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Summary 
 
Macrophages are a key cellular component of the immune system. In the body they 

act as front line immune defense and are vital chemical factories that respond to their 
environment by secreting various chemical mediators. A complete understanding of the 
molecular details of phagocytotic process and macrophages ability to modulate the signaling 
activity is still lacking. In the present thesis we designed and used novel nano-materials to 
understand and modulate macrophage behavior.  

In order to decipher the cell mechanics and signaling occurring during phagocytotic 
uptake, we used hollow polyelectrolyte capsules as force sensors. In order to enumerate the 
forces from the deformations, the capsules were calibrated and a stiffness of 0.11 ± 0.02 
nN/nm was found. Using a swept field confocal microscope, we could follow the 
deformations occurring on the capsule during the phagocytotic uptake. This allowed us for 
the first time to decipher the mechanics of phagocytosis uptake in its natural state without 
applying any external mechanical forces or perturbing the cells. It was observed that 
macrophages during the retraction phase of the uptake, buckled or irreversibly deformed the 
capsules. From the mechanical characterization, we know that it takes 150 nN to buckle the 
capsules, this upper limit of the “PhagoSensor” approach is thirty fold higher than the values 
previously measured by other techniques. To systematically decipher the mechanistic roles 
of individual molecules in phagocytotic cup formation, we inhibited key signaling molecules 
PI3-Kinase and SYK, the eccentricity of the deformed capsules was found to be 0.87 ± 0.05 
and 0.75 ± 0.05 respectively. This showed that the activation occurs in a sequence. 

In the second part of the thesis, new implant surfaces were designed for people 
having a propensity for chronic inflammation. These engineered surfaces can modulate and 
make macrophages secrete anti-inflammation cytokines. The surfaces comprised of 
nanopatterned substrates with regular hexagonal spacing of 36, 63, 80 and 125 nm, 
decorated with Fc fragments. There was a modulation in cell area and cytokine production 
on the nanopatterns. It was found that the Fc nanopatterns were superior in eliciting anti-
inflammation response (TGF-β & IL-10) than random presentation of Fc fragments. We 
found that the anti-inflammation effect starts after 24 hrs and at 48 hrs we could see reduced 
pro-inflammation. Comparing the pro- and anti-inflammatory cytokine production, it was 
concluded that 36 nm spaced patterns are ideal for eliciting cytokine mediated anti-
inflammation signaling. 

To include both the beneficial effects of polymer surfaces and nanopatterning, a new 
protein nanopatterning approach for thermochemical nanolithography (TCNL) was 
developed. This technique can generate high-resolution, multi-protein patterns in arbitrary 
shapes on polymer substrates. TCNL uses a resistively heated AFM tip to unmask amine 
groups. We modified the micro and nano patterns generated to include different chemical 
functionalities and thereby allowing us to bind multiple proteins on the same substrate in 
different shapes. Several approaches have been developed to immobilize proteins and other 
biomolecules like DNA onto these templates. These templates are stable and can be stored 
for later bio-functionalization for at least 4-6 weeks. A strategy to prevent protein adsorption 
on the surfaces was developed. It was demonstrated that these passivated surfaces reduced 
the non-specific binding of proteins by approximately 20 times. Finally, the bioactivity of the 
patterned proteins was demonstrated using an in-vitro protein assay and in-vivo cell assay.  
  



 
 

  

 



 
 

  

Zusammenfassung 
 
Makrophagen sind eine der Schlüsselkomponenten des Immunsystems. Diese Zellen 

bilden die vorderste Linie der Immunabwehr gegen eindringende Pathogene und dienen als 
lebenswichtige chemische Fabriken, die auf ihre Umgebung mit der Segregation 
verschiedener Zytokine und chemischer Mediatoren reagieren. Ein umfassendes 
Verständnis der molekularen Details des phagozygotischen Prozesses und der Fähigkeit der 
Makrophagen die Signalaktivität zu modulieren fehlt bis heute. 

Nanometerstarke, hohle, 4,5 µm große Polyelektrolytkapseln wurden als 
Kraftsensoren benutzt, um die Mechanik während der Phagozytose zu untersuchen. Um 
diese Kräfte aus den beobachteten Deformationen zu bestimmen, wurden die Kapseln 
zuerst kalibriert und mechanisch charakterisiert. Die Steifigkeit der Kapseln war 0,11±0,02 
nN/nm. Die Dynamik der Kapseln während der Phagozytose wurde mit Hilfe eines swept-
field Konfokalmikroskops verfolgt. Dies erlaubte es uns, erstmalig die Mechanik der 
phagozytotischen Aufnahme in ihrem natürlichen Zustand ohne das Anwenden externer 
Kräfte oder anderweitiger Störung der Zellen zu messen. Es konnte beobachtet werden, 
dass Makrophagen während der Rückzugphase des Aufnahmeprozesses die Kapseln 
eindellten oder irreversibel zerstören. Aus der mechanischen Charakterisierung ist bekannt, 
dass ca. 150 nN benötigt werden, um die Kapseln einzudellen. Diese mit dem 
„Phagosensor“ gemessene Wert ist 30 fach höher als alle zuvor mit anderen Techniken 
gemessene Werte. Um die mechanistische Rolle individueller Moleküle bei der Bildung des 
phagozytotischen Cups zu entschlüsseln, wurden die Schlüsselsignalmoleküle PI3-Kinase 
und SYK inhibiert. Wie erwartet war die Exzentrität der deformierten Kapseln für SYK 
inaktivierte Zellen 0,87±0,05 und für PI3-Kinase inaktivierte Zellen 0,75±0,05. So konnte 
gezeigt werden, dass die Aktivierung sequenziell verläuft. 

Im zweiten Teil dieser Arbeit wurden neue Implantatoberflächen entwickelt für 
Patienten mit einer Neigung zu chronischen Entzündungen. Diese Oberflächen können 
Makrophagen modulieren und dazu bringen, anti-inflammatorische Zytokine zu segregieren. 
Die Oberfläche dieser Substrate war mit nanostrukturierten Fc-Fragmenten in hexagonalen 
Abständen von 36, 63, 80 und 125 nm dekoriert. Es konnte eine Modulierung der Zellfläche 
und der Zytokinproduktion auf den Nanostrukturen gezeigt werden. Desweiteren konnte 
nachgewiesen werden, dass nanostrukturierte Fc-Fragmente eine stärkere anti-
inflammatorische Antwort (TGF-β & IL-10) auslösen als zufällig verteilte. Die anti-
inflammatorische Antwort begann nach 24 h und bis zu 48 h konnte eine reduzierte 
Entzündungsantwort beobachtet werden. Wenn man die pro- und anti-inflammatorische 
Zytokinproduktion betrachtet, kann gefolgert werden, dass Nanostrukturen mit 36 nm optimal 
für das Auslösen einer anti-inflammatorischen Antwort sind. 

Um die Vorteile von Polymeroberflächen und Nanostrukturierung zu verbinden, 
wurde eine neue Strukturierungsmethode, die sogenannte thermochemische 
Nanolithographie (TCNL), entwickelt. Diese Technik kann hochaufgelöste multi-
Proteinstrukturen in beliebigen Formen auf Polymeroberflächen generieren. TCNL 
verwendet eine widerstandserhitzte AFM-Spitze, um Aminofunktionen zu entschützen. TCNL 
ist 106 Mal schneller als Standard-Dip-Pen-Nanolithographie. Die hergestellten Mikro-und 
Nanostrukturen wurden so verändert, dass verschiedene chemische Funktionalitäten 
resultierten. Es wurden verschiedene Verfahren entwickelt, um Proteine oder andere 
Biomoleküle auf diesen Mustern zu immobilisieren. Die Flexibilität dieses Ansatzes wurde 
durch die Strukturierung mehrerer verschiedener Proteine auf einer Oberfläche in 



 
 

  

verschiedenen Formen demonstriert. Die mit TCNL hergestellten Oberflächen sind stabil und 
können für eine spätere Biofunktionalisierung mindestens 4 bis 6 Wochen aufbewahrt 
werden. Es wurde weiterhin eine Polyethylenglykol-Passivierung entwickelt, für die gezeigt 
werden konnte, dass unspezifische Proteinadsorption um einen Faktor von 20 reduziert war. 
Schließlich konnte die Bioaktivität der Proteinstrukturen in in-vitro Expimenten, wie auch in 
in-vivo Zellexperimenten gezeigt werden.  
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1. Introduction 
 
Phagocytosis is a highly conserved, complex process that has evolved to counter the 

constant threat posed by pathogens, dead cells and debris1. Classically defined as a 
mechanism for internalizing and destroying particles greater than 0.5µm in size2, it is a 
receptor mediated actin-driven process3. The most well studied phagocytic system is that of 
Fc receptor mediated phagocytosis2,4. In Fc receptor mediated phagocytosis the Fc 
receptor, a transmembrane receptor present on the cell surface of the immune cells binds to 
the Fc portion of the Immunoglobulin G (IgG) present on the surface of the invading 
pathogen or foreign body. Binding of Fc receptors to the Fc portion of IgG leads to 
pseudopodial extension of the plasma membrane around the foreign body. This process 
continues until the entire particle becomes enveloped and the membrane closes, producing 
a bilayer lipid membrane coated particle that is brought into the interior of the cell. The 
resultant intracellular vesicle is referred to as a phagosome5. Phagocytic uptake involves a 
complicated rearrangement of the actin cytoskeleton3 that facilitates the membrane 
deformation and engulfment of the particle, a process that is believed to include actin 
polymerization, actin bundling by proteins, myosin based contraction6 and de-polymerization 
of actin filaments7. Due to the mechanical and stepwise nature of the occurrence of these 
processes, we hypothesize that distinctive signature forces are exerted on the phagosome 
throughout uptake the process. 

The molecular details of many aspects of the phagocytotic process are not well 
understood.  It is not clear how Fc-receptor binding to IgG triggers the phagocytotic 
machinery and the mechanism by which the actin cytoskeleton is regulated to achieve the 
pseudopodia extension and closure of the cell around the engulfed particle. Several 
competing theories exist to explain the uptake process; it is remarkable that decade-old 
interpretations of the mechanics of phagocytosis such as the zipper model of Griffin et. al.8, 
the trigger mechanism of Silverstein et. al9 or the cortical cytoskeleton expansion model of 
Southwick and Stossel et. al10 have barely been readdressed since their inception. Since 
there is a signature force associated with each step during the uptake process5, to 
understand and readdress such a dynamic system like uptake process; we can monitor the 
change in force applied during uptake process with a high temporal and spatial resolution. 
Understanding the forces can help us understand the underlying biochemical signals thereby 
helping us understand the mechanism.   

It is known that cells in general are modulated by mechanical force11-13 and from 
Bason et. al’s14-15 work, It is known that extracellular pressure can modulate macrophage’s 
phagocytotic ability by inhibiting a pathway involving focal adhesion kinase (FAK) and 
extracellular signal-regulated kinases (ERK). Thus, to measure the true force of phagocytotic 
uptake, the measuring techniques should not interfere or apply external force during the 
uptake process. Moreover, the force on the phagocytic target during phagocytotic uptake as 
shown in Figure 1B is contractile in nature. This is analogues to a sphere being squeezed 
but the force measured with traditional techniques like magnetic tweezers16-17, optical 
tweezers18 or through micropipette aspiration19 is like tug of war between the cell and 
measuring probe. These measurements are tensile in nature instead of contractile as 
depicted in Figure 1C.  Keeping these facts in consideration, In order to measure the true 
contractile forces and prevent the noise arising from signaling events occurring due to the 
measuring technique, the experimental approach has to be designed in a way so that we 
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chronology of molecular events during phagosome formation and examine the contributions 
of phosphoinositide 3-kinase (PI3-kinase) and spleen tyrosine kinase (SYK) to these 
dynamics.    

 
Cell Type and Experimental 

Technique 
Force Reference 

J774,  
Magnetic Tweezers 

>5nN 16-17 

J774 and RAW 
Optical Tweezers 

>15pN 18 

Human Granulocytes 
 Micropipette 

~103 N/ m2  (Average contractile 
Stress) 

19 

Neutrophil 
Traction Analysis 

28 ± 10nN (Chemokinesis) 
67 ± 10nN (Chemotaxis) 

21 

Table 1 Forces involved in phagocytotic uptake and their corresponding measuring techniques.
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2. Background  

I. Phagocytotic Uptake 
 
Phagocytosis is a process in which certain cells called phagocytes engulf and 

destroy foreign objects. The process of engulfing foreign particles is of fundamental 
importance to a wide diversity of organisms. From simple unicellular organisms that use 
phagocytosis to obtain their next meal, to complex multi-cellular organisms in which 
phagocytic cells represent an essential branch of the immune system. Regardless of the 
organism or specific molecules concerned, all phagocytic processes are driven by a finely 
controlled rearrangement of the actin cytoskeleton3. As shown in the schematic in Figure 2, 
a multitude of signaling activity converges to locally reorganize the actin cytoskeleton to form 
a membrane bound organelle called phagosome. Several receptors exist to trigger 
phagocytosis2. These receptors can be broadly defined as those that recognize epitopes on 
the surface of unmodified bacteria and fungi (nonopsonic phagocytosis)22. Examples of the 
later include receptors for the Fc portion of IgG (FcγRs)23 and receptors that recognize 
various components of the compliment (like CR3)24. The best-studied phagocytic system is 
that of the receptors that bind to the Fc portion of immunoglobulin2,23. One of the reason for 
Fc receptor system being a model system is that, like in Fc receptor mediated phagocytosis 
for most of the other receptor mediated phagocytosis ITAM’s start occurring after receptor 
activation site25 strongly suggesting a generalization in signaling after receptor activation. 

As shown in the Figure 2, initial Fcγ receptor activation takes place upon ligand 
binding to the extracellular domain. Binding of immunoglobulins (IgG) to foreign particles 
leads to the prompt clearance of those particles from the organism. IgG acts as an opsonin, 
a molecule that renders the particle they coat more susceptible to engulfment by phagocytic 
cells. The conserved Fc domain of the IgG is recognized by Fc receptors present on 
professional phagocytes, such as neutrophils and macrophages, and the opsonized particle 
is rapidly internalized. This internalization is characterized by the dramatic, actin-dependent 
extension of the plasma membrane around the particle3. Fcγ receptors traditionally signal 
through an immunoreceptor tyrosine based activation motif (ITAM)26 or through inhibitory 
residues found in an immunoreceptor tyrosine based inhibitory motif (ITIM)27. The classic 
ITAM motif consists of two YxxL sequences separated by 7 amino acids28.  

Following its phosphorylation, the ITAM motif acts as a docking site for SYK29.  
Docking of SYK leads to its phosphorylation30 and activation, although note that SYK is also 
capable of auto-activation31. SYK is clearly a critical component for Fc Receptor signaling 
(but not complement-receptor-mediated phagocytic uptake)32, since macrophages lacking 
SYK cannot internalize IgG-opsonized particles32-34. The point at which SYK acts remains 
controversial. Some authors report it to be required for formation of the actin filament ‘cup’ 
that assembles beneath the bound particle during Fc Receptor30,35-36 phagocytosis, whereas 
others describe normal actin rearrangement but a subsequent failure to internalize particles 
in cells lacking SYK33. Interestingly, macrophages lacking SYK show reduced 
phosphorylation of the Fc Receptor tail (or associated g subunit) in response to ligand 
binding32; this suggests that SYK cooperates with the Src kinases to phosphorylate the 
receptor and thus initiate signaling. 
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Figure 2 Depiction of pathway for FcγR mediated phagocytic uptake. 

The other important signaling proteins are the phosphoinositol lipids which are major 
regulators of actin remodeling during several cellular phenomena37. To date, the major 
phosphoinositide kinase implicated in phagocytosis is phosphoinositide 3-kinase (PI3-K). 
Unlike most signaling proteins implicated in phagocytosis, PI3-K does not seem to 
accumulate at nascent phagosomes38, perhaps because it is displaced from its binding 
partners (such as FcgRIIA39) by binding to phosphatidylinositol 3,4,5-trisphosphate 
(PtdIns(3,4,5)P3), one of its products40-41. PI3-K is, however, activated by Fc receptors42, 
associates with FcgRIIA in platelets39 and is required for Fc receptor-mediated phagocytic 
uptake by macrophages42-44. In addition, Cox et al.44  have shown PI3-K to be required for 
CR3 mediated phagocytotic uptake although, PI3-K is not required for phagocytosis in 
Dictyostelium45. PI3-K appears not to regulate the initial actin polymerization during 
phagocytosis, which proceeds normally when PI3-K is inhibited, but rather to control closure 
of the phagosome43-44. The dependence on PI3-K is reduced for smaller particles44 PI3-K 
might therefore have a role in the regulation of membrane availability. Intriguingly, although 
not required for actin polymerization, PI3-K is nevertheless able to induce local actin 
reorganization and subsequent particle uptake if it is artificially activated beneath bound 
beads46. Fusion of the membrane leading to particle internalization requires actin remodeling 
and possibly vesicle trafficking steps, which are driven by the PI3-K product PtdIns (3, 4, 5) 
P3. It appears that at least three phosphoinositide products regulate phagocytosis. (1) PtdIns 
(4, 5) P2 is synthesized early during engulfment and may control actin assembly at the 
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phagosome. (2) The activity of PLC then degrades PtdIns(4,5)P2, producing DAG, and 
either the loss of PtdIns(4,5)P2 or the increase in DAG controls further cytoskeletal 
changes47. (3) Simultaneously, PI3-K converts PtdIns(4,5)P2 to PtdIns(3,4,5)P3, triggering 
phagosome closure. 

After initiation of a phagocytotic signal, the cell needs to prepare to internalize the 
bound particle into the cell and enclose it in a phagosome. A crucial step is the ability of a 
phagocytic signal to proceed from tyrosine phosphorylation to actin rearrangement for 
pseudopod formation. The ability to stimulate actin polymerization occurs by an as yet 
incompletely understood pathway. It has been proposed that the signal sequence leading to 
actin polymerization includes the activation of Rho GTPases such as Rac, CDC42, PI3-K, 
ERK, PKC and others4,48. The rearrangement of actin to form a phagocytic cup has been 
experimentally shown to be dependent on Rac and CDC4249-51. This Rho family of GTPases 
is a crucial effector of phagocytosis as inhibition of either of these GTPases enzymes results 
in significantly reduced phagocytosis52.  Activation of GTPases such as Rac and CDC42 
involve guanine nucleotide exchange factors (GEF), Subsequently CDC42 accumulates at 
the phagocytic cup where it associates with Wiskott-Aldrich syndrome protein (WASP)53.  
WASP can then associate with the Arp 2/3 complex, which seems to mediate the actual 
actin nucleation to form the phagocytic cup. Studies have shown that omission of any of 
these proteins in knockout experiments or in human disease results in significantly 
decreased phagocytosis53-55.  

Understanding phagocytotic uptake will provide a window into the coordinate 
functioning of the cytoskeleton elements and can serve as a model system for analyzing 
diverse biological phenomena including synaptic transmission, mitogenesis, and 
morphogenesis. 
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3. Novel Experimental Approaches to Study Phagocytosis 
 
Several approaches facilitate the exploration of biological processes mediated by 

mechanical signals. These techniques have a force resolution from 0.1 to 104 piconewton. 
Table 2 below shows a brief snapshot of the force regimes that can be measured with 
different force assays. 

 
 Force Range (pN) References 

Optical Tweezers 0.1–100 56-57 

Magnetic Tweezers 10- 3–102 (0.01–102) 17,58-59 

AFM 10–104 60-61 

Pillar Substrate Array 10–104 62-63 

  
Table 2 Force range for different biological force measuring techniques 

Although all these techniques are excellent, each with their own advantages they 
also have some shortcomings. For a fundamental or predictive understanding of 
phagocytotic uptake and a better understanding of the events during signaling we need a 
force measuring technique that  
• Is able to measure forces temporally in high resolution so that we can capture the 

different stages of phagocytotic uptake and have a clear picture of the force dynamics. 
• Is able to measure the contractile or squeeze like forces exerted during phagocytotic 

uptake rather than the tensile forces measured using traditional techniques. 
• Is able to measure different force regimes during phagocytosis, which can be really low 

during the initial receptor activation stage and gradually increase as the particle 
undergoes phagocytotic uptake. 

• Is able to capture the forces in natural state. The experimental approaches have to be 
designed in a way we can measure the forces without applying any external mechanical 
forces or perturbing the cells. 

 
In order to understand and characterize this intriguing phenomenon, we initially used 

pillar substrate array to capture the dynamics of frustrated phagocytosis. Pillar substrate 
arrays although have been previously used to capture forces during adhesion and migration, 
they have never been used to measure the dynamics of frustrated phagocytosis. During the 
course of the experiments, it was found that although macrophages deformed the pillars 
during frustrated phagocytosis, they seem to envelop individual pillars. In order to overcome 
this we have developed “PhagoSensor” a new force sensing approach using polyelectrolyte 
capsules as force sensors. 

I. Pillar Substrate Array for Force Sensing 
 
When macrophages encounter a foreign object that is larger than itself, such as an 

implant, the macrophages experience “frustrated phagocytosis”64-67. This process is 
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important in the context of medical devices such as implants68, where macrophages attempt 
to phagocytosis foreign materials, and instead achieve a state of frustrated phagocytosis. 
During frustrated phagocytosis, macrophages spread on the surface and destroy the foreign 
object67. Phagocytosis, especially the first stage, crucially depends on the transmission of 
mechanical forces generated by actin and myosin3. Here we describe and test an 
experimental approach to measure the forces generated by macrophages during frustrated 
phagocytosis. 

 Quantitative force measurements during adhesion and migration have been 
explained previously using micro-fabricated polydimethylsiloxane (PDMS) pillar structures 
which are arrays of vertical pillars on flat substrate63,69. These substrates can be used as 
force transducers as each pillar has a defined elasticity. We have extended the use of 
these substrates to measure traction forces resulting from frustrated phagocytosis. As shown 
in Figure 3, we use these closely spaced array of flexible micro-pillars coated on their tops 
with IgG to map forces exerted by cells on their substrate. Arrays of closely spaced micro-
pillars, made with the elastomeric material (PDMS) were fabricated (for details refer to 
PDMS fabrication in materials and methods). It is known that when phagocytes spread on 
surfaces coated with ligands such as IgG, they form a tight seal with the substrate70. We 
hypothesize that cells seeded on the top of these IgG coated pillars experience frustrated 
phagocytosis similar to what they experience on IgG coated glass slides70-72. Once these 
cells start forming a tight seal with the underlying pillar substrate they deflect the pillars. The 
pillars can be modeled as simple springs and thus their deflection is proportional to the force 
applied by the cell in the linear elastic regime73. In this case, the micro-pillars act as passive 
force sensors. The pillar approach described here uses vertically standing pillars resulting in 
force measurement in two dimensions. 

