, 2003b):

[CheB] = [CheB]tot
A

A + k0.5

(12)

where [CheB]tot is the total relative concentration of CheB, and A is the kinase

activity.

It was assumed that 100%, 50%, or 25% of CheB can be phosphorylated in the

steady state A∗ = 1
3
, corresponding to [CheB]tot = 1, 2, 4 and k0.5 = 0, 1

3
, 1, respec-

tively. Note that at maximum kinase activity A = 1, the active [CheB] increases 1,

1.5 and 2 times compared to [CheR]; at steady state A = 1
3
both enzymes always

have equal levels, whereas at positive chemotactic signal A < 1
3

[CheB] is equal to

[CheR] (k0.5 = 0) or lower than [CheR] (k0.5 = 1
3
, 1).

2.1.5 Time-scale separation

It is assumed that the rates of ligand binding tl, rates of receptor-cluster conforma-

tional changes tk and receptor covalent modi�cation tm are well separated in scales:

tl � tk � tm. On our scale (∼ 1 s) the reactions of CheA autophosphorylation,

phosphotransfer from CheA to CheY and CheB can be described as a rapid equilib-

rium state by algebraic equations (11) and (12). The slowest reactions � methylation

by CheR and demethylation by CheB � are described by the ODE (8) to reproduce

the time scales of seconds and minutes required for adaptation. Table 1 shows the

comparative rates of the main reactions.

2.1.6 Motor switching

The motor is modeled according to the two-state model (Block et al., 1983)

CCW
k+



k−

CW (13)
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Description
Value [1/s]

ref. (1) ref. (2) ref. (3)
CheR catalytic rate 0.819 0.39 0.75
CheB catalytic rate 0.155 6.3 0.6
CheA autophosphorylation rate 15.5 50 23.5
CheY phosphorylation rate 15 530 530
CheB phosphorylation rate 15 15.9 53
CheY dephosphorylation rate 14.5 30.1 30

Table 1: Rates of reactions involved in the signaling pathway, according to (1) Morton-Firth
et al., 1999; (2) Kollmann et al., 2005; (3) Emonet and Cluzel, 2008.

The CCW motor bias (the fraction of time motor spins CCW) is related to the

switching rates as (Scharf et al., 1998)

mb =
k−

k− + k+

(14)

The CCW motor bias depends on CheYp concentration as a Hill function in the

following form (Cluzel et al., 2000; Shimizu et al., 2003)

mb =
mb0(

CheY p
CheY p0

)H

(1−mb0) + mb0

(15)

In this work, CheYp is already normalized to its steady-state value, so CheY p0 = 1.

The frequency of switching CW→CCW is taken k− = 1/Tcw = 0.83 s−1 and

assumed to be constant, because its relative change upon stimulus is small compared

to change of k+ (Block et al., 1983). Equation

k+ = k−

(
1

mb(CheY p)
− 1

)
(16)

gives the frequency of CCW→CW motor switching. This model of motor switching

was used in (Vladimirov et al., 2008). For a more detailed model of motor switching,

see Appendix B.

In simulation algorithm, at every time step ∆t the motor can switch its direction
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according to the switching frequency k+(−), with probability P+(−) = k+(−)∆t.

2.1.7 Model veri�cation

A summary of the parameters used in the model is given in Table 2, and a summary

of sub-models and underlying assumptions is shown in Table 3. Along the lines of

the MWC model for a mixed receptor cluster (Endres and Wingreen, 2006), a cluster

of 18 receptors is considered, composed of 6 Tar and 12 Tsr receptors. The catalytic

rates a and b were chosen to achieve the proper time scale of adaptation according

to in vivo FRET dose-response curves. The model was implemented in a program

RapidCell, which is described in the corresponding section.

Parameter Value Reference
Kon

a 12 µM Diss. constant of Tar to Asp (Morton-Firth et al., 1999)

Koff
a 1.7 µM Diss. constant of Tar to Asp (Morton-Firth et al., 1999)

K∗(KD) 4.52 µM Apparent diss. constant of Tar to Asp (Shimizu et al., 2003), this work

Kon
s 106 µM Diss. constant of Tsr to MeAsp (Endres and Wingreen, 2006)

Koff
s 100 µM Diss. constant of Tsr to MeAsp (Endres and Wingreen, 2006)

na 6 Number of Tar receptors in a cluster (Endres and Wingreen, 2006)

ns 12 Number of Tar receptors in a cluster (Endres and Wingreen, 2006)

[CheR] 0.16 µM Wild-type concentration (Li and Hazelbauer, 2004)

[CheB] 0.28 µM Wild-type concentration (Li and Hazelbauer, 2004)

a 0.0625 Catalytic rate of methylation, �tted

b 0.0714 Catalytic rate of demethylation, �tted

[CheY ]tot 9.7 µM Total CheY concentration (Li and Hazelbauer, 2004)

A∗ 1/3 Steady-state cluster activity (Endres and Wingreen, 2006)

CCW mb0 0.65 Steady-state motor bias (Cluzel et al., 2000; Segall et al., 1986)

H 10.3 Hill coe�cient of CheYp-motor interaction (Cluzel et al., 2000)

v0 20 µms−1 Cell swimming speed (Staropoli and Alon, 2000)

Dr 0.062 rad2s−1 Rotational di�usion coe�cient (Berg and Brown, 1972; Berg, 1993)

∆t 0.01 s Time step in the model

Table 2: Parameters used in RapidCell-1.0

As shown previously in (Mello and Tu, 2005; Endres and Wingreen, 2006; Keymer

et al., 2006a; Skoge et al., 2006), the MWCmodel for a mixed receptor cluster correctly

reproduces the in vivo FRET response amplitudes to step-wise addition and removal
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Model Reference
Receptor free energy: (Mello and Tu, 2005; Endres and Wingreen, 2006)

fr(m) = f on
r (m)− f off

r

f on
r (m) = εr(m)

f off
r = log

(
1+[S]/Koff

r

1+[S]/Kon
r

)
Cluster free energy:
F = nafa(m) + nsfs(m) (Mello and Tu, 2005; Endres and Wingreen, 2006)

Cluster activity: (Mello and Tu, 2005; Endres and Wingreen, 2006)

A = 1
1+eF

Receptor methylation: (Endres and Wingreen, 2006; Hansen et al., 2008)
dm
dt

= a(1− A)[CheR]− bA[CheB]

Steady-state CheYp concentration (Kollmann et al., 2005)

[CheYp] = 3 kY ksA
kY ksA+kZZ+γY

CheYp is normalized to CheYp0

CCW motor bias (Scharf et al., 1998; Shimizu et al., 2003)

mb = k−
k−+k+

= mb0
Y H(1−mb0)+mb0

Y is CheYp normalized to CheYp0

Motor switching freq. (CW→CCW)
k− = 0.83 s−1 (Block et al., 1983), assumed to be constant

Motor switching freq. (CCW→CW)

k+ = k−

(
1

mb(CheY p)
− 1

)
follows from mb equation

Distribution of tumbling angle (isotropic) (Chen et al., 1998, 2003)

f(Θ) = 0.5(1 + cosΘ)sinΘ, 0 < Θ < π

Table 3: Models used in RapidCell-1.0.

of MeAsp (Sourjik and Berg, 2002a, 2004). The model output was further compared

to FRET response in time (Figure 5A), showing agreement between simulation and

experiment both for amplitude and duration of the chemotactic response. However,

the steepness of the adaptation curve after attractant removal can only be roughly



2.1. HYBRID MODEL OF CHEMOTAXIS PATHWAY IN E. COLI 41

described by the existing model of CheB activity, a de�ciency which needs to be

addressed for more precise modeling in future. This discrepancy lays in CheYp region

above the adapted state, and it may change the duration of tumbles upon steep

negative responses. As a result, it may a�ect cell behavior in gradients of repellents.

However, the results presented in this work should not be a�ected by this discrepancy,

because simulations are performed in gradients of attractants, where actual CheYp

concentrations stay below the adapted state. Comparison of RapidCell and spatially

Figure 5: Veri�cation of RapidCell using FRET experiments and StochSim simulations. (A)
FRET response curve and RapidCell simulation of cell response to a step-wise stimulus of
MeAsp. Initial ambient concentration is zero, at point t = 80 sec 30 µM MeAsp is added,
at 480 s removed. The best �t by RapidCell is obtained with the adaptation rate k = 0.5,
that corresponds to the temperature T = 20o, at which the FRET experiments were carried
out. At T = 30o the �tting adaptation rate is k = 1.0 (V.Sourjik, unpublished data). (B)
StochSim and RapidCell simulation of cell response to a step-wise stimulus of Asp. Initial
ambient concentration is zero, at t = 20 sec 3.5 µM Asp is added, then at 70 s removed.
The best �t by RapidCell is obtained with the adaptation rate k = 8, which tends to be a
very rapid adaptation. The StochSim simulations were carried out with a coupled model
(Shimizu et al., 2003), 65×65 square receptor lattice with coupling energy EJ = −3.1kT .

extended StochSim responses to addition and removal of Asp is shown in Figure 5B.

The adaptation rate of StochSim seems very high compared to FRET experiments

and RapidCell simulations (k = 8 is the best �tting adaptation rate), which suggests

that RapidCell will be much more sensitive to gradients than AgentCell. StochSim

gives lower response amplitudes compared to FRET experiments (Shimizu et al.,
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2003).

RapidCell correctly reproduces experimental data on tethered cell stimulation

with pulse and step changes of Asp concentration (Segall et al., 1986) (Figure 6A,B).

The adaptation times after a step increase of α-methylaspartate (MeAsp) concentra-

tion over three orders of magnitude agree with experimental data reported in (Berg

and Tedesco, 1975) (Figure 6C).

Figure 6: Veri�cation of RapidCell using experiments on tethered cells. (A) Simulation
of CCW motor bias response to a short pulse of attractant. Initial ambient concentration
is zero, at t = 5 sec 1.0 mM Asp is added for 0.35 sec interval; solid line - simulations
(the best �t is obtained at with the adaptation rate of 2.0), circles - experimental data
(Segall et al., 1986). (B) Simulation of CCW motor bias response to a step-wise stimulus.
Initial ambient concentration is zero, at t = 1 sec 0.075 µM Asp is added; solid line -
simulations, circles - experimental data (Segall et al., 1986). The best �t is obtained with
the adaptation rate of 5.0, which is still in physiological limits (di�erent cell cultures and/or
growth conditions). (C) Adaptation times to a step increase of α-methylaspartate (MeAsp)
from zero ambient level, obtained in simulations (solid line) and in experiments (Berg and

Tedesco, 1975) (circles). In simulations, dissociation constants were taken Koff
a = 0.02 mM

and Kon
a = 0.5 mM (Keymer et al., 2006a); the best �t is obtained with the adaptation rate

of 1.3.
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2.2 Bacterial motion

The cells are simulated in continuous 2D space, and their motion is described by

coordinates (x, y), speed v orientation α and tumbling angle Θ (Figure 7). The cell

coordinates change every time step

x(t + ∆t) = x(t) + v∆t cos(α)

y(t + ∆t) = y(t) + v∆t sin(α)
(17)

Here, v is the cell speed and α is the cell body orientation (angle between swimming

direction andX axis). Orientation is a�ected by rotational di�usion (Berg and Brown,

1972; Berg, 1993): at every time step, the running direction is changed by adding a

stochastic component

α(t + ∆t) = α(t) + ξ (18)

Here, ξ is a stochastic variable with normal distribution N(m, σ) = N(0,
√

2Dr∆t).

The di�usion coe�cient Dr = 0.062 rad2s−1 (Berg, 1993). After a tumble, the cell

orientation changes by the tumbling angle Θ, with randomly chosen sign.

Figure 7: Swimming orientation α and tumbling angle Θ.

Run and tumble events include a complex interplay of �laments in a bundle, the

details of which have been investigated experimentally (Darnton et al., 2007; Turner

et al., 2000). To simulate the run and tumble behavior of a cell with several motors

(N = 3−7), two alternative models were considered, simpli�ed and detailed. The �rst

model takes into account only the number of CW-rotating motors at each moment
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of time, while the second considers also the 'history' of each CW-rotating motor, i.e.

how long it rotates CW. Both models are described below.

2.2.1 Running and tumbling: Model 1

Running. During a run, the cell is assumed to move with constant speed v0 =

20µm/s. At each moment of time, the number of CW-rotating motors is counted for

run-tumble switching decision.

Tumbling: Voting motors. The cell has N = 5 motors switching independently,

and the run-tumble state of the cell is determined according to a voting model (Ishi-

hara et al., 1983; Turner et al., 2000; Andrews et al., 2006). The cell switches from

'Run' to 'Tumble', if at least 3 of its 5 motors rotate CW, and from 'Tumble' to 'Run',

if at least 3 of the 5 rotate CCW. The choice of N = 5 is arbitrary, and similar results

are obtained for N = 3, 7 under the condition of majority voting.

For model validation, simulations of cells with N = 3, 5, 7 motors were carried

out. The simulated run times (1.04-1.11 s, Table 4) agree with the experimental

value of 1.24±1.16 s (Lewus and Ford, 2001). The simulated tumble times (0.26-0.44

s) are higher than the measured 0.14± 0.08 s (Berg and Brown, 1972; Turner et al.,

2000). However, the latter study (Turner et al., 2000) shows that the time from

bundle breaking in the old run to bundle consolidation in the new is 0.43 ± 0.27 s.

Therefore, this model was used initially (Vladimirov et al., 2008), but after discussion

with Howard Berg is was changed to Model 2 as described further in this section.

2.2.2 Tumbling angle distribution (isotropic)

The tumbling angle is distributed according to the probability density function (Chen

et al., 1998, 2003)

f(Θ) = 0.5(1 + cosΘ)sinΘ, 0 < Θ < π (19)

with mean M(Θ) = 67.5o which is close to the experimental measurement of 68o

(Berg and Brown, 1972), and the corresponding shape of the function (Figure 8).
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In Model 2, this tumbing angle distribution is called isotropic, because it does not

depend on any external factors, such as swimming direction.

N motors Voting threshold Trun Ttumble

3 2 1.11 0.44
5 3 1.09 0.33
7 4 1.04 0.26

Table 4: Simulated run and tumble times for cells with voting model of tumbling, at di�erent
number of motors. Parameters: Tccw = 1.33 s, Tcw = 0.72 s, mb = 0.65, n = 10000.

Figure 8: Probability density function of tumbling angles f(Θ) = 0.5(1 + CosΘ)SinΘ, in
the isotropic model of tumbling (solid line), and experimental measurements (cross markers)
from (Berg and Brown, 1972).

2.2.3 Running and tumbling: Model 2

To simulate the experimentally observed hydrodynamics of bacterial swimming and

tumbling in simple terms, a distortion factor dcw is introduced, which re�ects how one

CW-rotating �agellum in�uences the speed and angular deviation of the swimming

cell

dcw =

{
tcw/t0cw, tcw ≤ t0cw

e−20(tcw−t0cw), tcw > t0cw
(20)
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This functional form implies that the distortion rises proportionally to the CW ro-

tation time tcw as long as it is below the threshold t0cw (the �rst period). After this

threshold is reached, the distortion exponentially decays (the second period). The

�rst period corresponds to unwinding of a �agellum from the bundle and its rotation

in the right-handed semicoiled form, which initiates a tumble. In the second period,

when the �agellum rotates CW longer than the threshold time, a rapid transformation

from semicoiled to curly 1 form occurs, and the �agellum twists around the bundle

during the new run, due to high �exibility of the latter form (Darnton et al., 2007).

Parameters are shown in Table 5.

The collective in�uence of several simultaneously CW-rotating motors is assumed

to be proportional to the sum of their distortion factors

Dcw =
icw∑
i=1

di
cw (21)

This implies that the tumble can occur if a single motor rotates CW for at least t0cw

period, or if two or more motors rotate CW together for a shorter time. Formally,

a tumble occurs when Dcw ≥ D0
cw, where D0

cw is a threshold value. In principle, the

threshold depends on the total number of motors: the larger N , the higher D0
cw is

required to generate a tumble. This is consistent with experimental data in Fig. 12 of

(Turner et al., 2000), where switching of 1 motor is su�cient for a tumble at N = 2−4,

but for N = 5 at least 2 motors are necessary for a tumble. However, we keep the

same D0
cw = 1 for N = 2, 3, 4, 5 for simplicity, to avoid additional arbitrarily chosen

thresholds. The simulated run lengths in a ligand-free medium have distribution close

to exponential, and their mean values are about 1 s.

Parameter Value Reference

t0cw 0.15 s Max. time �agellum rotates CW in semicoiled form
D0

cw 1.0 Threshold of total distortion to initiate a tumble
Vmax 20 µms−1 Max. swimming speed

Table 5: Additional parameters used in RapidCell-1.1 with anisotropic tumbling. Other
model parameters are the same as described in Table 2.
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The cellular swimming speed linearly decreases with the distortion

v =

{
v0(D

0
cw −Dcw), Dcw < D0

cw

0, Dcw ≥ Dcw

(22)

In this model, only 'complete' tumbles are considered, which occur when Dcw reaches

D0
cw and the swimming speed falls to zero: at this time point the cell instantly changes

its orientation by the tumbling angle Θ, which is determined by two alternative

models, isotropic and anisotropic. The mean length of complete tumbles is now very

short (∼0.01 s), but the e�cient tumble length is about 0.1 s due to the drop of speed.

For simplicity, it is assumed that if the distortion Dcw does not reach D0
cw, it causes

only a drop of speed.

2.2.4 Anisotropic tumbling

The tumbling angle Θ is determined by the number of CW-rotating motors ncw in-

volved in the tumble, and the total number of motors N . For each pair of (ncw, N),

the cell swimming in a ligand-free medium was simulated, and the frequency pi of the

tumbles which are caused by i CW-rotating motors was calculated for each i = ncw.

Using the frequency pi, we chose the turning angle Θi close to the experimental values

(Turner et al., 2000), while keeping the average turning angle constant in all models,

N∑
i=1

piΘi = 67.5o (23)

The actual Θi and pi values used in simulations are shown in Results, Figure 24C,D.

2.3 Model of the environment

The virtual cells are swimming in a 2D environment with a prede�ned attractant

concentration �eld S(x, y, t). The domain geometry is either rectangular (0, xmax)×
(0, ymax) or circular (0, rmax), with re�ecting walls. The simulation time Tmax was

chosen to be short enough to avoid boundary e�ects. An extension to 3D motion
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is given in the Appendix with necessary mathematical background. However, sim-

ulation in three-dimensional space is not expected to bring novel system properties

in the chemotactic behavior, and in this work all simulations are carried out in two

dimensions.

2.3.1 Constant-activity gradient

The gradients used in chemotaxis modeling are usually linear, Gaussian or exponential

(Emonet et al., 2005; Bray et al., 2007). However, in these gradients the signal is

non-constant, which means it is strong at low attractant concentrations, and weak at

high concentrations due to receptors saturation. Such a non-uniform shape of signal

makes it di�cult to estimate chemotactic e�ciency over long time intervals � cells

soon become 'blind' because receptors are saturated, and chemotactic drift decreases.

In this work, a formula of "ideal" gradient that provides constant network excitation

was derived from the MWC model (see Appendix for mathematical details). The

chemoattractant function of such a constant-activity gradient is

S(x) = K∗ Cx
Kon−Koff

K∗ − Cx
(24)

where x is the space variable, C is a parameter of gradient steepness, K∗ =
√

KonKoff ,

i.e. the geometric mean of ligand-receptor dissociation constants Kon and Koff .

Gradient steepness. A cell swimming with speed v along the axis X from the point

(x = 0) senses the monotonically increasing function S(x) and a constant change in

receptor free energy per second

dE/dt = Cdx/dt = Cv (25)

(see Appendix C for details). This value is de�ned as steepness of the constant-activity

gradient.
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Limiting condition. Note the necessary condition (Kon−Koff

K∗ −Cx > 0) for Eqn. 24

to avoid singularity and negative concentrations. It sets the upper limit C < Cmax =
Kon−Koff

K∗
1

xmax
for the gradient steepness C within the domain (0, xmax). For example,

within a domain of size xmax = 10 mm, the maximum steepness of a gradient of

aspartate is Cv = 2.28/xmaxv = 4.56× 10−3.

2.3.2 Constant-activity and exponential time ramps

In contrast to spatial gradients, which direct the cellular motility in space, time ramps

are used to study the chemotactic response of tethered cells (Block et al., 1983; Segall

et al., 1986).

The constant-activity ramp of Asp was simulated according to Eqn. 24:

S(t) = K∗ Ct
Kon−Koff

K∗ − Ct
, C =

Kon −Koff

K∗ · 0.9999/Tmax (26)

with simulation time Tmax = 1000 seconds. The resulting value of C gives the maxi-

mum ligand concentration S(Tmax) = 9999K∗.

The exponential ramp was simulated as:

Se(t) = 0.31KD exp(0.005(t− 200)), (t ≥ 200) (27)

after 200 s of adaptation to the initial stimulus 0.31KD, following the model and ex-

periments of (Block et al., 1983). The concentration pro�les are shown in Figure 11A.

2.3.3 Simulations in constant-activity and other gradients

The constant-activity gradient (Eqn. 24) has an intensity C = Kon−Koff

K∗
0.999
xmax

, and the

domain has a rectangular (0, xmax)×(0, ymax) or circular (0, rmax) shape. The gradient

has its minimum S(0) = 0 and reaches its maximum S(xmax) = 999K∗ (Figure 12A).

The circular gradient shape was used to simulate radially symmetric gradient created

by cells consuming the attractant in swarm plate experiments.
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Comparative set of constant-activity gradients (N0, N1, N2, N3). The

circular constant-activity gradient (rmax = 10mm) has steepness dE/dt = Cv =

4.56× 10−3. A set of other constant-activity gradients was obtained by changing the

steepness by a factor of two: (1.14, 2.28, 4.56, 9.11, 18.22, 36.44, 72.88)×10−3. The

chemotactic e�ciency is studied in four of them with moderate steepness (1.14, 2.28,

4.56, 9.11)×10−3. These gradients are referred to as constant-activity gradients N0,

N1, N2, and N3. In simulations, gradients were used in either radially symmetric form

(circular domain), or in one-dimensional form along X axis (rectangular domain).

In radially symmetric form, they are described by formula

S(r) = K∗ Cr
Kon−Koff

K∗ − Cr
, C =

Kon −Koff

K∗ · 0.999

rmax

(28)

with rmax = 40, 20, 10, 5 mm for N0, N1, N2, and N3, respectively. Here, rmax is the

radius of the circular domain.

In one-dimensional form along X axis, they are described as

S(x) = K∗ Cx
Kon−Koff

K∗ − Cx
, C =

Kon −Koff

K∗ · 0.999

xmax

(29)

with xmax = 40, 20, 10, 5 mm for N0, N1, N2, and N3, respectively. Here, xmax is the

width of the rectangular domain.

Chemotactic e�ciency. Chemotactic e�ciency was estimated as the average drift

velocity of a cell population, measured between 200 and 500 s of model time, in the

basic constant-activity gradients. As shown in Figure 13, within this interval the

average CheYp level of cells is constant, and the drift velocity can be accurately

measured by a linear �t.

Linear gradient. A linear gradient used in simulations has a form of S(x) = Kx,

x ∈(0,10 mm) with coe�cient K = 10−2 mM mm−1 (Figure 12A).
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Gaussian gradient. Another form of gradient used in simulations is Gaussian

S(x) = 10K exp(−(x − 10)2/(2σ2)), with shape parameter σ = 3.33 and coe�cient

K = 10−2 mM mm−1 (Figure 12A).
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2.4 RapidCell program

RapidCell is a platform-independent console application (Windows, Linux, MacOS).

The source codes are available online on the program website (http://rapidcell.

vladimirov.de). The output �les contain the key characteristics of the intracellular

state (CheYp level, CheA activity, methylation state, motor bias) and the positions of

cells. The principal algorithm of the program is shown in Figure 9 in a form of pseudo-

code. The model was implemented using Java classes similar to AgentCell (Emonet

et al., 2005), but with simpli�ed architecture. The algorithm implements a discrete-

time Monte Carlo scheme with time step ∆t = 0.01s. For random-number generation,

external Java libraries were used (Flanagan, 2007; Matsumoto and Nishimura, 1998).

The code was written using Eclipse SDK (www.eclipse.org). The output data were

analyzed with MATLAB (The MathWorks, MA). See Appendix A or the RapidCell

website for instructions on running RapidCell and analysis of the output �les.

2.4.1 Java class �les

Run.java This class creates a model instance and starts simulation.

Model.java The class contains parameters of simulation and domain geometry. Meth-

ods tryTumbleNmotors(), tryRunNmotors(), updateMotorStates() implement the

Poisson processes for random switching between run and tumble for a single cell,

and the CCW/CW switching for its motors. Method tryStop(Cell) implements the

Poisson statistics for random traps during runs (in simulations of porous medium).

Cell.java The abstract class containing general attributes of the cell - RunTumbleSta-

te, chemotaxisNetwork, flagellarMotors. Class Cell2D extends Cell with cor-

responding attributes PositionX, PositionY, Orientation and method of reorien-

tation tumble(). The class Cell contains an array flagellarMotors[] of N motors.

Network.java The class contains attributes and methods for chemotaxis network

simulation, for example method updateMWCmodel(), which updates the methylation

http://rapidcell.vladimirov.de
http://rapidcell.vladimirov.de
www.eclipse.org
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Figure 9: The scheme of RapidCell algorithm as a pseudo-code. The initialization part
includes setting up all necessary variables and parameters, creation of cells with de�ned
initial states of their networks in certain space positions, etc. The two for each statements
denote the two main loops, along the time and across the cell population. The try to

tumble statement means that the run will be ended and the cell state will be changed to
tumble starting from the next time step. The try to run statement means that the tumble
is �nished, and the cell will start to run from the next time step.

level and cluster activity. An instance chemotaxisNetwork of class Network is a

member of class Cell.
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Motor.java The class contains parameters of �agellar motor and methods for calcu-

lating the switching frequencies of a motor.

2.4.2 Computational costs

Expensive simulations of the signaling pathway are avoided in RapidCell due to the

hybrid description of the network. This leads to a dramatic drop in computational

costs. Simulation of 1000 s long walk of a single cell in a ligand gradient takes

about 1 second to run in RapidCell. The same simulation requires 133 minutes for

AgentCell (StochSim without receptor coupling), while the spatially extended version

of StochSim requires several days on the same hardware (Intel Pentium 4, 2.40GHz,

RAM 1GB, OS Linux Suse 10.2). A 1000 s long series of step responses with the

BCT program takes 100 s under comparable conditions (PowerPC G5, 1.8GHz, RAM

1GB, MacOS X). Therefore, RapidCell provides a computational speedup of 8000

times compared to AgentCell (based on StochSim without receptor coupling), and

approximately 100 times compared to BCT. It enables simulations of up to 100,000

cells to be completed within several hours using a single desktop computer.

The computational time of RapidCell rises linearly with the number of simulated

cells and with the simulation time, as shown in Table 6.

a) N(cells): 1 10 100 1000
Computation time (s): 1 6 62 636

b) Tmax(s): 1 10 100 1000
Computation time (s): 1 6 66 623

Table 6: Computational time of RapidCell-1.0 at a) �xed simulation time Tmax = 1000 s
and variable number of cells; b) �xed number of cells N = 1000 and variable simulation
time. Simulations were run on PC of the following con�guration: Intel Pentium 4, 2.40GHz,
RAM 1GB, OS Linux Suse 10.2.
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Results

The constructed multiscale model of chemotactic E. coli (Figure 10A) has several im-

portant features, which distinguish it from other models. First, the receptor cluster

is described by a mean-�eld approximation of the MWC model, with heterogeneous

receptor composition (Tar and Tsr). The methylation is described by a simple ODE,

which allows to reproduce the time course of adaptation in agreement with the recent

FRET experiments. The relatively rapid reactions of ligand binding, conformational

changes and phosphotransfer are described by rapid-equilibrium algebraic equations.

The probabilistic nature of motor switching is reproduced by stochastic model of

CW-CCW switching motor, with the motor bias depending on current CheYp con-

centration. Though all these components were in some forms used in other models of

bacterial chemotaxis, they are here combined in the same model with �ne time dis-

cretization, allowing to bind these heterogeneous mathematical methods in a single

platform. The model is implemented in a program RapidCell, which is available for

use and supplemented with instructions, as described in Appendix. These method-

ological results are described in detail in section Methods and Algorithms, and here-

after simulations of chemotactic E. coli populations performed with RapidCell are

described.
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3.1 Chemotaxis in gradients of di�erent shape and

steepness

After validation of the model using di�erent sources of experimental data (seeMethods

and Algorithms), the cellular behavior was studied in the proposed universal constant-

activity gradient and compared with behavior in Gaussian and linear gradients. In

simulations, both single cell swimming (Figure 10B) and the behavior of populations

were analysed. The key characteristics that were considered are CheYp concentration,

cell position, and the population drift velocity along the gradient.

Figure 10: Model of chemotactic E. coli. (A) Scheme of the hybrid model. The activity
of receptor cluster depends on the local ligand concentration and the methylation level
according to the MWC model. Methylation (red arrow) and demethylation (blue arrow) are
performed by CheR and CheB. The phosphate group is transferred from active CheA to the
response regulator CheY (black arrow). The concentration of CheYp modulates the motor
bias of 5 independent motors (yellow arrows), and their collective behavior makes the cell run
or tumble. Ligand binding, receptors cluster switching, CheY phosphorylation and motor
switching are considered to be in rapid equilibrium and are described by algebraic equations,
while the methylation and demethylation kinetics are relatively slow and simulated using an
ODE. Motor switching is simulated stochastically. (B) The model reproduces swimming of
E. coli cells up gradients of attractants, taking into account the e�ect of rotational di�usion.
A typical path of a swimming virtual cell is shown in 2D space, with the relative time
course shown along the Z axis, demonstrating how the cell �nds the maximum attractant
concentration and stays in its vicinity. The attractant concentration pro�le is overlayed.
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3.1.1 Response of the MWC model to time ramps of Asp

Block et al. (1983) showed experimentally that tethered cells respond with constant

strength to an exponentially rising gradient of MeAsp, in the range between 0.31

and 3.2KD. Here, the response of the MWC model to increasing ramps of Asp in

the exponential and constant-activity form was simulated (Figure 11A). Indeed, the

exponential ramp gives nearly constant response between 0.5 and 3.0K∗, consistent

with the model of (Block et al., 1983). However, the constant-activity ramp results

Figure 11: MWC model response to the constant-activity and exponential ramps of as-
partate. (A) The concentration pro�les of constant-activity and exponential ramps of as-
partate, relative to KD = 4.52 µM (logarithmic scale). (B) The response of the MWC
model to the applied constant-activity and exponential ramps. Upon stimulation with the
constant-activity ramp, the [CheYp] rapidly goes down during initial excitation. The single
non-smooth point on the slope is the result of the piece-wise linearity of the methylation
energy function. The constant-activity ramp produces a long �at response up to a concen-
tration of 100KD, above which Tsr receptors become sensitive to the ligand and the cluster
activity falls. Upon stimulation with the exponential ramp, the cell initially adapts to the
minimum concentration Cmin = 0.31KD, and after 200 s the exponential ramp begins. Af-
ter 700 s, adaptation overcomes excitation and [CheYp] slowly returns to the steady state.
Relative adaptation rate k = 1.

in a chemotactic response that remains approximately constant over three orders of

ligand concentration � between 0.1 and 100KD (Figure 11B). If Tsr is non-sensitive to

the ligand, constant activity remains up to 1000KD. However, since Tsr receptors are

able to respond to aspartate non-speci�cally, the activity drops to zero, as previously
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shown for a mixed-receptor cluster (Sourjik and Berg, 2002a; Endres and Wingreen,

2006).

