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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Beschreibung der Formen von
Sternen und Galaxien im Rahmen der Shapelet-Methode. Diese Methode stellt
eine lineare Zerlegung in die orthonormale Basis der Gauss-Hermite-Polynome
dar. Ihre wesentlichen Vorteile – Linearität, Kompaktheit, Invarianz gegenüber
Fourier-Transformation und die Relation zu den Momenten der Lichtverteilung
– werden ausführlich diskutiert. Die praktische Umsetzung der Bildzerlegung
und der Entfaltung von der Punktverbreiterungsfunktion wird ausgearbeitet.
Ferner werden drei Anwendungsgebiete besprochen und neue Untersuchungs-
ergebnisse bzgl. der Anwendbarkeit und Aussagekraft der Shapelet-Methode
präsentiert: der schwache Gravitationslinseneffekt, die Entdeckung morpholo-
gischer Galaxienklassen und die realistische Simulation von extragalaktischen
Beobachtungen.

Summary

The presented work is concerned with the morphological description of stars and
galaxies in the framework of the shapelet method. This method constitutes a lin-
ear expansion in the orthonormal set of Gauss-Hermite polynomials. Its main
advantages – linearity, compactness, invariance under Fourier transformation,
and the relation to the moments of the brightness distribution – are extensively
discussed. The practical treatment of the image decomposition and of the decon-
volution from the point spread function are further elaborated. Moreover, three
fields of application are presented together with new investigations on the appli-
cability and validity of the method: weak gravitational lensing, morphological
class discovery, and realistic simulation of extragalactic observations.
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CHAPTER 0
Introduction

It has been a century-long struggle to describe and to understand the objects we
see on the sky. The preferred quantities employed for their description are bright-
ness, color or even a complete spectrum, and morphology. While measurements
of brightness or spectral flux are always made in a quantitative fashion, there is
no obvious way to characterize the vast morphological diversity of observable
objects, in particular of galaxies.

Traditionally, it was the remarkable human capability of recognizing patterns
in confusing sets of observations, which led to a qualitative classification of galax-
ies (Hubble, 1936). While this approach is still followed nowadays, it has severe
limitations: It can not or only hardly be applied to large datasets, and it is not
quantitative. While the first limitation can be addressed to some extent (e.g. Lin-
tott et al., 2008), the second one is unalterable and leads to two shortcomings: We
cannot infer effects which are too subtle to be recognized by a human inspector,
and the results of a human inspection are hard to calibrate.

An important step forward was the finding that the radial profile of galaxies
can be well described by a common functional form (Sérsic, 1963). From then on,
it was possible to categorize galaxies by a few parameters: size, steepness of the
radial profile, and ellipticity. Although other measures have been proposed since
then, the parameters of a Sérsic fit are still considered the most reliable ones.

But the Sérsic profile cannot describe all kinds of galactic structures, e.g. spiral
arms. It was therefore a consequent development to employ image decomposi-
tions into complete basis sets, which could in principle reproduce any morphol-
ogy. The shapelet basis system is one of this kind, with several advantageous
properties which sets it apart from all others: As solution of the harmonic os-
cillator in quantum mechanics it is mathematically well-understood; it is linear
in the data and the expansion coefficients, which enables a straightforward er-
ror propagation; it assumes and prefers compact and centralized objects; it is
essentially invariant under Fourier transformation, which allows the analytic
treatment of convolutions; and its expansion coefficients are directly related to

Sometimes a man can meet his des-

tiny on the road he took to avoid it.

LOUIS SALINGER

The International (2009)



2 Introduction

the moments of the object’s light distribution. Because of these advantages, the
shapelet method is another step towards a complete and reliable description of
galaxies. In this work, we are going to review the fundamentals of the shapelet
basis system and show how image decomposition and (de)convolution can be
efficiently performed. Furthermore, we are going to present the application to
and incorporation into three different fields of astrophysics: the measurement
of small shape distortions induced by weak gravitational lensing, the discovery
of morphological classes in large surveys, and the realistic simulations of extra-
galactic observations.

However, we are also going to show the shortcomings of the shapelet method,
which are most prominent in the rather poor modeling fidelity for strongly ellip-
tical or cored galaxies. The presence of modeling failures can have significant im-
pact on the amount and characteristic of information inferred from image data,
which consequently affects any follow-up analysis. These findings reveal that
we have not yet reached the state, where we can reliably and accurately describe
all observable galactic morphologies. Even though this situation is not entirely
satisfactory, the reasons for success of the shapelet method in several aspects of
the image analysis task and for failure in other aspects can and should give rise
to further advances towards the goal of a reliable quantitative morphological de-
scription.

A last word of caution

There are a couple of related but differing definitions and implementations which
use the term »shapelets«. Throughout this work, we refer to the basis function
system described in chapter 1 as introduced by Refregier (2003) when we speak of
»shapelets«. Exceptions, foremost the generalization to an elliptical basis system
introduced by Bernstein & Jarvis (2002), are noted explicitly.



Part I

The shapelet method





CHAPTER 1
The basis

The shapelet technique for image processing was first described by Refregier
(2003). This chapter therefore mostly summarizes the results for Cartesian shape-
lets from Refregier (2003) and for polar shapelets from Massey & Refregier (2005).

In the first section, the shapelet basis set is defined in Cartesian and polar
coordinates. The second section compiles properties of the shapelet basis set. In
the third section, the relation to the harmonic oscillator in quantum mechanics
is used to construct the most important shapelet transformation operators. The
fourth section introduces how measures of image brightness distributions can be
calculated in shapelet space.

1.1 Definition

The shapelet basis functions, shortly called shapelets, are a scalable version of the
eigenfunctions of the harmonic oscillator in quantum mechanics (QHO):

φn(x) ≡ [2n√πn!]−
1
2 Hn(x) exp(− x2

2
), (1.1)

where Hn(x) denotes the Hermite polynomial of order n, which obeys the fol-
lowing recurrence relations:

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

dHn(x)
dx

= 2nHn−1(x)

H0 = 1

(1.2)

To turn the yet dimensionless QHO eigenfunctions into something describing
objects in units of length, the shapelets have to be defined as

Bn(x; β) ≡ β−
1
2 φn(β−1x), (1.3)

where β sets the characteristic length scale and is thus called scale size.

What basis are you continuing this

operation on? PAMELA LANDY

The Bourne Ultimatum (2007)
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Figure 1.1: The first five shapelets basis
functions Bn(x; β) for β = 1.
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Figure 1.2: First two-dimensional Cartesian
shapelet basis functions with n1, n2 ≤ 2.
Lighter colors indicate negative values.

1.1.1 Recap: harmonic oscillator in quantum mechanics

That said, it appears useful to recall the basic properties of the QHO. The Hamil-
tonian of the system can be written as

Ĥ =
1
2
[x̂2 + p̂2], (1.4)

where the units have been chosen such that unnecessary constants are omitted.
In the x-representation, the operators of position x and momentum p are given
by

x̂ ≡ x, p̂ ≡ 1
i

∂

∂x
. (1.5)

The basis functions can conveniently be derived by introducing the lowering and
raising operators

â ≡ 1√
2
(x̂ + i p̂) and â† ≡ 1√

2
(x̂− i p̂), (1.6)

respectively. They commute as [â, â†] = 1 and act on the basis functions 〈x|n〉 ≡
φn(x) as

â|n〉 =
√

n|n− 1〉, â†|n〉 =
√

n + 1|n + 1〉. (1.7)

It follows directly that the number operator N̂ ≡ â† â acts as

N̂|n〉 = n|n〉. (1.8)
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For the dimensional shapelets, the Hamiltonian is modified to read

Ĥβ =
1
2
[β−2 x̂2 + β2 p̂2], (1.9)

which changes the lowering and raising operators to

âβ ≡
1√
2
(β−1 x̂ + iβ p̂) and â†

β ≡
1√
2
(β−1 x̂− iβ p̂). (1.10)

All other relations remain untouched.

1.1.2 Two-dimensional Cartesian shapelets

The Hamiltonian for the n-dimensional QHO is, of course,

Ĥ =
1
2

n

∑
j=0

x̂2
j + p̂2

j , (1.11)

thus the lowering and raising operators have to be defined as

âj ≡
1√
2
(x̂j + i p̂j) and â†

j ≡
1√
2
(x̂j − i p̂j). (1.12)

Because of the separability of Cartesian coordinates of the QHO, it is straight-
forward to generalize the dimensionless basis functions to higher dimensional-
ity. For the purpose of the thesis, we deal with two-dimensional functions only
which relate to the one-dimensional ones according to

φn(x) ≡ φn1(x1)φn2(x2), (1.13)

with x = (x1, x2), n = (n1, n2). If the same scaling behavior is used for both
dimensions, the two-dimensional shapelets are defined as

Bn(x; β) ≡ β−1φn(β−1x). (1.14)

1.1.3 Two-Dimensional polar shapelets

For various reasons, it might be useful to use a basis set that is made up of the si-
multaneous eigenstates of the Hamiltonian and the angular momentum operator
L̂. These eigenfunctions are separable in the polar coordinates radius r and angle
ϕ. The eigenstate can again be obtained by introducing the appropriate lowering
operators, this time for left-handed and right-handed quanta

âl =
1√
2
(â1 + iâ2) and âr =

1√
2
(â1 − iâ2), (1.15)
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with their hermitian conjugates as raising operators. The Hamiltonian and L̂ thus
read

Ĥ = N̂r + N̂l + 1 and L̂ = N̂r − N̂r, (1.16)

where Nr,l = â†
r,l âr,l . One can use the raising operators on the ground state, the

Gaussian |nr = 0, nl = 0〉 = |n1 = 0, n2 = 0〉, to construct all other states, which
can then be written in the x-representation as

φnr ,nl (r, ϕ) ≡ [πnr!nl !]
− 1

2 Hnl ,nr (r)e
− x2

2 ei(nr−nl)ϕ, (1.17)

from which we obtain the scalable version in the same way as before,

Bnr ,nl (r, ϕ) = β−1φnr ,nl (β−1r, ϕ). (1.18)

Bernstein & Jarvis (2002) showed that, for nl < nr, one can relate

Hnl ,nr (r) ≡ (−1)nl nl !rnr−nl Lnr−nl
nl (r2) (1.19)

to the associated Laguerre polynomial

Lq
p(r) ≡

r−qer

p!
dp

drp (r
p+qe−r). (1.20)

In different situations, it might be necessary to switch between Cartesian and
polar shapelets. The transformation matrix is given by

|nr, nl〉〈n1, n2| = 2−
nr+nl

2 inr−nl
[n1!n2!

nr!nl !

] 1
2
δn1+n2,nr+nl×

nr

∑
n′r=0

nl

∑
n′l=0

in′l−n′r
(

nr

n′r

)(
nl
n′l

)
δn′r+n′l ,n1

.
(1.21)

This provides a one-to-one mapping between Cartesian and polar shapelet states
only if n1 + n2 ≤ nmax and nr + nl ≤ nmax for any non-negative integer nmax

which we will call ’maximum order’ from now on. By inspecting Equation (1.21)
more closely, one can see that only the n1 + n2 = nr + nl = n ≤ nmax states are
mixed. With a change in convention,

n ≡ nr + nl , m ≡ nr − nl , (1.22)

it is easy to see the familiar relations

Ĥ|n, m〉 = n + 1|n, m〉, L̂|n, m〉 = m|n, m〉, (1.23)

where the new basis functions are defined as

|n, m〉 =
∣∣∣nr =

1
2
(n + m), nl =

1
2
(n−m)

〉
. (1.24)

This means that, for any integer n, m runs from −n to n in steps of 2. Whenever
possible, we use the simpler |n, m〉 convention.
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1.2 Basis set properties

We summarize now the properties of the one-dimensional and the two-dimen-
sional Cartesian and polar shapelet basis sets.
It can be shown (i.e. Arfken & Weber (2001)) that the basis functions defined
above are orthonormal∫ ∞

−∞
dx Bn(x; β)Bm(x; β) = δn,m∫ ∞

−∞
d2x Bn1,n2(x; β)Bm1,m2(x; β) = δn1,m1 δn2,m2∫ ∞

0
dr
∫ 2π

0
dϕ rBn,m(r, ϕ; β)Bn′ ,m′(r, ϕ; β) = δn,n′δm,m′

(1.25)

and complete

∞

∑
n=0

Bn(x; β)Bn(x′; β) = δ(x− x′)

∞

∑
n1,n2=0

Bn1,n2(x; β)Bn1,n2(x
′; β) = δ(x1 − x′1)δ(x2 − x′2)

∞

∑
n=0

n

∑
m=−n

Bn,m(r, ϕ)Bn,m(r′, ϕ′) = δ(r− r′)δ(ϕ− ϕ′).

(1.26)

Thus an integrable function can be expanded into shapelets as

f (x) =
∞

∑
n=0

cnBn(x; β)

f (x) =
∞

∑
n1,n2=0

cnBn(x; β)

=
∞

∑
n=0

n

∑
m=−n

pn,mBn,m

(
r =

√
x2

1 + x2
2, ϕ = arctan(

x2
x1

)
)

,

(1.27)

where we introduce the Cartesian shapelet coefficients c and their polar coun-
terparts p. It should be noted that the shapelets need infinite support for their
orthogonality.
Furthermore, shapelet basis functions obey the analytic integral relations∫ ∞

−∞
dx Bn(x; β) = [21−n√πβ]

1
2

(
n

n/2

)
∫ ∞

−∞
d2x Bn(x; β) = 2

1
2 (2−n1−n2)

√
πβ

(
n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

∫ ∞

0
dr
∫ 2π

0
dϕ rBn,m(r, ϕ) = 2

√
πβδm,0,

(1.28)
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if n(i) is even and 0 otherwise. We can also calculate the integrals with finite limits
by using the recurrence relation Equation (1.2) and integration by parts to get

ξa,b
n ≡

∫ b

a
dxBn(x; β) = −β

√
2
n

Bn−1(x; β)
∣∣∣b
a
+

√
n− 1

n
ξa,b

n−2, (1.29)

where the 0th order can obtained from the fact that B0 is a Gaussian, so that

ξa,b
0 =

√
βπ

1
2

2
erf
( x√

2β

)∣∣∣b
a

and ξa,b
1 = −

√
2β B0(x; β)

∣∣∣b
a
. (1.30)

From the separability of coordinates (Equation (1.13)), it follows directly

ξa,b
n = ξa,b

n1
· ξa,b

n2
. (1.31)

A similar approach works also for the radial coordinate of the polar shapelets,

ξR
n ≡

∫ R

0
drBn,0(r; β) = (−1)n/2

{
1− Ln

(R2

β2

)
e
− R2

2β2 +

2

n
2

∑
k=1

(−1)k
[
1− L n−2k

2

(R2

β2

)
e
− R2

2β2
]}

,

(1.32)

where only the m = 0 modes (and thus only the even n modes) are included
because they are the rotationally invariant ones, and Lp(x) = L0

p(x) is a Laguerre
polynomial.

1.2.1 Fourier transform

If the Fourier transformation is defined in a symmetric way,

f̆ (k) =
1√
2π

∫ ∞

−∞
dx f (x)eikx, (1.33)

it can be shown that the dimensionless basis functions are almost invariant under
Fourier transformation,

φ̆n(k) = inφn(k). (1.34)

This result can be understood from the invariance of the Hamiltonian under an
exchange of x̂ and p̂. It does not come as a surprise that the shapelets transform
accordingly as

B̆n(k; β) = inBn(k; β−1)

B̆n(k; β) = in1+n2 Bn(k; β−1)

B̆n,m(ρ, θ; β) = imBn,m(ρ, θ; β−1),

(1.35)

with a change in scale size from β to β−1. The last result for polar shapelets was
derived by Bernstein & Jarvis (2002) in a slightly different notation.
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1.2.2 Range limits

Refregier (2003) defined characteristic limits for the maximum and minimum size
of features resolvable by shapelets of given order n and scale size β,

θmax = β(n +
1
2
)

1
2 , θmin = β(n +

1
2
)−

1
2 . (1.36)

They are derived by computing the expectation value of x̂2,

θmax = 〈n; β|x̂2|n; β〉, (1.37)

and p̂2, respectively. But in fact, this is identical to the variance 〈(x − µ)2〉 of a
probability distribution B2

n(x; β), since its mean µ is 0. So it does tell us something
about the probability of the square of the basis functions to be within certain
ranges, but it does not tell us much about the range limits of the basis functions
themselves.

A more appropriate size measure of a given shapelet state is its rms radius,
defined in Equation (1.54) below.

1.3 Transformations in shapelet space

It is the connection with the QHO that renders the description of transformations
in shapelet space so convenient, because of the familiar operator formalism al-
ready at hand. In this section, we show how the most relevant linear shapelet
transformations can be constructed.

We start from a coordinate transformation

x′ = x + R · x + ε

R =

(
0 −ρ

ρ 0

)
,

(1.38)

where ε = (ε1, ε2) is a displacement vector and R describes an infinitesimal ro-
tation. Under the assumption of conservation of surface brightness – which is
justified for the types of transformation regarded here –, we can express the trans-
formed intensity I′(x′) in terms of the untransformed intensity I(x),

I′(x′) = I(x(x′)) = I(x′ −R · x′ − ε). (1.39)

If only infinitesimal transformations are considered, we can Taylor-expand

I(x)
∣∣∣
x=x′
≈ I(x′) + [R · x′ + ε]

∂

∂x′
I(x′). (1.40)
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With x′ → x̂ and ∂
∂x′ → ip̂ and the appropriate insertion of the âj and â†

j from
Equation (1.6), we can write the transformation by means of operators,

I′ ≈ [1 + ρR̂ + εjT̂j] I, (1.41)

with the operators of rotation and translation being

R̂ = â1 â†
2 − â†

1 â2 = −iL̂

T̂j =
1√
2
(â†

j − âj) = −i p̂.
(1.42)

The well-known fact that the momentum operator generates translations and the
angular momentum operator generates rotations is recovered here.

As long as the surface brightness is conserved, this approach works for any
infinitesimal transformation. But we can even deal with finite transformations
if they have exact representations in the employed basis. As Massey & Refregier
(2005) pointed out, one can use the definition of the polar shapelets as eigenstates
of L̂ to easily derive the operators for finite rotations acting on polar shapelets,

R̂p = eimρ. (1.43)

Looking closer at the definition of the polar shapelets (Equation (1.17)), it be-
comes obvious that the rotationally invariant polar shapelets are those with m =

0. Thus, a radial profile can be obtained by applying the circularization operator

Ĉp = δn,0. (1.44)

Furthermore, a parity flip – more exactly: a reflection along the 1-axis – is achieved
by complex conjugation of all polar shapelets states. This gives rise to the parity
operator

P̂p = ( )∗. (1.45)

In general, transformations with explicit dependence on the rotational behavior
of the basis functions can typically be expressed very conveniently in the polar
basis. The importance of Equation (1.21) is that it enables us to apply these trans-
formations also on Cartesian shapelet states.

Finally, the shapelet expansion is a linear expansion (Equation (1.27)), hence
a change of the overall intensity by a factor B is trivially achieved by scalar mul-
tiplication,

B̂ = B. (1.46)
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1.3.1 Gravitational lensing in shapelet space

We derive now the equations of the lensing transformations associated with con-
vergence, shear and flexion in shapelet space, following the work in (Refregier,
2003, convergence and shear) and (Goldberg & Bacon, 2005, flexion). An intro-
duction to lensing is given in Appendix A.

Analogous to Equations (1.39) & (1.40), we Taylor-expand the Lens Equation
to second order (cf. Equation (A.21)) and substitute x′ → x̂ and ∂

∂x′ → ip̂:

I(x) '
[
1 + i(A− I)ij x̂j p̂i +

i
2

Dijk x̂j x̂k p̂i

]
I′(x). (1.47)

Looking at Equations (A.15) & (A.19), we notice that the parameters of a general
lensing transformation to second order are κ, γi and γi,j, which we collect such
that

I(x) ' [1 + κK̂ + γiŜi + γi,jŜij] I′(x), (1.48)

whereby we define the operators for convergence K̂, shear Ŝi and flexion Ŝij.
These operators can be expressed in terms of raising and lowering operators
(Equation (1.6)) and the number operator (Equation (1.8)):

K̂ ≡ 1 +
1
2
[â†2

1 + â†2
2 − â2

1 − â2
2]

Ŝ1 ≡
1
2
[â†2

1 − â†2
2 − â2

1 + â2
2]

Ŝ2 ≡ â†
1 â†

2 − â1 â2

Ŝ11 ≡
−1

2
√

2
[â3

1 − â†3
1 + (N̂1 − 1) â1 − (2 + N̂1) â†

1]

Ŝ12 ≡
1

2
√

2
[â3

2 − â†3
2 + (N̂2 − 1) â2 − (2 + N̂2) â†

2]

Ŝ21 ≡
−1

4
√

2
[â3

2 − â†3
2 + 3â2

1 â2 − 3â†2
1 â†

2 − â†2
1 â2+

(2N̂1 + N̂2 − 2) â2 − (N̂1 + N̂2 + 4) â†
2]

Ŝ22 ≡
−1

4
√

2
[â3

1 − â†3
1 + 3â2

2 â1 − 3â†2
2 â†

1 − â†2
2 â1+

(2N̂2 + N̂1 − 2) â1 − (N̂2 + N̂1 + 4) â†
1]

(1.49)

Note that the equations for the flexion operators in (Goldberg & Bacon, 2005)
are misleading. The equations there show the result of applying the operators to
some function in shapelet space, not the operators themselves. For convenience,
we give the appropriate shapelet coefficient mapping associated with each lens-
ing transformation in section A.4.

To get a more intuitive understanding of the action of these operators, we
show the result of applying them to the ground state |0, 0〉 in Figure 1.3. From
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original F1 = 0.2 pix−1 γ1 = 0.2 G1 = 0.2 pix−1

κ = 0.2 F2 = 0.2 pix−1 γ2 = 0.2 G2 = 0.2 pix−1

Figure 1.3: Result of applying lensing transformations (Equation (1.49)) to the shapelet
ground state |0, 0〉 (Gaussian, top left panel). Applying convergence produces a bigger
and brighter image (bottom left panel), applying F results in a centroid shift in the ap-
propriate direction (second column). Applying shear creates elliptical images, that are
oriented along the 1-direction or along the 45◦ direction (third column). Applying G pro-
duces images with threefold symmetry (last column).

the figure we get a visual confirmation of the mathematical fact that κ, F , γ, and
G behave like fields with spin 0, 1, 2, and 3, respectively.

Of course, it is possible to derive the operators also for polar shapelets (cf.
Massey & Refregier, 2005; Massey et al., 2007b), but they are in general not more
compact than those for Cartesian shapelets, so we omit them here.

1.4 Shape measures in shapelet space

If one has done a shapelet expansion (Equation (1.27) and chapter 2), the result is
a set of shapelet coefficients. For two-dimensional objects, the coefficients can be
understood as a matrix cn1,n2 for Cartesian shapelets or pn,m for polar shapelets,
respectively. The information about the brightness distribution of the object of
interest is then fully contained in its shapelet coefficients. It is thus necessary to
relate the shapelet coefficients to morphologically relevant measures.

The most basic measure is the total flux which can be easily computed by
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looking at Equation (1.28),

F = 〈1|I〉 =
√

πβ
even

∑
n1,n2

2
1
2 (2−n1−n2)

(
n1

n1/2

) 1
2
(

n2

n2/2

) 1
2
cn1,n2

=
√

4πβ
even

∑
n

pn,m=0.

(1.50)

Notice that in polar coordinates only shapelets with m = 0 contribute to the
total flux. The first moments of the brightness distribution are the components
of the centroid xc = 1

F
∫

d2xxI(x) which can be computed by using the operator
expression for the coordinates (Equations (1.5) & (1.6)) as

xc,1 =
1
F
〈1|x̂1|I〉 =

√
πβ2F−1

odd

∑
n1

even

∑
n2

(n1 + 1)
1
2 2

1
2 (2−n1−n2)

(
n1 + 1

n1+1
2

) 1
2
(

n2
n2
2

) 1
2
cn1,n2 ,

xc,2 =
1
F
〈1|x̂2|I〉 =

√
πβ2F−1

even

∑
n1

odd

∑
n2

(n2 + 1)
1
2 2

1
2 (2−n1−n2)

(
n1
n1
2

) 1
2
(

n2 + 1
n2+1

2

) 1
2
cn1,n2 .

(1.51)

The quadrupole moments Qij =
1
F
∫

d2xxixj I(x) are given by

Qii =
1
F
〈1|x̂2

i |I〉 =
√

πβ3F−1
even

∑
n1,n2

2
1
2 (2−n1−n2)(1 + 2ni)

(
n1
n1
2

) 1
2
(

n2
n2
2

) 1
2
cn1,n2 ,

Q12 = Q21 =
1
F
〈1|x̂1 x̂2|I〉 =

√
πβ3F−1

odd

∑
n1,n2

2
1
2 (2−n1−n2)(n1 + 1)

1
2 (n2 + 1)

1
2×

(
n1 + 1

n1+1
2

) 1
2
(

n2 + 1
n2+1

2

) 1
2
cn1,n2 .

(1.52)

(Bergé, 2005), from which we can derive the complex ellipticity of the object (e.g.
Bartelmann & Schneider, 2001),

ε ≡ Q11 −Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 −Q2
12)

1
2

. (1.53)

This definition of the ellipticity is used in the entire thesis.
Another convenient measure of the second brightness moments is the rms radius
of an object

R2 =
1
F
〈1|x̂2|I〉 =

√
πβ3F−1

even

∑
n1,n2

2
1
2 (4−n1−n2)(1 + n1 + n2)

(
n1
n1
2

) 1
2
(

n2
n2
2

) 1
2
cn1,n2 ,

(1.54)
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which can be understood as the size of the object.
Massey & Refregier (2005) also derived equations for more complicated, yet

frequently used astronomical shape measures.
Conselice et al. (2000) defined an asymmetry index

A ≡ ∑pixels |I(x)− I(180◦)(x)|
∑pixels I(x)

, (1.55)

where I(180◦) denotes the object I rotated by 180◦. This can be calculated in the
space of polar shapelets by means of finite rotations (Equation (1.43)),

A =
1
F ∑

n,m

[
〈n, m|(1− R̂180◦)

†(1− R̂180◦)|n, m〉
]1/2

=

√
2β

πF

odd

∑
n,m
|pn,m|. (1.56)

Conselice (2003) defined a clumpiness index

S ≡ 10
∑pixels |I(x)− I(σ)(x)|

∑pixels I(x)
, (1.57)

where I(σ) has been convolved by a Gaussian of given width σ. The form of the
Fourier transform (Equation (1.35)) renders convolutions very efficient, so that

S =
10
F ∑

n1,n2

[
〈n1, n2|(Ĝσ − 1)†(Ĝσ − 1)|n1, n2〉

]1/2, (1.58)

where Ĝσ denotes the operator for convolutions with a Gaussian which is intro-
duced in section 3.2.1.
Bershady et al. (2000) defined a concentration index

C ≡ 5 log
( r80

r20

)
, (1.59)

where r80 and r20 are the radii of circular apertures containing 80% and 20% of
the objects total flux. By using Equations (1.32) & (1.50) we can write the flux
within the radius R as∫ 2π

0
dϕ
∫ R

0
dr rI(r, ϕ) = 4

√
πβ

even

∑
n

pn,m=0 ξR
n , (1.60)

so that by evaluating this equation for several values of R we are able to find r80

and r20 and thus C.
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The bottom line
� The shapelet basis functions are given by Gauss-Hermite polynomials (Cartesian basis) or

Gauss-Laguerre polynomials (polar basis).

� The basis system is orthonormal, complete, compact, and essentially invariant under
Fourier transformation. Its functions comprise oscillations with a finite range of scales.

� Many shape transformations and shape measures can be computed analytically in
shapelet space.





CHAPTER 2
The decomposition process

After summarizing the basic formalism and properties of the shapelet method,
we proceed to a description of the decomposition process: How to infer the
shapelet coefficients from a given image of an object.

2.1 The image processing framework

The work presented here is based on a C++ framework for astronomical image
processing and analysis, called SHAPELENS++ (Melchior et al., 2007), which has
been actively developed during the course of this work.

Before we introduced the principal components of this framework, it seem ap-
propriate to discuss several design choices of the code. From the beginning, we
were guided by three objectives: modularity, performance, and distributability.
The first objective, modularity, stems from our thinking of how analysis pipelines
typically work. They perform one step after another, with a predefined series
of steps and clearly defined interfaces between them. A particular step in the
pipeline should not have the ability to change the behavior of any of the preced-
ing steps, otherwise results are hard to describe or reproduce. If a pipeline is con-
structed this way, the accuracy of each step can be easily assessed with a series of
unit tests, a necessary requirement for the trust in the pipeline’s results. Further-
more, it is straightforward to extend the pipeline by a follow-up step or even by a
new branch, allowing a specialization to particular scientific questions. As this is
normally done by several programmers, modularity becomes even more impor-
tant. While this objective can be achieved also in a less restrictive programming
environment, we strongly feel that a compiler-based object-oriented approach
fits best to this demand, mainly because of the clearly defined interfaces, the flex-
ible protection mechanism for class members, and the ability to compile the core
functionality into a linkable library.

I don’t mind a reasonable amount

of trouble. SAM SPADE

The Maltese Falcon (1941)
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Performance is often demanded without real need, but for scientific applica-
tions it can be of crucial importance. Any analysis pipeline, how accurate and
trustworthy it may be, depends on configuration parameters. That means, it is
rarely sufficient to run a pipeline once. Given the size of typical – and even more
so: upcoming – data sets in astronomy and the number of iterations required to
obtain a decent result, performance is of prominent concern. As we are going to
discuss in section 2.3, the shapelet decomposition can be formulated efficiently
with matrix and vector operations. Thus, we need fast codes for these types of
computations, which are typically available in C or FORTRAN, but can easily be
linked from C++.

At last, we want our framework to be easily distributable. Even though its
performance may be good, some analysis projects require special hardware or a
cluster environment to obtain results within an endurable time span. Also for
collaborations it is often necessary to install the code on several machines with
independent pipeline specializations. Unless one is willing to spend a fortune on
software licenses, this limits the codes to royalty-free, typically open-source ones.

Taking all these considerations together, we created a C++ library which de-
pends on a set of powerful external libraries: GNU Scientific Library1, FFTW2,
ATLAS3, LAPACK4, and Boost5. It is distributed via a Subversion6 code repos-
itory to ease collaboration of several developers. For data storage and access, it
can make use of the flexible and efficient MySQL7 server/client infrastructure.

2.2 Image preprocessing

The first step in the analysis pipeline is detecting objects in the images and deter-
mining their size and extent. In the field of image processing, this step is called
segmentation.

