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Abstract

In the present work advanced Monte Carlo methods for discrete-time stochastic processes are
developed and investigated. A particular focus is on sequential Monte Carlo methods (particle
filters and particle smoothers) which allow the estimation of nonlinear, non-Gaussian state-space
models. The key technique which underlies the proposed algorithms is importance sampling.
Computationally efficient nonparametric variants of importance sampling which are generally
applicable are developed. Asymptotic properties of these methods are analyzed theoretically
and it is shown empirically that they improve over existing methods for relevant applications.
Particularly, it is shown that they can be applied for financial derivative pricing which constitutes
a high-dimensional integration problem and that they can be used to improve sequential Monte
Carlo methods.

Original models in general state-space form for two important applications are proposed and
new sequential Monte Carlo algorithms for their estimation are developed. The first application
concerns the on-line estimation of the spot cross-volatility for ultra high-frequency financial
data. This is a challenging problem because of the presence of microstructure noise and non-
synchronous trading. For the first time state-space models with non-synchronously evolving
states and observations are discussed and a particle filter which can cope with these models is
designed. In addition, a new sequential variant of the EM algorithm for parameter estimation is
proposed. The second application is a non-linear model for time series with an oscillatory pattern
and a phase process in the background. This model can be applied, for instance, to noisy quasi-
periodic oscillators occurring in physics and other fields. The estimation of the model is based
on an advanced particle smoother and a new nonparametric EM algorithm.

The dissertation is accompanied by object-oriented C++ implementations of all proposed
algorithms which were developed with a focus on reusability and extendability.





Zusammenfassung

In der vorliegenden Arbeit werden fortgeschrittene Monte-Carlo-Verfahren für zeitdiskrete stoch-
astische Prozesse entwickelt und untersucht. Ein Schwerpunkt wird dabei auf sequentielle Monte-
Carlo-Verfahren (Partikel-Filter und Partikel-Smoother) gesetzt; diese werden zur Schätzung von
nichtlinearen, nicht-Gauß’schen State-Space-Modellen verwendet. Importance Sampling ist die
Schlüsselmethode, auf der die entwickelten Algorithmen basieren. Es werden nichtparametrische
Varianten des Importance Samplings entwickelt, die recheneffizient und allgemein anwendbar
sind. Asymptotische Eigenschaften dieser Methoden werden theoretisch untersucht und es wird
anhand relevanter Anwendungen gezeigt, dass sie bessere Ergebnisse liefern als existierende Ver-
fahren. Insbesondere wird gezeigt, dass sie für die Bewertung von Finanzderivaten, ein hochdi-
mensionales Integrationsproblem, verwendet werden können und dass sie benutzt werden können
um sequentielle Monte-Carlo-Verfahren zu verbessern.

Für zwei wichtige Anwendungen werden neue Modelle in State-Space-Form entwickelt und
sequentielle Monte-Carlo-Algorithmen beschrieben, die für deren Schätzung genutzt werden kön-
nen. Die erste Anwendung betrifft die Online-Schätzung der Spot Kreuz-Volatilität für ultra-
hochfrequente Finanzdaten. Aufgrund des Mikrostruktur-Rauschens und der nicht-synchronen
Handelszeitpunkte stellt dies ein schwieriges Problem dar. Im Zuge dieser Anwendung werden
erstmals State-Space Modelle mit nicht-synchronen Zuständen und Beobachtungen betrachtet
und ein Partikel-Filter konstruiert, der für solche Modelle geeignet ist. Außerdem wird ein
neuartiger sequentieller EM-Algorithmus für die Parameter-Schätzung entwickelt. Als zweite An-
wendung wird ein nichtlineares Modell für Zeitreihen vorgeschlagen, die ein periodisches Muster
und einen latenten Phasen-Prozess aufweisen. Dieses Modell kann u.a. verwendet werden um
verrauschte quasi-periodische Oszillatoren zu beschreiben, die in verschiedenen Disziplinen (z.B.
der Physik) vorkommen. Die Schätzung dieses Modells basiert auf einem erweiterten Partikel-
Smoother und einem neuen nichtparametrischen EM-Algorithmus.

Teil dieser Dissertation sind außerdem objektorientierte C++-Implementierungen aller vor-
geschlagenen Algorithmen, die besonders auf die Wiederverwendbarkeit und Erweiterbarkeit
Wert legen.





Acknowledgements

I extend my thanks to my supervisor Prof. Dr. Rainer Dahlhaus and my co-supervisor Prof. Dr.
Dieter W. Heermann for giving me the opportunity to work on this exciting topic. Particularly,
I like to thank Prof. Dr. Rainer Dahlhaus for his invaluable support in terms of scientific advice
and hardware/software equipment. I would also like to express my gratitude to Dr. Cornelia
Wichelhaus, Prof. Dr. Jan Johannes, Konstantinos Paraschakis, Dr. Markus Fischer, and Julian
Kunkel for very useful comments and inspiring discussions at different stages of this project.
Similarly, my gratitude goes Dr. Ulrich Brandt-Pollmann who made possible my three month
stay in London. Finally, I want to thank my wife Paula and the rest of my family for their
continuing support.

This work was supported by the Deutsche Forschungsgemeinschaft under DA 187/15-1 and
by the University of Heidelberg under Frontier D.801000/08.023. In addition, I am grateful to
Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences for
funding my travels to various conferences and workshops.





Contents

Abbreviations v

1 Introduction 1
1.1 Overview of the Problems, Methods, and Applications . . . . . . . . . . . . . . . 1
1.2 Outline of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Monte Carlo Methods and General State-Space Models 7
2.1 Monte Carlo Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Computational Efficiency and Variance Reduction Techniques . . . . . . . . . . . 8
2.3 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 General State-Space Models and Sequential Monte Carlo . . . . . . . . . . . . . . 10
2.5 Expectation-Maximization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Pseudo- and Quasi-Random Number Generation . . . . . . . . . . . . . . . . . . 14

3 Nonparametric Importance Sampling 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 A New Nonparametric Importance Sampling Algorithm . . . . . . . . . . . . . . 18
3.3 A New Nonparametric Self-Normalized Importance Sampling Algorithm . . . . . 22
3.4 Applying Nonparametric Importance Sampling . . . . . . . . . . . . . . . . . . . 23

3.4.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Implementing the LBFP Estimator . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Computational Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Application: Spam Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Nonparametric Partial Importance Sampling for Financial Derivative Pricing 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Derivative Pricing and Importance Sampling . . . . . . . . . . . . . . . . . . . . . 38
4.3 Nonparametric Partial Importance Sampling . . . . . . . . . . . . . . . . . . . . . 39
4.4 Effective Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Quasi-Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



CONTENTS

4.7 Comparison with Parametric Importance Sampling . . . . . . . . . . . . . . . . . 44
4.8 Implementation of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.9 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Nonparametric Particle Filtering and Smoothing 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 A Nonparametric Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 A Nonparametric Particle Smoother . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 On-Line Maximum Likelihood Parameter Estimation . . . . . . . . . . . . . . . . 61
5.5 Quasi-Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Bin Width Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7.1 Benchmark Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7.2 High-Frequency Stochastic Volatility Application . . . . . . . . . . . . . . 70

6 Particle Filter-Based On-Line Estimation of Spot Cross-Volatility 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 A New Nonlinear Market Microstructure Noise Model . . . . . . . . . . . . . . . 77
6.3 On-Line Estimation of Spot Volatility Based on a Particle Filter and Sequential

EM-Type Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.1 A Nonlinear State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.2 An Efficient Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.3 Sequential EM-Type Algorithms . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 From Transaction Time to Clock Time . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.1 Clock Time Spot Volatility Estimation . . . . . . . . . . . . . . . . . . . . 89
6.4.2 An Alternative Estimator for Clock Time Spot Volatility . . . . . . . . . . 89

6.5 Fine-Tuning of the Volatility Estimator in the Time-Varying Case . . . . . . . . . 91
6.5.1 Adaptive Step Size Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 On-line Bias Correction and Mean Squared Error Minimization . . . . . . 92

6.6 Spot Cross-Volatility Estimation: New Modeling Aspects . . . . . . . . . . . . . . 97
6.6.1 A New Transaction Time Model for Non-Synchronous Data . . . . . . . . 97
6.6.2 Non-Standard State-Space Models for Non-Synchronous Data . . . . . . . 98

6.7 On-Line Estimation of Spot Cross-Volatility . . . . . . . . . . . . . . . . . . . . . 99
6.7.1 A State-Space Model with Non-Synchronous Observations and States . . . 99
6.7.2 An Original Particle Filter for Non-Synchronous State-Space Models . . . 100
6.7.3 EM-Type Algorithms for Non-Synchronous Observations and States . . . 103

6.8 Clock Time Covariance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.9 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.10 Simulations and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.10.1 Results for Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ii



CONTENTS

6.10.2 Results for Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Bayesian Phase Estimation for Noisy Quasi-Periodic Time Series 123
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 A New State-Space Model for Quasi-Periodic Time Series . . . . . . . . . . . . . 124
7.3 The Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Rao-Blackwellized Particle Filtering . . . . . . . . . . . . . . . . . . . . . 125
7.3.2 Rao-Blackwellized Fixed-Lag Particle Smoothing . . . . . . . . . . . . . . 127
7.3.3 A Stochastic EM Algorithm for Parameter Estimation . . . . . . . . . . . 128

7.4 Nonparametric Estimation of the Fluctuation Pattern . . . . . . . . . . . . . . . 129
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.6.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6.2 Noisy Rössler Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6.3 Application to Human Electrocardiogram Recordings . . . . . . . . . . . . 139

8 Software 141
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Main Software Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Auxiliary Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Conclusions and Prospects 144

Appendix

A Proofs 149
A.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Lemma A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.3 Lemma A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.4 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.5 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.6 Derivation of the complexity of the LBFP . . . . . . . . . . . . . . . . . . . . . . 156
A.7 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.8 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.9 Proof of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.10 Calculation of the Quasi Mean Squared Error in Section 6.5.2 . . . . . . . . . . . 159
A.11 Reversed Order Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.12 Proof of Proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.13 Proof of Proposition 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

References 163

iii





Abbreviations

APF Auxiliary particle filter

BSPS Backward simulation particle smoother

CDIS Change-of-drift importance sampling

CV Coefficient of variation

ED Effective dimension

GSSM General state-space model

IS Importance sampling

LBFP Linear blend frequency polygon

LSIS Least-squares importance sampling

MC Monte Carlo

NPIS Nonparametric partial importance sampling

NIS Nonparametric importance sampling

NPF Nonparametric particle filter

NPS Nonparametric particle smoother

NSIS Nonparametric self-normalized importance sampling

PCA Principal component analysis

QMC Quasi-Monte Carlo

RBPS Rao-Blackwellized particle smoother

RCE Relative computational efficiency

RE Relative efficiency

RMSE Root mean square error

SIRMH Bootstrap particle filter with Metropolis-Hastings moves

SCVE Spot cross-volatility estimation

SPS Simple particle smoother

SVE Spot volatility estimation

VR Variance reduction





Chapter 1

Introduction

1.1 Overview of the Problems, Methods, and Applications

The simulation of stochastic processes and the approximation of complex, high-dimensional in-
tegrals which depend on stochastic processes are frequent problems in many fields. Numerical
integration schemes are often infeasible as a result of the curse of dimensionality and computa-
tional limitations. Monte Carlo simulation is frequently the only tractable method because its
convergence rate is independent of the problem dimension. However, if the problem dimension is
large or the integrand very irregular crude Monte Carlo is inefficient. This establishes a need for
advanced Monte Carlo algorithms. In the last decades, advanced Monte Carlo methods became
more and more relevant for practical applications as a result of increasing computing power. In
particular, in Bayesian inference Monte Carlo methods such as Markov Chain Monte Carlo and
sequential Monte Carlo methods experienced a distinct surge in popularity.

In this dissertation, the main focus is on sequential, discrete-time models and methods.
Discrete-time models occur, for instance, as discretizations of continuous-time stochastic pro-
cesses. The on-line or sequential estimation which is frequently required when dealing with
stochastic processes is of key focus in this work. However, off-line settings are also considered.
New Monte Carlo methods are proposed and analyzed concerning both theoretical and computa-
tional aspects. Efficient software implementations of the algorithms are provided. The usefulness
of the proposed methods is verified through relevant applications. Several complex applications
in the field of quantitative finance are considered in detail.

The technique which constitutes the fundamental concept of the methods developed in this
dissertation is importance sampling. This is a very flexible sampling method which can be used
to generate random samples from intractable distributions or to reduce the Monte Carlo vari-
ance. It is frequently applied to rare event simulation. A typical application is the computation
of rare event probabilities. Already in the 1950s, importance sampling were used in rare event
applications in physics (Kahn 1950; Kahn and Marshall 1953). However, importance sampling is
much more powerful and by far not limited to the simulation of rare events. Generally speaking,
almost any Monte Carlo approximation can be improved significantly through the use of impor-
tance sampling. The basic idea of importance sampling is to generate samples from an auxiliary
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CHAPTER 1. INTRODUCTION

distribution which is known as proposal instead of from the target distribution. Subsequently,
the samples are weighted such that they approximate the target distribution. The main difficulty
of applying importance sampling in practice is the choice of a suitable proposal. This issue is
tackled in this work.

Most existing importance sampling methods are based on a parametric choice of the pro-
posal, that is the proposal is chosen from a parametrized family of distributions. In addition,
nonparametric importance sampling methods have been developed. They are based on non-
parametric approximations of the (optimal) proposal. Until now, nonparametric importance
sampling was merely a nice theoretical alternative to parametric importance sampling with no
practical applications. The reason for this in founded in the computational inefficiency of existing
nonparametric importance sampling techniques. In this dissertation, computationally efficient
nonparametric importance sampling algorithms which are suitable for practical application are
proposed and investigated.

A relevant application where (nonparametric) importance sampling can be effectively applied
is the pricing of path-dependent financial derivatives. There, Monte Carlo approximations of
complex high-dimensional integrals are required. In addition, the computational efficiency of
the method used is important because the evaluation of financial derivative prices is often time-
critical. Although parametric importance sampling methods already belong to the standard
toolbox in financial engineering, nonparametric importance sampling techniques have not been
applied until now. The evolution of a financial asset can be described through a stochastic
differential equation with a Brownian motion as driving process. Based on this model the price of
a European option can be approximated through a high-dimensional integral which depends on a
discretization of the stochastic differential equation. It is shown that the proposed nonparametric
importance sampling algorithms lead to massive efficiency gains for such kind of integration
problems.

In this work, particle filters and particle smoothers which belong to the class of sequential
Monte Carlo methods are of particular interest. Sequential Monte Carlo methods are Bayesian
simulation techniques that allow the approximation of the filtering and smoothing distributions
of general state-space models. Numerous applications which comply with the class of general
state-space models are readily available, for instance object tracking problems in engineering and
stochastic volatility estimation in finance. General state-space models often occur naturally as
discretizations of stochastic differential equations with hidden components. In contrast to the
traditional linear state-space models, general state-space models allow for nonlinear functions and
non-Gaussian noise distributions. Consequently, standard methods for filtering and smoothing
in (linear) state-space models such as the Kalman filter and the Kalman smoother can usually
not be applied.

An essential ingredient of the sequential Monte Carlo methods considered here is importance
sampling. It is required because direct sampling from the target distribution is impossible.
A goal is to develop more efficient particle filters and smoothers by employing nonparametric
importance sampling schemes and quasi-Monte Carlo techniques.

In this dissertation, two new applications of general state-space models and sequential Monte

2



1.2. OUTLINE OF THE RESULTS

Carlo methods, which are of great importance, are considered in detail. Both are hot topics in
their areas of research. The methods and models proposed in this work are original contributions
and they have not been used for these applications before. The first application is the on-line
estimation of spot cross-volatility for ultra high-frequency financial data. The spot cross-volatility
is the key quantity in risk management, portfolio optimization, and trading. The main problems
are the presence of so-called market microstructure noise and the non-synchronous trading times
of different securities. Particularly for the non-synchronous trading times there is a lack of
appropriate models. Our approach is different from existing approaches and it includes several
new modeling and estimation aspects. It is shown, in particular, that ultra high-frequency
financial data can be effectively treated in a nonlinear state-space framework.

The second application concerns the estimation of a general time series model which is also
newly proposed. It is a model for stationary time series with a specific oscillatory component
which can be written in state-space form. This model includes quasi-periodic oscillators with
a latent phase process in the background. Our approach is very general and allows the model-
ing and estimation of nonlinear phase transitions, time-varying amplitudes, baseline shifts, and
general oscillatory patterns. In particular, the estimation of the phase is of interest because it
is, for instance, required for the analysis of phase synchronization of coupled oscillators. Many
applications complying with our model exist in different fields such as physics, engineering, and
neuroscience. An interesting example which is briefly considered in this dissertation are elec-
trocardiogram (ECG) recordings measuring the electrical activity of the heart over time. For
ECG data existing methods for phase estimation such as the Hilbert transform are inappropriate
because of baseline shifts and a non-trigonometric oscillatory pattern which are present in the
data. Our method not only allows inference on the phase but also the nonparametric estimation
of the characteristic oscillatory pattern.

1.2 Outline of the Results

The results of this dissertation are presented in several research papers which are already pub-
lished or available as preprints. The following description summarizes the major contributions
of this work and indicates the corresponding research papers. Chapter 2 gives a literature review
which provides the foundation of the present work. Chapter 8 overviews the software packages
which were developed.

Chapter 3 (Neddermeyer 2009)
The variance reduction established by importance sampling strongly depends on the choice
of the importance sampling distribution. A good choice is often hard to achieve especially
for high-dimensional integration problems. It is shown that nonparametric estimation of the
optimal importance sampling distribution (known as nonparametric importance sampling)
is a reasonable alternative to parametric approaches. New nonparametric variants of both
the self-normalized and the unnormalized importance sampling estimator are proposed and
investigated. A common critique on nonparametric importance sampling is the increased

3
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computational burden compared with parametric methods. This problem is solved to a
large degree by utilizing the linear blend frequency polygon estimator instead of a kernel
estimator. Mean square error convergence properties are investigated theoretically leading
to recommendations for the efficient application of nonparametric importance sampling.
Particularly, it is shown that nonparametric importance sampling asymptotically attains
optimal importance sampling variance. As an application, the estimation of the distribution
of the queue length of a spam filter queueing system based on real data is considered.

Chapter 4 (Neddermeyer 2010a)
It is shown how nonparametric importance sampling can be effectively used for financial
derivative pricing. Standard nonparametric importance sampling is inefficient for this
task because the approximation of high-dimensional integrals are required. This issue is
solved by applying the procedure to a low-dimensional subspace, which is identified through
principal component analysis and the concept of the effective dimension. This leads to the
method of nonparametric partial importance sampling. The mean square error properties
of the algorithm are investigated and its asymptotic optimality is shown. Quasi-Monte
Carlo is used for further improvement of the method. It is demonstrated through path-
dependent and multi-asset option pricing problems that the algorithm leads to significant
efficiency gains compared with existing methods.

Chapter 5 (Neddermeyer 2010b)
An original particle filter and an original particle smoother which employ nonparametric
importance sampling are developed. It is shown that these algorithms provide a better
approximation of the filtering and smoothing distributions than standard methods. The
methods’ advantage is most distinct in severely nonlinear situations. In contrast to most
existing methods, they allow the use of quasi-Monte Carlo sampling. In addition, they
do not suffer from weight degeneration rendering unnecessary a resampling step. For
the estimation of model parameters an efficient on-line maximum likelihood estimation
technique is proposed which is also based on nonparametric approximations. All suggested
algorithms have almost linear complexity for low-dimensional state-spaces. This is an
advantage over standard smoothing and maximum likelihood procedures. Particularly, all
existing sequential Monte Carlo methods that incorporate quasi-Monte Carlo sampling have
quadratic complexity. As an application, stochastic volatility estimation for high-frequency
financial data is considered, which is of great importance in practice.

Chapter 6 (Dahlhaus and Neddermeyer 2010a, b)
We develop a new technique for the on-line estimation of both time-constant and time-
varying spot covariance matrices (spot cross-volatilities) in the presence of market mi-
crostructure noise. The algorithm works directly on the non-synchronous transaction data
and updates the covariance estimate immediately after the occurrence of a new transaction.
The transaction prices are considered as noisy observations of latent efficient log-price pro-
cesses. A new transaction time model for the efficient log-prices is proposed which models

4
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the evolution of different securities in individual transaction times. In addition, a new non-
linear market microstructure noise model is developed which reproduces the major stylized
facts of high-frequency data such as the price discreteness and the negative first-order au-
tocorrelation of the returns. Our model takes the form of a nonlinear state-space model
with non-synchronous states and observations. Based on this representation a new particle
filter is designed that allows the approximation of the filtering distributions of the efficient
log-prices. It is shown that the spot covariance matrix of the latent log-price processes
can be estimated as a parameter of the state-space model. For this purpose we propose a
sequential variant of the EM algorithm that uses the output of the particle filter. For the
univariate case we also propose an on-line bias correction and a method for adaptive step
size selection. The practical usefulness of our technique is verified through Monte Carlo
simulations and through an application to real transaction data.

Chapter 7 (Dahlhaus and Neddermeyer 2009)
We introduce a new model for stationary time series with a quasi-periodic component. The
aim is to model time series with a specific fluctuation pattern and an unobserved phase
process in the background. The model also includes a time-varying amplitude and baseline.
This allows the modeling of data occurring in physics, biology, life science, and many other
fields. The goals are to estimate the unobserved phase, amplitude, and baseline processes
as well as the fluctuation pattern. The model can be written as a nonlinear, non-Gaussian
state-space model treating the phase, the amplitude, and the baseline as latent Markov pro-
cesses. For the estimation, we suggest a Rao-Blackwellized particle smoother that combines
the Kalman smoother and an efficient sequential Monte Carlo smoother. For the estima-
tion of the fluctuation pattern, an original nonparametric EM algorithm is developed. The
proposed algorithms can be applied on-line, they are easy to implement and computation-
ally efficient. The method’s potential for practical applications is demonstrated through
simulations and an application to human electrocardiogram recordings.
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Chapter 2

Monte Carlo Methods and General
State-Space Models

This chapter introduces notation and provides a brief overview of major concepts of Monte Carlo
simulation which are relevant for the methods developed in the following chapters.

2.1 Monte Carlo Approximation

Monte Carlo simulation can be used to approximate a probability density function p on Rd or
the expectation

Ep[ϕ] = Iϕ =
∫
ϕ(x)p(x)dx

of some function ϕ : Rd → R with respect to p. Let’s assume N i.i.d. samples {xi}Ni=1 from p

are available. Then, an empirical estimate of density p is given by

p(x) ≈ 1
N

N∑
i=1

δxi(x)

with δ being the Dirac delta function. The integral Iϕ can be estimated through

ÎMC
ϕ =

1
N

N∑
i=1

ϕ(xi). (2.1)

Clearly, ÎMC
ϕ is a consistent, unbiased estimator of Iϕ. If the variance σ2 = Var[ϕ] is finite then

the standard central limit theorem gives

√
N(ÎMC

ϕ − Iϕ)⇒ N (0, σ2).

The central limit theorem implies that the convergence rate of (standard) Monte Carlo integration
is independent of the dimension of the integrand. This constitutes a major advantage of Monte
Carlo simulation-based methods compared with numerical integration techniques.

7
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In many applications, it is impossible or at least very difficult to generate i.i.d samples from p.
This is often the case when p is high-dimensional, not given in closed form, or as usual in Bayesian
settings when p is only known up to a constant. In Section 2.3, the concept of importance
sampling is described which allows the generation of weighted samples that approximate arbitrary
probability density functions.

To reduce the (Monte Carlo) variance of the estimator (2.1) one can apply variance reduction
techniques which are briefly considered in the following section.

2.2 Computational Efficiency and Variance Reduction Techniques

To make Monte Carlo algorithms comparable, it is useful to quantify the efficiency of a Monte
Carlo estimator. Let’s assume X is a random variable defined on a probability space (Ω,B,P)
and is used to estimate some quantity µ. The computational efficiency of the estimator X can
be defined through

CE[X] = (MSE[X]C[X])−1,

where MSE[X] denotes the mean square error of X and C[X] the average costs of computing one
realization of X (L’Ecuyer 1994). From this definition, one observes that efficiency improvements
can be achieved either by reducing the mean square error or the computational costs. The
computational costs can be reduced through more efficient algorithms or a faster implementation.
In particular, the random number generator used is a critical component because of its frequent
use in Monte Carlo simulation (see Section 2.6).

Methods which are applied to reduce the mean square error MSE[X] are known as variance
reduction techniques. Relevant methods are importance sampling, antithetic sampling, moment
matching, and control variates (Jäckel 2002; Glasserman 2004; Robert and Casella 2004). Most
of these techniques aim at improving a given set of samples which is used for Monte Carlo
integration. More precisely, the i.i.d. samples {xi}Ni=1 are transformed into non-i.i.d. samples in
a way such that the mean square error of the estimator (for instance ÎMC

ϕ in (2.1)) is reduced. In
contrast, importance sampling is based on a change of the distribution from which the samples
are drawn. The Monte Carlo methods proposed in this dissertation are based on importance
sampling. However, it is mentioned that most of the proposed methods could be (further)
improved by the additional use of other variance reduction techniques.

2.3 Importance Sampling

Importance sampling is the fundamental concept underlying the Monte Carlo methods developed
in this dissertation. It is a general sampling technique which can be used to approximate an
integral Iϕ. It is often applied if direct sampling from the distribution p is computationally
too demanding or intractable. But it is not limited to this purpose. Unless ϕ is constant,
importance sampling can often yield a massive reduction of the estimator’s variance, if applied
carefully. Formally, importance sampling is a change of measure. The expectation Ep[ϕ] is
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rewritten as
Eq[ϕw] =

∫
ϕ(x)w(x)q(x)dx,

where q is the probability density function of an importance sampling distribution (also known
as proposal) and w(x) = p(x)/q(x) is the Radon-Nikodym derivative of p with respect to q. The
proposal needs to be chosen so that its support includes the support of |ϕ|p or p, which imposes
a first constraint on q. Using importance sampling the integral Iϕ can be estimated by

ÎISϕ =
1
N

N∑
i=1

ϕ(xi)w(xi), (2.2)

where the samples {xi}Ni=1 are drawn from proposal q. Note, ÎISϕ is an unbiased estimator of Iϕ.
In Bayesian inference, it is often the case that either p or the proposal q (or both) are

only known up to some constant. In this case an alternative is the self-normalized importance
sampling estimator given by

ÎSISϕ =
∑N

i=1 ϕ(xi)w(xi)∑N
i=1w(xi)

. (2.3)

In contrast to ÎISϕ , ÎSISϕ is biased. The strong law of large numbers implies that both ÎISϕ and
ÎSISϕ converge almost surely to the expectation Iϕ if it is finite. However, this result is neither
of help for assessing the precision of the estimators for a finite set of samples nor for the rate of
convergence. In order to construct error bounds, it is desirable to have a central limit theorem at
hand. Under the assumptions that Iϕ and Varq[ϕw] are finite, a central limit theorem guaranties

√
N(ÎISϕ − Iϕ)⇒ N (0, σ2

IS),

where σ2
IS = Eq[ϕw − Iϕ]2 (Rubinstein 1981). The proposal which minimizes the variance σ2

IS is
given by

qISϕ (x) =
|ϕ(x)|p(x)∫
|ϕ(x)|p(x)dx

. (2.4)

qISϕ is called the optimal proposal. Remarkably, the importance sampling estimator based on the
optimal proposal has zero variance for functions ϕ with a definite sign. However, the optimal
proposal is unavailable in practice because of its unknown denominator. A central limit theorem
for the self-normalised importance sampling estimator ÎSISϕ can be established

√
N(ÎSISϕ − Iϕ)⇒ N (0, σ2

SIS) (2.5)

with limiting variance σ2
SIS = Eq[(ϕ− Iϕ)w]2 under the additional assumption that Varq[w] <∞

(Geweke 1989). The variance σ2
SIS is minimized by the proposal

qSISϕ (x) =
|ϕ(x)− Iϕ|p(x)∫
|ϕ(x)− Iϕ|p(x)dx

, (2.6)

provided that the median of ϕ with respect to p exists. The optimal proposals (2.4) and (2.6)
are merely of conceptual help, because the computation of their denominators is typically at
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least as difficult as the original integration problem. In practice, the objective is to find an
easy-to-sample density that approximates the optimal proposals. Traditionally, a proposal is
chosen from some parametric family of densities {qϕ,θ; θ ∈ Θ} that satisfy the assumptions of the
central limit theorems or some related conditions. Typically, it is demanded that the support of
qϕ,θ includes the support of |ϕ|p or |ϕ − Iϕ|p, respectively, and that the tails of q do not decay
faster than those of |ϕ|p. Many different density classes have been investigated in the literature
including multivariate Student t, mixture, and exponential family distributions (see for instance
Geweke 1989; Stadler and Roy 1993; Oh and Berger 1993). The parametrized choice of the
proposal can be adaptively revised during the importance sampling which is known as adaptive
importance sampling (Oh and Berger 1992; Kollman et al. 1999). Often expectation Iϕ needs to
be computed for many different functions ϕ leading to different optimal proposals. Consequently,
it is necessary to investigate the structure of any new ϕ in order to find a suitable parametric
family.

2.4 General State-Space Models and Sequential Monte Carlo

A general state-space model describes the joint evolution of a hidden state sequence and an
observation sequence. The states Xt, t = 0, 1, . . ., taking values in Rd constitute an unobserved
Markov process. The observations Yt, t = 1, 2, . . ., which take values in Rs, are conditionally
independent given the states. A general state-space model is fully specified by the transition
distributions and the observation distributions

Xt|Xt−1 ∼ p(xt|xt−1), (2.7)

Yt|Xt ∼ p(yt|xt). (2.8)

The initial state X0 is distributed according to some prior density p(x0). Alternatively, a general
state-space model can be specified through a state equation and an observation equation

Xt = ft(Xt−1, ηt), (2.9)

Yt = gt(Xt, εt), (2.10)

where ft, gt are (nonlinear) functions and ηt, εt are mutually and serially independent noise
variables.

Many stochastic processes with latent components occurring in engineering, physics, finance,
and other fields have a natural (general) state-space representation (see Doucet, de Freitas, and
Gordon 2001; Lin et al. 2005 and the references there). For instance, discretizations of stochastic
differential equations often lead directly to state-space models. A state-space model has a nice
representation in terms of a graphical model (see Figure 2.1) and it exhibits certain conditional
independence properties which can be easily verified, for instance, p(yt|x0:t,y1:t−1) = p(yt|xt)
and p(xt|x0:t−1,y1:t−1) = p(xt|xt−1). Note, the notation y1:t = {y1, . . . ,yt} is used throughout
this dissertation.

The objective is to compute the filtering distributions p(xt|y1:t) or smoothing distributions
p(xt|y1:T ) (where T > t) of the hidden state variable Xt. In addition, the posterior distributions
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Y1 · · · Yt−1 Yt Yt+1 · · ·x x x x
X0 −→ X1 −→ · · · −→ Xt−1 −→ Xt −→ Xt+1 −→ · · ·

Figure 2.1: Representation of a state-space model with observations {Yt}t≥1 and states {Xt}t≥0

as a directed acyclic graph.

p(x0:t|y1:t) are often of interest. In the case when the functions and noise variables in the state
equation (2.9) and observation equation (2.10) are linear and Gaussian, respectively, the well-
known Kalman filter and Kalman smoother represent the optimal procedures for computing these
distributions. For the non-Gaussian case, various methods have been suggested: The extended
Kalman filter, the unscented Kalman filter (Julier and Uhlmann 1997), grid-based filters, particle
filters (Gordon, Salmond, and Smith 1993; Kitagawa 1996), and particle smoothers (Godsill,
Doucet, and West 2004) are among these. See Arulampalam et al. (2002) or Neddermeyer
(2007) for an overview.

Now, particle filters and particle smoothers are considered which belong to the class of sequen-
tial Monte Carlo methods (Doucet, de Freitas, and Gordon 2001). They are based on the idea
to approximate the distributions of interest sequentially by sets of weighted samples {xit, ωit}Ni=1,
t ≥ 0, termed as particles. Typically, it is desired to compute the expectation Iϕt of some
function ϕt(xt) with respect to the filtering or smoothing distributions. Given particles which
approximate the filtering or smoothing distribution at time t, Iϕt can be estimated through

Îϕt =
N∑
i=1

ωitϕt(x
i
t).

The estimator Îϕt converges almost surely to Iϕt and achieves mean square error rate O(N−1)
under appropriate conditions on the general state-space model and the particle methods used
(Crisan 2001; Crisan and Doucet 2002; Godsill, Doucet, and West 2004). In addition, central
limit theorems have been proven (Del Moral and Guionnet 1999; Chopin 2004). Note that the
particles {xit, ωit}Ni=1 are not i.i.d. and, therefore, standard convergence results do not apply.

In the filtering setting, the particles are obtained sequentially in time by making use of the
relation

p(x0:t|y1:t) =
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

p(yt|y1:t−1)
(2.11)

∝ p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

which follows from the conditional independence properties of state-space models. Note, the
constant p(yt|y1:t−1) is unknown but does not depend on X0:t. The distributions p(yt|xt)
and p(xt|xt−1) are termed likelihood and transition prior, respectively. The iteration of the
basic particle filter is based on sequential importance sampling with proposal q(xt|xt−1,yt)
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and can be stated as follows (Gordon, Salmond, and Smith 1993): Assume weighted particles
{xi0:t−1, ω

i
t−1}Ni=1 approximating p(x0:t−1|y1:t−1) are given.

• For i = 1, . . . , N :

– Sample xit ∼ q(xt|xit−1,yt).

– Compute importance weights ω̆it ∝ ωit−1p(yt|xit)p(xit|xit−1)/q(xit|xit−1,yt).

• For i = 1, . . . , N :

– Normalize importance weights ωit = ω̆it/(
∑N

j=1 ω̆
j
t ).

The particles {xi0:t, ω
i
t}Ni=1 are obtained, which approximate the target distribution

p(x0:t|y1:t) ≈
N∑
i=1

ωitδxi0:t
(x0:t).

Through marginalization one obtains approximations of the filtering distribution

p(xt|y1:t) ≈
N∑
i=1

ωitδxit(xt)

and the smoothing distribution

p(xs|y1:t) ≈
N∑
i=1

ωitδxis(xs) (2.12)

with s < t. However, the approximation of the smoothing distribution is poor if s is not close to
t.

To understand the basic particle filter in more detail, let’s consider the unknown constant

p(yt|y1:t−1) =
∫
p(yt|xt)p(xt|y1:t−1)dxt.

It is easy to verify that the empirical mean of the unnormalized importance weights 1
N

∑N
j=1 ω̆

j
t ,

which is computed in the particle filter, precisely estimates this constant. Therefore, the basic
particle filter can be interpreted as a Monte Carlo method to compute the unknown integrals
p(yt|y1:t−1).

The choice of the proposal is crucial for the efficiency of particle filters. It is often hard to find
a suitable proposal which incorporates the observation yt. The trivial choice is q(xt|xt−1,yt) =
p(xt|xt−1). Particle filters which choose non-trivial proposals in an automatic fashion have been
suggested, e. g. the auxiliary particle filter (Pitt and Shephard 1999) and the unscented particle
filter (van der Merwe et al. 2000).

The basic particle filter and other particle filters suffer from weight degeneracy which means
that after a few time steps only a small number of particles have significant weight. Weight
degeneration is worsened when no good proposal is available. This problem is usually tackled
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{xit−1, 1/N}Ni=1 approx. p(xt−1|y1:t−1)

Prediction

{xit, 1/N}Ni=1 approx. p(xt|y1:t−1)

Updating

{xit, ωit}Ni=1 approx. p(xt|y1:t)

Resampling

{x̃it, 1/N}Ni=1 approx. p(xt|y1:t)

Figure 2.2: Outline of an iteration of the basic particle filter with proposal p(xt|xt−1). The
particles and target distributions are displayed as red circles and black lines, respectively.

by introducing a resampling step that maps the particle system {xi0:t, ω
i
t}Ni=1 onto an equally

weighted particle system {x̃i0:t, 1/N}Ni=1. The basic idea to duplicate the particles which have
large weights and to discard those with small weights. Resampling is carried out whenever the
effective sample size (Kong, Liu, and Wong 1994) defined through

ESS({ωit}Ni=1) =
1∑N

i=1(ωit)2
,

is below some threshold. Different resampling schemes are discussed by Douc, Cappé, and
Moulines (2005). The iteration of the basic particle filter with proposal p(xt|xt−1) and endowed
with resampling is visualized in Figure 2.2. Note that this choice of the proposal implies that
the particles {xit, ωit−1}Ni=1 approximate the prediction distribution p(xt|y1:t−1).

Alternatively to (2.12), smoothing particles which approximate the smoothing (posterior)
distribution p(x1:T |y1:T ) and its marginals p(xt|y1:T ) can be obtained by particle smoothing
algorithms. Different methods have been developed by Kitagawa (1996), Hürzeler and Künsch
(1998), Doucet, Godsill, and Andrieu (2000), Godsill, Doucet, and West (2004), Briers, Doucet,
and Maskell (2010), and others. The major drawback of most existing particle smoothers is their
quadratic complexity which make them computationally very expensive.

Although there is vast literature on sequential Monte Carlo methods, there are still issues
which have not been tackled sufficiently. Some of these issues which are treated and (at least
partly) solved in this dissertation include: there is still a lack of methods for the automatic
construction of good proposals (see Section 5.2); methods that allow the use of quasi-Monte
Carlo (see Section 5.5); particle smoothers with less than quadratic complexity (see Section 5.3);
and techniques for on-line estimation of parameters (see sections 2.5, 5.4, 6.3.3, 7.3.3, and 7.4).
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2.5 Expectation-Maximization Algorithm

In practice, the transition and observation distributions of state-space models usually depend on
an unknown parameter vector θ which needs to be estimated. A very useful approach is to apply
the Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) which is now
briefly discussed. Let’s assume the observations yt, t = 1, . . . , T , are given. The EM algorithm
computes the maximum likelihood estimator of θ by maximizing the likelihood pθ(y1:T ) through
an iterative application of an E-step and an M-step. In the E-step, the conditional expectation

Q(θ|θ(m)) = Eθ(m) [log pθ(X0:T ,y1:T )|y1:T ]

is computed, where θ(m) is the current parameter estimate. In the M-step, a new parameter
estimate θ(m+1) is obtained by maximizing Q(θ|θ(m)). From

log
pθ(m+1)(y1:T )
pθ(m)(y1:T )

= log Eθ(m)

[
pθ(m+1)(X0:T ,y1:T )
pθ(m)(X0:T ,y1:T )

∣∣∣∣y1:T

]
≥ Eθ(m) [log pθ(m+1)(X0:T ,y1:T )|y1:T ]−Eθ(m) [log pθ(m)(X0:T ,y1:T )|y1:T ]

≥ 0

it follows that the likelihood is never decreased by an iteration of the EM algorithm. Results on
the convergence properties of the EM algorithm are discussed by Wu (1983).

As a result of the conditional independence properties of general state-space modelsQ(θ|θ(m))
can be written as

Q(θ|θ(m)) = Eθ(m) [log pθ(X0)|y1:T ] +
T∑
t=1

Eθ(m) [log pθ(yt|Xt)|y1:T ]

+
T∑
t=2

Eθ(m) [log pθ(Xt|Xt−1)|y1:T ]. (2.13)

In practice, the E-step can usually not be performed analytically because the conditional expec-
tations in (2.13) depend on the unknown smoothing distributions. To obtain an approximation
of the conditional expectations particles which approximate the smoothing distributions can be
used. The clue is that it is often possible to carry out the M-step analytically. If this is the case, a
closed-from expression for the estimator θ(m+1) is obtained which solely depends on the smooth-
ing particles which are generated with respect to the old parameter estimate θ(m). An advanced
example is given in Section 7.3.3. Note that the EM algorithm is essentially an off-line method
because the conditional expectations in (2.13) depend on all observations up to time T . Variants
of the standard EM algorithm that can be applied on-line are proposed (see sections 6.3.3, 7.3.3,
and 7.4).

2.6 Pseudo- and Quasi-Random Number Generation

The generation of random numbers is of core importance for Monte Carlo simulations. Typically,
uniformly distributed random numbers are generated which are subsequently transformed such
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that they follow the desired distributions. If normal random numbers are required the inversion
method can be used. It works as follows. Let’s assume u is uniformly distributed on [0, 1). Then,
Φ−1(u) is distributed according to N (0, 1), where Φ is the cumulative distribution function of
N (0, 1). A problem is that even in the Gaussian case the inverse of the cumulative distribu-
tion function is not available in closed form. However, reliable approximations exist such as
the Beasley-Springer-Moro approximation (Moro 1995). An alternative method for the transfor-
mation of uniform random numbers into normal random numbers is the Box-Muller algorithm
(Box and Muller 1958) which does not require the (inverse) cumulative distribution function.
An extensive overview of the methods for the generation of random numbers is given in Devroye
(1986). A brief overview with the focus on Gaussian variates is provided in Glasserman (2004,
Chapter 2). For the simulations presented in this dissertation, the inversion method is used
because it is a monotonic transformation. Therefore, it can be straightforwardly combined with
quasi-Monte Carlo (see below).

The generation of (uniformly distributed) random numbers is usually done with pseudo-
random number generators. A famous pseudo-random number generator is the Mersenne Twister
19937 (Matsumoto and Nishimura 1998). The prefix pseudo indicates that pseudo-random num-
bers are not truly random but constructed by deterministic algorithms. However, they are
random enough in the sense that they pass statistical randomness and distribution tests.

Now the concept of quasi-Monte Carlo is briefly reviewed. Quasi-Monte Carlo is often used
to improve Monte Carlo estimators. In contrast to Monte Carlo, quasi-Monte Carlo integration
uses so-called low-discrepancy sequences instead of (pseudo-) random numbers. Low-discrepancy
numbers are constructed to fill the space more evenly. For a detailed description of the construc-
tion and properties of low-discrepancy sequences the reader is referred to Niederreiter (1992)
and the references given there. A nice overview is given in Glasserman (2004, Chapter 5).
Pseudo-random numbers from the Mersenne Twister 19937 and quasi-random numbers from the
two-dimensional Sobol sequence (Sobol 1967) are compared visually in Figure 2.3. It can be
observed that, in contrast to the quasi-random numbers, the pseudo-random numbers exhibit
cluster-like features.

The incentive to work with quasi-Monte Carlo is justified by its deterministic error bound of
order O(N−1 logdN), which follows from the well-known Koksma-Hlawka inequality (see Nieder-
reiter (1992)). This bound is merely of theoretical benefit because the computation of the in-
volved constants (including the Hardy-Krause variation of the integrand) is infeasible or at least
very difficult. However, it suggests that quasi-Monte Carlo should massively outperform Monte
Carlo in low-dimensional integration problems. The advantage of quasi-Monte Carlo diminishes
with increasing dimension. Nevertheless, it is well-known in the financial engineering literature,
that quasi-Monte Carlo may be effectively applied to high-dimensional problems (Paskov and
Traub 1995; Ninomiya and Tezuka 1996; Traub and Werschulz 1998). This stems from the fact
that many integration tasks in finance have rather low effective dimension compared with the
nominal dimension. In Chapter 4, this is discussed in more detail.

A drawback of quasi-Monte Carlo is the lack of randomness, which impedes the computation
of the mean square error for assessing the accuracy of the estimator. This issue can be resolved
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Figure 2.3: Comparison of pseudo-random numbers (left plot) with quasi-random numbers (right plot). 1023
two-dimensional variates from the Mersenne Twister 19937 and from the Sobol sequence are shown.

by randomizing the deterministic low-discrepancy sequence to achieve independent realizations
of the quasi-Monte Carlo estimator. Different approaches for randomizing low-discrepancy se-
quences are available including Owen’s scrambling (Owen 1995), random digit scrambling (Ma-
toušek 1998), or random shifts (see Ökten and Eastman (2004) for a survey). Priority is often
given to the random shift technique because of its straightforward implementation. It is based
on the idea to shift the entire sequence by a random vector v modulo one. v is drawn from the
uniform distribution on [0, 1)d. That is, a randomized sequence is obtained by substituting the
quasi-random vectors yi of the original low-discrepancy sequence by (yi + v) mod 1.
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Chapter 3

Nonparametric Importance Sampling

3.1 Introduction

In Section 2.3, the importance sampling method was described along with a discussion on the
use of parametric proposals. An alternative to the classical parametric importance sampling
approaches is nonparametric importance sampling. It is based on the idea to approximate the
optimal proposal (or another suitable proposal) nonparametrically. The advantage of nonpara-
metric methods is that, at least in low dimensions, one can expect to achieve a better approxima-
tion of the optimal proposal compared with parametric techniques. In addition, nonparametric
importance sampling can be applied in an automatic fashion because it does not require the
prior investigation of the structure of the integrand to set up a suitable parametric family of
proposals.

Nonparametric approximations based on kernel estimators for the construction of proposals
have been used before (West 1992, 1993; Givens and Raftery 1996; Kim, Roh, and Lee 2000).
Under restrictive conditions it has been shown that nonparametric (unnormalized) importance
sampling can not only reduce the variance of the estimator but may also improve its rate of
convergence of the mean square error toO(N−(d+8)/(d+4)) (Zhang 1996). Except for special cases,
parametric importance sampling strategies achieve the standard Monte Carlo rate of O(N−1),
because the optimal proposal is typically not included in the employed distribution family. There
is still a lack of theoretical results for nonparametric importance sampling, particularly for the
self-normalized importance sampler. Furthermore, computationally aspects, that critically effect
the performance of nonparametric importance sampling, have only been insufficiently treated in
the literature (Zlochin and Baram 2002).

The competitiveness of nonparametric importance sampling compared with parametric im-
portance sampling heavily relies on the computational efficiency of the employed nonparametric
estimator. In fact, until now nonparametric importance sampling is only of theoretical interest
because of the computational shortcomings of the kernel estimator. In this chapter, we propose
nonparametric importance sampling algorithms which are based on a multivariate frequency
polygon estimator. This nonparametric estimator is shown to be computationally superior to
kernel estimators. In addition, it allows the combination of nonparametric importance sampling
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with other variance reduction techniques (such as stratified sampling) which is another advan-
tage over kernel estimators. We investigate nonparametric importance sampling not only for
unnormalized importance sampling but also for self-normalized importance sampling, which has
not been done before. Under loose conditions on the integrand, the mean square error conver-
gence properties of the proposed algorithms are explored (sections 3.2 and 3.3). The theoretical
findings result in distinct suggestions for efficient application of nonparametric importance sam-
pling. The large potential of nonparametric importance sampling to reduce Monte Carlo variance
is verified empirically by means of different integration problems (sections 3.5 and 3.6). Over-
all, we provide strong evidence that our nonparametric importance sampling algorithms solve
well-known problems of existing nonparametric importance sampling techniques. This suggests
that nonparametric importance sampling is a promising alternative to parametric importance
sampling in practical applications.