3.1.2 Chemotactic e�ciency of populations in di�erent gradi-

ents

To study chemotactic e�ciency in common gradients that arise from general di�usion

models, the chemotactic drift was simulated in linear and Gaussian gradients (Fig-

ure 12A), and compared with drift in the constant-activity gradient. Chemotactic

e�ciency was estimated by the average drift velocities of populations consisting of

1000 identical cells. In Figure 12B, one can see that in the linear and Gaussian gradi-

ents the drift velocity decays after about 400 and 800 s, respectively, indicating that

cells loose sensitivity due to receptor saturation. In contrast, the constant-activity

gradient keeps the drift velocity constant at any point (Figure 12B), as expected from

theory. This population behavior can be explained by the intracellular CheYp levels

Figure 12: Simulations of chemotactic population in gradients of di�erent shape. (A) Con-
centration pro�les of the gradients used in the simulations. (B) Chemotactic drift of cells in
these gradients. The average position 〈X〉 of the cells is shown as a function of time. A pop-
ulation of 2000 cells starts moving from the left wall (x0 = 10 µm, y0 randomly distributed
in (0, ymax)), and swims for 2000 s. (C) Relative CheYp concentration as a function of time,
averaged over 2000 cells in the same gradients. The gray line indicates the fully adapted
state [CheY p] = 1.0 in a medium without attractant. Relative adaptation rate k = 1. All
cellular parameters are as described in Table 2.

of the cells in these gradients. Gaussian and linear gradients result in a strong exci-

tation at low attractant concentrations, and poor excitation at high concentrations
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(Figure 12C). In contrast, the constant-activity gradient produces an approximately

constant level of CheY phosphorylation across the cell population. These two unique

properties of the constant-activity gradient � constant drift velocity and constant

average CheYp � favour this gradient as a reliable in silico assay to study the chemo-

tactic motility of cells.

Average CheYp level in the constant-activity gradients Simulation of cell

populations in the constant-activity gradients N1, N2 and N3 demonstrate that the

average CheYp level depends on gradient steepness and remains stable over long time

intervals (Figure 13). These three gradients were used further to measure chemotactic

e�ciency under di�erent test conditions.

Figure 13: Average CheYp levels in three constant-activity gradients. The CheYp levels of
5000 cells swimming in the constant-activity gradients N1 (blue), N2 (green) and N3 (red)
are shown. Relative adaptation rate k = 1. The cell parameters are as described in Table 2.

3.2 Optimal adaptation rates (in a liquid medium)

The constant-activity gradient was used to study the e�ect of adaptation rate on

chemotactic e�ciency. For this purpose, homogeneous populations consisting of cells

with the same adaptation rate were simulated. In a �xed constant-activity gradi-

ent, the population drift velocity depends on adaptation rate in a unimodal manner
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(Figure 14A). A zero level of adaptation enzymes (non-adapting cells) results in a

low drift velocity, though it is clearly distinguishable from non-chemotactic behavior.

A proportional increase of adaptation rate improves cellular drift velocity up to a

certain maximum, after which it slowly declines again. Extremely high adaptation

rates, more than 100 times higher than wild-type, make the cells non-chemotactic

(Figure 14A).

To study chemotactic e�ciency as a function of gradient steepness, cells were

simulated in seven constant-activity gradients with the steepness changing 64-fold,

from 1.14 to 72.88×10−3, (Figure 14B). In each gradient, the optimal adaptation rate

was determined, at which cellular drift velocity reaches its maximum. The simulated

drift velocities are in the same range as those measured experimentally for E.coli

in steep gradients (7 µm s−1) (Berg and Turner, 1990). Interestingly, the optimal

adaptation rate rises in proportion with the gradient steepness (Figure 14B).

Figure 14: Chemotactic properties of cells at di�erent adaptation rates in constant-activity
gradients. (A) Drift velocity of cells in the constant-activity gradient N2 as a function
of adaptation rate. The horizontal axis shows the adaptation rate k relative to the wild
type (logarithmic scale). Gray lines show standard deviations. (B) Maximal drift velocities
(black) and the corresponding optimal adaptation rates (blue) as a function of gradient
steepness. The steepness of the constant-activity gradients was changed over a 64-fold
range, as described in Methods and Algorithms.

To investigate the latter e�ect in more detail, the adaptation rate was varied from
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0 to 10-fold relative to the wild-type. In steeper gradients, the optimal adaptation

rate is indeed higher (Figure 15A), and the peak of the drift velocity becomes less

sharp. To �nd the reason for the observed dependence between the gradient steepness

and optimal adaptation rate, the average CheYp of the cells was analysed. As one

can see in Figure 15B, in all gradients the 90%-intervals around the velocity peaks

correspond to adaptation rate intervals [0.1, 0.5], [0.4, 1.5], [1, 3], respectively. These

three intervals are projected to the same interval [0.80 ≤ CheY p ≤ 0.97], within the

error of estimation. The optimal adaptation rates which give maximal drift velocities

correspond to an average [CheY p] ∼ 0.9. In steep gradients, the pro�le of average

CheYp �attens, and the optimal adaptation rate becomes higher (Figure 15B). The

Figure 15: Optimal chemotactic behavior at di�erent adaptation rates. (A) Drift velocities
of cells as a function of adaptation rate, in the constant-activity gradients N1 (blue), N2
(green), N3 (red). For each adaptation rate, the drift velocity was estimated from the
simulation of 1000 cells, with standard error of mean 0.05. (B) Average CheYp levels of cells
in the same simulations. Black dots indicate the adaptation rate at which drift velocity is
maximal. Gray rectangles show the intervals of optimal adaptation rates, de�ned by taking
the 90%-interval from the drift velocity maximum. The width of each rectangle indicates
the optimal adaptation-rate interval, and height shows the corresponding CheYp interval.
All three intervals of adaptation rates fall into the same CheYp interval: [0.80, 0.97], shown
by the gray band. (C) The CCW motor bias as a function of CheYp. Gray bands indicate
the optimal CheYp interval and the corresponding operating range of the motor. The cell
parameters are as described in Table 2.

reason why the interval [0.80 ≤ CheY p ≤ 0.97] corresponds to optimal chemotaxis

is evident from the pro�le of motor bias as a function of CheYp (Figure 15C). The

interval [0.80 ≤ CheY p ≤ 0.97] corresponds to the operating range of the motor

[0.95 ≥ mb ≥ 0.72], where the dependence between mb and CheY p is approximately
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linear. In this interval, chemotactic behavior is most e�cient in liquid media. The op-

timal adaptation rate therefore sets the CheYp level to �t the motor operating range.

In steep gradients, the adaptation rate must be high enough to balance the strong

excitation and set CheYp within this optimal interval. In shallow gradients, adap-

tation must be slow enough to allow excitation, otherwise the cells become adapted

before they are able to respond.

3.2.1 E�ect of [CheR]/[CheB] ratio on chemotactic e�ciency

The e�ect of varying the [CheR] to [CheB] ratio was studied at �xed [CheB] in three

constant-activity gradients N1, N2, and N3 in a liquid medium. The chemotactic

e�ciency dramatically decreases at [CheR] > 1 (Figure 16), because the resulting

higher steady-state CheYp level produces tumbling behavior. At [CheR] < 1, chemo-

tactic e�ciency decreases slowly for N3, or goes up for the N1 and N2 gradients. The

latter e�ect is caused by a shift of average CheYp level to the optimal interval, where

chemotactic sensitivity is the highest due to a more optimal �t to the motor operating

range.

Figure 16: E�ect of altered [CheR] on chemotactic e�ciency. The vertical axis shows drift
velocities. The level of [CheB] is �xed at the wild-type value (0.28 µM), while [CheR]
is varied relative to wild type (0.16 µM). Note the steep fall in the drift velocities for
[CheR] > 1, where the steady-state CheYp produces tumbling behavior.
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3.2.2 E�ect of CheB phosphorylation on chemotactic e�ciency

The e�ect of CheB phosphorylation feedback on chemotactic e�ciency in a liquid

medium was studied. Under the assumption that [CheR] and [CheB] perfectly match

each other (A∗ = 1/3), the CheBp-e�ect is positive when the adaptation rate is lower

than the optimum, and negative when the adaptation rate is higher, in the given

gradient (Figure 17A). This e�ect is caused by the reduction of CheB activity relative

to CheR when the kinase activity A is below the steady-state level (A∗ = 1/3), as

described in Methods and Algorithms. The average CheYp level is thus shifted up,

which results in a positive or negative e�ect of CheB phosphorylation, depending on

the rate of adaptation (Figure 17B).

Figure 17: E�ect of CheB phosphorylation on chemotactic e�ciency. (A) Drift velocity
as a function of adaptation rate in the constant-activity gradients N1 (blue), N2 (green),
N3 (red). The ratio of [CheR] to active [CheB] at steady state is the same as in the wild
type (0.16/0.28), ensuring the same steady-state activity A∗ = 1/3 in all cases. Solid lines
correspond to cells with 100%-active CheB at steady state, dashed lines - 50%-active, �nely
dashed - 25%-active CheB. (B) The average [CheYp] resulting from the balance between
CheR and CheB activity determines the positive or negative role of CheB phosphorylation.
Cells are simulated in the gradient N3, at adaptation rates of 1.0 and 3.0. Kinase-dependent
CheB activity means that CheB works more weakly at A < 1/3, and thus the average
[CheYp] is higher than the level obtained for constantly active CheB. Such a shift improves
chemotaxis at low adaptation rates, but reduces it at high rates. The optimal range of
CheYp is shown by the gray band. (C) Drift velocities at variable [CheR] and variable
CheB activity and �xed [CheB] (0.28 µM , wild type). Solid, dashed and �nely dashed lines
indicate 100%, 50% and 25% active CheB, respectively. Adaptation rate k = 1, other cell
parameters as described in Table 2.

The positive role of phosphorylation can be signi�cantly increased when the ratio
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of [CheR] to [CheB] is non-perfect (Figure 17C). For example, 25%-active CheB can

signi�cantly counteract the strong negative e�ect of [CheR] = 1.25 in the N3 gradient

� the drift velocity rises from 1.8 to 2.8 µm s−1 (55%). At [CheR] = 0.75 the e�ect

is not so dramatic, but remains signi�cant � the average drift velocities increase by

about 10-15% in all three gradients. This suggests that CheB phosphorylation helps

to maintain chemotaxis at �uctuating concentrations of CheR and CheB, when their

ratio is not perfect due to gene-expression noise.
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3.3 Chemotaxis in a porous medium (agar)

3.3.1 Swarm plate model

In the swarm assay in soft agar, bacteria consume an attractant, thereby creating a

local gradient, and follow it in the form of a growing ring (Adler, 1966; Wolfe and

Berg, 1989). The intensity of the moving gradient is assumed constant, and the radial

constant-activity gradient is used as a simple model of environment for the swarm

assay simulation. The radial constant-activity gradient provides a constant cellular-

drift velocity at any distance from the center of the plate. This property allows using

it as a stationary model of the real moving gradient of attractant.

Figure 18: Model of motility in a porous medium (agar). A cell encounters traps along its
run, and stops in the traps. It stays in the trapped state until the �rst tumble occurs, then
normal run and tumble behavior resumes. The trap positions are not �xed in the 2D space
- instead, it is assumed that each cell encounters traps in a series of randomly distributed
time intervals.

In swarm assays, bacteria move in a labyrinth of agar �laments, with obstacles

and traps along the cell's path. The cell can encounter traps during its run, and

stays trapped until it makes the next tumble, as observed by Wolfe and Berg (1989).

Therefore, non-adapting cells and non-tumbling mutants form the smallest rings. To
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simulate motility in agar, a new state of the cell was introduced, corresponding to a

stop in a trap during a run (Figure 18). The positions of traps are not �xed in space.

Instead, it is assumed that each cell encounters traps in an exponentially distributed

time series, which mimics the random collisions of the cell with agar �laments. The

mean free time between traps is set to 2.0 s to achieve biologically realistic drift

velocities (about 1 µm s−1). While it is trapped, the cell remains stationary until it

makes a tumble, whereupon normal run and tumble behavior resumes until the next

stop occurres (Wolfe and Berg, 1989).

3.3.2 Optimal [CheR,CheB] in agar � experiments and simu-

lations

In the model, the levels of the adaptation enzymes CheR and CheB are assumed to

vary in a coordinated manner, leaving the [CheR] : [CheB] ratio the same as in the

wild type. The ratio of CheR to CheB remains largely �xed because their genes are

adjacent and transcriptionally coupled in the meche operon (Løvdok et al., 2009).

The adaptation rate in the model is thus proportional to the level of co-expression of

CheR and CheB, which will be denoted as [CheR, CheB].

In order to study chemotactic e�ciency at di�erent adaptation rates in agar,

L. Løvdok experimentally measured chemotactic e�ciency on swarm plates. In these

experiments, CheR and CheB-YFP were co-expressed from one operon under control

of a pBAD promoter and native ribosome-binding sites. The pBAD promoter gives

expression levels lower or higher than the wild-type value, depending on the strength

of arabinose induction. Mean protein levels in the population at a given induction

were determined as described in (Vladimirov et al., 2008).

Experiment and simulations show that cells with [CheR, CheB] above a certain

threshold perform chemotaxis equally e�ciently. However, the cells with [CheR, CheB]

below the threshold have severely impaired chemotactic behavior (Figure 19A,B). Ac-

cording to the simulations, cells with low [CheR, CheB] tend to run without tumbling

and stay trapped most of the time.

The limits of motor bias for optimal chemotaxis in agar are di�erent from those in
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liquid media. As one can see in Figure 19C, the average CCW motor bias of successful

cells is just slightly higher than the steady-state mb0. Cells with higher motor bias

would drift faster in liquid media, but not in agar, because the period of time they

remain trapped also increases with CCW motor bias.

Figure 19: Swarm-plate assay at di�erent [CheR,CheB]. (A) Experimentally measured
chemotactic e�ciency at di�erent expression levels of the cheR cheB-eyfp operon under the
control of a pBAD promoter. The applied arabinose concentrations were 0.0, 0.0005, 0.001,
0.01 %, respectively. The CheB-YFP level re�ects the concerted [CheR,CheB-YFP] due
to strong translational coupling. For scale conversion, the wild-type level of CheB can be
taken as 240 copies/cell (Li and Hazelbauer, 2004). (B) Simulated chemotactic e�ciency
as a function of [CheR,CheB]. Cells are simulated in the constant-activity gradients N1
(blue), N2 (green), N3 (red). The black open circle shows the experimentally observed drift
velocity of wild-type cells, estimated from Fig. 4 of (Wolfe and Berg, 1989). The cross
shows the drift velocity of non-adapting cells, from Fig. 6 of (Wolfe and Berg, 1989). The
cell parameters are as described in Table 2. (C) Average motor bias of cells as a function
of [CheR,CheB]. The steady-state motor bias is 0.65, with the gray band indicating the
region of optimal motor bias for chemotaxis in agar.

3.3.3 Population in liquid medium and in agar

To model swarm assays more realistically, cell populations with a log-normal distribu-

tion of [CheR, CheB] were simulated. The mean (1.6) and standard deviation (0.48)

were �tted to reproduce the variability of adaptation times observed for wild-type

cells (Berg and Tedesco, 1975): Tad = 311± 150 s in response to a 0− 10−3 M MeAsp

step.

The scatter plot of distances travelled by cells along the radial gradient N2 in a

liquid medium shows that a subpopulation with optimal [CheR, CheB] levels drifts
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Figure 20: Simulation of a population in a liquid medium and agar with a physiological
[CheR,CheB] distribution. The distances R travelled by 104 cells after 1000 s of simulation
time in (A) the liquid medium, N2 gradient; (B) agar, N3 gradient. The (x,y)-positions
of cells colored from deep blue to red, according to their [CheR,CheB], are shown in (C)
for the liquid medium, (D) for agar. The smallest [CheR,CheB] values correspond to deep
blue, the highest values correspond to red. Note the di�erent scales of the �gures. The cell
parameters are as described in Table 2.

more rapidly than other cells (Figure 20A). Simulations in the N3 gradient in agar

show that cells with low [CheR, CheB] levels are hindered by agar traps, while other

cells drift successfully (Figure 20B).

In Figure 20C,D these cells are colored from deep blue to red, according to their

[CheR, CheB]. The outer edge of the bacterial ring in a liquid medium contains many

blue cells with [CheR, CheB] between 0.5 and 2. In contrast, the outer edge in the

agar contains a uniform mixture of cells with di�erent [CheR, CheB] levels, while
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deep blue cells with low [CheR, CheB] tend to be left behind.

These results suggest that in a liquid medium there can be a positive selection

for cells with optimal [CheR, CheB] � such cells can reach the nutrient source faster

and have more available substrates for growth. In contrast, swimming in agar poses

mainly negative selection � cells with low [CheR, CheB] are �ltered out from the

chemotactic population.

3.3.4 Experimental measurement of [CheR,CheB] in indivi-

dual cells in di�erent parts of swarm rings

To con�rm that chemotactic cells are selected for their [CheR, CheB] levels in swarm

plates, cells expressing CheR and CheB-YFP from one operon were taken from two

positions in the swarm ring � at the center and at the outer edge � and protein lev-

els in individual cells were determined using �uorescence imaging (experiments were

performed by L. Lovdok). The cells collected near the center at a standard agar con-

centration (0.27%) have on average lower copy numbers of adaptation enzymes than

cells at the outer edge, con�rming the predicted selection against low copy numbers

(Figure 21A). As expected, in the swarm plates with a reduced agar concentration

(0.20%), the di�erence between center and outer edge is much smaller (Figure 21B),

suggesting that there is no strong selection against low copy numbers in liquid media.

It should be noted that agar concentrations below 0.20% do not produce a stable gel

structure, and therefore that is probably the most liquid agar that can be used for

swarm plate experiments.

Simulations and additional experiments with a pTrc promoter, which gives much

higher basal expression level of [CheR, CheB], show that very high levels of the

adaptation enzymes, over 20-fold, can again decrease chemotactic e�ciency in agar

(Figure 22, 23).
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Figure 21: Experimental measurement of [CheR,CheB-YFP] in individual cells at di�erent
points in the swarm ring, for plates with (A) normal agar (0.27%); (B) liquid agar (0.20%).
Blue columns show the least swarming cells in the center of the swarm plate, and the red ones
� the best swarming cells from the outer edge. The expression of cheR cheB-yfp was under
the control of a pBAD promoter, which gives a basal expression level close to wild-type.
The bin size is 110 copies/cell.
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Figure 22: Chemotactic e�ciency in agar as a function of highly over-expressed
[CheR,CheB], observed in experiments and simulations: (black line) swarm plates e�-
ciency of cells with CheR and CheB-YFP expression under control of pTrc promoter. The
chemotaxis e�ciency was estimated as diameters of swarm rings divided by diameters of
wild-type swarm rings. Color lines denote simulated chemotaxis e�ciency in three isotropic
gradients N1 (blue), N2 (green), N3 (red). The chemotaxis e�ciency in simulations was
estimated as the average distance travelled by cells, divided by the distance at the optimal
[CheR,CheB]. Error bars indicate standard deviations.
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Figure 23: Experimental measurement of [CheR,CheB-YFP] in individual cells at di�erent
points of the swarm ring, for cells with (A) the least, and (B) the best swarming e�ciency.
The cells with the highest [CheR,CheB-YFP] have the least chemotactic e�ciency. CheR
and CheB-YFP were expressed from one operon under control of pTrc promoter and native
ribosome-binding sites. The pTrc promoter gives high basal expression relatively to the
wild-type level. The least swarming cells were taken from the center of the swarm plate,
and the best swarming - from the outer edge of the swarm ring. The mean protein levels
were determined as described in (Vladimirov et al., 2008).
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3.4 Fine-tuning of tumbling angle and its e�ect on

drift velocity

Dependence of tumbling angle on the number of CW-rotating motors.

The tumbling angle dependence on the number of switching motors was investigated

by extending the RapidCell model from the version used in (Vladimirov et al., 2008).

First, a more detailed model of tumbling was developed to bring the model in a

closer agreement with the tracking experiments of Berg and Brown (1972). While

previous version of the model relied on a simple voting model of tumbling, which

started the tumble as soon as the majority of motors rotate CW, the new model takes

into account the duration of CW-rotation of every motor (Figure 24A). The complex

hydrodynamics of multiple �agella is described in simpli�ed form, through a distortion

factor which is a function of tcw of each motor (see Methods and Algorithms). Despite

this simpli�cation, the simulated swimming of E. coli is in a very good agreement with

the original tracking experiments of Berg and Brown (1972). The model realistically

reproduces nearly all data provided by tracking experiments: mean cellular speed, run

times, tumbling angles (Table 7), as well as individual motor switching and gradua

recovery of cellular speed after a tumble.

Second, a dependence of tumbling angle on the number of CW-rotating motors

that cause the tumble was introduced (Figure 24B). This was done by �tting the

experimental data of Turner et al. (2000) with a realistic choice of discrete tumbling

angles at each number of CW-switched motors (Figure 24C). To ensure consistency

with experimental data, a dependence of tumbling angle on the total number of motors

was also assumed. The resulting model was called anisotropic, and it was compared

to a conventional model of tumble (isotropic), which chooses the tumbling angle

stochastically. In simulations without a gradient, both models produce equal cellular

drift velocities, with the accuracy of estimation error. To keep the mean angles of

both models consistent, the frequencies of the discrete angles in the anisotropic model

were de�ned as shown in Figure 24D.
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Figure 24: Anisotropic model of E. coli tumbling. (A) The output series for a single swim-
ming cell (from bottom to top): switching of a single motor (blue), its distortion dcw (green),
the sum of distortions of 3 motors Dcw (red), the resulting falls of swimming speed during
tumbles (black). (B) The schematic illustration of tumbling angle (green arrow) dependence
on the number of CW-rotating motors (green circles). (C) Anisotropic model of tumbling.
The tumbling angle Θi at di�erent number of CW-rotating motors ncw. Inset. Experimental
data sets reproduced from Fig. 12 of (Turner et al., 2000). Solid lines show means, error-
bars show standard deviations, circles correspond to individual tumbles. Color code of the
inset is the same as in the main panel. (D) Frequencies pi of tumbles which involve ncw

CW-rotating motors out of the total number of motors N = 2..5.

Dependence of tumbling angle on swimming direction. Simulations of cells

with anisotropic model show that tumbling angle depends on the swimming direction

prior to a tumble (Figure 25A). This dependence naturally arises from the dependence
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Parameter Isotropic model Anisotropic model Experiment

Tumbling angle, control (o) 67.5 67.5 68
Run length, control (s) 0.81 ± 0.63 0.81 ± 0.63 0.86 ± 1.18
Run length, gradient (s) 0.89 ± 0.77 0.92 ± 0.86 0.90 ± 1.56
Run length, up gradient (s) 0.93 ± 0.83 0.98 ± 0.95 1.07 ± 1.80
Run length, down gradient (s) 0.83 ± 0.69 0.86 ± 0.75 0.80 ± 1.38
Swimming speed, control (µms−1) 17 ± 5.4 17 ± 5.4 14.2 ± 3.4
Drift velocity, control (µms−1) 0.36 ± 0.03 0.39 ± 0.03 �
Drift velocity, gradient (µms−1) 0.92 1.40 0.90

Table 7: Comparison of the RapidCell-1.1 output and the tracking data from Berg and
Brown, 1972. The main model parameters are the same as described in Table 2, with
additional model parameters shown in Table 5. The number of motors N = 3, the aspartate
gradient is N1. Values are estimated from 1000 cells simulated for 500 s. Controls correspond
to a ligand-free medium. Means and std (where relevant) are shown.

Figure 25: Behavior of cells with anisotropic tumbling model. (A) Distribution of cellular
orientations prior to tumbles. The tumbling events are divided into 3 groups, by the num-
ber of CW-rotating motors involved in a tumble. The rose histograms are normalized by
the number of counts. The inner black circle shows unbiased (isotropic) distribution as a
reference. Cell orientation is given relative to the gradient. The gradient steepness is N1.
(B) Average tumbling angle as a function of orientation along the gradient prior to tumbles.
(C) Chemotactic drift velocity of cells in gradients of di�erent steepness. Bars show the
drift velocities of cells with 3 motors (left group) or 5 motors (right group) in the medium
without a gradient (gray), in gradient N0 (blue), N1 (green) and N2 (red). Left bars show
the isotropic model, right (hatched) bars � anisotropic model of tumbling. In the absence
of gradient, the di�erence is within the error of estimation. Standard error of the mean
is about 0.03. Cells in (A) and (B) have 3 motors, other parameters are as described in
Methods and Algorithms, Tables 2,5. The number of simulated cells is 103 in each case.



76 CHAPTER 3. RESULTS

of tumbling angle on the number of CW-rotating motors. The cells which turned with

the smallest ncw were swimming in slightly skewed directions up the gradient before

the tumble, whereas the cells which turned with the highest ncw were swimming with

even smaller skew down the gradient before the tumble. A more detailed analysis

shows that the total angular di�erence between tumbling angles that correspond to

the movement up and down a gradient is only about 3o (Figure 25B). Such a small

di�erence is within the error of the early tracking experiments, about 5o (Brown,

1974), which explains why it remained undetected.

E�ect of anisotropic model on cell drift velocity. Despite such a small di�er-

ence of mean angles, it can signi�cantly increase the chemotactic performance, with

the mean drift velocity being up to two times higher for anisotropically tumbling

cells (Figure 25C). The positive e�ect of anisotropic tumble becomes more visible

in steeper gradients and for higher number of motors, which suggests that highly

�agellated cells can adjust their tumbling angle more precisely.

In the case of N = 3 motors and moderate gradient (N1), the mean tumbling

angle is M(Θ) = 67.0o. This value is only 0.5o smaller than the angle in ligand-free

simulations, so the increase of the drift velocity in the anisotropic model cannot be

attributed to the change of the total mean tumbling angle. The mean tumbling angle

up the gradient Θ(cos(α > 0)) = 66.4o, while down the gradient it is Θ(cos(α < 0)) =

67.6o. Therefore, the 1.2o di�erence in mean tumbling angles causes a 52% increase

in the population drift velocity, from 0.92 to 1.4 µms−1 (Figure 25C).

Dependence of anisotropic model e�ect on the magnitude of angle adjust-

ment and on rotational di�usion. As a control, chemotactic cells that tumble

with a constant angle (67.5 deg.) were simulated and compared to cells that tum-

ble with slightly higher angle (67.5-∆), when they swim up the gradient, and with

slightly lower angle (67.5+∆), when they swim down the gradient. Here, the ∆ was a

constant parameter changed from 1 to 5 deg. A di�erence of ∆ = 5 degrees increased

the drift velocity by about 100% in the gradient N1, and by ∼ 50% in the gradient

N2 (Figure 26A). This con�rms that the observed increase in drift velocity shown in
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Figure 25C is due to small changes in tumbling angles of up- and down-swimming

cells, and does not arise from model-speci�c parameters.

Bacterial movement in gradients is further a�ected by the Brownian motion for

both isotropic and anisotropic tumbling models (Figure 26B). In simulations the

default rotational di�usion coe�cient was 0.062 rad2s−1. At lower coe�cients of

rotational di�usion, both models demonstrate better chemotaxis, and the advantage

of the anisotropic tumbling is most pronounced, which is due to lower noise factor

arising from rotational di�usion (Andrews et al., 2006). Since rotational di�usion

depends on the cells size, �agellar length, media viscosity and temperature (Berg,

1993; Mitchell, 1991), predicted e�ects of anisotropic tumbling can be even more

pronounced for other bacteria or under di�erent environmental conditions.

(a) (b)

Figure 26: E�ects of tumbling angle adjustment and rotational di�usion on chemotactic
e�ciency. (A) Dependence of chemotactic drift velocity on �xed tumbling angle deviation
∆ in a simpli�ed tumbling model. The cells swimming up the gradient tumble with a smaller
angle 67.5−∆, while cells swimming down the gradient tumble with higher angle 67.5 + ∆.
Cells with ∆ = 0 tumble with a �xed angle 67.5o, i.e. isotropically. (B) Dependence
of chemotactic drift on rotational di�usion coe�cient for cells with isotropic (blue) and
anisotropic (green) models of tumbling. The number of simulated cells is 103 in each case,
the gradient is N1. Cells in (A) and (B) have 3 motors, other parameters are as described
in Methods and Algorithms, Tables 2,5.

Taken together, these results suggest that in addition to extending the run length



78 CHAPTER 3. RESULTS

while swimming up the gradient, E. coli uses an auxiliary mechanism of tumbling

angle tuning according to the swimming direction. This �ne tuning of tumble is me-

diated by the same adjustment of tumbling frequency that underlies the conventional

chemotaxis strategy of bacteria (Figure 27). This previously unrecognized feature

is expected to be shared by other peritrichously �agellated bacteria and seems to

represent yet another level of evolutionary optimization of the chemotaxis system.

(a)

Figure 27: Enhancement of chemotactic e�ciency due to anisotropic tumbling. In the
isotropic model (top), cells have lower CW bias and tumble less frequently up the gradient,
but their average tumbling angle is the same in all directions. In the anisotropic model (bot-
tom), the same lowering of CW motor bias additionally leads to the reduction of tumbling
angles below average for cells swimming up the gradient. Cells swimming down the gradient
have tumbling angles larger than the average. Directional dependence of the tumbling angle
enhances average drift up the gradient. The di�erence of tumbling angles is exaggerated for
illustration purposes.
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Discussion

The constructed model of chemotactic E. coli (RapidCell) allowed to carry out large-

scale numerical experiments to study the e�ects of microscopic network parameters

on population behavior. RapidCell employs a hybrid model for pathway simulation,

with mixed algebraic, ODE and stochastic components instead of a fully stochastic

model, AgentCell (Emonet et al., 2005), or a complete system of ordinary di�erential

equations, E. pluribus (Bray et al., 2007). The proposed approach of modeling al-

lowed to dramatically decrease in computational costs of simulations. Though many

molecular details are skipped or modeled in a rapid-equilibrium (algebraic) approxi-

mation based on time-scale separation, the key steps of the network are reproduced

in agreement with up-to-date experimental data.

For the receptor complex simulation, the mixed-receptor cluster MWC model was

applied (Mello and Tu, 2005; Endres and Wingreen, 2006; Hansen et al., 2008), which

accounts for the observed broad range of sensitivity and reproduces the recent in vivo

FRET experiments (Sourjik and Berg, 2002a). The adaptation is modeled accord-

ing to the mean-�eld approximation of the MWC model, with the assumption that

the average methylation level of multiple receptors can be represented as a continu-

ous rather than a discrete variable. In contrast to other reactions, methylation and

demethylation are relatively slow and therefore described by an ODE. The ODE is

integrated by the �rst-order explicit Euler scheme to ensure high computational speed

of the program, while the time step is chosen as 0.01 s to keep the simulation error
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low.

In contrast to detailed single-cell simulations which reproduce the noisy behavior

of individual cells (Korobkova et al., 2004; Emonet et al., 2005), RapidCell is aimed

at predicting the averaged behavior of bacterial populations, and to investigate how it

is a�ected by the signaling network parameters, neglecting the intrinsic noise coming

from molecular reactions. However, arti�cial sources of noise can be further added in

the deterministic model of the signaling pathway. In the present version of RapidCell,

the noise arises only from rotational di�usion and stochastic switching of the motors.

To capture the essential features of cellular behavior but avoid signi�cant increase

of computation time, the cells are simulated in 2D space instead of 3D. The math-

ematical background of 3D cell motion is given in Appendix D. However, the 3D

case is not expected to provide qualitatively new e�ects in the considered problems.

The 2D model of motion was chosen for its simplicity and signi�cant reduction of

computational requirements for large-scale simulations.

Taking into account the available experimental studies on tumble mechanics (Darn-

ton et al., 2007; Turner et al., 2000), a voting model of run-tumble switching (Ishihara

et al., 1983; Turner et al., 2000; Andrews et al., 2006) was used as a �rst approxima-

tion for the tumbling. This model was used to study the e�ect of adaptation rate in

gradients of di�erent steepness (Vladimirov et al., 2008).

