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Abstract

Since the 90s astronomers have discovered around 500 extrasolar planets. Most of them have been found
with the radial velocity method. In this work we present our precision radial velocity measurements
for a sample of 40 M dwarfs and 30 solar-like stars. The data sets originate from four different instru-
ments (UVES, CES+LC, CES+VLC, and HARPS) and are investigated for indications of planets. We
perform several statistical tests for excess-variability, long-term trends, and periodicities. For the latter
purpose, we have developed further a commonly used period analysis tool, the so called Lomb-Scargle
periodogram.

Our radial velocity precision of a few m/s is approximately sufficient for the aspired goals, namely
the search for terrestrial planets in the habitable zones of M dwarfs and the search for Jupiter analogues
around solar-like stars. We demonstrate this with mass upper limits. Our data analysis does not reveal any
new planet, while we can confirm the two known planets around the solar-like stars ι Hor and HR 506
as well as the long-term trend for ε Ind A. Moreover, we were able to identify several binaries and one
brown dwarf. Our results are in agreement with estimates for the frequency of Jupiter-like planets which
is around 1% for M dwarfs and 10% for solar-like stars.

Zusammenfassung

Seit den 90-ziger Jahren haben Astronomen etwa 500 extrasolare Planeten entdeckt. Die meisten von Ih-
nen wurden mit der Radialgeschwindigkeits-Methode gefunden. In dieser Arbeit präsentieren wir unsere
präzisen Radialgeschwindigkeitsmessungen für ein Sample von 40 M-Sternen und 30 sonnenähnlichen
Sternen. Die Datensätze stammen von vier verschieden Instrumenten (UVES, CES+LC, CES+VLC,
und HARPS) und werden auf Hinweise von Planeten untersucht. Dazu führen wir statistische Tests
zu Exzessvariabilitäten, Langzeittrends und Periodizitäten durch. Für letzteren Zweck, haben wir ein
häufig genutztes Werkzeug für die Periodenanalyse, das sogenannte Lomb-Scargle Periodogramm, wei-
terentwickelt.

Unsere Radialgeschwindigkeitsgenaukeit von wenigen m/s ist annähernd ausreichend für die ange-
strebten Ziele, nämlich die Suche nach terrestrischen Planeten in der habitablen Zone von M-Sternen
und die Suche nach Jupiter-artigen Planeten um sonnenähnliche Sterne. Wir demonstrieren dies mit
oberen Massengrenzen. Aus unserer Datenanalyse geht kein neuer Planet hervor, während wir die bereits
bekannten Planeten für die sonnenähnlichen Sterne ι Hor und HR 506 sowie den Langzeittrend für
ε Ind A bestätigen können. Darüber hinaus konnten wir einige Doppelsterne und einen Braunen Zwerg
identfizieren. Unsere Ergebnisse stimmen mit den Erwartungen für die Häufigkeit von Jupiter-artigen
Planeten überein, welche etwa 1% für M-Sterne und 10% für sonnenähnliche Sterne ist.
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Chapter 1

Introduction

Discovering planets and new worlds has long been a dream of humankind inspiring people to undertake
new enterprises. Overcoming old fashioned, anthropocentric world views like the geocentric system or
seeing the Sun or the Milky Way as centres of the universe, the idea was at hand that planets may exist
around other stars.

The history until the first discovery of an exo-planet is quite eventful and also accompanied by many
false detections, e.g. there were early claims of planet detections around 61 Cyg by Strand (1943, 1957)
or around Barnard’s star by van de Kamp (1963) via astrometry. Later on however, they turned out to
be spurious detections (Heintz, 1978). Struve (1952) proposed to use the radial velocity (RV) method
to search for planets and outlined that it would be possible to find close-in, massive Jupiters with the
precision available at that time (∼200 m/s).

Campbell et al. (1988) noted for the binary star γ Cep (K0IV): “probable third body variation of
25 m/s amplitude, 2.7 yr period”. Their precision RV measurements indicated probably for the first time
a bona fide exoplanet. Later this team argued that stellar phenomena (rotational modulation of active
regions) might be a more plausible explanation than a planetary companion (Walker et al., 1992), but
finally Hatzes et al. (2003) reinforced the planetary hypothesis (see also Walker 2008 for a review).
Noteworthy is also the RV detection of the companion to HD 114762 (F9V) with a planetary minimum
mass (11 MJup) by Latham et al. (1989). However, the authors themselves pointed out that this object is
probably a brown dwarf which was later corroborated by an estimate of the stellar rotation axis (Cochran
et al., 1991).

The first, widely accepted planet detection was around the pulsar PSR B1257+12 by Wolszczan &
Frail (1992). It was an amazing discovery for four reasons: (i) The planet host is a neutron star. (ii) It is
a planetary system with two planets1. (iii) The planet masses are only a few Earth masses. (iv) It was a
very lucky detection. “Thanks” to a mechanical tracking problem of the 305 m Arecibo radio telescope in
Puerto Rico, Wolszczan and his group were allocated time for a programme to search for pulsars off the
galactic plane. Indeed, they found new pulsars and collected an unusually large number of pulse time-of-
arrival observations to characterise them. The data set for PSR B1257+12 could not be explained with a
pulsar model alone, but when accounting for two orbiting planets the signal was well described. So these
planets were found as a by-product of a programme that did not aim to search for planets (Wolszczan,
private communication, manuscript for Astronomy and Astrophysics Review in prep., editor Lissauer).
So far only a second pulsar (PSR B1620-26, Thorsett et al. 1993; Backer et al. 1993) is known to host a
planet. The progress in this field of pulsar timing is hampered by the requirements of extensive data sets
and large radio telescopes in order to find planets with this method.

Nowadays, the detection of 51 Peg b by Mayor & Queloz (1995) is mostly referred to as the first
exoplanet discovery. It is the first planet found around a solar-like star (G5V) and was immediately
verified by an American group (Marcy & Butler, 1995; Marcy et al., 1997). 51 Peg b has an orbital
period of just 4.2 d and a minimum mass of 0.47 MJup. This was evidence that close-in Jovians, i.e. those
planets proposed by Struve (1952) for search programmes, indeed exist. From then on, many similar

1Later a third planet (Wolszczan, 1994) and fourth unconfirmed object were announced in this system.
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2MASSWJ1207334−393254
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Figure 1.1: Examples for direct imaging detections. (Left) Planet to a brown dwarf (Chauvin et al.,
2004). (Right) Putative planets of the solar-like star GJ 758 with a scale for the solar system (Thalmann
et al., 2009).

objects have been found and belong to a class called hot Jupiters. These systems are very different from
our solar system where Jupiter has an orbital period of 12.3 yr. The method, which Mayor & Queloz
(1995) employed, was the radial velocity technique that measures the Doppler shift introduced by the
gravitational pull of an orbiting companion (Sect. 1.2).

In October 2010, the exoplanet list2 counts ∼500 planets and planet candidates which were discov-
ered by the different methods briefly explained in Sect. 1.1. So far, the most successful technique is the
RV method which has revealed more than 350 exoplanets. The RV technique is the basic method in this
thesis and is explained in more detail in Sect.1.2.

1.1 Methods for exoplanet detection

1.1.1 Direct imaging

It is very challenging to directly image a planet orbiting around a star. One has to overcome the huge
brightness contrast and the small angular separation between the bright star and the faint planet. Several
techniques, such as coronography, nulling interferometry, or angular differential imaging, have been
developed to solve the technical difficulties.

To enhance the detection probability astronomers have focussed on young, nearby systems, because
in their early stages planets are relatively bright compared to their host stars. Indeed, some groups have
successfully imaged some wide giant planets. Chauvin et al. (2004) imaged for the first time directly a
5 MJup-mass planet accompanying a brown dwarf (Fig. 1.1). Another example is the substellar companion
of the K dwarf GQ Lup which might have a planetary mass (Neuhäuser et al., 2005). Further exciting
detections are the planet around the A3V star Fomalhaut (Kalas et al., 2008) and the planetary system
to the A5V star HR 8799 (Marois et al., 2008). GJ 758 b is the first planet-like object imaged to a sun-
like star (Thalmann et al., 2009) in a separation of only 29 AU and with a temperature of only 600 K. For
HR 8799c Janson et al. (2010) demonstrated that even direct spectroscopy is possible. However, the mass
estimates rely often on age estimates based on evolutionary models and, e.g., new asteroseismologic
measurements indicate an older age for HR 8799 and imply that the imaged companions are brown
dwarfs (Moya et al., 2010).

1.1.2 The transit method

The principle of the transit technique is well known, because it has been applied since almost hundred
years to study eclipsing binary systems, and with today’s photometric precision it is also applicable to

2http://exoplanet.eu/

http://exoplanet.eu/
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study planets. The technique is easy to understand. If the orbit of a companion has such a favourable
inclination (i ≈ 90◦) that the companion can cross the line of sight between the star and the observer, it
blocks light of the star so that the star appears dimmer during this time. The process will occur repeatedly
at intervals given by the orbital period and the light curve of the star exhibits periodically recurring dips
(Fig. 1.2).

Since the first detection of a transiting planet by Charbonneau et al. (2000) around HD 209458,
which was already known from RV measurements to harbour this planet, more than 100 transiting pla-
nets have been found. The Kepler mission, currently operating in space, has already revealed hundreds
of candidates and, when they are confirmed, the number of transiting planets will increase considerably
(Borucki & the Kepler Team, 2010). Thus the transit technique is very successfully and might soon
overtake the RV method in number of planet detections.

The transit method is sensitive to very short period planets and usually requires confirmation by RV
measurements3 to exclude false positives, since e.g. grazing binaries or blend scenarios (eclipsing binary
+ background star) can mimic the transit light curves of planets. The application of the RV method
to transiting planets is particularly interesting when used to measure the Rossiter-McLaughlin effect
(Schlesinger, 1910; Rossiter, 1924; McLaughlin, 1924; Ohta et al., 2005). With this effect it is possible
to investigate the alignment between the spin of the planetary orbit and the spin of the stellar rotation. The
star must rotate for the Rossiter-McLaughlin effect to be measurable. Due to the rotation the stellar lines
are rotationally broadened which is the contribution of the blue shifted and red shifted hemisphere of the
star. When a planet crosses in front of the star, then it can be distinguished whether it occults first the blue
shifted or the red shifted part leading to a distortion in the stellar line profile and an effective red or blue
shift, respectively, in the RV of the star. Thus it is possible to reconstruct the path of the planet across
the stellar disk. Since the effect scales with the stellar rotation velocity, rapidly rotating stars are more
amenable for the Rossiter-McLaughlin effect and there are even systems where the Rossiter-McLaughlin
amplitude is larger than the orbital amplitude (Anderson et al., 2010). Interestingly also, planets were
found whose orbit is misaligned or even retrograde (e.g. Hébrard et al., 2008; Winn et al., 2010).

The fortunate case of transiting planets allow a determination of the radius and density of the planet
from the transit parameters. Their densities can be as low as 0.13 g/cm3, i.e. only 10% of the density of
Jupiter (e.g. WASP-17b, Anderson et al., 2010), or as high as 9.6 g/cm3 (e.g. Corot 7b, Guenther et al.,
2010 and references therein; cf. the density of the Earth of 5.52 g/cm3). The temperature of the planets
can be derived and Knutson et al. (2007) even reconstructed a temperature map for the surface of the
exoplanet HD 189733b.

Furthermore it is even possible to study the atmospheres of these hot Jupiters via transit spectroscopy.
Several elements have been detected in their atmospheres, e.g. sodium (Na), water (H2O), methane
(CH4), carbon dioxide (CO2), or carbon monoxide (CO) (e.g. Charbonneau et al., 2002; Tinetti et al.,
2007; Swain et al., 2008; Snellen et al., 2008). Snellen et al. (2010) reported even the detection of winds
in the atmosphere of the exoplanet HD 209458 b via a blueshift of CO lines.

The transit community has also established the method of transit timing (e.g. Holman & Murray,
2005; Agol et al., 2005). If there are further planets in the system (or exomoons around the transiting
planet, Simon et al., 2007), they may influence the time of transit centre due to their gravitational interac-
tion. The effect of such Transit Time Variations (TTVs) is of the order of just a few seconds or minutes,
i.e. only a fraction of the transit duration, and a large number of transits is required to detect TTVs. E.g.
Lendl et al. (2010) or Maciejewski et al. (2010) announced to have found TTVs.

1.1.3 Astrometry

Astrometry is the oldest subfield of science (not only of astronomy). So far however, this method has
not delivered a planet discovery, but lots of spurious detections. A recent example is the planet VB10b

3E.g. this is difficult for A stars which are not suitable for high precision RV measurements because they have only few
and broad absorption lines. In some cases the planet hypothesis can be confirmed with spectroscopic line-profile tomography
(Cameron et al., 2010a,b).
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Flux

Time

transit

occultation

star alone

star + planet dayside

star + planet nightside

star – planet shadow

Figure 1.2: Basic principle of a transit. (Left) Flux as a periodic function of time (light curve). (Right)
Basic transit parameters: the four contact points ti, ingress/egress duration τ , transit duration T , and
transit depth δ (from Winn, 2010).

(Pravdo & Shaklan, 2009), which was disproved with RV measurements in the near-infrared (Bean et al.,
2010a).

Astrometry is more sensitive to long period planets, because the reflex displacement of the star is
the larger the more distant the planet is (similar to a lever). This means that a long timebase is required
to establish a significant signal. However, astrometry was able to provide helpful contributions by con-
straining the orbital inclinations i for a few known planetary systems (e.g. GJ 876, Benedict et al., 2002).
For some systems the true mass of the planet candidates turned out to be in the brown dwarf or stellar
regime (e.g. Bean et al., 2007). In the future, astrometric planet discoveries can be expected with the
µas precision of the interferometric facilities such as PRIMA (Phase-Referenced Imaging and Micro-
arcsecond Astrometry) or the planned GAIA (Global Astrometric Interferometer for Astrophysics) space
mission.

1.1.4 Gravitational microlensing

Gravity can deflect light. This was suggested by Newton and correctly predicted by Einstein. Similar to
the refractive characteristic of an optical lens, the gravitational field of a massive body can focus passing
light from a background source depending on the geometric dimensions. At rare occasions, the Earth is
close to such a focus and the source appears brighter than usual. The magnification

A(u) =
u2 +2

u
√

u2 +4

depends on the angular seperation u between the lensing object and the source which is measured in
terms of the angular Einstein ring given by

θE =
√

4GML

c2
dS −dL

dsdL
.

The Einstein ring is a characteristic scale for the geometric dimensions and is determined by the lensing
mass ML and the distance of the source dS and lens dL.

In the case of planet searches with microlensing the source is usually a background star in the galactic
bulge of our galaxy, while a foreground star serves as the lens. If the lensing star has a planet, the
additional gravitation of the planet acts as an imperfection of the lens leading to peculiarities in the light
curve of the lensing event (see Wambsganss 2006 for a review).

About 11 planets were found by microlensing. OGLE 2003-BLG-235 was the first measured plane-
tary microlensing event (Bond et al., 2004). Because each microlensing event is unique and unrepeatable,
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Figure 1.3: Overview of exoplanet detection methods their status and sensitivity (from Perryman).

follow-up observations are difficult. However, the method is sensitive to Earth-mass planets at seperations
of 1–5 AU and contributes to the statistics of the planet frequency. The planetary system of OGLE-06-
109L, with a Jupiter-like and a Saturn-like planet, constitutes an analogue of the solar system (Gaudi
et al., 2008; Bennett et al., 2010), and three detected cool Super-Earths (3-10 M⊕) suggest that low mass
planets are common (Gould et al., 2006). Microlensing has also the potential to detect exomoons (Liebig
& Wambsganss, 2010) or even planets in other galaxies via “pixel lensing” (gravitational microlensing
of unresolved stars, Gould 1996; Ingrosso et al. 2009).

1.1.5 Other methods

There are two more successful timing methods, besides the already mentioned transit and pulsar timing.
Timing measurements of stellar pulsations revealed a 3 MJup object around the white dwarf V 391 Peg
(Silvotti et al., 2007). The method of TTV (Sect. 1.1.2) can of course also be applied to eclipsing binaries
and found two long-period Jupiters to the short-period eclipsing binary NN Ser (P=0.13 d, DAO14–M4V)
(Beuermann et al., 2010).

The structure of debris disks around stars allows us to come to conclusions about the presence of
planets. Based on this argument Quillen & Thorndike (2002) presumed a planet around ε Eri. In the case
of the directly imaged Fomalhaut b (Sect. 1.1.1), Kalas et al. (2008) argued that the dust belt structure
constrains the planet mass to be at most three Jupiter masses.

There are further proposed methods which are less suited for planet searches but helpful to study
them. E.g. searching for the star light reflected from the close-in hot Jupiter τ Tau b can put limits on
the orbital inclination and on the planet albedo (e.g. Rodler et al. 2010, and references therein). Other
groups try to detect the radio emission of exoplanets (Grießmeier et al., 2007) which is expected from

4Hydrogen-helium hybrid white dwarf. Spectral classification according to Sion et al. (1983): degenerated star D (white
dwarf), primary spectral type A (only Balmer lines; no HeI or metals present), secondary spectral features O (strong HeII; HeI
or H present), temperature index 1 (T ∼ 50000K)
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the interaction between strongly magnetised planets and stars (or stellar winds). Star-planet interaction
(SPI) via tidal or magnetic effects may also lead to observable features on the stellar surface and induces
chromospheric stellar activity (Shkolnik et al., 2003) similar to the plasma torus in the Jupiter-Io system.

Figure 1.3 gives a schematic overview of the different planet detection methods and their sensitivities.
The methods are grouped in the three main branches: dynamical effects, microlensing, and photometry.
We see that the RV technique is so far the most successful method and several methods (pulsar timing,
RV, microlensing, and transits) have the potential to detect Earth-mass planets.

1.2 The radial velocity method

The radial velocity (RV) method has become a standard technique in exoplanet search. Actually, it is
an old technique that has been employed since already one hundred years to study binaries by originally
recording their spectra on photographic plates. Benefiting from the invention of the CCD, the RV method
has become sensitive enough since the 1990s to trace the effects of planets.

The RV method can be easily understood. Imagine, if a star has a companion, both bodies orbit
around their common centre of mass. The star performs a reflex motion in three dimensional space and
the trajectory r⃗(t) is described by a Keplerian ellipse. The radial velocity is the projected component of
the space velocity ˙⃗r(t) onto the line of sight, i.e. the line between the observer and the star. By convention
this line of sight determines the z-axis of our coordinate system and the radial velocity RV is simply given
by RV = ż. The RV can be measured by the spectroscopic Doppler effect5

RV
c

=
∆λ
λ

(1.1)

where c is the speed of light and λ the rest wavelength. This means, when the source moves at a radial
velocity RV, it causes a wavelength shift ∆λ to the spectrum. The object appears blue-shifted, when it
approaches the observer (RV< 0) and red-shifted, when it recedes from the observer (RV>0).

The equation for the RV as a function of time (RV curve) for Keplerian orbits will be given later
(Sect. 2.5, Eq. (2.28)). For now Fig. 1.4 gives an overview of the variety of possible RV curves which are
described by six orbital parameters, namely the period P, eccentricity e, RV semi-amplitude K, longitude
of periastron ω , time of periastron passage T0, and system radial velocity γ . Vice versa from the shape of
the measured RV curve we can derive these parameters by fitting the model function. However, the RV is
just the one dimensional component of a motion that takes place in three dimensional space. Thus there
remain ambiguities regarding the orientation of the ellipse, and we cannot derive from the RVs alone two
other orbit parameters, namely the longitude of the ascending node Ω and the inclination i of the orbit.

The unknown inclination i is the drawback of the the Doppler method which therefore can provide
only minimum masses. This is expressed by the so called mass function

f (m) =
(msin i)3

(M +m)2 =
P

2πG
(K

√
1− e2)3

where M is the mass of the star and G the gravitational constant. While we can calculate the right-hand
side of the mass function with the orbit parameters derived from the RV curve, we cannot solve this cubic
equation for the true companion mass m without knowing i. However, we obtain a minimum mass mmin
for i = 90◦. Considering the large mass difference between planets and stars (m ≪ M, i.e. M +m ≈ M),
the minimum mass can be simply written as mmin = msin i.

In the case of an orbit seen edge-on (i = 90◦) as in transiting systems, the true mass equals the
minimum mass (mmin = m). Contrariwise, for a nearly face-on orbit the true mass can be much higher (by

5There is also a photometric Doppler effect (aka. Doppler boosting or Doppler beaming). When a source moves towards
the observer, it appears brighter, because the source runs behind the radiated light and seems to emit the light at a higher rate.
With the precision of the Kepler space telescope it was already possible to detect this effect in some binary systems having high
orbital velocities (e.g. van Kerkwijk et al. 2010, Bloemen et al. 2010 and references therein, RV precision ∼km/s).
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Figure 1.4: A sample of theoretical radial velocity curves. In the case of circular orbits (e = 0, not
shown) the RV curve is sinusoidal. The more eccentric the orbit, the more asymmetric are the RV curves.
Because the mean anomaly is defined as M = 2π t−T0

P , M = 0 corresponds to the periastron passage (green
tic). The embedded orbit in each panel indicates the shape, the orientation, and the focus of the ellipse
(observer looks from the bottom axis; counterclockwise motion). Each orbit has the same semi-major
axis a.

the factor of ∼ 1/sin i)6. Assuming geometrically random orientations, the probability for an inclination
to be smaller than a threshold i0 is (e.g. Kürster et al., 2008)

Prob(0 ≤ i ≤ i0) = 1− cos i0.

E.g. there is a 13% chance that the true mass exceeds twice the minimum mass (or i < 30◦) and just a
3% chance for m ≥ 4 ·mmin (or i < 14.5◦). Hence only in rare cases are the planetary minimum masses
in the stellar regime (e.g. HD 33636 B, mmin = 9.3MJup, m = 0.14M⊙, i = 4◦, Bean et al., 2007).

1.2.1 Measuring precise radial velocities

To obtain precise RVs the challenge is to measure the wavelength shift ∆λ with a high precision. Spec-
trographs are usually employed for wavelength dependent flux measurements. They possess a grating or
prism which disperses incident light and are characterised by the resolving power

R =
λ

δλ
6Note that for low inclinations (i ≪ 90◦) the approximation m ≪ M might be not valid and one should solve the cubic form

of mass function.
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of the instrument. A simple estimate illustrates the required precision. If a spectrum is shifted by one
resolution element, i.e. ∆λ = δλ , this corresponds according to Eq. (1.1) to an RV shift of

∆RV =
c
R

.

E.g. in a high resolution spectrograph with R = 100000 the width of a resolution element corresponds to
3 km/s. Because one resolution element δλ is usually sampled by 2–3 CCD pixels (pixel size ∼ 15 µm),
the pixel width on the detector corresponds to 1–1.5 km/s. This means, if we aim at an RV precision of
1 m/s, we must be able to measure shifts of 1/1000 th of a pixel (∼15 nm) and need sub-pixel accuracy in
the data analysis!

Indeed this is possible, because the centroid positions of the stellar lines can be measured to a higher
precision than their resolved line widths and many spectral lines are used to build a statistical RV average.
Of course the RV precision also depends on the signal-to-noise ratio S/N of the spectrum. The situation
is quite similar in astrometry where centroid positions are also measured more precisely than the width
of the point spread function (PSF) depending on the S/N and the number of stars in the field. The RV
precision, theoretically expected for photon noise, can be predicted with a simple equation which just
depends on the spectrum and its intensity (Connes, 1985; Butler et al., 1996; Bouchy et al., 2001; see
also Sect. 4.3.4).

Moreover, the stellar spectrum does never remain at the same position, even if a star does not change
its intrinsic RV. Due to the barycentric velocity of the Earth of ∼29.8 km/s, two stellar spectra can be
separated by up to 60 km/s over the course of half a year depending on the star’s position on the sky.
In our example above this shift corresponds to 20 resolution elements or roughly 40 CCD pixels. The
maximum drift is 0.35 m/s/min, i.e. the barycentric effect can accumulate to a considerable amount
during long exposures. There are routines which correct for the barycentric RV using the ephemerides of
the Earth (Standish, 1990).

Over time the astronomers figured out many systematic error sources that limited the precision. It is
important that the optical path is the same for the star light and the comparison source as demonstrated by
Griffin & Griffin (1973). Wavelength shifts can arise, e.g., from mechanical instabilities or from pressure
and temperature changes which influence the refractive index of the air and the structure of the optics
and mechanics. Also inhomogeneities on the CCD can play a role (Butler et al., 1996).

The key to high RV precision is

• a very stable, high resolution spectrograph and/or

• a simultaneous wavelength calibration with a suitable spectrum and

• the same optical path for the stellar beam and the calibration source.

The HARPS spectrograph (La Silla, Chile) fulfils all requirements. It is embedded in a vacuum tank, i.e.
in a temperature and pressure stabilised environment. It is so stable that one often waives a simultaneous
calibration during a night7.

The calibration process is important and two basic concepts have been developed for the simultaneous
wavelength calibration which are briefly described below.

1.2.2 Self calibration with a gas absorption cell

Griffin & Griffin (1973) suggested to use the telluric lines of the Earth’s atmosphere as a simultaneous
reference spectrum to improve the RV precision. Before the star light enters the spectrograph, it passes
the atmosphere containing natural gases, like water vapour, oxygen, or carbon dioxide, which imprint
their absorption lines onto the stellar spectrum. The telluric lines are always recorded simultaneously;

7The second calibration fibre can then be used for a sky spectrum. It also avoids light cross-contamination from bright
ThAr lines.
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Figure 1.5: (Left) Principle of the iodine cell method (from Butler et al., 1996). Shown are the iodine
spectrum with its sharp lines, the stellar template, the observed composite spectrum (dots) with the well-
fitting model (solid line), and the enlarged residuals (from top to bottom). (Right) Section of a raw
HARPS spectrum. The ThAr emission spectrum is recorded parallel to the stellar absorption spectrum in
each Echelle order.

however they vary with the atmospheric conditions, especially with the wind speed which limits this
technique to a typical precision of ∼20 m/s.

Campbell & Walker (1979) built a cell which was filled with hydrogen fluoride gas (HF). The sealed
cell was placed in the stellar beam in front of the spectrograph and the HF absorption lines were superim-
posed onto the star light. In contrast to the telluric lines, the HF cell could be operated under controlled
conditions (T = 100◦C). HF is lethal and the cell had a length of 90 cm. The achieved precision was
around 15 m/s (Campbell et al., 1988; Walker et al., 1995).

Later molecular iodine gas (I2) was proposed and adapted as a calibration source (Beckers, 1976;
Marcy & Butler, 1992). Iodine gas has a strong absorption coefficient (allowing for a short cell length
of a few centimetres) and a high line density, and it is chemically stable and nonlethal. The principle
of the method is shown in Fig. 1.5 (left). As outlined by Butler et al. (1996), the data modelling should
invoke an overresolved iodine and stellar spectra which allow for a reconstruction of the instrumental
line spread function (LSF). A highly resolved iodine spectrum can be obtained with a Fourier transform
spectrometer (FTS), while the stellar template is constructed via deconvolution from a stellar spectrum
taken without the cell.

The advantages of the absorption gas cell are the low costs and the long-term stability. The disad-
vantages are the complex data modelling, the short spectral coverage, and the lower efficiency due to
the absorption (∼ −50%). Moreover the science spectra are often useless for other scientific analysis,
because the spectra are “contaminated” by the calibration lines. A precision of 3 m/s was widely demon-
strated and also claims of 1 m/s precision were made (e.g. Vogt et al., 2010).

1.2.3 Simultaneous calibration with emission lamps

The first exoplanet 51 Peg b was detected with the ELODIE spectrograph of the Haute-Provence Ob-
servatory, France (Mayor & Queloz, 1995). The ELODIE spectrograph (Baranne et al., 1996) is a fibre
fed Echelle spectrograph and uses a ThAr emission lamp for wavelength calibration. The same basic
concept is also realised in the HARPS spectrograph (Mayor et al., 2003). Figure 1.5 (right) displays part
of a raw HARPS frame. The ThAr spectrum is fed via a second fibre to the spectrograph and is recorded
simultaneously and parallel to the science spectrum.

The ThAr lamp is often used, because it has many emission lines over a wide range (see Lovis &
Pepe 2007 for a new ThAr line list). Not all lines are used for the calibration. The Ar lines are only
stable to a few tens of m/s from lamp to lamp and exhibit significant ageing effects, because they are
very sensitive to the pressure inside the lamp. Also lines with blends are excluded from the calibration.
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Because also the Th lines suffer from ageing effects, special efforts must be made to correct for this
(Mayor et al., 2009b). Since ThAr lamps have a finite lifetime, one strategy is to employ a rarely used
master lamp to calibrate frequently used slave lamps.

The radial velocity is computed by a cross-correlation of the stellar spectrum with a numerical mask
and corrected for the instrumental drift as measured with the second calibration fibre. The quoted RV
precision of HARPS is 1 m/s or better (Lovis et al., 2006).