3.2 A New Nonparametric Importance Sampling Algorithm

A nonparametric importance sampling algorithm based on a kernel density estimator, that ap-
proximates the analytically unavailable optimal proposal qISϕ , is considered in Zhang (1996).
Theoretical evidence of the usefulness of this approach has been established. In particular, it
was proved that nonparametric importance sampling may yield mean square error convergence
of order O(N−(d+8)/(d+4)) essentially under the very restrictive assumption that ϕp has compact
support on which ϕ is strictly positive. The theoretical results derived in this chapter require
much weaker assumptions. From a practical point of view a kernel density estimator is compu-
tationally too demanding. For the purpose of nonparametric importance sampling it does not
suffice that the employed nonparametric estimator provides a fast and accurate approximation of
the distribution of interest. It is also required to allow efficient sampling as well as fast evaluation
at arbitrary points. As a computationally more efficient alternative to the kernel estimator, it is
suggested that one uses a histogram estimator (Zhang 1996). The drawback of a histogram is its
slow convergence rate of O(N−2/(2+d)) compared with kernel estimators, which typically achieve
O(N−4/(4+d)). Here we propose the usage of a multivariate frequency polygon which is known
as linear blend frequency polygon (LBFP) (Terrell 1983). It is constructed by interpolation of
histogram bin midpoints. Though computationally only slightly more expensive than ordinary
histograms, it achieves the same convergence rate as standard kernel estimators. Consider a mul-
tivariate histogram estimator with bin height f̂Hk1,...,kd

for bin Bk1,...,kd =
∏d
i=1[tki−h/2, tki+h/2)

where h is the bin width and (tk1 , . . . , tkd) the bin mid-point. For x ∈
∏d
i=1[tki , tki+h) the LBFP

estimator is defined as

f̂(x) =
∑

j1,...,jd∈{0,1}

[
d∏
i=1

(
xi − tki

h

)ji (
1− xi − tki

h

)1−ji
]
f̂Hk1+j1,...,kd+jd

. (3.1)

It can be shown that f̂ integrates to one. A one-dimensional (linear blend) frequency polygon
and the underlying histogram are shown in Figure 3.1.
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h

Figure 3.1: A frequency polygon and the underlying histogram with bin width h.

Our nonparametric importance sampling algorithm consists of two steps. In the first step the
optimal proposal qISϕ given in (2.4) is estimated nonparametrically using samples drawn from a
trial distribution q0 and weighted according to the importance ratio qISϕ /q0. In the second step
an ordinary importance sampling is carried out, subject to the proposal estimated in the first
step. Before we can state the algorithm we need to introduce the following quantities. Let AM
be an increasing sequence of compact sets defined by AM = {x ∈ Rd : qISϕ (x) ≥ cM}, where
cM > 0 and cM → 0 as M goes to infinity. For any function g we denote the restriction of g
on AM by gM and we abbreviate qISM = qISϕM . Furthermore, the volume of AM is denoted by
VM . Note that, by definition, AM converges to the support of qISϕ . The theorems in this section
consider the following algorithm (NIS).

Algorithm 1: Nonparametric Importance Sampling (NIS)

Step 1: Proposal estimation

• For j = 1, . . . ,M : Sample x̃j ∼ q0.

• Obtain estimate q̂ISM (x) = f̂M (x)+δM
ωM+VM δM

1AM (x),
where ωM = 1/M

∑M
j=1 ω

j
M , ωjM = |ϕM (x̃j)|p(x̃j)q0(x̃j)−1, and

f̂M (x) =
1

Mhd

∑
j1,...,jd∈{0,1}

[
d∏
i=1

(
xi − tki

h

)ji (
1− xi − tki

h

)1−ji
]

×
M∑
j=1

ωjM1∏d
i=1[tki+ji−h/2,tki+ji+h/2)(x̃

j)

for x ∈
∏d
i=1[tki , tki + h).

Step 2: Importance Sampling

• For i = 1, . . . , N −M : Generate sample xi from proposal q̂ISM .

• Evaluate ÎNISϕM
= (N −M)−1

∑N−M
i=1 ϕM (xi)p(xi)q̂ISM (xi)−1.

The quantities AM , VM , and δM are required in the proofs of the following theorems, but
they can be omitted in practice.
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Assumption 1 Both ϕ and p have three continuous and square integrable derivatives on
supp(|ϕ|p), and |ϕ|p is bounded. Furthermore, it is assumed that

∫
(∇2|ϕ|p)4(|ϕ|p)−3 <∞

where ∇2|ϕ|p = ∂2|ϕ|p/∂x2
1 + . . .+ ∂2|ϕ|p/∂x2

d.

Assumption 2 E[|ϕ|pq−1
0 ]4 is finite on supp(|ϕ|p).

Assumption 3 As total sample size N → ∞, bin width h satisfies h → 0 and Mhd → ∞.
Additionally, we have δM > 0, VMδM = o(h2) and M3(VMδM )4 →∞.

Assumption 4a cM satisfies h8+(Mhd)−2

δM c
3
M

= o(h
4+(Mhd)−1

cM
) and h4+(Mhd)−1

cM
→ 0.

Assumption 5a cM satisfies (
∫
qISϕ 1{qISϕ <cM})

2 = o(M−1h4 + (M2hd)−1).

For fixed sample size M and conditional on the samples {x̃i}Mi=1, it is not hard to show that
ÎNISϕM

is an unbiased estimator with variance

Var[ÎNISϕM
] =

1
N −M

∫ (
ϕM (x)p(x)
q̂ISM (x)

− IϕM
)2

q̂ISM (x)dx. (3.2)

For the special case ϕ ≥ 0 we have qISM = ϕMpI
−1
ϕM

, and (3.2) can be rewritten as

I2
ϕM

N −M

∫
(q̂ISM (x)− qISM (x))2

q̂ISM (x)
dx. (3.3)

Under the aforementioned assumptions, we now prove that the variance (3.3) attains convergence
rate O(N−(d+8)/(d+4)), if bin width h is chosen optimally.

Theorem 3.1. Suppose that the assumptions 1 through 3, 4a, 5a hold, ϕ ≥ 0, and q = qISϕ . We
obtain

E[ÎNIS
ϕM
− Iϕ]2 =

I2
ϕ

N −M

{
h4H1 +

2d

3dMhd
H2

}
× (o(1) + 1)

and the optimal bin width

h∗ =
(
dH22d

4H13d

) 1
d+4

M−
1
d+4 ,

where

H1 =
49

2880

d∑
i=1

∫
(∂2
i q)

2

q
+

1
64

∑
i 6=j

∫
∂2
i q∂

2
j q

q
, H2 =

∫
q

q0
.

Proof. See Appendix A.1.
A direct implication of Theorem 3.1 is the following corollary.

Corollary 3.2. Under the assumptions of Theorem 3.1 and the further assumption that M/N →
λ (0 < λ < 1), and h = h∗ we yield

lim
N→∞

N
d+8
d+4 E

[
ÎNIS
ϕM
− Iϕ

]2
= λ−

4
d+4 (1− λ)−1 × I2

ϕD

and optimal proportion λ∗ = 4/(d+ 8) where

D =
{

(d/4)4/(d+4) + (d/4)−d/(d+4)
}[

Hd
1 (2d3−dH2)4

]1/(d+4)
.
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We remark that under much stronger assumptions, corresponding results for nonparametric
importance sampling based on kernel estimators were obtained in Zhang (1996).

We now move to a more general case. Assume ϕ ≥ 0 (and ϕ ≤ 0) does not hold. For
this case we show that the NIS algorithm achieves the minimum importance sampling variance
asymptotically. By substituting the optimal importance sampling distribution qISϕ into variance
σ2
IS and writing shorthand Iϕ =

∫
|ϕ(x)|p(x)dx, we see the optimal variance of the importance

sampling estimator to be I2
ϕ − I2

ϕ.

Assumption 4b cM guaranties h8+(Mhd)−2

δM c
5
M

= o(h
4+(Mhd)−1

c3M
) and h4+(Mhd)−1

c3M
→ 0.

Assumption 5b cM guaranties (
∫
qISϕ 1{qISϕ <cM})

2 = o(M−1h2 + (M2hd)−1).

Theorem 3.3. Suppose that the assumptions 1 through 3, 4b, 5b hold, ϕ does not have a definite
sign, and q = qISϕ . Then we obtain

E[ÎNIS
ϕM
− Iϕ]2 =

1
N −M

[
(I2
ϕ − I2

ϕ) + I2
ϕ

{
h2H1 +

2d

3dMhd
H2

}
× (1 + o(1))

]
and the optimal bin width

h∗∗ =
(
dH22d−1

H13d

) 1
d+2

M−
1
d+2 ,

where H1 = −
(∫

f2
ϕ
∇2q
8q2 +

∫
fϕ
∇2q
4q

)
, H2 =

(∫ q
q0
− 2

∫ fϕ
q0
−
∫ f2

ϕ

q0q

)
, and fϕ =

(
ϕp
Iϕ
− |ϕ|p

Iϕ

)
.

Proof. See Appendix A.4.
As a consequence of Theorem 3.3, the NIS algorithm does not lead to a mean square error

rate improvement for functions ϕ, which take positive and negative values. But if the optimal
bin width h∗∗ is used, we have

E[ÎNISϕM
− Iϕ]2 =

I
2
ϕ − I2

ϕ

N −M
+ o(N−1).

That is, the optimal importance sampling variance is achieved asymptotically. Unlike The-
orem 3.1, the optimal proportion λ cannot be computed analytically as a result of its de-
pendency on N . But theoretically, it can be computed as λ∗∗ = argminλG(N,h∗∗, λ) where
G = E[ÎNISϕM

− Iϕ]2. Clearly, λ∗∗ decreases in N . Note, that for the optimal asymptotic variance
to be achieved, it suffices that 0 < λ < 1.

Corollary 3.2 and Theorem 3.3 suggest that importance sampling-based Monte Carlo inte-
gration can be much more efficient for functions ϕ ≥ 0 (and ϕ ≤ 0) than for arbitrary functions.
This stems from the fact that for non-negative (non-positive) functions, the usage of the opti-
mal proposal leads to a zero variance estimator. By approximating the optimal proposal with
a consistent estimator it is therefore not surprising that the standard Monte Carlo rate can be
surmounted. Consequently, it should be reasonable to decompose ϕ into positive and negative
part, ϕ = ϕ+ − ϕ−, and to apply Algorithm 1 to ϕ+ and ϕ− separately. Since then, we can
expect to achieve the superior rate O(N−(d+8)/(d+4)). Note that the partitioning of ϕ needs
not to be done analytically. It may be carried out implicitly in Step 1 of the algorithm. This
approach, denoted by NIS+/-, is investigated in a simulation study in Section 3.5.

21



CHAPTER 3. NONPARAMETRIC IMPORTANCE SAMPLING

3.3 A New Nonparametric Self-Normalized Importance Sampling
Algorithm

Many problems in Bayesian inference can be written as the expectation of some function of
interest, ϕ, with respect to the posterior distribution p, which is only known up to some constant.
This leads to the evaluation of integrals

Ep[ϕ] =
∫
ϕ(x)p̃(x)dx∫
p̃(x)dx

,

where p̃ = αp with unknown constant α. Self-normalized importance sampling is a standard
approach for solving such problems. It is often suggested to choose the proposal close to the
posterior. But from the central limit theorem we know that one can do better by choosing it close
to the optimal proposal, which is proportional to |ϕ− Iϕ|p. Next, we introduce a nonparametric
self-normalized importance sampling algorithm (NSIS).

Analogous to the definition of AM we define ÃM = {x ∈ Rd : qSISϕ (x) ≥ c̃M}, where c̃M > 0
and c̃M → 0 as M goes to infinity. Its volume is denoted by ṼM . The optimal proposal qSISϕ is
defined in (2.6).

Algorithm 2: Nonparametric Self-Normalized Importance Sampling (NSIS)

Step 1: Proposal estimation

• For j = 1, . . . ,M : Sample x̃j ∼ q0.

• Obtain estimate q̂SISM (x) = f̂M (x)+δM
ωM+ṼM δM

1
ÃM

(x),

where ωM = 1/M
∑M

j=1 ω̃
j
M , ω̃jM = |ϕM (x̃j) − ĬϕM |p̃(x̃j)q0(x̃j)−1, f̂M (x) analogous to

Algorithm 1, and

ĬϕM =

∑M
j=1 ϕM (x̃j)p̃(x̃j)q0(x̃j)−1∑M

j=1 p̃(x̃j)q0(x̃j)−1
.

Step 2: Self-Normalized Importance Sampling

• For i = 1, . . . , N −M : Generate sample xi from proposal q̂SISM .

• Evaluate

ÎNSISϕM
=
∑N−M

i=1 ϕM (xi)w̃M (xi)∑N−M
i=1 w̃M (xi)

,

where w̃M (xi) = p̃(xi)q̂SISM (xi)−1.

Both the self-normalized importance sampling estimator (2.3) and the NSIS algorithm pro-
duce biased estimates. However, the estimates are asymptotically unbiased. Under the assump-
tions 1 through 3 (with p, |ϕ|, cM , VM replaced by p̃, |ϕ− Iϕ|, c̃M , ṼM ) it is easy to verify that,
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conditional on the samples {x̃i}Mi=1, the central limit theorem of Geweke (1989) holds for ÎNSISϕM

(2.5). The asymptotic variance of the central limit theorem can be written as

σ2
SIS = Ĩ2

ϕM

[
1 +

∫
(qSISM (x)− q̂SISM (x))2

q̂SISM (x)
dx
]

(3.4)

with ĨϕM =
∫
|ϕM (x) − IϕM |p(x)dx being the median of ϕ. Consequently, Ĩ2

ϕM
is the (asymp-

totically) optimal variance that can be achieved by self-normalized importance sampling. Unless
ϕ is constant, it is impossible to build up a zero variance estimator based on self-normalized
importance sampling. This renders it unnecessary to investigate separately the mean square
error convergence of NSIS for non-negative and arbitrary functions.

The structure of σ2
SIS is very similar to the structure of the variance in (3.3) but the weights

ω̃jM introduce inter-sample dependencies which make the reasoning in the proofs of Theorem 3.1
and Theorem 3.3 not directly applicable. However, similarly to Theorem 3.3, we can show that
NSIS attains optimal variance asymptotically for certain bin width h and proportion 0 < λ < 1.

Theorem 3.4. Suppose that the assumptions 1 through 3, 4a, 5a (with p, |ϕ|, cM , VM replaced
by p̃, |ϕ− Iϕ|, c̃M , ṼM ) hold, and q = qSIS

ϕ . Then we obtain

E[ÎNSIS
ϕM

− Iϕ]2 =
Ĩ2
ϕ

N −M

[
1 + h4H1 +

2d

3dMhd
H2

]
× (1 + o(1))

and the optimal bin width

h̃∗ =
(
dH22d

4H13d

) 1
d+4

M−
1
d+4 ,

where H1 and H2 are defined as in Theorem 3.1 (with qISϕ replaced by qSIS
ϕ ).

Proof. See Appendix A.5.
First, note that analogous to Theorem 3.3, there is no analytic solution for the optimal λ.

Second, the theorem implies that with NSIS, the mean square error rate cannot be improved.
Therefore, NSIS is (at least asymptotically) less efficient than NIS+/-. There is, consequently,
no reason to apply NSIS in cases where NIS+/- is applicable. However, this does not impair the
usefulness of NSIS in cases when normalization is required as a result of unknown constants.

3.4 Applying Nonparametric Importance Sampling

In this section we discuss what is required for implementing NIS/NSIS. First, one needs to take
care of the selection of q0, h, and λ. Second, an implementation of the LBFP estimator, which
allows the generation of samples, is required. Given these ingredients, the implementation of
Algorithm 1 and 2 is straightforward.
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3.4.1 Parameter Selection

q0 From a practical point of view, trial distribution q0 should be chosen such that its
support is close to the support of |ϕ|p or |ϕ− Iϕ|p, respectively, and such that it has
heavier tails than the corresponding optimal proposal. However, it is not required that
q0 emulates any structure of the optimal proposal. Obviously, the choice should also
comply with Assumption 2. Note that the expectations in the assumptions may not
exist if q0 is too close to the optimal proposals. In addition, it is important to choose
an easy-to-sample density. For low-dimensional problems, even a uniform distribution
may suffice.

h As the optimal bin width incorporates unknown quantities dependent on the optimal
proposal, it typically cannot be computed analytically. The unknown quantities can be
estimated using the plug-in method based on the samples of Step 1 of the algorithms,
as suggested in Zhang (1996). If the second derivative of the optimal proposal is
unknown, the plug-in method cannot be applied. In this case, a Gaussian reference
rule is an alternative.

λ Except for the case investigated in Theorem 3.1 and Corollary 3.2, where the optimal
proportion λ∗ is given by a beautifully easy expression only depending on the problem
dimension, it is not clear how to choose λ. However, from the mean square error
expressions in the theorems, we know that λ∗ (from Corollary 3.2) serves as an upper
bound. Empirical evidence suggests that λ should never exceed .25.

AM , δM In practical applications, the restriction of the estimator on a compact set AM can
be omitted because the induced bias can be made arbitrarily small and particularly
smaller than the desired precision of the integral value. Hence, the sequence cM does
not need to be defined. Sequence δM can also be skipped in practice as mentioned
earlier.

3.4.2 Implementing the LBFP Estimator

The implementation of the LBFP estimator f̂ should take into account efficient sampling and
evaluation. Given the multivariate histogram defined through bin heights f̂Hk1,...,kd

, the imple-
mentation of the evaluation of f̂ is simple (see (3.1)). We emphasize that for storing f̂ on a
computer, it suffices to store the underlying histogram. Sampling from a LBFP is more involved
than evaluation, and to the author’s knowledge this has not been discussed in the literature until
now. We propose to apply the inversion method. The crucial fact is that a LBFP can be written
as a product of (conditional) univariate frequency polygons

f̂(x) = f̂FP(x1)
d∏
i=2

f̂FP(xi|x1:i−1)

with {x1:i−1} = {x1, . . . , xi−1}. This representation suggests to produce draws from f̂ by sam-
pling iteratively from the univariate frequency polygons f̂FP using their inverse cumulative
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distribution functions. A frequency polygon is a convenient object because it is just a linear
interpolated univariate histogram (see Figure 3.1). Furthermore, we have

f̂FP(xi|x1:i−1) =
f̂(x1:i)

f̂(x1:i−1)
(3.5)

where f̂(x1:i) is a (marginalized) LBFP, i = 1, . . . , d. We will see later that the f̂FP(xi|x1:i−1) are
not required directly but the cumulative distribution functions F̂ (xi|x1:i−1). Because frequency
polygons are piecewise linear functions and as a result of relation (3.5), the latter are obtained
without difficulty provided that LBFPs f̂(x1:i) can be evaluated. Hence, it is required to calculate
the marginalized histograms underlying the LBFPs f̂(x1:i). These are specified through bins
Bk1,...,ki and bin heights f̂Hk1,...,ki

.
Let y = {y1, . . . , yd} ∈ [0, 1)d and yi ∈ [F̂ (tki |x1:i−1), F̂ (tki+1|x1:i−1)). We now describe how

the inverse cumulative distribution functions F̂−1(·|x1:i−1) of f̂FP(xi|x1:i−1) can be evaluated at
yi by making use of F̂ (xi|x1:i−1). It is easy to see that, for xi ∈ [tki , tki+1), f̂FP(xi|x1:i−1) is a
linear function with intercept α and slope β, where

α =
f̂(x1:i−1, tki)

f̂(x1:i−1)
and β =

1
h

[
f̂(x1:i−1, tki+1)

f̂(x1:i−1)
− α

]
.

Hence, F̂−1(yi|x1:i−1) is the solution of the quadratic equation

yi − F̂ (tki |x1:i−1) =
∫ z

tki

f̂FP(xi|x1:i−1)dxi = αz +
β

2
z2,

which is given by

F̂−1(yi|x1:i−1) =

−α
β + sgn(β)

√
α2

β2 − 2γ1−yi
β for β 6= 0,

[(γ2 − yi)tki + (yi − γ1)tki+1] /(γ2 − γ1) for β = 0,
(3.6)

where γ1 = F̂ (tki |x1:i−1) and γ2 = F̂ (tki+1|x1:i−1).

Summarizing, a sample xj from the LBFP f̂ is obtained through the following iteration. Let
yj be a sample from the uniform distribution on [0, 1)d. Then, for i = 1, . . . , d:

1. Compute the marginalized histogram associated with LBFP f̂(x1:i).

2. Calculate the cumulative distribution function F̂ (xi|xj1:i−1) (or F̂ (x1) for i = 1) at the
(marginal) bin mid points tki using (3.5).

3. Evaluate xji = F̂−1(yji |x
j
1:i−1) (or xj1 = F̂−1(yj1) for i = 1) using (3.6).

We remark that for generating N samples, Step 1 needs only to be carried out once because it
is independent of the particular sample xj . A C++ implementation of the LBFP estimator and
an R-package are available (see Section 8.2).
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3.4.3 Computational Remarks

Now the computational complexity of the LBFP is discussed. For h = h∗, it can be shown
that the complexity for generating N samples from a LBFP is of order O(2dd2N (d+5)/(d+4)) (see
Appendix A.6 for details). The complexity of evaluation is of lower order. Compared with crude
Monte Carlo, which has O(dN), sampling from a LBFP is only slightly more expensive for small
d. For kernel estimators, sampling and evaluation is of order O(dN2) (Zlochin and Baram 2002),
proving that the LBFP is computationally more efficient for all relevant d and N . Note, more
efficient sampling from kernel estimates is possible using regularization with whitening (see for
instance Musso, Oudjane, and Le Gland 2001). However, this can induce severe bias if the target
distribution is non-Gaussian.

Besides asymptotic complexity properties there are other computational aspects which are of
relevance in practice. With computer systems, the evaluation of functions such as exp and pow
is known to be much more expensive than standard arithmetic operations. Contrary to most
parametric importance sampling approaches, nonparametric importance sampling methods do
not require calls to those functions.

3.5 Simulations

We consider three toy examples to test our nonparametric procedures against (parametric) alter-
natives. The first two examples are designed to evaluate certain properties of the NIS algorithm
and to demonstrate the degraded performance of the NSIS algorithm. The third example is a
two-dimensional benchmark problem for self-normalized importance sampling.

A reasonable measure for the effect of a variance reduction technique is the relative efficiency.
It is defined as the ratio of the crude Monte Carlo mean square error to the mean square error
of the method of interest. In the case when both estimators are unbiased, the relative efficiency
is also known as variance reduction factor. The performance of the different algorithms will be
measured by relative efficiency and computation time. In all examples, the simulation is done
for sample sizes N = 1,000, N = 5,000, and N = 10,000. All computation were carried out
on a Dell Precision PWS390, Intel CPU 2.66GHz, and the algorithms are coded in C++. For
the details of the software see Chapter 8. For pseudo-random number generation we used the
Mersenne Twister 19937 (Matsumoto and Nishimura 1998). All computation times are reported
in milliseconds.

Example 1.

As our first example, consider a simple integrand that is to be integrated with respect to the
standard normal distribution of dimension d. The integrand is defined by ϕ(x) = x11[−1,1]d(x).
It takes positive and negative values on the d-dimensional unit cube. This allows the evaluation
of the strategy to apply Algorithm 1 separately to the positive and negative part of the integrand
(NIS+/-). In our simulation, d varies from 1 to 8. The trial distribution q0 is set to the uniform
distribution on [−1, 1]d, and the bin width h is chosen with the plug-in method. λ is set to
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Figure 3.2: Histograms underlying the LBFP estimates of the proposal densities for d = 2 (Example 1). The
plots correspond to NIS with N = 10,000 and N = 1 Mio. (upper plots), NIS+/- with N = 10,000 (middle plots),
and NIS+/- with N = 1 Mio. (lower plots).

0.15 and to the optimal value 4/(d + 8) for NIS and NIS+/-, respectively. In order to obtain
comparable results, for NIS+/- the total sample size is equally spread to the integration of the
positive and negative parts. In Figure 3.2, the estimated proposal densities for d = 2 are plotted.

Table 3.1 shows the relative efficiency (RE) and computation times for crude Monte Carlo
(MC), NIS, NIS+/-, and ordinary importance sampling (IS) (subject to the uniform distribution
on [−1, 1]d). The relative efficiency values for NIS+/- report large variance reduction, which is
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N = 1,000 N = 5,000 N = 10,000
Method d RE Time (millisec.) RE Time (millisec.) RE Time (millisec.)

MC 1 1.0 1 1.0 9 1.0 16
IS 1 1.5 3 1.8 16 1.6 31
NIS 1 1.6 13 1.8 28 1.7 50
NIS+/- 1 25.0 13 57.3 24 51.3 40
MC 4 1.0 4 1.0 20 1.0 45
IS 4 5.0 7 5.2 38 4.2 80
NIS 4 3.1 112 4.0 234 3.8 408
NIS+/- 4 9.1 105 26.0 195 22.0 326
MC 8 1.0 13 1.0 60 1.0 121
IS 8 18.6 20 23.0 104 26.3 209
NIS 8 7.8 600 17.4 1,460 5.4 4,020
NIS+/- 8 7.5 572 30.2 1,290 37.4 2,170

Table 3.1: Simulation results for Example 1. All figures are computed/averaged over 100 independent runs.

present at least up to dimension d = 8. Even if we take computation time into account, we find
significant efficiency improvement: For instance, for d = 4 and N = 10,000 we obtain a relative
efficiency value of 22 whereas the computation time surplus factor is about 7. Also, note that
importance sampling becomes more favorable as d increases. To investigate the computationally
efficiency, we plotted mean square error × computation time (Figure 3.3). Contrary to relative
efficiency, smaller values are favourable. We can observe that the critical dimension, up to
which NIS+/- is computationally more efficient than the other methods, strongly depends on
the magnitude of N . Although for N = 1,000 one would prefer NIS+/- to importance sampling
only for d = 1, for N = 10,000 one would do so up to d = 4. Finally, the convergence of
the NIS variance towards the optimal importance sampling variance is examined. The minimum
importance sampling variance I2

ϕ−I2
ϕ is approximately 0.098 and 0.0099 for d = 1, 4, respectively.

In Figure 3.4, the estimated variances of NIS×(1 − λ)N are plotted for 100 ≤ N ≤ 2,500. The
plots indicate rapid convergence to the optimal values. For comparison, the variance of crude
Monte Carlo ×N is roughly 0.198 (for d = 1) and 0.063 (for d = 4).

Example 2.

This example is concerned with the pricing of a call option within the Black-Scholes model.
Given interest rate r and volatility σ, the evolution of a stock is described by the stochastic
differential equation

dS(t)/S(t) = rdt+ σdW (t)

with standard Brownian motion W . The solution of the stochastic differential equation is given
by

S(T ) = S(0) exp[(r − 0.5σ2)T + σ
√
TZ],

where Z is a standard normal random variable. At time T , the call option pays the amount
(S(T )−K)+, depending on the strike level K. The price of the option at time 0 is given by the
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Figure 3.3: Computational efficiency (measured by mean square error × computation time) of crude Monte
Carlo (thin solid line), importance sampling (dashed line), and NIS+/- (thick solid line) for N = 1,000 (left), and
N = 10,000 (right) for Example 1. All figures are computed/averaged over 100 independent runs.
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Figure 3.4: Convergence of NIS variance towards optimal importance sampling variance for d = 1 (left) and
d = 4 (right) for Example 1. All figures are computed over 10,000 independent runs.

expectation E[F (Z)] of the discounted payoff F (Z) = exp(−rT )(S(T )−K)+. That is, the pricing
problem reduces to the integration of a payoff function with respect to the standard normal
distribution. Parametric importance sampling is a standard variance reduction technique for
option pricing. A shifted standard normal distribution is often used as proposal. This approach
is known as the change of drift technique. In our simple model, the (asymptotically) optimal
drift is given by argmaxz logF (z) − 0.5z2 (Glasserman, Heidelberger, and Shahabuddin 1999).
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Figure 3.5: Relative efficiency of CDIS (dotted line), NIS (thick solid line), NSIS (dashed line), and crude Monte
Carlo (thin solid line) for Example 2 (strike K1 (left), strike K2 (right)) and 1,000 ≤ N ≤ 10,000. All figures are
computed over 1,000 independent runs.

We state the simulation results for the optimal change-of-drift importance sampling (CDIS) as
parametric benchmark.

For our simulation, we set S(0) = 100, r = 0.1, σ = 0.2, T = 1. The option price is estimated
for the strikes K1 = 90 and K2 = 130. For K1 the option is said to be in the money (K1 < S(0))
where for K2 it is called out-of-the money (K2 > S(0)). The latter case is particularly suited
for importance sampling techniques, as crude Monte Carlo fails to sample satisfactorily into the
domain that affects the option price. q0 is set to the uniform distribution on [−5, 5] and bin
width h is selected using the plug-in method. λ is set to the optimal value 4/9 for NIS and to
0.05 for NSIS.

The efficiency improvements of the importance sampling methods relative to crude Monte
Carlo integration are shown in Figure 3.5. Whereas parametric importance sampling methods
and NSIS yield constant reduction factors, NIS realizes increasing relative efficiency which coin-
cides with its theoretical superior convergence rate. Particularly for the out-of-the money sce-
nario, NIS achieves massive variance reduction. Establishing only slight variance reduction, NSIS
is worst. This confirms our recommendation to avoid NSIS where NIS is applicable. Figure 3.6
shows the proposals used in the simulation for strike K2. The optimal importance sampling
proposal is single-moded and can be reasonably approximated by some Gaussian distribution.
This explains the satisfying performance of importance sampling methods based on Gaussian
proposals reported in the literature. However, NIS significantly outperforms CDIS. For more
complex payoffs implying multimodal optimal proposals, the advantage of NIS should be even
more pronounced (compare Chapter 4). Computation times for different sample sizes are re-
ported in Table 3.2. First, notice that CDIS is much more expensive than crude Monte Carlo
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Figure 3.6: Standard normal distribution (dashed line), optimally shifted normal distribution (dotted line),
linear blend frequency polygon estimates (N = 5,000) of the optimal proposals qSIS

ϕ (thin solid line), and qISϕ
(thick solid line) for Example 2.

N = 1,000 N = 5,000 N = 10,000
Method Time (ms) Time (ms) Time (ms)

MC 1.8 9.0 17.8
CDIS 6.0 27.8 54.5
NIS 13.7 29.2 48.9
NSIS 14.1 31.1 52.1

Table 3.2: CPU times for the option pricing example (Example 2) averaged over 1,000 independent runs.

as a result of the massive evaluation of the exp function while computing the likelihood ratios.
Second, the computational burden of NIS increases sublinearly for our sample sizes. This is a
result of the initial computation for the LBFP, which is roughly independent of N . Remarkably,
NIS is computationally cheaper than CDIS for N = 10,000.

Example 3.

The last example is a two-dimensional benchmark integration problem discussed by Givens and
Raftery (1996). The density of interest p(x1, x2) is given by

X1 ∼ U [−1, 4]

and
X2|X1 ∼ N (|X1|, 0.09a2).

Let’s investigate the cases a = 0.75 and a = 3.5. This kind of density also occurs in work on
whale modeling (Raftery, Givens, and Zeh 1995). Small values for a imply a strong nonlinear
dependency between X1 and X2. As a becomes larger, the dependency vanishes in favor of a
more diffuse relationship (see Figure 3.7). Following Givens and Raftery (1996), we use this
scenario for comparing self-normalized importance sampling algorithms.
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Figure 3.7: Example 3: The upper plots are for the case a = 0.75 and the lower plots for a = 3.5. From left to
right we have density p(x1, x2) and the optimal proposals qSIS

ϕ1 and qSIS
ϕ2 .

NSIS is tested against self-normalized importance sampling with a proposal equal to the
uniform distribution on [−4, 7] × [−4, 8]. The same uniform distribution is used as trial dis-
tribution q0 in the NSIS algorithm. We compute the expectation of functions ϕ1(x1, x2) = x2

and ϕ2(x1, x2) = 1{x1<0}(x1, x2). The parameters of NSIS are set as follows: λ = 0.2 and
h = 1.54, 1.224, 1.09 (for N = 1,250, 5,000, 10,000, respectively). For comparison, we also state
the results of two other nonparametric algorithms, namely GAIS and LAIS (West 1992; Givens
and Raftery 1996). GAIS and LAIS are adaptive nonparametric importance sampling methods,
that estimate distribution p with adaptive envelope refinements based on nonparametric kernel
estimators. Density p and the optimal self-normalized importance sampling proposals are shown
in Figure 3.7. They are rather far away from the initial guess q0. Table 3.3 shows the relative
efficiency of NSIS, GAIS, and LAIS with respect to self-normalized importance sampling for the
two functions and the two different values of a. The figures for GAIS and LAIS were reprocessed
from Givens and Raftery (1996). For N = 5,000, NSIS is clearly the method of choice.

3.6 Application: Spam Filter

We investigate spam filter queueing systems with real data. Queueing system are an active
field of research (see, for instance, Lazowska 1984; Asmussen 2003). Numerous applications are
readily available. The most basic queueing system, denoted briefly by M|M|1, consists of a single
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ϕ1 ϕ2

Method N a = 0.75 a = 3.5 a = 0.75 a = 3.5

NSIS 1,250 1.59 2.89 0.58 3.82
GAIS 1,250 0.02 3.45 0.30 1.11
LAIS 1,250 0.75 0.99 1.92 0.58
NSIS 5,000 8.08 4.50 9.21 5.09
GAIS 5,000 5.88 0.67 0.96 0.36
LAIS 5,000 3.45 1.30 2.63 0.42
NSIS 10,000 9.38 4.75 11.06 5.77

Table 3.3: Relative efficiency of NSIS, GAIS, and LAIS compared with self-normalized importance sampling
for Example 3. Figures for NSIS are computed over 1,000 independent runs. Figures for GAIS and LAIS are
reprocessed from Table 2 in Givens and Raftery (1996).

server and a single waiting room (with infinite capacity). The interarrival and service times of
the jobs are exponential distributed with parameter µ and ν, respectively. This model is well
understood theoretically, but it is usually too restrictive for real world applications. In our case,
e-mail arrives at a spam filter that decides whether a particular e-mail is spam. The data consist
of interarrival times ti (in seconds) and service times si (in milliseconds) for n = 22, 248 e-mails.
The data were recorded between 8 AM and 8 PM on eight business days in September 2008 and
are available on request. (We are grateful to J. Kunkel for providing the data.) The system
that produced the data is a single-queue, dual-server system (i.e. the e-mails are processed by
two parallel spam filter threads). In the following, we investigate both the single- and the dual-
server cases. The empirical distributions of the interarrival and service times are displayed in
Figure 3.8. We can observe that the former is well approximated by an exponential distribution
with parameter µ̂ = n/

∑n
i=1 ti = 0.074 (which is the maximum likelihood estimate). In contrast,

for the service time distribution it is hard to find a parametric model. Therefore, we use a LBFP
estimate. (Note that a kernel estimator is inappropriate because heavy sampling from the service
time distribution is required.) The bin width was selected with the Gaussian reference rule for
frequency polygons ĥ = 2.15σ̂n−1/5 (Terrell and Scott 1985), with σ̂ being the standard deviation
of the service times si.

We are interested in the probability that the queue length reaches a certain level K. This
is a typical problem in queueing systems, with rare events being of particular interest. Impor-
tance sampling is a standard variance reduction technique for this task (see for instance Glynn
and Iglehart 1989; Glasserman and Kou 1995; Kim, Roh, and Lee 2000). For estimating the
probabilities, we simulate N busy periods and count the number of periods in which level K was
reached. A busy period begins when an e-mail has arrived in an empty system and ends when
either the system is empty again or the queue length has reached level K. Let ωi be the sample
path of the queue length in the ith busy period resulting from samples xji and yki drawn from
the interarrival distribution pt and service time distribution ps, respectively. In the dual-server
case, yki represent the service times of both servers. The crude Monte Carlo estimate of the
probability of interest is ÎK = 1/N

∑N
i=1 ϕ(ωi), where ϕ(ωi) = 1 if ωi reaches K, and ϕ(ωi) = 0

otherwise. Assume the number of e-mails that have been served during the ith busy period is
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Figure 3.8: Spam filter application: Histogram of the empirical interarrival times and exponential distribution
with parameter 0.074 (left). Linear blend frequency polygon estimates of the service time distribution (solid line)
and of the optimal proposal qopt

ϕ for the single server (dotted line) and dual server (dashed line) case for K = 10

(right).

Li. Then there must be K + Li − 1 arrivals during this period for the queue to reach level K.
(Note, a busy period starts with one job in the queue.) Hence, if importance sampling is used,
the estimator becomes

ÎISK =
1
N

N∑
i=1

ϕ(ωi)l(ωi)

with likelihood ratio

l(ωi) =
K+Li−1∏
j=1

pt(x
j
i )

qt(x
j
i )

Li∏
k=1

ps(yki )
qs(yki )

and proposals qt, qs. Here, nonparametric importance sampling works as follows: We simulate
M busy periods by sampling interarrival times x̃ji and service times ỹki from trial distribu-
tions q0,t and q0,s, respectively, and obtain sample paths ω̃i, i = 1, . . . ,M . Let I = {i ∈
{1, . . . ,M}, ϕ(ω̃i) = 1}. For estimation of the optimal proposals, we use those times x̃ji , ỹ

k
i , with

i ∈ I. The interarrival time proposal q̂t is estimated parametrically by using an exponential
distribution with parameter

µ̂ =
∑
i∈I

K+L̃i−1∑
j=1

wji /
∑
i∈I

K+L̃i−1∑
j=1

wji x̃
j
i (3.7)

where wji = pt(x̃
j
i )/q0,t(x̃

j
i ). The service time proposal q̂s is estimated nonparametrically (as in

Algorithm 1) based on samples ỹki and weights wki = ps(ỹki )/q0,s(ỹki ), i ∈ I.
For our simulation, let’s set N = 1 Mio. , λ = 0.15, and the trial distribution q0,s equal

to the LBFP estimate of the service distribution. For M|M|1 systems it is well known that
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K = 5 K = 10 K = 20 K = 30
Method RE CV RE CV RE CV RE CV

MC 1.0 0.001 1.0 0.14 - - - -
IS 0.3 0.01 19.8 0.03 - 0.08 - 0.24
NIS 0.2 0.02 58.4 0.02 - 0.03 - 0.09

Table 3.4: Results for the spam filter queueing application (single-server case). Relative efficiency (RE) and
coefficient of variation (CV) for the estimates of the probability that the queue length reaches level K. All figures
are computed over 100 independent runs with 1 Mio. busy periods in each run.

K = 4 K = 6 K = 8
Method RE CV RE CV RE CV

MC 1.0 0.007 1.0 0.044 1.0 0.34
IS 3.7 0.003 7.0 0.017 53.5 0.046
NIS 2.6 0.004 24.3 0.009 184.6 0.025

Table 3.5: Results for the spam filter queueing application (dual-server case). Relative efficiency (RE) and
coefficient of variation (CV) for the estimates of the probability that the queue length reaches level K. All figures
are computed over 100 independent runs with 1 Mio. busy periods in each run.

(asymptotically) optimal proposals are achieved by swapping the parameters µ and ν. For this
reason, q0,t is set to the exponential distribution with parameter ν̂ = n/

∑n
i=1 si = 0.147. As

the parametric importance sampling benchmark, we consider the importance sampling scheme
that carries out importance sampling for the interarrival times only. It uses the exponential
distribution with parameter µ̂ defined in (3.7) as the proposal.
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Figure 3.9: Results for spam filter application: Estimated probabilities of the queue length to reach level K for
single server (heavy line) and dual server (dashed line) case.

We compare crude Monte Carlo, importance sampling, and nonparametric importance sam-
pling in terms of the coefficient of variation (CV) and relative efficiency (RE). The former is
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defined as the ratio of the standard deviation to the mean of the probability estimate. Note
that for the coefficient of variation, smaller values are favourable. The results are summarized
in Tables 3.4 and 3.5.

Where no value is given, the crude Monte Carlo estimator was zero. We find that when the
event of interest becomes rarer, nonparametric importance sampling becomes more favorable.
This holds for both the single- and dual-server cases. The nonparametric importance sampling
probability estimates for different queue levels K are shown in Figure 3.9. No error bounds are
given because they are very small for the large number of busy periods used.

Real-world queueing systems typically involve complicated distributions, such as the service
time distribution in this case. Therefore, it is often impossible to set up parametric impor-
tance sampling schemes for simulation. Here, nonparametric importance sampling has a distinct
advantage.
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Chapter 4

Nonparametric Partial Importance
Sampling for Financial Derivative
Pricing

4.1 Introduction

In the last decade, the complexity of the pricing models used for evaluation of financial products
has experienced a distinct increase. As a consequence of this development, pure numerical
methods became more and more inadequate for the high-dimensional integration tasks. Often,
Monte Carlo integration is the only feasible method. This stems from the fact that the Monte
Carlo convergence rate is independent of the problem dimension. However, crude Monte Carlo is
often inefficient for practical sample sizes. Raising computing power and increasing the sample
size is no solution. The need of efficient Monte Carlo methods is apparent.

Here, we consider importance sampling as a strategy to improve Monte Carlo simulation
based derivative pricing. A key feature of importance sampling is that it can force the samples
into the domain which is most important to the integrand. Intuitively, this is particularly useful
for derivatives that rely on rare events. A deep out-of-the money option is an obvious example
for rare event dependency. Crude Monte Carlo would only rarely produce samples which lead
to non-zero payouts and, consequently, the Monte Carlo variance would be large. However,
importance sampling is by far not limited to rare event cases. Compared with other variance
reduction techniques (see Section 2.2) the usage of importance sampling is more involved, because
the selection of a suitable proposal is generally difficult. But the additional effort is justified by
the large potential of importance sampling to reduce the Monte Carlo variance.

Importance sampling has been successfully applied to derivative pricing based on Gaussian
proposals. That is, the proposal was chosen from some class of Gaussian distributions. An im-
portant approach is based on a mean shift, which can be obtained through saddle point approx-
imation (Glasserman, Heidelberger, and Shahabuddin 1999), adaptive stochastic optimization
(Vazquez-Abad and Dufresne 1998; Su and Fu 2000, 2002), or least squares (Capriotti 2008).
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This approach is also known as the “change-of-drift technique”. In addition, Gaussian mixture
distributions have been utilized for approximating the optimal proposal (Avramidis 2002). Sum-
marizing, existing approaches are based on parametric importance sampling, that is the proposal
is chosen from a certain class of distributions. For complex payouts it is hard to set up a class
which contains a distribution that approximates the optimal proposal reasonably well.

We propose the usage of nonparametric importance sampling for derivative pricing. As shown
in the preceding chapter, nonparametric importance sampling algorithms can be successfully
applied to low-dimensional integration problems. However, high-dimensional integration tasks
have not been considered until now. As a result of the curse of dimensionality and computational
limitations nonparametric importance sampling cannot be applied directly to high-dimensional
derivative pricing. The basic idea of our approach is to restrict nonparametric importance
sampling to those coordinates which are of most importance to the integration problem. This
approach can be justified by the concept of the effective dimension. To reduce the effective
dimension and to identify the most relevant coordinates, principal component analysis is applied.

The advantage of nonparametric importance sampling compared with parametric importance
sampling is its close approximation of the optimal proposal. We prove that the variance reduction
factor of our nonparametric method increases with sample size converging to the – in some
sense – optimal value. Parametric importance sampling methods achieve constant variance
reduction factors. It is shown through simulations that the proposed algorithm is computationally
more efficient than parametric importance sampling for well-known benchmark option pricing
problems. In the case of low effective dimension, the algorithm not only outperforms in terms
of mean square error but also in terms of computational costs. In other words, it is not only
more accurate but also computationally cheaper. Nonparametric importance sampling and most
parametric importance sampling methods share the property that they can be combined with
other variance reduction techniques. This is demonstrated through the use of quasi-Monte Carlo
(compare Section 2.6).

4.2 Derivative Pricing and Importance Sampling

Let’s describe the evolution of the underlying asset through a stochastic differential equation of
the form

dS(t) = rS(t) dt+ σ(S(t))S(t)dW (t), (4.1)

where W (t) is a standard Brownian motion; r and σ are the risk-free interest rate and the
volatility, respectively. Within this model, evaluating the price of a European option with payout
function CK(S), strike level K, and expiry T means computing

E[exp(−rT )CK(S)], (4.2)

where the expectation is taken with respect to the risk neutral measure. Except of special cases,
there is no explicit solution for stochastic differential equations like (4.1). Therefore, it is required
to migrate to some discretization S̃tk of the process S(t), which is defined on a discrete-time grid
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0 = t0 < t1 < · · · < td = T . The first-order Euler discretization scheme yields

S̃tk+1
= S̃tk + rS̃tk(tk+1 − tk) + σ(S̃tk)S̃tk

√
tk+1 − tkZtk (4.3)

with standard normal innovations Ztk . In the following, we focus on an equally-spaced time
grid, that is ti − ti−1 = ∆t = const. Based on this discretization, the option price (4.2) can be
approximated through the integral

Iϕ =
∫

Rd
ϕ(x)p(x)dx,

where ϕ(x) = exp(−rT )CK(S̃(x)). p denotes the density of the multivariate Gaussian distribu-
tion N (0, Id) with Id being the identity matrix of dimension d. By writing S̃(x), it is meant that
a trajectory of S̃tk is built up based on the innovations x = (x1, . . . , xd)T . To keep the discretiza-
tion bias small, it is required to choose d considerably large which leads to a high-dimensional
integration problem. Observe that we are precisely in the setting of sections 2.1 and 2.3. That
is, the crude Monte Carlo estimator and the importance sampling estimator of the option price
Iϕ are given by (2.1) and (2.2), respectively. In addition, the optimal proposal qISϕ is given by
(2.4).

