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Abstract

This thesis studies many aspects of gas evolution in disk galaxies. A simple, effective method is developed

for initializing a three-dimensional gaseous disk which isin detailed equilibrium. With this method, theo-

retical predictions for disk stability and swing amplification are numerically studied for three-dimensional

disks. The missing link between intergalactic gas accretion and the star formation activity is found for the

galaxy M83. We improve the analysis method to search for the signature of gas infall. For the first time,

gas accretion with sufficient fresh gas to fuel star forming disk is kinematically confirmed. The impacts

of spiral density waves on gas motions are studied numerically. Shock driven turbulence is quantified

and is found to match excellently with observations. Furthermore, the evolution of shock itself has pro-

found impacts on redistributing gaseous surface density, angular momentum and on the development of

substructures.

Zusammenfassung

Diese Arbeit untersucht viele Aspekte der zeitlichen Entwicklung von Gas in Scheibengalaxien. Eine

einfache und effektive Methode zur Initialisierung einer dreidimensionalen Gasscheibe in detailliertem

Gleichgewicht wurde entwickelt. Mithilfe dieser Methode untersuchen wir theoretische Vorhersagen ber

Stabilitt und ’Swing’ Verstrkung dreidimensionaler Scheiben durch numerische Simulationen. Fr die

Galaxie M83 wurde der fehlende Zusammenhang zwischen Akkretion intergalaktischen Gases und der

Sternentstehungsrate gefunden. Wir verbesserten die Analysemethode zum Auffinden von Gaseinfall.

Zum ersten Mal wurde eine ausreichende Gasakkretion zum speisen einer Sterne formenden Scheibe

kinematisch besttigt. Der Einfluss von spiralfrmigen Dichtewellen auf die Gasbewegung wurde numerisch

untersucht. Schock-getriebene Turbulenz wurde quantifiziert und stimmt mit Beobachtungen exzellent

berein. Des Weiteren hat die Entwicklung des Schocks selbstweitreichende Einflsse auf die Umverteilung

von Gasoberflchendichte, Drehimpuls und die Entwicklung von Substrukturen.
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Chapter 1

Introduction

Galaxies are complex systems composed of stars, gas, dust and invisible dark matters, embedded
in a relatively vast empty space. These galaxies are the basic building blocks of the Universe.
Although modern cosmological models suggest that these visible luminous objects occupy only
a small fraction of the constituents of the Universe, our current understanding of the cosmos
fully relies on the light emitted by the normal matter. Observational, theoretical and numerical
studies on the formation and evolution of galaxies in the past century has largely renovated our
viewpoint about the Universe.

1.1 Galaxies in the Universe

1.1.1 Classification of Galaxies

As the heliocentric model of planetary motions suggested bythe Polish-born astronomer Nico-
laus Copernicus (1473−1543) shifts our standing point in the solar system, a seriesof pivotal
works of Edwin Hubble (1889−1953) profoundly revolutionize our understanding of our po-
sition in the Universe. The great Shapley-Curtis debate (1920) over the nature of the nebulae
centered on their distances from us and the size of the Milky Way was finally settled conclu-
sively by Hubble’s work in 1923. Hubble measured the distances bewteen the Milky Way and
several nebulae, including the Andromeda (M31), via the luminosity-period relation of Cepheid
variables stars. He concluded that some of the nebulae are too distant to be part of the Milky Way
and they are, in fact, our neighbor galaxies. This realization greatly extends the original Milky
Way centered viewpoint to a much larger ecosystem in the Universe, i.e., the Milky Way is just
one of the countless galaxies.

Galaxies come in different flavors in terms of size and morphology. Hubble’s scheme of classi-
fication of galaxies (Hubble 1926, 1936) was the first step to understand the nature of galaxies

1



2 CHAPTER 1

based on morphology. As shown in Fig. 1.1, Hubble arranged galaxies into the tuning-fork di-
agram and categorized them into three groups based on their appearance, i.e., ellipticals (E’s),
spirals (S’s) and irregulars (Irr’s). Spirals are further divided into two separated sequences, the
normal spirals without bars (S’s) and the barred spirals (SB’s). A transition type between ellipti-
cals and spirals is designated as lenticulars (S0’s). Galaxies on the left of the diagram are called
‘early’ and on the right ’late’ in type. This is an unfortunate relic of nomenclature derived from
the early misunderstanding of the evolution of galaxies. Before, galaxies were believed to be
formed from the collapse of proto-galactic nebulae supported by pressure. As gas falls inward,
the kinetic energy is converted into thermal energy and dissipates via radiation. Eventually, due
to the conservation of angular momentum, a rotational supported gaseous disk results, ensuing
the structure development such as spirals and bars.

Figure 1.1: Diagram of Hubble’s Tuning Fork classification scheme from Hubblesite.

Ellipticals are classified based on their apparent axial ratio, ǫ ≡ 1− b/a, wherea andb represent
the apparent major and minor axis, respectively. Ellipticals with an apparent axial ratio,ǫ, are
designated with ‘Eα’, with α ≡ 10ǫ. For instance, ellipticals withǫ = 0.3 are classified as E3
and sphericals withǫ = 0 as E0. Ellipticals withǫ > 0.7, however, have never been observed.
Spiral galaxies are morphologically more interesting thanellipticals. Spiral galaxies, normal
and barred, having the most conspicuous bulge-to-disk luminosity ratios are classified as ‘Sa’ or
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’SBa’. These galaxies are also the most tightly wound spirals. Those with the least bulge-to-
disk luminosity ratios and the most open spirals are classified as ‘Sc’ or ’SBc’. Whereas, the
intermediate ones are classified as ’Sb’ or ’SBb’. Lenticulars are disk galaxies without visible
spirals. Due to the lack of gas and dust, they usually appear featureless (S0/SB0) with very little
ongoing star formation activities. For those galaxies, which have no obvious regular structure,
are classified as ’Irr’.

Based on Hubble’s work, de Vaucouleurs (1959) refined the tuning-fork and incorporated other
important morphological features into the scheme. For diskgalaxies, De Vaucouleurs introduced
the new notation ‘SA’ for spirals without bar, ‘SAB’ for spirals with a weak bar, ‘SB0’ for
barred lenticular galaxies, ’Sd’/’SBd’ for bulgeless spiral/barred galaxies with diffuse, broken
arms. Galaxies of highly irregular appearance are denoted as ’Im’. Irregular bulgeless galaxies
similar to Magellanic could are represented as ‘Sm’/‘SBm’. In addition, notation ‘r’ is used to
incorporate the presence of rings in galaxies. Surprisingly, although this simple classification
scheme is originally designed only for describing the morphology of galaxies, it correlates very
well for quantities of galaxies such as bulge-to-disk ratio, gas content, colors, metallicity, star
formation activities, etc.

1.1.2 Galaxy Distribution in The Universe

(a) (b)

Figure 1.2: (a) Slices through the SDSS 3-dimensional map ofthe distribution of galaxies. Earth
is at the center, and each point represents a galaxy, typically containing about 100 billion stars.
Credit: M. Blanton and the Sloan Digital Sky Survey. (b) Dark matterdistribution in the CDM
Universe predicted by the Millennium Simulation (Springelet al. 2005).

To build up the correlations between morphology, galaxy properties and environment, one needs
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to understand the evolution course of galaxies over cosmological time scales. Hubble’s next
celebrated discovery, Hubble’s law (Hubble 1929), was empirically derived asv = H0D, with
v being the recession velocity, the Hubble constantH0 (73.5 ± 3.2 km s−1 Mpc−1 derived from
the five-year WMAP, 2008) andD the proper distance. It states that the galaxies in deep space
are drifting away from Earth with a velocity,v, proportional to their distance,D, from Earth.
Hubble’s results together with the cosmological principlesuggests that the Universe has a starting
point in spacetime. This concept is now known as the big bang theory (Lemaı̂tre 1927).

Galaxies evolve with the Universe. A model that is able to describe the evolution and the struc-
ture formation in the cosmos is required.Λ Cold Dark Matter (ΛCDM) is now considered as
the best current model of the big bang cosmology. Every cosmology which takes into account
the existence of dark energy as well as cold dark matter is labelled in this category. These mod-
els are being able to account for several observation facts:(i) the existence and structures in
Cosmic Microwave Background (CMB) observed from the Wilkinson Microwave Anisotropy
Probe (WMAP, Spergel et al. 2007) (ii) the accelerating expanding Universe inferred from the
redshift-distance relations from Type Ia supernovae (Riess et al. 1998; Perlmutter et al. 1999) (iii)
large scale structures of galaxy clusters (iv) the abundance of primordial elements. In the CDM
paradigm, structures are formed bottom-up, i.e., small objects gravitationally collapse first and
massive objects are formed through a continuously hierarchical merging (White & Rees 1978;
Kauffmann et al. 1993; Lacey & Cole 1993). Since dark matter only interacts with matter grav-
itationally, it evolves faster than the normal matter in theearly Universe. With the expansion of
the Universe, gas cools and gradually falls into a potentialwell due to the overdensity of dark
matter. Eventually, stars form collectively through gravitational collapse of gas and galaxies are
born.

Recently, large scale survey such as Two-degree-Field Galaxy Redshift Survey (2dFGRS) and
Sloan Digital Sky Survey (SDSS) have characterized the large scale structures in a three-dimensional
fashion. As shown in Fig. 1.2a, galaxies are not distributedrandomly. They are organized in a
form now called ‘cosmic web’ composed of large filamentary, sheet-like structures as well as
bubble-like voids. These maps may shed light on how galaxiesform, be used to test the cos-
mological paradigm and to understand the nature of dark matter and dark energy. In order to
accomplish these goals, a large scale numerical simulationcalled Millennium Simulation is car-
ried out by Virgo Consortium (Springel et al. 2005). A snapshot of the distribution of dark matter
is shown in Fig. 1.2b.

Although the Millennium simulation seems to be able to reproduce the complex ‘cosmic web’,
the simulation fails to replicate the voids as observed in Fig. 1.2a, which actually stresses the dis-
tribution of luminous matter. This suggests that either a bias exists between the mass distribtution
of luminous and dark matter or the physics of CDM model is incomplete.
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1.1.3 Environmental Effects on Galaxies

From Fig. 1.2a, it is evident that galaxies are not distributed randomly. Galaxy formation in the
context of hierarchicalΛCDM scenario suggests a tight relation to the halo mass assembly pro-
cess (Evrard et al. 1990). The frequency of different type of morphology turns out to be sensitive
to the environment. The Local Group, for example, comprises∼35 galaxies in which only three
are spirals namely the Milky Way, M31 and M33. The remainder are classified between irreg-
ular and dwarf elliptical galaxies. In general, the relationship between the morphological type
and the environments in which they are located are quantifiedby Morphology-Density relation
(Dressler 1980; Postman & Geller 1984; Whitmore et al. 1993;Goto et al. 2003; Maulbetsch
et al. 2007). The magnitude-limited survey for galaxies outside clusters are strongly biased to
the late type spirals (80%) with the rest equally 10% attributed to S0 and ellipticals. The trend
changes smoothly with increasing population density. In the groups with an intermediate den-
sity, 40% spirals, 40% S0 and 20% of ellipticals, whereas in the rich clusters, the mix is 10%
spirals, 50% S0 and 40% ellipticals. Luminous cD galaxies are generally found in the center of
rich clusters. Toomre & Toomre (1972) show that galaxy merger is one of the effectively ways
responsible for the morphology transformation from spirals to ellipticals. Since then, this sce-
nario has been used to explain the formation of massive ellipticals (van der Wel et al. 2009 and
references therein). Figure 1.3 shows two examples of colliding galaxies, the Stephan’s Quintet
and the Antennae Galaxies. Collisions between galaxies arecommon in clusters and often result
in more massive ellipticals.

(a) (b)

Figure 1.3: (a) Stephan’s Quintet (NGC 7317, 18a, 18b, 19, 20). Image Credits: X-ray (blue):
NASA/CXC/CfA/E. O’Sullivan Optical (brown): Canada-France-Hawaii-Telescope/Coelum.
(b) The Antennae Galaxies (NGC 4038/NGC 4039). Image Credits: NASA, ESA, SAO, CXC,
JPL-Caltech, and STScI

Environment not only has profound impact on the structure ofgalaxies but also on its star forma-



6 CHAPTER 1

tion history. There is strong evidence showing that the starformation activity is quenched when
a galaxy enters a dense cluster. The reason for the suppression of star formation is still unclear
despite several possibilities have been proposed such as the ram-pressure stripping (Gunn & Gott
1972), galaxy harrasment (Moore et al. 1996; Bell et al. 2007; Ruhland et al. 2009) and galaxy
starvation (Larson et al. 1980).

1.2 Spiral Galaxies

1.2.1 Spiral Density Waves and Substructures

Numerical simulations conducted by Toomre & Toomre (1972) showed that disks are fragile to
external disturbances. A violent gravitational harrasment from an intruder of roughly equal mass
stirs the rotational spin of disk, randomizing the orbits ofstars which results in a morphological
transformation from a disky to an elliptical galaxy. In the last Section, we notice that late-type
disky galaxies are dominant in low-density regions in the Universe. In these relatively isolated
areas, up to 80% are found to be disky, suggesting that these disks may have been evolved over a
cosmological timescale without a major merger event. Disk galaxies are usually spirals. Among
them about two-thirds are barred (de Vaucouleurs 1963), onethird being strong barred and the
other one third being weak barred. Furthermore, they are usually gas rich, luminous and actively
forming stars. All these properties suggest that the Universe has prepared a laboratory which
is under a relatively good control for us to study the relationship of gas and stars, the angular
momentum of primordial gas, the history of gas accretion, the primordial cosmic magnetic field,
the properties of dark matter, etc. Understanding the evolution course of disk galaxies therefore
becomes a focal point of attention.

A disk galaxy is a flat, rotationally supported ’cosmic frisbee’ consisting of stars, gas, dust,
spheroidal concentration of stars in the center now known asthe ‘bulge’ and globular clusters
residing in the dark halo. The striking spiral we perceive onthe photoplates of nearby galaxies
only tells us a part of the story. The luminous spirals are dueto the bright, young, massive
stars which contribute only a small fraction of the total stellar population. Images taken from
near-infrared wavelength shows smooth, broad, sinusoidalspirals that represent the older stars
(population II), which is the main body of galactic disks. For instance, over 90% of the total
mass of the Milky Way disk belongs to this population.

Gas is dissipative and is relatively cold with a typical velocity dispersion of∼10 km s−1. Stel-
lar disk, however, is treated as an ensemble of collisionless stars with a much larger typical
dispersion velocity 40 km s−1. The different nature of gaseous disk and stellar disk leads to
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two separate approaches to study the galactic structure. Onthe one hand, the smooth, broad,
sinusoidal-varing spirals seen in near-infrared suggeststhe use of linear theory of density waves
for the disk stars. On the other hand, the narrow luminous spirals composed of gas, dust and
young stars are treated as a nonlinear problem of gasdynamics. The tight correlation between
gas spirals and stellar spirals suggests that this two problems are not entirely separable. They are
inter-related to each other through the gravitational fieldto which they both contribute.

Figure 1.4 shows one of the most spectacular spiral galaxiesNGC 5194 (M51) and its companion
NGC 5195. It is believed that the grand-design spirals are the result of tidal interaction between
them. On the inside edge of the bright optical arms, the narrow dust lanes, which obscure the
visible light emitted from bright stars, follow the spiral shape. Fujimoto (1966) suggests that the
dust lanes seen along the luminous arms are the results of galactic shocks. The narrow dust lanes,
albeit makes up only 1% the total mass of interstellar medium, effectively obsecure the visible
starlight, marking the location of gaseous density peak.

Figure 1.4: NGC 5194(M51)/NGC 5195. Image Credits: STScI/AURA, ESA, NASA.

Within the framework of Quasi-Stationary Spiral Structure(QSSS) hypothesis, Roberts (1969)
and Woodward (1975) semi-analytically work out shock solutions attempting to find an explaina-
tion for the large-scale star formation along the spiral arms. When gas clouds of sub-critical mass
pass through the spiral shocks, they get compressed into super-critical mass, triggering gravita-
tional collapse and form stars. This picture naturally predicts a geometrically angular shift be-
tween the densest HI and the peak emission of Hα, which traces young stars. Roberts (1969)
qualitatively confirms this prediction using the the data available at that time. The angular offsets
are also found between CO and Hα (Vogel et al. 1988; Garcia-Burillo et al. 1993; Rand & Kulka-
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rni 1990; Scoville et al. 2001), dust lanes and Hα (Roberts 1969; Rots 1975). Recently, Tamburro
et al. (2008) also find the angular shift in emissivity peaks between HI (data from THINGS) and
24 µm (data from SINGS), which traces the dust-shrouded massivestars. Kinematic evidences
that support the galactic shock scenario come from the analysis of non-circular motion along
spirals (Aalto et al. 1999; Visser 1978a,b; Roberts & Stewart 1987; Shetty et al. 2007). Veloc-
ity component which is perpendicular to shocks is expected to drop proportional to the density
contrast measured before and after the shock, resulting in anet radially inward streaming motion.

In addition to grand-design spiral arms, the structures between them are far more complicated.
Substructures perpendicularly protruding from the spirals are identified as spurs or feathers.
Many theoretical studies has been carried out to explain thenature and the origin of spurs.
Semi-analytical calculations without involving self-gravity attribute the substructures to the ultra-
harmonics (Woodward 1975; Shu et al. 1973). Balbus (1988) views the substructures as a result
of the growth of gravitational instability in preferred directions. Numerical works that follow
the nonlinear development of gas has also been conducted (Kim & Ostriker 2002a; Chakrabarti
et al. 2003; Wada & Koda 2004; Kim et al. 2006; Dobbs & Bonnell 2006). Among them, Wada
& Koda (2004) and Kim et al. (2006) propose that spiral shock is potentially a major ingredient
capable of tapping randomized energy from the regular rotation motions. Despite many works
which have been dedicated to explore possible mechanisms that may induce the substrutures, the
impacts of grand-design spiral waves on ISM turbulence are still less recognized in the literature.

1.2.2 Star Formation, Turbulence and Gas Accretion

Spiral galaxies roughly of the size of the Milky Way are actively making stars due to their higher
gas surface density. Schmidt (1959) and Kennicutt (1998) find that star formation rate,ΣSFR, is
related by a simple power law with gas surface density,ΣSFR ∝ Σn

gas, with n = 1.4, over several
order of magnitude in surface density. This relation is now referred to as the ‘Kennicutt-Schmidt
law’. Furthermore, there appears a threshold surface density (Kennicutt 1989, 1998; Martin &
Kennicutt 2001) above which star formation is activated by disk instability (Toomre 1964; Jog &
Solomon 1984; Rafikov 2001). This threshold surface densitysuggests a cut-off radius beyond
which the surface density is too low to form stars.

However, the low efficiency of turning gas into stars in molecular clouds suggests the star for-
mation process is regulated by a variety of processes, i.e.,the interplay between gravitational
instability, magnetic fields, gaseous dissipation and turbulence. Turbulence can be found on a
wide span of scales ranging from intergalactic gas down to protostellar accretion disks. Since the
energy of turbulence can dissipate in one crossing time, itsubiquity poses a strict constrain on
possible driving and maintaining sources. In spiral galaxies, a remarkable fact is that the velocity



INTRODUCTION 9

dispersion measured in HI emission lines is observed to be fairly constant extending from inner
star-forming disks to regions well beyond optical disks (Dickey & Lockman 1990; van Zee &
Bryant 1999; Tamburro et al. 2009). The inferred values are in a range between 10 km s−1 and
20 km s−1 (Bigiel et al. 2008; Walter et al. 2008).

Within the star-forming disk, several possibilities such as steller feedback (see Mac Low &
Klessen 2004; Elmegreen & Scalo 2004 and references therein), gravitational instability (Agertz
et al. 2009), swing amplification (Goldreich & Lynden-Bell 1965; Toomre 1981; Agertz et al.
2009), magnetorotational instability (MRI, Balbus & Hawley 1991; Sellwood & Moore 1999;
Piontek & Ostriker 2004, 2005, 2007) and spiral density waves (Wada & Koda 2004; Kim et al.
2006), has been proposed as mechanisms driving turbulence.Given the lack of correlation be-
tween turbulence and star formation in the outskirts of galaxies, other type of sources apart from
stellar feedback could be responsible for injecting the turbulent energy. Recently, Klessen &
Hennebelle (2010) propose that the turbulent energy observed in the outskirts of galaxies is a
natural outcome of galactic gas accretion. The efficiency needed to convert infall motions into
the required level of turbulence is only a few percent in Milky Way type galaxies.

Following the line of Klessen & Hennebelle (2010), problemsof star formation, ISM turbulence
and gas accretion are evidently inter-related. The Milky Way is forming new stars at a rate of
ṀSF ≥2 M⊙ yr−1 (Diehl et al. 2006). Assuming a constant star formation rate, without an external
gas supply, star formation will run out of gas in a few billionyears much less than the Hubble
time (Pflamm-Altenburg & Kroupa 2009; Klessen & Hennebelle 2010). Similar gas depletion
time is also reported for many nearby spiral galaxies (Bigiel et al. 2008). Furthermore, it is
well-known that the star formation rate was higher in the past than it is today, suggesting an even
shorter depletion time around only one billion years in the early Universe (Hippelein et al. 2003;
Hopkins & Beacom 2006; Genzel et al. 2010; Daddi et al. 2010a,b).

Two popular scenario has been proposed to explain how the intergalatic gas accretes onto the
disk. The first is directly related with the process of galaxyformation called the ‘hot mode’
(White & Rees 1978). Intergalactic gas falls into the dark matter potential, gets shocked and
virialized. Overtime, the gas cools down and gentlely rainsdown onto the disk. This scenario
might be supported by the detection of velocity gradient perpendicular to the galactic plane
(Fraternali et al. 2005). Numerical simulations, however,suggest the other possibility. Gas can
reach the center of the potential in a form like clouds, streams and filaments (Kereš et al. 2005;
Dekel & Birnboim 2006; Kereš et al. 2009). This scenario is now known as the ‘cold mode’. In
this thesis, we are the first to provide the observational evidences that support the ‘cold mode’
accretion.

Direct evidences that support the scenario of ongoing gas accretion come from the observations
of high velocity clouds (HVCs) moving towards disks, which are identified by the kinematic
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anomaly appearing in the p-v diagram (Wakker et al. 2007; Fraternali 2009). A simple energy
estimation shows that they cannot be the results of galacticfountain. In all, the visible accretion
rate of cold gas in galaxies is estimated∼0.2 M⊙ yr−1, one order of magnitude less than the
required gas infall in order to sustain the star formation over cosmological timescales (Sancisi
et al. 2008; Fraternali 2010).

1.2.3 Dark Matter Halo

The existence of dark matter in spiral galaxies is inferred from their rotation curves. If we
combine the mass distribution of luminous matter includingstellar mass, gas, interstellar dust
and halo stars, a Keplerian fall-off (Vrot ∝ R−1/2, with Vrot being the rotation velocity andR
galactocentric radius) in the outer part of rotation curve is expected. However, instead of the
Keplerian fall-off, nearly flat rotation curves are traced far out of optical disks through 21 cm
emission lines and still show no sign of declination (de Bloket al. 2008). If we use the rotation
speed to measure the mass distribution as a function of radius in spiral galaxies, the ‘missing
mass’ now coined with the name ‘dark matter’ is required to provide enough gravitational force
in order to support flat rotation curves.

Our understanding about the nature of dark matter is still very little. It is dark because it does not
emit light. It is hard to detect because it is not supposed to interact with luminous matter except
through the gravitational effects. It is important because it occupies 80% the mass budgetof
matter and therefore dominates the evolution of structure formation in the Universe. Within the
framework of cold dark matter, the dark matter is believed tomove at normal velocity contrast
to the warm dark matter moving at relativistic velocity and to the hot dark matter moving at
ultrarelativistic velocity.

A galactic disk is believed to be embedded in a dark matter halo. Numerical simulations con-
ducted by Julio Navarro, Clarlos Frenk and Simon White in 1996 reveal a universal density
profile of halo as described in Eq. (2.26). In their simulations, this profile is found over a wide
range of size and mass scales, ranging from dwarf galaxies torich clusters of galaxies. However,
other detailed simulations find the shape of dark halo to be triaxial andr−1 cusp in the center
(Frenk et al. 1988; Dubinski 1994; Hayashi et al. 2004, 2007;Capuzzo-Dolcetta et al. 2007).
Many observational efforts has been dedicated to confirm these predictions kinematically. They
find the center of halos is not characterized by ar−1 cusp but by a central kpc-sized ‘core’ (Kuzio
de Naray et al. 2008 and references therein). The triaxial profiles are also not supported by
measuring the noncircular motions in spiral galaxies (Trachternach et al. 2008 and references
therein). The dark matter halo seems to be in a round shape.

These discrepancies pose challenges to the nature of dark matter, the structure formation in disk
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galaxies, e.g. bar/bulge formation due to the interaction between stars and dark matter, and the
evolution of disk galaxies.

1.2.4 Stellar Disks

As described in the previous sections, gas evolves in the potential largely contributed by the
dark matter and the stellar disk. Photometrically, stellardisk can be decomposed into a central
concentrated bulge and an exponential disk of a constant scale-height. In the following, we
describe the profiles of both components.

Outside of centeral bulge, surface brightness (emission from stars) observed from other disk
galaxies suggests an exponentially radial profile,I (R) = Id exp(−R/Rd), with Id being the ex-
tropolated centeral surface brightness,R the galactocenter distance andRd the scalelength of
the stellar disk. Recent result shows the scalelength for the Milky Way is estimated 2.5 ± 0.5
kpc. The vertical structure of the stellar disk can be inferred from the observations of edge-on
disk galaxies. Optical observations suggest the luminosity distribution perpendicular to disks
can be reasonably fitted with the sech2(z/zd) profile, wherez describes the height away from the
midplane andzd the scaleheight of disks. This vertical structure can be understood by a self-
gravitating sheet with Gaussian velocity dispersion independent ofz (Spitzer 1942). Combining
these results leads to a description for a three-dimensional stellar disk:

I (R, z) = Id exp(−R/Rd)sech2(z/zd). (1.1)

The stellar disk can be further decomposed into a thin disk populated with younger massive
metal-rich stars (population I) and a thick disk with older metal-poor stars (population II) (Burstein
1979; van der Kruit & Searle 1981a,b). In the solar neighborhood, the scaleheight of the thin disk
is measured 300 pc and 1 kpc for the thick disk. Over 90% of massis concentrated in the thin
disk. The variation of the vertical extent in stellar disks was estimated to be independent of
the radius from earlier observations of edge-on disk galaxies (van der Kruit & Searle 1981a,b).
However, near infrared observations of Kent et al. (1991) suggest a moderate flaring beyond 5
kpc in the Milky Way with a slope of 20 pc kpc−1. The same trend has been confirmed for a
larger sample of edge-on disk galaxies (de Grijs & Peletier 1997).

