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Zusammenfassung

In der vorliegenden Arbeit wird der Aufbau eines neuen Experiments zur Unter-
suchung ultrakalter bosonischer und fermionischer Quantengase beschrieben. Bose-
Einstein Kondensation von 23Na Atomen wird in zwei verschiedenen Magnetfallenkon-
figurationen, der

”
plugged“ Quadrupolfalle und der Kleeblattfalle erreicht. Außerdem

werden beide Fallentypen bezüglich ihrer Eignung für Gemischexperimente mit 23Na
und 6Li verglichen. In einem solchen Gemisch sollte es möglich sein Polaronen zu unter-
suchen. Diese Quasiteilchen entstehen, sobald eine Komponente des Natrium-Lithium
Gemisches nur noch in einer sehr geringen Konzentration vorliegt. Der Grenzfall eines
einzelnen Teilchens in einem bosonischen Hintergrund wird theoretisch betrachtet und
anhand einer numerischen Simulation untersucht.

Abstract

The subject of this work is the setup of an experiment to study immersed quantum
systems using bosonic 23Na and fermionic 6Li. Bose-Einstein condensation of 23Na
has been achieved in two different magnetic trap configurations, namely the plugged
quadrupole trap and the cloverleaf trap. Both are compared with respect to their suit-
ability for a two-species experiment using this particular isotopes. In such a mixture,
it should be possible to investigate polarons, which are quasiparticles, emerging when
one of components of the mixture has only a very rare concentration. Furthermore,
a theoretical study of the polaron will be discussed. A mean-field calculation has
been carried out in order to simulate the impurity behavior in the presence of a large
bosonic background gas.
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1. Introduction

Theorie und Experiment
gehören zusammen, eines ohne
das andere bleibt unfruchtbar.

(Max Planck)

The development of quantum mechanics in 1925 released a great discourse how these
new ideas of describing the physics at very small scales modifies our understanding of
nature. The outcome of an experiment is open to different interpretations, which is in
contradiction to the ideas of the classical understanding of physics. Several interpre-
tations have been developed to gain information about “what’s going on there...”, the
most popular of which is the Copenhagen interpretation, formulated by N. Bohr and
W. Heisenberg. Its key feature is the probabilistic interpretation of the wavefunction,
describing the state of a particle. A measurement of the state of the particle, for in-
stance its position, causes the wavefunction to collapse to the value of this observable
defined by the measurement itself. The question about the position of the particle
before the measurement is thus meaningless.

This interpretation of the wavefunction – being the probability amplitudes of the
particle – puts aside the discussion about the nature of light and matter, dating
back to the 1600s to the competing theories of light by C. Huygens and I. Newton.
With the Copenhagen interpretation at hand, the wave-particle duality is a central
concept of quantum mechanics. Light and matter can both be described as particles
or waves. Young’s double-slit experiment has been performed for both matter and
light successfully.

The success of quantum mechanics started a new era in physics, leading to a deeper
understanding of nature. New phases of matter, apart from solids, fluids and gases
were predicted, namely the Bose-Einstein condensate and the degenerate Fermi gas.
Each of these are specific to the two fundamental classes of particles, bosons and
fermions. The distinction between both becomes important only on the quantum
scale, i.e. when the gas of particles can no longer be described by the classical Maxwell-
Boltzmann distribution. The reason for this deviation from the classical picture is that
the finiteness of the available, discrete energy states of the particles becomes important
– quantum mechanics comes into play.

Prominent examples of those two quantum phases is the Bose-Einstein condensation
of Cooper pairs, responsible for type I superconductivity or the conduction electrons
in solids that are already degenerate at room temperature. But these states also
occur at large scale, for instance the neutron stars are thought to consist mostly of
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Fermi-degenerate neutrons.
The availability of these states of matter in dilute, cold atomic gases since the mid

1990s [1, 2], triggered a whole range of experiments, addressing fundamental physical
questions, which were not accessible in experiments before.

The reason for the success of the cold atomic gases experiments is, that they offer
very clean systems1 with a wide experimental control over the systems parameters like
atom number, density, temperature and trapping geometry. Furthermore the scatter-
ing properties of the atoms can be manipulated via the use of Feshbach resonances,
a degree of freedom that is not accessible in other systems, e.g. solids. This freedom
of tuning parameters allows to study a wide range of physical questions, e.g. some
condensed matter phenomena with an extended range of tunable parameters, one of
which is the polaron problem, addressed in this thesis.

Some achievements of cold atoms gases are the first experimental studies of quantum
effects like matterwave interference [3] or the tunneling processes [4] on a macroscopic
scale. Using optical lattices in the experiments, has lead to the observation of the
superfluid to Mott-insulator transition [5], which can not be studied in solids. This
phase transition is not driven by temperature as a classical phase transition, but rather
by quantum fluctuations, which still occur at T = 0.

Also degenerate Fermi gases have been studied extensively, revealing the transition
from the Bardeen-Cooper-Schrieffer (BCS) state of Cooper pairs to the formation
of compound molecules [6] and their Bose-Einstein condensation [7, 8, 9]. Feshbach
resonances that allow to tune the interaction, have been found in single component
Bose gases [10] and in mixtures of two different species [11, 12]. Effects of fermionic
atoms on bosonic atoms in a 3D optical lattice have been studied [13, 14]. Experiments
succeeded to involve different spin states of an ultracold atom gas as an additional
free parameter of the system [15].

The aim of the experiment presented here is to study immersed quantum systems,
where a species with a small concentration (impurities) is interacting with a degenerate
background gas. A similar system is known from condensed matter physics. If an
electron in the conduction band is moving through the ionic crystal lattice it can
interact with the lattice excitations (phonons), thereby forming a quasiparticle—the
polaron.

In the crystal lattice, the electron-phonon interaction mediates a weak coupling
between electrons near the Fermi edge. Cooper showed that even an arbitrarily weak
attractive interaction in these systems will lead to the occurrence of weakly bound
pairs (the Cooper-pairs), responsible for type I superconductivity [16].

However, type II superconductors are not explained by the BCS theory. Here the
critical temperature for superconductivity is close to the Debye temperature TD. Even
at these temperatures, the electron-phonon interaction should still be large enough,
such that every electron forms a polaron. In this limit the polaron-polaron inter-

1The techniques used to achieve Bose-Einstein condensation of dilute atomic gases are highly isotope
selective, such that any kind of depletion of the system with a different species or isotope requires
a high experimental effort. This is in contradiction to condensed matter systems where a very
high effort is necessary to produce samples with a negligible concentration of dopants.
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action needs to be taken into account. If this interaction appears to be attractive,
the Coulomb potential of both electrons forming the polarons is screened and a two-
polaron pair occurs—the bipolaron. This quasi-particle is of bosonic nature and their
superfluidity can explain type II superconductivity [17]. However up to now this
process is neither fully understood nor confirmed by experiments due to the lack of
materials showing a strong electron-phonon coupling.

As already mentioned, we intent to study immersed systems using ultracold atomic
systems, providing the possibility to tune the interaction between background and
impurity atoms. We plan to immerse fermionic 6Li atoms into a bosonic background
gas of 23Na atoms. The concentration of the impurities should be low enough to ensure
that the background gas completely determines the thermodynamic properties of the
system. As this system is cooled into quantum degeneracy, the impurity atoms can
interact with a coherent background gas, revealing its own dispersion relation. This
system can be mapped onto the Fröhlich Hamiltonian [18], describing the behavior of
an electron in the presence of an ionic crystal lattice that forms a polaron.

In our system the impurity atom corresponds to the electron. The interaction of the
impurity atoms with the Bogoliubov modes of the background BEC is similar to the
electron’s interaction with the phononic lattice excitations of the crystal. Both give
rise to a dispersion relation. The dispersion relation of the crystal lattice consists of
an optical and an acoustical part, the latter being similar to the Bogoliubov spectrum
of a BEC at low excitation momenta.

We plan to map out this analogy using an ultracold gas experiment and aim to
be able to study the strong coupling limit of the polarons, where the strong electron
phonon interaction in the condensed matter case localizes the polaron to a single lattice
ion. A regime so far not accessible in experiments.

Contents of this Thesis

In the first part of this thesis, the polaron problem described above will be discussed
in the context of ultracold atomic gases. Chapter 2 will recall the necessary theoretical
framework of the ultracold gases and discuss a many-body approach to the problem of a
single impurity atom immersed in a background BEC. These results will be compared
to a mean-field simulation of the immersed impurity in chapter 4. The numerical
methods of this calculation will be explained in chapter 3.

In the second part of this thesis, the experimental setup build to study degenerate
Bose and Fermi gases will be explained. Chapter 5 discusses the concepts used to cool
atomic samples into the nK regime and how information of the ultracold atomic system
is extracted. In chapter 6, the status of the setup will be presented and the cooling
steps that lead to the Bose-Einstein condensate of 23Na in a plugged quadrupole trap
and a cloverleaf trap configuration will be explained.
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Part I.

BEC Impurity as a Polaron

The first part of this thesis deals with the theoretical background of ultracold atom
experiments and an introduction to the polaron problem. The aim of the experiment
is to study polaronic systems. In such systems one deals with a large background com-
ponent – here a Bose-Einstein condensate of sodium atoms – and some well controlled
impurities. Such a system has its counterparts in condensed matter physics, where
the behavior of polarons – electrons moving through an ionic crystal lattice thereby
interacting with the lattice phonons – is of special interest.
A mean-field study of the polaron problem from the ultracold atom perspective is
presented and the results are compared to a condensed matter approach of the problem.





2. Theory of Ultracold Atomic Gases

In this chapter, a short introduction to the relevant theory parts of ultracold samples
shall be presented. This chapter is not meant to provide a complete introduction into
the field. This can be found in a variety of very good review articles e.g. [19, 20, 21]
for bosons and [22, 23] for fermions. Instead the most relevant quantities shall be
recalled. The first section starts with an overview of weakly interacting Bose-Einstein
condensates and the scattering properties of atomic samples at low temperatures.
After that the Gross-Pitaevskii equation (GPE) will be introduced, as well as the
Thomas-Fermi approximation. After a short excursion to Bogoliubov theory some
remarks concerning fermions will be made. The last section will concentrate on the
link between ultracold atomic samples and the polaron problem in condensed matter.

2.1. BEC: Weakly Interacting Case

The non-interacting BEC is a standard textbook problem and can be found for instance
in [24, 25]. However when studying atomic gases in experiments, the atoms do interact
with a finite scattering length a typically ranging from a few Bohr radii a0 = 0.05nm
to a few nm. Some examples are 87Rb with a scattering length of 100a0 or 23Na with
63a0 are repulsively interacting. Examples for attractive interacting species are 85Rb
with −443a0 or 7Li with −25a0. These scattering lengths are all in the low energy
limit and the reason why the higher order collisions can be neglected will be presented
in the following.

2.1.1. Basic Scattering Theory

When considering the elastic collision of two low energy particles the asymptotic so-
lution to the following Schrödinger equation needs to be found [26]:(

− ~2

2mr

∇2 + V (r)− E
)
ψ(r) = 0 (2.1)

Here mr denotes the reduced mass, r the center of mass coordinate, k the wavevector
of the relative motion and E = ~2k2/2mr the relative kinetic energy. For distances
much larger than the interparticle spacing the solution to this problem can be written
as a plain wave (undisturbed part) and a spherical wave (from the scattering event):

ψ(r) = eikz + f(θ)
eikr

r
(2.2)
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Figure 2.1.: Atomic potential including the centrifugal barrier for increasing l. For low
energy collisions only the l = 0 potential is of relevance since two colliding atoms do
not have enough energy to overcome the centrifugal barrier.

The term f(θ) is refered to as scattering amplitude and is related to the differential
cross-section by dσ/dω = |f(θ)|2. Due to the cylindrical symmetry of the problem the
equations may be expanded in terms of Legendre polynomials Pl(cos θ). The potential
and the wave function in this description read:

Vl(r) = V (r) + ~2l(l+1)
2mrr2

(2.3)

ψ(r) =
∞∑
l=0

Pl(cos θ)Rkl(r) (2.4)

where the last term of the potential denotes the centrifugal barrier –see fig. 2.1 –
and the Rkl satisfy the radial Schrödinger equation. For ultracold temperatures of the
atomic samples, we are dealing with in the lab, only the l = 0 term is of relevance.
This is due to the fact that the particles do not have enough energy to overcome
the centrifugal barrier in the l > 0 states such that these do not contribute to the
scattering amplitude. At very large distances the radial solution of the Schrödinger
equation may be written as

Rkl(r)
r→∞∼ sin(kr − lπ

2
+ δl) (2.5)

thereby introducing the phase shift δl between the incoming and the outgoing wave.
In the case of V (r) = 0, i.e. for no interaction the phase shift of the scattered
wave δl is equal to zero and the incoming and outgoing waves are equal. The whole
effect of the scattering potential is described by that phase shift. For collisions at
ultracold temperatures, i.e. low momenta k � 1/r0, where r0 resembles the range of
the scattering potential it is useful to define the scattering lengths al as follows:
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al(k) =
− tan δl

k
. (2.6)

Using the radial Schrödinger equation, one can show that the phase shifts of the
scattered wave for low momenta are proportional to k2l+1. In the limit of k → 0, the
l = 0 term dominates and the whole scattering process is characterized by the s-wave
scattering length as ≡ al=0.

In this limit the elastic cross section takes the simple form:

σ(k) =
4πa2

1 + a2k2
. (2.7)

Up to now the discussion was about classical particles only. When dealing with in-
distinguishable particles however, the situation changes. The cross section for bosonic
atoms includes another factor of 2 since a direct scattering leads to the same result as
an momentum exchange scattering of two atoms. Therefore both contributions have
to be added. For fermions however the same argument is true, but only scattering
amplitudes with odd l are allowed for symmetry reasons.1 As the energy of the atomic
sample is decreased higher order collisions die out since the atoms cannot overcome
the centrifugal barrier anymore. If the energy is low enough such that even the l = 1
(p-wave) contributions can be neglected, the scattering cross section for two identical
fermions vanishes.

2.1.2. Tuning Interactions: Feshbach Resonances

Although we are dealing with s-wave scattering only, the elastic cross section of the
atoms can be varied over a wide range and therewith changing the scattering properties
of the ultracold sample. For instance the cross section (2.7) can take values from
σ = 4πa2 in the limit ka � 1 up to the so-called unitarity value of σ = 4π/k2 in the
limit ka � 1. In order to reach those regimes one needs a handle on the scattering
length a which is provided by Feshbach resonances [27]. This powerful tool allowed for
many nice experiments from their discovery [28, 10] in 1998. As an example in sodium
or lithium systems, molecule formation of 6Li [29, 30, 31], 23Na [32] or interspecies
resonances like 6Li–23Na [11] have been observed.

The basic idea of a Feshbach resonance is a coupling between two states in different
potential curves of the colliding atoms, as shown in fig. 2.2. They enter in an unbound
state with energy E above the dissociation energy (open channel). If the next bound
state in this potential is slightly below the dissociation energy, the interaction will be
repulsive (a > 0). In the opposite case where the next bound state of the open channel
potential would be just above the threshold, the interaction will be attractive (a < 0).
But also a second potential (closed channel) providing a bound state in close proximity
to the dissociation energy of the open channel may exist. If those two energy states
in both channels are close to degeneracy, even a small coupling between the states

1for bosons all the even l contributions add up, but in this context we only deal with l = 0
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Figure 2.2.: simple two-channel model of a Feshbach resonance. Open (closed) channel
refer to the two incoming atoms to be in a unbound (bound) state of the potential.
If the bound state of the closed channel is tuned into degeneracy with the atoms in
the incoming open channel a scattering resonance occurs that changes the scattering
properties of the incoming atoms.

will give rise to a strong mixing of the open and closed channels. Again, depending
of the location of the closed channel bound state with respect to the open channel
dissociation energy the incoming atoms in the open channel will interact repulsively
or attractively.

If the magnetic moments of the atoms in the open and closed channel are different,
the corresponding potentials can be tuned with respect to each other using an external
magnetic field. This tuning shifts the closed channel potential with respect to the open
channel potential, thus varying the location of the bound state. The scattering length
of the colliding atoms will change from attractive (a < 0) to repulsive (a > 0) as the
closed channel bound state is tuned from slightly above the dissociation energy of the
open channel to slightly below it. In the intermediate regime (i.e. the quasi-degenerate
regime of the bound state with the incoming free atoms) the scattering length takes
large values and the unitarity regime of eq. (2.7) can be reached.

In the case of a magnetically induced Feshbach resonance the s-wave scattering
length as can be written as a function of the magnetic field B [33]:

as(B) = abg

(
1− ∆

B −B0

)
. (2.8)

Here B0 denotes the position of the resonance, ∆ its width and abg the background
scattering length.

The tunable coupling between the open channel and some bound state in the closed
channel allowed to manipulate the scattering properties of the atoms. This tuning can
also be done using an optical coupling [34] or a microwave coupling [35]. Moreover,
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the Feshbach resonances can be manipualted using optical methods [36] or rf photons
[37].

2.1.3. Mean-Field Approximation: Gross-Pitaevskii-Equation

In order to describe the weakly interacting Bose gases realized in experiments, inter-
actions need to be included in the theory. Weakly interacting or dilute in this context
means the scattering length is always much smaller than the interparticle spacing
n|a|3 � 1. The Hamiltionian of such a system in second quantization reads:

Ĥ =

∫
d3rΨ̂†(r)

(
−~2∇2

2m
+ Vext(r)

)
Ψ̂(r)

+
1

2

∫
d3rd3r′Ψ̂†(r)Ψ̂†(r′)V (r − r′)Ψ̂(r′)Ψ̂(r),

(2.9)

where the first term resembles the non-interacting Bose gas in an external potential
Vext(r) and the second term the interaction due to the interatomic potential V (r− r′).
The latter one can be approximated by the contact interaction potential

V (r − r′) = gδ(r) (2.10)

with g = 4π~2a/m being the coupling constant. This assumption is justified, since
we are interested in the low energy solutions of the problem where the deBroglie
wavelength λdB is much larger than the fine details of the interaction potential. Ψ̂†(r)
and Ψ̂(r) are the bosonic field operators creating and annihilating a particle at position
r.

If the temperature is assumed to be close to zero (i.e. T � Tc) the occupation of
excited states can be neglected and the field operators can be approximated by their
expectation values

Ψ̂(r, t) =
〈

Ψ̂(r, t)
〉

︸ ︷︷ ︸
≡ψ(r,t)

+Ψ̂′(r, t) (2.11)

thereby introducing the condensate wavefunction ψ(r, t). Ψ̂′(r, t) is treated as a
small pertubation and will be neglected in the following, since almost all the atoms
are occupying the ground state ψ(r, t) ∼

√
N of the potential. Using this definition in

eq. (2.9) leads to the time dependent Gross-Pitaevskii equation (GPE) [38, 39]:

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + Vext + g|ψ(r, t)|2

)
ψ(r, t) (2.12)

The time-independent GPE can be obtained by introducing the chemical potential
µ = ∂E/∂N via ψ(r, t) = ψ(r) exp(−iµt/~).