1.2.4 Other techniques

Besides the before mentioned calibration sources there are attempts to use interferometric facilities for
the calibration. A precision of ∼ 8 m/s was achieved with a Fabry-Perot etalon that can be placed into
the light path in a way similar to using an iodine cell (Cochran et al., 1982; McMillan et al., 1990, 1994;
Connes, 1985). Michelson interferometers were used for Doppler measurements of the Sun (Kozhevatov
et al., 1995) and are currently under further development for exoplanet search (dispersed fixed-delay
interferometry, Ge 2002). The latter discovered successfully an exoplanet (Ge et al., 2006).

The Fourier transform spectrometer (FTS) provides an accurate wavelength scale implying it is suit-
able for RV measurements. A FTS works similar to a Michelson interferometer where one arm length
is tunable. In a first step, an interferogram is obtained by measuring the intensity as a function of the
mirror path which can be moved over a large distance (∼ 1 m). Second, the spectrum is computed via a
numerical Fourier transform of the interferogram. The resolution depends on the scan length and the S/N
on the scan duration. FTSs have an adjustable resolution and a simple, well-known instrumental profile.
However, they are less efficient compared to conventional spectrographs. Combinations with dispersive
elements are explored to improve the efficiency (Hajian et al., 2007). FTSs are also on board of the
AKARI (FIS-FTS, Murakami et al. 2010) and HERSCHEL (SPIRE, Griffin et al. 2008) satellites.

Finally, it should be pointed out that radial velocities can also be measured without spectroscopy.
With high-accuracy astrometry RVs can be derived from changing annual parallax, changing proper mo-
tion, or changing angular extent of a moving group of stars (Dravins et al., 1999)8. These are secular
effects and current astrometry is not sufficient for precise RV measurements, but these methods pro-
vide estimates for absolute RVs independent of spectroscopic effects, such as line asymmetries, stellar
convection, or gravitational redshift, which affect spectroscopically derived absolute RVs.

1.3 Outline of this work

This work concentrates on the analysis of real RV data to search for planets. In following chapters, we
first develop further a period search tool which will play an important role in our data analysis. Then, we
present two RV surveys. The precision of the RV data is well suitable for discovering planets, which is
demonstrated by detection limits. The first survey includes a sample of 40 M dwarfs and aims at searching
for terrestrial planets in the habitable zones of the stars. The second survey consists of 30 solar-like stars,
and with the precision and timebase of the data sets we aim to detect Jupiter analogues.

The second and third chapter are already published in Astronomy and Astrophysics (Zechmeister &
Kürster, 2009; Zechmeister et al., 2009). The forth chapter is close to submission.

8Likewise, we can derive astrometric quantities (product of distance and squared proper motion) from RV changes (see
secular acceleration Sect. 3.3.1)



Chapter 2

The generalised Lomb-Scargle
periodogram
A new formalism for the floating-mean and Keplerian
periodograms

From Zechmeister & Kürster 2009, A&A, 496, 577

ABSTRACT: The Lomb-Scargle periodogram is a common tool in the frequency analysis of un-
equally spaced data equivalent to least-squares fitting of sine waves. We give an analytic solution for
the generalisation to a full sine wave fit, including an offset and weights (χ2 fitting). Compared to the
Lomb-Scargle periodogram, the generalisation is superior as it provides more accurate frequencies, is
less susceptible to aliasing, and gives a much better determination of the spectral intensity. Only a few
modifications are required for the computation and the computational effort is similar. Our approach
brings together several related methods that can be found in the literature, viz. the date-compensated dis-
crete Fourier transform, the floating-mean periodogram, and the “spectral significance” estimator used
in the SigSpec program, for which we point out some equivalences. Furthermore, we present an algo-
rithm that implements this generalisation for the evaluation of the Keplerian periodogram that searches
for the period of the best-fitting Keplerian orbit to radial velocity data. The systematic and non-random
algorithm is capable of detecting eccentric orbits, which is demonstrated by two examples and can be a
useful tool in searches for the orbital periods of exoplanets.

2.1 Introduction

The Lomb-Scargle periodogram (Scargle, 1982) is a widely used tool in period searches and frequency
analysis of time series. It is equivalent to fitting sine waves of the form y = acosωt + bsinωt. While
standard fitting procedures require the solution of a set of linear equations for each sampled frequency, the
Lomb-Scargle method provides an analytic solution and is therefore both convenient to use and efficient.
The equation for the periodogram was given by Barning (1963), and also Lomb (1976) and Scargle
(1982), who furthermore investigated its statistical behaviour, especially the statistical significance of the
detection of a signal. For a time series (ti, yi) with zero mean (y = 0), the Lomb-Scargle periodogram is
defined as (normalisation from Lomb 1976):

p̂(ω) =
1
ˆYY

[
ˆYC

2
τ̂

ĈCτ̂
+

Ŷ S
2
τ̂

ŜSτ̂

]
(2.1)

=
1

∑i y2
i

{
[∑i yi cosω(ti − τ̂)]2

∑i cos2 ω(ti − τ̂)
+

[∑i yi sinω(ti − τ̂)]2

∑i sin2 ω(ti − τ̂)

}
(2.2)
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where the hats are used in this paper to symbolise the classical expressions. The parameter τ̂ is calculated
via

tan2ωτ̂ = ∑i sin2ωti
∑i cos2ωti

. (2.3)

However, there are two shortcomings. First, the Lomb-Scargle periodogram does not take the mea-
surement errors into account. This was solved by introducing weighted sums by Gilliland & Baliunas
(1987) and Irwin et al. (1989) (equivalent to the generalisation to a χ2 fit). Second, for the analysis the
mean of the data was subtracted, which assumes that the mean of the data and the mean of the fitted sine
function are the same. One can overcome this assumption with the introduction of an offset c, result-
ing in a further generalisation of this periodogram to the equivalent of weighted full sine wave fitting;
i.e., y = acosωt + bsinωt + c. Cumming et al. (1999), who called this generalisation “floating-mean
periodogram”, argue that this approach is superior: “... the Lomb-Scargle periodogram fails to account
for statistical fluctuations in the mean of a sampled sinusoid, making it non-robust when the number of
observations is small, the sampling is uneven, or for periods comparable to or greater than the dura-
tion of the observations.” These authors provided a formal definition and also a sophisticated statistical
treatment, but do not use an analytical solution for the computation of this periodogram.

Basically, analytical formulae for a full sine, least-squares spectrum have already been given by
Ferraz-Mello (1981), calling this date-compensated discrete Fourier transform (DCDFT). We prefer to
adopt a notation closely related to the Lomb-Scargle periodogram calling it the generalised Lomb-Scargle
periodogram (GLS). Shrager (2001) tries for such an approach but did not generalise the parameter τ̂ in
Eq. (2.3). Moreover, our generalised equations, which are derived in the following (Sect. 2.2), have a
comparable symmetry to the classical ones and also allow us to point out equivalences to the “spectral
significance” estimator used in the SigSpec program by Reegen (2007) (Sect. 2.4).

2.2 The generalised Lomb-Scargle periodogram (GLS)

The analytic solution for the generalised Lomb-Scargle periodogram can be obtained in a straightforward
manner in the same way as outlined in Lomb (1976). Let yi be the N measurements of a time series at
time ti and with errors σi. Fitting a full sine function (i.e. including an offset c):

y(t) = acosωt +bsinωt + c

at given frequency ω (or period P = 2π
ω ) means to minimise the squared difference between the data yi

and the model function y(t):

χ2 =
N

∑
i=1

[yi − y(ti)]2

σ 2
i

= W ∑wi[yi − y(ti)]2

where

wi =
1

W
1

σ 2
i

(
W = ∑ 1

σ2
i

∑wi = 1
)

are the normalised weights1. Minimisation leads to a system of (three) linear equations whose solution
is derived in detail in Sect. 2.7.1. Furthermore, it is shown in Sect. 2.7.1 that the relative χ2-reduction
p(ω) as a function of frequency ω and normalised to unity by χ2

0 (the χ2 for the weighted mean) can be
written as:

p(ω) =
χ2

0 −χ2(ω)
χ2

0
(2.4)

p(ω) =
1

YY ·D
[
SS ·YC2 +CC ·Y S2 −2CS ·YC ·Y S

]
(2.5)

1For clarity the bounds of the summation are suppressed in the following notation. They are always the same (i = 1,2, ...,N).
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with:

D(ω) = CC ·SS−CS2 (2.6)

and the following abbreviations for the sums:

Y = ∑wiyi (2.7)

C= ∑wi cosωti (2.8)

S = ∑wi sinωti (2.9)

YY = ˆYY−Y ·Y ˆYY = ∑wiy2
i (2.10)

YC(ω)= ˆYC−Y ·C ˆYC= ∑wiyi cosωti (2.11)

Y S(ω) =Ŷ S−Y ·S Ŷ S = ∑wiyi sinωti (2.12)

CC(ω)=ĈC−C ·C ĈC= ∑wi cos2 ωti (2.13)

SS(ω) = ŜS −S ·S ŜS = ∑wi sin2 ωti (2.14)

CS(ω) =ĈS−C ·S ĈS = ∑wi cosωti sinωti (2.15)

Note that sums with hats correspond to the classical sums. W ·YY ≡ χ2
0 is simply the weighted sum

of squared deviations from the weighted mean. The mixed sums can also be written as a weighted co-
variance Covx,y = ∑wixiyi − X ·Y/W = E(x · y)−WE(x)E(y) where E is the expectation value, e.g.
Y S = Covy,sinωt .

With the weighted mean given by y = ∑wiyi = Y Eqs. (2.10)-(2.12) can also be written as:

YY =∑wi(yi − y)2 (2.16)

YC(ω)=∑wi(yi − y)cosωti (2.17)

Y S(ω)=∑wi(yi − y)sinωti. (2.18)

So the sums YC and Y S use the weighted mean subtracted data and are calculated in the same way as for
the Lomb-Scargle periodogram (but with weights).

The generalised Lomb-Scargle periodogram p(ω) in Eq. (2.4) is normalised to unity and therefore in
the range of 0 ≤ p ≤ 1, with p = 0 indicating no improvement of the fit and p = 1 a “perfect” fit (100%
reduction of χ2 or χ2 = 0).

As the full sine fit is time-translation invariant, there is also the possibility to introduce an arbitrary
time reference point τ (ti → ti−τ ; now, e.g. CC = ∑wi cos2 ω(ti−τ)− (∑wi cosω(ti − τ))2), which will
not affect the χ2 of the fit. If this parameter τ is chosen as

tan2ωτ =
2CS

CC−SS
(2.19)

= ∑wi sin2ωti −2∑wi cosωti ∑wi sinωti

∑wi cos2ωti −
[
(∑wi cosωti)

2 − (∑wi sinωti)
2
]

the interaction term in Eq. (2.5) disappears,

CSτ = ∑wi cosω(ti − τ)sinω(ti − τ)−∑wi cosω(ti − τ)∑wi sinω(ti − τ) = 0

(proof in Appendix 2.7.2) and in this case we append the index τ to the time dependent sums. The
parameter τ(ω) is determined by the times ti and the measurement errors σi for each frequency ω . So
when using τ as defined in Eq. (2.19) the periodogram in Eq. (2.5) becomes

p(ω) =
1

YY

[
YC2

τ
CCτ

+
Y S2

τ
SSτ

]
. (2.20)
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Note that Eq. (2.20) has the same form as the Lomb-Scargle periodogram in Eq. (2.1) with the difference
that the errors can be weighted (weights wi in all sums) and that there is an additional second term in CCτ ,
SSτ , CSτ and tan2ωτ (Eqs. (2.13)–(2.15) and Eq. (2.19), respectively) which accounts for the floating
mean.

The computational effort is similar as for the Lomb-Scargle periodogram. The incorporation of the
offset c requires only two additional sums for each frequency ω (namely S = ∑wi sinωti and C =
∑wi cosωti or Sτ and Cτ , respectively). The effort is even weaker when using Eq. (2.5) with keeping
CS instead of using Eq. (2.20) with the parameter τ introduced via Eq. (2.19) which needs an extra pre-
ceding loop in the algorithm. If the errors are taken into account as weights, also the multiplication with
wi must be done.

For fast computation of the trigonometric sums the algorithm of Press & Rybicki (1989) can be
applied, which has advantages in the case of large data sets and/or many frequency steps. Another possi-
bility are trigonometric recurrences2 as described in Press et al. (1992). Note also that the first sum in SS
can be expressed by ŜS = 1−ĈC.

2.3 Normalisation and False-Alarm probability (FAP)

There were several discussions in the literature on how to normalise the periodogram. For the detailed
discussion we refer to the key papers by Scargle (1982), Horne & Baliunas (1986), Koen (1990) and
Cumming et al. (1999). The normalisation becomes important for estimations of the false-alarm proba-
bility of a signal by means of an analytic expression. Lomb (1976) showed that if data are Gaussian noise,
the terms ˆYC

2
/ĈC and Ŷ S

2
/ŜS in Eq. (2.1) are χ2-distributed and therefore the sum of both (which is

∝ p) is χ2-distributed with two degrees of freedom. This holds for the generalisation in Eq. (2.20) and
also becomes clear from the definition of the periodogram in Eq. (2.4) p(ω) = χ2

0−χ2(ω)
χ2

0
where for Gaus-

sian noise the difference in the numerator χ2
0 − χ2(ω) is χ2-distributed with ν = (N −1)− (N −3) = 2

degrees of freedom.
The p(ω) can be compared with a known noise level pn (expected from the a priori known noise

variance or population variance) and the normalisation of p(ω) to pn

Pn =
p(ω)

pn
(2.21)

can be considered as a signal to noise ratio (Scargle, 1982). However, this noise level is often not known.
Alternatively, the noise level may be estimated for Gaussian noise from Eq. (2.4) to be pn = 2

N−1
which leads to:

P =
N −1

2
p(ω) (2.22)

and is the analogon to the normalisation in Horne & Baliunas (1986)3. So if the data are noise, P = 1 is
the expected value. If the data contains a signal, P ≫ 1 is expected at the signal frequency. However, this
power is restricted to 0 ≤ P ≤ N−1

2 .
But if the data contains a signal or if errors are under- or overestimated or if intrinsic variability is

present, then pn = 2
N−1 may not be a good uncorrelated estimator for the noise level. Cumming et al.

(1999) suggested to estimate the noise level a posteriori with the residuals of the best fit and normalised
the periodogram as

z(ω) =
N −3

2
χ2

0 −χ2(ω)
χ2

best
=

N −3
2

p(ω)
1− pbest

(2.23)

2E.g. cosωk+1t = cos(ωk +∆ω)t = cosωkt cos∆ωkt − sinωkt sin∆ωt where ∆ω is the frequency step.
3These authors called it the normalization with the sample variance σ2

0 . Note that p(ω) is already normalized with χ2
0 . For

the unweighted case (wi = 1
N , σ2

0 = N
N−1YY ) one can write Eq. (2.22) with Eq. (2.20) as P(ω) = 1

2
N
σ 2

0

[
YC2

CC + Y S2

SS

]
.
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Table 2.1: Probabilities that a periodogram power (Pn, p, P or z) can exceed a given value (Pn,0, p0, P0 or
z0) for different normalizations (from Cumming et al. 1999).

Reference level Range Probability
population variance Pn ∈ [0,∞) Prob(Pn > Pn,0) = exp(−Pn,0)
sample variance p ∈ [0,1] Prob(p > p0) = (1− p0)

N−3
2

– ” – P ∈ [0, N−1
2 ] Prob(P > P0) =

(
1− 2P

N−1

)N−3
2

residual variance z ∈ [0,∞) Prob(z > z0) =
(

1+ 2z0
N−3

)−N−3
2

where the index “best” denotes the corresponding values of the best fit (pbest = p(ωbest)).
Statistical fluctuations or a present signal may lead to a larger periodogram power. To test for the

significance of such a peak in the periodogram, the probability is assessed that this power can arise
purely from noise. Cumming et al. (1999) clarified that the different normalisations result in different
probability functions which are summarised in Table 2.1. Note that the last two probability values are the
same for the best fit (z0 = zbest):

Prob(z > zbest) =
(

1+
2zbest

N −3

)−(N−3)/2

=
(

1+
pbest

1− pbest

)−(N−3)/2

=
(

1
1− pbest

)−(N−3)/2

= (1− pbest)
(N−3)/2

= Prob(p > pbest) = Prob(P > Pbest).

Furthermore Baluev (2008) pointed out that the power definition

Z(ω) =
N −3

2
ln

χ2
0

χ2(ω)

as a nonlinear (logarithmic) scale for χ2 has an exponential distribution (similiar to Pn)

Prob(Z > Zbest) = e−Z =
(

χ2(ω)
χ2

0

)(N−3)/2

= Prob(p > pbest).

Since in period search with the periodogram we study a range of frequencies, we are also interested
in the significance of one peak compared to the peaks at other frequencies rather than the significance of
a single frequency. The false alarm probability (FAP) for the period search in a frequency range is given
by

FAP = 1− [1−Prob(z > z0)]M (2.24)

where M is the number of independent frequencies and may be estimated as the number of peaks in
the periodogram. The width of one peak is δ f ≈ 1

T (≈frequency resolution). So in the frequency range
∆ f = f2 − f1 there are approximately M = ∆ f

δ f peaks and in the case f1 ≪ f2 one can write M ≈ T f2
(Cumming, 2004). Finally, for low FAP values the following handy approximation for Eq. (2.24) is
valid:

FAP ≈ M ·Prob(z > z0) for FAP ≪ 1. (2.25)

Another possibility to access M and the FAP are Monte Carlo or bootstrap simulations in order to
determine how often a certain power level (z0) is exceeded just by chance. Such numerical calculation of
the FAP are much more time-consuming than the actual computation of the GLS.
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2.4 Equivalences between the GLS and SigSpec (Reegen, 2007)

Reegen (2007) developed a method, called SigSpec, to determine the significance of a peak at a given
frequency (spectral significance) in a discrete Fourier transformation (DFT) which includes a zero mean
correction. We will recapitulate some points from his paper in an adapted and shortened way in order to
show several equivalences and to disentangle different notations used by us and used by Reegen (2007).
For a detailed description we refer to the original paper. Briefly, approaching from Fourier theory Reegen
(2007) defined the zero mean corrected Fourier coefficients4

aZM(ω) =
1
N ∑yi cosωti −

1
N2 ∑yi ·∑cosωti

bZM(ω) =
1
N ∑yi sinωti −

1
N2 ∑yi ·∑sinωti

which obviously correspond to YC and Y S in Eqs. (2.11) and (2.12). Their variances are given by

〈
a2

ZM
〉

=

〈
y2

〉
N2

[
∑cos2 ωti −

1
N

(
∑cosωti

)2
]

〈
b2

ZM
〉

=

〈
y2

〉
N2

[
∑sin2 ωti −

1
N

(
∑sinωti

)2
]

The precise value of these variances depends on the temporal sampling. These variances can be expressed

as
〈
a2

ZM
〉

= ⟨y2⟩
N CC and

〈
b2

ZM
〉

= ⟨y2⟩
N SS.

Consider now two independent Gaussian variables whose cumulative distribution function (CDF) is
given by:

Φ(α,β |ω) = e
− 1

2

(
α2

⟨α2⟩+
β2

⟨β2⟩

)
.

A Gaussian distribution of the physical variable yi in the time domain will lead to Gaussian variables
aZM and bZM which in general are correlated. A rotation of Fourier Space by phase θ0

tan2θ0 =
N ∑sin2ωti −2∑cosωti ∑sinωti

N ∑cos2ωti − (∑cosωti)2 +(∑sinωti)2

transforms aZM and bZM into uncorrelated coefficients α and β with vanishing covariance. Indeed, ωτ
from Eq. (2.19) and θ0 have the same value, but τ is applied in the time domain, while θ0 is applied to
the phase θ in the Fourier domain. It is only mentioned here that the resulting coefficients 2α and 2β
correspond to YCτ and Y Sτ .

Finally, Reegen (2007) defines as the spectral significance sig(α,β |ω) :=− logΦ(α,β |ω) and writes:

sig(aZM,bZM|ω) =
N loge
⟨y2⟩

[(
aZM cosθ0 +bZM sinθ0

α0

)2

(2.26)

+
(

aZM cosθ0 −bZM sinθ0

β0

)2
]

where

α0 :=

√
2N

⟨α2⟩
⟨y2⟩

=

√
2

N2

{
N ∑cos2(ωti −θ0)−

[
∑cos(ωti −θ0)

]2
}

4Here only the unweighted case is discussed (wi = 1
N ). Reegen (2007) also gives a generalization to weighting.
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β0 :=

√
2N

⟨β 2⟩
⟨y2⟩

=

√
2

N2

{
N ∑sin2(ωti −θ0)−

[
∑sin(ωti −θ0)

]2
}

are called normalised semi-major and semi-minor axes. Note that α2
0 ∼ 2CCτ and β 2

0 ∼ 2SSτ .
Reegen (2007) states that this gives as accurate frequencies as do least squares. However, from this

derivation it is not clear that this is equivalent. But when comparing Eq. (2.26) to Eq. (2.20) with using
YCτ = YC cosωτ +Y S sinωτ and Y Sτ = Y Scosωτ −YC sinωτ :

p(ω) =
1

YY

[
(YC cosωτ +Y S sinωτ)2

CCτ

+
(Y Scosωτ −YC sinωτ)2

SSτ

]

the equivalence of the GLS and the spectral significance estimator in SigSpec (and with it to least squares)
is evident:

sig(aZM,bZM|ω) =
YY ·N loge

2⟨y2⟩ · p(ω). (2.27)

The two indicators differ only in a normalisation factor, which becomes N−1
2 loge, when

〈
y2

〉
is estimated

with the sample variance
〈
y2

i
〉

= N
N−1YY . Therefore, SigSpec gives accurate frequencies just like least

squares. But note that the Fourier amplitude is given by the sum of the squared Fourier coefficient A2 =
a2

ZM + b2
ZM = 4α2 + 4β 2 ∼ YC2 +Y S2 = YC2

τ +Y S2
τ while the least-squares fitting amplitude is A2 =

a2 +b2 = YC2
τ

CC2
τ
+ Y S2

τ
SS2

τ
(see Sect. 2.7.1).

The comparison with SigSpec offers another point of view. It shows how the GLS is associated to
Fourier theory and how it can be derived from the DFT (discrete Fourier transform) when demanding
certain statistical properties such as simple statistical behaviour, time-translation invariance (Scargle,
1982) and varying zero mean. The shown equivalences allow vice versa to apply several of Reegen’s
(2007) conclusions to the GLS, e.g. that it is less susceptible to aliasing or that the time domain sampling
is taken into account in the probability distribution.

2.5 Application of the GLS to the Keplerian periodogram (Keple-
rian fits to radial velocity data)

The search for the best-fitting sine function is a multidimensional χ2-minimisation problem with four
parameters: period P, amplitude A, phase φ , and offset c (or frequency ω = 2π/P, a, b and c). At a given
frequency ω the best-fitting parameters A, φ , and c can be computed immediately by an analytic solution
revealing the global optimum for this three dimensional parameter subspace. But involving the frequency
leads to a lot of local optima (minima in χ2) as visualised by the numbers of maxima in the generalised
Lomb-Scargle periodogram. With stepping through frequency ω one can pick up the global optimum in
the four dimensional parameter space. That is how period search with the periodogram works. Because
an analytic solution (implemented in the GLS) can be employed partially, there is no need for stepping
through all parameters to explore the whole parameter space for the global optimum.

This concept can be transferred to the Keplerian periodogram which can be applied to search stellar
radial velocity data for periodic signals caused by orbiting companions and measured from spectroscopic
Doppler shifts. The radial velocity curve becomes more non-sinusoidal for a more eccentric orbit and its
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shape depends on six orbital elements5:

γ constant system radial velocity

K radial velocity amplitude

ϖ longitude of periastron

e eccentricity

T0 periastron passage

P period.

In comparison to the full sine fit there are two more parameters to deal with which complicates the
period search. An approach to simplify the Keplerian orbit search is to use the GLS to look for a periodic
signal and use it for an initial guess. But choosing the best-fitting sine period does not necessarily lead
to the best-fitting Keplerian orbit. So for finding the global optimum the whole parameter space must be
explored.

The Keplerian periodogram (Cumming, 2004), just like the GLS, shows how good a trial period
(frequency ω) can model the observed radial velocity data and can be defined as (χ2-reduction):

pKep(ω) =
χ2

0 −χ2
Kep(ω)

χ2
0

.

Instead of the sine function, the function

RV (t) = γ +K[ecosϖ + cos(ν(t)+ϖ)] (2.28)

which describes the radial reflex motion of a star due to the gravitational pull of a planet, serves as
the model for the radial velocity curve. The time dependence is given by the true anomaly ν which
furthermore depends on three orbital parameters (ν(t,P,e,T0)). The relation between ν and time t is:

tan
ν
2

=

√
1+ e
1− e

tan
E
2

E − esinE = M = 2π
t −T0

P
(2.29)

where E and M are called eccentric anomaly and mean anomaly, respectively6. Eq. (2.29), called Kepler’s
equation, is transcendent meaning that for a given time t the eccentric anomaly E cannot be calculated
explicitly.

For the computation of a Keplerian periodogram χ2 is to be minimised with respect to five parameters
at a fixed trial frequency ω . Similar to the GLS there is no need for stepping through all parameters. With
the substitutions c = γ +Kecosϖ , a = K cosϖ and b = −K sinϖ Eq. (2.28) can be written as:

RV (t) = c+acosν(t)+bsinν(t)

and with respect to the parameters a, b and c the analytic solution can be employed as described in
Sect. 2.2 for known ν (instead of ωt) . So for fixed P, e and T0 the true anomalies νi can be calculated
and the GLS from Eq. (2.5) (now using νi instead of ωti) can be applied to compute the maximum
χ2-reduction (p(ω)), here called pe,T0(ω). Stepping through e and T0 yields the best Keplerian fit at
frequency ω:

pKep(ω) = max
e,T0

pe,T0(ω)

5K = 2π
P

asin i√
1−e2 with a the semi-major axis of the stellar orbit and i the inclination.

6The following expressions are also used frequently: sinν =
√

1−e2 sinE
1−ecosE and cosν = cosE−e

1−ecosE .
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Figure 2.1: The radial velocity (RV) time series of the M dwarf GJ 1046. The dashed line is the best
Keplerian orbit fit (P = 168.8d, e = 0.28).

as visualised in the Keplerian periodogram. Finally, with stepping through the frequency, like for the
GLS, one will find the best-fitting Keplerian orbit having the overall maximum power:

pKep(ωbest) = max
ω

pKep(ω).

There exist a series of tools (or are under development) using genetic algorithms or Bayesian tech-
niques for fast searches for the best Keplerian fit (Ford & Gregory, 2007; Balan & Lahav, 2009). The
algorithm, presented in this section, is not further optimised for speed. But it works well, is easy to im-
plement and is robust since in principle it cannot miss a peak if the 3 dimensional grid for e, T0 and ω
is sufficiently dense. A reliable algorithm is needed for the computation of the Keplerian periodogram
which by definition yields the best fit at fixed frequency and no local χ2-minima. O’Toole et al. (2007,
2009b) developed an algorithm called 2DKLS (two dimensional Kepler Lomb-Scargle) that works on
grid of period and eccentricity and seems to be similar to ours. But the possibility to use partly an ana-
lytic solution or the need for stepping T0 is not mentioned by these authors.

The effort to compute the Keplerian periodogram with the described algorithm is much stronger in
comparison to the GLS. There are three additional loops: two loops for stepping through e and T0 and
one for the iteration to solve Kepler’s equation. Contrary to the GLS it is not possible to use recurrences
or the fast computation of the trigonometric sums mentioned in Sect. 2.2.

However we would like to outline some possibilities for technical improvements for a faster search.
The first concerns the grid size. We choose a regular grid for e, T0 and ω . While this is adequate for the
frequency ω , as we discuss later in this section, there might be a more appropriate e-T0 grid, e.g. a less
dense grid size for T0 at lower eccentricities. A second possibility is to reduce the iterations for solving
Kepler’s equation by using the eccentric anomalies (or differentially corrected ones) as initial values for
the next slightly different grid point. This can save several ten percent of computation time, in particular
in dense grids and at high eccentricities. A third idea which might have a high potential for speed up is
to combine our algorithm with other optimisation techniques (e.g. Levenberg-Marquardt instead of pure
stepping) to optimise the remaining parameters in the function pe,T0(ω). A raw grid would provide the
initial values and the optimisation technique would do the fine adjustment.

To give an example Fig. 2.1 shows RV data for the M dwarf GJ 1046 (Kürster et al., 2008) along
with the best-fitting Keplerian orbit (P = 168.8d, e = 0.28). Figure 2.2 shows the Lomb-Scargle, GLS,
and Keplerian periodograms. Because a Keplerian orbit has more degrees of freedom it always has the
highest χ2 reduction (0 ≤ pLS ≤ pGLS ≤ pKep,e<0.6 ≤ pKep ≤ 1).

