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Summary 

This thesis considers continuous-time series processes denned by classical stochastic diffe­
rential equations and investigates some o f their applications to mathematical finance with 
a focus on analytical approximations for some important financial quantities like derivative 
prices or firm default probability in a more complex and realistic framework than the one 
used by Black and Scholes (1973) and Merton (1973,1974). 

In the first part some classes o f continuous-time series models are introduced, which are 
further used to construct new financial models for asset and volatility dynamics. W e illustrate 
some o f them with the aid o f simulation and estimation examples. 

In the second part o f this thesis, w e derive new results for derivative pricing and credit risk 
problems in stochastic volatility models driven by some continuous-time series processes. 



Kurzfassung 

Die vorliegende Arbeit befasst sich mit kontinuierlichen Zeitreihen, welche mit Hi l fe von 
klassischen stochastischen Differentialgleichungen definiert werden, und untersucht einige 
ihrer Anwendungen in der Finanzmathematik. Dabei wird auf analytische Approximatio-
nen von wichtigen Finanzvariablen fokussiert, wie z .B. Derivatenpreise oder die Ausfa l l -
wahrscheinlichkeit einer Firma, in einem komplexeren und realistischeren Rahmen als jener, 
der von Black und Scholes (1973) und Merton (1973,1974) benutzt wurde. 

Im ersten Teil werden neue Model le fur kontinuierliche Zeitreihen aufgestellt und fur die 
Modellierung der Dynamik von Akt ien und Volatilitaten weiterverwendet. Einige davon 
werden mit Hi l fe von Simulations- und Schatzungsbeispielen illustriert. 

Der zweite Teil der Arbeit befasst sich mit der Herleitung neuer Resultate fur die Bewertung 
von Derivaten und fur Kreditrisikoprobleme in stochastischen, von kontinuierlichen Zeitrei­
hen gesteuerten Volatilitatsmodellen. 
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I n t r o d u c t i o n 

Real world phenomena, including financial events, occur in continuous time and therefore 
realistic models should account for this feature. Even though the available data are discretely 
sampled, they are often obtained at unequal time intervals and they may also be recorded with 
high frequency. Whi le it is not easy to include these issues in the framework o f a discrete 
time model , its continuous time counterparts can implicitly handle dynamics over irregular 
time intervals in a consistent way, see e.g., Jones (1981,1985) , Jones and Ackerson (1990). 
Moreover, the continuous time approach can rely on the powerful tools o f stochastic calculus, 
which is essential in financial mathematics, since it provides better insight into the involved 
phenomena. Therefore, for practically all financial applications it seems natural to choose a 
continuous-time model in order to get a good approximation o f the reality. 

In this sense, this thesis considers continuous-time series processes defined by classical sto­
chastic differential equations and investigates some o f their applications to financial mathe­
matics with a focus on analytical approximations for some important financial quantities like 
derivative prices or default probabilities in a more complex and realistic framework than the 
one used by Black and Scholes (1973) and Merton (1973,1974). 

In the first part o f this thesis w e propose some new continuous-time series models with 
applications to financial mathematics and illustrate them with the aid o f some simulation and 
estimation examples. The development o f these models is motivated by the so-called sty­
lized facts o f financial data (such as volatility clustering, volatility mean reversion, leverage 
effects, fat tails, long range dependence) that cannot be easily explained by the classical 
models. In this context, for some subclass o f the new introduced time-varying models, we 
derive a first generalization o f the celebrated Black-Scholes formula for option prices. 

Then, in the second part o f this thesis, w e derive new results for derivative pricing and credit 
risk problems in stochastic volatility ( S V ) models driven by some continuous-time series 
processes. 

This thesis is organized in six chapters: 

The introductory Chapter 1 provides a very short overview o f existing continuous-time series 
processes. A prominent example from this class is the so-called continuous-time autoregres-
sive mov ing average ( C A R M A ) process, which is modelled with a linear system o f stochas­
tic differential equations. This linear specification gives a tractable l ikelihood and this is the 
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reason w h y C A R M A models have been intensively used in practice over the years. 

These models are the continuous-time analogues o f the wel l -known A R M A models and they 
have been introduced by Doob (1944). 

Since then, the class o f continuous-time series processes has been considerably enlarged. 
A m o n g the most popular ones let us mention: the continuous-time threshold A R M A (shortly 
C T A R M A ) process, the L e v y driven C A R M A processes introduced by Brockwell (2000, 
2001b), the continuous-time analogues o f the discrete-time G A R C H ( C O G A R C H ) process 
introduced by Kliippelberg, Lindner and Mailer (2004), and the continuous-time autoregres-
sive fractionally integrated moving average ( C A R F I M A ) process by Tsai and Chan (2005). 

These are interesting theoretical generalizations o f C A R M A processes, but their estimation 
often raises serious challenges and their analytical tractability for certain financial applica­
tions like derivative pricing problems is relatively restrained, especially for those driven by 
some generalizations o f the Brownian motion process. 

Therefore, w e improve in Chapter 2 the classical continuous-time series setting upon fol ­
lowing other ideas, related to those presented in Dahlhaus, Neumann and Sachs (1999), Tsai 
and Chan (2000c), Chernov et al. (2003), Starica and Granger (2005) and Rao (2006). The 
resulting models can still capture the wel l -known empirical features o f financial t ime series 
and their estimation can be carried out for instance with the aid o f some classical nonlinear 
filtering techniques. 

The first part o f Chapter 2 introduces some new nonstationary and/or nonlinear continuous-
time series processes and discusses their modeling potential for financial applications. 

One reason to extend the classical continuous-time series processes is the fact that a signifi­
cant part o f the information carried by the financial time series consists o f non-stationarity. 
In order to model such effects w e introduce a class o f time-varying continuous-time autore-
gressive mov ing average processes (shortly t v C A R M A ) and then put in evidence their good 
mathematical tractability, which is the basis for many financial applications. However, their 
potential in modell ing time series which exhibit heteroscedasticity is relatively restrained. 
In this sense, this class o f models is then further improved e.g., by considering t v C A R M A 
processes with linear state-dependent diffusion coefficients. This way we obtain a class o f 
heteroscedastic bilinear t v C A R M A processes which still have very good analytical proper­
ties. 

Another reason to extend the classical continuous-time series processes is the nonlinear 
structure o f many financial data. Fol lowing the recent developments in nonlinear discrete 
time series analysis, we first constructed continuous-time analogues o f some nonlinear au-
toregressive processes with changing conditional variances, see e.g., Hardle, Tsybakov and 
Yang (1998) and Lutkepohl and Kratzig (2004). 

The resulting class o f models, generically denoted N L C A R , are extensions o f the nonlinear 
continuous-time autoregressive models recently introduced in Tsai and Chan (2000). More-



over, the models o f Tsai and Chan are homoscedastic and it is wel l known that financial 
and many other time series exhibit heteroscedasticity. This gives another strong motivation 
to develop models o f N L C A R type, which are able to capture this empirical feature, e.g., 
N L C A R M A and t v N L C A R M A . 

Most o f the continuous-time series models are driven by a single Brownian motion and this 
leads, for a high order model , to an interpretation in terms o f stochastic differential equations 
(SDE) with a degenerate diffusion matrix. For some financial applications, like derivative 
pricing, this can be a serious drawback. In order to avoid this, w e propose some classes 
o f perturbed continuous-time series processes which have an interpretation in terms o f S D E 
with a non-degenerate diffusion matrix, however without changing the usual drift structure. 
For instance, in Chapter 3 we use the subclass o f perturbed C A R M A processes (shortly 
C A R M A e ) to model the asset volatility. 

A l l these models are generalizations o f many classical financial models and w e put this in 
evidence by giving some examples from literature. 

Next w e introduce some new financial models based on the continuous-time series processes 
discussed above. Then w e evidentiate some o f them which are able to capture stylized facts 
like fat tails, jumps or long-memory properties and therefore offer an alternative to the finan­
cial models driven by diverse generalizations o f the Brownian motion process. Moreover, 
in some financial application like derivative pricing problems, these models have the impor­
tant advantage that, under relatively general assumptions, still allow to apply the standard 
no-arbitrage pricing theory. However, using financial models driven by fractional Brownian 
motions can affect the nonexistence o f arbitrage in the market, see e.g., Biagini et. al. (2008). 

Next we address the derivative pricing problem for a subclass o f the new introduced time-
varying models and w e derive a first generalization o f the Black-Scholes formula (see e.g., 
Appendix A ) . 

In the second part o f Chapter 2 we give a short overview o f the prevalent estimation tech­
niques for nonlinear and nonstationary continuous state-space models which can be applied 
in practice to carry out the estimation problem for our models o f interest in the parametric 
case. These procedures can be combined with the general approaches in Dahlhaus, Neu­
mann and Sachs (1999) (based on a nonlinear wavelet method) and Mall iavin and Mancino 
(2002) (relying on a Fourier series method), in order to solve the estimation problem in the 
nonparametric case. 

Finally, some o f the models discussed in the first part o f Chapter 2 are illustrated with the 
aid o f some simulation and estimation examples. 

The first part o f Chapter 3 introduces stochastic volatility ( S V ) models based on C A R M A e 

processes and derives the evolution o f the pricing function for European derivatives in this 
framework. Again , some simulations are performed in order to illustrate these models. The 
volatility modeling is crucial in practically all financial applications, including derivatives 



pricing and risk management, and this topic has recently attracted great attention in the 
financial literature. Thus, a large number o f different characterizations o f the stochastic 
volatility have been suggested in the last decades. A m o n g the most popular ones let us 
mention those developed by White (1987a), Scott (1982), Stein and Stein (1991), Heston 
(1993) and Bal l and R o m a (1994) (see e.g., Appendix B for a short description). 

The idea to use a C A R M A process to model the volatility has been recently proposed, see 
e.g., Brockwell (2009) and the references therein. In this chapter we further develop it in a 
rather different framework, where the asset volatility at is given by at = f(Ut) with / being 
some positive smooth function, whereas (Ut)t>o is a C A R M A e ( p , q) process (i.e. a stochastic 
perturbation o f a C A R M A ( p , q) process, as described in Chapter 2). W h e n p > 1, the vola­
tility process has a non-Markovian structure and we obtain in this way flexible extensions 
o f the most S V models discussed in Fouque et al. (2000). Moreover, in our framework, 
for p, q > 1 the volatility process is, in fact, a sum o f short memory processes and, accord­
ing to Granger (1980), this can describe long memory. Many other important stylized facts 
on financial data (such as volatility clustering, volatility mean reversion, leverage effects) 
can be easily explained with these S V models (further details in this direction are given in 
Chapter 4). 

In this framework w e also describe some important financial quantities for the pricing o f de­
rivatives, like integrated variance, spot volatility and effective volatility. From a probabilistic 
point o f view, the integrated variance (or integrated volatility) is the quadratic variation o f 
the log-asset process and the spot volatility can be recovered from the integrated variance 
by differentiation. Then the effective volatility is actually the square root o f the mean o f the 
stationary distribution for the spot volatility process. 

Next we discuss in this setting the derivative pricing problem which is one o f the most im­
portant issues in finance. Thereby w e combine the risk neutral approach with this stochastic 
volatility framework in order to get the "fair price" o f the derivative. Then the corresponding 
stochastic volatility derivative pricing partial differential equation is obtained and this result 
is the key to numerically compute the prices for such financial derivatives. However, solving 
numerically the corresponding partial differential equation for a high dimensional model is 
a nontrivial issue. A n alternative way to overcome this difficulty for a subclass o f the S V 
models addressed above is developed in Chapter 4. 

In the context o f high frequency data, the second part o f Chapter 3 provides some estimation 
results for integrated variance, spot volatility and effective volatility. The availability o f 
high frequency data on financial markets has motivated in the last years a large number o f 
publications devoted to the measurement o f the integrated variance, see e.g., Shephard (2005) 
and references therein. 

Barndorff-Nielsen and Shephard (2002) proposed to use the so-called realized variation (or 
realized volatility), to estimate the integrated variance. The concept o f realized variation 
traces back to an early idea o f Merton (1980) and basically consists in the estimation o f the 



daily variance v ia the sum o f squared intraday returns, see e.g., Andersen et al. (2003). 

Our first result in this context is concerned with the estimation o f the integrated variance 
and it is related to the one presented by Barndorff-Nielsen and Shephard (2002). Based on 
a new proof, w e focus on an enhanced description o f the error bound, this being o f great 
importance in practice. A s a corollary we obtain a result concerning the estimation o f the 
spot volatility. In a more complex setting, a related result can be found in Foster and Nelson 
(1996), however without achieving an analytical description as in our case. Finally, starting 
from the above results, we derive an estimator for the effective volatility. 

Alternatively one can use the nonlinear filtering techniques described in Chapter 2 in order to 
estimate all financial quantities discussed above and this allows to do it in a far more general 
setting as the one w e used in the context o f high frequency data. However, it is no more 
possible to give an explicit form o f the corresponding estimator. 

Eventually we point out that, besides the above mentioned financial applications, these re­
sults can help simpli fying the estimation problem o f complex stochastic volatility models. 

In Chapter 4 w e derive an asymptotic analysis for European derivative prices in the frame­
work offered by stochastic volatility models driven by a C A R e process o f arbitrary order, un­
der a fast mean-reverting regime. For this subclass o f the S V models discussed in Chapter 3 
w e derive analytical approximations for European derivative prices which extend similar re­
sults o f Fouque et al. (2000). Thus, w e obtain a "corrected price formula" which offers an 
alternative way to overcome the problems which arise when solving numerically the deriva­
tive pricing partial differential equation described in Chapter 3, especially in the case o f a 
high dimensional model. 

For this purpose, w e use the asymptotic analysis developed in Fouque et al. (2000), which 
is a modern and very powerful tool to obtain results similar to the Black-Scholes formula, in 
a generalized framework based on some fast mean-reverting S V models. The basic idea is 
to work on large intervals, where it can be assumed that the mean reversion property o f the 
volatility process is fast and then the Black-Scholes model (with a correction to account for 
stochastic volatility) gives a good approximation. 

Empirical evidence o f a fast volatility factor was found in the analysis o f high frequency S&P 
500 data by Fouque et al. (2000) and this factor has been modelled with a C A R ( l ) process, 
which induces a Markovian description o f the volatility. 

The models discussed in this chapter are illustrated with the aid o f some simulation and 
estimation examples. These show that the clustering property (i.e. when the volatility is 
high, it tends to stay high for a few days or so, before dropping to a lower level where it 
tends to stay for a while, and so on) is closely related to the fast mean reversion property in 
such stochastic volatility models and the flexible non-Markovian structure o f the volatility in 
our framework can help in practice to get a better description o f financial data. 

It is well known that for a multivariate setting where a large number o f assets has to be 



analyzed it is extremely important, at least from the computational point o f view, to have 
the possibility to work with models having very good analytical properties. The purpose 
o f Chapter 5 is to find a class o f multivariate stochastic volatility ( M S V ) models for which 
the correction constants appearing in the multivariate corrected price formula for European 
derivatives proposed by Fouque et al. (2000) can be explicitly computed with respect to the 
parameters o f the M S V model. 

The class o f models that w e propose to this aim contains extensions o f the univariate Scott 
stochastic volatility model (see e.g., Appendix B) . Precisely, we construct a M S V where the 
logarithms o f the volatilities are linear combinations o f the components o f a multivariate 
C A R ( 1 ) process (with the same rate o f mean reversion for all its components). In order to 
capture the leverage effects, there have been introduced correlations between all involved 
stochastic processes. 

In this context, the first result in this chapter gives an explicit solution to a multivariate Pois-
son equation and this is the key to the second result which derives the explicit computations 
for the correction constants appearing in the multivariate corrected price formula for Euro­
pean derivatives. These results are very expedient for practical purposes, since they allow 
the precise computation o f relevant financial quantities upon avoiding computer intensive 
methods which would be otherwise needed for numerically solving the corresponding P D E s 
and/or for stochastic simulations, especially in higher dimensions. 

B y our knowledge this is the first general multivariate setting for incomplete markets with a 
comprehensive system o f mutual correlations between the involved processes which is able 
to provide such type o f analytical approximation for European derivative prices. 

In Chapter 6 we derive a new analytical result for the firm default probability in a generalized 
Merton setting where the firm value evolves in a fast mean-reverting stochastic volatility 
scenario. 

In the Merton (1974) approach, a firm defaults if, at the time o f servicing the debt, its assets 
are lower than its outstanding debt. The non-observable value o f a firm is assumed to fo l low a 
geometric Brownian motion. The Merton setting is attractive since it enables classical Black-
Scholes option pricing theory to be used. However, it is well known that the underlying 
assumptions are quite unrealistic. The stochastic volatility models discussed in the previous 
chapters can be used to improve the classical Merton setting for modeling the risk o f default. 

For the case o f a fast mean-reverting volatility, w e obtain in this context a new analytical 
approximation for the firm default probability, based on an improved first correction term, 
when compared to the corresponding one in Fouque et al. (2006). Moreover, unlike that 
result, our approximation also depends on the value o f the volatility driven factor, which 
gives the chance to capture a larger amount o f the relevant market informations. 



C h a p t e r 1 

C l a s s i c a l C o n t i n u o u s - t i m e S e r i e s M o d e l s 

Continuous-time series processes are modelled by stochastic differential equations (SDE) . 
For various accounts on stochastic calculus and SDEs w e refer to Liptser & Shiryayev 
(1977), Karatzas and Shreve (1988), Kunita (1990), Protter (1995) and 0ksendal (1998). 

1.1 Continuous-time ARMA Models 

The continuous-time autoregressive moving average (shortly C A R M A ) processes are m o ­
delled by linear SDEs and represent the continuous-time analogues o f the wel l -known dis­
crete-time A R M A processes. 

They have been extensively studied in the last decades, see e.g., D o o b (1944), Bartlett (1946), 
Phillips (1959), Durbin (1961), Dzhaparidze (1970,1971), Arato (1982), Brockwell (2001a). 

The formal description o f a C A R M A ( p , q) process (Yt)t>o with 0 < q < p (p, q 6 N) is 

Yt
{p) + aiYt

{p-1} + ... + apYt = 5[b0wj1} + hwP + ••• + bqWt
(q+1) + c], (1.1) 

where (Wt)t>o is a Brownian motion, a i , a p , bi,bq, c, 8 (the scale parameter) are con­
stants and the superscript denotes the j - f o ld differentiation with respect to t. It is assumed 
that b0 = 1, 5 > 0 and the coefficients bj satisfy bq ^ 0 and bj = 0 for j > q. 

Since the derivatives do not exist in the usual sense, the pth order linear differential 
equation (1.1) is interpreted in terms o f stochastic differential equations, as being equivalent 
to the observation and state equations 

given by 

Yt = Sb'-X(t), t>0, (1.2) 

and 
dX(t) - A • X ( i ) dt = e-(cdt + dWt), t > 0, (1.3) 
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where 
0 1 0 • 0 xt 
0 0 1 • 0 

A = , X ( t ) = 

0 0 0 • 1 

_ -aP —ap-1 —dp-2 • • • — a>\ . xh]. 

(1.4) 

" 0 " 1 
0 bl 

, b = 

0 bp-2 
1 

(e, b £ (1.5) 

The superscript / denotes the transpose o f a vector and X ( 0 ) is uncorrelated with the Brow-
nian motion (Wt)t>o-

Because o f the linearity o f the Ito differential equation (1.3), its solution has the simple form 

t t 

X ( t ) = e" • X ( 0 ) + J ^ > • eM. + c / ^ - « > • e * , . ( > 0. ( ! .6 ) 
0 0 

Hence (X ( t ) ) t > 0 is a stationary Gaussian diffusion process i f and only i f 

oo 

:(0) - Nia'1 • c[ l 0 . . . 0]', J eAuee'eA'u du) (1.7) X ( 

and the eigenvalues A i , X p o f A all have negative real parts. 

In the case where q = 0, the process (Yt)t>o reduces to a continuous-time A R ( p ) process 
(shortly C A R ( p ) ) . In particular, C A R ( l ) is the wel l -known Ornstein-Uhlenbeck ( O U ) pro­
cess and this is one o f the mostly used ingredients o f modeling in mathematical finance. 

Relations between a discrete-time A R M A process and a C A R M A process have been dis­
cussed by many authors, e.g., Chan and Tong (1987), He and Wang (1989), Brockwell 
(1995), Brockwel l and Brockwell (1999), Huzi i (2004). 

The C A R M A processes have applications not only to economics. For instance, the random 
harmonic oscillator is the C A R ( 2 ) process 

Y™ + b.Y}1> + \2.Yt = * . w y , t>0, (1.8) 

where b, A are real constants, A2 • YT represents a linear, restoring force and b • Y}1^ is a 
frictional damping term. 

The linearity and stationarity properties o f C A R M A processes are very attractive features 
from the estimation point o f view, but to give a realistic description o f financial data sets one 
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needs to look beyond the stationary linear framework, and a number o f generalizations o f 
C A R M A processes have been proposed in literature. 

In the next section, a first nonlinear extension o f C A R M A processes wi l l be discussed. Other 
nonstationary or/and nonlinear extensions wi l l be introduced in chapter two. 

1.2 Continuous-time Threshold ARM A Models 

The continuous-time threshold A R M A (shortly C T A R M A ) processes are the continuous-
time analogues o f the discrete-time S E T A R M A processes o f Tong (1990) and they have 
been used by several authors, e.g., Tong and Yeung (1991), Brockwel l and Wi l l iams (1997) 
for the modeling o f financial and other time series. 

