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SUMMARY  1 

SUMMARY 

Broccoli (Brassica oleracea var. italica) has been proposed as a functional food 

for cancer prevention, based on its high glucosinolate (GSL) content and capacity for 

selenium (Se)-accumulation. However, as selenate and sulfate share the initial 

assimilation route, Se-fertilization may interfere with GSL accumulation. Indeed, 

previous studies have shown that selenate-fertilization may impinge on plant growth 

and compromise GSL accumulation. To reevaluate the potentially adverse effects of 

Se-fertilization, I have performed a comprehensive study on sand-grown young 

broccoli plants (weekly selenate applications of 0.8 µmol plant-1 via the root) and 

field-grown adult broccoli plants during head formation (single selenate application 

via leaf spray: 25.3 or 253 µmol plant-1). The results show that selenate-application 

did not affect growth, concentrations of cysteine, glutathione, total GSL and 

glucoraphanin as a major aliphatic GSL, or the expression of BoMYB28, encoding a 

master regulator for aliphatic GSL biosynthesis. Conversely, due to changed 

expression of sulfate transporters (BoSULTR1;1, 1;2, 2;1, and 2;2), sulfate and total S 

concentrations increased in the shoot of young plants but decreased in the root. In 

summary, broccoli can be fertilized with Se without reduction in GSL content, even 

with Se accumulation significantly above recommended levels for human 

consumption. 

 

 

 

 

 

 



ZUSAMMENFASSUNG  2 

ZUSAMMENFASSUNG 

Brokkoli (Brassica oleracea var. italica) wurde wegen seinem hohen 

Glucosinolatgehalt (GSL-Gehalt) und seiner Kapazität zur Anreicherung von Selen 

(Se) seit einiger Zeit als ein Functional Food zur Krebsprävention diskutiert. 

Da sich jedoch Selenat und Sulfat zu Beginn den gleichen Assimilationsweg teilen, 

könnte Se-Düngung die GSL-Akkumulation stören. Tatsächlich haben vorherige 

Studien gezeigt, dass Selenatdüngung auf das Pflanzenwachstum Einfluß nehmen und 

die GSL Akkumulation beeinträchtigen könnte. Um die potentiell nachteiligen Effekte 

der Se-Düngung neu zu beurteilen, wurde eine umfassende Studie an jungen 

Brokkolipflanzen in Sandkultur (mit wöchentlichen Selenatverabreichungen von 0,8 

µmol Pflanze-1 über die Wurzel) und an adulten Brokkolipflanzen während der 

Blütenstandsbildung (eine einzige Selenatbehandlung mittels Sprühapplikation auf 

Blätter: 25,3 oder 253 µmol Pflanze -1) durchgeführt. Die Ergebnisse zeigen, dass das 

Verabreichen von Selenat weder das Pflanzenwachstum noch den Gehalt an Cystein, 

Glutation, Gesamt-GSL und an Glucoraphanin (als Hauptglucosinolat), noch die 

Expression von BoMYB28 (der einen Hauptregulator der aliphatischen 

GSL-Biosynthese kodiert) beeinflusste. Im Gegenzug stiegen aufgrund einer 

veränderten Expression der Sulfattransporter (BoSULTR1;1, 1;2, 2;1, und 2;2) die  

Sulfat- u. Gesamtschwefelkonzentrationen im Spross junger Pflanzen, während sie in 

deren Wurzel abnahmen. Die Ergebnisse zeigen, dass Brokkoli mit Se gedüngt 

werden kann, ohne eine Verringerung des GSL-Gehalts zu verursachen, selbst dann, 

wenn die erreichte, Se-Akkumulation, deuthlich über der für den menschlichen 

Verzehr empfohlenen Menge lag.    

 

 



INTRODUCTION  3 

1.  INTRODUCTION 

Among the diverse spectrum of higher plant secondary metabolites, the 

glucosinolates (GSL) of the Brassicaceae have attracted particular attention. Not only 

could GSL biosynthesis and metabolism be studied in the model plant Arabidopsis 

thaliana, thus allowing its molecular dissection in great detail, but some of these GSL 

have also been proposed to exhibit a cancer-preventive potential when consumed 

regularly in the human diet (Keck & Finley, 2004; Finley, 2005; Verkerk et al., 2008). 

In addition, some chemical elements, like selenium (Se), are important and essential 

micronutrients for human health. Broccoli (Brassica oleracea var. italica), which is a 

common vegetable, has high GSLs content and can accumulate high amount of Se. 

Therefore, in this thesis, the effect of Se-fertilization on S-metabolism in broccoli was 

investigated on the purpose to improve the nutrient-value of broccoli for human 

consumption. 

 

1.1  Glucosinolates 

Glucosinolates (GSLs) are nitrogen- and sulfur-containing metabolites derived 

from a variety of amino acids (Grubb & Abel, 2006; Halkier & Gershenzon, 2006). In 

planta, the degradation of GSLs by the enzyme myrosinase upon destruction of 

cellular structures (e.g. wounding), results in the formation of several distinct products, 

with the exact composition of the reaction product spectrum depending on various 

factors, including the presence of different product-specifying proteins (Wittstock & 

Burow, 2007). Prominent among the reaction products are isothiocyanates, which 

have been implicated in plant defense against pathogens and herbivores (Brader et al., 

2001; Mikkelsen et al., 2003; Wittstock et al., 2004; Mewis et al., 2006; Shroff et al., 

2008; Bednarek et al., 2009; Clay et al., 2009), and, when consumed by mammals, 
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have been shown to act as dietary inducers of detoxification enzymes that favorably 

modify carcinogen metabolism (Munday & Munday, 2004; Paolini et al., 2004; 

Verkerk et al., 2008). A strong focus of recent research has been on the various effects 

of the glucoraphanin-derived isothiocyanate sulforaphane, as this compound was 

reported to exhibit a high potential for cancer prevention (Chiao et al., 2002; Fahey et 

al., 2002; Munday & Munday, 2004; Paolini et al., 2004; Cornblatt et al., 2007) 

 

1.1.1  GSLs biosynthesis 

The formation of GSLs can be conveniently divided into three separate stages 

(Fig. 1.1). First, certain aliphatic and aromatic amino acids are elongated by inserting 

methylene groups into their side chains. Second, the amino acid moiety itself, whether 

elongated or not, is metabolically reconfigured to give the core structure of GSLs. 

Third, the initially formed glucosinolates are modified by various secondary 

transformations. 

 

The major GSLs are derived from methionine, tryptophan and phenylalanine. 

Some genes in different stages of GSLs biosynthesis also have been identified. For 

example, methylthioalkylmalate (MAM) synthases catalyze the condensation reaction 

for the first side chain elongation step (Kroymann et al., 2001; Field et al., 2004; 

Textor et al., 2007). Cytochromes P450 monooxygenases family are known for the 

oxidation step in the core structure formation (Bak & Feyereisen, 2001; Bak et al., 

2001; Hansen et al., 2001; Naur et al., 2003). Secondary modification of the side 

chain is generally considered to be the final stage in GSLs synthesis. The substantial 

natural variation of aliphatic GSLs in Arabidopsis has expedited identification of two 

α-ketoglutarate-dependent dioxygenases, encoded by the tightly linked and duplicated 

AOP2 and AOP3 genes, which control production of alkenyl and hydroxyalkyl GSLs, 
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respectively (Kliebenstein et al., 2001b). 

 

 

Fig. 1.1  Stages of glucosinolate biosynthesis (from Grubb & Abel, 2006).  
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1.1.2  MYB transcription factors 

MYB factors represent a family of proteins that include the conserved MYB 

DNA-binding domain. In contrast to animals, plants contain a MYB-protein 

subfamily that is characterised by the R2R3-type MYB domain. ‘Classical’ MYB 

factors, which are related to c-Myb, seem to be involved in the control of the cell 

cycle in animals, plants and other higher eukaryotes. In plants, MYB proteins can be 

classified into three subfamilies depending on the number of adjacent repeats in the 

MYB domain (one, two or three) (Rosinski & Atchley 1998; Jin & Martin 1999). 

MYB genes containing two repeats (i.e. R2R3-MYB) constitute the largest MYB gene 

family in plants. In A. thaliana, more than 100 R2R3-MYB genes have been found and 

categorised into 22 subgroups on the basis of conserved amino-acid sequence motifs 

present carboxyterminal to the MYB domain (Fig. 1.2; Kranz et al., 1998; Stracke et 

al., 2001). No functional data are available for most of the R2R3-type AtMYB genes. 

However, systematic searches for knockouts have been initiated recently and the 

number of AtMYB genes for which functional information has become available has 

grown significantly during the past year (Meissner et al., 1999). R2R3-type MYB 

genes have been shown to regulate phenylpropanoid metabolism in A. thaliana. 

Overexpression of AtMYB75/PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1) 

and AtMYB90/PAP2 results in accumulation of anthocyanins (Borevitz et al., 2000), 

and AtMYB4 represses the synthesis of sinapoyl malate (Jin et al., 2000). Another 

important function for R2R3-type MYB factors is the control of development and 

determination of cell fate and identity. AtMYB0/GLABROUS 1 (GL1) and 

AtMYBB66/WEREWOLF (WER) are involved in epidermal cell patterning  

(Oppenheimer et al., 1991; Lee et al., 1999). R2R3-type MYB factors also participate 

in plant responses to environmental factors and in mediating hormone actions. 

AtMYB2 has been found to regulate the AtADH1 (ALCOHOL DEHYDROGENASE1) 
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gene promoter, and it might also be involved in the response to low oxygen (Hoeren 

et al., 1998). AtMYB30 expression is strongly correlated with cell death during the 

hypersensitive response upon pathogen attack or elicitor treatment (Daniel et al., 

1999). Recently, the role of R2R3-MYB transcription factors as master regulators of 

GSL biosynthesis has been reported. AtMYB28 acts as the major positive regulator of 

genes encoding the enzymes of aliphatic GSL biosynthesis (Gigolashvili et al., 2007b; 

Hirai et al., 2007) and AtMYB29 is an accessory factor in response to methyl 

jasmonate signaling and a positive regulator of aliphatic GSL biosynthesis (Hirai et al., 

2007; Gigolashvili et al., 2008). AtMYB34 and AtMYB51 both regulate indolic GSL 

biosynthesis (Celenza et al., 2005; Gigolashvili et al., 2007a). 

 

1.1.3  GSLs and plant defense 

GSLs constitute a large family of secondary metabolites with over 120 different 

chemical structures known (Fahey et al., 2001). All GSLs have a core structure, 

composed of a β-thioglucose and an N-hydroxyiminosulphate group, and an aglycone 

side-chain, which is structurally highly diverse (Fig. 1.3). Upon tissue disruption (e.g. 

during herbivory), GSLs (which are stored in the plant vacuole) are mixed with 

myrosinase, a glucosidase that is spatially separated from its substrate (Kelly et al., 

1998). The myrosinase activates the glucosinolates by removal of the glucose moiety. 

This results in the production of nitriles and isothiocyanates, that are toxic and 

deterrent to generalist insect herbivores. This plant-defense system is also called the 

mustard oil bomb. Most GSLs breakdown products have biocidal activities, mainly 

because their functional groups have an electrophilic carbon center. 
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Fig. 1.2  Relationship of A. thaliana MYB proteins that have two or three repeats (from 

Stracke et al., 2001). 
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Fig. 1.3  The mustard oil bomb, a binary (glucosinolate-myrosinase) chemical defense 

system (from Grubb & Abel, 2006). 1: isothiocyanates; 2: nitriles and elemental sulfur; 3: 

thiocyanates; 4: oxazolidine-2-thiones; 5: epithionitriles.
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1.1.4  GSLs and cancer 

Cancer is a leading cause of death worldwide: it accounted for 7.4 million deaths 

(around 13% of all deaths) in 2004 (calculation from WHO). A review by Doll and 

Peto in 1981 summarized the available evidence for causes of cancer and suggested 

that diet is the primary causative factor in 35 % of all cancer deaths. Although diet 

may be a source of carcinogens, the authors concluded the most important role was as 

a source of cancer-inhibiting bioactive compounds, and diets that do not provide 

enough bioactive compounds may increase the risk of specific cancers. GSLs are not 

bioactive in the animal that consumes them until they have been enzymatically 

hydrolysed to an associated isothiocyanate by the endogenous myrosinase enzyme 

that is released by disruption of the plant cell through harvesting, processing, or 

mastication (Fig. 1.3). The breakdown products of GSLs are not only contributing to 

plant defense, but may also be benefic for human health, based on their 

cancer-preventing potential. In vitro and in vivo studies have reported that 

isothiocyanates affect many steps of cancer development including modulation of 

phase I and II detoxification enzymes (Rabot et al., 1993; Bogaards et al., 1994; Jiao 

et al., 1996; Talalay & Fahey, 2001), functioning as a direct antioxidant (Zhu et al., 

2000; Zhu & Loft, 2001, 2003) or as an indirect antioxidant by phase II enzyme 

induction (Hayes & McLellan, 1999; Talalay & Fahey, 2001; McWalter et al., 2004), 

modulating cell signalling (Xu & Thornalley, 2001), induction of apoptosis (Yu et al., 

1998; Chiao et al., 2002; Yang et al., 2002), control of the cell cycle (Yu et al., 1998; 

Zhang et al., 2003; Wang et al., 2004) and reduction of helicobacter infections (Fahey 

et al., 2002). Therefore, polymorphisms exist in the genes for the metabolizing 

enzymes, and the potential influence of these genetic alterations on risk for cancer, 

owing to diet-gene interactions, has become the focus of intense research interest. 

 

In the biotransformation of a foreign compound or carcinogen, the first step 

typically involves the addition of one or more hydroxyl groups to a relatively 

nonpolar hydrocarbon, which transforms the compound into an electrophilic or more 

polar intermediate. These oxidation reactions are carried out by phase I or activating 

enzymes, the cytochromes P450, which are coded by CYP genes. The cytochrome 

P450 enzymes also catalyze the oxidation of several endogenous compounds, such as 

steroid hormones and vitamin D metabolites. Phase II or conjugating enzymes 

catalyze conjugation reactions to compounds such as glutathione, which facilitates 
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elimination. Phase II enzymes include the glutathione S-transferases (GSTs), 

N-acetyltransferases (NATs), microsomal epoxide hydrolase, sulfotransferases, and 

UDP-glucuronosyl-transferases. Whether a polymorphic variant of these enzymes 

increases or decreases risk for cancer depends on the specific enzymatic activity that 

is being stimulated and the substrate involved. Similarly, the induction of 

metabolizing enzyme activity by nutritional factors may result in either the activation 

of a carcinogen or in the detoxification of a reactive intermediate metabolite. Fig. 1.4 

illustrates the interrelationships between the biotransformation enzyme systems. 

