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5. Summary 

Dengue is the most prevalent mosquito-borne viral disease world-wide. The 

causative agent Dengue Virus (DENV) is a positive strand RNA virus replicating 

predominantly in monocyte-derived macrophages and dendritic cells. The severi-

ty of the disease is strongly linked to the level of viral replication, which is de-

termined, amongst others by pre-existing DENV-specific antibodies and genetic 

determinants of the virus and the host.  

The aim of my thesis was to characterize the role of nonstructural protein 5 

(NS5) for the DENV replication cycle. NS5 is a multifunctional protein involved in 

viral RNA replication, 5’ end capping and blocking of interferon (IFN)-mediated 

signaling by degrading STAT2. Although DENV replicates in the cytoplasm, NS5 

mostly accumulates in the nucleus of infected cells. This study investigated the 

determinants of NS5 nuclear transport and the effects of nuclear NS5 on viral 

replication and innate immunity. Nuclear accumulation of NS5 occurred inde-

pendent from other viral proteins and was found in infected mammalian and 

mosquito cells arguing for an evolutionarily conserved property. A mutation 

analysis was used to identify amino acid residues in NS5 essential for nuclear 

accumulation. Replication analyses of these nuclear localization signal (NLS) mu-

tants showed that even though a high level of nuclear NS5 is not required for 

efficient DENV replication, complete abrogation of nuclear transport significantly 

reduced viral replication. Interestingly, the poorly replicating NLS mutants could 

not be rescued by providing wild type protein in trans indicating that factors 

other than nuclear NS5 are responsible for their poor replication. To check 

whether these NLS mutations affect enzymatic activities of NS5, recombinant 

full length proteins were bacterially expressed and purified. Enzymatic assays 

showed that save for one, none of the NLS mutations impaired RNA-dependent 

RNA polymerase or methyl transferase activity. Moreover, IFN sensitivity of the 

NLS mutants was similar to wild type indicating that nuclear NS5 is not required 

to counteract IFN induced genes. Contrary to earlier observations no significant 
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difference was observed in induction of interleukin-8 by wild type and mutant 

NS5. 

In the second part of my PhD study, I performed a genome-wide RNAi-based 

kinase screen to identify cellular kinases promoting or restricting DENV replica-

tion. An imaging based RNAi screening platform for DENV was developed, which 

included optimization of siRNA-mediated silencing in human hepatoma cells, vir-

al infection, immunostaining, image acquisition and statistical data analysis. The 

primary screen was carried out with a kinase library targeting all known and 

putative cellular kinases with three siRNAs per gene. Approximately 100 kinases 

selected from the primary screen were validated in an infection based screen 

with a new siRNA library containing a different set of siRNAs against each gene. 

The screen identified 18 kinases essential for DENV replication and 15 kinases 

suppressing viral replication. The kinase siRNAs were later tested in a DENV 

subgenomic reporter replicon based screen to differentiate their role in viral en-

try or replication. The effect of selected kinases on DENV infection was further 

validated using chemical inhibitors. The kinases identified by this study can 

serve as targets for developing novel antiviral compounds against dengue infec-

tion.     
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6. Zusammenfassung 

Das Denguefieber ist die am häufigsten von Stechmücken übertragene 

Viruskrankheit weltweit. Ursache für die Infektionskrankheit ist das Dengue 

Virus (DENV), ein einzelsträngiges RNA Virus, welches vorwiegend in von 

Monocyten abstammenden Makrophagen und dendritischen Zellen repliziert. Die 

Schwere des Krankheitsverlaufs ist abhängig von der Stärke der viralen 

Replikation, welche u. a. von bereits vorhandenen DENV-spezifischen 

Antikörpern und genetischen Determinanten des Virus und des Wirts abhängt. 

Das Ziel meiner Arbeit ist die Charakterisierung der Funktion des Nicht-Struktur 

Proteins 5 (NS5) im Replikationszyklus des DENV. NS5 ist ein multifunktionelles 

Protein, welches in die Replikation der viralen RNA, der Erstellung der 5’-Cap-

Struktur sowie der Blockierung Interferon (IFN)-induzierter Signalwege durch 

Degradation von STAT2 involviert ist. Obwohl DENV im Zytoplasma repliziert, 

akkumuliert das Protein hauptsächlich in den Nuklei infizierter Zellen. Im Laufe 

dieser Arbeit wurden die Determinanten für den Transport von NS5 in den 

Nukleus sowie den Einfluss des nukleären NS5 auf virale Replikation und die 

angeborene Immunabwehr untersucht. Die Akkumulierung von NS5 im Nukleus 

erfolgte unabhängig von den anderen DENV Proteinen und konnte sowohl in 

infizierten Säuger- als auch Stechmückenzellen gezeigt werden, was für eine 

evolutionär konservierte Eigenschaft des viralen Proteins spricht. Um 

Aminosäuren zu identifizieren, die für die nukleäre Akkumulation von NS5 

essentiell sind, wurden Mutationsanalysen durchgeführt. Analysen der 

Replikation von Viren mit Mutationen im nukleären Lokalisationssignal (NLS) von 

NS5 zeigten, dass ein hoher Grad an NS5-Akkumulation im Kern für effiziente 

Replikation nicht nötig ist. Ist jedoch der nukleäre Transport des Proteins 

komplett blockiert, führt dies zu einer signifikanten Reduktion der viralen 

Replikation. Interessanterweise konnte die reduzierte Replikation der NLS-

Mutanten nicht durch in trans-Komplementierung von Wildtyp-NS5 

wiederhergestellt werden. Dies spricht dafür, dass zusätzlich zur Kernlokalisation 

weitere Eigenschaften des Proteins für die geringe Replikation verantwortlich 
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sind. Um zu überprüfen, ob Mutationen im NLS von NS5 Auswirkungen auf 

dessen enzymatische Aktivität haben, wurden rekombinante Volllänge-Proteine 

mittels eines bakteriellen Expressionssystems hergestellt und aufgereinigt. 

Enzymatische Analysen zeigten, dass - mit Ausnahme einer Mutante - keine der 

Mutationen die RNA-abhängige RNA-Polymerase- oder die Methyl-Transferase 

Aktivität beeinflusst. Außerdem war die IFN-Sensitivität der NLS-Mutanten 

vergleichbar mit der des Wildtyps, was dafür spricht, dass NS5 nicht notwendig 

ist, um IFN-indizierten Genen entgegenzuwirken. Im Gegensatz zu früheren 

Beobachtungen konnte kein signifikanter Unterschied in der Induktion von 

Interleukin-8 durch das Wildtyp- oder das mutierte NS5 festgestellt werden. 

Im zweiten Teil meiner Arbeit führte ich einen genomweiten, RNAi-basierten 

Hochdruchsatz-Suchtest durch, um zelluläre Kinasen zu identifizieren, die die 

DENV Replikation unterstützen oder einschränken. Die Etablierungsphase 

beinhaltete das Erstellen von Versuchsprotokollen für einen bildbasierten 

Suchtest, was die Optimierung der Genexpressionshemmung in humanen 

Hepatomzellen, virale Infektion, Immunmarkierung infizierter Zellen, 

Bildaufnahme sowie die statistische Auswertung der Ergebnisse beinhaltete. Der 

primäre Suchtest adressierte alle bekannten und mutmaßlichen zellulären 

Kinasen mit je drei siRNAs pro Gen. Ungefähr 100 Kinasen wurden aufgrund des 

primären Suchtests in einem infektions-basierten Validierungs-Suchtest mit je 

drei weiteren unabhängigen siRNAs pro Gen untersucht. Der Suchtest 

identifizierte 18 Kinasen, die die DENV Replikation unterstützen und 15 Kinasen, 

die die virale Replikation einschränken. In einer weiteren Analyse mit einem 

subgenomischen Reporter Replikon wurde anschließend getestet, ob die Kinasen 

eine Rolle im Zelleintritt oder der RNA Replikation des Virus spielen. Der Effekt 

einzelner ausgewählter Kinasen auf das Virus wurde außerdem durch den 

Einsatz von chemischen Inhibitoren validiert. Die Kinasen, die in dieser Arbeit 

identifiziert wurden, können zur Entwicklung neuer antiviraler Wirkstoffe gegen 

das Denguefieber führen. 

 



INTRODUCTION 
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I.  Introduction 

I.1 Dengue 

Dengue is the most prevalent mosquito-borne viral disease affecting humans. 

The disease is endemic to tropical and subtropical parts of the world causing 

an estimated 50-100million infections annually worldwide leading to approx-

imately 20,000 deaths (9). In most cases the disease is self-limiting with ei-

ther  mild flu-like symptoms or acute febrile illness called dengue fever (DF). 

However 2- 5% of patients may develop more lethal form of the disease 

termed dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) 

characterized by hemorrhagic manifestations, capillary leakage, thrombocy-

topenia and hypovolemic shock (42). The last few decades witnessed rapid 

expansion in the geographical reach of the disease with outbreaks being pre-

sently reported from more than 100 countries (67).  The frequent urban epi-

demics of DF/DHF have emerged as a major public health problem in many of 

the endemic countries with significant economic, political and social impact. 

Rapid urbanization, increased air travel, increased spread of vector popula-

tion due to climatic changes and a inadequate sanitation and vector control 

efforts are some of the important factors contributed to global reemergence 

of this disease (42). Despite considerable research efforts over the past dec-

ades efforts of develop effective vaccines or drugs are not yet successful 

mainly due to higher genetic variability among dengue strains (114). 

I.1.1 History and Epidemiology 

The earliest reports of illness clinically compatible with dengue fever was 

found in a Chinese encyclopedia of disease symptoms and remedies first pub-

lished during the Chin Dynasty [Common Era (CE) 265 to 420] and in similar 

reports later during the 7th and 10th centaury [Tang Dynasty (CE 610) and 

Northern Sung Dynasty (CE 992)]. The next reported incidence of illness with 

symptoms similar to dengue was from French West Indies and Panama dur-

ing 1635 and 1639 respectively. One century later (1779-1788) cases with 

similar symptoms were reported from Batavia (present day Jakarta), Cairo, 
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Philadelphia, and Cadiz and Seville, Spain suggesting a possible pandemic. 

The higher incidence of the disease notably coincided with the increase in 

merchant shipping and human migration (42). By late 19th century dengue 

had established throughout the old world and the new world causing occa-

sional pandemics. The increased global prevalence of DENV was also facili-

tated by the invasion of the African Aedes aegypti (Ae. aegypti) mosquito 

vector throughout the tropics, rapid urbanization, reduction in vector control 

efforts,  rapid increase commercial air travel and climatic changes.  By the 

beginning of 21st century all four serotypes became endemic in most tropical 

and subtropical countries. The circulation of various dengue strains in the 

same geographical area has dramatically increased the probability of occur-

rence of more severe forms of disease viz. DHF and DSS.The past few dec-

ades have seen dramatic increase in the number of DENV infections and the 

geographical spread of disease (Fig. 3).  

 

Fig.I.1 The global incidence of dengue over past six decades. The average number of dengue 

cases reported to World Health Organization (WHO) over various decades is depicted by blue 
bars and the number of countries reporting dengue indicated by brown line. Modified from 
WHO statistics on dengue (http://www.who.int/csr/disease/dengue/impact/en/index.html)  

Presently an estimated 2.5 billion people live in dengue endemic areas span-

ning five continents (49). With nearly 500,000 patients developing the more 

severe DHF/DSS leading to more than 20,000 deaths, dengue has emerged 

as a major public health problem in many endemic countries (67). 

http://www.who.int/csr/disease/dengue/impact/en/index.html
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I.1.2 Transmission, Symptoms and Pathogenesis 

The virus is maintained in the wild by a transmission cycle between canopy-

dwelling Aedes mosquitoes and lower primates in the rain forests of Asia and 

Africa (42). However these strains rarely cause wide-spread human infection. 

The most important transmission cycle from the public health standpoint is 

the urban transmission cycle in large urban centers in the tropics where the 

virus is maintained in an A. aegypti – human – A. aegypti cycle with periodic 

epidemics.  Humans contract the disease when bitten by infectious mosqui-

toes belonging to species A. aegypti or A. albopictus. A. aegypti, the principal 

vector, is a small, black and white, highly domesticated tropical mosquito 

which prefers to breed in water collected in artificial containers including 

flower vases, old automobile tires, water storage containers, seasonal ponds 

and even septic tanks, producing large population of adult mosquitoes in im-

mediate vicinity to human dwellings. The female mosquitoes alone bite hu-

mans and prefer to feed during day time with the peak feeding during few 

hours after dawn and few hours before dusk. The female mosquitoes are very 

nervous feeders, disrupting the feeding process at the slightest movement, 

hence end up probing multiple humans during a single blood meal. If the 

mosquito is infective, this behavior will result in infecting several persons in a 

short time. The virus is believed to be maintained by vertical transmission 

within the mosquito population during the inter-epidemic periods (44). 

Once introduced into humans by an infective mosquito, the virus undergoes 

an incubation period averaging 4-7 days, after which the person may expe-

rience acute onset of fever accompanied by a variety of nonspecific signs and 

symptoms. During this acute febrile period, lasting 2-10 days, high titers of 

the virus are found in the peripheral blood. The virus can be acquired by 

mosquitoes feeding on infected persons during this period and can pass on to 

other uninfected persons after 8 to 12 days of incubation within the  mosqui-

toes (42).  

The clinical manifestations of DENV  infection in humans includes a wide 

spectrum of illness ranging from inapparent to mild febrile illness to severe 

hemorrhagic fever and shock syndrome. The factors like the age, immune 

status and genetic background of the host and the strain and serotype of the 
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virus play an important role in determining the disease outcome. The most 

commonly reported outcome of DENV infection is Dengue fever (DF) charac-

terized by a sudden onset of fever and a variety of nonspecific symptoms in-

cluding headache, nausea, vomiting, body aches, retro-orbital pain, rashes 

and joint pains. The disease is generally self-limiting with the acute phase 

lasting up to a week followed by a convalescent phase extending to several 

weeks associated with weakness. In up to 2% of the cases (mostly in children 

under the age of 15) the disease may progress to a more sever DHF charac-

terized by increased vascular permeability, thrombocytopenia and hemorr-

hagic manifestations from skin, nose, gum and gastro-intestinal tract (67). 

Some patient may exhibit DSS and succumb to circulatory failure due to hy-

povolemic shock induced by fluid leakage into interstitial spaces. 

It is generally observed that the chances of developing DHF/DSS are higher 

during second time infection compared to first time infection. One of the pre-

valent theories extended to explain DHF/DSS pathogenesis is the phenome-

non of antibody-dependent enhancement (ADE). This stems from the obser-

vation of higher incidence of DHF/DSS among patients contracting dengue for 

the second time with a different DENV serotype. The ADE theory suggests 

that antibodies generated against one serotype of DENV during the primary 

infection fails to cross –neutralize a different serotype during the second in-

fection. These non-neutralizing antibodies facilitate an enhanced infection of 

monocytes and macrophages during second infection by forming virus-

antibody complexes that are internalized by these cells by Fc receptor me-

diated endocytosis, resulting in their infection. This facilitates higher viral 

replication and immune activation accompanied by cytokine release (49).  

The ‘original antigenic sin’ phenomenon is also attributed to the delayed virus 

clearance during secondary DENV infection where reactivation of cross-

reactive T cells specific for the primary infection rather than the current infec-

tion results in ineffective virus clearance accompanied with increased cyto-

kine release and apoptosis of both infected and uninfected bystander cells 

(77).  
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I.1.3 Vaccines and Treatment 

Despite huge efforts made during the past few decades, there are no effec-

tive vaccines yet available against DENV (46, 47). Since all four dengue sero-

types co-circulate in dengue endemic areas and ADE plays a crucial role in 

disease outcome, it is considered crucial that the vaccine must be able to 

protect against all strains of DENV. The leading vaccine candidates in clinical 

trial are the ChimeriVax (a yellow fever 17D vaccine strain expressing pre-

membrane and envelope proteins of DENV) and various live attenuated 

strains developed by different companies (114). Since there are no effective 

drugs specifically targeting DENV, the current treatment regime is mostly 

symptom-based with close monitoring of vital signs during the critical infec-

tion periods. Platelet transfusion is given to patients suffering severe throm-

bocytopenia and intravenous infusions are administered to DHF/DSS patients 

to stabilize their blood volume level. 

I.2 The Dengue Virus 

I.2.1 Taxonomy and Evolution 

DF and DHF/DSS, the most common arthropod-borne viral disease affecting 

humans is caused by four distinct but antigenically related serotypes (DENV-

1, -2, -3 and -4) of DENV (67). DENV taxonomically belongs to the genus 

flavivirus in the family Flaviviridae. The genus flavivirus contains more than 

55 species, including several important human pathogens like West Nile vi-

rus, Japanese encephalitis virus, Tick borne encephalitis virus and Yellow fev-

er virus (YFV) which are mostly dependent on hematophagous arthropod vec-

tors to complete their horizontal transmission cycle (50). The name flavivi-

ruses originated from the latin word ‘flavus’ meaning yellow that signifies 

jaundice, a common sign of infection with the prototypic Yellow fever virus. 

Viruses in the flavivirus genus are grouped taxonomically into three groups 

with regard to their vector association and antigenic relationships: (1) tick-

borne, (2) mosquito-borne, and (3) viruses with no known arthropod vector 

(112) (Fig. I.1). DENV serogroup forms a distinct cluster within the group of 

mosquito-borne flaviviruses with an amino acid conservation of  
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Fig.I.2 Phylogenetic tree of the Flaviviruses as deduced from partial NS5 sequences available 
in the GenBank library. Subtypes are written in parentheses after virus names. New World 

viruses are printed in bold and underlined. The tree was drawn using neighbor joining, and 
similar topologies were produced using Bayesian methods and maximum parsimony. Numbers 
indicate bootstrap values for major clades to the right. Reproduced from Weaver and Vasilakis, 
2009 (113). 

62-67% among the four serotypes (67). Among the four serotypes DENV-1 

and DENV-3 are most closely related while DENV4 is the most divergent sero-

type and all the present serotypes evolved from their sylvatic ancestors with-

in the last three centuries (109) (Fig.I.3). Each serotype is further classified 

into various ‘genotypes’ clustering DENV strains having nucleotide sequence 

divergence not greater than 6% within a given genomic region (96).  

DENV is believed to have evolved from sylvatic strains in Africa or Asia that 

utilize nonhuman primate hosts and gallery forest-dwelling Aedes vectors. 

The sylvatic cycle is presumed to be ancestral because efficient inter-human 

transmission is thought to require a minimum human population size of 

10,000 to 1 million, which did not exist until about 4000 years ago when ur-
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ban civilizations arose (43). Extensive phylogenetic studies of endemic and 

sylvatic strains have supported the zoonotic origin of DENV serotypes proge-

nitors within the last millennium (113) (Fig. I. 2) with South East Asia being 

the probable region of origin of all four serotypes of DENV. All the four sero-

type of DENV are thought to have evolved independently from ancestral syl-

vatic strains with concomitant changes in host range from arboreal Aedes 

mosquitoes to Ae. albopictus and later to Ae. aegypti and new vertebrate 

hosts. 

 

Fig.I.3 The sylvatic origin of DENV strains. Phylogenetic tree of DENV strains from four sero-
types derived from complete open reading frames available in the GenBank library. The phylo-
geny was inferred using Bayesian analysis and all horizontal branches are scaled according to 

the number of substitutions per site. Bayesian probability values are shown for key nodes. 
Virus strains are coded by abbreviated country of collection/strain name/year of collection. 
Reproduced from Weaver and Vasilakis, 2009 (113). 

I.3 Molecular biology of DENV 

I.3.1 Genome organization 

DENV genome is a single-stranded RNA molecule of 10.7 kb length with a 

positive polarity (Fig.I.4) and is readily translatable like cellular mRNA. The 
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genome contains a type I cap at the 5’ end but is not polyadenylated at the 

3’end. The first 100 nucleotides at the genomic 5’ end termed 5’ untran-

slated region (UTR) are non-coding, highly structured and harbors regulatory 

elements involved in viral replication and translation. The predicted structure 

of 5’UTR consists of two stem-loops: a large stem-loop A (SLA) and a second 

short stem-loop B (SLB) which ends in the translation initiation AUG codon. 

SLB harbors a sequence known as 5’UAR (Upstream AUG region) that is com-

plementary to sequence located at the 3’ UTR (4). The 3’ UTR is 384-466 

nucleotides long and like 5’UTR is highly structured and contains important 

regulatory regions. The 3’ end of 3’UTR folds into a highly conserved stem-

loop (3’SL) which was found essential for viral replication. Upstream to 3’SL 

is the conserved sequence 1 (CS1) (74) which harbors the cyclization se-

quence (CS) that is complementary to sequence present at the 5’ end of the 

genome. The 5’-3’ long range interaction between CS and UAR elements at 

the 3’end with their complementary sequence at the 5’ end cyclizes the ge-

nome and was found essential for virus replication (2, 3). Numerous viral and 

cellular proteins interact with the 5’ and 3’UTRs and play a crucial role for 

viral replication (28, 30, 39, 91, 118).  

Fig.I.4 Genome organization of DENV.    

The 5’ URT (100 nucleotides) and 3’UTR (450 nucleotides) contains regulatory elements for 

translation and replication. The cyclization of genome by the CS (green) and UAR (red) elements 

is essential for replication. The genome encodes a single polyprotein (3400 amino acids) which 

is co- and post translationally cleaved into 3 structural and 7 non-structural proteins. 

I.3.2 Translation and polyprotein processing 

The viral genome is a single stranded, capped RNA with positive polarity that 

can be directly translated as it is released into the cytoplasm. The genome 

contains a single open reading frame (ORF) encoding a polyprotein (3400 

amino acids) which is co- and post translationally processed by cellular and 

viral proteases. 
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The N-terminal part of the polyprotein is processed into three structural pro-

teins (C-prM-E) which eventually form part of virions while the rest is cleaved 

into seven non-structural proteins (NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5) 

which organize the replication machinery of the virus (Fig.I.5) (9). The NS3 

along with NS2B as co-factor forms the viral protease that cleaves the protein 

junctions between C/prM, NS2A/NS2B, NS2B/NS3, NS3/NS4A, NS4A/NS4B 

and NS4B/NS5. The endoplasmic reticulum (ER) luminal junctions between 

C/prM, prM/E, E/NS1 and NS4A/NS4B are processed by signalse, an ER resi-

dent host protease. The virion maturation is assisted by Golgi-resident furin 

endoprotease by processing prM to mature M protein. The identity of the pro-

tease cleaving NS1/2A junction is not known yet. 

 

Fig.I.5 Processing of the DENV polyprotein.  The viral NS3/2B protease processes the protein 
junctions on the cytoplasmic side whereas host-derived signalase process the ER luminal pro-
tein junctions. The protease cleaving NS1/2A is presently unknown.  

I.3.3 Structure and Assembly of DENV particles 

Infectious virus particles are approximately 50nm in diameter containing an 

electron-dense central nucleocapsid  ( 30nm diameter) enveloped by a lipid 

bilayer (65). The nucleocapsid is composed of multiple copies of highly basic 

C (capsid) protein complexed with a single copy of DENV genomic RNA.  Dur-

ing virion assembly the nucleocapsid buds into ER lumen thereby getting en-

veloped in a membrane bilayer carrying the viral prM and E proteins (115). 

These immature particles are transported through the cellular secretory 

pathway, where the furin protease cleaves prM, resulting in formation of ma-

ture virus particles. Extensive structural rearrangements of E protein takes 

place during the virion maturation and fusion with host membrane in the  en-
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dosomal compartment (68). The E protein in immature virions is prevented 

from premature-fusion by formation a heterodimer with prM protein. The fu-

rin-mediated processing of prM results in formation of mature virions carrying 

E homodimers. The virions are internalized by receptor-mediated endocyto-

sis. The reduction in pH in late endosomes induces formation of E-

homotrimers triggering membrane fusion and release of nucleocapsid into 

cytoplasm starting a new round of infection.  

 

Fig.I.6 The  structure of DENV virions. The nucleocapsid comprising multiple copies of C pro-
tein and single copy of genomic RNA is enveloped by a lipid bilayer carrying the E and M pro-
teins. The membrane-bound E protein undergoes several structural rearrangements during 

virion maturation and during fusion in late endosomal compartment. Modified from Barten-

schlager & Miller, 2008 (9). 

I.3.4 DENV proteins and functions 

The exact functions of all viral proteins are presently not known. All three 

structural proteins (C, prM and E) and genomic RNA are essential for  assem-

bly of infectious virions and all nonstructural proteins are indispensible for the 

organization of replication complexes in the cytoplasm (115) and are impli-

cated in counteracting cellular antiviral defense (7, 57). The known functions 

of viral proteins are summarized in Table I.1.  
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Table I.1 Structural and functional properties of DENV proteins. 

Pro-

tein 

M.W . 

(KDa.) 
Localization 

Known Modifi-

cations 
Known Functions 

Protein inte-

ractions 

Capsid 12 

Lipid droplets, 

Cytoplasm, 

Nucleus 

None 
RNA binding, nucleo-

capsid precursor 

Daxx (84), 

Sec3(13) 

Mem-

brane 
11 ER membrane 

gylcosylation 
Virion morphogene-

sis/transport 

Envelope, v-

ATPase (31), 

Claudin-1 (38) 

Enve-

lope 
54 ER membrane 

glycosylation 
Virion assembly, re-

ceptor binding, mem-

brane fusion 

prM, NKp44 

(51), BiP, Cal-

nexin, Calreti-

culin (69) 

NS1 46 

ER lumen, 

plasma mem-

brane, se-

creted 

glycosylation, 

GPI anchor 

(55) 
Replication, virus ma-

turation 

NS4A 

(70),hnRNP 

C1/C2 (86), 

Clusterin (66), 

STAT3 (24) 

NS2A 22 ER membrane None Replication  

NS2B 14 ER membrane 
None Replication, co-factor 

of NS3 protease 

NS3 

NS3 69 Cytoplasm 

None 

Protease, Helicase, 

NTPase, RTPase 

NS2B, NS5, 

NS4B (110), 

NRBP (25), La 

(39) 

NS4A 16 ER membrane 
None Replication, anti-

STAT1  

 

NS4B 27 ER membrane 
None Replication, anti-

STAT1 

NS3 

NS5 104 
Cytoplasm, 

nucleus 

phopshoryla-

tion 

Methyl transferase, 

guanyl transferase, 

RdRP, anti-STAT2 

NS3, STAT2, 

Importin, ZO-

1(33) 

I.3.5 DENV infection cycle 

DENV can replicate in both human and mosquitoe hosts. The female mosqui-

toes of the genus Aedes become infected by feeding on DENV infected person 

or transovarially from its infected mother. After a blood meal from an infec-

tious person the virus infects midgut epithelium and spreads possibly through 

tracheal system to other parts of the body including the neuronal system and 

salivary glands. The mosquitoes turn infectious by 4-14 days post-feeding 
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and remain so for rest of their life (99). The infectious mosquitoes inject the 

virus from salivary glands to blood stream of humans during feeding. Though 

a wide range of cells including B-cells, T-cells, endothelial cells, neuronal cells 

and hepatocytes can support DENV replication monocytes and macrophages 

and dendritic cells derived from them are considered the major sites of den-

gue replication in patients (6). Several cellular proteins and glycosaminogly-

cans are reported as cellular receptors for DENV. These include heparin sul-

fate, heat shock protein 70 (Hsp70), Hsp90, GRP78/BiP, CD14, and 37-

kDa/67-kDa high affinity laminin receptor, as well as DC-specific intercellular 

adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN) and liv-

er/lymph node-specific ICAM-3-grabbing nonintegrin (see (27) and refer-

ences therein). The receptor-bound virus is internalized by endocytosis and 

the low pH in late endosome triggers structural rearrangement of E protein 

on virions resulting in fusion of viral envelope with endosomal membrane re-

leasing the nucleocapsid into cytoplasm. The nucleocapsid disassembles and 

viral genomic RNA (vRNA) is translated by ER-associated ribosomes produc-

ing multiple copies of viral proteins. NS5 along with other viral non-structural 

proteins and presumably various host proteins organize replication complexes 

in virus-induced intracellular membrane structures (115). Within the replica-

tion complex the viral polymerase transcribes the vRNA to produce the com-

plementary strand which serves as template for synthesis of subsequent 

vRNA copies. The replication is semi-conservative and asymmetric with a ten-

fold excess of positive strands produced compared to negative strand.  The 

newly synthesized vRNA is used for translation, assembly of new replication 

complexes or is assembled into virus particles. The virions bud into ER lumen 

and is released through the classic secretory pathway. The prM on the virions 

is cleaved to generate membrane (M) protein by cellular furins during its 

transit through trans-golgi network generating the infectious particles. 
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Fig.I.7 DENV replication cycle. Virions bind to cell-surface attachment molecules /receptors like 
heparan sulfate, DC-SIGN and are internalized through endocytosis. The low pH of late endo-

somes, triggers fusion of virions with endosomal membrane releasing viral RNA into cytop-
lasm. The viral RNA is translated by cellular machinery and viral non-structural proteins form 
the replication complexes where the viral RNA is amplified. Virions bud into the lumen of ER. 
The virion maturation occurs during their transport through the secretory pathway. New round 
of infection can be initiated by the mature virions released. Adapted from Sampath & Padma-
nabhan, 2009 (101) 

I.4 Dengue NS5 

NS5 is the largest (105kDa.) and most conserved protein encoded by flavivi-

ruses. The protein is indispensible for viral replication and is essential for 

vRNA amplification and capping. Structural and biochemical studies had dem-

onstrated that the N-terminal domain of NS5 harbors methyl transferase 

(MTase) and guanylyl transferase (GTase) activities whereas the C-terminal 

domain carries RNA-dependent RNA polymerase (RdRP) activity. (29). NS5 

was also reported to interact with several viral and cellular proteins and in 

modulating the cellular immune response including blocking IFN signaling by 

degrading STAT2 protein (7, 54, 108, 117). NS5 associates with NS3 to form 

membrane-associated replication complexes and is also found in free form in 
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cytoplasm and nucleus (36, 56, 93, 94). The protein is believed to be partial-

ly phosphorylated and shuttle between the cytoplasm and nucleus and this 

process is considered essential for viral life cycle (29).  