B y definition, (Yt)t>0 is a C T A R M A ( p , q) process with threshold r and constants bi,...,bq,S 
i f it verifies (1.2) and (1.3), where ai,...,ap, and c are this time allowed to depend on a linear 

v 
function / ( X ( £ ) ) (f(x) = $3 rfj • xi} where difi = 1 , . . . , p are nonnegative constants) o f the 

i=i 
state vector X ( i ) in such a way that 

<n{f(X{t))) = ai i = l , . . . , p , and c ( / ( X ( t ) ) ) = <?, (1.9) 

where j = 1 , 2 , according to whether / ( X ( i ) ) < r or / ( X ( i ) ) > r. The extension to 
the case o f more than one threshold is straightforward. In this case, the corresponding sto­
chastic differential equation has no more an explicit solution, however an existence result 
was obtained in Brockwell , Stramer and Tweedie (1996), which have shown that (1.3) with 
coefficients as denned in (1.9) has a unique (in law) weak solution X ( t ) . 

Choosing q = 0 w e obtain the class o f continuous-time threshold autoregressive processes 
o f order p (abbreviated CT AR(p ) ) . 

1.3 Continuous-time Series Models Driven by Some 
Generalized Brownian Motions 

A usual way to extend the S D E models driven by Brownian motions is to replace the lat­
ter with one o f their generalizations, e.g., L e v y processes or fractional Brownian motions. 
The L e v y processes are mainly used in order to model the assets in the presence o f jumps, 
whereas fractional Brownian motions are a common ingredient o f models for time series with 
long range dependence ( L R D ) properties. For a detailed description o f L e v y processes we 
refer to Protter (1995), Bertoin (1996) and Sato (1999) and for fractional Brownian motions 
to Embrechts and Maej ima (2002) and Mishura (2008). 

L e v y driven C A R M A models have been introduced by Brockwell (2000,2001b) and further 
extended in Brockwel l and Marquardt (2005) upon using more general L e v y processes. Such 
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processes have been employed to model the volatility o f asset returns in Todorov and Tauchen 
(2006). 

A further class o f L e v y driven models, denoted C O G A R C H ( 1,1), was introduced by Kluppel -
berg, Lindner and Mailer (2004) and this is the continuous-time analogue o f the discrete-time 
G A R C H ( 1 , 1 ) (generalized autoregressive conditionally heteroscedastic) process. 

The C O G A R C H ( l ,1) process is obtained by rewriting the explicit expression for volatility o f 
the G A R C H ( 1 , 1 ) process in such a way that it has a continuous-time interpretation. Higher-
order continuous-time analogues o f G A R C H ( p , q) processes have been introduced by Brock-
well , Chadraa and Lindner (2006). 

Some continuous-time analogues o f the so-called fractionally integrated (or fractional) A R M A 
process have been introduced by Viano, Deniau and Oppenheim (1994) and Comte and Re­
nault (1998). In this class o f models there are many long-memory processes which can 
be used to model data with L R D properties. Another class o f long-memory Levy-driven 
C A R M A processes was introduced by Brockwell (2004) and Brockwel l and Marquardt 
(2005). 

Though the above mentioned models are interesting theoretical generalizations o f C A R M A 
processes, their estimation raises serious challenges and their analytical tractability for cer­
tain financial applications like derivative pricing problems is relatively small. Therefore, we 
tried to improve the classical continuous-time series setting upon fol lowing other ideas, re­
lated to those presented in Dahlhaus, Neumann and Sachs (1999), Tsai and Chan (2000c), 
Chernov et al. (2003), Starica and Granger (2005) and Rao (2006). 

A m o n g the resulting models, w e describe a subclass which can still capture the above enu­
merated empirical features o f financial time series and therefore offer an alternative to the 
previously mentioned models. Details wi l l be given in the next chapter. 



C h a p t e r 2 

S o m e E x t e n s i o n s o f C l a s s i c a l 

C o n t i n u o u s - t i m e S e r i e s M o d e l s 

The modeling o f temporal variations o f stock market prices has been the subject o f intensive 
research for a long time now, starting with the famous random walk hypothesis o f Bache-
lier (1900). A popular approach consists in specifying an explicit model for the dynamics 
o f return series. In this sense, the seminal contribution o f Engle (1982), who introduced 
the A R C H model, has been fol lowed by a large number o f variants, like G A R C H models, 
regime switching models (see e.g., Hamilton (1989), Hamilton and Susmel (1994)), stochas­
tic volatility models (which wi l l be discussed later in this thesis), etc. 

A l l these models have been developed to reflect the so-called stylized facts o f financial t ime 
series. A m o n g the most important ones are: volatility clustering, volatility mean reversion, 
leverage effects, fat tails, serial dependence without correlation. 

These and many other empirical features o f financial t ime series have been documented by 
many researchers: Bollerslev, Engle and Nelson (1994), Granger and Ding (1995), Pagan 
(1996), Ghysels, Harvey and Renault (1996), Gui l laume et al. (1997), Cont (2001), Fry-
zlewicz, Sapatinas and Rao (2006). 

However, there is no model able to capture the whole complexity o f financial data and thus 
the field o f statistical analysis o f this type o f data remains open for further investigations. 

In this sense, we present firstly some extensions o f the classical continuous-time series m o ­
dels and some procedures which can be applied in practice to solve the estimation problem 
for the newly introduced models. 

Secondly, w e put in evidence the potential o f the new introduced continuous-time series 
processes in modeling the assets (or their stochastic volatility) and derivative prices, which 
are among the most important issues in mathematical finance. 

From now on, the term asset wi l l be used to describe any financial object whose value is 
known at present, but is liable to change in future, for instance shares in a company, com-

21 
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modities, currencies. 

The volatility o f a financial asset is the variance per unit time o f the logarithm o f the price o f 
the asset. It is a crucial quantity for the determination o f risk and in the valuation o f deriva­
tives. A short description o f the classical derivative pricing theory and stochastic volatility 
models can be found in the Appendix. 

For further accounts on mathematical finance we refer e.g., to Taylor (1986), Karatzas and 
Shreve (1998), Shiryaev (1999), Fouque, Papanicolaou, and Sircar (2000), Duff ie (2001), 
Brigo and Mercurio (2001), B jork (2004). 

2.1 Linear and Nonlinear Time-varying Continuous-time 
Series Models 

2.1.1 Linear Time-varying CARMA Models 

It is wel l known that stationary time series models have nice theoretical properties but are 
not prone to realistically describe the financial data. 

Several papers (see e.g., Ramsey (1999), Clemencon and Sl im (2004) and the references 
therein) have put in evidence the presence o f temporal inhomogeneities, which is a prominent 
characteristic o f financial data. Mandelbrot (1963) emphasized: 

"Prices records do not look stationary, and statistical expressions such as the sample vari­
ance take very different values at different times; this nonstationarity seems to put a statisti­
cal model ofprice change out of the question? 

Thus, it was and wi l l still remain a difficult task to select a model which allows to deal 
properly with the time-inhomogeneous character o f return series. 

A significant part o f the information carried by the financial time series consists in non­
stationarity: beginning or end o f some phenomena, ruptures due to shocks or structural 
change, drifts reflecting economical trends, business cycles etc. 

Many discrete-time models have been introduced to model such nonstationary effects, see 
e.g., Priestley (1965), Cramer (1961) and Bib i (2003). However, the asymptotic results 
available for stationary time series are not immediately applicable to their nonstationary 
counterparts. 

To circumvent this, Dahlhaus (1997) introduced the notion o f locally stationary process in 
the context o f discrete time series analysis. 

The extension o f such results to the context o f continuous-time processes seems to remain 
further a nontrivial task, however one can define and analyze continuous-time processes 
which have properties similar to the discrete-time autoregressive processes with time-varying 
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coefficients. 

Here our objective is to introduce time-varying continuous-time processes which extend 
some classical models discussed in the previous chapter and to evidentiate their potential 
for financial applications. 

t v C A R and t v C A R M A processes 

Following the definitions o f discrete time-varying autoregressive model, we introduce the 
time-varying continuous autoregressive process o f order p (shortly t v C A R ( p ) ) as the solution 
o f the pth order differential equation: 

y / p ) - ap(t) • Y t l ) a1(t)-Yt-aQ{t) = a(t)-WP, t > 0, (2.1) 

where (Wt)t>o is a Brownian motion and a0(.), . . . ap(.) and <r(.) > 0 are continuous 
deterministic functions. A s usual, we interpret (2.1) as being equivalent to the observation 
and state equations: 

Yt = W-X(t), t>0, 

dX(t) = (A(t) • X(t) + a0(t) -e)-dt + a{t) • e dWu t > 0, (2.2) 

where 

(2.3) 

0 1 0 • • 0 xt 
0 0 1 0 

A(t) = , X ( t ) = 

0 0 0 • 1 
. ai(t) a2(t) as(t) • • ®P(t) _ 

' 0 " " 1 " 
0 0 

, b = 
0 0 
1 0 

( e , b G (2.4) 

Whenever the vector b above is replaced by a vector o f functions bt = [b0(t), bi(t), ..., 
bp-tit)}' (bi(.) G L2(R+) for i = 0 , . . . , (p - 1)), which for some q < p (q e W) verify 
I\bq(-) | |L2 > 0 and bj(.) = 0 for j > q, we wil l denote the above model by t v C A R M A ( p , q) 
and we wil l say that (Yt)t>0 is a time-varying C A R M A process. 

It is well known that (2.2) has an explicit solution (see e.g., Maybeck (1982)): 

X(t) = ${t) [ X ( 0 ) + J a0(s)<f>-\s) -eds + <j{s)$-l{s) • e dWs 

for all t > 0, where $ ( t ) is the fundamental matrix solution to the homogeneous equation 

i(t) = A(t)^(t), m = IP, (2-6) 

(2.5) 
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where Ip denotes the p x p identity matrix. The solution o f (2.6) exists uniquely and i f 
t t 

A(t)( J A(s)dsj = ( J A(s)ds^A(t), (2.7) 
0 0 

for all t > 0, then 
t 

0 

Suppose that i?| | X 0 | |2 < oo, then the evolution o f the mean vector and covariance matrix 
wh ich are denned b y 

m(t) = EX(t), (2.9) 

V(t) = E[(X(t) - m(t))(X(t) - m ( f ) f ] , (2-10) 

for all t > 0, can be described b y the fo l lowing system o f ordinary differential equations: 

rii(t) = A(t) • m(t) + a0(t) • e, (2.11) 

V(t) = A(t)-V(t) + V(t)-A(t)' + B(t)-B(t)', (2.12) 

where B(t) = dmg(a(t) • e ) , for all t > 0. 

Bilinear t v C A R M A models 

Replacing in the definition o f t v C A R M A ( p , q) the dif fusion coefficient a(t) with a linear 
combination o f the state variables 

a(t) =a't - X ( i ) , t>0, (2.13) 

where the vector at above is a vector o f continuous functions at = [a0(t), ai(t), ..., 
(Tp_i(t)] / (at G W) w e obtain a class o f time-varying bilinear C A R M A models. The deno­
mination suggests that their construction is inspired f rom the classical discrete (t ime-varying) 
bilinear models , see e.g., B ib i (2003). 

For example, the fo l lowing time-varying continuous bilinear autoregressive mode l 

Yt
W - ai(t)Yt - a0(t) = (aQ(t) + a^t) • Yt)Wt

(1), t > 0, (2.14) 

where ctj (.), ( .) , % G {0, 1} are some continuous deterministic functions, is a generalization 
o f the Black-Scholes-Courtadon model for the volatil ity process (see Courtadon (1982)). In 
particular, i f the coefficients are constants, where a0(t) = a0(t) = 0, ai(t) = fi > 0, 
G\ (t) = a > 0, t > 0, one obtains the geometric Brownian motion ( G B M ) given b y 

Yt
(1) =/j,-Yt + a-Yt W[

t
l), t > 0. (2.15) 

This is also known as the Black-Scholes-Merton model (BS) . For more details w e refer to the 
Append ix or Black-Scholes (1973) and Merton (1973). 

W h e n the t ime series exhibit heteroscedasticity, but the nonlinear effects are still negligible, 
this class o f models becomes very attractive, due to their nice analytical tractability. 
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Other examples from mathematical finance 

• L o and Wang (1995) considered for the dynamics o f the logarithm o f the stock price process 
a t v C A R ( l ) model o f the form 

r t
( 1 ) - a, • Yt - a0(t) = a0 • Wt

W, t > 0, (2.16) 

with a0(t) = — ait), for all t > 0, cti < 0 and fi, a0 > 0 being constants. 

• In Vasicek (1977) the short rate is modelled with a C A R ( l ) process. App ly ing this process 
to interest rate dynamics allows for closed-form solutions for bond prices and bond option 
prices. However, the analytical tractability o f this model must be contrasted with the pos­
sibility o f negative spot interest rate, but the mean reversion alleviates a great deal o f the 
problem. 

• Fil ipovic (2000) proposed generalizations o f the Vasicek model o f the form 

Yt
W-ai(t)Yt-ao(t) = a0(t)-Wt

(1\ te[0,T\, (2.17) 

where T > 0, Y0 = zx + z2, a0(t) = z3e~Z5t + zAe~2zrJ + ztz5, a^t) = -z5, a0(t) = 
y/Z4Z5e~Z5t, for some appropriate constants z i , . . . , z$. This t v C A R ( l ) model was further 
generalized in Ramponi and Lucca (2003). Similar models have been used in H o and Lee 
(1986), Hul l and Whi te (1990), and Egorov, L i and X u (2003). 

Further extensions o f classical continuous-time series and the above described models wi l l 
be introduced in the next section. 

2.1.2 Nonlinear Time-varying CARMA Models 

The importance o f non-linear models in time series analysis has been increasingly recognized 
over the past twenty years. There is much literature on nonlinear discrete-time series models, 
see Tong (1990,1991), Granger and Terasvirta (1993), C o x (1997), Straumann and Mikosch 
(2003), Rao (2006). However, the corresponding number o f nonlinear continuous-time series 
models proposed in literature is relatively small, see e.g., Brockwell (1994), Tsai and Chan 
(2000c). 

First, w e introduce here a class o f nonlinear heteroscedastic C A R processes which are the 
continuous-time analogues o f the fol lowing conditional heteroscedastic autoregressive nonli ­
near model (see e.g., Hardle, Tsybakov and Yang (1998) and Liitkepohl and Kratzig (2004)) 

xt = (f)(xt-1,...,Xt-p,0) + efa(xt-1,...,xt-p,0), teN, (2.18) 

where 0 and a are real-valued measurable functions on W and M? (p < p), respectively, 
depending on the vector o f model parameters 9 G © C R r (r e N*) and (et)te^ is a 
sequence o f i.i.d. N ( 0 , 1 ) random variables. 
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For instance, Weiss (1984) proposed the model 

Xt = a X t _ i + y ^ o + a i ^ t - i • (2.19) 

and Franke, Kreiss and Mammen (2002) considered the model 

xt = 4 sin(a; t_i) + et • + 0.25x2
t_v (2.20) 

N L C A R processes 

Clearly, the continuous-time analogue o f (2.18) can be formally described as the fol lowing 
p-th order nonlinear differential equation 

= cpiY^, ...,YU0) + a(Y}p~l\ ..., Y t P \ 9) • W?\ t > 0, (2.21) 

where (Wt)t>o is a Brownian motion, 0 < p < p(p — 0 means a is constant), p, p G N. For 
example, Tsai and Chan (2000c) considered a nonlinear continuous-time series model o f the 
fol lowing form: 

Yt
(p) = (a0 + a'X(t) + e^o+a'x(t))2 _ ^ d t + a.wW^ a=(0ll}...J ap)' e W, (2.22) 

for all t > 0, where A, a0 e R , <x0 G M+ and X ( t ) = (Yt,..., Yt
{p~iyy G R p . 

The interpretation o f (2.21) as observation and state equation can be given as follows: 

Yt = b ' X ( i ) , t > 0, (2.23) 

dX(t) = A(X(t),0)dt + B(X(t),0) dW(t), t > 0, (2.24) 

where b = [ 1 , 0 . . . , 0]' G MP, e = [ 0 , 0 , . . . , 1]' G Rp, W(t) = Wt • e, for all t > 0, 
A : W -> R p , o-: R p -> R and for all z = (zu ..., zp)' G R p 

A ( z , 9) = ( z 2 , . . . , zp , 0(2P , . . . , z i , 0 ) ) ' (2.25) 

cr(z, 0 ) = a(zp, Zp-u Zp-p+i, 0) , (2.26) 

B ( z , 0 ) = d i a g ( * ( z , 0 ) - e ) . (2.27) 

We also assume that the functions (f> and a satisfy the usual conditions which ensure the 
existence o f a strong solution to the above stochastic differential equations (see e.g., Protter 
(1995) or Karatzas and Shreve (1988)). Then (Yt)t>0 is well-defined and we call it nonlinear 
continuous-time autoregressive process (shortly N L C A R f p ; p]; when p = p or p = 0 we 
abbreviate it NLCAR[p ] , respectively N L C A R ( p ) ) . 

The conditions under which the process (X(t ) ) t>o is stationary and the partial differential 
equation for which the stationary density is a solution can be found in Hasminskii (1980). 
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N L C A R M A processes and their time-varying extensions 

Changing the observation equations (2.23 ) with 

Yt = *(X(t)), t>0, (2.28) 

where is a real-valued measurable function on W (possibly nonlinear), we obtain a 
class o f nonlinear C A R M A processes (shortly N L C A R M A ( [p; p], \ t ) ; when p = p or p = 0 
w e abbreviate it N L C A R M A ( [ p ] . ^ ) , respectively N L C A R M A ( p , * ) ) . 

I f \&(X(£)) = b ' • X ( i ) , with b = [b0,h,... ,bp-i}' and the real coefficients bj satisfying 
bq ^ 0 and = 0 for j > q, with 0 < q < p (p,p, g G N* ) , then we denote this model by 
N L C A R M A ([p; p],q) (when p — p or p — 0 w e abbreviate it N L C A R M A ( [ p ] , q), respec­
tively N L C A R M A (p, q)). 

The time-varying extensions o f the above introduced models can be easily obtained by choos­
ing the functions ^, <p and a to depend o f the supplementary time variable t, and we denote 
the resulting models by t v N L C A R M A ( [ p ; p], $ ) ) , t v N L C A R M A ( [ p ; p], q)), etc. 

The subclass of perturbed C A R M A processes 

This class o f models can be further improved by choosing in the state equation (2.24) a 
nondegenerate diffusion matrix B ( x , 9) and a multivariate p-dimensional Brownian m o ­
tion ( W ( t ) ) i > 0 . W e obtain in this way some classes o f perturbed continuous-time series 
processes which are particularly useful in modeling the volatility process. For instance, in 
Chapter 3 we consider a stochastic volatility model driven by a perturbed CARMA process 
(shortly C A R M A e ) and we give a result concerning the evolution o f the derivative pricing 
function in this context. 

A s an example, the formal description o f a zero mean C A R e ( 2 ) process (Ut)t>o can be given 
by 

(2) aM1} + a2Ut = (a^W^t)^ + ^ W i ( t ) ( 2 ) ) + ^ 2 W 2 ( * ) ( 1 ) , (2.29) 

and this can be interpreted in terms o f S D E as being equivalent to the observation and state 
equations 

Ut = b'-V(t), t>0, (2.30) 

dU(t) = A-XJ{t)dt + T0 -dW(t), t>0, 

with 

A 
0 

-0,2 
1 

-tti 
ut 

tJt 

0 1 
e = 

0 
, b = 

1 0 

(2.31) 

(2.32) 

(2.33) 
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o ih 
, W ( f ) 

W1(t) 
W2(t) 

(2.34) 

where a1} a2, V'i, V;2 are positive constants and ( W ( t ) ) t > 0 is a bivariate Brownian motion. 

Some non-financial examples 

A small subclass o f the above nonlinear continuous-time series models has been applied 
not only to finance, but also to mathematical biology and technical science. For instance, 
denoting with (Wt)t>o a univariate Brownian motion: 

• the stochastic analogue o f the logistic growth model is 

dXt = aXt(l - Xt/0) dt + aXt dWt, X0 = x0, te [0, T], (2.35) 

with a , 3, a > 0 and this heteroscedastic N L C A R process is useful for modeling the growth 
o f populations (see e.g., Bishwal (2008)); 

• Lasota & Mackey (1994) describe the dynamics o f a particle moving in a potential which 
is a superposition o f trigonometric functions by the fol lowing N L C A R process (qt)t>o-

dq = pdt, 
p 

dp = (—7P — Dj sin(g) cosJ_1(g))(ii + a dWt 
i=i 

(2.36) 

with P e W, Dd e R , j = 1 , . . . , P, 7 , a > 0. 

Some examples from mathematical finance 

• Schwartz (1997) proposed to model the asset dynamics with the fol lowing heteroscedastic 
N L C A R [ 1 ] process 

dSt = a(fi - log St) • Stdt + aSt dWt, t>0, (2.37) 

with Q, /i, a positive constants. 