4.3 Nonparametric Partial Importance Sampling

In this section, nonparametric partial importance sampling (NPIS) is introduced as a general-
ization of the nonparametric importance sampling algorithm discussed in Section 3.2.

Nonparametric importance sampling is a two-stage procedure. In the first stage, the optimal
proposal is estimated nonparametrically based on samples drawn from a trial distribution q0.
In the second stage, this nonparametric density estimate is used as proposal for importance
sampling. We pick up this approach, but instead of approximating the optimal proposal in the
entire space, we focus on the optimal proposal in a certain subspace. That is, the nonparametric
importance sampling procedure is restricted to a low-dimensional subproblem in order to avoid
the curse of dimensionality. We decompose x = (xu,x−u), where u ⊆ {1, 2, . . . , d}, xu = {xi; i ∈
u}, and x−u = {xi; i ∈ {1, 2, . . . , d} \ u}. The cardinality of u is denoted by |u|. Let’s consider
the marginalized optimal proposal obtained through integration with respect to x−u. It is given
by

q̆ISϕ (xu) =
∫

Rd−|u|
qISϕ (x)dx−u.

Subspace u is chosen such that it covers those coordinates which are most important to the
integrand (see Section 4.4). To limit the computational burden of the nonparametric method,
u will be considerably small in practice (1 ≤ |u| ≤ 3). In the nonparametric partial importance
sampling algorithm (NPIS) which is stated below q̆ISϕ is estimated nonparametrically.
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Algorithm: Nonparametric Partial Importance Sampling (NPIS)

Stage 1: Nonparametric estimation of the marginalized optimal proposal

• Select subset u, bin width h, trial distribution q0, and sample sizes M and N .

• For j = 1, . . . ,M : Generate sample x̃j ∼ q0.

• Obtain nonparametric estimate q̂ISϕ of marginalized optimal proposal q̆ISϕ

q̂ISϕ (xu) =
f̂(xu)

1
M

∑M
j=1 ω

j
,

where ωj = |ϕ(x̃j)|p(x̃j)q0(x̃j)−1 and

f̂(xu) =
1
M

∑
j1,...,j|u|∈{0,1}

[∏
i∈u

(
xi − tki

h

)ji (
1− xi − tki

h

)1−ji
]

×
M∑
j=1

ωj1∏
i∈u[tki+ji−h/2,tki+ji+h/2)(x̃

j)

for xu ∈
∏
i∈u[tki , tki + h).

Stage 2: Partial Importance Sampling

• For i = 1, . . . , N : Generate samples xiu ∼ q̂ISϕ (xu) and xi−u ∼ p(x−u).

• Evaluate

ÎNPISϕ =
1
N

N∑
i=1

ϕ(xi)p(xiu)q̂ISϕ (xiu)−1.

The following theorem investigates the mean square error convergence properties of the NPIS
algorithm to obtain the optimal value for bin width h.

Theorem 4.1. Suppose that the assumptions given in Appendix A.7 hold, ϕ ≥ 0, and p(x) =
p(xu)p(x−u). We denote q̆ = q̆ISϕ . Then, we obtain for ÎNPIS

ϕM
(as defined in Appendix A.7)

E[ÎNPIS
ϕM

− Iϕ]2 =
1
N

[∫
ν(x)2p(x−u)

q̆(xu)
dx + I2

ϕ

{
h4H1 +

2|u|

3|u|Mh|u|
H2

}
× (1 + o(1))

]
(4.4)

and the optimal bin width

hopt =

(
|u|H22|u|

4H13|u|

) 1
4+|u|

M
− 1

4+|u| ,

where

H1 =
49

2, 880

∑
i∈u

∫
(∂2
i q̆)

2

q̆
+

1
64

∑
i,j∈u
i6=j

∫
∂2
i q̆∂

2
j q̆

q̆
, H2 =

∫ (qISϕ )2

q̆ q0
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and

ν(x) = ϕ(x)p(xu)−
∫
ϕ(x)p(x)dx−u.

Proof. See Appendix A.7.
The left and right term in the brackets in (4.4) can be interpreted as the variance caused by

the components x−u and xu, respectively. Note, subset u is chosen such that the left term is
small compared with the right one. The expression in braces quantifies the mean square error of
the nonparametric estimate, which depends on both q̆ISϕ and trial distribution q0. For h = hopt

and M/N → λ ∈ (0, 1) (M,N →∞) the theorem implies

E[ÎNPISϕM
− Iϕ]2 =

1
N

∫
ν(x)2p(x−u)

q̆(xu)
dx +O(N−(8+|u|)/(4+|u|)).

Hence, the variance caused by xu is of lower order. In other words, the optimal variance (for
partial importance sampling on coordinates u) is achieved asymptotically. As a consequence,
compared with crude Monte Carlo and parametric importance sampling techniques, NPIS is
expected to yield increasing efficiency as the sample size grows. Furthermore, if |u| = d the
mean square error converges as fast as O(N−(8+d)/(4+d)) which is precisely the case considered
in Section 3.2. This is a massive improvement compared with the standard Monte Carlo rate
O(N−1) for d which is small. Note, the results of this section also hold for distributions p other
than the standard normal distribution.

Here, NPIS is only investigated for non-negative integrands. However, by decomposing the
payout function C = C+−C−, NPIS can also be applied to financial derivatives that have both
positive and negative payouts.

4.4 Effective Dimension

The NPIS algorithm is based on the restriction on specific coordinates xu, where in high-
dimensional integration problems |u| � d. This approach can be justified by the concept of
the effective dimension. It is well known, that many integration problems in financial engi-
neering, despite having a large nominal dimension, are low-dimensional in terms of the effective
dimension. For a rigorous definition of the effective dimension, let’s consider the functional anal-
ysis of variance (ANOVA) decomposition. Suppose

∫
ϕ(x)2p(x)dx < ∞ and p(x) =

∏d
i=1 p(xi)

is a product density. Then, ϕ can be written as a sum of 2d orthogonal functions

ϕ(x) =
∑

u⊆{1,2,...,d}

ϕu(xu),

where the ANOVA functions ϕu are given recursively by

ϕu(xu) =
∫

Rd−|u|
ϕ(x)p(x−u)dx−u −

∑
v⊂u

ϕv(xv).

41



CHAPTER 4. NONPARAMETRIC PARTIAL IMPORTANCE SAMPLING FOR
FINANCIAL DERIVATIVE PRICING

Now, the fraction of the variance σ2 = Varp[ϕ], which is explained by certain lower-dimensional
ANOVA functions, is considered. For this purpose, the variance of ϕu is defined by

σ2
u =

∫
Rd
ϕu(xu)2p(x)dx,

where σ2
∅ = 0. As the ANOVA decomposition is orthogonal, one has σ2 =

∑
u σ

2
u. Hence,

Γu =
∑

v⊆u σ
2
v can be interpreted as the contribution of xu to the total variance of ϕ. For a

more detailed description of the ANOVA decomposition see, for instance, Takemura (1983) and
Owen (1992). The following definition of the effective dimension is due to Caflisch, Morokoff,
and Owen (1997).

Definition 4.2. The effective dimension (in the truncation sense) is the cardinality of the small-
est subset u such that Γu ≥ γσ2 with 0 < γ < 1.

The threshold γ is chosen close to one. In our framework, we found γ = 0.9 reasonable.
The effective dimension does not only allow to identify those coordinates which most effect the
integral value but it also indicates how many coordinates are required to cover a certain amount
of the variance.

Now, a Monte Carlo procedure that allows one to determine the effective dimension of a given
problem is described (Wang and Fang 2003). It can be shown that the cumulated variances satisfy

Γu =
∫

R2d−|u|
ϕ(x)ϕ(xu,y−u)p(x)p(y)dxdy−u − I2

ϕ,

where both x and y are vectors in Rd. Hence, the effective dimension can be computed based
on the approximations

Γ̂u =
1
l

l∑
i=1

ϕ(xi)ϕ(xiu,y
i
−u)− Î2

ϕ (i = 1, 2, . . . , d)

and

σ̂2(ϕ) =
1
l

l∑
i=1

ϕ(xi)2 − Î2
ϕ

with Îϕ = 1/l
∑
ϕ(xi). The samples x1, x2, . . . , xl, y1, y2, . . . , yl are drawn from p.

4.5 Gaussian Models

The purpose of this section is to show how NPIS can be applied to models that are based on
the integration with respect to high-dimensional Gaussian distributions. As mentioned earlier,
NPIS is inefficient as a result of the curse of dimensionality unless the effective dimension (and
thus |u|) is small. For typical financial integration problems it is generally not advisable to apply
NPIS with |u| larger than 3, unless the number of paths to be sampled is huge or the domain of
interest is very small (rare event case).
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Suppose the task is to integrate with respect to N (0,Σ). Now, principal component analysis
(PCA) is applied to transform the problem. The (positive-definite) covariance matrix Σ is written
as

Σ = V ΛV T ,

with Λ = diag(λ1, λ2, . . . , λd) and eigenvalues λi. The columns of V are the corresponding
unit-length eigenvectors. Thus, one has

V Λ1/2Z ∼ N (0,Σ)

for Z ∼ N (0, Id). Without loss of generality, it is assumed that the eigenvalues (and the corre-
sponding eigenvectors) are sorted so that λ1 ≥ λ2 ≥ · · · ≥ λd. The PCA construction of samples
from N (0,Σ) is optimal in the sense that it provides an optimal lower-dimensional approxima-
tion (in the mean square error sense) to the random variable of interest. This means that the
first k components of Z explain as much as possible of the total variance. More precisely, it can
be shown that they explain the fraction (λ1 + λ2 + . . .+ λk)/(λ1 + λ2 + . . .+ λd) of it.

The option pricing problem introduced in Section 4.2 leads to the construction of discretized
Brownian motion paths based on samples from the multivariate Gaussian distribution. Paths are
most easily built up through the random walk construction guided by (4.3). In this construction
each component “counts roughly the same” rendering the restriction on a lower-dimensional
subspace and hence the application of NPIS impractical. Note, the integral Iϕ can be rewritten as
Iϕ =

∫
ϕ̃(x)pN (0,Σ)(x)dx, where Σ is the covariance matrix of the discretized Brownian motion

with entries Σij = min{ti, tj}. This suggests that PCA can be used to reduce the effective
dimension. The PCA construction of discretized Brownian motion paths has a continuous limit
known as Karhunen-Loève expansion of Brownian motion:

W (t) =
∞∑
i=1

√
λiψi(t)Zi, 0 ≤ t ≤ 1,

where ψi(t) =
√

2 sin{(i−0.5)πt}, λi = {(i−0.5)π}−2, and Zi ∼ N (0, 1) (Adler 1990). Based on
the expression for λi, it is easily shown that Zi explains the fraction 2λi of the path’s variability
(which is approximately 81%, 9%, 3% for i = 1, 2, 3, respectively). These values are not only of
asymptotic nature but also hold for a small number of discretization steps (with slight deviations).
This astonishing result claims that very few PCA components suffice to determine most of the
path’s variation no matter how long or detailed it is. Particularly, the first PCA component plays
a dominant role and has a nice geometrical interpretation. Roughly speaking, it determines the
path’s direction in the path space. This is visualized in Figure 4.1.

Another common method for the reduction of the effective dimension (of a discretized Brow-
nian motion) is the Brownian Bridge technique. In this work, the focus is on PCA because
of its optimality property. However, it is remarked that in certain situations Brownian Bridge
techniques are superior to PCA. This may particularly be the case if the payout function only
depends on the terminal value of the underlying. It is mentioned that NPIS can also be combined
with Brownian Bridge techniques.
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Figure 4.1: Discretized Brownian motion paths: first PCA component varies whereas other components are
fixed to random values (left); first PCA component is fixed and other components vary randomly (right).

4.6 Quasi-Monte Carlo Integration

Quasi-Monte Carlo is often used to (further) improve Monte Carlo methods for derivative pric-
ing. In contrast to Monte Carlo, quasi-Monte Carlo integration uses so-called low-discrepancy
sequences instead of pseudo random numbers (see Section 2.6). From the well-known Koksma-
Hlawka inequality (see Niederreiter (1992) is follows that quasi-Monte Carlo can massively out-
perform Monte Carlo in low-dimensional integration problems. In high dimensions the advantage
of quasi-Monte Carlo should disappear. However, it has been shown that quasi-Monte Carlo may
be effectively applied to high-dimensional problems in financial engineering (Paskov and Traub
1995; Ninomiya and Tezuka 1996; Traub and Werschulz 1998). This stems from the fact men-
tioned earlier that many problems in finance have rather low effective dimension compared with
the nominal dimension. As the convergence properties of quasi-Monte Carlo become worse in
higher dimensions, it is important to assign the first coordinates to the most relevant dimensions
of the integration problem. In our setting, the relevant coordinates are those contained in u.

For the computation of the mean square error of a quasi-Monte Carlo based estimator it is
required to randomize the deterministic low-discrepancy sequence used. In the simulations, we
apply the random shift technique which is explained in Section 2.6.

4.7 Comparison with Parametric Importance Sampling

Until now, the application of importance sampling in finance was limited to parametric impor-
tance sampling. In particular, Gaussian or mixtures of Gaussian distributions have been applied.
The variance of a parametric importance sampling estimator with proposal qθ (and parameter
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θ ∈ Θ) can be written as
σ2
IS
N

=
I2
ϕ

N

{∫
Rd

qISϕ (x)2

qθ(x)
dx− 1

}
, (4.5)

where σ2
IS is defined as in Section 2.3. First, this suggests that, in contrast to NPIS, the variance

reduction factor is constant because all terms are O(N−1). Second, the variance is critically
affected by the tails of qθ. Using Gaussian proposals, it is often hard to approximate the tails
of qISϕ reasonably well. There lies a distinct advantage of nonparametric importance sampling
methods. Most parametric importance sampling approaches aim at choosing θ so that (4.5) is
minimized. We now discuss a variant of the least-squares importance sampling (LSIS) algorithm
(Capriotti 2008) which is directly comparable to NPIS. It is based on the Gaussian proposal
N (µ, Id) with parameter µ ∈ Rd. Similar to NPIS, it is a two-stage algorithm. In the first
stage, based on M samples from p, a least-squares problem is solved to estimate the optimal
drift change µ. (The variance can also be adjusted through this procedure.) However, as the
problem dimension grows the estimate of µ becomes unreliable. The variant of this algorithm
which is suggested here applies LSIS to the coordinates xu, that are determined through principal
component analysis and the effective dimension (analogous to NPIS). This makes the LSIS and
the NPIS directly comparable. In Section 4.9, NPIS and this variant of LSIS are tested against
each other through simulations.

Besides the superior convergence properties, NPIS has a computational advantage over para-
metric importance sampling which is of relevance in practice. For computing the importance
sampling weights, parametric importance sampling typically needs to evaluate the exp function
which is very expensive. Through the use of the LBFP estimator, these evaluations are reduced
in the NPIS algorithm. This leads to a relevant reduction of the computational costs (compare
Section 4.9).

Finally, we remark that combinations of parametric importance sampling and NPIS are
possible. For instance, while applying NPIS to xu one can carry out parametric importance
sampling on the remaining coordinates x−u.

4.8 Implementation of the Algorithm

In this section, the details of practical implementation of the proposed NPIS algorithm are
discussed. First, an overview of the required ingredients for the implementation is given.

Overview

u The subset u is chosen according to the effective dimension (with γ = 0.9), which can
be computed with the algorithm given in Section 4.4. If PCA is used, the first few
principal components are selected.

q0 The choice of the trial distribution should be guided by the following two criteria: First,
it should allow for efficient sampling and evaluation. Second, the marginal distributions
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of the coordinates contained in u should be overdispersed (heavy-tailed) compared with
the standard normal distribution. An all-purpose trial distribution, which we found to
work well in practice, is given below. Alternatively, one can use a parametric choice
tailored to the specific integration problem or one can simply use the (multivariate)
standard normal distribution. The latter is often not a good choice because of the
importance of the tails of the proposal.

h A Gaussian reference rule for the bin width h can be computed in Stage 1 of the
algorithm (the details are given below).

M For the simulations, we used M = max{256, 0.25N}. In the special case when |u| = d

an optimal value for the proportion M/N can be derived (Theorem 3.1 in Section 3.2).

LBFP The details of the implementation of the LBFP estimator can be found in Section 3.4.2.
A C++ implementation of the LBFP as well as the R-package lbfp are available (see
Section 8.2).

We emphasize that, in contrast to most parametric importance sampling algorithms, all
parameters are adjusted automatically, such that no trial-and-error parameter selection and no
analytical computation are necessary in practice.

Trial Distribution

As trial distribution we propose a simple product density. It is composed of a uniform distribution
on [−ρM , ρM ]|u| and the multivariate Gaussian distribution p(x−u):

q0(x) = p(x−u)× 1
(2ρM )|u|

∏
i∈u

1[−ρM ,ρM ](xi),

where ρM is the (1 + (1 − ε)1/M )/2-quantile of N (0, 1). ε > 0 is very small, say ε = 10−4.
Consequently, P(max1≤i≤M |Zi| > ρM ) = ε holds for standard normal distributed Zi. This
ensures that the bias caused by the bounded support of the uniform distribution is very small.
In addition, the uniform distribution guaranties that the space of xu is well explored even for a
small sample size.

Practical Bin Width Selection

The expression for hopt given in Theorem 4.1 is intractable analytically because of the unknown
constants H1 and H2. The plug-in method suggested in Zhang (1996) also seems unsuitable
for our integration problem as derivatives of the integrand are required. We propose to apply
a Gaussian approximation of H1 and H2. Suppose q̆ISϕ is the density of a centered multivariate
Gaussian distribution with covariance matrix diag(σ2

1, σ
2
2, . . . , σ

2
|u|). Under this assumption, it

can be shown that
H1 =

98
2, 880

∑
i∈u

σ−4
i . (4.6)
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For the constant H2 the mean of qISϕ plays the dominant role. Therefore, it is assumed that qISϕ
is the density of N ((µ1, µ2, . . . , µd)T , Id). If the trial distribution is chosen as explained above,
one yields

H2 ≈ ρ|u|M exp[
∑
i/∈u

µ2
i ]. (4.7)

In the algorithm, the expressions in (4.6) and (4.7) can be approximated based on the sam-
ples x̃1, . . . , x̃M . This follows from the fact, that the samples x̃j weighted with ωj/

∑M
k=1 ω

k

approximate qISϕ .

4.9 Simulation Results

Different European option pricing scenarios are considered to compare the proposed algorithms
(NPIS and the combination of NPIS and quasi-Monte Carlo (QNPIS)) with existing methods
(crude Monte Carlo (MC), quasi-Monte Carlo (QMC), LSIS, and the combination of LSIS and
quasi-Monte Carlo (QLSIS)). The performance of the algorithms is measured through the vari-
ance reduction factors (computed with respect to crude Monte Carlo) and the relative compu-
tational efficiency (RCE). The relative computational efficiency is defined as the ratio of the
computational efficiency (defined in Section 2.2) of the method of interest to the computational
efficiency of crude Monte Carlo. The computational costs are measured in seconds. All sim-
ulations are done for different sample sizes N in order to demonstrate the increasing variance
reduction factors of NPIS.

Examples 1 through 3 consider different single- and multi-asset options within the standard
Black-Scholes model. There, the price of an asset S at time t is given by

S(t) = S(0) exp[(r − 0.5σ2)t+ σ
√
tZ]

with standard normal random variable Z. The simulations are based on the following setting:
S(0) = 100, σ = 0.3, r = 0.05, and T = 1. In Example 4, the pricing of a cap within the CIR
model is investigated to show the effectiveness of NPIS/QNPIS in a square-root diffusion model.
For all algorithms, apart from crude Monte Carlo, the PCA path construction is used. The
parameters u, q0, and h are chosen according to the description in the preceding section. Note,
Theorem 1 does not apply to quasi-Monte Carlo sampling. We found empirically that QNPIS
requires a larger bin width. In the simulations, 3hopt is used. For LSIS and NPIS, M is set as
suggested in the preceding section whereas for QNPIS and QLSISM = 1024 is used throughout.
The least squares estimates required in LSIS/QLSIS were computed with ten iterations of the
Levenberg-Marquardt method (Press et al. 1992, pp. 683-688).

The computations were carried out on a Dell Precision T3400, Intel CPU 2.83GHz. All
algorithms were coded in C++ (see Chapter 8 for more details). The Mersenne Twister 19937
(Matsumoto and Nishimura 1998) and the Sobol sequence (Sobol 1967) were used for pseudo-
and quasi-random number generation, respectively. The Sobol sequence is randomized by the
random shift technique.
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Figure 4.2: Standard normal distribution (dotted line), optimal proposal for a straddle option within the Black-
Scholes model (dashed line), and an LBFP estimate of the optimal proposal (solid line). Model parameters:
S(0) = 100, σ = 0.3, r = 0.05, T = 1, and K = 100.

Example 1. Straddle Option

The payout function of a straddle option is given by

CK(S) = (S(T )−K)+ + (K − S(T ))+.

In the Black-Scholes world the pricing of a straddle option is a one-dimensional integration
problem with multi-modal optimal proposal. Gaussian proposals (such as drift changes) are
severely inefficient for multi-modal payouts (Capriotti 2008). The optimal proposal and an
LBFP estimate generated in the NPIS algorithm are shown in Figure 4.2. The LBFP estimate
closely approximates the optimal proposal. To account for the bimodality, we used 2hopt as bin
width in the QNPIS algorithm. However, 3hopt gives only slightly worse results. The simulation
results for the strikes K = 100 and K = 110 are reported in Table 4.1. First notice, that NPIS
significantly outperforms LSIS because of the better approximation of the optimal proposal.
Second, the variance reduction factors for NPIS increase with sample size which agrees with
Theorem 1. Third, the combination of NPIS and quasi-Monte Carlo leads to massive efficiency
gains. Even after adjusting for the execution times the gains are enormous (see values for the
RCE). Note, the increasing variance reduction factors for QLSIS and QNPIS are a result of the
quasi-Monte Carlo sampling.

Example 2. Asian Options

An arithmetic Asian call with payout function

CK(S) =

(
1
d

d∑
i=1

S(ti)−K

)+
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Parameters VR (RCE)

N K QMC LSIS NPIS QLSIS QNPIS
210 100 224 (380) 1.3 (0.4) 9 (0.9) 1,064 (127) 2.3 ×105 (8,469)

110 253 (548) 1 (0.4) 6 (0.8) 964 (150) 3.2 ×105 (1.5 ×104)
211 100 264 (557) 1.3 (0.5) 13 (1.7) 1,361 (384) 2.6 ×105 (2.1 ×104)

110 290 (532) 1 (0.3) 8 (1) 1,092 (291) 3.1 ×105 (2.4 ×104)
212 100 460 (941) 1.3 (0.4) 17 (2.2) 2,209 (1,006) 6.8 ×105 (8.6 ×104)

110 505 (953) 1 (0.3) 11 (1.3) 2,201 (965) 7.4 ×105 (8.7 ×104)

Table 4.1: The table reports the variance reduction (VR) factors and the relative computational efficiency
(RCE) for a straddle option within the Black-Scholes model. Model parameters: S(0) = 100, σ = 0.3, r = 0.05,
T = 1, and |u| = d = 1. All values are computed based on 1,000 independent runs.

is investigated. The optimal proposal is unimodal. This integration problem is well suited for
NPIS/QNPIS because its effective dimension is one. The strikes K = 100, 130, and 175 are
considered. For strike K = 175 the option price is approximately 0.018 (for d =16) representing
a rare event option pricing framework (which is still of practical interest).

Table 4.2 shows the results for d = 16 and d = 64 discretization steps. The results of the
Gaussian importance sampling algorithm (GIS) based on saddle point approximation (Glasser-
man, Heidelberger, and Shahabuddin 1999) are also reported. We emphasize that the variance
reduction and the relative computational efficiency increase with both strike level K and the
sample size. The variance reduction factors of GIS and LSIS are roughly constant. This coin-
cides with the theoretical results. Particularly in the rare event cases, massive efficiency gains are
achieved and NPIS/QNPIS improve significantly over their parametric competitors. In addition,
the values for the relative computational efficiency establish that NPIS and QNPIS are com-
putationally much more efficient than parametric importance sampling strategies. In the table,
missing values indicate that the trial stage sometimes failed to generate paths with positive pay-
outs. To explain the result’s dependency on the strike level, the marginalized optimal proposal
(of the first PCA component) for different strikes were plotted (Figure 4.3). One can observe
that both the mean and the variance of the marginalized optimal proposals change with K.
As a result of the shrinking variance (and the increasing skewness) of the marginalized optimal
proposals, importance sampling approaches based on pure drift changes become worse (relatively
to NPIS/QNPIS) as K increases.

Table 4.3 gives results for the case when the execution time is fixed such as in real-time
applications. The sample sizes were chosen so that all algorithms needed approximately the
same time for execution. The values suggest that the variance of NPIS is roughly ten times
smaller than those of existing importance sampling techniques.

In Table 4.4, the values for an Asian option with a knock-out feature are shown. The option
will pay nothing if the arithmetic average exceeds the knock-out level K̃. The payout function
is given by

CK(S) =

(
1
d

d∑
i=1

S(ti)−K

)+

1{ 1
d

∑d
i=1 S(ti)<K̃}.
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Figure 4.3: Standard normal distribution (dotted line), marginalized optimal proposal (of first principal com-
ponent) for an Asian option with strike K = 60 (thin solid line), K = 100 (dashed line), and K = 140 (thick solid
line). Model parameters: S(0) = 100, σ = 0.3, r = 0.05, T = 1, and d = 16.

The evaluation of this option is a difficult task because the relevant domain is very narrow. The
strike K = 140 and the knock-out levels K̃ = 150 and K̃ = 170 are considered. The EDs are
two and one for K̃ = 150 and K̃ = 170, respectively. Both LSIS and NPIS have problems to
generate paths with positive payouts in the trial stage (which is reflected in the missing values
in Table 4.4). Again, QNPIS significantly improves over QLSIS.

Finally, simulations for an Asian straddle option that pays

CK(S) = (
1
d

d∑
i=1

S(ti)−K)+ + (K − 1
d

d∑
i=1

S(ti))+

are discussed. As for the standard straddle option, NPIS provides efficiency gains compared with
LSIS (see Table 4.5). Although, the variance reduction factors and the relative computational
efficiency of QNPIS are large, they are much smaller than those obtained for the standard straddle
option.

Example 3. Multi-Asset Options

In this example, multi-asset options are considered. Suppose one deals with s assets that satisfy

Si(t) = Si(0) exp[(r − 0.5σ2)t+ σ
√
tZi] i = 1, . . . , s,

where the correlation matrix of Z1, . . . , Zs is denoted by Σ. To keep the setting simple, Si(0) =
100 and corr(Zi, Zj) = 0.3 for i, j = 1, . . . , s, i 6= j is assumed. The effective dimension is reduced
by applying PCA to the correlation matrix. We investigate two different payout structures. First,
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Parameters VR (RCE)

N d K ED QMC GIS LSIS NPIS QLSIS QNPIS
210 16 100 1 139 (139) 10 (3) 9 (2) 21 (11) 1,427 (113) 859 (187)

140 1 17 (17) 55 (17) 50 (10) 200 (102) 4,778 (375) 5,462 (1,193)
175 1 2 (2) 683 (202) - (-) 3,809 (1,941) 4.3 ×104 (3,326) 1.1 ×105 (2.5 ×104)

64 100 1 145 (144) 8 (3) 8 (2) 20 (11) 1,409 (108) 909 (224)
140 1 16 (16) 61 (19) 53 (10) 245 (138) 5,679 (434) 7,428 (1,828)
175 1 2 (2) 902 (280) - (-) 4,403 (2,501) 5.8 ×104 (4,506) 1.0 ×105 (2.5 ×104)

211 16 100 1 171 (173) 9 (3) 9 (2) 28 (14) 1,535 (226) 908 (322)
140 1 21 (22) 57 (17) 52 (10) 285 (146) 5,647 (823) 6,443 (2,267)
175 1 3 (3) 680 (204) - (-) 5,161 (2,646) 4.5 ×104 (6,599) 1.3 ×105 (4.4 ×104)

64 100 1 185 (185) 9 (3) 9 (2) 30 (17) 1,583 (225) 912 (360)
140 1 21 (16) 69 (21) 55 (10) 329 (185) 5,951 (847) 8,027 (3,164)
175 1 2 (2) 1,072 (332) - (-) 7,255 (4,117) 6.2 ×104 (8,757) 1.1 ×105 (4.4 ×104)

212 16 100 1 339 (339) 9 (3) 9 (2) 33 (17) 2,549 (647) 1,499 (767)
140 1 42 (43) 56 (17) 59 (12) 324 (167) 8,742 (2,219) 1.0 ×104 (5,212)
175 1 5 (5) 756 (232) - (-) 5,224 (2,696) 8.7 ×104 (2.2 ×104) 2.2 ×105 (1.1 ×105)

64 100 1 354 (352) 10 (3) 10 (2) 35 (20) 2,743 (682) 1,627 (921)
140 1 36 (36) 68 (21) 57 (11) 369 (209) 9,685 (2,407) 1.3 ×104 (7,388)
175 1 4 (4) 1,031 (318) - (-) 7,414 (4,198) 9.7 ×104 (2.4 ×104) 1.8 ×105 (1.0 ×105)

Table 4.2: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the effective dimension (ED) for an Asian option within the Black-Scholes model. Model parameters: S(0) =

100, σ = 0.3, r = 0.05, T = 1. All values are computed based on 1,000 independent runs.

VR (N)

Time ED MC GIS LSIS NPIS
0.35 1 1 (213) 16 (b211.19c) 12 (b210.68c) 168 (212)
0.7 1 1 (214) 16 (b212.19c) 11 (b211.68c) 175 (213)
1.4 1 1 (215) 17 (b213.19c) 11 (b212.68c) 158 (214)

Table 4.3: The table reports the variance reduction (VR) factors, the sample sizes (N), and the effective
dimension (ED) for an Asian option within the Black-Scholes model. The execution time is fixed to 0.35, 0.7, and
1.4 seconds, respectively. The sample sizes are chosen such that all algorithms approximately achieved the fixed
execution time. Model parameters: S(0) = 100, σ = 0.3, r = 0.05, T = 1, K = 140, and d = 16. All values are
computed based on 1,000 independent runs.

Parameters VR (RCE)

N K̃ ED QMC LSIS NPIS QLSIS QNPIS
210 150 2 5 (5) - (-) - (-) 69 (5) 110 (21)

170 1 16 (16) - (-) 37 (19) 1,003 (80) 1,362 (297)
211 150 2 6 (6) - (-) - (-) 68 (10) 123 (36)

170 1 18 (18) - (-) 134 (68) 1,168 (171) 1,613 (568)
212 150 2 6 (6) - (-) - (-) 82 (21) 163 (63)

170 1 23 (24) - (-) 106 (55) 1,530 (394) 1,883 (961)

Table 4.4: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the effective dimension (ED) for an Asian option with a knock-out feature within the Black-Scholes model.
Model parameters: S(0) = 100, σ = 0.3, r = 0.05, T = 1, K = 140, and d = 16. All values are computed based
on 1,000 independent runs.
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Parameters VR (RCE)

N d ED QMC LSIS NPIS QLSIS QNPIS
210 16 1 193 (199) 1.2 (0.2) 6 (3) 300 (24) 323 (71)

64 1 213 (214) 1.1 (0.2) 6 (4) 321 (25) 361 (90)
211 16 1 225 (233) 1.2 (0.2) 8 (4) 359 (53) 418 (151)

64 1 256 (249) 1.2 (0.2) 9 (5) 397 (57) 410 (164)
212 16 1 425 (440) 1.2 (0.2) 10 (5) 634 (165) 711 (372)

64 1 454 (455) 1.2 (0.2) 11 (6) 715 (179) 717 (406)

Table 4.5: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the estimated effective dimension (ED) for an Asian straddle option within the Black-Scholes model. Model
parameters: S(0) = 100, σ = 0.3, r = 0.05, T = 1, and K = 100. All values are computed based on 1,000
independent runs.

the price for an average option with payout

CK(S1, . . . , Ss) =

(
1
s

s∑
i=1

Si(T )−K

)+

is computed. The second option depends on the maximum of the underlyings’ final values and
has the payout function

CK(S1, . . . , Ss) =
(

max
1≤i≤s

{Si(T )} −K
)+

.

From Table 4.6, one can observe that the results for the average option are qualitatively similar
to those of the Asian option in Example 2. Particularly, the effective dimension is also equal to
one.

The results for the second option with strikesK = 150 andK = 200 are reported in Tables 4.7
and 4.8, respectively. The pricing of the second option is a difficult problem because the effective
dimension is equal to the nominal dimension. Although, for K = 200 QNPIS is superior to
quasi-Monte Carlo and QLSIS for s = 2, 3, and 4 (in terms of the variance reduction factors),
for K = 150 this only holds for s = 2 and 3. We emphasize on the massive efficiency gains
obtained by QNPIS for strike K = 200. For s > 2 the sample size used was too small for NPIS
to perform well. We conclude that the applicability of NPIS/QNPIS depends not only on the
effective dimension of the problem but also on the sample size used. An LBFP estimate of the
optimal proposal for the case s = 2 is plotted in Figure 4.4. Here, the PCA construction leads
to a bimodal optimal proposal which can be closely approximated though an LBFP.

Example 4. Cap in the CIR Model

Finally, we consider the CIR interest rate model (Cox, Ingersoll, and Ross 1985). Here, interest
rate rt follows a square-root diffusion model

drt = κ(θ − rt)dt+ σ
√
rtdWt.
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Parameters VR (RCE)

N K ED QMC LSIS NPIS QLSIS QNPIS
210 100 1 179 (346) 9 (4) 24 (24) 4,048 (620) 3,315 (1,384)

140 1 19 (38) 43 (16) 212 (210) 5,171 (788) 6,269 (2,612)
175 1 2 (3) - (-) 3,277 (3,229) 2.5 ×104 (3,856) 4.5 ×104 (1.9 ×104)

211 100 1 212 (409) 9 (3) 34 (33) 4,249 (1,197) 3,677 (2,475)
140 1 26 (50) 48 (18) 338 (333) 5,438 (1,533) 6,932 (4,697)
175 1 2 (4) - (-) 4,637 (4,571) 2.9 ×104 (8,313) 4.9 ×104 (3.3 ×104)

212 100 1 428 (830) 9 (3) 49 (48) 4,872 (2,403) 3,996 (3,948)
140 1 49 (96) 52 (20) 372 (368) 6,373 (3,157) 7,720 (7,630)
175 1 4 (9) - (-) 5,953 (5,857) 4.3 ×104 (2.1 ×104) 6.5 ×104 (6.4 ×104)

Table 4.6: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the estimated effective dimension (ED) for a multi-asset average option within the Black-Scholes model.
Model parameters: Si(0) = 100 (i = 1, . . . , s), σ = 0.3, r = 0.05, T = 1, and s = 16. All values are computed
based on 1,000 independent runs.
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Figure 4.4: LBFP estimate of the optimal proposal for the multi-asset max option with strike K = 150. Model
parameters: Si(0) = 100 (i = 1, 2), σ = 0.3, r = 0.05, T = 1, and |u| = 2.

The first order Euler discretization yields

rtk+1
= rtk + κ(θ − rtk)∆t+ σ

√
rtkZtk ,

with Ztk ∼ N (0, 1) and ∆t = T/d. The aim is to evaluate the price of an interest rate cap. It
pays (rtk −K)+ at time tk+1 (k = 0, . . . , d − 1) subject to strike K. The discounted payout is
given by

d−1∑
i=0

exp[−∆t
i∑

j=0

rtk ](rtk −K)+.

The parameter values used in the simulations are d = 16, r0 = 0.07, θ = 0.075, κ = 0.2,
σ = 0.02, T = 1 and 2, K = 0.06, 0.07, and 0.08. The results are reported in Table 4.9 and
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Parameters VR (RCE)

N s ED QMC LSIS NPIS QLSIS QNPIS
211 2 2 44 (68) 6 (1.8) 10 (0.6) 145 (33) 3,070 (228)

3 3 26 (56) 3 (1.2) 0.3 (0.02) 52 (14) 72 (7)
4 4 24 (41) 3 (1) 0.03 (0.002) 28 (7) 7 (0.5)

212 2 2 76 (136) 5 (1.9) 25 (1.6) 213 (91) 5,848 (620)
3 3 42 (79) 3 (1.2) 0.3 (0.02) 72 (32) 148 (16)
4 4 27 (45) 3 (1.1) 0.05 (0.002) 36 (16) 8 (0.7)

213 2 2 211 (391) 6 (2) 61 (4) 396 (270) 4.7 ×104 (5,916)
3 3 70 (119) 3 (1.1) 2 (0.08) 95 (65) 161 (20)
4 4 35 (60) 3 (1) 0.01 (0.001) 42 (30) 7 (0.7)

Table 4.7: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the estimated effective dimension (ED) for a multi-asset max option with strike K = 150. Model parameters:
Si(0) = 100 (i = 1, . . . , s), σ = 0.3, r = 0.05, and T = 1. All values are computed based on 1,000 independent
runs.

Parameters VR (RCE)

N s ED QMC LSIS NPIS QLSIS QNPIS
211 2 2 8 (14) - (-) 49 (3) 65 (17) 7,997 (652)

3 3 4 (8) 2 (0.6) 0.2 (0.01) 17 (4) 165 (14)
4 4 5 (8) 0.8 (0.3) 0.1 (0.006) 9 (2) 20 (1.5)

212 2 2 13 (23) - (-) 163 (10) 82 (33) 1.8 ×104 (1,837)
3 3 7 (13) 4 (1.5) 3 (0.2) 22 (10) 259 (28)
4 4 6 (9) 4 (1.3) 0.2 (0.01) 11 (4.7) 24 (2.2)

213 2 2 32 (58) - (-) 304 (18) 95 (65) 1.1 ×105 (1.4 ×104)
3 3 11 (19) 5 (1.7) 1.2 (0.06) 28 (19) 292 (36)
4 4 8 (13) 4 (1.5) 0.05 (0.002) 13 (9.1) 27 (2.8)

Table 4.8: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the estimated effective dimension (ED) for a multi-asset max option with strike K = 200. Model parameters:
Si(0) = 100 (i = 1, . . . , s), σ = 0.3, r = 0.05, and T = 1. All values are computed based on 1,000 independent
runs.

Table 4.10. Again the effective dimension is equal to one, which explains the good performance
of NPIS/QNPIS. In particular, QNPIS strongly outperforms QLSIS for small strikes.
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Parameters VR (RCE)

N T K ED QMC LSIS NPIS QLSIS QNPIS
211 1 .05 1 230 (231) 2 (0.4) 0.7 (0.4) 396 (58) 2,313 (814)

.06 1 271 (280) 3 (0.6) 3 (1.4) 798 (119) 2,828 (1,021)

.07 1 233 (236) 9 (1.8) 12 (6) 287 (42) 256 (91)

.08 1 9 (9) 51 (10) 36 (19) 458 (67) 219 (78)
2 .05 1 232 (235) 3 (0.5) 1.2 (0.6) 486 (71) 2,754 (977)

.06 1 297 (298) 5 (1) 4 (2) 820 (120) 2,555 (905)

.07 1 240 (247) 10 (1.9) 13 (7) 281 (42) 288 (104)

.08 1 25 (25) 25 (5) 11 (6) 300 (44) 157 (56)
212 1 .05 1 479 (489) 2 (0.4) 1.1 (0.6) 820 (210) 5,235 (2,717)

.06 1 582 (588) 3 (0.6) 4 (2) 1,621 (414) 4,961 (2,081)

.07 1 415 (426) 9 (1.8) 13 (7) 388 (100) 332 (174)

.08 1 15 (15) 49 (10) 43 (22) 588 (151) 283 (146)
2 .05 1 484 (492) 2 (0.4) 1.9 (1) 1,007 (257) 5,723 (2,957)

.06 1 626 (634) 5 (0.9) 6 (3) 1,377 (352) 4,182 (2,143)

.07 1 422 (433) 9 (1.9) 14 (7) 375 (97) 360 (188)

.08 1 44 (45) 26 (5) 18 (9) 374 (96) 214 (111)

Table 4.9: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the estimated effective dimension (ED) for a cap within the CIR model. Model parameters: r0 = 0.07 ,
θ = 0.075, κ = 0.2, σ = 0.02, and d = 16. All values are computed based on 1,000 independent runs.

Parameters VR (RCE)

N T K ED QMC LSIS NPIS QLSIS QNPIS
211 1 .05 1 238 (239) 3 (0.5) 0.9 (0.5) 451 (65) 2,924 (1,164)

.06 1 284 (284) 4 (0.7) 3 (1.8) 940 (135) 4,225 (1.677)

.07 1 263 (263) 10 (2) 15 (8) 414 (59) 335 (133)

.08 1 9 (9) 48 (9) 30 (17) 536 (77) 336 (133)
2 .05 1 240 (239) 3 (0.5) 1.4 (0.8) 552 (79) 3,760 (1,483)

.06 1 309 (308) 7 (1.2) 5 (3) 1,013 (145) 3,345 (1,325)

.07 1 270 (269) 11 (2) 15 (8) 410 (58) 402 (158)

.08 1 28 (27) 25 (5) 21 (12) 411 (59) 162 (64)
212 1 .05 1 471 (472) 2 (0.4) 1.3 (0.7) 870 (218) 7,202 (4,101)

.06 1 571 (571) 3 (0.6) 5 (3) 1,808 (453) 7,422 (4,219)

.07 1 491 (491) 10 (2) 16 (9) 532 (133) 475 (271)

.08 1 17 (17) 43 (8) 34 (19) 674 (168) 346 (196)
2 .05 1 477 (474) 2 (0.4) 2 (1.2) 1,074 (266) 9,622 (5,442)

.06 1 627 (624) 6 (1.1) 7 (4) 1,371 (342) 5,875 (3,328)

.07 1 507 (503) 11 (2) 16 (9) 522 (130) 531 (299)

.08 1 51 (51) 24 (5) 15 (9) 470 (117) 177 (100)

Table 4.10: The table reports the variance reduction (VR) factors, the relative computational efficiency (RCE),
and the estimated effective dimension (ED) for a cap within the CIR model. Model parameters: r0 = 0.07 ,
θ = 0.075, κ = 0.2, σ = 0.02, and d = 64. All values are computed based on 1,000 independent runs.
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Chapter 5

Nonparametric Particle Filtering and
Smoothing

5.1 Introduction

Let’s consider the filtering and smoothing of the state variable Xt within a general state-space
model which is given by the transition densities (2.7) and observation densities (2.8). As men-
tioned in Section 2.4, the basic particle particle suffers from weight degeneration which makes
a resampling step necessary. However, resampling is problematic for at least three reasons: It
leads to sample depletion (which means the particles’ variety is reduced), it is time-consuming,
and it causes additional variance. Therefore, it is worth to put some effort on the choice of a
good proposal which can help to reduce the resampling frequency.

In this chapter we propose a nonparametric particle filter and a nonparametric particle
smoother which are based on a sequential version of nonparametric importance sampling. The
idea is to approximate the marginally optimal proposal nonparametrically. Typically, a nonpara-
metrically constructed proposal can improve over parametric choices in low dimensions, because
it is closer to the optimal proposal. As a consequence, the nonparametric particle filter and the
nonparametric particle smoother provide better approximations of the distributions of interest
compared with existing algorithms. A key feature is that they do not suffer from weight degen-
eration which makes resampling unnecessary. As a result of the nonparametric estimation, no
analytical investigation of the problem at hand is required for identifying a suitable proposal.
In addition, the nonparametric particle filter and the nonparametric particle smoother can be
combined with quasi-Monte Carlo sampling which is not possible with standard particle filters
and smoothers. Furthermore, it is shown that the quadratic costs of the likelihood approximation
algorithm in Hürzeler and Künsch (2001) can be reduced by using nonparametric techniques.
This gives a computationally efficient parameter estimation procedure. All algorithms proposed
in this chapter have computational costs which are almost linear in the number of particles for
low-dimensional state-spaces. This is achieved by the usage of the LBFP for nonparametric
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estimation. We emphasize that most existing particle smoothers as well as all existing sequen-
tial Monte Carlo methods which incorporate quasi-Monte Carlo have quadratic complexity. As
an application of our methods, the filtering and smoothing of stochastic volatility models for
multivariate high-frequency financial data is investigated.

5.2 A Nonparametric Particle Filter

Suppose the task is to approximate the filtering density p(xt|y1:t) using importance sampling in
the marginal space of xt. As a result of

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) = p(yt|xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1,

the proposal of the form q(xt|y1:t), that minimizes the variance of the importance weights

ω(xt) ∝
p(yt|xt)p(xt|y1:t−1)

q(xt|y1:t)
,

is the filtering density itself. The idea is to approximate the optimal proposal (that is the filtering
density) nonparametrically. This approach has two advantages over existing techniques which
are based on parametric proposals. First, at least in low dimensions, this gives a proposal which
is closer to the optimal proposal. Second, this allows the use of quasi-Monte Carlo sampling (see
Section 2.6).

We follow the ideas from Chapter 3 and utilize an LBFP for nonparametric density estimation.
In the setting of this chapter, the (unnormalized) histogram estimator underlying the LBFP is
computed based on weighted samples {zi, ωi}Ni=1, that is we have

f̃Hk1,...,kd
=

1
Nhd

N∑
i=1

ωi1∏d
l=1[tkl−h/2,tkl+h/2)(z

i).

For z ∈
∏d
l=1[tkl , tkl + h) the LBFP estimator is, analogous to (3.1), defined as f̂(z) = f̃(z) ×

N/(
∑N

i=1 ω
i), where

f̃(z) =
∑

j1,...,jd∈{0,1}

[
d∏
l=1

(
zl − tkl
h

)jl (
1− zl − tkl

h

)1−jl
]
f̃Hk1+j1,...,kd+jd

.

As derived in Section 3.4.3 the LBFP has complexity of O(2dd2N (d+5)/(d+4)) for N evaluations or
the generation of N independent draws. All algorithms developed in this chapter have complexity
O(2dd2N (d+5)/(d+4)×T ) for T time steps. This is close to linear for low-dimensional state-spaces.
In the following, all densities assigned with a hat denote LBFP estimates. We first state the
algorithm which in then discussed in detail.