I.4.1 NS5 phosphorylation 

The polymerase proteins of many flaviviruses are reported to be phosphory-

lated (11, 59, 79). In DENV infected cells the nuclear localized fraction of NS5 

is reported to be phosphorylated (59). This phosphorylation is serine specific 

and modulates NS5 interaction with NS3 and probably its integration into 

replication complexes. A CKII phosphorylation site was identified in NS5 and 

this phosphorylation was found to inhibit nuclear import of NS5 (36). Recent 

mass spectrometric studies have identified threonine 449 as one of the phos-

phorylation sites which could be phosphorylated by protein kinase G (PKG) 

(12). The mutation of this threonine to a nonphosphoacceptor amino acid re-

duced viral replication indicating the importance of this phosphorylation to 

viral replication. Similarly viral replication was also reduced when PKG was 

silenced using RNA interference (RNAi). However the exact function of this 

phosphorylation in viral life cycle is still not clear. 

I.4.2 Immune response modulation by NS5 

The IFN (IFN) response is a key host defense against many viruses including 

flaviviruses. Cells treated with IFN- prior to DENV infection was able to elicit 

a strong antiviral response and strongly reduce virus infection whereas addi-

tion of IFN- to cells already infected with DENV had no effect on viral repli-

cation. Various studies have identified the involvement of different dengue 

nonstructural proteins in blocking various steps of IFN-induced antiviral de-

fense. Signal transducers and activators of transcription (STAT) proteins play 

a key role in transmitting the signal from plasma membrane bound IFN re-

ceptors to the cell nucleus and initiating IFN induced gene expression. Pre-

vious studies have demonstrated that DENV NS4B and to a lesser extend 

NS2A and NS4A down regulate IFN- mediated gene expression (82). The 

regions of NS4B responsible for this phenotype were mapped and NS4B was 

shown to reduce STAT1 phosphorylation and hence its activation (81, 82). 

Further studies reported the role of NS5 in preventing STAT2 phosphorylation 
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and accelerating its proteasome-mediated degradation (7, 72). The NS5 po-

lymerase domain alone was necessary to inhibit STAT2 phosphorylation whe-

reas viral polyprotein processing was shown to be essential for inducing 

STAT2 degradation. 

I.4.3 Nuclear Localization of NS5 

Despite all known functions of NS5 occurring in the cytoplasm, a significant 

amount of the protein localizes into the nucleus during infection (58, 76). 

Similar observations were also made for YFV NS5 (20) but not for other flavi-

viruses like WNV and KUNV. Previous studies have identified two functional 

nuclear localization signals (NLS) in NS5 namely -NLS and -NLS due to 

their interaction with either -importin or both - and -importins (19, 36, 

56).  Mutational analyses indicated that -NLS plays an essential role in nuc-

lear localization of the protein (93). Viruses bearing mutation in -NLS exhi-

bited reduced NS5 nuclear accumulation, reduced viral replication and in-

duced a transient increase in interleukin-8 (IL-8) secretion compared to wild 

type (93). Recent studies have shown that a portion of NS5 is transported 

out from the nucleus by CRM1 mediated nuclear export and this process is 

depended on a nuclear export sequence (NES) located in -NLS (94). Muta-

tions in the NES that reduced nuclear export of NS5 were found to moderate-

ly suppress IL-8 induction and enhance virus release. The crystal structure of 

DENV NS5 polymerase domain and methyl transferase domain (32, 117) re-

vealed that contrary to earlier assumptions NLS sequence forms an integral 

part of NS5 polymerase domain. This indicates nuclear localization and enzy-

matic activity of NS5 could be strongly interrelated as evidenced from the 

observation that enzymatically less active form of NS5 is hyperphosphory-

lated and is mostly nuclear localized(59).  

I.5 Cellular proteins involved in DENV replication cycle 

Viruses are intracellular parasites depending entirely on its host for survival. 

They encode only a limited number of genes hence extensively exploit differ-

ent cellular machineries at various steps in their life cycle. The viruses during 

their long association with hosts have evolved sophisticated methods to ex-
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ploit host resources for their propagation and subvert the antiviral defense 

mounted by the host cell. The high error rate of viral polymerases ensures 

that RNA viruses exist as a population of quasi-species which enable them to 

quickly adapt and survive the selection pressure within the host. The viral 

and host proteins and nucleic acids exist in close proximity within the cell and 

depending on the nature of virus-host interaction the cellular protein can as-

sist or oppose viral replication. The role of most of the viral proteins in infec-

tion process is presently known however only limited investigations were car-

ried out to elucidate the role played by cellular proteins in infection outcome. 

More information in this field can help to develop a better understanding of 

virus biology and device novel therapeutic interventions.   

In past large-scale studies investigating the role of cellular proteins on viral 

life cycle were restrained by technical difficulties. Conventionally such studies 

were limited to cellular proteins that were identified to have direct interaction 

with viral proteins or nucleic acids by techniques like yeast two hybrid studies 

or co-immunoprecipitation studies. These techniques were low throughput 

and often identified interactions which could not be assigned a functional role. 

The functional studies were also hampered by the absence of efficient tech-

niques to regulate the expression cellular genes.  

I.5.1 RNAi Screens 

The double-stranded RNA mediated gene silencing initially demonstrated in C. 

elegans (35)   developed into a powerful tool for reducing the mRNA levels of 

targeted genes resulting in downregulation of their gene products. The intro-

duction of 21-27 nucleotide double stranded siRNAs extended this technique 

to mammalian cells which were prone to apoptosis in presence of longer 

double strand RNAs. The specificity of siRNAs combined with its amenability 

to high throughput screening methods turned RNAi to a powerful tool to 

study several cellular pathways. Several new genes involved in basic cellular 

pathways like endocytosis (90), cell division (60) and lipid droplet biogenesis 

(45) were identified in the past few years using this tool.   
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I.5.2 RNAi screens for identification of cellular genes influen-

cing the viral life cycle 

Genome-wide RNAi screens were also employed to identify cellular factors 

modulating the entry and replication of several human pathogen like Human 

Immunodeficiency virus (HIV) (17, 62, 119), Hepatitis C virus (HCV) (85, 

106, 107), Influenza virus (61) ,WNV (63) and DENV (103).  

The WNV RNAi screen was carried out in HeLa cells and genes showing varia-

tion in replication by more than two standard deviations compared to control 

siRNAs with two or more independent siRNAs were considered as hit. The 

candidates identified from WNV screen were later tested for their effect on 

DENV entry and replication to identify genes commonly affecting both virus-

es. Of the 283 genes identified essential for WNV replication, 36% had a sig-

nificant effect on DENV replication as well. The pathways involving vATPase, 

ER associated degradation (ERAD) genes and Histone deacetylases (HDACS) 

were found conserved among both the viruses. Interestingly all the host re-

sistance factors (HRFs) identified had similar effect for both WNV and DENV 

indicating similar antiviral mechanisms employed by the host against both 

pathogens. The RNAi study on the drosophila genes required for DENV repli-

cation identified 116 genes and among their 82 identifiable human homolo-

gues 42 had a significant effect of viral replication in Huh-7 cells. The gene 

candidate selection criteria was a expected sum rank (E[SR]) score below 

0.065 with more than one siRNA against same gene (103). A comparative 

analysis of candidates generated by both screen indicate limited overlap be-

tween both screens except for genes vATPase and Sec61 probably due to the 

use of different cell lines and screening approaches. Moreover both studies 

did not primarily screen for mammalian cellular factors required for DENV 

replication rather tested host factors obtained as candidates in WNV and 

DENV arthropod screens for their effect on DENV infection in mammalian 

cells.  

Another approach employed to identify host factors was use of know inhibi-

tors of cellular genes. On this line a recent study screened a library of kinase 

inhibitors to identify potential kinase inhibitors involved in the entry, replica-

tion or release of DENV in Vero cells (23). The primary screen was imaging 
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based with a candidate selection criterion of reduction in number of virus in-

fected cells by 50% compared to control treatment. The study identified and 

validated c-Src kinase as a cellular factor essential for efficient virus release 

and its inhibitor dasatinib as a potential therapeutic agent. 
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I.6 Objectives of this work 

This thesis aimed at the investigation of the molecular aspects of virus- host 

interaction during DENV infection with the following two objectives 

I.6.1 Studying the role of nuclear NS5 in viral replication and 

modulation of innate immune response 

The NS5 protein of DENV is known to translocate to the nucleus upon viral 

infection even though viral replication takes place in the cytoplasm. The aim 

of this subproject was to systematically analyze nuclear NS5 transport by in-

vestigating the following aspects: first, a mutation analysis to identify resi-

dues in NS5 responsible for nuclear localization and to determine the effect of 

these mutations on DENV replication in cell culture; second, a biochemical 

analysis of full length NS5 proteins containing NLS mutations to determine 

their impact on RdRp and 5’ end capping activities; third, trans-

complementation studies to rescue NLS mutations; and fourth, an investiga-

tion of the response of NLS mutations on IFN response and IL-8 induction. 

1.6.2 Identification of cellular kinases involved DENV infection 

and replication by using genome-wide RNAi screen. 

RNAi screens have emerged as powerful tools to rapidly screen and identify 

genes significantly affecting various cellular processes and viral infections. In 

this subproject I wanted to identify cellular kinases promoting or inhibiting 

DENV infection and replication in human liver cells (Huh-7). For this purpose 

I had to establish an imaging-based screening system based on infection of 

Huh-7 cells and automated image analyses. Validated kinase genes should be 

studied in detail for their contribution of DENV replication, most notably nuc-

lear localization of NS5. 
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II. Materials and Methods 

II.1 Materials 

II.1.1 Antibodies 

Table II.1 The primary antibodies used in this study 

Antibody From (Organism) Type Source 

Anti-DV2 E Mouse Monoclonal ATCC, USA 

Anti-DV2 NS5 Rabbit Polyclonal Miller et al, (75) 

Anti-HA Mouse Monoclonal Zymed, USA 

 

Table II.2 The secondary antibodies used in this study 

Antibody From (Organism) Specificity Source 

GM, Alexa 

Fluor®546 

Goat Mouse IgG Molecular Probes, Invitrogen 

USA 

GR, Alexa 

Fluor®546 

Goat Rabbit IgG Molecular Probes, Invitrogen 

USA 

GM, Alexa 

Fluor®488 

Goat Mouse IgG Molecular Probes, Invitrogen 

USA 

GR, Alexa 

Fluor®488 

Goat Rabbit IgG Molecular Probes, Invitrogen 

USA 

GR HRP Goat Rabbit IgG Sigma-Aldrich, Germany 

GM HRP Goat Mouse IgG Sigma-Aldrich, Germany 
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II.1.2 Bacterial Strains 

The following bacterial strains were used for the present study (table II.3). The 

strain DH5 was used for all regular cloning experiments whereas Rosetta (DE3) 

was used for protein expression in bacterial cells. 

Table II.3  The bacterial strains 

E. coli strain Genotype 

DH5 F’ /endA1 hsdR17A(rk
-mk

+) supE44 thi-1 recA1 gyrA (Nalr) 

relA1 (lacZYA-argF)U169 deoR (80dlac (lacZ) M15) 

Rosetta (DE3) F- ompT hsdSB(RB
- mB

-) gal dcm λ(DE3 [lacI lacUV5-T7 

gene 1 ind1 sam7 nin5]) pLysSRARE (CamR) 

II.1.3 DNA and RNA oligonucleotides 

The DNA oligos and siRNAs used in this work were procured from  Eurofin MWG 

Operon  AG (Ebersberg, Germany), Invitrogen (Karlsruhe, Germany), Qiagen 

(Hilden, Germany) or Ambion, Applied Biosystems (Darmstadt, Germany). The 

oligonucloetides were supplied as lyophilized powder which is resuspended in 

double distilled water or in appropriate buffer as suggested by the manufacture. 

The list of all DNA oligos and siRNAs used in this study are listed in later sec-

tions. 

II.1.4 Instruments 

Table II.4 Instruments used in this study 

Instrument Manufacturer 

ABI Prism™ 310 Genetic Analyzer Perkin-Elmer Cetus, USA 

Bacterial Shaker TR-225 INFORS, Switzerland 

BioChem-VaccuCenter BVC21 Cell culture 

pump 

Vacuubrand GmbH & Co, Wertheim 

Branson Sonifier 450 G. Heinemann, Schwäbisch Gmünd 

Centrifuge 5417 C Eppendorf, Hamburg 

Centrifuge 5417 R Eppendorf, Hamburg 
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Centrifuge Multifuge 3 S-R Heraeus Instruments, Hanau 

Centrifuge Sorvall RC-5C plus Sorvall, Langenselbold 

Cold Trap H. Saur, Reutlingen 

Cold Trap Pump KNF Neuberger Laboport, Freiburg 

Curix 60 Developer Machine AGFA, Cologne 

Digital Weighing Balance Sartorius, Göttingen 

DNA gel chamber and apparatus EMBL workshop, Heidelberg 

Electric Power Supply EPI 500/400 Amersham Pharmacia Biotech, Frei-

burg Gel documentation Instrument Intas, Göttingen 

Geldryer 1125B Dual Temperature BioRad, Munich 

HeraFreeze Deep freeze Refrigerator Heraeus Instruments, Hanau 

HeraSafe Laminar flow cabinet Heraeus Instruments, Hanau 

Immunofluorescence Microscope Leica 

CTR MIC 

Leica, Mannheim 

Incubator Stericult 200 Forma Scientific, USA 

Inversion mixer REAX 2 Heidolph, Darmstadt 

Lab pH-Meter CG-842 Schott AG, Mainz 

Luminometer Lumat LB 9507 Berthold Technologies, Bad Wildbad 

Magnetic Stirrer RTC basic IBS, Switzerland 

Microfuge B Beckmann, Krefeld 

Microwave Oven CIAtronic 

Minishaker MS2 IKA®, Staufen 

PipetteBoyacu IBS, Switzerland 

Protein-Gel chamber and apparatus Biorad, Munich 

Rocking platform Biometra WT 16 Biometra, Göttingen 

Semidry-Blot apparatus H. Hölzel, Wörth 

Thermomixer compact Eppendorf, Hamburg 

Ultrasound Sonicator pump and Cup horn 

Resonator 

G. Heinemann, Schwäbisch Gmünd 

UV Spectrophotometer Ultospec 2100 pro Amersham Pharmacia Biotech, Frei-

burg UV Transilluminator Vilber Lourmat, Eberhardzell 
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Waterbath GFL 1083 GFL, Hannover 

 

II.1.5 Enzymes, Kits and other reagents used  

Table II.5 The list of Kits, Enzymes and other reagents used in this study 

Product Manufacturer 

ABI Prism™ Big Dye ABI, Darmstadt 

Amicon® Ultra-15 Centrifugal Filters Millipore, USA 

Anti-HA Agarose conjugate Sigma-Aldrich, Germany 

Biomax MR, MS and ML Films Kodak, Stuttgart 

Calf Intestinal Phosphatase (CIP) New England Biolabs, Frankfurt/Main 

Casein Kinase 1 inhibitor, CKI-7 USBiological, USA 

Casein Kinase 1 inhibitor, D4476 Calbiochem, USA 

Casein Kinase 1 inhibitor, D4476 Calbiochem, USA 

Casein Kinase 1 inhibitor, IC-261 Calbiochem, USA 

Casein Kinase 2 inhibitor, DMAT Calbiochem, USA 

Casein Kinase 2 inhibitor, TBB Sigma-Aldrich, Germany 

Casein Kinase inhibitor, D4476 Calbiochem, USA 

Casein Kinase inhibitor, SP600125 Sigma-Aldrich, Germany 

Centricon Plus-20 Ultracel PL Filter Millipore, USA 

Dioctanoylglycol Santa Cruz Biotechnology, USA 

DNAse Promega, Mannheim 

dNTPs Roche, Mannheim 

ECLplus Western Blot Detection System Amersham Pharmacia Biotech, Frei-

burg FideliTaq™ USB, USA 

Hygromycin B Invitrogen, Karlsruhe 

Interferon- Sigma-Aldrich, Germany 

Interferon- Sigma-Aldrich, Germany 

IPTG Applichem, Darmstadt 
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Klenow New England Biolabs, Frankfurt/Main 

Leptomycin B Sigma-Aldrich, Germany 

Lipofectamine ™2000 Invitrogen, Karlsruhe 

Nitrocellulose Western Blot Membrane Schleicher & Schuell, Dassel 

n-Octyl--D-glucopyranoside Calbiochem, USA 

NP-009245 AnalytiCon Discovery, Germany 

NucleoSpin® Extract II kit, Plasmid kit 

and RNA kit 

Macherey & Nagel, Düren 

Polynucleotidekinase (PNK) Amersham Pharmacia Biotech, Frei-

burg ProFection® Mammalian Transfection 

System 

Promega, Mannheim 

Protease Inhibitor Cocktail (Complete) Roche, Mannheim 

Protein G-Sepharose® 4B Sigma-Aldrich, Steinheim 

QIAgen™ Plasmid Maxi Kit Qiagen, Hilden 

QIAshredder Qiagen, Hilden 

R59-022 Santa Cruz Biotechnology, USA 

RNA cap structure Analogues New England Biolabs, Frankfurt/Main 

RNasin Promega, Mannheim 

rNTPs Roche, Mannheim 

RRL-Nuclease treated Promega, Mannheim 

SeaPlaque GTG Agarose Biozym, Oldendorf 

Sinefungin (Insolution) Calbiochem, USA 

T4 DNA-Ligase MBI-Fermentas, St. Leon-Rot 

T7 RNA-Polymerase Promega, Mannheim 

TNF- (Human recombinant) PeproTech GmbH, Hamburg 
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II.1.6 Buffers and Solutions 

Table II.6 The Buffers and Solutions used in the course of this work 

For DNA and RNA  

3M Sodium Acetate (pH 

4.5) 

3M Sodium Acetate, pH adjusted to 4.5 with Glacial 

Acetic acid 

2M Sodium Acetate (pH 

6.8) 

2M Sodium Acetate, pH adjusted to 6.8 with Glacial 

Acetic acid 

DNA loading dye 1mg/ml Bromophenol blue, 2mg/ml Xylene cyanol, 

1mM EDTA, 50% (w/v) Saccharose 

NEB buffer 1 10 mM Bis Tris Propane-HCl, 10 mM MgCl2, 1 mM DTT 

(pH 7.0 at 25°C) 

NEB buffer 2 10 mM Tris-HCl, 10 mM MgCl2, 50 mM NaCl, 1 mM 

DTT (pH 7.9 at 25°C). 

NEB buffer 3 50 mM Tris-HCl, 10 mM MgCl2, 100 mM NaCl, 1 mM 

DTT (pH 7.9 at 25°C). 

NEB buffer 4 20 mM Tris-acetate, 10 mM magnesium acetate, 50 

mM potassium acetate, 1 mM DTT (pH 7.9 at 25°C). 

FideliTaq PCR-buffer 

(10x) 

100mM Tris-HCl (pH 8.3), 500mM KCl, 15mM MgCl2, 

0.01% (w/v) Gelatine 

RNA loading buffer 0.25mg/ml Bromophenol blue, 0.25mg/ml Xylene cya-

nol, 1mM EDTA (pH 8.0), 50% (v/v) Glycerol 

RRL buffer (5x) 400mM HEPES (pH 7.5), 60mM MgCl2, 10mM Spermi-

din, 200mM DTT 

T4-DNA Ligase Buffer 400mM Tris-HCl (pH 7.8), 100mM MgCl2, 100mM DTT, 

5mM ATP 

TAE (50x) 2M Tris, 2M Acetic Acid, and 50mM EDTA, pH 8.3 

TE 10mM Tris-HCl (pH 8.0), 1mM EDTA 
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SDS PAGE and Western Blot 

Acrylamide solution A filtered and degassed solution of 29:1 Acrylamide 

and Bisacrylamide 

Wester blot Blocking 

buffer 

1x PBS, 0.5% (w/v) of Tween20, 3% Protease free 

Milk Powder 

Coomassie Staining 

solution 

0.25% (w/v) Coomassie Brilliant Blue R-250, 50% 

(v/v) Methanol, 10% Glacial Acetic acid 

Destaining solution 5% (v/v) Methanol, 5% (v/v) Glacial acetic acid 

Protein Loading 

(Laemmli) buffer (2x) 

200mM Tris-HCl (pH8.8), 5mM EDTA, 0.1% (w/v) 

Bromophenol Blue, 10% (w/v) Sucrose, 3% (w/v) 

SDS, 2% (v/v) -Mercaptoethanol 

Stacking gel buffer 1M Tris-HCl (pH 6.8), 0.8% (w/v) SDS 

Antibody Binding Buffer 1x PBS, 0.5% (w/v) of Tween20, 3% Protease free 

Milk Powder 

Semi-dry Blotting Buf-

fer  

48mM Tris, 39mM Glycine, 0.00375 (w/v) SDS, 20% 

(v/v) Methanol 

Nitrocellulose mem-

brane Stripping Solu-

tion 

0.2M Glycine, 0.5M NaCl, pH 2.8 

TGS-Buffer 150mM Tris, 1,92M Glycine, 1% (w/v) SDS 

Resolving gel buffer 1.5M Tris-HCl, pH8.8, 0.4% (w/v) SDS 

Western blot Wash Buf-

fer  

1x PBS, 0.5% (w/v) Tween20 

  

Immunofluorscence 

  

Paraformaldehyde 

(4%) 

4g Paraformaldehyde is dissolved in 100ml 1x PBS by 

heating to 60C 

Blocking buffer 3% Normal Goat Serum in 1x PBS 
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Luciferase Assay  

  

Luciferase Assay Buffer 25mM Glycine-Glycine (pH 7.8), 15mM Potassium 

phosphate buffer (pH 7.8), 15mM MgSO4, 4mM EGTA, 

freshly add 1mM DTT and 2mM ATP just before use 

Luciferase Lysis Buffer 1% (w/v) Triton X100, 25mM Glycine-Glycine (pH 

7.8), 15mM MgSO4, 4mM EGTA, keep at 4C. freshly 

add 1mM DTT  just before use 

Luciferin substrate Dilute 1:5 1mM Luciferin solution with 25mM Glycine-

Glycine pH 7.8  

Renilla Substrate Luciferase assay buffer without DTT and ATP, 1.5µM 

coelenterazine 

  

Antibiotics and Bacterial culture medium 

  

Ampicillin (1000x 

stock) 

100mg/ml in double distilled water, filter sterilized and 

stored at -20C 

Kanamycin (1000x 

stock) 

30mg/ml in double distilled water, filter sterilized and 

stored at -20C 

Luria Broth (LB) me-

dium 

10g Bacto-Trypton, 5g Yeast extract, 2.5g NaCl in 1L 

deionized water and autoclaved 

LB-Agar 10g Bacto-Trypton, 5g Yeast extract, 2.5g NaCl, 20g 

Agar in 1L deionized water and autoclaved 

  

Medium for Cell culture 
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DMEM complete Dulbecco’s Modified Minimal Essential Medium (GIBCO, 

Invitrogen) containing 2mM L-Glutamin (GIBCO, Invi-

trogen), 1x Nonessential Aminoacids (GIBCO, Invitro-

gen), 100u/ml Pencillin (GIBCO, Invitrogen), 100u/ml 

Streptomycin (GIBCO, Invitrogen) and 10% Fetal Calf 

Serum (heat inactivated at 56C for 30 minutes (GIB-

CO, Invitrogen) 

DMEMwithout antibiotics DMEMcomplete without Pencillin and Streptomycin 

DMEMinfection DMEMcomplete with 2% fetal calf serum 

DMEMmethionine labeling DMEM without L-Methionine, L-Cysteine and Sodium 

Pyruvate (GIBCO, Invitrogen) and freshly added 2mM 

Glutamine, 10mM HEPES, 100Ci[35S]/ml 

DMEM orthophosphate labeling Phosphate free DMEM supplemented with 10% di-

alyzed FCS, 1mCi[32P]/ml 

MEM Minimal Essential Medium (GIBCO, Invitrogen) sup-

plemented with 10mM HEPES, 2 mM L-glutamine, non-

essential amino acids, 100 U/ml of penicillin, 100 

µg/ml of streptomycin, and 10% fetal calf serum 

OptiMEM Chemically defined medium with low serum require-

ment (Gibco, Invitrogen) 

  

Other Solutions  

  

Bradford Reagent 100mg Coomassie G250 is dissolved in 50ml 99% 

Ethanol and added to 100ml 85% Phosphoric acid and 

volume made up to 1L , Filtered and stored at 4C 

Cytomix 120mM KCl, 0.15mM CaCl2, 10mM Potassium phos-

phate buffer (pH 7.6), 25mM HEPES (pH 7.6), 2mM 

EGTA, 5mM MgCl2, adjust the pH to 7.6 using KOH, 

freshly add 2mM ATP (pH 7.6, adjusted with KOH), 

5mM Glutathion and 1.25% DMSO 

PBS (10x) 80mM Di-Sodium Hydrogen phosphate, 20mM Sodium 

dihydrogen phosphate, 1.4M NaCl 
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II.1.7 Radioactive Reagents 

The in vitro RNA polymerase assay was carried out in presence of [32P] GTP 

(3000Ci/mMol), whereas S-[Methyl-3H]  Adenosyl-L-Methionine, (12-18 

Ci/mmol) was used for methyl transferase assay . The orthophosphate labeling 

was done with [32P] orthophosphoric acid (8500-9120Ci/mMol) while L-[35S]-

Methionine (1000Ci/mmol) was used for protein labeling. All radioactive chemi-

cals were sourced from Perkin Elmer, Germany. 

