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Abstract

This thesis studies many aspects of gas evolution in diskged. A simple, fective method is developed
for initializing a three-dimensional gaseous disk whichigletailed equilibrium. With this method, theo-
retical predictions for disk stability and swing amplificat are numerically studied for three-dimensional
disks. The missing link between intergalactic gas acanediod the star formation activity is found for the
galaxy M83. We improve the analysis method to search foritheature of gas infall. For the first time,
gas accretion with gficient fresh gas to fuel star forming disk is kinematicallynfioned. The impacts
of spiral density waves on gas motions are studied numsric&hock driven turbulence is quantified
and is found to match excellently with observations. Furtiae, the evolution of shock itself has pro-
found impacts on redistributing gaseous surface densigular momentum and on the development of
substructures.

Zusammenfassung

Diese Arbeit untersucht viele Aspekte der zeitlichen Eokiing von Gas in Scheibengalaxien. Eine
einfache und #ektive Methode zur Initialisierung einer dreidimensi@rmalGasscheibe in detailliertem
Gleichgewicht wurde entwickelt. Mithilfe dieser Methodetersuchen wir theoretische Vorhersagen ber
Stabilitt und 'Swing’ Verstrkung dreidimensionaler Sdbem durch numerische Simulationen. Fr die
Galaxie M83 wurde der fehlende Zusammenhang zwischen A&krintergalaktischen Gases und der
Sternentstehungsrate gefunden. Wir verbesserten diegygerakbthode zum Afinden von Gaseinfall.
Zum ersten Mal wurde eine ausreichende Gasakkretion zuisespeiner Sterne formenden Scheibe
kinematisch besttigt. Der Einfluss von spiralfrmigen Data¢llen auf die Gasbewegung wurde numerisch
untersucht. Schock-getriebene Turbulenz wurde quasetifizind stimmt mit Beobachtungen exzellent
berein. Des Weiteren hat die Entwicklung des Schocks seiisteichende Einflsse auf die Umverteilung
von Gasoberflchendichte, Drehimpuls und die Entwicklung Sabstrukturen.
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Chapter 1

Introduction

Galaxies are complex systems composed of stars, gas, dlsivasible dark matters, embedded
in a relatively vast empty space. These galaxies are the bagtding blocks of the Universe.
Although modern cosmological models suggest that theggleikiminous objects occupy only
a small fraction of the constituents of the Universe, ourenir understanding of the cosmos
fully relies on the light emitted by the normal matter. Obsgional, theoretical and numerical
studies on the formation and evolution of galaxies in the pastury has largely renovated our
viewpoint about the Universe.

1.1 Galaxies in the Universe

1.1.1 Classification of Galaxies

As the heliocentric model of planetary motions suggestethbyPolish-born astronomer Nico-
laus Copernicus (1473543) shifts our standing point in the solar system, a serfigsvotal
works of Edwin Hubble (18891953) profoundly revolutionize our understanding of our po
sition in the Universe. The great Shapley-Curtis debat@@L@ver the nature of the nebulae
centered on their distances from us and the size of the Milky Was finally settled conclu-
sively by Hubble’s work in 1923. Hubble measured the distarizewteen the Milky Way and
several nebulae, including the Andromeda (M31), via thehasity-period relation of Cepheid
variables stars. He concluded that some of the nebulae@aisiant to be part of the Milky Way
and they are, in fact, our neighbor galaxies. This reabragjreatly extends the original Milky
Way centered viewpoint to a much larger ecosystem in thedJsey i.e., the Milky Way is just
one of the countless galaxies.

Galaxies come in dierent flavors in terms of size and morphology. Hubble’s s@heftlassi-
fication of galaxies (Hubble 1926, 1936) was the first stepnidenstand the nature of galaxies
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based on morphology. As shown in Fig. 1.1, Hubble arrangéakigs into the tuning-fork di-
agram and categorized them into three groups based on fig@aeance, i.e., ellipticals (E’s),
spirals (S’s) and irregulars (Irr's). Spirals are furthended into two separated sequences, the
normal spirals without bars (S’s) and the barred spiralsg)SB transition type between ellipti-
cals and spirals is designated as lenticulars (SO’s). Galan the left of the diagram are called
‘early’ and on the right ’late’ in type. This is an unfortueatklic of nomenclature derived from
the early misunderstanding of the evolution of galaxiesfoBe galaxies were believed to be
formed from the collapse of proto-galactic nebulae sugubbly pressure. As gas falls inward,
the kinetic energy is converted into thermal energy andphs$ss via radiation. Eventually, due
to the conservation of angular momentum, a rotational sdpg@aseous disk results, ensuing
the structure development such as spirals and bars.

Edwin Hubble's
Classification
Scheme ®

Ellipticals

gt SBb

SBE ;

,,.’.‘.

Figure 1.1: Diagram of Hubble’s Tuning Fork classificaticheme from Hubblesite.

Ellipticals are classified based on their apparent axia rat= 1 — b/a, wherea andb represent
the apparent major and minor axis, respectively. Elliggiegith an apparent axial ratie, are
designated with ‘B’, with @ = 10e. For instance, ellipticals witk = 0.3 are classified as E3
and sphericals witle = 0 as EO. Ellipticals withe > 0.7, however, have never been observed.
Spiral galaxies are morphologically more interesting tledipticals. Spiral galaxies, normal
and barred, having the most conspicuous bulge-to-diskriasity ratios are classified as ‘Sa’ or
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'SBa’. These galaxies are also the most tightly wound spirdlhose with the least bulge-to-
disk luminosity ratios and the most open spirals are claskdis ‘Sc’ or 'SBc’. Whereas, the
intermediate ones are classified as 'Sb’ or 'SBb’. Lentiukre disk galaxies without visible
spirals. Due to the lack of gas and dust, they usually apgedunifeless (38B0) with very little
ongoing star formation activities. For those galaxies,okthave no obvious regular structure,
are classified as ’lIrr’.

Based on Hubble’s work, de Vaucouleurs (1959) refined thegfork and incorporated other
important morphological features into the scheme. For gadéxies, De Vaucouleurs introduced
the new notation ‘SA' for spirals without bar, ‘SAB’ for spils with a weak bar, ‘SBO’ for
barred lenticular galaxies, 'S&BBd’ for bulgeless spirdbarred galaxies with éfuse, broken
arms. Galaxies of highly irregular appearance are denaédna Irregular bulgeless galaxies
similar to Magellanic could are represented as ‘S8Bm’. In addition, notation ‘r’ is used to
incorporate the presence of rings in galaxies. Surprigjrggthough this simple classification
scheme is originally designed only for describing the motpyy of galaxies, it correlates very
well for quantities of galaxies such as bulge-to-disk ragjas content, colors, metallicity, star
formation activities, etc.

1.1.2 Galaxy Distribution in The Universe

Figure 1.2: (a) Slices through the SDSS 3-dimensional mépaodistribution of galaxies. Earth
is at the center, and each point represents a galaxy, tipaaitaining about 100 billion stars.
Credit M. Blanton and the Sloan Digital Sky Survey. (b) Dark mattistribution in the CDM
Universe predicted by the Millennium Simulation (Springehl. 2005).

To build up the correlations between morphology, galaxypprbes and environment, one needs
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to understand the evolution course of galaxies over cosynabtime scales. Hubble’s next
celebrated discovery, Hubble’s law (Hubble 1929), was ecglly derived asv = HgD, with

v being the recession velocity, the Hubble constdgn(73.5 + 3.2 km s Mpc derived from

the five-year WMAP, 2008) anD the proper distance. It states that the galaxies in deegspac
are drifting away from Earth with a velocity, proportional to their distancd), from Earth.
Hubble’s results together with the cosmological princglggests that the Universe has a starting
point in spacetime. This concept is now known as the big bhegryy (Lemaitre 1927).

Galaxies evolve with the Universe. A model that is able tacdbe the evolution and the struc-
ture formation in the cosmos is required. Cold Dark Matter ACDM) is now considered as
the best current model of the big bang cosmology. Every ctmggavhich takes into account
the existence of dark energy as well as cold dark matter @lkbin this category. These mod-
els are being able to account for several observation fgjtshe existence and structures in
Cosmic Microwave Background (CMB) observed from the Widan Microwave Anisotropy
Probe (WMAP, Spergel et al. 2007) (ii) the accelerating exiag Universe inferred from the
redshift-distance relations from Type la supernovae @@eal. 1998; Perlmutter et al. 1999) (iii)
large scale structures of galaxy clusters (iv) the abunelahprimordial elements. In the CDM
paradigm, structures are formed bottom-up, i.e., smadabjgravitationally collapse first and
massive objects are formed through a continuously hiel@tmerging (White & Rees 1978;
Kauffmann et al. 1993; Lacey & Cole 1993). Since dark matter ortgracts with matter grav-
itationally, it evolves faster than the normal matter in daely Universe. With the expansion of
the Universe, gas cools and gradually falls into a potemt&l due to the overdensity of dark
matter. Eventually, stars form collectively through gtational collapse of gas and galaxies are
born.

Recently, large scale survey such as Two-degree-Fieldx¢&adshift Survey (2dFGRS) and
Sloan Digital Sky Survey (SDSS) have characterized thelsggle structures in a three-dimensional
fashion. As shown in Fig. 1.2a, galaxies are not distribugediomly. They are organized in a
form now called ‘cosmic web’ composed of large filamentahget-like structures as well as
bubble-like voids. These maps may shed light on how galdwies, be used to test the cos-
mological paradigm and to understand the nature of darkemattd dark energy. In order to
accomplish these goals, a large scale numerical simulesitbed Millennium Simulation is car-

ried out by Virgo Consortium (Springel et al. 2005). A snagsif the distribution of dark matter

is shown in Fig. 1.2b.

Although the Millennium simulation seems to be able to repice the complex ‘cosmic web’,
the simulation fails to replicate the voids as observed in Ei2a, which actually stresses the dis-
tribution of luminous matter. This suggests that eitheree lixists between the mass distribtution
of luminous and dark matter or the physics of CDM model is mptete.
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1.1.3 Environmental Hfects on Galaxies

From Fig. 1.2a, it is evident that galaxies are not distedutandomly. Galaxy formation in the
context of hierarchicahCDM scenario suggests a tight relation to the halo mass ddgmo-
cess (Evrard et al. 1990). The frequency dfetient type of morphology turns out to be sensitive
to the environment. The Local Group, for example, comprisgs galaxies in which only three
are spirals namely the Milky Way, M31 and M33. The remainderdassified between irreg-
ular and dwarf elliptical galaxies. In general, the relasibip between the morphological type
and the environments in which they are located are quantifyellorphology-Density relation
(Dressler 1980; Postman & Geller 1984; Whitmore et al. 1988to et al. 2003; Maulbetsch
et al. 2007). The magnitude-limited survey for galaxiesswig clusters are strongly biased to
the late type spirals (80%) with the rest equally 10% atteduo SO and ellipticals. The trend
changes smoothly with increasing population density. engloups with an intermediate den-
sity, 40% spirals, 40% SO and 20% of ellipticals, whereash@rich clusters, the mix is 10%
spirals, 50% S0 and 40% ellipticals. Luminous cD galaxiesganerally found in the center of
rich clusters. Toomre & Toomre (1972) show that galaxy meigene of the &ectively ways
responsible for the morphology transformation from sgital ellipticals. Since then, this sce-
nario has been used to explain the formation of massivetiehig (van der Wel et al. 2009 and
references therein). Figure 1.3 shows two examples ofdtafjigalaxies, the Stephan’s Quintet
and the Antennae Galaxies. Collisions between galaxiescmenon in clusters and often result
in more massive ellipticals.

Figure 1.3: (a) Stephan’s Quintet (NGC 7317, 18a, 18b, 19, P@age Credits: X-ray (blue):
NASA/CXC/CfA/E. O’Sullivan Optical (brown): Canada-France-HawaiieBgopgCoelum.
(b) The Antennae Galaxies (NGC 40B&C 4039). Image Credits: NASA, ESA, SAO, CXC,
JPL-Caltech, and STScl

Environment not only has profound impact on the structurgatdixies but also on its star forma-
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tion history. There is strong evidence showing that thefstanation activity is quenched when
a galaxy enters a dense cluster. The reason for the suppredsstar formation is still unclear

despite several possibilities have been proposed sucle aarthipressure stripping (Gunn & Gott
1972), galaxy harrasment (Moore et al. 1996; Bell et al. 2B0¥land et al. 2009) and galaxy
starvation (Larson et al. 1980).

1.2 Spiral Galaxies

1.2.1 Spiral Density Waves and Substructures

Numerical simulations conducted by Toomre & Toomre (19Tweed that disks are fragile to
external disturbances. A violent gravitational harrastfirgm an intruder of roughly equal mass
stirs the rotational spin of disk, randomizing the orbitstafrs which results in a morphological
transformation from a disky to an elliptical galaxy. In tlasti Section, we notice that late-type
disky galaxies are dominant in low-density regions in theverse. In these relatively isolated
areas, up to 80% are found to be disky, suggesting that thelserday have been evolved over a
cosmological timescale without a major merger event. Dakxjes are usually spirals. Among
them about two-thirds are barred (de Vaucouleurs 1963)thure being strong barred and the
other one third being weak barred. Furthermore, they arallysgas rich, luminous and actively
forming stars. All these properties suggest that the Usevdras prepared a laboratory which
is under a relatively good control for us to study the relainip of gas and stars, the angular
momentum of primordial gas, the history of gas accretioa ptimordial cosmic magnetic field,
the properties of dark matter, etc. Understanding the &emlcourse of disk galaxies therefore
becomes a focal point of attention.

A disk galaxy is a flat, rotationally supported 'cosmic fregh consisting of stars, gas, dust,
spheroidal concentration of stars in the center now knowth@sbulge’ and globular clusters
residing in the dark halo. The striking spiral we perceivelos photoplates of nearby galaxies
only tells us a part of the story. The luminous spirals are wuthe bright, young, massive
stars which contribute only a small fraction of the totallatepopulation. Images taken from
near-infrared wavelength shows smooth, broad, sinussledls that represent the older stars
(population 1), which is the main body of galactic disks. rfastance, over 90% of the total
mass of the Milky Way disk belongs to this population.

Gas is dissipative and is relatively cold with a typical ity dispersion of~10 km s?. Stel-
lar disk, however, is treated as an ensemble of collisiengars with a much larger typical
dispersion velocity 40 km™$. The diferent nature of gaseous disk and stellar disk leads to
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two separate approaches to study the galactic structureth®©ane hand, the smooth, broad,
sinusoidal-varing spirals seen in near-infrared suggdhstsse of linear theory of density waves
for the disk stars. On the other hand, the narrow luminouskspcomposed of gas, dust and
young stars are treated as a nonlinear problem of gasdysamiee tight correlation between
gas spirals and stellar spirals suggests that this two @nabhre not entirely separable. They are
inter-related to each other through the gravitational fieldshich they both contribute.

Figure 1.4 shows one of the most spectacular spiral gal&isgs 5194 (M51) and its companion
NGC 5195. Itis believed that the grand-design spirals agedbult of tidal interaction between
them. On the inside edge of the bright optical arms, the madwast lanes, which obscure the
visible light emitted from bright stars, follow the spirddape. Fujimoto (1966) suggests that the
dust lanes seen along the luminous arms are the resultsaatgahocks. The narrow dust lanes,
albeit makes up only 1% the total mass of interstellar medigffectively obsecure the visible
starlight, marking the location of gaseous density peak.

Figure 1.4: NGC 5194(M5INGC 5195. Image Credits: ST3BURA, ESA, NASA.

Within the framework of Quasi-Stationary Spiral Struct(@SSS) hypothesis, Roberts (1969)
and Woodward (1975) semi-analytically work out shock sohg attempting to find an explaina-
tion for the large-scale star formation along the spiralarWhen gas clouds of sub-critical mass
pass through the spiral shocks, they get compressed in&-stifical mass, triggering gravita-
tional collapse and form stars. This picture naturally presda geometrically angular shift be-
tween the densest HI and the peak emission gfwhich traces young stars. Roberts (1969)
qualitatively confirms this prediction using the the dataikable at that time. The angulaffeets
are also found between CO ang f/ogel et al. 1988; Garcia-Burillo et al. 1993; Rand & Kulka-
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rni 1990; Scoville et al. 2001), dust lanes and(Roberts 1969; Rots 1975). Recently, Tamburro
et al. (2008) also find the angular shift in emissivity peagsiueen HI (data from THINGS) and
24 um (data from SINGS), which traces the dust-shrouded massiws. Kinematic evidences
that support the galactic shock scenario come from the sisabf non-circular motion along
spirals (Aalto et al. 1999; Visser 1978a,b; Roberts & Stew8B7; Shetty et al. 2007). Veloc-
ity component which is perpendicular to shocks is expeatedtdp proportional to the density
contrast measured before and after the shock, resultingehr@dially inward streaming motion.

In addition to grand-design spiral arms, the structurewéen them are far more complicated.
Substructures perpendicularly protruding from the spikale identified as spurs or feathers.
Many theoretical studies has been carried out to explaim#tare and the origin of spurs.
Semi-analytical calculations without involving self-gity attribute the substructures to the ultra-
harmonics (Woodward 1975; Shu et al. 1973). Balbus (1988yvithe substructures as a result
of the growth of gravitational instability in preferred dations. Numerical works that follow
the nonlinear development of gas has also been conducted&Ostriker 2002a; Chakrabarti
et al. 2003; Wada & Koda 2004; Kim et al. 2006; Dobbs & Bonnéi0@). Among them, Wada
& Koda (2004) and Kim et al. (2006) propose that spiral shegiatentially a major ingredient
capable of tapping randomized energy from the regulariostahotions. Despite many works
which have been dedicated to explore possible mechanisahsdy induce the substrutures, the
impacts of grand-design spiral waves on ISM turbulencetdléess recognized in the literature.

1.2.2 Star Formation, Turbulence and Gas Accretion

Spiral galaxies roughly of the size of the Milky Way are aelfwmaking stars due to their higher
gas surface density. Schmidt (1959) and Kennicutt (1998)that star formation rat&seg, IS
related by a simple power law with gas surface denSigyr o« X3, with n = 1.4, over several
order of magnitude in surface density. This relation is nefemed to as the ‘Kennicutt-Schmidt
law’. Furthermore, there appears a threshold surface tyefi@nnicutt 1989, 1998; Martin &
Kennicutt 2001) above which star formation is activated isk thstability (Toomre 1964; Jog &
Solomon 1984; Rafikov 2001). This threshold surface demssigggests a cutfbradius beyond

which the surface density is too low to form stars.

However, the low ficiency of turning gas into stars in molecular clouds suggtst star for-
mation process is regulated by a variety of processesthe.interplay between gravitational
instability, magnetic fields, gaseous dissipation andulerice. Turbulence can be found on a
wide span of scales ranging from intergalactic gas downdtogtellar accretion disks. Since the
energy of turbulence can dissipate in one crossing timehitguity poses a strict constrain on
possible driving and maintaining sources. In spiral ga@axa remarkable fact is that the velocity
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dispersion measured in HI emission lines is observed toidg tnstant extending from inner
star-forming disks to regions well beyond optical diskso&y & Lockman 1990; van Zee &
Bryant 1999; Tamburro et al. 2009). The inferred values ar iange between 10 km'sand
20 km s (Bigiel et al. 2008; Walter et al. 2008).

Within the star-forming disk, several possibilities suchsteller feedback (see Mac Low &
Klessen 2004; Elmegreen & Scalo 2004 and references thegeavitational instability (Agertz
et al. 2009), swing amplification (Goldreich & Lynden-BeB@5; Toomre 1981; Agertz et al.
2009), magnetorotational instability (MRI, Balbus & Hawl#991; Sellwood & Moore 1999;
Piontek & Ostriker 2004, 2005, 2007) and spiral density vgagWada & Koda 2004; Kim et al.
2006), has been proposed as mechanisms driving turbul&igen the lack of correlation be-
tween turbulence and star formation in the outskirts ofxjael other type of sources apart from
stellar feedback could be responsible for injecting théulent energy. Recently, Klessen &
Hennebelle (2010) propose that the turbulent energy obddrvthe outskirts of galaxies is a
natural outcome of galactic gas accretion. ThHeciency needed to convert infall motions into
the required level of turbulence is only a few percent in MiKay type galaxies.

Following the line of Klessen & Hennebelle (2010), problemhstar formation, ISM turbulence
and gas accretion are evidently inter-related. The Milky\Wéaforming new stars at a rate of
Msr >2 M, yr-! (Diehl et al. 2006). Assuming a constant star formation, matéhout an external
gas supply, star formation will run out of gas in a few billigears much less than the Hubble
time (Pflamm-Altenburg & Kroupa 2009; Klessen & Hennebelld@). Similar gas depletion
time is also reported for many nearby spiral galaxies (Bigteal. 2008). Furthermore, it is
well-known that the star formation rate was higher in the gz it is today, suggesting an even
shorter depletion time around only one billion years in tadyeUniverse (Hippelein et al. 2003;
Hopkins & Beacom 2006; Genzel et al. 2010; Daddi et al. 201)0a,

Two popular scenario has been proposed to explain how teegaiatic gas accretes onto the
disk. The first is directly related with the process of galéagmation called the ‘hot mode’
(White & Rees 1978). Intergalactic gas falls into the darktergpotential, gets shocked and
virialized. Overtime, the gas cools down and gentlely ralog/n onto the disk. This scenario
might be supported by the detection of velocity gradienppedicular to the galactic plane
(Fraternali et al. 2005). Numerical simulations, howesgeaggest the other possibility. Gas can
reach the center of the potential in a form like clouds, streand filaments (Keres et al. 2005;
Dekel & Birnboim 2006; Keres et al. 2009). This scenarioasvrknown as the ‘cold mode’. In
this thesis, we are the first to provide the observationaleswes that support the ‘cold mode’
accretion.

Direct evidences that support the scenario of ongoing gaeton come from the observations
of high velocity clouds (HVCs) moving towards disks, whiate adentified by the kinematic
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anomaly appearing in the p-v diagram (Wakker et al. 2007&eFnali 2009). A simple energy
estimation shows that they cannot be the results of galmtittain. In all, the visible accretion
rate of cold gas in galaxies is estimate@.2 M, yr~!, one order of magnitude less than the
required gas infall in order to sustain the star formatioarasosmological timescales (Sancisi
et al. 2008; Fraternali 2010).

1.2.3 Dark Matter Halo

The existence of dark matter in spiral galaxies is infernesif their rotation curves. If we
combine the mass distribution of luminous matter includstgjlar mass, gas, interstellar dust
and halo stars, a Keplerian falffoV,o;: « RY?, with V,; being the rotation velocity an®
galactocentric radius) in the outer part of rotation cuwexpected. However, instead of the
Keplerian fall-dt, nearly flat rotation curves are traced far out of opticaksligrough 21 cm
emission lines and still show no sign of declination (de Béblal. 2008). If we use the rotation
speed to measure the mass distribution as a function ofgadlispiral galaxies, the ‘missing
mass’ now coined with the name ‘dark matter’ is required twvte enough gravitational force
in order to support flat rotation curves.

Our understanding about the nature of dark matter is stiyl ietle. It is dark because it does not

emit light. It is hard to detect because it is not supposedteract with luminous matter except
through the gravitationalfgects. It is important because it occupies 80% the mass budget
matter and therefore dominates the evolution of structomaétion in the Universe. Within the

framework of cold dark matter, the dark matter is believethtove at normal velocity contrast

to the warm dark matter moving at relativistic velocity awdthe hot dark matter moving at

ultrarelativistic velocity.

A galactic disk is believed to be embedded in a dark mattes. hidumerical simulations con-
ducted by Julio Navarro, Clarlos Frenk and Simon White in6L8veal a universal density
profile of halo as described in Eq. (2.26). In their simulasigthis profile is found over a wide
range of size and mass scales, ranging from dwarf galaxrmeshtolusters of galaxies. However,
other detailed simulations find the shape of dark halo to iagi&d andr— cusp in the center
(Frenk et al. 1988; Dubinski 1994; Hayashi et al. 2004, 2@4&puzzo-Dolcetta et al. 2007).
Many observationalféorts has been dedicated to confirm these predictions kinesigt They
find the center of halos is not characterized ly*acusp but by a central kpc-sized ‘core’ (Kuzio
de Naray et al. 2008 and references therein). The triaxidiles are also not supported by
measuring the noncircular motions in spiral galaxies (fit@amach et al. 2008 and references
therein). The dark matter halo seems to be in a round shape.

These discrepancies pose challenges to the nature of déidrntlae structure formation in disk
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galaxies, e.g. b@vulge formation due to the interaction between stars ankl matter, and the
evolution of disk galaxies.

1.2.4 Stellar Disks

As described in the previous sections, gas evolves in thengiat largely contributed by the
dark matter and the stellar disk. Photometrically, stelisk can be decomposed into a central
concentrated bulge and an exponential disk of a constatg-Begght. In the following, we
describe the profiles of both components.

Outside of centeral bulge, surface brightness (emissiom fstars) observed from other disk
galaxies suggests an exponentially radial profi(® = IqexpR/Ry), with 14 being the ex-
tropolated centeral surface brightneBsthe galactocenter distance aRg the scalelength of
the stellar disk. Recent result shows the scalelength ®iMhky Way is estimated & + 0.5
kpc. The vertical structure of the stellar disk can be irderirom the observations of edge-on
disk galaxies. Optical observations suggest the lumipabstribution perpendicular to disks
can be reasonably fitted with the sé&@iz,) profile, wherez describes the height away from the
midplane andz the scaleheight of disks. This vertical structure can beststdod by a self-
gravitating sheet with Gaussian velocity dispersion irahefent ofz (Spitzer 1942). Combining
these results leads to a description for a three-dimenissteiéar disk:

I(R 2) = lgexpR/Ry)sech(z/zy). (1.1)

The stellar disk can be further decomposed into a thin digufaed with younger massive
metal-rich stars (population I) and a thick disk with oldestai-poor stars (population Il) (Burstein
1979; van der Kruit & Searle 1981a,b). In the solar neighboth the scaleheight of the thin disk
is measured 300 pc and 1 kpc for the thick disk. Over 90% of nsassncentrated in the thin
disk. The variation of the vertical extent in stellar diskasaestimated to be independent of
the radius from earlier observations of edge-on disk gakaran der Kruit & Searle 1981a,b).
However, near infrared observations of Kent et al. (199fgsst a moderate flaring beyond 5
kpc in the Milky Way with a slope of 20 pc kpt. The same trend has been confirmed for a
larger sample of edge-on disk galaxies (de Grijs & Pelet®&7).