The standard choice for the task is SEXTRACTOR (Bertin & Arnouts, 1996). We
quickly summarize here how it works: It starts by estimating the noise character-
istics, its mean µn and its variance σ2

n , with the σ-clipping method, which itera-
tively loops over the image pixels, whose brightness lies in a 3σ interval around
the median, until no further change in σn and the median occurs. For images with
large areas of noise (and noise only), the procedure converges well to the correct

1 http://www.gnu.org/software/gsl/
2 http://www.fftw.org/
3 http://math-atlas.sourceforge.net
4 http://www.netlib.org/lapack/
5 http://www.boost.org
6 http://subversion.tigris.org/
7 http://www.mysql.com/

http://www.gnu.org/software/gsl/
http://www.fftw.org/
http://math-atlas.sourceforge.net
http://www.netlib.org/lapack/
http://www.boost.org
http://subversion.tigris.org/
http://www.mysql.com/
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values of mean and variance. For images with large objects or with many only
marginally significant objects, the procedure overestimates both mean and vari-
ance because the distribution of pixel values is skewed towards brighter values,
and would employ an empirical correction factor to compensate this effect.

It then detects objects by searching for pixels, which are brighter than τdσn.
Starting from these pixels, a Friend-of-Friend algorithms groups all directly con-
nected pixels, which are brighter than a significance threshold τsσn. If the number
of such pixels is larger than some lower limit Amin, the pixel group is identified
as one object. It then tries to decide whether an object is blended – it has multiple
overlapping brightness peaks – and if so to split the components, which would
then be considered the relevant objects. The last step is called deblending. It then
outputs several pieces of information, most importantly the catalog of detected
objects. τd, τs, Amin, and many more, are configurable parameters.

There is one fundamental limitation to this approach: By construction, this
procedure only finds significant objects. But whether an object comprises more
than Amin pixel brighter than τsσn depends on σn, which is determined by implic-
itly ignoring the presence of objects. That means, as we do not know the statistics
of the noise exactly, we cannot assess the significance and extent of objects in the
image without ambiguity. This leads to our inability to decide which pixels con-
tain only noise and which carry some flux from an object, so that we cannot safely
select blank areas to measure the noise statistics from. This limitation can have a
noticeable impact for small and faint objects.

As SEXTRACTOR is what many people in astronomy use and are familiar with,
we provide an interface to it, which reads in the noise characteristics, the seg-
mentation map, and the catalog of detected objects. But we also coded a library-
internal segmentation algorithm which is heavily inspired by SEXTRACTOR. It
offers essentially the same features but does not require a call to an external code
and thus avoids unnecessary write/read calls to the filesystem. As SEXTRAC-
TOR’s deblending algorithm has been criticized in the literature for being too ag-
gressive when tuned for small objects (e.g. Rix et al., 2004), our implementation
only detects blending but does not perform the deblending into components.

What we need from this step is a cutout of each object its own frame, which is
large enough to contain the entire object, even the marginally significant areas. To
ensure this we enlarge the areas from the segmentation by up to 25% on each side.
All other objects which may cover that enlarged frame are masked out. Also the
constant background brightness µn is removed such that the noise distribution is
centered at zero.8

8 As we pointed out before, the measurement of µn can be slightly biased high. If this is of concern, one
should include a fit of µn in the image decomposition. We discuss this briefly in section 4.1.4.
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2.3 Decomposition into shapelets

Before we can take advantage of the convenient properties of the shapelet basis
we introduced in the previous chapter, we need to transform an object from real
(pixel) space into shapelet space.

In section 1.2 an integrable function has been expanded into shapelets. The
occurring infinite series (Equation (1.27)) has to be truncated for practical pur-
poses so that a two-dimensional object (whose brightness distribution is given
by I(x), centered at the position xc) is approximated by a finite series

I(x) ' Ĩ(x) =
n1+n2=nmax

∑
n1,n2

cnBn(x− xc; β). (2.1)

The particular limit n1 + n2 = nmax for the maximum order ensures that the
mapping between Cartesian and polar shapelet states (Equation (1.21)) remains
bijective.

2.3.1 Decomposition Procedure

Equation (2.1) states that a shapelet decomposition depends on four external pa-
rameters: the scale size β, the maximum shapelet order nmax and the two com-
ponents of the centroid position xc. The essential task for achieving a faithful
shapelet decomposition is finding optimal values for the four external parame-
ters such that the residual between the original image and its reconstruction from
shapelet coefficients is minimized.

Massey & Refregier (2005) defined the goodness-of-fit function

χ2 =
~R(β, nmax, xc)T ·V−1 · ~R(β, nmax, xc)

npixels − ncoeffs
, (2.2)

where ~R(β, nmax, xc) ≡ ~I − ~̃I(β, nmax, xc) is a pixel vector (with length npixels) of
the model’s residuals, and V is a matrix which encodes the statistic of the pixel
noise.9 The total number of coefficients is related to nmax via Equation (2.1),

ncoeffs =
1
2
(nmax + 1)(nmax + 2). (2.3)

This particular form of the the upper limit in the decomposition is called triangu-
lar truncation.

9 In the case of Gaussian noise with standard deviation σn, V = σ2
n1. More complicated situations are

discussed in section 4.1.
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χ2 as defined above is normalized to the number of degrees of freedom10 and
becomes unity when the residuals are at noise level. In this case, the decom-
position procedure determined a shapelet model (with the employed nmax and
truncation scheme) such that the residuals are statistically compatible with the
noise model encoded in V. This does, however, not imply that the shapelet de-
composition was able to extract all relevant information from the given image as
this would require that the morphology of the object can in principle be perfectly
described by such a shapelet model.11 As an important consequence of the con-
struction as a reduced χ2, shapelet models with large ncoeffs are penalized by the
regularization term (npixels − ncoeffs)

−1, so that the method automatically favors
simple models.

Since Equation (2.2) is quadratic in the unknown shapelet coefficients ~c, we
can solve analytically for their values when χ2 is minimal (details in section 4.1):

~c = (MTV−1M)−1MTV−1~I, (2.4)

where the matrix M = Mij(β, nmax, xc) samples the j-th shapelet basis function at
the position of pixel i.

Finding optimal values now means finding the set of external parameters for
which χ2 is minimized and becomes unity.

Optimization constraints

For deciding on an optimization algorithm, we need to take the specific nature
of the shapelet model and the objective function χ2 into account. One has to
consider, that nmax is a discrete parameter which forbids using minimization al-
gorithms for continuous parameters, but in turn restricts the parameter space
severely.

For high order nmax or small scale size β, the oscillations of the basis functions
can then appear on sub-pixel scales, their sampling becomes essentially random.
As Massey & Refregier (2005) suggested, one can get rid of this by applying the
additional constraint

2θmin & 1, (2.5)

meaning that the oscillation ’wavelength’ should be larger than the grid spacings
of 1 pixel. For any given nmax this poses a lower limit to β, and vice versa.

The opposite case, where θmax becomes large in comparison to the image di-
mensions, can easily be prevented by placing the object inside a frame that is

10 Since the shapelet model is linear in the coefficients and shapelet states are orthogonal, each shapelet
state in the series Equation (2.1) reduces the number of degrees of freedom by exactly one.

11 We discuss this important distinction in detail in section 4.3.



24 The decomposition process

large enough. This is already ensured by our setup of the image segmentation
step where we added a sufficiently large empty area – with pixel values drawn
from the noise distribution characterized by V – around the object. On the other
hand, the inclusion of the additional frame border weakens the regularization as
it increases npixels. So one needs to find a compromise between model simplicity
and potential image boundary effects. In practice, increasing the sidelength of
the image by 10 to 15% on each provides adequate results.

2.3.2 Implementation

Massey & Refregier (2005) suggested the following procedure: Starting with
nmax = 2 the value of β is searched where

∂χ2

∂β

∣∣∣
nmax

= 0, (2.6)

using a one-dimensional simplex minimizer. xc is adjusted such that the cen-
troid position derived from the actual shapelet coefficient (according to Equation
(1.51)) is zero. Then nmax is increased until χ2 approaches unity or flattens out
(cf. Equation (2.9)). At this new nmax the value for β is again searched with the
simplex minimizer, also adjusting xc during each iteration. Then nmax is reset to
2 and increased again, keeping the values of β and xc fixed to possibly find a pa-
rameter set with a smaller nmax. If this is the case, β and xc are further optimized.

For several reasons we opt for a modified approach.

Centroid independence

At first, we exclude the two coordinates of the centroid xc from the set of opti-
mization parameters. The reasons for this are two-fold: First, the centroid posi-
tion is a crucial parameter for a localized model as the shapelet model. Therefore,
frequent changes of the centroid coordinates create a strongly varying χ2 func-
tion, with drastic reactions of the shapelet coefficients. This additional scatter
slows down the optimization considerably.

Second, estimating the centroid from the current – potentially non-optimal –
shapelet model implicitly assumes that the object is well described by the em-
ployed model. This is by far not guaranteed for all iteration steps. This again
results in prominent scatter around the correct centroid position, a situation we
found in the IDL implementation. But there is a way to determine the centroid
position without assumptions – by a direct and possibly weighted measurement
in real space. Therefore, we chose to fix the centroid to the position found in the
image segmentation step.
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Figure 2.1: Goodness-of-fit χ2 for the decom-
position of the galaxy image in Figure 2.2.
The centroid was fixed. The contour lines are
at χ2 = 1 (solid) and χ2 = 1± ∆χ2 (dotted).
The white dot marks the parameter combi-
nation found by the optimization algorithm
described in the text.

We are now faced with a two-
dimensional optimization problem,
with one dimension being dis-
crete. For visualization purposes,
we show the χ2 surface as a func-
tion of β and nmax in Figure 2.1.

Simplicity

By construction, the χ2 minimiza-
tion should not be stopped before
it reaches residuals at noise level.
This condition alone does not spec-
ify a unique decomposition result as
can be seen in Figure 2.1 from the
large area in the nmax - β plane for
which χ2 ≤ 1. We therefore impose
a stronger condition,

χ2
∣∣∣
min(nmax)

= 1± ∆χ2 (2.7)

with nmax being as small as possible for the sake of an unique parameter set. We
also account for the statistical uncertainty

∆χ2 =

√
2

npixels − ncoeffs
. (2.8)

In practice, this condition requires additional iterations at low nmax to make sure
that nmax is indeed minimal.

For cases where the regularization penalty grows faster with nmax than the
sum of squared residuals drop, χ2 = 1± ∆χ2 cannot be achieved. This indicates
either a severe mismatch between the object to be described and its approxima-
tion by a shapelet model or an incorrect noise description. To account for these
cases, Massey & Refregier (2005) suggested to stop the optimization when

∂χ2

∂nmax
< ∆χ2, (2.9)

i.e. when the improvement of χ2 is smaller than its statistical uncertainty. This
so-called flattening condition is indeed helpful to keep the shapelet models simple,
and we will employ it unless specified otherwise.
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Speed-up

Massey & Refregier (2005) mentioned that the computational complexity of the
shapelet optimization algorithm is of order O(n4

max). We believe, this is too con-
servative. The complexity of matrix multiplication and inversion is bounded
from below by O(n2), where n is the dimension of the matrix – actual complexity
relations of implemented algorithms are definitely higher, but unfortunately of-
ten unpublished. The size of matrix (MT ·M) in Equation (2.4) is ncoeffs× ncoeffs ∝
n2

max × n2
max. If this matrix has to be inverted, we have already reached the com-

plexity O(n4
max). Since the number of iterations during the optimization proce-

dure outlined above scales at least linearly with nmax, we obtain the lower bound
for the complexity of the entire algorithm O(n5

max).
But this is not the whole story. As we found out by profiling the runtime re-

quirements of individual parts of the algorithm, the most time consuming step
in the optimization process is the calculation of the entries of matrix M, surpris-
ingly not the matrix multiplications and inversions required by Equation (2.4).
We cannot change the complexity without changing the algorithm, but we might
be able to lower the factor, which converts the numerical complexity into time-
consumption, by building up M more efficiently.

Ordinarily, we would define M by computing the value of all considered basis
functions at all points of the image grid. Since the recurrence relation (1.2) can be
used for calculating the basis functions, we obtain in the one-dimensional case

Bn(x; β) =
2x
β

Bn−1(x; β)−
√

1− 1
n

Bn−2(x; β). (2.10)

Thus, for each dimension we can relate the unknown row n of the one-dimensio-
nal basis function matrix M(i) simply with the two rows n − 1 and n − 2, that
are already computed. Because of Equation (1.14), we just have to multiply the
entries of M(1) and M(2) row-wise to get the two-dimensional basis function ma-
trix M. This bypasses not only the repeated calculation of the factorial, but also
the calculation of the exponential in Equation (1.1), that does not depend on the
order n. The change in computing M saves factors of a few in computation time
for realistic cases; the factor is expected to increase as O(n2

max).
When considering the high computational complexity, it is definitely reason-

able to do as much optimization at low nmax as possible. The approach proposed
in Massey & Refregier (2005, see beginning of this subsection) effectively works
the opposite way. It starts at low order (nmax = 2), does one optimization iter-
ation to find the optimal β for this maximal order, then it increases nmax until
χ2 ≤ 1. This means, the decomposition is forced into unnecessarily high orders
because of a value of β that has been optimized for low nmax and that is proba-



2.4. Simultaneous decomposition 27

Figure 2.2: Example of a shapelet decomposition. The galaxy image from the GOODS
survey (Giavalisco et al., 2004, left panel) is decomposed into shapelets and reconstructed
from the coefficients (center panel), with residuals at noise level (right panel). The galaxy
image was chosen because of its typical deep field signal-to-noise ratio and its complex
morphology. The image size is 64 × 64 pixels.

bly not appropriate for higher nmax. Instead, we propose intermediate steps for
adjusting β whenever nmax is a multiple of 6. This approach reduces the total
number of iterations to find χ2 = 1± ∆χ2 and it shifts most of them to low nmax.
This changed optimization scheme amounts typically to a factor 3 reduction in
computation time.

2.3.3 Result

After going through the details of the shapelet decomposition, it seems appropri-
ate to present a worked out example. In the left panel of Figure 2.2, we show a
galaxy image from the GOODS survey and the corresponding shapelet model in
the central panel. The parameters nmax = 8 and β = 5.39 are determined by ful-
filling Equation (2.7). These numbers are obtained from the iterative algorithm
laid out above and agree with the numbers we would get in case we had full
knowledge of the χ2 plane shown in Figure 2.1. It is important to note, that the
iterative approach was able to find the minimal nmax for which χ2 = 1 ± ∆χ2

even though the range of valid β values was fairly small. Note also, that accord-
ing to Equation (2.3) the complex morphology of the galaxy is described by 45
coefficients only.

2.4 Simultaneous decomposition

Often in astronomy, we have multiple images of the same object. As long as the
observational conditions – filter band, seeing, etc. – and the intrinsic properties
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of objects did not vary between the individual exposures, we can combine them
to beat down the pixel noise or to improve the spatial resolution. This process
is known as image coaddition; the standard tool in astronomy is called DRIZZLE
(Fruchter & Hook, 1997, 2002).

Unfortunately, drizzling typically creates correlations among the pixels in the
coadded image (Casertano et al., 2000), because a single pixel in one exposure
often contributes to several neighboring pixels in the coadded image. This effect
changes both the significance of the data and the statistics of the noise in a rather
delicate way, which makes it hard to assess the reliability of the outcome of a
χ2-minimization.12

Alternatively, one can work on all exposures and construct a simultaneous
model from them. This has the advantage of enabling the standard χ2- mini-
mization, but the disadvantages of being plagued with image artifacts in some
of the exposures – like cosmic ray trails which would be removed by drizzling –
and of being computationally more demanding as we have to deal with all expo-
sures at the same time. In order to do that we concatenate the pixel vectors of N
individual exposures,

~Iconcat =
(
~I(1) ~I(2) ... ~I(N)

)
, (2.11)

which gives automatically rise to the concatenated version of the basis function
matrix M,

Mconcat =
(

M(1) M(2) ... M(N)
)T

. (2.12)

By inserting ~Iconcat and Mconcat into Equation (2.4), we obtain the best-fit coeffi-
cients cn of the object given N individual exposures.13

This approach has several built-in advantages. First, as M(n)
i,j samples the j-

th shapelet basis function at the position of pixel i in exposure n, any coordi-
nate transformation is automatically incorporated if all coordinates are measured
in a common reference frame. This is important as due to imperfect stability
and guidance of any telescope, exposures show small but non-negligible spatial
shifts. In modern surveys one introduces known shifts and rotations deliberately
to compensate for several instrumental effects.

Second, this approach is numerically still feasible since the exposures are sta-
tistically independent, i.e. covariances between pixel from different exposures
vanish. Thus, the concatenated pixel covariance matrix Vconcat has block-diagonal
shape. This means that the approach outlined here amounts to a sum over N in-
dividual χ2-minimizations. Ignoring for now the term in round brackets in Equa-

12 We discuss the proper treatment of different noise statistics in section 4.1.
13 We ignore the concatenated pixel covariances Vconcat here, its treatment follows below.
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tion (2.4) and thus only calculating the shapelet coefficients by projection onto the
shapelet basis functions, we easily see the separability:

~c = MT
concat V−1

concat
~Iconcat =

N

∑
n

M(n)T
V(n)−1~I(n) (2.13)

because of the shape of Vconcat.
Third, as a direct consequence of the separability and of employing one com-

mon shapelet model, the χ2 calculated for the concatenated data is given by the
sum of the individual χ2 (n), with implicit weights 1/V(n). Thus, the model is
constrained most from exposures with lowest noise.

Finally, as we do not coadd exposures, the pixel noise is uncorrelated. In the
case of background-dominated noise – for objects which are not too bright – the

noise distribution is Gaussian: V(n) = σ
(n)2

n . This results in a simple expression
of the coefficient covariance matrix, which we ignored in Equation (2.13):

(
MT

concatV
−1
concatMconcat

)
i,j = ∑

k,l

N

∑
n

M(n)T

i,k V(n)−1

k,l M(n)
l,j

~
=

N

∑
n

[ 1

σ
(n)
n

]2 ∫
In

d2x Bi(xk)Bj(xk)
}
=

N

∑
n

[ δi,j

σ
(n)
n

]2
,

(2.14)

where we used the diagonal shape of V(n) and the definition of M as basis func-
tions samples at ~, and employed the orthonormality of shapelet modes (cf.
Equation (1.25)) within each exposure I(n) at }.

In summary, if the data volume of N exposures fits into memory, it is ad-
vantageous to work with the data on the level of individual exposures, foremost
because the noise statistic is a lot simpler.

2.4.1 Improvements for the centroid

In the previous discussion we left out an important aspect. We need to know the
position of the centroid a priori to construct the model. Unfortunately, the noise
level in the exposures is surely higher than in the coadded image. Therefore, we
have to bear a larger uncertainty on the centroid. For small and faint galaxies we
encounter in weak-lensing studies, the determination of the centroid is a crucial
but difficult step (e.g. Bridle et al., 2009a) and would be even more troublesome
when working on individual exposures.

On the other hand, with multiple independent exposures of the same object
with small relative displacements, we potentially have access to subpixel infor-
mation about the centroid if we manage to stabilize the simultaneous decompo-
sition against the large individual centroid uncertainties. In contrast to the case
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of a single image, for which we would use the centroid measurement of the seg-
mentation procedure from section 2.3.2, we now allow for a determination of the
centroid coordinates as part of the χ2-minimization of the concatenated data.

Since we do not want to be plagued with the individual centroid errors, by
the large computational overhead of a four-dimensional minimization (β, nmax

and xc for the simultaneous model), and from the model assumptions when we
would calculate the centroid coordinates from the shapelet model (as in (Massey
& Refregier, 2005)), we decided to split the each iteration of the minimization into
three parts. The first one consists of the N independent shapelet decompositions
– one for each exposure – with each centroid being fixed to a predefined position.
In the first iteration, this position is obtained from the segmentation procedure.
From this we form a joint model by simply adding the coefficients according to
Equation (2.13). At last, we search in each exposure for the centroid position
which minimizes the individual χ2, now keeping the joint shapelet model fixed.
The found centroid position then updates the previous one. Conceptually, this
approach is similar to centroid determination with any assumed model of the
object, often a Gaussian. The advantage of our procedure is that it also adjusts
the model to fit the data. In practice, it works very well with a small number of
iterations and is able to obtain excellent centroid and modeling accuracy, partic-
ularly for small and faint objects.

The results of the simultaneous decomposition for these kinds of objects are
significantly better than when constructing the model from the coadded image,
even for a small number of exposures. This is not too surprising. The crucial step
is the update of the centroid coordinates. Since an already preadjusted model of
the object is employed, we can detect the centroid with very small uncertainty.
This step reduces the total χ2 much more than updates of the shapelet model,
indicating that we considerable improve the centroid accuracy. This is also the
reason why the iteration converges quickly.

This approach enables us to exploit the hidden subpixel information of the in-
dependent exposures – at least partially. It is important for rather peaked objects,
where centroid determination is critical. It also works well for constraining a
common PSF model from several nearby stars, assuming there is negligible PSF-
shape variation among them. The only difference between these two applications
– a single object at a fixed position vs. similar objects at different positions – is
that in the first case, we search for one common centroid, while in the latter case
we allow for independent centroids, thereby effectively decreasing the impact of
the centroid uncertainty on the joint shapelet model.
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2.5 Comparison with other methods

Among the great variety of image decomposition and analysis techniques, we
are interested in those which work well for galaxy images, i.e. for fairly compact,
round, smooth, and centrally peaked objects. To ensure a good representation of
these objects – and thus a high data compression rate –, it is necessary to choose
the expansion basis set as close to these image characteristics as possible.

One can classify the relevant methods in two broad classes: the parametric
ones and the non-parametric ones. The parametric methods start out from a
model of the data, described by a set of parameters which have then to be con-
strained from the data. Examples for this class in astronomy are GALFIT (Peng
et al., 2002) and GIM2D (Simard et al., 2002), which fit convolved Sérsic (Sér-
sic, 1963) profiles to the data, and the shapelet method. Non-parametric methods
generally try to construct a smoothed, noise-free or at least noise-reduced version
of the data without assuming a particular model for the data. Relevant examples
are the various wavelet techniques (e.g. Starck et al., 1998) and the Pixon method
(Pina & Puetter, 1993).

The parametric methods start out from our knowledge of or our speculation
about the true nature of the investigated objects, the so-called generative model.
In our case it deals with galaxy morphologies as we would see them in an ideal
experiment, i.e. without noise or any other degradation effect.

Sérsic (1963) showed that most galaxies have radial profiles which are de-
scribed by

ps(r) ∝ exp
{
−bns

[( r
Re

)1/ns − 1
]}

, (2.15)

where Re is the radius containing half of the flux14 and ns is the so-called Sér-
sic index. As galaxies typically show at least a moderate amount of ellipticity,
one needs to add this feature to the model by computing the radial coordinate r
according to

∆x ≡
(

1− ε1 −ε2

−ε2 1 + ε1

)
(x− xc)⇒ r2 =

(
∆x)2, (2.16)

14 This is ensured by demanding that the bns satisfy the relation

Γ(2ns) = 2γ(2ns, bns )

between the complete and the incomplete Gamma function (Graham & Driver, 2005). The approxi-
mate solution for the equation above,

bns ≈ 1.9992ns − 0.3271

(Capaccioli, 1989) is valid for the typical range of ns one encounters in galaxies.
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where xc denotes the centroid position as before and ε the complex ellipticity (e.g.
Bartelmann & Schneider, 2001). From several investigations it is known that for
the vast majority of observable galaxies ns ranges between 0.5 and 4 (e.g. Sargent
et al., 2007). The exponential profile which describes the brightness distribution
of spiral galaxies and the de Vaucouleurs profile (de Vaucouleurs, 1948) of ellip-
tical galaxies are special cases of the Sérsic profile with ns = 1 and ns = 4.

It is thus sensible to fit a single or a combination of several Sérsic profiles to
galaxy images. In order to do that, one has to fit a model to the data, which
consists of 6 parameters for each Sérsic component – two centroid coordinates,
size Re, slope ns, and two ellipticity components. To account for the point-spread
function, this model is convolved in pixel space with a model of the PSF. The op-
timization is computationally rather expensive, but leads to good descriptions of
many galaxies, at least when they are not too faint (Häussler et al., 2007). How-
ever, as the Sérsic fits stem from a radial profile, it is impossible for them to cap-
ture complex galaxy morphologies (cf. Figure 2.3).

In contrast, the shapelet method is based on a complete basis system, there-
fore it can in principle describe arbitrary shapes and is not limited to axisymmet-
ric cases. Furthermore, convolutions can be done analytically and efficiently in
shapelet space (details in chapter 3). This has important consequences for all ap-
plications for which PSF-correction or deconvolution from the PSF play a crucial
role, for instance weak gravitational lensing (chapter 5). However, the construc-
tion of the basis according to Equation (1.3) can lead to certain modeling faults,
which we are going to discuss in section 4.3. Nonetheless, for many galaxies
shapelets reach excellent modeling quality with data compression ratios of 50
to 100. In this more compact representation, statistical analyses of morphological
distribution functions can be assessed more easily and meaningfully than in pixel
space. We are going to discuss this application in chapter 6.

The non-parametric methods do not assume that the data is generated by a
particular model. Thus, they do not try to infer parameters, they rather iden-
tify regions of interest. Their strength is to provide a smooth representation of
noisy and coarse data. The best-known representative of this class is the wavelet
technique which computes the similarity between the image and a single shape
model – called mother-wavelet – of variable scale size. For each point in an im-
age, this technique calculates how well the pixel and its surroundings can be fit
by the selected shape, in dependence of the scale size. Typical mother-wavelets
have wave-packet (Morlet), Mexican-hat15 or box (Haar) shapes. The crucial step
in wavelet analysis is therefore to choose the mother-wavelet according to the
objects of interest.

15 identical to the shapelet basis function B2 of Equation (1.3) up to the normalization



2.5. Comparison with other methods 33

Figure 2.3: GALFIT model (central panel) of the galaxy in Figure 2.2 (left panel). In com-
parison to the shapelet model of the same galaxy, the single-component Sérsic fit is not
able to describe the peculiar, not axisymmetric features of this galaxy. Fit kindly provided
by C. Heymans.

Refregier (2003, sect. 7 and Fig. 11 therein) concluded that the wavelet and
the shapelet transformations can describe galaxy shapes equally well, and that
it is not straightforward to give an interpretation of the wavelet coefficients. In
contrast, the shapelet coefficients can be associated with Gaussian-weighted mul-
tipole moments, as shown in section 1.4. This becomes even more relevant since
the choice of the mother-wavelet is arbitrary. To calculate measures in wavelet
space one has to describe the equations in the space of the selected mother-
wavelet first, which might be a non-trivial problem. In short, the wavelet tech-
nique is very convenient for finding objects and describing them efficiently but
not for analyzing their properties based on wavelet coefficients.

One major difference remains. The computational complexity of the wavelet
decomposition is much lower than for the shapelet decomposition. This comes
simply from the fact that the shape of the mother-wavelet remains unchanged
and rescaling of the mother-wavelet in Fourier space can be done very efficiently.
In contrast, the shapelet decomposition represents an expansion into a set of dif-
ferent shapes which have to be scaled also. It is thus impossible to reach the speed
of the wavelet decomposition with shapelets (cf. discussion on page 26).

The second example for the non-parametric class is the Pixon approach. The
term “pixon” has been introduced to describe the real information content of
images as opposed to the number of pixels. The discrepancy between these
two numbers increases as structures in the image have large correlation lengths.
Accordingly, the pixon method represents a given image as a convolution of a
pseudo-image with a variable kernel,

I(x) =
∫

dx′ Ipseudo(x
′)K
(
x− x′; σ(x)

)
. (2.17)
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The interesting aspect of this approach is that it allows the width σ of the kernel
K to vary as a function of image position. The number of pixons is defined as

npixon ≡∑
x

1
2πσ(x)2 , (2.18)

where the sum contains all pixels in the given image. By employing Maximum-
Entropy arguments and calculating the significance of each pixon kernel, one
can then identify the maximum kernel width which still results in a reasonable
fit to the image data. Thus, one can solve iteratively for the values σ(x) and
Ipseudo(x) which maximize to likelihood of the fit given the data under the prior
of maximum local entropy. For galaxy images, one would probably also restrict
the pseudo-image to non-negative values.

The method can reach excellent reconstruction fidelity, but the results depend
critically on the choice of the kernel shape as well as on abundance and range of
allowed kernel scales (Puetter & Yahil, 1999; Eke, 2001). However, the reconstruc-
tions have to be interpreted on a visual level, and the algorithms are commercially
licensed and patent-protected.

The bottom line
� A shapelet model is a linear expansion in shapelet basis functions. Therefore, one can

easily solve for the unknown coefficients by means of linear algebra for any given value
of the scale size β and the maximum order nmax.

� The shapelet decomposition amounts to a χ2-minimization with respect to two non-linear
parameters, β and nmax, which are determined such that the model’s residuals are statisti-
cally compatible with the noise model for a minimal nmax.

� One can formulate the decomposition process such as to allow the simultaneous fitting
of a common model to several exposures, thereby accessing subpixel information without
any prior image coaddition.

� Image analysis methods form two classes: parametric and non-parametric ones. If the
employed generative model is correct, parametric methods can explain the data, while
non-parametric ones can only describe it.

� The shapelet method falls into the class of parametric methods. It is computationally
rather expensive.



CHAPTER 3
Convolution

An important advantage of the shapelet basis system is its near-invariance under
Fourier transformation (cf. Equation (1.35)), which enables us to give analytic
expressions for convolutions and deconvolutions. The general procedure is to
decompose the convolution kernel into shapelets and to deal with the convolu-
tion entirely in shapelet space.

We introduce the mathematical formalism in section 3.1 and derive the effect
of convolutions on the maximum order and scale size in section 3.2. To make
use of the analytic formalism, we need to build a shapelet model of the PSF from
the image of one star or of several nearby stars. How (well) this can be done is
discussed in section 3.3. We review the principal ways of performing the decon-
volution from the PSF in section 3.4 and construct a statistically optimal approach
in section 3.5, where we also compare its performance to other approaches.

3.1 Convolution formalism

We start by defining the convolution with a kernel g acting on the function f as

h(x) ≡ ( f ? g)(x) ≡
∫ ∞

−∞
dx′ f (x′)g(x− x′),

h(x) ≡ ( f ? g)(x) ≡
∫ ∞

−∞
d2x′ f (x′)g(x− x′).

(3.1)

In shapelet space these functions are represented by their coefficients fn, gn, and
hn (in two dimensions fn etc.), and their scale sizes β f , βg, and βh, respectively.
Because convolution is a bilinear operation, the relation between the shapelet
coefficients can be written in the form

hn = ∑
m,l

Cn,m,l fmgl ,

hn = ∑
m,l

Cn,m,l fmgl,
(3.2)

I think my eyes are getting better.