II.1.8 Cell lines 

Table II.7 Cell lines used in this study 

BHK-21 Baby Hamster Kidney cell line(37, 105) 

Huh-7 Human Hepatoma cell line(83) 

Huh-7/DENV replicon Huh-7 cells stable expressing DV2(NGC) subgenomic 

replicon carrying hygromycin resistance (75) 

Vero African Green Monkey Kidney cell line(80) 

A549 Carcinomic Human alveolar epithelial cells(40) 

C6/36 Aedes albopictus fibroblast (53, 104) 

HEK 293T Human embryonic kidney cells expressing the SV40 

large T-antigen(41) 

 

II.1.9 Cloning Vectors and Plasmids 

Table II.8 Cloning Vectors and plasmids used in this study 

pcDNA3.1(+) The high-copy plasmid carries a CMV promoter driv-

ing the expression of the gene of interest in eukaryo-

tic cells and a T7 promoter for expression in cells ex-

pressing T7 polymerase. The selection in eukaryotic 
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cells is mediated by a neomycin resistance gene dri-

ven by SV40 promoter whereas a -lactamase gene 

provide ampicillin resistance for selection in E. coli. 

Commercially supplied by Invitrogen 

pDVWSK601 The low copy plasmid pDVWS601 carries the full 

length genome of Dengue 2 (New Guinea C-strain) 

under T7 promoter (92) 

pDVWSK601-LucUbi pDVWSK601 carrying the first 32 amino acids of cap-

sid fused to a firefly reporter and ubiquitin auto-

protease followed by the full length polypeptide of 

DV2. 

pET21b  A bacterial protein expression vector. The pET-21b 

(+) vectors carry an N-terminal T7 promoter se-

quence and C-terminal Histidine tag sequence and -

lactamase gene provide ampicillin resistance for se-

lection in E. coli.   Commercially supplied by Novagen 

pSM A pTM1 derived vector carrying an N-terminal T7 

promoter sequence followed by an EMCV IRES and C-

terminal T7 terminator sequence, and a low copy 

bacterial origin of replication from pBR322 and -

lactamase gene provide ampicillin resistance for se-

lection in E. coli. 

 

II.1.9 siRNAs  

Table II.9 siRNAs used in this study 

Gene siRNA sequence (5‘3‘) Manufacturer 

DENV NS1 ACACCAGAAUUGAAUCACAtt MWG-Biotech Germany 

DENV NS3 GAAGGAACAUUCCAUACAAtt MWG-Biotech Germany 

RSF1-1 GGAAAGACAUCUCUACUAUtt MWG-Biotech Germany 

RSF1-2 UAAAUGAUCUGGACAGUGAtt MWG-Biotech Germany 

CAPN2-1 UGAAGAAAUCCUGGCUCGAtt MWG-Biotech Germany 

CAPN2-2 GACUUCACCGGAGGCAUUGtt MWG-Biotech Germany 
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BHMT-1 AAGCCTGAAGATACAAGACTA Qiagen, Germany 

BHMT-2 CAAGAGTGAAACTGAAGTCAA Qiagen, Germany 

NPHP3-1 AAGGAAAGTTTCAAGGATTAA Qiagen, Germany 

NPHP3-2 AAGCTTTGCCATTATATGAAA Qiagen, Germany 

ASCC3L1-1 ACCCAGGTGTTTAACACTGTA Qiagen, Germany 

ASCC3L1-2 ATGAATGAAATCGTCTATGAA Qiagen, Germany 

HCV-321 AGGUCUCGUAGACCGUGCAtt MWG-Biotech Germany 

P53 GACUCCAGUGGUAAUCUACtt MWG-Biotech Germany 

 

II.1.10 Virus 

DENV Type 2 New Guinea C-strain (a kind gift from Progen, Heidelberg).  The 

virus was isolated in 1957 and passaged in mouse brain. The virus stocks used 

in the present study were generated in Vero cells.  
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II.2 Methods 

Standard molecular biological techniques were followed in handling and manipu-

lating nucleic acids and proteins as described in reference manuals like ‘Molecu-

lar Cloning: A Laboratory Manual’(100) or ‘Current Protocols: Molecular Biolo-

gy’(8).  Unless mentioned otherwise all routine practices like plasmid DNA purifi-

cation, RNA purification, elution of DNA from gels, Restriction endonuclease di-

gestions, ligations etc. were carried out according to the protocol provided by 

the reagent manufacturers. 

All centrifugation steps mentioned in this section were done in a table top Ep-

pendorf 5417 C (at room temperature) or in 5417R (at specified temperatures) 

unless otherwise specified. 

II.2.1 Cell culture and Viruses  

II.2.1.1 Cell culture 

 The mammalian cell lines Huh-7, BHK-21, HEK 293T, Vero E6 and A549 cells 

were grown as monolayer on cell culture dishes or in culture flasks (Falcon, Bec-

ton-Dickinson) in DMEMcomplete  in 37C incubator with 5% CO2 and 90% relative 

humidity. The DENV replicon cell lines (monocistronic dengue replicon carrying 

DENV UTRs, NS proteins and Hygromycin phosphotransferase selection marker) 

were maintained similarly but in presence of 75µg/ml Hygromycin. The cells 

were sub cultured twice a week. The medium over the cells was removed and 

cells were washed twice with sterile 1xPBS and trypsinized with trypsin-EDTA 

solution (Gibco-BRL, Eggstein) for 5 minutes. The trypsinization was monitored 

under an inverted light microscope and the cells were detached by gently tap-

ping the culture dishes. The cells were resuspended in DMEM and plated into 

culture flasks or dishes with a split ration of 1:5 to 1:10 depending on the cell 

type.  C636 cells were maintained in Minimal Essential Medium (MEM) supple-

mented with 10% FCS at 28C with 90% relative humidity.  
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II.2.1.2 Long term storage of Cell lines 

The long term storage of cell lines was done at -196C in liquid nitrogen contain-

ers. The cells were screened for mycoplasmal contamination and checked for 

proper growth before selecting for long term storage. The cells were harvested 

at 80-90% confluency by trypsinization and resuspended in DMEM. The cells 

were pelleted at 700g for 5 minutes at room temperature in a table top centri-

fuge (Multifuge 3 S-R, Rotor 75006441, M&S Lab equipments), and washed once 

with 1x PBS. The washed cell pellet was resuspended in ice-chilled Cryomedium 

(90% fetal calf serum and 10% DMSO (Carl Roth GmbH)) and aliquoted in Cryo 

vials (Nunc). The cryo vials were initially kept in -70C freezer for two days and 

later moved into liquid nitrogen containers for long term storage. 

II.2.1.3 Counting cells using Haemocytometer 

The cells were counted using a haemocytometer (Neubauer-Cell counter). The 

haemocytometer and the cover glass were cleaned with 70% ethanol before 

use. 5-10µl of diluted cell suspension was applied on the haemocytometer and 

the number of cells within four large quadrants was counted under an inverted 

light microscope. Each large quadrant had a volume of 0.1µl and the cell density 

per millilitre was calculated by multiplying the average cell number per large 

quadrant with 10,000. 

II.2.1.4 Transfection of Eukaryotic cells with plasmid DNA 

The transient protein expression experiments were done by transfecting plas-

mids into appropriate cell lines using Lipofectamine™ 2000 (Invitrogen) accord-

ing to manufacturer’s protocol. Briefly, overnight grown 80-95% confluent cells 

were washed once with DMEMwithout antibiotics and grown in same medium one hour 

prior to transfection. Suggested amount of Lipofectamine™2000 (depending on 

well size) was mixed with OptiMEM and incubated for five minutes at RT. This 

complex was added to plasmid DNA diluted in OptiMEM, mixed well and incu-

bated for 20 minutes. The DNA:liposome complex was later added drop-wise on 

cell monolayer and incubated for 4h. After 4h the medium is exchanged with 

DMEMcomplete and the protein expression was monitored after specific time points. 



MATERIALS AND METHODS 

34 
 

II.2.1.5 Infection with DENV2 

All infection experiments with DENV2 were carried out in the Biosaftey level 3 

(BSL3) laboratory. Depending on the experimental requirements a multiplicity of 

infection (MOI) of 0.5 to 5 was used. The cells were washed once with 1xPBS 

and supplied with appropriate volumes of virus stocks in DMEMinfection. The infec-

tion volume was kept to a minimum for maximizing infection efficiency. The 

plates were placed on a rocking platform when minimal volume was used. The 

infection was carried out for 4h at 37C. The infection medium was later re-

moved and replenished with fresh medium.  

II.2.1.6 Passaging DENV2 

For virus passage the supernatant from cells transfected or infected with DENV 

were collected at various time points and filtered through a filter (0.22µm pore 

size). Depending on the MOI required for subsequent use the virus supernatant 

was either used as such for infecting fresh cells or was concentrated by passing 

through an Amicon® concentrator. The long term storage of virus stocks was 

done in -80C refrigerators. 

II.2.1.7 Concentrating virus stock 

The cell culture supernatant from cells transfected or infected with DENV2 or 

mutants thereof were harvested at particular time points (48h-96h post infec-

tion/transfection). The supernatant was filter purified (0.22µm pore size) to re-

move cell debris and loaded (15ml at a time) into Amicon® Ultra-15 centrifugal 

filter unit and centrifuged at 4000xg for 20 minutes in a swing-bucket rotor. The 

volume of supernatant was reduced to 200-500µl (60x). The supernatant was 

harvested and stored at -80C until use. The viral tire was determined by either 

plaque assay or TCID50 method. 

II.2.1.8 Virus Titer estimation: Plaque Assay 

Plaque assays were carried out in Huh-7 cells grown in 6-well plates. Duplicate 

wells of semi-confluent Huh-7 cells were infected with virus stock serially diluted 

in DMEMinfection. The infection was carried out in 37C incubators for 2h. Later the 
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infection medium was removed and the cells were overlaid with DMEMcomplete 

containing 0.5% SeaPlaque GTG-Agarose (Biozym, Oldendorf) to block the 

spread of the virus within the wells. The agarose is prepared as a 2.5% stock in 

water, melted by boiling and cooled down to 37C before adding to DMEMcomplete. 

The overlaid cells were briefly kept at 4C for the agarose to solidify and moved 

into 37C and incubated for 5-7 days. The plates were examined for cytopathic 

effects (CPE) routinely, and after 5-7 days the overlay was carefully removed 

and the monolayer was fixed and stained with Coomassie staining solution 

(0.25% (w/v) Coomassie Brilliant Blue R-250, 50% (v/v) Methanol and 10% 

(v/v) acetic acid) for 1h at room temperature. The staining solution was later 

removed, monolayer washed thrice with deionised water and the number of 

plaques were counted manually. The virus titer was estimated as ‘plaque form-

ing units’ (PFU) using the formula PFU/ml = X*10Y, where ‘X’ is the number of 

plaques per well and ‘Y’ is the positive exponent of the virus dilution which is 

applied to that particular well.  

II.2.1.9 Virus Titer Estimation: TCID50 method 

TCID50 (Tissue Culture Infectious Dose 50 or Median Tissue Culture Infectious 

Dose) is an end point dilution technique to estimate virus titer. A 10-fold dilution 

series of the virus stock wass used to infect a semi-confluent monolayer of Huh-

7 cells seeded in 96-well plates. The plates were incubated for 5-10 days at 37C 

and routinely examined under microscope for cytopathic effects (CPE) of the 

monolayer.  The wells are scored either as infected or uninfected based on CPE. 

For virus constructs that does not show CPE, the cells were processed for indi-

rect immunofluorescence assay using E-protein antibody and the wells are 

scored for infection based on immunofluorescence signal. The TCID50 was calcu-

lated based for the formula TCID50/ml = 10*10x(-0.5+(1/Y-Z), where X is the 

positive exponent for virus dilution where the wells are positive for virus infec-

tion, ‘Y’ is the number of wells infected with each dilution of virus stock and ‘Z’ is 

the number of wells positive for virus which are infected with a 10x or higher 

dilution. 
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II.2.1.10 Electroporation of DENV RNAs into mammalian cells 

The BHK-21, Huh-7 or A549 cells were trypsinized and PBS washed single-cell 

suspension of cells were resuspended at a concentration of 1.5 x 107 cells per ml 

for BHK-21 and 1x107 cells per ml for Huh-7 and A549 cells  in Cytomix (111) 

containing 2 mM ATP and 5 mM glutathione. 10 µg of in vitro-transcribed RNA 

was mixed with 400 µl cell suspension is transferred to an electroporation cu-

vette (BioRad, 0.4cm gap width) and electroporated with a Gene Pulser system 

(Bio-Rad, Munich, Germany at 960 µF and 270 V. Cells were immediately resus-

pended in 12 ml DMEMcomplete and seeded into appropriate cell culture dishes. For 

a typical time course experiment 5x105 cells are seeded into each well of a 6-

well plate for harvest after 4h or 24h whereas 2.5x105 cells were seeded for 

harvest after 48h, 72h or 96h. 

II.2.1.11 Firefly Luciferase based Virus replication assays  

The cells plated in duplicate wells in 6-well plates were lysed after appropriate 

time intervals in 350µl lysis buffer (1% Triton X-100, 25 mM glycylglycine, 15 

mM MgSO4, 4 mM EGTA and 1 mM DTT, pH 7.8) frozen and thawed. For each 

well, two times 100 µl lysate was mixed with 360 µl assay buffer (25 mM glycyl-

glycine, 15 mM MgSO4, 4 mM EGTA, 1 mM DTT, 2 mM ATP and 15 mM K2PO4, 

pH 7.8) and, after addition of 200 µl of a luciferin solution (200 µM luciferin, 25 

mM glycylglycine, pH 8.0), measured for 20 s in a luminometer (Lumat LB9507; 

Berthold, Freiburg, Germany). Kinetics of replication was determined by norma-

lizing the relative luminescence units (RLU) of the different time points to the 

RLU at 4h post electroporation. 

II.2.1.12 Visualization of protein localization by immunofluorescence  

Huh-7 cells were seeded on glass cover slips in 24-well plates at a density of 

1x105 cells per well. Overnight grown cells were transfected with pcDNA con-

structs using Lipofectamine 2000 (Invitrogen) according to manufacturer’s pro-

tocol. The overnight transfected cells were washed thrice with 1X PBS and fixed 

with 2% paraformaldehyde (Applichem GmBH, Darmstadt, Germany) and per-

meabilized with 0.5% Triton X100 in PBS. The primary staining was done with 
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anti-NS5 rabbit polyclonal antibody (115) in PBS-3% normal goat serum for 45 

minutes and after extensive washes with PBS the secondary staining was done 

with Alexa Fluor 488 and Alexa Fluor 546 conjugated anti-rabbit or anti-mouse 

antibody (dilution 1:1000 in PBS- 3% normal goat serum) for 45 minutes. DAPI 

(Molecular Probes, Karlsruhe, Germany) diluted at 1:5000 was used to visualize 

cell nuclei. The samples were mounted on slides with FluormountG (Southern 

Biotechnology Associates, Birmingham, USA) and analyzed by confocal laser 

scanning microscope. The quantitation of immunofluorescence signal intensity 

was done using ImageJ software package (National Institute of Health, Be-

thesda, MD, USA). 

II.2.2 Working with DNA and RNA 

II.2.2.1 Transformation of competent bacteria 

Competent Escherichia coli (E.coli) DH5 were generated by CaCl2-method (8, 

100). The plasmid DNA (100ng-1g) or ligation reactions was mixed with 100l 

of competent bacteria and incubated on ice for 5min. Afterwards the cells were 

subjected to heat shock at 37C for 2 minutes and incubated on ice for 15min. 

The bacteria is resuspended in 200l plain LB and incubated at 37C shaking for 

20min, and plated on LB-agar plates containing appropriate antibiotics and 

grown overnight at 37C for development of colonies. 

The E.coli BL21(DE3) competent cells for electroporation was generated as de-

scribed (102). 10ng of plasmid DNA is mixed with 30µl of competent bacteria, 

transferred into a electroporation cuvette (BioRad, 0.2cm gap width) and elec-

troporated with a Gene Pulser system (Bio-Rad, Munich, Germany at 25µF and 

2.5kV and pulse controller at 400 ohms). The bacteria is resuspended in 1ml 

plain LB after electroporation, grown at 37C for 20 minutes and 10µl is plated 

on LB-agar plates containing appropriate antibiotics and grown overnight at 

37C for development of colonies. 
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II.2.2.2 Plasmid purification 

The plasmids from bacterial cultures were prepared using silica membrane 

based spin column kits (Nucleospin Plasmid, Macherey & Nagel) following suppli-

er’s protocol. Mini preperations were done with either 4ml bacterial cultures for 

high copy plasmids or 25ml for low copy (genomic DENV plasmids) appropriately 

scaling up the amount of reagents. The midi preparations were done using 

100ml bacterial cultures for low copy plasmids or 300ml cultures for high copy 

plasmids by scaling up the mini preparation protocol and using five spin columns 

for each preparation. The DNA from mini preparations was eluted in 100l water 

while midi preparations were eluted in water to a total volume of 500l. 

II.2.2.3 DNA purification or extraction from agarose gels 

The plasmid DNA following restriction reactions or gel electrophoresis was puri-

fied by silica membrane affinity purification spin columns (Nucleospin ExtractII, 

Macherey & Nagel) following supplier’s protocol 

II.2.2.4 DNA sequencing  

DNA sequencing PCR reaction was performed with 300-500ng template DNA, 

5M sequencing primer, 0.5x sequencing buffer and 2l Big Dye (containing po-

lymerase and dideoxy and deoxy nucleotides) version 1.1 (Applied Biosystems) 

in a 10l final volume. PCR cycles were as following: 95C/20sec-50C/20sec-

60C/240sec (30 cycles). 1l 20% SDS was added to the PCR products and vo-

lume adjusted to 100l with water and heated to 95C for 5min. DNA was preci-

pitated by addition of 250l ethanol and 10l 3M sodium acetate pH6.8 to the 

reaction mix and centrifugation for 20 minutes at 14000g. The pellet was 

washed 70% ethanol, air dryed and resuspended in 20l formamide. The se-

quencing was done by an ABI 320 sequencer (Applied Biosystems). The se-

quences generated were analyzed using Vector NTI software. 

II.2.2.5 Polymerase Chain Reaction (PCR) 

The PCR reactions for generating DNA fragments for cloning consisted of 300-

500g template DNA, 2M forward and reverse primer, 1xPCR buffer and 0.25l 
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FedeliTaq® DNA polymerase (USB Corporation) in a reaction volume of 50l. 15 

cycles of amplification was carried out with annealing at 48C for 30 seconds and 

extension at 68C. The extension time was calculated as 1minute for amplifica-

tion of one kilobase.  The PCR products were later purified using spin columns 

(Macherey&Nagel). 

II.2.2.6 Site-directed Mutagenesis 

The site directed mutagenesis was carried out using fusion PCR technique. The 

mutations were incorporated into two fusion PCR primers (with opposite 5’3’ 

orientation) designed to anneal to the mutation target and have at least 18 nuc-

leotide overlap. The flanking primers (forward and reverse) are designed to car-

ry restriction sites for cloning. The products generated from the two first round 

PCR involving each flanking primer along with matching fusion primer are puri-

fied and used as template in the subsequent PCR reaction where the priming is 

done with the flanking primers. The products generated are treated with restric-

tion endonucleases and cloned into target plasmid. 

II.2.2.7 In vitro Transcription 

The full length genomic constructs were linearized by digestion with XbaI. 10g 

of  Phenol:Chloroform purified DNA template is used for in vitro transcription  

reaction mixture containing 80mM HEPES (pH7.5), 12mM MgCl2, 2mM sper-

midine, 40mM dithiothreitol (DTT) and 3.125mM ATP, UTP and CTP , 1.56mM 

GTP, 1mM  m7GpppG cap analogue (New England Biolabs),  1 U of RNasin (Pro-

mega, Mannheim, Germany) per µl, 0.1 µg plasmid DNA/µl, and 0.6 U of T7 RNA 

polymerase (Promega) per µl. After incubation for 2.5 h at 37°C, 0.3 U of T7 

RNA polymerase/µl reaction mixture was added, followed by another 2.5 h of 

incubation at 37°C. Transcription was terminated by addition of 1.2 U of RNase-

free DNase (Promega) per µg of plasmid DNA and 60 min of incubation at 37°C. 

The RNA was extracted with acidic phenol and chloroform, precipitated with iso-

propanol, and dissolved in RNase-free water. Denaturing agarose gel electropho-

resis was used to check RNA integrity, and the concentration was determined by 

spectrophotometer. 
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II.2.2.8 Isolation of total cellular RNA 

Total cellular RNA was isolated using the Nucleo Spin RNAII kit (Mache-

rey&Nagel) as recommended by the manufacturer. Approximately 1x106 cells 

were harvested for purification with spin column. The purified RNA is eluted with 

60l of RNase free water and stored at -70C until further use. The RNA concen-

tration was measured by spectrophotometer. 

II.2.2.9 RNA quantification by RT-PCR.  

The RT-PCR reactions were carried out with One Step RT-PCR kit (Qiagen, Hil-

den, Germany) and 100nl of the total cellular RNA sample in a ABI PRISM 7000 

sequence detector system (Applied Biosystems, Foster City, CA).  RT-PCRs for 

each primer set was conducted in triplicates according to manufacturer’s instruc-

tion using the following primers (MWG-Biotech, Martinsried, Germany): Dengue 

(forward:5’ttgagtaaactgtgcagcctgtagctc3’, reverse5’gggtctcctctaacctctagtcct3’), 

GAPDH (forward5’gaaggtgaaggtcggagt3’, reverse5’gggtctcctctaacctctagtcct3’), 

IL-8 (forward 5’atgacttccaagctggccgtg3‘, reverse 5’ttgataaatttggggtggaaa3‘). 

The total volume of the reaction mix was 15 µl, and reactions were performed in 

three stages by using the following conditions: step 1, 30 min at 50°C (reverse 

transcription); step 2, 15 min at 95°C (heat inactivation of reverse transcriptase 

and activation of Taq polymerase); and step 3, 40 cycles of 15 s at 95°C and 60 

s at 60°C (amplification). The amount of DENV RNA was calculated by standard 

curve method using serial dilutions of known amount of in vitro transcribed RNA 

template. For cellular genes the CT method was used to calculate the relative 

expression levels. 

II.2.3 Working with Proteins 

II.2.3.1 Subcellular fractionation of infected cells  

Huh-7 cells infected with DENV at an MOI of 2-5 were harvested 48h post infec-

tion washed twice with 1xPBS and resuspended in ice-cold swelling buffer (10 

mM Tris, pH 8.0, 10 mM sodium acetate, 1.5 mM MgCl2) at a density of 5 x 106 

cells per ml and incubated on ice for 10 min. The cells were lysed by applying 20 
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strokes in a dounce homogenizer. Cell  lysis was monitored by trypan blue stain-

ing. The homogenate obtained was centrifuged at 800 x g for 10 min to obtain 

the crude nuclear (N) pellet fraction and a postnuclear supernatant (PNS). Nuc-

lear fractions were resuspended in swelling buffer containing 10% sucrose and 

1% Triton x100 incubated on ice for 30 minutes. Later the nuclei was pelleted 

by centrifugation in a refrigerated centrifuge at 1,800 x g for 10 min through two 

volumes of a 30% sucrose cushion, followed by two washes with swelling buffer 

to remove cellular debris and obtain purified nuclear fraction. The purity of the 

fractions was analyzed by western blot using various antibodies directed against 

cellular markers. 

II.2.3.2 Immunoprecipitation 

Cell grown on 6cm dish were washed twice with PBS and scrapped out and pel-

leted. The pellets were resuspended in 50µl 1x SDS sample buffer, sonicated 

and incubated at 98C for 10 min. The cell lysate was then diluted to a final vo-

lume of 0.5ml with NPB (50mM Tris HCl pH7.5, 150mM NaCl, 1% NP40, pro-

tease inhibitor cocktail (Roche) and phospatase inhibitors 5mM sodium orthova-

nadate and 50mM sodium fluoride). The protein G-sepharose 4B (Sigma-Aldrich, 

Steinheim) was washed twice with NPB buffer and 30µl beads were incubated 

with 5µl of NS5 antibody in 500µl NPB buffer for 2h in an inversion mixer (REAX 

2, Darmstadt) at 4C. Later the beads were washed thrice with NPB buffer and 

the cell lysate was added to the beads and incubated for 2h in an inversion mix-

er at 4C. The beads were washed five times with NPB buffer, the bound pro-

teins eluted by boiling with SDS sample buffer.  

II.2.3.3 Standard SDS PAGE 

The cells were resuspended in PBS and lysed by addition of equal volume of 2x 

SDS sample buffer. The viscosity of the samples was reduced by sonication in a 

cup-horn Sonifier (Brandson 450) which shears the genomic DNA. The sample 

was then heated to 98C for 10 min and cooled to RT. The polyacrylamide gels 

were prepared according to standard protocols (8) and gel electrophoresis was 
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carried out at constant current of 200V for 3-4h (15x15cm gels). Pre-stained 

protein markers (New England Biolabs) was used as molecular size marker. 

II.2.3.4 Western Blot Analysis 

Following gel electrophoresis the proteins were transferred to nitrocellulose 

membranes (Schleicher& Schuell) using a semidry blotter (BioRad) for 90 min at 

a constant current of 1mA/cm2. The membrane was blocked with blocking buffer 

(5% milk powder in PBS-0.5% Tween20 (PBST)) for 2h at RT or overnight at 

4C. The membrane was incubated with the primary antibody diluted in blocking 

buffer for 2h followed by three washes for 10 min with PBST. Similarly the sec-

ondary antibody diluted in blocking buffer was incubated for 90 minutes and 

washed thrice with PBST. The chemiluminescence signal was revealed using 

ECLplus kit (Amersham) according to manufacturer’s instructions and detected 

photographically by exposure to BioMax ML film (Kodak). 

Table II.10 Antibodies used for western blot 

Antibody Generated in      

(Organism) 

Dilution Manufacturer 

-NS5 Rabbit polyclonal 1:1000 In-house 

-Calnexin Rabbit polyclonal 1:1000 Stressgen, Canada 

-p53 Mouse monoclonal 1:500 BD Pharmingen, USA 

-Lamin A/C Mouse monoclonal 1:500 SantaCruz 

-Rabbit IgG Perox-

idase 

Goat polyclonal 1:20000 Sigma-Aldrich, Germany 

-Mouse IgG Perox-

idase 

Goat polyclonal 1:15000 Sigma-Aldrich, Germany 

  

II.2.4.1 NS5 expression in Rosetta (DE3)   

E. coli Rosetta (DE3) strain (Novagen, Merk) was transformed with pET21b NS5 

and plated in LB-agar plates containing 100g/ml ampicillin and 1% glucose. 

Starter cultures were prepared by inoculating single colonies into 5ml LB me-

dium containing 100g/ml ampicillin and 1% glucose and overnight incubation. 

The expression culture was inoculated with 1% starter culture and grown at 

37C until the optical density (OD) at 600nm was 0.8 to 1.0. The protein expres-
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sion was induced by a cold shock at 4C for 30 min followed by addition of 50M 

isopropyl-β-D-thiogalactopyranoside (IPTG) and 2% ethanol. After overnight 

incubation at 18C, cells were harvested by centrifugation at 6000 x g for 10 

min at 4C, and the cell pellet was stored at -80C until further processing.  