Constant-activity gradient. There are several types of gradients usually applied

in computer models of chemotaxis. The linear gradient arises between stationary

source and adsorber, and can often be observed under natural conditions. The Gaus-

sian, another commonly used gradient, appears when a limited amount of molecules is

injected into the medium from a micropipette or a similar source (Berg, 1993). Other

gradients that arise from general models of di�usion have hyperbolic or exponential

shapes. However, all commonly used gradients have a 'blind' zone where receptors

are saturated and cells do not respond. When cells drift along these gradients, the

average pro�le of CheYp changes dramatically, from a steep fall at low concentrations

to a weakly stimulated state at high concentrations (Figure 12C). This makes it dif-

�cult to compare long-term chemotactic e�ciency, because the average CheYp and
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drift velocity are non-stable along the gradient.

To study chemotaxis systematically, a new � constant-activity � type of gradient

was proposed. This gradient has unique properties of providing the same CheYp level

and cellular-drift velocity over a wide range of ligand concentrations. The stability of

the CheYp level allows studying properties of virtual chemotactic cells systematically,

and to compare chemotactic behavior over long time periods and concentration ranges.

The form of the constant-activity gradient is derived from the MWC model, by

formulating the di�erential equation for the gradient shape which gives a constant rate

of receptor free energy change per unit time. In earlier work, the condition of constant

chemotactic response was studied using a phenomenological model of ligand binding,

with a single dissociation constant KD (Block et al., 1983). The study of Block and

co-authors showed that such a model can be simpli�ed, and as a result an exponential

ramp of ligand should give a constant response in the range between Cmin = 0.31KD

and Cmax = 3.2KD, a prediction that was supported by their experiments (Block

et al., 1983).

In this work it is shown that the di�erential equation for the constant-response gra-

dient proposed in (Block et al., 1983) can be derived directly from the MWC model of

receptor cluster. The mentioned di�erential equation is solved here analytically, and

the exact form of the constant-activity gradient is found. The constant-activity gra-

dient grows similarly to the exponential function at moderate ligand concentrations,

and increases faster than exponential at low and high concentrations (Figure 11A).

Numerical simulations show that the chemotactic response of the MWC model in

the constant-activity gradient remains stable over four orders of ligand concentration

� between 0.1 and 1000KD, in the case when Tsr receptors are fully insensitive to the

ligand. In the case of (Me)-Asp, the Tsr receptors are able to respond non-speci�cally

to high ligand concentrations, therefore above 100KD the cluster activity drops to zero

in a mixed-receptor cluster (Endres and Wingreen, 2006; Sourjik and Berg, 2002a). In

simulations of population behavior only moderate Asp concentrations were applicable,

so the cluster activity remains nearly constant in all observed cases.

The exponential ramp also gives nearly constant response in the MWC model,

but over a much smaller range � between 0.5 and 3.0KD, in agreement with (Block
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et al., 1983) and the recent study of Tu et al. (2008).

It is shown analytically that the apparent dissociation constant KD can be esti-

mated by either the arithmetic or geometric mean of Koff and Kon, but the geometric

mean gives a better approximation over a wide range of ligand concentrations.

The shape of the constant-activity gradient can be approximated not only by

exponential, but also by a hyperbolic function. A change of variables gives KDCx/(1−
Cx) = KD(1/y− 1) ∼ KD/y, (y = 1−Cx, KD � 1). The hyperbolic gradient arises

from simple models of di�usion, when ligand molecules are emitted from a spherical

source into the surrounding medium. In nature, such conditions can be observed, for

example, in aquatic ecosystems where microalgae leak organic matter attractive for

bacteria (Jackson, 1987). This suggests that hyperbolic and exponential gradients

with appropriate parameters can be good approximations of the constant-activity

gradient.

E�ect of adaptation rate on chemotaxis e�ciency. In the proposed model,

the adaptation rate is assumed to be proportional to the co-varied concentration of the

adaptation enzymes [CheR,CheB], and through the text both terms are used to denote

the rate of adaptation. However, increasing expression of the adaptation enzymes may

lead to saturation of the adaptation rate at some point, because the enzymes will start

working out of saturation kinetics. For these reasons, it is more correct to consider

the presented results in terms of adaptation-rate e�ects on chemotaxis, whatever the

origins of adaptation-rate variability may be.

The e�ect of adaptation rate on chemotaxis agrees in many respects with the

results reported in (Andrews et al., 2006) for optimal noise �ltering of the chemotaxis

signaling system. In their work, authors demonstrated the existence of an optimal

cuto� frequency for e�cient chemotaxis, an analog of the adaptation rate in our

study. For a �xed linear gradient, they show the same shape of chemotactic e�ciency

as a function of cuto� frequency (Fig. 3B in (Andrews et al., 2006)) as found in this

work (Figure 14A). Authors also show that the optimal cuto� frequency depends on

gradient steepness in a linear manner (Fig. 5A in (Andrews et al., 2006)), consistent

with simulations presented here (Figure 14B).
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Simulations of bacteria in the constant-activity gradient suggest a simple biological

mechanism that determines the optimal adaptation rate for a given gradient steepness.

Di�erent optimal adaptation rates correspond to a single CheYp interval, which �ts

the linear range of the motor response function. This means that the highest drift

velocity in liquid media is observed when the CheYp level is in the narrow interval

�tting the operating range of the motor. In this range, the dependence between

CheYp and motor bias is approximately linear (Figure 15C).

The CheB phosphorylation feedback is found to have either a positive or negative

e�ect on chemotactic e�ciency, depending on how it shifts the average CheYp level

relative to the region of linear motor response. In the case of non-perfect ratio of

CheR to CheB, the CheB phosphorylation mechanism can partially counteract the

negative e�ect of unbalanced [CheR]/[CheB] ratio, by shifting the average CheYp

towards the optimal region. This con�rms that CheB phosphorylation can improve

the chemotactic properties of cells with deviations in the ratio of [CheR]/[CheB], as

well as in the ratios of other proteins, from the optimum (Kollmann et al., 2005).

Chemotaxis in agar. Chemotactic behavior in liquid media di�ers from that in

agar. The agar medium was simulated using traps that are randomly distributed in

time � a cell can encounter traps during its run, and stays trapped until it makes the

next tumble, as observed by Wolfe and Berg (1989). This restricts cellular motility �

cells that are highly biased towards running remain in traps longer. In agar, the region

of optimal motor bias is very narrow and is just above the unstimulated state mb0,

because higher bias increases the period of time cells remain in traps. Subdi�usion

in porous media and the treatment of a trapped situation as an additional state have

been analyzed mathematically in a general setting, see e.g. (Mommer and Lebiedz,

2009).

The growth of a bacterial population was not considered in the model. The

typical swarm plate experiments last several hours, and cells grow and divide during

the experiment, leading to variations in protein levels and to redistribution of proteins

from generation to generation. However, the e�ect of di�erent adaptation rates in

simulations is clearly visible already within one cell generation after 1000 s of model
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time (Figure 20B). The selection thus works on a time scale that is shorter than

the generation time, which justi�es using a �xed protein distribution. Therefore, the

addition of cell growth should not change the results qualitatively. In experiments,

daughter cells with sub-optimal levels of CheR and CheB will rapidly fall behind the

spreading swarm ring in the vicinity of the division site, while the subpopulation with

optimal adaptation rates will be always at the front edge of the ring.

In most simulations, the CheR and CheB ratio is assumed constant due to the

genetic coupling between the two respective genes (Løvdok et al., 2009), and that cell-

to-cell variation in adaptation rates arises from concerted variation in the levels of

both enzymes (Kollmann et al., 2005). The e�ects of variation in the [CheR]/[CheB]

ratio was also studied. Such a variation results from translational noise, and a�ects

both the adaptation rate and the steady-state motor bias. In addition to these inves-

tigated sources of noise, there is an intrinsic noise in the pathway activity which arises

from the stochastic nature of (de-)methylation events. The latter sort of noise can

also have positive e�ects on the spreading of cells in a ligand-free medium (Korobkova

et al., 2004), and even on chemotactic drift in weak gradients (Emonet and Cluzel,

2008). Superposition of variable noise e�ects on chemotactic e�ciency in variable

gradients would be an interesting issue for further study.

The variability in concerted CheR and CheB concentrations was estimated using

available experimental data on cell-to-cell variability in adaptation times (Berg and

Tedesco, 1975). A log-normal distribution for protein concentrations was assumed,

which also gives a log-normal distribution of adaptation times to a step-wise stimulus

from 0 to 10−3M MeAsp (Berg and Tedesco, 1975). There are also other experimental

estimates of cell-to-cell variation in adaptation times (Spudich and Koshland, 1976)

and related simulations (Levin, 2003), but the adaptation rates observed in those

experiments were several times higher, presumably due to di�erent culture growth

conditions.

The results presented in this part suggest some evolutionary implications. In liquid

media with variable food sources and gradient intensities, variability in adaptation

times (protein levels) among cells can help the whole population to respond to di�erent

gradients more readily, due to positive selection of cells with optimal [CheR, CheB].
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In other words, for any given gradient steepness, there will be a subpopulation which

has the best [CheR,CheB] to follow this gradient. In contrast, agar poses mainly

negative selection on cell populations - cells with low [CheR, CheB] are �ltered out

from competition, while all other cells travel with approximately equal e�ciency.

Anisotropic tumbling. Another issue addressed in this work is a more detailed

model of cell swimming and tumbling, and possible consequences of motion with

several �agellar motors. To study the �ne e�ects of tumbling in more detail, a novel

model of tumbling was constructed, called anisotropic because the tumbling angle

depends on the swimming direction through the number of CW-switching motors.

The model brought RapidCell closer to single-cell tracking experiments of Berg and

Brown (1972), and allowed to reveal a novel auxiliary navigation mechanism of E. coli.

Simulations suggest that in addition to extending the run length while swimming up

the gradient, E. coli uses a mechanism of tumbling angle tuning according to the

swimming direction. This previously unrecognized feature is expected to be shared

by other peritrichously �agellated bacteria and seems to represent another level of

evolutionary optimization of the chemotaxis system.

Hybridization of models. In this work, a hybrid model was constructed using

the time scale separation between ligand binding, receptor-cluster conformational

changes and receptor covalent modi�cation. The heterogeneous models of receptor

cluster, (de-)methylation, CheY phosphorylation and motor switching were merged

by su�ciently �ne time discretization, under the assumption of well-mixed cytoplas-

mic components and negligible times of CheYp di�usion through cytoplasm. The

bacterial cells are represented as individual objects swimming in space with de�ned

gradient of attractant. The model can be potentially developed further to include

consumption and secreting of chemicals from and into the medium by the bacterial

population. Such model improvement demands already spatial merging of discrete-

particle population model and continuous PDE model of the medium, which would

represent another scale of system complexity, laying beyond the scope of this work.

However, this can be a promising direction of future studies.
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Conclusions

In this work, a multiscale model of chemotactic bacteria was constructed. The model

is focused on central events in signal transduction on a single-cell level, but at the same

time it enables simulation of bacterial populations in a computationally e�cient way.

This goal was achieved by combining three di�erent modeling approaches: algebraic

models (rapid equilibrium interactions), ordinary di�erential equations (slow reac-

tions), and stochastic components (motor switching). The constructed model re�ects

the most up-to-date experimental data on the system properties, it is computation-

ally e�cient, and it was used for in silico studies of E. coli behavior. Simulations

of bacterial populations in gradients of de�ned steepness revealed several important

issues of chemotactic behavior. First, there is an optimal adaptation rate in every

gradient, and the optimum is determined by a balance of the network excitation and

adaptation, in which the signal transmitting molecule CheYp �ts the narrow work-

ing range of the �agellar motor. Variability of adaptation rates may be bene�cial

for a population to �t the variability in gradients. Second, motility in porous media

poses signi�cant restrictions on cellular behavior, and changes the criteria for optimal

chemotaxis. Low excitation due to shallow gradient and rapid adaptation is prefer-

ential in porous medium. Third, bacteria like E. coli with several �agellar motors are

predicted to have an additional navigation mechanism by �ne-tuning of the tumbling

angle. This previously unknown e�ect is the result of di�erent average number of

motors that cause tumbles up and down the gradient, and it is predicted to have a
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signi�cant impact on the chemotaxis e�ciency. This �ne tuning of tumble is medi-

ated by the same adjustment of tumbling frequency that underlies the conventional

chemotaxis strategy of bacteria. This feature is expected to be shared by other per-

itrichously �agellated bacteria and seems to represent another level of evolutionary

optimization of the chemotaxis system.

In general, such multiscale models as presented here can be an important research

instrument for understanding the cell behavior. They re�ect the most important ex-

perimental knowledge on bacterial behavior, and allow to carry out computational

experiments of high complexity, which would be too complicated or expensive for ex-

perimental trials. The multiscale description of cell poses challenges in mathematics,

physics, computer science and biology, which should work in intimate collaboration to

understand the cell behavior at di�erent scales. Even though we know the molecular

mechanisms of chemotaxis in detail, there is a vast terra incognita in our under-

standing how bacteria interact with their environment. The issues of evolution and

environment, individual versus collective behavior, and chemotaxis of more complex

organisms come to the foreground of modern research.
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Appendix A

Running the RapidCell program

To run RapidCell, make sure that you have the Java SE Development Kit 6 (JDK 6),

or download the latest version from http://java.sun.com/javase/6/download.jsp

(Make sure you download the JDK, not the JRE.)

Open the terminal window. In Windows, you can do this from the Start menu by

choosing Command Prompt (Windows XP), or by choosing Run... and then en-

tering cmd. Make sure that javac command works in your current directory. If not,

set up the PATH variable to include your JDK binaries folder. See more information

about setting PATH at http://java.sun.com/docs/books/tutorial/essential/

environment/paths.html

Unpack RapidCell into your home folder.

Use the terminal window: change to the RapidCell directory

cd YOUR_HOME_FOLDER/RapidCell1.1;

(Windows users: cd /D C:\YOUR_HOME_FOLDER\RapidCell1.1)
Compile the program

javac *.java

Run the program

java -cp . Run

After RapidCell is complete, the output is written into 2 txt-�les (tab-delimited):
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individuals.out (states of each cell at de�ned time points)

averages.out (the most important characteristics of cell behavior, averaged over the

population)

A.0.1 Analysis of individual cell behavior in Matlab

To open the output �le in Matlab, use the following Matlab script:

cd YOUR_HOME_FOLDER/RapidCell1.1

DATA=load('individuals.out');

X=DATA(:,1:7:length(DATA(1,:)));

Y=DATA(:,2:7:length(DATA(1,:)));

R=DATA(:,3:7:length(DATA(1,:)));

CheA=DATA(:,4:7:length(DATA(1,:)));

CheY=DATA(:,5:7:length(DATA(1,:)));

meth=DATA(:,6:7:length(DATA(1,:)));

mb=DATA(:,7:7:length(DATA(1,:)));

The code above reads data from �le individuals.out. Each line of the �le corre-

sponds to a single timepoint, and the seven main parameters of every cell are written

one after another delimited by tabs. Thus, �rst seven entries of a line correspond to

the �rst cell, second seven � to the second cell, etc.

Basic examples of analysis

To plot the mean X(t) positions of all cells

mX=mean(X,2);

plot((0:100)*5,mX)

Here, the time is represented by 101 points from 0 to Tmax = 500s.

To estimate the drift velocity of cells up the gradient, type

plot((40:100)*5,mean(X(41:101,:),2))

Then use Tools->Basic Fitting->Linear (show equations) in the main Matlab

menu. It will give the slope of the plot, which is the population drift velocity (mm/s),
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measured between 200 and 500 s of model time. Use R insead of X, if gradient is radial.

To plot mean CheY(t) level of all cells

mCheY=mean(CheY,2);

plot((0:100)*5,mCheY)

To plot X(t) and Y(t) trajectory of a single cell, say, the cell #1

plot(X(:,1),Y(:,1))

To get a scatterplot of positions of all cells at timepoint 101 (500 sec):

plot(X(101,:),Y(101,:),'.')

A.0.2 Changing the parameters of simulation

By default, the parameters are de�ned in �le PARAM.INI. Alternatively, you can de�ne

parameters in the source �le Model.java, lines 125-128. To do this, simply set the

variable

private boolean ReadFromINIfile=true;

to 'false' in line 8 of Model.java, and change the parameters therein.

Other parameters (network, motor behavior, etc.) can be changed in the corre-

sponding �les Network.java, Motor.java, etc.
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Versions of RapidCell program

Version 1.0 Basic model with isotropic tumbling angle, model of voting motors

for run-tumble switching, constant cell swimming speed. Used in (Vladimirov et al.,

2008).

Version 1.1 Anisotropic tumbling angle is added. The run-tumble switching de-

pends on the time of motors CW-rotation (distortion factor). The swimming speed

is also a�ected by the distortion factor. Used in (Vladimirov et al., 2009).

Version 1.2 The motor switching frequencies λ+ and λ− depend on motor bias

and motor reversal frequency, which is proportional to derivative of motor bias, as

described below.

B.1 Detailed model of motor switching: version 1.2

In the �rst version of RapidCell, a simpli�ed model of motor switching was used, which

assumes a constant switching frequency k−. This model was used in (Vladimirov et al.,

2008, 2009). To avoid this simpli�cation in future, a more general model of motor

switching is introduced, as described below. This model update does not change the

cell behavior qualitatively, but may reduce the population drift velocity by about 30%

due to shorter runs.
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The CCW motor bias (the fraction of time motor spins CCW) is related to the

switching rates as (Scharf et al., 1998)

mb =
k−

k− + k+

(30)

The motor reversal frequency is related to the switching rates as their harmonic mean

(Scharf et al., 1998)

ω =
2k−k+

k− + k+

(31)

Equations 30, 31 allow to express the switching rates using motor bias and reversal

frequency

k+ =
ω

2mb
(32)

k− =
ω

2(1−mb)
(33)

It was shown by Cluzel et al. (2000) that the reversal frequency is well �tted by the

derivative of CW motor bias with respect to CheYp (y) with a scaling coe�cient of

about 0.5

ω = 0.5
d(1−mb)

dy
=

0.5H(1/mb0 − 1)yH−1

(1 + (1/mb0 − 1)yH)2
(34)

The �nal formulae for switching frequencies are

k+ =
ω

2mb
=

0.5H(1−mb0)y
H−1

2(1 + (1/mb0 − 1)yH)
(35)

k− =
ω

2(1−mb)
=

0.5Hmb0

2y(yH(1−mb0) + mb0)
(36)

The summary of motor model changes is given in Table 8.
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Model Reference
Motor reversal frequency (Scharf et al., 1998; Cluzel et al., 2000),

ω = 2k−k+

k−+k+
∼ 0.5d(1−mb(Y ))

dY
coe�cient 0.5 estimated in this work

Motor switching freq. (CCW→CW) (Scharf et al., 1998; Setayeshgar et al., 2005)

k+ = ω
2mb

Motor switching freq. (CW→CCW) (Scharf et al., 1998; Setayeshgar et al., 2005)

k− = ω
2(1−mb)

Table 8: Changes in RapidCell-1.2.



Appendix C

Derivation of the formula for

constant-activity gradient

According to the MWC model, an increase in ligand concentration ∆S causes an

initial rise in receptor free-energy di�erence

∆f = log

(
1 +

∆S

S + Koff

)
− log

(
1 +

∆S

S + Kon

)
(37)

Using the Taylor-series approximation,

∆f ≈ ∆S

S + Koff
− ∆S

S + Kon
(38)

leads to the following approximation for free energy per concentration change:

∆f ≈ ∆S
Kon −Koff

(S + Kon)(S + Koff )
(39)

Simpli�ed solution. The denominator in Eqn. 39 can be simpli�ed by assuming

(S + Kon)(S + Koff ) ≈ (S + K∗)2 (40)
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and the unknown K∗ can be found from equation

(S + Kon)(S + Koff ) = (S + K∗)2 (41)

S2 + SKon + SKoff + KonKoff = S2 + 2SK∗ + (K∗)2 (42)

S(Kon + Koff ) + KonKoff = 2SK∗ + (K∗)2. (43)

which gives two alternative estimates for K∗:

K∗ = Kon+Koff

2
and K∗ =

√
KonKoff , i.e. the arithmetic and geometric means of

Kon and Koff .

At zero or relatively low ligand concentrations, the geometric mean has a high

impact in Eqn. 43, and is preferable as an estimate. Indeed, in earlier works it

was referred to as the apparent dissociation constant KD of ligand binding (Shimizu

et al., 2003). However, at high concentrations, the arithmetic mean will have a higher

impact in Eqn. 43, so it can be used as an alternative estimate. Simulations indicate

that within four orders of aspartate concentration the geometric mean serves as the

best estimate of K∗ (Fig 28).

Taken together, the energy di�erence is approximated by ∆S Kon−Koff

(S+K∗)2
. The dif-

ferential equation
S ′(Kon −Koff )

(KD + S)2
= C (44)

describes the unknown function S(x), which will give the 'constant-activity' gradient

shape. The function S(x) will give a constant change of energy di�erence C per length

unit dx of cellular path along the gradient. In other words, such a shape of gradient

will give a constant cluster activity at any ligand concentration.

Within the accuracy of a constant term, the latter di�erential equation was pre-

viously used in (Block et al., 1983), where authors derived it assuming that receptor

occupancy is proportional to S/(S + KD), with a single KD for active and inactive

receptors. Authors assumed that the chemotactic response is proportional to the

change in receptor occupancy (Block et al., 1983; Sourjik and Berg, 2002a). They

simpli�ed this equation to reduce the variability of the 1
(KD+S)2

term, leading to the
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Figure 28: The CheYp response of MWC model to the constant-activity ramp of aspartate

from 0.1 to 10000KD. The ramp is simulated as S(t) = K∗Ct/
(

Kon−Koff

K∗ − Ct
)
in two

forms, with K∗ = 0.5(Kon + Koff ) (arithmetic mean), or K∗ = (KonKoff )0.5 (geometric
mean). The MWC model shows approximately constant response for both approximations,
but the geometric mean gives more stable response over wider range of concentrations.

exponential form of the solution.

However, one can solve Eqn. 44 analytically:

S(x) = (Kon −Koff )

(
1

C(C1 − x)

)
−K∗ (45)

where C1 = (Kon−Koff )
C(S(0)−K∗)

is the constant of integration, determined by the initial con-

dition S(0). The condition S(0) = 0 gives the following chemoattractant function:

S(x) = K∗ Cx
Kon−Koff

K∗ − Cx
(46)



Appendix D

Mathematics of cell motion in 3D

space

Swimming of a cell in 3D space requires more complicated mathematics to calculate

orientation, compared to 2D case. The orientation of cell is described by direction

of motion n = (nx, ny, nz), a vector of unit length in 3D Cartesian coordinates. The

orientation of n is determined by two angles: β is the angle between n and Z axis,

and α is the angle between projection of n on XY plane and X axis (in the 2D case,

only α was taken into account). The vector coordinates are related to orientation

angles as

nx = sin(β) cos(α)

ny = sin(β) sin(α)

nz = cos(β)

(47)

The angles related to coordinates as

α = arctan(ny/nx)

β = arccos(nz)
(48)

Cell running. In the case of straight swimming, the position x of the cell in the

next simulation step is calculated from the previous step according to direction of
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motion and speed

x(t + ∆t) = x(t) + nv0dt (49)

where v0 is the absolute magnitude of cell speed. In scalar form this reads

x(t + ∆t) = x(t) + vxv0dt

y(t + ∆t) = y(t) + vyv0dt

z(t + ∆t) = z(t) + vzv0dt

(50)

Mathematics of rotational di�usion in 3D can be found in supplementary information

to (Emonet et al., 2005), and it includes multiplication of three rotational matrices

(for x, y and z components) at each time step.

Cell tumbling. Tumbling in 3D space is determined by angle Θ, which is the

di�erence between the old and the new direction (similar to 2D case), and angle φ,

which is an arbitrary rotation around the old direction. In the coordinate system of

cell, the old velocity vector v is directed along the Zcell axis. In the cell coordinates,

the tumble is described by rotation of cell body by angle Θ along Ycell or Xcell axis

(we take Ycell), and a rotation around the Z axis by angle φ. These transformations

are described mathematically by multiplication of rotational matrices and the velocity

vector (0, 0, 1) in the cell coordinates

v(t + ∆t)cell = Rz(φ)Ry(Θ)(0, 0, 1)t (51)

Next, the new velocity vector should be transformed back to the laboratory coordi-

nates, which means rotation by angle β around Y axis and then by α around Z (the

order is important).

v(t + ∆t) = Rz(α)Ry(β)v(t + ∆t)cell (52)

Taken together, the new velocity vector, after tumble, is calculated from formula

v(t + ∆t) = Rz(α)Ry(β)Rz(φ)Ry(Θ)(0, 0, 1)t (53)
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where α and β are the orientation angles of the old velocity vector v(t), Θ is the

tumbling angle, and φ is randomly chosen within [0, 2π). The reorientation is assumed

to be instant, within one time step. The exact expression of these matrices are shown

below.

Ry(Θ) =


cos (Θ) 0 sin (Θ)

0 1 0

− sin (Θ) 0 cos (Θ)

 (54)

Rz(φ) =


cos (φ) − sin (φ) 0

sin (φ) cos (φ) 0

0 0 1

 (55)

Ry(β) =


cos (β) 0 sin (β)

0 1 0

− sin (β) 0 cos (β)

 (56)

Rz(α) =


cos (α) sin (α) 0

sin (α) − cos (α) 0

0 0 1

 (57)

However, for simulations it would be more convenient to use �nal bulk formula

than multiply four matrices at every step. The �nal formula for after-tumble velocity

vector is

v(t+∆t) =


cos (α) cos (β) cos (φ) sin (Θ) + sin (α) sin (φ) sin (Θ) + cos (α) sin (β) cos (Θ)

sin (α) cos (β) cos (φ) sin (Θ)− cos (α) sin (φ) sin (Θ) + sin (α) sin (β) cos (Θ)

− sin (β) cos (φ) sin (Θ) + cos (β) cos (Θ)


(58)

Analytical expressions were obtained and veri�ed using Maple 9.5 (Waterloo Maple

Inc.).
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Abstract

Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central
intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way.
In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-
Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential
equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the
highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and
suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the
unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity,
where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations
also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P
concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times
among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different
gradients. However, in a porous medium (agar) such variability appears to be less important, because agar structure poses
mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the
authors upon request.
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Introduction

One of the central questions of modern systems biology is the

influence of microscopic parameters of a single cell on the

behavior of a cell population, a common problem in multi-scale

modeling. In terms of bacterial chemotaxis, this issue can be

formulated as the influence of signaling network parameters on the

spatiotemporal dynamics of a population in various gradients of

chemoattractants. The problem of efficient multi-scale simulation

imposes strict requirements on the model: it should be maximally

detailed to grasp the main features of the signaling network yet

computationally cheap to simulate large numbers of bacteria.

Chemotaxis plays an important role in microbial population

dynamics. Chemotactic bacteria in a nonmixed environment—

that is in presence of nutrient gradients—have significant growth

advantages, as shown experimentally for different bacterial species

[1–4]. Modeling of microbial population dynamics indicates that

motility and chemotactic ability can be as important for

evolutionary competition as cell growth rate [5,6].

Escherichia coli is an ideal organism for chemotaxis modeling,

because of the rich experimental information collected over years

of extensive research. In common with many other bacteria, E. coli

can migrate towards high concentrations of attractants and away

from repellents. In the adapted state, cells perform a random walk,

which becomes biased in the presence of a spatial gradient. This

swimming bias is based on temporal comparisons of attractant

concentrations during cell runs. If the direction of a run is

favorable, i.e. up the attractant gradient or down the repellent

gradient, the run become longer. Between runs, the cell tumbles

and reorients for the next run [7].

Chemotaxis in E. coli is mediated by an atypical two-component

signal transduction pathway (for recent reviews see [8,9]). Ligand

molecules bind to clusters of transmembrane receptors, which are

in complex with the histidine kinase CheA and the adaptor CheW.

Each receptor can be either active or inactive, depending on

ligand binding and the methylation level. The active receptor

activates CheA, eliciting downstream phosphorylation of the

response regulator CheY. Phosphorylated CheY (CheY-P) is

dephosphorylated by CheZ. Receptors can be methylated by the

methyltransferase CheR and demethylated by the methylesterase

CheB, and methylation regulates the receptor activity. The

methylation of receptors provides a sort of chemical ‘memory’,

which allows the cell to compare the current ligand concentration

with the past. Phosphorylation of CheB by CheA provides a

negative feedback to the system, although it appears nonessential

for exact adaptation [10,11]. Phosphorylated molecules of CheY-P

freely diffuse through the cytoplasm and bind to the flagellar

motor protein FliM, causing motors to switch from CCW to CW
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rotation. Switching of the motors to the CW state results in a

tumble and reorientation, whereas the CCW rotation corresponds

to straight runs.

A number of mathematical models of chemotaxis have been

proposed [10,12–18], including two recent programs that simulate

cell motion along with the intracellular pathway dynamics:

AgentCell [19], which is based on the StochSim pathway

simulator [20–22], and E. solo [23], which is based on the BCT

simulator [24–26]. The current version of AgentCell (2.0)

simulates the whole pathway stochastically, making it thus

computationally very expensive. The E. solo program simulates

the pathway using about 90 ordinary differential equations

(ODEs). However, simulation of large bacterial populations on

long time scales requires computationally cheaper models.

It was recently shown using fluorescence resonance energy

transfer (FRET) that the amplitude of the initial CheY-P response

can be described by a Hill function of a relative change in receptor

occupancy during stepwise ligand stimulation [27]. Recent

modeling efforts [12,28,29] show that a mixed-cluster Monod-

Wyman-Changeux (MWC) model of strongly coupled receptors is

consistent with the FRET data, and can account for the observed

sensitivity and precise adaptation over a wide range of ligand

concentrations. The amplitude of pathway excitation can therefore

be determined using several algebraic equations describing the free

energy of the cluster.

In our model (Figure 1A), we employed the MWC model for a

mixed receptor cluster [12] with a mean-field approximation for

adaptation kinetics [30]. Due to its hybrid approach, the model

allowed us to reduce the computational costs dramatically, while

keeping the main quantitative characteristics of the cell response

(methylation level, relative CheY-P concentration, motor bias)

consistent with experimental data. To couple the bias of individual

motors to the probability of tumbling, we applied a voting model

for several independent motors, based on detailed experimental

investigation of tumbling mechanics [31].

These components were combined into a new simulator for E.

coli chemotaxis—RapidCell, which uses a hybrid pathway

simulation instead of a fully stochastic or ODE approach, and is

therefore computationally cheap. This allows the simulation of

populations of 104–105 cells on a time scale of hours using a

desktop computer.

To study the dependence of chemotaxis on gradient strength in a

systematic way, we propose a new—constant-activity—gradient

which ensures a constant average CheY-P level and cellular drift

velocity along the gradient, in contrast to commonly used Gaussian

and linear gradients. We show that the MWC model gives an

approximately constant response over a wide range of ligand

concentrations. Though purely theoretical, such a gradient serves as

a perfect in silico assay to study the chemotactic properties of cells.

The chemotaxis pathway is robust to changes in network

parameters and intracellular protein concentrations [10,15,32].

This enables efficient chemotaxis with varying levels of intracel-

lular components and under perturbations from extracellular

environment. However, adaptation time is not robust

[10,11,33,34] and varies even among genetically identical cells

in a population because of stochastic variations in gene expression

and low copy numbers of the adaptation enzymes.

Our simulations predict that in liquid media for any given

gradient steepness, there is an optimal adaptation rate that

provides the highest cellular drift velocity. We suggest a simple

mechanism for this phenomenon: the optimal rate of adaptation is

observed in a narrow range of kinase activity, where the average

CheY-P level fits the operating range of the flagellar motor. In this

range, the relation between CheY-P and motor bias is approxi-

mately linear, and cells perform chemotaxis with the highest

efficiency.

The situation is different for cells swimming in agar. Here, the

optimal range of motor bias appears to be very narrow and just

slightly higher than in the non-stimulated state. Due to the porous

structure of agar, cells with a higher CCW motor bias stay trapped

for a longer time, thus negating advantage in chemotactic

efficiency. This leads to a strong selection against cells which

adapt slowly and therefore tend to overreact to chemotactic

stimulation. On the other hand, chemotaxis in agar poses only a

weak selection against cells with a high adaptation rate.

