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Abstract

The aim of this thesis is the development of a parallel algebraic multigrid
method suitable for solving linear systems arising from the discretization
of scalar and systems of partial differential equations. Among others it is
suitable from conforming finite element methods, finite volume methods,
and discontinuous Galerkin methods. The method is especially tailored
for the solution of diffusion problems with highly oscillating and discon-
tinuous diffusion coefficients.

The presented approach uses a new strength of connection measure for
guiding the construction of the coarse level matrices. It uses a heuristic
greedy aggregation algorithm that allows for aggressive coarsening. It is
able to detect weak connections in the matrix graph even for anisotropic
diffusion with bi- and trilinear finite elements and thus leads to semi-
coarsening even for these cases. At the same time it keeps the stencil size
from the finer levels and thus the total operator complexity low even for
three dimensional problems. This leads to a very low memory consump-
tion of our solver compared with other methods.

We develop extensions of the solver to systems of partial differential
equation by using special blocking approaches of the unknowns. These
blockings are emulated by the underlying matrix and vector data struc-
tures. As the blocking is already available to the compiler, it can be
exploited to produce automatically more efficient code.

For the solution of the linear systems stemming from Discontinuous
Galerkin discretizations, we employ the subspace of continuous linear
basis function as the space associated with the first coarse level. The
further coarsening is done by using the above algorithm. For the method
of Baumann and Oden we need to use overlapping Schwarz methods as
smoothers to get a convergent method. Their local subspaces are con-
structed using our aggregation algorithm on the blocks consisting of all
unknowns associated with each element.

Finally we present a parallelisation approach for iterative solvers and
use it to parallelise our algebraic multigrid method. In our approach the
information about the data decomposition is kept apart from the linear al-
gebra solvers and data structures. It is used to keep the data stored in the
local memory of the process consistent. Using our proposed consistency
model, the efficient sequential linear algebra solvers and data structures
can be reused without the need to rewrite the actual solver algorithms.
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Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung eines parallelen algebrai-
schen Mehrgitterverfahrens zur Lösung linearer Systeme, die durch die
Diskretisierung von skalaren und Systemen von partiellen Differential-
gleichungen entstehen. Unter anderem ist es geeignet für lineare System
aus der Diskretisierung mit konformen finite Elemente Verfahren, finiten
Volumen Verfahren und unstetigen Galerkin Verfahren. Die Methode ist
besonders geeignet zur Lösung der Diffusionsgleichung mit stark oszillie-
renden und unstetigen Diffusionskoeffizienten.

Das entwickelte Verfahren benützt ein neues Maß zur Erkennung von
„starken“ Verbindungen im Matrixgraphen. Dieses leitet die Aggregati-
on der Unbekannten der Matrix und damit die Konstruktion gröberer
Matrizen. Die Vergröberung basiert auf einem neu entwickelten heuri-
stischen Algorithmus, der auch aggressives Vergröbern erlaubt. Dieser
kann schwache Verbindungen auch für anisotrope Diffusion mit bi- und
trilinearen finiten Elementen erkennen und vergröbert nur in Richtung
starker Verbindungen. Zur gleichen Zeit lässt der Algorithmus die Größe
des Besetzheitssterns der Matrizen auf den groben Ebenen vergleichbar
klein wie bei der Matrix auf der feinsten Ebene. Somit ist auch die Kom-
plexität des Operators und damit der Speicherverbrauch des Lösers im
Vergleich mit anderen algebraischen Mehrgitterlösern gering.

Wir entwickeln Erweiterungen des Lösers für Systeme partieller Diffe-
rentialgleichungen, indem wir die Unbekannten auf eine spezielle Weise
blocken. Diese Blöcke werden in den benutzten Matrix- und Vektorda-
tenstrukturen nachgebildet. Die Struktur dieser Blöcke ist dem Compiler
bereits bekannt. Deswegen kann er sie ausnützen, um besonders effizien-
ten Code zu generieren.

Für die Lösung linearer Systeme, die aus unstetigen Galerkin Diskre-
tisierungen entstanden sind, benutzen wir den Unterraum der stetigen
linearen Ansatzfunktionen als Raum der ersten gröberen Ebene. Ab hier
benutzen wir zur weiteren Vergröberung den obigen Algorithmus. Für die
Methode von Baumann und Oden benötigen wir überlappende Schwarz
Verfahren als Glätter, um Konvergenz zu erreichen. Die lokalen Probleme
dieser Glätter konstruieren wir mit Hilfe unseres Aggregationsalgorith-
mus. Wir benützen die geblockte Variante ähnlich wie für Systeme. Alle
mit den Basisfunktionen eines Elements assoziierten Unbekannten bilden
zusammen einen Block.

Schließlich präsentieren wir unseren Parallelisierungansatz für iterati-
ve Löser und benutzen ihn, um unser algebraisches Mehrgitterverfahren
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zu parallelisieren. Bei unserem Ansatz wird die Information über die Da-
tenverteilung und Kommunikationsmuster nicht in die Löser und Daten-
strukturen integriert. Basierend auf diesen extern gespeicherten Informa-
tionen wird dafür gesorgt, dass die Daten vorgegebene Konsistenzmodelle
erfüllen. So können wir die sequentiellen Löseralgorithmen und die Da-
tenstrukturen der linearen Algebra wiederverwenden, ohne die Löser neu
schreiben zu müssen. Gleichzeitig wird die Kommunikation der Daten
auf ein Minimum beschränkt und die Effizienz der sequentiellen linearen
Algebra kann auch im parallelen Fall genutzt werden.
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1 Introduction

Solving partial differential equations (PDE) is an ubiquitous task in sci-
entific computing. In simulations a large part of the computation time is
spent in solving the large sparse linear systems arising from the discretiza-
tions of these partial differential equations. With increasing memory and
computation power of modern computers higher and higher resolutions of
these discretizations are feasible. Therefore, the usage of scalable linear
solvers and preconditioners is mandatory today. One of the most efficient
ways to achieve scalability is the usage of multi-level methods. Among
them are the so-called geometric (GMG) and algebraic multigrid (AMG)
methods.

While often being the more efficient method the former has some draw-
backs, too. For complicated problems the method has to be adapted to
the particular problem solved. Special care has to be taken if the co-
efficients of the PDE are non-smooth. In this case standard geometric
multigrid methods converge very slowly. For anisotropic diffusion prob-
lems, where the diffusion in one direction is very low or high compared
with other directions, convergence is similarly slow. In both cases good
convergence can be recovered when using problem adapted coarsening
schemes, smoothers, and grid interpolation operators. This often requires
expert knowledge that cannot be expected from users of the method. In
addition the method needs an adapted grid hierarchy that often is not
available from commercial applications or rather complicated to compute
for unstructured grids. Therefore, algebraic multigrid methods are used
in these cases more often. They do not need to be adjusted as accurately
and normally just need the plain linear system as input.

Today a wide variety of algebraic multigrid methods exist. Those with-
out the need for geometric information can be subdivided into two major
classes: the methods based on interpolation and the methods based on
aggregation. In interpolation AMG the fine level unknowns are subdi-
vided into unknowns that will also be present on the coarser level and
those that will not. Accordingly the interpolation operators between the
levels are constructed. The development of these methods started with
Ruge and Stüben [1987], Brandt et al. [1984], Brandt [1986]. In the other
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1 Introduction

class the fine level unknowns are aggregated and each of these aggregates
represents one unknown on the coarser level. For the inter-level interpo-
lation they either use piece-wise constant interpolation as in Raw [1985],
Braess [1995] or more accurate interpolation that is created by smoothing
as in Vaněk [1992], Vaněk et al. [1996a]. The former approach is very
memory efficient but the convergence rate is not independent of the prob-
lems size. For the latter approach the computation of the hierarchy is
more expensive and the matrices on the coarser levels are not as sparse
as with piecewise constant interpolation.

While the standard AMG methods mentioned above work very well for a
wide variety of problems, their performance on some finite element prob-
lems (e.g. thin-body elasticity on unstructured grids) is unsatisfactory.
These cases deviate substantially from the M-Matrix case on which the
traditional AMG heuristics are based. This lead to the development of
algebraic multigrid based on element interpolation (AMGe), see Brezina
et al. [2000]. It uses multigrid convergence theory and the local stiffness
matrices for the individual finite elements to produce better interpolation
parameters than in the classical interpolation AMG. Later the ideas from
AMGe were also used to construct coarse grids and finite elements in
Jones and Vassilevski [2001]. In addition to the global matrix and the
local stiffness matrices topology information of the elements of the finest
grid is needed for this solver.

A new challenge is the development of parallel solvers suitable for usage
on today’s supercomputers. These make thousands of processors avail-
able to the simulation software and can achieve more than one petaflops
as their peak computation performance. The most common parallel ap-
proaches are either domain decomposition methods or multigrid meth-
ods. Parallel algebraic multigrid methods based on classical coarsening
schemes have the problem that the complexity of the solver increases with
the problem size and the number of processors used. That is, the matri-
ces on coarser levels are not as sparse as for the sequential method. This
leads to higher memory consumption and execution times. Therefore, this
area is still an active topic of research as recent publication like Alber and
Olson [2007], Griebel et al. [2008], Sterck et al. [2008] show.

An important application area of algebraic multigrid is the solution of
the diffusion equation

−∇ · (K∇u) = f

for the case that the diffusion coefficient K (also called permeability) is
highly variable and might even have large jumps throughout the domain.
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1.1 Contributions

Such equations model for example flow in heterogeneous porous media.
For this kind of problem algebraic multigrid methods should be able to
detect the jumps and adapt their coarsening scheme such that the solver
is still robust. Other iterative methods are more likely to have problems
as the condition of the resulting matrix is not only dependent on the
resolution of the discretization but also on the ratio of the permeability
jumps. A new two-level preconditioner based on domain decomposition
was presented and analysed in Scheichl and Vainikko [2007]. The coarse
space of this preconditioner was constructed by means of an aggregation
method borrowed from algebraic multigrid.

For finite difference and low order continuous finite element discretiza-
tions the use of (algebraic) multigrid solvers is well established. In the
seventies the development of the discontinuous Galerkin (DG) finite el-
ement method for discretizing partial differential equations started. It
is based on a totally discontinuous finite element space and has many
advantageous properties. Due to the missing continuity constraint of the
basis functions the usage with non-conforming unstructured grids is easy
and allows for flexible mesh adaptation techniques. The choice of the ba-
sis functions used is flexible and allows for variable polynomial order. For
the above presented flow problem an important property of the DG dis-
cretizations is its element-wise mass conservation. A disadvantage is that
the resulting linear systems have a higher number of degrees of freedom
when compared with the continuous methods. This leads to even larger
and more ill-conditioned systems and makes the use of optimal solvers
even more mandatory. The quest for such solvers is still ongoing as re-
cent publication like Gopalakrishnan and Kanschat [2003], Johannsen
[2005], Dobrev et al. [2006], Dobrev [2007], Antonietti and Ayuso [2008],
Antonietti [2007], Prill et al. [2009], Ayuso and Zikatanov [2009] show.
The most promising types of solvers in this area are again multigrid and
domain decomposition methods.

1.1 Contributions

For the sequential version the algebraic multigrid method based on ag-
gregation, we invent a new strength of connection measure to guide the
coarse level construction. It is symmetric and leads to semi-coarsening
for anisotropic diffusion even when using bi- and trilinear finite elements.
Using this criterion the aggregation is done with a new heuristic greedy
aggregation algorithm. This allows for rather aggressive coarsening while
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1 Introduction

keeping the stencil size of the coarse level matrices at a minimum. Still
the method is suitable as an efficient preconditioner to Krylov methods.

The code of our algebraic multigrid method uses generic block matrices
and vectors. The structure and size of their blocks is already known at
compile time and can be exploited by the compiler to optimise the code.
Due to this implementation the method is used without major modifica-
tions for coupled systems of partial differential equations.

We present a generic parallelisation approach of the used linear algebra
based on block matrices and block vectors. In contrast to many current
approaches the information about the data decomposition and communi-
cation pattern is not incorporated into the data structures directly. This
information is stored outside of the data structures in so-called parallel
index sets. These are used to impose data consistency and at the same
time reuse the fast sequential linear algebra components. This leads to
the parallel solvers of the “Iterative Solver Template Library” (ISTL), which
is available as an open source software.

The algebraic multigrid method is extended to discontinuous Galerkin
discretizations. As a first coarse space we use the space of continuous
linear basis functions. Especially for higher order trial functions this leads
to a tremendous reduction of the number of degrees of freedom used on the
finer levels. This approach works for both symmetric and non-symmetric
interior penalty discontinuous Galerkin discretization provided that the
penalty parameter is chosen to be sufficiently large. For the method of
Oden and Baumann, that is lacking the penalty parameter, additional
measures have to be taken. We employ overlapping Schwarz methods as
smoothers on the fine level. For the construction of the local subdomains
of these smoothers we use our greedy aggregation algorithm.

1.2 Outline

In Chapter 2 we introduce our model problem. We describe the different
discretization methods used in this thesis, namely finite element meth-
ods, finite volume methods and discontinuous Galerkin methods. An
important part of the chapter is how the discretizations are mapped to the
resulting linear equation systems. We describe blocking strategies of the
unknowns for higher order discontinuous Galerkin methods and systems
of partial differential equations.

In Chapter 3 we describe the sequential version of our algebraic multi-
grid method based on aggregation. We use the notation of abstract Schwarz
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1.2 Outline

methods to describe the smoothers of our method. After describing a nat-
ural extension to systems of partial differential equations, we conclude the
chapter by introducing representatives of the model problem. These mod-
els have high contrast jumps in their coefficients. With numerical results
we prove the scalability and efficiency of our approach for discretizations
with continuous finite element and finite volume methods.

In Chapter 4 we extend our approach to discontinuous Galerkin meth-
ods. As the first coarse space we use the space of continuous linear
functions. For the method of Baumann and Oden we propose one-level
overlapping Schwarz methods as smoothers on the finest level. The local
problems of these smoothers will be constructed algebraically. The ro-
bustness of the method will be shown on various model problems and for
various polynomial orders.

In Chapter 5 we describe the parallelisation of our method. The effi-
ciency of the approach will be demonstrated using the model problems.

In the previous chapters all results were obtained using model prob-
lems. This does not do justice to our multigrid solver as it is suitable to
be applied to real word examples. Therefore, in Chapter 6 we will show
various real world applications we applied our solver to.

To complete the presentation of our method, we dedicate Chapter 7
to implementational details of our method. Although not interesting to
non-practitioners, we regard this as an integral part of the thesis. The
efficiency of our method is highly related to the implementation; namely,
to the way the finite element discretization is mapped to the matrix and
vector data structures. In the first part we describe the matrix and vector
data structures used together with the preconditioner and solver interface.
Then we describe the developed components used to turn the sequential
linear algebra into scalable parallel solvers. This approach is the main
cause of our good scalability results presented in earlier chapters. Finally
we describe the interface and components of our AMG method.

We conclude the thesis in Chapter 8 with a summary of our develop-
ments and results.
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2 Model Problem and Discretization

In this chapter we will introduce the second order elliptic model problem
that we will investigate. We will use this problem to outline finite element
(FE), finite volume (FV) and some important discontinuous Galerkin (DG)
discretization methods. For a more detailed discussion of finite element
approximations we refer to the monographs Braess [1997], Ciarlet [1978].
Detailed description of finite volume methods can be found in Mitchev
[1996], Bey [1998]. A very comprehensive unified analysis of discontinu-
ous Galerkin finite element methods is presented in Arnold et al. [2002].
We refer people interested in an introduction to DG to the monograph
Riviere [2008].

Let us first define the Sobolev spaces that will be used in this thesis.
For a bounded connected open subset D of Rd, d = 1,2,3, let L2(D) be
the space of square integrable functions on D, and let (·, ·)D and ‖ · ‖0,D
denote the inner product and norm on L2(D) (or (L2(D))d), respectively.
We denote by H1

0 (D) the completion of infinitely differentiable functions
with compact support under the norm

|u|1,D = ‖∇u‖0,D .

Let the dual space of H1
0 (D) be denoted by H−1(D). For 0 < s < 1, let

H−s(D) denote the space obtained by real interpolation between H−1(D)
and L2(D). For non-negative integers m, the Sobolev space Hm(D) is the
set of functions in L2(D) with distributional derivatives up to order m also
in L2(D). If s is a positive real number between non-negative integers
m and m + 1, Hs(D) is the space obtained by real interpolation between
Hm(D) and Hm+1(D). The norm on H r(D) is denoted by ‖ · ‖r,D.

2.1 Model Problem

Let Ω be a polyhedral domain in Rd, d = 1,2,3, and let n denote the
outward unit normal to ∂Ω. The boundary is decomposed into two disjoint
components ΓD and ΓN with ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅ and ΓD has positive
measure. Then we consider the following second-order elliptic boundary
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2 Model Problem and Discretization

value problem:

−∇ · (K∇u) = f in Ω

u = gD on ΓD

(K∇u) · n = gN on ΓN .

(2.1)

Here u is the unknown function and f ∈ L2(Ω), gD ∈ H1/2(ΓD), and
gN ∈ H−1/2(ΓN ) are given functions. Furthermore, we assume that the
coefficient matrix K(x) ∈ (L∞(Ω))d×d is symmetric, uniformly bounded,
and positive definite, such that

c1|ζ |2 ≤ K(x)ζ · ζ ≤ c2|ζ |2 ∀ζ ∈ Rd ,

for given constants c1, c2 ∈ R, c1, c2 > 0.
Let g̃D ∈ H1(Ω) be an extension of gD inside the domain, that is g̃D |ΓD =

gD, and define the space

H1
0 (Ω; ΓD) = {v ∈ H1(Ω) : v|ΓD = 0} .

Then the corresponding variational formulation of problem (2.1) reads:
find u ∈ g̃D + H1

0 (Ω; ΓD) such that

(K∇u,∇v)Ω = (f, v)Ω + (gN , v)ΓN , ∀v ∈ H
1
0 (Ω,ΓD) . (2.2)

2.2 Galerkin Approximation

The next step is now to approximate our variational problem in finite
dimensional subspaces. Instead of starting from the concrete problem
(2.2), we use a more abstract setting that includes our example.

Let V be a Hilbert space, letA(·, ·) : V ×V → R be a continuous V elliptic
bilinear form, and let L : V → R be a continuous linear form. Then an
abstract variational problem is given by:
find u ∈ V such that

A(u, v) = L(v) ∀v ∈ V .

Our aim is now to approximate the solution using the Galerkin method.
Note that the same methodology can be applied for the Petrov-Galerkin
approximation. As it is not needed for the discretisations in this thesis we
restrict ourselves to the simpler Galerkin projection.
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2.2 Galerkin Approximation

Let Vh ⊂ V be our trial and test function space of finite dimension n.
Then the Galerkin projection leads to the finite dimensional problem:
find uh ∈ Vh such that

Ah(uh , vh) = Lh(vh) ∀vh ∈ Vh . (2.3)

Note thatAh(·, ·) andLh(·) might differ from the original bilinear and linear
form of the continuous problem.

Fixing an arbitrary basis Φ = {φ1, . . . , φn} of our function space Vh ,
we are able to transform the finite dimensional variational problem (2.3)
into an algebraic equation system. We represent our finite dimensional
solution as

uh =

n∑

j=1

ujφj

and set this into the variational form (2.3) to get

n∑

j=1

A(φj, v)uj = L(v) ∀v ∈ Vh .

It suffices to test against all basis functions φi ∈ Φ. This represents a
system of linear equations given by Au = b with

A =



a11 . . . a1n
...

. . .
...

an1 . . . ann


, aij = A(φj, φi)

and

b =



b1
...

bn


, bi = L(φi) .

We will use a special notation for matrices and vectors in this thesis.
We denote finite index sets by I with possibly sub- or superscript or both.
I does not have to be ordered, necessarily. From our point of view a
vector b ∈ KI is a mapping b : I → K. A matrix A ∈ KI×I is a mapping
A : I × I → K. This notation will be very useful for describing our algebraic
multigrid method and the parallelisation approach.

To construct our finite dimensional function space Vh , we will always
use a primal triangulation of our domain Ω. (We will also use the words
mesh and grid instead of triangulation.)
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2 Model Problem and Discretization

Let T = {τ1, . . . τM } be a subdivision of our set Ω =
⋃M
i=1 τi into a fi-

nite number of closed subsets τi with non-empty interior and Lipschitz-
continuous boundary ∂τi . We assume that T is a regular triangulation.
That is, the intersection of two elements is either empty or a common
vertex, edge, or face. For any element τ ∈ T we denote its diameter with
hτ and the boundary of τ with ∂τ. Furthermore, let h := maxτ∈T hτ denote
the characteristic mesh size of the whole partition.

2.2.1 Continuous Galerkin Finite Element

The first class of approximations used in this thesis are continuous Galerkin
finite element methods. In this class both trial and test function space
are the same. As trial and test functions we will use continuous functions
that are piecewise polynomial on the elements of our triangulation.

We will use the following multi-index notation. Let α = (α1, . . . , αd), αi ∈
N0, be a multi-index for a given dimension d, then we define |α| = ∑d

i=1 αi ,
|α|∞ = maxdi=1 αi , and xα =

∏d
i=1 x

αi
i for a vector x ∈ Rd.

Then the space of polynomials on Rd of maximum total degree k is
denoted by

Pk = {u : Rd → R | u(x) =
∑

|α|≤k
cαx

α, cα ∈ R} ,

and the space of polynomials on Rd with maximum degree k in each
component is denoted by

Qk = {u : Rd → R | u(x) =
∑

|α|∞≤k
cαx

α, cα ∈ R} .

Similar to above, we incorporate the Dirichlet boundary condition into
the space C(Ω) of continuous functions on Ω by defining

C0(Ω,ΓD) = {u ∈ C(Ω) | u|ΓD = 0} .

Then the spaces that are polynomial when restricted to the elements of
our grid and respect the Dirichlet boundary condition on ΓD are

Pk(T ) = {u ∈ C0(Ω,ΓD) | u|τ ∈ Pk ∀τ ∈ T }

for triangulations consisting only of simplicial elements and

Qk(T ) = {u ∈ C0(Ω,ΓD) | u|τ ∈ Qk ∀τ ∈ T }
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2.2 Galerkin Approximation

for triangulations consisting only of quadrilateral and hexahedral ele-
ments in two and three dimensions, respectively.

Using one of these finite dimensional spaces as both trial and test func-
tion space for the original bilinear and linear form as defined by the varia-
tional formulation (2.2), the resulting linear system follows from the above
described Galerkin approximation.

2.2.2 Discontinuous Galerkin Finite Element

Let T be a triangulation of our domain Ω as defined above. The set of all
edges (d = 2) or faces (d = 3) of the elements τ ∈ T will be denoted by E.
We will call its elements edge regardless of the dimension d. Let EI and EB
denote the sets of all interior and all boundary edges, respectively. We
will assume that the Dirichlet boundary ΓD is the union of a non-empty set
of boundary edges. It will be denoted by ED. Consequently, EN := EB \ ED
will denote the edges where the Neumann boundary condition is imposed.
Thus, we have E = EI ∪ ED ∪ EN .

Over the triangulation T we define the broken Sobolev space:

Hs(T ) = {v ∈ L2(Ω) | ∀τ ∈ T , v|τ ∈ Hs(τ)} , s ≥ 0 .

In order to define the discontinuous Galerkin discretization, we need to
require that K and gN are sufficiently smooth. Namely, we assume that
K ∈ (H1,∞(T ))d×d and gN ∈ L2(ΓN ).

For our discretization we will use the following space of discontinuous
piecewise polynomial functions of total degree k ≥ 0 as the space of trial
and test functions

Vk := {v ∈ L2(Ω) : v|τ ∈ Pk ,∀τ ∈ T } .

Let e ∈ EI (see Figure 2.1) be an edge shared by two elements τ1 and τ2
and let ne denote the unit normal vector pointing from τ1 to τ2. That is, we
fix a direction for each pair of elements sharing an edge. For a boundary
edge e ∈ EB we denote with ne the unit normal vector pointing outside
of Ω. Let φ be a function defined on both sides of the edge e as φ1 and
φ2 from the sides of the elements τ1 and τ2, respectively. For example φ
could be a trace of a function in Hs(T ), s > 1/2, or the normal derivative,
∇v · n of a function u ∈ Hs(T ), s > 3/2. For such φ we define the jump
and average operators as :

~φ� = φ1 − φ2 and {φ} = φ1 + φ2

2
.
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2 Model Problem and Discretization

Consequently, for a boundary interface e ∈ EB and φ only defined on the
interior side of it as φi we set

~φ� = φi and {φ} = φi

Further, we shall need the piecewise constant function

he = he(x) =

{
|e| for x ∈ e ∈ E, d = 2
|e|1/2 for x ∈ e ∈ E, d = 3

.

e
ne

τ2

τ1

Figure 2.1: Interior edge shared by two elements

We assumed K ∈ (H1,∞(T ))d×d, and gN ∈ L2(T ). With this assumption
we are allowed to define traces of K∇u if u ∈ Hs(T ) for some s > 3/2.
Then we define the DG bilinear form

ADG(u, v) =
∑

τ∈T
(K∇u,∇v)τ −

∑

e∈EI∪ED
({K∇u · ne}, ~v�)e

+

∑

e∈EI∪ED
σ ({K∇v · ne}, ~u�)e +

∑

e∈EI∪ED

µ

he
(~u�, ~v�)e

(2.4)

and the linear form

LDG(v) =
∑

τ∈T
(f, v)τ +

∑

e∈EN
(gN , v)e +

∑

e∈ED
σ(gD, K∇v · ne)e +

∑

e∈ED

µ

he
(gD, v)e .

The choices of σ and the penalty parameter µ define the following well
known DG methods:

• σ = −1 and µ ≥ µ0 sufficiently large define the symmetric interior
penalty (IP or SIPG) method, Wheeler [1978], Arnold [1982], Arnold
et al. [2002].
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2.2 Galerkin Approximation

• σ = +1 and µ > 0 define the non-symmetric interior penalty (NIPG)
method, Rivière and Wheeler [1999], Arnold et al. [2002].

• σ = 1 and µ = 0 define the method of Baumann and Oden, Baumann
and Oden [1999], Rivière and Wheeler [1999], Oden et al. [1998].

With the above defined bilinear and linear forms the discrete DG problem
can be written as:
find u ∈ Vk such that

ADG(u, v) = LDG(v) , ∀v ∈ Vk . (2.5)

For the case of high contrasts jumps in K we will use the following
modification of the above methods. Assuming that K is constant on each
cell of the grid, the value at an inner edge in the average computation
is approximated by the harmonic average of K in the neighbouring cells.
In this simple case using harmonic averages is the same as the method
using weighted averages that has been analysed in Ern et al. [2009]. We
will briefly describe the latter approach.

Let K1 and K2 be the permeability tensors in the two neighbouring cells
τ1 and τ2 of the inner edge e. Then we redefine the average of the flux as

{K∇v · ne} =
δ2K1∇v · ne + δ1K2∇v · ne

δ1 + δ2
, with δi = ne · Kine , for i = 1,2 .

(2.6)
In addition the penalty parameter µ is scaled by the factor

δ2
1K2 + δ

2
2K1

(δ1 + δ2)
. (2.7)

In Ern et al. [2009] the above introduced weighted average were needed
for the error analysis of the advection part in the classical advection-
diffusion equation. For the diffusive part of the problem they were not
needed. Despite having no advection in our problems the approach turned
out to lead to better conditioned linear systems. Without this modifica-
tion often no convergence was achieved with the approach presented in
Chapter 4.

2.2.3 Finite Volume Method

Finite volume methods are subdivided into vertex and cell centred meth-
ods. The names indicate where in the triangulation the unknowns are
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2 Model Problem and Discretization

associated to. We will only consider cell centred finite volume methods
and restrict us to the case of low order discretizations.

For the cell centred finite volume method we assume that either for each
element of our grid there is a circumscribed circle around it or that each
element is a Voronoi region. In the first case the unknowns are associated
with the centres of the circumscribed circle and in the latter case with
the centres of mass of the Voronoi regions. In both cases we will call
these points cell centres. The elements of the mesh are also called boxes
for this method. As trial and test functions we will use the space V0 of
discontinuous functions that are piecewise constant on the elements of
the triangulation.

Analogous to the discontinuous Galerkin method we fix the direction of
the unit normal of each inner edge e ∈ EI and define the jump operator
~·� accordingly. Let l : E → T and r : E → T be the function that
returns the element where the unit normal ne starts and where it points
to, respectively. We define the function d : T × T → Rn that returns
the distance between the centres of two cells. For a boundary edge e
let the function d : E → R return the distance to the cell centre of the
corresponding element. We use the approximation ũ : T → R of a function
at the cell centre of an element. One suitable approximation is ũ(τ) =

1
m(τ)

∫
τ
u dx, where m(τ) denotes the Lebesgue measure of element τ.

Then we can write the cell-centred finite volume scheme in a discrete
weak form as:
find u ∈ V0 such that

AFV (u, v) = LFV (v) ∀v ∈ V0 .

Here the bilinear form is given by

AFV (u, v) = −
∑

e∈EI

(
K̃
ũ(r(e)) − ũ(l(e))
d(r(e)), l(e))

, ~v�

)

e

+

∑

e∈ED

(
K
ũ(l(e))
d(e)

, ~v�

)

e

, (2.8)

with K̃ being the harmonic average of the permeabilities of the two adjacent
cells, and the linear form is defined as

LFV (v) =
∑

τ∈T
(f, v)τ +

∑

e∈EN
(gN , v)e +

∑

e∈ED

(
K
gD

d(e)
, ~v�

)

e

. (2.9)

For many people familiar with cell centred finite volume methods the
above representation of the method in terms of a linear and a bilinear
form may seem rather artificial. It is used here to have a common rep-
resentation of the discrete problems for all discretizations. This allows
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us to describe our solver in a uniform representation regardless of the
discretization method used.

Clearly, due to the support of our basis functions and the jump formu-
lation the above is equivalent to the traditional form being

∑

e∈∂τ∩EI

∫

e

K̃
ũ(r(e)) − ũ(l(e))
d(r(e)), l(e))

ds +
∑

e∈∂τ∩ED

∫

e

K
ũ(l(e)) − g̃D(e)

d(l(e))
ds

=

∫

τ

f dx +
∑

e∈∂τ∩EN

∫

e

gN ds ∀τ ∈ T .

2.3 Algebraic Notation and Blocking Strategy

In the previous sections we described how to discretize partial differential
equations. This procedure results in a linear system of equations that
is ready to be represented in matrix and vector data structures. Up to
now we did neither look at the ordering of the degrees of freedom nor did
we think about how these degrees of freedom are associated to physical
entities. That is, we neglected important structural information of the
discretization of partial differential equations. But this structure is in
most cases naturally there and should be exploited. One should do this
whenever there is a gain in efficiency to be expected.

2.3.1 Higher-order Methods

When considering higher order conforming finite element methods with
trial and test functions of polynomial degree k > 1, the degrees of freedom
are not only associated with the vertices of the grid. For example for
triangles and polynomial degree k = 2 there are additional degrees of
freedom associated with the edge midpoints. For rectangular elements
and k = 2 there are degrees of freedom associated with the vertices, the
edge midpoints and the cell centres. Instead of creating a scalar matrix
one could block the degrees of freedom according to the different kind of
geometric entities they are associated with, namely the vertices, the edges,
and the interior of the cells. For two dimensions this kind of blocking is
illustrated in Figure 2.2 for triangles and polynomial degree k = 3. In this
and the following figures all unknowns associated with the same matrix
block have the same colour. This kind of blocking would result in a block
matrix with non-zero blocks that are themselves sparse matrices.
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2 Model Problem and Discretization

Figure 2.2: P3 codim blocks

2.3.2 Systems of PDE

We consider a linear system of q partial differential equations for q func-
tions u1, . . . , uq given in the form

q∑

j=1

Lijuj = fi , i = 1, . . . , q ,

with differential operators Lij. A prominent example is the Stokes problem

(
−∆ ∇
∇· 0

) (
u

p

)
=

(
f

0

)
.