In addition to stellar disks, disk galaxies of late-type gpag from S(B)a to S(B)c contain a
bulge with decreasing central bufgesk luminosity ratio ranging fromyyge/Laisk ~ 0.3 to
Louge/Laisk ~ 0.05. The bulge of the Milky Way, for example, contributes 15%ee total
luminosity.

Bulges can be subdivided into three types: classical bulgegpeanut bulges and disk-like
bulges. A classical bulge is described as a spheroidaltateicontaining old stars with little star
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formation activity and dust compared to the disk compondiheir surface brightness can be
fitted with anr# law now known as De Vaucouleurs’ law (Carollo et al. 1999)e3al scenarios
has been proposed to explain the formation of classicaksul&teinmetz & Muller (1995), in
their numerical simulations, suggest that bulges can faunng the first starburst triggered by
the gravitational collapse. Later, Steinmetz & NavarroO@20show that the merger of disk
galaxies of similar size at redshi#t~ 3.3 can stir stars in the disk and form a bulge progenitor.
Noguchi (1999) proposed that dense clumps can form in aalistovia graivitational instability.
These clumps then gradually spiral towards the center aixgddy dynamical friction and form
a classical bulge. As for bgpeanut bulges, numerical simulations carried out by Atkaoala
(2005) conclude that this type of bulges are simply part efrésult of secular evolution of bars
seen in nearly edge-on galaxies.

Kormendy (1993) points out that many bulges, which are ifladsby ther* law, have prop-
erties similar to disks other than bulges in terms of morpgpland kinematics. In fact, they
often present structures like spirals, rings, dust landsséar forming knots in the very center of
galaxies. The well-organized structures suggest thahimagbe formed through violent merg-
ers. Secular evolution of disk might be responsible fortype of bulge. In all, the formation of
disk-like bulges is still unclear.

The tight correlation between the mass of supermassiv& hlales, My, and the velocity disper-
sion, o, of the surrounding stellar bulges suggests that blackstedenehow evolve with bulges
(Ferrarese & Merritt 2000; Gebhardt et al. 2000). This retats now known as the M-o rela-
tion. Since then, other relations that correlate the masgagk holes and the properties of host
bulges has been found. Graham et al. (2001) shows thatddrelates with the concentration of
the host bulge quantified by the Sersic indeMarconi & Hunt (2003) and Haring & Rix (2004)
demonstrate a good correlation between the mass of supgvadédack holes and the mass of
bulges. To sum up, a black hole with largepMends to have a larger velocity disperion, a more
concentrated bulge and a more massive bulge. Given tifateht kinds of bulge discussed in
the above, the physical origin and the implication of thedations are still unclear.

1.2.5 Gaseous Disks

Overall, gas content is more rich in late-type galaxies tearier types. In optical, most of
the gas concentrates in the galactic midplane with a sdgleth&gnificantly smaller than stellar
disks. Unlike stellar disk, the distribution of gaseouskdssless well defined due to complex
phase transitions, star-gas interactions, star-forminggsses, gas accretion, etc.

In general, the distribution of HI gas detected by 21 cm liisefirly flat and uniform with a
scalelength much larger than stellar disk (Leroy et al. 20@8ile in some galaxies a HI hole is
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present in their center. HI gas can be traced far beyondaptisks and is usually significantly
flaring in the outer disk (Lockman 1984; Wouterloot et al. A9Rlessen & Hennebelle 2010).
The ubiquity and the abundance of HI makes it the most impbttacer to study the dynamics
of disk and the interaction of galaxies. The molecula,ibinot easy to observe. Its abundance is
usually inferred from the transition lines of CO in the radicthe infrared portion of spectrum.
Unlike the widespread HI, molecular gas concentrates tisvétie centers of galaxies and is
often structured into the form of giant molecular clouds (G§) or dark clouds. In the outer part
of galaxies, molecular clouds are often organized alongph&l arms. The ionized gas emits
visible light as an electron recombines with a proton. Thacpss happens when the ultraviolet
light emitted from the young, bright, massive stars ionthessurrounding neutral atomic Hl.

The scaleheight of HI disk is observed to be nearly constatfita inner Milky Way & 8.5 kpc).
This was a long-standing puzzle since the scaleheight ofligisis expected to increase with
radius due to the exponentially descreasing surface genisihe stellar disk (Oort 1962). This
is mainly because in earlier approaches, the self-gravigyas is often neglected due to its small
fraction of total mass compared to the stellar disk. RegeNtirayan & Jog (2002) revisited this
problem in a semi-analytical way. They adopt the velocigpérsion of stars, neutral gas and
molecular gas from observations and include the joint gyasontributed by stars, dark matter
and gas. By assuming the gas disk is in hydrodynamic equitibin the vertical direction,
their results fit excellently to the observed scaleheighirtHermore, they also find that the gas
disk also has impact on the scaleheight of stars. Becausettieal velocity dispersion of stars
is only 20 km s! measured in the solar neighborhood. Their results suggasttie vertical
structure of disk is sensitive to the gravity of all ingrat® i.e, stars, dark matter and gas. To
properly model a galactic disk in numerical simulations oreds to treat the vertical structure
self-consistently in order to have an equilibrium disk.

1.3 Layout of The Thesis

We have outlined the properties and some questions assoaigth each constituent in a disk
galaxy. The interplay between each component makes thatewobf disk galaxies extremely
complicated. On small scales, stars form from the grawiteti collapse of gas. Stellar feedbacks
enrich the gas contentffacting the chemical evolution of interstellar medium. Eyyearleased
from stars regulates the birth rate and properties of nexéiggions of stars. Ultraviolet lights
emitted from stars ionize the neutral gas, coupling thewiai of gas and stars to interstellar
magnetic fields. On large scales, disk instability formaatires such as spirals and bars. Sub-
sequently, the secular evolution of disk appearance ispeshby the torques excerted by spirals
and bars over cosmological timescales (Foyle et al. 2010efedences therein).
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Although some important insights can be obtained by thexaletorks, complicated interactions
between gas and stars and highly nonlinear behaviors ofgasdcs make pure mathematical
analyses impractical to trace the disk evolution. With tdeaamces in computing power and
the development of new numerical techniches, we are now ioca gosition to tackle these
guestions outlined in the previous sections on computersforB complicating the disk with
different physics, one needs to initialize a well-controlledé¢hdimensional disk in order to have
conclusive results. We mainly learn two things from Naragalog (2002): (i) galactic disks are
roughly in equilibrium state in the vertical direction ({9 model a composite disk including dark
matter, stars and gas, one needs to build the joint potesgifitonsistently. In Chapter 2, we
devise a simple,féective method to compute the three-dimensional densityaluetity structure
of an isothermal gas disk in hydrodynamic equilibrium in firesence of arbitrary external
potential. We implement this method with the adaptive meshement magnetohydrodynamics
code RAMSES (Teyssier 2002). The three-dimensional dakilgly and the swing amplification
are carefully examined and compared with the theoretieiptions.

In Chapter 3, we search for the evidences of intergalacs@agaretion for the disk galaxy, M83.
We essentially improve the Fourier analysis method prapdseSchoenmakers et al. (1997)
to evaluate the possible presence and strength of any ridaalfor M83. We combine the
high resolution interferometric HI map from THINGS with gie dish data from the 100-m
radio telescope of the Max-Planck-Institut fur Radioastrmie at Helseberg (Huchtmeier &
Bohnenstengel 1981) in order to obtain a complete censuseadtbmic hydrogen across M83.
Evidences of gas accretion through filaments, i.e., coldenarcke examined kinematically.

In Chapter 4, we quantify the impacts of spiral density wamegas motions. It has been long
proposed that spiral density waves is one of the mechanisntsilouting turbulent energy into
the gas (Wada & Koda 2004). Thdheiency of this process and how it happens is not well
understood and quantified. On the one hand, the luminous sesra to suggest that density
wave is triggering the star formation by compressing stiticat clouds into super-critical ones.
On the other hand, density-wave driven turbulence may atguhe process of star formation.
We measure the hydrodynamical velocity dispersion alomglitire-of-sight and compare our
results with observations from THINGS. We address héwient the gas is transported toward
the center of galaxies by redistributing angular momentuMe quantify the radial velocity
as a function of radius. We demonstrate that vortensity @wasion which has been used for
theoretical and obervational studies (Balbus 1988; Shettdf. 2007) does not apply to a flow
which has curved shocks. We semi-analytically quantifydteation of vortensity due to shocks
and compare it with the intrinsic disk vortensity. In adaolitj we investigate the origin of spurs
and how the retrograde motion with respect to the galaxyiostaesults.

In Chapter 5, we summarize the results and their implicati®wossible extensions of these works
will be discussed.



Chapter 2

Equilibrium Initialization and Stability of
Three-Dimensional Gas Disks

2.1 Introduction

The stability of gas disks plays an important role in govegnihe structure of disk galaxies
and in regulating their star formation rate. Although impat insights can be obtained using
perturbation theory (Toomre 1964; Lin & Shu 1964; Rafikov 2)Qhe onset of stability and
its impact on the star formation and evolution of gas disksesst studied using hydrodynamical
simulations. These can follow the non-linear behavior efdfistem, which cannot be addressed
by linear analysis. With the recent advances in computinggp@nd the development of new
numerical techniques, we are now in a good position to tréates-dimensional, isolated galaxy
self-consistently.

However, in order for a stability analysis to be meaninghud aeliable, it is of paramount im-
portance that one can specify equilibrium initial condigo After all, if the initial disk is not
in equilibrium, its relaxation during the first time-stepistioe simulation may trigger instabil-
ities that are of little relevance for our understandingled stability of disk galaxies. Unfor-
tunately, no analytical solution is known for the densitglocity field and temperature of a
three-dimensional gas disk in hydrostatic equilibriumhe external potential of a dark matter
halo andor a stellar disk. Consequently, previous hydrodynamiocalikations have either started
from non-equilibrium initial conditions, or have resortedterative techniques to set-up the ini-
tial conditions, at the cost of having little control oveethesulting equilibrium configuration.
In this Chapter we present a new method that allows one to gtarthe density and velocity
structure of a realistic, isothermal, three-dimensiorad disk in hydrostatic equilibrium in an
abritrary external potential.

Hydrostatic equilibrium implies a balance between graeityl pressure. Gravity includes the
self-gravity of the disk plus that of external components.(idark matter halo, bulge, stellar

15
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disk, etc), while the pressure is given by an equation okgtat p(pg, T), with p being the
gas pressuregy the gas density an@l the temperature. The challenge is to find,aT and the
velocity field, Vv, such that the system is self-consistent (i.e., obeys tiss&wo equation) and in
hydrostatic equilibrium.

In the case of an isothermal, axisymmetric, perfectly gedivitating disk (i.e., no external po-
tential), the equilibrium disk has a sédistribution (Spitzer 1942) in the vertical direction, it

a scale-height that is proportional I¢E§/pg(R, z = 0), wherecs is the sound speed. Here, cylin-
drical coordinates,R, ¢, 2), are used to describe the density field. This immediatebyvshthat
sincepy(R, z = 0) is typically a decreasing function of radius, one gergmipects the scale-
height to be a function oR. In particular, in the case of a globally isothermal disle #ound
speedc? « T is constant in space, giving rise to a flaring disk, i.e., tb@esheight increases
with increasingR (Narayan & Jog 2002, hereafter NJO2; Agertz et al. 2009erAltively, if we
want to initialize a disk with a constant scale-height, aabtmperature gradient needs to be
introduced. Tasker & Bryan (2006) initialize their diskste isothermal and to have a constant
scale-height. As indicated above, this cannot be an equitibconfiguration. Consequently, the
disk is expected to experience an unavoidable relaxatioogss which makes the initialization
not well-controlled and might potentially contaminate fe/sics, e.g., star formation, gas dy-
namics etc., of interest. Agertz et al. (2009) set-up trssithermal disks based on the local total
surface density of gas plus dark matter. Although the sleaight of their initial disk changes
with radius, the local total surface density is not defined imathematical way and therefore
elusive. In addition, their surface density does not follmwexponential profile.

An important assumption underlying Spitzer’s analysifi& the radial variation in the potential
is negligible compared to that in the vertical direction.isSThssumption is supported by obser-
vation that disks typically have vertical scale-heights re an order of magnitude smaller than
their radial scale-length (van der Kruit & Searle 1981b&)wvell studied example is the Milky
Way, whose scale-height is less than 200 pc for the cold gakgdn & Kellman 1974; Lockman
1984; Sanders et al. 1984; Wouterloot et al. 1990; see alsaysa & Jog 2002) and roughly
300 pc for the stars in the Solar neighborhood (Binney & Tried008; Kent et al. 1991), com-
pared to a radial scale-length ©f3.5 kpc. Throughout this Chapter we therefore follow Spitzer
and consider disks to be ‘thin’, allowing us to treat thedtigh and vertical structure separately.
Hence, we caution that our method is not valid for thick diskctures. However, since we are
mainly concerned with cold gas disks in this Chapter, thésrietion is of little importance.

Springel et al. (2005) introduce a flexible solution for i@lizing a gas disk self-consistently.
Basically, they solve Eq. (2.2), Eqg. (2.3) and Eq. (2.24%(Section 2.2) iteratively. First, they
deploy a number of particles (say, 204®&4 x 64) on a distorted grid structure in the radial, the
azimuthal and the vertical directions. Unlike the live paeis, these particles are simply used as
markers for mass distribution. Second, they compute the fotal potential and the resulting
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force field numerically with a hierarchical multipole exgam based on a tree code. Third,
given the potential just computed, integrating Eq. (2.2)damiven midplane volume density,
py(R z = 0), gives the vertical structure of density. Fourth, adfbstmidplane volume density
to fulfill Eq. (2.24). Repeat the procedure between the sgstep and the fourth until the result
converges.

Although this description is quite general and flexible,deveral reasons, this is not commonly
used in the grid-based codes which are featured with adaptesh refinement (AMR). The first
and also the most fundamental one is that the grid structurmimally unknown before we
actually initialize the disk. Except the uniform-grid iilization, the grid structure is automat-
ically generated based on the criterion for refinement. Secior a fully parallelized code, the
initial data is distributed over fferent processors and memory storages. This means that the
data exchange between processors is necessary in orddy woimpute the joint total potential.
The situation becomes even more technically challengingnwhitializing with AMR. Third,
The vertical structure of the gas disk depends only on theca¢ipotential diference (see Eq.
(2.7) and Eq. (2.9) below). A description of the equatoriztigmtial is enough for specifying the
velocity field (See Eq. (2.13), Eq. (2.29) and the resultswshio Section 2.3). In general, given
the density distribution computed by the methods introduneSection 2.2.2 together with the
conclusion in Section 2.2.1, we are allowed to acquire tleeiexelocity field by Eq. (A.17) in
Casertano (1983). Fully solving the Poisson equation besamot necessary. Fourth, initializ-
ing a disk over distributed memories allow us to deal withrgdadata set which cannot be fully
contained in a single memory storage.

We propose a simple but verytective way of initializing a three-dimensional gas disk.isTh
method can be easily incorporated into any existing codedas either a Lagrangian or Eu-
lerian approach. No data exchange between processorsdsde&/ertical density profile is
obtained self-consistently without solving the full Passequation. We implement these ideas
with the adaptive mesh refinement magnetohydrodynamios B&MSES (Teyssier 2002) and
apply our concepts to probe the onset of the disk instabNig modify the dispersion relation
for the infinitesimally thin disk (Lin & Shu 1964)to be able teat thick disks (Goldreich &
Lynden-Bell 1965; Kim & Ostriker 2002b, 2006; Shetty & Okt 2006; Lisker & Fuchs 2009).
The threshold valu€y, is then obtained semi-analytically. Previous studies amghbject are
either focused on a small patch of a galaxy D: Kim & Ostriker 2002b) or are globally
two-dimensional but with the reduction of gravity includiedthe governing equations (Shetty
& Ostriker 2006). In this Chapter, we revisit the subject @asst of our fully three-dimensional
isolated galaxy models. Models with or without stellar pi@ are investigated.

Galactic disks are comprised of stars and gas. Both comp®assncoupled to each other via the
Poisson equation. Since the stellar disk dominates the makget within the luminous disk, its
presence has great impact on the scale-height of the gaaslid&scribed in NJO2. A balanced
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initial condition depends not only on the correct vertidalisture but also on the correct rotation
velocity. To specify the rotation velocity needed, the massosed within a certain radius must
be under control. Although it is common practice to spedify functional form of the volume
densities of 3D disks, we show that because of the flaringttiskypically results in a surface
density profile that contains a central ‘hole’ (Agertz et2009). This problem can be trivially
avoided by specifying the desired surface density profgeeiad. We show that the corresponding
volume density can easily be obtained using a simple iteratheme. The surface density of the
total gas (HkH;) from observation (Leroy et al. 2008) typically follows axpetential profile in
disk galaxies. This profile gives an analytic descriptiotheftotal mass enclosed within a radius
as well as a reasonable approximation for velocity field asvehby Eq. (2.29) below (Binney
& Tremaine 2008).

Describing the stellar disk with a fixed background potdiiat best an approximation to reality.
The interaction between live stellar disk and gas can peigntiestabilize the system (Rafikov
2001; Li et al. 2005b,a, 2006; Kim & Ostriker 2007). After,ale gas is cold compared to the
stellar disk and has highly non-linear response to the astnerstellar potential. The gravita-

tional interplay between the collisionless stars and gasie gas is important for a number of
key questions in galactic dynamics. For example, what igthesical origin of grand design

spirals? Or what initiates and regulates the formationars$t Having access to well-controlled
initial and environmental conditions is a prerequisiteigcdvering their causes.

This Chapter is organized as follows. The ideas of initiniza gas disk are outlined in Section
2.2. Details of the simulation parameters and test runs eserdbed in Section 2.3. Axisym-
metric instability of the disk is revisited in Section 2.4hd self-induced spirals due to swing
amplification will be discussed in Section 2.5. A brief sumtmynand the possible extension of
this work is put in Section 2.6.

2.2 Formulation of Equations

In this Section, we develop the required relations and eégpsto immerse a 3D gas disk in a
preexisting static potential. Assuming that the gas disk tlue preexisting potential share the
same symmetry axis, cylindrical coordinatdR, 4, z), are adopted to formulate the dynamics of
the system. Axial-symmetry enables us to discard the tegssribing the variation in azimuthal
direction, i.e.,0/0¢ = 0. A gas disk which is in detailed balance should fulfill théldaing
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equations:
lop 00 _ Vi (2.1)
pgdR IR R
é%ﬁ‘% = 0, (2.2)

with pg, p, Vet and® being the volume density of the gas, the gas pressure, thrutizal rota-
tion velocity (“rotation velocity” in short) and the joinbtal potential. Equation (2.1) describes
that the gravitational pull in radial direction is countaldnced by the centrifugal force and the
pressure gradient. Equation (2.2) states that hydrostgtidibrium along the symmetry axis,
the z-direction, is achieved by the balance between verticdlgiuthe gravity and the pressure
gradient inz.

To make the system self-consistent, the Poisson equatishlyeunvolved:
V20 = 4nG(pg + pom + Ps)s (2.3)

with G, ppm andps being the gravitational constant, and the volume densitaok matter and
stars. The total potential is comprised of the contribuigirom the dark matter halo, the stellar
disk and the self-gravity of the gas, i.&@, = ®py + s + ®g. In addition, the ideal gas law
provides the link between the gas density, the gas temperata the gas pressure:

P = pg(y — D)E(T), (2.4)

wherey represents the ratio of the heat capacities (adiabatix)ndéne specific internal energy
andT the gas temperature. In the case of an ideal gas, the spet#ioal energy depends only
on temperature, and is given by

e 1+ kel

y=1umy’

with kg being the Boltzmann’s constaptthe atomic weight anth, the mass of a proton. How-
ever, to close the set of equations, we should either invokemhergy equation or an equation of
state (EoS), which will be used to evolve the system.

(2.5)

A disk which is in hydrodynamic equilibrium should stay is iriginal state if we evolve the
disk with the same equation of state which is used to set-aplibk. The numerical results
throughout this Chapter are based on the isothermal equattistate, i.e.,

p = Capg, (2.6)

with ¢s being the sound speed, a temporal and spatial constant.ti@gué2.1) to (2.6) then
form the basis of our discussion. In this Chapter, all thé&slare in detailed equilibrium with
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the isothermal EoS. If those disks are adopted to evolve avitboling function or a polytropic
EoS, we can make sure any change in temperature or dynanpigeeily caused by a cooling or
a heating source.

For a polytropic gasp = Kpj. with " andK being constant, integrating Eq. (2.2) gives:

1
I—

b 2.7)

" 2(Rz=0)
where®,(R, 2) = ®(R, 2) — ®(R, z = 0) defines the vertical potentialftkrence. We have used the

fact thatc2 = dp/dpg = Kfpg_l when approaching Eg. (2.7). Note that givés 1, the internal
energy has the following relation:

pPg(R 2) = pg(R z=0)|1

Kpl"—l
T) = —.

o =227
Combining Eq. (2.5) and Eq. (2.8) gives the temperature &sld function of position if the gas
disk is initialized with a non-isothermal EoS. As a speciase, whed” — 1, Eq. (2.7) then

converges to a form for the isothermal gas:

(2.8)

(R, Z))_ (2.9)

uR.2 = poR 2= 0y exp- 2
S

As we can see from Eq. (2.7) and Eg. (2.9), the vertical streadf gas disk depends on the gas

properties in the midplane and the vertical potentigkedence.

To fully characterize a gas disk which is in detailed balamezneed to specify the velocity, the
density and the temperature at every location in the beggni the simulation. In the following
sub-sections we study the general properties of the vglaod density field, which allows us to
devise a simple, buttkective method to initialize a 3D gas disk in hydrostatic &qrium.

2.2.1 Azimuthal Rotation Velocity

In this sub-section, we treat the azimuthal rotation véyoas generally as possible. To make
the notation concise, we drop the subscript of gas dengitgnd restore the subscript after this
sub-section. Without further assumption, integrating @) from 0 toz gives:

“1dp
L‘ ;Edz = —q)Z(R, Z). (210)

By integrating Eq. (2.10) in parts, we have:

pPR2 _ pR
p(R2  p(R)

“pap
L fopzazdz D,(R, 2). (2.11)
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Inserting Eq.(2.11) into (2.1), we get (see Appendix A.1ftother details):

ViR2 _ 19p  00(R?2)

R  poR R
10p N 0O(R)
;8_R2=0 IR Iz=0

- ERG)-wa) @12

Equation (2.12) shows that the rotation velocity is indejssm of height above or below the
midplane so long as the integral vanishes. It is evidentghatwith a barotropic equation of
state, i.e.p(pg), fulfills this requirement. In addition, for an initiallyonstant temperaturd (is
everywhere the same in the beginning) disk, the initial gwes is a function of volume density
only and therefore the integral becomes zero. In this caggat®n (2.12) can be simplified
further:

oo dlnp
2 _ —1e —X£
ViR =RZe| +(-Deziel . (2.13)

Equation (2.13) states that the process of specifying thialinelocity in 3D comes down to
knowing the rotation velocity in the equatorial midplane.

2.2.2 Density Distribution

From now on, to avoid confusion, we restore the subscrighf®gas density. To proceed further,
we consider the gas layer to be a very thin structure embeddestatic potential contributed by
the background spherical dark matter and the stellar diskaBse the gas disk is observationally
thin we neglect the radial variation compared to the velroce (i.e.,|(0/0R(RODy/IR))/Rl <
16°®y/8Z7)). In Appendix A.5 we show that this is a valid assumption fealistic gas disks. For
an axisymmetric thin disk, the Poisson equation then regiteéBinney & Tremaine 2008):

d?o,
dz

= 4rGpy. (2.14)

with @4 being the potentials contributed by the gas. In the follgywe focus only on disks
with initially constant temperature, i.e., the rotatioriogty required for equilibrium has no
dependence on the height above or below the midplane.
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Density Method

Differentiation Eq. (2.2) with respect #and inserting Eq. (2.14) leads to a second-order non-
linear diterential equation:

d2p 1 dpg dp dZ(I)S dZ(DDM

-0 - err 4 - s
d22  pg dz dz +pg4nGpg + 57 dz2

) =0, (2.15)

with @5 and®py being the potentials contributed by the stellar disk andime matter, respec-
tively. So far, Eq. (2.15) is still general with respect toy&md of equation of state. However, a
single equation with two unknowrsandpyg is not solvable. To continue with Eq. (2.15), in this
sub-section, we assume that the gas is barotropicp{,). Given density distributions of stars,
the dark matter and the boundary conditions in the midplane:

dog
po(R 0) = po(R) and 22 = 0, (2.16)

equation (2.15) can be solved by numerical integration, asing the Runge-Kutta method. For
a single-component, self-gravitating, locally isothekatiak (cs(R) can be a function of radius),
Eqg. (2.15) has an exact solution:

po(R 2) = po(R)sech(z/h), (2.17)

with po(R) being the gas volume density in the midplahe; +/c2/27Gp, the scale-height and
Cs the local isothermal sound speed. According to Eq. (2.1d)sance the midplane volume
density,po(R), generally decreases with radius, to keep the scale-haigbnstant, the sound
speed and therefore the temperature must be a functioniosrad

Equation (2.15) is the simplified version of the formula ded by NJO2 (see also Kim & Os-
triker 2002b), where they investigated the vertical stitetin a gravitationally coupled, multi-
component galactic disk. Itis important to notice that altalations can be done locally without
the need of exchanging information between processorstendfore greatly reduces the com-
plexity of coding.

