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Abstract
This work is devoted to the development of efficient numerical methods for a certain class of
PDE-based optimization problems. The optimization is constraint by an elliptic PDE. In
addition to prior work in this context pointwise inequality constraints on the control and
state variable are considered. These problems are infinite dimensional and their solution can
in general not be obtained exactly. Instead the solution of such problems means to find an
approximate solution. This is done by (approximately) solving for some set of first order
necessary optimality conditions. Hence an efficient algorithm has to find such an approximate
solution with as little effort as possible while still being accurate enough for whatever the
goal of the computation is.

The work at hand contributes to this goal by deriving a posteriori error estimates with respect
to a given functional. These estimates are required for two purposes, first, to generate efficient
meshes for the solution of the PDEs required in the process of solving the necessary conditions.
Second, to choose several parameters that occur in order to regularize the problems at hand
in such a way that the regularization error is both small enough, to obtain a ‘good result’,
and yet large enough to have ‘easy to solve’ problems.

These a posteriori estimators are supplemented with a priori estimates in several cases where
non have been available in the literature for the problem class under consideration.

Finally, all theory and all heuristics will be substantiated with several numerical examples of
different complexity.

Zusammenfassung
Ziel der Arbeit ist es effiziente numerische Verfahren zur Lösung von PDE basierten Optimie-
rungsproblemen zu entwickeln. Hierbei betrachten wir als Nebenbedingung eine elliptische
PDE sowie im Unterschied zu früheren Arbeiten zusätzliche (Ungleichungs-) Beschränkungen
an die Kontroll- und Zustandsvariablen. Es handelt sich bei diesen Problemen um unendlich-
dimensionale Optimierungsprobleme, so dass die Lösung im Allgemeinen nicht exakt bestimmt
werden kann. Stattdessen wird eine Approximation bestimmt. Diese erhält man durch die
(approximative) Lösung geeigneter Systeme notwendiger Optimalitätsbedingungen. Ein effizi-
enter Algorithmus hat die Aufgabe, eine solche approximative Lösung mit so wenig Aufwand
wie möglich und dennoch hinreichend genau zu bestimmen.

Die vorliegende Arbeit leistet hierzu einen Beitrag indem a posteriori Fehlerschätzer, bezüglich
eines gegebenen Funktionals, hergeleitet werden. Diese werden aus zwei Gründen benötigt.
Zum Einen, um sparsame Gitter für die Lösung der auftretenden PDEs zu erzeugen. Zum
Anderen, um diverse Parameter zur Regularisierung des Problems derart zu steuern, dass
einerseits der Regularisierungsfehler „klein genug” ist und andererseits die Probleme noch
immer „einfach zu lösen” sind.

Ferner werden die a posteriori Schätzer durch a priori Fehleranalysen ergänzt sofern solche
für die betrachtete Problemklasse noch nicht in der Literatur verfügbar waren.

Schließlich werden die theoretischen Resultate und die verwendeten Heuristiken durch mehrere
Beispiele unterschiedlicher Komplexität untermauert.
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1 Introduction

This work is devoted to the development of efficient numerical methods for solving optimization
problems subject to an elliptic PDE constraint and additional (inequality) constraints on
the control variable and zero or first-order constraints on the state variable. Since these
problems exhibit very rough adjoint variables their solution usually requires some kind of
regularization.

To state things precise, we will consider optimization problems that are constrained by an
elliptic partial differential equation

A(q, u) = f.

If the control is given by external forces the operator A is typically given in the form

A(q, u) = Ā(u)−B(q)

with a (nonlinear) elliptic operator Ā and a (usually linear) control operator B. On the other
hand, for ‘control by the coefficients‘ this simple splitting will not suffice. For computational
purposes it is more convenient to rewrite this equation in a variational form, with a suitable
trial space V to be specified later on. It reads as follows

a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ V.

The target of the optimization is to minimize a given cost functional J(q, u), e.g., a tracking
type functional

J(q, u) = 1
2‖u− u

d‖2 + α

r
‖q‖rLr

for some r ≥ 2. The emphasis of this thesis is the consideration of additional constraints on
the control and state variable. Therefore let Qad be a closed convex set and g a functional.
Then, we require the control and state variable to fulfill

q ∈ Qad, g(u,∇u) ≤ 0.

A typical choice of Qad are ‘box-constraints’, e.g., let a < b ∈ R̂ = R ∪ {±∞} be given. We
set

Qad = { q | a ≤ q(x) ≤ b a.e. } .

As state constraints we will consider zero-order state constraints, e.g.,

g(u,∇u) = g(u) = u− ψ

or first-order state constraints, e.g.,

g(u,∇u) = g(∇u) = |∇u|2 − ψ.
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1 Introduction

To summarize: The general problem under consideration is given as

Minimize J(q, u)

subject to


A(q, u) = f,

q ∈ Qad,
g(u,∇u) ≤ 0.

In order to understand the problems being addressed here, we remark that in many cases
the constraint g(u,∇u) ≤ 0 is formulated as a pointwise inequality in a space of continuous
functions. This leads to several problems which will be discussed in this thesis.

First of all, it is necessary that g(u,∇u) lies in a space for which the inequality is meaningful.
Hence the Nemytskii operator g should map (u,∇u) onto a continuous function. This is
a problem, particularly if one considers problems on polygonal or polyhedral domains. In
addition, to obtain convergence rates for the (necessary) discretization, it is useful to know
the regularity of the solutions that are approximated. Secondly, if we consider the inequality
in a space of continuous functions, the Lagrange multiplier associated to g(u,∇u) ≤ 0 is
expected to be a measure. As we do not consider it sensible to discretize a space of measures,
we will consider regularizations of the general problem. Thirdly, it is natural to ask what
the error coming from the discretization and, if present, the regularization is. Especially, we
have to ask, whether the sequence of discretized and regularized problems converges towards
the solution at all. This leads to a priori convergence estimates. Albeit recent publications
have been paying a lot of attention to control and zero-order state constraints, the case of
first-order state constraints has hardly been tackled.

Finally, we will come to the question what the ‘best possible’ or ‘most efficient’ choice for
the discretization and regularization is. This will lead to a posteriori error estimation with
respect to the ‘goal’ of the computation.

The aim of this work is manyfold, as can be seen from the questions above. We start by
discussing existence and regularity in the context of first-order constraints for a model problem.
Then we will derive convergence estimates for the discretization of the state and control
variable. We proceed to consider the regularized problems in function spaces, show existence,
necessary conditions, and convergence towards the solution of the non-regularized problem.
Finally, we will derive a posteriori error estimates with respect to given goal functionals. The
estimates will be separated, so that we are able to balance the contributions to the global
error arising from regularization and discretization. Naturally, all results will be substantiated
by numerical examples.

In what follows, we will summarize the contents of this thesis.

We will start by recalling some well known results in Chapter 2 to fix our notation and
to precisely state the problem class under consideration. After that we will continue by
answering the questions above.
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Existence, Uniqueness, Regularity In Chapter 3 we will discuss two fundamental questions
for all computations.

First we consider the problem of first-order state constraints on non-smooth domains, e.g.,
domains that do not posses a C1,1 boundary. The major problem in this context is that the
‘solution operator’ which maps control to state variables does not map an arbitrary ‘regular’
control onto a state which is sufficiently regular to impose the first-order constraint.

Despite this, typical applications require domains that have polygonal boundaries. In order
to show that there is still a unique solution, which we can compute using the ‘usual’ first-
order conditions, we consider a simple elliptic model PDE, e.g., A(q, u) = −∆u − q and
g(u,∇u) = |∇u|2 − ψ.

For this we show that given a bounded polygonal domain Ω ⊂ R2 and a Slater point, there
exists a unique solution u to the model problem. In addition, the solution satisfies the
regularity u ∈W 2,t ∩H1

0 for some t > 2.

One immediately obtains that there exists µ ∈ C(Ω)∗ and a function z ∈ Lt′(Ω) such that
the following holds

(∇u,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1
0 ,

〈−∆ϕ , z 〉Z∗×Z = J ′u(q, u)(ϕ) + 〈µ , 2∇u∇ϕ 〉C∗×C ∀ ϕ ∈W 2,t ∩H1
0 ,

J ′q(q)(δq − q) ≥ −(δq − q, z) ∀ δq ∈ Qad ∩ I,
〈µ , ϕ 〉C∗×C ≤ 0 ∀ ϕ ∈ C(Ω), ϕ ≤ 0,

〈µ , |∇u|2 − ψ 〉C∗×C = 0.

Here I denotes the image of W 2,t ∩H1
0 under ∆. This is almost the same regularity condition

present in the case of a smooth boundary, see, e.g., (Casas and Bonnans [35], Casas and
Fernández [36]), however, it differs due to the fact that one has to exclude a certain finite
dimensional subspace corresponding to singular solutions of the state equation. We consider
the problem where Ω ⊂ R3, too, but there appears to be a gap, meaning there exist certain
polyhedral domains, where a solution exists, but necessary conditions could not be derived
by the method proposed in this thesis.

After having shown that the existence results in the literature extend to the case of non-
smooth domains, we will consider the second question relevant for numerical approximation.
Namely the question of regularity of the optimal solution. We will return to the case of a
smooth boundary and show that the adjoint state z is not only in the space Lr′ but actually
in the space W 1−2/r−ε,r′ for any ε > 0. From this we can finally deduce that the optimal
control satisfies

q ∈W
1
r−1 (1−2/r−ε),r(Ω).

A priori error estimates Having derived regularity for the optimal solution, we turn to the
error introduced by a discretization of problems with first-order state constraints in Chapter 4.
We discretize the state using continuous, piecewise linear, bilinear, or trilinear test functions.

3



1 Introduction

The control is discretized using either discontinuous piecewise constant functions or using the
same finite elements used for the state variable to obtain (for piecewise constants)

‖u− uh‖H1 ≤ ch
1
r
(1−2/r),

‖u− uh‖L2 ≤ ch
1
2 (1−2/r),

‖q − qh‖Lr ≤ ch
1
r
(1−2/r).

It should be noted that these estimates are suboptimal concerning possible best approximation
of both state and control, however, our numerical evidence shows that the estimate for the
control is sharp.

Regularization As it is computationally expensive, and not always possible, to solve the
discrete state constraint problem, it appears to be mandatory to use ‘regularization‘ techniques
in order to approximate the solution sufficiently well, while still retaining a solvable problem.
In Chapter 5 we will consider methods to regularize the problem under consideration. For
zero-order state constraints there are three methods lively discussed in literature, namely
quadratic penalty methods, also referred to as ‘Moreau-Yosida’ regularization, secondly
barrier methods, and thirdly ‘Lavrentiev’ regularization.

As in the beginning of writing this thesis none of these methods had been discussed for
first-order state constraints, we will study barrier methods, in great detail, in a function space
setting. This appears natural, since this is what is needed to have that ‘regularize-discretize’
yields the same solutions as ‘discretize-regularize’.

We first show that, under some standard assumptions, the barrier problem has a unique
solution (qγ , uγ) for every sufficiently small barrier parameter µ = 1/γ. Then we derive
necessary optimality conditions. Finally, we obtain that the barrier solution converges towards
the solution (q, u) of the state constraint problem with the following rates

‖u− uγ‖W 2,r ≤ cµ
1
r ,

‖u− uγ‖L2 ≤ cµ
1
2 ,

‖q − qγ‖Lr ≤ cµ
1
r .

A posteriori error estimates In Chapter 6 we will finally consider a posteriori error estimates
for optimization problems with state constraints. With the previous results at hand, it is
natural to ask the question: ‘What is the best coupling between the parameters γ and h?’.
This is directly related to the question of estimating the error introduced by both parameters.
Once both errors can be estimated it is reasonable to choose both parameters in such a way,
that the errors coming from both parameters are of the same size, in order to have minimal
computational effort.

First of all, we note that the regularized problem is an optimization problem without
inequality constraints on the state variable. Hence we derive a posteriori error estimates for
the discretization error in the case of control constraints. Then the only question remaining is
that of how to estimate the regularization error. To answer this, we will discuss the estimation
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of the error in the cost functional. Here we will see that the error is approximately given by
an integral of the state constraint mapping with an appropriately defined Lagrange multiplier
µγ , e.g.,

|J(q, u)− J(qγ , uγ)| ≈
1
2
(
g(uγ ,∇uγ), µγ

)
for the case of a barrier method without control constraints. We will also consider the case
of control and state constraints, as well as error estimates for the penalty approach.

Algorithmic details We proceed in Chapter 7 by describing the solution algorithm used for
the computation of the considered examples. In Section 7.1 we will describe the active-set
method used to solve the control constraint problems that arise when solving the regularized
discrete problems. In Section 7.2 we will describe our overall solution algorithm for the state
constraint problems and give some details on its implementation.

Applications and Outlook Finally, we will summarize the results and give an indication on
remaining questions and possible further development.
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2 Foundations

The main purpose of this chapter is to fix the notation used in this thesis. We will start by
briefly recalling some basics from convex analysis in Section 2.1. Then we continue and state
the optimization problems under consideration in a precise framework in Section 2.2. This will
be done in such a way, that we can apply standard results from optimization theory to obtain
existence of solutions and optimality conditions. Hence there is nothing surprising to anyone
familiar with the the monographs of (Clarke [47], Ekeland and Témam [59], Fursikov [63], Ito
and Kunisch [93], Lions [100], Tröltzsch [141]) except for the specific choice of the spaces in
order to apply the general theory to our situation and the explicit treatment of first-order
state constraints. As it is not the aim of this thesis to summarize the most general results
concerning existence and first and second-order conditions, we will make some convenient
assumptions that allow for a short survey on these results.

2.1 Basic Notation

In all that follows, let Ω ⊂ Rn be an open bounded domain with Lipschitz boundary Γ := ∂Ω,
see, e.g. (Adams and Fournier [1], Chapter 4).

We adopt standard notation, see (Adams and Fournier [1], Wloka [155]) for the usual Lebesgue
and Sobolev spaces, e.g., Wm,p(Ω) denotes the space of functions whose weak derivatives
up to order m are in Lp(Ω). Sometimes we will require non-integer differentiability, in this
case we will write W s,p(Ω) instead. These spaces can either be defined by interpolation using
Besov spaces, see, e.g., (Triebel [140]), or equivalently using completion with respect to norms
of certain difference quotients (p 6=∞).

The space L2(Ω) is a Hilbert space, its scalar product is denoted by ( · , · ) and the corresponding
norm by ‖ · ‖. All other scalar products and norms will be given an appropriate index, e.g.,
( · , · )V for the scalar product on a Hilbert space V . As it is common, we write Hm(Ω) for
Wm,2(Ω). If we are concerned with vector valued function spaces, we indicate this by adding
the image space to the definition, e.g., C(Ω;Rd) for continuous functions on Ω with values in
Rd.

Let B be a real Banach space. We denote its topological dual by B∗ and the duality pairing
by 〈 · , · 〉B∗×B.

Let C be a convex subset of B. We define the dual or polar cone by

C+ := { b∗ ∈ B∗ | 〈 b∗ , c 〉B∗×B ≤ 0 ∀ c ∈ C } . (2.1)

7



2 Foundations

In addition for b ∈ B, we define the conical hull of C \ {b} by

C(b) := { a(c− b) | c ∈ C, a ≥ 0, a ∈ R } . (2.2)

Let B1 and B2 be Banach spaces and let F : B1 → B2; b 7→ F (b) be directional differentiable,
then we denote its directional derivative at b ∈ B1 in direction δb ∈ B1 by

F ′b(b)(δb) := lim
ε→0

F (b+ εδb)− F (b)
ε

∈ B2.

Further if F is Gâteaux differentiable, we denote the corresponding Gâteaux-derivative by

F ′b(b) ∈ L(B1, B2)

where L(B1, B2) denotes, as usual, the space of bounded linear operators from B1 into B2.
Finally, if t ≥ 1 is a given number we set t′ = t

t−1 with the usual meaning if t = 1 or t =∞.

2.2 Abstract Optimization Problem

Let V be a Hilbert space, such that V ⊂ L2(Ω) with a dense compact embedding, e.g.,
V = H1(Ω). Let further W , Q be reflexive Banach spaces with W ⊂ V dense and continuous.
Further let Qad ⊂ Q be closed, convex, and non-empty.

For the abstract differential operator A : Qad × V → V ∗, we define its variational form by
setting

a(q, u)(ϕ) := 〈A(q, u) , ϕ 〉V ∗×V . (2.3)
We can now state our partial differential equation. For given f ∈ V ∗, q ∈ Qad find u ∈ V
such that

a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ V. (2.4)
In the following we assume that (2.4) has a unique solution uq, such that the mapping
(q, f) 7→ uq is at least once continuously differentiable.
Remark 2.1. It’s clear that non-variational boundary conditions such as non-homogeneous
Dirichlet values for u can not be obtained in this fashion. However, we don’t want to
complicate the notation by searching u in an affine space V + û since the modifications are
straightforward.

As it is in general not suitable to consider (2.4) under minimal regularity assumptions, we
will make the following assumption on the regularity of the differential operator. Assume
that there is a subspace Z∗ ⊂ V ∗ such that for q ∈ Qad, f ∈ Z∗ any solution uq of (2.4)
satisfies the additional regularity uq ∈W .

We continue by defining the state constraints. For this reason, we define the compact set
ΩC ⊂ Ω with non empty interior. We assume that the mapping g : u 7→ g(u,∇u) is C2 from
W into G := C(ΩC). We employ the usual ordering to state the constraint g(u,∇u) ≤ 0. In
order to shorten notation, we define the derivative of this mapping by

g′(u,∇u)(δu) := d

dε
g(u+ εδu,∇(u + εδu))

∣∣∣
ε=0

= g′u(u,∇u)(δu) + g′∇u(u,∇u)(∇δu).

8
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Remark 2.2. The case of finitely many state constraints can be handled in the same framework.
It is obtained by setting ΩC ⊂ {1, . . . n} for some n. In this case G := C(ΩC) = Rn and we
identify its dual G∗ with G.

In order to state necessary conditions, and to apply Newton’s method it is convenient—
although not necessary, see (Chen, Nashed, and Qi [44], Hintermüller, Ito, and Kunisch
[85], Ulbrich [144])—to require that A : Qad × V → V ∗ and A : Qad ×W → Z∗ are of class
C2 and for any q ∈ Qad and u ∈W the partial derivative with respect to u is an isomorphism
between the following pairs of spaces

A′u(q, u) : V → V ∗,

A′u(q, u) : W → Z∗.

Finally, we consider the cost functional J : Q×V 7→ R to be C2, weakly lower semi-continuous,
coercive, and bounded from below.

We can now state our abstract optimization problem as

Minimize J(q, u) (2.5a)

subject to


a(q, u)(ϕ) = f(ϕ) ∀ ϕ ∈ V,

(q, u) ∈ Qad × V,
g(u,∇u) ≤ 0.

(2.5b)

It should be noted that there are two ways to proceed, one is to consider the tuple (q, u)
as two independent variables of the optimization problem (2.5), see, e.g., (Fursikov [63]).
The other one, that we will pursue in the fashion of (Lions [100]) is to consider only q as a
variable and associate uq by means of (2.4). For a more recent survey on this see (Tröltzsch
[141]). We define the solution operator S by

a(q, S(q))(ϕ) = (f, ϕ) ∀ϕ ∈ V. (2.6)

We assume differentiability of the control to state mapping S : Q→W . Then we obtain that
the derivative S′(q)(δq) exists, and satisfies

〈A′u(q, S(q))S′(q)(δq) , ϕ 〉Z∗,Z = −〈A′q(q, S(q))δq , ϕ 〉Z∗,Z ∀ ϕ ∈ Z. (2.7)

Now we can state the reduced optimization problem by

Minimize Ĵ(q) := J(q, S(q)) (2.8a)

subject to
{
ĝ(q) := g(S(q),∇S(q)) ≤ 0,

q ∈ Qad.
(2.8b)

Finally, we note that the last condition can be equivalently expressed as

ĝ(q) ∈ Gad,

9



2 Foundations

where Gad := { v ∈ G | v ≤ 0 } is the cone of non positive functions. We assume here, that
the mapping ĝ is weakly sequential continuous.

For the analysis of the reduced problem (2.8) it is convenient to assume that the reduced
cost functional Ĵ is coercive and weakly lower semicontinuous.
Remark 2.3. Note that this is not implied by the assumptions on the cost functional J on
Q × V , they are required for simplicity only, e.g., if Qad is bounded there is no need for
growth conditions on the cost functional.

Existence There are several theorems available that ensure existence of solutions to min-
imization problems. However if applied to PDEs one has to carefully check whether all
premises are fulfilled. For a discussion in the case of semi-linear elliptic equations with control
constraints see (Tröltzsch [141], Chapter 4), in the case of state constraints see, e.g., (Casas
and Bonnans [35]) and (Casas and Fernández [36]) for first-order state constraints. For quasi
linear equation with control constraints see (Casas and Tröltzsch [41]).

Let us assume that (2.8) has at least one feasible point, that is, we assume that the set

Qfeas := { δq ∈ Qad | ĝ(δq) ∈ Gad }

is not empty.

Now using standard arguments, cf., (Dacorogna [49]), it is simple to show existence of an
optimal solution.

Theorem 2.1. Let Qfeas 6= ∅, then there exists a solution to (2.8).

Proof. Take a minimizing sequence qk ∈ Qfeas. By coercivity of Ĵ the sequence is bounded
and hence, possibly taking a subsequence, qk is weakly convergent to some q ∈ Qad, as Qad is
weakly sequentially closed. Further the limit q lies in Qfeas as ĝ is weakly sequential continuous.
Finally, by lower semi continuity of Ĵ , we obtain that Ĵ(q) ≤ minδq∈Qfeas Ĵ(δq).

Necessary Conditions In order to apply standard calculus it is convenient to assume that a
solution q to problem (2.8) satisfies a regularity condition (sometimes called Slater condition
or constraint qualification) namely that the solution is a regular point.

Definition 2.1. (Regular point) An element q ∈ Qfeas := { δq ∈ Qad | ĝ(δq) ∈ Gad } is called
regular if

ĝ′(q)Qad(q)−Gad(ĝ(q)) = G. (2.9)

This definition goes back to (Mäurer and Zowe [105], Zowe and Kurcyusz [159]).
Remark 2.4. This definition is equivalent to

0 ∈ int { ĝ′(q)(Qad − q)−Gad + ĝ(q) }

where int denotes the interior of the set see, e.g., (Ito and Kunisch [93]) for a proof.
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2.2 Abstract Optimization Problem

From Definition 2.1 one readily deduces the existence of a Lagrange multiplier.

Theorem 2.2. Let q be a solution to (2.8). Further, let q be regular, then there exists a
Lagrange multiplier µ ∈ G∗. This means, that

Ĵ ′(q)(ϕ− q) + 〈µ , ĝ′(q)(ϕ− q) 〉G∗×G ≥ 0 ∀ϕ ∈ Qad, (e.g. Ĵ ′(q) + µ ◦ ĝ′(q) ∈ −Qad(q))

〈µ , ϕ 〉G∗×G ≤ 0 ∀ϕ ∈ Gad, (e.g. µ ∈ Gad+)
〈µ , ĝ(q) 〉G∗×G = 0.

For a proof see (Ito and Kunisch [93], Theorem 1.6). Now defining z ∈ Z as a solution to

〈A′u(q, u)ϕ , z 〉Z∗×Z = J ′u(q, u)(ϕ) + 〈µ , g′(u,∇u)(ϕ) 〉G∗×G ∀ϕ ∈W

(which exists due to our assumptions on A′u(q, u)) we obtain using (2.7)

Theorem 2.3. Let q ∈ Qad be a solution to (2.8)—or (2.5)—. Further let q be regular in
the sense of Definition 2.1, then there exists u ∈W , z ∈ Z, µ ∈M(ΩC) such that:

a(q, u)(ϕ) = f(ϕ) ∀ ϕ ∈ V, (2.10a)
〈A′u(q, u)ϕ , z 〉Z∗×Z = J ′u(q, u)(ϕ) + 〈µ , g′(u,∇u)(ϕ) 〉G∗×G ∀ ϕ ∈W, (2.10b)

J ′q(q, u)(δq − q) ≥ 〈A′q(q, u)(δq − q) , z 〉Z∗×Z ∀ δq ∈ Qad, (2.10c)
〈µ , ϕ 〉G∗×G ≤ 0 ∀ ϕ ∈ G; ϕ ≤ 0, (2.10d)

〈µ , ĝ(q) 〉G∗×G = 0. (2.10e)

This is the form that can be found in several publications. For instance (Bergounioux
[17], Casas [34], Casas and Bonnans [35]) showed that this is true for state constraints
with distributed control or (Bergounioux [18]) for boundary control. For first-order state
constraints the existence of the multipliers can be found in (Casas and Fernández [36]).
Recently similar results were obtained in the case of state constraints with discontinuous
states by (Schiela [131]).

Naturally there are also necessary second-order conditions possible, see, e.g, (Casas and
Tröltzsch [39]).

One should note that for mixed control-state constraints, e.g., g depends also on the control
variable, it can be shown that the multiplier µ in Theorem 2.3 is actually in L2, see (Tröltzsch
[142]). Also in the case of state constraints the multiplier µ is not an arbitrary measure, but
can in fact be split into a measure part on the boundary of the active set, and a L2 function
in the interior of the active set, see (Bergounioux and Kunisch [21]).

Sufficient Conditions In general the necessary conditions from the previous section are not
sufficient. Hence one needs some sufficient conditions. As there can not be a local condition
to ensure that a point q is a global minimizer these conditions usually only ensure that the
point q is a local minimizer. The main idea is to show that the problem at hand is convex
in a suitable neighborhood of a point q that satisfies the necessary condition (2.10). As the

11
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necessary conditions are sufficient for convex problems one immediately obtains that q is a
local minimizer in the given neighborhood.

In order to state this conditions in a compact form we define the Lagrangian

L : Q×W × Z → R,

(q, u, z) 7→ J(q, u) + f(z)− 〈A(q, u) , z 〉Z∗×Z .

Then the following holds

Theorem 2.4 (Sufficient optimality condition). Let ξ = (q, u, z, µ) ∈ Qad ×W × Z × G∗
satisfy the first-order necessary condition (2.10) of optimization problem (2.5). Moreover, let
z 7→ 〈A′u(q, u)(·) , z 〉Z∗×Z : Z →W ∗ be surjective. If there exists ρ > 0 such that

(
δq , δu

) [L′′qq(ξ)(·, ·) L′′qu(ξ)(·, ·)
L′′uq(ξ)(·, ·) L′′uu(ξ)(·, ·)

](
δq
δu

)
≥ ρ

(
‖δu‖2W + ‖δq‖2Q

)
(2.11)

holds for all (δq, δu) satisfying the linear (tangent) PDE (2.7) then (q, u) is a (strict) local
solution to the optimization problem (2.5).

We refer to (Mäurer and Zowe [105]) for the proof.

Such conditions were derived for problems with semilinear elliptic equations subject to state
or mixed control-state constraints, see, e.g., (Casas and Mateos [37], Casas, Tröltzsch, and
Unger [42], Meyer and Tröltzsch [114]).

In general Fréchet differentiability and coercivity of the second derivative can not be shown
in the same spaces, in this case one has to deal with the well known ‘two-norm’ discrepancy,
see, e.g, (Tröltzsch [141]).

2.3 Discretization of the State Constraint

As we will later use finite elements for the discretization of the equation (2.4) we need some
remarks concerning the state constraint g. Let Vh be a finite element space, for the precise
definition of which we refer to Section 4.2. In order to work in a convenient framework we
assume that the ‘same’ operator g also defines a mapping g : Vh → L∞(ΩC).

We will come back to this in Chapter 6, where it will be important that the solution to (2.5)
remains the same regardless of whether we consider the constraint g(u,∇u)) ≤ 0 with respect
to the ordering in C(ΩC) or L∞(ΩC).

12
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2.4 Examples

Example with First Order Constraints Let Ω ⊂ R2 be a bounded convex polygonal domain.
We consider the following model problem

Minimize J(q, u) = 1
2‖u− u

d ‖2 + α

r
‖ q ‖rLr

subject to


(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1

0 (Ω),
|∇u|2 ≤ ψ in Ω,
a ≤ q ≤ b a.e. in Ω.

(2.12)

Where α,ψ > 0, −∞ ≤ a < b ≤ ∞ are given numbers such that at least r > 2 or a, b ∈ R.

It is well known, cf., (Grisvard [73]), that there is t > n = 2 such that −∆ is an isomorphism
from W 2,t(Ω) ∩ H1

0 (Ω) into Lt(Ω). Hence setting W = W 2,t(Ω) ∩ H1
0 (Ω), we have the

required regularity of the state equation and its derivatives with respect to u. The mapping
g(u,∇u) = |∇u|2 − ψ is differentiable from W ⊂ C1(Ω) into C(Ω).

Now, noting that the ‘control-to-state’ mapping Lt(Ω)→ C(Ω), q 7→ uq defined by

(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1
0 (Ω)

is compact, we obtain that the reduced state constraint mapping ĝ is weakly sequential
continuous. Hence, by Theorem 2.1, there exists a unique solution (q, u) to this problem.

By definition of a regular point, see Remark 2.4, we obtain that the solution is regular,
provided that

0 ∈ int { ĝ′(q)
(
Qad − q

)
−Gad + ĝ(q) }.

This means there exists ε such that for any v ∈ C(Ω) with ‖v‖∞ ≤ ε there exists (δq, δv) ∈
Qad ×Gad such that

v = 2∇u · ∇S(δq)− 2|∇u|2 − δv + |∇u|2 − ψ. (2.13)

Now, assume that there is a Slater point, e.g., a point q̂ ∈ Qad such that

g(Sq̂,∇Sq̂) = |∇Sq̂|2 − ψ < 0. (2.14)

We obtain that

2∇u · ∇Sq̂ − 2|∇u|2 + |∇u|2 − ψ
≤ |∇u|2 + |∇Sq̂|2 − 2|∇u|2 + |∇u|2 − ψ
≤ |∇Sq̂|2 − ψ < 0

and as Ω is compact there is ε > 0 such that

2∇u · ∇Sq̂ − 2|∇u|2 + |∇u|2 − ψ ≤ −ε.

Hence we have that
0 < v − 2∇u · ∇Sq̂ + |∇u|2 + ψ

13
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provided ‖v‖∞ ≤ ε. Which gives that there is δv ∈ Gad such that (q̂, δv) fulfills (2.13).

We see that if there is a Slater point (2.14) the solution is always regular, and Theorem 2.3
gives

Theorem 2.5. Let (q, u) ∈ Lr(Ω)×H1
0 (Ω) ∩W 2,t(Ω) be the solution to (2.12), with some

t > n and n < r <∞ or a, b ∈ R. Assume that there is a point q̂ satisfying (2.13), then there
exists z ∈ Ls(Ω) for all s < n

n−1 and a measure µ with support contained in Ω, such that

(∇u,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1
0 (Ω), (2.15a)

(z,−∆ϕ) = (u− ud, ϕ) + 〈µ,∇ϕ∇u〉C∗×C ∀ ϕ ∈ H1
0 (Ω) ∩W 2,r(Ω), (2.15b)

〈µ, ϕ∇u〉C∗×C ≤ 〈µ, |∇u|2〉C∗×C ∀ ϕ ∈ C(Ω,Rd), |ϕ| ≤ ψ, (2.15c)
α(|q|r−2q, δq − q) ≥ (−z, δq − q) ∀ δq ∈ Qad. (2.15d)

This is not exactly the form stated in Theorem 2.3, but can be derived from this, see (Casas
and Fernández [36]).

Example with Zero Order Constraints

Minimize J(q, u) = 1
2‖u− u

d ‖2 + α

2 ‖ q ‖
2

subject to


(∇u,∇ϕ) + (u, ϕ) = (q, ϕ)∂Ω ∀ϕ ∈ H1(Ω),

u ≤ ψ in Ω,
a ≤ q ≤ b a.e. in Ω.

(2.16)

Where α,ψ > 0, −∞ ≤ a < b ≤ ∞ are given numbers. Let Ω ⊂ R2 be a bounded domain. If
∂Ω is smooth it is clear that for any q ∈ L2(∂Ω) the solution to

(∇u,∇ϕ) + (u, ϕ) = (q, ϕ)∂Ω ∀ϕ ∈ H1(Ω)

is contained in H3/2(Ω), see, e.g., (Lions and Magenes [101], Section 7.3). Hence we obtain
from Sobolev embedding that u ∈W 1,t(Ω) ⊂ C0(Ω) for some t > 2.

Hence by setting V = H1(Ω), W = W 1,t(Ω), we obtain that the mapping g(u,∇u) = u− ψ
is continuous (and differentiable) from W into C0(Ω). In fact it is also compact and hence
the mapping ĝ is weakly sequential continuous. By assumption ψ > 0 and hence q̂ ≡ 0 is a
slater point, e.g., û = uq̂ ≡ 0 fulfills g(û,∇û) < 0. Following the same line of arguments as in
the previous example, we obtain that every feasible point is regular, and hence the following
theorem holds

Theorem 2.6. Let (q, u) ∈ L2(Ω)×W 1,t
0 (Ω) for some t > 2 be the solution to (2.16). Then

there exists z ∈W 1,t′(Ω) for t′ = t
t−1 and a measure µ with support contained in Ω̄, such that

14
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(∇u,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1
0 (Ω), (2.17a)

(∇z,∇ϕ) = (u− ud, ϕ) + 〈µ, ϕ〉C∗×C ∀ ϕ ∈W 1,t
0 (Ω), (2.17b)

α(q, δq − q) ≥ (−z, δq − q) ∀ δq ∈ Qad, (2.17c)
〈µ, ϕ〉C∗×C ≤ 0 ∀ ϕ ∈ C(Ω), ϕ ≤ 0, (2.17d)

〈µ, g(u)〉C∗×C = 0. (2.17e)
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3 Existence and Regularity

Throughout this chapter we will consider the most simple setting for first-order state con-
straints. We begin by describing two model problems, each of them having unique features.
First we will consider the case of pure first-order state constraints. There we have to use a
stronger regularization in order to assure existence of a solution. Secondly we will introduce
additional bounds on the control variable.