58



5.2. A NONPARAMETRIC PARTICLE FILTER

Algorithm: Nonparametric Particle Filter (NPF)

Initialization: (for t = 0)

• For i = 1, . . . , N : Sample xi0 ∼ p(x0) and set ωi0 = 1.

Nonparametric importance sampling: (for t ≥ 1)

(i) For i = 1, . . . , N : Sample x̆it ∼ p(xt|xit−1).

(ii) Obtain LBFP estimate of the prediction density p̂(xt|y1:t−1) based on {x̆it, ωit−1}Ni=1.

(iii) For i = 1, . . . , N : Sample from proposal x̃it ∼ q(xt|y1:t) and compute importance weights

ω̃it ∝
p(yt|x̃it)p̂(x̃it|y1:t−1)

q(x̃it|y1:t)
.

(iv) Obtain LBFP estimate of the optimal proposal p̂(xt|y1:t) using {x̃it, ω̃it}Ni=1.

(v) For i = 1, . . . , N : Sample xit ∼ p̂(xt|y1:t) and compute importance weights

ωit ∝
p(yt|xit)p̂(xit|y1:t−1)

p̂(xit|y1:t)
.

The output of the NPF consists of the particles {xit, ωit}Ni=1 which approximate the filtering
density p(xt|y1:t). We emphasize, that resampling is not required because no weight degeneration
occurs. This is a result of the sampling from the proposal p̂(xt|y1:t) which is close to optimal.

In the steps (i) and (ii), an estimate of the prediction density p̂(xt|y1:t−1) is computed. It is
required for the evaluation of the importance weights in steps (iii) and (v). In step (iii), auxiliary
particles {x̃it, ω̃it}Ni=1 are generated based on the proposal q(xt|y1:t). They are used to obtain the
nonparametric estimate of the optimal proposal in step (iv). If the likelihood is not very peaked
one can set q(xt|y1:t) = p̂(xt|y1:t−1). In cases of a peaked likelihood a reasonable alternative
is q(xt|y1:t) = p(xt|yt). Then, step (iii) is related to the independent particle filter (Lin et
al. 2005). The matching problem (which typically increases the complexity of the algorithm)
discussed by Lin et al. (2005) is not an issue here because an approximation of the prediction
density is available which can be evaluated in almost linear time.

In cases of peaked likelihood or severely nonlinear state transitions p̂(xt|y1:t) obtained in step
(iv) may only be a rough estimate of the filtering distribution. However, because p̂(xt|y1:t) is just
used as a proposal (and not as an approximation of the filtering distribution) it does not need to
be a precise estimate. That is, it typically suffices if a few particles sampled from q(xt|y1:t) lie
in the relevant domain of p(xt|y1:t). Note that the use of quasi-Monte Carlo sampling ensures
that the space is well explored (compare Section 5.5). Summarizing, steps (i) through (iv) are
basically carried out to obtain a nonparametric estimate of the optimal proposal. The actual
approximation of the filtering distribution is done through importance sampling in step (v).
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We emphasize that, in contrast to MCMC move steps (see, for instance, Gilks and Berzuini
2001), step (v) carries out importance sampling with proposal p̂(xt|y1:t) and does not just add
noise to increase the sample variety. In addition, our method is computationally much more
efficient than MCMC steps (see Section 5.7.1).

5.3 A Nonparametric Particle Smoother

The posterior distribution p(x0:T |y1:T ) can be decomposed as

p(x0:T |y1:T ) = p(xT |y1:T )
T−1∏
t=0

p(xt|xt+1:T ,y1:T )

and the Markov property of the general state-space model implies

p(xt|xt+1:T ,y1:T ) = p(xt|xt+1,y1:t) ∝ p(xt|y1:t)p(xt+1|xt).

Based on this relation, a backward simulation particle smoother has been suggested (Godsill,
Doucet, and West 2004). The basic idea is to apply a particle filter in order to obtain an ap-
proximation of p(xt|y1:t), t = 1, . . . , T , and then proceed backwards in time. Unfortunately, this
algorithm has quadratic complexity O(dN2 × T ). We propose a backward simulation smoother
with almost linear costs. It applies nonparametric importance sampling in the marginal space
and makes use of the well-known smoothing formula

p(xt|y1:T ) = p(xt|y1:t)
∫
p(xt+1|xt)p(xt+1|y1:T )

p(xt+1|y1:t)
dxt+1.

Let’s define the density ν(xt) through

ν(xt) ∝
∫
p(xt+1|xt)p(xt+1|y1:T )

p(xt+1|y1:t)
dxt+1,

where it is assumed that ∫
p(xt+1|xt)dxt <∞. (5.1)

This is a weak assumption which is usually satisfied. For the state-space models considered in
Section 5.7 it holds trivially. The case when it does not hold is discussed later. The idea of our
algorithm is to approximate the smoothing density using the relation

p(xt|y1:T ) ∝ p(xt|y1:t)ν(xt),

and an LBFP estimate of ν(xt). The algorithm works as follows. First, the NPF is used to obtain
particles that approximate the filtering densities. Second, the algorithm proceeds backwards in
time using importance sampling based on an approximation of the marginally optimal proposal
which is p(xt|y1:T ). The LBFP estimates of both the optimal proposal and ν(xt) are computed
based on the filtering particles from the NPF and suitably adjusted weights.
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We emphasize that this is the first particle smoother with almost linear complexity which
allows for quasi-Monte Carlo sampling.

Algorithm: Nonparametric Particle Smoother (NPS)

Filtering: (for t = 1, . . . , T ) Generate filter particles {xit, ωit}Ni=1 using the NPF.

• For i = 1, . . . , N : Set x̌iT = xiT and ω̌iT = ωiT .

Backward simulation: (for t = T − 1, . . . , 0)

(i) For i = 1, . . . , N : Compute weights ω̃it ∝ ωitω̌it+1p(x̌
i
t+1|xit)/p̂(x̌it+1|y1:t).

(ii) Obtain LBFP estimate of the optimal proposal p̂(xt|y1:T ) based on {xit, ω̃it}Ni=1.

(iii) Obtain LBFP estimate ν̂(xt) based on {xit, ω̃it/(p(yt|xit)p̂(xit|y1:t−1))}Ni=1.

(iv) For i = 1, . . . , N : Sample x̌it ∼ p̂(xt|y1:T ) and compute importance weights

ω̌it ∝
p(yt|x̌it)p̂(x̌it|y1:t−1)ν̂(x̌it)

p̂(x̌it|y1:T )
.

The smoother’s output consists of the sets of smoothing particles {x̌it, ω̌it}Ni=1, which approx-
imate the smoothing densities p(xt|y1:T ), t = 0, . . . , T . Note, the NPS first runs the NPF. This
implies that the LBFP estimates of the prediction densities p̂(xt|y1:t−1) computed in the NPF
can be reused. It is mentioned that the nonparametric importance sampling not only reduces
the computational costs but also increases the variety and quality of the smoothing particles.
Like the NPF, the NPS does not require resampling at any stage.

In the given form, the NPS cannot be applied if the assumption (5.1) does not hold, because
then the density ν(xt) does not exist. However, the NPS can still be applied if the computation
of the importance weights in step (iv) is replaced by

ω̌it ∝ ω̌it+1

p(yt|x̌it)p̂(x̌it|y1:t−1)p(x̌it+1|x̌it)
p̂(x̌it|y1:T )

.

Now, as a result of the single matching of x̌it with x̌it+1, the weights ω̌it degenerate over time.
This makes resampling necessary albeit not in every iteration.

5.4 On-Line Maximum Likelihood Parameter Estimation

Suppose the general state-space model depends on an unknown parameter vector θ ∈ Θ. The
maximum likelihood estimator θ̂ maximizes the likelihood function

L(θ) = pθ(y1:T ) =
T∏
t=1

pθ(yt|y1:t−1).
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Typically, the likelihood function cannot be computed analytically. Here, an approximation
based on particles generated by a particle filter is discussed. In principle, L(θ) can be approxi-
mated pointwise through

L(θ) =
T∏
t=1

∫
pθ(yt|xt)pθ(xt|y1:t−1)dxt ≈

T∏
t=1

[
1
N

N∑
i=1

pθ(yt|x̆it)

]

using prediction particles {x̆it, 1/N}Ni=1 which approximate p(xt|y1:t−1). For every parameter
value θ new particles need to be generated. The major disadvantage of this approach is the
independence of the Monte Carlo errors, which results in a non-smooth approximation. As dis-
cussed by Hürzeler and Künsch (2001), it is possible to obtain an approximation of the likelihood
function for different θ based on a single set of particles, which are generated with respect to
an initial parameter value θ0. This gives a smooth approximation of the likelihood function.
However, the algorithm proposed by Hürzeler and Künsch has quadratic complexity O(dN2×T )
making it inconvenient for practical applications. We propose a variant of this algorithm which
has complexity O(2dd2N (d+5)/(d+4) × T ). The complexity reduction is achieved through the use
of the LBFP estimator. The algorithm is based on

pθ(yt|y1:t−1) =
∫
pθ(yt|xt)ω̃t,θ,θ0(xt)pθ0(xt|y1:t−1)dxt, (5.2)

where

ω̃t,θ,θ0(xt) =
pθ(xt|y1:t−1)
pθ0(xt|y1:t−1)

(5.3)

=
∫
pθ(xt|xt−1)ωt−1,θ,θ0(xt−1)pθ0(xt−1|y1:t−1)dxt−1∫

pθ0(xt|xt−1)pθ0(xt−1|y1:t−1)dxt−1
(5.4)

are the (parameter) prediction weights and

ωt,θ,θ0(xt) =
pθ(yt|xt)
pθ0(yt|xt)

ω̃t,θ,θ0(xt)
pθ0(yt|y1:t−1)
pθ(yt|y1:t−1)

the (parameter) filter weights. The algorithm of Hürzeler and Künsch uses (5.4) to compute
the prediction weights. This causes the quadratic complexity, because for each evaluation of
ω̃t,θ,θ0(xt) the integrals in (5.4) need to be approximated. To make these evaluations computa-
tionally more efficient, we suggest that one uses LBFP estimates p̂θ(xt|y1:t−1) and p̂θ0(xt|y1:t−1)
to compute (5.3). Note, that p̂θ0(xt|y1:t−1) is also computed in the NPF. We state the NPF
combined with the efficient maximum likelihood estimation procedure (NPF+ML). Note, the
NPF is part of the NPS.
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Algorithm: NPF with Maximum Likelihood Parameter Estimation (NPF+ML)

Initialization: (for t = 0)

• Choose initial parameter θ0 ∈ Θ.

• For i = 1, . . . , N : Sample xi0 ∼ p(x0), set ωi0 = 1, and ωi0,θ,θ0 = 1 for θ ∈ Θ.

Nonparametric importance sampling with likelihood approximation: (for t = 1, . . . , T )

• For i = 1, . . . , N : Sample x̆it ∼ pθ0(xt|xit−1).

• Obtain LBFP estimate p̂θ0(xt|y1:t−1) based on {x̆it, ωit−1}Ni=1.

• For θ ∈ Θ \ {θ0}: Obtain LBFP estimate p̂θ(xt|y1:t−1) based on{
x̆it,

pθ(x̆it|xit−1)ωit−1,θ,θ0
ωit−1

pθ0(x̆it|xit−1)

}N
i=1

.

• Use the NPF to generate particles {xit, ωit}Ni=1 approximating pθ0(xt|y1:t).

• For θ ∈ Θ (beginning with θ0):

– For i = 1, . . . , N : Compute ω̃it,θ,θ0 = p̂θ(xit|y1:t−1)/p̂θ0(xit|y1:t−1).

– Approximate pθ(yt|y1:t−1) through

at,θ =
1
N

N∑
i=1

pθ(yt|xit)ω̃it,θ,θ0ω
i
t

pθ0(yt|xit)
. (5.5)

– For i = 1, . . . , N : Compute

ωit,θ,θ0 =
pθ(yt|xit)
pθ0(yt|xit)

ω̃it,θ,θ0
at,θ0
at,θ

.

– Obtain new maximum likelihood estimate θ̂t = argmaxθ∈Θ{
∏t
k=1 ak,θ}.

The approximation (5.5) follows from (5.2) and the observation that {xit, ωit/pθ0(yt|xit)}Ni=1

approximates pθ0(xt|y1:t−1). The algorithm can be iterated with respect to θ0 in order to improve
the parameter estimate. We emphasize that our maximum likelihood procedure does not rely
on the NPF. It can be combined with any other particle filter. Finally, it is mentioned that
other parameter estimation techniques such as the EM algorithm (see Section 2.5) can also be
combined with the NPF/NPS.
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5.5 Quasi-Monte Carlo Sampling

As discussed in Section 2.6, quasi-Monte Carlo sampling is based on low-discrepancy sequences
which are constructed to fill the space more evenly than (pseudo-) random numbers. Both the
NPF and the NPS can be easily combined with quasi-Monte Carlo sampling. The quasi-Monte
Carlo sampling has the advantage that even a small number of particles suffices to well represent
the distribution given by the LBFP. It can be used in our algorithms whenever samples are drawn
from an LBFP. This is a result of the fact that the inversion method (which is used to sample from
an LBFP as explained in Section 3.4.2) preserves the structure of the low-discrepancy sequence.
In order to avoid dependencies the original low-discrepancy sequence needs to be randomized,
whenever the sampling distribution is changed. The random shift technique (see Section 2.6)
was used in the simulations of this work.

Particle filters that incorporate quasi-Monte Carlo sampling were proposed earlier (Fearnhead
2005; Guo and Wang 2006). However, in contrast to the NPF, these particle filters have quadratic
complexity. We emphasize that the computational costs of the NPF is not increased through
usage of quasi-Monte Carlo.

5.6 Bin Width Selection

The major difficulty of applying nonparametric estimators lies in the selection of the smoothing
parameter. For the LBFP, the bin width of the underlying histogram needs to be chosen. In the
following, the theoretically optimal bin width is derived. Note, the results for the optimal bin
width obtained in sections 3.2 and 3.3 do not apply. In addition, a Gaussian approximation is
discussed which can be used in practice.

Optimal Bin Width

Suppose we have

f(z) =
∫
g(z, z̃)dz̃ =

∫
g(z, z̃)
g0(z, z̃)

g0(z, z̃)dz̃

for some densities f , g, and g0. The task is to obtain an LBFP estimate of f based on samples
from the proposal density g0, which are weighted proportional to g/g0. Under the following
assumptions, the optimal bin width h∗ can be derived.

Assumption 1 f has three continuous and square integrable derivatives on supp(f).

Assumption 2
∫ ∫

g(z, z̃)2/g0(z, z̃)dz̃dz is finite on supp(f).

Assumption 3 As sample size N →∞, bin width h satisfies h→ 0 and Nhd →∞.
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Proposition 5.1. Suppose that the assumptions 1 through 3 hold. Let f̂N be the LBFP es-
timate (as defined in Appendix A.8) based on samples {zi, z̃i}Ni=1 from g0(z, z̃) and weights
ωi ∝ g(zi, z̃i)/g0(zi, z̃i), i = 1, . . . , N . Then we obtain∫

E[f̂N (z)− f(z)]2dz =
{
h4H1 +

1
Nhd

H2

}
× (1 + o(1))

and the optimal bin width

h∗ =
(
dH2

4H1

) 1
d+4

N−
1
d+4 ,

where

H1 =
49

2880

d∑
i=1

∫
(∂2
i f(z))2dz +

1
64

∑
i 6=j

∫
∂2
i f(z)∂2

j f(z)dz, H2 =
2d

3d

∫ ∫
g(z, z̃)2

g0(z, z̃)
dz̃dz.

Proof. See Appendix A.8.
From this proposition, we immediately obtain the optimal bin widths for the LBFP estimates

in the algorithms. Let

p̃(xt|y1:t) =
N∑
i=1

ωitδxit(dxt)/
N∑
j=1

ωjt

be the particle approximation of the filtering density with δ being the Dirac delta function.
Conditional on p̃(xt−1|y1:t−1) and p̂(xt−1|y1:t−1) one yields for the NPF

f̂(xt) = p̂(xt|y1:t−1): g(xt,xt−1) = p(xt|xt−1)p̃(xt−1|y1:t−1),

g0(xt,xt−1) = p(xt|xt−1)p̂(xt−1|y1:t−1),

and conditional on p̂(xt|y1:t−1)

f̂(xt) = p̂(xt|y1:t): g(xt) ∝ p(yt|xt)p̂(xt|y1:t−1),

g0(xt) = q(xt|y1:t).

Conditional on p̃θ0(xt−1|y1:t−1), p̂θ0(xt−1|y1:t−1), and ωt−1,θ,θ0(xt−1) we obtain for the NPF+ML

f̂(xt) = p̂θ(xt|y1:t−1): g(xt,xt−1) = pθ(xt|xt−1)ωt−1,θ,θ0(xt−1)p̃θ0(xt−1|y1:t−1),

g0(xt,xt−1) = pθ0(xt|xt−1)ωt−1,θ,θ0(xt−1)p̂θ0(xt−1|y1:t−1),

and conditional on p̃(xt|y1:t), p̃(xt+1|y1:T ), p̂(xt+1|y1:t), p̂(xt|y1:t), and p̂(xt+1|y1:T ) we have for
the NPS

f̂(xt) = p̂(xt|y1:T ): g(xt,xt+1) ∝ p̃(xt|y1:t)p(xt+1|xt)p̃(xt+1|y1:T )/p̂(xt+1|y1:t),

g0(xt,xt+1) = p̂(xt|y1:t)p̂(xt+1|y1:T ).
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Practical Bin Width Selection

To obtain a reasonable approximation of the optimal bin width h∗, estimates of the unknown
constants H1 and H2 given in Proposition 5.1 are required. In the algorithms, samples {zi, z̃i}Ni=1

from g0(z, z̃) and weights ωi ∝ g(zi, z̃i)/g0(zi, z̃i) are generated. Hence, an approximation of H2

is conveniently given by

H2 ≈
2d
∑N

i=1(ωi)2

3d
(∑N

i=1 ω
i
)2 .

Constant H1 is less tractable, because of its dependence on the second partial derivatives of
density f . We suggest that one approximates f by means of a Gaussian distribution. Note, that
H1 does not depend on the location of f . Consequently, we can restrict to centered Gaussian
distributions. Additionally, to ease estimation only diagonal covariance matrices are allowed.
Based on the weighted samples, an estimator of the variance of the kth dimension is given by

σ̂2
k =

N∑
i=1

ω̆i(zik − zk)2,

with zk =
∑N

i=1 ω̆
izik, ω̆

i = ωi/
∑N

j=1 ω
j , and zik being the kth component of zi. For f being the

Gaussian distribution N (0, diag(σ̂2
1, . . . , σ̂

2
d)), it can be shown that

H1 =
1

8dπd/2

 49
2880

d∑
i=1

3
σ̂5
i σ̂−i

+
1
64

∑
i 6=j

1
σ̂3
i σ̂

3
j σ̂−{i,j}

 ,

where σ̂−i =
∏
j 6=i σ̂j .

5.7 Simulations

The coding of the algorithms is straightforward, given an implementation of the LBFP estimator.
A detailed description of how to implement the LBFP estimator can be found in Section 3.4.2.
The computations were carried out on a Dell Precision T3400, Intel CPU 2.83GHz. All algorithms
were coded in C++ (see Chapter 8 for details). The Mersenne Twister 19937 (Matsumoto and
Nishimura 1998) and the Sobol sequence (Sobol 1967) were used for pseudo- and quasi-random
number generation, respectively.

Typically, the root mean square error of the estimated filtering/smoothing mean computed
with respect to the “true” state (RMSE1) has been used for measuring the performance of filter-
ing/smoothing algorithms. However, the RMSE1 does not converge to zero for increasing sample
size, which makes it hard to interpret. It even may give misleading results. A better criterion is
the root mean square error computed with respect to the mean of the “true” filtering/smoothing
density (RMSE2). However, sequential Monte Carlo methods seek to approximate entire distri-
butions, which is neither captured by the RMSE1 nor by the RMSE2. For the one-dimensional
case, we suggest that one measures the difference between the target distribution and its particle
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approximation based on the squared distance of their cumulative distribution functions, which
is given by

D =
T∑
t=1

∫ ∞
−∞

∫ z

−∞
p(xt|y1:t)dxt −

N∑
i=1

ωitx
i
t1(−∞,z](x

i
t)/

N∑
j=1

ωjt

2

dz

in the filtering setting.

5.7.1 Benchmark Model

Let’s consider the general state-space model given by

Xt|Xt−1 ∼ N (0.5xt−1 + 25xt−1/(1 + x2
t−1) + 8 cos(1.2t), 10),

Yt|Xt ∼ N (x2
t /20, σ2),

and X0 ∼ N (0, 10). This model is highly nonlinear with bimodal target densities. It has been
studied extensively (for instance Kitagawa 1987; Doucet, Godsill, and Andrieu 2000; Godsill,
Doucet, and West 2004). The two cases σ2 = 1 and σ2 = 0.252 are considered. In the second case
the likelihood is rather peaked. The NPF and the NPF with quasi-Monte Carlo (NPF+QMC)
are compared with the bootstrap particle filter with Metropolis-Hastings moves (SIRMH) (Gor-
don, Salmond, and Smith 1993; de Freitas et al. 2001) and the auxiliary particle filter (APF)
proposed in Pitt and Shephard (1999). We use the version of the APF which is described by
Fearnhead (2005). The NPF and NPF+QMC are applied with q(xt|y1:t) = p̂(xt|y1:t−1). The
NPS and the NPS with quasi-Monte Carlo (NPS+QMC) are tested against the backward simu-
lation particle smoother (BSPS), proposed in Godsill, Doucet, and West (2004), and the simple
particle smoother (SPS) (Kitagawa 1996; Fearnhead, Wyncoll, and Tawn 2008). Note, it can
be easily verified that the assumption (5.1) holds for the present general state-space model. We
produce 100 independent realizations of the model with T = 100 time steps. The filters and
smoothers are applied with small and large sample sizes. The sample sizes are chosen such that
all algorithms need approximately the same time for execution. To be able to compute the mea-
sures RMSE2 and D, we approximate the filtering and smoothing densities with 50,000 particles
using the bootstrap particle filter and the NPS, respectively.

The cumulative distribution functions of the filtering densities for several time steps are
shown in Figure 5.1. The bimodality of some densities is clearly apparent. We can observe, that
the NPF and the NPF+QMC approximate the filtering densities more closely than the APF.

In tables 5.1 and 5.2, the simulation results for the filters are reported. The NPF improves
significantly over the APF and SIRMH for both values of σ2 in terms of all criterions. In
particular for the large sample sizes the NPF clearly performs better. The results for the measure
D suggest that it approximates the filtering densities more closely. In addition, the quasi-Monte
Carlo sampling further improves the gains of the NPF. Note, the sample sizes for the SIRMH
are rather small. This is a result of the Metropolis-Hastings step being computationally very
expensive.

67



CHAPTER 5. NONPARAMETRIC PARTICLE FILTERING AND SMOOTHING

−10 −5 0 5 10

0.
0

0.
4

0.
8

−5 0 5

0.
0

0.
4

0.
8

−15 −10 −5 0 5 10 15

0.
0

0.
4

0.
8

−10 −5 0 5 10

0.
0

0.
4

0.
8

−5 0 5

0.
0

0.
4

0.
8

−16 −15 −14 −13 −12

0.
0

0.
4

0.
8

−10 −5 0 5 10

0.
0

0.
4

0.
8

3 4 5 6 7 8 9

0.
0

0.
4

0.
8

−6 −4 −2 0 2 4 6

0.
0

0.
4

0.
8

12 13 14 15 16

0.
0

0.
4

0.
8

Figure 5.1: The estimated cumulative distribution functions of the filtering densities for times t = 10, 20, . . . ,
100 of one realization of the benchmark model. Filters: Bootstrap particle filter with 200,000 particles (heavy
line); APF with 300 particles (dotted line); NPF with 250 particles (dashed line); NPF+QMC with 250 particles
(solid line).
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Algorithm Sample Size N RMSE1 RMSE2 D Time (sec)

APF 350 5.07 2.39 5.1 × 10−3 0.34
SIRMH 175 4.77 1.50 2.4 × 10−3 0.35
NPF 250 4.62 1.10 1.3 × 10−3 0.35
NPF+QMC 250 4.64 0.92 1.1 × 10−3 0.35

APF 8000 5.08 1.99 3.5 × 10−3 7.98
SIRMH 1500 4.69 0.94 9.9 × 10−4 9.31
NPF 6000 4.62 0.25 6.1 × 10−5 8.77
NPF+QMC 6000 4.62 0.22 4.5 × 10−5 8.83

Table 5.1: The simulation results for the benchmark model with 100 time steps and high observation noise
(σ2 = 1). Algorithms: The auxiliary particle filter (APF), the bootstrap filter with Metropolis-Hastings move
step (SIRMH), the nonparametric PF (NPF), the nonparametric PF with quasi-Monte Carlo (NPF+QMC). The
sample sizes were chosen such that all algorithms needed approximately the same time for execution. For the
definitions of the measures RMSE1, RMSE2, and D see the text. All figures were computed/averaged over 100
independent runs.

Algorithm Sample Size N RMSE1 RMSE2 D Time (sec)

APF 350 6.25 4.51 1.7 × 10−2 0.34
SIRMH 175 5.41 3.20 9.5 × 10−3 0.36
NPF 250 4.97 2.31 5.5 × 10−3 0.35
NPF+QMC 250 4.77 1.75 3.5 × 10−3 0.35

APF 8000 5.70 3.90 1.3 × 10−2 7.98
SIRMH 1500 4.44 1.52 2.4 × 10−3 10.41
NPF 6000 4.26 0.42 2.9 × 10−4 8.61
NPF+QMC 6000 4.26 0.40 2.5 × 10−4 8.61

Table 5.2: The simulation results for the benchmark model with 100 time steps and low observation noise
(σ2 = 0.252). Algorithms: The auxiliary particle filter (APF), the bootstrap filter with Metropolis-Hastings move
step (SIRMH), the nonparametric PF (NPF), the nonparametric PF with quasi-Monte Carlo (NPF+QMC). The
sample sizes were chosen such that all algorithms needed approximately the same time for execution. For the
definitions of the measures RMSE1, RMSE2, and D see the text. All figures were computed/averaged over 100
independent runs.

The results for the smoothers are given in the tables 5.3 and 5.4. It can be observed that
the NPS and the NPS+QMC clearly outperform their competitors. The values for RMSE2 and
D indicate that, in particular for the large sample sizes, the smoothing distributions are much
more closely approximated. Note, the samples sizes of the smoothers differ significantly because
the SPS and the BSPS have linear and quadratic costs, respectively.

Finally, we further investigate the computational costs of the NPF compared with the APF
and the bootstrap particle filter by recording the execution times for different samples sizes
(Figure 5.2). We can observe, that the times for the NPF grow superlinearly which agrees with
the theoretical results for the costs of sampling from LBFPs. Surprisingly, for the univariate
stochastic volatility model (see the following section) the NPF improves over the APF. This is
explained by the following facts. The sampling and evaluation of an LBFP is based on simple
arithmetic operations which are very cheap on computer systems. In contrast, the APF requires
more frequent evaluations of the exp function which is very expensive.
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Algorithm Sample Size N RMSE1 RMSE2 D Time (sec)

SPS 2000 2.26 1.55 1.0 × 10−2 1.72
BSPS 70 2.83 1.93 7.2 × 10−3 1.67
NPS 500 1.93 0.58 1.3 × 10−3 1.66
NPS+QMC 500 1.85 0.45 0.8 × 10−3 1.68

SPS 24000 2.05 0.80 5.4 × 10−3 21.16
BSPS 250 2.01 1.13 2.1 × 10−3 22.25
NPS 5000 1.68 0.12 5.5 × 10−5 20.91
NPS+QMC 5000 1.68 0.11 4.9 × 10−5 19.86

Table 5.3: The simulation results for the benchmark model with 100 time steps and high observation noise (σ2 =

1). Algorithms: The simple particle smoother (SPS), the backward simulation PS (BSPS), the nonparametric PS
(NPS), and the NPS with quasi-Monte Carlo (NPS+QMC). The sample sizes were chosen such that all algorithms
needed approximately the same time for execution. For the definitions of the measures RMSE1, RMSE2, and D
see the text. All figures were computed/averaged over 100 independent runs.

Algorithm Sample Size N RMSE1 RMSE2 D Time (sec)

SPS 2000 2.13 1.77 8.6 × 10−3 1.70
BSPS 70 4.42 4.22 2.1 × 10−2 1.62
NPS 500 1.73 1.07 3.1 × 10−3 1.73
NPS+QMC 500 1.45 0.80 2.0 × 10−3 1.75

SPS 24000 1.49 1.09 5.1 × 10−3 21.09
BSPS 250 2.38 1.85 6.2 × 10−3 22.02
NPS 5000 1.00 0.19 4.3 × 10−4 21.85
NPS+QMC 5000 0.96 0.13 9.7 × 10−5 21.36

Table 5.4: The simulation results for the benchmark model with 100 time steps and low observation noise (σ2 =

0.252). Algorithms: The simple particle smoother (SPS), the backward simulation PS (BSPS), the nonparametric
PS (NPS), and the NPS with quasi-Monte Carlo (NPS+QMC). The sample sizes were chosen such that all
algorithms needed approximately the same time for execution. For the definitions of the measures RMSE1,
RMSE2, and D see the text. All figures were computed/averaged over 100 independent runs.

5.7.2 High-Frequency Stochastic Volatility Application

The volatility of security prices is defined as the standard deviation of their first differences
(which are known as returns). Here, different univariate and multivariate stochastic volatility
(Jacquier, Polson, and Rossi 1994) models are applied to high-frequency transaction data. High-
frequency volatility is a central quantity in risk management, trading, and derivative pricing.
Because of their flexibility, stochastic volatility models became very popular as alternatives to
GARCH models. Recently, several multivariate variants have been proposed (see Asai, McAleer,
and Yu (2006) for an overview).

We extracted the transaction data of the symbols C (Citigroup) and JPM (JPMorgan Chase
& Co) for the 5th September 2007 from the TAQ data base. To improve the data quality, we
only use the transactions from the two major exchanges (NYSE and NASDAQ). The data are
sampled at a frequency of 15 seconds giving a total number of 1560 returns for each stock (the
exchanges open at 9:30 AM and close at 4 PM). By investigating the autocorrelations of both the
returns and the absolute values of the returns, we find microstructure effects such as the bid-ask
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Figure 5.2: The execution times in seconds of the NPF (dashed line), the APF (dotted line), and the bootstrap
filter (solid line) for different sample sizes N . Results are shown for the benchmark model (left) and for the
univariate stochastic volatility model (right). For both models 100 time steps were used. All figures are averaged
over 50 independent runs.

bounce to play a negligible role at this frequency. A rounding effect is the only microstructure
feature that is present (compare upper plot in Figure 5.3).

First, the volatilities of both C and JPM are estimated separately within an univariate
stochastic volatility model, which is given by

Xt|Xt−1 ∼ N (φxt−1, σ
2),

Yt|Xt ∼ N (0, β2 exp(xt)).

The parameters φ and σ are estimated using the NPF+ML algorithm described in Section 5.4.
As initial parameters we used θ0 = (0.97, 0.18)T following Pitt and Shephard (1999), who fitted
the univariate stochastic volatility model to low-frequency data. Parameter β can be interpreted
as the average volatility. Therefore, β is estimated from the data directly, as the empirical
standard deviation of the returns. The parameter estimates are (φ, σ, β) = (0.93, 0.22, 0.0162)
for C and (φ, σ, β) = (0.98, 0.11, 0.0174) for JPM.

The model is filtered and smoothed by the NPF and the NPS, respectively, using N = 1,000
particles. Figure 5.3 shows the data and results based on the estimated smoothing densities. It
can be seen, that the stochastic volatilities of both stocks move together and that the confidence
bounds of the smoothing densities have a broad common support. As a consequence, it seems
reasonable to consider multivariate stochastic volatility models which allow that one studies
stochastic volatility comovements. Especially for trading, on-line volatility estimation is of great
importance. Therefore, the filtering and smoothing densities are compared with each other
(Figure 5.4). While the confidence bounds for the filtering densities are wider, the filtering mean
is close to the smoothing mean.
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Figure 5.3: The returns of C (circles) and JPM (solid circles) sampled at a frequency of 15 seconds (upper
plot). The means (middle plot) and the 95% confidence bounds (lower plot) of the stochastic volatility smoothing
densities estimated within the univariate stochastic volatility model for C (solid line) and JPM (dotted line).
Note, that the lower plot only shows a fraction of the trading day.

The first multivariate stochastic volatility model is a factor model (Aguilar and West 2000).
It allows that one estimates a common volatility component and it is given by

Xt|Xt−1 ∼ N (φxt−1, σ
2),

Yt|Xt ∼ N (0, HtV ),

where Ht = diag{β2
1 exp(xt), β2

2 exp(xt)}. V is the correlation matrix, that is V11 = V22 = 1
and V12 = V21 equal to the correlation of the returns. From the data we computed V12 = 0.491
and β1, β2 as for the univariate stochastic volatility model. For the parameters we obtained
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Figure 5.4: The means and the 95% confidence bounds of the stochastic volatility filtering (solid line) and the
stochastic volatility smoothing densities (dotted line) for JPM. Note, the plot only shows a fraction of the trading
day. The results for C are very similar.

(φ, σ) = (0.92, 0.24) using NPF+ML. An alternative multivariate stochastic volatility model is
defined through

Xt|Xt−1 ∼ N (Φxt−1,Σ),

Yt|Xt ∼ N (0, HtV ),

where Ht = diag{β2
1 exp(x1,t), β2

2 exp(x2,t)} and Xt = (X1,t,X2,t)T . Obviously, this model is
more flexible than the factor model. However, it has the disadvantage of a larger number of
parameters. To limit the number of parameters, we restricted Φ to be a diagonal matrix which
is a common assumption. The parameter matrices Φ and Σ were estimated with the NPF+ML
algorithm.

Figure 5.5 compares the stochastic volatility estimates of the three different models in terms of
quantil-quantil plots and (kernel) density estimates of the normalized returns. First, note that
the empirical distribution of the original returns (left plots) exhibit heavy tails. Second, one
can observe that all three models provide normalized returns which have very similar empirical
distributions. These distributions are close to the standard Gaussian distribution in the tails.
However, at the origin they have a strange behaviour which is caused by the rounding feature
of the original data. We emphasize that these results indicate that a single stochastic volatility
factor suffices to capture the stochastic part of the volatilities of the two stocks.

Alternative stochastic volatility models that account for the discreteness of the price move-
ments can be constructed. For instance, one can use N (0, β2 exp(xt)) rounded to the near-
est cent, as observation model. However, in practice the presented stochastic volatility models
should suffice, because of the fact that the normalized returns’ empirical distributions have close-
to-Gaussian tails. This allows that one constructs reliable confidence intervals (for the returns)
which is a major application of stochastic volatility estimates.
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Figure 5.5: Quantil-quantil plots and density estimates for the returns of C (left) and the returns of C normalized
with respect to the stochastic volatilities, which were estimated within the univariate, the factor, and the bivariate
stochastic volatility model (from left to right). The results for JPM are very similar.
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Chapter 6

Particle Filter-Based On-Line
Estimation of Spot Cross-Volatility

6.1 Introduction

Nowadays, financial transaction data (tick-by-tick data) are widely available and modern com-
puter systems allow tracking the trading process in real-time even in case of the transactions
occurring on a millisecond basis. For high-frequency trading the on-line estimation of the spot
cross-volatility (covariance matrix of the returns) based on tick-by-tick data is an important
task. It is challenging because of the non-synchronous trading and the presence of market mi-
crostructure noise. The goal is to develop a new method which works on-line and updates the
cross-volatility (covariance) estimate immediately when a new transaction comes in.

Until recently, the main focus in the literature has been on the estimation of the integrated
(cross-)volatility. This task has been studied extensively under various assumptions on the
market microstructure noise (Zhou 1996; Hayashi and Yoshida 2005; Zhang, Mykland, and Aït-
Sahalia 2005; Andersen, Bollerslev, and Meddahi 2006; Bandi and Russell 2006, 2008; Hansen and
Lunde 2006; Voev and Lunde 2007; Barndorff-Nielsen et al. 2008a, 2008b; Kalnina and Linton
2008; Robert and Rosenbaum 2008; Zhang 2008; Christensen, Podolskij, and Vetter 2009). Some
authors suggested that estimates of the spot (cross-)volatility can be obtained through localized
versions of estimators for the integrated (cross-)volatility (Foster and Nelson 1996; Fan and Wang
2008; Bos, Janus, and Koopman 2009; Kristensen 2009). In contrast to these existing methods
which are essentially off-line procedures, our approach allows on-line estimation.

In this work, the efficient log-price processes of different securities are treated as latent states
in a nonlinear state-space model with non-synchronously evolving components. The relation
between the efficient prices and the transaction prices are described through a new market
microstructure noise model. A new particle filter is developed which allows the estimation of
the filtering distributions of the efficient log-prices given the observed transaction prices. Based
on the filtering distributions the (time-varying) covariance matrices are estimated using a new
sequential Expectation-Maximization (EM) type algorithm. The method is easy to implement
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and suitable for real-time application because of its computational efficiency.
The chapter is organized into three parts. In the first part (sections 6.2 through 6.5) the

estimation of (univariate) spot volatility in the presence of market microstructure noise is con-
sidered. The second part (sections 6.6 through 6.8) generalizes this univariate method to the
multivariate case of cross-volatility estimation where the non-synchronous trading times further
complicate the situation. In the third part (sections 6.9 and 6.11) details on the implementation
are given and empirical results for simulated and real data are presented followed by a discussion
on our methods.

We model transaction data as noisy observations of a latent efficient log-price process Xt. It
is assumed that transaction prices Ytj are observed at times t1 < t2 < . . . < tT . The evolution
of the efficient log-price process is modeled by a random walk in transaction time with possibly
time-varying volatility σtj , that is

Xtj = Xtj−1 + Ztj (6.1)

with Ztj ∼ N (0, σ2
tj ), or alternatively by a diffusion model in clock time – see Section 6.4. Drift

terms are ignored because their effect is of lower order with high-frequency data.
We make a clear distinction between volatility per time unit and volatility per transaction

and provide estimators for both. We start with a model in transaction time instead of clock time
leading to an estimator of the spot volatility per transaction. In Section 6.4, a transformation
from transaction time volatility to clock time volatility is given leading to a subsequent estimator
of the volatility per time unit. In addition, we give a direct clock time estimator. In our opinion
a model in transaction time has at least two advantages: First, the distribution of asset log-
returns in a transaction time model can be modeled in most situations quite well by a Gaussian
distribution, and second, volatility in transaction time is more constant than volatility in clock
time making the algorithm more stable (Ané and Geman 2000; Plerou et al. 2001; Gabaix et al.
2003 - see also the discussion in sections 6.4, 6.10, and 6.11).

The relation between the efficient (log-)prices and the observed transaction prices is described
through a general nonlinear market microstructure noise model which is completely different from
the models considered so far. It depends on the (observed or unobserved) order book or market
maker quotes and it can be expressed through a nonlinear equation

Ytj = gtj
(

exp[Xtj ]
)

= gtj ;Yt1:j−1

(
exp[Xtj ]

)
, (6.2)

where the function gtj may also depend on past observations Yt1:j−1 := {Yt1 , . . . , Ytj−1} (see
case 3 in Section 6.2). The function gtj is time-inhomogeneous and it can be interpreted as a
generalized rounding function. The details of this model along with its economic motivation are
given in Section 6.2.

The state equation (6.1) and the observation equation (6.2) form a nonlinear state-space
model. The volatility is considered as a parameter of this state-space model. The estimation is
done through a particle filter and a new sequential EM-type algorithm. Very roughly speaking
our volatility estimator can be viewed as a localized realized volatility estimator based upon the
particles of the particle filter. In detail the situation is however more complicated because we
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need a back and forth between particle filter and volatility estimator to obtain a decent on-line
estimator. Bias improvements and an adaptive parameter choice complicate the situation even
further.

In the second part of the chapter, the univariate model is extended to the case of multiple
securities. That is, we consider efficient price processes

X
t
(s)
j ,s

= X
t
(s)
j−1,s

+ Z
t
(s)
j ,s

, s = 1, . . . , S,

where the returns Z
t
(s)
j ,s

are correlated (for details see Section 6.6.1). In the multivariate case

the non-synchronous trading becomes an issue. We propose a new transaction time model for
non-synchronously trading securities which leads to a non-standard state-space model. For the
estimation we develop a new particle filter which can cope with this non-standard state-space
model.

We mention that our methods are not restricted to the above model but can also be applied
with other microstructure noise models. Contrary to several other papers we do not assume that
the transaction times are equidistant nor do we use interpolated prices.

6.2 A New Nonlinear Market Microstructure Noise Model

In most existing market microstructure models the efficient log-price is assumed to be corrupted
by additive stationary noise (Aït-Sahalia, Mykland, and Zhang 2005; Zhang, Mykland, and Aït-
Sahalia 2005; Hansen and Lunde 2006; Barndorff-Nielsen et al. 2008a). The noise variables are
typically independent of the efficient log-price process. The major weakness of these models is
the fact that they cannot reproduce the discreteness of the transaction prices. More adequate
models which incorporate rounding noise have also been considered (Ball 1988; Large 2007; Li
and Mykland 2007, 2008; Robert and Rosenbaum 2008). A popular model is based on additive
noise followed by rounding according to the smallest tick size. A drawback of most existing
models is the dependence on parameters and on distributional assumptions.

Now, a general market microstructure noise model is proposed which differs significantly from
existing models. We are convinced that it is more suitable to explain microstructure features of
real data. The model is based on the following simple assumption on the filtering distribution
p(exp[xtj ]|yt1 , . . . , ytj ) of the unknown efficient price exp[Xtj ] given the observed transaction
prices Yt1 = yt1 , . . . , Ytj = ytj .

Model assumption 1: The support Atj of the filtering distribution p(exp[xtj ]|yt1 , . . . , ytj ) is
bounded and known.

It follows that the support of the filtering distribution of the efficient log-price p(xtj |yt1 , . . . , ytj )
is given by logAtj .

This assumption is rather weak because we make no assumption on the distribution of Yt at
all. The clue is that given the model of the efficient log-price process (6.1) this assumption already
leads to the identifiability of the distribution p(xtj |yt1 , . . . , ytj ) (see Proposition 6.1 below). It
is shown later that this distribution can be approximated through a particle filter. A real data
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Figure 6.1: A real data example of estimated filtering distributions based on our market microstructure noise
model for the case when market maker quotes are available in addition to the transaction data. The details are
provided in Section 6.10.2. The plot shows some transaction prices (circles) along with kernel density estimates
of the filtering distributions of the efficient prices (black lines) based on the particles produced by our particle
filter. The gray vertical lines indicate the assumed support of the filtering distributions. The bid and ask market
maker quotes are displayed by gray and black horizontal lines, respectively. The x-axis shows transaction time.

example is given in Figure 6.1. It shows the supports Atj (gray vertical lines) and kernel density
estimates of the filtering distributions of the efficient prices (black lines) which are computed
based on the output of the particle filter. In this example, market maker quotes are available
(see case 2 below) which are indicated by gray and black horizontal lines. The details of this
example are provided in Section 6.10.2.

The above model assumption is, for instance, fulfilled in the following three cases: In cases 1
and 2, limit order book data and market maker quotes are available, respectively, in addition to
the transaction data leading to the support Atj . In case 3, only transaction data are available
and a method to construct the Atj is suggested.

Case 1: (order book data)
Let’s assume that at each transaction time tj the exchange provides a limit order book with bid
and ask levels given by αktj and βktj , k = 1, 2, . . . ,K, respectively. The order book levels satisfy
αKtj < . . . < α2

tj < α1
tj < β1

tj < β2
tj < . . . < βKtj and we denote

Mtj = {αKtj , . . . , α
2
tj , α

1
tj , β

1
tj , β

2
tj , . . . , β

K
tj }.

Mtj represents the state of the order book immediately before the transaction at time tj occurs.
Clearly, ytj ∈Mtj . The support of the filtering distribution at time tj is defined through

Atj = {x ∈ R : argminγ∈Mtj
|x− γ| = ytj}.

Thus, the transaction price at time tj is that price in the set Mtj with the smallest Euclidean
distance to the efficient price. Note, that Atj is simply an interval of the real line. The economic
intuition behind this model is that the efficient price at time tj should be closer to the observed
price ytj than to any other order book level. Of course, this cannot be guaranteed. However, it
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Figure 6.2: An example of our market microstructure noise model for the case when order book data are
available. The figure shows the transaction prices (circles), the (in practice unknown) efficient prices in transaction
time (diamonds), the latent efficient price process in clock time (black line), the order book levels (gray horizontal
lines), and the supports of the filtering distributions of the efficient prices (gray vertical lines).

seems to be more realistic assumption than many other microstructure noise models leading at
the same time to quite strong results.

An example of this market microstructure model is visualized in Figure 6.2. The supports
of the filtering distributions are indicated by thick vertical lines. Observe that sometimes the
bid-ask spread widens the support of the filtering distribution.

Case 2: (market maker quotes)
In the case where market maker quotes are available (instead of order book data), we only have
a single bid and a single ask level αtj and βtj , respectively, which satisfy αtj < βtj . That is, ytj
is either equal to αtj or equal to βtj . The supports Atj are then defined through

Atj = [ytj −∆tj , ytj + ∆tj ),

where ∆tj = 0.5(βtj − αtj ). The economic intuition given in case 1 applies similarly.

Case 3: (transaction data only)
For the case where no order book data or market maker quotes are available we now suggest
a method for defining the supports of the filtering distributions solely based on the observed
transaction prices. Conditional on yt1 , . . . , ytj , we set

Atj = [ytj −∆tj , ytj + ∆tj ),

where

∆tj =

0.5|ytj − ytj−1 | if ytj 6= ytj−1,

∆tj−1 else.

Note that ∆tj can be seen as an estimate of half the bid-ask spread at time tj .
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Figure 6.3: Comparison of real transaction data for Citigroup (left column) with simulated data from our
market microstructure noise model (right column). The plots show (from top to bottom): 10,000 transaction
prices; the first 250 transaction prices and the efficient price process of the simulated data; the autocorrelations
and the partial autocorrelations of the returns of the transaction prices.