 II.2.4.2 NS5 purification  

The cells pellet was resuspended in lysis buffer (50mM Tris pH7.5, 500mM NaCl, 

20% glycerol, 1% β-octylglucopyranoside, 50mM imidazol, 1mM DTT and Pro-

tease Inhibitor Mix (Roche)) containing 1 mg/ml Lysozyme (Fluka, Buchs, Swit-

zerland) and 5u/ml Benzonase (Merk, Darmstadt, Germany) was incubated at 

4C for 30 min, lysed by sonication. The lysate was clarified by centrifugation at 

12000 g for 15 min at 4C. The supernatant was purified by metal affinity, using 

a Nickel NTI column (Qiagen, Hilden, Germany) equilibrated with lysis buffer. 

The unbound proteins were washed away with 5 column volumes of wash buffer 

(50mM Tris pH7.5, 500mM NaCl, 20% glycerol, 0.1% β-octylglucopyranoside, 

50mM imidazol, 1mM DTT and Protease Inhibitor cocktail (Roche)) and the pro-

tein was eluted with elution buffer (50mM Tris pH7.5, 500mM NaCl, 20% Glyce-

rol, 0.1% β-octylglucopyranoside, 400mM imidazol, 1mM DTT and Protease In-

hibitor cocktail (Roche)). The fractions containing the protein of interest were 

identified and quantified by Bradford method and purity determined by SDS-

PAGE. Similar fractions were pooled, aliquoted and stored at -80C. 

II.2.4.3 Polymerase assay 

The RdRP assay was carried out using 400ng of DENV genomic RNA generated 

by in vitro transcription and 50-200 ng purified NS5. The 50L assay was per-

formed in presence of 50mM HEPES pH 8.0, 10mM KCl, 5mM MgCl2, 3mM 

MnCl2,1mM DTT, 1U/µl RNasein (Promega, Mannheim, Germany) and 0.5mM 

each of ATP, CTP and UTP and 10M GTP and 10Ci 32P GTP (3,000 Ci/mmol; 

Perkin Elmer) for 2h at 30C. Assays using homopolymeric templates included 

400ng poly(C) (GE Healthcare, Munich, Germany) or 400ng poly(C) with 5 pmol 

oligo(G12) primer (MWG, Germany), respectively. The samples were precipitated 

with 10% trichloroacetic acid (TCA) and 0.5% tetrasodium pyrophosphate, 
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passed through GF-C microfilters (GE Healthcare), washed five times with 1% 

TCA and 0.1% tetrasodium pyrophosphate, and air dried. After the addition of 4 

ml of Ultima Gold (Perkin-Elmer), samples were subjected to liquid scintillation 

counting. All measurements were done in duplicate. 

II.2.4.4  Methyl transferase assay 

The methyltransferase assay was carried out using 1g of uncapped or 

M7capped DENV genomic RNA (1-175 nt) as template and 100ng purified NS5. 

The 50l assay was performed in presence of  50mM Tris pH7.0, 10mM KCl, 

2mM MgCl2, 2mM MnCl2, 0.05% CHAPS, 2mM DTT and 2Ci 3H SAM (Perkin El-

mer)  for 2h at 22C. Following the assay 10 µl of 3 M Na-acetate and 20µg gly-

cogen were added to each reaction mixture and volume adjusted to 100l. Sam-

ples were extracted with phenol-chloroform, and nucleic acid was precipitated 

with 0.7 volume of isopropanol. The pellet was washed with 70% ethanol, air 

dried and resuspended in100µl water. After the addition of 4 ml of Ultima Gold 

(Perkin-Elmer), samples were subjected to liquid scintillation counting. All mea-

surements were done at least in duplicate. 

II.2.5 Plasmids and viral constructs 

II.2.5.1 Plasmid construction 

The plasmid containing  full-length DENV2 NGC strain (pDVWSK601) and subge-

nomic construct (pDVWSK601CprME) were a kind gift from Andrew Davidson, 

School of Medical Sciences, Bristol, UK. These constructs were modified in an 

earlier work (75) by insertion of firefly luciferase reporter or hygromycin phos-

photransferase gene to develop the dengue luciferase reporter (pDVWSK601-FL-

Luc-Ubi-DV) and and dengue subgenomic replicon respectively 

(pDVWSK601CprME-hpt-Ubi).  

DENV genomic construct with AgeI-SacI restriction sites (pDVWSK601 -AgeI-

SacI): For ease in introduction of NLS mutations into NS5 by fragment exchange 

restriction sites AgeI and SacI were introduced as silent mutations flanking  NS5 

NLS by fusion PCR using primers 5’accatggcagctatgaaacaaaacaaaccggttcagcatcat 
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ccatggtg3’ and 5’tgttgaagatagtaggttttgggagctcgttgacaaggaaagga3’ respectively 

and flanking primers (Forward 5’gaatgtaagagaagtcaaaggcctgacaaaagga3’ and 

5’atcttcaacagcctcacgtgccgacttcca3’) and cloned into StuI and PmlI of full length 

genomic construct.  

The NLS mutants were cloned by fusion PCR between AgeI and SacI  of 

pDVWSK601 -AgeI-SacI using following primers (KK371-372 forward 5’ acccaa-

gaaccgaaagaaggcacagcggcactaatgaaaatcacggca3’, KK371-372 reverse 5’ acc-

caagaaccgaaagaaggcacagcggcactaatgaaaatcacggca3’, KK387-388 forward 5’ 

gagtggctttggaaagaactaggggccgcaaagacacctaggatgtgcac3’, KK387-388 reverse 5’ 

gtgcacatcctaggtgtctttgcggcccctagttctttccaaagccactc3’, KK388-389 forward 5’ 

gagtggctttggaaagaactagggaaggcagcgacacctaggatgtgcac3’, KK388-389 reverse 5’ 

gtgcacatcctaggtgtcgctgccttccctagttctttccaaagccactc3’, KKK387-389 reverse 5’ 

gagtggctttggaaagaactaggggccgcagcgacacctaggatgtgcac3’, KKK387-389 reverse 

5’ gtgcacatcctaggtgtcgctgcggcccctagttctttccaa agccactc3’, RE396-397 reverse 5’ 

aagacacctaggatgtgcactgcagccgaattcacaagaaaggtgagaag3’, RE396-397 reverse 5’ 

cttctcacctttcttgtgaattcggctgcagtgcacatcctaggtgtctt3’, EE397-398 forward 5’ aa-

gacacctaggatgtgcactagagccgcattcacaagaaaggtgagaag3’, EE397-398 reverse 5’  

cttctcacctttcttgtgaatgcggctctagtgcacatcctaggtgtctt3’, REE396-398 forward 5’ aa-

gacacctaggatgtgcactgcagccgcattcacaagaaaggtgagaag3’, REE396-398 reverse 5’ 

cttctcacctttcttgtgaatgcggctgcagtgcacatcctaggtgtctt3’, RK401-402 forward 5’ ag-

gatgtgcactagagaagaattcacagcagccgtgagaagcaatgcagcc3’, RK401-402 reverse 5’ 

ggctgcattgcttctcacggc tgctgtgaattcttctctagtgcacatcct3’) and flanking primers 

(forward 5’ tatgaaacaaaacaaaccggttcagcatca3’ and reverse 5’ ttccttgtcaac-

gagctcccaaaacctactatcttcaaca3’).  

The pcDNA NS5 was constructed by PCR amplification of NS5 from full length 

genomic construct using following primers (forward- 5’taccgagctcggatccatggg 

aactggcaacata3’ and  reverse 5’ataattctagactaccacaggactcc tgcctcttcctcttc3’) and 

inserted  between BamHI and XbaI sites of pcDNA 3.1.  

The deletion mutations of NS5 NLS were constructed using the following primers 

and inserted between AgeI and PmlI sites in pcDNA NS5 AgeI-SacI. Deletion of 

-NLS (forward 5’caaaacaaaccggttcagcatcatccaagaaactaatgaaaatcacggcagagtgg 
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ctttgg3’,  reverse 5’ ttcaacagcctcacgtgccgacttccactt3’), deletion of NLS (for-

ward 5’ tatgaaacaaaacaaaccggttcagca3’, reverse 5’ cagcctcacgtgccgacttccactt 

gttctcatcagtgaatatggcccccaaggctgcatttgtgccttctttcggttcttgggttctcgtgtccacttt3’), 

deletion of both NLS (forward 5’gctatgaaacaaaacaaaccggttcagcatcatccaatgcag 

ccttgggggccatattcactgatgagaacaagtggaagtcggcacgtgaggctgttgaa3’ and reverse 5’ 

ttcaacagcctcacgtgccgacttccacttgttctcatcagtgaatatggcccccaaggctgcattggatgatgctg

aaccggtttgttttgtttcatag3’) 

The kunjin virus -NLS was inserted into DENV genomic constructs using fol-

lowing primers (forward 5’ gttgtgggcgttcctggcacgagaaaagcgtcccagaatgtgctcg 

cgagaggaatttataaggaaggtcaatagtaatgcagccttgggggccata3’ and reverse 5’ 

cgcttttctcgtgccaggaacgcccacaaccagttggtggtttcattgagcacatactttgtgccttctttc 

ggttcttg3’) between restriction sites AgeI and SacI. 

The NLS mutations were transferred from the full length constructs by fragment 

exchange between restriction sites StuI and PmlI.  

Hexa Histidine tag was introduced at C-terminus of NS5 in DENV genomic con-

struct between StuI and HpaI by fusion PCR using following primers (forward 5’ 

tgtgtgaggcgttaaccttagcgacc3’, reverse 5’ Tggtcctccttttgtcaggcctttgacttc3’  fusion 

forward 5’ Aacacgagaaggggaactggcaaccatcaccatcaccatcacataggagagacgcttgga-

gagaaa3’, fusion reverse 5’ tttctctccaagcgtctctcctatgtgatggtgatggtgatggttgccagtt 

ccccttctcgtgtt3’) 

Mutations in putative CK2 phosphorylation site (T395A) was inserted between 

AgeI and PmlI in pcDNA NS5 AgeI-SacI using primers (forward 5’ gaaacaaaa-

caaaccggttcagcatcatccatggtgaacggagtggtcag3’, reverse 5’ cccaaaacctactatcttcaa-

cagcctcacgtgccgacttccacttgttc3’, fusion forward 5’ gaagaaaaagacacctaggatgt 

gcgctagagaagaattcacaagaaagg3’, fusion reverse 5’ cctttcttgtgaattcttctctagcgca-

catcctaggtgtctttttcttc3’).  

The pET21b HA-NS5-His was generated by PCR amplification of NS5 (forward 5’ 

ttcccctctagaaataattttgtttaactttaagaag gagatatacatatgtacccatacgacgtcccagactacg-

ctggaactggcaacataggaga3’ and reverse  5’agaggatccctactagtgatggtgatggtgatgcc 

acaggactcctgcctctt3’) and cloning between XbaI and BamHI in pET21b.  NLS 
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mutations were transferred into this construct by fragment exchange from full 

length constructs using restriction sites StuI and PmeI.  

II.2.6 RNAi Screen  

II.2.6.1 Preparation of siRNA spotted chambered slides 

The siRNA-gelatin transfection solutuion was prepared in 384 well plates (Nalge-

Nunc) as follows. 5l of a 30M siRNA stock solution was mixed with 3.5l Li-

pofectamine 2000 (Invitrogen) and 3l Opti-MEM (Invitrogen) containing 0.4M 

sucrose and incubated at room temperature for 20 minutes. After incubation 

7.25l of 0.2% gelatine (G-9391, Sigma-Aldrich), 3.5x10-4 % fibronectin 

(Sigma-Aldrich) was added. The solution were arrayed on to single well, cham-

bered Lab-Tek cover glass tissue culture dishes (Nalge-Nunc) using a Chip 

Writer Compact Robot (Bio-Rad) with Solid pins (Point Technologies) resulting in 

a spot diameter of approximately 400µm. The spot volume was approximately 

4nl. The Lab-Tek chamber glasses were dried in plastic boxes containing silica 

gel (Merk) at least over night.  

II.2.6.2 Cell seeding and Infection 

Low passage (10-20) Huh-7 were seeded on arrayed chamber slides at a density 

of 1.5x105 cells per chamber in a total volume of 3ml DMEMcomplete and incubated 

at 37C under 5% CO2. After 48h incubation, the cell culture medium was re-

moved and cells were infected with DENV-2 NGC strain at a MOI of 2-5 in 1ml 

DMEMinfection. Four hours later the medium was replaced with DMEMcomplete and 

incubated for 24h. The chambered slides were fixed after 24h and immunos-

tained. 

II.2.6.3 Immunostaining   

 The cell monolayer was washed twice with PBS and fixed with 2% paraformal-

dehyde (Sigma Aldrich). Permeabilization was carried out with 0.5% Triton X 

100 (Merk) in PBS. The primary antibody (anti-E protein, mouse monoclonal, 

hybridoma-HB46, ATCC) was diluted 1:100 and secondary antibody anti-mouse 

Alexa Fluor 546 (Invitrogen, A11030) was diluted 1:500  in PBS-3% normal goat 
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serum. Both antibodies were incubated for 45min each with three washes in be-

tween with PBS. The staining procedure was repeated twice to improve the sig-

nal intensity. The cells were washed thrice with 1x PBS, nuclei stained with DAPI 

(1:5000) in PBS for 1 min. Finally the slides were stored with PBS containing 

0.05% sodium azide for image acquisition.  

I.2.6.4 Image acquisition 

The images of each siRNA spot was captured using Olympus Scan^R wide-field 

microscope (Olympus Biosystems) with Scan^R image acquisition program at 

10X magnification. The acquisition time was 5ms for DAPI signal and 50ms for 

E-protein signal.  

II.2.6.5 Image processing and statistical analysis 

The acquired images were analyzed with image analysis software described 

elsewhere (71). The primary screen was conducted in 12 repetitions (in dupli-

cate over six independent days). All siRNA spots with less than 125 or more 

than 500 cells were excluded from the analysis. As additional quality control for 

staining artefacts all images were analyzed by eye (out of focus images, 

dirt/dust particles, staining variations, intensity oversaturation)  resulting in an 

overall exclusion of 15% of the images and three repetitions. Statistical analysis 

of processed imaging data was carried out in R Version 2.8.0 (R Development 

Core Team, http://www.R-project.org), using the Bioconductor packages 

RNAither (97) and cellHTS (15). In brief, signal intensities were normalized for 

effects of differing cell counts using locally weighted scatterplot smoothing (LO-

WESS) (26). B-score normalization was used to remove spatial effects within 

individual LabTeks (18). Variability between plates was addressed by subtracting 

the plate median from each measurement and dividing by the plate median ab-

solute deviation. Replicates were summarized using the mean; furthermore, a t-

test was carried out to determine whether siRNA effects differed significantly 

from zero. The mean score indicates the magnitude of an effect, whereas the p-

value is a measure of the reproducibility. A knock-down was scored positive 

when its p-value was <0.05 and its score lower than -1 in case of dependency 
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factors or higher than +1 in case of restriction factors. This combination of p-

value and score allows identification of genes with a relatively small, but consis-

tent effect. 

II.2.6.6 Validation siRNA screen in 96-well format 

 The method of reverse siRNA transfection was adapted to the 96-well plate 

format as described elsewhere (34). In brief, 3 µl OptiMEM (containing 0.4 M 

sucrose) were mixed with 3.5 µl Lipofectamine 2000 (Invitrogen) and 5 µl of the 

respective siRNA (30µM stock) in a 384 well plate by using an automated liquid 

handler. After incubation for 20 min at RT 7.25 µl of a 0.08 % (w/v) gelatin so-

lution containing 3.5 x 10-4 % (v/v) fibronectin were added. Seventeen µl of the 

source siRNA transfection solution were added to 850 µl of MilliQ water in each 

well of a 96-deep-well plate. Fifty-one µl of the transfection mixture were trans-

ferred into 96-well plates (Greiner, cat. no. 655098) and plates were dried in a 

multiwell Speed Vac for 2.5 h at medium drying force.  

For DENV infection based validation screen 5 x 103 Huh-7 low passage cells were 

seeded per siRNA-coated well of a 96-well plate in a volume of 100 µl. After 24h 

cells were infected with DENV2 (16681 strain) renilla reporter virus (developed 

by Wolfgang Fischl; Unpublished) using an MOI of 0.5 and medium was ex-

changed 4h later. 48h post infection cells were washed once with PBS, lysed in 

50 µl luciferase lysis buffer and stored at -70°C until measuring Renilla- and 

Firefly-Luciferase activity. The plates were measured using home-made sub-

strates for both firefly and renilla luciferases using a luminometer (Mitras 

LB940). The validation screen was performed twice in duplicates and statistically 

analyzed as follows. The signal intensities were first normalized for cell count 

effects using locally weighted scatterplot smoothing, and then normalized to the 

negative controls by subtracting the median signal of the negative controls from 

each measurement and dividing by the median absolute deviation of the nega-

tive controls. Replicates were summarized using the mean. Hits were defined 

based on a score threshold of +/- 2.0 for at least one siRNA per gene.  
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The DENV luciferase reporter replicon based validation screen was carried out 

similar to infection based validation screen with the following modifications. 

Huh-7 cells bearing DENV sub-genomic replicon bearing a renilla luciferase re-

porter (developed by Wolfgang Fischl; Unpublished) was seeded into siRNA pre-

spotted 96-well plates and 48h later the cells were washed once with PBS and 

lysed in 50µl luciferase lysis buffer. The luciferase measurement and statistical 

analysis were carried out similar to infection based validation screen. Hits were 

defined based on a score threshold of +2.0 or -1.5 for at least one siRNA per 

gene. 
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III.  Results 

III.1 NS5 nuclear accumulation and viral replication 

III.1.1 Effect of extrinsic factors on NS5 nuclear accumulation 

III.1.1.1 Localization of NS5 upon DENV infection in various cell types  

NS5 protein of DENV and YFV are reported to localize to nucleus in infected cells 

(59). To check whether the nuclear localization of NS5 is cell type specific we 

analyzed the localization of DENV NS5 after infection in a diverse range of cell 

lines including Huh-7, A549, Vero, BHK-21, HepG2 and C636. Immunofluores-

cence-based studies have revealed that majority of detectable NS5 signal local-

ize into nucleus of infected cells from earliest to very late time point of infection 

in all cell lines examined. Albeit the western blot analysis followed by cell frac-

tionation of infected cells have shown that nearly 50% of the protein is localized 

in the cytoplasm on contrary to immunofluorescence staining where more than 

90% of the signal is found to localize to the nucleus.   This discrepancy could 

possibly be due to the diffused distribution of NS5 in the cytoplasm and to the 

signal detection limits of immunofluorescence technique. 

 

Fig.III.1 Localization of NS5 in different cell lines. The cells were infected with DENV2 NGC strain 

at an m.o.i. of 5 and harvested 72h post infection and analyzed by immunofluorescence assay 

using anti-NS5 antibody.  



RESULTS 

52 
 

III.1.1.2 Study on phosphorylation of NS5 

Previous biochemical studies indicated that at least a portion of DENV NS5 is 

phosphorylated and the hyperphosphorylated form is detected only in the nu-

cleus implying a role for phosphorylation in nuclear transport of NS5 (5, 59). 

However it was also observed that this hyperphosphorylated form appears only 

upon serum starvation. To address the question of NS5 phosphorylation during 

viral replication, we labelled Huh-7 DENV replicon cells with [32P] orthophos-

phate and NS5 was immunoprecipitated with anti-NS5 antibody and analyzed on 

a SDS-PAGE. Huh-7 HCV replicon cells lysate subjected to immunoprecipitation 

with anti-NS5A antibody were used as control. No phosphorylated form of DENV 

NS5 could be immunoprecipitated in our experiment while hypophosphorylated 

and hyperphosphorylated forms of HCV NS5A could be readily observed. The 

efficiency of immunoprecipitation was determined with [35S] methionine labelled 

replicon cells lysate where a single prominent band corresponding in size of NS5 

was observed indicating successful immunoprecipitation. These results have 

three possible explanations; first the proportion of NS5 that is phosphorylated 

may be below the detection limit of the assay; secondly the NS5-specific anti-

body used for immunoprecipitation may preferentially recognize the nonphos-

phorylated form of NS5; third phosphorylation is induced only during cellular 

stress such as serum starvation. 

 



RESULTS 

53 
 

 

Fig.III.2 Orthophosphate labelling of DENV NS5. A. DENV replicon cells were labelled with 

1.5mCi/ml of [32P] Orthophosphate for 6h and harvested in SDS sample buffer, boiled, diluted in 

RIPA buffer, immunoprecipitated with anti-NS5 antibody and resolved in an 8% PAGE. HCV repli-

con cells similarly labelled and immunoprecipitated with anti-NS5A antibody was used as control.  

B. Immunoprecipitation control. DENV replicon cells were labelled with 100µCi/ml of [35S] Me-

thionine for 6h and harvested in SDS sample buffer, boiled, diluted in RIPA buffer, immunoprecipi-

tated with anti-NS5 antibody and resolved in an 8% PAGE 

III.1.1.3 Biochemical fractionation of NS5 

A cell fractionation assay was carried out to biochemically analyze the NS5 local-

ization in various cellular compartments. The nuclear and cytoplasmic fractions 

of Huh-7 cells infected with DENV were separated by osmolysis followed by 

douncing. The nuclear fraction was further purified by detergent treatment and 

pelleting through a sucrose cushion to remove the contaminating cellular mem-

branes. The separated fractions were analyzed by SDS-PAGE. The purified nuclei 

were devoid of detectable amount of Calnexin whereas the nuclear marker 

Lamin was absent from post nuclear supernatant (PNS) fraction indicating ab-

sence of cross contamination. Interestingly higher amount of p53 was observed 

in the cytoplasmic fractions even though the signal is mostly located in the nu-

cleus in immunofluorescence analysis. In all fractions NS5 migrated as a single 

band indicating absences of detectable amount of modified form of the protein.  

It was also noted that significant amount of the protein was observed in the cy-

toplasmic fractions which were not observed by immunofluorescence assay.  
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Fig.III.3 Biochemical characterization of NS5. Huh-7 cells infected with DENV and harvested 48h 

post infection were resuspended in swelling buffer and lysed with a dounce homogeniser. After 

separation of post nuclear supernatant (PNS) fraction, the crude nuclear fraction was purified by 

treatment with 1% triton and sedimenting through a 30% sucrose cushion to remove ER contami-

nation. The fractions were analyzed by western blot using antibodies against NS5 and various cel-

lular markers. 

III.1.1.4 Role of DENV proteins in NS5 nuclear transport 

NS5 accumulates in nucleus of DENV infected cells. To study the effect of other 

DENV proteins in NS5 nuclear transport we analyzed the protein localization us-

ing various deletion constructs. The NS5 localization in subgenomic replicon ex-

pressing NS1-NS5 was similar to full length virus indicating that structural pro-

teins are not necessary for its efficient nuclear transport. However when ex-

pressed alone as a T7-promoter driven gene, most cells showed a cytoplasmic 

accumulation of NS5. To study the influence of other DENV non-structural (NS) 

proteins on NS5 nuclear transport, we designed a NS1-NS5 construct expressing 

all NS proteins. Surprisingly in the context of this construct also NS5 showed 

predominantly cytoplasmic accumulation of the protein suggesting that NS pro-

teins did not influence this phenotype. In cells expressing NS5 fused to GFP 

similar localization was observed as well. However when NS5 construct was ex-

pressed under the control of CMV immediate early (IE) promoter, NS5 localized 

to nucleus as observed in the context of an infection. GFP-NS5 fusion protein 

also showed similar localization under CMV promoter. CMV IE promoter driven 
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constructs were used in the subsequent studies due to their more authentic pro-

tein localization. The exact reason from anomalous localization of NS5 expressed 

under T7-promoter is not presently know.     

 

Fig.III.4 Localization of NS5 under various protein expression systems. The subgenomic replicon 

was transfected into Huh-7 cells and NS5 localization analyzed by immunofluorescence assay us-

ing anti-NS5 antibody. The T7 promoter driven constructs (pSM and pTM) were transfected into 

Huh-7-T7 cells and 8h later harvested and analyzed by immunofluorescence assay using anti-NS5 

antibody. The pcDNA constructs were transfected into Huh-7 cells and harvested 16h later and 

NS5 localization analyzed as above mentioned. 

III.1.1.5 Effect of Casein kinases on NS5 nuclear accumulation 

Earlier investigations (36) have identified a consensus CKII phosphorylation site 

(T395REE) within the -NLS which could be phosphorylated in vitro when -

galactosidase reporter fused to -NLS was treated with CKII. This phosphoryla-

tion however inhibited the nuclear transport of the reporter. We used a panel of 

CKI and CKII inhibitors to study the effect of the phosphorylation mediated by 

these kinases on NS5 nuclear accumulation. However none of the CKI or CKII 

inhibitors tested had an effect on the nuclear transport of the protein 

(Fig.3.5.panels a and b). In addition the mutation of NS5 CKII phosphorylation 

site did not have any significant effect on the nuclear transport of the protein 

indicating that CKII phosphorylation may not have a major role in the nuclear 

transport of NS5. 
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Fig.III.5 Role of Casein Kinases mediated phosphorylation in NS5 nuclear accumulation. A. Huh-7 

cells electroporated with DENV sub genomic replicon were treated 48h post electroporation with 

casein kinase inhibitors IC261(100µM), H479 (20µM), SP600125 (50µM) and CKI-7 (200µM) for 

24h and NS5 localization determined by immunofluorescence. B. Huh-7 cells electroporated with 

DENV genomic reporter viruses were treated 4h post electroporation with CK2 inhibitors DMAT 

(2µM) and TBB (50µM). Cells were harvested 72h post electroporation and NS5 localization ana-

lyzed by immunofluorescence. C. pcDNA-eGFP-NS5 constructs containing mutation at putative 

CK2 phosphorylation site (T395A) was transfected into Huh-7 cells and NS5 accumulation 16h 

post electroporation determined by GFP fluorescence. 

III.1.1.6 Study of mobility of NS5 between cellular compartments 

NS5 is present in the cytoplasm and the nucleus of infected cells with the hyper-

phosphorylated form accumulating mostly in the nucleus (59). Recent studies 

have also shown that blocking CRM1-mediated export by leptomycin B resulted 

in higher amounts of nuclear NS5 together with higher release of virus particles 

(94). These results suggested that NS5 is exported out of the nucleus. To study 

the mobility of NS5 within the nucleus and between nucleus and cytoplasm, we 

generated NS5 fusion constructs containing eGFP at their N-terminus. NS5 mo-

bility was monitored in Huh-7 cells by FRAP or FLIP analysis. Similar to DENV 

infection NS5-eGFP localized mostly in nucleus of transfected cells. FRAP analy-
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sis showed very high mobility of the protein (T0.5=3.7sec) within the nucleus in-

dicating free diffusion.  However the import of the protein from cytoplasm to 

nucleus was slower compared to mobility within the nucleus (T0.5=138sec) indi-

cating active transport of the protein into the nucleus rather than free diffusion 

between cytoplasm and nucleus (Fig. III.6B). FLIP experiment was carried out to 

study the rate of export of NS5 from nucleus to cytoplasm. The nuclear export 

of NS5 (T0.5=20min) was much slower compared to import explaining the net 

accumulation of the protein in the nucleus. The export was CRM1-dependent as 

evident from the complete block of NS5 nuclear export in presence of leptomy-

cin-B (Fig. III.6D).  