In addition to stellar disks, disk galaxies of late-type passing from S(B)a to S(B)c contain a
bulge with decreasing central bulge/disk luminosity ratio ranging fromLbulge/Ldisk ∼ 0.3 to
Lbulge/Ldisk ∼ 0.05. The bulge of the Milky Way, for example, contributes 15% of the total
luminosity.

Bulges can be subdivided into three types: classical bulges, box/peanut bulges and disk-like
bulges. A classical bulge is described as a spheroidal structure containing old stars with little star
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formation activity and dust compared to the disk component.Their surface brightness can be
fitted with anr1/4 law now known as De Vaucouleurs’ law (Carollo et al. 1999). Several scenarios
has been proposed to explain the formation of classical bulges. Steinmetz & Muller (1995), in
their numerical simulations, suggest that bulges can form during the first starburst triggered by
the gravitational collapse. Later, Steinmetz & Navarro (2002) show that the merger of disk
galaxies of similar size at redshiftz ∼ 3.3 can stir stars in the disk and form a bulge progenitor.
Noguchi (1999) proposed that dense clumps can form in a proto-disk via graivitational instability.
These clumps then gradually spiral towards the center of galaxy by dynamical friction and form
a classical bulge. As for box/peanut bulges, numerical simulations carried out by Athanassoula
(2005) conclude that this type of bulges are simply part of the result of secular evolution of bars
seen in nearly edge-on galaxies.

Kormendy (1993) points out that many bulges, which are classified by ther1/4 law, have prop-
erties similar to disks other than bulges in terms of morphology and kinematics. In fact, they
often present structures like spirals, rings, dust lanes and star forming knots in the very center of
galaxies. The well-organized structures suggest that it cannot be formed through violent merg-
ers. Secular evolution of disk might be responsible for thistype of bulge. In all, the formation of
disk-like bulges is still unclear.

The tight correlation between the mass of supermassive black holes, Mbh, and the velocity disper-
sion,σ, of the surrounding stellar bulges suggests that black holes somehow evolve with bulges
(Ferrarese & Merritt 2000; Gebhardt et al. 2000). This relation is now known as the Mbh-σ rela-
tion. Since then, other relations that correlate the mass ofblack holes and the properties of host
bulges has been found. Graham et al. (2001) shows that Mbh correlates with the concentration of
the host bulge quantified by the Sersic indexn. Marconi & Hunt (2003) and Häring & Rix (2004)
demonstrate a good correlation between the mass of supermassive black holes and the mass of
bulges. To sum up, a black hole with larger Mbh tends to have a larger velocity disperion, a more
concentrated bulge and a more massive bulge. Given that different kinds of bulge discussed in
the above, the physical origin and the implication of these relations are still unclear.

1.2.5 Gaseous Disks

Overall, gas content is more rich in late-type galaxies thanearlier types. In optical, most of
the gas concentrates in the galactic midplane with a scaleheight significantly smaller than stellar
disks. Unlike stellar disk, the distribution of gaseous disk is less well defined due to complex
phase transitions, star-gas interactions, star-forming processes, gas accretion, etc.

In general, the distribution of HI gas detected by 21 cm linesis fairly flat and uniform with a
scalelength much larger than stellar disk (Leroy et al. 2008), while in some galaxies a HI hole is
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present in their center. HI gas can be traced far beyond optical disks and is usually significantly
flaring in the outer disk (Lockman 1984; Wouterloot et al. 1990; Klessen & Hennebelle 2010).
The ubiquity and the abundance of HI makes it the most important tracer to study the dynamics
of disk and the interaction of galaxies. The molecular, H2, is not easy to observe. Its abundance is
usually inferred from the transition lines of CO in the radioor the infrared portion of spectrum.
Unlike the widespread HI, molecular gas concentrates towards the centers of galaxies and is
often structured into the form of giant molecular clouds (GMCs) or dark clouds. In the outer part
of galaxies, molecular clouds are often organized along thespiral arms. The ionized gas emits
visible light as an electron recombines with a proton. This process happens when the ultraviolet
light emitted from the young, bright, massive stars ionizesthe surrounding neutral atomic HI.

The scaleheight of HI disk is observed to be nearly constant in the inner Milky Way (< 8.5 kpc).
This was a long-standing puzzle since the scaleheight of gasdisk is expected to increase with
radius due to the exponentially descreasing surface density of the stellar disk (Oort 1962). This
is mainly because in earlier approaches, the self-gravity of gas is often neglected due to its small
fraction of total mass compared to the stellar disk. Recently, Narayan & Jog (2002) revisited this
problem in a semi-analytical way. They adopt the velocity dispersion of stars, neutral gas and
molecular gas from observations and include the joint gravity contributed by stars, dark matter
and gas. By assuming the gas disk is in hydrodynamic equilibrium in the vertical direction,
their results fit excellently to the observed scaleheight. Furthermore, they also find that the gas
disk also has impact on the scaleheight of stars. Because thevertical velocity dispersion of stars
is only 20 km s−1 measured in the solar neighborhood. Their results suggest that the vertical
structure of disk is sensitive to the gravity of all ingredients, i.e, stars, dark matter and gas. To
properly model a galactic disk in numerical simulations, one needs to treat the vertical structure
self-consistently in order to have an equilibrium disk.

1.3 Layout of The Thesis

We have outlined the properties and some questions associated with each constituent in a disk
galaxy. The interplay between each component makes the evolution of disk galaxies extremely
complicated. On small scales, stars form from the gravitational collapse of gas. Stellar feedbacks
enrich the gas content, affecting the chemical evolution of interstellar medium. Energy released
from stars regulates the birth rate and properties of next generations of stars. Ultraviolet lights
emitted from stars ionize the neutral gas, coupling the evolution of gas and stars to interstellar
magnetic fields. On large scales, disk instability forms structures such as spirals and bars. Sub-
sequently, the secular evolution of disk appearance is reshaped by the torques excerted by spirals
and bars over cosmological timescales (Foyle et al. 2010 andreferences therein).



14 CHAPTER 1

Although some important insights can be obtained by theoretical works, complicated interactions
between gas and stars and highly nonlinear behaviors of gasdynamics make pure mathematical
analyses impractical to trace the disk evolution. With the advances in computing power and
the development of new numerical techniches, we are now in a good position to tackle these
questions outlined in the previous sections on computers. Before complicating the disk with
different physics, one needs to initialize a well-controlled three-dimensional disk in order to have
conclusive results. We mainly learn two things from Narayan& Jog (2002): (i) galactic disks are
roughly in equilibrium state in the vertical direction (ii)to model a composite disk including dark
matter, stars and gas, one needs to build the joint potentialself-consistently. In Chapter 2, we
devise a simple, effective method to compute the three-dimensional density andvelocity structure
of an isothermal gas disk in hydrodynamic equilibrium in thepresence of arbitrary external
potential. We implement this method with the adaptive mesh refinement magnetohydrodynamics
code RAMSES (Teyssier 2002). The three-dimensional disk stability and the swing amplification
are carefully examined and compared with the theoretical predictions.

In Chapter 3, we search for the evidences of intergalactic gas accretion for the disk galaxy, M83.
We essentially improve the Fourier analysis method proposed by Schoenmakers et al. (1997)
to evaluate the possible presence and strength of any radialflow for M83. We combine the
high resolution interferometric HI map from THINGS with single dish data from the 100-m
radio telescope of the Max-Planck-Institut fur Radioastronomie at Effelseberg (Huchtmeier &
Bohnenstengel 1981) in order to obtain a complete census of the atomic hydrogen across M83.
Evidences of gas accretion through filaments, i.e., cold mode, are examined kinematically.

In Chapter 4, we quantify the impacts of spiral density waveson gas motions. It has been long
proposed that spiral density waves is one of the mechanisms contributing turbulent energy into
the gas (Wada & Koda 2004). The efficiency of this process and how it happens is not well
understood and quantified. On the one hand, the luminous armsseem to suggest that density
wave is triggering the star formation by compressing sub-critical clouds into super-critical ones.
On the other hand, density-wave driven turbulence may regulate the process of star formation.
We measure the hydrodynamical velocity dispersion along the line-of-sight and compare our
results with observations from THINGS. We address how efficient the gas is transported toward
the center of galaxies by redistributing angular momentum.We quantify the radial velocity
as a function of radius. We demonstrate that vortensity conservation which has been used for
theoretical and obervational studies (Balbus 1988; Shettyet al. 2007) does not apply to a flow
which has curved shocks. We semi-analytically quantify thecreation of vortensity due to shocks
and compare it with the intrinsic disk vortensity. In addition, we investigate the origin of spurs
and how the retrograde motion with respect to the galaxy rotation results.

In Chapter 5, we summarize the results and their implications. Possible extensions of these works
will be discussed.



Chapter 2

Equilibrium Initialization and Stability of
Three-Dimensional Gas Disks

2.1 Introduction

The stability of gas disks plays an important role in governing the structure of disk galaxies
and in regulating their star formation rate. Although important insights can be obtained using
perturbation theory (Toomre 1964; Lin & Shu 1964; Rafikov 2001), the onset of stability and
its impact on the star formation and evolution of gas disks isbest studied using hydrodynamical
simulations. These can follow the non-linear behavior of the system, which cannot be addressed
by linear analysis. With the recent advances in computing power and the development of new
numerical techniques, we are now in a good position to treat athree-dimensional, isolated galaxy
self-consistently.

However, in order for a stability analysis to be meaningful and reliable, it is of paramount im-
portance that one can specify equilibrium initial conditions. After all, if the initial disk is not
in equilibrium, its relaxation during the first time-steps of the simulation may trigger instabil-
ities that are of little relevance for our understanding of the stability of disk galaxies. Unfor-
tunately, no analytical solution is known for the density, velocity field and temperature of a
three-dimensional gas disk in hydrostatic equilibrium in the external potential of a dark matter
halo and/or a stellar disk. Consequently, previous hydrodynamical simulations have either started
from non-equilibrium initial conditions, or have resortedto iterative techniques to set-up the ini-
tial conditions, at the cost of having little control over the resulting equilibrium configuration.
In this Chapter we present a new method that allows one to compute the density and velocity
structure of a realistic, isothermal, three-dimensional gas disk in hydrostatic equilibrium in an
abritrary external potential.

Hydrostatic equilibrium implies a balance between gravityand pressure. Gravity includes the
self-gravity of the disk plus that of external components (i.e. dark matter halo, bulge, stellar
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disk, etc), while the pressure is given by an equation of state p = p(ρg,T), with p being the
gas pressure,ρg the gas density andT the temperature. The challenge is to find aρg, T and the
velocity field,~v, such that the system is self-consistent (i.e., obeys the Poisson equation) and in
hydrostatic equilibrium.

In the case of an isothermal, axisymmetric, perfectly self-gravitating disk (i.e., no external po-
tential), the equilibrium disk has a sech2 distribution (Spitzer 1942) in the vertical direction, with
a scale-height that is proportional to

√

c2
s/ρg(R, z= 0), wherecs is the sound speed. Here, cylin-

drical coordinates, (R, φ, z), are used to describe the density field. This immediately shows that
sinceρg(R, z = 0) is typically a decreasing function of radius, one generally expects the scale-
height to be a function ofR. In particular, in the case of a globally isothermal disk, the sound
speedc2

s ∝ T is constant in space, giving rise to a flaring disk, i.e., the scale-height increases
with increasingR (Narayan & Jog 2002, hereafter NJ02; Agertz et al. 2009). Alternatively, if we
want to initialize a disk with a constant scale-height, a radial temperature gradient needs to be
introduced. Tasker & Bryan (2006) initialize their disks tobe isothermal and to have a constant
scale-height. As indicated above, this cannot be an equilibrium configuration. Consequently, the
disk is expected to experience an unavoidable relaxation process which makes the initialization
not well-controlled and might potentially contaminate thephysics, e.g., star formation, gas dy-
namics etc., of interest. Agertz et al. (2009) set-up their isothermal disks based on the local total
surface density of gas plus dark matter. Although the scale-height of their initial disk changes
with radius, the local total surface density is not defined ina mathematical way and therefore
elusive. In addition, their surface density does not followan exponential profile.

An important assumption underlying Spitzer’s analysis is that the radial variation in the potential
is negligible compared to that in the vertical direction. This assumption is supported by obser-
vation that disks typically have vertical scale-heights that are an order of magnitude smaller than
their radial scale-length (van der Kruit & Searle 1981b,a).A well studied example is the Milky
Way, whose scale-height is less than 200 pc for the cold gas (Jackson & Kellman 1974; Lockman
1984; Sanders et al. 1984; Wouterloot et al. 1990; see also Narayan & Jog 2002) and roughly
300 pc for the stars in the Solar neighborhood (Binney & Tremaine 2008; Kent et al. 1991), com-
pared to a radial scale-length of∼ 3.5 kpc. Throughout this Chapter we therefore follow Spitzer
and consider disks to be ‘thin’, allowing us to treat their radial and vertical structure separately.
Hence, we caution that our method is not valid for thick disk structures. However, since we are
mainly concerned with cold gas disks in this Chapter, this restriction is of little importance.

Springel et al. (2005) introduce a flexible solution for initializing a gas disk self-consistently.
Basically, they solve Eq. (2.2), Eq. (2.3) and Eq. (2.24) (see Section 2.2) iteratively. First, they
deploy a number of particles (say, 2048× 64× 64) on a distorted grid structure in the radial, the
azimuthal and the vertical directions. Unlike the live particles, these particles are simply used as
markers for mass distribution. Second, they compute the joint total potential and the resulting
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force field numerically with a hierarchical multipole expansion based on a tree code. Third,
given the potential just computed, integrating Eq. (2.2) for a given midplane volume density,
ρg(R, z = 0), gives the vertical structure of density. Fourth, adjustthe midplane volume density
to fulfill Eq. (2.24). Repeat the procedure between the second step and the fourth until the result
converges.

Although this description is quite general and flexible, forseveral reasons, this is not commonly
used in the grid-based codes which are featured with adaptive-mesh refinement (AMR). The first
and also the most fundamental one is that the grid structure is normally unknown before we
actually initialize the disk. Except the uniform-grid initialization, the grid structure is automat-
ically generated based on the criterion for refinement. Second, for a fully parallelized code, the
initial data is distributed over different processors and memory storages. This means that the
data exchange between processors is necessary in order to fully compute the joint total potential.
The situation becomes even more technically challenging when initializing with AMR. Third,
The vertical structure of the gas disk depends only on the vertical potential difference (see Eq.
(2.7) and Eq. (2.9) below). A description of the equatorial potential is enough for specifying the
velocity field (See Eq. (2.13), Eq. (2.29) and the results shown in Section 2.3). In general, given
the density distribution computed by the methods introduced in Section 2.2.2 together with the
conclusion in Section 2.2.1, we are allowed to acquire the exact velocity field by Eq. (A.17) in
Casertano (1983). Fully solving the Poisson equation becomes not necessary. Fourth, initializ-
ing a disk over distributed memories allow us to deal with a larger data set which cannot be fully
contained in a single memory storage.

We propose a simple but very effective way of initializing a three-dimensional gas disk. This
method can be easily incorporated into any existing code based on either a Lagrangian or Eu-
lerian approach. No data exchange between processors is needed. Vertical density profile is
obtained self-consistently without solving the full Possion equation. We implement these ideas
with the adaptive mesh refinement magnetohydrodynamics code RAMSES (Teyssier 2002) and
apply our concepts to probe the onset of the disk instability. We modify the dispersion relation
for the infinitesimally thin disk (Lin & Shu 1964)to be able totreat thick disks (Goldreich &
Lynden-Bell 1965; Kim & Ostriker 2002b, 2006; Shetty & Ostriker 2006; Lisker & Fuchs 2009).
The threshold valueQth is then obtained semi-analytically. Previous studies on this subject are
either focused on a small patch of a galaxy (2D/3D: Kim & Ostriker 2002b) or are globally
two-dimensional but with the reduction of gravity includedin the governing equations (Shetty
& Ostriker 2006). In this Chapter, we revisit the subject as atest of our fully three-dimensional
isolated galaxy models. Models with or without stellar potential are investigated.

Galactic disks are comprised of stars and gas. Both components are coupled to each other via the
Poisson equation. Since the stellar disk dominates the massbudget within the luminous disk, its
presence has great impact on the scale-height of the gas diskas described in NJ02. A balanced
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initial condition depends not only on the correct vertical structure but also on the correct rotation
velocity. To specify the rotation velocity needed, the massenclosed within a certain radius must
be under control. Although it is common practice to specify the functional form of the volume
densities of 3D disks, we show that because of the flaring diskthis typically results in a surface
density profile that contains a central ‘hole’ (Agertz et al.2009). This problem can be trivially
avoided by specifying the desired surface density profile instead. We show that the corresponding
volume density can easily be obtained using a simple iterative scheme. The surface density of the
total gas (HI+H2) from observation (Leroy et al. 2008) typically follows an expotential profile in
disk galaxies. This profile gives an analytic description ofthe total mass enclosed within a radius
as well as a reasonable approximation for velocity field as shown by Eq. (2.29) below (Binney
& Tremaine 2008).

Describing the stellar disk with a fixed background potential is at best an approximation to reality.
The interaction between live stellar disk and gas can potentially destabilize the system (Rafikov
2001; Li et al. 2005b,a, 2006; Kim & Ostriker 2007). After all, the gas is cold compared to the
stellar disk and has highly non-linear response to the asymmetric stellar potential. The gravita-
tional interplay between the collisionless stars and dissipative gas is important for a number of
key questions in galactic dynamics. For example, what is thephysical origin of grand design
spirals? Or what initiates and regulates the formation of stars? Having access to well-controlled
initial and environmental conditions is a prerequisite to discovering their causes.

This Chapter is organized as follows. The ideas of initializing a gas disk are outlined in Section
2.2. Details of the simulation parameters and test runs are described in Section 2.3. Axisym-
metric instability of the disk is revisited in Section 2.4. The self-induced spirals due to swing
amplification will be discussed in Section 2.5. A brief summary and the possible extension of
this work is put in Section 2.6.

2.2 Formulation of Equations

In this Section, we develop the required relations and equations to immerse a 3D gas disk in a
preexisting static potential. Assuming that the gas disk and the preexisting potential share the
same symmetry axis, cylindrical coordinates, (R, φ, z), are adopted to formulate the dynamics of
the system. Axial-symmetry enables us to discard the terms describing the variation in azimuthal
direction, i.e.,∂/∂φ = 0. A gas disk which is in detailed balance should fulfill the following
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equations:

1
ρg

∂p
∂R
+
∂Φ

∂R
=

V2
rot

R
, (2.1)

1
ρg

∂p
∂z
+
∂Φ

∂z
= 0, (2.2)

with ρg, p, Vrot andΦ being the volume density of the gas, the gas pressure, the azimuthal rota-
tion velocity (“rotation velocity” in short) and the joint total potential. Equation (2.1) describes
that the gravitational pull in radial direction is counterbalanced by the centrifugal force and the
pressure gradient. Equation (2.2) states that hydrostaticequilibrium along the symmetry axis,
thez-direction, is achieved by the balance between vertical pull of the gravity and the pressure
gradient inz.

To make the system self-consistent, the Poisson equation must be involved:

∇2Φ = 4πG(ρg + ρDM + ρs), (2.3)

with G, ρDM andρs being the gravitational constant, and the volume density ofdark matter and
stars. The total potential is comprised of the contributions from the dark matter halo, the stellar
disk and the self-gravity of the gas, i.e.,Φ = ΦDM + Φs + Φg. In addition, the ideal gas law
provides the link between the gas density, the gas temperature and the gas pressure:

p = ρg(γ − 1)e(T), (2.4)

whereγ represents the ratio of the heat capacities (adiabatic index), e the specific internal energy
andT the gas temperature. In the case of an ideal gas, the specific internal energy depends only
on temperature, and is given by

e=
1

γ − 1
kBT
µmp

, (2.5)

with kB being the Boltzmann’s constant,µ the atomic weight andmp the mass of a proton. How-
ever, to close the set of equations, we should either invoke the energy equation or an equation of
state (EoS), which will be used to evolve the system.

A disk which is in hydrodynamic equilibrium should stay in its original state if we evolve the
disk with the same equation of state which is used to set-up the disk. The numerical results
throughout this Chapter are based on the isothermal equation of state, i.e.,

p = c2
sρg, (2.6)

with cs being the sound speed, a temporal and spatial constant. Equations (2.1) to (2.6) then
form the basis of our discussion. In this Chapter, all the disks are in detailed equilibrium with
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the isothermal EoS. If those disks are adopted to evolve witha cooling function or a polytropic
EoS, we can make sure any change in temperature or dynamics ispurely caused by a cooling or
a heating source.

For a polytropic gas,p = KρΓg. with Γ andK being constant, integrating Eq. (2.2) gives:

ρg(R, z) = ρg(R, z= 0)

[

1−
Γ − 1

c2
s(R, z= 0)

Φz(R, z)

]
1
Γ−1

, (2.7)

whereΦz(R, z) = Φ(R, z)−Φ(R, z= 0) defines the vertical potential difference. We have used the
fact thatc2

s ≡ ∂p/∂ρg = KΓρΓ−1
g when approaching Eq. (2.7). Note that givenΓ , 1, the internal

energy has the following relation:

e(T) =
KρΓ−1

g

γ − 1
. (2.8)

Combining Eq. (2.5) and Eq. (2.8) gives the temperature fieldas a function of position if the gas
disk is initialized with a non-isothermal EoS. As a special case, whenΓ → 1, Eq. (2.7) then
converges to a form for the isothermal gas:

ρg(R, z) = ρg(R, z= 0) exp

(

−Φz(R, z)
c2

s

)

. (2.9)

As we can see from Eq. (2.7) and Eq. (2.9), the vertical structure of gas disk depends on the gas
properties in the midplane and the vertical potential difference.

To fully characterize a gas disk which is in detailed balance, we need to specify the velocity, the
density and the temperature at every location in the beginning of the simulation. In the following
sub-sections we study the general properties of the velocity and density field, which allows us to
devise a simple, but effective method to initialize a 3D gas disk in hydrostatic equilibrium.

2.2.1 Azimuthal Rotation Velocity

In this sub-section, we treat the azimuthal rotation velocity as generally as possible. To make
the notation concise, we drop the subscript of gas density,ρg, and restore the subscript after this
sub-section. Without further assumption, integrating Eq.(2.2) from 0 toz gives:

∫ z

0

1
ρ

∂p
∂z

dz= −Φz(R, z). (2.10)

By integrating Eq. (2.10) in parts, we have:

p(R, z)
ρ(R, z)

=
p(R)
ρ(R)

∣

∣

∣

∣

∣

z=0
−

∫ z

0

p
ρ2

∂ρ

∂z
dz− Φz(R, z). (2.11)
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Inserting Eq.(2.11) into (2.1), we get (see Appendix A.1 forfurther details):

V2
rot(R, z)

R
=

1
ρ

∂p
∂R
+
∂Φ(R, z)
∂R

=
1
ρ

∂p
∂R

∣

∣

∣

∣

∣

z=0

+
∂Φ(R)
∂R

∣

∣

∣

∣

∣

z=0

−
∫ z

0

{(

∂ρ

∂z

)

∂

∂R

(

p
ρ2

)

−
(

∂ρ

∂R

)

∂

∂z

(

p
ρ2

)}

dz. (2.12)

Equation (2.12) shows that the rotation velocity is independent of height above or below the
midplane so long as the integral vanishes. It is evident thatgas with a barotropic equation of
state, i.e.,p(ρg), fulfills this requirement. In addition, for an initially constant temperature (T is
everywhere the same in the beginning) disk, the initial pressure is a function of volume density
only and therefore the integral becomes zero. In this case, equation (2.12) can be simplified
further:

V2
rot(R, z) = R

∂Φ

∂R

∣

∣

∣

∣

∣

z=0
+ (γ − 1)e

∂ lnρ
∂ ln R

∣

∣

∣

∣

∣

z=0
. (2.13)

Equation (2.13) states that the process of specifying the initial velocity in 3D comes down to
knowing the rotation velocity in the equatorial midplane.

2.2.2 Density Distribution

From now on, to avoid confusion, we restore the subscript forthe gas density. To proceed further,
we consider the gas layer to be a very thin structure embeddedin a static potential contributed by
the background spherical dark matter and the stellar disk. Because the gas disk is observationally
thin we neglect the radial variation compared to the vertical one (i.e.,|(∂/∂R(R∂Φg/∂R))/R| ≪
|∂2Φg/∂z2|). In Appendix A.5 we show that this is a valid assumption for realistic gas disks. For
an axisymmetric thin disk, the Poisson equation then reduces to (Binney & Tremaine 2008):

d2Φg

dz2
= 4πGρg. (2.14)

with Φg being the potentials contributed by the gas. In the following, we focus only on disks
with initially constant temperature, i.e., the rotation velocity required for equilibrium has no
dependence on the height above or below the midplane.
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Density Method

Differentiation Eq. (2.2) with respect toz and inserting Eq. (2.14) leads to a second-order non-
linear differential equation:

d2p
dz2
− 1
ρg

dρg

dz
dp
dz
+ ρg(4πGρg +

d2Φs

dz2
+

d2ΦDM

dz2
) = 0, (2.15)

with Φs andΦDM being the potentials contributed by the stellar disk and thedark matter, respec-
tively. So far, Eq. (2.15) is still general with respect to any kind of equation of state. However, a
single equation with two unknownsp andρg is not solvable. To continue with Eq. (2.15), in this
sub-section, we assume that the gas is barotropic, i.e.,p(ρg). Given density distributions of stars,
the dark matter and the boundary conditions in the midplane:

ρg(R, 0) = ρ0(R) and
dρg

dz
= 0, (2.16)

equation (2.15) can be solved by numerical integration, e.g., using the Runge-Kutta method. For
a single-component, self-gravitating, locally isothermal disk (cs(R) can be a function of radius),
Eq. (2.15) has an exact solution:

ρg(R, z) = ρ0(R)sech2(z/h), (2.17)

with ρ0(R) being the gas volume density in the midplane,h =
√

c2
s/2πGρ0 the scale-height and

cs the local isothermal sound speed. According to Eq. (2.17) and since the midplane volume
density,ρ0(R), generally decreases with radius, to keep the scale-height a constant, the sound
speed and therefore the temperature must be a function of radius.

Equation (2.15) is the simplified version of the formula derived by NJ02 (see also Kim & Os-
triker 2002b), where they investigated the vertical structure in a gravitationally coupled, multi-
component galactic disk. It is important to notice that all calculations can be done locally without
the need of exchanging information between processors and therefore greatly reduces the com-
plexity of coding.

In principle Eq. (2.15) allows one to compute the density of the gas such that the disk initially is
in hydrostatic equilibrium. The actual implementation using Eq. (2.15) does not guarantee the
positivity of the density. In particular, at large radiiρg(R, z) is typically close to zero, and small
errors due to the numerical integration often yield negative densities. This problem is especially
relevant when using the adaptive-mesh refinement techniques.

