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1. Zusammenfassung 
Natürliche Killerzellen (NK) sind Effektorzellen des angeborenen Immunsystems, die in der Tumorabwehr 

eine wichtige Rolle spielen. Die Aktivierung von NK-Zellen wird durch ein Zusammenspiel von Signalen 

hemmender Rezeptoren, die zumeist MHC Klasse I erkennen, und aktivierender Rezeptoren bestimmt. 

Neben zielgerichteter Eliminierung von Zellen, können NK-Zellen zusätzlich Botenstoffe freisetzen, die 

Entzündungen bewirken und somit Immunantworten des angeborenen und des adaptiven Immunsystems 

auslösen. 

In unserer Studie charakterisierten wir NK-Zellantworten gegen MHC Klasse I defiziente Lymphome in 

Mäusen. Unsere Untersuchungen zeigten, dass nach subkutaner Injektion von RMA-S Zellen NK-Zellen, 

die in den Tumor eingewandert sind, einen geringen Reifungsgrad (CD27high) aufweisen. Zusätzlich zeigte 

diese Population einen aktivierten Phänotyp, der sich durch hohe Expression von B220, MHC Klasse II 

und zytotoxischen Effektormolekülen widerspiegelt. Genexpressionsanalysen mittels Microarrays machten 

deutlich, dass Tumor-infiltrierende NK-Zellen ein stark unterschiedliches Transkriptionsprofil aufweisen als 

NK-Zellen im Blut von Tumor-tragenden Mäusen. NK-Zellen im Tumor zeigten neben einem verringerten 

Ausmaß von aktivierenden NK-Zellrezeptoren zusätzlich einen Anstieg von hemmenden Molekülen. Die 

meisten dieser Änderungen auf Transkriptionsebene konnten ebenso auf Proteinebene bestätigt werden.  

Tumor-infiltrierende NK-Zellen exprimierten ein höheres Ausmaß von Mitgliedern der B7-Proteinfamilie 

verglichen mit NK-Zellen aus dem Blut. Hierzu zählen der aktivierende Rezeptor CD28 und die 

hemmenden Rezeptoren CTLA-4 und B7-H1, die alle an B7-1 binden. Die Funktion dieser Moleküle ist in 

T-Zellen gut verstanden, in NK-Zellen allerdings größtenteils unbekannt. sere Daten zeigten, dass die 

Expression von CD28 und CTLA-4 mittels IL-2 auf NK-Zellen induzierbar ist bzw. sich die Expression von 

B7-H1 erhöhen lässt. Eine Stimulierung von in vitro expandierten NK-Zellen mit einem B7-1 IgG 

Fusionsprotein führte zu Proliferation von NK-Zellen und deren IFNγ-Produktion. Mit Hilfe von knockout 

Mäusen zeigten wir, dass nach Stimulation von NK-Zellen mittels B7-1 IgG IFNγ-Produktion durch CD28 

vermittelt und diese durch die CLTA-4 und B7-H1 Rezeptoren negativ reguliert wird. Im Gegensatz dazu 

wurden B7-1 exprimierende Zielzellen durch IL-2 expandierte NK-Zellen unabhängig von CD28, CTLA-4 

und B7-H1 lysiert. Zudem beobachteten wir, dass in einer Ko-Kultur von NK-Zellen und B7-1 

exprimierenden Zellen, darunter transduzierte Tumorzelllinien sowie reife dendritische Zellen, einen 

interzellulären Transfer von B7-1 der Zielzellen zu NK-Zellen bewirkt. Dieser Prozess ist teilweise 

abhängig von CD28. Schliesslich wiesen unsere Experimente darauf hin, dass wiederholte Applikation von 

IL-2 das Wachstum von B7-1+ Melanome in T- /B-Zell defizienten Mäusen hemmt. Dieser Effekt konnte 

durch gleichzeitige CTLA-4 Blockierung noch geringfügig verbessert werden.  

 

Zusammenfassend zeigen unsere Daten, dass Tumor-infiltrierende NK-Zellen einen unterschiedlichen 

Phänotyp als NK-Zellen aus dem Blut aufweisen. Dies spiegelt sich sowohl in ihrem Reifungsgrad, der 

Expression von aktivierenden und inhibierenden Molekülen als auch in ihrem umfassenden 
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Transkriptionsprofil wider. Wir beobachteten, dass bestimmte Rezeptoren der B7-Familie unterschiedlich 

exprimiert sind, die die Effektorfunktionen von NK-Zellen in vitro regulieren. Unsere Experimente deuten 

darauf hin, dass Mitglieder der B7-Proteinfamilie während der Tumorentwicklung eine wichtige Rolle bei 

der Kontrolle von NK-Zellantworten spielen. Unsere Ergebnisse sollten bei Immuntherapien gegen 

Tumore, die auf der Wirkung von NK Zellen beruhen, mit einbezogen werden. 
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2. Summary 
Natural killer (NK) cells are innate immune effector cells that play an important role in anti-tumor defense. 

A delicate balance of signals delivered by activating ligands and inhibitory molecules, mainly MHC class I, 

expressed by target cells, determinates the NK cell activation. Besides direct killing of target cells, NK cells 

release mediators that induce inflammation and exert immunoregulatory effects influencing both innate 

and adaptive immune responses. Although efficient at eliminating metastazing cells and small tumor 

grafts, the eradication of larger solid tumors by NK cells is usually not efficient, despite the low expression 

of MHC class I by tumor cells in many cases.  

In our study, we characterized the in vivo NK cell response against the MHC class I deficient mouse 

lymphoma. We demonstrate that after subcutaneous injection of RMA-S tumor cells, NK cells infiltrating 

the tumor tissue (TINs) correspond to the less mature CD27high NK cell population. At the same time, the 

subset of TINs displays a phenotype of activating state, which is reflected in the elevated expression of 

B220, MHC II and cytotoxic effector molecules. Gene expression profiling using whole genome 

microarrays, revealed a strikingly different transcription profile of tumor infiltrating compared to blood NK 

cells of tumor bearing mice. TINs downregulated activating NK cell receptors, which was accompanied by 

upregulation of inhibitory molecules. We confirmed that most of the molecules that were differentially 

regulated at the mRNA level were also differentially expressed at the protein level. 

As compared to NK cells from the blood, expression of several members of the B7 protein family was 

elevated in TINs, including the activating receptor CD28 and the inhibitory receptors CTLA-4 and B7-H1, 

which all bind the B7 family ligand B7-1. Our data demonstrate that the expression of CD28 and CTLA-4 

can be induced and expression of B7-H1 elevated on NK cells by IL-2. Stimulation of in vitro expanded NK 

cells with a B7-1 IgG fusion protein induced NK cell proliferation and IFNγ production. Using gene deficient 

NK cells, we demonstrated that B7-1 dependent IFNγ production was mediated by CD28, and negatively 

regulated by CTLA-4 and B7-H1 receptors. The lysis of B7-1 expressing target cells by IL-2 expanded NK 

cells was independent of CD28, CTLA-4 and B7-H1 expression. We observed that co-incubation with B7-1 

expressing cells, including transduced tumor cell lines and mature dendritic cells, led to the intercellular 

transfer of B7-1 from target cells to the NK cells, in a process that partially depended on CD28. Our 

experiments indicated that therapeutic responses to B7-1+ melanoma, mediated by IL-2 in T and B cell 

deficient mice, could be moderately improved by CTLA-4 blockade. 

In summary, our data reveal that NK cells infiltrating solid tumors display a phenotype different from NK 

cells found in blood, including their maturation state, expression of activating and inhibitory molecules and 

global transcription profile. We demonstrate that certain receptors of the B7 family that were differentially 

expressed by TINs, regulated NK cell effector responses in vitro. Our results suggest that members of the 

B7 protein family can be involved in the complex control of NK cell responses during tumor progression 

and should be considered as potential targets in NK cell based anti-cancer immunotherapy. 
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3. Introduction 
 

3.1. The immune system 

The immune system represents the complex network of molecules, cells, tissues and organs evolved to 

protect the organism from pathogens. The main property enabling the immune system to accomplish its 

function is the ability to recognize non-self molecules as well as “altered-self” state. “Altered-self” 

recognition and possibility to sense any kind of cellular stress enables the immune system to detect both 

infected and transformed cells and potentially prevents the development of malignancy. Any molecule that 

can be recognized by the immune system leading to the activation of protective responses is considered 

an antigen. Two main components of the immune system, the innate and the adaptive, are distinguished in 

vertebrates based on the type of antigens they recognize, recognition strategy and kinetics of response. 

 

3.1.1. The innate immune system 

The innate immune system consists of distinct subsystems that prevent the entrance and establishment of 

infectious agents. Its main property is fast activation of pre-existing defense mechanisms (Table 3.1), 

thereby is considered as the first line of defense against potential danger. The principal components of 

innate immunity are physical and chemical barriers (epithelia, anti-microbial substances), cells 

(phagocytes, natural killer cells), blood proteins (complement) and cytokines. The receptors of the innate 

system are germ-line coded molecules that recognize so called pathogen-associated molecular patterns 

(PAMPs), as well as molecules expressed by host cells upon infection or any kind of cellular stress, 

including malignant transformation. PAMPs are evolutionary conserved structures unique to pathogens 

and often shared by particular classes of microbes. In addition, they usually represent essential 

evolutionary preserved components necessary for pathogen survival. Typical examples are complex lipids 

and carbohydrates found in bacterial (LPS, peptidoglycan, lipoteichoic acid) and fungal (β-glycan) cell 

walls, some viral proteins (m157 from mouse CMV) or specific modifications of viral and bacterial nucleic 

acids (double-stranded RNA, unmethylated CpG DNA sequences). The best characterized 

pattern-recognition receptors (PRRs) are the Toll-like receptors (TLRs), which recognize a multitude of 

pathogen-derived molecules [1]. TLR triggering stimulates pathogen uptake by phagocytic cells 

(macrophages, dendritic cells, neutrophils), which results in their destruction and secretion of factors 

(proinflammatory cytokines and chemokines) that recruit and activate other immune effectors. Pathogen 

detection and uptake by dendritic cells (DC), which are termed professional antigen-presenting cells 

(APC), lead to their maturation and migration to the local lymph node, where they initiate the adaptive 

immune response. In general, many mechanisms employed by the innate immune system function to not 

only eliminate infectious agent but also to prime, enhance and polarize the proper adaptive immunity
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tailored according to the pathogen type. The effective response to the invading pathogen depends on the 

proper activation of both arms of the immune system. 

 

Innate subsystem  Principal function 

Barriers 

Epithelial layers  Prevent microbial entry 

Defensins  Microbial killing 

Intraepithelial lymphocytes  Microbial killing 

Circulating effector cells 

Neutrophils  Early phagocytosis and microbial killing 

Macrophages 
Efficient phagocytosis and microbial killing 
Secretion of cytokines that stimulate inflammation 

NK cells  Lysis of infected cells, activation of macrophages 

Dendritic cells 
Antigen uptake and processing 
Priming of adaptive immune system 

Circulating effector proteins 

Complement 
Microbial killing and opsonization 
Activation of leukocytes 

Mannose‐binding lectin (collectin)  Microbial opsonization, activation of complement 

C‐reactive protein (pentraxin)  Microbial opsonization, activation of complement 

Coagulation factors  Walling off infected tissues 

Cytokines 

TNF, IL‐1, chemokines  Inflammation 

Type I interferons  Resistance to viral infections 

IFNγ  Macrophage activation 

IL‐12  Induction of IFNγ production 

IL‐15  NK cell proliferation and survival 

IL‐10, TGFβ  Control of inflammation 

 

Table 3.1. Subsystems of the innate immune system. The principal components of the innate immunity are physical 

and chemical barriers that prevent pathogen entry and establishment of infection, and cells, blood proteins and 

cytokines that participate in the clearance of microbes from the organism. Representative components of innate 

subsystems are listed in the table. [2] 
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3.1.2. The adaptive immune system 

The hallmarks of adaptive immunity are delayed responses compared to the innate immune system upon 

the first encounter with pathogen, high diversity of receptors formed by the process of somatic 

recombination and the ability to develop immunological memory. Memory response is raised upon any 

subsequent recognition of the previously encountered antigen and it is faster and stronger in intensity, 

thereby more efficient. The diversity of the antigen receptors of adaptive immune cells is formed through 

the process of somatic recombination in which sets of germ-line coded DNA sequences are randomly 

brought together to form functional B cell (BCR) and T cell receptor (TCR) genes [3]. RAG-1 and RAG-2 

are the genes encoding the enzymes, which are the main components of the recombination machinery [4]. 

Since the expression of functional receptors is the prerequisite for B and T cell maturation, mice deficient 

in RAG coded enzymes lack B and T cells [5-6]. Every B and T cell expresses only one type of receptor 

with unique specificity, forming a clonally distributed repertoire. The receptors of adaptive immune system 

are not able to distinguish non-self from self. Rather, non-reactivity to self is achieved through the complex 

sequences of mechanisms called tolerance induction, which includes deletion or specific inactivation of 

self reactive clones, differentiation of regulatory cells and others [7-8].  

 

 

Figure 3.1. Differentiation of B cells into specialized effector subsets after antigen recognition. Activated B cells 

differentiate into antibody-secreting plasma cells or memory cells. In the germinal centers formed in the peripheral 

lymphoid organs activated B cells undergo a process of proliferation, isotype switch and affinity maturation that 

enables the differentiated plasma cells to secrete antibodies with high affinity for encountered antigen. Various 

isotypes of produced antibodies are specialized for different functions. Memory cells reside in bone marrow and are 

capable of fast differentiation into plasma cells upon subsequent recognition of the same antigen. [9]  
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The humoral and cellular effector arms are the two main systems operated by adaptive immunity. Humoral 

immunity is mediated by B cells and it is targeted against extracellular antigens. B cell receptors (BCR) are 

membrane bound immunoglobulins that can recognize diverse microbes and microbal toxins and activate 

B cells to differentiate into either antibody-secreting plasma cells or memory cells (Figure 3.1). In addition, 

activated B cells can accomplish the function of APCs and contribute to the development of cellular 

immunity. Antibodies represent isotype-switched soluble immunoglobulin molecules secreted by B cells. 

Different classes of antibodies mediate specific responses that include antigen neutralization, which 

prevents the host cell invasion, and opsonization of pathogens enabling their phagocytosis and/or 

destruction by the innate cellular effectors. In addition, antibodies activate the complement system, 

mediate mucosal immunity and stimulate mast cell degranulation. 

Intracellular pathogens that are not accessible to antibodies are attacked by cell mediated immunity 

operated through T cells. T cells, like B cells, originate in the bone marrow (BM), but unlike B cells, migrate 

to the thymus to complete their maturation. T lymphocytes recognize protein antigens via the T cell 

receptor complex only when displayed as peptides bound to self major histocompatibility complex (MHC) 

molecules and presented by APCs. Based on the expression of membrane glycoproteins, which are the 

essential parts of TCR complex, T cells are divided into CD4+ and CD8+ subsets. CD4+ T cells recognize 

MHC class II associated peptides, which are derived mainly from endocytosed proteins, while CD8+ T cells 

recognize MHC class I associated peptides, which are mainly derived from cytosolic, endogenously 

produced proteins. To become fully activated, in addition to TCR engagement, costimulatory signals 

provided by APCs are crucial to trigger the functional T cell responses. In addition to the quality of 

costimulation, cytokines produced by innate immune cells at the site of antigen recognition polarize T cell 

differentiation towards effector cells with specific functional properties (Figure 3.2).  

CD4+ T cells differentiate into one of three T helper cell (Th) lineages - Th1, Th2 and Th17, or to the 

induced regulatory T cells (iTreg) (Figure 3.2) [11]. IFNγ and IL-12 potentiate differentiation of Th1 cells, 

which produce IFNγ and activate macrophages, DCs, B cells and CD8+ T cells to perform their functions. 

IL-4 triggers the differentiation of the Th2 subset. They produce IL-4, IL-5 and IL-13 and control 

multicellular parasite infections through B cell, mast cell and basophil activation. Finally, transforming 

growth factor β (TGFβ) in the presence of proinflammatory cytokines, such as IL-6, IL-21 and IL-23, 

triggers the differentiation of Th17 cells. In the absence of inflammation, a high concentration of TGFβ 

favors the differentiation of regulatory T cells. Th17 cells produce IL-17 and IL-22 and play an important 

role in the clearance of extracellular bacteria and fungi, especially at mucosal surfaces. Regulatory T cells 

inhibit responses of other effector cells. They are involved in the control of ongoing immune responses, but 

also in the prevention of autoimmunity. 
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Figure 3.2. Differentiation of CD4+ T cells into specialized effector subsets after antigen recognition. Activated CD4+ T 

cells can differentiate into four functional subsets driven by cytokines present in the microenvironment. Th1 cells 

support cell-mediated immunity and develop under the influence of IL-12 and IFNγ. Th2 cells differentiate in the 

presence of IL-4 and support humoral immunity. TGFβ in the presence of IL-6 induces differentiation of Th17 cells, 

which stimulate the clearance of extracellular bacteria and fungi. In the absence of IL-6, regulatory T cells, which 

control the responses of multiple immune effector cells, are differentiated. [10]  

Naïve CD8+ T cells differentiate into cytolytic T lymphocytes (CTLs) upon antigen recognition and 

additional stimuli provided by Th1 cells. Their main effector functions are the elimination of target cells 

expressing the peptide-MHC I complexes against which response has been raised and production of IFNγ. 

Thus, specific effector functions of different components of the adaptive system are developed based on 

initial pathogen encounter by innate immune recognition mechanisms and mediators produced dependent 

on the pathogen type. One of the functions of specialized adaptive responses raised in such way is further 

enhancement of innate mechanisms necessary for pathogen clearance. 

 

 

3.2. NK cells 

Natural killer (NK) cells represent a lymphocytic population that provides the first line of defense against 

diverse pathogens through the direct elimination of infected cell and production of cytokines and 

chemokines. In addition, NK cells are recognized to be important for the control of graft rejection and 

pregnancy. They also play an important role in tumor growth control and prevention of metastatic 

dissemination [12-15].  
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NK cells are classified as innate immune effector cells based on the observations that they lack typical T 

and B cell surface markers, and, more importantly, do not depend on the process of somatic 

recombination. Therefore, they are present in mice and humans unable to rearrange their antigen receptor 

genes. Instead, NK cells express several classes of germ-line coded receptors, which are used for 

recognition of potential danger signals. Initially, NK cells were discovered as a spleen cell population of 

naïve mice and rats and peripheral blood cell subset of healthy human donors that mediate spontaneous 

cytotoxic activity against different tumor cell lines [16-19]. Although very often defined as killing effectors 

with the capacity to eliminate dangerous cells without prior sensitization, there is emerging evidence that 

NK cell activation is regulated by integrated signals provided by surface receptors recognizing both 

potential targets and sensing local microenvironment [20]. In response to activating signals, besides 

cytotoxicity, the production of multiple cytokines and chemokines is triggered. Through these effector 

responses NK cells can eliminate potentially dangerous target cells, but also impact on ongoing innate and 

emerging adaptive immune responses [21]. 

 

3.2.1. NK cell activation - recognition of target 

3.2.1.1. Inhibitory NK cell receptors 

Primary targets of NK cells are infected, transformed as well as cells experiencing any kind of stress, 

including heat shock or irradiation. To be able to perform their effector functions upon target encounter, 

it is essential for NK cells to distinguish potentially dangerous from normal cells. Kärre and colleagues 

formulated the “missing-self” hypothesis describing a strategy for recognition based on the observation 

that MHC class I deficient congenic tumor cells are very efficiently lysed by NK cells [22-24]. Cells that 

express MHC class I on the cell surface at sufficient density would be then protected due to the 

engagement of inhibitory receptors expressed by NK cells that specifically recognize self MHC class I 

(Figure 3.3A). C-type lectin Ly49 receptor family in mice, killer cell immunoglobulin-like (KIR) and 

leukocyte immunoglobulin-like (LIR) receptor family in humans and CD94/NKG2A complex in both species 

interact with self MHC class I ligands (Table 3.2). The principal mechanism of action of MHC I specific 

inhibitory NK receptors is based on the presence of immunoreceptor tyrosine-based inhibitory motif (ITIM) 

in their cytoplasmic tail, which recruits inhibitory signaling molecules and terminates putative activating 

signal transduction (Figure 3.3B). Most of NK cells express at least one MHC class I specific receptor. 

Inhibitory receptor repertoire formed over the individual cells allows the global NK cell pool to successfully 

monitor self and reacts when pathological conditions interfere with MHC class I expression [25-26].  

NK cells expressing no inhibitory receptors for autologous MHC I alleles have been identified in healthy 

individuals and mice. However, they are rendered hyporesponsive in order to prevent possible 

autoreactive responses [27-28]. Similarly, in humans with transporter-associated antigen processing (TAP) 

deficiency or in mice with no MHC I expression (β2m, TAP1, H2-Kb, H2-Db gene deficient mice), NK cell 
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effector responses are reduced [29-30]. The need of NK cell to recognize self MHC class I during 

maturation in order to develop full effector competence is referred to as “licensing” [31]. 

In addition to MHC I specific receptors, NK cells express several other inhibitory receptors that recognize 

ligands widely expressed on normal cells. Their level of expression is often modified upon infection or 

malignant transformation. For example, the KLRG1 inhibitory receptor that recognizes cadherins can be 

considered as receptor providing an alternative strategy of sensing “altered-self” [32-33]. 

 

Receptor  Species  Ligand 

NKG2A/CD94  Mouse, Human 
HLA‐E in human 

Qa‐1 in mouse 

KLRG1  Mouse, Human  Cadherins 

2B4  Mouse, Human  CD48 

NTB‐A  Mouse, Human  NTB‐A 

Ly49A  Mouse  H‐2d, k, p

Ly49C  Mouse  H‐2b,d,k,s 

Ly49I  Mouse  H‐2r, b, d, k, q, s, v

Other Ly49  Mouse  Various mouse MHC I alleles 

NKR‐P1B  Mouse  Clr‐b 

CD161  Human  LLT1 (Clec2D) 

Various KIR  Human  HLA‐A/‐B/‐C 

KIR2DL4  Human  HLA‐G 

LIR1  Human  HLA I, UL18 HCMV protein 

CAECAM1  Human  CAECAM1 

Siglec‐7/9  Human  Sialic acid 
 

Table 3.2. Inhibitory NK cell receptors and their ligands. [34-35] 

 

 

3.2.1.2. Activating NK cell receptors 

MHC class I deficiency is not sufficient to trigger full NK cell activation that requires in addition the 

engagement of activating receptors, including members of the Ly49 family in mice, KIR-S family in humans 

and natural cytotoxicity receptors (NCR), NKG2D, DNAM-1 and CD94/NKG2C complex in both species 

(Table 3.3). Those receptors recognize diverse ligands that can be derived from invading pathogens or 
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induced on infected, transformed and stressed cells. The necessity for the existence of a positive signal for 

NK cell activation in addition to the absence of inhibition represents the basis for the “induced-self” 

recognition strategy. A delicate balance of inhibiting and activating pathways that govern NK cell activation 

is further hard-wired with cytokine, chemokine and costimulatory signals, which together influence the final 

effector response defined both by the nature of the target and the local microenvironment. 

Receptors for MHC class I often exist in pairs of activating and inhibitory receptor with a highly 

homologous extracellular domain. The inhibitory receptors have a significantly higher ligand affinity 

compared to the activating counter receptors. In steady state conditions, inhibitory signals dominate over 

the interaction of NK cell and autologous target cell. This inhibition is based on the recruitment of SRC 

homology 2 (SH2)-domain-containing protein tyrosine phosphatases to the ITIM motifs of inhibitory 

receptors, such as SHP-1 and SHP-2. They dephosphorylate and inactivate signaling molecules, which 

mediate activation downstream of activating receptors (Figure 3.3B) [36-38].  

 

Figure 3.3. NK cell activation upon recognition of susceptible target cells.  A) Normal cells typically engage both the 

activating and the inhibitory NK receptors. Signals delivered through the inhibitory receptors dominate and prevent NK 

cell activation and the lysis of normal cell. Infected or transformed cells dowregulate expression of inhibitory ligands 

(missing self recognition) or/and upregulate ligands for activating NK cell receptors (induced-self recognition) allowing 

NK cell activation. B) Upon ligand engagement, activating NK cell receptors recruit signaling molecules, such as 

protein kinases Syk, ZAP70 and PI3K that mediate NK cell activation. The inhibition of NK cell triggering is based on 

the recruitment of tyrosine phosphatases, such as SHP-1, to the ITIM motifs of inhibitory receptors or associated 

adaptor molecules, which dephosphorylate and inactivate signaling molecules downstream of activating receptors. 

[34, 39] 

Several pathogen-encoded molecules are known to be directly recognized by NK cells and induce their 

activation. The MCMV derived m157 protein is detected via Ly49H, influenca A and Sendai virus derived 

haemagglutinins via NKp44 and NKp46, Staphylococcus aureus derived endotoxin B and ligands derived 

from Mycobacterium tuberculosis, Plasmodium falciparum and Leismania spp. via yet unidentified 
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receptors. However, the majority of pathogens are sensed by accessory cells, such as monocytes, 

macrophages and dendritic cells that upon encounter of pathogen transmit activation signals to NK cells 

via soluble mediators or in a contact-dependent manner [40].  

Stress induced ligands are molecules that are usually not expressed or are present at very low levels in 

healthy cells, but strongly induced upon infection or malignant transformation. As such, they can be 

recognized by NK cell activating receptors and trigger lytic activity and/or cytokine production. Some of 

them can be induced on activated immune effectors, e.g macrophages incubated with LPS, where they 

could have a potential role in the control of an immune response [41]. The most extensively defined family 

of stress induced ligands engage the activating receptor NKG2D (Rae1α-ε, H60, Mult1 in mice; MICA/B, 

ULBP1-4, RAET1G/L in human). Their expression is induced through various forms of cellular stress, such 

as heat shock, viral infection, wound healing, UV radiation or DNA damage [42]. Many tumor cell lines and 

analyzed tumor tissues have been reported to express NKG2D ligands indicating their potential role in 

tumor growth control by NK cells and other NKG2D expressing immune effectors [43]. Similarly, ectopic 

expression of mouse Rae1β and H60 causes rejection of subcutaneously implanted tumor cells in 

a NKG2D dependent manner [44-45]. 

 

Receptor  Species Ligand

CD16  Mouse, Human IgG

NKp46  Mouse, Human Viral haemagglutinin, ? 

CD94/NKG2C/E  Mouse, Human 
HLA‐E in human

Qa‐1 in mouse 

NKG2D  Mouse, Human 
MICA/B, ULBPs in human 

Rae1, H60, MULT1 in mice 

DMAM‐1  Mouse, Human CD112, CD155

2B4  Mouse, Human CD48

CRACC  Mouse, Human CRACC

NTB‐A  Mouse, Human NTB‐A

NKR‐P1C  Mouse ?

NKR‐P1F  Mouse Clr‐g

Ly49H  Mouse m157 MCMV protein

Ly49D  Mouse H‐2d,a, b, k, p, q, s

NKp30  Human B7‐H6, ?

NKp44  Human Viral haemagglutinin

NKp80  Human AICL

KIR2DS  Human HLA‐C
 

Table 3.3. Activating NK cell receptors and their ligands. [46-47] 
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Activating NK cell receptors mainly couple to three signaling pathways: DAP12/Syk/ZAP70, DAP10/PI3K 

and SAP/Fyn that further activate a signaling cascade via PLCγ and Vav family members. When such 

a cascade becomes fully activated in contact with sensitive targets, it typically leads to the delivery of 

cytotoxic granules to the synapse with target cell and/or cytokine and chemokine release. [48] [49].  

 

3.2.1.3. NK cell costimulation 

Several receptors and ligands expressed on target cells have been described to costimulate other NK 

receptors rather than mediating direct activation. The term costimulation has been adopted from the T cell 

system. Naïve T cells have an absolute requirement for TCR engagement to be activated. However, 

in addition they need triggering of costimulatory receptors, mainly CD28. Nevertheless, CD28 engagement 

alone cannot induce T cell activation [50]. In the mouse system, NKG2D coupled to DAP12 can directly 

trigger NK cells, while coupled to DAP10 adaptor molecules rather enhance the response initiated via 

other activation pathways. Indeed, DAP12 mediated signaling resembles TCR (Syk/ZAP70), while DAP10 

recruits similar signaling molecules as CD28 (Grb2, PI3K) [51]. Similar functional properties are attributed 

to the receptors that recognize CD40, CD70, B7-1 (CD80), B7-2 (CD86), ICOS-L, OX-40L and 4-1BBL, 

ligands previously described to costimulate T cell effector functions at the different stages of activation 

[52-53].  

CD40 on APCs engages T cell expressed CD40L, which is the interaction crucial for T cell priming and 

development of humoral responses [54-55]. Its ectopic expression on tumor cell lines triggers NK cell 

cytotoxic responses [56]. However, it is not clear which receptor on NK cells recognizes CD40, since 

CD40+ targets are lysed by CD40L deficient NK cells equally as by WT effectors. A relatively high 

proportion of human melanoma has been reported to express CD40 [57], thus its contribution to the NK 

cell activation might be relevant for anti-tumor responses. 

B7-1 and B7-2, similar to CD40, induce NK cell cytotoxicity and IFNγ production. B7-1 and B7-2 positive 

lymphoma enhances NK cell mediated cytotoxicity in vitro being potent enough to overcome inhibition by 

MHC I [56, 58]. T cells recognize the B7-1/2 ligands via receptors CD28 and CTLA-4 [59]. B7-1 recognition 

by both human and mouse NK cells has been controversial. NK cells have not been reported to express 

CTLA-4. In mice, CD28 expression has been only shown by some studies on IL-2 expanded NK cells [60]. 

Proliferation and IFNγ production induced by B7-1+ cell lines has been contributed to CD28 in studies of 

Kelly et al [61], while the lysis of B7-1 expressing tumor targets was shown to be CD28 and CTLA-4 

independent [58]. Similarly, recognition of B7-2 could not be contributed to CD28 and CTLA-4 [56]. Human 

NK cells seem to express different variants of CD28 that mediates activation by NK cell sensitive (MHC I-) 

but not NK cell resistant (MHC I+) tumor cell lines [62]. B7 costimulatory ligands are expressed at different 

levels by cell lines derived from patients with gastric, esophageal and colorectal cancer [63], as well as on 

AML and B cell precursor ALL blasts [64-65]. Therefore, NK cell costimulation by B7-1/2 can be relevant 
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for direct recognition of tumor cells. In addition, APCs express high levels of B7-1/2 costimulatory 

molecules upon activation, which might be involved in their cross-talk with NK cells [66]. 

CD70 is recognized by the tumor necrosis factor (TNF) family receptor, CD27, which is constitutively 

expressed on resting, naïve T, B and NK cells, and further up-regulated following activation [67]. 

The function of CD27 seems to be controlled via availability of its ligand, CD70, that shows restricted, 

transient and activation dependent expression on T, B and dendritic cells. CD70 is positively regulated via 

TLR triggering and pro-inflammatory cytokines, such as IL-1β, TNFα, IL-12 and GM-CSF, while IL-4 and 

IL-10 reduce its expression. CD27 engagement is not absolutely required for naïve T cell activation, but it 

strongly enhances differentiation and function (IL-2, IFNγ production) of effector cells through the positive 

effects on survival and proliferation. To prevent possible immunopathology, prolonged CD27 costimulation 

utilizes negative feedback mechanisms, which includes reduction of receptor expression, receptor 

shedding from the cell surface and induction of negative mediators, such as IL-10, Fas, FasL and 

inhibitory receptor PD-1 [67]. Both human and mouse NK cells subsets differentially express the CD27 

receptor. Its level of expression is widely used to define the functional and/or maturation status of NK cells 

(see 3.2.3). Functional analysis of CD27 revealed its role in the positive regulation of NK cell effector 

functions, mainly proliferation and IFNγ production, without direct impact on cytotoxicity [68].  

Ectopic expression of CD70 and CD80 on implanted tumor cells facilitates NK cell anti-tumor responses, 

leading to tumor rejection and generation of functional immunological memory. Those effects are 

dependent on NK cells and both perforin and IFNγ effector responses [61, 69]. A recent study of 

Chan et al. showed that activating NK cell receptor DNAM-1 is costimulated via CD70 and CD80 

mediating suppression of lung melanoma metastases after IL-2 application [70].  

ICOS-L (ICOS ligand) engages costimulatory receptor ICOS that is expressed on T cells upon activation 

and enhances T cell cytokine production and effector functions [71]. Similarly, ICOS is not expressed on 

resting NK cells, but it is induced by cytokine stimulation [72]. Its cross-linking promotes NK cell IFNγ 

production, while ectopic expression of ICOS-L induced efficient killing of tumor cells in vitro. ICOS-L 

expressing tumor cells are better controlled in vivo in a NK cell dependent manner. Among human tumors, 

leukemia cells express ICOS-L [73]. In addition, it is expressed on the surface of B cells, APCs and certain 

nonhematopoietic tissues. Thus, ICOS dependent costimulation of NK cells may play an important role in 

NK cell activation through the interaction with both target cells and other immune cell. 

OX40L and 4-1BBL are members of the TNF superfamily ligands primarily involved in the regulation of 

T cell responses and cross-talk between T cells and other cells [74]. Both the ligands and their receptors 

(OX40 and 4-1BB) show inducible expression following immune cell activation. The ligands are primarily 

expressed by professional APCs, but also by non-immune cells as smooth muscle and endothelial cells. 

NK cells were shown to express OX40 and 4-1BB receptors as well as their ligands, which enables their 

extensive cross-talk with other immune cells during ongoing response.  
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3.2.2. NK cell effector responses  

3.2.2.1. NK cell cytotoxic responses 

Upon proper NK cell triggering, susceptible targets can be eliminated through perforin/granzyme 

dependent or death receptor initiated apoptosis (Figure 3.4.) [75]. Perforin and granzymes are crucial 

cytotoxic effector proteins stored in specialized lytic granules with secretory lysosome characteristics. 

Both NK cells and cytotoxic T lymphocytes (CTL) exert their cytolytic functions through the delivery of 

granule content to the contact site with target cell. The fusion of secretory granules with the plasma 

membrane leading to the release of cytotoxic mediators or cytokines is termed “degranulation”. The 

process is used to measure NK cell activity at the single cell level upon triggering of specific activating 

pathways or encounter of target cells. It is based on the appearance of lysosomal membrane glycoproteins 

1 and 2 (CD107a and CD107b) on the cell surface due to degranulation [76-77]. CD107a/b are proteins 

found in the lysosomal membrane, but redistribute on the cell surface shortly after granules fuse with the 

cell membrane. This process is followed by fast internalization and CD107a/b removal from the surface. 

 

Figure 3.4. Cytotoxic mechanisms used by NK cells. NK cells use three distinct pathways to induce death of target 

cells. Granule exocytosis pathway mediates the release of the lytic granuli content including the membrane 

pore-forming protein perforin and serin-proteases granzymes that initiate target cell death. In antibody dependent 

cellular cytotoxicity (ADCC), NK cells recognize target cells opsonized with antibodies via Fc receptors that trigger 

NK cell activation and release of lytic granules. In death-receptor pathway, death inducing ligands (TNF, FasL, TRAIL) 

expressed by NK cells engage the cognate receptor on target cells inducing a series of events that lead to the 

activation of caspases and target cell apoptosis. [39, 78] 
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Perforin is a highly conserved membrane-disrupting protein vital for NK cell cytotoxicity [79]. Current 

models suggest that perforin polymerizes within the endosome- and/or plasma membrane and forms 

pores causing granzyme diffusion and necrosis of target cells. [80]. Perforin mediated cytotoxicity plays an 

important role in NK cell mediated tumor suppression [81-83]. Various anti-tumor therapies (e.g. IL-2 or 

IL-21 application) activate NK cells to destroy implanted tumors in a perforin dependent manner [84-85].  

Granzymes represent structurally related serine-proteases with various substrate specificities. Apoptotic 

cell death triggered by granzymes is mediated via activation of caspases, induction of mitochondrial 

damage, which leads to the release of pro-apoptotic factors, and/or DNA damage pathway [80]. Besides 

induction of cell death, it was shown that certain granzymes could exert distinct biological roles. As an 

example, granzyme A can activate IL-6, IL-8 and IL-1β through the direct or indirect cleavage of their 

pro-peptides, thereby having a pro-inflammatory effect [86]. 

Antibody-coated target cells trigger a strong NK cell cytotoxic response named antibody dependent 

cellular cytotoxicity (ADCC), which can be seen as an example of coordinated actions of adaptive and 

innate effector mechanisms. When an antibody binds to a cell antigen, its Fc portion (carboxy-terminal 

constant region of an Ig molecule) can be recognized by low-affinity receptor for IgG (FcεRIγ), expressed 

by NK cells. Cross-linking of Fc receptors triggers NK cell activation and target cell destruction in a perforin 

dependent manner (Figure 3.4). ADCC is the dominant component of anti-cancer activity of currently 

applied antibodies in clinical settings against non-Hodgkin’s lymphoma (αCD20, rituximab) and breast 

cancer (αHER2/neu receptor, trastuzumab) [87].  

NK cells express at least three TNF family ligands – Fas ligand (FasL), TNF and TNF-related apoptosis 

inducing ligand (TRAIL), which mediate death receptor induced apoptosis of target cells (Figure 3.4). The 

engagement of the ligands induces a conformational change of death receptor and recruitment of adaptor 

proteins that initiate a complex series of events leading to apoptosis. The event crucial for apoptosis 

induction is the activation of signaling cascades whose main components are proteolytic enzymes 

caspases [88-89]. The usage of the specific lytic pathway depends on the tumor type, receptor/ligand 

expression by both effector and target cells and the way that NK cells are pre-activated. As an example, 

NK cell mediated metastases clearance and control of chemically induced tumors was shown to involve 

TRAIL [90-91]. Anti-metastatic effects achieved by IL-18 administration, rely on the FasL pathway [92]. 

Similarly, IFNγ produced by NK cells can induce Fas expression on cancer cells, followed by NK cell 

mediated target elimination [93].  

 

3.2.2.2. NK cell cytokine production 

Numbers of different cytokines are reported to be secreted by NK cells including IFNγ, TNFα, GM-CSF, 

IL-5, IL-10 and IL-13. IFNγ is seen as the most important effector cytokine produced by NK cells due to its 

crucial role in the early anti-viral and anti-bacterial response and orchestration of both innate and adaptive 
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cell activation against cancer [94]. IFNγ can target both tumor and host cells (Figure 3.5). Tumor cell 

responsiveness to IFNγ facilitates rejection via multiple mechanisms. IFNγ inhibits cell proliferation, 

induces sensitivity to apoptosis through its impact on caspase, FasL and TRAIL expression and makes 

tumor cell sensitive to CTL lysis via induction of MHC I and tumor antigen presentation. Host dependent 

anti-tumor effects are based on its role in polarization of Th1 responses, CTL maturation, macrophage 

activation and inhibition of angiogenesis and regulatory T cells generation [95]. 

 

Figure 3.5. Central role of NK cell derived IFNγ in anti-tumor response. NK cell derived IFNγ inhibits angiogenesis and 

tumor cell proliferation and induces tumor cell sensitivity to apoptosis. IFNγ increases MHC I expression and activates 

CTLs and macrophages to destroy tumor cells. DC maturation and Th1 cell polarization is supported by IFNγ, while 

differentiation of regulatory T cells is inhibited. [96] 

Complex microenvironmental signals control the cytokine production by NK cells. Cross-linking of 

activating receptors such as NKG2D, NK1.1, and NKp46 can induce IFNγ release in vitro [97-98]. 

Viral pathogens induce type I IFNs, which are also potent inducers of IFNγ [94]. IL-12, produced by 

macrophages, DCs and neutrophils at the site of infection, participates in the positive feedback loop by 

promoting IFNγ secretion, which in turn further potentiates IL-12 production. TNFα, IL-1 and IL-18 were 

described to further increase the IL-12 mediated release of IFNγ. In contrast, IL-10 and TGFβ are shown 

to suppress its production. When the amount of IL-12 and/or IL-18 is limited, co-triggering of activating 

NK receptors leads to maximal IFNγ induction. IL-18, initially described as IFNγ-inducing factor (IGIF) [99], 

exerts the most potent synergy with IL-12 regulating INFγ production by both NK and T cells [100]. 

The underlying mechanism of the synergistic action includes the reciprocal induction of the corresponding 

cytokine receptors and recruitment of different sets of transcription factors to the IFNγ promoter. The main 
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producers of IL-18 are macrophages, DCs, Kupffer cells and keratinocytes upon encounter of pathogens. 

The innate responses to intracellular microbes and viruses are amplified by IL-18 through its facilitation of 

cytokine (IFNγ, GM-CSF, IL-1β, IL-6, TNFα) and chemokine (IL-8) expression, induction of adhesion 

molecules and effector cell activation. IL-18 enhances neutrophil and NK cell cytotoxicity, Th1 responses 

in combination with IL-12, Th2 responses with IL-2 and Th17 responses with IL-23. 

Due to the potent stimulating effects through both innate and adaptive immune effector arms, both IL-12 

and IL-18 were widely exploited in therapeutic settings in mouse tumor models. Systemic IL-18 application 

has been shown to mediate the regression of poorly immunogenic B7-1 expressing mouse melanoma in 

a NK dependent manner [101]. IL-12 treatment induced suppression of metastatic growth by the 

enhancement of perforin dependent cytotoxicity, while in the same settings, IL-18 required tumor 

sensitivity to FasL [102]. However, IL-18 can have opposite pro-tumoral effects [100]. IL-18 dependent 

tumor growth promotion is correlated to its ability to support tumor angiogenesis through the induction of 

VEGF and hamper immune response by inducing FasL expression on tumor cells. Degradation of 

extracellular matrix by MMP-9 and expression of adhesion molecules on vascular endothelia, both induced 

by IL-18, support metastatic dissemination. 

 

3.2.2.3. NK cell regulatory functions. Interaction with dendritic cells (DCs)  

When a certain tissue is affected by pathogen invasion or malignant transformation, multiple immune 

effectors are recruited in response to released inflammatory mediators. Innate immune cells, which are 

first to invade the affected tissue establish multiple interactions both within each other and with resident 

cells, that can have multiple impacts on the quality and strength of ongoing innate and adaptive response 

that follows. It was shown that NK cell interaction with dendritic cells can shape both NK and DC effector 

functions (Figure 3.6) [66, 103]. The initial activation of tissue resident NK and dendritic cells is achieved 

via signals derived from tumor or virus infected cells in the environment and then further amplified through 

the NK/DC cross-talk. It was shown in the human system that the engagement of NKp30 in interaction with 

DCs induces TNFα release by NK cells, which in turn mediates DCs maturation. Activated DCs secrete 

IL-12 and IL-18, cytokines known to induce potent IFNγ secretion by NK cells. Such a cross-activation of 

NK and DCs is proposed to take place in invaded tissues at early time points when NK/DC ratio is 

relatively low. In addition, it can be highly relevant in lymph nodes, where the early release of IFNγ by NK 

cells plays a crucial role in T cell priming [104]. In a mouse model of MCMV infection, conventional DCs 

enhance NK cell lytic potential in IFNα and NKG2D dependent manner and IFNγ production through IL-12 

and IL-18 production [105]. In tumor settings, adoptively transferred DCs promoted NK cell mediated 

control of MHC I deficient mesothelioma independently of IL-12 or type I IFNs [103].  

Another possible result of the NK/DC interaction is the elimination of immature DCs by activated NK cells. 

In the human system, a major role in lysis of iDCs is played by TGFβ and the activating receptors NKp30 

and DNAM-1 whose ligands are expressed by DCs. Since iDCs express MHC I molecules, killing is 
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mediated by CD94/NKG2Alow NK subset. Upon maturation, the increased density of MHC I protects mDC 

from NK cell mediated elimination. A proposed purpose of iDCs lysis is the elimination of DCs that might 

fail to mediate optimal T cell priming and might take place in the late phase of the response when NK/DC 

ratio is relatively high [106-108]. 

 

Figure 3.6. NK cell interaction with DC. DCs activated by the pathogen encounter increase NK cell cytotoxic response, 

IFNγ production, proliferation and survival through direct contact or via release of cytokines. In turn, activated NK cells 

support DC maturation or kill immature DCs providing optimal conditions for T cell priming. [109] 

 

3.2.3. NK cell development, subsets and tissue distribution 

The main pool of mouse peripheral NK cells develops from hematopoietic stem cells following a series of 

sequential stages of maturation, expansion and acquisition of specific NK receptors [110]. Every stage is 

defined by specific phenotypic and functional characteristics, although stimuli and limitations governing the 

progression through the stages are not completely understood. Committed NK cell precursors from bone 

marrow are lineage negative (Lin-, CD3-CD19-Gr1-) and express the IL-2/IL-15R common β subunit 

(CD122). Further NK cell development as well as survival in the periphery are completely dependent on 

IL-15. Committed Lin-CD122+ precursors at the next stage upregulate integrin αv subunit and NK1.1 and 
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NKG2/CD94 receptors (Figure 3.7). Expression of tyrosine kinase c-Kit and acquisition of different Ly49 

receptor family members are further events and precede the expansion stage in bone marrow. Fully 

mature NK cells are recognized by the expression of a variety of integrins like Mac-1 (αM subunit 

associated with β2, or CD11b) or DX5 (α2 subunit associated with β1 or CD49b), which are upregulated in 

the final maturation stage. In addition to integrins and in contrast to immature precursors, fully mature NK 

cells co-express CD43, known as leukosialin, low levels of c-Kit and no αv, which are both downregulated 

as differentiation proceeds. Finally, fully mature NK cells show a functional competence concerning 

cytotoxic responses and IFNγ production.  