 

 

Fig.III.6 Mobility analysis of DENV NS5. CMV IE promoter driven NS5-eGFP construct was trans-

fected into Huh-7 cells seeded in imaging plates and 16h later imaged under a CLSM. A. FRAP 
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analysis of NS5 mobility within the nucleus. B. FRAP analysis of NS5 import from cytoplasm into 

nuclei. C. FLIP analysis of NS5 export from nucleus to cytoplasm D. FLIP analysis two hours after 

addition of 5ng/ml of Leptomycin B. 

III.1.2 Identification of determinants within NS5 affecting nuclear 

accumulation 

III.1.2.1 Introduction of restriction sites for cloning NLS mutants 

To study the NS5 nuclear accumulation in detail, NLS deletion and mutation con-

structs had to be generated. However restriction sites suitable for cloning were 

not present in region flanking the NLS. To circumvent this problem two restric-

tion sites were inserted flanking NLS region by silent mutagenesis. An AgeI site 

and a SacI site were inserted at amino acids 312 and 436 respectively. The 

newly generated construct was compared with the wild type for its replication 

and infectivity titer production. The AgeI-SacI construct showed comparable lev-

els of replication and supernatant infectivity compared to wild type (Fig.III.7A). 

The localization of NS5 was also found similar to wild type after electroporation 

into Huh-7 cells indicating that the construct was suitable for further studies. 

This construct was used for generation of all deletion and mutation constructs 

used in this study. 
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Fig.III.7 Characterization of DENV construct carrying AgeI-SacI cloning sites. A. Replication of 

AgeI-SacI  bearing construct. In vitro transcribed RNA of DENV reporter virus bearing AgeI-SacI or 

wild type were electroporated into Huh-7 cells and virus replication analyzed by luciferase reporter 

assay. B. Cell culture supernatants were harvested 72h post electroporation and used to infect 

naive Huh-7 cells  which were harvested 72h later and analyzed by luciferase assay. C. NS5 local-

ization in cells 72h post electroporation was analyzed by immunofluorescence using anti-NS5 anti-

body. 

III.1.2.2 Role of -NLS and -NLS on NS5 nuclear localization 

DENV NS5 accumulates in nucleus of infected cells upon infection. We examined 

the role of viral components other than NS5 in nuclear transport by comparing 

the localization of NS5 during infection to expression of NS5 alone from a pcDNA 

expression vector. We observed that NS5 was able to accumulate in the nucleus 

to similar levels as during infection indicating that NS5 alone is sufficient for its 

nuclear transport. NS5 has two nuclear localization signal (NLS) sequences 

which were shown to be able to target proteins fused to them into nucleus (19) .   

To ascertain the contribution of both NLS to NS5 nuclear localization, deletion 

mutants lacking either -NLS or -NLS or both were generated. The NS5 dele-
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tion mutants were expressed from a pcDNA expression vector in Huh-7 cells and 

the extent of nuclear accumulation was determined by immunofluorescence as-

say. We could observe that deletion of -NLS reduced the nuclear accumulation 

of NS5 but did not completely block the nuclear transport whereas deletion of 

-NLS totally abrogated the transport of NS5 into nucleus (Fig.III.8). NS5 was 

totally retained in the cytoplasm also when both NLS were deleted. This experi-

ment demonstrated that -NLS plays the most important role in nuclear trans-

port of NS5 and was in line with the previous observations (93).    

 

Fig.III.8 Localization of NS5 NLS deletion mutants. A. Schematic map of NLS deletion constructs 

generated. B. Immunolocalization of NS5. The Huh-7 cells were transfected with different NS5 

constructs and harvested 16h post transfection, fixed, permiabilized and immunostained with anti-

NS5 antibody. The nucleus was visualized by DAPI staining. 

III.1.2.3 Construction and immunolocalization of NLS mutants 

To systematically map the residues within -NLS that are critical for nuclear 

accumulation we generated a panel of mutants where the charged amino acids 
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clusters were mutated to alanine (Fig.III.9). The localization of -NLS mutants 

were analyzed by transient expression in Huh-7 cells. The mutations in the clas-

sical bipartite NLS residues (KKxxxxxxxxxxxxxxKKK) reduced the nuclear locali-

zation but did not abrogate nuclear accumulation of NS5 with residues 387-389 

having a stronger impact compared to residues 371-372. Surprisingly mutations 

in residues downstream of  bipartite NLS showed pronounced effect of nuclear 

accumulation with the mutations in residues 396-398 completely preventing the 

nuclear transport of NS5 (Fig.III.10). The mutant 397-398 also exhibited sub-

stantial retention of NS5 in the cytoplasm. In summary a panel of NLS mutants 

with varying levels of nuclear accumulation of NS5 could be generated by muta-

tional analysis. The complete abrogation nuclear accumulation by mutations in 

residues 396-398 indicates that contrary to earlier data residues apart from 

classical bipartite within -NLS also play a crucial role in NS5 nuclear transport.   

 

Fig.III.9 Schematic diagrams of DENV NS5 & NLS mutations.  NS5 is 900 amino acids long and 

possesses two domains, the N-terminal methyltransferase domain (MTase) and the C-terminal 

RNA-dependent RNA polymerase (RdRP) domains. The RdRP domain (aa 296-900; diagonal 

stripes) contains two adjacent NLSs designated β-NLS (aa 320-368; vertical stripes) and αβ-NLS 

(aa 369-405; horizontal stripes). The latter is bipartite (KKX14KKK) and recognized by Importins 

α/β. Mutations introduced into the NLS are shown below with the alanine substitutions indicated 

by bold letters.  
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Fig.III.10 Subcellular localization of NS5 αβ-NLS mutants. (A) Huh-7 cells were transfected with 

plasmids directing expression of NLS mutants under control of the CMV promoter and cells were 

fixed 16h post transfection. Subcellular localization of NS5 was determined by immunofluores-

cence using a NS5-specific antibody. Images were captured with a confocal laser scanning micro-

scope (CLSM). (B) Quantification of NS5-specific immunofluorescence by using ImageJ software. 

Extent of nuclear localization of NLS mutants was determined by quantifying the ratio of the NS5 

signals inside the nucleus and the cytoplasm (Fn/c). Result represents the mean ± SD (n ≥50) of 

two independent experiments  

III.1.3 Viral replication and NS5 nuclear accumulation 

III.1.3.1 Effect of NS5 nuclear accumulation on viral replication 

We tested the effect of NS5 nuclear accumulation on replication competence of 

the virus by inserting the -NLS mutations exhibiting varying nuclear localiza-

tion into genomic dengue luciferase reporter virus. The virus replication was 

measured by luciferase activity of reporter virus electroporated into BHK-21cells.  
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The replication assay showed that several mutations in -NLS had a substantial 

effect on viral replication (371-372, 388-389, 387-389, 397-398, 396-398 and 

401-402) (Fig.III.11). Higher replication was generally correlated with higher 

accumulation of NS5 in the nucleus except for mutant 397-398. Lower replica-

tion also showed correlation with reduced NS5 nuclear accumulation except for 

mutant 401-402. The supernatant infectivity of the mutants was directly corre-

lated to their replication levels indicating no additional effect of NLS mutations 

on viral release or infectivity. To rule out any effect of the luciferase reporter 

gene on replication ability of the mutants, the mutations were also inserted into 

wild type DENV and the replication was ascertained by qRT- PCR following elec-

troporation in BHK-21 cells. The replication of mutants in wild type virus context 

was more robust compared to the luciferase however the relative rate of replica-

tion of mutants was similar to reporter construct. 
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Fig.III.11 Replication competence of NLS mutants in Huh-7 cells. (A) Capped RNA generated by in 

vitro transcription was transfected by electroporation into Huh-7 cells. Lysates of cells prepared at 

time points specified in the bottom were used to determine luciferase activity. Values were norma-

lized to the 4h luciferase activity reflecting transfection efficiency. (B) Culture supernatants of 

transfected cells from panel A were harvested 72h post electroporation and used to infected naive 

BHK-21 cells. Seventy two hours after infection DENV replication was determined by luciferase 

reporter assay reflecting infectivity titers released from transfected cells.  

III.1.3.2 Transcomplementation of replication deficient NLS mutants 

Most of the NLS mutants showing reduced replication also exhibited a reduced 

accumulation of NS5 in the nucleus. To study the effect of reduced nuclear ac-

cumulation of NS5 on replication impairment of NLS mutants, we tested the abil-

ity of wild type NS5 provided in trans to rescue the replication of NLS mutants. 

Reporter viruses carrying NLS mutations were transfected into a cell line stably 

expressing a selectable DENV sub-genomic replicon (Fig.III.12). A reporter virus 

carrying a partial deletion of NS1 was used as a positive control. The reporter 

assay of NLS mutants indicated that there was no rescue of their replication in 

replicon cell lines (Fig. 4A) while the NS1partial deletion construct could be res-

cued in replication. This experiment indicated that the NLS mutants could not be 
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complemented in trans and reduced replication of NLS mutants was probably not 

due to the reduced amounts of NS5 accumulated in the nucleus. The lack of res-

cue of NLS mutants also indicates that inability to counteract antiviral defense or 

recruit cellular proteins may not be the main reason for their reduced replica-

tion.  

 

Fig.III.12 Transcomplementation of αβ-NLS mutants. (A) Schematic representation of trans-

complementation experiment. (B) NLS mutants were transfected into Huh-7 cells containing a 

selectable subgenomic DENV-2 replicon. Replication of the NLS mutants was scored by luciferase 

assay using cell lysates prepared at given time point. The NS1 deletion mutant was used as a pos-

itive control. (C) Replication of NS1 deletion mutant in naïve Huh-7 cells  
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III.1.3.3 Effect of addition of NLS and NES to NS5 

The transcomplementation experiments indicated that NLS mutants cannot be 

rescued in replication by providing NS5 in trans.  To modulate the nuclear accu-

mulation of NS5 the -NLS of DENV was exchanged with corresponding regions 

from Kunjin virus(WNVKUN).  WNVKUN NS5 is reported as exclusively cytoplasmic 

contrary to DENV NS5. However DENV genomic constructs expressing WNVKUN 

NS5 -NLS failed to replicate indicating that the exchange of -NLS was not 

tolerated.  Another strategy adopted to modulate NS5 localization was the addi-

tion of NLS or NES to NS5 C-terminus. To enhance the localization of the protein 

in the nucleus a supplementary SV40 NLS or DENV -NLS was added whereas 

HIV Rev NES or PKI NES were used to enhance nuclear export. As a negative 

control a mutated SV40 NLS incapable of nuclear targeting was used. The NLS 

and NES were inserted into DENV luciferase reporter constructs and the replica-

tion was measured after electroporation into Huh-7 cells. All the constructs 

bearing supplementary NLS or NES failed to replicate (Fig.III.13). The failure in 

replication of constructs carrying mutant SV40 NLS indicates that addition of 

amino acid residues to the NS5 C-terminus is not tolerated. 

 

Fig.III.13 Replication of DENV reporter virus carrying a NLS or NES at NS5 C-terminal.  A. Sche-

matic representation of NLS or NES insertion at C-terminus of NS5  in DENV luciferase reporter 

virus.  Huh-7 cells were transfected with DENV luciferase reporter viruses carrying NLS or NES and 

replication measured after different timepoints by luciferase assay. B. Replication of NLS bearing 

constructs. The NLS screened were DENV -NLS, SV40 Large T-antigen NLS  C. Replication of 
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NES bearing constructs.   The NES screened include HIV Rev NES and Protein Kinase Inhibitor 

(PKI) NES. 

III.1.4 Effect of NLS mutations on enzymatic activity of NS5 

III.1.4.1 Bacterial expression and purification of NS5 

Wild type NS5 could not complement the NLS mutants in trans for replication 

indicating that loss of replication of NLS mutants was probably not due to loss of 

nuclear accumulation rather from failure of certain cis-functions necessary for 

viral replication. The structural studies on the NS5 RNA dependent RNA polyme-

rase (RdRP) domain had indicated that NLS forms an integral part of the poly-

merase domain (116) and subsequent genetic studies have revealed that there 

is significant cross talk between the polymerase domain and methyl transferase 

domain of NS5(64). The location of NLS mutations within the polymerase do-

main and the inability to complement their function in trans indicated possible 

disruption in cis-acting functions of NS5. To analyze the effect of NLS mutations 

on NS5 polymerase and methyl transferase activity, we bacterially expressed 

and purified histidine tagged full length NS5 containing NLS mutations.  We first 

verified the influence of histidine (His) tag addition to the C-terminus of NS5 on 

viral replication by inserting the His-tag at C-terminus of NS5 in DENV reporter 

virus and assayed the viral replication. The His-tagged virus showed only a 

slight reduction (three fold) in viral replication (Fig.III.14) compared to wild type 

virus indicating that the tagged NS5 is enzymatically functional.  
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Fig. III.14 Replication of DENV reporter virus carrying C-terminal histidine tagged NS5. A. Replica-

tion of tagged virus compared to wild type (without normalization for transfection). B. Replication 

normalized for transfection efficiency. C. Western blot analysis of tagged virus. 2x106 electropo-

rated BHK-21 cells were plated in 10 cm dish, harvested 72h post transfection in SDS sample 

buffer and one tenth is loaded per lane. Panel1. probed with anti-NS5 antibody, Panel2. probed 

with anti-penta histidine antibody. D. Supernatant infectivity of tagged virus. BHK-21 cells were 

infected with equal volume of supernatant harvested 72h post transfection and infectivity deter-

mined by immunofluorescence staining against envelope protein. 

Based on these results we cloned the C-terminal His-tagged NS5 into a bacterial 

protein expression vector under T7 promoter control (pET21b) and expressed it 

in bacteria. The protein recovered after purification was mostly of lower molecu-

lar mass as determined from Coomassie staining and western blot analysis indi-

cating possible proteolytic cleavage within the bacteria (Fig.III.15). To recover 

full length NS5 after purification an extra hemagglutinin tag (HA) was inserted in 

N-terminal resulting in a double tagged NS5 protein (HA-NS5-His). Fortunately 

this construct was resistant to protease cleavage in bacteria enabling recovery 

of most of the protein in full length form (Fig.III.15C,D). Since the protein was 

stable and yielded highly pure full length form after His-tag purification, purifica-

tion via a HA affinity column was not used in subsequent experiments.  



RESULTS 

69 
 

 

Fig.III.15 Bacterial expression and purification of NS5. A. Purification of NS5 carrying C-terminal 

histidine tag. I-input, FT-flowthrough, W-wash and E-elution. Purification from 100ml bacterial 

culture. 200µl bacterial culture worth input and flowthrough and 1/5th of elution fractions were 

loaded on 8% SDS-PAGE and Coomassie stained. B. Similar protein amounts were used for west-

ern blot using anti-NS5 antibody. C. Purification of NS5 carrying a N-terminal HA tag and C-

terminal His-tag. Purification from 100ml bacterial culture. 1ml bacterial culture worth input and 

flowthrough and 1/10th of elution fractions were loaded on 8% SDS-PAGE and Silver stained. D. 

5µg purified NS5 wild type and GND mutant loaded on a 8% SDS-PAGE and Coomassie stained. 

Empty vector is used as a control. 

III.1.4.2 Characterization of RdRP activity and MTase activity of NS5 

An RdRP assay and MTase assay were established to test the enzymatic activity 

of the purified NS5. NS5 protein carrying mutations in the polymerase catalytic 

active site (GNDGDD) and S-adenosyl methionine binding site (S56A) were 

used as control for RdRP and MTase assays respectively. In vitro transcribed 

capped DENV genomic RNA was used as template for RdRP assay and the enzy-

matic activity was assayed by measuring the incorporation of [32P]GTP into 

newly synthesized RNA. As compared to GND mutant the wild type protein 

showed a specific and dose dependent enzymatic activity (Fig.III.16). We fur-

ther studied the preference of NS5 polymerase different RNA templates in poly-

merase assay. NS5 was equally efficient in primer extension using polyC tem-
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plate primed with OligoG and de novo RNA synthesis using capped DENV ge-

nomic RNA templates. The single stranded polyC was used as a template albeit 

with lower efficiency indicating absence of template specificity of purified en-

zyme. The MTase activity was assayed by measuring the incorporation of [3H] 

CH3-group from S-adenosyl methionine (SAM) into DENV genomic RNA template 

containing type 0 cap. A NS5 SAM binding mutant (S56A) was used as a con-

trol for capping reaction. NS5 efficiently incorporated [3H] label into RNA indicat-

ing a robust MTase activity compared to the control mutant. Interestingly we 

observed that non-capped DENV genomic RNA templates also specifically me-

thylated with a lower efficiency indicating either GTase activity is not essential 

for MTase activity or presence of guanyl transferase activity in NS5 even in ab-

sence of NS3. RdRP assay and MTase activity assays indicated that bacterially 

purified NS5 retained both enzymatic activities.  

 

Fig.III.16 Enzymatic activity of bacterially expressed and purified NS5. A. RdRP activity of NS5 

assayed on PolyC:Oligo G template. The inactive GND mutant was used as control. B. MTase activ-
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ity of NS5. A Type 0 capped DENV 1-172 nucleotide RNA was used as template and SAM binding 

mutant S56A was used as control. C. Polymerase activity of NS5 on different RNA templates. 

100ng purified NS5 and 400ng RNA template were used for assay at room temperature for 2h. D. 

MTase activity of NS5 on uncapped RNA and Type 0 capped RNA. 

III.1.4.3 RdRp and MTase activity of NS5 NLS mutants  

The NS5 protein carrying NLS mutations were also expressed and purified using 

the bacterial expression system mentioned earlier. The Coomassie staining indi-

cated that the purified proteins were highly pure without detectable contaminat-

ing bacterial proteins or degradation products. The RdRP and MTase activities of 

the mutants were measured using assays standardized earlier. The RdRP assay 

indicated that the polymerase activity of all NLS mutants was unaffected except 

mutant 401-402 (Fig. 5B). Interestingly the polymerase activity of mutants 397-

398 and 396-398 were slightly higher than the wild type. The RdRP assay of the 

NLS mutants indicated that the mutations inside -NLS are well tolerated with 

respect to polymerase activity except in the very C-terminal region. The effect of 

NLS mutations on  2’O-methyl transferase activity of the protein was analyzed 

by measuring the incorporation of H3 methyl group to DENV RNA (1-172 nucleo-

tides). The SAM binding site mutant (S56A) (64) was included as a negative 

control. The MTase activity of  all NLS mutants were comparable to wild type 

indicating that reduction in replication of NLS mutants could not be attributed to 

impairment in MTase activity and mutations in -NLS  did not have significant 

effect on MTase activity of NS5. Taken together the in vitro assays demonstrat-

ed that replication reduction of most NLS mutants were not due to impaired en-

zymatic activity of NS5 as most mutations in -NLS had no significant effect on 

enzymatic activity of NS5.  



RESULTS 

72 
 

 

Fig.III.17  MTase and RdRp activity of NS5 carrying NLS mutations (A) Full length NS5 proteins 
containing a N-terminal HA tag and a C-terminal histidine tag were expressed in E. coli strain Ro-
setta(DE3) and extracted from the cell lysate by Ni-NTI affinity chromatography. Eluted proteins 
were analyzed for purity and integrity by SDS-PAGE and Coomassie staining. (B) RdRP assay of 

NLS mutants using in vitro transcribed DENV genomic RNA as template and 100ng purified NS5. 
Amount of incorporated [32P] radio-labelled GTP was measured by liquid scintillation counting. (C) 
2‘O-MTase assay of NLS mutants was carried out using DENV genomic RNA template, 100ng puri-
fied NS5 and 2 µCi of [3H] labelled S-adenosyl methionine. Tritium incorporation was determined 
by liquid scintillation counting.  

III.1.5 NS5 NLS mutants and cellular innate immune response 

III.1.5.1 IFN sensitivity of NLS mutants 

Interferon-mediated signaling plays an important role in mounting an effective 

antiviral defense hence preventing the spread of DENV during an infection. How-

ever once replication is established DENV subverts the interferon signaling by 

degrading STAT2 and hence blocking transcription of interferon-induced genes. 

NS5 plays an important role in blocking interferon induced signaling by binding 

to STAT2 and blocking its phopshorylation and nuclear transport (7). We inves-
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tigated the effect of NLS mutations on the ability of DENV to counteract interfe-

ron mediated antiviral defense. The sensitivity of DENV NLS mutants to IFN- or 

IFN- were studied to analyze the effect of reduced nuclear accumulation of NS5 

on viral replication under interferon treatment. HCV (strain JFH-1) luciferase re-

porter virus was used as a control. The addition of interferon- 24h post electro-

poration had a dose-dependent effect on DENV replication in Huh-7 cells with 

the highest concentration of 10000u/ml resulting in approximately 10 fold re-

duction in reporter activity (Fig.III.18). Although the level of replication of un-

treated wild type and NLS mutants was different they showed similar sensitivity 

to IFN- treatment as observed from the same extent of reduction in replication 

at different doses.  HCV also showed very high sensitivity to interferon- treat-

ment. The interferon- treatment had a stronger effect on DENV replication with 

1000u/ml reducing viral replication by 100 folds. The NLS mutants showed a 

similar dose-dependent reduction in replication as compared to wild type indicat-

ing that NLS mutations do not confer additional sensitivity to interferon. The re-

duction in STAT2 levels in infected cells was also similar between wild type and 

NLS mutant virus (Fig.III.18C). 
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Fig.III.18 IFN sensitivity  and STAT2 degradation by NLS mutants. A. Huh-7 cells were electropo-
rated with DENV reporter virus containing NS5 NLS mutations and 24h post transfection were 
treated with varying amounts of interferon-. The cells were harvested 48h later and viral replica-

tion measured by luciferase assay. B. replication of NLS mutants treated with interferon-. C. Huh-

7 cells electroporated with NLS mutants were treated 72h post electroporation with 100u/ml of 
interferon- for two hours and viral infection and STAT2 estimated later by indirect immunofluo-

rescence using anti-E and anti-STAT2 antibody. 

III.1.5.2 Effect of IL-8 on DENV replication and Induction of IL-8 by NLS 

mutants 

The earlier studies (93) on NS5 nuclear accumulation observed a higher induc-

tion of IL-8 during replication of NLS mutants compared to wild type. They sug-

gested that reduction in replication of NLS mutants could be due to their ability 

to induce higher amount of IL-8 compared to wild type. To analyze the effect of 

IL-8 on DENV replication, we measured replication of reporter viruses grown in 
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presence of IL-8 which was added either 4h prior to or after infection. The time 

of addition of IL-8 had a marked effect on its activity with the addition prior to 

infection significantly reducing viral replication whereas addition post infection 

had a stimulatory effect on replication (Fig.III.19). This implies that IL-8 does 

not have an inhibitory effect on an ongoing replication. We also measured the 

IL-8 induction by NLS mutants with qRT-PCR. The IL-8 mRNA induction by two 

NLS mutants with different level of replication was compared with the wild type. 

The results indicated that the level of IL-8 corresponded with the replication lev-

el of the mutants and not with the extent of nuclear accumulation of NS5 of the 

mutants. To further verify this point we transiently expressed pcDNA NS5 NLS 

mutants in 293T cells and their effect on IL-8 promoter activity was measured 

by co-transfection of IL-8 promoter driven luciferase reporter plasmid. The re-

sults indicated that reduction in nuclear accumulation of NS5 did not result in 

significant up regulation of IL-8 as compared to the wild type (Fig.III.19D). Tak-

en together the above results shows that IL-8 has no major inhibitory effects on 

ongoing viral replication and replication NLS mutants does not induce signifi-

cantly more IL-8 compared to wild type virus. 
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Fig.III.19  IL-8, NLS mutations and DENV replication. A. Effect of pre-treatment of IL-8 on DENV 

replication. Huh-7 cells were treated with increasing  concentration of IL-8 four hours prior to in-

fection with DENV luciferase reporter virus. Replication assayed 72h post infection by luciferase 

assay. B. Effect of IL-8 treatment 4h post infection. The cells were assayed for viral replication 

72h post infection as described earlier. In both A and B the IL-8 was present throughout the pe-

riod of incubation except during 4h of infection. C. IL-8 mRNA transcript levels 72h post electropo-

ration in Huh-7 cells transfected with either  DENV wild type or NLS mutants. Huh-7 cells electro-

porated with equal amount of in vitro transcribed RNA of full length viruses carrying NLS mutation 

and harvested 72h later and IL-8 RNA levels determined by quantitative real time PCR. D. IL-8 

reporter activity in presence of NS5 NLS mutants measured by co-transfection of pcDNA NS5 NLS 

mutants and IL-8 firefly luciferase reporter in Huh-7 cells. The cells were harvested after 24h and 

IL-8 induction measured by luciferase assay. A constitutive renilla luciferase construct was used to 

normalize transfection efficiencies. 

II.1.6 Characterization of NS5 interacting proteins identified by 

Yeast Two Hybrid Screen 

Few cellular proteins like STAT2 and ZO1 are known to interact with NS5. NS5 

interaction with STAT2 plays a major role in enabling DENV to counteract cellu-

lar antiviral defense. A Yeast Two Hybrid screen was performed to identify po-

tential cellular interaction partners of NS5. This screen was carried out with full 
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length NS5 as bait and cDNA libraries derived from liver and thymus as prey and 

it was conducted by our collaborator Dr. Sung-Key Young at ‘Panbionet’ in Po-

hang, South Korea. Self-activation was ruled out by control experiments. The 

screen identified 19 cDNA clones interacting with NS5 which were mapped by 

sequencing to five cellular proteins.  The proteins identified were Remodelling 

and Spacing Factor 1 (RSF1), Calpain 2(CAPN2), Nephronophthisis 3 (NPHP3), 

Betaine-homocystein methyl transferase (BHMT) and activating signal cointegra-

tor 1 complex subunit 3-like 1 (ASCC3L1). The functional effects of these pro-

teins on DENV replication was further characterized by siRNA-mediated silencing 

of these proteins in Huh-7 cells. qRT-PCR was used to measure the efficiency of 

silencing and the viral replication was assayed using a DENV reporter virus. The 

silencing of these proteins had minimal effect on DENV entry and replication in 

Huh-7 cells indicating that higher levels of these proteins were not necessary for 

efficient DENV replication (Fig.III.20).  

 

FigIII.20 Effect of siRNA silencing of cellular genes on DENV replication. The Huh-7 cells were 

transfected with 5nM siRNA of two different siRNAs targeting same gene and 24 or 48h later in-
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fected with DENV reporter virus. The cells were lyzed 72h post infection and viral replication as-

sayed by luciferase assay. A. qRT-PCR analysis of silencing of cellular genes measured 72h post 

infection. B. The residual RNA amounts after silencing. C,D: The viral replication in cells silenced 

with siRNAs targeting cellular genes. siRNA against DENV and HCV were used as positive and 

negative controls respectively. C. Infection 24h post silencing D. Infection 48h post silencing. 
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III.2 Identification of cellular kinases influencing DENV 

infection through genome-wide kinase RNAi screen 

Flaviviruses encodes only a limited set of proteins essential for their infection 

cycle. They extensively depend on host cell proteins during different steps of life 

cycle including virion attachment, entry, replication, particle assembly and se-

cretion. Although extensively studies were carried out to understand the func-

tions of viral proteins, there is only limited understanding on the role played by 

various cellular proteins during DENV infection. Initial studies on cellular factors 

modulating flaviviral infection were carried out by characterizing cellular proteins 

that directly interacted with viral proteins or viral RNA. Knocking-in or knocking-

out of some of these genes had significant impact on viral life cycle. However 

due to technical limitations the number of cellular genes identified by these 

techniques was very few. Few siRNA-based (RNAi) screens and drug-based 

screens recently published (23, 63, 98, 103) identified an array of cellular genes 

influencing DENV life cycle. However the RNAi screens done so far did not direct-

ly focus on host cell candidates influencing DENV infection in human cell. The 

first screen  primarily investigated the cellular genes affecting WNV infection and  

genes identified were later screened for their effect on DENV replication as well 

(63). Mosquitoes being the vector of DENV, the second screen investigated the 

insect genes crucial for DENV replication and identified 116 host genes among 

which 42 had human homologues with significant effect on viral replication in 

Huh-7 cells (103).  