For the variational formulation, let V1, . . . , V q be appropriate Hilbert
spaces, and suppose that

Aij(·, ·) : V i × V j → R , i, j = 1, . . . , q

are continuous bilinear forms, and let

Li : V i → R, i = 1, . . . , q

be appropriately defined linear forms. Then we consider the following
problem: find u = (u1, . . . , un) ∈ V = V1 × . . . × V q such that

∑n

j=1
Aij(uj, v) = Li(v) ∀v ∈ V i , i = 1 . . . , q .

Using the above described Galerkin approach to approximate the Hilbert
spaces V1, . . . , V q with finite spaces V1

h , . . . , V
q
h of dimension n1, . . . , nq,

respectively, and choosing appropriate basis functions results in a linear
system of algebraic equations.
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Let N1 = 0, Nk = Nk−1+nk for 0 < k ≤ q, and Φi = {φNi+1, . . . , φNi+ni } be a
basis of the vector space V ih . Depending on the ordering of the unknowns,
several blocking approaches arise.

One approach of numbering and blocking the unknowns is called equa-
tion-based blocking. The equations are ordered like the basis functions
and each equation represents a row of the resulting linear system on its
own. That is, no blocking is used. Suppose the ordering of the basis
functions is as described by the indices used above and let g(i) = max{k |
Nk ≤ i} be the function that selects the index of the space V kh that φi is
a basis function of. Then this approach results in a scalar linear system
Au = f, where the entries of the matrix and right hand side vector are
Aij = Ag(i),g(j)(φj, φi) and fi = Lg(i)(φi), respectively.

In the unknown-based blocking approach all basis functions that belong
to the same space V kh are blocked together. Clearly, this results in a linear
system 

A11 . . . A1q
...

. . .
...

Aq1 . . . Aqq





u1
...

uq


=



f1
...

fq


,

where the matrix entries Aij ∈ Rni×nj are themselves (sparse) matrices with
entries given by (Aij)kl = Aij(φNj+l , φNi+k). The vector entries fi ∈ Rni are
themselves vectors with entries (fi)k = Li(φNi+k).

As long as Vhi , i = 1, . . . , q, all use the same nodal basis, it is possible to
block all basis functions associated with one point together. The resulting
linear operator is a sparse matrix which has small dense matrices as its
entries. Supposing that the dimension of V ih is m for all i, the resulting
linear system looks like

Ax =



A11 . . . A1m
...

. . .
...

Am1 . . . Amm





u1
...

um


=



f1
...

fm


= f ,

Aij =



A11(φN1+j, φN1+i) . . . A1q(φNq+j, φN1+i)
...

. . .
...

Aq1(φN1+j, φNq+i) . . . Aqq(φNq+j, φNq+i)


∈ Rq×q ,

xi , bi = (Lk(φNk+i))
q
k=1 ∈ R

q, i = 1, . . . , m. Note that most of the matrix
blocks Aij are zero. We will call this blocking strategy point-based blocking.

This kind of blocking approach will be needed in the next chapter.
Whenever we have a matrix A with equally sized matrix blocks in Rk×k, we
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2 Model Problem and Discretization

(a) Unknown-based blocking (b) Point-based blocking

Figure 2.3: Blocking Strategies for PDE systems

say in abuse of notation that for such a matrix A ∈ Kn×n holds. Here we
suppose that K = Rk for a fixed k ∈ N.

In Figure 2.3 we illustrate the unknown-based and point-based blocking
strategies. One unknown is represent by a circle and the other one by a
ring. Same colours identify degrees of freedom in the same matrix block.

2.3.3 Discontinuous Galerkin

For discontinuous Galerkin methods we can use several geometric entities
to associate our basis functions with. How this is possible depends on the
chosen basis of the DG trial function space Vk. For example Hemker et
al, Hemker et al. [2003, 2004], consider cell-based as well as point-based
blocking. They prefer the latter as in this case traditional smoothers are
more stable and have a better smoothing property. For the case of basis
functions with total degree less or equal to one Figure 2.4 illustrates the
blocking they use for their point-based blocking approach.

Figure 2.4: Hemker blocks for DG

Depending on the chosen set of basis functions there might not be any
natural association with points. Therefore, we will pursue the cell-based
blocking approach when dealing with discontinuous Galerkin methods.
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2.3 Algebraic Notation and Blocking Strategy

The discontinuity of the functions of our DG trial function space guides
this natural way of choosing the blocks. Let Φ be the chosen basis of the
DG trial function space Vk. Then for each of the elements τ ∈ T we can
select all basis functions Φτ = {φ ∈ Φ | supp φ ⊂ τ} with support just in
that element. The span of these basis functions forms a subspace

Vτ = span Φτ ⊂ Vk

of our trial function space. And the decomposition of Vk into these sub-
spaces is additive, that is ⊗

τ∈T
Vτ = Vk .

We fix an arbitrary numbering IT : T → N of our grid elements. And
use it to induce a numbering IΦ : Φ → N of our basis functions with
the following property: Let τ, υ ∈ T be two arbitrary grid elements with
IT (τ) < IT (υ). Then the numbering of the associated basis functions fulfils

IΦ(φ) < IΦ(ψ) , φ ∈ Φτ , ψ ∈ Φυ .

Let s : T → N and e : T → N be the functions returning the lowest
and highest index of the basis functions associated with an element τ ∈
T . Then using the described blocking approach our linear system is
represented by



Aτ1τ1 . . . Aτ1,τM
...

. . .
...

AτM τ1 . . . AτM τM





uτ1
...

uτM


=



fτ1
...

fτM



with the matrix entries being dense small matrices

Aτυ =



A(φs(υ), φs(τ)) . . . A(φe(υ), φs(τ))
...

. . .
...

A(φs(υ), φe(τ)) . . . A(φe(υ), φe(τ))



and the vector entries being vectors

fτ =



L(φs(τ))
...

L(φe(τ))



themselves. For varying polynomial degree per element the described
blocking is illustrated in Figure 2.5.
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2 Model Problem and Discretization

Figure 2.5: DG p element blocks

2.3.4 Matrix and Vector Data Structures

The presented and other recursive block structure can be recreated in
special data structures for both matrices and vectors. Using these data
structures, it is straight forward to formulate block versions of iterative
methods. Furthermore, it is possible to exploit caching effects and make
this fixed block structure already known to the compiler. Both can then
be used to produce efficient simulation code.

In this thesis the block structure is mapped using the Iterative Solver
Template Library (ISTL). The capabilities and advantages as well as details
of the implementation can be found in Chapter 7.1.
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3 Algebraic Multigrid Methods

In this chapter we describe our sequential algebraic multigrid method.
We will use the framework of Schwarz methods for this as many precondi-
tioners and solvers can be described in this framework. Among them are
the smoothers used in thesis as well as the algebraic multigrid methods
we develop.

3.1 Schwarz Methods

In this section we formally introduce Schwarz methods. The reader is
referred to the monographs Smith et al. [1996] and Toselli and Widlund
[2005] for more details. The presentation is inspired by the latter publi-
cation.

LetV be a real finite-dimensional Hilbert space equipped with the inner
product (·, ·) inducing the norm ‖ · ‖. Given a coercive bilinear form,

A(·, ·) : V ×V → R ,

and an element f ∈ V′ of its dual, we consider the general problem of
finding u ∈ V, such that

A(u, v) = f (v), ∀v ∈ V . (3.1)

Note, that once a basis is given a function u ∈ V is uniquely determined
by a set of degrees of freedom. Here and later on, we use the same notion
for describing the function space and the spaces of degrees of freedom, and
functions and corresponding vectors of degrees of freedom. Similarly, we
will use the same notation for a linear functional f ∈ V and corresponding
vector with elements obtained by applying f to the basis functions of V′.
Recall, that if A is the stiffness matrix relative to the bilinear form A(·, ·)
and the given basis, our problem is equivalent to the linear system

Au = f ,

with A positive definite.
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3 Algebraic Multigrid Methods

In Schwarz methods (also called subspace correction methods) the space
V is subdivided into a family of subspaces {Vi , i = 0, . . . , N,Vi ⊂ V} and
according extension operators are defined

RTi : Vi →V .

We assume that V admits the following decomposition

V =
N∑

i=0

RTi Vi

into the above subspaces.
On the chosen subspaces {Vi} we introduce the local bilinear forms

Ãi(·, ·) : Vi ×Vi → R, i = 0, . . . , N

and the local stiffness matrices associated with them,

Ãi : Vi →Vi .

A special case is to use the original bilinear form on the subspaces. In
this case we choose

Ãi(ui , vi) = A(RTi ui , R
T
i vi), ui , vi ∈ Vi

and find our corresponding operator to be

Ãi = RiAR
T
i .

Note, that in this case we use exact solvers for our local problems.
Our subspace correction methods will be described in terms of projection-

like operators

Pi = R
T
i P̃i : V → RTi Vi ⊂ V, i = 0, . . . , N, (3.2)

where P̃i : V → Vi is defined by

Ãi(P̃iu, vi) = A(u, RTi vi) ∀vi ∈ Vi .

The Pi can be written in matrix form as

Pi = RT
i Ã−1

i RiA , 0 ≤ i ≤ N .
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3.1 Schwarz Methods

Once a set of subspaces and local bilinear forms are given, we can
define various subspace correction methods. The most prominent repre-
sentatives are the purely additive and multiplicative subspace correction
methods.

Let P ⊂ {P0, . . . , PN } be a tuple of projection-like operators defined ac-
cording to (3.2). Note, that the index i of Pi does not need to correspond
to the index of a subspace and that Pi = Pj, i , j is allowed. Then the
additive Schwarz operator of this tuple is defined as

Pad(P) =
∑

P∈P
P .

The multiplicative Schwarz operator is defined as

Pmu(P) = I − Emu(P) ,

with the error propagator Emu(P) being defined by

Emu(P) = (I − PN )(I − PN−1) . . . (I − P0) .

All the above mentioned operators are actually preconditioned operators
for the original matrix A and can be written as the product of a suitable
preconditioner and A. The preconditioner can be specified in terms of
extension {RTi }, restrictions {Ri}, and the local operators {Ãi}. For the
additive method this is straight forward and reads

Pad({P0, . . . , PN }) = (Aad)−1A , (Aad)−1
=

N∑

i=0

RT
i Ã−1

i Ri .

Note, that many of the traditional stationary iterative methods can be
categorised as subspace correction methods. Among them are the Jacobi
and Gauss-Seidel method. These are often used as smoothers in multigrid
methods and the development of algebraic multigrid methods is based on
their properties.

Let the decomposition of our Hilbert space V = ∑N
i=0 R

T
i Vi be non-

overlapping. That is, Vi ∩ Vj = ∅ for i , j. Then, if we use exact direct
solvers on all subspacesVi , the additive method (Aad)−1 and multiplicative
method (Amu)−1 are the Jacobi and Gauss-Seidel method, respectively.
If each Vi is spanned by only one basis function, these are the scalar
versions. Otherwise they are block version of the smoothers.
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3 Algebraic Multigrid Methods

3.1.1 Multi-Level Methods

Unfortunately, single level methods are most effective only for a small
number of subdomains. For a big number of subdomains this effective-
ness gets lost. Applying single level Schwarz methods only reduces the
high frequency error components while only leading to a humble reduction
of the error itself. With today’s available computing power and therefore
tackled problem sizes, one is often confronted with a rather huge num-
ber of subdomains. This will be especially true for the method we will
introduce in the next chapter which uses rather small local problems.

A remedy to this problem is to use an additional coarse problem or
even a (nested) sequence of coarser problems. The idea of multi-level
methods is to approximate the smooth error, obtained after some iteration
steps using our local problems, in a function space W ⊂ V. This finite
dimensional function space is assumed to be coarser than the original
one. That is, either a coarser grid is used or a reduced basis (spanning
the global domain) of the original on the same grid is used. The latter will
be the case in our method described in the next chapter.

Methods using just one coarse space are called two-level methods. The
idea can be applied recursively. The resulting method is then called a
multi-level method. We can describe these multi-level methods in the
abstract Schwarz framework defined above. For simplicity we restrict
ourselves to the case of nested coarse spaces. With algebraic multi-level
methods in mind we will denote the coarsest space with VL , where L
is the largest index used. This contrasts traditional two-level domain
decomposition literature but seems more natural as the algorithm, that
constructs the coarse spaces, will start with the fine function space and
build the coarser ones.

Let Vl , l = 0, . . . L, Vi ⊂ Vj for i > j, V0
= V, be a nested sequence of

finite-dimensional Hilbert spaces. We decompose each such global space
Vl , 0 < l ≤ L into nl local subspaces Vl

k ⊂ V
l , k = 0, . . . , nl − 1. As before

we consider corresponding extension operators from the coarse spaces

(Rl)T : Vl →V0
= V

as well as from the local subspaces of the coarse spaces

(Rlk)T : Vl
k → V

0
= V .

We assume that Vl
=

∑nl−1
k=0 (Rlk)TV lk holds.

Together with appropriate local bilinear forms Ãl
k(·, ·), and Ãl(·, ·) we

can define corresponding projection-like operators P lk and P l as above.
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3.1 Schwarz Methods

Usually exact solvers are used for these problems. Using these operators,
we can now define additive and multiplicative multi-level methods. One
possibility for the projection operator tuple for a multi-level method is

P = {P0
0 , . . . , P

0
n0−1, P

1
0 , . . . , P

L−1
nL−1−1, P

L , PL−1
nL−1−1, . . . , P

L−1
0 , . . . , P0

0 } .

For the multiplicative version this a symmetric multi-level method with
one step of Gauss-Seidel for pre-smoothing and one step of backwards
Gauss-Seidel as post-smoothing.

For the multiplicative and hybrid versions of the multi-level methods
with more than one coarse level the usual formulation does not use the
Schwarz framework. Instead on each level the so-called smoothing oper-
ator Sl is defined. This may be the multiplicative operator according to
the tuple Pl = (P l0, . . . P

l
nl−1). In addition, prolongation P̃ l : Vl → Vl−1

and restriction operators R̃l : Vl−1 → Vl are needed. These are defined
as R̃l = Rl(Rl−1)T and P̃ l = (R̃l)T . Using these ingredients we are able to
define the multi-level algorithm in the traditional formulation.

Let bl , xl ∈ Vl and Ãl : Vl × Vl → R be our appropriately defined
bilinear forms on each level l = 0,1, . . . , L. How these are constructed
will be subject to the next section. Furthermore, let Sl be our smoothing
operators on level l = 0,1, . . . , L.

Then the multi-level algorithm (or multigrid algorithm) with ν1 steps of
pre-smoothing and ν2 steps of post-smoothing described in Algorithm 3.1
defines an approximate inverse of A0 in the function space V0. The pa-
rameter γ is used to choose the kind of multigrid cycle used. For γ = 1
one step of the multigrid cycle is called V-cycle and for γ = 2 it is called
W-cycle.
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3 Algebraic Multigrid Methods

Algorithm 3.1 Multi-Level Method

procedure mlm(l, ν1, ν2, γ, {Al}Ll=0, {Sl}Ll=0, {xl}Ll=0, {bl}Ll=0, {R̃l}Ll=1, {P̃l}Ll=1 )
if l == L then

xL ← (AL)−1bL ⊲ Solve exactly on the coarse level
else

for int i=0; i < ν1; i++ do ⊲ Presmoothing
xl ← xl + Sl(bl − Alxl)

end for

bl+1 ← R̃l+1(bl − Alxl) ⊲ Restrict defect
xl+1 ← 0
for int i = 0; i < γ, i + + do

mlm(l+1, ν1, ν2, γ, {Al}Ll=0, {Sl}Ll=0, {xl}Ll=0, {bl}Ll=0, {R̃l}Ll=1, {P̃l}Ll=1)
end for

xl ← xl + P̃l+1xl+1;
for int i=0; i < ν2; i++ do ⊲ Postsmoothing

xl ← xl + Sl(bl − Alxl)
end for

end if

end procedure

3.2 Scalar Aggregation AMG

In the last section we introduced the multi-level Algorithm. What we did
not describe so far was how the different levels are created. One straight
forward way is to start either with the fine or coarse level grid and then
create the other grids by coarsening and refining the grids uniformly,
respectively. The resulting linear systems may then be created either by
rediscretizing on each grid level or by using a Galerkin product using the
grid level interpolation operators.

While this fixed scheme works well for some problems there are other
scenarios where either the coarsening needs to be adapted to the prob-
lem to solve, problem specific interpolation operators or robust smoothers
need to be chosen. All these tasks are far from being trivial for complex
grids and real world problems in three dimensions.
Algebraic multigrid methods (AMG) use an opposite approach. Tra-

ditionally they rely on rather simple smoothers, such as the Jacobi or
the Gauss-Seidel method. Using the fine level discretization matrix these
methods automatically construct the matrices of the coarser levels. To
guarantee an efficient interplay of the smoothing operators and the coarse
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3.2 Scalar Aggregation AMG

grid correction, the interpolation and coarse level matrix are constructed
based on properties of the smoother for the current matrix.

There exist two big classes of algebraic multigrid methods. They differ
in the way the coarse level matrices are constructed. Ruge and Stüben
proposed a variable based approach in Ruge and Stüben [1987]. They
divide the degrees of freedom into two sets. The set of unknowns that only
appear on the fine level and the set of unknowns that are present on both
the coarse and the fine level. The other big class of algebraic multigrid
methods are the ones that are aggregation based, see Braess [1995], Vaněk
et al. [1996a,b], Raw [1985]. These methods build aggregates of the fine
level degrees of freedom until these aggregates form a non-overlapping
partitioning of all fine level degrees of freedom. Then each aggregate is
represented by one coarse level unknown. We will use the latter approach
here.

3.2.1 Algebraic Smoothness

The coarsening of our algebraic multigrid method will be governed by the
properties of the smoothers, namely the damped Jacobi method and the
Gauss-Seidel method. To examine this behaviour we need to introduce
the following discrete Sobolev scalar products and norms.

Definition 3.1. Let A ∈ KI×I be symmetric and positive definite, D :=
diag(A) be the diagonal matrix containing the diagonal blocks of A as
nonzero blocks, u ∈ KI , v ∈ KI and 〈·, ·〉 denote the Euclidean scalar
product. Then we define the following scalar products

〈u, v〉0 := 〈Du, v〉 (3.3)

〈u, v〉1 := 〈Au, v〉 (3.4)

〈u, v〉2 := 〈D−1Au,Av〉 , (3.5)

along with their associated norms ‖ · ‖i , i = 0,1,2. Here 〈·, ·〉1 is called
the energy inner product and ‖ · ‖1 the energy norm.

Let u∗ be the exact solution of Ax = b and let u be the current guess of
it. Then the current residual r is defined by r = b − Au and the error by
e = u−u∗. Therefore, ‖e‖21 = 〈r, e〉 is the scalar product of the residual and
the error, and ‖e‖22 = 〈D−1r, r〉 is the scalar product of the residual and
itself scaled with the inverse of the diagonal part of A.

The damped Jacobi and Gauss-Seidel method fulfil the following smooth-
ing property:
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3 Algebraic Multigrid Methods

Theorem 3.2 (Ruge and Stüben [1987], Clees [2005]). Let A ∈ KI×I be
symmetric and positive definite. Then for the smoothing operator S of the

damped Jacobi and the Gauss-Seidel method the inequalities

‖Se‖21 ≤ ‖e‖21 − α‖e‖22, (3.6)

‖Se‖21 ≤ ‖e‖21 − α‖Se‖22 (3.7)

hold for arbitrary e ∈ KI with some constant α > 0. These inequalities are

called smoothing properties.

Proof. Note that for damped Jacobi method with the smoothing operator
S = I − ωD−1A,

‖Se‖ = 〈A(I − D−1A)e, e〉 = 〈Ae, e〉 − ω〈D−1Ae, e〉 = ‖e‖21 − ω‖e‖22

holds. The complete proof is presented in Ruge and Stüben [1987] for
K = R and Clees [2005] for the block versions of the iterative methods. �

Because of (3.6) the error e is reduced well by these methods as long as
‖e‖2 is comparable to ‖e‖1. The error reduction becomes insufficient for
the case that

‖e‖2 ≪ ‖e‖1 (3.8)

holds. (This implies that, at least on average |ri | ≪ aii |ei | holds component-
wise for the current error e and residual r.) In this case we speak of the
algebraic smoothness of the error e.

Definition 3.3. The error e is called algebraically smooth if it is not suffi-
ciently reduced by applying the smoothing operator S, i. e.

‖Se‖1 ≈ ‖e‖1 . (3.9)

This does not necessarily mean that the error would also be considered
smooth in a geometrical sense. Let us have a look at the simple anisotropic
diffusion problem

−∇ ·
(

1 0
0 10−3

)
∇u = 1 on Ω

u = 0 on ∂Ω

on Ω = (0,1)2 discretized via cell-centred finite volumes with twenty cells
in each direction. Figure 3.1 shows the initial defect and the one af-
ter five and ten Gauss-Seidel steps. While the defect after ten steps is
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3.2 Scalar Aggregation AMG

still highly oscillatory in one direction it is nevertheless considered alge-
braically smooth,

Because of

‖e‖21 = 〈Ae, e〉 = 〈D−
1
2 Ae,D

1
2 e〉 ≤ ‖D−

1
2 Ae‖‖D

1
2 e‖ = ‖e‖2‖e‖0

an algebraically smooth error implies ‖e‖1 ≪ ‖e‖0 for symmetric positive
definite matrices. Using the ith row-sum si =

∑
j aij we write this more

explicitly as

〈Ae, e〉 = 1

2

∑

i,j

(−aij)(ei − ej)2
+

∑

i

sie
2
i ≪

∑

i

aiie
2
i . (3.10)

For the important case that si ≈ 0 holds, this means that on average
for each i the inequality

∑

j

−aij
aii

(ei − ej)2

e2
i

≪ 1 (3.11)

holds. Therefore, in the direction of large negative connections alge-

braically smooth errors will vary slowly. That is, if
|aij |
aii

is relatively large,
the error e will not change much between ei and ej. This property will
guide our coarsening approach.

Unfortunately, not all discretization matrices will have only negative
off-diagonal values. There are cases where positive off-diagonal values
may occur. Prominent examples are higher order discretizations and dis-
cretizations with mixed derivatives. The anisotropic diffusion problem dis-
cretized using bilinear or trilinear finite elements is another example. We
will refer to this case in Subsection 3.4 with some examples. Right now,
we want to see how positive off-diagonal values influence the smoothness
of the error.

One class of discretization matrices with positive off-diagonal values are
essentially positive type matrices. A symmetric positive definite matrix A
belongs to this class if there exists a constant c > 0, such that for all e

∑

i,j

(−aij)(ei − ej)2 ≥ c
∑

i,j

(−a−ij )(ei − ej)2

with a−ij =
1
2 (aij − |aij |). Therefore, we can follow the lines of Stüben [1999],

Clees [2005] and extend (3.10) to

c

2

∑

i,j

| − a−ij |(ei − ej)2
+

∑

i

sie
2
i ≪

∑

i

aiie
2
i . (3.12)
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3 Algebraic Multigrid Methods

Thus we treat positive off-diagonal values as weak connections. Even
if there is a positive connection between two vertices, an algebraically
smooth error will not change rapidly between them as long as there exists
a path of strong negative connections between them.

Up to now we always considered the case that si ≈ 0. We now turn
to weakly diagonally dominant matrices. If A is of this class then aii ≥∑
j,i |aij | holds for all rows i. If a symmetric positive matrix A is only

approximately of this class then ti = aii −
∑
j,i |aij | is a measure of how

diagonal dominant a row is. We can relate this measure to si using a+ij =
1
2 (|aij | + aij) by

si = ti + 2
∑

j,i

a+ij .

Substituting this into (3.10) we get

〈Ae, e〉 =1

2

∑

i,j

|a−ij | (ei − ej)2 − 1

2
a+ij (ei − ej)2

+

∑

i

sie
2
i =

1

2

∑

i,j

|a−ij | (ei − ej)2
+

∑

i,j

a+ij (2e
2
i −

(ei − ej)2

2
) +

∑

i

tie
2
i =

1

2

∑

i,j

|a−ij | (ei − ej)2
+

1

2

∑

i,j

a+ij (e
2
i + e

2
j − (ei − ej)2) +

∑

i

tie
2
i =

1

2

∑

i


∑

j,i

|a−ij | (ei − ej)2
+

∑

j,i

a+ij (ei + ej)
2

 +
∑

i

tie
2
i

in accordance to Stüben [1999], Clees [2005]. Assuming that A is approx-
imately weak diagonally dominant, i.e. ti ≈ 0, an algebraically smooth
error now satisfies

∑

j,i

|a−ij |
aii

(ei − ej)2

e2
i

+

∑

j,i

a+ij

aii

(ei + ej)2

e2
i

≪ 1 (3.13)

on average for each i. Therefore, for aij positive and
aij
aii

relatively large the
error at vertex i approximates the negative value at vertex j.

3.2.2 Aggregation Approach

Our aggregation approach uses the graph of the matrix and is guided by
the algebraic smoothness of the error.
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3.2 Scalar Aggregation AMG

Definition 3.4. Let A = (aij) ∈ KI×I be a (block) matrix mapping the tensor
product I × I of the index sets to K.

Then G(A) = (V (A), E(A), wV , wE) is called the weighted graph of matrix

A. V (A) = I is the set of ordered vertices representing the unknowns and
E(A) = {(i1, j1), (i2, j2), . . . , (im , jm)}, ik , jk, is the set of directed edges such
that (i, j) only exists if and only if aji , 0. Edge (i, j) is starting at vertex i
and pointing to vertex j.

The functions

wV : V (A)→ R : i 7→ wN (i) and, (3.14)

wE : E(A)→ R : (i, j) 7→ wE((i, j)), i , j . (3.15)

are weight functions used to classify the vertices and nodes, respectively

The weight functionswV andwE will be needed for our extension to sys-
tems of PDE described later. When dealing with systems we usually solve
these systems fully coupled. This results in a matrix with point-based
blocking. That is K = Rk for small k. In this case the weight functions
have to be appropriately defined. For a scalar matrix A = (aij)i∈I,j∈I ∈ RI×I
we will simply define them as

wV (i) := aii and wE((i, j)) = a−ji , (3.16)

respectively. Note, that this approach treats positive off-diagonal values
as zero.

We base our coarsening on the conclusion from equation (3.11) that

a smooth error varies slowly for
|aij |
aii

relatively large. Using this we can
classify the edges and vertices of our graph as follows:

Definition 3.5. The neighbours of vertex i in the graph G(A) of matrix A
are

N(i) := {j ∈ V (A) | ∃(i, j) ∈ E(A)}

Let

γmax(i) := max
k∈N(i)

wE((k, i))wE((i, k))
wV (i)wV (k)

(3.17)

then edge (j, i) is called strong if and only if

wE((i, j))wE((j, i))
wV (i)wV (j)

> α min(γmax(i), γmax(j)) (3.18)

for a given threshold 0 < α < 1.
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3 Algebraic Multigrid Methods

A vertex i is called isolated if for a given threshold ̙ ≈ 0

γmax(i) < ̙

holds. By I(V (A)) ⊂ V (A) all isolated nodes of the graph G(A) are denoted.
Let i ∈ V (A) and j ∈ V (A), then we say that vertex i influences vertex j

and vertex j depends on vertex i if and only if the edge (i, j) ∈ E(A) exists
and is strong.

Let Nα(i) ⊂ N(i) be the set of all neighbours of vertex i connected to it
via a strong edge when using the threshold α.

Note, that (3.17) and (3.18) are very similar to the traditional AMG
strength of connection measure. In Ruge and Stüben [1987], the classical
interpolation AMG, the measure is that a connection is strong as long as

−aij ≥ αmax
j,i
|aij | .

This was later improved by ignoring positive off-diagonals in the right
hand side of the inequality. The classical criterion was developed for
symmetric positive definite M-matrices. Despite of this fact, it works for
non-symmetric M-matrices like they arise in convection-diffusion prob-
lems. The improved version even works for approximately weakly diago-
nally dominant matrices. As will be pointed out in Subsection 3.2.3, it
is not suitable for aggregation methods for problems with discontinuous
diffusion coefficients. For this problems the classification of the coupling
aij and aji at the interface is not consistent. While being robust to row-
wise scaling of the linear system, column-wise scaling is able to break the
criterion. The traditional strength of connection criterion for aggregation
AMG in Vaněk et al. [1996b] is

|aij | ≥ α
√
aiiajj .

It assumes the matrix A to be a symmetric positive definite M-matrix. If
positive off-diagonal elements exist then it might falsely classify them as
strong. In contrast to Ruge and Stüben’s and our measure, for the mea-
sure of Vaněk et al. a connection is not strong relative to other connections
of the vertex, but because of the absolute size of the off-diagonal entry rela-
tive to the diagonal entries. With our criterion positive off-diagonal values
are treated as weak connections and the criterion works even for ap-
proximately weak diagonally dominant matrices. Our criterion uses both
entries aij and aji for the decision whether aij is strong. Due to taking the
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3.2 Scalar Aggregation AMG

minimum in the right hand side of the inequality (3.18), if aij is classi-
fied as strong the same happens to aji . This is not the case for the other
criterions and is important for non-symmetric matrices like they arise for
convection dominated convection-diffusion equations. If discretized using
upwind finite differences both connections along the convective flux are
considered strong.

For an appropriate value of our threshold α we can reinterpret Subsec-
tion 3.2.1 by the following remark. The values α = 1

3 and ̙ = 10−5 were
found adequate for our numerical tests.

Remark 3.6. An algebraically smooth error varies slowly along strong
edges of the matrix graph.

Given a matrix Al ∈ KI l×I l at level l we search for a disjoint splitting of
all vertices V (Al) into aggregates Al

= {Al
i}i∈I l+1 , I l+1 ⊂ I l , with Al

i ∩Al
j = ∅

for i , j. Based on this splitting we then define the prolongation operator

P̃ l : KI
l+1 → KI l

from the coarser level l + 1 to level l as

(P̃)ij =


1 if i ∈ Al

j

0 otherwise
. (3.19)

The corresponding restriction operator R̃l = (P̃)T : KI
l → KI l+1

is simply
the transpose of the prolongation operator. Now the corresponding matrix
on level l + 1 is defined by the rescaled Galerkin product

Al+1
=

1

ω
(R̃l)Al (R̃l)T , (3.20)

where ω is a constant (e.g. ω = 1.8). This constant is actually incorporated
into the prolongator where the coarse grid correction is simply scaled by ω.
It was shown in Braess [1995] that this approach increases convergence
of aggregation AMG. It is easy to see that the matrix entries of Al+1 can be
computed directly by

Al+1
ij =

1

ω

∑

m∈Al
i

∑

n∈Al
j

Alm,n . (3.21)

Starting at the fine level 0 with the matrix A0 ∈ KI0×I0 , we get a hierarchy
of matrices {Al}L−1

l=0 along with prolongation and restriction operators by
recursively applying the aggregation procedure above until the dimension
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of our coarse matrix is small enough. This setup phase gives us the formal
components needed for applying the multigrid Algorithm 3.1.