µψ(r) =

(
− ~2

2m
∇2 + Vext + g|ψ(r)|2

)
ψ(r) (2.13)
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Note that here the condensate wavefunction is normalized to the total number of
particles N (i.e.

∫
dr|ψ(r)|2 =

∫
drn(r) = N) which also fixes the value of the chemical

potential, n(r) is the particle density of the system. The fact that the time evolution
of the ground state wavefunction is given by the chemical potential µ rather than the
single particle energy E as in the normal Schrödinger equation is a consequence of
the mean-field description of the interparticle interaction being proportional to gn(r).
ψ(r) is thus the ground state wavefunction of all the atoms occupying this lowest state
and not a single particle wavefunction.

Healing Length

In a box potential where the external potential in eq. (2.13) can be set to zero the
wavefunction will be defined by the kinetic and interaction energy only. At the borders
of the box potential the wavefunction must grow from 0 to some finite value. However
the steeper this growth, the more kinetic energy is stored in the system, such that there
will be a finite length scale ξ where the kinetic energy (Ekin ∼ ~2/2mξ2) is about the
same value as the interaction energy (Eint ∼ 4π~2an/m). Setting these terms to be
equal Ekin = Eint leads to

ξ =
1√

8πna
(2.14)

where ξ is called the healing length because it gives a measure over which distances
the condensate wavefunction can “heal” disturbances due to the potential. In exper-
iments with a typical particle density of n = 1014cm−3 and a scattering length of
a = 63a0, the healing length is in the range of 345 nm.

Thomas-Fermi Approximation

Most experiments work with atomic species with repulsive interaction (a > 0). Also
the atom numbers are quite large and the confining potential is moderate. In this
situation the kinetic energy of the condensate fraction is negligible compared to the
interaction energy and the Thomas-Fermi (TF) approximation applies. It is applicable
if Na/aho � 1, where aho = ~/mωho is the harmonic oscillator length and defines the
size of the ground state wavefunction in a harmonic potential2. The kinetic energy
term of eq. (2.13) is neglected and the particle density of the condensate resembles
the external potential:

n(r) =

{ µ−Vext(r)
g

for µ− Vext(r) > 0

0 else
(2.15)

Note that neglecting the kinetic energy compared to the interaction energy is in no
contradiction to the claim of a weakly interacting gas. The GPE describes the T = 0

2 with the geometic average of the trapping frequencies ωho = (ωxωyωz)1/3
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physics of the ground state of the BEC phase. Here the kinetic energy is always small
and interactions are important, whereas weakly interacting implies n|a|3 � 1.

The chemical potential is again fixed by the normalization condition and reads as
follows.

µ =
~ωho

2

(
15Na

aho

)2/5

(2.16)

The width of the condensate is calculated by setting µ = Vext(R
B
i ) and yields the

Thomas-Fermi radii for bosons:

RB
i =

√
2µ

mω2
i

= aho
ωho

ωi

(
15Na

aho

)1/5

(2.17)

Using these expressions in eq. (2.15) yields the Thomas-Fermi density profile in a
three dimensional harmonic trapping potential Vext(r) = 1

2
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2.1.4. Excitations of the Interacting BEC: Bogoliubov
Transformation

Up to this point only the ground state properties of the condensate fraction was of
interest and all excitations have been neglected. In the following small excitations
of the system will be allowed. These are assumed to be counterpropagating plain
waves characterized by a frequency ωi and complex amplitudes ui(r) and vi(r). The
energy of the ith excitation is ~ωi. In order to calculate the energy spectrum of these
excitations, we try to find solutions to eq. (2.9) of the form [39]

ψ(r, t) =

[
ψ(r) +

∑
i

(
ui(r)e

−iωit + v∗i (r)e
iωit
)]
e−iµt~ (2.19)

which describes small oscillations of the wavefunction around its ground state value.
Note that in this representation we still use the classical wavefunction ψ(r, t) rather
than the quantized field operator Ψ̂(r, t). Since the pertubations are assumed to be
small compared to ψ(r) ∼

√
n(r), only the linear terms in the complex functions u(r)

and v(r) are kept and the time-dependent GPE yields two coupled equations for those
functions:

~ωiui(r) =

(
− ~2

2m
∇2 + Vext(r)− µ+ 2gn(r)

)
ui(r) + gn(r)vi(r) (2.20a)

−~ωivi(r) =

(
− ~2

2m
∇2 + Vext(r)− µ+ 2gn(r)

)
vi(r) + gn(r)ui(r) (2.20b)
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By solving these, one can calculate the eigenenergies ~ωi of the excitations and thus
their spectrum. For instance in a uniform gas the spectrum reveals the Bogoliubov
dispersion law [40]:

~ω =

√
~2q2

2m

(
~2q2

2m
+ 2gn

)
(2.21)

where q is the wave vector of the excitation. For low momenta the spectrum is
linear (phonon-like) with ω = cq, where c =

√
gn/m is the sound velocity in the gas.

For large momenta q > 1/ξ the dispersion law is quadratic in q and thus shows a
free-particle like behavior ω = ~q2/2m.

The quantity
∫
dr(|ui|2 − |vi|2) = Ñ can be identified as the number of excitations

Ñ =
∑

i α̂
†
i α̂i in the system when comparing to the quantized version of eq. (2.19):

Ψ̂(r, t) =

[
ψ(r) +

∑
i

(
ũi(r)α̂ie

−iωit + ṽ∗i (r)α̂
†
ie
iωit
)]

e−iµt~ (2.22)

Here α̂†i and α̂i with i being the quasiparticle index create and annihilate a quasi-
particle in the excitation spectrum. By requiring bosonic commutation relations for
α̂i and α̂†i one finds the normalization condition for the ũi(r) and ṽi(r):

|ũi(r)|2 − |ṽi(r)|2 = 1 (2.23)

With this transformation the Hamiltonian can be diagonalized in the Bogoliubov
approximation and one finds the same energy spectrum as in eq. (2.21). Note that
even at zero temperature the number of excitations is still finite, although very small.

The Bogoliubov transformation is valid as long as the occupation number of the
quasiparticle states Ñ � N is small compared to the total atom number N. Otherwise
the linearization of eq. (2.19) in the complex functions ui(r) and vi(r) would not be a
good approximation anymore and higher order terms had to be included.

2.2. Degenerate Fermions

In the previous section the theoretical description of weakly interacting Bose gases has
been recalled. The following section is dealing with fermions. In this case the Pauli
exclusion principle requires an antisymmetric wavefunction under particle exchange
which has dramatic consequences for the properties of the gas. In the bosonic case a
macroscopic occupation of the ground state leads to Bose-Einstein condensation and
a mean-field model could be developed to describe the behavior of this state. In the
case of fermionic atoms, the Pauli exclusion principle however forbids an occupation
number larger than 1 for every state, such that at low enough energies the fermions
will pile up in a row filling the traps eigenstates from the ground state on up to the
highest occupied state at the Fermi energy EF. The mean occupation number of state
i with the energy Ei follows from the Fermi-Dirac statistics:
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〈ni〉 =
1

exp [β (Ei − µ)] + 1
T→0
=

{
1 for Ei < µ
0 for Ei > µ

(2.24)

where β = 1/kBT and kB is the Boltzmann constant. Ei = p2/2m + Vext(r) is the
energy of particle i in an external potential Vext(r). Again, the chemical potential is
fixed by the normalization condition

Ns =
1

(2π~)3

∫
d3rd3p 〈ni〉 (2.25)

with Ns being the number of atoms in a specific spin state s. In the case of vanishing
temperature the chemical potential is the energy of the last occupied state which will
be denoted by the Fermi energy EF. In this case and for large atom numbers in a
harmonic confinement, the above normalization condition yields the Fermi energy as
follows:

EF ≡ kBTF = ~ωho(6N)1/3. (2.26)

Here the Fermi temperature TF, related to the Fermi energy has been introduced.

Thomas-Fermi Approximation for Fermions

Using the Fermi energy one can express the density distribution nF(r) in coordinate
space in a similar way as in the bosonic case. The T = 0 limit of eq. (2.24) is integrated
over all momenta |p| <

√
2m(EF − Vext(r)):

nF(r) =
8

π

N

RF
xR

F
yR

F
z

[
1−

(
x

RF
x

)2

−
(
y

RF
y

)2

−
(
z

RF
z

)2
]3/2

(2.27)

where the RF
i = aho(48N)1/6ωho/ωi denote the zero temperature widths of the den-

sity distribution. This derivation is valid as long as the Fermi energy is much larger
than the level spacing ~ωi of the trap. This density profile is sometimes also referred
to as the Thomas-Fermi profile.

2.3. Polaron Problem

Up to know the description of a single component Bose gas at low temperatures and
fermions in the mean-field limit has been discussed. But what happens if an impurity
of a second species is added to the system? Such systems are already known from
condensed matter physics where impurities always degrade the samples. An example
is the electron, moving through an ionic crystal lattice. The crystal lattice has its own
excitation spectrum revealing a dispersion relation and the electron interacts with
these lattice oscillations. This system – electron plus accompanying lattice excitations
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– can be described as a new quasiparticle—the polaron. A review of the theoretical
concepts, describing this system can be found in [41].

A system of one impurity atom being placed into a background BEC should also
show a similar behavior. The impurity can travel through the background gas where
in contrary to the condensed matter system the mutual interaction strength can be
chosen almost arbitrarily using Feshbach resonances.

2.3.1. Condensed Matter Treatment

As pointed out by Tempere et. al. [42] the ultracold atomic system can be mapped
onto the Fröhlich polaron Hamiltonian [18]. In the following, the results shall be
explained briefly along the lines of ref. [42].

The Fröhlich Hamiltonian of a slow3 moving impurity (electron with bare mass me

in the condensed matter system) trough an ionic crystal lattice reads as:

Ĥpolaron =
p̂2

2me

+
∑
k 6=0

~ωkb̂†kb̂k +
∑
k 6=0

Vke
ikr
(
b̂k + b̂†−k

)
, (2.28)

where the first term is the kinetic energy of the electron and the second term the
excitation spectrum of the ionic crystal lattice, i.e. the phonons with energy ~ωk. The
b̂†k and b̂k are the phonon creation and annihilation operators fulfilling the bosonic
commutation relations.

[
b̂k, b̂

†
k′

]
= δk,k′

[
b̂k, b̂k′

]
= 0

[
b̂†k, b̂

†
k′

]
= 0 (2.29)

The last term of eq. (2.28) describes the electron-phonon interaction with Vk being
the k component of the Fourier transform of this interaction potential. The interaction
strength can be expressed by a single, dimensionless interaction parameter α which
denotes the electron-phonon coupling [18].

If this coupling is weak, the electron can propagate through the crystal as a free
particle. The weak coupling to the ionic lattice can be written as a contribution to
the mass, such that the polaron mass will be the bare electron mass plus a small
contribution due to the interaction with the lattice phonons. This effective mass
description allows to use the same description for the electron movement as in the
absence of electron-phonon interaction. The effective mass m∗ of the moving polaron
will be m∗ ' m(1 + α/6) and polaron energy will be the energy of the free moving
electron – with a modified mass – plus a small correction due to the interaction with
a low energy (i.e. k = 0 in the dispersion relation) lattice phonon E ' ~2k2/2m∗ −
α~ωk=0.

If the electron-phonon interaction is very large, the potential energy due to local
lattice deformations can exceed the kinetic energy of the electron. The electron is

3slow in this context means: the ionic crystal lattice can adapt to the presence of the electron
disturbing the lattice and retardation effects can be neglected
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dressed with a phonon cloud [41] and gets localized to a single lattice ion. In this
regime the effective mass of the polaron depends strongly on the coupling parameter
m∗/m ∝ α4. This localization of the electron and therewith also the localization of
the polaron is predicted to show up in a sudden mass increase. If the electron is
interacting with acoustic phonons, this increase is predicted to be a mass jump over
several orders of magnitude [43].

In order to map this system onto an impurity atom moving through a background
BEC, the Hamiltonian of this system has to be considered [42]:

H =
p2

2mI

+
∑
k

εkâ
†
kâk +

1

2

∑
k,k′,q

VBB(q)â†k′−qâ
†
k+qâkâk′ +

∑
k,q

VIB(q)ρI(q)â
†
k′−qâk′ (2.30)

The â†k and âk are the boson creation and annihilation operators correspondingly

to the b̂ in eq. (2.28) and act on the background atoms with wavenumber k, mass mB

and energy εk = −µ + ~2k2/2mB. Thus the second term in eq. (2.30) corresponds
to the kinetic energy of the bosonic background atoms and the third term describes
the intraspecies interaction of the background via the interaction potential VBB. The
first and fourth term describe the kinetic energy and the interspecies interaction of
impurity to background via the interaction potential VIB respectively and ρI(q) denotes
the Fourier transform of the impurity density. In the Bogoliubov approximation this
Hamiltonian reduces to:

H = EGP+N0VIB(0) +
p2

2mI

+
∑
k 6=0

Ekb̂
†
kb̂k

+
∑
k 6=0

√
ξkN0

Ek
VIB(k)ρI(k)

(
b̂k + b̂†−k

) (2.31)

Similar to eq. (2.28) here the b̂†k and b̂k create and annihilate Bogoliubov excitations.
Also these excitations follow the known dispersion relation similar to eq. (2.21):

Ek =
√
ξk (ξk + 2N0VBB(k)), (2.32)

which is linear for small k. ξk = ~2k2/2mB is the single particle energy of a back-
ground atom. EGP is the energy related to the GPE of the background atoms only.
The Hamiltonians (2.28) and (2.31) can be mapped onto each other by choosing

~ωk = ck
√

1 + ξ2k2/2 (2.33)

Vk = gIB

√
N0

(
ξ2k2

ξ2k2 + 2

)1/4

(2.34)

(2.35)
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Figure 2.3.: The variational mass parameter M of the impurity atom [42] as a function of
the coupling parameter α. The different colors correspond to different temperatures
β = 1/kBT . The effective mass of the polaron is to a good approximation given
by mpol = mI + M where mI is the mass of the bare impurity, such that M/mI

corresponds to the effective mass increase of the polaron. The plot is taken from
[42].

where ξ = 1/
√

8πaBBn0 is the healing length of the condensate and c the speed of
sound. The polaron coupling constant in this context reads:

α =
a2

IB

aBBξ
. (2.36)

This quantity will also be used in the next chapters, where we tackle the polaron
problem numerically.

Tempere et al. solve the Fröhlich Hamiltonian using a Feynman path integral ap-
proach that is valid at all coupling strengths α and calculate the effective mass of the
impurity, fig. 2.3, as a function of α. At small coupling strengths α, where the im-
purity is coupled weakly to the background BEC, the effective mass increases linearly
with α, consistent with a pertubative approach of the impurity-background coupling.
When α is increased above the critical value of αcrit ∼ 3.5, the behavior changes dra-
matically. The effective mass increases rapidly with increasing α, although no mass
jump as in the case of acoustic polarons is observed. As the temperature is increased,
the crossover from weak to strong coupling becomes less dramatic and smears out as
T → Tc of the background BEC. The strong increase of the effective mass is identified
with a crossover from a quasifree to a self-trapped impurity.

26



2.3.2. Cold Atomic Gases Perspective

Cold atomic gases offer a variety of polaron-type model systems. Recently, experiments
at MIT [44] and ENS [45] observed a polaronic behavior when studying an imbalanced,
degenerate Fermi gas in the unitarity limit.

Unitarity in this context describes an interacting system, where the interparticle
scattering length a exceeds the interparticle spacing n−1/3 ∝ k−1

F by far, such that the
dimensionless interaction strength 1/kFa tends to zero. kF refers to the Fermi wave-
vector which is defined as kF =

√
2mEF/~. In these systems the scattering length

a cannot be of relevance to describe the behavior of the system. The only relevant
length scale is the interparticle distance n1/3, the system is said to be universal [46].

Both groups at MIT and ENS study a two component Fermi gas of 6Li, where
one component – say |↑〉 – has a majority concentration and only a few percent |↓〉
atoms are immersed into the Fermi sea of |↑〉 atoms. The MIT group measures the
response of the strongly imbalanced mixture on rf photons, thus spectrally resolving
the excitation spectrum of the system [44]. They observe a spectral response in the
minority component, identified as a Fermi-polaron, at large interaction strengths. As
the interaction strength is decreased, the Fermi-polaron response vanishes until the
formation of molecules in both spectra is observed. The position of the polaron peak in
their measured rf-spectrum corresponds to the polaron binding energy, which is below
the molecular binding energy for their set of parameters. They observe a vanishing
polaron signal, as soon as molecules are observed.

The ENS group investigates the oscillation modes of a Fermi spin mixture at uni-
tarity. As the imbalance is increased (i.e. the relative number of minority atoms
is reduced), they observe a second frequency in the oscillation of the minority com-
ponent. This frequency is identified to be originating from Fermi-polarons with an
effective mass of meff/m = 1.17(10) [45]. In another experiment at the ENS group,
the equation of state of a universal Fermi gas is mapped out and the effective mass of
the Fermi-polaron at unitarity is measured to be meff/m = 1.20(2) [47].

Recent theoretical work [48, 49, 50] allows to draw the following picture of the situ-
ation: Starting with a degenerate Fermi gas of |↑〉 atoms and immersing one fermionic
|↓〉 impurity at small repulsive interparticle scattering lengths a > 0, the impurity
atom will form a dimer with exactly one |↑〉 atom. The dimer will be deeply bound
and the bond length will be much smaller than the interparticle distance. The dimer
can be viewed as a molecule of mass 2m. Following the dimers binding energy into the
unitarity limit (a → ∞), reveals a vanishing binding energy hitting the free particle
threshold at 1/kFa = 0. Nevertheless , this simple picture of a two-body bound state
is only true in the limit of small a such that 1/kFa � 1. As the scattering length
increases, the bound state is a many-body effect, including particle-hole excitations of
the |↑〉 Fermi sea of low order [51].

As the interaction parameter approaches 1/kFa ' 0.9, the bound dimer state is
no longer the ground state of the system, but a |↓〉 atom, dressed with a localized
cloud of |↑〉 atoms—the Fermi-polaron. Accounting a system of a single |↓〉 fermion
in a sea of |↑〉 atoms and allowing only single particle-hole excitations in the system,
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describes the ground state of the Fermi-polaron sufficiently. The transition from the
Fermi-polaron to a bound state being the ground state of the system is a 1st order
phase transition.

As a reminder, these measurements have been performed using a fermionic impurity
immersed into a Fermi sea of background atoms. A reason for the upper bound of the
polaron mass to meff/m = 1.20(2) [47] might be, that the mass increase is due to single
particle-hole excitations of the Fermi sea. Although measured at unitarity, the higher
order particle-hole excitations do not contribute to the polaron energy [51] and there
is also no other energy scale present that could influence the polaron. Furthermore,
the increased interspecies scattering length between the |↓〉 particle and the |↑〉 Fermi
sea leading to single particle-hole excitations also determines the interaction between
the formed particle-hole pair and the Fermi sea.