Problem without Control Constraints

Minimize J(q, u) = 1
2‖u− u

d ‖2 + α

r
‖ q ‖rLr

subject to
{

(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1
0 (Ω),

|∇u|2 ≤ ψ a.e. in Ω.

(3.1)

Where α,ψ > 0, r > n are given numbers.

Problem with Control Constraints

Minimize J(q, u) = 1
2‖u− u

d ‖2 + α

2 ‖ q ‖
2

subject to


(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1

0 (Ω),
|∇u|2 ≤ ψ a.e. in Ω,
a ≤ q ≤ b a.e. in Ω.

(3.2)

Where a, b ∈ R, a < b and α,ψ > 0 are given numbers..

Both examples fit into the framework of Chapter 2, see Section 2.4 for details.

3.1 Results on Non-Smooth Domains

As already stated in Section 2.4, some smoothness requirements on the domain are sufficient
to obtain that there exists a (unique) solution and additional Lagrange multiplier. We will
now consider the, more realistic case, that the domain is not smooth, but is bounded by
finitely many smooth (n− 1)-dimensional manifolds.

This will lead to some difficulty because the control-to-state mapping is no longer a map
from Lr into W 2,r due to the singularities arising from corners and edges. To the authors
knowledge this setting has not been considered in the literature prior to this thesis.

17
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3.1.1 Existence

We start the discussion by showing that both problems (3.1) and (3.2) posses a solution.

Theorem 3.1. Let Ω ⊂ Rn, n = 2, 3 be a polygonal or polyhedral domain. Then problem (3.1)
has a unique solution (q, u) ∈ Lr(Ω)×W 2,t(Ω) ∩H1

0 (Ω) for some t > 2 depending only on
the angles in the corners and the edges of the domain.

If in addition (3.2) has at least one feasible control, e.g., such that the control is in Qad and
the corresponding state satisfy the inequality constraints, then (3.2) has a unique solution
(q, u) ∈ L∞(Ω)×W 2,t(Ω) ∩H1

0 (Ω). Where t > 2 depends only on the angles in the corners
and the edges of the domain.

Before we are able to proof Theorem 3.1 we will require a short lemma.

Lemma 3.2. Let Ω ⊂ Rn, n = 2, 3 be a polygonal or polyhedral domain. Further, let
f ∈ Lp(Ω) for some p ≥ 2. If the solution u of

(∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω)

satisfies u ∈W 1,∞(Ω) then u ∈W 2,t(Ω) for some t ∈ [2, p]. Moreover if p > 2 then t ∈ (2, p]
is possible. The value of t can be determined by knowledge of the angles in the corners, edges
and vertices of the domain.

Proof of Lemma 3.2. The proof is based on well known singular behavior of the solution
near the corners and edges, cf., (Grisvard [71]) for the 2d case. The 3d case was considered
in (Dauge [50], Grisvard [73]) in Hilbert spaces, its extension to the non-hilbertian case can be
found in (Grisvard [74]). The idea of the proof is as follows, the solution to the state equation
can be split into a regular part that exhibits the regularity introduced by the right-hand
side f and a singular part corresponding to the non-smooth boundary. By the bound on the
gradient of the solution one obtains, that the singular part may not exist.

We begin with a discussion in 2d, e.g., n = 2. Let C be the (finite) set of corners of the domain.
For a corner c ∈ C we denote the interior angle by ωc, and we denote polar coordinates with
respect to the corner c by (ρc, θc). Then assuming that f ∈ Lt for some t ∈ (2, p] and 2ωc

πt′ 6∈ N
there exist numbers Cc,j such that the solution u to

(∇u,∇ϕ) = (f, ϕ) ∀ ϕ ∈ H1
0 (Ω)

satisfies

u−
∑
c∈C

j< 2ωc
πt′∑

j=1
jπ
ωc
6=1

Cc,jηc(ρc)ρ
jπ
ωc
c sin

(
jπ

ωc
θc

)
∈W 2,t(Ω)

with suitable cutoff functions ηc, cf., (Grisvard [71], Theorem 4.4.3.7).

To proceed further, note that if t > 2 = n, e.g., W 2,t(Ω) ⊂ C1(Ω), we have that t′ < 2, and
t′ → 2 as t→ 2. Let us assume first that ωc 6= 2π, then by considering t > 2 small enough
2ωc
πt′ < 2 and the second sum in the singular expansion contains at most the value j = 1. If
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ωc = 2π, then t > 2 small enough implies 2ωc
πt′ < 3, and as the case j = 2 is prohibited by the

condition jπ
ωc
6= 1 we obtain again that the second sum in the singular expansion contains at

most the value j = 1.

Now we will discuss the behavior of the derivative of the singular solutions. We obtain for all
c ∈ C that jπ

ωc
< 2

t′ . Here we have to distinguish two cases:

First assume that jπ
ωc

< 1 then the first derivative of ρ
jπ
ωc
c becomes unbounded and the

assumption u ∈W 1,∞(Ω) implies Cc,j = 0.

Second if jπωc > 1, then by reducing t > 2 even further, we obtain that 2
t′ <

jπ
ωc
, and hence this

case doesn’t exist anymore.

It is clear the the same argument remains true if t = t′ = 2.

Summing up we obtain that, provided t is sufficiently small,

∑
c∈C

j< 2ωc
πt′∑

j=1
Cc,jηc(ρc)ρ

jπ
ωc
c sin

(
jπ

ωc
θc

)
∈W 1,∞(Ω)

if and only if all the singular coefficients fulfill Cc,j = 0 and hence that u ∈W 2,t(Ω) for some
t ∈ [2, p] sufficiently small, and if p > 2 we can actually choose t > 2.

We now turn our attention to the case n = 3. Here we will have to consider contributions by
vertices and edges. Therefore we denote the set of vertices on ∂Ω by V and the set of edges
by E .

We will begin by considering a vertex v ∈ V. Here we introduce spherical coordinates
(ρv, θv, ϕv). Let now be Bv a sufficiently small ball around v, let Gv = ∂Bv ∩ Ω then
let wj,v(θv, ϕv) be the sequence of eigenfunctions of the Laplace-Beltrami operator with
homogeneous Dirichlet boundary conditions on Gv and λj,v be the corresponding eigenvalues.
Then, assuming λj,v 6=

(
3
t − 2

) (
3
t − 3

)
for all j, the corresponding singular expansion reads

∑
λj,v<( 3

t
−2)( 3

t
−3)

Cj,vηv(ρ)ρ
βj,v− 1

2
v wj,v(θv, ϕv).

Where βj,v is given as βj,v =
√(

3
t − 1

)2
+ λj,v, see (Grisvard [74], Theorem 4.6). First let

p > 3 then for t > 3 we obtain that for t → 3 the upper bound on λj,v converges to two.
Hence βj,v ≤

√
2 + ε < 1.5 and we obtain that the first derivative is not bounded for t

sufficiently small.

We remark that we can choose t ∈ (3, p] independent of the angles, as the only requirement
is βj,v < 1.5 (Although one may obtain the same for larger t by using information on λj,v.).

If p < 3 we can use the same argument, as we only remove summands in the singular
expansion.

We now consider the contributions from an edge e ∈ E . We denote its interior angle by ωe
and introduce cylindrical coordinates (ρe, θe, ze) with respect to the edge e.
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Then we obtain, see (Dauge [50], Section 17.D) and (Grisvard [73], Theorem 2.5.11) for t = 2,
or (Grisvard [72], Theorem 4.1) and (Grisvard [74], Section 7) for t > 2, that there exist
functions qj,e ∈W 2/t′−jπ/ωe,t(R+), such that the singular part of the solution is of the form

j< 2ωc
πt′∑

j=1
jπ
ωc
6=1

(Gj(ρe, ze) ∗ qj,e)ϕj,e(ρe, θe)

where ϕj,e(ρe, θe) := ηe(ρe)ρ
jπ
ωe
e sin

(
jπ
ωe
θe
)
is the same function as in the 2d case, and

(Gj(ρe, ze) ∗ qj,e) =
∫ ∞
0

Gj(ρe, s, ze) ∗ qj,e(s) ds.

For jπ
ωe
> 1− 2

t we set

Gj(ρe, s, ze) := ρe
π

2zes
(ρ2
e + (ze − s)2)(ρ2

e + (ze + s)2)

and for jπ
ωe
≤ 1− 2

t we set

Gj(ρe, s, ze) := 2ρ3
e

π

( 1
(ρ2
e + (ze − s)2)2

− 1
(ρ2
e + (ze + s)2)2

)
.

We obtain that the second case jπ
ωe
≤ 1− 2

t does not exist for sufficiently small t > 3, as this
implies j ≤ ωe

π (1− 2
t ) ≤ 2(1− 2

t )→
2
3 . Hence we only have to deal with the first case.

We proceed exactly as in the 2d case. Let t > 2 sufficiently small, and 2ωe
πt′ 6∈ N, then in

the above sum only j = 1 appears, and the first derivative of ϕj,e(ρe, θe) is unbounded for
ρj,e → 0. Then noting that for arbitrary ρe > 0 we may interchange differentiation and
integration by standard theorems, see, e.g., (Amann and Escher [4], Theorem 3.18), and
limρe→0(Gj(ρe, ze) ∗ qj,e) = qj,e(z) we obtain that as in the 2d case boundedness of the first
derivative of (Gj(ρe, ze) ∗ qj,e)ϕj,e implies qj,e ≡ 0.

Combining edges and vertices, see (Grisvard [74], Section 7.2) or (Dauge [50], Section 17.D)
we obtain the assertion.

Remark 3.1. In addition to the result of Lemma 3.2, we remark that provided certain
(countably many) critical values of t are avoided the operator −∆ is closed from W 2,t(Ω) ∩
H1

0 (Ω) into Lt(Ω) and the image I ⊂ Lt(Ω) is of finite codimension. Especially the operator
is closed for t = 2.

To see this we first consider the case n = 2, then the result is obtained by (Grisvard [71],
Theorem 4.3.2.4) for t > 2 under the condition 2ωc

πt′ 6∈ N for all interior angles ωc. The case
t = 2 is covered by (Grisvard [71], Theorem 4.3.1.4).

The case n = 3 and t = 2 is covered by (Dauge [51], Corollary 3.10), for the case t > 2
see (Grisvard [70], Theorem 5.8)1.

1I would like to acknowledge the support of M. Dauge for an e-mail giving the same result, before I was able
to find a citable source.
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In particular, this implies that there exists a constant C such that for any f ∈ I and
corresponding solution u ∈W 2,t(Ω) ∩H1

0 (Ω) the following holds

‖u‖2,t ≤ C‖f‖t.

Proof of Theorem 3.1. We begin by noting that, by assumption, there is at least one feasible
control q0 ∈ Qfeas. From Lemma 3.2 we obtain that for any q ∈ Qfeas the corresponding state
uq ∈W 2,t(Ω) ∩H1

0 (Ω) for some t > 2 and the mapping q 7→ uq is continuous.

Hence if n = 2 we can apply Theorem 2.1 by noting that the embedding W 2,t(Ω) 7→ C1(Ω) is
compact, and hence ĝ : q 7→ |∇u|2 − ψ is weakly sequential continuous.

If n = 3 this is no longer the case. However, analog to the proof of Theorem 2.1 taking a
minimizing sequence qk in Qfeas we obtain boundedness of the sequence qk in Lt(Ω). Hence
there exists a weakly convergent subsequence w.l.o.g again denoted by qk. By continuity
of the solution operator, see Remark 3.1, and possibly selecting a further subsequence the
states uqk converge weakly in W 2,t(Ω) ∩H1

0 (Ω), and by compactness converge strongly in
W 1,t

0 (Ω). In particular the sequence |∇uqk |2 converges in L1(Ω). Hence possibly selecting
another subsequence we obtain that |∇uqk |2 converges pointwise almost everywhere. Thus
Qfeas is closed with respect to weak convergence. Hence any weak limit q of the sequence qk
is feasible and a solution to the problem by weakly lower semi continuity of Ĵ .

3.1.2 Necessary Conditions

After having established the existence of a solution we will consider the system of first-order
necessary conditions. We will not discuss second-order sufficient conditions as the problems
at hand are convex. Hence the necessary conditions are already sufficient.

Lemma 3.3. Let (q, u) be the solution of (3.1) or (3.2). If it is a solution to (3.2) assume
that there is a strictly feasible control q̂, e.g., the corresponding state û satisfies |∇û|2 < ψ.

Assume that t obtained in Lemma 3.2 is larger than n and that ∆ is closed from W 2,t(Ω) ∩
H1

0 (Ω)→ Lt(Ω).

Then there exists a measure µ ∈ C(Ω)∗ such that the following holds:

Ĵ ′(q)(ϕ− q) + 〈µ , ĝ′(q)(ϕ− q) 〉C∗×C ≥ 0 ∀ϕ ∈ Qad ∩ I,
〈µ , ϕ 〉C∗×C ≤ 0 ∀ϕ ∈ C(Ω), ϕ ≤ 0,

〈µ , |∇u|2 − ψ 〉C∗×C = 0,
(3.3)

where I denotes the image of W 2,t(Ω) ∩H1
0 (Ω) under ∆.

Proof. We note that the image I of W 2,t(Ω) ∩ H1
0 (Ω) under ∆ is closed in Lt(Ω). Hence

I ∩ Lp(Ω) is closed in Lp(Ω) (p ≥ t), too. This means, it is sufficient to consider the
optimization problem on the smaller space Q = I ∩ Lp(Ω). Then ĝ is differentiable on Q by
construction. As in Section 6.2.1.3 we obtain that the solution q is a regular point.

Applying Theorem 2.2 yields the desired result.
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3 Existence and Regularity

Remark 3.2. The result is almost identical to the smooth case, however, we had to consider
Q = I ∩ Lp(Ω) and hence we get a non local constraint into the admissible set Qad ∩ I.

In order to obtain a system similar to Theorem 2.3, where the influence of the equality and
inequality constraints are separated, we have to consider the adjoint equation.

〈−∆ϕ , z 〉Z∗×Z = J ′u(q, u)(ϕ) + 〈µ , g′(u,∇u)(ϕ) 〉C∗×C ∀ϕ ∈W (3.4)

where we have to find suitable spaces Z and W . As we like to use u as a test function we
consider W = W 2,t(Ω) ∩H1

0 (Ω) where t is given by Lemma 3.2. We need to consider the
solvability of the adjoint equation.

To see this, we first note that the equation

(∇ϕ,∇z0) = J ′u(q, u)(ϕ) ∀ϕ ∈ H1
0 (Ω)

possesses a solution z0 ∈ H1
0 (Ω). Hence it is sufficient to consider solvability of the equation

〈−∆ϕ , z1 〉Z∗×Z = 〈µ , 2∇u∇ϕ 〉C∗×C ∀ϕ ∈W. (3.5)

It is clear that the right-hand side is an element of
(
W 2,t(Ω) ∩H1

0 (Ω)
)∗ for any t > n. As

−∆: W 2,t(Ω) ∩ H1
0 (Ω) → I ⊂ Lt(Ω) is an isomorphism. Hence the same holds true for

−∆∗ : I∗ →
(
W 2,t(Ω) ∩H1

0 (Ω)
)∗. Setting I⊥ = {v ∈ Lt

′(Ω) | (v, q) = 0 ∀ q ∈ I} we have
I∗ ∼= Lt

′(Ω)/I⊥ because I is closed in Lt(Ω), see, e.g., (Werner [154], Theorem III.1.10).

By choosing Z = Lt
′(Ω) there exists a solution z1 to (3.5) which is uniquely determined

modulo I⊥. Hence z = z0 + z1 ∈ Lt
′(Ω) is a solution to (3.4).

By combining this with Lemma 3.3 we get the following

Theorem 3.4. Under the assumptions of Lemma 3.3 for a solution (q, u) of (3.1) or (3.2),
there exists a measure µ ∈ C(Ω)∗ and a function z ∈ Lt′(Ω) such that:

(∇u,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1
0 (Ω),

〈−∆ϕ , z 〉Z∗×Z = J ′u(q, u)(ϕ) + 〈µ , g′(u,∇u)(ϕ) 〉C∗×C ∀ ϕ ∈W,
J ′q(q)(δq − q) ≥ −〈 δq − q , z 〉Z∗×Z ∀ δq ∈ Qad ∩ I,
〈µ , ϕ 〉C∗×C ≤ 0 ∀ ϕ ∈ C(Ω), ϕ ≤ 0,

〈µ , |∇u|2 − ψ 〉C∗×C = 0.

(3.6)

We remark that z1 being determined only modulo I⊥ doesn’t affect the variational inequality

J ′q(q)(δq − q) ≥ −〈 δq − q , z 〉Z∗×Z ∀ δq ∈ Qad ∩ I

because the test functions are chosen from I.
Remark 3.3. We note that, in the case n = 3, there is a gap between the existence Theorem 3.1
and the necessary conditions Lemma 3.3 and Theorem 3.4 because there are certain angles
for which we could not obtain W 2,t regularity of the solution for t > 3. The problem in the
proof of the necessary conditions is that this implies that the mapping ĝ is not differentiable
in a neighborhood of q.
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3.2 Regularity

3.2 Regularity

We will now discuss another issue of importance, namely that of regularity in the context of
first-order constraints.

We recall that the necessary condition (2.10) for problem (2.12) takes the explicit form (2.15).
In particular, the adjoint state z is contained in any Ls(Ω) with s < n

n−1 , see (Casas and
Fernández [36]). If this would be best possible, then this would automatically limit the
possibility to obtain higher regularity for the control variable by bootstrapping arguments,
because the control and the adjoint state are linked by the (algebraic) equation (2.15d). For
instance if z has no derivatives, then in general q has none either.

We will now show that there is in fact some additional regularity for this problem. Parts
of this proof are already published in (Ortner and Wollner [120]). We will add here the
case of pointwise bounds on the control variable, and conclude with a regularity result on
non-smooth domains.

The Case of a Smooth Domain It will be crucial for our analysis that there exists t > n
such that −∆ is W 2,t-regular, e.g. for q ∈ Lt(Ω) the weak solution u ∈ H1

0 (Ω) to

(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1
0 (Ω)

belongs in fact to W 2,t(Ω), and ‖u‖W 2,t ≤ c‖q‖Lt . If the boundary is of class C1,1 this is
obtained by classical regularity theory for any t, this dates back to (Agmon, Douglis, and
Nirenberg [2]) for a more recent exposition see (Gilbarg and Trudinger [67]).

If the domain is polygonal or polyhedral the existence of such a t requires additional conditions
on the domain. If n = 2 there is such t provided the domain is convex see (Grisvard [73],
Thm. 4.4.3.7). If n = 3 then one needs to assume in addition, that the angle between any
two faces of Ω is bounded strictly above by 3

4π (Dauge [51], Cor. 3.7). Let now be tmax > n
be defined such that −∆ is W 2,t-regular for any t ∈ (n, tmax).

From the necessary optimality conditions (2.15) we can in a first step derive additional
regularity for the adjoint state z. To do so we will employ the K-Method of interpolation
(although any other method would do fine). Hence we define fractional-order Sobolev spaces
W s,p by Besov spaces Bs

p,p. For details on this see, e.g., (Triebel [140], Definition 4.2.1)
or (Adams and Fournier [1], Chapter 7).

Lemma 3.5. The solution z of (2.15b) belongs to W 1−n/t−ε,t′(Ω) for every ε > 0 and
t ∈ (n, tmax), where we define t′ as usual by 1

t + 1
t′ = 1.

Proof. Let ε > 0 be given, then

〈∇ϕ∇u, µ〉C,C∗ ≤ ‖u‖C1‖µ‖C∗‖ϕ‖C1 ≤ C‖ϕ‖W 1+n/t+ε,t

by standard embedding theorems (Triebel [140], Theorem 4.6.1). Hence, the right-hand side
of (2.15b) is an element of W−1−n/t−ε,t′(Ω).
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3 Existence and Regularity

By definition of tmax we have that

A1 := −∆: W 1,t
0 (Ω)→W−1,t(Ω), and

A2 := −∆: W 2,t(Ω) ∩W 1,t
0 (Ω)→ Lt(Ω)

are isomorphisms. Hence, the adjoint operators

A∗1 : W 1,t′
0 (Ω)→W−1,t′(Ω), and

A∗2 : Lt
′(Ω)→W−2,t′(Ω)

are isomorphisms as well. By interpolation we obtain (Triebel [140], Theorem 4.6.1, Theorem
4.8.2), that

W−1−n/t−ε,t′(Ω) = (W−1,t′(Ω),W−2,t′(Ω))n/t+ε,t′ ,
and hence that (Triebel [140], Theorem 1.3.3)

z ∈ (W 1,t′
0 (Ω), Lt′(Ω))n/t+ε,t′ = W 1−n/t−ε,t′(Ω).

This concludes the proof.

Setting Φ(g) = sign(g)|g|1/(r−1) it follows from (2.15d) that

q = max
(
a,min

(
b,Φ(−1

α
z)
))

(3.7)

almost everywhere. Hence we can deduce regularity of q from regularity of z.

Lemma 3.6. Let f ∈W s,t′(Ω) with s < 1 and let r ≥ 2, then

sign(f)|f |
1
r−1 ∈W

s
r−1 ,t

′(r−1)(Ω).

Proof. The result follows from the fact that the function Φ(g) = sign(g)|g|α belongs to
C0,α(R), more precisely, that it satisfies the Hölder condition

sup
g1,g2∈R
g1 6=g2

|Φ(g1)− Φ(g2)|
|g1 − g2|α

≤ 2. (3.8)

The stated result follows if we show, setting α = 1/(r − 1) in the definition of Φ, that
Φ ◦ f ∈W

s
r−1 ,t

′(r−1)(Ω). To this end, we need to show that Φ ◦ f ∈ Lt′(r−1)(Ω) (this is easy
to see), and that the semi-norm

|Φ ◦ f |t
′(r−1)
s
r−1 ,t

′(r−1) =
∫
Ω

∫
Ω

∣∣Φ(f(x))− Φ(f(y))
∣∣t′(r−1)∣∣x− y∣∣n+ s

r−1 t
′(r−1) dx dy

is finite. Using the Hölder-condition (3.8) we estimate

|Φ ◦ f |t
′(r−1)
W

s
r−1 ,t

′(r−1) ≤ 2t′(r−1)
∫
Ω

∫
Ω

|f(x)− f(y)|
t′(r−1)
r−1

|x− y|n+s t
′(r−1)
r−1

dxdy = 2t′(r−1)|f |t′s,t′ ,

which is finite due to our assumption that f ∈W s,t′(Ω).
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3.2 Regularity

We can now formulate the desired regularity result for the optimal control q.

Corollary 3.7. For any ε > 0 the optimal control q given by (2.12) belongs to the space
W γ,p, where γ = (1− n/t− ε)/(r − 1) and p = t′(r − 1) for any t ∈ (n, tmax].

Proof. Recall from Lemma 3.5 that z ∈W 1−n/t−ε,t′(Ω). Applying Lemma 3.6 with f = −1
α z,

and s = 1−n/t−ε, together with (3.7) and Lipschitz continuity of the max and min function
in W

s
r−1 ,t

′(r−1)(Ω), see (Kinderlehrer and Stampacchia [95], Thm. II.A.1), we obtain that
q ∈W

1
r−1 (1−n/t−ε),t′(r−1)(Ω) which establishes the stated regularity.

Remark 3.4. We note that Corollary 3.7 shows that the convergence orders obtained in (Deck-
elnick, Günther, and Hinze [55], Günther and Hinze [76], Hinze, Pinnau, Ulbrich, and Ulbrich
[90]), namely O(h

1−n/t
r ), are not of optimal order for the control variable with respect to the

given regularity. However we will see in Section 4.4 that they are apparently sharp. This
means the discretization doesn’t have a quasi best-approximation property for the control.

The Case of a Non-Smooth Domain For the sake of brevity, we restrict ourself to the
case n = 2, Qad = Q. Then the premises of Theorem 3.4 are always met. Let t be given
by Theorem 3.4.

Lemma 3.8. Any solution z of (3.4) belongs to W 1−n/t−ε,t′(Ω) for every ε > 0 where we
define t′ as usual by 1

t + 1
t′ = 1.

Proof. The proof is almost identical to Lemma 3.5. We assume for simplicity that t < 3,
then we obtain from (Dauge [51], Remark 3.11) that

A1 := −∆: W 1,t
0 (Ω)→W−1,t(Ω),

is an isomorphism. By assumption on t we have in addition, that

A2 := −∆: W 2,t(Ω) ∩W 1,t
0 (Ω)→ I ⊂ Lt(Ω),

is an isomorphism. Hence the adjoint operators

A∗1 : W 1,t′
0 (Ω)→W−1,t′(Ω), and

A∗2 : I∗ → (W 2,t(Ω) ∩W 1,t
0 (Ω))∗

are isomorphisms, too. We note that, as in Section 3.1.2, I∗ ∼= Lt
′(Ω)/I⊥. Especially by

selecting an arbitrary element s ∈ I⊥ and using Lt′(Ω) ∼= I∗ ⊕ I⊥ we can lift an element
z ∈ I∗ to Lt′(Ω) by setting ls(z) = z+ s. Hence the ‘inverse’ mapping ls ◦ (A∗2)−1 : (W 2,t(Ω)∩
H1

0 (Ω))∗ → Lt
′(Ω) is continuous.

By interpolation for the continuous operators (A∗1)−1 and ls ◦ (A∗2)−1 we obtain, that

z ∈ (W 1,t′
0 (Ω), Lt′(Ω))n/t+ε,t′ .

This proofs the assertion.
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3 Existence and Regularity

Then we obtain from the reduced gradient

J ′q(q)(δq) = −〈 δq , z 〉Z∗×Z ∀ δq ∈ Qad ∩ I

that
α|q|r−2q = z + s

with some s ∈ I⊥, compare Theorem 3.4. In the case n = 2 we can explicitly state a basis for
the space of dual singular functions I⊥, see, e.g., (Blum and Dobrowolski [26]) and obtain,
that s ∈W 1−n/t−ε,t′

0 (Ω) for any ε > 0.

Hence we obtain

Corollary 3.9. For any ε > 0 the optimal control q given by (2.12) belongs to the space
W γ,p, where γ = (1− n/t− ε)/(r − 1) and p = t′(r − 1).

Proof. From the regularity

α|q|r−2q = z + s ∈W 1−n/t−ε,t′
0 (Ω)

we obtain the desired result from Lemma 3.6.

3.3 Existence with L2-regularization

In this section we consider a similar problem to (3.1). The main difference is, that the
regularization is too weak to obtain a solution in C1(Ω) even on a smooth domain. Namely
we consider:

Minimize J(q, u) = 1
2‖u− u

d ‖2 + α

2 ‖ q ‖
2

(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1
0 (Ω),

|∇u|2 ≤ ψ a.e. in Ω,

(3.9)

with given α,ψ > 0.

Theorem 3.10. Let Ω ⊂ Rn, n = 2, 3 be a polygonal or polyhedral domain. Then prob-
lem (3.9) has a unique solution (q, u) ∈ L2(Ω)×H2(Ω) ∩H1

0 (Ω).

Proof. The proof is analogous to Theorem 3.1, by noting that Lemma 3.2 remains true for
p = 2.

As in the case of certain non-smooth domains the problem in showing necessary condi-
tions lies in the fact, that the mapping ĝ is not differentiable in a neighbourhood of q,
compare Remark 3.3.
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4 A Priori Error Estimates

We will now turn our attention towards the discretization of problem (2.5).

First estimates for the simpler case of pure control-constraints, e.g. g ≡ 0, were already
obtained for distributed controls by (Falk [62], Geveci [66]) a nice overview including Neumann
control can be found in (Malanowski [104]). All these results where obtained for a linear state
equation and using a piecewise constant discretization of the control space and continuous
piecewise linear elements for the state. These results have been extended to semilinear
equations in (Arada, Casas, and Tröltzsch [5]) and (Casas, Mateos, and Tröltzsch [43]) for
the case of Neumann control. In the case of Dirichlet control there has up to now only been
an analysis for pure equality constraint problems in (May, Rannacher, and Vexler [106])
for polygonal domains or (Deckelnick, Günther, and Hinze [56]) for domains with curved
boundaries.

In a next step, the results have been extended to the case of a continuous piecewise linear
approximation of the control space in (Casas and Tröltzsch [40], Rösch [127]). Also results
for the convergence in L∞ have been derived by (Meyer and Rösch [113]). Finally, it could
be shown that certain post-processing could enhance the convergence order of the control
variable (Meyer and Rösch [112]) for a scalar state equation or (Rösch and Vexler [128]) for
the stokes equation.

A so called ‘variational discretization’ was introduced by (Hinze [88]) where the discretization
for the control variable is implicitly given by the adjoint state via (2.10c).

In all cases the obtained convergence orders are optimal with respect to ansatz space and
regularity of the solution.

In the case of pointwise (zero-order) state constraints, e.g., g = u− ψ, (Casas and Mateos
[38]) showed convergence for semilinear equations but without rate, in (Deckelnick and Hinze
[53]) convergence rates for the variational discretization followed. For piecewise constant
control approximations rates were obtained in (Deckelnick and Hinze [52]) and the case of
piecewise linear controls is discussed in (Meyer [111]).

These results yield optimal rates with respect to the control variable, the rates for the state
however are not optimal. The first optimal rate for the state was obtained in (Merino,
Tröltzsch, and Vexler [110]) for the case of finitely many controls.

For first-order state constraints, e.g., g = |∇u|2 − ψ, (Deckelnick, Günther, and Hinze [54])
showed convergence for a variational discretization in combination with a mixed discretization
of the state equation and additional control constraints. In (Günther and Hinze [76]) this is
extended to the case of piecewise constant controls, see also (Deckelnick et al. [55], Hinze
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4 A Priori Error Estimates

et al. [90]). One should note that the results depend on boundedness results for the discrete
multiplier for the state constraint.

We will recall the results published in (Ortner and Wollner [120]) which yield the same
results without using discrete Lagrange multipliers. Further we will obtain convergence for a
piecewise bi- or trilinear control discretization.

To outline the structure of the following proofs, let Vh ⊂ V be a finite element space. Then we
can discretize the state equation using the discrete space Vh. Then, as assumed in Section 2.3,
the state constraint g is well-defined as a mapping from Vh into L∞(ΩC) = Gh. If the control
variable is searched for in a finite dimensional space, we can show convergence at this point.
Otherwise this serves as an intermediate problem and we may discretize the space for the
control variable using some possible different finite element space. Alternatively, one can
discretize the control variable implicitly by the set of first-order necessary conditions. In
either case, we denote the space from which we take the control variable by Qh (even if
Qh = Q) and set Qad

h := Qad ∩Qh then we obtain the following discretized problem:

Minimize J(qh, uh)

subject to


(qh, uh) ∈ Qad

h × Vh,
g(uh,∇uh) ≤ 0 inGh,

a(qh, uh)(ϕh) = f(ϕh) ∀ ϕh ∈ Vh.

(4.1)

4.1 Problem Formulation

Let Ω be a convex polygonal (or polyhedral) domain in Rn, n ≤ 3. We consider the linear
elliptic PDE

−∆u = Bq in Ω, (4.2a)
u = 0 on ∂Ω, (4.2b)

where B : Qad → Lt(Ω), t ∈ (n,∞), is a linear continuous operator, and Q is a reflexive
Banach space which we specify below.

It will be crucial for our analysis that there exists t > n such that (4.2) is W 2,t-regular (the
weak solution u ∈ V = H1

0 (Ω) belongs in fact to W = W 2,t(Ω)). If n = 2 then this result
follows from (Grisvard [73], Thm. 4.4.3.7). If n = 3 then one needs to assume, in addition,
that the angle between any two faces of Ω is bounded strictly above by 3

4π (Dauge [51], Cor.
3.7). We assume throughout that this is satisfied, that is, if Bq ∈ Lt(Ω) then

u ∈W 2,t(Ω) ∩W 1,t
0 (Ω) ⊂ C1,1−n/t(Ω),

and that there exist constants c, c′ such that

‖u‖C1,1−n/t ≤ c‖u‖2,t ≤ c′‖Bq‖Lt . (4.3)

In terms of Section 3.2 we assume a ‘smooth’ domain.
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4.2 Discretization

After these preliminary remarks we pose the following optimal control problem:

Minimize J(q, u) := 1
2‖u− u

d‖2L2 +R(q), (4.4a)

subject to


(q, u) ∈ Q× V,
(q, u) satisfies (4.2),
|∇u|2 ≤ ψ in Ω,

(4.4b)

where ud ∈ L2(Ω) is fixed, and the regularization function R depends on Q. We consider two
possible situations:

(Q.1) Q = Rd, for some d ∈ N, R(q) = α
2 ‖q‖

2
`2 , and B : Rd → Lr(Ω) is an arbitrary linear

continuous operator.

(Q.2) Q = Lr(Ω), R(q) = α
r ‖q‖

r
Lr , and B = Id, r > n.

The case (Q.1) corresponds to the –more realistic– case of a finite dimensional control that
has distributed influence on the solution variable. The second case (Q.2) is important in
inverse problems, e.g., when the ‘control’ is in fact an unknown volume force that one tries
to recover from a set of measurements.

Either of the assumptions (Q.1) or (Q.2) guarantee strong convexity of the optimal control
problem, that is, the following Clarkson-type inequality holds for w1 = (q1, u1), w2 =
(q2, u2) ∈ Q× V

1
2‖

1
2(u1 − u2)‖2L2 +R(12(q1 − q2)) + J

(1
2(w1 + w2)

)
≤ 1

2J(w1) + 1
2J(w2). (4.5)

The inequality for the q-variable is simply Clarkson’s inequality the inequality for the u-
variable is obtained by applying Clarkson’s inequality to u1 − ud and u2 − ud. Using (4.5)
and the discussion of Example (2.12) one can show that there exists a unique solution
(q, u) ∈ Qad × V to (4.4).

We will later use the fact that both R : Q→ R and J : Q× V → R are twice differentiable,
and denote the first derivatives, respectively, by R′ and J ′, for example,

〈R′(q) , δq 〉Q∗×Q := lim
ε→0

R(‖q + εδq‖Q)−R(‖q‖Q)
ε

.

We note that, in the case (Q.1) R′(q) = αq, while in the case (Q.2), the first derivative takes
the form R′(q) = α|q|r−2q.