In practice, the intervals Atj will be similar for all three cases. Consequently, the estimation
results will not differ much. It is mentioned that we do not need to explicitly specify the unknown
nonlinear function gtj in the observation equation (6.2). The model assumption can be regarded
as an assumption on the inverse mapping g−1

tj
, namely g−1

tj
(ytj ) = {x|gtj (x) = ytj} = Atj

(conditional on yt1 , . . . , ytj−1). That is, the observed price ytj determines the possible values of
the associated efficient price.

We strongly believe that our model better describes the real world market microstructure than
most existing models. Data simulated from our model reproduce the major stylized facts of high-
frequency data, such as price discreteness and (first-order) negative autocorrelation of the returns.
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Therefore, it seems to be an adequate model. As an example, transaction data of Citigroup are
compared with data simulated from a special case of our model (see Figure 6.3). The figure
shows the simulated efficient prices and the observations. The observations are the efficient prices
rounded to the nearest cent (that is ∆tj ≡ 0.5 cents). The efficient log-prices were generated
according to (6.1) such that the observations have approximately the same volatility as the
Citigroup data. We emphasize on the large number of zero returns. It is not surprising that the
trajectories of the transaction processes look completely different. The important point, however,
is the fact that our market microstructure noise model automatically introduces autocorrelations
and partial autocorrelations of the returns which are very similar to those of the real Citigroup
data.

We emphasize that our estimation method is not limited to this market microstructure noise
model. It can be applied (after a suitable modification of the particle filter) to many microstruc-
ture noise models which comply with the general nonlinear observation equation

Ytj = gtj (Xtj , Utj ),

where gtj is a (nonlinear) function and Utj a noise variable. As mentioned earlier in this sec-
tion a popular model describes market microstructure noise through additive noise followed by
rounding. It is given by the equation

Ytj = round(exp[Xtj + Utj ]), (6.3)

where the Utj are, for instance, i.i.d. Gaussian distributed.

6.3 On-Line Estimation of Spot Volatility Based on a Particle
Filter and Sequential EM-Type Algorithms

We now present on-line algorithms for the estimation of the spot volatility. Because all results
also hold in the multivariate case with synchronous trading times we formulate this section for
multivariate security prices. We are aware of the fact that the main challenge in the multivariate
case are non-synchronous trading times. The present results are, however, the basis for the
method for non-synchronous trading developed in the second part of the chapter.

We therefore consider in this section the estimation of the covariance matrix Σtj which gives
the volatilities of the individual efficient log-price processes Xt,s, s = 1, . . . , S, as well as their
cross-volatilities. The algorithms for the spot volatility are obtained by setting Σtj = σ2

tj .

6.3.1 A Nonlinear State-Space Model

The multivariate version of the nonlinear state-space model (6.2) and (6.1) is given by

Ytj = gtj (exp[Xtj ]), (6.4)

Xtj = Xtj−1 + Ztj , (6.5)
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where Xt = (Xt,1, . . . , Xt,S)T , gtj (exp[Xtj ]) =
(
g
t
(1)
j

(exp[Xtj ,1]), . . . , g
t
(S)
j

(exp[Xtj ,S ])
)T with the

g
t
(s)
j

possibly depending on Yt1:j−1 , and Ztj ∼N (0,Σtj ). The set Atj from Model assumption 1

usually is of the form Atj = Atj ,1 × · · · × Atj ,S with the Atj ,s being intervals (although this is
not used). For simplicity we assume as an initial condition that given Yt1,s the efficient prices
exp[Xt1,s] are uniformly distributed on At1,s.

Model assumption 2: Σtj is assumed to be either constant or slowly varying in time, that is
we assume some smoothness for Σtj .

The smoothness assumption needs not to be specified any further because we do not use it
formally. However, without this assumption the estimation procedure developed in Section 6.3.3
would not make sense. A detailed specification of this assumption would become necessary if we
tried to prove consistency (see Section 6.11).

We remark that (6.4) and (6.5) constitute a slightly generalized state-space model because
the observations Ytj are not conditional independent of Yt1:j−1 given Xtj as in standard state-
space models. This dependency on past observations is induced by our market microstructure
noise model (see case 3 in Section 6.2). In the following section a particle filter is derived which
can cope with this setting.

Our objective is the estimation of the covariance matrix Σtj based on the observed prices
Yt1:j = yt1:j . Because of the nonlinear market microstructure noise this is difficult. It is well
known that crude estimators that ignore the noise lead to severely biased estimates (see, for
instance, Voev and Lunde 2007). The idea of our estimation procedure is to approximate the
conditional distribution of the efficient log-prices Xtj given all observed transaction prices yt1:j

up to time tj (which is known as filtering). Based on this approximation a localized EM-type
algorithm is used to construct an estimator of Σtj . An efficient particle filter that allows the
approximation of the target distributions is described in the following section.

6.3.2 An Efficient Particle Filter

A particle filters which approximates the posterior (joint filtering) distributions p(xt1:j |yt1:j )
with clouds of particles {xit1:j

, ωitj}
N
i=1 is developed. As a result of the violated conditional

independence property mentioned earlier, the decomposition (2.11) does not hold for the present
state-space model. Instead one obtains

p(xt1:j |yt1:j ) =
p(ytj |yt1:j−1 ,xtj ) p(xtj |xtj−1)

p(ytj |yt1:j−1)
p(xt1:j−1 |yt1:j−1). (6.6)

In contrast to standard state-space models p(ytj |yt1:j−1 ,xtj ) does not simplify to p(ytj |xtj ).
As discussed in Section 2.4, the choice of the proposal is crucial to the filter’s efficiency. In

our framework it is possible to sample from the proposal p(xtj |yt1:j ,xtj−1) which is the optimal
proposal in the sense that it minimizes the variance of the importance sampling weights (Doucet,
Godsill, and Andrieu 2000). This gives the following algorithm:
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Assume weighted particles {xit1:j−1
, ωitj−1

}Ni=1 approximating p(xt1:j−1 |yt1:j−1) are given; then

• For i = 1, . . . , N :

– Sample xitj ∼ p(xtj |yt1:j ,x
i
tj−1

).

– Compute importance weights

ω̆itj ∝ ω
i
tj−1

p(ytj |yt1:j−1 ,x
i
tj ) p(x

i
tj |x

i
tj−1

)

p(xitj |yt1:j ,x
i
tj−1

)
= ωitj−1

p(ytj |yt1:j−1 ,x
i
tj−1

).

• For i = 1, . . . , N :

– Normalize importance weights ωitj = ω̆itj/(
∑N

k=1 ω̆
k
tj ).

• Obtain particles {xit1:j
, ωitj}

N
i=1 which approximate p(xt1:j |yt1:j ).

In addition, a resampling step needs to be introduced to resolve the problem of weight degeneracy.
Because resampling is time consuming, it is carried out only if the effective sample size is below
some threshold (see Section 2.4 for details).

To apply the particle filter to the state-space model given by (6.4) and (6.5) it is necessary
to specify the optimal proposal and the computation of the importance weights. The following
result shows that both take a very simple form. Furthermore, it gives the uniqueness of the
joint filtering distribution p(xt1:j |yt1:j ). This implies that in our microstructure noise model the
knowledge of the support Atj of p(exp[xtj ]|yt1 , . . . ,ytj ) already is sufficient for the identifiability
of the efficient (log-)price distribution conditional on the observations.

Proposition 6.1. The joint filtering distribution p(xt1:j |yt1:j ) is uniquely determined by the sup-
ports log Atk of the filtering distributions p(xtk |yt1 , . . . ,ytk), k = 1, . . . , j. The optimal proposal
is a truncated multivariate normal distribution given by

p(xtj |yt1:j ,xtj−1) ∝ N (xtj |xtj−1 ; Σtj )
∣∣
log Atj

with log Atj = logAtj ,1 × · · · × logAtj ,S and the importance weights can be computed through

ω̆itj ∝ ω
i
tj−1

∫
log Atj

N (xtj |xitj−1
; Σtj ) dxtj . (6.7)

Proof. See Appendix A.9.

Remark: For the market microstructure noise model (6.3) the optimal proposal cannot be
computed easily. In this case we propose to modify the particle filter as follows. Assume that
Utj is i.i.d. N (0,ΣU ) distributed. As proposal we use

p(xtj |xtj−1) = N (xtj |xtj−1 ; Σtj )

which gives the importance weights

ω̆itj ∝ ω
i
tj−1

p(ytj |yt1:j−1 ,x
i
tj ) = ωitj−1

∫
log Atj

N (y|xitj ; ΣU )dy.
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6.3.3 Sequential EM-Type Algorithms

In this section, we discuss the estimation of Σtj in the time-constant and time-varying case.
A stochastic EM algorithm can be used to obtain the maximum likelihood estimator in the

time-constant case Σtj = Σ (compare Section 2.5). The EM algorithm maximizes the likelihood
pΣ(yt1:T ) by iteratively carrying out an E-step and an M-step. In the E-step, the expectation

Q(Σ|Σ̂(m)) = EΣ̂(m)

[
log pΣ(Xt1:T ,yt1:T )|yt1:T

]
=

T∑
j=1

EΣ̂(m)

[
log p(ytj |yt1:j−1 ,Xtj )|yt1:T

]
+ EΣ̂(m)

[
log p(Xt1)|yt1:T

]
+

T∑
j=2

EΣ̂(m)

[
log pΣ(Xtj |Xtj−1)|yt1:T

]
(6.8)

needs to be approximated, where Σ̂(m) is the current estimator. Note, it is sufficient to consider
the sum in (6.8) because the random variables log p(ytj |yt1:j−1 ,Xtj ) and p(Xt1) do not depend
on Σ. In the M-step, a new parameter estimate Σ̂(m+1) is obtained by maximizing Q(Σ|Σ̂(m)).

If Σtj is time-varying some regularization is needed. For example Σ̂(m+1)
tj

can be obtained by
maximizing some localized version of (6.8), e.g.

Qtj (Σ|Σ̂
(m)
t1:T

) =
1
T

j−2∑
k=j−T

1
b
K
( k
bT

)
E

Σ̂
(m)
t1:T

[
log pΣ(Xtj−k |Xtj−k−1

)|yt1:T

]
(6.9)

with a kernel K(·) and a bandwidth b.
An approximation of Q(Σ|Σ̂(m)) and Qtj (Σ|Σ̂

(m)
t1:T

) can be computed based on the smoothing
particles

{xit1:T
, ωitT }

N
i=1

from our particle filter or (with higher precision) from existing particle smoothing algorithms
(Godsill, Doucet, and West 2004; Neddermeyer 2010b; Briers, Doucet, and Maskell 2010). The
smoothing particles give the approximation

EΣ̂t1:T
[log pΣ(Xtj−k |Xtj−k−1

)|yt1:T ]

≈
N∑
i=1

ωitT
1
2

[
S log 2π + log |Σ|+ tr

{
Σ−1

(
xitj−k − xitj−k−1

)(
xitj−k − xitj−k−1

)T}] (6.10)

which leads, with

Σ̆tj (ωtT ) :=
N∑
i=1

ωitT
(
xitj − xitj−1

)(
xitj − xitj−1

)T
, (6.11)

to the maximizers

Σ̂(m+1) =
1

T − 1

T∑
j=2

Σ̆tj (ωtT ) (6.12)
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and
Σ̂(m+1)
tj

=
[∑

k

K
( k
bT

)]−1 ∑
k

K
( k
bT

)
Σ̆tj−k(ωtT ) (6.13)

of (6.8) and (6.9), respectively (note that the particles and, therefore, also Σ̆ depend on m.)
Instead of these estimates, one will prefer in most situations an on-line algorithm which

updates the estimates when a new observation comes in. This requires on the one hand the use
of filtering particles instead of smoothing particles and on the other hand an integration of the
E-step into the algorithm.

We now develop such an algorithm step-by-step. Note that the recursion developed in 1)
below is not an on-line algorithm. It is just discussed to demonstrate the relation of the on-line
algorithms in (6.20) and (6.21) to the estimates (6.12) and (6.13), respectively. Note, in the
following steps the notation Σ̂tj is used for different estimates.

1) A “recursive” solution for the above situation (both for time-constant and time-varying Σtj )
is

Qtj (Σ|Σ̂t1:T ) := {1− λj}Qtj−1(Σ|Σ̂t1:T ) + λj EΣ̂t1:T

[
log pΣ(Xtj |Xtj−1)|yt1:T

]
(6.14)

with Qt2(Σ|Σ̂t1:T ) = EΣ̂t1:T

[
log pΣ(Xt2 |Xt1)|yt1:T

]
leading to

Qtj (Σ|Σ̂t1:T ) =
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k EΣ̂t1:T

[
log pΣ(Xtj−k |Xtj−k−1

)|yt1:T

]
+
[ j−3∏
`=0

(1− λj−`)
]
EΣ̂t1:T

[
log pΣ(Xt2 |Xt1)|yt1:T

]
. (6.15)

With the “constant parameter setting” λj := 1/(j − 1) , where
[∏k−1

`=0 (1 − λj−`)
]
λj−k = 1

j−1 ,
this gives the classical (quasi-) likelihood

1
j − 1

j−2∑
k=0

EΣ̂t1:T

[
log pΣ(Xtj−k |Xtj−k−1

)|yt1:T

]
,

that is (6.8) for j = T . Furthermore, the maximizer of (6.15) is, with the smoother-approximation
as in (6.10) and Σ̆tj (ωtT ) as in (6.11), given by

Σ̂(m+1)
tj

=
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k Σ̆tj−k(ωtT ) +

[ j−3∏
`=0

(1− λj−`)
]

Σ̆t2(ωtT ). (6.16)

This can be written as the recursion

Σ̂(m+1)
tj

= {1− λj} Σ̂(m+1)
tj−1

+ λj Σ̆tj (ωtT )

with Σ̂(m+1)
t2

= Σ̆t2(ωtT ). Again, we obtain with the “constant parameter setting” λj := 1/(j−1)

that Σ̂(m+1)
tj

coincides with the estimate in (6.12) for j = T .
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2) On-line algorithms: The above algorithm is not an on-line algorithm because the conditional
expectation in (6.14) depends on all observations. Therefore, we replace the conditioning set of
variables {yt1:T } by {yt1:j} meaning that we pass from the smoothing distribution to the filtering
distribution. More precisely,

EΣ̂t1:T

[
log pΣ(Xtj |Xtj−1)|yt1:T

]
is replaced by

EΣ̂t1:j−1

[
log pΣ(Xtj |Xtj−1)|yt1:j

]
(we need at this point an estimate for Σtj - see the comment at the end of this section) leading
to the on-line algorithm

Qtj (Σ|Σ̂t1:j−1) := {1− λj}Qtj−1(Σ|Σ̂t1:j−2) + λj EΣ̂t1:j−1

[
log pΣ(Xtj |Xtj−1)|yt1:j

]
(6.17)

with Qt2(Σ|Σ̂t1) = EΣ̂t1

[
log pΣ(Xt2 |Xt1)|yt1:2

]
. (6.15) holds analogously and we now obtain

analogous to (6.16) the estimate

Σ̂tj =
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k Σ̆tj−k(ωtj−k) +

[ j−3∏
`=0

(1− λj−`)
]

Σ̆t2(ωt2) (6.18)

now with

Σ̆tj (ωtj ) :=
N∑
i=1

ωitj
(
xitj − xitj−1

)(
xitj − xitj−1

)T
based on the filtering particles {xitj−1:j

, ωitj}
N
i=1. This estimate can be obtained from the on-line

recursion
Σ̂tj = {1− λj} Σ̂tj−1 + λj Σ̆tj (ωtj ) with Σ̂t2 = Σ̆t2(ωt2). (6.19)

Observe that the estimated covariance matrix Σ̂tj is positive (semi-) definite by construction.
The new parameter estimate Σ̂tj is used afterwards to calculate the next filtering particles

and their weights {xitj+1
, ωitj+1

}Ni=1 followed by the calculation of Σ̂tj+1 via another application of
(6.19) etc. In contrast to the standard EM algorithm, our sequential variant therefore updates
the covariance estimate (which in turn is used in the next step of the particle filter) in every
time step. In the “new E-step”, Qtj (Σ|Σ̂t1:j−1) is approximated through

Q̂tj (Σ|Σ̂t1:j−1) = {1− λj} Q̂tj−1(Σ|Σ̂t1:j−2)

− λj
1
2

N∑
i=1

ωitj

[
S log 2π + log |Σ|+ tr

{
Σ−1

(
xitj − xitj−1

)(
xitj − xitj−1

)T}]
using the particles {xitj−1:j

, ωitj}
N
i=1 which are generated by the particle filter described in the

preceding section. In the “new M-step”, the maximization of Q̂tj (Σ|Σ̂t1:j−1) gives the on-line
estimator defined in (6.19).

3) Time-constant covariance matrices: If Σtj is time-constant the first idea is to apply the algo-
rithm (6.19) with the “constant parameter setting” λj = 1/(j − 1) . However, the situation is
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different from the classical case in that the “old” estimate Σ̂tj−1 has in addition some bias due to
the use of particles generated with an estimated covariance instead of the true one. Therefore
we need to put less weight on the first term in (6.19). The situation has been carefully investi-
gated for a similar algorithm in the i.i.d.-case by Cappé and Moulines (2009). Following their
recommendation we use in our situation the on-line algorithm

Σ̂tj = {1− (j − 1)−γ} Σ̂tj−1 + (j − 1)−γ Σ̆tj (ωtj ) (6.20)

with γ ∈ (1
2 , 1). Cappé and Moulines prove consistency and asymptotic normality of their

estimate for weights λj := λ0j
−γ and γ ∈ (1

2 , 1) and also for γ = 1 under some restrictions on
λ0 (Theorem 2). Furthermore, in their simulations it turned out that a value of γ = 0.6 and
λ0 = 1 has lead to good estimates. From our experience we prefer the choice γ = 0.8 and λ0 = 1
(see Section 6.9). Even-Dar and Mansour (2003) obtained an optimal value of about 0.85 in a
related estimation problem. We emphasize that the choice of γ needs more investigations - both
theoretical and practical.

4) Time-varying covariance matrices: If Σtj is time-varying it is necessary to put more weight on
recent observations. In this case, the traditional solution is to use the algorithms (6.14), (6.17)
and (6.19) with time-constant λj ≡ λ instead of a decaying λj . To achieve a better degree of
adaptation our λj will still be time-varying (see Section 6.5.1) but with the intuition that the λj
fluctuate around some constant value of λ. That is we use in the time-varying case

Σ̂tj = {1− λj} Σ̂tj−1 + λj Σ̆tj (ωtj ) with Σ̂t2 = Σ̆t2(ωt2). (6.21)

The choice of the λj is discussed in Section 6.5.1. For a deeper understanding we stress the
following heuristics: If λj ≡ λ and tj = j δ (e.g. δ = 1

T ) then we have with b := δ
λ for δ → 0

[ k−1∏
`=0

(1− λj−`)
]
λj−k = (1− λ)kλ =

δ

b

(
1− δ

b

) 1
δ
kδ
≈ δ

b

(
e−

1
b

)kδ
=
δ

b
K
(kδ
b

)
(6.22)

where K(x) := e−x. That is Qtj (Σ|Σ̂t1:T ) from (6.17) is basically the kernel likelihood given
in (6.13) with the one-sided exponential kernel, and Σ̂tj given by (6.21) with constant weights
λj = λ is basically the kernel estimate

Σ̂tj =
[∑

k

K
( k
bT

)]−1 ∑
k

K
( k
bT

) N∑
i=1

ωitj−k
(
xitj−k − xitj−k−1

)(
xitj−k − xitj−k−1

)T
.

6.3.4 Summary

Our estimation method consists of three components:

(i) The state-space model with a new market microstructure noise model and the transaction
time model for the efficient log-price (Section 6.3.1);

(ii) A particle filter which sequentially approximates the filtering distributions of the efficient
log-prices given the observed transaction prices (Section 6.3.2);
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Figure 6.4: Estimation of two time-varying volatility curves given by the black lines based on simulated data.
Estimators: Σ̂tj (turquoise line), Σ̃∗tj |tj (red line), benchmark estimator (gray line). For details see Section 6.10.1.

(iii) The on-line EM-type estimator Σ̂tj given by (6.20) or (6.21) which estimates Σtj based
on the particle approximation of the filtering distribution obtained from the particle filter
(Section 6.3.3). This estimator is improved in the time-varying case to Σ̃∗tj |tj in Section 6.5.

A key aspect of the method is the back and forth between the particle filter and the EM-type
estimator. To propagate the particles from time tj to time tj+1 the particle filter requires an
estimator of Σtj+1 which we denote by Σ̂pf

tj+1
. A simple solution is to use Σ̂pf

tj+1
:= Σ̂tj from the

previous EM-type step. A more sophisticated solution is to use the estimator Σ̂pf
tj+1

:= Σ̃∗tj+1|tj
from Section 6.5.2 based on a prediction argument. The EM-type estimator then in turn updates
the covariance estimate based on the new particles for time tj+1 generated by the particle filter.

Estimation results of our estimators Σ̂tj , Σ̃∗tj |tj (see Section 6.5), and a benchmark esti-
mator (see Section 6.10.1) are presented in Figure 6.4. Details and a discussion are given in
Section 6.10.1.
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6.4 From Transaction Time to Clock Time

6.4.1 Clock Time Spot Volatility Estimation

In the preceding section, we have derived an algorithm for the estimation of the covariance
matrix Σtj = Σ(tj) in a transaction time model. If one prefers a clock time model all results
of this chapter continue to hold with some modifications. In this case one may consider as the
underlying model the stochastic differential equation

dX(t) = Γ(t) dW(t) where Γ(t) ΓT (t) = Σc(t) (6.23)

and W(t) is a multivariate Brownian motion. Σc(t) is the volatility curve in the clock time
model. Loosely speaking, it denotes volatility per time unit while Σ(t) denotes the volatility per
transaction at time t. The relation between the two curves should be given by (6.25) (of course
this depends on the mathematical definition of Σ(t) and Σc(t)). If we set Xtj = X(tj) we obtain
the same state space model as in (6.4) and (6.5) but now with the log-returns Ztj = Xtj −Xtj−1

approximately distributed as

Ztj ∼ N
(
0, |tj − tj−1| Σc(tj)

)
.

This is the only change needed in the state-space model (6.4), (6.5). As an estimate Σ̂c
tj we can

use the on-line estimates (6.20) and (6.21) but now with the update matrix Σ̆tj (ωtj ) replaced by

Σ̆c
tj (ω

c
tj ) :=

N∑
i=1

ωcitj

(
xcitj − xcitj−1

)(
xcitj − xcitj−1

)T
|tj − tj−1|

(6.24)

based on the modified filtering particles {xcitj−1:j
, ωcitj}

N
i=1. In Section 6.5, we discuss bias correc-

tion, adaptive and time-varying selection of the step size λj , and prediction of future volatilities.
All methods can also be applied to Σc(t) which is briefly summarized at the end of Section 6.5.2.

6.4.2 An Alternative Estimator for Clock Time Spot Volatility

In the diffusion model (6.23) the spot volatility in clock time is

Σc(t) = lim
∆t→0

∫ t+∆t
t Σc(s) ds

∆t
= lim

∆t→0

Var
(
X(t+ ∆t)−X(t)

)
∆t

.

To clarify the relation to the transaction time volatility Σ(t) we assume for a moment that the
transaction times tj are realizations of a stochastic point process with intensity function λI(t)
(transaction rate) which is independent of the efficient and observed prices. We then have

lim
∆t→0

Var
(
X(t+ ∆t)−X(t)

)
∆t

= lim
∆t→0

E

∑
j : t<tj≤t+∆t Σ(tj)

∆t

= lim
∆t→0

E

∑
j : t<tj≤t+∆t Σ(tj)∣∣{j : t < tj ≤ t+ ∆t}

∣∣
∣∣{j : t < tj ≤ t+ ∆t}

∣∣
∆t

= Σ(t) λI(t)
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that is

Σc(t)=Σ(t)λI(t). (6.25)

We stress that this relation is primarily a nonparametric relation (“variance per time unit =
variance per transaction × expected number of transactions per time unit”) and it depends on
the underlying model whether this coincides with the definition of Σc(t) and Σ(t) given in the
model. A model which exactly leads to this formula is the subordinated differential equation
dX(t) = Γ(t) dWN(t) with a point process N(t) with intensity λI(t) (cf. Howison and Lamper
2001). The unit of ∆t (e.g. milliseconds) is also the unit of Σ(t) (e.g. variance per millisecond)
and of the intensity (e.g. expected number of transactions per millisecond). An obvious estimate
of the clock time volatility therefore is ˆ̂Σc(tj) = Σ̂tj × |{` : tj −∆t < t` ≤ tj}| /∆t with some
∆t.

Here we advocate a different estimation method of the intensity function λI(t) which is closer
related to our on-line scheme, namely the estimation of λI(t) by the inverse of the averaged
duration times δ̄j defined by the recursion

δ̄j = (1− λj) δ̄j−1 + λj
(
tj − tj−1

)
with δ̄2 = t2 − t1

leading with (6.18) to the alternative clock time volatility estimator

Σ̂c
alt(tj) :=

Σ̂tj

δ̄j
=

∑j−3
k=0

[∏k−1
`=0 (1− λj−`)

]
λj−k Σ̆tj−k(ωtj−k) +

[∏j−3
`=0(1− λj−`)

]
Σ̆t2(ωt2)∑j−3

k=0

[∏k−1
`=0 (1− λj−`)

]
λj−k

(
tj−k − tj−k−1

)
+
[∏j−3

`=0(1− λj−`)
](
t2 − t1

)
(or better with Σ̂tj replaced by Σ̃∗tj |tj from Section 6.5). This estimator has a remarkable property:

Because Σ̆t`(ωt`) ≈
(
t` − t`−1

)
Σ̆c
t`

(ωct`) the estimator is of the form

Σ̂c
alt(tj) ≈

∑j−2
k=0wkΣ̆

c
tj−k

(ωctj−k)∑j−2
k=0wk

that is Σ̂c
alt(tj) is a weighted average of the Σ̆c

t`
(ωct`) and therefore also a decent estimator in the

clock time model (the “≈” signs stem from the fact that in Σ̆t`(ωt`) and Σ̆c
t`

(ωct`) two different
particle filters are used - the effect of this is not clear!). Notice that the denominator tj−k−tj−k−1

in Σ̆c
tj−k

(ωctj−k) cancels out leading therefore to a more stable estimator (for example the sharp
green peaks in Figures 6.11 and 6.12 are caused by small values of tj−k − tj−k−1).

The above argument contains a pitfall: While Σ(t) usually is smooth thus requiring small
values of λj , the intensity of the point process λI(t) changes considerably over time thus requiring
larger values of λj . For that reason we use different sequences λj for the estimators Σ̂tj and δ̄j .
More specific we can use the same adaptation procedure as described in Section 6.5.1 also for
δ̄j with the only difference that we determine the equivalent to the unbiased estimator Σ̃tj |tj as
given by (6.35) and (6.36). (The formula (6.37) for the minimal mean squared error estimate
does not transfer to δ̄j because the durations usually would not be independent.)
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The estimators Σ̃∗ctj |tj (quasi mean squared error corrected version of Σ̂c
tj as defined in the

following section) and Σ̃c
alt(tj) = Σ̃∗tj |tj/δ̄j

(
with Σ̃∗tj |tj as defined in (6.43)

)
are plotted in fig-

ures 6.11 and 6.12 and discussed in Section 6.10.2. In this example a constant step size λj ≡ λ

turned out to be sufficient for the estimator δ̄j .

6.5 Fine-Tuning of the Volatility Estimator in the Time-Varying
Case

In this section we present a method for the adaptive choice of the time-varying step size λj and
an on-line bias correction for the estimator Σ̂tj given by (6.18) through (6.19). The basic idea for
bias correction is to calculate two estimators with different step sizes in parallel and to balance
the two on-line. The resulting estimator is the estimator Σ̃∗tj |tj from Figure 6.4. We continue to
use the notation with Σ although we only discuss the univariate case (the basic formula (6.35)
also holds in the multivariate case with synchronous trading times). We also present an on-line
method for quasi mean squared error minimization, and a method for the prediction of future
volatilities.

6.5.1 Adaptive Step Size Selection

For constant λ we have the equivalence of the on-line estimator with a kernel estimator with
kernel K(x) = e−x as described in Section 6.3.3 under 4). For kernel estimators the adaptive
(off-line) choice of the bandwidth has been discussed extensively and most of these results could
be transferred to the present setting. However, there does not exist any equivalence between our
on-line estimator with time-varying λj and kernel estimators with local bandwidths: The weight
λj at time tj only applies to the last observation and not to a longer stretch of data.

We are not aware of any rigorous results on adaptive choices for a sequence λj for exponential
smoothing estimators. This means that the method proposed below may also be of relevance in
other on-line estimation settings.

Here is an overview of the method:

1. We start with the ad-hoc proposal based on the logistic function (to ensure 0<λj<1)

λj :=
exp[α+ βhtj−1 ]

1 + exp[α+ βhtj−1 ]
, (6.26)

where

htj−1 :=
∣∣∣∣ log Σ̂tj−1 − log Σ̂(1/2)

tj−1

j − 1 − j − 1 (1/2)

∣∣∣∣2. (6.27)

(6.26) was proposed by Taylor (2004) with a different htj−1 . The above htj−1 is motivated
at the end of Section 6.5.2. For the definition of the expressions in htj−1 see (6.33) and
below. α and β are adaptively determined in step 4.

91



CHAPTER 6. PARTICLE FILTER-BASED ON-LINE ESTIMATION OF SPOT
CROSS-VOLATILITY

2. At each time tj we calculate on-line two different estimators: First Σ̂tj as defined in (6.19)
and second Σ̂(1/2)

tj
which is the same as Σ̂tj but with all λj replaced by λj/2. Thus we have

at each time step two on-line estimators available - one with a larger step size sequence
(with less smoothing) and one with a smaller step size sequence (with stronger smoothing).

3. We then consider arbitrary linear combinations of these estimators and determine at each
time step tj the optimal linear combination with respect to the optimal quasi mean squared
error, or alternatively with respect to unbiasedness resulting in the estimators Σ̃∗tj |tj or
Σ̃tj |tj . The advantage of this method is that it can be performed on-line for each tj .

4. The mean squared error of the estimator Σ̃∗tj |tj resulting from the whole procedure 1.
through 3. is finally minimized with respect to α and β by the cross-validation type
criterion

crit(α, β) :=
T−1∑
j=2

(
Σ̃∗tj |tj − Σ̆tj+1(ωtj+1)

)2
. (6.28)

This cannot be done on-line. In practice, one will use in an on-line setting the values of α
and β from past experience. The expectation of the above criterion is approximately

T−1∑
j=2

[(
EΣ̃∗tj |tj − Σtj

)2 + Var
(
Σ̃∗tj |tj

)
+ Var

(
Σ̆tj+1(ωtj+1)

)]
.

Because the last term does not depend on α and β we correctly minimize the approximate
mean squared error.

We do not know anything about the theoretical properties of the procedure as a whole. We feel
however that the degree of adaption is high as a result of the minimization in step 3 (correcting
somehow for the limitations of the ad-hoc proposal in step 1) and the final minimization with
respect to α and β. This is confirmed by our simulations.

Remark: A simpler alternative is to use a fixed step size λj ≡ λ and to minimize the mean
squared error (6.28) with respect to λ. Steps 2 and 3 can be kept as they are in this case.

6.5.2 On-line Bias Correction and Mean Squared Error Minimization

We now describe steps 2 and 3 in detail. We stress that these steps can be done for arbitrary
step size sequences λj , that is we do not need the specific choice from step 1.

Let τ : [0,∞) → [0,∞) be the mapping that maps transaction time to clock time, i.e.
τ(j) = tj (we assume that τ is defined on the whole positive real line). We define

Σ̇(s) :=
∂

∂s
Σ
(
τ(s)

)
= Σ′

(
τ(s)

)
τ ′(s)

leading to the linear approximation

Σ(tj) = Σ
(
τ(j)

)
≈ Σ(ti) + (j − i) Σ̇(i) (6.29)
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(
for the meaning of the “≈”-sign see Section 6.11; for example in the equidistant case ti = iδ we
have τ ′(i) = δ and (j− i) Σ̇(i) = (j− i) δΣ′(ti) is small for small δ

)
. By using the approximation

E Σ̆tj (ωtj ) = E
N∑
i=1

ωitj (x
i
tj −xitj−1

)(xitj −xitj−1
)T ≈ E (Xtj −Xtj−1)(Xtj −Xtj−1)T = Σtj (6.30)

we obtain from (6.18) (with some i close to j)

E Σ̂tj ≈
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k Σ

(
tj−k

)
+
[ j−3∏
`=0

(1− λj−`)
]

Σ
(
t2
)

≈
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k

[
Σ(ti)−

(
i− (j − k)

)
Σ̇(i)

]
(6.31)

+
[ j−3∏
`=0

(1− λj−`)
][

Σ(ti)−
(
i− 2

)
Σ̇(i)

]
= Σ(ti)−

(
i− j̄

)
Σ̇(i) ≈ Σ(ti)−

(
i− j̄

)
Σ̇(j̄) ≈ Σ

(
tj̄
)

(6.32)

with

j̄ :=
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k (j − k) +

[ j−3∏
`=0

(1− λj−`)
]

2 . (6.33)

We note that j̄ can be obtained via the on-line recursion

j̄ = (1− λj) j − 1 + λj j with 2̄ = 2. (6.34)

This means that we are estimating Σ(t) essentially at time tj̄ < tj . This is a result of the one-
sidedness of the recursive method

(
for example in the equidistant case tj = jδ and λj ≡ λ we

obtain j̄ ≈ j + 1 − 1/λ and tj̄ ≈ (j + 1 − 1/λ) δ - see also (6.22)
)
. In order to correct for this

bias or to construct even approximately unbiased estimators of future volatilities we now take
a linear combination of the two estimators Σ̂tj and Σ̂(1/2)

tj
where the latter is the same as Σ̂tj

in (6.18) and (6.19) but with all λj replaced by λj/2. Analogously we define j̄ (1/2) as in (6.33)
and (6.34) but again with all λj replaced by λj/2. The new estimator now is defined by the
extrapolation

Σ̃ti|tj :=
(
1 + κi|j

)
Σ̂tj − κi|j Σ̂(1/2)

tj
(6.35)

with time-varying weights

κi|j :=
i− j̄
j̄ − j̄ (1/2)

. (6.36)

We immediately obtain

E Σ̃ti|tj ≈ Σ(ti)−
[(

1 + κi|j
) (
i− j̄

)
− κi|j

(
i− j̄ (1/2)

)]
Σ̇(i) = Σ(ti)

and for i = j we therefore have a bias-corrected estimator of Σ(tj). Because the estimator
extrapolates the two estimators Σ̂tj and Σ̂(1/2)

tj
we have to watch particularly the variance which
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may become large. From a statistical view a better choice is the estimator with a minimal mean
squared error. In Appendix A.10, we calculate the quasi mean squared error (with the unknown
efficient log-prices used instead of the filter particles) and show that this mean squared error is
minimized by

κmin ≈
(
i− j̄

)(
j̄ − j̄ (1/2)

) [
∂
∂t log Σ(t)|t=tj̄ τ

′(j̄)]2 − 2 (v1,j − v3,j)(
j̄ − j̄ (1/2)

)2 [ ∂
∂t log Σ(t)|t=tj̄ τ

′
(
j̄
)]2 + 2 (v1,j + v2,j − 2v3,j)

(6.37)

with v1,j , v2,j and v3,j obtained from the recursions

v1,j =
(
1− λj

)2
v1,j−1 + λ2

j , v1,2 = 1; (6.38)

v2,j =
(
1− λj

2
)2
v2,j−1 +

λ2
j

4
, v2,2 = 1; (6.39)

v3,j =
(
1− λj

)(
1− λj

2
)
v3,j−1 +

λ2
j

2
, v3,2 = 1. (6.40)

∂
∂t log Σ(t)|t=tj̄ and τ ′

(
j̄
)
are unknown. In order to get an adaptive choice of κ we replace

these terms by estimators. From (6.31) we know that Σ̂tj and Σ̂(1/2)
tj

are essentially estimators
of Σ(t) at times tj̄ and tj̄ (1/2) , respectively. We therefore use

log Σ̂tj − log Σ̂(1/2)
tj

tj̄ − tj̄ (1/2)

tj̄ − tj̄ (1/2)

j̄ − j̄ (1/2)
(6.41)

as an estimate of ∂
∂t log Σ(t)|t=tj̄ τ

′(j̄) leading to

κ∗i|j :=
i−j̄
j̄−j̄ (1/2)

[
log Σ̂tj − log Σ̂(1/2)

tj

]2
− 2 (v1,j − v3,j)[

log Σ̂tj − log Σ̂(1/2)
tj

]2
+ 2 (v1,j + v2,j − 2v3,j)

(6.42)

and the corresponding estimator

Σ̃∗ti|tj :=
(
1 + κ∗i|j

)
Σ̂tj − κ∗i|j Σ̂(1/2)

tj
. (6.43)

In practice, the values of κ∗i|j will be restricted to the interval [−1, 1] because other values do not

make sense (smaller values than −1 may occur because Σ̂tj and Σ̂(1/2)
tj

are correlated - however
such values yield an extrapolation in the wrong time direction).

An example of this estimator for simulated data is given in Figure 6.5. The bias of Σ̂tj and
Σ̂(1/2)
tj

and the bias correction of Σ̃∗tj |tj are clearly visible. For details see Section 6.10.1.
It is easy to prove that (v1,j + v2,j − 2v3,j) ≥ 0. “Usually” also v1,j − v3,j ≥ 0

(
for example for

constant λj ≡ λ v1,j and v3,j converge to the fixpoints of the recursion v1 = λ
2−λ and v3 = λ

3−λ
with v1,j − v3,j > 0

)
. For this reason we usually have κ∗i|j < κi|j .

For the recursion described in Section 6.3.4 (where Σ(tj+1) is needed in the next step of the
particle filter) we think that the mean squared error choice Σ̃∗tj+1|tj with κ

∗
j+1|j is the best choice.

On the contrary as an estimate for Σ(tj) of financial log-returns the unbiased estimator with
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Figure 6.5: Estimation of the time-varying volatility curve given by the black line in the upper plot based on
simulated data. Upper plot: Σ̃∗tj |tj (red line), Σ̂tj (green line), Σ̂

(1/2)
tj

(blue line); middle plot: step size sequence
λj ; lower plot: sequence κ∗j|j . For details see Section 6.10.1.

κj|j may be more interesting (it is less smoothed and contains in some sense more information).
Perhaps in a practical application both estimators (with κj|j and κ∗j|j) should be plotted.

We finally motivate the choice of λj and htj−1 in step 1: In the case of constant λj = λ we
obtain from (6.31) and (A.14) for the mean squared error

E
(

Σ̂tj − Σ(tj)
)2
≈ 1/λ2 Σ̇(j̄)2 + λΣ(tj̄)

2

which gets minimal for

λ =
∣∣∣√2

∂

∂t
log Σ(t)|t=tj̄ τ

′(j̄)∣∣∣2/3 .
Together with the restriction 0 < λj < 1 (leading to the use of the logistic function) and the
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estimate (6.41) this has motivated the local choice of λj as in (6.26) with

htj−1 :=
∣∣∣∣ log Σ̂tj−1 − log Σ̂(1/2)

tj−1

j − 1− j − 1 (1/2)

∣∣∣∣ ρ
where α and β are determined as described in step 4. We have simulated the mean squared error
of the whole procedure 1. through 4. for several values of ρ leading finally to the choice ρ = 2
as in (6.27). Nevertheless, the choice of λj and htj−1 as given in (6.26) and (6.27) remains to be
an ad-hoc suggestion.

Bias correction in clock time models: A similar algorithm for adaption and bias correction
can be established in the clock time setting from Section 6.4. Instead of the approximation (6.29)
we start with

Σc(tj) = Σc(ti) + (tj − ti) Σc ′(ti)

and define instead of j̄

t̄j :=
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k tj−k +

[ j−3∏
`=0

(1− λj−`)
]
t2

given by the on-line recursion

t̄j = (1− λj) t̄j−1 + λj tj with t̄2 = t2.

Analogously we obtain the estimator

Σ̃c
ti|tj :=

(
1 + κti|tj

)
Σ̂c
tj − κti|tj Σ̂c (1/2)

tj

with

κti|tj :=
ti − t̄j
t̄j − t̄ (1/2)

j

as the approximately unbiased estimator and Σ̃∗ cti|tj with

κ∗ti|tj ≈

ti−t̄j
t̄j−t̄

(1/2)
j

[
log Σ̂c

tj − log Σ̂c (1/2)
tj

]2
− 2 (v1,j − v3,j)[

log Σ̂c
tj
− log Σ̂c (1/2)

tj

]2
+ 2 (v1,j + v2,j − 2v3,j)

as the estimator with approximately optimal quasi mean squared error.

Prediction: The estimators Σ̃ti|tj and Σ̃∗ti|tj can be used (with i > j) for prediction of future
volatilities. In particular in combination with a predictor for future durations (e.g. with an
ACD model - cf. Engle and Russell (1998)) this may lead to new predictors. One should keep
in mind that these predictions are based on linear extrapolation. However, it should be possible
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to adapt the methods of this work also to other prediction models such as in Meddahi, Renault,
and Werker (2006). By plugging the relation

ti − t̄j
t̄j − t̄ (1/2)

j

≈
(
i− j̄

)
τ ′
(
j̄
)(

j̄ − j̄ (1/2)
)
τ ′
(
j̄
) =

i− j̄
j̄ − j̄ (1/2)

into (6.36) and (6.42) and replacing afterwards ti by t we can also obtain predictors for arbi-
trary time points t. Similarly the above estimators from the clock time model can be used for
prediction.

6.6 Spot Cross-Volatility Estimation: New Modeling Aspects

In the preceding sections the estimation of spot volatility as well as the estimation of spot
cross-volatility in the simplified case of synchronous trading were considered. Now, the realis-
tic multivariate case with non-synchronous trading times is treated. For this purpose we first
propose a new model for non-synchronous tick-by-tick data.

6.6.1 A New Transaction Time Model for Non-Synchronous Data

The model we propose is a random walk model in transaction time in each component (with time-
varying volatilities) plus an interpolation given by a stochastic differential equation. It allows
to handle the different transaction times and the definition and estimation of the covariances of
the log-returns. In our model, each component evolves in an individual transaction time which
agrees with the economic intuition that each security price responds to its own information flow.

More precisely, let’s consider the discrete time log-price processes X
t
(s)
j ,s

, s = 1, . . . , S. For

notational convenience X
t
(s)
j ,s

is denoted briefly by X
t
(s)
j

if there is no danger of confusion. We

assume that
X
t
(s)
j

= X
t
(s)
j−1

+ Z
t
(s)
j

(6.44)

with log-returns Z
t
(s)
j

∼ N
(
0, (Σ

t
(s)
j

)ss
)
. If the transactions times t(s)j are different in each

component s (which they usually are) there is no natural definition of the covariance of the log-
returns. To overcome this problem we assume at this point that all components are interpolated
between the transaction times according to the stochastic differential equation

dX(t) = diag
(
|t(1)
j1
− t(1)

j1−1|
−1/2, . . . , |t(S)

jS
− t(S)

jS−1|
−1/2

)
Γ(t) dW(t) (6.45)

if t ∈ [t(s)js−1, t
(s)
js

) for all s. We have X(t) = (X1(t), . . . , XS(t)), diag denotes a diagonal matrix,
W(t) is a multivariate Brownian motion, and Γ(t)ΓT (t) = Σ(t) is the (time-varying) covariance
matrix of the log-returns. Note, we set X

t
(s)
j

= Xs(t
(s)
j ) (and analogous for other variables).

It is easy to check that in this model

Var(Z
t
(s)
j

) =
1

|t(s)j − t
(s)
j−1|

∫ t
(s)
j

t
(s)
j−1

(Σ(t))ss dt (6.46)

≈ (Σ
t
(s)
j

)ss (6.47)
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and

Cov(Z
t
(s1)
j

, Z
t
(s2)
k

)

=
1

|t(s1)
j − t(s1)

j−1|1/2|t
(s2)
k − t(s2)

k−1|1/2

∫
[t

(s1)
j−1 ,t

(s1)
j )∩[t

(s2)
k−1,t

(s2)
k )

(Σ(t))s1s2 dt (6.48)

≈
|[t(s1)
j−1, t

(s1)
j ) ∩ [t(s2)

k−1, t
(s2)
k )|

|t(s1)
j − t(s1)

j−1|1/2|t
(s2)
k − t(s2)

k−1|1/2
(
Σ

min{t(s1)
j ,t

(s2)
k }

)
s1s2

. (6.49)

Model assumptions:

(i) Given the time-varying covariance matrix Σ(t) we assume that (6.47) and (6.49) hold.

(ii) We assume that Σ(t) evolves slowly in time, that is we assume some smoothness on Σ(t).

As mentioned earlier the smoothness assumption (ii) needs not to be specified any further be-
cause we do not make any use of it formally. However, without this assumption the approximate
relations in (6.47) and (6.49) would not be correct.

Remarks: An alternative view is to assume that (6.46) and (6.48) hold, and to use (6.47) and
(6.49) as a numerical approximation in our calculations. A drawback of the above model is that
it depends on the observation times t(s)j . In our opinion this cannot be avoided if one wants to
work in transaction time rather than in clock time.

If one prefers a clock time model all results (given later) continue to hold with some modifi-
cations. In this case one will start with the stochastic differential equation dX(t) = Γ(t)dW(t)
which gives

Var(Z
t
(s)
j

) ≈ |t(s)j − t
(s)
j−1| (Σt

(s)
j

)ss (6.50)

and
Cov(Z

t
(s1)
j

, Z
t
(s2)
k

) ≈ |[t(s1)
j−1, t

(s1)
j ) ∩ [t(s2)

k−1, t
(s2)
k )|

(
Σ

min{t(s1)
j ,t

(s2)
k }

)
s1s2

(6.51)

instead of (6.47) and (6.49). The estimation method for the covariances presented later can also
be applied to this clock time model (see Section 6.8).

6.6.2 Non-Standard State-Space Models for Non-Synchronous Data

A multivariate extension of the observation equation (6.2) and the state equation (6.44) can
be combined to form a non-standard state-space model (see Section 6.7.1). The components
of the state and observation processes evolve non-synchronously in different (discrete) times.
To the author’s knowledge such kind of state-space models have not been considered before.
The properties of this non-standard state-space model differ significantly from those of standard
state-space models. In particular, the Markov property of the state process does not hold. As
a consequence, standard methods for filtering such as particle filters are not applicable for non-
synchronous state-space models. In the course of this work, a new particle filter which can
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cope with this situation is developed. The results obtained in Section 6.7 (including the particle
filter) do not only hold for our specific state-space model. They can be easily transfered to other
non-synchronous state-space models. In particular, the generalization to linear, Gaussian state
equations is straightforward.