• Another general heteroscedastic N L C A R model for asset dynamics was introduced by 
B ibby and S0rensen (1997): 

dSt = St[K + ^C2(log St - Kt)] dt + Sf C(log St - Kt) dWt, t > 0, 

where and ( ( . ) is a positive function, e.g., 

~viy/v% + ( x - v0)2 - v 2 ( x - v0) 

(2.38) 

((x) = crexp x G R , (2.39) 
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with Vi > |u2| > 0, u3 > 0, a > 0 and v0 G R. With this choice o f £(.), after a sufficiently 
long time, the logarithm o f the stock price wil l be approximately hyperbolically distributed. 
The density o f such a distribution is proportional to 

exp - v1 \Jvl + {x - VQ)2 + v2 (x - v 0 ) ] , x e l . (2.40) 

This family o f distributions was introduced by Barndorff-Nielsen (1977) in order to give a 
general framework for empirical studies in geology and other fields. Moreover, Barndorff-
Nielsen (1978) noted that every hyperbolic distribution appears as a stationary distribution o f 
a continuous-time Markov process described by a particular stochastic differential equation. 
One classical example in this sense is the following diffusion process 

dXt = -9 Xt
 9dt + adWt, t > 0, (2.41) 

with a, 9 positive parameters (see e.g., Bishwal (2008)). This is a homoscedastic N L C A R 
process which has also been used to model stock returns. It has a stationary density propor­
tional to e x p ( - 6 V l + x2/a), x G R. 

• Hull and White (1988) and Heston (1993a) proposed the following N L C A R ( l ) model for 
the volatility process: 

Yt
W = (^-aiYt)dt + a-Wt

W, t>0, Y0>0, (2.42) 
j-t 

ctj, a > 0, i = 0, 1. 

• A model frequently used in literature is that o f Cox-Ingersoll-Ross (CIR), also known as 
the square-root model defined by 

dXt = (l3-a- Xt) dt + 5y/X~t dWt, t>0, X0 = x0 > 0, (2.43) 

where a, 3, 8 are real constants (a , S > 0, 3 > ^). It is a heteroscedastic NLCAR[1] model 
which has also been used to model the spot interest rate or the stochastic volatility for asset 
dynamics. The main advantage o f this model is that it ensures that Xt always stays positive. 

• The Chan-Karolyi-Longstaff-Sanders ( C K L S ) model is a generalization o f C IR model and 
is defined by (see e.g., Chan et.al (1992) or Bishwal (2008)) 

dXt = 0(k - Xt)dt + aX2 dWt, t>0, Xo = xo>0, (2.44) 

with k G R, 9, a > 0 and 7 G R+. For 7 = | this is also known as the inverse square-root 
model and was studied by A h n and Gao (1999), along with further N L C A R models with 
nonlinear drift. 

• Ait-Sahalia (1996) proposed further generalizations o f the following type: 

dXt = (a + fcXt + {32X* + ^)dt + (a1 + a2Xt + a3X?)Uwt, t > 0, (2.45) 
Xt 
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for the two previous models. Similar N L C A R models have been considered in Marsh and 
Rosenfeld (1982), Constantinides (1992) and Forman and Serensen (2008). 

• A n extended Black-Scholes model proposed by Paulsen (2000) for the stock price: 

dSt = fi- St dt + a(St) • St dWu t > 0, (2.46) 

where a : (0, oo) —• (0, oo) is a continuous function satisfying 

0 < inf a(x) < sup<r(V) < oo. (2.47) 
x>0 x>0 

A s an example was considered the case 

^ ) = 7 A / c ( | T ^ ) 2 + l , X>0, (2.48) 

with 7, m, c > 0. 

• The Larsen-Serensen model (see e.g., Bishwal (2008)) reads 

^smdiriXt - m)/z) - p 
cos( |7r(X t - m)/z) 

dXt = -0 V2
/X

v ' " ' , 1 dt + adWu t > 0, (2.49) 

with 6, z, a > 0, p G (—1,1) , m G E . For p = 0, m = 0 and z = TT/2 one obtains the 
Kessler-Serensen model 

dXt = -9 tsm(Xt)dt + a dWt, t > 0. (2.50) 

These models have been used to characterize exchange rate values. 

• Unlike the univariate models presented above, there are rather few classical financial mo ­
dels driven by a multivariate stochastic differential equation. Among them, the most popular 
ones are the affine term structure models (ATSMs) and the quadratic term structure models 
(QTSMs) , used to characterize the dynamics o f the short rate. 

In the A T S M s the short rate rt is an affine function o f a multivariate square-root diffusion 
process (X t ) t>o, i.e. 

rt = 60 + 5'xXt, t>0, (2.51) 

where 50 >0,5X = (5ix) 6 R.N, (8ix > 0) and X t is given by 

dXt = fi(Xt)dt + a(Xt) dWt7 t > 0, (2.52) 

with p and a having the following affine structure: 

fi(x) = e + icn, 
N 

a ( x ) a ( x ) ' = h + ^XjH®, 
i=i 
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where x = (^)1<,< jV G RNxl, 9 G K j Y x l , K G RNxN and /i and ( j = 1 , . . . , N) are 
in R V x iV and symmetric. For instance, a multivariate generalization o f the above described 
CIR model results for <j(x) = y/x, with ySc = d iag( ( v ^)i<i<iv ) . 

For more accounts on A T S M models see e.g., Duffie and Kan (1996), Duffle, Pan, and Sin­
gleton (2000). 

In the Q T S M s the short rate rt is a quadratic function o f a multivariate linear and homosce-
dastic process (X^)i>o, i.e. 

rt = 50 + S[Xt + X^TXt, t > 0, (2.53) 

where S0 is a constant, Si is a constant iV-dimensional vector and T is a TV x N positive 
definite matrix o f constants, such that 80 — I ^ Y - 1 ^ > 0. The process (X*)t>o is assumed 
to satisfy the stochastic differential equation 

dXt = {KQ + K{Kt)dt + S dWt, t > 0, (2.54) 

where KQ is a constant iV-dimensional vector and K\, S are x N matrices. 

Ahn , Ditmar and Gallant (2002) have argued that the Q T S M s are superior to A T S M s in that 
they are able to provide a better goodness o f fit o f term structure dynamics. 

Most o f the Q T S M s can be extended by replacing (X.t)t>o in (2.53) by a multivariate process 
Y t = (Yi(t))i<i<N ^ where (Yi(t))t>o is one o f the continuous time series processes 
introduced above, for a lH = 1 , . . . , N. For instance, a class o f time-varying quadratic term 
structure models ( tvQTSMs) with deterministic time-varying coefficients S0(t), 5i(t) and 
T(t) (such that 60(t) - l ^ ^ ' T " 1 ^ ) ^ ^ ) > 0, for all t > 0) can be introduced by 

rt = 50(t) + 5[(t)Yt + Y'tT(t)Yt, t > 0, (2.55) 

where Yt = ( i i ( i )) i<i<jv a n d (Yi(t))t>o is a t v C A R M A process, for a lH = 1 , . . . , N. 

• Finally, we recall some examples o f nonlinear time-varying C A R processes from literature: 

(i) the model o f Hull and White (1990) 

Yt
(1)-a1(t)Yt-a0(t)=a1(t)-VYtWt

il\ t>0, (2.56) 

which was further generalized in Fan et al. (2003). In Egorov, L i and X u (2003) 
this model was considered with the following parameterization o f the time-dependent 
coefficients: a0(t) = ^ exp(2$ • t), ai{t) = —a, a±(t) = a0 exp(# • t), with 9, a, d, 
cr0 some appropriate constants and was called Extended Cox-Ingersoll-Ross (ECIR). 

(ii) the model o f Black and Karasinski (1991) 

Yt
{l) - ai{t)Yt\ogYt - a0(t)Yt = a^t) • YtWt

(1), t > 0, (2.57) 

where Qi (t) = dl°s^l(-^. A similar model has been studied in Black, Derman and Toy 
(1990). 
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Further examples o f econometric applications o f continuous-time models can be found in 
the book o f Bergstrom (1990). 

The new class o f models introduced above offers non-Markovian, nonlinear and nonstatio-
nary extensions for many classical models used in financial mathematics, as can be seen in 
the next section. 

2.2 Financial Applications 

Next w e introduce some new financial models based on the classes o f continuous-time series 
processes described above. The development o f these models is motivated by stylized facts 
that are not easily explained by classical models. 

Some comprehensive classes of financial models driven by continuous-
time series processes 

(Mi) Some o f the previous models for asset dynamics are o f the fol lowing type: 

St = h(t,Yt), t>0, (2.58) 

with h : D C R + x R —> R + and (Yt)t>0 some continuous-time series process. 
For instance, most univariate models, like (2.37) or (2.38), are o f the type (2.58) with 
h(t, y) = y, for all t, y 6 R + . Clearly, such a representation is not unique, since e.g., 
after a transformation with the Ito formula, the model (2.38) can be equivalently repre­
sented with h being the exponential function and with (Yt)t>o a nonlinear continuous-
time series process given by 

dYt = ndt + C(Yt - Kt) dWt, t > 0. (2.59) 

Many other classical financial models for the volatility or interest rate are o f the form 
(2.58), however in order to also account for more general models like (2.55), one has to 
extend the class (2.58) by using a multivariate continuous-time series process (Yt)t>o, 
i.e. 

St = h(t,Yt), t>0, (2.60) 

with h : D C R + x Re ^ R+, Yt = (Y1(t),..., Ye{t)) and {(^(t))t>o}i<<<£ being 
continuous-time series processes, possibly correlated. 

Some examples 

Many new interesting models can be found in the class (2.58) (or (2.60)). A m o n g them 
we evidentiate in the fol lowing only two subclasses which are able to capture some o f 
the so-called stylized facts like fat tails or jumps. 
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(i) It is well known that the distribution o f stock returns typically has heavier tails 
than the normal distribution and this is often well fitted by a hyperbolic one, see 
e.g., Mandelbrot (1963), Fama (1965), Eberlein and Keller (1995), Kuchler, Neu­
mann, Serensen and Streller (1994). Moreover, as already noted, the hyperbolic 
distributions appear as stationary distributions o f some particular stochastic dif­
ferential equations, like the one described in (2.38). This characterization opens 
the possibility to obtain new natural improvements o f this distribution class and 
o f the corresponding asset models. For instance, this leads to models o f the form 

St = Yf1Sh¥a(t), t>0, (2.61) 

where $i G M.+, i = 1,2, (Yt)t>o is some positive continuous-time series process 
with E(Yt) = 1, t > 0, and (SGH(t))t>o is a process given by (2.38). 

(ii) Another interesting subclass o f (2.58) is the one adding jumps to the price pro­
cess. For instance, choosing h o f the form 

Kt,V) = ±{k0(t,y)>B}^l(t,y) + l{k0(t)1/)<B}k2(*,?/), (2.62) 

where k j ( . ) , i = 0,1, 2, are some nonlinear functions (k;( .) > 0, i = 1, 2), B is 
a real constant and {Yt)t>o is some positive continuous-time series process, we 
get a large class o f asset models with jumps. Yet more complex jump models can 
be introduced by supplementary choosing the underlying process (Yt)t>0 to be a 
C T A R M A like process as in Chapter 1. Analogously, one can introduce jumps in 
the volatility process. 

In figure 2.1 we illustrate two simulated trajectories o f a jump process o f type 
(2.58), where (Yt)te[o,i] i s a geometric Brownian motion given by (2.15) with the 
parameters /i = 0.1,<r = 0.07 and h has the form (2.62) with 

k 0 ( t y) = cos ( i ( l - t) l ogy ) - s in ( t ( l -t)y/y), (2.63) 

ki(t,y)=v:i(Ky+(KV1(l + (-iy-v2)^+^^yy i = 1,2, (2.64) 

for all t G [0,1], y > 0 and parameters B = 0, yo = 620, v0 = 8, v\ = \, and 
V2 = Jo, V3 = 0.05. 
The simulations have been done with the classical Euler-Maruyama scheme (see 
e.g., Kloeden and Platen (2001)). The corresponding stochastic differential equa­
tion (2.15) with the initial value Yo = 620 was discretized with a time step 
A = 0.0004. The plotted values correspond to a temporal equidistant grid with a 
time step A = 0.004. 

Analogously, one can introduce jump processes o f the type (2.60). We obtain in 
this way an alternative to the classical modeling o f jumps with Levy processes. 
One o f the advantages o f using this alternative is to provide models which are 
easier to estimate than the latter. 
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Figure 2.1: Two simulated scenarios for asset dynamics with jumps 

(Ma) M o r e sophisticated models for asset dynamics have also been proposed in literature. 
For instance, Bouchaud & Cont (1998) and l ino & Ozak i (2000) considered for the 
dynamics o f log-asset st = ln(St) the fo l lowing three dimensional model : 

dst = (f)ta^dt + j!(Tt dWt, 

<rt2 = cxp(At), 
d\t = (j3i + cti At) dt + 72 dZ1 (t), 

d(pt = (f32 + oi2<Pt)dt + 73 dZ2(t), 

where aif f3it ^ are constants and (Wt)t>o, (Zi(t))t>o (Z2(t))t>o are independent 
Brownian motions. 

These suggest considering the fo l lowing general class o f models for log-asset dyna­
mics: 

dst = a(t, Yt)dt + b(t, Yt) dWt, t > 0, (2.65) 

where (Yt)t>o is a multivariate continuous-t ime series process, ( W ^ > o is a mult i ­
variate Brownian mot ion and a, b are some nonlinear functions. These represent an 
alternative to models o f type (2.58) and include many classical stochastic volati l i ty 
models . 

Choos ing (Yt)t>o to be a multivariate t v C A R M A process in (2.65), w e obtain a class 
o f non-stationary models wh ich can be seen as continuous analogues to the discrete-
t ime models o f Starica and Granger (2005). These authors argue that model ing the re­
turns as a non-stationary sequence o f independent random variable wi th t ime-varying 
uncondit ional variance can describe the dynamics o f S & P 500 log-returns better than 
G A R C H - t y p e or long-memory - type models . Th is suggests that long range depen­
dence ( L R D ) properties o f financial t ime series can be captured with the t ime-varying 
stochastic volati l i ty mode ls o f type (2.65). 

Alternatively, it is also possible to give a good approximation o f the long m e m o r y 
feature with in the subclass o f t ime-homogeneous models wi th a, b depending only on 
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the sum o f the components o f a multivariate C A R M A process (Yt)t>0. Such type o f 
models have been already proposed in literature, see e.g., Fouque, Papanicolaou, Sircar 
and S0lna (2003b) or Chernov et al. (2003). This is not surprising given the result o f 
Granger (1980) which shows that the sum o f short memory processes can describe 
long memory. Moreover, these models are easier to estimate than the classical ones 
driven by fractional Brownian motions. 

Another important advantage o f using models o f type (2.65) in many financial ap­
plications like derivative pricing problems comes from the fact that, under relatively 
general assumptions, they still al low to apply the standard no-arbitrage pricing theory. 
To let fractional Brownian motion simply replace the classical Brownian motion in 
the Black-Scholes model would affect the nonexistence o f arbitrage in the market, see 
e.g., Biagini et. al. (2008). 

Many other interesting models can be found among the class (2.65), e.g., those with 
jumps in the drift and/or in the volatility dynamics. Since these are processes o f the 
type (2.60), jumps can be introduced as explained above. Bates (1996) argues that 
jumps should be included in a stochastic volatility model, at least when the volatility 
is Markovian. A large non-Markovian subclass o f stochastic volatility models o f type 
(2.65) wi l l be discussed in the next chapters. For more accounts on stochastic vola­
tility models and their potential for capturing the stylized facts see e.g., Scott (1982), 
Andersen et al. (2003), Shephard (2005), Shephard and Andersen (2009). 

Some flexible extensions of CIR and BS models 

Generalizations of the C I R model 

Stein and Stein (1991) modelled the instantaneous volatility with a C A R ( 1 ) process, which 
implies that the volatility may become negative. This suggests that the positivity condition 
on h may be dropped out in modeling the volatility process. Then, as in Gallant and Tauchen 
(1997a), we can use the signed square root function (i.e. yfz = s ign(z) • y/\z\, for all z real) 
to introduce a class o f non-Markovian generalizations o f the C I R model (2.43) obtained by 
choosing <p and a in (2.25)-(2.26) such that 0 is a linear function and 

a(xi,..., Xp) = (d0 + d\X\ + ... + dpXp)^, (2.66) 

with di real constants, i = 0 , . . . , p (p < p and p > 1). Alternatively, one can choose the 
parameterization: 

a(xi, ...,xp) = (dl + d\x\ + ... + dpXp)*. (2.67) 

Similar non-Markovian generalizations o f C K L S model (2.44) can be obtained by choosing 
h= |. | in (2.58) and for a one o f the fol lowing parameterizations: 

2 
a(xi, ...,Xp) = (d0 + dixi + ... + dpxp) i, (2.68) 
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(here we interpret ze as the signed power function, i.e. z6 = sign(z) • \z\d, for all z real and 
6 G R+) or 

a(xi,..., xp) = (dl + d\x\ + ... + dpXp) 7 , (2.69) 

with 7 > 2 and di real constants, % = 0 , . . . , p (1 < p < p). For 7 = 2, this is similar to the 
parameterization used in (2.19), (2.20) or (2.48). 

A time-varying Black-Scholes model 

A b o v e we have introduced some classes o f models which are able to capture very well many 
o f the stylized features o f financial data. A m o n g them we discuss in the fol lowing a particular 
subclass o f time-varying models which enable us to obtain a first analytical generalization o f 
the Black-Scholes formula (see e.g., the Appendix A ) . 

Consider now a market model with two assets ((3t)t>o and (St)t>o> where (3t)t>o is a riskless 
asset given by 

dfy = r(t) • dpt, t > 0, A) = 1, (2.70) 

with a time-varying deterministic instantaneous interest rate r (•) G C1 (M.+), and (St)t>o, the 
risky asset, modelled with a t v N L C A R M A ( p , \&) with \& given by 

V(t, x ) = exp (b ; x ) , t > 0, x G W, (2.71) 

and the state equation described by (2.2), where bt — [b0(t), h(t), ..., bp-i(t)]' G 
C 1 ( M + ) for i = 0 , . . . , (p — 1), cr(.) G C1(1R+) and cr(-) bounded positive functions, 
bounded away from zero. 

Let us denote S(0) = s0, 

d h ' . . 1 

and 

d, = b ' ( i ) ( .4 ( t ) • X ( t ) + «„ ( ( ) • e) + ^ X ( i ) + ^ ! W a ( t ) 2 (2.72) 

« f = T ^ , , (2.73) 

for all t > 0 (the superscript / denotes the transpose o f a vector). 

Then for a European derivative with the payof f function h(Sr) (h is some nonnegative 
bounded C2 function) at the maturity date T (T > 0) we have the fol lowing time-varying 
Black-Scholes formula: 

Theorem 2.2.1 
With the above notations assume that 

E < oo. (2.74) 
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IfSt = s>0, then the no arbitrage price at time t for a European derivative with the payoff 
function / i ( S r ) at the maturity date T is given by 

P*,Bs(t,s) = — I !t ( ) = f h(sexp(x+ [ ( r ( r ) - ^ _ 1 ( r ) ( 7 2 ( r ) ) d r ) ) x 
^ 2TT j f b\_x ( r ) ( T 2 ( r ) rW JR Jt z dr 

x2 

x exp ( ~ ) dx (2.75) 
2 / t

r ^ - i ( r ) ^ ( r ) d r y 

for all t G [ 0 ,T ) . 

Proof. It is we l l - known that the so-called N o v i k o v criterion (2.74) gives a sufficient condi ­
t ion for the validity o f Girsanov's Theorem (see e.g., N o v i k o v (1972), Kal l ianpur (1980)). 

The equivalent martingale measure under which the market has no arbitrage is given b y 

= exp ( - \ j \ ^ f d s - JefUwX 
^ o ' 

Moreover, the market is complete and defining 

W* = Wt + J 9^ds, te[0,T\, 

w e have that (Wt*)t>o is a Brownian mot ion under P* (by the Girsanov Theorem) and the 
asset dynamics under this risk-neutral measure becomes 

dSt = r(t)Stdt + bp-^a^St dWt\ t £ [0, T ] . (2.76) 

Thus, the price for the European derivative with the payo f f h(Sr) is given b y 

PtvBs(t,s) = E*{e-^r^drh(ST)\St = s}, (2.77) 

where E* denotes the expectation with respect to the risk-neutral measure P*. N o w using 

it the fact that bp-i(T)a(r)dW* is normal ly distributed, w e get the above explicit formula. 

2.3 The Estimation Problem 

The estimation o f continuous t ime series models is actually an estimation problem for a 
continuous state-space model , and, away f rom the linear case, it is known to be one o f the 
most difficult problems in statistics. 
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Ideally, the estimation problem should be solved with the max imum likelihood procedure, 
but excepting some few models, the l ikelihood function is not available analytically and there 
is a large class o f alternative methods proposed in the literature, according to each concrete 
context in which the estimation problem should be solved. 

For continuous autoregressive time series processes where all components o f the state vari­
able vector are observed there is a well established statistical estimation theory, both for the 
parametric and nonparametric cases, see e.g., Prakasa Rao (1999). A m o n g many references 
in this field, let us quote Kutoyants (1984), Dacunha-Castelle and Florens-Zmirou (1986), 
Genon-Catalot and Jacod (1993), B ibby and Sorensen (1995), Kessler and S0rensen (1999), 
A i t Sahalia (2002) and ReiB (2006). 

These results do not give an answer to the estimation problem raised by the above discussed 
general class o f continuous time series models o f higher order and with latent components, 
however, for some particular instances, they can be adapted to cope with such cases, too (see, 
e.g., A i t Sahalia and K i m m e l (2007)). 

Here we shortly review some procedures proposed in the literature for the case o f partially 
observed systems and which can be applied in practice to carry out the estimation problem 
for our models o f interest. These procedures can be combined with the general approaches in 
Dahlhaus, Neumann and Sachs (1999) (based on a nonlinear wavelet method) and Mall iavin 
and Mancino (2002) (relying on a Fourier series method), in order to solve the estimation 
problem in the nonparametric case. 

