
I N A U G U R A L – D I S S E R TAT I O N

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich–Mathematischen Gesamtfakultät

der

R U P R E C H T– K A R L S – U N I V E R S I T Ä T

H E I D E L B E R G

vorgelegt von

Dipl.–Math. Christian Kirches

aus Kandel in Rheinland–Pfalz

Tag der mündlichen Prüfung

2. November 2010

Fast Numerical Methods for

Mixed–Integer Nonlinear Model–Predictive Control

Gutachter

PROFESSOR DR. DR. H.C. HANS GEORG BOCK

PROFESSOR DR. GERHARD REINELT

iv

Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Untersuchung und Entwicklung numerischer Methoden zur
schnellen Lösung nichtlinearer gemischt–ganzzahliger Probleme der optimalen Steuerung und der
modell–prädiktiven Regelung. Aufbauend auf einer direkten Methode zur optimalen Steuerung und
einer Konvexifizierung und Relaxierung der von ganzzahligen Größen abhängigen Dynamik und Neben-
bedingungen wird dazu ein neuer Algorithmus entwickelt. Dieser ist durch theoretische Resultate
motiviert und beinhaltet eine nichtkonvexe SQP–Methode deren Teilprobleme mittels einer neuen
nichtkonvexen parametrischen Active–Set–Methode gelöst werden. Es werden neue strukturausnutzen-
de Techniken der linearen Algebra entwickelt, um die echtzeitfähige Berechnung von Steuerungsant-
worten zu ermöglichen. Die Anwendbarkeit der entwickelten Methoden wird anhand mehrerer Pro-
blemstellungen gezeigt.

Die vorliegende Arbeit beinhaltet theoretische und algorithmische Neuerungen auf mehreren Gebieten:

• Auf der Grundlage von BOCKs direkter Mehrzielmethode, einer Reformulierung der ganzzahligen
Größen mittels Konvexifizierung und Relaxierung, Rundungsheuristiken, sowie eines Echtzeit-
iterationsschemas wird ein neuer Algorithmus zur gemischt–ganzzahligen nichtlinearen modell–
prädiktiven Regelung entwickelt.

• Für diesen Algorithmus wird eine Verbindung zu inexakten NEWTON–ähnlichen Verfahren her-
gestellt und lokale Kontraktivität — und damit nominelle Stabilität — bei hinreichend kleinem
zeitlichem Abstand der Steuerungsantworten bewiesen.

• Eine Konvexifizierung der von ganzzahligen Steuergrößen abhängigen Pfad- und Punktbedin-
gungen wird vorgeschlagen, welche die Zulässigkeit der gerundeten gemischt–ganzzahligen Lö-
sung garantiert. Die durch diese Umformulierung erhaltenen nichtlinearen Probleme werden
untersucht, und es wird gezeigt, dass sich diese als mathematische Probleme mit verschwinden-
den Nebenbedingungen, sogenannten MPVCs, behandeln lassen. Hierbei handelt es sich um eine
noch junge und anspruchsvolle Klasse nichtkonvexer Probleme.

• Eine SQP–Methode und eine neue parametrische Active–Set–Methode zur Lösung der entstehen-
den nichtkonvexen quadratischen Teilprobleme werden beschrieben. Der letztgenannten liegen
starke Stationaritätsbedingungen für MPVC unter gewissen Regularitätsannahmen zugrunde.
Eine Heuristik zur Verbesserung der erhaltenen stark stationären Punkte bis zu globaler Opti-
malität für die quadratischen Teilprobleme wird vorgestellt.

• Die Verzögerung der Steuerungsantworten des gemischt–ganzzahligen Echtzeititerationssche-
mas — und damit die Stabilität des gesteuerten Systems — wird entscheidend durch die Laufzeit
der Active–Set–Methode bestimmt. Für diese wird eine auf BOCKs direkte Mehrzielmethode aus-
gelegte strukturausnutzende Zerlegung beschrieben. Sie weist eine bei langen Horizonten oder
vielen Steuerungsparametern vorteilhafte Laufzeitkomplexität auf und wird erstmals auf Um-
formulierungen gemischt–ganzzahliger Steuerungsprobleme angewendet.

• Darüber hinaus werden für die beschriebene Zerlegung neue Update–Techniken entwickelt. Sie
ermöglichen die Verbesserung der Laufzeitkomplexität der Active–Set–Methode um eine Ord-
nung.

• Alle entwickelten Algorithmen sind in einem neuen Programmpaket umgesetzt. Es erlaubt die ef-
fiziente Lösung allgemeiner nichtlinearer gemischt–ganzzahliger Probleme der optimalen Steu-
erung und der modell–prädiktiven Regelung mittels der vorgestellten Methoden.

v

vi

Abstract

This thesis aims at the investigation and development of fast numerical methods for nonlinear mixed–
integer optimal control and model–predictive control problems. A new algorithm is developed based
on the direct multiple shooting method for optimal control and on the idea of real–time iterations,
and using a convex reformulation and relaxation of dynamics and constraints of the original predictive
control problem. This algorithm relies on theoretical results and is based on a nonconvex Sequential
Quadratic Programming method and a new active set method for nonconvex parametric quadratic
programming. It achieves real–time capable control feedback though block structured linear algebra
for which we develop new matrix updates techniques. The applicability of the developed methods is
demonstrated on several applications.

This thesis presents novel results and advances over previously established techniques in a number of
areas as follows:

• We develop a new algorithm for mixed–integer nonlinear model–predictive control by combining
BOCK’s direct multiple shooting method, a reformulation based on outer convexification and
relaxation of the integer controls, on rounding schemes, and on a real–time iteration scheme.

• For this new algorithm we establish an interpretation in the framework of inexact NEWTON–type
methods and give a proof of local contractivity assuming an upper bound on the sampling time,
implying nominal stability of this new algorithm.

• We propose a convexification of path constraints directly depending on integer controls that
guarantees feasibility after rounding, and investigate the properties of the obtained nonlinear
programs. We show that these programs can be treated favorably as Mathematical Program with
Vanishing Constraints, a young and challenging class of nonconvex problems.

• We describe a Sequential Quadratic Programming method and develop a new parametric ac-
tive set method for the arising nonconvex quadratic subproblems. This method is based on
strong stationarity conditions for Mathematical Program with Vanishing Constraints under cer-
tain regularity assumptions. We further present a heuristic for improving stationary points of the
nonconvex quadratic subproblems to global optimality.

• The mixed–integer control feedback delay is determined by the computational demand of our
active set method. We describe a block structured factorization that is tailored to BOCK’s direct
multiple shooting method. It has favorable run time complexity for problems with long horizons
or many controls unknowns, as is the case for mixed–integer optimal control problems after
outer convexification.

• We develop new matrix update techniques for this factorization that reduce the run time com-
plexity of all but the first active set iteration by one order.