Our simulations suggest that in liquid media the variability in

protein levels among cells may be advantageous for bacterial

populations on a long time scales. In a nonmixed environment

with different food sources and gradient intensities, such variability

can help the whole population to respond to different gradients

more readily, due to positive selection of subpopulations with

optimal levels of adaptation enzymes in a given gradient.

Methods

Model of E. coli Signaling Network
MWC model. We applied the recently proposed MWC

model for a mixed receptor cluster [12,28,29], which accounts

for the observed experimental dose-response curves of adapted

cells measured by in vivo FRET [27]. An individual receptor

homodimer of type r (r = a and s for Tar and Tsr, respectively) is

described as a two-state receptor, being either ‘on’ or ‘off’.

Receptors form clusters with all receptors in a cluster either ‘on’ or

‘off’ together. The clusters are composed of mixtures of Tar and

Tsr receptors. At equilibrium, the probability that a cluster will be

active is [12]:

A~
1

1zeF
ð1Þ

where F = Fon–Foff, and Fon/off is the free energy of the cluster to be

on/off as a whole. For a cluster composed of na Tar and ns Tsr

Author Summary

Chemotaxis plays an important role in bacterial lifestyle,
providing bacteria with the ability to actively search for an
optimal growth environment. The chemotaxis system is
likely to be highly optimized, because on the evolutionary
time scale even a modest enhancement of its efficiency
can give cells a large competitive advantage. In this study,
we use up-to-date experimental and modeling information
to construct a new computational model of chemotactic E.
coli and implement it in a computationally efficient way to
simulate large bacterial populations. Our simulations are
performed in a new type of attractant gradient that
ensures a constant level of chemotactic excitation at any
position. We show that optimal chemotactic movement in
a gradient results from a fine balance between excitation
and adaptation. As a consequence, steeper gradients
require higher optimal rates of adaptation. Simulations
demonstrate that the observed intercellular variability of
adaptation times, which is caused by gene expression
noise, may play a positive role for the bacterial population
as a whole, by allowing its subpopulations to be optimally
tactic in gradients of different strengths. We further show
that optimal chemotactic properties in a porous medium
(agar) are different from those in a liquid.

RapidCell
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receptors, the total free-energy difference is, in the mean-field

approximation, F = nafa(m)+nsfs(m), which is the sum of the

individual free-energy differences between the two receptor states

fr mð Þ~f on
r mð Þ{f off

r ~er mð Þzlog
1z S½ �

�
Koff

r

1z S½ �
�

Kon
r

 !
ð2Þ

where [S] is the ligand concentration, K
on=off
r is the dissociation

constant for the ligand in the on and off state, respectively. The

methylation state of the receptor enters via the ‘offset energy’ er(m).

The model can also be generalized for binding multiple types of

ligand [12,28].

Adaptation model. Adaptation is modeled according to the

mean-field approximation of the assistance-neighborhood (AN)

model [12,30]. Both CheR and CheB are assumed to bind

receptors independent of their activity. A bound CheR (CheB) can

(de-)methylate any inactive (active) receptor within the AN. Each

bound CheR adds methyl groups at a rate a(12A), and each

bound CheB removes methyl groups at a rate bA. Under these

assumptions, the kinetics in the AN model are given by

dm

dt
~a 1{Að Þ CheR½ � MCP½ �

KRz MCP½ �{bA CheB½ � MCP½ �
KBz MCP½ � ð3Þ

We further assume that both enzymes work at saturation:

dm

dt
&a 1{Að Þ CheR½ �{bA CheB½ � ð4Þ

Note that this equation does not imply a first-order reaction

mechanism between the adaptation enzymes and receptors—the

enzymes work in the zero-order regime. The linear products

a(12A)[CheR] (bA[CheB]) mean that a bound CheR (CheB) can

only act if the receptor cluster is inactive (active), with probability

(12A) and A, respectively.

We further define the relative adaptation rate k:

dm

dt
~k a CheR½ � 1{Að Þ{b CheB½ �Að Þ:kV ð5Þ

The parameter k indicates the adaptation rate relative to the wild-

type adaptation rate V. In the cells with normal steady-state

activity (A* = 1/3), the rates and concentrations of the adaptation

enzymes are related through b[CheB] = 2a[CheR]. In this work we

assume that reaction rates a and b remain unchanged, and the

variability in adaptation rate k is caused by variability in

[CheR,CheB], provided that they change in a coordinated

manner with the fixed ratio: [CheR]/[CheB] = 0.16/0.28 [35].

The latter ODE for methylation is integrated using the Euler

method, so that the average methylation level evolves in time as

m tzDtð Þ~m tð ÞzkVDt ð6Þ

To achieve high computational efficiency in the model, we

assumed that the average methylation level m is a continuously

changing variable within the interval [0,8], with linear interpola-

tion between the key offset energies: er(0), 1.0; er(1), 0.5; er(2), 0.0;

er(3), 20.3; er(4), 20.6; er(5), 20.85; er(6), 21.1; er(7), 22.0; er(8),

23.0, according to [12,30].

Kinase activity. CheA kinase activity is assumed to be equal

to the activity of the receptor complex (A). The differential

equation for CheY-P is [32]

dYp

dt
~kY Ap Y T{Yp

� �
{kZYpZ{cY Yp ð7Þ

Here Yp is [CheY-P], YT — total [CheY], ZT — total [CheZ], Ap

— active CheA, and ky = 100 mM21 s21, kZ = 30/[CheZ]s21,

cY = 0.1 are the rate constants according to [32,36,37]. The rate

of phosphotransfer from active CheA to CheY is much faster than

the rate of CheA autophosphorylation (Table S1). Therefore, the

Figure 1. Model of chemotactic E. coli. (A) Scheme of the hybrid model. The activity of the receptor cluster depends on the local ligand
concentration and the methylation level according to the MWC model. Methylation (red arrow) and demethylation (blue arrow) are performed by
CheR and CheB. The phosphate group is transferred from active CheA to the response regulator CheY (black arrow). The concentration of CheY-P
modulates the motor bias of 5 independent motors (yellow arrows), and their collective behavior makes the cell run or tumble. Ligand binding,
receptors cluster switching, CheY phosphorylation and motor switching are considered to be in rapid equilibrium and are described by algebraic
equations, while the methylation and demethylation kinetics are relatively slow and simulated using an ODE. Motor switching is simulated
stochastically. (B) The model reproduces the swimming of E. coli cells up gradients of attractants, taking into account the effect of rotational diffusion.
A typical path of a swimming virtual cell is shown in 2D space, with the relative time course shown along the Z axis, demonstrating how the cell finds
the maximum attractant concentration and stays in its vicinity. The attractant concentration profile is overlayed.
doi:10.1371/journal.pcbi.1000242.g001
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concentration of CheY-P is obtained as a function of active CheA

from the steady-state equation:

Yp~
kY ApY T

kY ApzkZZzcY

ð8Þ

In relative units, CheY-P½ �~3 kY ksA
kY ksAzkZZzcY

, where ks = 0.45 is a

scaling coefficient. The relative [CheY-P] = 0,1,3 correspond to

fully inactive, adapted and fully active cluster, respectively. The

absolute concentration relates to the relative as [CheY-

P]abs = 3.1[CheY-P] (mM), following [38].

CheB phosphorylation. To study the effect of kinase-

dependent CheB phosphorylation, we assumed that the

concentration of phosphorylated (active) CheB follows the

steady-state equation [15,32]:

CheB½ �~ CheB½ �tot

A

Azk0:5
ð9Þ

where [CheB]tot is the total concentration of CheB (relative), and A

is the kinase activity. In the steady state A�~ 1
3

we assumed that

100%, 50%, or 25% of CheB can be phosphorylated,

corresponding to [CheB]tot = 1,2,4 and k0:5~0, 1
3

,1, respectively.

Note that at maximum kinase activity A = 1, the active [CheB]

increases 1, 1.5 and 2 times compared to [CheR]; at steady state

A~ 1
3

both enzymes have equal levels, whereas at positive

chemotactic signal Av
1
3

[CheB] is equal to [CheR] (k0.5 = 0) or

lower than [CheR] (k0:5~
1
3

,1).

Time-scale separation. We assume that the rates of ligand

binding tl, rates of receptor-cluster conformational changes tk and

receptor covalent modification tm are well separated in scales:

tl%tk%tm. On our scale (,1 s) the reactions of CheA

autophosphorylation, phosphotransfer from CheA to CheY and

CheB can be described as a rapid equilibrium state through

algebraic equations. The slowest reactions—methylation by CheR

and demethylation by CheB—are described through an ODE to

reproduce the time scales of seconds and minutes required for

adaptation. Table S1 shows the comparative rates of the main

reactions.

Model verification. A summary of the parameters used in

the model is given in Table 1, and a summary of models and

assumptions is shown in Table 2. Along the lines of the MWC

model for a mixed receptor cluster [12], we model a cluster of 18

receptors, composed of 6 Tar and 12 Tsr receptors. The catalytic

rates a and b were chosen to achieve the proper time scale of

adaptation according to in vivo FRET dose-response curves.

As shown previously in [12,29,39], the MWC model for a mixed

receptor cluster correctly reproduces the in vivo FRET response

amplitudes to step-wise addition and removal of MeAsp [27,40].

We also compare our model output with the published FRET

response (Figure S1A), and show that the simulation is in good

agreement with experiment, both for the amplitude and the

duration of the chemotactic response. However, the steepness of

the adaptation curve after attractant removal can only be roughly

described by the existing model of CheB activity, a deficiency

which needs to be addressed for more precise modeling in future.

The spatially extended StochSim model gives lower response

amplitudes compared to FRET experiments [14]. Comparison of

RapidCell and StochSim responses to addition and removal of Asp

is shown in Figure S1B. The adaptation rate of StochSim seems

very high compared to FRET experiments and RapidCell

simulations (k = 8 times higher than the wild-type rate), which

suggests that RapidCell will be much more sensitive to gradients

than AgentCell [19].

RapidCell also reproduces experimental data on tethered cell

stimulation with pulse and step changes of Asp concentration [41]

(Figure S2A and S2B). The adaptation times after a step increase

of a-methylaspartate (MeAsp) concentration over three orders of

magnitude agree with experimental data reported in [33] (Figure

S2C).

Model of E. coli Motion
During a run, the cell is assumed to move with a constant speed

v = 20 mm/s, while the direction of motion is affected by rotational

diffusion [7,42]. After each time step, the running direction is

Table 1. Parameters used in RapidCell.

Parameter Value Reference

Kon
a 12 mM Tar to Asp [21]

Koff
a

1.7 mM Tar to Asp [21]

K*(KD) 4.52 mM Tar to Asp [14], this work

Kon
s 106 mM Tsr to (Me-)Asp [12,29,30]

Koff
s

100 mM Tsr to (Me-)Asp [12,29,30]

na 6 [12]

ns 12 [12]

[CheR] 0.16 mM wild-type level [35]

[CheB] 0.28 mM wild-type level [35]

a 0.0625 this work

b 0.0714 this work

[CheY]tot 9.7 mM [35]

A* 1/3 [12,30]

CCW mb0 0.65 [38,41]

H 10.3 [38]

v 20 mm s21 [38]

Dr 0.062 rad2 s21 [7,42]

Dt 0.01 s this work

doi:10.1371/journal.pcbi.1000242.t001

Table 2. Models used in RapidCell.

Model Reference

Receptor free energy: fr mð Þ~f on
r mð Þ{f off

r

f on
r mð Þ~er mð Þ

f off
r ~log

1z S½ �
�

Koff
r

1z S½ �
�

Kon
r

 !
[12,28–30]

Cluster free energy, in the mean-field approximation:
F = nafa(m)+nsfs(m)

[12,29]

Cluster activity: A~
1

1zeF

[12,28–30]

Rate of receptor methylation, AN-model at saturation:
dm

dt
~a 1{Að Þ CheR½ �{bA CheB½ �

[12,30]

Steady-state CheY-P concentration:

CheY-P½ �~3
kY ksA

kY ksAzkZZzcY

[32]

CCW motor bias: mb = (1+(1/mb021)(CheYp)H)21 [38,41]

doi:10.1371/journal.pcbi.1000242.t002
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changed by adding a stochastic component with normal

distribution N m,sð Þ~N 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt
p� �

and diffusion coefficient

Dr = 0.062 rad2 s21 [42].
Motor switching. The relative concentration of the response

regulator [CheY-P] is converted into motor bias using a Hill

function [38] (Table 2). Motor bias is the mean fraction of CCW

rotation time for a motor: mb = Tccw/(Tccw+Tcw), where Tccw and

Tcw are the means of exponentially distributed CCW and CW

intervals, respectively. The equation

lforw~1=Tccw~T{1
cw mb CheYpð Þð Þ{1

{1 ð10Þ

gives the frequency of the Poisson process of CCWRCW motor

switching. The frequency of reverse switching CWRCCW is

lrev = 1/Tcw. After each time step Dt, the motor can switch its

direction from the present state, according to the current switching

frequency lforw(rev), with probability Pforw(rev) = lforw(rev)Dt.
Runs and tumbles. Run and tumble events include the

complex interplay of filaments in a bundle, the details of which

have been investigated experimentally [31,43]. To simulate the

run and tumble behavior of a cell with several motors (N = 3–7) we

consider the voting model, where the majority of the motors

determines the cellular behavior.

Model of voting motors. The cell has N = 5 motors switching

independently, and the state of the cell is determined according to

a voting model [13,31,44]. The cell switches from ‘Run’ to

‘Tumble’, if at least 3 of its 5 motors rotate CW, and from

‘Tumble’ to ‘Run’, if at least 3 of the 5 rotate CCW. The choice of

N = 5 is arbitrary, and similar results are obtained for N = 3,7

under the condition of majority voting.

For model validation, simulations of cells with N = 3,5,7 motors

were carried out (Table 3). The simulated run times (1.04–1.11 s)

agree with the experimental value of 1.2461.16 s [45]. The

simulated tumble times (0.26–0.44 s) appear higher than the

measured 0.1460.08 s [7,31]. However, the latter study [31]

shows that the full tumble time, from bundle breaking in the old

run to bundle consolidation in the new is 0.4360.27 s. This

estimate of tumble time reflects not only cell reorientation, but also

the interplay of flagella and the resulting drop in cell speed, and

the voting model reflects specifically this kind of tumble time

estimate. The model with 5 motors is used in the following as

default.

Tumbling angle. The tumbling angle is distributed according

to the probability density function f(H) = 0.5(1+cosH)sinH,

0,H,p [46,47], with M(H) = 67.5u which is close to the

experimental measurement of 68u [7], and the corresponding

shape of the function (Figure S3).

Model of the Environment
The virtual cells are swimming in a 2D environment with a

predefined attractant concentration field S(x, y, t). The domain

geometry is either rectangular or circular, with reflecting walls.

The simulation time was chosen to be short enough to avoid

boundary effects. The rectangular domain is within (0, xmax)6
(0, ymax), and the circular domain within (0, rmax), with xmax = ymax =

2rmax = 20 mm.

The constant-activity gradient. The gradients used in

chemotaxis modeling are usually linear, Gaussian or exponential

[19,23]. However, in these gradients the signal is non-constant,

which means it is strong at low attractant concentrations, and

weak at high concentrations due to receptors saturation. Such a

non-uniform distribution of the signal makes it difficult to estimate

chemotactic efficiency over long time intervals—cells soon become

‘blind’ because receptors are saturated, and chemotactic drift

decreases.

According to the MWC model, an increase in ligand

concentration DS causes an initial rise in receptor free-energy

difference

Df ~log 1z
DS

SzKoff

� �
{log 1z

DS

SzKon

� �
ð11Þ

Using the Taylor-series approximation,

Df&
DS

SzKoff
{

DS

SzKon
ð12Þ

leads us to the following approximation for free energy per

concentration change:

Df ~DS
Kon{Koff

SzKonð Þ SzKoffð Þ ð13Þ

Simplified solution. The denominator in Eqn. 13 can be

simplified by assuming

SzKonð Þ SzKoff
� �

& SzK�ð Þ2 ð14Þ

and the unknown K* can be found from equation

SzKonð Þ SzKoff
� �

~ SzK�ð Þ2 ð15Þ

S2zSKonzSKoff zKonKoff ~S2z2SK�z K�ð Þ2 ð16Þ

S KonzKoff
� �

zKonKoff ~2SK�z K�ð Þ2: ð17Þ

which gives two alternative estimates for K*:K�~ KonzKoff

2
and

K�~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KonKoff
p

, i.e. the arithmetic and geometric means of Kon

and Koff.

At zero or relatively low ligand concentrations, the geometric

mean has a high impact in Eqn. 17, and is preferable as an

estimate. Indeed, in earlier work it was earlier referred to as the

apparent dissociation constant KD of ligand binding [14].

However, at high concentrations, the arithmetic mean will have

a higher impact in Eqn. 17, so it can be used as an alternative

estimate. Our simulations indicate that within four orders of

aspartate concentration the geometric mean serves as the best

estimate of K* (Figure S4).

Table 3. Simulated run and tumble times for cells with
different number of motors. Parameters: Tccw = 1.33 s,
Tcw = 0.72 s, mb = 0.65, n = 10000.

N Motors Voting Threshold Trun Ttumble

3 2 1.11 0.44

5 3 1.09 0.33

7 4 1.04 0.26

doi:10.1371/journal.pcbi.1000242.t003
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Taken together, the energy difference is approximated by

DS Kon{Koff

SzK�ð Þ2 . The differential equation

S’ Kon{Koff
� �

KDzSð Þ2
~C ð18Þ

describes the unknown function S(x), which will give the ‘constant-

activity’ gradient shape. The function S(x) will give a constant

change of energy difference C per length unit dx of cellular path

along the gradient. In other words, such a shape of gradient will

give a constant cluster activity at any ligand concentration.

Within the accuracy of a constant term, the latter differential

equation was previously used by Block and Berg in [48], who

derived it assuming that receptor occupancy is proportional to S/

(S+KD), with a single KD for active and inactive receptors. The

authors assumed that the chemotactic response is proportional to

the change in receptor occupancy [27,48]. They simplified this

equation to reduce the variability of the 1

KDzSð Þ2 term, leading to

the exponential form of the solution.

However, we can solve Eqn. 18 analytically:

S xð Þ~ Kon{Koff
� � 1

C C1{xð Þ

� �
{K� ð19Þ

where C1~
Kon{Koffð Þ

C S 0ð Þ{K�ð Þ is the constant of integration, determined

by the initial condition S(0). The condition S(0) = 0 gives the

following chemoattractant function:

S xð Þ~K�
Cx

Kon{Koff

K� {Cx
ð20Þ

Constant-activity gradient of Asp. In the case of aspartate

(Kon = 12, Koff = 1.7, K* = 4.52 mM), the S(x) function reads:

S xð Þ~K�
Cx

2:28{Cx
ð21Þ

Our simulations demonstrate that this form of constant-activity

Asp gradient gives a constant cluster-activity response with

reasonably good precision (see Results).

Gradient steepness. A cell swimming with speed v along the

axis X from the point (x = 0) senses the monotonically increasing

function S(x) and a constant change in receptor free energy

dE=dt~Cdx=dt~Cv ð22Þ

per second, which is defined as the steepness of the constant-activity

gradient.

Limiting condition. Note the necessary condition

(K
on{Koff

K� {Cxw0) for Eqn. 20 to avoid singularity and negative

concentrations. It sets the upper limit CvCmax~
Kon{Koff

K�
1

xmax
for

the gradient steepness C within the domain (0, xmax). For example,

within a domain of size xmax = 10 mm, the maximum steepness of a

gradient of aspartate is Cv = 2.28/xmaxv = 4.5661023.

Constant-activity and exponential ramps. In contrast to

spatial gradients, which direct the cellular motility in a certain

direction, time ramps are used to study the chemotactic response

of tethered cells [41,48].

The constant-activity ramp of Asp was simulated according to

Eqn. 20:

S tð Þ~K�
Ct

Kon{Koff

K� {Ct
, C~

Kon{Koff

K�
:0:9999=Tmax ð23Þ

with simulation time Tmax = 1000 seconds. The resulting value of C

gives the maximum ligand concentration S(Tmax) = 9999K*.

The exponential ramp was simulated as:

Se tð Þ~0:31KDexp 0:005 t{200ð Þð Þ, t§200ð Þ ð24Þ

after 200 s of adaptation to the initial stimulus 0.31KD, following

the model and experiments of [48]. The concentration profiles are

shown in Figure 2A.
Constant-activity gradient simulations. The constant-

activity gradient (Eqn. 20) has an intensity C~ Kon{Koff

K�
0:999
xmax

, and

the domain has a rectangular (0, xmax)6(0, ymax) or circular (0, rmax)

shape. The gradient has its minimum S = 0 at x = 0 (or r = 0) and

reaches its maximum S = 999K* at x = xmax (or r = rmax) (Figure 3A).

In most simulations we used the circular gradient S(r), and the cells

start swimming in random directions from the center r = 0.
Comparative set of constant-activity gradients (N1, N2,

N3). The circular constant-activity gradient (rmax = 10 mm) has

steepness dE/dt = Cv = 4.5661023. A set of other constant-activity

gradients was obtained by changing the steepness by a factor of

two: (1.14, 2.28, 4.56, 9.11, 18.22, 36.44, 72.88)61023. We

further compare the chemotactic efficiency in three of them with

moderate steepness (2.28, 4.56, 9.11)61023, and designate them

as constant-activity gradients N1, N2 and N3. In other words, they

are radially symmetric and have the form

S rð Þ~K�
Cr

Kon{Koff

K� {Cr
, C~

Kon{Koff

K�
: 0:999

rmax

ð25Þ

with rmax = 20,10,5 mm for N1, N2 and N3, respectively.
Linear gradient. We use a linear gradient S(x) = Kx,

xM(0,10 mm) with coefficient K = 1028 M mm21 = 1022 mM mm21

(Figure 3A).
Gaussian gradient. Another form of gradient we used is

Gaussian S(x) = 10K exp(2(x210)2/(2s2)), with shape parameter

s = 3.33 and the same coefficient K = 1022 mM mm21 (Figure 3A).
Chemotactic efficiency. Chemotactic efficiency was

estimated as the average drift velocity of a cell population,

measured between 200 and 500 s of simulation time, in the three

basic constant-activity gradients N1, N2, N3. As shown in Figure 4,

within this interval the average CheY-P level of cells is constant,

and the drift velocity can be accurately measured by a linear fit.
Population behavior. The population behavior in the

absence of attractant fits the diffusion equation Ær2æ = 4Dt.

Simulations give a diffusion coefficient D = 2.5661026 cm2 s21,

in agreement with the experimental D = 2.5–3.861026 cm2 s21

(see [45] and the review of other published values therein).

Program RapidCell
The output file of the RapidCell program contains the key

characteristics of the intracellular state (CheY-P level, methylation

state, motor bias) and the geometric characteristics of cell motion

(position and orientation). The model was implemented using Java

classes similar to AgentCell [19], but with simplified architecture.

The algorithm is implemented as a discrete-time Monte Carlo

scheme with time step Dt = 0.01 s. For random-number genera-

tion, we used external Java libraries [49,50]. The code was written

RapidCell
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using Eclipse SDK (www.eclipse.org). The output data were

analyzed with MATLAB (The MathWorks, MA).

Computational costs. Extensive computations of the

chemotaxis signaling pathway are avoided in RapidCell due to

the hybrid description of the signaling network. This leads to a

dramatic drop in computational costs. For example, simulation of

1000 s long walk of a single cell in a ligand gradient takes only 1 s

to run in RapidCell, compared to 133 minutes for AgentCell

(based on StochSim without receptor coupling), while the spatially

extended version of StochSim requires several days on the same

hardware (Intel Pentium 4 CPU 2.40 GHz, RAM 1 GB, OS

Linux Suse 10.2). Simulation of 1000 s long series of step responses

with the BCT program—the core simulator of E. solo—takes 100 s

under similar conditions (PowerPC G5, 1.8 GHz, RAM 1 GB,

MacOS X).

RapidCell is platform-independent and runs as a console

application. Its implementation provides a computational speedup

of 8000 times compared to AgentCell (based on StochSim without

receptor coupling), and approximately 100 times compared to

BCT. It enables simulations of up to 100,000 cells to be completed

within a time frame of hours using a desktop computer with

comparable CPU power and RAM to those mentioned above.

Experimental Methods
Strains and plasmids. E.coli strain RP2867 (tap cheR cheB) is

a derivative of RP437 [51]. Plasmid pVS571 encodes cheR and

cheB-eyfp as parts of one operon under control of a pBAD promoter

and native ribosome binding sites. The insert cheR cheB-eyfp was

recloned with SacI and XbaI from the plasmid pVS145 which was

constructed by cloning a PCR-amplified fragment containing cheR

upstream of cheB-eyfp in the pVS138 plasmid [52] using a SacI site

introduced by the upstream PCR primer and a HindIII site in cheB.

Swarm experiments in soft agar plates. Tryptone-broth

(TB; 1% tryptone, 0.5% NaCl) soft agar plates were prepared by

supplementing TB with 0.27% agar (Applichem), 34 mg ml21

chloramphenicol, and indicated concentrations of arabinose. Cells

Figure 3. Simulations of chemotaxis in different gradients. (A) Concentration profiles of the gradients used in the simulations. (B)
Chemotactic drift of cells in these gradients. The average position ÆXæ of the cells is shown as a function of time. A population of 2000 cells starts
moving from the left wall (x0 = 10 mm, y0 randomly distributed in (0, ymax)), and swims for 2000 s. (C) Relative CheY-P concentration as a function of
time, averaged over 2000 cells in the same gradients. The gray line indicates the fully adapted state [CheY-P] = 1.0 in a medium without attractant.
Relative adaptation rate k = 1. All cellular parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g003

Figure 2. Simulation of the MWC model response to the constant-activity and exponential ramps of aspartate. (A) The concentration
profiles of constant-activity and exponential ramps of aspartate, relative to KD = 4.52 mM (logarithmic scale). (B) The response of the MWC model to
the applied constant-activity and exponential ramps. Upon stimulation with the constant-activity ramp, the [CheY-P] rapidly goes down during initial
excitation—the single non-smooth point on the slope is the result of the piece-wise linearity of the methylation energy function. The constant-
activity ramp produces a long flat response up to a concentration of 100KD, above which Tsr receptors become sensitive to the ligand and the cluster
activity falls. Upon stimulation with the exponential ramp, the cell initially adapts to the minimum concentration Cmin = 0.31KD, and after 200 s the
exponential ramp begins. After 700 s, adaptation overcomes excitation and [CheY-P] slowly returns to the steady state. Relative adaptation rate k = 1.
doi:10.1371/journal.pcbi.1000242.g002
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were inoculated from fresh colonies grown on LB agar plates.

Swarm assays were performed at 34uC for 10 hours or at 30uC for

17 hours. Following incubation, photographs of plates were taken

using a Canon EOS 300 D camera, and subsequently analyzed

with ImageJ (Wayne Rasband, NIH) to determine the diameter of

the swarm rings.

Quantification of gene expression. For quantification of

mean expression levels of the fluorescent reporter protein CheB-

YFP, cells were grown in liquid TB medium supplemented with

34 mg ml21 chloramphenicol, and indicated concentrations of

arabinose. Fluorescence was determined in a population of cells

using flow cytometry on a FACScan (BD Biosciences) equipped

with a 488 nm argon laser [32,52]. The autofluorescence

background was measured for control cells and subtracted from

all values. Single-cell levels of fluorescent reporter proteins in

swarm assays were measured by fluorescence imaging on a Zeiss

AxioImager microscope and quantified with an automated

custom-written ImageJ plugin [52].

To calibrate the fluorescence intensity in FACS and imaging

data, a PerkinElmer LS55 luminescence spectrometer was used to

determine the absolute number of reporter proteins in control

cells. The cells were sonicated with a Branson Sonifier 450 until

complete lysis was achieved and YFP fluorescence was measured

at 510 nm excitation and 560 nm emission. Sonicated cells

without a fluorescence reporter were used as a negative control,

and their autofluorescence was subtracted from all values as

background. A solution of purified YFP of known concentration,

determined by Bradford assay and absorbance measurement by a

Specord205 spectrophotometer (Analytik Jena), was used to

produce a calibration curve, relating fluorescence to molecule

number. Cell number in 1 ml culture was counted using a

Neubauer counting chamber, and cell volume was determined by

measuring cell width and length by imaging. These values from

one culture were used to provide a conversion factor from FACS

or imaging values to single-cell protein levels.

Results

Chemotaxis in Different Gradients
To test our model (Figure 1A), we compared cellular behavior

in the proposed universal constant-activity gradient with other

gradients, observing the single cell swimming (Figure 1B) and the

behavior of large populations. The key characteristics we consider

are the CheY-P concentration and the drift velocity along the

gradient.

Response of the MWC model to ramps. It was previously

shown that tethered cells respond with constant strength to an

exponentially rising gradient of MeAsp, in the range between 0.31

and 3.2KD [48]. We simulated the response of the MWC model to

increasing ramps of Asp in the exponential and constant-activity

form (Figure 2A). Indeed, the exponential ramp gives nearly

constant response between 0.5 and 3.0K*, consistent with the

model of [48].

However, the constant-activity ramp results in a chemotactic

response that remains approximately constant over three orders of

ligand concentration—between 0.1 and 100KD (Figure 2B). If Tsr

is non-sensitive to the ligand, constant activity remains up to

1000KD. However, since Tsr receptors are able to respond to

aspartate non-specifically, the activity drops to zero, as previously

shown for a mixed-receptor cluster [12,27].

Chemotactic efficiency of cell populations in different

gradients. To study chemotactic efficiency in common

gradients that arise from general diffusion models, we simulated

chemotactic motility in linear and Gaussian gradients (Figure 3A),

and compared them with the constant-activity gradient. The

chemotactic efficiency was estimated by the average drift velocities

of populations consisting of 1000 identical cells. In Figure 3B, one

can see that in the linear and Gaussian gradients the drift velocity

decays after about 400 and 800 s, respectively, indicating that cells

loose sensitivity due to receptor saturation. In contrast, the

constant-activity gradient keeps the drift velocity constant at any

point (Figure 3B), as expected.

This population behavior can be explained by the intracellular

CheY-P levels of the cells in these gradients. Gaussian and linear

gradients result in a strong excitation at low attractant concentra-

tions, and poor excitation at high concentrations (Figure 3B). In

contrast, the constant-activity gradient produces an approximately

constant level of CheY phosphorylation across the cell population

(Figure 3C). These two unique properties of the constant-activity

gradient—constant drift velocity and constant average CheY-P—

favor this gradient as a reliable in silico assay to study the

chemotactic motility of cells.

Average CheY-P level in the constant-activity

gradients. Simulation of cell populations in the constant-

activity gradients N1, N2 and N3 demonstrate that the average

CheY-P level depends on gradient steepness and remains stable

Figure 4. Average CheY-P levels of 5000 cells swimming in the constant-activity gradients N1 (blue), N2 (green) and N3 (red).
Relative adaptation rate k = 1. The cell parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g004
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over long time intervals (Figure 4). These three gradients were

used further, as default, to measure chemotactic efficiency under

different test conditions.

Optimal Adaptation Rates in a Liquid Medium
We used the constant-activity gradient to study the effect of

adaptation rate on chemotactic efficiency. For this purpose, we

simulated homogeneous populations consisting of cells with the

same adaptation rate. In a fixed constant-activity gradient, the

population drift velocity depends on adaptation rate in a unimodal

manner (Figure 5A). A zero level of adaptation enzymes (non-

adapting cells) results in a low drift velocity, though it is clearly

distinguishable from non-chemotactic behavior. A proportional

increase of adaptation rate improves cellular drift velocity up to a

certain maximum, after which it slowly declines again. Extremely

high adaptation rates, more than 100 times higher than wild-type,

make the cells non-chemotactic (Figure 5A).