2.3.1 Simulation Free Estimation Procedures 

Estimation based on nonlinear filters 

This approach can be used not only to estimate the parameters o f a general continuous-time 
state-space model with smooth coefficients using discrete-time observations, but also to solve 
the corresponding filtering problem, which is very important for many financial applications 
(e.g., when we are interested in estimating the volatility process). 

For nonlinear systems the extended Kalman filter ( E K F ) provides an approximate solution 
to the estimation and filtering problem (see e.g., Jazwinski (1970)), but for S D E models 
with state-dependent diffusion coefficient, higher order filters are needed (see e.g., Maybeck 
(1982), Nielsen and Vestergaard (2000) and Nargaard et al. (2004)). 

Consider a general continuous-time state-space model 

Y t k = g(x t f c , 0) + e(tk), k = 0, 1 , . . . , N, (2.78) 

dxf = a ( x t , u t , 0) dt + <r(xt, u t , 0) dWt, t > 0. (2.79) 

where 0 < t0 < t\ < • • • < tN are the times o f observation, yt £ R m , ut G Rl is a 
deterministic input, x t e M.n, x ( t 0 ) = x 0 (with £ [ |x 0 | 2 ] < oo), Wt = (Wt\ ..., Wt

d)T 
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is a d-dimensional Brownian motion with covariance Qt and the observational noise e(tk) 
is Gaussian with mean zero and covariance R t f c . The smooth functions a = (aj) i<j<n , 
a = (ad) e Rnxd and g = (gj)i<j<m are known up to the unknown parameter vector 
9 G © and satisfy the conditions which ensure the existence o f a unique solution to (2.79). 

Basically, the estimation problem reduces to maximizing the following conditional (quasi) 
log-likelihood function (conditioned on yto) o f observations: 

1 N 

ln£(0;TtN) = - - £ [ i n d c t ( S t f c t e _ J + S ^ S ^ S ^ O ) + mIn2TT] , (2.80) 
fc=i 

where (or jFtfc) is the cr-algebra generated by the observations up to time tk, 

Xifcitfc.! := E[yitk\Tk-i; 0], ytfc|tfc_i = E[ytk\Fk-i; 0], 5tk (6) := ytk - ytfc|ifc_i 

and 
s*fcitfc-i = E{[yt - ytfc|tfc_i][yt - yt f c | t f c_i] r | -^-i ;^}-

These quantities can be determined upon using a second order filter, in which 

• the propagation equations are 

d 
—±t\tk_1 = a(±t\tk_1;0) + Ek_1[bt]tk_1} (2.81) 

| P t | * f c - i = F ( ^ f c _ 1 ; 0 ) P ^ _ 1 + Pt| t f c_1FT(x, | t f c_1 ;0) (2.82) 

+ EK^[<r{±t\tk_i; 9)CttcrT(±t\tk_1 • 6)\, 

with the initial conditions xtfc l|tfe x and Pt^t^, where the bias-correction term 
£7fc_i[t>i|tjt_1] is an n-dimensional vector whose j t h component is 

^ - i [ b ^ _ J = \ tr {^^t\tk.1;0)Ptltk_1} (2.83) 

and F(x t|t fc_1; 0 ) is the n x n matrix 

<9CK 

F(xt|t fc_1;^) = ^ ( x t | t f c _ 1 ; 0 ) . (2.84) 

The last term in (2.82) is a n x n symmetric matrix, whose element (i, j) is given by 

EI^Q^] = £ °*(#{<TTr + tr { ( ( ^ w ^ ^ ) p } 
Z,r=l 

where a superscript W denotes the element (r, /) o f the corresponding matrix and the 
dependence on Xt|tfc_15 £|t&_i and 0 has been dropped for convenience. 

file:///Fk-i
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• the updating equations are 

Atk = G (x t k | i f c _ i ; 0)Ptkltk_1GT(±tkltk_1; 6) - ^ - I K i ^ J ^ . J K i ^ J + Rtk 

Ktk = p t f c | t f c _ iG T ( x t f c | t f c _ 1 ; 0 )A - 1 

xtfcfe = K\tk-i + Ktk{ytk - g(*tk\tk-i;0) - Ek-iiKh-!}} 
ptk\tk = Ptfc|tfc_i - K ^ G ^ ^ ^ P ^ ^ , 

where 
G(x t f c , t f c _ i ; 0) : = ^ ( ^ i ; f l ) e M m x n 

and the bias-correction term £^_ ! [btfc |tfc_ J is an m-dimensional vector having the j t h 
component 

To start the algorithm one has to choose x-t0\t0 Pt0|to> however the initialization is a non-
trivial issue (see e.g., Koopman (1997) and Durbin and Koopman (2001) for a discussion). 
The resulting estimator is usually called quasi maximum likelihood estimator ( Q M L E ) . More 
about the Q M L estimator and other improvements o f the E K F procedure can be found for 
instance in Lund (1997). A l l these algorithms can be easily adaptated to the case when the 
functions a, cr and g depend on the supplementary time variable t. 

Besides being a simulation free method, this has another great advantage, as it offers as a 
byproduct an easy way to compute classical model selection criteria. 

The two most common information criteria are A I C (Akaike's Information Criterion) and 
B I C (Bayesian Information Criterion), where the model order can be found through mini ­
miz ing the fol lowing expressions (see e.g., Burnham and Anderson (2002)): 

A I C = 2 - d i m 0 - 2 1 n £ ( 0 ; . F t j r ) , (2.85) 

B I C = d im 0 • ln(7V + 1) - 2\nC(6\ TtN)• (2.86) 

In the context o f state-space models, A I C was used among others by Kitagawa (1981) and 
Harvey (1989). 

It is well known that B I C generally gives a consistent estimate o f the model order d im 0 , 
whereas A I C is most often not a consistent estimator, since it has the tendency to overes­
timate the model order. More on this topic can be found for instance in Cavanaugh and 
Shumway (1997), Basak, Chan and Lee (2003), Berg, Meyer and Y u (2004), Bengtsson and 
Cavanaugh (2006). 

The class o f models (2.78)-(2.79) includes many o f the continuous time series models dis­
cussed above and this estimation method applies (at least in principle) to nonlinear and non-
stationary models o f higher dimension. 

In practice, the Q M L E procedure described above remains computationally intensive, espe­
cially for high dimensional models, since one has to solve numerically a large set o f diffe­
rential equations for every evaluation o f the log-l ikelihood function. 
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2.3.2 Estimation Procedures Based on Monte Carlo Simulations 

Estimation by means of an auxiliary model 

There are two main methods proposed within this framework: the Indirect Inference Method, 
proposed by Gourieroux et al. (1993) and the Efficient Method of Moments ( E M M ) pro­
posed by Gallant and Tauchen (1996). The objective is to estimate parameters efficiently 
when max imum likelihood is infeasible. These methods are very flexible and can be applied 
essentially whenever simulations from the model are possible and there is a suitable auxiliary 
model available. 

The main idea is the following: let {Yt\t=i denote the actual observed data for the estimation 
o f p, the unknown parameter vector o f the structural model. Given the sequence o f densities 
for the auxiliary model {ft{yt\yt-L, • • • ? Vt-i, ®)}t>i, L > 1, 0 G @ , the first step is to 
compute the max imum likelihood estimator o f 0, i.e. 

1 n 

0n = argmax - V log ft(Yt\Yt_L,..., f t _ 1 } 0). (2.87) 

For the second step, the moment criterion is 

1 N d 
mn(p, 0 n ) = - ^ — log fAYApWr-dp),%-Afi), 0n), (2.88) 

T = l 

which is computed by averaging over a long simulation {Yt(p)}^=1 from the structural 
model. Then the estimator o f the structural parameter vector is 

pn = a rgminm' (p , 0 n ) ( J n ) _ 1 m ( p , 0 n ) , (2.89) 
pen 

where ( X n ) _ 1 is a weighting matrix. I f the auxiliar model is a good statistical approximation 
to the data generating process, then one can use 

i n = n^< ^80] hSf*&\**-L, -..St-!, 0n)] [ ( ^ ) log f t ( Y t \ Y t - L , f t - i , 0n)]'. 

l~ l (2.90) 
The estimators obtained with these methods are consistent and asymptotically normal (see 
e.g., Gallant and Tauchen (1996) and the references therein). 

One o f the main drawbacks o f the Indirect Inference and E M M estimators is that none o f 
them provide filtering and smoothing solutions for the associated latent variables. Further­
more, these procedures are very expensive in computational terms. 

More about the problems with E M M can be read e.g., in Alankar (2003). 
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Estimation based on the Bayesian approach 

The Bayesian approach assumes the unknown parameter as random and then uses methods 
like Markov Chain Monte Carlo ( M C M C ) or particle filtering to approximate the densities 
o f interest for parameter estimation. 

For discretely observed diffusions the M C M C methods have been discused by Eraker (2001) 
and Elerian et al. (2001). The unknown model parameter is treated as a missing data point 
and M C M C methods are used for simulating from the posterior distribution o f the parame­
ter. These methods also apply to t ime-homogeneous diffusion models which are partially 
observed, however are computationally very expensive. 

Moreover, as noticed in Doucet, Godsi l and West (2004), for models with significant degree 
o f nonlinearity and non-Gaussianity it is not always straightforward to construct an effective 
M C M C sampler and the danger then is that the M C M C wil l be slowly mix ing and may never 
converge to the target distribution within a realistic time scale. 

Such difficulty wi l l increase, o f course, when trying to treat the case o f nonlinear time-
inhomogeneous partially observed diffusion models, which is the most interesting one in the 
class o f non-stationary and nonlinear models. 

More appropriate to deal with the nonstationary and nonlinear models seem to be the particle 
filtering methods. They estimate the densities o f interest by a swarm o f weighted particles 
and are among the most used methods for analyzing partially-observed models. 

Particle filters, also referred in the literature as bootstrap filters, interacting particle filters, 
condensation algorithms and Monte Carlo filters perform sequential Monte Carlo ( S M C ) 
estimation based on point mass (or particle) representation for the probability densities o f 
interest. The basic S M C ideas in the form o f sequential importance sampling have been in­
troduced in statistics back in the 1950s, by Hammersley and Morton. Al though these ideas 
continued to be explored sporadically during the 1960s and 1970s, they were largely over­
looked and ignored, most likely because o f the modest computational power available at that 
time. But in the last years the research activity in this field has dramatically increased, result­
ing in many improvements o f the particle filtering methods and their numerous applications. 

For a comprehensive state o f the art see Doucet, de Freitas and Gordon (2001). Here, in­
stead o f estimating the parameter vector 6 f rom the discrete time observations {y(tk)}, 
k = 0 . . . . , N by the max imum likelihood method (which for nonlinear continuous time 
series models is infeasible) the Bayesian estimation is considered by augmenting the state 
vector. That is, consider a different model in which 0 is replaced by 0(tk) and simply include 
9{tk) in an augmented state vector L(tk), for all k > 1. The other components o f L(tk) are 
obtained by the principle o f 'data augmentation' applied between tk-i and tk, which in our 
context means to substitute the continuous state-space model with a discrete one, using for 
instance an Euler discretization schema for diffusion processes. The model parameters are 
viewed as i f they were time-evolving, 0(tk) = 6(tk_i) + r/k,, k = 1 , . . . , N, with r/k i.i.d. 
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Gaussian random variables involving some specified variance matrix Tk. 

Denoting Tk the cr-algebra generated by the observations up to time tk, the optimal filtering 
problem is solved by the sequence o f conditional densities, p(L(tk) \Tk), for k = 1 , . . . , N. 
B y Bayes ' rule 

v(L(tkS\rk) = p ( y f a ) l ^ f a ) ) p ( f M I ^ - i > , ( 2 . 9 1 ) 

however the computation o f these densities is difficult, as none o f the distributions is analy­
tical. For example, 

p(L(tk)\Tk-i) = Jp(L(tfc)|L(4-i)p(L(4-i)|^-i) dL(tk-!) (2.92) 

is a high-dimensional integral, usually computable in practice only with Monte Carlo simu­
lation. 

The particle filter method approximates the filtering density p(L(tk)\Tk) with a discrete pro­
bability distribution pJ(L(tk) {Tk) given by 

i=l 

where S is the Dirac function, {L(tk)^} is a set o f J particles and are the correspon­
ding probabilities associated to these particles. 

Once the distribution is discretized, the integrals become sums. For example, the estimate o f 
the predictive distribution is 

pj(L(tkm-i) = ^ ( L ^ i i i ^ i ) ^ ^ 

and then for the filtering density at time tk we have 

J 
pJ 

i=l 

Following the approach described in Gordon, Salmond and Smith (1993), in order to update 
the particles one needs to propagate the states forward by drawing 

for all i — 1 , . . . J and then use a resampling procedure for these states { L ( ^ ) W } with 
weights 7rJ} oc p(y(tk)\L(tk)). 

The above described particle filter requires only that the likelihood function p(y(tk)\L(tk)) 
can be evaluated and the states can be sampled from p(L(tk)\L(tk-i)). 

Under these two mi ld assumptions, the particle filter can be applied to a large class o f models 
(nearly all state space models o f practical interest). Moreover, in practice, this procedure can 
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be improved using additional sampling methods such as those described e.g., in Pitt and 
Shephard(1999). 

The particle filter methods have already proven their usefulness in practice for many exam­
ples including highly non-linear models that are not easily implemented, upon using standard 
M C M C (see Doucet, Gods i l and West (2004) and references therein). 

2.4 Simulation and Estimation Results 

In figure 2.2 w e plotted two simulated trajectories o f the geometric Brownian mot ion (Yt)t>o 
given b y (2.15) with the parameters ji = 0.1, a = 0.07. The simulations have been done 
with the classical Euler-Maruyama scheme (see e.g., K loeden and Platen (2001)). The cor­
responding stochastic differential equation with initial value YQ = 620 was discretised with 
a t ime step A = 0.0004. The plotted values correspond to a temporal equidistant grid with a 
t ime step A = 0.004. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 2.2: Simulated trajectories of Y j 

A s observed above, most financial t ime-varying models studied in literature are actually 
continuous autoregressive models o f order one. 

Here w e give an example o f a t v N L C A R M A ( 2 , ^/) process along with the corresponding 
simulation and estimation results. The proposed mode l for asset prices is 

St = V(t, X ( t ) ) = e x p ( # 2 ( - 2 + exp(0 2 t ) ) • Xt + exp(02t) • 

dX(t) = (A • X(t) + a0(t) -e)dt + a(t) • e dWu 

f o r a l H e [0,1], where 

A 
0 1 

Qf2 OL\ 
X(t) (1) 

(2.93) 

(2.94) 

(2.95) 
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e = [0,1]', a0(t) = (1 - 50) • exp(-92t), ax = - 2 • #2, a 2 = - # 4 , <r(t) = c70 • exp(-92t), 
9 and cr0 are real constants (cr0 > 0). 

Remark 2.4.1 
Notice that this model was defined on [0,1] and thus the diffusion coefficient is here always 
positive, a(t) > a0 • exp(—92) > 0, for all t G [0,1]; however, the definition can be easily 
extended to other compact time intervals by an appropriate time rescaling. 

The construction o f this model was inspired from (2.17), studied in Filipovic (2000), and 
from the asymptotic analysis developed in one o f the next chapters for higher order stochastic 
volatility models. 

For the estimation procedure we used daily Standard & Poor's 500 (S&P 500) stock index1 

closures for the year 1996 plotted in figure 2.3 after the usual rescaling on [0,1]. Here we 
do not neglect the presence o f a microstructure noise in the data set (see e.g., Ait-Sahalia, 
Mykland and Zhang (2006)). 

Using the Q M L estimation method described above, the estimated values are 9 — —1.2 
and do = 0.01. Initially, at t0 = 0, the algorithm was started with £t0\t0 = [0,6.4]' and 
Pt0\t0 = 10 - 4 l 2 , where I 2 is the identity matrix. The computations have been done with 
M A T L A B using implementation ideas similar to those in Grewal and Andrews (2001). 

With the previously estimated parameters we plotted in figure 2.4 two simulated trajectories 
o f daily values o f the process (St)t>o (i-e. the values corresponding to the same observation 
times as for the S&P 500 data), given by (2.93). A s usual, the simulations have been done 
with the Euler-Maruyama scheme. The corresponding stochastic differential equations were 
discretised with a time step A = 0.0004 with the initial values [0,6.4]'. 

Transforming the classical Black-Scholes model in a state-space form and repeating the 
above described estimation procedure it can be seen that the smallest values for both cri­
teria described in (2.85)-(2.86) are attained by the newly introduced model. 

freely available on the web e.g., at h t t p : / / f i n a n c e . yahoo. com/ 
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Figure 2.4: Simulated trajectories of ST 



C h a p t e r 3 

E x t e n s i o n s o f C l a s s i c a l S t o c h a s t i c 

V o l a t i l i t y M o d e l s 

The accurate modeling o f volatility is important for derivative pricing and risk management. 
Volatility as a measure o f risk is seen by traders as the most important variable (after the 
price o f the underlying asset itself) in deriving the probabilities o f profit or loss. 

The celebrated Black-Scholes option pricing formula (see Appendix A ) is based on a model 
for asset prices which assumes constant volatility. However, such a model is not flexible 
enough to reproduce some stylized facts observed in derivative prices such as the smile effect, 
which is a U-shaped relationship between the implied Black-Scholes volatility and the strike 
price, for any given residual maturity. To overcome this difficulty, the model has to be 
extended. 

One way to create such a smile effect is to introduce a stochastic volatility in the Black-
Scholes model. Since the late 1980s, this approach has been developed among others by W i g ­
gins (1987), Hull and White (1987a), Scott (1982), Stein and Stein (1991), Heston (1993), 
Bal l and R o m a (1994) and Fouque, Papanicolaou and Sircar (2000). For more accounts on 
stochastic volatility, see e.g., Ghysels et al. (1996) and Shephard (2005). 

The stochastic volatility ( S V ) model describes a much more complex market behavior than 
the Black-Scholes model , however the corresponding derivative pricing problem to be pre­
sented in the fol lowing becomes more difficult. 

The purpose o f this chapter is to evidentiate the potential o f C A R M A e processes in modeling 
the volatility. Thus, first we extend some classical S V models and then w e give a result con­
cerning the evolution o f the derivative pricing function in this framework. Some simulations 
are performed in order to illustrate these models. Finally, in this general S V setting and in the 
context o f high frequency (HF) data, w e discuss a few estimation results for some important 
financial quantities for the pricing o f derivatives, like integrated variance, spot volatility and 
effective volatility. 

47 
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3.1 Stochastic Volatility Models Driven by CARMA Type 
Processes 

Stein & Stein (1991) considered a case where the volatility followed a C A R ( l ) process. 
Fouque et al. (2000) extended the above settings and presented a new approach to stochastic 
volatility modeling by exploiting the mean-reverting behavior o f volatility and the empirical 
fact that it is persistent. 

Here we extend the stochastic volatility models discussed in Fouque et al. (2000) in order 
to increase the flexibility for modeling financial time series. For characterizing the volatility 
we use in the following a C A R M A £ process (i.e. a perturbed C A R M A process as described 
in Subsection 2.1.2). Thus we consider the volatility to be a function o f a multivariate line­
ar diffusion process o f order p which is a special case o f (2.65). In this way the volatility 
becomes for p > l a non-Markovian structure and this allows to capture the main characte­
ristics o f financial series o f returns better than the classical S V models shortly described in 
the Appendix B. 

The idea o f modeling the volatility with C A R M A processes has been recently proposed in 
the literature (see e.g., Brockwell (2009) and the references therein). 

The model 

Let the asset price (St)t>o satisfy the S D E 

dSt = fi- St dt + df St dWt, t > 0, (3.1) 

where the volatility process ((?t)t>o is given by at = f(U(t)); f G C 2 ( R ) is some posi­
tive bounded function which is also bounded away from zero, and (U(t))t>o is a stationary 
C A R M A e ( p , q) process given by the observation and state equations 

U{t) = b ' - U ( t ) , t>0, (3.2) 

dU(t) = ( A • U ( i ) + 5c • e) dt + T0 • dZ(t), t>0, (3.3) 

where 

bo 0 1 0 • 0 U0(t) 
0 0 1 • 0 Ui(t) 

b = , A = 

bp-2 0 0 0 • 1 Up-2(t) 
bp-i —dp-i —ap-2 • • • —Oi Up-^t) 

(3.4) 
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e = 

" 0 " 0 • • 0 0 " 
0 0 • 0 0 Hi) 

, r 0 = , Z ( t ) = 

0 0 0 • • i'P-i 0 Zp-i(t) 
1 0 0 • • 0 Z{t) 

(3.5) 

Z(t) = pWit) + y/l-p2Zp(t), t > 0, (3.6) 

where a i , a p , bi,bq, c, 5, xpi,... ,tpp are constants (5 = ipp > 0, yjk > 0, k = 
1 , . . . , p — 1), W, Zi,..., Zp are p + 1 independent Brownian motions, p £ [—1,1], e, b G 
Rp, b0 = 1, q < p, bq ^ 0 and bd = 0 for j > q. 

In the fol lowing we wil l use for the above introduced model the shortcut S V C A R M A type 
model or S V C A R type model i f q = 0. 

Remark 3.1.1 
(a) In order not to complicate the exposition we only considered for the components o f 

Z ( t ) the simplified correlation scheme (3.6) in order to allow for a leverage effect (see 
e.g., Appendix B) , however the corresponding results can be easily extended to allow 
for more general correlations. 

(b) We let ( . ) denote the averaging with respect to the invariant distribution <p o f the 
process (Ut)t>o, i-e. 