In principle Eqg. (2.15) allows one to compute the densityhefgas such that the disk initially is
in hydrostatic equilibrium. The actual implementationngsEq. (2.15) does not guarantee the
positivity of the density. In particular, at large ragj(R, 2) is typically close to zero, and small
errors due to the numerical integration often yield negatiensities. This problem is especially
relevant when using the adaptive-mesh refinement techsique

Initializing a gas disk with AMR usually starts with the ceast grid. A natural selection of the
integration step is the cell size. Then a problem immediaises when solving Eq. (2.15) to
specify the volume density. Supposing that the cell sizeushmarger than the scale-height of



EQUILIBRIUM INITIALIZATION AND STABILITY OF THREE-DIMENS IONAL GAS
DISKS 23

the gas disk, the errors introduced by the coarse integraiay lead to negative densities on the
outskirt of the computation domain. One might think the gnégion can be done by using either
adaptive integration intervals or simply a fixed integratioterval which is much smaller than
the cell size. However, the improvements only guaranteeaheergence of the solution not the
positivity. Nevertheless, because of the generality of(Ed.5), density method is still valuable
for semi-analytic research.

Potential Method

In this sub-section, we develop another route for speaijfyire density distribution. We stress
that the following derivation is only applicable to initiaisothermal disks. With this constraint,
integrating Eq. (2.2) gives:

(2.18)

(y-1e/
Combining Eqg. (2.14) and Eq. (2.18), a second-order nagaliequation for the vertical poten-
tial difference of gas is obtained:

dZ(I)g’Z (Dz(R Z)
dz (y - 1)e)'

Given the analytic forms obp, and ®s the only unknown is the potential féerence of gas,
Oy, = Py(R 2) — Dy(R z = 0). Similar to the density method, given the boundary cooist
po(R), ®(R,z = 0) and dP(R,z = 0)/dz = 0, numerical integration can be applied to solve
Eqg. (2.19). By insertingb, obtained by integrating Eq. (2.19) into Eq. (2.18), the dgns
distribution is acquired. Notice that what really matterss is the potential ffierence, not the
absolute value. This means the valuelg{R, z = 0) can be an arbitrary constant, although we
do know the values obpy (R, z = 0) and®¢(R, z = 0).

po(R.2) = poR) exp(—

(2.19)

= 4nGpo(R) exp(—

The merit of this formulation is evident, the occurrence efative density is avoided by EqQ.

(2.18). Tiny errors in the potential fierence will not do any harm to the positivity of the gas
density. Numerical experiments show that in normal casesinh both the density method and

potential method work, the solutions are consistent.

At a given radiusR, solving Eqg. (2.19) only provides us with information abthe potential
difference®,(R, z2). However, a useful byproduct of the potential method is itha possible to
acquire a good approximation of the total potential by:

Dy(R 2) = Dg(R 2 = 0) + Dy (R 2), (2.20)

as long as we know the potential in the midpladg(R, z = 0). Equation (2.20) is an approx-
imation because the use of Eq. (2.19) is based on the reduwssoR equation Eq. (2.14) in
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which the variation in radial direction is ignored. The gead of the potentiatby(R, z = 0)
determines the velocity field required while the verticalgmial diferencedg,(R, z) gives the
vertical structure of the disk. In principle, the radialder which is associated withy(R, z = 0),

in the equatorial plane for an axially symmetric densitytrésition can be evaluated precisely
by the equation (A.17) in Casertano (1983). This allows usitiain the total potential without
fully solving the Poisson equation. In practice, if theigdization is performed with multi-node
clusters, each node only keeps part of the information atbeutiensity distribution, data ex-
change with AMR itself is technically challenging. In Secti2.3, for an exponential disk, the
numerical results will show that the use of Eq. (2.29) is adgapproximation for most of our
interests. The correspondidg(R, z = 0) associated with Eq. (2.29) can be found in the book
by Binney & Tremaine (2008), Eq. (1.164a).

Equation (2.20) is useful, because involving the total ptiainto the formulation is an impor-
tant step for self-consistently building up the combineskdicomprised of a live stellar disk and
a gas disk. Extension to the work of Shu (1969), Kuijken & Ddhi (1995, hereafter, KD95)
develop a self-consistent disk-bulge-halo model for gaaxThe distribution function built by
Eq. (6) in KD95 involves the potential fierencesp, and®(R, 0) — ®(R;, 0), with R, the radius
of the guiding center. The potential method presented hemebe naturally incorporated into
the framework of KD95. Therefore, in this Chapter, all thekdiare initialized by the potential
method.

Exponential Disk

Some studies have assumed that the midplane density of as3@igkahas an exponential form
(Tasker & Bryan 2006; Agertz et al. 2009). However, as we newadnstrate, in general this
results in a surface density distribution that peaks at aiip@&on-zero radius, giving rise to a
ring-like feature. We assume a gas disk with the popular®settical profile:

pg(R 2) = pc exp(-R/Ry)sech (TZR)) : (2.21)

with p. being the central volume densifyy the disk scale-length artgR) the scale-height as a
function of radius. The surface density then reads:

SR = [ (R 2z 20.expERIRINR. (2.22)

Based on Eq. (2.22), we measure the scale-height of a digktatrcradius by(R) = 2(R)/(200(R)).
The extrema of the surface density can be evaluated by té#kenderivative to Eq. (2.22):

B0 o221 o

R R (2.23)
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We Suppose that the disk is linearly flaring, ilg§R) = hy + R/R,, with hy being the minimum
scale-height of the disk arfg, a factor controlling the degree of flaring. The peak of théase
density then locates &,cax = Ry — hoRy. Whenever th&ye.«is positive, we get a ring in surface
density. However, a ring in the surface gas density is notmonly seen in a real disk galaxy.
An exponential profile in the total gas is prevalent in dislkagees (Leroy et al. 2008).

In order to avoid this feature, it is advantageous to spehiyactual surface density of the disk,
rather than its midplane density. In the case of the expaadeabfile, the surface density reads:

00

X(R) - Soexp RR) = [ pR 2z (2.2)

—00

with Xy being the surface density in the galactic centre. Combikigg(2.24) and Eq. (2.18),
the volume density in the midplane can be expressed as:

(R = — ZOSPERR)
[ exp(=®,/[(y - 1)e])dz

It shows that the correct volume density in the midplane lier desired surface density profile
can be obtained iteratively. Given a initial guess ggfR), @, is evaluated via Eq. (2.19) and
also the integral appears in Eqg. (2.25). One needs to itbedtecen Eq. (2.19) and Eq. (2.25).
However, depending on the quality of the initial guess, esgence can be reached very fast. For
instance, with the initial guess beipg(R) = X,exp-R/Ry), a six-time iteration already gives
us a reasonable exponential disk.

(2.25)

We pursue the exponential disk for several reasons. Onessbecause it is commonly seen
in disk galaxies. Another is that we have a better controheftbtal mass. As we can see, if we
specify the midplane volume density instead of the surfasesidy, we do not exactly know the

total mass until we finish the integration. Without knowihg total mass in advance, evaluating
the circular velocity contributed by the self-gravity wilbt be a trivial task. Nevertheless, in
principle, any profile of the surface density can be achiesnegly by the process introduced in

this sub-section.

2.3 Implementation and Tests

2.3.1 Simulation Parameters

In this Section, we test the ideas outlined in the previougi&e We implement the method in
the AMR-code RAMSES (Teyssier 2002). RAMSES uses grid-th&emann-solvers for the
magneto-hydrodynamics (MHD) and particle-mesh (PM) tapinfor the collisionless physics.
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Run T (K) Ms(My) Figure

Gas0 4x10° -  (2.1),(2.2),(2.3)
Gasl 2 10¢ - (2.4),(2.5)
Gas2 Ix10* -  (2.4),(2.5),(2.8)
Gas3 X 10° - (2.4),(2.5)
Gas4 & 10° - (2.4),(2.5)

GasStarl % 10° 4x10° (2.6),(2.7),(2.8)
GasStar2 & 10° 4x 109 (2.6),(2.7)
GasStar3 % 10° 4x10° (2.6),(2.7)
GasStar4 4 10° 4x 109 (2.6),(2.7)

Table 2.1: Models’ Parameters. All disks have a gas mass*8#ML0

It has a fully parallelized Poisson solver with periodic hdary conditions, which we use for
this Chapter. Gas disks which are initialized isothermalith an exponential surface density
of a scale-length of 3.5 kpc and a total mass of°M), are embedded in a static potential. An
isothermal equation of state is used to evolve the disksigiivout this Chapter.

The tests are mainly divided into two groups, one group isvexbwith a static stellar potential
(models with the prefix GasStar), the other without (modeth the prefix Gas). Gasl to Gas4
are M33-like gas-rich galaxies, while GasStarl to GasSiez4nore similar to the Milky-Way.
The main parameters of the models are listed in Table 2.1siFeeof the computational domain
is 250 kpc on a side. Up to 12 levels of refinement are used ésethuns without stellar potential,
and 13 levels for the other group, i.e., the correspondigbést spatial resolutions are about 60
pc and 30 pc, respectively.

The volume density of the halo is described by the NFW proflaarro et al. 1997):

M200 CX
4 f(C)rapor2(1 + X)2°

pom(r) = (2.26)
with the Virial massM,gy = 10Mg, X = rc/rygo, concentration parameter= 12, distance
r = VRZ + 22, Virial radiusrygo = 213 kpc andf(c) = In(1 + ¢) — ¢/(1 + c). The Virial radius
(ro00) is a radius within which the averaged matter density is 20@4s the critical density.

The density distribution of the stellar disk reads (Miyam&tNagai 1975; Binney & Tremaine
2008):

b2|v|s) aR + (a+3VZ +b)(a+ VZ + 1?7 (2.27)

s(r) = ( >
g )[R+ (a+ VZ+ P22 (2 + D)2
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with Mg = 4 x 10'°M,, being the mass of the stellar disk= 3.5 kpc andb = 0.2 kpc the shape
parameters.

In light of the result drawn from Section 2.2.1, for an inlifaconstant temperature setup, we
only need to know the circular velocity in the midplane fottializing the velocity field. The
rotation velocityV,q, is decomposed into four components:

Vi = Vo + V& + Vg + V2, (2.28)

whereVpy, Vs, Vg are the circular velocities corresponding to the dark mditgo, the stellar
disk and the gas disk, ang denotes the contribution due to the pressure gradient.

In this Chapter, we have the analytic form #é&, andVs. For the contribution from the gas disk
and pressure gradient, we take the approximation for aritegimally thin disk with exponential
surface density as described in Eq. (2.24). We set:

4nGEoRyy*[lo(Y)Ko(y) — 11(Y)K1(¥)] (2.29)

dlnp
2.30
aln Rz:()’ ( )

withy = R/(2Ry), lo, Ko, 11 andK; being the modified Bessel functions of the first and second
kinds of zerotlfirst-order, respectively. Equation (2.30) derives frora #econd term of Eq.
(2.13). However, contribution from pressure gradient mrhdplane can only be evaluated after
the gas disk is set up. Note that for an exponential diskasaréind volume densities decrease
with radius and henc\i!g is negative.

V5(R)

VAR) = (y-1e

2.3.2 A Stable Disk

To demonstrate that the disk built by the potential methatdieed in Section 2.2 is in detailed
equilibrium, we start with a stable equilibrium disk in mb@as0. In this test, the stellar disk
is deliberately removed. Without the dynamical supponmithe stellar disk, the self-gravity of
the gas plays the dominant role in determining the verticacture of the disk and provides a
not negligible contribution to the rotation velocity.

Figure 2.1a decomposes the rotation curve into tifiemint contributions by the halo, the gas
and the pressure gradient. Note that the forces of the sality and the pressure gradient
are in opposite sense, the self-gravity pulls matter inwavtile the pressure gradient pushes
outwards. In this figurey, is shown in its absolute value. If we ignore the pressureigrad

the disk would rotate too fast and gradually drift outwardgufe 2.1b shows the conventional

Toomre’s Q defined by: .
K

= . 2.31

Q- o (2.31)
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Figure 2.1: Model Gas0: (a) The total rotation velocity {@pbnd contributions from dark
matter halo (dashed), gas (dotted) and gas pressure (désiadd Note that we plot the absolute
value of the pressure gradient to have positive values ®mdirect comparison. It should be
in opposite sense to the gravity. In this model contribugitnom the gas self-gravity and the
pressure gradient is not negligible. (b) TQevalue of model Gas0 as a function of radius as
defined by Eq. (2.32). Th@ is well above the threshold valig, = 1, thus the disk is expected
to be stable. No structure should develop with time.

with « being the epicyclic frequency. It shows that Qas well aboveQy, = 1, the threshold
value for stability, at all radii. The disk is hot enough toekethe disk stable and no structure
should develop with time.

We let the disk evolve for 1.6 Gyrs (four orbits for the gas @tkpc) and check how well
the disk properties are kept. Figure 2.2a presents the tewolof the surface density and
the rotation curve. The solid lines represent the initiatet and the diamond symbols are
the status after an evolution of 1.6 Gyrs. The surface dermsibbtained by projecting along
the symmetry axis and the rotation curve is evaluated by thgssmveighted circular velocity,
Viot(R) = f (R 2Viat(R, 2)dz/2Z4(R). Although a small amount of mass accretes onto the very
central part of the disk, overall the surface density anddtegtion curve are kept very well. Mass
accretion into the center seems unavoidable for a Cartggidrcode mainly because too small

a number of cubic cells is used to mimic the circular motiothie centre. This accretion will be
eventually halted by the pressure gradient built by the medating material.

Figure 2.2b shows the evolution of the scale-height. Thi dimle represents the initial state
and the dotted line the evolution after 1.6 Gyrs. Upon clasgpection we find that the disk
undergoes a very small amount of mass-redistribution irdldel direction, which we believe
to be a consequence of our two approximations when initegithe disk. One is from the
reduced Poisson equation, Eq. (2.14), and the other is frenuse of Eq. (2.29). Equation
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Figure 2.2: Model Gas0: The evolution of 1.6 Gyrs of a stalié.d(a) The evolution of the
surface density (upper panel) and the rotation curve (Ip&aeel) at = 0 Gyr (solid) and = 1.6
Gyr (diamond). Overall, the surface density and rotatioveware kept very well over 4 orbital
periods. (b) The evolution of the scale-height at 0 Gyr (solid) andt = 1.6 Gyr (dotted).
The small change in scale-height indicates that the redjuireular velocity is overestimated
probably due to the approximation of Eq. (2.14) and Eq. (R.80all, the disk still stays well
in the initial condition. The step-wise character of thesdseight reflects our discretization and
the change of spatial resolution due to the AMR.

(2.29) overestimates the circular velocity needed to stigpe disk. The thickness of the disk
reduces the potential in the midplane by a few percent (seeAqtix A.2). Figure 2.3 shows the
snapshots of the face-on surface density-atO (Fig. 2.3a) and at = 1.6 Gyr (Fig. 2.3b). No
structure is developing during the course of the simulation

To sum up, figures 2.1 to 2.3 indicate that without externetiypkation the disk is quiet over sec-
ular time-scales. The shape of such a disk is naturally fiaria., the scale-height increases with
radius. The ideas described in Section 2.2 are able to treanitial condition self-consistently.
A well-balanced disk is especially useful to probe the onédisk instability as described in the
next Section.

2.4 Axisymmetric Instability

The question of disk stability has been investigated forertban four decades since the pio-
neering works by Toomre (1964) for collisionless stars antt€ich & Lynden-Bell (1965) for
gas sheets. Understanding the origin and evolution of drskctsire is challenging. If the disk
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Figure 2.3: Model Gas0: The size of the images is 206 kpc. The evolution of the surface
density at (a} = 0 Gyr and (b) at = 1.6 Gyr. This figure shows that no structure is developing
over secular time-scale.

is stable like our model GasO, no structures can form. On therdand, if the disk is highly
unstable, the surface density will quickly fragment andedep a clumpy and chaotic-looking
appearance. There will be no well-organized structures. sthking spiral appearance of many
nearby disk galaxies indicates that those disks are mdkgstable.

For an infinitesimally thin disk, the instability threshaklatQy, = 1 (Toomre 1964). The first
theoretical work to include the finite thickness of a selagrating gas disk is that by Goldreich
& Lynden-Bell (1965). Some authors have investigated thbibty of finite thickness gas disks
in numerical simulations (both in 2D and 3D) using local pat within a shearing box (Kim
& Ostriker 2006, 2002b; Gammie 2001). This technique, in B&s also been used by Kim &
Ostriker (2007) to investigate the interaction betweengéedisk and a live stellar disk. Shetty
& Ostriker (2006) used global 2D simulations in which thegarporated the féect of finite
disk thickness by diluting the gravitational force. For 3Blwal disk calculations, see Li et al.
(2005b,a, 2006), who investigate the relation between istability and star formation rate.
These studies all agree that although the inclusion of tle&rikess does not have a qualitative
impact on the disk instability, it does shift the thresholdue of instability quantitatively. In
addition, accounting for disk thickness may have a largeaichpn the evolution of a disk, such
as the development of spurs or the wiggle instability (Kinale2002; Kim & Ostriker 2006).

In this Section, armed with a well-balanced gas disk, wesitethe axisymmetric instability of
disks in 3D global fashion. We first derive the reductiondaét which reflects the reduction of
the gravity due to the finite thickness of the disk. Then theesponding instability threshold
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Qun(R T) derived from a semi-analytic calculation is compared whignumerical results. In the
final sub-section, we also explore the impact of the preseheestatic stellar potential on the
axisymmetric instability.

2.4.1 The impact of thickness on disk stability

The Fourier component of the perturbed gravitational paendy, of an infinitesimally thin

disk is given by:
— =g

K|
wherek represents the wave number of the Fourier components ant — Ry being the radial
deviation for an axisymmetric perturbation. Supposing &a&D disk is piled up by a stack of
infinitesimally thin gas layers, we approximate thieet of the disk thickness by superimposing
the contribution from every razor-thin layer:

Dy = (2.32)

Dy(2) = -

ikx 00
2nGE e f e—k|z—hlwcjh, (2.33)

1K 0 2h,

with h, being the scale-height of the disk. In Eq. (2.33), we modehrtical structure of the
gas disk by a seéHunction. This is valid especially for the inner part of diskhere the vertical
structure is mainly determined by the self-gravity of the.g&ee also the Fig. A.1 in Appendix
A.4. Equation (2.33) leads to the Fourier potential in theprane:

jkx
O (z=0) = —%F(K h,), (2.34)
with F(k, h,) being the reduction factor described by (see Appendix:A.3)
B 1 kh, kh, 1
F(k,hz)_l—zkhz[H(4)—H(4 —2)], (2.35)
with H being the harmonic number defined by:
1 1- ya
H(a) = f ——dy. 2.36
@= ) 3=, (2.36)

The Lin-Shu (1964) dispersion relation for the axisymnugpeerturbation is then modified to:
w? = K* = 2nGEglKIF (K, hy) + c2K2. (2.37)

The dispersion relation states that on small scddes (o) the disk is stabilized by gas pressure,
i.e., the termc2k®. Large scalesk( — 0) are regulated by global shear, i.e., #igerm. The
instability however happens at intermediate wavelengtigch smaller than the disk size but



32 CHAPTER 2

still larger than the thickness of the disk. In this regiositiner global shear nor gas pressure can
resist the gravitational collapse. The reduction facter,® < 1, softens theféect of self-gravity
and makes the disk more stable.

Given a certain radiuR and temperatur@, we obtain the threshold valu@y(T, R) by probing
the maximum value along the neutral curve defined by setithg 0 in Eqg. (2.37) and calcu-
lating the epicyclic frequency, from the rotation curve. Similar to the conventional Toemr
criterion for the stability of an infinitesimally thin diskK)y, is a threshold curve for thick disks.
Above Qy, the disk is stable and otherwise unstable. Sinceghés a function of both temper-
ature and radius, it is convenient to define the critical @@y;, which is the value o)y, for
which Qun(T, R)/Q(R) = 1, and the corresponding critical temperatlisg.

The solid lines shown in Fig. 2.4 represent the thresholde/@}y, as a function of radius. Each
plot corresponds to a disk offtierent temperature. The dash-dotted lines are the aQtualues
defined by Eq. (2.31) of the flerent models. From these figures, the most unstable radius is
aroundR = 2 kpc. The corresponding surface densities after an evolofi 750 Myrs are shown

in Fig. 2.5. The gas at the most unstable region has revotwechdre than four orbital periods
around the disk center.

These figures shows that the predictionfi; and the numerical results match quite well. The
Q value of Gasl is well above the solid line and shows a felassesurface density. As shown
in Gas2 and Gas3, with the decrease in temperatureQtheurves shift up and the disk€
curves come down. As a consequence, the disk starts to gawveildi-armed structure, which is
very likely caused by swing amplification, as discussed ictiSe 2.5. And finally in Gas4, the
curvesQ andQy, intersect. The disk fragments and starts to behave chéiptigamore detail
calculation shows that the two curves just touch each otrsetemperatur@.;; = 8.5x10°K with
the maximum threshol@.; = 0.693, which is close tQ.; = 0.676 of Goldreich & Lynden-Bell
(1965) analysis but away from the numerical res@;; = 0.647, of Kim & Ostriker (2002b).
However, the actual value @ is model dependent. Berent models of the dark matter, the
stellar disk and even the EoS will alifact the resulting value ;.

2.4.2 The inclusion of stellar potentials

The inclusion of a static stellar disk alters two importattbrs which influence the stability of
the disk. One is the rotation curve and the other is the tl@s&mf the gas disk. By changing the
rotation curve, the epicyclic frequenay, changes accordingly. Supposing a flat rotation curve
described by2 = Vy/R, the epicyclic frequency then reads:

2

V.
K =207 = 233, (2.38)
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with Vj being the rotation velocity. The presence of a stellar disids to stabilize the gas disk
via increasingvy. However, by increasing the gravitational pull in the veatidirection, the gas
disk becomes thinner and therefore more susceptible tatgtianal collapse. In Section 2.4.1,
we have already seen that the scale-height, which is goddiynéne temperature of the disk, is
a very sensitive factor for the disk stability. GasStarl es&tard are designed to explore the
competition between the two opponents.

From Fig. 2.6, we first notice that, compared to Fig. 2.4, tireghold valueQ., is boosted
from 0.693 to 0.75 due to the decrease in scale-height. Thisemthe disk more prone to
gravitational instability. On the other hand, the changthefrotation curve drastically shifts the
dash-dotted curve upwards. Instability only sets in oneetémperature of the gas disk drops
belowT. ~ 6000 K. Overall, the presence of the static stellar disk$dndtabilize the disks.

Figure 2.7 shows the surface density after an evolution 6fMgr. During this period, the gas
in the most unstable region has finished 2.5 orbits. All treedisks are developing multi-armed
spiral structures within the region where the disk is the tmaserable to instability according
to Fig. 2.6. At this moment, the most unstable disk, GasSiardxperiencing fragmentation.
High density filaments are evident from the image. While GaSis still in its early stage of
instability, GasStar3 is just about to enter the fragmémnagthase. GasStarl, on the other hand,
does not fragments at all during the course of simulation.

The trend is clear. The cooler the disk, the faster it fragsehe spiral structure seen in
these images are due to swing amplification (Toomre 1981¢i@ich & Lynden-Bell 1965),
a mechanism that is capable of amplifying the perturbatypiswinging the leading waves to
trailing. Swing amplification is fective as the disk) (dash-dotted line) is approaching the
thresholdQy, (the solid line). The spirals are sheared, become tightighter and enhanced.
Once the density reaches the supercritical point, instalsgts in.

2.5 Spontaneously Induced Spiral Structure

An interesting feature which is hard to ignore in Fig. 2.5 &ig. 2.7 is that the marginally
stable disks are spontaneously developing multi-arm lsglinactures. We have already seen in
Sections 2.3 and 2.4 that th&ext of the disk thickness is to shift the range of the margynal
stable region downwards and therefore to stabilize the. d&& we systematically lower the
temperature to probe the onset of instability, runs with afl as without stellar potential are
experiencing swing amplification.

Hohl (1971) found that disks which are marginally stablexisyanmetric perturbation are prone
to develop a large-scale bar structure. This finding iretidioth numerical (Zang & Hohl 1978;
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Sellwood 1981, 1985; Fuchs & von Linden 1998; Sellwood & Mob999) and theoretical stud-
ies (Kalnajs 1978; Sawamura 1988; Vauterin & Dejonghe 183¢hon & Cannon 1997; Evans
& Read 1998; Fuchs 2001) of marginally stable disks. Gotdiré Lynden-Bell (1965) and
Toomre (1981) pointed out that self-gravitatingfelientially rotating disks are able to amplify
spiral waves by shearing a leading wave into a trailing orteed& key ingredients, self-gravity,
shearing and epicyclic motions work harmonically to make phenomenon now coined with
the name ‘swing amplification’” happen.

Three necessary conditions need to be fulfilled in order tdifate the swing amplification
(Toomre 1981; Fuchs 2001; Fuchs & von Linden 1998; Binney &rmiaine 2008). First, the
disk must be marginally stable, i.e., for an infinitesimaliin disk, 1< Q < 2, as defined by Eq.
(2.31). Second, the parameter= kiiR/m = Keit/k, (Toomre 1981; Binney & Tremaine 2008),
with m being the number of arms arkgi; = «?/(27GZg) the critical wave number, has to be of
order unity, i.e., somewhere between 1 and 3 (Goldreich &deynBell 1965; Julian & Toomre
1966; Toomre 1981). Third, there must be a mechanism thatesainduce leading arms in the
system either explicitly by hand (Toomre 1981) or implicitly random fluctuation induced by
numerical noise (Toomre 1990; Sellwood & Carlberg 1984;Hs2001). We notice that most of
these works mentioned above are for live stellar disks metcty for the gas disk. But since the
amplification principles are the same, the results aresgiplicable to pure gas disks.