 
 

Figure 3 Schematic images of pillar arrays used in this study to analyze frustrated phagocytic traction 
forces. (A) Top view of cell lying on a pillar substrate. Pillar bending is related to the forces a cell 
exerts on their environment. By measuring the displacement of the pillar heads in a top view 
approach, the exerted forces can be obtained. (B) Side view of a cell lying on a pillar array. 

II. Polyelectrolyte Capsules as Force Transducers 
 
Polyelectrolyte’s are polymers whose repeating units bear an electrolyte group 74. 

Step-wise adsorption of polyelectrolyte’s can be used to fabricate hollow micro and nano 
capsules with determined size, capsule wall composition and thickness75 (for making of the 
capsules refer to materials and methods). Hollow polyelectrolyte capsules created by layer-
by-layer technique have been found to be a promising candidate for drug delivery76. 
However their adjustable properties make them an interesting engineering tool that can be 
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applied to multitude of fields. In this work we exploit their well characterized mechanical 
properties for force sensing applications. Previous studies have shown that the deformation 
for PSS/PAH capsules depends on applied force, and that for small deformation regimes the 
force versus deformation is well defined77. This particularly interesting mechanical property 
of the capsules allows their use as force transducers to study contractile forces applied in 3D 
during phagocytotic uptake. 

As shown in the schematic in Figure 4, the force applied by macrophage during 
phagocytotic uptake was measured indirectly by measuring the deformation of mechanically 
well characterized 4.5 µm diameter, 18 nm thick polyelectrolyte multilayer capsules in an 
aqueous environment. Using this method we can measure not only the forces exerted by 
macrophage during key phagocytic events, but can also monitor the subtle changes spatially 
and temporally to determine the forces during the intermittent stages of phagocytotic uptake. 

  

 
 

Figure 4 Schematic of a polyelectrolyte capsule being engulfed by a macrophage during phagocytotic 
uptake.  
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4. Materials and Methods 

I. PDMS Array Fabrication 
 
The PDMS array, which is also called micropillar arrays are composed of a 

transparent silicone rubber called polydimethylsiloxane (PDMS)63.  PDMS can be modified 
with different surface treatments to allow protein deposition (IgG) onto the top of the posts78. 
The devices are fabricated with techniques developed by the semiconductor industry for 
integrated circuits and microelectrical mechanical systems (MEMS).  

The first step involves photolithography of a hard master made from photoresist SU-
8. Next, the master is molded in PDMS to create soft replicas of the micropost arrays.  

 

 
 

Figure 5 Schematic of pillar array preparation. The pillar array is prepared by spincoating a silicon or 
glass slide with a layer of negative photo resist. After developing the SU-8 with holes in it, PDMS is 
poured into this mold. Curing is performed at 65 °C and subsequently the PDMS pillar array can be 
peeled off. 

As shown in the Figure 5 conventional photolithography is used to pattern silicon 
wafers with an array of cylindrical pits. The desired pattern is designed and drawn using a 
master-mask writer (DWL 66, Heidelberg Instruments, Germany). Then it is written with a 
laser into a photo resist layer (AZ-1505, Microchemicals, Germany) which is previously spin 
coated on a glass plate. After developing, a non-transparent (i.e. thicker than 100 nm) layer 
of chromium is sputtered on top and a lift off is performed. The master-mask can be used 
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many times to make cylindrical holes in a thick SU-8 photo resist layer, using a master-mask 
patterned with disks. The cylindrical holes in the SU-8 photo resist can be used as a replica 
for PDMS pillars. The polydimethyl-siloxane (PDMS (Sylgard 184, Dow-Corning)) used for 
casting is mixed with a thermo-crosslinker (curing agent) at a weight-ratio 10:1. The PDMS is 
then cured in an oven, resulting in a flexible PDMS layer which can then be peeled off the 
substrate. The steps taken before developing were performed in a clean room. The PDMS 
mixing and curing can easily be performed in a normal chemical laboratory. It is important 
that after cleaning, the wafers are silanized with tridecafluoro-trichlorosilane in vapor phase 
to facilitate the release of the elastomer from the wafers. The PDMS pillars fabricated for our 
experiments were 3µm in diameter and 10µm in length. 

i. Protein Adsorption to Pillar Interfaces 
 
Prior to experiments, the pillar substrates were treated with hydrogen plasma (10 

sec, 150 W in plasma etcher (Tepla)) and subsequently immersed in 20 µg/ml IgG 
(Rockland Immunochemicals, Inc) for 30 minutes. The surface tension and hydrophobicity 
prevents the protein from flowing down the pillars79-81 leading to protein functionalization 
limited to the very top of the pillars.  

II. Polyelectrolyte Capsule Fabrication 
 
Polyelectrolyte’s are polymers whose repeating units bear an electrolyte group82 it 

can be defines as a macromolecule in which a substantial portion of the constituent units 
have ionizable or ionic groups. As a working definition and a matter of convenience, people 
started calling polymers with high ion content as polyelectrolytes. Polyelectrolyte’s are also 
called polysalts83 as  they have properties of both electrolytic salts and polymers84. These 
solutions are electrically conductive like salt solutions and are viscous like polymer solutions. 
Polyelectrolyte’s can be used to grow thin films by using layer-by-layer (LbL) deposition85-87. 
During LbL deposition, a suitable substrate is dipped back and forth between dilute baths of 
positively and negatively charged polyelectrolyte solutions. During each dip a small amount 
of polyelectrolyte is adsorbed and the surface charge is reversed. This allows the gradual 
and controlled build-up of electronically stitched films of polycation-polyanion layers. LbL can 
also be carried out by rapid procedures like spincoating88 or spray deposition89-90 and can be 
extended to any shape, including micron sized colloidal particles. Based on this LBL 
approach, hollow microcapsules can also be produced91-92. The process predominantly 
makes use of electrostatic interactions93, but the importance of hydrophobic interactions94-95 
and hydrogen bonding96 has also been demonstrated. These LBL layers have been  further 
modified to incorporate nano particles97, DNA98, proteins99-100, viruses101 and lipids102 as 
building blocks to make engineered substrates with specific applications. 

We used LBL assembly approach to create hollow polyelectrolyte capsules103. Our 
system of Polystyrene sulfonate/Polyallyamine hydrochloride (PSS/PAH) capsules are 4.5 
µm in diameter and 9 layers in thickness accounting to approximately 19 nm in thickness.  
As shown in Figure 6 the fabrication of the capsules starts with a colloidal particle on which 
oppositely charged electrolytes poly(allylamine hydrochloride) and polystyrene sulfonate are 
deposited until the required thickness is reached. The colloidal core is then dissolved using 
tetrahydrofuran (THF), yielding hollow capsules with 4.5 µm in diameter and 19 nm in 
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thickness.  As described by Khopade et. al93 the high charge on the capsules was used to 
electrostatically bind IgG on the surface of the capsules.   

 

 
 

Figure 6 Schematic of preparation and IgG coating of the hollow capsules. Consecutive adsorption of 
PAH (Red) and PSS (Blue) is performed on a core particle. After achieving the required dimensions, 
the core is dissolved leading to formation of hollow capsules. Finally the protein (IgG) is bound on the 
surface by electrostatic forces. 

i. Fluorescent Protein Labeling and Adsorption of the Capsules 
 
We use optical microscopy to measure the mechanical deformation of capsules 

during phagocytosis. It is important to acquire good 3d images of the capsules for 
understanding these deformations. In order to image these minute deformations, we use 
fluorescence confocal microscopy. Many common fluorescent labels, e.g. Fluorescein 
isothyocynate (FITC), show rather low photostability104-106. This is a serious draw-back in 
microscopy and other techniques based on the confocal principle107-109. Since we need to 
image the capsules over extended period of time with high intensity we utilized Atto dye label 
which are designed to be much more stable under prolonged irradiation, providing better 
photostability104. 

Mouse IgG whole molecule (Rockland Immunochemicals Inc, USA; catalogue # 010-
0102) was fluorescently labeled with atto 488-NHS ester (Sigma-Aldrich Inc) following the 
manufacturers protocol110. In detail, 2 mg/ml of mouse IgG in phosphate buffer solution (10 
mM, pH 8) was added to atto 488 NHS-ester (1 mg/ml in DMSO) and gently stirred overnight 
at 4oC. A threefold molar excess of reactive dye to the protein solution was used to obtain 
the manufacturers recommended degree of labeling of 2 (dye-to-protein ratio, Molar Ratio). 
Part of the applied dye NHS ester will hydrolyze during the labeling reaction and must be 
removed from the labeled protein. To purify the labeled protein we used dialysis filter with 
7000 molecular weight membrane (Thermo Scientific).   
 
The degree of labeling (DOL, dye-to-protein ratio) was obtained using Lambert-Beer law  
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Absorbance (A) = extinction coefficient (ε) × molar concentration × path length (d)              Equation 1            

 
The UV-VIS absorption spectra of the conjugate solution was obtained after dialysis 

filtration and measured in a quartz (UV-transparent) cell. The absorbance (A
max

) at the 

absorption maximum (λ
abs

) of the dye and the absorbance (A
280

) at 280 nm (absorption 

maximum of proteins) were determined. The concentration of bound dye is given by: c(dye) 
= A

max 
/ ε

max 
× d, where ε

max 
is the extinction coefficient of the dye at the absorption 

maximum. The protein concentration is obtained in the same way from its absorbance at 280 
nm. As all dyes show some absorption at 280 nm, the measured absorbance A

280 
must be 

corrected for the contribution of the dye. This is given by A
max 

× CF
280

. According to 

manufacturer110 Atto 488 had a λ
abs

 = 501, ε
max

 = 9x104, CF
260

 = 0.25, CF
280

= 0.10. We know 

from Jhonston et. al111 that for IgG at 280 the extinction coefficient is 13.5  
Concentration of protein is: c(protein) = A

prot 
/ ε

prot
× d, 

Concentration of bound dye: c(dye) = A
max 

/ ε
max 

× d 

ε
prot 

is the extinction coefficient of the protein at 280 nm 

ε
max 

is the extinction coefficient of the dye at the absorption maximum  

Aprot = A280 − Amax× CF280 
The degree of labeling (DOL) is = c(dye) / c(protein)  
 

  Equation 2 
 
From the absorption we found A280 = 2.8x 10-4, Amax = 3.8068 
DOL = (3.8068 x 13.5) / (2.8x 10-4 – 3.8068x0.10)9x104 

DOL= 1.8 
The analysis revealed that the ratio of dye to protein obtained after labeling was 1.8. The 
degree of labeling obtained here is good.  

One of the key advantages of the polyelectrolyte capsules is the high charge present 
on the capsules. For the capsules used here, the final surface charge is negative, while 
the Atto-IgG is slightly positive. As described by Khopade et. al93 in order to label the 
capsules, electrostatic interactions can be used to facilitate non-specific adsorption of 
oppositely charged molecules onto the polyelectrolyte capsules, such as the 
fluorescently labeled IgG. To produce the protein labeled fluorescent capsules, 50 µg/ml 
of fluorescently labeled IgG was added to the capsules while gently stirring them for 3 hours. 
To purify the labeled capsules from the unbound protein solution the capsules were 
centrifuged at 300 RPM for 3 minutes. The capsules were re-suspended in PBS and then 
spun down four times, to obtain the fluorescent protein labeled polyelectrolyte capsules. 

III. Temperature Treatment of Capsules 
 
A heating-induced morphological change of polyelectrolyte capsules has been 

previous studied by Kohler et. al112, Gao et. al113, Ibarz et. al114 and Leporatti et. al115. As 
shown in Figure 7, it is expected that heating induces an increase in the wall thickness 
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proportional to a decrease in capsule diameter112. As our experiments take place at 37oC 
(optimal temperature for cell survival) it is important that there is no temperature dependent 
softening of the capsules. To overcome this temperature induced response, the capsules 
were annealed before the experiments. The capsules were annealed at 40oC in a water bath 
for 30 minutes and then slowly cooled to room temperature. Annealing of the capsules was 
performed before the protein was bound to the surface of the capsules. The capsules were 
maintained in deionized water with 18.2 MΩ-cm resistivity at all times. 

 
 

Figure 7 Schematic of capsule swelling and shrinking as a result of temperature changes. Heating 
causes the capsule to soften and increase in size, while cooling of the annealed capsule induces 
shrinking. 

IV. Cell Culture 
 
Murine macrophage cell line, J774A.1, Mouse BALB/c (TIB-67, American Type 

Culture Collection, Rockville, MD) was routinely maintained in Dulbeccos modified Eagles 
medium (Mediatech Inc, USA) supplemented with 10% fetal bovine serum (Mediatech Inc, 
USA) and a 2 mM  L-Glutamine.  The cells were always maintained at 37 °C in a humidified 
atmosphere of 5% CO2 in air. Cells were passaged by scrapping, centrifuging and 
resuspending in fresh medium. All experiments were performed with cells between passage 
numbers 1-10.  

To determine the cell number and the number of vital cells used in the experiments, a 
cell suspension in DMEM was diluted 1:10 in a 0.05% trypan blue (VWR) solution in 
deionized water. This colored substance enters and stains only dead cells. The cell 
suspension in trypan blue was transferred into two hemocytometer chambers (Neubauer 
counting chamber). Using a 10x objective and light microscopy, the cells were counted in 8 
fields (each field having an area of 1mm2) and the average number of cells per volume (ml) 
was calculated (excluding cells stained in blue which are dead). 

i. Fixing Cells 
 
Petridishs containing cells were washed with cell culture media and then filled with 

3% glutaraldehyde (Electron Microscopy Science Inc Catalogue #16310) solution in distilled 
water. Treating cells with glutaraldehyde leads to establishment of chemical cross-links 
between free amino groups. When the cross-links join different molecules, a latticework of 
interactions occurs that holds the overall architecture of the cell together. The petridish was 
left in glutaraldehyde solution and was then transferred to confocal microscope for imaging.  
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V. SEM and Critical Point Drying 

i. Scanning Electron Microscopy 
 
The scanning electron microscope (SEM) is a type of electron microscope that 

images the sample surface by scanning it with a high-energy beam of electrons in a raster 
scan pattern116. Samples were prepared for scanning electron microscopy by critical point 
drying and sputtering with a thin layer of carbon or gold. Images were made taken on a  Leo 
1530 field emission scanning electron microscope (Carl Zeiss Gmbh) using an accelerating 
voltage of either 3 or 10 kV. 

ii. Critical Point Drying 
 
Critical point drying is based on the process of “the continuity of state”, where there is 

no apparent difference between the liquid and gas state of a medium; therefore, the surface 
tension between these interfaces is reduced to zero117-118. This occurs at a specific 
temperature and pressure with resulting density, and is known as the Critical Point. The 
condition of zero surface tension can be used to dry biological specimens, avoiding the 
damaging effects of surface tension. In fact, if cells are air-dried the evaporation of water 
molecules can disrupt the cell membrane because of the surface tension of water. 
Therefore, when biological specimens are prepared for the SEM, the water in the cell is first 
replaced by ethanol. Then, in the critical point dryer, the ethanol is replaced by liquid CO2. 
The critical temperature and pressure for CO2 (31°C, 75 Bar)117 is obtained so that the liquid 
CO2 changes to a gas; this conversion does not affect cell membrane and cell structures. 
The first step, after removal of the culture media, is fixation of samples in 2% glutaraldehyde 
in PBS for 15 min; then the dehydration is achieved by incubating the samples in graded 
Ethanol (25%, 50%, 75%, 95% and 100%, each 10 min). The samples are transferred in a 
shallow glass dish containing 100% dry ethanol and brought into the chamber of the critical 
point dryer (CPD 030 Critical point dryer, Bal-Tec). The chamber is one third filled with 100% 
ethanol and then the cap is closed airtight. When the temperature is 10°C and the pressure 
50 Bar, the chamber is filled with CO2 and the chamber is filled and emptied with liquid for 6-
8 times without uncovering the sample. Then, the chamber is completely filled with fluid and 
heated at 40°C at a pressure of 90 Bar. Samples were finally sputter-coated with a carbon 
layer to be imaged by SEM. 
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5. Results and Discussion 

I. PDMS Arrays as Force Sensors in Frustrated Phagocytosis 
 
When macrophages are challenged with IgG coated surfaces, they engage that 

surface as if to engulf it. This process of trying to engulf objects larger than the cell itself has 
been termed “frustrated phagocytosis” 64,119-122. During frustrated phagocytosis, macrophage 
tend to bind to the surface tightly with the aim to destroy the underlying substrate70. In the 
present work we used PDMS pillar arrays to measure the force exerted by macrophages 
during frustrated phagocytosis. 

In situ force measurements of frustrated phagocytosis was conducted on IgG topped 
force sensor arrays with calibrated pillars 3 µm in diameter, 10 µm in height and 10µm inter 
pillar distance from center to center (refer to materials and methods section for making of 
PDMS pillars). These arrays had individual pillars with a nominal stiffness of 0.17 (N/m)123.  
The macrophage monocyte cell line J774A.1 from mouse BALB/c was used to calculate the 
force during frustrated phagocytosis. The surface tension and hydrophobicity prevented the 
IgG from flowing down the pillars leading to functionalization only on the top of the pillars. As 
discussed in Ulmer et. al123 the IgG was plated only briefly on the pillars and washed with 
PBS before plating the cells. Cells attached and spread across multiple posts causing 
deflection of the underlying posts as shown in Figure 8D. When adhered strictly to the top 
surface of pillar arrays, cells locally exert forces on the tips of each post. Because each post 
is deflected independently, localizing the origin of the forces exerted by the cell is 
straightforward process. 

Forces applied laterally to the pillar tops can bend the pillar. By recording the pillar 
top displacement the exerted force can be determined when the pillar stiffness is known. The 
pillar bending stiffness can be calculated from equation 
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L
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Where F, E, I, L, and 2r are the bending force, Youngs modulus, moment of inertia, 

length, and resulting deflection of the post, respectively as described in Crandall et. al124. A 
schematic of the pillar can be seen in Figure 8D. 

As shown in Figure 8A, the angle and dimensions of the pillars were obtained from 
electron micrographs. The forces these cells exert are relatively large and it was seen that 
the contracting cells can easily bend the PDMS pillars on which they were plated.  The force 
exerted by the cells can be calculated precisely by making an image of the pillars at 45° and 
using the calibrated scale bar on the scanning electron micrograph to measure the diameter 
and length of the pillar. Hereby the angle under which the image is taken needs to be taken 
into account. As shown in the image there was an angle of 59.7o giving a 2r or deflection of 
the post to be 5.15 µm. Since we know from Ulmer et. al123 that the pillars had a stiffness of 
0.17 (N/m). We calculated that the cells exerted a force of 8.75nN on the pillar. 
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Figure 9 SEM image of PDMS arrays acting as force Sensors in frustrated phagocytosis. (A) and (B) 
Images of a macrophage on an array taken at 45o showing cells deflecting pillars. The blue arrow 
shows the problem of the macrophages trying to eat the pillar instead of spreading during frustrated 
phagocytosis. (C) Schematic of expected frustrated phagocytosis and macrophage spreading for 
accurate calculation of force and a schematic showing the problem in measuring the forces as the 
cells start spreading on the edges. (D) Macrophage engulfing a pillar. 

Due to this inherent limitation, we went ahead and devised a new approach to 
decipher phagocytotic uptake using novel PSS/PAH polyelectrolyte capsules. 

II. Mechanical Characterization and Calibration of PSS/PAH 
Capsules 
 
As shown in Figure 10A, in order to calibrate the mechanical properties of the 

capsules and identify the elastic modulus and failure behavior of the capsules, force versus 
deformation characterization of the capsules was performed in collaboration with our 
collabrators. A defined force was applied on the capsule and the resulting deformation of the 
capsule was captured. When low forces were applied the capsules as shown in  

Figure 10B, the capsules act as simple springs. To investigate the deformability of 
the capsules an atomic-force microscope mounted on an inverted optical microscope 
equipped with an RICM (Reflection Interference Contrast Microscopy) imaging capability 
was employed. A Zeiss Axiovert 200 (Zeiss, Germany) was used in Reflection Interference 
Contrast Microscopy (RICM) mode125. For applying forces a Molecular-Force Probe (MFP) 
1D AFM (Asylum, Santa Barbara, USA) was used. A nanopositioning sensor (LVDT sensor) 
allowed independent measurement of the piezo extension and allowed correction due to 
hysteresis. The force was applied using a glass bead bound126 to tipless contact cantilever 
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Figure 12 (A) Histogram of capsule stiffness in the linear regime. The average stiffness of the 
capsules was 0.12 nN/nM. (B) Histogram of the force required to buckle or irreversibly deform the 
capsules. The average buckling force of the capsules was 150 nN. 

III. Buckling Force and Force of Phagocytosis 
 
In order to calculate the forces being exerted on the engulfed particle, we pulse 

J774A.1 macrophages, nanometer thick hollow PSS/PAH capsules which are 4.5 µm in 
diameter.  Once the cell starts taking up these capsules the force of phagocytosis visibly 
deforms the capsules. These deformations are captured using fluorescence microscopy.  In 
order to enumerate the forces from the deformations observed, the capsules were initially 
calibrated and characterized mechanically to find the elastic modulus and failure behavior.  
In essence we are trying to use the mechanical cues to understand chemical signaling. 

As described earlier when we did the mechanical calibration of the capsules we 
found the capsules to have stiffness of the capsule to be 0.11 ± 0.019 nN/nm. The force 
versus deformation curve shows that there is a linear regime up to 100 nN. During the linear 
regime the capsules spring back to their original position after the force applied is removed. 
The buckling or irreversible breaking of the capsule occurred between 120-180 nN with an 
average of 150 ±  24 nN. The huge buckling force can help us understand the maximum 
force regime that can occur during phagocytosis. 