The crucial part is now how we build the aggregates. The major goal
is to choose the aggregates in a way such that a smooth error does not
change much within the aggregates. By Remark 3.6 and the smoothing
properties of our iterative schemes this means that all vertices of an aggre-
gate naturally should be connected by strong edges between each other.
If we cannot satisfy this, we still insist that all vertices are connected with
each other. While a smooth error will not change much between two di-
rectly connected vertices, it might still change more between two vertices
that are not directly connected but influence each other by a longer path
of strong connections.

Definition 3.7. A path connecting vertex i with j is an ordered set of edges
{(ak , bk)}pk=0 with a0 = i , al+1 = bl for l = 0,1, . . . p − 1 and bp = j. The
length of the path is p.

There will be many different paths between two arbitrary vertices of an
aggregate. Not all paths will be equally important. But the shorter the
minimal path between two vertices is, the less variations in the smooth
error may occur of course.

Definition 3.8. We denote by dist(i, j) the distance between two vertices
i and j of a graph G(A). That is, dist(i, j) is the length of the shortest path
connecting i with j or j with i.

The distance between two sets B, C ⊂ V (A) is defined by

dist(A, B) = min
i∈B,j∈C

dist(i, j) .

Of course, we are not really interested in the distance between just two
vertices of an aggregate but we want to minimise the distance between
all pairs of vertices in our aggregate. Therefore, we introduce a more
appropriate and shorter notation.

Definition 3.9. Let B ⊂ V (A) be a set of vertices of the graph G(A) such
that for all vertices v,w ∈ B there exists a path between them not leaving
B. Let pmin(v,w) denote for each pair of vertices the length of the shortest
path connecting v and w without leaving B, i. e. all vertices along that
path are also in B.

Then diam(B) = max{pmin(v,w) : v,w ∈ B} denotes the diameter of the
set of vertices B.
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Additionally, we want to preserve the sparsity of the matrix, as other-
wise the computational work for solving on the coarser levels will become
higher than necessary. Taking a closer look at (3.21) reveals that this
can be achieved by maximising the number of connections between the
vertices within each aggregate. A side effect of this is that the more strong
connections there are between two vertices the less likely a smooth error
is to change.

Motivated by geometric multigrid we want to achieve a prescribed coars-
ening rate #A/#V (A). This is done approximately by prescribing the mini-
mum and maximum number of vertices allowed in an aggregate. Thus one
can adjust the algorithm to one’s needs, either low memory consumption
sacrificing convergence or better convergence needing more memory.

Our greedy aggregation algorithm is described by Algorithm 3.2. In
the algorithm iso(V ) is the subset of all isolated vertices in V . Until all
non-isolated vertices are aggregated, we start a new aggregate with a non-
isolated vertex. The first aggregate is seeded with a vertex that has the
least connections to other vertices. The other aggregates are seeded with
vertices that are non-aggregated neighbours of the last aggregate. If no
such vertex is present we use a non-isolated non-aggregated vertex with
the least connection to non-aggregated vertices. At the same time we
associate the index of the seed vertex with this new aggregate and add it
to the index set I of the coarse level. The algorithm returns both the index
set I for the coarse level and the set of all aggregates A it has built.

In a first step outlined in Algorithm 3.3 we add new nodes to our ag-
gregate until we reach the minimal prescribed aggregate size smin. The
new vertex has the most strong connections to vertices of the aggregate.
Here we prefer if both edge (i, j) and edge (j, i) are strong between two
vertices i and j. (This allows us to use even the unsymmetric Ruge and
Stüben strength of connection measure). In the algorithm cons1(v,A)
and cons2(v,A) return the number of one-way and two-way connections
between the vertex v and all vertices of the aggregate A, respectively. If
there are more candidates, we choose the vertex that adds the least new
connections in the coarse matrix. As a measure for this we use the func-
tion connect(v,A). It counts neighbours of v that are not yet aggregated
or belong to an aggregate that is not yet connected to aggregate A once.
Neighbours of v that belong to aggregates that are already connected to
aggregate A are counted twice. The new vertex will have the most con-
nections to other not yet aggregated vertices which are are already neigh-
bours of the aggregate. The function neighbours(v,A) counts the number
of neighbours of vertex v that are also not yet aggregated neighbours of the
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Algorithm 3.2 Build Aggregates
procedure Aggregation(V , E, smin, smax, dmax)

U ← V \ iso(V ) ⊲ First Candidates are non-isolated vertices
I ← ∅ ⊲ Coarse index set
Select arbitrary seed vi ∈ {u ∈ U | #Nα(u) ≤ #Nα(w)∀w ∈ V }
while U , ∅ do

Ai ← {vi}
U ← U \ Ai
I ← I ∪ {i}
growAggregate(A, V , E, smin, dmax, U )
roundAggregate(A, V , E, smax, U )
if #Ai = 1 then ⊲ Merge one vertex aggregate with neighbour

C ← {Aj, j ∈ I \ {i} | ∃w ∈ Aj with w ∈ Nα(vi)}
if C , ∅ then

Choose Ak ∈ C
I ← I \ {i}
Ak ← Ak ∪Ai

end if

end if

if U , ∅ then

Select arbitrary seed vi ∈ U ∩ {w | N(w) ∩Ai , ∅}
end if

end while

U ← iso(V ) ⊲ Aggregate isolated vertices
while U , ∅ do

Select arbitrary seed vi ∈ U
Ai ← {vi}
U ← U \ Ai
I ← I ∪ {i}
growIsoAggregate(A, V , E, smin, dmax, U )

end while

A ← {Ai | i ∈ I}
return (A, I)

end procedure
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aggregate A. This criterion tries to maximise the number of candidates
for choosing the next candidate. Of course the aggregate is not allowed
to have a bigger diameter than the prescribed value dmax when the new
vertex is added.

Algorithm 3.3 Grow Aggregate Step
function GrowAggregate(A, V , E, smin, dmax, U )

while #A ≤ smin do ⊲ Makes aggregate A bigger until its size is smin

C0 ← {v ∈ N(A) | diam(A, v) ≤ dmax} ⊲ Limit the diameter of the
aggregate

C1 ← {v ∈ C0 | cons2(v,A) ≥ cons2(w,A)∀w ∈ N(A)
if C1 = ∅ then ⊲ No candidate with two-way connections

C1 ← {v ∈ C0 | cons1(v,A) ≥ cons1(w,A)∀w ∈ N(A)
end if

if #C1 > 1 then ⊲ More than one candidate
C1 ← {v ∈ C1 | connect(v,A)

N(v) ≥ connect(w,A)
N(w) ∀w ∈ C1}

end if

if #C1 > 1 then ⊲ More than one candidate
C1 ← {v ∈ C1 | neighbours(v,A) ≥ neighbours(w,A)∀w ∈ C1}

end if

if C1 = ∅ then break

end if

Select one candidate c ∈ C1

A ← A∪ {c} ⊲ Add candidate to aggregate
U ← U \ {c}

end while

end function

A second step tries to make the aggregates “rounder”. It is sketched
in Algorithm 3.4. Until we reach the maximum allowed size smax of our
aggregate we add all non-aggregated neighbour vertices that have more
connections to the aggregate than to other non-aggregated vertices.

If after these two steps the aggregate still consists of only one vertex,
we try to find another aggregate that the seed node is strongly connected
to. If such an aggregate exists, the aggregate with the seed is removed
and it’s associated index is also removed from index set I. Then the seed
vertex is added to the found aggregate.

After all non-isolated vertices are aggregated, we try to build aggre-
gates for the isolated vertices. We build these aggregates from neighbour-
ing isolated vertices that have at least one common aggregate consist-
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Algorithm 3.4 Round Aggregate Step
function RoundAggregate(A, V , E, smax, U )⊲ Makes aggregate A until
its size is smax

while #A ≤ smax do

C ← {v ∈ Nα | cons(v,A) > cons(v, U )}
Select arbitrary candidate c ∈ C
A ← A∪ {c} ⊲ Add candidate to aggregate
U ← U \ {c}

end while

end function

ing of non-isolated vertices as their neighbour. This is done in function
growIsoAggregate whose algorithm is not presented here.

This algorithm is inspired by the aggregation algorithm presented by
Raw [1985]. In a first step Raw adds all vertices with direct strong con-
nection to the aggregate as long as the size is below the maximum size.
Then he adds all neighbour vertices with two or more connections to the
aggregate to make it round. If the size of the aggregate is still below
the prescribed minimum rate he repeats the two steps. In contrast our
algorithm only adds one neighbouring vertex at a time to the current ag-
gregate, the one with the best properties of all current neighbours. While
this is certainly more work and we need to limit the aggregate’s diameter,
it allows us to better keep track of and optimise the aggregate’s proper-
ties. Additionally, in contrast to our approach Raw’s algorithm should
have problems creating appropriate aggregates for 27-point stencils like
they occur for Q1 finite elements in 3D.

3.2.3 Properties of the method

Interface Preservation for Highly Discontinuous Coefficients

Some of the model problems that we will present in Section 3.4 will have a
highly discontinuous permeability tensor K of the model problem equation

∇ · (K∇u) = f .

We will always assume that the manifold where the permeability jump
occurs is aligned with the boundary of the grid elements.

It is well-known that multigrid methods can cope with this situation for
example by preserving the interface in the coarsening. In contrast, the
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convergence rates become unsatisfactory with standard geometric multi-
grid coarsening. This was demonstrated for two dimensional problems
and geometric multigrid methods in Wang [2000].

The question is what our coarsening algorithm does at these interfaces.
For the finite element method with linear simplicial elements let us con-
sider the two dimensional case on a uniform Cartesian grid. Assume that
the permeability jumps from an arbitrary small value K =

(
ϸ 0
0 ϸ

)
, ϸ > 0 at

the left hand side to the matrix 1 on the right hand side. Then the stencil
looks like


−ϸ

−ϸ 4ϸ −ϸ
−ϸ

 ,


− ϸ+1

2
−ϸ 2ϸ + 2 −1

− ϸ+1
2

 , and


−1

−1 4 −1
−1



for vertices in the interior of the region with the low permeability ϸ, at the
interface vertex, and in the interior of the region with the high permeabil-
ity, respectively.

Naturally, we have strong connections to every neighbour in the inte-
rior of both regions. For the vertices at the interface the value of the edge
weight function is 1

8+8ϸ for edges from the high permeability region, 1
16 for

edges along the interface, and ϸ
8+8ϸ for edges from the low permeability re-

gion. See Figure 3.2 and Figure 3.3 for an illustration of the edge measure
functions for the fine and first coarse level. Therefore, for ϸ sufficiently
large the connections from the low permeability regions will be regarded as
weak as the threshold is α

8+8ϸ . The connection from the interface vertices
is weak to the low permeability region and strong to the high permeability
region. Therefore, aggregation of interface vertices only occurs along the
interface or with vertices of the high permeability region. The same holds
for the coarser levels.

If we would have used the classical Ruge and Stüben measure, the edge
(j, i) is strong if −aij ≥ αmaxk,i |aik | holds. Then the connection from the
interface to the low permeability region would have been strong and the
other way around it would have been weak. In this case our algorithm
has a different result depending on where the aggregation starts. Clearly,
this measure is not natural for aggregation.

Let the cell-centred finite volume discretizations be such that the inter-
face of a permeability jump always coincides with the boundaries of a set
of finite volumes. Then the scalar permeability at the interface is given as
the harmonic average of the permeabilities of the two boxes sharing the
interface as an edge. Let dϸ and d1 be the diameter of the box in the low
and the box in the high permeability region, respectively. Let Kϸ and K1 be
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the permeability of the box in the low and the box in the high permeability
region, respectively. Then the interface permeability is given by

KΓ =
KϸK1(dϸ + d1)
d1Kϸ + dϸK1

.

Assuming a uniform cube grid the stencils associated with the box next
to the interface in the low permeability region and the box next to the
interface in the high permeability region are



−ϸ
−ϸ 3ϸ2

+5ϸ
1+ϸ − 2ϸ

1+ϸ
−ϸ

 , and


−1

− 2ϸ
1+ϸ

3+5ϸ
1+ϸ −1
−1

 , respectively.

The resulting edge weights in stencil notation are



(1+ϸ)2

(3ϸ+5)2
1+ϸ

12+20ϸ
4ϸ

(3+5ϸ)(5+3ϸ)
(1+ϸ)2

(3ϸ+5)2


, and



(1+ϸ)2

(3+5ϸ)2
4ϸ

(3+5ϸ)(5+3ϸ)
1+ϸ

20+12ϸ
(1+ϸ)2

(3+5ϸ)2



for the box at the interface in the low and high permeability regions. The
behaviour according to the value of ϸ is plotted in Figure 3.5 and in Figure
3.4, respectively. The measure for the connection across the interface is
clearly much smaller than the rest for small ϸ. Therefore, aggregation
across an interface with a high contrast coefficient jump will not happen.

Cell-Centred Finite Volume Preservation

Under admittedly rather restrictive and unrealistic assumptions, we want
to show that for a cell-centred finite volume discretization our construction
of the coarse matrix is again a finite volume discretization.

Theorem 3.10. Let T be a two or three dimensional Cartesian grid with

uniform cell width h and letAh andLh be the bilinear and linear form of the

cell-centred finite volume discretization of the model problem with homoge-

neous Dirichlet boundary, gD = 0, as given in (2.8) and (2.9). Furthermore,

let the aggregates Ai , i = 1, . . . , N , be constructed such that the union of

all cells associated with each aggregate form a square in the two or cube in

the three dimensional case with width H.

Then the constructed coarse matrix h
H

R̃AR̃T represents a matrix from

a cell-centred finite volume discretization using a Cartesian grid TH with

uniform cell width H.
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Proof. Due to the specific nature of the aggregates, each aggregate is a cell
of a grid TH .

Let R̃T be the prolongation operator constructed according to the ag-
gregates. Recall, that for finite volume discretizations we approximate the
functions with functions that are piecewise constant on the boxes. The
prolongation of such a function is piecewise constant on the aggregates of
the fine grid. Therefore, such a prolongated function can only have jumps
on the edges that coincide with the aggregate boundaries.

Due to the construction using the Galerkin product, the coarse level
bilinear form is given by

AH (uH , vH ) =
h

H
Ah(R̃TuH , R̃

TvH )

= −
∑

e∈EI
h

K̃
R̃TuH (r(e)) − R̃TuH (l(e))

H
h
d(r(e)), l(e))

, ~R̃Tv�


e

.
(3.22)

Since prolongated functions can only change their value at the edges
that coincide with the aggregate boundaries, it suffices to sum over these
edges. The nominator of the quotient is just the change of a function that
is constant on the aggregates. For this kind of function it does not matter
where in an aggregate we take its value. The denominator is just the
distance of the centres of the coarse level cells as we deal with a uniform
cell width. Additionally, we have shown above that the aggregation will
not cross the interfaces where we have a jump in the permeability tensor
K. Therefore, the permeability is constant in each aggregate on the fine
level and the harmonic measure for the edges of the aggregate is the same
whether taken for the neighbouring fine level cells or the neighbouring
coarse level cells. Thus, equation (3.22) is just the bilinear form of the
finite volume discretization on the coarse grid.

For the linear form it follows with the same reasoning that

LH (vH ) = Lh(RTvH ) =
∑

τ∈Th

(f, v)τ +
∑

e∈EN
(gN , v)e =

∑

τ∈TH

(f, v)τ +
∑

e∈ENH

(gN , v)e

is equivalent to the linear form obtained by the cell-centred finite volume
scheme on TH . �

Please note, that the assumptions made in Theorem 3.10 are rather
artificial as our heuristical aggregation algorithm will usually not create
such regular aggregates. Therefore, how to choose a uniform relaxation
parameter ω for the Galerkin product (3.20) to obtain the coarse matrix
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is not clear. In general we settled for the value ω = 0.8d where d is the
width of the aggregates to be achieved.

Semi-Coarsening for Anisotropic Problems

It is well known that the traditional strength of connection measures are
able to detect anisotropic behaviour of the permeability tensor and force
semi-coarsening for linear systems stemming from finite difference and
finite volume methods. The same holds true for our new measure.

Unfortunately, the stencils for the anisotropic problem discretized with
Q1 finite elements have relatively large positive off-diagonal values. There-
fore the traditional Ruge Stüben measure, Ruge and Stüben [1987], and
the traditional measure used for aggregation AMG, Vaněk et al. [1996b],
might falsely treat connections along the low permeability direction as
strong.

The 2D stencil of the anisotropic problem with low permeability in the
x-direction discretized with Q1 finite elements is

1

3


− ϸ+1

2 ϸ − 2 − ϸ+1
2

1 − 2ϸ 4ϸ + 4 1 − 2ϸ
− ϸ+1

2 ϸ − 2 − ϸ+1
2

 .

This is not a problem for the isotropic problem with ϸ = 1, where the
diagonal value is 8

3 and the off-diagonal values are all −1
3 . But for the

limit case of the anisotropic problem with ϸ = 0 the stencil reads

1

3


−1

2 −2 −1
2

1 4 1
−1

2 −2 −1
2

 .

Clearly, depending on how our threshold α for identifying strong con-
nections is chosen, the positive connections in x-direction might falsely
be regarded as strong. Actually, this never occurred to us because the
default threshold α = 1

3 still ignores them for two dimensional problems.

The picture is quite different for the problems in three dimensions. In
this case the stencil for the anisotropic problem is illustrated in Figure 3.6.
Again the low permeability ϸ is along the x-direction and the permeability
is 1 along the other coordinate directions. The two limit cases of the
stencil, that is ϸ = 0 and ϸ = 1, can be seen in Figure 3.7 and Figure 3.8,
respectively.
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3.2 Scalar Aggregation AMG

When we did not treat positive off-diagonals as weak connections, only
those connection satisfying

a2
ij9

2

162
≥ α 1

16

were considered strong for the limit case ϸ = 0. Except for very small
values α these are just the positive off-diagonals. Therefore, the method
coarsened along weak connections. Our new criterion treats positive off-
diagonal values as weak connections. Thus it prevents coarsening in the
wrong direction and results in reasonable convergence rates even for the
above cases.

43



3 Algebraic Multigrid Methods

(a) Initial Defect

(b) Defect after 10 SSOR steps

Figure 3.1: Algebraic Smoothing via SOR
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3.3 Extension to Systems of PDE

Applying the scalar version of AMG unmodified to linear systems arising
from systems of partial differential equations is rather ineffective. For ex-
ample the AMG algorithm could find connectivity between different phys-
ical properties where there is none. When it comes to saddle point prob-
lems like the Oseen or Stokes problem most of the standard discretizations
lead to indefinite system matrices. The scalar algorithms cannot handle
this situation.

To overcome these problems different methods were proposed already
in Ruge and Stüben [1987]. Later the proposed approaches were doc-
umented methodically and investigated further in Clees [2005]. We fol-
low the methodology in the latter publication. There three different ap-
proaches are discussed. One approach just treats the resulting linear
system as a scalar one and applies AMG to it. It is called variable-based

AMG. This might result in the problems mentioned above. The other two
approaches make use of the underlying geometry and/or physical mean-
ing of the variables.

3.3.1 Unknown-based AMG

The unknown-based AMG uses a matrix with unknown-based blocking.
That is, all degrees of freedom belonging to one unknown, e.g. pressure,
are grouped together. Here the unknown, usually a physical quantity,
is a function that is to be approximated. As an example let us look at
the stationary Stokes problem. The unknowns here are the two velocity
components u (in x-direction) and v (in y-direction) and the pressure p.
Grouping these together the resulting linear system looks like



Auu Auv BT1,up
Avu Avv BT1,vp

B2,up B2,vp Cpp




u
v
p

 =


fu
fv
fp

 .

The idea is now to apply the variable-based (scalar) AMG approach to each
diagonal block of the matrix to create the prolongation operators P1, . . . , Pn
for each unknown. Then the global prolongation operator is constructed
from these operators as

P =



P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...

0 0 . . . Pn


.
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Using the usual Galerkin product Al+1
= PTAlP, we build the linear oper-

ator hierarchy.
As smoothers we use non-overlapping additive Schwarz methods with

no coarse grid correction. The local problems correspond to the degrees of
freedom associated with one unknown. And we use inexact local solvers
consisting of only a few steps of traditional stationary iterative methods.

The convergence of this approach for the classical Ruge and Stüben
approach was investigated in Clees [2005]. It was observed that this
approach works well if the smoother is able to produce an algebraically
smooth error for each unknown separately. This is the case for a mul-
tiplicative smoother as long as the cross-couplings between different un-
knowns are weak.

3.3.2 Point-based AMG

Whenever the unknowns are strongly coupled it is advisable to use the
point-based AMG approach. Here all degrees of freedom associated with a
grid entity of a given co-dimension (element, face, or point) but of different
physical quantities are grouped together. This approach is naturally lim-
ited to the case where all unknowns are discretized using the same grid
and the number of unknowns associated with each point is constant. The
resulting linear system is a sparse matrix, which has small dense equally
sized matrices as it’s entries. That is

Ax =



A11 . . . A1m
...

. . .
...

Am1 . . . Amm





x1
...

xm


=



b1
...

bm


= b

with Aij ∈ Rk×k, xi , bi ∈ Rk, i, j = 1, . . . , m.

Aggregation Approach

SettingK := Rk we can use our approach from the previous subsections for
the coarsening process. What is left to do, is to define and use appropriate
weight functions for our weighted matrix graph (Definition 3.4).

As already pointed out the discussion about algebraic smoothness car-
ries over to the point-based approach. Note, that in inequality 3.11 we
need to invert a matrix. Using our weight function approach we can avoid
this costly operation. Various weight functions are used in practice.

The approach of Raw published in Raw [1985] was one of the first ap-
proaches of this type. There the point-based approach was used to solve
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the Navier–Stokes equation using a cell-centred finite volume discretiza-
tion on non-staggered grids. For this approach both weight functions
simply return the pressure-pressure coupling of the matrix block. Re-
cently, in Papadopoulos and Tchelepi [2003] the same approach proved
superior over the usage of simple matrix norms in terms of both robust-
ness and convergence, even for smoothed aggregation AMG. Note, that
this also allows the detection of positive off-diagonal values.

The weight functions might also be simple matrix norms. For example
in Griebel et al. [2003] the Frobenius norm was used for solving linear
elasticity problems. As an alternative, the row-sum matrix norm is advo-
cated in Clees [2005].

Of course, it is also possible to choose the weight functions independent
of the original problem and use weights based on the coordinates of the
points associated to the blocks or an auxiliary scalar problem to compute
them. Both approaches were also investigated in Clees [2005].

In all cases the aggregation algorithm works on a graph that just stores
the strength of connection and can therefore be used without modifica-
tions as in the scalar case. As a consequence, the aggregation algorithm
is independent of the block size. Only the computation of the Galerkin
product has a higher complexity due to the block size.

Smoothers

As smoothers we use multiplicative and additive one-level Schwarz meth-
ods with exact subdomain solvers. Each of the local subspaces is spanned
by the basis functions associated with one point. The subspaces are non-
overlapping and disjoint. In addition several incomplete block LU factori-
sation are available as smoothers.

3.4 Numerical Results

Let us take a look at the question how our AMG method works for some
important model problems. As the method itself is not an optimal solver
we will use it as preconditioner to the conjugate gradient method.

Recall that the model problem problem is

−∇ · (K∇u) = f in Ω

u = gD on ΓD

(K∇u) · n = gN on ΓN .

50
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on the domain Ω ⊂ Rd, d = 2,3, with ΓN ∪ ΓD = ∂Ω, ΓN ∩ ΓD = ∅. We will
restrict us to following representative models and show how the resulting
aggregates and the robustness of the methods look like.

Example 3.11. The first model problem is a Poisson equation with pure
Dirichlet boundary conditions. The problem is given by

−∆u = (2d − 4‖x‖2)e−‖x‖
2

in Ω = (0,1)d

u = e−‖x‖
2

on ∂Ω .

Our greedy coarsening strategy can be adjusted to achieve arbitrarily
sized aggregates. As stated before, the prolongation as well as the restric-
tion are piecewise constant which prevent our method form being optimal.
As a first test we take a look at how the aggregate size influences the con-
vergence of our method and the time needed to achieve it. In Table 3.1 we
present the results for our method when applied to the Poisson problems
discretized with Q1 finite elements on a structured grid with 1024 × 1024
and 64 × 64 × 64 elements in two and three dimensions, respectively.

size da CA lev. It TB TS TT
2–3 1 1.79 11 16 6.87 11.95 18.82
4–6 2 1.33 6 19 5.95 9.98 15.93
9–12 4 1.10 5 35 5.86 15.78 21.64
16–18 6 1.05 4 40 6.43 17.23 23.66
25–30 8 1.03 4 53 7.36 21.37 28.73

(a) 2D: 1024 × 1024 elements

size da CA lev. It TB TS TT
2–3 1 1.98 9 14 9.20 6.77 15.97
4–6 2 1.33 5 9 6.56 2.89 9.45
8–10 3 1.14 4 12 6.45 3.36 9.81
27–30 6 1.04 3 16 10.36 4.03 14.39
64–70 9 1.01 3 20 20.62 4.94 25.56

(b) 3D: 64 × 64 × 64 elements

Table 3.1: Convergence Dependency on Aggregate Size

Here, the computations were done on an Intel Core 2 Duo CPU P9500
with 2.53GHz, the software was compiled using the GNU C++ compiler
version 4.3 with -O3 optimisation flags. The V-cycle of our AMG with one
step of SSOR for pre- and post-smoothing was used as a preconditioner to
the conjugate gradient solver. Generally, the iterative solver stops if the
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initial defect has been reduced by a factor of 10−8 in the l2-norm. If not
noted otherwise this applies to the other computations in this thesis, too.

In the tables the first column (labelled size) represents the prescribed
minimum and maximum aggregate size. In the second column, da rep-
resents the allowed maximal diameter an aggregate might have. Further-
more, we present with CA the operator complexity. That is the sum of the
number of nonzeros of the matrices at all levels divided by the number of
nonzeros of the matrix at the finest level. It is measure for the memory
consumption of the method. Other acronyms used in the tables of this
section are:

lev. The number of levels in the operator hierarchy.

h The width of the elements of the grid.

It The number of iterations needed to achieve a relative defect reduction
of 10−8.

TB Time needed to build the AMG hierachies. This is often called setup
time.

TS Time needed for iteratively solving the linear systems. (TB is excluded
here.)

TIt Time needed for one iteration of the solver.

TT The total time needed to solve the linear system including the setup
time. (TT=TB+TS)

Using a big prescribed aggregate size, we are able to have a very low op-
erator complexity. At the same time we sacrifice some of the convergence.
Clearly, we can achieve operator complexities comparable with geometric
multigrid for a prescribed aggregate size of four and eight unknowns for
two and three dimensional problems, respectively. At the same time these
aggregate sizes lead to the shortest total time to solution.

In Table 3.2 we present the time used for building the hierarchies for
varying stencil sizes. In the first column we tell the discretization method
that was used, in the second column we give the resulting degrees of
freedom, and the third column contains the stencil size. This is the actual
size used in the sparsity pattern of the matrix. Due to the discretization
algorithm used this might be bigger than expected, as the implementation
sometimes chooses to store some of the nonzeros, too. The last column
presents the time needed for building the hierarchy and in brackets the
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time normalised to the number rows of the finite volume discretization. In
Figure 3.9 we plot the normalised time needed to build the AMG hierarchy
against the stencil size and fit it using least squares to the function f (x) =
ax + bx2. The fitted values for the two dimensional problems are a =
0.0921636, and b = 0.0040941 and for the three dimensional problem
they are a = 0.0946918 and b = 0.00365989. Although the complexity
turns out to be quadratic, the constant b is low compared to a. Therefore,
for small stencil sizes, like the ones observed here, the complexity is still
approximately linear.

FE DOFS nnz/row CA TB
CC-FV 2D 262144 5 1.25 0.5
P1 2D 263169 7 1.22 0.94 (0.94)
Q1 2D 263169 9 1.25 1.13 (1.13)
CC-FV 3D 262144 7 1.35 1.19
P1 3D 230945 19 1.14 2.47 (2.80)
Q1 3D 274626 27 1.14 5.62 (5.36)

Table 3.2: Hierarchy Build Time vs. Stencil Size
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Figure 3.9: Hierarchy Build Time as a Function of Stencil Size

As a reference for the problems with jumping coefficients we present the
results of our method applied to the Poisson problem in Tables 3.3 and
3.4. As expected the method is not optimal, but the number of iterations
needed for convergence increases linearly with the number of levels in
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the hierarchy. Both, the time needed for building the hierarchy and the
time needed for one iteration step, increases linearly with the number of
unknowns.

1/h lev. TB TS It TIt
64 2 0.16 0.028 8 0.0035
128 3 0.080 0.076 11 0.0070
256 4 0.33 0.33 13 0.025
512 5 1.41 1.96 17 0.12
1024 6 5.87 9.35 19 0.49

(a) Q1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.012 0.036 11 0.0033
128 3 0.068 0.096 14 0.0069
256 4 0.29 0.42 17 0.024
512 5 1.18 2.30 20 0.12
1024 6 4.84 16.32 24 0.48

(b) P1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.008 0.024 7 0.0034
128 3 0.040 0.052 9 0.0058
256 4 0.16 0.22 11 0.020
512 5 0.68 1.23 13 0.094
1024 6 2.68 6.23 15 0.42

(c) Cell-Centred Finite Volumes

Table 3.3: Poisson Problem 2D

Example 3.12. Let our diffusion problem be given by

−∇ · {K(x)∇u} = 1 in Ω = (0,1)d ,

u = 0 on ∂Ω .

The isotropic permeability tensor K(x) = k(x)1, 1 being the identity matrix,
has jumps in a chequerboard manner. The chequerboard has 8 cells
of width H = 1/8 in each dimension. Let the function ⌊·⌋ return the
maximum integer value that is equal to or smaller than the argument.
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1/h lev. TB TS It TIt
16 2 0.07601 0.048 7 0.006858
32 3 0.776 0.292 9 0.03245
64 4 6.936 3.256 12 0.2714

(a) Q1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.036 0.032 9 0.003556
32 3 0.348 0.228 12 0.019
64 4 3.092 2.612 16 0.1633

(b) P1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.016 0.06 8 0.007501
32 3 0.232 0.26 10 0.026
64 4 2.036 1.624 12 0.1353

(c) Cell-Centred Finite Volumes

Table 3.4: Poisson Problem 3D

Then the permeability field is described by

k(x) =



20.0 ⌊x0/H⌋ even, ⌊x1/H⌋ even, and ⌊x2/H⌋ even
0.002 ⌊x0/H⌋ odd, ⌊x1/H⌋ even, and ⌊x2/H⌋ even
0.2 ⌊x0/H⌋ even, ⌊x1/H⌋ odd, and ⌊x2/H⌋ even
2000.0 ⌊x0/H⌋ odd, ⌊x1/H⌋ odd , and ⌊x2/H⌋ even
1000.0 ⌊x0/H⌋ even, ⌊x1/H⌋ even, and ⌊x2/H⌋ odd
0.001 ⌊x0/H⌋ odd, ⌊x1/H⌋ even, and ⌊x2/H⌋ odd
0.1 ⌊x0/H⌋ even, ⌊x1/H⌋ odd, and ⌊x2/H⌋ odd
10.0 ⌊x0/H⌋ odd, ⌊x1/H⌋ odd, and ⌊x2/H⌋ odd

,

in three dimensions and by

k(x) =



20.0 ⌊x0/H⌋ even, and ⌊x1/H⌋ even
0.002 ⌊x0/H⌋ odd, and ⌊x1/H⌋ even
0.2 ⌊x0/H⌋ even, and ⌊x1/H⌋ odd
2000.0 ⌊x0/H⌋ odd, and ⌊x1/H⌋ odd

,

in two dimensions.