Initializing a gas disk with AMR usually starts with the coarsest grid. A natural selection of the
integration step is the cell size. Then a problem immediately rises when solving Eq. (2.15) to
specify the volume density. Supposing that the cell size is much larger than the scale-height of



EQUILIBRIUM INITIALIZATION AND STABILITY OF THREE-DIMENS IONAL GAS
DISKS 23

the gas disk, the errors introduced by the coarse integration may lead to negative densities on the
outskirt of the computation domain. One might think the integration can be done by using either
adaptive integration intervals or simply a fixed integration interval which is much smaller than
the cell size. However, the improvements only guarantee theconvergence of the solution not the
positivity. Nevertheless, because of the generality of Eq.(2.15), density method is still valuable
for semi-analytic research.

Potential Method

In this sub-section, we develop another route for specifying the density distribution. We stress
that the following derivation is only applicable to initially isothermal disks. With this constraint,
integrating Eq. (2.2) gives:

ρg(R, z) = ρ0(R) exp

(

−Φz(R, z)
(γ − 1)e

)

. (2.18)

Combining Eq. (2.14) and Eq. (2.18), a second-order non-linear equation for the vertical poten-
tial difference of gas is obtained:

d2Φg,z

dz2
= 4πGρ0(R) exp

(

−
Φz(R, z)
(γ − 1)e

)

. (2.19)

Given the analytic forms ofΦDM andΦs the only unknown is the potential difference of gas,
Φg,z = Φg(R, z) − Φg(R, z = 0). Similar to the density method, given the boundary conditions
ρ0(R), Φ(R, z = 0) and dΦ(R, z = 0)/dz = 0, numerical integration can be applied to solve
Eq. (2.19). By insertingΦz obtained by integrating Eq. (2.19) into Eq. (2.18), the density
distribution is acquired. Notice that what really matters to us is the potential difference, not the
absolute value. This means the value ofΦg(R, z = 0) can be an arbitrary constant, although we
do know the values ofΦDM(R, z= 0) andΦs(R, z= 0).

The merit of this formulation is evident, the occurrence of negative density is avoided by Eq.
(2.18). Tiny errors in the potential difference will not do any harm to the positivity of the gas
density. Numerical experiments show that in normal cases inwhich both the density method and
potential method work, the solutions are consistent.

At a given radius,R, solving Eq. (2.19) only provides us with information aboutthe potential
difference,Φz(R, z). However, a useful byproduct of the potential method is that it is possible to
acquire a good approximation of the total potential by:

Φg(R, z) = Φg(R, z= 0)+ Φg,z(R, z), (2.20)

as long as we know the potential in the midplane,Φg(R, z = 0). Equation (2.20) is an approx-
imation because the use of Eq. (2.19) is based on the reduced Poisson equation Eq. (2.14) in
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which the variation in radial direction is ignored. The gradient of the potentialΦg(R, z = 0)
determines the velocity field required while the vertical potential differenceΦg,z(R, z) gives the
vertical structure of the disk. In principle, the radial force, which is associated withΦg(R, z= 0),
in the equatorial plane for an axially symmetric density distribution can be evaluated precisely
by the equation (A.17) in Casertano (1983). This allows us toobtain the total potential without
fully solving the Poisson equation. In practice, if the initialization is performed with multi-node
clusters, each node only keeps part of the information aboutthe density distribution, data ex-
change with AMR itself is technically challenging. In Section 2.3, for an exponential disk, the
numerical results will show that the use of Eq. (2.29) is a good approximation for most of our
interests. The correspondingΦg(R, z = 0) associated with Eq. (2.29) can be found in the book
by Binney & Tremaine (2008), Eq. (1.164a).

Equation (2.20) is useful, because involving the total potential into the formulation is an impor-
tant step for self-consistently building up the combined disks comprised of a live stellar disk and
a gas disk. Extension to the work of Shu (1969), Kuijken & Dubinski (1995, hereafter, KD95)
develop a self-consistent disk-bulge-halo model for galaxies. The distribution function built by
Eq. (6) in KD95 involves the potential differencesΦz andΦ(R, 0)− Φ(Rc, 0), with Rc the radius
of the guiding center. The potential method presented here can be naturally incorporated into
the framework of KD95. Therefore, in this Chapter, all the disks are initialized by the potential
method.

Exponential Disk

Some studies have assumed that the midplane density of a 3D gas disk has an exponential form
(Tasker & Bryan 2006; Agertz et al. 2009). However, as we now demonstrate, in general this
results in a surface density distribution that peaks at a specific non-zero radius, giving rise to a
ring-like feature. We assume a gas disk with the popular sech2 vertical profile:

ρg(R, z) = ρc exp(−R/Rd)sech2
(

z
h(R)

)

, (2.21)

with ρc being the central volume density,Rd the disk scale-length andh(R) the scale-height as a
function of radius. The surface density then reads:

Σ(R) =
∫ ∞

−∞
ρg(R, z)dz= 2ρc exp(−R/Rd)h(R). (2.22)

Based on Eq. (2.22), we measure the scale-height of a disk at certain radius byh(R) = Σ(R)/(2ρ0(R)).
The extrema of the surface density can be evaluated by takingthe derivative to Eq. (2.22):

dΣ(R)
dR

= 2ρc exp(−R/Rd)

(

dh(R)
dR

−
h(R)
Rd

)

= 0. (2.23)
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We Suppose that the disk is linearly flaring, i.e.,h(R) = h0 + R/Rh, with h0 being the minimum
scale-height of the disk andRh a factor controlling the degree of flaring. The peak of the surface
density then locates atRpeak= Rd − h0Rh. Whenever theRpeak is positive, we get a ring in surface
density. However, a ring in the surface gas density is not commonly seen in a real disk galaxy.
An exponential profile in the total gas is prevalent in disk galaxies (Leroy et al. 2008).

In order to avoid this feature, it is advantageous to specifythe actual surface density of the disk,
rather than its midplane density. In the case of the exponential profile, the surface density reads:

Σ(R) = Σ0 exp (−R/Rd) =
∫ ∞

−∞
ρg(R, z)dz, (2.24)

with Σ0 being the surface density in the galactic centre. CombiningEq. (2.24) and Eq. (2.18),
the volume density in the midplane can be expressed as:

ρ0(R) =
Σ0 exp (−R/Rd)

∫ ∞
−∞ exp(−Φz/[(γ − 1)e])dz

. (2.25)

It shows that the correct volume density in the midplane for the desired surface density profile
can be obtained iteratively. Given a initial guess forρ0(R), Φz is evaluated via Eq. (2.19) and
also the integral appears in Eq. (2.25). One needs to iteratebetween Eq. (2.19) and Eq. (2.25).
However, depending on the quality of the initial guess, convergence can be reached very fast. For
instance, with the initial guess beingρ0(R) = Σ0 exp(−R/Rd), a six-time iteration already gives
us a reasonable exponential disk.

We pursue the exponential disk for several reasons. One is simply because it is commonly seen
in disk galaxies. Another is that we have a better control of the total mass. As we can see, if we
specify the midplane volume density instead of the surface density, we do not exactly know the
total mass until we finish the integration. Without knowing the total mass in advance, evaluating
the circular velocity contributed by the self-gravity willnot be a trivial task. Nevertheless, in
principle, any profile of the surface density can be achievedsimply by the process introduced in
this sub-section.

2.3 Implementation and Tests

2.3.1 Simulation Parameters

In this Section, we test the ideas outlined in the previous Section. We implement the method in
the AMR-code RAMSES (Teyssier 2002). RAMSES uses grid-based Riemann-solvers for the
magneto-hydrodynamics (MHD) and particle-mesh (PM) technique for the collisionless physics.



26 CHAPTER 2

Run T (K) Ms(M⊙) Figure

Gas0 4× 104 - (2.1),(2.2),(2.3)

Gas1 2× 104 - (2.4),(2.5)

Gas2 1× 104 - (2.4),(2.5),(2.8)

Gas3 9× 103 - (2.4),(2.5)

Gas4 8× 103 - (2.4),(2.5)

GasStar1 7× 103 4× 1010 (2.6),(2.7),(2.8)

GasStar2 6× 103 4× 1010 (2.6),(2.7)

GasStar3 5× 103 4× 1010 (2.6),(2.7)

GasStar4 4× 103 4× 1010 (2.6),(2.7)

Table 2.1: Models’ Parameters. All disks have a gas mass of 1010M⊙.

It has a fully parallelized Poisson solver with periodic boundary conditions, which we use for
this Chapter. Gas disks which are initialized isothermallywith an exponential surface density
of a scale-length of 3.5 kpc and a total mass of 1010M⊙ are embedded in a static potential. An
isothermal equation of state is used to evolve the disks throughout this Chapter.

The tests are mainly divided into two groups, one group is evolved with a static stellar potential
(models with the prefix GasStar), the other without (models with the prefix Gas). Gas1 to Gas4
are M33-like gas-rich galaxies, while GasStar1 to GasStar4are more similar to the Milky-Way.
The main parameters of the models are listed in Table 2.1. Thesize of the computational domain
is 250 kpc on a side. Up to 12 levels of refinement are used for those runs without stellar potential,
and 13 levels for the other group, i.e., the corresponding highest spatial resolutions are about 60
pc and 30 pc, respectively.

The volume density of the halo is described by the NFW profile (Navarro et al. 1997):

ρDM(r) =
M200

4π f (c)r200

cx
r2(1+ x)2

, (2.26)

with the Virial massM200 = 1012M⊙, x = rc/r200, concentration parameterc = 12, distance
r =
√

R2 + z2, Virial radius r200 = 213 kpc andf (c) = ln(1 + c) − c/(1 + c). The Virial radius
(r200) is a radius within which the averaged matter density is 200 times the critical density.

The density distribution of the stellar disk reads (Miyamoto & Nagai 1975; Binney & Tremaine
2008):

ρs(r) =

(

b2Ms

4π

)

aR2 + (a+ 3
√

z2 + b2)(a+
√

z2 + b2)2

[

R2 + (a+
√

z2 + b2)2
]5/2

(z2 + b2)3/2
, (2.27)
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with Ms = 4× 1010M⊙ being the mass of the stellar disk,a = 3.5 kpc andb = 0.2 kpc the shape
parameters.

In light of the result drawn from Section 2.2.1, for an initially constant temperature setup, we
only need to know the circular velocity in the midplane for initializing the velocity field. The
rotation velocity,Vrot, is decomposed into four components:

V2
rot = V2

DM + V2
s + V2

g + V2
p , (2.28)

whereVDM, Vs, Vg are the circular velocities corresponding to the dark matter halo, the stellar
disk and the gas disk, andVp denotes the contribution due to the pressure gradient.

In this Chapter, we have the analytic form forVDM andVs. For the contribution from the gas disk
and pressure gradient, we take the approximation for an infinitesimally thin disk with exponential
surface density as described in Eq. (2.24). We set:

V2
g(R) = 4πGΣ0Rdy

2[I0(y)K0(y) − I1(y)K1(y)] (2.29)

V2
p(R) = (γ − 1)e

∂ lnρ
∂ ln R

∣

∣

∣

∣

∣

z=0
, (2.30)

with y = R/(2Rd), I0, K0, I1 andK1 being the modified Bessel functions of the first and second
kinds of zeroth/first-order, respectively. Equation (2.30) derives from the second term of Eq.
(2.13). However, contribution from pressure gradient in the midplane can only be evaluated after
the gas disk is set up. Note that for an exponential disk, surface and volume densities decrease
with radius and henceV2

p is negative.

2.3.2 A Stable Disk

To demonstrate that the disk built by the potential method described in Section 2.2 is in detailed
equilibrium, we start with a stable equilibrium disk in model Gas0. In this test, the stellar disk
is deliberately removed. Without the dynamical support from the stellar disk, the self-gravity of
the gas plays the dominant role in determining the vertical structure of the disk and provides a
not negligible contribution to the rotation velocity.

Figure 2.1a decomposes the rotation curve into the different contributions by the halo, the gas
and the pressure gradient. Note that the forces of the self-gravity and the pressure gradient
are in opposite sense, the self-gravity pulls matter inwards while the pressure gradient pushes
outwards. In this figure,Vp is shown in its absolute value. If we ignore the pressure gradient,
the disk would rotate too fast and gradually drift outward. Figure 2.1b shows the conventional
Toomre’s Q defined by:

Q =
csκ

πGΣg
. (2.31)
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Figure 2.1: Model Gas0: (a) The total rotation velocity (solid) and contributions from dark
matter halo (dashed), gas (dotted) and gas pressure (dash-dotted). Note that we plot the absolute
value of the pressure gradient to have positive values for the direct comparison. It should be
in opposite sense to the gravity. In this model contributions from the gas self-gravity and the
pressure gradient is not negligible. (b) TheQ value of model Gas0 as a function of radius as
defined by Eq. (2.32). TheQ is well above the threshold valueQth = 1, thus the disk is expected
to be stable. No structure should develop with time.

with κ being the epicyclic frequency. It shows that theQ is well aboveQth = 1, the threshold
value for stability, at all radii. The disk is hot enough to keep the disk stable and no structure
should develop with time.

We let the disk evolve for 1.6 Gyrs (four orbits for the gas at 10 kpc) and check how well
the disk properties are kept. Figure 2.2a presents the evolution of the surface density and
the rotation curve. The solid lines represent the initial states and the diamond symbols are
the status after an evolution of 1.6 Gyrs. The surface density is obtained by projecting along
the symmetry axis and the rotation curve is evaluated by the mass-weighted circular velocity,
v̄rot(R) =

∫

ρg(R, z)vrot(R, z)dz/Σg(R). Although a small amount of mass accretes onto the very
central part of the disk, overall the surface density and therotation curve are kept very well. Mass
accretion into the center seems unavoidable for a Cartesian-grid code mainly because too small
a number of cubic cells is used to mimic the circular motion inthe centre. This accretion will be
eventually halted by the pressure gradient built by the accumulating material.

Figure 2.2b shows the evolution of the scale-height. The solid line represents the initial state
and the dotted line the evolution after 1.6 Gyrs. Upon closerinspection we find that the disk
undergoes a very small amount of mass-redistribution in theradial direction, which we believe
to be a consequence of our two approximations when initializing the disk. One is from the
reduced Poisson equation, Eq. (2.14), and the other is from the use of Eq. (2.29). Equation
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Figure 2.2: Model Gas0: The evolution of 1.6 Gyrs of a stable disk. (a) The evolution of the
surface density (upper panel) and the rotation curve (lowerpanel) att = 0 Gyr (solid) andt = 1.6
Gyr (diamond). Overall, the surface density and rotation curve are kept very well over 4 orbital
periods. (b) The evolution of the scale-height att = 0 Gyr (solid) andt = 1.6 Gyr (dotted).
The small change in scale-height indicates that the required circular velocity is overestimated
probably due to the approximation of Eq. (2.14) and Eq. (2.30). In all, the disk still stays well
in the initial condition. The step-wise character of the scale-height reflects our discretization and
the change of spatial resolution due to the AMR.

(2.29) overestimates the circular velocity needed to support the disk. The thickness of the disk
reduces the potential in the midplane by a few percent (see Appendix A.2). Figure 2.3 shows the
snapshots of the face-on surface density att = 0 (Fig. 2.3a) and att = 1.6 Gyr (Fig. 2.3b). No
structure is developing during the course of the simulation.

To sum up, figures 2.1 to 2.3 indicate that without external perturbation the disk is quiet over sec-
ular time-scales. The shape of such a disk is naturally flaring, i.e., the scale-height increases with
radius. The ideas described in Section 2.2 are able to treat the initial condition self-consistently.
A well-balanced disk is especially useful to probe the onsetof disk instability as described in the
next Section.

2.4 Axisymmetric Instability

The question of disk stability has been investigated for more than four decades since the pio-
neering works by Toomre (1964) for collisionless stars and Goldreich & Lynden-Bell (1965) for
gas sheets. Understanding the origin and evolution of disk structure is challenging. If the disk
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(a) (b)

Figure 2.3: Model Gas0: The size of the images is 20 kpc× 20 kpc. The evolution of the surface
density at (a)t = 0 Gyr and (b) att = 1.6 Gyr. This figure shows that no structure is developing
over secular time-scale.

is stable like our model Gas0, no structures can form. On the other hand, if the disk is highly
unstable, the surface density will quickly fragment and develop a clumpy and chaotic-looking
appearance. There will be no well-organized structures. The striking spiral appearance of many
nearby disk galaxies indicates that those disks are marginally stable.

For an infinitesimally thin disk, the instability thresholdis at Qth = 1 (Toomre 1964). The first
theoretical work to include the finite thickness of a self-gravitating gas disk is that by Goldreich
& Lynden-Bell (1965). Some authors have investigated the stability of finite thickness gas disks
in numerical simulations (both in 2D and 3D) using local patches within a shearing box (Kim
& Ostriker 2006, 2002b; Gammie 2001). This technique, in 2D,has also been used by Kim &
Ostriker (2007) to investigate the interaction between thegas disk and a live stellar disk. Shetty
& Ostriker (2006) used global 2D simulations in which they incorporated the effect of finite
disk thickness by diluting the gravitational force. For 3D global disk calculations, see Li et al.
(2005b,a, 2006), who investigate the relation between diskinstability and star formation rate.
These studies all agree that although the inclusion of the thickness does not have a qualitative
impact on the disk instability, it does shift the threshold value of instability quantitatively. In
addition, accounting for disk thickness may have a large impact on the evolution of a disk, such
as the development of spurs or the wiggle instability (Kim etal. 2002; Kim & Ostriker 2006).

In this Section, armed with a well-balanced gas disk, we revisit the axisymmetric instability of
disks in 3D global fashion. We first derive the reduction factor F which reflects the reduction of
the gravity due to the finite thickness of the disk. Then the corresponding instability threshold
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Qth(R,T) derived from a semi-analytic calculation is compared withthe numerical results. In the
final sub-section, we also explore the impact of the presenceof a static stellar potential on the
axisymmetric instability.

2.4.1 The impact of thickness on disk stability

The Fourier component of the perturbed gravitational potential, Φk, of an infinitesimally thin
disk is given by:

Φk = −
2πGΣk

|k|
eikx−k|z|, (2.32)

wherek represents the wave number of the Fourier components andx = R− R0 being the radial
deviation for an axisymmetric perturbation. Supposing that a 3D disk is piled up by a stack of
infinitesimally thin gas layers, we approximate the effect of the disk thickness by superimposing
the contribution from every razor-thin layer:

Φk(z) = −
2πGΣkeikx

|k|

∫ ∞

−∞
e−k|z−h| sech2(h/hz)

2hz
dh, (2.33)

with hz being the scale-height of the disk. In Eq. (2.33), we model the vertical structure of the
gas disk by a sech2 function. This is valid especially for the inner part of disks where the vertical
structure is mainly determined by the self-gravity of the gas. See also the Fig. A.1 in Appendix
A.4. Equation (2.33) leads to the Fourier potential in the midplane:

Φk(z= 0) = −2πGΣkeikx

|k|
F(k, hz), (2.34)

with F(k, hz) being the reduction factor described by (see Appendix A.3):

F(k, hz) = 1− 1
2

khz

[

H

(

khz

4

)

− H

(

khz

4
− 1

2

)]

, (2.35)

with H being the harmonic number defined by:

H(α) =
∫ 1

0

1− yα

1− y
dy. (2.36)

The Lin-Shu (1964) dispersion relation for the axisymmetric perturbation is then modified to:

ω2 = κ2 − 2πGΣ0|k|F(k, hz) + c2
sk

2. (2.37)

The dispersion relation states that on small scales (k→ ∞) the disk is stabilized by gas pressure,
i.e., the termc2

sk
2. Large scales (k → 0) are regulated by global shear, i.e., theκ2 term. The

instability however happens at intermediate wavelengths,much smaller than the disk size but
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still larger than the thickness of the disk. In this region, neither global shear nor gas pressure can
resist the gravitational collapse. The reduction factor, 0< F ≤ 1, softens the effect of self-gravity
and makes the disk more stable.

Given a certain radiusR and temperatureT, we obtain the threshold valueQth(T,R) by probing
the maximum value along the neutral curve defined by settingω2 = 0 in Eq. (2.37) and calcu-
lating the epicyclic frequency,κ, from the rotation curve. Similar to the conventional Toomre
criterion for the stability of an infinitesimally thin disk,Qth is a threshold curve for thick disks.
AboveQth the disk is stable and otherwise unstable. Since theQth is a function of both temper-
ature and radius, it is convenient to define the critical value Qcrit, which is the value ofQth for
which Qth(T,R)/Q(R) = 1, and the corresponding critical temperatureTcrit.

The solid lines shown in Fig. 2.4 represent the threshold valueQth as a function of radius. Each
plot corresponds to a disk of different temperature. The dash-dotted lines are the actualQ values
defined by Eq. (2.31) of the different models. From these figures, the most unstable radius is
aroundR= 2 kpc. The corresponding surface densities after an evolution of 750 Myrs are shown
in Fig. 2.5. The gas at the most unstable region has revolved for more than four orbital periods
around the disk center.

These figures shows that the prediction ofQcrit and the numerical results match quite well. The
Q value of Gas1 is well above the solid line and shows a featureless surface density. As shown
in Gas2 and Gas3, with the decrease in temperature, theQth curves shift up and the disks’Q
curves come down. As a consequence, the disk starts to develop multi-armed structure, which is
very likely caused by swing amplification, as discussed in Section 2.5. And finally in Gas4, the
curvesQ andQth intersect. The disk fragments and starts to behave chaotically. A more detail
calculation shows that the two curves just touch each other at a temperatureTcrit = 8.5×103K with
the maximum thresholdQcrit = 0.693, which is close toQcrit = 0.676 of Goldreich & Lynden-Bell
(1965) analysis but away from the numerical result,Qcrit = 0.647, of Kim & Ostriker (2002b).
However, the actual value ofQcrit is model dependent. Different models of the dark matter, the
stellar disk and even the EoS will all affect the resulting value ofQcrit.

2.4.2 The inclusion of stellar potentials

The inclusion of a static stellar disk alters two important factors which influence the stability of
the disk. One is the rotation curve and the other is the thickness of the gas disk. By changing the
rotation curve, the epicyclic frequency,κ, changes accordingly. Supposing a flat rotation curve
described byΩ = V0/R, the epicyclic frequencyκ then reads:

κ2 = 2Ω2 = 2
V2

0

R2
, (2.38)
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with V0 being the rotation velocity. The presence of a stellar disk tends to stabilize the gas disk
via increasingV0. However, by increasing the gravitational pull in the vertical direction, the gas
disk becomes thinner and therefore more susceptible to gravitational collapse. In Section 2.4.1,
we have already seen that the scale-height, which is governed by the temperature of the disk, is
a very sensitive factor for the disk stability. GasStar1 to GasStar4 are designed to explore the
competition between the two opponents.

From Fig. 2.6, we first notice that, compared to Fig. 2.4, the threshold value,Qcrit, is boosted
from 0.693 to 0.75 due to the decrease in scale-height. This makes the disk more prone to
gravitational instability. On the other hand, the change ofthe rotation curve drastically shifts the
dash-dotted curve upwards. Instability only sets in once the temperature of the gas disk drops
belowTcrit ∼ 6000 K. Overall, the presence of the static stellar disk tends to stabilize the disks.

Figure 2.7 shows the surface density after an evolution of 250 Myr. During this period, the gas
in the most unstable region has finished 2.5 orbits. All the gas disks are developing multi-armed
spiral structures within the region where the disk is the most vulnerable to instability according
to Fig. 2.6. At this moment, the most unstable disk, GasStar4, is experiencing fragmentation.
High density filaments are evident from the image. While GasStar2 is still in its early stage of
instability, GasStar3 is just about to enter the fragmentation phase. GasStar1, on the other hand,
does not fragments at all during the course of simulation.

The trend is clear. The cooler the disk, the faster it fragments. The spiral structure seen in
these images are due to swing amplification (Toomre 1981; Goldreich & Lynden-Bell 1965),
a mechanism that is capable of amplifying the perturbation by swinging the leading waves to
trailing. Swing amplification is effective as the diskQ (dash-dotted line) is approaching the
thresholdQth (the solid line). The spirals are sheared, become tighter and tighter and enhanced.
Once the density reaches the supercritical point, instability sets in.

2.5 Spontaneously Induced Spiral Structure

An interesting feature which is hard to ignore in Fig. 2.5 andFig. 2.7 is that the marginally
stable disks are spontaneously developing multi-arm spiral structures. We have already seen in
Sections 2.3 and 2.4 that the effect of the disk thickness is to shift the range of the marginally
stable region downwards and therefore to stabilize the disk. As we systematically lower the
temperature to probe the onset of instability, runs with as well as without stellar potential are
experiencing swing amplification.

Hohl (1971) found that disks which are marginally stable to axisymmetric perturbation are prone
to develop a large-scale bar structure. This finding initiated both numerical (Zang & Hohl 1978;
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Sellwood 1981, 1985; Fuchs & von Linden 1998; Sellwood & Moore 1999) and theoretical stud-
ies (Kalnajs 1978; Sawamura 1988; Vauterin & Dejonghe 1996;Pichon & Cannon 1997; Evans
& Read 1998; Fuchs 2001) of marginally stable disks. Goldreich & Lynden-Bell (1965) and
Toomre (1981) pointed out that self-gravitating, differentially rotating disks are able to amplify
spiral waves by shearing a leading wave into a trailing one. Three key ingredients, self-gravity,
shearing and epicyclic motions work harmonically to make the phenomenon now coined with
the name ‘swing amplification’ happen.

Three necessary conditions need to be fulfilled in order to facilitate the swing amplification
(Toomre 1981; Fuchs 2001; Fuchs & von Linden 1998; Binney & Tremaine 2008). First, the
disk must be marginally stable, i.e., for an infinitesimallythin disk, 1< Q < 2, as defined by Eq.
(2.31). Second, the parameterX = kcritR/m= kcrit/ky (Toomre 1981; Binney & Tremaine 2008),
with m being the number of arms andkcrit = κ

2/(2πGΣg) the critical wave number, has to be of
order unity, i.e., somewhere between 1 and 3 (Goldreich & Lynden-Bell 1965; Julian & Toomre
1966; Toomre 1981). Third, there must be a mechanism that is able to induce leading arms in the
system either explicitly by hand (Toomre 1981) or implicitly by random fluctuation induced by
numerical noise (Toomre 1990; Sellwood & Carlberg 1984; Fuchs 2001). We notice that most of
these works mentioned above are for live stellar disks not directly for the gas disk. But since the
amplification principles are the same, the results are stillapplicable to pure gas disks.

As shown in Fig. 2.8a and 2.8b, GasStar1 gets more arms than Gas2 does. To be more quantita-
tively, Fig. 2.8c and 2.8d show the Fourier components as a function of radius. They are obtained
by doing Fourier transform to (Σg(R, φ)−Σg(R))/Σg(R), whereΣg(R) is the averaged surface den-
sity of a given radius. Note that the dominating modes tends to be multiples ofm = 4. This is
a consequence of using a Cartesian grid, for whichm = 4 is the natural mode. However, the
dominating mode is determined by physics. The dominating mode of Gas2 ism = 8 while in
GasStar1m= 12.