As a comparison the Keplerian periodogram restricted to e < 0.6 is also shown in Fig. 2.2. At inter-
vals where pKep exceeds pe<0.6 the contribution is due to very eccentric orbits. Note that the Keplerian
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Figure 2.2: Comparison of the normalized Lomb-Scargle (LS), GLS and Keplerian periodograms for
GJ 1046 ( f = 1

P = ω
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Figure 2.3: The same periodograms as in Fig. 2.2 with a quasi-logarithmic scale for p and a logarithmic
scale for χ2 (axis to the right).

periodogram obtains more structure when the search is extended to more eccentric orbits. Therefore the
evaluation of the Keplerian periodogram needs a higher frequency resolution (this effect can also be ob-
served in O’Toole et al. 2009b). This is a consequence of the fact that more eccentric orbits are spikier
and thus more sensitive to phase and frequency.

Other than O’Toole et al. (2009b) we plot the periodograms against frequency7 to illustrate that the
typical peak width δ f is frequency independent. Thus equidistant frequency steps (d f < δ f ) yield a
uniform sampling of each peak and are the most economic way to compute the periodogram rather than
e.g. logarithmic period steps (leading to oversampling at long periods: d f = d 1

P =− 1
P2 dP =− 1

P dlnP) as
used by O’Toole et al. (2009b). Still the periodograms can be plotted against a logarithmic period scale
as e.g. sometimes preferred to present a period search for exoplanets.

Figure 2.4 visualises local optima in the pe,T0 map at an arbitrary fixed frequency. There are two
obvious local optima which means that searching from only one initial value for T0 may be not sufficient
as one could fail to lead the best local optimum in the e-T0 plane. This justifies a stepping through e
and T0. The complexity in the e-T0 plane, in particular at high eccentricities, finally translates into the

7for Fourier transforms this is common
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Figure 2.4: Power map (pe,T0) for e and T0 at the arbitrary fixed frequency f = 0.00422d−1. The max-
imum value p = 0.592 is deposited in the Keplerian periodogram. Note that there are the two local
optima.

Keplerian periodogram. When varying the frequency the landscape and maxima will evolve and the
maxima can also switch.

In the given example LS and GLS would give a good initial guess for the best Keplerian period with
only a slight frequency shift. But this is not always the case.

One may argue, that the second peak has an equal height suggesting the same significance. On a
linear scale it seems so. But the significance is not a linear function of the power. Cumming et al. (2008)
normalised the Keplerian periodogram as

zKep(ω) =
N −5

4
χ2

0 −χ2(ω)
χ2

best
=

N −5
4

pKep(ω)
1− pKep(ωbest)

(2.30)

analogous to Eq. (2.23) and derived the probability distribution

Prob(z > z0) =
(

1+
N −3

2
4z0

N −5

)(
1+

4z0

N −5

)−N−3
2

.

With this we can calculate that the higher peak which is much closer to 1 has a 10−14 times lower
probability to be due to noise, i.e. it has a 1014 times higher significance. In Fig. 2.3 the periodogram
power is plotted on a logarithmic scale for χ2 on the right-hand side. The much lower χ2 is another
convincing argument for the much higher significance.

Cumming (2004) suggested to estimate the FAP for the period search analogous to Eq. (2.25) and
the number of independent frequencies again as M ≈ T ∆ f . This estimation does not take into account
the higher variability in the Keplerian periodogram, which depends on the examined eccentricity range,
and therefore this FAP is likely to be underestimated.

Another, more extreme example is the planet around HD 20782 discovered by Jones et al. (2006).
Figure 2.5 shows the RV data for the star taken from O’Toole et al. (2009b). Due to the high eccentricity
this is a case where LS and GLS fail to find the right period. However, our algorithm for the Keplerian
periodogram find the same solution as the 2DKLS (P = 591.9d, e = 0.97). The Keplerian periodogram
in Fig. 2.6 indicates this period. This time it is normalised according to Eq. (2.30) and seems to suffer
from an overall high noise level (caused by many other eccentric solutions that will fit the one ’outlier’).
However, that the period is significant can again be shown just as in the previous example.

For comparison we also show the periodogram with the normalisation by the best fit at each fre-
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Figure 2.5: The radial velocity (RV) time series of HD 20782. The dashed line is the best Keplerian orbit
fit.
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Figure 2.6: Keplerian periodogram for HD 20782. Both are the same Keplerian periodogram, but the
upper one is normalized with the best fit (Eq. (2.30)) while the lower one is normalized with the best fit
at each frequency (Eq. (2.31)). Both have by definition the same maximum value.

quency (Cumming, 2004)

zKep(ω) =
N −5

4
χ2

0 −χ2(ω)
χ2(ω)

(2.31)

which is used in the 2DKLS and reveals the power maximum as impressively as in O’Toole et al. (2009b,
Fig. 1b). As Cumming et al. (1999) mentioned the choice of the normalisation is a matter of taste; the
distribution of maximum power is the same. Finally, keep in mind when comparing Fig. 2.6 with the
2DKLS in O’Toole et al. (2009b, Fig. 1b) which shows a slice at e = 0.97, that the Keplerian periodogram
in Fig. 2.6 includes all eccentricities (0 ≤ e ≤ 0.99). Also the algorithms are different because we also
step for T0 and simultaneously fit the longitude of periastron ϖ .

2.6 Conclusions

Generalised Lomb-Scargle periodogram (GLS), floating-mean periodogram (Cumming et al., 1999),
date-compensated discrete Fourier transform (DCDFT, Ferraz-Mello 1981), and “spectral significance”
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(SigSpec, Reegen 2007) at last all mean the same thing: least-squares spectrum for fitting a sinusoid plus
a constant. Cumming et al. (1999) and Reegen (2007) have already shown the advantages of accounting
for a varying zero point and therefore we recommend the usage of the generalised Lomb-Scargle peri-
odogram (GLS) for the period analysis of time series. The implementation is easy as there are only a few
modifications in the sums of the Lomb-Scargle periodogram.

The GLS can be calculated as conveniently as the Lomb-Scargle periodogram and in a straight for-
ward manner with an analytical solution while programs applying standard routines for fitting sinusoids
involve solving a set of linear equations by inverting a 3x3 matrix repeated at each frequency. The GLS
can be tailored by concentrating the sums in one loop over the data. As already mentioned by Lomb
(1976) Eq. (2.5) (including Eqs. (2.13)–(2.18)) should be applied for the numerical work. A fast calcula-
tion of the GLS is especially desirable for large samples, large data sets and/or many frequency steps. It
also may be helpful to speed up prewhitening procedures (e.g. Reegen, 2007) in case of multifrequency
analysis or numerical calculations of the significance of a signal with bootstrap methods or Monte Carlo
simulations.

The term generalised Lomb-Scargle periodogram has already been used by Bretthorst (2001) for the
generalisation to sinusoidal functions of the kind: y(t) = aZ(t)cosωt + bZ(t)sinωt with an arbitrary
amplitude modulation Z(t) whose time dependence and all parameters are fully specified (e.g. Z(t) can
be an exponential decay). Without repeating the whole procedure given in Sect. 2.7.1, 2.7.2, and 2.2 it
is just mentioned here that the generalisation to y(t) = aZ(t)cosωt + bZ(t)sinωt + c will result in the
same equations with the difference that Z(ti) has to be attached to each sine and cosine term in each sum
(e.g. ĈC = ∑wiZ(ti)cosωti ·Z(ti)cosωti).

We presented an algorithm for the application of GLS to the Keplerian periodogram which is the
least-squares spectrum for Keplerian orbits. It is an hybrid algorithm that partially applies an analytic
solution for linearised parameters and partially steps through non-linear parameters. This has to be dis-
tinguished from methods that use the best sine fit as an initial guess. With two examples we have demon-
strated that our algorithm for the computation of the Keplerian periodogram is capable to detect (very)
eccentric planets in a systematic and nonrandom way.

Apart from this, the least-squares spectrum analysis (the idea goes back to Vaníček, 1971) with more
complicated model functions than full sine functions is beyond the scope of this paper (e.g. including
linear trends, Walker et al., 1995 or multiple sine functions). For the calculation of such periodograms
the employment of the analytical solutions is not essential, but can be faster.

2.7 Accompanying auxiliary calculations

2.7.1 Derivation of the generalised Lomb-Scargle periodogram (GLS)

The derivation of the generalised Lomb-Scargle periodogram is briefly shown. With the sinusoid plus
constant model

y(t) = acosωt +bsinωt + c

the squared difference between the data yi and the model function y(t)

χ2 = W ∑wi[yi − y(ti)]2

is to be minimised. For the minimum χ2 the partial derivatives vanish and therefore:

0 = ∂aχ2 = 2W ∑wi[yi − y(ti)]cosωti (2.32)

0 = ∂bχ2 = 2W ∑wi[yi − y(ti)]sinωti (2.33)

0 = ∂cχ2 = 2W ∑wi[yi − y(ti)] (2.34)

These conditions for the minimum give three linear equations: ˆYC
Ŷ S
Y

 =

 ĈC ĈS C
ĈS ŜS S
C S 1

 a
b
c


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where the abbreviations in Eqs. (2.7)–(2.15) were applied. Eliminating c in the first two equations with
the last equation (c = Y −aC−bS) yields:[ ˆYC−Y ·C

Ŷ S−Y ·S

]
=

[
ĈC−C ·C ĈS−C ·S
ĈS−C ·S ŜS−S ·S

][
a
b

]
Using again the notations of Eqs. (2.11)–(2.15) this can be written as:[

YC
Y S

]
=

[
CC CS
CS SS

][
a
b

]
.

So the solution for the parameters a and b is

a =
YC ·SS−Y S ·CS

D
and b =

Y S ·CC−YC ·CS
D

. (2.35)

The amplitude of the best-fitting sine function at frequency ω is given by
√

a2 +b2. With these solutions
the minimum χ2 can be written only in terms of the sums Eqs. (2.10)–(2.15) when eliminating the
parameters a, b, and c as shown below. With the conditions for the minimum (Eqs. (2.32)–(2.34)) it can
be seen that:

∑wi[yi − y(ti)]y(ti) = a∑wi[yi − y(ti)]cosωti
+b∑wi[yi − y(ti)]sinωti
+ c∑wi[yi − y(ti)]

=0.

Therefore, the minimum χ2 can be written as:

χ2(ω)/W = ∑wi[yi − y(ti)]yi −∑wi[yi − y(ti)]y(ti)︸ ︷︷ ︸
=0

= ˆYY −a ˆYC−bŶ S− cY

= ˆYY −Y ·Y −a( ˆYC−Y ·C)−b(Ŷ S−Y ·S)
= YY −aYC−bY S

where in the last step again the definitions of Eqs. (2.10)–(2.12) were applied. Finally a and b can be
substituted by Eq. (2.35):

χ2(ω)/W = YY − SS ·YC2

D
− CC ·Y S2

D
+2

CS ·YC ·Y S
D

.

When now using the χ2-reduction normalised to unity

p(ω) =
χ2

0 −χ2(ω)
χ2

0

and the fact that χ2
0 = W ·YY , Eq. (2.5) will result.

2.7.2 Verification of Eq. (2.19)

Eq. (2.19) can be verified with the help of trigonometric addition theorems. For this purpose CS must be
formulated. Furthermore, the index τ and the notation φ = ωτ will be used:

2CSτ =∑wi sin2(ωti −φ)
−2∑wi cos(ωti −φ)∑wi sin(ωti −φ)

=cos2φ ∑wi sin2ωti − sin2φ ∑wi cos2ωti
−2(C cosφ +S sinφ)(Scosφ −C sinφ)
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Expanding the last term yields

2CSτ =2ĈScos2φ − (ĈC− ŜS)sin2φ
−2

[
C ·S(cos2 φ − sin2 φ)− (C2 −S2)sinφ cosφ

]
and after factoring cos2φ and sin2φ :

2CSτ =2(ĈS−C ·S)cos2φ −
(
ĈC− ŜS− (C2 −S2)

)
sin2φ

=2CScos2φ − (CC−SS)sin2φ.

So for CSτ = 0, φ = ωτ has to be chosen as:

tan2ωτ =
2CS

CC−SS
.

By the way, replacing the generalised sums CC, SS and CS by the classical ones leads to the original
definition for τ̂ in Eq. (2.3):

tan2ωτ̂ =
2ĈS

ĈC− ŜS
= ∑sin2ωti

∑cos2ωti
.
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2.8 Comments on the GLS periodogram

2.8.1 Error estimation for the GLS parameters

The GLS periodogram is an algorithm to search for periods. However, it is also important to provide
the uncertainties of the resulting parameters. There is a bunch of numerical methods, such as Bayesian
or bootstrap methods, to derive parameter errors. However, they require extensive computation time
and the development or implementation of special software. Hence, it is always desirable to have a
simple analytical error estimation at hand. Montgomery & Odonoghue (1999) and Breger et al. (1999)
outlined how this can be done analytically for a simple sine function assuming Gaussian noise. Their
method is based on error propagation. Kallinger et al. (2008) obtained similar results with a heuristic
error estimation for the SigSpec program (Sect. 2.4). Their relations give “upper error limits” (not 1σ
errors) and are expressed in terms of power.

This section provides an error estimate for fitting a sine function including offset and weights. It
can be done in a straightforward way using error propagation and the above notation for the GLS pe-
riodogram. The results can be expressed with the weighted rms and are hence a generalisation of the
results by Montgomery & Odonoghue (1999) and Breger et al. (1999).

Errors in the coefficients a and b

The error for parameter a (the index τ is suppressed) for a given frequency ω can be estimated by simple
error propagation

(∆a)2 = ∑
(

∂a
∂yi

)2

σ 2
i . (2.36)

The gradient in brackets describes the response of parameter a when the data yi changes. a is given by
a = YC

CC (again the index τ is suppressed). Hence, to derive ∂yia, we need ∂yiYC

YC = ˆYC−Y ·C = ∑wiyi cosωti −∑wiyi ·∑wi cosωti
∂yiYC = wi(cosωti −C).

The relation between the measurement errors σi and the normalised weights wi is wi = 1
W

1
σ2

i
where

∑wi = 1 and W = ∑ 1
σ2

i
=: N

σ2 . Substituting these expressions in Eq. (2.36) and simplifying gives

(∆a)2 =
1

CC2W ∑
(

∂YC
∂yi

)2 1
wi

=
1

CC2W ∑wi [cosωti −C]2

=
1

CC2W

[
ĈC−2C ·C +C2] =

σ 2

CC2N

[
ĈC−C ·C

]
=

σ2

CC ·N
.

Similarly, we obtain for parameter b

(∆b)2 =
σ 2

SS ·N
.

When assuming a homogeneous phase coverage, the approximation CC ≈ SS ≈ 1
2 can be made8 and the

equations simplify further to

(∆a)2 = (∆b)2 =
2σ2

N
or ∆a = ∆b =

√
2
N

σ .

8Remember that
´ 2π

0 cos2 xdx =
´ 2π

0 sin2 xdx = 1
2 .
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Error in amplitude A

The amplitude error ∆A for a given frequency ω can be estimated by

(∆A)2 = ∑
(

∂A
∂yi

)2

σ2
i .

With the relation A2 = a2 +b2, we find the derivative for the amplitude

∂yiA = ∂yi

√
a2 +b2 =

1
A

[a∂yia+b∂yib] .

Inserting this, leads to

(∆A)2 =
1

A2 ∑ [a∂yia+b∂yib]2 σ 2
i

=
1

A2

[
a2∆a2 +b2∆b2 +2ab∑(∂yia ·∂yib)σ2

i
]
.

The last sum vanishes, because

∑(∂yiYC ·∂yiY S)σ 2
i =∑w2

i (cosωti sinωti −Scosωti −C sinωti +C ·S)
1

Wwi

=
1

W
(ĈS−S ·C−C ·S +C ·S)

=
1

W
(ĈS−S ·C) =

1
W

CS = 0.

Remember that in our notation CS = 0 and τ is suppressed. So the error in the amplitude is

(∆A)2 =
σ2

A2N

[
a2

CC
+

b2

SS

]
.

Again estimating in the denominator CC ≈ SS ≈ 1
2 , the bracket term is the twice squared amplitude 2A2

and we obtain the simple estimate for the error in the amplitude

(∆A)2 =
2σ 2

N
or ∆A =

√
2
N

σ .

Error in phase ϕ

The phase ϕ is given by tanϕ = b
a and the error propagation for ϕ is

(∆ϕ)2 = ∑
(

∂ϕ
∂yi

)2

σ2
i .

The derivative ∂yiϕ can be obtained via implicit differentiation

∂yi tanϕ = (1+ tan2 ϕ)∂yiϕ = ∂yi

b
a

=
a∂yib−b∂yia

a2

∂yiϕ =
a∂yib−b∂yia
(1+b2/a2)a2 =

a∂yib−b∂yia
A2 .

Inserting and simplifying then yields

(∆ϕ)2 =
1

A4 ∑ [a∂yib−b∂yia]2 σ 2
i

=
1

A4

[
a2∆b2 +b2∆a2σ 2

i −2ab∑(∂yia ·∂yib)σ 2
i
]

=
σ2

A4N

[
a2

SS
+

b2

CC

]
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where it has already been shown that the last sum vanishes. Again with the approximation CC ≈ SS ≈ 1
2 ,

the error in phase is

(∆ϕ)2 =
2σ2

A2N
or ∆ϕ =

√
2
N

σ
A

.

Error in the offset parameter c

The offset c is given by c = Y −aC−bS. The error propagation

∆c2 = ∑
(

∂c
∂yi

)2

σ2
i

then leads to

∆c2 = ∑ [∂yiY −C∂yia−S∂yib]2 σ 2
i

= ∑
[
(∂yiY )2 +C2(∂yia)2 +S2(∂yib)2 −2C∂yiY ∂yia−2S∂yiY ∂yib+2C ·S∂yia∂yib

]
σ 2

i

= ∑w2
i σ 2

i +C2(∆a)2 +S2(∆b)2 −2C
1

W ·CC
(C−C)−2S

1
W ·SS

(S−S)

=
σ2

N

[
1+

C2

CC
+

S2

SS

]
Now we can approximate C ≈ S ≈ 0, which is valid for uniform phase coverage9. This results in

∆c2 =
σ 2

N
or ∆c =

√
1
N

σ .

Summary and discussion for error estimation

In the previous section we have found that the errors for amplitude, phase, and offset can be estimated
by

∆A =

√
2
N

σ

∆ϕ =

√
2
N

σ
A

∆c =

√
1
N

σ .

This is basically the same result as in Montgomery & Odonoghue (1999). The errors depend on the
number of measurements N and the measurement noise σ . The quantity σ was derived here employing
the mean weights. As a matter of fact, when measurement errors σi are correctly estimated, then σ
can be interpreted as the true noise level. In the case of a reasonable fit (χ2

red ≈ 1) the weighted scatter
should be similar to the weighted mean error, i.e. rms ≈ σ , because χ2

red = rms2

σ2 (Sect. 4.4.1). Practically
however, the weights can be arbitrary, under- or overestimated and the remaining scatter should provide
a better noise estimate. Hence more generally, in these equations the noise level σ should be replaced
with weighted root mean square (wrms) of the residuals.

Note that these simple equations involve approximations which assume a uniform phase coverage or
duty cycle. These approximations are, e.g., not valid when the period is longer than the time baseline.
Then the equations without approximations should be used to avoid an underestimation of the parameter
errors.

9´ 2π
0 cosxdx =

´ 2π
0 sinxdx = 0
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The estimation of the frequency error is more complicated, because the frequency is a non-linear
parameter. Montgomery & Odonoghue (1999) derived

∆ f =

√
6
N

1
πT

σ
A

(2.37)

which we simply adopt here being aware of the risk of error underestimation for insufficient phase cov-
erage. The frequency error ∆ f is inversely proportional to the time baseline T , the square root of number
of measurements N, and the square root of the signal-to-noise ratio S/N (= A2/σ2). Note that 1

T is the
typical width of peaks in a periodogram (frequency resolution), but the frequency error can be much
smaller.

Gilliland & Fisher (1985) proposed for the frequency error ∆ fGil = 1
T

√
32

42N
σ2

A2 + 0.0256
( f T )2 . Here the last

additive term is supposed to account for the number of covered cycles f T . It is based on the finding by
Kovacs (1981) that even noiseless data with one sinusoidal component (finite data set) shows a frequency
shift. However, this effect results, because Kovacs (1981) did not account for an offset c. When this term
is neglected, only ∆ fGil ≈ 3

4
√

N
1
T

σ
A remains (Baliunas et al., 1985; Kovacs, 1981) which just differs by a

factor of ∆ f
∆ fGil

= π
4

√
3
2 ≈ 0.96 from Eq. (2.37).

Kallinger et al. (2008) defined a heuristical frequency error ∆ fKal = 1
T
√

sig for the SigSpec program

(see Sect. 2.4 and Reegen 2007). Using the estimate CC ≈ SS ≈ 1
2 , the least-square fitting amplitude

A can be expressed in terms of power p, A2 = YC2

CC2 + Y S2

SS2 ≈ 2
[

YC2

CC + Y S2

SS

]
= 2YY · p, and the SigSpec

indicator (Eq. (2.27)) becomes sig ≈ Nloge
4 · A2

⟨y2⟩ . Identifying
〈
y2

〉
with σ2, we find ∆ fKal ≈ 2√

N loge
1
T

σ
A

which differs by a factor of 2π√
6loge ≈ 3.89 from Eq. (2.37). Our simple derivation shows that ∆ fKal gives

roughly a 4σ -error for the frequency which can also be seen in Fig. 1 of Kallinger et al. (2008). These
authors found these results with extensive simulations and denoted their error estimates as upper limits.
In the regime of high power, i.e. large S/N, ∆ fKal is also overestimated, because the scatter of the time
series which includes the signal amplitude is a bad noise estimate (σ ≪ rms) as mentioned by Kallinger
et al. (2008).

2.8.2 A polar grid

In Sect. 2.5 we simply suggested a Cartesian grid to step for the parameters f , e, and T0 to cover the whole
parameter space for the Keplerian periodogram. However, we already argued that a higher grid density
might be more appropriate for higher eccentricities. The Cartesian grid has the disadvantage that for low
or zero eccentricities too many T0 are tested. In this section, a polar grid for e and T0 (or cylindrical grid
for f , e, and T0, respectively) is proposed that overcomes the afore mentioned shortcomings.

The idea originates from the parameter transformation of e and ω to the Lagrangian parameters
h = ecosω and k = esinω . This transformation is usually done to circumvent a coordinate singularity
that occurs when the eccentricity is close to zero (e ≈ 0), i.e. for circular orbits. The same circular orbit
can be described by various, infinite combinations of ω and T0 (which can be a problem for backward
calculations), while it is unambiguously defined with h = 0 and k = 0.

The Lagrangian parameter transformation, however, is not so useful for our algorithm to compute
the Keplerian periodogram, because ω is solved analytically, while e and T0 (x0 = 2πT0/ f ) are solved by
stepping. The parametrisation ĥ = ecosx0 and k̂ = esinx0, on the other hand, has the desired properties.
A circular orbit is then also described by the unique grid point (ĥ = 0, k̂ = 0). This parametrisation can be
easily implemented and now a Cartesian ĥ-k̂ grid would be the simplest choice. Remapping this squarely
ĥ-k̂ grid to a e-x0 grid (dĥ = dk̂ = de), such that the same number of grid points is maintained in each
grid element, dAĥk̂ = dĥdk̂ = (de)2 != dAex0 = ededx0, requires dx0 = 1

e de and means that with higher
eccentricities e the size for the x0-steps should decrease or the number of T0 grid points should linearly
increase, respectively.

Figure 2.7 visualises the power map of Fig. 2.4, but this time in polar coordinates which seems to
be a better choice. By using this polar grid, the computational effort is redistributed more evenly from
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Figure 2.7: The same power map as in Fig. 2.4, but on a polar grid for e and T0. Note the many narrow
features at high eccentricities.

low to high eccentricities. This saves a factor of 2 in computation time. Note, that choosing a two times
smaller step size for e (and hence also for x0) in the polar grid, increases the effort quadratically to a
factor of 4.

2.8.3 The F-distribution

In several sections (e.g. Sect. 2.3, 3.3.2, or 4.4) we make use of the F-distribution to derive the probability
of a fit improvement. Here we would like to give the equation for the F-distribution and apply it to an
example.

As outlined by Cumming et al. (1999), we can employ the quantity

z =
∆χ2/∆ν

χ2
2 (ω0)/ν2

to derive the significance of a fit improvement (cf. Eq. (2.23) and (2.30)). The reduced χ2 in the denom-
inator is an estimate of the noise (fit residuals χ2

2 with ν2 degrees of freedom), while the χ2 difference
in the numerator is an estimate of the pure signal (∆χ2 = χ2

1 − χ2
2 (ω) and ∆ν = ν1 −ν2). Because both

denominator and numerator are χ2-distributed, their ratio z has the properties of a F-value which follows
a F-distribution given by

F(z;m,n) =
1

B(1, m
2 , n

2)
B

(
mz

mz+n
,
m
2

,
n
2

)
where m = ∆ν and n = ν . The incomplete beta function B(x,a,b) therein is calculated via

B(x,a,b) =
ˆ x

0
ta−1(1− t)b−1dt.

In the case of m = ∆ν = 2 (a = 1), such as the sine fit with an offset (ν2 = N − 3, ν1 = N − 1), the
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integration is simple and can be done analytically

B(x,1,b) =
ˆ x

0
(1− t)b−1dt = −1

b
(1− t)b|x0 =

1
b

(
1− (1− x)b

)
B(1,1,b) =

1
b
.

Thus we obtain

F(z;2,N −3) = 1−
(

1− 2z
2z+N −3

) N−3
2

= 1−
(

1+
2

N −3
z
)−N−3

2

which is the same result as given Table 2.1 (taken from Cumming et al. 1999) when accounting for
Prob(z > z0) = 1−F(z0;2,N −3).
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Chapter 3

The M dwarf planet search programme
at the ESO VLT + UVES1,2

A search for terrestrial planets in the habitable zone of
M dwarfs

From Zechmeister, Kürster, & Endl 2009, A&A, 505, 859

ABSTRACT: We present radial velocity (RV) measurements of our sample of 40 M dwarfs from our
planet search programme with VLT+UVES begun in 2000. Although with our RV precision down to
2–2.5m/s and timebase line of up to 7 years, we are capable of finding planets of a few Earth masses in
the close-in habitable zones of M dwarfs, there is no detection of a planetary companion. To demonstrate
this we present mass detection limits allowing us to exclude Jupiter-mass planets up to 1 AU for most of
our sample stars. We identified 6 M dwarfs that host a brown dwarf or low-mass stellar companion. With
the exception of these, all other sample stars show low RV variability with an rms< 20m/s. Some high
proper motion stars exhibit a linear RV trend consistent with their secular acceleration. Furthermore, we
examine our data sets for a possible correlation between RVs and stellar activity as seen in variations of
the Hα line strength. For Barnard’s star we found a significant anticorrelation, but most of the sample
stars do not show such a correlation.

3.1 Introduction

High-precision differential radial velocity (RV) measurements of stellar reflex motions induced by an
orbiting companion have so far been the most successful method to discover extrasolar planets and to
characterise their orbital properties. Originally, RV planet search programmes have largely concentrated
on main sequence stars of spectral types late-F through K. That only a comparatively small number of
M dwarfs were included comes from their faintness, which requires large telescopes to perform high-
precision RV measurements of a few m/s. For an understanding of the formation and abundance of
extrasolar planets it is important to determine the presence and orbital characteristics of planets around
stars of as many different types as possible, and especially around this most abundant type of star.

Even if M dwarfs are faint and require large telescopes, however, they have two advantageous char-
acteristics when searching for terrestrial exoplanets in the habitable zones (HZ) with radial velocity (RV)
methods. Compared to solar-like stars, (i) they have a lower mass (M = 0.1−0.6M⊙), and (ii) the habit-
able zone is close-in around this cooler and less luminous type of star (L = 0.0008−0.06L⊙, Guinan &

1Based on observations collected at the European Southern Observatory, Paranal Chile, ESO programmes 65.L-0428,
66.C-0446, 267.C-5700, 68.C-0415, 69.C-0722, 70.C-0044, 71.C-0498, 072.C-0495, 173.C-0606, 078.C-0829.

2Radial velocity data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/859

37
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Table 3.1: M dwarfs with known planets and their masses discovered with the RV method.