The aggregates and permeabilities are illustrated in Figure 3.10. The
colours denote the permeability and the solid black lines are the boarders
of the aggregates on the coarsest level. For the discretization we used
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Figure 3.10: Aggregates for chequerboard permeability

a uniform cube grid with 100 × 100 cells and Q1 finite elements. Note,
that the aggregation respects the permeability jumps. The permeability
remains constant in the interior of each element of our grid. Our degrees
of freedom are associated with the vertices of the grid. The vertices on
the boundary between high and low permeability regions get added to the
aggregates in the region with higher permeability. This is in accordance
to our discussion in the previous section.

In Tables 3.5, and 3.6 we present the results for our solver applied to
different problem sizes. We see that the the setup time needed is compa-
rable to time needed for the Poisson problem. The number of iterations
needed for convergence is again linear in the number of levels of the hier-
archy. Only the constant in this dependency is bigger than for the Poisson
problem.

Example 3.13. A diffusion problem with smoothly varying permeability
field is given by

−∇ · {k(x)∇u} = f in Ω = (0,1)d ,

u = g on ΓD,

−∇u · ν = 0 on ΓN ,
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1/h lev. TB TS It TIt
64 2 0.016 0.032 9 0.0036
128 3 0.076 0.088 13 0.0068
256 4 0.33 0.44 17 0.026
512 5 1.40 2.41 21 0.11
1024 6 5.77 13.66 28 0.49

(a) Q1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.016 0.036 11 0.0033
128 3 0.068 0.096 14 0.0068
256 4 0.30 0.52 20 0.026
512 5 1.22 2.92 25 0.12
1024 6 4.93 16.18 33 0.49

(b) P1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.008 0.0024 7 0.0034
128 3 0.036 0.068 10 0.0068
256 4 0.16 0.23 11 0.021
512 5 0.66 1.23 13 0.095
1024 6 2.74 6.12 15 0.41

(c) Cell-Centred Finite Volumes

Table 3.5: Chequerboard Permeability Field 2D

with
ΓD = {x | x0 = 0 ∨ x0 = 1} , ΓN = ∂Ω \ ΓD,

and

g(x) =

{
1 x0 = 0
0 x0 = 1

.

The values of the scalar permeability field k(x) are chosen as a log-normal
random field. That is, logk(x) is a realisation of a homogeneous, isotropic
Gaussian random field with exponential covariance function with mean
0, variance σ2 and correlation length scale λ.

An example for the aggregates on the coarsest level and the distribution
of the permeability values is given in Figure 3.11. We used a uniform cube
grid with element diameter h = 1/256 and a Q1 discretization scheme.
The permeabilities were distributed with variance σ2

= 8, and correlation
length λ = 0.16. As the permeabilities change smoothly, the aggregates do
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1/h lev. TB TS It TIt
16 2 0.072 0.104 14 0.007
32 3 0.68 0.34 11 0.031
64 4 6.32 3.69 14 0.26

(a) Q1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.028 0.052 12 0.0043
32 3 0.30 0.31 17 0.018
64 5 2.76 3.00 19 0.16

(b) P1 Finite Elements

1/h lev. TB TS It TIt
16 3 0.016 0.024 8 0.0030
32 4 0.18 0.11 9 0.012
64 5 1.75 1.28 11 0.12

(c) Cell-centred Finite Volumes

Table 3.6: Chequerboard Permeability Field 3D

not follow the small jumps exactly. Still, the tendency of the permeability
field is fuzzily resembled by them.

The random field is given by a continuous function. For the discretiza-
tion we pick the permeability value at the cell centre and assume it to be
constant on the cell. Therefore, for higher resolution the ratio between the
lowest and highest permeability value increases. Besides, by the problem
size the condition of the linear system is influenced by this ratio.

In Tables 3.7, and 3.8 we present the results for our solver applied to
this problem. We used variance σ2

= 4 and correlation length λ = 1/64.
We see the same complexity behaviour as for the previous problems.

Example 3.14. In this example the problem is described with the same
equations as in Example 3.13. The only difference lies in the discrete
values of the permeability field used. It is again generated using the
log-normal distribution described above. Once the values are computed
for each cell, we compute the mean permeability over the whole domain.
Then we compute the mean value of all permeabilities below the mean
and replace these permeabilities with this new mean value. Similarly, we
compute the mean value of all permeabilities bigger than the global mean
permeability and replace them with the calculated upper mean value.
This results in a permeability field that can attain two discrete values.
In contrast to the previous example, the permeabilities now make huge
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Figure 3.11: Aggregates for log-normally distributed permeability field
(σ2
= 8, λ = 0.16)

jumps instead of just changing gradually.

In Figure 3.12 the permeabilities are illustrated and the borders of the
coarsest aggregates are represented by solid lines. Here we used a uniform
2D cube grid with cell width h = 1/256. Note, that the aggregation process
honours the coefficient jumps and does not cross over the jump. This is
in accordance to the discussion above.

Due to the averaging of the permeability values, the ratio between the
highest and lowest permeability of a realisation is lower than for the non-
clipped Example 3.13. Still, the jumps that occur rapidly throughout
the domain are larger than previously. This makes this example very
challenging for linear solvers.

In Tables 3.9, and 3.10 we present the results for our problem when
applied to this example. In the computations we used variance σ2

= 8 in
all computations For the two dimensional problem the correlation length
used is λ = 1/64 and for the three dimensional case λ = 1/16.

In Table 3.11 we present the statistics of our solver for a varying cor-
relation length and variance. We see that the build time of our AMG is
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1/h lev. TB TS It TIt
64 2 0.02 0.028 8 0.0035

128 3 0.09601 0.08801 11 0.008001
256 4 0.4 0.376 14 0.02686
512 5 1.636 1.728 15 0.1152

1024 6 6.964 9.849 20 0.4924
(a) Q1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.016 0.036 12 0.003

128 3 0.08001 0.104 14 0.007429
256 4 0.348 0.472 17 0.02777
512 5 1.432 2.416 21 0.1151

1024 6 6.012 11.9 24 0.496
(b) P1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.008001 0.024 7 0.003429

128 3 0.048 0.056 9 0.006223
256 4 0.22 0.292 12 0.02433
512 5 0.8001 1.3 14 0.09286

1024 6 3.344 6.196 15 0.4131
(c) Cell-Centred Finite Volumes

Table 3.7: Random Permeability Field 2D (σ2
= 8, λ = 1/16)

robust against changes of the variance and correlation length. For de-
creasing correlation length the average size of the areas with one diffusion
coefficient become smaller. The number of iterations needed for conver-
gence increases gradually. The convergence of our method decreases more
steeply for correlation lengths smaller than 8 times the cell width. Still
convergence is achieved even for the nearly uncorrelated case (λ = 1/512).
In comparison to the algebraic domain decomposition solver in Scheichl
and Vainikko [2007] the number of iterations increases more steeply. For
fixed correlation length λ = 64 and increasing σ the number of iterations
needed for convergence increase only slightly. For this test the average
size of an area with fixed diffusion coefficient stays the same, but the
size of the jumps increases for increasing variance. Therefore, the linear
systems get harder. Although not being totally robust against variance
changes, our preconditioner can handle high variances very well.

Finally, we repeat some of the scalability tests with a fixed variance
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1/h lev. TB TS It TIt
16 2 0.088 0.064 7 0.009143
32 3 0.8521 0.312 9 0.03467
64 4 7.172 3.28 12 0.2734

(a) Q1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.04 0.044 10 0.0044
32 3 0.38 0.256 13 0.01969
64 4 3.212 2.82 17 0.1659

(b) P1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.02 0.064 9 0.007112
32 3 0.224 0.272 10 0.0272
64 4 2.008 1.708 12 0.1423

(c) Cell-Centred Finite Volumes

Table 3.8: Random Permeability Field 3D (σ2
= 8, λ = 1/4)

of σ2
= 8 and the correlation length λ = 4h linked to the diameter h of

the grid elements. Note that this means that the problem actually gets
harder the finer the mesh is. This is not only due to the increased problem
size but also due to the more often varying diffusion coefficient. For cell-
centred finite volumes we present the results of this test in Table 3.12.
In comparison with Table 3.9(c) (with fixed λ = 1/16) the number of iter-
ations needed for convergence increases more steeply now, especially for
low correlation length. For the three dimensional problem the increase in
number of iterations is nearly the same as for fixed correlation length. A
similar total increase was observed for an algebraic domain decomposition
in Scheichl and Vainikko [2007], too. The increase for their solver is less
steep for large h (and λ) but then becomes steeper and steeper for smaller
h (and λ). The total increase in number of iterations is the same as for our
solver. Note that we used a different approach for computing the perme-
ability fields here. Therefore, the problems might still be rather different
and the above comparison should only be used as a rough estimate.

Example 3.15. The classical anisotropic diffusion problem is described
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Figure 3.12: Aggregates for clipped log normal distribution of permeability
field

by

−∇ · (K(x)∇u) = 1 in Ω = (0,1)d ,

u = 0 on ∂Ω,

with a diagonal tensor K(x) ∈ Rd×d given by

Kij(x) =



ϸ i = j = 0
1 i = j > 0
0 else

,

In Figure 3.13 the coarse level aggregates are illustrated for ϸ = 10−6.
This time all points belonging to one aggregate have the same colour. Note
that for this example the aggregation process follows the strong connec-
tions of the matrix graph. These are always pointing in vertical direction
for this problem.

In Table 3.13, and 3.14 we present the solver statistics for solving the
anisotropic model problem in two and three dimensions with ϸ = 106.
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1/h lev. TB TS It TIt
64 2 0.016 0.032 8 0.004

128 3 0.09601 0.08001 11 0.007273
256 4 0.392 0.368 13 0.02831
512 5 1.608 1.824 16 0.114

1024 6 6.804 9.361 19 0.4927
(a) Q1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.016 0.04 12 0.003334

128 3 0.08401 0.104 14 0.007429
256 4 0.348 0.456 17 0.02683
512 5 1.44 2.328 20 0.1164

1024 6 5.76 11.96 24 0.4985
(b) P1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.012 0.032 9 0.003556

128 3 0.056 0.08001 11 0.007273
256 4 0.248 0.292 13 0.02246
512 5 0.98 1.62 16 0.1013

1024 6 4.128 8.457 20 0.4228
(c) Cell-Centred Finite Volumes

Table 3.9: Clipped Random Permeability Field 2D (σ = 8, λ = 1/16)

For the three dimensional problem, discretized with Q1 finite elements
(Table 3.14(a)) the numbers in brackets represent the values if we do not
treat positive off-diagonal values as weak connections. Clearly, the itera-
tion count decreases drastically if they are treated as weak connections.
For the biggest problem, the total time to solution dropped by a factor
of three. For the two dimensional problem, these changes do not have
any affect as the positives off-diagonal values already are treated as weak
connections due the setting of the threshold α = 2

3 as discussed above.
The iteration steps needed for convergence increase again with the lev-
els. For the anisotropic problem the constant in the complexity is bigger.
Still, the behaviour is satisfactory as geometric multigrid methods without
semi-coarsening break down for this kind of problem.
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1/h lev. TB TS It TIt
16 2 0.08401 0.072 8 0.009
32 3 0.8401 0.332 10 0.0332
64 4 7.088 3.532 13 0.2717

(a) Q1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.04 0.048 11 0.004364
32 3 0.38 0.284 14 0.02029
64 4 3.236 3.028 18 0.1682

(b) P1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.02 0.064 8 0.008001
32 3 0.228 0.264 10 0.0264
64 4 2.04 1.744 13 0.1342

(c) Cell-Centred Finite Volumes

Table 3.10: Clipped Random Permeability Field 3D (σ = 8, λ = 1/4)

λ 1/16 1/32 1/64 1/128 1/256 1/512
It 16 16 20 24 35 46
TS 1.59 1.67 2.02 2.42 3.56 4.75
TB 0.98 1.01 1.02 1.04 1.09 1.10

(a) σ = 8

σ 2 4 6 8 10
It 15 18 19 20 20
TS 1.45 1.81 1.89 2.02 2.10
TB 0.84 1.02 1.02 1.02 1.01

(b) λ = 1/64

Table 3.11: Clipped Permeability Problem with varying σ and λ, 512×512
grid, Cell-Centred Finite Volumes
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1/h lev. TB TS It TIt
64 2 0.012 0.032 9 0.003556

128 3 0.06 0.084 12 0.007
256 4 0.256 0.428 19 0.02253
512 5 1.068 2.4 24 0.1

1024 6 4.492 14.61 34 0.4298
(a) two dimensional problem

1/h lev. TB TS It TIt
16 2 0.016 0.064 8 0.008001
32 3 0.228 0.288 11 0.02618
64 4 2.068 1.928 14 0.1377

(b) three dimensional problem

Table 3.12: Clipped Random Permeability Field (σ2
= 8, λ = 4h), Cell-

Centred Finite Volumes

Figure 3.13: Aggregates for Anisotropic Problem
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1/h lev. TB TS It TIt
64 2 0.012 0.064 14 0.0046

128 3 0.060 0.15 18 0.0082
256 5 0.29 0.84 33 0.026
512 6 1.13 4.16 36 0.12

1024 7 4.82 22.62 44 0.51
(a) Q1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.012 0.052 14 0.0037

128 3 0.076 0.18 23 0.0080
256 5 0.33 1.03 39 0.026
512 6 1.35 6.24 52 0.12

1024 7 5.43 33.97 66 0.51
(b) P1 Finite Elements

1/h lev. TB TS It TIt
64 2 0.008 0.02 7 0.0029

128 3 0.04 0.06 10 0.006
256 5 0.17 0.25 12 0.021
512 6 0.74 1.27 14 0.091

1024 7 3.07 7.04 18 0.39
(c) Cell-Centred Finite Volumes

Table 3.13: Anisotropic problem 2D
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1/h lev. TB TS It TIt
16 2 0.060 0.044 (0.052) 9 (18) 0.005
32 3 0.60 0.34 (0.59) 11 (36) 0.031
64 4 5.35 3.39 (25.99) 16 (72) 0.25

(a) Q1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.028 0.044 12 0.0037
32 3 0.31 0.34 18 0.019
64 4 2.86 4.16 26 0.16

(b) P1 Finite Elements

1/h lev. TB TS It TIt
16 2 0.02 0.06 8 0.0075
32 3 0.22 0.30 11 0.027
64 4 1.99 2.01 14 0.14

(c) Cell-Centred Finite Volumes

Table 3.14: Anisotropic problem 3D
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3.5 Related Work and Conclusions

Algebraic multigrid methods have been around for a long time now and
applied to various problems. Surprisingly, problems with randomly jump-
ing permeability coefficients have rarely been investigated. Nevertheless,
we try to compare the performance of existing approaches to solving prob-
lems that are similar to our model problems.

In the adaptive AMG approach, Brezina et al. [2006], standard interpo-
lation AMG is extended by automatically generating smooth vectors using
the linear system itself. Then the vector entries are used as additional
weights for the construction of more accurate interpolation operators. The
adaptive AMG is tested on a diffusion problem with jumping coefficients
on the unit square. Three dimensional problems are not considered. Us-
ing a uniform rectangular grid, 20% of its cells are randomly picked. The
diffusion constant in these elements is set to 10−8 and in the rest of the
cells it is set to 1. The problem is discretized using bilinear finite elements.
Recall, that for this kind of problems the condition number of the matrix
increases not only because of the bigger problem, but also because of the
more jumping diffusion. Using a hand tuned optimal number of pre- and
post-smoothing steps for adaptive AMG to achieve the optimal solution
total time for solution, the time needed for a 1024 × 1024 grid is a factor
521 bigger than for a 64×64 grid. Not tuning the smoothing steps leads to
an even bigger factor of 735. At the same time, the number of unknowns
only increases by a factor 256. The main cause for the suboptimal scala-
bility is that the setup time increases drastically for bigger problems. For
comparison we solve a similar problem with our approach and present the
statistics in Table 3.15. For our approach the setup time scales optimally.

1/h TB TS It TT
64 0.016 0.032 9 0.048

128 0.09201 0.08001 11 0.172
256 0.392 0.352 13 0.844
512 1.632 1.884 16 3.41

1024 6.744 10.19 20 16.94

Table 3.15: 2D Problem from Brezina et al. [2006], Q1 Finite Elements

The number of iterations needed for convergence increases more steeply.
Still the total solution time for our approach only increases by a factor
of 352. We did not apply any parameter tuning for this problem, but
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used our AMG as a preconditioner to the conjugate gradient solver. For
smoothed aggregation algebraic multigrid an adaptive extension similar
to the one above is presented by Brezina et al. [2005].

The same problem is investigated using AMG based on compatible relax-
ation and energy minimisation in Brannick and Zikatanov [2007]. Again
this method strives for constructing optimal interpolation operators for
classic interpolation AMG. Unfortunately, only asymptotic convergence
factors, and operator complexities are published. Therefore, we estimate
the number of iterations needed for convergence and corresponding com-
putational effort based on these values. For the above problem on a
512 × 512 uniform grid the estimated number of iterations increases by a
factor of 1.5 compared with the problem using a 128 × 128 grid. Taking
into account the increasing operator complexity reported, we assume that
for this kind of problem the scalability of our AMG as a preconditioner to
the conjugate gradient solver is at least comparable. For the anisotropic
model problem the convergence rates for AMG based on compatible re-
laxation appear to be optimal. The operator complexity increases only
slightly more than for our AMG. Therefore, the time needed for solving
with this solver should scale better than with our AMG approach.

Despite the good convergence properties of the above AMG methods,
one should bear in mind that better convergence is achieved by a more
complex setup phase. This additional cost has to be remedied by an
immanent decrease of the time needed for the solution. Additionally the
memory consumption of the methods are bigger than that of our AMG.
While these methods are very promising, to our best knowledge efficient
implementations are still lacking.

A set of model problems similar to those with the log-normally dis-
tributed random fields in two dimensions were considered by Scheichl
and Vainikko [2007]. The authors propose an algebraic domain decom-
position method with a coarse grid correction as a preconditioner. The
construction of the coarse grid is done algebraically using an aggrega-
tion scheme based on strong connections. The calculations reported are
limited to two-dimensional problems and only cell-centred finite volumes
are used for the discretization. The memory consumption of our AMG
should be less than for the domain decomposition approach Scheichl and
Vainikko. Concerning the convergence rates achieved our solver turns out
to be a little less robust for varying correlation length and variance. In
contrast to our approach the CPU time needed per iteration of the domain
decomposition method of Scheichl and Vainikko does not scale optimally
with the problem size. This might partly remedy the increase in the num-
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ber of iterations needed for convergence for bigger problems.
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4 AMG for Discontinuous Galerkin

Based on the content of the previous chapters, we will now introduce our
algebraic multigrid method for discontinuous Galerkin discretizations of
our model problem (2.1).

4.1 Auxiliary Coarse Space

Although our goal is a true multi-level method, we will start with a two-
level method. We will extend it to a multi-level method later on. We need
a coarser non-local subspace of the original fine level space V. As before
we will use the notationV1 to denote this first coarse level space. Instead
of coarsening our grid, we choose to reduce the polynomial order of our
approximation. Additionally, we insist that the trial and test functions of
the coarse space are continuous. To achieve both at the same time, we
consider the space of continuous piecewise linear basis functions P1 on
the same triangulation as our coarse space.

Depending on the polynomial order used in our discontinuous Galerkin
approach, this can result in a much coarser space than before. Consider
a problem in two space dimension discretized on a structured mesh con-
sisting of N ×N square elements and using polynomial order 2 on the fine
level. That means that each of the N2 elements has six discontinuous
basis functions associated with it; for example {1, x, y, x2, xy, y2}. On the
coarse level there are only (N + 1)2 linear basis functions with associated
degrees of freedom.

Using the space of continuous basis functions, the DG bilinear form
(2.4) simplifies to

A(u, v) =
∑

τ∈T
(K∇u,∇v)τ −

∑

e∈ED

(K∇u · ne, v)e

+

∑

e∈ED

σ (K∇v · ne, u)e +
∑

e∈ED

µ

he
(u, v)e .

For elements away from the Dirichlet boundary the matrix is just the
traditional one for continuous basis functions. The penalty terms vanish
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on the interior faces of the grid. Only on the Dirichlet boundaries we
still see contributions of the integrals over the element boundary as they
appear in the bilinear form of DG methods.

Note that an extension operator from the continuous coarse space onto
the discontinuous fine space cannot be found in a purely algebraic way
since the geometry information of the grid has to be taken into account.
In our case we choose to define the extension operator by the natural em-
bedding of the continuous trial space into the discontinuous trial space.

Let u ∈ V1 ⊂ V be a function of our continuous finite element space.
Let Ψ = {ψ0, . . . , ψn} be the basis used for representing u in our contin-
uous space and Φ = {φ0, . . . , φm} be the basis used to represent it in the
discontinuous space. Then we can represent u in the two spaces as

u =

n∑

i=0

ciψi =
m∑

i=0

diφi

with the corresponding coefficient vectors c ∈ Rn and d ∈ Rm .
In particular, this means that the integral equality

m∑

j=0

(
φj, φi

)
Ω

dj =


m∑

j=0

djφj, φi


Ω

=


n∑

k=0

ckψk , φi


Ω

=

n∑

k=0

(ψk , φi)Ω ck

holds for each basis function φi ∈ Φ. Recall that the support of each
element of our discontinuous basis Φ is limited to the closure of one
element of our grid T . Therefore, the entries of the matrices M , and N ,

Mij = (φj, φi)Ω, Nij = (ψk , φi)Ω ,

can be computed by integrating over one element of the grid T instead of
integrating over the whole grid. Furthermore, the matrix M is block diag-
onal. Using these matrices, we define the extension operator algebraically
as

RT0 = M
−1N .

4.2 Overlapping Smoothers

One problem with the non-symmetric interior penalty methods is that
traditional smoothers, like Jacobi or Gauss-Seidel, loose their smoothing
properties for low and high penalty parameters µ ≥ 0. This behaviour was
observed in Johannsen [2005], where geometric multigrid methods were
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applied to NIPG discretizations. In the same paper, Johannsen numer-
ically shows that the corresponding subspace correction methods using
overlapping subspaces are robust in terms of both low and high penalty
parameters.

Therefore, we use overlapping Schwarz methods as smoothers in our
algebraic multi-level method when applied to NIPG discretizations with
small or large penalty parameter µ. In the other cases we fall back to
using non-overlapping versions. We are neglecting geometric properties
of the grid and want to use solely the properties of our discretization matrix
to construct the (overlapping) subspaces.

Recall that we block all unknowns associated with basis functions Φτ =
{φ | supp φ ⊂ τ} with support in an element of our mesh together. Let
{ωi}ni=1 be a non-overlapping decomposition of the grid. Then this gives us

our initial non-overlapping subspaces Ṽi = span {φ ∈ Φωi }.
If we use non-overlapping smoothers for µ of appropriate size, each ωi

will consist of exactly one grid element. That is, we use simple block
versions of the traditional smoothers.

In the other cases we augment the initially non-overlapping partitions
ωi to achieve sufficient overlap. For each grid element τ ∈ ωi we add all
neighbouring elements that share an edge with τ to the partition. Then
for each such aggregate we define the subspace Vi as the span of all
basis functions with nonzero support in the now overlapping partition ωi .
Note that this augmentation can be achieved purely algebraically using
the graph of the block matrix as we use cell-based blocking. In Figure
4.1 one of the achieved overlapping subspaces is shown together with the
matrix graph of the discretization matrix. Here the initial non-overlapping
subspace consists of only one grid element.

For the construction of the initial non-overlapping subspace decompo-
sition we utilise our aggregation algorithm 3.2 for the point-based AMG.
We use the matrix graph of the block matrix of the DG discretization and
the usual aggregation criterion using the row sum norm as the weight
function for the strength of connection criterion.
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Figure 4.1: One subspace (shaded) of the smoother

4.3 Multi-Level method

As already described in Section 4.1, our coarse space is consisting of con-
tinuous functions. Therefore, the matrix on this level is scalar. We extend
the two-level method to a multi-level method by simply applying our ag-
gregation multigrid method as described in Chapter 3 on the auxiliary
coarse space instead of directly solving the linear system.

Note that no additional information (such as boundary conditions on the
coarse level) have to be provided. Let A be the matrix and b be the right
hand side vector resulting from the discontinuous Galerkin discretization
and let R0 be the restriction from the space of DG functions to the space
of continuous function. Then the matrix and right hand side vector for
the first coarse level is constructed algebraically from this input as

A0 = R0ART
0

and
b0 = R0b ,

respectively.

4.4 Numerical Results

We start the analysis of our method by solving the Poisson equation.
The overlapping smoothers, introduced above, need far more computing
time than the non-overlapping versions used for penalty parameters µ of
appropriate size. Still, we believe that their usage is already justified by
this very simple test case. We compare the non-overlapping multiplicative
smoother with the overlapping smoother. The former will be labelled SOR
and the latter OSOR from now on. Both methods are used as the smoother
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on the DG level for our multi-level method. The multi-level method is used
as the preconditioner of the BiCGSTAB solver. We are interested in the
behaviour of the method for NIPG with varying penalty parameter µ. Recall
that the limit case µ = 0 represents the method of Baumann and Oden.
The number of iterations needed to achieve a relative residual reduction
of 10−8 are given in Tables 4.1 and 4.2 for the two dimensional and three
dimensional case. The problem is discretized on a structured cube grid.
We will stick to this simple grid for all our tests in this section. Where “–”
appears instead of numbers we could not achieve any convergence with
the method.

In these and the following tables, we will use additional acronyms to
clarify the discretization and method used. NIPG(p, µ) means that NIPG
was used with penalty parameter µ and order p for the discretization. For
OBB the penalty parameter is omitted as it is naturally 0. V (sdg, scg, ν1, ν2)
means that our AMG method with a V-cycle was used as a preconditioner.
On the DG level sDG was used as the smoother and on the coarser levels,
sCG was used as the smoother. On all levels (DG as well as CG) we
performed ν1 pre- and ν2 post-smoothing steps.

µ 103 102 10 1 10−1 10−2 10−3 10−4 0
It. SOR 55 18 8.5 10 – – – – –

It. OSOR 12 5 4.5 3.5 6 6 6 6 6

Table 4.1: Robustness of smoothers for Poisson problem 2D, 1/h = 128
elements, NIPG(2,µ)

µ 103 102 10 1 10−1 10−2 10−3 10−4 0
It. SOR – 118.5 46.5 12 7.5 – – – –

It. OSOR 46.5 16 7 4 3 3.5 4 3.5 3.5

Table 4.2: Robustness of smoothers for Poisson problem 2D, 1/h = 16,
NIPG(2,µ)

Clearly, using overlapping smoothers makes the method inherently
more robust against changes in the penalty parameter. We regard this
feature as very important as we consider the method of Baumann and
Oden a good choice for problems with high contrast jumps in the coeffi-
cients.

In Table 4.3, we studied the robustness of the method of Baumann and
Oden and NIPG against the polynomial order of the basis functions used.

75



4 AMG for Discontinuous Galerkin

It turns out that our method works for all tried orders. Clearly, the be-
haviour of the solver for OBB is nearly optimal in the number of iterations
needed for orders p ≤ 5. Due to the increasing operator complexity of the
fine level matrix for higher orders, the total solution time still doubles with
each increase in the polynomial order. The dimension of the square dense
matrix blocks is presented in the third column (DOF/E). For NIPG the
number of iterations needed for convergence increases with the number
of degrees of freedom.

p Dof Dof/E TB TS It.
2 98304 6 0.51 100.33 15
3 163840 10 0.58 337.02 14.5
4 245760 15 0.65 869.12 14.5
5 344064 21 0.97 2104.51 14
6 458752 28 1.34 6856.74 22

(a) OBB(p), V(OSOR,SOR,1,1)

p Dof Dof/E TB TS It.
2 98304 6 0.93 1.76 7.5
3 163840 10 1.04 5.13 9
4 245760 15 1.20 12.79 10
5 344064 21 1.76 65.33 17
6 458752 28 2.38 608.80 23

(b) NIPG(p,3.9), V(OSOR,SOR,1,1)

Table 4.3: DG: Laplace 2D for higher orders p, 1/h = 128

Concerning the efficiency of our method we see a slight increase of the
iteration count with increasing problem size for the two and three dimen-
sional Poisson problem in Tables 4.4 and 4.5 using the NIPG discretiza-
tion, respectively. This is expected and due to the suboptimal complexity
of the multi-level method for the first continuous coarse level. For the
SIPG method we use a higher penalty parameter and the resulting linear
system is more well conditioned. Accordingly, the number of iterations
stays nearly constant for increasing problem size. We see the same be-
haviour for OBB. This time it is a result of the better smoothing properties
of our overlapping smoothers. Here and later on, our overlapping local
problems constructed by aggregation consist of approximately thirty-five
cells.

The rest of our examples are the model problems with jumping coeffi-
cients introduced in Section 3.4. Using the unmodified versions of SIPG,
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1/h Dof levels TB TS It TIt
32 6144 2 0.032 1.54 4 0.385
64 24576 3 0.2 6.24 4 1.56
128 98304 4 0.8481 28.49 5 5.697
256 393216 5 3.408 116.7 5 23.34
512 1572864 6 13.78 663.7 6 110.6
1024 6291456 7 58.14 3888 8 486.1

(a) OBB(2), V(OSOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.02 0.09601 5 0.0192
64 24576 3 0.152 0.212 6 0.03534
128 98304 4 0.624 0.768 6 0.128
256 393216 5 2.572 3.132 6 0.522
512 1572864 6 10.39 12.91 6 2.151
1024 6291456 7 42.9 47.54 5 9.509

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.02 0.104 6 0.01733
64 24576 3 0.152 0.216 6 0.036
128 98304 4 0.636 1.068 8 0.1335
256 393216 5 2.584 4.664 8 0.583
512 1572864 6 10.54 22.01 10 2.201
1024 6291456 7 43.69 115.9 13 8.917

(c) NIPG(2,3.9), V(SOR,SOR,1,1)

Table 4.4: DG: Laplace 2D

NIPG, and OBB, we were not able to achieve convergence for reasonably
big problem sizes. Therefore, all our results are using the versions with
weighted averages (2.6) and adapted penalty parameter (2.7) as introduced
in Ern et al. [2009].