• All developed algorithms are implemented in a software package that allows for the generic, ef-
ficient solution of nonlinear mixed–integer optimal control and model–predictive control prob-
lems using the developed methods.

vii

viii

Danksagung

Mein tief empfundener Dank gilt meinen Lehrern und Mentoren Professor Dr. Dr. h.c. Hans
Georg Bock, Professor Dr. Gerhard Reinelt, Dr. Sebastian Sager und Dr. Johannes P. Schlöder für
ihre jederzeit hervorragende Unterstützung. Ihr umfangreiches Wissen bildet die unverzicht-
bare Grundlage dieser Dissertation. Durch ihren offenen und herzlichen Umgang sowie die
freundschaftliche und kooperative Atmosphäre in ihren Arbeitsgruppen war meine Arbeit in
den vergangenen drei Jahren ein Vergnügen.

Zahlreiche Mitglieder der Arbeitsgruppe Simulation und Optimierung haben zum Entstehen
und Gelingen dieser Arbeit beigetragen. Unter ihnen möchte ich besonders Jan Albersmeyer,
Dörte Beigel, Chris Hoffmann, Andreas Potschka und Leo Wirsching hervorheben, die bei unzäh-
ligen Tassen Kaffee mit ihren Ideen in vielen Diskussionen am Fortschritt dieser Arbeit beteiligt
waren. Auch Alexander Buchner und Florian Kehrle haben während ihrer Diplomarbeiten in der
Nachwuchsforschungsgruppe Mathematical and Computational Optimization wertvolle Beiträ-
ge geleistet.

Für ihre ausführliche Unterstützung beim Korrekturlesen dieser Arbeit danke ich Sebastian
Sager und Johannes Schlöder. Die Verantwortung für eventuell verbliebene Unzulänglichkeiten
liegt bei mir. Margret Rothfuss und Thomas Klöpfer danke ich herzlich für ihre wertvolle Hilfe
in allen organisatorischen und technischen Belangen.

Die Ruprecht–Karls–Universität Heidelberg, das Steinbeis–Transferzentrum 582 „Simulation und
Optimierung“, die Heidelberger Graduiertenschule der mathematischen und computergestützten
Methoden für die Wissenschaften sowie das 7. Forschungsrahmenprogramm der Europäischen
Union unter Antrag FP7-ICT-2009-4 248940 haben diese Arbeit finanziell unterstützt.

Meinen Eltern Claus und Ulrike sowie meinen Geschwistern Michael und Anja danke ich für
ihre Liebe und Unterstützung, mit der sie mich durch Studium und Doktorarbeit begleitet
haben.

Von Herzen danke ich meiner Freundin Simone Evke für ihre Liebe und ihre Geduld, wenn
ihr Freund einmal wieder nur Dreiecke im Kopf hatte, für ihre Unterstützung und für jeden
gemeinsam erdachten Zukunftsplan.

Ladenburg und Heidelberg, im Juli 2010 Christian Kirches

„Aber in der Beschäftigung selbst Vergnügen finden
— dies ist das Geheimnis des Glücklichen!“

SOPHIE MEREAU

ix

x

Contents

0 Introduction 1

1 The Direct Multiple Shooting Method for Optimal Control 10

1.1 Problem Formulations 10

1.2 Solution Methods for Optimal Control Problems 13

1.3 The Direct Multiple Shooting Method for Optimal Control 18

1.4 Summary 22

2 Mixed–Integer Optimal Control 23

2.1 Problem Formulations 23

2.2 Mixed–Integer Nonlinear Programming 24

2.3 Outer Convexification and Relaxation 30

2.4 Rounding Strategies 37

2.5 Switch Costs 40

2.6 Summary 46

3 Constrained Nonlinear Programming 47

3.1 Constrained Nonlinear Programming 47

3.2 Sequential Quadratic Programming 51

3.3 Derivative Generation 57

3.4 Initial Value Problems and Sensitivity Generation 62

3.5 Summary 67

4 Mixed–Integer Real–Time Iterations 68

4.1 Real–Time Optimal Control 68

4.2 The Real–Time Iteration Scheme 70

4.3 Contractivity of Real–Time Iterations 75

4.4 Mixed–Integer Model Predictive Control 78

4.5 Summary 88

5 Outer Convexification of Constraints 89

5.1 Constraints Depending on Integer Controls 89

5.2 Lack of Constraint Qualification 91

5.3 Mathematical Programs with Vanishing Constraints 97

xi

5.4 An MPVC Lagrangian Framework 100

5.5 Summary 106

6 A Nonconvex Parametric SQP Method 108

6.1 SQP for Nonconvex Programs 108

6.2 Parametric Quadratic Programs 113

6.3 A Primal–Dual Parametric Active Set Strategy 116

6.4 Parametric Quadratic Programming for Nonconvex Problems 124

6.5 Summary 132

7 Linear Algebra for Block Structured QPs 133

7.1 Block Structure 133

7.2 Survey of Existing Methods 136

7.3 A Factorization for Structured KKT Systems with Many Controls 141

7.4 Properties and Extensions 149

7.5 Computational Complexity 152

7.6 Summary 155

8 Updates for the Block Structured Factorization 156

8.1 Matrix Updates Overview 156

8.2 Updating the Block Local Reductions 160

8.3 Modifying the Block Tridiagonal Cholesky Factorization 173

8.4 Summary 180

9 Numerical Results 181

9.1 Mixed–Integer Optimal Control with Switch Costs 182

9.2 Mixed–Integer NMPC Scheme Contractivity 191

9.3 OCPs and NLPs with Vanishing Constraints 202

9.4 Block Structured Factorization and Updates 212

9.5 Application: A Predictive Cruise Controller 224

A Supplementary Material 250

B Implementation 254

B.1 The Multiple–Shooting Real–Time Online Optimization Method 254

B.2 The Block Structured Parametric Quadratic Programming Code 265

Bibliography 269

Nomenclature 285

Figures, Tables, Algorithms, Acronyms 289

xii

0 Introduction

Preface

A dynamic process in the spirit of this work is a naturally occurring or specifically designed
phenomenon whose properties, varying in time, can be observed, measured, and affected by
external manipulation. It is an old and natural question to then ask for a description of the
special way in which such a process should be affected in order to serve an intended purpose.
The development and availability of mathematical methods for the simulation and optimiza-
tion of dynamic processes has had an enormous impact on our lives in the past that until today
continues to rise. An ever growing number of increasingly complex dynamic processes from
various scientific disciplines such as biology, chemistry, economy, engineering, and physics can
be simulated and optimized for various criteria.
Certain features of a dynamic process however make this optimization task harder to conduct
from a mathematical and computational point of view. One such feature is the presence of
controls that may attain one of an only finite selection of different values. One may think here
of a simple switch that either enables or disables a certain part or property of the dynamic
process. As long as this process is running, the decision on whether to turn this switch on or
off can obviously be made afresh at every instant. The question we ask here is this: How to
operate this switch in a way that allows the dynamic process to achieve a certain prescribed
goal, without violating certain other prescribed constraints? Certainly, even if we limit the
number of times the switch may be operated, there are a great many of different possibilities
to consider and it is in general all but clear what an optimal answer might look like. Moreover,
we may find ourselves in a hurry to decide on a switching strategy as the process keeps running
while we ponder on this question. A late decision may prevent the process from reaching the
desired goal. Worse yet, the process may violate critical constraints relevant to our safety.