(g) = [ <Ku)</>(u) du, (3.7) 

for all g : W —» R for which the above integral exists. 
In this context, the spot volatility process o f the above S V model is (of )t>0 and the 
effective volatility a is given by a2 = (<?), where g(u) = / 2 ( b ' u ) , for all u G R p . 
This is a crucial quantity in pricing problems for European derivatives, as discussed in 
the next chapter. Analogously to Fouque et al. (2000), we have for the ergodic process 

1 rl 

U r n - / f2(U(s))ds ^a2 a.s. (3.8) 
t^oc t JQ 

Consequently, when T is large 

a- T -,t: f2(U(s))ds a2. (3.9) 

Clearly, this kind o f approximation o f the mean-square time-averaged volatility a2 

holds also when the volatility is bursty (i.e. its wel l -known mean reversion property 
is fast) for any T > t. These facts lead to the asymptotic computations in the next 
chapter. 

t 
(c) The quantity := J f2(U(s))ds, for all t > 0 is called the integrated variance (or 

0 
integrated volatility) and it is the quadratic variation o f the log-asset process at time t. 
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Simulation results 

In figures 3.1 and 3.2 we show some sample paths or realizations o f some S V C A R M A ( 2 , 1 ) 
and S V C A R M A ( 3 , 2 ) type models with / = exp. These are generalizations o f the clas­
sical Scott S V model, see Appendix B . For the involved C A R M A e processes we used the 
decomposition U(t) = m + U(t), where: 

• for the S V C A R M A ( 2 , 1 ) type model S0 = 620, p = 0.06, m = - 2 . 1 and U{t) 
is a zero mean C A R M A e process with the corresponding state variable starting from 
(0,0) ' , with parameters b = ( - 0 . 5 , 1 ) ' , fa = 0.02, S = 4, c = 0, p = - 0 . 2 , 

0 1 
- 0 . 4 - 2 4 6 . 5 

• for the S V C A R M A ( 3 , 2 ) type model S0 = 972, p, = 0.02, m = - 2 . 5 , and U(t) 
is a zero mean C A R M A e process with the corresponding state variable starting from 
(0 ,0 ,0 ) ' , with parameters b = (1 .2 ,4 ,1) ' , fa = 0.02, fa = 0.02, 5 = 4.7, c = 0, 
p = - 0 . 2 , 

0 1 0 
A = 0 0 1 

- 1 . 9 - 3 . 6 - 2 4 6 . 2 

The simulations are done with the classical Euler-Maruyama scheme, upon using a discreti­
sation with time step A = 0.002. 

These figures show that many important stylized facts o f financial data (such as volatili­
ty clustering, volatility mean reversion, or leverage effects) can be captured with the S V 
C A R M A type models. Further simulation experiments wi l l be performed and discussed in 
the next chapter for the subclass o f S V C A R type models. 

3.2 Derivative Pricing in SV CARMA Type Models 

One o f the important issues in finance is to price derivatives based on the dynamics o f as­
set prices. Next we characterize the evolution o f the pricing function for European deriva­
tives (see Appendix A ) when the asset dynamics is described with the stochastic volatility 
model given by (3.1)- (3.3) under the assumption that the usual conditions for the validity 
o f Girsanov's Theorem are satisfied in the above framework (a sufficient condition is the 
wel l -known Nov ikov criterion, see e.g., Kallianpur (1980)). 

W e consider the case o f a European derivative with the maturity date T (T > 0) and the pay­
o f f function II(ST) (h is some nonnegative bounded C 2 function). The fundamental problem 
in mathematical finance is to find the "fair price" P(t, s, u ) o f such derivative at a time t 
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Figure 3.1: Simulated SVCARMA(2,1) type process. Left: asset values. Right: volatility 
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Figure 3.2: Simulated SV CARMA(3,2) type process. Left: asset values. Right: volatility 

prior to expiry, i f St = s £ R + and U ( = u G MP. Fol lowing the classical no-arbitrage ap­
proach (see e.g., Fouque et al. (2000)), one can derive a partial differential equation (PDE) 
for P. For various accounts on PDEs see e.g., Evans (1998), Karatzas and Shreve (1988) or 
0ksendal (1998). 

Let us define for t £ [0, T] 

Wt* = Wt+ I i477T^ds, J Ws) 
(3.10) 

t 

Z*k{t) = Zk(t) + J 7k(s)ds, & = !,.. .p, (3.11) 
o 

where -yt = (71 ( t ) , . . . , 7 P ( i ) ) ' are any adapted (and suitably regular) processes. Then by the 
classical Girsanov Theorem, (W^)te[o,T], (Zk(t))te\oT]P 3 1 6 independent standard Brownian 
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motions under the measure P * O 0 defined by 

dP<~f> 
dP ( T P+l ^ P ^ \ 

~\J &^)2)ds ~ J ^dWa - £ J °f)dZk{s) , (3.12) 
^ k=0 n k=l n / (3.13) 

The components o f the process (/yt)te[o,T] are called risk premium factors or market prices 
of volatility risk. 

We wil l consider *yt = 7 ( b ' U t ) , with 7 = ( 7 ! , . . . , 7^)', 7^ G CC
2(R) (i.e. 7^ G C 2 ( R ) with 

compact support), k = 1 , . . . , p. 

A n y allowable choice o f 7 leads to an equivalent martingale measure ( E M M ) P * ^ ) and the 
corresponding no arbitrage price for a European derivative with the payof f function h(Sr) 
at maturity time T is 

P{t,St,Vt) = E<V{e-r(T-t)h(sT)\SuUt}, t G [0,T], (3.14) 

or 
P{t,s,u) = E<~f){e-r(T-t)h(ST^St = S}Ut = u } ; (3.15) 

where r is the instantaneous interest rate, s G R+, u = (w0, u±,..., G R p and i?*O0 
denotes the expectation with respect to the probability measure P*(7) . 

Proposition 3.2.1 
In the above framework the pricing function P(t, s, u0, u±,..., up-i) satisfies the partial dif­
ferential equation 

dP 

— + L P - r P = 0, 

0 < t < T, s G R+, u G R p , 

with P ( T , s, u ) = /i(s), for all s G R + , u G R p , u = (u0, « i , . . . , where 

(3.16) 

^ k=0 

d 
+ r- s— OS 

(A-U c5 • e - Tn • A 

A ( u ) = / > ^ ^ e + D ( v
/ r ^ 7 ) - 7 ( b / u ) , (V) u G R p , 

» ) <9u' <9u 
5 5 

dun du. p—1. 
(3.17) 

(3.18) 

with 

£>(a;) = (x - 1) • ee' + Ip 

1 0 . 
0 1 . 

0 0 . 
0 0 . 

0 0 
0 0 

1 0 
0 x 

, (V ) x -G (3.19) 
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Proof. Under P*^i\ the above model becomes 

dSt = rSt dt + f(Ut)Std Wt*, U(t) = b ' • U ( i ) , 

dU(t) = [ A • XJ(t) + (See - T0 • A(U(t)))j dt + T0 • dZ*(t), 

for all t > 0, where 

Z*(t) 

T0 • A ( U ( f ) ) ) ] 

" Z{(t) ' 

zu{t) 
Z*(t) 

z*(t) = P-wt* + y/T=?-z;(t). 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Then, clearly the operator L in the Proposition is the generator o f the above multivariate 
diffusion process (see e.g., Karatzas and Shreve (1988) or 0ksendal (1998)) and the result 
fol lows from standard arguments like in Fouque et al. (2000). 

Remark 3.2.1 
(a) The result presented above offers the possibility to compute the fair price o f the deriva­

tive by solving a partial differential equation and this is very useful in practice, espe­
cially for S V models with lower order C A R M A e processes. It can be easily extended 
to the case when the volatility is modelled with more general continuous-time series 
processes, like those introduced in Chapter 2. However, solving numerically the cor­
responding partial differential equation for a high dimensional model is a nontrivial 
issue. 

W e present in the next chapter an alternative way to overcome this difficulty. It is based 
on the fast mean-reversion asymptotic theory developed in Fouque et al. (2000). 

(b) The above regularity and boundedness assumptions on the payof f function or the asset 
volatility driving function have been made in order to keep the exposition simple, 
however many o f them can be relaxed upon employing more technical results from 
the theory o f partial differential equations, see e.g., Karatzas and Shreve (1988). This 
remark also applies to the results in the subsequent chapters. A detailed analysis o f 
these issues would be beyond the purpose o f this thesis. 

3.3 Some Estimation Results for the High Frequency 
Data Case 

This is the case where on a fixed interval o f time h (for instance a day or a week) there are 
M observations (with M very large). The observed process wi l l be in our case Xt = log ST 
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(i.e. the logarithmic asset price) and the main financial quantities o f interest in this section 
are the integrated variance, spot volatility and effective volatility. 

One purpose o f using high frequency (HF) financial time series is to estimate more precisely 
and more directly the volatility and its derivatives. There is by now a substantial literature on 
the use o f HF financial data, see, e.g., Andersen, Bollerslev and Diebold (2002) for a survey. 

W e consider now for the dynamics o f the asset price a stochastic volatility model driven by 
a C A R M A e process (U(t))t>o like above, however our results concerning the estimation o f 
the integrated variance and spot volatility hold as wel l for more general volatility processes. 

Here w e assume that w e are in the no leverage case, meaning that there is no correlation 
between the Brownian motions in the model. Using Ito's formula and (3.1) we have for 
Xt = log ST 

dX(t) = da*(t) + f(U(t))dW(t), t > 0, (3.24) 

where t 

<**(*) = f (l*-\f(U(s)))ds, t>0. (3.25) 

The high frequency observations are {X((i—l)h+(j—1)^)}, i = iA,... ,iB,j = 1,..., M, 
(j-A j iB £ N * , iB > iA). W e wi l l denote 

A = A t0 = (iA - 1) • h, (3.26) 

t-i i = \ {i — 1; i 

M 

J - 1 1 h, (V)i = iA,...iB, i = l , - . . , M . (3.27) 

Denote the j - t h intra-/i return for the i - th period by 

x 
3,1 

X(tj+1>i)-X(tjti)eR, (3.28) 

for a l H = iA,..., iB, j = 1 , . . . , M. 

The realized variation for the i - th period is denned as: 

M 

[XM]i = ^2 x2j,i, i = iA,...iB. (3.29) 

Recall that the spot volatility o f the S V model is o f = f2(U(t)) and the quadratic variation 
t 

o f X at time t is [X] (t) = a* = J f(U(s))ds, for all * > 0 (see also Remark 3.1.1, (b), (c)). 
o 

Let us consider t G {i • h\i = iA,... ,iB} and denote by cr2^ M ( t ) the realized variation 
corresponding to the period [t — h,t], divided by the length h o f this period. 

Our next result is concerned with the estimation o f the integrated variance and it is related 
to the one presented by Barndorff-Nielsen and Shephard (2002) or Barndorff-Nielsen et al. 
(2005). However, we give here a new proof and, moreover, we deduce a better description 
o f the error bound. 
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Theorem 3.3.1 
Under the above conditions, 

M (a\M{t) - ^ J / 2 ( / 7 ( s ) ) d s ) = 0(1) in L2, w.r.t. M, (3.30) 
t-h 

or, more precisely, we have 

t 
/ - 1 r \ 2 s/? 

E(a\M(t, h ) - ^ J f(U(s))dsj < —C(h, M)G(t, h), (3.31) M 
t-h 

for all M £ W, where C(h, M) = ^ ( 1 + ^ ) + ^ p , with c2 the positive constant in the 
classical Burkholder-Davis-Gundy (BDG) inequality for stochastic integrals, and 

G{t} h) 

\ t-h \ l J E ^ i d s + A J E ( f i { u m d s - (3-32) 
t-h 

Proof. Let us make the fol lowing notations: 

Sj = Sj(t, h ) = t - h + ( j - 1 ) A , j = 1 , . . . , M + 1, 
s3+l 

x0j = x0j(t,h) = J f(U(s))dW(s), j 1 , . . . , M , 

a j = aj(t, h) = a*(sj+i) — a*(sj), j = 1 , . . . , M, 

Xj = Xj(t, h) = aj + XQJ, j = 1 , . . . , M, 
^ M 

T1AM(t, h) = rJ2a2j 

M 
T2,h,M(t, h) = - ^ aJx0j 

i=i 
M 

T3!hM(t,h) = ^J2 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

W e have then x2 — a2 + 2ajx0j + for all j — 1 , M and thus 

v\M(t, h) = T1AM(t h) + T2AM(t, h) + T ; , ; , , / ! / . h). (3.40) 

N o w applying the classical Cauchy-Schwarz and Jensen inequalities (in discrete and also in 
integral form), w e get 

E\*\M{t)-±j f-(U(s))ds\ <3-ET2
1AM(t) 

t-h 
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-3 • ETlh!M(t) +3E(^T3AM(t) - ^ J f(U(s))ds 

^ t-h 

(3.41) 

Next let us analyze each o f the terms in (3.41). 

For the first term: 

M da* 

I-1 t-h t-h 

ldt. 

Thus, 
M 

T W ( t ) = 0 ( 1 ) in L? w.r.t. M. 

The analysis of the third term of (3.41): since we are in the no leverage case, w e have 

ZE\TZAM(t)-^ J f(U{s))ds 

^ t-h / 

M * \ 2-1 / M y 
3E 

But 

Oj 

Sj + 1 s j + 1 

j f2(U(s)) ds = 2 J XHj){u) dX0;(j)(u), 

(3.42) 

where dX0t(j)(s) = f{U(s)) dW(s), X0>(j)(sj) = 0, for all j = 1 , . . . , M. 

It fol lows that 
Sj + l s j + 1 

E{xl - J f\U(s)) ds)2 = AE{ J XH3){u) dX0!{j)(u))2. (3.43) 

N o w applying the Holder and B D G inequalites w e obtain 

Sj + 1 Sj + 1 

E{ J Xm{u) dXH]){u)f = J E[X2
Hj){u).f{U{s))]ds (3.44) 

s j + i 

< J ^E{XlQ){u)).^/E{nU{s)))ds < J E(X*U)(u))ds J E(f\U(s)))ds 

s j + i 
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< J c2{s - s3)ds • J E(f\lJ(s))) ds = • J E{f\U{s))) ds, 

where c2 is the constant in the B D G inequality. Therefore, 

El x\ Oj ds] < C% • A / E(fHU(s))) ds. (3.45) 

for all j = 1 , . . . , M and i = %A • • •, IB, where C3 = 2\/2c^. 

Thus, by (3.42) and (3.45) we obtain: 

2 t 
3 C 3 1 3 i ? f T3AM(t) - \ f f(U{s))ds\ = ~ J E(f\U(s)))ds (3.46) 

t-h t-h 

Thus, 

M\TxhM{t) - ± J / 2 ( [ / ( S ) ) d S j = 0 ( 1 ) i n M . 

t-h 

The analysis of the second term of (3.41): using again the no leverage assumption and ap­
plying the Cauchy-Schwarz inequality it fol lows that 

12 3 ' ET2AM(t) = —E 
M 

E aixoj 
12 M 

2r2 ^ 
3=1 

t-h+jA 

.7 = 1 , , t! t-h+(j-l)A 

E r4 

M 

J=l 

s3+l 

s3 \ s j 

,12 
7>J ( E / ^ f ) 4 ^ ) ( E / w w ) * ) 

= V ^ A : 12 
( J E(?£)*ds)(J Ef*(U(s))ds). 
t-h t-h 

Thus, 
M 
T 

T2,h,M(t) = 0(1) in L2 w.r.t. M. 
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Thus, for (3.41) we obtain eventually 

Ela\!M(t)-{ J f2(U(s))ds\ <3A2± J s I < 3 A ^ / E(^-)Adt 
dt 

(3.47) 

t-h t-h 

\ ( / E { i i Y d s ) { I E f 4 { u ( s ) ) d s ) + i r l I E W ^ d s 

t-h t-h t-h 

< 3 A 
,1 + 6 ^ ) A + 3 0 , 

h h ] ( 
1 f _,cZar , . , 

ds 
t-h \ 

\ J E{f\U{s)))ds)' 

t-h 

The next result is related to the one presented in Foster and Nelson (1996) concerning the 
estimation o f the spot volatility. 

Corolary 3.3.1 
With the previous notations, 

<J2h,M{tih) f2{U(t))in L2 as M oo and /i 0, for all t > 0, 

or, more precisely, we have 

E (a\M(th)-f\U(t)))2 < f i y / G ^ ) + l J E(f(U(s))-f(U(t)))2ds (3.48) 
t-h 

for all M £ N * , h £ (0,t). 

Proof. Using the Cauchy-Schwarz inequality and the Theorem 3.3.1 we have 

t t 

E{\ J f(U(s))ds-f(U(t)))2 < ± J E[f{U{s))-f{U(t))) ds 

t-h t-h 

and then 

t 

E(a\M(t,h) - f(U(t)))2 <2E(a\M(t,h) - \ J f{U{s))ds)' 
t-h 

t 

+2E(\ J f\U{s))ds-f(U(t)))2 

t-h 
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< 6 A C ( M f ) v W ^ ) + ^ / E(f{U{s))-f{U(t)))2ds 

t-h 
for all M eN*,he (0,t). 

The above results open the possibility to estimate the effective volatility in the context o f HF 
data, for instance by using the estimator 

where IM '•= + n0 • M, n0, M 6 N*. Since the mean-square time-averaged volatility 
offers an approximation to the square o f the effective volatility, w e obtain the fol lowing 

Theorem 3.3.2 
Under the above conditions we have 

to 

as M —> oo, where t0 = ( u — I) - h andtu = to + (1 + n 0 M ) • h = IM • h. 

The proof is similar to the one o f Theorem 3.3.1. 

These results can be relatively easily extended to the multivariate setting to be described in 
Chapter 5. For several approaches to modeling high frequency data, however in a different 
context, we refer to Haug (2006) and Dacorogna et al. (2001). 

Remark 3.3.1 
Alternatively one can use the nonlinear filtering techniques described in Chapter 2 in order 
to estimate all financial quantities discussed above and these methods allow to do this in a 
far more general setting as the one w e used in the context o f high frequency data. 

Beside the above mentioned financial applications, these results can help simpli fying the es­
timation problem o f complex stochastic volatility models. For instance, i f the spot volatility 
o f a S V model is o f the form g(Ut) with g some nonlinear positive bijective smooth function 
and Ut a C A R M A £ process, then using the above result about the estimation o f the spot vo ­
latility w e can, in principle, reduce the estimation problem o f this S V model to the simple 
problem o f estimating a C A R M A e process. 

(3.49) 

(3.50) 
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C h a p t e r 4 

P r i c i n g E u r o p e a n D e r i v a t i v e s u n d e r a n 

F M R V o l a t i l i t y R e g i m e 

The valuation o f derivative securities constitutes one o f the main topics in modern mathema­
tical finance. The P D E characterization o f the pricing function o f European derivatives given 
in the previous chapter is numerically infeasible in practice for a high dimensional model. 
W e present in this chapter an alternative way for a class o f S V C A R type models with fast 
mean-reverting volatility processes. In such a S V scenario, the volatility level fluctuates 
randomly around its mean level and the epochs o f high/low volatility are relatively short. 
Under this regime w e analyze in the fol lowing the price o f European derivatives. Empirical 
evidence o f a fast volatility factor was found in the analysis o f high frequency S&P 500 data 
in Fouque et al. (2000) and this factor has been modelled with a C A R ( l ) process. This 
key empirical remark leads to a very effective and practical way o f correcting the prices 
computed in the classical Black-Scholes setting, which is based on the fast mean-reversion 
( F M R ) asymptotic theory developed in Fouque et al. (2000). This is a method to construct 
an approximate derivative pricing formula for the case o f fast mean-reverting volatility by 
performing an expansion o f the price in powers o f the characteristic mean-reversion time 
o f volatility. Then it can be shown that the leading order term corresponds to a Black-
Scholes price computed under a constant effective volatility and the first correction involves 
derivatives o f this Black-Scholes price. Thus the corrected price is the leading order plus the 
first correction. 

In this chapter w e extend this result to the class o f S V C A R type models with fast mean-
reverting regime. These models are illustrated with the aid o f some simulation and estimation 
examples. These show that the observed "clustering" property o f asset volatility (i.e. a large 
volatility tends to stay so for a certain timespan, before dropping to a lower level where 
it tends to stay for another while, and so on) is closely related to the fast-mean reversion 
property in such S V models and the non-Markovian structure o f the volatility can help in 
practice to get a better description o f financial data. 

61 
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4.1 The Rescaled Stochastic Volatility Model 

Here w e describe the dynamics o f a risky asset with a S V C A R type model obtained from 
(3.1)- (3.3) by choosing b0 = 1, bj = 0 for j > 0. In the fol lowing w e also preserve the 
assumptions made in Section 3.2. 

The main idea o f the asymptotic analysis by Fouque et al. (2000) is to consider that the 
volatility has the fast mean-reverting property which is modeled with the aid o f a C A R ( l ) 
process (Yt)t>0: 

dYt = a(m - Yt)dt + 13dZt, t > 0, (4.1) 

with the positive mean-reversion rate a large and (Zt)t>0 a Brownian motion. Thus the aim 
is to compare the characteristic mean reverting time e = ^ to the time scale T — t o f a 
corresponding derivative pricing problem in a S V C A R ( l ) framework o f the type described 
in the previous chapter. It is also assumed that e <C T — t, or equivalently a » Notice 
that this is the asymptotic framework 

e —> 0, m, v2 = constants, (4.2) 

where z/2 = which means (3 = u^/2a = ^ ^ oo. 