As shown in Fig. 2.8a and 2.8b, GasStarl gets more arms thsthd@@s. To be more quantita-
tively, Fig. 2.8c and 2.8d show the Fourier components asétiion of radius. They are obtained
by doing Fourier transform ta&g(R, ¢) — Z4(R))/Z4(R), whereZ,(R) is the averaged surface den-
sity of a given radius. Note that the dominating modes teadsetmultiples oim = 4. This is

a consequence of using a Cartesian grid, for wimtchk: 4 is the natural mode. However, the
dominating mode is determined by physics. The dominatingeraf Gas2 isn = 8 while in
GasStariIn=12.

As is apparent from Eq. (2.38), including a stellar disk esusn increase ik.i;. Consequently,

a larger value om is required in order to satisfy ¥ X < 3. From the image shown in Fig.
2.8a and the relatiork;; oc x?, to keepX a constant, the number of spiral arms in GasStarl can
be crudely estimated as ~ 15. More precisely, the number of spiral arms,is predicted by
(Toomre 1981; Athanassoula et al. 1987; Fuchs 2001, 2008):

m= IR (2.39)
/lmax
with A,hax being defined by:
_ Acrit

wheredg it = 2n/Kyi. The codicienty is a function of rotation curve (Fuchs 2001), as measured
by Oort’s constanA.
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We employ Eq. (2.39) to analytically estimate the numbenrnfsaand compare the predictions
with the images shown in Fig. 2.8. For Gas2, spirals appesvdam 2 kpc and 5 kpc. Within
this radial range, the most unstable wavelength ranges Z:6no 3.6 kpc. The corresponding
prediction form ranges from 6 to 9, while the simulation reveals a spiralgpattvith 8-fold
symmetry. For GasStarl, spirals are prominent between 3l&pd, while the corresponding
most unstable wavelength ranges from 1.4 to 2.0 kpc. Thevéensims developing in GasStarl
should be compared to a predictedranging from 13 to 14. Hence, overall the trends in the
simulations are in reasonable agreement with our predistiblote that the spatial resolution in
both simulations ranges from 60 pc to 120 pc, indicating th@tmost unstable wavelengths are
well-resolved.

The observed small deviations can be explained as followst, Ehe formulation used to predict
the number of arms is precise only for stellar disks. HoweVeomre (1981) has shown the
strikingly similar behavior of gaseous disks (Goldreich §nden-Bell 1965) and stellar disks
(Julian & Toomre 1966). Therefore, we have confidence that ¢39) is still applicable to
gaseous disks. Second, the number of arms has to be an jraegenber of fraction given by
Eq. (2.39) has no physical meaning. Third, the usage of a&€lart grid introduces the multiples
of the naturam = 4 mode, which manifests itself in the Fourier transform &f skarface density.
Fourth, swing amplification picks up the dominating modeakes some time to fully develop
the dominating mode. All these factors combined deternmtigentumber of spiral seen in our
simulations. It is important to realize that the most unktafdius according to the axisymmetric
instability criterion might not be the mostfective site for swing amplification, since the shear
plays an important role in this process.

Without any external pumping source, spiral waves prodibgesiving amplification should be a
transient phenomenon. Similar to material spirals, swmg@ldied spiral waves will experience
azimuthal shearing which reduces their pitch angle unéythecome too tightly wound to be
identified. As an example, in the Gas2 simulation, the spinal that appears arouii= 2 kpc
initially has a pitch angle of 90and should be sheared to less tharwithin 2.2 Gyr. On the
contrary, we find that the spontaneously induced spirals se&as2 can last for more than 3
Gyr and still keep the pitch angle relatively open. This lesuggests at least one mechanism
keeps replenishing noise into the disk, leaving the phytsigeck up the dominating mode and
sustain the waves. This noise can be caused by numericsexigiiag waves.

2.6 Summary

In this Chapter we have developed a simple diielotive method to compute the three-dimensional
density and velocity structure of an isothermal gas diskyoirbdynamic equilibrium in the pres-
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ence of an arbitrary external potential (i.e., dark mattdo landor stellar disk). This is ideally
suited to set-up the initial conditions of a three-dimenaiaas disk in equilibrium in hydrody-
namical simulations. We first notice that as long as the gharstropic or has constant temper-
ature att = 0, the circular velocity needed to support the self-comsistlisk is independent of
the height above or below the midplane. This feature greathplifies the process of specifying
the initial velocity field. All we need to know is the rotatieelocity in the midplane.

To specify the density distribution self-consistentlye thydrostatic equation coupled with the
reduced Poisson equation is adopted to develop the vesticadture of the gas. Two sets of
second-order non-linearférential equations are found. One is directly associatéul tve gas
density called the density method, the other associatdttiét gas potential called the potential
method. In a simulation involving a huge dynamic range @#MR techniques), the potential
method is shown to be numerically more stable. A simple Ideshtion can be performed to
gain a better control on the shape and the mass of disks. Tihese are simple enough to be
incorporated into any existing code, and most importaibytare very fective.

With gas disks that are in detailed balance, we are able temsydically investigate the ax-
isymmetric stability of a fully three-dimensional disk fdre first time. We probe the onset of
instability both semi-analytically and numerically. Silations without stellar disk show that the
thickness of the gas disk, which is governed by the temperatithe disk, has a huge impact on
the disk stability. The reduction of the gravity decreaseshreshold value by around 30 percent
in our models. As we gradually lower the gas temperaturethresholdQy, shifts up, the disk
Q shifts down, and the system starts to develop multi-arntgira via swing amplification. The
onset of the instability in simulations matches the thecaéprediction very well as shown in
Fig. 2.4 and Fig. 2.5. The disk fragments as the two cur@esndQy,, come very close to each
other.

The influence of the stellar disk is less obvious. Its presdras a stabilizingféect on the gas
disk through changing the rotation curve and a destabgiaime through the increase of the local
gravitational force. The simulation results show that alleéhe presence of the stellar disk tends
to stabilize the gas disk. But this conclusion comes withveeaa The interaction between live
stars and gas might be important. A live stellar disk itsali e unstable or marginally stable.
Perturbations from the interstellar medium can triggetabdities in the stellar disk. Since stars
dominate the mass budget in Milky-Way type galaxies (moaa 90 percent), and because gas
is highly responsive and dissipative, the interplay betwieeth components is one of the most
interesting subjects in galactic dynamics. Tackling tihcdopem needs elaborate initial conditions
for the live stellar disk or the combined disk. We stresstih@potential method developed in this
Chapter is compatible with the formulation in KD95. This reakhe self-consistent combined
disk a natural direction for future work.



EQUILIBRIUM INITIALIZATION AND STABILITY OF THREE-DIMENS IONAL GAS
DISKS 37

Marginally stable disks are susceptible to the process ofgsamplification, a prevalent mech-
anism that triggers self-induced spirals. SimulationsZ>@sd GasStarl show the spirals are
prominent in the regions in which the gas can respond to saunglification. Semi-analytic re-
sult relates the most vulnerable wavelength in azimuthaltion, A, to the number of arms.
Numerically, The natural mode of a Cartesian grid togethién the swing amplification deter-
mine the dominating mode of the spiral structure. Our nucaéresults with or without stellar
disk shows the correct characteristics of the swing amatifio. It happens in marginally sta-
ble disks and the number of arm fits reasonably well to theyéiogbrediction. In the run of
GasStar2, swing amplification eventually leads to diskrfragtation once the density becomes
supercritical to the gravitational instability. However,a sub-critical case like Gas2, the spiral
structure can survive more than 3 Gyrs without fragmentivegdisk, suggesting at least one
mechansim is sustaining the waves. The number of arms sgsggeharacteristic wavelength
relating to the upper limit of the mass of giant moleculauds (Escala & Larson 2008).
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Figure 2.4: Plots (a) to (d) correspond to models from Gasdas4, respectively. In each plot,
curves of the disk) (dash-dotted) and the threshold valQg (solid) are put together to probe
the onset of axisymmetric instabilit®y (R) is a obtained by probing the maximum value along
the neutral curve for a given radius. Information of the disickness has been encapsulated
in the reduction factor defined by Eq. (2.36). When the twovesirmeet, we expect the disk
fragments very fast. This figure shows that the most unsta&igiien is about the radilR = 2
kpc. The fact that th€), curves are well below unity shows the impact of the disk theds on
the disk stability.
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Figure 2.5: Images (a) to (d) correspond to models Gasl td,Gaspectively. They show the
face-on surface density at= 750 Myr. The size of the images are 20 kp@0 kpc. The gas

at the most unstable radius has orbited around the centendog than four times. (a) Since
the diskQ is well above the threshold valgy, the disk is featureless. In models Gas2(b) and
Gas3(c) the disk) is approachingly, aroundR = 2 kpc, both disks are developing self-induced
spirals due to swing amplification. (d) The disk fragmentyast onceQ andQy, intersect.
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Figure 2.6: Plots (a) to (d) correspond to models GasSta@atar4, respectively.: TH@
(dash-dotted) an@y (solid) curves of the gas disks offtérent temperatures. The presence the
stellar potential stabilizes the disks through changieg tiiation curve and destabilizing the disk
by increasing local gravitational force. Theext of disk thickness is included via the reduction
factor Eq. (2.35). We need to lower the temperature down=@k 10° K in order to probe the
onset of axisymmetric instability. Overall, the presentthe stellar potential stabilizes the disk.
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Figure 2.7: Images (a) to (d) correspond to models GasSidsasStar4. They show the face-on
surface density at= 250 Myr. The size of the images are 20 kp@0 kpc. The gas at the most

unstable radius has orbited around the center about two afdirhes. Spirals seen in model

GasStar2(b) and GasStar3(c) are due to swing amplificatiofal) the disk fragments very fast

mainly due to both the axisymmetric instability and swinggdification.
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Figure 2.8: The image size in (a) and (b) is 20 kp20 kpc. (a) The surface density of Gas2 at
t = 750 Myr. (b) The surface density of GasStart at500 Myr. In both cases, the inner parts of
the gas disks, which have been evolved for about four ortiteds, developing spiral structure.
Contour plots (c) and (d) are the Fourier maps of (a) and ébpectively. In (c) and (d), the
horizontal axis represents radius, the vertical axis iswhmaber of armsm, obtained by Fourier
analysis. The color represents the intensity of each Foomagle, the redder the stronger.



Chapter 3

Evidence for Radial Inflow In The Extended HI
Disk of M83 (NGC5236)

3.1 Introduction

A longstanding missing link associated with the evolutiéulisk galaxies is the replenishment
of gas in order to sustain star formation over cosmologioa$. Molecular gas depletion times
in nearby galaxies are typically 2 Gyr (Bigiel et al. 2008rdeet al. 2008), a number that may
also be expected on theoretical grounds. Pflamm-Altenbuikgdipa (2009) show that the gas
depletion time for dwarf irregular and large disk galaxies|uding the Milky Way, is estimated

to be about 3 Gyr. At higher redshift, similar depletion tswé 0.6— 1.5 Gyr have been measured
outtoz ~ 2 (Genzel et al. 2010). Recent work of Daddi et al. (2010ayests a depletion time

of 0.5 Gyr for the molecular gas of near-infrared-selected (Bg&lpxies, scaled-up analogues
of local spiral galaxies. For vigorously star forming megisystems, however, star formation
seems to deplete the molecular gas on even shorter timesgeal®€0 Myr, Daddi et al. 2010a).

In many galaxies neutral hydrogen (HI) is found out to radiaimlarger than the optical extent, it
therefore provides valuable information about the sigreatd possible gas infall. The lopsided-
ness and asymmetry commonly seen in the outer disks of galareé usually considered a result
of gas accretion (Bournaud et al. 2005; Jiang & Binney 1998riker & Binney 1989; Fraternali
& Binney 2008), of recent minor mergers (Zaritsky & Rix 19%f)of tidal interactions (Korn-
reich et al. 2002). Detection of high velocity clouds (HV@Aller et al. 2009), extra-planar Hl
clouds with low metallicities (van Woerden & Wakker 2004)panalous kinematics (Fraternal
et al. 2002) and the velocity gradient perpendicular to tladic plane (Fraternali et al. 2005)
point to a number of dierent mechanisms of how gas could be redistributed witHexgalisks.
Although a number of dierent ways for fueling star formation has been proposedatheunt
of infalling gas currently observed not associated withgas disks of galaxies is still about one
order-of-magnitude lower than what is needed to compergsgeconsumption from presently

43
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observed star formation. See Sancisi et al. (2008) andrRedi€2010) for a review of this topic.
Recently, Klessen & Hennebelle (2010) point out that gasetion can be an important means
of driving and sustaining turbulence in the outer disk wietee-forming activity ceases.

Wong et al. (2004) examine seven nearby spirals, searcbirgrfematic evidences of gas infall.
They place equivocal radial inflows ef5— 10 km st in the inner regions. Based on a tilted-ring
analysis, Trachternach et al. (2008) quantify the streafytton-circular motions for 19 THINGS
(The HI Nearby Galaxy Survey, Walter et al. 2008) disk and rdvgalaxies. The strength is
defined as the quadratically-added amplitude of all nooutér Fourier cofficients. They find
that the strength of non-circular motions is generally kbss 9 km s'. The apparently small
values of the radial motions will be discussed in Section13.3

Recently, ultraviolet imaging with th&alaxy Evolution Explore(GALEX) reveals massive star
formation in the extreme outskirts of M83 (Thilker 2005; Riget al. 2010a). Bigiel et al.
(2010b) demonstrates a tight spatial correlation betwherHi maps from THINGS and the
far ultraviolet (FUV) maps ofSALEXout to about 4 optical radii. A possible scenario to ex-
plain these observations is that tidal interactions cosgpthe gas which subsequently tiggers
star formation in the outer region of M83. The high resolntioterferometric HI observations
combined with the fact that a huge gas reservoir up to 80%seofdtal HI sits outside the Holm-
berg radius (B, Huchtmeier & Bohnenstengel 1981, hereafter HB81), whdres Hkely the
dominant constituent of interstellar medium (ISM), make3\& perfect object for investigating
the ongoing process of gas infall.

The outer disk of M83 is highly lopsided and asymmetric (HBRaGgstad et al. 1974), both in the
kinematics and the mass distribution. Because interfeterm®y design do not pick up emission
on large spatial scales, we combine the THINGS VLA map witlgls dish data from the 100-m
radio telescope of the Max-Planck-Institut fur Radioastmie at HEelseberg (HB81) in order
to obtain a complete census of the atomic hydrogen across NIBB is a particular concern
given the large fraction of (presumably mostlyfdse) HI in the outer parts of M83.

Fourier analysis of the line-of-sight velocity,s, has been used to investigate the elongation of
the potential (Gentile et al. 2005; Schoenmakers et al. 18&Eaming motion along bars or spi-
rals (Wong et al. 2004; Trachternach et al. 2008) and kinient@tsidedness (Schoenmakers &
Swaters 1999). In this Chapter, we perform a detailed Foarialysis of the line-of-sight veloc-
ity to detect possible contributions of radial gas flow tophgected velocity. This excercise will
then provide us with valuable information about the kinemstructures and a straightforward
way to evaluate the possible presence and strength of aia} flagv for M83.

This Chapter is structured as follows. We describe the pt@seof the interferometric data and
the single-dish data in Section 3.2. The way we do the Fodaeomposition, the entanglement
of these Fourier cd&cients and their contribution to the observalilg are discussed in Section
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3.3. We apply this method to search for a radial inflow in theeodisk of M83. The process
of parameter survey and the results are shown in Section\&4liscuss the implications of the
results in Section 3.5. A brief summary is given in Sectidh 3.

3.2 HI maps of M83

We combine the THINGS VLA HI map from Bigiel et al. (2010a) atite single dish data
described in HB81 to search for the signs of radial inflow mlth disk of M83. In the following,
we refer to the maps from the THINGS survey as ‘THINGS’ maps$tarthe maps reconstructed
from the 100-m single dish radio telescope &eksberg as 'Helsberg’ maps.

The THINGS map covers a field-of-view 50° and has been corrected for primary beam atten-
uation (the VLA primary beam FWHM is 30). The ‘natural’ weighting scheme is applied to
yield a sensitivity (- RMS) of 0.8 mJybeam and a resolution ef 13”. For details of data
processing, units conversion, assessment of uncergiete, of the THINGS map, we refer the
reader to Bigiel et al. (2010b).

Figure 3.1a shows the THINGS intensity map of M83 in units of pt2 and Fig. 3.1b the
map of line-of-sight velocityV,,s. Before preceeding with the analysis, we note that M83 can
be roughly divided into three parts by eye, an inner facedisk ¢k %), a bright HI ring with

a relatively large inclination (6< R < 1275 as indicated by the two white ellipses) and a
filamentary outer part{ 1275). The distinct inclinations of the inner disk and the extesd
disk outside the Holmberg radius.87, HB81), which is shown as the white ellipse in Fig. 3.2, is
intriguing. The nonparallel axis of rotation suggests thatdisks may be of étierent origins and
the presence of the filaments seen in the outer disk might lgmatare of onging gas accretion.
We leave the detailed discussion to Section 3.5.

Although a good correlation exists between the synthesisiddervations and the far ultraviolet
(FUV) emission, which traces star formation activity, ire tlar outer disk of M83 (Bigiel et al.
2010a; Miller et al. 2009), interferometers by design areafbe to pick up dfuse, low column
density HI on very large scales. To overcome this, we inc@atecthe information of the single
dish Hfelsberg map into our analyses.

The Htelsberg map is a hybrid map combining aperture-synthesisrgations (Rogstad et al.
1974, RLW hereatfter) for the inner diskR & 15) and single dish Eelsberg observations for the
outer disk R > 15). RLW'’s observation uses Owens Valley Radio Observatoti vasolution

2 and 105 km s. The Hfelsberg observations have a limiting sensitivity ok 0'8 atoms
cm2, beam size 9 arc min and a linear extent25 kpc in diameter. In this Chapter, we adopt
a distance of 4.5Mpc for M83 (Karachentsev et al. 2004). dWofately, given the age of the
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Effelsberg observations (done in the late 70s), the origini dee not available in electronic
form. We therefore rebuild the HI density map from the contmaps in HB81 (their Figs. 2
and 3). The contours are interpolated using a bilinear @tlgar The reconstructed HI column
density anadV,,s maps are shown in Figs. 3.1c and 3.1d, respectively. We cohvightness
temperatures into column densities via the following relat

Th = 1.460x 1072 f Tgdv, (3.1)

with Tg [K km s71] being the brightness temperature &g the column density in units M
pc2.

Our ability to reconstruct the fielsberg map in the center is limited due to a lack of contours
in the HB81 plots. This leads to an artificial plateau in theywveenter (Figs.3.1c and 3.3b ).
The crowded contours seen in the very center of Fig. 3.1degrarated manually. This might
have an impact on the tilted-ring analysis which we will aetdrin the respective sections. The
sparse contours, especially in the southern part of theckglmap, will also contribute to the
uncertainties. Nevertheless, the superposition of Fiba &nd Fig. 3.1d as shown in Fig. 3.2
illustrates the power of combining single dish and intexfeetric data, allowing to probe the Hi
distribution at high resolution while recovering all of tigfuse emission. The parts where both
maps overlap are the focus of this Chapter.

3.3 Fourier Decomposition

3.3.1 Axi-symmetric flow

The fact that HI can be detected in the outskirts of galaxmesthat it is the dominant mass
component of the interstellar medium at large radii makas ideal tracer for the kinematics of
the outer disk. The observabMys, is a combination of the systemic velocitgys, the rotation
velocity, Viq, and the radial velocity,aq:

VIos = Vsys+ VO,rot COSG) Sin(l) + VO,radSin(H) Sin(l), (3-2)

with i being the inclination angle. The subscript, 0, represdr@saki-symmetric component of
the velocity. The relation between the sky-coordinatgsy)( and the polar coordinate,©),
defined in the galactic plane is:

—(X = %) sin(PA)+ (y — y¢) cos(PA)
R )

—(X = %) cos(PA)— (y — yc) sin(PA)
Rcos() ’

cosp) =

(3.3)

sin() = (3.4)
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with (X, Yc) being the center of the galaxy and PA the position angle aredsn the sky plane,
from north to east, with respect to the receding side of tetf-nodes.

In a tilted-ring analysis (Begeman 1989) the disk is decasedadnto a series of radial annulli
with a certain width. For each ring, a set of parametexs,yf), PA, i, Vsys, Vorot, Voraa are
determined independently to describe the position of thg aind the kinematics of the gas. It
is not possible to determine all the unknowns at once, becsyscally the degeneracy among
these parameters is quite large. Deriving a set of valuasaly requires further assumptions in
order to converge to a physically plausible solution. Irs @hapter, the fitting is done with the
nonlinear least-squares fitting funCticsENONLIN iN MATLAB.

Usually, several iterations are needed to fix each one of énanpeters.Vsys and ., yc) are
usually quite stable and therefore determined first. Thasampeters are then fixed for the next
round of fitting. The assumption behind this step is that trstesnic velocity and the center of
the galaxy are global parameters and thus do not vary rinopgy With the systemic velocity and
the center fixed, PA andare determined next. Although they are relatively stablapaters,
they change quite notably in the extended disks where lefsigss, asymmetry and disk warps
are often an issue. Nevertheless, they are usually faifgtemt parameters inside the Holmberg
radius. Finally, the rotation curwé, is derived with all other parameters fixed. Thus this is the
last step of this iterative process.

An assumption behind the whole fitting procedure is that the ig moving on well-defined
circular orbits. The local radial velocity is assumed to benaall perturbation superimposed
on the rotation velocity; a result of epicyclic motions. Tpresence of an axi-symmeti aq
introduces a phase shift and a change in the amplitude irotloeving way:

Vios = Veys + 1/ Vot + Vo 1aaCOSO — 1) sin()
= Vsys + V(,),rot COSG(PA,)) Sin@), (3.5)

where tang) = Vosad/Voror andV{ o, = Vémt + Vérad is the apparent rotation velocity and
PA’ the apparent position angle if the fitting procedure is edrout without involvingVy ag.
Equation (3.5) shows one of the degeneracies that existgitherfitted parameters. There is no
straightforward way to break this degeneracy. It also revidat the fitting procedure described
in Wong et al. (2004) tends to minimize the contribution frdgp.y. Becausé/y,,qis Not involved

in their fitting procedure, most of the contribution is ditried to the rotation velocity in the first

place. This might be a cause for their attempt of searchingafitial inflow being inconclusive.
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3.3.2 Inclusion of Harmonics

In Section 3.3.1, we have shown that the focus of classiltatitring analysis is on extracting
the axi-symmetric azimuthal flow and the basic parametess as PA and, which are used to
deproject the galaxy from the plane of the sky. However, te&motion is complicated and is
subject to the presence of bars, spirals, tidal interastitim nearby companions, non-spherical
potentials, etc. Furthermore, extended disks are ususyijnmetric and lopsided in both mass
and kinematics. This could be a result of uneven gas acorelmincorporate these features into
the tilted-ring model, one needs to include higher harmsnic

Schoenmakers et al. (1997) apply the Fourier decompoditidhe line-of-sight velocityV,qs.
Based on the epicyclic approximation, they link the Foucticients to the non-axisymmetry
of the potential of a filled gas disk and conclude a nearly setnimpotential for NGC 2403 and
NGC 3198. Along the same line, Trachternach et al. (2008in@xa the non-circular motion
for a larger sample, 19 galaxies from THINGS, attemptinguargify the triaxial dark matter
potential. Their results are consistent with a round paérghowing~90% of galaxies having
median non-circular motions of less that km s1. Wong et al. (2004) apply the same method
to looking for radial gas flow for seven nearby spiral galaxaad place an ambiguous upper limit
of ~ 510 km s for the inner region of galaxies.

In this Chapter, the Fourier decomposition is made by fitshdjta tilted ring model as described
in the previous section and subsequently, as one step furtkedecompose the Fourier coef-
ficients that are extracted from the observaljlg into rotational and radial components. We
define the following quantities:

Vies(R6) = Co+ ) [occoske) + scsinkd)], (36)
k

ViR 6) = Bo+ > [Acsink) + Bccoskd)]. (37
k

V(R 6) = Do+ Z[Cksin(ke) + Dy coskd)]. (3.8)
k

Equations (3.6), (3.7) and (3.8) are the Fourier decomiposiif Viys, Viag andV,q, respectively.
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Substituting them into Eq. (3.2) yields:

Vios = Co + »_[CcCOS{®) + scsin(ko)] (3.9)
k

= Vys+ % { (A1 + Dy)

+(2Bg + C;, — By) sin(@) + (2Dg + Az + D3) cosf)

+(B1 + C; + C3 — Bs) sin(&) + (D — A; + D3 + Ag) cos(d)

+(By + Co + C4 — By) Sin(H) + (Do — Ay + Dy + A4) cos(P)

+(Bz + C3 + Cs — Bs) Sin(¥) + (D3 — Az + Ds + As) cos(d)

e }sina). (3.10)

There is considerable degeneracy between the observétles), and the unknown Fourier
codficients, @y, By, Cy, D). Without further assumptions, it is impossible to solvetlie un-
knowns simultaneously. Due to the disk inclination, thelane radial and rotational motions of
harmonic numberk — 1 andk + 1 contribute to the observablgsandc, seen on the sky.