 

Figure 3.7. Model of murine and human NK cell development. NK cells originate from hematopoietic stem cell (HSC) 

and mature in bone marrow. Committed NK cell precursors (NKP) are lineage negative (Lin-, CD3-CD19-Gr1-) and 

express IL-2/IL-15Rβ (CD122). NK cell development and survival in the periphery are completely dependent on IL-15. 

The differentiation of the fully matured NK cells is characterized by the sequential acquisition of expression of NK cell 

receptor and adhesion molecules. Several molecules are expressed transiently during differentiation and therefore are 

used as the phenotypical markers for immature NK cells (c-Kit, CD117). The final step of maturation includes 

acquisition of functional competence for cytotoxic responses and IFNγ production. [111] 
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Although defined by different marker molecules, there is evidence that human NK cells follow a similar 

differentiation pathway in vivo. The maturation of human NK cells is characterized by the gradual 

upregulation of CD56 and CD11b and sequential upregulation of NK receptors: CD161 and NCRs, 

followed by CD94 and, at the final stage, CD16 and KIRs [112]. Human NK cells are defined as 

CD3-CD56+ and comprise two functionally distinct subsets. CD56highCD16- NK cells express CCR7 and 

CD62L and thereby dominate in lymph nodes, where they can interact with DCs. They are very potent 

cytokine producers, while exerting poor cytotoxic responses against typical NK cell targets. On the other 

hand, they efficiently eliminate immature dendritic cells. The CD56dimCD16+ subset dominates in 

peripheral blood and inflamed tissue and shows high cytotoxic activity [113]. 

A.     B. 

 

Figure 3.8. CD11b/CD27 based definition of NK cell maturation stages. (A) Four different subpopulations representing 

sequential maturation stages of NK cells: DN → CD11blow → CD27high → CD27low. (B) Different phenotype and 

functional properties of mature CD27high and CD27low NK cell subsets. (C) Differential tissue distribution of various 

NK cell subsets; DN, double negative; BM. bone marrow; LN, lymph nodes 

It has been recently described that the fully matured CD11bhigh NK cell pool can be further divided into two 

functional subpopulations according to the expression of the TNF family member receptor CD27 

(Figure 3.8) [114]. CD27low NK cells represent the final maturation stage co-expressing inhibitory Ly49C/I 

receptors at high frequency, and KLRG1, inhibitory lectin-like receptor, but no early activation antigen 

CD69, c-Kit and CD127. This subpopulation dominates in non-lymphoid organs of adult mice, such as lung 

and peripheral blood, and has limited proliferation turnover. In contrast, CD27high subset still expresses low 

levels of CD69, c-Kit and CD127 markers indicating a less mature phenotype. Together with the immature 

C. 
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CD11blow subset, this subpopulation is dominant in bone marrow and lymph nodes, and represents the 

proliferating pool of NK cells. Surprisingly, the CD27high subset displays agreater capacity in migration 

towards certain chemokines, killing certain susceptible targets and producing IFNγ upon cytokine 

stimulation or co-culture with dendritic cells. It has been recently described that double negative 

CD11b-CD27- NK cells comprise precursors of CD11b and/or CD27 expressing subsets, suggesting 

a linear model of NK cell development (Figure 3.8A) [115].  

Among the total NK cell pool in the periphery, a population characterized by the expression of IL-7Rα 

(CD127) has been found to originate in thymus and strictly depend on the transcription factor GATA-3 and 

IL-7Rα [116]. Thymic NK cells are the most abundant in the thymus and lymph nodes. Compared to the 

mature bone marrow derived NK cells, they show a specific CD11blowCD16-CD69highLy49low phenotype, 

reduced cytotoxicity and enhanced cytokine production. Interestingly, a functionally similar human 

CD56bright NK subset, predominating in human lymph nodes, expresses CD127, while in blood and spleen 

a dominant CD56dim subset is highly cytotoxic and CD127 negative.  

NK cell development can take place at some additional anatomical places from different precursor cell 

pools. NK cells can potentially arise from bipotent T/NK precursors found in fetal liver, spleen and blood 

[117]. In addition, a subset of immature thymocytes on both a double negative CD4-CD8-CD44+CD25- and, 

to a lesser extent, double positive CD4+CD8+CD44+CD25+ maturation stage can differentiate toward 

NK cells [118]. A subpopulation of lymph node cells in mice resembling immature thymocytes is also found 

to differentiate into NK cells in vitro [119]. 

NK cells found in different organs can have different phenotype and exert different functional 

characteristics. However, it is still not clear whether mature NK cells modify their phenotypic and functional 

attributes in defined microenvironmental conditions or immature precursors mature in those conditions 

giving rise to divergent NK cell functional subsets. Based on the CD11b/CD27 subset definition, the spleen 

NK cell compartment is composed of all four subsets, immature NK cells dominate in bone marrow, while 

at peripheral sites such as blood and lungs, preferentially mature CD27low NK cells can be detected. 

Lymph nodes contain low percentages of NK cells that are mainly CD27high and express CD127. Since 

those cells have a high capacity of cytokine production, they could play a very important role during T cell 

activation by providing IFNγ for Th1 polarization [120].  

 

3.2.4. NK cells with specialized functions 

Liver NK cells 

Mouse liver preferentially contains NK cells of the immature CD11blowDX5low phenotype that express 

TRAIL, but no Ly49 receptors, perforin and granzymes. TRAIL+ NK cells are predominant in fetal and 

neonatal mice being distributed in spleen and other peripheral lymphoid organs. Their number decreases 

with age and they are retained only in the liver. On the one hand, the liver can represent the pool of 
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immature NK cells that can differentiate into fully mature effectors in a short time period. On the other 

hand, TRAIL expressing NK cells can have very well defined but still not fully discovered biological 

purposes, including elimination of potentially dangerous targets arising in liver, including metastasing 

tumor cells [121]. In addition, evidence exists that the total pool of NK cells residing in the liver could 

contain cells with memory properties [122].  

Uterine NK cells 

Uterine NK cells in human were shown to invade the decidua early in gestation at the time of implantation 

of the fetal trophoblast. They constitute of up to 70% of the immune cells present in the deciduas during 

the first trimester of pregnancy. Human decidual NK cells cosist of the predominately CD56brightCD16- 

phenotype with special functional properties. They promote the migration of trophoblast and 

vascularisation of placenta by the production of IL-8, CXCL10, VEGF and PDGF [123]. Mouse uterine 

NK cells have an unusual phenotype distinct from splenic NK cells [124]. Similar to the immature NK cell 

precursors, they do not express NK1.1 and DX5, while expressing low levels of CD11b and high levels of 

CD69 and c-Kit. However, unlike immature NK cells, uterine NK cells express Ly49 receptors with 

a repertoire qualitatively and quantitatively different compared to the NK cells found in the spleen. 

Gut NK cells 

Recent studies have shown that both human and mouse gut-associated lymphoid tissue harbor NK cells 

with unique phenotypical and functional properties, whose main characteristics are the production of IL-22. 

IL-22 is a member of the IL-10 cytokine family essential for host defense at the musical barriers. The IL-22 

receptor is expressed on epithelial cells and its triggering induces the production of multiple anti-microbial 

mediators [125-126]. In mucosal areas of human tonsils and Payer’s patches a specialized subset of 

NKp44+ NK cells expressing the chemokine receptor CCR6 is identified to produce IL-22 [127]. In mouse, 

the analysis of the lamina propria and the intraepithelial surfaces of small intestine revealed a minor 

subpopulation of mature classical NK cells, expressing Ly49 receptors, perforin and IFNγ, and an 

additional IL-22 producing NK cell subset that express CD127 (IL-7Rα), CD117 (c-Kit), but not Ly49 

receptors, perforin and IFNγ [128-130]. While conventional NK cells require IL-15 for their development 

and homeostasis, thereby are absent from IL-15-/- and IL-2γc-/- mice, IL-22 producing NK cells depend on 

the transcription factor RORγt and commensal flora and develop normally in the absence of IL-15 signal. 

Interferon-producing killer DC (IKDC) 

A number of recent publications have described a cell population with dual nature, combining the 

properties of both DCs (antigen presentation, IL-12 secretion) and NK cells (lytic capacity and IFNγ 

production) [131-132]. The phenotypical characterization indicated that those cells could be found within 

the CD11c+ (DC marker) NK1.1+ (NK cell marker) spleen subpopulation. However, it is still not clear if the 

dual NK/DC function can be performed by a single cell type within the CD11c+NK1.1+ population and 

whether it is exerted at the same time or sequentially acquired during ongoing response. Indeed, the study 
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of Ullrich et al. indicated that upon IL-15 trans-presentation those cells lose their DC potential and become 

typical NK effectors [133]. Commonly named natural killer DC (NKDC) or interferon-producing killer DC 

(IKDC), this population is further defined by the co-expression of B220 (CD45R) and DX5, while T cell 

(CD3), B cell (CD19) and granulocyte-monocyte (Gr1) markers are absent. More recent studies revealed 

their close relationship with NK cells, supported by the finding that IKDC express the typical NK cell 

marker NKp46, as well as Ly49 receptors, NKG2D and CD122 [134-135]. In addition, their dependence on 

IL-15 and the fact that NK cells upregulate CD11c and B220 upon stimulation, support the view of IKDCs 

being a subpopulation of activated NK cells. Upon target encounter and elimination, IKDCs upregulate 

MHC II and costimulatory molecules (B7-1/2, CD40, OX40L), a process shown to depend on IFNγ, and 

are able to activate CD4+ and CD8+ cells [136-137]. Similar phenotypical and functional properties can be 

attributed to the NK cells, activated through target cell recognition and lysis [138].  

In spleen of naive C57BL/6 mice, approximately 1% of all CD11c+, and about 10% of CD3-NK1.1+ NK cells 

phenotypically correspond to IKDCs [139]. More importantly, IKDCs were found to accumulate in tumor 

tissue and mediate potent anti-tumor activities. B16 melanoma progression in mice can be markedly 

inhibited by the adoptive transfer of CD11c+B220+, but not CD11c-B220- NK cells into Rag-/-IL-2Rγc-/- tumor 

bearing mice. A current hypothesis suggests that the dual function of IKDCs (or activated NK cells) can be 

beneficial during early responses to tumor and pathogens, due to their fast activation and potential to 

eliminate targets, uptake antigens, accumulate in lymph nodes and prime T cell responses. 

 

3.2.5. NK cells and cancer 

3.2.5.1. NK cells and cancer immunosurveillance 

Cancer immunosurveillance represents a concept, which predicts that the immune system recognizes and 

in most cases destroys precursors of cancer before it becomes clinically apparent [140]. There are 

numerous experimental data indicating that different components of immune response are implicated in 

cancer surveillance (Table 3.4), including both the adaptive and the innate immune system. 

The involvement of NKG2D, IFNγ, perforin and TRAIL mediated mechanisms in the process strongly 

suggests that NK cells could play a very important role in the control of tumor development. However, it is 

clear that the role of a single cell type and different mechanisms applied by a given cell, depends on the 

tumor type and the strategy that particular developing tumor uses to evade the response of the immune 

system. For example, MCA induced sarcomas show higher incidences in DNAM-1, but not in NKG2D 

deficient mice. On the other hand, NKG2D is implicated in the control of development of Eµ-Myc driven 

B cell lymphomas [42]. 
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Mouse strain 
Tumorigenesis promoting 

system 
Tumor type 

Defective immune 

component 

Spontaneous tumors 

129/Sv  ‐ Colon, Lung RAG2 

129/Sv  ‐ Colon, mammary RAG2 and STAT1

C57BL/6  ‐ B cell lymphoma β2m and perforin

C57BL/6  ‐ Lymphoma TRAIL 

C57BL/6  ‐ Lymphoma perforin

Transgenic and knockout tumor models

129/Sv  Tp53‐/‐ Lymphoid and other STAT1 

129/Sv  Tp53‐/‐ Lymphoid and other IFNγR 

C57BL/6  Tp53‐/‐ Lymphoid and other TRAIL 

C57BL/6  Tp53‐/‐ Lymphoid perforin

C57BL/6  Tp53‐/‐ Lymphoid and other TCRJα28 and CD1d

C57BL/6  TRAMP Prostate NKG2D 

C57BL/6  TRAMP Prostate TCRδ 

C57BL/6  Eµ‐Myc B cell lymphoma NKG2D 

C57BL/6  Eµ‐Myc B cell lymphoma TRAILR 

C57BL/6  Eµ‐Myc B cell lymphoma RAG1 

Carcinogen induced tumors 

129/Sv  MCA Fibrosarcoma RAG2 

129/Sv  MCA Fibrosarcoma IFNγ 

129/Sv  MCA Fibrosarcoma IFNγR 

129/Sv  MCA Fibrosarcoma STAT1 

129/Sv  MCA Fibrosarcoma RAG2 and STAT1

C57BL/6  MCA Fibrosarcoma IFNγ 

C57BL/6  MCA Fibrosarcoma perforin

C57BL/6  MCA Fibrosarcoma TRAIL 

C57BL/6  DEN Hepatocarcinoma TRAILR 

C57BL/6  MCA Fibrosarcoma TCRJα28

FVB  MCA Fibrosarcoma TCRβ 

FVB  MCA Fibrosarcoma TCRδ 

FVB  DMBA and TPA Cutaneous TCRδ 

C57BL/6  MCA Fibrosarcoma TCRδ 
 

Table 3.4. Immune deficiencies associated with greater tumor incidence or tumor severity in mice.  [42] MCA, 

methylcholanthrene; DMBA, 7,12-dimethylbenzanthracene; TPA, 12-O-tetradecanoylphorbol-13-acetate; DEN, diethylnitrosamine 
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The broader concept of immunoediting states that the complex interplay between the cancer and immune 

system eventually leads to progressive tumor outgrowth. It is proposed that cancer usually develops 

through the series of steps characterized by events that all together can alert the immune system 

(Figure 3.9). Elimination, equilibrium and escape are the three phases of immunoediting [95].  

Elimination. Activation of oncogenes or/and mutation affecting tumor-suppressor genes can induce DNA 

damage, heat-shock and other responses that result in cell cycle arrest, cell senescence and apoptosis. 

At the same time, those mechanisms have been shown to induce numerous ligands on the surface of 

affected cells (e.g. upregulation of NKG2D ligands upon DNA damage [141]) allowing the immune system 

to be alerted for potential danger and eliminate transformed cell.  

Equilibrium. If some tumor cells are not destroyed in the elimination phase, they can persist, being 

prevented to expand by the immune system, in the so called equilibrium phase.  

Escape. Under the selective pressure of immune response, further mutations in malignant cells, which 

affect the genes regulating metabolic processes, proliferation, survival and sensitivity to immune 

destruction, can help the evasion of protective mechanisms leading to the development of cancer. 

For example, tumor cells can downregulate MHC I, antigen-processing machinery, death receptors and 

other apoptosis mediators. The direct or indirect immune system inactivation involves the expansion and 

recruitment of suppressive cell populations and production of suppressive mediators, such as TGFβ, 

IL-10, IL-13, IDO, arginase-1 and others. In order to become invisible, tumor cells can differentially 

regulate the expression of ligands that can be recognized by the immune system. Expression of NKG2D 

ligands can be downregulated by shedding the proteins from the cell surface by metaloproteinases [142]. 

In other cases, high expression of NKG2D ligands can be exploited to downregulate the receptor on 

immune effector cells due to the chronic engagement, which can lead to the impairment of NKG2D as well 

as other activation pathways [142-147]. In patients with MICA positive tumors, soluble MICA ligands have 

been detected in serum, which correlated with the downregulation of NKG2D on effector cells and 

impairment in their responsiveness [143]. Similarly, AML patients show impaired NK cell activity correlated 

to low expression of natural killer cell triggering receptors (NCRs) [148]. 
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Figure 3.9.  Cancer immunoediting. [95] The process of malignant transformation leads to the upregulation of danger 

signals and the expression of various molecules that alert the immune system. Transformed cells are destroyed by 

immune effector cells in the phase of elimination. In the equilibrium phase, small numbers of cancer cells that were not 

eliminated persist, but do not proliferate due to the control established by the immune system. Genetic instability and 

immune selection result in the evasion of protective mechanisms leading to the development of cancer, which further 

inhibits immune responses through various mechanisms.  ECM, extracellular matrix; IDO. Indolamine 2,3-dioxygenase 
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3.2.5.2. NK cell based cancer immunotherapy 

NK cells are recognized as potent anti-tumor effectors in vitro and in mouse models in vivo. Multiple NK 

cell effector mechanisms can be exploited for anti-cancer therapy, both direct (destruction of tumor 

targets) and indirect (activation of adaptive responses via DCs). Up to date, various strategies have been 

designed to implement NK cells in anti-tumor therapeutic settings (Table 3.5). 

Treatment   
Clinical 

application 
Clinical effects  Effects on NK cells 

Recombinant cytokines 

IL‐2  i.v.  Melanoma 16% OR High toxicity 

IL‐2  i.v. or s.c.  RCC  15% OR  

IL‐2  + LAK  RCC  21% OR  

IL‐2  + IFNα  RCC  20.6% OR  

IL‐2  + BMT  BC, NHL  No improvement  ↑ IFNγ in serum, ↑ PBMC cytotoxicity 

IL‐2  s.c.  Advanced cancer  ‐  ↑ NK number, cytotoxicity, IFNγ, ADCC 

IFNα  i.v.  CML  60‐80% OR  ↑ NK cytotoxicity, IFNγ 

IL‐12  i.v.  Melanoma, RCC  1PR, 3SD (n=14)  ↑ IFNγ, IL‐15, IL‐18  in serum 

IL‐12  i.v.  Advanced cancer  ‐  ↑ NK cytotoxicity, LFA‐1 

IL‐12  i.v. + IL‐2  Melanoma, RCC  1 PR (n=28)  ↑ NK number, ↑ IFNγ, CXCL10 in serum 

IL‐18  i.v. 
RCC, melanoma, 

HD 
2 PR (n=28) 

↑ NK FasL 

↑ IFNγ, GM‐CSF, IL‐18BP  in serum 

IL‐21  i.v.  Melanoma  1 CR (n=29) 
↑ NK cytotoxicity 

↑ Prf, GzmB mRNA in PBMCs 

Flt3L  s.c. + BMT  HD, BC  ‐  ↑ circulating iDCs 

Vaccines 

Hsp96  s.c.  Colorectal cancer 
33% DFS 

79% 24‐months OS 

↑ NK cytotoxicity, IFNγ, NKG2D, NKp46, 

CD69, CD25 

↑ CD40, CD83, IL‐12 by PBMCs 

Hsp96 
+ IFNα 

+ GM‐CSF 
Melanoma  11 SD (n=38)  ↑ NK IFNγ, ↑ T cell activity 

CpG  i.v.  NHL  2 PR (n=23)  ↑ NK cytotoxicity 

MD‐DC+CEA   
Metastatic CEA+

cancer 
5 SD (n=9)  ↑ NK number, cytotoxicity 

DEX  s.c.  Melanoma 
1 PR, 2 MR, 2 SD 

(n=15) 
↑ NK number, cytotoxicity, ↑ NKG2D 
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Antibody therapeutics 

Rituximab  + IL‐2 s.c.  B cell NHL  53% OR  ↑ NK number, ADCC 

Rituximab  + IL‐2 s.c.  Indolent NHL  8.8% OR  ↑ NK number, ADCC 

Rituximab 
+ IL‐2 i.v. 

+ LAK 
B cell NHL  1 PR, 4 SD (n=10)  ↑ NK number, ADCC 

Trastuzimab  + IL‐12 i.v.  BC  1 CR, 2 SD (n=15)  ↑ NK IFNγ, ADCC 

αCD16/CD30 

bispec Ab 
i.v.  HD  25% OR  ↑ NK cytotoxicity 

αCD16/CD30 

bispec sAb 

+ IL‐12 

+ GM‐CSF 
HD  29% OR  ↑ NK number, ADCC 

Daclizumab    Uveitis    ↑ NK number, IL‐10 

Daclizumab  + IFNβ  MS 
70% CNS lesion 

reduction 

↑ NK number, cytotoxicity against 

activated T cells 
 

Table 3.5. Clinical trials using strategies to modulate NK cell function. [87] i.v., intraveneous; s.c., subcutaneous; LAK, 

lymphokine activated killer cells; BMT, bone marrow transplantation; RCC, renal cell carcinoma, BC, breast cancer; NHL, 

non-Hodgkin’s lymphoma; CML, chronic myeloid leukemia; HD, Hodgkin’s lymphoma; MS, multiple sclerosis; OR, overall response; 

PR, partial response; SD, stable disease; CR, complete response; DFS, disease-free survival; OS, overall survival; CNS, central 

nervous system; Prf, perforin; GzmB, granzyme B 

 

Use of autologous NK cells 

The systemic or local application of multiple factors previously known to enhance NK cell functions has 

been shown to be beneficial in mouse tumor models. IL-2 suppresses many experimental tumors by NK 

cell dependent mechanisms that require perforin and/or IFNγ [90, 102]. Positive effects are reported for 

IL-12 [84], IL-15 [149-150], IL-18 [102] and IL-21 [151-152]. 

In humans, Rosenberg and colleagues performed pioneering studies in advanced renal cancer and 

melanoma patients applying the adoptive transfer of ex vivo expanded autologous NK cells together with 

IL-2, however with no benefits compared to IL-2 alone [153]. In addition, high dose of IL-2 used for the 

activation of both endogenous NK and T cells, although beneficial, has been shown to have toxic side 

effects and can exert additional negative action through T regulatory cells expansion or induction of 

activation-induced cell death (AICD) of NK cells [154-155]. Moreover, toxicities have precluded the use of 

IL-12, although striking effects have been achieved in mouse models [156]. In contrast, IL-21 was shown 

to be effective with no adverse effects [157-158]. Therefore, it has a good potential to be implemented in 

the future therapy designs.  

NK cell proliferation, expression of activating receptors as well as lytic and secretory potential can be 

enhanced by other cytokines, such as IL-15, IL-18 and type I IFNs, which are shown to be efficient when 
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used in combination therapies with other agents, e.g. IL-15 together with haploidentical NK cell transfer in 

patients with poor-prognosis AML. Essentially, any treatment that harness the ability of DCs to mediate NK 

cell activation (e.g. TLR agonists such as CpG) is potentially mediated by IL-12, IL-15 and IL-18, produced 

by DCs and macrophages [159].  

Many drugs used in current anti-cancer clinical protocols are proven to work at least in part via NK cells. 

Examples include Mycobacterium bovis bacillus Calmette-Guerin (BCG) treatment of bladder cancer 

[160-161] or tyrosine kinase inhibitor imatinib mesylate (Gleevec), used for patient with gastrointestineal 

stromal tumors [162]. The efficiency of antibody based therapeutics is to a large extent contributed by 

NK cell mediated ADCC [163-164]. 

Use of allogenic NK cells 

The best example of the use of allogenic NK cell is provided in the haploidentical stem cell transplantation 

in patients with AML that greatly improves disease free survival and reduces relapse rates [165]. Unlike 

T cells, donor-derived NK cells in these settings do not mediate GVHD, but exert a strong GVL effect. 

Together with NK cells developed from donor hematopoietic stem cells, they do not only eliminate residual 

tumor cells, but also recipient’s APCs, preventing antigen presentation and activation of alloreactive 

T cells. A prerequisite for the successful treatment is the KIR-ligand mismatch or in other words, 

the recipient should lack one or more HLA I ligands that engage donor inhibitory KIRs. A similar approach, 

called NK cell based donor lymphocyte infusion, is used in high risk leukemia patients after relapse. It is 

based on the infusion of highly purified haploidentical NK cells that can mediate potent anti-tumor effects 

[166-167]. 

Haploidentical NK cell infusions together with IL-2 were given by Miller and colleagues in 

non-transplantation settings to renal cell carcinoma, Hodkin’s disease and AML patients. When high doses 

of IL-2 were applied, donor NK cell proliferation has been observed. A long term survival in this study has 

been correlated with KIR mismatch [168]. 

Trials with adoptive transfer of the NK cell line NK-92 have also been performed and found to be safe. The 

advantages of the NK-92 line could be seen in easy production, no expression of inhibitory KIR molecules 

and the possibility of in vitro manipulation and adjustments. The efficacy of the treatment is to be analyzed 

in future studies [169]. 

Crucial issues for NK cell based anti-cancer therapy 

Although the knowledge about NK cell anti-tumor effects is increasing, the clinical efficacy in human trials 

using NK cell effector responses in different ways has been modest. A possible reason can be that most of 

the studies have been performed in patients with heavy tumor burdens for whom conventional therapeutic 

approaches were ineffective. It is known from the studies in mice that NK cells have a very limited capacity 

to impact on established malignancies. The most effective use of NK cells is considered to be in situations 

when tumor burdens are relatively low, e.g. in patients with minimal residual disease, post surgery, 
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through other treatments or following relapse. In addition, approaches used so far are to be further 

improved via the manipulation of NK cell numbers, activation state and activating and inhibitory receptor 

repertoire, choosing subpopulations with desired functional capacities and enhancing trafficking to the 

tumor site. NK cell based therapies against large solid tumors still remain a challenge, until sufficient 

knowledge is acquired about their homing to the tumor site, migration through tumor tissue, interactions 

with both tumor cell and other immune effectors, including inhibitory populations, and all other forces that 

can impede or improve NK cell anti-tumor actions. 

 

3.3 B7 family 

Naive T cells require two signals for activation [170]. The first signal is delivered by the engagement of the 

T cell receptor (TCR) by proper MHC-peptide complex. Naïve T cells provided solely by a TCR signal 

(if this signal is quantitatively not very strong) are rendered anergic and become inactivated. The second 

signal required for activation is delivered through costimulatory receptors, primarily CD28, and cytokines 

provided by the microenvironment. CD28 belongs to the B7 receptor-ligand family, which is mainly 

implicated in the regulation of T cell activation and effector function [171]. While positive regulators of the 

family support T cell activation, negative regulators are important for the prevention of inappropriately 

directed responses, e.g. to self-antigens, and for limiting the size and duration of an immune response, 

thereby preventing  immune mediated tissue and organ damage. 

 

Figure 3.10. Structural characteristics, binding partners and the functional consequences of B7 family activation [172]. 

The prototypic B7 family receptors CD28, CTLA-4 and PD-1 engage B7-1/2 and B7-H1/PD-L2 ligands and deliver 

activating (CD28) or inhibitory (CTLA-4, PD-1) signals. However, reverse signaling of the ligands has been also 

reported. Some B7 members interact with non-B7 molecules, such as HVEM (TNF family), NKp30 (IgG family) and 

TREML2.  
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The members of the CD28/B7 family do not function independently but rather modify primary signals 

delivered by the TCR. The receptors of the B7 family are type I transmembrane proteins with a conserved 

IgV domain, while ligands are type I transmembrane molecules with both IgV and IgC domains 

(Figure 3.10) [173]. Within the family a single receptor can bind to multiple ligands and a single ligand can 

engage more than one receptor. In addition, bidirectional signaling has been reported for several 

interaction partners [52]. The final outcome of regulation through B7 family members will then depend on 

the established interaction type and the integration of the signals delivered from different family members 

with TCR derived signals. In addition, tight spatial and temporal regulation of the expression of different 

receptor-ligand pairs contributes by adding a new level to the diversity of B7 driven regulation. 

 

3.3.1. Costimulation through B7 family members 

3.3.1.1. CD28 

CD28 is constitutively expressed by both resting and activated mouse T cells [171]. In the absence of TCR 

signaling its engagement does not play a significant role. When the TCR is triggered simultaneously, 

CD28 decreases the threshold for T cell activation and promotes T cell survival, expansion and 

proliferation. The main effects of CD28 co-engagement are increased transcription and stabilization of IL-2 

mRNA that supports proliferation [174] and up-regulation of anti-apoptotic protein Bcl-XL that supports 

survival [175]. CD40L, ICOS, OX40 and CD137 (4-1BB) are also induced by CD28 and further contribute 

to T cell activation providing the costimulatory signals of different quality. In addition, the increased 

expression of a glucose transporter and glycolytic enzyme activity as a consequence of CD28 triggering 

provides metabolic requirements for the cell division and effector function [171]. Recruitment and 

activation of phosphoinositide 3-kinase (PI3K) appears to be essential for CD28 mediated costimulation. 

The function of inhibitory B7 family receptors PD-1 and CTLA-4 is partially based on the counteraction of 

CD28 effects by targeting proximal signaling molecules in its pathway. PD-1 targets PI3K, while CTLA-4 

inhibits more downstream Akt activation via the phosphatase PP2A [176]. CD28 deficient mice exhibit 

impaired T cell responses [177] and reduced disease severity in murine models of arthritis, EAE and 

musosal lung inflammation [178-180]. 

CD28 engages two ligands, B7-1 and B7-2, that have different spatial and temporal regulation of 

expression, and are also recognized by the B7 inhibitory receptor CTLA-4. B7-2 is expressed constitutively 

at low levels on B cells, DCs and macrophages, but it is rapidly up-regulated following activation and plays 

an important role in the initiation of immune responses. B7-1 expression is induced in the span of several 

days upon activation, which makes it more important for the regulation of sustained T cell activation in the 

later phases of effector responses [181]. Although binding to the same receptors, due to the different 

binding affinities and expression patterns, B7-1/2 ligands induce different functional outcomes. 
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For example, while B7-1 engagement preferentially favors Th1 responses, B7-2 engagement augments 

IL-4 production and Th2 differentiation [182].  

There is evidence that both B7-1 and B7-2 can deliver reverse signals that differentially affect DCs. 

CD28 engagement by B7-1/2 expressed on DCs leads to IL-6 production and subsequent T cell 

immunostimulation [183]. On the other hand, binding of CTLA-4 induces IFNγ, which acts in an autocrine 

manner and induces indolamine 2,3-dioxigenase (IDO) synthesis by DCs [184]. Released in the 

microenvironment, IDO degrades tryptophan to kynurenines, which inhibit T cell proliferation and induce 

apoptosis [185]. Its induction is one of the mechanisms used by Treg to repress T cell function, owning to 

their constitutive expression of CTLA-4 [186].  

 

3.3.1.2. ICOS 

ICOS is a costimulatory receptor expressed as a homodimer on activated and memory T cells [187]. 

The expression of ICOS is positively regulated, although not absolutely dependent, upon TCR and CD28 

engagement. It typically functions distally to the CD28 delivered costimulation. While the CD28 

costimulation is critical in the priming phase and necessary for IL-2 production and T cell expansion, ICOS 

provides the signal for the sustained regulation of previously activated T cells. Its engagement leads to the 

enhancement of cytokine (IFNγ, TNFα, GM-CSF, IL-10, IL-4, IL-5 and IL-13, but not IL-2) production and 

effector T cell function [71]. Although upregulated on both Th1 and Th2 cells, ICOS is found to costimulate 

Th2 responses more effectively. In addition, ICOS plays a very important role in antibody responses and 

germinal center formation. The engagement of ICOS by ICOS-L expressed on B cells could be a critical 

event for the activation of the CD40:CD40L pathway, necessary for the development of humoral immune 

responses [188]. Its ligand is constitutively expressed by B cells, macrophages and dendritic cells and can 

be further modulated by inflammatory stimuli such as IFNγ, TNFα, GM-CSF or LPS. Interestingly, ICOS-L 

is highly expressed on immature DCs and B cells and its expression is reduced in the presence of 

bacterial stimuli and BCR triggering, respectively [59].  

 

3.3.2. Inhibition through B7 family members 

3.3.2.1. CTLA-4 

In both mouse and human, the ctla-4 gene is mapped to the same chromosomal region as cd28 and 

considered to arise by duplication of an ancestral costimulatory gene. On protein levels these two 

molecules share 30% identity. Interestingly, the cytoplasmic tail of the CTLA-4 protein is 100% conserved 

among mammalian species [189]. CTLA-4 is encoded by 4 exon gene encoding leader peptide, 

ligand-binding site, transmembrane region and cytoplasmic tail, respectively. In human and mouse the 

CTLA-4 transcript undergoes alternative splicing giving rise to full-length CTLA-4 (flCTLA-4), soluble 
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CTLA-4 (sCTLA-4), a transcript coding only exon 1 and 4, and, in mouse only, ligand-independent CTLA-4 

(liCTLA-4) [190]. Upon TCR engagement, CTLA-4 mRNA is detected within 1h peaking at 24-36h 

post-stimulation. The stability of the transcript increases in the presence of CD28 costimulation. CTLA-4 

protein can be detected on T cell surface after 24-48 h [191]. However, most of the protein is retained 

intracellularly and only about 10% is exposed on the cell surface [192]. The trans-Golgi network (TGN) as 

well as endosomal and lysosomal compartments were identified to comprise CTLA-4 intracellular pools 

(Figure 3.11). Intracellular trafficking of CTLA-4 is tightly regulated by association with adapter proteins. 

At the Golgi site, CTLA-4 cytoplasmic tail interacts with TRIM, which mediates its transport to the surface, 

or AP-1, which targets it to lysosomes. Surface exposed CTLA-4 has a very short half-life, since it is 

internalized upon binding of AP-2, and targeted to endosomes and lysosomes for degradation. Upon T cell 

activation, the CTLA-4 cytoplasmic tail is phosphorylated, which prevents AP-2 binding and stabilizes 

CTLA-4 surface expression. In addition, the level of surface expression can be further enhanced by the 

activation induced secretion of CTLA-4 enriched lysosomes [192-194].  

A.                   B. 

 

Figure 3.11. Intracellular trafficking of CTLA-4. [195] (A) Newly synthesized CTLA-4 binds to the transmembrane 

adapter TRIM in the TGN promoting the formation of CTLA-4-containing vesicles and their transport to the cell 

surface. On the cell surface, CTLA-4 and TRIM no longer associate allowing TRIM to interact with other receptors, 

possibly the TCR complex. Shuttling to the lysosomal compartment from the TGN occurs due to adapter AP-1 binding 

to CTLA-4. On the surface, CTLA-4 becomes phosphorylated by kinases Lck, Fyn, and Rlk leading to the association 

of PI3K and possibly other proteins. Phosphorylation retards internalization. Dephosphorylation allows binding to the 

clathrin adapter AP-2 and rapid internalization to endosomes and lysosomes. Upon T-cell activation, CTLA-4 enriched 

lysosomes and endosomes are recycled to the cell surface. (B) Pattern of intracellular CTLA-4 staining in WT T cells. 

Cells were labeled with anti-Syntaxin (TGN marker, green) and anti-CTLA-4 (red). TRIM, T-cell receptor-interacting 

molecule; TGN, trans-Golgi network; PI3K, phosphoinositide 3-kinase 
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CTLA-4 is a high affinity receptor for B7-1 and B7-2, ligands shared with the activating counter-receptor 

CD28. The avidity of the CTLA-4 binding to shared ligands is around 20 times higher when compared to 

CD28. As a consequence, in situations when ligand expression is limited, CTLA-4 might out-compete 

CD28 for binding, which results in overall inhibition. Structural analysis revealed that pairing of CTLA-4 

with B7-1/2 results in the formation of extended organized periodic network at the interface of a T cell and 

APC (Figure 3.12). Such a structure might prevent diffusion of receptors and/or ligands from the contact 

site and favor recruitment of signaling molecules at a high concentration, but can also interfere with signals 

established by the initial interaction between two cells. All these mechanisms might underline possible 

CTLA-4 dependent inhibitory actions. 

 

Figure 3.12. Extended periodic array formed by the CTLA-4:B7-1/2 complexes. [173] A lattice-like network is created 

by the interaction of  a single CTLA-4 receptor with two different B7-1 or B7-2 dimmers.  

The two main effects of CTLA-4 engagement are decreased IL-2 production and cell cycle arrest that 

finally results in the termination of T cell responses represented by cytokine production and/or cytotoxicity. 

There are several proposed mechanisms of CTLA-4 mediated inhibition of T cell effector functions 

(Figure 3.13) [196]. First one assumes that due to the much higher avidity for the ligands, CTLA-4 simply 

sequesters B7-1/2 molecules, reducing the CD28 engagement and thereby CD28 derived costimulation. 

This mechanism does not require an intact function of the cytoplasmic domain. However, it was shown 

that the cytoplasmic tail was necessary for the CTLA-4 recruitment to the site of immunological synapse 

[197]. In addition, CTLA-4 is able to inhibit the T cell function in the absence of CD28. Mice that express 

tail-less CTLA-4 develop lymphoproliferative disorder similar to CTLA-4 deficient animals [198]. A less 

aggressive appearance of the disease still indicates that ligand competition is a mechanism that plays 

a role in CTLA-4 dependent T cell inhibition and might be of crucial importance when amounts of ligands 

are limited. In addition to ligand sequestering, CTLA-4 excludes CD28 from the immunological synapse 

and blocks the formation of microclusters containing adapters and kinases needed for the effective signal 

transmission downstream of the TCR. The third mechanism implicates a direct inhibitory signal delivered 

by CTLA-4 expressed on the cell surface. Indeed, simultaneous cross-linking of CTLA-4 and TCR in the 

presence of CD28 costimulation is sufficient to inhibit IL-2 production and induce cell cycle arrest [199]. 

CTLA-4 lacks an intrinsic enzymatic activity and a classical immunoreceptor tyrosine-based inhibitory motif 
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(ITIM) frequently found in other inhibitory receptors. Despite this, SH2-containing thyrosine phosphatase-2 

(SHP-2) and serine–threonine phosphatase protein phosphase 2A (PP2A) have been reported to associate 

with the cytoplamic tail of CTLA-4 (Figure 3.14A). However, their binding is not absolutely required for the 

inhibitory function. In addition, SHP-2 is rather implicated in positive signal transduction that leads to cell 

activation [195]. Both phosphatases associate with CD28 as well and differential recruitment to CTLA-4 

during an ongoing immune response, which is regulated by phosphorylation, could be crucial for the final 

outcome of regulation (reviewed in [200]). 

 

Figure 3.13. Mechanisms of CTLA-4 mediated inhibition of T cell function. [196] CTLA-4 inhibitory function is achieved 

by the combined action of several mechanisms: the direct competition for ligands with the activating receptor CD28, 

recruitment of inhibitory signaling components and prevention of lipid rafts and signaling microcluster formation. Under 

different conditions defined by the TCR signal strength, B7-1/2 ligand concentration, recruited signaling molecules etc, 

different mechanisms can play a dominant role in mediating inhibition.  

Furthermore, CTLA-4 has been reported to induce positive signaling events in T cells (Figure 3.14B) [195]. 

CTLA-4 binds to PI3K with the same avidity as CD28 and activates JNK, while inhibiting extracellular 

signal-regulated kinases (ERKs). The inhibition of ERKs could account for negative signaling, while the 

activation of JNK could contribute to the positive effects on Th1 differentiation. Through the PI3K/Vav1 
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pathway CTLA-4 enhances LFA-1 integrin clustering and adhesion, which might stabilize the contact with 

interacting cells. In addition, CTLA-4 binding to PI3K leads to the activation of the PKB⁄Akt pathway, 

similar as CD28. CTLA-4 co-ligation in such circumstances acts to increase cell survival, while at the same 

time inhibits effector responses and/or induces state of non-responsiveness.  

 

A.             B. 

 
 

Figure 3.14. Functional consequences of CTLA-4 signaling. (A) CTLA-4 recruits two phosphatases that might be 

involved in direct dephosphorylation of TCR and/or CD28 proximal signaling molecules leading to the repression of 

T cell responses [201]. (B) Recruitment of PI3K leads to the activation of pro-survival pathways [195]. 

CTLA-4 deficient mice are born healthy. However, 5-6 days after birth, a large proportion of T cells 

becomes activated, causing splenomegaly, lymphoadenopathy and tissue destruction due to the infiltration 

of peripheral organs. The increased activation of B cells results in elevated levels of immunoglobulins 

in the serum. This pathology results in death at 3-4 weeks of age. T cells in CTLA-4 deficient mice show 

an activated CD69+CD25+CD44high phenotype, increased proliferation rate and cytokine production 

compared to WT counterparts. Both CD4+ and CD8+ T cells of broad specificity mediate the disorder 

[202-203]. Antigen-specific stimulation and costimulation via CD28:B7-1/2 pathway is required for the 

activation of CTLA-4 deficient T cells. The lymphoproliferative disorder due to the CTLA-4 deficiency is not 

cell autonomous. In the presence of WT counterparts, CTLA-4 deficient T cells do not cause the disease 

and undergo normal activation and expansion upon infection challenge [204-205]. In humans, several 

polymorphisms in the ctla-4 gene have been connected to different autoimmune disorders, such are 

Graves’ disease, multiple sclerosis, Addison’s disease, type I diabetes, systemic lupus erythematosus 

(SLE) and rheumatoid arthritis, indicating its important role in the maintenance of peripheral tolerance and 

restriction of responses to self-antigens [206]. 
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3.3.2.2. PD-1 

PD-1 has been initially described as a receptor induced on a T cell line undergoing activation-induced cell 

death [207]. However, the expression of PD-1 is not a consequence of induction of cell death per se, but 

rather triggered by T cell activation [208]. In addition to activated T cells, PD-1 is expressed on activated 

B and NKT cells, monocytes and DCs, as well as on maturing thymocytes, playing a role in central 

tolerance induction [209-210]. Particularly high PD-1 expression is a characteristic of functionally 

exhausted effector CD8+ T cells found in multiple persistent viral infections in both mouse and human 

[211-212]. The blockade of PD-1 or its ligand, B7-H1, leads to restored T cell proliferation and cytokine 

production. Regulatory T cells (Treg) show specific pattern of PD-1 protein expression: constitutively 

synthesized protein is stored intracellularly and transported to the cell surface upon stimulation [213]. 

B7-H1 (PD-L1, CD274) and PD-L2 (B7-DC, CD273) are two described ligands of PD-1 (PD-Ls). PD-1 

engagement by its ligands leads to T and B cell inhibition [214-216]. However, it was reported that PD-Ls 

can also costimulate T cell responses, by increasing proliferation, IL-10, IFNγ and GM-CSF, but not IL-2 

and IL-4 production [217-218]. Since costimulation by PD-Ls was observed in PD-1 deficient T cells, 

the existence of a second receptor has been postulated. The pattern of PD-Ls expression is significantly 

broader as compared to other B7 family ligands [219-220]. B7-H1 is broadly expressed on both 

hematopoietic (resting T and B cells, macrophages, DCs, NK cells) and non-hematopoietic (endothelium, 

epithelium, muscle cells, hepatocytes, pancreatic islets, placenta, eye) cells. It is further up-regulated by 

typical proinflammatory stimuli as type I IFNs, IFNγ or LPS. In contrast, PD-L2 is restricted to the 

hematopoietic lineage, more specifically to activated DCs, macrophages and resting peritoneal B1 B cells. 

It can be induced on monocytes and macrophages by GM-CSF, IL-4, IL-13 and IFNγ stimulation 

[221-222]. Due to the their distinct expression pattern and functions, PD-L2 might play a major role in the 

enhancement of T cell responses during the priming phase, while B7-H1 may act at the periphery by 

promoting Th2 cytokine production and down-regulating effector functions. The stimulatory role of PD-L2 

is further supported by the increased immunogenicity of tumor cells that ectopically express this molecule 

[223]. In addition, its cross-linking on DCs leads to their activation and increased ability to stimulate T cells 

[224].  

PD-1 attenuates T cell responses by mechanisms distinct from activation-induced cell death [176]. 

The delivered inhibition depends on the strength of the TCR signal with greater inhibition exerted at low 

levels of TCR stimulation. The cytoplasmic tail of PD-1 contains two tyrosines belonging to an ITIM 

(Immunoreceptor Tyrosine-based Inhibition Motif) and an ITSM (Immunoreceptor Tyrosine-based Switch 

Motif), respectively. Cross-linking of PD-1 alone does not transduce the signal. Simultaneous engagement 

of both TCR and PD-1 results in tyrosine phosphorylation of PD-1 ITIM and ITSM and in the recruitment of 

tyrosine phosphatase SHP-2, which mediates dephosphorylation of proximal TCR signaling components. 

Although both tyrosines are phosphorylated, only the ITSM motif was shown to be crucial for SHP-2 

recruitment. ITSM is reported to transduce both positive and negative signals, which might indicate 

possible dual function of PD-1 receptor. 
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The functional consequences of PD-1 activation include decreased cytokine production and cell cycle 

arrest, mainly through the inhibition of IL-2 secretion, Bcl-XL expression and repression of transcription 

factors associated with T cell effector function (GATA-3, Tbet and Eomes) [225]. Exogenous IL-2 or CD28 

costimulation can rescue PD-1 mediated inhibition [214, 226]. Due to the broad expression of B7-H1 at the 

periphery, PD-1 is seen as a key regulator of peripheral tolerance and attenuator of self reactive T cells. 