4.2 Discretization

For the discretization of (4.4), we assume that we are given a family (Th)h∈(0,1] of triangula-
tions, consisting of triangles or quadrilaterals in 2d, and of tetrahedra or hexahedra in 3d,
which are affine-equivalent to their respective reference elements, such that diam(T ) ≤ h for
all T ∈ Th, h ∈ (0, 1]. We assume throughout that the family is quasi-uniform in the sense of
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(Brenner and Scott [32], Def. 4.4.13), that is, there exists ρ > 0 such that, for each T ∈ Th
and h ∈ (0, 1] there exists a ball BT ⊂ T such that diam(BT ) ≥ ρh.

We define the discrete state space Vh as the space of continuous piecewise linear (or bi-, or
tri-linear) functions with respect to the mesh Th. For fixed q ∈ Qad, the semi-discretized
state equation then reads: Find uh ∈ Vh

(∇uh,∇ϕh) = (Bq, ϕh) ∀ϕh ∈ Vh. (4.6)

The corresponding semi-discretized optimal control problem becomes

Minimize J(qh, uh) := 1
2‖uh − u

d‖2L2 +R(qh), (4.7a)

subject to


(qh, uh) ∈ Q× Vh,
(qh, uh) satisfies (4.6),
|∇uh|2 ≤ ψ a.e. in Ω.

(4.7b)

In the case (Q.2), i.e., Q = Lr(Ω), we also need to discretize the control space Q. We consider
two different discretizations: either Qh = Qh(0) or Qh = Qh(1), where

Qh(0) =
{
qh ∈ Q | qh is p.w. constant w.r.t. Th

}
, and

Qh(1) =
{
qh ∈ C(Ω̄) | qh is p.w. (bi-/tri-)linear w.r.t. Th

}
.

Our analysis applies to both choices, however, we will see that for the choice Qh = Qh(0) it
yields a better convergence rate. The choice Qh = Qh(1) was not previously considered in the
literature.

The fully discretized optimal control problem reads

Minimize J(qhh, uhh) := 1
2‖u

h
h − ud‖2L2 +R(qhh), (4.8a)

subject to


(qhh, uhh) ∈ Qh × Vh,
(qhh, uhh) satisfies (4.6),
|∇uhh|2 ≤ ψ in Ω.

(4.8b)

We remark that the restrictions we imposed on the family (Th)h∈(0,1] ensure that the usual
interpolation error results, best approximation results, and inverse estimates hold (Brenner
and Scott [32], Sec. 4.4 and 4.5). In particular, it follows that the Ritz projection is stable in
W 1,∞(Ω), that is, there exists c ∈ R such that if u ∈W 1,∞

0 (Ω), and if uh ∈ Vh satisfies

(∇uh,∇ϕ) = (∇u,∇ϕ) ∀ϕ ∈ Vh, then ‖∇uh‖∞ ≤ c‖∇u‖∞; (4.9)

see (Rannacher and Scott [121]) for simplicial meshes and (Brenner and Scott [32], Thm.
8.1.11 and Ex. 8.x.1) for the general case.

Finally, we define Πh : L1(Ω)→ Qh to be the natural extension of the L2-projection operator,
that is, for u ∈ L1(Ω), we define Πhu ∈ Qh via

(Πhq, ϕ) = (q, ϕ) ∀ϕ ∈ Qh. (4.10)
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4.3 A Priori Estimates

It is shown in (Douglas, Dupont, and Wahlbin [57]) that Πh is stable as an operator from
Lp(Ω) to Lp(Ω), for any p ∈ [1,∞], that is, there exist constants cp, independent of h, such
that

‖Πhq‖Lp ≤ cp‖q‖Lp ∀q ∈ Lp(Ω). (4.11)

4.3 A Priori Estimates

4.3.1 State Discretization

First we consider the case, where only the state space is discretized. This is reasonable if the
control space is finite dimensional (i.e., case (Q.1)), or if we use the ‘variational discretization’
concept discussed in (Hinze [88]). In general this is an intermediate step that gives us
preliminary insights into the convergence behavior of the discretization. The results that we
will obtain are essentially the same as those in (Deckelnick et al. [54, 55], Günther and Hinze
[76], Hinze et al. [90]), however, we do not require bounds on the discrete adjoint variables in
our analysis.

Theorem 4.1. Let (q, u) ∈ Q × V be the solution to (4.4), and (qh, uh) ∈ Q × Vh be the
solution to the semi-discretized problem (4.7). Then there exists a constant C, independent
of h, such that

|J(q, u)− J(qh, uh)| ≤ Ch1−n/t. (4.12)

Proof. Instead of using the criticality conditions for solutions, the idea of the proof is to
construct discrete and continuous competitors for which the error in the cost functional can
be estimated immediately.

We begin by investigating the solutions u of (4.2) and its Ritz projection uh which are,
respectively, given by

(∇u,∇ϕ) = (Bq, ϕ) ∀ ϕ ∈ V, and
(∇uh,∇ϕ) = (Bq, ϕ) ∀ ϕ ∈ Vh.

The difficulty is that, possibly, |∇uh| 6≤ ψ. However, using the stability of the Ritz projection
in W 1,∞(Ω) (Rannacher and Scott [121]), we can see that the constraint on the gradient is
almost satisfied. Namely, in view of the regularity estimate (4.3), it follows from (Rannacher
and Scott [121], Eq. (1.7)) that

‖∇u−∇uh‖L∞ ≤ ch1−n/t‖u‖C1,1−n/t ≤ ch1−n/t‖Bq‖Lt .

From this, we derive the bound

|∇uh(x)| ≤ |∇u(x)|+ ch1−n/t‖Bq‖Lt for a.e. x ∈ Ω.

Setting β = 1− n/t and c̃ψ ≥ c‖Bq‖Lt , it follows that

(1− c̃hβ)|∇uh| ≤ (1− c̃hβ)ψ + (1− c̃hβ)chβ‖Bq‖Lt < ψ a.e. in Ω ∀h ∈ (0, 1].
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4 A Priori Error Estimates

Thus, we find that the sequence

(q̃h, ũh) :=
(
(1− c̃hβ)q, (1− c̃hβ)uh

)
(4.13)

is feasible for (4.7) and that the following estimates hold:

‖Bq −Bq̃h‖Lr ≤ c‖q − q̃h‖Q ≤ chβ‖q‖Q, and
‖u− ũh‖1,∞ ≤ ‖u− uh‖1,∞ + ‖uh − ũh‖1,∞ ≤ chβ‖Bq‖Lr + chβ‖uh‖1,∞.

Using again the W 1,∞-stability of the Ritz projection, we obtain

‖u− ũh‖1,∞ ≤ chβ‖Bq‖Lr ≤ chβ‖q‖Q.

Differentiability of the cost functional implies local Lipschitz continuity, and therefore we can
deduce that

|J(q, u)− J(q̃h, ũh)| ≤ chβ.

Since (ũh, q̃h) is an admissible pair for (4.7), the relation J(qh, uh) ≤ J(q̃h, ũh) is satisfied,
and hence

J(qh, uh)− J(q, u) ≤ J(q̃h, ũh)− J(q, u) ≤ chβ.

It should be mentioned that the last inequality already implies that R(qh) is uniformly
bounded for h ∈ (0, 1], and hence there exists c independent of h such that ‖qh‖Q ≤ c.

To obtain the reverse inequality, we start from (qh, uh) and, using precisely the same arguments,
construct (q̂, û) that are feasible for the exact problem (4.4) (note though, that q̂, û do depend
on h) and satisfy

|J(qh, uh)− J(q̂, û)| ≤ chβ.

In summary, we obtain

−chβ ≤ J(q, u)− J(q̃h, ũh) ≤ J(q, u)− J(qh, uh) ≤ J(q̂, û)− J(qh, uh) ≤ chβ,

which concludes the proof of the theorem.

From the error estimate on the objective functional, we can derive an estimate for the control
and for the state.

Corollary 4.2. Let (q, u) ∈ Q× V be the solution of (4.4), and let (qh, uh) ∈ Q× Vh be the
solution of (4.7), then

‖q − qh‖Q ≤ ch
1−n/t
a and ‖u− uh‖L2 ≤ ch

1−n/t
2 ,

where a = 2 in the case (Q.1) and a = r in the case (Q.2).

Proof. Let (q̃h, ũh) be defined by (4.13), then it follows that

‖q − qh‖Q ≤ ‖q − q̃h‖Q + ‖q̃h − qh‖Q ≤ ch1−n/t + ‖q̃h − qh‖Q,
‖u− uh‖L2 ≤ ‖u− ũh‖L2 + ‖ũh − uh‖L2 ≤ ch1−n/t + ‖ũh − uh‖L2 .

(4.14)
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4.3 A Priori Estimates

To bound the remaining terms on the right-hand side, we apply Clarkson’s inequality (4.5),
which gives

1
2
∥∥∥1
2(ũh − uh)

∥∥∥2

L2
+R

(1
2(q̃h − qh)

)
≤1

2J(q̃h, ũh) + 1
2J(qh, uh)− J

(1
2(q̃h + qh),

1
2(ũh + uh)

)
.

Since (q̃h, ũh) is feasible for (4.7) it follows that

J(qh, uh) ≤ J
(1
2(q̃h + qh),

1
2(ũh + uh)

)
,

and hence, using Theorem 4.1,

1
2
∥∥∥1
2(ũh − uh)

∥∥∥2

L2
+R

(1
2(q̃h − qh)

)
≤ 1

2J(q̃h, ũh)−
1
2J(qh, uh) ≤ ch1−n/t.

This establishes the assertion.

4.3.2 Control Discretization

We are now concerned with the error introduced by a discretization of the control space Q.
We assume, from now on, that (Q.2) holds, that is, B = Id and R(q) = 1

r‖q‖
r
Lr , and hence

R′(q) = |q|r−2q. Note that in the other case there is no point in discretizing Q.

Our analysis is based on the regularity result for the optimal control given in Corollary 3.7.

Theorem 4.3. Let (ū, q̄) be the solution of (4.4), r = r
r−1 , and let (Q.2) be fulfilled, then

there exist constants γ, γ′ > 0 such that γ + γ′ ≥ 1− n/t, with

q ∈W γ,r
0 Ω and R′(q) ∈W γ′,r′

0 (Ω). (4.15)

Proof. From Lemma 3.5 we have that R′(q) = −−1
α z ∈ W

1−n/t−ε,t′(Ω) ⊂ W 1−n/t−ε,r′(Ω).
And hence from Corollary 3.7 we get that q ∈ W γ,p with γ = (1 − n/t − ε)/(r − 1) which
shows the assertion.

Although this regularity result is somewhat technical, and our proof uses information about
the continuous adjoint system, we note that Theorem 4.5 only requires the regularity result
itself which could, alternatively, be formulated as an assumption.

Before we state our main result, we first deduce an approximation property from the regularity
result in Theorem 4.3.

Corollary 4.4. There exists a constant c, independent of h such that

‖q −Πhq‖Lr ≤ chγ and ‖R′(q)−ΠhR
′(q)‖Lr′ ≤ ch

γ′ . (4.16)
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4 A Priori Error Estimates

Proof. Stability of Πh in Lp (compare (4.11)) provides, for example focusing on Πhq,

‖q −Πhq‖Lr ≤ (1 + ‖Πh‖L(Lr,Lr)) inf
qh∈Qh

‖q − qh‖Lr .

Choosing a suitable quasi-interpolation operator for qh, for example the Clément operator,
gives the desired result.

We are now ready to prove our main result.

Theorem 4.5. Let (q, u) ∈ Q × V be the solution of (4.4) and (qhh, uhh) ∈ Qh × Vh be the
solution of (4.8), then

∣∣∣J(q, u)− J(qhh, uhh)
∣∣∣ ≤

 Chmin(2γ,1−n/t), if Qh = Qh(1),

Ch1−n/t, if Qh = Qh(0).
(4.17)

Proof. As above, we set β = 1 − n/t throughout this proof. Let (qh, uh) ∈ Qh × V be the
solution of the following auxiliary problem where only the control variable is discretized:

Minimize J(qh, uh) := 1
2‖u

h − ud‖2L2 +R(qh), (4.18a)

subject to


(qh, uh) ∈ Qh × V,
(qh, uh) satisfies (4.2),
|∇uh|2 ≤ ψ in Ω.

(4.18b)

We will first show that ∣∣∣J(q, u)− J(qh, uh)
∣∣∣ ≤ Chmin(2γ,β). (4.19)

Once this is established, we can repeat the proof of Theorem 4.1 verbatim to show that

|J(qh, uh)− J(qhh, uhh)| ≤ Chβ.

This is possible since all constants in this proof would only depend on the regularity of the
triangulation and on ‖qh‖Lr . The fact that ‖qh‖Lr remains bounded, as h→ 0, is immediately
deduced from the fact that J(qh, uh) converges and is therefore bounded itself. Combining
the two estimates gives the desired result.

To establish (4.19) we proceed along the lines of the proof of Theorem 4.1 as well. Let
qh = Πhq and let uh ∈ V solve the state equation (4.2) with right-hand side q = qh, then,
using our regularity assumptions on the state equation, Corollary 4.4, and the continuous
embedding W 1,∞(Ω) ⊂W 1+d/t+ε,t(Ω) for all ε > 0, we can estimate

‖uh − u‖1,∞ ≤ c‖uh − u‖1+n/t+ε,t ≤ c‖qh − q‖−1+n/t+ε,t ≤ ch1−n/t−ε+γ . (4.20)

Choosing ε ≤ γ, we obtain ‖uh − u‖1,∞ ≤ chβ. Thus, setting

(q̃h, ũh) = (1− c̃hβ)(qh, uh),
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4.3 A Priori Estimates

for c̃ sufficiently large, gives an admissible pair for (4.18) and we obtain

0 ≤ J(qh, uh)− J(q, u) ≤ J(q̃h, ũh)− J(q, u).

Since J is differentiable as a mapping from Lr(Ω) → Lr
′(Ω) (hence locally Lipschitz) it

follows that
|J(q̃h, ũh)− J(qh, uh)| ≤ chβ,

hence, we only need to bound the term J(qh, uh)− J(q, u) from above. Using convexity of J ,
we can estimate

J(q, u) ≥ J(qh, uh) +
〈
J ′(qh, uh), (q − qh, u− uh)

〉
= J(qh, uh) + 〈R′(qh), q − qh〉+ (uh − ud, u− uh)

The term (uh − ud, u− uh) is easily bounded by chβ, using (4.20). In summary, we obtain

0 ≤ J(qh, uh)− J(q, u) ≤ J(q̃h, ũh)− J(q, u) ≤ 〈R′(qh), qh − q〉+ chβ. (4.21)

Up to this point, the proof is entirely independent of the choice of the control discretization.

If Qh = Qh(0) is the space of piecewise constant functions then R′(qh) = |qh|r−2qh also belongs
to Qh, and since qh = Πhq it follows that 〈R′(qh), qh − q〉 = 0. This concludes the proof
of (4.17) for the case Qh = Qh(0). We note that for precisely the same reason, namely that
R′(qh) ∈ Qh, the analysis in (Günther and Hinze [76]) did not require regularity of the
optimal control.

If Qh = Qh(1) is the space of linear (or bi- or tri-linear) functions then this argument is not
valid. Instead, we estimate

〈R′(qh), qh − q〉 = 〈R′(qh)−R′(q), qh − q〉+ 〈R′(q), qh − q〉
= 〈R′(qh)−R′(q), qh − q〉+ 〈R′(q)−ΠhR

′(q), qh − q〉
≤
(
‖R′(qh)−R′(q)‖Lr′ + ‖R

′(q)−ΠhR
′(q)‖Lr′

)
‖qh − q‖Lr .

Using the fact that R′ is differentiable (hence locally Lipschitz continuous) as well as
Corollary 4.4, we finally obtain

〈R′(qh), qh − q〉 ≤ c(hγ + hγ
′)hγ .

Since γ + γ′ ≥ β, we obtain the convergence rate O(hmin(2γ,β)). This concludes the proof of
the theorem.

As before, the error estimate on the objective functional provides an error estimate for the
primal variables.

Corollary 4.6. Let (q, u) ∈ Q × V be the solution of (4.4), and let (qhh, uhh) ∈ Qh × Vh be
the solution of (4.8), then

‖q − qhh‖Q ≤ cha/r and ‖u− uhh‖L2 ≤ cha/2,

where r is defined in (Q.2), and where a = 1− n/t if Qh = Qh(0), or a = min(2γ, 1− n/t) if
Qh = Qh(1).
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4 A Priori Error Estimates

Proof. We set w = (q, u), and so forth. We split the error

whh − w = (whh − wh) + (wh − w),

where wh is the solution of the auxiliary problem (4.18). The first contribution, (whh − wh),
can be estimated precisely as in the proof of Corollary 4.2, yielding

‖uhh − uh‖L2 ≤ ch
1−n/t

2 and ‖qhh − qh‖L2 ≤ ch
1−n/t
r .

To estimate (wh − w) we employ again Clarkson’s inequality (4.5) and get

1
2
∥∥∥1
2(uh − u)

∥∥∥2

L2
+R

(1
2(qh − q)

)
≤ 1

2J(wh) + 1
2J(w)− J

(1
2(wh + w)

)
.

Since wh is admissible for the full problem (4.4), we have J
(1

2(wh + w)
)
≥ J(w) which gives

J
(1
2(wh − w)

)
≤ 1

2
(
J(wh)− J(w)

)
≤ chmin(2γ,1−n/t),

where we also used (4.19).

Remark 4.1. The analysis in the appendix shows that possible choices for the constants γ, γ′
appearing in Theorem 4.3 and in the subsequence results are

γ = 1− n/t− ε
r − 1 and γ′ = 1− n/t,

for any ε > 0. We have deliberately not included these explicit formulas in the convergence
results above since we have no reason to believe that these estimates are optimal.

We note, however, that 2γ = 2
r−1(1− n/t− ε). Thus, if n = 2 then choosing r < 3 allows us

to recover the rate 1− n/t. If n = 3 then choosing r = 3 + ε gives 2γ = 1− n/t− ε′ for some
ε′ > 0 which tends to zero as ε→ 0.

4.4 Numerical Results

Here we will demonstrate our findings on a numerical example.

The computations in this section were done using the finite element toolkit Gascoigne (Gas-
coigne [65]) and the optimization toolbox RoDoBo (RoDoBo [126]). The computations were
done using a barrier method of order six, see Section 5.1 for details. In order to generate the
results a small barrier parameter γ = 10−6 was chosen. In these examples this was sufficient
to have dominant discretization error on all meshes under consideration.
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Example with First Order Constraints an Known Solution The example is a slight mod-
ification from (Deckelnick et al. [54]) with known solution. The original problem reads as
follows:

Minimize J(q, u) = 1
2‖u− u

d‖2 + α

2 ‖q‖
2

subject to


(∇u,∇ϕ) = (q + f, ϕ) ∀ϕ ∈ H1

0 (Ω),
− 2 ≤ q ≤ 2 a.e. inΩ,
|∇u|2 ≤ 0.25 inΩ,
(q, u) ∈ L2(Ω)×H1

0 (Ω).
Where α = 1, the domain Ω = {x ∈ R2 | |x| < 2} and the data of the problem is

f =
{

2 |x| ≤ 1,
0 otherwise,

and

ud =
{

0.25 + 0.5 ln(2)− 0.25|x|2 |x| ≤ 1,
0.5 log(2)− 0.5 ln(|x|) otherwise.

The exact solution satisfies u = ud and q =
{
−1 |x| ≤ 1,
0 otherwise,

and the functional value is

given as J(q, u) = π
2 .

0.001

0.01

0.1

1

100 1000 10000 100000

Er
ro
r

N = h−2

p = 2
p = 4
p = 6
p = 8

h

Figure 4.1: Error in Jp

From the corresponding KKT-System on immediately gets that the same solution also solves

Minimize Jp(q, u) := 1
2‖u− u

d‖2 + α

p
‖q‖pLp

subject to


(∇u,∇ϕ) = (q + f, ϕ) ∀ϕ ∈ H1

0 (Ω),
− 2 ≤ q ≤ 2 a.e. inΩ,
|∇u|2 ≤ 0.25 inΩ,
(q, u) ∈ Lp(Ω)×H1

0 (Ω),
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4 A Priori Error Estimates

for any p ≥ 2. The optimal functional value is Jp(q, u) = π
p .
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Figure 4.2: ‖q − qhh‖Lp on a sequence of globally refined meshes

As it appears to be the most interesting case, we have considered Q1 Finite Elements for
the discretization of the control and the state variable. Then, considering that we know the
exact solution q, we can choose γ in Corollary 4.6 to be γ = 1

2 . In addition, u in W 2,t(Ω) for
any t ∈ [2,∞] hence β = 1− n/t can be chosen as 1, see (Brenner and Scott [32], Corollary
8.1.12).
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Figure 4.3: ‖u− uhh‖L2 on a sequence of globally refined meshes

Hence by Theorem 4.5 we expect that the cost functional converges of order h independent
of p which can also be seen in Figure 4.1, where the behavior of the absolute error in Jp
under mesh refinement is depicted, and N denotes the number of nodes in the mesh. The
element size h and the number of nodes N relate like N ≈ h−2. Then by Corollary 4.6 the
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convergence of the control variable in Lp should be of order h1/p for the minimization of Jp.
This can be seen from Figure 4.2 where this rate is recovered very well by this example.
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Figure 4.4: ‖q − qhh‖L2 on a sequence of globally refined meshes

In addition, from Corollary 4.6, we would expect that the state variable is converging with
order h1/2 in L2. Here however we can see from Figure 4.3 that the estimate for the state
variable is apparently better than the predicted order. To explain this we note, that the
error in the state variable can not only be obtained by convexity of Jp in Corollary 4.6, but
also by the error in the control variable. Hence higher convergence rates of the control in
weaker norms might account for this behavior. That this may be the case is indicated by the
following numerical evidence Figure 4.4. Where we can see, that the control converges in fact
with order h1/2 independent of p in the L2-norm.
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In the previous chapter we obtained that there is actually a sequence of solutions to (4.1)
which is converging to (2.5) as h → 0. The next step is hence to consider algorithms that
are capable of solving the given problems (4.1). We note that taking any algorithm from
finite dimensional optimization, see, e.g., (Nocedal and Wright [119]), will obviously give
the required solution, but may in general not be of optimal complexity as all dimensions are
not really fixed quantities but tend to infinity. With this several constants in the complexity
estimates, arising for instance from norm equivalence, may blow up.

The main point in showing some mesh independent behavior of the optimization algorithm is
usually to show that in fact the algorithm could be ‘applied’ to the continuous problem.

For first-order state constraints a variety of methods have been proposed on the continuous
level. Ranging from rather specialized methods, for instance (Mossino [117]) who proposed
to solve a dual problem which in certain cases no longer has state constraints, to general
purpose methods like penalty and barrier methods.

Later augmented Lagrangian techniques where used in (Bergounioux [18]) and further refined
in (Bergounioux and Kunisch [19]) where Uzawa type methods were used to solve the resulting
saddle point problems. The development of augmented Lagrangian methods lead to Moreau-
Yosida Regularization (Bergounioux, Haddou, Hintermüller, and Kunisch [23], Hintermüller
and Kunisch [81, 82]) for state constraints giving rise to a regularized primal-dual-active-set
method for its solution. In terms of finite dimensional optimization it is a quadratic penalty
function for the state constraints.

The direct application of a primal-dual-active-set method is possible in certain situa-
tions (Bergounioux and Kunisch [20]), however as it may be difficult or even impossible to
find a control that actually generates a state with given active set we will not consider this
approach here, although we will use it for the case of control constraints (Bergounioux, Ito,
and Kunisch [22], Kunisch and Rösch [98]) where it is equivalent to a semi-smooth newton
method (Hintermüller et al. [85]). For the same reason SQP-methods for state constrained
problems will in general not be applicable, although, in certain situations, they can be
analyzed in Banach spaces, see (Arada, Raymond, and Tröltzsch [6]).

Inspired by the fast convergence of the prima-dual-active-set method for control constraints
so called Lavrentiev regularization for state constraints where proposed in (Meyer, Rösch,
and Tröltzsch [115]). Here the state constraints are replaced by certain mixed control-state
constraints which then lead to a control-constraint problem with a degenerate equation. This
has been further analyzed in (Meyer, Prüfert, and Tröltzsch [116]) and in (Cherednichenko
and Rösch [45]) for stability with respect to perturbations. In (Hintermüller, Tröltzsch, and
Yousept [87]) mesh-independent convergence was shown. However as this method requires
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that both state constraint and control space fit together, it is a rather specialized method
which already introduces complications when the control is acting on the boundary, see
e.g., (Tröltzsch and Yousept [143]).

An approach that is based on the idea of considering the optimization problem as a free
boundary problem between the active and inactive set has been proposed in (Hintermüller
and Ring [84]).

The other classical method for the solution of inequality constraint optimization problems are
barrier methods. They are rather well understood in the case of control-constraints. For a
primal method analysis has been done in (Weiser and Deuflhard [152]) for which superlinear
convergence could be shown (Schiela and Weiser [134]), see also (Weiser, Gänzler, and Schiela
[153]) for a path following algorithm. Similar results could be obtained for primal-dual
methods (Ulbrich and Ulbrich [145], Weiser [151]).

When concerned with state constraints there as been some results concerning zero-order
constraints for a primal barrier function by (Schiela and Weiser [133]). Later, this has been
extended to rational barrier functions instead of the usual logarithmic barrier in (Schiela
[129, 130]). In (Schiela [132]) a damping step was introduced, to improve convergence of
Newton’s method in comparison with the usual step length determination.

In this thesis we will use penalty and barrier methods for the solution of the state constrained
optimization problem as they appear to be both relatively easy to implement and on the
other hand sufficiently versatile to be applied to several situations.

As in the course of writing this thesis none of these methods where analyzed for first-order
state constraints we will derive convergence of a primal barrier method for such constraints.
Parts of these results are already published in (Schiela and Wollner [135]). We will not discuss
the case of the quadratic penalty as this has been developed simultaneously by (Hintermüller
and Kunisch [83]).

5.1 Barrier Methods for First Order State Constraints

The results that are shown here have been published in (Schiela and Wollner [135]). We
remark that, in order to be in correspondence with usual notation used for barrier methods
throughout this section we denote the barrier parameter by µ and to avoid confusion with
the notation of measures we denote all measures by m.

5.1.1 Preliminaries

Let Ω be a bounded Lipschitz domain in Rn and ΩC ⊆ Ω be a closed subset with non empty
interior. In addition to the definitions of Section 2.2, we define the space of states U as a
closed subspace of C1(ΩC)×L2(Ω \ΩC), which is clearly a Banach space, and let W ⊂ U be
a dense subspace of U . Consider W = W 2,t(Ω) ⊂ U = C1(ΩC)× L2(Ω \ ΩC) with t > n for
an example.
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5.1 Barrier Methods for First Order State Constraints

We specify the abstract equation (2.4) to be the following abstract linear partial differential
equation in Z∗:

Au = Bq (5.1)

where we require the following properties:
Assumption 5.1. Assume that A : U ⊃ domA = W → Z∗ is densely defined and possesses a
bounded inverse. Further let B : Q→ Z∗ be a continuous operator.

We will see later, in Lemma 5.1, that continuous invertibility of A is equivalent to closedness
and bĳectivity. The distinction between the state space U and the domain of definition W of
A allows us to consider our optimal control problem in a convenient topological framework
(the topology of U), while being able to model differential operators by A, which are only
defined on a dense subspace W .

To define an optimal control problem, we specify an objective functional J with some basic
regularity assumptions:
Assumption 5.2. Let J = J1 +J2. We assume that J1 : U → R and J2 : Q→ R are lower semi-
continuous, convex and Gâteaux differentiable. In addition, let J1 be bounded from below
and J2 be strictly convex. Assume that the derivatives are uniformly bounded on bounded
sets. This means that there exists a continuous g : R+ → R+ such that ‖J ′1(u)‖U∗ ≤ g(‖u‖U )
and ‖J ′2(q)‖Q∗ ≤ g(‖q‖Q).

We now consider the following minimization problem

Minimize J(q, u) = J1(u) + J2(q), (5.2a)

subject to


Au = Bq,

(q, u) ∈ Qad ×W,
|∇u(x)|2 ≤ ψ(x) onΩC ,

(5.2b)

where ψ ∈ C(ΩC) with ψ ≥ δ > 0.

In order to ensure that there exists a solution we require that the following assumption holds:
Assumption 5.3. We assume that at least one of the following holds:

(1) Qad is bounded in Q.

(2) J2 is coercive on Q.

For the discussion of interior point methods for the gradient constraint we require an additional
property, which is of Slater type
Assumption 5.4. Assume there exists a feasible control q̆ ∈ Qad, such that the corresponding
state ŭ given by Aŭ = Bq̆ is strictly feasible, that is, |∇ŭ|2 < ψ.

We state the following basic continuity result, whose proof can be found, e.g., in (Schiela
[130], Lemma A.1).
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5 Algorithms for State Constraints

Lemma 5.1. Let U be a Banach space. An operator A : U ⊃ W → Z∗ has a continuous
inverse if and only if A is closed and bĳective.

If Assumption 5.1 holds, then there exists a continuous “control-to-state” mapping

S : Q→ U, S := A−1B.

Using the Assumptions 5.1, 5.2, 5.3 and 5.4 it follows by standard arguments (coercivity,
weak sequential compactness, convexity), see also Theorem 2.1, that (5.2) admits a unique
solution (q, u) ∈ Qad ×W .

For the discussion of the adjoint operator A∗ of A we exploit density ofW in U and reflexivity
of Z. A∗ possesses a domain of definition domA∗, given by

domA∗ = {z ∈ Z | ∃ cz : 〈Au, z〉 ≤ cz‖u‖U ∀u ∈ domA = W}.

Because W is dense in U for each z ∈ domA∗ the linear functional 〈A · , z〉 has a unique
continuous extension to a functional on the whole space U . This defines a linear operator
A∗ : Z ⊃ domA∗ → U∗ and it holds

〈u,A∗z〉 = 〈Au, z〉 ∀u ∈ domA, z ∈ domA∗.

Lemma 5.2. The operator A∗ defined above has a continuous inverse, and it holds(
A−1

)∗
= (A∗)−1 . (5.3)

Proof. Since Z∗ is complete and A is surjective, we can apply (Goldberg [68], Theorem
II.3.13), which states that A∗ has a bounded inverse under these conditions. Hence, both
(A−1)∗ and (A∗)−1 exist, and by (Goldberg [68], Theorem II.3.9) they are equal.

Examples Illustrating the Setting Let us apply our abstract framework to optimal control
problems with PDEs. First we consider two variants of modeling an elliptic partial differential
operator of second order: via the strong form and via the weak form. It will turn out that
the strong form yields a more convenient representation of A∗ and is thus preferable.

Example 5.1. [Second-Order Elliptic PDE in Strong Form] Let ΩC = Ω ⊂ Rn, U =
C1(Ω) ∩H1

0 (Ω), r > n, and Z = Lr
′(Ω) with 1

r + 1
r′ = 1. Consider A = −∆ as a mapping

from domA = W = W 2,r(Ω) ∩H1
0 (Ω) to Lr(Ω). This means that A is a differential operator

in strong form. We can write this as integral equation in the following form:

〈Au, z〉 =
∫
Ω
−∆uz dx ∀u ∈W, z ∈ Z.

Assume that the boundary of Ω ⊂ Rn is either of class C1,1 or that Ω ⊂ Rn with n = 2 is
convex and has a polygonal boundary. Then there exists r with n < r <∞ such that A is
an isomorphism from W onto Z∗, see, e.g., (Gilbarg and Trudinger [67], Theorem 9.15) for
the case of a C1,1 boundary or (Grisvard [71]) for the polygonal case. In particular, A has a
continuous inverse from Z∗ onto W . By Sobolev embedding W is continuously embedded
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into U and thus A−1 can also be defined as a continuous mapping from Z∗ into U . Because
W is dense in U the requirements on A from Assumption 5.1 are fulfilled.

A simple choice for the control space is Qad = Q = Lr(Ω) = Z∗. Then B = Id is a continuous
operator. This corresponds to distributed control. As a second setting for the control
we may consider Q = Rm and fi ∈ Lr(Ω), i = 1 . . .m. Then the operator B defined by
Bq = ∑m

i=1 fiqi satisfies Assumption 5.1 on B.

In the case of distributed control a simple cost functional might be

J(q, u) = J1(u) + J2(q) = 1
2‖u− u

d‖2L2(Ω) + 1
r
‖q‖rLr(Ω).

with given ud ∈ L2, r > n. It is easily seen that J2 is coercive on Q. Thus Assumption 5.3 is
satisfied. By simple calculations Assumption 5.2 on J is verified.

Since the gradient bound ψ is assumed to be strictly positive, taking q̆ = 0 yields the required
Slater condition from Assumption 5.4.

The adjoint operator A∗ : Z ⊃ domA∗ → U∗ can be interpreted as a very weak form of the
Laplace operator, i.e.

〈u,A∗z〉 = 〈Au, z〉 =
∫
Ω
−∆uz dx ∀u ∈W, z ∈ domA∗.

Lemma 5.2 already yields the continuous invertibility of A∗.

Example 5.2. [Second-Order Elliptic PDE in Weak Form] Let us discuss an alternative
approach to Example 5.1: the weak form of the “same” elliptic operator. Usually one defines
the differential operator A = −∆: H1

0 (Ω)→ H−1(Ω) by:

〈Au, z〉 =
∫
Ω
∇uT∇z dx ∀ z ∈ H1

0 (Ω).

Our aim is to redefine the spaces for this operator such that Assumption 5.1 holds. To this
end we have to restrict the image space from H−1(Ω) to Lr′(Ω)∗. Then the space W is given
by

W =
{
u ∈ H1

0

∣∣∣ ∫
Ω
∇uT∇z dx ≤ cu‖z‖Lr′ ∀ z ∈ H

1
0 (Ω)

}
.