Star b c d e References
GJ 876 2.53MJup 0.79MJup 7.53M⊕ [1][2][3][4]
GJ 581 15.6M⊕ 5.1M⊕ 8.2M⊕ 1.9M⊕ [5][6][7]
GJ 436 21M⊕ [8]
GJ 317 0.71MJup [9]
GJ 674 11.1M⊕ [10]
GJ 849 0.82MJup [11]
GJ 176 8.4M⊕ [12][13]
GJ 832 0.64MJup [14]

Note: The masses are minimum masses with the exception for GJ 436 and GJ 876. [1] Delfosse et al.
1998, [2,3] Marcy et al. 1998, 2001, [4] Rivera et al. 2005, [5] Bonfils et al. 2005, [6] Udry et al. 2007,
[7] Mayor et al. 2009a, [8] Butler et al. 2004, [9] Johnson et al. 2007, [10] Bonfils et al. 2007, [11] Butler
et al. 2006, [12] Forveille et al. 2009, [13] Butler et al. 2009, [14] Bailey et al. 2009.

Engle 2009). By habitable zone we understand the region that allows liquid water on the planet surface
as described in Kasting et al. (1993).

For M dwarfs, the HZ is typically 0.03 – 0.4 AU. The RV amplitude induced due to a planet by the
Doppler effect is

K =

√
G

1− e2
msin i√
(M +m)a

= 28.4m/s · msin i
MJup

(
M⊙
M

AU
a

)1/2

. (3.1)

It increases for closer distances a (shorter periods) and lower stellar mass M. Thus the RV amplitude
induced by a planet in the HZ of an M dwarf is higher than that of a solar-like star. M dwarfs are also
ideal targets for astrometric follow-up due to their lower mass, as well as for transit observations. In
combination with the RV method, astrometry allows the resolution of the sin i-ambiguity and true masses
to be obtained.

At present there are only a few M dwarfs known to have planets, as summarized in Table 3.1. The
M4V star GJ 876 has two Jovian planets orbiting in a 2:1 resonance (Marcy et al. 2001; see also Benedict
et al. 2002 for an astrometric determination of the mass of the outer planet), and a third planet in this
system has been found by Rivera et al. (2005). The M3V star GJ 581 is another multiple system with
three Neptune-type planets. The latest detection of a fourth planet in this system by Mayor et al. (2009a)
is a new highlight in planet search with RVs. With only 1.9M⊕, GJ 581 e is the lowest-mass planet found
so far with the RV method. The same work also resulted in a revised period for the outer planet GJ 581 d,
placing it inside the habitable zone. The planet around the M2.5V star GJ 436 first discovered with the RV
method (Butler et al., 2004) also turned out to be a transiting one (Gillon et al., 2007). So far it is the only
known transiting planet around an M dwarf. Most recently, Bailey et al. (2009) has discovered the first
long-period planet around an M dwarf (GJ 832). A planet with a mass of 24.5M⊕ (P = 10.24d) around
GJ 176 announced by Endl et al. (2008) is rejected by Forveille et al. (2009) and Butler et al. (2009).
Instead, both groups find evidence of another planet with a shorter period (8.78 d) and a minimum mass
of 8.4M⊕ (Forveille et al., 2009) and 12M⊕ Butler et al. (2009).

Several radial velocity (RV) surveys of M dwarfs have resulted in few or no detections, indicating a
lower frequency of planets compared to solar-like stars; e.g., Endl et al. (2006) monitored 90 M dwarfs
(including the first data for 21 stars from our sample) without a planet detection. The sample studied by
Cumming et al. (2008) surveying 110 M dwarfs contained only two planet hosting M dwarfs (GJ 876
and GJ 436). HARPS guaranteed time project #3 had 50 nights on 120 M dwarfs within 11pc, and so far
it has revealed only three planet-hosting M dwarfs (GJ 876, GJ 581, and GJ 674).

M dwarfs are an ideal testing ground for competing models of the formation of gas giants. While the
classical core-accretion model has severe problems with forming Jupiter-mass planets in the less mas-
sive protoplanetary disks even around M dwarfs (e.g. Laughlin et al. 2004), the competing gravitational
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instability model can also efficiently form Jovian-type companions around M dwarfs (Boss, 2006). Ida
& Lin (2005) even predict a higher frequency of icy giant planets with masses comparable to Neptune in
short periodic orbits for M dwarfs than for G type stars.

Recent results of microlensing surveys (e. g. OGLE-2005-BLG-390b, 5.5M⊕, Beaulieu et al. 2006;
OGLE-2005-BLG-169b, Gould et al. 2006; presumed M dwarfs) may also indicate that low-mass plan-
etary companions might be abundant around M dwarfs.

3.2 Targets and Observations

Our sample consists of 40 M dwarfs and one M giant3, which are listed in Table 3.2. All M dwarfs
are brighter than V . 12.2mag and nearby within a distance of 37pc (33 M dwarfs even within 20pc).
Their spectral types range from M0 to M5. The stellar masses M were derived from the mass-luminosity
relation by Delfosse et al. (2000) using the absolute brightness in K band. As an indicator of activity
we selected the X-ray luminosity as detected in the ROSAT all-sky survey (from Hünsch et al., 1999).
Detected as X-ray sources are Barnard’s star (Lx = 0.1), GJ 1 (0.6), GJ 190 (0.9), GJ 229 (1.3), and the
most active Proxima Cen (1.7). The rest of the sample was not detected by ROSAT, implying that these
stars are inactive.

The observations started in 2000, initially with 20 targets. Typically, three consecutive spectra per
night were taken for each star with exposure times of 90 – 900s depending on the object brightness. In
April 2004 (JD=2453100) the sample was complemented by 21 additional stars, while the monitoring of
HG 7-15 was ended. Since then the number of spectra per night was reduced to one, with the exception
of Barnard’s star, GJ 160.2, GJ 821, and Proxima Cen.

Our data of the first 20 stars (+ GJ 510) taken before mid-2005 were already included in the study
by Endl et al. (2006). Here we present the full data set for all 41 stars as observed until March 2007. A
detailed study of the full Proxima Cen data set can be found in Endl & Kürster (2008). A study of the
pre-2002.75 data set of Barnard’s star is given by Kürster et al. (2003).

The observations were carried out with the UVES spectrograph at the VLT-UT2, directly fed via
image slicer #3 that redistributes the light from a 1′′×1′′ aperture along a 0.3′′ wide slit. This resulted
in a resolving power of R = 100000−120000. The red arm of UVES was employed and a wavelength
coverage 495–704nm over 37 orders was selected. An iodine cell was used for precise wavelength cali-
bration and modelling of the instrumental profile. Only the range of 500–600nm was used to determine
the RVs. This range is rich in iodine lines.

The data reduction included bias subtraction, flat-fielding, Echelle straylight subtraction, wavelength
calibration, and barycentric correction (see also Endl & Kürster, 2008). The data modelling with the
“AUSTRAL” code to obtain the RV is described in Endl et al. (2000). We achieve an RV precision of 2m/s
for bright stars. In practice, photon noise limits the RV precision for faint M dwarfs and correspondingly
the errors are larger for those stars that were observed with lower S/N. Radial velocities and also their
errors (see Kürster et al. 2003 for discussion) were combined into nightly averages. They are shown in
Figs. 3.1 and 3.2 (the RV data are available as online material).

3.3 Data analysis

3.3.1 Secular acceleration

Even if a star moves undisturbed with a constant space velocity v, it can show a change in its radial veloc-
ity (RV). This secular or perspective acceleration was first measured by Kürster et al. (2003) for Barnard’s
star. In polar coordinates the radial and tangential velocity component, respectively, are (Fig. 3.3)

vr = −vcosφ and vt = vsinφ.

3GJ 4106 is listed in the Catalogue of Nearby Stars with a parallax of 84±17mas (11.9pc). However, with the Hipparcos
parallax GJ 4106 should be an M giant.
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Table 3.2: Targets with their spectral type, visual magnitude V , distance d (van Leeuwen, 2007), and
stellar mass M derived from the K-band mass-luminosity relation by Delfosse et al. (2000).

Star Spec Type V [mag] d [pc] M [M⊙]
Barnard (GJ 699) M4Ve 9.54 1.82 0.16
GJ 1 M1.5 8.57 4.34 0.45
GJ 27.1 M0.5 11.42 23.99 0.53
GJ 118 M2.5 10.70 11.65 0.36
GJ 160.2 M0V 9.69 23.12 0.69
GJ 173 M1.5 10.35 11.10 0.48
GJ 180 M2 12.50 12.12 0.43
GJ 190 M3.5 10.31 9.27 0.44
GJ 218 M1.5 10.72 15.03 0.50
GJ 229 M1/M2V 8.14 5.75 0.58
GJ 263 M3.5 11.29 16.02 0.55
GJ 357 M2.5V 10.85 9.02 0.37
GJ 377 M3 11.44 16.29 0.52
GJ 422 M3.5 11.66 12.67 0.35
GJ 433 M1.5 9.79 8.88 0.48
GJ 477 M1 11.08 18.99 0.54
GJ 510 M1 11.05 16.74 0.49
GJ 620 M0 10.25 16.44 0.61
GJ 637 M0.5 11.36 15.88 0.41
GJ 682 M3.5 10.96 5.08 0.27
GJ 739 M2 11.14 14.09 0.45
GJ 817 M1 11.48 19.17 0.43
GJ 821 M1 10.87 12.17 0.44
GJ 842 M0.5 9.74 11.99 0.58
GJ 855 M0.5 10.74 19.15 0.60
GJ 891 M2V 12.20 16.08 0.35
GJ 911 M0V 10.88 24.26 0.63
GJ 1009 M1.5 11.16 17.98 0.56
GJ 1046 M2.5+v 11.62 14.07 0.40
GJ 1100 M0 11.48 28.93 0.57
GJ 3020 M2.5 11.54 22.78 0.62
GJ 3082 M0 11.10 16.56 0.47
GJ 3098 M1.5Vk: 11.21 17.86 0.50
GJ 3671 M0 11.20 17.74 0.50
GJ 3759 M1V 10.95 16.97 0.49
GJ 3916 M2.5V 11.25 15.10 0.49
GJ 3973 M1.5Vk: 10.94 18.23 0.54
GJ 4106 M2 10.82 110.50 0.55
GJ 4293 M0.5 10.90 25.06 0.57
HG 7-15 M1V 10.85 37.31 0.78
Prox Cen (GJ 551) M5.5Ve 11.05 1.30 0.12
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Figure 3.1: Radial velocities for 35 M dwarfs. Dashed lines represent no fit; they show the predicted sec-
ular acceleration effect caused by the proper motion (only for Proxima Cen and stars with v̇r > 1m/s/yr).
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Figure 3.2: Radial velocities for 6 more M dwarfs. The orbital solution for GJ 1046 is taken from Kürster
et al. (2008).
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Figure 3.3: Change in the radial velocity vr due to constant motion v (secular acceleration v̇r).

The differentiation of vr with respect to time t yields the secular acceleration (v = const.)

v̇r =
dvr(t)

dt
= vsinφ · φ̇ = vtφ̇.

The tangential velocity vt = d · µ depends on the distance d of the star and its proper motion µ , which
can also be identified with the time derivative of the angular position φ̇ = µ . Therefore the instantaneous
secular acceleration is given by

dvr(t)
dt

=
v2

t

d
= µ2d = 22.98

m/s
yr

(µ2
α + µ2

δ ) ·yr2/arcsec2

π/mas
. (3.2)

where µα and µδ are the proper motion in right ascension and declination, respectively. It only depends
on the proper motion µ and parallax π , which are easily accessible from the Hipparcos catalogue. Note
that the knowledge of vr and v is not explicitly required for the prediction of the instantaneous secular
acceleration.
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One has to take this effect into account, especially for high proper motion stars, to avoid the mislead-
ing conclusion that this RV change is a disturbance by a companion. A feature of the secular acceleration
is that this effect is only geometrical, not physical, and always positive (v̇r ≥ 0). With the high astrometric
precision of Hipparcos, this effect can be predicted with high accuracy for nearby stars.

Table 3.3 lists the prediction for secular acceleration for all of our sample stars as derived from
Eq. (3.2). Some stars (e.g. Barnard’s star, GJ 1, and Proxima Cen) have such high proper motion that the
secular acceleration can be measured (4.5, 3.7, and 0.4m/s/yr, respectively). This effect is depicted with
a dashed line for Proxima Cen and for all stars with v̇r > 1m/s/yr in Fig. 3.1. The secular acceleration
was subtracted before subsequent analysis of the RV data.

We note that, even though Barnard’s star has the highest (angular) proper motion µ and the depen-
dence is quadratic on µ , it is not the star with the highest secular acceleration. When inspecting high
proper motion stars from the Hipparcos catalogue (van Leeuwen, 2007) we found four stars that have
a higher secular acceleration because of their smaller parallax (see lower part of Table 3.3), namely:
GJ 451 (Groombridge 1830, G8Vp + M5.5V), GJ 9511 (K2V + K2Vfe), GJ 191 (Kapteyn’s star, M1V),
and GJ 9371 (sdK4).

3.3.2 Tests for variability and trends

Following the recipe outlined by Endl et al. (2002), we performed several statistical tests to identify
variability and RV trends in our data. First, we asked the question for each star of whether the observed
variability or rms σ is significantly higher than the mean measurement error σRV using the F-Test (and
F = σ2

σRV
2 as F-value)4.

The calculated probabilities P(F) from the F-Test are listed in Table 3.4 for each star. A low value
of P(F) (e.g. < 0.01, i.e. 99% confidence, in bold face in Table 3.4) indicates that the observed scatter
can probably not be explained with the measurement errors and that there is an excess variability or a
trend. This is the case for the stars with a high rms (GJ 477, GJ 1046, GJ 3020, and GJ 3916), which
seem to have a companion, probably in the brown dwarf or low-mass star regime (see also Fig. 3.2).
GJ 190 and GJ 263 also have a high sample variance. They may have a stellar companion bright enough
to contaminate the spectrum. We deduce this from the large measurement error that would occur for a
double-lined spectroscopic binary (SB2) because our data modelling is only designed for a single-lined
spectroscopic binary (SB1). Also, because there are only two measurements for GJ 190 and GJ 263, they
do not stand out in the F-statistics. Indeed GJ 263 has already been identified as a spectroscopic binary,
and an adaptive optics image was presented by Beuzit et al. (2004). Among the stars with an rms smaller
than 20m/s, only GJ 229, GJ 357, and Proxima Cen have an rms that is significantly greater than the
measurement error.

A similar test for RV variability is to determine the goodness of fit for a constant model, i.e. calcu-
lating the χ2 above the weighted RV mean5 and deriving the probability from the χ2-distribution. These
probability values P(χ2

const) are mostly lower than P(F), and therefore there would be more variable stars
according to our P < 0.01 criterion (Table 3.4).

As long-period planets can cause a trend in the RV, we also tested for this by weighted fitting of
a linear slope. A high probability of the resulting χ2

slope indicates that this is an acceptable fit (on the
contrary, a low probability indicates remaining variability). But it is also informative to compare χ2

slope

with the χ2
const of the weighted mean via the F-value (Cumming et al., 1999)

Fslope = (N −2)
χ2

constant −χ2
slope

χ2
slope

.

4We use the one-tailed F-test because we are not interested in cases of error overestimation.
5When each measurement has the same error σRV , one gets

χ2
red =

χ2
const

N −1
=

1
(N −1)σ2

RV
∑(RVi −RV )2 =

σ2

σ2
RV

= F.
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Table 3.3: Proper motion µ , parallax π (from Hipparcos, van Leeuwen 2007) and secular acceleration
(SA) v̇r(t) for the M dwarfs sample, with the highest SA stars in the lower part of the table for comparison
(not in our sample).

Star µα µδ π v̇r(t)
[mas/yr] [mas/yr] [mas] [m/s/yr]

Barnard -798.58±1.72 10328.12±1.22 548.31±1.51 4.497±0.012
GJ 1 5634.68±0.86 -2337.71±0.71 230.42±0.90 3.711±0.015
GJ 27.1 485.57±2.81 -223.13±2.11 41.69±2.80 0.157±0.011
GJ 118 978.61±2.27 633.21±2.64 85.87±1.99 0.364±0.008
GJ 160.2 51.90±1.24 -780.04±1.57 43.25±1.61 0.325±0.012
GJ 173 -225.75±1.94 -192.57±1.88 90.10±1.74 0.022±0.000
GJ 180 408.07±2.49 -642.82±2.06 82.52±2.40 0.161±0.005
GJ 190 502.99±1.32 -1399.76±1.52 107.85±2.10 0.471±0.009
GJ 218 768.13±1.39 -123.17±1.54 66.54±1.43 0.209±0.005
GJ 229 -137.09±0.50 -713.66±0.81 173.81±0.99 0.070±0.000
GJ 263 -123.73±3.68 -814.92±2.87 62.41±3.16 0.250±0.013
GJ 357 136.67±1.53 -989.13±1.41 110.82±1.92 0.207±0.004
GJ 377 -1096.84±2.11 647.29±2.63 61.39±2.55 0.607±0.025
GJ 422 -2466.98±2.87 1180.09±2.17 78.91±2.60 2.178±0.072
GJ 433 -72.51±1.49 -851.92±0.88 112.58±1.44 0.149±0.002
GJ 477 -101.39±2.28 -697.57±1.75 52.67±3.05 0.217±0.013
GJ 510 -452.04±2.55 -104.79±1.55 59.72±2.43 0.083±0.003
GJ 620 -348.40±2.35 -675.73±1.87 60.83±2.06 0.218±0.007
GJ 637 -480.59±1.17 -529.12±1.86 62.97±1.99 0.186±0.006
GJ 682 -708.98±2.55 -937.40±1.88 196.90±2.15 0.161±0.002
GJ 739 153.46±2.91 -495.17±1.98 70.95±2.56 0.087±0.003
GJ 817 -918.58±3.68 -2038.13±2.50 52.16±2.92 2.202±0.123
GJ 821 713.47±2.82 -1994.64±0.95 82.18±2.17 1.255±0.033
GJ 842 888.07±1.31 -125.56±1.16 83.43±1.77 0.222±0.005
GJ 855 587.72±2.17 -376.75±1.32 52.22±2.17 0.214±0.009
GJ 891 717.43±3.40 22.12±2.69 62.17±3.27 0.190±0.010
GJ 911 -42.36±3.32 128.87±2.44 41.22±2.64 0.010±0.001
GJ 1009 62.95±2.45 -196.98±2.46 55.62±2.32 0.018±0.001
GJ 1046 1395.67±1.72 547.16±2.52 71.06±3.23 0.727±0.033
GJ 1100 118.29±2.67 -498.47±1.30 34.57±2.79 0.174±0.014
GJ 3020 -44.73±4.05 -237.17±3.70 43.89±4.39 0.030±0.003
GJ 3082 104.14±2.04 311.53±1.81 60.38±1.81 0.041±0.001
GJ 3098 -589.19±1.86 -887.83±1.24 55.98±1.91 0.466±0.016
GJ 3671 -603.54±1.64 -296.43±1.36 56.38±2.04 0.184±0.007
GJ 3759 -391.22±1.50 -411.01±1.71 58.94±2.40 0.126±0.005
GJ 3916 -332.19±2.90 -352.83±2.62 66.21±3.18 0.082±0.004
GJ 3973 -9.48±2.45 -221.00±1.72 54.86±2.18 0.020±0.001
GJ 4106 31.55±4.63 -104.82±3.59 9.05±3.70 0.030±0.012
GJ 4293 198.08±2.42 -113.57±2.08 39.90±3.04 0.030±0.002
HG 7-15 176.02±2.85 5.73±1.79 26.80±2.05 0.027±0.002
Prox Cen -3775.75±1.63 765.54±2.01 771.64±2.60 0.442±0.002
GJ 451 A 4003.98±0.37 -5813.62±0.23 109.99±0.41 10.411±0.039
GJ 9511 B -999.75±1.29 -3542.60±1.13 35.14±1.48 8.861±0.373
GJ 9511 A -997.47±1.20 -3543.55±1.03 34.65±1.28 8.988±0.332
GJ 191 6505.08±0.98 -5730.84±0.96 255.66±0.91 6.756±0.024
GJ 9371 264.99±2.23 -3157.36±2.30 42.79±2.70 5.391±0.340
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Table 3.4: Tests for variability and trends.

Star N T σ σRV P(F) χ2
const P(χ2

const) Comment
[d] [m/s] [m/s]

Barnard 75 2358 3.3 2.7 0.065 114 0.0022
GJ 1 24 2151 2.5 2.4 0.9 27.3 0.24
GJ 27.1 30 2177 6.1 6.1 0.95 41.2 0.066
GJ 118 26 2266 6.5 5.8 0.56 40.5 0.026
GJ 160.2 33 2325 8.1 7.7 0.79 41.1 0.13
GJ 173 12 897 5.3 3.1 0.094 30.6 0.0013
GJ 180 24 2325 3.8 4.1 0.71 29.4 0.17
GJ 190 2 4 861.8 80.7 0.12 97.4 < 10−7 SB2
GJ 218 9 896 3.1 3.1 0.98 8.49 0.39
GJ 229 32 2325 5.5 2.8 0.00036 139 < 10−7

GJ 263 2 82 117.6 78.6 0.75 1.19 0.27 SB2
GJ 357 30 2321 5.3 3.2 0.0096 59.9 0.00064
GJ 377 14 1089 6.7 3.2 0.014 40 0.00014
GJ 422 15 1112 4.0 3.4 0.55 16.8 0.27
GJ 433 54 2554 4.4 3.6 0.16 80 0.0097
GJ 477 8 389 3486.0 4.3 1.6 ·10−19 5.58·106 < 10−7 SB1
GJ 510 23 1115 5.6 3.5 0.039 54 0.00016
GJ 620 5 422 7.3 4.4 0.36 13.1 0.011
GJ 637 17 1099 6.4 4.4 0.16 27 0.041
GJ 682 20 1134 4.0 2.3 0.024 53.8 3.6 ·10−5

GJ 739 19 1070 4.4 3.1 0.13 48.8 0.00012
GJ 817 25 1551 4.9 4.3 0.54 32.2 0.12
GJ 821 35 1516 5.0 3.8 0.12 53.7 0.017
GJ 842 17 926 6.7 4.2 0.065 44.6 0.00016
GJ 855 22 1561 5.8 4.5 0.24 28.7 0.12
GJ 891 25 2178 7.5 5.1 0.068 48.4 0.0023
GJ 911 17 2136 14.9 7.7 0.012 25.2 0.067
GJ 1009 22 2177 5.3 4.0 0.23 47.8 0.00074
GJ 1046 14 766 1248.3 3.6 1.9 ·10−30 1.59·106 < 10−7 SB1 (BD)
GJ 1100 12 897 9.3 5.1 0.061 37 0.00011
GJ 3020 13 749 298.8 9.0 5 ·10−16 7.62·103 < 10−7 SB1
GJ 3082 10 761 6.2 4.2 0.27 17.5 0.041
GJ 3098 9 733 9.1 4.7 0.079 26.7 0.00081
GJ 3671 12 1090 5.6 4.4 0.46 17.4 0.095
GJ 3759 11 1080 3.9 3.6 0.81 11.5 0.32
GJ 3916 6 406 2170.7 9.2 1.5 ·10−11 4.07·105 < 10−7 SB1
GJ 3973 5 420 6.8 3.6 0.25 12 0.017
GJ 4106 5 396 20.7 15.9 0.62 7.4 0.12 giant
GJ 4293 14 875 8.7 5.6 0.13 32.3 0.0021
HG 7-15 11 417 8.7 10.3 0.59 11 0.36
Prox Cen 76 2555 3.6 2.3 0.00028 183 < 10−7

Listed are the number of measurements N, time baseline T , RV scatter σ (rms), mean RV measurement
error σRV , and results of statistical tests. Low values of the F-test probability P(F), as well as P(χ2

const),
e.g. <0.01, mean that a constant model is improbable, hence indicate variability (values in bold fonts). In
contrast, a high P(χ2

slope) indicates that a trend is an acceptable model while a small P(Fslope) indicates a
significant fit improvement.
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Table 3.5: Contination of Table 3.4.

Star Slope χ2
slope P(χ2

slope) P(Fslope) Comment
[m/s/yr]

Barnard -0.688 99.4 0.022 0.0038
GJ 1 -0.454 25.9 0.26 0.56
GJ 27.1 0.122 41.1 0.052 0.32
GJ 118 1.99 23.8 0.47 0.00083
GJ 160.2 1.36 35.5 0.26 0.067
GJ 173 1.61 28.7 0.0014 0.86
GJ 180 0.418 27.5 0.19 0.46
GJ 190 -1.12·105 0 < 10−7 < 10−7 SB2
GJ 218 1.03 7.96 0.34 0.96
GJ 229 1.43 95.6 < 10−7 0.0017
GJ 263 743 0 < 10−7 < 10−7 SB2
GJ 357 0.393 57.5 0.00084 0.58
GJ 377 -0.284 39.8 7.7·10−5 0.36
GJ 422 0.599 16.2 0.24 0.99
GJ 433 0.284 78.4 0.011 0.61
GJ 477 6.99·103 4.52·105 < 10−7 0.00034 SB1
GJ 510 2.64 37.9 0.013 0.014
GJ 620 -5.1 11 0.012 0.98
GJ 637 0.305 26.9 0.03 0.38
GJ 682 1.62 40.8 0.0016 0.056
GJ 739 -2.09 37.4 0.003 0.072
GJ 817 0.184 32.1 0.098 0.42
GJ 821 -0.268 53.5 0.013 0.56
GJ 842 -1.2 43.5 0.00013 0.91
GJ 855 -1.14 24.9 0.21 0.19
GJ 891 0.556 47.6 0.0019 0.93
GJ 911 0.389 25.1 0.049 0.38
GJ 1009 0.0316 47.8 0.00046 0.055
GJ 1046 1.09·103 8.8·105 < 10−7 0.018 SB1 (BD)
GJ 1100 -1.67 36.3 7.4·10−5 0.66
GJ 3020 -287 2.29·103 < 10−7 0.00074 SB1
GJ 3082 1.19 17.1 0.029 0.66
GJ 3098 7.05 16 0.025 0.13
GJ 3671 3.26 10.2 0.43 0.046
GJ 3759 2.48 6.84 0.65 0.071
GJ 3916 4.1·103 2.12·103 < 10−7 2 ·10−5 SB1
GJ 3973 3.3 10.8 0.013 0.78
GJ 4106 32.2 1.99 0.58 0.13 giant
GJ 4293 -0.114 32.3 0.0012 0.064
HG 7-15 10.5 9.03 0.43 0.39
Prox Cen 0.703 159 < 10−7 0.0026
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A high Fslope-value indicates a fit improvement whereas a low probability P(Fslope) shows this improve-
ment to be significant and that it is probable not due to noise.

In Table 3.4 the stars with a significant trend are marked in bold face. Besides the companion hosting
M dwarfs GJ 477, GJ 3020, and GJ 3916, these are the stars Barnard’s star, GJ 118, GJ 229, and Prox-
ima Cen. The significant trend of 1.4 m/s/yr for GJ 229 may be caused by the wide T7p brown dwarf
companion GJ 229 B, as one can show with a rough estimate. Assuming a circular orbit and the pro-
jected separation of 45AU (α = 7.7′′ Nakajima et al. 1995, π = 0.173′′) as the orbital radius to GJ 229,
the orbital period is of the order of P = 400yr. Then a 30MJup companion can cause a velocity amplitude
of K = 170m/s (Eq. (3.1)) and the maximum RV change is ṘV = K 2π

P = 2.7m/s/yr, about twice as
large as the observed trend. However, the low P(χ2

slope) indicates there is still some variability after trend
subtraction.

3.3.3 Periodogram analysis

To test for periodicities in the RV data, we computed the generalized Lomb-Scargle periodogram (GLS,
Zechmeister & Kürster 2009), which is the equivalent of fitting sine waves including an offset. The
adopted period search interval ranges from 2d to the time baseline T of each data set. Note that 2d
will mostly exceed the average Nyquist frequency. However, searching at frequencies higher than the
Nyquist frequency is possible for irregular sampling (Pelt, 2009). False-alarm probabilities (FAP) were
determined by bootstrap randomization (e.g. Kürster et al., 1997). In this method random data sets are
generated from an original data set by shuffling the RVs while retaining the observing times. For each
random data set, the GLS periodogram was computed and searched for its maximum. The FAP is then
given by that fraction of random data sets having a periodogram power higher than the original one. For
each star we generated 1000 random data sets which resolves FAP > 10−3 and is sufficient to decide
whether the FAP is below our threshold of 0.01.

Table 3.6 shows that GJ 4106 and GJ 1046 have a FAP marginally lower than 0.01. The probable
brown dwarf companion to GJ 1046 with a minimum mass of 26.9MJup in an eccentric orbit (e = 0.28)
with a 168.8d period has been already published by Kürster et al. (2008) based on this UVES data set.
For the 365d period in Proxima Cen we refer to Endl & Kürster (2008), who recently analysed the RV
data and identified this period as a 1-year alias.

Based on data from the first 21/2yr, Kürster et al. (2003) determined two RV periods of 32d and
45d for Barnard’s star with a FAP of 0.56% and 1.05%, respectively. Now, in the enlarged data set
with a 61/2yr time baseline, the second period (45d; with an amplitude of 2.9m/s) has the highest
periodogram peak, and its FAP is now less than 0.1%, i.e. more significant (see Fig. 3.4, second panel for
the periodogram and Fig. 3.5 for the RVs phased to this period). However, stellar activity is the probable
cause of this variability and will be discussed in Sect. 3.3.5.