This doctoral thesis in applied mathematics is meant to be understood as one new step towards
real–time optimal control of dynamic processes that can be affected by both continuous and
discrete controls.

Optimal Control

The optimization of dynamic processes that are in our case described by systems of Ordinary
Differential Equations (ODEs) or Differential Algebraic Equations (DAEs) is referred to as the
discipline of optimal control. For the numerical solution of optimal control problems, direct
methods and in particular simultaneous or all–at–once methods have emerged as the methods
of choice for most practical applications [27, 112]. Amongst them, direct collocation methods
[10, 26, 101] and direct multiple shooting methods [36, 133, 166] are the most prominent
ones. Using a discretization of the infinite–dimensional control space by a finite number of
control parameters, these methods transform the optimal control problem into a large and

1

CHAPTER 0
�

� I N T R O D U C T I O N

possibly structured Nonlinear Program (NLP). Efficient numerical methods are based on the
exploitation of this structure, see chapter 7 of this thesis. We refer to e.g. [133] for Sequential
Quadratic Programming (SQP) type active set methods [100, 169] and e.g. [27] for interior
point methods [91, 113, 154].

Model–Predictive Control

The idea of Model Predictive Control (MPC) is to determine an optimal control at time instant
t0 by solving an optimal control problem on a prediction horizon [t0, t0 + h]. The solution
of this problem depends on an observation or estimate of the actual mode of operation of
the physical process. It yields optimal values for the process controls that are fed back to the
physical process for a short time δt. Meanwhile, a new optimal control problem is solved for
the next prediction horizon [t0+δt, t0+δt+h] that moved forward in time by δt. Continuous
repetition of this scheme amounts to solving under real–time conditions a sequence of optimal
control problems on a moving horizon, based on varying process observations. This opens
up the possibility of reacting to disturbances and unforeseen changes in the behavior of the
physical process.

Linear MPC has over the past decades matured to widespread applicability in a large number
of industrial scenarios. See for example the reviews [77], [170] and the overviews found in
[7], [46], [176] and [216]. It is frequently the case that nonlinear models, derived from first
principles such as fundamental physical, mechanical, or chemical laws, lead to more accurate
models of the actual process under consideration. Overviews over theoretical investigation of
Nonlinear Model Predictive Control (NMPC) can be found in [8, 151, 177] and overview over
nonlinear applications in [146, 170]. The computational speed and reliability of algorithms
for NMPC has seen considerable improvement by major algorithmic developments found e.g.
in [51, 52] for SQP type methods, later transferred to interior point methods in e.g. [223].

Mixed–Integer Optimal Control

Process controls with a finite number of admissible values arise naturally in a large number
of relevant applications. Immediately obvious examples are valves in chemical plants that can
either be open or closed, gear shifts in vehicles that select between several available trans-
mission ratios, or design and operational alternatives, e.g. choosing a vessel or tray to fill
or deplete. Here, a large potential for optimization is found as the combinatorial nature of
the problem frequently eludes engineering intuition, and the vast number of possible modes
of operation is hard to explore in an exhaustive way. The discipline of Mixed–Integer Op-
timal Control (MIOC), also referred to as mixed–logic dynamic optimization or hybrid op-
timal control by different authors, addresses optimal control problems of this structure. A
first application, namely the optimal choice of discrete acceleration in a subway train, has
already been considered in the early eighties [35]. Applications in chemical operations re-
search are ample, see [40, 94, 160, 182, 184, 194], and for vehicle control problems we refer
to e.g. [80, 103, 122, 208]. Mixed–integer control problems in biology can be found e.g. in
[129, 182, 195].

2

I N T R O D U C T I O N
�

� CHAPTER 0

Mixed–Integer Programming

Algorithmic approaches differentiate between state dependent i.e., implicitly defined discrete
decisions, also referred to as implicit switches, and explicitly controllable switches which in
the following are referred to as binary or integer controls. Algorithms and applications for
state dependent switches can be found e.g. in [40, 60, 118, 155, 207].
Several authors are concerned with Mathematical Program with Complementarity Constraints
(MPCC) or Mathematical Program with Equilibrium Constraints (MPEC) reformulations of
time–invariant discrete decisions in optimization and optimal control problems. We refer to
e.g. [16, 172, 173, 192] for problem formulations, numerical methods, and applications.
We will in the following be exclusively concerned with explicitly controllable switches, i.e.,
binary or integer valued control functions that may vary over time. One way of approaching
Mixed–Integer Optimal Control Problems (MIOCPs) is to apply a direct, simultaneous method
in order to obtain a discretized counterpart, a Mixed–Integer Nonlinear Program (MINLP).
The class of MINLPs has been proven NP–hard [78]. Hence, assuming P 6= NP, there exist
MINLP instances that cannot be solved on a deterministic machine in polynomial time. In ad-
dition, the high accuracy required for many problems may potentially require a fine control
discretization, leading to a large number of binary or integer variables in the resulting MINLP,
thus adding to its difficulty and increasing the computational effort required to find a solution.
Several authors have solved MIOC problems by branching techniques [80], dynamic program-
ming [42, 103], relaxation and penalization [178], or optimization of switching times [81].
Progress towards the efficient solution of MIOCPs has been made recently by a convexification
and relaxation scheme [182, 188]with guaranteed lower bounds. Despite the high complexity
of MIOC problems from a theoretical point of view, it allows to solve many problem instances
of practical relevance without exponential computational effort. This scheme has found suc-
cessful application to a number of problems e.g. in biology [129, 130], chemistry [140, 184],
and automotive control [122, 186].

Mixed–Integer Model–Predictive Control

As we have seen, model predictive control is a well established technique in the linear case and
has become computationally tractable in real–time in the nonlinear case in the last decade. At
the same time, process controls with a finite number of admissible values arise naturally in a
large number of applications where predictive control would be of high relevance to current
industrial practice, while it is a challenging task to apply MINLP techniques for their solu-
tion. Consequentially, real–time capable mixed–integer model–predictive control techniques
are scarcely considered in the literature, certainly due to the inherent difficulty of the prob-
lem class and the apparent lack of fundamental results. As an example, in the representative
proceedings collection [147] not a single contribution on mixed–integer algorithms or ap-
plications in MPC can be found. In [7] several approaches to mixed–integer linear MPC are
reported that rely on Mixed–Integer Quadratic Program (MIQP) solvers. Related techniques
have recently been applied by [21] to a wireless sensor feedback problem. MPC for hybrid
systems is addressed in [46] by MIQP techniques or piecewise affine models. A mixed–integer
formulation is used in [141] to prioritize two competing objectives in a linear vehicle MPC
application. An MPC problem with optimal backoff robustification is considered by [198] who
solve the resulting bi–level optimization problem using a reformulation of the lower–level

3

CHAPTER 0
�

� I N T R O D U C T I O N

problem’s optimality conditions that involves complementarity constraints.