For the chequerboard model problem, Example 3.12, we present the
results in Tables 4.6 and 4.7. Our solver for OBB needs the same num-
ber of iterations until convergence for the big problems of large size. For
the smallest problem, the convergence is much better. In this case, the
non-overlapping local problems are exactly the sixty-four cells of the che-
querboard. Therefore, the augmented overlapping subdomains are the
optimal subdomains for this problem. Concerning the other discretiza-
tions, we observe a similar behaviour as for the Poisson problem.
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4 AMG for Discontinuous Galerkin

1/h DOF levels TB TS It TIt
8 5120 2 0.056 5.296 3 1.765
16 40960 3 0.8921 56.32 4 14.08
32 327680 4 7.752 569.9 4 142.5
64 2621440 5 63.76 6035 5 1207

(a) OBB(2), V(OSOR,SOR1,1)

1/h DOF levels TB TS It TIt
8 5120 2 0.04 0.416 13 0.032
16 40960 3 0.756 2.708 24 0.1128
32 327680 4 6.624 28.69 36 0.797
64 2621440 5 54.65 336.7 53 6.352

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
8 5120 2 0.044 0.376 10 0.0376
16 40960 3 0.752 2.268 15 0.1512
32 327680 4 6.676 21.89 20 1.094
64 2621440 5 55.65 345.4 39 8.858

(c) NIPG(2,3.9), V(SOR,SOR,1,1)

Table 4.5: DG: Laplace 3D

For the problem with the log-normally distributed permeability field
(Example 3.13), the results for varying problem size are given in Tables
4.8 and 4.9. For the clipped version described in Example 3.14, the
numbers can be found in Tables 4.10 and 4.11. In both cases, we left the
variance fixed at σ2

= 8 and the correlation length is scaled with the grid
width as λ = 4h. Therefore, the permeability fields become less smooth
and the problems become harder for bigger problems. This is reflected in
the increasing number of iterations needed for convergence. This time we
observe such an increase even for OBB and SIPG.

We examine the number of iterations needed for the relative defect re-
duction of 10−8 for different variances of the clipped log normally dis-
tributed random problem 3.14 in Table 4.12. We use OBB for the dis-
cretization and the overlapping smoothers for the fine level. The first row
contains the variance used for the problem, the second row the number of
iterations needed for convergence, and the last row the ratio between the
highest and lowest permeability value. In all runs the correlation length
in each dimension is λ = 1/64. The number of iterations only increases
slightly for massively increasing variance.
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4.4 Numerical Results

1/h DOF levels TB TS It TIt
32 6144 2 0.028 1.308 3 0.436
64 24576 3 0.2 11.59 7 1.656
128 98304 4 0.8361 45.67 7 6.524
256 393216 5 3.424 151 6 25.17
512 1572864 6 13.82 676.1 6 112.7
1024 6291456 7 58.47 3739 7 534.1

(a) OBB(2), V(OSOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.02 0.156 9 0.01733
64 24576 3 0.148 0.28 8 0.035
128 98304 4 0.648 1.132 8 0.1415
256 393216 5 2.616 4.632 8 0.579
512 1572864 6 10.58 18.53 8 2.317
1024 6291456 7 43.77 88.74 10 8.874

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.02 0.152 9 0.01689
64 24576 3 0.148 0.396 11 0.036
128 98304 4 0.648 1.68 12 0.14
256 393216 5 2.608 6.172 11 0.5611
512 1572864 6 10.63 26.69 12 2.224
1024 6291456 7 44.12 107.6 12 8.967

(c) NIPG(2,10), V(SOR,SOR,1,1)

Table 4.6: DG: Chequerboard 2D

In Table 4.13 we keep the variance fixed at 4 and compare the number of
iterations needed for varying correlation length λ. The number of iteration
steps needed by our OBB solver turns out to be totally robust against
changes of the correlation length.

In all the examples we have used SuperLU to solve the local problems of
our fine level smoothers when OBB was used. To save memory and thus
do reasonably big computations, we do not store and reuse the calculated
factorisations. Therefore, in each smoothing step we factorise and back-
wards resubstitute each of the local problems one by one. As the majority
of the SuperLU computation time is used for the factorisation this leads
to the long times needed for one iteration. For smaller problem sizes there
is the possibility to only compute the factorisation once and reuse them in
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4 AMG for Discontinuous Galerkin

1/h DOF levels TB TS It TIt
16 40960 3 0.8041 201.1 14 14.36
32 327680 4 7.424 2166 13 166.6
64 2621440 5 66.2 1.14e+04 8 1425

(a) OBB(2), V(OSOR,SOR,1,1)

1/h DOF levels TB TS It TIt
16 40960 3 0.752 6.02 51 0.118
32 327680 4 6.472 49.19 57 0.863
64 2621440 6 59.49 627.4 91 6.895

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
16 40960 3 0.76 5.816 53 0.1097
32 327680 4 6.388 58.53 69 0.8483
64 2621440 5 56.21 290.1 45 6.448

(c) NIPG(2,10), V(SOR,SOR,1,1)

Table 4.7: Chequerboard 3D

each iteration step. If memory consumption is not a limiting parameter,
this approach decreases the solution time drastically.
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4.4 Numerical Results

1/h DOF levels TB TS It TIt
32 6144 2 0.036 1.708 4 0.427
64 24576 3 0.196 6.856 4 1.714
128 98304 4 0.8481 30.56 5 6.112
256 393216 5 3.436 234 9 26
512 1572864 6 13.92 1207 11 109.7
1024 6291456 7 57.22 9536 18 529.8

(a) OBB(2), V(OSOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.024 0.09201 5 0.0184
64 24576 3 0.148 0.248 7 0.03543
128 98304 4 0.644 0.744 5 0.1488
256 393216 5 2.628 8.397 14 0.5998
512 1572864 6 10.62 35.84 15 2.389
1024 6291456 7 44.61 153.4 16 9.589

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.02 0.104 6 0.01733
64 24576 3 0.148 0.252 7 0.036
128 98304 4 0.648 1.132 9 0.1258
256 393216 5 2.644 9.173 16 0.5733
512 1572864 6 10.71 37.07 16 2.317
1024 6291456 7 45.25 173.2 19 9.113

(c) NIPG(2,3.9), V(SOR,SOR,1,1)

Table 4.8: Log Random Problem 2D
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4 AMG for Discontinuous Galerkin

1/h DOF levels TB TS It TIt
8 5120 2 0.052 4.504 3 1.501
16 40960 3 0.8921 55.05 3 18.35
32 327680 4 7.752 482.6 3 160.9
64 2621440 5 63.92 6132 5 1226

(a) OBB(2), V(OSOR,SOR,1,1)

1/h DOF levels TB TS It TIt
8 5120 2 0.044 0.316 12 0.02633
16 40960 3 0.752 4.204 38 0.1106
32 327680 4 6.672 60.76 75 0.8102
64 2621440 5 54.04 841.9 131 6.427

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
8 5120 2 0.044 0.312 9 0.03467
16 40960 3 0.752 1.432 13 0.1102
32 327680 4 6.512 37.58 47 0.7995
64 2621440 5 53.66 1285 201 6.391

(c) NIPG(2,3.9), V(SOR,SOR,1,1)

Table 4.9: Log Random Problem 3D, NIPG(2,3.9), V(SOR,SOR,1,1)
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4.4 Numerical Results

1/h DOF levels TB TS It TIt
32 6144 2 0.032 1.612 4 0.403
64 24576 3 0.204 6.284 4 1.571
128 98304 4 0.8481 28.8 5 5.76
256 393216 5 3.424 116.4 5 23.29
512 1572864 6 13.76 659.8 6 110
1024 6291456 7 58.15 3930 8 491.3

(a) OBB(2), V(OSOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.032 0.128 5 0.0256
64 24576 3 0.2 0.208 6 0.03467
128 98304 4 0.648 0.784 6 0.1307
256 393216 5 2.608 3.304 6 0.5507
512 1572864 6 10.62 13.14 6 2.191
1024 6291456 7 45.05 47.59 5 9.517

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
32 6144 2 0.02 0.132 6 0.022
64 24576 3 0.204 0.208 6 0.03467
128 98304 4 0.648 1.008 8 0.126
256 393216 5 2.624 4.556 8 0.5695
512 1572864 6 10.62 21.34 10 2.134
1024 6291456 7 45.3 114.1 13 8.774

(c) NIPG(2,3.9), V(SOR,SOR,1,1)

Table 4.10: Clipped Log Random Problem 2D

83



4 AMG for Discontinuous Galerkin

1/h DOF levels TB TS It TIt
8 5120 2 0.072 5.304 3 1.768
16 40960 3 0.8921 56.2 4 14.05
32 327680 4 7.724 568.8 4 142.2
64 2621440 5 63.65 6010 5 1202

(a) OBB(2), V(OSOR,SOR,1,1)

1/h DOF levels TB TS It TIt
8 5120 2 0.044 0.42 13 0.03231
16 40960 3 0.764 2.8 24 0.1167
32 327680 4 6.668 29.23 36 0.8121
64 2621440 5 54.8 338.6 53 6.388

(b) SIPG(2,10), V(SOR,SOR,1,1)

1/h DOF levels TB TS It TIt
8 5120 2 0.044 0.332 10 0.0332
16 40960 3 0.768 1.724 15 0.1149
32 327680 4 6.688 15.67 20 0.7834
64 2621440 5 54.86 247.3 39 6.341

(c) NIPG(2,3.9), V(SOR,SOR,1,1)

Table 4.11: Clipped Log Random Problem 3D

σ2 1 2 4 8 16
It. 9 10 13 21.5 55
maxτν

kτ
kν

5.5 12.3 44 369 105

Table 4.12: 2D Clipped Random Problem: Varying Variance

λ 1/2 1/4 1/8 1/16 1/32 1/64
It. 9.5 9 9.5 9 8.5 11.5

Table 4.13: 2D Clipped Random Problem: Varying Correlation Length
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4.5 Related Work and Discussion

4.5 Related Work and Discussion

To our best knowledge the first publications of AMG as a solver to discon-
tinuous Galerkin discretizations is Dobrev [2007]. It contains a case study
of applying (smoothed) element agglomeration AMG to linear systems from
piecewise linear SIPG discretizations. The coarse level matrices are cre-
ated using a Galerkin product PTAP. The prolongation operator P from the
first coarse grid is defined by the natural embedding of the corresponding
space of piecewise constant trial functions into that of piecewise linear
trial functions both defined on the finest grid. A recursive graph bisection
algorithm is used on the adjacency graph of the grid elements to form
the remaining coarser meshes. The elements of the coarse meshes are
agglomerations of the elements of the fine grid. The prolongation matri-
ces from these meshes represent the natural embeddings of the piece-wise
constant trial spaces on the coarse mesh into those on the next fine mesh.
No strength of connection criterion is used and therefore this approach
cannot be applied to problems with jumping diffusion coefficients. Fur-
thermore the complexity of the hierarchy building is O(N log(N)), where N
is the number of unknowns.

More recently, the application of smoothed aggregation algebraic multi-
grid was investigated by Prill et al. [2009]. The authors solve linear sys-
tems from NIPG and SIPG discretizations with piecewise constant and
bi-linear quadrilateral elements. Higher order elements are discarded
with the note that p-multigrid could be used to reduce the polynomial or-
der. No numerical tests for jumping diffusion coefficients were performed.
Compared to non-smoothed aggregation multigrid the presented approach
produces considerable fill-in on the coarser levels. This effect would even
be more amplified for higher order discretizations.

In contrast to the above mentioned approaches we have shown that
our preconditioner can be used for higher order discretization and the
discretizations by the Baumann and Oden method. Additionally, they are
robust preconditioner for problems with highly discontinuous diffusion
coefficients.
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5 Parallelisation

Solving large sparse linear systems is an ubiquitous task in the numerical
solution of partial differential equations. Increasing demands of compu-
tationally challenging applications both in problem size and algorithm
complexity, have lead to the development of parallel scalable solver li-
braries for these tasks. Commonly used parallel iterative solver libraries
are hypre, Falgout and Yang [2006], PETSc, Balay et al. [1997], and Trili-
nos, Heroux et al. [2005]. Of these only the last one provides a decent C++
interface.

All of the parallel solver libraries mentioned above work with distributed
data structures (matrices and vectors) which implicitly know the data
distribution and communication patterns. In contrast to this, in our ap-
proach the data distribution and communication is not built into the linear
algebra data structures. This leads to a clear separation of parallelisation
aspects and sequential linear solver components. Moreover the compo-
nents can be adapted to the data distribution of PDE codes using either
overlapping or non-overlapping grids.

In our approach the information about the data decomposition and com-
munication interfaces is provided from outside by distributed index sets.
These are kept apart from the linear algebra data structures. They are
used to impose an abstract consistency model onto the building blocks
(scalar products, preconditioners and parallel operators) of our iterative
solvers. This allows us to minimise the communication steps in the
solvers.

In the next section, we describe the proposed domain decomposition
together with the parallel discretization approach. This kind of discretiza-
tion is a prerequisite for our parallelisation approach. We devote Section
5.2 to the building blocks of our parallel solvers including our parallel
smoothers. In Section 5.3, we finally describe the parallelisation approach
of our AMG preconditioner and conclude this chapter in Section 5.4 with
numerical results for our model problems. These will prove the good scal-
ability of our approach.
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5 Parallelisation

5.1 Domain Decomposition

A crucial part in parallel solvers is the construction of the operators from
a given domain decomposition. The usage of these operators is twofold.
On the one hand, they are used for matrix vector products, for example to
compute the current residual in iterative methods or for the orthogonal-
isation process in Krylov methods. On the other hand, they are used to
construct preconditioners. In this section we will show how we set them
up to handle both tasks efficiently.

We decompose the domain Ω into P (the number of processors) non-
overlapping subdomains Ωi with

Ω =

P⋃

i=1

Ωi , Ωi ∩Ωj = ∅ for i , j .

The decomposition is provided from outside, for example by partitioning
tools or a parallel grid manager. Therefore, the data decomposition can be
either overlapping or non-overlapping. We would like to be able to cover
both cases. Therefore, we introduce the additional (possibly overlapping)
decomposition Ω̃i , with

Ωi ⊆ Ω̃i ⊆ Ω .

This decomposition is the one that is provided to us. Note that

Ω̃i = Ωi

holds for a non-overlapping domain decomposition. For an overlapping
domain decomposition we have

Ωi ( Ω̃i .

5.1.1 Finite Element Spaces

Let Vh be a finite element space, that is generated by a basis Φh =
{φ1, φ2, . . . , φN }. Then it is obvious that any u ∈ Vh can be represented as
u =

∑N
i=1 xiφi . The coefficients form a vector x = (x1, . . . , xN )T ∈ RN .

For any finite dimensional subset I ⊂ N we define RI as the vectors
x = (xk1 , xk2 , . . . , xkM )T , where ki ∈ I and M = |I |. Assuming that Φh is a
nodal basis, that is every φi ∈ Φh is associated with some position zi ∈ Ω,
we define for every subspace ω ⊂ Ω the index set

Iω = {k ∈ {1, . . . , N}|zk ∈ ω}
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5.1 Domain Decomposition

as the (not necessarily consecutive) index set Iω corresponding to the do-
main ω for the nodal basis Φh .

Thus, IΩi denotes all indices of basis functions associated with the sub-
domain Ωi . Note that IΩ = {1,2, . . . , N} holds.

5.1.2 Restriction

We define the following restriction operator for an arbitrary subdomain
ω ∈ Ω:

Rω : RIΩ → RIω by (Rωx)k = (x)k ∀k ∈ Iω (5.1)

and the corresponding prolongation operator

RTω : RIω → RIΩ by (RTωxω)k =

{
(xω)k k ∈ Iω
0 k < Iω

. (5.2)

Note that Rω just selects the coefficients of x that are associated with
the subdomain ω and we have

RωR
T
ω = 1ω

where 1ω denotes the identity on RIω .

Lemma 5.1. (Partitioning of RIΩ ) There exists a (not necessarily unique)

disjoint partitioning

IΩ =

P⋃

i=1

Ii , Ii ∩ Ij = ∅ ∀i , j

with Ii ⊂ IΩi .
Proof. Since ∪Ωi = Ω it is obvious that

P⋃

i=1

IΩi = IΩ

is a possibly overlapping decomposition. This immediately gives a con-
structive set

Ii = IΩi \

i−1⋃

j=1

IΩj

 .

�

From now on, Ii is a disjoint partitioning based on the domain decom-
position Ωi . With RIi we associate the canonical restriction Ri : RIΩ → RIi
and the prolongation RTi : RIi → RIΩ in the same way as in equations (5.1)
and (5.2).
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5 Parallelisation

5.1.3 Parallel Representations

In a parallel implementation x ∈ RIΩ cannot be stored in one process but is
represented by individual pieces. As there might be the need to store more
entries than the domain Ω̃i contains, we introduce the super-set Ĩi ⊇ IΩ̃i
denoting all indices for which process i stores values. Let P = {1, . . . , P}
be the set of processes being used. Then each process i ∈ P stores the

piece xi ∈ R̃Ii of the global vector x.
The goal is now to use purely sequential matrix and vector data struc-

tures and operations and still be able to do parallel computations reusing
sequential linear algebra kernels. Therefore, one has to impose certain
constraints onto the local representations of global vectors when entering
the kernel methods as well as to guarantee certain representations upon
exit of the methods. These constraints will be defined here.

Definition 5.2 (Consistent/Valid representation of a vector). A vector x is
stored in a consistent representation on the decomposition Ji ⊆ Ĩi , i ∈ P
and ∪i∈PJi = IΩ, if and only if for all of its components xi

(RT
Ĩi

xi)k = (x)k ∀k ∈ Ji ,

on all processes i ∈ P holds.
For the case Ji = Ĩi this means that all entries in the local vector xi are

the same as the corresponding entries in the global vector x. In this case
x is said to be consistent.

For the case Ji = Ii we speak of a valid representation of a vector x.

Definition 5.3 (Additive representation of a vector). A vector x is stored
in an additive representation if and only if

x =
P∑

i=1

RT
Ĩi

xi .

It is obvious, that if a vector x is stored in an additive representation it
can easily be transformed into a consistent representation on the decom-
position Ĩi , i ∈ P, by

xi = R̃Ii

P∑

i=1

RT
Ĩi

xi .

For this operation communication is needed.
A special case of the additive representation is the unique representa-

tion of a vector:
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5.1 Domain Decomposition

Definition 5.4 (Unique representation of a vector). A vector x is stored in
a unique representation on the processes of P if and only if

(RT
Ĩi

xi)k =
{

xk k ∈ Ii
0 k < Ii

holds for all processors i ∈ P.

Note that each vector x being stored in a valid representation can easily
be transformed to a unique representation by a local projection, that sets
all entries associated to indices of Ĩi \ Ii to zero. This is a purely local
operation requiring no communication.

5.1.4 Operators

Let A : RIΩ → RIΩ be the global operator that shall be represented by

applying local operators Ai : R̃Ii → R̃Ii , to be defined later. These opera-
tors need to be carefully crafted and consistency constraints have to be
imposed on the global vector operated on and onto the result of the ap-
plication. A second purpose of the local operators is for the construction
of preconditioners, which must not be neglected. Our goal is to define
the local operators in a way such that the sequential preconditioners, e.g.
SOR, can still compute updates stored in a valid representation.

We assume that the mesh T = {τ1, . . . , τM } is compatible with the sub-
domains. That is, with

T (ω) = {τ ∈ T | τ ∩ ω , ∅}

being the elements of the grid that are part of a subdomain ω ⊂ Ω, it holds
that ⋃

τ∈T (Ωi )

τ = Ωi and
⋃

τ∈T (Ω̃i )

τ = Ω̃i

holds for all i ∈ P.
With each element τ ∈ T we associate the restriction Rτ : RIΩ → RIτ in

the way defined above. The global operator A in the finite element method
is constructed locally in an additive way

A =
∑

τ∈T
RTτ AτRτ (5.3)

where Aτ, the so-called local stiffness matrix, is associated with the element
τ.
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5 Parallelisation

Although we allow overlapping subdomains (Ωi ( Ω̃i ) here, we want to
achieve local operators that only compute values for the unique partition
Ii .

Since the subdomains Ωi define a non-overlapping decomposition of Ω
and the mesh is compatible, we have

A =

P∑

i=1

∑

τ∈T (Ωi )

RTτ AτRτ =

P∑

i=1

∑

τ∈T (Ωi )

RT
Ωi
RΩiR

T
τ AτRτR

T
Ωi
RΩi

=

P∑

i=1

RT
Ωi


∑

τ∈T (Ωi )

RΩiR
T
τ AτRτR

T
Ωi


︸                         ︷︷                         ︸

=:AΩi

RΩi =

P∑

i=1

RT
Ωi
AΩiRΩi .

(5.4)

The local operator AΩi is a mapping AΩi : RIΩi → RIΩi . Thus, we have
obtained an additive decomposition of the operator A. The application of
the local operators AΩi can be computed in each processor i in parallel
without communication as long as the vector is stored in a consistent
representation on IΩi , i ∈ P.

Unfortunately, the entries of the local matrix row might not be equal to
the corresponding entries in the global matrix representation. Therefore,
the result of the application of the local operators AΩi is not stored in a
valid representation on Ωi but in an additive representation. This means
that, before continuing any computations, a communication step would
be needed to store the vector in a valid representation. In addition, it is
still not possible to create preconditioners working directly on the operator
representation, like block Gauss-Seidel, that are able to compute updates
that are consistent on IΩi without additional communication or storing
an additional representation of the operator for the preconditioner. Fur-
thermore, overlapping subdomains Ωi , Ω̃i are not captured yet by this
representation.

A remedy to this situation is to store on process i for each local matrix
row corresponding to an index in Ii all off-diagonal nonzero entries of the
global matrix with the corresponding global value. This means that our
vectors might need to store additional values, due to the additional matrix
entries. Therefore, the index set IΩi needs to be augmented in the following
way.

Let G(A) = (V, E) be the graph of the global sparse matrix A. Then we
set Îi = IΩi ∪ {j ∈ I | ∃i ∈ IΩi with (j, i) ∈ E} and define the new index set
Ĩi = IΩ̃i ∪ Îi .
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5.1 Domain Decomposition

Now we construct the local operator mapping ÃIi : R̃Ii → R̃Ii as

(ÃIi )α̙ =



(
P∑
j=1

(RT
Ωi
AΩiRΩi )

)

α̙

if α ∈ Ii ∧ ̙ ∈ Îi

δα,̙ if α < Ii
0 else

, (5.5)

where

δα,̙ =

{
1 if α = ̙
0 else

denotes the Kronecker delta.
Graphically the operator ÃIi has the following structure

Ĩi



Îi



Ii


Aii ∗ 0

0 I 0
0 0 I

,

where

(Aii)α̙ =


P∑

j=1

RT
Ωi
AΩiRΩi


α̙

= (A)α̙ (5.6)

are the entries of the sub-matrix (principal sub-matrix) Aii of A with respect
to the indices Ii . The entries of the matrix denoted by ∗ are equal to the
entries in global matrix representation.

Note that for the case Îi * IΩ̃i , e.g. real non-overlapping grids, computing
this local operator requires communication. Using this local operator, we
are in position to compute an update stored in a valid representation
provided that the vector is stored in a consistent representation on the
decomposition Îi , i ∈ P.

Using a modified local operator SiÃIi , where Si = R̃IiR
T
i RiR

T

Ĩi
sets all

entries xi , i < Ii , to 0, results in the additive decomposition:

A =

P∑

i=1

RT
Ĩi
SiÃIi R̃Ii .

Assuming that the vector to which the operator A is applied is stored in
a consistent representation on the decomposition Îi , i ∈ P, the application
of the local operators SiÃIi results in a vector being stored in a unique
representation. Together with the mentioned constraints this operation
itself does not require any communication.
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5.2 Parallel Solver Components

While other parallel solver libraries, like PETSc, Balay et al. [2004], use
parallel data structures (matrices and vectors) that (implicitly) know the
data distribution and communication patterns we decided to clearly sep-
arate the parallelisation aspects from the data structures used. This is
done by imposing an abstract consistency model onto our sequential lin-
ear algebra. It allows us to reuse the sequential linear algebra and just
introduce synchronisation points into our algorithms to guarantee that
the data is in the right state for the operation.

Based on the description of the domain decomposition and according
parallel discretization we now introduce the building blocks of our parallel
solvers.

5.2.1 Scalar Products and Norms

One of the building blocks of Krylov methods is computing scalar products
and norms on the underlying vector spaces.

Let x, y be vectors stored in a valid representation. Then a parallel scalar
product can easily be computed by calculating

x · y =
P∑

i=1

(RIix) · (RIiy) .

Note that the projection can be done locally and the sum requires one
global communication step. Therefore, we do not impose any additional
prerequisites onto x, y.

5.2.2 Linear Operators

In our algorithms a linear operator is used for two operations. The first is
applying it to a vector x and storing it in another vector y = Ax. The sec-
ond operation is scaling the result of the operator application and adding
it to another vector, that is y = y + αAx. The prerequisites for both opera-
tions are that x is stored in a consistent representation and y is valid. On
completion of both operations, y has to be stored in a unique representa-
tion. This post-requisite is only necessary to ensure that the result is in
a representation to be processed by one of our parallel preconditioners.

As described in Section 5.1.3, the parallel storage of our operators is
such that for every matrix row with index k ∈ Ii , i ∈ P, associated with the
unique decomposition, all non-zero column entries of the global matrix are
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known to process i. Therefore, it suffices to apply the local operators de-
fined above. After that, we do a local projection to the unique representa-
tion using the local projector Si . That is yi = SiÃIix

i and yi = Si(yi+αÃIix
i),

respectively.

5.2.3 Preconditioners and Smoothers

As preconditioners and smoothers we only consider non-overlapping ad-
ditive Schwarz methods with inexact subdomain solvers. The local sub-
domains correspond to the span of the basis functions associated to the
disjoint partitioning Ii , i = 1, . . . , P, introduced above. The inexact sub-
domain solvers we use are traditional stationary iterative methods like
Jacobi, Gauss-Seidel or SSOR. In addition, there is an incomplete LU
decomposition method available.

Our local operators ÃIi , i ∈ P, do not correspond to the disjoint parti-
tioning, but also allow matrix entries that represent influences from un-
knowns outside of Ii on process i. To prevent these influences and end up
with the preconditioners above, the vector to which the preconditioner is
applied has to be stored in a unique representation. After the application
of the preconditioner, we assure that the result is stored consistently.
This requires one communication step after the application of the local
(sequential) preconditioners.

Let MĨi
, i ∈ P, be the sequential preconditioner computed for matrix ÃIi

and di the consistently stored defect. Then the local update ui is computed
by applying the parallel preconditioner as

ui = R̃Ii

∑

p∈P
SiMĨid

i

5.2.4 Solvers

With the operators, preconditioners, scalar products, and norms fulfilling
the pre- and post-requisites for their application as posed in the previ-
ous subsections (see Table 5.1), we can use the sequential formulation of
Krylov and other iterative solvers. Provided that both, right and left hand
side of our linear system, are consistent, we have fully parallel solvers
without any explicit parallelisation of the solver algorithms.
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component operation pre-condition post-condition
scalar product

x valid x unchanged
norm

linear operator
y = Ax

x consistent, y valid y unique
y = y + αAx

preconditioner
u = Md d unique u consistent

smoother

Table 5.1: Consistency Constraints onto Vector Representations for Solver
Components

5.3 Parallel AMG

The multigrid Algorithm 3.1 is already inherently parallel once its single
components are parallelised. We already described the parallel smoothers
used for our multigrid method in Subsection 5.2.3. Therefore, only the
coarsening, the prolongation, and the restriction are left to be described.

5.3.1 Coarsening Strategy

The parallelisation of the coarsening algorithm described in Chapter 3 is
rather straightforward. It becomes simple and massively parallel, since
the aggregation will only occur on vertices that correspond to the matrix
Aii . Using this approach, the coarsening process will of course deal better
with the algebraic smoothness if the disjoint matrix Aii is split along weak
edges.

The parallel approach is described in Algorithm 5.1. It builds the ag-
gregates Ãi of this level and the parallel index sets Ĩcoarse

i for the next level
in parallel. The parameters are the edges and vertices of the matrix graph
G(ÃIi ) = (ṼIi , ẼIi ) and the disjoint index set Ii . The rest of the parame-
ters are the same as for the sequential Algorithm 3.2. As a first step a
subset (Vi , Ei) of the input graph that corresponds to the index set Ii is
created. These graphs {(Vi , Ei)}i∈P form a disjoint partitioning of the global
matrix graph. Then the sequential aggregation algorithm is executed on
this sub-graph. Based on the outcome of this aggregation a map between
indices and corresponding aggregate indices is built and the information
is published to all other processes that share vertices of the overlapping
graph. Now every process knows the aggregate index of each vertex of
his part of the overlapping graph and constructs the overlapping coarse
index set and the aggregates. Note that this algorithm only needs one
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communication step.

Algorithm 5.1 Parallel Aggregation
procedure ParallelAggregation(Ii , ṼIi , ẼIi , smin, smax, dmax)

On process i ∈ P:

Vi ← {vk ∈ ṼIi | k ∈ Ii} ⊲ Only vertices owned by i
Ei ← {(k, l) ∈ ẼIi | k ∈ Ii ∧ l ∈ Ii} ⊲ Only edges between vertices owned

by i
(Icoarse
i ,Ai)←Aggregation(Vi , Ei , smin, smax, dmax)

ai ← 0 ∈ N#ṼIi

for Ak ∈ Ai do

(RT

Ĩi
ai)j ← k ∀vj ∈ Ak

end for

ai ← R̃Ii
∑
q∈P RT

Ĩq
aq ⊲ Communicate aggregates mapping

Ĩcoarse
i ← {k | ∃vj ∈ ṼIi with (R̃T

Ĩi
ai)j = k} ⊲ Coarse overlapping index

set
Ãi
k ← {vj ∈ ṼIi | (R̃

T

Ĩi
ai)j = k}

Ãi ← {Ãi
k | ∃vj ∈ ṼIi with (R̃T

Ĩi
ai)j = k}

return (̃Icoarse
i , Ãi)

end procedure

Remark 5.5. For each aggregate on process i, that consists of indices in
Ĩi \ I on the fine level, the child node, representing that aggregate on the
next coarser level, is again associated with an index in Ĩi \ I. This means
that for all vertices in Ii on the coarse level all neighbours they depend on
or influence are also stored in process i.

The coarse level matrix is then calculated using the Galerkin product
(3.20). To satisfy the constraints of our local operators (5.5), we need to set
the diagonal values to 1 and the off-diagonal values to 0 for all matrix rows
corresponding to the overlap region Ĩ l+1

i \ I l+1
i . The coarse level matrix has

the structure proposed by our parallelisation approach (5.5) just as the
fine level matrix. Therefore, all matrix-vector operations can be performed
locally on each processor on all levels of the hierarchy provided that the
vectors are stored consistently.

5.3.2 Data Agglomeration

Note that our aggregation Algorithm 5.1 does not build any aggregates
that cross over the borders of our disjoint partitioning. Therefore, it is
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reasonable to choose the fine level partitioning of the unknowns with the
aggregation in our mind. For problems with jumping coefficients, like the
model problems introduced in Section 3.4, it would be ideal if the borders
of our disjoint partitioning coincide with the high contrast jumps in the
permeability of our problems. If this is not feasible, there should at least
be a region with only mildly varying coefficients around the border of the
partitioning, that is big enough for aggregation until the coarsest level.

On the fine level, we rely on the user (or third party software) providing
our solver with a reasonable partitioning of the global matrices and vectors
onto the available processes. Most of the time this will simply not be the
case as the discretization software often cannot be configured in a way to
produce a partitioning with the properties defined above.

The currently available supercomputers, like the Jugene in Jülich, are
already providing more than one PetaFlops to users. These supercom-
puters make hundreds of thousands of cores available for usage. Even
if the coarsening approach is pushed to its limit, the coarse level system
would still have at least as many unknowns as the number of proces-
sors participating in the computation. Solving such a coarse level system
in parallel would mean doing very few floating point operations between
many communication steps. Therefore this computation would be limited
by the available bandwidth of the communication network.