Instead of a big dark blur, I see a

big bright blur. HAN SOLO

Star Wars: Episode VI (1983)
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and because of the separability of coordinates (Equation (1.13)) the two-dimen-
sional convolution tensor Cn,m,l is related to its one-dimensional counterpart via

Cn,m,l = Cn1,m1,l1 Cn2,m2,l2 . (3.3)

The symbolic form of the one-dimensional convolution tensor

Cn,m,l(βh, β f , βg) ≡ 〈n; βh|(m; β f ) ? (l; βg)〉 (3.4)

makes it obvious that Cn,m,l is a function of the scale sizes of all involved objects.
In fact, the scale size of the convolved object is not clear from the beginning but
we are going to work it out in section 3.2. Using Equation (1.35) and the Con-
volution Theorem – convolutions can be expressed as multiplications in Fourier
space – the convolution tensor can be written as

Cn,m,l(βh, β f , βg) = (2π)
1
2 (−1)nin+m+lξ

(3)
n,l,k
(

β−1
h , β−1

f , β−1
g
)
, (3.5)

where the three-factor integral is defined as

ξ
(3)
n,l,k(β1, β2, β3) ≡

∫ ∞

−∞
dx Bl(x; β1)Bm(x; β2)Bn(x; β3). (3.6)

The two-dimensional pendant can be obtained simply from this by employing
once more the separability of coordinates,

ξ
(3)
n,l,k(β1, β2, β3) = ξ

(3)
n1,l1,k1

(β1, β2, β3) ξ
(3)
n2,l2,k2

(β1, β2, β3). (3.7)

Refregier & Bacon (2003) gave an analytic way of computing ξ
(3)
n,l,k for which it

has to be rewritten,

ξ
(3)
n,l,k(β1, β2, β3) = ν

[
2n+l+k−1√πn!l!k!β1β2β3

]− 1
2 Ln,l,k

(√
2

ν

β1
,
√

2
ν

β2
,
√

2
ν

β3

)
,

(3.8)
where ν ≡ [β−2

1 , β−2
2 , β−2

3 ]−
1
2 and

Ln,l,k(a, b, c) ≡ 1√
π

∫ ∞

−∞
dx e−x2

Hn(ax)Hl(bx)Hk(cx) (3.9)

were introduced. By parity, the integral in Equation (3.9) has to vanish when
n + k + l is odd. By employing the recurrence relation for Hermite polynomi-
als (Equation (1.2)) and integration by parts, we are able to derive a recurrence
relation for L:

Ln+1,l,k(a, b, c) = 2n[a2 − 1]Ln−1,l,k(a, b, c) + 2labLn,l−1,k(a, b, c)+

2kacLn,l,k−1(a, b, c),
(3.10)
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and similarly for Ln,l+1,k and Ln+1,l,k+1. Combining Equations (3.2) – (3.10), we
can finally compute the convolution analytically and efficiently in shapelet space.
Additionally, it is advantageous to form the convolution matrix P by explicitly
contracting over l in Equation (3.2),

hn = ∑
m

Pn,m fm or shorter ~h = P~f , (3.11)

as it allows us to exploit principles of linear algebra more easily. The fact that
the last equation is formally a matrix equation reminds us of the linearity of the
convolution operation.

3.2 Scale size and maximum order

So far, we have not addressed one important issue: the scale size βh and the maxi-
mum order of the convolved object in shapelet space nh

max are still undefined. For
calculating their values, we restrict ourselves to the one-dimensional case, which
is evidently sufficient as we can see from Equation (3.3).

We rewrite the convolution Equation (3.1) for two shapelet models fm and gl ,

h(x) = ∑
m,l

fmgl

∫
dx′Bm(x′; β f )Bl(x− x′; βg). (3.12)

We define Im,l(x; β f , βg) as the integral in Equation (3.12) and decompose it into
shapelets with scale size βh and maximum order N,

Im,l(x; β f , βg) =
N

∑
n

cnBn(x; βh). (3.13)

Considering Equations (1.1), (1.3), & (3.12), we recognize that N cannot be infinite
but is determined by the highest modes of the expansions of f and g, which
we will call M and L, respectively. Restricting to these modes and dropping all
unnecessary constants, we can proceed,

IM,L(x; β f , βg) =∫
dx′(x′)M exp

[
− x′2

2β2
f

]
(x− x′)L exp

[
− (x− x′)2

2β2
g

]
=

L

∑
i=0

(−1)L+1

(
L
i

)
xL−i

∫
dx′(x′)M+i exp

[
− (x− x′)2

2β2
g
− (x′)2

2β2
f

]
,

(3.14)

where we expanded (x− x′)L in the last step. By employing the so-called natural
choice for βh (Refregier, 2003),

β2
h = β2

f + β2
g (3.15)
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and substituting x̃ = x′ − β2
f

β2
h

x, we can split the exponential,

IM,L(x; β f , βg) =
L

∑
i=0

(−1)L+1

(
L
i

)
xL−i exp

[
− x2

2β2
h

]
×

∫
dx̃

(
x̃ +

β2
f

β2
h

x

)M+i

exp

[
− β2

h
2β2

f β2
g

x̃2

]
.

(3.16)

Again, we expand
(

x̃ +
β2

f

β2
h

x
)M+i

, which yields the desired expression

IM,L(x; β f , βg) =
L

∑
i=0

(−1)L+1

(
L
i

)
M+i

∑
j=0

β
2(M+i−j)
f

β
M−L+2i−j
h

(
M + i

j

)
Cj×

(
x
βh

)M+L−j
exp

[
− x2

2β2
h

]
,

(3.17)

where we inserted Cj ≡
∫

dx̃ x̃j exp
[
− β2

h
2β2

f β2
g

x̃2
]

. Apart from the omitted con-

stants, the second line of Equation (3.17) is the definition of BM+L−j(x; βh) (cf.
Equations (1.1) & (1.3)) which shows that the natural choice is well motivated.

Figure 3.1: Coefficient mixing by convolu-
tion. We plot the contribution of all even or-
ders n ≤ 6 of h = B4(x; β f ) ? B2(x; βg) as a
function of the scale sizes β f and βg. Each
coefficient hn is normalized by ∑n |hn|. Odd
modes have vanishing power1.

Moreover, as j runs from 0 to M + i,
we see that the maximum order N is
M + L, in our typical terminology,

nh
max = n f

max + ng
max. (3.18)

While this result gives the highest
possible mode of the convolved ob-
ject which could contain power, it
does not tell us whether it does
indeed have power, as this de-
pends primarily on the ratio of
scales β f /βg entering Pn,m. This is
demonstrated in Figure 3.1, where
we show the result of a convolution
of a function which is given by a
pure B4 mode with a kernel repre-
sented by a pure B2 mode. From
this it becomes obvious that in a
wide region around β f /βg ' 1
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Figure 3.2: Convolution with a Gaussian kernel in shapelet space. The shapelet model of
the galaxy from Figure 2.2 (left) is convolved with a kernel with FWHM = 5 pixels (center)
and FWHM = 10 pixels (right panel). Note that for a Gaussian FWHM = 2

√
2 ln 2 β.

power is transferred to all even modes1 up to n = 6. If either β f � βg or
βg � β f , the highest order of the larger object is also the highest effective or-
der of the convolved object. Thus, we can generalize Equation (3.18),

nh
max =


n f

max (+1) β f � βg (kernel negligible)

n f
max + ng

max β f ' βg

ng
max (+1) β f � βg (kernel dominant)

(3.19)

where the option (+1) is taken if required by parity. For most cases, in particular
for weak gravitational lensing, kernel and object scales are comparable, which
means that we must not neglect the power transfer to higher modes.

3.2.1 Gaussian convolution

A convolution with a Gaussian is a special case in several respects. Since it con-
stitutes the zeroth shapelet order, it is the only case where nh

max = n f
max. This case

is a generalization of the known fact that a Gaussian convolved with a Gaussian
remains a Gaussian. Furthermore, many kernel functions can be well approxi-
mated by a Gaussian (Trujillo et al., 2001) so that we can use it for a rough but
fast treatment of convolution. And sometimes, we require the convolution with
a Gaussian for theoretical reasons (e.g. when constructing the clumpiness index
S in Equation (1.58)). Therefore we give the exact form of the one-dimensional

1 Odd modes vanish because of parity: since Cj = 0 if j is odd, the only states with non-vanishing
power have the same parity as M + L.
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convolution matrix Pn,m(βh =
√

β2
f + σ2, β f , βg = σ) for the Gaussian case,

Ĝσ
n,m(β f ) =

2
n−m

2
(

ω
σ

) 1
2 ωm

σn βm−n
f

√
m!
n!

[(m−n)/2]! m ≥ n and m, n even

0 otherwise
(3.20)

with ω−2 ≡ β−2
f + β−2

g (Refregier, 2003). As an example we show the Gaussian
convolution with two different kernel widths in Figure 3.2.

3.3 Point-spread function modeling

While a Gaussian approximates the PSF shapes of optical telescopes fairly well,
we seek to provide much more detailed models of the PSF. Thus, we need to mea-
sure higher shapelet modes from stellar images. Furthermore, the PSF shapes
– and thus all parameters of their models – typically vary as a function of im-
age position and observational conditions. These variations demand sophisti-
cated schemes to identify the PSF shape, that most closely resembles the one
that smeared an observed galaxy at a particular position on the image under any
given observation conditions. We refer to papers dealing with these problems
(e.g. Jarvis & Jain, 2004; Schrabback et al., 2007) and concentrate on the shape
modeling aspect, bearing in mind that both aspects of the PSF modeling task are
tightly interwoven.

Obtaining the shape of the PSF is in principle identical to the procedure we
introduced in sections 2.2 and 2.3: Image segmentation provides a small cutout
around a sufficiently bright but not saturated star and the optimized decomposi-
tion procedure yields the shapelet model parameters β and ~c. The difference to
other extended objects lies in the intrinsic shape, which is to a very good approxi-
mation given by Dirac’s δ-distribution characterizing a perfect point-source. The
apparent shape of a star in therefore determined by the telescope and the obser-
vational conditions.

The trade-off in PSF shape modeling is created by the demand to accurately
determine as many of the higher modes as possible and the demand to capture
the variation of the PSF shape as closely as possible. While the former requires
some averaging procedure to diminish the influence of pixel noise and pixelation,
particularly for the highest modes, the latter seeks to treat stars independently.

We investigate this trade-off by looking at the limiting cases: averaging all
N stars in a given image vs. modeling every star individually. The first case
is clearly optimal if the PSF does not vary. If we fix β to an average β̄, we can
simply average all coefficient vectors~c. This would lower the scatter in each co-
efficient cn by a factor 1/

√
N. But there is a problem with this approach: As stars
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have variable brightness, the number of coefficients which can be significantly
measured differs from star to star. Even more so, brighter stars appear larger,
hence are model led with a larger β. Defining a constant β̄ is clearly suboptimal.
The better option is to employ the simultaneous decomposition described in sec-
tion 2.4 to construct a unique model from all N stellar images. Statistically, this
procedure is optimal for the shape modeling task as it uses every piece of data to
constrain a single model.

The other case is clearly optimal for inferring the PSF shape variation: Each
star is model led individually, and any change of β or~c is attributed to a varying
PSF. On top of the fact that higher modes are considerably noisy, this procedure
has all drawbacks of the averaging approach from above: To obtain meaningful
variations of~c, one need to fix β = β̄, or vice versa. The variation in~c is then often
approximated by a low-order polynomial fit in two dimensions, which provides
some amount of smoothing to suppress the noise-induced coefficient scatter.

In practice, one needs to be able to fulfill both demands to some degree, which
requires some mixtures of the limiting cases, i.e. some localized averaging pro-
cedure. For instance, Nakajima et al. (2009) split stellar field images of the ACS
WFC instrument aboard the HST in 8 × 8 cells and performed a simultaneous
decomposition of all stars within each cell.2 The spatial variation is captured by
a low-order polynomial between cells.

The approach constructs piece-wise constant spatial domains (the cells), with-
in which the stellar shapes are used to constrain a single model, and connects
them via interpolation. We would like to set up a scheme, which by construction
accounts for variability between domains and the noise within each domain. The
principal quantity we want to minimize is the square of the prediction error for
each shapelet coefficient, [

c̃n(x)− cn(x)
]2, (3.21)

where c̃n(x) is the predicted value of the true cn, obtained by the simultaneous
model of all stars within a domain D(x) around the position x. A local average
of this kind is commonly called kernel density estimate. For a scalar quantity y(x),
it is defined as

ỹ(x) =
1
C ∑

i∈D(x)
yiK(x− xi) (3.22)

with a suitably chosen kernel function K and normalization C. Instead of aver-
aging the coefficients of individual stellar shapes, we want to build a spatially
continuous simultaneous model by weighting the data of each stellar image with
the position-dependent kernel function. This can be realized by simply applying

2 The choice of the cell layout was not explained.
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the appropriate weights to Vconcat in Equation (2.13),

Vconcat =
(

V(i)/K(x− xi) ... V(j)/K(x− xj)
)

. (3.23)

This approach is computationally demanding, but has all advantages of the si-
multaneous modeling, even for spatially varying data. However, we still need
a way to determine the shape and width of the kernel function. The trade-off
now shows up in this form: If we increase the kernel width beyond scales, within
which PSF variations typically occur, the prediction error becomes dominated by
PSF variation; if we decrease it, it becomes dominated by pixel noise. We there-
fore seek to find a kernel, which is gives large weights to similarly shaped nearby
stars. An according construction is known as kriging in the field of geostatistics,
where it is used to predict the abundance of metals, coal or oil for mining com-
panies. If the variation of the scalar quantity can be described by its covariance

σ(xi − xj) ≡
〈
[y(xi)− ȳ] [y(xi)− ȳ]

〉
, (3.24)

the optimal weights wi(x) of samples yi for an estimate at position x are given by
the implicit equation set (Wackernagel, 2003)

∑
j

wj(x) σ(xi − xj) = σ(xi − x) ∀i ∈ D(x). (3.25)

We could therefore replace K(x− xi) in Equations (3.22) & (3.23) by wi(x).3 The
required covariance functions for the PSF shape can be measured from low-order
shape quantities like FWHM and ellipticity, which are typically available from the
image segmentation procedure. Thereby, the weights would depend on the typ-
ical correlation length of the PSF ellipticity patterns and also account for aniso-
tropies therein.

So far, we dealt with the task of modeling the PSF shape and its variations, for
which we implicitly assumed that the shapelet expansion provides an adequate
basis. Jee et al. (2007) compared PSF models for the ACS WFC instrument ob-
tained with Haar wavelets, circular shapelets, and a Principal Component Anal-
ysis (PCA) of the stellar images. The authors showed that – for the particular
shape of the ACS PSF – shapelets and wavelets do not perform as well as PCA.
The shapelet model fitted nicely in the center, but missed the features at large
distances from the stellar center because of the Gaussian damping in the basis
functions (cf. Equation (1.1)). We are going to return to problems of insufficient
shape description in the sections 4.3 and 5.3.

3 Unfortunately, some of the assumptions required for the derivation of the optimal kriging weights do
not necessarily hold for typical PSF shape variations, in particular the existence of a spatially constant
ȳ. More complicated kriging variants exist to account for that.
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3.4 Deconvolution

We are now able to produce a high-fidelity shapelet model of the PSF, which
determines the values of βg and ng

max and thus impacts on the according values
of βh and nh

max via Equations (3.15) & (3.18). However, it is not obvious how
these mathematical necessities need to be obeyed in deconvolving real data. We
first comment on possible ways to undo the convolution and then discuss our
findings in the light of measurement noise.

3.4.1 Deconvolution strategies

As already discussed by Refregier & Bacon (2003), there are two ways to decon-
volve from the PSF in shapelet space:

� Inversion of the convolution matrix: According to Equation (3.11), one can
solve for the unconvolved coefficients,

fm = ∑
n

P−1
m,n hn. (3.26)

� Fit with the convolved basis system (Kuijken, 1999; Massey & Refregier, 2005):
This modifies Equation (2.1) such that it directly minimizes the residuals of
h(x) w.r.t. its shapelet model

h̃(x) =
nmax

∑
n

fn ∑
m

Pn,mBm(x; β f ). (3.27)

The second method is generally applicable but slow because the convolution has
to be applied at each iteration step of the decomposition process. On the other
hand, the first approach reduces deconvolution to a single step after the shapelet
decomposition and is therefore computationally more efficient.

According to Equation (3.18), P is not square and thus not invertible as sug-
gested by Equation (3.26). To cope with this, we need to replace the inverse P−1

by the pseudo-inverse P† ≡
(

PT P
)−1PT such that the equation now reads as

fm = ∑
n

P†
m,n hn. (3.28)

What seems as a drawback at first glance is effectively beneficial. Conceptually,
this is now the least-squares solution of Equation (3.2), recovering the most prob-
able unconvolved coefficients from the set of noisy convolved coefficients. The
underlying assumption of Gaussian noise in the coefficients hn holds for the usual
case of background-dominated images, for which the pixel noise is Gaussian.
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Both approaches (direct inversion, Equation (3.26), or least-squares solution,
Equation (3.28)) would fail if P was rank-deficient. Refregier & Bacon (2003) ar-
gued that convolution with the PSF amounts to a projection of high-order modes
onto low-order modes and therefore P can become singular. This is only true
for very simple kernels (e.g. the Gaussian-shaped mode of order 0) with rather
large scales. In fact, Equation (3.19) tells us that convolution carries power from
all available modes of f to modes up to order nh

max ≥ n f
max, hence P is generally

not rank-deficient. In practice, we never had problems in constructing P−1 or
P† when using realistic kernels. We therefore see no hindrance in employing the
matrix-inversion scheme.

3.4.2 Measurement process and noise

Up to here, we have discussed (de-)convolution entirely in shapelet space, where
this problem is now completely solved. For the following line of reasoning, we
further assume that the kernel is perfectly known and can be described by a
shapelet model. Critical issues still arise at the transition from pixel to shapelet
space. There are no intrinsic values of n f

max and β f . Even if they existed, they
would not be directly accessible to a measurement. While the first statement
stems from trying to model a highly complicated galaxy or stellar shape with
a potentially completely inappropriate function set, the second statement arises
from pixelation and measurement noise occurring in the detector.

However, the pixelated version of the shape can be described by a shapelet
model, with an accuracy that depends on the noise level and the pixel size. Con-
sider for example a galaxy whose light distribution strictly follows a Sérsic pro-
file. Modeling the cusp and the wide tails of this profile with the shapelet basis
functions would require an infinite number of modes. But pixelation effectively
removes the central singularity of the Sérsic profile and turns the continuous light
distribution into a finite number of light measures, such that it is in principle de-
scribable by a finite number of shapelet coefficients. Pixel noise additionally lim-
its the spatial region within which the tails of Sérsic profiles remain noticeable,
hence the number of required shapelet modes.

Consequently, shapelet implementations usually determine nmax by some sig-
nificance measure of the model (χ2 in Massey & Refregier, 2005; Melchior et al.,
2007) or – similarly – fix nmax at a value that seems reasonable for capturing the
general features of the shape (e.g. Refregier & Bacon, 2003; Kuijken, 2006). Fig-
ure 3.3 schematically highlights an important issue of a significance-based ansatz.
When the power in a shapelet coefficient is lower than the power of the noise,
it is considered insignificant, and the shapelet series is truncated at this mode
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Figure 3.3: Sketch of the effect of a convo-
lution on the power of shapelet coefficients.
The detailed shape of the curves is neither
overly realistic nor important, but typical
shapelet models show decreasing coefficient
power with increasing order n. The noise
regime (represented by the gray area) is con-
stant in the case of uncorrelated noise.

(in Figure 3.3, fn may be limited to
n ≤ 2 and hn to n ≤ 3). Since
convolution with a flux-normalized
kernel does not change the over-
all flux or – as the shapelet decom-
position is linear – the total coeffi-
cient power but generally increases
the number of modes, the signal-to-
noise ratio (S/N) of each individual
coefficient is lowered on average.
Thus, after convolution, more coef-
ficients will be considered insignif-
icant and will be disregarded. This
is equivalent to the action of a con-
volution in pixel space, where some
object’s flux is distributed over a
larger area. If the noise is indepen-
dent of the convolution, demanding
a certain S/N threshold results in a
smaller number of significant pixels.

The main point here is that we try to measure hn from data and from this
fn by employing Equation (3.28). But if we truncate hn too early, at an order
nh

max � n f
max + ng

max, the resulting unconvolved coefficients fn are expected to
be biased even if the convolution kernel is perfectly described. The reason for
this is that, by truncating, we assume that any higher-order coefficient is zero on
average, while in reality it is non-zero, but just smaller than the noise limit. Every
estimator formed from these coefficients is thus likely biased itself.

In turn, if we knew n f
max, we could go to the order demanded by Equation

(3.18) and the deconvolution would map many noise-dominated high-order co-
efficients back onto lower-order coefficients. This way, we would not cut off coef-
ficient power, and our coefficient set would remain unbiased. Unfortunately, this
approach comes at a price. First, the resulting shapelet models are often mas-
sively overfitted, and second, obtaining unbiased fn requires the knowledge of
n f

max. The first problem can be addressed by averaging over a sufficient number
of galaxies, while the second one can indeed be achieved by checking the S/N of
the recovered fn after deconvolution. The average number of significant decon-
volved coefficients gives an indication of the typical complexity of the imaged
objects as they would be seen in a measurement without convolution, but using
the particular detector characterized by its pixel size and noise level.
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3.5 Optimal deconvolution method

The previous consideration guides us in setting up a deconvolution procedure
that yields unbiased deconvolved coefficients. Again, we assume that the kernel
can be perfectly modeled by shapelet series with finite order ng

max.

1. Given the noise level and the pixel size of the images, we initially guess n̄ f
max

for each individual galaxy.

2. We set the lower bounds nh
max ≥ ng

max + n̄ f
max and βh ≥ βg.

3. We decompose each galaxy by minimizing the decomposition χ2 under these
constraints. A value of nh

max > ng
max + n̄ f

max is used only if χ2 > 1 otherwise.
This yields hn and βh.

4. By inverting Equation (3.15), we obtain β̃ f .

5. Using the maximum orders and scale sizes for f , g, and h in addition to gn,
we can form the convolution matrix P according to Equation (3.11).

6. By forming P†
(w) and applying Equation (3.28), we reconstruct f̃n.

7. By propagating the coefficient errors from the decomposition through the
same set of steps, we investigate the number of significant coefficients and
should find n̄ f

max if our initial guess was correct.

Given the demanded accuracy, it might be necessary to adjust the guess n̄ f
max and

reiterate the steps above. For the initial guess, it is inevitable to split the data
set in magnitude bins, because the best value for n̄ f

max clearly depends on the
intrinsic brightness. Further splitting (according to apparent size or brightness
profile etc.) may be advantageous, too.

3.5.1 Microbenchmark

There exists a growing number of shapelet-based decomposition and deconvo-
lution approaches published in the literature. In this section we show that the
method proposed here is indeed capable of inferring unbiased unconvolved coef-
ficients. Moreover, employing the least-squares solution given by Equation (3.28)
results in a considerable noise reduction, which is to be expected from this ansatz.

At first, we want to emphasize that the simulations we use in this section are
highly simplistic. Their only purpose is to investigate how well a certain decom-
position/deconvolution scheme can recover the unconvolved coefficients. By un-
derstanding the performance of different approaches, we acquire the knowledge
for treating more realistic cases.

The construction of simulated galaxy images is visualized in Figure 3.4. As
intrinsic function we use a polar shapelet model with f0,0 = f2,0 = c, where c is
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a b c d e f

Figure 3.4: Example of simulated galaxies used in the deconvolution benchmark: (a)
intrinsic galaxy model with β f = 2 and flux equaling unity, (b) after applying a shear
γ = (0.1, 0), (c) after convolving with PSFb from Figure 3.5 with βg = 2, (d) after addition
of Gaussian noise of zero mean and variance σ2

n = 10−4 (moderate noise), (e) same as (d)
but with σn = 10−3 (high noise) . (f) shows the shapelet reconstruction of (e); the color
coding is adjusted to highlight the negative oscillations. The color stretch is logarithmic.

a b c d

Figure 3.5: The kernels used in our benchmark: (a) model of PSF2 from STEP1 (Heymans
et al., 2006) with ng

max = 4, (b) model of PSF3 from STEP1 with ng
max = 4; (c) Airy disk

model with ng
max = 6; (d) model from a ray-tracing simulation of a space-bourne tele-

scope’s PSF with ng
max = 8 and ng

max = 12 (shown here). The color stretch is logarithmic.

chosen such that the model has unit flux. Then, β f is varied between 1.5 and 4.
Given its ring-shaped appearance, this model is not overly realistic but also not
too simple, and circularly symmetric. We apply a mild shear of γ = (0.1, 0), thus
populate coefficients of order n f

max ≤ 4, and convolve with five different realistic
kernels g (cf. Figure 3.5) in shapelet space (employing Equations (3.15) & (3.18)
with 1.5 ≤ βg ≤ 6). The pixelated version of the convolved object is then subject
to N realizations of Gaussian noise with constant variance.

Each of these simulated galaxy images is decomposed into shapelets again,
yielding hn, using the SHAPELENS++ code described in chapter 2, where the
optimization is constrained by fixing either nh

max or βh, or both. The observed
coefficients hn are then deconvolved from the kernel g.

As a diagnostic for the correctness of the deconvolved coefficients, we esti-
mate the gravitational shear γ from the quadrupole moments Qij of the light
distribution, where each Qij is computed as a linear combination of all available
deconvolved coefficients (cf. Equations (1.52) & (1.53)).
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Table 3.1: Overview of the parameter choices of the investi-
gated decomposition/deconvolution approaches.

Name nh
max

a β̃ f
b ñ f

max
c

FULL ≥ ng
max + n̄ f

max

√
β2

h − β2
g n̄ f

max

SIGNIFIC ≥ ng
max

√
β2

h − β2
g n̄ f

max

SAME ng
max

√
β2

h − β2
g ng

max

CONSTSCALE ng
max βh ng

max

NMAX2 2
√

β2
h − β2

g 2
a order of the decomposed object
b estimate on the intrinsic scale of f
c estimate on the intrinsic order of f

We investigate five different approaches that differ in the choice of nh
max, ñ f

max or
the reconstruction of β f . The different choices are summarized in Table 3.1. FULL

is the method we proposed in the beginning of section 3.5, and for the following
tests we set n̄ f

max = n f
max = 4. SIGNIFIC is a variant of FULL, which bounds

the decomposition order by the kernel order because coefficients beyond that are
often insignificant, but makes use of our guess on n̄ f

max.
SAME is similar to the one used by Kuijken (2006) with two differences. As

discussed above, we employ the matrix inversion scheme (Equation (3.26) since
P is square for this method) instead of fitting the convolved shapelet basis func-
tions, and in our implementation χ2 is minimized with respect to a continuous
parameter βh, while Kuijken (2006) determined the best-fitting βh = 2n/8βg with
some integer n. Refregier & Bacon (2003) state that the approach CONSTSCALE

delivers the best results in their analysis. NMAX2, however, is an approach in-
spired by the naïve assumption that such a decomposition scheme catches the
essential shear information without being affected by overfitting.

3.5.2 Performance with moderate noise

The first set of simulations comprises galaxy models with peak S/N between 45
and 220 with a median of ≈ 90 (an example is shown in Figure 3.4d). For each
value of β f and βg, we created N = 100 noise realizations. These high S/N
values are more typical of galaxy morphology studies than of weak lensing, but
we can see the effect of the convolution best. In this regime, problems with the
deconvolution method immediately become apparent.



3.5. Optimal deconvolution method 49

In (Melchior et al., 2009), we showed that FULL, SIGNIFIC, and SAME perform
quite well, while CONSTSCALE and NMAX2 are largely unreliable. This is not too
surprising. By construction, NMAX2 truncates the shapelet series at nh

max = 2,
hence misses all information contained in higher-order coefficients. One has to
recall that the sheared model already has n f

max = 4, and after convolution with
PSFb (ng

max = 4), it arrives at nh
max = 8. NMAX2 tries to undo the deconvolution

with less information than contained in both sheared model and kernel individu-
ally. This is an enormously underconstrained attempt and leads to unpredictable
behavior. CONSTSCALE assumes that β f can be approximated by βh, so β̃ f must
be an increasing function of βg. According to Equation (3.15), this ansatz is only
applicable if βg is negligible. Because of the inherent limitations of CONSTSCALE

and NMAX2, we exclude these two methods from the further investigation.
This situation is very similar for other choices of β f and other PSF models.

To work out the general trends of the three remaining methods, we average over
all scales β f and βg and plot the results in dependence of the PSF model. The
top and middle panels of Figure 3.6 (left plot) confirm that all remaining meth-
ods yield essentially unbiased estimates of the shear, although we notice a mild
tendency of SAME and SIGNIFIC to underestimate γ1. This indicates that trunca-
tion of the decomposition order nh

max = ng
max might be insufficient for high S/N

images. That this underestimation is absent at higher kernel orders confirms this
interpretation. Within the errors, the recovered scale size β̃ f is rather unbiased
(see the bottom panel of Figure 3.6). For SAME and SIGNIFIC, we can see a clear
shift of β̃ f for PSFc. The reason for this lies in the large spatial extent and wide
wings of the Airy disk model in combination with a low nh

max. Since the entries
of P depend in a nonlinear way on β f , this shift affects the recovery of the shear
and leads to slightly poorer results.

From this initial simulation with moderate noise, we can conclude that one
should respect Equation (3.15) and must not truncate the shapelet series of hn

severely.

3.5.3 Performance with high noise

We now consider a realistic weak-lensing situation by increasing the noise level
by a factor of 10, hence 4.5 ≤ S/N ≤ 22 (cf. Figure 3.4e). To partly compensate
for the higher noise, we increase the number of realizations to N = 1000.

Looking at the right plot of Figure 3.6, we can confirm that the shear estimates
from these three methods are also not significantly biased for very noisy images.
However, for SAME we can see a remarkable drop in the mean of γ̃1 and a drastic
increase in the noise in both components of γ̃ with the kernel order. Both findings



50 Convolution

0 1 2 3 4

0.095

0.100

0.105

0.110

0.115
γ̃

1
FULL
SIGNIFIC
SAME

0 1 2 3 4

−0.002

0.000

0.002

γ̃
2

PSFa4 PSFb4 PSFc6 PSFd8 PSFd12

0.9

1.0

1.1

1.2

1.3

α̃
/

α

0 1 2 3 4

0.05

0.06

0.07

0.08

0.09

0.10

0.11

γ̃
1

0 1 2 3 4

−0.01

0.00

0.01

γ̃
2

PSFa4 PSFb4 PSFc6 PSFd8 PSFd12

0.9

1.0

1.1

1.2

1.3

α̃
/

α

Figure 3.6: Recovered shear γ̃ and intrinsic scale size β̃ f (in units of the true scale size β f )
in dependence on the PSF models from Figure 3.5 for the simulations with moderate noise
(left) and high noise (right). Each data point represents the mean of the quantity for all
available values of β f and βg (in total 60 independent combinations), and errorbars show
the standard deviation of the mean. For visualization purposes, each method is slightly
offset horizontally with respect to the others. Subscripts at the PSF label denote ng

max.

are probably related to using P−1 instead of P† when performing the deconvolu-
tion. In contrast to the two methods we propose here, SAME uses ñ f

max = ng
max (cf.