The first observation when we added the capsules was that the cells were able to 
buckle or irreversibly deform the capsules during the phagocytotic process (see Figure 13(A-
G)).  This was surprising as we know from the calibration data of the capsules that the force 
required to buckle is >150± 24 nN. This force is several magnitudes higher than what was 
observed by Vonna et. al16 during phagocytotic uptake which they determined to be >5 nN 
using magnetic tweezers or >15 pN measured using optical tweezers by Kress et. al18.  This 
clearly shows that cells can exert huge forces, although clearly the reason for observing this 
is the inherent advantage of the present technique to observe much higher forces than the 
traditional techniques employed before. The other reason we think we observe these huge 
forces is the other advantage of the technique where we follow the entire process of 
phagocytotic uptake rather than the first stage of initial uptake or the initial protrusion phase 
of the uptake process measured by the other techniques.   
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weak polycation (PAH).  It has been reported before129 that at low pH the PSS/PAH 
multilayer is permeable for dextran (neutral polymer) molecules. The high amount of ionic 
pairs present in the multilayers130-131 might serve as the cross-linking units between the 
multilayer’s. If at least one polyelectrolyte in the multilayer is weak, the pH can be used to 
control the ionic cross-link density and conformations and, therefore, should affect the 
stiffness of the capsules and Young’s modulus of multilayer films. Depending on 
physicochemical conditions there can be capsule softening, this softening is due to either an 
increase in the permeability of the capsules (low pH) or a decrease in Young’s modulus of 
the multilayer (high pH, salt)132. 

 

 
 

Figure 14 Four images with capsules in pH 4 buffer after 24 hours.  It can be seen that most of the 
capsules are perfectly spherical. 

Once the capsules are engulfed, they go through retrograde motion where they 
interact with different organelles like lysosomes and peroxisomes. Lysosomes are 
organelles containing digestive enzymes (acid hydrolases). The pH inside the lysosomes is 
between 4.5 - 4.8. Since we know from earlier studies by Lulevich et. al132 that at low pH (pH 
3) the capsules become softer and there is an increase in permeability. To check if this 
would adversely affect the properties of the capsules during retrograde motion, we added 
the capsules to standard pH 4 buffer (Potassium Acid Phthalate) from JTBaker Inc. We 
found that the capsules were perfectly spherical in pH 4 buffer even after 24 hours. This 
clearly shows that just pH change that occurs inside the cell is not enough to buckle or 
irreversibly deform the capsules.  
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i. Role of PI3-Kinase Activity in Phagocytotic Uptake 
 
FcγR is coupled functionally, via a tyrosine kinase, to PI3-kinase, which may regulate 

the phagocytotic activity of the cells. PI3-K is necessary for phagocytosis of IgG-opsonized 
particles larger than 2 µm diameter138. Phosphatidylinositide 3-kinase (PI3-kinase) has also 
been implicated previously in signaling by all three classes of Fcγ receptor 147-148. 
Activation of PI3-Kinase results in the appearance of the lipid products of this enzyme, 
phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate149-150. The 
PI3-Kinase is composed of a catalytic subunit p110 and an associated regulatory subunit 
 p85151-152. Phosphorylated phosphoinositides generated in the phagosome by the action of 
PI3-Kinase may position the contractile apparatus, either directly by binding a myosin, or 
indirectly by activating Rho153-154, or by organizing a complex of integral membrane proteins 
that can assemble a contractile apparatus. 

Previous studies138 have shown that Fcγ receptor (FcR)-mediated phagocytosis and 
macropinocytosis in macrophages consist of two dissociable activities: a phosphoinositide 3-
kinase (PI3-K) independent extension of phagocytic cups and a PI3-K dependent contractile 
mechanism that closes phagosomes and ruffles into intracellular organelles. Inhibitors of 
phosphoinositide 3-kinase (PI3-kinase) allow pseudopodia to extend onto an opsonized 
particle, but prevent them from closing into phagosomes, indicating that PI3-Kinase 
regulates phagosome closure43. 

 

 
 

Figure 16 (A, B, C, D) Shows macrophages J774a.1 with 4.5 µm diameter PSS/PAH capsules 
engulfed by cells after 90 minutes. The PI3-Kinase is inhibited by adding 50 µm LY294002. It can be 
observed that most of the capsules were oval but not buckled after 90 minutes. Round spherical 
capsule can also be seen outside the cell area in the top left hand corner of image (A). 

To inhibit PI3-Kinase, 50 µM LY294002 was added to cell petridish for 2 hours. After 
the cells were inhibited, capsules were pulsed for 90 minutes. Finally the cells were fixed in 
3% glutaraldehyde in PBS.  As previously reported the inhibition of PI3-kinase43 allowed 
regulation of actin polymerization that led to cup formation but prevented closure. We found 
constriction of the capsules that were stuck to the outer membrane of the cells but the 
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capsules were not really uptaken. It was found that there was enough force to turn perfectly 
spherical capsules slightly oval but not enough to buckle them. When the eccentricity of the 
capsules (major axis/minor axis) was calculated with PI3-Kinase inhibited in the cells the 
eccentricity was 0.75± 0.05. The data was collected from 8 different petri dishes. It was 
observed that the capsules were elliptical but not buckled showing that the step during the 
uptake process that exerts the maximum force needs PI3-Kianse activity. 

ii. Role of SYK in Phagocytotic Uptake 
 
It is known that the phosphorylation of SYK precedes the activation of PI3-kinase. In 

order to understand the role of SYK kinase in phagocytotic uptake process and calculate the 
mechanistic role of SYK in cup formation, we inhibited SYK by pretreating them with 50 µM 
piceatannol36, a SYK-selective inhibitor for 2 hours before pulsing with capsules for 90 
minutes.  When SYK was inhibited it allowed regulation of actin polymerization that led to 
cup formation but prevented phagosome cup closure. None of the capsules entered the 
cells, showing that it prevented phagocytotic uptake. We found constriction of the capsules 
that were stuck to the outer membrane of the cells but the capsules were not really uptaken. 
The amount of constriction varied but the capsules were mostly slightly oval to spherical.  It 
was found that there was enough force to turn perfectly spherical capsules slightly oval but 
not enough to buckle them. The eccentricity of the capsules for SYK inhibited cells was 
0.87± 0.05. 

 

 
 

Figure 17 Macrophages J774a.1 with 4.5 µm diameter PSS/PAH capsules engulfed by cells after 90 
minutes. The SYK kinase activity was inhibited by adding piceatannol. It can be observed that most of 
the capsules were slightly oval but not buckled after 90 minutes. Round spherical capsule can also be 
seen outside the cell area in middle portion of the image. 

Together, these inhibition experiments indicated that for the cells to exhibit maximum 
contractile force after the initial cup formation stage and to exert maximum contractile forces 
it needs both SYK and PI3-Kinase activity.  This increase in constriction with SYK and PI3-
Kinase inhibition suggests that, phagocytic cup formation occurs in a step wise fashion. The 
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zipper mechanism, the longest standing model, when evaluated in the context of our data 
indicates zipper mechanism as a plausible mechanism for uptake.  

After its first description 120 years back, much work remains to be done in 
understanding the signaling pathways elicited by different phagocytic receptors. 
Phagocytosis is known to involve several steps. One purpose of the present work was to test 
if we can use the “phagosensor” the capsule based methodology to measure forces 
temporally so as to elucidate the key signaling regulatory features that control phagocytic 
response, shining light into many of the current ‘black boxes’ in our knowledge. Like the 
inhibition assays of SYK and PI3-Kinase in this work, we can further silencing key unknown 
components in phagocytotic process and compare it with controls thereby understanding the 
complex signaling networks that regulate this fundamental mechanism of the immune 
response. 

VI. Temporal Understanding of Phagocytotic Uptake 
 
In order to gather complex data in a highly dynamic and spatially complex system like 

phagocytotic uptake, we use 4D live cell imaging. Imaging in 4D will help in getting a more 
complete representation and 4D imaging is done by recording the data in three spatial 
dimensions over time (four-dimensional (4D) imaging). In our experiments we used a Nikon 
LiveScan Swept Field Confocal Microscope built on a Nikon TE-2000U microscope platform. 
The imaging was performed on a 60X Nikon Plan Apo VC water-immersion objective (NA 
1.2). The objective was mounted on a high precision motor (piezo-stepper); the piezo-
stepper allowed us to image the specimen in Z. Image acquisition was performed with a 
Photometrics cooled-CCD camera.  When imaging in 4D155, it is crucial to have a suitable 
compromise between sufficient, but not toxic, illumination, spatial resolution in the x, y and z 
axes, temporal resolution and the signal-to-noise ratio, so that the maximum number of 
acceptable images can be acquired before the specimen is completely photobleached or the 
cells are killed.  

One of the serious drawbacks in 4D imaging is the resolution along the z axis, which, 
in light microscopes, is about threefold lower than resolution along the x and y axes; this 
causes anisotropy in the recorded 3D image156. In order to optimize z resolution, 
deconvolution microscopy157 is used to Image stacks of images in z and then they are 
processed using iterative algorithms that assign out-of focus light back to the fluorescent 
object that comes from the correct focal plane. Deconvolution can yield high-resolution 3D 
information from widefield images158-159. By contrast, confocal laser-scanning microscopes 
excite the fluorophore by moving a focused laser beam line-by-line over the specimen and 
record each image pixel sequentially on a point detector. A confocal aperture in front of the 
detector rejects out-of-focus light before it reaches the detector and confocal stacks 
therefore immediately yield 3D images with good axial resolution160. Deconvolution and 
confocal microscopy both have their specific advantages and disadvantages, which depend 
on the specific biological application161-163.  

To get quantitative information alternatively, 4D data can be projected in the x–y 
plane, neglecting the z dimension164-167. Although this allows a more intuitive access to the 
data by viewing it as a simple 2D movie, it sacrifices spatial information. In order to include 
spatial information several algorithms have been developed like maximum intensity 
projection168 and mean-intensity projection169. Maximum intensity projection168 produces 
images that have a particularly high contrast for small structures. In maximum intensity 
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ingested. We choose in our experiments a 4.5 µm diameter capsule as we know from 
previous work of Cox et. al171 and Chavrier et. al172 that, with increase in size and around 4.5 
µm the uptake process turns slower and multi-step. This increase in uptake process may be 
due to involvement of PI3-Kinase which is known to regulates actin polymerization173 

causing delayed phagocytosis44.  
 

 
 

Figure 19 Methodology of eccentricity determination of the capsules. In order to determine the 
eccentricity as shown in images Figure 19 (Aa) column, we initially did a maximum intensity projection 
of the 4d movie. As shown in (Ab) we then found the edges of the capsules. As shown in the Figure 
19 (C) we found the dimensions of maximum axis/ minimum axis of the ellipse to determine the 
eccentricity. The top right portion (B) of the Figure 19 shows the eccentricity changes with time during 
phagocytotic uptake of the capsules. 

Closer inspection of the initial intake process shows two distinct phases. We 
hypothesize that the first phase, a random motion of the capsule around cell is caused due 
to pseudopodia trying to grab the capsule. The second phase occurs with a rapid retraction 
of the capsule towards the cell.  In the second phase the brisk motion caused the capsules 
to buckle, showing that there is a force >150 ± 24 nN (buckle force) occurring during this 
stage. 
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6. Conclusions and Outlook 
 
Although much work has been performed in understanding Fc based phagocytosis, 

still work remains to be done in understanding the signaling pathways elicited by different 
phagocytic receptors and their corresponding signaling activity. One purpose of the present 
work was to test if we can use the “PhagoSensor”, the capsule based methodology to 
measure forces temporally so as to elucidate the key signaling regulatory features that 
control phagocytic responses. This will help shine light into many of the current ‘black boxes’ 
in our knowledge. In order to enumerate the forces from the deformations observed, the 
capsules were initially calibrated and characterized mechanically to find the elastic modulus 
and failure behavior. For the 4.5 µM PSS/PAH, 9 layer, 18 ± 2 nm thick capsules that were 
used for our experiments we found the stiffness of the capsule to be 0.11 ± 0.019 nN/nm. 
The force versus deformation curve shows that there is a linear regime till 100 nN. During 
the linear regime the capsules spring back to their original position after the force applied is 
removed. Our time lapse measurements in 3d clearly show that we can obtain quantitative 
information temporally. The buckling or irreversible breaking of the capsule occurred 
between 120-180 nN with a peak around 150 nN. Imaging of molecular dynamics in living 
cells indicated that formation of phagocytic cups involves discrete mechanical steps 
occurring due to distinct patterns of signaling at various stages of their formation, because of 
discrete cytoskeleton activation steps. To prove that we can annotate and systematically 
decipher the mechanistic roles of these individual molecules in phagocytotic cup formation 
and uptake, we inhibited key signaling molecules PI3-Kinase and SYK. To give a 
quantitative face to the observed deformation, we calculated the eccentricity (Major/Minor 
axis of the ellipse) of the capsules. It is known that SYK and PI3-Kinase activation occurs in 
succession during uptake. As expected the capsule deformations observed for SYK inhibited 
cells was 0.87 ± 0.05 and for PI3-Kinase inhibited cells was 0.75 ± 0.05, showing that 
activation occurs in sequence. This sequential activation of signaling molecules shows 
zipper mechanism as a plausible mechanism for J774A.1 phagocytic cup formation in Fc 
receptor phagocytosis. 

Due to the inherent advantage of the present technique we can tune the mechanical 
properties of our sensor target i.e. the polyelectrolyte capsules, allowing us to observe much 
higher forces than the traditional techniques. Since we follow the entire process of 
phagocytotic uptake rather than the first stage of initial uptake or the initial protrusion phase 
of the uptake process measured by the other techniques, we were able to observe huge 
forces exerted by cells during phagocytosis. Unlike the other measuring procedures like 
magnetic tweezers (>5 nN)16 or >15 pN using optical tweezers18 our capsule based 
methodology pushed the measuring techniques upper limit upto 150 nN, a thirty fold 
increase to the previous measurements.   

The key advantage of the present technique compared to the existing techniques is 
the non-invasive nature of the measuring procedure. Using “PhagoSensor” approach we can 
measure forces in the natural state during phagocytotic uptake process without applying any 
external mechanical forces or by perturbing the cells. Since activation and differentiation 
signals appear to enhance, or modify the signaling enzymes that regulate phagocytosis, we 
expect this technique to measure the events more efficiently and depict the process more 
accurately.  

The analogies between cell adhesion, motility and phagocytosis are strong. These 
“PhagoSensor” studies provide an imaginative approach to gathering details about the acto-
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myosin machinery that regulates phagocytosis as well as multiple other mechanical 
processes including cell adhesion, cell motility and cytokinesis.  We expect that the details 
learned in these specific studies will have direct translational value to other acto-myosin 
systems and other studies focused on mechano-chemical coupling and mechanosensitivity. 
These studies will directly contribute to our understanding of mechano-chemical coupling 
and mechano-sensitivity, two broad themes of great interest in molecular and cell biology. 

For an effective sensor assay to be built using these capsules, work has to be done 
to make capsules with much more uniform mechanical properties. A clear challenge is to 
design polyelectrolyte capsules that would allow us to measure much more sensitive 
capsules that can sense small changes but also push the upper limit of the force they can 
bear before they buckle. The capsules should also be fabricated to have lesser response to 
osmotic stress and have a lower elastic modulus distribution within a batch.  

A much more precise mechanism like a micropipette to deliver the capsules should 
be designed so that we can study the uptake process more accurately and spatio-
temporally. The mechanisms by which physical features of particles feed back to signal 
transduction pathways remain to be determined. It would be interesting to study mechano-
transduction of phagocytosis using capsules with different elastic modulus. 

The future work is concentrated in de-convolving the forces from the deformations 
observed in terms of eccentricity.  Like the inhibition assays of SYK and PI3-Kinase in this 
work we can further silencing key unknown components in phagocytotic process.  
Comparing these with controls could help us understand the complex signaling networks that 
regulate this fundamental mechanism of the immune response. 
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1. Statement of Problem 

I. Background 
 
Macrophages are specialized immune cells that have a unique role in innate 

immunity (non-specific) as well as in initiating specific defense response (adaptive 
immunity). These cells are the primary defense against foreign invasion, infection2 and 
implant material174-176. Macrophages are also responsible for clearing dead host cells and 
foreign material2. When a material is implanted in the human body, host response to the 
material is initiated.  Host response starts with blood-material interaction which deposits 
plasma proteins on the implant surface177-179. The plasma-derived proteins primarily consist 
of two major opsonins, Immunoglobulin G (IgG) and the complement-activated fragment180. 
Meanwhile, as cells in the surrounding tissue encounter the implant, a cell/tissue is 
triggered180. This cell response consists of three stages. The first stage is inflammation181 - 
the focus of this work – followed by tissue repair and remodeling182-183. The duration and 
severity of the inflammatory response varies with the type and functionality of the implanted 
materials184. A prolonged inflammatory response may eventually lead to failure of the 
implant176,185-186. Inflammation is caused by activated macrophages at the implant site180, 
which are considered a key regulator of the intensity and duration of inflammatory 
responses187. Controlling or suppressing the inflammation stage has been a central area of 
interest in research towards designing smart implant materials188-193. Inflammation serves to 
contain, neutralize, dilute, or wall off the injurious agent or process. It sets into motion a 
series of events that may heal and reconstitute the implant site through replacement of the 
injured tissue.  

 Macrophages play a pivotal role in modulating the repair process and produce a 
myriad of cytokines to control wound healing and cell recruitment as well as 
proliferation187,194-195. Macrophages exist in at least two functionally distinct phenotypes, M1 
and M2 that are triggered in response to different stimuli. M1 macrophages are referred to as 
classically-activated macrophages and M2 as alternatively activated macrophages196-198. 
Classically-activated M1 macrophages are induced by interferon-gamma (IFN-γ) either alone 
or in concert with microbial stimuli such as lipopolysaccharide (LPS). IFN-γ in concert with 
cytokines such as tumor necrosis factor-alpha (TNF-α) and granulocyte macrophage colony-
stimulating factor (GM-CSF)199 can also lead to M1 macrophage activation. M2 is a generic 
label for the various forms of macrophage activation that are not the classic M1199. M1 
activated macrophages are efficient producers of effector molecules (reactive oxygen and 
nitrogen intermediates) and pro-inflammatory cytokines (IL-1β, TNF-α, IL-6)200. M1 activated 
macrophages induce pro-inflammation which results in tissue destruction and tumor 
resistance. On the other hand, M2 activated macrophages induce an anti-inflammation 
response, secreting anti-inflammatory cytokines IL-10 and TGF-β, which leads to tissue 
remodeling and growth of new blood vessels (angiogenesis)201-202.  It has been shown that 
macrophages stimulated by Fc receptors leads to a M2 response. Further, it was observed 
that in this alternatively (Fc) activated state, macrophages secrete high concentrations of 
anti-inflammatory IL-10, producing a robust anti-inflammatory response  causing reversal of 
a pro-inflammatory response203. 
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II. Problem  
 
There is a growing demand for artificial implants like orthopedic prosthesis, bone 

substitutes204, stents205, pacemakers206, cochlear implants207-208 and dental implants209-211. 
Approximately two million fracture-fixation devices (nails, external-fixation pins, plates, and 
screws) and about 600,000 joint prosthesis are inserted annually in the United States212.  

In a healthy body, depending on the surface of the implant180,213, the host reaction 
starts with pro-inflammation cytokines secretion which is eventually superseded by the timely 
secretion of anti-inflammation cytokines. These events usually create an environment for the 
proper integration of the implant into the tissue. During several immuno-compromised 
conditions like infections, diabetes, arthritis and several other non-resolving inflammatory 
diseases214 where, chronic inflammation occurs when an implant is placed in individuals. The 
prolonged inflammatory response typical of chronic inflammation eventually leads to failure 
of the implant176,185-186. There have been several disease models that have been shown to 
cause chronic inflammation and implant failure like, in diabetic patients there is more 
persistent inflammation with prolonged pro-inflammation cytokine secretion like TNF-α215-216. 
This has multiple effects, including a tendency toward greater matrix degradation, 
destruction of the tissue around implants and delayed wound healing217-218. This tendency 
causes the implant integration in diabetic patients to fail219 or be delayed. Likewise, in stent 
implants, it is known that restenosis205,220 or re-narrowing of blood vessels, which is 
responsible for restricting the blood flow and failure of the stent, is caused primarily due to 
the inflammation response of macrophages221-222. Due to these undesirable chronic 
inflammation responses, implants are generally built using biocompatible material like TiO2, 
stainless steel or some plastic material that minimizes chronic inflammation. However, such 
materials have been found by trial and error and not by systematic approach that allows the 
control of inflammation in a predictable way193.    

The other inherent problem associated with the immune system’s response to an 
implant is the implant’s propensity to be coated by plasma proteins from the host shortly after 
implantation178. These proteins can elicit non-specific activation of macrophages causing 
either M2 signaling via interactions between IgG and Fc receptors, fibrinogen with 
complement receptors223 or pro-inflammation signaling via interactions with lipoproteins like 
LDL224. Specific response is only possible if we can prevent these other interactions. 

The success or failure of an implanted biomedical device depends on the cascade of 
events organized by the cytokines that are released. Several conditions exist where chronic 
or persistent inflammation leads to the failure of implants. Therefore, it is desirable to create 
a surface on the implant that would stimulate an anti-inflammatory response in order to 
negate or completely suppress the pro-inflammation occurring around the implant.  

III. Hypothesis  
 
We hypothesize that macrophages can be programmed to secrete high amounts of 

anti-inflammatory cytokines, specifically IL-10, when Fc-receptor phagocytosis is activated 
by macrophage interaction with surfaces coated with Fc fragments.  

Further, it is hypothesized that macrophage cytokine production can be modulated by 
changing the concentration of the Fc coating on an implant surface. 
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IV. Rationale  
 
Macrophages play a central role in modulating the wound repair process, mediating 

phagocytosis, by producing a myriad of cytokines which control wound healing and cell 
recruitment as well as proliferation176,187,194-195 around implanted biomedical 
devices184,190,211,225. It was previously demonstrated that stimulation of macrophage’s Fc 
receptors generates IL-10, leading to a reversal of macrophage pro-inflammatory 
response203. IL-10 plays an auto-regulatory role inhibiting (pro-inflammatory) cytokine 
synthesis226 and promotes healing227. IL-10 a potent anti-inflammatory cytokine228 is known 
to switch-off of an already activated M1 macrophage229-231 and remove the consequent pro-
inflammatory sequel including tissue destructive reactive oxygen species and nitric 
oxide202,232.  