To study chemotactic efficiency as a function of gradient

steepness, cells were simulated in six constant-activity gradients

with the steepness changing 64-fold, from 1.14 to 72.8861023,

(Figure 5B). In each gradient, we determined the optimal

adaptation rate, at which cellular drift velocity reaches its

maximum. The simulated drift velocities are in the same range

as those measured experimentally for E. coli in steep gradients

(7 mm s21) [53]. Our simulations indicate that experimental cell-

drift velocities are inlikely to exceed 15 mm s21, corresponding to

an extremely steep and short-scale gradient. In very weak

gradients, the drift velocity can be as low as 2.5 mm s21, still

distinguishable from the non-chemotactic cellular drift

(0.8 mm s21). Interestingly, we observed that the optimal adapta-

tion rate rises in proportion with the gradient steepness (Figure 5B).

To investigate the latter effect in more detail, we varied the

adaptation rate from 0 to 10-fold relative to the wild-type. In

steeper gradients, the optimal adaptation rate is indeed higher

(Figure 6A), and the peak of the drift velocity becomes less sharp.

To find the reason for the observed dependence between the

gradient steepness and optimal adaptation rate, we tracked the

average CheY phosphorylation levels of the virtual cells. As one

can see in Figure 6A and 6B, in all gradients the 90%-intervals

around the velocity peaks correspond to adaptation rate intervals

[0.1,0.5], [0.4,1.5], [1,3], respectively. These three intervals fall

into to the same interval [0.80#CheY-P#0.97], within the error

of estimation. The optimal adaptation rates which give maximal

drift velocities correspond to an average [CheY-P],0.9. In steep

gradients, the profile of average CheY-P flattens, and the optimal

adaptation rate becomes higher (Figure 6B).

The reason why the interval [0.80#CheY-P#0.97] corresponds

to optimal chemotaxis is evident from the profile of motor bias as a

function of CheY-P (Figure 6C). The interval [0.80#CheY-

P#0.97] corresponds to the operating range of the motor

[0.95$mb$0.72], where the dependence between mb and CheY-

P is approximately linear. In this interval, chemotactic behavior is

most efficient in liquid media. The optimal adaptation rate

therefore sets the CheY-P level to fit the motor operating range. In

steep gradients, the adaptation rate must be high enough to

balance the strong excitation and set CheY-P within this optimal

interval. In shallow gradients, adaptation must be slow enough to

allow excitation, otherwise the cells become adapted before they

are able to respond.

Effect of [CheR] to [CheB] Ratio on Chemotactic Efficiency
The effect of varying the [CheR] to [CheB] ratio was studied at

fixed [CheB] in three constant-activity gradients N1, N2, and N3

in a liquid medium. The chemotactic efficiency dramatically

decreases above [CheR] = 1 (Figure 7), because the resulting higher

steady-state CheY-P level produces tumbling behavior. Below

[CheR] = 1, chemotactic efficiency decreases slowly for N3, or goes

up for the N1 and N2 gradients. The latter effect is caused by a

shift of average CheY-P level to the optimal interval, where the

chemotactic sensitivity is the highest due to a more optimal fit to

the motor operating range.

Effect of CheB Phosphorylation on Chemotactic
Efficiency

We have further studied the effect of CheB phosphorylation

feedback on chemotactic efficiency in a liquid medium. Under the

Figure 5. Chemotactic properties of cells at different adaptation rates in constant-activity gradients. (A) Drift velocity of cells in the
constant-activity gradient N2 as a function of adaptation rate. The horizontal axis shows the adaptation rate k relative to the wild type (logarithmic
scale). Gray lines show standard deviations. (B) Maximal drift velocities (black) and the corresponding optimal adaptation rates (blue) as a function of
gradient steepness. The steepness of the constant-activity gradients was changed over a 64-fold range, as described in the section ‘Model of the
environment’.
doi:10.1371/journal.pcbi.1000242.g005
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assumption that [CheR] and [CheB] perfectly match each other

(A* = 1/3), the CheBp-effect is positive when the adaptation rate is

lower than the optimum, and negative when the adaptation rate is

higher, in the given gradient (Figure 8A). This effect is caused by

the reduction of CheB activity relative to CheR, when the kinase

activity A is below the steady-state level (A* = 1/3), as described in

the section ‘Model of E. coli Signaling Network’. The average

CheY-P level is thus shifted up, which results in a positive or

negative effect of CheB phosphorylation, depending on the rate of

adaptation (Figure 8B).

The positive role of phosphorylation can be significantly

increased when the ratio of [CheR] to [CheB] is non-perfect

(Figure 8C). For example, 25%-active CheB can significantly

counteract the strong negative effect of [CheR] = 1.25 in the N3

gradient—the drift velocity rises from 1.8 to 2.8 mm s21 (55%). At

[CheR] = 0.75 the effect is not so dramatic, but remains

significant—the average drift velocities increase by about 10–

15% in all three gradients. This suggests that CheB phosphory-

lation helps to maintain chemotaxis at fluctuating concentrations

of CheR and CheB, when their ratio is not perfect due to gene-

expression noise.

Swarm Plate Simulations
In the swarm assay in soft agar, bacteria consume an attractant,

thereby creating a local gradient, and follow it in the form of a

growing ring [54,55]. We assume that the intensity of the moving

gradient remains constant, and use the constant-activity gradient

as a simple model for the swarm assay simulation. The constant-

activity gradient provides a constant cellular-drift velocity at any

distance from the center of the plate. This property allows us to use

it as a stationary model of the real moving gradient of attractant.

In swarm assays, bacteria move in a labyrinth of agar filaments,

with obstacles and traps along the cell’s path. The cell can

encounter traps during its run, and stays trapped until it makes the

next tumble, as observed by Wolfe and Berg [55]. Therefore, non-

adapting cells and non-tumbling mutants form the smallest rings.

To simulate motility in such a porous medium as agar, we have

introduced a new state of the cell, corresponding to a stop in a trap

Figure 6. Optimal chemotactic behavior at different adaptation rates. (A) Drift velocities of cells as a function of adaptation rate, in the
constant-activity gradients N1 (blue), N2 (green), N3 (red). For each adaptation rate, the drift velocity was estimated from the simulation of 1000 cells,
with standard error of mean 0.05. (B) Average CheY-P levels of cells in the same simulations. Black dots indicate the adaptation rate at which drift
velocity is maximal. Gray rectangles show the intervals of optimal adaptation rates, defined by taking the 90%-interval from the drift velocity
maximum. The width of each rectangle indicates the optimal adaptation-rate interval, and height shows the corresponding CheY-P interval. All three
intervals of adaptation rates fall into the same CheY-P interval: [0.80,0.97], shown by the gray band. (C) The CCW motor bias as a function of CheY-P.
Gray bands indicate the optimal CheY-P interval and the corresponding operating range of the motor. The cell parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g006

Figure 7. Effect of variable [CheR] on chemotactic efficiency. The vertical axis shows drift velocities. The level of [CheB] is fixed at the wild-
type value (0.28 mM), while [CheR] is varied relative to wild type (0.16 mM). Note the steep fall in the drift velocities for [CheR].1, where the steady-
state CheY-P produces tumbling behavior.
doi:10.1371/journal.pcbi.1000242.g007
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during a run (Figure 9). The positions of traps are not fixed in

space. Instead, it is assumed that each cell encounters traps in an

exponentially distributed time series, which mimics the random

collisions of the cell with agar filaments. The mean free time

between traps is set to 2.0 s to achieve biologically realistic drift

velocities (about 1 mm s21). While it is trapped, the cell remains

stationary until it makes a tumble, whereupon normal run and

tumble behavior resumes until the next stop occures [55].

Optimal [CheR,CheB] in Agar—Experiments and
Simulations

In our model, we assumed that the levels of the adaptation

enzymes CheR and CheB vary in a coordinated manner, leaving

the [CheR]/[CheB] ratio the same as in the wild type. The ratio of

CheR to CheB can be assumed to remain largely fixed because

their genes are adjacent and transcriptionally coupled in the meche

operon. The adaptation rate in our model is thus proportional to

the level of co-expression of CheR and CheB, which will be further

denoted as [CheR,CheB].

In order to study chemotactic efficiency at different adaptation

rates in agar, we have experimentally measured chemotactic

efficiency on swarm plates. In these experiments, CheR and

CheB-YFP were co-expressed from one operon under control of a

pBAD promoter and native ribosome-binding sites. The pBAD

promoter gives expression levels lower or higher than the wild-type

value, depending on the strength of arabinose induction. Mean

protein levels in the population at a given induction were

determined as described in Experimental Methods.

Experiment and simulations show that cells with [CheR,CheB]

above a certain threshold perform chemotaxis equally efficiently

(Figure 10A and 10B). However, the cells with [CheR,CheB]

below the threshold have severely impaired chemotactic behavior.

According to the simulations, cells with low [CheR,CheB] tend to

run without tumbling and stay trapped most of the time. On the

other hand, cells with extremely high [CheR,CheB] loose their

sensitivity to the gradient and also have poor chemotactic

efficiency (Figure S5).

This suggests a positive selection for cells with optimal

[CheR,CheB] in liquid media—such cells can reach the nutrient

source faster and have more available substrates for growth. In

contrast, swimming in agar poses mainly negative selection—cells

with low [CheR,CheB] are filtered out from the chemotactic

population. The limits of motor bias for optimal chemotaxis in

agar are also different from those in liquid media. As one can see

in Figure 10C, the average CCW motor bias of successful cells is

just slightly higher than the steady-state mb0. Cells with higher

motor bias would drift faster in liquid media, but not in agar,

because the period of time they remain trapped also increases with

CCW motor bias.

Swimming in a Liquid Medium and Agar with a Log-
Normal Distribution of [CheR,CheB]

To model swarm assays more realistically, we simulated cell

populations with a log-normal distribution of [CheR,CheB] values.

The mean (1.6) and standard deviation (0.48) are fitted to reproduce

the variability of adaptation times observed for wild-type cells [33]:

Tad = 3116150 s in response to a 0–1023 M MeAsp step.

The scatter plot of distances travelled by cells along the gradient

N2 in a liquid medium shows that a subpopulation with optimal

[CheR,CheB] levels drifts more rapidly than other cells

(Figure 11A). Simulations in the N3 gradient in agar show that

cells with low [CheR,CheB] levels are hindered by agar traps,

while other cells drift successfully (Figure 11B). In Figure 11C and

11D the same cells are colored from deep blue to red, according to

their [CheR,CheB]. The outer edge of the bacterial ring in a liquid

medium contains many blue cells with [CheR,CheB] between 0.5

and 2. In contrast, the outer edge in the agar contains a uniform

mixture of cells with different [CheR,CheB] levels, while deep blue

cells with low [CheR,CheB] tend to be left behind.

Measurement of [CheR,CheB] in Individual Cells in
Different Parts of Swarm Rings

To confirm that chemotactic cells are selected for their

[CheR,CheB] levels in swarm plates, cells expressing CheR and

CheB-YFP from one operon were taken from two positions in the

swarm ring—at the center and at the outer edge—and protein

levels in individual cells were determined using fluorescence

imaging. The cells collected near the center at a standard agar

concentration (0.27%) have on average lower copy numbers of

adaptation enzymes than cells at the outer edge, confirming the

Figure 8. Effect of CheB phosphorylation on chemotactic efficiency in a liquid medium. (A) Drift velocity as a function of adaptation rate
in the constant-activity gradients N1 (blue), N2 (green), N3 (red). The ratio of [CheR] to [CheB] at steady state is left as in the wild type (0.16/0.28),
ensuring the steady-state activity A* = 1/3 in all cases. Solid lines correspond to cells with 100%-active CheB at steady state, dashed lines - 50%-active,
finely dashed - 25%-active CheB. (B) The average [CheY-P] resulting from the balance between CheR and CheB activity determines the positive or
negative role of CheB phosphorylation. Cells are simulated in the gradient N3, at adaptation rates of 1.0 and 3.0. Kinase-dependent CheB activity
means that CheB works more weakly at A,1/3, and thus the average [CheY-P] is higher than the level obtained for constantly active CheB. Such a
shift improves chemotaxis at low adaptation rates, but reduces it at high rates. The optimal range of CheY-P is shown by the gray band. (C) Drift
velocities at variable [CheR] and variable CheB activity and fixed [CheB] (0.28 mM, wild type). Solid, dashed and finely dashed lines indicate 100%, 50%
and 25% active CheB, respectively. Adaptation rate k = 1, other cell parameters as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g008
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predicted selection against low copy numbers (Figure 12A). As

expected, in the swarm plates with a reduced agar concentration

(0.20%), the difference between center and outer edge is much

smaller (Figure 12B), suggesting that there is no strong selection

against low copy numbers in liquid media. It should be noted that

agar concentrations below 0.20% do not produce a stable gel

structure, and therefore that is probably the most liquid agar that

can be used for swarm plate experiments.

Our simulations and additional experiments with a pTrc

promoter, which gives much higher basal expression level of

Figure 9. Model of motility in a porous medium (agar). A cell encounters traps along its run, and stops in the traps. It stays in the trapped state
until the first tumble occurs, then normal run and tumble behavior resumes. The trap positions are not fixed in the 2D space - instead, it is assumed
that each cell encounters traps in a series of randomly distributed time intervals.
doi:10.1371/journal.pcbi.1000242.g009

Figure 10. Swarm-plate assay at different [CheR,CheB]. (A) Experimentally measured chemotactic efficiency at different expression levels of
the cheR cheB-eyfp operon under the control of a pBAD promoter. The applied arabinose concentrations were 0.0, 0.0005, 0.001, 0.01%, respectively.
The CheB-YFP level reflects the concerted [CheR,CheB-YFP] due to strong translational coupling. For scale conversion, the wild-type level of CheB can
be taken as 240 copies/cell [35]. (B) Simulated chemotactic efficiency as a function of [CheR,CheB]. Cells are simulated in the constant-activity
gradients N1 (blue), N2 (green), N3 (red). The black open circle shows the experimentally observed drift velocity of wild-type cells, estimated from
Figure 4 of [55]. The cross shows the drift velocity of non-adapting cells, from Figure 6 of [55]. The cell parameters are as described in Table 1. (C)
Average motor bias of cells as a function of [CheR,CheB]. The steady-state motor bias is 0.65, with the gray band indicating the region of optimal
motor bias for chemotaxis in agar.
doi:10.1371/journal.pcbi.1000242.g010
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[CheR,CheB], show that very high levels of the adaptation

enzymes, over 20-fold, can again decrease chemotactic efficiency

in agar (Figures S5 and S6).

Discussion

In this paper, we present RapidCell—a model of chemotactic E.

coli, which allows us to study the effect of chemotaxis network

properties on the behavior of large bacterial populations.

RapidCell uses a hybrid model for pathway simulation, with

mixed algebraic and ODE description instead of a fully stochastic

model, AgentCell [19], or a complete system of ordinary

differential equations, E. solo [23]. Our model allowed us to

dramatically decrease in computational costs. Though many

molecular details are skipped or modeled in a rapid-equilibrium

(algebraic) approximation, the key steps of the network are

reproduced in agreement with up-to-date experimental data. In

contrast to detailed single-cell simulation programs which

reproduce the noisy behavior of individual cells [19,56], RapidCell

is aimed at predicting the averaged behavior of bacterial

populations, and to investigate how it is affected by the signaling

network parameters, neglecting the intrinsic noise coming from

molecular reactions. However, artificial sources of noise can be

further added in the deterministic model of the signaling pathway.

In the present version of RapidCell, the noise arises only from

rotational diffusion and stochastic switching of the motors.

For the receptor cluster simulation, we used the mixed-receptor

cluster MWC model [12,28,30], which accounts for the observed

broad range of sensitivity and reproduces the recent in vivo FRET

data [27]. Adaptation is modeled according to the mean-field

approximation of the assistance-neighborhood model, with the

assumption that the average methylation level of multiple

receptors can be represented as a continuous rather than a

discrete variable [30]. In contrast to the other reactions,

methylation and demethylation are relatively slow and therefore

described by an ODE. The ODE is integrated by the first-order

Euler scheme to ensure high computational speed of the program,

while the time step is chosen as 0.01 s to keep the simulation error

low.

Taking into account the available experimental studies on

tumble mechanics [31,57], we use a voting model of run-tumble

switching [13,31,44]. The model is in a good agreement with

experimentally measured run and tumble times. However, more

high-resolution experimental data on the interplay among multiple

Figure 11. Simulation of motility in a liquid medium and agar with a physiological [CheR,CheB] distribution. The distances R travelled
by 104 cells after 1000 s of simulation time in (A) the liquid medium, N2 gradient; (B) agar, N3 gradient. The (x,y)-positions of cells colored from deep
blue to red, according to their [CheR,CheB], are shown in (C) for the liquid medium, (D) for agar. The smallest [CheR,CheB] values correspond to deep
blue, the highest values correspond to red. Note the different scales of the figures. The cell parameters are as described in Table 1.
doi:10.1371/journal.pcbi.1000242.g011
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flagella during the run and the tumble would be necessary for a

detailed model of run-tumble cellular behavior.

There are several types of gradients usually applied in computer

models of chemotaxis. The linear gradient arises between

stationary source and adsorber, and can often be observed under

natural conditions. The Gaussian, another commonly used

gradient, appears when a limited amount of molecules is injected

into the medium from a micropipette or a similar source [42].

Other gradients that arise from general models of diffusion have

hyperbolic or exponential shapes. However, all commonly used

gradients have a ‘blind’ zone where receptors are saturated and

cells do not respond. When cells drift along these gradients, the

average profile of CheY-P changes dramatically, from a steep fall

at low concentrations to a weakly stimulated state at high

concentrations (Figure 3C). This makes it difficult to compare

long-term chemotactic efficiency, because the average CheY-P

and drift velocity are non-stable along the gradient.

To study chemotaxis systematically, we propose a new—

constant-activity—type of gradient. This gradient has the unique

property of providing the same CheY-P level and cellular-drift

velocity over a wide range of ligand concentrations. The stability

of the CheY-P level allows us to study properties of virtual

chemotactic cells systematically, and to compare chemotactic

behavior over long time periods and concentration ranges.

The form of the constant-activity gradient is derived from the

MWC model, by formulating the differential equation for the

gradient shape which will give a constant rate of receptor free

energy change due to ligand binding. In earlier work, the

condition of constant chemotactic response was studied using a

phenomenological model of ligand binding, with a single

dissociation constant KD [48]. The study of Block and co-authors

showed that such a model can be simplified, and as a result an

exponential ramp of ligand should give a constant response in the

range between Cmin = 0.31KD and Cmax = 3.2KD, a prediction that

was supported by their experiments [48].

In our study, we show that the differential equation for the

constant-response gradient proposed in [48] is the result of the

MWC model. We further solve this differential equation

analytically, and find the exact form of the constant-activity

gradient. This gradient grows similarly to the exponential function

at moderate ligand concentrations, and increases faster than

exponential at low and high concentrations (Figure 2A).

Our simulations show that the chemotactic response of the

MWC model in the constant-activity gradient remains stable over

four orders of ligand concentration—between 0.1 and 1000KD, in

the case when Tsr receptors are fully insensitive to the ligand.

However, in the case of (Me)-Asp, the Tsr receptors are able to

respond non-specifically to high ligand concentrations, therefore

above 100KD the cluster activity drops to zero in a mixed-receptor

cluster [12,27]. However, our simulations of population behavior

consider only moderate Asp concentrations, so the cluster activity

remains nearly constant in all observed cases.

The exponential ramp also gives nearly constant response in the

MWC model, but over a much smaller range—between 0.5 and

3.0KD, in agreement with [48] and the recent study of Tu et al. [58].

We also show that the apparent dissociation constant KD can be

estimated by either the arithmetic or geometric mean of Koff and

Kon, but the geometric mean gives a better approximation over a

wide range of ligand concentrations.

The shape of the constant-activity gradient is also close to a

hyperbolic gradient, with the change of variables, KDCx/

(12Cx) = KD(1/y21),KD/y, (y = 12Cx, KD%1). The hyperbolic

gradient arises from simple models of diffusion, when ligand

molecules are emitted from a spherical source into the surrounding

medium. In nature, such conditions can be observed, for example,

in aquatic ecosystems where microalgae leak organic matter

attractive for bacteria [59]. This suggests that hyperbolic and

exponential gradients with appropriate parameters can be good

approximations for the constant-activity gradient.

In our model, the adaptation rate is assumed to be proportional

to the co-varied concentration of the adaptation enzymes

[CheR,CheB], and we use both terms to denote the rate of

adaptation. However, increasing expression of the adaptation

enzymes may lead to saturation of the adaptation rate at some

point, because the enzymes will start working out of saturation

kinetics. For these reasons, it is more correct to consider our results

in terms of adaptation-rate effects on chemotaxis, whatever the

origins of adaptation-rate variability may be.

Figure 12. Experimental measurement of [CheR,CheB-YFP] in individual cells at different points in the swarm ring, for plates with
(A) normal agar (0.27%); (B) liquid agar (0.20%). Blue columns show the least swarming cells in the center of the swarm plate, and the red
ones—the best swarming cells from the outer edge. The expression of cheR cheB-yfp was under the control of a pBAD promoter, which gives a basal
expression level close to wild-type. The bin size is 110 copies/cell.
doi:10.1371/journal.pcbi.1000242.g012
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The effect of adaptation rate on chemotaxis agrees in many

respects with the results reported in [13] for optimal noise filtering

of the chemotaxis signaling system. In their work, the authors

demonstrated the existence of an optimal cutoff frequency, an

analog of the adaptation rate in our study, for efficient chemotaxis.

For a fixed linear gradient, they show the same shape of

chemotactic efficiency as a function of cutoff frequency (Figure

3B in [13]) as we found in our simulations (Figure 5A). The

authors also show that the optimal cutoff frequency depends on

gradient steepness in a linear manner (Figure 5A in [13]),

consistent with our results (Figure 5B) for steep gradients.

Our simulations in the constant-activity gradient suggest a

simple biological mechanism that determines the optimal

adaptation rate for a given gradient steepness. Different optimal

adaptation rates correspond to a single CheY-P interval, which fits

the linear range of the motor-response function. This means that

the highest drift velocity in liquid media is observed when the

CheY-P level is in the narrow interval fitting the operating range

of the motor. In this range, the dependence between CheY-P and

mb is approximately linear (Figure 6C).

We found that the CheB phosphorylation feedback can have

either a positive or negative effect on chemotactic efficiency,

depending on how it shifts the average CheY-P level relative to the

region of linear motor response. In the case of non-perfect ratio of

CheR to CheB, the CheB phosphorylation mechanism can

partially counteract the negative effect of unbalanced [CheR]/

[CheB], by shifting the average CheY-P towards the optimal

region. This confirms that CheB phosphorylation can improve the

chemotactic properties of cells with deviations in the ratio of

[CheR]/[CheB], as well as in the ratios of other proteins, from the

optimum [32].

Chemotactic behavior in liquid media differs from that in agar.

We simulated agar effects using traps randomly distributed over

time - a cell can encounter traps during its run, and stays trapped

until it makes the next tumble, as observed by Wolfe and Berg

[55]. This restricts cellular motility—cells that are highly biased

towards running remain in traps longer. In agar, the region of

optimal motor bias is very narrow and is just above the

unstimulated state mb0, because higher bias increases the period

of time cells remain in traps.

In our model, we did not take into account the growth of a

bacterial populations. The typical swarm plate experiments last

several hours, and cells grow and divide during the experiment,

leading to variations in protein levels and to redistribution of

proteins from generation to generation. However, the effect of

different adaptation rates in our simulations is clearly visible

already within one cell generation over 1000 s of model time

(Figure 11B). The selection thus works on a time scale that is

shorter than the generation time, which, in our opinion, justifies

using a fixed protein distribution. Therefore, the addition of cell

growth should not change our results qualitatively. In experiments,

daughter cells with sub-optimal levels of CheR and CheB will

rapidly fall behind the spreading swarm ring in the vicinity of the

division site, while the subpopulation with optimal adaptation rates

will be always at the front edge of the ring.

In most of our simulations, we assume that the CheR and CheB

ratio is constant due to the genetic coupling between the two

respective genes, and that cell-to-cell variation in adaptation rates

arises from concerted variation in the levels of both enzymes [32].

We also investigated the effects of variation in the [CheR]/[CheB]

ratio, which results from translational noise, and affect both the

adaptation rate and the steady-state motor bias. In addition to

these investigated sources of noise, there is intrinsic noise in the

pathway activity which arises from the stochastic nature of (de-

)methylation events. The latter sort of noise can also have positive

effects on the spreading of cells in a ligand-free medium [56], and

even on chemotactic drift in weak gradients [60]. Superposition of

variable noise effects on chemotactic efficiency in variable

gradients would be an interesting issue for further study.

In this work, we have estimated the variability in concerted

CheR and CheB concentrations using available experimental data

on cell-to-cell variability in adaptation times [33]. We assumed a

log-normal distribution for protein concentrations, which also

gives a log-normal distribution of adaptation times to a step-wise

stimulus from 0 to 1023 M MeAsp [33]. There are also other

experimental estimates of cell-to-cell variation in adaptation times

[34] and related simulations [61], but the adaptation rates

observed in those experiments were several times higher,

presumably due to different culture growth conditions.

Our simulations suggest some evolutionary implications. In

liquid media with variable food sources and gradient intensities,

variability in adaptation times (protein levels) among cells can help

the whole population to respond to different gradients more

readily, due to positive selection of cells with optimal

[CheR,CheB]. In other words, for any given gradient steepness,

there will be a subpopulation which has the best [CheR,CheB] to

follow this gradient. In contrast, agar poses mainly negative

selection on cell populations - cells with low [CheR,CheB] are

filtered out from competition, while all other cells travel with

approximately equal efficiency.

Inspired by the implementation of AgentCell, RapidCell focuses

on highly efficient computation of large populations over long

periods, keeping cell-response properties consistent with experi-

mental data. The first version of RapidCell allows us to simulate E.

coli populations of size 104–105 cells over a time scale of hours,

while tracking the signal network dynamics of individual cells.

These capabilities permit the modeling of cellular behavior on a

macroscopic scale, as in swarm-plate experiments, and the

prediction of properties of heterogeneous populations with noisy

components of the signaling network.

Supporting Information

Figure S1 Comparison of the RapidCell network response with

experimental and simulated data. (A) FRET experiment and

RapidCell simulation of cell response to a step-wise stimulus of

MeAsp. The initial ambient concentration is zero; at t = 80 s

30 mM MeAsp is added and removed at 480 s. The best fit by

RapidCell is obtained with an adaptation rate of k = 0.5,

corresponding to the temperature T = 20uC at which the FRET

experiments were carried out. At T = 30uC, the fitted adaptation

rate will be k = 1.0 (V.Sourjik, unpublished data). (B) StochSim

and RapidCell simulations of cell response to a step-wise stimulus

of Asp. The initial ambient concentration is zero; at t = 20 s

3.5 mM Asp is added and removed at 70 s. The best fit by

RapidCell is obtained with an adaptation rate of k = 8 - a very

rapid rate of adaptation. The StochSim simulations were carried

out with a coupled model (Shimizu et. al, 2003), consisting of

65665 square receptor lattice with coupling energy EJ = 23.1 kT.

Found at: doi:10.1371/journal.pcbi.1000242.s001 (0.30 MB TIF)

Figure S2 Comparison of the RapidCell network response with

experimental data on tethered cells. (A) Simulation of CCW motor

bias response to a short pulse of attractant. The initial ambient

concentration is zero; at t = 5 s 1.0 mM Asp is added for a 0.35 s

interval; solid line - simulations (the best fit is obtained with an

adaptation rate of 2.0), circles - experimental data (Segall et. al.,

1986). (B) Simulation of CCW motor bias response to a step-wise

stimulus. The initial ambient concentration is zero; at t = 1 s

RapidCell
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0.075 mM Asp is added; solid line - simulations, circles -

experimental data (Segall et. al., 1986). The best fit is obtained

with an adaptation rate of 5.0. (C) Adaptation times to a step

increase of MeAsp from zero ambient level, obtained in

simulations (solid line) and in experiments (Berg and Tedesco,

1975) (circles). In the simulations, the dissociation constants used

were Ka
off = 0.02 mM and Ka

on = 0.5 mM (Keymer et. al., 2006).

The best fit is obtained with an adaptation rate of 1.3.

Found at: doi:10.1371/journal.pcbi.1000242.s002 (0.06 MB TIF)

Figure S3 Probability density function of tumbling angles

f(H) = 0.5(1+CosH)SinH used in the model (solid line), and

experimental measurements (cross markers) (Berg and Brown,

1972).

Found at: doi:10.1371/journal.pcbi.1000242.s003 (0.04 MB TIF)

Figure S4 The CheY-P response of the MWC model to the

constant-activity ramp of aspartate from 0.1 to 10000KD. The

ramp is simulated according to Eqn. 22 in two forms, with

K* = 0.5(Kon+Koff) (arithmetic mean), or K* = (KonKoff)0.5(geo-

metric mean). The MWC model shows an approximately constant

response for both approximations, but the geometric mean gives

the more stable response over a wider range of concentrations.

Found at: doi:10.1371/journal.pcbi.1000242.s004 (0.12 MB TIF)

Figure S5 Chemotactic efficiency in agar as a function of highly

over-expressed [CheR,CheB], observed in experiments and

simulations: (black line) swarm-plate efficiency of cells with CheR

and CheB-YFP expression under the control of a pTrc promoter.

The chemotactic efficiency was estimated relative to the diameters

of wild-type swarm rings. Color lines denote simulated chemotac-

tic efficiency in three constant-activity gradients N1 (blue), N2

(green), N3 (red). The chemotactic efficiency in the simulations

was estimated as the average distance travelled by cells, divided by

the distance with the optimal [CheR,CheB]. Error bars indicate

standard deviations.

Found at: doi:10.1371/journal.pcbi.1000242.s005 (0.06 MB TIF)

Figure S6 Measurement of [CheR,CheB] in individual cells in

different points of the swarm ring, for cells with (A) the least, and

(B) the best swarming efficiency. CheR and CheB-YFP were

expressed from one operon under the control of a pTrc promoter

and native ribosome-binding sites. The pTrc promoter gives high

basal expression relative to the wild-type level. The least swarming

cells were taken from the center of the swarm plate, and the best

swarming - from the outer edge of the swarm ring. The mean

protein levels were determined as described in Experimental

Methods.

Found at: doi:10.1371/journal.pcbi.1000242.s006 (0.06 MB TIF)

Table S1 Rates of reactions

Found at: doi:10.1371/journal.pcbi.1000242.s007 (0.02 MB PDF)
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Abstract

Chemotaxis allows bacteria to colonize their environment more efficiently and to find optimal growth conditions, and is
consequently under strong evolutionary selection. Theoretical and experimental analyses of bacterial chemotaxis suggested
that the pathway has been evolutionarily optimized to produce robust output under conditions of such physiological
perturbations as stochastic intercellular variations in protein levels while at the same time minimizing complexity and cost
of protein expression. Pathway topology in Escherichia coli apparently evolved to produce an invariant output under
concerted variations in protein levels, consistent with experimentally observed transcriptional coupling of chemotaxis
genes. Here, we show that the pathway robustness is further enhanced through the pairwise translational coupling of
adjacent genes. Computer simulations predicted that the robustness of the pathway against the uncorrelated variations in
protein levels can be enhanced by a selective pairwise coupling of individual chemotaxis genes on one mRNA, with the
order of genes in E. coli ranking among the best in terms of noise compensation. Translational coupling between
chemotaxis genes was experimentally confirmed, and coupled expression of these genes was shown to improve
chemotaxis. Bioinformatics analysis further revealed that E. coli gene order corresponds to consensus in sequenced bacterial
genomes, confirming evolutionary selection for noise reduction. Since polycistronic gene organization is common in
bacteria, translational coupling between adjacent genes may provide a general mechanism to enhance robustness of their
signaling and metabolic networks. Moreover, coupling between expression of neighboring genes is also present in
eukaryotes, and similar principles of noise reduction might thus apply to all cellular networks.
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Introduction

Any intracellular network is permanently exposed to a wide

range of intra- and extracellular perturbations that affect levels of

components and reaction rates. Both eukaryotic and prokaryotic

systems have therefore evolved mechanisms that allow them to

produce a robust output under varying conditions. In prokaryotes,

the best-studied model system for signaling and robustness is the

chemotaxis pathway of E. coli [1,2]. The pathway includes

transmembrane receptors (also called methyl-accepting chemo-

taxis proteins, or MCPs) of five types, the receptor-coupled kinase

CheA, the adaptor CheW, the response regulator CheY, and the

phosphatase CheZ, as well as the adaptation system that consists of

two opposing receptor modification enzymes, the methyltransfer-

ase CheR and the methylesterase CheB. CheA autophosphoryla-

tion activity is controlled by ligand binding to receptors, with

CheW needed to couple CheA to receptors. Phosphorylated CheA

rapidly transfers the phosphate group to CheY, which controls

direction of flagellar motor rotation and thereby bacterial

swimming behavior. Phospho-CheY (CheY-P) dephosphorylation

is accelerated by CheZ. Cells adapt to a constant stimulation by

adjusting levels of receptor methylation, with higher methylated

receptors being more efficient in kinase activation.