In this study we planned to identify cellular kinases having significant influence 

on DENV entry and replication using a RNAi screen in Huh-7 cells. Another im-

portant parallel goal of this study was to establish a RNAi screening platform 

adapted to flaviviruses, develop the necessary tools and standardize protocols in 

view to perform larger scale RNAi screens later. Parameters like spotting of siR-

NA, cell seeding and handling, infection with DENV, immunostaining, image ac-

quisition and analysis and statistical tools for data analysis had to be optimized 

for this study. 
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III.2.1 Establishment of high-throughput siRNA screening plat-

form DENV 

The establishment of RNAi screening platform for DENV involved developing an 

optimal screening pipeline for efficient siRNA delivery, viral infection, scoring 

viral infection and appropriate statistical tools for data analysis. The technology 

required for siRNA spotting, image analysis and statistical and bioinformatical 

analysis of the data were developed by external research groups having exper-

tise in relevant fields in collaboration with us and were later optimized for DENV 

screen. However the procedures for cell seeding, viral infection and immunos-

taining and image acquisition were standardized by us during the course of this 

study. 

III.2.1.1 Optimization of transfection conditions 

The efficiency of siRNAs delivery into cells is one of the most critical parameters 

for a successful siRNA-mediated gene silencing experiment. This depends on the 

combination of cell type, transfection reagent used and duration of silencing. It 

is known that cell lines respond differently to various transfection reagents. We 

screened various commercially available transfection reagents to identify the 

optimal reagent which gives the best silencing efficiency without apparent cyto-

toxicity. A validated siRNA directed against the cellular protein p53 was trans-

fected with various transfection reagents and 48h later the silencing efficiency, 

cytostatic and cytotoxic effects were monitored by immunofluorescence. Among 

the transfection reagent screened Lipofectamine 2000® was found to be most 

efficient with a silencing efficiency of more than 90% in Huh-7 cells (Fig.III.21). 

No cytotoxic or cytostatic effects were observed during this time period. Based 

on these observations all further experiments were carried out using this trans-

fection reagent. 
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Fig.III.21  Screening of  transfection reagents for silencing efficiency. Huh-7 cells seeded on cover 

slips in 24-well plates and 24h later transfected with 5nM siRNA against p53 protein using different 

transfection reagents according to manufacturer’s protocol and the silencing efficiency was ana-

lyzed 48h later by immunofluorescence assay using anti-p53 antibody. 

III.2.1.2 Validation of siRNAs targeting the DENV genome 

During the establishment phase of the screen no cellular or viral siRNAs that can 

efficiently down regulate DENV replication was yet described. A siRNA with clear 

effect on viral replication was important in the screening procedure to validate 

the efficiency of gene silencing and to serve as a positive control against which 

the test candidates could be compared. To identify a siRNA which can efficiently 

reduce DENV replication a panel of siRNAs targeting various regions of DENV2 

genome was generated and their effect on viral replication was studied. The 

Huh-7 cells transfected with viral siRNAs were infected with DENV2 at an MOI of 

2-5 and 48h later viral replication was estimated by either immunofluorescence 

assay or western blot analysis. A siRNA against HCV was used as control. The 

siRNAs targeting the NS1 region was found most efficient in reducing viral repli-

cation followed by siRNA targeting NS3 region (Fig.III.22). The other siRNAs 
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tested had only minor effects on viral replication. The NS1 and NS3 siRNAs were 

selected as positive control in all subsequent experiments. 

 

                             

Fig.III.22 Effect of various siRNAs on DENV replication. A. Huh-7 cells seeded in 6-well plates con-

taining cover slips were transfected with 5nM siRNAs at 50-60% confluency and infected 24h later 

with DENV at MOI of 2-5. 48h later the coverslips were processed for immunofluorescence using 

anti-NS3 antibody whereas the rest of the cells were harvested in SDS sample buffer and western 

blot was carried using anti-DENV NS5 and anti-Calnexin antibody. 
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To test whether the selected siRNAs were as efficient in reverse-transfection 

format, the siRNAs were spotted on to chambered slides, Huh-7 cells were 

seeded on these plates, infected with DENV and viral replication was assayed by 

indirect immunofluorescence. The viral infection was reduced more than 80% in 

spots containing NS1 siRNA compared to control siRNA spots (Fig.III.23), prov-

ing that NS1 siRNA was highly efficient in suppressing viral replication in re-

verse-transfection experiments.  

 

 Fig.III.23 Reverse transfection based RNAi screen. A. Schematic representation of siRNA silencing 

by reverse-transfection. Chambered slides were spotted with siRNA/transfection reagent mix. The 

spots were dried and cells were seeded on siRNA spotted chambered slides. The siRNA  is taken up 

by cells growing on top of spots by reverse transfection. The cells were later infected with DENV 

and 24hr later infection is measured by immunostaining with DENV-E antibody and the nucleus 

visualized by DAPI staining. B. Steps involved in image processing and signal quantitation  C.The 

viral replication in spots transfected with NS1 siRNA or control HCV siRNA visualized by immunos-

taining against DENV envelope protein. 
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III.2.1.3 Enhancement of Immunofluorescence signal 

When images generated by conventional immunofluorescence staining protocol 

were quantified, the signal to noise ratio of images for non-silencing control siR-

NA spots was found less than two folds (signal intensity of  550 units and a 

background noise of 220 units for a 10 bit image) resulting in a very limited ob-

servation window. To improve the signal to noise ration two different modifica-

tions of the immunofluorescence techniques were tested. In the first approach a 

fluorescently labeled tertiary antibody against the fluorescently labeled second-

ary antibody to double the number of fluorescently labeled antibodies binding to 

each primary antibody. In the second approach the standard staining procedure 

involving primary and secondary antibody was repeated twice to form antibody 

trees containing multiple antibodies binding to the original primary antibody. We 

observed that the second method (Fig.III.24) resulted in higher signal to noise 

ration compared to the first method which was better than the standard staining 

procedure. This modified staining protocol was adopted for all further siRNA 

screens. Similarly optimizations were also done for defining the dilution of pri-

mary and secondary antibodies and the duration of staining (data not shown) to 

develop a highly sensitive staining procedure for the screening assay. 

 

Fig.III.24 Immunofluorescence staining modifications to improve specific signal. A. Immunofluo-

rescence staining. Huh-7 cells seeded on cover slips in 24-well plates were transfected with 5nM 

non-silencing control siRNAs at 30-40% confluency, infected with DENV2 at 2-5 m.o.i.  24hr later, 

cells were fixed and immunostained. 1. Standard staining (primary and secondary antibody stain-

ing) 2. Stained with primary, secondary and tertiary antibodies, 3. Double staining (primary and 

secondary staining followed again with primary and secondary staining). B. Quantitation of aver-
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age signal intensity: The mean signal intensity of images was quantified using software ImageJ 

and the values were normalized to cell number. 

III.2.1.4 Pilot siRNA screen 

A pilot siRNA screen was carried out with limited number of genes to study the 

performance of control siRNAs and to validate the assay setup based on reverse 

transfection. Huh-7 cells were seeded on chambered slides spotted with selected 

cellular siRNAs, infected with DENV and viral replication was measured by im-

munostaining and image quantitation. The candidate genes were selected based 

on their reporter interaction with DENV or other flaviviral proteins. The first and 

last spots contained fluorescently labeled siRNAs to properly orient the plates 

during image acquisition and to check the directional accuracy of the micro-

scope. siRNA targeting HCV and scrambled siRNA were used as negative control 

while siRNAs targeting NS1 and NS3 regions of DENV genome were used as pos-

itive control. Though none of the cellular genes checked showed a phenotype for 

DENV replication the positive control siRNAs efficiently reduced viral replication 

to 20% of nonsilencing control.  

 

Fig.III.25 Pilot imaging based RNAi screen. Chambered slides spotted with siRNAs against 11 cel-

lular genes and positive and negative controls were seeded with Huh-7 cells and 48h later infected 

with DENV at a MOI of 2. The viral replication was measured 24hr later by immunostaining with 

DENV-E antibody and the nucleus visualized by DAPI staining. The images acquired by Olympus 

Scan^R microscope were quantitated with ImageJ software. 
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III.2.2 siRNA-based  primary screen of the human kinome 

The primary screen was performed with a genome-wide kinase siRNA library 

containing siRNAs targeting 719 cellular  kinases with three independent siRNAs 

against each gene. The library was spotted onto seven chambered slides with 4 

positive controls (DENV NS1 and NS3 siRNAs in duplicate) and 13 negative con-

trol siRNAs spotted in each slide and each slide carried 384 siRNA spots. The 

image-based screen was carried out in duplicates and was repeated six times. 

The experiments were subjected to quality checks to eliminate images with 

staining artifacts, out of focus images etc. Nine experiments were finally utilized 

for statistical analysis and selection of the candidate genes. The statistical ana-

lyses included normalization of cell number between plates of the same experi-

ment, normalization of signal within plates based on cell count using Lowess to 

remove systematic effect of cell number on signal and finally normalization be-

tween plates based on signal by B-Score computation (for details refer methods 

section). The Z-score was calculated from the mean signal over replicates and 

the p-values were calculated for each siRNA using Student’s T-test. The candi-

date genes for validation screen were selected with low stringency criteria of a 

Z-score ≥ ±1 and a p-value of 0.05 with at least one siRNA against each gene. 

By these criteria 60 host susceptibility kinase candidates and 50 host resistance 

candidates were selected for further evaluation. We observed that for most of 

the selected candidates only one among the three siRNAs targeting them 

showed a phenotype. This could possibly be due to the nature of the screening 

library where most of the siRNAs used were bioinformatically derived and their 

silencing efficiency was not validated in actual experiments. The image based 

primary screen showed high variation between mean image intensities between 

some experiments primarily due to the immunostaining variations between the 

experiments and the variations introduced by the prototype scanning micro-

scopes used to acquire images from the initial set of experiments. The variations 

in siRNA spotting can account for some of the variance of the controls within and 

among experiments. 
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III.2.3 Validation of candidates from primary screen 

The candidates selected from the primary screen were further verified for their 

role in DENV entry or replication in a secondary screen where each selected 

gene was targeted with three new siRNAs. The image-based screen was re-

placed with a luciferase reporter virus based screen in 96-well format which 

enabled a more robust assay due to more number of cells and showed higher 

sensitivity and skipped the steps involving immunostaining, image acquisition 

and analysis. To establish the method a pilot screen was carried out using few 

candidates selected from the primary screen and control siRNAs. The 96-well 

plates were coated with siRNAs along with transfection reagents and Huh-7 cells 

seeded on them were infected with DENV renilla luciferase reporter virus and 

replication was measured by luciferase assay 48h post infection. The positive 

control NS1 siRNA reduced the viral replication by 80% compared to non-

silencing control siRNA. The siRNAs against host susceptibility factors LEDGF and 

CKI- identified from primary screen slightly reduced viral replication and siRNA 

against host resistance factor CD2 increased viral replication by two fold 

(Fig.III.26). 
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Fig.III.26 Pilot luciferase based RNAi screen. A. Schematic representation of the screen. 96-well 

plates with siRNAs against 7 cellular genes and positive and negative controls were seeded with 

1.5x105 Huh-7 cells/well and 48h later infected with DENV (generated by electroporation of 

capped DENV reporter construct in BHK-21 cells) at MOI of 0.5. The viral replication was measured 

48hr later by luciferase assay. B. Replication of DENV reporter virus in cells silenced with siRNAs 

against various genes as measured by luciferase reporter assay. The values are expressed as rela-

tive luminescence units ± SD 

III.2.3.1 Validation by infection based RNAi screen 

110 kinases selected from the primary screen were screened in the second 

round with a new set of three siRNAs targeting each gene. The validation screen 

for selected kinases was performed twice in duplicate. The statistical analysis 

showed that the replicates had a very high correlation and all positive controls 

significantly reduced viral replication; however the nonsilencing controls showed 

a high variability. 
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Fig.III.27 Statistical analysis of validation screen. A. The box plot representation of normalized 

luciferase signal from four experiments. The L1 and L2 and the plates 1 and 2 out of the total sev-

en plates used. The red bars represent negative control wells whereas green bars represent posi-

tive control wells. To minimize variations due to medium evaporation, the outer row of wells of the 

96-well plate were not spotted with siRNAs and hence not used. B. Pearson correlation of individu-

al wells between experiments. The correlation of wells in plate 1 between four repetitions is given 

as an example.  

Following statistical analysis the kinases having significant impact on entry or 

replication of DENV were selected by the hit criteria of Z-score greater than ±2 

for at least one siRNA targeting each gene. Based on these criteria 18 host sus-

ceptibility kinases and 14 host resistance kinases were identified  to have signifi-

cant effect on entry/replication of DENV. One kinase (MAP3K7) showed signifi-

cant up and down regulation of viral replication with different siRNAs indicating 

off-target effect with at least one siRNA. 
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Table III.1 List of genes identified by infection based validation screen  

 

III.2.3.2 Validation by DENV reporter replicon based RNAi screen 

The kinase candidates identified by DENV infection based validation screen could 

be essential for either viral entry or replication. To delineate the role of candi-

date kinases on either entry or replication of DENV, a RNAi screen was carried 

out on Huh-7 cells stably bearing a DENV subgenomic renilla luciferase reporter 

replicon. As there is no virion entry step involved and viral replication is already 

established in this cell line the observed effects of silencing different kinase will 

solely be due to their effect on ongoing DENV replication. The candidates were 

selected after 48h silencing of Huh-7 cells carrying DENV subgenomic replicon 

bearing renilla luciferase reporter. The screen identified 4 kinases essential for 

maintaining viral replication and 11 kinases reducing viral replication. Only very 

few candidates from the infection based screen were identified (2/18 depend-

ency kinases and 2/15 resistance kinases) and with several new genes were 

newly identified which were not present among those identified by infection 

based screen. The kinases which were not identified as host dependency factors 
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in this screen might have role in either viral entry or establishment of replica-

tion. The host dependency kinases which were newly identified might have role 

in maintenance of replication but not in the early stages like formation of repli-

cation complexes. Similarly the newly identified host resistance factors might be 

crucial in reducing ongoing viral replication but might not have major role in 

preventing the formation of replication complexes.  

Table III.2 List of genes identified by replicon based validation screen  

 

 

III.2.4 Validation of selected candidates with chemical inhibitors 

The effect of three selected candidates Fibroblast growth factor receptor 4 

(FGFR4), Mitogen activated kinase kinase kinase 7 (MAP3K7) and Diacylglycerol 

kinase  (DAGQ) on DENV entry and replication was validated by using chemical 

inhibitors targeting these genes. Huh-7 cells were treated with FGFR4 inhibitor 

PD173074, MAP3K7 inhibitor 5Z-7-Oxozeaenol or DAGQ inhibitors R59-022 and 

Dioctanoylglycol with varying concentration and their effect on DENV replication 

was measured by infection with DENV luciferase reporter virus. The FGFR4 in-

hibitor PD173074 and DAGQ inhibitor R59-022 showed dose dependent inhibi-

tion of DENV replication (Fig. III.28). The cytotoxic effects measured with Cyto-

Tox 96 kit (Promega) indicated no detectable cytotoxic or cytostatic effects for 
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PD173074 whereas R59-022 showed cytotoxicity at higher concentrations 

(100µM). DENV replicon cells bearing luciferase reporter was treated with 

chemical inhibitors to differentiate their effect on viral entry and replication. The 

DAGQ inhibitor R59-022 showed a dose dependent decrease in viral replication 

whereas FGFR4 inhibitor PD173074 had only mild effect indicating FGFR4 might 

be involved in viral entry and DAGQ in viral replication.  

 

Fig.III.28 Effect of kinase inhibitors on DENV replication. A. Huh-7 cells treated with kinase inhibi-

tors at different concentrations for 16h and infected with DENV luciferase reporter virus at MOI of 

0.5 and replication measured after 48h by luciferase assay B. Huh-7 DENV replicon cells treated 

with kinase inhibitors at different concentrations and replication measured after 48h by luciferase 

assay C. Cytotoxicity of kinase inhibitors on Huh-7 cells measured with CytoTox96® (Promega) kit. 

Higher Lactate dehydrogenase (LDH) activity in medium indicates apoptosis while lower LDH activ-

ity in cell lysate indicates cytostatic effects  D. Cytotoxicity of kinase inhibitors on Huh-7 cells 

measured with CytoTox96® (Promega) kit.  
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IV  Discussion 

IV.1.1 DENV NS5 nuclear localization upon infection 

Flaviviral polymerases are multifunctional enzymes playing important role in vir-

al replication and subverting the cellular innate immune response. Despite all 

their currently known activities taking place in the cytoplasm substantial amount 

of NS5 accumulate in nucleus of DENV and YFV infected cells. However NS5 nuc-

lear localization is not reported for other flaviviruses like WNV and WNVKUN indi-

cating that its functional role is virus specific. It is also interesting to note that 

both DENV and YFV are lymphotrophic (replicating mainly in the human circula-

tory system) whereas WNV is neurotrophic. The nuclear accumulation of NS5 in 

DENV infected cells was reported by several earlier studies as reviewed here 

(29) however the functional role of this phenomenon is not clear yet.  

We started the study by examining whether NS5 nuclear accumulation is a 

common theme in all DENV replication supporting cell lines. We observed NS5 

nuclear accumulation in a wide range of mammalian cell lines and insect cell line 

(C6/36) indicating that this phenomenon is highly conserved among insect and 

mammalian hosts of DENV. This also implies that the mechanisms regulating the 

partitioning of the protein between the cytoplasmic and nuclear compartments is 

conserved among both host species and nuclear accumulation of NS5 may have 

important functional roles in both human and arthropod host.   

The nuclear localization of NS5 when expressed alone was similar to an infection 

event indicating that NS5 does not dependent on other viral proteins for its nuc-

lear transport, though this does not rule out probable modulation of this process 

by its interaction with other viral proteins. An intriguing observation made dur-

ing this study was that NS5 nuclear transport was much less efficient when ex-

pressed under a T7 polymerase transcription system as compared to   cellular 

transcription machinery or DENV replication. Further analysis on this observation 

revealed that NS5 expressed from a T7 driven system could not be mobilized 

into nucleus by co-expression of other DENV non-structural proteins or by wild 
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type infection. The role of mRNA capping was ruled out by treatment of pcDNA 

NS5 expressing cells with RNA cap methylation inhibitor Sinefungin. Western 

blot analysis showed same apparent size for NS5 produced during DENV infec-

tion and by transient expression under T7 promoter. These observations indicate 

that the nuclear transport of NS5 can be modulated by external factors like ex-

pression system however more experiments are required to elucidate the exact 

reason for this observation.  

The polymerase protein of several flaviviruses is known to be phosphorylated 

(10, 11, 79, 95). The phosphorylation of DENV polymerase was reported block 

its interaction with NS3 and results in its nuclear accumulation (59). In vitro 

phosphorylation studies have identified a CKII phosphorylation site within NS5 

(36) while a mass spectrometric analysis discovered a Protein kinase G (PKG) 

phosphorylation site (12). To examine whether NS5 phosphorylation occur in 

Huh-7 cells  we did orthophosphate labeling of DENV replicon cells followed by 

immunoprecipitation. However the assay failed to detect any phosphorylated 

bands of NS5 despite successful immunoprecipitation and radiolabeling of con-

trol protein. The initial studies on DENV NS5 phosphorylation carried out on CV-

1 cells observed that the hyperphosphorylated form of NS5 was only found dur-

ing low serum conditions indicating phosphorylation could be regulated by phy-

siological conditions. The reasons for our failure to detect the phosphorylated 

form of the protein may be a lower sensitivity of the assay, preferential binding 

of the antibody used to nonphosphorylated form of the protein or low proportion 

of phosphorylated protein in the total pool of NS5 in Huh-7 cells. Recent mass 

spectrometric studies indicate amino acid 449 within NS5 polymerase domain is 

phosphorylated by PKG and mutation of this residue severely affects viral titers. 

Further investigations are required to know whether NS5 phosphorylation is cell 

line dependent and it regulates the nuclear accumulation of NS5.  

A recent study identified a NES within -NLS indicating that NS5 is exported 

from the nucleus (94) implying NS5 is highly mobile protein shuttling between 

cytoplasm and nucleus. We used NS5 N-terminally fused with GFP to study the 

rate of mobility of the protein between and within cytoplasm and nucleus. The 
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protein showed free diffusion within the nucleus indicating that major portion of 

the protein within the nucleus is not bound to cellular structures. However within 

the cytoplasm the diffusion was much restricted indicating possible interaction 

with membrane bound cellular proteins. The approximately tenfold difference 

observed between the import rate and export rate of the protein into the nuc-

leus indicates an efficient import mechanism resulting in eventual nuclear accu-

mulation of NS5 with very little nuclear export. Though this approach is limited 

by possible difference in mobility between GFP-NS5 and NS5 during an infection, 

it gives the closest possible approximation on NS5 shuttling between the com-

partments. The role of NS5 shuttling between two compartments on viral life 

cycle is not clearly understood presently. The earlier studies indicated that 

blocking nuclear export of NS5 by leptomycin results in a moderate phenotype 

of twofold increase in viral titer and a twofold reduction in IL-8 production. How-

ever since leptomycin induced block of CRM1-mediated nuclear export may have 

pleiotropic effects on several cellular processes it is difficult to delineate the ef-

fects due to block in NS5 export from general effects on the cellular metabolism.  

Taken together earlier studies and our data indicate that nuclear accumulation 

of NS5 is cell type independent and occurs in both human and insect cells. Cur-

rent models suggest that phosphorylation may act as a switch between NS5 cy-

toplasmic retention by its interaction with NS3 and its nuclear transport. Howev-

er our experiments to detect phosphorylated form of NS5 in Huh-7 cells were 

not successful. So additional experiments are required to verify this model for 

NS5 nuclear transport.  

IV.1.2 Contribution of NLS on NS5 nuclear transport 

A systematic deletion mapping of NS5 NLSs was carried out to identify the resi-

dues which are most critical for nuclear accumulation. The deletion mapping of 

NS5 NLSs revealed that deletion of -NLS increased the cytoplasmic retention of 

the protein however did not completely block the transport of the protein in to 

the nucleus. The deletion of -NLS completely retained the protein in cytoplasm 

indicating its essential role in NS5 nuclear transport. These observations being 
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clearly in line with the earlier study (93) indicates that though -NLS is critical 

for nuclear import, several other regions may influence nuclear transport proba-

bly due to their role in formation of proper topology or regulating factors in-

fluencing importin binding.  The -NLS carrying a classical bipartite NLS motif 

(RRX14RRR) was systematically mutated to narrow down the most essential resi-

dues within this region required for NS5 nuclear transport. Unlike the previous 

studies which concentrated on the putative bipartite NLS motif within this re-

gion, a systematic mutational analysis of all charged residues within the -NLS 

was undertaken in the present work for mapping the relative contribution of 

these residues in NS5 nuclear transport.  

Though the mutations of bipartite NLS reduced nuclear transport, the mutations 

of a charge cluster (396REE398) downstream of bipartite NLS fully abrogated NS5 

nuclear transport. This observation was interesting since this mutation could 

successfully block the activity of both NLS motifs without altering them directly. 

This could probably due to its influence on the protein topology or direct wea-

kening of NS5-importins interaction. Further binding studies between the mu-

tants and importins might reveal the precise mechanism involved. Apart from 

mapping the critical amino acid motifs essential for NS5 nuclear transport, the 

mutational analyses also generated several NLS mutants with varying degree of 

nuclear accumulation which were used in further functional investigations. 

IV.1.3 Replication of NLS mutants 

The next question we addressed was the effect of NLS mutations on DENV repli-

cation. In order to address this question we inserted the mutations into DENV 

luciferase reporter virus and their replication efficiency assayed by electroporat-

ing them into permissive cells. The NLS mutants replicated with varying efficien-

cies and most of them showed a positive correlation between their NS5 nuclear 

accumulation and replication. However one mutant having significant cytoplas-

mic retention of NS5 replicated like wild type in BHK-21 cells and about 3-5fold 

lower than wild type in Huh-7 cells indicating partial reduction in nuclear trans-

port of the protein does not adversely affect viral replication. The mutant with 
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no detectable NS5 in the nucleus replicated to 2-5% of wild type levels indicat-

ing detectable amount of nuclear NS5 accumulation may not be essential for 

minimal viral replication.   

The reduction in replication of mutants was higher in Huh-7 compared to BHK-

21 cells indicating cell type specific effects. Alternatively this could be due to the 

lower permissibility of Huh-7 cells for DENV which amplifies the small difference 

in replication efficiencies between mutants due to its ability to mount a stronger 

antiviral defense. In addition attempts to adapt the NLS mutants resulted in re-

version back to higher replicating forms having a higher nuclear NS5 accumula-

tion indicating nuclear accumulation of NS5 is linked with increased replication 

efficiency. 

Since we observed a link between higher replication and higher nuclear accumu-

lation in case of most mutants, the next question addressed was whether the 

replication of NLS mutants can be rescued by providing wild type NS5 enabling 

to restore possible functions of nuclear NS5. A transcomplementation experi-

ment was carried out in Huh-7 cells where replication of NLS mutants was ana-

lyzed in presence wild type NS5 supplied by either stably replicating DENV sub-

genomic replicon or wild type infectious virus. Interestingly none of the mutants 

could be rescued in replication by the presence of nuclear localizing wild type 

NS5 indicating the observed replication defects could not be due to absence of 

NS5 capable of nuclear transport.  

This result indicates that reduced replication of NLS mutants is probably not en-

tirely due to its inability to move into nucleus and perform some vital functions 

necessary for replication but rather be due to its effects on enzymatic activities 

of the protein or its ability to interact with other viral or cellular proteins. 

Though the previous studies (93) directly correlated the reduced replication of 

NLS mutants with reduction in nuclear accumulation to establish a direct link 

between the two phenotypes, the effects of NLS mutations on viral replication 

seems more complex and is governed by the multiple effects these mutations 

might have on various structural and functional aspects of this protein. The 

above experiments indicate that it is likely that the same residues essential for 
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nuclear accumulation could also be involved in certain functions directly related 

to replication. If both the phenotypes are linked to same residues, the defects in 

replication of NLS mutants will be coincidental rather than caused by reduced 

nuclear accumulation. However more experiments employing larger number of 

mutants may be needed to resolve this problem. 

IV.1.4 Bacterial expression and purification of NS5 

The structural studies of NS5 revealed that NLS forms an integral part of poly-

merase domain and any mutations in NLS may have multiple effects on the en-

zymatic activities of the protein (117). To investigate the effects of NLS muta-

tions on enzymatic activities of NS5 we set out to bacterially express and purify 

NS5 protein carrying the mutations. The protein was cloned with a C-terminal 

histidine tag and expressed in bacteria. The initial efforts to purify the protein 

were unsuccessful since most of the protein obtained after purification was trun-

cated products. As an alternate strategy a dual tagged NS5 construct carrying a 

HA-tag on the N-terminal and Histidine tag on the C-terminal was created to 

carry out a two step purification using both tags to obtain the full length protein. 

However surprisingly the dual tagged NS5 was resistant to protease cleavage 

and full length protein with high purity could be obtained by one step His-tag 

purification. The exact reason for the increased stability of dual tagged NS5 pro-

tein is unclear.  

The bacterially purified NS5 protein showed both RdRP and MTase activities on 

in vitro transcribed DENV genomic RNA template. Interestingly the protein could 

also utilize viral RNA templates lacking 5’UTR and even non viral RNA templates 

(polyC) indicating an apparent lack of template specificity. This observation was 

contrary to earlier studies suggesting a very high preference for authentic DENV 

RNA template containing cyclization sequence and both 5’UTR and 3’UTR (1). 