In addition, the vigorous response to pathogens that can lead to immune mediated tissue damage is 

controlled by the PD-1 mediated inhibitory function [227].  

PD-1 deficiency, consistent with its negative regulatory function, results in a late onset, chronic, 

progressive lupus-like glomerulonephritis and arthritis on C57BL/6 background [228]. On the other hand, 

Balb/c PD-1 deficient mice develop very rapidly autoimmune-dilated cardiomyophaty that leads to heart 

failure and premature death. B and T cells are required for the pathology to develop, since no disease is 

observed in Balb/c PD-1-/-RAG-/- mice [229]. On an autoimmune-prone background, PD-1 deficiency 

negatively influences disease progression. Onset and severity of insulitis in NOD mice and EAE in 

a mouse model of MS are accelerated when PD-1/PD-Ls interaction is disrupted [230-231]. Similarly, 

in humans, several polymorphisms within the PD-1 encoding gene have been associated with 

autoimmune diseases, including SLE, type I diabetes, RA, MS and Grave’s disease [232]. 

Various tumor cell lines [233-234] and established tumors [235-240] express PD-Ls, which are used by 

tumors to escape immunosurveillance by attenuation of effector cell responses via PD-1 engagement. 

This notion is supported by the observation that B7-H1 expression by tumor cells correlates with poor 

prognosis. In addition, tumor infiltrated lymphocytes upregulate PD-1, which correlates with decreased 

responses [241-242]. Apart from tumor cells, B7-H1 is expressed by vascular endothelial cells and myeloid 

cells, including DCs, in the tumor tissue, which can impair both T cell extravasation and activation at the 

tumor site. In mouse tumor models, treatment with αPD-1 or αB7-H1 blocking mAb as well as tumor 

implantation in PD-1 deficient hosts, augments anti-tumor responses [234, 243-245].  

 

3.3.3. Other B7 family members 

B7-H3 is a distant B7 family ligand initially found to costimulate IFNγ production and T cell cytotoxic 

response. It can be induced on dendritic cells by IFNγ and on monocytes by GM-CSF. Its receptor, 

expressed on T cell upon activation [246], has been recently identified as the triggering receptor 

expressed on myeloid cells (TREM)-like transcript 2 (TREML2) [247]. Alternatively, the inhibition of T cell 

function by B7-H3 has also been reported [248], but the receptor mediating inhibition is not known. It is 

also possible that in different conditions provided by the microenvironment the same receptor can have 

a dual functional role. Moreover, discrepancies were reported when mouse tumor models were compared 

with human malignances. While ectopic B7-H3 expression leads to the tumor regression in mice, its high 

expression in human tumors associates with higher dissemination of metastases and poor prognosis 

[249]. 
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B7-H4, another distant B7 ligand member, has been detected on activated T and B cells, DCs, 

macrophages and monocytes and described as negative regulator of T cell responses [250-252]. Myeloid 

cells stimulated with IL-6 or IL-10 upregulate B7-H4, while DC differentiating cytokines GM-CSF and IL-4 

decrease its expression. It was reported for different human cancers that B7-H4 was highly expressed by 

tumor cells and infiltrated macrophages, which correlated with poor prognosis [219]. 

B7-H6 has been recently identified as B7 family member that specifically binds and activates NK cell 

cytotoxicity via the receptor NKp30 [253]. Interestingly, B7-H6 was neither detected in normal tissues nor 

could be induced under various conditions of cellular stress. However, several tumor cell lines and primary 

tumor cells obtained from patients with hematological malignancies were found to express B7-H6, 

indicating that it can be upregulated by cell transformation. 

BTLA (B and T lymphocyte attenuator) is a transmembrane B7 family receptor structurally similar to PD-1 

and CTLA-4. It is expressed on most hematopoietic cells and increased upon stimulation [254]. Grb2 and 

PI3K binding sites were found in its cytoplasmic tail [255], as well as two ITIM motifs [256]. An inhibitory 

function of BTLA was supported by in vitro data [257] and the phenotype of the knock-out mice that 

develop a spontaneous autoimmune hepatitis-like disease at a late age. BTLA binds to the TNF-R 

superfamily member HVEM that is widely expressed through the lymphoid compartment. HVEM is also 

known for its ability to engage several TNF ligands, such as lymphotoxin α and LIGHT, acting as a positive 

regulator [258-259]. In addition, human T cells are shown to be inhibited through the HVEM interaction 

with CD160, another Ig superfamily inhibitory receptor mainly expressed on cytotoxic lymphocytes, 

including NK cells [260-261]. 

BTNL2 (butyrophilin-like 2) belongs to the family of butyrophilins, which are structurally closely related to 

B7 molecules [262]. Mouse BTNL2 is a type I transmembrane protein with two pairs of IgV-IgC domains, 

which are found in B7 receptors in one copy. Its mRNA is highly expressed in the lymphoid tissues as well 

as in the intestine. It recognizes a putative receptor whose expression on B and T cells is significantly 

enhanced after activation. BTNL2 engagement inhibits T cell proliferation and TCR activation of NFAT, 

NF-kappaB, and AP-1 signaling pathways.  

 

3.3.4 B7 family members as therapeutic targets 

Two main classes of disorders, malignancies and autoimmune diseases, are considered as the best 

therapeutic targets using approaches that modulate the activity of costimulatory and/or coinhibitory B7 

family members. Autoimmunity, accompanied with deregulated inhibition towards self antigens, is usually 

treated in the way that blocks unleashed stimulation. On the other hand, multiple approaches are 

considered for the treatment of tumors. The self-nature of tumor antigens requires breaking of self 

tolerance by mechanisms which will dissociate therapy induced activation from possible adverse effects. 

In addition, proper costimulation should be achieved in order to prevent anergy induction. At the same 



Ana Stojanovic    Introduction 

‐ 48 ‐ 
 

time, exhaustion and thereby inhibition of immune effectors due to the chronic stimulation should be 

avoided. Thus, the proper combination of therapeutic agents applied at the correct time points in the 

course of effector cell activation, within a window that will ensure a beneficial effect without detrimental 

side effects, should be designed to combat outgrowing tumors. 

Providing costimulation 

In several mouse models the introduction of B7-1 on tumor cells was sufficient to induce T cell mediated 

tumor rejection as well as subsequent memory responses. However, this strategy was not efficient for 

non-immunogenic tumors [263]. The mmunization with B7-1 irradiated transfectants can protect 

vaccinated mice from the subsequent challenge, but does not induce the rejection of established tumors. 

In general, B7-1 expression by tumor cells is thought to augment the effector phase of anti-tumor 

response, while efficient T cell priming rely on the cross-presentation and the proper expression of 

costimulatory molecules by APCs. B7-1 integrated in several vaccination strategies in phase I and II 

clinical trials confirmed the induction of specific responses with clinical benefits for some of the patients 

[263]. However, despite the induction of systemic immune response, the benefits were limited, since 

multiple layers of negative regulation are operating to hamper efficient responses within the tumor 

microenvironment. 

Removing inhibition 

So far, two B7 mediated inhibitory pathways were widely analyzed for their ability to suppress tumor 

immunity. Removing CTLA-4:B7-1/2 or/and PD-1:B7-H1 mediated inhibition was shown to be beneficial in 

enhancing T cell anti-tumor responses. 

CTLA-4:B7-1/2 

Mice challenged with colon carcinoma or fibrosarcoma cell lines treated with CTLA-4 blocking Ab 

demonstrated improved tumor rejection and the generation of protective T cell memory [264]. The effect 

was seen in both prophylactic and therapeutic settings with a relatively small tumor burden. Although 

similar results were obtained in lymphoma, prostate and renal carcinoma models [249], CTLA-4 

neutralization was inefficient when applied at high tumor loads or with poorly immunogenic tumors. 

Improved rejection has been achieved in models of mammary cancer and melanoma by 

combining CTLA-4 blockade with immunization with an irradiated GM-CSF producing tumor vaccine 

(GVAX) [265-266]. This treatment was efficient only when applied at very early stages of tumor 

progression. Recently, a Flt3L producing tumor cell vaccine (FVAX) was also shown to be effective in 

controlling B16 melanoma and prostate cancer progression when combined with CTLA-4 neutralization 

[267]. Two fully human αCTLA-4 mAbs have been investigated in clinical trials with end-stage, 

treatment-resistant melanoma and renal cell carcinoma patients showing overall response rates around 

10% with significant duration [268]. Anti-CTLA-4 monotherapy is thought to enhance pre-existing as well 

as to induce de novo anti-tumor responses. Evidence of immunological activity has also been 
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demonstrated in cases of prostatic, ovarian, breast and colon carcinoma, although objective response 

criteria have not been met. However, promising results were obtained from trials that combined CTLA-4 

blocking with specific peptide vaccine, high dose IL-2 and GM-CSF producing tumor vaccine indicating 

that multimodal approach might be a better choice for the efficient treatment. However, patients that 

benefit from the treatment with αCTLA-4 mAb usually develop severe autoimmune side effects indicating 

the need for the improvement of therapeutic designs to reduce unfavorable responses and enrich 

responding patient population at the same time [268]. 

PD-1: B7-H1 

Even when low or no expression is observed on tumor cell lines, most of human and mouse cancers 

express high levels of B7-H1. In addition, tumor associated immune cells are observed to upregulate 

surface B7-H1 expression [269]. B7-H1 exploits many different modes of action in order to suppress 

immune mediated tumor destruction including the induction of apoptosis, anergy and/or exhaustion of 

T cells, IL-10 production by DCs, promotion of Treg mediated immune suppression and formation of 

a “molecular shield” that protects tumor cells from direct lysis. Reverse signaling of B7-H1 into the tumor 

cells has been shown to induce resistance to apoptosis by multiple pathways [270]. Ectopic expression of 

B7-H1 into highly immunogenic P815 mastocytoma tumor cell line leads to progressive growth when 

injected in syngenic mice [233-234, 243]. However, B7-H1 expression by poorly immunogenic tumors, 

as B16 melanoma, does not influence tumor control [234]. Application of B7-H1 or PD-1 blocking 

antibodies can cause tumor regression in several mouse tumor models and treatment settings [244-245, 

271-272]. Two humanized αPD-1 mAb have been developed and are to be further tested for their efficacy. 

So far, phase I trials documented clinical benefits for patients with hematological malignancies, but not for 

the cases with advanced solid tumors [263]. 

Crucial issues for B7 based anti-cancer therapy 

The current knowledge reveals a very complex regulation of expression and function of B7 molecules. 

Dissection of the proper therapeutic targeting is proven to be difficult due to the multitude of possible 

interactions that can be established within the family and reverse signaling observed for most of them. 

In addition, in many cases both immune effector cells and tumor cells express the potential targets and 

can be affected in an opposed way by the given therapeutic agents. Although most of the studies dissect 

the clinical application with T cells as the main players in an anti-tumor immune response that is to be 

raised, it should be considered that other immune cells can potentially express targeted molecules and 

could respond to the therapy in different ways. In addition to adding and/or removing one or several 

B7 mediated interactions, from current studies it is clear that additional stimuli have to be provided to 

achieve efficient responses. Those stimuli are to enhance different modalities of global anti-tumor activities 

including cell priming, homing to the tumor site, extravasation, migration through tumor tissue, 

proliferation, cytokine production, cytotoxicity or other events that might synergize with B7 related 

therapeutics. 
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4. Aim of the Study 
NK cells are recognized as potent anti-tumor effectors. They are particularly efficient in the recognition of 

tumor cells that lose the expression of MHC I molecules, which inhibit NK cell activation [23]. In cancer 

patients, many tumors downregulate MHC I in order to escape direct recognition by cytotoxic T cells, 

which are MHC I restricted [273]. At the same time, these tumors become susceptible to attack by 

NK cells. NK cells can efficiently eradicate disseminating cancer cells [39]. However, solid tumors usually 

grow progressively, despite the MHC I deficiency detected for majority of cases. Infiltration of the tumor 

tissue by NK cells represents a good prognostic factor [274-275]. Despite this, in cancer patients NK cells 

are found to be impaired in performing their effector functions [276].  

In this regard, the aim of our study was to analyze NK cells responses against the MHC I deficient 

lymphoma, RMA-S. To better understand the nature and mechanisms that influence NK cell responses to 

progressively growing lymphoma in vivo, comprehensive analysis of NK cell phenotype in tumor bearing 

mice including the expression of surface markers used to define their maturation stage, subset 

composition, activation status and functional competence was performed. We took advantage of a global 

gene expression profiling of blood and tumor infiltrating NK cells. We aimed at the characterization of 

possible systemic changes in peripheral blood NK cells that could occur due to the tumor outgrowth and 

can be used as potential clinical biomarkers of tumor presence. In addition, we analyzed features of 

NK cells infiltrating the tumor to investigate possible mechanisms that operate within tumor tissue to inhibit 

NK cells anti-tumor responses. Our work describes some of the mechanisms involved in the complex 

control of NK cell responses, which should be considered for design of novel NK cell based anti-cancer 

therapies.  
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5. Materials and Methods 
 

5.1. Materials 

5.1.1. Laboratory equipment 

Product  Company 

Analytical scales, AE163  Mettler Toledo 

Analytical scales, AG285  Mettler Toledo 

Anesthesia machine, Vapor 19.1  Drägerwerk AG 

Cell culture incubator, Heraeus BBD 6220 (CO2)  Kendro 

Centrifuge 5415 R (table)  Eppendorf 

Centrifuge 5417 R (table)  Eppendorf 

Centrifuge, Heraeus Biofufe Pico  Kendro 

Centrifuge, Heraeus Multifuge 4 K‐R/3 S‐R  Kendro 

Centrifuge, Sorvall Evolution RC  Kendro 

DNA Engine PTC‐200  MJ Research 

ELISA microplate reader, GENios  TECAN 

EPS 3501XL Electrophoresis Power Supply  GE Healthcare 

FACS™ sorter, FACS™Diva  BD 

FACS™ sorter, FACS™Vantage SE  BD 

Flow cytometer, FACS™Calibur  BD 

Flow hood, Heraeus Hera Safe BBD 6220  Kendro 

Flow hood, LabGuard NU‐437‐600E  IBS Integra 

Freezer ‐20°C, Premium/Comfort/Profi line  Liebherr 

Freezer ‐86°C, VIP series  Sanyo 

Fridge, Premium/Profiline  Liebherr 

Gel Documentation System 2000  Bio‐Rad 

Heatblock  VWR/Scientific Industries 

Ice machine  Hoshizaki 

Magnetic stirrer, MR3001 K  Heidolph 

Microscop, WIIovert 30  Hund Wetzler 

N2 tank, CryoSystem 6000  MVE 
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Product  Company 

PerfectBlueTM Horizontal Mini Electrophoresis Systems, Mini S and L  peQLab 

pH meter  WTW 

Photometer, Ultraspec 3100  Amersham Biosciences 

Pump, Econo Pump  Bio‐Rad 

Scales, PB602‐S  Mettler Toledo 

Thermomixer, Compact/Comfort  Eppendorf 

Vortex, VortexGenie2  VWR/Scientific Industries 

Waterbath, Heraeus Julabo TW20  Kendro 

Waterbath, SWB 20  Medingen 

Gamma‐counter, Cobra auto‐gamma Packard, PerkinElmer 

Gamma cell 1000  Atomic Energy of Canada Ltd 

 

5.1.2. Cell culture products 

Product  Company  Catalog no.

Standard tissue culture flasks/filter screw caps – 25 cm2 TPP 90026

Standard tissue culture flasks/filter screw caps – 75 cm2 TPP 90076

Standard tissue culture flasks/filter screw caps – 150 cm2 TPP 90151

Tissue culture flasks/filter screw caps – 182 cm2  Greiner  660175 

96‐well U‐bottom with lid – Standard TC BD 353077

96‐well flat‐bottom with lid – Standard TC BD 353072

48‐well flat‐bottom with lid – Standard TC BD 353078

24‐well flat‐bottom with lid – Standard TC BD 353047

12‐well flat‐bottom with lid – Standard TC  BD  353043 

6‐well flat‐bottom with lid – Standard TC BD 353046

6‐well flat‐bottom with lid – non‐treated TC BD 351146

24‐well flat‐bottom with lid – non‐treated TC BD 351147

50 ml conical tubes Falcon™ BD 352070

15 ml conical tubes Greiner  188271

5 ml round‐bottom polypropylene test tube BD 352008

5 ml round‐bottom polystyrene test tube w/ cell strainer BD 352235

Serological pipettes, 5, 10, 25, and 50 ml, sterile Costar  ‐

70 μm cell strainer Falcon™ BD 352350
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Product  Company  Catalog no.

40 μm cell strainer Falcon™ BD 352340

Cryovial®, 2ml sterile Roth E309.1

NalgeneTM Freezing Container, “Mr. Frosty” Nunc 5100‐0001

0.5, 1.5 and 2 ml safe‐lock tubes Eppendorf  ‐

10, 20, 100, 200, 300 and 1000 µl filter tips Biozym  ‐

50 ml Reagent reservoirs, sterile  Corning  4870 

0.5, 1.5 and 2ml safe‐lock tibes Eppendorf  ‐

50 ml conical tubes with 0.22 µm filter top (Sterilflip) Milipore  SCG00525

Syringe driven filter units, low protein binding, 0.22 and 0.45 µm Milipore  ‐

1, 5, 10, 20 ml syringes BD ‐

 

5.1.3. Cell culture media and solutions 

Product  Company  Catalog no. 

RPMI 1640 (1x) w/o L‐Glutamine  GIBCO‐Invitrogen  31870 

D‐MEM (1x) (High Glucose) with L‐Glutamine, 4500
mg/L D‐Glucose, w/o sodium pyruvate 

GIBCO‐Invitrogen  41965 

IMDM with L‐Glutamine, 25mM HEPES and sodium pyruvate  GIBCO‐Invitrogen  21980 

D‐PBS (1x) w/o Ca, Mg, sodium bicarbonate  GIBCO‐Invitrogen  14190 

RPMI 1640 (1x) w/o L‐Glutamine with sodium bicarbonate  Sigma  R0883 

D‐MEM (1x) with L‐Glutamine, 4500
mg/L D‐Glucose, with sodium pyruvate and sodium bicarbonate 

Sigma  D6429 

IMDM with 25 mM HEPES, w/o L‐glutamine  Sigma  51472C 

D‐PBS (1x) w/o Ca, Mg, sodium bicarbonate  Sigma  D837 

Fetal Bovine Serum, Origin: EU Approved  GIBCO‐Invitrogen  10270 

Penicillin/Streptomycin‐Solution
10000 U/ml penicillin, 10000 μg/ml streptomycin 

GIBCO‐Invitrogen  15140 

L‐Glutamine 200 mM (100x), 29.2 mg/ml  GIBCO‐Invitrogen  25030 

Non‐essential amino acids (100x)  GIBCO‐Invitrogen  11140035 

Sodium pyruvate MEM 100mM  GIBCO‐Invitrogen  11360088 

β‐mercaptoethanol 50mM  GIBCO‐Invitrogen  31350010 

Trypsin‐EDTA (1x) HBSS w/o Ca2+/Mg2+ w/ EDTA  GIBCO‐Invitrogen  25300 
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Product  Company  Catalog no. 

Dimethylsulphoxide Hybri Max® (DMSO)  Sigma‐Aldrich  D2650 

Cell Dissociation Solution Non‐enzymatic (1x)  Sigma‐Aldrich  C5914 

 

5.1.4. Solutions 

Solution  Indigrents

ACK lysis buffer 

0.15 M NH4Cl

10 mM KHCO3 

0.1 mM EDTA 

pH 7.2‐7.4 

FACS™ buffer 

1X PBS

0.02 % NaN3 (v/v) 

1 % FCS 

2 mM EDTA 

Freezing medium 
1X FCS

10 % DMSO (v/v) 

MACS® buffer 

1X PBS

0.5 % FCS 

2 mM EDTA 

Primary cell culture medium (PCM) 

1X RPMI

10 % FCS 

2 mM L‐glutamine 

100 U/ml penicillin 

100 mg/ml streptomycin 

1 mM sodium pyruvate 

1X non‐essential amino acids 

0.25 mM β‐mercaptoethanol 

10X PBS 

1.37 M NaCl

27 mM KCl 

100 mM Na2HPO4 (anhydrous) 

20 mM KH2PO4 
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5.1.5. Chemicals and biological reagents 

Product  Company  Catalog no. 

7‐AAD  BD  559925 

Carboxyfluorescein succinimidyl ester (CFSE)  Sigma‐Fluka  21888 

Chromium‐51  PerkinElmer  NEZ030005MC 

Collagenase, type IV from Clostridium histolyticum  Cell Systems  LS004188 

CpG oligonucleotide ODN 1668  InvivoGen  tlrl‐modnb 

DNA mass ladder (high)  Invitrogen  10068‐013 

DNA mass ladder (low)  Invitrogen  10496‐016 

Dnase I  Sigma‐Aldrich  DN25 

dNTP Mix  Promega  U1511 

FACS™ lysing solution (10x)  BD  349202 

Golgi Stop  BD  554724 

Heparin‐Sodium B  Braun  1708.00.00 

Hyaluronidase type V  Sigma‐Aldrich  H6‐254 

Isofluran B  Braun  6724123.00.00 

Lipopolysaccharide (LPS)  Sigma‐Fluka  L4391 

Lympholite® M  Cedarline  CL5035 

Pellet Paint co‐precipitant  Novagen  69‐049‐3 

PMSF  Applichem  A0999 

Polyinoside‐polycytidylic acid (pI:C)  InvivoGen  tlrl‐pic 

Recombinant human IL‐2  Chiron  50‐4413 RN 

Recombinant human IL‐2  Hoffmann‐La Roche  1104‐0890 

Recombinant mouse IFN‐g  Peprotech  315‐05 

Recombinant mouse IL‐12  Peprotech  210‐12 

Recombinant mouse IL‐15  Peprotech  210‐15 

Recombinant mouse IL‐18  MBL  B002‐5 

RNA Storage Solution  Ambion  AM7000 

Rnasin® Plus Rnase Inhibitor  Promega  N2615 

Triton X‐100  Sigma‐Fluka  T9284 

Two‐Cycle Target Labeling and Control Reagents  Affymetrix  900494 

UltraPure™ DEPC‐Treated Water  Invitrogen  750024 

Nuclease‐Free Water (not DEPC treated)  Ambion  AM9937 
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5.1.6. Antibodies 

5.1.6.1. Fluorochrome-conjugated antibodies for flow cytometry 

Specificity  Fluorochrome  Clone  Isotype  Company  Catalog no. 

2B4  FITC  eBio 244F4  Rat IgG2a  eBioscience  11‐2441 

B7‐1  PE  16‐10A1  Hamster IgG  Biolegend  104708 

B7‐1  FITC  16‐10A1  Hamster IgG  Biolegend  104706 

B7‐2  PE  GL‐1  Rat IgG2a  Biolegend  105008 

CD107a  FITC  1D4B  Rat IgG2a  BD  553793 

CD107b  FITC  ABL‐93  Rat IgG2a  BD  558758 

CD11b  FITC  M1/70  Rat IgG2b  BD  553033 

CD11b  APC  M1/70  Rat IgG2b  BD  553312 

CD11b  FITC  M1/70  Rat IgG2b  Biolegend  101206 

CD11c  FITC  HL3  Hamster IgG1  BD  557400 

CD11c  FITC  N418  Hamster IgG  Biolegend  117306 

CD127  FITC  A7R34  Rat IgG2a  eBioscience  11‐1271 

CD19  APC  1D3  Rat IgG2a  BD  550992 

CD27  PE  LG.3A10  Hamster IgG1  BD  558754 

CD27  PE  LG.3A10  Hamster IgG1  Biolegend  124210 

CD27  FITC  LG.3A10  Hamster IgG1  Biolegend  124208 

CD28  PE‐Cy5  37.51  Hamster IgG  Biolegend  102108 

CD3ε  FITC  145‐2C11  Hamster IgG1  BD  553062 

CD3ε  PerCP‐Cy5.5  145‐2C11  Hamster IgG1  BD  551163 

CD3ε  APC  145‐2C11  Hamster IgG1  BD  533066 

CD3ε  FITC  145‐2C11  Hamster IgG1  Biolegend  100306 

CD3ε  PerCP‐Cy5.5  145‐2C11  Hamster IgG1  Biolegend  100328 

CD3ε  APC  145‐2C11  Hamster IgG1  Biolegend  100312 

CD4  APC  RM4‐5  Rat IgG2a  BD  553051 

CD43  FITC  S7  Rat IgG2a  BD  553270 

CD45.1  APC  A20  Mouse IgG2a  eBioscience  17‐0453 

CD45.1  FITC  A20  Mouse IgG2a  BD  553775 

CD45.1  PE  A20  Mouse IgG2a  BD  553776 

CD45.2  PerCP Cy5.5  104  Mouse IgG2a  Biolegend  109828 

CD45.2  FITC  104  Mouse IgG2a  BD  553772 
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Specificity  Fluorochrome  Clone  Isotype  Company  Catalog no. 

CD48  PE  HM48‐1  Hamster IgG  eBioscience  12‐0481 

CD69  FITC  H1.2F3  Hamster IgG  BD  557392 

CD8  PE  53‐6.7  Rat IgG2a  BD  553033 

c‐Kit  FITC  2B8  Rat IgG2b  BD  553354 

CTLA‐4  PE  UC10‐4B9  Hamster IgG  Biolegend  106306 

CTLA‐4  PE  UC10‐4F10‐11  Hamster IgG  BD  553720 

F4/80  Alexa 488  BM8  Rat IgG2a  Caltag  MF48020 

Granzyme B  PE  16G6  Rat IgG2b  eBioscience  12‐8822 

I‐A/I‐E  PE  M5/114.15.2  Rat IgG2b  BD  557000 

I‐A/I‐E  Alexa 647  M5/114.15.2  Rat IgG2b  Biolegend  107618 

ICOS  PE  7E.17G9  Rat IgG2b  BD  552146 

ICOS‐L  PE  HK5.3  Rat IgG2a  Biolegend  107406 

IFN‐γ  FITC  XMG1.2  Rat IgG1  BD  554411 

IFN‐γ  FITC  XMG1.2  Rat IgG1  eBioscience  11‐7311 

KLRG1  FITC  F1  Hamster IgG  Southern Biotec  1807‐02 

Ly49C/I/G/H  PE  14B11  Hamster IgG  Biolegend  108208 

Ly49D  APC  eBio 4E5  Rat IgG2a  eBioscience  51‐5782 

Ly49A  PE  YE1/48.10.6  Rat IgG2a  Biolegend  116808 

Ly49G2  FITC  eBio 4D11  Rat IgG2a  eBioscience  11‐5781 

NK1.1  APC  PK136  Mouse IgG2a  BD  557391 

NK1.1  FITC  PK136  Mouse IgG2a  BD  553164 

NK1.1  PE  PK136  Mouse IgG2a  BD  557391 

NK1.1  PerCP‐Cy5.5  PK136  Mouse IgG2a  Biolegend  108728 

NK1.1  Alexa 647  PK136  Mouse IgG2a  Biolegend  108720 

NK1.1  APC  PK136  Mouse IgG2a  Biolegend  108710 

NKG2D  APC  CX5  Rat IgG1  eBioscience  17‐5882 

NKp46  PE  29A1.4  Rat IgG2a  eBioscience  12‐3351 

NKp46  Alexa 647  29A1.4  Rat IgG2a  eBioscience  51‐3351 

PD‐1  PE  J43  Hamster IgG  BD  551892 

PD‐1  PE  RMP1‐30  Rat IgG2b  Biolegend  109104 

PD‐L1  PE  MIH5  Rat IgG2a  BD  558091 

PD‐L2  PE  Ty25  Rat IgG2a  BD  557796 

Perforin  PE  eBio OMAK‐D  Rat IgG2a  eBioscience  12‐9392 
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Specificity  Fluorochrome  Clone  Isotype  Company  Catalog no. 

B220  FITC  RA3‐6B2  Rat IgG2a  BD  553092 

B220  APC  RA3‐6B2  Rat IgG2a  BD  553087 

CD3ζ  biotin  H146‐968  Hamster IgG  Cedarlane  CL 7230 B 

F4/80  Alexa 488  BM8  Rat IgG2a  Caltag  MF 48020 

ICAM‐1  PE  3E2  Hamster IgG  BD  553253 

 

5.1.6.2. Affinity purified antibodies for functional assays 

Specificity  Clone  Isotype Company  Catalog no.

CD28  37.51  Hamster IgG Biolegend  102112

2B4  eBio 244F4 Rat IgG2a eBioscience  14‐2441

Ly49D  4E5  Rat IgG2a BD 555312

NKG2D  CX5  Rat IgG1 eBioscience  14‐5882

NKG2D  A10  Rat IgG1 Biolegend  115602

NKp46  polyclonal Goat IgG R&D AF2225

NKp46  29A1.4  Rat IgG2a eBioscience  16‐3351

NK1.1  PK136  Mause IgG2a Biolegend  108712

CTLA‐4  UC10‐4B9 Hamster IgG Biolegend  106308

B7‐1  16‐10A1 Hamster IgG Biolegend  104710

TGFβ  1D11  Mouse IgG R&D MAB1835

CD16/CD32  93  Rat IgG2a  Biolegend  101310 

 

5.1.6.3. Affinity purified fusion proteins for functional assays 

Recombinant protein  Linker C‐terminus Company  Catalog no.

Recombinant mouse B7‐1/Fc Chimera  DIEGRMD Human IgG1 R&D  740‐B1‐100

Recombinant mouse CTLA‐4/Fc Chimera IEGRMD Human IgG1 R&D  434‐CT‐200

Recombinant mouse EphA4/Fc Chimera IEGRMD Human IgG1 R&D  641‐A4‐200

 

5.1.6.4. Antibodies for in vivo application 

Specificity Clone Isotype Company Catalog no.

CTLA-4 UC10-4F10-11 Hamster IgG BioXCell BE0032 

PD-1 J43 Hamster IgG BioXCell BE0033-2 
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5.1.6.5. Isotype controls and secondary reagents for flow cytometry 

Isotype  Fluorochrome Clone Company  Catalog no.

Rat IgG2a, k  FITC R35‐95 BD 553929

Rat IgG2a, k  PE R35‐95 BD 554689

Rat IgG2a, k  APC ‐ eBioscience  17‐4321

Rat IgG2a, k  Alexa 647 R35‐95 BD 557690

Rat IgG2b, k  FITC A95‐1 BD 553988

Rat IgG2b, k  PE eB149/10H5 eBioscience  12‐4031

Rat IgG2b, k  APC eB149/10H5 eBioscience  17‐4031

Rat IgG2b, k  Alexa 647 RTK4530 Biolegend  400626

Rat IgG1  FITC eBRG1 eBioscience  11‐4301

Hamster IgG  FITC HTK888 Biolegend  400906

Hamster IgG  PE HTK888 Biolegend  400908

Hamster IgG  PE‐Cy5 SHG‐1 Biolegend  402010

Hamster IgG  biotin HTK888 Biolegend  400904

Goat anti‐Human IgG F(ab)2  PE ‐ Jackson Immuno Res.  109‐116‐098 

Streptavidin  FITC ‐ BD 554060

Streptavidin  PE ‐ BD 554061

Streptavidin  PerCP‐Cy5.5 ‐ Biolegend  405214

Streptavidin  APC ‐ BD 554067

 

5.1.6.6. Isotype controls and secondary reagents for functional assays 

Isotype  Clone Company Catalog no.

Rat IgG2a, k  RTK 2758 Biolegend 400516

Mouse IgG2a, k  MOPC‐173 Biolegend 400224

Hamster IgG  HTK888 Biolegend 400916

Goat IgG  polyclonal R&D AB‐108‐C

Goat anti‐Hamster IgG  polyclonal Jackson Immuno Res 127‐005‐160

 

 

 

 



Ana Stojanovic    Matherials and Methods 

‐ 60 ‐ 
 

5.1.7. Reagents for magnetic cell sorting 

Product  Company Catalog no. 

anti‐APC Beads 

Miltenyi Biotec 

130‐090‐855 

anti‐DX5 Beads  130‐052‐501 

Streptavidin Beads  130‐048‐101 

Pan‐T‐cell Isolation Kit  130‐090‐861 

Anti‐CD62L beads  130‐049‐701 

LS columns  130‐042‐401 

MS columns  130‐042‐201 

 

5.1.8. Kits 

Product  Company Catalog no.

BCA Protein Assay kit  Pierce 23227

FITC BrdU Flow Kit  BD 557891

GeneChip Mouse Genome 430A 2.0 Array Affymetrix  900499 

Mouse IFN‐g OptEIATM Set BD 555138

OptEIATM Reagent Set B  BD 550534

Foxp3 Staining Buffer Set  eBioscience 00‐5523

RNeasy® Mini Kit  Qiagen 74124

TURBO DNA‐free™  Ambion AM1907

Two‐Cycle Target Labeling and Control Reagents Affymetrix 900494

 

5.1.9. Cell lines 

Name  Description Medium*

RMA  Mouse T cell lymphoma RPMI 1640

RMA‐S  TAP2‐deficient variant of RMA RPMI 1640

RMA‐S.B7‐1  TAP2‐deficient variant of RMA transduced to express B7‐1 IMDM

B16  Mouse melanoma DMEM

B16.B7‐1  Mouse melanoma transduced to express B7‐1 DMEM

B16.Rae1ε  Mouse melanoma transduced to express Rae1ε DMEM
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Name  Description Medium*

B16.Rae1ε.B7‐1  Mouse melanoma transduced to express Rae1ε and B7‐1 DMEM

YAC‐1   Mouse lymphoma RPMI 1640

LL2  Mouse Lewis lung carcinoma DMEM

2.4G2  anti‐CD16/CD32 hybridoma DMEM

X6310‐GMCSF  GM‐CSF producing cell line DMEM

 

* All cell culture media were supplemented with 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin and 100 

μg/ml streptomycin with the exception of medium for the 2.4G2 hybridoma,  which was supplemented with 

5% FCS, 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, 1 mM sodium pyruvate and 

0.25 mM β-mercaptoethanol. 

 

5.1.10. Mice 

C57BL/6 (WT) mice were purchased from Charles River Laboratories (Sulzfeld, Germany and 

Erembodegem, Belgium). CD28-/- and B7-1-/- mice were purchased from Jackson Laboratory 

(Bar Harbor, Maine, USA). Congenic C57BL/6-Ly5.1+ mice were purchased from Charles River 

Laboratories or bred in our animal facility. CTLA-4 -/- OT-I transgenic mice were kindly provided by 

Prof. M. Brunner-Weinzierl (Experimentelle Pädiatrie, Universitätskinderklinik, Otto-von-Guericke 

Universität, Magdeburg, Germany). B7-H1-/- mice were kindly provided by Prof. L. Chen (Institute for Cell 

Engineering, Johns Hopkins University School of Medicine, Baltimore, USA). RAG2-/- mice were bred in 

our animal facility. Mice were housed under specific pathogen-free conditions and used in experiments at 

8-16 weeks of age. All experiments were performed according to local animal experimental ethics 

committee guidelines and permission. 
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5.2. Methods 

5.2.1. Cell culture methods 

Thawing cells 

Frozen cryovials were submerged in a 37°C water bath until ∼ 10% of the cell suspension remained 

frozen. The cell suspension was immediately diluted into 10 ml of appropriate medium and centrifuged 

(1200 rpm, 5 min, RT). Cells were resuspended in the appropriate medium and cultured at 37°C, 5% CO2. 

Splitting of suspension cells 

Cells in suspension reaching an optimal density were split in desired ratios by adding the appropriate 

volume of the required medium. 

Splitting of adherent cells 

Cell culture medium was removed from the flasks and cells were washed once with PBS. Pre-warmed 

0.05% Trypsin-EDTA or non-enzymatic Cell Dissociation Solution was added in sufficient amounts to 

cover the cell layer. Cells were incubated at 37°C until a complete detachment from the flask was 

observed under the microscope. Cells were then resuspended in pre-warmed medium, collected in 

Falcon™ tubes and centrifuged (1200 rpm, 5 min, RT). Cells were subsequently diluted at appropriate 

ratios and distributed to new flasks. 

Determination of cell numbers 

Appropriate dilution of cell suspension was mixed in a 1:1 ratio with a 0.05 % trypan blue solution (w/v) to 

distinguish dead from live cells. Cells were counted using a Neubauer counting chamber (0.1 mm depth). 

The number of live cells per ml of cell suspension was calculated as: the average cell number per 

chamber square (0.1 mm3) x dilution factor x 104. 

Freezing cells 

For cell freezing, cell suspensions were centrifuged (1200 rpm, 5 min, RT) and the pellet was resuspended 

in freezing medium (90% FCS / 10% DMSO) at a concentration of 2.8 x 106 cells/ml. 1.8 ml (5 x 106 cells 

total) was aliquoted in cryovials and placed in freezing containers. After initial 24 h storage at -80°C, frozen 

vials were transferred to liquid nitrogen for long term storage. 
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5.2.2. Organ dissection and preparation of single cell suspensions 

Blood 

Animals were sacrificed by asphyxiation with CO2 and blood was obtained by heart puncture. Typically, 

0.8-1 ml of the collected blood was mixed with 50 µl of heparin until treated with 25 ml of buffered 

ammonium chloride potassium phosphate solution (ACK-buffer) to obtain red blood cell lysis. Cells were 

further washed with PBS (1600 rpm, 10 min, 4°C) and resuspended in appropriate buffer. 

Spleen 

Animals were sacrificed by dislocation of the neck; the spleen was excised using sterile forceps and kept 

in ice-cold PBS. A single cell suspension was obtained by mincing the spleen through a 70 µm-pore cell 

strainer followed by washing with PBS (1400 rpm, 10 min, 4°C). To lyse erythrocytes, splenocytes were 

treated with buffered ammonium chloride potassium phosphate solution (ACK-buffer), washed with PBS 

(1400 rpm, 10 min, 4°C) and then resuspended in an appropriate buffer. 

Lymph nodes 

Animals were sacrificed by dislocation of the neck; the lymph nodes were excised using sterile forceps and 

kept in ice-cold PBS. A single cell suspension was obtained by mincing the tissue through a 70 µm-pore 

cell strainer followed by washing with PBS (1400 rpm, 10 min, 4°C).  

Lung 

Animals were sacrificed by dislocation of the neck and the the thoracic cavity opened using sterile forceps 

and scissors. The lungs were perfused with PBS by slow application of solution through the right chamber 

of the heart. Perfused lungs were dissected, cut into small pieces (∼ 1-2 mm) and treated 30 min at 37°C 

with 10 ml digestion buffer per lung (1 mg/ml collagenase type I, 0.5 mg/ml DNase I). Single cell 

suspensions were obtained by mincing the digested lung through a 70 µm-pore cell strainer followed by 

washing with PBS (1400 rpm, 10 min, 4°C). Cells were subsequently resuspended in the appropriate 

buffer. 

Tumor 

Tumor bearing animals were sacrificed by dislocation of the neck. Tumor was excised using sterile 

forceps. Tumors were then cut into small pieces (∼ 1 - 2 mm) and treated 30 min at 37 °C with 10 ml 

digestion buffer per tumor (0.5 mg/ml hyaluronidase type V, 0.5 mg/ml DNase I). Single cell suspensions 

were obtained by mincing the digested tumors through a 70 µm-pore cell strainer followed by washing with 

PBS (1500 rpm, 10 min, 4°C). Cells were subsequently resuspended in 7 ml of PBS and filtered through 

40 µm-pore cell strainer. Live cells were obtained by centrifugation (1500 g, 20 min, RT) of cell suspension 
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loaded on Lympholite® M and subsequent collection of the middle cell layer. Cell were intensively washed 

with PBS (1500 rpm, 10 min, 4°C) before resuspension in the appropriate buffer. 

Bone marrow (BM) 

Animals were sacrificed by dislocation of the neck and the hind legs were dissected using sterile forceps 

and scissors. Under the sterile conditions bones were freed from all sinews and muscle tissue. The femur 

and tibiae were separated by breaking the knee and the heel, washed briefly in 80 % ethanol and placed in 

ice-cold DMEM. To rinse out the BM, the ends of the bones were cut and 5-10 ml of ice-cold PBS was 

forced through the bone cavity using 27G needle. The isolated BM was filtered through a 70 µm-pore cell 

strainer followed by washing with DMEM (1400 rpm, 10 min, 4°C). Cells are subsequently treated with 

buffered ammonium chloride potassium phosphate solution (ACK-buffer) to remove red blood cells, 

washed with DMEM (1400 rpm, 10 min, 4°C) and than resuspended in the appropriate buffer. 

 

5.2.3 Cell separation 

5.2.3.1 Magnetic cell sorting (MACS®) 

NK cells 

Single cell suspensions prepared from spleen were washed with MACS® Buffer (PBS 2mM EDTA 

0.5% FCS) and resuspended at 1x108 cells/ml. Splenocytes were first treated with 10% 2.4G2 supernatant 

for 15 min at 4°C to block Fc receptors and further incubated with APC conjugated αCD3 mAb. CD3+ cells 

were then depleted using αAPC Beads according to the manufacturer’s instructions. CD3 depleted 

splenocytes were then positively selected for DX5+ cells using DX5 magnetic beads.  

Naive T cells 

Single cell suspensions prepared from spleen and lymph nodes were pooled, washed with MACS® Buffer 

(PBS 2mM EDTA) and resuspended at 1x108 cells/ml. Cells were treated with 10% 2.4G2 supernatant for 

15 min at 4°C to block Fc receptors. T cells were isolated via negative selection with pan T cell kit 

according to the manufacturer’s instructions. Naïve T cells were then positively selected using CD62L 

magnetic beads. 

 

5.2.3.2 Fluorescence activated cell sorting (FACS™) 

Blood NK cells 

Single cell suspensions prepared from blood were resuspended in PBS at concentration 5x106 cells/ml 

and treated with 10 µg/ml αCD16/CD32 mAb to block Fc receptors. Cells were subsequently stained with 
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fluorochrome labeled αCD3 and αNK1.1 mAb for 30 min at 4°C. After washing (1500 rpm, 10 min, 4°C), 

cells are resuspended in PBS at a concentration 5x107 cells/ml and filtered through a 30 µm cell mesh.     

7-AAD solution was added to the cell suspension 10 min prior to sorting to label dead cells. 

7-AAD-CD3-NK1.1+ single cells were sorted using FACSDiva® or FACSVantage® cell sorter instruments. 

Tumor infiltrating NK cells 

Single cell suspensions prepared from tumors of C57BL/6-Ly5.1 mice were resuspended in PBS at 

concentration 1x107 cells/ml and treated with 10 µg/ml αCD16/CD32 mAb to block Fc receptors. Cells 

were subsequently stained with APC labeled αLy5.1 mAb. Ly5.1+ cells, representing tumor infiltrating 

hematopoietic cells, were positively selected using αAPC Beads according to the manufacturer’s 

instructions. Ly5.1+ cells  were further labeled with flurochrome conjugated αCD3 and αNK1.1 mAb for 

30 min at 4°C. After washing (1500 rpm, 10 min, 4°C), cells are resuspended in PBS at concentration 

5x107 cells/ml and filtered through 30 µm cell mesh. 7-AAD solution is added to cells 10 min prior to 

sorting to label dead cells. 7-AAD-Ly5.1+CD3-NK1.1+ cells were sorted using FACSDiva® or 

FACSVantage® cell sorter instruments. 

 

5.2.4 Primary cell culture 

NK cells 

Single cell suspension was prepared under sterile conditions from spleens of Rag2 -/- mice as described 

before (section 5.2.2). Cell were resuspended in the primary cell medium (25 ml per spleen) and incubated 

in 175 mm2 cell culture flasks for 2h (37°C, 5% CO2) to deplete adherent cells. A non-adherent fraction 

was harvested, washed with primary cell medium (1500 rpm, 10 min, 4°C) and resuspended at 

a concentration of 1x106 cells/ml in primary cell medium containing 1700 U/ml rhIL-2. Suspension was 

distributed over round-bottomed 96-well plate (200 µl/well) and cultured for up to 12 days (37°C, 5% CO2). 

Cell were routinely split 1:2 every second day with primary medium containing 1700 U/ml rh IL-2. 

When NK cells were obtained from WT mice, single cell suspensions prepared from spleens were first 

depleted of CD3+ cells by magnetic cell sorting through two-step procedure – cell labeling with 

CD3-APC mAb followed by αAPC magnetic Beads and subsequent separation. The CD3- fraction was 

then positively selected for DX5+ cells using DX5 magnetic beads according to the manufacturer’s 

instructions. CD3-DX5+ cells were cultured in primary cell medium with 1700 U/ml of rhIL-2 as described 

before. Day 7 cell culture routinely gave rise to ∼99% pure CD3-NK1.1+ NK cells. 

Bone marrow derived dendritic cells (BMDC) 

Single cell suspension was prepared from BM under sterile conditions as described before (section 5.2.2). 

Cells were resuspended in primary DMEM (30 ml per mouse) containing 10% supernatant of GM-CSF 
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producing cell line X6310-GMCSF (DMEM-G). Cell suspension was incubated 24h (37°C, 5% CO2) to 

deplete adherent cells. Non-adherent fraction was harvested, washed (1500 rpm, 10 min, 4°C) and 

resuspended at the concentration of 1x106 cells/ml in DMEM-G. Suspension was distributed over cell 

culture non-treated polystyrene flat-bottomed 6-well plates (2.5 ml/well) and cultured at 37°C, 5% CO2. 