Aims and Contributions of this Thesis

The aim of this thesis is to develop an efficient numerical algorithm, underlying theory, and an
actual implementation of a numerical method for real–time capable model predictive control
of nonlinear dynamic processes with both continuous and integer–valued controls. To this
end, this thesis presents novel results and advances over previously established techniques in
a number of areas. They are described in more detail in the following.

Mixed–Integer Nonlinear Model Predictive Control

In this thesis we develop a new algorithm for mixed–integer nonlinear model–predictive con-
trol. It combines BOCK’s direct multiple shooting method [36, 166] and the real–time iteration
scheme [51, 52] with a reformulation of the integer part of the predictive control problem
based on outer convexification [182] and relaxation of both the dynamics and the constraints
with respect to the discrete controls. Based on the contractivity statement for classical real–
time iterations, we show that the mixed–integer real–time iteration scheme can be interpreted
as an inexact NEWTON–type method. The inexactness conveys the application of the rounding
scheme taking place after each NEWTON–type iteration. Using this idea we give a formal proof
of local convergence of real–time iterations in the presence of rounding schemes that relies on
contractivity conditions for inexact NEWTON–type methods. The established contractivity con-
dition allows to derive a bound on the sampling time of the mixed–integer model–predictive
control scheme that ensures nominal stability of this new algorithm.

Switch Costs

An important property of dynamic process models with discrete controls is the cost incurred by
operating a discrete switch. Here we may be interested in limiting or penalizing the number of
switch operations, or in approximating fast transient behavior of the dynamic process by state
discontinuities. This question has e.g. been considered in [42] for a dynamic programming
framework, and is often included in the modeling of hybrid systems with implicit, i.e., state
dependent switches [40, 60, 118, 155, 207]. Limitations of these approaches often apply to
changes of the number and relative order in time of the switch events. The inclusion of switch
costs in direct methods for optimal control is seldom considered. We propose a Mixed–Integer
Linear Program (MILP) switch cost formulation that determines an integer feasible solution
from a relaxed but fractional one obtained using the outer convexification reformulation. We
develop a convexification for this MILP formulation that can be readily included in a direct
multiple shooting discretization of the Optimal Control Problem (OCP) and hence allows to
immediately obtain relaxed solutions that satisfy a switch cost constraint. Our convexification
for the switch costs formulation in addition avoids attracting fractional solutions of the relaxed
problem.

4

I N T R O D U C T I O N
�

� CHAPTER 0

Convexification and Relaxation

The outer convexification and relaxation method [182] did not previously consider path con-
straints directly depending on a binary or integer control function. We propose a new refor-
mulation of point constraints and discretized path constraints directly depending on integer
controls. This reformulation guarantees feasibility after rounding of the relaxed optimal solu-
tion obtained for the discretized OCP. The properties of the obtained NLPs are investigated for
the first time, and explanations for frequently observed ill–behavedness of SQP and Quadratic
Program (QP) methods on these programs are given. We identify sources of lack of constraint
qualification, ill–conditioning, infeasible steps, and cycling of active set method. Addressing
these issues we show that the arising NLPs can instead be treated favorably as Mathematical
Programs with Vanishing Constraints (MPVCs), a young and challenging class of nonconvex
nonlinear problems that commonly arise in truss optimization and only recently attracted
increased research interest on its own [3, 105, 109]. The connection to mixed–integer con-
vexification and relaxation approaches however is, to the best of our knowledge, a new con-
tribution. We show that certain strong regularity assumptions for MPVCs are satisfied for the
NLPs arising from outer convexification of path constraints. This regularity allows to retain
the concept of KARUSH–KUHN–TUCKER (KKT) based local optimality.

A Nonconvex Parametric SQP Method

We describe a concrete realization of a nonconvex SQP framework due to [192] and develop
a new nonconvex parametric active set method derived from the convex case presented in
[25, 67] and is method is based on strong stationarity conditions for MPVC. This method is
applied to the nonconvex quadratic subproblems, called Quadratic Programs with Vanishing
Constraints (QPVCs) in this thesis, that arise from outer convexification of path constraints.
Parametric programming techniques are used to enable highly efficient warm starts of this
method required to iterate in the nonconvex feasible set. We further present a heuristic for
improving strongly stationary points of the nonconvex quadratic subproblems to global opti-
mality that is based on a sufficient condition for global optimality.

Block Structured Linear Algebra

The mixed–integer control feedback delay is determined by the computational demand of our
QPVC active set method. The QP and QPVC subproblems for discretized, convexified, and
relaxed MIOCPs divert from quadratic subproblems typically encountered in optimal control
in that the vector of unknowns frequently comprises many more control parameters than
differential states. This has a significant impact on the block structure of the problems. We
show that classical condensing methods [36, 166] are inappropriate for structure exploitation
in this situation.
Addressing this issue, we present a block structured factorization derived from [201, 203]
that is tailored to the block structure of the QP’s KKT matrices induced by BOCK’s direct mul-
tiple shooting method. Our factorization can be applied equally well to time discrete systems
with separable constraints. Its run time complexity of O(mn3) and in particular of O(mnq2)
is favorable for predictive control problems with large horizon lengths m or many controls
unknowns nq. This is the particular case arising for mixed–integer optimal control problems

5

CHAPTER 0
�

� I N T R O D U C T I O N

after reformulation using the outer convexification approach.

Matrix Update Techniques

We develop and prove new block structured matrix update techniques for the block structured
factorization that reduce the run time complexity of all but the first active set iteration by one
order to O(mn2), making our method attractive also for dynamic systems with more than
a few differential states. We stress the novelty of these update techniques for the case of
block structured KKT matrices by quoting [157] who state that “In some areas of application,
the KKT matrix [...] contains special structure. For instance, the QPs that arise in optimal
control and MPC have banded matrices [...] When active–set methods are applied to this
problem, however, the advantages of bandedness and sparsity are lost after just a few updates
of the basis.” For the case of KKT matrices with block diagonal Hessian and block bi–diagonal
constraints, we improve upon the described situation by providing basis updates that fully
maintain the block structure. Our techniques are based on a combination of existing QR,
SCHUR complement, and CHOLESKY updates and generates no fill–in.

Analysis of Computational Demand

Targetting embedded systems, it is of vital importance to be able to specify the computational
demand of all employed algorithms. To this end, an effort has been made in this thesis to
analyze the number of floating–point operations required by the core QP algorithms to com-
pute the control feedback, and to relate this number to the properties of the MIOCP under
investigation.