In contradiction, in a system of bosonic background the effective mass of the impu-
rity atom is not bound to such a low value but seems rather to be unbound [42]. Here
the impurity is interacting with the Bogoliubov modes of the background, having a
bosonic character. Up to the authors knowledge, there are no published results involv-
ing an impurity atom in a bosonic gas of background atoms with tunable interaction.
This system will be studied in the following chapters using a rather simple mean-field
approach to the BEC-impurity problem. The results will be presented in chapter 4
and will be compared to the many body approach of Tempere et. al..
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3. Numerical Methods

In this chapter the reader will be introduced to a mean-field description of two inter-
acting atomic species, since this will be relevant to understand the polaron concept
in the ultracold atom context. A two-component GPE will be solved numerically in
a spherically-symmetric potential and a measure of the effective mass of the impurity
atoms will be presented. The next chapter will present the numerical solutions of
the two-component GPE obtained, using the methods presented here. The system of
interest should contain a large background BEC in a moderate trap (≡ ionic crystal
lattice), such that the wavefunction in the center is almost flat and the single (or few)
impurities can be localized in a region of almost constant background density using a
tight confinement.

3.1. Two-Component GPE

Considering a system of two bosonic atomic species (denoted by the indices 1 and 2
respectively) in an external potential Vext,i(r) the GPE (2.13) can be written as follows.

µiψi(r) =

[
− ~2

2mi

∇2
i + Vext,i(r) + (Ni − 1)gii|ψi(r)|2 +Njgij|ψj(r)|2

]
ψi(r). (3.1)

In this notation µi is the chemical potential, gii = 4π~2aii/mi the intraparticle
interaction and gij = 2π~2aij/mij the coupling constant between the different species
i and j. mij = mimj/(mi +mj) denotes the reduced mass. The wavefunction ψi(r) is
normalized to 1 such that

∫
|ψi(r)|2dr = 1.

In general, solving this equation in three dimensions for any given potential shape
is a hard computational task. The particle density needs to be discretized on a grid
with Ngrid points with spacing dr as shown in fig. 3.1. dr needs to be small enough
such that the density n(k× dr), where k = [1, Ngrid], changes considerably little, such
that the discretized wavefunction is a good approximation of the continuous one. An
imaginary time propagation algorithm [52] works if the number of grid points Ngrid is
not too large. If a very localized impurity should be considered, a fine grid is required.
But nevertheless the grid must be large enough to capture the large dimensions of the
background BEC, which increases the number of grid points to a very large value. A
three-dimensional algorithm without introducing any symmetry in order to reduce the
grid size, will be thus very memory space consuming and cannot be calculated.

The question that should be discussed is how the presence of the background BEC
influences the properties of the impurities and vice versa. The impurity density will be
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Figure 3.1.: Particle density discretized of a grid with spacing dr. The number of such
discrete steps is Ngrid.

peaked in the center of the background gas, and requires a fine grid. For this reason
some simplifying assumptions concerning the trapping geometry will be made.

Spherically Symmetric GPE

The trapping potential is in the following assumed to be a spherically symmetric
harmonic oscillator. Suppose that Φ(r) = rψ(r), am = m2/m1 is the mass ratio and
aω = ω2/ω1 is the ratio of trapping frequencies for the different species. The harmonic
oscillator length aho =

√
~/m1ω1 for species 1 serves as a natural scaling factor. In

this case the two-component GPE (3.1) reads:

µ1Φ1(r) =
~2

m1

[
−1

2

∂2

∂r2
+

1

2

r2

a4
ho

+ 4π(N1 − 1)a11
|Φ1(r)|2

r2

+2πN2a12
1 + am
am

|Φ2(r)|2

r2

]
Φ1(r)

(3.2a)

µ2Φ2(r) =
~2

m1

[
− 1

2am

∂2

∂r2
+

1

2
ama

2
ω

r2

a4
ho

+ 2πN1a12
1 + am
am

|Φ1(r)|2

r2

+4π(N2 − 1)
a22

am

|Φ2|2

r2

]
Φ2(r)

(3.2b)

In order to solve this set of differential equations numerically, a computation grid has
to be introduced and thus the solution is discretized on this grid. In first approximation
the 2nd derivertive takes the following form with dr being the gridspacing and k the
grid index ranging from 1 to Ngrid.

∂2Φ

∂r2
→ Φk−1 − 2Φk + Φk+1

(dr)2
(3.3)
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Matrix Diagonalization and Eigenfunction Search

When rewriting equations (3.2) on a discrete grid, the problem of solving these differ-
ential equations reduces to a diagonalisation of a tridiagonal matrix for each species.
Both matrices are coupled via the mutual interaction of impurity and background
atoms. This can be done very efficiently using Matlab’s sparse matrix notation. The
principle diagonal of these matrices contains the kinetic energy Ẽk

kin,i = ~2/mi/(dr)
2

and the effective potential V k
eff,i, consisting of the harmonic oscillator potential, the

intraspecies interaction term and the interspecies interaction.

V k
eff,1 =

~2

m1

1

2

(kdr)2

a4
ho︸ ︷︷ ︸

harm. osc.

+ 4πa11(N1 − 1)
|Φk

1|2

(kdr)2︸ ︷︷ ︸
intraspecies interaction

+
1 + am
am

2πN2a12
|Φk

2|2

(kdr)2︸ ︷︷ ︸
interspecies interaction

 (3.4)

The secondary diagonals are filled with the couplings:

δ1 = − ~2

2m1

1

(dr)2
(3.5)

and in an analog way for species 2. The matrix to be diagonalized is a Ngrid×Ngrid

matrix with the following structure:

M1 =


V 1

eff,1 + Ẽ1
kin,1 δ1 0 · · ·

δ1 V 2
eff,1 + Ẽ2

kin,1 δ1

0 δ1 V 3
eff,1 + Ẽ3

kin,1
...

. . .

 (3.6)

Solving the coupled GPE (3.1) has now been reduced to solving the following eigen-
value problem:

µi


Φ1
i

...
Φk
i

...

Φ
Ngrid

i

 = Mi


Φ1
i

...
Φk
i

...

Φ
Ngrid

i

 (3.7)

The smallest eigenvalue of species i is the chemical potential µi if the corresponding
eigenvector Φi resembles the ground state wavefunction.

The basic idea of the numerical code is very simple. The starting point is de-
termined by a qualified guess, which in this case is a normalized gaussian. Then
the effective potential for both species is calculated, the resulting tridiagonal ma-
trix is diagonalized and the eigenvector Φi, new corresponding to the smallest eigen-
value is determined. The wavefunction for the next iteration step is computed by
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Φi =
√

(1− ε)|Φi, old|2 + ε|Φi, new|2 following the ideas of Pu and Bigelow [53]. ε is a
number between 0 and 1 and ensures the convergence of the code. This computation
loop stops when the change of the smallest eigenvalue—the chemical potential µi—is
sufficiently small. After each loop the calculated wavefunctions are normalized such
that 4π

∑
k dr|Φk|2 = 1. In order to test the code some examples presented by Pu and

Bigelow [53] and Kalas and Blume [54] have been calculated with this code and good
agreement was found.

The eigenvector Φi associated with the smallest eigenvalue µi describes the ground
state of the condensate of species i. Note that in this calculation method the second-
smallest eigenvalue does not necessarily correspond to the first excited state of the
system, since the phase of the eigenvectors is by construction always flat. The energy
of the ground state can be increased just by modifying the phase while keeping the
density profile constant1. These states cannot be found using this code, since there is
no phase information in the formalism.

3.2. Effective Mass Determination

From the properties of the ground state wavefunction for every atomic species, one
can gain insight into several properties. First of all the peak density of species i is
given by n0,i = max (Ni|Φi|2). By inserting the ground state wavefunction into eq.
(3.4), the effective potential for each species can be calculated. This also provides a
handle on the effective mass of the minority component due to the interaction with
the background BEC.

The effective potential can be fitted quadratically in first order where the curvature
c is determined by c = meffω

2
i /2. But up to which distance from the center do we fit

the effective potential to determine the effective mass of the impurity? If the fitting is
done over the full grid size, basically to external potential is fitted and this procedure
will regain the bare mass of the impurity. The mutual interaction changes the effective
potential mainly in the center, where the impurity is localized. The root-mean-square
(rms) size σ

σ =

√
〈r2〉 − 〈r〉2 (3.8)

of the impurity seems to be an appropriate length scale there. But as can be seen
from fig. 3.2 (b), already at this scale the effective potential is highly non-harmonic. If
the fitting radius is reduced further, the effective potential is highly overestimated at
the wings of the impurity wavefunction which leads to an overestimation of the mass.
On the other hand if the fitting radius is increased, the details of the potential get
washed out and the mass is underestimated. These effects can be nicely seen in fig. 3.2
(a), where the effective mass meff of 1 6Li atom in the vicinity of 5×105 23Na atoms is
plotted. The blue (red) shaded area is the effective mass when fitting to the impurity

1this state would not be the ground state any longer, since ground state refers to the state with the
lowest possible energy
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Figure 3.2.: (a): Effective mass determination using different methods. The dots (red)
correspond to the effective mass using the rms width of the impurity wavefunction as
a measure. The blue (red) shaded area is the effective mass when fitting the resulting
impurity (background) potential up to a distance of 1σ to 6σ. (b): The effective
impurity potential (red solid line) is shown and the quadratic fits to this potential
(black dashed lines) up to 1σ and 6σ. For comparison, the impurity density (blue
solid) linetrapped in the effective potential is plotted. The intraparticle scattering
length of the background components is 63a0.

(background) potential. The fit is performed up to a distance of 1σ up to 6σ of the
impurity density. The large uncertainty region is due to the mentioned difficulties
when choosing the fitting region. This is the main drawback of this method.

A parameter that is very sensitive to slight changes of the potential in the center
regions however is the rms width σ of the impurity wavefunction. If the effective
potential is assumed to be quadratic in first order, the ground state density will be
that of a harmonic oscillator:

n(r) =N
(mω
π~

)3/2

exp

[
−mωr

2

~

]
(3.9)

⇒ m =
3~
2ω

1

〈r2〉 − 〈r〉2
(3.10)

Using eq. (3.10) the effective mass of the impurity atoms can be calculated using
the trapping frequency of the applied external potential and the width of the impurity
wavefunction as input parameters. The strength of this method is that it does no longer
rely on an exact estimation of the interaction radius that determines the effective mass.
Further, the approximation that the impurity density is a gaussian profile leads only
to small errors, compared to the previous mentioned fitting method. In the following,
we will therefore use the effective mass computed with this method.
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3.3. Validity Considerations

Now that we have developed a method to solve eq. (3.2) numerically to calculate the
ground state of a two-component BEC experiment in a spherical symmetric trap and
having a method at hand to determine the effective mass of the impurities, we need
to remember the validity of this method.

First of all, the background component needs to have a large atom number and
not too high trapping frequencies in order to allow a mean-field description. For the
impurities the same argument is true, however when dealing with 1 impurity atom only,
the description stays valid since there is no intraspecies interaction. In this situation
even the statistics of the impurity atom is irrelevant – may it be of bosonic or fermionic
nature. The trapping frequency of the impurity component should be small enough,
such that the intraspecies interaction can modify the potential sufficiently. In contrast
to this, the trapping frequencies must be high enough to ensure that the potential
modified by the interaction does not favor the impurities to be trapped in a region of
space where no background atoms are present.

Since we are working with many impurity atoms in the experiment, the question
rises if these are necessarily degenerate. Assuming a bosonic impurity, the scaling of
the critical temperature Tc is the following:

TB
c

T I
c

=
ωB

ho

ωI
ho

(
NB

N I

)1/3

(3.11)

where the superscript B indicates the background species and I the impurity species.
This means, if the background is a BEC at Tc/2, the impurities are also degenerate
if the trapping frequency is by more than a factor of 5 larger than the one for the
background component – assuming 3 orders of magnitude more background atoms
than impurity ones. On the other hand to ensure a localization of the impurity atoms
inside the background BEC, the trapping frequency difference is almost always larger
than this factor of 5. This is the reason why the impurity is not just a bunch of atoms
but rather an impurity BEC.

If fermionic impurities are considered, the scaling of the critical temperature changes
slightly – see eq. (2.26). At equal trapping frequencies and atom numbers, the Fermi
temperature is by a factor of 61/3/0.94 ≈ 2 larger than the critical temperature for
BEC. This means that under the same conditions as in the boson - boson case, the
trapping frequency for the fermions must be at least a factor of 2.5 larger than the
one for the bosonic background. Here the same conclusion holds: many fermions im-
mersed in a bosonic background are not just a bunch of atoms but rather an immersed
degenerate Fermi gas.

Recapitulatory, this chapter gave an introduction to the numerical methods, used
to solve the problem of an impurity immersed in a bosonic background gas of atoms.
The problem was restricted to the spherically symmetric case and the resulting two-
component GPE was discretized on the calculation grid. A method to calculate the
effective mass of the impurity has been developed.
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4. Mean Field Simulation: 2
Component GPE

In the previous chapter the numerical methods have been presented, used to simulate
a system with a background BEC with repulsive interaction, trapped in an external
potential. A tightly confining trap immerses impurity atoms, which can be bosonic
or fermionic. The impurity atom number is assumed to be small compared to that
of the background and the trapping parameters are such that the impurity is always
localized in the center of this three dimensional spherically symmetric trap.

In the following, the results of this numerical simulation will be presented. The
first section will concentrate on a single impurity only, since this allows for a direct
comparison to the calculations done using Feynman path integral methods valid for
all coupling strengths by Tempere et. al. [42]. This ansatz is beyond the mean field
calculations presented here and it will be interesting to see both the similarities and
the differences. The second part of this chapter will deal with the situation that many
impurities are immersed in a background BEC – a situation that will be more relevant
for the experimental realization.

4.1. Single Impurity in a BEC Background

Here we will assume a background BEC of 23Na atoms in a spherical symmetric trap
with a trapping frequency of ωbg = 2π×100Hz. As the impurity component fermionic
6Li will be used. The atom number of the background component will be varied in
order to obtain results for different background densities and thus also change the
ratio of aho/ξ, which will determine the validity of the calculation, where ξ is the
healing length. The trapping frequency of the impurity atom will be chosen such that
the impurity is always localized within the background BEC and the interparticle
scattering length aIB will serve as a free parameter of the calculation. Note that we
will restrict ourselves to the case of repulsive interaction in the following. We will
also use the harmonic oscillator length of the background component aho as a natural
length unit. The peak densities will be expressed in atoms/cm3 and mass units in u
unless otherwise stated.

4.1.1. Impurity Localization

In order to study a polaron-type system using ultracold samples, the impurity atom
needs to be localized in the BEC background using an external potential. If this po-
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Figure 4.1.: Real space plot of the localization of the impurity atom (standard deviation
of the impurity cloud in red circles) in the background BEC (blue dots) as the
impurity trapping frequency ωI is increased. The width of a bare impurity is shown
with the red dashed line for comparison. Note the different scales of the axis. The
insets depict the density distribution of the background (blue) and the impurity
component (red) at very shallow and at very tight impurity confinement respectively.
Calculation parameters are: Nbg = 105, aBB = 63a0, mbg = 23u, ωbg = 2π× 100Hz,
NI = 1, aIB = 200a0, mI = 6u.

tential is too shallow, the impurity wavefunction will be separated from the BEC. Fig.
4.1 shows the transition from this phase separated impurity case (at small trapping
frequencies) to a localized state within the background gas. The interspecies scattering
length aIB = 200a0 is kept at constant value and only the trapping frequency ωI of the
external impurity potential is varied. As can be seen from the plot the width of the
impurity wavefunction drops dramatically when reaching higher trapping frequencies,
even below the width of the background gas. This corresponds to a localized impurity
within the background gas. Another observation is that the width of the background
gas stays almost constant (note the different scales for impurity and background com-
ponents!). However the width of the background wavefunction is a global measure and
does not tell something about the local behavior of the background gas on the length
scale of the localized impurity wavefunction.

4.1.2. Density Plots

Knowing that a too shallow impurity potential will not localize the impurity atom
inside the background BEC we choose ωI = 2π×2000Hz in the following. The question
arising is, how does the presence of the impurity atom affect to the local density of
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Figure 4.2.: Density (blue) and effective potential (red) plots of the background BEC (a)
and the impurity atom (b) for the denoted interspecies scattering lengths aIB. The
background densities are given in atoms/cm−3, the impurity density in units of the
peak density of the harmonic oscillator ground state and the effective potentials in
~ωI. The dashed line indicates the chemical potential of the impurity. Calculation
parameters are: Nbg = 5× 105, aBB = 63a0, mbg = 23u, ωbg = 2π × 100Hz, NI = 1,
mI = 6u, ωI = 2π × 2000Hz. 37



the background gas? Since only one impurity atom is assumed, no change in the
background component is expected as long as the scattering lengths are not tuned
away from their background value.

In fig. 4.2 the background (a) and impurity (b) densities as well as the resulting
effective potentials according to eq. (3.4) are shown. From the upper to the lower
panels the interspecies scattering length aIB is increased as denoted.

For zero interspecies scattering length both – impurity and background atoms – are
independent and the background density is characterized by a Thomas-Fermi (TF)
profile. This can be seen from the fact that the effective potential is flat in the
region where the atoms are. The atoms arrange such that the external potential is
balanced by the repulsive intraspecies interaction. Due to a decreasing background
density at the outer wings, the TF approximation is no longer fulfilled and the effective
potential deviates from the TF prediction which can be seen at the non-flat behavior
around r = 6aho in fig. 4.2 (a). While increasing the interspecies scattering length
this behavior changes only slightly. If aIB is increased further (third plot and fourth
plot), the impurity starts to burrow a hole in the background density. In this region
the Thomas-Fermi approximation is no longer valid as can be seen from the non-flat
effective potential. By increasing aIB further this dip in the background density gets
even deeper until no background atoms are present anymore in the vicinity of the
impurity atom.

On the right plots of fig. 4.2 the impurity density and effective potential is shown
corresponding to the same situation as in (a). The impurity density starts from a har-
monic oscillator form at aIB = 0. As aIB is increased the effective impurity potential
starts to form a dimple in the center. Note that these calculations are self-consistently
solved, thus the dimple gets more and more pronounced and the standard deviation of
the impurity wavefunction decreases. In the limit of very large interspecies scattering
lengths the impurity is totally bound by its effective potential created by the inter-
action with the background BEC and no longer by the underlying external potential.
This suggests that the sharpening of the impurity density is pronounced as soon as
this dimple in the effective potential supports a bound state by its own. The dashed
line in fig. 4.2 (b) depicts the chemical potential of the impurity atom. As can be seen
from the plots, the chemical potential is below the shallow external confinement for
large aIB, but inside the emerging dimple potential. A bound state can be supported
by the emerging dimple potential and the impurity is trapped therein and no longer
by the external potential.