Robustness of the pathway output—the concentration of CheY-

P—against varying levels of ambient stimulation and against

intercellular variation in gene expression, or gene expression noise,

is ensured by specific features of the pathway topology. Robust

adaptation to a wide range of stimulus strength is achieved by an

integral feedback from an activity state of receptors (kinase-

activating vs. kinase-inactivating) to the methylation system,

whereby CheR preferentially methylates inactive receptors and

CheB demethylates active receptors [3–6]. On the other hand,

robustness against natural intercellular variation in protein levels,

or gene expression noise, primarily relies on the balance of

PLoS Biology | www.plosbiology.org 1 August 2009 | Volume 7 | Issue 8 | e1000171



opposing enzymatic activities, CheR/CheB and CheA/CheZ [7].

Such balance can perfectly compensate for the concerted

expression noise, and it has been shown that the topology and

reaction rates of the pathway are such that its output remains

invariant under perfectly coupled overexpression of all chemotaxis

proteins [7]. Robustness against expression noise is further

improved by a negative phosphorylation feedback from the active

CheA to CheB, which greatly enhances enzymatic activity of the

latter, and partly compensates for both concerted and uncorrelat-

ed variations in protein expression.

These model predictions are consistent with the experimentally

observed high correlation in the levels of individual chemotaxis

proteins [7], which can be partly attributed to the gene

organization in polycistronic transcriptional units, or operons, in

which multiple genes are transcribed as one mRNA. Chemotaxis

genes are organized into two operons: mocha, which encodes CheA

and CheW along with flagellar motor proteins, and meche, which

encodes two receptors—Tar and Tap—as well as CheR, CheB,

CheY, and CheZ, whereas three other receptors are encoded

elsewhere in the genome. However, even cheA and cheY genes that

do not belong to the same operon show strong correlation in their

single-cell expression levels, suggesting that a large part of gene

expression noise originates at the upper level of transcriptional

hierarchy that controls expression of all chemotaxis and flagellar

genes [7].

Despite its success in accounting for robustness against

concerted overexpression of all proteins, our previous computer

model could not explain robustness against the experimentally

observed degree of uncorrelated variation in protein levels in the

population and predicted larger variation of the motor bias in the

population than observed when identical levels of intercellular

variation were assumed for all chemotaxis proteins [7]. This

discrepancy indicated presence of additional robustness mecha-

nisms, and in this work, we propose that translational coupling

between adjacent genes on the meche and mocha operons represent

such a mechanism. Translational coupling—defined as the

interdependence of translation efficiency of neighboring genes

encoded by the same polycistronic mRNA—has been previously

described in E. coli [8–11], and can help to maintain a constant

ratio between proteins expressed from the same operon. We

experimentally demonstrated coupling for most pairs of chemo-

taxis genes in E. coli and confirmed that coexpression of these

genes improves chemotactic performance. Computer simulations

confirmed that negative effects of the uncorrelated expression

noise can be reduced by genomic order of chemotaxis genes, in

agreement with the gene arrangement in E. coli. Evolutionary

importance of noise reduction mediated by translational coupling

was further confirmed by strong bias towards particular pairwise

coupling order of chemotaxis genes in bacterial genomes.

Results

Translational Coupling between Chemotaxis Genes
To test whether expression of neighboring chemotaxis genes

might be coupled on a translational level, we analyzed three pairs

of genes, cheR_cheB, cheB_cheY, and cheY_cheZ, from the meche

operon, and one pair, cheA_cheW, from the mocha operon. Gene

pairs were cloned as they appear in the genome, and the second

gene was fused to a eyfp reporter (encoding yellow fluorescent

protein, or YFP). The level of translation of the first gene was then

selectively varied by placing ribosome-binding sites (RBSs) of

different strength in front of it. As a control of the RBS strength,

eyfp fusion to the first gene in the pair was placed under the same

RBSs (Figure 1A). Thus determined differences in the RBS

strengths varied from five to nine (Figure 1B) and were

independent of the levels of IPTG-induced transcription (unpub-

lished data). For the cheA_cheW pair, this strategy was complicated

by the fact that CheA is expressed from two alternative translation

initiation codons, yielding a long and a short version, CheAL and

CheAS, respectively [12]. Consequently, changing the strength of

the first RBS had only a moderate effect on the total expression

level of CheA. Instead, we compared constructs expressing CheAL

under the external RBS and CheAS under the endogenous RBS

with those expressing only CheAS under the external RBS. The

resulting net level of translation of CheAL-YFP and CheAS-YFP in

the first construct was about four times higher than that of CheAS-

YFP in the second construct.

For all pairs, stronger translation of the upstream gene resulted

in an elevated expression of the downstream gene, implying the

existence of a translational coupling (Figure 1B). The coupling was

quantified as a ratio of the indirect up-regulation seen in constructs

that carry gene pairs to the direct up-regulation of the first gene.

The strength of translational coupling varied among gene pairs

from approximately 0.2 to 0.6 (Figure 1C), apparently inversely

correlating with the level of translational enhancement. Indeed,

when an even stronger cheR RBS was used for the cheR_cheB pair to

enhance translation approximately 30-fold, the observed coupling

(,0.2) was significantly weaker than the coupling at approximately

5-fold enhancement shown in Figure 1C. Such dependence may

indicate saturation of coupling at high translational levels of the

upstream gene, as expected if coupling results from the mRNA

unfolding (see Discussion).

Pairwise Coexpression of Genes Improves Chemotaxis
Maintaining a constant ratio between signaling proteins may be

important for a proper functioning of the chemotaxis pathway

under varying protein levels, and we have recently shown that the

chemotaxis system is much less sensitive to a concerted overexpres-

sion of CheY and CheZ than to the overexpression of each of these

proteins individually [13]. We thus tested whether a coexpression of

Author Summary

All cellular networks are subject to fluctuations in the
levels of their components. Robustness of the network
output in the face of stochastic gene expression, or gene
expression noise, is therefore essential to ensure proper
function. Selection for robustness might thus have shaped
much of the cellular evolution. We have used Escherichia
coli chemotaxis, one of the most thoroughly studied
model systems for signal transduction, to analyze the role
of gene organization in robustness. Our mathematical
modeling predicted that coupling the expression of
chemotaxis proteins with opposing functions should
buffer the output of the signaling pathway against
stochastic variations in protein production. Consistent
with this model, protein coexpression was indeed ob-
served to improve chemotaxis and to be under selection
during chemotaxis-driven spreading of a cell population.
We show that tight coexpression is ensured by both
transcriptional and translational gene coupling. We con-
clude that evolutionary selection for pathway robustness
in the presence of gene expression noise can explain, not
only the polycistronic organization of chemotaxis genes,
but also the gene order within chemotaxis operons.
Selection on the gene order was further confirmed by
the observation of a strong bias towards specific pairwise
occurrences of chemotaxis genes in sequenced prokary-
otic genomes.

Translational Coupling of Chemotaxis Genes
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the proteins from bicistronic constructs will improve performance of

the pathway in a chemotaxis-driven spreading of bacteria in soft

agar (Figure 2). Indeed, cells that express a YFP fusion to a

particular gene as a monocistronic construct in the respective knock-

out strain spread less efficiently than the cells that express this fusion

as a downstream gene in bicistronic constructs at the same level

(Figure 2A), with a clear enhancement of chemotaxis that resulted

from gene coexpression (Figure 2B).

Such enhancement suggests that the coexpression of particular

chemotaxis genes should be evolutionary selected, although it does

not specifically distinguish between translational and transcrip-

tional coupling. To directly test whether there is a chemotaxis-

driven selection for the expression coupling beyond cotranscrip-

tion, we compared single-cell levels of CheY-YFP and CheZ fused

to cyan fluorescent protein, CheZ-CFP, that were expressed from

one bicistronic construct in E. coli population spreading in soft agar

(Figure 3 and Figure S3). Best-chemotactic cells at the front edge

of the spreading ring (Figure 3A and Figure S3A) showed very

strong correlation between the levels of both proteins (Figure 3B

and Figure S3B). In contrast, the correlation in cells that remained

behind and were not selected for chemotaxis was significantly

weaker (Figure 3C and Figure S3C), despite the fact that both

subpopulations express CheY-YFP and CheZ-CFP from the same

bicistronic mRNA. This demonstrates chemotactic selection for

the posttranscriptional coupling between protein levels and

supports our assumption that translational coupling should be

evolutionary beneficial.

Translational Coupling between Selected Genes Is
Predicted to Enhance Robustness of the Pathway

Why are some proteins and not the others coupled through

sequential gene arrangement in one operon? As mentioned above,

enhanced robustness against uncorrelated gene expression noise—

resulting from stochasticity of translation—is the most likely

mechanism by which translational coupling could benefit

chemotaxis. We thus used computer simulations to test whether

Figure 1. Translational coupling between neighboring genes. (A) Experimental strategy. Bicistronic constructs that contained pairs of
neighboring chemotaxis genes in their chromosomal arrangement (U, upstream gene; D, downstream gene) were cloned under RBSs of different
strength as indicated to create a C-terminal YFP fusion (eyfp, enhanced YFP gene) to a downstream gene. Strong RBS is indicated by a black oval and
an up arrow, weak RBS by a grey oval and a down arrow. As a control of the RBS strength, the same sequence was placed in front of the
monocistronic YFP fusion to the upstream gene. Downstream gene is under control of its native RBS (RBSn, open oval). Expression of the constructs
was analyzed using FACS as described in Materials and Methods. (B) Direct (dark-grey) and indirect (light-grey) up-regulation of expression level of
the fusion reporter by the stronger RBS, defined as the ratio of expression of constructs with the strong RBS to expression of corresponding
constructs with the weak RBS. For the cheA/cheW pair, translation was regulated by using constructs that express either only short version of CheA or
both long and short versions (see text for details). The values of up-regulation at varying (0 to 50 mM) levels of IPTG induction did not differ
significantly and were averaged. (C) Translational coupling, defined as the ratio of indirect to direct up-regulation of expression levels by the stronger
RBS. Error bars in (B and C) indicate standard deviations.
doi:10.1371/journal.pbio.1000171.g001
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Figure 2. Improvement of chemotaxis by coexpression of signaling proteins. (A) Dependence of the chemotaxis-driven spreading of
bacteria on soft agar (swarm) plates on the protein expression level for monocistronic (open symbols, dashed lines) or bicistronic (filled symbols, solid
lines) constructs. Protein expression from pTrc99A-based plasmids pVS138 (cheB-eyfp) and pVS145 (cheR_cheB-eyfp) in strain RP4972 (DcheB) and
pVS64 (cheZ-eyfp) and pVS305 (cheY_cheZ-eyfp) in strain VS161 (DcheZ) was induced by 10, 25, or 100 mM IPTG. A nontranslated 316-nucleotide
fragment of cheB was included upstream of the cheY start codon in pLL33 (2316_cheY-eyfp) plasmid to achieve expression comparable to pLL36
(cheB_cheY-eyfp) construct (see Materials and Methods for details), and both constructs were expressed in strain VS100 (DcheY) under weaker pBAD
promoter induced by 0%, 0.0005%, 0.001%, 0.003%, 0.005%, or 0.01% arabinose. Expression levels were measured in liquid cultures grown under the
same induction as described in Materials and Methods. Chemotaxis efficiency was determined as the size of a swarm rings and normalized to that of
wild-type strain RP437 transformed with either a pTrc99A (for pVS138, pVS145, pVS64, and pVS305) or a pBAD33 (for pLL33 and pLL36) vector. (B)
Enhancement of chemotactic efficiency by expression coupling. Enhancement was calculated as a ratio of chemotaxis efficiency at a given expression
level of the monocistronic construct to the interpolated efficiency at the same expression level of the YFP fusion in the respective bicistronic
construct in (A), and values at different expression levels were averaged. Error bars indicate standard deviations.
doi:10.1371/journal.pbio.1000171.g002

Figure 3. Chemotactic selection for posttranscriptional coupling. (A) Chemotaxis-driven spreading of VS104 [D(cheYcheZ)] cells expressing
CheY-YFP and CheZ-CFP from a bicistronic construct pVS88 on soft agar (swarm) plates. (B and C) Scatter plots of single-cell levels of CheY-YFP and
CheZ-CFP in cells taken from the edge (B) and from the middle (C) of the spreading colony. Relative concentrations of fluorescent proteins in
individual cells were determined using fluorescence microscopy as described in Materials and Methods. Protein expression was induced with 17 mM
IPTG; data for 10 mM IPTG induction are shown as supporting Figure S3. AU, arbitrary units.
doi:10.1371/journal.pbio.1000171.g003

Translational Coupling of Chemotaxis Genes

PLoS Biology | www.plosbiology.org 4 August 2009 | Volume 7 | Issue 8 | e1000171



preferential pairing of particular chemotaxis genes and the

resulting gene order on the chromosome can improve robustness

of the pathway output—adapted clockwise (CW) rotation bias of

flagellar motor—against translational noise when translational

coupling is taken into account. Considering four genes cheR, cheB,

cheY, and cheZ, our in silico chemotaxis network model indeed

confirmed that positive correlations between expression of

adjacent genes via translational coupling affect deviations from

the optimal adapted CW bias within a population (Figure 4).

Simulating a 100% pairwise translational coupling between

particular genes in the background of uncorrelated fluctuations

of all other genes (Figure 4A) showed favorable reduction in the

standard deviation of CW bias for four adjacent gene pairs—

cheY_cheZ, cheR_cheZ, cheY_cheB, and cheR_cheB. Note that because

of the perfect coupling, the gene order in these simulations is not

important, so that cheY_cheZ and cheZ_cheY pairs are equivalent. In

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4. Simulated effects of translational coupling on robustness of the signaling output. Standard deviation of the CW motor bias in a
population of 105 cells was simulated in presence of gene expression noise as described in Materials and Methods and in supporting information
(Text S1). (A) Simulations for 100% pairwise coupling of indicated chemotaxis genes, with remaining genes being uncoupled. (B) Simulations for
different arrangements of translationally coupled chemotaxis genes, performed at equal noise levels for all genes and 25% coupling. (C) Asymmetric
effects of translational noise for 25% coupling between cheR_cheZ (circles, dotted line) and cheZ_cheR (squares, dashed line). Linear fits to the data
are guide to the eye. (D) Simulations for different gene orders as in (B), at 1.5-fold higher noise for the weakly expressed cheR and cheB genes. Dark-
grey bars indicate gene order in E. coli. Standard deviation of CW bias in absence of coupling is indicated by vertical dashed lines. Genes are indicated
by single letters, i.e., Y = CheY, and so forth. Error bars indicate confidence intervals.
doi:10.1371/journal.pbio.1000171.g004
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all these cases, a positive effect is observed whenever a gene that

enhances CheY-P level upon overexpression is coupled to a gene

that reduces CheY-P level upon overexpression or vice versa (see

Discussion). A negative effect—the increased variation in CW

bias—was observed by coupling cheY_cheR and cheB_cheZ genes

that have similar effects on the CheY-P level.

We next investigated which overall order of chemotaxis genes

would yield the optimal noise reduction based on the observed

preferences in pairwise gene coupling. When levels of translational

noise and coupling efficiency were assumed to be equal for all four

genes, 16 gene orders out of possible 24 permutations were

predicted to reduce variation of the bias in the population

compared to the simulation in absence of coupling, whereas eight

gene orders increased that variation (Figure 4B). The degree of

noise reduction or enhancement in this case was largely the

consequence of maximizing favorable pairings and minimizing

unfavorable pairings. Eight gene orders with three positive

couplings—including the native gene order in E. coli—showed

the most pronounced noise reduction. Additional weak gradation

in the ranking resulted from the pair-specific differences in the

extent of noise reduction or enhancement (Figure 4A), with the

cheY_cheZ (or cheZ_cheY) pair being present in all of the highest

ranked orders. The detailed ranking among arrangements with the

same number of positive couplings depended only weakly on the

reaction rates in the pathway but strongly on the strength of

translational noise. For different gene-specific levels of translation-

al noise, the optimal gene order becomes dependent not only on

the number of positive pairs but also on their sequence, due to

asymmetric effects of coupling on the output noise (Figure 4C; see

Text S1 for details). As a result, in a more physiological case of 1.5-

fold higher noise in expression of the weakly translated genes

CheR and CheB (Figure 4D) the ranking of gene orders becomes

more differentiated, with the native order of chemotaxis genes in

E. coli providing the largest noise reduction.

Consensus Order of Chemotaxis Genes in Bacteria
Our analyses imply that the order of chemotaxis genes coupling on

the chromosome should be subject to evolutionary selection and

therefore conserved among bacteria. A comprehensive analysis of 824

sequenced bacterial genomes, 527 of which contain annotated

chemotaxis genes (Table S1, Text S2), confirmed existence of a strong

bias in the pairwise co-occurrence of these genes in the genome and in

their order (Table 1). The resulting consensus order (Figure 5A) was

consistent with the modeling predictions and showed a nearly perfect

match to the chemotaxis gene arrangement in E. coli. Because our

mathematical model explicitly includes the phosphatase CheZ, which

is only found in a subset of 200 bacterial species, gene coupling in

genomes with and without cheZ was also analyzed separately (Tables S2

and S3, respectively). Both yielded essentially the same consensus gene

order, except for weaker coupling between cheB and cheY in absence of

cheZ. This confirms that selection for other pairs does not depend on

specific mechanism of CheY dephosphorylation. Notably, the overall

gene order in individual prokaryotes, including those with most studied

chemotaxis systems [14], is only conserved among closely related

species (Figure S1). This suggests—in agreement with the results of our

modeling analysis—that it is primarily the pairwise gene coupling

rather than the consensus as a whole that is under selection.

Additional statistical analysis of distances between neighboring

chemotaxis genes (Figure S2) confirmed that most frequently

coupled genes are typically close enough to each other, less than

30 nucleotides, to allow a simultaneous ribosome interaction with

the stop codon of upstream gene and the RBS of the downstream

gene, and are thus likely to be translationally coupled. The only

exceptions are mcp_mcp and cheW_mcp pairs that are frequently

separated by a larger intergenic distance. Such separation is

consistent with genetic organization in E. coli, where cheW and the

downstream mcp (tar) belong to different operons, and three

receptor genes are uncoupled from the chemotaxis operons.

Discussion

Translational Coupling as a Mechanism of Noise
Reduction

Intercellular variation in protein levels in a genetically

homogeneous cell population, or gene expression noise, is the

major source of perturbations that affect performance of all

cellular pathways. In prokaryotes, as in eukaryotes, the largest part

of this noise appears to originate from fluctuations of global factors

that affect expression of all genes in a cell, and from stochastic

variations in promoter activity [15–18]. Since bacterial genes of

related function are typically transcriptionally coupled through the

polycistronic gene organization and common regulation, concert-

ed variations in the levels of related genes are therefore expected to

be the dominant type of the expression noise. Strong correlation in

the single-cell levels of individual chemotaxis proteins has been

indeed observed in E. coli, and the chemotaxis pathway was shown

to be primarily robust against such concerted variation [7].

Table 1. Absolute frequenciesa of a pairwise occurrence of chemotaxis genes in 527 genomes containing at least one chemotaxis
gene.

Gene cheA (771) cheW (1,232) cheR (802) cheB (656) cheY (1,376) cheZ (209) mcpb (6,521)

left right left right left right left right left right left right left right

cheA 1.0 ,1 19.6 3.2 2.7 2.2 14.8 8.6 ,1 7.7 ,1 32.5 ,1 ,1

cheW 7.4 37.8 5.9 5.6 20.8 7.2 5.2 1.4 2.3 2.8 0.0 0.0 4.0 3.0

cheR 2.3 3.9 4.6 13.7 ,1 ,1 28.6 10.7 1.9 ,1 0.0 0.0 ,1 2.0

cheB 5.2 15.1 ,1 2.7 8.6 26.1 ,1 ,1 7.2 2.3 ,1 0.0 ,1 ,1

cheY 15.7 ,1 3.4 2.3 1.4 3.1 4.9 15.0 1.9 1.7 90.0 0.0 ,1 ,1

cheZ 8.1 ,1 0.0 0.0 0.0 0.0 0.0 0.0 ,1 9.6 0.0 0.0 ,1 0.0

mcp 10.5 6.4 13.0 16.5 16.8 2.1 1.1 2.3 1.9 1.2 0.0 ,1 5.3 5.1

aAbsolute frequencies were calculated as the number of gene occurrences in 21 (left neighbor) or +1 (right neighbor) positions relative to a reference gene, normalized
by the total number of reference gene counts (shown in parentheses). Strongest genomic coupling on each side (highest co-occurrence frequency) is marked in bold.

bGenes encoding chemoreceptors (methyl-accepting chemotaxis proteins).
doi:10.1371/journal.pbio.1000171.t001
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However, stochasticity of translation results in significant

uncorrelated variation in the levels of two proteins produced from

one polycistronic mRNA [7], and it is thus not surprising that

bacteria evolved mechanisms to reduce effects of such translational

noise. Translational coupling between bacterial genes in operons

has been described before, primarily in metabolic operons

[10,11,19–21], but also between genes encoding ribosomal

proteins [8] and a two-component sensor [9]. Such coupling

mostly happens when the stop codon of the upstream gene is close

to or overlaps with the start codon or with the Shine-Dalgarno

(SD) sequence of the downstream gene. Translational coupling

may result from a combination of several factors. First, translation

of the upstream gene will locally increase the number of ribosomes

close to the initiation codon of the downstream gene, which could

then efficiently reinitiate translation of the downstream gene even

in absence of a strong SD sequence [20]. Second, ribosomes

translating the upstream gene will also unwind any secondary structure

of the mRNA that might form around the SD sequence of the

downstream gene, as long as this sequence belongs to the translated

region of the upstream gene. Such opening of the SD sequence will

facilitate both reinitiation of translation by already bound ribosomes

and entry of new ribosomes [19]. The latter mechanism is supported

by the observed inverse correlation of coupling with the translation

strength, since in this case, coupling is expected to saturate as soon as

the mRNA is completely unfolded. Whatever the mechanism of

coupling is, it has been proposed to enable a tighter control of the

stoichiometry of protein complexes [10].

Selection for Robustness Can Explain Order of
Chemotaxis Genes

Our experimental results and computational analyses suggest

that—along with the robust pathway topology and transcriptional

coupling between chemotaxis genes—translational coupling is yet

another factor that contributes to the robustness of signaling in

chemotaxis. Functional importance of the tight pairwise coupling

between protein levels was demonstrated by the improvement of

chemotaxis when any of tested endogenous pairs was expressed

from one bicistronic construct. Furthermore, selection for the

enhanced posttranscriptional coupling between protein levels was

observed in cells that were spreading most efficiently in a

chemotaxis assay. Translational coupling appears to specifically

compensate the output level of CheY-P and thereby CW motor

bias against stochastic variations in translation of individual genes.

In silico analysis demonstrated higher robustness of particular

arrangements of chemotaxis genes against translational noise,

namely those that maximize the number of gene couples with

opposing effects on the CheY-P level. Although better knowledge

of modeling parameters would be required to definitively resolve

relative positions of the gene orders with highest ranking within

our model, E. coli gene order ranked best for output robustness

when we assumed that the weakly translated genes cheR and cheB

have slightly higher (1.5-fold) noise levels than the more efficiently

translated genes cheY and cheZ. Thus, both modeling and

experiments suggest that E. coli gene order is likely to have

evolved under pressure to maximize coupling between expression

of antagonistic proteins, and thereby robustness of the pathway

output. This idea is further supported by the observation that the

order of chemotaxis genes in bacterial genomes is not random,

with a strong bias towards the same gene coupling as in E. coli.

Selection for coupling in all studied E. coli gene pairs can be

explained based on the known properties of the chemotaxis

pathway (Figure 5B). CheA and CheW form a stable complex with

chemotaxis receptors [22,23]. The stoichiometry and functional

properties of this complex are affected by the relative levels of

individual proteins [24,25], and relative translation of CheA and

CheW is thus expected to be under a tight control. Coupling

between expression of CheY and CheZ serves to reduce the level

of CheY-P when CheY is up-regulated, by increasing the level of

phosphatase and thereby returning the pathway to homeostasis.

Inversely, coupling could increase the rate of CheY phosphory-

lation when CheZ is up-regulated. Coupling between the levels of

CheR and CheB is also expected to increase robustness of the

CheY-P output, since these proteins form a pair of counteracting

enzymes that control the steady-state level of receptor methylation

and, as a consequence, that of kinase activity. From the point of

robustness, coupling between CheB and CheY is not surprising

Figure 5. Genetic coupling of chemotaxis genes in bacteria. (A) Preferential order of pairwise chemotaxis gene coupling among analyzed
bacteria. Receptor (mcp) gene is shown in brackets because the number of receptor genes between cheW and cheR is variable; cheZ is shown in
brackets because it is only present in a subset of bacteria. See Table 1 and Tables S2 and S3 for the frequencies of relative occurrence. (B) Genetic
coupling (solid arrows) among chemotaxis proteins shown for E. coli pathway. Thin dashed arrows denote pathway reactions and CheY-P binding to
flagellar motor.
doi:10.1371/journal.pbio.1000171.g005

Translational Coupling of Chemotaxis Genes

PLoS Biology | www.plosbiology.org 7 August 2009 | Volume 7 | Issue 8 | e1000171



either. On one hand, these two proteins compete for CheA-

dependent phosphorylation, including stimulation-dependent

competitive binding at the P2 domain of CheA [26,27]. On the

other hand, higher CheB activity reduces the level of receptor

methylation and thereby the rate of CheY phosphorylation. A

coelevated level of CheY would thus counteract an increase in the

level of CheB both directly, by reducing CheB phosphorylation,

and indirectly, by increasing the level of phospho-CheY. Similarly,

the up-regulation of CheB should counterbalance an increased

level of CheY.

In addition to these pairs, our bioinformatics analysis revealed a

strong coupling between receptor (mcp) genes and cheW, in

agreement with these gene products being parts of the same stable

signaling complex. This coupling is stronger than that between

receptors and cheA, apparently consistent with a role of CheW as an

adapter between receptors and CheA [22]. Coupling between cheZ

and cheA, which is also statistically significant in cheZ-containing

genomes, could serve a similar function as the coupling between cheY

and cheZ, and compensate for an increase in the level of phosphatase

by an increase in the kinase activity. A compensatory effect on noise

is also expected for the coupling between cheA and cheB, since CheB

provides a negative feedback to the kinase activity. The reason for

coupling between receptor genes (or cheW) and cheR is less obvious,

but keeping a proper ratio between receptors and methyltransferase

activity might be important for maintaining a constant steady-state

level of receptor methylation. Significant coupling between cheY and

cheA resembles translation coupling observed in other two-

component systems, although theoretical analysis suggests that such

coupling should only take place when—like in these other systems—

the kinase is bifunctional, i.e., has a phosphatase activity [28]. This

prediction remains to be experimentally tested for bacterial

chemotaxis systems.

Evolution of Gene Order in Chemotaxis Operons
In agreement with our mathematical model, pairwise coupling

between particular chemotaxis genes rather than the gene order as

a whole appears to be primarily under evolutionary selection, with

the overall gene order being conserved only among closely related

species. It is thus unlikely that the observed consensus is a

consequence of the conservation—or lateral transfer—of the same

chemotaxis operon across prokaryotes. Individual genes appear to

have been rearranged multiple times throughout the evolution,

with differences in gene order between groups of closely related

species possibly reflecting variations in the pathway topology and

gene regulation.

Proposed robustness-driven mechanism of gene ordering in

operons can be seen as a refinement of the models that explain

operon formation by positive selection for the coregulation of

genes encoding components of the same pathway or of one

multicomplex [29]. Particularly, it is closely related to the

previously discussed balance hypothesis [30,31], which postulates

that an imbalance in the concentrations of two subcomponents of

a multiprotein complex can result in the formation of nonfunc-

tional complexes with wrong stoichiometry and will be therefore

under negative evolutionary selection. The balance hypothesis can

be well used, for example, to explain the polycistronic organization

of metabolic genes, which indeed frequently encode components

of multisubunit enzymes. In case of chemotaxis, strong coupling

between cheA and cheW presumably results from similar constrains.

However, our model does not require that proteins form stable

complexes, or even directly interact with each other, to have

mutually compensatory effects on the output and thus to benefit

from coupling. At the same time, we predict that coupling of other

proteins in the pathway can be detrimental and thus under

negative selection. Our analysis thus extends the regulation-based

model of operon formation to explain the internal operon

structure.

Although our model does not describe the process of chemotaxis

operon formation itself, evolutionary selection for the gradual

increase in proximity of chemotaxis genes through genome

rearrangements seems to be the most likely mechanism. Due to

the correlation in expression of bacterial genes that are close on

the chromosome [32,33], such increase in proximity would lead to

the gradual increase in gene coupling and thereby in robustness of

the pathway output. Additional selection for the lateral gene

cotransfer, as proposed by the selfish operon model [34], might be

also involved in the initial grouping of chemotaxis genes. However,

because in this case transferred genes as a group must provide an

immediate benefit to the host, selfish operon model would require

grouping and cotransfer of multiple genes involved in flagellar

assembly and would therefore not explain emergence of selective

pairing between chemotaxis genes.

Conclusions
Taken together, our results emphasize the importance of

translational coupling and gene order in the overall organization

of the chemotaxis pathway in E. coli and other bacteria. Strong

bias towards a particular order of genes on the chromosome was

predicted by our computer simulations assuming selection for

robustness of the pathway output against gene expression noise,

and confirmed by the bioinformatics’ analysis of sequenced

bacterial genomes. Such organization is evolutionary beneficial

because it improves robustness of the signaling output without

adding a cost of the increased complexity and is thus expected to

be ubiquitous in bacterial networks. Although translational

coupling is absent in eukaryotes, expression levels of neighboring

genes are frequently coupled on the level of chromatin remodeling

[35,36]. Moreover, it has been recently proposed that segregation

of eukaryotic genes into particular chromosomal regions is driven

by the reduction in gene expression noise [37]. The gene order on

the chromosome may thereby contribute to network robustness in

all organisms.

Materials and Methods

Strains and Plasmids
E. coli K-12 strains used in this study were derived from RP437

[38]. All strains and plasmids are summarized in Tables 2 and 3.

Monocistronic constructs expressing YFP fusions to CheR, CheB,

CheY, CheZ, and CheA under moderately strong RBSs and pTrc

promoter inducible by isopropyl b-D-thiogalactoside (IPTG) have

been described before [13,26,39–41]. They were used to obtain

constructs with strong RBSs (summarized in Table 4) and

bicistronic constructs by using PCR and cloning to modify the

upstream sequence. Because expression of cheY is strongly up-

regulated by a sequence inside cheB gene (A. Müller and V.

Sourjik, unpublished data), a nontranslated 316-nucleotide

fragment of cheB was included upstream of the cheY start codon

in pVS319 (2316_cheY-eyfp) plasmid to achieve expression

comparable to pVS142 (cheB_cheY-eyfp) construct. To reduce levels

of expression for the cheB_cheY-eyfp and 2316_cheY-eyfp constructs,

both fragments were cloned under weaker pBAD promoter

inducible by L-arabinose, to obtain pLL33 and pLL36, respec-

tively.