 

In cruciferous vegetables, sulforaphane (SF), a breakdown product of 

glucoraphanin (GR) which is a major aliphatic glucosinolate, has been reported on 

induction of phase II detoxification enzymes (Munday & Munday, 2004; Paolini et al., 

2004; Cornblatt et al., 2007). 



INTRODUCTION  12 

 
Fig. 1.4  Interrelationships between the biotransformation enzyme systems (from Rock 

et al., 2000). 
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1.2  Sulfur and Selenium metabolism in plants 
In plants, sulfate and selenate share the initial pathway for uptake, assimilation 

and incorporation into O-acetylserine (OAS), resulting in the formation of cysteine 

(Cys) and seleno-cysteine, respectively (Fig. 1.5; Hell, 1997; Pilon-Smits et al., 2002; 

Sors et al., 2005a; Sors et al., 2005b; Li et al., 2008). 

 

 
Fig. 1.5  Current model of sulfate and selenate uptake and assimilation pathways in 

plants. SULTR, sulfate transporter; APS, 5’-adenylylsulfate; APSe, 5’-adenylylselenate; OAS, 

O-acetylserine; Cys, cysteine; GSH, glutathione; GSLs, glucosinolates; SMT, selenocysteine 

methyltransferase; SeMSC, Se-methylselenocysteine. Note that a recent study demonstrated 

that the tripeptide glutathione (GSH) is the sulfur donor (Geu-Flores et al., 2009) for GSL 

biosynthesis. 

 

1.2.1  S-metabolism 

Sulfur (S) is an essential element for growth and physiological functioning of 

plants. Sulfate taken up by the roots is the major sulfur source for growth, though it 

has to be reduced to sulfide before it is further metabolized. Root plastids contain all 

sulfate reduction enzymes, however, the reduction of sulfate to sulfide and its 

subsequent incorporation into cysteine (Cys) takes predominantly place in the shoot in 

the chloroplast. Cysteine is the precursor or reduced sulfur donor of most other 

organic sulfur compounds in plants. The predominant proportion of the organic sulfur 

is present in the protein fraction (up to 70 % of total sulfur), as cysteine and 

methionine residues. Cysteine and methionine are highly significant in the structure, 

conformation and function of proteins. Plants contain a large variety of other organic 

sulfur compounds, as thiols (glutathione), sulfolipids and secondary sulfur compounds 

(alliins, glucosinolates, phytochelatins), which play an important role in physiology 

and protection against environmental stress and pests (Fig. 1.6; Rausch & Wachter, 
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2005; Mullineaux & Rausch, 2005). Sulfur compounds are also of great importance 

for food quality and for the production of phyto-pharmaceutics. Sulfur deficiency will 

result in the loss of plant production, fitness and resistance to environmental stress 

and pests. 

 

1.2.2  Se-metabolism 

The chemical and physical resemblance between selenium (Se) and sulfur (S) 

establishes that both these elements share common metabolic pathways in plants. The 

presence of isologous Se and S compounds indicates that these elements compete in 

biochemical processes that affect uptake, translocation and assimilation throughout 

plant development (Fig. 1.5). The main bioavailable form of Se in soils is selenate, 

which can be taken up by plants via sulfate transporters and assimilated into 

selenocysteine (SeCys) and selenomethionine (SeMet). Unlike selenate, there is no 

evidence that the uptake of selenite is mediated by membrane transporters.  

 

Se is an essential micronutrient and has important benefits for animal and human 

nutrition. However, the question of the essentiality of Se as a micronutrient in higher 

plants is unresolved and remains controversial. From the ability for accumulating Se, 

plants can be divided into 3 groups: non-accumulator, Se-indicator and 

Se-accumulator. Non-accumulator plants are unable to grow on seleniferous soils and 

Se is toxic at tissue concentrations as low as 10-100 mg Se kg−1 dry weight, whereas 

Se-indicator (secondary accumulator) plants can colonize both non-seleniferous and 

seleniferous soils and tolerate tissue Se concentrations approaching 1000 mg Se kg−1 

dry weight. Most of Brassica plants (e.g. broccoli) are secondary accumulators. 

Se-accumulator plants are able to hyperaccumulate Se in their shoots when they grow 

on seleniferous soils. They can accumulate from hundreds to several thousand mg Se 

kg−1 dry weight in their tissues. The largest group of Se-hyperaccumulating plants 

belongs to the genus Astragalus (Fabaceae). Twenty-five species of Astragalus have 

been characterized as Se hyperaccumulators (Shrift, 1969). While there is no proof of 

essentiality for Se in plants, there have been reports of beneficial effects of Se on 

plant growth. Among higher plants, the largest beneficial effects of Se on growth (up 

to 2.8-fold higher biomass with Se) have been observed in the Se hyperaccumulator 

plants, and Se has been suggested to be essential for these species (Shrift, 1969). 

While Se is generally metabolized by sulfur pathways, there is some evidence that 
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plants have evolved Se-specific enzymes that facilitate Se accumulation, perhaps to 

serve an ecological or physiological function. Hyperaccumulators such as 

two-grooved milkvetch (Astragalus bisulcatus) has a Se-specific selenocysteine 

methyltransferase (SMT), leading to accumulation of Se as relatively non-toxic 

methyl-selenocysteine (Fig. 1.7; Sors et al., 2005a; Sors et al., 2009). There is also a 

report of an Arabidopsis thaliana Se-binding protein that conferred Se tolerance when 

overexpressed (Agalou et al., 2005). 
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Fig. 1.6  Sulfur assimilation as a platform for the biosynthesis of sulfur-containing 

defence compounds (SDCs, depicted in green) (from Rausch & Wachter, 2005). After 

uptake of sulfate from the soil by high-affinity transporters (1), sulfate is largely transported 

to the shoot, where it becomes activated by ATP via ATP sulfurylase (2) in the leaves. The 
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product, APS (50-adenylylsulfate), is reduced by APS reductase (3), with the tripeptide 

glutathione (GSH) acting as an electron donor. Alternatively, APS is further activated by APS 

kinase (4) to form 30-phosphoadenylylsulfate (PAPS), which is required for various 

sulfatation reactions, including the biosynthesis of glucosinolates. Sulfite is reduced by sulfite 

reductase (6) to H2S, which is incorporated into O-acetylserine via O-acetyl(thiol)lyase (8) to 

form cysteine. Cysteine, the primary product of S-assimilation is incorporated into sulfur-rich 

proteins (SRPs; including thionins) and GSH. Furthermore, cysteine is the donor of reduced 

sulfur for glucosinolate biosynthesis and for the synthesis of phytoalexins (including 

camalexin). Finally, H2S can be released from cysteine via the action of desulfhydrases (9), 

whereas elemental sulfur, S0, is possibly released from GSH. Note that via the activity of 

sulfite oxidase (5), excess sulfite is converted to sulfate, a reaction that uses O2 as an electron 

acceptor, thereby releasing H2O2 (which could act as a defence signal). Sulfate assimilation 

[reactions (2), (3), (6), (8)] is localized in the plastids, whereas H2S release occurs in plastids, 

mitochondria and cytosol. Sulfite oxidase is confined to peroxisomes. 

 

1.2.3  Interaction between S and Se metabolism 

While it was previously assumed that cysteine acts as donor of reduced sulfur for 

GSL biosynthesis, a recent report has demonstrated that the tripeptide glutathione is 

the sulfur donor (Geu-Flores et al., 2009). Thus, a negative impact of selenate on 

cysteine and/or GSH biosynthesis could impair GSL formation. Se-accumulating plant 

species are known to express a selenocysteine methyltransferase (SMT; Sors et al., 

2009). While broccoli has the capacity to convert selenocysteine to 

Se-methylselenocysteine (SeMSC), it is not yet clear whether the cloned putative 

broccoli SMT (Lyi et al., 2005) is indeed a bona fide SMT or rather a homocysteine 

methyltransferase with some SMT activity (Lyi et al., 2005; Sors et al., 2009). An 

increased formation of SeMSC in broccoli would be desirable for human consumption, 

however, the interference with cysteine synthesis could compromise the plants ability 

to channel cysteine into sulfur-based defense compounds (SDC) (Rausch & Wachter, 

2005), including not only GSLs but also the cellular antioxidant glutathione 

(Mullineaux & Rausch, 2005). Thus, manipulating the plant's cysteine metabolism via 

addition of selenate could cause side effects on plant stress tolerance which have to be 

considered. 
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Fig. 1.7  Overview of Se metabolism and partitioning in plants, with an emphasis on 

genetic engineering approaches that have been shown to modify these processes (from 

Zhu et al., 2009). Enzymes in the yellow circles are those known to promote the conversion 

after overexpression (or at those points where Se uptake and metabolism can be manipulated); 

arrows leaving cells indicate the translocation of Se within and from the plant; dashed arrows 

indicate that the process is not yet confirmed. Abbreviations: PT, high-affinity phosphate 

transporters; Secysth, Se-systathionine; Sehocys, Se-homocysteine; ST, high-affinity sulfate 

transporters. Purple box = unknown transport for organic Se; blue box = selenate efflux pump. 

 

While interference with cysteine biosynthesis could result in a negative impact of 

selenate-fertilization on GSL formation, selenate has also been shown to strongly 

induce a high affinity sulfate transporter in Arabidopsis thaliana, namely the 

root-expressed AtSULTR1;1 isoform, and, to a lesser extent also other SULTR 

isoforms (Takahashi et al., 2000; Yoshimoto et al., 2002). The analysis of a mutant in 

the isoform AtSULTR1;2 has revealed its dominant role for selenate uptake via the 

root system (Shibagaki et al., 2002; El Kassis et al., 2007). Since in Arabidopsis 
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thaliana, the selenate-induced up-regulation of SULTR isoforms in the root also leads 

to increased sulfate accumulation, it may be speculated that low selenate exposure 

could even have beneficial effects on sulfur assimilation under certain conditions. 

 

1.2.4  Se and human health 

The reason for Se’s essentiality for some organisms is that it is a structural 

component of specific selenoproteins and seleno-tRNAs. Selenoproteins contain 

SeCys in their active site and often have a redox function, such as the scavenging of 

free radicals that cause oxidative stress and cancer. The SeCys in selenoproteins is 

encoded by the opal stopcodon when present in the context of a specific secondary 

mRNA structure (SeCys insertion sequence). The importance of Se to human health 

has become a focus in recent years. Although Se-deficiency is rare, it does occur in 

several parts of the world, such as China, where concentrations of Se in the soil are 

low. Se-deficiency can lead to heart disease, hypothyroidism and a weakened immune 

system (Combs, 2000). The recommended intake of Se for a person is 50-70 μg day-1 

(U.S. Department of Agriculture, 2003), with the maximum safe dietary intake being 

in the range of 600-800 μg day-1 (Whanger, 2004). Earlier studies concluded that a 

dietary Se-supplement of 100 to 200 μg day-1 can reduce the risk of cancer (Clark et 

al., 1996; Ip & Ganther, 1992), and an anti-carcinogenic function has been 

documented for different cancer types (Ganther, 1999; Whanger, 2004; Finley, 2005). 

Vegetables are major sources of Se-intake for human consumption. However, under 

field conditions, Se-compound formation in plants is limited by the low 

selenate-availability in most soils. Consequently, in most Western European countries 

human Se-intake is below the dietary recommendation (Combs, 2001). 
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1.3  Broccoli and cancer prevention 
Broccoli (Brassica oleracea var. italica) is one of the most important vegetables 

because it is a major winter crop and a rich source of health promoting substances. It 

contains significant amounts of ascorbic acid, β -carotene, vitamin E, various 

flavonoids, fibers, and minerals such as magnesium (Mg) and calcium (Ca). In 

addition, like other Brassica species, broccoli contains significant quantities of 

glucosinolates (GSL), compounds rich in nitrogen (N) and sulfur (S), consisting of a 

thioglucose unit, a sulfonated oxime unit, and a variable side chain. The aliphatic GSL 

glucoraphanin (GR) is a major component in broccoli. In addition, broccoli can 

accumulate high amounts of selenium (Se) as other Brassica plants. Therefore, it has 

been advocated as a functional food for cancer prevention (Zhang et al., 1992; Fahey 

et al., 1997; Nestle, 1997; Nestle, 1998; Kristal & Lampe, 2002; Dinkova-Kostova et 

al., 2006; Munday et al., 2008; Traka et al., 2008). 
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2.  AIM 
Based on previous investigations, which predicted complex effects of 

selenate-application on broccoli (B. oleracea var. italica, a candidate for functional 

food), I have addressed in this study the following questions: First, does 

selenate-treatment affect sulfate uptake and, possibly, root-shoot transfer in broccoli in 

a way similar to previous reports for A. thaliana? Second, does selenate-fertilization 

negatively impact on glucoraphanin content (and, possibly, glutathione content) due to 

interference with primary sulfate assimilation? Third, does selenate-treatment 

modulate the expression of genes in GSLs biosynthesis and S-metabolism? Finally, I 

have also explored the potential of direct selenate leaf-spray to fully-grown broccoli 

plants, immediately before head expansion, as an alternative for soil-based selenate 

fertilization.  
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3.  RESULTS 
 

3.1  The effect of Se-fertilization on plant growth 

 
3.1.1  Different broccoli cultivars show variation in glucoraphanin content and 

Se-tolerance between different Se-treatments (selenate vs. selenite). 

In order to confirm whether Se-fertilization affects the plant-growth and any 

difference between various broccoli cultivars, first the glucoraphanin (GR) content 

was quantified in different broccoli cultivars (Fig. 3.1). Here we chose 4 commercial 

cultivars: Marathon, Monaco, Montop, and Ironman. 1-week-old seedlings after 

germination were harvested and measured the GR content by HPLC. Variation of GR 

content was observed between different cultivars and Monaco had higher GR content 

(avg. 1.44 mg GR / g DW) than other cultivars on average. Besides, Se-tolerance was 

assayed via root-length measurement (Fig. 3.2). Broccoli seeds were grown on 

medium with 50μM selenite or selenate. After 4 weeks, root-length was measured. 

From this experiment, selenate seems to have more effect on the root-growth than 

selenite (Fig. 3.2a, b). All of four cultivars with selenate-treatment had obviously 

shorter root-length than control plants. In addition, Montop and Ironman cultivars 

showed sensitive to selenite (Fig. 3.2c).  