By coating surfaces with Fc fragments, we can expect to stimulate macrophages to 
activate into M2 phenotype. These cells can then act as immunomodulatory and pro-healing 
by producing anti-inflammatory cytokines.   

V. Objective  
 
The main objective of this work is to engineer a method that elicits a site-specific anti-

inflammatory response from macrophages via Fc-receptor activation. To achieve this goal, 
we have developed an approach to nanopattern large arrays of Fc fragments with well-
defined concentration based on micellar nanolithography233-235. Inflammatory response and 
macrophage activation will be monitored using a combination of ELISA to monitor cytokine 
production and cell spreading area, which is related to the activated macrophage state200,236. 
With these approaches, there are three aims that will help accomplish the main objective: 

• To demonstrate that Fc-fragment covered surface can induce an anti-inflammatory 
response in macrophages. 

• To optimize the anti-inflammatory response of macrophages by varying surface 
coverage presented by both nanopatterns and standard surfaces.  

• To correlate cell spreading area of M2 macrophages with the degree of macrophage 
activation determined by ELISA. 

VI. Significance  
 
This work would help us achieve bioactive surfaces that can induce macrophages to 

secrete anti-inflammation agents. Smart bioactive surfaces like these can help people with a 
propensity for chronic inflammation, minimizing the need for external immunosuppressive 
agents237 or steroids238-239. 
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2. Literature Review 

I. Macrophage Phenotypes M1 and M2, the Killer and Healer 
Cells 
 
Macrophages respond to stimuli and exist in at least two distinct phenotypes, 

classically activated (M1) macrophages and alternatively activated (M2) macrophages. 
Classically activated, M1 or “killer” macrophages produce pro-inflammatory cytokines and 
act as effectors of cell killing. Alternatively activated M2 or “healer” macrophages on the 
other hand are responsible for tissue remodeling, repair and act to dampen pro-inflammatory 
response.  

 

 
Figure 20 Schematic showing key properties and functions of the two different macrophage 
phenotypes M1 and M2. Macrophages acquire different functional properties in response to 
environment-derived stimuli and express different cytokines. 

As shown in Figure 20, classically activated M1 macrophages are induced by 
interferon-gamma (IFN-γ) either alone or in concert with microbial stimuli such as 
lipopolysaccharide (LPS). IFN-γ in concert with cytokines such as tumor necrosis factor-
alpha (TNF-α) and granulocyte macrophage colony-stimulating factor (GM-CSF)199 can also 
lead to M1 macrophage activation. M1 activated macrophages are efficient producers of 
effector molecules (reactive oxygen and nitrogen intermediates) and pro-inflammatory 
cytokines (IL-1β, TNF-α, IL-6)200, these cells induce inflammation which results in tissue 
destruction and tumor resistance. Thus, once macrophages are M1 activated by either IFN-γ 
or LPS, they become fully equipped to attack and destroy.  

M2 is a generic label for the various forms of macrophage activation that are not the 
classic M1199. M2 activated macrophages induce an anti-inflammation response, secreting 
anti-inflammatory cytokines IL-10 and TGF-β, which leads to tissue remodeling and growth 
of new blood vessels (angiogenesis)201-202. It was observed by Sutterwala et. al203 that in this 
alternatively (Fc) activated state, macrophages secrete high concentrations of anti-
inflammatory IL-10. Although the precise mechanism by which Fc ligation induces IL-10 and 
anti-inflammation is not clear, it is known that IL-10 induces the expression of the protein, 
suppressor of cytokine signaling 3 (SOCS-3)240-241, a potent inhibitor of pro-
inflammation226,231,241.  
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Figure 22 Schematic showing Fc fragment of IgG and modification of the fragment to create SH on it 

In order to determine the amount of SH created on the Fc fragment, we used 
Ellman’s reagent (also referred to as Dithionitrobenzoic acid, 5,5'-Dithiobis(2-nitrobenzoic 
acid) or DTNB). DTNB is a chemical used for measuring the amount of free thiol groups. SH 
reacts with DTNB cleaving the disulfide bond to give 2-nitro-5-thiobenzoate (NTB-), which 
ionizes to the NTB2- dianion in water at neutral and alkaline pH. Ellman’s reagent produces 
NTB2- ions, a measurable yellow colored product when it reacts with free sulfhydryls242-243. 
This reaction is rapid and stoichiometric with every SH corresponding to one mole of NTB244. 
 The NTB2- is quantified using a UV/VIS spectrophotometer by measuring the absorbance of 
visible light at 412 nm, using an extinction coefficient of 13,700 M-1 cm-1.  

The amount of thiol (SH) groups present on the SH modified Fc fragment was 3.0576 
X 10-4 M (moles/liter). This is approximately 1:1 in ratio to the amount of protein, showing 
that there is approximately 1 SH group per Fc fragment. The Ellman’s test performed here 
showed that we have successfully modified the Fc fragment to create SH groups.   

III. Cell Culture  

i. Cell Culture 
 
The murine macrophage cell line, J774A.1, Mouse BALB/c (TIB-67, American Type 

Culture Collection, Rockville, MD) was routinely maintained in Dulbeccos Modified Eagles 
Medium (DMEM, Mediatech Inc, USA) supplemented with 10 vol % fetal bovine serum 
(Mediatech Inc, USA) and a 2 mM  L-glutamine.  The cells were always maintained at 37°C 
in a humidified atmosphere of 5% CO2 in air. Cells were passaged by scrapping, centrifuging 
and resuspending in fresh medium. All experiments were performed with cells between 
passage numbers 1-10.  

To determine the cell number and the number of vital cells used in the experiments, a 
cell suspension in DMEM was diluted 1:10 in a 0.05% trypan blue (VWR) solution in 
deionized water. This colored substance enters and stains only dead cells. The cell 
suspension in trypan blue was transferred into two hemocytometer chambers (Neubauer 
counting chamber). Using a 10x objective and light microscopy, the cells were counted in 8 
fields (each field having an area of 1mm2) and the average number of cells per volume (ml) 
was calculated (excluding cells stained in blue which are dead). 

ii. Fixing Cells 
 
Slides containing cells were washed with cell culture media and then filled with 3% 

glutaraldehyde (Electron Microscopy Science Inc, Catalogue #16310) solution in distilled 
water. Treating cells with glutaraldehyde leads to the establishment of chemical cross-links 
between free amino groups245. When the cross-links join different molecules, a latticework of 
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interactions occurs that holds the overall architecture of the cell together.  After extensive 
washing with PBS, the coverslips were mounted in Elvanol to inhibit oxidation and 
photobleaching. 

iii. Cell Membrane Labeling and Quantification 
 
Cell membrane was visualized using wheat germ agglutinin (WGA) attached to a 

fluorescent dye. Wheat-germ agglutinin is a lectin with specificity for N-acetylglucosamines 
present on the cell surfaces246. Lectins like WGA are versatile probes for detecting 
glycoconjugates present on the cell membrane247. The WGA that was used was conjugated 
fluorescently with Alexa Fluor 594 and was purchased from Invitrogen Inc. In order to label 
the cell membrane of the fixed J774a.1 cells, 5 µg/ml of WGA concentrate (5 mg/ml) solution 
was diluted in PBS and the slides were incubated in this solution for 15 minutes. Once the 
cells were labeled, the excess WGA was removed by extensive rinsing with PBS. Figure 23 
is an epi-fluorescence image of a J774a.1 cell labeled with WGA. In order to quantify the 
area of the cell, a threshold was manually applied to the fluorescent cell. This allowed us to 
outline the cell area from the background. Once the cell area was outlined, a home built 
MATLAB algorithm quantified the number of pixels in the outlined area of the cell. 

 

 
 

Figure 23 Epi-fluorescence image of J774a.1 cell labeled with WGA. 

IV. Enzyme-linked Immunosorbent Assay (ELISA)  
 
ELISA is a sensitive immunoassay that uses an enzyme linked to an antibody or 

antigen as a marker for the detection of a specific protein, especially an antigen or antibody. 
This technique can be used as a diagnostic tool, a qualitative and quantitative tool in 
determining unknown antigens in solutions. All ELISA kits were purchased from eBioscience, 
Inc.  As shown in the schematic Figure 24, in order to determine the cytokine concentration 
in harvested cell culture media, the microtiter plates were coated with the appropriate 
antigen and the unbound sites and free sites on the microtiter plates were blocked with BSA 
to prevent false positive results. The cell culture media was then added to the wells and after 
a through wash, the antibody conjugated with biotin was added. This was then followed by 
avidin horseradish peroxidase (HRP). 3, 3’, 5, 5’- tetramethylbenzidine (TMB) is a soluble 
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colorimetric substrate solution for HRP. When TMB is added in the presence of HRP it 
reacts to produce a blue by-product. The color intensity is proportional to the amount of HRP 
activity which in turn is proportional to the concentration of the protein in the solution.  
Finally, two Normal (2N) sulfuric acid (H2SO4) was added to stop the reaction. Sulfuric acid 
changes the blue colored solution to yellow, enabling accurate measurement of the intensity 
at 450 nm using a plate reader. 

 

 
 

Figure 24  Schematic of the ELISA procedure 

V. Optical and Atomic Force Microscopy 
 
Epi-fluorescence microscopy was performed on an inverted Nikon TE2000 

microscope equipped with a Nikon intensilight (C-HGFIE) for illumination and a Nikon 
EMCCD camera (DQC-FS). Images were obtained using a Plan Apo 60x water immersion 
objective (Nikon, NA 1.2) or a Plan Apo 100x oil immersion objective (Nikon, NA 1.4). Nikon 
filter cube sets were used to image fluorescent dyes in the region of UV (#96310, UV-2EC 
DAPI filter set, excitation 340-380 nm, dichroic mirror DM400, emission 435-485 nm), in the 
green (#96320, FITC/GFP HyQ filter set, excitation 460-500 nm, dichroic mirror DM505, 
emission (510-560 nm), and in the red (#96324, Cy5 HQ filter set, excitation 620-660 nm, 
dichroic mirror (DM Q660LP, emission 700-775 nm). 

Imaging, friction and phase measurement of the nanostructures was performed on a 
Nanoscope Multimode IV, atomic force microscope (AFM) from Veeco. The AFM topography 
and phase images were recorded in ambient conditions using an ultra sharp AFM tip 
(Nanosensor, SSS-NCHR, resonant frequency 312 kHz, spring constant 37 N/m) at a drive 
frequency close to its resonance frequency. 

VI. Quartz Crystal Microbalance (QCM) 
 
The Quartz Crystal Microbalance (QCM) is very sensitive to changes in weight and 

thus is a helpful method for detecting adsorption processes at solid/gas or solid/liquid 
interfaces. The basis of the QCM is a thin quartz crystal exhibiting the inverse piezoelectric 
effect. Applying an alternating current to the crystal excites a mechanical oscillation of plate. 
Changes in the specific resonance frequency of the quartz are directly proportional to its 
mass load. The quartz crystal microbalance is an extremely sensitive sensor capable of 
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Figure 26 Schematic of the micellar nanopatterning approach. Glass substrates are dipped in the 
micellar solution at a constant speed. A monolayer of micelles is coated on the surface by dipping and 
removing the surface in a solution of micelles at a specific speed. The Surface is then air dried and 
plasma etched to remove the organic components present on the surface of the substrate, resulting in 
Au nanoparticles being organized in hexagonal order.  

As shown in the Figure 26, In order to achieve a miceller monolayer we perform dip 
coating. In dip coating, the substrate is dipped into a micellar solution leading to the 
formation of a uniform miceller coating with a polymer brushlike structure251,258 on the 
surface of the substrate. During the retraction of the substrate out of the micellar solution, 
the micelles form a monolayer on the substrate and self assemble into a quasi-hexagonal 
order. This quasi-hexagonal pattern of the micelles is reflected in the pattern of the 
nanoparticle arrays. The driving force is the evaporation of the toluene at the immersion 
edge. Capillary forces, steric interactions, and electrostatic repulsion influence the final 
formation of the micelles on the surface259. During the dipping process the substrate is 
moved with a constant velocity. It is then treated by hydrogen or oxygen plasma, which leads 
to a reduction of the metal precursor to the elementary metal or metal oxide followed by the 
complete removal of the polymer matrix260-261. The size of the resultant nanoparticles is 
controlled by the amount of salt introduced into the unloaded micelle solution, while the 
length of the polymer chain controls the distance between the nanoparticles260-261. The 
distances between gold nanodots are varied by using diblock copolymers of different 
molecular weight. The average size of the gold nanodots is 8 nm.  

Block copolymer micellar nanolithography has been successfully applied on many 
different substrates, such as glass and mica262-263. The only requirement for the substrate is 
that the material is stable in the solvent, which is in this case toluene and that it resists the 
plasma conditions.  
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4. Results and Discussion 

I. Characterization of the Nanopatterned Bio-Interfaces for 
Macrophage Studies 
 
The goal of the present work is to elicit macrophages to generate anti-inflammation 

cytokines by activating the cells with Fc fragments bound on the surface. We also investigate 
if changing Fc fragment concentration can differentially modulate the anti-inflammation 
cytokine production. Since quantifying the amount of Fc fragment present on glass slides is 
critical, we have determined how the amount of Fc concentration incubated in the solution 
relates to the amount of protein that is chemically bound to the surface. 

In order to elicit a defined response from the macrophages, we present Fc fragments 
in a well defined and highly ordered nanopattern with PEG passivation in between the Fc 
fragments using block copolymer micellar nanolithography. A SH group was added to the Fc 
fragment to allow binding of the Fc fragment to gold nanoparticles in the nanopatterns. The 
binding of the SH modified Fc fragment to gold and its bioactivity was confirmed with QCM 
and Ellipsometry. The PEG passivation between the Fc fragments will prevent any non 
specific adsorption. To verify PEG passivation, we performed Fourier transform 
spectroscopy (FTIR) and Contact Angle Goniometry.  

i. QCM Study of SH Modified Fc Binding to Gold and Its Bioactivity  
 
Extensive chemical modifications of proteins can severely affect the protein function 

and bioactivity 276-278. In order to verify that the SH modified Fc fragment binds to gold and 
further test its bioactivity, we employed the quartz crystal microbalance (QCM)279-281 
technique. 

The resonance frequency of quartz decreases when material attaches to the 
electrode's surface as described by Sauerbrey’s equation. The crystals used had gold 
coating on the surface. Phosphate buffer saline (PBS) was flown over the crystal chip 
followed by SH modified Fc fragment in PBS. As shown in the yellow region of Figure 29, the 
signal stabilizes after 40 minutes of flow of the SH modified Fc fragment. There was a 
change of approximately 26 Hz. The binding confirms that the modified Fc fragment binds to 
gold, which is an important criterion for patterning Fc fragments using gold nanoparticle 
templates. In the pink region in Figure 29, anti-Fc antibody was flown. If the modified and 
now bound Fc fragment is functionally bioactive, it should recognize and bind to the 
antibody. The anti-Fc stable signal in pink region shows antibody binding to the Fc fragment. 
There was approximately a change of 71 Hz in the pink region showing that anti Fc binds to 
the modified Fc fragment. This shows that the modified Fc fragment is bioactive. The mass 
of the Fc fragment is slightly more than 1/3rd the mass of IgG. ∆f ~ mass and the ratio of ∆fFc 

fragment : ∆fanti-Fc is 26 : 71 which is approximately1:3. This ratio of 1:3 is consistent with the 
binding of one anti-Fc to each modified Fc fragment bound to the surface. 
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Figure 29 QCM graph displaying SH modified Fc binding to a gold film, followed by a bioactivity test. 
Initially PBS was flown(grey region) followed by thiolated Fc fragment . The equilibrium in yellow 
region shows the thiolated Fc binding to gold surface of the QCM crystal. Anti-Fc binding in the pink 
region shows that the thiolated Fc fragment is bioactive. The blue region shows the rinse cycle. 

ii. Ellipsometry Confirmation of the Fc Bound to Gold 
 
Ellipsometry is a powerful tool for studying protein adsorption on surfaces282-286. 

Ellipsometry measures the change of polarization upon reflection. The exact nature of the 
polarization change is determined by the sample's properties i.e. refractive index and 
thickness. While most of the optical techniques have a problem with the diffraction limit of 
light, ellipsometry exploits phase information and the polarization state of light which allows it 
to achieve angstrom resolution. The ellipsometric measurements were performed on a 
rotating analyzer ellipsometer (J A Woollam Co.) operating in the 400–1000 nm wavelength 
region with an angle of incidence of 65°, 70° and 75° (for further information regarding the 
ellipsometer refer to materials and methods).  

In the present work, ellipsometry was used to confirm the modified Fc binding to gold 
by measuring the height change or thickness of Fc bound to gold. The gold QCM crystal 
from which data in Figure 29 was obtained was dried using a nitrogen blow gun.  For 
modeling the data we considered a non-transmitting thin film of gold on which we considered 
the formation of Fc – anti-Fc complex film. To model the Fc - anti-Fc complex, we used 
Cauchy’s dispersion model282,287-288. Cauchy's equation is an empirical relationship 
between the refractive index and wavelength of light for a particular transparent material 
like protein and polymer films284-285.  Since the surface roughness of the substrate affects 
the measured ellipsometric angle (∆, Ψ), the optical model was established as a two phase 
layer model composed of gold, Fc - anti-Fc complex. The model fit showed that there was 
approximately 5.4 nm in thick film which corresponds to a layer of Fc and anti Fc on it within 
the error due to denaturation. The thickness we measured is in good agreement with values 
previously shown by Bae et. al289 who worked on thiolated IgG - anti-IgG complex bound to 
gold.   
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iii. Fourier Transform Infrared Spectroscopy (FTIR) to Verify PEG Passivation  
 
Attenuated Total Reflection Infrared (ATR-FTIR) spectroscopy is used for analysis 

and identifying chemicals that are either organic or inorganic on the surface of materials. In 
attenuated total reflection infrared (ATR-FTIR) spectroscopy, infrared radiation is passed 
through an infrared transmitting crystal with a high refractive index, allowing the radiation to 
reflect within the ATR element several times. The spectra of mPEG 2000-urea bound on 
glass substrate was obtained by Fourier Transform Infrared Spectroscopy (FTIR) on a 
Perkin Elmer Spectrum 1000 FT-IR spectrometer equipped with the Perkin Elmer Fixed 
Angle Specular Reflectance accessory in a N2 atmosphere in Attenuated Total Reflectance 
(ATR) mode. A diamond crystal was used as an ATR crystal material. 

 

 
 

Figure 30 FTIR graph on PEG silane bound glass substrate. (A) Spectral range of carbonyl 
groups(C=O) and (B) Spectral range for C-H groups present on mPEG 2000-urea.     

From Blümmel et. al290 we know carbonyl (C=O) and CH2 (C-H) groups are abundant 
in mPEG 2000-urea. It is known from Colthup et. al291 that CH2 has a peak at 2870-2860 cm-

1. It can be seen from Figure 30A that in the FTIR spectra of PEG silane bound on glass 
there are C-H bond peak at 2848.  As seen in Figure 30B the C=O peak291 corresponding to 
carbonyl groups was also present at 1740 cm-1. Since the mPEG 2000-urea present on the 
surfaces is around 2 nm in dry state275, a strong influence of the under lying silicon substrate 
was recorded in the spectra which was evident from the spectra recorded below 1500 cm-1.  

iv. Contact Angle Goniometry to Verify PEG Passivation on Nanopatterns 
 
In order to check that we passivate the nanostructures with PEG, we performed 

contact angle measurements on the nanostructured surface before and after PEG 
passivation. 

 The contact angle is a quantitative measure of the wetting of a solid by a liquid. The 
contact angle is specific for any given system and is determined by the interaction across the 
solid–water interface. The shape of the droplet is determined by the Young Relation292. The 
contact angle plays the role of a boundary condition. The wettability of a surface is 
determined by the outermost chemical groups present on the surface of the solid. It is known 
that PEG decreases the contact angle since it increases the hydrophilicity of surfaces274.  
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specifically bound between the gold particles. Further we performed topography or surface 
roughness analysis to determine if the Fc portion was bound to the gold particles. If Fc is 
bound on the gold, we should be able to see a change in height due the Fc portion binding. 

The gold particles in block copolymer patterns were 8nm in height.  On the right side 
of Figure 32, we can see Fc coated block copolymer nanostructures that were previously 
PEG passivated.  Once coated with the Fc fragment there was a change of approximately 1 
nm which is the size of dry Fc considering it 1/3rd the size of an ordinary IgG294-295.  It has to 
be noted that in this particular sample, as seen from the images, there were a lot of defects 
in the hexagonal order. These defects may be due to extended storage of the sample. 

 
 

Figure 32 (A, B)  AFM topography images of nanostructured surfaces with PEG coating without and 
with Fc respectively. (C, D) are the sample height profiles of (A, B). 

vi. Fc Concentration of the Incubated Liquid versus Amount Bound On Glass 
Substrate 
 
Nanopatterned substrates although are an excellent technique for presenting Fc 

fragments in organized and regular patterns, there is a concomitant effect of changing 
concentration of Fc bound with changing nanopattern spacing. This change in Fc 
concentration occurs as there are more gold particles with decreasing nanopattern spacing, 
leading to higher amount of protein bound per every cm2. It has to be noted that the amount 
of Fc fragment bound on the nanopatterns is really low. In order to see if higher 
concentrations of Fc fragments have an enhanced effect on macrophages we coated glass 
slides with high density of Fc fragments.  