In order to extend this method to the above higher order S V C A R type model , the main 
challenge is to find an appropriate reparameterization o f its coefficients. A s a possible choice 
w e propose for example 

ak = a%, k=h...p, ( p > l ) , (4.3) 

with k = 1 , . . . , p, fixed real constants, £i = 1 and £p ^ 0 and a > 0, 

5 = oTho*, c = ^ = V^-m--j^, (4.4) 
0 1p0,p 

•il'jk = ak-X^j0ik, Vk=l,...,p (4.5) 

with m e E a constant and rp0tk,, k = l,...p, fixed nonnegative real constants, ijj0tP > 0. 

W e also assume in the fol lowing that the above parameters are chosen such as to ensure the 
stationarity o f the corresponding C A R e process. Then, as above, the volatility is fast mean-
reverting when e = ^ is small. Under this regime w e give in the fol lowing an approximate 
derivative pricing formula by performing an expansion o f the price in powers o f i /e . 

In this sense, w e rescale our S V C A R type model with respect to e and then, under the 
risk-neutral probability P*^f\ this model becomes 

dSe
t = rSe

tdt + f(Ut
e)S£

t dW*, t > 0, (4.6) 

Ue(t) = b'Ue(t), (4.7) 
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dUe(t) = [ A e ( U e ( t ) - mb)dt - T 0 ( e ) A ( U e ( t ) ) 

where a i ( e ) , a p ( e ) , A e , ce and 5e are given by 

dt + r0(e) dZ*(t), (4.8) 

ftfc = ak(e) = -r^jt, fc = l , . . . p , 

with £k,k= 1 , . . . , p, fixed real constants, £i = 1 and £p ^ 0, 

(4.9) 

1 
5 = <5(e) = —^TVV ' C = C(E) = 

1 

2 

1 
Vfc = 1 , . . . ,p, 

(4.10) 

(4.11) 

with-!/;0;fc,, k = 1,.. .p, f ixednonnegativereal constants, I/J0JP > 0, and 

A = A f = 

0 
0 

0 

eP^P 

1 

0 

0 

0 
1 

0 

0 
0 

(4.12) 

Analogously, we obtain T0(e) from (3.5) and (4.11). Recall that A is given by (3.18). 

In this context, observe that the invariant distribution o f the volatility driven process (Ue (t))t>0 

is independent o f e. Moreover, this process decorrelates exponentially fast on the time scale 
e and thus we refer to Ue(t) as the fast volatility factor. 

The pricing function and the corresponding pricing equations for a European derivative with 
the payof f function h(S^) at the maturity date T (where, like in the previous chapter, h is 
some nonnegative bounded C 2 function) can be rescaled in an analogous way. Thus, the 
pricing function is (see Chapter 3) 

P%St,Ul) = E<V{e-r(T-t)h{SeT)lSe^t}j (4.13) 

for all t £ [0, T ] , where r denotes the instantaneous interest rate and £7*00 denotes the 
expectation with respect to the risk-neutral measure P*O0 . 

N o w rescale (3.16) and denote the outcome by 

dPe 

~dt 
(t, s, u ) + (Le Pe)(t, s, u ) - rPe(t, s, u ) = 0, (4.14) 

0 < t < T, s e K+, ueW, 

with P e ( T , s, u ) = h(s), for all s G R + , u = (u0, uh ..., u p _ i ) ' G W. 
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4.2 The Corrected Price Formula 

Expanding in powers o f y/e a transformation o f Pe (to be specified in (4.27) below), leads to 
the approximation 

P ^ P o + ^ A , (4.15) 

where P0, P± are solutions o f some Black-Scholes type equations. 

Let us denote 

£ o = \ ( ^ ^ b + £ < k ^ h ) + ( A i U + m • z>e)'-L> (4-16) 

where ^ = 
the density o: 

<g>= [ g(u)4>(u)du, (4.18) 

9^ ' • • • frtp_i] ' ^ *s ^ e e f f e c t i y e volatility (see Chapter 3), A i = Ae \e=1, 4> is 
the invariant distribution o f (XJt)t>o-

Theorem 4.2.1 
With the above notations we have: 

1. PQ does not depend on the volatility and it is given by the following Black-Scholes 
equation 

£BS(V)PO = 0, (4.19) 

with the terminal condition PQ(T, S) = h(s). 

2. Pi does not depend on the volatility and denoting 

Qi{t,s) = V~tP1{t,s), (4.20) 

then Qi is the solution of 

CBs{o-)Qi = H{t,s), (4-21) 

with the terminal condition Qi(T, s) = 0, where the source term H is given by 

H(t.s) = V , ^ + V , ^ , (4.22) 

with V2 and Vs two small coefficients, given in terms ofa = l/eby 

V2 = - i = ( i p ^ < / ( V u ) ^ > - i < A ( u y | ) ) (4.23) 

V, = - L p , : v ( / ( b ' u ) J ^ - ) , (4.24) 
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where ip satisfies the Poisson equation 

£o<p = f(b'u) - a\ 

and is such that V2 and V3 above are well defined. 

Thus, "the corrected price" is: 

82P0 , ,r^&P0. 
P 0 - ( T - t)(V2s2^ + V 3 5 3 V r ) -ds2 ds3 

Proof. We make the change o f variables 

P%t,s,v) = P^t,s,Dp(e)v) 

for all t,s GR+ and v e Rp, where 

DP(e) 

1 0 

0 i 

0 0 

0 
0 

Then Pe(t, s, v ) satisfies the following PDE: 

dP 
at 

(t, s, v ) + (C Pe)(t, s, v ) - rPe(t s, v ) = 0, 

0 < t < T , s G v G 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

with P e ( T , 5, v ) = /i(s), for all s G R + , v «E W, v = (u0, . . . , v p _ i ) ' , where 

1 / r)2 ib f)2 'tb2 f)2 

+ 7 E + r " s ^ + ( l A ^ ) v + 7 m • ^ e " ^ r 0 ( l ) A ( v ) ) — , (4.30) 

w h e r e | , = [ ^ , . . . ^ ] / . 

Let us denote 

d2 

A = / > V W ( b V > ^ - - - { i ' o j j ^ + T 0 ( l ) P ( V / T 3 7 ) • 7 ( b V ) ) ' — , (4.31) 

(4.32) 

dsdvL 

d 1 „„„ , , , d2 

A = £ + 5 / W | j + r • ( . £ - . ) = « / ( b ' v ) ) . 

Using the operators C0, £1 and C2, the above P D E becomes 

(4.33) 
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with the terminal condition Pe(T, s,v) = h(s), for a l l s G M.+, v £ MP,v = ( t ' o , t ' i , . . . , tp - i ) ' , 

N o w expand P e in powers o f -y/e: 

Pe = P0 + V~tPi + eP2 + eV~eP3 + (4.34) 

where P0, Pi,... are functions o f (t, 5, v ) , o f which the first two ones can be determined with 
the same ideas as in Fouque et al. (2000). Then using (4.27), it is easy to see that P0, P± and 
Qi satisfy the properties stated in the hypotheses o f the theorem. 

Remark 4.2.1 
(a) The asymptotic approximations performed above and the corrected price (4.26) have 

the same theoretical properties (for instance, the accuracy o f the approximation or 
the region o f validity) as those described in Fouque et al. (2000). Thus, such type 
o f asymptotic approximations cannot be expected to be valid for all (t, s, u ) values. 
In particular, the approximations perform poorly close to the expiration date or to the 
other frontiers o f the corresponding domain for s. Actually, they wi l l not be so accurate 
in all situations where the mean-reverting process which models the volatility does not 
have sufficient time to fluctuate. 

(b) The above result can be easily adapted to the case o f multiple time scales (see e.g., 
Fouque et al. (2003b)) when the volatility is driven by two C A R S processes, one 
fluctuating on a fast time scale and the other varying on a slow time scale. 

(c) The parameters o f the corrected price (4.26) only capture a small amount o f informa­
tion about the volatility process, therefore it provides a less-than-perfect description 
o f the real world. The nonlinear filtering techniques resumed in Chapter 2 give us the 
chance not only to calibrate more accurately these parameters (than with the classical 
calibration techniques described in Fouque et al. (2000)), but also to obtain informa­
tion about all parameters o f the S V model and the dynamics o f the spot volatility. 

This supplementary information can contribute to further improvements o f (4.26) and 
a natural way to take this into account is to look for a corrected formula based on a 
higher order approximation which also depends on the variable u . The developments 
that w e present in Chapter 6 for the special case o f computing the firm default proba­
bility in a S V scenario suggest the possibility to derive such type o f improvements o f 
(4.26), where the dependence on u is introduced through a solution tp o f the Poisson 
equation (4.25). O f course, this makes the calibration problem much more compli ­
cated as in Fouque et al. (2000), however it can still be solved with the nonlinear 
filtering methods mentioned in Chapter 2. In this way, the corrected price formula 
has a stronger dependence on the corresponding S V model (i.e. the same type o f cor­
rected price formula performs better in practice for the S V model which gives the best 
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description to real data; for this purpose one can use the classical statistical criteria 
described in Chapter 2, like A I C , BIC) . 

The simulation and estimation examples in the next section show that, as expected, 
a higher order S V C A R type model gives usually a better description to the observed 
volatility clustering and the corresponding value o f a is bigger than the one need for the 
S V C A R ( l ) model. Thus, the class o f S V C A R type models is particularly appropriate 
for the F M R asymptotic analysis, especially when one can work with a higher order 
model. However, despite its universality, the corrected price formula (4.26), can only 
capture a few o f such structural properties o f the underlying model for the volatility. 

4.3 Simulation and Estimation Results 

Figures 4.1-4.5, respectively 4.6-4.10 show simulated paths o f asset and volatility processes 
under various parameter settings for S V C A R ( l ) , respectively S V C A R ( 2 ) type models over 
the course o f a year. Again , the simulations are done with the classical Euler-Maruyama 
scheme, upon using a discretisation with time step A = 0.002. 

W e choose a e {1, 50, 100, 300, 500}, fi = 0.02, m = - 2 . 2 , p = - 0 . 1 , & = I, f = exp 
for both models and the rest o f parameters are ib0ii = 0.2, So = 620 (for the S V C A R ( l ) 
type model) , respectively £2 = 0.001, Vo,i = 0.0001, ^0;2 = 0.001, S0 = 970, (for the S V 
C A R ( 2 ) type model). For the C A R type processes the starting values are chosen by sampling 
from their stationary distributions. Then using the parameterization (4.3)-(4.5) we computed 
each time all parameters o f the corresponding S V C A R type model (recall that these models 
are obtained from (3.1)- (3.3) by choosing b0 = 1, bj = 0 for j > 0). 

Maybe the most important stylized fact on volatility is its clustering or persistence. This idea 
can be found already in Mandelbrot (1963) or Fama (1965). These simulations show how 
the volatility 'clusters' with the increasing value o f the parameter a. Notice that increasing 
the order o f the model triggers the necessity o f increasing the parameter a in order to obtain 
similar behaviors for the volatility. Thus, in this context one can observe that the clustering 
property is closely related to the fast-mean reversion property. 

Let us now consider the fol lowing S V C A R ( 3 ) type model: 

dSt = fiStdt + Stat dWt, t > 0, (4.35) 

at = exp(C^), U(t) = b'(m + U(t)), t>0, (4.36) 

dU(t) = A • U ( t ) dt + T0 dZ(t), t > 0, (4.37) 

where 
0 1 0 U0(t) 

A = 0 0 1 , u t = Ui(t) 
- a 3 —a2 W ) 
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0 
0 
1 

1 
0 
0 

ih 0 0 

o V2 o 
0 0 ij3 

Z(t) Z2(t) Z(t) 
Ziit) 

(4.39) 

(4.40) 

Z1(t) = Z1(t), Zj{t)=pljZ1{t) + y/l-f?ljZj(t), i = 2 ,3 , (4.41) 

with pij G [—1,1], j = 2,3 and (Z(t))t>0 a standard multivariate Brownian mot ion indepen­
dent o f (Wt)t>o. 

Much attention has been paid in literature to the estimation o f various Markovian models for 
at- Af ter an appropriate reparameterization, w e estimate in the fol lowing the above described 
non-Markovian C A R e ( 3 ) model for at. 

The parsimonious subclass o f models which wi l l be described below is inspired from the 
asymptotic analysis developed previously in this chapter for S V C A R type models. Further, 
w e consider A in the class o f matrices with at most two distinct and negative eigenvalues 
and assume that there is a leverage effect between any two consecutive components o f the 
multivariate process (U( f ) ) t > 0 . 

Let a, 0 be positive parameters and denote 

02 

1 + 62 

Then an appropriate reparameterization for this subclass is the fol lowing: 

(4.42) 

• for the elements o f A : 

a>k = &h£,k, k = 1,2,3, 

4u>2 
(4.43) 

w i t h £ i = 1 , 6 = T J M S = (TT^F' 

• for the elements o f F0: ipi = \/Qaj3, ip2 = Coaipi, = Cj2a2ipi, 

• for the correlations between the components o f Z (t): 

Pn = - e x p ( - 5 u ) ) and pn = -p12. (4.44) 

W e transformed the S & P 500 daily closing index values between 1990-1999 as it was done 
in Mol ina, Han and Fouque (2004), then extracted the set o f data corresponding to 1996 
in order to perform the classical Q M L estimation method based on Ka lman filtering. This 
estimation strategy for stochastic volatility models was suggested b y Harvey et al. (1994). 

Starting the algorithm with x to| to = [0,0,0] ' and Pt0\t0 = 10 _ 4 l 3 , where t0 = 0 and I 3 is the 

identity matrix, we obtained m = —2.2, d = 446.9 and j3 = 0.3. 
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Clearly, a similar subclass o f models can be easily introduced for any other S V C A R type 
models (o f any order). Moreover, repeating the above described estimation procedure in 
these subclasses when the model order is varying from 1 to 4, it can be seen that the smallest 
values for both criteria described in (2.85)-(2.86) are met for the S V C A R ( 3 ) type model 
discused above. 

These results and the similar ones by Fouque et al. (2000) confirm our simulation-based 
observation that in order to explain the volatility clustering a higher value o f parameter a is 
needed when increasing the model order. Thus, these S V C A R type models are particularly 
appropriate for the asymptotic analysis o f financial derivatives. 
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Figure 4.3: Simulated SV CAR(l) type process for a = 100. Left: asset values. Right: volatility 



4.3. SIMULATION AND ESTIMATION RESULTS 

> u. i 
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Figure 4.4: Simulated SV CAR(l) type process for a — 300. Left: asset values. Right: volatility 

Figure 4.5: Simulated SV CAR(l) type process for a = 500. Left: asset values. Right: volatility 
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Figure 4.6: Simulated SV CAR(2) type process for a = 1. Left: asset values. Right: volatility 
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Figure 4.7: Simulated SV CAR(2) type process for a = 50. Left: asset values. Right: volatility 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 4.8: Simulated SV CAR(2) type process for a = 100. Left: asset values. Right: volatility 
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Figure 4.9: Simulated SV CAR(2) type process for a — 300. Left: asset values. Right: volatility 
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Figure 4.10: Simulated SV CAR(2) type process for a = 500. Left: asset values. Right: volatility 
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C h a p t e r 5 

A n a l y t i c a l D e v e l o p m e n t s f o r t h e P r i c i n g 

o f S e c u r i t i e s i n a M u l t i v a r i a t e C a s e 

The success and longevity o f the Black-Scholes approach depends on two main factors: 
firstly, the mathematical tractability o f the model, and secondly the fact that in many circum­
stances the model provides a simple approximation to the observed market behavior. 

W e saw in the previous chapters that a modification o f the Black-Scholes model was required 
in order to account for some stylized facts observed on derivative prices and that stochastic 
volatility models have provided a potential explanation. 

However, there is a price to be paid, namely that the new models no more allow the same 
mathematical tractability as the Black-Scholes model. 

For the univariate case, these problems are not so dramatical, since one can use computer 
power to solve them in a relatively small amount o f time. Unfortunately, this idea does no 
longer work in practice for the multivariate setting, where a large number o f assets and series 
o f derivative prices have to be analyzed. 

Thus, for the multivariate setting, it is extremely important to deal with stochastic volatility 
models which have very good analytical properties. 

In this chapter we focus on finding a class o f multivariate stochastic volatility ( M S V ) m o ­
dels for which the correction constants appearing in the multivariate corrected price formula 
derived by Fouque et al. (2000) can be explicitly computed with respect to the parameters o f 
the M S V model. 

The class o f models that w e propose to this aim contains extensions o f the univariate Scott 
stochastic volatility model (see e.g., Appendix B) . In this context, w e derive first an explicit 
solution to a multivariate Poisson equation and this is the key to the explicit computations 
for the other components o f the corrected price formula. 

These results are very expedient for practical purposes, since they allow the precise compu­
tation o f relevant financial quantities in a general multivariate setting for incomplete markets 

75 
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upon avoiding the usual computer intensive methods. 

5.1 The Multivariate Model 

Let us consider N assets wi th the fo l lowing dynamics: 

N 
(Mdt + Vij(Y(t))dWj(t), (V) i = 1,..., N, (5.1) 

dSjjt) 
Si(t) 

N 
where alj{y) = ai3 c x p ( X \i3m), V y = ( y L , y N ) G R A r , ai3 e R+ , A i j 7 > 0, for all 

i=i 

i,j,l = l,...,N and Y (t) = (Yi (t),..., YN (t))' is a multivariate C A R ( 1) process given b y 

dYk(t) = ak{mk - Yk{t))dt + fa dZk(t), (5.2) 

wi th ak > 0, j3k > 0, mk G M. and 
N 

Zk{t) = Y,PjkWj{t) + 
J=l 

N 

with X ) Pjk < 1» f o r a11 = 1, • • •, ^ and where W ( i ) = (W^t),..., WN(t))' and 
i 

Z(t) = (^ i ( t ) , • • •, ZNit))' are independent Brownian motions. Thus, W(t) and Z ( i ) = 
( Z i (t),..., ZN(t))' are correlated Brownian mot ions in RN and 

dZk{t)) = d{Wj, Zk)t = Pjkdt, V i , k = 1,... ,N. 

The model described above is a multivariate extension o f the classical Scott's stochastic 
mode l and in the fo l lowing w e put in evidence its good analytical properties in the context 
o f asymptotic analysis for derivative pricing. 

Let us denote the corresponding spot covolatility matrix in this model by £ = (J^u)k,i=i....,N, 
where 

£*«(•)= J > f c a ( - K ( - ) - (5 -4 ) 
a=l 

The invariant distribution o f the multivariate C A R process (Yt)t>0 is N(m, v2), where m G 
R A has components mk and v2 = (ski)i<kj<N is the covariance matrix wi th diagonal entries 

Skk = 4 = P~, k = l,...,N (5.5) 

and off -diagonals 

Ski = cov(Yk, Yi) = ®k^1 V " pjkpjh k^l. (5.6) 
oik + OLI *r~t 

3=1 

N 
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For the financial applications, the matrix T,eff = (Eeff;(k,i))k,i=i,...,N is o f paramount impor­
tance. Its components with respect to the invariant density $ ( . ) o f (Yt)t>o are given by 

JeffW) < E M ) = / Xkl(y)<f>(y)dy, k, I = 1 , . . . , N. (5.7) 
JRN 

where, as usual, ( g ) denotes the average with respect to the invariant density. In this case an 
effective volatility matrix aeff is a square matrix which satisfies aeff * a'e^ = £e//-

5.2 Asymptotics for Pricing European Derivatives 

A s it is usually done for derivative pricing problems, one chooses an equivalent martingale 
p(*A\ under which the dynamics o f assets and volatility processes becomes 

= rdt + £vij(Y(t))dW;(t), (5.8) 
i=i 

dYk(t) = [ak(mk - Yk{t)) - 0kAk]dt + 0k dZ*k(t) (5.9) 

for some volatility risk premium A = (A.k)i<k<N, chosen by the market and where, as usual, 
r is the instantaneous interest rate. Most ly it is assumed to be a function o f the multivariate 
C A R process Yt, for instance Ak = Ak(Yt), k = 1 , . . . , N, where 

M - ) = Y l b^j{-), k = 1 , . . . , N, (5.10) 

with bkij real constants. Similar parameterizations o f the risk premium have been suggested 
in literature, see e.g., Stein and Stein (1991) and Dai and Singleton (2000). 

We only stated our results for the parameterization (5.10), however they can be extended to 
include more general ones, as can be seen by following the respective proof lines. 