The discrepancy between our present observations with earlier findings could be 

due to either the subtle differences like different tags used for protein purifica-

tion in both studies or the difference in assay buffer composition. However it is 

noteworthy that some flaviviral polymerases like DENV and WNV when ex-
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pressed alone are reported to show template specificity (1, 87) while others like 

TBE and KUNV are not (48). More studies using purified NS5 from different 

strains of DENV is required to resolve these contradicting observations. The 

MTase activity was observed on both capped and uncapped DENV RNA tem-

plates indicating either GTase activity is not a prerequisite for MTase activity or 

NS5 in initially performing GTase activity followed by MTase activity even in ab-

sence of extraneously supplied GTP. Further investigations are ongoing to unveil 

the complex regulation between various enzymatic activities residing in NS5 pro-

tein.  

IV.1.5 Effect of NLS mutations on RdRP and MTase activity of NS5 

The inability of transcomplement replication of NLS mutants with wild type NS5 

strongly indicated loss of certain cis-acting functions of the protein required for 

replication which includes its enzymatic activity or interaction with other proteins 

in the replication complex. The polymerase and MTase activity of NLS mutants 

were studied using bacterially expressed and purified NS5 protein. Despite high 

level of variation in replication ability all mutants except one showed RdRP activ-

ity similar to wild type and none of the mutants showed any reduction in MTase 

activity. These results indicate that the reduction in replication of NLS mutants 

could be due to factors other than RdRP and MTase activities of the protein such 

as the interaction with other proteins in the replication complex or the regulation 

between various enzymatic activities of NS5. The GTase activity of the mutants 

also needs to be investigated. Recent studies indicate that a close coordination 

between NS3 and NS5 proteins are required for GTase activity of NS5 (54) Ow-

ing to its proximity to NS3 interaction site and importin binding sites, NLS muta-

tions could probably alter the protein topology and hence interaction of NS5 with 

other proteins. A comprehensive analysis of all known interactions of NS5 may 

be required to elucidate the exact reason for replication defect of certain NLS 

mutants. 
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IV.1.6 Influence of IL-8 in DENV replication 

Several cytokines and chemokines are induced in patients infected with DENV 

(16, 21) and their levels are closely linked to various disease manifestations. 

Studies on DENV infection in primary human monocytes identified IL-8 as one of 

the major chemokines released.  Higher amount of IL-8 secretion was also ob-

served when 293T and ECV304 cells lines were infected with DENV (14). Later 

studies identified NS5 as the major determinant for IL-8 release (73) which is 

mediated mainly through activation of CAAT/enhancer binding protein. Recent 

studies investigated the relationship between NS5 nuclear accumulation and IL-

8 induction and reported that increased cytoplasmic retention of the protein re-

sulted in increased IL-8 secretion (93). This study also suggested that the 

strong antiviral response elicited by NLS mutants by their ability to induce high-

er amounts of IL-8 during replication could be a major determinant in their im-

paired replication. To investigate more into this observation, we studied the di-

rect effect of IL-8 on dengue replication. Huh-7 cells infected with DENV reporter 

virus were treated with IL-8 either prior or after virus infection. The results 

clearly demonstrated that cells pretreated with IL-8 supported less viral replica-

tion but IL-8 treatment just 4h post infection rather had a positive effect on viral 

replication. This suggests that a higher induction of IL-8 might not adversely 

affect an ongoing infection implying higher IL-8 induction during replication of 

NLS mutants alone cannot be the major determinant for their impaired replica-

tion.  

Further investigations on induction of IL-8 by different NLS mutants revealed 

that their level of replication rather than NS5 nuclear localization was the main 

determinant of IL-8 induction. The amount of IL-8 RNA transcripts induced by 

wild type was ≥10 fold over the lower replicating nuclear localization deficient 

mutants. To normalize for the difference in NS5 protein expression due to vary-

ing levels of replication of NLS mutants, pcDNA NS5 wild type and NLS mutant 

constructs were compared for their IL-8 induction ability by co-transfection with 

IL-8 promoter driven luciferase reporter construct. The results suggested similar 

ability of wild type and NLS mutant constructs to induce IL-8 reporter activity 
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further indicating NLS mutations does not significantly increase the IL-8 induc-

tion ability of NS5. 

As a summary we did not find significant effect of IL-8 on ongoing DENV replica-

tion and observed that viral replication rather than NS5 nuclear accumulation 

had a stronger effect on IL-8 release during DENV replication. In our studies NLS 

mutants also did not show higher ability of induce IL-8 compared to wild type 

NS5. Taken together these results suggest that IL-8 induction during virus repli-

cation cannot explain the drastic drop in replication observed for certain NLS 

mutants. 

IV.1.7 Cellular proteins interacting with NS5 

Only limited number of cellular proteins is known to interact with NS5. The NS5 

interaction with Importins is shown by yeast two hybrid and immunoprecipita-

tion studies and is required for the nuclear transport of the protein. NS5 also 

bind to STAT2, prevents its phosphorylation and facilitates its proteasome me-

diated degradation, blocking IFN mediated gene expression (7, 72).  Zonula oc-

culedens-1 (ZO-1) is reported to interact with NS5 in the nucleus, however the 

functional aspects of this interaction are not known.  

We carried out a yeast two hybrid screen using human thymus and liver cDNA 

libraries to identify potential cellular interaction partners of NS5. The screen 

identified five cellular proteins interacting with NS5. Three proteins viz. CAPN2, 

BHMT and NPHP3 were cytoplasmic whereas the other two RSF1 and ASCC3L1 

had nuclear functions. CAPN2 is a cysteine protease associated with ER, Golgi or 

lipid rafts and is implicated in signal transduction (78) while BHMT is involved in 

homocysteine homeostasis (89). The NPHP3 may be involved in renal tubular 

development and its mutant alleles are implicated in heritable genetic disorder, 

adolescent nephronophthisis (88). The nuclear protein RSF1 is essential for for-

mation of regular nucleosome arrays and also suppresses TNF-alpha induced 

transcription by NF-B (52) whereas ASCC3L1 is a small nuclear ribonucleo-

protein having probable role in cellular RNA splicing.   
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We addressed the functional significance of NS5 interaction with these cellular 

proteins on viral replication by gene silencing by RNAi. siRNA mediated silencing 

of these five proteins however had very minor effect on viral replication indicat-

ing that either the residual level of proteins following silencing was sufficient to 

maintain their function or these proteins are unlikely to play important roles in 

DENV replication. It could also be possible that these interactions are nonspecific 

or might have some functional significance in human infection which is not ap-

parent in cell culture based systems.   

IV.2.1 Identification of cellular kinases influencing DENV replica-

tion 

Most RNA viruses codes for only a limited repertoire of proteins and depend ex-

tensively on host cell proteins for successful completion of their life cycle. Exten-

sive studies have been carried out on functional aspects of viral proteins leading 

to a deeper understanding about their role in viral life cycle. However the func-

tional studies of the role of cellular proteins were hampered in the past due to 

lack of high throughput tools required for their easier manipulation. The siRNA 

based silencing technique develop in the last decade enabled specific down re-

gulate individual genes enabling rapid screening for their functions in viral life 

cycle. The genome-wide siRNA screen for WNV (63) revealed the importance of 

several cellular pathways important in WNV life cycle. Interestingly many of 

those genes also had significant impact on DENV suggesting conserved path-

ways exploited by both viruses. The siRNA screen which identified more than 

hundred insect genes essential for propagation of DENV in insect cells  (103) 

have observed that mammalian counterpart of about 40% of those genes al-

tered the viral replication in mammalian cells as well indicating DENV may be 

exploiting similar cellular pathways in both insect and human host for its surviv-

al.  

Protein kinases are a group of proteins involved in protein phosphorylation 

(transfer of phosphate groups from high energy donors like ATP into proteins). 

An estimated 30% of cellular proteins are phosphorylated and this post transla-
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tional modification modulates their activity, interaction and stability and plays an 

important role in many important cellular process including cell division, signal 

transduction, cell death, innate immune response etc. Several steps in cellular 

innate antiviral defense pathways involved in production of IFN and activation of 

IFN-induced genes depends on phosphorylation by cellular kinases for proper 

function. Owing to their crucial role in many important cellular processes we se-

lected this subset of genes to establish a siRNA screening platform and investi-

gate their role in entry and replication of DENV. 

IV.2.2 Establishment of siRNA screening platform for DENV 

The optimizations were carried out for cell seeding, duration of silencing prior to 

infection, multiplicity of infection, duration of infection, and protocols required 

for fixation, permeabilization and immunostaining and image acquisition were 

developed during this study. The Huh-7 cells were selected for screening due to 

its human origin and growth properties which were optimal for microscopy in-

cluding superior adhesion to chambered slides, formation of uniform monolayer, 

and larger cytoplasm. To ensure proper quality control for silencing experiments 

development of a siRNA that can consistently down regulate viral replication was 

important. Since no cellular genes that could down regulate DENV entry or repli-

cation was know during the initial phase of the project, we screened siRNAs tar-

geting various regions of DENV genome to identify an efficient siRNA that can 

downregulate DENV replication. The siRNAs targeting NS1 region of the genome 

was found most efficient followed by one targeting NS3 region. The siRNAs per-

formed equally well in both liquid transfection and reverse transcription formats.  

Another obstacle we faced during establishment of an imaging based RNAi 

screen was the weak specific signal (with the signal to noise ratio of two folds) 

obtained after standard immunostaining protocol which greatly reduced the 

measuring window. Among the modification of the immunostaining protocol 

checked, repeating the antibody staining twice resulted in a signal to noise ratio 

of fivefold, improving the detection window. As the experiment envisioned only a 

single round of infection, a higher MOI of 2-5 was used to ensure infection of 
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more than 90% cells. Similarly optimizations were also done for duration of si-

lencing and the concentration of primary and secondary antibodies to enable a 

higher detection window. In summary every individual step in the experimental 

protocol was optimized to maximize the measurement window and to minimize 

the variability introduced during various steps of the experiment.   

To test the screening pipe line developed, a pilot RNAi screen was carried out 

with siRNAs targeting a few cellular proteins reported to interact with flavivirus-

es and positive and negative controls. Though none of the cellular genes 

screened had significant effect on viral replication, the positive control siRNA 

reduced viral replication more than 80% delivering a clear measuring window to 

score the candidates and the overall performance of various steps of the screen 

was as expected.  

IV.2.3 Primary screen and validation screen 

The primary screen being imaging based faced numerous technical difficulties 

during screening phase. Three out of 12 experimental repetitions done were dis-

carded due to poor performance of control siRNAs and suboptimal image acqui-

sition. About 15% of the images acquired within the selected experiments were 

also discarded due to staining artifacts and out of focus images. Despite various 

quality control measures implemented the primary screen still showed a high 

variation (Pearson correlation coefficient between 0.1 and 0.7) between the re-

petitions and this was also strongly related to quality variations between differ-

ent batches of siRNA spotted chambered slides. Due to high data variability a 

less stringent selection criteria (Z ≥1, p ≤0.05) was employed to select candi-

dates for further validation. However even with these criteria, for more than 

95% of the candidate genes selected, only one among the three siRNAs showed 

significant effect on viral replication. A higher chance of off-target effects exist 

when candidates are selected based on performance of single siRNAs. However 

since it was not practical to verify the silencing efficiency of all genes selected 

from primary screen, we selected three siRNAs different from primary screen for 
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the validation screen. By this strategy we could verify each gene with at least 

two independent siRNAs when both screens are taken together. 

To develop a more statistically robust and faster screening system for validation 

experiments a 96-well plate based DENV luciferase reporter assay was devel-

oped. The luciferase read out enabled to skip the immunostaining, image acqui-

sition and image analysis steps which were majorly contributing to assay varia-

bility. In 96-well plate based assay, each measurement was made from 10 fold 

more cells compared to image based screen further increasing the assay robust-

ness.  The validation screen was carried out with a set of 3 siRNAs against each 

gene and was 96-well plate based using DENV reporter virus and was repeated 

twice in duplicate resulting in four independent experiments. The analysis of the 

data indicated a robust performance of control siRNAs and a higher correlation 

(Pearson correlation coefficient ≥0.8) between the replicates. A stringent candi-

date selection criterion (Z ≥ ± 2, p ≤0.05) resulted in identification of 19 HSFs 

and 15 HRFs. Similar to primary screen all the hits identified showed effect with 

one among the three siRNAs used. A DENV luciferase reporter replicon based 

validation screen was used to differentiate between kinases essential for entry 

and establishment of replication and for ongoing replication. With a moderately 

stringent hit criteria of (-1.5 ≥Z ≥2, p ≤0.05), this screen identified 4 HSFs and 

11 HRFs with only 4 genes in common with the infection based validation 

screen. The newly identified HSFs might only be essential for maintenance of 

viral replication whereas the HRFs could be essential to reduce ongoing viral 

replication.   

More experiments need to be done to verify the silencing of target genes and to 

remove the candidates showing off-target effects. In summary the statistical 

robustness of reporter virus based validation screen could be attributed to the 

higher sensitivity of luciferase reporter system, elimination of image acquisition 

and analysis steps and use of 96-well plates containing approximately 0.3-

0.5million cells per well compared to few hundred cells per siRNA spot on cham-

bered slides.  
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Further validation of selected candidates was done using specific chemical inhibi-

tors on either and infection based or DENV replicon based assay. These studies 

indicated that FGFR4 might be involved in viral entry whereas DAGQ might be 

involved in viral replication. The mechanism behind these observations need fur-

ther investigation. Chemical inhibitors and gene knock-in studies has to be car-

ried out to further verify the gene candidates and rule out siRNA off-target ef-

fects. 

The gene ontology analysis of the confirmed kinases did not show enrichment of 

any specific pathway, and most were associated with more global networks. This 

could be due to the very limited number of candidates derived from the screen 

and kinases constitute only a small part of most cellular pathways. However 

once gene candidates are validated with high confidence, the effect of the path-

ways where these genes form a part can be analyzed further. 

IV.2.4 Comparison of Kinase siRNA screen with other published 

screens 

The first flavivirus siRNA screen identified 15 cellular kinases essential for WNV 

replication and among which 8 were identified essential for DENV infection. Our 

experiments identified 24 HSFs and 16 HRFs having significant effect of DENV 

entry or replication. There was no overlap between the candidates identified by 

both screens.  This could probably be due to the different screen setups used in 

both studies including different cells lines (HeLa in WNV screen and Huh-7 in our 

screen), duration of silencing (72h in WNV screen compared to 48h in present 

screen) and different sources of siRNA libraries. The screen which investigated 

the insect genes essential for viral replication and identified 116 drosophila 

genes essential for DENV replication among which 42 had human homologues 

showing significant effects in Huh-7 cells. Since none of the Huh-7 homologues 

identified were kinases, the candidates from this screen could not be compared 

to our screen. The variations in siRNA libraries and screening procedures fol-

lowed could be the reason behind the very less overlap between the candidates 

identified by different screens. It is also notable that only sec16 and vATPase 
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were the only two common candidates between the WNV and DENV drosophila 

screen (22). The limited overlap between candidates identified by various 

screens are also noted for other viruses like HIV indicating the experimental 

procedures like selection of RNAi library, cell lines used and silencing duration 

etc. can have big influence on the candidates identified. Validation the candi-

dates with different assays are hence an important step to improve the quality 

of RNAi screens. 
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VI  Appendix 

siRNA screens: Supplementary Data 

Table VI.1  List of siRNAs used in the primary siRNA screen (Silencer® Human Ki-

nase siRNA Library V3, AM80010V3). Each gene was silenced with three separate 

siRNA. The gene IDs, siRNA IDs and plate layout of the siRNAs in the screen 

are given in this table. The table is attached as an electronic appendix. 

Table VI.2  Statistical analysis of the primary RNAi screen. The index.html file 

allows navigation through the results which include the list of candidates, the 

data normalization process and intra and inter-experiment correlation. The 

table is attached as an electronic appendix. 

Table VI.3  List of siRNAs used in validation screen. Each gene was silenced 

with three separate siRNA. The gene IDs, siRNA IDs and plate layout of the 

siRNAs in the screen are given in this table. The table is attached as an elec-

tronic appendix. 

Table VI.4  Statistical analysis of the infection based validation screen. The 

index.html file allows navigation through the results which include the list of 

candidates, the data normalization process and intra and inter-experiment 

correlation. The table is attached as an electronic appendix. 

Table VI.5  Statistical analysis of the DENV replicon based validation screen. 

The index.html file allows navigation through the results which include the list 

of candidates, the data normalization process and intra and inter-experiment 

correlation. The table is attached as an electronic appendix. 

Table VI.6 List of host susceptibility genes selected after primary screen.  

No: Gene 
Sym-
bol 

Full Gene Name RefSeq  
Acc No: 

Gene 
ID 

Sense siRNA  
Sequence 

Exon(s) 
Targeted 

Vali-
dated 

Z-
score 

pVa-
lue 

1 COPB coatomer protein complex, subunit 
beta 

NM_016
451 

1315 GGAUCUUCAA-
CAUCCUAAUtt 

3,4  -1.89 0.017 

2 CDK7 cyclin-dependent kinase 7 (MO15 
homolog, Xenopus laevis, cdk-
activating kinase) 

NM_001
799 

1022 GGCCAGAGAUAA-
GAAUACCtt 

2 Yes -1.83 0.001 

3 LEDGF
/p75 

Lens epidermal growth factor   AGACAGCAUGAG-
GAAGCGAtt 

ND  -1.80 0.003 

4 MAP3
K7IP2 

mitogen-activated protein kinase 
kinase kinase 7 interacting protein 2 

NM_145
342 

23118 GCAAAGGAACAU-
CUAGCCUtt 

3  -1.79 0.036 

5 FES feline sarcoma oncogene NM_002
005 

2242 GGACAUUGAGAAG-
CUGAAGtt 

4  -1.79 0.026 

6 CKI-
delta 

   CCUGCUGCUUGCU-
GACCAAtt 

ND  -1.78 0.021 

7 IRAK1 interleukin-1 receptor-associated 
kinase 1 

NM_001
025242 

3654 GGUUUCGUCACC-
CAAACAUtt 

6,7 Yes -1.69 0.005 

8 PRPS1 phosphoribosyl pyrophosphate 
synthetase 1 

NM_002
764 

5631 CGCAUGCUUU-
GAGGCAGUAtt 

6  -1.69 0.005 

9 LOC39
0975 

- XM_372
749 

39097
5 

UUUUGC-
CUUCGCCCAGGAGtt 

4  -1.66 0.015 

10 ERBB4 v-erb-a erythroblastic leukemia viral 
oncogene homolog 4 (avian) 

NM_005
235 

2066 GGAUCGAUAUGC-
CUUGGCAtt 

3 Yes -1.65 0.008 

11 RPS6K ribosomal protein S6 kinase, 70kDa, NM_003 6198 GGACAUGGCAGGA- 2 Yes -1.64 0.045 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=COPB
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDK7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LEDGF/p75
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LEDGF/p75
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7IP2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7IP2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=23118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FES
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CKI-delta
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CKI-delta
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=IRAK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRPS1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=390975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=390975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ERBB4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=RPS6KB1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6198
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B1 polypeptide 1 161 GUGUUUtt 

12 LEDGF
/p75 

   AGACAGCAUGAG-
GAAGCGAtt 

ND  -1.64 0.015 

13 CDKL3 cyclin-dependent kinase-like 3 NM_016
508 

51265 GGAGAUAUCUCA-
GAACCAAtt 

8 Yes -1.60 0.027 

14 COPB coatomer protein complex, subunit 
beta 

NM_016
451 

1315 GGAUCUUCAA-
CAUCCUAAUtt 

3,4  -1.53 0.025 

15 PRKY protein kinase, Y-linked NM_002
760 

5616 GGAGCAGCACGUG-
CACAAUtt 

2 Yes -1.53 0.006 

16 RYK RYK receptor-like tyrosine kinase NM_002
958 

6259 GGAUUGAACUG-
GAUGACAGtt 

8,9 Yes -1.50 0.010 

17 CXCR4    GCAUGACGGACAA-
GUACAGtt 

ND  -1.48 0.035 

18 PLXNA
2 

plexin A2 NM_025
179 

5362 GGACAUGAAUGC-
CUACCUCtt 

31  -1.47 0.015 

19 PAPSS
1 

3-phosphoadenosine 5-
phosphosulfate synthase 1 

NM_005
443 

9061 GGUGGCUUUCGUG-
GUUGCAtt 

2 Yes -1.47 0.004 

20 AKAP8
L 

A kinase (PRKA) anchor protein 8-like NM_014
371 

26993 GGAUCCAGUUUGU-
GUGUUCtt 

10  -1.44 0.010 

21 RPS6K
A5 

ribosomal protein S6 kinase, 90kDa, 
polypeptide 5 

NM_004
755 

9252 GGCAACAAUCGUU-
CAAAAGtt 

3 Yes -1.43 0.016 

22 MAP3
K7 

mitogen-activated protein kinase 
kinase kinase 7 

NM_003
188 

6885 GGAGAUCGAGGUG-
GAAGAGtt 

1 Yes -1.41 0.033 

23 NTRK1 neurotrophic tyrosine kinase, 
receptor, type 1 

NM_001
012331 

4914 GAAACAAGUUUGG-
GAUCAAtt 

12  -1.41 0.009 

24 LOC34
0371 

nuclear receptor binding protein 2 NM_178
564 

34037
1 

GGUACAAAAUCGU-
GAAUCUtt 

17  -1.40 0.014 

25 FLT3 fms-related tyrosine kinase 3 NM_004
119 

2322 GGGAACAUUUCCU-
GUCUCUtt 

3  -1.39 0.027 

26 CDK5 cyclin-dependent kinase 5 NM_004
935 

1020 GGAGCUGAAGCA-
CAAGAACtt 

3 Yes -1.34 0.013 

27 NTRK3 neurotrophic tyrosine kinase, 
receptor, type 3 

NM_002
530 

4916 GGAUUCAGGGAA-
CAGCAAUtt 

2  -1.34 0.020 

28 PKN3 protein kinase N3 NM_013
355 

29941 GGAGCUACAG-
CAUCGACUGtt 

5 Yes -1.32 0.006 

29 HCK hemopoietic cell kinase NM_002
110 

3055 GGGAGAUACCGU-
GAAACAUtt 

7  -1.32 0.006 

30 C9orf9
6 

chromosome 9 open reading frame 
96 

NM_153
710 

16943
6 

CGACCAUGGAGCU-
ACAUGAtt 

ND  -1.32 0.018 

31 ANKK1 ankyrin repeat and kinase domain 
containing 1 

NM_178
510 

25523
9 

GGGUUCAACAU-
GAUGAUGAtt 

4,5  -1.31 0.034 

32 MPP1 membrane protein, palmitoylated 1, 
55kDa 

NM_002
436 

4354 GCCGUCUUCCUG-
CACUACAtt 

5  -1.31 0.003 

33 DKFZP
434C1
31 

unc-51-like kinase 3 (C. elegans) NM_015
518 

25989 CGGAAUAUCUCU-
CACCUGGtt 

4  -1.31 0.007 

34 MARK
1 

MAP/microtubule affinity-regulating 
kinase 1 

NM_018
650 

4139 GGCUGAAAACCUU-
CUCCUUtt 

6,7  -1.28 0.018 

35 CDK4 cyclin-dependent kinase 4 NM_000
075 

1019 GGCUUUUGAG-
CAUCCCAAUtt 

2 Yes -1.27 0.007 

36 ACVR1 activin A receptor, type I NM_001
105 

90 GGCUGCUUCCAG-
GUUUAUGtt 

4 Yes -1.24 0.039 

37 LEDGF
/p75 

   AGACAGCAUGAG-
GAAGCGAtt 

ND  -1.20 0.015 

38 ALS2C
R2 

amyotrophic lateral sclerosis 2 
(juvenile) chromosome region, 
candidate 2 

NM_018
571 

55437 GGAUUUGACAA-
CUUGACUUtt 

5 Yes -1.20 0.009 

39 EGFR epidermal growth factor receptor 
(erythroblastic leukemia viral (v-erb-
b) oncogene homolog, avian) 

NM_201
284 

1956 GGUGGUCCUUGG-
GAAUUUGtt 

2  -1.20 0.005 

40 DAPK1 death-associated protein kinase 1 NM_004
938 

1612 GGACGGACA-
CAUUGCCCUUtt 

17 Yes -1.19 0.031 

41 STK22
C 

serine/threonine kinase 22C (sper-
miogenesis associated) 

NM_052
841 

81629 GGGCCAGAAGA-
GUUUAUCCtt 

2  -1.18 0.008 

42 NEK8 NIMA (never in mitosis gene a)- 
related kinase 8 

NM_178
170 

28408
6 

CCACUUUGUUCUC-
CUACCAtt 

15  -1.18 0.039 

43 DGKQ diacylglycerol kinase, theta 110kDa NM_001
347 

1609 GGCUGCACAA-
CAAGGGUGUtt 

19,20  -1.18 0.004 

44 NEK5 NIMA (never in mitosis gene a)-
related kinase 5 

NM_199
289 

34167
6 

CCGACCAUC-
CAUAAAUUCCtt 

ND  -1.18 0.017 

45 LOC91
807 

LOC91807 NM_182
493 

91807 GGUUAAG-
GAAAUUUCCAACtt 

13  -1.17 0.003 

46 RIPK3 receptor-interacting serine-
threonine kinase 3 

NM_006
871 

11035 GGCCACAGGGUUG-
GUAUAAtt 

10  -1.17 0.048 

47 TK2 thymidine kinase 2, mitochondrial NM_004
614 

7084 GGCAUACUCGUC-
CUCAGGUtt 

5,6 Yes -1.17 0.015 

48 LY6G5
B 

lymphocyte antigen 6 complex, locus 
G5B 

NM_021
221 

58496 GAUUCAGUGGUU-
CUACCAGtt 

1  -1.16 0.009 

49 MAP2 mitogen-activated protein kinase NM_030 5605 GGUGGAAGAAGUG- 11 Yes -1.16 0.004 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LEDGF/p75
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LEDGF/p75
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDKL3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=51265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRKY
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=RYK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PLXNA2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PLXNA2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PAPSS1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PAPSS1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=9061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=AKAP8L
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=AKAP8L
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=26993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=RPS6KA5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=RPS6KA5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=9252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=NTRK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=340371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=340371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FLT3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDK5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=NTRK3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PKN3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=29941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=HCK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=C9orf96
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=C9orf96
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=169436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=169436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ANKK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=255239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=255239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MPP1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=25989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MARK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MARK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDK4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ACVR1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=90
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LEDGF/p75
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LEDGF/p75
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ALS2CR2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ALS2CR2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=55437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=EGFR
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=STK22C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=STK22C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=81629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=NEK8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=284086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=284086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=NEK5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=341676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=341676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=91807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=RIPK3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=11035
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K2 kinase 2 662 GAUUUUtt 

50 EPHA8 EPH receptor A8 NM_020
526 

2046 GCCAGUUCCU-
CAAAAUCGAtt 

3  -1.15 0.032 

51 AMHR
2 

anti-Mullerian hormone receptor, 
type II 

NM_020
547 

269 GGCGAACCUGUGU-
GUUCUUtt 

2  -1.14 0.011 

52 PRKCI protein kinase C, iota NM_002
740 

5584 GGUUCGAGACAU-
GUGUUCUtt 

2 Yes -1.12 0.045 

53 PRPSA
P1 

phosphoribosyl pyrophosphate 
synthetase-associated protein 1 

NM_002
766 

5635 GGCACAUAAAGU-
CUUAACUtt 

11  -1.12 0.024 

54 COPB coatomer protein complex, subunit 
beta 

NM_016
451 

1315 GGAUCUUCAA-
CAUCCUAAUtt 

3,4  -1.12 0.049 

55 LEDGF
/p75 

   AGACAGCAUGAG-
GAAGCGAtt 

ND  -1.11 0.017 

56 FLJ250
06 

FLJ25006 NM_144
610 

12492
3 

CCAGGAAUCC-
CUAAAGCCAtt 

2  -1.11 0.029 

57 IHPK3 inositol hexaphosphate kinase 3 NM_054
111 

11728
3 

GGUUGAGAGGAA-
GAGCUUCtt 

4  -1.11 0.026 

58 PRKCQ protein kinase C, theta NM_006
257 

5588 GGAUUUUAUCUUG-
CACAAAtt 

11  -1.09 0.017 

59 ULK1 unc-51-like kinase 1 (C. elegans) NM_003
565 

8408 CGCCACAUAACAGA-
CAAAAtt 

28  -1.09 0.011 

60 NEK6 NIMA (never in mitosis gene a)-
related kinase 6 

NM_014
397 

10783 GGAUUGCUGACA-
GACAGAAtt 

10  -1.07 0.008 

61 CDK3 cyclin-dependent kinase 3 NM_001
258 

1018 CGAGAGGAAGCU-
CUAUCUGtt 

3  -1.06 0.013 

62 MVK mevalonate kinase (mevalonic 
aciduria) 

NM_000
431 

4598 GGUAGCACUGGCU-
GUAUCCtt 

2,3 Yes -1.04 0.025 

63 EEF2K eukaryotic elongation factor-2 kinase NM_013
302 

29904 GGUUAAUAAGUA-
CUACAGCtt 

3 Yes -1.04 0.049 

64 SCAP1 src family associated phosphoprotein 
1 

NM_003
726 

8631 GCCAGGUA-
CUAUUGGGAUUtt 

2,3  -1.04 0.036 

65 DKFZp
434C1
418 

EPH receptor A6 NM_173
655 

28522
0 

CCAGUAAUGAUU-
GUGGUGGtt 

10  -1.03 0.017 

66 MELK maternal embryonic leucine zipper 
kinase 

NM_014
791 

9833 GGCCUUGAAGAAC-
CUGAGAtt 

4 Yes -1.03 0.034 

67 ERBB2 v-erb-b2 erythroblastic leukemia 
viral oncogene homolog 2, neu-
ro/glioblastoma derived oncogene 
homolog (avian) 

NM_004
448 

2064 GGACACGAUUUU-
GUGGAAGtt 

5,6  -1.03 0.025 

68 CKI-
alpha 

   GAAACAUGGU-
GUCCGGUUUtt 

ND  -1.03 0.034 

69 PLXNA
3 

plexin A3 NM_017
514 

55558 GGAUGAGUUUGU-
GUCCUCCtt 

3  -1.02 0.009 

70 PTK2B PTK2B protein tyrosine kinase 2 beta NM_173
176 

2185 GGCUGAAGCACAU-
GAAGUCtt 

7  -1.01 0.014 

71 KIAA09
99 

KIAA0999 NM_025
164 

23387 GGAACUGUUCAGG-
CACAUGtt 

20 Yes -1.01 0.004 

72 LOC39
1295 

- XM_497
791 

39129
5 

CCUCAAGUGUUA-
GAACCUUtt 

2  -1.01 0.016 

73 FGFRL
1 

fibroblast growth factor receptor-like 
1 

NM_021
923 

53834 GGAAGAAGAAGUG-
GACACUtt 

4  -1.01 0.010 

74 INSR insulin receptor NM_000
208 

3643 GGAACUCGGCCU-
CUACAACtt 

2 Yes -1.00 0.012 

 

Table VI.7 List of host resistance genes selected after primary screen. 