Growth Conditions
Overnight cultures were grown in tryptone broth (TB; 1%

tryptone, 0.5% NaCl) containing ampicillin (100 mg/ml) or
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chloramphenicol (100 mg/ml) at 30uC for 16 h. For measurements

of the YFP expression in liquid cultures, overnight cultures were

diluted 1:100 in fresh TB containing ampicillin and indicated

concentrations of IPTG or L-arabinose. Cell cultures were allowed

to grow 3.5–4 hours at 34uC in a rotary shaker until an optical

density at 600 nm (OD600) of 0.45, then harvested by centrifuga-

tion (8,000 rpm, 1 min), washed, and then resuspended in

tethering buffer (10 mM potassium phosphate, 0.1 mM EDTA,

1 mM L-methionine, 10 mM sodium lactate [pH 7]).

TB soft agar (swarm) plates were prepared by supplementing

TB with 0.3% agar (Applichem), required antibiotics (100 mg/ml

ampicillin; 34 mg/ml chloramphenicol), and indicated concentra-

tions of IPTG and L-arabinose. Plates were inoculated using fresh

cells from LB agar plates, and swarm assays were performed for 6–

Table 2. Strains used in this study.

Strain
Description/Relevant
Genotype Reference

RP437 Wild type for chemotaxis [38]

VS100 DcheY [40]

VS104 D(cheYcheZ) [41]

VS161 DcheZ [13]

RP4972 DcheB J. S. Parkinson, personal gift

doi:10.1371/journal.pbio.1000171.t002

Table 3. Plasmids used in this study.

Plasmid Descriptiona Reference

pTrc99A Expression vector; pBR ori, pTrc promotor, AmpR [45]

pBAD33 Expression vector; pACYC ori, pBAD promotor, CmR [46]

pDK57 RBSCheYS2_CheAS-YFP expression plasmid; pTrc99a derivate [26]

pDK66 Expression vector for cloning of C-terminal YFP fusions; RBSCheYS pTrc99a derivative [47]

pVS18 RBSCheY_CheY-YFP expression plasmid; pTrc99a derivate [41]

pVS64 RBSCheZ_CheZ-YFP expression plasmid; pTrc99a derivate [39]

pVS88 RBSCheY_CheY-YFP_ RBSCheZ_CheZ-YFP bicistronic construct; pTrc99a derivate [25]

pVS137 RBSCheR_CheR-YFP expression plasmid; pTrc99a derivate [13]

pVS138 RBSCheB_CheB-YFP expression plasmid; pTrc99a derivate [13]

pVS142 RBSCheB_CheB_CheY-YFP expression plasmid; pTrc99a derivate This work

pVS145 RBSCheR_CheR_CheB-YFP expression plasmid; pTrc99a derivate This work

pVS261 RBSCheYS_CheA-YFP expression plasmid; pTrc99a derivate This work

pVS305 RBSCheY_CheY_CheZ-YFP expression plasmid; pTrc99a derivate This work

pVS319 2316_CheY-YFP expression plasmid; pTrc99a derivate This work

pVS321 RBSCheYq_CheY_CheZ-YFP expression plasmid; pTrc99a derivate This work

pVS450 RBSCheBq_CheB_CheY-YFP expression plasmid; pTrc99a derivate This work

pVS451 RBSCheRqq_CheR_CheB-YFP expression plasmid; pTrc99a derivate This work

pVS452 RBSCheRqq_CheR-YFP expression plasmid; pTrc99a derivate This work

pVS487 RBSCheBq_CheB-YFP expression plasmid; pTrc99a derivate This work

pVS490 RBSCheYS2_CheA_CheW-YFP expression plasmid; pTrc99a derivate This work

pVS495 RBSCheYq_CheY-YFP expression plasmid; pTrc99a derivate This work

pVS520 RBSCheYS_CheAS_CheW-YFP expression plasmid; pTrc99a derivate This work

pAM80 RBSCheRq_CheR-YFP expression plasmid; pTrc99a derivate This work

pAM81 RBSCheRq_CheR_CheB-YFP expression plasmid; pTrc99a derivate This work

pLL33 2316_CheY-YFP expression plasmid; pBAD33 derivate This work

pLL36 RBSCheB_CheB_CheY-YFP expression plasmid; pBAD33 derivate This work

aSee Table 4 for description and exact sequence of RBS.
doi:10.1371/journal.pbio.1000171.t003

Table 4. Upstream ribosome binding sequences of the fusion
constructs.

Construct Upstream Sequencea

RBSCheR GAGCTCTTGAGAAGGCGCTATG

RBSCheB GAGCTCAGTAAGGATTAACGATG

RBSCheY GAGCTCCGTATTTAAATCAGGAGTGTGAAATG

RBSCheZ GAGCTCCAGGGCATGTGAGGATGCGACTATG

RBSCheYS ACTAGTGAAGGAGTGTGCCATG

RBSCheRq GAGCTCGATAGGGTGGGCGCTATG

RBSCheRqq GAGCTCGATAGGAAAGGCGCTATG

RBSCheBq GAGCTCAAGAGGAAATTAACGATG

RBSCheYq GAGCTCAATAGAGGAAATGTGAAATG

A single upward arrow (q) indicates an enhanced RBS; double arrows (qq)
indicate a strongly enhanced RBS.
aItalic type indicates recognition site of restriction enzymes, SacI or SpeI, used
for cloning the constructs; boldface font indicates the start codon.

doi:10.1371/journal.pbio.1000171.t004
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8 h at 34uC. Images of swarm plates were taken using a Canon

EOS 300 D (DS6041) camera, and analyzed with ImageJ (Wayne

Rasband, NIH) to determine the diameter of the swarm rings.

Quantification of Gene Expression
Mean expression levels of fluorescent proteins were quantified

in a population of approximately 104 cells as described before [7]

using flow cytometry on a FACScan (BD Biosciences) equipped

with an argon 488-nm laser. FACScan data were analyzed using

CellQuestTM Pro 4.0.1 software. Mean value of the autofluores-

cence background, measured for control cells, was subtracted from

all values. Single-cell protein levels were measured using

fluorescence microscopy on a Zeiss AxioImager Z1 microscope

equipped with an ORCA AG CCD Camera (Hamamatsu) and

HE YFP (Excitation BP 500/25; Dichroic LP 515; Emission BP

535/30) and HE CFP (Excitation BP 436/25; Dichroic LP 455;

Emission BP 480/40) filter sets. Integral levels of fluorescence in

individual cells were quantified using an automated custom-

written ImageJ plug-in [13] and normalized to cell length to obtain

relative concentrations of fluorescent proteins [42].

Analysis of Gene Order
Analysis of the order of chemotaxis genes was performed using a

custom-written Perl program. The program scanned text files of 824

microbial genomes from the GenBank database using variable regular

expressions to identify chemotaxis genes in the annotation. Features

which may contain information about the gene function (\gene,

\function, \product, \note) were successively retrieved for every

coding sequence (CDS) in a genome, recorded, and then analyzed for

occurrence of chemotaxis terms. Because the description of chemotaxis

genes was often periphrastic, we performed a preliminary manual

analysis of selected genomes to determine the most frequently used and

misused synonyms, which were further used to define positive and

negative terms for automatic chemotaxis genes recognition. A

chemotaxis gene was recognized if its annotation contained one of

the positive terms that point to its specific function and did not contain

negative terms which indicate that the gene function is ambiguous or

related to another chemotaxis gene (Table S1). Identified genes were

then verified manually by looking through their extracted annotations,

to remove possible false-positive entries; this verification confirmed high

efficiency of the annotation-based gene recognition. Only genes with

clearly defined chemotaxis-related annotations were included in the

final analysis. Additionally, we restricted our analysis to chemotaxis

genes that are present in E. coli, which are well annotated and —with

the sole exception of cheZ—conserved in most prokaryotes. Homologs

of these genes were found in 527 genomes. Starting and ending

nucleotide positions of each recognized chemotaxis gene as well as the

upstream and downstream neighboring genes were recorded. Names

and genomic positions of all recognized chemotaxis genes are provided

as supporting information (Text S2). The resulting gene duplets were

analyzed to calculate co-occurrences of neighbors (Table 1 and Tables

S2 and S3) and to determine intergenic distances (Figure S2).

Phylogenetic analysis of chemotaxis gene order in selected

genomes (Figure S1) was performed using the Web-based program

Composition Vector Tree (CVTree, http://cvtree.cbi.pku.edu.

cn/), which constructs phylogenetic trees based on the organism’s

complete genomic sequence [43]. The resulting phylogenetic trees

were plotted using a Java-based program Archaeopteryx (http://

www.phylosoft.org/archaeopteryx/).

Computer Simulations
To calculate the adapted level of free phosphorylated CheY, we

simulated the pathway using differential equations based on mass

action kinetics. Rates and binding constants are taken from in vitro

and in vivo experiments (http://www.pdn.cam.ac.uk/comp-cell).

The mathematical model includes all known protein interactions

among CheR, CheB, CheY, and CheZ. The adapted receptor

activity is determined by the methylation level and consequently

by the ratio between receptor-bound CheR and CheB, allowing us

to omit all details of transient adaptation kinetics. The relation of

phosphorylated CheY to the flagellar motor rotation bias follows

from the experimentally determined motor response curve [44].

Our mathematical model reflects the experimentally observed

robustness of the pathway output against concerted overexpression

of all chemotaxis proteins but shows the expected sensitivity to

independent variations in protein levels. Effects of translational

noise on protein concentration has been simulated by Gaussian

random variables with means given by the measured wild-type

concentrations and a common standard deviation over mean of

0.05 to arrive at the experimentally observed cell-to-cell variations

of the CW bias [7]. The strength of translational coupling constant

was set to 25% of the mean translational efficiency to generate the

rank list (Figure 4). The error bars in Figure 4 indicate the 95%

confidence intervals for the standard deviation of the CW bias for

a cell population of 105 individuals, resulting from data resampling

using bootstrap. The influence of transcriptional noise or extrinsic

noise on the gene order was not significant as both CheY-P level of

our chemotaxis pathway model and experimentally measured CW

rotation bias [7] are almost insensitive to increased transcriptional

activity. The details of mathematical model are provided as

supporting information (Text S1)

Supporting Information

Figure S1 Phylogenetic map of chemotaxis gene order
in selected prokaryotes. Order of chemotaxis genes in selected

prokaryotes was mapped on the phylogenetic tree, constructed as

described in Materials and Methods. Receptor genes or mcp are

indicated by m, cheA by A, cheB by B, and so on. A minus sign (2)

indicates hypothetical protein of unknown function or protein

unrelated to chemotaxis. Independent gene groups are separated

by dots.

Found at: doi:10.1371/journal.pbio.1000171.s001 (0.44 MB PDF)

Figure S2 Pairwise distances between the most fre-
quently neighboring chemotaxis genes over 527 ge-
nomes. Distance between neighboring chemotaxis genes was

defined as the number of nucleotides between the last nucleotide of

the stop codon of the upstream gene and the first nucleotide of

start codon of the downstream gene. Intergenic distances were

determined as described in Materials and Methods, and plotted as

histograms.

Found at: doi:10.1371/journal.pbio.1000171.s002 (0.47 MB PDF)

Figure S3 Chemotactic selection for posttranscriptional
coupling of CheY-YFP and CheZ-CFP at 10 mM IPTG
induction. (A) Chemotaxis-driven spreading of VS104 [D(cheY-

cheZ)]/pVS88 cells on soft agar (swarm) plates. (B and C) Scatter

plots of single-cell levels of CheY-YFP and CheZ-CFP in cells

taken from the edge (B) and from the middle (C) of the spreading

colony. Relative concentrations of fluorescent proteins in individ-

ual cells were determined using fluorescence microscopy as

described in Materials and Methods. See description of Figure 3

in the main text for more details.

Found at: doi:10.1371/journal.pbio.1000171.s003 (0.62 MB PDF)

Table S1 Terms used for identification of chemotaxis
genes.

Found at: doi:10.1371/journal.pbio.1000171.s004 (0.07 MB

DOC)
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Table S2 Pairwise occurrence of chemotaxis genes in
200 genomes containing cheZ.
Found at: doi:10.1371/journal.pbio.1000171.s005 (0.05 MB

DOC)

Table S3 Pairwise occurrence of chemotaxis genes in
327 genomes without cheZ.
Found at: doi:10.1371/journal.pbio.1000171.s006 (0.05 MB

DOC)

Text S1 Mathematical model.
Found at: doi:10.1371/journal.pbio.1000171.s007 (0.15 MB PDF)

Text S2 List of identified chemotaxis genes.
Found at: doi:10.1371/journal.pbio.1000171.s008 (1.22 MB

TXT)
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Abstract

Bacterial chemotaxis represents one of the simplest and best studied examples of unicellular 

behaviour. Chemotaxis allows swimming bacterial cells to follow chemical gradients in the 

environment by performing temporal comparisons of ligand concentrations. The process of 

chemotaxis in the model bacterium Escherichia coli has been studied to great molecular detail 

over the last 40 years, using a large range of experimental tools to investigate physiology, 

genetics and biochemistry of the system. Abundance of quantitative experimental data enabled 

detailed computational modelling of the pathway and theoretical analyses of such properties 

as robustness and signal amplification. Because of the temporal mode of gradient sensing 

in bacterial chemotaxis, molecular memory is an essential component of the chemotaxis 

pathway. Recent studies suggest that the memory time scale has been evolutionary optimized 

to perform optimal comparisons of stimuli while swimming in the gradient. Moreover, noise in 

the adaptation system, which results from variations of the adaptation rate both over time and 

among cells, might be beneficial for the overall chemotactic performance of the population. 
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Introduction

Many motile unicellular organisms are known to direct their movement towards or away from 

gradients of specific substances – the process called chemotaxis. It plays an important role in 

the microbial population dynamics. Chemotactic bacteria in a nonmixed environment – that is 

in presence of nutrient gradients – have significant growth advantage (Pilgram and Williams, 

1976; Freter et al., 1978; Kennedy and Lawless, 1985; Kennedy, 1987). Modeling of microbial 

population dynamics indicates that motility and chemotactic ability can be as important for 

evolutionary competition as cell growth rate (Kelly et al., 1988; Lauffenburger, 1991).

While eukaryotic cells are able to sense gradients by direct comparison of concentrations 

across the cell body (Chung et al., 2001), the bacteria employ temporal comparisons along 

swimming trajectories (Berg and Brown, 1972). Theoretical analysis suggested that such 

strategy is superior to direct spatial comparisons for objects of bacterial size and swimming 

speed (Berg and Purcell, 1977). Adapted bacteria have two swimming modes: runs, which are 

periods of long straight swimming, and tumbles, in which bacterium stops and rapidly changes 

its orientation (Figure 1A). The runs of a swimming bacterium are interrupted by tumbles, 

therefore the bacterium moves in a random walk. In response to attractant gradient, this random 

walk becomes biased: the runs become longer up the gradient, and the cells migrate towards 

the attractant. On the contrary, in repellent gradient the runs are longer down the gradient 

(Tsang et al., 1973). 

The frequency of tumbles is controlled by the chemotaxis network through switching 

of individual motors. During a run, flagellar motors rotate counter-clockwise (CCW) and 

their flagella form a bundle, which works like a screw to propel the cell. Switching of one 

or several flagellar motors to clockwise (CW) rotation initiates a tumble. During the tumble, 

the cell stops and changes its orientation because one or more CW-rotating flagella break out 

of the bundle and rotate as separate rigid screws, deflecting the cell body to a new direction 

(Turner et al., 2000; Darnton et al., 2007). The CW rotation is induced by the phosphorylated 

protein CheY (CheYp), which binds to the motor protein FliM and changes the motor bias 

in a highly sensitive mode (Cluzel et al., 2000). CheYp itself is a small molecule which 

freely diffuses in the cytoplasm between the receptor clusters and flagellar motors. CheY is 

phosphorylated by the histidine kinase CheA, which is bound to clusters of transmembrane 

receptors and the adaptor protein CheW (Figure 1B). Each receptor can be in either active 

or inactive conformation, depending on ligand binding to its outer (periplasmic) domain and 

the methylation level of its inner (cytoplasmic) domain. The active receptor promotes CheA 

autophosphorylation, eliciting downstream phosphorylation of the response regulator CheY. 

CheYp is dephosphorylated by its phosphatase CheZ, which increases the CheYp turnover. 

Receptors are methylated by the enzyme CheR and demethylated by its counteracting 

partner CheB, and methylation regulates the receptor activity (for reviews, see Sourjik, 2004; 

Wadhams and Armitage, 2004). 
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The methylation of receptors provides a sort of chemical ’memory’, which allows the cell 

to compare the current ligand concentration to the past. The idea that bacterial chemotaxis 

represents probably the simplest behavioral system, and therefore can be related to 

neuroscience, was discussed in detail by the founders of modern chemotaxis field. For reviews, 

see (Adler, 1975; Koshland, 1980). Indeed, there are several striking similarities between 

sensory reception in bacteria and higher organisms, in particular between bacterial cells and 

neurons (Koshland, 1980): ‘In both cases there is a processing system of moderate complexity 

within the cell and an output response. In the case of the neuron the output can be the release 

of a neurotransmitter or an electrical voltage; in the case of the bacterium it is a change in 

the flagellar rotation. Since the neuron is far larger than the bacterium, it must use additional 

devices such as an action potential to transmit information over much larger distances. And 

this of course is one of the distinguishing differences between the two cells. On the other hand 

the bacterial system shows properties of adaptation, memory, receptor function, focusing of 

signals, etc, which have high degrees of similarity to the equivalent processes of the neuron.’ 

There are also striking similarities of stimulus-response behavior between bacteria and higher 

organisms, which apparently follow the Weber-Fechner law of psychophysics. These and other 

questions are discussed in our review.

Molecular components of the signaling complex

E. coli can sense a variety of amino acids, sugars and dipeptides, as well as pH, temperature 

and redox state using five types of receptors. Most abundant and best studied receptors are 

those for aspartate (Tar) and serine (Tsr). Receptors anchor the complex in the inner membrane 

and transmit signals from the periplasmic ligand-binding domain to the cytoplasmic part. 

The cytoplasmic part of the receptor dimer is a four-helix bundle, with highly conserved 

domain containing four to six specific glutamate residues that are methylated by CheR and 

demethylated by CheB. The receptor homodimers are organized in trimers by interaction 

at their helical hairpin tips, and trimers form the minimum functional units. Receptors are 

predicted to be organised in large allosteric clusters of at least 25 homodimers (Sourjik and 

Berg, 2004), and these clusters form a high-order structure of thousands of receptors localized 

at the cell poles. For reviews on function and intracellular organization, see Sourjik, 2004; 

Kentner and Sourjik, 2006; Hazelbauer et al., 2008.

The signaling clusters contain receptors, histidine kinase CheA and additional protein 

CheW. The system functioning can be explained quantitatively by the notion that signaling 

complexes stay in equilibrium between two conformational states, ’on’ and ’off’. In the adapted 

state, the probabilities of both states are nearly equal. An increase of attractant concentration 

shifts the equilibrium to ’off’ state, decreasing the CheA activity and hence CheYp level. A 

removal of attractant shifts the system to the ’on’ state that activates CheA autophosphorylation 

and hence the downstream CheY phosphorylation. The phosphatase CheZ increases CheY 
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dephosphorylation rate to ensure prompt change of CheYp in response to changes in CheA 

activity.

The response clusters with homogeneous (Sourjik and Berg, 2004) and heterogeneous 

(Mello and Tu, 2005) receptor population is cooperative and can be fitted by the classical 

Monod-Wyman-Changeux (MWC) model of allosteric proteins (Monod et al., 1965). An 

alternative, Ising model of receptor cluster comprises an extended two-dimensional lattice of 

interacting receptors (Shimizu et al., 2003). Both models are discussed and compared in (Skoge 

et al., 2006).

Methods used to study chemotaxis

During the last forty years of chemotaxis studies, experimental methods became more 

sophisticated and precise. However, new methods usually do not replace the old ones, but 

rather extend them and provide insights into particular features of chemotaxis at different 

scales.

Swarm plate assay

One of the first methods to quantitatively study the chemosensitive behavior of bacteria was 

the swarm plate assay. A petri dish containing metabolizable attractant, salts needed for growth, 

and soft agar (a low enough concentration so that the bacteria can swim) is inoculated in the 

center with the bacteria. As the bacteria grow, they consume the local supply of attractant, thus 

creating a gradient, which they follow to form a ring surrounding the inoculum (Adler, 1966). 

Measuring the diameter of the swarm ring after a fixed time gives an estimate of chemotactic 

efficiency of the bacteria.

Capillary assay

The earliest method to observe chemotaxis was the use of a capillary tube. In the 1880s Pfeffer 

observed bacterial chemotaxis inserting the capillary containing a solution of test chemical 

into a bacterial suspension and then looking microscopically for accumulation of bacteria at 

the mouth of and inside the capillary (positive chemotaxis) or movement of bacteria away 

from the capillary (negative chemotaxis). This procedure was converted by J. Adler into an 

objective, quantitative assay by measuring the number of bacteria accumulating inside a 

capillary containing attractant solution (Adler, 1969). The number of cells inside the capillary 

is counted by serial dilutions. Unlike in the plate method, where bacteria make the gradient of 

attractant by metabolizing the chemical, here the experimenter provides the gradient; hence 

nonmetabolizable chemicals can be also studied. Capillary assays were further improved and 

parallelized (Berg and Turner, 1990; Bainer et al., 2003), which allows measuring chemotaxis 

for many strains and/or under many conditions with high accuracy.
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Defined gradients

Quantitative analysis of bacterial migration has been achieved by making defined gradients of 

attractant or repellent (Dahlquist et al., 1972; Tsang et al., 1973; Ford et al., 1991; Lewus and 

Ford, 2001), and then determining the distribution of bacteria in the gradient by measuring 

scattering of light by the bacteria. The method allows the experimenter to vary the shape 

(steepness) of the gradient.

Imaging

The motion of bacteria can be recorded by microcinematography, or followed as tracks that 

form on photographic film after time exposure (Macnab and Koshland, 1972; Spudich and 

Koshland, 1975). An improvement of these methods was delivered by fluorescent labelling of 

cells and filaments, and usage of CCD camera to follow the flagella transformations and cell 

movement in high contrast and time resolution (Turner et al., 2000; Darnton et al., 2007).

Tracking microscope

Swimming bacteria move rapidly out of focus plane and viewfield, which makes their behavior 

difficult to track. A breaking progress was made after the invention of an automatic tracking 

microscope, which allowed objective, quantitative, and much faster observations (Berg, 1971; 

Berg and Brown, 1972). This method allowed to demonstrate that bacteria migrate in a biased 

random walk consisting of long runs and short tumbles (originally called ’twiddles’), and that 

the frequency of tumbles shifts the random walk towards attractants and away from repellents. 

Despite the long time passed since the construction of tracking microscope in 1971 and its 

obvious advantages, it did not have successors due to its technical complexity, though the 

original tracking microscope is still in use (Frymier et al., 1995; Lewus and Ford, 2001).

Tethering experiments

Addition of attractants to E. coli cells, tethered to glass by flagella with antibody, results in a 

counterclockwise rotation of the cell body as viewed from above (Larsen et al., 1974). Addition 

of repellents causes clockwise rotation of the cells. The response magnitude and adaptation 

time can be accurately measured in terms of motor bias. The method is widely used for 

measuring the behavior of individual cells and single motors (Segall et al., 1986; Alon et al., 

1998; Khan et al., 2004; Korobkova et al., 2004).

Microchambers

Modern microfabrication techniques open up the possibilities of making spatially complex 

habitat landscapes and to investigate how bacteria proliferate and communicate through 

chemotaxis and quorum sensing (Park et al., 2003; Keymer et al., 2006). The microfabricated 

chemostats contain rectangular volumes, corridors or mazes, with input and output channels 

that supply bacteria with nutrition medium and oxygen, and remove bacterial wastes and 
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excessive biomass, therefore supporting stable conditions of the microenvironment. This 

technique allows novel approach to study bacterial populations in fabricated ecological 

environments. Microfluidics experiments have further been used to analyse bacterial responses 

to well-defined gradient on microscopic scale (Mao et al., 2003; Stocker et al., 2008; Kalinin 

et al., 2009).

FRET experiments

Fluorescence resonance energy transfer (FRET) is a technique that measures the separation 

of two fluorescently labelled proteins (and hence their interaction) in cells. It relies on 

the distance-dependent energy transfer from an excited donor fluorophore to an acceptor 

fluorophore. Because FRET-based measurements are quantitative and non-invasive, FRET is 

particularly useful for observing transient protein interactions involved in signal transduction. 

In the chemotaxis pathway, phosphorylation-dependent interactions of the response regulator 

CheY fused to YFP (CheY-YFP) with its phosphatase CheZ fused to CFP (CheZ-CFP) were 

used to monitor the activity of the receptor-kinase complexes (Sourjik and Berg, 2002, 2004).

Simulation software

Abundant quantitative data on the pathway (http://www.pdn.cam.ac.uk/groups/comp-cell/Data.

html) have inspired a number of mathematical models of chemotaxis (Bray et al., 1993; Barkai 

and Leibler, 1997; Shimizu et al., 2003; Mello and Tu, 2003; Lipkow et al., 2005). Three recent 

models reproduce swimming of cells in gradients using pathway simulations of individual 

cells: AgentCell, which is based on fully stochastic pathway model (Emonet et al., 2005), 

E. solo, which is based on systems of ordinary differential equations (Bray et al., 2007), and 

RapidCell based on a hybrid approach (Vladimirov et al., 2008). These programs embrace the 

known experimental data on pathway reactions and physical properties of a swimming cell, 

thus allowing to study the behavior of bacterial populations in silico. For recent reviews of the 

models, see Tindall et al., 2008a,b.

Signal amplification

The sensory system of E. coli demonstrates extreme sensitivity. It is able to respond to the 

addition of as little as 3 nM aspartate (Mao et al., 2003), which corresponds to only several 

molecules in a volume of a cell. An increase in attractant concentration that changes the 

receptor occupancy by 0.2% results in a 23% change in the bias of motor rotation (Segall et al., 

1986; Sourjik and Berg, 2002), indicating signal amplification by a factor of approx. 100. 

This paradox of chemotactic sensitivity was resolved recently by showing that the main signal 

amplification (ca. 35) arises from the cooperative interactions of neighbouring receptors in 

clusters (Sourjik and Berg, 2002). Another amplification step is located in the end of pathway, 

where CheYp binds to FliM molecules in the motor ring in a highly cooperative manner, with a 
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Hill coefficient of about 10 (Cluzel et al., 2000). When combined, these two amplification steps 

are sufficient to explain the observed gain.

Methylation

The adaptation enzyme CheR consitutively methylates receptors at four glutamate residues 

located in the cytoplasmic domain. Methylation increases receptor ability to stimulate CheA 

activity (Borkovich et al., 1992). As a result, when attractant is added, CheA activity rapidly 

drops down (Figure 1C), and then slowly recovers back to the steady state by methylation 

of receptors. Methylation also decreases the affinity of the receptor complex to attractants 

(Borkovich et al., 1992; Li and Weis, 2000; Levit and Stock, 2002), thereby regulating the 

ligand binding to receptor complexes. 

CheB enzyme works in the way opposite to CheR, removing methyl groups from receptors. 

The outcome of demethylation is inhibition of CheA autophosphorylation, which allows 

adaptation to negative stimuli. Therefore, counteraction of CheR and CheB returns CheA 

activity to its pre-stimulus value after any type of stimulation, positive or negative.

Methylation and demethylation occur at much slower time scales than other reactions 

involved in the network, thereby providing a memory mechanism which allows a cell to 

remember its recent past state and compare its present situation to the past.

Adaptation

The chemotaxis network has an amazing property of perfect or nearly perfect adaptation 

to stimuli, which means that after addition or removal of an attractant the system gradually 

returns to its prestimulus values in terms of CheA activity, CheYp concentration, and motor 

bias. The change in ligand binding is compensated by receptor methylation, which provides the 

mechanism of adaptation.

The role of adaptation is crucial. Bacteria retain high sensitivity for some attractants from 

nanomolar to millimolar concentrations, spanning five to six orders of magnitude (Berg and 

Tedesco, 1975; Segall et al., 1986; Kim et al., 2001). To enable high sensitivity over such a 

wide range, the signal amplification must be coupled with the adaptation. In the absence of 

adaptation, a 100-fold signal amplification will saturate the system response at 1% receptor 

occupancy, and the accomplishment of signal amplification with adaptation is a necessary setup 

of natural signaling systems (Koshland, 1981; Pugh and Lamb, 1990; Kaupp and Koch, 1992; 

Zufall and Leinders-Zufall, 2000).

Optimal memory length
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The way bacteria utilize methylation and demethylation is in ways similar to the use of 

phosphorylation and dephosphorylation in some mammalian systems. Bacteria follow gradients 

using temporal sensing in which the ’memory’ of the bacterium plays a key role (Macnab and 

Koshland, 1972). In terms of chemotaxis, the memory length is the adaptation time required 

to return the post-stimulus CheA activity to its steady-state level (Figure 1C). The bacterium 

does not have a fixed memory length. Rather, adaptation time depends on the stimulus strength: 

under strong stimuli, pathway activity will return to steady state after relatively long time 

interval, whereas for a weak stimulus it equilibrates very rapidly. Memory is additive: the 

adaptation time for a step stimulus from  to  is the sum of the adaptation times for step stimuli 

from  to  and from  to  (Spudich and Koshland, 1975; Berg and Tedesco, 1975).

The memory length of the organism should fit its lifestyle. In the case of E. coli and 

Salmonella, which have a typical run time of about a second in adapted state, the optimal 

memory was shown to be between 1 and 10 seconds (Koshland, 1974, 1981). A longer memory 

will make the cell to remember the past conditions which are already non-relevant, instead of 

the prompt response in the present swimming direction. A substantially shorter memory will 

make the cell ’forget’ the gradient too fast, which means a drop of response accuracy. The 

cell is faced with the dilemma of the need for a long memory span to improve its analytical 

accuracy, and a need for a quick response to provide a high correlation with the direction of 

motion (Macnab and Koshland, 1972). The optimal memory length depends on many factors, 

and steepness of the gradient is one of the most important.

Computer simulations of bacteria in gradients of defined steepness show that in steeper 

gradients the maximum of chemotaxis efficiency is observed at higher adaptation rates 

(Figure 2A) (Andrews et al., 2006; Vladimirov et al., 2008). The optimal adaptation rate 

is determined by the average CheYp – it should fit the operating range of flagellar motor. 

Due to high cooperativity of CheYp-motor interaction, its response curve is very steep, so 

CheYp must fit a very narrow interval (Figure 2B). To set CheYp into this interval, the system 

excitation must be counterbalanced by adaptation. In steep gradients, the memory length must 

be therefore short enough to balance the strong excitation by rapid adaptation. In shallow 

gradients, the memory length must be long enough to allow excitation, otherwise the cells 

become adapted before they are able to respond. In general, the steeper is the gradient, the 

shorter must be the adaptation time and hence the chemotactic memory.

Role of noise

Noise plays an important role in the bacterial world. The cell swims along curly trajectories 

rather than straight paths because of the Brownian motion causing rotational diffusion (Berg, 

1993). The network itself is affected by the noise from receptor-ligand binding, methylation, 

and variations in protein concentrations (gene noise). The variety of noise sources that disturb 

the chemotactic navigation poses a question of how this navigation is possible at all, taking 



Chemotaxis in bacteria

into account the relative simplicity of the system. Computer simulations and experimental 

methods resolved this question. Variation of E. coli network parameters does not break its 

property of precise adaptation because of its robustness (Barkai and Leibler, 1997; Alon et al., 

1999). The topology of E. coli chemotaxis network ensures robustness of output (concentration 

of CheYp) against concerted variations in protein levels (Kollmann et al., 2005), which is the 

dominant source of gene expression noise. Uncorrelated variations in protein levels, which 

arise due to noise in protein translation, are further compensated by the translational coupling 

of neighbouring chemotaxis genes (Lovdok et al., 2009).