3.3.4 Upper detection limits

A Jupiter-mass planet in a circular orbit with a radius of 1 AU around a 0.4M⊙-M dwarf would cause
an RV amplitude of 45m/s (even higher for closer orbits; Eq. (3.1)) and would be easily detectable with
our precision of typically a few m/s. However, most of our sample stars show low RV-variations and
no indication of a planet. To determine which planets in circular orbits can be excluded, we calculated
detection limits in the following way.

We considered the data as noise and simulated planetary signals by adding sine waves to the data
with a range of trial frequencies and for 12 different equidistant phases. The time sampling remained
unaffected. For the simulated data the generalised Lomb-Scargle periodogram power was calculated at
the trial sine wave frequency where the peak of the signal is expected. If this power was below a power
threshold (which corresponds to an FAP of 0.01, see note below), we increased the amplitude of the
sine wave. The simulated planet is considered as detected, if the power is in all 12 phases (equal to
or) higher than the threshold. The corresponding amplitude is considered as the 99% detection limit. In
Appendix 3.6.2 we provide an analytic solution to calculate this amplitude for a given power threshold
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Table 3.6: Test for periodicities in the RV (GJ 190 and GJ 263 excluded): the best period P with its χ2

and bootstrapped FAP.

Star P [d] χ2
sin FAP

Barnard 44.9 72.5 < 10−4

GJ 1 2.73 12.5 0.733
GJ 27.1 2.01 18 0.189
GJ 118 3.97 15.6 0.329
GJ 160.2 4.15 20.7 0.577
GJ 173 2.28 3.67 0.026
GJ 180 5.93 8.63 0.127
GJ 218 2.02 0.473 0.557
GJ 229 10.9 63.7 0.102
GJ 357 3.41 28.4 0.157
GJ 377 15.1 7.47 0.029
GJ 422 8.82 4.69 0.498
GJ 433 6.5 55.6 0.451
GJ 477 243 1.58 ·105 0.541
GJ 510 2.92 29.1 0.867
GJ 620 2.51 0.00667 0.637
GJ 637 8.54 8.54 0.245
GJ 682 89.3 20.1 0.178
GJ 739 2.34 16.3 0.334
GJ 817 2.36 15.1 0.743
GJ 821 12.6 32.9 0.393
GJ 842 92.6 10.8 0.219
GJ 855 16 12.6 0.668
GJ 891 30.5 22.1 0.36
GJ 911 2.35 9.85 0.909
GJ 1009 3.73 17.1 0.502
GJ 1046 174 1.23 ·105 0.008
GJ 1100 3.79 5.27 0.477
GJ 3020 5.14 3.03 ·103 0.895
GJ 3082 3.72 1.7 0.261
GJ 3098 2.7 2.23 0.5
GJ 3671 68.1 1.69 0.218
GJ 3759 2.46 1.8 0.769
GJ 3916 8.6 82.5 0.077
GJ 3973 2.25 0.00154 0.105
GJ 4106 2.41 0.000139 0.009
GJ 4293 19.1 11 0.994
HG 7-15 4.55 0.919 0.179
Prox Cen 365 101 < 10−4

and phase. This procedure was performed for a number of trial frequencies resulting in amplitude limits
which finally were translated into mass upper limits (Fig. 3.6) using Eq. (3.1) and the stellar masses from
Table 3.2.

It should be noted that the periodogram power p is a measure/quantity for the FAP. By applying
bootstrap randomisation to the original data we get a FAP vs. power relation p(FAP). No assumptions are
necessary about the number of independent frequencies. The power value for FAP=0.01 was also taken
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Figure 3.4: GLS periodograms for the Hα-index (top panel; see Sect. 3.3.5), the RV data (second panel),
the RV data corrected for a Hα correlation (third panel), and window function (bottom) of Barnard’s star.
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Figure 3.5: Radial velocity time series for Barnard’s star phased to the 44.9 d period and the best-fitting
sinusoid.

as the threshold for the simulated data. This modification to the method by Endl et al. (2002) bypasses
bootstrapping the simulated data again and is therefore more efficient and allows a dense sampling of the
frequency.

Here we assume that the p(FAP) relation does not change much when adding a sine wave, because
the time sampling and number of measurements does not change. The only thing that can happen is
that the rms (or χ2 above the mean) of the simulated data changes (increases) by a certain factor. But
as the normalized power is invariant when the measurements are scaled the resulting effect is small.
A comparison of the detections limits given in Fig. 3.6 with those from Endl & Kürster (2008) for
Proxima Cen shows quite similar results. Figure 3.6 also shows the steep increase that generally appears
for periods longer than the time base (see also Cumming 2004; Nelson & Angel 1998).

Instead of again searching the whole frequency range, only the power at the original sine frequency
was calculated, since one can expect to find the simulated signal there. This saves computational effort
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and is more conservative, because we exclude spurious detections that exceed the power threshold with
a lower amplitude at alias or noise frequencies.

Figure 3.6 shows the results of our detection limit calculation. It can be seen that for Barnard’s star or
Proxima Cen, i.e. stars with low masses and many measurements, the detection limit reaches down to a
few Earth masses for close-in circular orbits and even within their habitable zones (HZ). Both stars have a
priori frequencies with a FAP<0.01. These frequencies were excluded from the detection limit calculation
(Barnard’s star: 36.1-36.4d and 44.6 – 45.1d; Proxima Cen: 295.0–313.11d and 347.1-392.5d). The HZ
is depicted for each star derived from Fig. 15 of Kasting et al. (1993), whereas we used the stellar masses
from Table 3.2. For an M dwarf with a mass of 0.3M⊙, the HZ is beyond 0.1AU. For several stars we can
exclude planets with a few ten Earth masses in their HZ and Jupiter-mass planets (1MJup = 318MEarth)
up to a few AU.

3.3.5 Correlation between RV and Hα index?

Stellar activity can affect the measured RV. The Hα line is an indicator of stellar activity (the only
available one in the UVES spectra). In Proxima Cen as an active flare star, the Hα line is in emission
in contrast to low-activity Barnard’s star. However, the Hα line is variable in both cases. Therefore
investigating the correlation between RV and variations in the Hα line may be useful for correcting RV
for stellar activity.

Kürster et al. (2003) report a correlation of this type for Barnard’s star. We checked this again with
the now available longer data set for Barnard’s star, as well as for the other stars. As a measure of the
variability of the Hα line we adopt the definition of the Hα-index by Kürster et al. (2003):

I =
F0

0.5(F1 +F2)
(3.3)

where F0 is the mean flux in the range of [-15.5km/s,+15.5km/s] around the Hα line (λ = 656.28nm) and
F1 and F2 are the mean flux two reference bandpasses ([-700km/s,-300km/s] and [600 km/s, 1000 km/s],
respectively) used for normalization. This index is a kind of filling-in of the Hα line (i.e for emission
I & 1) and is related to equivalent width (see Appendix 3.6.1). Following Kürster et al. (2003), we also
computed a CaI index [+441.5 km/s, 472.5 km/s] for comparison. The CaI line (λ = 6572.795Å) is
expected to be stable.

Figure 3.7 shows the variation in the Hα index for Barnard’s star with time. In Fig. 3.8 the RV is
plotted against the Hα index. The flare event has already been described in Kürster et al. (2003), does
not seem to have any effect on the RV, and is excluded from the correlation analysis. No further flare
was detected in the longer data set. We calculated a correlation coefficient of r = −0.42 for the whole
data set. Because the new data (JD>2452600) have a less pronounced anti-correlation with a correlation
coefficient of r =−0.25, the correlation decreases compared to the old data set where r =−0.50 (Kürster
et al., 2003), but the anti-correlation is still present and becomes more significant due to the longer
baseline.

We performed a period search (Fig. 3.4, top panel) for the Hα index of Barnard’s star (again flare
event is excluded). With the new data, a 1000d period dominates the GLS periodogram (upper panel).
There is also some power at 44.5 d that was found to be the dominant period in the RV data (second
panel). Therefore it is probable that the 45-day RV period is caused by stellar activity rather than by a
planet (third panel). When we subtract the correlation from the RV data, the rms reduces slightly from
3.35 m/s to 3.09 m/s. The FAP of this period for the corrected RV data is only 5.5% compared to < 0.01%
of the uncorrected RV data (Table 3.6). A similar analysis for the other stars6 only yields a significant
correlation for GJ 433, GJ 821, and GJ 855 (Figs. 3.9–3.11). All stars show no significant RV-CaI index
correlation.

Finally, we investigated the question of whether more active stars show more RV excess scatter.
Figure 3.12 compares the RV scatter (rms from Table 3.4) and the relative Hα line index scatter for all
M dwarfs from our sample and demonstrates that no correlation can be seen.

6The 6 six stars with companions were excluded.
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Figure 3.9: Correlation of the Hα- and CaI-index with the RV for GJ 433 (rHα = −0.40).
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Figure 3.10: Correlation of the Hα- and CaI-index with the RV for GJ 821 (rHα = −0.49).
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Figure 3.11: Correlation of the Hα- and CaI-index with the RV for GJ 855 (rHα = 0.62).
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Figure 3.12: Comparison of the RV scatter (rms) and Hα variability for all M dwarfs with an rms <
20m/s. No correlation can be seen. The very active star Proxima Cen shows only very low RV excess.
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3.4 Discussion

We browsed the available literature and catalogues for known binarity of our M dwarfs, which may have
an impact on planet formation. Well known are the substellar companions to GJ 229 (Nakajima et al.,
1995) and GJ 263 (Beuzit et al., 2004). Proxima Cen constitutes a widely separated common proper
motion pair with α Cen A+B.

For GJ 477 and GJ 3916, binarity is indicated in the Hipparcos catalogue. GJ 477 has the dou-
ble/multiple systems flag “X” (stochastic solution, probable astrometric binaries with a short period).
GJ 3916 is listed with the flag “G” (acceleration or higher order terms). The large amplitudes seen in the
RVs for both stars confirm this.

Other stars with an entry are: GJ 620 (“G”), GJ 4106 (“G”), and GJ 433 (“O”, i.e. orbital solution).
For these stars we found only low RV variation. This is at least controversial for GJ 433 (HIP 56528).
The announced period is 500d (see also Bernstein, 1997) and the amplitude is expected to be several
hundred m/s.7 At 1AU our detections limit reaches down to 0.2MJup (Fig. 3.6).

To our knowledge the rest of our sample so far has no discovered companions. Companions are
explicitly excluded with near-infrared speckle interferometry by Leinert et al. (1997) for GJ 1 and GJ 682
(∆K = −4.5mag at 1-10AU), as well as GJ 891 with infrared coronagraphic imaging by McCarthy &
Zuckerman (2004) (>30MJup at 140-1200AU).

Kürster et al. (2003) discussed how several stellar activity phenomena, such as spots, plages, or
convective RV shifts, might affect the RV measurements. A linear RV-Hα anti-correlation that is present
in Barnard’s star could be a result of a convective redshift caused by plages that suppress blueshifted
convective flows. We find such an anticorrelation for GJ 433 and GJ 821, while GJ 855 exhibits a positive
correlation (Figs. 3.9–3.11). Bonfils et al. (2007) presented with GJ 674 (M2.5V) an example where the
RV and Hα variations seem to be phase-shifted. The correlation thus differs from a linear one and looks
like a loop. One would expect such behaviour for a plage rotating with the surface.

Flare events, such as the one observed in Barnard’s star, do not seem to take part in the correlation.
This agrees with the fact that no significant and strong correlation is observed in the flaring M dwarf
Proxima Cen (see also Endl & Kürster, 2008).

3.5 Conclusion

Within the sensitivity provided by our RV precision of a few m/s we have not detected any planets
around our sample stars. Most of the M dwarfs exhibit only low RV variations and some of them have a
measurable secular acceleration due to their high proper motion.

We have discussed two effects on the RV that are not caused by planetary companions. First, the
secular acceleration, is a perspective effect and causes always a positive RV trend. This effect can be cor-
rected easily. Vise versa, this can be seen as an independent measurement of the astrometric quantity µ2

π ,
i.e. a confirmation for the ratio of squared proper motion and parallax (the absolute RV is not required).
The second effect are RV variations caused by stellar activity. This is likely the case for the 45d period
we found in the RV data of Barnard’s star. The RVs correlate with the Hα index. Such a correlation was
found here only for a few M dwarfs and therefore no conclusions can be drawn in general.

As a by-product of our survey we have identified 6 M dwarfs with low-mass companions, four of
them (GJ 477, GJ 1046 and GJ 3020, and GJ 3916) are brown dwarf or low-mass stellar candidates and
two are spectroscopic binaries (SB2: GJ 263 and GJ 190). Follow-up RV observations will yield the
orbital parameters and the lower limits for the companion masses msin i.

Our detection limits demonstrate that we can exclude giant planets with 1MJup up to 1AU for half of
our M dwarfs and that we are in principle capable of discovering planets with a few Earth masses in the

7The parameters for the circular orbit (e = 0, ω = 0) are P = 500± 32d, T0 = 2448402± 28d, a0 = 4.27± 2.04mas,
i = 54±2, and Ω = 346±22deg. With the parallax π = 112.58±1.44 the semi major axis of the photocentre is a0 = 0.0379AU.
Assuming a0 ≈ a1 the amplitude would be K1 = sin i 2πa0

P = 668m/s for the circular orbit. With m1 = 0.48M⊙ the secondary

mass is m2 = 19.8MJup calculated from the mass function f (m) = (msin i)3

(m+M)2 = P
2πG (K

√
1− e2)3, i.e. msin i = K · 3

√
(m+M)2 P

2πG .
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habitable zones of M dwarfs with VLT+UVES. For this purpose an adequate number of measurements
is needed to find low amplitudes of the order of the achieved high RV precision. The low frequency
of Jupiter-mass planets around M dwarfs requires a large sample. The given detection limits are based
on the search for single planets in circular orbits. These limits would be higher for eccentric orbits or
multi-planet systems.

Even if planet detections are more spectacular, it is also important to report non-detections, which
are required to estimate the planet frequency. Our non-detections of planets support the increasing ob-
servational evidence of a lower frequency of Jupiter-mass planets around M dwarfs. Endl et al. (2006)
estimated a frequency of ≈ 1% or less up to 1 AU orbital radius for Jupiter-mass planets around M dwarfs
compared to 2.5% for solar like stars. This comparison cannot be done yet for low-mass planets because
they are much harder to detect (and even more so for G stars), which introduces observational biases.
However low-mass planets seem to be quite frequent around M dwarfs (Bonfils et al., 2007).

Expansion of current M dwarf planet searches will allow more precise determination of the true
frequency of giant planetary companions to this type of stars and lower the detection limits. Photometric
surveys for transits like the recently started project MEarth (Irwin et al., 2009) monitoring 2000 nearby
M dwarfs and microlensing projects will also contribute. The discoveries of planetary systems around
GJ 876 (Delfosse et al., 1998; Marcy et al., 1998, 2001; Rivera et al., 2005) and GJ 581 (Udry et al., 2007)
show that planets do exist around M dwarfs. This promises further discoveries of low-mass planets in the
future with high-precision RV surveys.

3.6 Accompanying auxiliary calculations

3.6.1 Relation between index and equivalent width

The equivalent width is defined as

EW = ∑
i

δλi
FCi −Fi

FCi

where δλi is the width of the i-th pixel in wavelength, and Fi and FCi are the flux and continuum flux in the
i-th pixel, respectively. The equivalent width EW is measured in terms of wavelengths. In a normalized
spectrum the continuum flux is constant FCi = FC resulting in

EW = ∆λ
[

1− 1
∆λ ∑δλi

Fi

FC

]
where ∆λ = ∑δλi is the considered wavelength range.

The index I as defined (for Hα) in Eq. (3.3) is, on the other hand, a dimensionless measure. It is
normalized by the mean flux F = 1

∆λ ∑i δλiFi taken from reference ranges instead of the continuum,
which is sometimes difficult to estimate, in particular for M dwarfs with their ubiquitous absorption
lines.

In the case that the reference regions are estimated as continuum, i.e. F1 = F2 = FC, the index becomes
I = 1

FC

1
∆λ ∑i δλiFi and is related to EW as

I = 1− EW
∆λ

.

Note that an absorption line is indicated by EW > 0 (0 < I < 1) and an emission line by EW < 0 (I > 1).

3.6.2 Response of the GLS periodogram when adding a sine wave

The definition of the generalized Lomb-Scargle periodogram (GLS) is (we use the notation introduced
in Zechmeister & Kürster 2009)

py(ω) =
1

YY
· SS ·YC2 +CC ·Y S2 −2CS ·YC ·Y S

CC ·SS−CS2
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whereas abbreviations are weighted covariances for data yi, sine, and cosine terms (e.g. YC = ∑wiyi cosωti
−∑wiyi ·∑wi cosωti = ∑wi(yi − y)cosωti; wi are normalised weights).

When introducing a parameter τ defined by tan2τ = 2CS
CC−SS and replacing ti by τi = ti − τ (resulting

in CSτ = 0) the GLS can be written as (see Zechmeister & Kürster (2009) for details)

py(ω) =
1

YY

[
YC2

τ
CCτ

+
Y S2

τ
SSτ

]
in a form very similar to classical Lomb-Scargle periodogram. While the first formulation can save some
computational effort, the use of the second is more elegant for our purpose.

By adding a sine wave with frequency ω0 to the data yi, we generate new data xi = yi + acosω0ti +
bsinω0ti or xi = yi +aτ cosω0τi +bτ sinω0τi. This results in a new periodogram px(ω) for the new data
set x

px(ω) =
1

XX

[
XC2

τ
CCτ

+
XS2

τ
SSτ

]
.

Because the times are not changed, this neither affects the parameter τ or the sums that only depend on
the time sampling (CCτ and SSτ or CC, SS, CS, and D, respectively). When adding the sine wave the
mean changes

x = ∑wixi = ∑wiyi +a∑wi cosω0ti +b∑wi sinω0ti
= y+aC0 +bS0.

The sums YC and Y S change as follows

XC = ∑wi(xi − x)cosωti = YC +aCC0 +bCS0

XS = ∑wi(xi − x)sinωti = Y S +aC0S +bSS0

XX = ∑wi(xi − x)2

= ∑wi(yi − y+a(cosω0ti −C0)+b(sinω0ti −S0))2

= YY +a2C0C0 +b2S0S0 +2aYC0 +2bY0S0 +2abC0S0. (3.4)

As described in Sect. 3.3.4, it is more conservative to scan the power only at ω = ω0 instead of the whole
frequency range. This bypasses the calculation of sums comprising two different frequencies and is an
enormous simplification. The sums of simulated data can be expressed by the sums for the original data.
Therefore is not necessary to repeat the summation for the simulated data. When using the notation with
τ this becomes XCτ = YCτ +aτCCτ and XSτ = Y Sτ +aτSSτ because CSτ = 0.

The power response at the frequency where the sine wave was added is

px(ω) =
1

XX

[
YC2

τ
CCτ

+a2CCτ +2aYCτ +
Y S2

τ
SSτ

+b2SSτ +2bY Sτ

]
=

1
XX

[pyYY +XX −YY ] = 1−
(1− py)YY

XX
.

Now we are interested in the amplitude A or variance XX that is required for a given phase φ to
produce a desired power threshold px(ω), which corresponds to an FAP. The required variance is XX =
YY 1−py

1−px
.

We obtain the required amplitude by solving the quadratic equation resulting from Eq. (3.4) (a =
Acosφ , b = Asinφ)

0 = a2CC +b2SS +2aYC +2bY S +2abCS− (XX −YY )

= A2(CC cos2 φ +SS sin2 φ +2CScosφ sinφ)
+2A(YC cosφ +Y S sinφ)− (XX −YY )

= αA2 +2βA− γ
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with the substitutions α = CC cos2 φ + SS sin2 φ + 2CScosφ sinφ , β = YC cosφ +Y S sinφ , and γ =
XX −YY = YY px−py

px
. This leads us to the amplitude

A(ω,φ) = −β
α

+
(−)

√(
β
α

)2

+4
γ
α

,

which we consider as the amplitude detection limit for a fixed phase and for a given power threshold px

and which can be expressed by GLS sums for the original data. Probing a set of phases φ , we finally
choose maxφ A(ω,φ).

The second of the two solution is rejected, because we demand positive amplitudes (A > 0, φ ∈
[0,360◦). The terms α and γ are always positive: γ = YY px−py

px
> 0 (as long as px − py > 0) and α =

CC cos2 φ +SS sin2 φ +2CScosφ sinφ = CCτ cos2 φ +SSτ sin2 φ > 0.
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3.7 Additional note regarding the planet discovery for GJ 433

On an ESO workshop (Towards Other Earths, Porto, Portugal) in October 2009, i.e. after our publication
(Zechmeister et al., 2009), there was a planet announcement for the M dwarf GJ 433 based on HARPS
RV measurements. Today, even one year later, there is no refereed publication of this announcement. The
only information publicly available8 for the putative planet is a period of ∼7 d and a minimum mass of
0.019 MJup (6 M⊕) which corresponds to an RV semi-amplitude of ∼ 3 m/s.

Here we would like to re-analayse our UVES data and discuss that supposed planet detection. Our
best-fitting sinusoid has a period of 6.5 d that is listed in Table 3.6 having an amplitude of 3.3 m/s (cor-
responding to 6 M⊕). These values are quite similar to the announced ones. However, this period is not
statistically significant in our data set and we cannot claim a planet. Figure 3.13 shows the periodogram
including a zoom-in to the region of interest. Figure 3.14 shows the RV data phased to this period. The
fit reduces the the scatter from 4.3 m/s to 3.6 m/s.

8http://exoplanet.eu/planet.php?p1=GJ+433&p2=b
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Figure 3.13: Periodogram for GJ 433 for periods down to 2 d (top) and zoom in to the range 6–8 d
(bottom).

http://exoplanet.eu/planet.php?p1=GJ+433&p2=b
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Figure 3.14: RVs for GJ 433 phase folded to the best-fitting, but non-significant period of 6.5 d.

We stress that periods other than that at 6.5 d have even less power. We also point out that our RVs
correlate with variations in the Hα-line strength (see Sect. 3.3.5). We conclude that the HARPS data set
must have much better RVs precision, since otherwise we would be able to disprove the planet detection.
We have to combine both UVES and HARPS data to clarify this.
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Chapter 4

The planet search programme at the
ESO CES and HARPS1,2

The search for Jupiter analogues around solar-like

stars

Based on Zechmeister, Kürster, Endl, Lo Curto, Hartman, & Henning, close to submission to
A&A

ABSTRACT: In 1992 we began a precision radial velocity survey for planets around solar-like stars
with the Coudé Echelle Spectrograph and the Long Camera (CES LC) at La Silla (Chile) resulting in the
discovery of the planet ι Hor b. We have continued the survey with the upgraded CES Very Long Camera
(VLC) and the HARPS spectrographs. In this paper we present further radial velocities for 31 stars of the
original sample with higher precision. The observations cover a time span of up to 15 years and permit
a search for Jupiter analogues. The survey was carried out with three different instruments/instrument
configurations using the iodine cell and the ThAr methods for wavelength calibration. We combine the
data sets, perform a joint analysis for variability, trends, periodicities, and Keplerian orbits, and compute
detection limits. We achieve a long-term RV precision of 15 m/s (CES+LC), 9 m/s (CES+VLC), and
3 m/s (HARPS), respectively. This enables us to confirm the planetary signals seen for ι Hor, HR 506,
and HR 3259, while the planet ε Eri b cannot be confirmed. We find a steady RV trend for ε Ind A
explicable by a planetary companion and calling for direct imaging campaigns. Contrariwise, we find
previously reported trends to be smaller for β Hyi and not present for α Men. Long-terms in several of
our stars are compatible with known stellar companions. We provide a spectroscopic orbital solution for
the binary HR 2400 and refined solutions for the planets around HR 506 and ι Hor. The occurence of two
Jupiter-mass planets in our sample is in line with the estimate of 10% for the frequency of giant planets
with periods smaller than 10 yr around solar-like stars.

4.1 Introduction

The search for extra-solar planets has so far revealed more than 500 planets, most of them discovered
by the radial velocity (RV) technique. Interestingly, many hot Jupiters have been found, a consequence
related to the fact that the RV method as well as the transit method is very sensitive to short period

1Based on observations collected at the European Southern Observatory, La Silla Chile, ESO programmes 50.7-0095,
51.7-0054, 52.7-0002, 53.7-0064, 54.E-0424, 55.E-0361, 56.E-0490, 57.E-0142, 58.E-0134, 59.E-0597, 60.E-0386, 61.E-
0589, 62.L-0490, 64.L-0568, 66.C-0482, 67.C-0296, 69.C-0723, 70.C-0047, 71.C-0599, 072.C-0513, 073.C-0784, 074.C-0012,
076.C-0878, 077.C-0530, 078.C-0833, 079.C-0681.

2Radial velocity data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/
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planets. Out of 500 planets discovered so far, 61% have a period shorter than 1 year. Before the discovery
of the first extrasolar planet around a solar-like star, the hot Jupiter 51 Peg b (Mayor & Queloz, 1995), it
was widely expected that planetary systems are in general similar to the solar-system and this was also
predicted by most theoretical models (Marcy et al., 2008). Therefore surveys were designed to search for
planets with masses of 1 MJup and at distances of 5 AU from solar-like stars (e.g. Walker et al., 1995).
The regime of Jupiter analogues is still sparsely explored, because observations with long time-baselines
and precise RV measurements are required; e.g. Jupiter orbits the Sun in 12 years and induces an RV
semi-amplitude of 12 m/s.

The survey described in this paper was begun in 1992 (Endl et al., 2002) with the Coudé Echelle
Spectrograph (CES) Long Camera (LC). It was continued in 1999 with the CES Very Long Camera
(VLC) and later on in 2003 with the HARPS spectrograph. The survey covers a time span of up to
15 years with RV precisions ranging from 15 m/s down to 3 m/s. A comparable survey was analysed
by Wittenmyer et al. (2006) and carried out in the northern hemisphere with the 2.7m telescope at the
McDonald Observatory. It started in 1988 with 24 solar-like stars3 and 7 subgiants and was combined
with CFHT data (Walker et al., 1995), giving it an even longer temporal coverage up to 25 years, albeit
with a somewhat lower precision (10–20m/s).

There are many other exoplanet search projects at Lick, AAT (O’Toole et al., 2009a), Keck (Cum-
ming et al., 2008), Elodie/Sophie (Naef et al., 2005), Coralie (Ségransan et al., 2010), and HARPS (Naef
et al., 2010). These high precision RV projects have discovered a large fraction of the currently known
planets and are continuously extending their time baselines. Examples for discovered Jupiter analogues
are GJ 777Ab (Naef et al., 2003), a 1.33 MJup planet at 4.8 AU around a G6IV star, or HD 154345b
(Wright et al., 2008), a 0.95 MJup planet at 4.5 AU around a G8V dwarf.

4.2 The sample

The original sample of 37 solar-like stars was introduced in detail in Endl et al. (2002). Of these, the
monitoring of six stars was stopped: HR 448, HR 753, HR 7373, Barnard’s star, Proxima Centauri, and
GJ 433. The latter three are M dwarfs. For these recent and more precise results with VLT+UVES are
published in Zechmeister et al. (2009). We are left with 31 stars listed in Table 4.1 along with some of
their properties (spectral type, visual magnitude, distance, and stellar mass).

All stars have a brightness of V < 6 mag and spectral types ranging from late F to K. There are two
subgiant stars (β Hyi, and δ Eri) and two giant stars (HR 3677 and HR 8883) in the sample4. In the
following we provide some short notes on selected individuals objects.

β Hyi and τ Cet: These stars were the subjects of asteroseismology campaigns (Bedding et al., 2007;
Teixeira et al., 2009) which provided stellar parameters and also an insight for the magnitude of
the nightly, oscillation-induced RV jitter (∼2 m/s, cf. Table 4.10).

HR 506 (HD 10647): A planet candidate was presented by Mayor et al.5 based on CORALIE measure-
ments presented at the XIX th IAP Colloquium (Paris, 2003). Jones et al. (2004) found also weak
evidence for a similar signal with the AAT, but did not exclude stellar activity as the cause. Butler
et al. (2006) listed AAT RV data and derived orbital parameters.

ι Hor: For this active star Kürster et al. (2000) discovered a planet. The signal was also seen by Naef
et al. (2001) using the CORALIE spectrograph and by Butler et al. (2001) with the AAT. Vauclair
et al. (2008) investigated the oscillations of this star with HARPS.