Software Package

All developed algorithms are implemented in the software packages MuShROOM and qpHPSC

which together allow for the generic and fast solution of nonlinear mixed–integer optimal
control and model–predictive control problems.

Case Studies

The main theoretical contributions of this thesis, being the mixed–integer real–time iteration
scheme and its sampling time bound ensuring local contractivity, the outer convexification
of path constraints and the treatment of the resulting NLPs as MPVCs, the nonconvex SQP
and active set QP algorithms, and the block structured factorization with matrix updates, are
demonstrated at the example of several mixed–integer optimal control problems and – where
possible – compared to existing algorithmic approaches.

Realtime Predictive Cruise Control

A challenging predictive cruise control problem with high relevance to current and future
research efforts in the automotive industry is investigated. Increasing fuel prices, scarcity of
unclaimed natural resources, and growing awareness for environmental concerns leads to
consistently increasing efforts in energy saving. One particular concern is the comparably
high fuel consumption of heavy–duty trucks for long–distance transportations [208]. It can

6

I N T R O D U C T I O N
�

� CHAPTER 0

be observed that significant savings can be realized by appropriate adaptation of the truck’s
mode of operation to road and traffic conditions [103, 208]. In particular, an intelligent choice
of velocity and gear shift points based on in–advance knowledge of road conditions bears a
significant potential for reducing operational costs.
The underlying mathematical problem however turns out to be hard to approach under real–
time conditions. A predictive optimization problem with both discrete and continuous un-
knowns needs to be solved on–board the truck. As the optimal gear is decided upon not only
for the instant, but for a prediction of the future that can be as distant as 4000 meters or
around 200 seconds at full traveling speed, the combinatorial explosion of the number of pos-
sible gear shift patterns is a major difficulty and obstacle. Drastically reducing the maximum
allowed number of gear shifts would sacrifice much of the potential for optimization, though.
The optimal control feedback has to be provided in real–time in order to be able to adapt
to ever changing exterior conditions such as changes of the road’s slope and curvature, but
also to react to more critical conditions such as suddenly arising traffic conditions. Hence, the
delay between observations of the truck’s mode of operation and various exterior conditions
on the one hand, and the availability of the computed control feedback on the other hand shall
be as small as possible. Industrial demands here are in the range of some tens of milliseconds.
The computational power of the equipment available for this task on–board the truck remains
limited, however.
Previous research has considered this and closely related problems without taking multiple
discrete gear shifts into account [208], or by applying exhaustive–search algorithms of the
dynamic programming type [42, 80, 103] that do either require precomputation of the opti-
mal solution or do not meet the computational resource constraints.
In this thesis, this predictive cruise control problem is solved for the first time under demand-
ing real–time constraints. The resulting algorithms are presently considered for application in
an ongoing industrial cooperation.

Thesis Overview

This thesis is laid out in nine chapters and two appendices as follows.

In chapter 1 we introduce Optimal Control Problems (OCPs) for dynamic processes described
by systems of Ordinary Differential Equations (ODEs). We survey numerical methods for the
algorithmic solution of such problems, and settle on multiple shooting methods. We present
in great detail BOCK’s direct multiple shooting method for optimal control, and give pointers
to new developments in this thesis affecting various components of this method.

Chapter 2 is concerned with Mixed–Integer Optimal Control Problems (MIOCPs), a class of
optimal control problems with both continuous and discrete controls. After a brief survey of
possible algorithmic approaches towards solving problems of this class, we describe the outer
convexification and relaxation approach. This approach allows to obtain a local solution of
an MIOCP or an approximation thereof by solving a single, continuous, but possibly larger
OCP without observing exponential run time in practice. We present bounds on the quality
of the approximation of the optimal control and ODE state trajectories. An extension of the
MIOCP problem class including the notion of switch costs is presented. A Mixed–Integer Linear
Program (MILP) formulation is developed that computes an integer feasible control trajectory

7

CHAPTER 0
�

� I N T R O D U C T I O N

satisfying a switch cost constraint from a relaxed optimal but possibly fractional one. In order
to include the switch cost constraint in the OCP itself, a convexification of this formulation is
developed. It avoids attracting fractional solutions and maintains separability, thus allowing
for integration into the direct multiple shooting method.

In chapter 3 we cover the theory of Nonlinear Programming (NLP) and present Sequential
Quadratic Programming (SQP) algorithms for the solution of the discretized, convexified, and
relaxed MIOCP. Numerical methods for the solution of Initial Value Problems (IVPs) required
to evaluate certain direct multiple shooting NLP constraints and for derivative and sensitivity
generation are briefly presented.

In chapter 4 we describe algorithmic extensions of the direct multiple shooting method to
Nonlinear Model Predictive Control (NMPC) problems. We introduce the concepts of real–
time iterations and the online active–set strategy and mention major theoretical results such
as conditions for local contractivity and a sketch of the proof due to [51]. We extend the
real–time iteration scheme to mixed–integer NMPC problems for the first time. Two rounding
schemes and warm start strategies are presented. We give a formal proof of local contractivity
of the developed mixed–integer real–time iteration scheme that is based on the interpretation
of our algorithm as an inexact NEWTON–type method. A bound on the mixed–integer NMPC
sampling time ensuring local contractivity is derived based on this proof.

Previous work on the outer convexification and relaxation scheme for MIOCPs has not con-
sidered constraints directly depending on the discrete controls. In chapter 5 we investigate
for the first time the structure of NLPs obtained by direct discretization of a MIOCP with con-
straints treated by the outer convexification and relaxation approach of chapter 2. We show
that important Constraint Qualifications (CQs) are violated and identify reasons for various
convergence problems observed for descent based methods such as SQP. The obtained NLPs
are identified as Mathematical Programs with Vanishing Constraints (MPVCs), a challenging
class of problems that has only recently attracted increased research interest. We present a
Nonlinear Programming framework for MPVCs. For MIOCPs with constraints treated by outer
convexification, we show that a replacement CQ holds under reasonable assumptions. This
allows us to retain the concept of KARUSH–KUHN–TUCKER (KKT) based local optimality.

Chapter 6 presents a new SQP method for MPVCs that carries the nonconvexity of the prob-
lem over to the local subproblems. A new parametric active set strategy for the solution of a
sequence of those local subproblems, which are referred to as Quadratic Programs with Van-
ishing Constraints (QPVCs). Strong MPVC stationarity conditions are used to derive active set
exchange rules that allow to find a strongly stationary point on the nonconvex feasible set of
a QPVC. Even though QPVCs must be considered as nonconvex problems, global optimality
can be verified locally, and a heuristic is presented that exploits this knowledge to improve
strongly stationary points up to global optimality.