Cells were split when full confluence was observed. Non-enzymatic cell dissociation buffer was used for 

cell detachment. 

 

5.2.5 Cell staining 

Surface staining  

105-106 cells collected from the culture or single cell suspensions generated from organs or blood were 

first washed and than resuspended in 100 µl of FACS™ buffer. Fc receptors were blocked by incubation 

with 10% 2.4G2 supernatant for 15 min at 4°C. Appropriate fluorochrome labeled antibodies were added 

and cells were further incubated for 30 min at 4°C in the dark. When biotinylated antibodies were used 

cells were washed with FACS™ buffer and incubated with fluorochrome conjugated streptavidin for an 

additional 30 min at 4°C. At the end of the staining procedure, all samples were washed with FACS™ 

buffer to remove unbound antibodies. For discrimination of dead cells, 7-AAD was added to the samples 

10 min prior to analysis. FACSCalibur® flow cytometer and CellQuest software were used for sample 

acquisition and data analysis, respectively. 

Intracellular staining 

105-106 cells collected from the culture or single cell suspensions generated from organs or blood were 

stained for surface markers as described above. At the end of the staining procedure, all samples were 

washed with FACS™ buffer and fixed using Fixation/Permeabilization Buffer (eBioscience, San Diego, CA, 

USA) according to manufacturer’s instructions. Cells were further permeabilized with Permeabilization 

Buffer (eBioscience, San Diego, CA, USA) and incubated with 20% 2.4G2 supernatant for 30 min at 4°C in 

100 µl total volume of Permeabilization Buffer. Intracellular targets were then stained with the appropriate 

mAb for 45 min at 4°C. Samples were washed with Permeabilization Buffer to remove unbound antibodies 

and resuspended in FACS™ buffer for analysis. 

Prolonged surface staining of CTLA-4 

A prolonged surface staining procedure was used to determine the surface expression of target proteins 

with a high rate of internalization. 6h before the cell collection from the culture 10% 2.4G2 supernatant was 

added to the culture and cells were incubated for 2h at 37°C. Appropriate mAb or isotype control Ab was 

then added and cells incubated for additional 4h at 37°C. Upon collection, cells were washed with FACS™ 

buffer and surface makers were stained as described before. 
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5.2.6 Functional assays 

51Cr release cytotoxicity assay  

Target cells were labeled with 100μCi 51Cr for 1.5h and washed three times with primary cell medium. 

A total of 1x103 51Cr labeled target cells per well were distributed over the U-bottomed 96-well plate. NK 

cells were added at different effector to target (E:T) ratios to the final volume of 200 μl. The plates were 

centrifuged at 400 rpm for 3 min to obtain an optimal cell contact and then incubated for 4h at 37oC, 

5% CO2. At the end of the incubation, 100 μl of supernatant was collected from each well and the 

radioactivity was counted in a beta counter. The percentage of specific release was calculated as: 

100 x [mean measured release – minimum (spontaneous) mean release] / [maximum (total) mean release – 

minimum (spontaneous) mean release], 

Minimum (spontaneous) release corresponds to the amount of radioactivity released by tumor cells 

cultured in the absence of NK cells. Maximum release relates to the amount of radioactivity released by 

tumor cells cultured in the presence of 10% Triton X-100. 

CD107 degranulation assay 

100 µl NK cell suspension in primary cell medium at the concentration of 1x106 cells/ml were distributed 

over the U-bottomed 96-well plate. Target cells were added at different effector to target (E:T) ratios to the 

final volume of 200 μl. 1 µl of GolgiStop with 1 µg of CD107a and CD107b mAb each or equal amount of 

Rat IgG2a, k isotype control was added to each well. The plates were centrifuged at 400 rpm for 3 min to 

obtain an optimal cell contact and incubated for 3 h at 37°C, 5% CO2. Upon the end of incubation, cells 

were harvested, stained for surface markers and analyzed by flow cytometry. 

NK in vivo kill assay 

Single cell suspensions were obtained from spleens and lymph nodes of WT and tapasin-/- mice. After 

pooling spleen and lymph node fraction WT and tapasin-/- cells were labeled with 1.5 (high) and 0.1 µM 

(low) CFSE, respectively. Shortly, cells were resuspended in PBS at the concentration of 1x107 cells/ml 

and incubated with CSFE for 15 min at RT in dark with constant slow shaking. Labeled cells were washed 

3 times with PBS and resuspended at the concentration of 1x108 cells/ml. WT and tapasin-/- cells were 

then mixed in 1:1 ratio and 200 µl of mix was injected in recipient mice (2x107 cells/mouse, 

1x107 cells/target) through the tail vain. As a control 200 µl of mix were incubated in 10 ml of primary 

medium at 37°C, 5% CO2. Mice were sacrificed after 6h and single cell suspensions were made from 

desired organs. Differentially labeled CFSE+ cells were quantified by flow cytometry and NK cell cytotoxic 

activity in given organ in vivo was calculated as:  

% specific kill = 100-[(100 x ratio treated) / ratio untreated]/ ratio treated 
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ratio treated corresponds to the ratio of CFSEhigh and CFSElow labeled cells obtained from recipient mice. 

ratio untreated corresponds to the ratio of CFSEhigh and CFSElow labeled cells cultured in vitro.  

Plate bound Ab stimulation assay 

Flat-bottomed 96-well plates were coated for 18h at 4°C with 50 µl per well of appropriate mAb (10 µg/ml) 

or IgG fusion protein (2 µg/ml) dilution in PBS. Control wells were incubated with PBS only. At the end of 

incubation, wells were washed 3 times with 300 µl PBS. NK cells were first resuspended in PBS at the 

concentration of 5x106 cells/ml and treated with 10 µg/ml αCD16/CD32 mAb for 30 min at 4°C. Upon 

washing, cells were further resuspended in primary cell medium at the concentration of 1x106 cells/ml, 

seeded over coated wells and incubated for 8-12h at 37°C, 5% CO2. 

BrdU proliferation assay 

Cells were stimulated as indicated. To analyze the frequency of the cells that actively enter cell cycle, 

BrdU was added to the cells 45 min before the end of stimulation at the final concentration of 10 µM. After 

harvesting, cells were stained for surface markers as described before followed by BrdU staining 

according to the manufacturer’s instructions. Cell samples were analyzed by flow cytometry. 

CFSE proliferation assay 

Before stimulation cells were labeled with 1 µM CFSE. Briefly, cells were resuspended in PBS at the 

concentration of 1x107 cells/ml. Appropriate amount of CFSE was added while vortexing the cell solution. 

After 10 min of incubation at 37°C, 5% CO2, cells were washed 3 times with PBS and resuspended in 

primary medium at 1x106 cells/ml. Upon stimulation, the frequency of proliferating cells and number of 

division were analyzed by flow cytometry.  

 

5.2.7. Cytokine production determination 

Quantification of cytokines 

The amount of released cytokine over a given time period was determined by enzyme-linked 

immunosorbent assay (ELISA). At the end of incubation, cell free supernatants were collected and stored 

at -20°C until analysis. Cytokine concentration was measured using sandwich ELISA according to the 

manufacturer’s instruction. 

Quantification of cytokine producing cells 

The frequency of cytokine producing cells was determined by intracellular staining. Prior to the collection 

from culture, cells were incubated 4-6h with Golgi Stop in order to prevent protein secretion. 
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5.2.8. Genetic expression profile analysis 

Experimental setup 

Groups of 20 mice were injected subcutaneously with PBS (naïve controls) or 106 RMA-S cells 

resuspended in 100 µl of PBS. Mice were used at 9 weeks of age. Naïve mice were sacrificed on day 3 

post-injection. Groups of 20 tumor bearing mice were sacrificed on day 3, 10 and 17 post-injection. Single 

cell suspensions were prepared from blood and tumor as indicated in section 5.2.2. Blood and tumor 

infiltrating NK cells were isolated from the pooled blood and tumor samples as described in section 

5.2.3.2. Typically, 5-10x105 NK cells were obtained from blood and 1-2x105 NK cells were obtained from 

tumor samples with a purity of ≥99% and ≥98% for blood and tumor, respectively. Biological triplicates with 

indicated purity of sorted NK cells were collected for every treatment (naïve/tumor bearing), every time 

point (day 3/10/17) and every organ (blood/tumor).   

RNA isolation 

RNA was isolated from NK cells sorted out of tumor or blood using RNeasy® Mini Kit with minor changes 

of the recommended protocol. Typically, cells were lysed in RLT buffer according to manufacturer’s 

instructions and lysates stored at -80°C until continuing isolation. Obtained RNA was treated with DNase 

using TURBO DNA-free® kit in order to remove any possible genomic DNA contamination. 

RNA precipitation 

2 µl of Pellet Paint (Novagen), 0.1 v/v 3M NaAc pH 5.2 and 2 v/v 100% EtOH were added to the isolated 

and DNase treated RNA and incubated for 2 min at RT. RNA was pelleted (16000xg, 5 min, 4°C) and 

washed two additional times with 70% and 100% EtOH, respectively. The pellet was dried to remove any 

remaining EtOH and resuspended in RNA Storage Solution. Quantity and quality of obtained RNA was 

analysed using RNA Pico Assay performed on the Bioanalyzer 2100 Lab-on-a-Chip system. High quality 

RNA samples (RNA integrity number≥9) were chosen for microarray experiment.  

RNA amplification 

Identical starting amounts of RNA (35 pg) were amplified using Two-Cycle Target Labeling and Control 

Reagent kit according to the recommendations of the manufacturer. Two-cycle linear RNA amplification 

was performed. 

Microarray experiment  

Gene expression was detected using mouse genome 430 2.0 array from Affymetrix (Santa Clara, CA, 

USA). Five experimental groups were examined, with triplicates for each group. cDNA and cRNA 

synthesis, and hybridization to arrays were performed according to the recommendations of the 

manufacturer.  
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Microarray data analysis 

Microarray data was analyzed based on ANOVA using a commercial software package JMP Genomics, 

version 4.0 from SAS (SAS Institute, Cary, NC, USA). Briefly, values of perfect-matches were log 

transformed, quantile normalized and fitted with log-linear mixed models, with probe_ID and sample group 

considered to be constant and sample_ID random. Hierarchical clustering of differentially expressed 

genes was performed using a build-in program.  

Microarray pathway analysis 

To identify pathways that are likely to be affected by differential expression, an ORA approach using 

Fisher's exact test as described by Manoli et al. was performed [277]. Analyzed pathways were collected 

from the KEGG database (Kyoto Encyclopedia of Genes and Genomes), or manually generated. 

 

5.2.9 Mouse tumor models 

Subcutaneous tumor cell inoculation 

Tumor cells were harvested in the exponential growth phase after 5 days of culture and washed three 

times with PBS (1200 rpm, 10 min, 4°C). Cells were resuspended in PBS at the concentration of 

1x107 cells/ml (RMA-S, B16, B16.B7-1, LL2) or 1x106 cells/ml (RMA). Mice were injected subcutaneously 

in the left flank with 100 μl of tumor cell suspension. Tumor growth was assessed every second day with 

a caliper measuring along the perpendicular axes of the tumors and expressed as the product of the three 

diameters. If not used for an experiment at a particular time point of tumor growth, mice were killed when 

the tumor surface exceeded 4 cm2 or when became moribund.  

Metastases model 

For metastasis models 100 µl of tumor cell suspension in PBS were injected through tail vein. Mice were 

sacrificed two weeks post-injection. For the analysis of PD-1 and CTLA-4 expression in the lung of injected 

mice total of 105 RMA, RMA-S, RMA-S.B7-1, B16 or B17.B7-1 tumor cells were injected through tail vein. 

For the analysis of the IL-2 treatment effect on metastases formation (data not shown) total of 7.5x105 

B16.B7-1 tumor cells were injected through tail vein.  

Intraperitoneal tumor cell inoculation 

For short term experiments, mice were inoculated with 100 µl of 1x108 cell/ml RMA-S or RMA-S.B7-1 

tumor cell suspension in PBS and sacrificed 24h post-injection. For long term experiments total of 1x105 

tumor cells per mouse in 100 µl PBS was injected. The weight of individual mice was measured every two 

days. Mice were sacrificed 10-15 days upon tumor cell inoculation. 
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5.2.10. mAb application in vivo 

αCTLA-4 and αPD-1 

100 µl of 2.5 mg/ml αCTLA-4 or 3 mg/ml αPD-1 in PBS was injected i.p. in tumor bearing animals every 

three days starting one day before tumor cell inoculation. Control animals were injected with equal volume 

of PBS. 

 

5.2.11. Cytokine application in vivo 

IL-2 

For subcutaneous tumor models 100 µl of 106 U/ml IL-2 was injected i.p. in tumor bearing animals for five 

consecutive days staring from the day of tumor cell inoculation. Control animals were injected with equal 

volume of PBS. In some experiments IL-2 application was combined with αCTLA-4 or/and αPD-1 

treatments. In the case of metastases model 100 µl of 106 U/ml IL-2 was injected i.p. one day before tumor 

cell inoculation. 

IL-18 

100 µl of 20 µg/ml IL-18 was injected i.p., in tumor bearing animals for five consecutive days staring from 

day 8 after tumor cell inoculation. Control animals were injected with equal volume of PBS. 

 

5.2.12. TLR ligand application in vivo 

pI:C 

Polyinoside-polycytidylic acid (pI:C) was applied i.p. resuspended in 100 µl PBS. For short-term 

experiments 200 µg of pI:C per mouse were injected and animals were sacrificed after 18-24h. For 

long-term experiments 50 µg of pI:C per mouse were injected every three days. 

CpG 

Mice were injected peritumoral with 100 µl of water solution of CpG at concentration 200 µg/ml. Typically, 

2-3 spots around palpable tumor were chosen to apply the full volume of the resuspended reagent. 

Injections were repeated every three days. 
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6. Results 
 

6.1. Phenotype of tumor infiltrating NK cells 

6.1.1. Tumor infiltrating NK cells show an immature phenotype 

Four subsets of NK cells can be distinguished in the periphery according to the expression of the 

TNF family receptor CD27 and the integrin αm subunit CD11b [114]. Differential expression of 

the CD11b/CD27 marker combination characterizes maturation and the functional status, with 

CD11bhighCD27low being the most mature and CD11bhighCD27high being the most potent effector subset of 

NK cells. Peripheral organs are differentially populated with given NK cell populations. Solid tumors are 

complex tissues with their own blood and lymphatic system, composed of various cells including 

hematopoietic cells that can both support or hamper tumor progression [278]. We analyzed the expression 

of CD11b and CD27 in blood and tumor tissue of mice injected subcutaneously with tumor cells of different 

origin: B16 melanoma, RMA-S lymphoma and LL2 carcinoma cells (Figure 6.1A). The subset distribution 

in blood was not different between naïve and tumor bearing animals, with the most mature 

CD11bhighCD27low cells comprising the majority of gated CD3-NK1.1+ cells. In contrast, in all tumors 

CD27high NK cells were the dominant subset. To investigate if the distribution is changed during tumor 

progression, we analyzed the subset distribution in subcutaneous B16 melanomas of different tumor size. 

As shown in Figure 6.1B, even at early stages of tumor growth most of the cells in the tumor belonged to 

the CD27high subset. It is, however, still possible that, independently of the maturation state, CD27 is 

upregulated within the tumor tissue, owing to its potent costimulatory role for NK cell activity. Therefore, 

we analyzed the expression of several other markers that correlate with CD27 and characterize the less 

mature state of NK cells (Figure 6.1C). High expression of CD27 in the tumor was positively correlated 

with the expression of c-Kit and CD69 that are shown to be expressed by immature NK cells [109]. KLRG1 

and CD43 that characterize mature NK cells showed reduced expression on tumor infiltrating CD27high NK 

cells. Thus, our data indicate that solid tumors of different origin are preferentially infiltrated by the less 

mature CD27high NK cell subset.  
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Figure 6.1. Tumor infiltrating NK cells show an immature phenotype. Mice were inoculated subcutaneously with  PBS 

only (naive controls) or 106 tumor cells in 100 µl PBS. When tumor size exceeded 1 cm2 (A and C), mice were 

sacrificed and single cell suspensions were prepared from blood and tumor. In B, mice were sacrificed when tumors 

reached the indicated size. Phenotype of blood and tumor infiltrating NK cells, defined as CD3-NK1.1+, was analyzed 

by flow cytometry. % of cells in the depicted quadrants are shown in the dot-plots. 

 

6.1.2. Subset of tumor infiltrating NK cells show IKDC-like phenotype 

Besides CD11b and CD27, which are mainly used to indicate the maturation stage, several other markers 

define NK cells with special functional features. Recently defined IKDCs (Interferon Producing Killer 

Dendritic Cells) were described as a cell population with the properties of both NK and DCs [139]. Due to 

their high potency of IFNγ production and cytotoxicity, as well as antigen presentation potential and 

release of IL-12, IKDCs have been shown to be very efficient anti-tumor effectors. Their main phenotypic 
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characteristics are expression of NK1.1, high levels of CD11c and B220, as well as MHC class II. 

To further characterize NK cells found within the tumor tissue, we analyzed the expression of IKDC 

markers on NK cells in blood and tumor of tumor bearing hosts.  

In RMA-S injected mice, all NK cells, defined as CD3-NK1.1+, from both blood and tumor expressed 

CD11c and B220. Of note, expression of B220 was increased on subset on NK cells in tumor 

(Figure 6.2A). We did not observe MHC II+ NK cells in blood. In contrast, tumor infiltrating NK cells 

increased MHC II expression with tumor progression. A similar phenotype has been observed in both B16 

and LL2 tumor bearing mice (Figure 6.2B). These data indicate that subset of NK cells found in the tumor 

phenotypically resemble IKDCs. Functional analysis must be performed to confirm their potential ability to 

produce high amounts of IFNγ and/or IL-12. Importantly, NK cells within tumor tissue express MHC II, 

unlike their counterparts from blood, which indicates that they indeed might be able to present tumor 

antigens and activate adaptive immune responses. 
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Figure 6.2. Tumor-infiltrating NK cells show IKDC-like phenotype. Mice were inoculated with 106 tumor cells in 100 µl 

PBS. When tumor size exceeded 1 cm2, mice were sacrificed and single cell suspensions were prepared from blood 

and tumor. Phenotype of blood and tumor infiltrating NK  cells, defined as CD3-NK1.1+, was analyzed by flow 

cytometry. Representative stainings and quantification of CD11c, B220 and MHC II expression on NK cells from blood 

and tumor of RMA-S lymphoma (A), B16 melanoma and LL2 carcinoma (B) tumor bearing mice are shown. Graphs 

indicate mean±SD of experimental group of 3 treated animals from one out of two experiments performed. *, p<0.05 

by t-test 

 

6.1.3. Tumor infiltrating NK cells express elevated amounts of granzyme B 

Many transplanted tumors were shown to be controlled by NK cells in a perforin dependent manner 

indicating that direct cytotoxicity plays the central role in the NK cell anti-tumor response [81-82, 102]. 

However, when tumors efficiently evade immune surveillance mechanisms and progressive growth is 

established, NK cell functions might be altered. We compared NK cell cytotoxic response of blood and 

spleen NK cells derived from naïve or RMA-S tumor bearing animals. Ex vivo response was correlated to 

the level of NK cell degranulation, measured by CD107a/b expression, after the encounter with target cells 

in vitro. In vivo response was correlated to the clearance of tapasin deficient splenocytes that express 

reduced levels of MHC I, from the spleen of naïve and tumor bearing mice. Both ex vivo and in vivo NK 
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cells efficiently responded to target cells (Figure 6.3). Of importance, ex vivo response was measured 

against NKG2D sensitive target cells, YAC-1, while in vivo killing was directed against MHC Ilow 

splenocytes. These data indicate that no systemic impairment of NK cell cytotoxic response involving 

different recognition pathways can be detected in tumor bearing animals.  

 

Figure 6.3. NK cells from tumor bearing animals exert normal cytotoxic responses. (A) Whole splenocytes from naïve 

or RMA-S inoculated animals (solid tumor, day 10 post-injection) were co-cultured with YAC-1 target cells in a 1:1 ratio 

in the presence of fluorochrome labeled CD107a/b mAbs or isotype control. Degranulation of NK  cells in response to 

target was analysed by flow cytometry and expressed as % of CD107a/b+ cells among gated CD3-NK1.1+7-AAD- cells. 

Graphs indicate mean±SD of triplicate culture from one out of two experiments performed. n.s., not significant by 

t-test. (B) WT or tapasin deficient splenocytes, labelled with different concentration of CFSE, were injected in naïve or 

RMA-S inoculated animals (solid tumor, day 17 post-injection) in a 1:1 ratio. After 6h, mice were sacrificed and % of 

differentially labelled CFSE+ cells from spleen was measured by flow cytometry. NK cell cytotoxic response in vivo 

was expressed as % of specific lysis of tapasin deficient (MHC class Ilow) compared to WT splenocytes. Graphs 

indicate mean±SD of experimental group of 3 treated animals from one out of two experiments performed.  

We could not compare cytotoxicity of tumor infiltrating NK cells with those derived from blood or spleen 

due to the low cell numbers that were obtained from the tumor tissue. We, however, observed that NK 

cells from the tumor expressed perforin and granzyme B (Figure 6.4). Perforin levels were slightly elevated 

in TINs compared to spleen NK cells, although the differences were not always significant. In addition, 

tumor infiltrating NK cells were positive for granzyme B, which was not detected in spleen NK cells. 

Presence of perforin and granzyme B indicates that NK cells in the tumor are armed to perform cytotoxic 

responses. 
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Figure 6.4. NK cells from tumor express perforin and granzyme B. Mice were inoculated with 106 RMA-S tumor cells in 

100 µl PBS. 10 days post-injection, mice were sacrificed and single cell suspensions were prepared from spleen and 

tumor. Expression of perforin and granzyme B of spleen and tumor infiltrating NK  cells, defined as CD3-NK1.1+, was 

analyzed by flow cytometry.  

 

6.2. Gene expression profile of tumor infiltrating NK cells 

Our previous data showed that tumor infiltrating NK cells might have special properties and exert functions 

different from NK cells found in the peripheral blood. Those properties could be the consequence of the 

natural response to the tumor targets and/or the microenvironment formed by the solid tumor. For the 

analysis of NK cells in tumor bearing animals we mainly used subcutaneous RMA-S lymphoma model. 

Owing to the low expression of MHC I by RMA-S tumor cells, when injected at low cell numbers, tumor 

formation is prevented in a NK cell dependent manner. When the initial tumor cell load is sufficient to drive 

tumor progression, we observed that tumor growth followed defined kinetics. Three phases of tumor 

growth can be recognized (Figure 6.5A). The first phase is represented by the slow kinetics of tumor 

progression and is followed by the intermediate phase in which tumor size does not change significantly 

for several days. While in the first phase innate immunity might play a dominant role in the anti-tumor 

response, in the second phase tumor growth might be efficiently controlled by combined actions of both 

the innate and the adaptive arm of the immune system. However, despite the fact that an initial control was 

established, all animals progress to the third phase characterized by tumor outgrowth that leads to death. 

When NK cells are removed from the system by application of αNK1.1 mAb, that depletes NK and NKT 

cells, the initial tumor control is lost and animals progress through the third phase-like tumor outgrowth 

(Figure 6.5B).  
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Figure 6.5. RMA-S tumor growth is controlled by NK cells. (A) Mice were injected with 106 RMA-S tumor cells 

subcutaneously and tumor growth was measured in regular time intervals. (B) Group of RMA-S inoculated mice was 

treated with αNK1.1 mAb on day -2, +2, +9 and +16 relative to the tumor cell inoculation, leading to efficient depletion 

of NK1.1+ cells, which was sustained during experiment (data not shown). Every line represents tumor growth kinetics 

of an individual mouse.  

We aimed to better understand the role of NK cells in tumor growth control during different phases of 

tumor progression. Therefore we performed global gene expression profile analysis of blood and tumor 

infiltrating NK cells from RMA-S tumor bearing animals at different time points of tumor progression. First, 

the experimental design (Figure 6.6) allowed us to compare blood NK cells from naïve and tumor bearing 

animals in order to characterize possible systemic changes that could occur due to the tumor outgrowth. 

If such changes were detectable from the early time points, they could be used as potential clinical 

biomarkers of tumor presence. Second, a comparison can be made between blood and tumor infiltrating 

NK cells in tumor bearing animals, allowing the analysis of potential special features of NK cells from the 

tumor tissue. Finally, the comparison between blood and tumor NK cell pools over time indicates how the 

NK cell effector functions and their potential to control the growth of MHC I deficient tumor changes while 

tumor progresses through the described phases (Figure 6.5). As shown in Figure 6.6A, we isolated NK 

cells from blood of naïve (day 0) and tumor bearing animals on day 3, 10 and 17 after tumor cell 

inoculation. NK cells from the tumor were obtained on day 10 and day 17 after tumor cell injection. Cells 

were sorted for high purity (≥99% from blood and ≥98% from tumor). RNA isolated from sorted NK cells 

was subjected to the quality test. High quality RNA was amplified, labelled and hybridized with mouse 

whole genome microarrays.  Every experimental group and time point was represented as biological 

triplicate in microarray experiment. 
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Figure 6.6. Experimental design of gene expression analysis of blood and tumor infiltrating NK cells. (A) Groups of 30 

mice were injected subcutaneosly with PBS (naïve controls) or 106 RMA-S lymphoma cells (day 0). NK cells were 

isolated from blood and tumor tissue at indicated time points after tumor cell inoculation. Biological triplicates were 

provided for every treatment, every organ and every time point of tumor growth. (B) Highly purified NK cells were 

obtained by flow cytometry sorting from blood and tumor of naive and tumor bearing mice. One representative 

analysis of purity of sorted NK cells is shown (left). Blood NK cells samples with purity ≥99% and tumor NK cell 

samples with purity ≥98% were selected for RNA isolation. Total RNA isolated from sorted cells was analysed for 

quality using RNA 6000 Pico Assay performed on the Bioanalyzer 2100 Lab-on-a-Chip system (right). Similar starting 

amounts of high quality RNA were subsequently amplified, labelled and hybridized with Affymetrix® mouse whole 

genome microarrays. (C) Comparisons of gene expression profiles were performed between different treatments 

(naïve vs tumor bearing), different organs (blood vs tumor) or between same organ at different time point of tumor 

growth.   
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6.2.1. Tumor infiltrating NK cells show strikingly different transcription profile compared to blood 

NK cells 

Nine different comparisons were performed over the transcription profiles of naïve blood, tumor bearing 

animal blood and tumor infiltrating NK cells isolated at different time points after tumor cell inoculation 

(Figure 6.7A). In total, 1387 transcripts were found to be differentially regulated between the various 

groups that have been compared. The heat map from Figure 6.7B shows clustering of top 50 genes 

differentially expressed in at least one of the comparisons, selected according to p-value. A similar pattern 

was observed when all changed genes were clustered together. The clustering pattern indicates that 

tumor infiltrating NK cells have strikingly different transcription profile when compared with NK cells 

isolated from blood of both naïve and tumor bearing animals. Less pronounced changes, reflected in the 

lower number of differentially regulated genes, were detected when the expression profile of NK cells from 

the blood of naïve mice was compared with the profile of blood NK cells of tumor bearing animals. Similar 

observation was made when expression profiles of different time points of tumor growth were compared 

for both blood and tumor infiltrating NK cells. 

 

Figure 6.7. Tumor infiltrating NK cells show strikingly different transcription profile compared to blood NK cells. 

(A) Expression profiles were obtained in triplicates for every sample shown and compared according to the given 

scheme. Blue arrows indicate the comparisons of NK cells from the same organ, thereby measuring temporal 

changes, while red arrows show the comparisons of NK cell profiles derived from different organs at the same time 
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point of tumor growth. (B) Unsupervised hierarchical clustering algorithm for genes that showed significant change in 

the expression level in at least one comparison performed, was applied accross all samples. The length and branching 

pattern in the resulting dendogram reflects the similarity/difference in gene expression profiles between each of the NK 

cell samples. Top 50 differentially expressed genes, sorted according to p-value, are shown.  

Functional classification revealed that differentially expressed genes between blood and TINs of tumor 

bearing mice were involved in the control of the function that might be highly relevant for anti-tumor 

responses (Table 6.1). Among the most significantly affected pathways are the BCR and TCR signaling 

pathway that utilize basically the same signaling components found downstream of NK receptors, such as 

Lck, Itk, Vav, PI3K, PLCγ, Cbl, MAP3Ks and NF-kB, all of which showed changed transcript levels in 

tumor infiltrating NK cells. This finding indicates that functionality of NK receptors might be differentially 

regulated within the tumor compared to blood. Effector functions triggered upon target recognition and NK 

receptor signaling include cytotoxicity and cytokine and chemokine production, all of which rely on vesicle 

trafficking and release of their components into extracellular space. Indeed, several genes regulating 

vesicle transport are positively regulated in TINs (pathway: SNARE interactions in vesicular transport), 

as well as some of the genes encoding cytotoxic vesicle components, such as cathepsins and several 

types of granzymes.  

 

Pathway  Hits  Total  Hit percent  Significance 

TCR signaling pathway  25  75  33.3333  0.00000  *** 

Cell cycle  23  84  27.3810  0.00000  *** 

NK cell mediated cytotoxicity  18  65  27.6923  0.00002  *** 

Chronic myeloid leukemia  16  57  28.0702  0.00004  *** 

Cytokine‐cytokine receptor interaction  29  155  18.7097  0.00020  *** 

MAPK signaling pathway  35  203  17.2414  0.00024  *** 

Streptomycin biosynthesis  5  8  62.5000  0.00030  *** 

Jak/STAT signaling pathway  20  95  21.0526  0.00039  *** 

BCR signaling pathway  12  45  26.6667  0.00062  *** 

Glycolysis and gluconeogenesis  10  35  28.5714  0.00122  ** 

Apoptosis  14  62  22.5806  0.00137  ** 

VEGF signaling pathway  13  57  22.8070  0.00182  ** 

Inositol phosphate metabolism  10  42  23.8095  0.00530  ** 

Hematopoietic cell lineage  13  64  20.3125  0.00533  ** 



Ana Stojanovic    Results 

‐ 82 ‐ 
 

Pentose phosphate pathway  6  19  31.5789  0.00690  ** 

Carbon fixation  5  15  33.3333  0.00933  ** 

Adipocytokine signaling pathway  12  61  19.6721  0.00944  ** 

FcεRI signaling pathway  12  61  19.6721  0.00944  ** 

Pancreatic cancer  12  61  19.6721  0.00944  ** 

Glyoxylate and dicarboxylate metabolism  4  10  40.0000  0.00986  ** 

Thyroid cancer  6  21  28.5714  0.01017  * 

Purine metabolism  18  108  16.6667  0.01037  * 

Colorectal cancer  12  66  18.1818  0.01739  * 

Glycan structures biosynthesis  7  30  23.3333  0.01780  * 

Galactose metabolism  6  24  25.0000  0.01985  * 

Ethylbenzene degradation  3  7  42.8571  0.02104  * 

Phenylalanine tyrosine and tryptophan  3  7  42.8571  0.02278  * 

SNARE interactions in vesicular transport  6  25  24.0000  0.02412  * 

Fructose and mannose metabolism  7  32  21.8750  0.02503  * 

TLR signaling pathway  11  62  17.7419  0.02628  * 

ABC transporters  7  34  20.5882  0.03404  * 

Leukocyte transendothelial migration  13  82  15.8537  0.03855  * 

 

Table 6.1. Signaling pathways affected by differential gene expression in tumor infiltrating NK cells. To identify 

pathways that are likely to be affected by differential gene expression between blood and tumor infiltrating NK cells, 

an ORA approach using Fisher's exact test was performed [277]. Analyzed pathways were collected from the KEGG 

database (Kyoto Encyclopedia of Genes and Genomes), or manually generated. Number (Hits) and percentage 

(Hit percent) of differentially expressed signaling molecules of total molecules (Total) comprising the given pathways 

are shown.  

Apart from the direct cytotoxicity, NK cells can exert anti-tumor functions through the production of 

cytokines and chemokines, which can act directly on tumor cells or can modulate the responses of other 

immune effectors. Transcripts of several chemokines were found to be elevated in TINs, such as CCL1, 

CXCL2 and CXCL9, as well as chemokine receptors CCR2, CCR7 and CXCR4, while CX3CR1 

expression was reduced. Through the chemokine network established at the tumor site NK cells can 

attract other immune cells such as neutrophils, macrophages, DCs or T cells. In addition, those cells, 

including NK cells themselves, can further potentiate NK cell recruitment. Indeed, some of the given 
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chemokine-chemokine receptor interactions (CXCR3:CXCL9/10, CX3CR1:CX3CL1) have been previously 

shown to facilitate NK cell trafficking to the tumor [279-280].  

Gene name  Gene symbol 
day 10  day 17 

p‐value  Fold change  p‐value  Fold change 

chemokine (C‐C motif) ligand 1  Ccl1  17.55  2.65  14.88  2.40 

chemokine (C‐X‐C motif) ligand 2  Cxcl2  11.71  6.44  11.11  6.07 

chemokine (C‐X‐C motif) ligand 9  Cxcl9  9.56  3.04  5.51  2.25 

chemokine (C‐C motif) receptor 2  Ccr2  13.91  1.87  15.75  1.97 

chemokine (C‐C motif) receptor 7  Ccr7  9.66  3.24  7.25  2.68 

chemokine (C‐X‐C motif) receptor 4  Cxcr4  12.24  3.47  8.82  2.77 

chemokine (C‐X3‐C) receptor 1  Cx3cr1  39.34  ‐2.60  40.89  ‐2.66 

 

Table 6.2. Differential expression of chemokines and chemokine receptor by NK cells infiltrating the tumor tissue. 

Chemokine and chemokine receptors found to be differentially regulated on transcript level between blood and tumor 

infiltrating NK cells of tumor bearing animals are depicted. Fold change indicates the difference of tumor versus blood 

signal and is considered significant when p-value is ≥ 7. 

Genes whose products are known to influence cell adhesion and motility, functions important for migration 

across the endothelium and tissue infiltration, were differentially regulated by TINs. For example, integrin 

α2 (DX5) and α6, CD9, cadherin 22, CD151, MCAM are some of the molecules that mediate binding to 

endothelium and different components of extracellular matrix (ECM), thereby might promote NK cell 

migration through the tumor tissue. However, they were found to be negatively regulated by NK cells 

isolated from the tumor (Figure 6.8A). On the other hand, enzymes that modulate ECM by cleaving its 

components (Adam8, Adam9, Plaur) showed elevated transcript levels. These modulations can have 

multiple consequences including the release of active cytokines and chemokines bound to the cell surface 

or matrix components, but also support of tumor cell invasion and metastasis formation. We confirmed 

reduced expression of DX5 by tumor infiltrating NK cells at the protein level (Figure 6.8B). 

A. 

Gene name 
Gene 
symbol 

day 10  day 17 

p‐value  Fold change  p‐value  Fold change 

integrin alpha 2  Itga2  2.50  ‐1.24  8.79  ‐1.59 

integrin alpha 6  Itga6  5.91  ‐1.97  9.19  ‐2.43 

CD9 antigen  Cd9  8.94  ‐2.04  11.42  ‐2.38 

CD151 antigen  Cd151  2.22  ‐1.26  6.76  ‐1.55 

cadherin 22  Cdh22  6.66  ‐1.82  7.75  ‐1.93 

melanoma cell adhesion molecule  Mcam  15.55  ‐1.80  17.83  ‐1.90 

a disintegrin and metalloprotease domain 8  Adam8  33.29  3.25  42.72  4.23 

a disintegrin and metalloproteinase domain 9  Adam9  11.59  1.63  5.28  1.35 

urokinase plasminogen activator receptor  Plaur  7.17  1.72  4.73  1.53 
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Figure 6.8. Differential regulation of several adhesion molecules and ECM 

modifying enzymes was detected in tumor infiltrating NK cells. (A) Adhesion 

molecules and enzymes specific for extracellular matrix (ECM) components found 

to be differentially regulated on the transcript level between blood and tumor 

infiltrating NK cells of tumor bearing mice are depicted. Fold change indicates the 

difference of tumor versus blood signal and is considered significant when p-value 

is ≥ 7. (B) Mice were inoculated subcutaneously with 106 RMA-S cells in 100 µl 

PBS. When tumor size exceeded 1 cm2, mice were sacrificed and single cell 

suspensions were prepared from blood and tumor. Expression of integrin α2 

(DX5) on blood and tumor infiltrating NK cells, defined as CD3-NK1.1+7AAD-, was 

analyzed by flow cytometry. Graph indicates mean±SD of the experimental group 

of three animals from one out of two experiments performed. *, p<0.05 by t-test 

NK cells infiltrating the tumor showed increased transcript levels of cytokines, cytokine receptors and 

signaling molecules downstream of cytokine receptors (Table 6.1, Cytokine-cytokine receptor interaction 

and Jak/STAT signaling pathway). Lymphotoxin α and β, GM-CSF, TGFβ1, PDGFα and VEGFA 

transcripts were elevated in TINs when compared to blood NK cells (Figure 6.9A). Lymphotoxins and 

GM-CSF might support DC recruitment and activation [281-283], TGFβ can both suppress and promote 

tumor growth [284], while PDGFα and VEGFA promote angiogenesis [285]. Of note, NK cells showed 

elevated expression of many other molecules that facilitate angiogenesis (angiopoietin, arginase), 

indicating that they might play an active role in this process at the tumor site (Table 6.1, VEGF signaling 

pathway). IL-1R2, IL-2Rα, IL-4Rα, IL-7Rα, IL-15Rα, IFNγR1 and TGFβR2 are examples of increased 

regulation of cytokine receptors by TINs (Figure 6.9A). IL-7, IL-2 and IL-15 are shown to promote NK cell 

maturation, survival and activation [286]. Elevated expression of TGFβ receptor might render NK cell 

sesitive to TGFβ, which is known to suppress their ability to produce IFNγ [287]. As shown in Figure 6.9B, 

surface expression of IL-2Rα and IL-7Rα was increased on tumor infiltrating NK cells when compared to 

blood, indicating a positive correlation between transcript and protein level regulation. Protein levels of  

IL-4Rα and IFNγR1 were, however, unchanged.  

Multiple genes regulating the cell cycle were upregulated by NK cells found in tumor tissue. Most of them 

(cyclin E, A, B, cyclin-dependent kinases 2, 25B and others) indicate that NK cells actively progress 

through the cell division. However, at the same time, elevated expression of GADD45B (growth arrest and 

DNA-damage-inducible 45 beta) suggests that cell division might be arrested due to the cellular stress 

[288]. Indeed, the tumor tissue is characterized by unfavorable conditions such as low oxygen levels, 

acidosis and high intestinal fluid pressure. Changes involving metabolic pathways support the adaptation 

to such biochemical environment [289-290]. For example, under hypoxia, cells cannot efficiently utilize 

oxidative phosphorylation and switch their energy production preferentially towards glycolysis. In tumor 

infiltrating NK cells, we have observed high upregulation of the transcription factor HIF1α, the main 

regulator of gene expression under low oxygen concentrations. In addition, enzymes that facilitate glucose 

uptake, phosphorylation and finally mediate its breakdown, which are also under the control of HIF1α, are 
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found to be positively regulated by NK cells in the tumor. Finally, pro-angiogenic function of NK cells can 

be also a consequence of hypoxia and HIF1α activation. 

A. 

Gene name 
Gene 
symbol 

day 10  day 17 
p‐value  Fold change  p‐value  Fold change 

interleukin 2 receptor, alpha chain  Il2ra  30.35  2.73  30.46  2.74 

interleukin 7 receptor  Il7r  7.98  2.42  7.28  2.31 

interleukin 1 receptor, type II  Il1r2  10.84  2.03  13.28  2.23 

interleukin 4 receptor, alpha  Il4ra  13.67  1.37  20.24  1.49 

interleukin 15 receptor, alpha chain  Il15ra  13.19  1.21  9.02  1.16 

interferon gamma receptor 1  Ifngr1  10.09  1.81  6.37  1.57 

transforming growth factor, beta 1  Tgfb1  7.70  1.33  4.05  1.21 

transforming growth factor, beta receptor II  Tgfbr2  15.19  1.34  5.39  1.17 

vascular endothelial growth factor A  Vegfa  30.22  2.48  14.91  1.81 

platelet derived growth factor, alpha  Pdgfa  10.37  1.63  12.99  1.75 

granulocyte‐macrophage colony stimulating factor 2  Csf2  9.14  2.82  11.20  3.23 

 

B. 

 

Figure 6.9. Multiple cytokines and cytokine receptors are differentially regulated between blood and tumor infiltrating 

NK cells. (A) Cytokines and cytokine receptors found to be differentially regulated on the transcript level between 

blood and tumor infiltrating NK cells of tumor bearing mice are depicted. Fold change indicates the difference of tumor 

versus blood signal and is considered significant when p-value is ≥ 7. (B) Mice were inoculated subcutaneously with 

106 RMA-S cells in 100 µl PBS. When tumor size exceeded 1 cm2, mice were sacrificed and single cell suspensions 

were prepared from blood and tumor. Expression of depicted cytokine receptors on blood and tumor infiltrating NK 

cells, defined as CD3-NK1.1+, was analyzed by flow cytometry. Graphs indicate mean±SD of experimental group of 

three animals. *, p<0.05; **, p<0.01 by t-test 

In summary, our data reveal that tumor infiltrating NK cells showed strikingly different transcription profile 

compared to blood NK cells of tumor bearing animals. Differentially expressed genes are involved in 

multiple functions relevant for anti-tumor responses including target recognition and triggering through 
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activating NK receptors, vesicle trafficking and cytotoxicity, production and response to cytokines and 

chemokines, migration, angiogenesis and regulation of proliferation, survival and metabolic functions in 

response to hypoxia. We evaluated protein levels of selected differentially regulated genes and confirmed 

that changes on transcript levels in most of the cases correlated with protein expression. Detailed analysis 

of detected changes will provide a better understanding of NK cell effector response within the complex 

microenvironment of solid tumors and might allow for proper manipulation to achieve better immune 

control of tumor development and progression. 

 

6.2.2. Tumor infiltrating NK cells downregulate expression of activating NK cell receptors 

Around 570 genes were found to be negatively regulated on the transcript level when blood and tumor 

infiltrating NK cells are compared on both day 10 and day 17 of tumor growth. Among those genes, 

several NK cell activating receptors were detected (Table 6.2).  

Gene name  Gene symbol 
day 10  day 17 

p‐value  Fold change  p‐value  Fold change 

natural cytotoxicity triggering receptor 1  Ncr1/NKp46  6.03  ‐1.61  7.85  ‐1.75 

killer cell lectin‐like receptor subfamily B 
member 1C 

Klrb1c/NKR‐
P1C/NK1.1 

9.24  ‐1.55  7.18  ‐1.46 

CD244 natural killer cell receptor 2B4  CD244/2B4  7.27  ‐1.49  4.03  ‐1.33 

CD48 antigen  CD48  12.61  ‐1.47  16.41  ‐1.57 

killer cell lectin‐like receptor, subfamily A, 
member 1 

Klra1/Ly49A  8.79  ‐1.23  3.07  ‐1.12 

killer cell lectin‐like receptor family E member 1  Klre1/NKG2I  12.15  ‐1.39  12.7  ‐1.4 
 

Table 6.2. Transcriptional regulation of activating receptors by tumor infiltrating NK cells. NK cell receptors found to be 

differentially regulated on the transcript level between blood and tumor infiltrating NK cells of tumor bearing mice are 

depicted. Fold change indicates the difference of tumor versus blood signal and is considered significant when 

p-value is ≥ 7. 

NKp46 belongs to the group of natural cytotoxicity receptors (NCRs). It was shown to recognize viral 

hemaglutinins as well as unknown ligand(s) on several tumor cell lines including RMA-S [291]. In addition, 

killing of different tumor cell lines can be partially or completely abrogated by blocking of NCRs [292-293]. 

NKp46 deficiency in mice was shown to hamper the control of lymphoma, however, the effect was 

dependent on the mouse strain and tumor cell line used [294]. NK1.1 belongs to the NKR-P1 family of 

receptors shown to recognize the Clr (Clec2, Ocil) family of ligands, both of which are C-type lectin-like 

molecules encoded within the same locus in the mouse genome [295-296]. Both stimulating and inhibitory 

isoforms of NKR-P1 receptors have been characterized and several ligands have been identified, which 

are either widely expressed or restricted to the certain cell types as macrophages, DCs or osteoclasts. 

The ligand for NKR-P1C, activating receptor recognized by PK136 (αNK1.1) mAb in BL6 mouse strain, 
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is still unknown. Both NKp46 and NKR-P1C (NK1.1) are coupled to the adaptor molecules CD3ζ and 

FcεRIγ, indicating that they could engage a similar signaling pathway leading to the similar outcome in 

response to different ligands. 2B4 is a receptor expressed on all NK cells, γδ T and CD8+ memory T cells. 

It can mediate both activation and inhibition and mode of its action depends on the level of surface 

expression, degree of ligand engagement and nature of adaptor molecules it associates with [297]. 