As is apparent from Eq. (2.38), including a stellar disk causes an increase inkcrit. Consequently,
a larger value ofm is required in order to satisfy 1< X < 3. From the image shown in Fig.
2.8a and the relation,kcrit ∝ κ2, to keepX a constant, the number of spiral arms in GasStar1 can
be crudely estimated asm ≃ 15. More precisely, the number of spiral arms,m, is predicted by
(Toomre 1981; Athanassoula et al. 1987; Fuchs 2001, 2008):

m=
2πR
λmax

, (2.39)

with λmax being defined by:

λmax =
λcrit

χ(A/Ω)
, (2.40)

whereλcrit = 2π/kcrit. The coefficientχ is a function of rotation curve (Fuchs 2001), as measured
by Oort’s constantA.
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We employ Eq. (2.39) to analytically estimate the number of arms and compare the predictions
with the images shown in Fig. 2.8. For Gas2, spirals appear between 2 kpc and 5 kpc. Within
this radial range, the most unstable wavelength ranges from2.0 to 3.6 kpc. The corresponding
prediction form ranges from 6 to 9, while the simulation reveals a spiral pattern with 8-fold
symmetry. For GasStar1, spirals are prominent between 3 and4 kpc, while the corresponding
most unstable wavelength ranges from 1.4 to 2.0 kpc. The twelve arms developing in GasStar1
should be compared to a predictedm ranging from 13 to 14. Hence, overall the trends in the
simulations are in reasonable agreement with our predictions. Note that the spatial resolution in
both simulations ranges from 60 pc to 120 pc, indicating thatthe most unstable wavelengths are
well-resolved.

The observed small deviations can be explained as follows. First, the formulation used to predict
the number of arms is precise only for stellar disks. However, Toomre (1981) has shown the
strikingly similar behavior of gaseous disks (Goldreich & Lynden-Bell 1965) and stellar disks
(Julian & Toomre 1966). Therefore, we have confidence that Eq. (2.39) is still applicable to
gaseous disks. Second, the number of arms has to be an integer, a number of fraction given by
Eq. (2.39) has no physical meaning. Third, the usage of a Cartesian grid introduces the multiples
of the naturalm= 4 mode, which manifests itself in the Fourier transform of the surface density.
Fourth, swing amplification picks up the dominating mode. Ittakes some time to fully develop
the dominating mode. All these factors combined determine the number of spiral seen in our
simulations. It is important to realize that the most unstable radius according to the axisymmetric
instability criterion might not be the most effective site for swing amplification, since the shear
plays an important role in this process.

Without any external pumping source, spiral waves producedby swing amplification should be a
transient phenomenon. Similar to material spirals, swing amplified spiral waves will experience
azimuthal shearing which reduces their pitch angle until they become too tightly wound to be
identified. As an example, in the Gas2 simulation, the spiralarm that appears aroundR = 2 kpc
initially has a pitch angle of 90◦ and should be sheared to less than 1◦ within 2.2 Gyr. On the
contrary, we find that the spontaneously induced spirals seen in Gas2 can last for more than 3
Gyr and still keep the pitch angle relatively open. This result suggests at least one mechanism
keeps replenishing noise into the disk, leaving the physicsto pick up the dominating mode and
sustain the waves. This noise can be caused by numerics or preexisting waves.

2.6 Summary

In this Chapter we have developed a simple and effective method to compute the three-dimensional
density and velocity structure of an isothermal gas disk in hydrodynamic equilibrium in the pres-
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ence of an arbitrary external potential (i.e., dark matter halo and/or stellar disk). This is ideally
suited to set-up the initial conditions of a three-dimensional gas disk in equilibrium in hydrody-
namical simulations. We first notice that as long as the gas isbarotropic or has constant temper-
ature att = 0, the circular velocity needed to support the self-consistent disk is independent of
the height above or below the midplane. This feature greatlysimplifies the process of specifying
the initial velocity field. All we need to know is the rotationvelocity in the midplane.

To specify the density distribution self-consistently, the hydrostatic equation coupled with the
reduced Poisson equation is adopted to develop the verticalstructure of the gas. Two sets of
second-order non-linear differential equations are found. One is directly associated with the gas
density called the density method, the other associated with the gas potential called the potential
method. In a simulation involving a huge dynamic range (using AMR techniques), the potential
method is shown to be numerically more stable. A simple localiteration can be performed to
gain a better control on the shape and the mass of disks. Theseideas are simple enough to be
incorporated into any existing code, and most importantly they are very effective.

With gas disks that are in detailed balance, we are able to systematically investigate the ax-
isymmetric stability of a fully three-dimensional disk forthe first time. We probe the onset of
instability both semi-analytically and numerically. Simulations without stellar disk show that the
thickness of the gas disk, which is governed by the temperature of the disk, has a huge impact on
the disk stability. The reduction of the gravity decreases the threshold value by around 30 percent
in our models. As we gradually lower the gas temperature, thethresholdQth shifts up, the disk
Q shifts down, and the system starts to develop multi-arm structure via swing amplification. The
onset of the instability in simulations matches the theoretical prediction very well as shown in
Fig. 2.4 and Fig. 2.5. The disk fragments as the two curves,Q andQth, come very close to each
other.

The influence of the stellar disk is less obvious. Its presence has a stabilizing effect on the gas
disk through changing the rotation curve and a destabilizing one through the increase of the local
gravitational force. The simulation results show that overall the presence of the stellar disk tends
to stabilize the gas disk. But this conclusion comes with a caveat. The interaction between live
stars and gas might be important. A live stellar disk itself can be unstable or marginally stable.
Perturbations from the interstellar medium can trigger instabilities in the stellar disk. Since stars
dominate the mass budget in Milky-Way type galaxies (more than 90 percent), and because gas
is highly responsive and dissipative, the interplay between both components is one of the most
interesting subjects in galactic dynamics. Tackling this problem needs elaborate initial conditions
for the live stellar disk or the combined disk. We stress thatthe potential method developed in this
Chapter is compatible with the formulation in KD95. This makes the self-consistent combined
disk a natural direction for future work.
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Marginally stable disks are susceptible to the process of swing amplification, a prevalent mech-
anism that triggers self-induced spirals. Simulations Gas2 and GasStar1 show the spirals are
prominent in the regions in which the gas can respond to swingamplification. Semi-analytic re-
sult relates the most vulnerable wavelength in azimuthal direction,λmax, to the number of arms.
Numerically, The natural mode of a Cartesian grid together with the swing amplification deter-
mine the dominating mode of the spiral structure. Our numerical results with or without stellar
disk shows the correct characteristics of the swing amplification. It happens in marginally sta-
ble disks and the number of arm fits reasonably well to the analytic prediction. In the run of
GasStar2, swing amplification eventually leads to disk fragmentation once the density becomes
supercritical to the gravitational instability. However,in a sub-critical case like Gas2, the spiral
structure can survive more than 3 Gyrs without fragmenting the disk, suggesting at least one
mechansim is sustaining the waves. The number of arms suggests a characteristic wavelength
relating to the upper limit of the mass of giant molecular clouds (Escala & Larson 2008).
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(a) Gas1 (b) Gas2

Figure 2.4: Plots (a) to (d) correspond to models from Gas1 toGas4, respectively. In each plot,
curves of the diskQ (dash-dotted) and the threshold valueQth (solid) are put together to probe
the onset of axisymmetric instability.Qth(R) is a obtained by probing the maximum value along
the neutral curve for a given radius. Information of the diskthickness has been encapsulated
in the reduction factor defined by Eq. (2.36). When the two curves meet, we expect the disk
fragments very fast. This figure shows that the most unstableregion is about the radiusR = 2
kpc. The fact that theQth curves are well below unity shows the impact of the disk thickness on
the disk stability.
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(c) Gas3 (d) Gas4

(a) Gas1 (b) Gas2

Figure 2.5: Images (a) to (d) correspond to models Gas1 to Gas4, respectively. They show the
face-on surface density att = 750 Myr. The size of the images are 20 kpc× 20 kpc. The gas
at the most unstable radius has orbited around the center formore than four times. (a) Since
the diskQ is well above the threshold valueQth, the disk is featureless. In models Gas2(b) and
Gas3(c) the diskQ is approachingQth aroundR= 2 kpc, both disks are developing self-induced
spirals due to swing amplification. (d) The disk fragments very fast onceQ andQth intersect.
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Figure 2.6: Plots (a) to (d) correspond to models GasStar1 toGasStar4, respectively.: TheQ
(dash-dotted) andQth (solid) curves of the gas disks of different temperatures. The presence the
stellar potential stabilizes the disks through changing the rotation curve and destabilizing the disk
by increasing local gravitational force. The effect of disk thickness is included via the reduction
factor Eq. (2.35). We need to lower the temperature down to T= 7× 103 K in order to probe the
onset of axisymmetric instability. Overall, the presence of the stellar potential stabilizes the disk.
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(c) GasStar3 (d) GasStar4

(a) GasStar1 (b) GasStar2

Figure 2.7: Images (a) to (d) correspond to models GasStar1 to GasStar4. They show the face-on
surface density att = 250 Myr. The size of the images are 20 kpc× 20 kpc. The gas at the most
unstable radius has orbited around the center about two and half times. Spirals seen in model
GasStar2(b) and GasStar3(c) are due to swing amplification.In (d) the disk fragments very fast
mainly due to both the axisymmetric instability and swing amplification.
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Figure 2.8: The image size in (a) and (b) is 20 kpc× 20 kpc. (a) The surface density of Gas2 at
t = 750 Myr. (b) The surface density of GasStar1 att = 500 Myr. In both cases, the inner parts of
the gas disks, which have been evolved for about four orbitaltimes, developing spiral structure.
Contour plots (c) and (d) are the Fourier maps of (a) and (d), respectively. In (c) and (d), the
horizontal axis represents radius, the vertical axis is thenumber of arms,m, obtained by Fourier
analysis. The color represents the intensity of each Fourier mode, the redder the stronger.



Chapter 3

Evidence for Radial Inflow In The Extended HI
Disk of M83 (NGC5236)

3.1 Introduction

A longstanding missing link associated with the evolution of disk galaxies is the replenishment
of gas in order to sustain star formation over cosmological times. Molecular gas depletion times
in nearby galaxies are typically 2 Gyr (Bigiel et al. 2008; Leroy et al. 2008), a number that may
also be expected on theoretical grounds. Pflamm-Altenburg &Kroupa (2009) show that the gas
depletion time for dwarf irregular and large disk galaxies,including the Milky Way, is estimated
to be about 3 Gyr. At higher redshift, similar depletion times of 0.6−1.5 Gyr have been measured
out toz ≈ 2 (Genzel et al. 2010). Recent work of Daddi et al. (2010a) suggests a depletion time
of 0.5 Gyr for the molecular gas of near-infrared-selected (BzK)galaxies, scaled-up analogues
of local spiral galaxies. For vigorously star forming merging systems, however, star formation
seems to deplete the molecular gas on even shorter time scales (∼ 100 Myr, Daddi et al. 2010a).

In many galaxies neutral hydrogen (HI) is found out to radii much larger than the optical extent, it
therefore provides valuable information about the signature of possible gas infall. The lopsided-
ness and asymmetry commonly seen in the outer disks of galaxies are usually considered a result
of gas accretion (Bournaud et al. 2005; Jiang & Binney 1999; Ostriker & Binney 1989; Fraternali
& Binney 2008), of recent minor mergers (Zaritsky & Rix 1997)or of tidal interactions (Korn-
reich et al. 2002). Detection of high velocity clouds (HVCs,Miller et al. 2009), extra-planar HI
clouds with low metallicities (van Woerden & Wakker 2004), anomalous kinematics (Fraternali
et al. 2002) and the velocity gradient perpendicular to the galactic plane (Fraternali et al. 2005)
point to a number of different mechanisms of how gas could be redistributed within galaxy disks.
Although a number of different ways for fueling star formation has been proposed, theamount
of infalling gas currently observed not associated with thegas disks of galaxies is still about one
order-of-magnitude lower than what is needed to compensategas consumption from presently
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observed star formation. See Sancisi et al. (2008) and Fraternali (2010) for a review of this topic.
Recently, Klessen & Hennebelle (2010) point out that gas accretion can be an important means
of driving and sustaining turbulence in the outer disk wherestar-forming activity ceases.

Wong et al. (2004) examine seven nearby spirals, searching for kinematic evidences of gas infall.
They place equivocal radial inflows of∼ 5−10 km s−1 in the inner regions. Based on a tilted-ring
analysis, Trachternach et al. (2008) quantify the strengthof non-circular motions for 19 THINGS
(The HI Nearby Galaxy Survey, Walter et al. 2008) disk and dwarf galaxies. The strength is
defined as the quadratically-added amplitude of all non-circular Fourier coefficients. They find
that the strength of non-circular motions is generally lessthan 9 km s−1. The apparently small
values of the radial motions will be discussed in Section 3.3.1.

Recently, ultraviolet imaging with theGalaxy Evolution Explorer(GALEX) reveals massive star
formation in the extreme outskirts of M83 (Thilker 2005; Bigiel et al. 2010a). Bigiel et al.
(2010b) demonstrates a tight spatial correlation between the HI maps from THINGS and the
far ultraviolet (FUV) maps ofGALEXout to about 4 optical radii. A possible scenario to ex-
plain these observations is that tidal interactions compress the gas which subsequently tiggers
star formation in the outer region of M83. The high resolution interferometric HI observations
combined with the fact that a huge gas reservoir up to 80% of the total HI sits outside the Holm-
berg radius (7.3′, Huchtmeier & Bohnenstengel 1981, hereafter HB81), where HI is likely the
dominant constituent of interstellar medium (ISM), makes M83 a perfect object for investigating
the ongoing process of gas infall.

The outer disk of M83 is highly lopsided and asymmetric (HB81, Rogstad et al. 1974), both in the
kinematics and the mass distribution. Because interferometers by design do not pick up emission
on large spatial scales, we combine the THINGS VLA map with single dish data from the 100-m
radio telescope of the Max-Planck-Institut für Radioastronomie at Effelseberg (HB81) in order
to obtain a complete census of the atomic hydrogen across M83. This is a particular concern
given the large fraction of (presumably mostly diffuse) HI in the outer parts of M83.

Fourier analysis of the line-of-sight velocity,Vlos, has been used to investigate the elongation of
the potential (Gentile et al. 2005; Schoenmakers et al. 1997), streaming motion along bars or spi-
rals (Wong et al. 2004; Trachternach et al. 2008) and kinematic lopsidedness (Schoenmakers &
Swaters 1999). In this Chapter, we perform a detailed Fourier analysis of the line-of-sight veloc-
ity to detect possible contributions of radial gas flow to theprojected velocity. This excercise will
then provide us with valuable information about the kinematic structures and a straightforward
way to evaluate the possible presence and strength of any radial flow for M83.

This Chapter is structured as follows. We describe the properties of the interferometric data and
the single-dish data in Section 3.2. The way we do the Fourierdecomposition, the entanglement
of these Fourier coefficients and their contribution to the observableVlos are discussed in Section
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3.3. We apply this method to search for a radial inflow in the outer disk of M83. The process
of parameter survey and the results are shown in Section 3.4.We discuss the implications of the
results in Section 3.5. A brief summary is given in Section 3.6.

3.2 HI maps of M83

We combine the THINGS VLA HI map from Bigiel et al. (2010a) andthe single dish data
described in HB81 to search for the signs of radial inflow in the HI disk of M83. In the following,
we refer to the maps from the THINGS survey as ‘THINGS’ maps and to the maps reconstructed
from the 100-m single dish radio telescope at Effelsberg as ’Effelsberg’ maps.

The THINGS map covers a field-of-view∼ 50′ and has been corrected for primary beam atten-
uation (the VLA primary beam FWHM is∼ 30′). The ‘natural’ weighting scheme is applied to
yield a sensitivity (1σ RMS) of 0.8 mJy/beam and a resolution of∼ 13′′. For details of data
processing, units conversion, assessment of uncertainties, etc., of the THINGS map, we refer the
reader to Bigiel et al. (2010b).

Figure 3.1a shows the THINGS intensity map of M83 in units of M⊙ pc−2 and Fig. 3.1b the
map of line-of-sight velocity,Vlos. Before preceeding with the analysis, we note that M83 can
be roughly divided into three parts by eye, an inner face-on disk (< 5′), a bright HI ring with
a relatively large inclination (6′ < R < 12.75′ as indicated by the two white ellipses) and a
filamentary outer part (> 12.75′). The distinct inclinations of the inner disk and the extended
disk outside the Holmberg radius (7.3′, HB81), which is shown as the white ellipse in Fig. 3.2, is
intriguing. The nonparallel axis of rotation suggests thatthe disks may be of different origins and
the presence of the filaments seen in the outer disk might be a signature of onging gas accretion.
We leave the detailed discussion to Section 3.5.

Although a good correlation exists between the synthesis HIobservations and the far ultraviolet
(FUV) emission, which traces star formation activity, in the far outer disk of M83 (Bigiel et al.
2010a; Miller et al. 2009), interferometers by design are not able to pick up diffuse, low column
density HI on very large scales. To overcome this, we incorporate the information of the single
dish Effelsberg map into our analyses.

The Effelsberg map is a hybrid map combining aperture-synthesis observations (Rogstad et al.
1974, RLW hereafter) for the inner disk (R< 15′) and single dish Effelsberg observations for the
outer disk (R > 15′). RLW’s observation uses Owens Valley Radio Observatory with resolution
2′ and 10.5 km s−1. The Effelsberg observations have a limiting sensitivity of 6× 1018 atoms
cm−2, beam size 9 arc min and a linear extent≥ 125 kpc in diameter. In this Chapter, we adopt
a distance of 4.5 Mpc for M83 (Karachentsev et al. 2004). Unfortunately, given the age of the
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Effelsberg observations (done in the late 70s), the original data are not available in electronic
form. We therefore rebuild the HI density map from the contour maps in HB81 (their Figs. 2
and 3). The contours are interpolated using a bilinear algorithm. The reconstructed HI column
density andVlos maps are shown in Figs. 3.1c and 3.1d, respectively. We convert brightness
temperatures into column densities via the following relation:

ΣHI = 1.460× 10−2

∫

TBdv, (3.1)

with TB [K km s−1] being the brightness temperature andΣHI the column density in units M⊙
pc−2.

Our ability to reconstruct the Effelsberg map in the center is limited due to a lack of contours
in the HB81 plots. This leads to an artificial plateau in the very center (Figs.3.1c and 3.3b ).
The crowded contours seen in the very center of Fig. 3.1d are separated manually. This might
have an impact on the tilted-ring analysis which we will address in the respective sections. The
sparse contours, especially in the southern part of the velocity map, will also contribute to the
uncertainties. Nevertheless, the superposition of Fig. 3.1a and Fig. 3.1d as shown in Fig. 3.2
illustrates the power of combining single dish and interferometric data, allowing to probe the HI
distribution at high resolution while recovering all of thediffuse emission. The parts where both
maps overlap are the focus of this Chapter.

3.3 Fourier Decomposition

3.3.1 Axi-symmetric flow

The fact that HI can be detected in the outskirts of galaxies and that it is the dominant mass
component of the interstellar medium at large radii makes itan ideal tracer for the kinematics of
the outer disk. The observable,Vlos, is a combination of the systemic velocity,Vsys, the rotation
velocity,Vrot, and the radial velocity,Vrad:

Vlos = Vsys+ V0,rot cos(θ) sin(i) + V0,radsin(θ) sin(i), (3.2)

with i being the inclination angle. The subscript, 0, represents the axi-symmetric component of
the velocity. The relation between the sky-coordinates, (x, y), and the polar coordinates, (R, θ),
defined in the galactic plane is:

cos(θ) =
−(x− xc) sin(PA)+ (y− yc) cos(PA)

R
, (3.3)

sin(θ) =
−(x− xc) cos(PA)− (y− yc) sin(PA)

Rcos(i)
, (3.4)
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with (xc, yc) being the center of the galaxy and PA the position angle measured in the sky plane,
from north to east, with respect to the receding side of the line-of-nodes.

In a tilted-ring analysis (Begeman 1989) the disk is decomposed into a series of radial annulli
with a certain width. For each ring, a set of parameters, (xc, yc), PA, i, Vsys, V0,rot, V0,rad, are
determined independently to describe the position of the ring and the kinematics of the gas. It
is not possible to determine all the unknowns at once, because typically the degeneracy among
these parameters is quite large. Deriving a set of values typically requires further assumptions in
order to converge to a physically plausible solution. In this Chapter, the fitting is done with the
nonlinear least-squares fitting functionlsqnonlin in matlab.

Usually, several iterations are needed to fix each one of the parameters.Vsys and (xc, yc) are
usually quite stable and therefore determined first. These parameters are then fixed for the next
round of fitting. The assumption behind this step is that the systemic velocity and the center of
the galaxy are global parameters and thus do not vary ring by ring. With the systemic velocity and
the center fixed, PA andi are determined next. Although they are relatively stable parameters,
they change quite notably in the extended disks where lopsidedness, asymmetry and disk warps
are often an issue. Nevertheless, they are usually fairly constant parameters inside the Holmberg
radius. Finally, the rotation curveV0,rot is derived with all other parameters fixed. Thus this is the
last step of this iterative process.

An assumption behind the whole fitting procedure is that the gas is moving on well-defined
circular orbits. The local radial velocity is assumed to be asmall perturbation superimposed
on the rotation velocity; a result of epicyclic motions. Thepresence of an axi-symmetricV0,rad

introduces a phase shift and a change in the amplitude in the following way:

Vlos = Vsys+

√

V2
0,rot + V2

0,radcos(θ − ψ) sin(i)

= Vsys+ V′0,rot cos(θ(PA′)) sin(i), (3.5)

where tan(ψ) = V0,rad/V0,rot and V′0,rot ≡
√

V2
0,rot + V2

0,rad is the apparent rotation velocity and

PA′ the apparent position angle if the fitting procedure is carried out without involvingV0,rad.
Equation (3.5) shows one of the degeneracies that exist among the fitted parameters. There is no
straightforward way to break this degeneracy. It also reveals that the fitting procedure described
in Wong et al. (2004) tends to minimize the contribution fromV0,rad. BecauseV0,rad is not involved
in their fitting procedure, most of the contribution is attributed to the rotation velocity in the first
place. This might be a cause for their attempt of searching for radial inflow being inconclusive.
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3.3.2 Inclusion of Harmonics

In Section 3.3.1, we have shown that the focus of classical tilted-ring analysis is on extracting
the axi-symmetric azimuthal flow and the basic parameters such as PA andi, which are used to
deproject the galaxy from the plane of the sky. However, the gas motion is complicated and is
subject to the presence of bars, spirals, tidal interactionwith nearby companions, non-spherical
potentials, etc. Furthermore, extended disks are usually asymmetric and lopsided in both mass
and kinematics. This could be a result of uneven gas accretion. To incorporate these features into
the tilted-ring model, one needs to include higher harmonics.

Schoenmakers et al. (1997) apply the Fourier decompositionto the line-of-sight velocity,Vlos.
Based on the epicyclic approximation, they link the Fouriercoefficients to the non-axisymmetry
of the potential of a filled gas disk and conclude a nearly symmetric potential for NGC 2403 and
NGC 3198. Along the same line, Trachternach et al. (2008) examine the non-circular motion
for a larger sample, 19 galaxies from THINGS, attempting to quantify the triaxial dark matter
potential. Their results are consistent with a round potential, showing∼90% of galaxies having
median non-circular motions of less than∼9 km s−1. Wong et al. (2004) apply the same method
to looking for radial gas flow for seven nearby spiral galaxies and place an ambiguous upper limit
of ∼ 5− 10 km s−1 for the inner region of galaxies.

In this Chapter, the Fourier decomposition is made by first fitting a tilted ring model as described
in the previous section and subsequently, as one step further, we decompose the Fourier coef-
ficients that are extracted from the observableVlos into rotational and radial components. We
define the following quantities:

Vlos(R, θ) = c0 +
∑

k

[ck cos(kθ) + sk sin(kθ)], (3.6)

Vrad(R, θ) = B0 +
∑

k

[Ak sin(kθ) + Bk cos(kθ)], (3.7)

Vrot(R, θ) = D0 +
∑

k

[Ck sin(kθ) + Dk cos(kθ)]. (3.8)

Equations (3.6), (3.7) and (3.8) are the Fourier decomposition of Vlos, Vrad andVrot, respectively.
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Substituting them into Eq. (3.2) yields:

Vlos = c0 +
∑

k

[ck cos(kθ) + sk sin(kθ)] (3.9)

= Vsys+
1
2

{

(A1 + D1)

+(2B0 +C2 − B2) sin(θ) + (2D0 + A2 + D2) cos(θ)

+(B1 +C1 +C3 − B3) sin(2θ) + (D1 − A1 + D3 + A3) cos(2θ)

+(B2 +C2 +C4 − B4) sin(3θ) + (D2 − A2 + D4 + A4) cos(3θ)

+(B3 +C3 +C5 − B5) sin(3θ) + (D3 − A3 + D5 + A5) cos(4θ)

+ · · ·
}

sin(i). (3.10)

There is considerable degeneracy between the observables,(ck, sk), and the unknown Fourier
coefficients, (Ak, Bk,Ck,Dk). Without further assumptions, it is impossible to solve for the un-
knowns simultaneously. Due to the disk inclination, the in-plane radial and rotational motions of
harmonic numbersk − 1 andk + 1 contribute to the observablessk andck seen on the sky.

In order to apply this method, we restrict the discussion to the second harmonics, i.e., we set
(Ak, Bk,Ck,Dk) = (0, 0, 0, 0) for k > 2. Several reasons prevent us from going for higher har-
monics. First, involving the next harmonics will introducea larger degeneracy that will lead to
unstable and poorly constrained results. Different initial guesses for the fitting lead to different
results that render this approach inconclusive. Second, itis difficult to derive higher harmonics
for the incomplete (due to limited sensitivity) high resolution THINGS data in the outskirts of
M83. Third, whereas the reconstructed single dish Effelsberg map does provide a complete cen-
sus of the HI distribution at large radii, the resolution is too low to meet the requirements for
a decomposition into higher harmonics. With these restrictions, the relation between Eqs. (3.9)
and (3.10) can be simplified in the following way:

Vlos = c0 + c1 cos(θ) + s1 sin(θ) + c2 cos(2θ)

+s2 sin(2θ) + c3 cos(3θ) + s3 sin(3θ) (3.11)

= Vsys+
1
2

{

(A1 + D1)

+(2B0 +C2 − B2) sin(θ) + (2D0 + A2 + D2) cos(θ)

+(B1 +C1) sin(2θ) + (D1 − A1) cos(2θ)

+ (B2 +C2) sin(3θ) + (D2 − A2) cos(3θ)
}

sin(i)

(3.12)

By comparing Eqs. (3.7) and (3.8) with Eq. (3.2), one can immediately identifyB0 andD0 with
V0,rad andV0,rot, i.e., the axi-symmetric components of the flow. However, Eq. (3.12) states that
the apparent axi-symmetric components,s1 andc1, are entangled with the second harmonics. It
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also reveals that the systemic velocity can be contaminatedby the presence of lopsidedness, i.e.,
anm = 1 component. Nevertheless, if one assumes a model for the systemic velocity,Vsys, then
the coefficients (A1,D1) can be solved for by comparingc0 to c2. Similarly, (B2,C2) and (A2,D2)
can be found using the observables (s1, s3) and (c1, c3), respectively. The only degeneracy in this
case is in the term (B1,C1), which corresponds tos2. One further assumption or a model for the
potential is required to disentangle them, such as the epicyclic approximation. In this Chapter,
we attributes2 equally toB1 andC1, i.e., we assume that the rotational and the radial motions
will have similar values for this component.