3There are three targets (δ Eri, α For, and τ Cet) common to both samples.
4HR 3677 and HR 8883 were indicated in the Bright Star Catalogue as dwarf stars (Hoffleit & Jaschek, 1991). Therefore

they entered our sample, however they are giants as indicated by their distances.
5We found no refereed publication. Information is available on http://obswww.unige.ch/~udry/planet/hd10647.

html.

http://obswww.unige.ch/~udry/planet/hd10647.html
http://obswww.unige.ch/~udry/planet/hd10647.html
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Table 4.1: Targets with their spectral type (Hoffleit & Jaschek, 1991), visual magnitude V (Perryman
et al., 1997), distance d (van Leeuwen, 2007), and stellar mass M.

Star alias Spec Type V [mag] d [pc] M [M⊙]
HR 77 ζ Tuc F9V 4.23 8.59 1.06 [PM]
HR 98 β Hyi G2IV 2.82 7.46 1.1 [D]
HR 209 HR 209 G1V 5.80 15.16 1.10 [G]
HR 370 ν Phe F8V 4.97 15.11 1.20 [G]
HR 506 HR 506 F9V 5.52 17.43 1.17 [G]
HR 509 τ Cet G8V 3.49 3.65 0.78 [T]
HR 695 κ For G0V 5.19 21.96 1.12 [G]
HR 810 ι Hor G0V 5.40 17.17 1.25 [V]
HR 963 α For F8V 3.80 14.24 1.20 [G]
HR 1006 ζ 1 Ret G2.5V 5.53 12.01 1.05 [G]
HR 1010 ζ 2 Ret G1V 5.24 12.03 1.10 [G]
HR 1084 ε Eri K2V 3.72 3.22 0.85 [DS]
HR 1136 δ Eri K0IV 3.52 9.04 1.23 [PM]
HR 2261 α Men G6V 5.08 10.20 0.95 [G]
HR 2400 HR 2400 F8V 5.58 36.91 1.20 [G]
HR 2667 HR 2667 G3V 5.56 16.52 1.04 [G]
HR 3259 HR 3259 G7.5V 5.95 12.49 0.90 [G]
HR 3677 HR 3677 G0III 5.85 196.85 2.1 [G]
HR 4523 HR 4523 G3V 4.89 9.22 1.04 [G]
HR 4979 HR 4979 G3V 4.85 20.67 1.04 [G]
HR 5459 α Cen A G2V -0.01 1.25 1.10 [P]
HR 5460 α Cen B K1V 1.35 1.32 0.93 [P]
HR 5568 GJ 570 A K4V 5.72 5.84 0.71 [G]
HR 6416 HR 6416 G8V 5.47 8.80 0.89 [G]
HR 6998 HR 6998 G4V 5.85 13.08 1.00 [G]
HR 7703 HR 7703 K3V 5.32 6.02 0.74 [G]
HR 7875 ϕ 2 Pav F8V 5.11 24.66 1.1 [PM]
HR 8323 HR 8323 G0V 5.57 15.99 1.12 [G]
HR 8387 ε Ind A K4.5V 4.69 3.62 0.70 [G]
HR 8501 HR 8501 G3V 5.36 13.79 1.04 [G]
HR 8883 HR 8883 G4III 5.65 101.32 2.1 [G]

References for mass estimates: [D] Dravins et al. (1998), [DS] Drake & Smith (1993), [G] Gray (1988),
[PM] Porto de Mello, priv. comm., [P] Pourbaix et al. (2002), [T] Teixeira et al. (2009), [V] Vauclair
et al. (2008).

ε Eri: Hatzes et al. (2000) announced a planet around this active star. Benedict et al. (2006) refined
the orbital solution and combined the RVs with astrometric measurements indicating an orbital
inclination of i = 30◦.

α Men: Eggenberger et al. (2007) reported a companion for α Men which is likely an M3.5 – M6.5
dwarf that was seen at a separation of 3.05” with the VLT+NACO. They also mentioned a radial
velocity drift seen with the CORALIE spectrograph.

HR 3259: This star is known to host a planetary system with three Neptune-mass planets (Lovis et al.,
2006).
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Table 4.2: The three used instruments/configurations with their wavelength reference, chosen spectral
coverage and resolving power, and telescope diameter.

Spectrograph Ref. λ [Å] R Tel.
CES + LC I2 5367 – 5412 100 000 1.4 m
CES + VLC I2 5376 – 5412 220 000 3.6 m
HARPS ThAr 3800 – 6900 115 000 3.6 m

4.3 Instruments and data reduction

We used three high resolution spectrographs that are briefly described below with more detail provided
for the less known VLC+CES. Table 4.2 gives an overview of some basic properties of the three instru-
ments.

4.3.1 CES + Long Camera

In 1992 the survey started (1992-11-03 to 1998-04-04) with the Coudé Echelle Spectrograph (CES)
and its Long Camera (LC) fed by the 1.4 m Coudé Auxiliary Telescope (CAT) at La Silla (Chile). The
CES+LC had a chosen wavelength coverage of 45 Å and a resolution of 100 000 (Table 4.2). A 2 k
CCD gathered part of one spectral echelle order. An iodine gas absorption cell provided the wavelength
calibration. More details about the instrument, data analysis, as well as the obtained results can be found
in Endl et al. (2002). Table 4.3 lists the radial velocity results. The median rms is 15.2 m/s when excluding
the targets with comments in Table 4.3 and reflects the typical precision.

4.3.2 CES + Very Long Camera

The Very Long Camera (VLC) of the Coudé Echelle Spectrograph (CES) was operated since April 1998
together with the ESO 3.6 m telescope in La Silla (Chile). For our sample we collected VLC spectra
from 1999-11-21 to 2006-05-24. The VLC was an upgrade of the CES that doubled the resolving power
to R = 220000−235000 as well as the CCD length so that 80% of the spectral coverage was retained.
This upgrade together with improved internal stability, and also the larger telescope aperture promised
an improvement of the RV precision.

The VLC was fed by a fibre link from the Cassegrain focus of the 3.6 m telescope. A modified Bowen-
Walraven image slicer provided an efficient light throughput at the high resolving power. It redistributed
the light from the fibre with a 2′′ aperture via 14 slices to an effective slit width of 0.16′′ and resulted in
a complex illumination profile in the spatial direction, i.e. perpendicular to the dispersion axis (Fig. 4.1).
The right half of a 4 k × 2 k EEV CCD recorded part of one spectral order with the wavelength range of
5376 – 5412 Å. In 2006-06-15 CCD#59 was replaced by CCD#61.

The CES+VLC employed the same iodine cell as the CES+LC for wavelength calibration. This cell
was controlled at a temperature of 50◦C. The RV modelling (Sect. 4.3.4) requires a high resolution and
high signal-to-noise iodine spectrum to reconstruct confidently the instrumental line profile (IP) of the
spectrograph. In November 2008 we obtained for our iodine cell a spectrum with R = 1000000 and
S/N∼1000 performed with a Fourier Transform Spectrometer (FTS) at Lund Observatory. While the
former iodine cell scan had only R = 400000, the new scan ensures a iodine spectrum with a resolution
almost 5 times higher than the resolution of the VLC spectrograph.

The following properties of the CES+VLC spectra must be considered in the data analysis: The VLC
spectra are contaminated by a grating ghost located in the middle of the CCD (Fig. 4.1) and suffered also
from stray light produced by the image slicer. Ripples are visible in the continuum of high S/N (∼1000)
spectra such as flat fields, caused by interference in the fibre. Also visible in flats are less efficient rows
on the chip every 512 pixels, due to a smaller pixel size resulting from the manufacturing process, which
affect the wavelength solution. Moreover, a lower bias level is observed to the left of the spectra, probably
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Table 4.3: Radial velocity results for all targets. For each instrument configuration the rms is calcu-
lated independently. RV data are not binned. Comments are on multiplicity (see also Table 4.6 for more
information).

Star CES + LC CES + VLC HARPS Comment
N T rms ∆RV N T rms ∆RV N T rms ∆RV

[d] [m/s] [m/s] [d] [m/s] [m/s] [d] [m/s] [m/s]
ζ Tuc 51 1888 19.8 14.5 48 2104 9.2 7.9 136 1415 3.4 0.5
β Hyi 157 1887 22.9 18.6 46 1920 7.7 12.5 2432 1837 2.7 0.3
HR 209 35 1572 17.2 17.6 36 1941 11.1 9.8 48 1401 8.9 0.4
ν Phe 58 1926 15.6 14.6 35 1910 10.1 8.2 63 1415 3.0 0.5
HR 506 23 1573 28.0 20.2 42 1910 18.7 17.7 57 1401 13.2 0.6 planet
τ Cet 116 1888 11.4 13.3 61 1920 8.1 8.8 4479 2041 4.0 0.3
κ For 40 1890 722.9 12.8 45 2094 1134.0 10.2 74 1401 660.1 0.4 SB1
ι Hor 95 1976 51.3 16.9 122 2186 37.1 12.6 1838 1401 12.7 0.6 planet
α For 65 1889 42.2 31.6 39 1856 16.7 14.7 191 1401 8.4 0.5 trend
ζ 1 Ret 14 184 17.0 14.2 42 1857 15.3 10.3 63 1401 8.0 0.4
ζ 2 Ret 58 1976 18.9 14.6 43 1857 10.1 9.3 51 1401 3.4 0.4
ε Eri 66 1889 12.2 9.0 69 2186 10.0 8.1 508 1390 5.7 0.2 planet(?)
δ Eri 48 1888 12.5 11.7 42 1856 7.5 7.0 142 1443 2.5 0.2
α Men 46 1852 9.8 10.7 77 2368 8.4 9.8 253 1297 3.7 0.2
HR 2400 53 1924 275.1 23.0 54 2039 523.8 14.4 66 1296 235.1 0.5 SB1
HR 2667 66 1934 15.1 18.5 64 2329 7.5 11.4 72 1296 1.6 0.3
HR 3259 35 1851 16.5 11.3 61 2367 9.2 7.7 64 1287 3.8 0.3 three planets
HR 3677 34 1924 492.4 15.1 38 2044 1253.9 8.2 69 1287 906.5 0.4 SB1
HR 4523 27 1925 14.9 12.2 57 2276 6.7 8.9 309 1608 9.8 0.2
HR 4979 52 1933 11.7 10.8 58 2329 9.2 10.2 90 1510 3.3 0.2
α Cen A 205 1852 166.5 10.7 1076 2276 97.7 10.2 4440 1273 39.8 0.2 SB1
α Cen B 291 1852 203.5 9.3 54 1770 247.6 7.7 887 1616 178.7 0.1 SB1
GJ 570 A 40 384 6.9 11.4 87 2284 10.2 6.5 53 1853 3.0 0.2
HR 6416 57 1845 23.8 12.6 59 2278 23.4 9.4 73 1310 7.5 0.3 trend
HR 6998 51 1789 15.3 20.8 23 2062 9.6 9.8 68 1044 1.7 0.3
HR 7703 30 1042 10.3 11.6 31 2039 7.6 8.0 70 1722 4.7 0.3 trend
ϕ 2 Pav 90 1969 32.1 25.6 200 2062 17.1 23.9 60 1401 4.0 0.7
HR 8323 20 1067 14.4 14.6 31 2124 11.4 10.1 122 1547 2.4 0.5
ε Ind A 73 1888 11.9 9.1 54 2124 7.1 7.9 325 1763 8.0 0.3 trend(?)
HR 8501 66 1889 36.8 24.7 45 2125 36.6 16.1 57 1401 14.0 0.4 trend
HR 8883 31 1258 63.1 31.3 30 2125 66.9 23.6 45 1401 60.5 0.8 giant

Listed are the number of observations N, the time baseline T , the weighted rms of the time series and the
effective mean internal radial velocity error ∆RV .

caused by an electronic offset after a strong signal (P. Sinclair, priv. comm.). This effect seems also to
affect subsequent lines which may cause RV shifts depending on the line depth, i.e the weaker iodine
lines may not receive the same shift as the stronger stellar lines.

The spatial profile has a width spanning more than 400 pixels offering a large cross-section for cosmic
ray hits. For this reason the observing strategy aimed at three consecutive spectra in one night to be able
to identify cosmics as outliers. However, we did not use this cosmics detection method because cosmics
could also be efficiently identified as deviations from the spatial profile in the optimum extraction.

The VLC spectra were reduced with standard IRAF-tasks including bias-subtraction, flat-fielding,
scattered light subtraction and optimum extraction (Horne, 1986) which also removes cosmics. Finally,
the science spectra were roughly calibrated with a wavelength solution from a nightly ThAr spectrum.
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Figure 4.1: A small section of a VLC spectrum (star with iodine lines). The 14 slices span 400 pixels.
The bright feature to the left near pixel row 2300 is a grating ghost. The area on the left side has a lower
bias. The readout register is in the lower right corner of the chip (parallel clocking down, serial clocking
to the right). Deeper stellar lines near row 2300 and 2700 have tails to the left and right.

The data reduction process largely removed the artefacts described above, however residual effects might
explain systematic jumps observed in the RVs of the VLC data. The typical precision is 9.4 m/s calculated
as the median rms in Table 4.3 for the stars without comments.

4.3.3 HARPS

With HARPS we monitored our targets from 2003-11-06 to 2007-09-21. The HARPS spectrograph is
well described in the literature (e.g. Mayor et al., 2003; Pepe et al., 2004). It is fibre fed from the
Cassegrain focus of the 3.6 m telescope and located in a pressure and temperature stabilised environment.
An optical fibre sends light from a ThAr lamp to the Cassegrain adapter for wavelength calibration. For
the RV computation 72 echelle orders ranging from 3800 Å to 6900 Å are available, a region much larger
than for the CES.

We made use of the ESO advanced data products (ADP) to complement our time series. This archive
provides fully reduced HARPS spectra including the final radial velocities processed by the pipeline DRS
3.0 (data reduction software). The radial velocities are drift corrected and the RV uncertainty estimated
assuming photon noise6. The mean RV uncertainties range from 0.2 to 0.8 m/s. For data analysis a jitter
term will be added in quadrature (see Sect. 4.4).

We recomputed some RVs, obtained from the archive that suffered from a misadjusted initial RV
guess (off by 2 km/s) or from an inappropriate mask. A different mask, e.g. K5 instead of G2, can produce
RV shifts up to 20 m/s. The additional data products are publicly available and originate from other (non-
concurrent) programs as e.g. short-term asteroseismology campaigns. HARPS GTO (guaranteed time
observations) were public at this time, but not in the ADP archive, and are not used here.

The HARPS data provide an absolute RV scale which is shown in Fig. 4.12–4.16 and can be trans-
ferred to the other instruments. The relative RVs are more precise than the absolute RVs (i.e. more precise
than accurate). The median rms in Table 4.3 is 3.3 m/s.

6The pertinent information can be found in the *CCF_A.fits-file header (keywords RVC and DVRMS).
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Figure 4.2: A VLC spectrum of τ Cet (without iodine cell) and the arrangement of the 200 pixel chunks
with their individual Q-factors (blue squares). The intensity maximum of the spectrum is set to unity.
The intensity declines to the edges due to instrumental effects (Blaze function).

To improve the combination of the HARPS and VLC data, spectra were taken in a few nights with
both spectrographs immediately after each other making use of an easy switch possible with the common
fibre adapter installed in May 2004.

4.3.4 Details of the RV computation for the CES+VLC data

To compute the RV of the VLC spectra we used the AUSTRAL code described in Endl et al. (2000) which
is based on the modelling technique outlined in Butler et al. (1996). The spectral order was divided into 19
spectral segments (chunks) with a size of 200 pixels (1.8 Å) which we empirically found to yield optimal
RV precision, probably because for a larger chunk size the assumption that the instrumental profile (IP)
is constant over the chunk breaks down, while for smaller chunks the RV information content decreases.
Figures 4.2 illustrates the alignment of the chunks with respect to the stellar spectrum which tries to
avoid splitting up stellar lines between adjacent chunks. As one can see, the chunks contain only a few
deep stellar lines or sometimes none. To quantify this, we calculated the quality factor Q (Connes, 1985;
Butler et al., 1996; Bouchy et al., 2001) for each chunk in the stellar template obtained via deconvolution
for a stellar spectrum taken without iodine cell. This factor sums in a flux-weighted way the squared
gradients in a spectrum7, hence measuring its RV information content. For photon noise, the estimated
RV uncertainty is inversely proportional to Q, i.e. ∆RV ∼ 1

Q . Hence, we weight each chunk RV with
Q2 when computing the RV mean. Chunks with Q < 7000 were discarded (cf. Fig. 4.2, right axis). For
comparison, the quality factor is Q=12857 for the whole spectral range in Fig. 4.2 and Q = 67000 for an

7Q =

√√√√∑A(i)
(

∂ lnA(i)
∂ lnλ (i)

)2

∑A(i)
, where A(i) is the flux in the i-th pixel.
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iodine spectrum (spectrum of a featureless B-star taken through the iodine cell).
The stellar spectrum can be shifted across the CCD by several pixels due to the barycentric velocity

of the Earth (that we have calculated with the JPL ephemerides DE200, e.g. Standish 1990) and offsets
in the instrument setup. To always have the same stellar lines in a chunk, we shifted the chunks back for
compensation (1 pixel ∼ 500 m/s). So instead of having fixed chunk positions with respect to the CCD
as originally implemented in the AUSTRAL code, this modification ensures always the same weighting
factor for each chunk.

For τ Cet (GJ 71, HIP 8102, HR 509, HD 10700) which is known as an RV constant star (in our
HARPS data it is constant to 4 m/s), we achieve with the CES+VLC a long-term precision of 8.1 m/s
(Fig. 4.12, Table 4.3). The internal RV errors of the individual spectra (∼8.8 m/s), calculated as the
errors of the mean RV of the chunks (rms/

√
Nchunk), are of the same order as the rms of the time series

implying a fair error estimation.

4.3.5 Combining the LC and VLC data

The problem of instrumental offsets, i.e. different radial velocity zero points, occurs when data sets orig-
inate from different instruments (e.g. Wittenmyer et al., 2006) or after instrumental changes/upgrades.
For instance, an offset of -1.8 m/s was reported by Rivera et al. (2010) after upgrading the Keck/HIRES
spectrograph with a new CCD. An offset of only 0.9 m/s was mentioned by Vogt et al. (2010) when
combining Keck and AAT data.

As described above we have used three different instruments/instrument configurations and we are
also faced with the problem of the instrumental offset. There are basically two different methods for
combining the data sets: (1) Simply fitting the offset, i.e. the data sets are considered to be completely
independent and the zero points are free parameters in the model fitting. (2) If possible, measuring the
offset physically by making use of some known relation between the data sets/instruments to keep the
offset fixed.

In fact, we can measure the offset for the LC and VLC data albeit with a limited precision. The LC
and VLC spectra were taken through the same iodine cell, i.e. the same wavelength calibrator. Because
Endl et al. (2002) calculated the LC RV with different stellar templates and an iodine spectrum of lower
resolution than used in this work, we re-calculated the RVs for all LC spectra with the same VLC stellar
template (which is shorter than the LC spectra) and the new iodine cell scan to have the same reference
for the LC and VLC. The re-calculated RVs are verified to have a precision similar to the published LC
data.

Then we computed the mean of the re-calculated LC and VLC time series. If a star has a constant
RV, one would expect that the means of both time series are the same, i.e. the offset RVVLC −RVLC = 0
within the uncertainties of the means (σLC and σV LC). This can be tested with the t-statistics, in particular
Welch’s t-test (for two independent samples with unequal sizes and variances). We suggest that keeping
the offset fixed is valid, if the quantity

t =
RV LC −RV VLC

s
with s =

√
σ 2

LC
NLC

+
σ 2

V LC
NVLC

(4.1)

is not rejected by the Null-hypothesis. s is an estimate for the standard error of the difference in the means
and is calculated from sample variances σ2

i and sample sizes Ni. t follows a t-distribution with ν degrees
of freedom8. For instance, for |t| > 1.7 and ν > 30 the difference in the means is significant with a false
alarm probability of FAP<10%. For some of our stars the FAP for the offset difference is not significant:
δ Eri (64%), ε Eri (23%), HR 209 (92%), and HR 3259 (15%). However, from Fig. 4.3 it can be seen
that there are also stars having significant offsets leaving doubts whether the offset can be kept fixed in
general.

8The effective degree of freedom is ν =
(s2

1/N1 + s2
2/N2)2

(s2
1/N1)2/(N1 −1)+(s2

2/N2)2/(N2 −1)
where s2

1 and s2
2 are the sample variances.
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Figure 4.3 shows that for our sample an average offset of 10.4 m/s (±7.7 m/s) remains for the RV
constant stars when comparing the RV means of the VLC and LC data. This offset might be due to
systematics in the deconvolution process of the stellar template or in the modelling. E.g. due to the
different resolution, the LC data have to be modelled with a different chunk size (154 pixels to cover two
VLC chunks). We corrected all re-calculated LC RVs for this systematic offset. Finally, we adjusted the
RV mean of the published LC time series (Endl et al., 2002) to fit the RV mean of the re-calculated time
series. In Figs. 4.12–4.16 the LC and VLC data are always shown relative to each other with the measured
and corrected offset (and not with a fitted RV offsets from Sect. 4.4) to conserve the true measurements.

The uncertainty of the offset found in the sample is rather large for the offset to be considered a fixed
value. On the other hand the approximately known offset can hold important information, in particular
in the case of HR 2400 or ε Ind A. Therefore we choose a compromise between a fixed offset and a free
offset when fitting a function. Because one expects the difference of the zero point parameters to be zero
(cVLC − cLC ≈ 0), we introduce in the χ2-fitting a counteracting potential term η2, that increases when
the zero point difference becomes larger

χ̂2 = χ2 +η2 with η =
cVLC − cLC

s
.

The resulting χ2 (when minimising χ̂2) will be higher compared to that obtained when fitting with
free offsets but lower than for fixed offsets. The parameter s determines the coupling between the offsets.
After performing the fit it can be checked, if the fit has spread the zero points too much (if η ≫ 1 or if
there are large jumps in the model curves in Figs. 4.12–4.16). For s we attributed the uncertainty of the
offset correction of 7.7 m/s leading to a weak coupling.

It is worth mentioning, that in Bayesian analysis χ̂2 can be identified with the likelihood when as-
suming a Gaussian distribution for the prior information that the expected zero point difference is zero.

4.3.6 Combining the CES and HARPS data

In principle, VLC and HARPS data could be combined in a similar way. They have different wavelength
calibrators, but they are closely related in time since there are almost simultaneous measurements. The
difference between these consecutive measurements should be zero so that it is tempting to bind the time
series directly. However, this does not account for fluctuations due to the individual uncertainties. Again
a coupling term9 would be a more secure approach.

However, for reasons of simplicity we choose a fully free offset between the HARPS and the CES
data. Because the VLC and the HARPS time series are well overlapping this is less critical, in contrast to
the LC and VLC time series which are separated by a 2-year gap. The relative offsets between the CES
and HARPS data as illustrated in Figs. 4.12–4.16 correspond to the common best fitting model (constant,
slope, sinusoid, or Keplerian; cf. Sect. 4.4).

4.4 Analysis of the radial velocities

Before the data analysis we have binned the data into 2-hr intervals by calculating weighted means for
the temporal midpoint, RV, and RV error. The 2-hr interval will especially down-weight nights with
asteroseismology campaigns (see Sect. 4.3.3). Such intervals are employed for solar-like stars to average
out the stellar jitter, i.e. intrinsic stellar RV variation caused by, e.g., oscillation or granulation in the
atmospheres of the stars. In our survey we have usually taken three consecutive spectra in one night
covering only 5–10 min. To estimate the short-period jitter, we calculated the weighted scatter10 in each

9For one simultaneous measurement taken at the time ts, this term could be written as η =
cH − cVLC√

∆RVH(ts)2 +∆RVVLC(ts)2

where c is the zero point parameter, ∆RV (ts) are the individual errors of the simultaneous measurements, and the indices
H (HARPS) and VLC indicate the instruments. The VLC time series must be a priori adjusted by a zero point such that
RVVLC(ts) := RVH(ts).

10Weighting of the i-th measurement with its internal error wi ∼ 1/σ2
int,i.
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Figure 4.3: Difference between the means of the VLC and re-computed LC time series for all our stars
ordered by spectral type. For RV constant stars (black filled circles) there occurs a systematic offset
of 10.4±7.7 m/s (red solid line and red dashed lines). Stars shown with open circles were not included
in the offset analysis (for reasons see comments in Table 4.3). The shown error bars correspond to the
uncertainty in the means, i.e. parameter s from Eq. (4.1).

2-hr bin with at least 2 measurements and then the weighted mean of these scatters11. Table 4.10 lists
the jitter estimate for each star and the mean time scale accessible for this estimate. Note that these time
scales may not sufficiently cover the real jitter time scale in all cases.

There can be also a long-term jitter related to the rotation period or activity cycle of a star. Isaacson
& Fischer (2010) provide jitter estimates as a function of B−V colour and chromospheric activity index

11Weighting of the j-th bin with the number of measurements n j and the mean internal error in that bin: w j ∼ n j/σ2
int, j.

Note that bins with more measurements usually cover larger time intervals and get more weight.
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SHK based on Keck observations for more than 2600 main sequence star and subgiants. We use these
relations to estimate the jitter for our stars (Table 4.10). These jitter terms were added in quadrature to
the internal errors for all stars and lead to a more balanced fit with the CES data.

During the fits we account for the secular acceleration of the RVs. This perspective effect can become
a measurable positive trend in some high proper motion stars (Schlesinger, 1917; Kürster et al., 2003;
Zechmeister et al., 2009). In our sample, ε Ind A has the highest secular acceleration with 1.8 m/s/yr. Its
contribution is depicted in Fig. 4.16 by a grey dashed line.

4.4.1 Excess variability

To investigate objects for excess variability it is common to compare the observed scatter with a noise
estimate. A significantly larger scatter indicates variability. Because internal errors ∆RVi and jitter esti-
mations σjit are available, the quality of each measurement is assessed and allows to weight the measure-
ments in the χ2-statistics, wi = 1

σ2
i

= 1
∆RV 2

i +σ2
jit

. As the scatter we calculate the weighted unbiased rms

which is here defined as

rms =

√
N

N −ν
1

W

N

∑
i=1

(RVi − f (ti))2

σ2
i

=

√
N

N −ν
χ2

W
(4.2)

where W = ∑wi is the sum of the weights and ν the number of model parameters. Outliers with a large
uncertainty will contribute less to the rms. The factor N

N−ν is a correction that converts the biased variance
into an unbiased variance. In the unweighted case (wi = 1, W = N) we obtain the well known formula

for the unbiased rms: rms =
√

1
N−ν ∑(RVi − f (ti))2.

Furthermore, we define the weighted mean noise term σ via the mean of the weights12

σ =
1√
⟨wi⟩

=

√
N
W

=
√

N

∑N
i=1

1
σ2

i

. (4.3)

Again lower-quality measurements will contribute less to the mean noise level.
With these definitions the reduced χ2 can be easily expressed as the ratio of weighted rms to weighted

mean noise level

χ2
red =

χ2

N −ν
=

rms2

σ 2 . (4.4)

To test for excess variability we have to fit a constant and to calculate the scatter around the fit.
For the joint analysis we account for the zero point parameter of each data set when fitting a constant
as outlined in Sect. 4.3.5. Table 4.4 summarises for the combined data set the weighted noise term σ ,
the weighted rms, and the χ2-probability for this test. Table 4.11 lists additionally the individual rms
for each instrument. These values can differ from Table 4.3, because in Table 4.4 secular acceleration
is accounted for, jitter has been added, the data are binned, and the LC and VLC offsets are coupled.
Because the HARPS data have a much higher precision, they dominate the statistics.

The small χ2-probabilities for most of the stars indicate that they are variable with respect to our
noise estimate σ . However, ζ Tuc, ν Phe, τ Cet13, ζ 2 Ret, δ Eri, α Men, HR 2667, HR 6998, ϕ 2 Pav,
and HR 8323 have Prob(χ2) > 1%, i.e. they show only low or no excess variability. There are also cases
where the scatter is smaller than the noise level, i.e. χ2

red < 1, implying an overestimation of the noise
level for HR 2667, HR 6998, and HR8323. The jitter estimate for these star is 2.66 m/s, 2.84 m/s, and
3.09 m/s (Table 4.10), while the HARPS measurement have a scatter of only 1.44 m/s, 1.79 m/s, and
2.94 m/s of (Table 4.11), respectively.

12Another point of view leads to the same result: Gaussian errors are added in quadrature. Hence the trivial weighted mean

is
√

1
W ∑wiσ2

i =
√

1
W ∑1 =

√
N
W .

13The last RVs of τ Cet seems to have a systematic offset of ∼6 m/s. The reason is not known to us. However, when
excluding the last 100 days of RV measurements (70 binned data points), there is no significant variability, trend, or periodicity
for the known RV constant star τ Cet.
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Table 4.4: Summary of the tests for excess variability, slope, and periodicities (sinusoidal and Keplerian)
for the combined data set. Significant trends and periods are printed in bold face (FAP< 1‰). The index
r indicates tests on residuals (see Sect. 4.4.5).