Table 3.1). For the typical weak-lensing scenario – characterized by n f
max < ng

max,
where all methods create a substantial amount of overfitting, cf. Figure 3.4f – this
assumes finding a higher number of significant deconvolved coefficients than are
actually available. These additional, noise-dominated coefficients affect Qij and
γ̃. Therefore, these quantities become rather noisy themselves. Given that those
high-order coefficients contain mostly arbitrary pixel noise that does not have a
preferred direction, they also tend to dilute the available shear information from
the lower-order coefficients, which explains the drop in γ̃1. The estimate for γ̃2 is
not affected, as its true value was zero anyway.

The superior behavior of FULL and SIGNIFIC in these low S/N simulations
can also be seen more directly. As measure of the decomposition quality, we cal-
culate the distance in shapelet space between the mean deconvolved coefficients
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the PSF model for the three methods FULL
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f̃n and the true input coefficients fn,

R2
s = ∑

n

(
〈 f̃n〉 − fn

)2. (3.29)

Figure 3.7 confirms that, as long as the kernel order is small, all three meth-
ods perform quite similarly. But when the kernel order increases, SAME tries
to recover a quadratically increasing number of deconvolved coefficients whose
individual significance is lowered at the same time. On the other hand, FULL

and SIGNIFIC make use of the redundancy of the overdetermined coefficient set,
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which is created by applying a rectangular matrix P in Equation (3.2). As a di-
rect consequence of computing the least-squares solution via P†, the higher the
number of convolved coefficients and the lower the number of significant intrin-
sic coefficients, the better these intrinsic coefficients can be recovered from noisy
measurements. This explains the decrease in Rs with the kernel order for these
two methods.

However, also FULL does not perform perfectly. The bottom panel of the right
plot of Figure 3.6 reveals a bias on β̃ f , independent of the PSF model. The rea-
son for this is again overfitting. As FULL goes to higher orders than SIGNIFIC

and SAME, it is even more affected by the pixel noise. As the decomposition
determines βh by minimizing χ2, βh tends to become larger because this allows
the model to fit a larger (increasingly noise-dominated) area, which reduces the
overall residuals and thus χ2. SIGNIFIC and SAME behave similarly when the
kernel order – and hence the decomposition order – becomes larger. To prevent
the shapelet models from creeping into the noisy areas around the object, it seems
useful to constrain βh not only from below but also from above. In addition to a
guess on ñ f

max, we therefore impose a constraint βg < βh <
√

β2
f + β2

g. Inferring
both should be feasible when investigating observational data.

As our simulations comprise galaxy models of varying S/N, it is illustrative
to present the deconvolution results in S/N bins.4 Figure 3.8 confirms that the
two methods we propose here are very robust against image degradation. This
is remarkable, since many weak-lensing pipelines (and also SAME in this paper)
suffer from an underestimation of the shear, which becomes increasingly promi-
nent with decreasing S/N (Massey et al., 2007a). Our statement from above, in
which we related this drop to the high number of insignificant coefficients ob-
tained from a deconvolution using SAME, is further supported by this plot. It is
obvious that – independent of the kernel model – a low S/N in pixel space results
in a low S/N in shapelet space. By obtaining the least-squares solution for the fn,
FULL and SIGNIFIC boost the significance of the recovered coefficients and thus
perform better in the low S/N regime. The reason why γ̃1 from FULL is consis-
tently but insignificantly lower than the estimates from SAME is still somewhat
unclear. A possible reason is the generally higher number of shapelet coefficients
hn for FULL and thus a more noticeable noise contamination.

4 The models for both f and g have unit flux, so the surface brightness of the convolved object h de-
pends on β f and βg
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The bottom line
� Convolution is an exact linear transformation in shapelet space.

� Obtaining a good shapelet model of a varying PSF requires a compromise between high
shapelet order and high spatial resolution.

� The change of the scale size (Equation (3.15)) and the increase of the maximum order
caused by convolution (Equation (3.18)) are inherited from the Gaussian weighting func-
tion and the polynomials in Equation (1.1).

� Convolution transports power to higher shapelet modes and reduces the mean signal-to-
noise ratio of the convolved coefficients.

� Deconvolution with shapelets must reduce the maximum order of the deconvolved coef-
ficients and thereby reestablishes their intrinsic significance.





CHAPTER 4
Errors, uncertainties, and faults

Since no measurement is meaningful as long as we do not provide its associated
errors, we now introduce and discuss three different kinds of errors. The first
kind refers to the errors on shapelet coefficients induced by pixel noise and its
correlation; the second kind to the inability of the decomposition to infer the
perfect scale size, centroid position, and expansion order due to pixel noise and
pixelation; the last one to the faulty shapelet models we obtain for objects whose
morphology differs drastically from the shape of the shapelet basis functions.

4.1 Errors from pixel noise

When modeling data, we solve for parameters by implicitly assuming that the
data is generated from the model and degraded by noise,

~I = M~c +~n, (4.1)

where we reintroduce the vectorial notation for the linear model and the quan-
tities from Equations (2.1) & (2.4). The fundamental requirement for the χ2-
solution to be the Maximum-Likelihood-Estimator (MLE) is that every noise sam-
ple ni has a Gaussian distribution with vanishing correlation (e.g. Frieden, 1983).
Accordingly, we start our investigation of the noise impact by defining ni to be
independently drawn from a Gaussian with mean 0 and variance 1,

ni ∼ N (0, 1) with 〈ninj〉 = δi,j. (4.2)

We form the (non-reduced) χ2-statistic,

χ2 ≡
(
~I −M~c

)T ·
(
~I −M~c

)
, (4.3)

which we want to minimize. By setting the derivatives w.r.t. the coefficients cn to
zero, we find the solution

~c = (MT M)−1MT~I. (4.4)

We have currently a built-in allergy to

unpleasant or disturbing information.

EDWARD R. MURROW

Good Night And Good Luck (2005)
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The matrix (MT M) ≡ Σ turns out to be the coefficient covariance matrix.1 The
matrix (MT M)−1MT ≡ M† is the so-called pseudo-inverse of M, which is required
since M is in general not square.

4.1.1 Inhomogeneous or correlated noise

For Gaussian but spatially varying noise, we can modify Equation (4.1),

~I = M~c + P~n, (4.5)

with a diagonal matrix P = Diag(σi). To recover the homogeneous noise we
need for the MLE solution, we can simply multiply the entire equation with the
inverse of P, which leads to

χ2 =
(

P−1~I − P−1 M~c
)T ·

(
P−1~I − P−1 M~c

)
=
(
~I −M~c

)T · (P−1)T P−1 ·
(
~I −M~c

)
=
(
~I −M~c

)T ·V−1 ·
(
~I −M~c

)
,

(4.6)

where we introduced the noise covariance matrix

V ≡ (P PT), (4.7)

which is identical to Diag(σ2
i ). Solving for the best-fit coefficients, we get

~c = (MT V−1 M)−1MT V−1~I. (4.8)

This solution constitutes the traditional data weighting with the inverse of the
individual measurement variances and recovers Equation (2.4).

Looking closer at the derivation above, we see that we do not need to assume
that P is diagonal, it can be the matrix representation of any invertible process
acting on the noise. In particular, P can contain off-diagonal terms which account
for spatial correlations in the noise. In such a case, conventional wisdom states
that one simply sets V to the noise covariance matrix

〈(P~n) · (P~n)T〉 = 〈P~n ·~nT PT〉 = 〈P 1 PT〉 = 〈V〉 (4.9)

where 〈.〉 denotes averages over blank image areas. Thus, by specifying V in
Equation (4.8) we were able to account fully for correlated noise. But this is not
entirely correct. While it is normally possible to measure 〈V〉 from the image

1 Due to the orthonormality of the basis functions (cf. Equation (1.25)), Σ is equal to the unit matrix as
long as the sampled basis functions in M capture the continuous basis B sufficiently well. But in the
following derivations we do not exploit this property such that our results apply to any linear model.
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data, at least if the images are not overly crowded, it does not fully specify P.
First, P does not have to be symmetric, but V is symmetric by construction. Thus,
we can not be sure that the employed error model correctly describes the process
P and not only its covariance V. Second, for positive correlations between differ-
ent pixels, V−1 must have negative off-diagonal entries. As long as the residuals
(~I −M~c) are not sufficiently close to the homogeneous and uncorrelated noise~n,
this can lead to a negative χ2 according to Equation (4.6), which would render
the entire minimization pointless.

4.1.2 Coadded data

Our inability to infer P from V leads to a fundamental problem when modeling
coadded data, for which all data points show correlation, not only the noise (see
discussion in section 2.4),

~I = Pd
(

M~c +~n), (4.10)

where Pd is an approximate description of the correlation created by drizzling.
To decorrelate this data, we multiply both sides of the equation with P−1

d , which
leads to the following

χ2 =
(

P−1
d

~I −M~c
)T ·

(
P−1

d
~I −M~c

)
(4.11)

and to the MLE

~c = (MT M)−1MT P−1
d

~I. (4.12)

Both χ2 and ~c now explicitly depend on P−1
d . If our only source of information

on Pd is given by V, the only guess we can form is Pd = V
1
2 , but this assumes

Pd to be symmetric. In case of a large number of coadded exposures, the indi-
vidual pointings tend to isotropize Pd, but for few exposures the relative vectors
between pointings may introduce a preferred direction for the coadded image,
corresponding to an asymmetric Pd. In such a case, Pd needs to be calculated
from the geometry of the pointings, but such an attempt is far beyond the scope
of this work. Even then, it is not guaranteed that Pd is invertible. We therefore
advocate the simultaneous model fitting instead of image coaddition wherever
possible.

4.1.3 Convolved objects

Another situation which often arises is that the object is convolved with the PSF,
but we are interested in its unconvolved shape. By assuming the convolution can
be discretized in pixel space or described in model space, we could generate the
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data as

~I = P M~c +~n or (4.13a)
~I = M Pm~c +~n (4.13b)

As the noise here is drawn from N (0, 1), we can just plug the modified models
in Equation (4.4) and obtain the corresponding MLEs:

~c = (MT PT P M)−1MT PT~I (4.14a)

~c = (PT
m MT M Pm)

−1PT
m MT~I = P†

m MT~I (4.14b)

Equation (4.14a) provides the solution for the deconvolution approach given by
Equation (3.27), which expands the data in convolved shapelet basis functions.
For an orthogonal M, Equation (4.14b) is identical to the solution of Equation
(3.28) – the optimal deconvolution in shapelet space via the pseudo-inverse P†

m –
since according to Equation (4.4) the term in square brackets denotes the uncor-
related shapelet coefficients of the convolved object.

Finally, we combine our previous derivations to the important case of con-
volved objects in coadded images,

~I = Pd
(

P M~c +~n
)

(4.15a)
~I = Pd

(
M Pm~c +~n

)
(4.15b)

which has the obvious MLEs

~c = (MT PT P M)−1MT PT P−1
d

~I (4.16a)

~c = P†
m MT P−1

d
~I (4.16b)

again with the necessity of constructing the decorrelation process P−1
d .

4.1.4 Non-orthogonal basis system

So far we assumed the shapelet basis function matrix M to be orthogonal, which
ensures that the coefficient covariance matrix Σ = 1. While the the continuous
basis functions always remain orthonormal, it does not automatically hold for
the discretized version sampled on a finite grid. Additionally, as we have seen
above, spatial correlation of either the data, the noise or the model lead to non-
orthogonal coefficient covariances.

Berry et al. (2004) pointed out, that severe undersampling or truncation at
the image boundary may result in a loss of orthonomality, orthogonality or even
completeness. This can be seen from the deviations of (MT M) from 1.
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Figure 4.1: Largest and smallest diagonal el-
ements of the covariance matrix Σ = MT M
in dependence of β at for a sampled basis
with nmax = 10. The image size was 50× 50
pixels with xc at (25, 25).
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Figure 4.2: Largest off-diagonal element of
the covariance matrix Σ from Figure 4.1.
Also shown for Σ from pixel-averaged ba-
sis functions B̄n and from a basis, which in-
cludes a constant function C.

We repeat the illustrative investigation here and show in Figure 4.1 the largest
and smallest diagonal entries Σi,i of a shapelet model with nmax = 10 as a func-
tion of β. We notice, that they diverge at β < 2, because the stepsize of the grid
(1 pixel) is too large to represent the variations of the continuous shapelet basis
function at such small scale sizes. As can be seen in Figure 4.2, the basis set also
loses orthogonality in that domain, since the largest non-diagonal element of the
covariance matrix is of the same order as the diagonal elements. As we noted
earlier, undersampling is essentially equivalent to random sampling. Since the
oscillations of the basis functions appear on smaller scales than the grid spacing,
small shifts of the grid points can lead to arbitrary differences in the sampled
function values. To avoid this regime, we pose the optimization constraint Equa-

tion (2.5), which would limit β > 1
2

√
nmax +

1
2 ≈ 1.62.

Massey & Refregier (2005) suggested a way of dealing with undersampling:
Instead of using vectors sampled at certain grid points, the value from integrating
the basis functions within each pixel should be used. While this provides a better
description of the average value of the basis functions in each pixel, it amounts
to a convolution with the pixel response function (High et al., 2007). Hence, this
approach also leads to non-orthogonal basis vectors, independent of the scale
size. This is confirmed by the curve for B̄n in Figure 4.2).

Another problem arises, when the scale size is too large for containing the
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shapelet basis functions inside the image dimensions. Since the shapelets need
infinite support for their orthogonality, power will be lost due to truncation at
the image boundary (cf. Figure 4.1 at high β). Again, also the orthogonality is
violated in this domain (cf. Figure 4.2). As noted on page 23, we avoid this
regime by adding blank image areas around the segmented object.

In case the sky background brightness is also to be inferred from the fit proce-
dure, we can extend the model by adding a constant function, which still forms
a linear model. As can be seen from the last curve in Figure 4.2, this again vio-
lates orthogonality globally. This means, it introduces covariances between the
coefficients even in domains of β, where the shapelet basis functions themselves
remain orthogonal.

While fitting to a non-orthogonal basis constitutes no fundamental problem,
one has to bear the inter-dependencies of the coefficients in mind when one wants
to obtain the errors of any of the shape estimators described in section 1.4. To
account for coefficient covariances one has to reformulate the shape estimators
as a linear transformation from shapelet space to the particular estimator space,

~e = E~c, (4.17)

where e denotes the estimate and E the associated coefficient mapping. The esti-
mate’s covariances are then given by

Σe = E Σ ET . (4.18)

In the SHAPELENS++ framework, we record Σ and completely account for the
coefficient and estimate covariances.

4.2 Decomposition uncertainties

As mentioned in section 2.3.1, the set of external shapelet parameters are not
uniquely defined (cf. degeneracy region with χ2 ≤ 1 in Figure 2.1). Furthermore,
due to pixel noise and pixelation not only the coefficients, but also the optimiza-
tion parameters can only be determined with finite uncertainties. Since the en-
tries of M depend in a non-linear way on the values of β and nmax, varying the
parameters can lead to drastic changes of the best-fit coefficients and therefore all
shape estimators we obtain from them.

To quantify the impact of parameter variation, the example galaxy from the
GOODS survey shown in Figure 2.2 was decomposed such that χ2 was compat-
ible with 1 at minimal nmax. Then, starting from the optimal values (nopt

max =

8, βopt = 5.39; cf. Figure 2.1), the decomposition was repeated with one of the
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Figure 4.3: Impact of the variation of β on
the decomposition χ2 (top) and on the es-
timates of flux F (center) and ellipticity ε

(bottom). We show the deviation of the es-
timates from their values at the chosen op-
timum (dotted lines).
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Figure 4.4: Impact of the variation of nmax

on the decomposition. All panels as ex-
plained in Figure 4.3.

parameters varied and the other one kept fixed at the optimal value. For each ob-
tained shapelet model, flux and ellipticity (according to Equations (1.50) & (1.53))
were computed from the shapelet coefficients, together with the χ2 of the fit.2 The
key to understand the response of the shapelet models to these variations lies in

2 We are aware that the investigation presented here is based on a single object and therefore not rep-
resentative of all possible galaxy morphologies. Nevertheless, it serves well for a qualitative under-
standing of the impact of parameter variation.
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Equation (1.36), which links these parameters to the maximal and minimal scale
of features present on the model.

From the top panel of Figure 4.3 one can see, that the χ2 is a smooth and con-
tinuous function of β, which renders the search for the minimum trivial. How-
ever, the goodness-of-fit is not very much affected by a change in β: The worst
values are ≈ 1.03. The shapelet decomposition is apparently able to cope even
with a massively mispredicted β and yet to provide adequate reconstructions.

The response of the flux to changes of β can be understood easily: Since the
central peak is most significant, the peak height is essentially fixed for each recon-
struction. If β < βopt, the reconstruction peaks more sharply, falls off too fast and
misses the outer parts of the object, thus the flux gets underestimated. If β > βopt,
the central peak becomes broader and the outer regions of the reconstructions are
too bright such that the flux is overestimated.

The variation of the ellipticity estimator is considerable. Changing β effec-
tively changes the area within which the quadrupole moments are measured.
From the image of the galaxy we can see its alignment along a top-right to bottom-
left direction. As the shapelet basis is circular, large values of β lead to an under-
estimation of the ellipticity since it gets averaged within a large circular area.
Such changes are reflected in the absolute value of the ellipticity, but not so much
in its orientation, therefore the two components remain largely correlated for any
choice of β.

From Figure 4.4, we again confirm that χ2 is a decreasing function of nmax, but
we also notice the effect of employing the reduced χ2 (cf. Equation (2.2)): With
growing nmax, the model complexity grows quadratically and therefore the num-
ber of degrees-of-freedom shrinks quickly. Therefore, χ2 tends to flatten at large
nmax, which we take into account by employing the flattening condition of Equa-
tion (2.9). It becomes furthermore evident from Figure 4.4 that in the case of low
nmax the flux will be underestimated due to the lack of substructures represented
in the reconstruction and due to the small area within which the shapelet model
is capable of fitting the data. On the other hand, when nmax is larger than the
preferred value nopt

max the reconstruction tends to pick up smaller noise features
further away from the center, preferentially noise. Thus, flux and especially ellip-
ticity become noisy at large nmax. This behavior demands the selection of models
such that χ2 ≈ 1 with a minimal nmax as we advised with Equation 2.7.

As we showed in (Melchior et al., 2007), uncertainties in the determination of
the centroid have similar impact on the estimated values of flux and ellipticity.3

This is obviously still true, even if we fix the centroid to the position determined

3 The shapelet model is not very peaked in the center, such that small centroid uncertainties do not
impede a good fit.
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from the segmentation procedure, as the shapelet model depends on all external
parameters β, nmax, and xc in a non-linear fashion.

However, apart from xc, the parameters do not have a physical meaning which
is of concern to us. We are rather interested in estimates on flux, ellipticity, etc.
Accordingly, what we would like to have from the method are error estimates
of the physically meaningful quantities instead of those for the optimization pa-
rameters. Equation (4.18) shows how to compute the estimate’s covariances –
and thus the related errors – for any linear shapelet space estimator. But this
entirely neglects the uncertainties of the optimization parameters. If we need
the realistic error distributions of shapelet coefficients and all derived estimates,
we cannot base them on quantities obtained from the standard optimization pro-
cedure. Instead, we need to vary all four parameters, construct the coefficient
MLE, from them the morphological estimators of interest, and weigh them with
the likelihood of the model. This procedure delivers confidence regions of both
the parameters and the coefficients and effectively constitutes a MCMC approach
(Metropolis & Ulam, 1949; Metropolis et al., 1953). Then we could infer e.g. the
distribution of ellipticities given the image data of a single object, marginalized
over the decomposition parameters, which not only provides significantly more
information than the procedure outlined in section 2.3.1, it is also much more ro-
bust against parameters variation than the MLE results we investigated in this
section. However, running a MCMC for each galaxy is typically unfeasible due
to the enormous number of parameter combinations, which have to be tested in
order to reliably identify the confidence regions.

4.3 Modeling faults

So far we have dealt with errors introduced by pixel noise and how they prop-
agate through the decomposition into the coefficient MLE, and with the conse-
quences of uncertainties of the shapelet model parameters. What we still assume
is that the generative model is correct, i.e. galaxy morphologies can in principle
be described by a finite shapelet series.

As we discussed already in section 2.5, galaxies generally follow the Sérsic
radial profile given in Equation (2.15). As we can see from Figure 4.5, most galax-
ies in the COSMOS field have Sérsic indices ns > 0.5, where ns = 0.5 describes
a Gaussian radial profile. One foreseeable problem of the shapelet method thus
stems from the Gaussian weighting function in Equation (1.1). Since galaxies
typically have steeper cores than a Gaussian, an optimized shapelet model re-
quires higher orders to compensate the profile mismatch. However, due to the
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Figure 4.5: Distribution of Sérsic indices ob-
tained from GIM2D-fits of galaxies in the
COSMOS field (Scoville et al., 2007) with
magAB < 22.5 in the ACS I-band (Sargent
et al., 2007). The highlighted bar denotes a
Gaussian profile with ns = 0.5, which is fa-
vored by shapelet models.

polynomial in Equation (1.1), the
largest oscillation amplitudes of
high-order modes are located at
rather large distances from the cen-
troid. Models which include higher
orders thus allow a better descrip-
tion of the outer parts of a galaxy,
while they still fail to reproduce
correctly the central region in the
case of steep profiles. Addition-
ally, in case of noisy image data,
the number of modes must be lim-
ited to avoid overfitting spurious
nearby noise fluctuations. Hence,
galactic shapes with steeper profiles
than a Gaussian are expected to be
described by shapelet models with
systematically shallower profiles.

Of similar concern is the circu-
larity of the shapelet basis system.
As the scale size for both dimen-

sions in Equation (1.14) is the same, the zeroth-order is round. If the shape to be
described is stretched in a particular direction – as a result of its intrinsic shape or
due to gravitational lensing – this elongation has to be carried by higher shapelet
orders. Again, for a limited number of basis modes we must expect an insuffi-
cient representation of the true shape by the shapelet model. In particular, we
have to consider an underestimation of the source elongation much more likely
than an overestimation, as the basis system preferentially remains circular.

An illustrative example of model mismatch is given in Figure 4.6, where we
tried to model an elliptical galaxy from the GOODS survey. Although χ2 of
this model is close to unity, we notice both shape biases mentioned above: the
shapelet model is too shallow in the center and not sufficiently elliptical. This
behavior – in particular the ring-shaped artifacts – is not uncommon and has
already been noticed by Massey et al. (2004).

In (Melchior, 2008), we described a way of alleviating the problem of steep
galactic cores. The ring artifacts are caused by a scale size β which is forced to
very small values in order to fit the central, very steep peak. But for bright objects,
we need to take the source photons into account when forming the Poissonian
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Figure 4.6: Example of the mismatch between an elliptical galaxy from the GOODS survey
(left panel) and its shapelet model with χ2 ≈ 1 (right panel).

pixel noise statistic:

V = Diag
(
σ2

n
)
→ V(x) = Diag

(
σ2

n + Ĩ(x)
)
, (4.19)

where σ2
n is the variance of the background noise and Ĩ(x) can be obtained from

the best-fitting shapelet model at position x. The covariance matrix V remains
diagonal such that the numerical calculation of χ2 can still be done efficiently.
This noise model correctly allows for larger residuals in those areas of the image
where the galaxy is bright and hence reduces the force on β.

However, oscillations occur also for fainter galaxies, rendering the shapelet
model slightly negative in some areas. This is another kind of model mismatch:
The models allow for negative regions via the oscillating polynomials in Equation
(1.1), while galaxies can never emit less than zero photons. For reducing these
artifacts, one can make use of the flexibility of the shapelet models, and add a
regularization term to form a new objective function

f = χ2 + λH, (4.20)

where λ is the regularization parameter and H is a function which penalizes neg-
ative flux regions. The regularization would increase λ from 0 to some value,
where negative flux features are absent at a desired level. In practice, we use

H(R) = acosh(1 + R), (4.21)
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where R denotes the ratio of total negative to total positive flux of the model Ĩ,

R =
∑ Ĩi<0 Ĩi

∑ Ĩi>0 Ĩi
. (4.22)

This choice of the penalty function is motivated by its strong non-linear depen-
dence – with infinite slope – at R = 0 such that already rather small values of R
are clearly disfavored.

One has to note that the regularization prevents negative oscillations quite
effectively but does not address the cause of the problem, the shape mismatch.
In fact, it only renders the models stiffer than they would normally be – high-
frequency oscillations are damped – and downweights regions of low signifi-
cance as they are dominated by the oscillating noise. Furthermore, the minimiza-
tion of f is computationally expensive since R and therefore also f is not linear
anymore in the coefficients.

Model mismatch can be a severe limitation for the applicability of the shapelet
method. We are going to discuss its impact in the context of weak gravitational
lensing in section 5.3 and for galaxy morphology studies in section 6.1.

The bottom line
� The shapelet model is a linear expansion, whose best-fit coefficients can be computed an-

alytically from the data and the basis functions.

� To form a meaningful χ2 and to obtain reliable shapelet coefficients, an accurate descrip-
tion of the noise statistic has to be provided.

� The noise statistic can often be directly inferred from blank image areas, but image coaddi-
tion may form non-symmetric correlations, which have to be described from the geometry
of pointings.

� Coefficient covariances of the best-fitting model cannot provide realistic errors on derived
shape estimates because they ignore uncertainties in the decomposition parameters. A
MCMC approach would be expedient, but is too slow in practice when used for each
individual galaxy.

� The shapelet decomposition favors circular objects with close-to Gaussian profiles and
introduces artifacts if these characteristics are not met.



Part II

Shapelet applications





CHAPTER 5
Gravitational lensing

Already in the first papers on Cartesian shapelets, Refregier (2003) and Refregier
& Bacon (2003) discussed their application to gravitational lensing studies.1 For
polar and elliptical shapelets, groundbreaking work was done by Bernstein &
Jarvis (2002). Since then, a couple of theoretical and observational projects devel-
oped and employed the shapelet method for lensing studies. We review the state
of the field in this chapter.

Although it has been argued, that shapelets may be used in the strong-lensing
regime (Refregier, 2003), our preceding discussion on modeling mismatch in sec-
tion 4.3 already indicates that strongly distorted shapes like those of gravitational
arcs are not well captured by a shapelet model. We therefore restrict ourselves in
the following to the weak-lensing regime and introduce several ways of estimat-
ing shear and flexion in section 5.1. In section 5.2 we review results for shapelet-
based lensing studies in the literature. We show limitations of the method for
weak-lensing measurements in section 5.3.

5.1 Lensing estimates from shapelets

Getting estimates for gravitational shear and flexion amounts to inferring the
strengths of the relevant image distortions (cf. Figure 1.3) applied to an unlensed
and thus unobservable background source galaxy. Now we clarify how this can
be done within the shapelet methodology.

A very useful scheme to categorize lensing estimates is introduced by Massey
et al. (2007a), which distinguishes so-called active from passive approaches. The
active approaches start out from a model of the unlensed, unconvolved galaxy,
apply some form of lensing transformation and convolution to it, and then com-
pare it to the data. A minimization procedure infers the best-fit lensing trans-
formation parameters and possible also the parameters of the underlying galaxy

1 An introduction to gravitational lensing is given in Appendix A.

A brave man once requested me

to answer questions that are key

is it to be or not to be

and I replied »oh why ask me?«

SGT. SEIDMAN

M*A*S*H (1970)
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model. A prototype for the methods in this class is LENSFIT (Miller et al., 2007).
The passive methods do not start from a model, but assume that the observed
galactic shapes contain features created by lensing, which are contaminated by
the PSF convolution and the intrinsic galaxy morphology. By correcting for these
effects, lensing estimates can be obtained. The ancestor of methods in this class
is KSB (Kaiser et al., 1995). With shapelets, one can form both active and passive
estimators.

5.1.1 Shear estimates

The starting point for the construction of lensing estimates is the shapelet-space
formulation of the shape change induced by lensing. If we ignore convergence
and flexion, the according Equation (1.48) simplifies to

cn1,n2 =
[
1 +

2

∑
i=1

γiŜi
]

c′n1,n2
(5.1)

in shapelet space (Refregier & Bacon, 2003), where c′n1,n2
denotes an unlensed,

unconvolved shapelet coefficient and the form of Ŝi is given in section A.4. The
convergence can be ignored here since the size of an object is not encoded in
the set of shapelet coefficients, but in the scale size β (Massey et al., 2007b); the
incorporation of flexion is discussed below.

One can now proceed in two different ways: In the active way, one would
vary γi and possibly the c′n1,n2

until they best fit the observed, deconvolved coeffi-
cients c′n1,n2

; in the passive way, one constructs lensing estimators from Equation
(5.1) by considering its impact on some coefficients, for which the morphology
contamination is controllable. We discuss the passive approach first and then
show how it links to the active one.

Passive approaches As noted above, the intrinsic galaxy morphology is a con-
taminant – often called shape noise – for which we have to find a correction. The
guiding principle in weak lensing is that when averaged over a sufficient number
of unlensed galaxies, the result must be rotationally invariant. In terms of polar
shapelets, we know from Equation (1.43) that this is equivalent to

R̂φ|n, m〉 = eimφ|n, m〉 !
= |n, m〉 ⇒ m = 0, (5.2)

which means, the rotationally invariant polar shapelet states are the states with
m = 0 and thus n even. These modes corresponds to a Cartesian shapelet modes
with n1 and n2 even (cf. Equation (1.21)). Thus, the average of a set of unlensed
galaxies, chosen from a region on the sky where the shear is zero, fulfills

µn1,n2 ≡ 〈c′n1,n2
〉 = 0 if n1 and/or n2 odd. (5.3)
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Furthermore, as shown in section A.4, Ŝ1 affects only even-even states, whereas
Ŝ2 affects only odd-odd states, provided that the coefficient set obeys Equation
(5.3). States where n1 is odd and n2 is even (or vice versa) remain unchanged.