 
Fig. 3.1  Variation of GR concentration between different broccoli cultivars. Four 

broccoli cultivars were used for GR quantification (Marathon, Monaco, Montop and Ironman). 

1-week-old seedlings were harvested after germination. The GR content was quantified by 

HPLC. Monaco is a cultivar which contains higher GR contents (avg. 1.44 mg GR / g DW). 

Bars represent arithmetic means; error bars represent SD from 3 independent experiments. 
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Fig. 3.2  The effect of Se-treatment on the root-growth of different broccoli cultivars. 

Four broccoli cultivars were used for Se-tolerance experiment (Marathon, Monaco, Montop 

and Ironman). Seeds were sterilized and grown on the agar medium with / without 

Se-treatment. The root-length of 4-week-old plants after Se-treatment was measured (a). The 

Se-treatment from left to right is: control, 50μM selenite, and 50μM selenate (two plants show 

one Se-treatment). (b) The root-length of 4-week-old broccoli plants. Ironman has longest 

root-length than others. Bars represent arithmetic means; error bars represent SD from 5 

independent experiments. (c) The Se-tolerance index of different broccoli cultivars. The 

average root-length of selenate- / selenite-treated plants divided by the average root-length of 

control plants equals the Se-tolerance index. Selenate has stronger effect on the root-length 

than selenite. Montop and Ironman are more sensitive to selenite-treatment than Marathon 

and Monaco. 
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3.1.2  Selenate-fertilization did not affect the shoot-growth of young broccoli 

plants. 

To address the effect of selenate on early plant development and concentrations 

of sulfur metabolites, broccoli plants were cultivated on sand in the greenhouse for 6 

weeks with or without selenate fertilization. For the purpose of this study, I 

deliberately chose a selenate dosage comparable with previous studies (see Table 3.1), 

which have been shown to lead to substantial Se accumulation in broccoli shoots and 

significant formation of the Se-metabolite methylselenocysteine (Lyi et al., 2005). 

Control plants (5 per pot) obtained nutrient solution (100 ml per pot) at weekly 

intervals. For the selenate treatment, the nutrient solution was supplemented with 40 

µM sodium selenate, starting at the end of the second week. Thus, selenate dosage 

was about 0.8 µmol plant-1, applied 4 times during the 6-week culture period, 

corresponding to a total amount of 3.2 µmol selenate or 253 µg Se per plant. At this 

selenate dosage, shoot growth and morphological development were not affected (Fig. 

3.3a). A consistent ratio of fresh weight (FW)/dry weight (DW) (12.4 ± 0.4) over the 

entire growth period further supports our observation that selenate-fertilization did not 

affect young plant development. 
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Fig. 3.3  Effect of selenate-fertilization on biomass and accumulation of selenium (Se) 

and sulfur (S) in shoots of young broccoli plants. Broccoli cultivar, Monaco, was grown by 
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sand-culture in greenhouse. 40 μM selenate was applied weekly, starting after the second 

week (arrow). (a), shoot biomass of 1 to 6 weeks old plants; (b) to (d), quantification of Se 

and S in the shoot of 3 to 6 weeks old plants after starting selenate-fertilization. (b), total 

selenium concentration; (c) shoot selenium content; (d) total sulfur concentration. 

Se-accumulation and increase of S was observed in the shoots of selenate-treated plants. 

Black bars, control plants; gray bars, selenate-fertilized plants. Bars represent arithmetic 

means; error bars represent SD from 3 independent experiments. Asterisks mark statistically 

significant differences between control and selenate-fertilized plants; *, P < 0.001. 
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3.2  The effect of Se-fertilization on S-metabolites  

 
3.2.1  The Se-accumulation in the shoots of young broccoli plants. 

Se accumulated in the shoot, reaching 130 µg g-1 DW after the 1st application 

and 420 µg g-1 DW after the 4th application, respectively (Fig. 3.3b), or, on a per 

shoot basis, increasing from 2.7 µg to 86 µg over a period of 4 weeks. Total Se 

content per shoot increased 4-fold from the 3rd to the 4th week, and again 4-fold from 

the 4th to the 5th week, and still 2-fold from the 5th to the 6th week (Fig. 3.3c), 

whereas shoot fresh weight increased only 2.4-fold, 2.6-fold and 1.5-fold, respectively 

(Fig. 3.3a), in these intervals. Based on the total amount of Se applied during the 

4-week treatment, about 34% was accumulated in shoots. Note that this rather 

efficient accumulation of Se in the shoot was observed in the presence of a 25-fold 

higher sulfate concentration (1 mM) in the nutrient medium. 

 

3.2.2  In the shoots of young broccoli plants, selenate-fertilization resulted in 

increased total sulfur and sulfate concentrations. 

While in control plants, total sulfur content per DW remained unchanged after 

the 4th week, selenate-treated plants showed significantly higher total sulfur contents 

during the entire treatment (ranging from +40% to +72%) with a tendency for further 

increase (Fig. 3.3d). Total sulfur and sulfate concentrations, respectively, were already 

increased one week after the 1st selenate-treatment (Fig. 3.4a), finally reaching up to 

2-fold higher levels compared to control plants at the end of the experiment. In 

5-week-old control plants sulfate-S was 9.86 mg g-1 DW whereas in selenate-treated 

plants sulfate-S was 19.52 mg g-1 DW, accounting for 51.2% and 63.9% of total sulfur, 

respectively. 

 

3.2.3  Selenate-fertilization did not affect the concentrations of cysteine, 

glutathione, total glucosinolates and glucoraphanin in the shoots of young 

broccoli plants. 

In contrast to the Se-induced increases in sulfate and total sulfur, the 

concentrations of the sulfur metabolites cysteine and glutathione were unchanged 

upon selenate-treatment during the entire growth period (Fig. 3.4b,c). Cysteine 

concentrations strongly decreased from the 1st to the 3rd week (-78%), but remained 
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rather stable thereafter (Fig. 3.4b). Also, glutathione concentrations were significantly 

higher in the 1st and 2nd week than in the following growth period after the onset of 

selenate treatment (Fig. 3.4c). 

 

Se-fertilization was reported on decreasing the GSLs content in broccoli (Table 

1), however, it is controversial since Se-fertilization can increase total sulfur and 

sulfate concentrations in the shoots of broccoli (Fig. 3.3d; Fig. 3.4a) and GSLs are 

S-containing metabolites. In order to confirm whether Se-fertilization does affect the 

GSLs content, the concentration of total GSLs in the shoots of young broccoli plants 

was quantified (Fig. 3.5). However, Se-fertilization did not affect the total GSLs 

content in those plants and the concentration of total GSLs went down from 3 to 6 

weeks.  

 

Furthermore, GR, the precursor of sulforaphane and major aliphatic GSLs in 

broccoli, was quantified by HPLC. For the GR concentration (expressed per g DW), a 

pronounced decrease by about 80% was observed between the 1st and the 2nd week, 

which was obviously linked to early plant development (Fig. 3.4d). As during the 

same growth interval the dry weight per plant increased 5-fold, this apparent decrease 

is likely the consequence of a growth-related "dilution effect" (i.e. no net de novo 

synthesis). Following this initial lag period, the content of GR per plant increased 

4-fold from the 2nd (7.5 µg) to the 3rd (32.0 µg) week, indicating that de novo 

synthesis of GR largely follows vegetative growth after the lag period. Over the entire 

growth period, selenate-fertilization did not have any significant effect on total GSLs 

and GR concentrations. 
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Fig. 3.4  Effect of selenate-fertilization on sulfate, cysteine, glutathione and 

glucoraphanin concentrations in shoots of young broccoli plants. Broccoli cultivar, 

Monaco, was grown by sand-culture in greenhouse. 40 μM selenate was applied weekly, 

starting after the second week (arrow). The concentrations of different S-containing 

metabolites in shoots were quantified from 1 to 6 weeks old plants by HPLC. (a), sulfate; (b), 

cysteine; (c), glutathione; (d), glucoraphanin. The increase of sulfate was observed in the 

shoots of selenate-treated plants. However, selenate-treatment did not significantly affect the 

concentrations of Cys, GSH and GR. A dramatic drop of Cys-, GSH- and GR-concentration 

showed in first 2 weeks. Black bars, control plants; gray bars, selenate-fertilized plants. Bars 
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represent arithmetic means; error bars represent SD from 3 independent experiments. 

Asterisks mark statistically significant differences between control and selenate-fertilized 

plants; *, P < 0.001. 

 

 

 
Fig. 3.5  Effect of selenate-fertilization on total GSLs concentration in shoots of young 

broccoli plants. Broccoli cultivar, Monaco, was grown by sand-culture in greenhouse. 40 μ

M selenate was applied weekly, starting after the second week. Total GSLs concentration in 

shoots was quantified from 3 to 6 weeks old plants by glucose assay. Selenate-fertilization did 

not have obvious impact on total GSLs concentration in the sand-cultured broocoli plants. 

Black bars, control plants; gray bars, selenate-fertilized plants. Bars represent arithmetic 

means; error bars represent SD from 3 independent experiments. 
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3.3  The effect of Se-fertilization on gene expression 
 

3.3.1  The master regulator of aliphatic GSLs biosynthesis, BoMYB28 

transcription factor, was isolated from broccoli. 

In Arabidopsis thaliana, AtMYB28, the major positive regulator of genes 

encoding the enzymes of aliphatic glucosinolate biosynthesis, has been reported 

(Gigolashvili et al., 2007; Hirai et al., 2007). Therefore, to address the question 

whether selenate-treatment affected the expression of the closest MYB28 homologue 

in broccoli plants, I have cloned a full-length cDNA for an orthologous gene 

BoMYB28 (GenBank accession: GQ478992; Appendix 8.1) and monitored its 

expression (Fig. 3.6). The amino acid sequence of BoMYB28 was aligned with the 

entire subclade of Arabidopsis thaliana R2R3-MYB transcription factors known to be 

involved in the regulation of aliphatic and indolic glucosinolate biosynthesis, using 

ClustalW2 (EBI database). The derived phylogram confirmed that BoMYB28 has the 

highest sequence similarity with AtMYB28, showing 77% identity (note that this high 

similarity extends beyond the N-terminal DNA-binding motif which is highly 

conserved among all R2R3-MYB factors!), while sharing only 57% identity with 

AtMYB29 (Fig. 3.6a,b); AtMYB29 has recently been reported as an accessory factor in 

response to methyl jasmonate signaling and a positive regulator of aliphatic 

glucosinolate biosynthesis (Hirai et al., 2007; Gigolashvili et al., 2008).  
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Fig. 3.6  cDNA cloning and expression analysis of BoMYB28. (a), alignment of BoMYB28 

amino acid sequence with AtMYB28 and AtMYB29 from Arabidopsis; conserved residues are 

shaded in gray. The R2R3 DNA-binding motif is underlined in black. (b), amino acid 

sequence-based phylogram, depicting the relationship of BoMYB28 with all R2R3-MYB 

transcription factors of Arabidopsis thaliana known to be involved in the control of aliphatic 

(MYB28/29/76) or aromatic (MYB51/34/122) GSL biosynthesis. (c), effect of 

selenate-fertilization on the expression of BoMYB28 in shoots of young broccoli plants. 

Broccoli cultivar, Monaco, was grown by sand-culture in greenhouse. 40 μM selenate was 

applied weekly, starting after the second week. The relative expression of BoMYB28 was 

determined by qPCR using actin as reference gene; subsequently, all relative transcript levels 

were normalized to the average relative transcript level in shoots of 1-week-old plants. The 

expression of BoMYB28 in shoots of young broccoli plants was not affected by 

selenate-treatment. Black bars, control plants; gray bars, selenate-treated plants. The arrow 

indicates the onset of selenate-treatment. Error bars indicate SD from 3 independent 

experiments. GenBank accession numbers: BoMYB28 (GQ478992); AtMYB28 (NP_851241); 

AtMYB29 (NP_196386); AtMYB34 (NP_200897); AtMYB51 (NP_173292); AtMYB76 

(NP_196387); AtMYB122 (NP_177548); AtMYB4 (NP_195574). 
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3.3.2  The expression of the transcription factor gene BoMYB28 was not affected 

in selenate-fertilized broccoli plants. 

Expression analysis for BoMYB28 in shoots of 1- to 6-week-old plants by qPCR 

(Fig. 3.6c) did not reveal any change in response to selenate-fertilization during the 

entire growth period. Interestingly, steady-state BoMYB28 transcript levels were 

constant in 1- and 2-week-old plants, respectively, a growth interval during which 

GSLs content did not show a net increase (see above). 

 

3.3.3  The expression of BoMYB28 was increased by glucose and decreased by 

NAA. 

According to the microarray analysis for MYB28-stimulus treatment in 

Arabidopsis (Appendix 8.2; from GENEVESTIGATOR microarray database, 

https://www.genevestigator.com/gv/index.jsp), glucose- and NAA-treatment can 

modulate the expression of AtMYB28. To confirm whether BoMYB28 does work on 

the GSLs biosynthesis, like AtMYB28 in Arabidopsis, glucose- and NAA-treatment 

were done with 2-week-old broccoli seedlings (Fig. 3.7). The expression of BoMYB28 

was increased more than 2-fold by glucose and decreased about 34% by NAA. 

Glucose-treatment can increase the expression of BoMYB28, since glucose is released 

during myrosinase acts on GSLs, thus possibly generating a signal for MYB28 

induction. Some of genes in GSL biosynthesis are also involved in auxin biosynthesis, 

like CYP83A1 and CYP83B1 (Bak & Feyereisen, 2001). Therefore, auxin could be a 

signal to repress the expression of those genes in GSL biosynthesis. 
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Fig. 3.7  The expression of BoMYB28 in the shoots of 2-week-old broccoli plants after 

glucose or NAA treatment. Seeds of broccoli cultivar, Monaco, were sterilized and grown on 

agar medium. Two weeks after germination, uniform seedlings were transferred to the 

medium contains 1% glucose or 1 μM NAA. After 24 hrs, the shoots of 2-week-old plants 

were harvested and measured the expression of BoMYB28 by qPCR. The relative expression 

of BoMYB28 was determined by qPCR using actin as reference gene; subsequently, all 

relative transcript levels were normalized to the average relative transcript level in control 

plants. Glucose-treatment could increase the expression of BoMYB28. On the other hand, the 

expression of BoMYB28 was decreased by NAA-treatment. Error bars indicate SD from 6 

independent experiments. 
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3.3.4  BoMYB28 regulated genes of the aliphatic GSL biosynthetic pathway 

To further confirm that the putative BoMYB28 is indeed functionally equivalent 

to its AtMYB28 homolog, its potential to specifically regulate genes of the aliphatic 

GSL biosynthetic pathway was explored in a transient promoter activation assay. This 

technique has recently been used to functionally characterize transcription factors and 

their target specificities in the flavonoid pathway (Bogs et al., 2007; Czemmel et al., 

2009). In Arabidopsis thaliana, AtMYB28 has been shown to activate the expression 

of genes for aliphatic GSL biosynthesis (see above; Gigolashvili et al., 2007b; Hirai et 

al., 2007). Therefore, promoter regions of the assumed target genes MAM1, CYP83A1 

and AOP2 were isolated from Arabidopsis genomic DNA (Appendix 8.3; 8.4; 8.5) and 

cloned into a luciferase reporter vector. The chosen genes are involved in different 

stages of aliphatic GSL biosynthesis and are upregulated in an 

AtMYB28-overexpressing mutant (Hirai et al., 2007). For transient expression in 

Arabidopsis protoplasts, the full-length cDNA of BoMYB28 was cloned into the 

expression vector pART7, allowing its expression under control of the 35S promoter. 