Star Nbin T σ rms Prob(χ2) rmsslope slope FAP
[yr] [m/s] [m/s] [m/s] [m/s/yr]

ζ Tuc 72 14.9 5.01 5.51 0.11 5.55 -0.22 1
β Hyi 107 16.0 3.55 4.62 1.4 ·10−5 3.89 2.13 1.6 ·10−9

HR 209 53 14.0 7.55 9.86 0.0014 9.72 1.70 0.13
ν Phe 71 14.9 4.81 5.52 0.041 5.48 -0.91 0.18
HR 506 51 14.0 5.77 14.48 1.7 ·10−38 14.57 -1.39 0.51
HR 506r 6.85 0.033 6.13 -2.53 0.00075
τ Cet 212 16.2 2.53 3.53 9.1 ·10−15 3.21 0.88 1.7 ·10−10

τ Cet13 142 15.9 2.75 2.82 0.32 2.78 -0.35 0.025
κ For 78 14.8 3.77 718.44 0 50.54 -700.74 0
κ Forr 4.11 0.13 4.10 0.36 0.31
ι Hor 152 14.8 5.90 29.88 0 29.97 1.07 0.77
ι Horr 11.16 1.1 ·10−44 11.07 -1.73 0.072
α For 75 14.8 4.58 13.04 0 4.83 -11.20 1.4 ·10−32

α Forr 4.75 0.31 4.78 0.04 0.9
ζ 1 Ret 48 9.9 5.22 12.04 2.9 ·10−28 11.19 -3.94 0.0066
ζ 2 Ret 76 14.8 6.14 7.26 0.014 7.25 0.67 0.25
ε Eri 77 14.8 5.50 8.61 5.7 ·10−11 8.66 0.29 0.78
δ Eri 60 14.8 3.22 3.45 0.21 3.46 0.38 0.42
α Men 107 14.2 3.17 3.20 0.41 3.06 0.83 0.0012
HR 2400 77 14.4 4.57 268.97 0 216.26 -103.32 1.1 ·10−8

HR 2400r 5.54 0.0053 5.42 -1.21 0.047
HR 2667 89 14.4 4.99 3.18 1 3.20 -0.03 0.95
HR 3259 63 14.2 3.85 5.71 2.8 ·10−7 5.70 -0.44 0.27
HR 3677 60 14.4 3.51 1002.86 0 234.84 834.34 3.3 ·10−37

HR 3677r 8.86 0 8.94 0.15 0.85
HR 4523 81 15.3 3.52 4.88 1.8 ·10−6 4.81 0.64 0.075
HR 4979 73 14.6 4.09 5.17 0.0011 4.84 -1.55 0.0015
α Cen A 121 14.4 3.37 121.23 0 11.32 133.94 0
α Cen Ar 2.90 0.98 2.92 -0.01 0.96
α Cen B 93 14.4 3.69 250.44 0 17.33 -159.23 0
α Cen Br 4.71 0.00015 4.73 -0.05 0.85
GJ 570 A 68 12.0 2.72 5.44 4.2 ·10−25 3.85 -3.01 2 ·10−11

HR 6416 76 14.5 4.09 11.19 0 4.07 9.40 1.4 ·10−33

HR 6416r 3.89 0.7 3.92 0.07 0.81
HR 6998 63 14.3 4.92 3.47 1 3.49 -0.53 0.57
HR 7703 56 13.2 3.21 4.77 1 ·10−6 2.45 3.49 7.4 ·10−17

HR 7703r 2.40 1 2.42 0.01 0.98
ϕ 2 Pav 87 14.8 6.10 7.16 0.013 7.19 0.08 0.71
HR 8323 47 12.8 4.26 3.96 0.73 3.93 -0.50 0.22
ε Ind A 99 15.7 2.66 5.45 2.6 ·10−39 3.67 2.52 3.2 ·10−18

HR 8501 77 14.8 5.88 20.29 0 5.01 17.15 0
HR 8501r 4.96 0.97 4.98 0.17 0.61
HR 8883 45 13.3 6.43 62.49 0 62.82 -6.49 0.46
HR 8883r 29.94 0 30.30 0.13 0.94
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Table 4.5: Continuation of Table 4.4.

Star rmssin Psin FAP rmsKep PKep FAP
[m/s] [d] [m/s] [d]

ζ Tuc 5.09 1.60 1 4.05 1.95 2.9 ·10−5

β Hyi 3.65 1.00 7.6 ·10−8 3.42 1.00 2 ·10−9

HR 209 7.49 1.24 0.0036 6.58 3.17 9.2 ·10−5

ν Phe 4.90 1.98 0.58 4.62 1.48 0.11
HR 506 7.07 963.01 9 ·10−12 7.06 962.63 2.6 ·10−10

HR 506r 5.47 2.43 0.059 4.93 1.87 0.0047
τ Cet 2.74 268.00 3.2 ·10−20 2.27 5295.54 3.1 ·10−35

τ Cet13 2.59 30.57 0.023 0.00 0.00 0
κ For 8.56 >30 yr 7.3 ·10−138 4.27 9706.51 2.6 ·10−154

κ Forr 3.69 2084.67 0.57 3.54 3.11 0.2
ι Hor 14.59 307.09 3.6 ·10−43 11.31 306.94 3.2 ·10−57

ι Horr 9.43 5.71 3.6 ·10−8 9.15 7.95 6.5 ·10−9

α For 4.82 >30 yr 1.1 ·10−27 4.76 7652.36 4.4 ·10−26

α Forr 4.08 345.29 0.053 4.04 99.73 0.14
ζ 1 Ret 8.77 426.82 0.0016 7.52 21.41 3.2 ·10−5

ζ 2 Ret 6.80 1.23 1 5.88 1.01 0.005
ε Eri 7.20 6.30 0.0054 6.47 1.49 2.8 ·10−5

δ Eri 3.01 2.39 0.69 2.68 1.70 0.014
α Men 2.93 1.02 0.19 2.71 9.57 0.00066
HR 2400 108.05 5859.67 6 ·10−26 5.83 9494.06 8.5 ·10−113

HR 2400r 5.25 1.33 1 4.47 6.29 0.0032
HR 2667 2.92 3.49 0.81 2.78 1.01 0.12
HR 3259 4.62 1.12 0.009 4.13 2.25 0.00016
HR 3677 32.89 >30 yr 4.6 ·10−79 9.17 >30 yr 1.9 ·10−104

HR 3677r 6.14 8.79 3.4 ·10−6 5.37 62.18 4.2 ·10−8

HR 4523 4.46 1.44 0.87 3.31 5.07 5.2 ·10−9

HR 4979 4.36 1.34 0.02 3.76 1.33 1 ·10−5

α Cen A 3.35 >30 yr 3.2 ·10−178 2.95 >30 yr 5.5 ·10−180

α Cen Ar 2.61 3.97 0.0079 2.51 3.97 0.00073
α Cen B 4.87 >30 yr 4.7 ·10−148 4.82 >30 yr 8.6 ·10−144

α Cen Br 4.10 1.01 0.011 3.71 387.95 1.9 ·10−5

GJ 570 A 3.87 >30 yr 8.3 ·10−7 3.69 2444.42 6.3 ·10−7

HR 6416 3.95 >30 yr 1.6 ·10−29 4.01 >30 yr 4.1 ·10−27

HR 6416r 3.66 13.49 1 3.31 1.22 0.12
HR 6998 3.09 3.47 0.9 2.91 717.43 0.33
HR 7703 2.45 >30 yr 2.8 ·10−12 2.39 5690.56 2.7 ·10−11

HR 7703r 2.10 2.38 0.84 1.83 1.34 0.017
ϕ 2 Pav 6.54 1.90 0.71 6.25 4.64 0.16
HR 8323 3.29 1.38 0.56 2.80 1.93 0.0087
ε Ind A 3.57 3827.54 1.1 ·10−14 3.49 1969.69 3.9 ·10−14

HR 8501 5.05 >30 yr 6.6 ·10−41 5.01 6704.59 8.2 ·10−39

HR 8501r 4.46 1.47 0.61 4.24 2.17 0.14
HR 8883 30.78 7.60 9.2 ·10−10 25.65 13.08 2.5 ·10−11

HR 8883r 18.01 3.00 2.7 ·10−6 15.84 1.19 3.4 ·10−7

Listed are the number of binned observations Nbin, the combined time baseline T , the mean combined
noise term σ (including jitter), the combined weighted rms of the time series, the χ2-probability for
fitting a constant, and the false alarm probabilities (FAP) for the other tests. Also listed are the weighted
scatter of the residuals (rmsslope, rmssin, rmsKep) and some best-fitting parameters (slope and the periods
Psin and PKep).
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Table 4.6: Information about wide companions. Listed are separation, period estimate, references, and
our estimates for minimum masses Mmin from measured slopes via Eq. (4.5). Minimum masses in brack-
ets were derived from non-significant trends.

Star Companion ρ ρ P Ref. Mmin further companions
[′′] [AU] [yr] [MJup]

α For GJ 127 B (G7V) 4.4 62 314 [BP, H, P] 236
α Men HD 43834 B (M3.5) 3.05 31 [E] (4)
HR 2667 GJ 9223 B (K0V) 20.5 332 [F, WD] (6)
HR 4523 GJ 442 B (M4V) 25.4 234 [P] (181)
GJ 570 A GJ 570 BC (M1.5V+M3V) 24.7 146 [B] 358 GJ 570 D (T, 258.′′3)
HR 6416 GJ 666 B (M0V) 10.4 92 550 [LH, P] 432 GJ 666 C (M6.5V, 41.′′8)

GJ 666 D (M7V, 40.′′7)
HR 7703 GJ 783 B (M3.5) 7.1 43 [P] 35
ε Ind A GJ 845 Bab (T1+T6) 402.3 1459 [S] 29920
HR 8501 GJ 853 B (V < 10 mag) 2.5–3.4 41 [M, WD] 163

References: [BP] Baize & Petit (1989), [B] Burgasser et al. (2000), [E] Eggenberger et al. (2007), [F]
Favata et al. (1997), [H] Heintz (1978), [LH] Luyten & Hughes (1980), [M] Mason et al. (2001), [P]
Poveda et al. (1994), [S] Scholz et al. (2003), [WD] Worley & Douglass (1997).

4.4.2 Long-term trends

Because potential planets or companions can have orbital periods much longer than our observations,
these objects may betray themselves by a trend in the RVs. We searched for trends by fitting a slope to
the data and derived its significance via the fit improvement with respect to the constant model (previous
Sect.) via

Fslope = (N −4)
χ2

constant −χ2
slope

χ2
slope

or when expressed with unbiased weighted variances

Fslope =
(N −3) rms2

constant − (N −4) rms2
slope

rms2
slope

.

The associated probability for this F-value follows a F1,N−4-distribution (4 parameters: 1 slope, 3
zero points). Again Table 4.4 summarises the test for long-term trends. When adopting a false alarm
probability threshold of < 10−3 fitting a slope improves significantly the rms of all binaries (κ For,
α For, HR 2400, HR 3677, α Cen A, α Cen B, HR 6416, HR 7703, and HR 8501) as well as that of
β Hyi, GJ 570 A, and ε Ind A. We note that for β Hyi, α For, GJ 570 A, HR 6416, HR 7703, ε Ind A, and
HR 8501 the trend is a sufficient model (regarding sinusoid and Keplerian fit, see next Section), because
of the smaller FAP or unbiased weighted rms. For these stars the trend is depicted in Figs. 4.12–4.16.

Some of our stars have known wide visual companions with a known separation ρ listed in Table 4.6.
Whether these objects are able to cause the observed trend, can be verified by the estimate (r̈A = G mB

r2 )

mB ≥ |z̈A|r2

G
≥ |z̈A|ρ2

G
= 5.6 ·10−3MJup

|z̈A|
m/s/yr

( ρ
AU

)2
(4.5)

with the radial acceleration |z̈A| < r̈A of the observed component A and the projected separation ρ < r
between both components. For comparison, Jupiter at 5.2 AU can accelerate the Sun by 6.6 m/s/yr. Ta-
ble 4.6 shows that the minimum companion masses derived from the measured slopes are below 0.5 M⊙
for α For, GJ 570 A, HR 6416, HR 7703, and HR 8501. These masses are in agreement with the masses
as expected from the spectral type of their companions. However, ε Ind B (112 MJup, King et al. 2010)
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is too far from ε Ind A. It can induce only an acceleration of 0.009 m/s/yr and hence cannot explain the
measured trend.

The other possibility for a trend is an unknown and unseen companion. Whether the strength and the
long duration of a trend is still compatible with a planetary companion, can be estimated more conve-
niently, when Eq. (4.5) is expressed in terms of the orbital period P which is also unknown but has to
be (for circular orbits) at least twice as large as the time span of observations T . With Kepler’s 3rd law
a3

P2 = G M+m
4π2 , Eq. (4.5) can be written as

mB ≥ G−1/3|z̈|
(

P
2π

)4/3

(MA +mB)2/3

= 5.6 ·10−3MJup
|z̈|

m/s/yr

(
P
yr

)4/3 (
MA +mB

M⊙

)2/3

(4.6)

For ε Ind A we find its companion to have msin i & 1.11MJup for P > 30 yr. The trend for ε Ind A
originally announced by Endl et al. (2002) is probably of highest interest since it might be caused by a
planet. The common slope of 2.5 m/s/yr is predominantly based on the more precise HARPS data. This
trend improves the individual rms of the LC and VLC only slightly (see Table 4.11), however the rms for
both data sets is close to or below the stated precision. The scatter of the VLC data is even only 4.5 m/s,
making it the most precise star in the VLC data set14. In the overall picture the trend seems to be present
for the whole observation. The fit spreads the offset between LC and VLC to -7.0 m/s (Table 4.13, visible
as the jump in the fit in Fig. 4.16, η = 0.91), i.e. is consistent with our physically estimated offset.

For β Hyi Endl et al. (2002) announced a trend of 7 m/s/yr with a remaining scatter of 19 m/s. Here
the best common trend is only 2.13 m/s/yr depicted with a black solid line in Fig. 4.12 (plus the secular
acceleration of 0.86 m/s). The scatter around the HARPS data decreases to only 2.9 m/s. However, the
trend increases the VLC scatter from 7.4 m/s to 9.5 m/s (see Table 4.11) and the fitted LC-VLC offset
departs by 2.7σ (-21 m/s, Table 4.13) from the measured offset. Thus, it is ambiguous whether the trend
is steady.

4.4.3 Search for Periodicities and Keplerian orbits

To search for the best-fitting sinusoidal and Keplerian orbits, we employed the generalised Lomb-Scargle
(GLS) algorithm described in Zechmeister & Kürster (2009). It was adapted to treat all three data sets
with different offsets and also incorporates the weak coupling described before. Searching for sine waves
is a robust method to find periodicities and orbits with low eccentricities, while for highly eccentric orbits
the Keplerian model should be applied.

Figures 4.4–4.7 shows the periodograms for some of the stars discussed here. The periodograms for
the rest of the stars are available in Sect. 4.8. The periodograms are normalised as

p =
χ2

constant −χ2
sin

χ2
constant

and pKep =
χ2

constant −χ2
Kep

χ2
constant

.

involving the χ2 of the constant, sinusoidal, and Keplerian model, respectively. Analogous to Cumming
et al. 2008 and Zechmeister & Kürster (2009), we calculated the probabilities of the power values for the
best-fitting sinusoid and Keplerian orbit (pbest and pKep,best) via

Prob(p > pbest) = (1− pbest)
N−5

2 and

Prob(pKep > pKep,best) = (1+ N−7
2 pKep,best)(1− pKep,best)

N−7
2 ,

14ε Ind A has the spectral type K which has numerous stellar lines (high quality factor Q, Bouchy et al. 2001) allowing more
precise RV measurements.
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Figure 4.4: GLS (top) and Keplerian (bottom) periodogram for HR 2667 which is constant to 3.1 m/s.
The horizontal lines mark the 10−2, 10−3, and 10−4 false alarm probabilities (FAP).
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Figure 4.5: GLS periodogram for HR 3259. The vertical arrows indicate the periods for the three planets
announced by Lovis et al. (2006).

respectively. Compared to the probility functions given by these authors which account for one offset,
here are slight modifications in the equations (numerator in the fractional terms decreased by 2) arising
from the three zero points, i.e. two more free parameters15.

The final false alarm probability (FAP) for the period search accounts for the number of independent
frequencies M with the simple estimate M ≈ f T (Cumming, 2004), i.e. the frequency range f and the
time baseline T , and is given by

FAP = 1− [1−Prob(p > pbest)]M

15The corresponding normalisation as z =
(χ2

constant −χ2)/(ν −νconstant)
χ2

best/(N −ν)
follows a F2,N−5 and F4,N−7-distribution, respec-

tively.
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Figure 4.6: GLS (top) and Keplerian (bottom) periodogram for ε Eri. There is no significant power at
the period of the putative planet ε Eri b (P = 2500 d).
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Figure 4.7: GLS periodogram for ζ 1 Ret.

and can be approximated by FAP ≈ M ·Prob(p > pbest) for FAP ≪ 1. Since our frequency search interval
ranges from 0 to 1 d−1, we have typically M ∼ 5500 for a 15 year time baseline.

Table 4.4 summarises the formal best-fitting sinusoidal and Keplerian periods (Psin and PKep) found
by the periodograms along with their residual weighted rms and FAP. Our approach recovers all stars
that exhibit long-term trends emulated by long periods and generally decreases the rms down to a few
m/s.

We identify for ι Hor and HR 506 the same periods that were previously announced as planetary
signals (Kürster et al., 2000, Mayor et al., 2003). For both stars we derive refined orbital solutions in the
next section.

HR 3259: For HR 3259 Lovis et al. (2006) reported three Neptune-mass planets with periods (ampli-
tudes) of 8.667 d (3.51 m/s), 31.56 d (2.66 m/s), and 197 d (2.20 m/s). We stress that our HARPS
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data set is complementary to the HARPS GTO programme and that we see also excess power at
these periods (Fig. 4.5). The corresponding peak heights are in the same order as suggested by
the given amplitudes. Although these peaks do not reach our FAP threshold, they are compatible
of the published periods. However, while 74 data points were available to Lovis et al. (2006), we
have only 18 binned HARPS data points and considerable spectral leakage (aliasing). The best-
fitting period of 1.1235 d listed in Table 4.4 with a FAP<1% can be shown to be an alias to 8.66 d:
The one-day alias of 1.1235 d is 8.871 d ( 1

8.871 = 1
0.9972 −

1
1.1235 , where we used the sidereal day

23h56m=0.9972 d). The 8.871 d period has a higher power in our periodogram than the nearby
8.66 d period, moreover both are related by one-year aliasing ( 1

8.66 = 1
8.871 + 1

365.2422 ).

ε Eri: In the periodogram for ε Eri (Fig. 4.6) we cannot find any evidence for the long-period planet
(P=2500 d) suggested by Hatzes et al. (2000) whose orbital solution is plotted in Fig. 4.13 for
comparison. ε Eri is an active star and has a stellar rotation period of 11.2 d (Fröhlich, 2007). On a
short time scale of 86 min its variability is 0.88 m/s (Table 4.10), while the long term jitter estimate
is 3.6 m/s (Table 4.10). Our best-fitting sine function has a period of 6.3 d, reduces the scatter from
8.6 m/s to only 7.2 m/s, and is not significant.

β Hyi: The 1.00 d period (more precisely 1.00026 d) tabulated for β Hyi is a one-day alias of a 4500 d
(12.3 yr) period which the second highest peak in the periodogram ( 1

4500 ≃ 1
1 −

1
1.00026 ). We plot

this long period with a grey dashed line in Fig. 4.12. This period matches that of a Jupiter analogue,
while the amplitude of 7.5 m/s results in a formal minimum mass of 0.65 MJup. Compared to the
trend in the previous section the fitted LC-VLC offset is less discrepant (-6.6 m/s), but the sine fit
is still not supported by the VLC data, because their scatter increases from 7.3 m/s to 8.3 m/s.

ζ 1 Ret: Even though the best-fitting sinusoidal period of P=427 d for the star ζ 1 Ret has a significance
below our chosen threshold of 10−3 (Fig. 4.7), we display the fit (including the secular acceleration
of 0.61 m/s) in Fig. 4.13. The relatively large scatter of 12.0 m/s is indicative of excess variability.
Also the residuals of the sine fit have a large scatter of 8.3 m/s. Both cannot be explained only by
the jitter estimate of 4.0 m/s for ζ 1 Ret which is a quite high value within our sample. Multiple
planetary signals might be an explanation. More observations are needed to clarify this.

HR 8883: The period of 7.6 d found for the giant HR 8883 does only improve the HARPS rms, but
not the LC and VLC rms (Table 4.11). Endl et al. (2002) found strong Ca II H&K emission in a
FEROS spectrum (cf. SHK = 0.492 in Table 4.10) and mentioned the high X-ray luminosity. Hence
the variations for this star might be intrinsic to the giant (rotation, solar-like oscillations).

One should finally look at the column in Table 4.4 which lists the rms after fitting a Keplerian orbit. For
most of stars the rms is only a few m/s.

4.4.4 Orbital solutions

For the refinement of the orbital parameters and the error estimation we used the program GaussFit
(Jefferys et al., 1988) which can solve general nonlinear fit-problems by weighted least squares and
robust estimation. As initial guess we provided the parameters found with the Keplerian periodogram in
the previous section.

The orbital solution for HR 2400 is given in Table 4.7. The companion has a minimum mass of
0.17M⊙ indicating an M dwarf at a separation of 9.6 AU (0.′′26). Hence, HR 2400 is a single-lined
spectroscopic binary (SB1). Figure 4.17 displays the RV residuals for HR 2400 along with four other
binaries that are discussed in the following.

In our analysis we recovered the planetary signal seen for ι Hor by Kürster et al. (2000). We refined
the orbital parameters with our data sets and involved also the AAT (Butler et al., 2006) and CORALIE
data (Naef et al., 2001) as shown in Fig. 4.8. For these two data sets the jitter estimate was added to the
measurements error. Due to the activity of the star the residuals have a high scatter. The orbital parameters
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Figure 4.8: (Left) RV time series for ι Hor combined with AAT and CORALIE data. (Right) RV phase
folded to the period of P = 307 d and the residuals (bottom).

are listed in Table 4.8. The orbital period of 307 d is different from the rotation period of ∼8 d and the
magnetic activity cycle of ∼1.6 yr (Metcalfe et al., 2010) (see also Sect. 4.4.5).

Also for HR 506 do we combine our observations with AAT data (Butler et al., 2006) and CORALIE
data (Mayor et al.)5 to fit the orbit. Because more cycles have been covered, our combined solution
gives a more precise period compared to the solutions given by the other authors (P = (1003 ± 56) d,
e = 0.16±0.22 and P = (1040 ± 37) d, e = 0.18 ± 0.08, respectively). For our three data sets an eccentric
orbit does not fit much better (Table 4.4) and also in the combined solution the eccentricity vanished.
Therefore a circular obit was fitted (e and ω fixed to zero, Table 4.9, Fig. 4.9).

For κ For, α Cen A+B and the giant HR 3677 it is not possible to give a reliable orbital solution
since our measurements cover only a small piece of their orbits. We refer to Pourbaix et al. (2002) for
the orbital solution for α Cen A+B with a period of 80 yr. We would just like to point out that the fitted
trends in Sect. 4.4.2, although obviously not a sufficient model, can be interpreted as a mean acceleration
and that the ratio of these slopes is a measure of the mass ratio MA

MB
= − ṘV A

ṘV B
= 159.2m/s/yr

133.9m/s/yr = 1.189 which

agrees with the value of MA
MB

= 1.105M⊙
0.934M⊙

= 1.183 derived from Pourbaix et al. (2002).

The orbit of the companion to the giant HR 3677 is eccentric indicated by the much lower residu-
als when fitting a Keplerian orbit (9.2 m/s) compared to a circular orbit (33 m/s). Using the slope and
Eq. (4.6) a raw estimate for the minimum companion mass is 0.68 M⊙.

The RVs of κ For descend over the whole time baseline of 14 yr which indicates an orbital period
longer than the estimate of 21 yr given in Endl et al. (2002). The period of 9700 d listed in Table 4.4
(26.6 yr) is not well constrained. However, again with the slope and Eq. (4.6) this period might be used
to assess a minimum mass of 0.32 M⊙ for the companion.
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Figure 4.9: (Right) RV time series for HR 506 combined with AAT and CORALIE data. (Left) RV phase
folded to the period of P = 989 d and the residuals (bottom).

Table 4.7: Orbital parameters for the companion to HR 2400.

Parameter Value
P [d] 9340± 557
K [m/s] 1712± 83
T0 [JD] 2 451 881± 16
ω [◦] 279± 1
e 0.58± 0.01
a [AU] 9.6± 1.1
M sin i [M⊙] 0.17± 0.01
rms [m/s] 5.07

4.4.5 Tests on the residuals of the companion hosting stars

To search for additional companions we repeated the previous tests on the residuals of the binaries and
planet hosting stars. As can be seen from Table 4.4 (objects with index r) the variability is in excess only
for ι Hor and α Cen B and the two giant stars which probably have an underestimated jitter, while the
residual of the rest (HR 506, κ For, α For, HR 2400, α Cen A, HR 6416, HR 7703, and HR 8501) does
not exhibit a significant variability.

For almost all stars we also find no significant trends. Only HR 506 has a marginal significant of trend
-2.53 m/s/yr which however increases the rms of the LC data (from 17.9 m/s to 19.3 m/s, Table 4.11).

Significant periodicities in the residuals are only found for ι Hor, HR 3677, and HR 8883. As already
discussed for the giants, the cause is likely intrinsic to the stars. The same seems to the case for ι Hor.
The periodogram on the residuals for ι Hor (Fig. 4.10) shows power at periods of 5.7 d as well as 8 d.
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Table 4.8: Orbital parameters for the planetary companion to ι Hor.

Parameter Value
P [d] 307.0± 0.3
K [m/s] 63.6± 2.2
T0 [JD] 2 449 117± 7
ω [◦] 39.4± 6.8
e 0.20± 0.03
a [AU] 0.96± 0.05
M sin i [MJup] 2.41± 0.08
rms [m/s] 14.0

Table 4.9: Orbital parameters for the planetary companion to HR 506.

Parameter Value
P [d] 988.8± 8.5
K [m/s] 18.0± 1.0
T0 [JD] 2 450 091± 24
ω [◦] 0 (fixed)
e 0 (fixed)
a [AU] 2.04± 0.24
M sin i [MJup] 0.98± 0.05
rms [m/s] 8.33
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Figure 4.10: GLS periodogram on the residuals for ι Hor.

From the two peaks at 7.94 d and 8.45 d the latter coincides with periodic variations (8.5 d) found in the
SHK index by Metcalfe et al. (2010). Hence these periods are probably due to the rotation of this star.

4.4.6 Detection limits

To demonstrate the sensitivity of our survey, we have calculated for each star conservative 99.9% detec-
tion limits for circular orbits following the method outlined in Zechmeister et al. (2009). As an example,
Fig. 4.11 illustrates the upper mass limit for HR 2667 (one of our most constant stars) showing that we
are approximately sensitive to Jupiter analogues. Because the more precise HARPS data typically cover
only 1500 d, there is a loss of sensitivity for longer periods indicated by a steep increase of the upper
mass limit. The longer time baseline gained with the CES data pushes a bit the limit at longer periods.

The detection limits of the other stars have a qualitatively similar shape to that shown in Fig. 4.11
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Figure 4.11: Detection limit for HR 2667. The cross marks the distance and msin i of a Jupiter analogue
for i = 90◦. The vertical lines indicate the time baseline of the HARPS and all combined measurements,
respectively.

and are available in Sect. 4.9. For one star (the residuals of HR 7703) the upper mass limit is lower than
1 MJup (due to the lower stellar mass of 0.7M⊙). For 12 stars the limit is still lower than 2 MJup and for
27 stars lower than 4 MJup.

4.5 Summary and Conclusion

Our sample consists of three planet hosting stars. These planets are already known and we are able
to trace their periodic RV signals allowing to confirm their reality. The planet hosting stars are ι Hor,
discovered by this survey (Kürster et al., 2000), as well as HR 506 (Mayor et al.)5 and HR 3259 (Lovis
et al., 2006) which even has a system of three planets. However, we have no clear additional planet
detection in our sample, while some promising or controversial cases like β Hyi, ζ 1 Ret, or ε Eri call for
follow-up observations.

Compared to our previous results in Endl et al. (2002), we confirm that:

• κ For, HR 2400, and HR 3677 are SB1 spectroscopic binaries with long periods.

• α For, HR 6416, and HR 8501 exhibits trends consistent with their wide stellar companions.

• ε Ind A has a steady long-term trend still explicable by a planetary companion.

Moreover, we see a trend for HR 7703 and GJ 570 A which can also be explained by the known wide
stellar companion listed in Table 4.6. However, the RV trend of 7 m/s/yr reported for β Hyi is only
2.1 m/s/yr in the combined data set and is not seen in the VLC data. We cannot confirm a linear drift
reported by Eggenberger et al. (2007) for α Men and the planet ε Eri b reported by Hatzes et al. (2000).