The crucial step of the approach is to use the average coefficients as input of
the lensing transformation (Equation (5.1)) and the observed, deconvolved ones
as output. Following Refregier & Bacon (2003), we can separate the odd-odd and
the even-even states of the lensed coefficients and get two independent estima-
tors for the components of the shear:

γ̃1n =
cn − µn

Ŝ1µn
for n1 and n2 even

γ̃2n =
cn − µn

Ŝ2µn
for n1 and n2 odd

(5.4)

This provides one shear estimator for each appropriate combination n = (n1, n2)

of shapelet coefficients of the galaxy. We can now seek to combine these esti-
mators in an optimal way to maximize the shear signal. By using weights win,
which are set to zero when n1, n2 is not even-even (i = 1) or odd-odd (i = 2), the
individual estimators can be combined into a weighted estimator

γ̃i =
∑n winγ̃in

∑n win
, (5.5)

which is still linear and hence unbiased if the individual estimates are unbiased.
To find the optimal weights we consider the covariance matrix of the estimators

Vinm ≡ cov(γ̃in, γ̃im), (5.6)

which has to be computed from unlensed galaxies because their estimators are
affected by the intrinsic shape only, which is responsible for the shape noise. The
variance σ(γ̃i) becomes minimal when

win = ∑
m

V−1
inm ⇒ σ(γ̃i) =

[
∑
n,m

V−1
inm
]−1. (5.7)

Thus, we can now compute the strength of the shear field by comparing the av-
erage unlensed coefficients µn with the lensed coefficients cn. The variance of the
shear estimator can be obtained from Equation (5.7) or directly from the variance
of the measured estimators.

The construction of shear estimates is much more elegant and straightforward
in the polar coordinate frame (Massey et al., 2007b), where Equation (5.3) reads

µn,m = 0 if m 6= 0, (5.8)
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or, as noted above: Non-vanishing averaged unlensed modes are the radial ones.
As the shear field has spin 2, it manifests itself predominantly in the polar |m| = 2
modes. Thus, Equation (5.4) can be rewritten as

γ̃(n2) ≡ 4√
n(n + 2)

pn,2

µn−2,0 − µn+2,0
, (5.9)

which only uses the m = 2 mode of any even polar order n. As above, this co-
efficient must be normalized by its susceptibility to shear – equivalent to Ŝiµn in
Equation (5.4) – which contains two of the average unlensed polar coefficients
µn,m. Many other estimators with different susceptibility can be constructed sim-
ilarly from their spin properties.

Finally, one can measure the ellipticity from the quadrupole moments of the
deconvolved coefficients according to Equations (1.52) & (1.53), which is also a
direct estimator of the shear (e.g. Bartelmann & Schneider, 2001),

γ̃(Q) ≡ ε. (5.10)

It has the advantage of perfect shear susceptibility (Bernstein & Jarvis, 2002) and
does therefore not depend on the specification of average unlensed coefficients.
On the other hand, it is formed of all available shapelet coefficients, therefore this
estimator critically relies on a decent shapelet model.

Active approaches The active approaches are exemplified by the work of Kui-
jken (2006), where a lensed, shifted and convolved radial source profile is fit to
the observed image. The idea is to extend the minimization to the coefficients
which describe the radial profile of the source galaxy. For that purpose, the au-
thor introduced ’circular’ shapelets, which constitute the Cartesian representa-
tion of the radial polar shapelet states with m = 0. The coefficients of the model
for the lensed and convolved galaxy are thus given by

P̂
[
1 +

2

∑
i=1

γiŜi +
2

∑
i=1

diT̂i
]
·~c(c), (5.11)

where ~c(c) denotes the circular shapelet coefficients – a combination of Carte-
sian coefficients cn1,n2 with n1 + n2 even – which are transformed by operators
for the convolution P̂ (Equation (3.11)), weak shear Ŝi (Equation (1.49)), and in-
finitesimal translations T̂i (Equation (1.42)). The centroid shift parameters di are
included because the spherically symmetric Bn,0 do not allow any lopsidedness
of the galaxy. By minimizing the deviation of this model from the observed im-
age, one finds not only values for the shear, but also constrains the radial profile
of the source galaxy via c(c)n .
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The connection between the active and the passive approaches is the assump-
tion of the underlying galaxy model. While the passive approaches allow any
intrinsic shape and obtain the lensing estimates from non-vanishing power of
lensed coefficients, which have no power in the unlensed case, the active ap-
proaches assume that the intrinsic galaxy morphology is entirely described by
the non-vanishing unlensed modes, i.e. the radial ones. Hence, the active ap-
proaches assume this average property for each galaxy, while the passive ones
recover that property only after averaging. By limiting the shapes of the intrin-
sic galaxy models, the active approaches have a mechanism at hand to constrain
the decomposition result such as to remain physically meaningful even for very
noisy images.

We mentioned several times the importance of capturing the apparent galactic
ellipticity in the model. It is thus only consequent to allow for elliptical shapelet
basis functions. Bernstein & Jarvis (2002) pioneered this mathematically compli-
cated task and showed how the required transformations between circular and
elliptical polar shapelets can be applied. In short, elliptical shapelets are defined
essentially like polar shapelets in a suitably sheared reference system. For exam-
ple, in the simple case where the elliptical base is oriented along the Cartesian
axes, one can define a new coordinate system (x′1, x′2) as

x′1 = x1/a and x′2 = x2/b, (5.12)

where a and b are two scales (the two semi-axes of the base system). This gives
rise to a radial coordinate r′, for which we evaluate the shapelet function Bnr ,nl

of Equation (1.17) in this new system (by keeping β = 1, since β is already en-
coded in the two scales a and b). Generalization for arbitrarily oriented galaxies
is straightforward.

The crucial step is to apply an elliptical weight mask to the image to suppress
the pixel noise. Initial guesses of ellipticity of the mask and the basis system are
provided by the image segmentation process. Shear estimates are then obtained
either from the quadrupole moments of the model or from an iterative proce-
dure, which applies a sequence of translations, scaling operations, and shear op-
erations to the object until it appears perfectly centered, with maximum signal to
noise, and round. As shown by Bernstein & Jarvis (2002), these conditions can be
fulfilled by requiring that p1,1 = p2,0 = p2,2 = 0.2 As this method measures both
the ellipticity from the model and applies shear transformations to it, it combines
elements of passive and active approaches.

2 Since the basis is already elliptical, the condition p2,2 = 0 simply indicates that the object is round in
the elliptical base, i.e. has an ellipticity and a position angle that are identical to the ones of the base.
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5.1.2 Flexion estimates

The generalization to the 2nd-order lensing terms is often straightforward. Again
dropping the unobservable κ-term, we get from Equation (1.48)

cn1,n2 =
[
1 +

2

∑
i=1

γiŜi +
2

∑
i,j=1

γi,jŜij
]

c′n1,n2
. (5.13)

The form of the flexion operators Ŝij is given in section A.4.
Following the derivations above, the passive estimators in polar shapelet space

read in lowest orders (Massey et al., 2007b)

F̃ (11) =
4β

3
p1,1

〈(β2 − R2)p0,0 + R2 p2,0 − β2 p4,0〉

G̃(33) =
4
√

6
3β

p3,3

〈p0,0 + p2,0 − p4,0 − p6,0〉
,

(5.14)

where R denotes the RMS radius defined in Equation (1.54). The extension of
Equation (5.11) is also straightforward,

P̂
[
1 +

2

∑
i=1

diT̂i +
2

∑
i=1

γiŜi +
2

∑
i,j=1

γi,jŜij
]
·~c(c), (5.15)

and has recently been employed by M. Velander (Bridle et al., 2009a, a detailed
description is not yet published).

One important difference between shear and flexion is the shift of the centroid
position induced by the first flexion F (Massey et al., 2007b; Okura et al., 2007),

∆F =
R2

4β

(
6F + 5F †ε + Gε†). (5.16)

This shift is not observable because the centroid is determined from post-lensing
images. As it would leave a strong imprint on the dipole coefficient p1,1, the
estimator F̃ (11) needs to be and in fact is corrected for this effect. For the active
approach, the translation terms can in principle compensate the flexion-induced
shift such that no further correction is necessary.

5.2 Applications

Although shapelet-based approaches were published several years ago (Bern-
stein & Jarvis, 2002; Refregier, 2003), they have not been employed for many
lensing studies yet. We could find three applications in the published literature,
which we review below. However, shapelet-based methods took part in each of
the large shear accuracy investigations undertaken so far. We discuss their per-
formance briefly at the end of this section.
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Chang et al. (2004) performed a shapelet-based cosmic-shear measurement us-
ing the FIRST radio survey over 8000 deg2 of sky with a flux limit of 1 mJy. The
survey contains 9 · 105 sources. The aim was to constrain σ8, the normalization of
the matter power spectrum averaged within spheres of 8 h−1 Mpc radius.
Interferometric radio data is stored as Fourier-transform of the radio brightness
map. Since shapelets are almost invariant under Fourier transform, the authors
decomposed the data directly in Fourier space,

Ĭ(k) = ∑
n

c̆nB̆n(k; β−1), (5.17)

and obtained the shapelet coefficients for the real space object by employing
Equation (1.35). Guided by numerical simulations, the authors set nmax = a/1.5−
1 and β =

√
0.9(a/2.35)(b/2.35), where a and b denote the FWHM of the semi-

major and the semi-minor axis of the object. The shear estimator is the passive
γ̃(n2) from Equation (5.9).

After removal of known foreground radio sources, they found a significant
Map signal (cf. Equation (A.40)) within the range 300 < θ < 700 arcmin, with
a peak significance of 3.6 σ at 450 arcmin. To obtain the cosmological parameter
constrains, the authors varied σ8 and the median source redshift zs in order to
minimize the deviation of the 〈M2

ap〉 predictions of the ΛCDM model from the
data. In contrast to optical data, the source redshift is rather uncertain, therefore it
was included as fitting parameter. The parameter degeneracies between H0, Ωm,
and σ8 – all contribute to ξ± in Equation (A.36) – were lifted by fixing Ωm = 0.3
and Γ = Ωm h = 0.21. At 68.3% confidence level, the authors found a fit with the
parameter combination

σ8
( zs

2
)0.6 ' 0.95± 0.22, (5.18)

where the error includes statistical errors, cosmic variance and systematic effects.
Taking the prior on σ8 from the Wilkinson Microwave Anisotropy Probe experi-
ment (Spergel et al., 2003, WMAP), this corresponds to zs = 2.2± 0.9, which is
consistent with existing models for the radio source luminosity function.

Bergé et al. (2008) performed a shapelet-based lensing analysis for a shallow
4 deg2 and a deep 1 deg2 patch of the sky observed with the Canada-France-
Hawaii Telescope (CFHT). With a limiting magnitude of magi = 24.5 (28.5), the
galaxy density was ng = 13 (28) arcsec−2 for the shallow (deep) observations.

The authors employed a passive approach, i.e. they deconvolved the galac-
tic shapes from a spatially variable PSF model in shapelet space and then esti-
mated the shear with the estimator from Equation (5.9). Instead of measuring
shear correlation statistics, they detected mass overdensities – galaxy clusters –
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from their localized shear peaks with the method described by Kaiser & Squires
(1993). From the obtained convergence map, they estimated the cluster mass by
averaging within a circular apertures that cover the 2σ convergence contour. For
a NFW (Navarro et al., 1996) halo, the significance of the detection is given by

ν =
ng

σγ

[∫
d2x κ(x)

] 1
2
. (5.19)

When combined with a prediction for the numbers of clusters at given mass and
redshift (the authors use Jenkins et al., 2001), one can compute the number of
expected detections above a certain significance. Evaluating this as a function
of σ8, the prediction can be compared with the observed numbers and thereby
constrain σ8. With Ωm = 0.24 (Spergel et al., 2007, WMAP3), the authors find
σ8 = 0.92+0.26

−0.30 at 68% confidence level.

Nakajima et al. (2009) used the elliptical shapelet method proposed by Bern-
stein & Jarvis (2002) and implemented by Nakajima & Bernstein (2007) to im-
prove constraints on H0 from the multiply-imaged quasar system Q0957+561.

The light from a distant source is delayed by an intervening mass by two
effects. Due to deflection, the light does not propagate along straight trajectories,
and the gravitational potential behaves like a medium with a refractive index
larger than unity. With the definitions of section A.1 and Figure A.1, one can
express this time delay as

t(θ) =
1 + zl

c
DLDS
DLS

[1
2
(θ− β)2 + ψ(θ)

]
. (5.20)

Since the undistorted trajectory is not accessible, we need to observe the light
from a single source, visible at different positions θ, ∆t = t(θ1) − t(θ2). If the
source is variable, one can measure this delay from the temporal shift of features
in the light curves of the two (or more) images. From the definition of D·, ∆t ∝
H−1

0 with a proportionality constant, which depends on the cosmological model,
the distances of the lensing system, and the gravitational potential at θ1 and θ2.
One therefore assumes models for the matter distribution of the lens. In this case,
the lens is described by an isothermal sphere for a single galaxy and low-order
multipoles of the cluster potential, which hosts the galaxy. The strong-lensing
analysis can determine the potential only up to an additive constant κ0, which
would change the inferred value H0 → (1 − κ0)H0. This so-called mass-sheet
degeneracy can be lifted by constraining the average κ on much larger scales than
the strong-lensing model, because this probes regions dominated by κ0.
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The authors analyze observations from the ACS instrument aboard the HST
with elliptical shapelets. They decompose stars into circular shapelets, and use an
iteration scheme to find the preferred ellipticity of each galaxy with magV > 24.3

PSF correction for the ACS instrument is difficult as the number of stars in a
typical observation is too small to infer the spatial variation. Therefore, the au-
thors make use of publicly available observations of dense stellar fields. They
split these exposure in a grid of 8× 8 cells and built a simultaneous decomposi-
tion4 of all stars within each cell. Then, they employed an optimized interpola-
tion scheme based on a Principal Component Analysis (Jarvis & Jain, 2004). As
the cluster observations were given as four exposures and the authors wanted to
avoid the drawbacks of drizzling, they performed the simultaneous decomposi-
tion also for all selected galaxies.

Their measurement of the suitably averaged shears (cf. Equations (A.33) &
(A.34)), κ̄(< 30′′) = 0.166± 0.056, constitute an error on (1− κ0) of 7% – with-
out weak-lensing constraints, the 2σ-errors were quoted as 35%. Fadely et al.
(2009) show that with these new constraints, the Hubble constant is found to
be H0 = 85+14

−13 km/s/Mpc, with the largest uncertainties now being tied to the
stellar mass-to-light ratio. Adding constraints from stellar population synthesis
models, they obtain H0 = 79.3+6.7

−8.5 km/s/Mpc.

5.2.1 Shear accuracy tests

The parameter constraints from published works until the year 2006 showed a
somewhat worrisome scatter – with Ωm = 0.3, σ8 varied between 0.72± 0.09 and
1.02 ± 0.15 (Heymans et al., 2006, Table 1). In order to understand if the scat-
ter stems from the shear measurement methods or from the shear statistics, the
Shear Testing Programme (STEP) was launched. Although some authors per-
formed cross-checks of their results with different shear measurement codes and
parameter estimation pipelines (e.g. Massey et al., 2005), STEP was the first com-
mon attempt to systematically understand what affects the accuracy of shear es-
timates. Without going into details, we want to summarize the results relevant
for this work.

Heymans et al. (2006, STEP1) investigated the shear measurements from 14
codes, most of which were variants of KSB, but elliptical (Nakajima & Bernstein,
2007) and circular shapelet (Kuijken, 2006) codes were also tested. The task was

3 The authors only applied a magnitude cut to select background sources, but estimated that their
contamination with unlensed foreground sources is smaller than 10%.

4 cf. section 2.4.
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to provide shear estimates for sets of simulated images, which comprised stars
and galaxies. Each set was characterized by a PSF model and the level of ap-
plied shear, which was constant for each and within each image of a set. The
PSF models were chosen to reproduce typical ground-based shapes. Galaxies
were modeled as co-axial bulge-disk profiles – a combination of Sérsic profiles
with index 1 and 4 (cf. Equation (2.15)ff). Both PSF models and applied shears
were not known to the code testers. With this setup, the data set effectively tests
three different pipeline capabilities: star-galaxy discrimination, PSF modeling,
and shear estimation. The authors tried to disentangle these separate problems
by investigating the success rate of the star-galaxy classification and by forming
the following shear bias parametrization for each image set,

γ̃1 − γ1 = qγ2
1 + mγ1 + c, (5.21)

where γ̃ is the average shear obtained from 64 images in each set and γ is the
applied shear. A perfect measurement is characterized by q = m = c = 0. Ac-
cording to the authors, one would expect insufficient calibration to show up in
m, while residual PSF contamination and pixel noise should affect c.

Most methods did not show significant q, which means that the shear bias can
solely be explained by the multiplicative m and the additive c. The calibration
term varied considerably for different methods, −0.167± 0.011 ≤ m ≤ 0.219±
0.036, with most estimates being biased slightly low but within |m| = 0.07, which
was compatible with the statistical error of cosmic-shear surveys at that time. The
variance of c was always below 0.01 and mostly below 0.001, which indicated that
the different method did not have problems to model the simulated PSF shapes.
Significant differences between KSB and shapelet methods were not reported.

Massey et al. (2007a, STEP2) tested 16 different shear measurement codes in
a similar way, but the simulation was specifically tuned to mimic weak-lensing
observations with the Suprime-Cam instrument of the SUBARU telescope (as de-
tailed in Miyazaki et al., 2002). The PSF models were given by polar shapelet
models of stars observed under different conditions with this instrument. The
galaxies were either shapelet models of galaxies found in the HST COSMOS sur-
vey (Scoville et al., 2007) or exponential disk profiles with an intrinsic ellipticity
dispersion of 0.3 (like in STEP1) and size and magnitude distributions as found
in the COSMOS survey.

In comparison to STEP1, most codes improved their accuracy. The best ones
reached |m| < 0.02. The authors identified several previously unrecognized sys-
tematics, like treatment of pixelation, which can cause differences between the ac-
curacy of γ̃1 and γ̃2, or dependence on magnitude and size of galaxies. However,



5.3. Modeling bias 79

although the shapes of PSF and galaxies were mostly simulated from shapelet
models, shapelet-based methods did not perform significantly better than other
competing methods.

STEP3 was geared towards space-based observations, but as of the time of
writing this thesis, the results were not published, and STEP4 – a suite of simpler
tests – was still running.

Bridle et al. (2009b, GREAT08) The GREAT08 challenge5 focused on the shear
measurement problem, neglecting the tasks of star-galaxy separation and PSF
modeling. Therefore, the authors provided images of lensed galaxies and – sepa-
rate from these – images of stars. In the course of the challenge, the analytic form
of the PSF was provided to the code testers, so that they could test the accuracy
of their PSF models or PSF correction schemes. Another novelty was the attempt
of collaborating with scientists from the fields of machine learning and image
processing in order to explore a larger set of methods.

(Bridle et al., 2009a) reported the results of the challenge. The two main find-
ings are: The assumptions of the shape of the lensed galaxy in general affect
the accuracy of the lensing estimates; and the impact of measurement noise and
shape scatter can be reduced by a careful decision when to average galactic prop-
erties – at the level of image pixels or of individual estimates or in between. The
winning method exploited the constancy of shear and PSF in each image and
stacked all images at the pixel level (an extension of Lewis, 2009). It was therefore
largely insensitive to the galactic model and the pixel noise. The tested shapelet
methods – employing the active approach of Equation (5.11) with and without
additional flexion transformations – performed best for bright or large galaxies.

5.3 Modeling bias

The two published STEP papers – and also our re-analysis of the provided data –
indicated that shapelet-based method were affected by an unknown systematic,
which limited their accuracy. Otherwise, they should have outperformed the
traditional KSB approaches because they rely on several unrealistic assumptions
regarding the galactic and the PSF shape, e.g. the anisotropy of the PSF is a first-
order deviation from a circular Gaussian profile, while the PSF treatment with
shapelets is exact up to the maximum inferred order of PSF and galaxy model.6

Our main suspicion is based on the apparent modeling faults, which we dis-
cussed in section 4.3. Our main concern was that the incompleteness of a trun-

5 http://www.great08challenge.info/
6 cf. chapter 3

http://www.great08challenge.info/
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cated shapelet expansion7 can lead to insufficient models, which give rise to in-
accurate shear estimates. In Bayesian terminology, assumptions about the model,
which is supposed to generate the data, form a prior, which influences the poste-
rior: the lensing estimates.

Thus, in Melchior et al. (2010) we seek to understand the impact on shape
estimators obtained from circular and elliptical shapelet models under two real-
istic conditions: (a) only a limited number of shapelet modes are available for the
model, and (b) the intrinsic galactic shapes are not restricted to shapelet models.

5.3.1 Test images

To pin down the effects of an incomplete shape description and to isolate them
from other systematics, we generate very simple test cases in which the galaxy
shapes are – initially – not affected by PSF convolution and pixel noise.

Thus, we describe the intrinsic shapes G′ with a flux-normalized Sérsic profile
as defined in Equation (2.15) with Re ∈ {5, 10, 20} pixels and ns ∈ {0.5, 1, 2, 3, 4}.8
For ensuring finite support, G′ is truncated at 5 Re. Throughout this section, we
refer to profiles with large ns when we speak of steep profiles.

The profile G′ is sheared in real-space by transforming the coordinates by
means of Equation (2.16). The values of γ1 range between 0 and 0.5, and γ2 is set
to zero. It is important to notice that G′ is circular, while observed galaxies show
a wide distribution of intrinsic ellipticities (Bernstein & Jarvis, 2002). Hence, G
has to acquire its intrinsic ellipticity entirely from the applied shear. To obtain
roughly realistic results, the applied shear is varied up to |~γ| = 0.5, although
such values cannot be generated by the cosmic large-scale structure and are even
atypical for all but the innermost parts of galaxy clusters. An advantage of this
procedure is that G has elliptical isophotes, for which the axis ratio and orienta-
tion are consistent at all radii, and therefore all ellipticity measures formed from
these images should agree.

The sheared profile G is sampled at the final resolution of 20 Re× 20 Re pixels.
Although Re = 5 is already rather large for typical weak-lensing galaxies, we
chose to also simulate even larger ones so as to mimic higher resolution images
from which we can assess the impact of pixelation on the shear estimates.

Because there is no pixel noise in these test images and the resolution is very
high, the ellipticity ε measured from unweighted quadrupole moments of the
pixelated image is always compatible with the shear γ. Additionally, the centroid

7 Due to noise and pixelation, the maximum order nmax is limited in Equation (2.1).
8 Of course, in reality galaxies show angular patterns (for example spiral arms) and substructures, but

for simplicity we only consider the general radial shape.
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ns = 0.5, ε1 = 0.15 ns = 2, ε1 = 0.15 ns = 0.5, ε1 = 0.5 ns = 2, ε1 = 0.5

Figure 5.1: (top) Examples of Sérsic-type galaxy images with ns = 0.5 or 2 and an intrinsic
ellipticity (induced by shearing the circular profile given by Equation (2.15)) of ε1 = 0.15
or 0.5. (bottom) Best-fit circular shapelet models G̃ with nmax = 12. The color stretch is
logarithmic. The change of the background color in the bottom right plots indicates the
appearance of negative fluctuations. See also Figure 4.6.

position can be computed with essentially arbitrary precision from the image.
More realistic cases including PSF convolution and pixel noise are considered in
section 5.3.4.

5.3.2 Circular shapelets

The image of G is decomposed into Cartesian shapelets of maximum order nmax ∈
{8, 12}, which is typical given the significance of weak-lensing images (cf. Kui-
jken, 2006). At first, we investigate the modeling fidelity visually. In Figure 5.1,
we give four examples of Sérsic-type galaxy shapes and their shapelet models. It
is evident from the left column that, for modest ellipticities, an elliptical Gaussian
can be represented very well by its shapelet model. But if either the ellipticity
becomes stronger or the intrinsic galactic profile becomes steeper, the shapelet
decomposition performs more poorly. For the Gaussian case shown in the third
column, the overall shape is evidently more compact and boxy rather than ellip-
tical, and affected by oscillatory artifacts. The images with ns = 2 (second and
fourth column) show prominent ring-shaped artifacts and are concentrated at the
core region of G. It is striking that the drastic increase in ellipticity from ε1 = 0.15
to ε1 = 0.5 causes no adequate change in the respective shapelet models.
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Figure 5.2: Decomposition goodness-of-fit χ2

as function of the applied shear for Sérsic-
type galaxy images with 0.5 ≤ ns ≤ 4. The
shapelet models use nmax = 8 (dashed lines)
or 12 (solid lines). As the images are noise-
free, the units of χ2 are arbitrary.

The same trend can be seen quan-
titatively in Figure 5.2, where we
show the logarithm of the goodness-
of-fit χ2 of the shapelet models.
From this we infer that the mod-
eling errors become stronger with
increasing ns and are almost inde-
pendent of γ for ns ≥ 1. In other
words, while the shapelet decom-
position is occupied with modeling
a steep profile, it misses most of the
ellipticity information. It is worth
noting that an increase in nmax from
8 to 12 does not lead to substantially
lower χ2, although the number of
available modes is raised from 45
to 91. This behavior can be ex-
plained by the shape of the higher-
order shapelet functions. As they
tend to fit features in the outer re-

gions, they only improve the model in the low-flux regions.
In the top panel of Figure 5.3, we show the shear estimator γ̃(Q) as a function

of the applied shear. We see that the bias is essentially a linear function of γ1 with
a negative slope that increases with ns. It is important to note that the estimator
is unbiased for ns = 0.5 as long as γ remains moderate. But, for ns ≥ 3 the same
estimator is essentially shear-insensitive. Increasing the maximum order nmax

from 8 to 12 improves the estimator, because the shape at large distances from
the center is captured better by the model, and γ̃(Q) makes use of all available
orders. But the steeper the profiles, the less high orders contribute to the shear
estimation, because the quadrupole moments become dominated by the inner
region, which is governed by a single central pixel with square shape, hence van-
ishing ellipticity.9 From our prior discussion and Figures 5.1 & 5.2, we anticipated
this behavior, and it clearly confirms our theoretical expectations regarding steep
galactic profiles.

In the bottom panel of Figure 5.3, the response of the shear estimator γ̃(22) – cf.
Equation (5.9) – on the same set of galaxies is shown. We can see that the overall
bias is mitigated by roughly a factor 4, fairly independent of nmax. This has to be
expected because the shapelet basis is orthogonal and thus higher-orders do not

9 We discuss the effects of pixelation below.
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Figure 5.3: Shear estimates γ̃(Q) (top panel),
γ̃(22) (bottom panel) for Sérsic-type galaxy
images as a function of the applied shear.
The circular shapelet models use nmax = 8
(dashed lines) or 12 (solid lines).

change the value of p2,2, which car-
ries the shear signal of γ̃(22). The
differences that occur when chang-
ing nmax are related to a different
preferred scale size β in the opti-
mization.

As before, galaxies with ns = 0.5
can be measured with high fidelity.
For steeper profiles the estimator
has a – somewhat surprisingly –
positive bias, while the shapelet
model itself underestimates the el-
lipticity. We do not fully under-
stand why this estimator overesti-
mates the applied shear, but we can
identify two possible reasons: First,
the estimator has been derived from
the action of a infinitesimal shear
on a brightness distribution that is
perfectly described by a shapelet
model (Massey et al., 2007b). In
the tests performed here, we inten-
tionally violate these unrealistic as-
sumptions. Second, looking at the
definition in Equation (5.9) and the shapelet models in Figure 5.1, we see ring-
shaped artifacts for steep profiles, corresponding to radial shapelet modes. Ex-
actly these modes are required for normalizing the estimator. As we know from
Figure 5.2, the goodness-of-fit – hence the abundance of artifacts – is highly cor-
related with ns. Thus, the denominator of Equation (5.9) is probably also plagued
by the poor reconstruction quality of steep profiles.

We can confirm the last argument by looking at the results of the next higher-
order estimator γ̃(42), and find it to be strongly biased and highly unstable under
variation of ns. This trend continues for even higher polar order n and renders the
family of estimators described by Equation (5.9) unpredictable and thus unusable
for n > 2. Nevertheless, γ̃(22) is significantly less biased than γ̃(Q).
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5.3.3 Elliptical shapelets

To assess the performance of all versions of shapelet image analysis, we also con-
sidered an elliptical implementation. To this purpose, we used a novel code that
we have developed recently (Lombardi et al., in prep., details can be found in
Melchior et al. (2010)), which essentially follows the prescription we gave on
page 73. The key point for this method is the determination of the basis ellip-
ticity, which also defines the elliptical weight mask. The crucial question we seek
to address here is, how strongly the method relies on “good” initial guesses for
the ellipticity – and also the image centroid coordinates. If the method is not able
to refine the values provided by a previous image segmentation procedure, we
will likely face severe problems, because codes like SExtractor have good per-
formance in common cases, but they clearly have not been designed with weak
lensing studies in mind and do not reach the accuracy needed in this field.
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Figure 5.4: Shear estimate γ̃(el) for Sérsic-type
galaxy images as a function of the applied
shear. The elliptical shapelet models use
nmax = 8 (top panel) or 12 (bottom panel).
The dotted line in both panel represents the
bias of -20%, which we artificially applied to
the initial guess of the ellipticity.

To test the ability of our elliptical
shapelet pipeline to deal with inac-
curate input parameters, we biased
the input ellipticity by 20% toward
circular objects and measured the
residual bias left in the recovered el-
lipticity γ̃(el).

As shown by Figure 5.4, this test
produced conceptually similar re-
sults to circular shapelets: For small
Sérsic indices, we could recover the
true ellipticity without any signif-
icant bias, while the estimates de-
grade significantly as we approach
ns = 4. The situation is improved
when nmax is raised, because the
transformations done during the fo-
cusing step take all available or-
ders into account, in contrast to the
simpler description underlying the
construction of γ̃(n2) in Equation
(5.9). With nmax = 12 (bottom panel
of Figure 5.4), galaxies with ns = 0.5
and 1 have shear estimates without
bias. When raising ns beyond that,
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the bias is at first positive before it becomes negative. Investigating this feature
more closely, we find that the Sérsic index has a strong impact on the ability of
the method to choose a suitable optimal fitting size (a and b in Equation (5.12)).
As discussed above, our code tries to maximize the detection significance of the
galaxy, i.e. the signal-to-noise ratio for p0,0, by requiring that p2,0 = 0. If the
fitted galaxy has an elliptical profile, this choice is indeed optimal, and the result-
ing shapelet fitting size corresponds to a Gaussian profile with the same half-light
radius as the original galaxy. However, as we increase the Sérsic index, the con-
dition p2,0 = 0 is fulfilled for increasingly smaller shapelet sizes, corresponding
to Gaussian profiles with half-light radii much smaller than the galaxy half-light
radius and eventually smaller than one pixel. At this point, the estimate of all
shapelet parameters, including the p2,0 is completely unreliable, and this usually
triggers a re-try with a large choice for the decomposition size, often much larger
than the galaxy. At the following iterations, the algorithm again tends to progres-
sively reduce the decomposition size, until a very small size is reached again and
the whole process is repeated.