Since we would like to determine the amount of Fc fragment bound on the glass. In 
the present experiment we have determined how the amount of Fc concentration incubated 
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in the solution relates to the amount of protein that is chemically bound to the surface.  In 
order to determine the protein concentration bound on the glass slide, we used the 
technique from Reinhart et. al296. The surfaces to be coated with Fc were initially treated with 
APTES (refer to section I of materials and methods for APTES treatment) to create amine 
groups.  The slides were then treated with glutaraldehyde for 45 minutes. The Fc fragment 
was diluted in PBS to create solutions of 500 mg/ml, 250 mg/ml, 125 mg/ml, 62.5 mg/ml, 
31.25 mg/ml and 15.6 mg/ml. These diluted protein solutions were incubated overnight with 
the glutaraldehyde treated glass slides at 4oC. The glass slides were then rinsed to remove 
any non-specifically bound protein, leaving a slide with Fc chemically bound to the surface. 

 

 
 

Figure 33 Graph showing protein concentration incubated versus amount of protein bound to surface.  

The Fc concentration is measured by hydrolyzing the amide linkage between the Fc 
and the APTES treated glass slides using a solution of 5N NaOH. 140 µl of 5N NaOH was 
added to each Fc coated glass slide for 3 hours. The NaOH solution containing Fc was 
carefully collected and the Fc concentration was determined by comparing its absorbance at 
280 and 260 nm to that of pure Fc fragment at different pre-determined concentrations. The 
plot in Figure 33 shows protein concentration incubated versus the amount of protein bound 
to glass surface. 

II. Quantifying Cell Spreading of M2 Activated Macrophages 
 
Phagocytosis of foreign bodies, dead cells and old tissue structures is an important 

macrophage function.  A variant form of phagocytosis occurs when a macrophage is 
activated to engorge an object that is much bigger than itself. In cases where the total 
amount of membrane needed to phagocytose an object is larger than that in a macrophage’s 
reserves, the macrophage instead attaches to the object’s surface and spreads over a large 
area as it attempts to phagocytose the substrate71.  This process is called frustrated 
phagocytosis. During frustrated phagocytosis macrophages secrete cytokines, degradative 
agents such as superoxides and free radicals causing damage to the foreign object297. 
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In general, activated macrophages spread over larger areas than non-activated 
macrophages200,236,298.  Although not much work was done to clearly distinguish if M1 or M2 
phenotype of macrophages undergo cell spreading during activation, we hypothesis and 
want to confirm that in activated state, M2 phenotype spread more than normal 
macrophages. In order to achieve this, we monitor the change in adhesion area using optical 
microscopy. Further this change in adhesion area was used as a measure for cell activation.  
In this section, we report on how the adhesion area of macrophages varies with Fc fragment 
concentration on engineered surfaces. Later, in section III, this trend will be compared with 
biochemical data reporting the cytokine production of macrophages on the same surfaces.    

In both the cell spreading study and the cytokine assay, we investigate the ability of 
Fc fragments bound to a surface to modulate macrophage behavior and activation.  In 
designing the substrates, we consider the two main factors that could strongly influence the 
frustrated phagocytotic response of the macrophages. The first is the average concentration 
of Fc fragments on the surface with respect to the total cell area. The second is the local 
organization of the Fc fragments, in particular, their local concentration and geometry.  In 
one scenario, the total number of Fc receptors stimulated on a macrophage cell may be the 
predominant influence on the macrophage response. In another possible scenario, the total 
number of activated Fc receptors may be irrelevant unless clusters of Fc receptors are 
allowed to physically form, so that a signaling cascade initiating phagocytosis is allowed to 
start. There is evidence that Fc receptor clustering in necessary for phagocytic signaling to 
initiate. 

In order to distinguish between these two scenarios, our experiments will consist of 
two classes of surfaces and several controls.  Nanopatterns of Fc fragments with varying 
ligand spacing will be the first surface type. The second surface type will be high 
concentration of covalently bound Fc fragments to glass. The concentrations of Fc on glass 
are much higher than what is achievable by the nanopatterns. In the nanopatterning 
experiments, the hypothesis that some critical geometry/ligand spacing is necessary to 
initiate a phagocytic signaling cascade will be tested. With the standard surfaces, we will 
explore how increasing the concentration dramatically impacts the cell response. Controls 
will include the typical response of macrophages to the endotoxin lipopolysaccharide (LPS), 
which is well known to elicit a strong immune response that promotes cell spreading and 
secretion of pro-inflammatory cytokines by macrophages299-300. Negative controls on glass 
and PEG are also included. Comparison with the positive LPS control will facilitate 
interpretation of the modulation of the macrophage behavior on the nanopatterned / 
concentration varying substrates. 

i. Change in Cell Area on Glass Slides with High Fc fragment Concentration 
 
Macrophages when ligated with Fc fragments in solution are known to secrete IL-10 

and anti-inflammatory cytokines203. The primary aim of this experiment is to see if 
macrophages get activated and produce anti-inflammation with Fc fragments immobilized on 
surface. In order to analyze the activation, we compared the cell area of macrophages on 
high density Fc coated slides with LPS stimulated cells and macrophages on plain glass. To 
check the anti-inflammation activity, we performed ELISA to compare the cytokine 
production (section III). Since we are using really high amount of Fc fragments (more than a 
monolayer), the area and cytokine experiments on glass slides will help us check the 
effectiveness of nanopattern substrates which have about 1000 times lesser Fc fragments. If 
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concentration is the key player in modulating the macrophages behavior on surfaces, these 
high concentration Fc coated slides should outperform the nanopatterned substrates.  

To chemically bind the Fc fragment to the glass slide, the glass slide was treated with 
APTES which created amine groups on the surface of the glass substrate. The glass slides 
were then cleaned and treated with glutaraldehyde for 45 minutes. The Fc fragment was 
diluted in phosphate buffer (pH 8) to the required concentration i.e 500 µg/ml. From Figure 
33 we know that when incubated with the above concentrations we acheive 32 µg/cm2 of Fc 
bound to the surface of the glass slide. After covalently binding the Fc receptors to the glass 
substrates, the slides were rinsed and placed in a 6 well plates. Two ml of media and 50,000 
J774a.1 cells were plated onto each well. After 48 hours of incubation, the cell culture media 
was removed  and the cells on the slides were fixed. In ordere to visualize the cell area, the 
cell membrane was labeled with wheat germ agglutinin (WGA). The cell area was quantified 
from the epi-fluorescence images using a home built alogrithm. The experiments were 
performed on two seprate slides and approximately 100-140 cells were measured to quantify 
the cell area.  

It was observed that the cell area on these substrates was 1570 µm2, on the other 
hand macrophages stimulated with LPS  had an average area of 1957 µm2. The 
indiscrepancy in area between Fc activated macrophages and LPS activated macrophages 
may be related to different activation pathways. LPS stimulation leads to M1 macrophages 
and Fc activation causes M2 macrophages. Although they are no well studied control stimuli 
for M2 macrophages, a better control could help us analyze the effectiveness of the Fc 
coated surfaces.  

Since the area measurments themselves couldn’t be used to confirm the functionality 
of Fc coated surfaces, we performed cytokine assays to analyze the anti-inflammatory 
cytokine production. 

ii. Modulation of Cell Spreading On Nanopatterned Substrates 
 
Four different nanopatterns were used to assay the influence of Fc-fragment spacing 

on macrophage activation. As described in the Materials and Methods section, micellar 
nanolithography was used to produce gold nanoparticle arrays with hexagonal ordering and 
an average lattice spacing of 36, 63, 80 and 125 nanometers between the gold particles. 
These lattice spacing correspond to interfaces with surface concentrations of 11 - 33 ng/cm2, 
3 - 8 ng/cm2, 2 - 5 ng/cm2 and 1 - 2 ng/cm2. Fc fragments from IgG were covalently bound to 
the gold and the regions in between the nanoparticles were covalently passivated with PEG. 
The resultant nanostructured surfaces have the advantage that they control the surface 
concentration and spatial arrangement of the Fc fragments on a very local scale. A less 
controlled non-nanopatterned surface, such as those used in the section before, is expected 
to have significant degree of heterogeneity in the distribution of Fc fragments on the surface. 
Here, the patterns are expected to be relatively homogenous, although the nanopatterns 
have been reported and observed by us to have some variability and defects in the 
hexagonal structure 301. 

The biofunctionalized and passivated nanopatterns were rinsed and placed in 6 well 
plates with 2 ml of media in each well. 50,000 J774a.1 macrophage cells were seeded into 
each well and the 6 well plate was placed in cell culture incubator.  After 48 hours of 
incubation, the cell culture media was removed for cytokine analysis and the cells on the 
slides were fixed. In order to visualize the cell area, the cell’s plasma membrane was labeled 
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with a fluorescently-labelled wheat germ agglutinin (WGA). Fluorescent images of more than 
hundred cells on each of the four different  nanopattern types were measured. The cell area 
was measured as described in the materials and methods. Two typical cell phenotypes 
appeared during the measurements. One class was elongated, while the other class was 
typically circular. It was observed that most cells were tightly bound to Fc coated surfaces 
with numerous psuedopodia like structures areound them.  

The results are summarized in Figure 35 for the cell spreading area (µm2) versus the 
substrate concentration / lattice spacing, where 36 nm is the highest concentration (11 - 33 
ng/cm2) and 125nm is the  lowest concentration (1 - 2 ng/cm2). The LPS control shows an 
activated cell stadard to which  we compare the cell areas of the nanopatterned substrates. 
In this extremely activated scenario, the typical area of cell was approximately 2000 μm2.   

Figure 34 is a bar graph with cell area on nanopatterned substrates and with LPS as a 
control. The control LPS, which is known to activate the macrophages leading to enhanced 
spreading302 indeed caused the cells to spread more, compared to cells on the 
nanopatterned substrates. The average cell area on the nanostructured surfaces was found 
to decrease with increasing nano-particle spacing. It has to be noted that in any population 
of cells in general and in macrophages as well, unless cell cycle synchronized, there should 
be heterogeneity in cell area. The error bars in Figure 34 are from the deviation in cell area 
of some cells from the average cell area of the population. Although there is a clear 
modulation of the cell area in terms of the average cell area on the nanopatterned 
substrates, the change in cell area on 63 nm and 80 nm patterns is masked by the deviating 
cells in the population.  There was a clear change in cell area between 125 and 36 nm 
patterns. 

 

 
 

Figure 34 Cell area on nanopatterned substrates after 48 hours. There was a decrease in cell area 
with increasing spacing. LPS which is a positive macrophage activation signaling chemical caused the 
cell to spread the maximum. 
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activity and clustering, further investigation of these initial events can help us understand the 
aftermath effects much more clearly.  

iii. Time Dependent Modulation in Cell Area on Fc Coated Glass Slides and 
Control Glass Slides with No Fc 
 
Much work has been done in understanding the effect of surface bound ligand on 

macrophages spreading behaviour303-305 at initial spreading phase (≥120 minutes).  Since we 
are interested in the behaviour of cells at inflammation stage and the inflammation stage 
occurs at  time scales much later than initial spreading phase, it is critical for us to see if the 
cell spreading is still relavent at time scales 24 and 48 hours. In order to determine this, we 
performed a time dependent measurment of change in cell area on Fc coated slides and 
compared it with cell area of macrophages on glass slides without Fc coating on them.  

 

 
 

Figure 36 Change in cell area on plain glass and Fc coated slides (1 mg/ml).  The cell area was 
determined at different time points. There was an  increase in cell area with time. 

From Figure 34 and 36 we know that there is change in cell area with changing Fc 
concentration. Figure 36 shows that there is an increase in area on both Fc coated slides 
and on glass slides but, the amount of change that occurs on Fc coated slides is higher than 
that on the glass slides.  A comparision of the ratio of the area on Fc coated slides and those 
seeded on normal glass slides showed that there is an average difference about 1.3 times. 
The cells do not adhere to surfaces coated with PEG. The data clearely shows that until 48 
hours, the cell area change is time dependent process and it is valid to measure change in 
area as a measurment criteria to validate the activation. 

III. Cytokine Modulation 
Macrophages play a pivotal role in both wound healing and cellular response to 

implants. Macrophages are potent secretory cells that release an array of cellular mediators 
like pro-inflammatory cytokines, growth factors, hydrolytic enzymes and reactive oxygen 
intermediates. Cytokines are proteins secreted by immune cells that can modulate and 
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orchestrate the interactions between cells. They can change the behavior of cells in the local 
environment. Macrophages secrete cytokines like interleukins, lymphokines and cell 
signaling molecules such as tumor necrosis factor. As shown in Figure 37, cytokines can 
orchestrate in favor or work against inflammation and wound healing.  

Macrophage behavior on the nanopatterns was assessed by analyzing the 
production of both anti and pro inflammation cytokines. To understand the pro-inflammation 
effect of the nanopatterns, we checked TNF-α production by J774a.1 macrophages. To 
investigate the anti-inflammation behavior, TGF-β and IL-10 production were assessed. 

TNF-α is a cytokine that is produced by several types of cells, but mostly by 
macrophages. M1 macrophages produce high amount of TNF-α. This cytokine is involved in 
systemic inflammation and is a member of a group of cytokines that stimulate pro-
inflammation. TNF-α is responsible for apoptosis, tissue destruction and growth inhibitory 
processes306-308. Prolonged overproduction of TNF-α can have a disastrous effect including 
chronic inflammation, anemia309 and cancer310.  

Interleukin-10 (IL-10) also known as human cytokine synthesis inhibitory factor 
(CSIF) is an anti-inflammatory cytokine. IL-10 modulates expression of cytokines, soluble 
mediators and cell surface molecules which have important consequences including 
sustained immune and inflammatory response311. IL-10 potently inhibits production of IL-1α, 
IL-1β, IL-6, IL-12, IL-18, GM-CSF, G-CSF, M-CSF, TNF, LIF and PAF by activated 
macrophages312-317. 

Transforming growth factor beta (TGF-β) is a regulatory molecule that controls cell 
proliferation, differentiation and migration. It plays an important role in carcinogenesis, 
fibrosis, wound healing, and immune response318-319. TGF-β exists in three isoforms TGF-β1, 
TGF-β2 and TGF-β3320. TGF-β controls proliferation by stopping the cell cycle at G1 
phase321. TGF-β acts as chemotactic signal and attracts neutrophils and monocytes to the 
wound site322. TGF-β has also been found to stimulate the production of extracellular matrix 
proteins like collagen323-324 and fibronectin325.  

The cytokine production was accessed at 24 and 48 hours. Cells were plated on the 
substrates and incubated in a 5% CO2 incubator. In order to compare the level of cytokine 
secretion from Fc activated substrates, cells were also activated with LPS as a control and 
their cytokine production was measured. LPS is a well studied endotoxin that elicits a 
strong immune response. LPS is known to promote the secretion of pro-inflammatory 
cytokines (TNF-α and IL-1β) in macrophages299-300. To measure the cytokine secretion, we 
used ELISA, an ultrasensitive immunoassay. 

 

 
 

Figure 37 Cytokine classification according to their pro and anti roles in wound healing and 
inflammation.  
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secretion. A reason for this discrepancy could be the scale of roughness, which is limited to 
nanometer range in the current work compared to micrometer range in Refai et. al326. 

It can be concluded that for the Fc nanopatterning work, the best nanopatterned 
substrates would be below 80 nm in spacing between them. 

ii. Anti-Inflammation Cytokine Production at 24 and 48 Hours 

a. IL-10 and TGF-β Production with Changing Fc Concentration on Glass 
Substrate 
 
The primary aim of the present study is to see if macrophages when stimulated with 

Fc receptors on surface can generate anti-inflammation. In order to verify the anti-
inflammation effect we measured the cytokines TGF-β and IL-10 at 24 and 48 hrs. Since it is 
known that macrophages secrete IL-10 when activated with Fc fragments203, it would be 
interesting to see if macrophages secrete IL-10 when they are activated by Fc fragments on 
substrate. It has to be noted that these slides have a higher amount of Fc fragments (more 
than a monolayer) when compared to nanopatterned substrates.  

To determine the cytokine concentration on the Fc coated slides, 50,000 cells were 
plated on slides with varying concentration. To confirm the expression of IL-10 and TGF-β, 
out of the initial 2 ml of medium that was incubated with the cells, 0.8 ml was extracted at 24 
hrs and the remaining at 48 hrs. The medium was stored at -80oC until ELISA was 
performed. The cytokine was assessed from two slides and the measurement from each 
slide was duplicated. The error bars on Figure 40 and 42 are the standard deviation of the 
different points. All cytokines measured were measured in picograms  per each well (each 
well had 100 µl) i.e picograms/100 µl. 

Interleukin 10 (IL-10), initially designated cytokine synthesis inhibitory factor (CSIF), 
inhibits the synthesis of a number of pro-inflammatory cytokines. Figure 39 A and B show IL-
10 production by macrophages at 24 and 48 hrs respectively. At both 24 and 48 hrs, from 32 
µg/cm2 to 23 µg/cm2, there was a linear decrease in IL-10  with decreasing Fc concentration. 
From 23 µg/cm2 to 15 µg/cm2, the IL-10 produced is slightly upregulated but the trend is 
much weaker and is shadowed within the error. The error or deviation in sample 
popolulations IL-10 production is lesser at 48 hours than that observed at 24 hours. This 
uniformity in IL-10 production between the different substrates at 48 hrs leads us to the 
conclusion that at 48 hrs, IL-10 production on Fc coated surfaces  has reached or was 
reaching the threshold. 

A close observation at IL-10 production at 24 and 48 hours reveals that for lower 
concentrations i.e 15 µg/cm2 and 17 µg/cm2, there is no substantial change in the amount of 
IL-10 produced between 24 and 48 hrs.  On the other hand, at higher concentrations i.e from 
32 µg/cm2 to 23 µg/cm2, the amount of IL-10 produced doubled from 24 to 48 hours. 

 From Torre et. al336, we know that in a healthy human subject, the amount of IL-10 
produced is 1.1 ± 2.3 pg/ml. At 24 and 48 hours the lowest amount of IL-10 produced (at 23 
µg/cm2) was 7.8 ng/ml and 12.62 ng/ml respectively. Since there is more than a 1000 fold 
increas in production, we hypothesize that the amount of IL-10 produced in our samples is 
relatively high and will induce the required anti-inflammation.  
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Figure 39 Anti-Inflammation cytokine IL-10 secreted by macrophages at 24 and at 48 hours on slides 
with changing Fc concentration on the substrate. The insert is a bar graph with control LPS included. 

Transforming growth factor beta (TGF-β) is a regulatory protein that controls 
proliferation, cellular differentiation and plays an important part in the immune response. 
TGF-β is also involved in down regulating an M1 activated macrophage. Cells secrete TGF-β 
in an inactivated state. Only when exposed to a certain specific conditions is TGF-β 
activated. Heat, acidic condition, protease are some of the known physicochemical 
conditions that can activate TGF-β. Since we need to activate latent TGF-β to its 
immunoreactive form for quantification, as per manufacturer’s recommendation, we initially 
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acidified the sample with 1N HCL and after 10 minutes of treatment, the sample was 
neutralized with 1N NaoH. 

 

 

 
 

Figure 40 Anti-inflammation cytokine TGF-β secreted by macrophages at 24 and at 48 hours (A, B) 
on slides with changing Fc fragment concentration. The insert is a bar graph with control LPS 
included.  

As in the IL-10, there was a concentration dependent decrease in TGF-β production 
from 32 µg/cm2 to 23 µg/cm2, at both 24 and 48 hrs. For concentrations below 23 µg/cm2, at 
24 hrs there was an increase in TGF-β production with decreasing concentration. For 
concentrations 32 µg/cm2 and 32 µg/cm2 the difference in concentration was shadowed by 
the error bar. The amount of TGF-β secreted by LPS stimulated cells was in the range of the 
amount of TGF-β secreted by Fc coated glass slides at 26-17 µg/cm2. 

From Torre et. al336 we know that a healthy subject produces 4.1 ± 1.9 pg/mL of TGF-
β. The Fc fragment coated slides produced 2.3 - 4.8 ng/ml and 3 – 6.4 ng/ml of TGF-β at 24 



Chapter 2  Results and Discussion    

 
66 

  

and 48 hours respectively.  The amount of TGF-β produced is 1000 times more than that 
reported by Torre et. al336.  Although the amount of TGF-β produced at 48 hours is more 
than that produced at 24 hours it was not as dramatic as IL-10 where the production doubled 
after 48 hours.  

From the data in Figure 39 and Figure 40, it can be concluded that for higher 
concentration i.e. between 32 µg/cm2 to 23 µg/cm2 of Fc bound on glass, there is a 
concentration dependent change in anti inflammation cytokine production and there is a 
decrease in both  IL-10 and TGF-β production with decreasing Fc concetration. While the 
trend with higher concentrations is quite clear with lower concetrations i.e when the 
concentration reached 17 µg/cm2  and below, there is no change or the change is within the 
error bar.  It has to be noted that there is relatively high amount of IL-10 produced compared 
to TGF-β.  

b. IL-10 and TGF-β Production on Fc Coated, PEG Passivated Nanopatterned 
Substrates 
 
We already know from the previous experiments that we can elicit an anti-

inflammation response by stimulating macrophages with Fc fragments immobilized on 
surface. Since immobilization of Fc fragments on nanopatterns is an effective way to present 
cells with defined stimuli. In the present experiment, we want to check if immobilization of Fc 
fragments on nanopatterns enhances the anti-inflammatory cytokine production. It would 
also be interesting to compare the amount of anti-inflammatory cytokines produced by 
macrophages stimulated on nanopatterns versus those on glass slides as theoretically, the 
amount of Fc fragments presented through the nanopatterns would be thousand times lower 
than those presented on glass slides. 

In order to achieve Fc coated nanopatterns, block copolymer nanopatterns were 
coated with Fc and the area between the patterns was passivated with PEG to prevent non 
specific adsorption of other proteins from serum. The nanopattern slides were incubated with 
2 ml of cell culture medium and 50,000 cells were plated on each slide. The data presented 
in Figure 41 and 43 are anti-inflammation cytokines (IL-10 and TGF-β) produced by 
macrophages at 24 and 48 hrs.  

Figure 41 A and B are bar graphs of IL-10 produced at 24 and 48 hrs. It was 
observed that the amount of IL-10 produced at 48 hours was more than twice the amount 
produced at 24 hours.  In terms of the absolute amount of IL-10 produced, it is incredible that 
36 nm pattern which had about 1000 times lower amount of Fc fragments (11 - 33 x1010  Fc 
fragments per cm2) than those on 26 µg/cm2 (26 x 1013 Fc fragments per cm2) produced at 48 
hrs the same amount of IL-10.  