In chapter 7 the focus is put on sparse and block structured linear algebra for QPVCs with
many control parameters due to outer convexification of MIOCP constraints. We survey ex-
isting approaches for exploiting the arising block structures and evaluate their applicability.
We continue by presenting a factorization of the QPVC’s KKT system that is tailored to the
case of many control parameters and is free of any fill–in, called the Hessian Projection Schur
Complement (HPSC) factorization in this thesis. It has a favorable runtime complexity for
problems with long prediction horizons and for MIOCPs reformulated by outer convexifica-

8

I N T R O D U C T I O N
�

� CHAPTER 0

tion. Properties, applicability, and extensions of this factorization are investigated in detail,
and the run time and storage space requirements are examined.

Matrix update for factorizations are of vital importance for the efficiency of any active set
method. The rate at which QPVC solutions can be computed effectively determines the control
feedback delay of the mixed–integer NMPC controller. Chapter 8 is concerned with detailed
proofs of new matrix updates for the HPSC factorization that reduce the runtime complexity
in terms of the number of unknowns by one order.

Chapter 9 presents numerical results for all new algorithms and makes comparisons to existing
methods at the example of several mixed–integer optimal control and mixed–integer NMPC
problems. In an extensive industrial case study, a challenging mixed–integer nonlinear model
predictive control problem is solved under demanding real–time constraints. We show that by
using the developed numerical methods, this problem could even be solved on an embedded
system with limited computational resources.

Two appendices close this thesis. In appendix A, several definitions and theorems used in this
thesis are stated for the reader’s convenience. Appendix B contains details on the implemen-
tation of the developed algorithms within the software packages MuShROOM and qpHPSC. An
extensive nomenclature as well as a bibliography and lists of all figures, tables, algorithms,
and acronyms can be found at the end of this thesis.

Computing Environment

All computational results and run times presented in this thesis have been obtained on a 64–
bit Ubuntu c© LinuxTM 9.10 system powered by an Intel c© CoreTM i7 920 CPU with 6 GB main
memory available. A single core of the available four physical cores of the CPU has been used.
All source code is written in ANSI C99 and compiled using version 4.4.1 of the GNU C/C++
compiler collection, with applicable machine–specific optimization flags enabled.

9

1 The Direct Multiple Shooting Method for
Optimal Control

In this chapter we consider a class of continuous optimal control problems. We survey differ-
ent numerical solution approaches that introduce computationally tractable variants of this
problem and discuss their usefulness for the purpose of this thesis. A method particularly
suitable is the direct multiple shooting method of section 1.2.5, the foundation for all further
algorithms presented in this thesis.

1.1 Problem Formulations

Definition 1.1 (Continuous Optimal Control Problem)
A continuous optimal control problem is a constrained infinite–dimensional optimization problem
of the form

min
x (·),u(·)

ϕ(x (·), u(·)) (1.1)

s. t. ẋ (t) = f (t, x (t), u(t)) ∀t ∈ T ,

0¶ c(t, x (t), u(t)) ∀t ∈ T ,

0µ r ({x (t i)}), {t i} ⊂ T ,

in which we determine a dynamic process x : T → Rnx
on a time horizon T def

= [t0, tf] ⊂ R,
described by a system of Ordinary Differential Equations (ODEs) with right hand side f : T ×
Rnx ×Rnu → Rnx

, affected by a control u : T → Rnu
, such that we minimize a performance index

ϕ : X × U → R and satisfy path constraints c : T × Rnx × Rnu → Rnc
and point constraints

r : (Rnx
)m+1→ Rnr

on a finite number m+ 1 of grid points {t i} ⊂ T , 0¶ i ¶ m. 4

In definition 1.1 we have modeled a time dependent process x : T → Rnx
, t 7→ x (t) on the

time horizon T def
= [t0, tf]⊂ R by a system of ODEs

ẋ (t) = f (t, x (t), u(t)) ∀t ∈ T . (1.2)

This dynamic process can be affected by a control input u(t) at any time. We assume the func-
tion u : T → Rnu

to be measurable and define U def
= {u : T → Rnu | u measurable} to be the set

of all such control functions. The variable x (t) describes the system state of this process at any
time t ∈ T , and we define X def

= {x : T → Rnx} to be the set of all state trajectories. To ensure
existence and uniqueness of the ODE system’s solution, we assume f : T ×Rnx×Rnu → Rnx

to
be piecewise LIPSCHITZ continuous. The constraint function c : T ×Rnx×Rnu → Rnc

restricts the
set of admissible state and control trajectories x (·) and u(·). It may contain mixed path and
control constraints, restrict the set of initial values x (t0), and contain boundary conditions for

10

T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D
�

� CHAPTER 1

the trajectories. Finally, the point constraint function r : (Rnx
)m+1 → Rnr

imposes point–wise
constraints on the states in a finite number m+ 1 of grid points {t i} ⊂ T , 0¶ i ¶ m that may
be coupled in time. Possible uses are the specification of boundary conditions such as initial
and terminal states or periodicity constraints. The presented Optimal Control Problem (OCP)
clearly is an infinite–dimensional optimization problem, the unknowns to be determined being
the control trajectory u(·) and the resulting state trajectory x (·) of the process.
Problem (1.1) can be extended and specialized to include a large number of additional charac-
teristics. The following concretizations of the above problem class can easily be incorporated
by reformulations:

Objective Functions of BOLZA and Least–Squares Type

The performance index ϕ(x (·), u(·)) evaluated on the time horizon T usually is a general ob-
jective function that consists of an integral contribution, the LAGRANGE type objective with in-
tegrand l (t, x (t), u(t)), and an end–point contribution, the MAYER type objective m(tf, x (tf)),

ϕ(x (·), u(·)) =
∫ tf

t0

l (t, x (t), u(t)) dt +m(tf, x (tf)). (1.3)

Least–squares objective functions are of particular interest in tracking problems where they
minimize a weighted measure of deviation from a desired path in state space, and they can
be employed for numerical regularization of the control trajectory u(t). The general form is

ϕ(x (·), u(·)) =
∫ tf

t0

||r (t, x (t), u(t))||22 dt +
�

�

�

�m(tf, x (tf))
�

�

�

�

2
2 . (1.4)

The GAUSS–NEWTON approximation that exploits the particular form of this objective function
is presented in section 3.2.3.

Constraint Types

We distinguish several different types of constraints by the structure of the constraint func-
tion c(·). Decoupled constraints do not couple different time points of the state or control
trajectories. They may be imposed on the entire horizon

0¶ c(x (t), u(t)) ∀t ∈ T

or on grid points {t i} ⊂ T only,

0¶ c(x (t i)) 0¶ i ¶ m.