6.7 On-Line Estimation of Spot Cross-Volatility

6.7.1 A State-Space Model with Non-Synchronous Observations and States

Now, the non-synchronous state-space model defined through the equations (6.2) and (6.44) is
considered. For convenience, it is restated as

Y
t
(s)
j

= g
t
(s)
j

(exp[X
t
(s)
j

]), (6.52)

X
t
(s)
j

= X
t
(s)
j−1

+ Z
t
(s)
j

, (6.53)

for s = 1, . . . , S and Z
t
(s)
j

∼ N (0, (Σ
t
(s)
j

)ss). The initial efficient prices exp[X
t
(s)
1

] are assumed to

be uniformly distributed on A
t
(s)
1

. The covariances of the log-returns Z
t
(s)
j

(defined in (6.48)) are
rewritten as

Cov(Z
t
(s1)
j

, Z
t
(s2)
k

) = f(t(s1)
j , t

(s2)
k )(Σ

min{t(s1)
j ,t

(s2)
k })s1s2 . (6.54)

The function f , which is defined through

f(t(s1)
j , t

(s2)
k ) =

|[t(s1)
j−1, t

(s1)
j ) ∩ [t(s2)

k−1, t
(s2)
k )|

|t(s1)
j − t(s1)

j−1|1/2|t
(s2)
k − t(s2)

k−1|1/2
, (6.55)

gives the “normalized overlapping time” of the log-returns Z
t
(s1)
j

and Z
t
(s2)
k

. We mention that

in the continuous time model discussed in Section 6.6.1 the variances and covariances of the
log-returns are only approximately equal to (Σ

t
(s)
j

)ss and f(t(s1)
j , t

(s2)
k )(Σ

min{t(s1)
j ,t

(s2)
k })s1s2 , re-

spectively. However, in the following we only treat the discrete time state-space model given
above. For simplicity we therefore assume that the equalities hold.

As mentioned earlier, the equations (6.52) and (6.53) form a non-standard state-space model
because the components of the state and observation processes evolve non-synchronously in
different discrete times. For two securities, the setup is visualized in Figure 6.6. The time
assignment min{t(s1)

j , t
(s2)
k } in (6.54) is ad hoc (one could also choose t(s1)

j or t(s2)
k ). Note, this

is a result of Σt being slowly varying. The components of the covariance matrix Σt are defined
in certain (average) transaction times. More precisely, the diagonal entry (Σt)ss (that is the
variance of the log-returns of security s) is defined with respect to the unit time step of the
transaction time {t(s)j }

Ts
j=1. For the off-diagonal entry (Σt)s1s2 , s1 6= s2, the situation is more

subtle. (Σt)s1s2 is obtained from the interpolation given in (6.45). The resulting formula (6.55)
can be interpreted as a specific overlapping geometric average of linear interpolated times in
each component. Consider the situation shown in Figure 6.6. To calculate f(t(1)

4 , t
(2)
2 ) one needs

the overlapping linear interpolated times of the log-returns z
t
(1)
4

and z
t
(2)
2

which are given by
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Figure 6.6: An example of non-synchronous trading times for two securities.

(t(2)
2 − t

(1)
3 )/(t(1)

4 − t
(1)
3 ) and (t(2)

2 − t
(1)
3 )/(t(2)

2 − t
(2)
1 ), respectively. The geometric average then

gives (6.55).

6.7.2 An Original Particle Filter for Non-Synchronous State-Space Models

For non-synchronous state-space models, standard particle filters do not apply because the com-
ponents of the state variable cannot be updated simultaneously. Now, a new particle filter is
developed.

For notational convenience the following is only shown for two securities. However, the
general case works analogous. Assume t(1)

j and t(2)
k are the most recent transaction times of the

securities 1 and 2, respectively. In addition, suppose t(1)
j ≥ t

(2)
k . With this setting, the filtering

distribution is given by p(x
t
(1)
1:j

, x
t
(2)
1:k

|y
t
(1)
1:j

, y
t
(2)
1:k

). The goal is to construct a particle filter which

approximates the filtering distribution through particles{
xi
t
(1)
1:j

, xi
t
(2)
1:k

, ωi
t
(1)
j

}N
i=1
.

For this purpose we consider the following decomposition of the filtering distribution. It is easy
to check that

p(x
t
(1)
1:j

, x
t
(2)
1:k

|y
t
(1)
1:j

, y
t
(2)
1:k

)

∝ p(y
t
(1)
j

|y
t
(1)
1:j−1

, x
t
(1)
j

) p(x
t
(1)
j

|x
t
(1)
1:j−1

, x
t
(2)
1:k

)p(x
t
(1)
1:j−1

, x
t
(2)
1:k

|y
t
(1)
1:j−1

, y
t
(2)
1:k

). (6.56)

In standard state-space models two simplifications are possible. First, the likelihood

p(y
t
(1)
j

|y
t
(1)
1:j−1

, x
t
(1)
j

)

simplifies to p(y
t
(1)
j

|x
t
(1)
j

). Because of dependencies between the observed transaction prices in-

duced by the market microstructure noise model this is not the case here (compare Section 6.3.2).
Second and more importantly, the set of conditioning variables in the transition prior

p(x
t
(1)
j

|x
t
(1)
1:j−1

, x
t
(2)
1:k

)

can not be reduced as in standard state-space models. This follows from the fact that in non-
synchronous state-space models the Markov property of the state transition does not hold. In
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general, the transition prior incorporates the full history of the states. However, there are some
cases when simplifications of the transition prior for non-synchronous state-space models are
possible which are summarized in the following proposition.

Proposition 6.2. (i) If t(1)
j−1 ≥ t

(2)
k then the transition prior simplifies to

p(x
t
(1)
j

|x
t
(1)
1:j−1

, x
t
(2)
1:k

) = p(x
t
(1)
j

|x
t
(1)
j−1

).

(ii) Let l1 and l2 be (the largest) integers such that t(1)
l1

= t
(2)
l2

, 1 ≤ l1 < j and 1 ≤ l2 ≤ k, then

p(x
t
(1)
j

|x
t
(1)
1:j−1

, x
t
(2)
1:k

) = p(x
t
(1)
j

|x
t
(1)
l1:j−1

, x
t
(2)
l2:k

).

Our particle filter generates particles sequentially in time making use of the relation (6.56) and
sequential importance sampling. Analogous to the case discussed in Section 6.3.2 it is possible
to sample from the optimal proposal which is given by p(x

t
(1)
j

|y
t
(1)
1:j

, x
t
(1)
1:j−1

, x
t
(2)
1:k

) in this setting.

This gives the following particle filter:
Suppose weighted particles

{xi
t
(1)
1:j−1

, xi
t
(2)
1:k

, ωi
max{t(1)

j−1,t
(2)
k }
}Ni=1

approximating
p(x

t
(1)
1:j−1

, x
t
(2)
1:k

|y
t
(1)
1:j−1

, y
t
(2)
1:k

)

are given; then

• For i = 1, . . . , N :

– Sample xi
t
(1)
j

∼ p(x
t
(1)
j

|y
t
(1)
1:j

, xi
t
(1)
1:j−1

, xi
t
(2)
1:k

).

– Compute importance weights

ω̆i
t
(1)
j

∝ ωi
max{t(1)

j−1,t
(2)
k }

p(y
t
(1)
j

|y
t
(1)
1:j−1

, xi
t
(1)
j

) p(x
t
(1)
j

|xi
t
(1)
1:j−1

, xi
t
(2)
1:k

)

p(xi
t
(1)
j

|y
t
(1)
1:j

, xi
t
(1)
1:j−1

, xi
t
(2)
1:k

)

= ωi
max{t(1)

j−1,t
(2)
k }

p(y
t
(1)
j

|y
t
(1)
1:j−1

, xi
t
(1)
1:j−1

, xi
t
(2)
1:k

).

• For i = 1, . . . , N :

– Normalize importance weights ωi
t
(1)
j

= ω̆i
t
(1)
j

/(
∑N

k=1 ω̆
k

t
(1)
j

).

• Obtain particles {xi
t
(1)
1:j

, xi
t
(2)
1:k

, ωi
t
(1)
j

}Ni=1 which approximate p(x
t
(1)
1:j

, x
t
(2)
1:k

|y
t
(1)
1:j

, y
t
(2)
1:k

).

Again, a resampling step is required tackling the weight degeneracy.
Now, the concrete state-space model given by (6.52) and (6.53) is considered. To derive the

optimal proposal and the computation of the importance weights we consider the distribution of
the log-returns Z

t
(s)
j

= X
t
(s)
j

−X
t
(s)
j−1

. It is easy to establish that the joint distribution is given by

p(z
t
(1)
2:j

, z
t
(2)
2:k

) = N
(

(z
t
(1)
2:j

, z
t
(2)
2:k

)T |0; S
)
, (6.57)
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where the entries of S are defined through (6.54). Let’s introduce the notation z = (z
t
(1)
2:j−1

, z
t
(2)
2:k

)T

and

S =

(
S11 S12

ST12 S22

)
,

where S11 = (Σ
t
(1)
j

)11.

Proposition 6.3. The optimal proposal is a truncated conditional normal distribution given by

p(x
t
(1)
j

|y
t
(1)
1:j

, x
t
(1)
1:j−1

, x
t
(2)
1:k

) ∝ N (x
t
(1)
j

|µ+ x
t
(1)
j−1

; Σ)
∣∣
logA

t
(1)
j

(6.58)

with µ = S12S
−1
22 z and Σ = S11−S12S

−1
22 S

T
12. If At(1)

j

is an interval, then the importance weights

are computed through

ω̆i
t
(1)
j

∝ ωi
max{t(1)

j−1,t
(2)
k }

{
Φ(sup logA

t
(1)
j

|µ+ xi
t
(1)
j−1

; Σ)− Φ(inf logA
t
(1)
j

|µ+ xi
t
(1)
j−1

; Σ)
}
, (6.59)

where Φ(·|µ, σ2) denotes the distribution function of N (µ, σ2).

Proof. To derive the optimal proposal it suffices to show that p(z
t
(1)
j

|z
t
(1)
2:j−1

, z
t
(2)
2:k

) = N (z
t
(1)
j

|µ; Σ).

This follows directly from (6.57). The expression for the importance weights is obtained similar
to that in Proposition 6.1.

Note that the covariance matrix S22 is of dimension j + k − 3 which grows over time. This
renders the algorithm impractical because S22 needs to be inverted to compute µ and Σ in every
iteration of the particle filter. Hence, a reduction of the dimension of S22 is required. For this
purpose, we replace (6.58) by p(x

t
(1)
j

|y
t
(1)
1:j

, x
t
(1)
l1:j−1

, x
t
(2)
l2:k

), where l1 and l2 are close to j − 1 and

k, respectively. The indices l1 and l2 are selected by applying one of the following three rules.

Rule 1: If t(1)
j−1 ≥ t

(2)
k then p(x

t
(1)
j

|y
t
(1)
1:j

, x
t
(1)
1:j−1

, x
t
(2)
1:k

) = p(x
t
(1)
j

|y
t
(1)
1:j

, x
t
(1)
j−1

).

Rule 2: Let l1, and l2 be the largest integers such that t(1)
l1

= t
(2)
l2

, 1 ≤ l1 < j and 1 ≤ l2 ≤ k,
then p(x

t
(1)
j

|y
t
(1)
1:j

, x
t
(1)
1:j−1

, x
t
(2)
1:k

) = p(x
t
(1)
j

|y
t
(1)
1:j

, x
t
(1)
l1:j−1

, x
t
(2)
l2:k

).

Rule 3: Whenever the cardinality of the set {x
t
(1)

l′1:j−1

, x
t
(2)

l′2:k

} is larger than K, the set is reduced

to {x
t
(1)
l1:j−1

, x
t
(2)
l2:k

}. The reduction is done by removing log-returns from the set (in clock

time order) as long as the cardinality is larger than K and the conditions l1 < j and l2 ≤ k
are satisfied. The conditions imply that at least one log-return of each security remains in
the set.

The reductions in the first two rules follow directly from Proposition 6.2. They are ex-
act and, therefore, are applied with priority. In the situation shown in Figure 6.6, rules 1
and 2 can be applied to obtain, for instance, p(x

t
(2)
3

|y
t
(2)
1:3

, x
t
(1)
1:3

, x
t
(2)
1:2

) = p(x
t
(2)
3

|y
t
(2)
1:3

, x
t
(2)
2

) and
p(x

t
(2)
6

|y
t
(2)
1:6

, x
t
(1)
1:5

, x
t
(2)
1:5

) = p(x
t
(2)
6

|y
t
(2)
1:6

, x
t
(1)
4:5

, x
t
(2)
5

), respectively. The third rule is an approxima-
tion which is used in the case when both rule 1 and rule 2 do not apply. Rule 3 can be justified
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by the fact that the influence of older log-returns on the most recent log-return vanishes rapidly
so that the bias introduced will be small if K is reasonably large. The choice of K is discussed
in Section 6.9.

6.7.3 EM-Type Algorithms for Non-Synchronous Observations and States

Again, the following is only presented for two securities. The generalization is straightforward.
First, a non-sequential EM algorithm for the estimation of a constant covariance matrix Σ

is discussed. We consider the distribution of the log-returns instead of the transition prior (see
(6.8)) which gives

Q(Σ|Σ̂(m)) = EΣ̂(m) [log pΣ(X
t
(1)
1:T1

, X
t
(2)
1:T2

, y
t
(1)
1:T1

, y
t
(2)
1:T2

)|y
t
(1)
1:T1

, y
t
(2)
1:T2

]

= const + EΣ̂(m) [log pΣ(Z
t
(1)
2:T1

, Z
t
(2)
2:T2

)|y
t
(1)
1:T1

, y
t
(2)
1:T2

].

An approximation of this conditional expectation can be obtained based on smoothing particles{
xi
t
(1)
1:T1

, xi
t
(2)
1:T2

, ωi
max{t(1)

T1
,t

(2)
T2
}

}N
i=1

which approximate the smoothing distribution p(x
t
(1)
1:T1

, x
t
(2)
1:T2

|y
t
(1)
1:T1

, y
t
(2)
1:T2

). As a result of (6.57)

this leads to

EΣ̂(m) [log pΣ(Z
t
(1)
2:T1

, Z
t
(2)
2:T2

)|y
t
(1)
1:T1

, y
t
(2)
1:T2

]

= EΣ̂(m) [log pS(Z
t
(1)
2:T1

, Z
t
(2)
2:T2

)|y
t
(1)
1:T1

, y
t
(2)
1:T2

]

≈
N∑
i=1

ωi
max{t(1)

T1
,t

(2)
T2
}
1
2

[
S log 2π + log |S|+ tr

{
S−1(zi

t
(1)
2:T1

, zi
t
(2)
2:T2

)T (zi
t
(1)
2:T1

, zi
t
(2)
2:T2

)
}]

,(6.60)

where zi
t
(s)
h

= xi
t
(s)
h

− xi
t
(s)
h−1

.

From (6.60) it is clear that the particle approximation Q̂(Σ|Σ̂(m)) can be easily maximized
with respect to S if we ignore the fact that certain entries of S are equal up to a proportionality
factor. This maximization leads to the following estimate of S

Ŝ(m+1) =
N∑
i=1

ωi
max{t(1)

T1
,t

(2)
T2
}
(zi
t
(1)
2:T1

, zi
t
(2)
2:T2

)T (zi
t
(1)
2:T1

, zi
t
(2)
2:T2

). (6.61)

The estimators derived below also hold for more than two securities. That is, from now on
we assume that we have S securities. From (6.61) it follows that a natural estimator of the
covariance matrix Σ is given, componentwise, by

(Σ̂(m+1))s1s2 =
1

|Hs1s2 |
∑

(h1,h2)∈Hs1s2

N∑
i=1

ωi
max{t(s1)

Ts1
,t

(s2)
Ts2
}

zi
t
(s1)
h1

zi
t
(s2)
h2

f(t(s1)
h1

, t
(s2)
h2

)
, (6.62)

where Hs1s2 is a set of paired time stamps defined through

Hs1s2 =
{

(h1, h2) : [t(s1)
h1−1, t

(s1)
h1

) ∩ [t(s2)
h2−1, t

(s2)
h2

) 6= ∅
}
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and s1, s2 ∈ {1, 2, . . . , S}. Notice, the summands in (6.62) are scaled according to the inverse of
the associated normalized overlapping times. In general Σ̂(m+1) only approximately maximizes
Q̂(Σ|Σ̂(m)). The estimator which maximizes Q̂(Σ|Σ̂(m)) cannot be obtained in closed form. It
could be computed through a high-dimensional numerical optimization procedure. Because this
is computationally inefficient we suggest to use the easy-to-compute estimator (6.62).

Analogous to Section 6.3.3 we now propose a localized variant of (6.62) which can be com-
puted recursively. Again, the crucial step is the transition from the smoothing particles to
filtering particles.

Let’s define the joint transaction time {tv}Tv=1 as the ordered set of time stamps

t1 = min{t(1)
1 , . . . , t

(S)
S } and {t2, . . . , tT } = {t(1)

2:T1
, . . . , t

(S)
2:TS
}.

Because multiple times are included only once, tv < tv+1 holds. For notational convenience the
joint transaction time includes only one of the first transaction times t(1)

1 , . . . , t
(S)
S . This implies

that the covariance estimate can be updated (for the first time) at time t2 because then at least
one security traded two times (which implies that one log-return is available).

It is easy to see (compare Section 6.3.3) that based on filtering particles a recursive version
of (6.62) is given by

(Σ̂tv)s1s2 = (1− λv,s1,s2)(Σ̂tv−1)s1s2 + λv,s1,s2(Σ̆tv)s1s2 , (6.63)

for v = 2, 3, . . . ,max{w : tw ≤ t(s1)
Ts1
∧ tw ≤ t(s2)

Ts2
}, where

(Σ̆tv)s1s2 =


∑N

i=1 ω
i

max{t(s1)

hv1
,t

(s2)

hv2
}

zi
t
(s1)

hv1

zi
t
(s2)

hv2

f(t
(s1)

hv1
,t

(s2)

hv2
)

if t
(s1)
hv1

= tv or t
(s2)
hv2

= tv

(Σ̂tv−1)s1s2 else

(6.64)

with hvs = min{hs : t(s)hs ≥ tv}. To comply with (6.62) the initial covariance estimate Σ̂t1 needs
to be set to the zero matrix of dimension S.

From (6.64) it follows that the estimate of the covariance of the securities s1 and s2 is updated
at time tv if one (or both) of the securities trades at time tv. If none of the two securities trades
at time tv (6.63) and (6.64) imply (Σ̂tv)s1s2 = (Σ̂tv−1)s1s2 . A practical issue is that in an on-
line application the update (Σ̆tv)s1s2 cannot always be computed at time tv. Assume t(1)

j = tv,

t
(1)
j > t

(2)
k , and t(1)

j < t
(2)
k+1. Then, (Σ̆tv)s1s2 cannot be computed because the transaction at time

t
(2)
k+1 is not available yet. In practice, the particle filter always uses the most recent available
estimate to simulate the transitions (see Section 6.9 and compare Section 6.3.4).

It remains to specify the step size λv,s1,s2 . For time-constant covariance matrices we propose
to use

λv,s1,s2 =
∣∣{t ∈ {t(s1)

2:Ts1
, t

(s2)
2:Ts2
} : t ≤ tv

}∣∣−γ ,
analogous to (6.20), with γ ∈ (1

2 , 1). Note that the set {t(s1)
2:Ts1

, t
(s2)
2:Ts2
} basically contains the joint

transaction times of the securities s1 and s2 up to time tv (multiple times are included only
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once). The magnitude of this set gives the number of updates for the component (Σt)s1s2 (up to
time tv). In the case of two securities the set is equal to the set of the joint transaction times of
all securities {t2, t3, . . . , tv} (besides t1). Thus, for two securities we obtain λv,s1,s2 = (v − 1)−γ

(compare (6.20)). We mention that if we use the smoothing particles to compute Σ̂tT through
(6.63) and set γ = 1 then Σ̂tT is equal to (6.62).

In the time-varying covariance case a constant step size λv,s1,s2 = λs1,s2 or a step size that
fluctuates around some constant value λs1,s2 will be used as in (6.21). For more details on the
practical choice of the step size see Section 6.9. We remark that the fine-tuning of the volatility
estimator in the time-varying case proposed in Section 6.5 is not directly transferable to the
non-synchronous cross-volatility estimator (6.63). Adaptive step size selection as well as bias (or
quasi mean squared error) correction for (6.63) should be considered in further research.

Finally, we mention that in contrast to the synchronous trading case (6.19), the covariance
estimates given by (6.62) and (6.63) are not necessarily positive (semi-) definite. A practical
solution of this problem is to increase the diagonal entries in case of non-positive definiteness.

6.8 Clock Time Covariance Estimation

In the preceding section an algorithm for the estimation of transaction time covariance matrices
Σt was derived. This method can also be used to estimate the covariance in clock time by
making a slight change to the definition of the covariance of the log-returns (6.54). The function
f defined in (6.55) needs to be replaced by

f̃(t(s1)
j , t

(s2)
k ) = |[t(s1)

j−1, t
(s1)
j ) ∩ [t(s2)

k−1, t
(s2)
k )|.

f̃ gives the overlapping time of two log-returns in clock time (compare (6.50) and (6.51)). In
contrast to f , it is not normalized. Note that the particle filter and the EM-type algorithm do not
change except that f is replaced by f̃ (compare Section 6.4.1). Although this gives a plausible
estimator for the clock time covariance, we are sceptical about its applicability is practice. We
expect it to be highly unstable as a results of the high variability of the durations t(s)j − t

(s)
j−1. In

particular, the positive definiteness of the covariance estimate will be an issue.
It is desirable to construct an alternative clock time estimator similar to Σ̂c

alt(tj) (see Sec-
tion 6.4.2) for the non-synchronous multivariate case. A straightforward adaptation of Σ̂c

alt(tj)
leads to (

Σ̂c
alt(tv)

)
s1s2

=
(Σ̂tv)s1s2(

δ̄
(s1)
v

)1/2(
δ̄

(s2)
v

)1/2
with averaged duration times δ̄(s)

v which are computed through δ̄(s)
v = (1 − λv,s)δ̄(s)

v−1 + λv,sδ̆
(s)
v

and

δ̆(s)
v =

t
(s)
hvs
− t(s)hvs−1 if t

(s)
hvs

= tv,

δ̄
(s)
v−1 else.

We mention that the case discussed here is significantly more complicated than the situation of
Section 6.4.2. Therefore, the reasoning given there does not transfer directly to the present case.
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A closer investigation of these clock time estimators is beyond the scope of this dissertation.
However, this is highly desirable and should be considered in future research.

6.9 Implementation Details

Algorithms

In sections 6.2 through 6.5, our estimation method was developed for the (artificial) multivariate
case with synchronous trading times. Here, this algorithm is summarized for (univariate) spot
volatility estimation (SVE) in transaction time. It is mentioned that the SVE algorithm (in its
simplest version without bias correction and adaptive step size selection) is a special case of the
algorithm for spot cross-volatility estimation (SCVE) given later. However, it is worth to be
stated separately because it is much easier to implement. In fact, it just needs a few lines in R.
For the available computer code see Chapter 8. (For notational convenience we use the matrix
notation also in the univariate case, that is Σt = σ2

t below.)

Algorithm: On-line Spot Volatility Estimation (SVE)

Initialization:

• Set the initial volatility estimate Σ̂t2 = Σ̂pf
t2
, the number of particles N , and the step

size λ (or α and β) for time-varying volatility estimation or γ for time-constant volatility
estimation.

• For i = 1, . . . , N : Generate sample xit1 such that exp[xit1 ] is uniformly distributed on At1 .

On-line spot volatility estimation: (for j = 2, . . . , T )

• For i = 1, . . . , N :

– Generate xitj from the optimal proposal N (xtj |xitj−1
; Σ̂pf

tj
)
∣∣
logAtj

.

– Compute the importance weight

ω̆itj ∝ ω
i
tj−1

{
Φ
(

sup logAtj |xitj−1
; Σ̂pf

tj

)
− Φ

(
inf logAtj |xitj−1

; Σ̂pf
tj

)}
.

• For i = 1, . . . , N : Normalize the importance weight ωitj = ω̆itj/
∑N

k=1 ω̆
k
tj .

• Update the volatility estimate and obtain Σ̂pf
tj+1

for the next iteration.

• If the effective sample size ESS({ωitj}
N
i=1) < 0.2N , then resample the particles using, for

instance, the residual resampling scheme (Douc, Cappé, and Moulines 2005).

In the time-varying case the particle filter uses Σ̂pf
tj

= Σ̃∗tj |tj−1
(see Section 6.3.4). As the

estimator of Σtj we usually use Σ̃∗tj |tj from (6.43) (if not otherwise stated) and sometimes Σ̃tj |tj
from (6.35). In addition, the adaptation procedure described in Section 6.5.1 is applied. α and
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β are used from past experience or determined as described in step 4. In the time-constant
estimation case we simply use Σ̂pf

tj
= Σ̂tj−1 . More details on the choice and initialization of the

parameters are given later.
We emphasize that the whole algorithm is computationally very efficient because the com-

plexity of one iteration is linear in the number of particles N .
Now, the algorithm for spot cross-volatility estimation (SCVE) developed in Section 6.7 is

stated.

Algorithm: On-line Spot Cross-Volatility Estimation (SCVE)

Initialization:

• Set the initial covariance estimate Σ̂t2 = Σ̂pf
t2
, the number of particles N , the constant K,

and the step sizes λv,s1,s2 for time-varying covariance estimation or γ for time-constant
covariance estimation.

• For i = 1, . . . , N and s = 1, . . . , S: Generate sample xi
t
(s)
1 ,s

such that exp[xi
t
(s)
1 ,s

] is

uniformly distributed on A
t
(s)
1

.

On-line covariance estimation: (for v = 2, . . . , T )

• Determine the securities s1, . . . , sW that were traded at time tv.

• For w = 1, . . . ,W : (the following three steps are conditional on {xitv ,s1 , . . . , x
i
tv ,sw−1

}Ni=1)

– Determine l1, . . . , lS by applying the rules 1 through 3 described in Section 6.7.2 and
compute the optimal proposal (6.58), where Σtv is replaced by Σ̂pf

tv .

– For i = 1, . . . , N : Generate sample xitv ,sw from the optimal proposal.

– For i = 1, . . . , N : Compute the importance weight ω̃itv according to (6.59), where
Σtv is again replaced by Σ̂pf

tv .

– For i = 1, . . . , N : Normalize the importance weight ωitv = ω̃itv/
∑N

j=1 ω̃
j
tv .

• Compute the update matrices according to (6.64). Obtain the covariance estimate Σ̂pf
tv+1

for the next iteration according to (6.63).

• If Σ̂pf
tv+1

is not positive definite, then iteratively increase the diagonal entries until positive
definiteness is achieved.

• If the effective sample size ESS({ωitv}
N
i=1) < 0.2N , then resample the particles using, for

instance, the residual resampling scheme (Douc, Cappé, and Moulines 2005).

As mentioned in Section 6.7.3, the covariance estimate Σ̂tv can often not be computed at time
tv. The estimate Σ̂pf

tv used in the particle filter is the most recent available estimate which is,
at best, Σ̂tv−1 (compare Section 6.7.3). Note that for the multivariate case prediction estimates
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(such as Σ̃∗tj |tj−1
) are not discussed in this work. However, they could be constructed similarly

to the univariate case.
We mention that at a time tv it may be required to update the covariance estimate more

than one time. This is the case because a transaction can have a positive overlapping time with
multiple transactions of another security.

The complexity of one iteration of the SCVE algorithm is O(NK + K3) and the storage
requirement is O(NK). The NK term follows from the computation of µ which is required for
every particle. The K3 term is a result of the matrix inversion required for the computation of
Σ (see Proposition 6.3). Therefore, the SCVE algorithm is computationally efficient as long as
K is small (see below).

Parameter Initialization

Σ̂pf
t2

Our experience from many data sets is that both algorithms stabilize quickly provided
that reasonable starting values are used – e.g. Σ̂t2 = Σ̂(1/2)

t2
= Σ̂pf

t2
= Σ̂ with Σ̂ from

prior knowledge or with Σ̂ being a rough initial estimate. In the SVE algorithm one will
use v1,3 = λ3

2−λ3
, v2,3 = λ3

4−λ3
and v3,3 = λ3

3−λ3
with (say) λ3 = 1/500 (these are the fix

points of the recursions (6.38) through (6.40)). More sophisticated starting values are
obtained as follows (only for the univariate case): One uses our procedure over the first
500 transactions in reversed time order leading to values Σ̂rev

t1 , Σ̂rev(1/2)
t1

, 1̄rev, 1̄rev(1/2)

and starts the algorithm then with the following values obtained by extrapolation:

2̄ := −1̄rev + 3 ; 2̄(1/2) := −1̄rev(1/2) + 3;

Σ̂t2 :=
(

1 +
2× 1̄rev − 2

1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

2× 1̄rev − 2
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

;

Σ̂(1/2)
t2

:=
(

1 +
1̄rev + 1̄rev(1/2) − 2

1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

1̄rev + 1̄rev(1/2) − 2
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

;

v1,2 = λrev
1

2−λrev
1

; v2,2 = λrev
1

4−λrev
1

; v3,2 = λrev
1

3−λrev
1

. We then obtain e.g. for the bias-corrected

estimator
(
where κ2|2 = 2−2̄

2̄−2̄ (1/2) = 1̄rev−1
1̄rev(1/2)−1̄rev = κrev1|1

)
after some calculations (see

Appendix A.11)

Σ̃t2|t2 =
(
1 + κ2|2

)
Σ̂t2 − κ2|2 Σ̂(1/2)

t2
= . . . = (6.65)

=
(

1 +
1̄rev − 1

1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

1̄rev − 1
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

= Σ̃rev
t1|t1

(note that because of Xt1 − Xt2 = −Zt2 with Zt2 ∼ N (0,Σt2) we have Σrev
t1 = Σt2).

The particle filter could be started with Σ̂pf
t2

:= Σ̃t2|t2 . λ3 can then be calculated from
the above formulas. The reversed method works nicely as can be seen from Figure 6.9
below. In order to exclude the effect of starting values we have used in the simulations
(except from Figure 6.7) the true matrix Σt2 as the starting value (i.e. Σ̂pf

t2
= Σ̂t2 =

Σ̂(1/2)
t2

= Σt2).
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N As a result of the efficiency of our particle filters the number of particlesN is not a critical
quantity. Typically, a few hundred (say 500) particles suffice to achieve a reasonable
precision in the case of a small number of securities considered (see Figure 6.7). However,
it may be necessary to increase the number of particles significantly, if the number of
securities considered is much larger than three.

K In the multivariate case K defined in Section 6.7.2 needs to be chosen. We find em-
pirically that (at least for our data) K as small as 20 suffices for two securities. Of
course, K should be increased when more than two securities are considered or when
the trading frequencies of the securities differ much. As discussed above the complexity
of the SCVE algorithm heavily depends on K. Hence, it should be chosen as small as
possible. In practice, a reasonable value can be obtained by running our algorithm with
different values for K and comparing the results.

λ, α, β In the time-varying covariance case the step size parameter λ or α and β need to be
specified. In the univariate case we apply the adaptive step size selection (with α and
β) as described in Section 6.5.1. In the multivariate case this method cannot be directly
applied and, therefore, we propose to use a constant step size λ which can be optimized
with respect to a criterion related to (6.28). We think that in the multivariate case the
optimal step size depends much on the application. For instance, if one is interested in
the cross-volatility (correlation) of two securities one can optimize λ for the estimation
of a particular covariance component (analogous to (6.28)). We mention that it is also
possible to consider individual step sizes for the different components of the covariance
matrix, that is λv,s1,s2 = λs1,s2 = λs2,s1 . However, the (optimal) step size selection
in the multivariate case remains an open question which should be tackled in future
research.

γ In the time-constant covariance case the step size only depends on γ. In the simulation
study we obtain that γ ≈ 0.8 is a good choice in practice (see Figure 6.7). However, a
more rigorous choice based on theoretical results is desirable.

6.10 Simulations and Applications

6.10.1 Results for Simulated Data

Estimation of time-constant spot volatility

We first consider the estimation of time-constant spot volatility. An efficient log-price process is
simulated from t1 to t5000 with squared volatility equal to Σt = 0.000052. The initial efficient
price exp[Xt1 ] is sampled from a uniform distribution on [50−0.005, 50+0.005). The transaction
prices are obtained by rounding the efficient prices to the nearest cent which constitutes a special
case of our market microstructure noise model. Our algorithm for time-constant spot volatility
estimation (6.20) is applied with different numbers of particles N and different values of γ. The
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Figure 6.7: Box plots for the results of the estimation of a time-constant volatility of 0.00005 based on simulated
data (5,000 transactions). Our estimator (6.20) is applied with different numbers of particles N and different
values for γ. The initial volatility is drawn from a uniform distribution on (0.00004, 0.00006). For comparison the
results of the benchmark estimator (“Benchmark”) and the optimal estimator (“Optimal”) are also reported. Note
that the optimal estimator is not available in practice. The box plots are computed based on 500 independent
runs.
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starting value Σ̂pf
t2

= Σ̂t2 is drawn from a uniform distribution on (0.000042, 0.000062). For
comparison the results of two benchmark algorithms are also reported. The first benchmark
method (“Benchmark” in Figure 6.7) is a recursive estimator with a simpler microstructure noise
correction. It is related to the method in Zumbach, Corsi, and Trapletti (2002) and it is based
on the market microstructure model log Ytj = Xtj + Utj , where the noise variables Utj are i.i.d.
with Var Utj = η2. The recursive estimator is given by

Σ̂B
tj :=

{
1− 1

j − 1
}(

Σ̂B
tj−1

+ max{0, 2η̂2
tj−1
}
)

+
1

j − 1
(log ytj − log ytj−1)2 −max{0, 2η̂2

tj} (6.66)

where η̂2
tj := {1− 1

j−2}η̂
2
tj−1
− 1
j−2

(
log ytj−log ytj−1

)(
log ytj−1−log ytj−2

)
(here 1

j−2 is used instead
of 1

j−1 because the algorithm starts one time point later). The term max{0, 2η̂2
tj} corrects for

the market microstructure noise. This follows from the fact that

Cov
(

log Ytj − log Ytj−1 , log Ytj−1 − log Ytj−2

)
= −η2.

The second benchmark method is, in some sense, the optimal estimator (“Optimal” in Figure 6.7).
It is unavailable in practice because it uses the latent efficient log-prices. It is computed analogous
to (6.20) but instead of the particles it employs the efficient log-prices leading to

Σ̂Opt
tj

= {1− (j − 1)−γ}Σ̂Opt
tj−1

+ (j − 1)−γ(xtj − xtj−1)2. (6.67)

The simulation results are given in terms of box plots which are obtained by 500 independent
runs (Figure 6.7). The box plots suggest that our volatility estimator is asymptotically unbiased
and that γ = 0.8 is a reasonable value. We can also conclude that about 500 particles are sufficient
which makes our algorithm computationally efficient and suitable for real-time applications. In
addition, it can be observed that the benchmark estimator is biased.

Estimation of time-varying spot volatility

We now compare our algorithms (6.21) and (6.43) for the time-varying spot volatility estimators
Σ̂tj and Σ̃∗tj |tj , respectively, with a benchmark estimator. The efficient log-prices are generated
with respect to the time-varying volatility given by the black lines in Figure 6.4 (the first case
(upper plot) is more challenging while the second case (lower plot) is more realistic for a volatility
curve in transaction time - see the real data example in Figure 6.9). The volatility curves used
are given by the square roots of the variance curves

Σ(t) = 0.0001052 ×


1 + 0.45 cos(3πt/7500) for 0 < t ≤ 7500,

0.55 for 7500 < t ≤ 11500,

0.82 + 0.27 cos(π + 2πt/3500) for 11500 < t ≤ 15000,

and

Σ(t) = 0.0001052 ×

1 + 0.45 cos(πt/2500) for 0 < t ≤ 2500,

1 + 0.45 cos(3π) for 2500 < t ≤ 15000.
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Figures 6.4 and 6.5 Figure 6.4 Figure 6.9
(upper plot) (lower plot)

Estimator line color α β MSE α β MSE α β

Σ̂tj turquoise -4.46 150,000 1.21 ×10−18 -4.95 289,000 3.20 ×10−19 -5.23 27,121
Σ̃∗tj |tj red -5.25 261,000 1.14 ×10−18 -5.36 431,000 1.77 ×10−19 -5.08 27,700
Σ̂B
tj gray -5.42 9,100 1.34 ×10−18 -6.35 13,900 6.76 ×10−19 -5.86 50,900

Table 6.1: Parameters α and β optimized with respect to (6.28). The mean squared errors (MSE) are computed
as described in Section 6.10.1.

In both cases exp[Xt1 ] ∼ U [50− 0.005, 50 + 0.005). Again transaction prices (observations) are
obtained by rounding the efficient prices to the nearest cent. 15,000 transactions are generated
which is typical for one trading day of a liquid stock. The particle filter is applied with N = 500
particles. The estimator Σ̃∗tj |tj is calculated as described in sections 6.5 and 6.9. Σ̂tj also uses
the time-varying step sizes (6.26) where α and β are obtained by minimizing the criterion (6.28)
as for Σ̃∗tj |tj . (A simpler strategy avoiding the calculation of Σ̂(1/2)

tj
is to use a constant step size

λ obtained by minimizing (6.28).) Analogous to (6.66) we consider the benchmark estimator
given by

Σ̂B
tj := {1− λj}

(
Σ̂B
tj−1

+ max{0, 2η̂2
tj−1
}
)

+ λj
(

log ytj − log ytj−1

)2 −max{0, 2η̂2
tj} (6.68)

with η̂2
tj := {1− 1

j−2}η̂
2
tj−1
− 1
j−2

(
log ytj−log ytj−1

)(
log ytj−1−log ytj−2

)
. For a fair comparison

we also use the time-varying step sizes (6.26) where α and β are obtained by minimizing the
criterion

T−1∑
j=2

(
Σ̂B
tj + max{0, 2η̂2

tj} − (log ytj+2 − log ytj+1)2
)2 (6.69)

(
the terms Σ̂B

tj + max{0, 2η̂2
tj} and (log ytj+2 − log ytj+1)2 are independent in the additive mi-

crostructure noise model log Ytj = Xtj +Utj with Utj i.i.d. - thus by using (log ytj+2− log ytj+1)2

(6.69) becomes a decent estimate of the mean squared error (plus a term constant in α and β)
)
.

For η̂2
tj we use the step sizes 1

j−2 because η2
t should be close to a constant function.

All estimators use the true volatility as starting value. Typical outcomes of the estimators
are given in Figure 6.4. Note that the volatility is plotted (instead of the squared volatility).
Because the true Σ(tj) is known we can compute the mean squared error ΣT−1

j=2

(
Σ̂(tj)− Σ(tj)

)2
for all estimators. The obtained mean squared errors and the optimized parameters α and β can
be found in Table 6.1. In both plots, Σ̃∗tj |tj significantly outperforms the other estimators.

We have tried to improve the benchmark estimator by a bias correction similar to Section 6.5.
Surprisingly, this has lead only to minor improvements. (We have refrained from plotting this
estimator.) The reason for this is not clear: We think that the rounding in the values ytj is
responsible for the bad quality in that it leads to a (local) bias and higher fluctuations. Perhaps
the estimator may be improved a bit by modifying (6.27).

To further investigate the estimator Σ̃∗tj |tj we have also plotted in Figure 6.5 Σ̂tj and Σ̂(1/2)
tj

from (6.43) (i.e. with the α and β used to optimize Σ̃∗tj |tj ) as well as the sequences λj and κ∗j|j .

The bias of Σ̂tj and Σ̂(1/2)
tj

is clearly visible. Furthermore, it can be seen how the estimator
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Figure 6.8: Estimation of the time-varying cross-volatility based on two simulated price processes with real
non-synchronous trading times. The transaction prices are generated with respect to the volatility curve and the
correlation curve given by the black lines in Figure 6.8 (lower plot) and in this figure, respectively. Estimators:
Σ̂tv (red line), optimal estimator Σ̂opt

tv
(green line) which is not available in practice. Note that only the correlation

estimates are plotted. The x-axis shows the joint transaction time.

Σ̃∗tj |tj extrapolates these raw estimates to improve on the bias. During the period of constant
volatility the step size λj gets low because (6.27) is close to zero. Furthermore, κ∗j|j gets close

to −1 which implies that Σ̃∗tj |tj ≈ Σ̂(1/2)
tj

(which is the smoother estimate). During periods of
volatility changes the step size λj gets large and Σ̃∗tj |tj adapts more quickly to Σtj .

Estimation of time-varying spot cross-volatility

Finally, a time-varying covariance matrix is estimated. Two efficient log-price processes are
generated with respect to the time-varying volatility and the time-varying correlation given by the
black lines in Figure 6.4 (lower plot) and Figure 6.8, respectively. To make the simulation setting
realistic real non-synchronous trading times are used. We take the time stamps of BAC and C
for the 4th September 2007 which gives 16,444 and 13,323 transactions for the two simulated
processes, respectively (for details on the data see below). The initial prices X

t
(s)
1

, s = 1, 2, are
again sampled from a uniform distribution on [50− 0.005, 50 + 0.005) and the transaction prices
are obtained by rounding to the nearest cent.

The aim is to compare our cross-volatility estimator Σ̂tv with the optimal estimator Σ̂opt
tv

which, analogous to (6.67), uses the latent efficient prices instead of the particles. For the
optimal estimator the update (6.64) is defined by

(Σ̆opt
tv )s1s2 =


z
t
(s1)

hv1

z
t
(s2)

hv2

f(t
(s1)

hv1
,t

(s2)

hv2
)

if t
(s1)
hv1

= tv or t
(s2)
hv2

= tv

(Σ̂opt
tv−1

)s1s2 else

with z
t
(s)
hs

= x
t
(s)
hs

−x
t
(s)
hs−1

. As a result of the non-synchronous trading there is no simple benchmark

estimator (such as (6.66)) available in the multivariate case. Our algorithm is applied with the
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setting N = 500 and K = 20. Both algorithms use the true covariance matrix as starting value.
We use constant step sizes which are chosen to minimize the criterion (6.28) with respect to
the cross-volatility component of the covariance matrix as suggested in Section 6.9. This gives
λ = 0.00325 and λ = 0.0031 for Σ̂tv and Σ̂opt

tv , respectively. The estimation results are shown in
Figure 6.8 in terms of the correlation estimates. Note that even the optimal estimator is quite
unstable suggesting that on-line estimation of time-varying correlation is a very hard problem.
The volatility estimates of Σ̂tv (not reported) are slightly worse compared to the univariate case
(lower plot in Figure 6.8) because the step size is optimized for the cross-volatility component.
In addition, neither time-varying step sizes nor bias correction are used.

6.10.2 Results for Real Data

The data

We use stock data from the TAQ data base. Transactions and market maker quotes of the
symbols BAC (Bank of America Corporation), C (Citigroup), and JPM (JPMorgan Chase &
Co) for the 3rd and 4th September 2007 were extracted from the TAQ data base. To improve
the data quality we carried out the following data cleaning and transformation.

Cleaning A: Delete all transactions (quotes) with time stamps outside the main trading period
(9:30 AM to 4 PM).

Cleaning B: Delete all transactions (quotes) that are not originating from the NYSE.

Cleaning C: Delete all transactions with abnormal sale condition or corrected prices (see the
TAQ User’s Guide for details).

Data transformation: If multiple transactions have the same time stamp (after the data
cleaning) apply the following transformation. Assume tj = tj+1 = . . . = tk−1 6= tk.
Replace tl by t′l = tj + (l − j)(tk − tj)/(k − j) for l = j + 1, . . . , k − 1.

After the data cleaning the following numbers of transactions remained for the symbols
BAC, C, and JPM, respectively: 16,219, 16,287, 13,400 for the 3rd September and 16,444,
13,323, 18,569 for the 4th September. The transformation replaces identical time stamps with
time stamps that are equally spaced. This transformation is necessary because the time stamp
precision of our data is limited to one second. See the remark below for an alternative approach.

Unfortunately, the quality of the TAQ data is to poor to match easily the transactions with
the market maker quotes. Note that it is necessary for our method that the transaction and
quote data are perfectly matched. Therefore, our simulations are mainly focused on transaction
data.

Remark: In the literature, it was suggested to delete multiple transactions with the same time
stamp and to use the median price (e.g. Barndorff-Nielsen et al. 2009). This is problematic for
at least two reasons. First, one loses much of the data. For instance, by removing the multiple
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Figure 6.9: Real data example: Estimation of time-varying spot volatility in transaction time. The upper plot
shows the transaction data of the symbol BAC for the 3rd September 2007. The lower plot gives our volatility
estimators Σ̂tj (turquoise line) and Σ̃∗tj |tj (red line) and the benchmark estimator Σ̂B

tj (gray line).

transactions with the same time stamp for BAC (3rd September) the number of transactions will
reduce to 8,696. That is, the number will almost be cut by half. Second, by using the median
price one will introduce spurious positive first order autocorrelations between consecutive returns.
In addition, the definition of the transaction time will not make sense any more.

Estimation results for real market maker quotes

In order to show how our method works in the case when market maker quotes are available
(case 2 in Section 6.2) we matched by hand (through an adjustment of the time stamps) the
quotes and transactions of symbol C for a fraction of the trading day. As mentioned earlier,
the quality of our data is to poor to do this automatically. Our particle filter is used with
N = 5, 000 particles to estimate the filtering distributions of the unknown efficient (log-)prices.
Figure 6.1 gives kernel density estimates of filtering distributions of some efficient prices which
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are computed based on the particle approximations. The market maker quotes, the transaction
prices, and supports of the filtering distributions are also shown. From the figure it can be seen
that some filtering distributions are highly skewed. In addition, consecutive zero returns lead to
very uninformative filtering distributions (see transactions 2,300 through 2,309).