Despite this degeneracy, this new method has several advantages over previous approaches: first,
instead of attributings1 completely to the radial velocity, as is done by Wong et al. (2004), we
distribute it to both, rotational and radial velocities. After all, as gas gets disturbed it can move in
both directions. Second, this procedure allows us to construct residualVrad and residualVrot maps
simultaneously. The kinematics of gas can be rather complicated: e.g., the radial velocity might
be part of epicyclic motions, which will not contribute to potential net radial inflow, or the gas
may exchange angular momentum. As a result, gas gaining angular momentum will be moving
outward, while gas losing angular momentum will be moving inward. The residual maps provide
crucial information about the gas movement in different directions. Third, including harmonics
up to second order already allows us to study the basic flow patterns caused by tidal interactions
(m = 1), uneven gas accretion (m = 1), and two-fold structures such as bars or two-arm spirals
(m= 2).

3.4 Application to M83

3.4.1 The Method

The fact that M83 is a low-inclination galaxy means that its rotation curve and associated pa-
rameters are difficult to derive, i.e., the low inclination introduces large uncertainties in the ro-
tational velocity. Thus, the rotation curve of M83 is poorlyconstrained in the literature. To get
around this problem, instead of extracting a set of fit parameters with large uncertainties, our
approach is to examine a range of model rotation curves (V0,rot) and the corresponding fit param-
eters (PA, i,Vsys,V0,rad) to derive the best possible estimate of the real rotation curve. Following
the work of HB81, we adopt a Brandt-type flat rotation curve:

V0,rot(R) =























Vmax
r

(1/3+ (2/3)rn)3/(2n)
R< Rmax

Vmax R≥ Rmax

, (3.13)
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with Rmax = 4.5′ being the radius where the rotation curve reaches the peak rotation velocity,
Vmax = 160, 180, 200 km s−1, r ≡ R/Rmax andn = 0.8 a shape parameter controlling the rising
part of the rotation curve. The rotation curve for the three models is shown in Fig. 3.3a. Among
them, the model withVmax = 180 km s−1 suggested in HB81 is adopted as our fiducial case. This
choice will then be justified in Section 3.5. Note that unlikeHB81, we keep the rotation curve
flat in the outer disk based on the fact that de Blok et al. (2008) find no unambiguous evidence
for declining rotation curves in any of the 19 THINGS galaxies in their sample. Similar to
Schoenmakers et al. (1997), our fitting procedure starts with the conventional tilted-ring model
followed by the Fourier decompostion along each ring. Usinga range of prescribed rotation
curves not only helps us to stabilize the fitting procedure (the degeneracy is reduced), it also
brackets the potential uncertanties in the rotation curve.We look for the common features that
emerge from these models.

As described in Schoenmakers et al. (1997), in order to retain the physicalc2 ands2 terms which
appear in Eq. (3.11), we keep the center position (R.A.,Decl.) = (13h37m00s.9,−29◦51′57′′)
(J2000; Walter et al. 2008) fixed for the Fourier decomposition. With the given center position
and the prescribed rotation curve, we obtain the fit parameters Vsys, PA, i, Vrad via the tilted-ring
analysis as follows:

(i) Vsys(R) is determined while leaving all other parameters (PA, i,V0,rot,V0,rad) unconstrained.

The systemic velocity as a function of radius is found in thisstep and is shown in Fig. 3.4a. The
red curve represents the results derived from the Effelsberg map, while the blue one indicates
the results based on the THINGS map. The horizontal axis represents the galactocentric radius
defined in the galactic plane for the fiducial case. The other two models show very similar
behavior forVsys. The inner region (R< 12.5′) shows that the systemic velocity is approximately
constant atVsys= 505± 1.3 km s−1 for the Effelsberg map and atVsys= 515.5± 5 km s−1 for the
THINGS map. This is consistent with values 506 km s−1 found by HB81, 505 km s−1 by Comte
(1981), 516 km s−1 quoted by de Vaucouleurs et al. (1991), 513± 2 km s−1 by Koribalski (2004)
and 513± 2 km s−1 by (Miller et al. 2009).

Although our values seem to lie in the range reported in the literature, a systematic discrepancy
∼ 10 km s−1 exists between our interferometric and the single dish map.In the outer region
(R> 12.5′), the systemic velocity decreases with a rate of∼ −3.1 km s−1 arcmin−1. The total drop
in Vsys is more than 35 km s−1 at the radius of 25′. Matthews et al. (1998) find that∼ 77% of late-
type galaxies are lopsided. In particular, the extended disk of M83 appears to be heavily lopsided
both in the HI distribution and the gas kinematics (HB81). Equation (3.10) hints that the drop in
apparentVsys could be contaminated by the terms, (A1,D1), associated with the lopsidedness.

In this Chapter, we view the systemic velocity as a constant and attribute the drop inVsys to the
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lopsidedness. The constant systemic velocity seen in the inner region leads us to adoptVsys= 505
km s−1 for the Effelsberg map andVsys= 515 km s−1 for the THINGS map.

(ii) With fixed Vsys andV0,rot (D0) as described by Eq. (3.13), PA andi are fixed, too. Note that
V0,rad is not fixed yet in this iteration, as involvingV0,rad leads to unstable results.

(iii) Subsequently we determineV0,rad (B0) from Eq. (3.2).

(iv) With a fixed set of parameters (Vsys, B0,D0,PA, i), the remaining Fourier coefficients are
derived from Eq. (3.12).

Inclination and PA for the fiducial case are shown in Figs. 3.4b and 3.4c, respectively. The blue
curves are the results extracted from the THINGS map and the red ones are from the Effelsberg
map. As shown in Fig. 3.1b, the incomplete data in the outskirts of the THINGS map makes the
fitting unreliable in this range. Thus, we only extract the fitparameters from the THINGS map
itself for the area inside the radiusR < 12.5′ (shown as the right vertical line). The black dash-
dotted curve shown in Fig. 3.4b is the result by shifting the red curve upward by 3 degree. The
black dash-dotted curve, which represents an extension of the blue curve, suggests that the disk
can be divided into three distinct areas as indicated by the vertical lines, an inner disk (R< 5.5′),
a transition zone (5.5′ < R < 12.5′) and an outer disk (R > 12.5′). The inner disk and the outer
disk have a well-defined and nearly flat inclination. Surprisingly, this nicely matches in the radial
range between 6′ and 12.5′ (as indicated by the white ellipses in Fig. 3.1a) which coincides with
the bright HI ring around the Holmberg radius. The implications of the misaligned direction of
spin and the presence of ring will be discussed further in Section 3.5.

Except for a small shift in inclination, Fig. 3.4b together with Fig. 3.4c show that the PA and
the inclination derived from the two different maps are in excellent agreement. It seems to be
reasonable to ‘extrapolate’ the inclination and the PA for THINGS map by using the results
from the Effelsberg map. Specifically, for the region outside the radiusR = 12.5′, we have
PATHINGS = PAEffelsberg and iTHINGS = iEffelsberg+ 3◦. The results of this operation for our three
different models are shown in Figs. 3.5a and 3.5b.

Eventually, the mass-weighted radial velocity,vrad, and the mass flux,̇M, are evaluated in the
following way:

Ṁ(R) ≡
dM
dt
=

∫

RΣ(R, θ)Vrad(R, θ)dθ, (3.14)

vrad(R) ≡ Ṁ(R)
∫

RΣ(R, θ)dθ
. (3.15)

Note that the mass flux is evaluated pixel-by-pixel according to Eq. (3.14).
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3.4.2 Results

In this Section, we describe the results of our analysis. We will discuss the implications of our
findings in Section 3.5.

The overlap of Figure 3.1a and 3.1d shown in Figure 3.2 allowsto compare structures in surface
density with those in the velocity field. While the star forming disk (< 5′) is showing a normal
circular motion, the twist in contours beyond the optical disk has a good correlation with the ring
and the spiral features.

The presence of the ring structure is best visible in Fig. 3.3b, where the surface density as a
function of radius is shown for the Effelsberg map (red line) and the THINGS map (blue line).
We stress again that the flat part seen in the Effelsberg profile is an artifact due to the lack of small
scale information. Note that the THINGS curve lies well below the Effelsberg one, suggesting
the interferometry only picks up a small fraction of the diffuse gas in the extended disk. Second,
a prominent ring structure is visible in the radial range from 6′ to ∼ 12.5′ (as indicated by the
two vertical black lines in Fig. 3.3b). The column density peaks aroundR= 10′ and the structure
can be further divided into an inner-declined region (6′ < R< 10′) and an outer-declined region
(10′ < R < 12.5′). The inner-declined region matches nicely with bump in PA as seen in
Fig. 3.4c. The ellipses shown in Fig. 3.1a mark the corresponding area of the ring. Outside the
ring, the blue curve level off at 1 M⊙ pc−2. Third, as shown in Fig. 3.4b, the outer disk (R> 12.5′)
and the inner disk (R < 5.5′) have a well-defined and flat inclination. The ring coincidesnicely
with the transition zone (5.5′ < R < 12.5′) of the inclination shown in Fig. 3.4, suggesting a
possibly important role of the ring for the gas kinematics inM83.

Figure 3.5 and Fig. 3.6 show (a) PA, (b) inclination, (c)vrad(R) and (d)Ṁ(R) for the THINGS
map and the Effelsberg map, respectively. In all models, the size of the radial bins used for the
Fourier analysis, i.e., the width of the tilted rings, is 0.25′. In each plot, the results of three
different rotation curves withVmax = 160, 180, 200 km s−1 are presented. In the outer disk,
the radial shift seen in Figs. 3.5 and 3.6 is due to the different inclinations corresponding to
the different models. A more inclined ring has a shorter minor axis projected on the sky and
therefore introduces a radial shift along the minor axis.

In Fig. 3.5, the vertical lines mark the boundary (R= 12.5′) inside which PA and inclination are
derived from the THINGS map itself while for the outer part weinfer these quantities from the
Effelsberg map as discussed in the previous Section. The Fourier coefficients are fitted for the
harmonicsm = 0, 1, 2 for the radial range to the left of the vertical line, while only them = 0, 1
modes are considered for the outer region. This is due to the missing data points of the THINGS
map in the outer disk. Inclusion of the harmonicm= 2 is unstable to Fourier decomposition for
the THINGS map. In Fig. 3.6, however, we shows the result of deriving Fourier coefficients for
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m= 0, 1, 2 over the entire Effelsberg map.

The Fourier decomposition described in the previous Section allow us to construct a map ofVrad

andVrot simultaneously. Figures 3.7a/3.7c and Figs. 3.7b/3.7d show the residual maps ofVrad/Vrot

for THINGS and Effelsberg map, respectively. The residualVrad map is constructed via Eq. (3.7),
while the residualVrot is obtained from Eq. (3.8) with the contribution fromV0,rot (D0), defined
by Eq. (3.13), being removed. Given the fact that trailing arms are found to be ubiquitous in disk
galaxies (de Vaucouleurs 1958; Pasha & Smirnov 1982; Pasha 1985), we also assume that the
spirals appear in the THINGS map are trailing, i.e., the gas is rotating clockwise on the sky. This
assumption combined with the observedVlos helps us to determine the back and the front sides of
M83. The black ellipses in Fig. 3.7 are the same as the white ellipses shown in Fig. 3.1a, marking
the ring structure for the fiducial case, which hasV0,max = 180 km s−1. Negative values seen in
theVrad maps indicate radial inflow, positive values radial outflow.Negative values shown in the
residualVrot maps indicate that the gas rotates slower than the bulk motion of the gas, positive
values indicates faster rotation. We discuss the implications of these maps in the next Section.

3.5 Discussions

3.5.1 The HI Ring As An Angular Momentum Barrier

In this Chapter, we interpret the HI ring as a natural consequence of the conservation of angular
momentum. The angular momentum carrying infalling gas spirals inwards until it hits its Kepler
orbit. At this point, the gas cannot move further inward. This would naturally explain why
and how the prominent HI ring forms. A direct and compelling kinematic evidence comes from
Fig. 3.4b, where the ring itself serves as a transition zone connecting the outer disk and the inner
disk, which have distinct inclinations. The misalignment of the rotation axis suggests that the
filaments seen in the outer disk are very likely of intergalactic origin, not tidally stripped off from
the inner disk.

Evidence supporting the hypothesis that gas flows further inwards from the ring to yet smaller
radii comes from Eq. (3.5) and the shift in PA as indicated by the two short horizontal lines shown
in Fig. 3.4c. As discussed in Section 3.3.1, the presence of the axi-symmetric radial velocity,
V0,rad, shifts the actual position angle and changes the amplitudeof apparentVrot. Assuming that
the actual PA of the bump part is inferred from the bulk motions extracted from the Effelsberg
data (red line), the presence of the radial velocity shifts the apparent PA as derived from the
THINGS map toward 243◦ according to the blue curve atR = 7.5′. We thus get the following



EVIDENCE FOR RADIAL INFLOW IN THE EXTENDED HI DISK OF M83 (NGC5236) 55

relations for the fiducial model:
√

V2
0,rot + V2

0,rad = 180, [km s−1] (3.16)

tan(ψ) = tan(236◦ − 243◦) =
V0,rad

V0,rot
. (3.17)

Solving these two equations numerically, one getsV0,rad = −21.6 km s−1 andV0,rot = 178.7 km
s−1. Comparing Fig. 3.3b and Fig. 3.4c, we find that the bump in thePA model lies in the inner-
inclined region, i.e., betweenR = 6′ to 9′. If we take the surface density 1.7 M⊙ pc−2 also from
R= 7.5′, using Eq. (3.14) yields an infall rate of 2.3 M⊙ yr−1. Note that this crude estimate does
not take into account the diffuse gas recovered from the Effelsberg map. This inferred infall rate
fits excellently to the star formation rate, 2.5 M⊙ yr−1 of M83 (Walter et al. 2008; Kennicutt 1998).
This is an example illustrating that the potential radial flow can be substantially underestimated
by the tilted-ring analysis.

We have estimated the gas infall rate from the ring to the star-forming disk. To sustain the HI
ring structure, gas accretion from outer disk must be able tocompensate the gas consumption.
If we assume that the gas consumed by star formation inside the ring is at a rate of 2.5 M⊙ yr−1,
the globally averaged star formation rate (Walter et al. 2008). As mentioned above, the ring is
formed by gas infall from the outskirts due to the conservation of angular momentum. The mass
(THINGS map only) enclosed by the ring is 7.3 × 108 M⊙. For the fiducial model, to form the
ring in one orbital time, i.e., 450 Myr atR = 10′, one needs averaged infall rate of 4.1 M⊙ yr−1

from the outskirts. This number also fits very well to the number, 2.5± 1.5 M⊙ yr−1, as inferred
in the next Section.

3.5.2 Radial Inflow In The Outer Disk

Before applying the Fourier decomposition to either Eq. (3.11) or Eq. (3.12), one needs to de-
termine values for position angle and inclination. The position angle and inclination shown in
Figs. 3.5a and 3.5b are used for the Fourier decomposition for the THINGS map. The values for
the radial range to the right of the vertical line are inferred from the Effelsberg map. Figure 3.5c
shows the averaged radial velocity for the THINGS map and Fig. 3.5d the corresponding radial
mass flux. In all models, we see a prominent radial inflow corresponding to the radii where the
filaments in the outer disks are found. Depending on the models, the averaged radial velocity
ranges from−5 to −60 km s−1, which contributes a gas infall rate ranging from 0.5 to 4.0 M⊙
yr−1. The corresponding radial velocity and the radial mass flow for Effelsberg map are shown
in Figs.3.6c and 3.6d, respectively. It shows a radial velocity ranging from−3 to 5 km s−1 and a
radial mass flow from−1 to 2 M⊙ yr−1. The difference in the averaged radial velocity between
the two maps indicates that the motion of the filaments seen inthe THINGS map deviates signif-
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icantly from the bulk motion, that is traced by the much lowerresolution Effelsberg map data. To
understand this in detail, we will focus in the following on the residual maps shown in Fig. 3.7.

The black ellipses shown in Fig. 3.7 mark the location of the ring structure (6′ < R < 12.75′),
which is consistent with the transition zone (5.5′ < R < 12.5′) defined in Fig. 3.4. We reiterate
that in the THINGS map, onlym = 0, 1 is applied to the area ouside the ring. The lopsidedness
(m = 1) causes negative values on the east side and positive on theother side. The infalling gas
from the extreme outer disk is carrying its angular momentumtowards its Kepler orbit. In order
for the gas to be able to proceed to the inner disk, it must givesome angular momentum to other
gas particles that consequently move outwards. Therefore,an analysis involving higher harmon-
ics is necessary to study possible mechanisms that lead to the angular momentum exchange. The
area with negative values in bothVrad and the residualVrot represent ranges where the angular
momentum of the gas will be too small to allow the gas to remainat this particular radius. Gas in
such regions will move inwards until it reaches its Kepler orbit. Gas in areas with opposite signs
in Vrad and the residualVrot might take part in epicyclic motion. Gas in areas with positive values
in bothVrad and the residualVrot might be a result of angular momentum exchange. Here, gas is
moving outwards towards larger radii. It is interesting to see that the gas near the ring shows a
typical signature of epicyclic motion, i.e., a 90◦ shift in phase betweenVrad and the residualVrot.

A strong lopesidedness,m = 1, is seen in the outer disk of both THINGS and Effelsberg maps.
Figure 3.7a shows gas infall withVrad ∼ −90 km s−1 in the north-west corner andVrad ∼ 30 km
s−1 in the south-east corner. Compared to the residualVrot shown in Fig. 3.7c, this implies that
the gas in the north is moving inwards while the gas in the south-west is moving outwards. It
is the non-zero mass-weighted radial velocity,∼ −30 km s−1 , that leads to a net inflow. On the
other hand, for the Effelsberg map, only a small value of mass-weighted velocity isfound for
Fig. 3.7b, resulting in no obvious contribution to the gas inflow.

These results lead to several conclusions. First, as discussed in Section 3.3.1, the fitting procedure
described in Section 3.4.1 can potentially eliminate the presence of axisymmetric radial flow.
However, in the above, the asymmetry ofVrad found in the outer disk of THINGS map suggests
an axisymmetric radial flow of−30 km s−1. This is because the fit parameters for the outer disk in
the THINGS map are inferred from the Effelsberg map. The motions of filaments inferred from
the THINGS map deviate from the bulk motion inferred from theEffelsberg map, suggesting that
the streaming flow plays an important role in channeling gas inwards. Adopting the fit parameters
from single-dish data help us probe the presence of streaming motion seen in the inteferometry
data. Second, with this averaged axisymmetric infall velocity −30 km s−1, it takes about 720 Myr
for the gas at the tip of north-west corner to travel 22 kpc to reach the HI ring, i.e., the filaments
seen in the extended disk are likely transient. Third, deeper interferometric observations might
help to allow to include the second harmonic in the analysis of the outer disk. The presence of
the second harmonic might have an impact on the movement in the south-east filament.
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3.5.3 The Inner Disk and The Transition Zone

Figures 3.5c and 3.5d show that on average the inner disk (< 5′) has a radial velocity of∼
−4 km s−1 and a mass inflow of 0.2 M⊙ yr−1. Note that the counterparts shown in Fig. 3.6c
are virtually zero. This is expected because (i) theV0,rad is eliminated in the fitting process as
discussed in Section 3.3.1 (ii) for each ring, the azimuthally uniform mass distribution yields
higher harmonics which make no contribution to the net inflow.

As shown in Fig. 3.3b, the transition zone can be further divided into an inner-inclined region
(6′ < R < 10′) and an outer-inclined region (10′ < R < 12.75′), measured from the peak of the
HI ring at aboutR = 10′. On the one hand, and as discussed in Section 3.5.1, the shiftof PA
appearing in the inner-inclined region might be a result of an axisymmetric radial inflow. The
gas infall leads to a decreasing gas surface density at smaller radii. The cause of the inflow is
unclear. On the other hand, we view the gas accumulating in the outer transition zone as result
of the conservation of angular momentum. One might expect the gas in this range to stay there
for some time before being channelled further inwards. Therefore, the ring might be a relatively
static structure. However, as shown in Figs. 3.5c and 3.6c, the movement of the outer-inclined
region appears to be model dependent and therefore uncertain in both maps. We obtain an outflow
in the model withVmax = 160 km s−1, and inflow withVmax = 200 km s−1 and a relative static
ring with Vmax = 180 km s−1. The model with a static ring justifies the choice of the fiducial
model,Vmax = 180 km s−1, n = 0.8, Rmax = 4.5′, if one views the ring as a result of conservation
of angular momentum.

3.6 Summary

In this Chapter, we discussed evidence for an radial inwardsgas flow in the extended disk of
M83. We combine information extracted from interferometric data (THINGS map) as well as
single dish data (Effelsberg map) to search for evidence of gas accretion of intergalactic origin.
While the THINGS map offers a detailed picture of the small-scale structure of the HIgas in
M83, the Effelsberg map provides a complete census of the diffuse HI emission and the bulk
motions on larger scales. The Fourier analysis introduced in this Chapter is proven to be useful
for extracting more information about the gaseous kinematics. We summarize our findings as
follows:

1. M83 can be divided in three kinematically distinct parts,an inner disk, a ring structure
(transition zone) and an outer disk. We interpret the ring asa natural result of conservation
of angular momentum. This interpretation together with thefact that more than 80% of HI
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gas sits outside the Holmberg radius motivate us to search for evidence of gas accretion
onto the extended disk of M83.

2. The conventional tilted ring analysis used in Schoenmakers et al. (1997), Wong et al.
(2004), Trachternach et al. (2008) and this Chapter tends toeliminate the contribution
from the axisymmetric radial motion by introducing a phase shift and by changing the am-
plitude of apparent rotation velocity. Nevertheless, in Section 3.5.1, we interpret the angle
shift in PA as the presence of the radial motion, which contributes a radial mass inflow of
2.3 M⊙ yr−1 at the radiusR = 7.5′, which excellently fits to the observed star formation
rate, 2.5 M⊙ yr−1 (Walter et al. 2008).

3. The PA and inclination used to extract the radial flow in theouter disk of THINGS map are
inferred from the Effelsberg map, which offer the gaseous bulk motion on larger scales. It
turns out that the motion of the filaments seen in the THINGS map are falling towards the
ring with an avearged radial velocity ranging from−5 to−60 km s−1, offering a net mass
inflow of 2.5±1.5 M⊙ yr−1. For the Effelsberg map, however, due to the low radial velocity
over the entire map, no clear sign of inflow or outflow is found.

4. In Section 3.5.2, we infer that the filaments are falling inwards with an axisymmetric ve-
locity of −30 km s−1. This infalling filaments will then compensate the mass lossof the
ring, making the filements in the extended disk transient structures.

5. From Fig. 3.7, we realize that the gas infall is far from uniform over the disk. The gas
motion is complicated. The mechanisms that facilitate the exchange of angular momentum
inside the ring is unclear. Detailed numerical simulationsare required to understand the
interaction between the diffused gas and the structures. Based on our results, we believe
that streaming motion is the most likely and efficient way of chanelling gas toward the star
forming disk.

6. We conclude that M83 is a growing disk galaxy. The huge gas reservoir in the outskirts is
feeding this galaxy in the form of filament.
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Figure 3.1: (a) The zeroth moment in units of M⊙ pc−2 of the THINGS map. The white ellipses
correpond to the black vertical lines (R= 6′, 12.75′) shown in Fig. 3.3b, which define the region
of the bright HI ring. (b) The first moment in units of km s−1 of the THINGS map. Each
black ellipse is a result of a tilted circular ring at radii 5′, 10′, 15′, 20′, 25′, with a PA and an
inclination extracted from the tilted-ring analysis. To associate structures with the corresponding
radii, these ellipses serve as a coordinate system for the fiducial model withVmax = 180 km
s−1. (c) Reconstructed HI intentisty map in units of column density M⊙ pc−2 of the Effelsberg
map. (d) Reconstructed line-of-sight velocity,Vlos [km s−1], of the Effelsberg map. The contours
shown in (c) and (d) are extracted from HB81 and are used to reconstruct the Effelsberg map.
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Figure 3.2: Vlos contours from the Effelsberg map superimposed on the THINGS intensity map.
The coincidence between the bending of the contours and the structures, i.e., the ring and the
spirals, outside the Holmberg radius (shown as the white ellipse) motivates the search for gas
inflow signatures based on HI kinematics.
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Figure 3.3: (a) The Brandt-type flat rotation curves as described in Eq. (13). Due to the low
inclination of M83, we bracket the real situation with a range of different rotation curves and
corresponding fit parameters from the tilted ring model. We assumen = 0.8, Rmax = 4.5′,
Vmax = 160, 180, 200 km s−1. As suggested in HB81, we take the model withVmax = 180 as
our fiducial case, which will then be justified in Section 3.5.(b) The averaged surface density
of the THINGS map (blue curve) and of the Effelsberg map (red curve). They are extracted
from the fiducial model. The black vertical lines situated at6′ and 12.75′ define the region of
ring structure, which is also shown as the area enclosed by the white ellipses in Fig. 3.1a and
the black ellipses in Fig. 3.7. The green vertical line marksthe location of the density peak and
further divides the ring into an inner ring and an outer ring.
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Figure 3.4: (a) System velocity extracted from the first stepof Fourier decomposition described
in Section 3.4.1. (b) The inclination and (c) the PA of the fiducial model, which hasVmax = 180
km s−1, for the THINGS map (blue curve) and the Effelsberg map (red curve). For the blue curve
in (b) and (c), due to the lack of information in the outskirtsof THINGS map, PA and inclination
angles can be robustly derived only inside 12.5′. The area between the vertical lines atR= 5.5′

and 12.5′ is the transition zone, inside/outside which the disk has a nearly flat inclination. In
(b), the black dash-dotted curve is a result of shifting the red curve upwards by 3 degree. This
offset might be due to either the different spatial resolution of the two maps or the fact that the
single dish map picks emission on larger spatial scales as well, possibly tracing slowly rotating
gas above/below the midplane, which is thought to be the cause of the vertical velocity gradient
found by Fraternali et al. (2005).
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Figure 3.5: (a) PA and (b) inclination models used to infer radial motion of the gas in the
THINGS map. (c) The inferred radial velocity. (d) The inferred radial mass flow. PA and
inclination inside the vertical line (R= 12.5′) are extracted from the THINGS map, while in the
other part we extrapolate these quantities from the Effelsberg map. The Fourier coefficients are
fitted for the harmonicsm= 0, 1, 2 for the radial regime to the left of the vertical line, whileonly
m = 0, 1 for the outer parts of the map. In the outer disk, the radial shift is due the different
inclinations corresponding to the different models. In all models, the common features are the
prominent radial inflow in the outer disk, epicyclic motion in the transition zone (where the HI is
organized into a ring like structure, see also Fig. 3.7 and anindication of moderate radial inflow
in the inner disk.
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Figure 3.6: (a) PA and (b) inclination models used to infer radial motion of the gas in the
Effelsberg map. (c) The inferred radial velocity. (d) The inferred radial mass flow. As opposed
to the results based on the THINGS map shown in Fig. 3.5, thesedata show a much weaker sign
of radial gas motion. The main features of these radial distributions, however, are very similiar
to those based on the THINGS map. We find a radial flow with average radial velocity ranging
from −3 to 5 km s−1 outside the Holmberg radius. No clear sign of radial motion is seen in the
Effelsberg map.
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Figure 3.7: (a)Vrad for the THINGS map. (b)Vrad for the Effelsberg map. (c) ResidualVrot

for the THINGS map. (d) ResidualVrot for the Effelsberg map. The black ellipses mark the
location of the ring structure(6′ < R < 12.75′), which is consistent with the transition zone
(5.5′ < R< 12.5′) defined in Fig. 3.4.