In order to apply this method, we restrict the discussiorhtogecond harmonics, i.e., we set
(A, By, Cx, D) = (0,0,0,0) for k > 2. Several reasons prevent us from going for higher har-
monics. First, involving the next harmonics will introduagarger degeneracy that will lead to
unstable and poorly constrained resultsff@ient initial guesses for the fitting lead tdfdrent
results that render this approach inconclusive. Secormslditficult to derive higher harmonics
for the incomplete (due to limited sensitivity) high redodm THINGS data in the outskirts of
M83. Third, whereas the reconstructed single difielEberg map does provide a complete cen-
sus of the HI distribution at large radii, the resolutionas fow to meet the requirements for
a decomposition into higher harmonics. With these resinst the relation between Egs. (3.9)
and (3.10) can be simplified in the following way:

Vios = Co + €1 €0SP) + S; SiNE) + ¢, cos(D)
+5, Sin() + c3cos(P) + s3sin(F) (3.11)
1
= Vgyst+ E { (Al + Dl)
+(ZBO +Co — Bz) Sln(e) + (2D0 + A, + D2) COSG)
+(B1 + Cy) sin() + (D, — A1) cos(d)
+ (B + Cy) Sin(3) + (Dy — Ag) cos(3) } sin()
(3.12)
By comparing Egs. (3.7) and (3.8) with Eq. (3.2), one can imhiately identify By, and Dy with

Vorad @Nd Vo, 1.€., the axi-symmetric components of the flow. However, BdL2) states that
the apparent axi-symmetric componergisandc;, are entangled with the second harmonics. It
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also reveals that the systemic velocity can be contamirigtélde presence of lopsidedness, i.e.,
anm = 1 component. Nevertheless, if one assumes a model for thensigsvelocity,Vsys, then

the codficients @, D;) can be solved for by comparirgg to c,. Similarly, (B, C,) and @Ay, D)

can be found using the observables &) and €, c3), respectively. The only degeneracy in this
case is in the termB;, C,), which corresponds ts,. One further assumption or a model for the
potential is required to disentangle them, such as the elgcgpproximation. In this Chapter,
we attributes, equally toB; andC,, i.e., we assume that the rotational and the radial motions
will have similar values for this component.

Despite this degeneracy, this new method has several adyebver previous approaches: first,
instead of attributings; completely to the radial velocity, as is done by Wong et &00@®), we
distribute it to both, rotational and radial velocities téfall, as gas gets disturbed it can move in
both directions. Second, this procedure allows us to coaistesiduaV,,q and residuaV/,,; maps
simultaneously. The kinematics of gas can be rather coatplic e.g., the radial velocity might
be part of epicyclic motions, which will not contribute totpatial net radial inflow, or the gas
may exchange angular momentum. As a result, gas gainindaanmgomentum will be moving
outward, while gas losing angular momentum will be movingand. The residual maps provide
crucial information about the gas movement iffelient directions. Third, including harmonics
up to second order already allows us to study the basic floteqpatcaused by tidal interactions
(m = 1), uneven gas accretiom(= 1), and two-fold structures such as bars or two-arm spirals
(m=2).

3.4 Application to M83

3.4.1 The Method

The fact that M83 is a low-inclination galaxy means that @gtion curve and associated pa-
rameters are dicult to derive, i.e., the low inclination introduces largecertainties in the ro-
tational velocity. Thus, the rotation curve of M83 is poothynstrained in the literature. To get
around this problem, instead of extracting a set of fit patamsewith large uncertainties, our
approach is to examine a range of model rotation cuVggf and the corresponding fit param-
eters (PAI, Vsys Vorad) 10 derive the best possible estimate of the real rotatiowecu~ollowing
the work of HB81, we adopt a Brandt-type flat rotation curve:

r
V

Vora(R) =4 (1/3+ (2/3)m3/(@M , (3.13)
Vimax R > Rmax
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with Rynax = 4.5 being the radius where the rotation curve reaches the péatiam velocity,
Vimax = 160,180 200 km s?, r = R/Rynax@andn = 0.8 a shape parameter controlling the rising
part of the rotation curve. The rotation curve for the thremlals is shown in Fig. 3.3a. Among
them, the model witlV,o = 180 km s* suggested in HB81 is adopted as our fiducial case. This
choice will then be justified in Section 3.5. Note that unl#B81, we keep the rotation curve
flat in the outer disk based on the fact that de Blok et al. (26068 no unambiguous evidence
for declining rotation curves in any of the 19 THINGS galaxia their sample. Similar to
Schoenmakers et al. (1997), our fitting procedure starts thi# conventional tilted-ring model
followed by the Fourier decompostion along each ring. Usinginge of prescribed rotation
curves not only helps us to stabilize the fitting procedune @egeneracy is reduced), it also
brackets the potential uncertanties in the rotation cuWe.look for the common features that
emerge from these models.

As described in Schoenmakers et al. (1997), in order torrétai physicat, ands, terms which
appear in Eqg. (3.11), we keep the center positioiA(RDecl) = (13h37m009, —2951'57")
(J2000; Walter et al. 2008) fixed for the Fourier decompositiwith the given center position
and the prescribed rotation curve, we obtain the fit parammgtgs, PA, i, Va4 Vvia the tilted-ring
analysis as follows:

(i) Vsy(R) is determined while leaving all other parameters, (P&, o, Vorad) Unconstrained.

The systemic velocity as a function of radius is found in #tep and is shown in Fig. 3.4a. The
red curve represents the results derived from tifel&erg map, while the blue one indicates
the results based on the THINGS map. The horizontal axi®septs the galactocentric radius
defined in the galactic plane for the fiducial case. The other models show very similar
behavior folVsys. The inner regionR < 12.5) shows that the systemic velocity is approximately
constant aVsys = 505+ 1.3 km st for the Hfelsberg map and atys = 5155+ 5 km s for the
THINGS map. This is consistent with values 506 knhfound by HB81, 505 km 3 by Comte
(1981), 516 km s quoted by de Vaucouleurs et al. (1991), 513 km s* by Koribalski (2004)
and 513+ 2 km s by (Miller et al. 2009).

Although our values seem to lie in the range reported in tieediure, a systematic discrepancy
~ 10 km st exists between our interferometric and the single dish mlaghe outer region
(R > 125), the systemic velocity decreases with a rate ef3.1 km st arcmirr®. The total drop

in Vsysis more than 35 km'3 at the radius of 25 Matthews et al. (1998) find that 77% of late-
type galaxies are lopsided. In particular, the extendedafi®83 appears to be heavily lopsided
both in the HI distribution and the gas kinematics (HB81)u&tipn (3.10) hints that the drop in
apparent/sys could be contaminated by the term4; (D), associated with the lopsidedness.

In this Chapter, we view the systemic velocity as a constadtatribute the drop iV to the
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lopsidedness. The constant systemic velocity seen in tieg negion leads us to adols = 505
km s for the Hfelsberg map anWlsys = 515 km s* for the THINGS map.

(i) With fixed Vsys and Vg o (Do) as described by Eq. (3.13), PA andre fixed, too. Note that
Vorad IS NOt fixed yet in this iteration, as involving,,4 leads to unstable results.

(i) Subsequently we determiMg a4 (Bo) from Eg. (3.2).

(iv) With a fixed set of parameter¥/{s Bo, Do, PA, i), the remaining Fourier cdiécients are
derived from Eq. (3.12).

Inclination and PA for the fiducial case are shown in Figsb&dd 3.4c, respectively. The blue
curves are the results extracted from the THINGS map ancethemes are from thefielsberg
map. As shown in Fig. 3.1b, the incomplete data in the outskirthe THINGS map makes the
fitting unreliable in this range. Thus, we only extract theptameters from the THINGS map
itself for the area inside the radibs< 125 (shown as the right vertical line). The black dash-
dotted curve shown in Fig. 3.4b is the result by shifting theé curve upward by 3 degree. The
black dash-dotted curve, which represents an extensidredflue curve, suggests that the disk
can be divided into three distinct areas as indicated byengcal lines, an inner diskR < 5.5),

a transition zone (5’ < R < 125) and an outer diskR > 12.5"). The inner disk and the outer
disk have a well-defined and nearly flat inclination. Sutipgdy, this nicely matches in the radial
range between’@&nd 125 (as indicated by the white ellipses in Fig. 3.1a) which cmlas with
the bright HI ring around the Holmberg radius. The implioas of the misaligned direction of
spin and the presence of ring will be discussed further ini@e8.5.

Except for a small shift in inclination, Fig. 3.4b togetheitwFig. 3.4c show that the PA and
the inclination derived from the two fllerent maps are in excellent agreement. It seems to be
reasonable to ‘extrapolate’ the inclination and the PA f&tiINGS map by using the results
from the Hfelsberg map. Specifically, for the region outside the railus 125, we have
PArhings = PAgseisherg@NdiThings = Ieseisberg+ 3°. The results of this operation for our three
different models are shown in Figs. 3.5a and 3.5b.

Eventually, the mass-weighted radial velociiy,, and the mass fluy, are evaluated in the
following way:

mR = - [ RER ViR o1 (3.14)
_ B M(R)
R (3.15)

Note that the mass flux is evaluated pixel-by-pixel accaydmEqg. (3.14).
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3.4.2 Results

In this Section, we describe the results of our analysis. \Wladigcuss the implications of our
findings in Section 3.5.

The overlap of Figure 3.1a and 3.1d shown in Figure 3.2 allove®@mpare structures in surface
density with those in the velocity field. While the star fongidisk  5") is showing a normal
circular motion, the twist in contours beyond the opticakdias a good correlation with the ring
and the spiral features.

The presence of the ring structure is best visible in Figb3w@here the surface density as a
function of radius is shown for theffelsberg map (red line) and the THINGS map (blue line).
We stress again that the flat part seen in tfielBberg profile is an artifact due to the lack of small
scale information. Note that the THINGS curve lies well belbe Hfelsberg one, suggesting
the interferometry only picks up a small fraction of th&dse gas in the extended disk. Second,
a prominent ring structure is visible in the radial rangefr6 to ~ 125 (as indicated by the
two vertical black lines in Fig. 3.3b). The column densitgkgaround = 10" and the structure
can be further divided into an inner-declined regioh<{@R < 10') and an outer-declined region
(10 < R < 125). The inner-declined region matches nicely with bump in RAsaen in
Fig. 3.4c. The ellipses shown in Fig. 3.1a mark the corredpanarea of the ring. Outside the
ring, the blue curve levelfdat 1 M, pc2. Third, as shown in Fig. 3.4b, the outer digk¥ 12.5)
and the inner diskR < 5.5’) have a well-defined and flat inclination. The ring coincidezly
with the transition zone (5 < R < 12%) of the inclination shown in Fig. 3.4, suggesting a
possibly important role of the ring for the gas kinematic#1@3.

Figure 3.5 and Fig. 3.6 show (a) PA, (b) inclination, {g}(R) and (d)M(R) for the THINGS
map and the HEelsberg map, respectively. In all models, the size of theldihs used for the
Fourier analysis, i.e., the width of the tilted rings, i2®. In each plot, the results of three
different rotation curves witN,.x = 160,180 200 km s! are presented. In the outer disk,
the radial shift seen in Figs. 3.5 and 3.6 is due to thiEedknt inclinations corresponding to
the diferent models. A more inclined ring has a shorter minor axagepted on the sky and
therefore introduces a radial shift along the minor axis.

In Fig. 3.5, the vertical lines mark the boundaR/£ 12.5) inside which PA and inclination are
derived from the THINGS map itself while for the outer part inéer these quantities from the
Effelsberg map as discussed in the previous Section. The Faooegicients are fitted for the
harmonican = 0, 1, 2 for the radial range to the left of the vertical line, whilelpthem = 0, 1
modes are considered for the outer region. This is due to tb&my data points of the THINGS
map in the outer disk. Inclusion of the harmomic= 2 is unstable to Fourier decomposition for
the THINGS map. In Fig. 3.6, however, we shows the result avofg Fourier codicients for
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m= 0, 1, 2 over the entire Eelsberg map.

The Fourier decomposition described in the previous Seétilow us to construct a map ¥f.q
andV,q simultaneously. Figures 3./8a7¢ and Figs. 3.7B.7d show the residual maps\éty/Viot
for THINGS and Htelsberg map, respectively. The residugl map is constructed via Eq. (3.7),
while the residuaV, is obtained from Eq. (3.8) with the contribution frovg . (Do), defined
by Eq. (3.13), being removed. Given the fact that trailingsare found to be ubiquitous in disk
galaxies (de Vaucouleurs 1958; Pasha & Smirnov 1982; Pa@8@)1we also assume that the
spirals appear in the THINGS map are trailing, i.e., the gastating clockwise on the sky. This
assumption combined with the obserxgg helps us to determine the back and the front sides of
M83. The black ellipses in Fig. 3.7 are the same as the wHipset shown in Fig. 3.1a, marking
the ring structure for the fiducial case, which hag..x = 180 km s'. Negative values seen in
the Vo maps indicate radial inflow, positive values radial outflidegative values shown in the
residualV,,; maps indicate that the gas rotates slower than the bulk mofithe gas, positive
values indicates faster rotation. We discuss the impbeoatpf these maps in the next Section.

3.5 Discussions

3.5.1 The HI Ring As An Angular Momentum Barrier

In this Chapter, we interpret the HI ring as a natural consage of the conservation of angular
momentum. The angular momentum carrying infalling gasadpinwards until it hits its Kepler
orbit. At this point, the gas cannot move further inward. sTtiould naturally explain why
and how the prominent HI ring forms. A direct and compellimgeimatic evidence comes from
Fig. 3.4b, where the ring itself serves as a transition zamaecting the outer disk and the inner
disk, which have distinct inclinations. The misalignmehtiee rotation axis suggests that the
filaments seen in the outer disk are very likely of intergitaarigin, not tidally stripped i from
the inner disk.

Evidence supporting the hypothesis that gas flows furtheaids from the ring to yet smaller
radii comes from Eq. (3.5) and the shift in PA as indicatedigttvo short horizontal lines shown
in Fig. 3.4c. As discussed in Section 3.3.1, the presencheofki-symmetric radial velocity,
Vorags Shifts the actual position angle and changes the amplatidpparen/,;. Assuming that
the actual PA of the bump part is inferred from the bulk matientracted from the fEelsberg
data (red line), the presence of the radial velocity shtits apparent PA as derived from the
THINGS map toward 243according to the blue curve &= 7.5. We thus get the following
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relations for the fiducial model:

V2ot Vi = 180 [kms™] (3.16)
V,
tang) = tan(236 —243) = Vo”ad. (3.17)
O,rot

Solving these two equations numerically, one gétsg = —21.6 km s andVp,,t = 1787 km
s1. Comparing Fig. 3.3b and Fig. 3.4c, we find that the bump irP&enodel lies in the inner-
inclined region, i.e., betwedR = 6’ to 9. If we take the surface density 1.7.\dc? also from
R= 7.5, using Eq. (3.14) yields an infall rate of 2.3Mr. Note that this crude estimate does
not take into account theftlise gas recovered from thé&@&sberg map. This inferred infall rate
fits excellently to the star formation rate, 2.5 M1 of M83 (Walter et al. 2008; Kennicutt 1998).
This is an example illustrating that the potential radiahflcan be substantially underestimated
by the tilted-ring analysis.

We have estimated the gas infall rate from the ring to thefstaning disk. To sustain the HI
ring structure, gas accretion from outer disk must be abltopensate the gas consumption.
If we assume that the gas consumed by star formation insederty is at a rate of 2.5 Myr—1,

the globally averaged star formation rate (Walter et al.8J0@s mentioned above, the ring is
formed by gas infall from the outskirts due to the conseoratf angular momentum. The mass
(THINGS map only) enclosed by the ring is3% 10° M. For the fiducial model, to form the
ring in one orbital time, i.e., 450 Myr & = 10, one needs averaged infall rate of 4.1 !
from the outskirts. This number also fits very well to the n@mi25 + 1.5 M, yr-?, as inferred

in the next Section.

3.5.2 Radial Inflow In The Outer Disk

Before applying the Fourier decomposition to either EqL13.0or Eq. (3.12), one needs to de-
termine values for position angle and inclination. The posiangle and inclination shown in
Figs. 3.5a and 3.5b are used for the Fourier decompositiahéTHINGS map. The values for
the radial range to the right of the vertical line are infdrfim the Hfelsberg map. Figure 3.5¢
shows the averaged radial velocity for the THINGS map and &g the corresponding radial
mass flux. In all models, we see a prominent radial inflow gmoading to the radii where the
filaments in the outer disks are found. Depending on the nsode¢ averaged radial velocity
ranges from-5 to —60 km s, which contributes a gas infall rate ranging frons @ 40 M,
yr-1. The corresponding radial velocity and the radial mass flawEffelsberg map are shown
in Figs.3.6¢ and 3.6d, respectively. It shows a radial vigfaanging from-3to 5 km s and a
radial mass flow from-1 to 2 M, yr~1. The diference in the averaged radial velocity between
the two maps indicates that the motion of the filaments sedreifHINGS map deviates signif-
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icantly from the bulk motion, that is traced by the much lonesolution HEelsberg map data. To
understand this in detail, we will focus in the following dretresidual maps shown in Fig. 3.7.

The black ellipses shown in Fig. 3.7 mark the location of ihg structure (6 < R < 1275,
which is consistent with the transition zoneg5< R < 125') defined in Fig. 3.4. We reiterate
that in the THINGS map, onlyn = 0,1 is applied to the area ouside the ring. The lopsidedness
(m = 1) causes negative values on the east side and positive othideside. The infalling gas
from the extreme outer disk is carrying its angular momentovards its Kepler orbit. In order

for the gas to be able to proceed to the inner disk, it mustgpvee angular momentum to other
gas particles that consequently move outwards. Theredaranalysis involving higher harmon-
ics is necessary to study possible mechanisms that lead smtjular momentum exchange. The
area with negative values in both,q and the residuaV,, represent ranges where the angular
momentum of the gas will be too small to allow the gas to reraathis particular radius. Gas in
such regions will move inwards until it reaches its KepldsibrGas in areas with opposite signs

in V¢ and the residual,,; might take part in epicyclic motion. Gas in areas with pwesitialues

in bothV,,q and the residuaV,,; might be a result of angular momentum exchange. Here, gas is
moving outwards towards larger radii. It is interesting ¢e shat the gas near the ring shows a
typical signature of epicyclic motion, i.e., a9¢hift in phase betwee¥i,q and the residudV,y.

A strong lopesidednesB) = 1, is seen in the outer disk of both THINGS anfidisberg maps.
Figure 3.7a shows gas infall wit,q ~ —90 km s in the north-west corner and.q ~ 30 km
st in the south-east corner. Compared to the resitfigakhown in Fig. 3.7c, this implies that
the gas in the north is moving inwards while the gas in thelsadst is moving outwards. It
is the non-zero mass-weighted radial velocity;-30 km s, that leads to a net inflow. On the
other hand, for the felsberg map, only a small value of mass-weighted velocifpusid for
Fig. 3.7Db, resulting in no obvious contribution to the gé&oim.

These results lead to several conclusions. First, as disduis Section 3.3.1, the fitting procedure
described in Section 3.4.1 can potentially eliminate trespnce of axisymmetric radial flow.
However, in the above, the asymmetn\Gf, found in the outer disk of THINGS map suggests
an axisymmetric radial flow 030 km s. This is because the fit parameters for the outer disk in
the THINGS map are inferred from thetElsberg map. The motions of filaments inferred from
the THINGS map deviate from the bulk motion inferred from Bikelsberg map, suggesting that
the streaming flow plays an important role in channeling gasids. Adopting the fit parameters
from single-dish data help us probe the presence of streamation seen in the inteferometry
data. Second, with this averaged axisymmetric infall vigyoe30 km s?, it takes about 720 Myr
for the gas at the tip of north-west corner to travel 22 kpetch the Hl ring, i.e., the filaments
seen in the extended disk are likely transient. Third, degperferometric observations might
help to allow to include the second harmonic in the analybtb® outer disk. The presence of
the second harmonic might have an impact on the movemeng isdtith-east filament.
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3.5.3 The Inner Disk and The Transition Zone

Figures 3.5c and 3.5d show that on average the inner disk') has a radial velocity ot

-4 km st and a mass inflow of.@ M, yrt. Note that the counterparts shown in Fig. 3.6¢
are virtually zero. This is expected because (i) ¥aggq is eliminated in the fitting process as
discussed in Section 3.3.1 (ii) for each ring, the azimuyhahiform mass distribution yields
higher harmonics which make no contribution to the net inflow

As shown in Fig. 3.3Db, the transition zone can be furtherdgigliinto an inner-inclined region
(6 < R < 10) and an outer-inclined region (1& R < 12.75), measured from the peak of the
HI ring at aboutR = 10'. On the one hand, and as discussed in Section 3.5.1, theoEIRif
appearing in the inner-inclined region might be a resultrobaisymmetric radial inflow. The
gas infall leads to a decreasing gas surface density atesmadii. The cause of the inflow is
unclear. On the other hand, we view the gas accumulatingeititer transition zone as result
of the conservation of angular momentum. One might expecg#s in this range to stay there
for some time before being channelled further inwards. &loee, the ring might be a relatively
static structure. However, as shown in Figs. 3.5¢ and 3t@cpntovement of the outer-inclined
region appears to be model dependent and therefore umcertath maps. We obtain an outflow
in the model withV,.x = 160 km s, and inflow withVya = 200 km st and a relative static
ring with Vimax = 180 km st. The model with a static ring justifies the choice of the fidilici
model,Vnax = 180 km s, n = 0.8, Rna = 4.5, if one views the ring as a result of conservation
of angular momentum.

3.6 Summary

In this Chapter, we discussed evidence for an radial inwgedsflow in the extended disk of
M83. We combine information extracted from interferomettata (THINGS map) as well as
single dish data (Eelsberg map) to search for evidence of gas accretion ofgal&ctic origin.
While the THINGS map fiers a detailed picture of the small-scale structure of thgad in
M83, the Hfelsberg map provides a complete census of tifieisk HI emission and the bulk
motions on larger scales. The Fourier analysis introduceldis Chapter is proven to be useful
for extracting more information about the gaseous kinersatiWe summarize our findings as
follows:

1. M83 can be divided in three kinematically distinct pags,inner disk, a ring structure
(transition zone) and an outer disk. We interpret the ring aatural result of conservation
of angular momentum. This interpretation together withfttwt that more than 80% of Hl
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gas sits outside the Holmberg radius motivate us to searcévidence of gas accretion
onto the extended disk of M83.

. The conventional tilted ring analysis used in Schoenmsake al. (1997), Wong et al.

(2004), Trachternach et al. (2008) and this Chapter tendditmnate the contribution
from the axisymmetric radial motion by introducing a phasié sind by changing the am-
plitude of apparent rotation velocity. Nevertheless, intla 3.5.1, we interpret the angle
shift in PA as the presence of the radial motion, which cbates a radial mass inflow of
2.3 M, yr ! at the radiuRR = 7.5, which excellently fits to the observed star formation
rate, 2.5 M, yr~! (Walter et al. 2008).

. The PA and inclination used to extract the radial flow indbter disk of THINGS map are

inferred from the Helsberg map, whichfeer the gaseous bulk motion on larger scales. It
turns out that the motion of the filaments seen in the THING$ are falling towards the
ring with an avearged radial velocity ranging frosb to —60 km s*?, offering a net mass
inflow of 2.5+ 1.5 M., yr-*. For the Bfelsberg map, however, due to the low radial velocity
over the entire map, no clear sign of inflow or outflow is found.

. In Section 3.5.2, we infer that the filaments are fallingands with an axisymmetric ve-

locity of —30 km s®. This infalling filaments will then compensate the mass lofsthe
ring, making the filements in the extended disk transienicsires.

. From Fig. 3.7, we realize that the gas infall is far fromfamn over the disk. The gas

motion is complicated. The mechanisms that facilitate ohange of angular momentum
inside the ring is unclear. Detailed numerical simulatians required to understand the
interaction between the filused gas and the structures. Based on our results, we believe
that streaming motion is the most likely ani@ent way of chanelling gas toward the star
forming disk.