Observe that the integral in this expression is not defined for all z ∈ Lr
′ , but only for

z ∈ H1(Ω). However, if u ∈ W then by definition of W it follows, that Au has a unique
continuous extension to an element of Lr′(Ω)∗. It is given canonically by

〈Au, z〉 = lim
zk∈H1

0 ,

zk→z inLr
′

〈Au, zk〉. (5.4)

Under the same regularity assumptions as in Example 5.1 we obtain that W ⊂ C1(Ω) and
‖u‖C1 ≤ c‖Au‖(Lr′ )∗ , thus Assumption 5.1 is fulfilled.
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In spite of the complicated representation of A via (5.4), we may represent the equation
Au = f conveniently in the form∫

Ω
∇uT∇ϕdx =

∫
Ω
fϕ dx ∀ϕ ∈ H1

0 (Ω) (5.5)

via density.

However, since the linear functional Au is defined in Lr′(Ω)∗ by continuous extension (5.4),
the representation of the adjoint operator A∗ is quite cumbersome. It is given by

〈u,A∗z〉 = lim
zk∈H1

0 ,

zk→z inLr
′

〈Au, zk〉 = lim
zk∈H1

0 ,

zk→z inLr
′

∫
Ω
∇uT∇zk dx.

and has to be used in the adjoint PDE. In contrast to the weak formulation of the primal
equation (5.5), where the limit formulation for the test functions can be dropped by density,
now the limit formulation applies to elements of the ansatz space, and thus cannot be neglected.
Continuous invertibility of A∗, which follows from our abstract considerations only applies
to its correct representation. A naive formulation of the adjoint PDE would yield wrong
results. This is the reason why we prefer the strong formulation for optimal control problems
of second-order equations with gradient bounds.

Example 5.3. [Fourth-Order Elliptic PDE] As a different example we consider once again
ΩC = Ω but choose different spaces. Let U = {v ∈ C1(Ω) | v(x) = |∇v(x)| = 0 ∀x ∈ ∂Ω},
Z = W 2,r′

0 (Ω). We consider the biharmonic operator A = ∆2 as a mapping from domA =
W = W 2,r

0 (Ω) to Z∗ = W−2,r(Ω) with 1
r + 1

r′ = 1.

Assume that the domain Ω ⊂ R2 is convex with polygonal boundary, then it is well
known (Blum and Rannacher [27], Theorem 2) that A has a continuous inverse from Z∗ onto
W if r > 2 is chosen small enough. As it has already been remarked for 2 < r < ∞ the
embedding from W into U exists and is dense.

Note that in this case both dual and primal operator can be represented by

〈Au, z〉 = 〈u,A∗z〉 =
∫
Ω

∆u∆z dx ∀u ∈W 2,r
0 (Ω), z ∈W 2,r′

0 (Ω).

By the choice Q = L2(Ω) with B the embedding from L2 into W−2,r we see that Assump-
tion 5.1 is fulfilled.

5.1.2 Barrier Functional and its Subdifferentiability

In this section we are concerned with the analysis of barrier functionals for the problem under
consideration. We proceed as in (Schiela [130]):

46



5.1 Barrier Methods for First Order State Constraints

Definition 5.1. For κ ≥ 1 and µ > 0 we define barrier functions l of order κ by

l(v;µ;κ) : R+ → R,

l(v;µ;κ) :=

−µ ln(v) κ = 1,
µκ

(κ−1)vκ−1 κ > 1.

We extend their domain of definition to R by setting l(v;µ;κ) =∞ for x ≤ 0. We denote the
pointwise derivative of l(v;µ;κ) by l′(v;µ;κ) if v > 0. This yields

l′(v;µ;κ) = −µ
κ

vκ
.

With this we define a barrier functional b for the constraint v ≥ 0 by:

b( · ;µ;κ) : C(ΩC)→ R,

v 7→
∫
ΩC

l(v(x);µ;κ) dx.

Its formal derivative b′(v, µ;κ) ∈ C(ΩC)∗, is defined as

〈b′(v;µ;κ), δv〉 :=
∫
ΩC

l′(v(x);µ;κ)δv(x) dx

if the right-hand side exists.

Obviously, if 0 < ε ≤ v ∈ C(ΩC), then b is differentiable with respect to v, and b′ is the
Fréchet derivative of b. If v(x) = 0, for some x ∈ C(ΩC), then the situation is more involved,
and techniques of sub-differential calculus have to be applied, for a recent survey on this field
see (Borwein and Zhu [30]).

In contrast to the case of state constraints, we may not use ψ = 0 to ease notation. This
is due to the fact that in this case u = 0 would be the only admissible state. Therefore we
introduce the following shifted barrier functional:

Definition 5.2. We define the barrier functional for the constraint |∇u|2 ≤ ψ on a compact
set ΩC ⊆ Ω by

bψ( · ;µ;κ) : C1(ΩC)→ R,

u 7→ bψ(u;µ;κ) := b(ψ − |∇u|2;µ;κ).
(5.6)

In several cases we are only interested in a barrier functional of a fixed given order κ, and
sometimes even for only one fixed value of µ, in those cases we write b(·;µ) or even b(·) if no
confusion can occur.

Lemma 5.3. The barrier functional bψ defined in (5.6) is well defined, convex, and lower-
semicontinuous.
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Proof. By (Schiela [130], Proposition 4.3) the outer function b(·;µ;κ) is well defined and
lower semi-continuous. Since the inner function ψ − |∇u|2 is well defined and continuous on
U , the composition of both functions is well defined and lower semi-continuous.

Moreover, we know that b(·;µ;κ) is convex and monotonically decreasing. Further, the
mapping T (u) := ψ − |∇u|2 is pointwise concave. With these properties we can proof
convexity of bψ = b ◦ T by the following computation which holds for every x in ΩC :

l
(
T (λu+ (1− λ)ũ)

)
(x) ≤ l

(
λT (u) + (1− λ)T (ũ)

)
(x) ≤ λl

(
T (u)

)
(x) + (1− λ)l

(
T (ũ)

)
(x).

By monotonicity of the integral we obtain that bψ is convex.

We approach subdifferentiability of bψ = b ◦ (ψ − |∇ · |2) via the following chain rule.

Lemma 5.4. Let U , V be Banach spaces, f : V → R be a convex, lower-semicontinuous
function, and T : U → V a continuously differentiable mapping with first derivative T ′.
Assume that the composite mapping f ◦ T is also convex.

Let u be given and let T ′(u) be bounded. Assume that there is ŭ ∈ U , such that f is bounded
above in a neighbourhood of T (u) + T ′(u)ŭ. Then

∂(f ◦ T )(u) = (T ′(u))∗∂f(T (u)). (5.7)

Proof. This is a slight extension of the well known chain rule of convex analysis (cf., (Ekeland
and Témam [58], Prop. I.5.7)), which is, however, hard to find in the literature. We thus
derive this result from a more general theorem from non-smooth analysis due to Clarke and
Rockafellar (cf., (Clarke [47], Thm. 2.9.9) or (Rockafellar [124], Thm. 3)). Although the
construction of the corresponding generalized differential is rather complicated in general, it
reduces to the convex subdifferential in the case of convex functions (cf., (Rockafellar [125],
Thm. 5)).

First of all, we may assume that f(T (u)) is finite. Otherwise, ∂(f ◦ T )(u) = ∂(f(T (u)) = ∅
holds trivially, because ∂g(u) := ∅ in case g(u) = +∞ for every convex function g.

Otherwise we may argue as in (Rockafellar [124], Cor. 1), which shows that the chain
rule (Rockafellar [124], Thm. 3) can be applied to show our assertion under the additional
assumption that T is linear. However, inspection of its (short) proof shows that the same
argumentation is still true in the case that T is “strictly differentiable” at u and f ◦ T is
convex, as long as ŭ exists that satisfies our assumptions. Now, the Corollary subsequent
to (Clarke [47], Prop. 2.2.1) asserts that “strict differentiability” is implied by continuous
differentiability, and our assertion follows.

Remark 5.1. Lemma 5.3 and Lemma 5.4 are also useful in the context of pointwise state
constraints of the form g(u(x), x) ≤ 0, if g is convex and differentiable in u.

With the help of this lemma we can now characterize the subdifferential for barrier functionals
with respect to gradient bounds in terms of the known subdifferential of a barrier functional
in C(ΩC), see (Schiela [130]).
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Proposition 5.5. Assume that ψ ≥ δ > 0. Define

bψ : C1(ΩC)→ R

u 7→ b(ψ − |∇u|2)

as in Definition 5.2. Then the subdifferential ∂bψ(u) has the following representation:

∂bψ(u) = (−2∇uT∇)∗∂b(ψ − |∇u|2). (5.8)

This means, m̃ ∈ ∂bψ(u), if and only if there is m ∈ ∂b(ψ − |∇u|2), such that

〈δu, m̃〉C1(ΩC),C1(ΩC)∗ = −2〈∇uT∇δu,m〉C(ΩC),C(ΩC)∗ ∀δu ∈ C1(ΩC).

If u is strictly feasible, then m = b′(ψ − |∇u|2).

Proof. Let T : C1(ΩC) → C(ΩC) be defined by T (u) := ψ − |∇u|2. Obviously, the map-
ping ψ − |∇u|2 : C1(ΩC) → C(ΩC) is continuously differentiable with bounded derivative
(T ′(u)δu)(x) = −2(∇u(x))T∇δu(x).

We are going to apply Lemma 5.4 to the function bψ : U → R, bψ(u) = b ◦ T . By (Schiela
[130], Lemma 3.2), b is convex and lower semi-continuous and by Lemma 5.3 bψ is convex, too.
Setting ŭ := −0.5u, we have T ′(u)ŭ = |∇u|2, and ṽ := T (u) + T ′(u)ŭ = ψ. Since ψ ≥ δ > 0,
b is bounded from above in a C(ΩC)-neighbourhood of ṽ. Hence, Lemma 5.4 can be applied
and yields our representation formula (5.8). Finally, (Schiela [130], Prop. 3.5) shows that
∂b(v) = {b′(v)} if v is strictly feasible.

The barrier functional bψ can also be analyzed on closed subspaces Ũ of C1(ΩC). To
this end let E : Ũ → C1(ΩC) be the continuous embedding operator. Then its adjoint
E∗ : C1(ΩC)∗ → Ũ∗ is the restriction operator for linear functionals. If ŭ in Assumption 5.4
can be chosen from Ũ , then the chain-rule of convex analysis applied to bψ ◦ E yields a
characterization of the subdifferential of the restriction of bψ to Ũ as restriction of the
subdifferential:

∂(bψ ◦ E)(u) = E∗∂bψ(Eu).

Closed subspaces of C1(ΩC) may for example be spaces that incorporate Dirichlet boundary
conditions on ΩC ∩ Ω or finite dimensional subspaces.

5.1.3 Minimizers of Barrier Problems

With the preparations made in the previous sections we will now show that there exists a
unique solution for the barrier problem, and later on some first-order necessary conditions
that are fulfilled by these.
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Theorem 5.6. (Existence of Solutions to Barrier Problems)
Let Assumption 5.1—Assumption 5.4 be fulfilled. Then the Problem

Minimize Jµ(q, u) := J(q, u) + bψ(u;µ),

subject to
{

Au = Bq,

(q, u) ∈ Qad ×W,
(5.9)

admits a unique minimizer (qµ, uµ). Moreover uµ is strictly feasible almost everywhere in
ΩC .

Proof. The proof is almost analog to the one for Theorem 2.1 as the possible value ∞ of J
doesn’t complicate the proof.

By Assumption 5.4 Jµ(q̆, ŭ) <∞. Further, Jµ is bounded from below by Assumption 5.3, by
the required lower bound for J1, and because bψ is bounded from below, since ψ is bounded
above.

Taking a minimizing sequence (qk, uk) = (qk, Sqk) (recall that S = A−1B is continuous
by Lemma 5.1), we obtain from Assumption 5.3 that w.l.o.g. qk converges weakly to some
qµ ∈ Qad. From Lemma 5.1 together with Assumption 5.1 we obtain that w.l.o.g. the sequence
uk converges to uµ weakly in W where u fulfills equation (5.1). From lower semi-continuity
of J and bψ (compare Lemma 5.3), we obtain that the limit (qµ, uµ) solves (5.9) and since
Jµ(qµ, uµ) <∞ it follows that u is strictly feasible almost everywhere in ΩC .

Furthermore, the limit (qµ, uµ) is unique, since J is strictly convex with respect to the control
variable, and the mapping qµ 7→ uµ is injective.

The next theorem shows that the regularity of the solutions doesn’t degenerate as µ→ 0:

Theorem 5.7. Let Assumption 5.1—Assumption 5.4 be fulfilled. Then for every µ0 > 0 the
solutions (qµ, uµ) ∈ Q×W of (5.9) are uniformly bounded on (0, µ0].

Proof. First note that due to Lemma 5.1 in combination with Assumption 5.1 it is sufficient
to show that qµ is uniformly bounded. To see this we note that, cf., (Schiela [130]),

Jµ(qµ, uµ) ≤ Jµ(qµ0 , uµ0) ≤ Jµ0(qµ0 , uµ0).

From J(qµ, uµ) ≤ Jµ(qµ, uµ) together with Assumption 5.3 we obtain, that qµ is bounded,
which concludes the proof.

Usually, ifW ⊂ C1(ΩC) the state satisfies the additional regularityW ⊂ C1,β(ΩC) ⊂ C1(ΩC).
This means the gradients are even Hölder continuous of order β. Then we obtain for a
sufficiently high order κ of the barrier method that the state is in fact strictly feasible
everywhere in ΩC , as the following theorem shows.

Theorem 5.8. Let ΩC ⊂ Rd be compact satisfying a cone property (see (Adams and Fournier
[1], Def. 4.6)) and for some β ∈ (0, 1) let ψ ∈ C0,β(ΩC) be given. Let Assumption 5.1—
Assumption 5.4 be satisfied. If the state has the additional regularity uµ ∈ C1,β(ΩC), then for
κ− 1 > n

β the state uµ is strictly feasible in ΩC .
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Proof. By Theorem 5.6 we obtain 0 ≤ ψ − |∇uµ|2 ∈ C0,β(ΩC). From (Schiela [130],
Lemma 7.1) we obtain that therefore (ψ−|∇uµ|2)−1 ∈ C(ΩC) which concludes the proof.

We are now prepared to derive first-order necessary conditions for the minimizer of the barrier
problem (5.9).

Theorem 5.9. Let the Assumption 5.1—Assumption 5.4 be fulfilled. Then (qµ, uµ) ∈ Qad×U
is a solution to (5.9) if and only if there exist mµ ∈ ∂b(ψ − |∇uµ|2) ⊂ C(ΩC)∗ and zµ ∈ Z,
q∗µ ∈ Q∗ such that the following holds:

Auµ = Bqµ in Z∗ (5.10a)
A∗zµ = J ′1(uµ) + (−2(∇uµ)T∇)∗mµ in U∗ (5.10b)
J ′2(qµ) = −B∗zµ − q∗µ in Q∗ (5.10c)

〈q − qµ, q∗µ〉 ≤ 0 ∀ q ∈ Qad (5.10d)

Proof. We consider the following minimization problem where we omit the dependence on
the parameter µ:

min
q∈Q

F (q) = χQad(q) + Ĵµ(q) := χQad(q) + Jµ(q, Sq) (5.11)

where χQad is the indicator function for the admissible set of the controls, and S is the control
to state mapping defined by (5.1). Clearly (qµ, uµ) = (qµ, Sqµ) is a solution to (5.9) if and
only if qµ is a solution to (5.11), which is in turn equivalent to 0 ∈ ∂F (qµ). In order to utilize
this we will split the subdifferential by the sum-rule of convex analysis:

∂F (qµ) = ∂(χQad)(qµ) + ∂Ĵµ(qµ). (5.12)

For its application note that Assumption 5.4 asserts the existence of a point

q̆ ∈ domχQad ∩ dom Ĵµ

such that Ĵµ is continuous in q̆. In addition the function χQad is convex and lower semicontin-
uous, thus it coincides with its Γ-regularization (Ekeland and Témam [58], Chapter I, Prop.
3.1). We can therefore apply the sum-rule of convex analysis, cf., (Ekeland and Témam [58],
Chapter I, Prop. 5.6) to obtain (5.12).

Since Ĵ is continuous in qµ we obtain by the same argument that:

∂Ĵµ(qµ) = ∂Ĵ(qµ) + ∂(bψ ◦ S)(qµ)

where we recall the definition bψ(u) = b(ψ − |∇u|2). Now, we note that

Ĵ(q) = J ◦ (1, S)(q)

with the linear mapping

(1, S) : Q→ Q× U, q 7→ (q, Sq).
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Together with Assumption 5.4 we are able to apply the linear chain rule and obtain

∂Ĵ(qµ) = (1, S∗)∂J(qµ, uµ),
∂(bψ ◦ S)(qµ) = S∗∂bψ(Sqµ).

Inserting the representation for the subdifferential of the barrier function bψ in Proposition 5.5
our computations have shown so far that

0 ∈ ∂(χQad)(qµ) + (1, S∗)∂J(qµ, uµ) + S∗(−2(∇uµ)T∇)∗∂b(ψ − |∇uµ|2) (5.13)

is equivalent to (qµ, uµ) being a solution to (5.9). Since the cost functional is differentiable
we obtain, cf., (Ekeland and Témam [58], Chapter I, Prop. 5.3):

∂J(qµ, uµ) = {J ′1(uµ) + J ′2(qµ)}.

Equation (5.13) means there exist q∗µ ∈ ∂χQad(qµ), and mµ ∈ ∂b(ψ − |∇uµ|2) such that

0 = q∗µ + J ′2(qµ) + S∗
(
J ′1(uµ) + (−2(∇uµ)T∇)∗mµ

)
∈ Q∗. (5.14)

Note that S∗ = (A−1B)∗ = B∗(A−1)∗ = B∗(A∗)−1, where A∗ : Z ⊃ domA∗ → U∗ is well
defined with continuous inverse due to Lemma 5.2. Define

zµ = (A∗)−1(J ′1(uµ) + (−2(∇uµ)T∇)∗mµ
)
. (5.15)

Then zµ ∈ domA∗ ⊂ Z and satisfies (5.10b) by definition. Equation (5.10c) now follows
from (5.14). Further note that q∗µ fulfills, see, e.g., (Ekeland and Témam [58], Chapter I,
Prop. 5.1),

sup
q∈Qad

〈q, q∗µ〉 = 〈qµ, q∗µ〉 (5.16)

which is equivalent to (5.10d).

Example 5.4. Let us apply our abstract results to Example 5.1 in the case of distributed
control (B = Id). Using the notation from there the first-order optimality conditions
have the following form. Let (qµ, uµ) be a solution to (5.9), then there exists zµ ∈ Z,
mµ ∈ ∂b(ψ − |∇uµ|2;µ) such that:∫

Ω
−∆uµ ϕdx =

∫
Ω
qµϕdx ∀ϕ ∈ Z, (5.17a)∫

Ω
−∆ϕzµ dx =

∫
Ω
(uµ − ud)ϕdx− 2

∫
Ω
(∇uµ)T∇ϕdmµ ∀ϕ ∈W, (5.17b)

|qµ|r−2qµ = −zµ a.e. in Ω. (5.17c)

For a discussion of the first two equations and in particular the representation of A and A∗ we
refer to Example 5.1. The barrier gradient mµ is an element of ∂b(uµ;µ;κ), and a measure in
general. If uµ is strictly feasible, which can usually be guaranteed a priori by a proper choice
of the order κ, then mµ = b′(y;µ;κ) and thus a function, cf., (Schiela [130], Prop. 4.6).

Equation (5.17c) holds pointwise almost everywhere since it holds in Lr. The multiplier q∗µ
does not appear due to the fact that Qad = Q.
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5.1 Barrier Methods for First Order State Constraints

After having studied the necessary optimality conditions we will now discuss the behavior of
the dual variables. The hard part is showing the boundedness of the measure obtained from
the subdifferential of the barrier functional.

Theorem 5.10. Let the assumptions of Theorem 5.9 be fulfilled. Then for each µ0 > 0

sup
µ∈(0,µ0]

‖mµ‖C(ΩC)∗ ≤ C.

Proof. Let (qµ, uµ) be the solution to (5.9) and (q̆, ŭ) be a Slater point, e.g., let ψ − |∇ŭ|2 ≥
τ > 0. Then, following (Schiela [130]), we multiply (5.10b) with δu = uµ − ŭ and (5.10c)
with δq = qµ − q̆ and obtain

0 = 〈δu,−A∗zµ + J ′1(uµ) + (−2(∇uµ)T∇)∗mµ〉+ 〈δq, J ′2(qµ) +B∗zµ + q∗µ〉
= 〈δu, J ′1(uµ) + (−2(∇uµ)T∇)∗mµ〉+ 〈δq, J ′2(qµ) + q∗µ〉+ 〈Aδu−Bδq,−zµ〉.

As (δq, δu) fulfills the state equation (5.1) this simplifies to

0 = 〈δu, J ′1(uµ)〉+ 〈δq, J ′2(qµ)〉 − 2〈(∇uµ)T∇δu,mµ〉+ 〈δq, q∗µ〉. (5.18)

From the uniform boundedness of the primal variable, see Theorem 5.7 together with As-
sumption 5.2, we obtain that

|〈δu, J ′1(uµ)〉+ 〈δq, J ′2(qµ)〉| ≤ C

with a constant C independent of µ. Inserting this estimate into (5.18) yields

| − 2〈(∇uµ)T∇δu,mµ〉+ 〈δq, q∗µ〉| ≤ C. (5.19)

We would like to split this into the sum of the absolute values. To do so we will show that
both terms have essentially the same sign. First, we now define the ‘almost’ active set

A = {x ∈ ΩC |ψ − |∇uµ|2 ≤ 0.5τ}.

This is motivated by the fact, see (Schiela [130], Corollary 3.6), that

|〈(∇uµ)T∇δu,mµ|ΩC\A〉| ≤ ‖mµ‖L1(ΩC\A)‖(∇uµ)T∇δu‖L∞ ≤ C. (5.20)

Thus it remains to take a look at the behavior of 〈mµ|A, (∇uµ)T∇δu〉. We will now show
that 0 < c ≤ (∇uµ)T∇δu holds on A. For this we apply Young’s inequality and obtain

2|(∇uµ)T∇ŭ| ≤ |∇uµ|2 + |∇ŭ|2 ≤ |∇uµ|2 + ψ − τ

leading to the following pointwise estimate on A:

0.25τ ≤ 0.5(|∇uµ|2 − ψ) + 0.5τ ≤ −(∇uµ)T∇ŭ ≤ |∇uµ|2 − (∇uµ)T∇ŭ ≤ (∇uµ)T∇δu.

From (Schiela [130], Prop. 4.6) we obtain that mµ ≤ 0 as a measure thus leading to

−2〈(∇uµ)T∇δu,mµ|A〉 ≥ 0.
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Now we take a look on (5.10d) to see that 〈qµ − q̆, q∗µ〉 ≥ 0. Together with (5.20) we obtain
from (5.19) that

|〈(∇uµ)T∇δu,mµ|A〉| ≤ C.

Finally, we note that due to mµ ≤ 0 the following holds:

〈(∇uµ)T∇δu,mµ|A〉 ≤ min
A

(
(∇uµ)T∇δu

)
〈1,mµ|A〉 ≤ −

τ

4‖mµ‖C(A)∗ .

This implies
‖mµ‖C(A)∗ ≤

4
τ
|〈(∇uµ)T∇δu,mµ|A〉| ≤ C

and completes the proof.

Corollary 5.11. Under the Assumption 5.1—Assumption 5.4 the following holds for every
given µ0 > 0:

sup
µ∈(0,µ0]

‖zµ‖Z ≤ C,

sup
µ∈(0,µ0]

‖q∗µ‖Q∗ ≤ C.

Proof. First we note that the right-hand side of (5.10b) is bounded due to Assumption 5.2,
boundedness of uµ, mµ, and continuity of ((∇uµ)T∇)∗ : C(ΩC)∗ → U∗. The bound for zµ
follows from the boundedness of the right-hand side of (5.10b) and continuity of (A∗)−1. The
bound for q∗µ then follows from the bound on zµ and qµ using (5.10c) and Assumption 5.2
and continuity of B∗.

5.1.4 Properties of the Central Path

We will now show convergence of the cost functional with rate µ.

Theorem 5.12. Let Assumption 5.1—Assumption 5.4 be fulfilled, and (qµ, uµ) be a solution
of the barrier problem (5.9) for µ > 0. Then the following holds for the minimizer (q, u)
of (5.2):

J(qµ, uµ) ≤ J(q, u) + Cµ. (5.21)

Proof. The proof follows the lines of (Schiela [130], Lemma 6.1), however since we consider
nonlinear constraints on the gradient of the states we have to modify the argumentation
concerning the multiplier coming from the subdifferential of the barrier functional.

From the proof of Theorem 5.9 together with the relation

∂b(ψ − |∇uµ|2;µ;κ) = µκ∂b(ψ − |∇uµ|2; 1;κ),

cf., (Ekeland and Témam [58], Chaper I, (5.21)), we obtain that there exists m ∈ ∂b(ψ −
|∇uµ|2; 1) and ϕ ∈ ∂χQad(qµ) + ∂Ĵ(qµ) = ∂(χQad + Ĵ)(qµ) such that:

ϕ− 2µκS∗((∇uµ)T∇)∗m = 0.
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5.1 Barrier Methods for First Order State Constraints

This shows that
2µκS∗((∇uµ)T∇)∗m ∈ ∂(χQad + Ĵ)(qµ).

From convexity of χQad + Ĵ we obtain that for every l ∈ ∂(χQad + Ĵ)(qµ) the following holds:

Ĵ(qµ) ≤ Ĵ(q) + 〈l, qµ − q〉.

Applied to 2µκS∗((∇uµ)T∇)∗m we obtain:

J(qµ, uµ) ≤ J(q, u) + 2µκ〈m, (∇uµ)T∇(uµ − u)〉.

Since b is monotonically decreasing, the measure m is negative, cf., (Schiela [130], Prop. 4.6).
Thus we can estimate further

2µκ〈m, (∇uµ)T∇(uµ − u)〉 ≤ 2µκ〈m|ΩS , (∇uµ)T∇(uµ − u)〉

where we define ΩS := {x ∈ ΩC | (∇uµ)T∇(uµ − u) < 0}. From Cauchy-Schwarz inequality it
follows that |∇uµ(x)| < |∇u(x)| ≤ ψ(x) on ΩS and thus ΩS ⊂ {x ∈ ΩC | |∇uµ|2 < ψ}. Hence
we obtain from (Schiela [130], Prop. 4.6.)

2µκ〈m|ΩS ,∇uµ∇(uµ − u)〉 = −2
∫
ΩS

µκ

(ψ − |∇uµ|2)κ
(∇uµ)T∇(uµ − u) dx.

From (∇uµ)T∇u ≤ |∇uµ| |∇u| ≤ ψ we see that

−(∇uµ)T∇(uµ − u)
ψ − |∇uµ|2

= (∇uµ)T∇u− |∇uµ|2
ψ − |∇uµ|2

≤ 1

and thus
2µκ〈m|ΩS , (∇uµ)T∇(uµ − u)〉 ≤ 2µ

∫
ΩS

µκ−1

(ψ − |∇uµ|2)κ−1 dx. (5.22)

From Theorem 5.10 and boundedness of the domain ΩC we obtain for the function f :=
µ/(ψ − |∇uµ|2) that

‖fκ−1‖1/(κ−1)
L1(ΩC) = ‖f‖Lκ−1(ΩC) ≤ C ‖f‖Lκ(ΩC) = C ‖fκ‖1/κ

L1(ΩC) ≤ C.

Thus the integral on the right-hand side of (5.22) is bounded independent of µ. Hence the
assertion follows.

Theorem 5.13. Let µ > 0, (qµ, uµ) be a solution to the barrier problem (5.9) and (q, u) be
the solution to the minimization problem (5.2). Further assume that there exist c > 0, p ≥ 2
and a norm ‖ · ‖ such that

c‖q1 − q2‖p ≤ J2(q1) + J2(q2)− 2J2

(
q1 + q2

2

)
.

Then the following estimate holds:

‖qµ − q‖ = O(µ1/p). (5.23)
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Proof. By assumption and convexity of J1 the following proves the assertion

c‖qµ − q‖p ≤ J2(qµ) + J2(q)− 2J2

(
qµ + q

2

)
≤ J(qµ, uµ) + J(q, u)− 2J((qµ + q)/2, (uµ + u)/2)
≤ J(qµ, uµ) + J(q, u)− 2J(q, u) = O(µ).

Remark 5.2. By an analogous assumption on J1 a similar result for the state uµ can be
obtained. In addition, if ‖ · ‖ is stronger than ‖ · ‖Q the convergence of uµ in U (with the
same rate O(µ1/p)) follows by continuity of S.

Example 5.5. We finally return to Example 5.1. We apply the Clarkson inequality (Clarkson
[48], Theorem 2 (3)) for Lr-spaces with r > 2, which yields

‖f − g2 ‖rLr ≤
1
2‖f‖

r
Lr + 1

2‖g‖
r
Lr − ‖

f + g

2 ‖rLr

from this we see that ‖q‖rLr matches the assumption of Theorem 5.13 with p = r.

With the same techniques as in Theorem 5.12 it is possible to show for µ0 > µ > 0
that Jµ(qµ0 , uµ0) ≤ Jµ(qµ, uµ) + C(µ0 − µ). Then continuity of the central path follows
via Theorem 5.13.

5.1.5 Numerical Results

Here we will demonstrate our findings on three numerical examples, corresponding to Exam-
ple 5.1 and Example 5.3. First we will discuss an example already considered in the literature
with a second order PDE. As the convergence rate in this example exceeds our expectations
we consider another example for this setting, but this time without a constructed solution.
Finally, we will consider a generic optimal control problem with a fourth order PDE. The
results are computed using the Finite Element Toolkit Gascoigne (Gascoigne [65]) and the
Optimization Toolbox RoDoBo (RoDoBo [126]). In all examples we choose the order of the
barrier method κ = 6.

Example with Second Order PDE First we will consider an example corresponding to Ex-
ample 5.1. For this purpose we consider an example from (Deckelnick et al. [54]) with known
solution. The problem reads as follows:

Minimize J(q, u) = 1
2‖u− u

d‖2 + α

2 ‖q‖
2

subject to


(∇u,∇ϕ) = (q + f, ϕ) ∀ϕ ∈ H1

0 (Ω),
− 2 ≤ q ≤ 2 a.e. inΩ,
|∇u|2 ≤ 0.25 inΩ,

u ∈ H1
0 (Ω).
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5.1 Barrier Methods for First Order State Constraints

Where α = 1, the domain Ω = {x ∈ R2 | |x| < 2} and the data of the problem is

f =
{

2 |x| ≤ 1,
0 otherwise,

and

ud =
{

0.25 + 0.5 ln(2)− 0.25|x|2 |x| ≤ 1,
0.5 log(2)− 0.5 ln(|x|) otherwise.
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Figure 5.1: Error in the cost functional vs. barrier parameter µ on different meshes

The exact solution satisfies u = ud,

q =
{
−1 |x| ≤ 1,
0 otherwise,

and the functional value is given as J(q, u) = π
2 .

For the computation we have chosen an initial µ = 1.0 and then successively reduced µ by
√

2
until µ < 10−4. The barrier subproblems were solved by a Newton’s method in the control
space which has been globalized using a line-search technique, as provided by RoDoBo. In
our test problems, strictly feasible starting values were easy to obtain by taking q̆ = −f .

In Figure 5.1 we have depicted the convergence of the functional value. Here we can see, that
after an initial phase the functional value is converging with an approximate order O(µ3/2)
before it stabilizes at the value of the discretization error. The intermediate kink in the
transition between regularization and discretization error is due to cancellation between the
two error components.
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Figure 5.2: Convergence behavior of the primal variables on different meshes

In Figure 5.2 we can see the convergence behavior of the primal variables. We see that the
control variable is in fact converging with order µ instead of the predicted √µ. The state
variable is converging with approximately the same speed as the functional value, namely
of order O(µ3/2), where we can see once again the cancellation in the transition between
regularization and discretization error.

This rate of convergence exceeds our theoretical findings. In order to determine whether this
is an exceptional case, caused by the specific construction of the example, or if our theory
can be refined we consider an other example with a more generic structure.

A Second Example with Unknown Solution In order to have a more generic example we
remove the untypical inactive bound imposed in the previous example. The problem reads as
follows:

Minimize J(q, u) = 1
2‖u− u

d‖2 + α

3 ‖q‖
3
L3(Ω)

subject to


(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1

0 (Ω),
|∇u|2 ≤ 0.05 inΩ,

u ∈ H1
0 (Ω).

We choose the desired state ud = sin(πx) sin(πy) and remark that ud is infeasible with respect
to the state constraint, e.g., in contrast to the previous example u− ud 6= 0. The Tikhonov
parameter is chosen as α = 10−3, and the domain is given as Ω = (0, 1)2.

In order to obtain a functional value for comparison we used a global uniform refinement
with a total of 66049 vertices and µ = 5 · 10−6.

In order to get an impression of the solution we depict the solution variables in Figure 5.3.
We see that the state in Figure 5.3b is almost a pyramid, especially it has very flat surfaces.
Correspondingly the control in Figure 5.3a exhibits very step gradients, coming from the
measure on the boundary of the active set of the state constraint.
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(a) Control (b) State

Figure 5.3: Optimal State and Control

We are now considering the convergence behavior of the cost functional for several values
of µ. As in the preceeding example we begin with a moderate value of µ = 0.1 and then
successively reduce µ by a factor of

√
2. The computation is stopped on each mesh once the

discretization error is reached. The results are depicted in Figure 5.4. We can immediately
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Figure 5.4: Error in the cost functional vs. barrier parameter µ on different meshes

see, that the convergence in the cost functional is as predicted by our analysis of order
µ. Hence we conclude that the rates observed in the previous example are not the typical
behavior but rather due to the specific problem structure. However we remark that the
observed convergence order in the previous example also necessitates an a posteriori estimate
of the actual error, as the a priori given convergence rate might be non-optimal.
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Example with Fourth Order PDE We will now consider an example corresponding to Ex-
ample 5.3. Hence we consider the following optimization problem

Minimize J(q, u) = 1
2‖u− u

d‖2 + α

2 ‖q‖
2

subject to


(∆u,∆ϕ) = (q, ϕ) ∀ϕ ∈ H2

0 (Ω),
|∇u|2 ≤ 0.04 inΩ,

u ∈ H2
0 (Ω).