In addition, parallel direct sparse solver do not scale very well for large
numbers of processes. In a recent report, Gupta et al. [2009], various
parallel sparse direct solvers are evaluated. It was shown that even for
the most scalable solver, the one of the Watson Sparse Matrix Package,
Gupta [2000], this means that for a fixed number of 6400 unknowns
the time needed for solving on 16 processes drops only by a factor six
compared to the time needed when using only one process.

To overcome these problems, we agglomerate the data onto fewer pro-
cesses whenever the average number of unknowns on a level drops below
the prescribed coarsening target. The new partitioning of the matrix graph
is computed using parallel graph partitioning software ParMETIS, Karypis
and Kumar [1998]. As the input graph, we use the weighted graph of the
global matrix. Its edge weights are set 1 for edges that are considered
strong by our strength of connection measure and 0 otherwise. This tells
the graph partitioning software that weak connections can be cut at no
cost and leads to partitionings that keep small connected regions on one
process. We believe that this approach results in sufficient coupling of
strongly connected unknowns on coarser grids.

This kind of aggregation is repeated recursively until on the coarsest
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level there is only one participating process. We can now use a sequential
sparse direct solver as the coarse level solver.

In Figure 5.1, the interplay of the coarsening and the data agglomeration
process is sketched. Each node represents a stored matrix. Next to it the
level index is written. Note that on each level, where data agglomeration
happens, some processes store two matrices, a non-agglomerated and an
agglomerated one. The latter is attribute with an inverted comma after
the level number.
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Figure 5.1: Data agglomeration

Whenever data agglomeration happened, the parallel smoothers use the
not yet agglomerated matrix as input for efficiency reasons.

5.3.3 Prolongation and Restriction

For both, prolongation and restriction, we require the input vectors to
be stored consistently. After the operation completes the output vector
is stored in a consistent representation. Because of Remark 5.5, the
prolongation to level l can be carried out locally without the need for any
communication.

Unfortunately, for having a consistent vector after restricting locally
from level l, all vertices of the aggregate representing the coarse level node
on process i would have to be stored on the same processor. But this
is just the case for aggregates consisting of indices in Ii and not for the
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others. Therefore, the locally restricted vector is just stored in a valid
representation and has to be made consistent using communication.

Whenever the matrix was agglomerated on the fine level, both prolon-
gation and restriction need an additional communication step. In the
restriction, the data is gathered onto fewer processors and in the prolon-
gation, the data is scattered to the additional processes participating on
the fine level.

5.4 Scalability Tests

In this section we measure the performance of our parallelisation ap-
proach experimentally. We use the model problems presented in Section
3.4. We only consider Q1 finite elements on a structured square and cube
grid in two and three dimensions, respectively. We use the V-cycle of our
AMG method with one step of pre- and post-smoothing as a preconditioner
to the conjugate gradient method. As a smoother, we use the approach
above with one step of SSOR as inexact local solver. We stop the coars-
ening process at the first level with less than 2000 unknowns. Due to
data agglomeration to fewer processes, all unknowns of the coarsest level
reside on one process and a sequential coarse solver (SuperLU) is used.

If not labelled otherwise, all calculations contained in this section were
performed on the Helics II cluster at the Interdisciplinary Centre for Scien-
tific Computing at the university of Heidelberg. The cluster consists of 156
compute nodes. Each node has two dual core AMD Opteron 2220 CPUs
with 2.8 Ghz. The nodes are interconnected by a 10G Myrinet network.
In each run all four cores of a node were used.

In the presented tables the same notation was used as for our sequential
tests. Additionally, we present the number of processes used labelled with
“procs” and the number of grid cells labelled with 1/h.

We start with a weak scalability test. For this test the problem size per
process stays fixed. For an optimal method without any communication
cost the total time to solve the linear system should stay the same re-
gardless of how many processes are used. In Table 5.8 we present the
time needed by the solver and other information for the model problems
in two dimensions. We see an increase in the build time (TB) when going
from one to sixteen processes. Here the number of neighbours, that a
process communicates with during the aggregation and solution phase,
increases. The maximum number of communication partners is reached
with sixteen processes and stays the same for larger process numbers.
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This is reflected in the build time that reaches a plateau for big process
numbers. The remaining increase is due to the gradual data agglomera-
tion. The same arguing holds true for the time needed for one iteration
step (TIt) as it uses the same communication patterns. Still the total time
to solution (TT) increases gradually. We expect this, as even the sequential
method has this slight dependency of the iteration count on the number
of levels used.

The differences in the behaviour of the method are due to the data ag-
glomeration strategy using ParMETIS. The new partitionings that ParMETIS
creates turn out to be different from run to run of the same problem. For
the chequerboard problem the number of iterations needed stays constant
from four to sixty-four processes. This is due to the geometry of the che-
querboard. It has eight cells in each direction. If we change the number of
cells to seven, the iteration count increases gradually as expected. For the
anisotropic problem, the time needed for one iteration step stays constant
for the parallel runs. Therefore, the resulting repartitionings of ParMETIS
seem to be optimal in terms of communication time needed to redistribute
the data.

In Table 5.3 we present the efficiency for the weak scalability. We define
this weak efficiency as

E =
TS

TP
,

where TS is the time of our sequential method, and TP is the time needed by
our parallel method using p processes. Note that this measure is easy to
compute but not really fair to our method. If we would compute the same
problems sequentially, the number of iterations needed for convergence
would increase with the problem size. This dependency is neglected here
and we assume that our method needs a constant number of iterations
regardless of the problem size in the sequential version.

For the three dimensional model problems our test results are presented
in Tables 5.4 and 5.5.

Obviously our method has various overheads besides the communica-
tion overhead. This additional overhead is mainly due to the data agglom-
eration onto fewer and fewer processes on the coarse levels. It is the cause
for the increase in the time needed per iteration (TIt) and the build time
when moving from one to four participating processes. Still the overall
efficiency for all the problems is approximately 1

3 on 256 processes. And
it does not decrease very drastically for increasing process numbers.

In Tables 5.4 and 5.5 we present results from the weak scalability tests
for the three dimensional model problems. Due to more computational
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work per unknown int the aggregation and the matrix vector products,
the time needed for the data agglomeration and the time needed for cum-
munication is a lesser percentage of the total time needed for solution.
Therefore, the overall scalability is better and we see a smaller drop in
efficiency when going from one process to the next bigger number of pro-
cesses.

To show that our solver scales well on state of the art supercomput-
ers, we show scalability results of computations performed on Jugene
located at Forschungszentrum Jülich in Table 5.6 and 5.7. Jugene is a
Blue Gene / System P machine manufactured by IBM that provides more
than one petaflops as overall peak performance. The data agglomeration
strategy used for the tests on Jugene differs slightly from the one used on
Helics. For Helics we always used 1/8 of the processes after the agglom-
eration. For Jugene we choose the number of processes after the data
agglomeration such that the number of unknowns per process is a least
eight times the coarsen target. This strategy is more aggressive and a less
predictable number of agglomeration steps. Using 4096 processes data is
only agglomerated twice. First to 162 and than to on process. For the run
with 512 processes we also agglomerate data twice. The additional cost
for this reflected in the drastic increase for the build time between the run
with 512 and the one with 4096 processes. The computing power per cpu
core of Jugene is less than that of Helics, while the network of Jugene has
lower latency and is faster than that of Helics. This results in a better
scalability of the time needed per iteration for scalability test on Jugene.

For completeness, we perform a strong scalability test on helics, too.
That is, we keep the global problem size fixed for each run and just in-
crease the number of processors participating in the computation. For
this kind of test the efficiency is defined as

E =
TS

pTP
.

As expected the efficiency of our method decreases very drastically due
to the less and less parallel nature of the algorithm on the coarser levels.
For 256 processes the data agglomeration starts already on the fine level
and the computation is actually done with only sixty-four processes. The
time needed by the solver for the two dimensional model problems can be
found in Table 5.8.

Last but not least, we repeat the scalability test using the two dimen-
sional problem with the clipped random premeability field in Table 5.9.
This time we leave the variance σ2

= 8 fixed while scaling the correlation
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length λ = 4h with the width h of the grid elements. Recall, that the
problems not only get harder because of the increasing problem size but
also because of the decreasing correlation length. Due to this fact the
number of iterations needed to achieve convergence increase more steeply
now. Considering the increasing hardness of the problems the scalability
is reasonably good.
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procs 1/h lev. TB TS It TIt TT
1 1024 6 6.94 16.06 19 0.8453 23
4 2048 7 7.98 26.2 23 1.14 34.2

16 4096 8 8.74 30.7 27 1.14 39.4
64 8192 9 9.3 50.3 32 1.57 59.6

256 16384 10 9.93 56.4 37 1.52 66.3
(a) Poisson Problem

procs 1/h lev. TB TS It TIt TT
1 1024 6 6.85 22.68 27 0.84 29.53
4 2048 7 7.62 46.8 41 1.14 54.4

16 4096 8 8.36 59.5 43 1.38 67.8
64 8192 9 9.55 57 43 1.32 66.5

256 16384 10 9.46 100 66 1.52 110
(b) Chequerboard Permeability Problem

procs 1/h lev. TB TS It TIt TT
1 1024 6 7.72 23.15 24 0.9646 30.87
4 2048 7 8.28 40.9 31 1.32 49.1

16 4096 8 9.01 45.5 34 1.34 54.5
64 8192 9 9.16 52.5 39 1.35 61.7

256 16384 10 9.51 82.3 48 1.71 91.8
(c) Random Permeability Problem (λ = 1/64, σ = 4)

procs 1/h lev. TB TS It TIt TT
1 1024 7 7.9 50.97 45 1.133 58.87
4 2048 8 9.31 101 54 1.88 111

16 4096 9 10.1 120 67 1.8 131
64 8192 10 10.2 141 78 1.8 151

256 16384 11 10.7 161 88 1.83 171
(d) Anisotropic Permeability Problem

procs 1/h lev. TB TS It TIt TT
1 1024 6 7.21 21.13 22 0.9605 28.34
4 2048 7 8.33 50.1 31 1.62 58.4

16 4096 8 9.09 65.3 41 1.59 74.4
64 8192 9 9.5 68.6 49 1.4 78.1

256 16384 10 10.1 77.6 52 1.49 87.7
(e) Clipped Random Permeability Problem (λ = 1/64, σ = 4)

Table 5.2: Weak Scalability on Helics for 2D problems
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procs 1/h TB TS TIt TT
4 2048 0.87 0.613 0.742 0.673

16 4096 0.794 0.523 0.744 0.583
64 8192 0.746 0.319 0.538 0.386

256 16384 0.699 0.285 0.555 0.347
(a) Poisson Problem

procs 1/h TB TS TIt TT
4 2048 0.899 0.485 0.737 0.543

16 4096 0.819 0.381 0.607 0.435
64 8192 0.717 0.398 0.634 0.444

256 16384 0.724 0.227 0.554 0.27
(b) Chequerboard Permeability Problem

procs 1/h TB TS TIt TT
4 2048 0.932 0.566 0.732 0.628

16 4096 0.857 0.509 0.721 0.567
64 8192 0.843 0.441 0.717 0.501

256 16384 0.812 0.281 0.562 0.336
(c) Random Permeability Problem (λ = 1/64, σ = 4)

procs 1/h TB TS TIt TT
4 2048 0.849 0.503 0.603 0.532

16 4096 0.786 0.423 0.63 0.451
64 8192 0.775 0.362 0.628 0.39

256 16384 0.74 0.317 0.62 0.344
(d) Anisotropic Permeability Problem

procs 1/h TB TS TIt TT
4 2048 0.866 0.422 0.595 0.485

16 4096 0.793 0.323 0.603 0.381
64 8192 0.759 0.308 0.686 0.363

256 16384 0.716 0.272 0.644 0.323
(e) Clipped Random Permeability Problem (λ = 1/64, σ =
4)

Table 5.3: Weak Efficiency on Helics for 2D Problems
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procs 1/h lev. TB TS It TIt TT
1 64 4 7.93 6.17 12 0.5142 14.1
8 128 5 8.79 11.1 16 0.696 19.9

64 256 6 10.7 18 20 0.899 28.7
512 512 7 12.5 31.3 25 1.25 43.8

(a) Poisson Problem

procs 1/h lev. TB TS It TIt TT
1 64 4 7.91 6.93 13 0.5331 14.84
8 128 5 8.88 16.9 25 0.675 25.8

64 256 6 10.8 32 36 0.889 42.8
512 512 7 16.5 69.6 55 1.27 86.1

(b) Chequerboard Permeability Problem

procs 1/h lev. TB TS It TIt TT
1 64 4 8.03 8.64 16 0.54 16.67
8 128 5 9.49 16.9 23 0.737 26.4

64 256 6 11 29.2 30 0.974 40.2
512 512 7 13.6 53.8 42 1.28 67.4

(c) Random Permeability Problem (λ = 1/64, σ2
= 4)

procs 1/h lev. TB TS It TIt TT
1 64 4 6.96 8.59 16 0.5369 15.55
8 128 6 8.08 17.8 25 0.714 25.9

64 256 7 10 26.3 31 0.847 36.3
512 512 7 13.8 54.1 38 1.42 68

(d) Anisotropic Permeability Problem

procs 1/h lev. TB TS It TIt TT
1 64 4 8.18 7.1 13 0.5462 15.28
8 128 5 9.36 14.5 18 0.804 23.8

64 256 6 11 19.2 22 0.875 30.3
512 512 8 12.7 38.9 30 1.3 51.6

(e) Clipped Random Permeability Problem (λ = 1/64, σ2
= 4)

Table 5.4: Weak Scalability on Helics for 3D Problems
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procs 1/h TB TS TIt TT
8 128 0.902 0.554 0.738 0.707

64 256 0.742 0.343 0.572 0.492
512 512 0.633 0.197 0.411 0.322

(a) Poisson Problem

procs 1/h TB TS TIt TT
8 128 0.891 0.411 0.79 0.576

64 256 0.731 0.216 0.6 0.346
512 512 0.479 0.0995 0.421 0.172

(b) Chequerboard Permeability Problem

procs 1/h TB TS TIt TT
8 128 0.846 0.51 0.733 0.631

64 256 0.732 0.296 0.555 0.415
512 512 0.59 0.161 0.421 0.247

(c) Random Permeability Problem (λ = 1/64, σ2
= 4)

procs 1/h TB TS TIt TT
8 128 0.861 0.482 0.752 0.6

64 256 0.695 0.327 0.634 0.429
512 512 0.504 0.159 0.377 0.229

(d) Anisotropic Permeability Problem

procs 1/h TB TS TIt TT
8 128 0.874 0.491 0.679 0.641

64 256 0.742 0.369 0.624 0.505
512 512 0.643 0.182 0.421 0.296

(e) Clipped Random Permeability Problem (λ = 1/64,
σ2
= 4)

Table 5.5: Weak Efficiency on Helics for 3D problems
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procs 1/H lev. TB TS It TIt TT
1 64 4 47.08 31.86 14 2.276 78.94
8 128 5 56.8 50.6 20 2.53 107

64 256 6 89.8 70.9 26 2.73 161
512 512 7 89.57 97.67 35 2.79 187.2

4096 1024 8 120.2 107.2 37 2.897 227.4
(a) Time needed by solver

procs 1/h TB TS TIt TT
8 128 0.83 0.63 0.90 0.74

64 256 0.53 0.45 0.84 0.49
512 512 0.53 0.33 0.82 0.42

4096 1024 0.39 0.30 0.79 0.35
(b) Efficiency of solver

Table 5.6: Jugene: Weak Scalability Clipped Random Permeability Prob-
lem 3D (λ = 1/64, σ2

= 8)

procs 1/h lev. TB TS It TIt TT
1 64 4 46.46 24.44 11 2.222 70.9
8 128 5 56.4 39.3 16 2.46 95.7

64 256 6 88 50.2 19 2.64 138
512 512 7 87.5 60.8 23 2.64 148

4096 1024 8 113 77 28 2.75 190
(a) Time needed by solver

procs 1/h TB TS TIt TT
8 128 0.824 0.622 0.905 0.741

64 256 0.528 0.487 0.841 0.513
512 512 0.531 0.402 0.84 0.478

4096 1024 0.411 0.317 0.808 0.373
(b) Efficiency of solver

Table 5.7: Jugene: Weak Scalability Poisson Problem 3D
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procs 1/h lev. TB TS It TIt TT
1 1024 6 6.91 16.2 19 0.8526 23.11
4 1024 6 1.9 5.93 19 0.312 7.83

16 1024 6 0.59 1.52 20 0.076 2.11
64 1024 6 0.33 0.55 19 0.0289 0.88

256 1024 6 0.49 0.4 19 0.0211 0.89
(a) Poisson Problem

procs 1/h lev. TB TS It TIt TT
1 1024 6 7.15 25.95 27 0.9611 33.1
4 1024 6 1.98 11.4 30 0.381 13.4

16 1024 6 0.59 2.85 31 0.0919 3.44
64 1024 6 0.34 1.06 39 0.0272 1.4

256 1024 6 0.48 1.11 37 0.03 1.59
(b) Chequerboard Permeability Problem

procs 1/h lev. TB TS It TIt TT
1 1024 6 7.67 23.25 24 0.9688 30.92
4 1024 6 2.05 13.5 26 0.52 15.6

16 1024 6 0.65 3.16 25 0.126 3.81
64 1024 6 0.32 0.97 31 0.0313 1.29

256 1024 6 0.49 0.76 32 0.0238 1.25
(c) Random Permeability Problem (λ = 1/64, σ2

= 4)

procs 1/h lev. TB TS It TIt TT
1 1024 7 7.83 50.1 45 1.113 57.93
4 1024 7 2.12 24.7 44 0.562 26.9

16 1024 7 0.6 7 47 0.149 7.6
64 1024 7 0.43 1.69 50 0.0338 2.12

256 1024 7 0.59 1.35 45 0.03 1.94
(d) Anisotropic Permeability Problem

procs 1/h lev. TB TS It TIt TT
1 1024 6 6.83 18.55 22 0.8432 25.38
4 1024 6 1.98 10 27 0.371 12

16 1024 6 0.61 2.75 29 0.0948 3.36
64 1024 6 0.34 0.92 31 0.0297 1.26

256 1024 6 0.55 0.67 33 0.0203 1.22
(e) Clipped Random Permeability Problem (λ = 1/64, σ2

= 4)

Table 5.8: Strong Scalability on Helics for 2D Problems
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procs 1/h lev. TB TS It TIt TT
1 1024 6 8.29 32.05 38 0.8434 40.34
4 2048 7 9.2 101.4 73 1.389 110.6

16 4096 8 10.62 110.2 85 1.297 120.8
64 8192 9 12.86 162 112 1.447 174.9

256 16384 10 16.66 210.1 125 1.681 226.8
(a) Q1 Finite Elements

procs 1/h lev. TB TS It TIt TT
1 1024 6 5.58 21.44 32 0.67 27.02
4 2048 7 6.51 53.03 49 1.082 59.54

16 4096 8 7.45 70.02 64 1.094 77.47
64 8192 9 8.82 89.48 71 1.26 98.3

256 16384 10 13.47 109.5 79 1.386 122.9
(b) Cell-Centred Finite Volumes

Table 5.9: Weak Scalability on Helics, Cipped Random Permeability 2D
(λ = 4h, σ2

= 8)
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5.5 Related Work and Discussion

The first study of parallel aggregation-based algebraic multigrid methods
was conducted in Tuminaro and Tong [2000]. The authors compared
three different parallelisation approaches. The first one uses a decoupled
aggregation scheme. That is, as in our approach, the agglomeration of
its vertices is done by each process independently. In contrast to our
approach no successive agglomeration of the data to fewer processors
on the coarse levels is performed. The second method investigated is a
coupled aggregation approach. The aggregation is performed first for the
vertices near the boundary of the subdomain of the process. Unfortu-
nately, the neighbouring processes need this aggregation information for
forming their aggregates. Therefore this part of the aggregation algorithm
is more sequential than for the decoupled approach. For modern super-
computers with many processes this approach should not be used. The
third approach considered uses a parallel maximal independent set (MIS)
algorithm to compute the root nodes of the aggregates that have an appro-
priate distance from each other that allows for forming the aggregates. At
the subdomain boundaries of the process the root points of the processes
with lower rank have to be known and considered by processes with a
higher assigned rank. Using all these root points aggregates are built in
a decoupled manner. For the three dimensional Laplacian the solution
phase of all three approaches scales similarly. Of course the build time
of the decoupled scheme is much faster and therefore the total time for
solution is faster and scales better in this case. For the two dimensional
anisotropic problem their decoupled approach fails to scale as the semi-
coarsening is limited by the subdomain diameter. For more than 500
processes the coarse level was too big to be solved directly.

In Joubert and Cullum [2006] the MIS algorithm is used to parallelise
the classical AMG based on interpolation. It is available in the LAMG
package, see Joubert [2005]. For the three dimensional Laplace dis-
cretized with a 27-point stencil a weak scalability test with a fixed problem
size of 80×80×80 per process is performed in the publication. The num-
ber of iterations needed for convergence more than doubles for the weak
scalability test from one to 3500 processes. Using our AMG as a precon-
ditioner to the conjugate gradient solver, the increase of the number of
iterations is a little bit more steep. Nevertheless due to our simple inter-
polation operators the memory consumption of our preconditioner should
be much lower than that of LAMG.

Recently, Yang [2009] presented parallel algebraic multigrid methods
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based on interpolation that combine aggressive coarsening with long range
interpolation operators. To achieve aggressive coarsening the coarsening
is performed twice to compute the coarse level matrix. The second time
only on the C points achieved by the first splitting. Thus lower operator
complexities can be achieved. To get a robust solver more sophisticated
interpolation operators are used. These interpolate even from neighbours
that are not directly connected to the vertex but to direct neighbours of
it. While the number of iterations needed for convergence is very robust
for a weak scalability test, the interpolation is more expensive than the
short range interpolation. Additionally, the interpolation operators have
to be stored, which increases the memory requirement of the method.
Recall, that for our preconditioner no interpolation operators need to be
stored and that operator complexities are very low, naturally. Additionally,
aggressive coarsening can be achieved easily in one step.

Recently, a new parallel algebraic multigrid solver was applied to a
diffusion problem with jumps in the permeability constant. In the 0.1 ×
0.1 × 0.1 cubes located in each corner of the unit cube the permeability
is 10−2. For 0.1 < x, y, z < 0.9 the permeability is 103 and in the rest
of the domain it is 1. The solver used is a parallel algebraic multigrid
method based on interpolation. Each process computes multiple coarse
grid candidates for its sub-grid. Then one coarse grid per processor is
chosen, such that their union constitutes a permissible global coarse grid.
Using a 31 × 31 × 31 fixed size sub-grid per processes and a seven-point
finite difference stencil for discretization, the number of iterations needed
for convergence increases by approximately a factor five when using 4096
instead of one process on a IBM Blue Gene/L machine. The total time
needed for solution increases by a factor 30.

For our method we display the number of iterations and time needed by
the solver in Table 5.10. We used Q1 Finite Elements for the discretization
on Jugene. Due to this differences in the discretization scheme and ma-
chine, the times are not directly comparable. Still we only see an increase
by a factor 2 in the number of iterations and by less than a factor 7 in the
total time needed for solution.

Concerning problems with randomly jumping permeability fields, no
other parallel algebraic multigrid solvers have been studied so far. Our
approach is the first to be applied to such problems. As can be seen by
comparing the Tables 5.6 and 5.10 these problems are even harder than
the one above. Our AMG proves to be a very scalable preconditioner for
both kinds of problems.
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procs 1/H lev. TB TS It TIt TT
1 32 3 5.353 2.59 9 0.2878 7.944
8 64 4 7.79 4.05 12 0.338 11.8

64 128 5 20.5 6.11 15 0.407 26.6
512 256 6 18.7 7.75 19 0.408 26.4

4096 512 7 40 10.7 23 0.467 50.7

Table 5.10: Jugene: Weak Scalability Test for 3D Jumping Permeability
Field as in Griebel et al. [2008]
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In the previous chapters we have examined the properties of our solver
using a set of model problems. To show that our solvers can and are
applied to real world problems, we will present some results from projects
where our solvers were used for the arising linear system.

6.1 Water Infiltration into Heterogeneous Soil

The presented parallel solver is used by the virtual institute “Inverse Mod-
elling of Terrestrial Systems”. The aim of the institute is to develop strate-
gies for deriving the flow and transport parameters needed for modelling
terrestrial systems. The main focus is on processes that occur at the scale
of an agricultural field. Such a field is at the scale of a cell in the manage-
ment of terrestrial systems. Both the dynamics and heterogeneity within
such a field strongly influence the average behaviour of the system. As
the modelling takes place on a large scale (landscape), these variabilities
within the field cannot be represented explicitly. Therefore, the effective
model parameters for the large scale model need to be found from the
with-in field structure and dynamics. These are needed to predict the
average behaviour at the field scale.

Using a real world system to do this, it is hard to distinguish between
effects based on measurement errors, insufficient representation of the
heterogeneity, and wrong effective model parameters. Therefore, the esti-
mation of the model parameters is based on a virtual soil plant system.
This system consists of highly detailed field models with accurate rep-
resentations of the with-in field conditions. The details of the fields are
state variables and fluxes that are obtained by forward simulations of
highly realistic 3D coupled problems.

To estimate the computation time needed for these forward simulations,
scalability tests with up to 4096 processes were performed on Jugene.
Jugene is an IBM BlueGene/P system with one petaflops overall peak
performance located at the Forschungszentrum Jülich.

We simulated water infiltration into a heterogeneous soil unit cell of 1 m
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× 1 m × 1 m. The infiltration is modelled by

∂ΦρS(p)
∂t

= −∇ · u + ρq in Ω ,

u = −K(p)
µ

(∇p − ρg) in Ω ⊂ R3 .

(6.1)

In (6.1), Φ(x) is the porosity of the medium, ρ(x, t) is the density of the
fluid, K(x) denotes the absolute permeability tensor, µ(x, t)] is the dynamic
viscosity of the fluid, p(x, t) is the fluid pressure, g denotes the gravity vec-
tor, and u(x, t) is the macroscopic apparent velocity. That is, the velocity
measured by an observer on the macroscopic level.

Initial conditions are hydraulic equilibrium with a ground water table
at the lower boundary and a constant infiltration rate of 1mm per day. On
the other sides of the domain no-flux conditions are imposed.

The time discretization was done using an implicite Euler scheme with
a fixed prescribed time step. In order to keep the ratio between the time
and space discretization error constant, the time step is reduced together
with the spatial resolution. For the space discretization a cell centred fi-
nite volume method was used. We solved the linear system resulting from
the nonlinear Newton solver with the BiCGStab solver preconditioned with
our algebraic multigrid method using one step of the previously described
parallel SSOR method for pre- and post-smoothing. No data agglomer-
ation was performed and the coarse level was solved using an iterative
solver.

We measured the weak scalability of the approach with 643 elements
per process. The results of the linear solver are presented in Table 6.1. In
addition to the already introduced notation, we label the number of time
steps computed with “t. steps”, the sum of the time spent for the iterative
solution of all arising linear systems with “

∑
TS”, the total number of

newton steps needed with “Newt. steps”, and the sum of the number of
iteration steps for solving all linear systems with “

∑
It”. The linear solver

is applied in each of the steps of the Newton method. The efficiencies of
the hierarchy building, the time steps, and the time per iteration of our
linear solver can be found in Table 6.2.

We see that both the build time and the time needed per iteration of the
linear solver have nearly optimal efficiency. The efficiency drops slightly
until we use sixty-four processes. At this stage we reach the maximum
number of neighbours a process needs to communicate data with. As
the communication load does not increase for larger process numbers
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procs 106

DOF
t.
steps

∑
TS Newt.

steps

∑
It TIt TB

1 0.26 1 393 7 21 1.76 7.66
8 2.10 2 692 11 46 1.88 8.84

64 16.8 4 1143 16 88 1.92 12.24
512 134 8 1957 26 187 1.95 12.06

4096 1074 16 3033 38 345 1.95 12.01

Table 6.1: Weak Scalability for water infiltration on JUGENE

procs t.
steps

TB TIt

8 1.13 0.87 0.94
64 1.37 0.63 0.92

512 1.60 0.64 0.90
4096 2.07 0.64 0.90

Table 6.2: Weak Efficiency for Water Infiltration on JUGENE

the efficiency does not drop any more. The number of steps needed by
the iterative solver for convergence increases with the larger problem sizes.
This increase is as expected if we consider the average number of iteration
steps of the linear solver per step of the Newton method. The total increase
of the average number of iteration steps per Newton step from the smallest
to the largest problem is approximately a factor of three.

We use only half the time step size when we use double the number
of unknowns per dimension. Due to the smaller time steps of the bigger
problems the resulting linear systems are easier to solve. This is reflected
in an increase of efficiency for the total solution time with more processes
performing the calculation.

6.2 Two-Phase Flow

With the notation of the last section we will now turn to two-phase flow
in a porous media. Let Ω ⊂ R3 be our domain. We extend the notation,
introduced in the last section, by denoting the phase with a subscript
α = g, l. These denote the gas and the liquid phase, respectively. Let
the relative permeability of phase α be denoted by Kα, the saturation by
Sα, and the capillary pressure by pc. Then the two-phase problem on the
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macroscopic level in Ω × T , Ω ⊂ Rd, d = 2,3, T = (0, T ) reads

∂ΦραSα

∂t
= − ∇ · (ραuα) + ραqα ,

uα = −
Kα
µα

K(∇pα − ραg) ,

Sl + Sg =1 ,

pg − pl =pc(Sw)

(6.2)

with appropriate initial and boundary conditions.
The two-dimensional problem models water infiltration into an artificial

heterogeneous structure. The boundary conditions and material setup
are chosen to represent the experiment of Rossi et al. [2008]. The hetero-
geneous structure is a 75 cm × 40 cm × 5 cm tank packed with randomly
arranged layers of 0.5 cm × 5 cm × 5 cm. Each layer contains one kind
of three quartz sands of different grain size. The layers are inclined with
45◦. The space remaining between the layers and the tank boundaries
is filled with a mixture of the three sands. The structure is illustrated
in Figure 6.1. On the sides of the tank no-flux boundary conditions are

Figure 6.1: Heterogeneous Structure of 2D Sand Tank (Rossi et al. [2008])

imposed. At the upper boundary Neumann conditions with a constant
flow rate are set. A constant suction at the lower boundary is imposed by
using Dirichlet boundary conditions for the pressure. Initially, the sand
is dry and is then wetted by the infiltration described above.

The settings of the three-dimensional problem represent those used by
Vogel et al. [2006]. The domain represents a 1 m × 1 m × 0.7 m cuboid of
soil consisting of three different horizons under an agricultural field. See
Figure 6.2 for an illustration of the soil. The top most horizon from 0 to
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Figure 6.2: Cuboid of Soil beneath an Agricultural Field (Vogel et al.
[2006])

25 cm was formerly ploughed and has a plough-pan at 35 cm. Due to a
change in ploughing techniques, the first 10 cm form a loose and crumbly
surface layer, while the lower regions are markedly more compact with a
polyhedric structure and vertical earth-worm burrows. From 35 to 60 cm
there is a structured horizon with less organic matter. The bottom most
horizon is a cryoturbated, calcareous one including calcareous stones.
That is, this horizon contains a mixture of materials from formerly different
horizons. Again a constant flux is imposed at the upper boundary and no-
flux boundary conditions are imposed at the sides. At the lower boundary
gravity flow is assumed.