. We conclude that M83 is a growing disk galaxy. The huge gssrvoir in the outskirts is

feeding this galaxy in the form of filament.
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Figure 3.1: (a) The zeroth moment in units of Mc 2 of the THINGS map. The white ellipses
correpond to the black vertical lineR & 6’,12.75) shown in Fig. 3.3b, which define the region
of the bright HI ring. (b) The first moment in units of km'sof the THINGS map. Each
black ellipse is a result of a tilted circular ring at radij 20, 15, 20, 25, with a PA and an
inclination extracted from the tilted-ring analysis. Teasiate structures with the corresponding
radii, these ellipses serve as a coordinate system for theididmodel withV,ox = 180 km
s1. (c) Reconstructed HI intentisty map in units of column dgnsl, pc? of the Bfelsberg
map. (d) Reconstructed line-of-sight veloci,s [km s, of the Efelsberg map. The contours
shown in (c) and (d) are extracted from HB81 and are used tmetaict the Helsberg map.
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Figure 3.2: \{,s contours from the Eelsberg map superimposed on the THINGS intensity map.
The coincidence between the bending of the contours andithetses, i.e., the ring and the
spirals, outside the Holmberg radius (shown as the whitpsel) motivates the search for gas
inflow signatures based on HI kinematics.
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Figure 3.3: (a) The Brandt-type flat rotation curves as deedrin Eq. (13). Due to the low
inclination of M83, we bracket the real situation with a rangf different rotation curves and
corresponding fit parameters from the tilted ring model. Wsuaen = 0.8, Ry = 4.5,
Vimax = 160,180 200 km s*. As suggested in HB81, we take the model wWith,, = 180 as
our fiducial case, which will then be justified in Section 3(b) The averaged surface density
of the THINGS map (blue curve) and of thet@sberg map (red curve). They are extracted
from the fiducial model. The black vertical lines situate®adnd 1275 define the region of
ring structure, which is also shown as the area enclosedéwltiite ellipses in Fig. 3.1a and
the black ellipses in Fig. 3.7. The green vertical line mdhkslocation of the density peak and
further divides the ring into an inner ring and an outer ring.
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Figure 3.4: (a) System velocity extracted from the first stepourier decomposition described
in Section 3.4.1. (b) The inclination and (c) the PA of the @idlimodel, which ha¥.« = 180
km s1, for the THINGS map (blue curve) and thé&@&sberg map (red curve). For the blue curve
in (b) and (c), due to the lack of information in the outskofS HINGS map, PA and inclination
angles can be robustly derived only inside.512The area between the vertical linefat 5.5
and 125 is the transition zone, insidautside which the disk has a nearly flat inclination. In
(b), the black dash-dotted curve is a result of shifting &g curve upwards by 3 degree. This
offset might be due to either thefiirent spatial resolution of the two maps or the fact that the
single dish map picks emission on larger spatial scales dspossibly tracing slowly rotating
gas abovfelow the midplane, which is thought to be the cause of thiecatrelocity gradient
found by Fraternali et al. (2005).
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Figure 3.5: (a) PA and (b) inclination models used to infatiahmotion of the gas in the
THINGS map. (c) The inferred radial velocity. (d) The infrradial mass flow. PA and
inclination inside the vertical lineR = 125") are extracted from the THINGS map, while in the
other part we extrapolate these quantities from ttfel&berg map. The Fourier ddeients are
fitted for the harmonicen = 0, 1, 2 for the radial regime to the left of the vertical line, whilely

m = 0, 1 for the outer parts of the map. In the outer disk, the radidt & due the diferent
inclinations corresponding to theffirent models. In all models, the common features are the
prominent radial inflow in the outer disk, epicyclic motionthe transition zone (where the Hl is
organized into a ring like structure, see also Fig. 3.7 anthdication of moderate radial inflow

in the inner disk.
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Figure 3.6: (a) PA and (b) inclination models used to infatiahmotion of the gas in the
Effelsberg map. (c) The inferred radial velocity. (d) The irderradial mass flow. As opposed
to the results based on the THINGS map shown in Fig. 3.5, tih@seshow a much weaker sign
of radial gas motion. The main features of these radialibigions, however, are very similiar
to those based on the THINGS map. We find a radial flow with @esradial velocity ranging
from -3 to 5 km s! outside the Holmberg radius. No clear sign of radial mot®aden in the
Effelsberg map.
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Figure 3.7: (a)V,aq for the THINGS map. (b),a for the Hfelsberg map. (c) Residu&ty

for the THINGS map. (d) Residud, for the Hfelsberg map. The black ellipses mark the
location of the ring structure(6< R < 1275), which is consistent with the transition zone
(5.5 < R< 125) defined in Fig. 3.4.






Chapter 4

The Impacts of Spiral Density Waves On Gas
Motions

4.1 Introduction

The majestic spiral arms observed in disk galaxies are cesgpof diferent constituents. In

optical, the narrow luminous arms are due to the bright yostags which recently disperse
the molecular cocoons from which they are born. Photogragken in near infrared display
the smooth, broad, sinusoidal older population which isrttan body of the disk. In radio

wavelength, 21 cm emissions from HI gas can be observed ellwthy out to the entended
disk, making it an ideal tracer to study the gas dynamics hediass distribution. The tight
correlation between the luminous arms and the stellar andisates that the stellar dynamics
and the gas dynamics are not completely separable.

The linear theory of density waves developed since 60s (Ted®64; Lin & Shu 1964) is meant
to account for the formation of smooth sinusoial-varyirgjlat spirals. A number of theoretical
works consistent with the quasi-stationary spiral stre(®@SSS) framework has been carried
out to investigate the gas response to the density waveser2ol969) studies the nonlinear
gas response to the superimposed gravitational field cddigpiral waves of stars and finds the
shock solutions. Shu et al. (1972) propose a scenario thatslof sub-critical mass get com-
pressed to super-critical mass as passing through gatduiaks, ensuing the collapse of clouds
and triggering the formation of stars. In this scenarioa@hocks play an important role on the
process of star formation and on the formation of giant mdéecclouds (GMCs). Searching
for the evidence of the presence of shocks attracts a loteftadn since then. Velocity fields
of spiral galaxies probed by CO,,tand HI emission have shown strong streaming motions and
velocity jumps across spirals (Shetty et al. 2007; Rober&&wart 1987; Visser 1978a,b). The
presence of phase-lag between dust lanes in spiral arm$iandnized gas downstream to the
shock (Tamburro et al. 2008; Roberts 1969) is also predict&bberts’ picture. Following the

67
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same line of Roberts (1969), Shu et al. (1973) study the-tilaranonic resonances to understand
the multiple-arm phenomenon. Woodward (1975) carries aetdimensional time-dependent
calcultions and finds the 4:1 resonances discussed in Shy#9a3). He concludes that unless
the self-gravity is important, it is unlikely to explain thermation of spurs in terms of over-
lapping ultra-harmonics. Balbus (1988) attributes thestutiures to the growth of gravitational
instabilities in preferred directions.

Although these works based on the assumption that spiréighdy wound seem to be able to
account for the formation of narrow dust lanes and luminaussanear-infrared images taken
by Spitzer Infrared Nearby Galaxies Survey (SINGS; Kenthietial. 2003) reveal a weath of
substructures in dust, which is carried along with gas nmstiéGas motions in real spiral galaxies
is proved to be far more complicated. Secondary structuwescoined with the name ‘spurs’ and
‘feathers’ emerging from the primary shock is prominent padsasive over the disk. Numerical
studies need to be conducted in order to fully understandhipeacts of density waves on gas
motions.

Kim & Ostriker (2002a) perform numerical simulations inding self-gravity and magnetic
fields to study the origin of spurs. They attribute the groetlspur to the so-called magneto-
Jeans instability, an interplay between self-gravitycggic motions and magnetic fields. Chakrabarti
et al. (2003) perform two-dimensional self-gravitatinghalations to study the role of ultra-
harmonic resonances. They demonstrate that these featilirbe enhanced by the self-gravity
of gas disk. The leading structures (referred to ‘spur’ &t thaper) emerging from the primary
shock are interpreted as a result of ultra-harmonic resm®anThe wiggle instability found in
Wada & Koda (2004), which is reminiscent of spurs protrudogegpendicularly to the shock
front observed in nearby spiral galaxies, suggests thedlsghiock is potentially a major means
of tapping turbulent energy from the huge energy resentonesd in galactic rotation. They as-
sociate the wiggle instability with the Kelvin-Helmholtzstability resulted from the post-shock
shearing flow. Kim et al. (2006) investigate the spiral shee&lution in a stratified disk. They
conclude that the nonsteady flapping motions in the radidical plane canféectively transform
some of the rotational energy into random gas motions. Thyanclude that the self-gravity
and the magnetic fields play little role in this process. Do&bBonnell (2006) perform non-
selfgravitaing simulations using particle hydrodynan{®BH) to study the spurs and feathers in
spiral galaxies. They conclude that these substructueesatural results of sheared divergent
flow. The necessary condition for this mechanism to work iregugas temperature less than
1000 K. Although the wiggle instability has been observed proposed as a potentially major
source of driving turbulence, its origin anffieiency are not well understood.

Recently, the second moment observed by The HI Nearby G&8aryey (THINGS, Walter et al.
2008) is interpreted as the presence of turbulence. Turbele the interstellar medium (ISM)
is pervasive and plays an important role on regulating stan&tion on both large and small
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scales (Mac Low & Klessen 2004). Turbulence decays verydas timescale comparable to
one crossing time. One or more mechanisms have to be abletimeously pumping energy
in order to sustain turbulence. Tamburro et al. (2009)katte the velocity dispersion within the
galactocentric radiusys to the stellar feedback and to the magneto-rotational liigta(MRI;
Balbus & Hawley 1991, 1998; Sellwood & Moore 1999) for theiogg beyond,s, where the
star formation is no longer active.

Spiral density waves as a means of powering the observed u@ddlence on large scale has
been proposed in Zhang (2002). CO ang] [@bservations for Carina molecular cloud complex
suggest that spiral shocks may play an important role inleegy balance of molecular clouds.
In this scenario, energy injected from large scalelskpc cascades downward to smaller scales.
Energy injection from spiral shocks is estimated to be otthreect order to produce the observed
size-line width relation for molecular clouds (Zhang et24l01).

It has long been recognized that in a compressible flow vtyrienot continuous across a shock
(Truesdell 1952; Lighthill 1957; Hayes 1957; Kevlahan 1P9The idea that vorticity gener-
ated by shocks has been applied to explain many phenomeif@aredt astrophysical contexts.
Doroshkevich (1973), Binney (1974) and Chernin (1993) psapthat the rotation of proto-
galaxies may originate from the vorticity created by shaokthe early universe. Fleck (1991)
and Chernin & Efremov (1995) propose that galactic spirackhl are responsible for the rota-
tion of GMCs. In particular, Chernin & Efremov (1995) relatee spin of GMCs which have
retrograde rotation with respect to the galactic rotatmlatge-scale spiral shocks. Kornreich &
Scalo (2000) theoretically study the internal motions retliby the passage of a shock through
a cloud. They conclude that interstellar shocks can pumpgmenergy to sustain supersonic
internal motions in cold interstellar medium. Bonnell et(@006) numerically demonstrate that
the internal motions of GMCs can be caused simply by the gasstan initially clumpy ISM
through the spiral shock without resorting to any other mekdriving source. The observa-
tional, theoretical and numerical studies mentioned alsoggest that the relationship between
galactic shocks and ISM turbulence requires more attention

It is well known that the presence of trailing spiral densitgives transfers angular momen-
tum outwards in stellar disks (Lynden-Bell & Kalnajs 197Zpravitational torques excerting
on stars reshape the distribution of stars and the angularentum of disks on secular time
scales (Lynden-Bell & Kalnajs 1972; Bertin 1983; Gnedinlefl895; Zhang 1996, 1998, 1999;
Foyle et al. 2010). The gravitational torques excerted hysstlso work on gas, transferring the
angular momentum of gas disks outwards and driving gas flevaids. Athanassoula (1992)
studies the gas flow and the shape of dust lanes around gddacs. The mass-weighted radial
velocities she found range fromil to —6 km s* depending on the models. Levy et al. (1996)
study the angular momentum and the mass transfer of gasuhsks the influence of external
barred potential. They interpret the gas inflow as a reswdhgtilar momentum transfer from the
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inner disk inside corotation to the outer disk. Transpgrtaimgular momentum outwards leads
to the growth of the outer radius of the disk. Jogee et al.§268€udy the circumnuclear regions
of a sample of barred galaxies. They conclude that over ayjaléfetime, a galaxy can ex-
perience numerous times of bar-driven gas inflow that resuitthe central mass concentration.
Shetty et al. (2007) study the gas kinematics in the spirakand the interarms of M51 (NGC
5194). The radial and tangential streaming motions of Mipstt the existence of spiral shock.
They attribute the change of sign in the flux-weighted (masithted) average radial velocity
to the radially varying position angle and disk inclinatiae., a warped or a twisted disk. Hunt
et al. (2008) and Haan et al. (2009) study the gas inflow ratgdtaxies selected from the NU-
clei of GAlaxies sample (NUGA). They find the gas inflow ranffesn 0.01 to 50 M yr~* to
fuel the galactic nuclear activity. Many works mentionedabis dedicated to stellar disks or
gas motions in barred galaxies, the role played by spirasitiemwaves, on the contrary, is less
recognized and therefore becomes one of objectives in trapter.

In this Chapter, the impacts of density waves on gas moticsnstadied in detail. A global non-
selfgravitating two-dimensional simulation with a verghispatial resolution is carried out with
the adaptive mesh refinement magnetohydrodynamics eaaes (Teyssier 2002). A rigid-
rotating spiral potential of stellar origin is superimpdsa the axisymmetric background poten-
tial, which sustains the flat rotation curve. The gas is elisothermally with a temperature
10* K. Without the complex from stellar feedback, self-grayityagnetic fields, we stress the
pure hydrodynamic impacts of density waves.

This Chapter is structured as follows. In Section 4.2, themewical model and the relevant
parameters are presented. In Section 4.3, We quantify wieédé velocity dispersion along the
line-of-sight by tilting the two-dimensional disk planetivia moderate inclination. The results
will be compared with observations. In Section 4.4, the etvoh of radial velocity and angular
momentum is quantified and studied. The generation of vsitiers discussed and evaluated
in Section 4.5. A close look at the flow pattern around the khad its implications to the
formation of substructures is presented in Section 4.6cu3isions are put in Section 4.7. We
summerize our results in Section 4.8.

4.2 The Model and Parameters

Two-dimensional, non-selfgravitating numerical simidas are performed to investigate the im-
pacts of spiral density waves on gas motions. The initidlaser density is exponential and is
characterized by a scalelend® = 15 kpc for warm HI gas. The gas disk is embedded in an
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axisymmetric static potentia®s, Which is described in cylindrical coordinateR, §):
Do R) = ~VZIn(a+ R), (4.1)

with Vo = 220 km s being the maximum value of rotation velocity aae 0.6 kpc a parameter
controlling the rising rate of the inner rotation curve.

A persistent, rigid-rotating, logarithmic density wavestéllar origin is then superimposed on
the @, The potential of this external field reads (Roberts 1969):

Osy(R, ¢, 1) = Dgpo(R) cos[m(d; + INR- th)] , (4.2)

tan()
with @y being the strength of spiratp = 2 the number of arm, the time,Q, = 20 km s*
kpc? the pattern speed arid= 17° the pitch angle. The strength is chosen to be 18% of the
background radial force defined by (Shetty & Ostriker 2006):

(Dspo(R)m _ 0

with Vo(R) being the rotation curve derived from Eq. (4.1).

The chosen strength is based on observations for spirakigalaIn near infrared light, the
amplitude of the smooth, sinusoidal arms composed of Sammewhere between 18% and 60%
(Rix & Zaritsky 1995) with respect to the azimuthal averagedace bright. Recent observations
suggest an average strength of 30% (Zibetti; private connratian). In this Chapter, we adopt
the conservative strength 18%. Although it is the lower lwbohthe range, this amplitude is
stronger than the values commonly used in the literatures,TiWwe expect that the gas response
to the superimposed ‘perturbation’ spirals will be highlgnfinear and violent. The result is
beyond the scope of linear analysis and is best studied ncatigr

In the beginning of simulation, the external spiral perairtn grows adiabatically, i.e., the force
increases gradually and stay at a constant strength aféeordatal time ¢ 280 Myr evaluated
at the co-rotation). This simulation starts with a warm giak df temperaturd = 10* K and is
evolved isothermally. The computational box is 100 kpc oida.g~ourteen levels of refinement
are used to cover the computational domain. To have the pasakresolution for the inner disk,
the 14th level, which corresponds the physical size of 69fmrced to cover uniformly over the
central region of 30 kpc in diameter. With this simple two dimsional setup we are allowed to
reach a spatial resolution much higher than the obsenatamre (THINGS, Walter et al. 2008),
which ranges from 100 pc to 500 pc depending on the distangalakies.

The solid curve shown in Fig. 4.1 represents the angulardsgieeas a function of radiusQ +
k/4 are shown as the dashed curves, while «/2 are the dash-dotted curves.denotes the
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[ <o > Morph. SFR
() [kms?] Type  [Moyr]

Obj. Name (1) (2) 3) (4)
NGC628 7 8.0 S? 1.21
NGC5194 42 17.7 Sbc  6.05
NGC3351 41 10.6 Sb 0.71

NGC 4736 414 12.0 Sab 0.43
NGC 7793 50 11.4 Scd 0.51

Table 4.1: THINGS Target Galaxies. Spiral galaxies from NBIS explored by Tamburro et al.
2009. (1) inclination angle (de Blok et al. 2008); (2) HI massighted median of the HI velocity

dispersion; (3) morphological Hubble type (LEDA); (4) Starmation rate (SFR) (Lee 2006;
Walter et al. 2008).

epicyclic frequency. The horizontal line represents thiéepa speed, = 20 km s* kpc™*. The
intersections of these curves with the pattern speed markbtations of resonances, in the order
of increasing radius, ILR 2:1 (2.6 kpc), ILR 4:1 (6.7 kpc);maation (10.7 kpc), OLR 4:1 (14.6
kpc) and OLR 2:1 (18.5 kpc).

Since the spiral potential streches from the galactic cexlitéhe way to the outskirts of the disk,
we can not avoid the mixing of resonance waves and forcingsai®esonance waves are excited
by Lindblad resonances. They are generated around theofadsonances and propagate freely
throughout the disk. The behavior of resonant waves is g@eeby the dispersion relation. On
the other hand, the forcing wave is the type of wave investjy Roberts (1969). Gas reacts
to the external force, behaving like a forcing pendulum araves into the grand-design spiral
shocks due to the nonlinear development. The interactitimesie two type of waves can be seen
in the later stage of evolution and will be discussed in $&acki.6.

4.3 Velocity Dispersion

Based on the second moment defined in Walter et al. (2008m#idroadening, turbulence
and beam smearing can all contribute to the apparent vgldispersion. We notice that eight
out of the eleven galaxies studied by Tamburro et al. (2008®)irclined more than 40 For
the sake of clarity, the data of five selected spiral galaxidbat paper are listed in Table 4.1.
Among them, NGC 5194 (M51) is an extreme case with a high Hyaig} dispersion. It has a
relatively high inclination and is turning gas into stargdtigh rate. This is probably due to the



THE IMPACTS OF SPIRAL DENSITY WAVES ON GAS MOTIONS 73

tidal interaction with its companion NGC5195. NGC 628 is mhest face-on disk galaxy in this

sample. Although NGC 628 has a relatively high star fornratete (SFR) compared to the rest
of galaxies apart from NGC 5194, it has the least velocitpelision. NGC 3351, NGC 4736

and NGC 7793 have a relatively high inclination and a higloegy dispersion despite their low

SFR. From this table, we have the following conclusionsstFithe velocity dispersion is not

positively correlated with SFR. Galaxies with higher stamfiation rate are not necessarily to
have a higher velocity disperision. In fact, except NGC 51&4 anti-correlation is found be-

tween them. Second, galaxies with higher inclination teodsave a higher velocity dispersion.
We incline our 2D disks with a moderate inclination anglé #2examine how much the in-plane
motions will be observed as turbulence along the line-ghssi

4.3.1 The Generation of Synthesis Map

To compare the two-dimensional numerical results with yimgteesis maps produced by interfer-
ometry, one needs to (i) project the in-plane motions altvegine-of-sight for a given position
angle and disk inclination (ii) downgrade the numericabiegon to match the observation one.
In this Section, the spatial resolution of the two-dimenalamaps is downgraded from 6 pc to
300 pc. Disk inclination, incl= 42°, is chosen to mimic the inclination of NGC 5194. We
then do ‘observation’ for the numerical results and studyithpacts of the density waves on the
observed velocity dispersion.

Projecting the in-plane velocity along the line-of-sight§) is done by (de Blok et al. 2008):

Vios = —Vy Sin(incl) cos(PAR vy sin(incl) sin(PA) (4.4)

with vy, vy, being the velocity field defined in the plane of galaxy and PA plesition angle.
The downgrade procedure is done as follows. The high raealutaps are covered with super-
cells. Each super-cell consists of several micro-cells.if&iance, a super-cell of 360300 p&
contains 50< 50 micro-cells of the size & 6 pc. Thus for each super-cell we are able to define
guantities such as the total mass (the zero moment), theweaghted LoS velocity (the first
moment) and the mass-weighted LoS velocity dispersiongéoend moment) as described in
Walter et al. (2008) and (Tamburro et al. 2009). We definedbsérvables’ as follows:
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Isup = le, (4.5)
Vsup = I_ZVLo$j|j, (4-6)

1
Ofup = T Z(VLOS,j - Vsup)zlj, (4.7)

sup 5

where lgyp, Vsyp and osyp denote the zeroth-, the first- and the second-moment of sighley
respectively.l; represents the magsensity of single micro-cell angl runs over all the micro-
cells contained in a super-cell.

4.3.2 The Line-of-Sight Velocity Dispersion

We quantify the velocity dispersion under the influence ofsity waves. Figure 4.2 shows the
evolution of the surface density (first row), line-of-siglelocity dispersion (second row) and the
iso-velocity contours (third row) dt= 300 (first column), 450 (second column), 650 Myr (third
column). When producing the maps of dispersion velocityhagecond row, we adopt a thermal
broadening of 8 km3. The galactic planes shown in Fig. 4.2 are inclined with a2,

In Fig. 4.2a, the spiral potential has reached its full gterand the spiral shock is fully de-
veloped. The leading substructures, which are describ&pass’ in Chakrabarti et al. (2003),
protruding from the main shock are clearly seen in the insk. dDverall, at this point, the flow
pattern is still laminar. However, as shown in Fig. 4.2dnglthe shocks the velocity dispersion
can reach on average 10 krt &nd even 25 km$ at some locations. Note that this dispersion
velocity is purely due to the streaming motion in the posieshregions. Further downstream
to the shock, the flow pattern becomes smooth again. Thenmatibning is the major contrib-
utor to the velocity dispersion. The bending of the iso-ggjomap (spider diagram) shown in
Fig. 4.2g shows that the oblique shock deflects the incidewt\lith a sharp angle in post-shock
regions. The streamlines of gas behind the shock changdlyagpi the scales smaller than the
size of super-cell and therefore contribute a substantidlgn of velocity dispersion along the
shock. Note that only a moderate inclination is needed taiolthis result.

In Figs. 4.2b and 4.2c, spiral shocks are no longer stableloleing chaotic substructures rem-
inicent of the infrared images of M51 pictured by Spitzercgtelescope (SINGS; Kennicutt
et al. 2003). The flow is disturbed by the nonsteady shocks.lilige energy reservoir stored in
rotation motions is transformed into local turbulent eyef@ver time, the interarm gas is getting
more chaotic. However, as shown in Fig. 4.2h and 4.2i, theatMdow pattern does not change
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very much compared to Fig. 4.2g. This shows that the turlb@eargy is only a small fraction
of the total kinetic energy.

In figure 4.3, the mass-weighted velocity dispersion iswdated for the disk within a radius
of 9 kpc over a period of 1.6 Gyr. The blue curve representkitiematic velocity dispersion,
okn- The red curve is the total velocity dispersion, i@3, = o3 + o, where the thermal
broadening withry, = 8 km st is taken into account. In the beginning 300 Myrs, as the gtren
of the spiral is turned on adiabatically, the thermal braawg dominates the turbulent energy.
At t = 330 Myr, the shocks become unstable. Wiggle instabilitiegetbp from the inner disk
to the outer disk. The kinematic velocity dispersion keefmsving steadily over the next one
Gyr. Eventually, it saturates ati, = 11 km s! ando = 13 km st. These result shows
that the turbulence driven by nonsteady shocks alone cadaiaxpe observed level of velocity
dispersion.

4.4 Angular Momentum Transport and Radial Motions

The presence of density waves not only tap turbulent eneagy fegular motions, it also re-
distributes the angular momentum and the mass over the digjures 4.4 and 4.5 show the
evolution of mass and angular momentum distribution as atiom of radius. To avoid the
boundary &ect, which propagates with the sound speed (10 k) e trace the evolution of
the disk within a radius of 35 kpc for 800 Myr.

Figure 4.4a shows the evolution of annular mass distribwiod Fig. 4.4b the evolution of ac-
cumulated mass distribution. We notice that the evolutibthe disk seems to be separated by
the corotationR = 10.7 kpc), around which the spiral shock vanishes. The totakreaslosed
within corotation drops very little over time. Inside theratation, the gas is transported toward
the center of the galaxy, while for the region between cdimteand OLR R = 185 kpc), gas is
efficiently transported to the outer disk. Once the wiggle inisitg sets in at = 330 Myr, the gas
distribution inside the corotation is far from uniform. Gsarts to converge or diverge at certain
radii. In all, the gas distribution changes dramaticall@ifew hundred Myrs, a relatively short
time scale compared to the secular evolution of stellar.disite also that after an evolution of
800 Myr, the gas distribution beyoriRl= 33 kpc remains intact.

Figure 4.5 shows the evolution of (a) annular angular moaomardnd (b) accumulated angular
momentum. Overall, the angular momentum inside OLR (184 Igdfticiently transported to

the outer disk. The disk inside corotation is losing and stifiuting its angular momentum.
Although the annular angular momentum beyéhd 33 kpc remains intact, from Fig. 4.5b, it
seems that the gas disk is extracting angular momentum fnersuperimposed external spiral
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potential. Nevertheless, the loss of angular momentumesstisllar density waves is insignificant
to have a clear impact on the pattern sped, It is interesting to notice that in the outer disk,
the mass distribution shown in Fig. 4.4a coincides with tisgritbution of angular momentum
shown in Fig. 4.5a. On the contrary, this is not the case ®dtbkk inside corotation. We discuss
the implication of this result in Section 4.7.

Figure 4.6 shows the evolution of (a) mass-weighted radimlorty and (b) mass-weighted radial
velocity in time-radius plane. Figure 4.6a is the horizbatés of Fig. 4.6b at = 0, 300, 600, 800
Myr. Before the wiggle instability sets in, gas inside theatation is moving inward with radial
velocities~ —3+ 2 km s1, while the gas between corotation and OLR (18.5 kpc) is nupwiit-
ward subsonically 5 km s*. However, the gas beyond the OLR is oscillating with supgitso
speeds ranging from20 to 20 km st. This phenomenon is best visualized in Fig. 4.6b. Once
the wiggle instability sets in a@ = 330 Myr, the gas motion is severely disturbed in the inner
disk. The sign of radial motion in the inner didR & 5 kpc) changes with radius.

4.5 Generation of Vortensity

Figure 4.7 shows the evolution of vorticity, = V x v, with v being the in-plane velocity field, at
t =300, 450, 650 Myr. The spur-like substructure protrudingadt perpendicular to shocks is
commonly seen in real spiral galaxies via the emissions sff (Bpitzer's 24:m, Kennicutt et al.
2003) or HI (Visser 1978a,b). More precisely, eddies whigh @unter-rotating (retrograde)
with respect to the spin of large scale flow are emerging frbotks.