For comparison, the AtMYB114 transcription factor involved in anthocyanin 

biosynthesis and a promoter-luciferase reporter construct for its target gene UFGT 

(UDP-Glc:flavonoid-3-O-glucosyltransferase) were included in the analysis. As 

AtMYB114 is dependent on group IIIf bHLH and the WD40 type transcription factor 

TTG1 (Gonzalez et al.2008), expression vectors for the bHLH factor EGL3 and for 

TTG1 were included in all transfection assays. 

 

Co-transfection of Arabidopsis leaf protoplasts with AtMYB114 and the 

UFGT-reporter construct resulted in a normalized luciferase activity of about 10 

(positive control), whereas co-transfection with the empty vector pART7 yielded a 

background luciferase activity of < 0.1 (negative control; Fig. 3.8). Likewise, 

co-transfection of BoMYB28 with the UFGT-reporter construct did not cause 

promoter activation. As expected, AtMYB114 did not induce the promoter activities of 

CYP83A1 (average 0.08: 0.01-0.15) and AOP2 (average 0.05: 0.01-0.1). Surprisingly, 

MYB114 apparently induced the promoter activity of MAM1 (average 2.2: 0.2-4.7), 

albeit with high variation. Conversely, BoMYB28 consistently induced the promoter 

activities of MAM1, CYP83A1 and AOP2. The average normalized luciferase 

activities were 3.1 for MAM1 (1.5-5.2), 1.0 for CYP83A1 (0.8-1.6), and 4.4 for AOP2 

(1.0-9.7). Thus, BoMYB28 may be regarded as a functional homolog to the previously 
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characterized AtMYB28. 

 

 
Fig. 3.8  Confirmation of BoMYB28 function as a regulator of aliphatic glucosinolate 

biosynthesis in a transient target promoter activation assay. 

Transcription factors and promoter fragments used for transfection of Arabidopsis protoplast 

are indicated. AtMYB114 (black bars) and BoMYB28 (gray bars) were cloned into the 

transient-expression vector, pART7, and empty vector was used as the control (white bars). 

Promoter activation was assessed by determining activities of the reporter luciferase (for 

further details see Materials and Methods). AtMYB114 activates its target gene, UFGT, which 

is involved in anthocyanin biosynthesis. MAM1, CYP83A1 and AOP2 are genes of aliphatic 

GSL biosynthesis in Arabidopsis, and their promoters are activated by BoMYB28. Each 

transfection contained the Renilla luciferase plasmid pRluc (Horstmann et al., 2004) as 

internal control and the transcription factors EGL3 and TTG1 in pART7 as co-factors. 

Normalized luciferase activities were calculated as ratio between the Firefly and the Renilla 

luciferase activity. Error bars indicate SD from 6 independent experiments. Asterisks mark 

statistically significant differences between control and cells transfected with transcription 

factors; *, P < 0.001. 

 

 

 

 

 

 

 

 



RESULTS  38 

 

3.3.5  The expression of sulfate transporter genes was altered in response to 

selenate-fertilization. 

High-affinity sulfate transporters (SULTRs) play the major role for the initial 

uptake of sulfate and selenate and are primarily expressed in roots. Yoshimoto et al. 

(2002) reported that in Arabidopsis thaliana the expression of two distinct 

high-affinity SULTR genes (AtSULTR1;1 and AtSULTR1;2) was increased to different 

degrees in response to selenate-treatment, correlating with an increased sulfate 

concentration in leaves. The observation of selenate-induced expression of 

AtSULTR1;1 was recently confirmed by microarray-based expression profiling, 

together with an increased sulfate content in the shoot (Van Hoewyk et al., 2008). 

Therefore, based on our observations of increased total sulfur and sulfate contents in 

young broccoli plants, I monitored the expression of several sulfate transporters by 

qPCR, using primers based on conserved regions of AtSULTR1;1, AtSULTR1;2, 

AtSULTR2;1 and AtSULTR2;2 cDNAs. The latter two transporters were included as 

they are thought to play a role in long distance transport, AtSULTR2;1 is primarily 

expressed in the xylem, whereas AtSULTR2;2 expression appears to be localized to 

the phloem (Takahashi et al. 2000; Kataoka et al. 2004). All SULTR PCR products 

from broccoli were sequenced and their sequence similarities to the corresponding 

Arabidopsis thaliana genes confirmed (Fig. 3.9). As a cautious note, it has to be 

emphasized that it cannot be excluded that in B. oleracea more than one closely 

homologous gene exists for each of the corresponding AtSULTR gene (and this holds 

true also for BoMYB28). However, the primers used in our qPCR analysis always 

amplified only a single product. 

 

In agreement with previous reports on Arabidopsis, I observed a dramatically 

increased BoSULTR1;1 expression in the roots of selenate-treated plants by more than 

60-fold when compared to control plants (Fig. 3.10b). Furthermore, transcript levels 

for BoSULTR1;2 and BoSULTR2;1 in the roots increased 2-fold in response to 

selenate-treatment, whereas transcripts for BoSULTR2;2 decreased. Conversely, in 

shoots transcripts levels of BoSULTR1;2, BoSULTR2;1 and BoSULTR2;2 were all 

moderately lower in selenate-treated plants than in controls, and, as expected because 

of the root-specific expression of AtSULTR1;1, BoSULTR1;1 transcripts were 

undetectable (Fig. 3.10). Assuming that the observed changes in BoSULTR gene 

transcript levels in response to selenate fertilization result in corresponding changes of 
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transporter activities, increased uptake rates and increased root-to-shoot transport of 

sulfate and selenate would be expected. To test this, I determined the root-shoot 

distribution of total sulfur and selenium (Fig. 3.11). In fact, the increased total S 

concentration in shoots of selenate-treated plants (see also Fig. 3.3d) was 

accompanied by a significant reduction in roots, and the total Se-concentration in 

shoots was about 60-fold higher than in roots.  

 

In summary, monitoring plant development and concentrations of major sulfur 

metabolites in young broccoli plants did not reveal any negative effect of selenate 

fertilization via the root system. The increase in total sulfur (and sulfate), together 

with the efficient Se-accumulation in the shoot rather reflect transport-specific effects 

of selenate on sulfate uptake and root-shoot transfer. 
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Fig. 3.9  Alignment of partial cDNAs of BoSULTRs and AtSULTRs. Alignment of partial 

cDNA sequences of BoSULTRs with AtSULTR1;1 (NM_116931), AtSULTR1;2 (NM_106449), 

AtSULTR2;1 (NM_121056), and AtSULTR2;2 (NM_106448). Conserved nucleotides are 

shaded in gray. Arrows mark the annealing sites of the primers used for RT-PCR and qPCR. 

Solid triangles indicate the positions of introns. 
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Fig. 3.10  Effect of selenate-fertilization on the expression of sulfate transporter 

(SULTR) genes in shoots and roots of 6-week-old broccoli plants. Partial cDNAs of 

broccoli SULTRs (BoSULTR1;1, 1;2, 2;1, and 2;2) were cloned by RT-PCR, using primers 

based on the sequences of the closest homologous genes from Arabidopsis thaliana (see 

Materials and Methods, and Fig. 3.9). The relative expression of BoSULTR genes was 

determined by qPCR using actin as reference gene; subsequently, relative transcript levels 

were normalized to the average relative transcript level of the respective control plants. Black 

bars, control plants; gray bars, selenate-treated plants. Error bars indicate SD from 3 

independent experiments. Asterisks mark statistically significant differences between control 

and selenate-fertilized plants; *, P < 0.001. 
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Fig. 3.11  Effect of selenate-fertilization on the accumulation of total sulfur (S) and 

selenium (Se) in shoots and roots of 6-week-old broccoli plants. (a), total sulfur 

concentrations in shoots and roots, respectively. (b), total selenium concentrations in shoots 

and roots, respectively. Note that selenate-application was initiated at a plant age of 2 weeks 

(see also Fig. 3.3, 3.4). Black bars, control plants; gray bars, selenate-fertilized plants. Bars 

represent arithmetic means; error bars represent SD from 3 independent experiments. 

Asterisks mark statistically significant differences between control and selenate-fertilized 

plants; *, P < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS  43 

 

3.4  Leaf-fertilization of mature broccoli plants with selenate: 

Evidence for efficient leaf-to-head transfer under field conditions. 
Under field conditions, Se-accumulation in crops and vegetables is limited by 

low selenate concentrations and availability in most soils. While application of 

selenate to the root system represents a valid option to fortify broccoli with selenium 

without impairing glucoraphanin biosynthesis (see above), I also explored the 

efficiency of spraying selenate-solution directly to leaves of 3-month-old field-grown 

broccoli plants at an early stage of head development. Selenate application via leaf 

spray resulted in efficient Se-accumulation in the broccoli head (about 25% of the 

applied selenium was recovered in the broccoli head), indicative of efficient 

leaf-to-head transfer (Fig. 3.12f), however, again the concentrations of the different 

sulfur metabolites, including GR, were not significantly affected (Fig. 3.12a-e). For 

the 20 mg Se-application, the distribution of selenium between floret and upper stem 

did not reveal a significant difference, in agreement with the distribution of sulfate 

(Fig. 3.12d,f; for the 2 mg Se application the data showed a higher variability). While 

sulfate concentrations were similar in florets and upper stem of control and 

selenate-treated plants, cysteine, glutathione and total sulfur concentrations were 

about 2-fold higher in florets as compared with the upper stem (Fig. 3.12b-e). 

Conversely, GR concentrations were 3- to 4-fold higher in upper stem than in florets 

(Fig. 3.12a). 
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Fig. 3.12  Effect of selenate-application to leaves through spraying on 3-month-old 

field-grown broccoli plants: Se-accumulation and S-metabolite concentrations in 

broccoli heads. Selenate corresponding to 0, 2, or 20 mg Se plant-1 (0, 25, and 250 µmol 

plant-1) was applied as a single spray to the leaves of plants with a head diameter of 2 cm 

(head was covered during spray). After 1 week, head diameter had reached 10 cm and 

terminal florets and upper stem were harvested for total Se, total S, and S-metabolite analysis, 

respectively. Bars represent arithmetic means of concentrations of GR (a), Cys (b), GSH (c), 

sulfate (d), total S (e), and total Se (f); error bars indicate SD from 3 independent experiments. 

Asterisks mark statistically significant differences between floret and upperstem; *, P < 

0.001. 
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4.  DISCUSSION 

 
4.1  Does Se-treatment affect the growth of broccoli? 

The essentiality of Se for the growth is still unclear in plants. Se accumulator, 

Astragalus pectinatus, was observed an increase in biomass production after treating 

0.38 mM Se (Trelease & Trealease, 1939). These results were challenged 

subsequently by Broyer et al. (1972), who attributed the growth stimulation in the 

Astragalus plants to the ability of Se in the nutrient solution to counteract phosphate 

toxicity; at low phosphate concentrations, growth was not stimulated by Se-treatment. 

There is no evidence for a Se requirement in nonaccumulators (Shrift, 1969). Broccoli 

is secondary accumulator and a putative SMT was found for Se-metabolism in 

broccoli (Lyi et al., 2005). Therefore, the effect of Se-treatment on the growth of 

broccoli is interesting to be investigated. From the root-length experiment (Fig. 3.2), 

the root-growth of broccoli young plants was affected by Se-treatment. Selenate has a 

stronger effect on the root-growth than selenite. Perhaps, this is due to that the uptake 

of selenate via roots can trigger the S-starvation effect in roots and then influences the 

root-growth. However, the growth of shoots was not significant influenced by 

Se-treatment, whatever selenite or selenate. The fresh weight of shoots from 

sand-culture broccoli plants was not affected by selenate-fertilization, too (Fig. 3.3a). 

According to our observation, Se-treatment has impact on the root-growth, however, 

no significant effect on the shoot-growth of broccoli. 

Besides, variations of GSL-content (Fig. 3.1; Kliebenstein et al., 2001a) and 

Se-tolerance (Fig. 3.2; Zhang et al., 2007) have been observed between different 

broccoli cultivars and Arabidopsis ecotypes. However, according to those studies, 

GSL-content in plant seems to have no connection with Se-tolerance. 
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4.2  In broccoli, selenate-treatment increases sulfate-uptake and 

sulfate-transfer from root to shoot 
 

4.2.1  S-content is increased in the shoots and decreased in the roots by 

selenate-fertilization 

Previous studies had demonstrated that in Arabidopsis thaliana 

selenate-treatment can increase sulfate uptake (Takahashi et al. 2000; Yoshimoto et al. 

2002; White et al., 2004; Van Hoewyk et al., 2008). However, for broccoli a 

significant competition between sulfate and selenate for uptake and assimilation has 

also been demonstrated, selenate negatively affecting the biosynthesis of the 

sulfur-containing secondary metaboite glucoraphanin (Lyi et al., 2005; Finley et al., 

2005). Regarding the relevance of such a possible "antagonism" for the production of 

Se-enriched broccoli as an improved functional food for cancer prevention, I have 

readdressed this apparent contradiction and monitored the contents of sulfate and total 

sulfur in shoots of young broccoli plants, treated with a moderate dose of selenate. In 

fact, I observed a substantial increase in total sulfur in the shoots which was largely 

due to an increased sulfate accumulation in the shoot. (Fig. 3.3d; Fig. 3.4a; Fig. 3.11a). 

Conversely, the content of total sulfur in the root revealed a pronounced decrease in 

response to selenate-fertilization (Fig. 3.11a). These results are in agreement with 

previous observations of Yoshimoto et al. (2002) and El Kassis et al. (2007), who 

after short-term selenate-treatment of Arabidopsis plants observed increased sulfate 

contents in shoots but reduced sulfate amounts in roots.  