In contrast to the last section, we will just demonstrate the performance
of the linear solver here. For the space discretization a cell centred finite
volume method is used. Again a second order backward difference scheme
is used for the time discretization and Newtons method is employed as the
nonlinear solver. We present the time needed for solving the linear system
arising in the third Newton step of the first time step. We compare the
variable-based AMG with the point-based AMG using the couplings of the
first phase for the strength of connection measure as described in Section
3.3. The results are presented in Table 6.3.

For both the two and three dimensional problem we compute with a
coarse and fine resolution of the problem. The second column of the table
indicates whether the scalar or the block version of the AMG precondi-
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dim type DOF TT TB TS It TIt
2 scalar 1.4 · 106 83.11 19.21 63.90 86 0.75
2 scalar 5.6 · 106 419.48 77.57 341.91 106 3.23
3 scalar 5.5 · 105 29.62 10.96 18.66 50 0.37
3 scalar 3.4 · 106 242.27 73.61 168.66 67 2.52
2 block 1.4 · 106 78.87 5.15 73.72 87 0.84
2 block 5.6 · 106 303.38 18.37 285.01 96.5 2.95
3 block 5.5 · 105 22.07 2.95 19.12 49 0.39
3 block 3.4 · 106 203.55 20.21 183.34 63.5 2.88

Table 6.3: Two-Phase Flow

tioner was used. For both methods the number of steps, that the linear
solver needs for convergence, is comparable. For the block versions the
complexity for one step of the iterative solver is slightly larger than for
the scalar case. The time needed for building the matrix hierarchy for the
block version is nearly a factor of four faster than for the scalar version.
This increase of efficiency redeems the loss of efficiency of the solution
phase and the block version turns out to be faster than the scalar version
of our preconditioner for this problem.

6.3 Upscaling for Reservoir Models

In this section we summarise results from Rekdal [2009] where our se-
quential solver was used for upscaling in oil reservoir models.

The permeability K of a material is a measure of its ability to transmit
fluids. It is an important parameter of the reservoir models used in the oil
industry.

Often the permeability field K(x) has heterogeneous variations at many
length scales. The finest length scale would be the pore scale (≈ 10−3m)
where even grains of sand are resolved. Even if the simulation is per-
formed at a much larger scale these fine scale variations influence the
coarse scale behaviour. Therefore, these influences must be incorporated
into the parameters of the coarse scale model. The determination of the
parameters for the coarse scale models is called upscaling.

To calculate the upscaled permeability tensor K(x), the partial differen-
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tial equation

v = −K(x)p in Ω ⊂ R3

∇ · v = 0 in Ω

∂p

∂n
= fN ΓN

p = gD ΓD ,

(6.3)

Darcy’s law combined with incompressible fluid conditions, has to be
solved for the pressure p for three sets of boundary conditions. Each
of the boundary condition sets imposes a net pressure drop of one in a
different coordinate direction ν. Then the numerical velocity vν = −K(x)p
has to be found. Now the entries of the permeability tensor can be com-
puted from the net-flow velocity Qν

ζ
in ζ direction for the pressure drop in

ν direction and the average distance ∆ν between faces in ν direction by

Kζν = Q
ν
ζ ∆ν . (6.4)

We use the function spaces defined by

Hdiv(Ω) = {u ∈ (L2(Ω))3 | ∇ · u ∈ L2(Ω)} ,
Hdiv
N (Ω) = {u ∈ Hdiv(Ω) | u · n = gN on ΓN } , and

Hdiv
0 (Ω) = {u ∈ Hdiv(Ω) | u · n = 0 on ΓN } .

Given the bilinear forms

B(u, v) =
∫

Ω

uK−1v dΩ ,

C(v, p) =
∫

Ω

p∇ · v dΩ , and

D(v, π) = −
∫

∂Ω

πv · n dS ,

we can formulate the weak form of problem (6.3) as:
find p ∈ L2(Ω) and v ∈ Hdiv

N (Ω) satisfying

B(u, v) − C(u, p) =D(u, gD)∀u ∈ Hdiv
0 (Ω)

C(v, q) =0 , ∀q ∈ L2(Ω) .
(6.5)

The problem is discretized using a mixed hybrid finite element method.
The space of the pressure p is approximated by the space of piecewise
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constant functions P = V0. The velocity v is approximated in the space of
lowest order Raviart Thomas elements V defined by

RT0(τ) ={u ∈ (P1(τ)3) | u(x) = a + bx, for x ∈ τ , and a ∈ R3, b ∈ R3} , and

V ={u ∈ L2(Ω))3 | u|τ ∈ RT0(τ)∀τ ∈ T } .

Note that V allows discontinuities in the normal components of the veloc-
ities across element faces. Continuity is enforced using Lagrange multi-
pliers. To use these we define with

Π ={µ ∈ L2(E) | µ ∈ P0(e) ,∀e ∈ E}
ΠD ={µ ∈ Π|µ = gD on ΓD} , and

Π0 ={µ ∈ Π|µ = 0 on ΓD}

the spaces of piecewise constant functions on the faces E of our triangu-
lation T . In abuse of notation, we use the following discrete version of the
bilinear form D

D(u, µ) =
∑

τ∈T

∫

∂τ

µu · ndS .

Now the discrete problem is posed as: find (v, p, π) ∈ V × P × Π0 such
that

B(u, v) − C(u, p) +D(u, π) = −D(u, gD) ∀u ∈ V ,
C(v, q) =0 , ∀q ∈ P , and

D(v, µ) =0 , ∀µ ∈ Π0 .

(6.6)

Note that the last equation enforces the continuity of the normal velocity
components across interior faces.

Using Schur-complement reduction twice on the saddle-point problem
we obtain the symmetric and positive linear system

Sπ = r .

This system is solved with the conjugate gradient method precondi-
tioned with our AMG method using ILU0 with a relaxation factor of 0.8 as
the smoother. We achieve the fastest solution times for the largest prob-
lem by limiting the longest path in an aggregate by one. By this way we
force semi-coarsening in most cases and most of the aggregates contain
only two vertices. In Table 6.4, we present results from the upscaling cal-
culation with the pressure drop in the x direction and no-flux boundary
conditions on all other sides. The permeability data used is coming from

122



6.3 Upscaling for Reservoir Models

Figure 6.3: Permeability field of the Core Sample (Data provided by Statoil,
Rekdal [2009])

DOF TB TS TT It
13600 0.22 0.20 0.42 17

340000 6.61 5.90 12.51 36
3042424 64.80 132.18 196.98 71

Table 6.4: Upscaling in Reservoir Simulation

a laboratory study of a core sample. The permeability field of the core
sample using the highest resolution can be seen in Figure 6.3.

We see that there is an increase of the iteration steps needed to achieve
the relative residual reduction of 10−8 for larger problem sizes.

In Rekdal [2009] our solver is compared with the commercial solver
SAMG. According to their study, our solver needed twice as much time
as SAMG but consumed only half the memory for the largest problem. In
the mean time, we were able to tune or solver such that the solution time
has dropped nearly by a factor of two. This is mainly due to limiting the
aggregate diameter and forcing semi-coarsening. Admittedly, there has
been no effort to tune SAMG as it is not available to us. We assume that
it is still faster than our approach but at the cost of twice the memory
consumption of our solver.
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7 Implementational Details

7.1 Linear Algebra Interface and Data Structures

The numerical solution of partial differential equations (PDEs) frequently
requires solving large and sparse linear systems. Naturally, there are
many libraries available for doing sparse matrix/vector computations, see
Dongarra [2006] for a comprehensive list.

The widely available Basic Linear Algebra Subprograms (BLAS) stan-
dard has been extended to cover also sparse matrices, BLAST Forum
[2001]. The standard uses procedural programming style and offers only
a FORTRAN and C interface. “Fine grained” interfaces, i.e. with functions
consisting only of a few lines of code, such as access to individual ma-
trix elements, impose an efficiency penalty here, as the relative cost for
indirect function calls becomes huge.

Generic programming techniques in C++ or Ada offer the possibility to
combine flexibility and reuse (“efficiency of the programmer”) with fast
execution (“efficiency of the program”). They allow the compiler to apply
optimizations even for “fine grained” interfaces via static function typ-
ing. These techniques were pioneered by the Standard Template Library
(STL), Stroustrup [1997]. Their efficiency advantage for scientific C++ was
later demonstrated by the Blitz++ library . For an introduction to generic
programming for scientific computing see Barton and Nackman [1994],
Veldhuizen [1999]. Application of these ideas to matrix/vector operations
is available with the Matrix Template Library (MTL, Siek and Lumsdaine
[2000]) and to iterative solvers for linear systems with the Iterative Tem-
plate Library (ITL).

In contrast to these libraries, the “Iterative Solver Template Library”
(ISTL), which is part of the “Distributed and Unified Numerics Environ-
ment” (DUNE), see Bastian et al. [2005, 2008a,b], is designed specifi-
cally for linear systems stemming from finite element discretizations. The
sparse matrices representing these linear systems exhibit a lot of struc-
ture, e.g.:

• Certain discretizations for systems of PDEs or higher order methods
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result in matrices where individual entries are replaced by small
blocks, say of size 2 × 2 or 4 × 4, see Fig. 7.1(a). Dense blocks of
different sizes e.g. arise in hp discontinuous Galerkin discretization
methods, see Fig. 7.1(b). It is straightforward and efficient to treat
these small dense blocks as fully coupled and solve them with direct
methods within the iterative method, see e.g. Bastian and Helmig
[1999].

• Equation-wise ordering for systems results in matrices having an
n×n block structure where n corresponds to the number of variables
in the PDE and the blocks themselves are large and sparse. As an
example we mention the Stokes system, see Fig. 7.1(d). Iterative
solvers such as the SIMPLE or Uzawa algorithm use this structure.

• Other discretizations, e.g. those of reaction/diffusion systems, pro-
duce sparse matrices whose blocks are sparse matrices of small
dense blocks, see Fig. 7.1(c).

• Other structures that can be exploited are the level structure arising
from hierarchical meshes, a p-hierarchical structure (e.g. decompo-
sition in linear and quadratic part), geometric structure from decom-
position in subdomains, or topological structure where unknowns
are associated with nodes, edges, faces or elements of a mesh.

Our library takes advantage of this natural block structure at compile
time and supports the recursive block structuredness in a natural way.

Other libraries, like MTL, provide the blockings as views to the pro-
grammer. As this is done dynamically, the block structure cannot be
used efficiently in custom generic algorithms. In the Optimized Sparse
Kernel Interface (OSKI), see Vuduc et al. [2005], the sparse matrices are
stored as scalar matrices, too. Here the user can provide hints about the
dense block sizes which are used at runtime to tune the solvers.

In the next subsection we describe the matrix and vector interface that
represents this recursive block structure via templates. In Sect. 7.1.2 we
show how to exploit the block structure using template metaprogramming
at compile time. Finally we sketch the high level iterative solver interface
in Sect. 7.1.3.

7.1.1 Matrix and Vector Interface

The interface of our matrices is designed according to what they represent
from a mathematical point of view. The vector classes are representations
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Figure 7.1: Block structure of matrices arising in the finite element
method

of vector spaces while the matrix classes are representations of linear
maps between two vector spaces.

Vector Spaces

Essentially, a vector space over a field K is a set V of elements (called
vectors) along with vector addition + : V → V and scalar multiplication
· : K × V → V with the well known properties. See your favourite text-
book for details, e.g. Hefferson [2006]. For our application the following
way of construction plays an important role: Let Vi , i = 1,2, . . . , n, be
a normed vector space of dimension ni with a scalar product, then the
n-nary Cartesian product

V := V1×V2×. . .×Vn = {(v1, v2, . . . , vn)|v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn} (7.1)

is again a normed vector space of dimension
∑n
i=1 ni with the canonical

norm and scalar product.
Treating K as a vector space itself we can apply this construction recur-

sively starting from the field K.
While for a mathematician every finite dimensional vector space is iso-

morphic to Rk for an appropriate k, for our application it is important to
know how the vector space was constructed recursively by the procedure
described in (7.1).

Vector Classes.

To express the construction of the vector space by n-nary products of
other vector spaces, ISTL provides the following classes:

The
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template<class K, int n> class FieldVector

class template is used to represent a vector space V = Kn where the field
is given by the type K. K may be double, float, complex<double> or
any other numeric type. The dimension given by the template parameter
n is assumed to be small.

Example: Use FieldVector<double,2> for vectors with a fixed dimen-
sion 2.

The

template<class B> class BlockVector

class template builds a vector space V = Bn where the “block type” B is
given by the template parameter B. B may be any other class implementing
the vector interface. The number of blocks n is given at run-time.

Example: BlockVector<FieldVector<double,2> > can be used to
define vectors of variable size where each block in turn consists of two
double values.

The

template<class B> class VariableBlockVector

class template can be used to construct a vector space having a two-level
block structure of the form V = Bn1 × Bn2 × . . . × Bnm , i.e. it consists of m
blocks i = 1, . . . , m and each block in turn consists of ni blocks given by
the type B. In principle this structure could be built also with the previous
classes, but the implementation here is more efficient. It allocates memory
in one big array for all components. For certain operations it is more
efficient to interpret the vector space as V = BN , where N =

∑m
i=1 ni .

Vectors as Containers

Vectors are containers over the base type K or B in the sense of the Stan-
dard Template Library. Random access is provided via operator[](int

i) where the indices are in the range 0, . . . , n − 1 with the number of
blocks n given by the N method. Here is a code fragment for illustration:

typedef Dune::FieldVector<std::complex<double>,2> BType;
Dune::BlockVector<BType> v(20);
v[3][0] = 2.56;
v[3][1] = std::complex<double>(1,-1);

Note how one operator[]() is used for each level of block recursion.
Sequential access to container elements is provided via iterators. The

Iterator class provides read/write access while the ConstIterator
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Type Explanation

field_type The type of the field of the represented vector space,
e.g. double.

block_type The type of the vector blocks.
size_type The type used for the index access and size opera-

tions.
block_level The block level of the vector. For FieldVector this

is 1, and 2 for BlockVector<FieldVector<K>,n>.
Iterator The type of the iterator.
ConstIterator The type of the immutable iterator.

Table 7.1: Associated Types of Vector Classes

class provides read-only access. The type names are accessed via the
::-operator from the scope of the vector class.

A uniform naming scheme enables writing of generic algorithms. See
Table 7.1 for the types provided in the scope of any vector class.

Linear Maps

For a matrix representing a linear map (or homomorphism) A : V → W

from vector space V to vector space W the recursive block structure of the
matrix rows and columns immediately follows from the recursive block
structure of the vectors representing the domain and range of the map-
ping, respectively. As a natural consequence, we designed the following
matrix classes:

Using the construction in (7.1), the structure of our vector spaces car-
ries over to linear maps in a natural way.

The

template<class K, int n, int m> class FieldMatrix

class template is used to represent a linear map M : V1 → V2 where
V1 = K

n and V2 = K
m are vector spaces over the field given by template

parameter K. K may be double, float, complex<double> or any other
numeric type. The dimensions of the two vector spaces given by the tem-
plate parameters n and m are assumed to be small. The matrix is stored
as a dense matrix. Example: Use FieldMatrix<double,2,3> to define a
linear map from a vector space over doubles with dimension 2 to one with
dimension 3.
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The

template<class B> class BCRSMatrix

class template represents a sparse matrix where the “block type” B is given
by the template parameter B. B may be any other class implementing the
matrix interface. The matrix class uses a compressed row storage scheme.

Matrices are containers over the matrix rows. The matrix rows are con-
tainers over the type K or B in the sense of the Standard Template Library.
Random access is provided via operator[](int i) on the matrix to the
matrix rows and on the matrix rows to the matrix columns (if present).
Note that except for FieldMatrix, which is a dense matrix, operator[]
on the matrix row triggers a binary search for the column.

For sequential access use RowIterator and ColIterator for read-
/write access or ConstRowIterator and ConstColIterator for read-
only access to rows and columns, respectively.

The following is a small example that prints the sparsity pattern of a
matrix of type M:

typedef typename M::ConstRowIterator RowI;
typedef typename M::ConstColIterator ColI;
for(RowI row = matrix.begin(); row != matrix.end(); ++row)
{

std::cout << "row "<<row.index()<<": "
for(ColI col = row->begin(); col != row->end(); ++col)
std::cout<<col.index()<<" ";

std::cout<<std::endl;
}

As with the vector interface, a uniform naming convention enables
generic algorithms. See Table 7.2 for the most important names.

7.1.2 Block Recursive Algorithms

A basic feature of the concept described by the matrix and vector classes,
is their recursive block structure. Let A be a matrix with block level l > 1.
Then each block Aij can be treated as (or actually is) a matrix itself. This
recursiveness can be exploited in a generic algorithm using the defined
block_level of the matrix and vector classes.

Note that we do not use recursive blocked algorithms on the dense
matrix blocks, as described in Elmroth et al. [2004], as the dense blocks
resulting from finite element discretizations will generally be small.

Most preconditioners can be modified to honor this recursive structure
for a specific number of block levels k. They then work as normal on
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Type Explanation

field_type The type of the field of the vector spaces we
map from and to

block_type The type representing the matrix components
row_type The container type of the rows.
size_type The type used for index access and size opera-

tions
block_level The block recursion level, e.g. 1 for

FieldMatrix and 2 for BCRSMatrix<

FieldMatrix<K,m,n> >.
RowIterator The type of the mutable iterator over the rows.
ConstRowIterator The type of the immutable iterator over the

rows.
ColIterator The type of the mutable iterator over the

columns of a row.
ConstColIterator The type of the immutable iterator over the

columns

Table 7.2: Type names in the matrix classes

the offdiagonal blocks, treating them as traditional matrix entries. For
the diagonal values a special procedure applies: If k > 1 the diagonal is
treated as a matrix itself and the preconditioner is applied recursively on
the matrix representing the diagonal value D = Aii with block level k − 1.
For the case that k = 1, the diagonal is treated as an entry of a block
matrix and depending on the algorithm the corresponding linear system
is either solved directly or the right hand side is returned.

In the formulation of most iterative methods upper and lower triangular
and diagonal solvers play an important role. ISTL provides block recursive
versions of these generic building blocks using template metaprogram-
ming, see Table 7.3 for a listing of these methods. In the table matrix A is
decomposed into A = L+D+U, where L is a strictly lower block triangular,
D is a block diagonal, and U is a strictly upper block triangular matrix.
The current residual is denoted by d = b − Ax. It is used to calculate the
update v to the current guess x. An arbitrary block recursion level can be
given by an additional parameter. If this parameter is omitted it defaults
to 1.

Using the same block recursive template metaprogramming technique,
kernels for the residual formulations of simple iterative solvers are avail-
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function computation

block triangular and block diagonal solvers

bltsolve(A,v,d) v = (L + D)−1d
bltsolve(A,v,d,ω) v = ω(L + D)−1d
ubltsolve(A,v,d) v = L−1d
ubltsolve(A,v,d,ω) v = ωL−1d
butsolve(A,v,d) v = (D + U)−1d
butsolve(A,v,d,ω) v = ω(D + U)−1d
ubutsolve(A,v,d) v = U−1d
ubutsolve(A,v,d,ω) v = ωU−1d
bdsolve(A,v,d) v = D−1d
bdsolve(A,v,d,ω) v = ωD−1d

iterative solvers

dbjac(A,x,b,ω) x = x + ωD−1(b − Ax)
dbgs(A,x,b,ω) x = x + ω(L + D)−1(b − Ax)

bsorf(A,x,b,ω) xk+1
i = xki + ωA−1

ii

[
bi −

∑
j<i

Aijxk+1
j − ∑

j≥i
Aijxkj

]

bsorb(A,x,b,ω) xk+1
i = xki + ωA−1

ii

[
bi −

∑
j≤i

Aijxkj −
∑
j>i

Aijxk+1
j

]

Table 7.3: Iterative Solver Kernels

able in ISTL. The number of block recursion levels can again be given as
an additional argument. See the second part of Table 7.3 for a list of these
kernels.

7.1.3 Solver Interface

The solvers of ISTL do not work on matrices directly. Instead we use an
abstract operator concept. This allows for using matrix-free operators, i.e.
operators that are not stored as matrices in any form. Thus our solver
algorithms can easily be turned into matrix-free solvers just by plugging
in matrix-free representations of linear operators and preconditioners.

Operators

The

template<class X, class Y> class LinearOperator

132



7.1 Linear Algebra Interface and Data Structures

class template is the base class of all linear maps. The template param-
eter X is the type of the domain and Y is the type of the range of the
operator. A linear operator provides the methods apply(const X& x, Y

& y) and applyscaledadd(field_type alpha, const X& x, Y& y)

performing the operations y = Ax and y = y + αAx, respectively. The
subclass

template<class M, class X, class Y> class
AssembledLinearOperator

represents linear operators that have a matrix representation. Conversion
from any matrix into a linear operator is done by the

template<class M, class X, class Y> class MatrixAdapter

class template.

Scalar Products

For convergence tests and the orthogonalisation process Krylov methods
need to compute scalar products and norms on the underlying vector
spaces. The base class of all scalar products is the

template<class X> class Scalarproduct

class templates. The methods field_type dot(const X& x, const

X&y), which calculates the scalar product of two vectors, and double

norm(const X& x), which calculates the norm of a vector, must be
implemented in all subclasses. For sequential programs use

template<class X> class SeqScalarProduct

which simply maps this to functions of the vector implementations.

Preconditioners

The

template<class X, class Y> class Preconditioner

class template provides the abstract base class for all preconditioners in
ISTL. The method void pre(X& x, Y& b) has to be called once before
applying the preconditioner multiple times. Here, x is the left hand side
and b is the right hand side of the operator equation. The method may,
e.g. scale the system, allocate memory or compute an (I)LU decomposi-
tion. The method void apply(X& v, const Y& d) applies the precon-
ditioner. Here, d should contain the current residual and v should use 0
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class implements s/p rec.

SeqJac Jacobi method s x
SeqSOR Successive overrelaxation s x
SeqSSOR Symmetric successive over-

relaxation
s x

SeqILU Incomplete LU decomposi-
tion (ILU)

s

SeqILUN ILU decomposition of order N s
SeqOverlappingSchwarz Overlapping Schwarz

method with direct local
solver

s

Pamg::AMG Algebraic multigrid method s/p
BlockPreconditioner Wrapper to turn a sequential

preconditioner into a parallel
one.

p

Table 7.4: Preconditioners

as the initial guess. Upon exit of the method, v contains the computed up-
date to the current guess, that is v = M−1d where M is the approximate of
the operator A characterising the preconditioner. The method void post

(X& x) should be called after all computations to give the preconditioner
the chance to clean up allocated resources.

See Table 7.4 for a list of available preconditioner. They have the tem-
plate parameters M representing the type of the matrix they work on, X
representing the type of the domain, Y representing the type of the range
of the linear system. The block recursive preconditioners are marked with
“x” in the last column. For them the recursion depth is specified via an
additional template parameter int l. The column labeled “s/p” specifies
whether they support sequential and/or parallel mode.

Solvers

All solvers are subclasses of the abstract base class

template<class X, class Y> class InverseOperator

representing the inverse of an operator from the domain of type X to the
range of type Y. The actual solution of the system A(x) = b is done in
the method void apply(X& x, Y& b, InverseOperatorResult& r).
In the InverseOperatorResult object some statistics about the solu-
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class implements

LoopSolver Just applies the preconditioner multiple times
GradientSolver Preconditioned gradient method
CGSolver Preconditioned conjugate gradient method
BiCGSTABSolver Preconditioned biconjugate gradient stabilized

method
MinRESSolver Minimal residual method
RestartedGMResSolver Generalized minimal residual method

Table 7.5: ISTL Solvers

N 500 5000 50000 500000 5000000
MFLOPS 896 775 167 160 164

(a) scalar product

N 500 5000 50000 500000 5000000
MFLOPS 936 910 108 103 107

(b) daxpy operation y = y + αx

N, b 100,1 10000,1 1000000,1 1000000,2 1000000,3
MFLOPS 388 140 136 230 260

(c) Matrix-vector product, 5-point stencil, b: block size

C ISTL
time / it. [s] 0.17 0.18

(d) Damped Gauß-Seidel (N = 106, b = 1)

Table 7.6: Performance Tests

tion process, e.g. iteration count, achieved residual reduction, etc., are
stored. All solvers only use methods of instances of LinearOperator,
ScalarProduct and Preconditioner. These are provided in the con-
structor.

See Table 7.5 for a list of available solvers. All solvers are template
classes with a template parameter X providing them with the vector im-
plementation used.

7.1.4 Performance Evaluation

We evaluated the performance of our implementation on a Pentium 4
Mobile 2.4 GHz processor with a measured memory bandwidth of 1084
MB/s for the daypy operation (x = y + αz) in Tables 7.6. The code was
compiled with the GNU C++ compiler version 4.0 with -O3 optimization.

135



7 Implementational Details

In the tables N is the number of unknown blocks (equals the number
of unknowns for the scalar cases). In Tables 7.6(a), 7.6(b), 7.6(d), b is
the size of the dense blocks. All matrices are sparse matrices of dense
blocks. The performance for the scalar product, see Table 7.6(a), and
the daxpy operation, see Table 7.6(b), is nearly optimal. For large N the
limiting factor is clearly the memory bandwidth. Table 7.6(c) shows that
we take advantage of cache reusage for vectors of dense blocks with block
size b > 1. In Table 7.6(d) we compared the generic implementation of
the Gauss Seidel solver in ISTL with a specialized C implementation. The
measured times per iteration show that there is no significant lack of
computational efficiency due to the generic implementation.

7.2 Parallel Domain Decomposition and Communication

Components

When using the data parallel programming model, a set of processes works
collectively on the same set of finite data objects. These might be elements
of a finite element grid or vector entries in a linear algebra computation.
Each process works on different partitions of the global data. Only for this
partition it computes updated values.

In large scale parallel codes it is advisable to store the data partition in
a local data structure directly in the local memory of the process. Due to
data dependencies, the process needs to access data in the partition of
other processes, too. This can either be done by communicating these val-
ues on demand between the processes whenever they are accessed. This
results in data structures that are aware of the data distribution. Or by
augmenting the partition of the process such that it additionally includes
the data values that the other values depend on. Note that now the par-
titioning is not disjoint any more but overlapping. Of course, the values,
other processes compute, need to be updated using communication at so
called synchronisation points of the algorithm

In the latter case the data structures do not need to know anything
about the data distribution. This demands more effort from the parallel
algorithm designer to make sure that the data used for computations is
valid, i.e. contains an updated value if another process computes the data
for it. Still it allows for fewer synchronisation points in the algorithms
as even in collective operations all input data may already be updated
from other processes due to a previous operation. Between the necessary
synchronisation points one can take advantage of the fast local memory
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access.

Consider representing a random access container x on a set of processes
P = {0, . . . , P − 1}. It is represented by individual pieces xp, where xp

is the piece stored on process p of the P processes participating in the
calculation. Although the global representation of the container is not
available on any process, a process p needs to know how the entries of
its local piece xp correspond to the entries of the global container x which
would be used in a sequential program.

In Subsections 7.2.1 to 7.2.2 we present software components that are
able to describe this relation between the local data structures and global
data distribution. These allow us to precompute the communication in-
terfaces for synchronising arbitrary data. Thus they can be used to easily
trigger synchronisation in parallel algorithms. Finally, we will compare the
performance of our approach to directly using MPI in Subsection 7.2.3.

7.2.1 Communication Software Components

From an abstract point of view, a random access container x : I → K

provides a mapping from an index set I ⊂ N0 onto a set of objects K. Note
that we do not require I to be consecutive. The piece xp of the container
x stored on process p is a mapping xp : Ip → K, where Ip ⊂ I. Due to
efficiency, the entries of xp should be stored consecutively in memory.
This means that for the local computation the data must be addressable
by a consecutive index starting from 0.

When using adaptive discretisation methods, there might be the need to
reorder the indices after adding and/or deleting some of the discretisation
points. Therefore, this index does not need to be persistent and can easily
be changed. We will call this index local index.

For the communication phases of our algorithms these locally stored
entries must also be addressable by a global identifier. It is used to store
the received values at and to retrieve the values to be sent from the correct
local position in the consecutive memory chunk. To ease the addition and
removal of discretisation points this global identifier has to be persistent
but does not need to be consecutive. We will call this global identifier
global index.
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ParallelIndexSet

Let I ⊂ N0 be an arbitrary, not necessarily consecutive, index set identify-
ing all discretisation points of the computation. Furthermore, let

(Ip)p∈P,
⋃

p∈P
Ip = I

be an overlapping decomposition of the global index set I into the sets of
indices Ip corresponding to the global indices of the values stored locally
in the chunk of process p.

Then the

template<typename TG, typename TL> class
ParallelIndexSet;

class template realises the one to one mapping

γp : Ip −→ I loc
p := [0, np)

of the globally unique index onto the local index.
The template parameter TG is the type of the global index and TL is

the type of the local index. The only prerequisite of TG is that objects of
this type are comparable using the less-than-operator <. Not that this
prerequisite still allows attaching further information to the global index
or even using this information as the global index. The type TL has to be
convertible to std::size_t as it is used to address array elements.

The pairs of global and local indices are ordered by ascending global
index. It is possible to access the pairs via operator[](TG& global) in
log(n) time, where n is the number of pairs in the set. In an efficient code
it is advisable to access the index pairs using the provided iterators over
the index pairs.

Due to the ordering, the index set can only be changed, i.e. index
pairs added or deleted, in a special resize phase. By calling the functions
beginResize() and endResize() the programmer indicates that the re-
size phase starts and ends, respectively. During the call of endResize()
the deleted indices will be removed and the added index pairs will be
sorted and merged with the existing ones.

ParallelLocalIndex

When dealing with overlapping index sets in distributed computing, there
often is the need to distinguish different partitions of an index set.

This is accomplished by using the
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Figure 7.2: Index sets for array redistribution

template<typename TA> class ParallelLocalIndex;

class template as the type for the local index of class ParallelIndexSet.
Here the template parameter TA is the type of the attributes used, e.g. an
enumeration Flags defined by

enum Flags {owner, ghost};

where owner marks the indices k ∈ Ip owned by process p and ghost the
indices k < Ip owned by other processes.

As an example, let us look at an array distributed between two pro-
cesses. In Figure 7.3, one can see the array a as it appears in a sequential
program. Below there are two different distributions of that array. The
local views s0 and s1 are the parts process 0 and 1 store in the case that
a is divided into two blocks. The local views t0 and t1 are the parts of a
that process 0 and 1 store in the case that a is divided into 4 blocks and
process 0 stores the first and third block and process 1 the second and
fourth block. The decompositions have an overlap of one and the indices
have the attributes owner and ghost visualised by white and shaded cells,
respectively. The index sets Is and It corresponding to the decompositions
sp and tp, p ∈ {0,1}, are shown in Figure 7.2 as sets of triples (g, l, a). Here,
g is the global index, l is the local index and a is the attribute (either o for
owner or g for ghost).

The following code snippet demonstrates how to set up the index set Is
on process 0:

// sho r t c u t f o r index se t type

typedef ParallelLocalIndex<Flags> LocalIndex;
typedef ParallelIndexSet<int, LocalIndex > PIndexSet;
PIndexSet sis;
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Figure 7.3: Redistributed array

sis.beginResize();
for(int i=0; i<6; i++)
sis.add(i, LocalIndex(i, owner));

sis.add(6, LocalIndex(6, ghost));
sis.endResize();

Remote Indices

To set up communication between the processes, every process needs
to know which indices are also known to other processes and which at-
tributes are attached to them on the remote side. There are scenarios
where data is exchanged between different index sets, e.g. if the data is
agglomerated on lesser processes or redistributed. Therefore, communi-
cation is allowed to occur between different decompositions of the same
index set.