Its ligand, CD48, is expressed on all hematopoiteic cells and it was proposed to deliver a signal upon 

binding to 2B4, probably through recruited adaptor proteins. A bidirectional 2B4-CD48 interaction has 

been shown to be important for the proliferation and generation of NK cell effector functions through the 

homotypic NK-NK interaction [298] as well as for NK cell mediated stimulation of T cell responses [299]. 

Microarray data analysis revealed that NKp46, NKR-P1C (NK1.1), 2B4 and CD48 transcript levels were 

reduced in TINs when compared to blood in tumor bearing animals (Table 6.2). We analyzed the surface 

expression of NKp46, 2B4 and CD48 receptors in TINs and confirmed that the negative regulation at 

mRNA levels correlated with decreased protein levels detected on the cell surface (Figure 6.10). In all 

performed experiments, NK cells were defined as CD3-NK1.1+ cells. We have observed a slight 

downregulation of NK1.1 expression on gated NK cells within the tumor, which was not always significant. 

In parallel, we confirmed that the surface expression of the activating NK cell receptor NKG2D, which was 

not regulated at the mRNA level, was unchanged in the tumor compared to blood.  

 

Figure 6.10. Tumor infiltrating NK cells downregulate expression of activating receptors NKp46, 2B4 and CD48. Mice 

were inoculated subcutaneously with 106 RMA-S cells in 100 µl PBS. When tumor size exceeded 1 cm2, mice were 

sacrificed and single cell suspensions were prepared from blood and tumor. Expression of depicted receptors on 

blood and tumor infiltrating NK cells, defined as CD3-NK1.1+, was analyzed by flow cytometry. Graphs indicate 

mean±SD of experimental group of three animals and are representative of one out of two experiments performed. 

n.s., not significant; *, p<0.05 by t-test 

Beside the depicted activating receptors, expression of the inhibitory receptor Ly49A was also negatively 

regulated at the transcript level in TINs compared to blood in tumor bearing animals (Table 6.2). Our 

attempts to compare expression of Ly49 receptors on blood and tumor infiltrating NK cells were 

unsuccessful due to their differential sensitivity to digestion enzymes that must be used for tumor tissue 
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dissociation. While Ly49G2 and Ly49C/I/F/H were completely sheded from the blood derived NK cells by 

collagenase or hyaluronidase treatment, their expression could still be detected on TINs at the levels 

comparable to the untreated blood (Figure 6.11). The inhibitory receptor Ly49A, which was negatively 

regulated at the transcript level, showed high surface expression on TINs, elevated compared to blood NK 

cells treated in an identical way as tumor tissue (Figure 6.11). However, it is not possible to say if tumor 

infiltrating NK cells increased the expression of Ly49A due to the fact that the receptor on blood NK cells 

was partially affected by the treatment. Since most of Ly49 receptors bind MHC I molecules and mediate 

NK cell inhibition, we compared the levels of their expression in RMA-S, MHC I deficient, and RMA, MHC I 

sufficient, tumors. NK cells found within RMA tumors showed a similar pattern of Ly49 receptor expression 

(data not shown) indicating that their regulation is not influenced by MHC I expression levels on tumor 

cells.  

 

Figure 6.11. Differential regulation of Ly49 receptors by tumor infiltrating NK cells. Mice were inoculated 

subcutaneously with 106 RMA-S cells in 100 µl PBS. When tumor size exceeded 1 cm2, mice were sacrificed and 

single cell suspensions were prepared from blood and tumor. Tumor tissue was digested with hyaluronidase as 

indicated in Materials and Methods section. Blood cells were treated with hyaluronidase or left untreated. Expression 

of depicted Ly49 receptors was analyzed by flow cytometry. Representative stainings show the expression of depicted 

Ly49 receptors on gated CD3-NK1.1+ cells. 

In summary, our data showed that within tumor tissue NK cells negatively regulated expression of 

activating receptors NKp46, 2B4 and CD48 at both mRNA and protein level. Although NK1.1 was 

negatively regulated at the mRNA level, the surface protein was not found decreased in every experiment 

performed. However, this tendency was always observed. Expression of Ly49 receptors was rather 

regulated at the post-transcription and/or post-translation level in the manner that does not depend on the 

MHC I expression by tumor cells. Our data indicated that the surface expression of inhibitory Ly49 

receptors might be stabilized within tumor tissue by unknown mechanisms. 



Ana Stojanovic    Results 

‐ 89 ‐ 
 

6.2.3. Tumor infiltrating NK cells upregulate expression of B7 family members 

Out of 1387 differentially expressed genes between NK cells from blood and tumor of tumor bearing mice, 

around 820 belong to the group of positively regulated transcripts. The subgroup of significantly 

upregulated genes was identified to belong to the B7 family of costimulatory molecules (Figure 6.12).  

Gene name 
Gene symbol/ 
Other name 

day 10  day 17 

p‐value  Fold change  p‐value  Fold change 

cytotoxic T‐lymphocyte‐associated protein 4  Ctla4  33.79  6.84  45.3  11.57 

programmed cell death 1 ligand 2 
Pdcd1lg2/PD‐
L2/B7‐DC 

45.29  2.99  40.74  2.72 

inducible T‐cell co‐stimulator  Icos  56.33  2.8  43.82  2.41 

programmed cell death 1 ligand 1 
Pdcd1lg1/PD‐
L1/B7‐H1 

33.81  2.5  26.55  2.15 

programmed cell death 1  Pdcd1/PD‐1  30.38  1.87  40.48  2.19 

CD86 antigen  Cd86/B7‐1  7.66  1.63  3.22  1.34 

icos ligand  Icosl/ICOS‐L  4.84  1.23  7.67  1.31 
 

 

Figure 6.12. Positive regulation of B7 family members by tumor infiltrating NK cells. B7 family members found to be 

differentially regulated at the transcript level between blood and tumor infiltrating NK cells in tumor bearing mice are 

depicted in the table. Fold change indicates the difference of tumor versus blood signal and is considered significant 

when p-value is ≥ 7. Lower panel indicates the so far known interactions established between the members found in 

the table and their functional outcomes [300]. 

We analyzed the protein expression of B7 family members on NK cells from blood and tumor of RMA-S 

tumor bearing mice. As shown in Figure 6.13, B7 family receptors CD28, CTLA-4, PD-1 and ICOS were 

not detectable in blood of either naïve (data not shown) or tumor bearing animals. However, tumor 

infiltrating NK cells upregulated CD28, CTLA-4 and PD-1, while the expression of the activating receptor 

ICOS remained low/negative and unchanged at the protein level. These data indicate that PD-1 and 

CTLA-4 regulation at the transcript level correlates with the protein level expression, while CD28 

expression is most probably regulated post-transcriptionally. Both CD28 and PD-1 expression levels were 

increased with tumor progression (data not shown) showing the highest expression at the high tumor load. 
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Interestingly, we did not detect CD28, CTLA-4 and/or PD-1 positive NK cells within the first 10 days of 

tumor progression. Typically, observed phenotypical changes were only detected in tumors bigger than 

1 cm2. In contrast to PD-1 and CD28, we did not measure substantial amounts of CTLA-4 on the cell 

surface of tumor infiltrating NK cells. Similarly to the expression pattern previously shown in T cells, 

CTLA-4 protein was stored intracellularly. However, we cannot exclude the possibility that small, yet 

undetectable amounts of the protein are transported to the cell surface and can have a functional effect. 

Indeed, short exposure on the cell surface followed by fast internalization has already been shown to take 

place in T cells and can have functional consequences due to the very high affinity of CTLA-4 for its 

ligands [190]. 

 

Figure 6.13. Expression of B7 family members on tumor infiltrating NK cells. Mice were inoculated subcutaneously 

with 106 RMA-S cells in 100 µl PBS. When tumor size exceeded 1 cm2, mice were sacrificed and single cell 

suspensions were prepared from blood and tumor. Expression of depicted molecules on blood and tumor infiltrating 

NK cells, defined as CD3-NK1.1+, was analyzed by flow cytometry. Surface expression is depicted for all molecules 

except CTLA-4 whose expression is measured by intracellular staining of the protein. Representative stainings from 

one out of three experiments performed are shown. 

Similar to the above mentioned receptors, PD-L2, the ligand of PD-1, was not expressed in blood, but 

induced on tumor infiltrating NK cells. ICOS-L already showed low expression in the blood and was slightly 

elevated in the tumor. In contrast to PD-L2, B7-H1, another PD-1 ligand, as well as binding partner of 

B7-1, is highly expressed on blood NK cells. We observed its elevated expression in the tumor, however, 

differences were not always significant. Expression of B7-1 and B7-2, shared ligands of CD28 and 

CTLA-4, was variable between experiments, which might be a consequence of their tight temporal 

regulation that can in addition be influenced by the tumor size. In general, the expression of B7-1 was low, 

while B7-2 was constitutively expressed by NK cells. 

In summary, RMA-S infiltrating NK cells showed elevated expression of multiple B7 family members at 

both mRNA and protein level. For most of the analyzed molecules, a correlation between changes at 

transcript and protein level was observed. The main phenotypic features of tumor infiltrating NK cells were 

induced expression of CD28, CTLA-4, PD-1 and PD-L2  when compared to their blood counterparts. 
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6.2.3.1. Expression of B7 family members in NK cell depends on the tumor type 

So far, we showed that NK cells that infiltrate different types of subcutaneous tumors had a very similar 

phenotype, as shown in Figure 6.1 and 6.2. We observed the induced expression of several B7 family 

members on NK cells that infiltrate RMA-S lymphomas, some of which were not reported to be expressed 

by NK cells before. Therefore, we analyzed the profile of several B7 family members on NK cells derived 

from the tumors of different origin. As shown in Figure 6.14, surface levels of the analyzed molecules are 

strongly dependent on the tumor type. While lymphomas (RMA, RMA-S) showed a tendency to highly 

upregulate PD-1 and CD28, melanoma (B16) and carcinoma (LL2) preferentially upregulated B7-H1. 

CD28 and PD-1 were expressed at very low levels in TINs of B16 and LL2 tumor bearing mice. However, 

in all tumor models analyzed, we observed expression of CTLA-4 (Figure 6.14), which seems to be 

a stable feature of NK cells infiltrating solid tumors. 

 

Figure 6.14. B7 family member expression in NK cells infiltrating tumors of different origin. Mice were inoculated 

subcutaneously with PBS (naïve controls) or 106 tumor cells in 100 µl PBS. When tumor size exceeded 1 cm2, mice 
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were sacrificed and single cell suspensions were prepared from blood and tumor. Expression of depicted molecules 

on blood and tumor infiltrating NK cells, defined as CD3-NK1.1+, was analyzed by flow cytometry. Graphs indicate 

mean±SD of experimental group of 3 treated animals and are representative of one out of minimum two experiments 

performed. 

 

6.2.3.2. Expression of B7 family members on tumor infiltrating T cells and macrophages  

Several B7 family members were upregulated by NK cells found within the tumor tissue. It is possible that 

certain factors, both biological (e.g. cytokines) and chemical (pH, hypoxia) within the microenvironment 

were able to induce their expression. We analyzed if these molecules were similarly regulated on other 

immune cells found in RMA-S tumors. Figure 6.15 shows that both cells of the adaptive (T cells) and the 

innate (macrophages) immune system highly upregulated PD-1 in the tumor. In addition, T cells, both 

CD4+ and CD8+, showed elevated expression of B7-H1 and PD-L2, as well as high levels of CTLA-4 

assesed by intracellular staining. CTLA-4+ cells among the CD4+ subset might, however, be composed of 

both activated T effector cells and T regulatory cells that constitutively express CTLA-4 [213] and were 

shown to accumulate in tumor [301]. 
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Figure 6.14. Expression of B7 family members by tumor infiltrating T cells and macrophages. Mice were inoculated 

subcutaneously with 106 RMA-S tumor cells in 100 µl PBS. When the tumor size exceeded 1 cm2, mice were 

sacrificed and single cell suspensions were prepared from blood and tumor. Expression of the depicted molecules on 

blood and tumor infiltrating T cells (CD3+CD4+ and CD3+CD8+) and macrophages (CD11b+F4/80+) was analyzed by 

flow cytometry. Graphs indicate mean±SD of experimental groups of 3 treated animals. 

Thus, expression of certain B7 family members, such as PD-1, might be induced by the conditions in the 

tumor microenvironment (hypoxia, cytokine/s present in high concentrations). Regulation of the expression 

of other molecules might in addition require more defined cell/cell intreractions and/or the presence of 

certain factors acting on the specific cell types. 

 

6.2.3.3. Expression od PD-1 and CTLA-4 in RAG2 deficient mice 

Expression of PD-1 and CTLA-4 on tumor infiltrating NK cells was typically observed in the tumors that 

exceeded the size of 1 cm2 . This size corresponds to the phase of tumor progression, which is 

characterized by the established control of tumor growth and is followed by the final phase of progression 

that leads to animal death (Figure 6.4). The phase of control correlated to the time when the adaptive 

immune system is expected to be fully activated. To investigate if a factor/s derived from adaptive immune 

cells at that time might be responsible for PD-1 and CTLA-4 induction on NK cells in the tumor, we 

analyzed NK cells derived from RMA-S tumors established in RAG2 deficient mice. Tumors in RAG2 

deficient mice grew with the similar kinetics within the first 7-10 days upon tumor cell inoculation, but 

progressed more aggressively in the late phase due to the absence of the adaptive immune response to 

tumor (data not shown). In the tumors dissected when the  size of 1 cm2 was reached in both WT and 

RAG2 deficient mice, we observed a similar expression of PD-1 (Figure 6.15). However, CTLA-4 

expression was not induced in RAG2 deficient mice. These observations indicate that either a direct 

contact or/and factor/s derived from cells of adaptive immune system are necessary for the induction of 

CTLA-4 in NK cells. This putative interaction and/or the production of the factor/s is expected to take place 

only in the tumor since no CTLA-4 expression was observed in blood. 
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Figure 6.15. Induction of CTLA-4, but not PD-1, depends on the presence of the adaptive immune system. WT and 

RAG2 deficient mice were injected subcutaneously with 106 RMA-S cells in 100 µl PBS. When the tumor size 

exceeded 1 cm2, mice were sacrificed and single cell suspensions were prepared from blood and tumor. Expression of 

PD-1 (surface) and CTLA-4 (intracellular) on blood and tumor infiltrating NK cells, defined as CD3-NK1.1+, was 

analyzed by flow cytometry. Graphs indicate mean±SD of experimental groups of 3 treated animals and are 

representative of one out of two experiments performed. 

 

6.2.3.5. Expression od PD-1 and CTLA-4 in NK cell insensitive tumors 

RMA-S is considered as a NK cell sensitive tumor cell line due to its sensitivity to NK cell lysis owing to the 

low expression of MHC I [23]. Thereby, when injected at low cell numbers into congenic mice, RMA-S cells 

are efficiently rejected in a NK cell dependent manner, while MHC I sufficient RMA cells lead to tumor 

formation [23]. However, when inoculated at high cell numbers, RMA-S form solid tumors, which we found 

to be infiltrated by PD-1 and CTLA-4 positive NK cells. We compared NK cells from MHC I deficient 

RMA-S and MHC I suficient RMA tumors of a similar size to see if efficient target recognition influences 

PD-1 and CTLA-4 upregulation. We observed no differences (Figure 6.16). Similar data were obtained 

when we compared PD-1 and CTLA-4 induction on NK cells infiltrating B16 and B16.Rae1ε solid tumors, 

where more efficient recognition of B16.Rae1ε cells is based on the expression of the ligand for the 

activating receptor NKG2D. Those data indicate that missing-self and induced-self recognition do not 

influence PD-1 and CTLA-4 expression in tumor infiltrating NK cells and that other factors might play 

a main role in their induction. 
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Figure 6.16. Missing-self and induced-self recognition do not influence PD-1 and CTLA-4 expression by tumor 

infiltrating NK cells. Mice were inoculated subcutaneuosly with 106 tumor cells in 100 µl PBS. When the tumor size 

exceeded 1 cm2, mice were sacrificed and single cell suspensions were prepared. Expression of PD-1 (surface) and 

CTLA-4 (intracellular) on tumor infiltrating NK cells, defined as CD3-NK1.1+, was analyzed by flow cytometry. Graphs 

indicate mean±SD of experimental group of three animals and are representative of one out of two experiments 

performed. 

 

6.2.3.6. Expression of PD-1 and CTLA-4 in non-subcutaneous tumor models 

Induction of inhibitory receptors PD-1 and CTLA-4 on NK cells within the tumor microenvironment has 

been observed to depend on the tumor size. In tumors smaller than 1 cm2, expression was absent or very 

low. Bigger tumors are characterized by necrotic, and areas with low pH and low oxygen concentration. 

These conditions, and the factors produced by other cells in the microenvironment, can possibly favor the 

PD-1 and CTLA-4 upregulation. Metastases are usually smaller in size and also known to be better 

controlled by NK cells than large solid tumors. We aimed to analyse if NK cells found within the organs 

highly populated by metastases express PD-1 and CTLA-4. Two weeks after the intravenous injection of 

different tumor cell lines (RMA, RMA-S, B16, LL2) into congenic mice, we observed the metastasis 

formation in the lungs of inoculated animals. However, no PD-1 and CTLA-4 expression was detected on 

NK cells from either blood or lungs (data not shown). Similar data we obtained after tumor cell inoculation 

into peritoneum. Two weeks post-injection, no PD-1 or CTLA-4 positive NK cells were found in the blood 

or peritoneal lavage of inoculated mice (data not shown), indicating that the given phenotype of NK cells is 

feature of big solid tumors. 
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6.3. Expression of B7 family receptors and ligands by in vitro expanded NK cells 

6.3.1. In vitro induction of B7 family members 

Gene expression profiling of tumor infiltrating NK cells revealed that within the tumor tissue several 

B7 family members were induced on NK cells. For the most of selected candidates, the data obtained on 

the mRNA level were confirmed to correlate with the protein expression. High surface levels of PD-1 and 

substantional intracellular levels of CTLA-4 were detected in tumor infiltrating, but not blood NK cells 

(Figure 6.12). In contrast, the activating receptor CD28 was not found to be differentially regulated on the 

transcript level between blood and tumor infiltrating NK cells. However, while blood NK cells were 

CD28 negative, the receptor was induced on NK cells from the tumor tissue (Figure 6.12). Next, we aimed 

to analyze the biological functions of different B7 family members in NK cells to better understand possible 

consequences of their induction in the tumor. As a first step, we measured the expression of several 

B7 molecules on in vitro expanded NK cells. NK cells isolated from spleen and cultured for 7-10 days in 

the presence of 1700 U/ml rhIL-2, are preferentialy composed of the CD27high NK cell subset 

(Figure 6.17A), similar to the NK cells found in the tumor (Figure 6.1). They express high levels of B220, 

while MHC II expression was reduced compared to the freshly isolated NK cells (Figure 6.17A). Analysis 

of the B7 family expression revealed that expanded NK cells expressed CD28, CTLA-4 (intracellular), low 

levels of B7-1 and B7-2 and high levels of B7-H1, while PD-1 and PD-L2 were absent (Figure 6.17B). 

Compared to fresh NK cells, expansion in IL-2 did not change the surface levels of B7-1, B7-2 and B7-H1. 

These observations indicate that, although the culture in IL-2 did not precisely reproduce expression of 

B7 family members seen on NK cells in the tumor, it was capable of inducing CD28 and CTLA-4. Thus, 

in vitro expanded NK cells can be used for analysis of CD28 and CTLA-4 functional role in the regulation 

of NK cell effector responses. 
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Figure 6.17. Phenotype of in vitro expanded NK cells. NK cells were isolated from spleens by magnetic cell sorting 

using CD3+ cell depletion followed by DX5 positive selection. After one week of culture in the presence of 1700 U/ml 

rhIL-2  cells were analyzed by flow cytometry for (A) subset composition (CD11b/CD27 co-expression), IKDC markers 

(CD11c, B220, MHC II) and (B) expression of  depicted B7 family members. Cultured cells were compared with freshly 

isolated splenocytes. Representative histograms show the expression of depicted molecules on gated CD3-NK1.1+ 

cells. 

 

6.3.2. In vitro induction of PD-1 

Since the expansion of NK cells in IL-2 led to CD28 and CTLA-4, but not PD-1 induction, we aimed to 

investigate if the addition of other stimuli would potentiate its expression. Single cytokines or their 

combinations, triggering of different NK cell receptors, incubation with tumor cells or the induction of 

transcription factor HIF-1α, the main regulator of hypoxia induced responses, were some of the conditions 

that failed to induce PD-1 expression on NK cells (Table 6.3). Since freshly isolated NK cells cannot 

survive without IL-2 for more than several hours, these stimuli were used for the short term stimulation of 

freshly isolated NK cells (4-8 h) or long term stimulation of IL-2 expanded NK cells (24-48 h). Therefore, 

we cannot exclude the possibility that some of the stimuli would be able to induce PD-1 expression the  

whole splenocytes, since PD-1 might be induced indirectly, through the accessory cells responding to the 

primary stimulus. However, we did not observe PD-1 expression in any of the experimental conditions 

applied. 



Ana Stojanovic    Results 

‐ 98 ‐ 
 

Stimulus

Cytokines  IL‐1β, IL‐2, IL‐4, IL‐6, IL‐9, IL‐10, IL‐12, IL‐13, IL‐15, IL‐18, IFNα, IFNβ

Tumor cells  RMA, RMA‐S, B16, B16.Rae1ε at diferent E/T ratios 

NK receptor triggering  NK1.1, NKG2D, 2B4, Ly49D 

TLR ligands  Poly I:C, CpG

PMA and Ionomycin Activation of PKC and Ca2+ flux 

Chronic stimulation  Plate bound Abs and irradiated tumor cells for 7 days 

HIF‐1α induction  DMOG ‐ prolyl‐4‐hydroxylase inhibitor, prevents HIF‐1α targeting for degradation

Combinations of stimuli 

Cytokine combinations

Cytokine + Tumor cells 

Cytokine + DMOG 

Tumor cells + DMOG 
 

Table 6.3. Experimental conditions used for analysis of PD-1 induction in vitro. Freshly isolated or IL-2 expanded NK 

cells and whole splenocytes were stimulated as indicated for a short term (4-8 h) or a long term (24-48 h) period. PD-1 

expression was analyzed by flow cytometry. No induction was observed for any of the given experimental setup. 

 

6.3.3. Regulation of CTLA-4 expression by in vitro expanded NK cells 

We showed that culture in IL-2 induces CTLA-4 expression by NK cells. In T cells, CTLA-4 is induced by 

the TCR and CD28 engagement and most of the protein is found intracellularly [190]. Treg constitutively 

express CTLA-4, which is stored within the cell, but is exposed on the cell surface upon activation. In both 

cases, surface CTLA-4 is internalized shortly after the exposure and either targeted for degradation or 

recycled back to the plasma membrane. To investigate if a similar cellular compartmentalization of CTLA-4 

exists in NK cells and how it is regulated, we applied several staining techniques for its detection 

(Figure 6.18).  

 

Figure 6.18. Staining strategies for CTLA-4 detection in NK cells. Intracellular staining protocol includes cell fixation 

and permeabilization of cell membranes, therefore both surface and intracellular protein is detected. Surface staining 

detects only the receptor exposed on the cell surface at the moment of staining. Prolonged surface staining detects 

any CTLA-4 molecule that reaches the surface within the last 4h of cell stimulation, which is the time period labeled 

αCTLA-4 mAb is added to the cell culture. 
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Intracellular staining detects the total protein content that can be distributed anywhere within the cell 

including the cell surface. Surface staining detects the receptor exposed on the cell surface in the moment 

of staining. Prolonged surface staining detects CTLA-4 that reaches the cell surface during a defined time 

period. In this case, fluorescently labeled αCTLA-4 mAb or isotype control was added to the culture for the 

last 4h of cell stimulation and can bind any CTLA-4 molecule that is expressed on the surface within 

a given time period. 

By applying surface staining, we did not detect CTLA-4 expression on freshly isolated, cultured NK cells or 

cultured and then restimulated NK cells using different stimuli (data not shown). This means that the 

amount of the receptor on the surface could be too low to be detected by a classical flow cytometry 

staining technique. Of importance, even small hardly detectable amounts of CTLA-4 on the cell surface 

can have a significant functional role due to its high binding affinity for the B7-1 and B7-2 ligands [200]. 

Indeed, prolonged surface staining revealed that under certain conditions, CTLA-4 was exposed on the 

surface of NK cells where it could participate in the ligand binding and influenced NK cell effector 

responses.   

 

6.3.3.1. Regulation of CTLA-4 surface expression by cytokines 

IL-12 is a cytokine secreted by activated macrophages and DCs that plays an important role in NK cell 

activation [302]. Its main effect is the induction of IFNγ that further activates macrophages and DCs. IL-18 

very efficiently synergizes with IL-12, which is the combination known to be one of the strongest inducer of 

IFNγ production by NK cells. In addition, IL-18 stimulates NK cell cytotoxicity [100]. We analyzed whether 

exposure to IL-12 or/and IL-18 might as well influence CTLA-4 expression by NK cells. As shown in Figure 

6.19A, stimulation of in vitro expanded NK cells with a combination of IL-2, IL-12 and IL-18 for 24 hours 

strongly induced CTLA-4 surface expression as detected by prolonged surface staining (see Figure 6.18 

for staining method). Single cytokines, IL-12 or IL-18, added to IL-2 did not have such an effect. In addition 

to the increased surface exposure, the triple cytokine combination (IL-2/12/18) elevated the levels of total 

CTLA-4 assessed by intracellular staining (6.19B). 
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Figure 6.19. Regulation of CTLA-4 expression by cytokine stimulation. NK cells were isolated from spleens by 

magnetic cell sorting via DX5 positive selection (A) or CD3+ cell depletion followed by DX5 positive selction (B). After 

one week of culture in the presence of 1700 U/ml rhIL-2, cells were stimulated with the indicated cytokines for 24h 

(IL-2 1700 U/ml, IL-12 5 ng/ml, IL-18 40 ng/ml). Prolonged surface staining (last 4h of stimulation) or intracelular (total) 

staining was used for the analysis of CTLA-4 expression on gated CD3-NK1.1+ cells. In the case of surface staining, 

dead cells were excluded by addition of 7-AAD. MFI (calculated as Geometric Mean of specific staining-Geometric 

Mean of isotype control) is depicted in each panel. Data are representative from one out of three experiments 

performed. 

To better understand how the CTLA-4 synthesis and trafficking are regulated, we analyzed kinetics of 

CTLA-4 expression upon IL-2/12/18 treatment by prolonged surface staining. Interestingly, although 

substantial amounts of the protein existed in IL-2 expanded NK cells (Figure 6.19B), increased surface 

expression was not detected earlier than 24h upon IL-2/12/18 stimulation (Figure 6.20A and Figure 6.19B 

showing the expression after 24h). That indicates that cytokines probably did not directly mobilize the 

receptor from the intracellular pool, but that putative secondary factor/s induced by cytokines might do so. 

Therefore, we analyzed whether the CTLA-4 surface expression depends on de novo transcription and/or 

de novo translation. As shown in Figure 6.20B, NK cells treated with transcription inhibitor actinomycin D 

(ActD) showed partial reduction, and cell treated with translation inhibitor cyclohexamide (CHX) complete 

absence of surface CTLA-4 expression. These data show that CTLA-4 surface exposure partially 

depended on de novo transcription and completely on de novo protein synthesis.  
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Figure 6.20. Requirements for CTLA-4 surface expression by in vitro expanded NK cells. NK cells were obtained by 

culture of non-adherent RAG2 deficient splenocytes in the presence of 1700 U/ml rhIL-2. After one week of culture NK 

cells were stimulated with the indicated cytokines (IL-2 1700 U/ml, IL-12 1 ng/ml, IL-18 10 ng/ml). (A) CTLA-4 

expression was measured by prolonged surface staining (last 4h of stimulation) at different time points after beginning 

of stimulation. Total stimulation time is depicted on the x-axis. (B) NK cells were left untreated or treated with 5 µg/ml 

actinomycin D (ActD), 10 µg/ml cyclohexamide (CHX) or adequate volume of absolute ethanol (EtOH) as a solvent 

control. CTLA-4 surface expression was measured by prolonged surface staining 24h after the beginning of 

stimulation. Graphs indicate mean±SD of triplicate culture. Graphs indicate mean±SD of triplicate cultures. 

 

6.3.3.2. Regulation of CTLA-4 surface expression by receptor triggering 

In addition to the stimulation by cytokines from the microenvironment, NK cells can be activated in a direct 

contact with other cells by recognition of the ligands for activating NK receptors. Thus, we analyzed if 

triggering of NK cell receptors can modulate CTLA-4 expression. When IL-2 expanded NK cells were 

stimulated with plate-bound mAbs directed against different NK receptors, no change in the total or 

surface expression of CTLA-4 was observed (Figure 6.21), although triggering of some receptors, as 

NK1.1, showed the tendency to induce CTLA-4. When receptor triggering was combined with the triple 

cytokine stimulation, synergy was obtained between IL-2/12/18 and NK1.1 engagement in enhancing 

CTLA-4 surface exposure, detected by the prolonged surface staining. 
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Figure 6.21. Regulation of CTLA-4 expression by receptor triggering. NK cells were obtained by culture of 

non-adherent RAG2 deficient splenocytes in the presence of 1700 U/ml rhIL-2. After one week of culture harvested NK 

cells were first incubated with αCD16/CD32 mAbs to block Fc receptors and subsequently stimulated with plate-bound 

Abs (10 µg/ml) for 24h in the presence of indicated cytokines (IL-2 1700 U/ml, IL-12 1 ng/ml, IL-18 10 ng/ml). CTLA-4 

expression was measured by prolonged surface staining (last 4h of stimulation). Graphs indicate mean±SD of 

triplicate culture. Graphs indicate mean±SD of triplicate ciltures. Ms – mouse; Ham - Hamster 

Interestingly, short exposure to cytokines, not sufficient to induce surface expression itself, can render NK 

cells sensitive to the NK1.1 mediated surface induction of CTLA-4. NK1.1 signals via the adaptor 

molecules CD3ζ and FcεRIγ [295]. On the other hand, Ly49D and NKG2D, that did not have any effect on 

CTLA-4 expression, are coupled to DAP12 and DAP12 or DAP10, respectively [303]. Therefore, we 

looked if another activating NK receptor that utilizes CD3ζ and FcεRIγ for signal transduction had similar 

effect as NK1.1. Indeed, short term NK cell stimulation with cytokines (IL-2/12/18) followed by triggering of 

NKp46, enhanced CTLA-4 surface expression similar to the levels obtained by NK1.1 engagement 

(Figure 6.22).  
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Figure 6.22. Regulation of CTLA-4 expression by CD3ζ and FcεRIγ coupled NK cell receptors. NK cells were obtained 

by culture of non-adherent RAG2 deficient splenocytes in the presence of 1700 U/ml rhIL-2. After one week of culture 

harvested NK cells were pre-treated with the indicated cytokines (IL-2 1700 U/ml, IL-12 1 ng/ml, IL-18 10 ng/ml) for 

12h. After removal of the cytokines by washing, cells were first incubated with αCD16/CD32 mAbs to block 

Fc receptors and subsequently stimulated with plate-bound Abs (10 µg/ml) for additional 12h in the presence of IL-2. 

CTLA-4 expression was measured by prolonged surface staining (last 4h of stimulation). Graphs indicate mean±SD of 

triplicate culture. Graphs indicate mean±SD of triplicate ciltures. Ms – mouse; Ham - Hamster 

In summary, our data indicate that cytokines commonly present in the inflammed tissues, namely IL-12 

and IL-18, synergized with IL-2 in the upregulation of CTLA-4 expression and potentiated its exposure on 

the cell surface. CD3ζ and FcεRIγ coupled receptors, NK1.1 and NKp46, further increased CTLA-4 

surface expression of IL-2/12/18 exposed NK cells. Thus,the recognition of cellular ligands in combination 

with cytokines from the microenvironment can modulate the expression of CTLA-4 receptor on the surface 

of activated NK cells.           

    

6.4. In vitro responses of NK cells to B7-1 

Our previous results showed that expression of CTLA-4 on NK cells can be modified by their exposure to 

cytokines (IL-2/12/18) and the engagement of activating receptors, such as NK1.1 and NKp46. These data 

indicate that situations that typically induce NK cell activation can in addition increase expression of 

inhibitory molecules, in this case the receptor CTLA-4. B7-1 and B7-2 are two described ligands of CTLA-4 

[200]. Compared to B7-2, B7-1 binds CTLA-4 with a higher affinity. During the course of immune 

response, expression of the ligand, B7-1, and the receptor, CTLA-4, is induced at a similar time point. 

Thus, B7-1 is considered to be preferential and physiologically more important ligand for CTLA-4 [181]. 
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Therefore, we analyzed how NK cell responses are controled by CTLA-4 upon recognition of B7-1. 

Of importance, B7-1 can be engaged by two other molecules, CD28 and B7-H1, that mediate activating or 

inhibitory effects, respectively [304]. In conditions where CTLA-4 expression has been observed on NK 

cells (tumor tissue, expansion in IL-2), CD28 and B7-H1 were also expressed (Figure 6.23). Thus, NK cell 

responses to B7-1 can be modulated through all three pathways. 

 

Figure 6.23. Expression of B7-1 binding receptors CD28, CTLA-4 and B7-H1 by IL-2 expanded NK cells. NK cells 

were isolated from spleens by magnetic cell sorting using CD3+ cell depletion followed by DX5 positive selection. After 

one week of culture in the presence of 1700 U/ml rhIL-2  cells were analyzed for the expression of CD28 and B7-H1 by 

surface staining and CTLA-4 by intracellular staining.  

 

6.4.1. Stimulation with B7-1 induces NK cell proliferation and IFNγ production 

Next, we determined the functional impact of NK cell stimulation with B7-1. In vitro expanded NK cells, 

which we found to express B7-1 receptors CD28, CTLA-4 and B7-H1, were stimulated with plate bound 

B7-1 or control IgG fusion protein. As shown in Figure 6.24A, B7-1 induced IFNγ production in a dose 

dependent manner, which accummulated in the cell culture supernatant. Short pulse with BrdU, that allows 

the analysis of the frequency of proliferating cells, revealed that NK cells stimulated with B7-1 proliferated 

more extensively than controls (Figure 6.24B). At the same time, NK cells survival was analyzed 

by annexin V/7-AAD co-staining. B7-1 stimulated cells contained a slightly higher proportion of apoptotic 

cells (Figure 6.24C), but differences were much lower compared to differences in proliferation rates. Thus, 

in addition to inducing IFNγ, B7-1 stimulated NK cell proliferation and slightly increased apoptosis. This 

effect can lead to the increasement in the number of NK cells that can further respond to stimulation. 
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Figure 6.24. Stimulation with B7-1 induces IFNγ production and proliferation by in vitro expanded NK cells. NK cells 

were obtained by culture of non-adherent RAG2 deficient splenocytes in the presence of 1700 U/ml rhIL-2. After one 

week of culture harvested NK cells were pre-treated with αCD16/CD32 mAb to block Fc receptors and subsequently 

stimulated with plate-bound B7-1 (B7-1-Fc) or control (c-Fc) IgG fusion protein (2 µg/ml) in the presence of 1700 U/ml 

IL-2. (A) Increasing concentrations of plate bound B7-1-Fc were used for stimulation of NK cells. After 8h the culture 

supernatant was harvested and released IFNγ was measured by ELISA. (B). Last 45min of stimulation cells were 

pulsed with BrdU. The frequency of cells that have incorporated BrdU was measured by flow cytometry. (C) Cells were 

stimulated with B7-1-Fc for 24h. Proportion of apoptotic cells was measured by labelling with annexin V and 7-AAD. 

Graphs indicate mean±SD of triplicate cultures. *, p<0.05 by t-test; B7-1-Fc, B7-1 IgG fusion protein; c-Fc, control IgG 

fusion protein 

 

6.4.2. B7-1 expression by tumor cells increases their susceptibility to NK cell lysis and potentiate 

IFNγ production 

Many potential NK cell targets express B7 costimulatory ligands, such as some tumor cell of hematopoetic 

origin or dendritic cells [221, 305]. B7-1 expressed on tumor cells can engage both the activating, CD28, 

or the inhibitory, CTLA-4 and B7-H1 pathway. We measured the NK cell cytotoxic responses against 

tumor cell lines transduced with B7-1, namely RMA-S.B7-1 and B16.B7-1 (Figure 6.25).  

 

Figure 6.25. B7-1 expression on transduced RMA-S lymphoma and B16 melanoma cell lines. Cells were harvested in 

the exponential phase of growth after 7 days of culture. B7-1 expression was analyzed by flow cytometry. 
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B7-1 expression on MHC I deficient RMA-S lymphoma strongly increases their susceptibility to NK cell 

lysis (Figure 6.26A). In addition to the increased cytotoxic response, their recognition by NK cell effectors 

induced IFNγ production (Figure 6.26B). In vivo, subcutaneous injection of RMA-S.B7-1 into congenic 

mice led to the complete rejection of inoculated cells (Figure 6.26C). Importantly, both WT and RAG2 

deficient mice were able to control high numbers of tumor cells (data not shown), indicating the central role 

of innate immune system in mediating the efficient rejection. Since in vitro studies showed that both 

cytotoxic and cytokine releasing effector responses are mobilized upon NK cell recognition of the B7-1 

expressing lymphoma cells, both mechanisms might play a role in their efficient rejection in vivo. 

 

 

Figure 6.26. NK cell responses to B7-1 expressing tumor cells. NK cells were isolated from splenocytes by magnetic 

cell sorting using CD3+ cell depletion followed by DX5 positive selection and further cultured for 7-10 days in the 

presence of 1700 U/ml rhIL-2. (A) NK cells were used as effectors in 4h 51Cr release assay against RMA-S lymphoma 

and B16 melanoma B7-1+ target cells. (B) NK cells were incubated alone or with the indicated tumor cells in a 1:2.5 

ratio for 8h in the presence of IL-2. The amount of IFNγ released in the cell culture supernatant was measured by 

ELISA. Graphs indicate mean±SD of triplicate ciltures.  
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(C) RAG2 deficient mice were injected subcutaneously with 106 tumor cells (RMA-S, RMA-S.B7-1, B16, B16.B7-1) in 

100 µl PBS. Tumor size was measured every 2 days starting from day 5 after tumor cell inoculation and expressed as 

product of three measured tumor dimensions. Graphs indicate mean±SD of triplicate culture (A and B) or mean±SD of 

experimental group of three animals (C). 

We observed that the effect of B7-1 expression depended on the nature of tumor cell expressing it. In 

contrast to RMA-S lymphoma, B16 melanoma cells are killed by NK cells more efficiently in vitro 

(Figure 6.26A). Expression of B7-1 slightly increased specific lysis of B16 tumor cells. In addition, NK cells 

produced IFNγ in response to B7-1 expressing melanoma (Figure 6.26B). However, in vivo inoculation of 

both B16 and B16.B7-1 cells led to the progressive tumor growth in RAG2 deficient mice (Figure 6.26C). 

These data indicate that B7-1 expression by itself does not determine the NK cell responses in vivo, but it 

is rather integrated in the complex network of interactions established by NK cells, their targets and the 

microenvironment. As shown in Figure 6.13, the microenvironment formed by the tumor in vivo might 

differentially regulate the expression of receptors recognizing B7-1. NK cells found within RMA-S, but not 

B16 subcutaneous tumors, expressed the activating receptor CD28, that might mediate positive responses 

to B7-1 expressing lymphoma (Figure 6.14). On the other hand, high expression of the inhibitory receptor 

B7-H1 was detected on B16 infiltrating NK cells and could be responsible for a poor response and 

progressive growth of B7-1 expressing melanoma. 

 

6.4.3. NK cell mediated trogocytosis of B7-1 from target cells 

If a target cell is efficiently recognized by a NK cell, the stable contact is formed, which typically results in 

NK cell activation. The resulting outcome is target cell elimination and/or triggering of cytokine and 

chemokine production by NK cells. We observed that in addition to the activation of cytotoxicity and IFNγ 

production, NK cells cultured with B7-1 positive target cells become B7-1 positive themselves. This finding 

raised the question whether B7-1 was upregulated or acquired from the targets through the close synapse 

formed between two cells. The process of intercellular exchange of intact membrane patches, including 

membrane molecules, is termed trogocytosis and is considered to occur very frequently between 

interacting cells [306-307]. The main characteristic of the process is very fast kinetics since it occurs within 

minutes from the beginning of the interaction. The event of exchange is triggered by specific receptors and 

requires the signal transduction in recipient cell. Importantly, membrane proteins are transferred in full size 

and in the right inside-out orientation and therefore, they can potentially perform their functions.  

We showed that co-culture with different B7-1 expressing tumor cell lines rendered NK cells B7-1 positive 

(Figure 6.27A). This process is very fast and already co-incubation with targets as short as 30 minutes 

resulted in a highly positive NK cell population (Figure 6.27B). The level of B7-1 expression correlated with 

the availability of B7-1 source, since increased numbers of tumor cells elevated the proportion of B7-1 

positive NK cells (Figure 6.27B). 
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Figure 6.27. NK cells express B7-1 after co-culture with B7-1 expressing target cells. NK cells were obtained by 

culture of non-adherent RAG2 deficient splenocytes in the presence of 1700 U/ml rhIL-2. Cells were used after 7-10 

days of expansion. (A) NK cells were cultured alone or with tumor cells in a 1:1 ratio in the presence of IL-2. After 4h, 

expression of B7-1 and B7-2 was measured by flow cytometry. (B) Representative dot plots show B7-1 staining after 

NK cell co-culture with B16 or B16.B7-1 tumor cells for 4h or 30min. (C) NK cells were cultured alone or with tumor 

cells at the indicated ratios. After 4h, expression of B7-1 was analyzed by flow cytometry. 

Apart from B7-1 transduced tumor cells, B7-1 and B7-2 ligands are endogenously expressed by APCs. NK 

cells were shown to establish interactions with DCs that lead to either NK and DC activation or DC 

elimination if they are not mature [66]. Mature DCs express high levels of costimulatory molecules 

including B7-1 and B7-2. We showed that NK cells cultured with mature but not immature DCs displayed 

elevated surface expression of both B7-1 and B7-2 (Figure 6.28). Therefore, similar to tumor targets, 

increased availability of the ligands on DCs correlated with their higher expression by NK cells after 

co-culture. 
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Figure 6.28. NK cells express B7-1 and B7-2 after co-culture with 

mature DCs. NK cells were obtained by 7 days culture of 

non-adherent RAG2 deficient splenocytes in the presence of 

1700 U/ml rhIL-2. DCs were generated from bone marrow of WT 

mice by culture in the medium supplemented with GM-CSF. Cells 

were harvested on day 6 and treated with 100 ng/ml LPS (mature 

DC, mDC) or medium only (immature DC, iDC) for 12 hours.  

NK cells were cultured alone or with iDC and mDC at  a 1:1 ratio 

in the presence of IL-2 and GM-CSF (1/5 of amount used for 

expansion). After 24h of co-culture the expression of B7-1 and 

B7-2 on CD3-NK1.1+ cells was measured by flow cytometry. 

Dead cells were excluded by 7-AAD staining. 

 

To investigate if B7-1 was indeed acquired from target cells or upregulated by NK cells, we used NK cells 

derived from B7-1 deficient mice as effector cells in the co-culture experiments. B7-1 ko NK cells had 

a comparable phenotype to WT NK cells (data not shown) both when analyzed fresh or after expansion in 

IL-2 for the expression of maturation markers (CD11b, CD27), activation markers (CD11c, B220, CD69, 

CD25) and B7 family members (CD28, CTLA-4, PD-1, ICOS, B7-H1, PD-L2, B7-2). After co-culture with 

B7-1 expressing tumor cells, both WT and B7-1 deficient NK cells displayed similar levels of B7-1 on the 

surface (Figure 6.29A left), which proved that B7-1 was acquired from tumor cells and not synthetized by 

NK cells themselves. After co-culture with DCs, both B7-1 and B7-2 were expressed at the comparable 

levels by WT and B7-1 ko NK cells (Figure 6.29A right), which proved that DCs are source of B7-1. As an 

additional confirmation of the B7-1 transfer is the observation that only B7-2 expression was detected on 

WT NK cells after co-culture with DCs derived from B7-1 deficient mice, while both B7-1 and B7-2 were 

expressed after incubation with WT DCs (Figure 6.29B). 
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Figure 6.29. B7-1 is transferred from target cells to NK cells. NK cells were isolated from spleens of WT and B7-1 

deficient (B7-1 ko) mice by magnetic cell sorting using CD3+ cell depletion followed by DX5 positive selection and 

further cultured for 7-10 days in the presence of 1700 U/ml rhIL-2. DCs were derived from bone marrow of WT and 

B7-1 ko mice by culture in the medium supplemented with GM-CSF. Cells were harvested on day 6 and treated with 

LPS (mature DC, mDC) or medium only (immature DC, iDC) for 12 hours. (A) WT or B7-1 ko NK cells were cultured 

alone or with either B16 and B16.B7-1 tumor cells (left) or WT iDC and mDC (right) at a 1:1 ratio. NK/tumor cell 

co-cultures were supplemented with IL-2 (1700 U/ml) and NK/DC co-cultures with IL-2 and GM-CSF (1/5 of amount 

used for expansion). After 4h of co-culture with tumor cells or 24h with DCs, expression of B7-1 and B7-2 on 

CD3-NK1.1+ cells  was measured by flow cytometry. Dead cells were excluded by 7-AAD staining. (B) WT NK cells 

were co-cultured with WT or B7-1 ko iDCs and mDCs as indicated for panel A. NK cell B7-1 and B7-2 expression was 

measured by flow cytometry as in A. 