Although the trend in IL-10 production at 24 and 48 hrs was similar on Fc coated 
glass slides (Figure 39), the trend was predominantly different on Fc nanopattern surfaces. 
Also it was observed that at 24 hours the amount of IL-10 produced by macrophages 
stimulated by Fc nanopatterns was lesser than that secreted by macrophages stimulated 
with LPS. This suggests that the maximum IL-10 release starts after 24 hours on Fc 
nanopattern substrates.   

Figure 41B shows that at 48 hours, there is a clear modulation of IL-10 by Fc 
nanopattern substrates. The amount of IL-10 produced by the macrophages kept increasing 
with decreasing spacing. The amount of IL-10 produced on 36 nm pattern was double that 
produced when stimulated with LPS. The macrophages on 125 nm patterns produced 
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slightly higher IL-10 than those stimulated with LPS and were similar to the amount 
produced by macrophages on PEG surface.  

 

 
 

Figure 41 Anti-inflammation cytokines (IL-10, TGF-β) secreted by macrophages at 24 and 48 hours 
(C, D) on nanosubstrates coated with Fc. 

Figure 41C and D are bar graphs with TGF-β production at 24 and 48 hours. The 
amount of TGF-β produced on 36 nm pattern at 48 hours was twice the amount produced by 
macrophages plated on glass slides at the highest concentration of Fc (32 µg/cm2). The fact 
that the amount of TGF-β produced by macrophages on nanopattern substrates is higher 
than that on Fc coated glass slides, which had about 1000 times more Fc fragments shows 
that Fc fragment nanopatterning strategy is much more effective in producing the anti-
inflammation stimuli than simply coating Fc fragments on glass slides. Moreover the trend 
observed in IL-10 and TGF-β secretion at 24 hours was similar showing that the activation 
pathway until 24 hrs is similar. The results from the TGF-β production clearly negates our 
assumption that modulation occurring is a concentration dependant change. Further 
experiments at lower time scales which can elucidate the clustering activity and the pathway 
that leads to anti-inflammation activity can shed light into why the nanopatterns are more 
effective than presenting Fc fragments at varying concentrations. 

Since the trend in the cell area observed is similar to the trends in IL-10 production, it 
can be concluded that there is a correlation between cell spreading area of M2 macrophages 
with the degree of macrophage activation. 

Since TGF-β recruits other cells and stimulates the production of extracellular matrix 
proteins like collagen323-324 and fibronectin325, our Fc nanopattern coatings can ideally help 
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integrate foreign objects into the tissue more competently than just coating surfaces with Fc 
fragments. 

iii. Pro-Inflammation Cytokine Production at 24 and 48 Hours 

a. Pro-Inflammation Cytokine Production with Changing Fc Concentration on 
Glass Substrate 

 
An ideal anti-inflammatory surface would produce anti-inflammation cytokines and 

reduce the amount of pro-inflammation cytokines. We know from Figure 39 and 41 that 
macrophages activated with Fc fragments on surface can induce anti-inflammation 
cytokines. In the present work we assessed pro-inflammation cytokine (TNF-α) production at 
24 and 48 hours on glass substrates coated with Fc fragments.  

TNF-α is produced mainly by macrophages. Its primary role is the regulation 
of immune cells and is involved in systemic and chronic inflammation. TNF-α promotes pro-
inflammatory response that causes many of the clinical problems associated with 
autoimmune disorders. There are opposing influences on TNF-α production. While IL-10 
suppress TNF-α production, TGF-β promotes as well as works against TNF-α production337-

338. The measurements were performed on two slides and the measurement from each slide 
was duplicated.  

 Figure 42A and B show TNF-α production at 24 and 48 hrs. The amount of TNF-α 
produced at 48 hrs is more than twice the amount produced at 24 hrs.  The error or standard 
deviation observed at 24 hrs was much higher than those observed at 48 hrs.  

 The TNF-α production at 24 hrs although is lower than the amount produced at 48 
hrs, a closer inspection reveals that at 24 hrs, the slides at 32 µg/cm2 had similar amount of 
TNF-α  produced as macrophages stimulated with LPS. Since we already know that LPS is 
a known stimulator of TNF-α production in macrophages, comparing this with the amount of 
TNF-α produced on Fc fragment slides leads us to the conclusion that at 24 hours the higher 
concentration slides are pro-inflammatory. 
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Figure 42 Pro-inflammation cytokine TNF-α secreted by macrophages at 24 and 48 hours (A, B) on 
slides at different concentrations. The average error or standard deviation observed was much higher 
in 24 hrs than those observed at 48 hours. The insert is a bar graph which includes TNF-α production 
by LPS stimulated macrophages.  

b. Pro-Inflammation Cytokine Production on Fc Coated, PEG Passivated 
Nanopatterned Substrates 
 
As discussed earlier, an ideal anti-inflammation eliciting implant coating should have 

low amount of pro-inflammation cytokine production and high amount of anti-inflammation 
cytokine production. It was observed earlier that at high concentration of Fc fragments on 
glass slides, the macrophages instead of being purely anti-inflammatory also produced high 
amount of pro-inflammatory cytokine TNF-α.  Since the Fc nanopatterns have lower amount 
of Fc fragments than what we present on glass slides, it would be interesting to see if the 
nanopatterns have a lower amount of TNF-α production. Also we know from the anti-
inflammation activity of TGF-β and IL-10 that nanopattern substrates are much more 
effective in eliciting the inflammation signal than simply presenting Fc fragments randomly 
on glass. Understanding the pro-inflammation cytokine production will finally help us 
determine the best spacing required for ideal implant coating.   

In order to understand the pro-inflammatory modulation occurring on Fc nanopattern 
substrates, we measured macrophage’s pro-inflammatory cytokines TNF-α and IL-1β. Figure 
43 shows a bar graph of these secretions at 24 and 48 hours. At 24 hours, except for 125 
nm patterns, the amount of TNF-α and IL-1β secretion was nanopattern dependent and 
increased with decreasing spacing. Unlike the similar trends in TNF-α production at 24 and 
48 hrs observed on glass slides (Figure 42), the trend observed on the nanopattern 
substrates was different at 24 and 48 hours.  
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Figure 43 Pro-inflammation cytokines, TNF-α (A, B) and IL-1β (C, D) secreted by macrophages at 24 
and 48 hours  on nanopatterned substrates. 

 
LPS is an outer membrane component of Gram-negative bacteria and a potent 

activator of monocytes and macrophages. LPS binds to surface toll like receptor 4 (TLR4), 
triggering the secretion of a variety of inflammatory products, such as tumor necrosis factor-
α (TNF-α) and interleukin-1β (IL-1β).  

On nanopattern substrates, macrophages produced IL-1β similar to what they 
produced when activated with LPS. This inconsistency could be due to usage of J774A.1 cell 
line (ATCC #TIB-67) as a model macrophage. It is known that this immortalized cell line 
continuously produces interleukin-1β making it incompetent to effectively assess the IL-1β 
production. 

At 48 hours, as seen in Figure 43B, the amount of TNF-α produced by LPS 
stimulated cells was four times the highest amount of TNF-α produced by macrophages 
stimulated with Fc fragments on nanopatterns. Also, at 24 hrs, LPS stimulated and Fc 
fragment stimulated macrophages had similar TNF-α production. This behavior points us to 
the conclusion that the anti-inflammation effect of Fc nanopatterns which reduces the pro-
inflammatory action, starts working at 48 hrs rather than at 24 hrs. This conclusion is 
substantiated by our previous observation with IL-10 production (Figure 41B) at 48 hrs. 
There was approximately 10 fold increase in IL-10 production at 48 hrs when compared to 
24 hrs. Since IL-10 is a known down regulator of TNF-α, the decrease in TNF-α we see may 
be due to IL-10 down regulation. 
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Since macrophages at 48 hours on 36 nm spaced patterns produced the lowest 
amount of TNF-α (pro-inflammatory cytokine) and highest amount of IL-10 and TGF-β (anti-
inflammatory cytokines), It is safe to conclude that out of the different nanopattern spacing’s 
experimented in the  present work, 36 nm spaced patterns are ideal for eliciting cytokine 
mediated anti-inflammation signaling.    
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5. Conclusions and Outlook 
 
The aim of the present study is to engineer an anti-inflammatory macrophage 

response using bioactive nanopatterned substrates. There are several immune conditions 
where people have a propensity for chronic inflammation. Prolonged pro-inflammation 
cytokine secretion during chronic inflammation has multiple effects including a tendency 
toward greater matrix degradation, destruction of the tissue around implants and delayed 
wound healing217-218, these factors ultimately lead to the rejection of the implant. In order to 
suppress the prolonged pro-inflammation phase, immunosuppressive agents237, steroids238-

239 and anti-inflammation agents339-341 are generally administered. The engineered bioactive 
surfaces in our work can stimulate the macrophages to secrete anti-inflammatory cytokines 
at the implant site, easing implant integration.   

We have set out to see if we can induce an anti-inflammatory response in 
macrophages by stimulating them with Fc-fragments immobilized on substrates. The 
cytokine and area measurements together showed that we can achieve this. Further 
correlation between cell spreading area of M2 macrophages with the degree of cytokine 
secretion revealed that M2 macrophages spread on the surface relative to their activation. 

In order to decrease the degree of heterogeneity in the distribution of Fc fragments 
on the surface, block-copolymer nanopatterns were used as templates to pattern Fc 
fragments. These templates allowed us to pattern the Fc fragments in a well defined periodic 
hexagonal array with a spacing of 36, 63, 80 and 125 nm between them. We have 
successfully characterized and shown that we can nanopattern Fc fragments on these 
templates.  In order to achieve this we modified the Fc fragments to include a thiol group. 
The binding and bioactivity of this modified Fc fragment was tested using QCM. 

To stimulate the cells only with the Fc fragments presented and prevent any non-
specific stimulation occurring from plasma proteins binding to the area between the proteins, 
the space between the proteins was passivated with PEG. Contact angle goniometry and 
FTIR confirmed the presence of PEG between the binding sites. 

On the control PEG passivated patterns without Fc fragments, Except for 125 nm 
patterns, PEG passivated nanopatterns had no modulation on pro-inflammation cytokine 
secretion. We saw modulation of cytokine and cell morphology on these nanopatterned 
substrates when coated with Fc fragments. When macrophages were plated on these 
nanopatterned substrates the cell area decreased with increasing spacing. There was a two 
fold increase in IL-10 production from control on 36 nm patterns.  

The effectiveness of the nanopattern substrates in generating the anti-inflammation 
stimuli rather than simply coating Fc fragments on glass slides was reinforced by the fact 
that the amount of TGF-β produced by macrophages on nanopattern substrates is higher 
than that on Fc fragment coated glass slides, which had about 1000 times more Fc 
fragments. This result also negates the assumption that only concentration of Fc fragments 
is important for modulation of macrophage’s anti-inflammatory behavior.   

Since TGF-β recruits other cells and stimulates the production of extracellular matrix 
proteins like collagen323-324 and fibronectin325, our Fc nanopattern coatings can ideally help 
integrate foreign objects into the tissue more competently than just coating surfaces with Fc 
fragments. 

At 48 hours, the amount of TNF-α produced by LPS stimulated cells was four times 
the highest amount of TNF-α produced by macrophages stimulated with Fc fragments on 
nanopatterns. This behavior points us to the conclusion that the anti-inflammation effect of 
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Fc nanopatterns which reduces the pro-inflammatory effect starts working at 48 hrs rather 
than at 24 hrs. This conclusion is substantiated by our previous observation with IL-10 
production at 48 hrs. There was approximately 10 fold increase in IL-10 production at 48 hrs 
when compared to 24 hrs. Since IL-10 is a known down regulator of TNF-α, the decrease in 
TNF-α we see may be due to IL-10 up regulation. 

The ideal anti-inflammation eliciting implant coating should have low amount of pro-
inflammation cytokine production and high amount of anti-inflammation cytokine production. 
Since macrophages at 48 hours on 36 nm spaced patterns produced the lowest amount of 
TNF-α (pro-inflammatory cytokine) and highest amount of IL-10 and TGF-β (anti-
inflammatory cytokines), It can be concluded that out of the different nanopattern spacing’s 
experimented in the present work, 36 nm spaced patterns are ideal for eliciting cytokine 
mediated anti-inflammation signaling.  

This effectiveness of the nanopattern stratergy may be due to presence of only Fc 
fragements on the surface ellicting a strong response to the stimuli with PEG preventing any 
other response from the plasma proteins binding to the glass. The other plausible reason 
could be that the organized presence of Fc fragments which is leading to a better clustering 
of Fc receptors. 

Optimal concentration of Fc fragments and the optimal clustering activity are finely 
intertwined. Clustering of Fc receptors needed for activation of macrophages has not been 
experimentally investigated before. The clustering events occur at time scales much lower 
(≥120 minutes) than what we investigate for inflammation activity. In the present work we are 
interested in the inflammation activity which is aftermath of the initial frustrated phagocytosis 
activity and clustering, further investigation of these initial events can help us understand the 
aftermath effects much more clearly. These studies will also shed light as to why the 
nanopatterns are more effective in eliciting anti-inflammation behavior than just presenting 
Fc fragments on glass slides. 

  In conclusion, macrophages comprise a heterogeneous population of cells that 
undergo environmentally induced differentiation into functionally distinct populations when 
properly stimulated. The present work shows that when macrophages stimulated with Fc 
receptors on surface can alter their morphology and secretory profile of the inflammatory 
cytokines. Presenting Fc receptors on PEG passivated nanopatterns is an excellent way of 
presenting Fc at defined spacing and concentrations. A better understanding of the effect of 
Fc patterning approach in modulating macrophages behavior may enable us to improved 
surface design to specifically direct anti-inflammation response and improve implant 
performance. 
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1. Introduction 
 
At the forefront of nano-biotechnology and nano-science16,233,342-347 is the challenge to 

manipulate and control the position of individual proteins, nanoparticles, and other complex 
nanostructures. Bio-nanopatterning of surfaces is a very active interdisciplinary field of 
research at the interface between biotechnology and nanotechnology. The ability to spatially 
anchor and orient proteins at the nanoscale affords useful materials for biosensors348, 
biomaterials, and tissue engineering applications349. 

One of the major challenges in the development of a new biomaterial for implants is 
the interface. The interface ideally should effectively control the interactions occurring 
between the material and cells in the body329,350-355. Polymer based materials have found 
wide applications as interface materials in biomedicine356-363. It is known that cells recognize 
and adhere to stimulatory cues like cell adhesion molecules that are spatially organized on 
the nanoscale234-235. From chapter 2 we know that Fc protein patterns can regulate 
macrophages ability to produce anti-inflammation cytokines. If we could pattern these Fc 
fragments on a polymer surface we could combine the beneficial properties of polymer 
surfaces with the advantages of nanopatterning. Here, we develop a new approach to 
pattern multiple proteins with high resolution on a polymer film. This new patterning 
approach, Thermochemical nanolithography (TCNL), exploits a custom synthesized polymer 
that has a backbone polymethylmethacrylate (PMMA). PMMA is an FDA approved364 
biomaterial, hence the TCNL patterning approach designed here can easily be translated to 
coatings on implant or bio-applications. As a polymer based approach this technique is 
substrate independent. The technique was designed so that we could pattern these proteins 
in arbitrary shapes. 

A new flexible orthogonal patterning approach would not only help us design new 
implant interfaces but will have applications in different fields. Since disease progression is 
often correlated with protein levels, protein nanoarrays offer the prospect of greater 
sensitivity in diagnostic tests365. In addition, further miniaturization from protein microarrays 
to nanoarrays may allow for the discovery of currently undetectable disease markers. 
Moreover, the detection of thousands of biomarkers could be performed on one chip, 
resulting in a more comprehensive biosignature for a patient or disease366.  

Several approaches have been proposed to assemble molecules on surfaces with 
nanometer scale resolution, including electron beam lithography367, micro-contact printing368 
self-assembly255-256, and several scanning probe microscopy (SPM) based lithography 
methods, such as dip-pen nanolithography369, nanografting370, nanoshaving371, 
nanopippetting372, and scanning near-field optical microscopy (SNOM) lithography373. For a 
comprehensive list of different patterning approaches and the resolution achieved, refer to 
table 3. 

While significant advances have been made in the nanopatterning of some inorganic 
nano-objects like carbon nanotubes374 and gold375, challenges still exist in particular for 
protein nanolithography376. The main challenges in protein patterning are: obtaining a 
resolution below fifty nanometers376, achieving high writing speeds343, reducing costs, 
producing multiple functionalities coexisting on a single surface372,377, preserving biological 
functionality377, and finding a robust and accessible technique that is compatible with a 
variety of substrates. Bioactivity is a particularly delicate problem, because denaturation, 
oxidation, and dehydration in air are common drawbacks that complicate many potential 
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protein nanopatterning techniques377. This also limits the choice of surfaces. For example, 
proteins directly chemisorbed onto gold tend to denature. 

Most protein nanopatterning techniques are incapable of making features below 100 
nm378 and only a few have been established for independently patterning multiple protein 
species on the same surface372,377. Self-assembly techniques have achieved nanometer 
patterning of proteins234 but with the disadvantage that the proteins are arranged in regular 
arrays rather than in tailor-made patterns. Imprint lithography379 although is cost effective, 
every time a new pattern design is needed we need to remake the imprint stamp.  

In summary we would like to have a robust protein patterning approach on polymers 
which has high resolution, has orthogonal functionality, maintains bioactivity, is substrate 
independent, has arbitrary geometry and the technique should have a possibility for massive 
parallelization. This work will introduce a new technique that achieves all the above 
requirements and demonstrates its viability. 

 
Technique Resolution 

(nm) 
Reference 

Self Assembly Approach   
Particle Lithography 60 Y.Cai et. al380 

Miceller Nano Lithography 8 M.Arnold et. al234 
DNA Templating ~ 5 H.Yan et. al381,  S. H.Parket. 

al382 
Stamping Approach   

Micro/Nanocontact Printing ~ 70 H. W.Li et. al383 

Nanoimprint Lithography 75 J. D.Hoff et. al379 

Scanning Probe Microscopy Approach   

Nanografting Indirect 10 K.Wadu-Mesthrige et. al370 
Indirect Dip-Pen Nanolithography ~80 K. B.Lee et. al369 

Direct Dip-Pen Nanolithography ~30 D. L.Wilson et. al384 
Nanopen 250 H.Taha et. al385 

Conductive Atomic Force Microscopy 20 G.Agarwal et. al386 
TCNL                               

(Thermochemical Nano Lithography) 
15 R.Szoszkiewicz et. al387 

Other Techniques   

Photolithography ~500 K. L. Christman et. al388 

Electrospray Ionization And Coulomb 
Force Directed Assembly 

200 A. M. Welle et. al389 

Mechanical Mismatch—Cracks 120 X. Y. Zhu et. al390 
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Chemical Vapor Deposition—
Nanowires 

~20 F. Patolsky et. al391 

Electron Beam Lithography 50 S.Kumagai et. al392 

Focused Ion Beam Lithography 60 A. A.Bergman et. al393 

Scanning Ion-Conductance 
Microscopy 

~300 A. Bruckbauer et. al372 

Table 3 Summary and classification of available nanopatterning techniques.  
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2. Materials and Methods 

I. Materials, Synthesis and Characterization 
 
Chemicals used for synthesis were Dihydropyran (Aldrich), 2-isocyanatoethyl 

methacrylate (Aldrich), azobisisobutyronitrile (Aldrich), allyl bromide (Aldrich), potassium 
carbonate (VWR), platinum on activated carbon (10 % wt, Strem Chemicals), 4-
hydroxybenzophenone (Alfa Aesar), and 3-chlorodimethyl silane (Alfa Aesar), and all 
solvents were reagent grade.  All chemicals were used as received with the exception of 
chlorodimethylsilane, which was distilled under nitrogen immediately before use. 

i. Synthesis of tetrahydropyran-2-ol 
 

 
The synthesis of tetrahydropyran-2-ol was carried out according to a literature 

procedure 394. The 1H NMR spectrum was consistent with values reported in the literature 
394. 

ii. Synthesis of tetrahydropyran-2-yl N-(2-methacryloxyethyl)carbamate 
 

 
Tetrahydropyran-2-yl (2.80 mL, 28 mmol) was mixed with 2-isocyanatoethyl 

methacrylate (3.1 g, 20 mmol) and 1 drop of pyridine and stirred until the reaction was 
complete by 1H NMR.  The resulting viscous mixture was purified by column 
chromatography on silica to yield a white powder (2.93 g, 57 %). 1H-NMR (300 MHz, CDCl3): 
δ (ppm) 6.09 (m, 1H), 5.9 (broad, 0.2 H, minor conformer), 5.82 (broad, 0.8 H, major 
conformer), 5.57 (apparent quint, J = 1.5 Hz, 1H), 5.05 (broad, 0.8 H, major conformer N-H), 
4.83 (broad, 0.2 H, minor conformer N-H), 4.21 (t, J = 6 Hz, 2H), 3.86 (ABXY m, JAB = 11.5 
Hz, JAX = 4.8 Hz, JAY= 5.1 Hz, 1H), 3.63 (ABXY m, JAB = 11.5 Hz, JAX = 8.6 Hz, JAY= 3.0 Hz, 
1H), 3.49 (q, J = 6 Hz, 2H), 1.91 (dd, J = 1.5, 0.9 Hz, 3H), 1.77 (apparent dd, J = 9.7, 2.7 Hz, 
2H), 1.48-1.68 (m, 4H); 13C-NMR (75 MHz, CDCl3): δ (ppm) 167.2, 155.0, 135.9, 126.0, 93.3, 
63.5, 63.3, 40.0, 29.3, 24.8, 19.0, 18.2; Analysis (calc d, found for C12H19NO5): C (56.02, 
56.22), H (7.44, 7.36) N (5.44, 5.48). 