We choose α = 10−3, the domain Ω = (−1, 1)2 ⊂ R2 and

ud = (x2 − 1)2(y2 − 1)2.

For the discretization of the state equation we consider a mixed finite element method, e.g.,
we consider σ := ∇u as an independent variable. Its continuous formulation is for given
q ∈ L2(Ω): Find (σ, u) ∈ H1(Ω)×H1

0 (Ω) such that:

(σ, ϕ) + (∇u,∇ϕ) = 0 ∀ ϕ ∈ H1(Ω)
(∇σ,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1

0 (Ω)

which is discretized using conforming Q1 finite elements. For details on this discretization
see (Ciarlet and Raviart [46]) and (Reichmann [123]) for an implementation. In Figure 5.5
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Figure 5.5: Error in the cost functional vs. barrier parameter µ on different meshes

we made a series of computations on different globally refined meshes, where N denotes the
number of nodes in the mesh. For these computations the barrier parameter µ was initialized
as 0.03 on each mesh and then successively decreased by a factor of

√
2 until it reached a
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value lower than 10−4. The choice of the initial µ was motivated by the previous example
where an initial phase with very fast convergence was observed.

We can clearly see the predicted order of convergence of the cost functional. As in this
example the exact solution is unknown we used a reference value obtained on a mesh with
106 nodes and a value µ = 10−6. The approximate functional value is 0.286619. Here we can
clearly see the predicted oder of convergence namely O(µ).

5.2 Formal KKT-Conditions for Solution to Regularized Problems

In the previous Section 5.1 we have derived a convergence analysis and necessary optimality
conditions for a minimization problem with first-order state constraints. We will now proceed
and formally state the general first-order necessary conditions for approximate solutions
to (2.5) using both barrier or penalty methods.

In order to take care of only on parameter we choose γ > 0 for both barrier and penalty
methods where in both cases we consider γ →∞ to be the case corresponding to (2.5). Hence
we have µ = 1/γ in the notation of Section 5.1.

We begin by stating the approximate problems to (2.5). To this end we define the barrier
term Bγ( · ) : W → R ∪∞ and the penalty term Pγ : W → R using the following definition:

Bγ(u) := b(−g(u,∇u); 1/γ) (5.24a)

Pγ(u) := γ

2‖(g(u,∇u))
+‖2L2(ΩC) (5.24b)

With this we are able to consider the following abstract regularized problems where we search
for a pair (qγ , uγ) ∈ Qad × V which satisfies (2.4) and is a solution to either the barrier
problem

Minimize Jγ(q, u) = J(q, u) +Bγ(u) (5.25)

or the penalty problem

Minimize Jγ(q, u) = J(q, u) + Pγ(u). (5.26)

Then we can formally state the corresponding first-order necessary conditions.

We begin with the barrier problem where we will assume for convenience that the barrier
solution (qγ , uγ) ∈ Qad × V of (5.25) is strictly feasible, e.g., g(u,∇u) < 0, then there exists
µγ ∈ {−l′(−g(uγ ,∇uγ); 1/γ)}, zγ ∈ V ∩ Z such that

a(qγ , uγ)(ϕ) = (f, ϕ) ∀ ϕ ∈ V, (5.27a)
a′u(qγ , uγ)(ϕ, zγ) = J ′u(qγ , uγ)(ϕ) + (g′(uγ ,∇uγ)(ϕ), µγ)ΩC ∀ ϕ ∈ V, (5.27b)

J ′q(qγ , uγ)(δq − qγ) ≥ aq(qγ , uγ)(δq − qγ , zγ) ∀ δq ∈ Qad. (5.27c)

Where l is given by Definition 5.1. The proof for linear equations and zero-order state
constraints can for instance be found in (Schiela [130]) for first-order state constraints
in Section 5.1 or (Schiela and Wollner [135]).
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Let us now consider a solution (qγ , uγ) ∈ Qad × V of (5.26). Then there exists µγ =
γg(uγ ,∇uγ)+ and zγ ∈ V ∩ Z such that

a(qγ , uγ)(ϕ) = (f, ϕ) ∀ ϕ ∈ V, (5.28a)
a′u(qγ , uγ)(ϕ, zγ) = J ′u(qγ , uγ)(ϕ) + (g′(uγ ,∇uγ)(ϕ), µγ)ΩC ∀ ϕ ∈ V, (5.28b)

J ′q(qγ , uγ)(δq − qγ) ≥ aq(qγ , uγ)(δq − qγ , zγ) ∀ δq ∈ Qad, (5.28c)

which has been shown for linear equations and zero and first-order constraints in (Hintermüller
and Kunisch [83]).

In order to have that this is a reasonable regularization we assume that the solutions (qγ , uγ)
to (5.25) and (5.26) converge to the solution (q, u) of (2.5) if γ →∞. This has been shown
in the previously mentioned articles (Hintermüller and Kunisch [83], Schiela [130], Schiela
and Wollner [135]) for a linear ‘control to state’ mapping.

5.3 Discretization

In this section we discuss finite element discretization of the optimization problem (5.25)
or (5.26).

To keep the following sections simple we restrain ourself to the case of problems where
H1-conforming finite elements are satisfactory. However the ideas can be adapted to other
problems.

Let Th be a triangulation (mesh) of the computational domain Ω consisting of closed elements
K which are either triangles or quadrilaterals. The straight parts which make up the boundary
∂K of a cell K are called faces. The mesh parameter h is defined as a cell-wise constant
function by setting h

∣∣
K

= hK and hK is the diameter of K. The mesh Th is assumed to
be shape regular. In order to ease the mesh refinement we allow the cells to have nodes,
which lie on midpoints of faces of neighboring cells. But at most one of such hanging nodes
is permitted per face.

On the mesh Th we define a finite element space Vh ⊂ V consisting of linear or bilinear
shape functions, see, e.g., (Eriksson, Estep, Hansbo, and Johnson [61]) or (Brenner and Scott
[32]). The case of hanging nodes requires some additional remarks. There are no degrees of
freedom corresponding to these irregular nodes and therefore the value of the finite element
function is determined by point-wise interpolation. This implies continuity and therefore
global conformity.

For the discretization of the optimization problem (5.25) or (5.26) we introduce an additional
finite dimensional subspace Qh ⊂ Q of the control space. Depending on the concrete situation
there are different possible ways to choose the space Qh. It is reasonable to set Qh = Q if Q
is finite dimensional. In the case where the control variable is a distributed function on the
computational domain Ω, i.e., Q = L2(Ω), one may choose Qh analog to Vh or consider Qh
as a space of cell-wise constant functions on the mesh Th. On the other hand if the control is
acting on the boundary, i.e., Q = L2(∂Ω), we choose Qh as traces of functions in Vh or as
face-wise constant functions.
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We denote a basis of Qh by

B = {ψi}, with ψi ≥ 0,
∑
i

ψi = 1, max
x∈ω

ψi(x) = 1. (5.29)

The discrete admissible set Qad
h is defined as:

Qad
h = Qh ∩Qad ,

where we assume that Qad
h 6= ∅. and the discretized optimization problem is formulated as

follows:
Minimize Jγ(qh, uh) , uh ∈ Vh, qh ∈ Qad

h , (5.30)

subject to
a(qh, uh)(vh) = f(vh) ∀vh ∈ Vh. (5.31)

Here Jγ is defined either as (5.25) or (5.26). Assuming that first-order necessary conditions
can be obtained they read as follows:

Let (qhγ , uhγ) ∈ Qad
h × Vh be a solution to (5.30), then there exists zhγ ∈ Vh and µhγ such that

a(qhγ , uhγ)(ϕ) = (f, ϕh) ∀ ϕh ∈ Vh, (5.32a)
a′u(qhγ , uhγ)(ϕh, zhγ) = J ′u(qhγ , uhγ)(ϕh) + (g′(uhγ ,∇uhγ)(ϕh), µhγ)ΩC ∀ ϕh ∈ Vh, (5.32b)

J ′q(qhγ , uhγ)(δqh − qhγ) ≥ aq(qhγ , uhγ)(δqh − qhγ , zhγ) ∀ δqh ∈ Qad
h . (5.32c)

In the case of a barrier formulation (5.25) it holds

µhγ = −l′(−g(uhγ ,∇uhγ); 1/γ)

whereas in the case of a penalty formulation (5.26) the Lagrange multiplier is given by

µhγ = γg(uhγ ,∇uhγ)+.

For a priori error analysis with these choices for the discrete spaces we refer to the references
at the beginning of Chapter 4. All of them deal with a direct discretization of the state
constraints, e.g., they consider the limiting case γ →∞.

As the solution for γ →∞ tends to lead to ill-conditioned linear systems in the process of
the computation of a descend direction, see, e.g., (Lootsma [103], Murray [118]) this seems
to be unreasonable to compute. A way to overcome this difficulty is in balancing mesh size h
and regularization parameter γ such that the error contributions are equilibrated. To do so
one can either use a priori information (Hintermüller and Hinze [79], Hinze and Schiela [89])
or more efficiently using an a posteriori error estimate, see (Wollner [157]) or Chapter 6.

63
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In this chapter we will discuss a posteriori error estimation for control and state constrained
problems.

As we have seen in the previous Chapter 5 we can conveniently consider control constrained
problems for the adaptive procedure, as long as we can guarantee that the error introduced
by the elimination of the state constraint using barrier or penalty methods is sufficiently
small.

There are mainly two approaches to adaptive finite elements, one that is concerned with the
a posteriori estimation of the discretization error in natural norms, which is well developed
in the context of partial differential equations, see for instance the surveys (Ainsworth and
Oden [3], Babuška and Strouboulis [7], Verfürth [146]). In articles (Gaevskaya, Hoppe, Iliash,
and Kieweg [64], Hintermüller, Hoppe, Iliash, and Kieweg [86], Hoppe, Iliash, Iyyunni, and
Sweilam [92], Li, Liu, Ma, and Tang [99], Liu and Yan [102]) the authors provide a posteriori
error estimates for elliptic optimal control problems with distributed or Neumann control
subject to box constraints. In (Gaevskaya et al. [64]) convergence of an adaptive algorithm
for a control constrained optimal control problem is shown. For state constraint optimal
control and a posteriori error estimation for norms of the solution some analysis has been
done in (Hoppe and Kieweg [91]).

Secondly error estimation and mesh adaptation can also be guided by the error in a given
functional the so called ‘quantity of interest’ going back to (Becker and Rannacher [11,
12], Eriksson, Estep, Hansbo, and Johnson [60]). The concept was extended to variational
inequalities in (Blum and Suttmeier [28, 29], Suttmeier [139]). The application to PDE
constrained optimal control was outlined in (Becker, Kapp, and Rannacher [15], Kapp [94]).
For a survey of these results see (Bangert and Rannacher [8], Becker and Rannacher [12]).
The method has been further extended to parameter identification problems in (Vexler
[147]) and to non-stationary PDE in (Schmich [136], Schmich and Vexler [137]). In (Meidner
[107], Meidner and Vexler [108]) this is extended to optimal control with parabolic PDE.
Only recently the consideration of stationary optimal control problems subject to inequality
constraints started. The case of pointwise control constraints is considered in (Hintermüller
and Hoppe [80], Vexler and Wollner [148], Wollner [156]). In (Becker [10]) these techniques
are used explicitly to estimate the error in the control with respect to its natural norm,
as the error in the natural norm can be bounded by the error in the cost functional. For
state constraints some recent work has been done simultaneously by (Benedix and Vexler
[16], Günther and Hinze [75], Wollner [157]).

The rest of this chapter proceeds as follows. First we will discuss how to estimate the error
with respect to a given quantity of interest in the case of control constraints. The results are
already published in (Vexler and Wollner [148], Wollner [156]).
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6 A Posteriori Error Estimates

Then we will consider estimating the error introduced by the elimination of the state constraint.
We begin with the discussion in the case of inactive control constraints for the error in the
cost functional. This work is already published in (Wollner [157, 158]) for the case of a
barrier functional. We will extend the estimates to the case of active control constraints for
the barrier approach. Finally, we consider the regularization error estimate for the penalty
approach.

These two estimates can then be combined to balance the contribution coming from dis-
cretization and regularization. This can also be considered in the spirit of estimating the
iteration error of the path-following method for the state constraints, see, e.g., (Meidner,
Rannacher, and Vihharev [109]) for the case of the error in the multigrid cycle.

6.1 Control Constraints

Here we will recall the results concerning the error estimation in the case of control constraints.
This section contains results that have already been published in (Vexler and Wollner [148]).

To simplify notation we will only consider the case where Q is a Hilbert space, e.g., Q = L2(ω)
on some set ω. Typically, ω is a subset of the computational domain Ω or a subset of its
boundary ∂Ω. The case of finite dimensional controls is realized by choosing ω = {1, 2, . . . , n}
resulting in Q ∼= Rn.

We consider the cost functional to be given in the form

J(q, u) = J1(u) + α

2 ‖q‖
2 , (6.1)

where J1 is a four times directionally differentiable operator on V and α > 0. Let the
admissible set Qad be given through box constraints on q, i.e.

Qad = { q ∈ Q | a ≤ q(x) ≤ b a.e. on ω }, (6.2)

with bounds a, b ∈ R ∪ {±∞} and a < b.

Now, we are able to restate the optimization problem as:

Minimize J(q, u) , u ∈ V, q ∈ Qad , subject to (2.4). (6.3)

To shorten notation, we introduce the space X and the admissible set X ad by:

X = Q× V × V, (6.4)
X ad = Qad × V × V. (6.5)

In addition, we shall write ξ = (q, u, z) for a vector in X or X ad.

To shorten notation, we introduce the Lagrangian L : X → R as follows:

L(ξ) = J1(u) + α

2 ‖q‖
2 + f(z)− a(q, u)(z).
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6.1 Control Constraints

With this we can restate the abstract first-order necessary optimality condition (2.10). Let
(q, u) ∈ Qad × V be a solution to (6.3), then the following hold:
There exists z ∈ V such that the triple ξ = (q, u, z) ∈ X ad satisfies

L′u(ξ)(δu) = 0 ∀ δu ∈ V, (6.6a)
L′q(ξ)(δq − q) ≥ 0 ∀ δq ∈ Qad, (6.6b)
L′z(ξ)(δz) = 0 ∀ δz ∈ V. (6.6c)

This system can be stated explicitly in the following form:

J ′1(u)(δu)− a′u(q, u)(δu, z) = 0 ∀ δu ∈ V, (6.7a)
α(q, δq − q)− a′q(q, u)(δq − q, z) ≥ 0 ∀ δq ∈ Qad, (6.7b)

f(δz)− a(q, u)(δz) = 0 ∀ δz ∈ V. (6.7c)

We introduce a projection operator PQad : Q→ Qad by:

PQad(p) = max
(
a,min(p, b)

)
pointwise almost everywhere. This allows us to rewrite variational inequality (6.7b), see,
e.g., (Tröltzsch [141]), as:

q = PQad

( 1
α
a′q(q, u)(·, z)

)
, (6.8)

where a′q(q, u)(·, z) is understood as a Riesz representative of a linear functional on Q.
Remark 6.1. If one would consider Q = Lr instead of Q = L2 one would have to consider (3.7)
instead of (6.8).

For a solution (q, u) of (6.3) we introduce active sets ω− and ω+ as follows:

ω− = {x ∈ ω | q(x) = a } , (6.9)
ω+ = {x ∈ ω | q(x) = b } . (6.10)

Let ξ ∈ X be a solution to (6.6), then we introduce an additional Lagrange multiplier µ ∈ Q
by the following identification:

(µ, δq) = −α(q, δq) + a′q(q, u)(δq, z) = −L′q(ξ)(δq) ∀δq ∈ Q . (6.11)

The variational inequality (6.7b) or the projection formula (6.8) are known to be equivalent
to the following conditions:

µ(x) ≤ 0 a.e. on ω− , (6.12a)
µ(x) ≥ 0 a.e. on ω+ , (6.12b)
µ(x) = 0 a.e. on ω \ (ω− ∪ ω+) . (6.12c)

For the solution of problem (6.3) we refer to Section 7.1.
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As we will encounter some trouble with the variational inequality in the necessary optimality
condition (6.7) due to missing Galerkin orthogonality, we consider in addition the full
Lagrangian L̃ : X ×Q×Q→ R which is given by:

L̃(χ) = L(ξ) + (µ− , a− q )Q + (µ+ , q − b )Q,

with χ = (ξ, µ−, µ+) = (q, u, z, µ−, µ+) ∈ X ×Q×Q where µ− and µ+ denote the variables
corresponding to Lagrange multipliers for the inequality constraints. To shorten notation we
introduce the abbreviation

Y = X ×Q×Q. (6.13)

Using the subspaces

Q− = { r ∈ Q | r = 0 a.e. on ω \ ω− },
Q+ = { r ∈ Q | r = 0 a.e. on ω \ ω+ },

we introduce

Yad = X ad ×Q− ×Q+, (6.14)
Ỹad = X ×Q− ×Q+, (6.15)

and see immediately that the following equality holds for arbitrary elements
χ ∈ q +Q \ (Q− ∪Q+)× V × V ×Q− ×Q+ ⊂ Ỹad:

L(ξ) = L̃(χ). (6.16)

This means, both Lagrangians coincide, for all functions such that the active set of the control
is larger then the one used to define Q− and Q+.

We can rewrite the first-order necessary optimality condition for (q, u) ∈ Qad×V equivalently
as follows, cf., (Tröltzsch [141]):
There exists z ∈ V, µ− ∈ Q−, µ

+ ∈ Q+ such that the following conditions hold for
χ = (q, u, z, µ−, µ+) ∈ Yad

L̃′u(χ)(δu) = 0 ∀δu ∈ V, (6.17a)
L̃′q(χ)(δq) = 0 ∀δq ∈ Q, (6.17b)
L̃′z(χ)(δz) = 0 ∀δz ∈ V, (6.17c)

L̃′µ−(χ)(δµ−) = 0 ∀δµ− ∈ Q−, (6.17d)
L̃′µ+(χ)(δµ+) = 0 ∀δµ+ ∈ Q+, (6.17e)

µ+, µ− ≥ 0 a.e. on ω. (6.17f)

It is easy to verify that the Lagrange multipliers µ+ and µ− are given as the positive and
negative part of the Lagrange multiplier µ from (6.11), cf., (Tröltzsch [141]).

Note that the equations (6.17d), (6.17e) are equivalent to the complementarity conditions

µ−(a− q) = µ+(q − b) = 0 a.e. on ω, (6.18)
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6.1.1 Discretization

For the choice of the discrete spaces we refer to Section 5.3. The discretized problem then
reads as follows:

Minimize J1(uh) + α

2 ‖qh‖
2
Q , uh ∈ Vh, qh ∈ Qad

h , (6.19)

subject to
a(qh, uh)(vh) = f(vh) ∀vh ∈ Vh. (6.20)

We introduce the discretized versions of (6.4) and (6.5) by

Xh = Qh × Vh × Vh, (6.21)
X ad
h = Qad

h × Vh × Vh, (6.22)

and denote a vector from these sets by ξh = (qh, uh, zh). The optimality system for the
discretized optimization problem is formulated as follows: Let (qh, uh) ∈ Qad

h × Vh be a
solution to (6.19) subject to (6.20), then there exists zh ∈ Vh such that

J ′1(uh)(δuh)− a′u(qh, uh)(δuh, zh) = 0 ∀δuh ∈ Vh, (6.23a)
α(qh, δqh − qh)− a′q(qh, uh)(δqh − qh, zh) ≥ 0 ∀δqh ∈ Qad

h , (6.23b)
f(δzh)− a(qh, uh)(δzh) = 0 ∀δzh ∈ Vh. (6.23c)

In order to formulate the analog system to (6.17a)—(6.17f) we introduce discrete active sets
ω−,h and ω+,h for a solution (qh, uh) to (6.19), (6.20) by:

ω−,h = {x ∈ ω | qh(x) = a }, (6.24)
ω+,h = {x ∈ ω | qh(x) = b }, (6.25)

and define a Lagrange multiplier µh ∈ Qh via:

(µh, δqh) = −L′q(qh, uh, zh)(δqh) ∀ δqh ∈ Qh. (6.26)

Moreover, we introduce µ−h ∈ Qh and µ+
h ∈ Qh by:

µ+
h − µ

−
h = µh, (µ−h , ψi )Q ≥ 0, (µ+

h , ψi )Q ≥ 0 ∀ψi ∈ B, (6.27)

(µ−h , a− qh )Q = (µ+
h , qh − b )Q = 0, (6.28)

by which µ±h are uniquely determined.
Remark 6.2. This definition corresponds to the Lagrange multipliers obtained for the in-
equality constraints if the discrete optimization problem (6.19), (6.20) is considered as finite
dimensional optimization problem for qh = ∑

i qiψi ∈ Qh with the restrictions:

a ≤ qi ≤ b ∀i.
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Note that due to the choice of the basis B in (5.29) this is equivalent to a ≤ qh(x) ≤ b for all
x ∈ ω. Utilizing this fact, the discrete active sets ω−,h, ω+,h are completely determined by
the values of the coordinate vector of qh. In particular they consist only of whole cells, edges
and nodes.

To obtain the complementarity conditions with respect to the Q = L2(ω)-inner product (6.28)
one requires

(µ+
h , ψi) = 0 if qi < b , and (µ−h , ψi) = 0 if qi > a .

We now define the discretized versions of (6.13), (6.15) and (6.14) by:

Yh = Xh ×Qh ×Qh, (6.29)
Yad
h = X ad

h ×Q−,h ×Q+,h, (6.30)
Ỹad
h = Xh ×Q−,h ×Q+,h, (6.31)

where

Q−,h = { r ∈ Qh | r(x) = 0 a.e. on ω \ ω−h },
Q+,h = { r ∈ Qh | r(x) = 0 a.e. on ω \ ω+

h }.

A vector from these spaces will be abbreviated by χh = (qh, uh, zh, µ−h , µ
+
h ).

Using the above definitions we have the first-order necessary optimality condition for a solution
(qh, uh) ∈ Qad

h × Vh of (6.19), (6.20). Namely there exists zh ∈ Vh, µ−h ∈ Q−,h, µ
+
h ∈ Q+,h

such that for χh = (qh, uh, zh, µ−h , µ
+
h ) ∈ Yad

h the following conditions hold:

L̃′u(χh)(δu) = 0 ∀δu ∈ Vh, (6.32a)
L̃′q(χh)(δq) = 0 ∀δq ∈ Qh, (6.32b)
L̃′z(χh)(δz) = 0 ∀δz ∈ Vh, (6.32c)

L̃′µ−(χh)(δµ−) = 0 ∀δµ− ∈ Q−,h, (6.32d)
L̃′µ+(χh)(δµ+) = 0 ∀δµ+ ∈ Q+,h, (6.32e)

(µ−h , ψi )Q
(µ+

h , ψi )Q
µ+
h − µ

−
h

≥
≥
=

0 ∀ψi ∈ B,
0 ∀ψi ∈ B,
µh.

 (6.32f)

Here again (6.32d), (6.32e) is equivalent to the complementarity condition

(µ−h , a− qh )Q = (µ+
h , qh − b )Q = 0. (6.33)

6.1.2 A Posteriori Error Estimation

The aim of this section is to derive a posteriori error estimates for the error with respect to
the cost functional and to an arbitrary quantity of interest. These error estimates extend
the results from (Becker and Rannacher [12], Becker and Vexler [13, 14], Becker et al. [15])
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to the case of optimization problems with control constraints. The provided estimators will
be used within the following adaptive algorithm for error control and mesh refinement: We
start on a coarse mesh, solve the discretized optimization problem and evaluate the error
estimator. Thereafter we refine the current mesh using local information obtained from the
error estimator, allowing for efficient reduction of the discretization error with respect to
the quantity of interest. This procedure is iterated until the value of the error estimator is
below a given tolerance, see, e.g., (Becker and Vexler [13]) for a detailed description of this
algorithm.

The section is structured as follows: First we will derive two a posteriori error estimators
for the error with respect to the cost functional. The first one is based on the first-order
necessary condition (6.7) which involves a variational inequality, the second estimator uses
the information obtained from the Lagrange multipliers for the inequality constraints. Both
estimators can be evaluated in terms of the solution to the discretized optimization prob-
lem (6.19), (6.20). Then we will proceed with the error estimator with respect to an arbitrary
quantity of interest, which requires the solution to an auxiliary linear-quadratic optimization
problem. Even though the idea behind the estimators remains unchanged, the later estimators
require a more technical discussion.

Throughout this section we shall denote a solution to the optimization problem (6.3) by (q, u),
the corresponding solution to the optimality system (6.6) by ξ = (q, u, z) ∈ X ad ,and its
discrete counterpart (6.23) by ξh = (qh, uh, zh) ∈ X ad

h . The corresponding solution to (6.17)
and its discrete counterpart (6.32) will be abbreviated by χ = (q, u, z, µ−, µ+) ∈ Yad and
χh = (qh, uh, zh, µ−h , µ

+
h ) ∈ Yad

h .

6.1.2.1 Error in the Cost Functional

For the derivation of the error estimator with respect to the cost functional, we introduce the
residual functionals ρu(ξh)(·), ρz(ξh)(·) ∈ V ∗ and ρq(ξh)(·) ∈ Q∗ by

ρu(ξh)(·) = f(·)− a(qh, uh)(·), (6.34)
ρz(ξh)(·) = J ′1(uh)(·)− a′u(qh, uh)(·, zh), (6.35)
ρq(ξh)(·) = α(qh, ·)− a′q(uh, qh)(·, zh). (6.36)

The following theorem is an extension of the result from (Becker and Rannacher [12]).

Theorem 6.1. Let ξ ∈ X ad be a solution to the first-order necessary system (6.6) and
ξh ∈ X ad

h be its Galerkin approximation (6.23). Then the following estimate holds:

J(q, u)− J(qh, uh) ≤
1
2ρu(ξh)(z − z̃h) + 1

2ρz(ξh)(u− ũh) + 1
2ρq(ξh)(q − qh) +R1, (6.37)

where ũh, z̃h ∈ Vh are arbitrarily chosen and R1 is a remainder term given by:

R1 = 1
2

1∫
0

L′′′(ξh + s(ξ − ξh))(ξ − ξh, ξ − ξh, ξ − ξh)s(s− 1) ds. (6.38)
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Proof. From optimality system (6.6a)—(6.6c) we obtain that

J(q, u) = L(ξ).

A similar equality holds on the discrete level. Therefore we have:

J(q, u)− J(qh, uh) = L(ξ)− L(ξh) =
1∫

0

L′(ξh + s(ξ − ξh))(ξ − ξh) ds.

We approximate this integral by the trapezoidal rule and obtain:

J(q, u)− J(qh, uh) = 1
2L
′(ξ)(ξ − ξh) + 1

2L
′(ξh)(ξ − ξh) +R1, (6.39)

with the remainder term R1 as in (6.38). For the first term we have:

L′(ξ)(ξ − ξh) = L′u(ξ)(u− uh) + L′z(ξ)(z − zh) + L′q(ξ)(q − qh).

Using optimality system (6.6a)—(6.6c) and the fact that qh ∈ Qad
h ⊂ Qad, we deduce:

L′(ξ)(ξ − ξh) = −L′q(ξ)(qh − q) ≤ 0.

Rewriting the second term in (6.39) we obtain:

L′(ξh)(ξ − ξh) = ρu(ξh)(z − zh) + ρz(ξh)(u− uh) + ρq(ξh)(q − qh).

Due to the Galerkin orthogonality for the state and adjoint equations, we have for arbitrary
ũh, z̃h ∈ Vh

ρu(ξh)(z − zh) = ρu(ξh)(z − z̃h) and ρz(ξh)(u− uh) = ρz(ξh)(u− ũh).

This completes the proof.

Remark 6.3. We note that, in contrast to the terms involving the residuals of state and
the adjoint equations, the error q − qh in the term ρq(ξh)(q − qh) in (6.37) can not be
replaced by q − q̃h with an arbitrary q̃h ∈ Qad

h . This fact is caused by the control constraints.
However we may replace ρq(ξh)(q − qh) by ρq(ξh)(q − qh + q̃h) with arbitrary q̃h fulfilling
supp(q̃h) ⊂ ω \ (ω−,h ∪ω+,h) due to the structure of ρq(ξh)(·). A similar structure is obtained
for the case of error estimation in the context of variational inequalities, see, e.g., (Blum and
Suttmeier [29]).

In order to use the estimate from the theorem above for computable error estimation we
proceed as follows: First we choose ũh = ihu, z̃h = ihz, with an interpolation operator
ih : V → Vh. Then we have to approximate the corresponding interpolation errors u− ihu
and z − ihz. There are several heuristic techniques to do this, see for instance (Bangert
and Rannacher [8], Becker and Rannacher [12], Becker and Vexler [13]). We assume to have
an operator π : Vh → Ṽh, with Ṽh 6= Vh, such that u− πuh has a better local asymptotical
behavior as u− ihu. Then we approximate:

ρu(ξh)(z − ihz) ≈ ρu(ξh)(πzh − zh) and ρz(ξh)(u− ihu) ≈ ρz(ξh)(πuh − uh).
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Such an operator can be constructed for example by the interpolation of the computed
bilinear finite element solution in the space of biquadratic finite elements on patches of cells.
For this operator the improved approximation property relies on local smoothness of u and
super-convergence properties of the approximation uh. The use of such ‘local higher-order
approximation’ is observed to work very successfully in the context of a posteriori error
estimation, see, e.g., (Bangert and Rannacher [8], Becker and Rannacher [12], Becker and
Vexler [13]).

The approximation of the term ρq(ξh)(q − qh) requires more care. In contrast to the state u
and the adjoint state z, the control variable q can generally not be approximated by ‘local
higher-order approximation’, for the following reasons:

• In the case of finite dimensional control space Q, there is no ‘patch-like’ structure that
allows for ‘local higher-order approximation’.

• If q is a distributed control, it typically does not possess sufficient smoothness (due to
the inequality constraints) for the improved approximation property.

Therefore we suggest another approximation of ρq(ξh)(q − qh) based on the projection
formula (6.8). To this end we introduce πq ∈ Qh → Qad by:

πqqh = PQad

( 1
α
a′q(qh, πuh)(·, πzh)

)
. (6.40)

In some cases one can show better approximation behavior of q − πqqh in comparison with
q− qh, see (Meyer and Rösch [112]) and (Hinze [88]) for similar considerations in the context
of a priori error analysis.

This construction results in the following computable a posteriori error estimator:

η
(1)
h = 1

2
(
ρu(ξh)(πzh − zh) + ρz(ξh)(πuh − uh) + ρq(ξh)(πqqh − qh)

)
.

Remark 6.4. In order to use this error estimator as an indicator for mesh refinement, we have
to localize it to cell-wise or node-wise contributions. A direct localization of the terms like
ρu(ξh)(πzh − zh) leads, in general, to local contributions of wrong order (overestimation) due
to oscillatory behavior of the residual terms (Carstensen and Verfürth [33]). To overcome
this, one may integrate the residual terms by part, see, e.g., (Becker and Rannacher [12]), or
use a filtering operator, see (Vexler [147]) for details.

We should note, that (6.37) does not provide an estimate for the absolute value of J(q, u)−
J(qh, uh), which is due to the inequality sign in (6.37). In the next section we will overcome
this difficulty utilizing the alternative optimality system (6.17a)—(6.17f).
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6.1.2.2 Error in the Cost Functional Reviewed

In order to derive an error estimator for the absolute value of J(q, u)−J(qh, uh) we introduce
the following additional residual functionals ρ̃q(χh)(·), ρ̃µ−(χh)(·), ρ̃µ+(χh)(·) ∈ Q∗ by:

ρ̃q(χh)(·) = α( qh , · )Q − a′q(qh, uh)(·, zh) + (µ+
h − µ

−
h , · )Q, (6.41)

ρ̃µ−(χh)(·) = ( · , a− qh )Q, (6.42)
ρ̃µ+(χh)(·) = ( · , qh − b )Q. (6.43)

In the sequel the last two residual functional will also be evaluated in the point χ where they
read as follows:

ρ̃µ−(χ)(·) = ( · , a− q )Q, ρ̃µ+(χ)(·) = ( · , q − b )Q.

Analog to Theorem 6.1 we obtain:

Theorem 6.2. Let χ ∈ Yad be a solution to the first-order necessary condition (6.17a)—
(6.17f) and χh ∈ Yad

h be its Galerkin approximation (6.32a)—(6.33). Then the following
estimate holds:

J(q, u)− J(qh, uh) = 1
2ρu(χh)(z − z̃h) + 1

2ρz(χh)(u− ũh) + 1
2 ρ̃q(χh)(q − q̃h)

+ 1
2 ρ̃µ−(χh)(µ− − µ̃−h ) + 1

2 ρ̃µ+(χh)(µ+ − µ̃+
h )

+ 1
2 ρ̃µ−(χ)(µ̃− − µ−h ) + 1

2 ρ̃µ+(χ)(µ̃+ − µ+
h ) +R2

(6.44)

where ũh, z̃h ∈ Vh, q̃h ∈ Qh, µ̃−h ∈ Q−,h, µ̃
+
h ∈ Q+,h, µ̃− ∈ Q−, µ̃+ ∈ Q+ are arbitrarily

chosen and R2 is a remainder term given by:

R2 = 1
2

1∫
0

L̃′′′(χh + s(χ− χh))(χ− χh, χ− χh, χ− χh)s(s− 1) ds. (6.45)

Proof. From (6.16) and optimality system (6.7a)—(6.7c) we obtain

J(q, u) = L(ξ) = L̃(χ).

The analog result holds on the discrete level. We therefore have:

J(q, u)− J(qh, uh) = L̃(χ)− L̃(χh) =
1∫

0

L̃′(χh + s(χ− χh))(χ− χh) ds.