No: Gene 
Sym-
bol 

Full Gene Name RefSeq 
Acc No: 

Gene 
ID 

Sense siRNA Se-
quence 

Exon(s)  
targeted 

Vali-
dated 

Z-
score 

pVa-
lue 

1 LIMK1 LIM domain kinase 1 NM_016
735 

3984 GGAUCUAU-
GAUGGCCAGUAtt 

2 Yes 1.96 0.009 

2 CD2 CD2 antigen (p50), sheep red blood 
cell receptor 

NM_001
767 

914 CCUGUAUCAA-
GAUGGGAAAtt 

3  1.80 0.004 

3 GRK1 G protein-coupled receptor kinase 1 NM_002
929 

6011 GCAGGUUCAUCGU-
GUCUCUtt 

2  1.76 0.001 

4 ERBB3 v-erb-b2 erythroblastic leukemia 
viral oncogene homolog 3 (avian) 

NM_001
005915 

2065 CCUUGAGAUUGUG-
CUCACGtt 

2  1.74 0.006 

5 PNKP polynucleotide kinase 3-phosphatase NM_007
254 

11284 GGAUCUUGUA-
CCCAGAGAUtt 

5,6  1.70 0.021 

6 AURKB aurora kinase B NM_004
217 

9212 GGAGGAUCUACUU-
GAUUCUtt 

6 Yes 1.66 0.003 

7 MAP4
K5 

mitogen-activated protein kinase 
kinase kinase kinase 5 

NM_006
575 

11183 GGGUCUUGC-
CUAUUUGCAUtt 

6,7 Yes 1.58 0.017 

8 ERN2 endoplasmic reticulum to nucleus 
signalling 2 

NM_033
266 

10595 GGAUGAAACUGG-
CUUCUAUtt 

ND  1.54 0.001 
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9 FN3KR
P 

FN3KRP NM_024
619 

79672 GGACGAGUGUUC-
GUGAAAGtt 

1 Yes 1.45 0.002 

10 PRKW
NK1 

WNK lysine deficient protein kinase 1 NM_018
979 

65125 GGAUGAUAUCGAA-
GAGCUGtt 

1 Yes 1.45 0.007 

11 CSNK1
D 

casein kinase 1, delta NM_139
062 

1453 GGAUUAGCGAGAA-
GAAAAUtt 

5  1.43 0.008 

12 MKNK
2 

MAP kinase interacting se-
rine/threonine kinase 2 

NM_017
572 

2872 GGAGUACGCCGU-
CAAGAUCtt 

5,6 Yes 1.41 0.031 

13 KIS U2AF homology motif (UHM) kinase 
1 

NM_144
624 

12793
3 

GGCAAUCAGGAU-
GUAAAGUtt 

2,3 Yes 1.38 0.014 

14 CAMK
1G 

calcium/calmodulin-dependent 
protein kinase IG 

NM_020
439 

57172 GGUCUUGUCGGCA-
GUGAAAtt 

5  1.35 0.016 

15 PIK3C2
G 

phosphoinositide-3-kinase, class 2, 
gamma polypeptide 

NM_004
570 

5288 GGAAAGCUAUCUC-
GAAAGCtt 

6  1.32 0.004 

16 CIB4 - NM_001
029881 

13010
6 

UGACAUGUCUGAG-
GACCUCtt 

ND  1.31 0.011 

17 UMP-
CMPK 

cytidylate kinase NM_016
308 

51727 GGAAGAACCCA-
GAUUCACAtt 

2 Yes 1.31 0.039 

18 CSK c-src tyrosine kinase NM_004
383 

1445 GGAGAAAGAAAGU-
ACCCAGtt 

13 Yes 1.30 0.042 

19 CIB1 calcium and integrin binding 1 
(calmyrin) 

NM_006
384 

10519 GGGAUGGAACCAU-
CAACCUtt 

6  1.25 0.023 

20 SCGB2
A1 

secretoglobin, family 2A, member 1 NM_002
407 

4246 CCAUCAAUUCCGA-
CAUAUCtt 

2  1.23 0.009 

21 PIP5K2
C 

phosphatidylinositol-4-phosphate 5-
kinase, type II, gamma 

NM_024
779 

79837 GGCCAGCUCCAA-
GAUCAAGtt 

2  1.21 0.009 

22 MAPK
4 

mitogen-activated protein kinase 4 NM_002
747 

5596 GGGUGAGCUGUU-
CAAGUUCtt 

1 Yes 1.20 0.031 

23 OSRF OSRF NM_012
382 

23548 GCACUACAGUUAA-
CUCCAAtt 

3 Yes 1.19 0.032 

24 C19orf
35 

chromosome 19 open reading frame 
35 

NM_198
532 

37487
2 

GCAUUUGUGUA-
GGCUGUUCtt 

4  1.16 0.017 

25 BLK B lymphoid tyrosine kinase NM_001
715 

640 GGAAGAGAAGG-
CUAUGUGCtt 

5  1.16 0.029 

26 LTK leukocyte tyrosine kinase NM_206
961 

4058 CCCGGAUGUGCU-
GAAUUCAtt 

19  1.16 0.039 

27 LOC34
0371 

nuclear receptor binding protein 2 NM_178
564 

34037
1 

GCCACCUCUUU-
GACCCUUUtt 

17  1.16 0.003 

28 PANK2 pantothenate kinase 2 
(Hallervorden-Spatz syndrome) 

NM_153
640 

80025 GCAUUCGGAA-
GUACCUGACtt 

2 Yes 1.15 0.008 

29 JAK2 Janus kinase 2 (a protein tyrosine 
kinase) 

NM_004
972 

3717 GGUGUAUCUUUA-
CCAUUCCtt 

3 Yes 1.14 0.007 

30 MAP3
K4 

mitogen-activated protein kinase 
kinase kinase 4 

NM_006
724 

4216 GCCAGUCGGU-
CUAAUUUGAtt 

2  1.14 0.037 

31 LOC44
2141 

- XM_498
022 

44214
1 

GGCACCUUCAUG-
GUGAAAUtt 

1,2  1.13 0.029 

32 SPHK1 sphingosine kinase 1 NM_021
972 

8877 GGCUGAAAUCUC-
CUUCACGtt 

3 Yes 1.13 0.004 

33 DGKB diacylglycerol kinase, beta 90kDa NM_145
695 

1607 GCUCGGAGCUA-
GAAAAUAUtt 

6,7  1.12 0.036 

34 HK1 hexokinase 1 NM_033
496 

3098 GGAAGGAGAUGAA-
GAAUGGtt 

2 Yes 1.10 0.014 

35 TRIB2 tribbles homolog 2 (Drosophila) NM_021
643 

28951 GGAUUUCGAAGA-
GUUGUCGtt 

1 Yes 1.10 0.036 

36 LOC38
8221 

- XM_370
939 

38822
1 

GCUGUGAUUAGCA-
CUAAGUtt 

7,8  1.10 0.031 

37 FGFR4 fibroblast growth factor receptor 4 NM_002
011 

2264 GAGCAGGAGCUGA-
CAGUAGtt 

2  1.07 0.025 

38 LATS1 LATS, large tumor suppressor, 
homolog 1 (Drosophila) 

NM_004
690 

9113 GGUUCUGAGA-
GUAAAAUUAtt 

8  1.07 0.005 

39 ROCK1 Rho-associated, coiled-coil contain-
ing protein kinase 1 

NM_005
406 

6093 GGCAGA-
CAAUUUAAAAGGUtt 

20  1.06 0.005 

40 BTK Bruton agammaglobulinemia tyro-
sine kinase 

NM_000
061 

695 GGUAUAUACCAU-
CAUGUACtt 

18  1.06 0.013 

41 PRKC
M 

protein kinase D1 NM_002
742 

5587 GGAAGAGAUGUAG-
CUAUUAtt 

13 Yes 1.05 0.005 

42 DTYM
K 

deoxythymidylate kinase (thymidy-
late kinase) 

NM_012
145 

1841 GGAAAAGUUGAGC-
CAGGGCtt 

3 Yes 1.04 0.016 

43 CALM2 calmodulin 2 (phosphorylase kinase, 
delta) 

NM_001
743 

805 GGAAUUGGGAACU-
GUAAUGtt 

3  1.02 0.021 

44 GCKR glucokinase (hexokinase 4) regulator NM_001
486 

2646 CGGAAAUCGAUA-
CUGUGGUtt 

14  1.01 0.047 

45 STK32
A 

serine/threonine kinase 32A NM_145
001 

20237
4 

GUGCGUG-
GAGCGCAAUGAAtt 

4  1.01 0.013 

46 MAP3
K4 

mitogen-activated protein kinase 
kinase kinase 4 

NM_005
922 

4216 CCUCGACAGAU-
GAAACGCAtt 

2  1.00 0.046 
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=51727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CSK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CIB1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=10519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=SCGB2A1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=SCGB2A1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PIP5K2C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PIP5K2C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=79837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAPK4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAPK4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=OSRF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=23548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=C19orf35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=C19orf35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=374872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=374872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=BLK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LTK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC340371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC340371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=340371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=340371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PANK2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=80025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=JAK2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC442141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC442141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=442141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=442141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=SPHK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=8877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DGKB
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=HK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=TRIB2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=28951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC388221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC388221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=388221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=388221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FGFR4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LATS1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=9113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ROCK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=BTK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRKCM
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRKCM
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DTYMK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DTYMK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CALM2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=GCKR
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=STK32A
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=STK32A
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=202374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=202374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4216


APPENDIX 

120 
 

Table VI.8 Infection based Validation screen: The list of host susceptibility 

factors with significant effect on DENV infection. 

No: Gene 
Symbol 

Full Gene Name RefSeq 
Acc No: 

Gene ID Sense siRNA Se-
quence 

Exon(s) 
Targeted 

Vali-
dated 

Z-score 

1 FGFR4 fibroblast growth factor receptor 4 NM_002
011 

2264 UCAAGAUGCU-
CAAAGACAAtt 

11,9,11 No -3.3 

2 FES feline sarcoma oncogene NM_002
005 

2242 AGUGGGUGCU-
GAACCAUGAtt 

13 No -3.3 

3 NEK5 NIMA (never in mitosis gene a)-related 
kinase 5 

NM_199
289 

341676 CUACAA-
CAAUAAAACGGAUtt 

8 No -3.1 

4 C19orf35 chromosome 19 open reading frame 
35 

NM_198
532 

374872 CGCUGAUCAAUGU-
CUCUCUtt 

4 No -3.0 

5 MAP3K7 mitogen-activated protein kinase 
kinase kinase 7 

NM_003
188 

6885 CGUGUGAACCAUC-
CUAAUAtt 

3,3,3,3 Yes -2.8 

6 CDK4 cyclin-dependent kinase 4 NM_000
075 

1019 UGCUGA-
CUUUUAACCCACAtt 

8 Yes -2.7 

7 CALM2 calmodulin 2 (phosphorylase kinase, 
delta) 

NM_001
743 

805 AAAGGAAUUGG-
GAACUGUAtt 

3 Yes -2.6 

8 DGKQ diacylglycerol kinase, theta 110kDa NM_001
347 

1609 GGAAGCUACU-
GAACCCUCAtt 

16 No -2.6 

9 PRKD1 protein kinase D1 NM_002
742 

5587 CAUCAUCUAU-
GUAAGCCUAtt 

16 No -2.6 

10 ANKK1 ankyrin repeat and kinase domain 
containing 1 

NM_178
510 

255239 AGCACAUCGUGU-
CUAUCUAtt 

2 No -2.5 

11 ACVR1 activin A receptor, type I NM_001
105 

90 GAGGCAU-
GAAAAUAUCUUAtt 

7 Yes -2.4 

12 BTK Bruton agammaglobulinemia tyrosine 
kinase 

NM_000
061 

695 GAAACUGUUUG-
GUAAACGAtt 

16 No -2.4 

13 MPP1 membrane protein, palmitoylated 1, 
55kDa 

NM_002
436 

4354 CAGUGCACCAGAUC-
CAUAAtt 

10 No -2.3 

14 ERBB3 v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 3 (avian) 

NM_001
005915 

2065 UCGUCAUGUUGAA-
CUAUAAtt 

3,3 No -2.3 

15 BLK B lymphoid tyrosine kinase NM_001
715 

640 UGAUGGAAGUUGU-
CACUUAtt 

12 No -2.3 

16 FLT3 fms-related tyrosine kinase 3 NM_004
119 

2322 CAACUAUCUAA-
GAAGUAAAtt 

17 No -2.3 

17 ANKK1 ankyrin repeat and kinase domain 
containing 1 

NM_178
510 

255239 GGUUCCGCAU-
CAUCCAUGAtt 

2 No -2.2 

18 CSNK1D casein kinase 1, delta NM_001
893 

1453 CACGCACCUUG-
GAAUUGAAtt 

4,4 No -2.2 

19 CDK5 cyclin-dependent kinase 5 NM_004
935 

1020 GCAAUGAUGUC-
GAUGACCAtt 

9 Yes -2.2 

20 CD2 CD2 molecule NM_001
767 

914 GGACAUCUAUCU-
CAUCAUUtt 

4 No -2.0 

21 ALS2CR2 amyotrophic lateral sclerosis 2 (juve-
nile) chromosome region, candidate 2 

NM_018
571 

55437 GCUUUACA-
GAAAGCCGUGAtt 

5 Yes -2.0 

22 GCKR glucokinase (hexokinase 4) regulator NM_001
486 

2646 CCCUGUUAUUA-
GCAGCCCAtt 

10 No -2.0 

23 HK1 hexokinase 1 NM_000
188 

3098 CAUCCACACUUCUC-
CAGAAtt 

17,17,20,
20,21 

Yes -2.0 

24 MAP3K4 mitogen-activated protein kinase 
kinase kinase 4 

NM_005
922 

4216 CUAACGAACUGAU-
CUGGUUtt 

3,3 No -2.0 

25 PTK2B PTK2B protein tyrosine kinase 2 beta NM_004
103 

2185 CAGGAGAA-
CUUAAAGCCCAtt 

11,12,7,7 No -1.9 

26 CDK4 cyclin-dependent kinase 4 NM_000
075 

1019 CACCCGUGGUU-
GUUACACUtt 

4 Yes -1.9 

27 ALS2CR2 amyotrophic lateral sclerosis 2 (juve-
nile) chromosome region, candidate 2 

NM_018
571 

55437 CCUCAAUCAGAAUC-
CAGAAtt 

10 Yes -1.9 

28 DGKB diacylglycerol kinase, beta 90kDa NM_004
080 

1607 GGUUUUGGAUUG-
CAUAGAAtt 

17,17 No -1.9 

29 TK2 thymidine kinase 2, mitochondrial NM_004
614 

7084 GCUCUGUGAUA-
CCCAAUAAtt 

10  -1.9 

30 LY6G5B lymphocyte antigen 6 complex, locus 
G5B 

NM_021
221 

58496 CCUUCUGUAG-
GAUGCAUUUtt 

2 No -1.8 

31 MAP3K7I
P2 

mitogen-activated protein kinase 
kinase kinase 7 interacting protein 2 

NM_015
093 

23118 GAAUAAGUGAAA-
CACGGAAtt 

3 Yes -1.8 

32 CDK7 cyclin-dependent kinase 7 NM_001
799 

1022 CCUUAAAGGAG-
CAAUCAAAtt 

11 Yes -1.8 

33 FGFR4 fibroblast growth factor receptor 4 NM_002
011 

2264 ACACCUGCCUGGU-
AGAGAAtt 

6,5,6 No -1.8 

34 PIK3C2G phosphoinositide-3-kinase, class 2, 
gamma polypeptide 

NM_004
570 

5288 GUAGCAUUCCUC-
CAACAAAtt 

2 No -1.8 

35 DAPK1 death-associated protein kinase 1 NM_004
938 

1612 GAUCAAGCCUAAA-
GAUACAtt 

9 No -1.8 

36 C9orf96 chromosome 9 open reading frame 96 NM_153
710 

169436 CGACCAUGGAGCU-
ACAUGAtt 

12 No -1.7 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FGFR4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FES
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=NEK5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=341676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=C19orf35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=374872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDK4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CALM2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DGKQ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRKD1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ANKK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=255239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ACVR1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=90
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=BTK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MPP1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ERBB3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=BLK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FLT3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ANKK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=255239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CSNK1D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDK5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CD2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ALS2CR2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=55437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=GCKR
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=HK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PTK2B
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDK4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ALS2CR2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=55437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DGKB
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=TK2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=7084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LY6G5B
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=58496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7IP2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7IP2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=23118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDK7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FGFR4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PIK3C2G
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DAPK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=C9orf96
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=169436
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37 DGKQ diacylglycerol kinase, theta 110kDa NM_001
347 

1609 GGAUUGCCCAGG-
GUUCCUAtt 

22 No -1.7 

38 FN3KRP fructosamine-3-kinase-related protein NM_024
619 

79672 ACAAGAAGCUUG-
GAGAGAUtt 

3 Yes -1.7 

39 MAPK4 mitogen-activated protein kinase 4 NM_002
747 

5596 CAGAAGGGUUG-
GUAACAAAtt 

3 No -1.7 

40 LY6G5B lymphocyte antigen 6 complex, locus 
G5B 

NM_021
221 

58496 GCUCAUCCCUGUG-
CAUGGUtt 

2 No -1.6 

41 CSK c-src tyrosine kinase NM_004
383 

1445 CGAUUACCGAGG-
GAACAAAtt 

8 No -1.6 

42 LOC2311
7 

KIAA0220-like protein XM_933
834 

23117 GCGUUUCCGACAA-
GUUAUAtt 

ND No -1.6 

43 KIAA099
9 

KIAA0999 protein NM_025
164 

23387 CAGUAAGAGUU-
CAAGUACAtt 

20 No -1.6 

44 PLXNA3 plexin A3 NM_017
514 

55558 GCAGUGAACCGA-
GUCUUUAtt 

2 No -1.5 

45 MKNK2 MAP kinase interacting se-
rine/threonine kinase 2 

NM_017
572 

2872 GGAAUUUUGUAUU-
CUGUUUtt 

14,14 Yes -1.5 

 

 

Table VI.9 Infection based validation screen: The list of host resistance ki-

nases with significant effect on DENV infection. 

No: Gene 
Symbol 

Full Gene Name RefSeq 
Acc No: 

Gene ID Sense siRNA Se-
quence 

Exon(s) 
Targeted 

Vali-
dated 

Z-score 

1 CDKL3 cyclin-dependent kinase-like 3 NM_016
508 

51265 GGAUAUCAUCUA-
GUGAUCUtt 

7 No 4.9 

2 C9orf96 chromosome 9 open reading frame 96 NM_153
710 

169436 AGAAAAUCAUUGA-
CUCUGAtt 

5 No 4.6 

3 IHPK3 inositol hexaphosphate kinase 3 NM_054
111 

117283 UGACUUUGCUCAU-
ACCACAtt 

6 No 4.2 

4 CIB4 calcium and integrin binding family 
member 4 

NM_001
029881 

130106 GAAGAUUGA-
GUAUGCCUUUtt 

4 No 4.1 

5 CMPK1 cytidine monophosphate (UMP-CMP) 
kinase 1, cytosolic 

NM_016
308 

51727 GAUUGAUGG-
GUUUCCAAGAtt 

3 Yes 3.9 

6 CSNK1A1 casein kinase 1, alpha 1 NM_001
025105 

1452 GAAUUUGCGAUGU-
ACUUAAtt 

9,8 Yes 3.7 

7 MAP3K7 mitogen-activated protein kinase 
kinase kinase 7 

NM_003
188 

6885 AGAUACCAAUG-
GAUCAGAUtt 

13,14,14,
13 

Yes 3.7 

8 ERBB2 v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, neu-
ro/glioblastoma derived oncogene 
homolog (avian) 

NM_001
005862 

2064 GUUGGAUGAUUGA-
CUCUGAtt 

26,23 Yes 3.3 

9 ROCK1 Rho-associated, coiled-coil containing 
protein kinase 1 

NM_005
406 

6093 GUAUGAAGAU-
GAAUAAGGAtt 

6 No 3.1 

10 ERBB4 v-erb-a erythroblastic leukemia viral 
oncogene homolog 4 (avian) 

NM_001
042599 

2066 CCCGUAAUGUCUU-
AGUGAAtt 

21,21 No 2.8 

11 PRKCQ protein kinase C, theta NM_006
257 

5588 GCUGCUUAAGA-
GAUACUGAtt 

10 No 2.7 

12 FGFRL1 fibroblast growth factor receptor-like 
1 

NM_001
004356 

53834 AAGAAGAAGUGGA-
CACUGAtt 

5,5,4 Yes 2.4 

13 MKNK2 MAP kinase interacting se-
rine/threonine kinase 2 

NM_017
572 

2872 GCAGCGGCAUCAAA-
CUCAAtt 

10,10 Yes 2.4 

14 DAPK1 death-associated protein kinase 1 NM_004
938 

1612 GGGACACCUC-
CAUUACUCAtt 

13 Yes 2.2 

15 PRKY protein kinase, Y-linked NM_002
760 

5616 CAAUGCAUU-
GUAUUCAGAAtt 

8 No 2.1 

16 RPS6KB1 ribosomal protein S6 kinase, 70kDa, 
polypeptide 1 

NM_003
161 

6198 CAUGGAACAUUGU-
GAGAAAtt 

3 Yes 2.0 

17 MAP3K7 mitogen-activated protein kinase 
kinase kinase 7 

NM_003
188 

6885 GACUCGUUGUUG-
GUCUAAAtt 

8,8,8,8 Yes 1.9 

18 ULK3 unc-51-like kinase 3 (C. elegans) XM_001
134013 

25989 GCAUGAACG-
GAAUAUCUCUtt 

ND No 1.8 

19 GRK1 G protein-coupled receptor kinase 1 NM_002
929 

6011 GCAAUGUCCGGAU-
CUCUGAtt 

ND No 1.8 

20 WNK1 WNK lysine deficient protein kinase 1 NM_018
979 

65125 CAUCAUCCCUUA-
GUCUACAtt 

19 Yes 1.8 

21 WNK1 WNK lysine deficient protein kinase 1 NM_018
979 

65125 CAAUGAGUCA-
GAUAUCGAAtt 

24 Yes 1.7 

22 PRKCI protein kinase C, iota NM_002
740 

5584 GUAAUUC-
CAUAUAAUCCUUtt 

7 No 1.7 

23 TSSK3 testis-specific serine kinase 3 NM_052
841 

81629 GGGACCUACU-
CAAAAGUCAtt 

1 No 1.7 

24 NTRK3 neurotrophic tyrosine kinase, recep-
tor, type 3 

NM_001
007156 

4916 CGGAUAACUUUAU-
CUUGUUtt 

10,10,10 No 1.6 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DGKQ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FN3KRP
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=79672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAPK4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LY6G5B
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=58496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CSK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC23117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=LOC23117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=23117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=KIAA0999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=KIAA0999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=23387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PLXNA3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=55558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MKNK2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CDKL3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=51265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=C9orf96
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=169436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=IHPK3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=117283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CIB4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=130106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CMPK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=51727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=CSNK1A1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ERBB2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ROCK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ERBB4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRKCQ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=FGFRL1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=53834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MKNK2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=DAPK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRKY
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=RPS6KB1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=MAP3K7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=ULK3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=25989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=GRK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=WNK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=65125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=WNK1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=65125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=PRKCI
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=TSSK3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=81629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=NTRK3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4916
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25 ULK3 unc-51-like kinase 3 (C. elegans) XM_001
134013 

25989 CAGCGGAAGGAGG-
CAAUUAtt 

Not 
Deter-
mined 

No 1.6 

26 CIB1 calcium and integrin binding 1 (calmy-
rin) 

NM_006
384 

10519 CGUCAUCUCCC-
GUUCUCCAtt 

6 No 1.6 

27 MVK mevalonate kinase NM_000
431 

4598 GGCUGCUCAA-
GUUCCCAGAtt 

8 No 1.5 
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4598
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