In order to investigate this behavior further, the depth of this dimple potential
(inset of fig. 4.3) and the chemical potential of the impurity atom, plotted versus the
interparticle scattering length aIB is shown in fig. 4.3. At small scattering lengths
the dimple is not present and emerges only slowly as aIB increases. Also the chemical
potential increases linear with the scattering length. This behavior is consistent with
a first order pertubation theory, where E ∝ aIBnbg(0) is expected for the energy
of the system. As aIB approaches large values the slope of the chemical potential is
kinked—the impurity atom perceives another potential. At this kink the dimple depth
increases rapidly. The impurity potential is now very sensitive to slight changes in the
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Figure 4.3.: (a): Depth of the emerging dimple (blue dots) in the impurity potential V dimp
0

and (b) the chemical potential (red circles) of the impurity atom µI. The vertical
lines mark the points were the density profiles are shown in fig. 4.2. The inset
depicts the dimple depth V dimp

0 being the deviation of the impurity potential due to
the interparticle interaction compared to the aIB = 0 case. Calculation parameters
are: Nbg = 5 × 105, aBB = 63a0, mbg = 23u, ωbg = 2π × 100Hz, NI = 1, mI = 6u,
ωI = 2π × 2000Hz.

interparticle scattering length and mainly consists of the self-burrowed potential in
the background atoms. The clearly different slope of the chemical potential can be
interpreted such that no longer the external potential confines the atom but rather
the self-consistent potential arising from the interaction with the background atoms.
In this potential the effective mass of the impurity will be different from the bare mass
as will be shown later in this chapter.

4.1.3. The Coupling Parameter

In order to compare numerical results using different peak densities of the background
gas, we recall the polaron coupling parameter eq. (2.36), mapped to cold atomic gas
systems:

α =
a2

IB

aBBξ
(4.1)

Assuming a peak density of the background 23Na atoms of 1× 1014cm−3 and taking
the scattering lengths at zero magnetic field aNa-Na = 63a0 and aLi-Na = 14a0, the
coupling constant is on the order of α = 4× 10−4.
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entrance channels B0 ∆B abg Reference
|α, β〉 [G] [G] [a0]

6Li-23Na
|1, 1〉 0 14 [55]

|1, 1〉 795.6 2.1 13 [55, 11]

|1, 1〉 1185.7 8.7 12.67 [55]

23Na-23Na
|3, 3〉 0 53 [56]

|8, 8〉 0 63 [56]

|1, 1〉 907 1 63 [10]

|3, 3〉 1195 -4 63 [57]

Table 4.1.: Interspecies and intraspecies Feshbach resonances of the 6Li-23Na mixture which
might be of interest for the experimental tackling of the polaron problem. The num-
bering of the entrance channels of the atoms is determined by the increasing order of
energy at large magnetic fields, where the hyperfine states are dressed by the mag-
netic field. For 6Li α = 1 . . . 6 and for 23Na α = 1 . . . 8 in increasing order of energy,
see appendix A.

In order to vary the coupling strength of the polaron, there are two possibilities: (i)
vary the interspecies scattering length aIB, which goes quadratically into the coupling
strength. (ii) decrease the intraspecies scattering length of the background component
aBB. For both scenarios Feshbach ressonances are available and listed together with
the zero magnetic field parameters in table 4.1. The initial states of the collisions are
labeled by the initial Zeeman states of the atom. For a Breit-Rabi diagram of the
states with the labeling the reader is referred to the appendix A.

Ultimately, the limiting factor in both scenarios to increase α is the magnetic field
stability in the experiment. A detailed analysis can be found in [58]. Due to the width
of the 23Na-23Na resonance, the minimum achievable background scattering length
is on the order of aBB ≈ 0.3a0 at a magnetic field stability of δB/B = 10−5 which
limits the coupling constant on the order of α ≈ 10−2. On the other hand, using the
relatively broad 6Li-23Na resonance at 1186G, the interspecies scattering length can be
tuned to aIB ≈ 1000a0 which translates to α ≈ 2.3. As will be shown in the following
this coupling will be sufficient to reach the strong coupling limit, which favors this
resonance to be used in the experiment.

But how do we know from the numerical results that the impurity atom is in the
strong coupling regime?

In condensed matter theory, strong coupling refers to an electron localized to one
lattice ion. In this regime, the polaron can be viewed as an electron with a phonon
cloud attached to it. To translate this picture into the ultracold atom framework,
the Bogoliubov excitations are attached to the immersed impurity atom. Due to the
strong coupling of the impurity atom to the background gas and therewith to its
Bogoliubov excitations, the background density is strongly disturbed at the position
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of the impurity. The emerging dimple is analogue to a wavepacket in optics, where the
wavepacket forms by coherently adding many plane waves with different wavevectors
k as shown in fig. 4.4.

Figure 4.4.: Emerging wavepacket when coherently adding up plane waves.

4.1.4. Central Density

From this mapping, one would expect a strong, localized disturbance of the background
component as soon as the impurity is coupled strongly to the background—α is in the
strong coupling regime. Therefore we refer to strong coupling once the dimple depth
– as shown in fig. 4.3 – of the effective impurity potential changes dramatically while
varying the coupling parameter.
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Figure 4.5.: (a): central density of the background BEC vs. coupling parameter α. (b):
emerging depth of the dimple in the impurity potential. Calculation parameters are:
Nbg = 5 × 105, aBB = 63a0, mbg = 23u, ωbg = 2π × 100Hz, NI = 1, mI = 6u,
ωI = 2π × 2000Hz.

This behavior can nicely be seen in fig. 4.5, where the central density of the back-
ground component and the depth of the emerging dimple in the effective impurity
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Figure 4.6.: Central density of the background BEC vs. (a): coupling parameter α and
(b): interspecies scattering length aIB for different external impurity potentials as
indicated. Vertical lines indicate the interspecies scattering length aIB where the
impurity enters the strong coupling regime for different background densities nB.
Calculation parameters are: aBB = 63a0, mbg = 23u, ωbg = 2π × 100Hz, NI = 1,
mI = 6u. The atom number of the background BEC has been varied to obtain
results for different densities.

potential is plotted versus α. The system is in the strong coupling regime as α ex-
ceeds a critical value of αcrit ≈ 2.0 – 2.5.

4.1.5. Influence of the Impurity Potential

The differences to the results obtained by Tempere et. al. [42] are that they used a
homogenous background and no external impurity potential. In contrast we need to
assume a non-vanishing external impurity and background potential during the cal-
culations to obtain results to experimentally observable scenarios. Hence the question
arises, to what extend this trapping potential influences the behavior of the impurity
atom.

To study this question further, the central density of the BEC was calculated for
two different external impurity potentials as can be seen from fig. 4.6. The different
colors correspond to different atom numbers of the background BEC and consequently
to different background densities.

There are different features apparent from the plot: (i) A tight external trapping
potential of the impurity atom smoothens the crossing from the impurity being trapped
mainly due to the external potential, to a trapping due to a self-buried impurity
potential induced by the interaction with the background BEC.

(ii) As soon as the impurity is self-trapped by its interaction, the external impurity
potential has no influence anymore on the central density. This could already have
been guessed by the chemical potential as plotted in fig. 4.3. As long as the trapping of
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the impurity atom is determined by the external trap, the chemical potential depends
linearly on the interspecies interaction with the background. Once the impurity is self-
trapped, the increase in the interaction energy is compensated by a deeper self-buried
impurity potential—the chemical potential is nearly independent of the interaction and
alike the central background density is independent of the external impurity potential.

Moreover, as indicated by the vertical lines in fig. 4.6 (b) it can be seen, that
the kink in the central density of the background component occurs at lower aIB for
higher background densities nB. The impurity reaches the strong coupling regime at
lower interspecies scattering lengths the larger the background density nB is. Once the
impurity is self-trapped, the central density drops to the same value, independent of
the initial particle density of the background BEC. This density drop to the same value
is what one would have expected, as the interspecies interaction scales as ∝ aIBnB as
can be seen from eq. (3.1).

The fact that at larger densities, the drop in the central density occurs at smaller
aIB but larger α is due to the fact that α = a2

IB/aBBξ ∝
√
nB. The critical αcrit for the

strong coupling regime has a weak scaling with the background density [59].

4.1.6. Effective Mass Computation

An important quantity that was calculated by Tempere et al. is the effective mass of
the impurity atom. This quantity can also be measured in experiments in a very direct
way by exciting dipole oscillations of the impurity atom and measuring the resulting
oscillation frequency of the center of mass motion. Knowing the external trapping
frequency allows to attribute a deviating oscillation frequency to a modified particle
mass—the effective mass of the impurity.

However, extracting the effective mass from the spherically symmetric calculations
is not straight forward. Here the rms-width of the impurity wavefunction is used to
determine the mass as already described in the methods section in eq. 3.10.

Fig. 4.7 shows the effective mass meff (in units of the bare impurity mass mLi) of an
impurity atom immersed in a background BEC of sodium atoms of different densities.
It shows a strong increase of the effective impurity mass, as soon as the impurity is
self-trapped by the interaction. The impurity atom gets localized in the self-buried
dimple potential as was already indicated by the chemical potential plot in fig. 4.2
and fig. 4.3 and the drop of the central background density fig. 4.5.

By comparing figs. 4.7 (a) and (b) it can be seen that the interparticle scattering
length aIB is not the right parameter to characterize the interaction strength of the
impurity atom to the background component. The kink in the effective mass of the
impurity atom occurs at different aIB for different atom numbers of the background
gas. Those different atom numbers correspond to different peak densities and thereby
to different healing lengths of the background gas. If the effective mass is plotted
against the coupling parameter α, the position of the kink for different atom numbers
coincide. As α is increased further, the impurity gets localized into the background
component. At very large α, this localization length is even below the healing length
of the background gas. Here the applied mean-field description is no longer valid,
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Figure 4.7.: Effective mass of the impurity atom in units of the bare impurity mass, im-
mersed in a background BEC vs. (a) the coupling parameter α and (b) vs. the
interparticle scattering length aIB. The different colors refer to different densities of
the background BEC, resulting from different atom numbers used in the calculation
as denoted in the inset. aBB = 63a0, mbg = 23u, ωbg = 2π × 100Hz, NI = 1,
mI = 6u, ωI = 2π × 2000Hz.

which explains the deviation of the effective mass plots for different atom numbers at
large α.

A similar behavior of the effective mass of the impurity atom was predicted by
Tempere et. al. (fig. 2.3 in section 2.3.1), but there the strong mass increase was due
to a coupling of the impurity to Bogoliubov excitations of the background condensate.
There is no requirement that the condensate density needs to be depleted strongly to
provide an increase of the effective impurity mass [59]. A coupling to the Bogoliubov
modes up to the inverted healing length already sufficed.

In the mean-field picture applied here to the problem, excitations of the condensate
(i.e. Bogoliubov excitations) are neglected. A constant background density over the
range of the impurity would lead to a constant energy offset of the GPE and therefore
no increase of the effective mass is expected. However, the mean-field theory predicts
a localization and consequently an increase of the effective mass of the impurity atoms,
although the physical reason is different. Within the mean-field picture, the impurity
localizes into the background BEC due to a strong interaction. It is energetically
favorable for the impurity to deplete the background BEC up to the point where
this self-buried dimple potential is deep enough to support a bound state. At this
point, the impurity is no longer trapped by its external potential, but rather by the
interaction – although repulsive – with the background.

The critical coupling parameter αcrit where the impurity is coupled strongly to the
background gas differs between both methods, the Feynman path integral approach
and the mean-field ansatz used here. Tempere et al. estimate αcrit = 3, whereas
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the mean-field picture suggests αcrit ≈ 2. Beyond this critical coupling strength,
the effective mass of the impurity increases faster. However at very large coupling
strengths, the mean-field description is not applicable, since the impurity gets localized
on a length scale smaller than the healing length. Here the estimation of the effective
mass of the impurity fails.

4.1.7. Which is the Better Impurity: Na or Li?

Here we want to answer the question what happens if we would invert the mass ratio
of the impurity and background atoms and use a sodium impurity in the vicinity of
a background of bosonic 7Li atoms. How is the transition from a quasi-free impurity
atom to a self-trapped impurity influenced by this mass change?

With the use of fermionic 6Li the background would be a degenerate Fermi gas and
the mean-field methods applied here to calculate the background-impurity scattering
would fail. This scenario of a 23Na impurity immersed in a background BEC of 7Li
would be possible to realize in the experiments, although some complications would
arise. First, 7Li has a negative s-wave scattering length at zero magnetic field, which
limits the number of 7Li atoms that can be brought into quantum degeneracy. A
possible cooling scheme would be: load the lithium atoms from the MOT into a
magnetic trap with sodium atoms and evaporate the sodium. Lithium would still
be cooled sympathetically and the process can be stopped before all the sodium is
removed from the trap. After loading the sample into an optical dipole trap the
intraspecies scattering length of lithium can be tuned to positive values. In this way
sodium could serve as the impurity component. The question is, if the self-trapping
of the impurity atoms can be reached at lower interspecies scattering lengths, which
would loosen the requirements on the magnetic field stability in order to reach the
strong coupling limit.

In fig. 4.8 the situation of a 6Li impurity immersed in a background BEC of 23Na
and a 23Na impurity immersed in a background BEC of 7Li atoms are compared to
each other. The intraspecies scattering length of the background component is fixed
to 63a0 and only the interspecies scattering length is varied. In this way the difference
between both situations is a pure effect of the inverted mass ratio. The critical value of
the interparticle scattering length aIB at which the central density of the background
density drops, changes only slightly between both scenarios. However the central den-
sity drop is more pronounced when using 6Li as the impurity. This behavior can be
explained, since the coupling strength due to the intraspecies interaction scales in-
versely to the particle mass according to the GPE, eq. (2.13), whereas the interspecies
coupling strength scales inversely to the reduced mass that remains unchanged. In
the case of a light impurity immersed in a heavier background gas, this scaling favors
the interparticle interaction compared to the intraparticle one. Once the interparticle
interaction has overcome the trapping by the external potential, the impurtity atom is
self-trapped and only the intraparticle interaction in the background gas hinders the
background density to drop to zero immediately, favoring a light impurity immersed
into a heavy background gas.
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Figure 4.8.: Comparison of the influence of the impurity mass on the behavior of the back-
ground component. As indicated, the circles correspond to a 6Li impurity immersed
in a 23Na background and the dots to a 23Na impurity in a 7Li background. The
colors indicate different initial densities. The calculation parameters are aBB = 63a0,
ωbg = 2π × 100Hz, NI = 1, ωI = 2π × 2000Hz.

4.2. Many Impurity Case

Up to here we always discussed a single impurity atom immersed in a background BEC.
This situation is in close analogy to the condensed matter polaron. In the cold gases
context, one impurity atom interacts with the Bogoliubov modes of the background
BEC and thus gets self-trapped in the background. In contrast, if we consider many
impurities being trapped in a background gas, these cannot obviously be considered
as single particles forming many polarons. A bosonic impurity gas will rather form a
BEC and this BEC will interact with the background as a whole.

In order to study the case of many bosonic impurities in the following, we will
consider a background BEC of NB = 1 × 106 23Na atoms being confined in an ex-
ternal, spherically symmetric trap with ωbg = 2π × 100Hz. A second harmonic trap,
exclusively for the impurity atoms is overlapped such that their trap centers merge.
NI = 1×103 7Li impurity atoms are confined with a trap frequency of ωI = 2π×350Hz.
Note that the impurity species is changed to bosonic 7Li here in order to apply the
mean-field methods, since this mean-field description fails for an impurity gas of many
fermionic 6Li atoms.

In fig. 4.9 the central density of the background and the impurity gases are plotted as
the interparticle scattering length is increased. The rapid fall off of the central density
at aIB ≈ 45a0 corresponds to the phase separation of impurity and background gases:
At lower interparticle scattering length, both components coexist in the same region
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Figure 4.9.: Central density of the background (blue dots) and impurity (red circles) com-
ponents vs. interparticle scattering length between impurity and background atoms.
The calculation parameters are Nbg = 1 × 106, aBB = 63a0, ωbg = 2π × 100Hz,
NI = 1× 103, aII = 14a0, ωI = 2π × 350Hz.

of space. Above the critical interparticle scattering length, the background is pushed
away from the trap center, forming a sphere around the minority atoms. The critical
interparticle scattering length for this process to happen, depends on the number of
atoms in both components, background and impurities, which has already been studied
in detail [53]. As already discussed in subsection 4.1.5 for a single impurity, a tighter
external confinement of the impurity gas would smoothen the crossing from the mixed
to the phase-separated state.

But what makes the difference between the single impurity on the one hand and the
many impurity BEC on the other? In both cases the central background density drops
as soon as some critical interparticle interaction strength is reached. At this point the
strong interaction between the impurity and the background component pushes the
background gas out of the center of the trap, where the impurities are located. In the
many impurity limit, this process is referred to as phase-separation. Both components
segregate until two pure single component phases coexist in the trap, separated by a
small overlap region as described above.

In contrast, as the interparticle interaction is increased in the single impurity limit,
the impurity gets self-trapped by its interaction with the background BEC. This pro-
cess can be viewed as a strong interaction of a single particle with the Bogoliubov
modes of the background component. Adding many of these excitations in a coherent
manner can explain the dip in the background density. As the interparticle interac-
tion strength is increased, more Bogoliubov modes are excited and the localization
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gets more pronounced until the impurity atom is self-trapped within the background.
This process is in close analogy to the polaron concept, known from condensed matter.
Here a single electron interacts with the lattice excitations and can get localized to a
single lattice site, if the electron-phonon interaction is strong enough.

The difficulty is now the correct expansion of the single impurity polaron picture
to the case when more than one impurity is considered. If we assume two or three
impurity atoms to be confined in the background gas, their intraparticle interaction
has to be taken into account correctly. At this point there should be a fundamental
difference between bosonic and fermionic impurities. This cannot be done using this
simple mean-field ansatz employed in this work. Will those few impurity atoms form
single polarons that interact with each other? If they do so, which parameters affect
the crossing to a simple phase-separation as in the many impurity case? What is the
correct mapping of the few impurity limit to the single impurity and therewith the
polaron physics? What determines the interaction properties of those few polarons
besides the Bose or Fermi statistics?
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Part II.