Chapter 4

The Impacts of Spiral Density Waves On Gas
Motions

4.1 Introduction

The majestic spiral arms observed in disk galaxies are composed of different constituents. In
optical, the narrow luminous arms are due to the bright youngstars which recently disperse
the molecular cocoons from which they are born. Photographstaken in near infrared display
the smooth, broad, sinusoidal older population which is themain body of the disk. In radio
wavelength, 21 cm emissions from HI gas can be observed all the way out to the entended
disk, making it an ideal tracer to study the gas dynamics and the mass distribution. The tight
correlation between the luminous arms and the stellar arms indicates that the stellar dynamics
and the gas dynamics are not completely separable.

The linear theory of density waves developed since 60s (Toomre 1964; Lin & Shu 1964) is meant
to account for the formation of smooth sinusoial-varying stellar spirals. A number of theoretical
works consistent with the quasi-stationary spiral structure (QSSS) framework has been carried
out to investigate the gas response to the density waves. Roberts (1969) studies the nonlinear
gas response to the superimposed gravitational field of linear spiral waves of stars and finds the
shock solutions. Shu et al. (1972) propose a scenario that clouds of sub-critical mass get com-
pressed to super-critical mass as passing through galacticshocks, ensuing the collapse of clouds
and triggering the formation of stars. In this scenario spiral shocks play an important role on the
process of star formation and on the formation of giant molecular clouds (GMCs). Searching
for the evidence of the presence of shocks attracts a lot of attention since then. Velocity fields
of spiral galaxies probed by CO, Hα and HI emission have shown strong streaming motions and
velocity jumps across spirals (Shetty et al. 2007; Roberts &Stewart 1987; Visser 1978a,b). The
presence of phase-lag between dust lanes in spiral arms and the ionized gas downstream to the
shock (Tamburro et al. 2008; Roberts 1969) is also predictedin Roberts’ picture. Following the
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same line of Roberts (1969), Shu et al. (1973) study the ultra-harmonic resonances to understand
the multiple-arm phenomenon. Woodward (1975) carries out one-dimensional time-dependent
calcultions and finds the 4:1 resonances discussed in Shu et al. (1973). He concludes that unless
the self-gravity is important, it is unlikely to explain theformation of spurs in terms of over-
lapping ultra-harmonics. Balbus (1988) attributes the substuctures to the growth of gravitational
instabilities in preferred directions.

Although these works based on the assumption that spirals istightly wound seem to be able to
account for the formation of narrow dust lanes and luminous arms, near-infrared images taken
by Spitzer Infrared Nearby Galaxies Survey (SINGS; Kennicutt et al. 2003) reveal a weath of
substructures in dust, which is carried along with gas motions. Gas motions in real spiral galaxies
is proved to be far more complicated. Secondary structures now coined with the name ‘spurs’ and
‘feathers’ emerging from the primary shock is prominent andpervasive over the disk. Numerical
studies need to be conducted in order to fully understand theimpacts of density waves on gas
motions.

Kim & Ostriker (2002a) perform numerical simulations including self-gravity and magnetic
fields to study the origin of spurs. They attribute the growthof spur to the so-called magneto-
Jeans instability, an interplay between self-gravity, epicyclic motions and magnetic fields. Chakrabarti
et al. (2003) perform two-dimensional self-gravitating simulations to study the role of ultra-
harmonic resonances. They demonstrate that these featureswill be enhanced by the self-gravity
of gas disk. The leading structures (referred to ‘spur’ in that paper) emerging from the primary
shock are interpreted as a result of ultra-harmonic resonances. The wiggle instability found in
Wada & Koda (2004), which is reminiscent of spurs protrudingperpendicularly to the shock
front observed in nearby spiral galaxies, suggests that spiral shock is potentially a major means
of tapping turbulent energy from the huge energy reservoir stored in galactic rotation. They as-
sociate the wiggle instability with the Kelvin-Helmholtz instability resulted from the post-shock
shearing flow. Kim et al. (2006) investigate the spiral shockevolution in a stratified disk. They
conclude that the nonsteady flapping motions in the radial-vertical plane can effectively transform
some of the rotational energy into random gas motions. They also conclude that the self-gravity
and the magnetic fields play little role in this process. Dobbs & Bonnell (2006) perform non-
selfgravitaing simulations using particle hydrodynamics(SPH) to study the spurs and feathers in
spiral galaxies. They conclude that these substructures are natural results of sheared divergent
flow. The necessary condition for this mechanism to work requires gas temperature less than
1000 K. Although the wiggle instability has been observed and proposed as a potentially major
source of driving turbulence, its origin and efficiency are not well understood.

Recently, the second moment observed by The HI Nearby GalaxySurvey (THINGS, Walter et al.
2008) is interpreted as the presence of turbulence. Turbulence in the interstellar medium (ISM)
is pervasive and plays an important role on regulating star formation on both large and small
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scales (Mac Low & Klessen 2004). Turbulence decays very faston a timescale comparable to
one crossing time. One or more mechanisms have to be able to continuously pumping energy
in order to sustain turbulence. Tamburro et al. (2009) attribute the velocity dispersion within the
galactocentric radiusr25 to the stellar feedback and to the magneto-rotational instability (MRI;
Balbus & Hawley 1991, 1998; Sellwood & Moore 1999) for the regions beyondr25, where the
star formation is no longer active.

Spiral density waves as a means of powering the observed ISM turbulence on large scale has
been proposed in Zhang (2002). CO and [CI ] observations for Carina molecular cloud complex
suggest that spiral shocks may play an important role in the energy balance of molecular clouds.
In this scenario, energy injected from large scales∼ 1 kpc cascades downward to smaller scales.
Energy injection from spiral shocks is estimated to be of thecorrect order to produce the observed
size-line width relation for molecular clouds (Zhang et al.2001).

It has long been recognized that in a compressible flow vorticity is not continuous across a shock
(Truesdell 1952; Lighthill 1957; Hayes 1957; Kevlahan 1997). The idea that vorticity gener-
ated by shocks has been applied to explain many phenomena in different astrophysical contexts.
Doroshkevich (1973), Binney (1974) and Chernin (1993) propose that the rotation of proto-
galaxies may originate from the vorticity created by shocksin the early universe. Fleck (1991)
and Chernin & Efremov (1995) propose that galactic spiral shocks are responsible for the rota-
tion of GMCs. In particular, Chernin & Efremov (1995) relatethe spin of GMCs which have
retrograde rotation with respect to the galactic rotation to large-scale spiral shocks. Kornreich &
Scalo (2000) theoretically study the internal motions induced by the passage of a shock through
a cloud. They conclude that interstellar shocks can pump enough energy to sustain supersonic
internal motions in cold interstellar medium. Bonnell et al. (2006) numerically demonstrate that
the internal motions of GMCs can be caused simply by the passage of an initially clumpy ISM
through the spiral shock without resorting to any other external driving source. The observa-
tional, theoretical and numerical studies mentioned abovesuggest that the relationship between
galactic shocks and ISM turbulence requires more attention.

It is well known that the presence of trailing spiral densitywaves transfers angular momen-
tum outwards in stellar disks (Lynden-Bell & Kalnajs 1972).Gravitational torques excerting
on stars reshape the distribution of stars and the angular momentum of disks on secular time
scales (Lynden-Bell & Kalnajs 1972; Bertin 1983; Gnedin et al. 1995; Zhang 1996, 1998, 1999;
Foyle et al. 2010). The gravitational torques excerted by stars also work on gas, transferring the
angular momentum of gas disks outwards and driving gas flow inwards. Athanassoula (1992)
studies the gas flow and the shape of dust lanes around galactic bars. The mass-weighted radial
velocities she found range from−1 to −6 km s−1 depending on the models. Levy et al. (1996)
study the angular momentum and the mass transfer of gas disksunder the influence of external
barred potential. They interpret the gas inflow as a result ofangular momentum transfer from the
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inner disk inside corotation to the outer disk. Transporting angular momentum outwards leads
to the growth of the outer radius of the disk. Jogee et al. (2005) study the circumnuclear regions
of a sample of barred galaxies. They conclude that over a galaxy’s lifetime, a galaxy can ex-
perience numerous times of bar-driven gas inflow that results in the central mass concentration.
Shetty et al. (2007) study the gas kinematics in the spiral arms and the interarms of M51 (NGC
5194). The radial and tangential streaming motions of M51 support the existence of spiral shock.
They attribute the change of sign in the flux-weighted (mass-weighted) average radial velocity
to the radially varying position angle and disk inclination, i.e., a warped or a twisted disk. Hunt
et al. (2008) and Haan et al. (2009) study the gas inflow rate for galaxies selected from the NU-
clei of GAlaxies sample (NUGA). They find the gas inflow rangesfrom 0.01 to 50 M⊙ yr−1 to
fuel the galactic nuclear activity. Many works mentioned above is dedicated to stellar disks or
gas motions in barred galaxies, the role played by spiral density waves, on the contrary, is less
recognized and therefore becomes one of objectives in this Chapter.

In this Chapter, the impacts of density waves on gas motions are studied in detail. A global non-
selfgravitating two-dimensional simulation with a very high spatial resolution is carried out with
the adaptive mesh refinement magnetohydrodynamics coderamses (Teyssier 2002). A rigid-
rotating spiral potential of stellar origin is superimposed on the axisymmetric background poten-
tial, which sustains the flat rotation curve. The gas is evolved isothermally with a temperature
104 K. Without the complex from stellar feedback, self-gravity, magnetic fields, we stress the
pure hydrodynamic impacts of density waves.

This Chapter is structured as follows. In Section 4.2, the numerical model and the relevant
parameters are presented. In Section 4.3, We quantify the level of velocity dispersion along the
line-of-sight by tilting the two-dimensional disk plane with a moderate inclination. The results
will be compared with observations. In Section 4.4, the evolution of radial velocity and angular
momentum is quantified and studied. The generation of vortensity is discussed and evaluated
in Section 4.5. A close look at the flow pattern around the shock and its implications to the
formation of substructures is presented in Section 4.6. Discussions are put in Section 4.7. We
summerize our results in Section 4.8.

4.2 The Model and Parameters

Two-dimensional, non-selfgravitating numerical simulations are performed to investigate the im-
pacts of spiral density waves on gas motions. The initial surface density is exponential and is
characterized by a scalelengthRd = 15 kpc for warm HI gas. The gas disk is embedded in an
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axisymmetric static potential,Φstat, which is described in cylindrical coordinates, (R, φ):

Φstat(R) = −V2
0 ln(a+ R), (4.1)

with V0 = 220 km s−1 being the maximum value of rotation velocity anda = 0.6 kpc a parameter
controlling the rising rate of the inner rotation curve.

A persistent, rigid-rotating, logarithmic density wave ofstellar origin is then superimposed on
theΦstat. The potential of this external field reads (Roberts 1969):

Φsp(R, φ, t) = Φsp,0(R) cos

[

m

(

φ +
1

tan(i)
ln R− Ωpt

)]

, (4.2)

with Φsp,0 being the strength of spiral,m = 2 the number of arm,t the time,Ωp = 20 km s−1

kpc−1 the pattern speed andi = 17◦ the pitch angle. The strength is chosen to be 18% of the
background radial force defined by (Shetty & Ostriker 2006):

Φsp,0(R)m

V2
rot(R) tan(i)

= 18%, (4.3)

with Vrot(R) being the rotation curve derived from Eq. (4.1).

The chosen strength is based on observations for spiral galaxies. In near infrared light, the
amplitude of the smooth, sinusoidal arms composed of stars is somewhere between 18% and 60%
(Rix & Zaritsky 1995) with respect to the azimuthal averagedsurface bright. Recent observations
suggest an average strength of 30% (Zibetti; private communication). In this Chapter, we adopt
the conservative strength 18%. Although it is the lower bound of the range, this amplitude is
stronger than the values commonly used in the literature. Thus, we expect that the gas response
to the superimposed ‘perturbation’ spirals will be highly nonlinear and violent. The result is
beyond the scope of linear analysis and is best studied numerically.

In the beginning of simulation, the external spiral perturbation grows adiabatically, i.e., the force
increases gradually and stay at a constant strength after one orbital time (∼ 280 Myr evaluated
at the co-rotation). This simulation starts with a warm gas disk of temperatureT = 104 K and is
evolved isothermally. The computational box is 100 kpc on a side. Fourteen levels of refinement
are used to cover the computational domain. To have the best spatial resolution for the inner disk,
the 14th level, which corresponds the physical size of 6 pc, is forced to cover uniformly over the
central region of 30 kpc in diameter. With this simple two dimensional setup we are allowed to
reach a spatial resolution much higher than the observational one (THINGS, Walter et al. 2008),
which ranges from 100 pc to 500 pc depending on the distance ofgalaxies.

The solid curve shown in Fig. 4.1 represents the angular speed,Ω, as a function of radius.Ω ±
κ/4 are shown as the dashed curves, whileΩ ± κ/2 are the dash-dotted curves.κ denotes the
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i < σ > Morph. SFR

(◦) [km s−1] Type [M⊙ yr−1]

Obj. Name (1) (2) (3) (4)

NGC 628 7 8.0 S? 1.21

NGC 5194 42 17.7 Sbc 6.05

NGC 3351 41 10.6 Sb 0.71

NGC 4736 41.4 12.0 Sab 0.43

NGC 7793 50 11.4 Scd 0.51

Table 4.1: THINGS Target Galaxies. Spiral galaxies from THINGS explored by Tamburro et al.
2009. (1) inclination angle (de Blok et al. 2008); (2) HI mass-weighted median of the HI velocity
dispersion; (3) morphological Hubble type (LEDA); (4) Starformation rate (SFR) (Lee 2006;
Walter et al. 2008).

epicyclic frequency. The horizontal line represents the pattern speedΩp = 20 km s−1 kpc−1. The
intersections of these curves with the pattern speed mark the locations of resonances, in the order
of increasing radius, ILR 2:1 (2.6 kpc), ILR 4:1 (6.7 kpc), co-rotation (10.7 kpc), OLR 4:1 (14.6
kpc) and OLR 2:1 (18.5 kpc).

Since the spiral potential streches from the galactic center all the way to the outskirts of the disk,
we can not avoid the mixing of resonance waves and forcing waves. Resonance waves are excited
by Lindblad resonances. They are generated around the radiiof resonances and propagate freely
throughout the disk. The behavior of resonant waves is governed by the dispersion relation. On
the other hand, the forcing wave is the type of wave investigated by Roberts (1969). Gas reacts
to the external force, behaving like a forcing pendulum and evolves into the grand-design spiral
shocks due to the nonlinear development. The interaction ofthese two type of waves can be seen
in the later stage of evolution and will be discussed in Section 4.6.

4.3 Velocity Dispersion

Based on the second moment defined in Walter et al. (2008), thermal broadening, turbulence
and beam smearing can all contribute to the apparent velocity dispersion. We notice that eight
out of the eleven galaxies studied by Tamburro et al. (2009) are inclined more than 40◦. For
the sake of clarity, the data of five selected spiral galaxiesin that paper are listed in Table 4.1.
Among them, NGC 5194 (M51) is an extreme case with a high HI velocity dispersion. It has a
relatively high inclination and is turning gas into stars ata high rate. This is probably due to the
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tidal interaction with its companion NGC5195. NGC 628 is themost face-on disk galaxy in this
sample. Although NGC 628 has a relatively high star formation rate (SFR) compared to the rest
of galaxies apart from NGC 5194, it has the least velocity dispersion. NGC 3351, NGC 4736
and NGC 7793 have a relatively high inclination and a high velocity dispersion despite their low
SFR. From this table, we have the following conclusions. First, the velocity dispersion is not
positively correlated with SFR. Galaxies with higher star formation rate are not necessarily to
have a higher velocity disperision. In fact, except NGC 5194, an anti-correlation is found be-
tween them. Second, galaxies with higher inclination tendsto have a higher velocity dispersion.
We incline our 2D disks with a moderate inclination angle 42◦ to examine how much the in-plane
motions will be observed as turbulence along the line-of-sight.

4.3.1 The Generation of Synthesis Map

To compare the two-dimensional numerical results with the synthesis maps produced by interfer-
ometry, one needs to (i) project the in-plane motions along the line-of-sight for a given position
angle and disk inclination (ii) downgrade the numerical resolution to match the observation one.
In this Section, the spatial resolution of the two-dimensional maps is downgraded from 6 pc to
300 pc. Disk inclination, incl= 42◦, is chosen to mimic the inclination of NGC 5194. We
then do ‘observation’ for the numerical results and study the impacts of the density waves on the
observed velocity dispersion.

Projecting the in-plane velocity along the line-of-sight (LoS) is done by (de Blok et al. 2008):

vLoS = −vx sin(incl) cos(PA)+ vy sin(incl) sin(PA), (4.4)

with vx, vy being the velocity field defined in the plane of galaxy and PA the position angle.
The downgrade procedure is done as follows. The high resolution maps are covered with super-
cells. Each super-cell consists of several micro-cells. For instance, a super-cell of 300× 300 pc2

contains 50× 50 micro-cells of the size 6× 6 pc2. Thus for each super-cell we are able to define
quantities such as the total mass (the zero moment), the mass-weighted LoS velocity (the first
moment) and the mass-weighted LoS velocity dispersion (thesecond moment) as described in
Walter et al. (2008) and (Tamburro et al. 2009). We define the ‘observables’ as follows:
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Isup =
∑

j

I j , (4.5)

vsup =
1

Isup

∑

j

vLoS, j I j , (4.6)

σ2
sup =

1
Isup

∑

j

(vLoS, j − vsup)
2I j , (4.7)

where Isup, vsup andσsup denote the zeroth-, the first- and the second-moment of super-cells,
respectively.I j represents the mass/intensity of single micro-cell andj runs over all the micro-
cells contained in a super-cell.

4.3.2 The Line-of-Sight Velocity Dispersion

We quantify the velocity dispersion under the influence of density waves. Figure 4.2 shows the
evolution of the surface density (first row), line-of-sightvelocity dispersion (second row) and the
iso-velocity contours (third row) att = 300 (first column), 450 (second column), 650 Myr (third
column). When producing the maps of dispersion velocity in the second row, we adopt a thermal
broadening of 8 km s−1. The galactic planes shown in Fig. 4.2 are inclined with incl= 42◦.

In Fig. 4.2a, the spiral potential has reached its full strength and the spiral shock is fully de-
veloped. The leading substructures, which are described as‘spurs’ in Chakrabarti et al. (2003),
protruding from the main shock are clearly seen in the inner disk. Overall, at this point, the flow
pattern is still laminar. However, as shown in Fig. 4.2d, along the shocks the velocity dispersion
can reach on average 10 km s−1 and even 25 km s−1 at some locations. Note that this dispersion
velocity is purely due to the streaming motion in the post-shock regions. Further downstream
to the shock, the flow pattern becomes smooth again. Thermal broadening is the major contrib-
utor to the velocity dispersion. The bending of the iso-velocity map (spider diagram) shown in
Fig. 4.2g shows that the oblique shock deflects the incident flow with a sharp angle in post-shock
regions. The streamlines of gas behind the shock change rapidly on the scales smaller than the
size of super-cell and therefore contribute a substantial portion of velocity dispersion along the
shock. Note that only a moderate inclination is needed to obtain this result.

In Figs. 4.2b and 4.2c, spiral shocks are no longer stable, developing chaotic substructures rem-
inicent of the infrared images of M51 pictured by Spitzer space telescope (SINGS; Kennicutt
et al. 2003). The flow is disturbed by the nonsteady shocks. The huge energy reservoir stored in
rotation motions is transformed into local turbulent energy. Over time, the interarm gas is getting
more chaotic. However, as shown in Fig. 4.2h and 4.2i, the overall flow pattern does not change
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very much compared to Fig. 4.2g. This shows that the turbulent energy is only a small fraction
of the total kinetic energy.

In figure 4.3, the mass-weighted velocity dispersion is calculated for the disk within a radius
of 9 kpc over a period of 1.6 Gyr. The blue curve represents thekinematic velocity dispersion,
σkin. The red curve is the total velocity dispersion, i.e.,σ2

tot = σ2
th + σ

2
kin, where the thermal

broadening withσth = 8 km s−1 is taken into account. In the beginning 300 Myrs, as the strength
of the spiral is turned on adiabatically, the thermal broadening dominates the turbulent energy.
At t = 330 Myr, the shocks become unstable. Wiggle instabilities develop from the inner disk
to the outer disk. The kinematic velocity dispersion keeps growing steadily over the next one
Gyr. Eventually, it saturates atσkin = 11 km s−1 andσtot = 13 km s−1. These result shows
that the turbulence driven by nonsteady shocks alone can explain the observed level of velocity
dispersion.

4.4 Angular Momentum Transport and Radial Motions

The presence of density waves not only tap turbulent energy from regular motions, it also re-
distributes the angular momentum and the mass over the disk.Figures 4.4 and 4.5 show the
evolution of mass and angular momentum distribution as a function of radius. To avoid the
boundary effect, which propagates with the sound speed (10 km s−1), we trace the evolution of
the disk within a radius of 35 kpc for 800 Myr.

Figure 4.4a shows the evolution of annular mass distribution and Fig. 4.4b the evolution of ac-
cumulated mass distribution. We notice that the evolution of the disk seems to be separated by
the corotation (R = 10.7 kpc), around which the spiral shock vanishes. The total mass enclosed
within corotation drops very little over time. Inside the corotation, the gas is transported toward
the center of the galaxy, while for the region between corotation and OLR (R= 18.5 kpc), gas is
efficiently transported to the outer disk. Once the wiggle instability sets in att = 330 Myr, the gas
distribution inside the corotation is far from uniform. Gasstarts to converge or diverge at certain
radii. In all, the gas distribution changes dramatically ina few hundred Myrs, a relatively short
time scale compared to the secular evolution of stellar disk. Note also that after an evolution of
800 Myr, the gas distribution beyondR= 33 kpc remains intact.

Figure 4.5 shows the evolution of (a) annular angular momentum and (b) accumulated angular
momentum. Overall, the angular momentum inside OLR (18.5 kpc) is efficiently transported to
the outer disk. The disk inside corotation is losing and redistributing its angular momentum.
Although the annular angular momentum beyondR = 33 kpc remains intact, from Fig. 4.5b, it
seems that the gas disk is extracting angular momentum from the superimposed external spiral
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potential. Nevertheless, the loss of angular momentum of the stellar density waves is insignificant
to have a clear impact on the pattern speed,Ωp. It is interesting to notice that in the outer disk,
the mass distribution shown in Fig. 4.4a coincides with the distribution of angular momentum
shown in Fig. 4.5a. On the contrary, this is not the case for the disk inside corotation. We discuss
the implication of this result in Section 4.7.

Figure 4.6 shows the evolution of (a) mass-weighted radial velocity and (b) mass-weighted radial
velocity in time-radius plane. Figure 4.6a is the horizontal cuts of Fig. 4.6b att = 0, 300, 600, 800
Myr. Before the wiggle instability sets in, gas inside the corotation is moving inward with radial
velocities∼ −3± 2 km s−1, while the gas between corotation and OLR (18.5 kpc) is moving out-
ward subsonically∼ 5 km s−1. However, the gas beyond the OLR is oscillating with supersonic
speeds ranging from−20 to 20 km s−1. This phenomenon is best visualized in Fig. 4.6b. Once
the wiggle instability sets in att = 330 Myr, the gas motion is severely disturbed in the inner
disk. The sign of radial motion in the inner disk (R< 5 kpc) changes with radius.

4.5 Generation of Vortensity

Figure 4.7 shows the evolution of vorticity,ω ≡ ∇× v, with v being the in-plane velocity field, at
t =300, 450, 650 Myr. The spur-like substructure protruding almost perpendicular to shocks is
commonly seen in real spiral galaxies via the emissions of dust (Spitzer’s 24µm, Kennicutt et al.
2003) or HI (Visser 1978a,b). More precisely, eddies which are counter-rotating (retrograde)
with respect to the spin of large scale flow are emerging from shocks.

In this Section, we justify the generation of negative vorticity semi-analytically. We stress that
in a compressible flow, vorticity itself is not a conserved quantity. It is the vortensity or the
potential vorticity,ω/Σ, with Σ being the surface density, that is conserved in a 2D smooth flow.
However, with the presence of discontinuity, e.g., shocks,niether the vorticity nor the vortensity
is conserved. Therefore, the Eq. (2.4) in Balbus (1988) and the Eq. (11) in Shetty et al. (2007) do
not apply to a flow with shocks. Therefore, the dynamical impact of generated vortensity needed
to be quantified and examined.

In Section 4.3, we have shown that density waves are capable of extracting turbulent energy
from the regular rotation motions. For many reasons, vortensity turns out to be well suited to
quantify this process. First, vortensity is a local quantity, measuring the circulation of every
point, monitoring the flow change on small scales. Vortices are usually considered as a precursor
of turbulence, representing the energy injection from large scales into small scales. Second,
vortensity is a conserved quantity in a 2D smooth flow. This allow us to quantified the dynamical
impact which is purely from shocks.
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In general, the dynamics of vortensity in an invicid flow is governed by:

D
Dt

(

ω

ρ

)

=

(

ω

ρ
· ∇

)

v − 1
ρ3
∇ρ × ∇p, (4.8)

with ρ being the volume density,p the pressure and D/Dt the material derivative. The baroclinic
term,∇ρ × ∇p, on the right represents that the vortensity can be producedby the misalignment
between the density gradient and the pressure gradient. This term is gone for barotropic gas in
which pressure is a function of volume density. The first termon the right will vanish as well
if the flow is two-dimensional. Thus, for a smooth, compressible, two-dimensional, barotropic
flow, all terms on the right are gone, i.e.,ω/ρ is a conservative quantity if we move along with
a fluid parcel. In other words, for a flow in steady state, the iso-vortensity contours trace the
streamlines.