As in the proof of Theorem 6.1 we approximate this integral by the trapezoidal rule and
obtain:

J(q, u)− J(qh, uh) = 1
2 L̃
′(χ)(χ− χh) + 1

2 L̃
′(χh)(χ− χh) +R2 (6.46)
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with the remainder term R2 as in (6.45). For the first term we have:

L̃′(χ)(χ− χh) = L̃′u(χ)(u− uh) + L̃′z(χ)(z − zh) + L̃′q(χ)(q − qh)
+ L̃′µ−(χ)(µ− − µ−h ) + L̃′µ+(χ)(µ+ − µ+

h ).

Using optimality system (6.17a)—(6.17f) we deduce:

L̃′(χ)(χ− χh) = L̃′µ−(χ)(µ− − µ−h ) + L̃′µ+(χ)(µ+ − µ+
h ).

From (6.17d) and (6.17e) together with linearity of L̃′µ−(χ)(·) and L̃′µ+(χ)(·) we obtain that
for arbitrary µ̃− ∈ Q− and µ̃+ ∈ Q+

L̃′µ−(χ)(µ− − µ−h ) = L̃′µ−(χ)(µ̃− − µ−h ), L̃′µ+(χ)(µ+ − µ+
h ) = L̃′µ+(χ)(µ̃+ − µ+

h )

holds, thus we obtain:

L̃′(χ)(χ− χh) = ρ̃µ−(χ)(µ̃− − µ−h ) + ρ̃µ+(χ)(µ̃+ − µ+
h ).

Rewriting the second term in (6.46) we obtain:

L̃′(χh)(χ− χh) = ρu(χh)(u− uh) + ρz(χh)(z − zh) + ρ̃q(χh)(q − qh)
+ ρ̃µ−(χh)(µ− − µ−h ) + ρ̃µ+(χh)(µ+ − µ+

h ),

where we can use linearity of the residual functionals in the second argument and (6.32a)—
(6.32c) to obtain the following equalities:

ρu(χh)(u− uh) = ρu(χh)(u− ũh), (6.47)
ρz(χh)(z − zh) = ρz(χh)(z − z̃h), (6.48)
ρ̃q(χh)(q − qh) = ρ̃q(χh)(q − q̃h), (6.49)

for arbitrary ũh, z̃h ∈ Vh, q̃h ∈ Qh. Additionally, we gain from (6.32d) and (6.32e) that

ρ̃µ−(χh)(µ− − µ−h ) = ρ̃µ−(χh)(µ− − µ̃−h ), (6.50)
ρ̃µ+(χh)(µ+ − µ+

h ) = ρ̃µ+(χh)(µ+ − µ̃+
h ), (6.51)

holds for arbitrary µ̃−h ∈ Q−,h and µ̃+
h ∈ Q+,h. This completes the proof.

To gain a computable error estimator we proceed as in the previous section. In order to deal
with the new residual functionals we utilize (6.11) and construct an approximation for µ by

µ̃ = −απqqh + a′q(πqqh, πuh)(·, πzh) (6.52)

where πqqh is given by (6.40). This leads to a computable a posteriori error estimator:

η
(2)
h = 1

2
(
ρu(χh)(πzh − zh) + ρz(χh)(πuh − uh) + ρ̃q(χh)(πqqh − qh)

+ ρ̃µ−(χh)(µ̃− − µ−h ) + ρ̃µ+(χh)(µ̃+ − µ+
h )

+ ρ̃µ−(χ̃)(µ̃− − µ−h ) + ρ̃µ+(χ̃)(µ̃+ − µ+
h )
)
.

Here χ̃ is an abbreviation for (πqqh, πuh, πzh, µ̃−, µ̃+).
Remark 6.5. We note that the a posteriori error estimates derived in Theorem 6.1 and Theo-
rem 6.2 coincide if the control constraints are inactive, e.g., if Qad = Q.
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6.1.2.3 Error in the Quantity of Interest

The aim of this section is the derivation of an error estimator for the error

I(q, u)− I(qh, uh) (6.53)

with a given functional I : Q× V → R describing the quantity of interest. We require I to
be three times directional differentiable. To this end we consider an additional Lagrangian
M : Y × Y → R defined by

M(χ)(ψ) = I(q, u) + L̃′(χ)(ψ), (6.54)

where we abbreviate χ = (q, u, z, µ−, µ+) and ψ = (p, v, y, ν−, ν+). Here (p, v, y, ν−, ν+) will
be variables dual to (q, u, z, µ−, µ+). Note that for the solution χ to the optimality system
(6.17a)—(6.17f) of the optimization problem (6.3) the identity

M(χ)(ψ) = I(q, u) (6.55)

holds for all ψ ∈ Ỹad. To proceed as in the proof of Theorem 6.2 it remains to find ψ ∈ Ỹad

such that (χ, ψ) is a stationary point ofM on Ỹad × Ỹad.

Therefore we consider the auxiliary (linear-quadratic) optimization problem:

Minimize K(χ, p, v), p ∈ P ad, v ∈ V, (6.56)
subject to L̃′′uz(χ)(v, ϕ) + L̃′′qz(χ)(p, ϕ) = 0 ∀ϕ ∈ V, (6.57)

for given χ ∈ Y. The admissible set P ad is given as

P ad = { p ∈ Q | p−(x) ≤ p(x) ≤ p+(x) a.e. on ω }, (6.58)

with the bounds

p−(x) =
{

0 µ(x) 6= 0 or q(x) = a,

−∞ else,

p+(x) =
{

0 µ(x) 6= 0 or q(x) = b,

+∞ else,

and the cost functional K : Y ×Q× V → R is defined via:

K(χ, p, v) = I ′u(q, u)(v) + I ′q(q, u)(p) + L̃′′uq(χ)(v, p) + 1
2 L̃
′′
uu(χ)(v, v) + 1

2 L̃
′′
qq(χ)(p, p). (6.59)

We introduce the following abbreviation for later use:

Ȳad = P ad × V × V × P− × P+. (6.60)

Where we define P− and P+ analog to the spaces Q− and Q+ as:

P− = { r ∈ Q | r = 0 a.e. on ω \ { p = p− } },
P+ = { r ∈ Q | r = 0 a.e. on ω \ { p = p+ } }.
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Remark 6.6. Consideration of the auxiliary optimization problem (6.56), (6.57) is motivated
by the unconstrained case Qad = Q. There the stationary point ofM is given as solution to
(6.56), (6.57) with P ad = Q. A similar linear-quadratic optimization problem is considered
in (Griesse and Vexler [69]) in the context of sensitivity analysis.

Remark 6.7. If we assume that the second-order sufficient condition from Theorem 2.4 holds,
the linear-quadratic optimization problem (6.56) possesses a solution. This is the case as the
quadratic part L̃′′uq(χ)(v, p) + 1

2 L̃
′′
uu(χ)(v, v) + 1

2 L̃
′′
qq(χ)(p, p) of K(p, v) is positive definite (see

(2.11)) for all solutions to the linear equation (2.7) which is exactly the same as (6.57).

We introduce an auxiliary Lagrangian N : Y × X → R for (6.56), (6.57) by

N (χ, p, v, y) = K(χ, p, v) + L̃′′uz(χ)(v, y) + L̃′′qz(χ)(p, y). (6.61)

For a solution (p, v) to (6.56), (6.57) the following first-order necessary condition holds:
There exists y ∈ V such that:

N ′y(χ, p, v, y)(δy) = 0 ∀δy ∈ V, (6.62a)
N ′v(χ, p, v, y)(δv) = 0 ∀δv ∈ V, (6.62b)

N ′p(χ, p, v, y)(δp− p) ≥ 0 ∀δp ∈ P ad, (6.62c)

or if written more explicitly:

L̃′′uz(χ)(v, δy) + L̃′′qz(χ)(p, δy) = 0 ∀δy ∈ V, (6.63a)
I ′u(q, u)(δv) + L̃′′uq(χ)(δv, p) + L̃′′uu(χ)(δv, v) + L̃′′uz(χ)(δv, y) = 0 ∀δv ∈ V, (6.63b)
I ′q(q, u)(δp) + L̃′′uq(χ)(v, δp) + L̃′′qq(χ)(δp, p) + L̃′′qz(χ)(δp, y) ≥ 0 ∀δp ∈ P ad − p. (6.63c)

Again, we can introduce the full Lagrangian Ñ : Y × Y → R by

Ñ (χ, ψ) = N (χ, p, v, y) + ( ν− , p− − p )Q + ( ν+ , p− p+ )Q. (6.64)

As in (6.17a)—(6.17f) we can rewrite the necessary optimality condition for ψ ∈ Ȳad as

Ñ ′v(χ, ψ)(δv) = 0 ∀δv ∈ V, (6.65a)
Ñ ′p(χ, ψ)(δp) = 0 ∀δp ∈ Q, (6.65b)
Ñ ′y(χ, ψ)(δy) = 0 ∀δy ∈ V, (6.65c)

Ñ ′ν−(χ, ψ)(δν−) = 0 ∀δν− ∈ P−, (6.65d)
Ñ ′ν+(χ, ψ)(δν+) = 0 ∀δν+ ∈ P+, (6.65e)

ν+ − ν− = ν, ν−(p− − p) = ν+(p− p+) = 0 a.e. onω, (6.65f)
supp ν+ ⊆ ω \ {x ∈ ω | q = q− and µ 6= 0 }, ν+ ≥ 0 a.e. where µ = 0, (6.65g)
supp ν− ⊆ ω \ {x ∈ ω | q = q+ and µ 6= 0 }, ν− ≥ 0 a.e. where µ = 0. (6.65h)

77



6 A Posteriori Error Estimates

To be more clear, ν− and ν+ are given by the following relations depending on ν =
−N ′p(χ, p, v, y)(·):

ν+(x) =


ν q(x) = b and µ(x) 6= 0,
0 q(x) = a and µ(x) 6= 0,
max(0, ν) else,

ν−(x) =


ν q(x) = a and µ(x) 6= 0,
0 q(x) = b and µ(x) 6= 0,
max(0,−ν) else.

By this construction we obtain that ν− ∈ Q− ∩ P− and ν+ ∈ Q+ ∩ P+, in particular (6.55)
holds for ψ = (p, v, y, ν−, ν+. However, { p = p− } ⊂ ω− ∪ ω+ and { p = p+ } ⊂ ω− ∪ ω+.
Hence that Q− ⊂ P± and Q+ ⊂ P± and hence functions from Q− and Q+ are valid test
functions in (6.65d) and (6.65d). In general, ν± are not feasible for (6.17d) or (6.17e)
respectively. However, if we assume strict complementarity, e.g., the set {q = a andµ =
0} ∪ {q = b andµ = 0} have zero measure, we obtain that ν− ∈ Q− and ν+ ∈ Q+.
Remark 6.8. It should be noted that we use the convention ±∞ · 0 = 0 in (6.64), (6.65f) to
ease notation. The same convention will be used throughout this section.
Remark 6.9. The condition (6.65g) arises naturally, as ν+ is the Lagrange multiplier which
corresponds to the equality and inequality constraints for p that are induced by the active
upper control bound b. Similarly (6.65h) arises from the active lower control bound a.

We discretize using the discretized admissible set

P ad
h = { p ∈ Qh | ph,−(x) ≤ p(x) ≤ ph,−(x) a.e. on ω }, (6.66)

with the bounds

ph,−(x) =
{

0 µh(x) 6= 0 or qh(x) = a,

−∞ else,

ph,+(x) =
{

0 µh(x) 6= 0 or qh(x) = b,

+∞ else.

We introduce
Ȳad
h = P ad

h × Vh × Vh × P−,h × P+,h (6.67)

to shorten notation. Where P±,h is defined analog to Q±,h as

P−,h = { r ∈ Qh | r(x) = 0 a.e. on ω \ {ph = p−} },
P+,h = { r ∈ Qh | r(x) = 0 a.e. on ω \ {ph = p+} }.

Then the following first-order condition holds with the discretized full Lagrangian

Ñh(χ, ψ) = N (χ, p, v, y) + ( ν− , ph,− − p )Q + ( ν+ , p− ph,+ )Q
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Ñh : Y × Y → R.

Let ph ∈ P ad
h and vh ∈ Vh be a solution to (6.56)—(6.57) There exists yh ∈ Vh, ν+

h , ν
−
h ∈ Qh

such that for ψh = (ph, vh, yh, ν−h , ν
+
h ) ∈ Ȳad

h the following holds:

Ñ ′h,v(χh, ψh)(δv) = 0 ∀δv ∈ Vh, (6.68a)
Ñ ′h,p(χh, ψh)(δp) = 0 ∀δp ∈ Qh, (6.68b)
Ñ ′h,y(χh, ψh)(δy) = 0 ∀δy ∈ Vh, (6.68c)

Ñ ′h,ν−(χh, ψh)(δν−) = 0 ∀δν− ∈ P−,h, (6.68d)
Ñ ′h,ν+(χh, ψh)(δν+) = 0 ∀δν+ ∈ P+,h. (6.68e)

ν+
h − ν

−
h = νh, ( ν−h , ph,− − ph )Q = ( ν+

h , ph − ph,+ )Q = 0, (6.68f)
(ν+
h , ψi) = 0 ∀i : (µh, ψi) 6= 0 and qi = q−, (6.68g)

(ν+
h , ψi) ≥ 0 ∀i : (µh, ψi) = 0, (6.68h)

(ν−h , ψi) = 0 ∀i : (µh, ψi) 6= 0 and qi = q+, (6.68i)
(ν−h , ψi) ≥ 0 ∀i : (µh, ψi) = 0, (6.68j)

For the error estimator with respect to the quantity of interest we introduce the residual func-
tionals ρ̃v(χh, ψh)(·), ρ̃y(χh, ψh)(·) ∈ V ∗ and ρ̃p(χh, ψh)(·), ρ̃ν−(χh, ψh)(·), ρ̃ν+(χh, ψh)(·) ∈
Q∗ by

ρ̃v(χh, ψh)(·) = L̃′′zu(χh)(·, vh) + L̃′′zq(χh)(·, ph), (6.69)
ρ̃y(χh, ψh)(·) = I ′u(qh, uh)(·) + L̃′′uu(χh)(·, vh) + L̃′′uz(χh)(·, yh) (6.70)

+ L̃′′uq(χh)(·, ph),
ρ̃p(χh, ψh)(·) = I ′q(qh, uh)(·) + L̃′′qu(χh)(·, vh) + L̃′′qz(χh)(·, yh) (6.71)

+ L̃′′qq(χh)(·, ph) + ( · , νh )Q,
ρ̃ν−(χh, ψh)(·) = − ( · , ph )Q, (6.72)
ρ̃ν+(χh, ψh)(·) = ( · , ph )Q, (6.73)

in addition to the already defined residual functionals (6.34)—(6.43). Again the last two
residual functionals also have to be evaluated in the point (χ, ψ) where they read as follows:

ρ̃ν−(χ, ψ)(·) = −( · , p )Q, ρ̃ν+(χ, ψ)(·) = ( · , p )Q.

Theorem 6.3. Let χ ∈ Yad be a solution to the necessary optimality condition (6.17) and
χh ∈ Yad

h be its Galerkin approximation (6.32). In addition let ψ ∈ Ȳad be a solution to the
necessary optimality condition (6.65) of the auxiliary optimization problem (6.56), (6.57) and
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ψh ∈ Ȳad
h be its discrete approximation (6.68). Then the following estimate holds:

I(q, u)− I(qh, uh) = 1
2ρu(χh)(y − ỹh) + 1

2ρz(χh)(v − ṽh) + 1
2 ρ̃q(χh)(p− p̃h)

+ 1
2 ρ̃µ−(χh)(ν− − ν̃−h ) + 1

2 ρ̃µ+(χh)(ν+ − ν̃+
h )

+ 1
2 ρ̃v(χh, ψh)(z − z̃h) + 1

2 ρ̃y(χh, ψh)(u− ũh) + 1
2 ρ̃p(χh, ψh)(q − q̃h)

+ 1
2 ρ̃ν−(χh, ψh)(µ− − µ̃−h ) + 1

2 ρ̃ν+(χh, ψh)(µ+ − µ̃+
h )

+ 1
2 ρ̃µ−(χ)(ν̃− − ν−h ) + 1

2 ρ̃µ+(χ)(ν̃+ − ν+
h )

+ 1
2 ρ̃ν−(χ, ψ)(µ̃− − µ−h ) + 1

2 ρ̃ν+(χ, ψ)(µ̃+ − µ+
h ) +R3,

(6.74)

where ũh, ṽh, z̃h, ỹh ∈ Vh, q̃h, p̃h ∈ Qh, µ̃−h , ν̃
−
h ∈ Q−,h, µ̃+

h , ν̃
+
h ∈ Q+,h, as well as

µ̃−, ν̃− ∈ Q−, µ̃+, ν̃+ ∈ Q+, are arbitrarily chosen and R3 is a remainder term given
by

R3 = 1
2

1∫
0

M′′′((χh, ψh) + se)(e, e, e)s(s− 1) ds, (6.75)

with e = (χ− χh, ψ − ψh).

Proof. From (6.55) and the analog discrete result we obtain

I(q, u)− I(qh, uh) =M(χ, ψ)−M(χh, ψh) =
∫ 1

0
M′((χh, ψh) + se)(e) ds.

Approximation by the trapezoidal rule gives:

I(q, u)− I(qh, uh) = 1
2M

′(χ, ψ)(e) + 1
2M

′(χh, ψh)(e) +R3 (6.76)

with the remainder term R3 as in (6.75). For the first term we have:

M′(χ, ψ)(e) = M′u(χ, ψ)(u− uh) +M′v(χ, ψ)(v − vh)
+M′z(χ, ψ)(z − zh) +M′y(χ, ψ)(y − yh)
+M′q(χ, ψ)(q − qh) +M′p(χ, ψ)(p− ph)
+M′µ−(χ, ψ)(µ− − µ−h ) +M′ν−(χ, ψ)(ν− − ν−h )
+M′µ+(χ, ψ)(µ+ − µ+

h ) +M′ν+(χ, ψ)(ν+ − ν+
h ).

Using the identities:

M′u(χ, ψ)(·) = Ñ ′v(χ, p, v, y)(·), M′v(χ, ψ)(·) = L̃′u(χ)(·),
M′z(χ, ψ)(·) = Ñ ′y(χ, p, v, y)(·), M′y(χ, ψ)(·) = L̃′z(χ)(·),
M′q(χ, ψ)(·) = Ñ ′p(χ, p, v, y)(·), M′p(χ, ψ)(·) = L̃′q(χ)(·),
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we see that the first six terms on the right-hand side vanish due to (6.17a)—(6.17c) and
(6.65a)—(6.65c). Furthermore we see from (6.17d), (6.17e) that with arbitrary µ̃−, ν̃− ∈ Q−,
and µ̃+, ν̃+ ∈ Q+ the following identities hold:

M′µ−(χ, ψ)(µ− − µ−h ) =M′µ−(χ, ψ)(µ̃− − µ−h ) = ρ̃ν−(χ, ψ)(µ̃− − µ−h ), (6.77)
M′ν−(χ, ψ)(ν− − ν−h ) =M′ν−(χ, ψ)(ν̃− − ν−h ) = ρ̃µ−(χ)(ν̃− − ν−h ), (6.78)
M′µ+(χ, ψ)(µ+ − µ+

h ) =M′µ+(χ, ψ)(µ̃+ − µ+
h ) = ρ̃ν+(χ, ψ)(µ̃+ − µ+

h ), (6.79)
M′ν+(χ, ψ)(ν+ − ν+

h ) =M′ν+(χ, ψ)(ν̃+ − ν+
h ) = ρ̃µ+(χ)(ν̃+ − ν+

h ). (6.80)
Thus we obtain:

M′(χ, ψ)(e) = ρ̃µ−(χ)(ν̃− − ν−h ) + ρ̃µ+(χ)(ν̃+ − ν+
h )

+ ρ̃ν−(χ, ψ)(µ̃− − µ−h ) + ρ̃ν+(χ, ψ)(µ̃+ − µ+
h ).

For the second term we obtain from (6.32a)—(6.32e) and (6.65a)—(6.65e) that
M′(χh, ψh)(e) =M′(χh, ψh)(χ− χ̃h, ψ − ψ̃h)

for each χ̃h, ψ̃h ∈ Ỹad
h which completes the proof.

Remark 6.10. Note that in the case I = J the solution (p, v, y) to (6.62) is given by (0, 0, z),
which can be seen after some calculations. Using this, one obtains that for I = J the estimates
in Theorem 6.2 and Theorem 6.3 coincide.

We define the projection onto the admissible set by
PP ad

h
(p) = max

(
ph,−,min(p, ph,+)

)
.

To obtain a computable error estimator we introduce p̃ ∈ P ad as approximation to p by

p̃ = PP ad
h

( 1
α

(a′q()(·, πyh) + a′′qu()(·, πvh, πzh) + a′′qq()(·, ph, πzh)− I ′q(πqqh, πuh)(·))
)
, (6.81)

where () is an abbreviation for (πqqh, πuh), and ν̃ is introduced as approximation to ν by
ν̃ = −αp̃+ a′q()(·, πyh) + a′′qu()(·, πvh, πzh) + a′′qq()(·, ph, πzh)− I ′q(πqqh, πuh)(·), (6.82)

which is analog to the construction of the approximations πqqh and µ̃ in (6.40) and (6.52).

Using these approximations we obtain the following computable error estimator:

ηQI = 1
2ρu(χh)(πy − yh) + 1

2ρz(χh)(πv − vh) + 1
2 ρ̃q(χh)(p̃− ph)

+ 1
2 ρ̃µ−(χh)(ν̃− − ν−h ) + 1

2 ρ̃µ+(χh)(ν̃+ − ν+
h )

+ 1
2 ρ̃v(χh, ψh)(πz − zh) + 1

2 ρ̃y(χh, ψh)(πu− uh) + 1
2 ρ̃p(χh, ψh)(π

qqh − qh)

+ 1
2 ρ̃ν−(χh, ψh)(µ̃− − µ−h ) + 1

2 ρ̃ν+(χh, ψh)(µ̃+ − µ+
h )

+ 1
2 ρ̃µ−(χ̃)(ν̃− − ν−h ) + 1

2 ρ̃µ+(χ̃)(ν̃+ − ν+
h )

+ 1
2 ρ̃ν−(χ̃, ψ̃)(µ̃− − µ−h ) + 1

2 ρ̃ν+(χ̃, ψ̃)(µ̃+ − µ+
h ),

where χ̃ = (πqqh, πu, πz, µ̃−, µ̃+) and ψ̃ = (p̃, πv, πy, ν̃−, ν̃+).
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Remark 6.11. We would like to point out that in case of strict complementarity, e.g., if the
set

{x ∈ ω | q(x) = a or q(x) = b} \ {x ∈ ω | µ(x) 6= 0 }

has zero measure, the auxiliary problem (6.56), (6.57) does not involve inequality constraints
for the controls. In that case the set P ad is not only convex but in fact a real subspace of Q.
Remark 6.12. The constrained linear-quadratic optimization problem (6.56), (6.57) can be
solved using primal-dual active set strategy. In the case of strict complementarity the
algorithm will converge in one step due to the fact that P ad is a linear subspace of Q is this
case.
Remark 6.13. Due to the definition of P ad (6.58), the solution p ∈ Q of auxiliary optimization
problem (6.56)—(6.57) is usually discontinuous. Therefore, a cell-wise constant discretization
of the control space Q seems to be more suitable than a discretization with continuous trial
functions if the error with respect to a quantity of interested is estimated.

6.1.3 Numerical Results

In this section we discuss two numerical examples illustrating the behavior of our method.
For both examples we use bilinear (H1-conforming) finite elements for the discretization of
the state variable and cell-wise constant discretization of the control space. The optimization
problems are solved by primal-dual-active-set strategy that will be sketched in Section 7.1.

All examples have been computed using the optimization library RoDoBo (RoDoBo [126])
and the finite element toolkit Gascoigne (Gascoigne [65]).

Example on a Domain with a Hole We consider the following nonlinear optimization
problem:

Minimize 1
2‖u− u

d‖2L2(Ω) + α

2 ‖q‖
2
L2(Ω), u ∈ V, q ∈ Qad, (6.83)

subject to
−∆u+ 30u3 + u = f + q in Ω,

u = 0 on ∂Ω,
(6.84)

where Ω = ω = (0, 1)2 \ [0.4, 0.6]2, V = H1
0 (Ω), Q = L2(Ω), and the admissible set Qad is

given by
Qad = { q ∈ Q | − 7 ≤ q(x) ≤ 20 a.e. on Ω }.

The desired state ud and the right-hand side f are defined as

ud(x) = x1 · x2, f(x) = (x1 − 0.5)−2(x2 − 0.5)−2.

The regularization parameter is chosen α = 10−4. We note that the state equation (6.84) is a
monotone semi-linear equation, which possesses a unique solution u ∈ V for each q ∈ Q. The
proof of the existence of a global solution as well as derivation of necessary and sufficient
optimality conditions for the corresponding optimization problem (6.83)—(6.84) can be found,
e.g., in (Tröltzsch [141]).
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6.1 Control Constraints

Table 6.1: Effectivity indices

(a) Random refinement

N Ieff(η(1)
h ) Ieff(η(2)

h ) Ieff(ηQI)
432 1.1 1.1 1.2
906 1.1 1.1 1.1
2328 1.3 1.2 2.3
5752 1.2 1.2 1.4
13872 1.3 1.3 1.5
33964 1.3 1.3 1.4
83832 1.2 1.2 1.5

(b) Refinement according to ηQI

N Ieff(η(1)
h ) Ieff(η(2)

h ) Ieff(ηQI)
432 1.1 1.1 1.1
824 1.1 1.1 1.4
1692 1.0 1.0 0.3
3992 1.0 1.0 0.2
11396 1.0 1.0 0.5
30604 1.0 1.0 1.0
80354 1.0 1.0 1.3

In Section 6.1.2 we derived two different error estimators for the error with respect to the cost
functional and one error estimator with respect to a quantity of interest. In this example, we
choose the quantity of interest as

I(q, u) = 1
2

∫
(0.7,0.8)2

|∇u(x)|2 dx +
∫
(0.2,0.3)2

q(x) dx. (6.85)

In order to check the quality of the error estimators, we define the following effectivity indices:

Ieff(η(1)
h ) = J(u)− J(uh)

η
(1)
h

, Ieff(η(2)
h ) = J(u)− J(uh)

η
(2)
h

, Ieff(ηQI) = I(q, u)− I(qh, uh)
ηQI

.

(6.86)

In Table 6.1 these effectivity indices are listed for different types of mesh refinement: random
refinement and refinement based on the error estimator ηQI for the quantity of interest.
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local ηQI

(a) Error in J
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0.01

1000 10000 100000

global
local η1

local ηQI

(b) Error in I

Figure 6.1: Discretization error for different refinement criteria

We observe that the error estimators provide quantitative information about the discretization
error. We note that the results for η(1)

h and η(2)
h are very close to each other in this example,

cf., Remark 6.5.
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6 A Posteriori Error Estimates

In addition, our results show that the local mesh refinement based on error estimators derived
above leads to substantial saving in degrees of freedom for achieving a given level of the
discretization error. In Figure 6.1 the dependence of discretization error on the number of
degrees of freedom is shown for different refinement criteria: global (uniform) refinement,
refinement based on the error estimator η(1)

h for the cost functional, and refinement based
on the error estimator ηQI for the quantity of interest. In Figure 6.1a the error with respect
to the cost functional (6.83) and in Figure 6.1b the error with respect to the quantity of
interest (6.85) are considered, respectively.

We observe the best behavior of error with respect to the cost functional if the mesh is refined
based on η(1)

h and the best behavior of error with respect to the quantity of interest for the
refinement based on ηQI.

(a) Mesh 3 from η1 (b) Mesh 4 from η1

(c) Mesh 4 from ηQI (d) Mesh 5 from ηQI

Figure 6.2: Locally refined meshes

In Figure 6.2 a series of meshes generated according to the information obtained from the
error estimators is shown. The corresponding optimal control q and corresponding state u
are shown in Figure 6.3.
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(a) Optimal control (b) State

Figure 6.3: Solution

Example with Bilinear State Equation Our second example is motivated by a parameter
identification problem. The minimization problem is given by:

Minimize 1
2‖u− u

d‖2L2(Ω) + α

2 ‖q‖
2
L2(Ω), u ∈ V, q ∈ Qad, (6.87)

subject to
−∆u+ qu = f in Ω,

u = 0 on ∂Ω,
(6.88)

where Ω = ω = (0, 0.5)× (0, 1) ∪ (0, 1)× (0.5, 1), V = H1
0 (Ω), Q = L2(Ω), and the admissible

set Qad is given by
Qad = { q ∈ Q | 0 ≤ q(x) ≤ 0.3 a.e. on Ω }.

The desired state ud and the right-hand side f are defined as

ud(x) = 1
8π2 sin(2πx1) sin(2πx2), f(x) = 1.

The regularization parameter is chosen α = 10−4. Note that for any given q ∈ Qad the state
equation (6.88) possesses a unique solution u ∈ V due to q ≥ 0. For an a priori error analysis
see, (Kröner [96], Kröner and Vexler [97]).

We are interested in the error in the unknown parameter, thus we choose

I(q, u) =
∫
ΩO

q(x) dx,

where ΩO = (0, 0.25)× (0.75, 1).
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In Table 6.2 the effectivity indices, defined as in (6.86), are listed for different types of
mesh refinement: global (uniform) refinement, random refinement, refinement based on the
error estimator η(1)

h for the cost functional, and refinement based on the error estimator ηQI
for the quantity of interest. As in the first example we observe that the error estimators
provide quantitative information on the discretization errors. From Figure 6.4a, where the

Table 6.2: Effectivity indices

(a) Global refinement

N Ieff(η(1)
h ) Ieff(η(2)

h ) Ieff(ηQI)
65 1.2 1.2 2.0
225 1.3 1.2 1.9
833 1.4 1.4 1.5
3201 1.5 1.5 1.7

(b) Refinement according to η1

N Ieff(η(1)
h ) Ieff(η(2)

h ) Ieff(ηQI)
65 1.2 1.2 2.0
225 1.3 1.3 1.9
785 1.4 1.4 1.6
2705 1.5 1.5 1.7

(c) Random refinement

N Ieff(η(1)
h ) Ieff(η(2)

h ) Ieff(ηQI)
65 1.2 1.2 2.0
141 1.2 1.2 2.0
307 1.2 1.2 0.5
763 1.4 1.4 2.0

(d) Refinement according to ηQI

N Ieff(η(1)
h ) Ieff(η(2)

h ) Ieff(ηQI)
65 1.2 1.2 2.0
173 1.2 1.2 1.8
509 1.2 1.2 1.3
1317 1.2 1.2 1.3

1e-04

0.001

0.01

0.1

100 1000 10000 100000

global
local η1

local ηQI

(a) Error in I (b) Mesh 5 from ηQI

Figure 6.4: Discretization error and mesh

discretization error with respect to the quantity of interest is plotted for different refinement
criteria, we again observe that the local mesh refinement based on the appropriate error
estimator leads to a certain saving in degrees of freedom for achieving a given tolerance for
the discretization error. A typical mesh generated using the information obtained from ηQI is
shown in Figure 6.4b.
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6.2 Regularization Error for State Constraints

We will now consider the estimation of the regularization error. First with respect to the
cost functional, to this end we will recall the case of a barrier regularization without control
constraints, which has already been published in (Wollner [157]). Furthermore, we will take
a more detailed look onto the behavior of the error estimators derived there. We extend the
analysis of (Wollner [157]) to the case of active control constraints. Finally, we will consider
estimates for the quadratic penalty method.

6.2.1 Estimates for the Cost Functional

6.2.1.1 Barrier Regularization without Control Constraints

A posteriori error estimation In this section we derive a posteriori estimates for the
regularization error as well as for the discretization error with respect to the cost functional
J(q, u). Unfortunately, neither a solution to (2.10) provides feasible test functions for (5.32)
nor is a solution to (5.32) feasible for (2.10). Therefore we split the estimation into two parts:

J(q, u)− Jγ(qhγ , uhγ) = (J(q, u)− Jγ(qγ , uγ)) + (Jγ(qγ , uγ)− Jγ(qhγ , uhγ))
≈ ηhom + ηdisc.

Thus we estimate the error in the cost functional between the solution (q, u) of (2.10) and
the solution (qγ , uγ) of the barrier problem (5.27), and then the discretization error between
the solution of (5.27) and the solution (qhγ , uhγ) to its discretization (5.32). To have a simple
representation we assume that Qad = Q.

Homotopy error In order to estimate the error introduced by the homotopy parameter γ
we define the LagrangianM : Q×W × Lt′(Ω)×M(ΩC)→ R by

M(q, u, z, µ) = J(q, u) + (f, ϕ)− a(q, u)(z) +
∫
ΩC

g(u,∇u) dµ (6.89)

where we consider a(q, u)(z) := 〈A(q, u) , z 〉Z∗×Z which for arguments z ∈ V coincides with
the definition of (2.3).

We can now formulate the following

Theorem 6.4. Let ξ = (q, u, z, µ) be a solution to the first-order necessary system (2.10)
and let ξγ = (qγ , uγ , zγ , µγ) a solution to the first-order necessary system (5.27) of the barrier
problem with sufficiently high order to obtain strictly feasible states. Then the following
estimate holds:

J(q, u)− Jγ(qγ , uγ) = 1
2

∫
ΩC

(
g(uγ ,∇uγ)− g(u,∇u)

)
dµγ

−Bγ(uγ) + 1
2

∫
ΩC

g(uγ ,∇uγ) dµ+Rhom,
(6.90)
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with a remainder term Rhom given by:

Rhom = 1
2

∫ 1

0
M′′′(ξγ + s(ξ − ξγ))(ξ − ξγ , ξ − ξγ , ξ − ξγ)s(s− 1) ds. (6.91)

Proof. From (2.10e) we conclude that the support of µ is contained in the set

A = {x ∈ ΩC | g(u,∇u)(x) = 0 } .

Using this and (2.4), noting that V ⊂ Z is dense, we obtain

J(q, u) =M(q, u, z, µ) =M(ξ).

Unfortunately, we do not have a complementarity condition for the solution to (5.27) thus
utilizing (2.4) we obtain

Jγ(qγ , uγ) = J(qγ , uγ) +Bγ(uγ)
=M(qγ , uγ , zγ , µγ)

−
∫
ΩC

g(uγ ,∇uγ)µγ dx+Bγ(uγ)

=M(ξγ)−
∫
ΩC

g(uγ ,∇uγ)µγ dx+Bγ(uγ).