Bose-Einstein Condensation of
Sodium

In this part of the thesis the experimental setup, built to study immersed systems
as discussed in the first part, is explained. The experiment started at the beginning
of 2007 with an empty lab. Using sodium and lithium as the elements to work with
seemed a good idea, since the largest degenerate Fermi gases reported so far was pro-
duced in the MIT group of W. Ketterle, working with this combination. Cooling a
gas of fermionic 6Li atoms into quantum degeneracy can be done in different ways,
however producing large degenerate fermionic samples forbids to evaporate 6Li di-
rectly during the evaporation process. The advantage of sodium as a refrigerant in
during evaporation is, that large sodium BECs can be produced. 6Li is only cooled
sympathetically and we aimed for a large degenerate Fermi gas, too. We started to
build the experiment from scratch, using a plugged quadrupole configuration which
be explained in more detail in the following chapter. This lead to the Bose-Einstein
condensation of sodium in the |F = 1,mF = −1〉 state in the end of the year 2008.
However, the atom number was not as high as expected. While trying to tackle this
problem, a failure of the cooling device of the magnetic coils broke the vacuum and
the coil setup.
We started in May 2009 with a complete re-design of the experimental setup, straight-
ening out some of the drawbacks of the old design. The first MOT with the new setup
was achieved in January 2010 and the first BEC of sodium in the |F = 2,mF = 2〉
state was produced in March 2010.





5. Trapping and Investigation of Cold,
Neutral Atoms

In this chapter, the reader will be introduced to the basic techniques used to trap
neutral atoms. The potential induced by a laser field will be discussed and the effect
of an external magnetic field on neutral atoms will be reviewed. At the final stage of
the experiment the atoms will be transferred into an optical dipole potential in order
to use the magnetic field to tune the interaction properties via the use of a Feshbach
resonance. Also the plugged quadrupole trap configuration uses an optical potential
as will be explained in more detail. At the end of the chapter, the two magnetic trap
configurations used in the experiment—the plugged quadrupole trap and the cloverleaf
trap will be compared to each other.

5.1. Optical Dipole Traps

In general, two types of forces can be distinguished for an atom interacting with a
light field.

(i) The dissipative force, occurring if an atom absorbs a photon from the beam and
reemits it afterwards spontaneously. Since the direction of the spontaneous emission
process is equally distributed among all directions of space, whereas the absorption is
directed, this process can be used to cool the atoms [60].

(ii) The dipole force [61], caused by the interaction with a laser field. Due to the

polarizability α of the atoms, the electric field ~E(~r, t) of the laser beam induces an
electric dipole moment ~p(~r, t), oscillating at the driving laser frequency ωL.

~p(~r, t) = α~E(~r, t) (5.1)

Averaging over the fast oscillating terms of the laser field, the induced dipole po-
tential reads:

Vdip = −1

2

〈
~p ~E
〉
t

=
1

2ε0c
<(α)I (5.2)

where the intensity of the electric field I = 2ε0c| ~E|2 has been introduced. The factor
1/2 is due to the fact that the dipole moment is an induced one, ε0 denotes the vacuum
dielectric constant and c the speed of light. The imaginary part of the polarizability
is connected to the off-resonant scattering rate Γsc as follows:
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Γsc =
1

~ε0c
=(α)I. (5.3)

The polarizability α can be calculated from a classical oscillator model of an electron
driven by an external electric field. The frequency of the driving field corresponds to
the laser frequency ωL and the eigenfrequency of the electron to the atomic transition
frequencies ω0. The polarizability reads [61]:

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2

L − iΓω3
L/ω

2
0

. (5.4)

This classical approximation is in good agreement with the quantum mechanical
calculation of an two level atom interacting with a radiation field, as long as saturation
effects of the transition can be neglected and the scattering rate Γsc is small compared
to the natural linewidth Γ.

Using the equations introduced above, the dipole potential and the scattering rate
read:

Vdip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ωL

+
Γ

ω0 + ωL

)
I(r) (5.5)

Γsc(r) =
3πc2

2ω3
0

(
ωL

ω0

)3(
Γ

ω0 − ωL

+
Γ

ω0 + ωL

)2

I(r). (5.6)

In the case of detunings ∆ = ωL − ω0 fulfilling |∆| � ω0, the second term in
equations (5.5) and (5.6) can be neglected and the relations hold:

Vdip(r) ∝ Γ

∆
I(r) (5.7)

Γsc(r) ∝
(

Γ

∆

)2

I(r) ∝ Γ

∆
Vdip(r). (5.8)

If the laser frequency is below the atomic transition frequency (i.e. red-detuned,
∆ < 0), the dipole interaction is attractive, such that atoms are attracted to the
maxima of the laser field. In the opposite case of blue detuning (∆ > 0), the dipole
interaction repels the atoms from the laser field.

Since the scattering of photons leads to heating of the confined atoms cloud, it is
favorable to use large detunings and high intensities to obtain a certain trap depth in
order to minimize the heating rate.

5.2. Magnetic Trapping

Another way of trapping atoms is to use the response of their permanent magnetic
moment µm to an external magnetic field. The applied external magnetic field modifies
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the energy spectrum of the atoms, and depending on the field strength different regimes
(Zeeman, Paschen-Back) can be reached [26, 62].

Alkali atoms have a hydrogen like structure with one electron in the outer shell
which carries a spin ~S. Its movement around the atom can be described by an orbital
angular momentum ~L, and the nucleus carries a spin momentum ~I. All of these
quantities give rise to magnetic moments, which can couple to each other and to an
external magnetic field.

In our experiment, the external field is not large enough to lift the coupling of
the electron spin ~S to the angular momentum ~L, such that the total electron angu-
lar momentum ~J is always a good quantum number, which gives rise to the atoms
finestructure:

~J = ~L+ ~S. (5.9)

If no external magnetic field is present, the nucleus spin momentum ~I couples to
the total electron angular momentum ~J . This coupling reveals the hyperfine structure
and causes the total angular momentum ~F to be a good quantum number:

~F = ~J + ~I. (5.10)

If the energy shift of the atomic levels in an external magnetic field B is small
compared to the hyperfine splitting, then ~F is a good quantum number and the energy
correction to the undisturbed atomic levels is:

∆EZeeman = µBgFmFBz. (5.11)

The magnetic field was chosen to point along the z-direction and µB is Bohr’s
magneton. mF and gF are the z-component of the total angular momentum and the
hyperfine-Landé factor respectively. This splitting is called the anomalous Zeeman
effect.

For strong fields, the energy shift due to the external field dominates the hyperfine
splitting and ~F is no good quantum number anymore. This regime is called the
Paschen-Back effect of the hyperfine structure. The hyperfine interaction is now only
a pertubation to the energy levels, which split according to the ~J and ~I quantum
numbers separately.

For 23Na, the crossover between those two regimes is in the range of 300G, meaning
that ~F is a good quantum number when working with magnetic traps, whereas for 6Li
the crossover is already at 27G.

Magnetic Potential

The magnetic potential of an atom in an external magnetic field reads:

Vm(r) = −µmB(r) (5.12)
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where µm = mFgFµB. Depending on the sign of the magnetic moment the atoms
will be in a potential minimum (maximum) when being located at the minimum
(maximum) of the magnetic field B(r), and are thus called low (high) field seekers.
Since the Maxwell equations forbid a maximum of the magnetic field in free space (i.e.
without a source at this point), the trappable states of an atom reduce to the low
field seeking ones, which are the |F = 1,mF = −1〉 and |F = 2,mF = 2, 1, 0〉 states
for 23Na in the 32S1/2 ground state.

In the ultracold atom community different trapping geometries are commonly used.
A straightforward way to create a magnetic field minimum is to use a set of coils in
anti-Helmholtz configuration. The magnetic field created there is linear around the
trap center and reads |B(ρ, z)| = B′

√
ρ2 + (2z)2 where B′ is the field gradient along

the weak axis and cylindrical coordinates have been used.
However, at (ρ, z) = (0, 0) the magnetic field vanishes, which is a problem for cold

atoms. The reason is the following: In eq. (5.12) it is assumed that the magnetic
moment of the atom is always aligned to the direction of the external magnetic field.
Only in this case eq. (5.12) is a scalar equation. This requirement is very well fulfilled
as long as the Larmor frequency ωL = µm|B|/~ is much larger than the trapping
frequency ω of the atom. Close to the trap center the magnetic field is very small
resulting in a very small Larmor frequency. As the atom passes the zero crossing of
the magnetic field, the magnetic moment cannot realign to the new direction of the
magnetic field. The quantization axis can flip with respect to the magnetic moment
and the atom is in an untrapped (high field seeking) state, thus getting lost from
the trap. This loss mechanism is called Majorana loss. More details can be found in
[63, 64].

There are several modifications of the quadrupole trap that avoid this problem. One
possibility is to add a fast rotating bias field to the quadrupole trap. The rotation
frequency of this field ωTOP must be large enough to create a time-averaged potential,
but smaller than the Larmor frequency ωL, such that the atoms magnetic moment
can follow the rotation of the external magnetic field, i.e. ω � ωTOP � ωL with
the trapping frequency ω . A time-orbiting potential (TOP) [65] is created where
the atom only sees a mean potential of harmonic form with a finite magnetic field
offset. The magnetic field zero rotates around the trap center with a frequency ωTOP.
High energetic atoms can still reach this potential surface and get expelled from the
trap. The rotating magnetic field forms a ring of zero magnetic field which is called
the circle-of-death. In order to reduce the trap depth and cool the atoms by forced
evaporation the amplitude of the rotating bias field and therewith the radius of the
circle-of-death is reduced.

5.2.1. Plugged Quadrupole Trap

A third possibility to prevent Majorana losses is to overlap a blue detuned (i.e. repul-
sive) dipole potential with the magnetic field zero, thus forming a hybrid trap. This
plugged quadrupole configuration was used in the original design of our apparatus.
The resulting potential is the sum of the magnetic quadrupole potential Vm and the
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Figure 5.1.: Combined Plug potential (red) along the strong axis of the quadrupole field,
assuming B′ = 660G/cm, w0 = 10µm, P0 = 1W. The blue dashed line is the
magnetic potential only.

In our configuration, we used a power of P0 = 1W taken from the pumping laser
at a wavelength of λ = 515nm, coupled into an optical single mode fiber. The beam
was focused onto the magnetic field zero with a waist of w0 = 10µm using a 120mm
achromatic lens. The resulting potential along the symmetry axis of the quadrupole
trap is plotted in fig. 5.1 assuming a maximum achievable field gradient of B′ =
660G/cm. The potential is only modified at the center of the trap, where the plug
beam is focused onto. The strong axis of the quadrupole field is directed along the
z-axis, and the plug beam is focussed along the y-axis.

Around the bottom of the trap, the potential can be approximated by a harmonic
oscillator potential, revealing the trapping frequencies [1]:

ωx = ωy

√(
4x2

0

w2
0

)
− 1 (5.13a)

ωy =

√
mFgFµBB′

2mx0

(5.13b)

ωz =
√

3ωy. (5.13c)

In this notation, x0 is the displacement of the potential minimum from the center of
the magnetic field minimum. For our trapping geometry, these trapping frequencies
are in the range of 1kHz.
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In our experiment for sodium atoms in the |F = 1,mF = −1〉 hyperfine state, a plug
power of P0 = 1W sufficed to suppress Majorana losses. However for lithium atoms
the detuning of the plug laser is larger, such that the plug potential for sodium atoms
is approximately a factor of 2 higher than for lithium. Also the mass of lithium
is smaller, which leads to an increased radius of the area where Majorana losses
can occur. A detailed discussion can be found in [64]. In order to trap lithium
in the |F = 3/2,mF = 3/2〉 stretched state, a plug power of 5W (2.5W to trap the
|F = 1/2,mF = −1/2〉 state) would be necessary. We cannot afford this high power
requirement, since we are limited in the available laser power of the pump beam.

5.2.2. Cloverleaf Trap

Another class of magnetic traps that use only dc-fields to create a harmonic potential
with a finite offset are the Ioffe-Pritchard type traps. In the discussion we will focus
on the Cloverleaf configuration, a design first reported in [66], since it provides the
possibility of spin-cleaning the loaded atomic sample as discussed in section 5.2.3.

A cut through our coil design is shown in fig. 5.2 where in this orientation another
coil set would be placed above this picture. It consists of different sets of coils to create
a 3D confinement. The first set of coils produces a radial gradient (gradient coils) of
0.44G/cm/A and 0.42G/cm/A in the perpendicular direction accordingly1.

In the first place a harmonic axial confinement of 0.77G/cm2/A is created by the
curvature coils (red in fig. 5.2). These consist of a set of coils with current flowing
in the same direction, creating a magnetic bottle neck potential with an offset field of
3.14G/A. In order to increase the curvature of the radial potential, a Helmholtz field
of 3.21G/A (created by the antibias coils in blue) is subtracted to get the trap bottom
close to zero. Fluctuations of the magnetic field are reduced by running both coils in
series by the same power supply. An additional bias current through the curvature
coils is added in order to avoid a zero crossing of the magnetic field along the axial
direction. This zero crossing occurs since the field produced by the antibias coils is
slightly stronger than the one produced by the curvature coils.

The finetune coils (yellow) are also in Helmholtz configuration and are used to do
fast magnetic field sweeps of 0.51G/A or – if only one coil is used – to apply a gradient
field for a Stern-Gerlach experiment.

The field gradient for the MOT is generated by using one curvature and one an-
tibias coil in different holders. They produce a gradient of 1G/cm/A. The magnetic
properties of our coil design is summarized in table 5.1. For more details about the
design of the cloverleaf trap the reader is referred to the appendix B.

Magnetic Potential

The magnetic field produced by the cloverleaf trap reads [21]:

1both values differ slightly because every gradient coil set is made of two types—clockwise and
counterclockwise ones like the direction of the flowing current—which differ in their winding
number by one.
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Figure 5.2.: Cut through our cloverleaf coils: in this depiction the atoms are trapped above
the coils. The coils are: antibias (blue), curvature (red), gradient (green) and fine-
tune (yellow). The arrows indicate the current direction in the coils.

B0 B′ B′′z
[G/A] [G/cm/A] [G/cm2/A]

antibias 3.21 (3.267) (2× 10−3)

curvature 3.14 (3.269) 0.77 (0.87)

gradient 0.44 / 0.42 (0.45)

finetune 0.51 (0.52)

Table 5.1.: Measured magnetic properties of the cloverleaf trap, the calculated values are
shown in brackets. The finetune coils are designed to be in perfect Helmholtz config-
uration.
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 (5.14)

which is only obtained by the symmetry of the system and Maxwell’s equations. In
order to calculate the atomic potential the absolute value of the magnetic field needs
to be calculated.

| ~B|2 = B2
0 +B0B

′′
z z

2 +
B′′2z
4
z4 +

(
B′2 − B0B

′′
z

2

)
ρ2 +

B′′2z
16

ρ4 +B′B′′z z(y2 − x2) (5.15)

Here cylindrical coordinates have been used with ρ =
√
x2 + y2. In the low tem-

perature limit (i.e. kBT � µmB) the atoms will be concentrated at the bottom of the
potential, corresponding according to eq. (5.12) to the bottom of the magnetic field.
Therefore eq. (5.15) can be expanded to quadratic order around (ρ, z) = (0, 0) and
reads:

|B| ' B0 +
B′′z
2
z2 +

1

2

(
B′2

B0

− B′′z
2

)
︸ ︷︷ ︸

B′′
ρ

ρ2 (5.16)

where B′′ρ is the effective radial curvature of the trap. This approximation holds
when loading a MOT of ∼ 250µK into the cloverleaf trap as long as B0 � 4G for
sodium in |F = 2,mF = 2〉. After compressing the cloud by ramping down B0 to
B0 ≈ 1G, the trap is operated in the linear regime, where the magnetic potential is
predominantly linear in the radial direction and harmonic in the axial direction. After
evaporatively cooling the atomic samples to lower temperatures, the trap is again
predominately harmonic. From equation (5.16) the trapping frequencies of a cooled
cloud can be deduced:

ωz/ρ =

√
µmB′′z/ρ
m

(5.17)

yielding maximal trapping frequencies of ωρ = 2π × 463Hz and ωz = 2π × 33Hz
for B0 = 1G in order to suppress Majorana losses. However the radial terms ∼ xz
in equation (5.14) cause some problems in the radial direction. As depicted in fig.
5.3 these terms give rise to additional minima of the magnetic field and therefore
instabilities of the trapping potential. These instabilities need to be at a region far
apart from the MOT region and occur at:

zinst = ±
(
B′

B′′z
− B0

2B′

)
. (5.18)

This requires high currents when loading the atoms from the MOT into the cloverleaf
trap.
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Figure 5.3.: Instable points of the trap. The contour lines depict the value of the magnetic
field in G as indicated. The minima at z 6= 0, but at finite x values are the instable
point of the trapping geometry. B0, B′ and B′′ have to be chosen such, that those
points do not overlap with the MOT region. Otherwise the atoms would be expelled
from the trap when loading them into the magnetic trap. The calculation parameters
are: B0 = 1G, B′ = 50G/cm, B′′z = 200G/cm2

After evaporation and loading the optical dipole trap the antibias coils can be used
to produce a large homogeneous magnetic field. Fast magnetic field ramps can be
done using the finetune coils, since their inductance is much lower. For a detailed
connection diagram the reader is referred to the appendix B.

5.2.3. Special Requirements in a Two Species Design

After the water leak in the cooling system lead to a overheating of the quadrupole
coils that broke our vacuum setup and the coil setup we decided to do a complete
redesign of our experiment. The old design had some weak points and we took it as a
chance to improve it. The plugged quadrupole setup was conceptually very easy but
there encountered some problems that are not easy to solve:

• As already mentioned, the available power of 1W of the plug laser beam would
not have been sufficient to trap lithium in one of the |F = 1/2,mF = −1/2〉
or |F = 3/2,mF = 3/2〉 hyperfine states. The created repulsive potential would
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have been too shallow to reduce the Majorana loss rate to a desirable value. The
most promising upgrade to the old setup would have been a two-plug scheme
while adding a second plug beam which is only slightly blue detuned to the
lithium transition line, thus creating a strong repulsive potential for lithium
while degrading the sodium plug potential only a little. Details on this proposed
scheme can be found in [64]. An additional plug beam, would have waisted a lot
of optical access, since it cannot be send trough the same fiber as the existing
one. The reason is the following: The facet of the plug fiber is cut under an
angle of 8◦2. This angle and a wavelength difference of approximately 150nm
between the high power plug beam and the proposed second, low power plug
would result in a displacement of the focus of the two beams by more than their
waist, due to the slightly different refractive index of the fiber.

• 6Li in a magnetic trap is only stable against spin-changing collisions when being
spin polarized to one of the trappable stretched states |F = 3/2,mF = 3/2〉 or
|F = 1/2,mF = −1/2〉. The latter one bends from low-field-seeking into high-
field-seeking at a magnetic field of ∼ 27G which corresponds to ' 300µK. Al-
though the Doppler temperature of lithium is only 140µK, we do not have much
hope to see any lithium atoms remaining in the trap, when being loaded together
with a rather mK hot sodium MOT. Therefore the |F = 3/2,mF = 3/2〉 state
has to be used. This favors sodium to better be in the |F = 2,mF = 2〉 state
since this combination is stable against spin-exchange. A crucial point for this
scheme is to get rid of the sodium atoms in the mF = 1 and mF = 0 states [67]
which can be easily done in a cloverleaf trap. This is due to the fact that the
Zeeman splitting of both states differs according to their different mF quantum
numbers. The trap bottom is now raised high enough such that atoms in those
different hyperfine states separate energetically by more than their temperature.
Atoms in the undesired states are removed, using resonant microwave photons
to transfer them into high-field seeking states that get expelled from the trap.
In a plugged quadrupole configuration there is no easy way tho achieve this.
The trapping frequencies at the bottom of the trap are in the range of 1kHz,
such that a spatial splitting due to the differential gravitational sag is negligible.
Far away from the plug the trap is linear such that no shift occurs between the
different hyperfine states.