 

In summary, NK cells were capable of trogocytosis of B7-1 ligand from the cells they interact with. In our 

in vivo experiments we found indications, that this process could take place in the tumor tissue as well. 

NK cells within B7-1 positive melanoma expressed higher levels of B7-1 compared to the NK cells 

infiltrating B7-1 negative tumors (Figure 6.30). Elevated levels of the B7 costimulatory ligands on the 

surface of NK cells can have multiple functional outcomes that include both positive (e.g. T cell 

costimulation through CD28) and negative effects (e.g. Treg support through CD28, effector T cell 

inhibition through CTLA-4 or induction of IDO). 
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Figure 6.30. NK cells infiltrating B7-1 positive melanoma 

tumor express elevated levels of B7-1. Mice were injected 

subcutaneously with 106 tumor cells (B16 or B16.B7-1) in 

100 µl PBS. The first group of mice were sacrified before and 

the second group after tumor exceeded 1 cm in diameter. 

Single cell suspensions were prepared from blood and tumor 

and expression of B7-1 and B7-2 on CD3-NK1.1+ cells was 

analyzed by flow cytometry. Graphs indicate mean±SD of 

experimental group of three animals. 

 

 

 

 

6.5. Regulation of B7-1 induced responses by CD28, CTLA-4 and B7-H1 

So far, we showed that in vitro expanded NK cells, similar to tumor infiltrating NK cells, expressed the 

B7 family receptors CD28, CTLA-4 and B7-H1, that all bind the same ligand, B7-1. In response to B7-1, 

NK cells proliferated and produced high amounts of IFNγ. Ectopic expression of B7-1 by RMA-S 

lymphoma and B16 melanoma tumor cells enhanced their sensitivity to NK cell lysis and stimulated 

NK cell IFNγ production. In T cells, that constitutively express CD28 and B7-H1, and upregulate CTLA-4 

when activated, CD28 delivers positive, and B7-H1 and CTLA-4 negative costimulatory signals in the 

context of the TCR activation [59, 304]. We analyzed how B7-1 induced responses of NK cells are 

regulated by the given receptors. For this purpose, we used NK cells deficient in CD28, CTLA-4 or B7-H1, 

which were derived from CD28 ko, OT-I transgenic (OT-I-Tg) CTLA-4 ko and B7-H1 ko mice, respectively. 

CTLA-4 ko mice develop severe autoimmune phenotype characterized by the activation and expansion of 

self-reactive T cells, which results in animal death at the age of 3-4 weeks [203]. OT-I-Tg mice contain 

only CD8+ T cells specific for ovalbumin peptide presented in the context H2-Kb. Although the signs of 

T cell activation are visible in OT-I-Tg CTLA-4 ko mice, disease progression is significantly slower [308], 

which allowed us to use NK cells derived from those mice at the age when NK cells are fully mature and 

the signs of immune activation are minimal (around age of 6 weeks). Freshly isolated or in vitro expanded 

NK cells from gene deficient mice had a phenotype comparable to the WT NK cells and expanded in IL-2 

with similar kinetics. No differences in the expression of maturation markers (CD11b, CD27), activation 

markers (CD11c, B220, CD69, CD25) and B7 family members (CD28, CTLA-4, PD-1, ICOS, B7-H1, 

PD-L2, B7-2) were observed (data not sown).  
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6.5.1. IFNγ production is positively regulated by CD28 and negatively by CTLA-4 and B7-H1 

When stimulated with the plate-bound B7-1 IgG fusion protein (B7-1-Fc), in vitro expanded NK cells 

produced IFNγ (Figure 6.25A). To investigate which of the receptors known to recognize B7-1 is 

responsible for this response, we used NK cells deficient for CD28, CTLA-4 or B7-H1 and measured their 

activation by B7-1-Fc. In response to plate-bound B7-1-Fc, CD28 deficient NK cells failed to produce IFNγ 

(Figure 6.31A), indicating that the positive response to B7-1 is completely CD28 dependent.  

 

 

Figure 6.31. CD28 stimulates NK cell IFNγ production in response to B7-1. (A,B) NK cells were isolated from spleens 

of WT and CD28 deficient (CD28 ko) mice by CD3+ cell depletion followed by DX5 positive selection. After one week 

of culture in the presence of 1700 U/ml rhIL-2, cells were incubated with 10 µg/ml αCD16/CD32 to block Fc receptors 

and then stimulated with the plate-bound IgG fusion proteins (2 µg/ml) or indicated mAbs (10 µg/ml). (C) NK cells were 

obtained by one week culture of non-adherent RAG2 splenocytes in the presence of 1700 U/ml rhIL-2. Cells were 

treated as in panel A and stimulated with the increasing amounts of B7-1-Fc and αNK1.1. After 8h of stimulation, 
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supernatants were harvested and amount of released IFNγ was measured by ELISA. Graphs indicate mean±SD of 

triplicate culture. Graphs indicate mean±SD of triplicate ciltures. B7-1-Fc, B7-1 IgG fusion protein; c-Fc, control IgG 

fusion protein 

Several other activating NK receptors were shown to induce IFNγ, among them NK1.1. When both the 

B7-1-Fc and αNK1.1 mAb were used for NK cell stimulation, the effects on IFNγ production seemed to be 

additive, as shown by CD28 ko NK cells responding to αNK1.1 and αNK1.1/B7-1-Fc combination 

(Figure 6.31B). We further extended these findings by analysis of WT NK cell response to the combination 

of these two stimuli.  When concentration of the B7-1 fusion protein was high, B7-1 delivered stimulus 

dominated and addition of αNK1.1 did not further increase IFNγ production (Figure 6.31C left). However, 

when the B7-1-Fc concentration was low and therefore the amount of stimulus limited, NK1.1 triggering 

contributed significantly to the response (Figure 6.31C right). As depicted in Figure 6.32, CTLA-4 and 

B7-H1 deficient NK cells showed elevated cytokine production in response to B7-1-Fc compared to WT 

NK cells. Therefore, similar to their function in T cells, CD28 positively, and CTLA-4 and B7-H1 negatively 

regulate NK cell IFNγ production. 

 

6.32. Negative regulation of NK cell IFNγ production by CTLA-4 and B7-H1. NK cells were isolated from spleens of 

WT and OT-I transgenic CTLA-4 deficient (CTLA-4 ko, panel A) or B7-H1 deficient (B7-H1 ko, panel B) mice by 

CD3+ cell depletion followed by DX5 positive selection. After one week of culture in the presence of 1700 U/ml rhIL-2, 

cells were incubated with 10 µg/ml αCD16/CD32 to block Fc receptors and then stimulated with plate-bound IgG 

fusion proteins (2 µg/ml). After 8h of stimulation, supernatants were harvested and the amount of released IFNγ 

measured by ELISA. Graphs indicate mean±SD of triplicate culture. *, p<0.05; **, p<0.01 by t-test; B7-1-Fc, B7-1 IgG 

fusion protein; c-Fc, control IgG fusion protein 
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6.5.2. Cytotoxicity is not regulated by CD28, CTLA-4 and B7-H1 

We observed that B7-1 positive RMA-S lymphoma and B16 melanoma tumor cell lines were more 

sensitive to NK cell lysis than their negative counterparts. We further analyzed the regulation of cytotoxic 

response by CD28, CTLA-4 and B7-H1 by using receptor deficient NK cells. Suprisingly, CD28, CTLA-4 

and B7-H1 deficient NK cells killed B7-1 transduced tumor cells equally efficient as WT NK cells 

(Figure 6.33).  

 

 

 

6.33. Cytotoxic response of CD28, CTLA-4 or B7-H1 deficient NK cells.  NK cells were isolated from spleens of WT 

and CD28 deficient (CD28 ko, upper panel), OT-I transgenic CTLA-4 deficient (CTLA-4 ko, middle panel) or B7-H1 

deficient (B7-H1 ko, lower panel) mice by CD3+ cell depletion followed by DX5 positive selection. After one week of 
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culture in the presence of 1700 U/ml rhIL-2, cells were used as effectors in 4h 51Cr release assay against RMA-S, 

RMA-S.B7-1, B16 and B16.B7-1 tumor cells. Graphs indicate mean±SD of triplicate cultures. 

 

6.5.3. Trogocytosis of B7-1 partially depends on CD28 expression 

As we previously showed (Figures 6.27-29), in the interaction with the B7-1 expressing target cells, B7-1 

ligand is transfered from the targets to NK cells. A previously described process of intercellular exchange 

of intact membrane patches including surface proteins is termed trogocytosis. Since trogocytosis is 

triggered by the receptor mediated recognition of the donor cell and requires the signal transduction in the 

acceptor cell [306-307], we analyzed if any of B7-1 recognition receptors is responsible for its transfer from 

the targets to NK cells. As an alternative, other receptor-ligand pairs might initiate the process and B7 

ligands might be exchanged as bystander molecules belonging to the tranfered membrane patch. 

 

Figure 6.34. Regulation of B7-1intercellular transfer by CD28. NK cells were isolated from spleens of WT and CD28 

deficient (CD28 ko, left panel), OT-I transgenic CTLA-4 deficient (CTLA-4 ko, middle panel) or B7-H1 deficient (B7-H1 

ko, right panel) mice by CD3+ cell depletion followed by DX5 positive selection. After one week of culture in the 

presence of 1700 U/ml rhIL-2, cells were co-cultured with B16 or B16.B7-1 tumor cell at 1:1 ratio. After 4h of 

incubation, expression of B7-1 on NK cells was analyzed by flow cytometry. Dead cells were excluded by 7-AAD 

staining.  

Co-culture of WT NK cells with B7-1 expressing targets (B16.B7-1 tumor cells or mature DCs) led to 

transfer of B7 ligand from target cells to NK cells. If CD28 deficient NK cells were used, levels of 

transferred B7-1 were reduced (Figure 6.34 left). This observation indicates that CD28 is partially involved 

in B7-1 trogocytosis. It is possible that certain amounts of B7-1 ligand were acquired through an active 

process mediated by CD28, and the rest was transferred passively as the part of the exchanged 

membrane patch. When CTLA-4 and B7-H1 deficient NK cells were co-cultured with B7-1 expressing 

tumor cells or B7-1 positive DCs, levels of acquired B7-1 ligand were comparable to the levels measured 

on WT NK cells (Figure 6.34 middle and right). Therefore, these two receptors were not involved in the 

active B7-1 trogocytosis from target cells. 
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6.6. Manipulation of NK cell anti-tumor responses in vivo 

Genetic expression analysis using whole genome microarrays, that we have performed, revealed that 

tumor infiltrating NK cells had a different transcription profile as compared to NK cells in the blood of tumor 

bearing animals. At the same time, differences observed between blood of naïve and tumor bearing 

animals were much less pronounced. We confirmed that most of the candidate genes we selected showed 

differential expression at the protein level too. Among those genes, B7 family receptors PD-1 and CTLA-4 

were expressed by NK cells only in the tumor. CTLA-4, but not PD-1, could be induced by NK cell 

expansion in IL-2. Functional analysis using in vitro expanded NK cells derived from OT-I transgenic 

CTLA-4 deficient mice, showed that CTLA-4 negatively regulated NK cell IFNγ production in response to 

B7-1, but not cytotoxicity. CTLA-4 blockade in vivo, in combination with agents, such as GM-CSF or Flt3L 

producing tumor vaccines, has been shown to mediate potent anti-tumor responses. CTLA-4 blockade is 

shown to affect both the T cell effector and Treg compartment. Similar to CTLA-4, disruption of 

PD-1:B7-H1 interaction by application of mAbs in vivo, was shown to enhance anti-tumor immune 

responses. Since NK cells within the tumor tissue expressed PD-1 and CTLA-4, we were aimed to analyse 

how the receptor blockade could affect NK cells and tumor growth in vivo. To avoid a posible effect of 

αPD-1 and αCTLA-4 mAb on the T cell compartement, for our experiments we used RAG2 deficient mice 

that lack T and B cells. 

 

6.6.1. αCTLA-4 mAb treatment does not improve the anti-tumor response in RAG2 deficient 

mice 

We first investigated whether the application of blocking αCTLA-4 mAb will affect the progression of 

subcutaneously inoculated tumor cells in RAG2 deficient mice. Mice were injected with B16, B16.B7-1 or 

B16.Rae1ε.B7-1 melanoma, RMA-S lymphoma or LL2 carcinoma tumor cells. A comparison of tumor 

growth of PBS and αCTLA-4 injected animals in different tumor models did not reveal significant benefits 

for αCTLA-4 treated animals (Figure 6.35). Moreover, neither ectopic expression of B7-1, the ligand of the 

B7 family receptors CD28, CTLA-4 and B7-H1, nor Rae1ε, the ligand of the activating receptor NKG2D, on 

B16 melanoma tumor cells, influenced the outcome of the experiment.  
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Figure 6.35. αCTLA-4 mAb treatment in RAG2 deficient mice. RAG2 deficient mice were injected with tumor cells 

subcutaneously (106 B16, B16.B7-1, RMA-S, LL2 or 5x106 B16.Rae1ε.B7-1). Mice were treated with i.p. injections of 

PBS or 250 µg αCTLA-4 mAb every three days starting from day -1 respective to the tumor cell inoculation. Tumor 

size was measured every 2 days and expressed as the product of three tumor dimensions. Graphs indicate mean±SD 

of experimental groups of 4-6 treated animals. 

  

6.6.2. Combination therapy of αCTLA-4 and IL-18 does not improve the anti-tumor response of 

RAG2 deficient mice 

We showed previously that stimulation with a combination of IL-2, IL-12 and IL-18 in vitro could increase 

CTLA-4 expression by NK cells. Here, we tested whether the IL-18 application in vivo might have a similar 

effect. RAG2 deficient animals with established RMA-S subcutaneous tumors, that do not express CTLA-4 

on NK cells withinn the tumor tissue, were treated systemically with IL-18 for two consecutive days. As 

depicted in Figure 6.36A, systemic injection of IL-18 did not induce CTLA-4 expression on blood NK cells, 

but elevated its expression in the tumor. Since IL-18 is known for its ability to enhance NK cell cytotoxicity 

and IFNγ production, we tested whether IL-18 application influences tumor growth control in RAG2 

deficient mice. At the same time, we blocked CTLA-4 by application of αCTLA-4 mAb. As shown in Figure 

6.35B, the therapeutic application of IL-18 or combination of IL-18 and αCTLA-4 did not influence RMA-S 

tumor growth in RAG2 deficient mice. 
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Figure 6.36. Combination therapy with αCTLA-4 and IL-18 in RAG2 deficient mice. RAG2 deficient mice were injected 

with 106 RMA-S cells subcutaneously. (A) When tumor size exceeded 1 cm2, mice were treated with i.p. injections of 

PBS or 2 µg IL-18 for two consecutive days. On day 3 after the beginning of the treatment, mice were sacrificed and 

single cell suspension were prepared from blood and tumor. Expression of CTLA-4 in blood and tumor infiltrating NK 

cells was analyzed by flow cytometry after intracellular staining of the protein. (B) Mice were treated with i.p. injections 

of 2 µg IL-18 for 5 consecutive days starting from day 9 or/and 250 µg αCTLA-4 mAb every three days starting from 

day 8 respective to tumor cell inoculation. Tumor size was measured every 2 days and expressed as the product of 

three tumor dimensions. Graphs indicate mean±SD of experimental groups of 3 (A) and 5 (B) treated animals. 

 

6.6.3. Combination treatment of αCTLA-4 and IL-2 reduces tumor progression in RAG2 deficient 

mice 

NK cells expanded in vivo in the presence of IL-2 expressed CTLA-4 (Figure 6.17). IL-2 was shown to 

mediate NK cell activation and could enhance NK cell anti-tumor responses in vivo [102]. We tested 

whether IL-2 treatment combined with CTLA-4 blockade might further enhance control of tumor growth. 

We used B7-1 positive B16 melanoma tumor model and analyzed tumor growth and survival of treated 

animals. Figure 6.37A shows that IL-2 treatment alone slightly retained the tumor progression in RAG2 ko 

mice at the late stage of the tumor progression. Combination treatment of IL-2 and αCTLA-4 exert a similar 

effect, which was pronounced earlier compared to IL-2 treatment only. However, survival of mice treated 

with the IL-2/αCTLA-4 combination was not significantely prolonged compared to animals treated with IL-2 

only (Figure 6.37B).  

In contrast to the effects observed with B16.B7-1 tumor model, IL-2/αCTLA-4 treatment was not efficient 

when mice were inoculated with B16.Rae1ε.B7-1 tumor cells (Figure 6.37C). Since the Rae1ε expression 
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is already strong activating signal, NK cell effector functions might be not sensitive for further increasment 

with IL-2 and/or αCTLA-4 treatment in this model. 

 

Figure 6.37. Combination treatment with αCTLA-4 and IL-2 in 

RAG2 deficient mice. RAG2 deficient mice were injected with 

tumor cells subcutaneously as follows: panel A - 106 B16.B7-1, 

panel B – 2.5x106 B16.B7-1, panel C – 5x106 B16.Rae1ε.B7-1. 

Mice were treated with i.p. injections of 105 U of rhIL-2 for five 

consecutive days starting from day 0 or/and 250 µg αCTLA-4 

mAb every three days starting from day -1 respective to the 

tumor cell inoculation. Tumor size was measured every two 

days and expressed as the product of three tumor dimensions. 

Graphs indicate mean±SD of experimental groups of 4-6 

treated animals. (A, C). Animals were sacrificed when tumor 

diameter exceeded 1.5 cm (B). *, p<0.05; **, p<0.01 compared 

to PBS treated group, by t-test. Log-rank test was used for 

p-vaule calculation of survival curves (p=0.24 compared to IL-2 

group). 

 

6.6.4. αPD-1 treatment does not improve the anti-tumor response in RAG2 deficient mice 

Another B7 family receptor, PD-1, which we showed to be upregulated in the tumor infiltrating NK cells, is 

often expressed by many tumor cell lines, including RMA-S and B16 (data not shown). For testing the 

effect of PD-1 blockade in RAG2 deficient mice, we used LL2 carcinoma model. LL2 cells do not express 

PD-1, so the mAb treatment affected only the host cells. Although some mice receiving αPD-1 exibited the 

signs of possible immune activation at the tumor site, no reproducible differences were obtained between 
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control and αPD-1 treated animals. Representative tumor growth curves from one of the three experiments 

performed are shown in Figure 6.38. 

 

Figure 6.38. αPD-1 as a single reagent treatment in RAG2 deficient 

mice. RAG2 deficient mice were injected with 106 LL2 cells 

subcutaneously. Animals were treated with i.p. injections of PBS or 

300 µg αPD-1 mAb every three days starting from day -1 respective to 

the tumor cell inoculation. Tumor size was measured every 2 days and 

expressed as the product of three tumor dimensions. Graph indicates 

mean±SD of experimental groups of 3-5 treated animals. 

 

 

 

 

 

6.6.5. αPD-1 treatment combined with αCTLA-4 and IL-2 reduces survival of tumor bearing 

RAG2 deficient mice 

So far, our results indicated that IL-2 treatment in combination with αCTLA-4 blockade slightly prolonged 

survival of mice injected with B16.B7-1 melanoma tumor cells. When inoculated with LL2 carcinoma, 

αPD-1 treated mice often exerted the signs of inflamation at the tumor site. We decided to combine the 

blockade of both receptors with IL-2 treatment in mice bearing LL2. LL2 cells expanded in vitro did 

expressed neither PD-1 nor CTLA-4, but expressed low levels B7-H1 and B7-1. In addition, Rae1, the 

ligand for activating receptor NKG2D, was also expressed by LL2 carcinoma cells (Figure 6.39). 

 

Figure 6.39. Phenotype of in vitro expanded LL2 carcinoma cells. Expression of B7-1, B7-H1 and Rae1 on LL2 

carcinoma cells was analyzed by flow cytometry. Representative histogram plots show isotype control (grey 

histogram) compared to staining with specific mAb (black line).  
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As shown in the Figure 6.39, none of the applied treatments (IL-2, IL-2+αCTLA-4 and 

IL-2+αCTLA-4+αPD-1) significantly changed tumor growth kinetics in LL2 inoculated RAG2 deficient mice. 

In the previous experiments, we observed that the treatments with αPD-1 or αCTLA-4 had no effect on LL2 

tumor progression (Figure 6.34 and 6.37). In contrast, animals treated with a combination of all three 

reagents, IL-2, αPD-1 and αCTLA-4, showed reduced survival (Figure 6.39 right). We again observed the 

signs of the immune system activation at the timor site of triple reagent treated mice. This might be 

a consequence of the strong induction of the innate immune system. This overamplification of the 

response could be responsible for the early death of treated animals. 

 

Figure 6.40. Combination therapy of αPD-1, αCTLA-4 and IL-2 in RAG2 deficient mice. RAG2 deficient mice were 

injected with 106 LL2 cells subcutaneously. Animals were treated with i.p. injections of PBS, 105 U of rhIL-2 for five 

consecutive days starting from day 0, 250 µg αCTLA-4 mAb and 300 µg of αPD-1 mAb every three days starting from 

day -1 respective to the tumor cell inoculation. Tumor size was measured every 2 days and expressed as the product 

of three tumor dimensions. Animals were sacrificed when tumor diameter exceeded 1.5 cm or when mice become 

moribund. Graph of tumor growth kinetics indicates mean±SD of experimental groups of 4-6 treated animals. Log-rank 

test was used for p-vaule calculation of survival curves. *, p=0.017 compared to IL-2+αCTLA-4 group 
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7. Discussion 
 

7.1. Tumor infiltrating cells 

NK cells were shown to infiltrate solid tumors in both mouse models and cancer patients [309]. A high 

number of NK cells found in the tumor tissue correlated with better prognosis in the cases of lung, gastric 

or colorectal cancer [274-275, 310-311]. However, the frequency of NK cells among total infiltrated 

immune cells is not high and therefore the ratio relative to tumor cells is very low. In addition, NK cells 

were often not located in the direct contact with tumor cells, but rather in the proximity of the blood vessels 

within the stroma [309]. Other immune cells within the tumor tissue are composed mainly of suppressive 

myeloid cells, immature DCs, macrophages polarized toward M2 phenotype or regulatory T cells [312]. 

Therefore, the number of real effectors, such as NK cells and CD8+ T cells, that could eliminate tumor 

cells, is very low compared to the cells that rather support tumor progression. In addition to the tumor cells, 

certain immune cells were shown to be lysed by NK cells. Immature DCs or myeloid derived suppressor 

cells (MDSCs) can be eliminated by activated NK cells [66, 313]. Thus, within tumor tissue NK cells are 

confronted to multiple target cells whose elimination can be beneficial for the efficient control of tumor 

progression. 

Solid tumors are characterized by specific microenvironment formed within tumor tissue. Apart from 

suppressive cells, which are either recruited or converted upon infiltration, several other factors do not 

favor effective immune response. Low pH and oxygen concentration were shown to hamper normal 

function of effector cells, including NK cells [314-315]. Various studies of anti-tumor immune responses, 

especially after the application of therapeutics, were conducted using peripheral blood mononuclear cells 

(PBMCs) sampled from the patients (Table 3.5). Although in many cases specific anti-tumor responses 

were detected in vitro, benefits for tumor control were often not observed. A possible explanation for the 

failure of in vivo responses included the absence of efficient tumor tissue infiltration and the presence of 

multiple immunosuppressive mechanism exerted by the tumor. First, in vitro studies are typically 

performed under optimal cell culture conditions (pH, O2, humidity, etc), which are not met in the tumor 

tissue. Second, actual effector-to-target ratios in tumors are usually much lower than those used in the 

culture. And third, the microenvironment of the solid tumor is shaped by the presence of cytokines 

released by both tumor and infiltrated immune cells, which can differentially influence the studied 

responses and are not produced in in vitro systems. In addition, cells from peripheral blood might not 

precisely correspond to their tumor infiltrating counterparts. Indeed, several studies that analyzed effector 

functions of cells isolated from tumor tissue showed that their responses were impaired. Unresponsive 

tumor specific T cells were isolated from malignant melanomas [316], which recovered functional 

competence upon ex vivo stimulation, indicating that they were inhibited in the tumor microenvironment 

and that the process was reversible. Functional incompetence of tumor infiltrating T cells (TITs) was found
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to directly correlate with the level of expression of the inhibitory B7 family receptor PD-1 [241]. A higher 

frequency of PD-1+ T cells was detected in melanoma lesions as compared to blood or healthy tissue of 

patients. In addition, PD-1+ TITs expressed another inhibitory B7 family receptor, CTLA-4. The possible 

mechanism underlying non-optimal T cell activation within the tumor tissue includes the alternation in the 

proximal TCR signaling machinery given by the decreased expression of CD3ζ or tyrosine kinases Lck 

and Fyn [317]. An aberrant activation of distal signaling molecules has been also reported: defects in the 

expression of NF-kB family proteins were correlated with the impairment in Th1 cytokine production and 

decreased CTL function [318]. Tumor infiltrating CD8+ T cells showed a defective conjugate formation with 

tumor cells ex vivo due to the defective expression and activation of adhesion molecules [319]. 

In summary, studies that analyzed the tumor microenvironment and phenotypical and functional properties 

of T cells from blood and tumor of tumor bearing mice and cancer patients revealed a functional 

impairment of cells infiltrated into the tumor tissue. Since the failure of the numerous clinical trials was 

correlated with the unresponsiveness of the effector cells in the tumor, it is of importance to analyze the 

phenotype and function of the immune cells infiltrating the tumor tissue and their possible contribution to 

the outcome of novel treatment strategies. 

 

7.2. Tumor infiltrating NK cells 

While treatment strategies targeting T cells as the main anti-tumor effectors must rely on tumor antigen 

specificity, NK cells are considered as non-specific cytotoxic effectors that should be capable or 

recognizing a broad range of transformed cells. Of importance, data obtained in mouse models indicated 

that the activation of T cell anti-tumor responses to effectively reduce the tumor burden required an intact 

NK cell compartment [13, 69, 266]. Several clinical observations provided information about NK cells in 

tumor patients with regard to their numbers, activation state and functionality. An association of defective 

NK cell activity and severe cancer progression was reported. Decreased NK cell responses were detected 

in patients with lung, breast, colon and liver cancer as well as in the cases of melanoma, chronic myeloid 

(CML) and acute myeloid (AML) leukemia [148, 276, 320-322]. In several mouse tumor models NK cell 

progression to the last maturation stage in bone marrow was blocked at high tumor load, leading to the 

accumulation of immature NK cells [323]. At the same time, NK cells from spleen of tumor bearing mice 

did not show defects in cytotoxicity, while IFNγ production was reduced in response to PMA/Ionomycin but 

not IL-12 stimulation. Recently, Brenner and colleagues showed that in the transgenic mouse model of 

spontaneously arising lymphoma effector functions of tumor infiltrating NK cells became progressively 

paralyzed with increasing tumor load [324].  

Due to the low NK cell numbers found within the tumor tissue and their functional impairment, studies 

aimed at the enhancement of anti-tumor responses of endogenous and/or adoptively transferred NK cells. 

As discussed in the section 3.2.5.2, those approaches included the facilitation of NK cell migration to the 

tumor site, their proliferation, cytotoxicity and cytokine production. Independently whether endogenous or 
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adoptively transferred NK cells are expected to directly or indirectly mediate tumor rejection, the influence 

of the tumor microenvironment on their activity must be taken into consideration in order to design the 

efficient strategy of their use in anti-tumor therapy.  

 

7.2.1. Subset composition of tumor infiltrating NK cells 

Our study aimed at the comprehensive analysis of the phenotype of tumor infiltrating NK cells including the 

expression of surface markers used to define their maturation stage, subset composition, activation status 

and functional competence. Importantly, we analyzed NK cells that infiltrated the tumor tissue without any 

exogenous manipulation. Our findings revealed that subcutaneous solid tumors of different origin are 

preferentially infiltrated with the CD27high NK cell subset (Figure 6.1). CD27high tumor infiltrating NK cells 

were composed of both the immature CD11blow and the more mature CD11bhigh population. CD27 

expression on TINs directly correlated with the expression of c-Kit and CD127 (IL-7Rα), which are defined 

as markers of immature NK cells, and inversely correlated with the expression of markers for mature NK 

cells, KLRG1 and CD43. Fully mature CD27lowCD11bhigh NK cells were present in the tumor at a lower 

frequency compared to blood, where they represented the dominant subset. When NK cell subsets 

defined by CD27 expression were analyzed for their functional properties, it was found that fully mature 

CD27high NK cells were more competent to proliferate, lyse target cells, produce IFNγ and migrate toward 

certain chemokines [114]. In this respect, infiltration of tumor with CD27high NK cells can be seen as 

beneficial for successful anti-tumor responses. 

Several mechanisms might be responsible for the prevalence of CD27high NK cell subset in the tumor. 

First, it is possible that all subpopulations equally infiltrate the tumor tissue where CD27low cells 

subsequently upregulate CD27. CD27 is a receptor of the TNF family shown to costimulate NK cells [68]. 

It is responsible for the potent response to tumor cells that express its ligand CD70 [69]. Since in our tumor 

model, tumor cells do not express CD70, CD27 expression by NK cells might be relevant for the 

interaction with other CD70 expressing cells. For example, CD70 expression by DCs contributes to T cell 

activation [67]. Since the NK/DC interaction is known to result in their reciprocal activation, engagement of 

CD70 on DC by the CD27 receptor on NK cells might contribute to this effect. Alternatively to the CD27 

upregulation on CD27low cells, CD27high NK cells could be the subset preferentially recruited to the tumor. 

Co-expression of the maturation markers that correlate with CD27, as well as the previously reported 

enhanced migration abilities of CD27high subset compared to CD27low counterparts, favors this hypothesis. 

As an example, CD27high NK cells express chemokine receptor CXCR3, which is downregulated in the 

tumor [280]. Using gene deficient NK cells, authors showed that the migration of NK cells to the 

subcutaneous lymphoma in vivo, depended on CXCR3. Thus, CXCR3 downregulation on CD27high NK cell 

subset in the tumor might be the consequence of its engagement. 
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7.2.2. Relation of tumor infiltrating NK cells to IKDCs 

Interferon producing killer dendritic cells (IKDCs) were initially defined as a cell population with the 

properties of both NK and DCs [131-132]. They were described to produce both IFNγ and exert cytotoxic 

responses, but unlike classical NK cells, they were capable of producing IL-12. Another characteristic 

considered to be the main feature of DCs, antigen presentation, was also performed by IKDCs. 

The presence of IKDCs within the tumor tissue might be beneficial, since they were shown to mediate 

potent anti-tumor responses [139]. Phenotypically, IKDCs were defined as a CD11c+B220+NK1.1+ cell 

population that express MHC II upon activation. However, it is still controversial whether IKDCs have 

independent origin and biological futures from those of DCs and NK cells. IKDCs express NKp46, which is 

exclusively expressed by NK cells [325], as well as other NK cell receptors including NKG2D and Ly49 

receptors [134-135]. Importantly, they depend on IL-15 and common γc chain for their development and 

homeostasis. Since there is no specific marker that can precisely separate them from the other cell types, 

it is not excluded that IKDCs could be composed of several different cell populations. Their high similarity 

to NK cells raised the hypothesis that IKDCs represent activated NK cells, which acquired APC functions. 

Indeed, detailed analysis of NK1.1+ cells within CD11c+B220+ population in the studies of Vosshenrich 

et al. [135], revealed that both in vitro and in vivo activation of NK cells led to the upregulation of CD11c, 

B220, MHC II and costimulatory molecules, giving rise to IKDC-like cells with the ability to produce IFNγ 

and present antigens to T cells. In addition, among NK cells, defined as CD19-CD3-NK1.1+, no bimodal 

expression of CD11c and B220 could be observed. B220low NK cells could produce similar amounts of 

IFNγ as B220high NK cells and could upregulate B220 upon stimulation induced proliferation. 

Our analysis of tumor infiltrating NK cells, which we defined as CD3-NK1.1+, revealed an unchanged 

expression of CD11c compared to NK cells found in blood of tumor bearing animals (Figure 6.2). 

Expression of B220 was enhanced and, unlike blood NK cells, TINs were MHC II+. In addition, NK cells 

within the tumor expressed costimulatory molecules B7-1 and B7-2 albeit at the low levels. Thus, similar to 

the cell population defined as IKDCs, the subpopulation of the tumor infiltrating NK cells could be 

considered as NK1.1+CD11c+B220highMHC II+. However, whether those cells represent IKDCs cannot be 

concluded, since IKDCs are primarily defined by their dual functional property of IFNγ/IL-12 production 

and performance of cytotoxicity and antigen presentation. Although MHC II expression indicated the ability 

for Ag presentation and high intracellular levels of perforin and granzyme B that we detected in TINs 

(Figure 6.3), cytotoxic potential, further functional studies are necessary to characterize the IKDC nature of 

this cell population.  

Several studies reported that NK cells were able to present antigens and prime both CD4+ and CD8+ T cell 

responses [138]. NK cell potential for T cell priming was acquired upon recognition and elimination of 

sensitive targets. Similar to these observations, IKDCs can perform their APC functions only after the 

encounter of tumor or virus infected cells [137]. Since perforin deficient IKDCs cannot prime T cell 

responses, the elimination of the target is a prerequisite for antigen presentation. Triggering of specific 

activation pathways in NK cells represents the additional mechanism that could upregulate MHC II and 
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costimulatory molecules allowing the subsequent T cell activation by NK cells [138]. Cross-linking of 

NKp30, NKp46 and CD16, but not NKG2D, in human NK cells induced an APC-like phenotype. Thus, it is 

possible that a subpopulation of tumor infiltrating NK cells, activated by tumor cell recognition, or/and by 

other mechanisms within the tumor, acquired phenotypical and functional properties of APCs or IKDCs. 

In support for this hypothesis is an observation of Blasius and colleagues, who observed that 

CD11c+B220+ NK cells were enriched within the CD27high NK subset [134], which were also described as 

more efficient effectors than CD27low NK cells [120]. The enrichment of the CD27high NK cells in the tumor 

compared to blood might explain their higher B220 expression, while the upregulation of MHC II and 

costimulatory molecules might indicate that they are activated within the tumor tissue. 

 

7.2.3. Transcription profile of tumor infiltrating NK cells 

In addition to the phenotypical analysis of the markers that were previously described as the indicators of 

NK cell maturation and activation status, we took advantage of a more global approach and performed 

gene expression profiling of blood and tumor infiltrating NK cells (Figure 6.5). Some of the molecules that 

we have already shown to be expressed by CD27high NK cells in the tumor elevated compared to blood, 

such as c-Kit and CD127 (Figure 6.1), were also found to be differentially regulated at the mRNA level. 

This correlation indicated the high reliability of our microarray experimental data. The most striking 

observation of the experiment was that tumor infiltrating NK cells showed pronounced differences when 

compared with blood NK cells of tumor bearing animals (Figure 6.6). The differentially expressed genes 

between blood and tumor infiltrating NK cells comprised several groups functionally relevant for anti-tumor 

responses, as discussed in the section 6.2.1. Briefly, four main features were noticed. First, we observed 

that NK cells in tumor were activated, which was supported by the upregulation of cytokine receptors, 

several chemokines and chemokine receptors, some components of the cytotoxic pathway or regulatory 

molecules that drive cell division. Second, NK cells displayed responses to unfavorable environment within 

the tumor tissue. The examples are prevention of cell cycle progression or the metabolic changes as 

a consequence of hypoxia, which are driven primarily by the upregulation of transcription factor HIF-1α 

and its target genes [290]. The third group of the observed changes might be contributed to the direct 

actions of tumor microenvironment towards the downregulation of NK cell function. Several candidate 

genes from this group were chosen for validation and their differential regulation was confirmed to persist 

at the protein level too. Those include NK cell activating receptors and inhibitory molecules of the 

B7 protein family. Finally, NK cells exerted some features that might support rather than hamper tumor 

progression. Upregulation of VEGF, PDGF and angiopoietin are some of the examples of molecules that 

facilitate tumor angiogenesis. In addition, chemokines produced by NK cells might attract anti-tumor 

effectors but also suppressive cell types. Similarly, the enzymes that modulate extracellular matrix can 

support NK cell migration but also facilitate metastases formation by tumor cells. Thus, many functions of 

activated NK cells might be used by tumor and converted for the purposes of its own progression. 
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7.2.4. Activating receptors expressed by NK cells in the tumor 

NK cells isolated from the tumor tissue negatively regulated expression of several activating NK cell 

receptors at both transcript and protein level. We confirmed that the surface expression of NKp46, 2B4 

and CD48 was reduced on TINs compared to blood NK cells in RMA-S tumor bearing mice (Figure 6.9). 

Although we observed a constant tendency, the decrease in surface expression of NK1.1 was not always 

significant. Of importance, NKp46 and 2B4 can directly recognize RMA-S tumor cells. NKp46 recognizes 

viral hemaglutinins as well as unknown ligand(s) on several tumor cell lines including RMA-S [291]. 

In addition to MHC I deficiency that removes the inhibition and increases RMA-S sensitivity to NK cell 

lysis, the positive signal that triggers the cytotoxic pathway is deliverd through NKp46. Therefore, the 

reduction of NKp46 might be one of the mechanisms used by the tumor to evade the direct recognition and 

elimination by NK cells. It was already shown that tumors, which express ligands for the activating receptor 

NKG2D, use a similar strategy of evasion. Proteolytic shedding of MICA from the cell surface was reported 

to cause a systemic downregulation of NKG2D surface expression, thereby impairing the lysis of tumor 

cells [326]. In our model, expression of NKG2D was unchanged, indicating that the tumor could selectively 

target the receptor responsible for its recognition. The important difference between these two strategies is 

that the NKG2D expression was inhibited at the protein level, while NKp46 was regulated at the 

transcription level. 

2B4 can mediate both activating and inhibitory functions [297]. It recognizes CD48, which is widely 

expressed on hematopoetic cells. RMA-S tumor cells express high levels of CD48 and can be directly 

recognized by 2B4 expressed on NK cells. 2B4 plays a very important role in the cross-talk of NK cells 

with other immune cells. Homotypic NK/NK interaction was shown as essential for the generation of NK 

cell effector function [298], while heterotypic NK/T cell interaction supports T cell activation [299]. 

Therefore, downregulation of 2B4 might impact anti-tumor response on multiple levels, including direct 

tumor recognition and support of NK and T cell effector responses. 

NKp46 and NK1.1 are coupled to the adaptor molecules CD3ζ and FcεRIγ, that contain ITAM motifs in 

their cytoplasmic tails [36, 327]. Upon receptor engagement, tyrosine residues of ITAMs are 

phosphorylated and Syk and ZAP70 kinases are recruited. Dowstream of Syk/ZAP70, different signaling 

branches are activated including SLP76/LAT, PI3K, PLCγ, MAPK and release of Ca2+ (Figure 7.1). 

We observed that several signaling molecules involved in the depicted pathways were differentially 

expressed by tumor infiltrating NK cells, including most upstream kinases that phosphorylate ITAM motifs. 

This is similar to the previously observed modulation of proximal TCR signaling components in tumor 

infiltrating T cells [317]. In addition to the downregulation of receptors themselves, the downregulation of 

their signaling components can further contribute to the impairment of NK cell trigerring through ITAM 

coupled receptors. Of note, members of the MAPK pathway were rather upregulated in tumor infiltrating 

NK cells, which can be of importance for other receptors that utilize this signaling branch. One example is 

CD28, which did not appear to be regulated at the transcript level, but was upregulated at the protein level 

by TINs compared to blood NK cells.  
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Figure 7.1. The signaling pathway downstream of the activating receptor NKp46 (obtained from KEGG database). 

NKp46 receptor is coupled to the ITAM bearing adaptor molecules CD3ζ and FcεRIγ, which are phosphorylated by 

Src kinases Lck and/or Fyn upon receptor engagement. Syk and ZAP70 are recruited to the phosphorylated ITAMs 

and initiate further signaling events. Molecules represented by blue boxes were negatively regulated at the transcript 

level in tumor infiltrating NK cells, while several members of the MAPK pathway were upregulated (red box).  

 

7.2.5. Inhibitory receptors expressed by NK cells in tumor 

The downregulation of the activating NK cell receptors in TINs was accompanied by an upregulation of 

inhibitory receptors. The main group of inhibitory receptors of NK cells recognize different MHC I 

molecules. In mice, they belong to the C-type lectin-like family of Ly49 receptors [328]. The BL6 mouse 

strain expresses several Ly49 members – Ly49A, Ly49C, Ly49D, Ly49G2, Ly49H and Ly49I. Ly49D and 

Ly49H belong to the subgroup of activating receptors. Only Ly49C and Ly49I bind to the H-2b MHC I 

alleles and their cognate ligands are expressed by the BL6 strain. According to the results of our genetic 

expression profiling, Ly49A was downregulated in TINs and other Ly49 receptor family members were not 

regulated at the transcript level (Table 6.2). In contrast, TINs displayed enhanced surface protein levels of 

Ly49A when compared to the blood NK cells of tumor bearing animals (Figure 6.10). Ly49A mediates NK 

cell inhibition by the recruitment of protein and lipid phosphatases that dephosphorylate proximal signaling 

components downstream of activating receptors [328]. However, due to the absence of the cognate ligand, 

the functional significance of its increased expression in the tumor is not clear.  

When we analyzed the cell surface expression of other Ly49 members, we observed that Ly49C/I or H 

(recognized by the same mAb) as well as Ly49D and Ly49G2 were sensitive to the enzymatic digestion 

with hyaluronidase and collagenase when expressed by blood or spleen, but not tumor infiltrating NK cells 

(Figure 6.10). We assume that those receptors could be protected from digestion by mechanisms that are 

functional in the tumor but not in other organs. It would be important to investigate whether the expression 

of Ly49 receptors is modified in a similar way in other conditions, such as viral and bacterial infections. 

Regulation of Ly49 receptor expression is mainly studied in respect to the acquisition of a specific Ly49 
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repertoire during development, which is regulated at the transcription level [329]. However, little is known 

about the regulation of the level of surface expression during the course of NK cell effector responses, 

including both transcriptional and post-transcriptional regulation. Cell intrinsic mechanisms could exist to 

preserve Ly49 receptor expression in the environment rich in the activity of ECM degrading enzymes, such 

as the tumor tissue. Cell surface expression of the H-2b specific inhibitory molecules Ly49C/I might raise 

the threshold for NK cell activation and allow the protection of cells with low expression of MHC I on the 

cell surface. This mechanism would possibly lead to the decreased elimination of tumor cells with reduced 

MHC I expression or MHC Ilow iDCs that accumulate in tumor beds and cause aberrant T cell activation.  

 

7.2.6. Expression of B7 family members in tumor infiltrating NK cells 

B7 family is a group of molecules that regulate T cell responses at multiple levels [59]. The interactions 

established between B7 family members determine the threshold for the activation through TCR, drive 

effector responses or mediate their shutdown. Interactions between family members are established at the 

T/APC interface and control priming of naïve T cells, or between T cells and peripheral tissues controlling 

their effector functions. Naïve T cell activation requires a minimum of two signals – triggering of TCR and 

costimulation delivered by the B7 family receptor, CD28. NK cell activation is considered similar as they 

require either the simultaneous absence of inhibition (e.g. low MHC I expression) and presence of 

stimulation (e.g. through NKp46) or stimulation through activating and cytokine receptors (e.g. NKG2D and 

IL-15R) [330]. There are also examples of costimulation of two activating receptors (e.g. NK1.1 and 

NKG2D) [331]. When T cells get activated, a number of molecules are engaged to control the level of 

activation including several B7 family members as ICOS, CTLA-4 or PD-1. So far, it is not known if such 

mechanisms, which regulate the activity once the responses are triggered, exist in NK cells. Several 

B7 family members are also expressed by NK cells, but their function is poorly investigated. It was 

previously shown that activated, but not resting NK cells express activating B7 receptor ICOS, which 

mediated the lysis of ICOS-L expressing target cells [72]. 

By analysis of transcript profiles of blood and tumor infiltrating NK cells we observed an upregulation of 

multiple members of the B7 family in TINs (Figure 6.11). Flow cytometric analysis confirmed the 

expression of CD28, PD-1, B7-H1, PD-L2, ICOS-L, B7-1 and B7-2 on the surface and CTLA-4 

intracellularly (Figure 6.12). Of importance, CD28, PD-1 and CTLA-4 were expressed only in tumor 

infiltrating but not in blood NK cells of either naïve or tumor bearing mice. The expression of B7 molecules 

by TINs depended on the tumor type (Figure 6.13). TINs found in lymphomas were preferentially 

CD28highPD-1high, while NK cells in melanoma and carcinoma were CD28low/-PD-1-B7-H1high. Importantly, in 

all tested tumor models NK cells within the tumor expressed CTLA-4. Differential expression of 

B7 molecules was observed only in the solid tumors that exceed the size of 1cm2 (data not shown). 