 

4.2.2  Selenate-fertilization stimulates the expression of SULTR1;1, 1;2 and 2;1 

in the roots for the initial sulfate-uptake and long-distance transport from root to 

shoot 

In addition, I have demonstrated that in young broccoli plants selenate-treatment 

significantly affected the expression of different SULTR isoforms. A similar effect was 

earlier observed for Arabidopsis thaliana (Takahashi et al. 2000; Yoshimoto et al. 

2002; Van Hoewyk et al. 2008). A detailed analysis of the effects of 

selenate-treatment on BoSULTR expression in roots of young broccoli plants (Fig. 

3.10b) revealed an interesting pattern. First, the expression of the BoSULTR1;1 and 

1;2 was increased, these two transporter isoforms being responsible for the primary 
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uptake of sulfate and selenate at the rhizodermis, and, second, the ratio of transcripts 

for the BoSULTR2;1 isoform to the BoSULT2;2 isoform showed a pronounced 

increase. Assuming that the latter two transporter isoforms are, like their Arabidopsis 

orthologs, localized in the xylem and phloem, respectively (Takahashi et al., 2000; 

Kataoka et al., 2004), this shift might be responsible for an increased root-shoot 

transfer of sulfate, in agreement with the observed shift in total sulfur contents (Fig. 

3.11a). I therefore conclude that in young broccoli plants selenate-treatment 

modulates the expression of different BoSULTR isoforms such as to trigger the 

selenate flux from root to shoot, and, as a direct consequence causes an increased 

root-shoot transfer of sulfate (Fig. 4.1). 
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Fig. 4.1  Selenate-fertilization triggers the local S-starvation signal in the root to 

increase the expression of SULTR1;1 and 2;1 and the S-flux from root to shoot. (a) 

SULTR1;1 is a high-affinity SULTR for the initial uptake of sulfate and selenate from soil to 

root. The expression of SULTR1;1 is major in roots and is stress-inducible during S-starvation. 

SULTR2;1 is a low-affinity SULTR for long distance transport in xylem. After 

selenate-treatment (b), S-starvation signal is induced and triggers to increase the expression of 

SULTR1;1 and 2;1 in roots (c), since sulfate and selenate are competitors for the initial uptake. 

Therefore, the S- and Se-flux from root to shoot is enhanced, due to the increased expression 

of SULTR1;1 and 2;1 (d).  
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4.2.3  The Se-induced increase of sulfate-content in the shoots is not subject to 

further metabolism 

Interestingly, selenate-treatment did not affect the levels of several S-metabolites, 

i.e. cysteine, GSH and glucoraphanin, the increased sulfate being most likely 

compartmentalized in the vacuole. Under the chosen growth conditions (1 mM sulfate 

in the nutrient solution), the tissue sulfate availability was apparently high enough to 

saturate the corresponding metabolic routes. It remains to be shown whether under 

sulfate limitation, selenate treatment might even stimulate glucosinolate biosynthesis 

by increasing sulfate uptake and root to shoot transfer. It is noteworthy that our 

transcript analysis of BoSULTR isoform expression was done at a growth stage where 

the system was already adapted to the selenate-treatment (i.e. 4 weeks after the first 

application), indicating that the observed changes were part of a long-term switch in 

transporter expression. 

 

S-starvation was previously shown to repress the expression of AtMYB28 (Hirai 

et al., 2007) and to increase the expression of AtSULTR1;1 (Yoshimoto et al., 2002; 

El Kassis et al., 2007; Yoshimoto et al., 2007; Van Hoewyk et al., 2008). Thus, it may 

be speculated that the observed drastic increase of BoSULTR1;1 expression by 

selenate-treatment may be due to a local sulfur starvation signal limited to the root. In 

fact, as a result of an increased root-shoot transfer of sulfate (see above), the total 

sulfur content in roots decreases in response to selenate-treatment (Fig. 3.11a). 
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4.3  Selenate-application did not affect the concentration (and 

content) of glucoraphanin and total GSL in broccoli 
In Arabidopsis, several genes of GSL biosynthesis are repressed in response to 

sulfate-limitation and Se-stress (Grubb & Abel, 2006; Hirai et al., 2007; Van Hoewyk 

et al., 2008). In addition, several studies have demonstrated that selenate-fertilization 

may significantly decrease the contents of GSLs in broccoli when plants were treated 

with a high selenate dosage (>800 μg Se g-1 FW; Finley et al., 2005; Robbins et al., 

2005). However, in our study, selenate did not affect glucoraphanin content, even after 

a 4-week-long exposure (Fig. 3.4d). Also, when using a leaf spray application mode, 

the substantial Se accumulation in the broccoli head did not result in any interference 

with glucoraphanin accumulation during the period of head expansion (Fig. 3.12a). 

Interestingly, at the chosen developmental stage of head formation, the glucoraphanin 

content was 2-3 folds higher in the upper stem as compared with the terminal floret 

(Fig. 3.12a). Whether this discrepancy reflects a transient phenomenon during head 

development remains to be shown. Possibly, upper stems may contain high 

glucosinolate content in transit to the developing flowers where they accumulate later 

during seed formation.  

 

It is noteworthy, that the direct application of selenate to the leaves of adult 

broccoli plants did not result in changes of total sulfur or sulfate in the broccoli head, 

corroborating the interpretation of root-localized changes in BoSULTR isoform 

expression (Fig. 3.10) being responsible for the effects. As the illustration in Fig. 4.1, 

selenate-treatment via root increases the expression of SULTR1;1 and 2;1 and then 

enhances the S- and Se-flux from root to shoot. However, leaf-fertilization can not 

trigger this process. 
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4.4  BoMYB28: A regulator of aliphatic GSL biosynthesis 

functionally homologous to AtMYB28 
    Although the sequence of BoMYB28 has highest homologous with AtMYB28 (Fig. 

3.6a, b), besides, the expression of BoMYB28 is increased by glucose-treatment and is 

decreased by NAA-treatment (Fig. 3.7). However, I still need more direct evidence to 

confirm whether BoMYB28 does work on GSL biosynthesis in broccoli. Here, I 

confirmed the target genes of BoMYB28 by luciferase assay (Fig. 3.8). The promoter 

region of three genes in the aliphatic GSL biosynthesis was isolated from Arabidopsis. 

MAM1 is a member of a gene family sharing approximately 60% amino acid sequence 

similarity with 2-isopropylmalate synthase, an enzyme of leucine biosynthesis that 

condenses 2-oxo-3-methylbutanoate with acetylcoenzyme A (Kroymann et al., 2001). 

CYP83A1 catalyzes the initial conversion of aldoximes to thiohydroximates in the 

synthesis of glucosinolates not derived from tryptophan (Bak & Feyereisen, 2001; 

Naur et al., 2003). AOP2 catalyzes the conversion of methylsulfinylalkyl 

glucosinolates to alkenyl glucosinolates (Kliebenstein et al., 2001b). They have been 

reported on different stages of aliphatic GSL biosynthesis and upregulated in 

AtMYB28-overexpressed mutant (Fig. 1.1; Hirai et al., 2007). In our luciferase assay, 

BoMYB28 significantly induced the promoter activity of MAM1, CYP83A1 and AOP2 

(Fig. 3.8). Since that, the ability of BoMYB28 to regulate genes of aliphatic GSL 

biosynthetic pathway as AtMYB28 is directly confirmed. 
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4.5  Conclusions and perspectives 
In this study, the effect of selenate-treatment on young broccoli plants was 

examined, with a focus on growth effects and possible interference with sulfur 

metabolism, including the biosynthesis of glucoraphanin, which is a major aliphatic 

glucosinolate in broccoli and the precursor of the anti-cancer compound sulforaphane. 

Furthermore, the transcription factor BoMYB28, the closest homolog to AtMYB28, 

which regulates aliphatic glucosinolate biosynthesis, and partial cDNAs of putative 

sulfate transporters (BoSULTR) were cloned from broccoli. Our study has revealed 

that a possible competition between selenate and sulfate, which was postulated based 

on the identical primary uptake and assimilation routes for both oxoanions, does not 

impair glucosinolate biosynthesis. Instead, selenate fertilization stimulates the 

expression of several sulfate transporters, which results in increased total sulfate 

levels in the shoot, as a consequence of both increased root uptake and, most likely, 

increased root-shoot transfer. In addition, selenate application did not negatively 

affect plant growth or the level of glutathione, a central component of cellular redox 

control and an important metabolite for plant defence against biotic and abiotic stress 

(Rausch & Wachter, 2005; Mullineaux & Rausch, 2005). 

 

I conclude that broccoli may be fortified with Se without negative trade-offs 

towards glucosinolate accumulation and plant growth, provided an appropriate 

selenate-fertilization scheme is adopted. In fact, as a major result of selenate uptake 

the total sulfur status of the plant changes towards an increased sulfur-content in the 

shoot. However, this latter effect is limited to selenate application via the soil. Under 

these conditions, the major "detoxification" pathway for selenate appears to be the 

efficient transfer from root to shoot, which requires upgrading the directed sulfate 

transport. 

 

Some questions remain to be solved in the future. First, does Se-fertilization 

affect glucosinolate biosynthesis in broccoli? It is really controversial, since 

selenate-fertilization can enhance S-accumulation in the shoots and also can compete 

with sulfate for the initial uptake. In our experiments, appropriate dosage of 

selenate-application, which is at a level suitable for human consumption, did not have 

obvious impact on the concentration of GSLs and GR in broccoli (Fig. 3.4d; Fig. 3.5). 
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Besides, the expression of BoMYB28 was not influenced by selenate-fertilization, too 

(Fig. 3.6c). However, several studies have shown the decreasing of GSLs in broccoli 

by Se-fertilization (Table 3.1). In order to clear this conflict, the detailed ratio of 

selenate to sulfate for fertilization should be examined. In addition, which 

developmental stage of broccoli treated with selenate is also an important point.  

 

Second, how do GSLs and their precursors transport in the whole plant?  This is 

a long-standing question. Recently, the plastidic bile acid transporter 5 (BAT5) was 

identified as the first transporter component of the aliphatic glucosinolate biosynthetic 

pathway (Gigolashvili et al., 2009). BAT5 has been identified as the target gene of 

MYB28, the major positive regulator of aliphatic GSL biosynthesis and annotated as a 

bile acid transporter is involved in the transport of 2-keto acids between chloroplasts 

and the cytosol (Fig. 4.2). This is the first evidence for the subcellular transport of 

GSLs biosynthesis. However, the long-distance transport of GSLs is still unknown 

and whether a specific transporter works for this. Furthermore, an interesting 

observation in our field experiment is that stems of broccoli head had higher GR 

content than floret (Fig. 3.12a). That perhaps means GSLs is delivered from leaves 

(source) to flower (sink), since seeds have highest GSLs contents in whole 

developmental-stage of plant.  

 

Third, what is the S-starvation signal? S-deficiency and selenate-treatment can 

trigger S-starvation signal to increase the expression of SULTR1;1, 1;2, and 2;1 for 

the initial S-uptake and transport. However, the S-starvation signal is still unclear. The 

possible candidate is like Cys, GSH, or O-acetyl-L-serine (OAS). Cys and GSH are 

considered the major S-donor for most S-containing metabolites and GSLs (Rausch & 

Wachter 2005; Geu-Flores et al., 2009). Especially, what role GSH play in GSLs 

biosynthesis still needs to be investigated. In addition, OAS is the most possible 

candidate, since OAS has been reported as a general regulator for global gene 

expression under sulfur-nutrition stress (Hirai et al., 2003). The increasing of OAS 

content in the plant was also observed under S-starvation treatment.  

 

Last, the function of BoMYB28 has to be confirmed, although its sequence and 

target genes have been proved as AtMYB28. To compensate Arabidopsis myb28 

mutant probably can provide the direct evidence. 
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Fig. 4.2  Schematic representation of the role of BAT5 in the transport of 2-keto acids, 

side chain elongation of 2-keto acids, and biosynthesis of met-derived GSLs. (from 

Gigolashvili et al., 2009) 
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5.  MATERIALS AND METHODS 

 
5.1  Plant material and cultivation 
 

5.1.1  Plant material and sterilization of seeds 

For Se-tolerance experiment, 4 commercial cultivars of Broccoli (Brassica 

oleracea var. italica) were chosen: Marathon, Monaco, Montop, and Ironman. 

1-week-old seedlings were harvested for glucoraphanin quantification. In addition, 

Monaco was used to study the effects of selenate-, glucose- and NAA-treatment at the 

young plant and the adult plant stage (leaf application), respectively. 

 

In order to allow seeds to germinate on the medium with or without different 

treatment, broccoli seeds were sterilized through 3 short incubations in a bleaching 

solution containing 4% NaOCl in water supplemented with 0.02% of Triton X-100. 

During the last step, the samples were transferred to a sterile bench and thereafter the 

seeds were washed three times with sterile ddH2O before being transferred on 

medium. Plates were sealed with Micropore 3M surgical tape and incubated at 4 °C 

for two to three days before being transferred to a growth chamber or the greenhouse. 

 

5.1.2  Medium for root-length experiment, glucose-treatment and 

NAA-treatment. 

The medium contains half-strength Murashige and Skoog (MS) medium 

(Murashige & Skoog, 1962), 1% sucrose and 0.75% plant agar (pH 5.8). For 

Se-tolerance experiment, 50 μM sodium selenite or 50 μM sodium selenate was added 

in the medium. 1% glucose and 1μM NAA was added to confirm the function of 

BoMYB28. 

 

5.1.3  Sand-culture 

Nutrient solution:  

(a) Macronutrients:  

KNO3:   808.88 mg l-1  Ca(NO3)2*4H2O: 944.64 mg l-1 

KH2PO4:   136.09 mg l-1  MgSO4*7H2O: 246.47 mg l-1 
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(b) Micronutrients:  

Fe-EDTA:  7.34 mg l-1  H3BO3:   1.55 mg l-1  

MnSO4*H2O:  0.236 mg l-1   CuSO4*5H2O:  0.150 mg l-1  

Na2MoO4*2H2O: 0.072 mg l-1   CoCl2*6H2O:  0.002 mg l-1  

ZnSO4*H2O:  0.179 mg l-1  

 

After germinating broccoli seeds on moist filter paper in a petri dish, 4-day-old 

seedlings were selected for uniformity and transferred to Mitscherlich pots for sand 

culture in the greenhouse (10 kg of washed sand and 5 plants per pot, respectively).  