In a TOP configuration it is fairly hard to raise the bottom of the trap to the
desired value of ∼ 80G, since this requires a large rotating magnetic field. The
same argument holds for a QUIC trap where the magnetic field at the bottom
of the trap is also fairly low. Another problem of the QUIC configuration is
the huge position shift of the trap center with respect to the symmetry point
of the anti-Helmholtz coils. This automatically introduces a less homogeneous
field over the sample, once it is loaded into the optical dipole trap. But in order

2We use FC/APC connectors in order to prevent multiple reflections between the fiber facet and
optical elements placed after the fiber, which would decrease the stability of the beam.
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to address a desired value of the scattering length between atoms precisely via
a Feshbach resonance, the applied magnetic field must be homogeneous across
the whole sample.

For these reasons we decided to use a cloverleaf trap in the new setup although the
collision rate—which determines the speed of evaporation—is inferior to the plugged
quadrupole trap.

5.3. Imaging

We use an absorption imaging technique to determine the information of our cold
atomic samples. A schematic view of the setup is shown in fig. 5.4. The atoms are
illuminated by a gaussian laser beam of intensity I0, having the right frequency and
polarization to excite the cycling transition |F = 2,mF = 2〉 → |F ′ = 3,mF ′ = 3〉 of
the sodium D2 line. The atomic cloud casts a shadow that is imaged onto a CCD
camera, using an objective. We use a Q-Imaging Retiga EXi camera, having (1392×
1040) pixels with a pixelsize of (6.45×6.45)µm. The objective is a Zeiss Plan-Achromat
S with a focal length of 100mm. We also installed a rough-imaging setup using a
singlet lens with a focal length of 150mm, providing a magnification of M = 1/2.52
in order to image the MOT and the uncompressed magnetic trap. This setup is set
under an angle of 50◦ and serves as an excellent monitoring tool. Its magnification
was determined, by releasing the trapped atomic cloud from a cooled magnetic trap
and monitoring their center of mass during their free fall due to the gravity. Applying
a fit to the center of mass motion yields the magnification of the rough imaging setup.

The magnification of the standard imaging setup could not be determined using this
method, since the images are taken along the direction of gravity. The magnification
was measured by comparing in-situ and time-of-flight images taken under the same
conditions with both imaging setups. This comparison yields a magnification of M =
2.3± 0.2 for our good imaging setup.

CCD camera

imaging light

glas cell
z

y

x

Figure 5.4.: Schematic view on the absorption imaging setup. The atoms (red) are illumi-
nated by a gaussian beam and imaged by an objective onto a CCD camera.

Since we use resonant light to image the atoms, a lot of energy is transferred to
them during an imaging pulse and the atoms are heated out of the trap. Therefore
every picture corresponds to a new experimental cycle. There are also non-destructive
methods like phase contrast imaging [21] available, but up to now we do not use these
techniques in our experiment.
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In order to obtain the atom number from the pictures, the following analysis is
done: In total 3 pictures per cycle are taken, which are: (i) a picture with the atoms
Ipic, (ii) a reference picture Iref, done under the same conditions as Ipic, but without
the atoms being present. This picture is to remove imperfections of the imaging light
distribution due to dust or imperfect optical elements in the imaging light path. (iii)
a background picture Iback, where everything is switched off in order to remove stray
light or the influence of hot pixels. Note that in the following we will not write the
position dependence of the intensities explicitly I(x, y) ≡ I.

From these pictures the relative transfer function T (x, y) can be derived, where
fringes are removed and only the atomic cloud survives.

T (x, y) =
Ipic − Iback

Iref − Iback

=
Iout

Iin

(5.19)

The imaging light is absorbed by the atomic cloud ñ(x, y, z) following Lambert-
Beer’s law as dI/dz = −ñ(x, y, z)σ(z)I(x, y, z) per length element dz, where σ(z) is
the on resonance scattering cross section given by:

σ(z) =
Γ

2

~ω0

Isat

1

1 + I/Isat

(5.20)

where Isat denotes the saturation intensity. The imaging procedure integrates the
3D atomic density profile ñ(x, y, z) along the imaging direction which is in our case
the z-axis, and reveals the 2D column density n(x, y) which is proportional to the
relative transfer function. Inserting these equations into the Lamber-Beer’s law and
integrating over to imaging direction yields:

n(x, y) =

∫ ∞
−∞

ñ(x, y, z)dz (5.21)

n(x, y) =
2

Γ

Isat

~ω0

[
− log

Iout

Iin

+
Iout

Isat

− Iin

Isat

]
(5.22)

Taking into account the finite size A of a pixel, corrected by the magnification M
of the imaging system, the atom number per pixel reads:

Npix =
2

Γ

Isat

~ω0

A

M2

(
OD +

Iout

Isat

− Iin

Isat

)
. (5.23)

Here the optical density OD of the atomic cloud has been introduced.

OD = − log
Iout

Iin

= −T (x, y) (5.24)

Since it is hard to measure Iout precisely, the second last term of eq. (5.23) is
neglected, which leads to a slight underestimation of the atom number.
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5.4. Deducing the Temperature

The temperature of an atomic cloud can be extracted from the absorption images. It
is deduced from the thermal gas inside a trap, or the thermal background of a BEC.
The density profile of a thermal cloud trapped in an external potential Vext is given
by the Boltzmann distribution:

n(r) = n0 exp

(
−Vext(r)

kBT

)
. (5.25)

In a 3D harmonic oscillator potential (e.g. the compressed cloverleaf trap at low
temperatures or the optical dipole potential) with Vext = 1

2
m(ω2

xx
2 +ω2

yy
2 +ω2

zz
2), the

density distribution has a gaussian shape.

n(r) = N

(
mω2

2πkBT

)3/2
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(
− x2

2σ2
x

)
exp

(
− y2

2σ2
y

)
exp

(
− z2

2σ2
z

)
(5.26)

The gaussian widths are fixed by σiωi =
√
kBT/m and ω is the geometric mean of

the trapping frequencies.
If the external potential is turned off and the atomic cloud can freely expand, the

atoms will move a distance r = pt/m according to their initial momentum p. The
widths σi(t) of the cloud will thus evolve as:

σi(t)
2 =

kBT

mω2
i

+
kBT

m
t2 (5.27)

σi(t)
2 =

kBT

mω2
i

(
1 + ω2

i t
2
)
. (5.28)

After a sufficiently large expansion time (ωt� 1), the density profile will be propor-
tional to the initial momentum distribution. Due to a finite resolution of the imaging
system used in the experiment, a precise measurement of the temperature is done by
imaging the atomic cloud after different times after switching off the trapping poten-
tial (time-of-flight images). Applying a fit to the measured widths of the cloud reveals
their initial temperature using eq. (5.28).

Due to the absence of interaction, the expansion of the thermal cloud is always
isotropic. In a BEC with non-vanishing interactions the Thomas-Fermi approxima-
tion applies and the density profile has an inverted parabola shape in a harmonic
confinement. The widths of the BEC is determined by the trap parameters according
to eq. (2.17): RB

i =
√

2µ/mω2
i . Releasing the BEC from the trap results simply in a

rescaling of those parabolic widths. Further details can be found in [68].
When releasing a partial condensed cloud from the trap both components, ther-

mal background and BEC fraction will result in a bimodal density distribution. The
thermal background will expand isotropically with a gaussian shape and the BEC will
keep its TF profile.
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6. Experimental Setup

In this chapter, an overview over the experimental setup is presented. The vacuum and
laser setup will be discussed and the main cooling steps needed to reach Bose-Einstein
condensation of sodium will be explained. Benchmark measurements at crucial cooling
steps will be reported. At the end of this chapter measurements, showing the Bose-
Einstein condensation of sodium atoms to two magnetic trap configurations will be
presented.

6.1. Vacuum System

Ultracold atom experiments have to be done under ultra high vacuum (UHV) condi-
tions. A sketch of the vacuum system is given in fig. 6.1, where the beam preparation
and the differential pumping stages are shown, and in fig. 6.2 where the UHV part of
the apparatus, including the Zeeman slower and the glass cell are depicted. A detailed
discussion about the design criteria of the vacuum setup can be found in [69].

Slight changes have been made compared to the setup described therein, concerning
the iris mounting (I) to ensure a better heat contact. We also welded the oven nozzle
(N) and the pumping tube between the sodium and lithium oven, because there en-
countered some leaks in the old design. The vapor pressures of sodium and lithium
differ by 4 orders of magnitude at the same temperature, which requires a differen-
tial pumping tube already between the sodium and lithium reservoirs. The operation
temperature of the ovens is 350◦C for sodium and 380◦C for lithium. In this way no
sodium is deposited in the lithium reservoir and the sodium flux can be adjusted by
the temperature of the sodium oven only. The oven nozzle (N) is heated to ≈ 500◦C to
prevent sodium and lithium to get stuck there. We deposited 50g of 23Na and about
5g of enriched 6Li in the oven. This amount of sodium typically lasts about 1 year of
operation.

The collimation of the atomic beam leaving the oven is done by the oven nozzle
(N, diameter of 4mm) and the first differential pumping tube (DP1, conical, smallest
diameter of 5mm, length 130mm) in fig. 6.1. Both are separated by 365mm and define
a full angle of aperture of 1.4◦. The rest of the atoms, leaving the oven under a larger
angle, are just a gas load to the background pressure and either stick to the iris (I),
to the walls of the chamber or need to be pumped in order to reduce the pressure to
5× 10−8mbar.

We installed a cold spot (CS), cooled down by two 120W peltier elements, in order
to get as much sodium as possible sticked to the walls of the first 6-way cross after
the oven, thus preventing them from degrading the ion getter pump (IP1, Varian
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Figure 6.1.: Schematic top view of the front part of the vacuum setup (not to scale). Only
components in the main plane are shown in solid lines. The grey shaded parts of
the angle-valve (AV) and the turbopump (TP) are mounted above the main plane.
The parts below the plane are the Ion Pumps (IP1,IP2) and the cold spot (CS). The
main parts in the plane are the Oven, where the sodium and lithium ovens as well
as the oven nozzle (N) and the iris (I) are indicated. The atomic beam shutter (BS)
used to hinder atoms from reaching the trapping region after the MOT is loaded,
an Ion Gauge (IG), two gate valves (GV1, GV2) and the differential pumping tubes
(DP1,DP2).

Diode 55l/s). There are also windows installed, allowing the sight perpendicular to
the Zeeman slower beam which serves as an excellent inspection tool. A shutter is
placed directly after the oven, which blocks the atoms after the MOT is loaded, thus
allowing long lifetimes of the atoms being trapped by the magnetic or optical dipole
trap.

If the sodium oven needs to be refilled, the first part of the vacuum chamber can be
vented independently from the glass cell region by closing the gate valve (GV1) and
venting the system using the angle valve (AV).

The differential pumping tubes DP1 and DP2 reduce the pressure by a factor of 100
and 10 respectively, thereby permitting a pressure below 10−11mbar in the glass cell
region. This is low enough to reduce the background gas collision rate of the trapped
atoms sufficiently to afford Bose-Einstein condensation.

The rear part of the vacuum chamber including the glass cell (GC), where all the
experiments take place is depicted in fig. 6.2. The cell is made of 4mm thick Quartz
glass and has a rectangular shape with outer dimensions of (40 × 40 × 150)mm. A
glass-metal transition with a free inner diameter of 38mm is attached to both face
sides, each of them equipped with a bellow to reduce the mechanical stress onto the
cell. The input port of the glass cell – in the direction the atoms reach the cell – has
a rotatable CF40 Flange. The sleeve of the flange has been demounted by Hellma,
the manufacturer of the glass cell, and we replaced it by a sectional one (S) that has
been attached to the cell after imposing the second part of the Zeeman slower onto
the glass-metal transition. This allows a smaller diameter of the second part of the
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Figure 6.2.: Schematic top view of the glass cell part of the vacuum setup (not to scale).
Only components in the main plane are shown. The spin-flip Zeeman slower is
depicted, the glass cell (GC) surrounded by the Cloverleaf coil mount (CL), an ion
gauge (IG) to monitor the background pressure, an ion pump (IP3) with attached Ti
sublimation pump, and angle valve (AV) where a turbopump (TP) can be mounted.
(S) indicates the sectional flange of the glass cell.

Zeeman slower and therewith a faster decay of its magnetic field.

An ion getter pump (IP3, Varian VacIonPlus 150 ) with an attached Ti-sublimation
pump keeps the pressure in this last part of the vacuum chamber well below the
detection limit of the attached Ion Gauge (IG), which is 2.7 × 10−11mbar. A CF40
window at the end of the vacuum chamber serves as the input port for the laser beam
of the Zeeman slower. Because of the corrosiveness of the window due to lithium
impact, this window is heated to ≈ 200◦ to increase the desorption rate of lithium,
thereby keeping the window transparent.

Zeeman Slower

The fist cooling stage of the experiment is a spin-flip Zeeman slower as described in
detail in [70]. The changes made, compared to the old design described therein include
a new cooling design of the slower tubes and a smaller diameter of the second part
of the Zeeman slower. This allows to reduce the distance between the slower and the
MOT, since the magnetic field of the slower decays faster compared to the old design.
The cooling is made such that the cooling water never gets in contact to any soldered
part of the pipes and the water connections are done using the Swagelok system.

The basic principle of a Zeeman slower is to apply a spatially varying Zeeman shift
on the atomic levels which compensates the changing Doppler-shift as the atoms are
slowed down by absorbing resonant photons out of a counter- propagating laser beam.
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AOM frequency Transition Detuning
[MHz] [MHz]

Spectroscopy 2× +71 crossover F ′ = 2, F ′ = 3 -71-29

MOT +82 F = 2→ F ′ = 3 -18

Repumper +1784 F = 1→ F ′ = 1 +5

Slower -200 F = 2→ F ′ = 3 -300

Imaging +100 F = 2→ F ′ = 3 0

Umpump +65 F = 2→ F ′ = 2 @ B=0G +23

Dark Spot +33 F = 1→ F ′ = 2 +4

Table 6.1.: Transitions and frequencies of the AOMs of the sodium setup, the detunings
are defined ∆ = ωL−ω0, such that negative detunings correspond to a red detuning.
Note that the spectroscopy-AOM is used in double-pass configuration.

In order to ensure a constant deceleration, the magnetic field needs to have a square-
root profile.

B(z) = B0

√
1− z

z0

+Boffset (6.1)

z0 is the length of the atoms path through the slower and B0 as well as the detuning
∆ of the slower light define the maximum capture velocity which is vcapt ≈ 700m/s in
the case of sodium. Boffset is negative in our case, which introduces a zero-crossing in
the magnetic field of the slower, where the atoms have to be repumped into the cycling
transition which is done using an EOM in our setup. The height of its sidebands is
approximately 30%. The atoms leave the slower with a velocity of vend ≈ 30m/s which
is below the capture velocity of our magneto-optical trap (MOT).

Before explaining the MOT in more detail, the reader is introduced to our laser
system, providing light at the right frequencies and intensities to enable the next
cooling step.

6.2. Sodium Laser System

The laser setup for the cooling of sodium is based on an actively stabilized, single
frequency ring-dye laser by Radiant Dyes which provides an output power on a day to
day basis of approximately 1W. It is pumped by a Coherent Verdi V10, a frequency
doubled, diode pumped Nd:YVO4 laser at λ = 532nm.

The dye laser is locked by Doppler free absorption spectroscopy to the F = 2 →
F ′ = 3 crossover peak. We only shift the frequency of the pump beam to ω0 + 2∆ω,
using an AOM in double pass configuration. The resonance condition for the atoms
therfore reads:
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Figure 6.3.: Scheme of the sodium laser system. The frequencies of the AOMs can be found
in table 6.1. NPBS specifies a non-polarizing beamsplitter.

pump beam: 0 =kv + ω0 + 2∆ω (6.2)

probe beam: 0 =− kv + ω0 (6.3)

⇒ v =− ∆ω

k
. (6.4)

Thus the atoms are resonant with light shifted by the single AOM frequency of ∆ω.
In order to lock the laser to the top of the crossover peak, we modulate the frequency
of the AOM and use the lock-in technique to produce a derivative of the spectroscopy
signal.

Since we use separate optical tables for the laser setup and the vacuum setup, all
beams – except the slower – are coupled to single mode fibers and send to the other
table. This strategy has several advantages: Firstly, the light leaving these fibers has
a clean TEM00 mode which is advantageous for laser cooling experiments. Secondly, a
realignment of the optics setup before the fibers has no influence on the beam positions
at the glass cell.

Contrary to the old setup [71], which was designed for high flexibility using double-
pass AOM configurations, the new layout is optimized for power efficiency. A scheme
of the sodium layout can be found in fig. 6.3 and the corresponding frequencies and
transitions are listed in table 6.1.

Since at a later stage of the experiment, laser cooling of 6Li atoms needs to be
included, these beam paths need to be thought of when designing the sodium setup.
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Our solution is to couple the lithium beams into the same optical fibers as the sodium
beams. Overlapping of both is done using dichroic mirrors before the fibers. The
lithium imaging, MOT, repump and spin polarizing (umpump) beams can be added
to the corresponding sodium beam paths. Thereby one has to take care that both
beams – sodium and lithium – need to be polarized along the same axis. For this
reason, overlapping both colors cannot be done with a simple polarizing beam splitter
cube without waisting 50% of the power. Moreover, since the hyperfine structure of
lithium 22P3/2 state cannot be resolved, repumping and MOT light for lithium cannot
be separated and are fed into the same beam path [58].

Lithium light is added to the slower beam path after the sodium light has been
passed through the EOM, modulating sidebands at 1720MHz for the repumer transi-
tion at the zero-crossing of the Zeeman slower. Afterwards the beam is expanded by
a telescope to a diameter of dslower ≈ 35mm.

A schematic of the output couplers of the MOT beams are shown in fig. 6.4. The
beam leaves the single-mode fibers being collimated by standard outcouplers and is
passed through a polarizing beam splitter cube to clean the polarization. After passing
a zero order λ/4 waveplate for λ = 633nm, made by CVI-Melles Griot, the beam is
expanded by a telescope to a final waist of 11mm. An iris in the telescope can be used
to shrink the beam size, which is an excellent tool when aligning the MOT beams onto
the magnetic field zero.

cleaning cube

lens

fiber coupler

iris

Figure 6.4.: Scheme of the MOT output couplers used in the new setup.