NK cells from lung and peritoneum of mice bearing lung metastases or tumor cells growing in the 

peritoneum did not express PD-1 and CTLA-4. In solid tumors of the given size, features that include 
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biochemical conditions, such as hypoxia and low pH, presence of suppressive cells and cytokine 

combinations secreted by both tumor and other infiltrating cells could contribute to the induction of specific 

TIN phenotype. In line with this hypothesis is the fact that the induction of PD-1 was observed only in the 

tumor and was unsuccessful in vitro, even when the combinations of multiple stimuli were used 

(Table 6.3). In addition, systemic application of IL-18 induced CTLA-4 expression by NK cells only in the 

tumor, but not in blood or spleen (Figure 6.35A). This indicates that additional factor/s in the tumor 

synergize with IL-18 to mediate CTLA-4 induction.  

It appears that distinct pathways regulate PD-1 induction in different cell types. In T cells, PD-1 is induced 

upon the TCR triggering or cytokine stimulation through the common γc chain [332]. Simultaneous 

triggering of BCR with αCD40 induces PD-1 expression on B cells [221]. Macrophages display elevated 

PD-1 expression in mouse models and patients with sepsis [333], while PD-1 can be induced on DCs by 

Listeria infection or TLR2, TLR3, TLR4 and NOD engagement in vitro [334]. Recently, Brauner and 

colleagues showed that NK cells infiltrating the diabetic pancreas in NOD mice expressed PD-1 [335]. 

Furthermore, pancreatic NK cells were hyporesponsive compared to spleen NK cells and could be 

rescued by overnight culture in IL-15 and IL-18. PD-1+ T cells from tumor or blood of chronically infected 

patients and mice, macrophages from humans and mice with sepsis and pancreatic NK cells from diabetic 

mice exerted hyporesponsiveness that correlated with PD-1 expression. We showed that NK cells in the 

tumor expressed PD-1 (Figure 6.12). The expression was detected on all NK cells and increased with the 

tumor size (data not shown). To investigate whether PD-1 might be a marker for nonfunctional tumor 

infiltrating NK cells further functional analyses have to be performed. Due to the low cell numbers that can 

be obtained from the tumor tissue, we could not conduct experiments that would test this hypothesis. 

We, however, observed that the culture in IL-2 or IL-15 after isolation from the tumor tissue results in 

downregulation of PD-1 (data not shown), indicating reversibility of the phenotype acquired in the tumor.  

Expression of the inhibitory B7 family receptor CTLA-4 was highly increased at the transcript level in TINs 

compared to blood NK cells in mice with tumors (Figure 6.11). The expression at the mRNA level 

correlated with the protein expression (Figure 6.12). Intracellular staining revealed that CTLA-4 was 

expressed only in tumor but not in blood and spleen of tumor bearing animals. In contrast to PD-1, CTLA-4 

was inducible in vitro by NK cell expansion in IL-2 (Figure 6.17). Intracellular content of the protein could 

be further increased by stimulation with IL-12 and IL-18 (Figure 6.19). While short-term incubation with 

fluorescently labeled Ab failed to detect any CTLA-4 on the cell surface, prolonged incubation revealed 

that a certain amount of CTLA-4 reaches the NK cell surface (Figure 6.19). The surface expression is 

positively regulated by the stimulation with IL-12, IL-18 and αNK1.1 or αNKp46 (Figure 6.22). 

Of importance, all factors that we found to regulate CTLA-4 expression in vitro, can influence its 

expression in the tumor tissue as well. Still unidentified NKp46 ligand is expressed by RMA-S cells [291]. 

IL-18 and IL-12 are secreted by macrophages and dendritic cells that also infiltrate the tumor [336]. In fact, 

CD11b+ cells, among them macrophages, comprise the main pool of hematopietic cells infiltrating the 

tumor. NK cell ability to respond to various signals from the microenvironment is beneficial for maximizing 
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the responses against infected or transformed cells. At the same time, the induction of negative regulators, 

such as CTLA-4, may serve as a mechanism to keep NK cell responses under control.  

 

7.3. Regulation of NK cell effector functions by B7 family members 

We showed that TINs expressed the B7 family receptors PD-1, CD28, CTLA-4 and B7-H1 and aimed at 

the analysis of their function in the context of NK cell responses. In vitro expanded NK cells in 

the presence of rhIL-2 expressed CD28, CTLA-4 and B7-H1 (Figure 6.17). Since all three molecules 

recognize the same ligand, B7-1, we determined their role in B7-1 induced responses of NK cells. 

Stimulation of in vitro expanded NK cells with the B7-1 IgG fusion protein induced NK cell proliferation and 

IFNγ production (Figure 6.24). By using NK cells derived from gene deficient mice, we showed that IFNγ 

production was triggered through CD28 and it was negatively regulated by CTLA-4 and B7-H1 (Figure 

6.30-31). In T cells, CD28 engagement leads to the phosphorylation of the tyrosine residues in its 

cytoplasmic tail, which drives the recruitment of several signaling molecules [171]. CD28 dependent 

production of IL-2 and IFNγ in T cells is mediated via PI3K and Grb2 pathways, which are shown to 

associate with CD28. A similar activation pathway in NK cells is used by the NKG2D receptor that is 

coupled to the DAP10 adaptor molecule [303]. DAP10 and CD28 share the YMNM motif in their 

cytoplasmic domain known to recruit PI3K and Grb2. Therefore, CD28 on NK cells might use a similar 

signaling pathway described to operate in T cells leading to IFNγ production. Indeed, PI3K was already 

described as a key player in NK cell effector function including IFNγ production. Stimulation of activating 

NK receptors in the absence of the p110δ, PI3K catalytic subunit, results in a decreased IFNγ release 

[337]. Similarly, ICOS induced IFNγ is reduced in the presence of a PI3K inhibitor [72]. 

As already described in the section 3.3.2.1, several mechanisms are used by CTLA-4 to inhibit T cell 

responses (Figure 3.13) [196]. Among cell intrinsic mechanisms, delivering of negative signal and 

competition for the ligands with CD28 have been reported to contribute to CTLA-4 mediated inhibition. 

Both mechanisms might underlay CTLA-4 mediated inhibition of NK cells. Using CD28 deficient NK cells, 

we observed that B7-1 stimulation of NK cells that lead to IFNγ production, entirely depended on positive 

signals delivered by CD28 (Figure 6.30). The response is negatively regulated by CTLA-4 and B7-H1 

indicating the direct inhibition of the CD28 mediated response (Figure 6.31). Both CTLA-4 and B7-H1 have 

a higher affinity for B7-1 compared to CD28 [304] and could efficiently sequester the ligand. In addition, 

CTLA-4 can recruit phosphatases that interfere with proximal CD28 signaling. Binding of PI3K and CD3ζ 

to the CTLA-4 cytoplasmic tail was also reported [195]. While these interactions might promote some of 

the positive effects mediated by CTLA-4, as increased survival, they can also sequester signaling 

molecules from other activating receptors. PI3K is recruited by CD28 and NKG2D, and CD3ζ by NK1.1 

and NKp46, which are all potent inducers of IFNγ. Therefore, it would be of interest to investigate whether 

CTLA-4 co-engagement with the given receptors might influence their responses. We also showed that 

two receptors, namely CD28 and NK1.1, can synergize in the induction of IFNγ when the level of CD28 
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stimulation is low (Figure 6.30). In these situations, cooperation of two receptors might be crucial to induce 

response and, at the same time, more sensitive to inhibition. Therefore, the levels of CTLA-4 mediated 

suppression that we measured in vitro might be even more pronounced in in vivo conditions when the low 

levels of stimuli are provided by the microenvironment. 

Among the cell extrinsic mechanisms underlying CTLA-4 inhibition of T cells, TGF-β mediated suppression 

was described. In activated T cells, simultaneous cross-linking of αCD3 and CTLA-4 leads to the 

production of TGF-β [338]. Importantly, we found increased transcript levels of TGF-β in TINs compared to 

blood NK cells in tumor bearing animals. Future investigation will be conducted to investigate whether 

CTLA-4 mediated this effect. TGF-β was shown to impede NK cell dependent IFNγ production [287]. Thus, 

it is possible that the induction of TGFβ represents additional mechanisms used by CTLA-4 to suppress 

NK cell IFNγ production.  

B7-H1 has recently been reported to bind to B7-1 and inhibit T cell proliferation, cytokine production and 

expression of activation markers induced by CD3 cross-linking [304]. It is unknown how B7-H1 delivers the 

inhibitory signal. The intracellular domain of B7-H1 is short, but highly conserved in all so far investigated 

species [225], which indicates that it might be preserved due to the function it mediates. The evidence for 

B7-H1 signaling came from the studies of Kuipres et al, who showed that the incubation of DCs with 

soluble PD-1 IgG fusion protein led to the IL-10 and IDO induction [339]. Further investigation is necessary 

to show how B7-H1 inhibits CD28 driven IFNγ production and whether IL-10 and IDO might be induced 

upon its engagement. In the later case, a negative regulation mediated by B7-H1 can be indirect and can 

also affect other cells within the tumor tissue. 

While all three molecules, CD28, CTLA-4 and B7-H1, regulated B7-1 driven IFNγ production, none of 

them influenced the cytotoxic responses against B7-1 expressing target cells (Figure 6.32). Similar to our 

studies, proliferation and IFNγ production induced by B7-1+ tumor cell lines has been contributed to CD28 

in studies of Kelly et al. [61]. However, the enhanced lysis of B7-1 expressing targets observed by 

Chambers and colleagues was not affected by CD28 and CTLA-4 deficiency of NK cell effectors [58]. The 

same group showed that the efficient elimination of B7-2 positive tumor cells both in vivo and in vitro did 

not depend on CD28 [56]. Our data revealed that the third receptor that recognizes B7-1, B7-H1, also did 

not mediate enhanced cytolysis. Of note, it is possible that intrinsic differences of B7-1 transduced cells 

might lead to their higher sensitivity to NK cell lysis compared to the control cells. Therefore, it is of 

importance to show that the expression of B7-1 is responsible for the better recognition of transduced 

cells, by using the B7-1 blockade or tet-inducible system. In the case of positive results, the existence of 

the fourth receptor for B7-1 can be postulated. However, it is also possible that the engagement of B7-1 by 

any of the so far known receptors induces reverse signaling already shown to take place in DCs [183], 

which might lead to cell death by unknown mechanisms. The use of NK cells deficient in all three known 

B7-1 receptors would be required to test presented hypotheses.  
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7.4. B7 family members on NK cells - possible implications for the anti-tumor responses 

B7 family members were already exploited as the potential biomarkers for the activation status of 

anti-tumor effector cells and as the potential targets for anti-tumor immune therapy [269]. PD-1 is 

considered as a marker for functionally exhausted unresponsive effector T cells found in chronic viral 

infection of mice and human as well as in melanoma lesions of cancer patients [211, 241]. Disruption of 

PD-1:B7-H1 interaction with mAbs was shown to restore T cell responsiveness and mediate tumor 

rejection in the mouse tumor models [234, 243-244, 340]. Both αPD-1 and αB7-H1 mAbs target multiple 

cells (T effector cell, Treg, macrophages, tumor cells, etc) and multiple interactions (PD-1:B7-H1, PD-

1:PD-L2, B7-H1:B7-1). Therefore, they can have diverse effects. As an example, in a sepsis model, when 

compared to WT, PD-1 deficient macrophages exert higher phagocytic capacity and produce higher levels 

of proinflammatory cytokines including IFNγ and IL-12 [333]. On the contrary, Listeria infection induces 

PD-1 expression on DCs, which reduces their ability to produce IL-12 and TNFα [334]. We showed that 

B7-H1 negatively regulated IFNγ production in NK cells. Thus, application of αPD-1 or αB7-H1 mAb could 

affect NK cell responses as well. Therefore, NK cells can contribute to the better outcome of αB7-H1 mAb 

treatment by increased IFNγ production.  

Several studies revealed that αCTLA-4 treatment of tumor bearing mice had a potential to generate or 

enhance anti-tumor T cell responses leading to tumor regression [264, 341-342]. However, the efficacy of 

αCTLA-4 monotherapy strongly depended on immunogenicity of the tumor and the stage of the tumor 

growth when the treatment was applied. In the majority of the studies, CTLA-4 blockade was beneficial 

when combined with other regimens, such as peptide immunization [343], tumor cell vaccine [344] or 

peptide vaccine combined with DC stimulation via αCD40 [345]. So far, the expression of CTLA-4 by NK 

cells was not reported and the application of αCTLA-4 mAb as a component of an anti-tumor therapy was 

assumed to affect only the T cell compartment. The study of Peggs and colleagues, who combined the 

receptor blockade with GM-CSF producing tumor vaccine, showed that both the T effector and the Treg 

compartment responded to αCTLA-4 treatment to achieve tumor growth control [346]. Of importance, the 

efficacy of the treatment completely depended on NK cells, since their depletion abrogated the positive 

effects of the vaccine [266]. The authors speculated that NK cells were required to kill tumor cells at early 

time points of tumor progression providing the antigens that could be uptaken and processed by DCs that 

subsequently prime T cell responses. Another evidence of possible involvement of NK cells in the 

αCTLA-4 mediated tumor regression came from the studies conducted with B7-1 transduced prostate 

cancer cell line [342]. Although expressing no or low MHC I on the surface, those tumor cells were 

efficiently rejected upon CTLA-4 blockade in vivo. We demonstrated that NK cells expressed CTLA-4 in 

the tumor tissue and could be the additional direct targets of αCTLA-4 treatment. By use of CTLA-4 

deficient NK cells, we showed that in the absence of CTLA-4, NK cells produced more IFNγ when 

stimulated with the B7-1 IgG fusion protein (Figure 6.31) or B7-1 expressing tumor cells (data not shown). 

In addition, B7-1 induced NK cell proliferation (Figure 6.24), which was previously shown to depend on 

CD28 [61]. Therefore, the functional blockade of CTLA-4 on NK cells is expected to result in their 

enhanced proliferation and IFNγ production. 



Ana Stojanovic    Discussion 

‐ 134 ‐ 
 

We observed that repeatedly given αCTLA-4 mAb did not influence tumor progression in RAG2 deficient 

mice inoculated subcutaneously with different tumor cell lines. These data are in agreement with 

a previous study of van Elsas et al. showing that αCTLA-4 monotherapy did not affect the progression of 

poor immunogenic B16 melanoma in WT animals [266]. We also observed no beneficial effects when the 

combination therapy of IL-18 and αCTLA-4 was administrated to the RAG2 deficient RMA-S tumor bearing 

mice, although IL-18 was shown to be a potent anti-tumor agent mediating its effect via NK cells [347]. 

The reason for non-effectiveness of the treatment might be explained by the observations of the previous 

reports showing that IL-18 potentiated NK cell anti-tumor responses against FasL but not perforin sensitive 

tumors [92, 102]. Therefore, we cannot exclude the possibility that IL-18/αCTLA-4 therapy might be 

successful in different tumor models. We showed that IL-2 treatment in vitro positively regulated CTLA-4 

expression (Figure 6.19). Therefore, simultaneous CTLA-4 blockade with IL-2 application might represent 

the desired strategy when NK cell responses are to be harnessed against tumor. When we combined 

αCTLA-4 treatment with IL-2 in the B7-1 expressing melanoma model, we observed a modest but 

significant delay in the tumor growth, which also resulted in the prolonged survival of treated mice. IL-2 

can have multiple effects on NK cell anti-tumor responses including better infiltration of the tumor and 

enhanced proliferation and cytotoxicity. Since we administrated IL-2 during the first five days of tumor 

progression, we cannot exclude that repeated treatment or higher dosage would induce more potent 

responses to tumor. In addition, tumors other than melanoma might be more sensitive to the treatment.  

We showed that the main effect of CTLA-4 in NK cells was the regulation of IFNγ production, while 

cytotoxic responses against B7-1 transduced tumor cells were not affected by the receptor. These 

observations implicate that CTLA-4 blockade in vivo might not affect the direct lysis of B7-1+ target cells. 

On the other hand, multiple cells expressing B7-1/2 in the tumor might trigger the IFNγ production by NK 

cells. Since downregulation of B7-1/2 is one of the mechanisms used by tumors to evade T cell responses, 

they are rarely expressed by tumor cells. However, myeloid cells that represent the main population 

infiltrating the tumor, usually express the ligands. Importantly, IFNγ production is the most common result 

of the direct, cell contact dependent, or the indirect, cytokine mediated, activation of NK cells by myeloid 

cells, namely DCs and macrophages. Owing to the very important role of IFNγ to bridge innate and 

adaptive immune responses that finally results in the efficient activation of T cells, suppression of its 

production during an ongoing anti-tumor response is not desirable. NK cells are seen as the important 

cytotoxic effectors that lyse tumor cells at early time points and provide antigens for DCs to initiate T cell 

responses [348]. However, recognition of target cells and the interaction with DCs also induce IFNγ 

release that is necessary for efficient T cell priming. Therefore, increased IFNγ production provided by NK 

cells during an ongoing anti-tumor response is essential for an efficient T cell mediated tumor control 

[349]. Our in vitro data indicate that the induced expression of CTLA-4 on NK cells in all solid tumor tested 

and elevated B7-H1 expression detected in melanoma and carcinoma, might suppress B7-1 induced NK 

cell IFNγ production. Expression of CD28 in TINs further supports the hypothesis that IFNγ might be 

induced via the interaction with B7-1 expressing cells. In RAG2 deficient mice that we used for testing the 

efficiency of CTLA-4 blockade in NK cell mediated anti-tumor responses, only a modest improvement of 
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tumor growth control was seen with IL-2/αCTLA-4 combination. The beneficial effects might be 

a consequence of higher numbers of NK cells in the tumor and/or their higher cytotoxic capacity due to the 

IL-2 mediated activation. Indeed, a significant reduction in tumor size was achieved by IL-2 single 

treatment at the very late stages of tumor progression. Additional CTLA-4 blockade might further increase 

IFNγ release, which might act on several different aspects. IFNγ was shown to increase tumoricidal 

activity of various immune cells including innate effectors as macrophages and neutrophils [94]. It can 

directly act on the tumor cells by promoting anti-proliferative and anti-apoptotic effects or on tumor 

vasculature by preventing angiogenesis [350-351]. Some of those actions might be involved in tumor 

growth delay by the combined IL-2/αCTLA-4 treatment. However, the crucial effectors whose anti-tumor 

action is to be directly or indirectly potentiated by NK cell derived IFNγ, which are T cells, were missing in 

our system. Therefore, for the final prove that CTLA-4 blockade on NK cells plays the important role in the 

enhancement of anti-tumor responses, mice with targeted deficiency of CTLA-4 in NK cells should be 

created and analyzed. 

So far, we tested the blockade of the inhibitory receptor CTLA-4 in the combination with agents that 

directly activate NK cells, namely IL-2 and IL-18. In addition, NK cells can be also activated by myeloid 

cells, macrophages and DCs, in a cell contact dependent manner or via various cytokines [66]. Therefore, 

agents that induce DC or macrophage activation can be also considered as a choice for priming NK cell 

responses. Indeed, CpG oligonucleotides, which bind TLR4, are proven to be potent activators of myeloid 

cells and initiators of events that prime potent anti-tumor responses [352]. Our preliminary results 

indicated that CpG could induce a significant tumor growth delay in T and B cell deficient mice. Further 

studies will be conducted to investigate whether the CpG treatment combined with CTLA-4 blockade in 

therapeutic settings could mediate the eradication of established tumors. Our future studies will be aimed 

at the optimization of therapeutic protocols that could lead to maximal NK cell activation against tumor and 

include the facilitation of NK cell responses in combination with prevention of their inhibition within the 

tumor tissue. 

 

7.5. B7 family expression by NK cells - crucial issues for NK cell based anti-cancer 

therapy 

Despite the knowledge about NK cell anti-tumor responses, the clinical efficacy of trials targeting NK cells, 

has been modest. The most effective use of NK cells is in situations when the tumor burden is relatively 

low, such as in patients with minimal residual disease, post surgery or following relapse. Studies in mice 

indicate that NK cells have a very limited capacity to affect established malignancies. The high percentage 

of human tumors show a deficient expression of MHC class I molecules and cannot be efficiently targeted 

by CTLs [273]. However, those tumors might be selected for NK cell based therapy. NK cell infiltration of 

solid tumors in human patients is variable. Although higher numbers of NK cells found within the tumor 

tissue correlated with a better prognosis, their level of activation is often not sufficient to efficiently control 
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the tumor growth [275-276]. Our studies shed some light on the possible mechanisms that might impede 

the effective NK cell response within established solid tumors. Global expression profile of tumor 

infiltrating NK cells provided the data for a detailed study of NK cell functional state within the tumor. 

We confirmed the downregulation of activating receptors and the upregulation of inhibitory receptors of the 

B7 family on NK cells in the tumor. Our data suggest that NK cell IFNγ production might be the main target 

of inhibition within the tumor tissue, with the potential to prevent effective T cell activation and T cell 

mediated tumor regression. In agreement with the emerging evidence from other studies, strategies based 

on the combination therapies are expected to be the most effective anti-tumor treatments. The knowledge 

about the phenotype and function of tumor infiltrating NK cells will be essential for their efficient implication 

in the novel treatment strategies.  

CTLA-4 blockade in cancer patients was shown to be beneficial for late stage cases of melanoma and 

renal cell carcinoma [268, 353]. When CTLA-4 blockade was combined with peptide vaccine, no additional 

clinical benefits were observed. A combination of CTLA-4 blocking mAb with GM-CSF producing tumor 

vaccine induced large tumor necrosis and long-term freedom from progression after the resection of 

necrotic tumor masses in melanoma patients. However, the patients who showed clinical benefits usually 

developed immune-related adverse events, including rush, vitiligo, colitis, diarrhea, hypophysitis, hepatitis 

and nephritis due to the breakage of self-tolerance and activation of self-reactive T cells. Therefore, 

it would be important to investigate whether CTLA-4 blockade can be combined with NK cell activating 

agents in the dose and application regimen that would produce clinical benefits without adverse effects. 

 

 

 

 

 

 

 

 

 

 

 

 



 

‐ 137 ‐ 
 

8. References 
1. Takeda, K., T. Kaisho, and S. Akira, Toll-like receptors. Annu Rev Immunol, 2003. 21: p. 335-76. 
2. Abbas, A.K. and A.H. Lichtman, Cellular and molecular Immunology. 2003. 
3. Jung, D., et al., Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain 

locus. Annu Rev Immunol, 2006. 24: p. 541-70. 
4. McBlane, J.F., et al., Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 

proteins and occurs in two steps. Cell, 1995. 83(3): p. 387-95. 
5. Mombaerts, P., et al., RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 1992. 

68(5): p. 869-77. 
6. Shinkai, Y., et al., RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate 

V(D)J rearrangement. Cell, 1992. 68(5): p. 855-67. 
7. von Boehmer, H. and F. Melchers, Checkpoints in lymphocyte development and autoimmune 

disease. Nat Immunol. 11(1): p. 14-20. 
8. Mueller, D.L., Mechanisms maintaining peripheral tolerance. Nat Immunol. 11(1): p. 21-7. 
9. Kuppers, R., B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev 

Immunol, 2003. 3(10): p. 801-12. 
10. Kaufmann, S.H., The contribution of immunology to the rational design of novel antibacterial 

vaccines. Nat Rev Microbiol, 2007. 5(7): p. 491-504. 
11. Zhou, L., M.M. Chong, and D.R. Littman, Plasticity of CD4+ T cell lineage differentiation. 

Immunity, 2009. 30(5): p. 646-55. 
12. Biron, C.A., et al., Natural killer cells in antiviral defense: function and regulation by innate 

cytokines. Annu Rev Immunol, 1999. 17: p. 189-220. 
13. Diefenbach, A. and D.H. Raulet, The innate immune response to tumors and its role in the 

induction of T-cell immunity. Immunol Rev, 2002. 188: p. 9-21. 
14. Yu, Y.Y., V. Kumar, and M. Bennett, Murine natural killer cells and marrow graft rejection. Annu 

Rev Immunol, 1992. 10: p. 189-213. 
15. Moffett-King, A., Natural killer cells and pregnancy. Nat Rev Immunol, 2002. 2(9): p. 656-63. 
16. Kiessling, R., E. Klein, and H. Wigzell, "Natural" killer cells in the mouse. I. Cytotoxic cells with 

specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. 
Eur J Immunol, 1975. 5(2): p. 112-7. 

17. Kiessling, R., et al., "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse 
Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol, 1975. 5(2): p. 117-21. 

18. Herberman, R.B., et al., Location by immunoelectron microscopy of carcinoembryonic antigen on 
cultured adenocarcinoma cells. J Natl Cancer Inst, 1975. 55(4): p. 797-9. 

19. Herberman, R.B. and R.K. Oldham, Problems associated with study of cell-mediated immunity to 
human tumors by microcytotoxicity assays. J Natl Cancer Inst, 1975. 55(4): p. 749-53. 

20. Lanier, L.L., NK cell recognition. Annu Rev Immunol, 2005. 23: p. 225-74. 
21. Raulet, D.H., Interplay of natural killer cells and their receptors with the adaptive immune 

response. Nat Immunol, 2004. 5(10): p. 996-1002. 
22. Piontek, G.E., et al., YAC-1 MHC class I variants reveal an association between decreased NK 

sensitivity and increased H-2 expression after interferon treatment or in vivo passage. J Immunol, 
1985. 135(6): p. 4281-8. 

23. Ljunggren, H.G. and K. Karre, Host resistance directed selectively against H-2-deficient lymphoma 
variants. Analysis of the mechanism. J Exp Med, 1985. 162(6): p. 1745-59. 

24. Taniguchi, K., K. Karre, and G. Klein, Lung colonization and metastasis by disseminated B16 
melanoma cells: H-2 associated control at the level of the host and the tumor cell. Int J Cancer, 
1985. 36(4): p. 503-10. 

25. Raulet, D.H., R.E. Vance, and C.W. McMahon, Regulation of the natural killer cell receptor 
repertoire. Annu Rev Immunol, 2001. 19: p. 291-330. 

26. Kubota, A., et al., Diversity of NK cell receptor repertoire in adult and neonatal mice. J Immunol, 
1999. 163(1): p. 212-6. 

27. Fernandez, N.C., et al., A subset of natural killer cells achieves self-tolerance without expressing 
inhibitory receptors specific for self-MHC molecules. Blood, 2005. 105(11): p. 4416-23. 

28. Kim, S., et al., Licensing of natural killer cells by host major histocompatibility complex class I 
molecules. Nature, 2005. 436(7051): p. 709-13.                                                                                    



Ana Stojanovic    References 

‐ 138 ‐ 
 

29. Liao, N.S., et al., MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK 
activity. Science, 1991. 253(5016): p. 199-202. 

30. Zimmer, J., et al., Activity and phenotype of natural killer cells in peptide transporter (TAP)-
deficient patients (type I bare lymphocyte syndrome). J Exp Med, 1998. 187(1): p. 117-22. 

31. Yokoyama, W.M. and S. Kim, How do natural killer cells find self to achieve tolerance? Immunity, 
2006. 24(3): p. 249-57. 

32. Ito, M., et al., Killer cell lectin-like receptor G1 binds three members of the classical cadherin 
family to inhibit NK cell cytotoxicity. J Exp Med, 2006. 203(2): p. 289-95. 

33. Li, Y., et al., Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for 
MHC-independent missing self recognition. Immunity, 2009. 31(1): p. 35-46. 

34. Raulet, D.H. and R.E. Vance, Self-tolerance of natural killer cells. Nat Rev Immunol, 2006. 6(7): p. 
520-31. 

35. Bryceson, Y.T., et al., Activation, coactivation, and costimulation of resting human natural killer 
cells. Immunol Rev, 2006. 214: p. 73-91. 

36. Vyas, Y.M., et al., Spatial organization of signal transduction molecules in the NK cell immune 
synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J Immunol, 2001. 
167(8): p. 4358-67. 

37. Long, E.O., Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev, 2008. 
224: p. 70-84. 

38. Stebbins, C.C., et al., Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a 
mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol, 2003. 23(17): p. 6291-9. 

39. Smyth, M.J., et al., New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev 
Cancer, 2002. 2(11): p. 850-61. 

40. Newman, K.C. and E.M. Riley, Whatever turns you on: accessory-cell-dependent activation of NK 
cells by pathogens. Nat Rev Immunol, 2007. 7(4): p. 279-91. 

41. Hamerman, J.A., K. Ogasawara, and L.L. Lanier, Cutting edge: Toll-like receptor signaling in 
macrophages induces ligands for the NKG2D receptor. J Immunol, 2004. 172(4): p. 2001-5. 

42. Raulet, D.H. and N. Guerra, Oncogenic stress sensed by the immune system: role of natural killer 
cell receptors. Nat Rev Immunol, 2009. 9(8): p. 568-80. 

43. Nausch, N. and A. Cerwenka, NKG2D ligands in tumor immunity. Oncogene, 2008. 27(45): p. 
5944-58. 

44. Cerwenka, A., J.L. Baron, and L.L. Lanier, Ectopic expression of retinoic acid early inducible-1 
gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. 
Proc Natl Acad Sci U S A, 2001. 98(20): p. 11521-6. 

45. Diefenbach, A., et al., Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. 
Nature, 2001. 413(6852): p. 165-71. 

46. Bryceson, Y.T., et al., Synergy among receptors on resting NK cells for the activation of natural 
cytotoxicity and cytokine secretion. Blood, 2006. 107(1): p. 159-66. 

47. Cerwenka, A. and L.L. Lanier, Natural killer cells, viruses and cancer. Nat Rev Immunol, 2001. 
1(1): p. 41-9. 

48. Davis, D.M., Mechanisms and functions for the duration of intercellular contacts made by 
lymphocytes. Nat Rev Immunol, 2009. 9(8): p. 543-55. 

49. Tassi, I., J. Klesney-Tait, and M. Colonna, Dissecting natural killer cell activation pathways 
through analysis of genetic mutations in human and mouse. Immunol Rev, 2006. 214: p. 92-105. 

50. Bretscher, P.A., A two-step, two-signal model for the primary activation of precursor helper T cells. 
Proc Natl Acad Sci U S A, 1999. 96(1): p. 185-90. 

51. Diefenbach, A., et al., Selective associations with signaling proteins determine stimulatory versus 
costimulatory activity of NKG2D. Nat Immunol, 2002. 3(12): p. 1142-9. 

52. Sharpe, A.H., Mechanisms of costimulation. Immunol Rev, 2009. 229(1): p. 5-11. 
53. Vinay, D.S. and B.S. Kwon, TNF superfamily: costimulation and clinical applications. Cell Biol Int, 

2009. 33(4): p. 453-65. 
54. Renshaw, B.R., et al., Humoral immune responses in CD40 ligand-deficient mice. J Exp Med, 

1994. 180(5): p. 1889-900. 
55. Ridge, J.P., F. Di Rosa, and P. Matzinger, A conditioned dendritic cell can be a temporal bridge 

between a CD4+ T-helper and a T-killer cell. Nature, 1998. 393(6684): p. 474-8. 
56. Martin-Fontecha, A., et al., Triggering of murine NK cells by CD40 and CD86 (B7-2). J Immunol, 

1999. 162(10): p. 5910-6. 



Ana Stojanovic    References 

‐ 139 ‐ 
 

57. van den Oord, J.J., et al., CD40 is a prognostic marker in primary cutaneous malignant melanoma. 
Am J Pathol, 1996. 149(6): p. 1953-61. 

58. Chambers, B.J., M. Salcedo, and H.G. Ljunggren, Triggering of natural killer cells by the 
costimulatory molecule CD80 (B7-1). Immunity, 1996. 5(4): p. 311-7. 

59. Sharpe, A.H. and G.J. Freeman, The B7-CD28 superfamily. Nat Rev Immunol, 2002. 2(2): p. 116-
26. 

60. Nandi, D., J.A. Gross, and J.P. Allison, CD28-mediated costimulation is necessary for optimal 
proliferation of murine NK cells. J Immunol, 1994. 152(7): p. 3361-9. 

61. Kelly, J.M., et al., A role for IFN-gamma in primary and secondary immunity generated by NK cell-
sensitive tumor-expressing CD80 in vivo. J Immunol, 2002. 168(9): p. 4472-9. 

62. Galea-Lauri, J., et al., Expression of a variant of CD28 on a subpopulation of human NK cells: 
implications for B7-mediated stimulation of NK cells. J Immunol, 1999. 163(1): p. 62-70. 

63. Li, J., et al., The expression of costimulatory molecules CD80 and CD86 in human carcinoma cell 
lines: its regulation by interferon gamma and interleukin-10. Cancer Immunol Immunother, 1996. 
43(4): p. 213-9. 

64. Tsukada, N., et al., The heterogeneous expression of CD80, CD86 and other adhesion molecules 
on leukemia and lymphoma cells and their induction by interferon. J Exp Clin Cancer Res, 1997. 
16(2): p. 171-6. 

65. Whiteway, A., et al., Expression of co-stimulatory molecules on acute myeloid leukaemia blasts 
may effect duration of first remission. Br J Haematol, 2003. 120(3): p. 442-51. 

66. Moretta, L., et al., Effector and regulatory events during natural killer-dendritic cell interactions. 
Immunol Rev, 2006. 214: p. 219-28. 

67. Nolte, M.A., et al., Timing and tuning of CD27-CD70 interactions: the impact of signal strength in 
setting the balance between adaptive responses and immunopathology. Immunol Rev, 2009. 
229(1): p. 216-31. 

68. Takeda, K., et al., CD27-mediated activation of murine NK cells. J Immunol, 2000. 164(4): p. 
1741-5. 

69. Kelly, J.M., et al., Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. 
Nat Immunol, 2002. 3(1): p. 83-90. 

70. Chan, C.J., et al., DNAM-1/CD155 interactions promote cytokine and NK cell-mediated 
suppression of poorly immunogenic melanoma metastases. J Immunol, 2010. 184(2): p. 902-11. 

71. van Berkel, M.E. and M.A. Oosterwegel, CD28 and ICOS: similar or separate costimulators of T 
cells? Immunol Lett, 2006. 105(2): p. 115-22. 

72. Ogasawara, K., S.K. Yoshinaga, and L.L. Lanier, Inducible costimulator costimulates cytotoxic 
activity and IFN-gamma production in activated murine NK cells. J Immunol, 2002. 169(7): p. 
3676-85. 

73. Aicher, A., et al., Characterization of human inducible costimulator ligand expression and function. 
J Immunol, 2000. 164(9): p. 4689-96. 

74. Croft, M., The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol, 
2009. 9(4): p. 271-85. 

75. Smyth, M.J., et al., Activation of NK cell cytotoxicity. Mol Immunol, 2005. 42(4): p. 501-10. 
76. Aktas, E., et al., Relationship between CD107a expression and cytotoxic activity. Cell Immunol, 

2009. 254(2): p. 149-54. 
77. Alter, G., J.M. Malenfant, and M. Altfeld, CD107a as a functional marker for the identification of 

natural killer cell activity. J Immunol Methods, 2004. 294(1-2): p. 15-22. 
78. Yokoyama, W.M. and B.F. Plougastel, Immune functions encoded by the natural killer gene 

complex. Nat Rev Immunol, 2003. 3(4): p. 304-16. 
79. Kagi, D., et al., Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in 

perforin-deficient mice. Nature, 1994. 369(6475): p. 31-7. 
80. Lieberman, J., The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev 

Immunol, 2003. 3(5): p. 361-70. 
81. Smyth, M.J., et al., Perforin is a major contributor to NK cell control of tumor metastasis. J 

Immunol, 1999. 162(11): p. 6658-62. 
82. Street, S.E., E. Cretney, and M.J. Smyth, Perforin and interferon-gamma activities independently 

control tumor initiation, growth, and metastasis. Blood, 2001. 97(1): p. 192-7. 
83. van den Broek, M.F., et al., Perforin dependence of natural killer cell-mediated tumor control in 

vivo. Eur J Immunol, 1995. 25(12): p. 3514-6. 



Ana Stojanovic    References 

‐ 140 ‐ 
 

84. Smyth, M.J., M. Taniguchi, and S.E. Street, The anti-tumor activity of IL-12: mechanisms of innate 
immunity that are model and dose dependent. J Immunol, 2000. 165(5): p. 2665-70. 

85. Brady, J., et al., IL-21 induces the functional maturation of murine NK cells. J Immunol, 2004. 
172(4): p. 2048-58. 

86. Hoves, S., J.A. Trapani, and I. Voskoboinik, The battlefield of perforin/granzyme cell death 
pathways. J Leukoc Biol. 87(2): p. 237-43. 

87. Terme, M., et al., Natural killer cell-directed therapies: moving from unexpected results to 
successful strategies. Nat Immunol, 2008. 9(5): p. 486-94. 

88. Guicciardi, M.E. and G.J. Gores, Life and death by death receptors. FASEB J, 2009. 23(6): p. 
1625-37. 

89. Thorburn, A., Death receptor-induced cell killing. Cell Signal, 2004. 16(2): p. 139-44. 
90. Smyth, M.J., et al., Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to 

interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med, 2001. 
193(6): p. 661-70. 

91. Takeda, K., et al., Critical role for tumor necrosis factor-related apoptosis-inducing ligand in 
immune surveillance against tumor development. J Exp Med, 2002. 195(2): p. 161-9. 

92. Hashimoto, W., et al., Differential antitumor effects of administration of recombinant IL-18 or 
recombinant IL-12 are mediated primarily by Fas-Fas ligand- and perforin-induced tumor 
apoptosis, respectively. J Immunol, 1999. 163(2): p. 583-9. 

93. Screpanti, V., et al., A central role for death receptor-mediated apoptosis in the rejection of tumors 
by NK cells. J Immunol, 2001. 167(4): p. 2068-73. 

94. Boehm, U., et al., Cellular responses to interferon-gamma. Annu Rev Immunol, 1997. 15: p. 749-
95. 

95. Dunn, G.P., C.M. Koebel, and R.D. Schreiber, Interferons, immunity and cancer immunoediting. 
Nat Rev Immunol, 2006. 6(11): p. 836-48. 

96. Dranoff, G., Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 2004. 4(1): p. 
11-22. 

97. Chaix, J., et al., Cutting edge: Priming of NK cells by IL-18. J Immunol, 2008. 181(3): p. 1627-31. 
98. Ortaldo, J.R., et al., Regulation of ITAM-positive receptors: role of IL-12 and IL-18. Blood, 2006. 

107(4): p. 1468-75. 
99. Okamura, H., et al., Cloning of a new cytokine that induces IFN-gamma production by T cells. 

Nature, 1995. 378(6552): p. 88-91. 
100. Arend, W.P., G. Palmer, and C. Gabay, IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev, 

2008. 223: p. 20-38. 
101. Cho, D., et al., Interleukin-18 and the costimulatory molecule B7-1 have a synergistic anti-tumor 

effect on murine melanoma; implication of combined immunotherapy for poorly immunogenic 
malignancy. J Invest Dermatol, 2000. 114(5): p. 928-34. 

102. Smyth, M.J., et al., NKG2D recognition and perforin effector function mediate effective cytokine 
immunotherapy of cancer. J Exp Med, 2004. 200(10): p. 1325-35. 

103. Fernandez, N.C., et al., Dendritic cells directly trigger NK cell functions: cross-talk relevant in 
innate anti-tumor immune responses in vivo. Nat Med, 1999. 5(4): p. 405-11. 

104. Martin-Fontecha, A., et al., Induced recruitment of NK cells to lymph nodes provides IFN-gamma 
for T(H)1 priming. Nat Immunol, 2004. 5(12): p. 1260-5. 

105. Andoniou, C.E., et al., Interaction between conventional dendritic cells and natural killer cells is 
integral to the activation of effective antiviral immunity. Nat Immunol, 2005. 6(10): p. 1011-9. 

106. Ferlazzo, G., et al., Human dendritic cells activate resting natural killer (NK) cells and are 
recognized via the NKp30 receptor by activated NK cells. J Exp Med, 2002. 195(3): p. 343-51. 

107. Gerosa, F., et al., Reciprocal activating interaction between natural killer cells and dendritic cells. J 
Exp Med, 2002. 195(3): p. 327-33. 

108. Piccioli, D., et al., Contact-dependent stimulation and inhibition of dendritic cells by natural killer 
cells. J Exp Med, 2002. 195(3): p. 335-41. 

109. Degli-Esposti, M.A. and M.J. Smyth, Close encounters of different kinds: dendritic cells and NK 
cells take centre stage. Nat Rev Immunol, 2005. 5(2): p. 112-24. 

110. Kim, S., et al., In vivo developmental stages in murine natural killer cell maturation. Nat Immunol, 
2002. 3(6): p. 523-8. 

111. Huntington, N.D., C.A. Vosshenrich, and J.P. Di Santo, Developmental pathways that generate 
natural-killer-cell diversity in mice and humans. Nat Rev Immunol, 2007. 7(9): p. 703-14. 



Ana Stojanovic    References 

‐ 141 ‐ 
 

112. Freud, A.G., et al., Evidence for discrete stages of human natural killer cell differentiation in vivo. J 
Exp Med, 2006. 203(4): p. 1033-43. 

113. Cooper, M.A., T.A. Fehniger, and M.A. Caligiuri, The biology of human natural killer-cell subsets. 
Trends Immunol, 2001. 22(11): p. 633-40. 

114. Hayakawa, Y. and M.J. Smyth, CD27 dissects mature NK cells into two subsets with distinct 
responsiveness and migratory capacity. J Immunol, 2006. 176(3): p. 1517-24. 

115. Chiossone, L., et al., Maturation of mouse NK cells is a 4-stage developmental program. Blood, 
2009. 113(22): p. 5488-96. 

116. Vosshenrich, C.A., et al., A thymic pathway of mouse natural killer cell development characterized 
by expression of GATA-3 and CD127. Nat Immunol, 2006. 7(11): p. 1217-24. 

117. Carlyle, J.R. and J.C. Zuniga-Pflucker, Lineage commitment and differentiation of T and natural 
killer lymphocytes in the fetal mouse. Immunol Rev, 1998. 165: p. 63-74. 

118. Balciunaite, G., R. Ceredig, and A.G. Rolink, The earliest subpopulation of mouse thymocytes 
contains potent T, significant macrophage, and natural killer cell but no B-lymphocyte potential. 
Blood, 2005. 105(5): p. 1930-6. 

119. Veinotte, L.L., T.Y. Halim, and F. Takei, Unique subset of natural killer cells develops from 
progenitors in lymph node. Blood, 2008. 111(8): p. 4201-8. 

120. Hayakawa, Y., et al., Functional subsets of mouse natural killer cells. Immunol Rev, 2006. 214: p. 
47-55. 

121. Yamagiwa, S., H. Kamimura, and T. Ichida, Natural killer cell receptors and their ligands in liver 
diseases. Med Mol Morphol, 2009. 42(1): p. 1-8. 

122. O'Leary, J.G., et al., T cell- and B cell-independent adaptive immunity mediated by natural killer 
cells. Nat Immunol, 2006. 7(5): p. 507-16. 

123. Hanna, J., et al., Decidual NK cells regulate key developmental processes at the human fetal-
maternal interface. Nat Med, 2006. 12(9): p. 1065-74. 

124. Yadi, H., et al., Unique receptor repertoire in mouse uterine NK cells. J Immunol, 2008. 181(9): p. 
6140-7. 

125. Aujla, S.J., et al., IL-22 mediates mucosal host defense against Gram-negative bacterial 
pneumonia. Nat Med, 2008. 14(3): p. 275-81. 

126. Zheng, Y., et al., Interleukin-22 mediates early host defense against attaching and effacing 
bacterial pathogens. Nat Med, 2008. 14(3): p. 282-9. 

127. Cella, M., et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal 
immunity. Nature, 2009. 457(7230): p. 722-5. 

128. Luci, C., et al., Influence of the transcription factor RORgammat on the development of NKp46+ 
cell populations in gut and skin. Nat Immunol, 2009. 10(1): p. 75-82. 

129. Sanos, S.L., et al., RORgammat and commensal microflora are required for the differentiation of 
mucosal interleukin 22-producing NKp46+ cells. Nat Immunol, 2009. 10(1): p. 83-91. 

130. Satoh-Takayama, N., et al., Microbial flora drives interleukin 22 production in intestinal NKp46+ 
cells that provide innate mucosal immune defense. Immunity, 2008. 29(6): p. 958-70. 

131. Chan, C.W., et al., Interferon-producing killer dendritic cells provide a link between innate and 
adaptive immunity. Nat Med, 2006. 12(2): p. 207-13. 

132. Taieb, J., et al., A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med, 
2006. 12(2): p. 214-9. 

133. Ullrich, E., et al., Trans-presentation of IL-15 dictates IFN-producing killer dendritic cells effector 
functions. J Immunol, 2008. 180(12): p. 7887-97. 

134. Blasius, A.L., et al., Development and function of murine B220+CD11c+NK1.1+ cells identify them 
as a subset of NK cells. J Exp Med, 2007. 204(11): p. 2561-8. 

135. Vosshenrich, C.A., et al., CD11cloB220+ interferon-producing killer dendritic cells are activated 
natural killer cells. J Exp Med, 2007. 204(11): p. 2569-78. 