 
 

O OHO HCL (2M)



Chapter 3  Materials and Methods    
 

 
80 

  

iii. Synthesis of methyl 4-(3-methacryloyloxypropoxy)cinnamate 
 

 
The synthesis of methyl 4-(3-methacryloyloxypropoxy)cinnamate was carried out 

according to a literature procedure395. 1H NMR spectral features were consistent with 
reported values. 

iv. Synthesis of poly((tetrahydropyran-2-yl N-(2-methacryloxyethyl)carbamate)-co-
(methyl 4-(3-methacryloyloxypropoxy)cinnamate)) 

 
A mixture of tetrahydropyran-2-yl N-(2-methacryloxyethyl)carbamate (0.50 g, 1.9 

mmol), methyl 4-(3-methacryloyloxypropoxy)cinnamate (0.15 g, 0.48 mmol), and 
azobisisobutyronitrile (AIBN) (2.0 mg, 0.012 mmol) in THF (6 mL) were added to a Schlenk 
ampoule using a Pasteur pipette.  The flask was then freeze-pump-thawed a minimum of 
four times and the reaction mixture was heated at 60 °C for 20 h.  Once the reaction mixture 
had returned to room temperature it was diluted with dichloromethane (30 mL) and added 
drop wise to hexanes (300 mL). The resulting precipitate was removed by vacuum filtration 
and dried under vacuum to yield a white powder (360 mg, 55 %). 1H-NMR (300 MHz, 
CDCl3): δ (ppm) 7.6 (d broad, J = 16.1 Hz, 1H), 7.5 (s broad, 2H), 6.9 (s broad, 2H), 6.3 (d 
broad, J = 16.1 Hz, 1H), 5.7-6.0 (m broad, 5.2 H), 3.3-4.2 (four apparent singlets broad, 27.2 
H), 0.7-2.1 (several m broad, 50.6 H); 13C-NMR (75 MHz, CDCl3): δ (ppm) 177.1, 167.8, 
160.4, 155.3, 144.5, 129.8, 128.1, 127.8, 127.4, 127.2, 115.3, 114.8, 93.3, 63.6, 53.9, 51.6, 
45.0, 44.7, 39.6, 39.5, 28.0, 25.0, 19.1, 17.4. Note: The 1H-NMR spectrum is reported as 
observed, with integration relative to the peak at 7.5 ppm (2H, due to aromatic protons in the 
cinnamate group). The N-H protons were not observed in the spectrum of the polymer. 
Analysis (calc d, found for C65H96N4O25 (1: 4 cinnamate: carbamate monomer ratio)): C 
(58.55, 57.83), H (7.26, 7.20), N (4.20, 4.12). The results of the 1H-NMR spectrum would 
suggest carbamate content slightly lower than the one expected for a cinnamate: carbamate 
feed ratio of 1: 4, whereas the elemental analysis (based on carbon) would suggest a higher 
content of the carbamate component. Below is the final structure of the polymer. 
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assignment of this band. More direct evidence for the formation of a primary amine is the 
appearance of a new band at 1670 cm-1, which is likely due to N-H bending, in the spectra of 
samples treated at 180 °C and above.      

III. Atomic Force Microscopy with Thermal Cantilevers  
 
Local heating, imaging, friction and phase measurements were all carried out with 

the same atomic force microscope (AFM, by Nanoscope Multimode IV, Veeco) using 
resistively heated cantilevers398 and commercial cantilevers (Nanosensor, SSS-NCHR) in 
air. Local chemical modifications were performed by scanning the sample with an AFM tip 
heated at temperatures in the range 160-240 °C, in contact mode with normal loads in the 
range 20-500 nN, at a speed varying between 0.01-2 mm/s (Figure 45). The temperature 
calibration of the thermal cantilevers was performed following the procedure established by 
our collaborator W. King399. All the TCNL amine patterns shown in this study were made 
using thermal AFM tips heated at selected temperatures in ambient condition (room 
temperature 24 °C, relative humidity 20%-50%). The nominal spring constant of the thermal 
AFM cantilevers is about 0.5 N/m. All the AFM topography and phase images were recorded 
in ambient conditions using an ultra sharp AFM tip (Nanosensor, SSS-NCHR, resonant 
frequency: 312 kHz, spring constant: 37 N/m) at a drive frequency close to its resonance 
frequency. 

 

 
 

Figure 45 Fluorescence micrograph of a surface with four rectangular TCNL micropatterns written at 
linear speeds of 0.5, 1, 1.5, 2 mm/s respectively, with a normal load of 100 nN and with a tip 
temperature of T = 220 °C ± 20 °C. The patterning was performed in ambient conditions (air). For 
visualization, the patterns were functionalized with the protocol of NHS/Bn+Cy5/SAv (For protocols 
refer to results section on protein patterning) 

IV. Fluorescence Microscopy 
 
Epi-fluorescence microscopy was performed on an inverted Nikon TE2000 

microscope equipped with a Nikon Intensilight (C-HGFIE) for illumination and a Nikon 
EMCCD camera (DQC-FS). Images were obtained using a Plan Apo 60x water immersion 
objective (Nikon, NA 1.2) or a Plan Apo 100x oil immersion objective (Nikon, NA 1.4). Nikon 
filter cube sets were used to image fluorescent dyes in the region of UV (#96310, UV-2EC 
DAPI filter set, excitation 340-380 nm, dichroic mirror DM400, emission 435-485 nm), in the 
green (#96320, FITC/GFP HyQ filter set, excitation 460-500 nm, dichroic mirror DM505, 
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Figure 47 Schematic of the expected chemical change in the TCNL polymer at transition temperature 
Td. 

VI. Cell Culture and Immunostaining 
 
Jurkat cells (clone E6-1, ATCC TIB-152) of passage 9 were maintained in RPMI-

1640 media with 10% FBS, 1% L-glutamine, 1% non-essential amino acid solution, 1% 
sodium pyruvate, 10 mM HEPES. The cell culture media and its components were obtained 
from Mediatech, Inc. The cells were maintained at 37°C in a 5% CO2 atmosphere. 

Jurkat cells were seeded on anti-CD3 patterned surfaces and incubated at 37°C and 
5% CO2 for 40 min in the media containing 10µg/ml ICAM-1. To prepare the cells for 
staining, they were permeabilized in 0.1% Triton X-100 (EMD Chemicals) in 3% 
paraformaldehyde for 5 minutes, followed by washing with PBS and incubation for 30 
minutes in 3% paraformaldehyde. Non-specific binding was blocked by incubation with 1% 
BSA (Calbiochem) in PBS for 30 minutes. To label the PKC- ø in the cells, polyclonal anti-
PKC-ø (BD Biosciences) was used as primary antibody, and Goat anti-Mouse IgG, FITC 
conjugate (Millipore) was used as secondary antibody. The cells were mounted in elvanol 
before imaging. 

VII. Proteins and Reagents 
 
Proteins and chemicals used for patterning and visualization were as follows: 

Recombinant Human ICAM-1/CD54/Fc Chimera (R&D Systems, 720-IC); Cy5 (PE-Cy5) anti-
human CD3 and Affinity Purified anti-human CD3 (eBioscience Inc, 15-0038 and 14-0038); 
Bovine plasma fibronectin (EMD Biosciences Inc, 341631); Streptavidin-Cy5 (Invitrogen 
Corporation, 43-4316); purified anti-Human PKC-θ (BD Biosciences, 610089); Goat anti-
Mouse IgG, Cy5 conjugate (Millipore, AP124S); Goat anti-Mouse IgG, FITC conjugate 
(Millipore, 12-506); anti-ICAM-1, FITC conjugated, clone 15.2 (Millipore, CBL450F); Alexa 
Fluor 350 carboxylic acid, succinimidyl ester (Invitrogen Corporation, A-10168); Atto488-
NHS ester (Sigma-Aldrich, 41698); N-(7-dimethylamino-4-methylcoumarin-3-yl)maleimide 
(DACM) (AnaSpec Inc, 81403); N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) (Pierce 
Biotechnology, 21857); Dithiothreitol (DTT) (Pierce Biotechnology, 20290); D-biotin, 
succinimidyl ester (Invitrogen Corporation, B-1513); bovine serum albumin (BSA) (EMD 
Biosciences Inc, 12659); Streptavidin−Maleimide from Streptomyces avidinii (Sigma-Aldrich, 
S9415); Biotin Conjugated F(ab’)2 Fragment (Rockland Immunochemicals Inc, 709-1617); 
Streptavidin (Rockland Immunochemicals Inc, S000-01); Glutaraldehyde (50%, Electron 
Microscopy Sciences, 16316). Fluorescent labeling of the proteins was performed as per the 
manufactures’ recommended procedures.  
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VIII. Polymer Film Preparation 
 
Slides treated with 4-(3-(chlorodimethylsilyl)propoxy)benzophenone (25 × 25 mm2) 

as described above were then covered with a 20mg/ml solution of poly((tetrahydropyran-2-yl 
N-(2-methacryloxyethyl)carbamate)-co-(methyl 4-(3-methacryloyloxypropoxy)cinnamate)) in 
cyclohexanone. The slides were spun at 1000 RPM for 2 minutes. The slides were exposed 
to 352 nm radiation for one hour to activate the benzophenone moiety and attach the 
polymer to the surface, then to 300 nm radiation for approximately 45 minutes to crosslink 
the polymer via dimerization of the cinnamate moieties. Films were prepared with 
thicknesses ranging from 30 – 150 nm, though most experiments were performed on films 
with a thickness of 75 ± 5 nm, as measured by a stylus profilometer. 

IX. Polymer Film Deposition on the QCM Crystal and Glass Slides 
 
The methylacrylate copolymer (poly((tetrahydropyran-2-yl N-(2-

methacryloxyethyl)carbamate)-co-(methyl 4-(3-methacryloyloxypropoxy) cinnamate)) )  
containing tetrahydropyran (THP) was spin coated on the QCM crystal for 120 seconds at 
3000 RPM. The concentration of the polymer solution used for spinning was 20mg/ml.  The 
crystals were then treated with  4-(3’-chlorodimethylsilyl) propoxy benzophenone and 
exposed to ultraviolet radiation to both covalently bind the film to the substrate through the 
benzophenone linker (350 nm irradiation) and to crosslink the polymer at the cinnamate 
moieties (300 nm irradiation).  Stylus profilometry performed after drying the polymer coated 
surfaces showed that the average thickness of polymer film on the crystals was 38 ± 6 nm.  
For most of the experiments performed on the glass slides the average thickness of the 
polymer that was coated was 75 nm. 
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3. Results and Discussion 

I. Protein Patterning with Thermochemical Nanolithography 
(TCNL) 
 
TCNL employs a resistively heated AFM tip387,398 to thermally activate a chemical 

reaction at the nanometer scale on the surface of a material, for example by local thermal 
de-protection of a chemical moiety in the film of a specifically-designed polymer. In our work 
we use a heated AFM tip387,398 that can be used to thermally activate the de-protection of 
amine groups on a polymer surface in arbitrary nano- and micro-patterns at speeds of up to 
2 mm/s. This speed is faster than the speed of other AFM-based patterning approaches. For 
example TCNL is over 106 times faster than dip-pen nanolithography (performed with a 
single tip) and 103 times faster than thermal dip-pen nanolithography401-402. The unmasked 
amine nanotemplates are then selectively and covalently functionalized to create chemical 
patterns of thiols, maleimides, aldehydes or biotins in distinct areas of the polymer surface 
(Figure 48). 

Previously, our co-workers demonstrated that TCNL is able to pattern 12 nm features 
of carboxyl groups on a copolymer surface387. In the present work, we extend the capabilities 
of TCNL by introduction of a new polymer to enable the selective patterning of amine 
groups. Our collaborators synthesized a methacrylate copolymer containing tetrahydropyran 
(THP) carbamate groups that can be thermally deprotected to unmask a primary amine. The 
mass loss after bulk heating of the polymer above the deprotection temperature, Td, is 
consistent with this mechanism (Refer to TGA analysis, Figure 46 in Materials and Methods). 
Deprotection can be performed with a hot AFM tip maintained above Td (between 150°C 
and 220°C), thus exposing amine groups. 

This approach can be used, when combined with post-TCNL functionalization steps, 
to create multi-functional chemical nanopatterns coexisting on the same surface, which later 
can be selectively functionalized with the desired species of nano-objects. The approach is 
conceptually simple, as outlined in Figure 48 and Figure 49, after using TCNL to write the 
first of the desired amine patterns, the deprotected amines can be thiolated via a reaction 
with N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) (Figure 48). A second TCNL 
pattern can then be created on a different area of the same polymer surface (diamonds in 
Figure 48), exposing additional amines in a new region. The di-thiols obtained after the first 
patterning step are then reduced to thiols using dithiothreitol (DTT)403, thereby producing a 
surface with tailored patterns of amine and thiol groups. 

Alternately, we can transform the amine pattern from the second application of 
TCNL, using N-hydroxysuccinimide (NHS)-biotin, thus modifying the amine functionality to 
biotin. At this stage, reduction with DTT can create a co-patterned surface of thiols and 
biotins. In order to nanopattern surfaces with three different functionalities (Figure 48c), a 
third application of TCNL produces a triple-patterned surface consisting of thiols, biotins, and 
amines.  
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Figure 48 Schematic of TCNL patterning procedure. (a) A nanoarray of one type of nano-object is 
created in three steps: TCNL, crosslinker incubation and nano-object immobilization.  (b) A double 
functionality pattern of thiols (blue triangles) and amines (green disks) is created through two rounds 
of TCNL and one or two rounds of incubation (post-TCNL functionalization). (c) A triple functionality 
pattern of thiols (blue triangles), biotins (red diamonds), and amines (green disks) is created through 
three rounds of TCNL and two rounds of incubation. 
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In order to covalently couple the thiol groups to the amines, the TCNL sample was 
treated with SPDP (1 mM, phosphate buffer, pH 8) for 60 minutes followed by a washing 
step and subsequent incubation with DTT (1 mM, phosphate buffer saline, pH 7) for 30 
minutes. The presence of the thiol groups is then verified by a thiol-specific reaction with 
maleimide-streptavidin (1 mg/ml), which is incubated with the washed surface for 30 
minutes.  We then follow steps described in section (II-ii) above and label the streptavidin 
with biotinylated-anti-CD3 which is also labeled with alexa350. Figure 54 shows the final 
fluorescent blue pattern shows the bound anti-CD3 to the thiolated surface. 

 

 
 

Figure 54 Alexa350 labeled anti-CD3 bound to SH groups created on TCNL patterns. The scale bar 
is 5µm. 

III. Multi-Protein Micro Patterns (Orthogonal Functionality) 
 
Creating multiple functionalities and thereby patterning multiple proteins is important 

for multiple applications including immunological and cell biology studies. Especially of our 
interest is patterning IgG and Complementary proteins at high resolution to understand how 
the synergetic effect helps to increase the efficacy of phagocytosis. Moreover surfaces 
comprising multiple signaling proteins patterned into distinct regions on cellular and sub-
cellular length scales would be useful for the study of the complex, spatially organized 
receptor–ligand interactions that occur in many cell–cell and cell–extracellular matrix 
contacts. Here we show that we can create multi-functionalities or orthogonal chemical 
functionalities with arbitrary shapes at high resolution and then use them to pattern multiple 
proteins. 

i. Chemical Dual Functionality 
 
One of the key advantages of TCNL is the ability to perform serial patterning. Since 

we have a bottom up approach in TCNL patterning, we can perform patterning multiple types 
on the same substrate. Here we exploit this to create multiple chemical functionalities with 
arbitrary designs. In order to demonstrate this capability a co-pattern of biotin-functionalized 
diamonds and thiol-functionalized triangles were created as shown in the figure below. This 
dual functionality can be used to pattern multiple proteins or in principle, other advanced 
materials. The biotin/thiol co-patterns in Figure 55 are created with the following protocol: the 
substrate is initially patterned via TCNL, forming deprotected amines in the triangular array. 
The substrate is then incubated with SPDP (1 mM, phosphate buffer, pH 8) for 60 minutes. 
The substrate is then washed and dried. This is followed by a second round of TCNL 
patterning, to create the diamond array of amine groups. At this intermediate stage, the 
surface consists of a co-pattern of di-thiol groups (triangles) and amines (diamonds). The 
amines are then functionalized with biotin by reaction with NHS-biotin (1 mM, phosphate 
buffer, pH 8) for 30 minutes.  Lastly, following a washing step, the di-thiols are reduced to 
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TCNL is capable of extremely high resolution chemical patterning of surfaces due to 
the high temperature gradients in the vicinity of the heated tip387. Therefore, we investigated 
our ability to organize small amounts of proteins with high definition. Using a single 
touchdown approach at each feature, we produced an array of 500 nm features decorated 
with fluorescently-labeled fibronectin, as shown in Figure 57 above. The size of a single 
feature is inferred from AFM imaging of the protein pattern.  To investigate length scales 
below the resolution limit of optical microscopy, we thus employed topographical and phase 
AFM imaging in ambient conditions. Using again a single touchdown approach at each 
feature but with a shorter dwell time, TCNL was used to de-protect amines in extremely 
small areas. Three such features are shown in figure below as topographical and phase 
images. The AFM phase image provides information on the local viscoelasticity of the 
sample. A larger phase change is indicative of a “softer” surface, which is what we expect in 
the patterns decorated with proteins. The topography indicates a shallow indentation of 
approximately 10 nm. This depth can be varied by changing the temperature of the tip, 
higher temperatures producing deeper indentations387. The surface was then functionalized 
with fibronectin see figure below or with streptavidin see figure below. The topographical 
data revealed that the TCNL ‘holes’ were filled with proteins. The phase images are also 
consistent with the deposition of proteins in the holes. Figure 58 shows fibronectin phase 
features as small as 40 nm and streptavidin as small as 60 nm. These values compares well 
with previous measurements of single dry fibronectin molecules407. Considering the AFM tip 
convolution during imaging, and a tip radius of about 15 nm, it is reasonable to suggest that 
there are as few as 1 or 2 fibronectin molecules covalently attached to each location.  

 

 
 

Figure 58 Fibronectin and streptavidin nanoarray down to 40 nm. AFM topography and phase images 
of a TCNL nanoarray before and after fibronectin (a) and streptavidin (b) attachment. The topography 
z-range in (a) is 20 nm. Scale bars: 100 nm. 



Chapter 3                                                                                          Results and Discussion      
 

 
96 

  

V. Oriented Immobilization 
 
Problems associated with the loss of biological activity of the antibodies upon 

immobilization have been noticed in many cases276. One of the main reasons for such loss is 
attributed to the random orientation of the asymmetric macromolecules on support surfaces.  
The orientation of the immobilized protein can play a vital role in the quality of the bioactivity 
of the immobilized protein.  To demonstrate that we can achieve this on TCNL patterned 
surfaces, as shown in Figure 59, we immobilized ICAM-1 in an oriented fashion using the 
antibody binding of the Fc portion on the ICAM-1 with the F(ab’)2 portion of the biotin F(ab’)2. 
To achieve this, TCNL patterned surface was post-treated with GA for 60 minutes. After 
washing, the surface was then incubated with 1mg/ml streptavidin for 30 minutes followed by 
exposure to biotin F(ab’)2 fragment (2 mg/ml) for 30 minutes.  Finally, ICAM-1/Fc (100 µg/ml) 
was immobilized on the pattern by means of non-covalent antibody binding of the Fc to the 
F(ab’)2. To demonstrate the biological functionality of the ICAM-1, anti-ICAM-1 conjugated 
with FITC was incubated with the surface for 120 min. The ridges seen in the figure may be 
due to the topography change occurring during TCNL. Topography changes occur when the 
deprotected polymer is pushed during the writing leading to a higher amount of deprotected 
amines on the edges. 

 
 

Figure 59 Oriented patterning of ICAM-1 labeled with anti-ICAM (FITC) 

VI.  DNA Arrays 

 
 

Figure 60 AFM topography and phase images of a triangular pattern of thiol-terminated DNA single 
strands crosslinked to amines through PMPI. The height profiles for the topography and phase image 
can be seen in the graphs on the right side of the image. 

There is a growing sense in the scientific and technical community that technologies 
based on manipulation and assembling of DNA could lead to revolutionary industrial 
processes. Modern biotechnology has made it possible to modify DNA in various ways and 
with various functional objects408-410. In this work we introduced a special method to form 
complex nanopatterns of DNA molecules on solid substrates. Possible applications for large 
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X. PEG Passivation  
 
PEG is polymerized ethylene oxide and has low toxicity415. Poly(ethylene glycol) 

(PEG) can be used to create coatings that can resist protein adsorption416. PEG is soluble 
both in water and alcohols like methanol. When placed in water or aqueous solutions, PEG 
swells undergoing extensive hydrogen bonding, this swelling creates a dense layer of PEG 
on the surface, creating a resisting non-specific adsorbing layer. This unique property of 
PEG has been used in biomedical materials, microfluidic devices, microarrays, and 
biosensors260,417-419. So how does PEG prevent protein adsorption?, several mechanisms 
have been proposed to explain the passivating behavior of PEG films420. The possible 
molecular mechanisms are: (i) the entropic cost caused by  the binding of a biopolymer to 
the flexible PEG chains421 (ii) the electrostatic repulsion induced by the adsorption of 
hydroxide ions onto the polymer surface 422 and (iii) the presence of a localized, high-
viscosity water layer at the PEG/solvent interface423. One common requirement is a dense 
layer of PEG film with no structural defects420. As the number of applications for PEG coated 
surfaces for basic and biomedical applications started increasing260,265,424 many methods 
have been developed to graft PEG layers onto solid substrates including silicates, silicon, 
gold, and metal oxides. For silicate and glass, these methods include the coupling of 
aldehyde271 or epoxy-terminated PEG266 onto aminopropyl trialkoxysilane-derived layers, the 
binding of PEG-bis(amine) onto aldehyde-bearing silanized surfaces273, and the direct 
grafting of methoxy-PEG derivatives with terminal trialkoxysilane268 or methacrylate425. The 
surface modification of gold, by comparison is achieved by thiol-functionalized PEG or 
oligo(ethylene glycol)422,426-427. For passivating anionic surfaces like oxide surfaces, 
copolymers such as poly(L-lysine)-g-poly(ethylene glycol) are electrostatically adsorbed onto 
the substrate surface267,269.  

i. PEG Passivation of Polymer Coated Slides and QCM Crystals 
 
In order to passivate and create a layer of PEG on the polymer coated slides for 

TCNL, we initially convert the deprotected amines (from bulk heating) present on the 
polymer to aldehyde and then bind PEG-bis(amine) in cloud point conditions onto aldehyde-
bearing  slides  The cloud point of a fluid is the temperature at which dissolved solids are no 
longer completely soluble, precipitating as a second phase, thus giving the fluid a cloudy 
appearance264. It is known that the best surface coverage of PEG is possible at cloud point 
condition of PEG polymer271. In order to achieve cloud point condition of PEG we heat PEG 
to 60oC in toluene solution under nitrogen environment. It is known from Norde et. al428 that 
the grafting density increases with reduction in solubility and interchain repulsion of PEGs 
with increasing temperature. 