Let I ⊂ N be the global index set and

(Isp)p∈P,
⋃

p∈P
Isp = I, and (I tp)p∈P,

⋃

p∈P
I tp = I

be two overlapping decompositions of the same index set I. Then an
instance of class RemoteIndices on process p ∈ P stores the sets of
triples

rsp→q = {(g, (l, a), b) | g ∈ Isq ∧ g ∈ I tp, l = γsp(g), a = αsp(l), b = α
t
q(γ

t
q(g))}

and

r tp→q = {(g, (l, a), b) | g ∈ Isq ∧ g ∈ I tp, l = γtp(g), a = αtp(l), b = α
s
p(γ

s
p(g))} ,
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for all q ∈ P. Here αsp and αtp denote the mapping of local indices
on process p onto attributes for the index set Isp and I tp as realised by
ParallelLocalIndex. Note that the sets rsp→q and r tp→q will only be
nonempty if the processes p and q manage overlapping index sets.

For our example in Figure 7.3 and Figure 7.2 the interface between Is
and It on process 0 is:

rs0→0 = {(0, (0, o), o), (1, (1, o), o), (2, (2, o), o), (3, (3, o), g), (5, (5, o), g),

(6, (6, g), o)}
r t0→0 = {(0, (0, o), o), (1, (1, o), o), (2, (2, o), o), (3, (3, g), o), (5, (4, g), o),

(6, (5, o), g)}
rs0→1 = {(2(2, o), g), (3, (3, o), o), (4, (4, o), o), (5, (5, o), o), (6, (6, g), g)}
r t0→1 = {(5, (4, g), g), (6, (5, o), o), (7, (6, o), o), (8, (7, o), o), (9, (8, g), o)}

This information can either be calculated automatically by communicating
all indices in a ring or set up by hand if the user has this information
available. Assuming that sis is the index set Is and tis the index set
It set up as described in the previous subsection and comm is an MPI
communicator then the simple call

RemoteIndices<PIndexSet> riRedist(sis, tis, comm);
riRedist.rebuild<true>();

on all processes automatically calculates this information and stores it in
riRedist. For a parallel calculation on the local views s0 and s1, calling

RemoteIndices<PIndexSet> riS(sis,sis, comm);
riS.rebuild<true>();

on all processes builds the necessary information in riS.

Communication Interface

With the information provided by class RemoteIndices the user can set
up arbitrary communication interfaces. These interfaces are realised
in class Interface. Using the attributes attached to the indices by
ParallelLocalIndex, the user can select subsets of the indices for ex-
changing data, e.g. send data from indices marked as owner to indices
marked as ghost.

Basically, the interface on process p manages two sets for each process
q it shares common indices with:

isp→q = {l|(g, (l, a), b) ∈ rsp→q |a ∈ As ∧ b ∈ At}
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and

itp→q = {l|(g, (l, a), b) ∈ r tp→q |a ∈ At ∧ b ∈ As} ,

where As and At are the attributes marking the indices where the source
and target of the communication will be, respectively.

In our example these sets on process 0 will be stored for communication
if As = {o} and At = {o, g}:

is0→0 = {0,1,3,5} it0→0 = {0,1,3,4}
is0→1 = {2,3,4,5} it0→1 = {5,6,7,8} .

The following code snippet would build the interface above in infRedist

as well as the interface infS to communicate between indices marked as
owner and ghost on the local array views s0 and s1:

EnumItem<Flags,ghost> ghostFlags;
EnumItem<Flags,owner> ownerFlags;
Combine<EnumItem<Flags,ghost>, EnumItem<Flags,owner> >

allFlags;

Interface infRedist;
Interface infS;

infRedist.build(riRedist, ownerFlags, allFlags);
infS.build(riS, ownerFlags, ghostFlags);

Communicator

Using the classes from the previous sections, all information about the
communication is available and we are set to communicate data values
of arbitrary container types. The only prerequisite for the container type
is that its values are addressable via operator[](size_t index). This
should be safe to assume.

An important feature of our communicators is that we are not only
able to send one data item per index, but also different numbers of data
elements (of the same type) for each index. This is supported in a generic
way by the traits class emplae<class V> struct CommPolicy describing
the container type V. The typedef IndexedType is the atomic type to
be communicated and typedef IndexedTypeFlag is either SizeOne, if
there is only one data item per index, or VariableSize, if the number of
data items per index is variable.
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The default implementation works for all array-like containers which
provide only one data item per index. For all other containers the user
has to provide its own custom specialisation.

The class BufferedCommunicator class performs the actual commu-
nication. The template parameter T describes the type of the parallel index
set. It uses the information about the communication interface provided
by an object of class Interface to set up communication buffers for a
container containing a specific data type. It is also responsible for gather-
ing the data before and scattering the data after the communication step.
The strict separation of the interface description from the actual buffer-
ing and communication allows for reusing the interface information with
various different container and data types.

Before the communication can start, one has to call the build method
with the data source and target containers as well as the communication
interface as arguments. Assuming s and t as arrays si and ti , respectively,
then

BufferedCommunicator bComm;
BufferedCommunicator bCommRedist;
bComm.build(s, s, infS);
bCommRedist.build(s, t, infRedist);

demonstrates how to set up the communicator bCommRedist for the array
redistribution and bComm for a parallel calculation on the local views si .
The build function calculates the size of the messages to send to other
processes and allocates buffers for the send and receive actions. The rep-
resentatives s and t are needed to get the number of data values at each
index in the case of variable numbers of data items per index. Note that,
due to the generic programming techniques used, the compiler knows if
the number of data points is constant for each index and will apply a
specialised algorithm for calculating the message size without querying
neither s nor t. Clean up of allocated resources is done either by calling
the method free() or automatically in the destructor.

The actual communication takes place if one of the methods forward

and backward is called. In our case in bCommRedist the forward method
sends data from the local views si to the local views ti according to the
interface information and the backward method in the opposite direction.

The following code snippet first redistributes the local views si of the
global array to the local views ti and performs some calculation on this
representation. Afterwards the result is communicated backwards.

bCommRedist.forward<CopyData<Container> >(s,t);
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// c a l c u l a t e on the r e d i s t r i b u t e d array

doCalculations(t);
bCommRedist.backward<AddData<Container> >(s,t);

Note that both methods have a different template parameter, either
CopyData or AddData. These are policies for gathering and scattering the
data items. The former just copies the data from and to the location. The
latter copies from the source location but adds the received data items
to the target entries. Assuming our data is stored in simple C-arrays,
AddData could be implemented like this:

template<typename T>
struct AddData{
typedef typename T::value_type IndexedType;

static double gather(const T& v, int i){
return v[i];

}

static void scatter(T& v, double item, int i){
v[i]+=item;

}
};

Note that arbitrary manipulations can be applied to the communicated
data in both methods.

For containers with multiple data items associated with one index, the
methods gather and scatter must have an additional integer argument
specifying the sub-index.

7.2.2 Collective Communication

While communicating entries of array-like structures is a prominent task
in scientific computing codes, one must not neglect collective commu-
nication operations, like gathering and scattering data from and to all
processes, respectively, or waiting for other processes. An abstraction for
these operations is crucial for decoupling the communication from the
parallel programming paradigm used.

Therefore, we designed the

template<class T> class CollectiveCommunication

class template which provides information of the underlying parallel pro-
gramming paradigm as well as the collective communication operations
as known from MPI. See Table 7.7 for a list of all functions.
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Function Description

int rank() Get the rank of the process
int size() Get the number of processes
template<typename T> T sum (T

& in)

Compute global sum

template<typename T> T prod (

T& in)

Compute global product

template<typename T> T min (T

& in)

Compute global minimum

template<typename T> T max (T

& in)

Compute global maximum

void barrier() Wait for all processes.
template<typename T> int

broadcast (T* inout, int len,

int root)

Broadcast an array from root
to all other processes

template<typename T> int

gather (T* in, T* out, int

len, int root)

Gather arrays at a root pro-
cess

template<typename

BinaryFunction, typename

Type> int allreduce(Type* in,

Type* out, int len)

Combine values from all pro-
cesses on all processes. Com-
bine function is given with
BinaryFunction

Table 7.7: Collective Communication Functions
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Currently there is a default implementation for sequential programs as
well as a specialisation working with MPI. This approach allows for run-
ning parallel programs sequentially without any parallel overhead simply
by choosing the sequential specialisation at compile time. Note that our
interface is far more convenient to use than the C++ interface of MPI. The
latter is a simple wrapper around the C implementation without taking
advantage of the power of generic programming. Moreover our approach
can be used without MPI being installed. This of course results in using
sequential versions of the solvers.

The collective communication classes were developed before the release
of Boost.MPI, see Gregor and Troyer [2006]. In contrast to Boost.MPI,
our approach was never meant as a full generic implementation of all MPI
functions. Instead, our approach is restricted to the most basic subset
of collective operations needed to implement finite element methods and
iterative solvers using the previously described components. This lean in-
terface should make it possible to easily port this approach to thread based
parallelisation as well as other parallelisation paradigms. This would al-
low code to easily switch between different paradigms.

7.2.3 Performance Analysis

The performance of the library was compared to direct usage of MPI on
the cluster “Helics II” consisting of 156 nodes with two dual core AMD
Opteron 2220 2.8 GHz processors interconnected by a 10G Myrinet high
speed interconnect.

The test case simulates a parallel finite element computation on a struc-
tured parallel tensor product grid in two and three dimension, respec-
tively, with one cell overlap. In each communication step all processes
exchange data with their 4 and 6 neighours, respectively, in a forward
communication. Now all cells in the ghost cells have consistent data. Af-
ter this communication step, the data at the ghost indices is consistent
with the corresponding data owned by other processes. Now each process
adds a random value to all data items and initiates a backward commu-
nication. In Figures 7.4 and 7.5, the average time for this operation is
depicted for growing message sizes (implied by growing grids) in two and
three dimensions.

The version labelled “MPI” uses a custom MPI_Datatype based on
MPI_Type_hindexed modelling our interface information on the sending
and receiving side. The version labelled “index set” in the graphs uses the
software components as described above. At each communication step
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Figure 7.4: Parallel Index Set Performance 2D

the size of the buffers is calculated and the buffers are allocated. After
the communication they are freed again. In the third version the buffers
are allocated only once for each message size and reused at all communi-
cation steps. We see that the presented approach poses no performance
penalty on parallel code. In contrast due to the added flexibility of using
persistent communication buffers it can even outperform raw MPI code.

7.2.4 Related Work and Conclusion

In contrast to the presented template based approach, the PROMOTER
programming model, see Giloi et al. [1995], is realised as a language ex-
tension to C++ together with a library which abstracts the communication
schemes. The data partitioning and distribution is done at the language
level. Unfortunately, this does not allow adaptively changing or redis-
tributing the data as needed for finite element computations on adaptively
refined meshes.

The TACO (topologies and collections) framework, see Nolte et al. [2000],
overcomes this problem. It uses global object pointers underneath and lets
the user specify the data distribution at runtime using distributed linked
objects. This allows dynamically adding new objects at runtime. Still
this means that all parts of a simulation software, e.g. linear algebra and
grids, need to either all use TACO directly or at least use the same data
distribution. Especially when using third party software components,
resembling the data distribution with TACO might be cumbersome.
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The Janus framework, see Gerlach [2002], follows a similar approach
to the presented one. The basic abstraction is a mapping of a finite set of
distributed objects onto consecutive global indices starting at 0. This ab-
straction is called a domain. In the parallel case the domain is distributed
onto p, the number of processes, mutually disjoint subdomains. In addi-
tion each object is mapped onto a local consecutive index starting at 0 on
each process. This results in a strided distribution of the collection of ob-
jects and according global indices. Adaptively adding new objects calls for
renumbering both local and global indices. Furthermore, due to the mu-
tually disjoint distribution, all operations dependent on objects of other
subdomains, e.g. sparse matrix vector products, require communication.

In the presented approach, the subdomains need to be augmented to
overlapping subdomains according to the data dependencies. This allows
for minimising the communication phases. For example, in Krylov solvers
not every matrix vector product requires communication using this data
distribution. Such overlapping subdomains are either provided by par-
allel grid managers or directly by the user. As in Janus, each object is
identified by a global index. This is mapped to a local index and an at-
tribute used for identifying different partitions of the local domain and to
set up communication. Once this mapping is set up, the user can define
communication interfaces based on the attributes and perform communi-
cations for arbitrary data types. Even if MPI is used underneath, the user
is relieved from directly using MPI routines and setting up communication
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by hand. Furthermore, one can take advantage of the better performance
offered by the presented approach if he has to deal with often recurring
communication schemes.

7.3 Algebraic Multigrid Components

In this section we will describe some of the major components developed
when we implemented the AMG solvers described in the previous chap-
ters.

7.3.1 Graph components

Our aggregation algorithms use the weighted graph of a matrix to con-
struct the aggregates. As we have shown, this aggregation can be per-
formed on a scalar matrix as well as on a block matrix. In addition, only
a subset of the graph is actually used for building the aggregates in the
parallel case. The rest of the aggregation information is then added by
communicating with other processes. All these requirements can be ful-
filled using a flexible design of a graph based on templates and static
polymorphism.

Operation Effect

begin() Returns iterator over vertices pointing to
first vertex

end() Returns iterator over vertices pointing to the
position after the last vertex

beginEdges(vertex) Returns iterator over edges pointing to
vertex for the first edge

endEdges(vertex) Returns iterator over edges pointing to
vertex for the position after the last edge

noVertices() Returns the number of vertices
noEdges() Returns the number of edges
maxVertex() Returns vertex with biggest index

Table 7.8: Generic Graph Interface

The interface of all these graphs is described in Table 7.8. It is very slim
and basically provides access to iterators over the vertices and edges of
the graph.
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There are three class templates that implement the graph interface.
The template <class M> class MatrixGraph class template wraps a
matrix of type M and provides the graph of it. The

template <class G, class VP, class EP, class VM, class EM>
class PropertiesGraph

class template is used to attach weights to a graph of type G. The tem-
plate parameters VP and EP are the types of the properties attached to
the vertices and edges, respectively. The maps of type VM and EM provide
mappings of vertices and Edges to indices, respectively. For the par-
allel aggregation the template <class G, class T> class Subgraph

class template provides a subset of a graph of type G using the mapping
of vertex indices to bool for the decision whether a vertex is included or
not.

7.3.2 Aggregation and Coarsening

For the sequential aggregation we use an object of type PropertiesGraph
that wraps a matrix graph of type MatrixGraph. In the parallel case, we
first create an object of type SubGraph of a graph of type MatrixGraph

according to the disjoint domain partitioning. Then an object of type
PropertiesGraph is used as wrapper around it to attach the weights to
the vertices and edges.

In either case these weights need to be computed based on the strength
of connection measure. In all our computations we used a criterion of
type template<class M, class N> class SymmetricDependency to
do this. The template parameter M is the type of the matrix used and N

is the type of the norm that is responsible for computing the scalars from
the matrix blocks for the strength of connection computation. Possible
values for the latter template parameter are for example template <int

N> Diagonal that simply uses the N-th diagonal value of the block (e.g.
the pressure component) or RowSum that computes the row-sum norm of
the matrix block.

The information about the aggregates is encapsulated in template <

class V> AggregatesMap. Its template parameter is the type used to
index the vertices. As the name suggests it maps vertices to aggregate
numbers and provides iterators over as well as random access to the
aggregate numbers. The actual mapping is built by calling its member
function

template<class M, class G, class C>
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tuple<int,int,int,int> buildAggregates(const M& matrix, G&
graph, const C& criterion).

The template parameter M is the matrix type used for the linear system.
G is type of the matrix graph used. As described at the beginning of this
subsection, this differs in the parallel version from the sequential version.
The last template parameter is the type that provides the arguments for
guiding the aggregation and coarsening process. It provides additional
members to the strength of connection criterion. This type is template

<class T> AggregationCriterion. The template parameter T is the
type of the strength of connection criterion used. It is used as the base
class of AggregationCriterion. All member functions are described in
Table 7.9.

7.3.3 Prolongation and Restriction

Both prolongation and restriction are realised in template <class V1,

class V2, class T> class Transfer. The first template parameter is
the type of the vertex index. The parameter V2 is type of the vector that is
prolongated and restrict. It might be a scalar for variable-based or a block
vector for point-based AMG. The last template parameter used is the type
of parallel information used. These classes are used to encapsulated the
index set based communication as described in Section 7.2. There are
specialisations of class Transfer for the purely sequential and parallel
version. Thus, unnecessary overhead by the communication is avoided if
the sequential version is used.

7.3.4 Smoothers

After building the matrix hierarchy, smoothers have to be constructed for
each of the matrices on the coarser levels. As we provide many differ-
ent smoothers ranging from stationary iterative methods to overlapping
Schwarz methods, see for example Table 7.4, there is no uniform con-
structor for them. Still we need a uniform way to construct them.

The only arguments that might be different from level to level are the
matrix that the smoother is for and in the parallel version the information
about the data decomposition and communication. Therefore we have cre-
ated the template <class S> class ConstructionTraits class tem-
plate that constructs the smoothers for us. This class has an asso-
ciated type called ConstructionArgs that provides all the arguments
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Operation Effect

maxDistance() Returns the maximum distance between
two aggregate nodes

setMaxDistance(i) Set the maximum distance between two
aggregate nodes

minAggregateSize() Returns the minimum number of ver-
tices an aggregate should have

setMinAggregateSize(i) Set the minimum number of vertices an
aggregate should have

maxAggregateSize() Returns the maximum number of ver-
tices an aggregate should have

setMaxAggregateSize(i) Set the maximum number of vertices an
aggregate should have

maxConnectivity() Returns the maximum number of con-
nection between vertices of an aggregate

setMaxConnectivity(i) Sets the maximum number of connec-
tion between vertices of an aggregate

beta() Returns the threshold for deciding
whether a vertex is isolated

setBeta(b) Sets the threshold for deciding whether
a vertex is isolated

alpha() Returns the threshold for deciding
whether a connection is strong

setAlpha(b) Sets the threshold for deciding whether
a connection is strong

Table 7.9: AggregationCriterion Interface

needed for the construction to the member function construct(args)

. For each level we just set the matrix of that level in the instance of
ConstructionArgs and then construct the smoother. This way we can
reuse all the other arguments from the previous level.

We use a similar approach for the application of the smoother to the lin-
ear system. Some of the non-symmetric smoothers like Gauss-Seidel and
the multiplicative version of the overlapping Schwarz method can be ap-
plied forward or backward. To use this property, we designed template <

class S> class SmootherApplier. The smoother can be applied using
the member functions presmooth and postsmooth. In the default case
they just call the method apply of the preconditioner interface. We pro-
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vide template specialisations for the smoothers that can applied forward
and backward. These ensure that the forward direction is used for pre-
and the backward direction for post-smoothing. Thus, we get a symmet-
ric multigrid method provided that the matrix is symmetric and the same
number of pre- and post-smoothing steps are used.

7.3.5 Using AMG

We can use all the classes described in this chapter as building blocks of
our AMG method. Depending on what versions we choose, we end up with
either a purely sequential algebraic multigrid preconditioner or a parallel
one.

We provide sample code for a scalar AMG as a preconditioner in Listing
7.1. The code is well documented and should be self explanatory. We
simply construct the type for the scalar sparse matrix and the vector
first. Then we choose the type of the coarsening criterion, the type of
the smoother, and select the type of the corresponding arguments for the
smoother construction. After the types are set up, we create the objects
and initial them.

To create a parallel point-based AMG method, we simply use a paral-
lel smoother based on the wrapper BockPreconditioner of a sequential
one, a parallel Operator of type OverlappingSchwarzOperator, a par-
allel information object of type OwnerOverlapCopyCommunication, and
a parallel scalar product of type OverlappingSchwarzScalarProduct.
Everything except the setup of the parallel information and the matrix is
the same as for the sequential version. This example can be found in
Listing 7.2
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// Sparse matr ix type

typedef Dune::FieldMatrix<double, 1, 1> MatrixBlock;
typedef Dune::BCRSMatrix<MatrixBlock> BCRSMat;
// Vec to r type

typedef Dune::FieldVector<double, 1> VectorBlock;
typedef Dune::BlockVector<VectorBlock> Vector;
// Sequen t ia l ope ra t o r type

typedef Dune::MatrixAdapter<BCRSMat, Vector, Vector>
Operator;

// Coarsen c r i t e r i um type

typedef Dune::Amg::CoarsenCriterion<
Dune::Amg::SymmetricCriterion<BCRSMat, Dune::Amg::

FirstDiagonal> >
Criterion;

//Smoother type and argument type f o r c o n s t r u c t i o n

typedef Dune::SeqSSOR<BCRSMat, Vector, Vector> Smoother;
typedef Dune::Amg::SmootherTraits<Smoother>::Arguments

SmootherArgs;

BCRSMat mat;
setupMatrix(mat)

Vector b(mat.N()), x(mat.M());
b=0; x=100;

Operator fop(mat);

SmootherArgs smootherArgs;
smootherArgs.relaxationFactor = 1; // no r e l a x t i o n

// max 15 l e v e l s and 2000 unknowns on coa rses t l e v e l

Criterion criterion(15, 2000);

// c r ea t e s ca la r product , AMG and so l v e r

Dune::SeqScalarProduct<Vector> sp;
typedef Dune::Amg::AMG<Operator, Vector, Smoother> AMG;
AMG amg(fop, criterion, smootherArgs, 1, 1, 1, false);
Dune::CGSolver<Vector> amgCG(fop, amg, 1e-8, 80, 2);

// so l ve

Dune::InverseOperatorResult r;
amgCG.apply(x, b, r);

Listing 7.1: A sequential scalar AMG example
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// Type o f Block matr ix

typedef Dune::FieldMatrix<double, 2, 2> MatrixBlock;
typedef Dune::BCRSMatrix<MatrixBlock> BCRSMat;
// Type o f b lock v e c t o r

typedef Dune::FieldVector<double, 2> VectorBlock;
typedef Dune::BlockVector<VectorBlock> Vector;
// P a r a l l e l I n f o rma t i on and Communication

typedef Dune::OwnerOverlapCopyCommunication<int>
Communication;

// P a r a l l e l ope ra t o r

typedef Dune::OverlappingSchwarzOperator<BCRSMat, Vector,
Vector, Communication> Operator;

// C r i t e r i o n using rowsum norm

typedef Dune::Amg::CoarsenCriterion<
Dune::Amg::SymmetricCriterion<BCRSMat, Dune::Amg::RowSum>

> Criterion;
// Sequen t ia l and p a r a l l e l smoother and smoother arguments

typedef Dune::SeqSSOR<BCRSMat, Vector, Vector> Smoother;
typedef Dune::BlockPreconditioner<Vector, Vector,

Communication, Smoother>
ParSmoother;
typedef Dune::Amg::SmootherTraits<ParSmoother>::Arguments

SmootherArgs;

Communication comm(MPI_COMM_WORLD);
BCRSMat mat;
setUpIndexSetsAndMatrix(comm, mat);
Operator fop(mat);
SmootherArgs smootherArgs;
smootherArgs.relaxationFactor = 1;
Criterion criterion(15, 2000);

// Create p a r a l l e l po in t −based AMG and so l v e r and apply

Dune::OverlappingSchwarzScalarProduct<Vector,
Communication> sp(comm);

typedef Dune::Amg::AMG<Operator, Vector, ParSmoother,
Communication> AMG;

AMG amg(fop, criterion, smootherArgs, 1, 1, 1, false, comm
);

Dune::CGSolver<Vector> amgCG(fop, sp, amg, 10e-8, 80);
Dune::InverseOperatorResult r;
amgCG.apply(x, b, r);

Listing 7.2: A parallel point-based AMG example
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8 Summary

In this thesis we have developed a robust and efficient massively paral-
lel algebraic multigrid (AMG) method for linear system arising from the
discretization of scalar partial differential equations and systems of them.
Among others it is suitable for conforming finite element methods, finite
volume methods, and discontinuous Galerkin methods. The AMG precon-
ditioner is especially tailored for diffusion problems with highly oscillating
and discontinuous diffusion coefficients. The AMG is massively parallel
and scales very well for up to thousands of processes on today’s super-
computers.

In particular we have presented a new strength of connection mea-
sure for algebraic multigrid methods based on aggregation together with a
greedy aggregation algorithm. This approach allows semi-coarsening for
anisotropic diffusion problems even when the linear systems stem from
bilinear or trilinear finite element discretizations. We have shown that
the developed method is a scalable and robust preconditioner for diffu-
sion problems with oscillatory coefficients as well as problems with high-
contrast coefficient jumps. In both cases the change in the coefficients
is detected and the coarsening is adapted automatically. At the same
time the method keeps the sparsity of the coarse level matrices low and
therefore the memory consumption of the preconditioner is minimal. The
convergence properties for log-normally distributed random fields of dif-
fusion problems are very good. Algebraic domain decomposition two-level
methods have been applied to this kind of problems before and turned out
to be better than previous AMG approaches. This still holds for the con-
vergence properties when compared to the presented AMG. Despite of this,
the scalability of the total CPU time needed to solution of the presented
method scales better than the algebraic domain decomposition method.
An extension to fully coupled systems of partial differential equation has
been developed. The method works well for linear systems from both finite
element and finite volume methods. We have shown that the method is
applicable to real world problems using sample applications from flow in
heterogeneous porous media.

For discontinuous Galerkin methods we have extended the method by
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using the space of continuous linear functions as the first coarse level
space. Further coarsening is done with the previously developed coarsen-
ing by aggregation. We showed that this approach is a robust precondi-
tioner for the symmetric and the non-symmetric interior penalty method
with a sufficiently large penalty parameter. For the method of Baumann
and Oden we have used overlapping Schwarz methods as smoothers on
the fine level. The local subdomains of the smoothers are constructed alge-
braically using the aggregation algorithm for block matrices. The method
proves to be robust for jumping coefficients and high order discretiza-
tions. To our best knowledge this is the first AMG preconditioner suitable
for application to higher order (p>1) discontinuous Galerkin finite element
discretizations. Even lower order DG elliptic problems with such highly
discontinuous coefficients have not been tackled with AMG up to now.

A general methodology for parallelising iterative solvers for partial dif-
ferential equations was developed. Using this abstract approach the “Iter-
ative Solver Template Library” (ISTL) was parallelised. The parallel version
of the AMG preconditioner uses the same approach. Using model prob-
lems and real world simulations the good scalability of the approach has
been shown. The small memory footprint of the sequential method is
also an attribute of the parallel method. This allows for solving very large
problems on supercomputers with thousands of processors.

The parallelisation approach as well as the AMG method was imple-
mented using advanced C++ programming techniques. Using the block
structures of the matrix and vector data structures of ISTL, the implemen-
tation is extremely efficient. This holds especially for systems of partial dif-
ferential equations. Overall, the implementation makes the performance
of the solver nearly on a par with commercial AMG solvers based on in-
terpolation for scalar systems. At the same time its memory consumption
is far lower making the simulation of larger problems feasible.

The code is publicly available in the Bastian et al. [2005] modules
dune-istl (parallel AMG) and dune-udg (AMG for DG) from http://www.
dune-project.org/.
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additive Schwarz operator, 23
algebraic multigrid method, 26

point-based -, 49
unknown-based -, 48
variable-based -, 48

algebraic smoothness, 28
algebraically smooth, 28
AMG, see algebraic multigrid method
average operator, 11

blocking
cell-based, 18
equation-based, 17
point-based, 17
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energy inner product, 27
energy norm, 27
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error, 27

Galerkin
approximation, 8
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global index, 137
grid, 9

Helics, 100

index set, 9
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jump operator, 11
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matrix
essentially positive type, 29

matrix graph, 31
isolated vertex, 32
path, 34
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vertex neighbours, 31
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mesh, 9
multi-level algorithm, 25
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multiplicative Schwarz operator,

23

operator complexity, 52
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Glossary

〈·, ·〉 Euclidian scalar product, 27
〈u, v〉0 := 〈Du, v〉, 27
〈u, v〉1 := 〈Au, v〉, 27
〈u, v〉2 := 〈D−1Au,Av〉, 27
‖ · ‖r,D The norm on H r(D)., 7
(·, ·)D The inner product on L2(D) (or (L2(D))2), 7
~φ� φ1 − φ2, the jump of a function at an edge,

11
{φ} φ1+φ2

2 , the jump of a function at an edge, 11
‖ · ‖0,D , 7

1ω Identity on RIω , 89

A A matrix A ∈ KI , 9
AMG algebraic multigrid method, 1
A(u, v) A bilinear form., 8

b A vector b ∈ KI , 9

C(Ω) The space of continuous functions on Ω., 10

C(Ω, ΓD) The space of continuous functions onΩ with
incorporated Dirichlet boundary conditions
on ΓD., 10

CA Operator complexity, that is the sum of the
number of nonzeros of the matrices at all
levels divided by the number of nonzeros of
the matrix at the finest level, 52

DG discontinuous Galerkin method, 7

E The set of all edges (d = 2) or faces (d = 3) of
the elements of the mesh T ., 11
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EB Set of all edges at the boundary of the mesh,
11

EI Set of all interior edges of the grid, 11

FE finite element method, 7
FV finite volume method, 7

GMG geometric multigrid method, 1

H1
0 (D) The completion of infinitely differentiable

functions with compact support under the
norm |u|1,D = ‖∇u‖0,D ., 7

Hm(D) The set of functions in L2(D) with distri-
butional derivatives up to order m also in
L2(D)., 7

H−1(D) The dual space of H1
0 (D), 7

H−s(D) , 0 < s < 1. The space obtained by real
interpolation between H−1(D) and L2(D)., 7

Hs(D) , 7
Helics the Helic II cluster at the Interdisciplinary

Centre for Scientific Computing at the uni-
versity of Heidelberg. The cluster consists
of 156 compute nodes. Each node has two
dual core AMD Opteron 2220 CPUs with 2.8
Ghz. The nodes are interconnected by a 10G
Myrinet network., 100

I A finite index set, 9
IP Symmetric interior penalty method, 12
ISTL Iterative Solver Template Library, 4

Jugene IBM Blue Gene / System P supercomputer
located at Forschungszentrum Jülich, 102

K A field (e.g. R) or in abuse of notation a vec-
tor space of low dimension (e.g. Rk ) for treat-
ing block matrix with the same notation as
scalar matrices., 17
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L2(D) the space of square integrable functions on
D, 7

L(v) A linear form, 8

µ The penalty parameter for DG methods, 12

NIPG Non-symmetric interior penalty method, 12
NIPG(µ, p) Non-symmetric interior penalty method with

penalty parameter µ and basis functions of
total order p, 75

OBB DG method of Baumann and Oden, 12
OBB(p) Baumann’s and Oden’s method with basis

functions of total order p, 75

Pk := {u : Rd → R | u(x) =
∑
|α|≤k cαx

α, cα ∈ R}.
The space of polynomials on Rd of maximum
total degree k, 10

Qk := {u : Rd → R | u(x) =
∑
|α|∞≤k cαx

α, cα ∈
R}. The space of polynomials on Rd with
maximum degree k in each component., 10

residual r = b − Au, 27

SIPG Symmetric interior penalty method, 12

T A triangulation of the domain (also called
mesh and grid)., 9

Vk := {v ∈ L2(Ω) : v|τ ∈ Pk ,∀τ ∈ T }. the space
of discontinuous piecewise polynomial func-
tions of total degree k ≥ 0, 11
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