Transaction time spot volatility estimation

We apply our estimators Σ̂tj and Σ̃∗tj |tj with N = 500 particles and the benchmark method Σ̂B
tj

(6.68) to estimate the spot volatility for BAC. To obtain a good initialization for the estimator
Σ̃∗tj |tj the initialization algorithm which proceeds in reversed time order is applied to the first

500 transactions (see Section 6.9). For Σ̂tj and Σ̂B
tj an initial volatility of 0.0002 is used. The

optimized values for α and β are reported in Table 6.1.
The transaction data of BAC and the volatility estimators are shown in Figure 6.9. At the

beginning of the trading day the volatility is large and highly varying. Later, the volatility settles
down and seems to be almost constant. Therefore, the localized step size selection from (6.26)
is clearly advantageous compared to fixed step sizes. Again the benchmark estimator is rougher
than our estimators. Practically, the volatility in transaction time is almost constant after 10:00.

Transaction time spot cross-volatility estimation

Time-varying estimates for the BAC/C/JPM data sets of the 4th September 2007 are plotted
in Figure 6.10. Our algorithm Σ̂tv is applied with the following setup: N = 500, K = 30,
and starting value Σ̂pf

t2
= diag(0.00032, 0.00032, 0.00032). The initial covariance matrix is far-

off the true one. The step size is obtained by minimizing the sum of the squared prediction
errors of the cross-volatilities, which are computed analogous to (6.28), yielding λ = 0.0065. We
observe that the first 30 minutes of the trading day are characterized by high volatilities and low
correlations. We emphasize that this is not an effect of the choice of the initial covariance matrix
because our algorithm can adapt very quickly. For the rest of the trading day the volatilities are
roughly constant. (Note that we use a constant step size λv,s1,s2 = λ which is optimized for the
estimation of the cross-volatilities (correlations). Therefore, this step size may not be optimal
for the plotted volatility estimates.) In contrast, the correlations show a high variability during
the whole trading day. For instance, the correlation of BAC/JPM (green line in Figure 6.10)
fluctuates between approximately 0.05 and 0.7 within less than two hours. This is an important
result for risk management and high-frequency trading.

Clock time spot volatility estimation

We now compare our two approaches for the estimation of spot volatility in clock time for symbol
BAC. The first estimator Σ̃∗ctj |tj is applied as described in sections 6.4.1 and 6.5.2. α and β are

optimized with respect to (6.28) where Σ̆tj+1(ωtj+1) is replaced with Σ̆c
tj+1

(ωctj+1
) (the results

are reported Table 6.2). A plot of this estimator is quite poor – apart from some strong spikes
caused by very small values of tj − tj−1 and therefore very large values of Σ̆c

tj (ω
c
tj ) in (6.24), the
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Figure 6.10: Real data example: Estimation of time-varying spot cross-volatilities. Upper plot: Transaction
data of the 4th September 2007 for the symbols BAC (black line), C (red line), and JPM (green line) plotted with
offsets. Middle plot: Volatility estimates in transaction time (colors of upper plot apply). Lower plot: Correlation
estimates for BAC/C (black line), BAC/JPM (green line), and C/JPM (red line).

volatility seems to be strongly oversmoothed. This is caused by the MSE-type criterion in (6.28)
in combination with the very large values of Σ̆c

tj (ω
c
tj ) acting like outliers and leading to small

λj . We therefore intuitively took 2λj leading to the estimate which is plotted in Figure 6.11.
The second estimator is the alternative estimator Σ̂c

alt(tj) = Σ̃∗tj |tj/δ̄j proposed in Section 6.4.2
with the transaction time estimator Σ̃∗tj |tj from Figure 6.9 (red line). For the duration estimator
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Figures 6.11 and 6.12
Estimator line color α β

Σ̃∗ctj |tj green -2.97 20,100
Σ̃∗tj |tj

(
Σ̂calt(tj)

)
red -5.08 27,700

Table 6.2: Parameters α and β optimized with respect to (6.28).

δ̄j we found empirically that a constant step size suffices (because the duration curve roughly
has constant smoothness over the trading day). The used step size for δ̄j is determined by
minimizing the prediction error ΣT−1

j=2 {δ̄j− (tj+1− tj)}2 leading to λ = 0.1025. (We mention that
because of the dependence of the durations δ̄j and (tj+1−tj) usually are not independent and the
minimization of the above criterion therefore is not approximately the same as the minimization
of the mean squared error. Despite of this we think that the resulting λ is reasonable. However,
this should be investigated further.)

The estimation results are provided in Figures 6.11 and 6.12. First we state that both
estimators roughly coincide (which was not clear beforehand). From the upper plot of Figure 6.11
we observe that Σ̃∗ctj |tj (green line) produces some large spikes during the trading day (due to

small values of tj−tj−1). The variability of Σ̂c
alt(tj) = Σ̃∗tj |tj/δ̄j is mainly a result of the variability

of the duration estimator δ̄j (plotted in the lower plot) because the transaction time estimator
Σ̃∗tj |tj is almost constant (apart from the beginning of the trading day - see Figure 6.9). The
fluctuation of the duration estimator is very high during the whole day.

Figure 6.12 compares the transaction data and the volatility estimates for a small time period.
The different behavior of the two estimators is apparent. We regard the strong spikes of Σ̃∗ctj |tj
as artificial due to small values of tj − tj−1. Furthermore, the estimator needs about one minute
to settle down again after the occurrence of a spike. On the other hand the small spikes of
Σ̂c
alt(tj) are caused by small averaged durations. For this reason we have more confidence in the

second estimator. In addition, it is theoretically more appealing (because the transaction time
volatility is almost constant and the variability of the clock time volatility is mainly caused by
the variability of the trading intensity).

The second estimator is also more stable for another reason: Because volatility in transaction
time is less varying the particle filter in transaction time is more stable.

6.11 Discussion

The discussion below focuses on the univariate case because we provided a complete method
for this case. The multivariate method presented can still be improved significantly (adaptive
step size selection, bias correction, etc.). However, this will be even more challenging than is the
univariate case because of the non-synchronicity. General conclusions are given at the end of the
dissertation.
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Figure 6.11: Real data example: Estimation of time-varying spot volatility in clock time based on the trans-
actions of symbol BAC for the 3rd September 2007. The upper plot gives the volatility estimators Σ̃∗ctj |tj (green
line) and Σ̂calt(tj) (red line). The middle plot shows the estimators for a fraction of the trading day. The averaged
duration times δ̄j (for a fraction of the trading day) are given in the lower plot (the y-axis shows seconds).

Methodological Comments

We have presented a new technique for the on-line estimation of time-varying volatility based
on noisy transaction data. Our algorithm is easy to implement and computationally efficient.
It updates the volatility estimate immediately after the occurrence of a new transaction, and it
therefore is as close to the market as possible. It also corrects for the bias which occurs as a
result of the on-line estimation. It is straightforward to extend our method to more complicated
price models (e.g. with a drift term) or other microstructure noise models.

Our work was guided by the goal to execute all calculations on-line in a high-frequency
situation, and, at the same time, to base all methods on solid statistical principles. We feel that
this goal has been achieved: Our algorithm is computationally efficient and it can be applied
in real-time. On a recent personal computer an efficient implementation of our method requires

119



CHAPTER 6. PARTICLE FILTER-BASED ON-LINE ESTIMATION OF SPOT
CROSS-VOLATILITY

50
.8

5
50

.9
5

14:07 14:09 14:11 14:13 14:15 14:17 14:19 14:21 14:23 14:25 14:27 14:29

1e
−

04
3e

−
04

5e
−

04

14:07 14:09 14:11 14:13 14:15 14:17 14:19 14:21 14:23 14:25 14:27 14:29

0
1

2
3

4

14:07 14:09 14:11 14:13 14:15 14:17 14:19 14:21 14:23 14:25 14:27 14:29

Figure 6.12: Real data example: Estimation of time-varying spot volatility in clock time based on the trans-
actions of symbol BAC for the 3rd September 2007. The figure only gives the results for a small fraction of
the trading day (compare Figure 6.11). The plots show (from top to bottom): transaction prices of BAC; our
volatility estimators Σ̃∗ctj |tj (green line) and Σ̂calt(tj) (red line); the averaged duration times δ̄j .

a few milliseconds for a single update of the estimator (including one iteration of the particle
filter with 500 particles). At the same time we use established or new statistical methods such
as particle filters in nonlinear state space models, EM-type algorithms, and adaptation by quasi
mean squared error minimization.

The contribution of this work is manifold. First, we have proposed a nonlinear market
microstructure noise model that covers bid-ask bounces, time-varying bid-ask spreads, and the
discreteness of prices observed in real data. Second, the problem of on-line volatility estimation
has been treated in a nonlinear state-space framework. It has been shown that the filtering
distribution of the efficient price can be approximated with a particle filter and that the volatility
can be estimated as a parameter of the filtering distribution. Third, we have presented a new
bias-corrected sequential EM-type algorithm which allows the on-line estimation of time-varying
volatility. Fourth, the problem of on-line adaptation has been treated satisfactorily (although
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still a bid ad-hoc from a theoretical viewpoint). The usefulness of the approach for real-time
applications has been demonstrated through Monte Carlo simulations and applications to stock
data.

Practical Aspects

Besides the new microstructure noise model we make a clear distinction between the (spot)
volatility per time unit Σc(t) and the volatility per transaction Σ(t). Volatility in clock time
usually is much more volatile than volatility in transaction time. We advocate the use of trans-
action time for modeling, i.e. to estimate Σ(t), together with a subsequent transformation based
on the trading intensity to obtain an estimator for Σc(t). At least for our data sets it turned out
that volatility in transaction time is almost constant (apart from the beginning of the trading
day) and the fluctuation of clock time volatility is merely a result of fluctuation of the trading
intensity (or the mean duration between subsequent trades). Thus a new focus in volatility
estimation may be on the modeling of trading times. It is an interesting open question whether
major external events do not only cause an increase in trading intensity but also an increase in
transaction time volatility.

Furthermore, we are convinced that the distribution of asset returns in a transaction time
model can be modeled in most situations quite well by a Gaussian distribution and many “jumps”
observed in security prices sampled on an equally spaced clock time grid are due to a drastically
increased number of transactions at that time. Our view is based on the investigation of several
data sets (not reported in this work).

Another issue is the question for the correct goal in volatility estimation: We think that
practitioners are more interested in a rapidly adapting (i.e. close to unbiased) and undersmoothed
estimator instead of an oversmoothed estimator. In that case minimizing the mean squared error
would not be the optimal strategy. We have presented with the approximately unbiased Σ̃tj |tj
an estimator in this direction.

Mathematical Challenges

Of course it is desirable to have a complete mathematical theory on the methods of this work.
However, we think that this is very hard to achieve. Here are a few comments in detail:

The results on the particle filter are mathematically exact given that the true volatility is
known (i.e. with Σ̂pf

tj
= Σtj ) including the results from Proposition 6.1 on the optimal proposal

and the importance weights. In particular it determines correctly the conditional distribution of
the efficient prices given the observations.

Even in the case of constant volatility and for the simplest estimator Σ̂tj from (6.20) it seems
to be very difficult to establish consistency and the asymptotic distribution. In the slightly
simpler context of i.i.d.-observations convergence properties of recursive EM-type algorithms
have been studied in Titterington (1984), Sato (2000), Wang and Zhao (2006), and Cappé and
Moulines (2009) where also proofs of consistency and asymptotic normality are provided.
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For strict mathematical results on local consistency or asymptotic normality some rescaling
framework would be necessary. One approach could be to let the sampling frequency tend
to infinity which would mean in the present setting of non-equally spaced observations that
supj τ ′(j) → 0 where τ is defined as in Section 6.5.2. At the same time the maximal step size
had to go to zero, i.e. supj λj → 0. Furthermore the assumption supj τ ′(j)

/
infj λj → 0 would

be needed (this corresponds to the common assumption n → ∞, bn → 0 and b → 0 for kernel
estimates with bandwidth b). All “≈”-signs in Appendix A.10 and most of the “≈”-signs in
Section 6.5.2 mean that the remaining terms are of lower order if these assumption were fulfilled.

An even bigger challenge is to determine the approximate mean squared error for the estimate
(A.13) (with the particles instead of the efficient price as in Appendix A.10). This would require
to prove the “≈”-sign in (6.30) and (even harder) to prove the corresponding relation for the
variance.

A strict mathematical result on bias reduction by combining two on-line algorithms with
different step sizes (similar to (6.36) but with time-constant step sizes) has been proved in the
context of time-varying ARCH models in Dahlhaus and Subba Rao (2007).

Finally, it is a mathematical challenge to put the interplay between transaction time volatility
and clock time volatility on solid mathematical grounds - for example by proving consistency
of the estimator Σ̂c

alt(tj) = Σ̃∗tj |tj/δ̄j in a subordinated differential equation model dX(t) =
Γ(t) dWN(t) with an adequate point process N(t).
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Chapter 7

Bayesian Phase Estimation for Noisy
Quasi-Periodic Time Series

7.1 Introduction

In the last decade, the estimation of the instantaneous phase of noisy oscillators experienced
significant attraction in a broad range of fields including engineering (e.g. channel decoding),
signal processing (e.g. signal denoising), physics (e.g. chaotic oscillators), and neuroscience (e.g.
seizure detection). In the latter two fields, the estimated phase is often used for the detection
of phase synchronization of oscillators (Rosenblum, Pikovsky, and Kurths 1996). In engineering,
estimation of the carrier frequency is of interest. Another application of phase estimation is
the detection of characteristic features and anomalies, for instance, in electrocardiogram (ECG)
recordings (Clifford, Azuaje, and McSharry 2006). Traditional approaches for phase estimation
are based on the Hilbert transform (Rosenblum, Pikovsky, and Kurths 1996), Wavelet transform
(Grossmann, Kronland-Martinet, and Morletet 1989), and the periodogram (Hannan 1973). In
the non-constant frequency case these methods are applied to rolling data windows. This renders
them, at least theoretically, limited to the estimation of locally constant frequencies. In practice,
they often fail not only in situations of fast varying frequency but also in cases when the signal
is noisy or when it incorporates baseline changes.

We propose herein a new model for stationary time series with a quasi-periodic component.
It is defined through

Yt = Atg(φt) +Bt + εt (7.1)

with amplitude At, phase φt, baseline Bt, and i.i.d. Gaussian noise εt. Both, the amplitude and
the baseline are allowed to be time-varying. g is a 2π-periodic function representing a fluctuation
pattern. The phase φt is assumed to be a monotonically increasing process. (This complies with
the usual definition of the phase as the integrated frequency.) In its full generality, the model
allows to be fitted to a broad range of noisy quasi-periodic time series. An important special
case is the cosine model

Yt = At cos(φt) + εt.
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This work concerns the estimation of At, Bt, and φt given the observed time series Yt =
yt. Our approach is based on a state-space representation of model (7.1). Within the state-
space model, the amplitude, the phase, and the baseline are modelled as latent states. For
the estimation, we propose an efficient Rao-Blackwellized particle smoother that combines the
Kalman smoother and a particle smoother. As discussed in the preceding chapters particle
smoothers (and particle filters) are Bayesian simulation methods for sequential estimation of
the hidden states of a general state-space model. More precisely, given observations y1:T =
{y1, . . . , yT } the task is to approximate the filtering distributions p(at, bt, φt|y1:t) or the smoothing
distributions p(at, bt, φt|y1:T ) of the hidden states At, Bt, and φt. Estimates of the hidden states
can be obtained as the means of these distributions.

In practice, the periodic function g is often unknown. For this setting, an original nonpara-
metric EM algorithm is suggested which allows that one estimates g iteratively. It is mentioned
that this nonparametric EM algorithm is not limited to our specific model but it is a general
method for the nonparametric estimation of functions within non-linear state-space models.

We show empirically that our method allows to obtain reliable estimates in cases when the
traditional methods fail. In addition, the proposed method can be applied in on-line settings.

7.2 A New State-Space Model for Quasi-Periodic Time Series

Here, we introduce a general setting which allows for on-line estimation of the model. The
amplitude At, the baseline Bt, and the phase φt are modeled as unobserved Markov processes.
By specifying the transition distributions, the problem can be written in terms of a general
state-space model with state equations(

At

Bt

)
= H

(
At−1

Bt−1

)
+

(
ξt

ζt

)
, (7.2)

φt = f(φt−1, ηt), (7.3)

and observation equation
Yt = Atg(φt) +Bt + εt,

where (ξt, ζt)T ∼ N (0, Q) and εt ∼ N (0, σ2
ε ). H is a transition matrix. The evolution of the

phase is modeled through function f and i.i.d. noise ηt. It is assumed that εt, ηt, and (ξt, ζt)T are
mutually and serially independent. In order to meet the requirement of φt to be non-decreasing,
f and the distribution of ηt need to be chosen so that f(φt−1, ηt) ≥ φt−1 is satisfied. We propose
to model the phase differences ∆φt = φt−φt−1 as durations within an ACD(1,0) (autoregressive
conditional duration) model. The ACD model was originally introduced by Engle and Russell
(1998) as a model for the dependency structure of the durations between consecutive transactions
in financial markets. The ACD(1,0) model is defined through

∆φt = ψ̆tηt where ψ̆t = α+ β∆φt−1,

with positive random increments ηt (e.g. Beta or Gamma distributed). In addition, it is assumed
that Eηt = 1. If the expectation of ηt is not normalized, ηt can be replaced by η̃t = ηt/Eηt.
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The restrictions α, β > 0 and β < 1 are imposed on the parameters. It can be shown that the
(unconditional) mean of the phase increments is

E[∆φt] =
α

1− β
, (7.4)

which can be interpreted as the average frequency. A state-space representation of the ACD(1,0)
model is given through (

φt

ψt

)
=

(
φt−1 + (α+ βψt−1)ηt

(α+ βψt−1)ηt

)
, (7.5)

where ψt = ψ̆tηt is an auxiliary state which carries the information of the duration model from
time t− 1 to t.

As can be seen from (7.2), the amplitude and the baseline evolutions are described through
a VAR(1) model. It is assumed that the diagonal entries of H are close or equal to one and
that the diagonal entries of Q are very small. That ensures that the amplitude and the baseline
vary slowly. In practice, it usually suffices to assume that H = diag(1, 1) and Q is a diagonal
matrix. In the setting of constant (but unknown) amplitude and baseline, one will replace (7.2)
by (At, Bt)T = (At−1, Bt−1)T which simplifies the estimation significantly.

A key feature of our model is that, conditional on the phase, it is a linear, Gaussian state-
space model. In the following sections, it is shown that this allows the usage of the Kalman filter
and the Kalman smoother for inference on the amplitude and the baseline.

7.3 The Estimation Method

7.3.1 Rao-Blackwellized Particle Filtering

We introduce a Rao-Blackwellized particle filter which generalizes the particle filter discussed in
Section 2.4. The posterior distribution can be decomposed as

p(x0:t|y1:t) = p(φ0:t, ψ0:t|y1:t)p(a0:t, b0:t|y1:t, φ0:t),

where Xt = (At, Bt, φt, ψt)T throughout this chapter. The basic idea of the Rao-Blackwellized
particle filter is to compute p(a0:t, b0:t|y1:t, φ0:t) with the well-known Kalman filter (Kalman 1960)
while approximating p(φ0:t, ψ0:t|y1:t) using particles {(φi0:t, ψ

i
0:t)

T , ωit}Ni=1 generated by a particle
filter. This gives the approximation

p(a0:t, b0:t, φ0:t|y1:t) ≈
N∑
i=1

ωitp(a0:t, b0:t|y1:t, φ
i
0:t)δφi0:t

(φ0:t). (7.6)

The particle filter employs the relation

p(φ0:t, ψ0:t|y1:t) ∝ p(φ0:t−1, ψ0:t−1|y1:t−1)p(yt|y1:t−1, φ0:t)p(φt, ψt|φt−1, ψt−1).

Note that contrary to the basic particle filter (see Section 2.4), the likelihood term p(yt|y1:t−1, φ0:t)
does not reduce to p(yt|φt). The relation (7.6) implies that the marginal densities p(at, bt|y1:t)
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are approximated by a mixture of Gaussian distributions

p(at, bt|y1:t) ≈
N∑
i=1

ωitN
(
at, bt|(ait, bit)T ,Σi

t

)
,

where the means (ait, b
i
t)
T and covariances matrices Σi

t are computed by the Kalman filter. The
following Rao-Blackwellized particle filter is similar to the algorithm in de Freitas (2001). For
notational convenience, we set Cit = (g(φit), 1).

Algorithm: Rao-Blackwellized Particle Filter (RBPF)

Initialization (for t = 0)

• For i = 1, . . . , N : Sample (φi0, ψ
i
0)T ∼ p(φ0, ψ0), set ωi0 = 1, and choose ai0, bi0, Σi

0 according
to prior knowledge.

Filtering (for t = 1, 2, . . .)

1. Kalman Prediction Step

• For i = 1, . . . , N : Compute

(ait|t−1, b
i
t|t−1)T = H(ait−1, b

i
t−1)T ,

Σi
t|t−1 = HΣi

t−1H
T +Q.

2. Importance Sampling Step

• For i = 1, . . . , N : Sample (φit, ψ
i
t)
T ∼ p(φt, ψt|φit−1, ψ

i
t−1), compute Sit = CitΣ

i
t|t−1(Cit)

T+
σ2
ε and evaluate importance weights

ω̆it ∝ ωit−1p(yt|y1:t−1, φ
i
0:t) = ωit−1N

(
yt|Cit(ait|t−1, b

i
t|t−1)T , Sit

)
.

• For i = 1, . . . , N : Normalize importance weights ωit = ω̆it/(
∑N

j=1 ω̆
j
t ).

3. Resampling Step

• If ESS({ωit}Ni=1) < 0.2N : Resample
{(φi0:t, ψ

i
0:t, a

i
0:t−1, a

i
t|t−1, b

i
0:t−1, b

i
t|t−1,Σ

i
0:t−1,Σ

i
t|t−1, S

i
t)
T , ωit}Ni=1 with replacement and

set ωit = 1/N for i = 1, . . . , N .

4. Kalman Updating Step

• For i = 1, . . . , N : Compute

(ait, b
i
t)
T = (ait|t−1, b

i
t|t−1)T + Σi

t|t−1(Cit)
T
{
yt − Cit(ait|t−1, b

i
t|t−1)T

}
(Sit)

−1,

Σi
t = Σi

t|t−1 −
{

Σi
t|t−1(Cit)

TCitΣ
i
t|t−1

}
(Sit)

−1.

The estimates are obtained through ât =
∑N

i=1 ω
i
ta
i
t, b̂t =

∑N
i=1 ω

i
tb
i
t, and φ̂t =

∑N
i=1 ω

i
tφ
i
t

respectively.
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7.3.2 Rao-Blackwellized Fixed-Lag Particle Smoothing

In the preceding section, the filtering distributions were used for inference on the hidden states.
However, the estimates can be improved upon by using smoothing distributions. We propose
to use fixed-lag smoothing with lag l. That is, the estimates for time t are computed based on
all information, which is available up to time t + l. Consequently, the task is to approximate
the (fixed-lag) smoothing distributions p(xt|y1:t+l). In practice, lag l will be relatively small. It
can be chosen such that it incorporates, say, approximately two periods of g. However, even
much smaller values may suffice. Let’s assume the signal is observed up to time t + l and an
approximation of the posterior distribution p(x0:t+l|y1:t+l) is obtained from the RBPF. Then, the
(marginal) smoothing distribution of the phase can be approximated through marginalization

p(φt|y1:t+l) ≈
N∑
i=1

ωit+lδφit(φt).

For the amplitude and the baseline one yields

p(at, bt|y1:t+l) ≈
N∑
i=1

ωit+lp(at, bt|y1:t+l, φ
i
0:t+l) =

N∑
i=1

ωit+lN
(
at, bt|(ãit, b̃it)T , Σ̃i

t

)
,

where (ãit, b̃
i
t)
T and Σ̃i

t are computed with the Kalman smoother. Smoothing by marginalization
has been criticized for causing sample impoverishment (Doucet, Gordon, and Krishnamurthy
1999). While this is true in general, it is not an issue in our setting because lag l is small and the
resampling frequency is rather low. In contrast to smoothing algorithms which proceed backwards
in time (see, for instance, Godsill, Doucet, and West 2004), smoothing by marginalization has
the advantage that it can be applied on-line. When the observation at time t comes in, the
estimates of time t − l can be updated using the fixed-lag smoothing density. In addition, it is
computationally very cheap.

Rao-Blackwellized Fixed-Lag Particle Smoothing Step

5. Kalman Smoothing Step (for k = t− 1, . . . ,max{t− l, 0})

• For i = 1, . . . , N : Compute

V i
k = Σi

kH
T (Σi

k+1|k)
−1,

(ãik, b̃
i
k)
T = (aik, b

i
k)
T + V i

k

{
(ãik+1, b̃

i
k+1)T −H(aik, b

i
k)
T
}
,

Σ̃i
k = Σi

k + V i
k (Σ̃i

k+1 − Σi
k+1|k)(V

i
k )T ,

Σ̃i
k,k−1 = Σi

k(V
i
k−1)T + V i

k (Σ̃i
k+1,k −HΣi

k)(V
i
k−1)T ,

with initial values (ãit, b̃
i
t)
T = (ait, b

i
t)
T , Σ̃i

t = Σi
t, and Σ̃i

t,t−1 = (I −Ki
tC

i
t)HΣi

t−1.
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6. Result

• Obtain amplitude estimate âk =
∑N

i=1 ω
i
tã
i
k, baseline estimate b̂k =

∑N
i=1 ω

i
t b̃
i
k, and

phase estimate φ̂k =
∑N

i=1 ω
i
tφ
i
k for time k = max{t− l, 0}.

The Rao-Blackwellized fixed-lag particle smoother (RBPS) algorithm is obtained by combin-
ing the RBPF with the smoothing step. Note, the cross-covariances Σ̃i

k,k−1 are only required in
the parameter estimation step (see the following section). We emphasize on the computational
efficiency of the RBPS. It has computational costs O(lNT ) for smoothing T time steps. In each
iteration only the particles for times t− l− 1, . . . , t are required, implying a storage requirement
of O(lN). As mentioned earlier, l will be rather small in practice.

7.3.3 A Stochastic EM Algorithm for Parameter Estimation

For application of the proposed RBPS in practice, it is required to estimate the state-space
model’s unknown parameter vector θ = (α, β, σ2

ε , vec(H), vec(Q))T . We consider the estimation
of θ based on a stochastic EM algorithm (compare Section 2.5). Let’s assume signal yt is received
up to time T . The EM algorithm maximizes the likelihood pθ(y1:T ) iteratively. In the E-step,
the expectation

Q(θ|θ(m)) = Eθ(m) [log pθ(X0:T , y1:T )|y1:T ]

is approximated, where θ(m) is the current parameter estimate. This expectation can be decom-
posed as

Q(θ|θ(m)) = Eθ(m) [log p(φ0, ψ0)|y1:T ] +
T∑
t=1

Eθ(m) [log pθ(yt|Xt)|y1:T ]

+
T∑
t=1

Eθ(m) [log pθ(At, Bt|At−1, Bt−1)|y1:T ] +
T∑
t=1

Eθ(m) [log pθ(φt, ψt|φt−1, ψt−1)|y1:T ].

It follows thatQ(θ|θ(m)) can be approximated through smoothing particles, which were generated
with respect to parameter value θ(m). That is, we obtain

Q̂(θ|θ(m)) = const− 1
2

T∑
t=1

N∑
i=1

ω̃it

[
log 2π + log σ2

ε +
1
σ2
ε

{
y2
t − 2Cit(ã

i
t, b̃

i
t)
T yt + Cit S̃

i
t(C

i
t)
T
}]

−1
2

T∑
t=1

N∑
i=1

ω̃it

[
2 log 2π + log |Q|+ tr

{
Q−1(S̃it −HS̃it−1,t − S̃it,t−1H

T +HS̃it−1H
T )
}]

+
T∑
t=1

N∑
i=1

ω̃it log pα,β(φit, ψ
i
t|φit−1, ψ

i
t−1),

where ω̃it = ωimin{t+l,T} are the smoothing weights and

S̃it = Σ̃i
t + (ãit, b̃

i
t)
T (ãit, b̃

i
t),

S̃it,t−1 = Σ̃i
t,t−1 + (ãit, b̃

i
t)
T (ãit−1, b̃

i
t−1) = (S̃it−1,t)

T .
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In the M-step, a new parameter estimate θ(m+1) is obtained by maximizing Q̂(θ|θ(m)). Maxi-
mization with respect to σ2

ε , H, and Q yield the estimates

(σ2
ε )

(m+1) =
1
T

T∑
t=1

N∑
i=1

ω̃it

{
y2
t − 2Cit(ã

i
t, b̃

i
t)
T yt + Cit S̃

i
t(C

i
t)
T
}
,

H(m+1) =

(
T∑
t=1

N∑
i=1

ω̃itS̃
i
t,t−1

)(
T∑
t=1

N∑
i=1

ω̃itS̃
i
t−1

)−1

,

Q(m+1) =
1
T

{
T∑
t=1

N∑
i=1

ω̃itS̃
i
t −H(m+1)

T∑
t=1

N∑
i=1

ω̃itS̃
i
t−1,t

}
.

It is easy to see that the memory requirement can be reduced by computing the estimators
recursively. For α and β, numerical maximization is required because no closed-form expression
can be derived.

The RBPS produces the smoothing particles {(φit, ψit)T , ω̃it}Ni=1, the means {(ãit, b̃it)T }Ni=1, and
the covariance matrices {Σ̃i

t}Ni=1, which approximate the fixed-lag smoothing distributions. Also
the cross-covariance matrices {Σ̃i

t,t−1}Ni=1 are computed. However, approximations of the fixed-
interval smoothing distributions pθ(m)(xt|y1:T ) are actually required to approximate Q(θ|θ(m)).
We argue that, for sufficiently large l, the fixed-lag and fixed-interval smoothing distributions
are very similar. In practice, even for l that is small one can obtain a reliable approximation.

7. (Parametric) EM Step

• Update parameter estimators (σ2
ε )

(m+1), H(m+1), and Q(m+1).

• Update numerical maximization of Q̂t(α, β|α(m), β(m)) to obtain parameter estimates
α(m+1) and β(m+1).

There are two different approaches for switching to the next parameter estimate θ(m+1). In
a batch setting, one will restart the RBPS with θ(m+1). In on-line applications, one can switch
to the new parameter values after every T time steps.

7.4 Nonparametric Estimation of the Fluctuation Pattern

Here, we discuss the case when the function g is unknown. We propose a new nonparametric
EM algorithm that estimates g iteratively. In the E-step

Q(g|g(m)) = const +
T∑
t=1

Eg(m) [log pg(yt|Xt)|y1:T ]

∝ const−
T∑
t=1

Eg(m) [{Yt −Atg(φt)−Bt}2|y1:T ] (7.7)

129



CHAPTER 7. BAYESIAN PHASE ESTIMATION FOR NOISY QUASI-PERIODIC TIME
SERIES

is computed. The M-step consists of maximizing Q(g|g(m)) with respect to g. In the following
we will derive an estimator for g which is based on the output of the RBPS. The basic idea is
approximate the densities pg(m)(φt|y1:T ) (which are contained in (7.7)) through kernel density
estimates based on the smoothing particles. This yields

pg(m)(φt|y1:T ) ≈ 1
ht

N∑
i=1

ω̃itK{(φt − φit)/ht} (7.8)

with kernel function K and bandwidth ht. The proposition given below shows that this leads
to an estimator for g which is also based on kernel approximations. For the derivation of a
convenient estimator we need to assume that the support of K is bounded (which is fulfilled, for
instance, by the Epanechnikov kernel) and that ht is chosen such that K{(φt − φit)/ht} = 0 for
|φt − φit| > 2π.

Proposition 7.1. Assume that (i) particles generated by the RBPS with respect to g(m) are
available, (ii) the assumptions on the kernel function K and bandwidths ht given above hold, and
(iii) g is 2π-periodic. Then, Q(g|g(m)) is approximately maximized by the estimate

ĝ(m+1)(φ) =
∑T

t=1

∑N
i=1 ω̃

i
tK{(φ− φitmod 2π)/ht}{ytãit − (S̃it)12}∑T

t=1

∑N
i=1 ω̃

i
tK{(φ− φitmod 2π)/ht}(S̃it)11

.

Proof. See Appendix A.12.

An important property of EM algorithms is that an EM iteration never reduces the likelihood.
For our nonparametric EM algorithm this is shown in the following proposition. A more detailed
analysis of the convergence properties of this algorithm in beyond the scope of this work.

Proposition 7.2. The nonparametric EM algorithm never decreases the (log-)likelihood, that is
pg(m+1)(y1:T ) ≥ pg(m)(y1:T ).

Proof. See Appendix A.13.

The RBPS combined with the nonparametric EM algorithm does not guarantee that all 2π-
periodic structure is included in the estimated fluctuation pattern. Therefore, after each iteration
the following transformations are applied which remove all 2π-periodic structures from the phase,
amplitude, and baseline estimates and transfer them to the fluctuation pattern:

φ̌it = 2π{F̂φ(φitmod2π) + bφit/(2π)c} (7.9)

ǎit = ãit/â(φ̌itmod2π) (7.10)

b̌it = b̃it − b̂(φ̌itmod2π) (7.11)

ǧ(m+1)(φ) = â(F̂−1
φ (φ̆))× ĝ(m+1)(F̂−1

φ (φ̆)) + b̂(F̂−1
φ (φ̆)) (7.12)

with φ̆ = (φmod2π)/(2π) and F̂φ being the distribution function of the 2π-folded phase which
is given by

F̂φ(y) =
∫ y

0
p̂φ(φ)dφ, (7.13)
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where

p̂φ(φ) =
1
h

T∑
t=1

N∑
i=1

ω̃itK

(
φ− φitmod2π

hφ

)
.

Note, the empirical distribution function cannot be used (instead of (7.13)) because it is not
invertible. The functions â and b̂ (in (7.10) and (7.11)) are kernel estimates of the 2π-folded
amplitude and baseline. They are given by

â(φ) =
∑T

t=1

∑N
i=1 ω̃

i
tK{(φ− φitmod2π)/ha}ãit∑T

t=1

∑N
i=1 ω̃

i
tK{(φ− φitmod2π)/ha}

and

b̂(φ) =
∑T

t=1

∑N
i=1 ω̃

i
tK{φ− φitmod2π)/hb}b̃it∑T

t=1

∑N
i=1 ω̃

i
tK{(φ− φitmod2π)/hb}

,

respectively.
In this section, various bandwidth parameters (ht, hφ, ha, hb) occurred which need to chosen

in practice. We propose the convenient method of cross-validation to obtain reasonable values.

8. Nonparametric EM Step

• Compute the estimator ĝ(m+1) of the fluctuation pattern g and obtain the transformed
pattern ǧ(m+1) (which is used in the next iteration) according to (7.12).

• Obtain the initial particles and weights φ̌i0, ǎi0, b̌i0, and ω̃i0, i = 1, . . . , N , for the next
iteration.

Analogous to the parametric EM step one will switch to the new fluctuation pattern ǧ(m+1)

after every T time steps. To start up the iteration an initial guess ĝ(0) is required. In Section 7.6.3,
noisy ECG recordings are studied and it is shown that an uninformative function ĝ(0) may suffice
in practice.

Remark: In practice the transformations (7.9), (7.10), and (7.11) need only be applied to the
initial particles φi0, ai0, bi0.

7.5 Discussion

The aim of this work was to propose a flexible model for quasi-periodic time series and an efficient
procedure for its estimation. In addition, simulation results are provided which demonstrate the
usefulness of the approach for practical applications (see Section 7.6). A rigorous theoretical
analysis of the proposed model and methods is, however, beyond the scope of the present work.
In particular, identifiability issues of the model and the convergence properties of the estimators
are important questions which should be tackled in future work.

Now, certain aspects of our method which are relevant for its practical application are dis-
cussed. In a theoretical analysis these aspects should also be considered.

131



CHAPTER 7. BAYESIAN PHASE ESTIMATION FOR NOISY QUASI-PERIODIC TIME
SERIES

• The state equations (7.2) and (7.3) do not claim to be appropriate models for the actual
amplitude, baseline, and phase processes. For instance, the amplitude should be positive
which is not guaranteed by (7.2). The reason for the use of these models is their flexibility
and ease of estimation. In this sense, the state equations are just a tool for estimating the
components of the observation equation. It is mentioned that more complex models (e.g.
nonlinear models for the amplitude and baseline) could be applied in our framework.

• An assumption of our model and the estimation method is that the amplitude and base-
line processes vary slowly. In particular, large jumps may cause problems in practice. If
the amplitude indeed varies slowly the estimated variance of the innovations ξt will be
small. This, in turn, usually implies that the estimator produces positive estimates for the
amplitude which is desired.

• In practice g should be a smooth function. If g is known a few discontinuities can be
allowed if their number is small compared with the number of observations. However, if
g is unknown and the nonparametric EM algorithm is used we implicitly assume that the
kernel estimate (7.8) is a good approximation of the smoothing density which, in turn,
leads to smoothness assumptions on g.

• When the nonparametric EM algorithm is used or the data is very noise, it is important
to provide good initial parameter values for the phase, amplitude, and baseline models.
This is necessary because no other prior information is given to the estimation method.
Particularly, one should ensure that the average phase increment (7.4) is relatively close to
the “true” value. This can be done by counting the number of cycles in the data (or in a
small subset) and computing a rough estimate of the average phase increment.

7.6 Simulations

In this section, results of the proposed algorithms for benchmark problems and an application
to human electrocardiogram recordings are presented.

7.6.1 Simulated Data

We consider a case when the true amplitude, baseline, and phase are available. We generate
observations yt, t = 1, . . . , 1000, from the general state-space model defined through (7.5) and

Yt = At cos(φt) +Bt + εt,

where at = 0.2 sin(2πt/1000)+0.4 and bt = 0.4t/750 1t≤750 +(0.4−0.4(t−750)/250) 1t>750. The
ACD model parameters are set to α = 0.2 and β = 0.99. Two levels of the observation noise are
investigated: σ2

ε = 0.01 and σ2
ε = 0.16. The parameters (α, β, σ2

ε , vec(Q)) are estimated with the
(parametric) EM algorithm and we set H = diag(1, 1). For both noise levels, the EM algorithm
obtains estimates (α̂, β̂, σ̂2

ε ) which were very close to the true values after a few iterations. For
Q, we obtain diag(10−4, 5× 10−5).
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Figure 7.1: The estimation results of the RBPS for the simulated signal with N (0, 0.01) noise (from top to
bottom): The simulated noisy observations; the folded estimated phase (circles) and the folded true phase (solid
circles); the estimated amplitude (dotted line) and the true amplitude (solid line); the estimated baseline (dotted
line) and the true baseline (solid line); the simulated non-noisy signal (solid line) and the denoised signal obtained
from the RBPS estimates (dotted line).
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Figure 7.2: The estimation results of the RBPS for the simulated signal with N (0, 0.16) noise (from top to
bottom): The simulated noisy observations; the folded estimated phase (circles) and the folded true phase (solid
circles); the estimated amplitude (dotted line) and the true amplitude (solid line); the estimated baseline (dotted
line) and the true baseline (solid line); the simulated non-noisy signal (solid line) and the denoised signal obtained
from the RBPS estimates (dotted line).
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The figures 7.1 and 7.2 show the true values and the estimated values for the two noise
levels, respectively. The estimates of the amplitude, baseline, and (folded) phase are computed
by the RBPS with N = 500 particles and lag l = 100. In addition, the figures display a
signal reconstruction based on the estimates (see bottom plots), that is the estimated denoised
observations ŷt = ât cos φ̂t + b̂t. For comparison, also the non-noisy observations yt − εt are
given. In the low-noise setting, it can be observed that the estimates are very accurate for all
quantities. In the high-noise setting, the estimates are only slightly worse which is, to some
extend, surprising given the low signal-to-noise ratio (particularly between times 600 to 900).

7.6.2 Noisy Rössler Attractor

Let’s consider the Rössler attractor with the configuration

ẋ1 = −x2 − x3,

ẋ2 = x1 + .15x2,

ẋ3 = .4 + x3(x1 − 8.5).

The Rössler attractor and related systems are, for instance, used to model population dynamics
(Blasius, Huppert, and Stone 1999; Lloyd and May 1999). We focus on the x1 component for
which the (folded) phase can be defined by means of

arctan(x2,t/x1,t) (7.14)

(see, for instance, Pikovsky et al. (1997)). It is assumed that x1,t is not observed directly but
through yt = x1,t + εt. One could replace x1,t in the denominator in (7.14) with the observations
yt to estimate the phase. However, at least in cases of large observation noise this would give
very unstable estimates. Here, we apply the Hilbert transform and our method to estimate the
phase.

As a result of the oscillation of x1 being close to sinusoidal the cosine model

Yt = At cos(φt) + εt

can be used for estimation. The baseline does not need to be estimated because it is set to
zero. This setting allows that we compare the phase estimate of the RBPS with the phase
obtained from the Hilbert transform. The Hilbert transform is a well-known technique for phase
estimation and it is often applied to (noisy) oscillators. Based on the Hilbert transform yht of
signal yt the signal’s phase φt can be defined through

ζt = yt + iyHt = at exp(iφt),

where ζt is called the analytic signal. The Hilbert transform yHt is defined as

yHt =
1
π
P

∫
ys
t− s

ds,
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Figure 7.3: Estimation results for the noisy Rössler attractor. The plots show (from top to bottom): x1-
component of the Rössler attractor with additive i.i.d. N (0, 4) noise; the folded Hilbert phase (circles) compared
with the true folded phase (solid circles); the folded phase estimated with the RBPS (circles) compared with
the true folded phase (solid circles); the (non-noisy) x1-component of the Rössler attractor compared with the
reconstructed (denoised) signal based on the amplitude and phase estimates of the RBPS.

with P being the Cauchy principal value. The Hilbert phase is computed from yt = Re(ζt) =
at cos(φt).

We integrate the Rössler system with step size 0.1 using the Runge-Kutta method (Press et
al. 1992, pp. 710-714) and we add i.i.d. Gaussian noise to the x1-component. Again, two noise
levels are considered: N (0, 4) and N (0, 40) (see top plots in figures 7.3 and 7.4). As parameter
estimates we obtain (α̂, β̂)T = (0.2, 0.02)T , Q̂ = diag(0.9, 0) (the second value is set to zero),
and σ̂2

ε close to the true value. H was set to diag(1, 0). The RBPS is applied with N = 1000
particles and lag l = 200. For the computation of the Hilbert phase a running window of 100
data points is used. The (folded) phase estimates of the Hilbert transform and our method for
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Figure 7.4: Estimation results for the noisy Rössler attractor. The plots show (from top to bottom): x1-
component of the Rössler attractor with additive i.i.d. N (0, 40) noise; the folded Hilbert phase (circles) compared
with the true folded phase (solid circles); the folded phase estimated with the RBPS (circles) compared with
the true folded phase (solid circles); the (non-noisy) x1-component of the Rössler attractor compared with the
reconstructed (denoised) signal based on the amplitude and phase estimates of the RBPS.

the two noise levels are presented in figures 7.3 and 7.4. It can be observed, that the phase
estimate of the RBPS is much closer to the true phase than the Hilbert phase. The bottom
plots show the (non-noisy) x1-component of the Rössler attractor along with the denoised signal
ŷ = ât cos(φ̂t), where ât and φ̂t are obtained from the RBPS. Note, that even in the high noise
case, the denoised signal is very close to the true signal. In the light of the low signal-to-noise
ratio this is a very satisfying result.
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Figure 7.5: Estimation results for the ECG recordings. The plots show (from top to bottom): the ECG data
points; the folded phase, the amplitude, and the baseline estimated by the RBPS.
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Figure 7.6: The initial fluctuation pattern ĝ(0) and the estimated fluctuation patterns ǧ(m) for the iterations
m = 1, . . . , 9 of the nonparametric EM algorithm.

7.6.3 Application to Human Electrocardiogram Recordings

Human ECG recordings are characterized by a specific fluctuation pattern, amplitude changes,
and baseline shifts. In addition, they are often corrupted by noise. The fluctuation pattern
heavily depends on certain characteristics of the specific human being. The baseline shifts are
typically caused by respiration or body movements (Clifford, Azuaje, and McSharry 2006). Let’s
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Figure 7.7: Left plot: A fraction of the ECG recordings. Right plot: Estimated fluctuation pattern ǧ(9) obtained
after nine iterations of the nonparametric EM algorithm.

consider the model
Yt = Atg(φt) +Bt + εt,

where, in addition to the amplitude, phase, and baseline, the fluctuation pattern g is unknown.
We use ECG recordings obtained from the PhysioBank database1. The data are sampled

at a frequency of 0.01 seconds for a duration of 10 seconds (which gives 1000 observations) and
they are plotted in the top plot of Figure 7.5.

The RBPS and the EM algorithms are applied to the data in order to obtain estimates for
φt, at, bt, and g. As initial fluctuation pattern we use the trivial choice ĝ(0) ≡ 0. The only
“prior” information used is contained in the initial values for the parameters α and β. We set
α(0) = (1−β(0))2π/90 and β(0) = 0.2 which, as a results of (7.4), implies E[∆φt] = 2π/90. This is
reasonable because the average period of the fluctuation pattern observed in the data is roughly
90 time steps. The estimates for the amplitude, baseline, and phase computed by the RBPS
which is applied with N = 500 particles and l = 40 are given in Figure 7.5. It can be seen that
the amplitude changes significantly over time. In contrast, the baseline is almost constant for
our data. The estimates of the fluctuation pattern ǧ(m) for the iterations m = 1, . . . , 9 are shown
in Figure 7.6. Observe how rapidly the estimates of the fluctuation pattern converge. Finally,
the estimated fluctuation pattern ǧ(9) is compared with one period of the data (Figure 7.7).

It is mentioned that, in practice, our method could be used for denoising of ECG recordings
or the detection of anomalies caused by certain diseases (Clifford, Azuaje, and McSharry 2006).

1http://www.physionet.org/physiobank/
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Chapter 8

Software

In this chapter the computer software which was developed in the course of this dissertation is
overviewed.

8.1 Overview

The algorithms proposed in this dissertation have been implemented in C++ under Windows
using Microsoft Visual Studio 2005. The coding of the algorithms follows the detailed descriptions
in the individual chapters. For some methods also R code is provided. The implementations
are distributed in different C++ and R packages which are described in Section 8.2. The C++
packages depend on a set of auxiliary classes which are summarized in Section 8.3. The auxiliary
classes were compiled into static libraries (.lib) which need to be linked at compilation time.