Our upper mass limits demonstrate that we are sensitive to Jupiter-mass planets up to 5 AU, i.e.
Jupiter analogues. Although our sample size is too small to provide a meaningful number for the occur-
rence rate of Jupiters, the two Jupiter-mass planets in our sample imply that our results are in agreement
with the planet frequency of other much larger surveys. E.g. from the ELODIE survey Naef et al. (2005)
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estimated a fraction of 7.5± 1.5% for the stars hosting giant planets with periods smaller than 10 yr,
while Cumming et al. (2008) derived a frequency of 12±1.6% from the Keck survey.

The main reason for the limited VLC precision of ∼9 m/s is the short wavelength coverage of only
39 Å. Useful iodine lines cover a total wavelength range of 1000 Å. If this 25 time larger range could
have been used, the extrapolated VLC precision would be 5 times higher, i.e. 1.8 m/s.

The outperforming precision of the active stabilised HARPS spectrograph is mostly due to the large
wavelength coverage. The higher resolution of the CES+VLC is not necessarily an advantage because
the stellar lines are nearly resolved already at the lower resolution of HARPS, i.e. they become broader
but not sharper and therefore provide not much more RV information16. Nevertheless the CES data are
valuable for extending the time baseline to 15 years.

The problem of combining long-term precision RV data from different instruments complicates the
analysis. We could derive the zero point offset between LC and VLC only with a limited precision which
leads to a loss of sensitivity for trends and long periods. However, this problem can occur in long-term
surveys quite frequently as spectrographs receive upgrades or survey projects are transferred to new
instruments. Long-term access to the same instrument is therefore important.

While the RV method probes the inner region of the stellar environment, the outer regions can be
explored for planets with direct imaging. Since both methods complement each other, their combination
leads to a more complete picture about the existence and nature of planets around stars. An example
is ε Ind A, where despite the high imaging sensitivity by Janson et al. (2009) the non-detection put
constraints to the companion which induces the observed RV trend of 2.5 m/s/yr. Hence the results and
detection limits from our survey can be valuable for other campaigns which target these bright stars.

Some of our nearby and bright stars are also the subject of projects searching and studying surround-
ing debris disks. Structures in these disks permit conclusions about the presence of outer planets. E.g.
the HERSCHEL satellite has resolved exo-Kuiper belts around ζ 2 Ret (Eiroa et al., 2010) and around
HR 506 (q1 Eri, Liseau et al., 2010). In the case of the RV planet-hosting star HR 506, the structure of a
ring at 35-40 AU provides a hint for another planet. Similarly, the structure of the known debris disk of
ε Eri suggests an outer planet (Quillen & Thorndike, 2002). But then for HR 8501 that has an RV trend
likely due to its wide stellar companion, Eiroa et al. (2010) exclude a cold debris disk.

16The thermal line broadening of a line with frequency f is given by

∆ f
f

=

√
8ln2

kT
mc2 =

1
1.4 ·106

√
T/K

m/amu

and depends on the temperature T and the atomic/molecular mass m. Therefore resolving hydrogen lines (mH = 1 amu) in a
solar-like star (T = 6000 K) requires a resolution of R = λ

∆λ ≈ 18000 and for iron lines (mFe = 56 amu) R = 135000. A higher
resolution as provided by the CES leads to an oversampling or stretching of the lines but does not resolve new lines or sharper
features which would improve the RV measurements. Contrariwise, for iodine gas (T = 323 K, mI2 = 154 amu) the thermal line
broadening effect corresponds to R = 2400000.
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4.6 Plots of all radial velocity time series
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Figure 4.12: Radial velocity time series (unbinned data). The error bars depict the internal measurement
errors ∆RVi, i.e. not including jitter. LC (green open circles) and VLC (blue open diamonds) data are dis-
played with their measured offsets. Jumps in the curves indicates the difference between the measured
(Sect. 4.3.5) and fitted (Sect. 4.4) offset. HARPS data are in red filled circles. The solid black lines indi-
cate significant models, while gray dashed lines illustrate less or non-significant alternative models. All
models include secular acceleration. Model curves are shown for β Hyi (trend and long-period sinusoid,
see text for discussion), and HR 506 (sinusoid).
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Figure 4.13: Radial velocities. Continuation of Fig. 4.12. Model curves are shown for κ For (Keplerian),
ι Hor (Keplerian), α For (trend), and ζ 1 Ret (sinusoid). The Keplerian orbit for ε Eri taken from Hatzes
et al. (2000) is not significant in this work.
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Figure 4.14: Radial velocities. Continuation of Figs. 4.12 and 4.13. Model curves are shown for HR 2400
(Keplerian) and HR 3677 (Keplerian).
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Figure 4.15: Radial velocities. Continuation of Figs. 4.12–4.14. Model curves are shown for α Cen A
and α Cen B (Keplerian orbit from Pourbaix et al. 2002), GJ 570 A (trend), and HR 6416 (trend).
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Figure 4.16: Radial velocities. Continuation of Figs. 4.12–4.15. Model curves are shown for HR 7703
(trend), ε Ind A (constant, i.e. only secular acceleration of 1.86 m/s/yr, and trend), and HR 8501 (trend).
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Figure 4.17: Residual RVs (binned) for the spectroscopic binaries.
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4.7 Accompanying Tables

Table 4.10: Jitter estimation. The time scales τ were used for the computation of σjit (which may not
cover the real jitter time scales in all cases). The jitter in the last column was derived from B-V (Perryman
et al., 1997) and the mean activity index SHK ([H] Henry et al. 1996, [G] Gray et al. 2006, [W] Wright
et al. 2004) as described in Isaacson & Fischer (2010).

Star σjit [m/s] τ [min] B-V [mag] SHK σjit [m/s]
ζ Tuc 1.73 38.3 0.576 0.179 [H] 2.89
β Hyi 2.33 109.9 0.618 0.158 [H] 2.48
HR 209 0.69 9.9 0.635 0.279 [H] 4.57
ν Phe 1.11 8.9 0.571 0.161 [H] 2.58
HR 506 1.07 7.8 0.551 0.217 [G] 3.58
τ Cet 1.12 90.8 0.727 0.171 [H] 2.19
κ For 1.36 19.2 0.608 0.158 [G] 2.49
ι Hor 1.39 112.5 0.561 0.225 [H] 3.71
α For 2.25 17.1 0.543 0.162 [G] 2.62
ζ 1 Ret 0.74 11.1 0.641 0.245 [H] 3.97
ζ 2 Ret 0.87 9.3 0.600 0.196 [H] 3.15
ε Eri 0.88 86.5 0.881 0.483 [H] 3.59
δ Eri 1.28 21.3 0.915 0.129 [H] 1.87
α Men 2.63 67.4 0.714 0.175 [H] 2.21
HR 2400 2.05 17.5 0.534 0.146 [G] 2.35
HR 2667 0.98 11.8 0.624 0.169 [H] 2.66
HR 3259 0.67 22.0 0.754 0.167 [G] 2.17
HR 3677 0.83 13.1 0.827 - 2.10
HR 4523 3.84 70.2 0.664 0.168 [H] 2.61
HR 4979 1.74 40.5 0.693 0.153 [H] 2.34
α Cen A 2.17 111.6 0.710 0.162 [H] 2.15
α Cen B 0.79 90.5 0.900 0.209 [H] 2.27
GJ 570 A 0.61 21.3 1.024 0.709 [H] 1.60
HR 6416 0.69 38.4 0.764 0.179 [H] 2.23
HR 6998 0.61 20.5 0.673 0.181 [H] 2.84
HR 7703 0.66 12.6 0.868 0.180 [H] 2.18
ϕ 2 Pav 1.45 7.0 0.544 0.177 [G] 2.88
HR 8323 0.87 35.3 0.601 0.192 [H] 3.09
ε Ind A 0.73 55.6 1.056 0.668 [H] 1.60
HR 8501 0.94 9.2 0.614 0.181 [H] 2.88
HR 8883 1.48 7.6 0.817 0.492 [W] 3.69
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Table 4.11: Residual rms detailed for each instrument resulting from the joint analysis for fitting a
constant, slope, sinusoid, and Keplerian orbit.

Star rmsconstant [m/s] rmsslope [m/s]
LC VLC HARPS LC VLC HARPS

ζ Tuc 17.88 7.30 2.66 17.88 7.54 2.61
β Hyi 19.01 7.37 3.91 19.11 9.45 2.92
HR 209 15.80 9.82 8.69 15.71 9.75 8.41
ν Phe 15.78 9.72 3.12 15.84 9.94 2.92
HR 506 29.87 18.96 13.08 29.95 17.67 13.05
HR 506r 17.92 14.25 5.56 19.32 13.46 4.45
τ Cet 10.93 7.71 3.37 11.00 7.56 3.03
τ Cet13 10.93 7.71 2.47 10.96 7.85 2.40
κ For 867.88 1329.45 674.70 247.93 62.38 21.61
κ Forr 15.44 9.55 2.66 15.17 9.53 2.66
ι Hor 50.50 36.89 27.72 51.18 37.33 27.62
ι Horr 30.17 18.73 8.47 29.09 18.89 8.46
α For 48.76 27.08 11.32 31.67 12.17 2.93
α Forr 30.83 11.97 2.97 30.84 11.96 2.97
ζ 1 Ret 14.80 14.48 11.35 13.69 16.28 10.13
ζ 2 Ret 19.78 9.63 2.83 20.04 9.56 2.42
ε Eri 13.61 9.88 7.29 13.68 10.00 7.24
δ Eri 12.44 7.24 2.03 12.44 7.17 2.01
α Men 9.84 7.68 2.56 9.91 6.61 2.43
HR 2400 672.81 745.01 224.69 804.82 898.48 119.96
HR 2400r 30.30 16.46 2.47 29.79 16.02 2.32
HR 2667 13.28 6.38 1.44 13.28 6.38 1.44
HR 3259 16.23 8.30 3.95 16.31 8.53 3.80
HR 3677 795.89 1354.55 963.87 1055.50 368.63 149.46
HR 3677r 16.19 12.12 8.20 16.17 12.05 8.20
HR 4523 13.56 6.07 4.35 13.92 5.96 4.21
HR 4979 11.50 8.86 4.03 10.91 10.88 3.40
α Cen A 159.66 247.40 112.48 43.95 15.92 6.87
α Cen Ar 9.46 5.81 2.07 9.46 5.82 2.07
α Cen B 204.73 264.57 248.44 54.71 16.69 8.83
α Cen Br 10.78 7.91 3.49 10.77 7.97 3.49
GJ 570 A 5.51 9.93 4.87 5.75 8.10 3.21
HR 6416 23.10 24.35 8.69 13.45 9.69 1.68
HR 6416r 13.14 9.26 1.56 13.14 9.24 1.56
HR 6998 13.84 9.91 1.79 13.87 9.67 1.80
HR 7703 10.03 7.88 4.24 8.59 4.86 1.73
HR 7703r 8.53 5.06 1.67 8.53 5.06 1.67
ϕ 2 Pav 30.76 21.10 3.71 30.78 21.19 3.68
HR 8323 10.76 10.64 2.94 10.81 10.81 2.82
ε Ind A 10.42 4.97 5.06 10.04 4.48 3.02
HR 8501 42.80 46.91 17.28 21.18 9.70 2.73
HR 8501r 21.39 9.06 2.69 21.34 9.07 2.69
HR 8883 64.92 73.35 60.06 63.36 72.14 59.70
HR 8883r 67.39 66.80 26.53 67.38 66.97 26.52
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Table 4.12: Continuation of Table 4.11

Star rmssine [m/s] rmsKep [m/s]
LC VLC HARPS LC VLC HARPS

ζ Tuc 16.91 7.03 1.99 11.61 7.24 1.90
β Hyi 19.59 8.29 2.56 18.76 7.99 2.30
HR 209 14.07 8.39 5.81 16.46 7.24 3.56
ν Phe 14.66 8.40 2.42 12.87 8.78 2.36
HR 506 18.34 14.83 5.56 18.04 15.11 5.37
HR 506r 16.63 13.97 3.78 15.67 12.18 3.20
τ Cet 10.93 8.36 2.51 10.68 7.79 2.00
τ Cet13 10.67 7.45 2.21 11.61 7.24 1.90
κ For 30.29 33.23 3.79 15.62 10.01 2.66
κ Forr 13.97 8.67 2.28 14.42 8.32 1.87
ι Hor 32.29 18.15 12.62 30.17 18.73 8.47
ι Horr 29.47 18.87 5.81 28.74 16.94 5.73
α For 30.86 12.01 2.97 31.34 11.40 2.76
α Forr 30.71 10.57 1.79 30.89 11.16 1.43
ζ 1 Ret 12.92 13.92 7.62 13.72 14.94 5.74
ζ 2 Ret 18.65 8.85 2.27 14.73 8.73 2.48
ε Eri 14.08 9.30 4.93 12.54 10.28 3.67
δ Eri 11.56 6.83 1.39 10.69 5.98 1.00
α Men 9.65 7.40 2.21 9.95 7.32 1.84
HR 2400 311.69 408.94 74.33 30.94 17.30 2.47
HR 2400r 29.66 16.46 1.75 22.05 15.37 1.92
HR 2667 12.62 6.33 0.95 11.49 4.83 1.29
HR 3259 15.67 7.61 2.13 11.15 7.40 2.48
HR 3677 139.32 79.54 18.33 16.28 12.17 8.18
HR 3677r 16.37 13.92 4.76 15.18 12.57 3.92
HR 4523 13.41 6.31 3.79 14.12 5.18 2.28
HR 4979 11.88 8.72 2.64 9.13 9.05 2.27
α Cen A 10.52 7.48 2.35 9.46 5.81 2.07
α Cen Ar 9.33 5.75 1.60 9.22 6.00 1.40
α Cen B 11.03 9.09 3.45 10.78 7.93 3.49
α Cen Br 10.33 6.65 2.75 7.34 6.84 2.83
GJ 570 A 5.54 8.49 3.15 5.61 8.53 2.84
HR 6416 13.15 9.27 1.56 13.14 9.27 1.56
HR 6416r 12.41 8.86 1.25 10.96 6.16 1.58
HR 6998 13.48 8.83 1.10 12.12 8.96 0.99
HR 7703 8.53 5.06 1.67 8.32 4.78 1.59
HR 7703r 8.23 5.45 1.15 7.82 2.18 1.04
ϕ 2 Pav 29.65 20.74 2.56 27.06 20.35 2.62
HR 8323 10.58 10.51 1.90 9.90 5.71 1.89
ε Ind A 10.14 4.49 2.85 8.64 7.45 2.80
HR 8501 21.47 9.35 2.69 20.78 10.02 2.61
HR 8501r 20.99 8.23 1.69 18.21 8.91 1.97
HR 8883 68.14 68.69 26.53 61.16 70.16 20.58
HR 8883r 66.10 74.01 11.18 69.07 68.86 6.88
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Table 4.13: Offsets cVLC − cLC [m/s] in the fits.

Star const slope sine Kep
ζ Tuc -4.95 -3.78 -5.09 -2.22
β Hyi -9.17 -17.98 -6.63 -9.02
HR 209 5.83 -0.30 4.77 3.29
ν Phe -6.51 -1.81 -6.29 -5.92
HR 506 -8.98 -4.94 -6.95 -7.59
τ Cet -0.73 -5.15 -1.33 0.04
κ For -3006.87 249.64 -26.57 -13.57
ι Hor 8.63 4.45 -3.60 0.28
α For -40.30 -6.73 -2.00 -4.77
ζ 1 Ret -6.09 2.37 -2.09 -6.66
ζ 2 Ret 1.03 -2.07 0.62 3.15
ε Eri 3.04 1.57 1.76 3.12
δ Eri 6.41 4.39 6.59 5.91
α Men 0.49 -3.62 0.68 -0.45
HR 2400 1425.06 1830.99 527.64 -16.08
HR 2667 -0.37 -0.24 -0.29 -0.03
HR 3259 8.42 10.78 7.06 5.79
HR 3677 2317.93 -1896.05 -106.35 -6.59
HR 4523 0.26 -3.26 1.34 0.91
HR 4979 -11.44 -3.97 -12.21 -11.29
α Cen A 660.88 -100.47 -11.33 0.65
α Cen B -861.32 120.52 12.94 4.47
GJ 570 A 0.01 9.86 5.10 1.06
HR 6416 49.09 3.07 -2.96 -2.87
HR 6998 -6.47 -4.51 -5.61 -6.31
HR 7703 19.57 3.04 -0.35 1.01
ϕ 2 Pav -12.28 -12.50 -12.68 -9.96
HR 8323 -3.14 -1.43 -2.65 -1.40
ε Ind A 9.17 -4.80 15.31 9.91
HR 8501 53.79 -6.89 -4.81 -3.26
HR 8883 -13.20 -3.05 -12.08 -17.15
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4.8 Plots of all periodograms
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Figure 4.18: GLS and Keplerian periodgrams.
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Figure 4.19: GLS and Keplerian periodgrams. Continuation of Fig. 4.18.
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Figure 4.20: GLS and Keplerian periodgrams. Continuation of Figs. 4.18 and 4.19.
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Figure 4.21: GLS and Keplerian periodgrams. Continuation of Figs. 4.18–4.20.
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Figure 4.22: GLS and Keplerian periodgrams. Continuation of Figs. 4.18–4.21.
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4.9 Plots of all detection limits
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Figure 4.23: Upper mass limits.
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Figure 4.24: Upper mass limits. Continuation of Fig. 4.23.
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Figure 4.25: Upper mass limits. Continuation of Figs. 4.23 and 4.24.
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Figure 4.26: Upper mass limits. Continuation of Figs. 4.23–4.25.



Chapter 5

Summarising Conclusions

We have generalised the Lomb-Scargle periodogram which is an often used period search algorithm.
The GLS was very helpful in this work. We hope to have established a better standard in the period
analysis and that the GLS finds favour with the whole astronomical community, since it can be also
applied to problems other than planet search. Indeed, it has been already employed in different fields
of astronomy, e.g. to study photometric variable stars, for asteroseismology, or to study X-ray sources.
Even an archaeologist showed interest to analyse palaeoclimatic data with the GLS.

We have analysed and discussed two long-term RV surveys. Unfortunately, we have no new planet
discovery in our two samples of 40 M dwarfs and 30 solar-like stars. For both surveys we do have the
appropriate RV precision, and our conservative detection limits demonstrate the feasibility to discover
habitable terrestrial planets around M dwarfs and Jupiter analogues around solar-like stars with our in-
struments.

The reason for the non-detections in our UVES sample is likely the low frequency of Jupiter-mass
planets around M dwarfs. This was theoretically predicted and seems to be supported by our survey and
by other ongoing ones (e.g. HARPS, HIRES). However, a comparison of the observational results is dif-
ficult, since most of the other groups have not yet published their non-detections, but only the discoveries
from their surveys. Our sample alone would make only low number statistics possible. Similarly, the in-
cidental discovery of a close-in brown dwarf (GJ 1046 B, Kürster et al. 2008) in our UVES sample is
not representative for the frequency of brown dwarfs orbiting around M dwarfs. Indeed, this interesting
object is so far the only close-in brown dwarf found around a single M dwarf1.

Our constant stars can serve as a reference for other surveys. E.g. Bean et al. (2010b) demonstrated
for Barnard’s star and Proxima Centauri a precision of 5 m/s which is remarkable for near-infrared RV
measurements and the used instrumental setup (CRIRES, small wavelength coverage). But there seems
to be potential for improvements, since we know from our survey that these stars are constant to 3 m/s.
Our precision is also fairly comparable with that presented for several M dwarfs from the HIRES sample
(Butler et al., 2009). Recent publications using HARPS and HIRES data show that even a precision of
< 2 m/s is feasible for quiet M dwarfs with current instruments (Mayor et al., 2009a; Vogt et al., 2010).

In our second sample of 30 solar-like stars there are two Jupiter-mass planets which were already
known (Kürster et al., 2000, Mayor et al.) whereas the planet ι Hor b was dicovered in the early stage
of this survey. The corresponding detection rate of ∼7% agrees well with an estimate of 10% for the
frequency of Jupiter-mass planet in the regime of 2–2000 d from the Keck planet search (Cumming et al.,
2008). Taken into account possible long-period candidates, such as ε Ind A, our results do not seem to
contradict the extrapolated frequency of 17-20% for gas giants with in 20 AU (Cumming et al., 2008).
We cannot draw conclusions about the frequency of low mass planets around solar-like star, since our
data sets are not sufficient to detect those planets. Albeit we found traces of the three known Neptun-mass
planet around HR 3259 (Lovis et al., 2006) in our periodgram, their detections was yet not significant.

A successful planet search with radial velocities requires of course high RV precision, a large sample,

1There are only three more close-in brown dwarfs to M dwarfs which however are located in binary systems (Santos et al.,
2002; Irwin et al., 2010; Johnson et al., 2010).
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sufficient observation time, and long-term access to the instruments.

5.1 Outlook

The precision RV method is nowadays a standard technique and will remain an important work horse
in the future. It probes the stellar environment out to a few AU which is complementary to the direct
imaging as well as the transit methods. With the growing time baseline of several large surveys, more
long-period planets should appear in the exoplanet list and follow-up observations of planet-hosting stars
should reveal more planetary systems. These discoveries will be reserved for groups with privileged
access to dedicated instruments.

Among the ESO facilities only three spectrographs (HARPS, UVES, and CRIRES) are able to
achieve a high RV precision. Out of these, only HARPS is a dedicated planet searcher, but the current
scheduling policy (at least three consecutive nights) makes access to this instrument difficult for most
of the astronomers. Therefore, the CARMENES spectrograph (Quirrenbach et al., 2010) for the Calar
Alto 3.5 m telescope is an important facility for the Max Planck Institute for Astronomy (MPIA) to keep
competitive in the field of precision RV planet search. CARMENES is designed as a high-resolution spec-
trograph for near-infrared and optical RV measurements aiming at a 1 m/s precision. As for our UVES
survey, the goal of CARMENES is to search for terrestrial planets in the habitable zones of M dwarfs.
Given the large amount of dedicated observing time (180 nights per year over 5 years), CARMENES can
monitor a large sample (300 M dwarfs) with a considerable number of data points (70 per star). With the
experience from our UVES survey, we find that the concept of CARMENES is well shaped.

Since the CARMENES sample is much larger than our UVES sample, we can expect several detec-
tions and a meaningful estimate for the planet frequency around M dwarfs. Since it becomes evident that
the frequency of Jupiter-mass planets around M dwarfs is low, the CARMENES survey will result in
many non-detections. Our analysis method of Chapter 3 and 4 might then be adapted for these as well.

In the following, we highlight some aspects which are interesting for the further development of the
RV method.

5.1.1 Precision RV measurements in the near-infrared

There is a current trend to observe stars with late spectral types, like M dwarfs, in the infrared and
near-infrared (NIR). The simple reason is that they are much brighter in this wavelength region than
in the optical. Therefore, surveys for these stars can be carried out more efficiently with higher S/N
and/or shorter exposures. Another benefit of the NIR is the lower influence of stellar activity onto the
RVs (Reiners et al., 2010; Barnes et al., 2010). However, the handling of the numerous telluric lines is
complex.

Different methods for wavelength calibration have been investigated. The naturally present telluric
lines are variable to several tens of m/s with the atmospheric conditions. However, a precision of 5 m/s
appears achievable with careful monitoring of the atmospheric conditions and sophisticated modelling of
telluric lines (Figueira et al., 2010; Seifahrt et al., 2010). Other approaches are the Uranium-Neon lamp
(Ramsey et al., 2008, 2010), which has many more lines compared to the ThAr lamp, or a gas cell filled
with ammonia (Bean et al., 2010b) or gas mixtures (Valdivielso et al., 2010), as an analogue to the iodine
cell.

Moreover, NIR-RV may also help to confirm or disprove optical RV planet candidates. Since the
geometric reflex motion of a star does not depend on the wavelength, the measured RV amplitude should
be the same in all wavelength regions, if the cause is a planet. In this context, K giants are interesting
targets, since their long-period RV variations are mostly explained by planet candidates while their long
rotation periods or non-radial pulsations (Hatzes & Cochran, 1999; Hekker et al., 2006) are excluded as
a cause.

When observing in the NIR, we investigate molecular lines, i.e the cooler, outer parts of the stellar
envelope, while in the visual region the deeper regions of the stellar atmosphere are probed through metal
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Table 5.1: Comparison of the calibration sources: ThAr emission lamp, iodine gas absorption cell, Fabry
Perot etalon, and Laser frequency comb (from Murphy et al., 2007)2.

Calibration lines ThAr I2 cell Etalon Comb
From fundamental physics Yes Yes No Yes
Individually unresolved Mostly Yes Possibly Yes
Resolved from each other No No Possibly Possibly
Uniformly spaced No No Yes Yes
Cover optical range Yes No Yes Possibly
Uniform strength No No Possibly Possibly
Long-term stability No Yes No Yes
Maintain object S/N Yes No Yes Yes
Exchangeable Yes Yes Possibly Yes
Easy to use Yes Yes Possibly Possibly
Reasonably low cost Yes Yes Yes Possibly

lines. Hence, by measuring Doppler shifts in the visual and NIR we may learn more about the processes
in stellar atmospheres.

5.1.2 New calibration sources

In the future, it is important to improve the wavelength calibration for high RV precision instruments. As
mentioned in Sects. 1.2.2 and 1.2.3, the two main standard calibration sources, ThAr lamp and iodine cell,
are not optimal. Their precision is limited to ∼1 m/s. However, a much better RV precision is required to
find an Earth analogue, i.e. a 1 M⊕-mass planet at 1 AU distance from a solar-like star. The Earth induces
just an RV amplitude of 9 cm/s to the Sun! The ultimate solution might be the Laser frequency comb
which is potentially capable to provide a calibration precision of 1 cm/s (Murphy et al., 2007). A cm/s
precision also opens the door to study phenomena totally different from exoplanets, e.g. the expansion
of the universe or the variability of physical constants (Pasquini et al., 2010).

The Laser frequency comb is a technique which was awarded with the Nobel Prize in Physics in
2005 and was proposed as a new wavelength calibration source in astronomy (Murphy et al., 2007). It
provides equally and accurately spaced calibration lines and is currently explored as a new wavelength
calibration source for HARPS with a reported calibration precision of 9 cm/s (Wilken et al., 2010).

Table 5.1 lists several properties of an ideal calibration source and compares various calibration
sources. The Laser comb obviously matches these properties best. So far however, the comb requires
an expensive and complex system and covers only a small wavelength range. In the case of HARPS, it
covers just one order of 72 orders (Wilken et al., 2010). The goal for the future will be to stabilise the
construction and to broaden the frequency comb. One technical problem of the comb is the too dense
spacing of the calibration lines which are not resolved by common spectrographs. As a solution Fabry-
Perot cavities are implemented to suppress modes (Murphy et al., 2007; Li et al., 2008).

Frequency combs are also investigated for the near-infrared wavelength regime where appropriate
wavelength calibrators are still missing. A precision of 1 m/s was reported with the astro-comb in the
wavelength region of 7800–8800 Å for the TRES echelle spectrograph (Li et al., 2010).

The Fabry-Perot, which is required for the frequency comb, may receive a revival as a stand-alone
calibration source (Sect. 1.2.4). The Fabry-Perot etalons provides also regulary spaced calibration lines
and is adaptable over a wide wavelength range. It is also considered for HARPS and during one night a
stability of 10 cm/s has been already demonstrated (Wildi et al., 2010). However, how to guarantee the
long-term stability is still an open question. The FPI will surely need a vacuum enclosure and probably
an additional calibration source, e.g. a Fourier transform spectrometer (Sect. 1.2.4), to track instrumental
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drifts.

5.1.3 Stellar noise as the limiting factor?

The higher the precision, the more stars are variable. At a cm/s precision level probably all stars are
intrinsically variable and it becomes more difficult to distinguish these variations from planetary signals.
Stellar jitter is the obstacle in RV planet search. It is caused by oscillations, granulations, and other
surface features (Sect. 4.4). For solar-like stars the noise can range from 1 m/s to several m/s which is
one magnitude larger than the signal of an Earth analogue!

It is not yet clear, if the stellar jitter is a conquerable barrier. It is theoretically possible to detect
amplitudes smaller than the noise. It requires a huge number of data points to get such a periodic signal
significant in the presence of heavy, stochastic noise. New observing strategies propose to take three
10 min exposures, 2 h apart, to average out the oscillations (Dumusque et al., 2010). This already means
tripling the observing time! However, one man’s noise is another man’s signal. Asteroseismologists will
benefit in any case from these efforts and the new RV precision may improve our understanding of surface
phenomena and stellar oscillations.

2Considering erratums in the Table of Murphy et al. (2007), we changed the entry for optical range coverage of the Etalon
from no to yes (see Wildi et al. 2010 for the feasibility) and the entry for the long-term stability of the iodine cell from possibly
to yes.
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