However, the derivative in Eq. (4.8) breaks down as the fluid comes across a shock. Rankine-
Hugoniot jump conditions has to be invoked to replace the derivative normal to the shock. Hayes
(1957) gives out a general formulation to evaluate the vorticity generation by a curved shock
in a non-uniform flow. Recent work by Kevlahan (1997) takes another route of derivation and
reaches the same results. Following the notations used in Kevlahan (1997), we write down the
main result as follows:
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with δω ≡ ωb−ωa being the vorticity difference behind and ahead the shock,∂/∂S the tangential
derivative along the shock front,Cr = C − A the relative velocity between the shock speed,C,
and the flow velocity normal to the shock front,A. The shock strength,µ, is defined by:

µ =
ρb

ρa
− 1, (4.10)

with ρb andρa being the gas density behind and ahead the shock, respectively. Hereafter, quan-
tities without subscript take the pre-shock values. To evaluate the jump of potential vorticity we
have:
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Inserting Eq. (4.9) into Eq. (4.11) , the jump in vortensity then reads:
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For polytropic gas,p = Kργ, with K being a constant andγ the polytropic index, Eq. (4.12) can
be reduced to:
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Applying Eq. (4.13) to isothermal gas, whereγ = 1, the baroclinic term on the right vanishes.
The jump in vortensity across a shock for isothermal gas reads:
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1
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∂S
. (4.14)

This shows that the vortensity is not conserved as a gas flow passes through shocks. The jump in
vortensity comes from the variation in the relative velocity, Cr, along the shock.

To evaluate the generation of vortensity through Eq. (4.14), one needs to establish local coordi-
nates along the spiral shock as shown in Fig. 4.8. The black arc is a part of a galactocentric circle
and the dashed curve represents a section of a logarithmic spiral shock. n̂ defines the normal
unit vector with respect to the shock front, pointing the downstream side. The spiral tangent ˆs is
defined by ˆz = ŝ× n̂, with ẑ the unit vector of rotation axis. The anglei between spiral tangent
and the azimuthal unit tangent,−φ̂, then defines the pitch angle. In this cartoon, we assume the
spiral shock is trailing, i.e., the mean flow is counterclockwise.

In addition to establishing the local coordinates, evaluating Eq. (4.14) also requires the infor-
mation about the pitch angle of shock,i, shock strength,µ, relative velocity,Cr, and the surface
density ahead the shock,Σa. Note that here we should replace the volume density,ρ, appearing in
Eq. (4.14) with surface density,Σ. In Fig. 4.9a, we trace the location of shocks after an evolution
of 300 Myrs. For the first order, the shock is well fitted with a logarithmic spiral (red line) of a
pitch anglei = 15◦, which is tighter than the superimposed onei = 17◦. This is better visualized
in log-polar coordinates (φ, logR) as shown in Fig. 4.9b (Elmegreen et al. 1989). In this plot,
logarithmic spirals become straight lines and the slope corresponds to the pitch angle. The spiral
shock is offset and the phase lags behind the potential trough of the superimposed potential. This
is also predicted by the semi-analytic work of Roberts (1969) although the WKB approximation
is adopted there, i.e., the spiral has to be tightly wound. The pitch angle of the spiral shock does
not change with time as the shock is developing, i.e., the pitch angle is well-defined over time
until instability sets in. The shocks become weaker and eventually vanish as approaching the
corotation (10.6 kpc). This is expected because the relative speed between the gas flow and the
external perturbation becomes subsonic around the corotation. Interestingly, the ripple seen in
Fig. 4.9b grows with time and has dynamical impact on the formation of substructure. This will
be discussed in the next Section.
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With the information shown in Fig. 4.8 and Fig. 4.9, we are ready to evaluate the generation
of potential vorticity via Eq. (4.14). We extract the information we need after an evolution of
200 Myr. By this time, the shock is well-developed and well-defined as shown in Fig. 4.10a.
Given the pitch angle of the shock, the velocity field can be decomposed into two components.
One is perpendicular to the shock (ˆn component, i.e., Fig. 4.10b) and the other is the parallel
component ( ˆs component). Subsequently, we make azimuthal cuts for both surface density,Σ,
and perpendicular velocity,A. We identify the quantitiesΣa andAa just ahead the shock. This is
done for radii ranging from 1 kpc to 8 kpc as shown in Fig. 4.11.Along the shock, the top panel
of Fig. 4.11 shows the values ofΣa, the middle panelAa and the bottom panelµ as defined in
Eq. (4.10).

Evaluating Eq. (4.14) involves the tangential derivative,∂Aa/∂S. To do this numerically, we
smooth theAa shown as the red line in the middle panel of Fig. 4.11 before the actual calculation.
Because the pattern speed and the shape of spiral shock are well-defined,∂C/∂S can be evaluated
analytically. PuttingΣa, µ and∂(C − A)/∂S together into Eq. (4.14), we have the result shown
in Fig. 4.12. Note that we have replaced the volume densityρ with the surface densityΣ in
Eq. (4.14). The red line there represents the intrinsic diskvortensity if the disk is undisturbed.

From Fig. 4.12, first, we notice that in the inner disk (1< R < 3) spiral shock is generating
both positive and negative vortensity comparable to the intrinsic values (red line) evaluated as
the disk is undisturbed. The variation inAa is large as shown in Fig. 4.11b. This can be observed
also in Fig. 4.10b, where the velocity component perpendicular to the shock front seems to be
modulated with a standing wave. This might be a result of the interaction between the resonance
waves emitted from ILR (2.6 kpc) and the forced waves. If we gofurther out (3< R < 8),
on average, the spiral shock is generating positive vortensity. Vortensity once created from the
shock will continue to stay in the smooth region as describedby Eq. (4.8) and interact with each
other until they encounter the next shock, i.e., the effect of vortensity generation can be added up
with time. As shown in Fig. 4.1, the angular speed increases with decreasing radius. This means
that the gas in the inner disk is disturbed by shocks more thanthat in the outer disk and has more
chances to accumulate generated vortensity. This is why thewiggle instability happens first in
the inner disk. Second, the width of the fast ripple seen in Fig. 4.12 is about 100 pc, which is
well resolved by the numerical resolution (6 pc). This givesthe characteristic scale on which the
vortices are generated by the curved shock.

This result shows that although by eye the flow looks laminar as shown in Fig. 4.10a, in fact,
eddies on small scales have been continuously generated andenhanced along the shock. This
is a clear sign of energy injection from large scales into small scales. Over time, the gener-
ated vortensity can not be ignored compared to the intrinsicvortensity, which is calculated from
the initial condition. Obviously, the variation inAa has a direct impact on generating negative
vortentisty/vorticity.
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4.6 Substructures and streaming motions

In this Section, we study the origin of leading structures protruding from the primary shocks as
shown in Fig. 4.10a, of the ripple in pitch angle as seen in Fig. 4.9b and of the oscillation in
shock strength seen in the bottom panel of Fig. 4.11.

The ripple in the pitch angle of shock as shown in Fig. 4.9b grows with time. This has a dynam-
ical impact on the streaming flow. To understand this we studythe post-shock flow pattern as
shown in Fig. 4.13. We follow the picture described in Vishniac (1994) and set up coordinates
(x, y) along a straight shock as indicated by the grey-dashed line. On top of it a sinusoidal dis-
placement indicated by the red curve is superimposed and is described byy = Asin(kx), with A
being the amplitude of the displacement andk the wave number. Given the pre-shock velocity
v = vxx̂+ vyŷ (the blue arrows), where ˆx andŷ represent the unit vectors inx andy, we study the
post-shock streaming motions (the black arrows).

To apply the Rankine-Hugoniot jump conditions, the pre-shock velocity is decomposed into
v = v⊥n̂⊥ + v‖n̂‖, with n̂⊥ andn̂‖ being the perpendicular and the parallel unit vector with respect
to the shock front, respectively. The posk-shock streamingmotion is expressed with a prime
v′ = v′⊥n̂⊥ + v′‖n̂‖. The relation betweenv andv′ can be found in Appendix A.7.

We assume that the velocity change in the pre-shock region due to the bending of the shock
is relatively minor compared to the background flow. This is valid when the amplitude of the
ripple is relatively small compared to the wavelength. We further assume that the flow is in a
quasi-steady state, changing slowly relative to the dynamical time. The resulting flow pattern in
the post-shock region then looks like the black solid arrowsshown in Fig. 4.13 reminiscent of
the nonlinear thin shell instability (NTSI) discussed in Vishniac (1994). We leave the discussion
regarding NTSI to Section 4.7.

Figure 4.14a is an example showing how a small ripple in pitchangle deflects the streamling flow.
The arrows there represent the directions of the streamlines, which is calculated via Eqs. (A.30)
and (A.31), in the post-shock area. Note that the scales ofx-axis andy-axis are not equal in order
to illustrate the idea clearly. In this case, the wavelengthand the amplitude are set to beλ = 1
kpc andA = 0.015 kpc, respectively. The incident flow comes in with the velocity vx = −172
andvz = 53 km s−1, i.e., an incident angle of 73◦ corresponding to the pitch angle 17◦.

From Fig. 4.14a, first, we notice that the small ripple in pitch angle leads to the separation or
aggregation of streamlines because of the different incident angles with respect to the curved
shock. The aggregation of streamline is clearly seen in Fig.4.14b. These streamlines are set off
along thex-axis with a uniform spacing 50 pc. Comparing to Fig. 4.10a, we are able to identify
that the leading arm structure is simply the result of congestion of streamlines. Furthermore,
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because the incident angle with respect to the shock is changing due to the presence of ripple in
pitch angle, the shock strength is expected to oscillate along with the ripple. One can envision
that the resulting shock is stronger on the head-on side and weaker on the leeside as shown in
Fig. 4.15, where the blue curve represents the shock and the dash-dotted line the Mach number,
Ma, of the perpendicular velocity with respect to the shock. This explains the variation of shock
strengh seen in the bottom panel of Fig. 4.11. The variation in shock strength can be easily a
factor of two even with a small amplitude in ripple. The shockvanishes when thev⊥ on the
leeside becomes subsonic.

The analysis in Appendix A.7 breaks down at the sonic point, which is before the sigularity of
Eq. (A.31). This is because the shock no longer exists whenv⊥ is subsonic. The breakdown
of Eq. (A.31) at the sonic point implies that the ripple in pitch angle cannot grow arbitrarily.
The denominator of Eq. (A.31) indicates that the variation of shock strength is very sensitive to
the wavelength. Shorter wavelengths cause the shock strength to oscillate more violently. This
explains why the wiggles always develop from smaller scales.

The cartoon shown in Fig. 4.13 combined with the post-shock flow pattern in Fig. 4.14a gives the
clue on how the retrograde eddies (negetive vortices) seen in Fig. 4.7b and Fig. 4.7c are gener-
ated. The post-shock flow is deflected radially inward, following the curve of ripple, depositing
linear momentum in the convex part of shock (with respect to the incident flow). The change
in linear momentum then exerts a force on the shock, pushing the valley (with respect to the
post-shock flow) backward and therefore enhancing the ripple. Furthermore, Coriolis force also
tends to turn the radially inward flow retrogradingly. All these effects make the generation of
negative vortices a natural result.

We can have a close look at this phenomenon from the results ofsimulation as shown in Fig. 4.16
where the surface density (contours) is overlapped with thevelocity residual (arrows) after sub-
tracting the mean velocity of these images. Both images showa square of 1× 1 kpc2 excerpted
from the full disk in order to study the flow pattern around theshocks. The mean velocity of
both images is counterclockwise. The contours represent the iso-density, the redder the denser.
The locations where the residual velocity converges coincide with the high densities, e.g., shocks
and spurs. Figure 4.16b, unlike the velocity field seen in Fig. 4.16a, shows a pattern of negative
vorticity. A spur emerges at the sharp corner as a result of the crowded streamlines as discussed
in Fig. 4.14a.
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4.7 Discussions

4.7.1 Velocity Dispersion

Without energy sources from stellar feedback, self-gravity and magnetic fields, we have shown
that the presence of nonsteady spiral shock alone is able to drive velocity dispersion with a level
comparable to the second moment observed in THINGS maps (Walter et al. 2008). Kim et al.
(2006) perform three-dimensional, magnetized, self-gravitating simulations for a local section
of a stratified disk. They investigate the interstellar turbulence driven by the flapping motions
in the radial-vertical plane. They find that most of the turbulent energy is in-plane (〈σx〉 ∼
〈

σy

〉

∼ 2 〈σz〉). The presence of the self-gravity and magnetic fields contributes little to the
random motions. To ‘observe’ the in-plane turbulence, one needs to tilt the galactic disk with an
inclination in order to measure along the line-of-sight. InSection 4.3, we conclusively show that
a moderate inclination is enough to contribute a substantial portion of observed HI turbulence.
This result can account for the positive correlation between the disk inclination and the observed
velocity dispersion.

These two- and three-dimensional works seems to support thegalactic shock pump scenario
proposed by Kornreich & Scalo (2000). In their picture, galactic shocks can be of different scales
ranging from superbubbles down to the protostellar winds. The anisotropy in turbulent energy
is due to the anisotropy in the energy reservoir, i.e., most of the energy is stored in the in-plane
rotation motions. Although this mechanism has been proposed almost one decade ago, we are
the first to quantify this scenario and compare our results tothe observation data on the galactic
scale. While in this Chapter we stress that shock driven turbulence should not be overlooked, we
do not attempt to degrade the importance of other energy sources, i.e., stellar feedback, magnetic
fields and so on. For instance, in M51, we believe that both stellar feedback and shock driven
turbulences are important. However, it requires further detailed simulations involving stellar
feedback to quantify which mechanism dominates the budget of turbulent energy in different
environments, i.e., star-burst galaxies and galaxies withnormal star formation rate like our Milky
Way.

4.7.2 Nonsteady Shocks

It is evident that a nonsteady shock efficiently stirs the flow locally and randomizes the reg-
ular rotation motion. Wada & Koda (2004) attributes the ‘wiggle instability’ (spurs) to the
Kelvin-Helmholtz instability (KH instability, hereafter). Kim & Ostriker (2002a) propose that
the magneto-Jeans Instability (MJI, hereafter) is responsible for the growth of perturbation since
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the magnetic tension forces from embedded field lines tend tocounteract the Coriolis forces,
which serve as a stable agent for disk stability. Recall the role played by the epicyclic frequency
in Toomre’s criterionQ = csκ/(πGΣ).

Kim & Ostriker (2006), in their shearing box simulations, show that a magnetized spiral shock in
a thin disk is unstable to MJI in both two- and three-dimensional calculations, while the wiggle
instability is suppressed in their three dimensional models. However, their results cannot be
compared directly to the work of Wada & Koda (2004) for the following reasons. First, the
strength of spiral perturbation adopted in Kim & Ostriker (2006) (5 to 10%) is much weaker
than that used in Wada & Koda (2004)(∼ 110%). The observation strength (18%∼60%, Rix
& Zaritsky 1995), however, is much stronger than the former but much weaker than the later.
Second, as we will discuss below, a full-disk simulation is critical to capture the secular evolution
of the streaming lines, which in turn has dynamical impact onthe formation of wiggle instability.
Nevertheless, in the following, by a simple Galilean transformation we argue that KH instability
described in Wada & Koda (2004) is not likely to be responsible for the wiggle instability.

We use the same picture argued in Wada & Koda (2004) as shown inFig. 4.17. First, if we
ignore the curvature of the shock, in the outer disk, the velocity field appears to be uniform
in the pre-shock region because of the flat rotation curve. A streamline entering at point A
is deflected with a post-shock velocityv and is accelerated tov′ at point B. At point C, the
deflected post-shock velocity is the same as A due to the uniform pre-shock velocity and the
straight shock. If we sit in an inertial frame within which the tangential velocity with respect
to the shock vanishes, the velocity field will then look like the red arrows. In this frame, we
do not expect the KH instability to occur despite the black arrows seen before the Galilean
transformation indeed indicate a velocity gradient (shear) in the direction normal to the shock.
Second, even if the KH instability does happen as described in Wada & Koda (2004), the post-
shock flow as shown in Fig. 4.17 suggests prograde vortices rather than retrograde ones. Third,
the curvature of the shock increases with decreasing radius, the wiggle instability occurs first in
the inner disk, ignoring the curvature of the shock in the inner disk needs to be justified.

Vishniac (1994) studies the nonlinear instability in shock-bounded slabs, which is called nonlin-
ear thin shell instability (NTSI). The displacement is enhenced because the positive momentum
with respect to the incident flow tends to accumulate in the valley of the ripple, i.e., the concave
part with respect to the incident flow. In the case of shock bounded slabs, this mechanism has to
compete with two stabilizing effects. One is the ram pressure arising from the head-on impact
of the confined flow. The other comes from the fact that the post-shock subsonic flow tends to
diverge on the convex surfaces and converge on the concave surfaces.

In many ways the flow pattern underlying the spiral shocks discussed in this Chapter is different
from the scenario discussed in Vishniac (1994). First, the shock is highly oblique with a very
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large incident angle, i.e., a small pitch angle. Thus the post-shock flow is still hightly supersonic.
Second, in a frame co-rotating with the pattern speed, the flow is subject to the Coriolis force.
This force will then lead the radial inflow to rotate retrogradingly. Third, the post-shock flow
encounter the subsequent shock on a regular basis because ofthe circular motion. The generated
vorticity discussed in Section 4.5 will then be added up everytime the flow passes through the
curved shocks.

In Fig. 4.14, we have shown that the small ripple in pitch angle is responsible for the conver-
gence and the divergence of streamlines. The diverging supersonic flow works like a converging-
divering nozzle, exerting a thrust backward on the shock. The diverging supersonic gas is accel-
erated, gaining angular momentum. On the other hand, convering supersonic gas is decelerated,
pulling the shock further downstream. Unlike the subsonic post-shock flow discussed in Vishniac
(1994), which tends to stabilize the growth of ripple, the supersonic post-shock flow enhances
and deforms the shocks as seen in Fig. 4.16b. However, as discussed in Section 4.6, the ripple
cannot grow arbitrarily since it has a huge impact on the strength of the shock. The substructures
are then the natural results of the deformation of shock, Coriolis force and the negative vorticity
generated by the oscillation inAa. In this picture, the growth of ripple is limited and localized,
making the shock unsteady rather than an unstable runaway.

4.7.3 Angular Momentum Transport and Radial Motions

For gaseous disks, it has long been recognized that the gaseous spiral density waves excited by
periodic external perturbers can transpoart angular momentum outward (Goldreich & Tremaine
1979, 1980). This theory has been successfully applied to explain the formation of Saturn’s ring
(Goldreich & Tremaine 1978a,b; Shu et al. 1985a,b). For moregeneral disks, theoretical works
of Yuan & Kuo (1997) and Griv et al. (2008) show that density waves carrying negative angular
momentum excited at ILR can transport mass inward, while thewaves carrying positive angular
momentum excited at OLR can transfer mass outwards. Their works are based on asymptotic
approximation, i.e., tightly wound spirals.

A number of numerical works has been performed for two-dimensional non-selfgravitating disks
to understand the interaction between the barlike potential and the gaseous disk (Huntley et al.
1978; Sanders & Tubbs 1980; Schempp 1982; Athanassoula 1992; Levy et al. 1996). Athanas-
soula (1992) find that although the variation in radial velocity can be very large (±120 km s−1),
the mass weighted radial velocity can be only−1 ∼ −6 km s−1. Contrast to many works done for
barred galaxies, the role played by stellar spiral density waves on gasdynamics is less recognized.

As shown in Section 4.4, the gas disk suffers a dramatic redistribution in mass on a very short
time scale. In particular, the gas between corotation and OLR gains radial momentum and moves
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outward as a density wave with supersonic speeds as shown in Fig. 4.6. This explains why the
mass distribution in the outer disk coincides with the angular momentum distribution. These
supersonic waves quickly dissipate their energy during theoutward moving and decrease their
angular velocity due to the conservation of angular momentum. Eventually, the gas reverses their
radial velocity back toward the center of the galaxy. It is interesting to see that the gas inside
OLR is accumulated just outside the OLR, moving back and forth in the outer disk. The peroid
of cycle roughly fits the epicyclic frequency estimated atR= 25 kpc (∼ 500 Myr).

As shown in Fig. 4.6, in the inner disk, once the wiggle instability sets in, the sign of radial
velocity changes with radius. This phenomenon is observed for M51 and is interpreted as a
result of a warped or a twisted disk (Shetty et al. 2007). However, in our simulation, this can be
also interpreted as a result of wiggle instability.

4.8 Summary

We perform a two-dimensional, unmagnetized, non-selfgravitating simulation to investigate the
impacts of spiral density waves on gas motions. An exponential gas disk is initialized with a
temperature 104 K and is evolved isothermally. A stellar density wave with a strength 18% the
background radial force is superimposed as the a rigid-rotating perturber. We follow the nonlin-
ear response of the gas to quantify the velocity dispersion,angular momentum transport, radial
motions and the generation of vortensity. We qualitativelydescribe the formation of leading
substructures, the enhancement of ripple in pitch angle andits impact on shock stability. We
summarize the main results as follows:

1. We downgrade the numerical resolution from 6 pc to 300 pc tomimic the observational
spatial resolution of THINGS. Line-of-sight velocity dispersion as defined in Walter et al.
(2008) is calculated for the simulated spiral galaxy tiltedwith a moderate inclination 42◦.
We conclude that the presence of the nonsteady spiral shocksis capable of tapping tur-
bulent energy comparable to the observed level of velocity dispersion from the rotation
motions.

2. The presence of the stellar spiral density waves can change the gaseous surface density
profile dramatically on a relatively short time scale (a few hundred Myr). Our simulation
confirms that the gas nonlinear response to the superimposedstellar spiral density wave
tends to transport angular momentum outward. Before the wiggle instability sets in, the
gas inside corotatin steadily moves inward by expanding theouter radius of the disk. Once
the wiggle instability occurs, the gas in the inner disk is severely disturbed, resulting in the
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sign change in the radial velocity. This result leads to the gas compression and relaxation
over different radii.

3. Based on the work of Kevlahan (1997), we derive the formulation to evaluate the genera-
tion of vortensity along a logarithmic shock. We stress thatthe vortensity is not conserved
with the presence of shocks. We quantify the generation of vortensity semi-analytically
and find that both positive and negative vortices can be generated along shocks as also
seen in the later stage of evolution shown in Fig. 4.7. The generation of vorticity is not
ignorable compared to the intrinsic vortensity calculatedfrom the initial condition.

4. In the picture of Vishniac (1994), we analyze the dynamical impacts of the small ripple
seen in pitch angle. The interaction between density waves emitted from ILR and the
spiral shocks initiates the ripple in pitch angle, which then enhances itself due to the su-
personic post-shock flow pattern. However, the analysis in Appendix A.7 shows that the
amplitude of the ripple cannot grow arbitrarily. The shock strength is shown to be very
sensitive to the wavelength and the amplitude of ripple in pitch angle. We also correlate
the flow converging and diverging in the post-shock region tothe leading structure which
is usually interpreted as the 4:1 resonance. In this Chapter, we consider the formation of
spurs and negative vortices as a result of the conspiracy between the shock deformation,
the generation of negative votensity and the Coriolis force.
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Figure 4.1: The solid curve represents the angular speed,Ω, as a function of radius.Ω± κ/2 are
shown as the the dash-dotted lines, whileΩ ± κ/4 the dashed lines. The pattern speed,Ωp = 20
km s−1 kpc−1, is shown as the horizontal line. The intersections marks the locations of resonances
(from left to right) ILR 2:1 (2.6 kpc), ILR 4:1 (6.7 kpc), co-rotation (10.7 kpc), OLR 4:1 (14.6
kpc) and OLR 2:1 (18.5 kpc).
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Surface Density
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LoS Velocity

t=300 Myr  t=450 Myr t=650 Myr
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Figure 4.2: The evolution of the surface density (first row),line-of-sight velocity dispersion
(second row) and the iso-velocity contours (third row) att = 300 (first column), 450 (second
column), 650 Myr (third column). Note that since the self-gravity of gas is not included in our
calculation, the unit of mass is scale free. A thermal broadening of 8 km s−1 is adopted when
producing the map of velocity dispersion.
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Figure 4.3: The mass-weighted line-of-sight velocity dispersion. The blue curve is the kinematic
velocity dispersion,σkin, calculated for the disk withinR = 9 kpc. The red one is the result
total velocity dispersionσ2

tot = σ2
th + σ

2
kin, involving a thermal broadening ofσth = 8 km s−1.