An immediate consequence of this erratic behavior for the decomposition al-
gorithm (highlighted in the bottom panel of Figure 5.4) is that any ellipticity es-
timate obtained from peaked profiles is not robust and can lead to large errors.
Although this observed behavior might be related to our particular implementa-
tion of the elliptical shapelet decomposition and to the method used to refine the
initial elliptical decomposition basis, we still interpret it as a general difficulty for
Gaussian-weighted decompositions (such as the circular shapelet one) to capture
the essential shape information for peaked galaxy profiles.

5.3.4 Observational systematics

In more realistic simulations or observational data – and therefore in any applica-
tion discussed in section 5.2 – the galactic shapes are recorded after convolution
with the PSF, pixelation by the CCD, and degradation by pixel noise. We now
discuss the impact of these effects on shear estimation with shapelets.

PSF convolution Clearly, a convolution creates shallower profiles that can be
better described by shapelet models. Therefore, the typical goodness-of-fit val-
ues, in particular for steeper profiles, are considerably lower than in the uncon-
volved case. If the PSF shape is perfectly described by its shapelet model, one
can undo a convolution exactly in shapelet space. In such a case, the shape ob-
tained by deconvolving a PSF-convolved galaxy model must approximate the
true, unconvolved shape G better than its direct model G̃. For this argument, we
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Figure 5.5: Similar to Figure 5.3: Solid lines
show bias on shear estimate γ(Q) from circu-
lar shapelet models with nmax = 12 for un-
convolved galaxy images, while dashed lines
are obtained for the same set of galaxies af-
ter convolution with a Gaussian of 5 pixels
FWHM.

only exploit that convolution with
the PSF renders observed profiles
shallower. Hence, the last state-
ment is probably still true for im-
perfect shapelet models of the PSF –
which are likely to introduce other
systematics. To verify this hypothe-
sis, we convolved Sérsic-type galax-
ies in pixel space with PSF shapes P
obtained from shapelet models,10

C = P ? G. (5.22)

For circular shapelets, C is modeled
with shapelets and deconvolved
from P̃ in shapelet space, while for
the elliptical shapelets we obtain the
unconvolved shape by convolving
the model with the PSF and fitting
the outcome to the image data.
In Figure 5.5 we compare the bias of

the shear estimates from unconvolved galaxies images and from the same set of
galaxies after convolution with a Gaussian PSF with an FWHM of 5 pixels, hence
FWHM = Re. As expected, the overall shape of the convolved images – and
thus also their unconvolved shapes – can be better modeled with shapelets. As
a result, the shear estimator γ̃(Q) profits manifestly because it makes use of the
entire shape information: its bias is lowered by a factor 3. We observed similar
improvements also for γ̃(22) and γ̃(el). We varied the size of the PSF and found
that in general the bias is lower for larger PSFs. Additionally, we found γ̃(22) and
γ̃(el) to be rather sensitive to changes of ns and FWHM/Re. Finally, the bias of all
estimators also depends in a non-trivial way on the shape of the PSF, because the
fidelity of the model for the convolved galaxy image determines the accuracy of
the estimators.

These results seem to suggest that the shape mismatch bias could be lowered
by additionally applying a convolution with a known Gaussian-shaped kernel
because this operation renders all shapes more shapelet-like and could be exactly
reverted in shapelet space (cf. section 3.2.1). But this treatment comes at the price
of introducing noise correlation even for images with initially uncorrelated noise,
with all complications discussed in section 4.1 (cf. Equations (4.12) & (4.16)).

10 In the terminology of this chapter, that means P = P̃.
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Pixelation Images from CCDs are obtained by collecting the light within pixels
of approximately square shape. For measuring shapes, pixelation has important
consequences. If the size of the object is small compared to the pixel size, we
cannot describe the true continuous shape of the object but rather its piecewise
approximation with pixel-sized step functions. Modeling approaches like the
shapelets method can take pixelation into account by integrating the model val-
ues within the pixels (Massey & Refregier, 2005). In case of convolved images, the
deconvolution procedures also treat pixelation consistently, if the PSF shape has
been measured from images with the same pixelation (e.g. Bridle et al., 2009b).

For estimating the shear, an additional problem is of relevance. As the small-
est piece of information within an image is given by a single pixel of square shape,
we can only infer shear information from an object for which we can measure
more than a single pixel. Particularly for galaxies with steep profiles, the largest
fraction of the flux is registered in the pixel that is closest to the centroid. Then,
the shear information is also dominated by this central pixel, which does not have
any preferred direction, hence is biased low.

For this work, it is important to verify that the biases related to steep profiles
are not entirely a pixelation problem, but stem in fact from the shape mismatch.
Therefore, we also made sets of images with Re = 10, 20. Although there are
some differences between the three tested estimators, we found a common trend
when increasing the size of the galaxies: The results for galaxies with ns ≤ 1
are essentially unchanged. In particular, the bias does not vanish when the side
length of a pixel is reduced to one quarter. This shows that there is a remain-
ing profile-dependent bias even for very large galaxies. The estimates for steeper
profiles benefit from smaller pixel sizes, indicating that the measured bias is par-
tially caused by pixelation, but for all practically relevant image resolutions the
results still remain more strongly biased than for shallower profiles.

Pixel noise There is an additional effect related to the discussion of pixelation.
In the presence of pixel noise, fewer significant pixels remain for each galaxy. In
particular, steep profiles therefore tend to be reduced to some pixels or even only
a single pixel close to center of the galaxy, which is then fitted by the model. Thus,
we expect pixel noise to behave in a similar way to strong pixelation.

We performed the same tests again with realistic noise added to G. In fact,
we can confirm that steep profiles are affected more strongly by pixel noise than
shallower ones. In any case, apart from additional statistical uncertainty, it did
not lead to qualitatively different results.
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There is another important point to note. Increased pixel noise would nor-
mally lead to a lower nmax, as the shapelet models are typically tuned such that
they do not, or only marginally, pick up noise fluctuations. Reducing the max-
imum order typically leads to more prominent modeling problems, as already
discussed above, and consequently to poorer results from most shear estimators.

The bottom line
� The shapelet formalism allows the construction of several shear and flexion estimators.

� Shear estimates from circular shapelets are biased if the shape to be described has too steep
a profile (steeper than a Gaussian) or too large an ellipticity. Profile mismatch is the more
important source of bias.

� For elliptical shapelets, profile mismatch still poses a considerable problem, because the
shapelet models cannot fully correct biases of the ellipticity prior when the profile becomes
steeper than exponential.

� Different shear estimators can mitigate the bias, but never eliminate it completely because
the shape mismatch generally affects all shapelet modes.

� Convolution with a PSF renders all observable shapes shallower and allows the treatment
of pixelation, hence facilitates a more accurate description by shapelet models. Depending
on the width of the PSF, this may limit the bias to a tolerable level.



CHAPTER 6
Galaxy morphology studies

Galaxies show a great variety of morphologies, from which we try to infer the
physical processes taking place in them. Currently, galactic morphologies are
described in the framework of the Hubble tuning fork (Hubble, 1936), which dis-
criminates galaxies into ellipticals, lenticulars, spirals (with or without central
barred regions), and irregulars – galaxies that do not fit properly into the other
classes. While the Hubble scheme is in general well capable of classifying galax-
ies in the nearby universe, it has severe restrictions:

1. Morphological classification often depends on human expertise to judge
whether a galaxy should be regarded as member of a certain class, render-
ing its application to large data sets either demanding or inexecutable. Fur-
thermore, human classification is very subjective, therefore the results differ
significantly from person to person.

2. Morphological classes may be less well defined than suggested by the Hubble
scheme. For instance, it ignores systematic trends with redshift and it could
lack classes for peculiar, but possibly frequent galaxies.

3. The possibility of continuous transitions of galaxy morphologies cannot be
reproduced by the disjoint classification scheme.

To address problem (1), one usually uses simple morphological measures like
concentration, clumpiness, and asymmetry (Conselice, 2003), color gradients
(Park et al., 2008), Sérsic index (Coe et al., 2006), etc. or combinations thereof
to discriminate galaxy types in an automated fashion. These measures can only
capture a limited amount of information and are thus not capable of following
all possible morphological variations. Furthermore, such an approach depends
on a representative preselection of a training set and hence does not deal with
problems (2) and (3). In this chapter we set up an automated scheme to analyze
galaxy morphologies, which is not limited by the problems outlined above.

Never send a human to do a machine’s job.

AGENT SMITH

The Matrix (1999)
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6.1 Benefits of shapelets
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Figure 6.1: Similarity transforma-
tions with shapelets: Changes of
size or brightness, parity flips, and
rotations of arbitrary angles are an-
alytic operations in shapelet space.
See section 1.3.

Problem (2) suggests a clustering analysis1,
at best on the raw data instead of a small
number of derived measures as we want
to exploit the entire information available
for each galaxy. However, images of galax-
ies do not have a high information density,
and are affected by noise. At this point, go-
ing from pixel space to shapelet space offers
two crucial advantages: As the optimization
(cf. Equation (2.2)) takes the noise model
into account, the shapelet model can be con-
sidered a noise-free description of the true
galactic shape. Furthermore, since a galaxy
image usually contains large areas dominated by background noise and the pix-
els related to the galaxy itself are spatially correlated, the number of coefficients
required for a complete description of the galaxy shape is much smaller than
the number of pixels in the image. Thus, the shapelet decomposition serves as
a dimensionality reduction. Compression factors are in the range of one to two
orders of magnitude.

On top of that, the shapelet method has benefits which can and should be
exploited when preparing the data for a subsequent clustering analysis:

� As the shapelet expansion of Equation (2.1) is linear in the data, linear trans-
formations in pixel space translate to linear transformations in shapelet space.
This allows a very efficient treatment of e.g. normalization or scalar products.

� Due to the definition of the basis functions according to Equation (1.3), the
size of the object is contained in the scale size β and not in the expansion
coefficients, so resizing the galaxies in pixel space is not necessary.

� To further reduce the shape scatter, one should align all galaxies along a given
axis and ensure that all galaxies - in particular spiral galaxies - have the same
parity. Both operations can be performed analytically in shapelet space.

These benefits – illustrated in Figure 6.1 – enhance the local density of similar
objects in shapelet space and therefore facilitate the detection of overdensities.

1 A clustering analysis tries to identify overdensities in parameter space, which correspond to typical or
frequent objects, without detailed prior knowledge of the data distribution in that space. Methods of
this kind are called unsupervised as opposed to supervised methods, which exploit prior knowledge.
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6.1.1 Disadvantages

Where there is light, there is shadow. The reason for the dimensionality reduc-
tion lies in the assumption that the employed type of model generated the image
data (cf. Equations (4.1) – (4.4)). We know from the discussion in sections 4.3
and 5.3, that this is not necessarily the case for all galaxies, i.e. some galactic
morphologies cannot be properly modeled with a finite shapelet expansion. This
limitation is less severe for clustering analyses than for weak lensing for two rea-
sons. First, we normally analyze rather bright and large objects, which allow
a fairly high nmax such that the incompleteness of the basis is less severe. Sec-
ond, even though galaxies with steep cores or large ellipticities are affected by
model mismatch, the models of similar galaxies still look similarly (bad). In sec-
tion 5.3 we showed, that the shape of the model depends strongly on the Sérsic
index. This means, shapelet models of galaxies with a similar profile steepness
will be affected by very similar modeling artifacts. However, these models loose
the ability to accurately capture other morphological features – e.g. ellipticity –
as the model mismatch increases. We can therefore foresee that it will be harder
to distinguish elliptical galaxy types than galaxies with shallower profiles, for
which the shapelet models reach excellent fidelity.

For performing a statistical investigation, the dimensionality of the data space
must be the same for all objects. This requires to fix nmax in Equation (2.1). If the
models overfit the data because of this, coefficients will be affected and eventu-
ally dominated by noise. In the opposite case of underfitting, mode mixing oc-
curs: Similar to aliasing in Fourier space, coefficient truncation transfers power
from high-order coefficients to low-order coefficients, which are therefore biased.
The reason why this happens even for an orthonormal basis is that the non-linear
parameter β normally depends on nmax (cf. Figure 2.1). The only proper way to
deal with this problem is to choose nmax such that over- or underfitting is rare
(and models with a too low or too high χ2 are excluded from further analysis),
or – if the data volume permits this – to split the data in S/N bins and choose
optimal nmax for each of the bins.

6.2 Soft clustering of galaxy morphologies

To address problem (3) we opt for the soft, i.e. probabilistic, clustering algorithm
by Yu et al. (2006). The idea was introduced in the field of pattern recognition,
but its strengths render it widely applicable for sparsely sampled data in high-
dimensional parameter spaces.
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Before we explain the details, we give a brief outline of the approach:

� We form a morphologically meaningful distance measure d from shapelet co-
efficients.

� The distance measure gives rise to a similarity measure W between any two
galaxies, which can be interpreted as the weight of edges connecting all galaxy
nodes in an undirected graph.

� By introducing the bipartite-graph model – consisting of a set of galaxy nodes
and a set of cluster nodes the galaxy nodes are connected with – we can inter-
pret the similarity between two galaxies as their probability of belonging to
the same cluster(s).

� We thus seek to find a number of clusters, for which the bipartite-graph model
best explains the pairwise similarities of all galaxies in the data set.

6.2.1 Distances in shapelet space

As explained above, we start out from a set of shapelet models with constant nmax

for each galaxy in the data set. The models are aligned along the horizontal axis
and flipped such as to ensure the largest similarity. Residual variation stems from
the normalization of the image data and thus of the shapelet coefficients: Equa-
tion (1.50) implies that for a constant scalar α, the transformation~c→ α~c changes
the image flux by the same factor α. We therefore normalize the coefficients,

~x =
~c
N

such that ~x ·~x = 1. (6.1)

Now differing image fluxes do not affect the shapelet coefficients. This means
that morphologies are a direction in shapelet space and the corresponding coeffi-
cient vectors lie on the surface of a hypersphere with unit radius. We can thus
measure distances between morphologies of objects m and n on this surface via
the angle spanned by their normalized coefficient vectors,

dmn ≡ ^ (~xm,~xn) = arccos (~xm ·~xn) . (6.2)

6.2.2 Pairwise similarities and weighted undirected graphs

Instead of analyzing the data in shapelet space, we compute a similarity matrix
W by assigning similarities to any two data points.2 For N data points ~xn, this
similarity matrix is an N × N symmetric matrix. It will be this similarity matrix,
not the set of N coefficient vectors, to which we apply the soft clustering analysis.

2 The advantages of this approach are discussed in section 6.2.6.
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Figure 6.2: Sketch of a weighted
undirected graph. The data nodes
xn are connected by edges, which
are undirected and weighted by the
similarity Wmn. For the sake of clar-
ity, only edges connecting x1 are
shown.

Based on the pairwise distances dmn we de-
fine pairwise similarities – up to a normal-
ization factor – as

Wmn ≡ 1− (dmn/dmax)α

s
. (6.3)

Here dmax denotes the maximum distance
between any two objects in the given data
sample, while the exponent α and the scale
s > 1 are free parameters which tune the
similarity measure. This definition ensures
that 0 < Wmn ≤ 1 and that the maxi-
mum similarities are self-similarities, since
d(~cm,~cm) = 0. Note that this similarity
measure is invariant against size, flux, ori-
entation and parity transformations of the
galaxy morphology.

Such a similarity matrix has a very intuitive interpretation: It represents a
weighted undirected graph as shown in Figure 6.2. The data points ~cn are rep-
resented symbolically as nodes xn. The positions of these nodes are usually ar-
bitrary, it is neither necessary nor helpful to arrange them according to the true
locations of the data points in parameter space. Any two data nodes xm and xn

are connected by an edge, which is assigned a weight Wmn. Since the matrix W
is symmetric, i.e. Wmn = Wnm, the edges have no preferred direction. In this
case, the weighted graph is undirected. In graph theory the matrix of weights W
is called adjacency matrix, and we can interpret the similarity matrix as adjacency
matrix of a weighted undirected graph.

For the following we need some additional concepts. First, we note that
there is also an edge connecting x1 with itself. This edge is weighted by the
self-similarity W11. These self-similarities Wnn are usually non-zero and have to
be taken into account in order to satisfy normalization constraints (cf. Equation
(6.5)). Second, we define the degree dn of a data node xn as the sum of weights of
all edges connected with xn, i.e.

dn =
N

∑
m=1

Wmn. (6.4)

We can interpret the degree dn to measure the connectivity of data node xn in the
graph. In practice, we can use the degrees for instance in order to detect outliers,
which are very dissimilar to all other objects, by their low degree. Third, we
note that we can rescale all similarities by a constant factor without changing the
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pairwise relations. Hence, we acquire the normalization constraint

N

∑
m,n=1

Wmn =
N

∑
n=1

dn = 1. (6.5)

This constraint ensures the normalization of the probabilistic model we are going
to set up for our soft clustering analysis of the similarity matrix.

6.2.3 Bipartite-graph model of pairwise similarities

We seek a probabilistic model of the similarity matrix W that can be interpreted
in terms of the soft clustering analysis. Such a model was proposed by Yu et al.
(2006), and is motivated from graph theory, too. The basic idea of this model is
that the similarity of any two data points ~xm and ~xn is induced by both objects
being members of the same clusters. This is the basic hypothesis of any classifi-
cation approach: Objects from the same class are more similar than objects from
different classes.

x1

x2

x3

x4

x5

c2

c3

c1

B53

B11

Figure 6.3: Sketch of a bipartite
graph. The bipartite graph contains
two sets of nodes, X = {x1, . . . , x5}
and C = {c1, . . . , c3}. Edges con-
nect nodes from different sets and
are weighted by an adjacency ma-
trix B. For better visibility, most
edges are unlabeled and edges to c2

and c3 have lighter colors.

In detail, we model the weighted undi-
rected graph of Figure 6.2 by a bipartite graph
shown in Figure 6.3. A bipartite graph is
a graph whose nodes can be divided into
two disjoint sets X = {x1, . . . , xN} of data
nodes and C = {c1, . . . , cK} of cluster nodes,
such that the edges in the graph only con-
nect nodes from different sets. Again, the
edges are weighted and undirected, with
the weights Bnk forming an N × K rectan-
gular matrix, the bipartite-graph adjacency
matrix. The bipartite-graph model for the
similarity matrix then reads (Yu et al., 2006)

W̃mn =
K

∑
k=1

BnkBmk
λk

, (6.6)

with the cluster priors λk = ∑N
n=1 Bnk. This

model induces the pairwise similarities via
two-hop transitions X → C → X . The
nominator accounts for the strength of the
connections of both data nodes to a certain
cluster. The impact of the denominator is
that the common membership to a cluster of
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small degree is considered more decisive. Obviously, the model defined by Equa-
tion (6.6) is symmetric like the similarity matrix. The normalization constraint on
W as given by Equation (6.5) translates for the bipartite-graph model to

K

∑
k=1

N

∑
n=1

Bnk =
K

∑
k=1

λk = 1. (6.7)

These constraints need to be respected by the fit algorithm. Having fitted the
bipartite-graph model to the given data similarity matrix, we can compute the
cluster posterior probabilities, i.e. the probability of xn to belong to cluster ck,

p(ck|xn) =
p(xn, ck)

p(xn)
=

Bnk

∑K
l=1 Bnl

, (6.8)

which are the desired soft data-to-cluster assignments. Obviously, K cluster
posteriors are assigned to each data node xn, and the normalization constraint
∑K

k=1 p(ck|xn) = 1 is satisfied.

6.2.4 Fitting the similarity matrix

In order to fit the bipartite-graph model to a given similarity matrix, we perform
some simplifications. First, we note that we can rewrite Equation (6.6) using
matrix notation to read

W̃ = B ·Λ−1 · BT , (6.9)

where Λ ≡ Diag(λ1, . . . , λk) is the K× K diagonal matrix of cluster degrees. This
notation enables us to employ fast and efficient algorithms from linear algebra.
We change variables by

B = H ·Λ, (6.10)

where H is an N × K matrix. The elements of H can be interpreted as the cluster
likelihoods, since Hnk = Bnk/λk = p(xn, ck)/p(ck) = p(xn|ck). Using these new
variables H and Λ, the model is given by

W̃ = H ·Λ · HT , (6.11)

whereby we eliminated the matrix inversion. The normalization constraints from
Equation (6.7) translate to H as

N

∑
n=1

Hnk =
N

∑
n=1

p(xn|ck) = 1 ∀ k = 1, . . . , K . (6.12)

The normalization constraints on H and Λ are now decoupled so that we can treat
both matrices independently. As H is an N × K matrix and Λ a K × K diagonal



96 Galaxy morphology studies

matrix, the bipartite-graph model is described by K(N + 1) parameters. In com-
parison, we have 1

2 N(N + 1) independent elements in the symmetric similarity
matrix. Hence, a reasonable fit requires 1

2 N � K in order to provide meaningful
parameter constraints.

The data similarity matrix W is fitted by maximizing the logarithmic like-
lihood of the bipartite-graph model. Yu et al. (2006) give a derivation of this
function based on the theory of random walks on graphs. Their result is

logL(Θ|W) =
N

∑
m,n=1

Wmn log W̃mn (6.13)

where Θ = {H11, . . . , HNK, λ1, . . . , λK} denotes the set of K(N + 1) model pa-
rameters. Remembering that Wmn = p(xm, xn) and W̃mn is its model prediction
p(xm, xn|Θ) = ∑K

k=1 Hmkλk Hnk, we see that logL is the cross entropy between
the true probability distribution p(xm, xn) and its model. Thus, maximizing logL
maximizes the information our model contains about the similarity matrix.

Directly maximizing logL is numerically inefficient, since the fit parameters
are subject to the constraints given by Equations (6.7) & (6.12). We therefore use
an alternative approach that makes use of the expectation-maximization (EM) al-
gorithm, an iterative fit routine. Given an initial guess on the model parameters,
the EM algorithm provides a set of algebraic update equations to compute an im-
proved estimate of these parameters. The update equations are (Bilmes, 1997; Yu
et al., 2006)

λnew
k = λk

N

∑
m,n=1

WmnHmk Hnk
(H ·Λ · HT)mn

and

Hnew
nk ∝ Hnkλk

N

∑
m=1

WmnHmk
(H ·Λ · HT)mn

.

(6.14)

The parameters Hnew
nk have to be normalized “by hand”, whereas the λnew

k are
already properly normalized. Each iteration step updates all the model parame-
ters, which has time complexity O(K · N2) for K clusters and N data nodes. As
initial guesses we set all cluster degrees to λ0

k = 1
K , whereby we trivially satisfy

the normalization condition and ensure that no cluster is initialized as virtually
absent. The H0

nk are initialized randomly and again normalized by hand.

6.2.5 Cluster number heuristics

In the previous derivation, we assumed that we knew the optimal cluster number
K, but this information depends on the characteristics of the data set, hence we
would like to consistently infer it from the data. As this is an essential part of the
class-discovery problem, we demonstrate in this section how we estimate K.
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Unfortunately, nonlinear models like the bipartite-graph model offer no theo-
retically justified methods of assessing the number of parameters, there are only
heuristic approaches. Common heuristics are the Bayesian information criterion

BIC = −2 logL+ Np log N (6.15)

and Akaike’s information criterion

AIC = −2 logL+ 2Np, (6.16)

where logL, Np, and N denote the logarithmic likelihood function, the number
of model parameters and the number of data samples, respectively. Minimizing
these criteria does unfortunately not lead to the desired modeling fidelity because
the penalty terms Np log N or 2Np dominate for the large number of bipartite-
graph model parameters Np = K(N + 1): The minimization would always be
bound to the minimal K. Another way of model assessment is cross-validation,
where the model is fit several times to subsets of the data, but this is computa-
tionally infeasible in this case.

We chose to form a heuristic from the sum of squared residuals

SSR(K) ≡
N

∑
m=1

m

∑
n=1

(
Wmn −∑K

k=1 Hmkλk Hnk

Wmn

)2

. (6.17)

The definition puts equal emphasis on all elements. If we left out the denomi-
nator in Eq. (6.17), the SSR would emphasize deviations of elements with large
values, whereas elements with small values would be neglected. However, both
large and small values of pairwise similarities are decisive. Generally SSR(K) is
decreasing with increasing K because the bipartite-graph model gains more flexi-
bility to fit the similarity matrix. Thus, we estimate the optimal K via the position
of a kink in the function SSR(K), which arises if adding a further cluster does not
lead to a significant improvement in the similarity-matrix reconstruction.

We can construct a more quantitative measure by computing the mean and
variance of the angles of the polygon chain log[SSR(1)]→ ..→ log[SSR(Kmax)]

∠ SSR(K) ≡ arctan
[
log[SSR(K− 1)]− log[SSR(K)]

]
−

arctan
[
log[SSR(K)]− log[SSR(K + 1)]

] (6.18)

for several modeling runs with different random initializations of the entries of
matrix H. A significant positive angular change at a particular K indicates the
presence of a kink in SSR(K) and thus a favorable grouping. The validity of this
heuristic is demonstrated with a simple test case in section 6.3 (cf. Figure 6.5).

There are several drawbacks of these heuristics: First, we need to proceed to
rather large values of K to make sure that we do not overlook a grouping which
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significantly reduces the SSR. Second, we need several runs to account for the
random initialization, which could confine the maximization of logL to a local,
but clearly suboptimal maximum. Consequently, the detection of a favorable
grouping is computationally extremely inefficient, which could prohibit the ap-
plicability of the algorithm to data sets with very large N. Third, we may find
several values of K with favorable groupings, and it may be difficult to judge
which grouping is the best. But this is a general property of the clustering ap-
proach and rather a feature of the data than a bug in the ansatz. However, such a
situation requires visual inspection of the clustering results and physical intuition
for deciding on a particular grouping. On the other hand, it is also an important
information if a data set shows multiple viable clustering results.

6.2.6 Previous work

As the work of Kelly & McKay (2004, 2005) is close to the work presented here,
we want to discuss it in some detail and work out the differences. The authors
applied a soft clustering analysis to the first data release of SDSS (Abazajian et al.,
2003). In Kelly & McKay (2004) they decomposed r-band images of 3,037 galax-
ies into shapelets, using the IDL shapelet code by Massey & Refregier (2005). In
Kelly & McKay (2005) they extended this scheme to all five photometric bands
u, g, r, i, z of SDSS, thereby also taking into account color information. After-
wards, they used a principal component analysis (PCA) to reduce the dimen-
sionality of their parameter space from 91 to 9 dimensions (Kelly & McKay, 2004)
or from 455 to 2 dimensions (Kelly & McKay, 2005). Then they fitted a mixture-
of-Gaussians model (e.g. Bilmes, 1997) to the low-dimensional data, where each
Gaussian component represents a cluster. They were able to show that the result-
ing clusters exhibited a reasonable correlation to the traditional Hubble classes.

Reducing the parameter space with PCA and also using a mixture-of-Gaus-
sians model are both problematic from our point of view. First, PCA relies on the
assumption that those directions in parameter space that carry the most informa-
tion are indicated by the largest contribution to the total sample variance. This
is neither guaranteed nor can it be tested in practice. Second, galaxy morpholo-
gies are not expected to be normally distributed.3 Therefore, using a mixture-of-
Gaussians model is likely to misestimate the data distribution. Nonetheless, the
work by Kelly & McKay (2004, 2005) was a landmark for applying soft clustering
to the problem of class discovery in the first data release of SDSS.

3 The compression from a high-dimensional shapelet coefficient space to the space of the Principal
Components renders data distributions more gaussian because of the Central Limit Theorem, but
significant deviations from gaussianity are still likely.
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In contrast to their work, we do not reduce the dimensionality of the param-
eter space and then apply a clustering algorithm to the reduced data. We also do
not try to model the data distribution in the parameter space, which would be
severely hampered due to its high dimensionality (curse of dimensionality, cf. Bell-
man, 1961). We rather encode the entire morphological information in the matrix
of pairwise similarities, which has two major advantages: First, we do not need
to rely on a compression technique such as PCA. Second, we are not obliged
to choose a potentially wrong morphological model, since we model pairwise
similarities. However, errors in our approach could still originate from the con-
struction of the similarity measure and the employment of the bipartite-graph
model.

6.3 Simple test case and application to SDSS

In this section we demonstrate that the approach outlined above is capable of
finding the correct grouping of a simulated data set with – admittedly – simple
structure. Then we briefly summarize the results of our clustering analysis of a
set of bright galaxies from SDSS.

6.3.1 Test case

So far we have not proven, that enough morphological information is contained
in the pairwise similarities and that they can be reasonably described by a bi-
partite-graph model with a finite number of clusters. Figure 6.4 shows a sim-
ulated distribution of 6 isotropic two-dimensional Gaussian clusters, each with
unit variance, and the matrix W of pairwise similarities, for which we employed
the Euclidean metric as distance measure. We fed W into the soft-clustering algo-
rithm and fit a bipartite-graph model to it. In Figure 6.5 we show the values for
the two heuristics given in Equations (6.17) & (6.18), which are computed from 10
independent fits. The bottom panel clearly indicates a favorable grouping with
K = 3 and with K = 6 clusters. Looking at the data distribution in the top panel
of Figure 6.4 this result is not surprising because the four clusters around x1 = 5
are merged with K = 3 and properly split with K = 6. This is also reflected in
the appearance of W: As the data samples are ordered according to their clus-
ter membership, the clusters form blocks in W, two of which are clearly visible,
whereas four blocks form a larger block with smaller variations in the pairwise
similarities. We thus conclude that the algorithm works as expected. A detailed
investigation how the algorithm reacts to cluster overlap, sample noise, and clus-
ter cardinality is conducted by (Andrae et al., 2010).
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Figure 6.4: Test case for soft-clustering algo-
rithm. The data set comprises 6 Gaussian
clusters with unit variance (top). The ma-
trix of pairwise similarities W is computed
with the Euclidean metric as distance mea-
sure (bottom). As the data samples are or-
dered, the clusters show up as blocks in W.
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Figure 6.5: Soft-clustering heuristics SSR(K)
(top) and ∠ SSR(K) (bottom) for the data
from Figure 6.4 as a function of the cluster
number K. In the bottom panel, the mean
and variance are taken from 10 indepen-
dent random realizations of the initial val-
ues of H (cf. Equation (6.11)).

6.3.2 Clustering results for bright galaxies from SDSS

We summarize the results of a clustering analysis of 1,520 bright galaxies from
the third data release of SDSS (Abazajian et al., 2005). Again we refer to (Andrae
et al., 2010) for further details.

The catalog of galaxies has been created by Fukugita et al. (2007) and is formed
of galaxies with a Petrosian magnitude magP < 16 in the r band. From this cat-
alog we selected those galaxies, for which we could obtain shapelet models with
0.9 ≤ χ2 ≤ 2 at a fixed nmax = 12, thereby minimizing the effect of over- or un-
derfitting the image data. The clustering heuristics indicated favorable groupings
with K = 3 and with K = 8 clusters. A visual inspection revealed that the three
clusters are formed by elliptical galaxies, edge-on spirals, and face-on spirals.
The clustering with K = 8 yields a much lower SSR and we prefer it for this rea-
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son. The overview of the clustering result is shown in Figure 6.6, where we plot
the images of the ten galaxies with the highest cluster posteriors (cf. Equation
(6.8)) for each cluster. It is apparent that the grouping is excellent: Members of
the same cluster are morphologically clearly similar. This result is striking since
we did not assume any knowledge of the underlying galactic morphologies, in
fact we did not even work in morphology space but in morphological similarity
space.