 

The nutrient solution was supplied once per week at 100 ml pot-1. For the 

selenate-treatment, the nutrient solution was supplemented with 4 μmol sodium 

selenate pot-1 (selenate concentration: 40 µM), starting after 2 weeks. At the time 

points indicated in the Results section, entire shoots (except cotyledons) were 

harvested and their fresh and dry weights determined. For metabolite analysis and 

RNA extraction, fresh shoots were directly immersed in liquid nitrogen. For 

6-week-old plants, roots were also harvested for determination of total S and Se 

contents by ICP-AES (Inductively-Coupled Plasma Atomic Emission Spectrometry), 

and for expression analysis of SULTR genes by qPCR. 

 

5.1.4 Selenate-application in the field by leaf-fertilization 

For direct selenate-application to leaves, three-month-old adult broccoli plants 

cultivated under field conditions were chosen for uniformity at a stage of 2.0±0.5 cm 

head diameter. Sodium selenate solution was sprayed once onto the leaves (40 ml 

plant-1, corresponding to 0, 2, or 20 mg Se plant-1). Control plants were sprayed with 

the corresponding amount of water. During selenate-application, underlying soil and 

young broccoli heads were covered with aluminium foil to prevent direct contact of 

broccoli head with selenate solution and to exclude selenate transfer to the soil. After 

1 week, when broccoli head diameter had reached 10 cm, heads were harvested, and 

their contents of total S, S-metabolites and Se were determined in floret (0-1 cm from 

head surface) and upper stem (1-3 cm from head surface), respectively. 
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5.2  Microbiological techniques  
 

5.2.1  Escherichia coli strains  

For cloning procedures E. coli strain XL1-Blue (Stratagene) or DH5α (Invitrogen) 

were used.  

Genotypes:  

XL1-Blue: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacIq 

ZΔM15 Tn10 (Tetr)].  

 

DH5α: supE44, Δ lacU169 (phi 80 lacZ Δ M15), hsdR17, recA1, endA1, gyrA96, thi-1, 

relA1. 

 

5.2.2  Media and antibiotics  

E. coli bacteria were grown in low salt LB-medium (5 g/L NaCl, 5 g/L Yeast 

Extract, 10 g/L Tryptone/Peptone) for cloning purposes. Selection was carried out 

with the following concentrations of antibiotics: Ampicillin 100 μg/ml, Kanamycin 50 

μg/ml, Spectinomycin 100 μg/ml, Tetracyclin 12.5 μg/ml. 

 

5.2.3  Preparation of electrocompetent E. coli cells and transformation  

One liter of low salt LB containing the appropriate antibiotics was inoculated 

with 20 ml of an over night bacterial culture and incubated until OD600nm reached 

0.7 – 1.0. The culture was chilled to 4 °C and cells were collected by centrifugation. 

The pellet was washed twice with 500 ml of ddH2O, then with 40 ml 10% glycerol 

and finally resuspended in 4 ml 10% glycerol, frozen in 50 μl aliquots in liquid 

nitrogen and stored at -80°C.  

 

The electrocompetent cells were transformed by electroporation with a 

GenePulserII (Bio-Rad) set to 200 W, 1.8 kV, 25 μF and incubated in 1 ml 

SOC-medium for 1 h at 37 °C before plating variable volumes on selective LB-plates.  

SOC-medium: 20 g/l tryptone; 0.5 g/l yeast extract; 0.5 g/l NaCl; 0.186 g/l KCl; 2.03 

g/l MgCl2; 3.96 g/l glucose-monohydrate; pH 7.0 

 

 



MATERIALS AND METHODS  58 

 

5.3  Nucleic acid techniques  
 

5.3.1  Genomic DNA extraction 

100 mg of homogenized material were mixed with 500 μl of extraction buffer 

(200 mM Tris-HCl, pH 9, 400 mM LiCl, 25 mM EDTA, 1 % SDS). After 

centrifugation at 13.000 rpm for 10 min, supernatant was transferred to a new tube 

and mixed with the same volume of PCI (Phenol/Chloroform/Isoamylalcohol 25:24:1). 

In order to precipitate the DNA, the upper phase was transferred to a new eppendorf 

and mixed carefully with 1/10 volumes of a 3 M Na-Acetat solution (pH 7.2) and 1 

volume of Isopropanol. After incubation for 15 minutes at room temperature, the 

DNA was precipitated by centrifugation at 13,000 rpm for 15 minutes. 

 

The pellet was washed with 70% EtOH followed by centrifugation for 5 minutes 

at 13,000 rpm. The dried pellet was dissolved in TE buffer (10 mM Tris, 0.1 mM 

EDTA, pH 8) and stored at -20 °C. 

 

5.3.2  RNA extraction 

Total RNA was extracted from 100 mg of frozen and homogenized tissue with 

the GeneMATRIX Universial RNA purification Kit from EURx according to the 

manufactures’s instructions. RNA quantity was estimated by measuring the optical 

density of a 1:300 dilution at 260 nm and the appearance of rRNA on 1.4% agarose 

gel. 

 

5.3.3  Determination of nucleic acid concentrations 

Nucleic acid concentrations were determined spectrophotometrically. The 

concentration of DNA samples (μg/ml) can be calculated as A260nm x 50 x dilution 

factor, the concentration of RNA samples as A260nm x 40 x dilution factor. The 

A260/A280 ratio was used to determine the purity of DNA and RNA samples (protein 

contamination), in addition the A260/A230 ratio was used to determine the purity of 

RNA samples (polysaccharide or polyphenolic contamination). 
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5.3.4  Separation of DNA by agarose gel electrophoresis 

For separation of purified DNA, 0.75 to 1.5% agarose gels were prepared in 

1xTAE-buffer (Sambrook et al., 1989). DNA samples were prepared by adding a 

suitable volume of 5x loading buffer (50% glycerol, 5x TAE-buffer, 1% Orange G 

(w/v)). As molecular weight markers, either SmartLadder (Eurogentec) or the 2-log 

ladder (NEB) were used. After the gel run, DNA was stained using a solution of 0.1 

μg/ml ethidium bromide in water for few minutes and was visualized under UV light. 

 

5.3.5  Separation of RNA by agarose gel electrophoresis 

20x MOPS buffer:   400 mM MOPS 

100 mM NaOAc 

20 mM EDTA 

pH 7 

10x RNA loading buffer: 50% (v/v) glycerol 

1x MOPS 

1% (w/v) bromphenol blue 

1.4% RNA agarose gel:  1.4% (w/v) agarose 

1x MOPS 

2% (v/v) formaldehyde (37%) 

 

For RNA separation, samples were brought to 12.7 μl with formamide and 

upplemented with 2 μl 10x RNA loading buffer, 3.3 μl formaldehyde (37%), 1 μl 20x 

MOPS and 1 μl EtBr (0.5 mg/ml) and denatured for 10 min at 65°C. Samples were 

separated on a 1.4% RNA agarose gel in 1x MOPS buffer at constant voltage (70 V). 

 

5.3.6  Reverse transcription 

Total RNA was treated with RQ1 RNase-Free DNase (Promega, Mannheim, 

Germany) to remove genomic DNA contamination at 37  for 30 min. To terminate ℃

the reaction, 2 μl Stop-solution was added and RNA samples were transfer to 65 °C 

for 10 minutes and then immediately placed on ice to destroy secondary structures. 

Synthesis of cDNA was performed with AMV-Reverse Transcriptase from Roboklon. 

Typically 2.9 μl of RNA (irrespective of its concentration) were incubated with 1 μl of 

AMV buffer, 0.5 μl of oligo-dT Primer (40 μM) 0.5 μl of dNTP solution (40 mM) and 

0.125 μl of AMV-RT for 1 hour at 42 °C followed by denaturation of the enzyme at 85 
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°C for 5 minutes. The cDNA was stored at – 20 °C. 

 

5.3.7  Polymerase chain reaction 

For DNA amplification via polymerase chain reaction (PCR) Taq polymerase 

(Sigma-Aldrich) was used. A typical PCR mix contained the components shown in 

Table 5.1. PCRs were carried out in a Biometra personal cycler with the program 

shown in Table 5.2. 

 

Component Volume (μl) 

10x reaction buffer 

dNTPs (10 mM each)a 

Primer 1 (10 μM)b 

5 

1 

1 

Primer 2 (10 μM)b 1 

DNA template (10 pg-1μg) 1 

Polymerase 1 

H2O to 50 μl 

Table 5.1  Components of a typical PCR mixture. 
a 10 mM dATP, 10 mM dCTP, 10 mM dGTP, 10 mM dTTP 
b Primers are shown in Table 5.3 

 

Step Temperature Duration Cycle number 

Denaturation 95℃ 5 min 1x 

Denaturation 95℃ 30 sec  

Annealing 49-60℃a 30 sec 35x 

Extension 72℃ 1-2 minb  

Extension 72℃ 5 min 1x 

 4℃ ∞  

Table 5.2  Typical PCR program. 
a depending on primer annealing temperatures 
b depending on fragment length, 1 min per kb 
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Primer name Comment Primer sequence (5’→3’) 

cloning cDNA of BoMYB28 from broccoli 

bMYB-1 full-length cDNA of BoMYB28 (forward) gaaaatcacagttcacgcctcttactcc 

bMYB-2 full-length cDNA of BoMYB28 (reverse) tgattctcaatatcagagaaaccctcgttt 

AtMyb28-91F internal primer for 3’RACE (forward) gaccacggcgagggaggctgg 

AtMyb28-640F internal primer for 3’RACE (forward) catcaaggctcttgaacaaagttgcggcta 

AtMyb28-330R internal primer for 5’RACE (reverse) cgtgttccagtagttcttgatctcgttgtc 

AtMyb28-640R internal primer for 5’RACE (reverse) tagccgcaactttgttcaagagccttgatg 

qPCR 

BoMYB28_3UTR-F BoMYB28 (forward) cccaagcagaaaggtttcaa 

BoMYB28_3UTR-R BoMYB28 (reverse) ccctaaacttgggactaacaacc 

BoSULTR1;1-Q1 BoSULTR1;1 (forward) atttccgtggtgatatcgtttgcgaag 

BoSULTR1;1-Q2 BoSULTR1;1 (reverse) cgcaaccatcttagaatcctttctcgg 

BoSULTR1;2-Q1 BoSULTR1;2 (forward) catcacggctggaattggcagactat 

BoSULTR1;2-Q2 BoSULTR1;2 (reverse) tgtttgtcggctcgggttatgtagac 

BoSULTR2;1-Q1 BoSULTR2;1 (forward) aactggtgttgagctagtgatcgttaacc 

BoSULTR2;1-Q2 BoSULTR2;1 (reverse) tttaatccaaagcaagcatcaagagct 

BoSULTR2;2-Q1 BoSULTR2;2 (forward) gtggggatatcgtttgcaagaataatgtt 

BoSULTR2;2-Q2 BoSULTR2;2 (reverse) ggagaactgattcgaagagtcaataatcct 

Phactin_L Actin (forward) ggtaacattgtgctcagtggtgg 

Phactin_R Actin (reverse) ctcggccttggagatccacatc 

cloning promoter sequences of genes in aliphatic GSLs biosynthesis 

MAM1_5UTR_B promoter of MAM1 (BamHI, forward) ttacttttaaattaggatccaatcccaatcccacagcactg 

MAM1_5UTR_X promoter of MAM1 (XhoI, reverse) tggagtacgctcgagaaaaaagagagagatactt 

CYB83A1_5UTR_B promoter of CYB83A1 (BamHI, forward) tatgggatccgcttttggttgatctaaacacaaa 

CYB83A1_5UTR_X promoter of CYB83A1 (XhoI, reverse) ccgacctcgagtttttaatcaaatggttactccc 

AOP2_5UTR_B promoter of AOP2 (forward) agtcaaaaacttgatcgatcgtctcgtattt 

AOP2_5UTR_X promoter of AOP2 (XhoI, reverse) cgtctcgagatgttagcagatagtagcaataa 

sequencing constructs 

M13 fw In pCR2.1 vector (forward) gtaaaacgacggccagt 

M13 rev In pCR2.1 vector (reverse) ggaaacagctatgaccatg 

35S In pART7 vector (forward) caatcccactatccttcgcaa 

ocs rev In pART7 vector (reverse) ggcggtaaggatctgagcta 

LUCF In pLUC vector (forward) ctaacatacgctctccatca 

LUCR In pLUC vector (reverse) ggatagaatggcgccgg 

Table 5.3  Oligonucleotides used for PCR, cloning, and sequencing. 
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5.3.8  Quantitative real time PCR  

To confirm the expression of BoMyb28 and BoSULTR genes, two μg 

DNase-treated RNA was reverse-transcribed using AMV reverse transcriptase (EURx, 

Gdansk, Poland) and an oligo-dT primer at 42°C for 1 h. qPCR was performed using 

the JumpStart Taq DNA Polymerase (Sigma-Aldrich, Taufkirchen, Germany) and 

SYBR-Green (Invitrogen, Karlsruhe, Germany) as fluorescent reporter in the 

iCyclerTM (BIO-RAD, Munich, Germany). Primers were listed in Table 5.3 and actin 

primers were used for reference gene validation. qPCR included 45 cycles of 95°C for 

30 sec, 60°C for 30 sec and 72°C for 20 sec. Each reaction was performed in 

triplicates, and specificity of amplification products was confirmed by melting curve 

and gel electrophoresis analysis. Relative expressions of BoMYB28 and BoSULTR 

genes transcripts were calculated and normalized with respect to actin transcripts. All 

qPCR transcript quantifications were done with three independent biological 

replicates. 

 

5.3.9  Gel extraction and PCR purification  

For the purification of DNA fragments from agarose gels or the clean-up of PCR 

products the NucleoSpin Extract II Kit (Macherey-Nagel) was used according to the 

manufacturers instructions. 

 

5.3.10  Plasmid minipreparation 

Plasmid DNA was extracted from 3 ml bacterial cultures with the Nucleospin 
Plasmid (Macherey-Nagel) miniprep kit according to the manufacturer’s instructions. 
 