Initially the polymer that has thermally protected amine groups is spin coated on 
glass slurfaces( glass slides or QCM crystals). To thermally activate and deprotect the amine 
groups on a polymer surface, as before, the polymer spin coated crystals were heated at 
180o C for 3 min on a hotplate to produce amine on the surface. To convert the amines into 
aldehydes the surface was then incubated with 50% glutaraldehyde for 2 hours. A clean 
glass flask was heated to 120oC to remove moisture and then filled with dry nitrogen gas to 
prevent any moisture from entering when present at room temperature. To maximize the 
grafting density the samples were rinsed and placed in flask containing 25 mM 
aminopolyethylene glycol 3,000 (Fluka catalogue # 07969) in 10 ml dry toluene. The flask 
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67 above shows fluorescent FITC PEG on the background of TCNL patterns which had 
biotin in them. The dark triangles are the biotin patterns.   

 
 

Figure 68 Chemical structure of FITC-PEG-NH2, Fluorescein PEG amine (MW 3400).  

iv. Passivating TCNL Patterned Polymer Slides 
 

 
 

Figure 69 Schematic illustration of a PEG passivation on TCNL patterned surfaces. The polymer spin 
coated samples were TCNL patterned using a hot AFM tip. The samples were then incubated with 
NHS biotin to get biotin patterns. The sample with biotin patterns was heated on a hot plate for 3 mins 
at 180 oC, which created de-protected amines on the back with biotin patterns. The sample was then 
incubated with glutaraldehyde. The aldehyde surface was passivated using amine PEG. The final 
samples had biotin patterns with the area between them passivated with PEG. 

In order to PEG passivate TCNL chemically-patterned slides as shown in the 
schematic in Figure 69, the polymer spin coated slides were patterned by using a heated 
AFM tip. This procedure leads to amine patterns on polymer slides. The sample was then 
immersed in a solution of NHS-Biotin for 45 minutes.  The biotin patterned slides were then 
heated to 180o C for 3 mins on a hotplate. An independent thermometer was also used to 
check that the temperature on the hot plate reached 180oC. It has to be noted that the 
melting temperature of biotin is 232o C. Heating the polymer slide deprotected the amines on 
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should be identical within error.  As shown in Figure 71, It was found that for protected 
polymer samples, the average contact angle was 69o. For deprotected slides the average 
was 62o. The contact angle for the PEG passivated slides was 51o and for PEG passivated 
and salt treated slides it was 5o. The low contact angle of the final PEG passivated polymer 
surface shows that they are really hydrophilic which may be because the surface is 
completely covered with PEG with low or no transient gaps. For a more concrete thorough 
understanding and a chemical confirmation of presence of PEG on the surface, FT-IR and 
XPS are being performed. To characterize the non-specific adsorption of protein on the PEG 
passivated polymer, QCM experiments were performed.  

 
 

 
Figure 71 Contact angle on protected polymer, deprotected polymer, PEG passivated (standard) and 
salt-treated PEG passivated surfaces.  

XI. QCM Analysis of Non-Specific Adsorption 
 
The Quartz Crystal Microbalance (QCM) is very sensitive to changes in weight and 

thus a helpful method for detecting adsorption processes at solid/gas or solid/liquid 
interfaces. The basis of the QCM is a thin quartz crystal exhibiting the inverse piezoelectric 
effect. Applying an alternating current to the crystal excites a mechanical oscillation of plate. 
Changes in the specific resonance frequency of the quartz are directly proportional to its 
mass load. The quartz crystal microbalance is an extremely sensitive sensor capable of 
measuring mass changes upto 18 nanogram/cm2 with a wide dynamic range extending into 
the 100 g/cm2 range. This effect was first discovered by G. Sauerbrey in 1959. The results of 
his work are embodied in the Sauerbrey equation, which relates the mass change per unit 
area at the QCM electrode surface to the observed change in oscillation frequency of the 
crystal. 
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MFF C ΧΔ−=Δ
  Equation 6 

Where 

FΔ  =  Observed frequency change in Hz, 

MΔ  =  Change in mass per unit area, in ng/cm2, 

CF  =  The sensitivity factor for the crystal (56.6 Hz g -1 cm2 for a 5 MHz 
crystal   at room temperature). 

All measurements were performed using the QCM 200 sensor system from Stanford 
Research Systems (SRS). The sensor crystals were cleaned and coated as described in the 
Materials and Methods.  The polymer coated-crystals were then pegylated by using 
procedure mentioned in the Materials and Methods. The crystals were then mounted onto a 
flow chamber system. A flow rate of 50µl/min was maintained throughout the experiment and 
all the experiments were performed at room temperature. To maintain a steady flow, an 
injection flow system was used. After the system was equilibrated with distilled water, the 
coated sensors were subjected to a BSA solution at a concentration of 20µg/ml in water. 
Once equilibrium was obtained, to remove the non-adsorbed BSA, a secondary flow of 
distilled water was applied to the surface for washing until the QCM signal approached 
equilibrium.  The Sauerbrey equation was used to measure the adsorbed mass. The QCM is 
capable of monitoring frequency changes FΔ  in a time resolved manner. MΔ is associated 

with the adsorbed mass MΔ . According to the Sauerbrey equation a FΔ of 1 Hz for the 

sensor chip we used with the QCM200 correlates with a MΔ of 18ng/cm2. 

i. Comparison of Non-Specific Adsorption of BSA on Different Polymer Coated 
QCM Crystals 
 
To check the non-specific adsorption of protein onto the carbamite polymer surface 

during TCNL, we coated the QCM sensor crystals with TCNL carbamite polymer and 
checked the non specific adsorption by flowing BSA onto the crystal. As the crosslinker 4-(3’-
chlorodimethylsilyl) propoxy benzophenone changes the properties of the TCNL polymer, 
especially its stiffness and charge present on the surface; which are known to change the 
non-specific adsorption of proteins. To check the effect of the crosslinker we coated the 
crystals with TCNL polymer with and without the crosslinker and compared the non-specific 
adsorption. Finally we passivated the TCNL polymer surface with PEG (see material and 
methods for PEG passivation procedure), as expected PEG prevented the non specific 
adsorption of proteins on the TCNL surface. 

From Figure 72, it can be concluded that the amount of non-specific adsorption 
depends on the surface chemistry on the sensor crystals. The non-specific adsorption was 
quantified assuming the polymer thin film on the crystal to be rigid film. The non-specific 
adsorption on the crystals was 738 ng/cm2, 648 ng/cm2, and 36 ng/cm2 respectively for 
carbamite without crosslinker, carbamite with crosslinker and PEG passivated QCM sensor 
crystals. The data clearly indicates that the PEG passivation on polymer coated crystal 
works and is effective in decreasing the non-specific adsorption of protein on the polymer 
surface. Detailed discussion of the adsorbed values follow in the next section. 

 



Chapter 3                                                                                          Results and Discussion      
 

 
108 

  

 
 

Figure 72 Bar graph of non-specific protein adsorption on QCM crystals coated with polymer films of 
different types and processing. The amount or mass of protein non-specifically adsorbed on the 
surface is also mentioned on the bar graphs.   

It can be seen from figure 73-80 that there are several graphs where there is a lot of 
noise and the graphs are not perfectly smooth, these changes or noise may be due to the 
electronic noise arising from the QCM instrument used. This electronic noise may be just 
parasitic capacitance occurring in the circuits or between the electrodes.  

ii. Non-Specific Adsorption of BSA on TCNL Polymer without Crosslinking 
 

 
 

Figure 73 QCM measurement with a frequency versus time measurement on TCNL polymer without 
crosslinker. The graph is a dynamic measurement with a flow of water, BSA, water in a sequence. 
BSA was flown to check the non-specific adsorption and subsequently washed and rinsed with 
distilled and deionized water to remove the free standing protein.  
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To understand the non-specific adsorption of protein BSA on non-crosslinked TCNL 
polymer, BSA at a concentration of 20 µg/ml was flown on the QCM crystals coated with this 
polymer. Finally a rinse cycle was performed with water to remove any freestanding protein 
(protein not bound to surface and lying freely) on the crystals. The polymer coated crystal 
was immersed in distilled water for 3 hours before the experiment was started. The samples 
were pre-incubated in water to prevent any noise arising due to polymer absorbing water.  
As shown in Figure 73, the frequency decreased substantially when BSA was exposed to 
the surface, indicating significant non-specific adsorption of BSA protein on the polymer-
coated sensor crystal. When the rinse cycle was performed, the frequency increased due to 
removal of some weakly adsorbed protein on the surface. A step-by-step quantitative 
explanation of each stage is discussed below. The complete experiment was performed at a 
flow rate of 50 µl/min at room temperature. 

Figure 74 shows 20 µg/ml of BSA in distilled water flown on the non-crosslinked 
polymer crystal, there was a steep decline in the frequency.  When the frequency was 
stabilized, the difference in frequency was about ~47 Hz. Applying Sauerbrey equation to the 
difference in frequency, the amount non-specific adsorption was about 846 ng/cm2.  

 

 
 

Figure 74 Quartz crystal microbalance graph of frequency change versus time on a non cross-linked 
polymer coated QCM crystal with a flow of water and BSA in sequence. Change in frequency over 
time is displayed. The change in frequency is due to non-specific adsorption of BSA onto the polymer 
crystal. 

In order to remove any freestanding protein (non bound or lying free) on the polymer 
crystals, distilled water was flown over the crystal and stopped after the signal stabilized, as 
indicated by a plateau in the change in the frequency value (Figure 75). For the non-
crosslinked carbamite polymer, there was an increase in frequency during the rinse cycle. 
The change or difference in frequency was about 6 Hz, corresponding to a reduction of 
approximately 108 ng/cm2, or 6.84% of the adsorbed amount. Thus, the final amount of non-
specific adsorption on the non-crosslinked carbamite polymer was about 738 ng/cm2. This 
was about 41 Hz in frequency difference. 
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Figure 75 Quartz crystal microbalance graph with a rinse cycle on non-crosslinked polymer coated 
surface. The rinse was performed with a flow of distilled water. Change in frequency over time is 
displayed. It can be observed in the graph the signal stabilizes showing that there is no more removal 
of protein adsorption after some time. 

iii. Non-Specific Adsorption of BSA On 4-(3’-Chlorodimethylsilyl) Propoxy 
Benzophenone Crosslinked Carbamite Polymer Coated Sensors 
 

 
 

Figure 76 QCM measurement on TCNL polymer coated crystal. The graph is a dynamic 
measurement of change in frequency versus time, with a flow of water, BSA, water in a sequence. 

To understand the non-specific adsorption of protein BSA on TCNL polymer, i.e. 
polymer with 4-(3’-chlorodimethylsilyl) propoxy benzophenone. BSA at 20 µg/ml was flown 
after a stable signal was achieved with treatment of distilled water. After equilibrium was 
reached with BSA he flowing on the TCNL polymer coated crystal, a rinse cycle was 
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performed with distilled water to remove any freestanding protein on the crystals. As before, 
the polymer-coated crystal was immersed in distilled water for 3 hours before the experiment 
was started. A detailed quantitative explanation of each stage of Figure 76 is shown below, 
graphically and reviewed in the text. The complete experiment was performed at a flow rate 
of 50 µl/min at room temperature. 

 
 

Figure 77 Quartz crystal microbalance graph on a TCNL polymer coated crystal with a flow of water 
and BSA in sequence. Change in frequency over time is displayed. 

When 20 µg/ml BSA in distilled water was flown on 4-(3’-chlorodimethylsilyl) propoxy 
benzophenone crosslinked carbamite polymer crystal there was a steep decline in the 
frequency (Figure 77). When the frequency was stabilized the difference in frequency was 
about 42 Hz. Applying Sauerbrey equation to the difference in frequency the amount non-
specific adsorption was about 756 ng/cm2.   

 

 
 

Figure 78 Quartz crystal microbalance graph with a rinse cycle on the TCNL polymer coated crystals. 
The rinse was performed with a flow of distilled water. Change in frequency over time is displayed. It 
can be observed in the graph the signal stabilizes after 3 hours.  
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When the rinse cycle was performed as shown in the Figure 78, the change or 
difference in frequency was about 6 Hz. Applying Sauerbrey’s equation this change in 
frequency amounts to 108 ng/cm2. So there was about 108 ng/cm2 of freestanding protein on 
the crystals. The final amount of non-specific adsorption on 4-(3’-chlorodimethylsilyl) propoxy 
benzophenone crosslinked carbamite polymer was about 648 ng/cm2. This was about 36 Hz 
in frequency difference. 

 From Figure 77, we know that when the TCNL polymer was not crosslinked with the 
crosslinker, there was a change of about 41 Hz which corresponds to about 738 ng/cm2. 
Comparing the absorption with and without the crosslinker, we know that crosslinker reduced 
the absorption by 5 Hz or around 90 ng/cm2. The crosslinker reduced the absorption by 
12%. This change could be due to polymer surface becoming much more rigid with no 
transient gaps in between the polymer mesh.  There may also be a change in the overall 
surface charge due to crosslinking. 

iv. Non-Specific Adsorption of BSA on Pegylated Polymer Coated Sensors 
 

 
 

Figure 79 QCM graph with a frequency versus time measurement on a PEG coated TCNL polymer 
surface. The graph is a dynamic measurement with a flow of water, BSA, water in a sequence for two 
times. BSA was flown to check the non-specific adsorption and subsequently washed to remove the 
free flowing protein. This was performed two times sequentially.  

To prevent non-specific adsorption, the crosslinked TCNL carbamate polymer was 
passivated with PEG. As shown in the Figure 79, when PEG passivation was performed 
there was very low amount of non specific adsorption. 

When 20 µg/ml BSA in distilled water was flown on the non crosslinked polymer 
sensor crystal there was a steep decline in the frequency.  When the frequency was 
stabilized the difference in frequency was about 14 Hz. Applying Sauerbrey equation to the 
difference in frequency the amount non-specific adsorption was about 252 ng/cm2. 
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Figure 80 Quartz crystal microbalance graph on a PEG coated polymer crystal. There was a flow of 
water and BSA in sequence. Change in frequency over time is displayed. 

In order to remove the freestanding protein on the polymer crystals, distilled water 
was flown on the crystals and stopped after the signal stabilized. There was an increase in 
frequency during the rinse cycle. The change or difference in frequency was about 12 Hz. 
Applying Sauerbrey’s equation this change in frequency amounts to 216 ng/cm2 so there 
was about 216 ng/cm2 of freestanding protein on the crystals.  There was really low amount 
protein removed during the rinse cycle. The final amount of non-specific adsorption on PEG 
passivated polymer coated crystals was about 36 ng/cm2. This was about 2 Hz in frequency 
difference. 

 
 

Figure 81 Quartz crystal microbalance graph with a rinse cycle on PEG coated polymer QCM crystal. 
The rinse was performed with a flow of distilled water. Change in frequency over time is displayed. It 
can be observed in the graph that the signal stabilizes in the later part of the graph showing that there 
is no more removal of protein adsorption after some time. 
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From these QCM studys we found that crosslinking the polymer decreased the non 
specific adsorption of proteins to the polymer coated substrates. The crosslinker reduced the 
absorption by 12%. This change could be due to polymer surface becoming much more rigid 
with no transient gaps in between the polymer mesh.  There may also be a change in the 
overall surface charge due to crosslinking. 

PEG passivation is a good way to prevent non specific adsorption of proteins on 
surfaces.  When compared to non-crosslinked TCNL polymer, PEG passivation was 21 
times better in preventing the protein adsorption. When compared to crosslinked TCNL 
polymer, PEG passivation was 18 times better at preventing protein adsorption.  
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4. Conclusions and Outlook 
 
Polymer based material have been found to have wide biomedical applications356-363. 

The main goal of the present work is to generate a patterning approach that can pattern on 
polymers at high resolution in arbitrary shapes. Using TCNL approach, we can generate 
bioactive surfaces that can be used for a lot of biomedical applications. TCNL’s polymers 
backbone is Polymethylmethacrylate (PMMA), an FDA approved364 biomaterial, hence the 
TCNL patterning approach designed here can easily be translated to coatings on implant 
materials. 

We have shown the use of TCNL to produce on a polymer surface, at speeds of 
mm/s, nanopatterns of five different orthogonal chemical functionalities (amines, aldehydes, 
thiols, biotins, maleimides), which can be used, in a second stage, to attach with standard 
functionalization methods different classes of nano-objects, such as proteins, nucleic acids, 
and potentially many others, to the surface. This new TCNL/covalent functionalization 
(CF)/molecular recognition (MR) approach is conceptually straightforward and, with our 
current generation of materials, patterns can be written at high resolution (at least 40 nm), 
and can be potentially massively parallelized, which would enable patterning of large areas 
(> than 100 cm2) at speeds up to one meter per second.  While we have demonstrated the 
technique on glass substrates, given the fact that the polymer can planarize any substrate, 
the technique is not limited to atomically smooth substrates and should be applicable to any 
oxide to which the polymer can be cross-linked. Furthermore, it is significant to note that the 
surfaces can be pre-patterned and stored for later bio/nano functionalization (at least weeks 
later). Thus the multi-protein/nano-object patterning can take place under native conditions 
in a second laboratory without the TCNL equipment or expertise in nanolithography. These 
features were deliberately built into our protocol to increase the accessibility of the technique 
to a variety of researchers not only interested in nanolithography, but basic science research 
in areas of biochemistry, nano-science and nano-biotechnology more broadly.   

PEG passivation is important for effective protein patterning and preventing cell 
adhesion or other cell activity on non patterned area. To prevent the non-specific binding of 
proteins, an optimal PEG passivation strategy was developed.  It was found that when the 
TCNL polymer was crosslinked, the non-specific binding was reduced by 12%. The PEG 
passivated surfaces on the other hand were quite effective and reduced the non-specific 
binding by approximately 20 times.  

To test the flexibility of the patterning approach, we patterned an antibody and 
protein side by side (anti-CD3 and ICAM). We showed the flexibility of this approach by 
patterning these molecules in different shapes and in concentric patterns. Maintaining the 
bioactivity of surface-patterned proteins is crucial, we tested the patterned biomolecules 
using two different assays. We verified the bioactivity by checking the ability of anti-CD3 to 
bind to secondary antibody, anti-IgG and showed that the patterned antibody is bioactive. 
Since the ultimate goal is to use the patterned biomolecules for cell sensing, we tested the 
bioactivity and viability of patterned substrates with a well studied system of immune 
synapse and T cell activation 414. The spatial correlation of protein kinase C-θ (PKC-θ) inside 
a T-cell interacting with the underlying anti-CD3 pattern proves that the patterned 
biomolecules are bioactive.  

We foresee that the TCNL can have a direct impact on the development of nano-
devices, biosensors, and on many cell studies that require interaction with two or more 
proteins in tailor-made patterns. Studies to increase the reliability of the initial patterning and 
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of the sample preparation protocols, to improve the resolution and create concentration 
gradients of functional groups, and to expand the range of chemical transformation activated 
by the technique, are currently underway and should further expand the applicability and 
robustness of the technique. 
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Abbreviations 
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CD3     Cluster of Differentiation (T-Cell Co-Receptor) 
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DTT     Dithiothreitol 
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FAK     Focal Adhesion Kinase 
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FDA     Food and Drug Administration 
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FTIR     Fourier Transformed Infrared Spectroscopy 
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H2O2     Hydrogen Peroxide 
HAuCl4     Tetrachloroaureatic Acid 
HCL     Hydrochloric Acid 
HRP     Horseradish Peroxidase 
ICAM     Inter-Cellular Adhesion Molecule 
IFN-γ      Interferon-Gamma  
IgG     Immunoglobulin G 
IL-1β     Interleukin 1β 
IL-10     Interleukin 10 
IL-6     Interleukin 6 
ITAM      Immunoreceptor Tyrosine Based Activation Motif 
ITIM     Immunoreceptor Tyrosine Based Inhibitory Motif 
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K2SO4     Potassium Sulfate 
LDL     Low Density Lipoprotein 
LPS     Lipopolysaccharide 
MEMS     Microelectrical Mechanical Systems 
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NH2     Amine  
NTB     2-Nitro-5-Thiobenzoate 
OH     Hydroxylate Group 
P2VP     Poly-2-Vinyl Pyridine 
PAH     Poly(Allylamine Hydrochloride) 
PBS     Phosphate Buffered Saline 
PDMS     Polydimethylsiloxane 
PEG     Poly(Ethylene Glycol) 
PI3-K     Phosphoinositide 3-Kinase 
PKC-θ      Protein Kinase C-θ 
PMPI     N-[p-Maleimidophenyl]isocyanate 
PMMA     Poly(Methyl Methacrylate) 
PS     Polystyrol  
PSS     PolyStyrene Sulfonate 
PtdIns      Phosphatidylinositol 
QCM     Quartz Crystal Microbalance 
Rac     Ras-Related C3 Botulinum Toxin Substrate 
SAv     Streptavidin 
SEM     Scanning Electron Microscope 
SH     Thiol, Sulfur-Hydrogen Bond, Sulfhydryl Group 
SOCS-3    Suppressor of Cytokine Signaling 3  
SPDP     N -Succinimidyl 3-(2-Pyridyldithio)-Propionate 
SPM     Scanning Probe Microscopy 
SNOM     Scanning Near-Field Optical Microscopy 
SYK     Spleen Tyrosine Kinase 
TCNL     Thermo-Chemical Nanolithography 
TEM     Transmission Electron Microscopy 
TGA     Thermogravimetric Analysis 
TGF-β     Transforming Growth Factor Beta 
THF     Tetrahydrofuran 
TLR4     Surface Toll like Receptor 4 
THP     Tetrahydropyranyl 
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TNF-α     Tumor Necrosis Factor-Alpha 
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WGA     Wheat Germ Agglutinin 
XPS     X-Ray Photoelectron Spectroscopy 
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