The implementation is strictly object-oriented which provides great flexibility for extending
and reusing the software. Whenever possible abstract base classes (interface classes) were defined
which give the generic interface for the derived classes. Two examples are given in figures 8.1
and 8.2. The exception handling at run time is done by throwing instance of the class jcnError.
jcnError is derived from the Standard Template Library (STL) class runtime_error and it is
contained in the auxiliary library la.lib. For more details on the implementation we refer to
the Doxygen documentation which is available for all C++ source code. The source code and
the documentations can be found on the CD accompanying this dissertation.

8.2 Main Software Packages

C++ Packages

lbfp_demo This package contains an implementation of the LBFP estimator and a demon-
stration of its usage. The details of the implementation are given in Section 3.4.2.
(Sources: lbfp_demo.zip)

npis This package demonstrates the use of nonparametric (partial) importance sam-
pling for financial derivative pricing. The option pricing examples as well as the
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jcnFilter

jcnParticleFilter

jcnAPF jcnBSPS jcnNonparametricPF jcnTruePosteriorPF

jcnSimplePS jcnNonparametricPFML jcnNonparametricPS

jcnTruePosteriorPS

Figure 8.1: Inheritance diagram of the particle filter and smoother classes and the interface class
jcnFilter.

benchmark Monte Carlo algorithms discussed in Chapter 4 are included. (Sources:
npis.zip)

npf This package contains the source code of the algorithms NPF, NPS, and NPF+ML
proposed in Chapter 5. The implementations of some benchmark algorithms are
also included. jcnFilter is the abstract base class which provides the interface
for the filter and smoother classes. All classes for filtering and smoothing have a
(non-public) pointer to an object of the type jcnStateSpaceModel which specifies
(among other things) the observation equation and state equation. The inheri-
tance diagram of the particle filter and smoother classes is shown in Figure 8.1.
See the Doxygen documentation for more details. (Sources: npf.zip)

scve_demo This is an efficient implementation of the on-line estimator for spot cross-volatility
(SCVE) developed in Chapter 6. A simple demo is provided which shows how
to use it in real applications. See the Doxygen documentation for more details.
(Sources: scve_demo.zip)

bpe_demo This package contains the source code of the Rao-Blackwellized particle smoother
and the nonparametric EM algorithm for the estimation of the state-space model
for quasi-periodic time series proposed in Chapter 7. The usage is demonstrated
through an example with simulated data and the application to the ECG data
set. (Sources: bpe_demp.zip)

Some of these packages depend on auxiliary libraries which are described in Section 8.3. The
details of the dependencies are explained in the readme files of the packages.

R-Packages

lbfp This is an R-package which makes the C++ implementation of the LBFP estima-
tor accessible through R (R functions: dlbfp, rlbfp, vallbfp). It can be used
to implement LBFP-based algorithms in R. (Sources: lbfp.tar.gz, Windows
binary lbfp.zip)
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jcnUniformRandomNumberGenerator

jcnRandomNumberGenerator

jcnQuasiRandomNumberGenerator jcnUniformOrderedRandomNumberGenerator

jcnRandomisedQuasiRNG

Figure 8.2: Inheritance diagram of the uniform random number generators and the interface
class jcnRandomNumberGenerator.

scve This is an R-package which makes the C++ implementation of the algorithm
for on-line spot cross-volatility estimation (SCVE) accessible through R (R func-
tion: tvSpotCrossVolaEst). In addition, it contains pure R implementations
of the algorithms for (univariate) time-constant and time-varying spot volatility
estimation (SVE) (R functions: constSpotVolaEst, tvSpotVolaEst). (Sources:
scve.tar.gz, Windows binary scve.zip)

8.3 Auxiliary Libraries

The auxiliary classes are compiled into three static libraries (.lib) to make them usable in
different software projects. The sources are available on the accompanying CD.

la.lib This library contains vector and matrix classes as well as numerical methods.
The implementation of the vector and matrix classes is based on the vector tem-
plate class valarrey<double> which is part of the STL and computationally very
efficient. The vector and matrix classes provide overloaded operators including
amongst others operator[], operator=, operator+, operator*= for convenient
element access and componentwise data manipulations. This allows the use of
intuitive statements, for instance x+ = y − A[1][1] with vectors x, y, matrix A,
and scalar A[1][1]. In addition, many standard linear algebra operations (such
as methods for matrix-matrix, matrix-vector multiplication and matrix inversion)
and numerical methods are implemented. (Sources: la.zip)

rand.lib The implementations of random number generators for various distributions (Beta,
Cauchy, Exponential, Gamma, multivariate normal, uniform) can be found in
this library. It includes implementations of the Mersenne Twister 19937 (Mat-
sumoto and Nishimura 1998) and the Sobol sequence (Sobol 1967) for pseudo-
and quasi-random number generation, respectively. For the transformation of uni-
form random numbers into normal random numbers the Beasley-Springer-Moro
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approximation (Moro 1995) is used (compare Section 2.6). The random number
generator classes which generate non-uniform variates need a uniform random
number generator of the type jcnUniformRandomNumberGenerator as a source
for uniform variates. For this purpose they are endowed with a private pointer
to a jcnUniformRandomNumberGenerator class. All random number generator
classes are inheritance from the interface class jcnRandomNumberGenerator. As
an example the inheritance diagram for the random number generators which pro-
duce uniformly and quasi-uniformly distributed variates are given in Figure 8.2.
(Sources: rand.zip)

misc.lib This library includes miscellaneous classes for plotting, for writing results to .html
files, and for optimizing the console output. The usage is explained in the Doxygen
documentation. (Sources: misc.zip)
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Conclusions and Prospects

In this project new models and advanced Monte Carlo methods for discrete-time stochastic
processes were proposed, investigated, and implemented. The methods developed are inspired
by relevant application, however, they are generally applicable. In the following, the main results
are briefly summarized and potential future research directions are pointed out.

In Chapter 3, new nonparametric importance sampling algorithms were suggested. The mean
square error convergence properties were investigated and asymptotic optimality was shown.
In particular, it was established that the NIS algorithm achieves a mean square error rate of
O(N−(d+8)/(d+4)) which massively improves the standard Monte Carlo rate O(N−1) in low di-
mensions. The usefulness of our nonparametric importance sampling methods for practical sam-
ple sizes were shown through simulations and an application to a queueing problem. In contrast
to previous work on nonparametric importance sampling we favored an LBFP instead of kernel
estimators which is computationally much more efficient. It was shown that draws from an LBFP
can be generated using the inversion method. Because the inversion method is a monotone trans-
formation, it preserves the structure of the presampled uniformly distributed variates. This offers
the opportunity to combine the NIS/NSIS algorithms with other variance reduction techniques
such as stratified sampling, moment matching, and quasi-Monte Carlo techniques (Glasserman
2004; Robert and Casella 2004). Additionally, we emphasize that the LBFP estimator is not
restricted to usage within nonparametric importance sampling. It is a reasonable alternative to
other nonparametric estimators whenever sampling and evaluation are required.

In financial engineering and many other fields high-dimensional integration problems need to
be solved. As a result of the curse of dimensionality and increasing computational complexity the
direct application of nonparametric importance sampling is intractable for large dimensions. In
Chapter 4 an NPIS algorithm was proposed that applies nonparametric importance sampling to
a carefully chosen subspace. The mean square error convergence properties were explored. They
establish the asymptotic optimality of the approach and suggest that NPIS improves over para-
metric importance sampling asymptotically. In particular, NPIS is shown to achieve increasing
efficiency compared with crude Monte Carlo and parametric importance sampling. Its usefulness
for practical sample sizes was verified through different option pricing scenarios. Large variance
reduction factors were obtained in certain situations. It was shown that NPIS is advantageous
over existing importance sampling methods for problems with low effective dimension, which
is often the case in finance. Particularly, situations of rare event dependency or multi-modal
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optimal proposals are well suited for NPIS. There, existing methods often fail. The combination
of NPIS and quasi-Monte Carlo resulted in enormous efficiency gains. In some cases variance
reduction factors of the magnitude 105 were obtained. It is emphasized that NPIS can be applied
without analytical investigation of the payout function. In addition, being generally applicable
NPIS is not restricted to a specific kind of diffusion model or payout function. It can be ap-
plied to other settings occurring in finance, such as the estimation of option sensitivities or the
evaluation of the value-at-risk. Our results suggest that it is generally worthwhile to combine
methods from different fields to improve integral approximations. In this work is was shown how
nonparametric importance sampling (i.e. an advanced Monte Carlo integration technique) and
low-discrepancy sequences (i.e. a numerical integration rule) can be fruitfully combined.

In Chapter 5, it is was shown that nonparametric and quasi-Monte Carlo techniques have
great potential to increase the efficiency of sequential Monte Carlo algorithms. In particular, the
complexity reduction that can be achieved for smoothing and maximum likelihood algorithms is
remarkable. The proposed algorithms are based on nonparametric importance sampling in the
marginal space of the state. As a consequence, resampling can be avoided, because the particles’
weights are prevented from degeneration. In addition, the developed particle filter and particle
smoother allow the direct use of quasi-Monte Carlo sampling which is another advantage over
existing methods. Through simulations it was shown that the methods better approximate the
target distributions than existing algorithms. The use of quasi-Monte Carlo further improved
the results. Until now, nonparametric methods used within particle filters were based on kernel
estimators (see, for instance, Hürzeler and Künsch 1998; Musso, Oudjane, and Le Gland 2001). In
Musso, Oudjane, and Le Gland (2001), a nonparametric regularization step in discussed. There,
samples from nonparametric approximations of the filtering densities are produced to increase
the particles’ variety. We emphasize, that the nonparametric importance sampling (used in both
the NPF and the NPS) not only increases the particles’ variety but also serves as a variance
reduction technique.

In Chapter 6, a new technique for the on-line estimation of time-varying cross-volatilities (co-
variance matrices) based on noisy, non-synchronously observed transaction data was presented.
An important difference compared with existing methods is that we made a clear distinction
between the spot cross-volatility in transaction time and clock time. Our algorithm works di-
rectly on the non-synchronous tick-by-tick data avoiding the difficulties associated with data
synchronization. It updates the covariance estimate immediately after the occurrence of a new
transaction and it is, therefore, as close to the market as possible. The contribution of this work is
manifold. First, we proposed a nonlinear market microstructure noise model that well captures
the major features (such as the bid-ask bounce, the discreteness of prices, and liquidity con-
straints) observed in real data. Second, a non-standard state-space model for non-synchronous
data was introduced which allows each log-price process to evolve in its individual transaction
time. Third, a new particle filter for non-synchronous state-space models was developed which
can be used to approximate the filtering distributions of the efficient log-prices. It was shown
that the cross-volatilities can be estimated as parameters of the filtering distributions. Forth,
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we presented a new sequential EM-type algorithm that allows the on-line estimation of (time-
varying) covariance matrices. For the univariate case, we additionally proposed an on-line bias
correction and a method for adaptive step size selection. Through Monte Carlo simulations and
an application to real stock and future data, the usefulness of the algorithm for real-time appli-
cations was demonstrated. As an interesting empirical result we obtained that the correlations
of high-frequency stock returns vary significantly over the trading day. This is an important
result for risk management and trading. It is remarked that the developed sequential EM-type
algorithm is not limited to the estimation of covariance matrices but it is a general technique
for on-line parameter estimation in general state-space models. Future work might include the
improvement of the multivariate method which will, however, be very challenging. In addition,
our method could be generalized to more complex (multivariate) models for the efficient log-price
processes.

Chapter 7 suggested a new model for stationary time series with a quasi-periodic compo-
nent. A computationally efficient RBPS algorithm was proposed that allows for simultaneous
estimation of the amplitude, the baseline, and the phase. The simulation results confirmed that
the RBPS provides precise estimates even in cases of large observation noise which is a distinct
advantage compared with existing methods. In contrast to existing methods for phase estima-
tion, our framework models the observation noise explicitly. This is a reason for our method’s
good performance for noisy signals. We also considered the case when the fluctuation pattern
is unknown in addition to the amplitude, baseline, and phase. For this case we developed an
original nonparametric EM algorithm. The results for the ECG recordings suggest that this
procedure works well in situations which are of practical interest. It is emphasized that the
proposed nonparametric EM algorithm is not limited to our specific model but it is a general
technique for nonparametric function estimation in general state-space models.
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Appendix A

Proofs

A.1 Proof of Theorem 3.1

Proof. We denote qISM and q̂ISM briefly by qM and q̂M . Because for ϕ ≥ 0 we have qM = ϕMpI
−1
ϕM

,
the variance σ2

M of ÎNISϕM
(conditional on {x̃1, . . . , x̃M}) is given by

(N −M)σ2
M = I2

ϕM

∫
(q̂M (x)− qM (x))2

q̂M (x)
dx. (A.1)

In order to get rid of q̂M (x) in the denominator we write

N −M
I2
ϕM

E[σ2
M ] = E

[∫
(q̂M (x)− qM (x))2

qM (x)
dx
]
−E

[∫
(q̂M (x)− qM (x))3

q̂M (x)qM (x)
dx
]

= KM +RM .

The discrepancy between q̂M and qM can be investigated by

q̂M (x)− qM (x) =
f̂M (x)− ωMqM (x)

IϕM
+

δM (1− VMqM (x))
ωM + VMδM

+

[
f̂M (x)− ωMqM (x)

IϕM

](
IϕM

ωM + VMδM
− 1
)

= WM (x) + U1
M (x) + U2

M (x). (A.2)

It will be established later that E[WM (x)]2 = O(h4 + (Mhd)−1). Now let’s show that

E[U1
M (x) + U2

M (x)]2

is of lower order. Under the assumptions 1 through 3 we yield

E[U1
M (x) + U2

M (x)]2

≤ C(VMδM )2 + C

E

[
f̂M (x)− ωMqM (x)

IϕM

]4
1/2(

E
[

IϕM
ωM + VMδM

− 1
]4
)1/2

≤ C(VMδM )2 + C̃

(
1

Mhd
+ h4

)(
1

M3(VMδM )4
+ (VMδM )2 +

1
M2

)1/2
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with some constants C and C̃. The last inequality follows from lemmas A.1 and A.2 (see
appendices A.2 and A.3). Because, by Assumption 3, VMδM = o(h2) and M3(VMδM )4 → ∞,
we obtain

E[U1
M (x) + U2

M (x)]2 = o(E[WM (x)]2).

We conclude KM ≈
∫

E[WM (x)2]q−1
M (x)dx.

It is not hard to work out that
∫

E[WM (x)2]q−1
M (x)dx decomposes into an integrated squared

bias term L1 and an integrated variance term L2:∫ (E[f̂M (x)I−1
ϕM

]− qM (x))2

qM (x)
dx +

∫ Var[f̂M (x)I−1
ϕM

]
qM (x)

dx +O(M−1) = L1 + L2 +O(M−1).

For notational convenience, the following is shown only for d = 1. Without loss of generality, we
assume x ∈ [−h/2, h/2). Then f̂MI−1

ϕM
simplifies to

f̂M (x)
IϕM

=
(
h/2− x

h

)
f̂UH0

IϕM
+
(
h/2 + x

h

)
f̂UH1

IϕM
(A.3)

where

f̂UH0 = 1/(Mh)
M∑
j=1

ωjM1[−h,0)(x̃
j)

and

f̂UH1 = 1/(Mh)
M∑
j=1

ωjM1[0,h)(x̃
j)

are the heights of the bins [−h, 0) and [0, h), respectively. For the computation of L1, we need
to compare the Taylor expansions of E[f̂M (x)I−1

ϕM
] and qM , which are given by

E[f̂M (x)I−1
ϕM

] = qM (0) + xq′M (0) + h2q′′M (0)/6 +O(h3),

qM (x) = qM (0) + xq′M (0) + x2q′′M (0)/2 +O(h3).

The former follows from (A.3) and from the expansion of the histogram

E[f̂UH0/1 I
−1
ϕM

] = qM (0) −/+ hq′M (0)/2 + h2q′′M (0)/6 +O(h3).

Thus we obtain
{E[f̂M (x)I−1

ϕM
]− qM (x)}2 ≈ (h2 − 3x2)2q′′M (0)2/36. (A.4)

Integration over [−h/2, h/2) and using Taylor expansion of 1/qM (x) about 0 leads to

q′′M (0)2

36

∫ h/2

−h/2

(h2 − 3x2)2

qM (x)
dx =

49 q′′M (0)2

2880 qM (0)
h5 +O(h6). (A.5)

By summing over all bins and applying the standard Riemann approximation, we yield

L1 =
49

2880
h4

∫
q′′M (x)2

qM (x)
dx +O(h5). (A.6)
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Next let’s derive an approximation to L2. From (A.3) we have

Var[f̂M (x)I−1
ϕM

] =
(
h/2− x

h

)2

Var[f̂UH0 I−1
ϕM

] +
(
h/2 + x

h

)2

Var[f̂UH1 I−1
ϕM

]

+
h2/2− 2x2

h2
Cov[f̂UH0 I−1

ϕM
, f̂UH1 I−1

ϕM
].

In addition, it can be shown that

Var[f̂UHi I−1
ϕM

] ≈ qM (0)2

Mhq0(0)
− qM (0)2

M

for i = 0, 1 and

Cov[f̂UH0 I−1
ϕM
, f̂UH1 I−1

ϕM
] ≈ −qM (0)2

M
,

similarly to Scott (1992, chap. 4). That is, we yield

Var[f̂M (x)I−1
ϕM

] =
(

1
2Mh

+
2x2

Mh3

)
qM (0)2

q0(0)
+O(M−1).

Analogous to (A.5) and (A.6), we then obtain∫ h/2

−h/2

Var[f̂M (x)I−1
ϕM

]
qM (x)

dx =
2qM (0)

3Mq0(0)
+O(h/M)

and
L2 =

2
3Mh

∫
qM (x)
q0(x)

dx +O(M−1), (A.7)

respectively. Very similar computations in the multivariate case yield

KM ≈ h4HM,1 +
2d

3dMhd
HM,2,

where

HM,1 =
49

2880

d∑
i=1

∫
(∂2
i qM )2

qM
+

1
64

∑
i 6=j

∫
∂2
i qM∂

2
j qM

qM
and HM,2 =

∫
qM
q0
.

It remains to show that RM is negligible compared with KM . To show this we follow the same
lines as in Zhang (1996). We consider separately the restriction of RM on the region A defined
through

|q̂M (x)− qM (x)| > qM (x)/2

and on its complement Ac. First, the restriction on A is considered. The construction of q̂M
implies q̂M ≥ δM (ωM + VMδM )−1 ≥ CδM > 0 and we obtain∫

E
[

(q̂M (x)− qM (x))3

q̂M (x)qM (x)
1A

]
dx ≤ 1

CδM

∫
E
[

(q̂M (x)− qM (x))3

qM (x)
1A

]
dx

≤ C̃

δM

∫
E
[

(q̂M (x)− qM (x))4

qM (x)3

]
dx

≤ C̃

δMc3
M

∫
E
[
(q̂M (x)− qM (x))4

]
dx (A.8)
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with some constants C and C̃. Second we consider the restriction on Ac. The definition of A
implies that q̂M (x) > qM (x)/2 on Ac and we obtain∫

E
[

(q̂M (x)− qM (x))3

q̂M (x)qM (x)
1Ac
]
dx ≤ C

∫
E
[

(q̂M (x)− qM (x))3

qM (x)2

]
dx

≤ C

c2
M

∫
E
[
(q̂M (x)− qM (x))3

]
dx. (A.9)

Now it follows from (A.8) and (A.9) together with Lemma A.2 that, under Assumption 4a,
RM = o(KM ).

The proof is finished by noting that the squared bias term in E[ÎNISϕM
− Iϕ]2 is negligible as

a result of Assumption 5a, and that the expressions I2
ϕM

(in (A.1)), HM,1, and HM,2 can be
substituted by their unrestricted counterparts because their differences are of lower order.

A.2 Lemma A.1

Lemma A.1. Suppose that the assumptions 1 and 2 (from Chapter 3) hold. Then we have for
some integer l

E
[
f̂M (x)− ωMqM (x)

]2l
= O

{
(Mhd)−l + h4l

}
.

Proof. It is easy to see that

E
[
f̂M (x)− ωMqM (x)

]2l
= E

[{
f̂M (x)−Ef̂M (x)

}
+ qM (x)(IϕM − ωM )

+
{
Ef̂M (x)− ϕM (x)p(x)

}]2l

≤ C

{
E
[
f̂M (x)−Ef̂M (x)

]2l
+ qM (x)2lE [IϕM − ωM ]2l

+
[
Ef̂M (x)− ϕM (x)p(x)

]2l
}
. (A.10)

The first term in (A.10) is of order O{(Mhd)−l} as a result of (A.7) and

E
[
f̂M (x)−Ef̂M (x)

]2l
≤ C̃

{
E
[
f̂M (x)−Ef̂M (x)

]2
}l
.

Because qM is bounded the second term in (A.10) is O(M−l). The third term is the bias of the
estimator f̂M (x) to the power of 2l. Thus, from (A.4) we obtain

[
Ef̂M (x)− ϕM (x)p(x)

]2l
= O(h4l)

which completes the proof.
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A.3 Lemma A.2

Lemma A.2. Suppose that the assumptions 1 through 3 (from Chapter 3) hold. For some integer
l we have

E
[

IϕM
ωM + VMδM

− 1
]2l

= O
(

1
M l+1(VMδM )2l

+ (VMδM )2 +
1
M l

)
. (A.11)

Proof. Analogous to Lemma 1 in Zhang (1996) we consider the expectation in (A.11) restricted
on the region A given by

|ωM + VMδM − IϕM | > IϕM /2

and on its complement Ac separately. For A we obtain

E
[(

IϕM
ωM + VMδM

− 1
)

1A

]2l

≤ 1
(VMδM )2l

E [(IϕM − ωM − VMδM ) 1A]2l

≤ 4
(VMδM )2lI2

ϕM

E [IϕM − ωM − VMδM ]2l+2

≤ C

(VMδM )2l

{
E [IϕM − ωM ]2l+2 + (VMδM )2l+2

}
≤ C

(VMδM )2l

{
M−(l+1) + (VMδM )2l+2

}
.

From the definition of A we yield that ωM + VMδM ≥ IϕM /2 holds on Ac which leads to

E
[(

IϕM
ωM + VMδM

− 1
)

1Ac
]2l

≤
(

2
IϕM

)2l

E [IϕM − ωM − VMδM ]2l

≤ C
{
E [IϕM − ωM ]2l + (VMδM )2l

}
≤ C

{
M−l + (VMδM )2l

}
.

The lemma follows immediately.

A.4 Proof of Theorem 3.3

Proof. Again qM is shorthand for qISM . Let fϕM =
(
ϕMp
IϕM
− |ϕM |p

IϕM

)
. Straightforward calculations

yield

(N −M)σ2
M = I2

ϕM

∫ (
ϕMp

IϕM
− |ϕM |p

IϕM
+ qM − q̂M

)2

q̂−1
M

= I2
ϕM

[∫
f2
ϕM

(qM − q̂M )
qM q̂M

+ 2
∫
fϕM

(qM − q̂M )
q̂M

+
∫

(qM − q̂M )2

q̂M
+
∫
f2
ϕM

qM

]
= I2

ϕM
[T1 + T2 + T3 + T4] .
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Term T4 is independent of the nonparametric estimation and we have I2
ϕM
T4 = I

2
ϕM
− I2

ϕM
. The

expectation of term T1 can be written as∫
f2
ϕM

E[qM − q̂M ]
q2
M

−
∫
f2
ϕM

E[qM − q̂M ]2

q3
M

+
∫
f2
ϕM

E[qM − q̂M ]3

q3
M q̂M

= T1,1 + T1,2 + T1,3.

Similar expressions are obtained for quantities T2 and T3. We begin with T1,1. Analogous to
(A.2), we conclude

qM (x)− q̂M (x) ≈ −[f̂M (x)− ωMqM (x)]/IϕM .

From the proof of Theorem 3.1, we also know that

E[f̂M (x)− ωMqM (x)/IϕM ] = E[f̂M (x)I−1
ϕM

]− qM (x) = (h2 − 3x2)q′′M (0)/6 +O(h3)

for d = 1 and x ∈ [−h/2, h/2). Then we obtain

q′′M (0)
6

∫ h/2

−h/2
fϕM (x)2h

2 − 3x2

qM (x)2
dx =

h3

8
fϕM (0)2 q

′′
M (0)

qM (0)2
+O(h4)

using a Taylor expansion of fϕM (x)2/qM (x)2 about 0. Finally, summing over all bins and using
the Riemann approximation gives T1,1 in the one-dimensional case:

−h
2

8

∫
fϕM (x)2 q

′′
M (x)

qM (x)2
dx +O(h3).

In the multivariate case we yield

T1,1 = −h
2

8

∫
fϕM (x)2∇2qM (x)

qM (x)2
dx +O(h3).

Term T1,2 can be treated analogous to
∫

E[WM (x)2]q−1
M (x)dx in the proof of Theorem 3.1. We

end up with

T1,2 = − 2d

3dMhd

∫
f2
ϕM

q0qM
−

49h4

2880

d∑
i=1

∫
f2
ϕM

(∂2
i qM )2

q3
M

+
h4

64

∑
i 6=j

∫
f2
ϕM

∂2
i qM∂

2
j qM

q3
M

 .
Comparing the term in brackets with T1,1, we observe that the former is negligible. Furthermore,
similarly to RM in the proof of Theorem 3.1, it follows that T1,3 is negligible compared with T1,2

provided that Assumption 4b holds.
The calculations for T2 and T3 are very similar to those of T1 and therefore are omitted.

Putting all terms together we obtain

(N −M)E[σ2
M ] = I2

ϕM

{ 2d

3dMhd

(∫
qM
q0
− 2

∫
fϕM
q0
−
∫

f2
ϕM

q0qM

)

−h2

(∫
f2
ϕM

∇2qM
8q2
M

+
∫
fϕ
∇2qM
4qM

)}
× (1 + o(1)) + (I2

ϕM
− I2

ϕM
).

We observe that the terms restricted on M can be substituted by their asymptotic limits, which
completes the proof.
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A.5 Proof of Theorem 3.4

Proof. We denote qSISM and q̂SISM briefly by qM and q̂M . Because the bias of ÎNSISϕM
is asymptotically

negligible, we have

E[ÎNSISϕM
− Iϕ]2 = (N −M)−1E[σ2

SIS]× {1 + o(1)}.

Thus, it suffices to examine E[σ2
SIS] with σ2

SIS as in (3.4). We obtain, analogous to (A.2)

q̂M (x)− qM (x) =
f̂M (x)− ωMqM (x)

αĨϕM
+ Ũ1

M (x) + Ũ2
M (x).

Slightly modified versions of lemmas A.2 and A.3 imply that the remainder term Ũ1
M (x)+Ũ2

M (x)
is of lower order (compare the proof of Theorem 3.1). The crucial step for proving these modified
versions of lemmas A.2 and A.3 is to show that under the assumptions 1 and 2

E[αĨϕM − ωM ]2l ≤ CM−l.

This is shown now. We have

|αĨϕM − ωM | ≤

∣∣∣∣∣∣αĨϕM − 1
M

M∑
j=1

|ϕM (x̃j)− IϕM |p̃(x̃
j)q0(x̃j)−1

∣∣∣∣∣∣
+

1
M

M∑
j=1

p̃(x̃j)q0(x̃j)−1|IϕM − ĬϕM |,

and by applying the Minkowski inequality we obtain

(
E[αĨϕM − ωM ]2l

) 1
2l ≤

E

αĨϕM − 1
M

M∑
j=1

|ϕM (x̃j)− IϕM |p̃(x̃
j)q0(x̃j)−1

2l


1
2l

+ C
(
E[IϕM − ĬϕM ]2l

) 1
2l

= C
(
M−1/2 +M−1/2

)
.

Hence, we conclude that the remainder term is of lower order. Finally, we need to show that∫
E

( f̂M (x)− ωMqM (x)
αĨϕM

)2

q̂M (x)−1

 dx ≈ h4H1 +
2d

3dMhd
H2.

The main difference to Theorem 3.1 is the dependency of the weights ω̃jM . Define

ω̌jM = |ϕM (x̃j)− IϕM |p̃(x̃
j)q0(x̃j)−1,

j = 1, . . . ,M . As in the proof of Theorem 3.1, let f̌UH0/1 and f̂UH0/1 be unnormalized histogram bins

based on the weights ω̌jM and ω̃jM , respectively. It is not hard to show that

E[f̂UH0/1 (αĨϕM )−1] = E[f̌UH0/1 (αĨϕM )−1] +O(M−1/2)
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and

Var[f̂UH0/1 (αĨϕM )−1] = Var[f̌UH0/1 (αĨϕM )−1] +O(M−1).

The rest of the proof follows analogous to Theorem 3.1, because the weights ω̌jM are independent
and the additional O(M−1/2), O(M−1) terms are negligible.

A.6 Derivation of the complexity of the LBFP

Let BM be the number of bins. It follows that the number of bins in each marginal space is
O(B1/d

M ). We begin with the analysis of the evaluation of a LBFP. Given location x, we need to
find the associated bin midpoints (tk1 , . . . , tkd), which is of order O(dB1/d

M ). Then Equation (3.1)
can be evaluated, which isO(2dd). Now observe BM ≈ VM/hd and h∗ = O(ρ(d)1/(d+4)N−1/(d+4))
with ρ(d) = d(2/3)d. By assuming that h = h∗, we obtain

O(dB1/d
M + 2dd) ≈ O(ρ(d)−1/(d+4)dN1/(d+4) + 2dd),

neglecting the slowly increasing sequence VM .
Sampling from a LBFP consists of the three steps described in Section 3.4.2. In Step 1,

the marginalized histograms corresponding to the LBFP f̂(x1:i), i = 1, . . . , d − 1, need to be
calculated. This can be done recursively in O(BM ). In the second step, F̂ is to be computed
at all bin midpoints tki using relation (3.5). Thus, it is required to evaluate f̂(x1:i−1, tki),
i = 1, . . . , d. This consists of searching the bin midpoints (tk1 , . . . , tki−1

) associated with x1:i−1

and evaluating equation (3.1) as we discussed earlier. It is sufficient to do the former once. Thus,
we end up with O(dB1/d

M + 2dd × dB1/d
M ), where the latter dB1/d

M is the result of the evaluation
of F̂ at all tki in each marginal dimension. Step 3 has complexity O(dB1/d

M ), because in each
marginal dimension the bin midpoint tki satisfying yi ∈ [F̂ (tki |x1:i−1), F̂ (tki+1|x1:i−1)) must be
found. Putting it all together, we yield O(BM + 2dd2B

1/d
M ) for generating one sample. As seen

earlier, we assume h = h∗, substitute BM ≈ VM/hd, and omit VM to derive

O(ρ(d)−d/(d+4)Nd/(d+4) + 2dd2ρ(d)−1/(d+4)N1/(d+4)).

Because Step 1 needs to be carried out only once and because ρ(d)−1/(d+4) is small compared
with 2dd2 we obtain approximately O(2dd2N (d+5)/(d+4)) for generating N samples. Finally, we
remark that N evaluations are negligible compared with generating N samples.

A.7 Proof of Theorem 4.1

Prerequisites for Theorem 4.1. The following quantities are not required in practical ap-
plication. However, they are necessary for the proof of Theorem 4.1. Let AM be an increasing
sequence of compact sets defined by AM = {x ∈ R|u| : q̆ISϕ (x) ≥ cM}, where cM > 0 and
cM → 0 as M goes to infinity. For any function g, we denote the restriction of g on AM by gM .
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Furthermore, the volume of AM is denoted by VM . The NPIS estimator ÎNPISϕM
is obtained by

substituting q̂ISϕ (in the algorithm) for

q̂ISM (xu) =


f̂M (xu)+δM

1
M

∑M
j=1 ω

j
M+VM δM

for xu ∈ AM ,

0 else.

Assumption 1 q̆ISϕ has three continuous and square integrable derivatives on its support and it
is bounded. In addition,

∫
(∇2q̆ISϕ )4(q̆ISϕ )−3 <∞ where∇2q̆ISϕ = ∂2q̆ISϕ /∂x

2
1+. . .+∂2q̆ISϕ /∂x

2
d.

Assumption 2 Trial distribution q0 is chosen such that E[q̆ISϕ q
−1
0 ]4 is finite on supp(q̆ISϕ ).

Assumption 3 Sample sizes M,N → ∞, bin width h satisfies h → 0 and Mh|u| → ∞.
Additionally, we have δM > 0, VMδM = o(h2) and M3(VMδM )4 →∞.

Assumption 4 cM is chosen such that h8+(Mh|u|)−2

δM c
3
M

= o(h
4+(Mh|u|)−1

cM
) and h4+(Mh|u|)−1

cM
→ 0.

Assumption 5 The sequence cM guaranties (
∫
q̆ISϕ 1{q̆ISϕ <cM})

2 = o(M−1h4 + (M2h|u|)−1).

Note that these assumptions are closely related to the assumptions 1 through 3, 4a, and 5a given
in Chapter 3.

Proof. Conditional on the samples {x̃1, x̃2, . . . , x̃M}, the variance of ÎNPISϕM
can be written as

σ2
IS
N

=
I2
ϕ

N

∫ {
ϕ(x)p(xu)

Iϕ
− q̂ISM (xu)

}2 p(x−u)
q̂ISM (xu)

dx

=
I2
ϕ

N

∫ [
ν(x)2

I2
ϕ

+
{
q̆ISϕ (xu)− q̂ISϕ,M (xu)

}2
]
p(x−u)
q̂ISM (xu)

dx

with ν(x) = ϕ(x)p(xu)−
∫
ϕ(x)p(x)dx−u. The right term in brackets (quantifying the nonpara-

metric estimation error) can be treated analogous to the proof of Theorem 3.1 in Section A.1.
However, as a result of the integration with respect to x−u, a different variance term is obtained.
The optimal bin width is derived through differentiation.

A.8 Proof of Proposition 5.1

Proof. Let the LBFP estimator f̂N be defined as

f̂N (z) =


f̃(z)+δN

1
N

∑N
i=1 ω

i+VN δN
for z ∈ AN ,

0 else.

Sequence AN is given by AN = {z ∈ Rd : f(z) ≥ cN}, where cN > 0 and cN → 0 for N → ∞.
VN is defined as the volume of AN . We emphasize that the quantities AN , VN , cN , and δN are
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only needed in the proof and can be skipped in practice. Under the assumptions 1 through 3
and provided that δN > 0, VNδN = o(h2), N3(VNδN )4 →∞, and(∫

f(z)1{f(z)<cN}dz
)2

= o(N−1h4 + (N2hd)−1),

it can be shown that∫
E[f̂N (z)− f(z)]2dz =

∫
{E[f̃(z)]− f(z)}2dz +

∫
Var[f̃(z)]dz +O(N−1)

along the same lines as in the proof of Theorem 3.1 in Section A.1. The following is only shown
for d = 1. Without loss of generality we assume z ∈ [−h/2, h/2). Then, f̃ is given by

f̃(z) =
(
h/2− z

h

)
f̃H0 +

(
h/2 + z

h

)
f̃H1 ,

where f̃H0 = 1/(Nh)
∑N

i=1 ω
i1[−h,0)(zi) and f̃H1 = 1/(Nh)

∑N
i=1 ω

i1[0,h)(zi). Hence,

Var[f̃(z)] =
(
h/2− z

h

)
Var[f̃H0 ] +

(
h/2 + z

h

)
Var[f̃H1 ] +

h2/2− 2z2

h2
Cov[f̃H0 , f̃

H
1 ]. (A.12)

The variance of f̃H0 is computed as

Var[f̃H0 ] =
1

Nh2

{∫
B0

∫ (
g(z, z̃)
g0(z, z̃)

)2

g0(z, z̃)dz̃dz−
(∫

B0

∫
g(z, z̃)
g0(z, z̃)

g0(z, z̃)dz̃dz
)2
}

≈ 1
Nh

∫
g(0, z̃)2

g0(0, z̃)
dz̃− f(0)2

N
,

where B0 = [−h, 0). An analogous approximation holds for Var[f̃H1 ]. For the covariance term we
obtain

Cov[f̃H0 , f̃
H
1 ] = − 1

Nh2

(∫
B0

∫
g(z, z̃)
g0(z, z̃)

g0(z, z̃)dz̃dz
)(∫

B1

∫
g(z, z̃)
g0(z, z̃)

g0(z, z̃)dz̃dz
)

≈ −f(0)2

N

with B1 = [0, h). Plugging this into (A.12) yields

Var[f̃(z)] =
(

1
2Nh

+
2z2

Nh3

)∫
g(0, z̃)2

g0(0, z̃)
dz̃ +O(N−1),

and integration over [−h/2, h/2) gives∫ h/2

−h/2
Var[f̃(z)]dz =

2
3N

∫
g(0, z̃)2

g0(0, z̃)
dz̃ +O(h/N).

Finally, by summing over all bins and applying the standard Riemann approximation one obtains∫
Var[f̃(z)]dz =

2
3Nh

∫ ∫
g(0, z̃)2

g0(0, z̃)
dz̃ +O(N−1).

Similar computations in the multivariate case establish the result given in the proposition. The
proof is finished by noting that H1 is the standard integrated squared bias of LBFPs.
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A.9 Proof of Proposition 6.1

Proof. The likelihood p(ytj |yt1:j−1 ,xtj ) is equal to one if xtj ,s ∈ logAtj ,s for all s = 1, . . . , S
and zero otherwise, that is

p(ytj |yt1:j−1 ,xtj ) =
S∏
s=1

1{xtj ,s ∈ logAtj ,s}.

This and (6.6) recursively imply the uniqueness of the conditional distribution p(xt1:j |yt1:j ).
(Note that p(ytj |yt1:j−1) does not depend on xt1:j and is therefore part of the norming constant.)
It is easy to verify that the optimal proposal satisfies

p(xtj |yt1:j ,xtj−1) ∝ p(ytj |yt1:j−1 ,xtj ) p(xtj |xtj−1).

Furthermore, the transition prior is given by p(xtj |xtj−1) = N (xtj |xtj−1 ; Σtj ) leading to the
assertion. The expression for the importance weights follows from

p(ytj |yt1:j−1 ,x
i
tj−1

) =
∫
p(ytj |yt1:j−1 ,xtj ) p(xtj |xitj−1

) dxtj =
∫

log Atj

p(xtj |xitj−1
) dxtj .

A.10 Calculation of the Quasi Mean Squared Error in Section 6.5.2

We now calculate and minimize the mean squared error of

Σ̃ti|tj (λ) :=
(
1 + κ

)
Σ̂tj − κ Σ̂(1/2)

tj

as an estimator of Σ(ti) with respect to κ. For several reasons the variance of the estimator is
very hard to derive (because of the recursive estimation scheme and the nonlinear microstructure
noise model). In order not to overstress heuristic considerations we minimize instead the mean
squared error of the above estimator in the case where the unknown efficient prices are used
instead of the filter particles and call this the quasi mean squared error.

We only give a brief sketch. As in Section 6.5 we only discuss the univariate case. We obtain
as in (6.31)

E Σ̃ti|tj (λ) ≈ Σ(ti)−
[
(1 + κ)

(
i− j̄

)
− κ

(
i− j̄ (1/2)

)]
Σ̇
(
j̄
)

(A.13)

and for the variance

Var
(
Σ̂tj

)
≈

j−3∑
k=0

[ k−1∏
`=0

(
1− λj−`

)2]
λ2
j−k 2 Σ(tj−k)2 +

[ j−3∏
`=0

(
1− λj−`

)2] 2 Σ(t2)2

≈

[
j−3∑
k=0

[ k−1∏
`=0

(
1− λj−`

)2]
λ2
j−k +

[ j−3∏
`=0

(
1− λj−`

)2]] 2 Σ(tj̄)
2. (A.14)

Similarly we obtain

Var
(
Σ̂(1/2)
tj

)
≈

[
j−3∑
k=0

[ k−1∏
`=0

(
1−

λj−`
2
)2]λ2

j−k
4

+
[ j−3∏
`=0

(
1−

λj−`
2
)2]] 2 Σ(tj̄)

2
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and

Cov
(
Σ̂tj , Σ̂

(1/2)
tj

)
≈

[
j−3∑
k=0

[ k−1∏
`=0

(
1− λj−`

)(
1−

λj−`
2
)]λ2

j−k
2

+
[ j−3∏
`=0

(
1− λj−`

)(
1−

λj−`
2
)]]

2 Σ(tj̄)
2.

The terms in the brackets can be calculated by the recursions (6.38) through (6.40). Therefore

Var
(
Σ̃ti|tj (λ)

)
≈
[
(1 + κ)2 v1,j + κ2v2,j − 2(1 + κ)κ v3,j

]
2 Σ(tj̄)

2

=
[
v1,j + κ (2v1,j − 2v3,j) + κ2 (v1,j + v2,j − 2v3,j)

]
2 Σ(tj̄)

2

leading to the mean squared error

E
(

Σ̃ti|tj (λ)− Σ(ti)
)2
≈
[
− (1 + κ)

(
i− j̄

)
+ κ

(
i− j̄ (1/2)

)]2
Σ̇
(
j̄
)2

+
[
v1,j + κ (2v1,j − 2v3,j) + κ2 (v1,j + v2,j − 2v3,j)

]
2 Σ(tj̄)

2 .

Minimization with respect to κ yields with Σ̇(j) = Σ′
(
tj
)
τ ′(j)

κmin =

(
i− j̄

)(
j̄ − j̄ (1/2)

)
Σ̇
(
j̄
)2 − 2 (v1,j − v3,j) Σ(tj̄)2(

j̄ − j̄ (1/2)
)2 Σ̇

(
j̄
)2 + 2 (v1,j + v2,j − 2v3,j) Σ(tj̄)2

=

(
i− j̄

)(
j̄ − j̄ (1/2)

) [
∂
∂t log Σ(t)|t=tj̄ τ

′(j̄)]2 − 2 (v1,j − v3,j)(
j̄ − j̄ (1/2)

)2 [ ∂
∂t log Σ(t)|t=tj̄ τ

′
(
j̄
)]2 + 2 (v1,j + v2,j − 2v3,j)

.

A.11 Reversed Order Initialization

Proof of (6.65). With the definitions given in Section 6.9 we have with

κ2|2 =
2− 2̄

2̄− 2̄ (1/2)
=

1̄rev − 1
1̄rev(1/2) − 1̄rev

= κrev1|1

Σ̃t2|t2 :=
(
1 + κ2|2

)
Σ̂t2 − κ2|2 Σ̂(1/2)

t2

=
(

1 +
1̄rev − 1

1̄rev(1/2) − 1̄rev

) [(
1 +

2× 1̄rev − 2
1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

2× 1̄rev − 2
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

]
− 1̄rev − 1

1̄rev(1/2) − 1̄rev

[(
1 +

1̄rev + 1̄rev(1/2) − 2
1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

1̄rev + 1̄rev(1/2) − 2
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

]
=
( 1̄rev(1/2) − 1

1̄rev(1/2) − 1̄rev

) [( 1̄rev + 1̄rev(1/2) − 2
1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

2× 1̄rev − 2
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

]
− 1̄rev − 1

1̄rev(1/2) − 1̄rev

[(2× 1̄rev(1/2) − 2
1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

1̄rev + 1̄rev(1/2) − 2
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

]
=
(

1 +
1̄rev − 1

1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

1̄rev − 1
1̄rev(1/2) − 1̄rev

Σ̂rev(1/2)
t1

= Σ̃rev
t1|t1 .

160



A.12. PROOF OF PROPOSITION 7.1

A.12 Proof of Proposition 7.1

Proof. Under the assumption that g is 2π periodic, it can be seen from (7.7) that

T∑
t=1

∫ ∫ ∫
{yt − atg(φtmod2π)− bt}2pg(m)(at, bt, φt|y1:T )datdbtdφt

needs to be minimized with respect to g(φ) where φ ∈ [0, 2π). That is, for fixed φ ∈ [0, 2π), we
need to minimize the quantity

T∑
t=1

∑
{φt:φtmod2π=φ}

∫ ∫
{yt − atg(φ)− bt}2pg(m)(at, bt, φt|y1:T )datdbt.

with respect to g(φ). The minimization leads to

g(m+1)(φ)

=

 T∑
t=1

∑
Hφ

pg(m)(φt|y1:T )
{
yt

∫
atpg(m)(at|φt, y1:T )dat −

∫
atbtpg(m)(at, bt|φt, y1:T )datdbt

}
×

 T∑
t=1

∑
Hφ

pg(m)(φt|y1:T )
∫
a2
t pg(m)(at|φt, y1:T )dat

−1

, (A.15)

where Hφ = {φt : φtmod2π = φ}. Based on the output of the RBPS and the approximation of
the density pg(m)(φt|y1:T ) given in (7.8) one yields

pg(m)(φt|y1:T )
∫
atbtpg(m)(at, bt|φt, y1:T )datdbt ≈

1
ht

N∑
i=1

ω̃itK{(φt − φit)/ht}(S̃it)12

and analogous approximations for the other terms in (A.15). This gives the estimator

ĝ(m+1)(φ) =

∑T
t=1

∑
Hφ
∑N

i=1 ω̃
i
tK{(φt − φit)/ht}{ytãit − (S̃it)12}∑T

t=1

∑
Hφ
∑N

i=1 ω̃
i
tK{(φt − φit)/ht}(S̃it)11

.

The estimator given in the proposition is obtained under the assumptions on the kernel and the
bandwidths.
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A.13 Proof of Proposition 7.2

Proof. By applying Jensen’s inequality one yields

log
pg(m+1)(y1:T )
pg(m)(y1:T )

= log Eg(m)

[
pg(m+1)(X0:T , y1:T )
pg(m)(X0:T , y1:T )

∣∣∣∣y1:T

]

≥ Eg(m)

[
T∑
t=1

log
pg(m+1)(yt|Xt)
pg(m)(yt|Xt, )

∣∣∣∣y1:T

]

∝
T∑
t=1

Eg(m) [{Yt −Atg(m)(φt)−Bt}2|y1:T ]

−
T∑
t=1

Eg(m) [{Yt −Atg(m+1)(φt)−Bt}2|y1:T ].

Because g(m+1) given in (A.15) maximizes (7.7) this establishes pg(m+1)(y1:T ) ≥ pg(m)(y1:T ).
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