5.3.11  Plasmid maxipreparation 

LB medium:  10g/l peptone 

    5g/l yeast extract 

    5g/l NaCl 

    pH 7.2 

1x TE buffer:  10 mM Tris HCl 

    0.1 mM EDTA 

    pH 8.0 

TE 50/1 buffer: 50 mM Tris HCl 

    1 mM EDTA 
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    pH 8.0 

RNase A mixture: 100 μl RNase A solution (20 mg/ml) 

    150 μl 10% Triton X-100 

    750 μl TE 50/1 buffer 

Lysozyme:  10 mg lysozyme 

    1 ml TE 50/1 buffer 

0.5M EDTA:  pH 8.0 

 

For maxipreparation, a pre-culture was made with 2,5 ml LB medium and 

cultured at 37  for 3 hours. Th℃ e pre-culture was transferred to pre-warmed 500 ml 

LB and incubated over night at 37 . Cells were precipitated by centrifugation at ℃

5,500 rpm for 15 min. The pellets were resuspended with 4 ml pre-cold TE 50/1 

buffer and transferred to 10 ml tube on ice. 2.5 ml fresh-prepared lysozyme solution 

was added quickly and mixed by inverting several times. After incubation on ice for 5 

min, 2 ml 0.5 M EDTA was added to stop the reaction and gently mixed by inverting 

several times. After incubation on ice for 5 min, 1 ml RNase A solution was added to 

remove RNA contamination and then put on ice for 60 min. After centrifugation at 

13.000 rpm for 30 min, supernatant was transferred to a new 50 ml falcon tube and 

added equal-volume phenol (pH 8) for purification. After shaking vigorously for 1 

min, the solution was separated by centrifugation at 13.000 rpm for 20 min. The water 

phase (upper layer) was transferred to a new tube and added equal-volume chloroform. 

The further steps were repeated as after adding phenol. For precipitating DNA, 1/10 

(v/v) 5 M NaClO4 and 0.6 to 1-time volume of isopropanol were added and the 

solution was centrifuged at 13,000 rpm for 15 min. DNA pellet was resuspended in 

500 μl TE buffer after air dry. The concentration and quality of plasmid DNA were 

confirmed by spectrophotometer.  
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5.4  Cloning techniques 
 

5.4.1  T/A cloning of PCR products 

Cloning of PCR fragments via PCR derived poly-A overhangs was carried out 

with the Invitrogen Original TA cloning kit (pCR2.1 vector) according to the 

respective manufacturer’s instructions. PCR products were purified in advance with 

the Nucleospin Extract II kit (Macherey-Nagel) according to the manufacturer’s 

instructions. 

 

5.4.2  Cloning via restriction enzyme digestion 

Restriction enzymes were purchased from New England Biolabs and used 

according to the manufacturer’s instructions. Usually 4 U per μg plasmid DNA were 

used, for control digestions for 1 h in a 10 μl volume, for cloning purposes in 

accordingly upscaled reactions. 

 

5.4.3  Cloning of BoMYB28 

Total RNA was isolated from shoots of 4-week-old broccoli plants. Primers for 

amplification of a partial cDNA of BoMYB28 were designed according to cDNA 

sequence of AtMYB28 (NM_180910). For obtaining the full length BoMYB28 cDNA, 

5’ and 3’ cDNA ends were amplified by GeneRacer kit (Invitrogen, Karlsruhe, 

Germany). The full-length cDNA of BoMYB28 was then amplified using the 

gene-specific primer (Table 5.3). The amplified fragments were ligated into the 

pCR2.1 TA cloning vector (Invitrogen, Karlsruhe, Germany) and sequenced. 

Sequence-analysis was performed using the Vector NTI software (Invitrogen, 

Karlsruhe, Germany) and ClustalW2 program (EMBL-EBI: 

http://www.ebi.ac.uk/Tools/clustalw2/index.html). 

 

5.4.4  Cloning of constructs for luciferase-assay 

For transient expression of AtMYB114 (AT1G66380), BoMYB28, EGL3 

(AT1G63650) and TTG1 (AT5G24520), theirs full-length cDNA were amplified and 

cloned into the vector pART7 (Gleave, 1992), allowing constitutive gene expression 

by the CaMV 35S promoter. Promoter fragments of AtUFGT (AT4G14090), AtMAM1 

(AT5G23010), AtCYP83A1 (AT4G13770), and AtAOP2 (At4g03060) were amplified 
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from Arabidopsis genomic DNA and cloned into the luciferase reporter vector pLuc 

(Horstmann et al., 2004). The constructs for AtMYB114 and AtUFGT were gifts from 

Dr. Jochen Bogs.  Full-length cDNA of BoMYB28 was first cloned into the pCR2.1 

TA cloning vector. The construct of pCR2.1-BoMYB28 was digested with EcoRI and 

then cloned into pART7 vector. The promoter fragments of AtMAM1, AtCYP83A, and 

AtAOP2 were amplified by specific primers containing restriction sites (Table 5.3) for 

cloning into pLuc vector as a BamHI/XhoI fragment. 

 

5.5  Elemental analysis of total sulfur and total selenium 
Tissues samples were dried at 65°C in an oven for 3 days. Dried samples were 

weighed, and 20 mg of dried tissue was incubated in 2 ml HNO3 at room temperature 

for 3 days. Samples were then transferred to 95°C for 3 hours, followed by addition of 

1 ml H2O2 (30 %) and further incubation at 95°C for 1 hour. Thereafter, samples were 

diluted with double-distilled water to 10 ml. Total element contents were determined 

by inductively coupled plasma atomic emission spectrometry (ICP-AES, Thermo 

Elemental, Dreieich, Germany) using an IRIS Advantage Duo ER/S. S and Se were 

determined using the 182-nm line and 196-nm line respectively.  
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5.6  Quantification of sulfate and S-metabolites 
 

5.6.1  High-Performance Liquid Chromatography (HPLC) 

For quantitative determination of sulfate, Cys and GSH, frozen plant material 

was ground in liquid nitrogen and extracted with 1 ml 0.1 M HCl per 0.1 g fresh 

weight. The extract was 10-fold diluted in water and used for sulfate determination by 

ion chromatography according to Wirtz and Hell (2007), using a Dionex HPLC 

system. Cys and GSH were quantified after derivatization with monobromobimane 

(Calbiochem, Bad Soden, Germany). The derivatization procedure and separation of 

thiol derivatives were performed as previously described by Wirtz et al. (2004). 

Depending on cysteine formation in the assay, 10 μl or 50 μl of assay supernatant was 

reduced at room temperature for 60 min in a total volume of 0.27 ml containing 134 

mM TRIS-HCl pH 8.3, 1 mM DTT. Afterwards thiols were derivatized for 15 min by 

adding 0.03 ml monobromobimane to a final concentration of 3 mM, representing 

more than 2.5-fold excess above the total thiol concentration. The resulting 

monobromobimane derivatives were stabilized by the addition of 0.7 ml 5% acetic 

acid and detected by fluorescence (Fluorometer RF 551, Shimadzu) at 480 nm after 

excitation of the adduct at 380 nm after separation. 

 

Extraction and quantitative analysis of glucoraphanin were performed according 

to Rangkadilok et al. (2004) and Rochfort et al. (2006), with some modifications. 

Briefly, young plant shoot samples (8-10 g for 6-week-old plants and 2-4 g for all 

other samples) were boiled in water for 5 min to inactivate myrosinase. Samples were 

then transferred to a mortar with 5 ml double distilled water (10 ml for 6-week-old 

plants) and thoroughly homogenized. Extracts were placed on a shaker for 10 min and 

then centrifuged at 5,000 rpm for 10 min at room temperature. Supernatants were 

vacuum-filtered through filter paper (Whatman No. 1, Dassel, Germany) and then 

centrifuged again at 5,000 rpm for 10 min. Finally, the cleared extracts were filtered 

through 0.22 μm Millipore filter (Millipore, Jaffrey, NH, USA) and stored at -20°C 

for analysis. For glucoraphanin quantification, a 4 μm 4.6 x 250 mm C18 column 

(Nova-Pak, Waters, Milford, MA, USA) was used, the mobile phase consisting of 

0.1% v/v formic acid/water and used with a flow rate of 1ml per min. After each 

analysis, the column was washed with 20% v/v acetonitrile/water, containing 0.1% 
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v/v formic acid. The elution profile was monitored at 234 nm. The peak 

corresponding to glucoraphanin was identified by co-chromatography with authentic 

standard (a gift from Dr. Jonathan Gershenzon). Peak purity was confirmed by 

comparative scanning of the UV spectrum using a photodiode array detector (Waters, 

Milford, MA, USA). 

 

5.6.3  Glucose assay 

Extraction and quantitative analysis of total GSLs were modified from Smith and 

Dacombe (1987). 100 mg frozen sample was ground in liquid nitrogen and added 280 

µl acidified methanol (40% methanol and 0.5% acetic acid) as the sample-blank or 

added 280 µl ddH2O at 37 , 10 min for ℃ myrosinase hydrolysis. To stop the reaction, 

210 µl 100% methanol was added and a bit of activated carbon also was added to 

precipitate polyphenolic substances. Samples were centrifuged twice at 13,000 rpm, 

4  for 10 min and supernatant was transferred to a ℃ new tube. 100 µl extract was 

mixed with 400 µl glucose-assay reagent (Sigma-Aldrich, Taufkirchen, Germany) and 

incubated at 37  for 30 min. 400 µl 12N H℃ 2SO4 was added to stop the reaction and 

the colour of solution turned to violet. Colorimetric assay proceeded with HITACHI 

U-2000 spectrophotometer at 540 nm. According to glucose standard, the amount of 

released glucose was calculated by subtracting the value of sample-blank from the 

value of sample. The amount of released glucose indicates the amount of total GSLs 

hydrolyzed by myrosinase. 
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5.7  Transient expression of BoMYB28 and its functional assay  
 

5.7.1  Protoplast isolation 

Enzyme solution: 1% cellulose ‘Onozuka’ R10 (Yakult, Tokyo, Japan) 

    0.25% macerozyme ‘Onozuka’ R10 (Yakult, Tokyo, Japan) 

    0.4 M mannitol 

    10 mM CaCl2 

    20 mM KCl 

    0.1% BSA 

    20 mM MES 

    pH 5.7 

    autoclave stock solution without enzymes and BSA 

W5 solution:  154 mM NaCl 

    125 mM CaCl2 

    5 mM KCl 

    5 mM glucose 

    2 mM MES 

    pH 5.7 

    sterile filtration 

MMg solution: 0.4 M mannitol 

    15 mM MgCl2 

    4 mM MES 

    pH 5.7 

    autoclave 

 

For Arabidopsis protoplast isolation and transfection, leaves were collected from 

3 to 5-week-old plants. The generation of protoplasts was performed as previously 

described by Wu et al. (2009). Washing and transfection of protplasts was performed 

as described by Yoo et al. (2007). The upper epidermal surface was stabilized by 

affixing a strip of Time tape (Time Med, Burr Ridge, IL) while the lower epidermal 

surface was affixed to a strip of Magic tape (3 M, St. Paul, MN). The Magic tape was 

then carefully pulled away from the Time tape, peeling away the lower epidermal 

surface cell layer. The peeled leaves still adhering to the Time tape, were transferred 
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to a Petri dish containing 10 ml of enzyme solution. The leaves were gently shaken 

(40 rpm on a platform shaker) in light for 20 to 60 min until the protoplasts were 

released into the solution. The protoplasts were centrifuged at 100 x G for 2 min and 

then washed twice with 50 ml of pre-chilled W5 solution and incubated on ice for 30 

min. During the incubation period, protoplasts were counted using a hemocytometer 

under a light microscope. The protoplasts were then centrifuged and resuspended in 

MMg solution to a final concentration of 2 to 5 x 105 cells / ml. 

 

5.7.2  PEG-transfection  

PEG solution:  30% (w/v) PEG (MW 4000, Roth) 

    0.1 M CaCl2 

    0.2 M mannitol 

    

WI solution:  4 mM MES (pH 5.7) 

    0.5 M mannitol 

    20 mM KCl 

 

Approximately 2 x 104 protoplasts were mixed with 10 μg transcription factor 

construct, 10 μg promoter construct and 1μg the Renilla luciferase plasmid pRluc 

(Horstmann et al., 2004). An equal volume of a fresh-prepared PEG solution was 

added and the mixture was incubated at room temperature for 5 min. After incubation, 

400-440 μl of W5 solution was added slowly and mixed gently by inverting the tube. 

Protoplasts were precipitated by centrifugation at 100 x G for 2 min. The protoplasts 

were resuspended gently in 1 ml WI solution and were incubated in 24-well plates 

coated with 1% BSA at room temperature for 16 hr in light. 

 

5.7.3  Luciferase assay 

For the measurement, protoplasts were harvested by centrifugation at 100 x G for 

2 min and resuspended with 40 μl 2-fold passive lysis buffer (Promega). 20 μl of the 

supernatant was used to measure Firefly and Renilla luciferase activity with the 

dual-luciferase reporter assay kit (PJK, Kleinblittersdorf, Germany), by sequential 

addition of 50 μl Beetle Juice and Renilla Juice pH5. Light emission was measured 

with a Lumat LB9507 Luminometer (Berthold Technologies) and the relative 

luciferase activity was calculated as the ratio between the Firefly and the Renilla 
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luciferase activity. All transfection experiments were performed in triplicates and each 

set of promoter experiments was repeated with similar relative ratios to the respective 

control. 

 

5.8  Statistical analysis  
All experiments were done at least three times, each with three independent 

biological replicates. The variation was calculated as standard deviation (SD). 