However, noise in concentrations adaptation enzymes CheR and CheB and/or their kinetic 

parameters does affect the the adaptation time (Alon et al., 1999). This means that even 

genetically identical cells can have a variability in chemotactic behavior (Berg and Tedesco, 

1975; Spudich and Koshland, 1976). However, this can have positive outcome for population 

as a whole. Computer simulations show that in any fixed gradient, there will be a subpopulation 

with the optimal memory length for this gradient. Such a population heterogeneity may be 

evolutionary favorable to ensure co-existence of subpopulations that will be optimally tactic in 

different gradients (Andrews et al., 2006; Vladimirov et al., 2008).

Another intrinsic source of noise arises from slow reactions of receptors methylation. 

Interestingly, the cells appear to have been selected to maintain low CheR expression levels, 

which lead to high noise in methylation events and long-term variations in system output. 

It was shown experimentally that such a noise provides long-term variations in the cellular 

behavior, with correlations in motor output spanning up to 20 min (Korobkova et al., 2004). 

Such variation in motor behavior, and hence run length, can allow the cell to explore the 

surrounding environment more efficiently, because the runs in adapted state are distributed as 

Lévy-flights rather than exponentially. In this case, the noise can be beneficial for individual 

cells to explore new areas, also in the presence of gradient (Emonet and Cluzel, 2008).

The two aforementioned examples of positive noise effect in chemotaxis are the rare 

exceptions – most of the noise factors decrease the efficiency of chemotactic navigation. But 

the chemotactic network can cope with that. Simulations of the network input-output response 

shows that the pathway demonstrates properties of low-pass filter coupled to a differentiator 

(Block, 1982; Andrews et al., 2006; Tu et al., 2008; Tostevin and Ten Wolde, 2009). In this 

form, the system averages the signal for a certain time (defined by its memory), and then 

differentiates it to determine the steepness of the gradient in the current run direction. In this 

way, bacterial system follows the main signal (gradient) and filters out high-frequency noise. 

The optimal memory length depends on the noise sources. The optimal memory is shorter 

if the noise from rotational diffusion of a cell body is higher. This has an intuitive explanation: 

high coefficient of rotational diffusion makes the cell to loose its running direction, and ligand 

concentrations in the past become non-relevant faster. On the contrary, the optimal memory is 

longer upon higher noise in receptor-ligand binding. In this case, the cell needs longer memory 

to filter out large variations in noisy signal. As mentioned above, there are several other types 
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of noise which disturb the system efficiency. However, bacterial signaling system works close 

to the theoretical limit of precision (Rayleigh limit), demonstrating the characteristics of nearly 

perfect molecular instrument (Andrews et al., 2006).

Weber-Fechner law

Many natural sensory systems respond proportionally to the relative change of stimulus ∆S/S 

rather than absolute change ∆S, the effect known in psychophysics as Weber-Fechner law. The 

dependence fits visual, smell and acoustical perception. This law, discovered in 19-th century, 

grounded the basics of modern psychophysics. In more recent studies, the Weber-Fechner 

(logarithmic) law was shown to be a first approximation of the power law, which provides 

a better fit of the experimental data (Stevens, 1961). For a recent review, see Johnson et al. 

(2002).

The Weber-Fechner law was often recalled to demonstrate the similarity of chemotaxis 

system to sensory systems of higher organisms (Mesibov et al., 1973; Koshland, 1981). 

Consistent with the Weber-Fechner law, E. coli demonstrates approximately constant response 

to exponentially changing gradients (Block et al., 1983; Tu et al., 2008; Kalinin et al., 2009). 

Therefore, the bacterial chemotaxis system appears to track the gradient of the logarithm of 

ligand concentration. Although, computer simulations of the up-to-date chemotaxis models 

predict that the ’true’ constant response, over several orders of attractant concentrations, can 

be achieved by stimulation with yet another type of gradient, which has a form of  (Vladimirov 

et al., 2008). This gradient is well fitted by the exponential gradient in a wide concentration 

range. 

In conclusion, due to its relative simplicity, the bacterial sensory system provides a 

perfect workbench for a detailed analysis of sensory phenomena, and it is far from being 

fully understood. Even though we know the molecular mechanisms in detail, there is a vast 

terra incognita in our understanding how bacteria interact with their dynamically changing 

environment. The issues of individual versus collective behavior, as well as noisy versus 

deterministic environment, come to the foreground of the modern research.
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Figure legends

Figure 1  E. coli chemotaxis.

(A) The cell moves in a random walk, consisting of long runs (about 1 s) and short tumbles 

(about 0.1 s). The direction of a new run is assumed to be chosen randomly, while the run 

length is longer if the cell encounters positive change of attractant concentration, or negative 

change of repellent concentration. This allows to follow attractant and avoid repellent gradients 

(insets). Longer runs in a favorable direction are shown by ’+’, normal (unbiased) runs by 

’-’. (B) Chemotaxis pathway of E. coli. Changes in attractant or repellent concentrations 

are sensed by a protein complex consisting of transmembrane receptors, an adaptor protein 

CheW, and a histidine kinase CheA. Transmembrane receptors can be of five types (Tar, Tsr, 

Tap, Trg, Aer). Autophosphorylation activity of CheA is inhibited by attractant binding and 

enhanced by repellent binding to receptors. The phosphoryl group is rapidly transferred from 

CheA to the response regulator CheY. Phosphorylated CheY (CheYp) diffuses to the flagellar 

motors and changes the direction of motor rotation from counterclockwise to clockwise to 

promote tumbles. CheZ phosphatase, localized to sensory complexes through binding to 

CheA, ensures a rapid turnover of CheYp, which is essential to quickly re-adjust bacterial 

behaviour. Adaptation in chemotaxis is mediated by two enzymes, methyltransferase CheR and 

methylesterase CheB, which add or remove methyl groups at four specific glutamate residues 

on each receptor monomer. Receptor modification increases CheA activity and decreases 

sensitivity to attractants. Feedback is provided by CheB phosphorylation through CheA that 

increases CheB activity. (C) The time course of a typical chemotactic response. Step-wise 

addition of saturating amount of attractant results in an initial fast (less than 0.1 s) decrease 

in kinase activity that is followed by a slow CheR-dependent adaptation. Adaptation time is 

proportional to the change in receptor occupancy. Next, removal of attractant results in an 

initial fast increase in kinase activity followed by CheB-dependent adaptation. Kinase activity 

below the steady state causes longer runs, above the steady state – frequent tumbling.

Figure 2  Optimal rate of adaptation in chemotaxis.

(A) Simulations of chemotactic cells in gradient of different steepness. The average drift 

velocity of population increases in steeper gradient. The optimal navigation in steep gradients 

requires higher adaptation rate (shorter memory), because excitation arising in steep gradient 

must be counterbalanced by higher adaptation rate. (B) CCW motor bias as a function of 

relative CheYp concentration. Gray bands indicate the CheYp interval and the corresponding 

motor range that ensure optimal drift velocity. The average CheYp must be balanced by 

counteracting excitation and adaptation, to fit the optimal range of flagellar motor.
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Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
der Universität Heidelberg (IWR),

Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany;

Dirk Lebiedz
Zentrum für Biosystemanalyse der Universität Freiburg (ZBSA),

Habsburger Str. 49, D-79104 Freiburg, Germany;

Victor Sourjik
Zentrum für Molekulare Biologie

der Universität Heidelberg, DKFZ-ZMBH Alliance,
Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany

October 2, 2009

1Corresponding author. Address: Interdisziplinäres Zentrum für Wis-
senschaftliches Rechnen (IWR), Im Neuenheimer Feld 368, 69120 Heidel-
berg, Germany. Tel.: (+49-6221)54-8889, Fax: (+49-6221)54-8884, e-mail:
nikita.vladimirov@gmail.com



Abstract

Chemotactic movement of Escherichia coli is one of the most thoroughly
studied paradigms of simple behavior. Due to significant competitive ad-
vantage conferred by chemotaxis and to high evolution rates in bacteria, the
chemotaxis system is expected to be strongly optimized. Bacteria follow gra-
dients by performing temporal comparisons of chemoeffector concentrations
along their runs, a strategy which is most efficient given their size and swim-
ming speed. Concentration differences are detected by a sensory system and
transmitted to modulate rotation of flagellar motors, decreasing the prob-
ability of a tumble and reorientation if the perceived concentration change
during a run is positive. Such regulation of tumble probability is on itself
sufficient to explain chemotactic drift of a population up the gradient, and
is commonly assumed to be the only navigation mechanism of chemotactic
bacteria.

We use computer simulations to predict existence of an additional mech-
anism of gradient navigation in E. coli and other peritrichously flagellated
bacteria. Based on the experimentally observed dependence of cell tumbling
angle on the number of switching motors (Turner et al., 2000, J Bacteriol 182,
2793-2801), we suggest that not only the tumbling probability but also the
degree of reorientation during a tumble depend on the swimming direction
along the gradient. Although the difference in mean tumbling angles up and
down the gradient predicted by our model is small, it results in a dramatic
enhancement of the cellular drift velocity along the gradient.

We thus demonstrate a new level of optimization in E. coli chemotaxis,
which arises from collective switching of several flagellar motors and a re-
sulting fine tuning of tumbling angle. Similar strategy is likely to be used by
other peritrichously flagellated bacteria, and indicates a yet another level of
evolutionary optimization in bacterial chemotaxis.

Key words: chemotaxis, peritrichously flagellated, Escherichia coli, tum-
bling angle, RapidCell
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Author summary

Chemotaxis of bacteria plays an important role in their life, providing them
with the ability to actively search for an optimal growth environment. The
chemotaxis system is supposed to be highly optimized, because on the evolu-
tionary time scale even a modest enhancement of its efficiency can give cells
a large competitive advantage. For a long time it was believed that the only
navigation mechanism of bacteria is increasing the run length toward the
preferred direction. The tumble was assumed to be a purely random change
of direction between runs.

We analysed recently published experimental data that demonstrate a
dependence of tumbling angle on the number of CW-switched motors. We
introduced such a dependence into our model of chemotactic E. coli, and
simulated it in different conditions. Our simulations show that this depen-
dence is an important additional mechanism of bacterial navigation, which
was previously unrecognized because it lays below the experimental errors of
conventional single-cell tracking. We show that such a fine tuning of tum-
bling significantly improves efficiency of chemotaxis, and represents a new
level of evolutionary optimization of bacteria.
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Introduction

Many motile unicellular organisms are known to direct their movement in
gradients of specific chemical substances – the process called chemotaxis.
Chemotaxis plays an important role in the microbial population dynamics
with chemotactic bacteria in a nonmixed environment – that is in presence
of nutrient gradients – having significant growth advantage (1–4). Modeling
of microbial population dynamics indicates that motility and chemotactic
ability can be as important for evolutionary competition as cell growth rate
(5, 6). The chemotaxis system is thus expected to be highly optimized, as
has been indeed suggested by several studies (7–10).

The best example of such optimization is bacterial chemotaxis strategy
itself. While eukaryotic cells are able to sense the gradients by direct compar-
ison of concentrations at the opposite sides of the cell (11), bacteria employ
temporal comparisons along their runs (12). Theoretical analysis suggested
that such strategy is superior to direct spatial comparisons for objects of bac-
terial size and swimming speed (7). Adapted bacteria have two swimming
modes: runs, which are periods of long straight swimming, and tumbles,
when bacterium stops and changes its orientation. The runs of a swimming
bacterium are interrupted by tumbles which abruptly change the swimming
direction. For cells swimming up an attractant gradient, the runs become
longer due to suppression of tumbles, and the cell population migrates up the
gradient. The frequency of tumbles is controlled by the chemotaxis network
through switching of individual motors. During a run, flagellar motors rotate
counter-clockwise (CCW) causing flagella to form a bundle, whereas switch-
ing of one or several flagellar motors to clockwise (CW) rotation breaks up
the bundle and initiates a tumble. The direction of motor rotation depends
on the concentration of phosphorylated CheY molecules, which bind to the
motor and switch its direction in a highly cooperative mode. The CheY
phosphorylation is controlled by the histidine kinase CheA, which forms sen-
sory clusters together with transmembrane receptors and the adaptor CheW.
Each receptor can be either active or inactive, depending on ligand binding
and on the methylation level. The active receptor activates CheA, eliciting
downstream phosphorylation of the response regulator CheY. Phosphory-
lated CheY (CheYp) is dephosphorylated by CheZ. Receptors can be methy-
lated by the methyltransferase CheR and demethylated by the methylesterase
CheB. Methylation regulates the receptor activity. Because the reaction of
receptor methylation is much slower than the initial response, methylation
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provides chemical ’memory’, which allows the cell to compare the current
ligand concentration with the recent past.

Early single-cell tracking experiments reported no dependence of the tum-
bling angle, i.e. turning angle between consequent runs, on the direction of
the gradient and the inclination of a run (12), and it was thus presumed to be
random in subsequent modeling of bacterial chemotaxis. However, in recent
study that used high-resolution fluorescence video microscopy (13), it was
shown that the cell turning angle depends on the number of CW-rotating
filaments involved in the tumble, and thereby the turning angle rises pro-
portionally to the number of motors that switched to CW. Because the CW
switch probability is set by the chemotaxis system dependent on the cellular
swimming direction along the gradient, the tumbling angle can be expected
to depend on the swimming direction, too. If the cell swims up a gradient
of attractant, the probability of CW rotation is smaller, and fewer motors
are likely to change directions. Therefore, even if the cell makes a tumble,
the tumbling angle should be small. When the cell swims down the gradient
of attractant, the probability of CW rotation is higher and more motors are
likely to change directions during a tumble, with the consequence that the
tumbling angles will be larger.

The goal of this study was thus to investigate the magnitude of the tum-
bling angle dependence on the swimming direction and the effect of such
dependence on the chemotactic efficiency. We introduced dependence of the
turning angle on the number of CW-rotating motors in a recently constructed
hybrid model of chemotactic E. coli, RapidCell simulator (14). Our simula-
tions demonstrate that although the estimated difference of tumbling angles
up and down the gradient is only few degrees, even such a small difference
significantly improves the chemotactic efficiency of bacteria. We thus sug-
gest that tuning of tumbling angle depending on swimming direction serves
as an additional navigation mechanism for E. coli and other peritrichously
flagellated bacteria.

Methods

Model of chemotaxis signaling network

We applied the recently proposed MWC model for mixed receptor cluster
(15, 16), which accounts for the observed experimental dose-response curves
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of adapted cells measured by in vivo FRET experiments (15, 17), as shown in
(16, 18, 19). According to the MWC model, an individual receptor homod-
imer is described as a two-state receptor, being either ’on’ or ’off’, with the
free energy being a function of methylation level m and ligand concentration
[S]

fr(m) = εr(m)− log

(
1 + [S]/Koff

r

1 + [S]/Kon
r

)
(1)

where εr(m) is the ’offset energy’, and Kon
r , Koff

r are the dissociation con-
stants for the ligand in the ’on’ and ’off’ state, respectively. Groups of recep-
tors form larger sensory complexes, or signaling teams, with all receptors in a
team being either ’on’ or ’off’ together. The teams are composed of mixtures
of Tar (r = a) and Tsr (r = s) receptors, and the total free energy of the
team is given by

F = nafa(m) + nsfs(m) (2)

The probability (A) that a team will be active is a function of its free energy

A =
1

1 + eF
(3)

The adaptation is modeled according to the mean-field theory (20, 21),
assuming that the CheB demethylates only active receptors, CheR methy-
lates only inactive receptors, and both enzymes work at saturation

dm

dt
= a(1− A)[CheR]− bA[CheB] (4)

This equation implies that both enzymes work in the zero-order regime. The
linear products a(1 − A)[CheR] and (bA[CheB]) mean that a bound CheR
(CheB) can only act if the receptor team is inactive (active), with probability
(1− A) and A, respectively.

The average methylation level m is assumed to be a continuously chang-
ing variable within the interval [0, 8], with linear interpolation between the
key offset energies, εr(i), i = 0..8, as suggested in (21, 22). The ODE for
methylation (Eqn. 4) is integrated using the Euler method to ensure high
computational speed of the program, while the time step is chosen as 0.01 s
to keep the simulation error low.

The details of network model were previously described in (14). CheA
kinase activity is assumed to be equal to the activity of the receptor complex
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(A). The rate of phosphotransfer from active CheA to CheY is much faster
than the rate of CheA autophosphorylation (9, 23). Therefore, the relative
concentration of CheYp is obtained as a function of active CheA from the
steady-state equation

[CheY p] = 3
kY ksA

kY ksA + kZZ + γY

(5)

where ks = 0.45 is a scaling coefficient, ky = 100µM−1s−1, kZ = 30/[CheZ]s−1,
γY = 0.1 are the rate constants according to (9, 24, 25).

The relative concentration of CheYp is converted into the CCW-motor
bias using a Hill function (26):

mb(CheY p) = (1 + (1/mb0 − 1)(CheY p)H)−1 (6)

where H = 10.3 (26), mb0 = 0.65 (26, 27).

Model of bacterial swimming

To simulate the experimentally observed hydrodynamics of bacterial swim-
ming and tumbling (13, 28) in simple terms, we introduce a distortion fac-
tor dcw which reflects how one CW-rotating flagellum influences the cellular
speed and angular deviation

dcw =

{
tcw/t0cw, tcw ≤ t0cw
e−20(tcw−t0cw), tcw > t0cw

(7)

This functional form implies that the distortion rises proportionally to the
CW rotation time tcw as long as it is below the threshold t0cw (the first pe-
riod). After this threshold is reached, the distortion exponentially decays
(the second period). The first period corresponds to unwinding of a flagel-
lum from the bundle and its rotation in the right-handed semicoiled form,
which initiates a tumble. In the second period, when the flagellum rotates
CW longer than the threshold time, a rapid transformation from semicoiled
to curly 1 form occurs, and the flagellum twists around the bundle during
the new run, due to high flexibility of the latter form (28).

The collective influence of several simultaneously CW-rotating motors is
assumed to be proportional to the sum of their distortion factors

Dcw =
ncw∑
i=1

di
cw (8)
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This implies that the tumble can occur if a single motor rotates CW for at
least t0cw period, or if two or more motors rotate CW together for a shorter
time. Formally, a tumble occurs when Dcw ≥ D0

cw, where D0
cw is a threshold

value. In principle, the threshold depends on the total number of motors: the
larger N , the higher D0

cw is required to generate a tumble. This is consistent
with experimental data of (13), Fig. 12 therein, where switching of 1 motor
is sufficient for a tumble at N = 2 − 4, but for N = 5 at least 2 motors
are necessary for a tumble. However, we keep the same D0

cw = 1 for N =
2, 3, 4, 5 for simplicity, to avoid additional arbitrarily chosen thresholds. The
simulated run lengths in a ligand-free medium have distribution close to
exponential.

The cellular swimming speed depends on the distortion in a piece-wise
linear form

v =

{
Vmax(D

0
cw −Dcw), Dcw < D0

cw

0, Dcw ≥ Dcw
(9)

In our model, we considered only ’complete’ tumbles, which occur when Dcw

reaches D0
cw and the swimming speed falls to zero: at this time point the cell

instantly changes its orientation by the tumbling angle Θ, which is deter-
mined by two alternative models, isotropic and anisotropic. For simplicity,
we assumed that if the distortion Dcw does not reach D0

cw, it causes only a
drop of speed, without a change of the swimming direction.

During a run, the direction of cellular swimming is affected by the ro-
tational diffusion (12, 29). After each time step, the swimming direction is
changed by adding a stochastic component with normal distribution N(m, σ) =
N(0,

√
2Dr∆t), where the diffusion coefficient Dr equals 0.062 rad2s−1 (29).

Isotropic tumbling. The tumbling angle Θ is distributed according
to the continuous probability density function f(Θ) = 0.5(1 + cosΘ)sinΘ,
0 < Θ < π, as suggested in (30). The mean M(Θ) of this angle distribution,
67.5o, is close to experimental measurement of 68o (12), and shapes of the
simulated and experimental distributions are simular. The angle distribution
does not depend on any external factors.

Anisotropic tumbling. The tumbling angle Θ is determined by number
of CW-rotating motors ncw involved in the tumble, and the total number of
motors N . For each pair of (ncw, N), we simulated the cell swimming in
a ligand-free medium and calculated the frequency pi of the tumbles which
are caused by ncw CW-rotating motors. Using the frequency pi, we chose
the turning angle Θi close to the experimental values (13), while keeping the
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average turning angle constant in all models,

N∑
i=1

piΘi = 67.5o (10)

Constant-activity gradient

In order to measure the chemotactic efficiency accurately and to avoid the
effects of receptors saturation, we simulated the cells in an artificial constant-
activity gradient, which ensures a constant chemotactic response CheYp and
a constant cell drift velocity over a wide range of ligand concentrations, in
contrast to commonly used Gaussian and linear gradients (14). Drift velocity
in constant-activity gradient was measured by a linear fit of 〈X(t)〉 in the time
interval from 200 to 500 s. The constant-activity gradient has the following
form:

S(x) = K∗ Cx
Kon−Koff

KD
− Cx

(11)

where S(x) is the ligand concentration in position x, and KD =
√

KonKoff

is the geometric mean of the dissociation constants. C is a free parameter
which determines the steepness of the gradient, and thereby the drift velocity
of cells up the gradient. We compare the drift velocities in three constant-
activity gradients of aspartate, with relative steepness changing two-fold from
one to another, and designate them as N0, N1 and N2. The corresponding
gradient functions are

S(x) = K∗ Cx
Kon−Koff

K∗ − Cx
, C =

Kon −Koff

K∗ · 0.999

xmax

(12)

with xmax = 40, 20, 10 mm for N0, N1 and N2, respectively. Here xmax is the
size of square 2D domain, where cells were simulated starting from the left
wall x = 0.

Results and Discussion

Dependence of tumbling angle on the number of CW-rotating mo-
tors. The tumbling angle dependence on the number of switching motors
was investigated by extending the recently published hybrid model of chemo-
tactic E. coli (14). First, a more detailed model of tumbling was developed to
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bring the model in a closer agreement with the tracking experiments of (12).
While previous version of the model relied on a simple voting model of tum-
bling, which started the tumble as soon as the majority of motors rotate CW,
our new model takes into account the duration of CW-rotation of every mo-
tor (Fig. 1A). The complex hydrodynamics of multiple flagella is described in
simplified form, through a distortion factor which is a function of tcw of each
motor (see Methods). Despite this simplification, the simulated swimming
of E. coli is in a very good agreement with the original tracking experiments
(12). The model realistically reproduces nearly all data provided by tracking
experiments: mean cellular speed, run times, tumbling angles (Table 2), as
well as individual motor switching and graduate recovery of cellular speed
after a tumble.

Second, we introduced a dependence of tumbling angle on the number of
CW-rotating motors that cause the tumble (Fig. 1B). This was done by fit-
ting the experimental data of (13) with a realistic choice of discrete tumbling
angles at each number of CW-switched motors (Fig. 1C). To ensure consis-
tency with experimental data, we further assumed dependence of tumbling
angle on the total number of motors. This model was called anisotropic, and
it was compared to a conventional model of isotropic tumble, which chooses
the tumbling angle stochastically. In simulations without a gradient, both
models produce equal cellular drift velocities, with the accuracy of estima-
tion error. To keep the mean angles of both models consistent, we defined
the frequencies of the discrete angles in the anisotropic model as shown in
Fig. 1D.

Dependence of tumbling angle on swimming direction. For aniso-
tropic model, the tumbling angles depend on the swimming direction prior
to tumbles (Fig. 2A). This dependence naturally arises from the dependence
of tumbling angle on the number of CW-rotating motors. The cells which
turned with the smallest ncw were swimming in slightly skewed directions
up the gradient before the tumble, whereas the cells which turned with the
highest ncw were swimming with even smaller skew down the gradient before
the tumble. A more detailed analysis shows that the total angular difference
between tumbling angles that correspond to the movement up and down a
gradient is only about 3o (Fig. 2B). Such a small difference is within the
error of the early tracking experiments, about 5o (31), which explains why it
remained undetected.

Effect of anisotropic model on cell drift velocity. Despite such a
small difference of mean angles, it can significantly increase the chemotactic
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performance, with the mean drift velocity being up to two times higher for
anisotropically tumbling cells (Fig. 2C). The positive effect of anisotropic
tumble becomes more visible in steeper gradients and for higher number of
motors, which suggests that highly flagellated cells can adjust their tumbling
angle more precisely.

In the case of N = 3 motors and moderate gradient (N1), the mean tum-
bling angle is M(Θ) = 67.0o. This value is only 0.5o smaller than the angle in
ligand-free simulations, so the increase of the drift velocity in the anisotropic
model cannot be attributed to the change of the total mean tumbling angle.
The mean tumbling angle up the gradient Θ(cos(α > 0)) = 66.4o, while down
the gradient it is Θ(cos(α < 0)) = 67.6o. Therefore, the 1.2o difference in
mean tumbling angles causes a 52% increase in the population drift velocity,
from 0.92 to 1.4 µms−1 (Fig. 2C).

Dependence of anisotropic model effect on the magnitude of an-
gle adjustment and on rotational diffusion. As a control, we simulated
chemotactic cells that tumble with a constant angle (67.5 deg.), and com-
pared them to cells that tumble with slightly higher angle (67.5-∆), when
they swim up the gradient, and with slightly lower angle (67.5+∆), when
they swim down the gradient. Here, the ∆ was a constant parameter changed
from 1 to 5 deg. A difference of ∆ = 5 degrees increased the drift velocity by
about 100% in the gradient N1, and by ∼ 50% in the gradient N2 (Fig. 3A).
This confirms that the observed increase in drift velocity shown in Fig. 2C
is due to small changes in tumbling angles of up- and down-swimming cells,
and does not arise from model-specific parameters.

Bacterial movement in gradients is further affected by the Brownian mo-
tion for both isotropic and anisotropic tumbling models (Fig. 3B). In our
simulations we used Dr = 0.062 rad2s−1 (Table 1). At lower coefficients of
rotational diffusion, both models demonstrate better chemotaxis, and the
advantage of the anisotropic tumbling is most pronounced, which is due to
lower noise factor arising from rotational diffusion (32). Since rotational
diffusion depends on the cells size, flagellar length, media viscosity and tem-
perature (29, 33), predicted effects of anisotropic tumbling can be even more
pronounced for other bacteria or under different environmental conditions.

Conclusions. Taken together, our results suggest that in addition to
extending the run length while swimming up the gradient, E. coli uses an
auxiliary mechanism of tumbling angle tuning according to the swimming
direction. This fine tuning of tumble is mediated by the same adjustment
of tumbling frequency that underlies the conventional chemotaxis strategy
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of bacteria (Fig. 4). This previously unrecognized feature is expected to be
shared by other peritrichously flagellated bacteria and seems to represent yet
another level of evolutionary optimization of the chemotaxis system.
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Figure Legends

Figure 1.

Anisotropic model of E. coli tumbling. (A) The output series for a single
swimming cell (from bottom to top): switching of a single motor (blue),
its distortion dcw (green), the sum of distortions of 3 motors Dcw (red), the
resulting falls of swimming speed during tumbles (black). (B) The schematic
illustration of tumbling angle (green arrow) dependence on the number of
CW-rotating motors (green circles). (C) Anisotropic model of tumbling. The
tumbling angle Θi at different number of CW-rotating motors ncw. Inset.
Experimental data sets reproduced from Fig. 12 of (13). Solid lines show
means, errorbars show standard deviations, circles correspond to individual
tumbles. Color code of the inset is the same as in the main panel. (D)
Frequencies pi of tumbles which involve ncw CW-rotating motors out of the
total number of motors N = 2..5.

Figure 2.

Behavior of cells with anisotropic tumbling model. (A) Distribution of cel-
lular orientations prior to tumbles. The tumbling events are divided into 3
groups, by the number of CW-rotating motors involved in a tumble. The
rose histograms are normalized by the number of counts. The inner black
circle shows unbiased (isotropic) distribution as a reference. Cell orienta-
tion is given relative to the gradient. The gradient steepness is N1. (B)
Average tumbling angle as a function of orientation along the gradient prior
to tumbles. (C) Chemotactic drift velocity of cells in gradients of different
steepness. Bars show the drift velocities of cells with 3 motors (left group) or
5 motors (right group) in the medium without a gradient (gray), in gradient
N0 (blue), N1 (green) and N2 (red). Left bars show the isotropic model, right
(hatched) bars – anisotropic model of tumbling. In the absence of gradient,
the difference is within the error of estimation. Standard error of the mean
is about 0.03. Cells in (A) and (B) have 3 motors, other parameters are as
described in Tab. 1. The number of simulated cells is 103 in each case.

Figure 3.

Effects of tumbling angle adjustment and rotational diffusion on chemotactic
efficiency. (A) Dependence of chemotactic drift velocity on fixed tumbling
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angle deviation ∆ in a simplified tumbling model. The cells swimming up the
gradient tumble with a smaller angle 67.5−∆, while cells swimming down the
gradient tumble with higher angle 67.5+∆. Cells with ∆ = 0 tumble with a
fixed angle 67.5o, i.e. isotropically. (B) Dependence of chemotactic drift on
rotational diffusion coefficient for cells with isotropic (blue) and anisotropic
(green) models of tumbling. The number of simulated cells is 103 in each case,
the gradient is N1. Cells in (A) and (B) have 3 motors, other parameters are
as described in Tab. 1.

Figure 4.

Enhancement of chemotactic efficiency by anisotropic tumbling. In the isotropic
model (top), cells have lower CW bias and tumble less frequently up the gra-
dient, but their average tumbling angle is the same in all directions. In
the anisotropic model (bottom), the same lowering of CW motor bias ad-
ditionally leads to the reduction of tumbling angles below average for cells
swimming up the gradient. Cells swimming down the gradient have tumbling
angles larger than the average. Directional dependence of the tumbling angle
enhances average drift up the gradient. The difference of tumbling angles is
exaggerated for illustration purposes.
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Table 1: Parameters used in E. coli model

Parameter Value Reference
mbccw

0 0.65 Steady-state CCW motor bias (26, 27)
Tccw 1.20 s Av. CCW rotation time of a motor (34)
Tcw 0.65 s Av. CW rotation time, given that mbccw

0 = Tccw

Tccw+Tcw

t0cw 0.15 s Max. time the flagellum rotates CW in semicoiled form (13)
D0

cw 1.0 Threshold of total distortion to initiate a tumble (13)
Vmax 20 µms−1 Maximum swimming speed (12, 35)
Dr 0.062 rad2s−1 Rotational diffusion coefficient (29)
H 10.3 Hill coefficient of motor response to [CheYp] (26)
∆t 0.01 s Time step in simulations (this work)
Kon

a 12 µM Diss. constant of Tar to Asp (36)
Koff

a 1.7 µM Diss. constant of Tar to Asp (36)
K∗ 4.52 µM Apparent diss. constant of Tar to Asp (37)
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Table 2: Comparison of the RapidCell output and the tracking data from
(Berg and Brown, 1972). The model parameters are as in Table 1, the number
of motors N = 3, the aspartate gradient is N1. Values are estimated from
1000 cells simulated for 500 s. Controls correspond to a ligand-free medium.
Means and std (where relevant) are shown.

Parameter Isotropic model Anisotropic model Experiment
Tumbling angle, control (o) 67.5 67.5 68
Run length, control (s) 0.81 ± 0.63 0.81 ± 0.63 0.86 ± 1.18
Run length, gradient (s) 0.89 ± 0.77 0.92 ± 0.86 0.90 ± 1.56
Run length, up gradient (s) 0.93 ± 0.83 0.98 ± 0.95 1.07 ± 1.80
Run length, down gradient (s) 0.83 ± 0.69 0.86 ± 0.75 0.80 ± 1.38
Swimming speed, control (µms−1) 17 ± 5.4 17 ± 5.4 14.2 ± 3.4
Drift velocity, control (µms−1) 0.36 ± 0.03 0.39 ± 0.03 –
Drift velocity, gradient (µms−1) 0.92 1.40 0.90
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Figure 1:
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Figure 2:
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Figure 3:
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