Exploiting their property of separability is crucial in the design of efficient numerical methods
as presented in chapter 7. Coupled constraints

0¶ c(x (t0), . . . , x (tm))

couple the process states in finitely many different points t i ∈ T , 0 ¶ i ¶ m of the horizon.
We refer to {t i} as a constraint grid in this case. Boundary constraints impose restrictions on

11

CHAPTER 1
�

� T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D

the trajectories only in the initial and the final point of the horizon,

0¶ c(x (t0), x (tf))

and a special instance are periodicity constraints

0= π0(x (t0))−πf(x (tf)),

wherein π0 and πf may e.g. contain permutations of the state vector’s components. Both types
of constraints can be reformulated as decoupled constraints e.g. by introducing an augmented
state vector x̂ = [x r] holding the constraint residuals,

f̂ (t, x̂ (t), u(t)) =





f (t, x (t), u(t))

0



 , (1.5)

rk(tk) = ck(x (tk)),

and an appropriately chosen decoupled terminal constraint

0¶ c(r0(tf), . . . , rm(tf)). (1.6)

In some Nonlinear Model Predictive Control (NMPC) applications, zero terminal constraints

r (x (tf)) = x (tf)− xsteady = 0,

where xsteady is the differential steady state of the process, help to guarantee nominal stability
[152]. Initial value constraints

x (t0) = x0

play a special role in the real–time iteration scheme presented in chapter 4 and the parametric
Sequential Quadratic Programming (SQP) and Quadratic Programming (QP) algorithms of
chapter 6.

Variable Time Horizons

Problem (1.1) is given on a fixed time horizon T = [t0, tf]⊂ R for simplicity. Free initial times
or free end times, and thus time horizons of variable length, are easily realized by the time
transformation

t(τ)
def
= t0+ hτ, h

def
= tf− t0. (1.7)

that allows to restate the OCP on the normalized control horizon τ ∈ [0,1]⊂ R,

min
x (·),u(·),h

ϕ(x (·), u(·), h) (1.8)

s. t. ẋ (τ) = h · f �t(τ), x (t(τ)), u(t(τ))
� ∀τ ∈ [0, 1],

0¶ c
�

x (t(·)), u(t(·)), h
�

.

12

T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D
�

� CHAPTER 1

Global Parameters

A vector of model parameters p ∈ Rnp
describing global properties of the dynamic process

and its environment may enter the objective function, the ODE system, and the constraints,

min
x (·),u(·),p

ϕ(x (·), u(·), p) (1.9)

s. t. ẋ (t) = f (t, x (t), u(t), p) ∀t ∈ T ,

0¶ c(x (·), u(·), p).

Model parameters can either be regarded as special control functions that are constant on the
whole of T , or can be replaced by introducing an augmented state vector

x̂ =





x

p





with augmented ODE right hand side function

f̂ (t, x̂ (t), u(t)) =





f (t, x (t), u(t), p)

0



 .

Depending on the choice of the method in a numerical code, either formulation may be more
efficient. Note however that only those model parameters that actually attain different values
under practically relevant process conditions should be included in the problem formulation in
this way. Parameters that attain one constant value under all thinkable conditions should not
be exposed to the problem formulation, but rather be considered part of the model equations.

Linear Semi–Implicit Differential Algebraic Equations

The dynamic process in problem (1.1) is described by a system of ODEs. We may extend this
class to that of semi–implicit index one Differential Algebraic Equation (DAE) systems with
differential states x (·) ∈ Rnx

and algebraic states z(·) ∈ Rnz
satisfying

A(t, x (t), z(t), u(t), p) ẋ (t) = f (t, x (t), z(t), u(t), p) ∀t ∈ T , (1.10)

0= g (t, x (t), z(t), u(t), p) ∀t ∈ T .

Here the left hand side matrix A(·) and the Jacobian gz(·) are assumed to be regular. We may
then regard the algebraic state trajectory z(·) as an implicit function z(t) = g−1(t, x (t), u(t), p)
of the differential state and control trajectories.
We refer to [5, 4, 15, 61, 165] for the numerical solution of semi–implicit index one DAE
systems. In [132, 190] partial reduction techniques for the algebraic states are presented in
an SQP framework.

1.2 Solution Methods for Optimal Control Problems

For the solution of optimal control problems of type (1.1) several different methods have been
developed. They differ in the choice of the optimization space, the applied type of discretiza-

13

CHAPTER 1
�

� T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D

tion, the precision of the obtained optimal solutions, the computational demand of the method
that limits the size of the problem instances that can be treated in a given amount of time, and
finally in the ease of implementation as a numerical code. We mention indirect methods based
on PONTRYAGIN’s Maximum Principle, and review dynamic programming, based on BELLMAN’s
Principle of Optimality. Direct methods are presented in greater detail, and we distinguish col-
location methods from shooting methods here. Finally, the direct multiple shooting method is
presented as a hybrid approach combining the advantages of both direct methods. We go into
more detail here, as all numerical algorithms presented in this thesis are based on and focused
on direct multiple shooting.

1.2.1 Indirect Methods

Indirect methods are based on PONTRYAGIN’s Maximum Principle and optimize in an infinite–
dimensional function space. Necessary conditions of optimality are used to transform the
optimal control problem into a Multi–Point Boundary Value Problem (MPBVP), which can
then be solved by appropriate numerical methods. For very special small cases, an analytical
solution is also possible. Indirect methods are therefore suitable for a theoretical analysis of
a problem’s solution structure. They yield highly accurate solutions for the optimal control
profile, as the infinite–dimensional problem is solved and no approximation of the control
functions took place. This is in sharp contrast to direct methods, which are discussed below.
As all control degrees of freedom vanish in the MPBVP to be solved, indirect methods appear
attractive for optimal control problems with a large number of controls, such a convexified
Mixed–Integer Optimal Control Problems (MIOCPs) discussed in chapter 2.

The disadvantages of indirect methods are quite obvious, however. The necessary conditions
of optimality have to be derived analytically for every problem instance, and require several
different special cases to be distinguished. In particular, general path and control constraints
c(·) frequently lead to an a priori unknown structure of the optimal solution. This laborious
derivation possibly has to be repeated for even small changes of initial conditions, parame-
ters, or for small changes of the problem’s structure, e.g. the introduction of an additional
constraint, as the optimal solution’s structure often is very sensitive to changes of the problem
data. In addition, this derivation is difficult if not practically impossible for problem instances
with more than a few states and controls. Finally, the solution of the MPBVP typically requires
initial guesses to be available for all variables, which are often difficult to obtain especially for
the adjoint variables associated with the constraints. For the numerical solution of the MPBVP,
a Nonlinear Programming method may be applied. For its convergence, it is crucial that these
initial guesses even come to lie inside the domain of local convergence. Consequentially, the
numerical solution of an optimal control problem using indirect methods cannot be fully au-
tomated. It remains an interactive process, requiring insight into the problem and paperwork
for the specific instance to be solved. Due to these inconveniences, indirect methods have not
emerged as the tool of choice for fast or even online numerical solution of optimal control
problems.