The bottom line
� Galaxy morphology studies are currently hampered by the need of human supervision

and the employment of a fixed set of disjoint morphological types.

� Probabilistic methods are able to deal with continuous transitions between morphological
types. Clustering analysis can be used to discover groups within the data without prior
knowledge of the data distribution.

� Soft clustering is an approach to identify clusters from and to assign cluster membership
probabilities to all objects of a data set.

� Shapelet models have a high information content for many galactic morphologies – par-
ticularly those of late-type galaxies – and allow several similarity transformations. We
can therefore easily and sensibly form a measure of morphological similarity in shapelet
space.

� Given a matrix of pairwise similarities, soft clustering amounts to fitting a bipartite-graph
model of the matrix. The difficult task is to decide how many clusters are needed to prop-
erly describe the groupings present in the data.

� Although computationally demanding, this approach has proven to be reliable in simple
test cases and also for observational data.
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Figure 6.6: Clustering results of SDSS galaxies with K = 8 clusters. Shown are the ten
galaxies with the highest posterior (from left to right) for each cluster (from top to bottom)
and the distribution of cluster posteriors for them (below the images). Images kindly
provided by René Andrae.



CHAPTER 7
Mock sky simulations

Every data analysis should cross-check its results with simulated data. It is the
only way to reliably assess the performance of the analysis and to really under-
stand what the results mean. While there may be cases, in which the data quality
is so marvelous that any analysis is straightforward, the typical case in most as-
tronomical observations is different: In order to infer something from the data,
it has to be preprocessed to enhance the information content and then explored
and investigated with specific analysis tools and methods, all having their own
systematics. That means, every step in a data analysis pipeline affects the result
– in fact, this is the very reason for including that step at all.

In astronomy, this situation has not been fully recognized for long. For weak
gravitational lensing, the first systematic comparison based on simulated data
was undertaken by the Shear Testing Programme (Heymans et al., 2006; Massey
et al., 2007a) and the GREAT08 challenge (Bridle et al., 2009a). These comparison
studies brought a wealth of information on systematic problems the investigated
methods suffer from and how one can potentially overcome them. Currently,
these standardized data sets are used to benchmark the performance of newly-
built weak-lensing pipelines.

In STEP1 (Heymans et al., 2006), the quality of shear estimates from differ-
ent pipelines should be compared. The authors decided to create images which
contained stars, from which the PSF model had to be constructed, together with
galaxies, from which the applied shear should be estimated. Both the PSF model
and the shear were constant over the image. With this setup, the data set effec-
tively tests three different pipeline capabilities: star-galaxy discrimination, PSF
modeling, and shear estimation. Consequently, it was hard to disentangle the
complications and limitations for each of these three problems. STEP2 (Massey
et al., 2007a) added another level of complexity by employing realistic galaxy
models, based on shapelet models of galaxies in the COSMOS field (Scoville et al.,
2007) instead of analytic Sérsic profiles.

Now if you’ll excuse me, I have a

beam of light to catch. PROT

K-Pax (2001)
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On the other hand, the data of the GREAT08 challenge (Bridle et al., 2009a)
was split into galaxy images of unknown type and images of stars. Moreover,
the PSF shape was provided to the competitors in exact form. Thus, the first two
complications of the STEP data was removed, allowing a detailed inspection of
the then isolated shear estimation problem.

We would like to go one step further. Instead of utilizing a predefined data
set with its inherent properties – which may be already too complicated or not re-
alistic enough – we advocate the generation of dedicated synthetic data to specif-
ically benchmark any step or any series of steps of a data analysis pipeline. Such
a proposal would allow us to understand from which decisions in the pipeline –
e.g. tunable parameters, expected type of objects etc. – what kind of systematic
inconsistencies arise. However, this proposal demands a very modular simu-
lation suite, which merely defines the skeleton of the data flow and allows the
addition of more elaborate treatment when requested by the user. This will be
our guideline throughout this chapter.

Broadly speaking, we have to deal with three components: the sources, which
emit the photons; the transfer processes, which change properties of the photons,
e.g. direction, intensity or polarization; and the instruments, which record the
photons in an image. For each of these components, we want to be able to incor-
porate arbitrary generative models as to provide exactly the level of complexity
necessary for the test at hand. For achieving this goal, we created the simulation
framework SKYLENS++, which is based on the simulation code of Meneghetti
et al. (2008) and makes heavy use of SHAPELENS++ introduced in section 2.1.

7.1 Shooting light rays

The basic physical idea here is that photons – once emitted – are independent.
That means, we can follow their trajectories one by one.1 Methods of this kind
are known under the name of ray tracing.

Generally, there are two ways to follow the light rays: from the emitter to the
receiver, or in opposite direction. Starting at the emitter has the advantage of
knowing its properties like size, shape and luminosity. But we do not know if
the light ray hits the receiver at all. Starting from the receiver and following the
light ray in opposite direction correctly incorporates the observer’s Field-of-View
(FoV), but we do not know which emitter the ray encounters, if any. That means,
we may follow rays which have never been emitted. Both ways have their pros
and cons.

1 This property renders code parallelization trivial because computational nodes do not need to com-
municate with each other to calculate the trajectory.
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Since our prime focus regards gravitational lensing as one of the transfer pro-
cesses, it is worth to investigate its behavior on light rays. Equation (A.7) states
that the change of direction of a ray from its original position x on the lensing
plane is given by the deflection angle α(x). Therefore, when following the light
ray from the receiver backwards to the source, the lens equation can be trivially
obeyed on the lens plane, just because we know exactly where the ray hits this
plane. This is not true when starting from the emitter. Hence, we decided to
ray-trace in backward direction.

We now need to solve the issue of “dark” rays which do not originate from
any emitter. As we know the shapes and positions of the emitting sources, this
is in principle very easy. We could for instance map all sources on a single
source plane and create an image of this plane, which can then be sampled to
test whether the ray hits a source. This has considerable drawbacks. First, we
need to confine ourselves to the idealized case of a single source plane; and sec-
ond, the sampling of the source plane into the image determines the resolution of
the final image or has to be chosen so high that the massive memory consumption
of the source plane image slows down the whole simulation.

But there is a way out. If we could construct the source planes to be rather
light-weight in their memory and CPU time consumption, we could afford sev-
eral of them. This can be achieved by creating virtual source planes, which con-
sist only of a collection of sources, described by their light-distribution within
a finite rectangular bounding-box. As we discuss in section 7.4, source models
can be formed in various ways, e.g. shapelet models or Sérsic profiles, and typ-
ically have very low memory consumption. Furthermore, their distribution on
the source plane is completely specified by the placement of the bounding-boxes,
given by the coordinates of the four corner points. If we want to know whether
a ray receives photons from such a virtual source plane, we would thus proceed
in two steps: We check whether it hits at least one bounding-box, and only if
this is the case, we sample the corresponding source model(s) at the ray’s posi-
tion. This approach does not suffer from source model pixelation and occupies
only the minimal amount of memory to describe the source plane. In particu-
lar, it occupies exactly no memory for areas without sources, which is of crucial
importance when the available sources are to be distributed realistically in the
three-dimensional light-cone because each of the several source planes is mostly
empty then.

The construction of virtual source planes relies on a fast mechanism to iden-
tify all bounding-boxes which are hit by an incoming ray. Fortunately, this task
is known in other fields like Geographic Information Systems, Computer Aided
Design, and database organization and solved by so-called spatial index strategies,
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Figure 7.1: Example of a R-tree. The set of bounding-boxes A to F on the left side are
arranged into a tree structure (right side) by means of the internal rectangles R1 to R4.
The exact arrangement of the R-tree – where boxes are split into smaller ones of the child
nodes – depends on several adjustable parameters, e.g. the maximum number of children
per node, and on the R-tree variant.

where the objects of interest are described by d-dimensional boxes and internally
organized in a tree structure which allows quick lookups. A common type of
spatial index is the R-tree (Guttman, 1984). Consider a ray which intersects with
the virtual source plane of Figure 7.1 at the position of the star marker. Instead
of deciding for each of the bounding-boxes A to F if they are hit by the ray, an
R-tree query would identify R1 to be the largest rectangle hit by the ray and from
there on work its way down the tree structure, thereby reducing the number of
rectangles considered from 6 to 4 (R1 → R3→ A,B). While this little example
does not seem very impressive, speed-ups by an order of magnitude can easily
be achieved by using a R-tree indexed virtual source plane instead of a source
plane image. The actual performance depends on the number density and size
distribution of sources and the construction principle of the tree.2 In general,
densely populated source planes profit most from the employment of a R-tree
index, while the speed-ups for sparsely populated planes stem mainly from the
small memory footprint of the virtual setup.

The entire idea of ray tracing is connected to the independence of rays, which
allows us to split the observational scene into spatial slices, in the end pixels or
sub-pixels of the final image. But we still ray-trace through a three-dimensional

2 In SKYLENS++, we employ the publicly available R∗-tree implementation from the SPATIALINDEX

library (http://trac.gispython.org/spatialindex/).

http://trac.gispython.org/spatialindex/
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Figure 7.2: Stack of layers which form a typical simulation of a galaxy cluster observation.
The layers are order according to their redshift z, negative redshift indicate local effects
e.g. of the atmosphere or the telescope. Layers with solid lines are source layers – they
emit photons – while layers with dotted lines are transformation layers. The shaded area
illustrates the light cone spanning the FoV.

Figure 7.3: Ray tracing through the layers of Figure 7.2 according to the recursive algorithm
described in the text. Note that each ray completely traverses a tree structure with source
layers forming the leafs, connected by transformation layers.

light cone, and thus emission, transfer, and reception processes may interact. In
astronomy we are in the fortunate situation, that typical distances between oc-
currences of these processes are large, e.g. the distance of a galaxy cluster acting
as gravitational lens and the affected source galaxies is on the order of 109 parsec,
while the extent of the cluster itself is only in the 106 parsec range. Also the pro-
cesses happening at the receiving telescope can be considered independent, for
instance convolution with the PSF is a result of the optical system and has thus
no dependence on the CCD layout.

This allows us to simplify the ray-tracing task again by introducing two-
dimensional layers perpendicular to the line-of-sight on which all processes act.
The light cone thus consists of a pile of layers – we call it LayerStack – as shown
in Figure 7.2. An observation can thereby be simulated by "shooting" rays from
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each pixel of the CCD – supposed to be in front of the stack – through the entire
stack. Each layer can either alter the rays’ properties or contribute some power
to them. We call the first kind transformation layers and the second source layers.

With this setup, we can construct a small recursive algorithm to form the sim-
ulation skeleton mentioned above. Starting from the lowest layer in the stack –
NullLayer in Figure 7.2 whose sole purpose is to form basis of the stack – we
query the next layer for the properties of a ray entering this layer at a position P.
If the next layer is a transformation layer, it queries next layer behind itself under
the according transformation – e.g. shift of coordinates or dimming of the ray’s
flux; if it is a source layer, it queries the sources it hosts for the appropriate prop-
erties at the position of the ray. We give the C++ pseudo-code for this ray-tracing
algorithm, beginning with a SourceLayer:

1 Ray SourceLayer::getRay(const Point& P) {

2 Ray ray(0);

3 for (source in Rtree.getMatches(P))

4 ray += source.getRay(P);

5 return ray;

6 }

Line 2 defines a new, empty Ray structure, whose properties we discuss in sec-
tion 7.2 below. Line 3 starts an iteration over all sources whose bounding-boxes
contain P. Since Rtree contains only sources from the same layer, the layer is ef-
fectively opaque. Layers at higher redshift are not considered, thus source layers
form the leaves of the ray-tracing tree in Figure 7.3. Line 4 employs a ray addition
operation, which has to be implemented such as to obey the appropriate physical
laws (cf. section 7.2).

The recursive nature of the algorithm is induced by transformation layers ex-
clusively. A simple TransformationLayer, which shifts an incoming ray by a
predefined amount (dx/dy), would be realized as follows:

1 Ray TransformationLayer::getRay(const Point& P) {

2 Ray ray(0);

3 Point P_(P(0) - dx, P(1) - dy);

4 for (Layer behind me) {

5 ray += Layer.getRay(P_);

6 if (Layer is of type TransformationLayer)

7 break;

8 }

9 return ray;

10 }
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Line 4 defines the iteration over all layers at higher redshift, thereby fixing the
current layer as base layer. Line 5 queries successive layers for the ray at the
transformed position P_, until another TransformationLayer is found. Since
the new transformation layer will define itself as basis layer – traversing the tree
in Figure 7.3 by one level – we need to stop the iteration then (lines 6 and 7). The
underlying idea of this distinction between source and transformation layers is
that transformation layers affect the propagation of rays behind them, so they
need to incorporate the effects of all layers at higher redshift, while source layers
do not need to know what happens beyond their own scope.

There are only some technical requirements for this algorithm to work. First,
every layer needs to implement the member function getRay(P)3 and have a
common convention on its units. Second, all layers are properly ordered such that
each layer can decide which is the next layer behind itself. Since we are mostly
interested in cosmological distances, we decided to order the LayerStack by
the redshift of the layers and to use negative redshifts to denote local layers, like
the atmosphere. Third, all layers must use a common coordinate system with
identical units; we chose to specify angular coordinates in arcsec measured from
the left-lower corner of each layer.

7.2 The physics of rays

Photons are emitted by single atoms, but in our simulation we deal with entire
galaxies or stars as emitters. Thus, we only work with ensemble averages of a
huge number of photons. That means, each Ray in our simulation is not made
up of a single photon described by its momentum and polarization, but rather of
a continuous spectral energy distribution SED and an average polarization. The
intensity of the source is then described by the normalization of the SED.

Following the work of Grazian et al. (2004), the number of photons nγ from a
single source received by the CCD is given by

nγ(x)dx =
πD2texp

4h

∫
dλ

T(λ)E(λ, xe)SED(λ, xs)dxs

λ
, (7.1)

where D denotes the telescope’s aperture diameter, texp the exposure time, and
h is Planck’s constant. The SED specifies the amount of radiated energy emitted
by the source per time, area, frequency, and solid angle. An extinction layer E
between the source and the telescope may reduce the spectral flux as does the
total transmission T of the telescope, for which we assume a wavelength but no
spatial dependence. As ray trajectories may be curved by gravitational lensing,

3 In C++ this can be realized by means of an abstract base class for all layers and virtual inheritance.
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we introduce the coordinates xe and xs, defined as the intersection points of a ray
hitting the CCD at x with the extinction layer and the source layer, respectively.4

The total transmission is a product of the reflectivity M of the mirrors and the
transmission of the optics O, filter band F, CCD C, and air,

T(λ) = 10−0.4 ma A(λ)M(λ)O(λ)F(λ)C(λ). (7.2)

A is the extinction per unit airmass of the atmosphere and depends on the obser-
vation site; it is zero for space-based observations. The airmass ma describes the
optical path length through the atmosphere and is thus a function of the zenith
angle ζ. The conventional definition sets it to unity at the zenith, the exact func-
tional form, however, depends on the atmospheric model. For not too large ζ one
can assume the atmosphere to be formed by a homogeneous gas layer of finite
thickness, for which ma = 1/ cos ζ (e.g. Henden & Kaitchuck, 1982).
The number of counts ADU for a pixel i of the CCD can be obtained from Equa-
tion (7.1) by integrating within the squared shape of a pixel �i and considering
the detector gain g,

ADUi =
1
g

∫
�i

dx nγ(x). (7.3)

7.2.1 Source emission

For stars or nearby galaxies, one can obtain the SED from detailed spectroscopic
observations. This becomes increasingly more difficult when going to higher red-
shifts. The same is true for the task of redshift determination of sources, for which
one tries to identify remarkable line features in the spectrum and conclude the
redshift from their relative deviation from the rest-frame position.

Fortunately, solving the latter problem can also help us with the first. Many
modern extra-galactic surveys obtain image data in several filter bands. By com-
paring the measured values with predictions from redshifted template SEDs, one
simultaneously constrains both redshift and rest-frame SED. These templates are
made from stellar synthesis models, which describe the stellar population and
its evolution as function of the morphological galaxy type. As the method relies
on photometric instead of spectroscopic measurements, it is called photometric
redshift estimation (e.g. Benítez, 2000).5

4 Equation (7.1) assumes only one layer of each type, but could be generalized easily to several of them.
5 Alternative approaches exists, which do not make use of SED templates, but rather employ meth-

ods of machine learning to predict the redshift from magnitude measurements after they have been
trained on a galaxy sample with known redshifts. Since we need the SED of the source, we cannot
use results from these approaches here.
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Figure 7.4: Spectral template (SED0) of a
Scd-type galaxy from Coe et al. (2006) before
and after atmospheric absorption, which is
computed from extinction data for the site
in La Silla/Chile at ma = 1 (kindly provided
by A. Grazian). Also shown is the effective
spectral flux for observations with the SUB-
ARU telescope in the I-band and the Hubble
Space Telescope in the i-band (775W, with
A(λ) = 0).

To obtain the SED for Equation (7.1)
from photometric redshift surveys,
we need the following information:
the spectral response T of the op-
tical system for all filter bands F
used in the survey, the magnitudes
in these bands, the magnitude zero-
point ZP, the redshift estimate z̃, and
the best-fitting rest-frame SED0:

SED(λ) = N · SED0

( λ

1 + z̃

)
,

where the normalization N is chosen
such that∫

dλ
T(λ)SED(λ)

λ
= 10−0.4(magF−ZP)

for each filter F. In the last equa-
tion we assume that there is no in-
tervening layer which absorbs or
emits photons or transforms CCD
to source coordinates. Furthermore,
we treat the SED of a source as spa-
tially constant to comply with pho-
tometric redshift codes. This provides us with the appropriate source emissions
of GalaxyLayer and StarLayer, exemplified in Figure 7.4.

For the emission of the sky (SkyFluxLayer), one can either employ a spec-
trum of the sky, which we could then insert as SED in Equation (7.1) – setting
A(λ) to zero because it is automatically included in any measurement of the sky
emission. Since an entire spectrum of the sky is not always available, one can also
assume the sky to have a flat spectrum and only measure the magnitude Msky per
arcsec2 of some blank sky areas. Then,

ADUsky =
πD2 p2texp

4hg
10−0.4(Msky+48.6)

∫
dλ

T(λ)
λ

, (7.4)

where p denotes the FoV of a pixel in arcsec (Grazian et al., 2004). For Msky we
employed the AB magnitude system (Oke, 1974).

As noted above, light rays in the simulation are rather ensembles of photons
with a continuous, properly normalized SED. The operations we need to imple-
ment for Ray structures are addition with another ray and multiplication with
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a spectral filter. Fortunately, both is straightforward. As the SED is constructed
by summing up photons and normalized to emit the physically correct total flux,
adding rays is equivalent to adding SEDs; multiplication works accordingly.

However, the SED of a source can be complicated and carrying it for each Ray
would have a considerable memory footprint. We can simplify the ray-tracing
problem by instead passing the flux – in terms of the numbers of photons nγ or
equivalently ADUs – from layer to layer. Looking at Equation (7.1), this simpli-
fication is allowed as long as we do not introduce an achromatic and inhomoge-
neous transformation layer E, e.g. to simulate dust absorption in the Milky Way.
Since we are not particularly interested in these kinds of processes, we imple-
mented the simplified treatment in SKYLENS++.

7.3 Treatment of telescope and site

It is obvious that the simulation of an observation with a particular telescope re-
quires detailed information of its light collecting capabilities. In Table 7.1 we give
an overview of the telescope properties the user has to specify as to correctly cal-
culate the detector counts for sources in the light cone. Other required properties
of the observation and the site are listed in the lower part of the table. Note that
we do not require the full spectral curve of all involved emitters and absorbers
since these curves may not be known or available for all instruments or sites. In
this case, we compute the detector counts from an effective emission/absorption
value which implicitly assumes a flat spectrum.

Apart from quantities we have already introduced, Table 7.1 lists also items
which describe the total size of the final image in pixels, (FoV1/p×FoV2/p), and
two sources of pixel noise. Read-out noise of the CCD and imperfect flat-fielding
contribute to the total variance σ2

n of pixel i according to

σ2
n,i =

ADUi + ADUsky

g
+ n

(RON
g

)2
+
(

f +
a2

n2

)
(ADUi + ADUsky)

2, (7.5)

where n denotes the number of identical exposures (Grazian et al., 2004). The
first term on the right side describes the usual Poissonian error for the incident
pixel counts ADUi + ADUsky.

Modern telescopes are often equipped with an array of CCDs with small gaps
or even large uncovered areas6 in between. From the ray-tracing point of view
there is an easy way of incorporating these features: by creating a transformation
layer which does not propagate rays further if they fall within an uncovered area.

6 e.g. the WFPC2 instrument aboard the Hubble Space Telescope
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Table 7.1: Details of the observation
setup. The first part lists telescope speci-
fications, the second part details of ob-
servation and site. Spectral curves in
square brackets are optional and can
be replaced by an effective total value,
which assumes a flat spectrum.

Name Description
D mirror diameter
g detector gain
p FoV of a pixel
F(λ) filter band
[M(λ)] filter curve of mirrors
[O(λ)] filter curve of optics
[C(λ)] filter curve of CCD
FoV1 FoV of 1-direction
FoV2 FoV of 2-direction
RON Read-out noise of CCD
f Flat-field accuracy
a Residual flat-field error
PSF Model of the PSF
texp exposure time
A(λ) atmospheric extinction
ma airmass
[SEDsky] atmospheric emission

In SKYLENS++ we construct polygon-
shaped masks to exclude rays from
these regions; the masks are provided to
a MaskLayer placed at z=-2.

Another feature of many modern
surveys is dithering (cf. discussion in
section 2.4). To realize this in practice,
the telescope is pointed to slightly dif-
ferent positions on the sky for each ex-
posure. Again, there is a straightfor-
ward way of mimicking this feature,
namely by a transformation layer which
shifts Ray coordinates. The pseudo-
code for such a layer was already given
on page 108. We call it DitherLayer
and place it at z=-3.

7.3.1 PSF treatment

A crucial effect for any optical observa-
tion is the convolution with the PSF. We
refer to the previous discussion in sec-
tion 3.3 for details on how to infer PSF
shapes and their spatial variations from
image data. Here we are concerned
with incorporating a known PSF model
– which may vary spatially or not – in the ray-tracing simulation. There are sev-
eral ways of creating or approximating the convolved light distribution

I(x) =
∫

d2x Is(x′)PSF(x− x′) (7.6)

from the source light distribution Is and the PSF. The well-known and most of-
ten used approach is to form the unconvolved image by sampling Is and the PSF
on a pixel grid. Then, the convolution is applied by Fourier-transforming these
two images, multiplying both, and transforming the product back to pixel space.7

This approach is fast and works well in many situations, but has also drawbacks.
Often, the PSF is not well sampled in pixel space since telescope builders do not
want to waste too many pixels for small image features which are heavily blurred

7 This approach exploits the Convolution Theorem which states that a convolution in real space is
equivalent to multiplication in Fourier-space.
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by the convolution. That means, the pixelated PSF may not represent the contin-
uous PSF well. If we have a smooth PSF model at hand, we would effectively
loose information by sampling it on the pixel grid or integrating it within pixels.
Furthermore, the Fourier transformation is sensitive to boundary artifacts as it re-
quires the transformed data to be periodic. Due to objects on the boundary of the
unconvolved image, it may show non-periodic features which plague even the
convolved image. This limitation is particularly severe for images with masked
areas as the shape of the excluded areas may be complicated and they may occur
everywhere in the image.

The latter limitation can be remedied by applying a moving average convolu-
tion, for which the pixelated PSF model is rearranged as a finite pixel response
filter and applied to the unconvolved image,

I(xi) = ∑
xj∈D(xi)

Is(xj)PSF(xi − xj), (7.7)

where D(xi) denotes the finite domain around xi, within which the PSF does
not vanish and has unit integral.8 This method acts locally, is thus insensitive
to boundary artifacts, and can be implemented efficiently since the response fil-
ter forms a banded matrix. Additionally and in contrast to the Fourier-transfor-
mation method, with moving averages we can also apply a spatially varying PSF.

The most elegant approach from the ray-tracing point of view is to shoot rays
through the optics onto the successive layers. In fact, this is how engineers obtain
PSF shapes from the specifications of the optical path. Since these specifications
are typically not available to us and we cannot afford the computational overhead
of such a complicated ray-tracing problem, we need a simplified treatment. We
can interpret the PSF light distribution PSF(x− x′) as a probability distribution
for a ray to be displaced from its original position x to its new position x′. In other
words, the PSF shape provides is the statistical weight of such a ray,

I(x) = ∑ x′ Is(x′)PSF(x− x′)
∑ x′ PSF(x− x′)

. (7.8)

This formulation can be implemented by splitting an incoming ray into a ray
bundle with positions x′. However, these positions are only constrained to lie
within the domain D(x). It is thus not clear how to choose them and how many
rays are necessary for a decent result.

If we could discretize the PSF – and thereby the allowed displacements of a
ray – as in Equation (7.7), the number and positions of rays in the bundle would

8 cf. Equation (4.13a)
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be given by the number of PSF pixels within D, and Equation (7.8) would read

I(x) = ∑
∆xi∈D(0)

Is(x− ∆xi)PSF(∆xi) (7.9)

without the denominator since the PSF has unit integral within D when sampled
on the image pixel grid. This is strikingly similar to the moving average convolu-
tion: Instead of adding intensities from neighboring pixels, we can displace rays
such that they would fall onto the neighboring pixels, and add them up. The
great advantage of this approach is that it works without pixelating the plane of
the convolved image or the source plane. Also, for poorly resolved PSFs, we can
decide to oversample the PSF by factor o, generalizing the equation above to

I(x) =
1
o2 ∑

∆xi∈D(0)
∑

δxj∈O
Is(x− ∆xi − δxj)PSF(∆xi + δxj), (7.10)

where O denotes the set of regular displacements 1
o
(

k
l

)
for k, l ∈ {0, .., o − 1}.

This generalization approaches Equation (7.6) in the limit of o → ∞. On the other
hand, it requires a considerable number of rays in the bundle for each incoming
ray and is thus computationally expensive.

For a ConvolutionLayer in SKYLENS++, we are able to use any of these
methods, and the decision for one of them is drawn on the basis of data qual-
ity requirements. Stellar shapes, from which a PSF model of the simulated im-
age could be constructed, are provided by StarLayer. It hosts a set of sources
whose shape is obtained from the same PSF model used in ConvolutionLayer

and is placed in front of that layer (z=0; cf. Figure 7.2). In order to produce stellar
shapes with high fidelity, we prefer either smooth models or oversampled pixe-
lated models; otherwise, variations due to subpixel shifts of the stellar centroid
cannot be correctly reproduced.

7.4 Galaxy morphology models

So far, we have described the galaxies only by their SED. But of course, for a real-
istic representation of galaxies we need to take their morphology into account. In
section 2.5 we introduced the Sérsic profile, which describes the radial profile of
galaxies very well, and we discussed the limitations of this kind of description.
For the shapelet models, we showed in section 4.3 that they suffer from shape
mismatch for galaxies with steep cores or large ellipticities. Similar problems
exist for many methods.

The crucial questions we have to ask ourselves is: How realistic do the galax-
ies in the simulation have to look like? The answer depends on the purpose of
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the simulation. At the beginning of this chapter we proposed to perform simu-
lations in order to test every aspect of the analysis pipeline. If we are interested
in the correctness of a deconvolution method, great care needs to be taken when
applying the PSF to galactic shapes and providing stellar shapes. Also, for test-
ing shear estimates the galactic morphology is not of crucial importance – at first.
Only if we are interested in effects the galaxy shapes may have on the results, we
need to be able to accurately mimic realistic galaxies.

Our aim is to provide galactic models for any purpose. Therefore we work
with an abstract type SourceModel, which provides uniform access to any un-
derlying galactic model. Currently, we support models obtained from Sérsic fits,
shapelet models, and images of galaxies. The latter are turned into continuous
light sources by interpolation.

The morphology of galaxies is determined by the distribution of stars they
contain. The highly complicated and non-linear process of star formation, which
depends e.g. on the metallicity of the gas cloud and turbulent flows therein, leads
to a great variation in galactic morphologies, but also to a dependence of mor-
phology on color: In general, the shapes of galaxies change with the filter band
of the observation. Therefore, we need multi-band observations with high spa-
tial resolution to capture both the detailed morphology and its color variations.
If color effects are relevant to the simulation, we can make use of shapelet models
we obtained from the Hubble Space Telescope surveys GOODS (Giavalisco et al.,
2004) and HUDF (Beckwith et al., 2006), which comprise deep imaging taken in
four bands across the visual and near infrared spectral range. For these surveys,
a great wealth of auxiliary information is available, e.g. spectroscopic and photo-
metric redshifts (Coe et al., 2006; Grazian et al., 2006; Vanzella et al., 2008; Popesso
et al., 2009), and morphological classifications (Bundy et al., 2005; Coe et al., 2006).
This allows us to infer the SED and even to select galaxies according to properties
like morphological type. An example of multicolor images and shapelet models
of a galaxy in the HUDF with strong color-morphology dependence is shown in
Figure 7.5.

These surveys, however, do not comprise enough galaxies to populate a sim-
ulated observation with a large FoV without showing galaxies multiple times on
the image. Wider surveys with significantly more galaxies are available – GEMS
(Rix et al., 2004) and COSMOS (Koekemoer et al., 2007) – again with an impres-
sive amount of auxiliary information, but they only provide images in two or
one filter band. If color variation is not of concern, we prefer the usage of galax-
ies from these surveys to avoid the source replication problem. An alternative
approach of pretending a larger galaxy population is given and tested by Massey
et al. (2004). Little scatter can be added to the shapelet coefficients of an observed
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Figure 7.5: Multi-color images (top row) and shapelet models (bottom row) of a galaxy in
the Hubble Ultra Deep Field. These images are taken in the ACS filters F435W, F606W,
F775W, and F850LP (from left to right). The last column shows a false-color RGB compos-
ite, where we set R=F850LP, G=F606W+F775W, and B=F435W.

galaxy such as to create a new galaxy model, which is visually similar but not
identical to the observed one. By carefully choosing the coefficient scatter, one
can thus sample from a hypothetical galaxy morphology distribution without
obtaining unphysical models.

7.4.1 Deconvolution

The galaxy models are obtained from images with high spatial resolution. How-
ever, the galactic shapes are affected by the PSF of the observing telescope, in our
case typically the HST. Since we apply a convolution as part of the ray-tracing
simulation, this would effectively amount to a double convolution. This means,
we need to deconvolve the galaxy models from the HST PSF.