In this Section, we justify the generation of negative \aityi semi-analytically. We stress that
in a compressible flow, vorticity itself is not a conservedntity. It is the vortensity or the
potential vorticity,w/X, with £ being the surface density, that is conserved in a 2D smoath flo
However, with the presence of discontinuity, e.g., shoolether the vorticity nor the vortensity
is conserved. Therefore, the Eq. (2.4) in Balbus (1988) hadty. (11) in Shetty et al. (2007) do
not apply to a flow with shocks. Therefore, the dynamical iotjgé generated vortensity needed
to be quantified and examined.

In Section 4.3, we have shown that density waves are capéldgt@cting turbulent energy
from the regular rotation motions. For many reasons, veitgriurns out to be well suited to
quantify this process. First, vortensity is a local quantiheasuring the circulation of every
point, monitoring the flow change on small scales. Vorticgesusually considered as a precursor
of turbulence, representing the energy injection fromdasgales into small scales. Second,
vortensity is a conserved quantity in a 2D smooth flow. TH®Mmals to quantified the dynamical
impact which is purely from shocks.
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In general, the dynamics of vortensity in an invicid flow isrgmed by:

D%(%) - (%-V)v—éVprp, (4.8)
with p being the volume density the pressure and Dt the material derivative. The baroclinic
term,Vp x Vp, on the right represents that the vortensity can be prodhgede misalignment
between the density gradient and the pressure gradiens.t&itm is gone for barotropic gas in
which pressure is a function of volume density. The first temrthe right will vanish as well
if the flow is two-dimensional. Thus, for a smooth, comprelesitwo-dimensional, barotropic
flow, all terms on the right are gone, i.ex/p is a conservative quantity if we move along with
a fluid parcel. In other words, for a flow in steady state, tlmevisrtensity contours trace the
streamlines.

However, the derivative in Eq. (4.8) breaks down as the floiches across a shock. Rankine-
Hugoniot jump conditions has to be invoked to replace thevdve normal to the shock. Hayes
(1957) gives out a general formulation to evaluate the eytigeneration by a curved shock
in a non-uniform flow. Recent work by Kevlahan (1997) takesthar route of derivation and
reaches the same results. Following the notations usedvtakan (1997), we write down the
main result as follows:

2 C2
pO0G K [(DV) , S 1oe + pw, (4.9)
S
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with éw = wp — w4 being the vorticity diference behind and ahead the sh@gkS the tangential
derivative along the shock fron€; = C — A the relative velocity between the shock spegéd,
and the flow velocity normal to the shock froit, The shock strengtlu, is defined by:

u="_1 (4.10)
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with py andp, being the gas density behind and ahead the shock, respgctiereafter, quan-
tities without subscript take the pre-shock values. Towaia the jump of potential vorticity we
have:

= H—.
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Inserting Eqg. (4.9) into Eq. (4.11) , the jump in vortenshgn reads:
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For polytropic gasp = Kp”, with K being a constant angthe polytropic index, Eq. (4.12) can
be reduced to:

5(2) . #1G
P (1+u)?p 0S
3O = 1 Dv
- 2y — DuC(1+ o (ﬁ)s

Applying Eq. (4.13) to isothermal gas, where= 1, the baroclinic term on the right vanishes.
The jump in vortensity across a shock for isothermal gassread

(a)) (2 14C,

p) @+wppdsS

This shows that the vortensity is not conserved as a gas flesegahrough shocks. The jump in
vortensity comes from the variation in the relative velpdg;, along the shock.

(4.13)

(4.14)

To evaluate the generation of vortensity through Eq. (4.44¢ needs to establish local coordi-
nates along the spiral shock as shown in Fig. 4.8. The blacis arpart of a galactocentric circle
and the dashed curve represents a section of a logarithrinad shock. n" defines the normal
unit vector with respect to the shock front, pointing the detweam side. The spiral tangesis”
defined byz'= § x N, with z the unit vector of rotation axis. The angleetween spiral tangent
and the azimuthal unit tangentg, then defines the pitch angle. In this cartoon, we assume the
spiral shock is trailing, i.e., the mean flow is countercloide.

In addition to establishing the local coordinates, evahgaEq. (4.14) also requires the infor-
mation about the pitch angle of shockshock strengthy, relative velocityC,, and the surface
density ahead the shock,. Note that here we should replace the volume densigppearing in
Eq. (4.14) with surface densit¥, In Fig. 4.9a, we trace the location of shocks after an eiatut
of 300 Myrs. For the first order, the shock is well fitted withogéarithmic spiral (red line) of a
pitch angle = 15°, which is tighter than the superimposed arel7°. This is better visualized

in log-polar coordinatesy logR) as shown in Fig. 4.9b (Elmegreen et al. 1989). In this plot,
logarithmic spirals become straight lines and the slopeesponds to the pitch angle. The spiral
shock is dfset and the phase lags behind the potential trough of theisypesed potential. This

is also predicted by the semi-analytic work of Roberts (3@®ough the WKB approximation
is adopted there, i.e., the spiral has to be tightly woundck gdikch angle of the spiral shock does
not change with time as the shock is developing, i.e., thghmngle is well-defined over time
until instability sets in. The shocks become weaker and texadliy vanish as approaching the
corotation (10.6 kpc). This is expected because the relafeed between the gas flow and the
external perturbation becomes subsonic around the cmnotanterestingly, the ripple seen in
Fig. 4.9b grows with time and has dynamical impact on the &rom of substructure. This will
be discussed in the next Section.
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With the information shown in Fig. 4.8 and Fig. 4.9, we aredseto evaluate the generation
of potential vorticity via Eq. (4.14). We extract the infoation we need after an evolution of
200 Myr. By this time, the shock is well-developed and welfided as shown in Fig. 4.10a.
Given the pitch angle of the shock, the velocity field can beodgosed into two components.
One is perpendicular to the shoak ¢dmponent, i.e., Fig. 4.10b) and the other is the parallel
component $’component). Subsequently, we make azimuthal cuts for hoface densityy,

and perpendicular velocitp. We identify the quantities, andA, just ahead the shock. This is
done for radii ranging from 1 kpc to 8 kpc as shown in Fig. 4 Albng the shock, the top panel
of Fig. 4.11 shows the values &f, the middle paneh; and the bottom panel as defined in
Eqg. (4.10).

Evaluating Eq. (4.14) involves the tangential derivati#8g/0S. To do this numerically, we
smooth theA, shown as the red line in the middle panel of Fig. 4.11 befogatitual calculation.
Because the pattern speed and the shape of spiral shocklaoefiged,0C/dS can be evaluated
analytically. Puttingz,, u andd(C — A)/dS together into Eq. (4.14), we have the result shown
in Fig. 4.12. Note that we have replaced the volume densityith the surface densit¥ in

Eqg. (4.14). The red line there represents the intrinsic dstensity if the disk is undisturbed.

From Fig. 4.12, first, we notice that in the inner disk€1R < 3) spiral shock is generating
both positive and negative vortensity comparable to thensit values (red line) evaluated as
the disk is undisturbed. The variationAq is large as shown in Fig. 4.11b. This can be observed
also in Fig. 4.10b, where the velocity component perpendido the shock front seems to be
modulated with a standing wave. This might be a result ofriteraction between the resonance
waves emitted from ILR (2.6 kpc) and the forced waves. If wefgther out (3< R < 8),

on average, the spiral shock is generating positive vatiengrtensity once created from the
shock will continue to stay in the smooth region as descriiyelq. (4.8) and interact with each
other until they encounter the next shock, i.e., thiea of vortensity generation can be added up
with time. As shown in Fig. 4.1, the angular speed increast#sdecreasing radius. This means
that the gas in the inner disk is disturbed by shocks morettietnn the outer disk and has more
chances to accumulate generated vortensity. This is whwitdpgle instability happens first in
the inner disk. Second, the width of the fast ripple seen g #i12 is about 100 pc, which is
well resolved by the numerical resolution (6 pc). This gitrescharacteristic scale on which the
vortices are generated by the curved shock.

This result shows that although by eye the flow looks lamirsasl@own in Fig. 4.10a, in fact,
eddies on small scales have been continuously generateenduachced along the shock. This
is a clear sign of energy injection from large scales intolbstwales. Over time, the gener-
ated vortensity can not be ignored compared to the intrivmitensity, which is calculated from
the initial condition. Obviously, the variation i, has a direct impact on generating negative
vortentistyvorticity.
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4.6 Substructures and streaming motions

In this Section, we study the origin of leading structurestquding from the primary shocks as
shown in Fig. 4.10a, of the ripple in pitch angle as seen in &i§b and of the oscillation in
shock strength seen in the bottom panel of Fig. 4.11.

The ripple in the pitch angle of shock as shown in Fig. 4.9bwgraith time. This has a dynam-
ical impact on the streaming flow. To understand this we sthdypost-shock flow pattern as
shown in Fig. 4.13. We follow the picture described in Vidim{1994) and set up coordinates
(x,y) along a straight shock as indicated by the grey-dashed @metop of it a sinusoidal dis-
placement indicated by the red curve is superimposed anesiithed by = Asin(kx), with A
being the amplitude of the displacement anithe wave number. Given the pre-shock velocity
vV = X+ WY (the blue arrows), whenedndy represent the unit vectors xandy, we study the
post-shock streaming motions (the black arrows).

To apply the Rankine-Hugoniot jump conditions, the preegheelocity is decomposed into
v =V, A, + vy, with i, andri, being the perpendicular and the parallel unit vector witpeet
to the shock front, respectively. The posk-shock streamiagjon is expressed with a prime
V' =V, +Vvfy. The relation betweemandyv’ can be found in Appendix A.7.

We assume that the velocity change in the pre-shock regientalthe bending of the shock
is relatively minor compared to the background flow. Thisaid/when the amplitude of the
ripple is relatively small compared to the wavelength. Wehfer assume that the flow is in a
quasi-steady state, changing slowly relative to the dynahtime. The resulting flow pattern in
the post-shock region then looks like the black solid arretvswn in Fig. 4.13 reminiscent of
the nonlinear thin shell instability (NTSI) discussed irshhiac (1994). We leave the discussion
regarding NTSI to Section 4.7.

Figure 4.14ais an example showing how a small ripple in @tajie deflects the streamling flow.
The arrows there represent the directions of the streamlimieich is calculated via Egs. (A.30)
and (A.31), in the post-shock area. Note that the scal&sagfs andy-axis are not equal in order
to illustrate the idea clearly. In this case, the waveleragtti the amplitude are set to he= 1
kpc andA = 0.015 kpc, respectively. The incident flow comes in with theoedly v, = —172
andv, = 53 km s, i.e., an incident angle of 7Zorresponding to the pitch angle°17

From Fig. 4.14a, first, we notice that the small ripple in Ipiemgle leads to the separation or
aggregation of streamlines because of théedent incident angles with respect to the curved
shock. The aggregation of streamline is clearly seen in&igtb. These streamlines are st o
along thex-axis with a uniform spacing 50 pc. Comparing to Fig. 4.10a,are able to identify
that the leading arm structure is simply the result of cotigef streamlines. Furthermore,
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because the incident angle with respect to the shock is aingudge to the presence of ripple in
pitch angle, the shock strength is expected to oscillategalaith the ripple. One can envision
that the resulting shock is stronger on the head-on side @adav on the leeside as shown in
Fig. 4.15, where the blue curve represents the shock andastedbtted line the Mach number,
M,, of the perpendicular velocity with respect to the shockisExplains the variation of shock
strengh seen in the bottom panel of Fig. 4.11. The variatioshiock strength can be easily a
factor of two even with a small amplitude in ripple. The shaekishes when the, on the
leeside becomes subsonic.

The analysis in Appendix A.7 breaks down at the sonic poihictvis before the sigularity of

Eq. (A.31). This is because the shock no longer exists wheis subsonic. The breakdown
of Eq. (A.31) at the sonic point implies that the ripple incpitangle cannot grow arbitrarily.
The denominator of Eq. (A.31) indicates that the variatibelwck strength is very sensitive to
the wavelength. Shorter wavelengths cause the shock #tremgscillate more violently. This

explains why the wiggles always develop from smaller scales

The cartoon shown in Fig. 4.13 combined with the post-shawk flattern in Fig. 4.14a gives the
clue on how the retrograde eddies (negetive vortices) se€igi 4.7b and Fig. 4.7c are gener-
ated. The post-shock flow is deflected radially inward, telltg the curve of ripple, depositing

linear momentum in the convex part of shock (with respech®incident flow). The change

in linear momentum then exerts a force on the shock, pushiagalley (with respect to the

post-shock flow) backward and therefore enhancing theeigplirthermore, Coriolis force also
tends to turn the radially inward flow retrogradingly. Alletbe &ects make the generation of
negative vortices a natural result.

We can have a close look at this phenomenon from the resudtmofation as shown in Fig. 4.16
where the surface density (contours) is overlapped wittvéhecity residual (arrows) after sub-
tracting the mean velocity of these images. Both images sheguare of k& 1 kpc excerpted
from the full disk in order to study the flow pattern around #tecks. The mean velocity of
both images is counterclockwise. The contours represeristihdensity, the redder the denser.
The locations where the residual velocity converges cdawiith the high densities, e.g., shocks
and spurs. Figure 4.16b, unlike the velocity field seen in &ifj6a, shows a pattern of negative
vorticity. A spur emerges at the sharp corner as a resulteottbwded streamlines as discussed
in Fig. 4.14a.
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4.7 Discussions

4.7.1 Velocity Dispersion

Without energy sources from stellar feedback, self-gyaaitd magnetic fields, we have shown
that the presence of nonsteady spiral shock alone is able/ewelocity dispersion with a level
comparable to the second moment observed in THINGS mapsgivédlal. 2008). Kim et al.
(2006) perform three-dimensional, magnetized, selfi¢atimg simulations for a local section
of a stratified disk. They investigate the interstellar tleince driven by the flapping motions
in the radial-vertical plane. They find that most of the tleot energy is in-plane(¢y) ~
<o-y> ~ 2{(0y). The presence of the self-gravity and magnetic fields dautes little to the
random motions. To ‘observe’ the in-plane turbulence, ageds to tilt the galactic disk with an
inclination in order to measure along the line-of-sightSkction 4.3, we conclusively show that
a moderate inclination is enough to contribute a substigodidion of observed HI turbulence.
This result can account for the positive correlation betwibe disk inclination and the observed
velocity dispersion.

These two- and three-dimensional works seems to suppodlaetic shock pump scenario
proposed by Kornreich & Scalo (2000). In their picture, gatashocks can be of flerent scales
ranging from superbubbles down to the protostellar windse @nisotropy in turbulent energy
is due to the anisotropy in the energy reservoir, i.e., mbgi@energy is stored in the in-plane
rotation motions. Although this mechanism has been prapabeaost one decade ago, we are
the first to quantify this scenario and compare our resultegmbservation data on the galactic
scale. While in this Chapter we stress that shock driverutarize should not be overlooked, we
do not attempt to degrade the importance of other energgssyire., stellar feedback, magnetic
fields and so on. For instance, in M51, we believe that botlasteedback and shock driven
turbulences are important. However, it requires furtheriteed simulations involving stellar
feedback to quantify which mechanism dominates the budgtirbulent energy in dierent
environments, i.e., star-burst galaxies and galaxiesnatimal star formation rate like our Milky
Way.

4.7.2 Nonsteady Shocks

It is evident that a nonsteady shoci@ently stirs the flow locally and randomizes the reg-
ular rotation motion. Wada & Koda (2004) attributes the ‘gl instability’ (spurs) to the
Kelvin-Helmholtz instability (KH instability, hereaftgr Kim & Ostriker (2002a) propose that
the magneto-Jeans Instability (MJI, hereafter) is resipba$or the growth of perturbation since
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the magnetic tension forces from embedded field lines termbtmteract the Coriolis forces,
which serve as a stable agent for disk stability. Recall thee played by the epicyclic frequency
in Toomre’s criterionQ = ¢/ (nGX).

Kim & Ostriker (2006), in their shearing box simulationspshthat a magnetized spiral shock in
a thin disk is unstable to MJI in both two- and three-dimenala@alculations, while the wiggle
instability is suppressed in their three dimensional meddfiowever, their results cannot be
compared directly to the work of Wada & Koda (2004) for thddwling reasons. First, the
strength of spiral perturbation adopted in Kim & OstrikeD@B) (5 to 10%) is much weaker
than that used in Wada & Koda (2004)(110%). The observation strength (18%©%, Rix

& Zaritsky 1995), however, is much stronger than the formarrouch weaker than the later.
Second, as we will discuss below, a full-disk simulatiorrisaal to capture the secular evolution
of the streaming lines, which in turn has dynamical impadh@formation of wiggle instability.
Nevertheless, in the following, by a simple Galilean transfation we argue that KH instability
described in Wada & Koda (2004) is not likely to be resporesibl the wiggle instability.

We use the same picture argued in Wada & Koda (2004) as showigint.17. First, if we
ignore the curvature of the shock, in the outer disk, the argidield appears to be uniform
in the pre-shock region because of the flat rotation curve.tréamline entering at point A
is deflected with a post-shock velociyand is accelerated t@ at point B. At point C, the
deflected post-shock velocity is the same as A due to the mmifive-shock velocity and the
straight shock. If we sit in an inertial frame within whichetibangential velocity with respect
to the shock vanishes, the velocity field will then look likeetred arrows. In this frame, we
do not expect the KH instability to occur despite the blactows seen before the Galilean
transformation indeed indicate a velocity gradient (shemathe direction normal to the shock.
Second, even if the KH instability does happen as describdtada & Koda (2004), the post-
shock flow as shown in Fig. 4.17 suggests prograde vortitesir¢han retrograde ones. Third,
the curvature of the shock increases with decreasing rattiesviggle instability occurs first in
the inner disk, ignoring the curvature of the shock in thesirolisk needs to be justified.

Vishniac (1994) studies the nonlinear instability in shd@unded slabs, which is called nonlin-
ear thin shell instability (NTSI). The displacement is emtexd because the positive momentum
with respect to the incident flow tends to accumulate in tHieyaf the ripple, i.e., the concave
part with respect to the incident flow. In the case of shockilded slabs, this mechanism has to
compete with two stabilizingféects. One is the ram pressure arising from the head-on impact
of the confined flow. The other comes from the fact that the-pbetk subsonic flow tends to
diverge on the convex surfaces and converge on the conceeees

In many ways the flow pattern underlying the spiral shockswdised in this Chapter isftirent
from the scenario discussed in Vishniac (1994). First, tieek is highly oblique with a very
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large incident angle, i.e., a small pitch angle. Thus theé-pheck flow is still hightly supersonic.
Second, in a frame co-rotating with the pattern speed, theificsubject to the Coriolis force.
This force will then lead the radial inflow to rotate retrogiragly. Third, the post-shock flow
encounter the subsequent shock on a regular basis becahsecotular motion. The generated
vorticity discussed in Section 4.5 will then be added up ywuae the flow passes through the
curved shocks.

In Fig. 4.14, we have shown that the small ripple in pitch arniglresponsible for the conver-
gence and the divergence of streamlines. The divergingsompie flow works like a converging-
divering nozzle, exerting a thrust backward on the shocle ditierging supersonic gas is accel-
erated, gaining angular momentum. On the other hand, coigveupersonic gas is decelerated,
pulling the shock further downstream. Unlike the subsopgtfshock flow discussed in Vishniac
(1994), which tends to stabilize the growth of ripple, theexsonic post-shock flow enhances
and deforms the shocks as seen in Fig. 4.16b. However, assdest in Section 4.6, the ripple
cannot grow arbitrarily since it has a huge impact on thengtiteof the shock. The substructures
are then the natural results of the deformation of shockiogi®force and the negative vorticity
generated by the oscillation .. In this picture, the growth of ripple is limited and locad;,
making the shock unsteady rather than an unstable runaway.

4.7.3 Angular Momentum Transport and Radial Motions

For gaseous disks, it has long been recognized that the gaspoal density waves excited by
periodic external perturbers can transpoart angular mamenutward (Goldreich & Tremaine
1979, 1980). This theory has been successfully appliedgtaexthe formation of Saturn’s ring
(Goldreich & Tremaine 1978a,b; Shu et al. 1985a,b). For ngereeral disks, theoretical works
of Yuan & Kuo (1997) and Griv et al. (2008) show that densitwescarrying negative angular
momentum excited at ILR can transport mass inward, whilev#nes carrying positive angular
momentum excited at OLR can transfer mass outwards. Theksiaare based on asymptotic
approximation, i.e., tightly wound spirals.

A number of numerical works has been performed for two-disimmal non-selfgravitating disks
to understand the interaction between the barlike potestid the gaseous disk (Huntley et al.
1978; Sanders & Tubbs 1980; Schempp 1982; Athanassoulg L89 et al. 1996). Athanas-
soula (1992) find that although the variation in radial viélocan be very large120 km s?),

the mass weighted radial velocity can be oaly~ —6 km s. Contrast to many works done for
barred galaxies, the role played by stellar spiral dens#tyes on gasdynamics is less recognized.

As shown in Section 4.4, the gas diskfeus a dramatic redistribution in mass on a very short
time scale. In particular, the gas between corotation an @ains radial momentum and moves
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outward as a density wave with supersonic speeds as showg.id.6. This explains why the
mass distribution in the outer disk coincides with the aagmhomentum distribution. These
supersonic waves quickly dissipate their energy duringothtevard moving and decrease their
angular velocity due to the conservation of angular monmantventually, the gas reverses their
radial velocity back toward the center of the galaxy. It ieenesting to see that the gas inside
OLR is accumulated just outside the OLR, moving back andforthe outer disk. The peroid
of cycle roughly fits the epicyclic frequency estimatedRat 25 kpc ¢ 500 Myr).

As shown in Fig. 4.6, in the inner disk, once the wiggle ingiybsets in, the sign of radial
velocity changes with radius. This phenomenon is obsergedibl and is interpreted as a
result of a warped or a twisted disk (Shetty et al. 2007). Heren our simulation, this can be
also interpreted as a result of wiggle instability.

4.8 Summary

We perform a two-dimensional, unmagnetized, non-selitarg simulation to investigate the
impacts of spiral density waves on gas motions. An expoakgés disk is initialized with a
temperature 10K and is evolved isothermally. A stellar density wave withti@sgth 18% the
background radial force is superimposed as the a rigidingtperturber. We follow the nonlin-
ear response of the gas to quantify the velocity dispersingular momentum transport, radial
motions and the generation of vortensity. We qualitatividgcribe the formation of leading
substructures, the enhancement of ripple in pitch angleitanchpact on shock stability. We
summarize the main results as follows:

1. We downgrade the numerical resolution from 6 pc to 300 pwitoic the observational
spatial resolution of THINGS. Line-of-sight velocity desgion as defined in Walter et al.
(2008) is calculated for the simulated spiral galaxy tiltgth a moderate inclination 42
We conclude that the presence of the nonsteady spiral sh®degpable of tapping tur-
bulent energy comparable to the observed level of velodggpeatsion from the rotation
motions.

2. The presence of the stellar spiral density waves can ehdrgggaseous surface density
profile dramatically on a relatively short time scale (a famtired Myr). Our simulation
confirms that the gas nonlinear response to the superimmiskar spiral density wave
tends to transport angular momentum outward. Before thgleigstability sets in, the
gas inside corotatin steadily moves inward by expandingther radius of the disk. Once
the wiggle instability occurs, the gas in the inner disk i&esely disturbed, resulting in the
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sign change in the radial velocity. This result leads to the gpmpression and relaxation
over diterent radii.

. Based on the work of Kevlahan (1997), we derive the fortruigo evaluate the genera-

tion of vortensity along a logarithmic shock. We stress thatvortensity is not conserved
with the presence of shocks. We quantify the generation dewmsity semi-analytically
and find that both positive and negative vortices can be gégtralong shocks as also
seen in the later stage of evolution shown in Fig. 4.7. Theegaion of vorticity is not
ignorable compared to the intrinsic vortensity calculdtedh the initial condition.

. In the picture of Vishniac (1994), we analyze the dynamimgacts of the small ripple

seen in pitch angle. The interaction between density wanatesl from ILR and the
spiral shocks initiates the ripple in pitch angle, whichrttehances itself due to the su-
personic post-shock flow pattern. However, the analysisppehdix A.7 shows that the
amplitude of the ripple cannot grow arbitrarily. The shotlesgth is shown to be very
sensitive to the wavelength and the amplitude of ripple tolpangle. We also correlate
the flow converging and diverging in the post-shock regioth&leading structure which
is usually interpreted as the 4:1 resonance. In this Chapteconsider the formation of
spurs and negative vortices as a result of the conspiragyeleetthe shock deformation,
the generation of negative votensity and the Coriolis force
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Figure 4.1: The solid curve represents the angular speeak a function of radiu€) + «/2 are
shown as the the dash-dotted lines, witdle- /4 the dashed lines. The pattern speeg= 20
km st kpct, is shown as the horizontal line. The intersections mar&sabations of resonances
(from left to right) ILR 2:1 (2.6 kpc), ILR 4:1 (6.7 kpc), cmtation (10.7 kpc), OLR 4:1 (14.6
kpc) and OLR 2:1 (18.5 kpc).
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Figure 4.2: The evolution of the surface density (first rolivye-of-sight velocity dispersion
(second row) and the iso-velocity contours (third row} at 300 (first column), 450 (second
column), 650 Myr (third column). Note that since the seléagty of gas is not included in our
calculation, the unit of mass is scale free. A thermal broaugof 8 km s! is adopted when
producing the map of velocity dispersion.
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Figure 4.3: The mass-weighted line-of-sight velocity éigpon. The blue curve is the kinematic
velocity dispersiongi,, calculated for the disk withilR = 9 kpc. The red one is the result
total velocity dispersiow?,; = o3 + o2, involving a thermal broadening of;, = 8 km s™.
The kinematic velocity dispersion saturates at 11 kftnasmd 13 km st for the total velocity
dispersion after an evolution of 1.3 Gyr. These results feobations very well.
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Figure 4.4: Evolution of (a) radial mass and (b) accumulateds distribution. From (b), the
evolution of mass seems to be separated by the corotation kp@), where the spiral shock
vanishes. The total mass enclosed inside the corotatigpsdsery little. While the gas between
corotation and OLR (18.5 kpc) igliently transferred to the outer disk, gas inside coroteiso

transported towards galactic center.