136. Pletneva, M., et al., IFN-producing killer dendritic cells are antigen-presenting cells endowed with 
T-cell cross-priming capacity. Cancer Res, 2009. 69(16): p. 6607-14. 

137. Terme, M., et al., The dendritic cell-like functions of IFN-producing killer dendritic cells reside in 
the CD11b+ subset and are licensed by tumor cells. Cancer Res, 2009. 69(16): p. 6590-7. 

138. Hanna, J., et al., Novel APC-like properties of human NK cells directly regulate T cell activation. J 
Clin Invest, 2004. 114(11): p. 1612-23. 

139. Bonmort, M., et al., Killer dendritic cells: IKDC and the others. Curr Opin Immunol, 2008. 20(5): p. 
558-65. 



Ana Stojanovic    References 

‐ 142 ‐ 
 

140. Burnet, M., Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. 
Practical applications. Br Med J, 1957. 1(5023): p. 841-7. 

141. Gasser, S. and D.H. Raulet, Activation and self-tolerance of natural killer cells. Immunol Rev, 
2006. 214: p. 130-42. 

142. Waldhauer, I., et al., Tumor-associated MICA is shed by ADAM proteases. Cancer Res, 2008. 
68(15): p. 6368-76. 

143. Groh, V., et al., Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell 
activation. Nature, 2002. 419(6908): p. 734-8. 

144. Zitvogel, L., A. Tesniere, and G. Kroemer, Cancer despite immunosurveillance: immunoselection 
and immunosubversion. Nat Rev Immunol, 2006. 6(10): p. 715-27. 

145. Coudert, J.D., et al., Altered NKG2D function in NK cells induced by chronic exposure to NKG2D 
ligand-expressing tumor cells. Blood, 2005. 106(5): p. 1711-7. 

146. Coudert, J.D., et al., Sustained NKG2D engagement induces cross-tolerance of multiple distinct 
NK cell activation pathways. Blood, 2008. 111(7): p. 3571-8. 

147. Oppenheim, D.E., et al., Sustained localized expression of ligand for the activating NKG2D 
receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol, 
2005. 6(9): p. 928-37. 

148. Costello, R.T., et al., Defective expression and function of natural killer cell-triggering receptors in 
patients with acute myeloid leukemia. Blood, 2002. 99(10): p. 3661-7. 

149. Dubois, S., et al., Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on 
proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol, 2008. 180(4): 
p. 2099-106. 

150. Zhang, M., et al., Interleukin-15 combined with an anti-CD40 antibody provides enhanced 
therapeutic efficacy for murine models of colon cancer. Proc Natl Acad Sci U S A, 2009. 106(18): 
p. 7513-8. 

151. Ma, H.L., et al., IL-21 activates both innate and adaptive immunity to generate potent antitumor 
responses that require perforin but are independent of IFN-gamma. J Immunol, 2003. 171(2): p. 
608-15. 

152. Wang, G., et al., In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer 
Res, 2003. 63(24): p. 9016-22. 

153. Law, T.M., et al., Phase III randomized trial of interleukin-2 with or without lymphokine-activated 
killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer, 1995. 76(5): p. 
824-32. 

154. Ghiringhelli, F., et al., CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a 
transforming growth factor-beta-dependent manner. J Exp Med, 2005. 202(8): p. 1075-85. 

155. Rodella, L., et al., Interleukin 2 and interleukin 15 differentially predispose natural killer cells to 
apoptosis mediated by endothelial and tumour cells. Br J Haematol, 2001. 115(2): p. 442-50. 

156. Atkins, M.B., et al., Phase I evaluation of intravenous recombinant human interleukin 12 in 
patients with advanced malignancies. Clin Cancer Res, 1997. 3(3): p. 409-17. 

157. Davis, I.D., et al., An open-label, two-arm, phase I trial of recombinant human interleukin-21 in 
patients with metastatic melanoma. Clin Cancer Res, 2007. 13(12): p. 3630-6. 

158. Thompson, J.A., et al., Phase I study of recombinant interleukin-21 in patients with metastatic 
melanoma and renal cell carcinoma. J Clin Oncol, 2008. 26(12): p. 2034-9. 

159. Ljunggren, H.G. and K.J. Malmberg, Prospects for the use of NK cells in immunotherapy of human 
cancer. Nat Rev Immunol, 2007. 7(5): p. 329-39. 

160. Sonoda, T., et al., Significance of target cell infection and natural killer cells in the anti-tumor 
effects of bacillus Calmette-Guerin in murine bladder cancer. Oncol Rep, 2007. 17(6): p. 1469-74. 

161. Higuchi, T., et al., A possible mechanism of intravesical BCG therapy for human bladder 
carcinoma: involvement of innate effector cells for the inhibition of tumor growth. Cancer Immunol 
Immunother, 2009. 58(8): p. 1245-55. 

162. Menard, C., et al., Natural killer cell IFN-gamma levels predict long-term survival with imatinib 
mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res, 2009. 69(8): p. 
3563-9. 

163. Taylor, R.P. and M.A. Lindorfer, Immunotherapeutic mechanisms of anti-CD20 monoclonal 
antibodies. Curr Opin Immunol, 2008. 20(4): p. 444-9. 

164. Beano, A., et al., Correlation between NK function and response to trastuzumab in metastatic 
breast cancer patients. J Transl Med, 2008. 6: p. 25. 



Ana Stojanovic    References 

‐ 143 ‐ 
 

165. Ruggeri, L., et al., Effectiveness of donor natural killer cell alloreactivity in mismatched 
hematopoietic transplants. Science, 2002. 295(5562): p. 2097-100. 

166. Sangiolo, D., et al., Cytokine induced killer cells as adoptive immunotherapy strategy to augment 
graft versus tumor after hematopoietic cell transplantation. Expert Opin Biol Ther, 2009. 9(7): p. 
831-40. 

167. Soiffer, R.J., Donor lymphocyte infusions for acute myeloid leukaemia. Best Pract Res Clin 
Haematol, 2008. 21(3): p. 455-66. 

168. Miller, J.S., et al., Successful adoptive transfer and in vivo expansion of human haploidentical NK 
cells in patients with cancer. Blood, 2005. 105(8): p. 3051-7. 

169. Tonn, T., et al., Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-
92. J Hematother Stem Cell Res, 2001. 10(4): p. 535-44. 

170. Mueller, D.L., M.K. Jenkins, and R.H. Schwartz, Clonal expansion versus functional clonal 
inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor 
occupancy. Annu Rev Immunol, 1989. 7: p. 445-80. 

171. Acuto, O. and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling. 
Nat Rev Immunol, 2003. 3(12): p. 939-51. 

172. Paterson, A.M., V.K. Vanguri, and A.H. Sharpe, SnapShot: B7/CD28 costimulation. Cell, 2009. 
137(5): p. 974-4 e1. 

173. Schwartz, J.C., et al., Structural mechanisms of costimulation. Nat Immunol, 2002. 3(5): p. 427-34. 
174. Lindstein, T., et al., Regulation of lymphokine messenger RNA stability by a surface-mediated T 

cell activation pathway. Science, 1989. 244(4902): p. 339-43. 
175. Boise, L.H., et al., CD28 costimulation can promote T cell survival by enhancing the expression of 

Bcl-XL. Immunity, 1995. 3(1): p. 87-98. 
176. Riley, J.L., PD-1 signaling in primary T cells. Immunol Rev, 2009. 229(1): p. 114-25. 
177. Shahinian, A., et al., Differential T cell costimulatory requirements in CD28-deficient mice. 

Science, 1993. 261(5121): p. 609-12. 
178. Oliveira-dos-Santos, A.J., et al., CD28 costimulation is crucial for the development of spontaneous 

autoimmune encephalomyelitis. J Immunol, 1999. 162(8): p. 4490-5. 
179. Tada, Y., et al., CD28-deficient mice are highly resistant to collagen-induced arthritis. J Immunol, 

1999. 162(1): p. 203-8. 
180. Mathur, M., et al., CD28 interactions with either CD80 or CD86 are sufficient to induce allergic 

airway inflammation in mice. Am J Respir Cell Mol Biol, 1999. 21(4): p. 498-509. 
181. Bhatia, S., et al., B7-1 and B7-2: similar costimulatory ligands with different biochemical, 

oligomeric and signaling properties. Immunol Lett, 2006. 104(1-2): p. 70-5. 
182. Kuchroo, V.K., et al., B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 

developmental pathways: application to autoimmune disease therapy. Cell, 1995. 80(5): p. 707-
18. 

183. Orabona, C., et al., CD28 induces immunostimulatory signals in dendritic cells via CD80 and 
CD86. Nat Immunol, 2004. 5(11): p. 1134-42. 

184. Grohmann, U., et al., CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol, 2002. 
3(11): p. 1097-101. 

185. Fallarino, F., et al., T cell apoptosis by tryptophan catabolism. Cell Death Differ, 2002. 9(10): p. 
1069-77. 

186. Fallarino, F., et al., Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol, 2003. 
4(12): p. 1206-12. 

187. Hutloff, A., et al., ICOS is an inducible T-cell co-stimulator structurally and functionally related to 
CD28. Nature, 1999. 397(6716): p. 263-6. 

188. McAdam, A.J., et al., ICOS is critical for CD40-mediated antibody class switching. Nature, 2001. 
409(6816): p. 102-5. 

189. Ling, V., et al., Complete sequence determination of the mouse and human CTLA4 gene loci: 
cross-species DNA sequence similarity beyond exon borders. Genomics, 1999. 60(3): p. 341-55. 

190. Valk, E., C.E. Rudd, and H. Schneider, CTLA-4 trafficking and surface expression. Trends 
Immunol, 2008. 29(6): p. 272-9. 

191. Perkins, D., et al., Regulation of CTLA-4 expression during T cell activation. J Immunol, 1996. 
156(11): p. 4154-9. 

192. Alegre, M.L., et al., Regulation of surface and intracellular expression of CTLA4 on mouse T cells. 
J Immunol, 1996. 157(11): p. 4762-70. 



Ana Stojanovic    References 

‐ 144 ‐ 
 

193. Schneider, H., et al., Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 
complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J Immunol, 1999. 
163(4): p. 1868-79. 

194. Iida, T., et al., Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4-containing 
lysosomes upon activation of CD4+ T cells. J Immunol, 2000. 165(9): p. 5062-8. 

195. Rudd, C.E., A. Taylor, and H. Schneider, CD28 and CTLA-4 coreceptor expression and signal 
transduction. Immunol Rev, 2009. 229(1): p. 12-26. 

196. Rudd, C.E., The reverse stop-signal model for CTLA4 function. Nat Rev Immunol, 2008. 8(2): p. 
153-60. 

197. Darlington, P.J., et al., Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid 
rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. 
J Exp Med, 2002. 195(10): p. 1337-47. 

198. Fallarino, F., P.E. Fields, and T.F. Gajewski, B7-1 engagement of cytotoxic T lymphocyte antigen 
4 inhibits T cell activation in the absence of CD28. J Exp Med, 1998. 188(1): p. 205-10. 

199. Krummel, M.F. and J.P. Allison, CTLA-4 engagement inhibits IL-2 accumulation and cell cycle 
progression upon activation of resting T cells. J Exp Med, 1996. 183(6): p. 2533-40. 

200. Teft, W.A., M.G. Kirchhof, and J. Madrenas, A molecular perspective of CTLA-4 function. Annu 
Rev Immunol, 2006. 24: p. 65-97. 

201. Alegre, M.L., K.A. Frauwirth, and C.B. Thompson, T-cell regulation by CD28 and CTLA-4. Nat Rev 
Immunol, 2001. 1(3): p. 220-8. 

202. Tivol, E.A., et al., Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue 
destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995. 3(5): p. 541-7. 

203. Waterhouse, P., et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. 
Science, 1995. 270(5238): p. 985-8. 

204. Bachmann, M.F., et al., Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not 
T cell autonomous. J Immunol, 1999. 163(3): p. 1128-31. 

205. Bachmann, M.F., et al., Normal pathogen-specific immune responses mounted by CTLA-4-
deficient T cells: a paradigm reconsidered. Eur J Immunol, 2001. 31(2): p. 450-8. 

206. Scalapino, K.J. and D.I. Daikh, CTLA-4: a key regulatory point in the control of autoimmune 
disease. Immunol Rev, 2008. 223: p. 143-55. 

207. Ishida, Y., et al., Induced expression of PD-1, a novel member of the immunoglobulin gene 
superfamily, upon programmed cell death. EMBO J, 1992. 11(11): p. 3887-95. 

208. Vibhakar, R., et al., Activation-induced expression of human programmed death-1 gene in T-
lymphocytes. Exp Cell Res, 1997. 232(1): p. 25-8. 

209. Nishimura, H., et al., Developmentally regulated expression of the PD-1 protein on the surface of 
double-negative (CD4-CD8-) thymocytes. Int Immunol, 1996. 8(5): p. 773-80. 

210. Agata, Y., et al., Expression of the PD-1 antigen on the surface of stimulated mouse T and B 
lymphocytes. Int Immunol, 1996. 8(5): p. 765-72. 

211. Barber, D.L., et al., Restoring function in exhausted CD8 T cells during chronic viral infection. 
Nature, 2006. 439(7077): p. 682-7. 

212. Day, C.L., et al., PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and 
disease progression. Nature, 2006. 443(7109): p. 350-4. 

213. Raimondi, G., et al., Regulated compartmentalization of programmed cell death-1 discriminates 
CD4+CD25+ resting regulatory T cells from activated T cells. J Immunol, 2006. 176(5): p. 2808-
16. 

214. Freeman, G.J., et al., Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family 
member leads to negative regulation of lymphocyte activation. J Exp Med, 2000. 192(7): p. 1027-
34. 

215. Dong, H., et al., B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and 
interleukin-10 secretion. Nat Med, 1999. 5(12): p. 1365-9. 

216. Latchman, Y., et al., PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol, 
2001. 2(3): p. 261-8. 

217. Tseng, S.Y., et al., B7-DC, a new dendritic cell molecule with potent costimulatory properties for T 
cells. J Exp Med, 2001. 193(7): p. 839-46. 

218. Tamura, H., et al., B7-H1 costimulation preferentially enhances CD28-independent T-helper cell 
function. Blood, 2001. 97(6): p. 1809-16. 



Ana Stojanovic    References 

‐ 145 ‐ 
 

219. Pentcheva-Hoang, T., E. Corse, and J.P. Allison, Negative regulators of T-cell activation: potential 
targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. 
Immunol Rev, 2009. 229(1): p. 67-87. 

220. Sharpe, A.H., et al., The function of programmed cell death 1 and its ligands in regulating 
autoimmunity and infection. Nat Immunol, 2007. 8(3): p. 239-45. 

221. Yamazaki, T., et al., Expression of programmed death 1 ligands by murine T cells and APC. J 
Immunol, 2002. 169(10): p. 5538-45. 

222. Loke, P. and J.P. Allison, PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc 
Natl Acad Sci U S A, 2003. 100(9): p. 5336-41. 

223. Liu, X., et al., B7DC/PDL2 promotes tumor immunity by a PD-1-independent mechanism. J Exp 
Med, 2003. 197(12): p. 1721-30. 

224. Nguyen, L.T., et al., Cross-linking the B7 family molecule B7-DC directly activates immune 
functions of dendritic cells. J Exp Med, 2002. 196(10): p. 1393-8. 

225. Keir, M.E., et al., PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008. 26: p. 
677-704. 

226. Carter, L., et al., PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is 
overcome by IL-2. Eur J Immunol, 2002. 32(3): p. 634-43. 

227. Iwai, Y., et al., PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med, 2003. 
198(1): p. 39-50. 

228. Nishimura, H., et al., Development of lupus-like autoimmune diseases by disruption of the PD-1 
gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999. 11(2): p. 141-51. 

229. Nishimura, H., et al., Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. 
Science, 2001. 291(5502): p. 319-22. 

230. Ansari, M.J., et al., The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in 
nonobese diabetic (NOD) mice. J Exp Med, 2003. 198(1): p. 63-9. 

231. Salama, A.D., et al., Critical role of the programmed death-1 (PD-1) pathway in regulation of 
experimental autoimmune encephalomyelitis. J Exp Med, 2003. 198(1): p. 71-8. 

232. Okazaki, T. and T. Honjo, PD-1 and PD-1 ligands: from discovery to clinical application. Int 
Immunol, 2007. 19(7): p. 813-24. 

233. Dong, H., et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of 
immune evasion. Nat Med, 2002. 8(8): p. 793-800. 

234. Iwai, Y., et al., Involvement of PD-L1 on tumor cells in the escape from host immune system and 
tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A, 2002. 99(19): p. 12293-7. 

235. Hamanishi, J., et al., Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes 
are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3360-
5. 

236. Thompson, R.H., et al., Costimulatory molecule B7-H1 in primary and metastatic clear cell renal 
cell carcinoma. Cancer, 2005. 104(10): p. 2084-91. 

237. Thompson, R.H., et al., Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma 
patients with long-term follow-up. Cancer Res, 2006. 66(7): p. 3381-5. 

238. Nakanishi, J., et al., Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade 
and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother, 2007. 
56(8): p. 1173-82. 

239. Nomi, T., et al., Clinical significance and therapeutic potential of the programmed death-1 
ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res, 2007. 13(7): 
p. 2151-7. 

240. Wu, C., et al., Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in 
gastric carcinoma and its clinical significance. Acta Histochem, 2006. 108(1): p. 19-24. 

241. Ahmadzadeh, M., et al., Tumor antigen-specific CD8 T cells infiltrating the tumor express high 
levels of PD-1 and are functionally impaired. Blood, 2009. 114(8): p. 1537-44. 

242. Yamamoto, R., et al., PD-1-PD-1 ligand interaction contributes to immunosuppressive 
microenvironment of Hodgkin lymphoma. Blood, 2008. 111(6): p. 3220-4. 

243. Hirano, F., et al., Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer 
therapeutic immunity. Cancer Res, 2005. 65(3): p. 1089-96. 

244. Iwai, Y., S. Terawaki, and T. Honjo, PD-1 blockade inhibits hematogenous spread of poorly 
immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol, 2005. 17(2): p. 
133-44. 



Ana Stojanovic    References 

‐ 146 ‐ 
 

245. Curiel, T.J., et al., Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor 
immunity. Nat Med, 2003. 9(5): p. 562-7. 

246. Chapoval, A.I., et al., B7-H3: a costimulatory molecule for T cell activation and IFN-gamma 
production. Nat Immunol, 2001. 2(3): p. 269-74. 

247. Hashiguchi, M., et al., Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a 
counter-receptor for B7-H3 and enhances T cell responses. Proc Natl Acad Sci U S A, 2008. 
105(30): p. 10495-500. 

248. Suh, W.K., et al., The B7 family member B7-H3 preferentially down-regulates T helper type 1-
mediated immune responses. Nat Immunol, 2003. 4(9): p. 899-906. 

249. Peggs, K.S., S.A. Quezada, and J.P. Allison, Cell intrinsic mechanisms of T-cell inhibition and 
application to cancer therapy. Immunol Rev, 2008. 224: p. 141-65. 

250. Zang, X., et al., B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl 
Acad Sci U S A, 2003. 100(18): p. 10388-92. 

251. Prasad, D.V., et al., B7S1, a novel B7 family member that negatively regulates T cell activation. 
Immunity, 2003. 18(6): p. 863-73. 

252. Sica, G.L., et al., B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. 
Immunity, 2003. 18(6): p. 849-61. 

253. Brandt, C.S., et al., The B7 family member B7-H6 is a tumor cell ligand for the activating natural 
killer cell receptor NKp30 in humans. J Exp Med, 2009. 206(7): p. 1495-503. 

254. Watanabe, N., et al., BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-
1. Nat Immunol, 2003. 4(7): p. 670-9. 

255. Gavrieli, M. and K.M. Murphy, Association of Grb-2 and PI3K p85 with phosphotyrosile peptides 
derived from BTLA. Biochem Biophys Res Commun, 2006. 345(4): p. 1440-5. 

256. Gavrieli, M., et al., Characterization of phosphotyrosine binding motifs in the cytoplasmic domain 
of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases 
SHP-1 and SHP-2. Biochem Biophys Res Commun, 2003. 312(4): p. 1236-43. 

257. Krieg, C., et al., Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and 
CD8+ T cells. J Immunol, 2005. 175(10): p. 6420-7. 

258. Sarrias, M.R., et al., The three HveA receptor ligands, gD, LT-alpha and LIGHT bind to distinct 
sites on HveA. Mol Immunol, 2000. 37(11): p. 665-73. 

259. Sedy, J.R., et al., B and T lymphocyte attenuator regulates T cell activation through interaction 
with herpesvirus entry mediator. Nat Immunol, 2005. 6(1): p. 90-8. 

260. Cai, G., et al., CD160 inhibits activation of human CD4+ T cells through interaction with 
herpesvirus entry mediator. Nat Immunol, 2008. 9(2): p. 176-85. 

261. Del Rio, M.L., et al., HVEM/LIGHT/BTLA/CD160 cosignaling pathways as targets for immune 
regulation. J Leukoc Biol. 87(2): p. 223-35. 

262. Nguyen, T., et al., BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J 
Immunol, 2006. 176(12): p. 7354-60. 

263. Driessens, G., J. Kline, and T.F. Gajewski, Costimulatory and coinhibitory receptors in anti-tumor 
immunity. Immunol Rev, 2009. 229(1): p. 126-44. 

264. Leach, D.R., M.F. Krummel, and J.P. Allison, Enhancement of antitumor immunity by CTLA-4 
blockade. Science, 1996. 271(5256): p. 1734-6. 

265. Hurwitz, A.A., et al., CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage 
colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad 
Sci U S A, 1998. 95(17): p. 10067-71. 

266. van Elsas, A., A.A. Hurwitz, and J.P. Allison, Combination immunotherapy of B16 melanoma using 
anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-
stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and 
metastatic tumors accompanied by autoimmune depigmentation. J Exp Med, 1999. 190(3): p. 355-
66. 

267. Curran, M.A. and J.P. Allison, Tumor vaccines expressing flt3 ligand synergize with ctla-4 
blockade to reject preimplanted tumors. Cancer Res, 2009. 69(19): p. 7747-55. 

268. Peggs, K.S., et al., Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. 
Curr Opin Immunol, 2006. 18(2): p. 206-13. 

269. Zou, W. and L. Chen, Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev 
Immunol, 2008. 8(6): p. 467-77. 

270. Azuma, T., et al., B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood, 2008. 
111(7): p. 3635-43. 



Ana Stojanovic    References 

‐ 147 ‐ 
 

271. Blank, C., et al., PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor 
(TCR) transgenic CD8+ T cells. Cancer Res, 2004. 64(3): p. 1140-5. 

272. Strome, S.E., et al., B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell 
carcinoma. Cancer Res, 2003. 63(19): p. 6501-5. 

273. Bubenik, J., Tumour MHC class I downregulation and immunotherapy (Review). Oncol Rep, 2003. 
10(6): p. 2005-8. 

274. Coca, S., et al., The prognostic significance of intratumoral natural killer cells in patients with 
colorectal carcinoma. Cancer, 1997. 79(12): p. 2320-8. 

275. Ishigami, S., et al., Prognostic value of intratumoral natural killer cells in gastric carcinoma. 
Cancer, 2000. 88(3): p. 577-83. 

276. Sibbitt, W.L., Jr., et al., Defects in natural killer cell activity and interferon response in human lung 
carcinoma and malignant melanoma. Cancer Res, 1984. 44(2): p. 852-6. 

277. Manoli, T., et al., Group testing for pathway analysis improves comparability of different microarray 
datasets. Bioinformatics, 2006. 22(20): p. 2500-6. 

278. Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 
2008. 27(45): p. 5904-12. 

279. Lavergne, E., et al., Fractalkine mediates natural killer-dependent antitumor responses in vivo. 
Cancer Res, 2003. 63(21): p. 7468-74. 

280. Wendel, M., et al., Natural killer cell accumulation in tumors is dependent on IFN-gamma and 
CXCR3 ligands. Cancer Res, 2008. 68(20): p. 8437-45. 

281. Summers-DeLuca, L.E., et al., Expression of lymphotoxin-alphabeta on antigen-specific T cells is 
required for DC function. J Exp Med, 2007. 204(5): p. 1071-81. 

282. Liu, K. and M.C. Nussenzweig, Origin and development of dendritic cells. Immunol Rev, 2010. 
234(1): p. 45-54. 

283. Wu, Q., et al., The requirement of membrane lymphotoxin for the presence of dendritic cells in 
lymphoid tissues. J Exp Med, 1999. 190(5): p. 629-38. 

284. Bierie, B. and H.L. Moses, Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of 
cancer. Nat Rev Cancer, 2006. 6(7): p. 506-20. 

285. Adams, R.H. and K. Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis. Nat 
Rev Mol Cell Biol, 2007. 8(6): p. 464-78. 

286. Ma, A., R. Koka, and P. Burkett, Diverse functions of IL-2, IL-15, and IL-7 in lymphoid 
homeostasis. Annu Rev Immunol, 2006. 24: p. 657-79. 

287. Laouar, Y., et al., Transforming growth factor-beta controls T helper type 1 cell development 
through regulation of natural killer cell interferon-gamma. Nat Immunol, 2005. 6(6): p. 600-7. 

288. Liebermann, D.A. and B. Hoffman, Gadd45 in the response of hematopoietic cells to genotoxic 
stress. Blood Cells Mol Dis, 2007. 39(3): p. 329-35. 

289. Denko, N.C., Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer, 2008. 
8(9): p. 705-13. 

290. Nizet, V. and R.S. Johnson, Interdependence of hypoxic and innate immune responses. Nat Rev 
Immunol, 2009. 9(9): p. 609-17. 

291. Gazit, R., et al., Lethal influenza infection in the absence of the natural killer cell receptor gene 
Ncr1. Nat Immunol, 2006. 7(5): p. 517-23. 

292. Sivori, S., et al., Involvement of natural cytotoxicity receptors in human natural killer cell-mediated 
lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol, 2000. 107(2): p. 220-5. 

293. Sivori, S., et al., NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh 
or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity 
against autologous, allogeneic or xenogeneic target cells. Eur J Immunol, 1999. 29(5): p. 1656-66. 

294. Halfteck, G.G., et al., Enhanced in vivo growth of lymphoma tumors in the absence of the NK-
activating receptor NKp46/NCR1. J Immunol, 2009. 182(4): p. 2221-30. 

295. Aust, J.G., et al., The expression and function of the NKRP1 receptor family in C57BL/6 mice. J 
Immunol, 2009. 183(1): p. 106-16. 

296. Iizuka, K., et al., Genetically linked C-type lectin-related ligands for the NKRP1 family of natural 
killer cell receptors. Nat Immunol, 2003. 4(8): p. 801-7. 

297. Chlewicki, L.K., et al., Molecular basis of the dual functions of 2B4 (CD244). J Immunol, 2008. 
180(12): p. 8159-67. 

298. Lee, K.M., et al., Requirement of homotypic NK-cell interactions through 2B4(CD244)/CD48 in the 
generation of NK effector functions. Blood, 2006. 107(8): p. 3181-8. 



Ana Stojanovic    References 

‐ 148 ‐ 
 

299. Assarsson, E., et al., NK cells stimulate proliferation of T and NK cells through 2B4/CD48 
interactions. J Immunol, 2004. 173(1): p. 174-80. 

300. Chen, L., Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev 
Immunol, 2004. 4(5): p. 336-47. 

301. Qin, F.X., Dynamic behavior and function of Foxp3+ regulatory T cells in tumor bearing host. Cell 
Mol Immunol, 2009. 6(1): p. 3-13. 

302. Lauwerys, B.R., J.C. Renauld, and F.A. Houssiau, Synergistic proliferation and activation of 
natural killer cells by interleukin 12 and interleukin 18. Cytokine, 1999. 11(11): p. 822-30. 

303. Lanier, L.L., DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev, 2009. 
227(1): p. 150-60. 

304. Butte, M.J., et al., Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory 
molecule to inhibit T cell responses. Immunity, 2007. 27(1): p. 111-22. 

305. Graf, M., et al., High expression of costimulatory molecules correlates with low relapse-free 
survival probability in acute myeloid leukemia (AML). Ann Hematol, 2005. 84(5): p. 287-97. 

306. Rechavi, O., I. Goldstein, and Y. Kloog, Intercellular exchange of proteins: the immune cell habit of 
sharing. FEBS Lett, 2009. 583(11): p. 1792-9. 

307. Ahmed, K.A., et al., Intercellular trogocytosis plays an important role in modulation of immune 
responses. Cell Mol Immunol, 2008. 5(4): p. 261-9. 

308. Clarke, S.R., et al., Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC 
elements for positive and negative selection. Immunol Cell Biol, 2000. 78(2): p. 110-7. 

309. Albertsson, P.A., et al., NK cells and the tumour microenvironment: implications for NK-cell 
function and anti-tumour activity. Trends Immunol, 2003. 24(11): p. 603-9. 

310. Ishigami, S., et al., Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in 
gastric cancer. Cancer Lett, 2000. 159(1): p. 103-8. 

311. Villegas, F.R., et al., Prognostic significance of tumor infiltrating natural killer cells subset CD57 in 
patients with squamous cell lung cancer. Lung Cancer, 2002. 35(1): p. 23-8. 

312. Stewart, T.J. and S.I. Abrams, How tumours escape mass destruction. Oncogene, 2008. 27(45): 
p. 5894-903. 

313. Nausch, N., et al., Mononuclear myeloid-derived "suppressor" cells express RAE-1 and activate 
natural killer cells. Blood, 2008. 112(10): p. 4080-9. 

314. Lardner, A., The effects of extracellular pH on immune function. J Leukoc Biol, 2001. 69(4): p. 
522-30. 

315. Loeffler, D.A., P.L. Juneau, and G.H. Heppner, Natural killer-cell activity under conditions 
reflective of tumor micro-environment. Int J Cancer, 1991. 48(6): p. 895-9. 

316. Dudley, M.E. and S.A. Rosenberg, Adoptive-cell-transfer therapy for the treatment of patients with 
cancer. Nat Rev Cancer, 2003. 3(9): p. 666-75. 

317. Koneru, M., et al., Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte 
lytic function. J Immunol, 2005. 174(4): p. 1830-40. 

318. Croci, D.O., et al., Dynamic cross-talk between tumor and immune cells in orchestrating the 
immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother, 2007. 
56(11): p. 1687-700. 

319. Koneru, M., et al., Defective adhesion in tumor infiltrating CD8+ T cells. J Immunol, 2006. 176(10): 
p. 6103-11. 

320. Pierson, B.A. and J.S. Miller, CD56+bright and CD56+dim natural killer cells in patients with 
chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that 
recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood, 
1996. 88(6): p. 2279-87. 

321. Saibara, T., et al., Assessment of lymphokine-activated killer activity and gamma-interferon 
production in patients with small hepatocellular carcinomas. Hepatology, 1993. 17(5): p. 781-7. 

322. Strayer, D.R., W.A. Carter, and I. Brodsky, Familial occurrence of breast cancer is associated with 
reduced natural killer cytotoxicity. Breast Cancer Res Treat, 1986. 7(3): p. 187-92. 

323. Richards, J.O., et al., Tumor growth impedes natural-killer-cell maturation in the bone marrow. 
Blood, 2006. 108(1): p. 246-52. 

324. Brenner, C.D., et al., Requirements for control of B-cell lymphoma by NK cells. Eur J Immunol, 
2010. 40(2): p. 494-504. 

325. Walzer, T., et al., Identification, activation, and selective in vivo ablation of mouse NK cells via 
NKp46. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3384-9. 



Ana Stojanovic    References 

‐ 149 ‐ 
 

326. Salih, H.R., S. Holdenrieder, and A. Steinle, Soluble NKG2D ligands: prevalence, release, and 
functional impact. Front Biosci, 2008. 13: p. 3448-56. 

327. Vyas, Y.M., H. Maniar, and B. Dupont, Visualization of signaling pathways and cortical 
cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol Rev, 2002. 
189: p. 161-78. 

328. Anderson, S.K., J.R. Ortaldo, and D.W. McVicar, The ever-expanding Ly49 gene family: repertoire 
and signaling. Immunol Rev, 2001. 181: p. 79-89. 

329. Pascal, V., M.J. Stulberg, and S.K. Anderson, Regulation of class I major histocompatibility 
complex receptor expression in natural killer cells: one promoter is not enough! Immunol Rev, 
2006. 214: p. 9-21. 

330. Horng, T., J.S. Bezbradica, and R. Medzhitov, NKG2D signaling is coupled to the interleukin 15 
receptor signaling pathway. Nat Immunol, 2007. 8(12): p. 1345-52. 

331. Ho, E.L., et al., Costimulation of multiple NK cell activation receptors by NKG2D. J Immunol, 2002. 
169(7): p. 3667-75. 

332. Kinter, A.L., et al., The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the 
expression of programmed death-1 and its ligands. J Immunol, 2008. 181(10): p. 6738-46. 

333. Huang, X., et al., PD-1 expression by macrophages plays a pathologic role in altering microbial 
clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A, 2009. 
106(15): p. 6303-8. 

334. Yao, S., et al., PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood, 
2009. 113(23): p. 5811-8. 

335. Brauner, H., et al., Distinct phenotype and function of NK cells in the pancreas of nonobese 
diabetic mice. J Immunol, 2010. 184(5): p. 2272-80. 

336. Galani, I.E., et al., Regulatory T cells control macrophage accumulation and activation in 
lymphoma. Int J Cancer, 2009. 

337. Kim, N., et al., The p110delta catalytic isoform of PI3K is a key player in NK-cell development and 
cytokine secretion. Blood, 2007. 110(9): p. 3202-8. 

338. Chen, W., W. Jin, and S.M. Wahl, Engagement of cytotoxic T lymphocyte-associated antigen 4 
(CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T 
cells. J Exp Med, 1998. 188(10): p. 1849-57. 

339. Kuipers, H., et al., Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-
mediated CD4+ T cell activation. Eur J Immunol, 2006. 36(9): p. 2472-82. 

340. Pilon-Thomas, S., et al., Blockade of programmed death ligand 1 enhances the therapeutic 
efficacy of combination immunotherapy against melanoma. J Immunol, 2010. 184(7): p. 3442-9. 

341. Yang, Y.F., et al., Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-
associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing 
stages. Cancer Res, 1997. 57(18): p. 4036-41. 

342. Kwon, E.D., et al., Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of 
prostate cancer. Proc Natl Acad Sci U S A, 1997. 94(15): p. 8099-103. 

343. Hernandez, J., A. Ko, and L.A. Sherman, CTLA-4 blockade enhances the CTL responses to the 
p53 self-tumor antigen. J Immunol, 2001. 166(6): p. 3908-14. 

344. Hurwitz, A.A., et al., Combination immunotherapy of primary prostate cancer in a transgenic 
mouse model using CTLA-4 blockade. Cancer Res, 2000. 60(9): p. 2444-8. 

345. Ito, D., et al., Induction of CTL responses by simultaneous administration of liposomal peptide 
vaccine with anti-CD40 and anti-CTLA-4 mAb. J Immunol, 2000. 164(3): p. 1230-5. 

346. Peggs, K.S., et al., Blockade of CTLA-4 on both effector and regulatory T cell compartments 
contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med, 2009. 206(8): p. 1717-
25. 

347. Osaki, T., et al., IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-
12-independent antitumor effects. J Immunol, 1998. 160(4): p. 1742-9. 

348. Liu, C., et al., Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell 
cross-priming and tumor regression in mice. J Clin Invest, 2008. 118(3): p. 1165-75. 

349. Mocikat, R., et al., Natural killer cells activated by MHC class I(low) targets prime dendritic cells to 
induce protective CD8 T cell responses. Immunity, 2003. 19(4): p. 561-9. 

350. Qin, Z. and T. Blankenstein, CD4+ T cell--mediated tumor rejection involves inhibition of 
angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. 
Immunity, 2000. 12(6): p. 677-86. 



Ana Stojanovic    References 

‐ 150 ‐ 
 

351. Qin, Z., et al., A critical requirement of interferon gamma-mediated angiostasis for tumor rejection 
by CD8+ T cells. Cancer Res, 2003. 63(14): p. 4095-100. 

352. Garbi, N., et al., CpG motifs as proinflammatory factors render autochthonous tumors permissive 
for infiltration and destruction. J Immunol, 2004. 172(10): p. 5861-9. 

353. Weber, J., Ipilimumab: controversies in its development, utility and autoimmune adverse events. 
Cancer Immunol Immunother, 2009. 58(5): p. 823-30. 

 



 

‐ 151 ‐ 
 

9. Abbreviations 
 
β2m     β2 microglobulin 

µg      Microgram 

µl      Microliter 

µM     Micromolar 

7-AAD     7-Aminoactinomycin D 

Å     Angström 

ACK      Ammonium chloride potassium phosphate 

ADCC     Antibody dependent cell mediated cytotoxicity 

Ag      Antigen 

ALL     Acute lymphoid leukemia 

AML      Acute myeloid leukemia 

ANOVA     Analysis of variance 

AP-1 and AP-2    Activator protein-1 and 2 

APC      Allophycocyanin 

APC(s)      Antigen presenting cell(s) 

BC     Breast cancer 

BCG     Bacillus Calmette-Guérin 

BCR      B cell receptor 

BM      Bone marrow 

BMT     Bone marrow transplantation 

BP     Binding protein 

BrdU      Bromodeoxyuridine 

BTNL2     Butyrophilin-like protein 2 

CAECAM1    Carcinoembryonic antigen-related cell adhesion molecule 1 

CAM      Cell adhesion molecule(s) 

CD      Cluster of differentiation 

cDNA     complementary DNA 

cFc     control fusion protein 

CFSE     Carboxyfluorescein succinimidyl ester 

CML     Chronic myeloid leukemia 

CMV     cytomegalovirus 

CNS     Central nervous system 

CR     complete response 

cRNA     complementary RNA 

CTL(s)      Cytotoxic T lymphocyte(s) 
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CTLA-4     Cytotoxic T lymphocyte associated antigen-4 

Cy     Cyanine 

d      Day(s) 

DAP10     DNAX-associated protein of 10 kDa 

DAP12      DNAX-associated protein of 12 kDa 

DC(s)     Dendritic cell(s) 

ddH2O      Double distilled water 

DEN     Diethylnitrosamine 

DEPC     Diethylpyrocarbonate 

DFS     Disease-free survival 

DMBA     7,12-Dimethylbenz(a)anthracene 

DMEM     Dulbecco/Vogt modified Eagle's minimal essential medium 

DMOG     Dimethyloxaloylglycine 

DMSO      Dimethylsulfoxide 

DNA      Desoxyribonucleic acid 

DNAM-1    DNAX accessory molecule-1 

dNTP     Deoxyribonucleotide triphosphate 

E:T     effector to target ratio 

EAE     Experimental autoimmune encephalomyelitis 

ECM      Extracellular matrix 

EDTA      Ethylenediaminetetraacetic acid 

ELISA      Enzyme-linked immunosorbent assay 

ERK     Extracellular-signal-regulated kinase 

FACS™     Fluorescence-activated cell sorting 

Fas      Fibroblast associated 

FasL      Fas ligand 

FcR     Fc receptor 

FCS      Fetal calf serum 

FITC      Fluorescein-isothiocyanate 

Flt3     FMS-like tyrosine kinase 3 

FVAX     Flt3L expressing cancer vaccine 

g      Gram(s) 

GATA-3     GATA-binding protein-3 

GM-CSF     Granulocyte-macrophage colony stimulating factor 

Grb2     Growth factor receptor-bound protein 2 

GVAX     GM-CSF producing cancer vaccine 

Gzm     Granzyme 

h      Hour(s) 
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HD     Hodgkin’s lymphoma 

HER-2      Human epidermal growth factor receptor-2 

HLA     Human leukocyte antigen 

HSC     Hematopoietic stem cell 

HVEM     Herpesvirus entry mediator 

i.p.      Intraperitoneal 

i.v.     Intraveneous 

ICAM      Intercellular adhesion molecule 

ICOS     Inducible  T cell costimulator 

ICOS-L     Inducible T cell costimulator ligand 

iDC     Immature dendritic cells 

IDO      Indoleamine-pyrrole 2,3-dioxygenase 

IFN      Interferon 

Ig     Immunoglobulin 

IgC     Immunoglobulin constant 

IGIF     IFNγ inducible factor 

IGV     Immunoglobulin variable 

IKDC(s)     Interferon producing killer dendritic cell(s) 

IL      Interleukin 

IMDM     Iscove's modified Dulbecco's medium 

Iono     Ionomycin 

ITAM      Immunoreceptor tyrosine-based activation motif 

ITIM      Immunoreceptor tyrosine-based inhibitory motif 

ITSM     Immunoreceptor tyrosine-based switch motif 

JNK     c-Jun N-terminal kinase 

KEGG     Kyoto Encyclopedia of Genes and Genomes 

KIR(s)     Killer-cell immunoglobulin-like receptor(s) 

KLRG1     Killer cell lectin-like receptor subfamily G member 1 

KO     Knock out 

L     Ligand 

L     Liter 

LAK(s)     Lymphokine activated killer cell(s) 

Lin     Lineage 

LIR     Leukocyte immunoglobulin-like 

LN      Lymph node 

LPS      Lipopolysaccharide 

M     Molar concentration 

mAb(s)     monoclonal antibody(ies) 

MACS®     Magnetic cell sorting 
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MCA     methylcholanthrene 

MCAM      Melanoma cell adhesion molecule 

MCMV      Murine cytomegalovirus 

MCP-1      Monocyte chemoattractant protein-1 

mDC(s)     Mature dendritic cell(s) 

MDSCs     Myeloid derived suppressor cell(s) 

MFI      Mean fluorescence intensity 

MHC      Major histocompatibility complex 

MIC      MHC class I chain related 

min      Minute(s) 

mg     Miligram 

ml      Mililitre 

mM     Milimolar 

mRNA     Messenger RNA 

MS     Multiple sclerosis 

MULT1      Murine UL-16-binding protein-like transcript 1 

NCAM      Neural cell adhesion molecule 

NCR(s)     Natural cytotoxicity receptor(s) 

NF     Nuclear factor 

NFAT     Nuclear factor of activated T cells 

NHL     Non-Hodgkin’s lymphoma 

NK      Natural killer 

NKG2      NK group 2 member 

NKP     NK cell precursor 

NOD     Non-obese diabetic 

NOS     Nitric oxide syntase 

OR     Overall response 

OS     Overall survival 

OVA      Ovalbumin 

ORA     Over-representation approach 

PAMP      Pathogen-associated molecular patterns 

PBL      Peripheral blood lymphocytes 

PBMC     Peripheral blood mononuclear cells 

PBS      Phosphate buffered saline 

PCM     Primary cell medium 

PD-1      Programmed cell death-1 

pDC      Plasmacytoid DC 

PDGF     Platelet derived growth factor 

PD-L     Prrogrammed cell death 1 ligand 
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PD-L1 and PD-L2    Programmed cell death-1 ligand-1 and 2 

PE      Phycoerythrin 

PerCP-Cy5.5     Peridinin-chlorophyll-protein-complex-cyanine 5.5 

pH      Potential hydrogeni 

PI3K      Phosphoinositide 3-kinase 

PLC     Phospholipase 

PMA     Phorbol 12-myristate 13-acetate 

Poly I:C     Polyinosinic-polycytidylic acid 

PP2A     Protein phosphatase 2 

PR     Partial response 

PRF     Perforin 

PRR(s)     Pattern Recognition Receptor(s) 

R     Receptor 

RA     Rheumatoid arthritis 

Rae-1      Retinoic acid early inducible-1 

RAG      Recombination activation gene 

RCC     Renal cell carcinoma 

RNA      Ribonucleic acid 

ROS     Reactive oxygen species 

rpm      Rounds per minute 

RPMI     Roswell park memorial institute medium 

RT      Room temperature 

s.c.      Subcutaneous 

SD     Stable disease 

SD      Standard deviation 

SH-2      Src homology-2 

SHIP      SH2-containing inositol polyphosphate 5-phosphatase 

SHP-1 and SHP-2    SH2-containing protein-tyrosine phosphatase-1 and 2 

SLE     Systemic lupus erythematosus 

TAP     Transporter associated with antigen processing  

TCR      T cell receptor 

TF     Transcription Factor 

TGFβ     Transforming growth factor β 

TGN     Trans-Golgi network  

Th     T helper 

TIN(s)     Tumor infiltrating NK cell(s) 

TIT(s)     Tumor infiltrating T cell(s) 

TLR      Toll-like receptor 

TNF     Tumor necrosis factor 
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TPA     12-O-tetradecanoylphorbol-13-acetate 

TRAIL      TNF–related apoptosis inducing ligand 

TRAMP     Transgenic adenocarcinoma mouse prostate 

Treg      Regulatory T cell 

TREM     Triggering receptor expressed on myeloid cells 

TREML2    Triggering receptor expressed on myeloid cells-like 2 

TRIM     T-cell receptor-interacting molecule 

U     Unit 

ULBP      UL16-binding protein 

UV     Ultraviolet 

VEGF     Vascular endothelial growth factor 

W/     With 

W/O     Without 

WT      Wild type 
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