Now we estimate the difference between the values of the LagrangianM using the trapezoidal
rule to evaluate the integral and obtain

M(ξ)−M(ξγ) =
∫ 1

0
M′(ξγ + s(ξ − ξγ))(ξ − ξγ) ds (6.92)

=1
2M

′(ξ)(ξ − ξγ) + 1
2M

′(ξγ)(ξ − ξγ) +Rhom (6.93)

with the remainder Rhom as given in (6.91).

First we discussM′(ξ)(ξ − ξγ), for that we consider the following functionals:

M′u(ξ)(ϕ) = J ′u(q, u)(ϕ)− a′u(q, u)(ϕ, z) +
∫
ΩC
g′(u,∇u)(ϕ) dµ,

M′z(ξ)(ϕ) = (f, ϕ)− a(q, u)(ϕ),
M′q(ξ)(ϕ) = J ′q(q, u)(ϕ)− a′q(q, u)(ϕ, z),

M′µ(ξ)(ϕ) =
∫
ΩC

g(u,∇u) dϕ.

Using (2.4) we obtain for the primal residualM′z(ξ)(z − zγ) = 0, from (2.10b) we get for the
adjoint residualM′u(ξ)(u− uγ) = 0, and from (2.10c) together with the assumption Qad = Q
we deduceM′q(ξ)(q − qγ) = 0 thus

M′(ξ)(ξ − ξγ) =M′µ(ξ)(µ− µγ).
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We use complementarity to get

M′(ξ)(ξ − ξγ) =M′µ(ξ)(−µγ) =
∫
ΩC
−g(u,∇u) dµγ .

Now we take a closer look onM′(ξγ)(ξ − ξγ). Here we have

M′u(ξγ)(ϕ) = J ′u(qγ , uγ)(ϕ)− a′u(qγ , uγ)(ϕ, zγ) +
∫
ΩC

g′(uγ ,∇uγ)(ϕ) dµγ ,

M′z(ξγ)(ϕ) = (f, ϕ)− a(qγ , uγ)(ϕ),
M′q(ξγ)(ϕ) = J ′q(qγ , uγ)(ϕ)− a′q(qγ , uγ)(ϕ, zγ),

M′µ(ξγ)(ϕ) =
∫
ΩC

g(uγ , uγ) dϕ.

As the solution uγ to (2.4) satisfies the additional regularity uγ ∈ W we obtain that
M′u(ξγ)(u − uγ) = 0. Similarly, we obtain that M′z(ξγ)(z − zγ) = 0 and from (2.10c)
thatM′q(ξγ)(u− uγ) = 0. Hence we conclude that

M′(ξγ)(ξ − ξγ) =M′µ(ξγ)(µ− µγ)

=
∫
ΩC

g(uγ ,∇uγ) dµ−
∫
ΩC

g(uγ ,∇uγ) dµγ .

Summing up all terms, we finally get:

J(q, u)− Jγ(qγ , uγ) = − 1
2

∫
ΩC

(
g(u,∇u) + g(uγ , uγ)

)
dµγ

+ 1
2

∫
ΩC

g(uγ ,∇uγ) dµ

+
∫
ΩC

g(uγ ,∇uγ)µγ dx−Bγ(uγ) +Rhom

= 1
2

∫
ΩC

(
g(uγ , uγ)− g(u,∇u)

)
dµγ

−Bγ(uγ) + 1
2

∫
ΩC

g(uγ ,∇uγ) dµ+Rhom.

This concludes the proof.

We now have to obtain a computable estimate from this error identity. We suggest two
possible methods to do this.

Complementarity driven estimation Using −g(u,∇u) ≥ 0 together with the definition of
µγ we see that

−
∫
ΩC

g(u,∇u) dµγ ≥ 0.
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Using the fact that (qγ , uγ) are feasible for (2.10) we obtain

0 ≥ J(q, u)− Jγ(qγ , uγ) ≥
1
2

∫
ΩC

g(uγ ,∇uγ) dµγ −Bγ(uγ)

+ 1
2

∫
ΩC

g(uγ ,∇uγ) dµ+Rhom.

Now we assume that
∫
ΩC g(uγ , uγ) dµ ≈

∫
ΩC g(uγ , uγ) dµγ . This is reasonable as µγ converges

weakly∗ to µ. A discussion on this in the case of pointwise state constraints can be found
in (Schiela [130]).

We finally suggest to take the best approximation for uγ available. Thus the computable
estimate reads as:

0 ≥ J(q, u)− Jγ(qγ , uγ) & η
(1)
hom = (g(uhγ ,∇uhγ), µhγ)ΩC −Bγ(uhγ). (6.94)

As we neglected −
∫
ΩC g(u,∇u) dµγ due to its sign we can expect this to overestimate the

real error. Further, we remark that this feature requires feasibility of the solution uγ which is
not given in the case of penalty methods. Therefore we consider an alternative variant.

Convergence driven estimation The other suggested variant uses the idea that uγ → u as
1
γ → 0, thus ∫

ΩC
g(uγ ,∇uγ)− g(u,∇u) dµγ → 0.

Hence we neglect the term
∫
ΩC g(uγ ,∇uγ) − g(u,∇u) dµγ in the error representation and

approximate the multiplier µ with µγ . Then using our discrete approximation uhγ to uγ we
obtain:

J(q, u)− Jγ(qγ , uγ) ≈ η
(2)
hom = 1

2(g(uhγ ,∇uhγ), µhγ)ΩC −Bγ(uhγ). (6.95)

Remark 6.14. This might seem unreasonable as J(q, u)−Jγ(qγ , uγ)→ 0, e.g., neglecting a term
due to its convergence to zero might lead to different convergence rates of J(q, u)− Jγ(qγ , uγ)
and η

(2)
hom thus spoiling the estimates we obtain. This can not appear in this case, as we

see by comparing our estimates that they vary only in the constant in front of the term
(g(uhγ ,∇uhγ), µhγ)ΩC .

Discretization error In order to estimate the discretization error in the value of the functional
Jγ , defined in (5.25) or (5.26), one can use the estimates derived in Section 6.1. We remark
that the assumptions on g made in Section 2.3 are important in order to use the same operator
g for the definition of feasible states.

For convenience we restate the result using the notation involving the regularization parameter:
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Theorem 6.5. Let ξγ = (qγ , uγ , zγ) ∈ Q× V × V be a solution to the first-order necessary
system (5.27) of the barrier problem with strictly feasible uγ and let ξhγ = (qhγ , uhγ , zhγ) ∈
Qh × Vh × Vh be the solution to its discretization (5.32). Then the following estimate holds:

Jγ(qγ , uγ)− Jγ(qhγ , uhγ) = 1
2ρu(ξ

h
γ)(zγ − z̃h) + 1

2ρz(ξ
h
γ)(uγ − ũh)

+ 1
2ρq(ξ

h
γ)(qγ − q̃h) +Rdisc,

(6.96)

with arbitrary (q̃h, ũh, z̃h) ∈ Qh × V h × V h and a remainder term Rdisc given by:

Rdisc = 1
2

∫ 1

0
L′′′(ξhγ + s(ξγ − ξ

h
γ))(ξγ − ξ

h
γ , ξγ − ξ

h
γ , ξγ − ξ

h
γ)s(s− 1) ds. (6.97)

By neglecting the remainder we obtain the computable estimate

Jγ(qγ , uγ)− Jγ(qhγ , uhγ) ≈ ρu(ξ
h
γ)(πzhγ − zhγ) + ρz(ξ

h
γ)(πuhγ − uhγ)

+ ρq(ξ
h
γ)(πqqhγ − qhγ)

= ηdisc.

An adaptive algorithm The remaining question is how to steer the values of γ and h. As
we are interested in computing the value of the cost functional, it is not sensible to have γ or
h too small in comparison to the other, especially as this makes the underlying problems
harder to solve. Instead, we try to choose both parameters in such a way, that the errors
introduced by the parameters are equilibrated. To do this, we choose both parameters such
that the error estimators are of approximately the same size, e.g.,:

|ηhom| ≈ |ηdisc|.

Thus we arrive at the following algorithm:

Algorithm 6.1 A Simple Adaptive Algorithm
Initialize TOL, h, γ, c
repeat

Solve problem (5.30)
if |ηhom| > c|ηdisc| then

Increase γ (reduce 1
γ )

else
Refine mesh according to ηdisc

end if
until |ηhom|+ |ηdisc| < TOL

Remark 6.15. In some problems it might occur, that ηdiscηhom < 0, e.g., the errors introduced
by both parameters have different sign. If in these cases |ηhom| ≈ |ηdisc| we may expect that
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|ηhom + ηdisc| � |ηhom|+ |ηdisc|. Thus we would loose reliability of the estimate if we would
simply take η = ηhom + ηdisc. Therefore we suggested to use

|J(q, u)− Jγ(qhγ , uhγ)| . |ηhom|+ |ηdisc|

to obtain a more reliable estimate.

We will show later, in our numerical examples, that the changing sign doesn’t occur only
in the error estimation but can also be observed in the error |J(q, u)− Jγ(qhγ , uhγ)|, e.g., it is
not caused by our approximate quantities η, but rather the estimates are good enough to
capture this behavior. Because of this we can not expect any estimation, near the zero of
|J(q, u)− Jγ(qhγ , uhγ)| or ηhom + ηdisc, respectively, to be both reliable and efficient.

6.2.1.2 Illustration of the Results for Two Specific Types of Constraints

In this section we are concerned to give two examples of constraints that can be treated in
the framework we prepared in Section 6.2.1.1. For this we consider pointwise constraints
on the state and pointwise constraints on the gradient of the state. For these choices the
assumptions in Section 2.2 are fulfilled, see Section 2.4. Here we write down the a posteriori
estimates from Section 6.2.1.1. Note that we won’t discuss the case of finitely many state
constraints in detail. However for these cases one may find the first-order necessary conditions
for instance in (Casas and Bonnans [35], Casas and Tröltzsch [39]).

State constraints Here we choose pointwise bounds on the state hence we consider an
example similar to the example of Section 2.4. Our optimization problem (2.5) takes the
form

Minimize J(q, u) := 1
2‖u− u

d‖2L2(Ω) + α

2 ‖q‖
2
L2(Ω), (6.98a)

such that
{

(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1
0 (Ω),

u− ψ ≤ 0 on ΩC ,
(6.98b)

where ΩC is a compact subset of Ω and ψ ∈ R. The mapping g is defined by

g(u,∇u) = u− ψ.

Remark 6.16. The restriction to constant bounds for the state is crucial in the following sense.
For our computation we have to replace ψ by a finite dimensional approximation ψh, either
due to interpolation as a finite element function ψh ∈ V h or by numerical integration. Our
discrete problem would then use the mapping gh(u,∇u) = u− ψh. This is covered by our
analysis only if ψh = ψ.

If we restrict the dimension of the domain Ω ⊂ Rn to n = 2, 3 and assume that the domain is
either convex polygonal or has a smooth boundary, then we have forW = H2(Ω)∩H1

0 (Ω) that
the mapping g : W → C(Ω) is well-defined and continuous by a well known embedding theorem.
In addition, we see that g is also continuous if interpreted as mapping g : Vh → L∞(ΩC). Thus
our assumptions on g are verified. For the rest of the well-posedness we refer to Section 2.4.
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For the convenience of the reader, we write down the a posteriori estimates derived in Sec-
tion 6.2.1.1 for this setting:

J(q, u)− Jγ(qγ , uγ) = γ−κ

2

∫
ΩC

(uγ − u)
(ψ − uγ)κ

dx+ 1
2

∫
ΩC

(ψ − uγ) dµ

−Bγ(uγ) +Rhom.

Here κ ≥ 1 is the order of the barrier function. The residual ρz from (6.96) of the adjoint
equation takes the form

ρz(ξ
h
γ)( · ) = (uhγ − ud, · )− γ−κ(ψ − uhγ)−κ, · )ΩC − (∇ · ,∇zhγ).

Gradient constraints Here we choose pointwise bounds on the gradient of the state and the
optimization problem takes the form

Minimize J(q, u) := 1
2‖u− u

d‖2L2(Ω) + α

r
‖q‖rLr(Ω), (6.99a)

such that
{

(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1
0 (Ω),

|∇u|2 − ψ ≤ 0 on ΩC ,
(6.99b)

where once again ΩC is a compact subset of Ω, r > n and ψ > 0 a constant. The mapping g
is defined as in Section 2.4 by

g(u,∇u) = |∇u|2 − ψ.

Here we need W ⊂ C1(ΩC) to obtain that g is differentiable as mapping g : W → C(ΩC).
Therefore we have to consider W = W 2,t(Ω) ∩W 1,t

0 (Ω) with t > n (Ω ⊂ Rn). In addition we
see that the interpretation of g : Vh → L∞(ΩC) makes sense.

However to obtain that the control to state mapping maps Lt(Ω) into W we have to require
that either n = 2 and Ω is convex polygonal or that the boundary of Ω is sufficiently smooth,
see Section 4.1 for details.

For the convenience of the reader, we write down the a posteriori estimates derived in Sec-
tion 6.2.1.1 for this setting:

J(q, u)− Jγ(qγ , uγ) = γ−κ

2

∫
ΩC

(
|∇uγ |2 − |∇u|2

)
(ψ − |∇uγ |2)κ)

dx+ 1
2

∫
ΩC

(
ψ − |∇uγ |2

)
dµ

−Bγ(uγ) +Rhom.

Here κ ≥ 1 is the order of the barrier function. The residual ρz from (6.96) of the adjoint
equation takes the form

ρz(ξ
h
γ)( · ) = (uhγ − ud, · ) + 2γ−κ((ψ − |∇uhγ |2)−κ∇uhγ ,∇ · )ΩC − (∇ · ,∇zhγ).
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6 A Posteriori Error Estimates

6.2.1.3 Numerical Results

In this section we demonstrate our findings for two example configurations taken from other
publications. All computations where made using the software packages RoDoBo (RoDoBo
[126]) and Gascoigne (Gascoigne [65]). The Visualizations where obtained using VisuSim-
ple (Visusimple [150]). In both examples bilinear finite elements were used for the discretiza-
tion of the space for the state and control variable.

State Constraints Here we consider an example taken from (Günther and Hinze [75]).
There the following problem was considered:

Minimize J(q, u) := 1
2‖u− 0.5‖2L2(Ω) + 1

2‖q − 60‖2L2(Ω),

such that


(∇u,∇ϕ) + (u, ϕ) = (q, ϕ) ∀ϕ ∈ H1(Ω),

(q, u) ∈ L2(Ω)×H1(Ω),
0.45 ≤ u(x) ≤ ψ(x) ∀x ∈ Ω,

on the domain Ω = (0, 1)2 ⊂ R2 with the upper bound

ψ(x) = min
(
1,max

(
0.5, 50((x1 − 0.3)2 + (x2 − 0.3)2)

))
.

An approximation J∗ ≈ 1759.04733 for the optimal value of the cost functional is given
in (Günther and Hinze [75]) where it was obtained on a equidistant mesh with 5572 nodes.

In Figure 6.5 we show a computed approximation of the state, the control, and the approxi-
mated multiplier on the mesh in Figure 6.5d.

In our computations we have chosen κ = 4 as order of our barrier function.
Remark 6.17. It should be noted that this example doesn’t fit into our framework because the
upper bound for u is not constant, see the discussion in Section 6.2.1.2. Here we neglect the
error introduced by the discretization of the upper bound and see that we still get satisfactory
results for this example.

Table 6.3: Comparison of effectivity indices for the homotopy error

(a) Global refinement with η(1)
hom

N

1/γ 625 2401 9409
3 · 10−1 0.36 0.36 0.36
1 · 10−1 0.65 0.62 0.65
3 · 10−2 0.11 0.21 0.64
1 · 10−2 1.89 1.82 0.29
3 · 10−3 5.82 7.12 3.29
1 · 10−3 10.5 16.2 10.0

(b) Global refinement with η(2)
hom

N

1/γ 625 2401 9409
3 · 10−1 0.48 0.47 0.48
1 · 10−1 0.87 0.83 0.87
3 · 10−2 0.15 0.25 0.85
1 · 10−2 2.36 2.35 0.38
3 · 10−3 6.74 8.74 4.19
1 · 10−3 11.1 18.3 12.0
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(a) State (b) Control

(c) Multiplier approximation (d) Mesh

Figure 6.5: Computed solutions and corresponding mesh

We start the discussion of this example with a comparison of the effectivity of the two
proposed variants to estimate the error introduced by the barrier parameter γ. The effectivity
indices

Ieff =
|J∗ − Jγ(qhγ , uhγ)|
|ηdisc|+ |ηhom|

for the choice ηhom = η
(1)
hom can be found in Table 6.3a whereas those for ηhom = η

(2)
hom can be

found in Table 6.3b where they are depicted for a sequence of globally refined meshes.

Here we can see the expected behavior of the indices, especially for η(1)
hom we do not get

effectivities near one. Note that for the smallest values of 1/γ both indicators give almost the
same value, which is due to the fact, that the error in the cost functional is then dominated
by the discretization error. For dominant discretization error we see, that the effectivity
indices become rather large. This can be explained by the fact, that we used non-constant
bounds. Thus we had to use an interpolation of the bounds which leads to the problem,
that the discrete solutions are no longer feasible with respect to the continuous bounds. To
substantiate this we introduce the following transformation:

v = ψ − u
ψ − 0.45 .
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6 A Posteriori Error Estimates

Then v solves the problem:

Minimize J(q, u) := 1
2‖(0.45− ψ)v + ψ − 0.5‖2L2(Ω) + 1

2‖q − 60‖2L2(Ω)

such that


−∆((0.45− ψ)v + ψ) + ((0.45− ψ)v + ψ) = q inΩ,

∂nv = 0 on ∂Ω,
0 ≤ v(x) ≤ 1 ∀x ∈ Ω.

The results for this computation are depicted in Table 6.4. Here we can see that the effectivities

Table 6.4: Comparison of effectivity indices for the homotopy error

(a) Transformed example with η(1)
hom

N

1/γ 625 2401 9409
3 · 10−1 0.29 0.52 0.71
1 · 10−1 0.00 0.26 0.57
3 · 10−2 1.24 1.47 0.10
1 · 10−2 1.50 2.23 0.96
3 · 10−3 1.58 2.55 1.50
1 · 10−3 1.60 2.65 1.70

(b) Transformed example with η(2)
hom

N

1/γ 625 2401 9409
3 · 10−1 0.36 0.67 0.94
1 · 10−1 0.00 0.31 0.72
3 · 10−2 1.29 1.60 0.12
1 · 10−2 1.52 2.30 1.03
3 · 10−3 1.58 2.58 1.54
1 · 10−3 1.60 2.66 1.71

are far better. However, even in the case of non-constant bounds we obtain remarkably
good results if local refinement is used. This can be seen in the following Table 6.5. The
estimation of the error introduced by the homotopy methods is better if η(2)

hom is used. Hence
we employed this estimator in the following results.

Reasons for the very small effectivity indices for the choices 1/γ = 1 · 10−1 and 1/γ = 3 · 10−2

will be discussed in the next example.

Table 6.5: Effectivity indices for locally refined meshes

(a) Local refinement balanced with η(2)
hom

N Ieff 1/γ |J∗ − Jγ(qhγ , uhγ)|
169 0.48 2 · 10−2 1.5 · 10−1

281 3.83 4 · 10−3 1.9 · 10−1

401 1.27 8 · 10−3 1.1 · 10−1

1057 1.56 4 · 10−3 4.7 · 10−2

1981 0.65 3 · 10−3 1.6 · 10−2

(b) Local refinement for 1/γ → 0

N Ieff |J∗ − Jγ(qhγ , uhγ)|
169 1.98 3.4 · 10−1

269 7.80 2.2 · 10−1

401 3.45 1.7 · 10−1

1045 3.90 6.7 · 10−2

1749 2.09 3.2 · 10−2

In Table 6.5a we see the behavior of the effectivity index for a sequence of locally refined
meshes. Here γ was chosen in such a way that the discretization error is of the same size as
the error introduced by the barrier parameter γ. Furthermore, we see that the influence of the
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6.2 Regularization Error for State Constraints

bad estimation for the discretization error, as seen in Table 6.3a and Table 6.3b, doesn’t have
great influence on the estimation for the values of γ obtained from our balancing strategy.
In addition, the value of γ to have equilibrated error contributions is given as well as the
total error obtained from discretization and barrier method is shown. As a comparison we
show in Table 6.5b the values obtained for local refinement where 1/γ was driven towards
zero as an estimate for the error obtained without a barrier method. For reasons unknown to
the author these values do not correspond to those shown in (Günther and Hinze [75]), in
fact, we can reach comparable errors with only about a quarter of the unknowns required
in (Günther and Hinze [75]). This is even though the computed values for uniformly refined
meshes are in good correspondence.

We now compare the development of the estimated errors in the cost functional in Figure 6.6.
Here we compared global and local refinement for γ chosen to equilibrate the error contribu-

0.01

0.1

100 1000 10000

Er
ro
r

Nodes

global, γ → 0
global, balancing

local, γ → 0
local, balancing

Figure 6.6: Error in J for different refinement strategies

tions and for the choice 1/γ → 0. The choice 1/γ → 0 is made to simulate the computation
without ‘regularization’. In that case we stopped the computation once the value of Jγ was
unchanged in the first four digits by changing γ.

Especially we can see that there is no real difference in the error between the ‘non-regularized’
discretization simulated by 1/γ → 0 and the error obtained for γ chosen to equilibrate the
error contributions, except for the fact that the solutions in the latter case are easier to
compute.
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Gradient Constraints Here we consider the example given in (Deckelnick et al. [54]). The
problem reads as follows:

Minimize J(q, u) = 1
2‖u− u

d‖2L2(Ω) + 1
2‖q‖

2
L2(Ω)

such that


(∇u,∇ϕ) = (f + q, ϕ) ∀ϕ ∈ H1

0 (Ω),
− 2 ≤ q ≤ 2 a.e. in Ω,

1
4 − |∇u(x)|

2 ≥ 0 ∀x ∈ Ω,

on the domain Ω = {x ∈ R2 | |x| < 2 }. The desired state is given as

ud(x) =
{ 1

4 + 1
2 ln 2− 1

4 |x|
2, |x| ≤ 1,

1
2 ln 2− 1

2 ln |x|, otherwise,

and the right-hand side

f(x) =
{

2, |x| ≤ 1,
0, otherwise,

this problem admits the unique solution

u = ud and q =
{
−1, |x| ≤ 1,
0, otherwise.

The optimal value of the cost functional is π
2 and in addition the control constraints are

inactive at the solution (u, q). In order to show the behavior of the cost functional on locally
refined meshes in more detail Figure 6.8 has been recomputed in order to show the results on
finer meshes. Unfortunately, the quadrature rules used for the different parts in the original
computation where removed in the meantime, and hence the total error on a fixed mesh is
slightly different to (Wollner [157]). The recomputation used tensor product two-point gauss
formulas, using a sum of barrier functions of orders κ = 2, . . . , 6. The original material was
computed with a barrier function of order κ = 6.

We note that the introduction of the admissible set for the controls is necessary to ensure
existence of a solution following standard arguments. They are inactive at the optimal
solution hence our estimates are applicable.

In Figure 6.7 we can see that the error in the value of the cost functional has indeed a sign
change. This verifies Remark 6.15. Especially we must expect that the effectivity index

Ieff =
|0.5π − Jγ(qhγ , uhγ)|
|ηdisc|+ |ηhom|

can go to zero for some values of γ.

In Table 6.6a the effectivity indices for ηhom = η
(1)
hom and in Table 6.6b the effectivity indices

for ηhom = η
(2)
hom are shown. First of all we can see that for some value of γ the effectivity

index is rather small, e.g., less than 0.1, which is in accordance with our observation, that
0.5π − Jγ(qhγ , uhγ) is zero for an appropriate choice of γ. Furthermore, we can see, that for
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Figure 6.7: Error in J for different γ

Table 6.6: Comparison of effectivity indices for the homotopy error

(a) Global refinement with η(1)
hom

N

1/γ 801 3137 12417
1 · 10−1 0.74 0.80 0.83
3 · 10−2 0.43 0.62 0.81
1 · 10−2 0.07 0.09 0.31
3 · 10−3 0.25 0.79 0.29
1 · 10−3 0.31 1.10 0.55

(b) Global refinement with η(2)
hom

N

1/γ 801 3137 12417
1 · 10−1 0.97 1.07 1.12
3 · 10−2 0.52 0.79 1.07
1 · 10−2 0.08 0.11 0.37
3 · 10−3 0.26 0.83 0.32
1 · 10−3 0.31 1.12 0.56

large values of 1/γ the estimation is of less good quality. This is due to the fact, that uγ
is still a bad approximation to u. These values do not change with grid refinement, hence
we assume that this effect is not caused by the discretization. In addition, we note that in
contrast to the previous example the effectivity indices are of moderate size for dominant
discretization error.

In Table 6.7a the effectivity indices are shown for a locally refined mesh where γ was chosen
in order to balance the error contributions. Additionally, for each mesh size the value of
1/γ obtained in the iteration, rounded to one decimal, is shown. Finally, in Table 6.7b the
effectivity indices are shown for a locally refined mesh where 1/γ → 0 was taken to simulate
the results one would obtain if the optimal control problem was discretized without further
regularization.

A comparison of the development of the error in the cost functional is depicted in Figure 6.8.
Here we compare global and local refinement as well as the choice of γ to balance the error
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Figure 6.8: Error in J for different refinement strategies

contributions with 1/γ → 0. In order to avoid problems due to cancellation we considered
both error contributions balanced as soon as |ηdisc| ≈ 10|ηhom|. This eliminates the oscillating
behavior of the error seen in the original source (Wollner [157]). We can see now that on
globally refined meshes both error obtained by balancing the error as well as from considering
the limit case coincide well on sufficiently fine meshes. In the case of local refinement, the
same behavior can be seen. The local refinement indicators lead to almost identical meshes in
both cases. In addition we note that in order to reach an error of 0.01 locally refined meshes
can do so using roughly one tenth of the degrees of freedom required by global refinement.

The computed state uhγ , the control qhγ , and the approximation to the multiplier for the state

Table 6.7: Effectivity indices for locally refined meshes

(a) Local refinement balanced
with η(2)

hom

N Ieff 1/γ
169 0.33 4 · 10−2

427 0.41 2 · 10−2

1153 0.11 8 · 10−3

2709 0.14 5 · 10−3

6161 0.13 3 · 10−3

12885 0.33 3 · 10−3

(b) Local refine-
ment for 1/γ → 0

N Ieff

200 0.30
493 0.30
1201 1.37
2809 0.76
6121 0.95
12745 1.02

100



6.2 Regularization Error for State Constraints

constraints obtained by local refinement with γ chosen to balance the error contributions are
depicted in Figure 6.9 together with the mesh on which they were obtained.

(a) state (b) control

(c) multiplier approximation (d) mesh

Figure 6.9: Computed solutions and corresponding mesh

6.2.1.4 The Influence of the Approximations to the Estimate

We will now consider the influence of the approximations, made in the preceeding Sec-
tion 6.2.1.1, in greater detail. We begin with a discussion of the approximations in ηhom,
then turn our attention to to the discretization error estimate ηdisc.

Approximations in the Regularization Error We remark that the approximation ηhom is
not independent from the discretization due to the use of the discrete variables uhγ and µhγ .
Hence we will first take a look on the behavior of our estimator under mesh refinement. As
both estimators only differ by a constant we consider ηhom = η

(2)
hom throughout this section.

To do so we reconsider the example with gradient state constraints from Section 6.2.1.3. We
will now consider the size of the regularization estimator on a sequence of globally refined
meshes. The computations are done using a barrier function of order κ = 6. The discretization
is done using Q1 finite elements for both the state and control variable. The integrals are
evaluated using tensor product two-point Gauss formulas and a four-point Gauss-Lobatto
formula for the barrier function. In order to have a fine grained impression of the behavior
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Table 6.8: Homotopy error estimate on various meshes. Values below the discretization error
are on gray background.

N

γ 209 801 3137 12417 49409
2.0 · 100 1.4 · 10+2 1.4 · 10+2 1.4 · 10+2 1.4 · 10+2 1.4 · 10+2

2.8 · 100 2.0 · 10+1 2.0 · 10+1 2.0 · 10+1 2.0 · 10+1 2.0 · 10+1

4.0 · 100 4.3 · 10+0 4.4 · 10+0 4.4 · 10+0 4.4 · 10+0 4.4 · 10+0

5.7 · 100 1.6 · 10+0 1.6 · 10+0 1.6 · 10+0 1.6 · 10+0 1.6 · 10+0

8.0 · 100 7.4 · 10−1 7.6 · 10−1 7.5 · 10−1 7.4 · 10−1 7.4 · 10−1

1.1 · 101 3.8 · 10−1 4.0 · 10−1 4.0 · 10−1 3.9 · 10−1 3.9 · 10−1

1.6 · 101 2.1 · 10−1 2.3 · 10−1 2.3 · 10−1 2.3 · 10−1 2.3 · 10−1

2.3 · 101 1.1 · 10−1 1.3 · 10−1 1.4 · 10−1 1.4 · 10−1 1.4 · 10−1

3.2 · 101 6.4 · 10−2 8.1 · 10−2 8.7 · 10−2 8.9 · 10−2 8.8 · 10−2

4.5 · 101 3.9 · 10−2 4.9 · 10−2 5.3 · 10−2 5.6 · 10−2 5.6 · 10−2

6.4 · 101 2.4 · 10−2 3.0 · 10−2 3.3 · 10−2 3.5 · 10−2 3.7 · 10−2

9.0 · 101 1.6 · 10−2 1.9 · 10−2 2.0 · 10−2 2.2 · 10−2 2.4 · 10−2

1.3 · 102 1.1 · 10−2 1.2 · 10−2 1.3 · 10−2 1.4 · 10−2 1.5 · 10−2

1.8 · 102 7.8 · 10−3 8.0 · 10−3 8.4 · 10−3 8.8 · 10−3 9.4 · 10−3

2.6 · 102 5.4 · 10−3 5.4 · 10−3 5.6 · 10−3 5.8 · 10−3 5.9 · 10−3

3.6 · 102 3.8 · 10−3 3.7 · 10−3 3.8 · 10−3 3.8 · 10−3 3.8 · 10−3

we computed the values on each mesh beginning with the parameter γ = 2 and increasing
this value in each successive iteration by a factor of

√
2.

The results for the estimator (6.95) are depicted in Table 6.8. We continued the computation
on each mesh until γ = 215 ≈ 3 · 104 at this time the first two digits of the error in the cost
functional remain fixed with respect to γ →∞. This value was taken as reference value for
the discretization error in the cost functional. In Table 6.8 all values of ηhom below this value
are printed on gray background.

It can be seen that as long as the error estimator ηhom is not too small compared to the
discretization error the estimates remain unchanged under mesh refinement. Hence the choice
of the quantity (6.95) as error indicator for the regularization error is reasonable, in the sense
that it remains constant as long as the discretization error is smaller than this quantity.

The next question to be addressed is whether the quantity (6.95) actually is a good approxi-
mation on the continuous level, e.g., whether the assumptions on the convergence of certain
quantities are met in the parameter range we are considering and ηhom is in fact a good
approximation of J(q, u)− Jγ(qγ , uγ).

In Table 6.9 we consider the fraction Ieff := |J(q,u)−Jγ(qhγ ,uhγ)|
|ηhom| . We can see that for small values

of γ the estimators are too large which can be explained by the fact that the approximation
u ≈ uγ is not good enough yet. However since we only get an overestimation this doesn’t
conflict with our aim to balance the error contributions such that the discretization error is
at least as large as the regularization error.
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Table 6.9: Efficiency of ηhom on various meshes. Values below the discretization error are on
gray background.

N

γ 209 801 3137 12417 49409
2.0 · 100 0.3 0.3 0.3 0.3 0.3
2.8 · 100 0.4 0.4 0.4 0.4 0.4
4.0 · 100 0.6 0.7 0.7 0.7 0.7
5.7 · 100 0.8 0.9 0.9 0.9 0.9
8.0 · 100 0.8 1.1 1.0 1.0 1.1
1.1 · 101 0.7 1.2 1.1 1.1 1.2
1.6 · 101 0.4 1.2 1.1 1.2 1.3
2.3 · 101 0.1 1.3 1.1 1.2 1.3
3.2 · 101 1.0 1.4 0.9 1.1 1.3
4.5 · 101 2.4 1.6 0.8 1.0 1.3
6.4 · 101 4.5 1.8 0.5 0.8 1.3
9.0 · 101 7.4 2.1 0.1 0.5 1.2
1.3 · 102 11.6 2.6 0.6 0.0 1.2
1.8 · 102 17.4 3.2 1.7 0.7 1.1
2.6 · 102 25.6 4.0 3.3 1.9 1.0
3.6 · 102 37.1 5.1 5.7 3.5 0.9

Then we see that for γ > 5 the estimate is very good with effectivity around one. The loss of
effectivity once the level of discretization error is reached can be explained by the fact, that
we took J(q, u) − Jγ(qhγ , uhγ) instead of J(q, u) − Jγ(qγ , uγ) for comparison. This indicates
that the use of the approximated quantity ηhom as an indicator for the regularization error is
reasonable.

In addition, as the values below the discretization error are at least approximately of constant
size, see Table 6.8, we can also expect these values to give a good prediction on the size of
the regularization error for these values.

Now we turn our attention towards the estimate for the discretization error ηdisc given
by Theorem 6.5.

Approximations in the Discretization Error In order to study the discretization error
estimator ηdisc we consider the quantity Ieff = |J(q,u)−Jγ(qhγ ,uhγ)|

|ηdisc| for various (fixed) values of
γ under mesh refinement. The results are shown in Table 6.10. We mention that although
we are interested in the quantity |Jγ(qγ , uγ) − Jγ(qhγ , uhγ)| it is reasonable to consider the
quantity |J(q, u)− Jγ(qhγ , uhγ)| as long as the regularization error is small enough compared
to the influence of the discretization. We can see that the efficiency index is not as stable as
the one for the regularization error. In particular we notice, that the efficiency is oscillating
between over and underestimation of the discretization error.
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Table 6.10: Efficiency of ηdisc. Values above the regularization error are on gray background.