Codes like GALFIT compare the images with convolved Sérsic profiles, such
that the resulting profile is deconvolved. As we have the deconvolved Sérsic
parameters at hand, we can safely create an ensemble of unconvolved sources for
the SourceLayers. In this case, we can be sure that the effect of PSF convolution
during the ray tracing will be accurately reproduced on the final image.

Also with shapelets, we can obtain deconvolved models. But as we showed
in Equation (3.18), is is mandatory to construct shapelet models with orders nmax

higher than the order of the PSF model, otherwise no shape information beyond
the zeroth-order Gaussian can be inferred. The required lower limit for nmax is of-
ten rather demanding for faint galaxies such that the deconvolved shapes become
dominated by noise. One can employ a regularization to minimize the amount of
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negative flux9, but this method is computationally expensive. Equivalently, one
can start from a constrained model, convolve it, and compare it to the data. This
approach is used by Kuijken (2006). We prefer the optimal deconvolution method
laid out in section 3.5, which reduces the order of the deconvolved models in a
well defined way according to its significance.

There are two other, approximate solutions to the deconvolution problem.
The first is not to deconvolve at all. If the PSF of the simulated telescope is much
wider than the one which affects the galaxy models, the impact of the latter on
the simulated galactic shapes is to render them slightly wider and shallower. If
realistic morphologies of the sources are not really crucial, one can use this ap-
proach. The other solution is to apply an effective PSF convolution during the
ray tracing, which is made such that preconvolved shapes are turned into shapes
as they would be observed through the simulated telescope (Massey et al., 2004).
This requires the construction of a PSF P∆ according to

Psimulated = Pobserved ? P∆, (7.11)

which poses a deconvolution problem for P∆. As long as the orders nmax and
scale sizes β of the shapelet models Psimulated and Pobserved obey Equations (3.15)
& (3.18), this is in principle feasible. We found, however, that this approach typi-
cally gave rather coarse approximations of Psimulated, just because not any shape
can be turned into any other shape via a convolution.

7.4.2 Galaxy database

As noted above, we make use of the great wealth of information available for
galaxies from the large HST survey programs. The amount of information in
these sources is remarkable, but heterogeneous: Not every quantity is measured
for each galaxy, and information from different observations on the same galaxy
may be in disagreement.

To optimally exploit the imaging and auxiliary surveys, we thus need an inter-
face which provides homogeneous access to the heterogeneous data sources and
delivers the best or at least most trustworthy information for each galaxy. The
first task is to find a way of organizing the data. Because of its heterogeneous
nature, we decided to store the survey information in a SQL database system,
which allows us to formulate queries very flexibly. In practice, we store any kind
of information – catalogs, SED templates, shapelet models, raw images – in dif-
ferent tables in the database and combine them via special queries. There are
two main advantages of this setup: All information is stored in a common place

9 cf. Equations (4.20) – (4.22)
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and can be accessed in a uniform way; and access times are far superior to those
achievable for filesystem queries since databases are already optimized for this
kind of task and can even be improved by creating suitable indices to speed up
frequent queries.

The next task is to cross-correlate measurements from different surveys such
that we can find e.g. the SED for a given object in an imaging survey, for which
we know only its catalog number in the latter. Since every catalog provides the
source coordinates on the sky, we performed a nearest-neighbor search in the
two-dimensional coordinate space. As we correlated also ground-based with
space-based surveys, we had to find a way to account for the vastly different
accuracies of the source coordinates. We did this by a two-way nearest-neighbor
search. For an object Ai in the space-based survey A, we searched for all objects
in survey B with coordinates within the PSF width σA of A around Ai:

Ai
σA−→


B1(Ai)

B2(Ai)

...

Bm(Ai)

. (7.12)

The matches are ordered according to the relative distance on the sky. For each of
the matches j, we performed the backwards search – now within the PSF width
σB of B around Bj(Ai):

Bj(Ai)
σB−→


A1(Bj(Ai))

A2(Bj(Ai))

...

An(Bj(Ai))

(7.13)

If there was only one match in the first search (m = 1), we required for a con-
firmed cross-correlation that A1(B1(Ai)) = Ai, that means the nearest neighbor
of B1(Ai) is the original object Ai. If this is not the case, it means B cannot distin-
guish different between different objects in A because of the PSF smearing, and
we did not consider this a valid cross-correlation. In the more unlikely case that
m > 1, we only allowed the correlation if for any other match Bj(Ai) with j > 1
there was a different first match A1(Bj(Ai)) = Ak with k 6= i. This situation arises
when two surveys with similar PSF width detect multiple nearby sources, but can
still disentangle them even in our two-way matching procedure. All valid cross-
correlations were stored in a master table in the database to connect the different
pieces of information.
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The last task is to provide a common interface to all stored galaxies, indepen-
dent of the amount of information known for individual galaxies. For the simu-
lation code, we want to be able to select the best galaxy models and SED template
according to properties like magnitude or type. Hence, the SQL interface needs
to provide this information, or indicate if some information is missing so that we
can discard these objects. Therefore, we created a thin C++ layer, which queries
the database and converts SQL table entries to a format usable by SKYLENS++.

But, there is still the issue of incompatible information from different sur-
veys, e.g. magnitude measures in one survey disagree with those in another
survey. We therefore implemented a decision tree for every quantity provided
by the database interface. We assigned a quality rank for the information pro-
vided by different surveys, and in case of multiple measures we select the one
with the highest rank. For this decision mechanism, we incorporated the known
and published limits of the surveys. For instance, the photometric redshift sur-
vey COMBO17 provides excellent redshifts up to R-band magnitudes magR . 23
(Wolf et al., 2004), so that we give the redshift estimates large ranks for brighter
objects and smaller ranks for fainter ones. As another example, we trust shapelet
models of galaxies in the HUDF up to magi < 27.5, while Sérsic fits seem more
reliable up to magi < 28.5, before also their behavior appears rather erratic. Inde-
pendent of the magnitudes, we prefer Sérsic profiles to shapelet models for ellip-
tical galaxies for the reasons we explained in section 4.3. This empirical wisdom
is reflected in the multi-variate decision tree. We are aware that this approach
is subjective, but by looking into the definition of our decision tree one can ex-
plicitly understand why a decision was drawn. This approach is conceptually
similar to the decision strategy in Lang et al. (2009). If one wants to work with a
single source of information10, one can also bypass the decision tree and still use
the database interface.

7.5 Astrophysical add-ons

We have discussed now how we describe sources, and how their photons are
received by the simulated telescope. Although this is already sufficient to inves-
tigate e.g. number counts of galaxies in various filterbands and for given inte-
gration times or the visibility of morphological features like bar structures as a
function of pixel noise and pixelation, many other astrophysical ingredients can
be easily tied in the ray-tracing framework. Of particular interest to us is the
incorporation of gravitational lensing and light emission from galaxy clusters.

10 Results from different surveys may be hard to combine if the completeness limit of one of the surveys
is reached or exceeded.
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According to Equation (A.7), the entire gravitational lensing effect is spec-
ified by the deflection angle field α(x). Since we propagate the rays from the
observer to the source, we can just displace the incoming ray, which intersects
with the lens plane at x by the angle α at that position. In fact, the implementa-
tion of the LensLayer is strikingly similar to the one of DitherLayer discussed
above, just with a position depend shift. One complication remains: The angle
α is scaled with angular diameter distances DL to the lens, DS to the source, and
DLS between lens and source. For multiple source layers, we need to rescale α.
From the construction of the ray-tracing tree (cf. Figure 7.2) it is obvious that the
lensing layer cannot distinguish, if an incoming and deflected ray hits a source on
one of the source layers. We therefore switch all but one source layer off, query
this layer for its redshift, compute the appropriate distances DL and DLS, deflect
the ray by the properly rescaled α, and propagate the ray through the remaining
layer stack. This procedure is repeated for all source layers behind the lensing
layer. The origin of the deflection angle map is in principle arbitrary, it can be
computed from analytic profiles, e.g. the NFW profile (Navarro et al., 1996), or
from numerical simulations of galaxies clusters.

Of course, galaxy clusters comprise not only dark but also luminous matter in
the form of stars and gas. The gas emission is dominant in the X-ray regime only
and does therefore not affect the optical properties of the clusters. As already in-
dicated by the name, galaxy clusters comprise several galaxies, which host stars
and thus emit photons. Their light emission can cause trouble for lensing analy-
ses in two ways: If considered as lensed background source, the cluster member
galaxies would bias the inferred lensing potential low; and bright cluster galaxies
can outshine the ones behind, particularly close to the cluster center.

In order to include realistic galaxy clusters in our simulated images, we use
results from a semi-analytic model of galaxy formation coupled to a N-body clus-
ter simulation. The semi-analytic model we employ was described by De Lucia
& Blaizot (2007). The model provides a catalog containing positions and lumi-
nosities of Sérsic-type galaxies within the simulated dark-matter halo. Fed into a
ClusterMemberLayer, it provides a realistic description of the light emission
by cluster galaxies. In Figure 7.6, we show a synthetic multi-waveband obser-
vation with the ACS camera aboard the HST. The simulation comprised a single
background source layer, a lensing layer with a N-body cluster deflection field,
and a semi-analytic cluster member ensemble. Because of the large cluster mass
of about 1015M� and the high spatial resolution of the ACS camera, several grav-
itational arcs are visible. The combination of three observations in different filter
bands reveals a significant color variability of the elliptical cluster galaxies as
predicted by the semi-analytic model. Due to their faintness, the morphology
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Figure 7.6: Simulation of gravitational lensing by and light emission from a numerically
simulated galaxy cluster with a mass of 1015 M� at z = 0.297 as it would be seen by the
ACS instrument aboard the HST. The image is a false-color composite of three observa-
tions (filters F475W, F555W, F775W) with texp = 7500 s and FoV = (100 arcsec)2. Image
kindly provided by Massimo Meneghetti.

dispersion and color variation of the background galaxies, described by shapelet
models of HUDF galaxies (cf. Figure 7.5), cannot be seen here in detail.

Not only within a galaxy cluster, the positioning of sources can have impor-
tant impact on the result of the analysis. For instance, the number density of stars
– which for a given magnitude is mainly a function of galactic latitude – deter-
mines the minimal size of spatial PSF variations which can be inferred from the
stellar shapes. Intrinsic alignment of background sources can mimic a strong and
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localized lensing signal and have significant consequences for cluster mass recon-
structions and cosmic shear results. As the placement of sources is essentially un-
constrained, we can choose it according to appropriate models (e.g. Seares et al.,
1925; Hirata & Seljak, 2004) such as to incorporate all the desired effects.

The bottom line
� Every decision in a data analysis has impact on the outcome and should thus be validated

against synthetic data.

� For full flexibility of the simulation framework, it is advantageous to mimic the propaga-
tion of light rays as realistically as possible or necessary.

� The presented framework treats the three-dimensional light cone of the observation as an
ordered list of two-dimensional layers, which is traversed from the observer towards the
emitters.

� Layers either host photon sources or change the properties of photons passing through.

� Source layers are purely virtual collections of sources with a fast indexing mechanism
called R-tree.

� Sources are characterized by their SED, redshift, and magnitude. Their light distribution
is provided by shapelet models of multi-color images from HST surveys, Sérsic profiles or
interpolated images of bright sources.

� Additional ingredients – e.g. gravitational lensing and light emission by galaxy clusters
or intrinsic alignment of galaxies – can easily be added due to the flexible setup of the
simulation framework.





APPENDIXA
Gravitational lensing to 2nd order

In this chapter we give a brief introduction of gravitational lensing and show
how the lensing equations can be extended to second order. After that, we intro-
duce the complex flexion formalism, which allows a very convenient derivation
of the essential lensing equations. We also summarize the most frequent statisti-
cal measures employed in weak lensing analyses.

A.1 Gravitational lensing in a nutshell

Gravitational lensing summarizes the effect of gravitational light deflection on
astrophysical objects – stars, quasars, galaxies, etc. The general idea of gravita-
tional light deflection, namely that masses affect of propagation of light the same
way as they affect the propagation of massive particles, was formulated (almost
correctly) already for Newtonian dynamics, but the correct description was given
by Albert Einstein in his Theory of General Relativity.

More specifically, gravitational lensing describes the effect of a massive object
– the lens – on the appearance of an object – the source –, which is from our
point of view behind the lens. A sketch of a gravitational lens system is shown in
Figure A.1.

Following Bartelmann & Schneider (2001) we assume the lens to be at a angu-
lar diameter distance DL, the source at DS, and the distance from the lens to the
source to be DLS. Since the definition of the angular diameter distance D is such
that the Euclidean relation

physical size = angle · distance (A.1)

holds also in arbitrary spacetimes, in general DS 6= DL + DLS. Since the involved
distances Di are typically by far larger than the extension of the lens or the source
along the line of sight, we simplify the three-dimensional problem by projecting
the source and the lens onto respective planes.
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Figure A.1: Sketch of a gravitational lens system, from Bartelmann & Schneider (2001)

We can read off Figure A.1, that the position of the source in the source plane
η is related to its apparent position in the lens plane ξ via the deflection angle
α̂(ξ) according to

η =
DS
DL

ξ − DLSα̂(ξ). (A.2)

Thus, the whole effect of the lens is contained in the form of α̂(ξ). For a point
mass M, General Relativity predicts

α̂(ξ) =
4GM
c2|ξ|2 ξ. (A.3)

In the case of weak gravitational fields, the deflections by individual masses can
be linearly superposed such that we get the relation for a continuous matter dis-
tribution of the lens,

α̂(ξ) =
4G
c2

∫
d2ξ ′ Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2 , (A.4)

where we used the definition of the surface density

Σ(ξ) =
∫ ∞

−∞
dz ρ(ξ, z), (A.5)
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which is obtained from the three-dimensional matter density of the lens ρ by
integrating along the line of sight. A more convenient form of Equation (A.2) can
be obtained by rescaling the coordinate systems of the lens and the source plane
according to

x ≡ ξ

ξ0
, x′ ≡ η

η0
, where η0 ≡

ξ0DS
DL

, (A.6)

which leads to the scaled Lens Equation

x′(x) = x− α(x), (A.7)

where the scaled deflection angle α(x) is defined as

α(x) ≡ DLDLS
ξ0DS

α̂(xξ0). (A.8)

In this new frame we describe the surface density of the lens also in a dimension-
less form, which is called ’convergence’

κ(x) ≡ DLSDL
DS

4πGΣ(x)
c2 , (A.9)

where G and c are the gravitational constant and the speed of light. The conver-
gence can be understood as the source term for the two-dimensional gravitational
potential ψ, which satisfies the Poisson equation

∇2ψ(x) = 2κ(x). (A.10)

A look at equations (A.4), (A.9) and (A.10) shows that

α(x) = ∇ψ(x). (A.11)

Now we have the necessary formulae to describe gravitation lensing in general.
Gravitational lensing comes in a couple of flavors which are separated by the

strength of the effect and thus depend on the impact parameter – the distance
between the center of the lens and the position x – and the mass distribution
of the lens. We differentiate between strong lensing, which shows prominent
features like arcs and multiply imaged sources, weak lensing, where the effect of
the lens can only be estimated by investigating trends in ensembles of sources,
and microlensing, where the lightcurves of sources are monitored to find and
characterize very small lenses.

A.2 2nd-order Lens Equation

The key to understanding gravitational lensing is Equation (A.7), for which we
derive an approximation to second order now, following the work in (Goldberg
& Bacon, 2005).
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Since no photons are created or destroyed by gravitational light deflection,
the effect of the lens on the intensity of a source – in the source plane: I′(x′) – is
given in the lens plane by

I(x) = I′(x′(x)) (A.12)

Without loss of generality, we set the origins of the lens and source planes to
the position, where a fiducial light ray passes the planes, so that we can Taylor
expand Equation (A.7) around the origins,

x′i '
∂x′i
∂xj

xj +
1
2

∂2x′i
∂xj∂xk

xjxk. (A.13)

Traditionally we then linearize the Lens Equation, assuming that restricting the
rhs of Equation (A.13) to first order is sufficient to describe the variation of the
lens-source-mapping. This ansatz leads to a linear mapping,

x′i ' Aijxj, (A.14)

with the amplification matrix

Aij ≡
∂x′i
∂xj

∗
= δij −

∂2ψ(~x)
∂xi∂xj

∗∗≡
(

1− κ − γ1 −γ2

−γ2 1− κ + γ1

)
, (A.15)

where we used Equations (A.7) & (A.11) for (∗) and Equation (A.10) for (∗∗), and
defined the shear

γ1 =
1
2
(ψ,11 − ψ,22), γ2 = ψ,12. (A.16)

If we want to include the second-order term of the expansion in Equation (A.13),
we can do so in terms of derivatives of the amplification matrix,

x′i ' Aijxj +
1
2

Dijkxjxk (A.17)

with Dijk =
∂Aij
∂xk

. By employing the relation (Kaiser, 1995)

∇κ =

(
γ1,1 + γ2,2

γ2,1 − γ1,2

)
(A.18)

it is easy to show that

Dij1 =

(
−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

)
and Dij2 =

(
−γ2,1 −γ2,2

−γ2,2 2γ1,2 − γ2,1

)
. (A.19)

If we insert this into Equation (A.12), we get

I(x) ' I′(A · x + 1
2

Dx⊗ x), (A.20)
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and by Taylor expanding once more and neglecting all terms of second order in
γ, we arrive at

I(x) ' I′(x) + [(A− I)ijxj +
1
2

Dijkxjxk]
∂

∂xi
I′(x). (A.21)

The underlying assumption here is, of course, that the lensing quantities κ and γ

are small, which means: lensing is weak.

A.3 Flexion formalism

Bacon et al. (2006) showed that the four derivatives of the shear in Equation (A.19)
can be more conveniently expressed in terms of two new fields, which are called
first and second ’flexion’.

Using complex notation, which transforms a two-dimensional vector field
into a complex field in the way (

v1

v2

)
→ v1 + iv2 (A.22)

will allow us to derive the relations from section A.1 more elegantly. We first
introduce the complex gradient operator and its complex conjugate

∂ ≡ ∂1 + i∂2, ∂† ≡ ∂1 − i∂2 (A.23)

where the derivatives ∂i are taken with respect to the direction i. We start by
transforming Equation (A.11), which now reads

α = ∂ψ. (A.24)

We have obtained the spin 1 vector field α by applying ∂ on the spin 0 scalar
field ψ. Therefore we can think of ∂ as a spin-raising operator. Noting that the
Laplacian, which leaves the spin state unchanged, is written in this notation as

∇2 = ∂∂† = ∂†∂, (A.25)

allowing us to interpret ∂† as spin-lowering operator. If we want to obtain a scalar
field from the spin 1 field α, we employ ’spin conservation’ and thus apply ∂† and
get

∂†α = ∂†∂ψ = 2κ, (A.26)

which recovers Equation (A.10). According to Equation (A.16) we can obtain the
shear by applying ∂ twice on the potential,

γ =
1
2

∂∂ψ, (A.27)
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thus we can also write Equation (A.18) as

κ = ∂−1∂†γ. (A.28)

By now, we have recovered the traditional lensing relations, which are at most
linear in κ and γ. But there is nothing that could prevent us from applying ∂

another time, which leads to the definition of the first flexion F and the second
flexion G,

F =
1
2

∂∂†∂ψ = ∂κ = ∂†γ,

G =
1
2

∂3ψ = ∂γ.
(A.29)

The last equation states that the spin 1 field F is the gradient field of the conver-
gence, and that G must be a spin 3 field. Further on, we can now write F and G
in terms of the derivatives of the shear,

F = [γ1,1 + γ2,2] + i [γ2,1 − γ1,2]

G = [γ1,1 − γ2,2] + i [γ2,1 + γ1,2]
(A.30)

or in terms of derivatives of the potential,

F =
1
2
[
[ψ,111 + ψ,122] + i [ψ,112 + ψ,222]

]
,

G =
1
2
[
[ψ,111 − 3ψ,122] + i [3ψ,112 − ψ,222]

]
,

(A.31)

where we used Equation (A.16).
By applying ∂ successively we can go to arbitrarily high orders. For the pur-

pose of this thesis, we restrict ourselves to the second order.

A.4 Shapelet coefficient mappings

Although the form of the operators from Equation (1.49) is not exactly what one
might call compact, it is still easy to compute their actions in shapelet space.
For convenience we give the appropriate shapelet coefficient mapping associated
with each transformation:

K̂ : cn1,n2 = [1 + κK̂] c′n1,n2

= (1 + κ) c′n1,n2
+

κ

2

[√
(n1 + 1)(n1 + 2) c′n1+2,n2

+
√
(n2 + 1)(n2 + 2) c′n1,n2+2

−
√

n1(n1 − 1) c′n1−2,n2
−
√

n2(n2 − 1) c′n1,n2−2

]
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Ŝ1 : cn1,n2 = [1 + γ1Ŝ1] c′n1,n2

= c′n1,n2
+

γ1

2

[√
(n1 + 1)(n1 + 2) c′n1+2,n2

−
√
(n2 + 1)(n2 + 2) c′n1,n2+2

−
√

n1(n1 − 1) c′n1−2,n2
+
√

n2(n2 − 1) c′n1,n2−2

]

Ŝ2 : cn1,n2 = [1 + γ2Ŝ2] c′n1,n2

= c′n1,n2
+ γ2

[√
(n1 + 1)(n2 + 1) c′n1+1,n2+1 +

√
n1n2 c′n1−1,n2−1

]

Ŝ11 : cn1,n2 = [1 + γ1,1Ŝ11] c′n1,n2

= c′n1,n2
+
−γ1,1

2
√

2

[√
n1(n1 − 1)(n1 − 2) c′n1−3,n2

−
√
(n1 + 1)(n1 + 2)(n1 + 3) c′n1+3,n2

+ (n1 − 2)
√

n1 c′n1−1,n2
− (n1 + 3)

√
n1 + 1 c′n1+1,n2

]

Ŝ21 : cn1,n2 = [1 + γ2,1Ŝ21] c′n1,n2

= c′n1,n2
+
−γ2,1

4
√

2

[√
n2(n2 − 1)(n2 − 2) c′n1,n2−3

−
√
(n2 + 1)(n2 + 2)(n2 + 3) c′n1,n2+3

+ 3
√

n1(n1 − 1)n2 c′n1−2,n2−1

− 3
√
(n1 + 1)(n1 − 2)(n2 + 1) c′n1+2,n2+1

−
√
(n1 + 1)(n1 + 2)n2 c′n1+2,n2−1

+ (2n1 + n2 + 3)
√

n2 c′n1,n2−1

− (n1 + n2 + 5)
√

n2 + 1 c′n1,n2+1

]
The other two coefficient mappings can easily be obtained by noting that

Ŝ12 = −Ŝ11

∣∣∣
1↔2

and Ŝ22 = +Ŝ21

∣∣∣
1↔2

,

where 1↔ 2 denotes the interchange of all appearances of the 1-coordinate with
the 2-coordinate.

The interesting point about the coefficient mappings is that the convergence
and the first component of the shear both mix terms with ∆n1, ∆n2 = ±2, whereas
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the second component of the shear mixes ∆n1, ∆n2 = ±1. For the flexion the sit-
uation becomes more complicated, but one can still say that it mixes coefficients
with ∆n1, ∆n2 ≤ ±3. One can turn this argument around and conclude that for
extracting the convergence or the shear from any set of coefficients one needs at
least coefficients with n1, n2 = 2; for the flexion at least n1, n2 = 3.

A.5 Weak-lensing statistics

Shear and flexion measurements from distant galaxies do unfortunately not pro-
vide an unobscured view on the lensing effects their light encountered on its
way to the observer. Pixel noise and variation in the intrinsic morphology of the
lensed galaxies constitute dominant sources of confusion, called measurement and
shape noise. Thus, we have to reduce these sources of statistical scatter by forming
suitable averages.

For weak-lensing by galaxy clusters a localized averaging procedure is ad-
visable. The definition of a cluster center rc gives rise to a separation vector
θ = r− rc from any lensed galaxy at position r to the cluster center. Since the
shear is a spin-2 field, one can then decompose it into a tangentially oriented
component and one, which is rotated by 45◦,

γt(r) ≡ −R(γ(r)e−2iφ) and γ×(r) ≡ −I(γ(r)e−2iφ) (A.32)

where θ = θ eiφ. With this, one can define an azimuthally averaged shear

γ̄t(θ) ≡ 〈γt(r)〉r: |θ|=θ (A.33)

and an average within circular apertures

Map(θ) ≡
∫

B(θ)
d2r γt(r)Q(θ), (A.34)

where a Q is a suitably chosen circular weight function and B(θ) the two-dimen-
sional ball with radius θ around rc (Schneider, 1996; Schneider et al., 1998). The
first average is related to the average convergence κ̄(< θ) within some radius θ,

γ̄t(θ) = κ̄(< θ)− κ̄(θ) (A.35)

(Miralda-Escude, 1991), while the second one – called aperture-mass statistic –
would indicate mass concentrations as a significant increase with respect to the
surrounding fluctuations. Leonard et al. (2009) adapted the aperture-mass statis-
tic for flexion measurements.

For cosmic-shear studies, one forms some sort of shear-shear correlation func-
tion of any suitable pair of galaxies in the survey. We give a brief overview of the
correlators in use and refer to e.g. Schneider et al. (2002, and references therein).
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The cosmological information of interest is contained in the three-dimensional
power spectrum Pδ of the density contrast δ ≡ (ρ − ρ̄)/ρ̄, where ρ denotes the
matter density. The density contrast δ is the source of gravitational clustering.
After a line-of-sight integration, it is equivalent to the convergence κ. Since κ

and γ are both second-order derivatives of the gravitational potential, they are
described by the same power spectrum. Thus, we can relate correlation functions
of the shear to the power spectrum Pδ,

ξ+,−(θ) =
9H4

0 Ω2
m

4c4

∫ wh

0

dw
a2(w)

∫ ∞

0

dl l
2π

Pδ

( l
f (w)

, w
)

J0,4(lθ)R̄(w, θ). (A.36)

The quantities H0, Ωm, and c denote the Hubble constant, the matter density pa-
rameter, and the speed of light. The first integration spans the entire comoving
radial distances up to the horizon wh, the second one all multipoles l. The co-
moving angular-diameter distance f (w) to comoving distance w depends on the
spatial curvature K of the universe (Bartelmann & Schneider, 2001),

f (w) =


K−1/2 sin[K1/2w] if K > 0

w if K = 0

(−K)−1/2 sinh[(−K)1/2w] if K < 0.

(A.37)

The power spectrum is weighted by the n-th order Bessel function Jn and a com-
bination of angular diameter distances R̄ averaged over the source redshift dis-
tribution. The correlators ξ· are defined as follows:

ξ+(θ) ≡ 〈γt(r) γt(r + θ)〉+ 〈γ×(r) γ×(r + θ)〉
ξ−(θ) ≡ 〈γt(r) γt(r + θ)〉 − 〈γ×(r) γ×(r + θ)〉
ξ×(θ) ≡ 〈γt(r) γ×(r + θ)〉

(A.38)

The averages are taken with respect to r and φ such that the separation scale θ is
the only remaining variable. A convenient consequence of this definition is the
ability to split the power spectrum of the shear – the line-of -sight integral of Pδ –
into the so-called E- and B-mode contribution, and a cross-part,

PE(l) = π
∫ ∞

0
dθ θ[ξ+(θ)J0(lθ) + ξ−(θ)J4(lθ)]

PB(l) = π
∫ ∞

0
dθ θ[ξ+(θ)J0(lθ)− ξ−(θ)J4(lθ)]

PEB(l) = 2π
∫ ∞

0
dθ θ ξ×(θ)J4(lθ),

(A.39)

for which one can show that PEB vanishes for every shear field, which is invari-
ant under a parity transformation, and PB vanishes in absence of noise or other
systematics. That means, in a perfect measurement, only PE does not vanish.
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From data of large extragalactic surveys, one seeks to determine ξ± for a range
of scales θ. Since the maximum separation θ for any given survey is finite – even if
the surveys spans the entire sky – the integrals in Equation (A.39) are in principle
ill-defined, or one needs to extrapolate ξ· beyond measurable scales. However,
one can form other statistics, which only span a finite range of scales, foremost
the aperture-mass statistic and the shear variance |γ|2, which only consider shear
measurements within apertures of finite radius,

〈
M2

ap,⊥
〉
(θ) =

1
2

∫ 2θ

0

dϑ ϑ

θ2

[
ξ+(ϑ)T+

(ϑ

θ

)
± ξ−(ϑ)T−

(ϑ

θ

)]
〈|γ|2〉E,B(θ) =

1
2

∫ 2θ

0

dϑ ϑ

θ2

[
ξ+(ϑ)S+

(ϑ

θ

)
± ξ−(ϑ)S−

(ϑ

θ

)]
.

(A.40)

The form of T± and S± are given in (Schneider et al., 2002), all vanish for argu-
ments larger than 2. These measures are related to the power spectra:

〈
M2

ap,⊥
〉
(θ) =

1
2π

∫ ∞

0
dl l PE,B(θ)

576 J2
4 (lθ)

(lθ)4

〈|γ|2〉E,B(θ) =
1

2π

∫ ∞

0
dl l PE,B(θ)

4 J2
1 (lθ)
(lθ)2

(A.41)

Apart from being measurable on finite scales, these statistics have the advantage
of separating explicitly between E- and B-mode contributions, which provides an
important check for systematic contaminations in the data.
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Signs and symbols

Although we tried to use a standard and legible notation, we summarize our
convention here:

x scalar quantity x
x two-dimensional vectorial quantity
~x general vectorial quantity
x̃ estimate of x
x̄ guess/average of x
x̂ operator with name x
x† complex conjugate of x
x̆ Fourier-transform of x

Special abbreviations often used in the text are:

F total flux of an object
xc position of an object’s centroid
Qij quadrupole moment of an object
Hn Hermite polynomial of order n, cf. Equation (1.1)
Bn Shapelet basis function of order n, cf. Equation (1.3)
β shapelet scale size, cf. Equation (1.3)
cn1,n2 Cartesian shapelet coefficient of order (n1, n2), cf. Equation (1.27)
pn,m polar shapelet coefficient of order (n, m), cf. Equation (1.27)
θmin minimal shapelet scale, cf. Equation (1.36)
θmax maximal shapelet scale, cf. Equation (1.36)
ε complex ellipticity, cf. Equation (1.53)
nmax maximum order of the shapelet expansion, cf. Equation (2.1)
χ2 goodness of fit, cf. Equations (2.2) & (4.3) ff.
ns Sérsic index, cf. Equation (2.15)
P shapelet convolution matrix, cf. Equation (3.11)
P general process matrix, cf. Equation (4.5) ff.
V noise/pixel covariance matrix, cf. Equation (4.7)
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