6.3. Magneto-Optical Trap

The slow atoms leaving the Zeeman slower and entering the glass cell are captured by
a 3D magneto-optical trap (MOT) [72]. Our setup consists of four beams, where two
beams in the plane of the weak axis of the MOT’s quadrupole field are retro-reflected
(x-y plane), and the other two beams are counter-propagating along the strong axis,
which is the z-axis. The MOT beams are slightly red-detuned with respect to the
cycling transition—see fig. 6.1. A gradient field is produced by 1 antibias and 1
curvature coil of our cloverleaf magnetic trap, providing a gradient of 10G/cm.

The repumper beam, being linearly polarized, is shone in under Brewsters angle.
The center of the beam can be blocked by an opaque spot in order to create a dark-spot
MOT [73].
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Figure 6.5.: Loading curve of a bright MOT yielding a loading rate of 8.2 × 109atoms/s
and a time constant of τ = 1.43s. The temperature of the sodium oven was 350◦C.

A loading curve of a bright MOT is shown in fig. 6.5. It is measured using a
photodiode to collect the fluorescence signal of the atoms. The loading curve is fitted
by

N(t) = N0(1− e−t/τ ) (6.5)

where the initial slope yields a loading rate of 8.2 × 109atoms/s. The fluorescence
signal of a dark spot MOT is a factor of 32 lower.

Dark Spot MOT

The achievable densities of a MOT are limited mainly due to two factors: Firstly,
reabsorption of scattered light coming from the center of the could (= region of highest
densities) balances with the confining force due to the red detuned cooling laser beams.
This process is known as radiation trapping. Secondly, light assisted collisions, where
an excited state atom collides with a ground state atom thereby releasing part of
its energy as kinetic energy to the scattering compounds. Both mechanisms set the
maximum achievable MOT density to approximately 1× 1011cm−3 [73].

The idea of a dark-spot MOT is to overcome these limits is to shield the repumper
light from the trapping center by an opaque mask, such that the atoms there are
trapped in a dark state (F = 1 manifold in our case). This manifold is dark with
respect to the cooling light. Whenever an atom leaves the trap center, it is brought
back to the cycling transition by the repumper beam and is cooled again until it
reaches the trap center.

The atoms at the MOT center will therefore be distributed among the F = 1
hyperfine states, whereas the atoms in the outer regions populate the F = 2 manifold.
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This technique increases the achievable sodium MOT peak density by an order of
magnitude in our experiment, measured after loading the magnetic trap.

6.4. Spin Polarizing and Purification

In order to maximize the transfer efficiency to the magnetic trap, the atoms need to
be pumped into the |F = 2,mF = 2〉 state. But the high optical density of the dark-
spot MOT limits the efficiency of a simple spin polarization scheme as for instance
applied in 87Rb experiments. Therefore other schemes have to be applied. When
loading the magnetic trap and only applying a repumper pulse to the dark-spot MOT,
about 1/5 of the atoms are transferred in the desired |F = 2,mF = 2〉 state. The
|F = 2,mF = 1〉 and |F = 2,mF = 0〉 states are also trapped but need to be removed
to prevent spin-changing collisions between atoms in different states.

The MIT group reported a scheme where they remove the unwanted states using a
microwave transition and gave the atoms a second chance to reach the desired state
by applying a laser pulse. In this way they achieve a transfer efficiency of 35% [67].

Another method of spin-polarizing was demonstrated by the Utrecht group using
atoms in |F = 1,mF = −1〉 state [74]. They used the fact that at large magnetic
field the distances between the optical transition lines of sodium atoms increase and
thus off-resonant scattering as well as reabsorption of spontaneous emitted photons
is minimized. In their paper they present a working scheme for the F = 1 manifold
increasing the transfer efficiency at maximum by a factor of 2.7. The trick is to
find a combination of magnetic field strength and optical transitions that are stable
against polarization imperfections and magnetic field instabilities while still reducing
the off-resonant scattering rate remarkably.

In the following a similar scheme for the F = 2 manifold is discussed. A scheme of
the applied optical transitions is shown in fig. 6.6. We define the quantization axis
for the spin-polarizing scheme using the finetune coils. The light is coupled into the
second port of the cleaning cube of one one the MOT beams as shown in fig. 6.4,
pointing along the symmetry axis of the finetune coils, thus defining the polarization
of the beam as good as possible.

Nevertheless, the role of polarization imperfections onto the spin-polarizing scheme
has to be considered, since this degrades the efficiency of the applied scheme. Therefore
the transition frequencies for σ+ and σ− polarized light have been calculated as a
function of the magnetic field B. The aim is to find a magnetic field, a repumper
and a umpump detuning at which the σ+ transitions are clearly favored compared to
possible σ− transitions. As can be seen from fig. 6.7 the situation is not as clear as in
the F = 1 case of [74]. The circle indicates the chosen magnetic field and detuning with
respect to the F = 1 → F ′ = 0 transition. The detuning of the beam, depopulating
the F = 1 manifold is fixed by the repumper setup of our MOT beams. As can be
seen from fig. 6.7 (a), this beam is always close to resonance with the σ+ transition
into the |F ′ = 1,mF ′ = 0, 1〉 states. Only at large magnetic fields, those transitions
split further apart, which sets an upper bound on the magnetic field. From fig. 6.7
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Figure 6.6.: Scheme of the applied spin-polarizing transitions. Atoms in the unwanted sub-
levels of the F = 1 and F = 2 manifold are pumped using σ+ polarized light to the
excited states. They can decay from those levels (not shown in the figure) following
the selection rule ∆m = 0,±1 and are optically pumped until they reach the desired
|F = 2,mF = 2〉 state, marked by an ellipse. The splitting of the hyperfinestates at
B = 0G is shown on the left side of the figure.

(b), it is quite obvious, that the magnetic field should be larger than 18G (the larger,
the better), to avoid a resonance of σ− polarized light, which leads to depolarization
effects.

The transitions of σ− polarized light, pumping the F = 2 manifold are shown in
fig. 6.7 (d). In order to reduce depolarization effects, the magnetic field should not
exceed a value of 20G. The limits for the spin-polarization set by these discussions are
consistent with fig. 6.7 (c), showing the σ+ transitions of the F = 2 manifold pumping
beam.

These plots suggest the use of a magnetic field of 20G and a frequency of the F = 2
pumping beam of 73MHz, which corresponds to a frequency of the umpump AOM of
65MHz. However the stability against polarization imperfections is not as high as for
the F = 1 scheme. Also since the distance between pumping into the F ′ = 2 and
F ′ = 3 manifold does not increase significantly, the optical density of the cloud is not
expected to change compared to a zero field pumping scheme. The only advantage is
that the σ+ transition (c) is in resonance while σ− light of the F = 2 pumping beam
(d) is not.

After applying this scheme, no atoms in the |F = 1,mF = −1〉 state are observed
anymore. Also 90% of the atoms being trapped in the magnetic trap are occupying
the |F = 2,mF = 2〉 state. Only 10% are in the |F = 2,mF = 1〉 state and we cannot
detect any atoms in |F = 2,mF = 0〉.

The |F = 2,mF = 1〉 atoms are removed following the purification scheme of [67].
The trap bottom of the cloverleaf is lifted to B0 = 130G, which results in a differential
splitting of the mF = 2 atoms with respect to the mF = 1 atoms by 91MHz. This
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Figure 6.7.: Spin-polarizing scheme when loading |F = 2,mF = 2〉 atoms from the MOT
into the magnetic trap. The detunings are given with respect to the F = 1→ F ′ = 0
transition. The black line indicates the proposed frequency of the repumper (a&b)
and umpump (c&d) light as indicated by the sketch on the left side of the figures.
The color code displays the total spin quantum number F ′ of the atoms excited
state. green, magenta, red, blue correspond to F ′ = 0, 1, 2, 3. On the right side of
the figure the magnetic quantum numbers of the transitions are given. The quantum
numbers labeling the states are given in the total spin quantum number basis at low
fields. Fig. (a&c) depict the situation for σ+ light and fig. (c&d) for σ− light. The
circle marks the magnetic field chosen, as explained in the text. The dashed line
indicates the frequency of the umpump light at zero magnetic field, being resonant
with both polarisations σ+ and σ−.

74



splitting is larger than the width of both clouds in the magnetic trap due to their
temperature. A microwave sweep is driven across the mF = 1 sample, to transfer them
into the untrapped |F = 1,mF = 0, 1〉 states. In this way the magnetically trapped
sample ends up to be completely in the |F = 2,mF = 2〉 state.

Applying this scheme in the experiment results in an atom number increase of 2 and
an increase in phase space density of 3 in the compressed magnetic trap after removing
the |F = 2,mF = 1〉 state, compared to a spin polarization pulse at B = 0G.

6.5. BEC in the Plugged Quadrupole Trap

The previous design of the experiment can be found in great detail in the diploma
thesis of M. Repp [69], S. Weis [71], J. Krieger [70], A. Piccardo-Selg [63], R. Scelle
[64], V. Volchkov [75] and B. Huber [58].

After loading a dark spot MOT, the atoms were transferred into the F = 1 manifold
and the |F = 1,mF = −1〉 state was trapped in a plugged quadrupole trap. The trap
was compressed to the maximal gradient of B′ = 660G/cm and microwave photons,
resonant with the edge of the trap were shone in to cool the sample evaporatively.
In a first cooling ramp, the trap depth was lowered to about 290µK within 5.6s.
After weakening the trap confinement by adiabatically relaxing the gradient to B′ =
520G/cm, a second cooling ramp of 500ms duration was applied. The final trap depth
was 50µK. Lowering the trap confinement have had become necessary, since the high
densities resulted in an increased inelastic loss rate which degraded the efficiency of
evaporation.

Fig. 6.8 shows the column density of a BEC in the plugged quadrupole trap after an
expansion time of 3ms. The red line is a bimodal fit to the experimental data (black).
The data corresponds to approximately 4× 105 atoms at a temperature of 2µK. The
critical temperature for the trap is approximately Tc ≈ 3µK. It is hard to determine
Tc exactly, since the trapping frequencies eqs. (5.13) assume a plug that is centered
onto the magnetic field zero of the quadrupole trap. Already a slight misalignement
changes the trapping frequencies and therewith the critical temperature.

6.6. NaLi Unplugged: BEC in Cloverleaf Trap

The new design of the apparatus uses a cloverleaf trap to cool the atoms from the
MOT into the BEC phase. A sequence diagram of the cooling cycle in the magnetic
trap is shown in fig. 6.9, where the currents through the cloverleaf coils are depicted.

After a dark-spot MOT has been loaded in 5s, we apply a spin-polarizing pulse in
order to pump most of the atoms into the desired |F = 2,mF = 2〉 state. Therefore the
dark spot repumper beam is turned off and we shine in the repumper beam as listed
in table 6.1 to transfer the atoms in the dark region of the MOT within the 400µs
repump section from the F = 1 into the F = 2 manifold. During the next 1.5ms,
the umpump beam is added to complete the spin-polarizing scheme as described in

75



100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

position [µm]

co
lu

m
n 

de
ns

ity

Figure 6.8.: BEC in the plugged quadrupole trap after 3ms expansion time. The wings of
the column density is fitted by a gaussians since it resembles the thermal background
and he central BEC is fitted by a Thomas-Fermi profile. The blue dashed line is the
fit to the thermal background, the green line the fit to the BEC and the red line the
combined fit to the experimental data (black).

section 6.4.
The magnetic trap is turned on using matched magnetic fields in order to conserve

the phase space density D of the MOT. During the purification step, the atoms remain-
ing in the |F = 2,mF = 1〉 state are removed as described earlier. After compressing
the atomic cloud by increasing the confinement of the trap, we end up with a pure
sample of N = 5 × 108 atoms in the |F = 2,mF = 2〉. Note that at this stage the
cloverleaf is predominantly linear, since the temperature of the cloud (times kB) is
much larger than the magnetic field offset at the bottom of the trap (times µm).

Applying three different microwave ramps, increases the phase space density by 4.5
orders of magnitude, until inelastic collisions diminish the cooling efficiency due to an
increased three-body loss. This can be seen in fig. 6.10, where the cooling efficiency
bends over at the end of the second microwave ramp (red circles). In the next step,
the trap confinement is weakened by opening the cloverleaf in radial direction and a
final microwave ramp cools the sample into Bose-Einstein condensation.

The efficiency of the evaporative cooling ramp is determined by the total efficiency
parameter γtot [76]:

γtot = − log10(Dfinal/Dinitial)

log10(Nfinal/Ninitial)
. (6.6)

For a harmonic trap configuration as the used cloverleaf trap in our experiment,
the evaporative cooling process is in the runaway regime if γtot > 2. In this context
runaway refers to the regime where the collision rate in the sample increases due to
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Figure 6.9.: Sequence diagram of the magnetic trap and the mircowave frequency applied
to achieve a BEC in the cloverleaf trap. The values at given at the ramp are the
currents trough the cloverleaf trap provided by the different power supplies. The
magnetic trap offset B0 and resulting axial and radial trapping frequencies ωaxial

and ωradial are given as well as the duration of every step.

an increasing density, although the total number of atoms is reduced by removing the
high energy tail of the Maxwell-Boltzmann distribution. Collisions among the trapped
atoms will redistribute the kinetic energy at a lower total energy—the sample cools
down.

The total efficiency parameter for our experiment is shown is fig. 6.10, where the
increase in phase space density (nominator of eq. (6.6)) is plotted versus the loss in
atom number (denominator) during the applied microwave ramp. As the initial phase
space density and atom number the values of the compressed magnetic trap are taken.
The vertical lines indicate the positions where the microwave ramp changes. A fit to
the data points yields a total efficiency parameter for our trap of γtot = 2.96. The last
points of the third microwave ramp correspond already to a Bose condensed cloud of
sodium atoms.

A BEC of 4.7×104 atoms in the cloverleaf trap is shown in fig. 6.11. The number of
thermal background atoms is 3.6× 105 atoms, corresponding to a condensate fraction
of 13%.
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Figure 6.10.: Phase space density increase (in orders of magnitude) as the atom number
decreases (in orders of magnitude) during evaporation in the magnetic trap until
the BEC phase is reached. The fit to the data points yields an efficiency factor
of γtot = 2.96. The colors indicate the different microwave ramps used: First
ramp at 10MHz/s (blue dots), second ramp at 2MHz/s (red circles) and the third
ramp at 100kHz/s (magenta diamonds) after opening the magnetic trap to reduce
three-body collisions.

6.7. Dipole Trap

The dipole trap configuration consists of two focussed beams, that cross each other
under an angle of 90◦. One beam is sent trough the symmetry axis of the cloverleaf
trap, the other one is in the plane perpendicular to that axis. The intensity profile of
a focussed gaussian beam pointing along the z axis reads:

I(x, y, z) = I0
w2

0

w(z)2
exp

(
−2(x2 + y2)

w(z)2

)
(6.7)

where w(z) = w0

√
1 + z2/z2

R is the radius of the beam at a distance z from the
waist w(z = 0) = w0 and zR = πw2

0/λ denotes the Rayleigh range. The intensity
profile of the laser beam, leads to a potential where the atoms can be trapped. The
trapping frequencies of a single beam trap read:

ωx,y =

√
4|V0|
mw2

0

ωz =

√
2|V0|
mz2

R

(6.8)

where V0 = V (r = 0) is the depth of the dipole potential and is given by eq. (5.5):

V0 = −3πc2

2ω3
0

(
Γ

ω0 − ωL

+
Γ

ω0 + ωL

)
︸ ︷︷ ︸

≡γ

I0 (6.9)
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Figure 6.11.: Bose-Einstein condensate of 4.7 × 104 atoms in the cloverleaf trap which
corresponds to a condensate fraction of 13%. The 2D image is summed over one
direction to obtain a 1D density profile in two different directions as indicated.
The measured data is shown as a black line. The red line is a fit to the data
points including a gaussian fit to the thermal background (blue dashed line) and a
Thomas-Fermi profile fit to the condensate fraction (green). The amplitudes of the
summed density profile is the atom number per effective pixel (pixelsize corrected
by the magnification of M = 2.3 of the imaging system).

where we have defined γ being the proportionality constant between the intensity
profile and the resulting potential.

If we consider in the following a crossed dipole trap, created by two gaussian beams
I1(r) and I2(r) with waists w0,1 and w0,2 and peak intensities I0,1 and I0,2, intersect-
ing under an angle of 90◦ as depicted in fig. 6.12, the resulting potential can be
approximated by:

Vcrossed(x, y, z) = γ(I0,1 + I0,2)

[
1−

(
2I0,1

w2
0,1

+
2I0,2

w2
0,2

)
x2 −

(
I0,1

z2
R,1

+
2I0,2

w2
0,2

)
y2

−

(
2I0,1

w2
0,1

+
I0,2

z2
R,2

)
z2 −O(x, y, z)4

]
.

(6.10)

zR,1 and zR,2 are the corresponding Rayleigh ranges of the beam. The resulting
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Figure 6.12.: Sketch of the crossed dipole trap setup with an coordinate system to define
the axis.

trapping frequencies of the potential are:
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(6.11a)
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+
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)
(6.11c)

If both trapping beams have equal powers and equal waists, the terms proportional
to 1/z2

R can be neglected, since zR � w0 besides the beam waist is on the order of the
wavelength w0 ∼ λ.

In order to load the atomic sample efficiently into the optical dipole trap, it needs to
match the trapping conditions of the cooled cloverleaf trap. The critical temperature
for Bose-Einstein condensation of 1 × 107 atoms in a harmonic trap with ω = 2π ×
(300 × 300 × 15)1/3 = 2π × 110Hz, which corresponds approximately to a relaxed
cloverleaf trap to reduce the 3-body collisions, is Tc = 1µK. If we assume loading the
cloud at T = 2 × Tc, the trap depth should be at least 10µK to transfer most of the
atoms.

A possible scheme for the dipole trap at λ = 1064nm would be: using a modified
crossed beam setup with a waist of w0 = 60µm each. One beam (I1 in fig. 6.12) is
only focussed along the z direction, whereas the second beam is focussed in x and
y direction. The resulting trapping frequency and trap depth for equal powers in
both beams is plotted in fig. 6.13. Due to the long Rayleigh range of the beams of
zR = 10.6mm, the trapping frequencies of such a trap are equal in all three dimensions.
Installing the beams such, that the z axis overlaps with the symmetry axis of the
cloverleaf trap, allows a mode-matching just by changing the powers of the beams.
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Figure 6.13.: Trap frequency (a) and trap depth (b) of a crossed beam trap with equal
waists of w0 = 60µm, where one of the beams is only focused in one dimension
(z-axis) but the other is focused in x and y direction. The power in both beams is
assumed to be equal.

Moreover, using equal powers in both beams reveals a spherically symmetric trapping
geometry.