12

1 0x10

c sl ——t=0 Myr

2 —— =300 Myr

g —— =600 Myr

g 6f ——1=800 Myr

©

>

(o))

8 4t

(2]

=)

=)

c

& 2}

(a)
0 L L L L L L
0 5 10 15 20 25 30 35
radius [kpc]

accumulated angular momentum

N
T

w
T

N
T

x 10"

-
T

—t=0 Myr

—— =300 Myr
~———t=600 Myr
—t=800 Myr

0 5 10 15

20 25 30 35
radius [kpc]

Figure 4.5: Evolution of (a) annular angular momentum andafitumulated angular momen-
tum. From (b), overall the total angular momentum enclossdle the OLR (18.5 kpc) isfie-

ciently tranferred to the outer disk. Gas inside the coratat experiencing the losing and the
redistribution of angular momentum. Comparing (a) with.Higta, while the mass distribution
coincides with the angular momentum distribution in thesodisk, it is not the case for the inner

disk.
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Figure 4.6: Evolution of (a) mass-weighted radial veloeity (b) mass-weighted radial velocity
in time-radius plane. (a) is simply the horizontal cuts fr@ogjpatt = 0, 300, 600 800 Myr. Before
the wiggle instability sets in, gas is moving inward insitle torotation with a speed -3 + 2
km s%, moving outward subsonically for the region between cdimtaand OLR. The radial
motion beyond OLR is supersonieZ0 km s') and oscillates with time. This is best visualized
in (b). Once the wiggle instability sets inta& 330 Myr, the gas motion is severely disturbed in
the inner disk. The sign of radial motion in the inner diskrudpas with radius.
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Figure 4.7: Evolution of vorticity in units of km$ kpc™ att = 30Q 45Q 650 Myr. In (b) and
(c), after the wiggle instability sets in, the spiral shoaks distorted. The retrograde vortices (the
deep blue) are created along the shocks and dissipate mténarm region due to the post-shock
expansion. \Vorticity is not a conserved quantity in a coragitde flow.
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x>

Figure 4.8: The black arc is part of a circle and the dashedectgpresents a section of a
logrithmic spiral. The angle ffierence betweesdnd the azimuthal tangent defines the pitch
anglei. A represents the unit normal vector to the shock front pogritie downstream sides.is
defined byz= §x .
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Figure 4.9: t = 300 Myrs. In (a) we trace the location of the spiral shockse Téd line is a
logarithmic spiral with a pitch angle of= 15°, a bit smaller than the imposed spirals, which
havei = 17°. The pitch angle of a logarithmic spiral is better seen in asghlog(R) diagram as
shown in (b). Again, the red stars corresponds the fittingesur (a). The oscillation of the pitch
angle in the inner spiral is due to the interaction betweenlithiR resonance and the external
forcing as discussed in Sec. 4.6 . This has a dynamical ingpeitte streaming motion.
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Figure 4.10: t = 200 Myr. (a) The surface density shows a pair of well-defingidas shock
and substructures like spurs or branches. (b) With a wéihelé pitch angle (see Fig. 4.9), we
obtain the perpendicular component of the velocity fielchwéspect to the shock. We find that
the velocity field is modulated by the 2:1 resonance, whidbdated at 2.6 kpc. The ILR might
be responsible for the oscillation as seen in the pitch angle
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Figure 4.11:t = 200 Myrs. We choose this time because the shock is well-dpeel During
developing period of time, the pattern speed and the pitgteanf the shock are well-defined.
To evaluate the generation of vorticity via Eq. (4.14), oeeds three pieces of information as
shown from the top to the bottom pan€el®p Surface density right ahead the shatk,Middle:
Velocity component normal to the shock front ahead the shagkBottom The strength of the
shock,u. Because performing numerical derivative directly frora thw data can be noisy due
to the finite numerical resolution in space, we smooth&hbefore the evalutation of Eq. (4.14).
The result is shown as the red curve in the middle panel.
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Figure 4.12: The red curve represents the intrinsic voityagaluated from the initial condition.
The blue curve is the generated vortensity evaluated vidZtgd) att = 200 Myr. It shows the
shock is generating both positive and negative vortensitggarable to the intrinsic one in the
inner disk R < 3 kpc), while on average positive for the outer disk{R < 8 kpc). It seems
that there is a characteristic size100 pc, on which the vortensity is created.
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Figure 4.13: This cartoon illustrates the impact of the tipple in pitch angle on the post-shock
flow. The original straight shock (grey-dashed line) is shave displaced into a sinusoidal one
(red-curve), representing a small ripple in pitch anglee Bhue arrows represents the directions
of the incident supersonic flow and the black arrows the das of the post-shock flow.
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Figure 4.14:t = 200 Myr.(a) The arrows represents the directions of postisHow obtained by
Egs. (A.30) and (A.31). The red curve is a distorted shocle ifbident flow (not shown in the
figure) comes in with a incident angle of7i3e., pitch angle 1% with respect to the undistorted
straight shock (see also Fig. 4.13). (b) Separation andeggtion of streamlines. Streamlines
are set & along thex-axis with a uniform spacing 50 pc. The leading structurense Fig. 4.10a
is simply the crowding of streamlines and has nothing to db Wil resonance.
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Figure 4.15: The blue curve is the distorted shock. The cordigpn of the incident flow is
the same as shown in Fig. 4.13. The dash-dotted line regeedenMach numbeiM,, of the
perpendicular component of incident velocity. As expecthd resulting shock is stronger on
the head-on side and weaker on the leeside. Note that thessafad-axis and the lefy-axis are
not equal. The amplitude of the ripple is only 1.5% of the wength (1 = 1 kpc). However, the
resulting variation in shock strength is large.
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Shock front

stream lines v \
¢

Figure 4.17. The picture of an oblique shock (Wada & Koda 200e apply this picture to
the outer disk where the flow ahead the shock is nearly uniférsndescribed by WKO04, gas is
accelerated from A toward B (black arrows). Therefore, aei¢y gradient exist between B and
C (black arrows) leading to the KH instability. However, iwit in a inertial frame within which
the tangential velocity vanishes, the flow pattern in the4sbeck looks like the red arrows. By
doing Galilean transformation, velocity gradient does exist and the KH instability would
not happen. We can also apply the same picture to the innemdisre the rotation curve rises
alomst linearly as the case discussed in the Appendix of WiKOthis case, the incident velocity
at point A will be a bit higher than that at point C and thereforcreases the velocity gradient
between points B and C. If the KH instability do happen, itnely the vortices created in this
flow pattern should be prograde in the same sense of glolalontrather than the retrograde
vortices seen in Fig. 4.16b.
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Chapter 5

Summary and Outlook

5.1 Summary

In this thesis, we investigate many aspects of the evolutialisk galaxies theoretically, numer-
ically and observationally. In Chapter 2, we find that iditiemg a three-dimensional gas disk
which is in hydrodynamic equilibrium is not a trivial taskoNrivial and simple method is found
in the literature. Therefore, we put forward a new systeenadiy of setting up galactic gas disks
based on the assumption of detailed hydrodynamic equihtoriTo do this, we need to specify
the density distribution and the velocity field which sugpdhe disk. In Section 2.2, We show
that the required circular velocity has no dependence ohélght above or below the midplane
so long as the gas pressure is a function of density only. $kenaption of disks being very
thin enables us to decouple the vertical structure from dggat direction. Based on that, the
equation of hydrostatic equilibrium together with the reelti Poisson equation leads to two sets
of second-order non-linear fterential equation, which are easily integrated to set-utables
disk. We call one approach ‘density method’ and the other'poiential method’.

In Section 2.3, the methods developed in Section 2.2 areeimmgahted with the adaptive mesh re-
finement (AMR) magnetohydrodynamics code RAMSES (TeyX6P). A three-dimensional,
gravitationally stable disk is evolved for five orbital tinmethout a clear sign of change in its
configuration. This result confirms thé&ectiveness of our methods.

Gas disks in detailed balance are especially suitable¥estigating the onset of the gravitational
instability. In Section 2.4, we revisit the question of giblaxisymmetric instability using fully
three-dimensional disk simulations. The impact of diskkhess on the disk instability and the
formation of spontaneously induced spirals is studiedesyatically with or without the presence
of the stellar potential. In our models, the numerical resssthow that the threshold value for disk
instability is shifted from unity to 0.69 for self-gravitag thick disks and to 0.75 for combined
stellar and gas thick disks.

103
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In Section 2.5, the methods are applied to investigate tleagqienon called ‘swing amplifica-
tion’ (Toomre 1981) which occurs in a marginally stable digWth a proper disk initialization,
for the first time, we are able to numerically address and oorthis phenomenon for a three-
dimensional disk. The simulation results show that sedfized spirals occur in the correct
regions and with the right numbers as predicted by the andlytory. This result suggest that
our disks have correct dynamical properties.

In Chapter 3, we find the longstanding missing link that asges the evolution of disk galaxies
with the replenishment of gas in order to sustain star foilonadver cosmological times. The
radial gas inflow is confirmed in the extreme outer disk of MB&(C5236). In Section 3.2, we
combine the information extracted from the synthesis fatemetric maps from THINGS with
that from the single dish data reconstructed from the conttaps obtained by the 100-m radio
telescope of the Max-Planck-Institut fir Radioastron®ati Hfelsberg in late 70s to search for
the sign of mass inflow.

In Section 3.3, a series of tilted rings are deployed ovedtble for Fourier analysis. As is done
in Schoenmakers et al. (1997), for each ring, a tilted-riragled followed by a Fourier decom-
position is applied. However, we take one step further ta twerk, the Fourier decomposition
introduced in this paper directly decomposes the lineigifits/elocity into the rotational and the
radial Fourier components, giving more details about treegas kinematics.

In Section 3.4, the method developed in Section 3.3 is appdiestudy the kinematics of M83.
Due to the low inclination of M83, a parameter survey is cardd to bracket the kinematic
uncertainties. With the results shown in Section 3.4, ferfifst time, we are able to build the
sequence of gas accretion from the extreme outer disk totfeg star forming disk. Intergalactic
gas accretes in the form of filaments with an infall rate &-21.5 M, yr~t. The accreting gas
hits the Keplarian orbit aR = 10 and forms the bright HI ring seen in the THINGS map due
to the conservation of angular momentum. The phase shittapp in the position angle is
interpreted as the presence of radial inflow, contributingass inflow of 2.3 M yr~! at the
radiusR = 7.5, which fits excellently to the observed star formation ra&e M, yr- (Walter
et al. 2008). Note that the Holmberg radius ifRat 7.3'. Thus, we believe that in M83 the gas
is channelled inwards to feed the star forming disk by med&ssreaming motion, i.e., the cold
mode accretion.

In Chapter 4, we perform a two-dimensional, unmagnetized;selfgravitating simulation to
investigate the impacts of density waves of stellar origirgas motions. Although many similar
works has been carried out in the literature, many aspeaatisest in this Chapter are less recog-
nized and quantified. In Section 4.2, we describe the modahpeters used for the simulation.
We stress that the strength of spiral arm used in this Chapbarsed on observation results (Rix
& Zaritsky 1995).
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In Section 4.3, we examine the dispersion velocity for thiexgasample studied by Tamburro
et al. (2009). We find that the correlation between betwesk idiclination and velocity disper-
sion is stronger than that between star formation rate alatie dispersion. Galaxies having
larger disk inclination tend to have larger velocity dispen. To understand that, we deliberately
downgrade the numerical spatial resolution to match theeivation one. Based on the defini-
tion of velocity dispersion defined in Walter et al. (2008 walculate the velocity dispersion
along the line-of-sight. We find that nonsteady spiral sisazn diciently tap turbulent energy
from regular rotation motions. The level of velocity dispien driven by nonsteady shocks fits
excellently to the observations.

In Section 4.4, we find that the presence of spiral densityewaan change the distribution of gas
surface density and angular momentum on a relatively simet $cale compared to the secular
evolution time scale of stellar disk. Angular momentum ansported from inner disk toward
the outer disk. The nonsteady shocks severely stir thelnadigons of gas, resulting in the sign
change in the radial velocity. This result has been obsdryeshetty et al. (2007).

In Section 4.5, we quantify the vortensity generation algpigal shocks. We analytically demon-
strate that vortensity is not a conserved quantity in a cesgble flow with shocks. We quan-
titatively show that the vortensity created by galacticatsois not negligible compared to the
intrinsic disk vortensity. An important result is that batagative and positive vortices can be
created in galactic shocks.

In Section 4.6, We consider the small ripple in pitch angle assult of interaction between the
inner Lindblad resonance and the forced shock waves. We 8taivthis small ripple has huge
impacts on the shock strengh and the post-shock flow, whitiersresponsible for the formation
of substructures and the shock deformation. In this thestsyiew the spurs as a result of the
conspiracy between the shock deformation, the generatinegative votensity and the Coriolis
force. We also argue that the Kelvin-Helmholtz instabitigscribed in Wada & Koda (2004) is
not likely responsible for the formation of spurs.

5.2 Outlook

In this thesis, many aspects of gas evolution in disk gassae investigated. These studies open
many lines of future works.

As already mentioned in Chapter 2, the method we develomitalizing an three-dimensional
equilibrium gas disk fits to the framework developed for istdnless particles (Shu 1969; Kui-
jken & Dubinski 1995). A natural and ongoing next step is teedlep a systematic way for
initializing a composite disk in which live stellar diskyé stellar bulge and live dark matter
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halo can evolve with gas disk. The lack of a proper way foiafizing a composite disk in the
literature hinders our way to address many questions. Otleeafnost basic ones is Rafikov’s
criterion for composite disk stability. Although this @iton has been used to account for the
star formation rate observed in nearby galaxies (Leroy.€2@8; Hunter et al. 1998; Blitz &
Rosolowsky 2004; Yang et al. 2007), how ddtdient components react to this instability is
unclear. We expect the stellar disk and the gas disk willoesp in a very dferent way. This
question cannot be addressed without a composite disk vighinftialized in detailed balance.

Following the study of Rafikovs criterion, the interacticetWween the gas disk and the live stellar
disk now can be systematically and self-consistently itigated. Although the spiral or bar
formation in a live stellar disk has been studied for manyryethe interaction between live
stellar spirgbar and gas disk has not been closely inspected. We can tdglitess the following
questions. How does the presence of gas difgcathe evolution of stellar structures? How
does the angular momentum exchange between gas and stara®isvie lifetime of stellar
spirals or bars with or without the presence of gas disk? Hosdhe gas react to the live stellar
structures?

The alignment of magnetic field ranging from several kpc déavthe dense core of molecular
clouds shows that the magnetic field may have a profound itmpagalaxy evolution (Beck

et al. 1996; H.B. Li, private communication). We can studwlibe combined disk organizes
and amplifies the magnetic fields, i.e, galactic dynamo. litlvd also interesting to look into

how the magnetic fieldsfiect star formation in a self-consistent composite disk.

Another ongoing work is associated with the large-scalecttire and star formation observed in
the extreme outer disk of M83 (Thilker 2005; Bigiel et al. P@). The filaments there might be
a result of galactic dynamo or simply of the gravitationake/deft behind the path of a dwarf
satellite, which is interacting with M83. Because the dgnsnhancement is small 5% of the
averaged surface density, violent interaction cannot becttuse. Even puzzling, how can the
massive stars form in such a barren area? We address these@gséy applying the equilibrium
disk developed in Chapter 2.

Gas accretion observed for M83 should not be an unique emethiei Universe. The method
described in Chapter 3 build a stereotype for searching gagt#on and should be applied to
a larger sample of disk galaxies. The upcoming single digendations for nearby galaxies,
which are already included in THINGS sample, will provideextellent opportunity to extend
our understanding of intergalactic gas accretion.

A nature line following the work of Chapter 4 is to extend the@ation to three-dimension.

However, to have a spatial resolution comparable to thediwneensional work, this extension
seems to be too computationally expensive to be practicat. h#ve developed a technique
called ‘zoom-in’ box allowing us to trace the impacts of gpilensity wave on gas motions in
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a three-dimensional simulation. Contrast to the shearmgdimulating a small section of the
whole disk, we take the advantage of AMR putting more regmiudn the regions of our interest.
The region can be a comoving box or a comoving long arc. Tharadge of this technique is
that we can feed the zoom-in box with a realistic boundary@amn, which is naturally obtained
from the global evolution of disks.






Appendix A

Appendix
A.1 The Derivation of Rotation Velocity
Equation (2.11) can be re-written as
_ P(R) Pap,
PRY = R EY| —pra2 [ E%a
- pP(RI[P(R I - DR z=0)], (A.1)

where we have replaceb, = ®(R, 2) - ®(R,z= 0). Inserting Eq. (A.1) in Eq. (2.1) involves a
partial derivative to the integral, let us prepare it first:
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With Eqg. (A.2), the first term of Eq. (2.1) then becomes:
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Equation (2.11) says that the term in the big brace shouldkaAnd therefore, Eq. (2.1) reduces
to
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For the barotropic gas, i.e(p), the integrand of the integral vanishes:
o\ 0 (P\_(%)0 (P
0z) OR\ p? 0R/ dz\ p?
_ ()2 (P _(9p) I (P)Ip _
- (BZ)Bp(pZ)GR (BR)GP(/OZ)BZ_O (A5)

For the cases of initially constant temperature, the speicifernal energye, is a constant and
therefore the pressure is a function of density only, thegrand vanishes.

A.2 The dfect of the disk thickness on the midplane potential

For an axisymmetrically and infinitesimally thin disk, thetential can be evaluated by the fol-
lowing relation (Binney & Tremaine 2008):

O(R 2) = fo " dkSo(K) Jo(kR)e"X. (A.6)
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whereJ, is the Bessel function of the first kind of order zero &ds the Hankel transform of

—2nGX, defined by:

So(K) = —-27G f dR'R Jo(kR)Zo(R) (A.7)
0

With Eqg. (A.6) and Eq. (A.7), we can superimpose the poténtatributed by each gas layer.
For the sake of simplicity, we assume that the volume dehsisythe double exponential profile:
RRE"
pO(R Z) - Zoe 2hz ’

with h, being the scale-height of the gaseous disk, Eq. (A.7) thearhes (Gradshteyn & Ryzhik
1965, hereafter GR65, 6.623-2):

(A.8)

—ZﬂGz:oe_z/hZ
—27G3 e M
= o€ Az & ,
2h, (&2 + k)32
with & = 1/Ry. Azrepresents the infinitesimal thickness introduced to keepitmension correct.
The potential which takes into account the thickness of tble tthen reads:

So(k, 2) = Az f dR'R Jo(kR)e R /R
0

(A.9)

- 3
(I)(R, Z) = —ZﬂGZOL dkao(kR)
¥ ken €
Evaluating the potential at the midplarzes 0, yields:
_ 0y N 3 !
®(Rz=0)= 27erof0 dk(gc2 I Jo(kR 1ok (A.11)

Given the finite scale-height, the integral can be evaluatederically and compared with the
result of the infinitesimally thin disk.

A.3 The Derivation of the reduction factor

To derive the reduction factdf defined by Eq. (2.35) we need to evaluate the integral of the
form:

f e “secK(ah)dh = 2 f e “sechi(ah)dh
_ 0

oo2 k k k 1
CpeRbE e




112 CHAPTER A

The last line can be reached by looking up the formulae 3.88%0, 8.361-7 listed in the integral
table (GR65) and the definition Eq. (2.36). In the last line, mave employed the recursive
relation (8.365-1 GR65):

1
H(a) = H(e - 1) + —. (A.13)
(04
The asymptotic behavior of the harmonic number reads (823&7367-13 GR65):
1 -1 1 -2 1 -4 -6
H@=lha+y+za" - —=a“+-—a +0(a™), (A.14)

2 12 120
with v = 0.5772156649 (8.367-1 GR65) being the Euler-Mascheronitaahs Note that Eq.
(A.14) is only reliable whem > 1. We employ the recursive relation (C2) to evaluéd{e) for
-l<a< 1.

A.4 The vertical force ratio

The vertical force ratio measures the impact of the haloefans the vertical structure. The
simplified Poisson equation for isothermally self-gratitg gas disk reads:
2

072

whereh, being a measure of the scale-height. Parantetean be related to the volume density

||Z - (‘ \ 16)
ZﬂGpO. '

The corresponding vertical force for the gas then becomes:

Frgas= —‘98#‘2) = —47Ghypo(R)tanh@/h,). (A.17)

For a NFW halo, the vertical force can be written down directl

% _ 4nGpo(R)secht (hi) (A.15)

) GMZOO( c )2 X/(1+X)-Inl+x 2z (A.18)

M1 ) \raoo 2 VRt Z

with X = cVR2 + Z2/r,q0. Figure A.1 then shows the force rattgpm/F.qas @s a function of
vertical heightlz at different radii. Comparing to the rotation curve shown in the pahel of
Fig. 2.1, although the dynamics is still dictated by the pti#d of the dark halo, the vertical
structure of the gaseous disk is mainly determined by thfegsaVity of the gas component.
However, it raises another issue, the presence of therstiidlawill dominate both the dynamics
and the vertical structure of the gas and wifegt the stability of the gas component via changing
the thickness of the gaseous disk and the rotation curve.
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Figure A.1: The force ratié,pm/F,gasat R=2, 5 and 8 kpc. It shows that the vertical structure
of the inner disk is determined mostly by the self-gravitygas.

A.5 Validity check of the reduced Poisson Equation for the
gas disk

Throughout this paper we have assumed that the radial paitgnadients of the disk are neg-
ligible compared to the vertical gradients, such that thisgem equation reduces to Eq. (2.14).
We now test this assumption by computing the ratio

2
e=12 2 R%9), 7 %

Al
ROR" JR 622’ (A19)

with @4 the gravitational potential of the gas disk. For a realjsdicalytical disk model, our
assumption will be valid as long as< 1.
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Figure A.2: Contour map of. The black lines represent the scale-height of the gas disk.

Consider the Miyamoto & Nagai (1975) potential:
GM,

JRe+ @+ 2+ PRY

Herea is a constant that controls the scale-length of the disk#R) which we take to be a
function of radius, modulates the scale-height of the diskhe limitb — 0 this model reduces
to the infinitesimal Kuzmin disk (e.g., Binney & Tremaine 3)0In an attempt to model the gas
disk in our simulation ‘Gas0’, we adopt= 3.5 kpc. In order to mimic the flaring of the Gas0
disk (see Fig. 2.2b), we consider

Oy(R.2) = - (A.20)

b(R) = -1.58x 10°R* + 1.21 x 10°R? + 0.20. (A.21)

Using the Poisson equation to solve (numerically) for theresponding density distribution
yields the radial-dependent scale-height shown as the Blzlck lines in Fig. A.2, and which is
comparable to that of the GasO disk. The contours in Fig. fe2afined by constant values of
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€. These show that our assumption thak 1 is well-justified in the inner part of the disk, out to
~ 3 scale-lengths, which encloses most of the disk mass. Buemgdion that < 1 deteriorates
at larger radii and at higher altitude away from the midplahleis might be in part responsible
for the very slight outward drifting of the disk seen in Fig2R. In cases that include a stellar
potential angbr cooler gas, the gas disk is even thinner than the casedsadihere, resulting in
values fore that are even smaller. Based on these results, and basee ainsbnce of significant
disk thickening in our simulations, we are confident that@dL4) is stiiciently accurate for all
realistic gas disks.

A.6 transformation matrix

Supposing that we have a galaxy with position anBgl&, and inclination anglé. Velocity field
is transformed from face-on viewy{ v, 0), to tilted coordinatesyy, v, v;) by:

V, cosPA) cosf) -—sin(PA) cosf) sin() || v
vy | = sin(PA) cosPA) 0 vy |- (A.22)
v, —sin@)cosPA) sin()sin(PA) cosf) 0

Then, the velocity in line-of-sightj os, reads:

Vios = —Vx Sin(i) cosPA) + vy sin(i) sin(PA). (A.23)

A.7 The post-shock streaming flow

In this appendix, we follow the picture described in the Apgig A of Vishniac (1994) to derive
the post-shock streaming motion. A local coordinateg)(is set-up along the straight shock as
shown in Fig. 4.13 . The displacement of the shock is desgtiyea sinusoidal wave:

y = Asin(%ﬂx) = AsinkX), (A.24)

with A being the wavelength of the wave akek 27/ the wave number andl the amplitude of
displacement. The unit normal vectar,, to the shock front then reads:

y — Akcoskx) X
VI+A%KZco(ky)

ﬁJ_:

(A.25)
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with X andy being the unit vectors ix andy, respectively. The corresponding unit tangent is

defined: I
~ _ Akcoskx)y + X

Ay = :

Tt AR o3 (k%)
Assuming that the incident flow @ = vX + Wy, the pre-shock velocity is decomposed into
vV, =vV-n, andv, =V- A

(A.26)

_ —Akycoskx) +Vy

L= , (A.27)

V1+ A2k2 cog(kX)

Akvy, cos .

V| = kel ((X) Y . (A28)

V1 + A2k2 cog(kX)

Applying the Rankine-Hugoniot jump conditions for isotimad gas, we have:

V.V, =C (A.29)
Vi =V, (A.30)

wherev, andv, defines the post-shock velociy= v, i1, + Vi The expression of, reads:

v _ c2 /1 + A%k2co(kX)

= . A.31
 —Akycoskx) + vy (A.31)

The singularity shown in Eq. (A.31) marks the point where= 0 and therefore limits the
amplitude of the displacemem, and the possible values for wave numker
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