N

γ 209 801 3137 12417 49409 197121
5.1 · 102 1.3 0.3 2.1 1.2 0.4 1.1
4.1 · 103 1.4 0.3 3.0 1.7 0.5 1.0
2.3 · 104 1.4 0.3 3.1 1.8 0.7 1.3

However, we note that we are in fact neglecting the influence of the quadrature error obtained
by the use of a Gauss-Lobatto formula for the integration of the discontinuous right-hand side
as well as the barrier functional. To substantiate this, we will reconsider the above example
using a summed midpoint rule, where each mesh element is split into 28 subelements for the
integration. The results are depicted in Table 6.11. We can see that the efficiency index is

Table 6.11: Efficiency of ηdisc for a summed quadrature rule. Values above the regularization
error are on gray background.

N

γ 209 801 3137 12417
5.1 · 102 0.5 0.5 1.5 0.7
4.1 · 103 0.5 0.5 1.8 0.9
2.3 · 104 0.5 0.5 1.9 1.0

better compared to Table 6.10. In order to understand what terms are relevant for the large
influence of the integration error we will consider an other example in Section 6.2.1.6 where
only the integration error for the barrier functional will be important.

6.2.1.5 Barrier Regularization with Control Constraints

Now we consider the general case with Qad 6= Q. Then in contrast to the proof of Theorem 6.4
we can no longer assume that M′q(q, u, z, µ) = 0 with M given by (6.89). But instead by
virtue of the necessary conditions (2.10), especially (2.10c) we have that

M′q(q, u, z, µ)(δq − q) ≥ 0 ∀ δq ∈ Qad.

The analogous result holds for the solution to (5.27). Hence we introduce the control residual

ρq(ξ)(δq) :=M′q(ξ)(δq) = J ′q(q, u)(δq)− a′q(q, u)(δq, z).

Then we obtain the following:

Theorem 6.6. Let ξ = (q, u, z, µ) be a solution to the first-order necessary system (2.10)
and let ξγ = (qγ , uγ , zγ , µγ) a solution to the first-order necessary system (5.27) of the barrier
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problem with sufficiently high order to obtain strictly feasible states. Then the following
estimate holds:

J(q, u)− Jγ(qγ , uγ) = 1
2

∫
ΩC

(
g(uγ ,∇uγ)− g(u,∇u)

)
dµγ

−Bγ(uγ) + 1
2

∫
ΩC

g(uγ ,∇uγ) dµ

+ 1
2ρq(ξ)(q − qγ) + 1

2ρq(ξγ)(q − qγ)

+Rhom,

(6.100)

with a remainder term Rhom given by:

Rhom = 1
2

∫ 1

0
M′′′(ξγ + s(ξ − ξγ))(ξ − ξγ , ξ − ξγ , ξ − ξγ)s(s− 1) ds. (6.101)

Proof. The proof is identical to the one for Theorem 6.4. But asM′q 6= 0 we obtain

M′(ξ)(ξ − ξγ) =M′µ(ξ)(µ− µγ) +M′q(ξ)(q − qγ),
M′(ξγ)(ξ − ξγ) =M′µ(ξγ)(µ− µγ) +M′q(ξγ)(q − qγ)

We see that, in addition, to the terms already present in Theorem 6.4 we have to estimate
the two additional terms ρq. We remark that the simple estimate ρq(ξ)(q− qγ) ≤ C‖q− qγ‖Q
is possible, but is a large overestimation, as ‖q − qγ‖Q converges slower than the error in the
functional, see Theorem 5.13.

To proceed, let us assume that Q = L2(Ω), and that Jq(q, u)(·) = α(q, ·) for some α > 0.

To obtain a reasonable estimator we define the Lagrange multiplier for the control constraints
as in (6.11) by

µQ(ξγ) =M′q(ξγ)( · )

as a Riesz representative. Then the following holds:

M′q(ξγ)(q − qγ) = 〈µQ(ξγ) , q − qγ 〉Q∗×Q.

As µQ 6= 0 only on the active sets for the control constraints, we immediately obtain, that
M′q(ξγ)(q − qγ) = 0 if the active sets coincide.

The multiplier µQ can be computed conveniently by using the available discrete multiplier.
However in order to estimate q − qγ one may not use extrapolation of the discrete solutions
for two different values of γ. This is because the dependence of elements K ∈ Th to be either
active or inactive not continuous with respect to γ on any given mesh. For instance, if a
small step in γ is used, then the discrete active sets may coincide, hence the estimator will
assume that no error is present. To circumvent this problem we propose to use projection
formula (6.40).
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6 A Posteriori Error Estimates

The estimator then takes the following form for two given values γ1 < γ2. Determine the
active sets

Ahγ = {x ∈ Ω |πqqhγ1 = a or πqqhγ1 = b },
Ah = {x ∈ Ω | q̃ = a or q̃ = b },

where q̃ is computed by the projection formula (6.40) q̃ = PQad

(
1
αaq(q̂, û)(·, ẑ)

)
. Here the

variables denoted byˆare computed using linear extrapolation, e.g.,

ẑ = − 1
γ1

zhγ1 − z
h
γ2

1/γ1 − 1/γ2
.

Then we consider the following estimator

ηCC = ηhom +
∫
Ahγ∪Ah

µQ(ξhγ)(qhγ1 − q
h
γ2) dx

as an estimator for the regularization error in the case of control constraints.

6.2.1.6 Numerical Results

Once again we consider a numerical example in order to show our findings. The state variable
is discretized using continuous Q1 finite elements while the control is discretized using P0
discontinuous finite elements on the same triangulation. For the regularization we used a sum
of barrier functions of order κ = 2, . . . , 6. All computations where made using the software
packages RoDoBo (RoDoBo [126]) and Gascoigne (Gascoigne [65]). The visualization is done
using Visit (Visit [149]).

We consider the cube (0, 1)3 ⊂ R3, and the following optimization problem:

Minimize J(q, u) := 1
2‖u− u

d‖2L2(Ω) + 10−3

2 ‖q‖2L2(Ω),

such that


(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1

0 (Ω),
(q, u) ∈ L2(Ω)×H1

0 (Ω),
− 40 ≤ q(x) ≤ 40 ∀x ∈ Ω,
− 1 ≤ u(x) ∀x ∈ Ω.

The desired state is chosen as ud(x) = −5 sin(πr) where r =
√

(|x|2) is the euclidian distance
to the origin. Especially it should be noted that ud is infeasible for the state constraint.

As we do not have an analytic solution for this example we computed the values of Jγ(qhγ , uhγ)
on globally refined meshes of maximal 274625 vertices and γ = 1.8 · 103 and extrapolated the
value of J(q, u) ≈ 4.2827. The choice of γ is such that the discretization error is dominant.

We begin by reconsidering the discretization error estimate as announced at the end of Sec-
tion 6.2.1.4. Therefore we consider the error estimates for both discretization error ηdisc = η

(1)
h
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6.2 Regularization Error for State Constraints

from Section 6.1.2.1 and the estimator for the regularization error ηCC proposed in Sec-
tion 6.2.1.5 in Table 6.12. We immediately see that the effectivity index is almost one. Both
in the case of dominant discretization as well as dominant regularization error. First of all
this implies that the regularization error gives a good estimate for the regularization error
contribution. Second we see that the integration error coming from the barrier functional is
not critical for the discretization error estimate.

Table 6.12: Effectivity of ηdisc + ηCC. Values with dominant regularization error are on gray
background.

N

γ 125 729 4913 35937
1.0 · 101 1.2 1.0 0.9 0.9
5.6 · 101 1.2 1.1 1.0 1.0
2.3 · 102 1.2 1.1 1.0 1.0
1.3 · 103 1.2 1.1 1.0 1.0

In Figure 6.11 the solution on a mesh with 274625 vertices and a value γ = 1.8 · 103 is
shown. In order to give an impression of the solution variables, the intersection of the
three dimensional domain with surfaces given by a constant x3 value is shown. The left
column shows the active-set for the control constraints. Black indicates an active lower
bound while white indicates an active upper bound. In the second column of Figure 6.11 the
discrete approximation to the Lagrange multiplier µ is depicted, where black color indicates
approximate zero values. The next two columns show the control and state variable.

In Figure 6.10 the behavior of the error under mesh refinement is shown. We can see that
by using local mesh refinement approximately a factor of two is gained in terms of degrees
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Figure 6.10: Comparison of the errors in the functional for different refinement strategies.

of freedom (DoF) for the state variable. That we could not obtain larger savings can be
explained by the fact that the error under global refinement is already converging with order
h−2.
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(a) Active-Set z = 0.2 (b) Multiplier z = 0.2 (c) Control z = 0.2 (d) State z = 0.2

(e) Active-Set z = 0.3 (f) Multiplier z = 0.3 (g) Control z = 0.3 (h) State z = 0.3

(i) Active-Set z = 0.4 (j) Multiplier z = 0.4 (k) Control z = 0.4 (l) State-z = 0.4

(m) Active-Set z = 0.5 (n) Multiplier z = 0.5 (o) Control z = 0.5 (p) State z = 0.5

(q) Active-Set z = 0.6 (r) Multiplier z = 0.6 (s) Control z = 0.6 (t) State z = 0.6

Figure 6.11: Active-set for the control constraints, Lagrange multiplier µ for the state
constraints, control, and state variable. (Black - small values, white - large values)
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6.2 Regularization Error for State Constraints

6.2.1.7 Penalty Regularization

We now consider the case of a penalty method (5.26), as in Section 6.2.1.1, we consider the
case without control constraints.

We obtain the following error representation:

Theorem 6.7. Let ξ = (q, u, z, µ) be a solution to the first-order necessary system (2.10) and
let ξγ = (qγ , uγ , zγ , µγ) a solution to the first-order necessary system (5.28) for the penalty
problem. Then the following identity holds:

J(q, u)− Jγ(qγ , uγ) = 1
2

∫
ΩC

g(uγ ,∇uγ) dµ

− 1
2

∫
ΩC

g(u,∇u) dµγ +Rhom,
(6.102)

with a remainder term Rhom given by:

Rhom = 1
2

∫ 1

0
M′′′(ξγ + s(ξ − ξγ))(ξ − ξγ , ξ − ξγ , ξ − ξγ)s(s− 1) ds. (6.103)

HereM is defined exactly as in (6.89).

Proof. As in the proof of Theorem 6.4 we obtain that J(q, u) =M(ξ). By definition of µγ ,
see (5.28), we obtain further

Jγ(qγ , uγ) = J(qγ , uγ) + γ

2‖g(uγ ,∇uγ)
+‖2ΩC

= J(qγ , uγ) + 1
2

∫
ΩC

g(uγ ,∇uγ) dµγ

=M(ξγ)−
1
2

∫
ΩC

g(uγ ,∇uγ) dµγ .

With this we can proceed exactly as in the proof of Theorem 6.4 to obtain

J(q, u)− Jγ(qγ , uγ) = 1
2M

′
µ(ξ)(µ− µγ) + 1

2M
′
µ(ξγ)(µ− µγ) + 1

2

∫
ΩC

g(uγ ,∇uγ) dµγ +R.

Now we consider the first term on the right-hand side, and see using complementarity (2.10e)

M′µ(ξ)(µ− µγ) = 〈µ− µγ , g(u,∇u) 〉C∗×C = −〈µγ , g(u,∇u) 〉C∗×C .

For the second and third term we obtain

M′µ(ξγ)(µ− µγ) +
∫
ΩC

g(uγ ,∇uγ) dµγ = 〈µ− µγ , g(uγ ,∇uγ) 〉C∗×C +
∫
ΩC

g(uγ ,∇uγ) dµγ

= 〈µ , g(uγ ,∇uγ) 〉C∗×C

and hence the assertion follows.
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Using the fact that 0 ≤ J(q, u)−Jγ(qγ , uγ) we obtain from the first-order necessary conditions

0 ≤ J(q, u)− Jγ(qγ , uγ) ≤
1
2

∫
ΩC

g(uγ ,∇uγ)− g(u,∇u) d(µ+ µγ).

We proceed heuristically by assuming that g(u,∇u) ≈ 0 on the support of µ+ µγ , to obtain

1
2

∫
ΩC

g(uγ ,∇uγ)− g(u,∇u) d(µ+ µγ) ≈
1
2

∫
ΩC

g(uγ ,∇uγ) d(µ+ µγ) ≈
∫
ΩC

g(uγ) dµγ .

As an estimate we hence propose to use

ηreg =
∫
ΩC

g(uhγ ,∇uhγ) dµhγ

where uhγ is the solution to the Galerkin discretization (5.32).

The derivation of the corresponding discretization error is rather straight forward. Hence
we do not derive it here separately. In the case of zero-order constraints it can be found
in (Günther and Tber [77]). The only difficulty is in the fact, that q( · )+ is only directional
differentiable. The estimator itself has the same form as it would have without the non
differentiability.

Numerical examples We will consider the two numerical examples from Section 6.2.1.2 to
illustrate that this approximation gives reasonable results. Once again the computations are
done using the software packages RoDoBo (RoDoBo [126]) and Gascoigne (Gascoigne [65]).

Gradient Constraints Here we once again consider the problem from (Deckelnick et al. [54]),
e.g.,

Minimize J(q, u) = 1
2‖u− u

d‖2L2(Ω) + 1
2‖q‖

2
L2(Ω)

subject to


(∇u,∇ϕ) = (f + q, ϕ) ∀ϕ ∈ H1

0 (Ω),
1
4 − |∇u(x)|

2 ≥ 0 ∀x ∈ Ω,

q ∈ Qad.

The problem with active sets is now, that for Q1 finite elements the gradient is not constant
on each mesh element. This means that tracking the active set is difficult on the discrete
level. To overcome this, and the fact that ∇uh is discontinuous, we introduce an additional
variable w = |∇u|2. Hence we consider

Minimize J(q, u) = 1
2‖u− u

d‖2L2(Ω) + 1
2‖q‖

2
L2(Ω)

subject to



(∇u,∇ϕ) = (f + q, ϕ) ∀ϕ ∈ H1
0 (Ω),

(w,ϕ) = (|∇u|2, ϕ) ∀ϕ ∈ L2(Ω),
1
4 − w ≥ 0 ∀x ∈ Ω,

q ∈ Qad.
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6.2 Regularization Error for State Constraints

We begin by a consideration of the convergence behavior of the cost functional. In Figure 6.12
we have depicted the convergence of the quantity J(q, u)−Jγ(qhγ , uhγ). We can clearly see that
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N = 49409
N = 197121
O(1/√γ)

Figure 6.12: Convergence behavior of J(q, u)− Jγ(qhγ , uhγ)

the functional converges with order O(γ−1/2). By transferring the results of (Hintermüller and
Hinze [79]) to the case of first-order state constraints a convergence order between O(γ−1/2)
and O(γ−1) had to be expected. We remark that this directly shows that an a priori choice
of the relation between h and γ is difficult, as the convergence behavior is not known a priori,
but has to be found during the computation.

We will now consider the same question as in Section 6.2.1.4, namely whether the proposed
method of estimating the regularization error is sufficiently accurate. We will consider a
range of parameters of γ between 10 and 10000. In this range we will be able to see the
behavior of the regularization estimate in the vicinity of the equilibrium of regularization
and discretization error, see Figure 6.12.

Table 6.13: Efficiency of ηdisc + ηreg on various meshes. Values with |ηreg| below the dis-
cretization error are on gray background.

γ

N 2 · 101 4 · 101 8 · 101 2 · 102 3 · 102 6 · 102 1 · 103 3 · 103 5 · 103

801 1.5 1.4 1.4 1.5 1.7 2.0 2.3 2.5 2.6
3137 1.5 1.3 1.3 1.2 1.3 1.4 1.7 1.9 2.1

12417 1.4 1.3 1.2 1.2 1.1 1.1 1.2 1.3 1.4
49409 1.4 1.3 1.2 1.1 1.1 1.1 1.1 1.1 1.2
197121 1.5 1.3 1.2 1.1 1.1 1.1 1.1 1.1 1.1
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6 A Posteriori Error Estimates

In Table 6.13 we have depicted the effectivity index

Ieff =
|J(q, u)− Jγ(qhγ , uhγ)|
|ηdisc|+ |ηreg|

on different meshes for various choices of γ. The sequence of γ was obtained by starting from
γ0 = 10 and then successively increasing γ by a factor of

√
2. The results clearly show that

the estimate ηreg a good estimate for the influence of the regularization error, although it is
slightly underestimating the real error.

Finally, we will have a short look on the interplay between the discretization error estimate
and the regularization error estimate. For this we consider the behavior for both indicators
separately on globally refined meshes with 12417 and 49409 vertices. The results are depicted
in Figure 6.13. Here we can see that the discretization error indicators are growing towards a
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γ

|ηdisc|, N = 12417
|ηdisc|, N = 49409
|ηreg|, N = 12417
|ηreg|, N = 49409

Figure 6.13: Convergence behavior of the error indicators

limit for γ →∞. This is exactly what we must expect, as a solution to the limiting problem
exists and should be harder to approximate by a discretization due to the measure in the
right-hand side of the adjoint equation. Next, we obtain that for |ηreg| � |ηdisc| the indicator
for the regularization is almost unchanged under mesh refinement. Hence it makes sense to
call |ηreg| an estimate for the regularization error. However when |ηreg| ≈ |ηdisc| the indicator
remains stagnant for a short range of γ values, before they are again almost identical. This
behavior indicates that when balancing the contributions of both indicators one should not
try to have |ηreg| � |ηdisc| in order to obtain an efficient algorithm. From Figure 6.14 we
can clearly see, that both strategies of balancing either balancing the error contributions
as well as letting γ → ∞ lead to comparable results concerning the error. However, the
computational costs for the balancing strategy are far less.
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Figure 6.14: Convergence behavior of the error indicators

State Constraints We return to the example which we derived from (Günther and Hinze
[75]) by transformation to constant bounds

Minimize J(q, u) := 1
2‖(0.45− ψ)v + ψ − 0.5‖2L2(Ω) + 1

2‖q − 60‖2L2(Ω)

subject to


−∆((0.45− ψ)v + ψ) + ((0.45− ψ)v + ψ) = q inΩ,

∂nv = 0 on ∂Ω,
0 ≤ v(x) ≤ 1 ∀x ∈ Ω,

q ∈ L2(Ω).

As in the previous example we begin the discussion by comparing the convergence of the
functional value J(q, u)− Jγ(qhγ , uhγ) in Figure 6.15. We immediately see that we have a small
range of γ values where we have a convergence of O(γ−1/2). However, in contrast to the
previous example the values here are not yet constant under mesh refinement, e.g., we have a
discretization influence on the error with dominant regularization error. This is probably
caused by the fact, that the coefficients in the equation and cost functional are not integrated
exactly but with a tensor product four-point Gauss-Lobatto quadrature formula.

Then there is, on each mesh, a rather long transition zone between dominant regularization
error and the level of the discretization error. This, once again, confirms our conclusion at
the end of the previous example that it is not advisable to attempt to stir γ and h such that
ηreg � ηdisc.

We now turn to the evaluation of the quality of the estimators. To this end we consider
in Table 6.14 the effectivity index of our estimate. As in the previous example we can
see that the effectivities are almost one and not changing when the regularization error is
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Figure 6.15: Convergence behavior of J(q, u)− Jγ(qhγ , uhγ)

dominant. From this we can already obtain, that the use of the regularization error estimate
is apparently reasonable.

Table 6.14: Efficiency of ηdisc + ηreg on various meshes. Values with |ηreg| below the dis-
cretization error are on gray background.

γ

N 1 · 101 1 · 102 3 · 102 1 · 103 3 · 103 1 · 104 3 · 104 1 · 105 1 · 106

169 0.7 1.1 1.6 2.4 3.3 5.0 8.2 13.8 22.9
625 0.7 1.0 1.1 1.2 1.3 1.4 1.4 1.5 1.5
2401 0.7 0.9 1.1 1.3 1.5 1.7 1.9 1.9 1.8
9409 0.7 0.9 1.0 1.1 1.2 1.4 1.5 1.3 1.2

37249 0.7 0.9 0.9 1.0 1.0 1.0 1.0 0.9 0.4

However, it is not yet clear, how to account for the visible change in the error for dominant
regularization error under mesh refinement seen in Figure 6.15. To this end we consider the
behavior of both discretization and regularization error indicator on to consecutive meshes
and different values of γ. The results are depicted in Figure 6.16. Here we can see first
of all, that the values of γ where both indicators are equilibrated coincide with the values
where the error is almost on discretization accuracy. This means that in the region of interest
both indicators are accurate. As in the previous example we see, that near equilibration the
regularization error indicator becomes stagnant for a while, indicating as before that it is not
efficient to achieve ηreg � ηdisc.

As already mentioned, at the end of Section 6.2.1.4, we neglected the influence of the
quadrature rule, or more precisely the fact that we do not integrate the coefficients in the
equation and the cost functional exactly. As in Section 6.2.1.4 we are considering here a

114



6.2 Regularization Error for State Constraints

0.01

0.1

1

10

100

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09
γ

|ηdisc|, N = 2401
|ηdisc|, N = 9409
|ηreg|, N = 2401
|ηreg|, N = 9409

Figure 6.16: Convergence behavior of the error indicators

problem, where the quadrature is not exact for the problem data—here the coefficients of the
equation—.

In order to substantiate this we reconsider the example this time using a summed midpoint
rule where each element is split into 28 subelements for the integration. The results are shown
in Table 6.15. By comparing Table 6.15 to Table 6.14 we immediately see that the use of a

Table 6.15: Efficiency of ηdisc + ηreg on various meshes for summed quadrature. Values with
|ηreg| below the discretization error are on gray background.

γ

N 1 · 101 1 · 102 3 · 102 1 · 103 3 · 103 1 · 104 3 · 104 1 · 105 1 · 106

169 0.7 1.3 2.0 3.1 5.4 4.8 4.0 3.5 3.0
625 0.7 0.9 1.1 1.2 1.2 1.3 1.3 1.4 1.5

2401 0.7 0.9 1.0 1.1 1.2 1.2 1.3 1.3 1.3
9409 0.7 0.9 1.0 1.0 1.1 1.2 1.2 1.1 1.0

more accurate quadrature formula for the solution of the equations leads to a more accurate
estimation of the error using the regularization and discretization error estimators derived in
this thesis.
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7.1 Control Constraints

For the solution of the control constraint problem (6.3), we apply a nonlinear primal-dual-
active-set strategy, see, e.g., (Bergounioux et al. [22], Kunisch and Rösch [98]). In the
following, we sketch the corresponding algorithm on the continuous level. We assume the
control to be from some Lp(ω) and Qad = { q ∈ Lp(ω) | a ≤ q(x) ≤ b for almost allx ∈ ω }.

Nonlinear primal-dual active set strategy

1. Choose initial guess q0, µ0 and c > 0 and set n = 1

2. While not converged

3. Determine the active sets ωn+ and ωn−

ωn− = {x ∈ ω | qn−1(x) + µn−1(x)/c− a ≤ 0}
ωn+ = {x ∈ ω | qn−1(x) + µn−1(x)/c− b ≥ 0}

4. Solve the equality-constrained optimization problem

Minimize J(qn, un), un ∈ V, qn ∈ Q,

subject to (2.4) and

qn(x) = a on ωn− , qn(x) = b on ωn+ .

5. Set
µn = −J ′q(qn, un)(·) + a′q(qn, un)(·, zn)

with adjoint variable zn.

6. Set n = n+ 1 and go to 2.

The algorithm above is known to be globally convergent for certain classes of optimal
control problems, see, e.g., (Bergounioux et al. [22], Kunisch and Rösch [98]). Moreover local
superlinear convergence can be shown, see, e.g., (Hintermüller et al. [85]).
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Concerning the practical realization, the active sets in step 3 can be determined in a finite
number of points in ω. There are two cases to distinguish.

1. If the control is finite dimensional, e.g., ω = {1, . . . , n} for some n ∈ N. Then step 3 is
as in the continuous case.

2. If the control is infinite dimensional, e.g., ω ⊂ Ω or ω ⊂ ∂Ω. Then the control is
discretized using either P0 or Q1 finite elements. And we can determine the active set
by comparing the components of the coordinate vectors with respect to the usual nodal
basis.
Hence in the P0-case we compare the bound with the cellwise constant values of q and
µ. In the Q1-case we compare the values associated with the vertices of the grid to the
bounds.

Convergence in step 2 can be determined conveniently from agreement of the active sets in
two consecutive iterations.

Remark 7.1. In order to correctly determine µn in step 5 one has to choose a scalar product
for the space Q such that the representation of µn can be computed.

In the practical realization in RoDoBo (RoDoBo [126]), the equality-constrained optimization
problem in step 4 is solved by Newton’s method on the control space without assembling the
Hessian, for details, see (Meidner [107]).

This approach has the advantage that it is applicable once the state equation is solvable, e.g.,
whenever a good solver for the state equation is available. However, it has the drawback of
being slow compared with a multigrid method directly applied to the KKT-system. Due to
the saddle point structure of the KKT-System good multigrid methods are unfortunately not
readily available, but are a field of active research even in the case of pure PDE constraint
optimization, see, e.g., (Bauer [9], Biros and Ghattas [24, 25], Rees, Dollar, and Wathen
[122], Schöberl and Zulehner [138]) or (Borzi and Schulz [31]) for a survey. Preconditioners
for the solution of the KKT-System in PDE-based optimal control with regularized state
constraints using a CG-method are considered in (Herzog and Sachs [78]). Preconditioning
in the case of optimal control of the reduced problem is still open to further research.

7.2 State Constraints

For the solution of the discrete state constraint problems we employed both penalty and
barrier methods for the computations in this thesis. As we introduced a common parameter
γ → ∞ for both problems, the algorithm used for the solution of these problems reads as
follows:
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Solution of the state constrained problem

1. Choose initial γ0 > 0, mesh size distribution h0 > 0, q̃0 ∈ Qh0 and
set n = 0.

2. Solve the control-constrained optimization problem

Minimize Jγn(qn, un), un ∈ Vhn , qn ∈ Qad
hn ,

subject to (5.31), with initial guess q̃n using the algorithm from Sec-
tion 7.1.

3. While not converged, set n = n+ 1

4. Determine hn, γn, and q̃n and go to 2.

In the following, we will give details on steps 2 and 4 of the algorithm. We do not discuss
step 1 and 3 here, as the only problem in step 1 is that for barrier methods the initial guess
q̃0 has to be chosen such that the corresponding state is feasible with respect to the state
constraints because we solve the problems in the control space. In our applications such
an initial guess was always straight forward to find, e.g., q̃0 ≡ 0 was usually good enough.
Finally, the convergence in step 3 depends on the goal of the computation, hence there can
not be an all purpose stopping criterion.

Step 2. Solving the subproblems

Barrier Methods In this case we remark that although in the limit h → 0 the barrier
solution is, in general, only strictly feasible almost everywhere, see also Theorems 5.6 and 5.8.
On the discrete level the solution is always strictly feasible, and hence Jγ is differentiable in
a neighbourhood of the discrete solution. Hence one can directly apply Newton’s method
as proposed in Section 7.1. However in order to avoid leaving the region of strict feasibility
one has to take care during the the Newton update, e.g., whenever the new iterate would be
infeasible on has to perform damping in order to remain in the feasible region. Here we used
a simple line-search method to ensure feasibility of the iterates. This may lead to several
damping steps during the iteration, hence more efficient damping strategies may be required.
For a KKT-based solver a special modification has been proposed recently in (Schiela [132]).

Furthermore, we remark that higher derivatives of the barrier function are large near the
boundary of the feasible region. If the integration is done exact one would always retain some
distance to the boundary. Hence special care has to be taken when selecting the quadrature
formulas for the integration, e.g., when using Gauss quadrature formulas one may even obtain
infeasible solutions.

We used either summed quadrature formulas, or Gauss-Lobatto formulas, the latter have the
advantage of including the nodal values of the solution, which are on Cartesian meshes the
points where the distance between the (constant) bound and the finite element function is
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smallest. In our experience Gauss-Lobatto formulas gave equally good results as summed
quadrature formulas while being much faster. A discussion on the effect of the quadrature
rule in the case of zero-order constraints can be found in (Hinze and Schiela [89]).

Penalty Methods In the case of penalty methods the penalty term ‖g(uh,∇uh)+‖2 is not
twice differentiable, however, it is Newton differentiable, see, e.g., (Hintermüller and Kunisch
[83]). The Newton derivative can be easily calculated noting that given an iterate u the
penalty term takes the form

‖g(u,∇u)+‖2 = ‖g(u,∇u)‖2A(u),

where A(u) = {x ∈ Ω | g(u,∇u) > 0 } is the ‘active-set’ of the state constraint. Then the
Newton derivative is obtained by differentiating the integrand of the second term while fixing
the set A(u). For more details on the algorithm we refer to (Hintermüller and Kunisch
[81, 82]).

In the discretization of this one has to be careful how to define the active set. In contrast to
the case of control constraints the active set may not be determined by the value of g(u,∇u)
in the vertices of the triangulation. It has to be determined during integration of the penalty
term and its derivatives. Hence a sufficiently accurate quadrature rule has to be employed
during the integration in order to avoid problems during the Newton iteration. However,
as exact integration is costly we employed Gauss-Lobatto formulas for our computation,
although this does introduce additional newton steps due to bad linearization, it is much
faster than the use of summed quadrature rules on the elements with a jump in the indicator
function of A(u). In addition we introduced an additional variable w = g(u,∇u) for the
constraint if g(uh,∇uh) 6∈ Vh

Step 4. Preparing the next iteration In the case hn = hn−1 we can simply choose a value
of γn and use q̃n = qn−1 as an initial point. Although it is advisable not to choose γn � γn−1

in order to have a sufficiently good starting value for the next Newton iteration. For the
choice of the parameters see, e.g., (Hintermüller and Kunisch [81, 82], Schiela [132], Weiser
and Deuflhard [152]).

The case of hn 6= hn−1 one is tempted to use q̃n = Iqn−1 with some simple operator
I : Qhn−1 → Qhn , e.g., nodal interpolation. This is fine in the case of a penalty approach,
however in the case of a barrier method the corresponding state ũn ∈ Qhn may violate the
feasibility constraint. In the examples considered in this thesis there was always a strictly
feasible point q̆ ∈ Vhn known, such that q̃n := λq̆ + (1− λ)Iqn−1 is strictly feasible for some
λ ∈ [0, 1) which can be determined by a line-search procedure.
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In this thesis we considered elliptic PDE-based optimal control problems subject to pointwise
inequality constraints for the control and state variable. We considered questions of existence
of solutions subject to first-order state constraints on non-smooth domains. We derived a new
regularity result for the solution of such problems under first-order state constraints. Based
on this we derived a priori error estimates for the discretization error caused by the finite
element approximation of the problem. We proceeded with the derivation of error estimates
with respect to a possible regularization of the problem. Finally, we derived a posteriori
error estimates for both regularization and discretization error. Numerically the estimates
have shown to be separated, so that we are able to balance the contributions arising from
regularization and discretization to the global error. We will, in the sequel, recall what has
been achieved, and what possible extensions of the work presented here would be.

Existence on non-smooth domains & regularity In view of applications, that typically
require domains whose boundary is only piecewise smooth, we showed for a simple model
problem with first-order state constraints that there still exists a solution to the minimization
problem, even if the control to state mapping is not sufficiently regular to pose the state
constraint on the whole image of the control space. The method employed is directly
transferable to more complex equations, e.g., those of elasticity. However, with respect to
first-order necessary optimality conditions there appears to be a gap between existence of
a solution and existence of corresponding Lagrange multipliers which might be of further
interest. Especially first-order necessary conditions are of interest, as several algorithms
try to compute solutions to these conditions. In addition it is of interest with respect to a
posteriori error estimation.

A priori error estimates In the field of a priori analysis, we have shown convergence of the
discretization error for a direct discretization of the optimization problem with first-order
state constraints by finite elements. The results give the same convergence orders that have
been recently obtained by other authors, but the arguments in the proof presented here
are far more elementary. Furthermore, we extended the convergence theory to the case of
a bilinear control discretization. The analysis is directly transferable to any finite element
discretization of the state equation that is stable with respect to W 1,∞. In particular this
shows that convergence is available for any reasonable discretization. However, the orders of
convergence obtained here and those in the literature are not optimal with respect to best-
approximation in view of the regularity of the control. However, numerical evidence shows,
that the derived orders of convergence are sharp with respect to the control. This indicates
that by a direct discretization of the optimization problem one does, in general, not have a
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quasi best-approximation property for the control variable. Hence an interesting question for
further research would be a discretization scheme which obtains optimal convergence with
respect to the regularity of the continuous solution.

Regularization methods Concerning the solution of the state constrained optimization
problem, we analyzed a barrier method for first-order state constraints. We were able to show
convergence (with rates) of the method applied to the continuous problem. Due to the general
statement of the results it is also applicable to the discretized problems. Hence by combination
of the results for the discretization error for the state constrained problem, one can easily
deduce convergence of the overall algorithm combining regularization and discretization.
However, in the case of first-order state constraints there are still open questions concerning
the step length selection and damping rules to obtain a very fast algorithm.

A posteriori error estimates Finally, concerning the main issue of the work: We were the
first to have derived a posteriori error estimates for both the error in the cost functional as
well as in an arbitrary quantity of interest for PDE-based optimization problems subject to
pointwise control constraints. Then this work contains pioneering work for such problems
with pointwise first or zero-order state constraints. We derived estimates for the regularization
error due to both barrier or penalty methods applied to the state constraint. For the remaining
regularized problem one can apply the discretization error estimates derived earlier in this
work. We showed that for several model problems both error indicators are sufficiently well
separated to allow for a balancing strategy of both error components. However, the extension
of the regularization error estimate towards an arbitrary target quantity remains a very
interesting open problem. The problem in applying the techniques derived in this thesis lies
in the fact that first-order necessary conditions for the continuous dual problem associated to
the quantity of interest are not known in general. In addition, the application of adaptive
quadrature or an appropriate estimator for the quadrature error in the solution process might
be advantageous as indicated by some of the numerical examples. Moreover, the application
of the derived estimates to real world applications will be a very interesting perspective.
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