Comparison of means from different data sets was analyzed for statistical significance 

with the student’s t-test by Excel (Microsoft). Significance was considered if P value 

< 0.001. 
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6.  ABBREVIATION INDEX 
 

AMV  alfalfa mosaic virus 

A. thaliana Arabidopsis thaliana 

B. oleracea Brassica oleracea 

BLAST   basic local alignment search tool  

BSA   bovine serum albumin 

CaCl2  calcium chloride 

CaMV  cauliflower mosaic virus  

Ca(NO3)2  calcium nitrate 

cDNA  complementary DNA  

cm   centimeter 

CoCl2  cobalt chloride 

Col-0  Columbia zero ecotype of Arabidopsis thaliana  

CuSO4  copper sulfate 

Cys   cysteine 

ddH2O  double distilled water 

DNA  deoxyribonucleic acid 

dNTP  deoxynucleotide triphosphate 

DTT   dithiothreitol 

DW   dry weight 

E. coli  Escherichia coli 

EDTA  ethylenediaminetetraacetic acid 

e.g.   for example (lat. exempli gratia) 

EtBr   ethidium bromide 

EtOH  ethanol 

F   farad 

Fig.   figure 

FW   fresh weight 

g   gram 

G   acceleration of gravity 

GFP   green fluorescent protein  

GR   glucoraphanin 
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GSL   glucosinolate 

GSH  glutathione 

GST   glutathione S-transferase 

h   hour 

H2O   water 

H2O2  hydrogen peroxide 

H2SO4  sulfuric acid 

H3BO3  boric acid 

HCl   hydrogen chloride 

HNO3  nitric acid 

HPLC  high-performance liquid chromatography 

ICP-AES  Inductively-Coupled Plasma Atomic Emission Spectrometry 

i.e.   that is (lat. id est) 

IPTG  isopropyl ß-D-1-thiogalactopyranoside 

kb   kilo base pairs  

KCl   potassium chloride 

KH2PO4  potassium dihydrogen phosphate 

KNO3  potassium nitrate 

l   liter 

LB   Luria-Bertani (medium)  

LiCl   lithium chloride 

μ   micro (10-6) 

M   molar (1 M = 1 mol/l)  

MES  2-(N-morpholino)ethanesulfonic acid 

MgCl2  magnesium chloride 

MgSO4  magnesium sulfate 

min   minutes 

MnSO4  manganese sulfate 

mol   mole 

MOPS  3-(N-morpholino)propanesulfonic acid 

mRNA  messenger RNA  

MS   Murashigge-Skoog (medium)  

MW   molecular weight 

n   number of replicates 
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N   Normality 

NAA  1-naphthaleneacetic acid 

NAT  N-acetyltransferase 

NaCl  sodium chloride 

NaH2PO4  sodium phosphate 

NaOAc  sodium acetate 

NaOCl  sodium hypochlorite 

NaOCl4  sodium perchlorate 

NaOH  sodium hydroxide 

Na2MoO4 sodium molybdate 

Na2SeO3  sodium selenite 

Na2SeO4  sodium selenate 

(NH4)2SO4 ammonium sulfate 

nm   nanometer 

nt   nucleotide 

OAS  O-acetylserine 

ODx nm  optical density at x nm wavelength  

PCI   phenol/chloroform/isoamylalcohol 

PCR   polymerase chain reaction  

PEG   polyethylene glycol 

pH   negative decadic logarithm of [H+]  

qRT-PCR quantititative real-time polymerase chain reaction  

RACE  rapid amplification of cDNA ends 

RNA  ribonucleic acid 

rpm   revolutions per minute 

rRNA  ribosomal ribonucleic acid 

RT   reverse transcription  

S   sulfur 

SD   standard deviation  

SDS   sodium dodecyl sulfate 

Se   selenium 

SeCys  selenocysteine 

SeMet  selenomethionine 

SeMSC  Se-methylselenocysteine 
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SF   sulforaphane 

SMT  selenocysteine methyltransferase 

SOC   super optimal broth with catabolite repression (SOC) medium 

SULTR  sulfate transporter 

U   unit 

UTR  untranslated region  

UV   ultraviolet 

V   volt 

v/v   volume/volume 

var.   variety 

W   watt 

w/v   weight/volume 

WHO  World Health Organization 

WT   wildtype  

ZnSO4  zinc sulfate 
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8.  APPENDIX 

 
8.1  Full-length cDNA sequence of BoMYB28 

 
GAATTCGGCTTgaaaatcacagttcacgcctcttactccatgagcttctctattctcatcct

agtgttataatcttgcaaacacatatagaaagcaagatttggagtgtacgagaaaaacatga

aaacacctagaagctctgtgggtaagacccaagagcgtttctcgattagtttcatatacaga

tgcatcagagttctcatcaaccgatctacttctttcttatcttattagaaaaaaaatcctat

caaaatttactttcctgcaagtatatttttctttacattttcattttcttgagtgttatttg

agtgaagttatattaaaatattgtaatagagttcatatatatcgaaaATGTCAAGAAAGCCA

TGTTGTGTCGGAGAAGGGCTGAAGAAAGGGGCATGGACCACCGAGGAAGATAAGAAACTCAT

CTCTTACATCCATGAACATGGAGAAGGAGGCTGGCGTGACATTCCTCAAAAAGCTGGATTGA

AAAGGTGTGGAAAGAGTTGTAGACTGCGATGGACTAACTACCTAAAACCTGAAATCAAAAGA

GGCGAGTTTAGTTCAGAGGAGGAACAGATTATCATCATGCTTCATGCTTCTCGTGGAAACAA

GTGGTCGGTCATAGCGAGACATTTACCTAGAAGAACAGACAATGAGATCAAGAACTACTGGA

ACACACATCTCAAGAAACGTTTGATCGAACAGGGTACTGATCCCGTGACTCACAAGCCACTA

GCTTCTAATACAAACCCTACTGTACCTGAGAATTTGCATTCCCTAGATGCATCTAGTTCCGA

CAAGCAATACTCCCGGTCAAGCTCAATGCCTTCCATGTCTTGTACTCCTTCCTCCGGTTTCA

ACACGGTTTTCGAGAATACCAGCAAAGATGGGACACCAGTTCGTGAGGACGATTCCTTGAGT

CGCAAGAAACGTTTGAAGAAATCAAGTTCTACATCAAGGCTTTTGAACAAAGTTGCGGCTAA

GGCCACTTCCATGAAAGAAGCTTTGTCTGCTTCCATGGAAGGTAGCTTGAATGCTAATACAA

GCTTTTCCAATGGCTACTCTGAGCAGATTCTCAATGAAGATGATAGTCCTAATGCATCCCTC

ATAAACACTCTCGCCGAGTTCGATCCCTTCCTCCAAACAACGTTTTACCCTGAGAATGAAAT

GAATACTACTTCTGATCTCGATATAGATCAGGACTACTTCTCACATTTTCTCGAAAATTTCG

GCAGAGATGATGACCACAATGAGGAGCACTACATGAATCATAACTATGGTCATGATCTTCTT

ATGTCCGATGTGTCCCAAGAAGTCTCATCAACTAGCGTTGATGATCAAGACAATACTAATGA

GGGTTGGTCAAATTATCTTCTTGACCATGCTGATTTTATACATGACATGGATTCTGATTCCC

TCGGAAAGCATATCATATGAatcttcatgcccaagcagaaaggtttcaaacttttgaaactt

gtcagaacaagaagttatgtatgtattctattatatggattgtttagtacatgtccaagatc

atggttgttagtcccaagtttagggtttgtataatatacaataagggacgttatcttataaa

acgagggtttctctgatattgagaatcaAAGCCGAATTC 

 

Underlined: EcoRI site in pCR2.1 vector 

Italic and small: 5’ and 3’ UTR 

Boxed: start and stop codon 
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8.2  AtMYB28-stimulus microarray data 
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8.2  AtMYB28-stimulus microarray data (continued) 
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8.2  AtMYB28-stimulus microarray data (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

analysis from GENEVESTIGATOR microarray database 

https://www.genevestigator.com/gv/index.jsp 
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8.3  sequence of AtMAM1 promoter region 

 
GGATCCAATCCCACAGCACTGTATGGCTGAAGTTATCCACAACTCACCTACCTATACAAGCA

TACACGTGATGATATCATGCTAATCACTTCTGAAGGAACAATGCCGAAAATTAAACCTTATT

ATGCATTCATTAACATCCGAATCCATTTTTCTACTTTGACAAAATGAACAATATCCACATGC

CAGCATCTAGCTAGATGCAGACCTGGTAAGGCACCAATGGGTTTGAAACCTTCCTCCATATT

GTTCCAATTTGTATATATTGCATTTCAAAAAACCAGAAATATTTACTGTACCATTCACGATC

GACCCAAAGGATTTGAACCCAATCTCATAGCCTAATGAATCGTATTCAAAATTGATATGCAC

CATGAGAAACTGGTATCATAAACAAAAACTGATATGCAAATTAATTAATTAAATCACACATA

TGCTATATTTTCTCTATGGGCTGGACTGGTGTTTTGTTTTAATTATTATGATAAGAAGAATT

GCACCAAAAAAAAAAAAGAAAAAAAAAAAGAAGAAAATCGTATCTTTTTGTTCTACCTATAC

AGACACATAATGCATCATTTTAGTTTTTGGGACAAAGACATAATGCATCAACGTGTCAGCAA

TATATGAAACGTGAAGAATGTTTTGTCTGAGTCTGAGTAAAATTACTAGAAATTAAAATTAG

TAAGACTGACTAATTACAAATATCCCAAGTCTGTGTTTATTCTAAGACAACTACTAGAAAAC

TTAACTATATTAGACTACCAACTAGGCAACAAATATCACAAAGAATATCGTATGTCACCTAC

CTGGAGGTGCATACCACGTGATTTTATCCCCATTTTAGATATGGTCATATCGATTAGTTATT

GTATATAAAAAAAAAATTCTTACAGGCTATAAACTATTATGCTACAAATTTTGGTAAAAACC

TATTACTTGTTATTCCGTTTCCAAAACATATTATGGCTATATTAAAGTGTGTATAAATGAGT

TAAAACATTTTTAACAACAAATAAATGTAAAAAAAATGAGTTTAACATCGTTGTAAGTAAAC

TTAGGATTTGTTTGTTACCTCAAACTTAAATATTATTCCCTCTGTTTCTAACTAAGTGTAGT

TTAAAGGTTTTTTATTTTTTTCAGTATAAGTATTGTTTTCACTTTTCGATGCAAACATTAAA

TGTATTTAATAGTTTTTAACCAATTATATTTTACATCATATTTTTTATTGGTTGGATTAGTT

GTAATTGGTGATATTTTTTTTAAAAAAAGATAAATCAAATGAGATTTATATATTTTCTTAAT

TTGCGTGCAAAAACTTTAAATTAAAAATATTAAGAAACAGAGAGAGTATCTTTTCTATACAT

AGGTATATCACTTATATATATATATATGTATACAGCTAAATATTTATGTAAAAATGTAAACA

TACGAAACTGTTTATAGAAAGTATAATATTCTAAAATAAGATATCAAACACAGTATAATATT

TAATTTTAAAGAAGATACTATTTTGCGTTTAATGTTTTCATCGAATATAATTTCTTATTCCG

CTAACTCAAATGTTTATTATTTTTAACATCAAAATGTTTCTAATACTAAAAAGTTTAATAAA

TAAAAAAATCTCTCTATAAATAGATAAATTATATCGTATAATGTTCAAAACAATTCCCACAC

TATCTTTCCTCCACATTAAAGTAAAGTATCTCTCTCTTTTCTCGAG 

 

AtMAM1 (AT5G23010; -1730 to -23 nt) 

Underlined: BamHI and XhoI sites in pLuc vector 
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8.4  sequence of AtCYP83A1 promoter region 

 
GGATCCGCTTTTGGTTGATCTAAACACAAAAGAGAATCTAGTTGCTTGCTACAAAGATGTGC

CCTTCACTACATCTGCAGGTGTATGCAAAGTTTCATCCATCAGCAATGGCACGATCCGGTAA

AAGCTTACTTGAGCCATAAGCAAACTAATATTCTCCATTTCTATCTTTCTCTGTAAGAGAAA

CGAAATTCGGAGATTTTCATTTGAAAATTTGATTCTAATTACAAACATGTTCTTGTAAACTT

AAAGCTTGGTACAATTGTTGTTATTGATTGATGTTGTGAGAAACATTCAGCTTTTTAAAATT

GGGCCCAGACGCAAAGCAACCACACAACTTACGATTTCAAATCTTTTATGGTACTAGTTGAG

GTTTTGTGAAGGTTGATGTTTTTCTTAATTTTTTAATATTCTAGTTCTCGTGTTTAAAAATA

GTCGCATCATTCTTTTTTTCTGGCGGTTCGTAATTGTGTTCCCTTGTAATACTGTATAGGGT

TGTATACAATCGAACGTTTGAAGTGATCATGTAATTCAATCATAAATTTAAATCTTTGGTTA

TTGAAAACATTTTAAGCATTCTATTTTTATTGACCTTTAAGAGATTTTGGCATTTTATTGGC

TTGAGTTCACTGAGCGTTTCCAAGTTACCAACTACACCAACCCTTCGGATTCAAATCTGTGT

TGATGTTTTGCGATTCCATATCATTACTATATCAACGAGTTGATTTTTTTTTTTGGTCAACC

AGCAAGTTGATTTTTGAAAAACTCTTACTCTACAATTTGCGACTGACGACTGTTTAGAATTT

TGGGTACGTACCAATAATCCAATATGTTATATTTTCGATATAGAAATGGATTGTGATTGATA

TAAGTCTTGGGTTCGTCGAACAAAGTTAAACAAAGATTTGTGTAAATAACAAATAGATAAAA

ACAAGAATGAGTGTGACTGCATGAACCACTAAAACATATACGACGTTAGAGGGATGTTGGGT

AGGTGAAGGTGTTTATTAATTCTAACACGTGAGGTTTCGTAAGTAGGTATAAGGGAGTAACC

ATTTGATTAAAACTCGAG 

 

AtCYP83A1 (AT4G13770; -1201 to -142 nt) 

Underlined: BamHI and XhoI sites in pLuc vector 
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8.5  sequence of AtAOP2 promoter region 

 
GGATCCGGATCCAACCGAGATAAGTAAAAAAAGATTCTATCTTTAAAATGGGACCTCTCTCC

TTTTTCTCTTCATTATTGCTATGGTTCAAAACGTACAATCATCGGCCTCGCTCGGAATTTAA

ATCATATACAATATGCTTACTAAGTATTATTCACGTATAAGTAACAATATGCAACTAAAGGT

TTTGGGCCACGAATTACTTACAATAAAAAACTTTTGTAAACTCAAGTTCCAAATGTTTAGTA

ATATAAATTCACATTTTATCTCAAAAAAAAAGAGAAAAAGAGAAAACTTTTTATCAAAAGAG

AAAAGTTAACTTAAGTTATAACTCGTTGAGTTGTTCTTCATCTTGTACAACAATAATGCCCA

CACATCGTATGGATTGATATTTTCTATGATGAAAATAAACGATTCACCAACTTTCCTTTTTT

TGTATATAAAATGTGAACTTTTAATAGTATATACCAACTTTCCTTCCTCTGTCTATTATTAT

TAAGCATGTGTTTGCTTAAATTAAGCAAAGCGACAAAAAAAAAACTTAATACAATCACTTGT

GAATAATTTCTCTATAAAATGGGGACCCTTCACTATTCTTACTCACACAGAAGAGAAAAATC

TCTAGAGCTAGCAAAGTAAAAACAATTAATATAACAGAAAGTCCAAAGGTAATTTTCTTATG

CGTTTCGAATGTTTTTTTTTCTTATTAATTATTGCTACTATCTGCTAACATCTCGAG 

 

AtAOP2 (AT4G03060; -761 to -41 nt) 

Underlined: BamHI and XhoI sites in pLuc vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