In this context, for a European contract with payof f function h(x) (where h is some mul ­
tivariate nonnegative bounded C2 function) and maturity date T the price can be given by 
P ( i , x , y ) = E<^>{e-r(?-^h(ST)\St = x , Yt = y } , where the expectation is taken with 
respect to p(*A ) . The pricing function P(t, x , y ) satisfies 

dP 1 ^ d2P ^ d2P 
~dt + 2 ^ U i X i X i f a & ; + . ^ Pjh'k(7ljXldx~dy~k 

N 
i,j=l i,j,k=l 

>d2P 1 ^ „ „ , d2P 

N dP N dP 
YlMrrik - yk) - frMjr- i ^ ^ - P) = 0, (5.11) 
k=i Vk j=i j 
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with terminal condit ion P(T, x , y ) = h(x). Introducing the usual scaling to mode l fast mean 
reversions in the volatilities, 

Ck (3k = vkV2ak, «fc = f , e > 0 , (V) k = 1 , . . . , N (5.12) 

wi th ck some posit ive constants, the pricing problem can be rewritten as 

(^Co + -j=C1 + C2)Pe = 0, (5.13) 

where 
JV Q2 Q N Q2 

A> = ^2Ck(uk-^2 + (mk - yd-ar) + Z ^ V ^ Q E ^ * ^ ) (5.14) 
k=l yk yk k^l j=l yk yi 

d2 d 
£ i = ^ ukV^CkPjkO-ijXi-— ^2 vk\f2cktvk—, ( 5 . 1 5 ) 

zjk oxidyk oyk 

d 1 N d2 N d 
C 2 = ft + 2 ^ E ^ d ^ + r ( 5 > ^ ~ ( 5 - 1 6 ) 

i,j=l 1 3 j=l 3 

Then w e get 

Pe = P0 + V~eP1 + eP2 + ... (5.17) 

where P0 is the Black-Scholes price satisfying 

£ ^ ( E e / / ) P 0 = 0, (5.18) 

wi th P ( T , x ) = / i ( x ) and C^si^eff) is the Black-Scholes operator 

d 1 N d2 N d 

i,j=i 1 3 j=i 3 

5.3 The Corrected Price 

With the above notations, under fast mean reversions in the volatilities, the corrected price 
for the multivariate case is (see Fouque et al. (2000)) 

i,m i,m,l 

where the first order correction constants and V^l are given b y 
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(5.22) 

where a = Qi and for a l i i , j = 1 , . . . , N, ^ satisfies the Poisson equation 

N 

(5.23) 
k=i 

and is such that the correction constants above are well defined. 

It is well known that in practice for large N's it is very difficult to accurately evaluate the 
above correction constants with the classical computer intensive methods. Thus, it is desir­
able to have some analytical results for the multivariate case and this is what we do in the 
following. 

A s a first step in this direction we put in evidence an analytical formula for the components o f 
the matrix E e / / which is o f course crucial for the computation o f the classical Black-Scholes 
price PQ. With the above notations, for all k, I — 1 , . . . , N we can write 

Having a closed form for £ e / / , the next step is to find explicit solutions to the above high 
dimensional P D E (5.23). 

5.4 An Explicit Solution to the Multidimensional Poisson 
Equation 

Some basic facts about the univariate Poisson equation are resumed in the Appendix C. Here 
we give a generalization to the multidimensional case, under the assumption Ck = c > 0, for 
all k = 1 , . . . , iV in (5.12) and (5.14). 

Our next result gives an explicit solution to the P D E (5.23) and this opens the possibility o f 
explicitly computing the correction constants (5.21), (5.22). 

Theorem 5.4.1 
Assume that the coefficients {Xiji} from the definition of the volatility process satisfy the 
following nondegeneracy condition: 

N 

(5.25) 
l,q=l 
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for alli,j,k = 1 . . . , N. Then a classical solution <f>(y) = (<j>ij (y))i,j=i,...jv for (5.23) can be 
explicitly given by 

N 

N 

ikl + ^jkl){\kq + ^jkq)Sl^j 

k=l l,q=l 

X 
z 

J {aikdjke* - (crik<7jk))®ijk{x) dxdz, (5.26) 

for ally = ( ? / ! , . . . , yN) G RN, where &ijk(x) is the density of the univariate normal distri­
bution 

N N 

ikl 
1=1 l,q=l 

Proof. For a l i i , j, k = 1 , . . . , N, let us denote by hijk a solution o f the univariate Poisson 
equation 

vfjkKjkiy) + (Mijk - y)Kjk(y) = ^ikajkey - ^(aikajk), j / G l , (5.28) 

where 
N 

Mijk = ^2(Xiki + \ki)mh (5.29) 
i=i 

N 
Uijk = E ^ikl ^jkl)(^ikq + Xjkq)Slq. (5.30) 

l,q=l 

Then, observe that 
Ar N 

^ i ( y ) = E hvk(^2(XM, + Xjkijyi) (5.31) 
k=l 1=1 

is a solution for (5.23). 

Now, this result enables us to perform the next step o f our developments, which wil l eventu­
ally lead to the closed form o f the correction constants. 

5.5 Analytical Computation of the Correction Constants 

In order to derive explicit formulae for the correction constants and we have first 
to compute analytically the quantities (vij^^r) and then the derivation o f (Afc^j^) follows 
easily upon using the parameterization (5.10) for the risk premium. 
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Let us denote 
N 

Plm;ij • ^ ^ Spp/X[mp\j_jpi, (5.32) 
p,p'=l 

for all /, m, i, j = 1 , . . . , N. 

Theorem 5.5.^ 
Assume that ^ijp > 0 and Pim-ij >Oforalli,j,l,m = 1 , AT. Then 

Ar 

/ d4>lm\ ^Wk + ^m-dk ( l \ l \ 1 \ \ / c r i \ \A^^T/ = 2 ^ 7 7 P T P N ( ^ M K / - K^H^m-e)), (5.33) 

for alli,jj,m,k — 1 , . . N where 

N ^ AT 

2 

Ar ^ AT 
(cr^) = â - e x p { ^ AyPrap + - ^ Sp^A^A^y}, (5.34) 

e x p { ^ ( A ; g p + \mqp)l 
p=l 

1 ^ 
+ ^ SPp'(^kP + ^mgp)("Vp' + -Vregp')}) (5.35) 

>y=i 

N 

)mp (vijClqVmq) exp(^2(\ijp + Xtqp + \mqp)i 
P=i 

1 Ar 

+ ~ Spp'{\jp + \qp + Amgp)(Aj:,y + \lqpi + Xmqp')} (5.36) 2 
p,p—i 

for alii, j, Lm,q= 1 , N . 

Proof. For alW, m, •& = 1 , . . . , AT and y = ( y b ...,yN)e RN, let 

Ar 

Dlmti(y) '•— ^(A j^fc + Xm-dkjUk- (5.37) 

From the proof o f Theorem 5.4.1 we notice that < m̂ has the representation 

A' 

•&=i 

Then we have 
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and 
d(f> N 

Thus, to find the correction constants it is enough to compute 

( ^ t # ( A m # ( . ) ) ) = / * ( y ) M y ) f c L > ( A m * ( y ) ) d y (5.38) 
JRN 

and this is what we do for the rest o f the proof. From the proof o f Theorem 5.4.1 we have 
that f 

(KmAy)^imAy)) = —^imM(awami>ey- < owam$ >), 
v / c • vlmQ 

for all ^ = 1 , . . . , N and for all t / G l , where upon using the same notations as in the proof 
o f Theorem 5.4.1 w e obtain 

1 (y - Mimfi ;2 
$lmd(y) = = e x p { - v * 9

, H W ' }, Vj/ e R . (5.39) 

Thus 

-Qy- {h'lmd (y) )®lmd {Dlmd (j))) 

= ^ $ , m * ( A m * ( y ) ) • (eDlm»(y) - ^ ' ) ^ ( y ) 

= ^ ^ ( A W g + A m , ? ) c J > , m , ( A m . ( y ) ) ( e ^ ( y ) - e ^ + i W U ) 

AT 
for all g = 1 , . . . , N. Since ^ Ay P > 0, Vi, it fol lows that for a lH , m, •& — 1 , . . . , i V 

P=i 
there exists q G { 1 , . . . , N} such that jim^q := \wq + \m$q > 0. Using this index q w e have 

r $ ( y ) 
^ • ^ ( A m ^ ) ) = / - r — m — r u ^ ( y ) f t L ( A m t f ( y ) ) * ( m t f ( A m t f ( y ) ) ( i y 

JR" V J-00 *imtf(Amtf(2/l, . . . . 2, . . . , y jy) ) / 

d (h'lm# (DM ( y ) ) $Zmt? ( D w ( y ) ) ) 
x — « -<*y 

a>wa>m#lim»q [ ( fyq _ y„, „ „, ^ $(yi, • • •> Z' • • •' VN) _D \ 
2 

[ ( fyq
 ( , nyi,...,z,...,yN) , \ 

JUL" V J-OO ^lmADlmAyi, • • • , Z, . . . , yN)) J 

x ^ ( A ^ ( y ) ) ( e ^ - ( y ) - Blm&)dy = a w Q m ? m ^ ( / i - /2 ) , 
C * Ulrrv& 

where z is on the position q and 

B w : = e M l - + ^ L , (5.40) 
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for a l l / , m, $ = 1 , . . . , N. I1} I2 denote the fol lowing integrals: 

J i := Blm# / I / cr^-(yh ..., z,..., yN)- — --dzJ X 

JRN V J-OO ^ImADlmAVU . . . , Z, . . . , yN)) J 

x<&imi)(Dimi)(y))dy, 

and 
&(yi,...,z,...,yN) /2 := / ( f aij(yh---iz,...,yN)-

JRN V - o c 

x $ w ( A m i ) ( y ) ) e I ) l m 4 ^ y . 

77/e computation of I\: 

B y using the Fubini theorem we have 

o?z) x 

Ii = B M l ( aij(yiJ...,t + yqj...,yN) 
$im&(Dim&(yi, ...,t + yq,..., yN)) 

x * w ( A m t f ( y ) ) < i y 

$(yi,...,t + yq,...,yN) 
•V*)* 7~R—7 -r, v T x 

dt)x 

— Bim# / ( / (Jijiyt,... ,t + yq,..., j r / n / + w J-oo v JR* ®imd ( A m * (y1,...,t + yq,..., yN)) 

x $ w ( A m t f ( y ) ) ^ y ) ^ . 

With the change o f variables zi = yi + 5qit, i = 1 , . . . , N, t fixed, where 5qi is Kronecker's 
symbol, we have 

/ (Tij[yi, ...,t + yq,..., yN)- — - f - ^®imd{Dimd{y))dy 
JRN §M \Dm {yi,...,t + yq,...,yN)) 

= / o~ij{z)-r 7~R -r-^§imd{Dimti(7) - tjimjq)dz 

= I aij(z) exp{—^—tjlmi)q(2Dim^z) - 2Mirrvd - tjlm#q)}$(z)dz 

1 f 1 
= e x p { - • z - 2 — H m e q ( 2 M l m 0 + tjhni}g)} (z) e x p { - 3 — ^ W g £ W ( z ) } $ ( z ) d z 

lVlmi> JRN Vlmi) 

1 f N 1 

= a # e x p { - — — Hmr&q(2M[m&+t-fimi}q)} / exp(^2 Xijpzp^——tjimi}qDM(z)}^(z)dz 
lVlmi) JRN

 p=1
 Vlmi> 

1 f N 

= ai3 e x p { - 2 t^imSqi^MimS + tjMq)} / e x p { V ] XijpZp 
ZVlm& JRN

 P=1 
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1 JV 1 
H——tlim,i)q ^ ( A / t f p + \m$P)zp}$(z)dz = ai} e x p { - 2 tyim#q(2Mim# + tjim#q)}x 

VlmO p=1
 ZVlmd 

x / e x p { Y ] (\ijp + -^—tjim0q(\wp + \mi)pj)zp}§(z)dz 

1 N 1 
Oij exp{ — — 5 — t j i m 0 q ( 2 M i m t f + tjimtfg)} e x p { y ^ ( A i j p H 2—tllm-dq{Xwp + ^mtip) W p 

1 * 
+ 2 V V P W V W } 

p,p'=l 

1 "V 1 jV 

= o i i e x p { - — 2 — t 2 7 L # J e x p { ^ A l J > m p + - ^ Spp't'pW v W K 
fmtf p = 1 p,p'=l 

where 
up ( t ) = A i i p + -^—tjim^Xwp + \mQp), for all p = 1 , . . . , N. 

But 

AT 

Spp'Vp(t)vpi(t) — Spp/ ( XijpXijp' H 1—t2Jlm#q(^li}p + ^m&p) (M$p' + ^TOI?P ' ) 

p,p'=l P , P ' = 1 ' Z M , ? 

i 2— t j lmdq[Xi jp \ i jp ' + (Ajtfp + \m-dp)\ijpi + (A/^' + Ami9p') Ajjp] 

_ ^ 7zm#g 2tjim$q . \ _i_ p 
2 ,,2 \rM;ij "T" rmd-,ij) T i 

and thus 

/ ^ ( y i > . . . , * + y 9 , . . . , yN)-r—775—^ TT7, -TS^imADimr}{y))dy 
JRN ^Imd[Vl, • • • ,t+ yq,. . . , VN) ) 

N ^ t^i # N 

Q>ij 6Xp{^""^ XijpTflp -\- ~zPij;ij H ~z 2 ^ ^ Spp' [^r/pX ĵpf -\- (A;#p -|- ATOt9p)Ajjp' 
p=l p,p'=l 

+ + Amtfp')A;jp]} = ttij e x p { ^ ~ ] \ j j p m p + ~Pij;ij H 2 — + -Pm??;ij)} 

= (aij) e x p { t 7
2

m ^ ( P W ; i i + P m i 9 ; i i )} . 

Finally, w e obtain 

T n (° ( [ ( +^ , <S>(yh...,t + yq,...,yN) 
h = Blmd / I / O i j ( ? / i , . . . . i + , y j Y ) - — — ? — x 

J-oo v Jw $im0{Dim#{yu ...,t + yq,..., yN)) 
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x $ i m J ) ( A m t f ( y ) ) d y ) < f t 

BlmV^ij) [ C X p { ^l™^q {Pl^ij + Pm$;ij)}dt 
J-oo Vlm.i) 

Blmti{vij) — 
V2 

1lrri'dq(Pw:ij ~l~ Pmi);ij) 

with B/m# given in (5.40). The calculation o f I2 is similar, step by step, with the above 
computation o f I\ and we obtain 

12 —< CFijO'wO'mi} > 
Ulmv 

^flrndqi^Pw-jij Pmd;ij) 

Thus (5.38) becomes 

aWamv / x , \FT T \ _ alvamvjlmvq 
\aijtllmv{lJlmv{-))) - —o (Mq + \m$q){ll ~ h ) ~ — 2 ( h ~ h 

CVlm-& CVlmx) 

2 
ttl&ttm'&llm-dq T ^ilmOq I \ Vlrrv& 

2 

r r llmvq I \ 
2 " 7 l 2 \(Tij(Jl&ami}) / D D N 

CUlmS CVlmd 1lmvq{nv;ij + ^mv;ij) 

aiya>mvllmvq p / \ ^rm? llmdqi \ ̂ TTM? 
2 £>lmv\&ij) 775 —T, 7 2 — \ a i j a l i } a i n ^ / TTJ — 7 5 x 

Cl/lmd l'lmv'q\-Llv';ij ~+~ m#;y'J cl/lmv llm-9q\^lt};ij + ^m-Q-.ij) 

~ TCP, T P T ^ ^ X ^ i ) - " 7 R T P ^ V ^ r a - d ) 

C{nv;ij + "mv;ij) V y 

which completes the proof. 

Remark 5.5.1 
(a) The above results are very useful in practice, since they allow the precise computation 

o f the corrected price formula upon avoiding costly methods which would be oth­
erwise needed for numerically solving the corresponding PDEs and/or for stochastic 
simulations, especially in higher dimensions. 

(b) A s usual in a multivariate context, the calibration problem is very difficult, but in prin­
ciple still abordable with the simulation-free nonlinear filtering procedure described in 
Chapter 2. The main difficulty to carry this out in practice relies on the large number o f 
parameters to be estimated, which raises serious problems with the usual optimization 
procedures. 
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Chapter 6 

A New Analytical Approximation for 
Default Probability in a Generalized 
Merton Setting 

Merton (1974) proposed the first model o f default which is also considered to be the first 
structural one (i.e. which uses the value o f a firm to characterize the default). Thereby, the 
non-observable value o f a firm is assumed to fo l low a geometric Brownian motion and it is 
wel l known that this is quite unrealistic. 

The fast mean-reverting stochastic volatility models open the possibility to improve the clas­
sical Merton setting above. App ly ing in this special framework the same asymptotic theory 
as in the previous chapters, w e obtain a new analytical approximation for the default proba­
bility (PD) in an incomplete market setting. This is based on an improved first correction 
term, when compared with the one used in Fouque et al. (2006). Moreover, unlike similar 
results present in literature, our approximation also depends on the value o f the volatility 
driven factor, which allows to account for more market information. 

For more accounts on credit risk modeling we refer to Duffie and Singleton (2003) and 
Elizalde (2003,2005). Various extensions o f Ito formula and generalized Feynman-Kac type 
results can be found for instance in Alsmeyer and Jaeger (2002) or Karatzas and Shreve 
(1988). 

6.1 Default Risk in Stochastic Volatility Models 

There are two primary types o f models that attempt to describe default processes in the li ­
terature: structural and reduced form models. 

In contrast to the structural ones, the default in reduced form models is not determined v ia 
the value o f the firm, but it is simply characterized with a hazard rate process describing the 
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instantaneous probability o f default, see e.g., Jarrow and Turnbull (1995). Thus, defaults are 
exogenously given in the reduced approach instead o f being endogenously generated l ike in 
the former models. 

The structural models are particularly useful for practitioners in the credit portfol io and credit 
risk management fields. Their intuitive economic interpretation facilitates consistent discus­
sions regarding a variety o f credit risk exposures. 

Merton (1974) firstly builds a mode l based on the capital structure o f the firm, which became 
the basis o f the structural approach. In this setting a company defaults if , at the t ime o f ser­
v ic ing the debt, its assets are lower than its outstanding debt. B lack and C o x (1976) extended 
the Merton model to a first passage one, whereby bondholders can force the reorganization 
o f the bankruptcy o f the firm i f its value falls under some barrier. Other extensions based 
on mean reverting S V models have been recently considered in Fouque et al. (2006), in the 
context o f pricing defaultable bonds. 

In a similar framework w e address some issues which are relevant to credit risk model ing, 
upon showing h o w to determine default probabilities under a fast mean-reversion volatil ity 
regime and h o w different they are when compared to those computed in the Merton setting. 
Concerning the latter issue, this difference is too small i f trying to translate the recent results 
in Fouque et al. (2006) to the context o f approximating the default probabilities (in the 
nonleverage case there is actually no difference). This is due to the fact that in this case 
one has to work under the subjective probability measure and the order o f the asymptotic 
expansion in Fouque et al. (2006) is too small. 

The model 

W e describe in the fo l lowing the evolution o f the firm value S(t) wi th the S V C A R ( 1) process 

dS(t) = fiS(t) dt + atS(t) dW(t), at = f(Y(t)), (6.1) 

dY(t) = aim - Y(t))dt + 0dZ(t), t > 0, (6.2) 

for all t > 0, where (W(t), Z(t))t>o is a standard bivariate Brownian mot ion, a, 0 > 0, and 
/ is some bounded positive C2 function, which is also bounded away from zero. 

Fol lowing the Merton model , the capital structure o f the firm comprises equity and a zero-
coupon bond with maturity T and face value B. Under these assumptions, equity represents 
a call option on the firm's assets with maturity T and strike price B. Then the firm wi l l 
default at t ime T i f ST < B. The variable B > 0 is the default barrier. In this sense, 
w e use PD(T,B\t,x,y) to denote the corresponding default probability o f the firm, i.e. 
PD(T, B\t,x, y) = E{l{sT<B}\S(t) = x, Y{t) = y}, (t < T), where E denotes the expec­
tation with respect to the subjective probability measure. 

It is wel l known that under a fast mean-reverting volati l ity regime the above S V mode l can 
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be approximated with the fol lowing Merton model: 

dS(t) = fiS(t) dt + aS(t) dW(t), t > 0, (6.3) 

where a is the effective volatility (see e.g., Chapter 3). 

Denoting PD()(T, B\t,x) the corresponding default probability in this Merton model , we 
have 

PD0(T, B\t, x) = $N3 ^ J, (6.4) 

for all (t, x) G [0, T) x [B, oo), where §NS is the cdf o f a standard normal random variable. 

Such a simple description for PD(T, B\t, x, y) is o f course not possible, however w e ob­
tained a new analytical approximation in the context o f the asymptotic theory o f Fouque et 
al. (2000). This result shows which kind o f correction should be made to PDQ{T, B\t,x) 
under a fast mean-reverting stochastic volatility setting. 

In the fol lowing w e restrict our attention to the case x > B, t < T, since this is the most 
interesting one for practical purposes. 

The result given below can be easily extended to approximate all the financial quantities 
which can be represented as E{h(ST)\S(t) = x, Y(t) = y}, where h is some nonnegative 
bounded piecewice continuous function. 

6.2 A Corrected Default Probability Formula 

In the fol lowing w e assume that the usual conditions for the asymptotic theory o f Fouque et 
al. (2000) are satisfied. 

Let Co be the infinitesimal generator o f the process (Yt)t>o, and <fi a classical solution o f the 
Poisson equation: 

« = / 2 - ( / 2 > , (6.5) 

with < oo. For some elementary facts about the above Poisson equation we refer to 
the Appendix C. 

W e recall that ( g ) = JR g(y)&(y) dy, for all g (for which the integral exists), where $ is the 
density o f the invariant distribution1 o f (Yt)t>0. Then, under a fast mean-reverting volatility 
regime, we have the fol lowing 

Theorem 6.2.1 
A corrected default probability formula under the above stochastic volatility setting can be 
explicitly given by 

m i n [ 1 , P~D{T> B % X ' V ) + lP~D{T> B % X ' V ) 1 } , ( 6 . 6 ) 

^ote that the invariant distribution for this CAR(l) process is N(rn, v2), where v — -^=. 
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where 
PD(T, B\t, x, y) = PD0{T, B\t, x) + -PD^T, B\t, x, y), 

ct 
with PDQ(T, B\t,x) is the default probability in the Merton setting with constant volatility 
G and 

i f)2 p r\ i 

P D ^ B ^ y ) = --{<p{y) - (<f>)) • x2 • ^ _ < > - - ( T - t)((f26) - (f2)(4>))-

forall(t,x,y) G [ 0 , T ) x (B, oo) x R . 