The kinematic velocity dispersion saturates at 11 km s−1 and 13 km s−1 for the total velocity
dispersion after an evolution of 1.3 Gyr. These results fit observations very well.
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Figure 4.4: Evolution of (a) radial mass and (b) accumulatedmass distribution. From (b), the
evolution of mass seems to be separated by the corotation (10.7 kpc), where the spiral shock
vanishes. The total mass enclosed inside the corotation drops very little. While the gas between
corotation and OLR (18.5 kpc) is efficiently transferred to the outer disk, gas inside corotation is
transported towards galactic center.
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Figure 4.5: Evolution of (a) annular angular momentum and (b) accumulated angular momen-
tum. From (b), overall the total angular momentum enclosed inside the OLR (18.5 kpc) is effi-
ciently tranferred to the outer disk. Gas inside the corotation is experiencing the losing and the
redistribution of angular momentum. Comparing (a) with Fig. 4.4a, while the mass distribution
coincides with the angular momentum distribution in the outer disk, it is not the case for the inner
disk.
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Figure 4.6: Evolution of (a) mass-weighted radial velocityand (b) mass-weighted radial velocity
in time-radius plane. (a) is simply the horizontal cuts from(b) att = 0, 300, 600, 800 Myr. Before
the wiggle instability sets in, gas is moving inward inside the corotation with a speed∼ −3 ± 2
km s−1, moving outward subsonically for the region between corotation and OLR. The radial
motion beyond OLR is supersonic (±20 km s−1) and oscillates with time. This is best visualized
in (b). Once the wiggle instability sets in att = 330 Myr, the gas motion is severely disturbed in
the inner disk. The sign of radial motion in the inner disk changes with radius.
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Figure 4.7: Evolution of vorticity in units of km s−1 kpc−1 at t = 300, 450, 650 Myr. In (b) and
(c), after the wiggle instability sets in, the spiral shocksare distorted. The retrograde vortices (the
deep blue) are created along the shocks and dissipate in the interarm region due to the post-shock
expansion. Vorticity is not a conserved quantity in a compressible flow.
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Figure 4.8: The black arc is part of a circle and the dashed curve represents a section of a
logrithmic spiral. The angle difference between ˆsand the azimuthal tangent−φ̂ defines the pitch
anglei. n̂ represents the unit normal vector to the shock front pointing the downstream side. ˆs is
defined by ˆz= ŝ× n̂.
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(a) (b)

Figure 4.9: t = 300 Myrs. In (a) we trace the location of the spiral shocks. The red line is a
logarithmic spiral with a pitch angle ofi = 15◦, a bit smaller than the imposed spirals, which
havei = 17◦. The pitch angle of a logarithmic spiral is better seen in a phase-log(R) diagram as
shown in (b). Again, the red stars corresponds the fitting curve in (a). The oscillation of the pitch
angle in the inner spiral is due to the interaction between the ILR resonance and the external
forcing as discussed in Sec. 4.6 . This has a dynamical impacton the streaming motion.
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(a) (b)

Figure 4.10: t = 200 Myr. (a) The surface density shows a pair of well-defined spiral shock
and substructures like spurs or branches. (b) With a well-defined pitch angle (see Fig. 4.9), we
obtain the perpendicular component of the velocity field with respect to the shock. We find that
the velocity field is modulated by the 2:1 resonance, which islocated at 2.6 kpc. The ILR might
be responsible for the oscillation as seen in the pitch angle.
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Figure 4.11: t = 200 Myrs. We choose this time because the shock is well-developed. During
developing period of time, the pattern speed and the pitch angle of the shock are well-defined.
To evaluate the generation of vorticity via Eq. (4.14), one needs three pieces of information as
shown from the top to the bottom panels.Top: Surface density right ahead the shock,Σa. Middle:
Velocity component normal to the shock front ahead the shock, Aa. Bottom: The strength of the
shock,µ. Because performing numerical derivative directly from the raw data can be noisy due
to the finite numerical resolution in space, we smooth theAa before the evalutation of Eq. (4.14).
The result is shown as the red curve in the middle panel.
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Figure 4.12: The red curve represents the intrinsic vortensity evaluated from the initial condition.
The blue curve is the generated vortensity evaluated via Eq.(4.14) att = 200 Myr. It shows the
shock is generating both positive and negative vortensity comparable to the intrinsic one in the
inner disk (R < 3 kpc), while on average positive for the outer disk (3< R < 8 kpc). It seems
that there is a characteristic size,∼ 100 pc, on which the vortensity is created.
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Figure 4.13: This cartoon illustrates the impact of the tinyripple in pitch angle on the post-shock
flow. The original straight shock (grey-dashed line) is somehow displaced into a sinusoidal one
(red-curve), representing a small ripple in pitch angle. The blue arrows represents the directions
of the incident supersonic flow and the black arrows the directions of the post-shock flow.
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Figure 4.14:t = 200 Myr.(a) The arrows represents the directions of post-shock flow obtained by
Eqs. (A.30) and (A.31). The red curve is a distorted shock. The incident flow (not shown in the
figure) comes in with a incident angle of 73◦,i.e., pitch angle 17◦, with respect to the undistorted
straight shock (see also Fig. 4.13). (b) Separation and aggregation of streamlines. Streamlines
are set off along thex-axis with a uniform spacing 50 pc. The leading structures seen in Fig. 4.10a
is simply the crowding of streamlines and has nothing to do with 4:1 resonance.
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Figure 4.15: The blue curve is the distorted shock. The configuration of the incident flow is
the same as shown in Fig. 4.13. The dash-dotted line represents the Mach number,Ma, of the
perpendicular component of incident velocity. As expected, the resulting shock is stronger on
the head-on side and weaker on the leeside. Note that the scales ofx-axis and the lefty-axis are
not equal. The amplitude of the ripple is only 1.5% of the wavelength (λ = 1 kpc). However, the
resulting variation in shock strength is large.
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Figure 4.16: The surface density (contours) is overlapped with the velocity residual (arrows)
after a subtraction of the mean velocity of the images. A square of 1×1 kpc2 is excerpted around
the shock area at (a)t = 200 and (b)t = 650 Myr in order to closely observe the flow pattern.
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Figure 4.17: The picture of an oblique shock (Wada & Koda 2004). We apply this picture to
the outer disk where the flow ahead the shock is nearly uniform. As described by WK04, gas is
accelerated from A toward B (black arrows). Therefore, a velocity gradient exist between B and
C (black arrows) leading to the KH instability. However, if we sit in a inertial frame within which
the tangential velocity vanishes, the flow pattern in the post-shock looks like the red arrows. By
doing Galilean transformation, velocity gradient does notexist and the KH instability would
not happen. We can also apply the same picture to the inner disk where the rotation curve rises
alomst linearly as the case discussed in the Appendix of WK04. In this case, the incident velocity
at point A will be a bit higher than that at point C and therefore increases the velocity gradient
between points B and C. If the KH instability do happen, intuitively the vortices created in this
flow pattern should be prograde in the same sense of global rotation rather than the retrograde
vortices seen in Fig. 4.16b.
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Chapter 5

Summary and Outlook

5.1 Summary

In this thesis, we investigate many aspects of the evolutionof disk galaxies theoretically, numer-
ically and observationally. In Chapter 2, we find that initializing a three-dimensional gas disk
which is in hydrodynamic equilibrium is not a trivial task. No trivial and simple method is found
in the literature. Therefore, we put forward a new systematic way of setting up galactic gas disks
based on the assumption of detailed hydrodynamic equilibrium. To do this, we need to specify
the density distribution and the velocity field which supports the disk. In Section 2.2, We show
that the required circular velocity has no dependence on theheight above or below the midplane
so long as the gas pressure is a function of density only. The assumption of disks being very
thin enables us to decouple the vertical structure from the radial direction. Based on that, the
equation of hydrostatic equilibrium together with the reduced Poisson equation leads to two sets
of second-order non-linear differential equation, which are easily integrated to set-up a stable
disk. We call one approach ‘density method’ and the other one‘potential method’.

In Section 2.3, the methods developed in Section 2.2 are implemented with the adaptive mesh re-
finement (AMR) magnetohydrodynamics code RAMSES (Teyssier2002). A three-dimensional,
gravitationally stable disk is evolved for five orbital timewithout a clear sign of change in its
configuration. This result confirms the effectiveness of our methods.

Gas disks in detailed balance are especially suitable for investigating the onset of the gravitational
instability. In Section 2.4, we revisit the question of global, axisymmetric instability using fully
three-dimensional disk simulations. The impact of disk thickness on the disk instability and the
formation of spontaneously induced spirals is studied systematically with or without the presence
of the stellar potential. In our models, the numerical results show that the threshold value for disk
instability is shifted from unity to 0.69 for self-gravitating thick disks and to 0.75 for combined
stellar and gas thick disks.

103
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In Section 2.5, the methods are applied to investigate the phenomenon called ‘swing amplifica-
tion’ (Toomre 1981) which occurs in a marginally stable disk. With a proper disk initialization,
for the first time, we are able to numerically address and confirm this phenomenon for a three-
dimensional disk. The simulation results show that self-induced spirals occur in the correct
regions and with the right numbers as predicted by the analytic theory. This result suggest that
our disks have correct dynamical properties.

In Chapter 3, we find the longstanding missing link that associates the evolution of disk galaxies
with the replenishment of gas in order to sustain star formation over cosmological times. The
radial gas inflow is confirmed in the extreme outer disk of M83 (NGC5236). In Section 3.2, we
combine the information extracted from the synthesis interferometric maps from THINGS with
that from the single dish data reconstructed from the contour maps obtained by the 100-m radio
telescope of the Max-Planck-Institut für Radioastronomie at Effelsberg in late 70s to search for
the sign of mass inflow.

In Section 3.3, a series of tilted rings are deployed over thedisk for Fourier analysis. As is done
in Schoenmakers et al. (1997), for each ring, a tilted-ring model followed by a Fourier decom-
position is applied. However, we take one step further to their work, the Fourier decomposition
introduced in this paper directly decomposes the line-of-sight velocity into the rotational and the
radial Fourier components, giving more details about the gaseous kinematics.

In Section 3.4, the method developed in Section 3.3 is applied to study the kinematics of M83.
Due to the low inclination of M83, a parameter survey is conducted to bracket the kinematic
uncertainties. With the results shown in Section 3.4, for the first time, we are able to build the
sequence of gas accretion from the extreme outer disk to the inner star forming disk. Intergalactic
gas accretes in the form of filaments with an infall rate of 2.5± 1.5 M⊙ yr−1. The accreting gas
hits the Keplarian orbit atR = 10′ and forms the bright HI ring seen in the THINGS map due
to the conservation of angular momentum. The phase shift appearing in the position angle is
interpreted as the presence of radial inflow, contributing amass inflow of 2.3 M⊙ yr−1 at the
radiusR = 7.5′, which fits excellently to the observed star formation rate 2.5 M⊙ yr−1 (Walter
et al. 2008). Note that the Holmberg radius is atR = 7.3′. Thus, we believe that in M83 the gas
is channelled inwards to feed the star forming disk by means of streaming motion, i.e., the cold
mode accretion.

In Chapter 4, we perform a two-dimensional, unmagnetized, non-selfgravitating simulation to
investigate the impacts of density waves of stellar origin on gas motions. Although many similar
works has been carried out in the literature, many aspects studied in this Chapter are less recog-
nized and quantified. In Section 4.2, we describe the model parameters used for the simulation.
We stress that the strength of spiral arm used in this Chapteris based on observation results (Rix
& Zaritsky 1995).
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In Section 4.3, we examine the dispersion velocity for the galaxy sample studied by Tamburro
et al. (2009). We find that the correlation between between disk inclination and velocity disper-
sion is stronger than that between star formation rate and velocity dispersion. Galaxies having
larger disk inclination tend to have larger velocity dispersion. To understand that, we deliberately
downgrade the numerical spatial resolution to match the obeservation one. Based on the defini-
tion of velocity dispersion defined in Walter et al. (2008), we calculate the velocity dispersion
along the line-of-sight. We find that nonsteady spiral shocks can efficiently tap turbulent energy
from regular rotation motions. The level of velocity dispersion driven by nonsteady shocks fits
excellently to the observations.

In Section 4.4, we find that the presence of spiral density waves can change the distribution of gas
surface density and angular momentum on a relatively short time scale compared to the secular
evolution time scale of stellar disk. Angular momentum is transported from inner disk toward
the outer disk. The nonsteady shocks severely stir the radial motions of gas, resulting in the sign
change in the radial velocity. This result has been observedby Shetty et al. (2007).

In Section 4.5, we quantify the vortensity generation alongspiral shocks. We analytically demon-
strate that vortensity is not a conserved quantity in a compressible flow with shocks. We quan-
titatively show that the vortensity created by galactic shocks is not negligible compared to the
intrinsic disk vortensity. An important result is that bothnegative and positive vortices can be
created in galactic shocks.

In Section 4.6, We consider the small ripple in pitch angle asa result of interaction between the
inner Lindblad resonance and the forced shock waves. We showthat this small ripple has huge
impacts on the shock strengh and the post-shock flow, which isthen responsible for the formation
of substructures and the shock deformation. In this thesis,we view the spurs as a result of the
conspiracy between the shock deformation, the generation of negative votensity and the Coriolis
force. We also argue that the Kelvin-Helmholtz instabilitydescribed in Wada & Koda (2004) is
not likely responsible for the formation of spurs.

5.2 Outlook

In this thesis, many aspects of gas evolution in disk galaxies are investigated. These studies open
many lines of future works.

As already mentioned in Chapter 2, the method we develop for initializing an three-dimensional
equilibrium gas disk fits to the framework developed for collisionless particles (Shu 1969; Kui-
jken & Dubinski 1995). A natural and ongoing next step is to develop a systematic way for
initializing a composite disk in which live stellar disk, live stellar bulge and live dark matter
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halo can evolve with gas disk. The lack of a proper way for initializing a composite disk in the
literature hinders our way to address many questions. One ofthe most basic ones is Rafikov’s
criterion for composite disk stability. Although this criterion has been used to account for the
star formation rate observed in nearby galaxies (Leroy et al. 2008; Hunter et al. 1998; Blitz &
Rosolowsky 2004; Yang et al. 2007), how do different components react to this instability is
unclear. We expect the stellar disk and the gas disk will response in a very different way. This
question cannot be addressed without a composite disk whichis initialized in detailed balance.

Following the study of Rafikovs criterion, the interaction between the gas disk and the live stellar
disk now can be systematically and self-consistently investigated. Although the spiral or bar
formation in a live stellar disk has been studied for many years, the interaction between live
stellar spiral/bar and gas disk has not been closely inspected. We can try to address the following
questions. How does the presence of gas disk affect the evolution of stellar structures? How
does the angular momentum exchange between gas and stars? What is the lifetime of stellar
spirals or bars with or without the presence of gas disk? How does the gas react to the live stellar
structures?

The alignment of magnetic field ranging from several kpc downto the dense core of molecular
clouds shows that the magnetic field may have a profound impact on galaxy evolution (Beck
et al. 1996; H.B. Li , private communication). We can study how the combined disk organizes
and amplifies the magnetic fields, i.e, galactic dynamo. It will be also interesting to look into
how the magnetic fields affect star formation in a self-consistent composite disk.

Another ongoing work is associated with the large-scale structure and star formation observed in
the extreme outer disk of M83 (Thilker 2005; Bigiel et al. 2010a). The filaments there might be
a result of galactic dynamo or simply of the gravitational wake left behind the path of a dwarf
satellite, which is interacting with M83. Because the density enhancement is small 5% of the
averaged surface density, violent interaction cannot be the cause. Even puzzling, how can the
massive stars form in such a barren area? We address these questions by applying the equilibrium
disk developed in Chapter 2.

Gas accretion observed for M83 should not be an unique event in the Universe. The method
described in Chapter 3 build a stereotype for searching gas accretion and should be applied to
a larger sample of disk galaxies. The upcoming single dish observations for nearby galaxies,
which are already included in THINGS sample, will provide anexcellent opportunity to extend
our understanding of intergalactic gas accretion.

A nature line following the work of Chapter 4 is to extend the simulation to three-dimension.
However, to have a spatial resolution comparable to the two-dimensional work, this extension
seems to be too computationally expensive to be practical. We have developed a technique
called ‘zoom-in’ box allowing us to trace the impacts of spiral density wave on gas motions in
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a three-dimensional simulation. Contrast to the shearing box simulating a small section of the
whole disk, we take the advantage of AMR putting more resolution on the regions of our interest.
The region can be a comoving box or a comoving long arc. The advantage of this technique is
that we can feed the zoom-in box with a realistic boundary condition, which is naturally obtained
from the global evolution of disks.
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A.1 The Derivation of Rotation Velocity

Equation (2.11) can be re-written as

p(R, z) = ρ(R, z)
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where we have replacedΦz = Φ(R, z) − Φ(R, z = 0). Inserting Eq. (A.1) in Eq. (2.1) involves a
partial derivative to the integral, let us prepare it first:
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With Eq. (A.2), the first term of Eq. (2.1) then becomes:
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Equation (2.11) says that the term in the big brace should vanish. And therefore, Eq. (2.1) reduces
to
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For the barotropic gas, i.e.,p(ρ), the integrand of the integral vanishes:
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For the cases of initially constant temperature, the specific internal energy,e, is a constant and
therefore the pressure is a function of density only, the integrand vanishes.

A.2 The effect of the disk thickness on the midplane potential

For an axisymmetrically and infinitesimally thin disk, the potential can be evaluated by the fol-
lowing relation (Binney & Tremaine 2008):

Φ(R, z) =
∫ ∞

0
dkS0(k)J0(kR)e−k|z|, (A.6)
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whereJ0 is the Bessel function of the first kind of order zero andS0 is the Hankel transform of
−2πGΣ0 defined by:

S0(k) = −2πG
∫ ∞

0
dR′R′J0(kR′)Σ0(R

′) (A.7)

With Eq. (A.6) and Eq. (A.7), we can superimpose the potential contributed by each gas layer.
For the sake of simplicity, we assume that the volume densityhas the double exponential profile:

ρ0(R, z) = Σ0e
−R/Rd

e−z/hz

2hz
, (A.8)

with hz being the scale-height of the gaseous disk, Eq. (A.7) then becomes (Gradshteyn & Ryzhik
1965, hereafter GR65, 6.623-2):
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, (A.9)

with ξ = 1/Rd. ∆zrepresents the infinitesimal thickness introduced to keep the dimension correct.
The potential which takes into account the thickness of the disk then reads:
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Evaluating the potential at the midplane,z= 0, yields:

Φ(R, z= 0) = −2πGΣ0
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0
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1
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. (A.11)

Given the finite scale-height, the integral can be evaluatednumerically and compared with the
result of the infinitesimally thin disk.

A.3 The Derivation of the reduction factor

To derive the reduction factorF defined by Eq. (2.35) we need to evaluate the integral of the
form:
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The last line can be reached by looking up the formulae 3.541,8.370, 8.361-7 listed in the integral
table (GR65) and the definition Eq. (2.36). In the last line, we have employed the recursive
relation (8.365-1 GR65):

H(α) = H(α − 1)+
1
α
. (A.13)

The asymptotic behavior of the harmonic number reads (8.367-2, 8.367-13 GR65):

H(α) = lnα + γ +
1
2
α−1 −

1
12
α−2 +

1
120

α−4 +O(α−6), (A.14)

with γ = 0.5772156649 (8.367-1 GR65) being the Euler-Mascheroni constant. Note that Eq.
(A.14) is only reliable whenα ≥ 1. We employ the recursive relation (C2) to evaluateH(α) for
−1 < α < 1.

A.4 The vertical force ratio

The vertical force ratio measures the impact of the halo force on the vertical structure. The
simplified Poisson equation for isothermally self-gravitating gas disk reads:

∂2Φg

∂z2
= 4πGρ0(R)sech2

(

z
hz

)

, (A.15)

wherehz being a measure of the scale-height. Parameterhz can be related to the volume density
in the midplane,ρ0(R) by:

hz =

√

c2
s

2πGρ0
. (A.16)

The corresponding vertical force for the gas then becomes:

Fz,gas= −
∂Φ

∂z
= −4πGhzρ0(R)tanh(z/hz). (A.17)

For a NFW halo, the vertical force can be written down directly:

Fz,DM =
GM200

f (c)

(

c
r200

)2 x/(1+ x) − ln(1+ x)
x2

z
√

R2 + z2
, (A.18)

with x = c
√

R2 + z2/r200. Figure A.1 then shows the force ratioFz,DM/Fz,gas as a function of
vertical height|z| at different radii. Comparing to the rotation curve shown in the left panel of
Fig. 2.1, although the dynamics is still dictated by the potential of the dark halo, the vertical
structure of the gaseous disk is mainly determined by the self-gravity of the gas component.
However, it raises another issue, the presence of the stellar disk will dominate both the dynamics
and the vertical structure of the gas and will affect the stability of the gas component via changing
the thickness of the gaseous disk and the rotation curve.
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Figure A.1: The force ratioFz,DM/Fz,gasat R=2, 5 and 8 kpc. It shows that the vertical structure
of the inner disk is determined mostly by the self-gravity ofgas.

A.5 Validity check of the reduced Poisson Equation for the
gas disk

Throughout this paper we have assumed that the radial potential gradients of the disk are neg-
ligible compared to the vertical gradients, such that the Poisson equation reduces to Eq. (2.14).
We now test this assumption by computing the ratio

ǫ ≡ |1
R
∂

∂R
(R
∂Φg

∂R
)/
∂2Φg

∂z2
|, (A.19)

with Φg the gravitational potential of the gas disk. For a realistic, analytical disk model, our
assumption will be valid as long asǫ ≪ 1.
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Figure A.2: Contour map ofǫ. The black lines represent the scale-height of the gas disk.

Consider the Miyamoto & Nagai (1975) potential:

Φg(R, z) = −
GMg

√

R2 + (a+
√

z2 + b2(R))2

. (A.20)

Herea is a constant that controls the scale-length of the disk andb(R), which we take to be a
function of radius, modulates the scale-height of the disk.In the limit b→ 0 this model reduces
to the infinitesimal Kuzmin disk (e.g., Binney & Tremaine 2008). In an attempt to model the gas
disk in our simulation ‘Gas0’, we adopta = 3.5 kpc. In order to mimic the flaring of the Gas0
disk (see Fig. 2.2b), we consider

b(R) = −1.58× 10−5R4 + 1.21× 10−2R2 + 0.20. (A.21)

Using the Poisson equation to solve (numerically) for the corresponding density distribution
yields the radial-dependent scale-height shown as the solid black lines in Fig. A.2, and which is
comparable to that of the Gas0 disk. The contours in Fig. A.2 are defined by constant values of
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ǫ. These show that our assumption thatǫ ≪ 1 is well-justified in the inner part of the disk, out to
∼ 3 scale-lengths, which encloses most of the disk mass. The assumption thatǫ ≪ 1 deteriorates
at larger radii and at higher altitude away from the midplane. This might be in part responsible
for the very slight outward drifting of the disk seen in Fig. 2.2b. In cases that include a stellar
potential and/or cooler gas, the gas disk is even thinner than the case considered here, resulting in
values forǫ that are even smaller. Based on these results, and based on the absence of significant
disk thickening in our simulations, we are confident that Eq.(2.14) is sufficiently accurate for all
realistic gas disks.

A.6 transformation matrix

Supposing that we have a galaxy with position angle,PA, and inclination anglei. Velocity field
is transformed from face-on view, (vx, vy, 0), to tilted coordinates, (v′x, v

′
y, v
′
z) by:
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Then, the velocity in line-of-sight,vLoS, reads:

vLoS = −vx sin(i) cos(PA) + vy sin(i) sin(PA). (A.23)

A.7 The post-shock streaming flow

In this appendix, we follow the picture described in the Appendix A of Vishniac (1994) to derive
the post-shock streaming motion. A local coordinates (x, y) is set-up along the straight shock as
shown in Fig. 4.13 . The displacement of the shock is described by a sinusoidal wave:

y = Asin(
2π
λ

x) = Asin(kx), (A.24)

with λ being the wavelength of the wave andk ≡ 2π/λ the wave number andA the amplitude of
displacement. The unit normal vector, ˆn⊥, to the shock front then reads:

n̂⊥ =
ŷ− Akcos(kx)x̂

√

1+ A2k2 cos2(kx)
, (A.25)
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with x̂ and ŷ being the unit vectors inx andy, respectively. The corresponding unit tangent is
defined:

n̂‖ =
Akcos(kx)ŷ+ x̂

√

1+ A2k2 cos2(kx)
. (A.26)

Assuming that the incident flow is~v = vxx̂ + vyŷ, the pre-shock velocity is decomposed into
~v⊥ ≡ ~v · n̂⊥ and~v‖ ≡ ~v · n̂‖:

v⊥ =
−Akvx cos(kx) + vy
√

1+ A2k2 cos2(kx)
, (A.27)

v‖ =
Akvy cos(kx) + vx
√

1+ A2k2 cos2(kx)
. (A.28)

Applying the Rankine-Hugoniot jump conditions for isothermal gas, we have:

v⊥v
′
⊥ = c2

s, (A.29)

v‖ = v′‖, (A.30)

wherev′⊥ andv′‖ defines the post-shock velocity~v′ = v′⊥n̂⊥ + v′‖n̂‖. The expression ofv′⊥ reads:

v′⊥ =
c2

s

√

1+ A2k2 cos2(kx)

−Akvx cos(kx) + vy
. (A.31)

The singularity shown in Eq. (A.31) marks the point wherev⊥ = 0 and therefore limits the
amplitude of the displacement,A, and the possible values for wave numberk.
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Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2

Kevlahan, N. 1997, Journal of Fluid Mechanics, 341, 371

Kim, C., Kim, W., & Ostriker, E. C. 2006, ApJ, 649, L13

Kim, W. & Ostriker, E. C. 2002a, ApJ, 570, 132

Kim, W. & Ostriker, E. C. 2002b, ApJ, 570, 132

Kim, W. & Ostriker, E. C. 2006, ApJ, 646, 213

Kim, W. & Ostriker, E. C. 2007, ApJ, 660, 1232

Kim, W., Ostriker, E. C., & Stone, J. M. 2002, ApJ, 581, 1080

Klessen, R. S. & Hennebelle, P. 2010, A&A, 520, A17+

Koribalski, B. S. e. 2004, AJ, 128, 16

Kormendy, J. 1993, in IAU Symposium, Vol. 153, Galactic Bulges, ed. H. Dejonghe &
H. J. Habing, 209–+

Kornreich, D. A., Lovelace, R. V. E., & Haynes, M. P. 2002, ApJ, 580, 705

Kornreich, P. & Scalo, J. 2000, ApJ, 531, 366

Kuijken, K. & Dubinski, J. 1995, MNRAS, 277, 1341

Kuzio de Naray, R., McGaugh, S. S., & de Blok, W. J. G. 2008, ApJ, 676, 920

Lacey, C. & Cole, S. 1993, MNRAS, 262, 627

Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692

Lemaı̂tre, G. 1927, Annales de la Societe Scietifique de Bruxelles, 47, 49

Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782

Levy, V. V., Mustsevoy, V. V., & Sergienko, V. A. 1996, Astronomical and Astrophysical Trans-
actions, 11, 1

Li, Y., Mac Low, M., & Klessen, R. S. 2005a, ApJ, 620, L19

Li, Y., Mac Low, M., & Klessen, R. S. 2005b, ApJ, 626, 823

Li, Y., Mac Low, M., & Klessen, R. S. 2006, ApJ, 639, 879



BIBLIOGRAPHY 123

Lighthill, M. J. 1957, Journal of Fluid Mechanics, 2, 1

Lin, C. C. & Shu, F. H. 1964, ApJ, 140, 646

Lisker, T. & Fuchs, B. 2009, A&A, 501, 429

Lockman, F. J. 1984, ApJ, 283, 90

Lynden-Bell, D. & Kalnajs, A. J. 1972, MNRAS, 157, 1

Mac Low, M. & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125

Marconi, A. & Hunt, L. K. 2003, ApJ, 589, L21

Martin, C. L. & Kennicutt, Jr., R. C. 2001, ApJ, 555, 301

Matthews, L. D., van Driel, W., & Gallagher, III, J. S. 1998, AJ, 116, 1169

Maulbetsch, C., Avila-Reese, V., Colı́n, P., et al. 2007, ApJ, 654, 53

Miller, E. D., Bregman, J. N., & Wakker, B. P. 2009, ApJ, 692, 470

Miyamoto, M. & Nagai, R. 1975, PASJ, 27, 533

Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Nature, 379, 613

Narayan, C. A. & Jog, C. J. 2002, A&A, 394, 89

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

Noguchi, M. 1999, ApJ, 514, 77

Ostriker, E. C. & Binney, J. J. 1989, MNRAS, 237, 785

Pasha, I. I. 1985, Soviet Astronomy Letters, 11, 1

Pasha, I. I. & Smirnov, M. A. 1982, Ap&SS, 86, 215

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565

Pflamm-Altenburg, J. & Kroupa, P. 2009, ApJ, 706, 516

Pichon, C. & Cannon, R. C. 1997, MNRAS, 291, 616

Piontek, R. A. & Ostriker, E. C. 2004, ApJ, 601, 905

Piontek, R. A. & Ostriker, E. C. 2005, ApJ, 629, 849



124 CHAPTER A

Piontek, R. A. & Ostriker, E. C. 2007, ApJ, 663, 183

Postman, M. & Geller, M. J. 1984, ApJ, 281, 95

Rafikov, R. R. 2001, MNRAS, 323, 445

Rand, R. J. & Kulkarni, S. R. 1990, ApJ, 349, L43

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ,116, 1009

Rix, H. & Zaritsky, D. 1995, ApJ, 447, 82

Roberts, W. W. 1969, ApJ, 158, 123

Roberts, Jr., W. W. & Stewart, G. R. 1987, ApJ, 314, 10

Rogstad, D. H., Lockhart, I. A., & Wright, M. C. H. 1974, ApJ, 193, 309

Rots, A. H. 1975, A&A, 45, 43
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