We use a Nd:YAG laser (IBL, DiNY cwQ 100 ), emitting a TEM00 mode with a
center wavelength of λ = 1064nm and a linewidth of 0.4nm. It provides a maximum
output power of 50W. The beam is split into two paths, each of them passing an AOM
with frequencies of ±80MHz and then being coupled to a single mode fiber (Nufern
PM980-HP). The fibers are cleaved, self-cut and hold by micro-positioning stages.
Microscope objectives are used to focus the light onto the fiber core. In this way we
are not limited by the standard fiber connectors, which degrade the coupling efficiency
at high powers. Light being coupled to the cladding would heat up the epoxy, used to
glue the fiber end into the connector. At high intensities, this epoxy gets melted and
the emerging dust particles settle on the fiber facet and get burned into the tip.
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7. Conclusion and Outlook

This thesis deals with understanding the polaron concept in the context of ultracold
atomic samples and describes the status of an experimental setup to study immersed
quantum systems in the lab. In the first part of the thesis the theoretical framework to
understand the behavior of dilute atomic gases at degeneracy is given. The condensed
matter concept of a polaron – an electron moving through an ionic crystal lattice
thereby interacting with the lattice excitations – is extended to the framework of cold
gases. We contrast mean-field calculations giving an intuitive picture of the ongoing
physics to the many-body quantum mechanical treatment of Tempere et al. [42].

In the case of an impurity atom interacting with a degenerate bosonic background
gas, the polaron, can be described as the impurity interacting with the excitation
spectrum of the BEC background, namely the Bogoliubov modes. The excitation
spectrum of these modes behaves linearly for small momentum1 k < ~/ξ and evolves
into a quadratic dispersion relation for k > ~/ξ. As long as only the low lying exci-
tation modes of the condensate are addressed by the interaction of the impurity atom
with the background, the situation is analog to a condensed matter polaron interacting
with acoustic phonons of the ionic crystal lattice.

This analog motivated a study of the cold gases polaron using a many-body treat-
ment applied in condensed matter context [42]. In order to understand this many-body
treatment more detailed, a mean-field simulation of the cold gases polaron is presented
within this work. The results of the simulation allow to draw the following picture
of the situation as the interaction between the impurity atom and the background
BEC is varied: At low interaction strengths the impurity atom is not influenced by
the presence of the background BEC. As the interaction is increased, the presence of
the impurity starts to modify the background gas up to the point where the impurity
starts to bury a hole in the backgound density. As soon as this hole is deep enough
to support a bound state, the impurity is completely trapped in this self-consistent
potential—it is self-trapped in the background BEC. This localization is in analogy
to the strong coupling regime of the condensed matter polaron, where the electron is
located at a single site of the ionic crystal lattice due to the strong interaction with
the lattice phonons.

The localization in the background BEC is associated with a strong increase of the
effective mass of the impurity atom. This is a quantity that can be measured in an
experiment by observing the oscillation modes of the impurity. Using state-selective
dipole potentials, the 6Li impurity can be trapped within a background BEC of 23Na

1Here ξ is the healing length, a characteristic length scale of the background gas over which distur-
bances of the BEC can “heal”.
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and the effective mass of the impurity can be deduced directly.

In the second part of the thesis, the setup of an experiment to cool bosonic 23Na
and fermionic 6Li into quantum degeneracy is described. The theoretical framework of
trapping neutral atoms is derived and two magnetic trap configurations, the plugged
quadrupole trap as well as the cloverleaf trap, are presented. The trap configurations
are compared to each other with respect to their possibility to cool two atomic species
into quantum degeneracy.

A reference measurement of the loading of a magneto-optical trap is presented and
a Bose-Einstein condensate of 23Na is achieved in the plugged quadrupole trap as
well as in the cloverleaf trap. The current setup of the experiment uses the clover-
leaf configuration. A modified spin-polarization scheme is discussed and the setup of
the optical dipole trap is outlined, which will allow the use of magnetically induced
Feshbach resonances.

Outlook

The next steps of the experiment will be the setup of the optical dipole trap and
the Bose-Einstein condensation of sodium atoms therein. With this configuration,
the magnetic tunability of the energy splitting between two magnetic substates of the
sodium BEC can be used to determine the magnetic field stability of the Feshbach
fields. A possible issue using sodium Feshbach resonances will involve to study d-wave
or g-wave resonances, which can be calculated using the Moerdijk model [33]. These
should occur at accessible magnetic field values of our experiment. A further possi-
bility will be to study microwave induced Feshbach resonances, where sodium seems
to be the ideal candidate [35]. Here a microwave field couples the colliding atoms in
the open channel resonantly to a bound state in a closed channel of the scattering
potential. These resonances could also be used in later polaron experiments in or-
der to increase the experimentally accessible range of the polaron coupling constant
α = a2

IB/ξaBB. The interparticle scattering length aIB can be tuned by a magnetic
Feshbach resonance and the microwave control can be used to tune aBB at the same
time independently. By adding sympathetically cooled lithium to the experiment, the
study of polaron physics using single impurities will be of interest. As suggested by
the mean-field calculations presented in this thesis, the strong coupling regime of the
impurity-background interaction should be in reach. This regime is not accessible
in condensed matter systems due to the lack of materials supporting such a strong
electron-phonon coupling. Also phase-separation and mixing of two distinct species
can be studied.

Another possible issue would be to use the immersed species as a local probe of
properties of the background gas. E.g. a dilute sodium gas can serve as a thermometer
for a degenerate gas of fermionic lithium [47], or a localized impurity gas immersed in a
large background could be used to measure the drag force on the background gas when
moving the impurities through the background. Such an experiment would probe the
viscosity of the background gas locally and could be used to study the proposed lower
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bound on the ratio of the shear viscosity to entropy density [77].
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A. Sodium and Lithium Line Data

The following data are taken from [78] in the case of sodium and [79] in the case of
lithium. The hyperfine structure splitting in an external magnetic field of the ground
states of both elements have been calculated using the Breit-Rabi formula.

23Na

The Breit-Rabi diagram showing the hyperfine states of the 23Na 32S1/2 state is shown
in fig. A.1. The states are labeled in the |F,mF 〉 basis. The state numbering as used
for instance in table 4.1 is shown on the right site. The states are labeled in increasing
order of energy.

Property Value

Transition Frequency: 32S1/2 → 32P3/2 ω0 2π × 508.848 716 2(13)THz

Natural Line Width (FWHM) Γ 2π × 9.7946(46)MHz

Recoil Velocity vr 2.9461 cm/s

Recoil Temperature Tr 2.3998 µK

Doppler Temperature TD 235.03 µK

Saturation Intensity: 32S1/2 → 32P3/2,
Isat 6.2600(21) mW/cm2

|F = 2,mF = 2〉 → |F ′ = 3,m′F = 3〉
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Figure A.1.: Sodium 3 2S1/2 line data

6Li

The Breit-Rabi diagram showing the hyperfine states of the 6Li 22S1/2 state is shown
in fig. A.2. The states are labeled in the |F,mF 〉 basis. The state numbering as used
for instance in table 4.1 is shown on the right site. The states are labeled in increasing
order of energy.

Property Value

Transition Frequency: 22S1/2 → 22P3/2 ω0 2π × 446.799 677THz

Natural Line Width (FWHM) Γ 2π × 5.8724MHz

Recoil Velocity vr 9.886 776 cm/s

Recoil Temperature Tr 3.535 811 52 µK

Doppler Temperature TD 140.9 µK

Saturation Intensity: Isat 2.54 mW/cm2
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B. Cloverleaf Design

The design goal of the cloverleaf trap is a high collision rate in the compressed trap.
Once the trap is operated in the harmonic regime (i.e. kBT � µmB), the collision rate
scales as the geometric mean of the three curvatures of the trap [21]: (B′′2ρ B

′′
z )1/3 ≈

B′4/3B′′1/3B
−2/3
0 , using eq. (5.16). From this consideration it is quite obvious, that

a trap design should be optimized on high gradients, rather than strong curvatures.
Also the offset field B0 should be as small as possible, keeping in mind to apply a
finite offset to prevent Majorana losses.

The magnetic field calculation was done as described in [80]. The trap setup should
be located outside the vacuum setup, requiring high currents to achieve high values of
B′ and B′′. The location of the individual coils is altered compared to other existing
cloverleaf traps as operated in the Ketterle group at MIT [66], the Van der Straten
group in Utrecht [81] or in the Thomsen group in Copenhagen [82].

169.4mm
142mm

30mm

97mm

112mm

24mm

32mm

68mm

Antibias
Gradient
Curvature
Finetune
RF / Mircowave

Figure B.1.: Cut trough the the cloverleaf coils, to visualize the assembly of the individual
coils. Also the dimensions of a single gradient coil is shown. We use a hollow core
wire (inner diameter of 2.3mm) with outer dimensions of (3.5× 3.5)mm.

A schematic view on the coil design is presented in fig. B.1, where a cut through
the center of the coils is shown. In this view the trap minimum is located below the
sketch. The gradient coils (green) are placed as close to the atoms as possible in order
to reduce the power consumption of those coils during operation. The antibias coils
(blue) are placed in perfect Helmholtz configuration to achieve a high homogeneity over
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the atomic samples to allow a precise tuning of the scattering length using Feshbach
resonances, once the cooled cloud is loaded into the optical dipole trap. The curvature
coils (red) produce the same offset field as the antibias coils at the trap center and
are used to provide the axial harmonic confinement. Antibias and curvature coils
are operated such, that their offset field in the center of the trap nearly vanishes.
When operating the cloverleaf trap, both coils are run in series in order to increase the
magnetic field stability, and thus noise of the power supply is just a common mode
noise in the total magnetic field.

The finetune coils (yellow) are used to apply a homogeneous field for the spin-
polarizing scheme of the atoms and to apply a magnetic field gradient for a Stern-
Gerlach experiment (if only the coil in one holder is used). Also the rf and microwave
antennas (grey) are included in the holders, thereby placing them as close as possible
to the atomic sample. They consist of three wires each (diameter 1mm) and are
connected in Helmholtz configuration. Note that the atoms are located in the near
field of these antennas, even when using a microwave transition of 1771MHz which
corresponds to a wavelength of λ = 16.9cm.

The hollow core copper wire used to wind the coils was manufactured by Eugen
Geyer GmbH1. The outer dimensions are (3.5 × 3.5)mm and the inner core diameter
is 2.3mm. These dimensions minimize the power dissipated in the wire per cooling
surface, provided by the hollow core design. The coils are mounted into a holder made
of PEEK2 and glued using epoxy (Rhenatech EP 5430 ). This combination reduces
the amount of non-metallic materials close to the trap center thereby avoiding eddy
currents.

Water Cooling

During full operation of the magnetic trap, approximately 11.2kW of power are dis-
sipated by the coils (antibias + curvature, 225A: 6.5kW, gradient, 440A: 4.7kW).
When operating the antibias coils at a maximal current of 390A, which corresponds
to a magnetic field of B = 1250G, 12.2kW are dissipated.

The cooling water, provided by a EF Cooling chiller, is flowing parallel through
all the coils. We installed 5 flow meters, monitoring the water flow through: (i) the
antibias coils in each holder seperately, (ii) the curvature, finetune and gradient coils
in each holder seperately and (iii) the passbank, regulating the current when operating
the antibias coils to use the Feshbach resonance.

Circuit Diagram

The circuit diagram of the cloverleaf trap is shown in fig. B.2. The power supplies
used are listed in table B.1. We use several IGBTs to switch the coil setup for different
stages of operation.

1www.geyer-gmbh.de
2polyether ether ketone
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Manufacturer Type U I
[V] [A]

antibias Delta Elektronika SM15-400* 16.5 400

Agilent 6690A 15 440

curvature Delta Elektronika SM30-200* 30 225

gradient Delta Elektronika SM15-400* 15 440

finetune Delta Elektronika SM7.5-80 7.5 80

bias Delta Elektronika SM18-50 18 50

Table B.1.: Power supplies used to operate the cloverleaf trap. All power supplies by Delta
Elektronika are equipped with a high speed option. Both antibias power supplies are
operated in series to extend the maximal achievable voltage. Power supplies marked
with a * have an extended output range.
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Figure B.2.: Circuit diagram of the cloverleaf trap. The coils Curv1 and ABias1 are
mounted together in one holder, whereas Curv2 and ABias2 are mounted in the
second holder facing each other.
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During the MOT, IGBT I is conducting, whereas II, III and IV are not. The current
provided by the curvature power supply will flow through the coils ABias2 and Curv1,
thus producing the desired gradient field.

When switching to the magnetic trap configuration, IGBTs II and IV are conducting
guiding the current through both antibias and curvature coils. The bias power supply
can be used to add a current trough the curvature coils, thus lifting the magnetic field
offset B0 of the trap.

When the atoms are loaded into the optical dipole trap, IGBT III is conducting to
apply a homogeneous field using the antibias coils. IGBTs I, II, IV and VIII are in
the non-conducting state now. The current regulation of the antibias power supplies
is done using a current sensor LEM IT600-S and a parallel circuit of 32 IRF250
MOSFETs. This current regulation scheme is described in detail in [63]. The new
setup differs only by the use of MOSFETs instead of NPN transistors, since they
should provide a lower current noise, and the use of more devices in parallel to handle
the increased dissipated power due to the changed coil setup.

The IGBTs VI and VII can be used to circumvent one coil of the finetunes in order to
produce a field gradient over the atomic cloud. Varistors and 100Ω ring-down resistors
are used to limit the maximum induced voltage when turning off the current and to
dissipate the energy deposited in the magnetic field into the resistors. The minimum
switching time of the antibias coils is limited by their inductance to τ = 3.7ms. For
faster magnetic field ramps the finetune coils can be used, having a inductance limited
time constant of τ = 0.5ms.
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C. Interlock

The interlock system of the NaLi experiment is divided into two parts according to the
water cooling scheme of the experiment—a clean circuit and a service water circuit.
Water sensors installed at several places of the lab monitor for water leaks and turn off
the water supply if necessary, thereby switching off all high current power supplies—
magnetic trap, Feshbach field, Zeemann Slower. Both interlocks are described in the
following.

C.1. Service Water Circuit

Devices cooled by the Service Water circuit are:

• decreasing and increasing part of the Zeeman Slower

• current regulation of the offset coils

• Passbank for the current regulation of the Feshbach fields

• heat sink for the clean water circuit

• RF and microwave amplifiers

• IGBT’s and power diodes

• dye circulators of the two ring-dye lasers

• cold spot and oven baffle1

The temperature of the Zeeman Slower is monitored using 2kΩ thermistors plugged
into a micro-controller (Arduino Diecimila). If the temperature exceeds a certain
threshold, the Slower power supplies are shut down. A low pass filter prevents the
interlock from triggering to any induced voltages. The interlock is also triggered if the
water supply is cut manually at the labs magnetic valve.

1The oven nozzle is heated to ≈ 500◦C to prevent sodium and lithium to get stuck, but the oven
baffle is cooled in order to reduce the background pressure and force sodium and lithium to get
stuck there. An additional cold spot cooled with peltier elements is installed to support this effect.
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Water Sensor
Service Water

Magnetic Valve

Zeeman Slower

Arduino Diec.

Arduino Mega

Power Supplies

Chiller

Water Sensor
Clean Water

Temperature

Temperature

Resistance

Flow

Service Water Circuit

Clean Water Circuit

Figure C.1.: Sketch of the Interlock system: As described in the text, the interlock scheme
is divided into a service water circuit and a clean water circuit. The dashed lines
depict the input signals to the micro-controller and the solid lines the signal logic
at the different elements of the scheme.
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C.2. Clean Water Circuit

The clean water circuit is run by a chiller of EF-Cooling and cools all the coils of the
cloverleaf trap. It provides a temperature stability of 1 degree and a pressure of 10
bar at a maximal flow of 25 l/min. The cooling capacity is 20kW.

The interlock system of the cloverleaf trap monitors several signals using an Arduino
Mega micro-controller. The signals are:

• The temperature of the cloverleaf coils at 5 positions over both coils. The tem-
peratures are measured close to the antibias (3 thermistors in total) and the
curvature (2 thermistors in total) coils.

• The resistance of the gradient coils and the curvature + antibias coils during
the magnetic trap phase is monitored using the analog monitor outputs of the
corresponding Delta Elektronika power supplies.

• The water flow through the coils is monitored using flow meters.

UCurvature > Umax ?

UGradient > Umax ?

Flow < Flowmin ?

TCoil > Tmax ?

Ciller working ?

yes, but
1st time

yes, but
1st time

yes, but
1st time

yes, but
1st time

no, but
1st time

Er
ro

r =
 1

yes
2nd time

yes
2nd time

yes
2nd time

yes
2nd time

no
2nd time

Interlock Error,
Open Relais

Figure C.2.: Internal logic of the micro-controller Arduino Mega used to monitor the
cloverleaf coils. The interlock registers an error if the corresponding signal is dc,
such that small spikes are filtered by the logics. A relais is used to shut the power
supplies down in case of an error.

If one of those monitor signals deviates from its specified value or the chiller fails
for some reason the power supplies are turned off. The switching logic of the micro-

97



Pin LED

Temperature

Temp. Pin 0 8

Temp. Pin 1 7

Temp. Pin 2 10

Temp. Pin 3 9

Temp. Pin 4 5

Water flow

Flow Pin 0 2

Flow Pin 1 1

Flow Pin 2 4

Flow Pin 3 3

Flow Pin 4 6

Resistance
R Pin 0 14

R Pin 1 13

R Pin 2 16

Table C.1.: Assignment of the alart LED’s of the Arduino Mega micro-controller. The
corresponding pins are listed in fig. C.3.

controller is depicted in fig. C.2. The input ports are low passed and also the micro-
controller logic is programmed such, that short spikes in the monitor signal do not
lead to an error event. Such spikes can occur when switching the magnetic fields at
high speed.

A sketch of the interlock scheme is depicted in fig. C.1 and the pin assignment in
fig. C.3. The corresponding LED’s that monitor the status of the interlock are listed
in table C.1.
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Figure C.3.: Connection diagramm for the cloverleaf interlock. To monitor the tempera-
ture, KTY 81-210 thermistors are used as a variable resistor to GND. The Flow
pins are the input signals of the flow meters and the monitor signals of the power
supplies are connected to the d-sub 9 plug. All signals have a full range of 0V to
5V.
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recent developments. Rep. Prog. Phys., 72(6):066501 (52pp), 2009.

[42] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmermans, and J. T.
Devreese. Feynman path-integral treatment of the BEC-impurity polaron. Phys.
Rev. B, 80(18):184504, 2009.

[43] F. M. Peeters and J. T. Devreese. Acoustical polaron in three dimensions: The
ground-state energy and the self-trapping transition. Phys. Rev. B, 32(6):3515–
3521, 1985.
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[62] Wolfgang Demtröder. Experimentalphysik 3: Atome, Moleküle und Festkörper.
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haben entscheidend zum Gelingen dieser Arbeit beigetragen.

• Bei Prof. Dr. Selim Jochim bedanke ich mich für die Begutachtung meiner Arbeit
und für seine offene Art die eine gute Zusammenarbeit mit seiner Gruppe erst
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