Proof. Considering the pricing problem in Fouque et al. (2000), the default probability 
function PD(T, B\t, x, y) satisfies 

8PD 112, x 2d2PD lo2d2PD . .dPD dPD A 
~dT + 2J !nJ — + 2?-dSr + Q ( m ~ y ) ^ y - + ^x~dx~ = °' (6-8) 

on (t, x, y) G [0, T) x (B, oo) x l wi th terminal condition PD(T, B\T, x, y) = hPD(x) := 
| ( 1 + sgn(B - x)), x>B,yeR. 
With the usual rescaling method for model ing fast mean reversion in the volatilities 

1 V2 
Q = - , 0 = V—=, € > 0, 

e V 6 ' 
( m and v f ixed constants, v > 0) w e can rewrite the above problem as 

( ^ C o + A ) P £ > e = 0, (6.9) 

where PD£ is the rescaled default probability. 

The idea is to expand PDe in powers o f e. 

PDe = PD0 + ePD1 + e2PD2 + ..., (6.12) 

where PDk, k — 0 , 1 , . . . , are function o f (t, x, y) to be determined. 

A s usual in the asymptotic theory o f Fouque et al. (2000), w e are primarily interested in the 
first two terms PD0 + ePD\. 

Substituting ( 6 . 1 2 ) in (6 .9 ) , w e get that PD0 is the default probability in the Merton setting 
wi th constant volatil ity G and PDi is a solution o f the fo l lowing P D E problem: 

jCoPDi = -£iPDQ, on [0, T) x (B, oo) x R , (6.13) 
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PD1(T,B\T,x,y) = Q, x>B, l im (PD^T, B\t, x, •)> = 0, x > B, (6.14) 
t/*T 

and with the centering condition ( £ i P D i ) = 0. 

Hence, to prove our assertion it is sufficient to show that the function PDi described in the 
Theorem is a solution to the above problem. 

Firstly observe that 

( £ 1 ( x n - ^ P ) ) = 0, (V) n G N. (6.15) 

Using property (6.15) and the fact that 0 is a solution o f the above Poisson equation, we 
obtain 

and 

£ „ P A = 4 ( A 9 ) - < f > ) - * > . ^ . 

B y summing up both equations, we obtain the P D E (6.13) and it only remains to verify the 
centering condition, which results as follows: 

The last term can be rewritten as 

From property (6.15) we have ( £ i (x2 • d2QX?") ) = 0. Hence, it remains to show that 

= " 2 « / $ ~ (f > W ) ( 2 - ^ T " + 4 - + - • ( 6 1 6 > 

For this purpose observe first that 

( ( / 2 - ( / 2 » m > 

= - (f2m>2^ - \{T - mm - (fmw2 - </2»> 

dx2 dx3 dxA 

- 5 « / V > - ( f K * ) ) * ^ -
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Finally, using the fact that 

}2 
-2((f - </2» •** • ^ > = ^ • ^ ( « / 2 - </2»m>) 

w e obtain (6.16), which completes the proof. 

Remark 6.2.1 
( i) A s already mentioned in Chapter 4, this type o f approximations performs poorly close 

to T or to the other frontiers o f the corresponding domain for x. However, our approx­
imation is more accurate than the corresponding one in Fouque et al. (2006), since 
we performed the expansion in powers o f e, instead o f y/e, whi le preserving the same 
number o f terms. Moreover, unlike Fouque et al. (2006), our approximation also de­
pends on y, which gives the chance to capture with this analytical formula a larger 
amount o f the relevant market informations. 

(ii) Upon averaging w.r.t. y, we get the fo l lowing y- independent version o f the previous 
corrected default probability formula 

. r_ PD(T,B\t,x) + \PD(T,B\t,x)\, 
m m { l , }, 

where 
PD(T,B\t,x) := PD0(T,B\t<x) + -PDAT^BlUx), 

a 

PDi(T,B\t,x) = - I ( T - t ) ( ( / V > - < / 2 > < 0 > ) { 2 ^ ^ + 4 ^ ^ + , 4 ^ ) , 

for all (t,x) e [ 0 ,T ) x ( S , o o ) . 

(ii i) In practice, all the parameters o f the above presented formulae can be estimated from 
equity prices data using the nonlinear filtering techniques discussed in Chapter 2. In 
this way, supplementary asymptotic expansions for the parameter calibration can be 
alleviated. 

Denoting P D ( T , B\t, x, y) = PD0(T, B\t, x) + J P £ > i ( T , B\t, x, y), w e immediately obtain 

l im P~D(T,B\t,x,y) = PD0(T, B\t,x). 

W h e n the rate o f mean reversion becomes very large, the S V model converges to the Merton 
model with a constant volatility. Thus, the difference between the S V and Merton settings 
can be studied b y examining 

P~D(T,B\t7x,y) - PD0(T,B\t,x), (6.17) 

as a function o f a, which wi l l be done in the fol lowing. 
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For fixed T , B,t,x,ywe introduce 

6(a) = PD(T,B\t,x.y)-PD0(T,B\t,x) = - P £ > i ( T , B\t,x,y), (V) a > 0. (6.18) 
a 

Then, b y observing that 

^ = (-l)n-n\^riPD1(T,B\t,x,y), ( V ) n e N , (6.19) 

w e obtain the fo l lowing 

Corolary 6.2.1 
A. ) IfPD^T, B\t, x, y) ^ 0, then 

sgn(PD!(T,B\t,x,y)) • (P~D(T, B\t,x,y) - PD0(T, B\t,x)) > 0, (V) a > 0 

and the function a —• \PD(T, B\t,x, y) — PD0(T, B\t,x)\ is strictly monotonically 
decreasing. 

B. ) IfPD^T, B\t, x, y) = 0, then 

PD(T,B\t,x,y) = PD0(T,B\t,x)), (V) a > 0. 

The above result concerning the difference between the default probability in our S V model 
and the default probability in the corresponding Merton setting wi l l be graphically illustrated 
and discussed in the next section. 

6.3 Examples 

In this section w e use the analytical formula derived above in order to assess the difference 
between default probabilities in the two models (the S V versus the Merton one). 

A s a basic case, we adopt the Scott stochastic volatility model (see e.g., Append ix B ) and 
w e use the fol lowing set o f parameters: t = 0, T = 1, / i = 0.1, v = 0.26, m = —0.5358, 
Y0 = —0.5, and the current value o f the first firm is taken to be So = 100 monetary units. 
Recall that v = ^ ^ - W e now vary the face value o f debt B and the rate o f mean reversion 
a and compare the resulting (approximated) default probabilities under the S V model and 
under the corresponding Merton model. 

For all fo l lowing figures w e f ix the default barrier B. The a>axis represents the values for 
a, which w e vary between 0 and 1200. The y -axis stands for the default probability. The 
straight line in each figure is the default probability under the Merton setting, as the default 
risk does not depend on a. The other curve shows how the default probability depends on the 
rate o f mean reversion under the stochastic volatil ity model . Figures 6.1 and 6.2 have been 
drawn for B = 40 ,55 ,60 ,65 . 
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One can observe that, as expected, for lower rates o f mean reversion the default probabilities 
in the S V model substantially differ from that o f the Merton model. I f the default barrier (and 
thus the default risk) is not too large then the probability o f default is higher under stochastic 
volatility. The opposite behavior can be observed for large values o f the default barrier B. 
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F i g u r e 6 .1 : Default barrier: left: B = 40; right: B = 55 
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F i g u r e 6 .2 : Default barrier: left: B = 60; right: B = 65 



Conclusion and Outlook 

Continuous-time methods have become nowadays an integral part o f research in financial 
economics. This field has left an indelible mark on several core areas o f mathematical finance 
such as derivative pricing theory and risk management. 

The celebrated paper o f Black-Scholes (1973), together with the works o f Merton marked the 
birth o f modern mathematical finance. However, the approach by Black, Scholes and Merton 
uses relatively stringent assumptions which do not account for many relevant phenomena o f 
modern financial markets. Therefore during the last decades a great diversity o f financial 
models has been developed. However, there is no model able to capture the whole complexity 
o f financial data, which preserves the strong motivation to develop new financial models. 

In this sense, we proposed in this thesis some new continuous-time series models with ap­
plications to financial mathematics and illustrated them with the aid o f some simulation and 
estimation examples. The development o f these models was motivated by the so-called sty­
lized facts o f financial data, but w e also aimed to strike a balance between our ambition to 
make the models as realistic as possible and the need to keep them simple enough. 

The classes o f models proposed in this work include time varying and/or nonlinear exten­
sions o f existing continuous time series models, based on which w e introduced some new 
financial models, with a focus on non-Markovian extensions, e.g., a time varying Black-
Scholes model or S V models where the volatility is driven by a higher order continuous-time 
series processes. Furthermore, some o f them are able to accommodate other interesting fea­
tures like jumps, fat tails and long-memory properties. Moreover, unlike the models relying 
on fractional Brownian motion, our models are still able to use the standard no-arbitrage 
pricing theory (compare for this Biagini et. al. (2008)) and they are easier to estimate with 
the classical nonlinear filtering methods. 

Using S&P 500 data and a corresponding Q M L E procedure, w e obtained parameter estimates 
for some o f these financial models. Classical model selection criteria have then shown that 
the new introduced models perform better than the classical ones. Moreover, these results 
confirm the non-Markovian character for both asset and volatility dynamics. In the context o f 
high frequency data w e also provided some theoretical estimation results for some important 
financial quantities in derivative pricing, like integrated variance, spot volatility and effective 
volatility. 



Since analytical results are seldom available for realistic financial models, many companies 
use simulations or numerical solutions o f an adequate P D E characterization when pricing 
various financial contracts. However, the size o f the market and the complex dynamics o f 
the stock market volatility are calling for better techniques, a need which becomes even 
more stringent in the context o f incomplete markets. Relying on the asymptotic techniques 
developed by Fouque et al. (2000) w e proposed an alternative way to overcome this difficulty, 
based on an analytical approximation o f the pricing function. Such results are even more 
important in the multivariate case. 

Starting from the multivariate corrected price formula for European derivatives proposed by 
Fouque et al. (2000), w e have been able to explicitly obtain the corresponding correction 
constants with respect to the parameters o f a multivariate Scott S V model. To our awareness 
this is the first general multivariate setting for incomplete markets with a comprehensive sys­
tem o f mutual correlations between the involved processes which is able to provide such type 
o f analytical approximation for European derivative prices and for any number o f companies. 

Finally, w e proposed a new corrected default probability formula when the volatility o f the 
firm dynamics fol lows a fast mean-reverting regime. Our result is based on an improved first 
correction term when compared to the corresponding one in Fouque et al. (2006). This gives 
the chance to capture a larger amount o f the relevant market informations. 

The models introduced in this thesis are far from perfect — no model ever is. However, we 
do believe that their ability to improve the classical models without complicating too much 
the framework deserves the attention o f researchers seeking to model in continuous time 
complex time series data. Al though this subject is mature, it still presents many challenges 
to the mathematician and the financial engineer alike. 

Future research wi l l focus on further developing and implementing these models in order 
to make them as parsimonious and flexible as possible, to test them against the established 
ones, and to use them in finance for valuing and hedging complex derivative instruments 
and transactions. In this sense, it would then be desirable to further extend our estimation 
results and to assess the sensitivity o f our models w.r.t. several different data sets, especially 
for the case o f high frequency data, in order to increase the accuracy o f the corresponding 
estimation and model selection procedures. Further studies are needed to assess (higher 
order) extensions o f the analytical developments derived in this thesis and these are currently 
under investigation. 
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Appendix A 

Black-Scholes Formula 

Black and Scholes have used in their theory a simple market model with two assets. One 
o f the assets is a riskless asset (bond) with price f3t at time t, described by the ordinary 
differential equation 

dl3t = r:8tdt, t>0, (A .1 ) 

where r, a nonnegative constant, is the instantaneous interest rate for lending or borrowing 
money. The price Xt o f the other asset, the risky stock or stock index, evolves according to 
the stochastic differential equation 

dXt = fiXt dt + aXt dWt, t > 0, (A .2 ) 

where p is a constant mean return rate, a > 0 is a constant volatility and (Wt)t>o is a standard 
Brownian motion. The process (Xt)t>0 is called geometric Brownian motion. 

Derivatives are contracts based on the underlying asset price Xt. They are also called con­
tingent claims. 

A European call option is a contract that gives its holder the right, but not the obligation, to 
buy one unit o f an underlying asset for a predetermined strike price K on the maturity date 
T. 

I f XT is the price o f the underlying asset at maturity time T, then the value o f this contract 
at maturity, its payoff, is 

, , N , T , N i I XT — K i f XT > K. , „S 
h(XT) = (XT - K)+ = | Q . f x ^ a ; (A .3) 

since in the first case the holder wi l l exercise the option and make a profit XT — Kby buying 
the stock for K and selling it immediately at the market price XT. In the second case the 
option is not exercised, since the market price o f the asset is less than the strike price. 

Similarly, a European put option is a contract that gives its holder the right to sell a unit o f 
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the asset for a strike price K at the maturity date T. Its payof f is 

h(xT) = ( K - X T ) + = [ K - X t ii X T < K 
v ; v ; \ 0 i f XT > K, 

In the first case, buying the stock at the market price and exercising the put option yields a 
profit K — XT. In the second case the option is simply not exercised. 

More generally, the European derivatives are denned by their maturity time T and their 
nonnegative payof f function h(x). This wi l l be a contract that pays h{XT) at maturity time 
T when the stock price is XT. 

A t time t < T this contract has a value, known as the derivative price, which wi l l vary with 
t and the observed stock price XT. This option price at time t for a stock price XT = x is 
denoted by P(t, x) and the problem o f derivative pricing is to determine this pricing function. 

The pricing function P(t, x) is the solution o f the Black-Scholes partial differential equation 

CBS{a)P = 0, (A .5 ) 

with the final condition P(t, x) = h(x), where 

^M = i + 5< |̂r+ (A-6> 
For European call options the Black-Scholes P D E (A .5 ) is solved with the final condition 
h{x) = (x — K)+. Prices o f European calls at time t and for an observed risky asset price 
XT = x wi l l be denoted by Cssit-, x). In this particular case, there is a closed-form solution 
known as the Black-Scholes formula: 

CBS(t, x) = xNidt) - Ke-<T-^N(d2), (A .7 ) 

where 
d i = i o g ( f ) + ( ^ ) ( r - t \ 

a^T — t 

d2 = d1- aVT - t, (A .9 ) 

and 

N(z) = ^ = l e-^dy. (A .10) 



Appendix B 

Classical Stochastic Volatility Models 

One popular way to improve the Black-Scholes model is to let the volatility to be an Ito 
process satisfying a S D E driven by a second Brownian motion. This leads to an incomplete 
market and that there is no unique equivalent martingale measure. 

One wel l -known feature o f the volatility process is mean reversion. The term "mean revert­
ing" refers to the characteristic (typical) time it takes for a process to get back to the mean 
level o f its invariant distribution (the long-run distribution o f the process). 

In pure mean-reverting stochastic volatility models, the asset price (St)t>o satisfies the S D E 

dSt = fiSt dt + atSt dWu t> 0, (B. 1) 

and the volatility process (crt)t>o is given by 

(rt = f(Yt), t>0, (B.2) 

dYt = a{m - Yt)dt +••• dZt, (B.3) 

where / is some (most often a positive) function and (Zt)t>o is a Brownian motion correlated 
with (Wt)t>o- It is convenient to write 

Zt = pWt + ^l-R2Zu t > 0, (B.4) 

where p e [—1,1] and (Zt)t>0 is a Brownian motion independent o f (Wt)t>o-

Here a is called the rate of mean reversion and m is the long-run mean level o f Y. 

It is often found from financial data that p < 0 and there are economic arguments for a nega­
tive correlation or leverage effect between stock price and volatility shocks. From common 
experience and empirical studies asset prices tend to go down when volatility goes up. 

Some common driving processes (Yt)t>0 are: 

1. lognormal ( L N ) 

dYt = ClYtdt + c2YtdZt, (B.5) 
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2. Ornstein-Uhlenbeck ( O U ) 

dYt = aim - Yt)dt + pdZu (B.6) 

3. Feller or Cox-Ingersol l -Ross (CIR) , 

dYt = a(m - Yt)dt + py/YtdZt, (B.7) 

Note that the lognormal is not mean-reverting. 

Some models studied in the literature are listed below. 

Models o f Volatility 
Authors Correlation m Y Process 
Hul l -Withe /> = 0 f(y) = Vv Lognormal 
Scott p = 0 f(y) = ey Mean-reverting O U 
Stein-Stein p = 0 f(y) = y Mean-reverting O U 
Ba l l -Roma p = 0 f(y) = Vy C I R 
Heston p^O f(y) = Vv C I R 

More details on this topic can be found e.g., in Fouque, Papanicolaou, and Sircar (2000), 
Shephard (2005) and Shephard and Andersen (2009). 



Appendix C 

Basic Facts about the Poisson Equation 

The univariate Poisson equation has the fol lowing form: 

£o4> = g, ( C . i ) 

where £ 0 is the second order differential operator 

d2 d 
£o = v2— + (m-y)—, m, v G K (v > 0). (C.2) 

ay ay 

Let <3>(y) be the density o f the normal distribution N (m, z/2) and denote for all integrable g 

(g) ••= f Hy)g(y)dy. (C.3) 

I f (#) = 0, the Poisson equation has a solution whose first derivative can be explicitly given 

by 

This solution satisfies the fol lowing growth property: 

i f \g(y)\< d ( l + \y\n), n e N*, then |</>(t/)| < C 2 ( l + 

where C i and C2 are some positive constants. This ensures that all terms involving <p in our 
asymptotic developments are well denned. 

For further details w e refer to Fouque, Papanicolaou, and Sircar (2000). 
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Appendix D 

Notation 

A', AT — the transpose o f a matrix. 

Ip — the p x p identity matrix. 

N = { 0 , 1 , 2 , . . . , } . 

N* = N \ {0}. 

R + — the nonnegative real numbers. 

R n — the n -dimensional Euclidean space; 

C; C ( R ) — space o f continuous functions. 

Ck; Ck(R) — space o f k times contin­
uously differentiable functions. 

Ck; Ck(M.) — space o f k times con­
tinuously differentiable functions with 
compact support. 

C°° — space o f smooth functions. 

Cb, Cb(E) — space o f bounded conti­
nuous functions. 

L1 — space o f integrable functions. 

L2 — space o f square integrable func­
tions. 

N(m,v2) — normal distribution with 
expectation m and variance v2. 

an = 0(bn) i f is bounded. 

an = o(bn) i f Is- —» 0 as n —> oo. 

re > 0, 

• sgn(x) := j 

0; x — 0, 
rr < 0. 

• U(ar) := j 1; 
0; 

x G A , 
x £ A . 

• a.e. — almost everywhere. 

• A I C — Akaike 's Information Criterion. 

• a.o. — among others. 

• A R — discrete-time autoregressive pro­
cess. 

• A R M A — discrete-time autoregressive 
moving average process. 

• a.s. — almost surely. 

• B I C — Bayesian Information Criterion. 

• B S — Black-Scholes model. 

• B D G — Burkholder-Davis-Gundy ine­
quality. 

• C A R — continuous-time autoregressive 
process. 

• C A R — a C A R type process with a 
non-degenerate diffusion matrix. 

• C A R M A — continuous-time autoregres­
sive moving average process. 
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• C A R M A e — a C A R M A type process 
with a non-degenerate diffusion matrix. 

• cdf — cummulative probability density 
function. 

• C I R — Cox-Ingersoll -Ross model. 

• C K L S — Chan-Karolyi -Longstaff -
Sanders model. 

• C O G A R C H — continuous-time gener­
alized autoregressive conditionally he-
teroscedastic process. 

• C T A R M A — continuous-time thresh­
old autoregressive moving average pro­
cess. 

• E K F — extended Ka lman filter. 

• E M M — equivalent martingale measure. 

• F M R — fast mean-reversion. 

• G A R C H — discrete-time generalized au­
toregressive conditionally heteroscedas-
tic process. 

• G B M — geometric Brownian motion. 

• HF — high frequency (data). 

• i.i.d. — independent and identically 
distributed. 

• L R D — long range dependence. 

• M C — Monte Carlo (simulations). 

• M C M C - Markov Chain Monte Carlo. 

• M S V — multivariate stochastic volati­
lity model. 

• N L C A R — nonlinear continuous-time 
autoregressive process. 

APPENDIX D. NOTATION 

• N L C A R M A — nonlinear continuous-
time autoregressive moving average pro­
cess. 

• O U — Ornstein-Uhlenbeck process. 

• P D — probability o f default. 

• P D E — partial differential equation. 

• pdf — (transition) probability density 
function. 

• Q M L E — quasi max imum likelihood 
estimation. 

• r.v. — random variable. 

• S&P 500 - Standard & Poor's 500 stock 
index. 

• S D E — stochastic differential equation. 

• S V — stochastic volatility. 

• S V C A R — stochastic volatility model 
driven by a C A R e process. 

• S V C A R M A - stochastic volatility model 
driven by a C A R M A e process. 

• t v A R — time-varying A R process. 

• t vBS — time-varying Black-Scholes model. 

• t v C A R — time-varying C A R process. 

• t v C A R M A — time-varying C A R M A pro­
cess. 

• t v N L C A R M A - t i m e - v a r y i n g N L C A R M A 
process. 

• w.r.t. — with respect to. 