1.2.2 Dynamic Programming

Dynamic Programming is based on BELLMAN’s principle of optimality, which states that

14

T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D
�

� CHAPTER 1

“an optimal policy has the property that whatever the initial state and initial de-
cision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision” [18].

Theorem 1.1 (Principle of Optimality)
Let
�

x ?(·), u?(·)� be an optimal solution on the interval T = [t0, tf] ⊂ R, and let t̂ ∈ T be a
point on that interval. Then

�

x ?(·), u?(·)� is an optimal solution on [t̂, tf] ⊆ T for the initial
value x̂ = x ?(t̂). 4

Put in brief words, BELLMAN’s principle states that any subarc of an optimal solution is optimal.
The converse is not true in general, i.e., the concatenation of optimal solutions on a partition
of the interval T is not necessarily an optimal solution on the whole interval T . We refer to
[23] for an extensive treatment of the applications of the Dynamic Programming approach
to optimal control and only briefly describe the algorithm here. Based on the principle of
optimality, we define the cost–to–go function

Definition 1.2 (Continuous Cost–to–go Function)
On an interval [t̂, tf] ⊂ T ⊂ R the cost–to–go function ϕ for problem (1.1) with a BOLZA type
objective is defined as

ϕ(t̂, x̂)
def
=min

¨
∫ tf

t̂

l(x (t), u(t)) dt +m(x (tf))

�

�

�

�

x (t̂) = x̂ , x (·), u(·) feasible

«

. (1.11)

4

Imposing a time grid on the horizon T ,

t0 < t1 < . . .< tm−1 < tm = tf, (1.12)

a recursive variant of the cost–to–go function can be defined as follows.

Definition 1.3 (Recursive Cost–to–go Function)
In the point tk, k ∈ {0, . . . , m− 1} the recursive cost–to–go function ϕ for problem (1.1) with a
BOLZA type objective is defined as

ϕ(tk, xk)
def
=min

(

∫ tk+1

tk

l(x (t), u(t)) dt +ϕ(tk+1, xk+1) (1.13)

�

�

�

�

x (tk) = xk, x (·), u(·) feasible

«

.

The recursion ends in k = m, tm = tf with ϕ(tm, xm)
def
= m(xm). 4

Using this recursive definition, the optimal objective function values together with the values
of the optimal state trajectory x (·) and control trajectory u(·) can be computed in the grid
points tk by backward recursion, starting with k = m and proceeding to k = 0. The minimiza-
tion problem (1.13) has to be solved for each time interval [tk, tk+1] and for all feasible initial
values xk. The resulting cost–to–go function value together with the corresponding optimal
control uk have to be tabulated in state space for use in the next backward recursion step,
which requires the choice of discretizations for the sets of feasible values of xk and uk.

15

CHAPTER 1
�

� T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D

Dynamic Programming has been used in some Model Predictive Control (MPC) applications,
cf. [103, 42], and has the advantage of searching the entire state space, thus finding a glob-
ally optimal solution. The technique suffers from the “curse of dimensionality”, though, and
delivers sufficiently fast run times for tiny problem instances only. Control algorithms based
on Dynamic Programming also lack extendability because a slight increase of the problem’s
dimensions, e.g. by using a more sophisticated model of the process, frequently induces an
unacceptable growth of the required run time.

1.2.3 Direct Single Shooting

In contrast to indirect approaches, direct methods are based on a discretization of the infinite–
dimensional OCP (1.1) into a finite–dimensional nonlinear optimization problem.
In direct single shooting one chooses to regard the state trajectory as a dependent value of
the controls u(·), and to solve an Initial Value Problem (IVP) using an ODE or DAE solver to
compute it. To this end, a finite–dimensional discretization

q =
�

q0,q1, . . . ,qm−1
� ∈ Rm×nq

,

of the control trajectory u(·) on T = [t0, tm] is chosen for the solution of the IVP

ẋ (t) = f (t, x (t), u(t)) ∀t ∈ T , (1.14)

x (t0) = s0,

e.g. by using piecewise constant functions (nq = nu)

u(t) = qi ∀t ∈ [t i , t i+1]⊂ T , 0¶ i ¶ m. (1.15)

From this approach an Nonlinear Program (NLP) in the nx+mnq unknowns

v
def
=
�

s0,q0,q1, . . . ,qm−1
�

is obtained which can be solved using e.g. the SQP techniques presented in chapter 3. Control
and path constraints frequently are discretized and enforced on the control discretization grid
only, or may be included in the objective using penalty terms.

Figure 1.1: Illustration of the direct single shooting discretization applied to the optimal control prob-
lem.

The direct single shooting method suffers from a number of drawbacks. As only the initial
state and the control variables enter the NLP, initialization of the state trajectory using prior

16

T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D
�

� CHAPTER 1

knowledge about the process is not possible. Further, for a chosen initialization of xo and the
controls u, the IVP’s solution need not even exist, e.g. due to a singularity in time. Even if
it exists, it possibly cannot be computed numerically due to propagation of errors over the
course of the integration. Typically, to guarantee existence of a numerical solution of highly
nonlinear or unstable ODEs, an initial guess of these variables is required that is already
very close to the true optimal solution. Such a guess may of course be hard to obtain. The
convergence speed of the NLP solver is effectively governed by the amount of nonlinearity
present in the ODE system, and single shooting methods cannot improve upon this situation.
Finally, even well–conditioned IVPs may induce unstable Boundary Value Problems (BVPs),
and a small step in the initial value x0 may result in a large step in the ODE’s solution x (·) or
induce large violations of constraints. This behavior is a challenge for derivative–based NLP
methods.
Still, direct single shooting is often used in practice as the idea is easy to grasp, the implemen-
tation is straightforward, and the resulting NLP has a small number of unknowns only.

1.2.4 Direct Collocation

Collocation methods for BVPs go back to the works [181, 210] and one of the first works on
direct collocation for OCPs is [209]. Collocation methods discretize both the states and the
controls on a fine grid of m intervals with k collocation points per interval. To this end, the
ODE system

ẋ (t) = f (t, x (t), u(t)) ∀t ∈ T ,

is replaced by a k-point collocation scheme that introduces a discretization using k state vec-
tors of dimension nx per interval [t i , t i+1], 0 ¶ i ¶ m− 1, coupled by nonlinear equality con-
straints. Algebraic variables z(t) in DAE systems can be treated by enforcing the discretized
condition 0 = g (t, x (t), z(t), u(t)) on the collocation grid points. Path and point constraints
are included in a similar way. Summing up, we obtain from direct collocation methods a large
but sparse NLP in the (km+ 1)nx+ kmnu unknowns

v
def
=
�

x0, u0, x1, u1, . . . , xkm−1, ukm−1, xkm
�

,

which can be solved with NLP methods such as sparse interior point methods or tailored Se-
quential Quadratic Programming methods. Refinements and applications of direct collocation
can be found in e.g. [10, 26, 101, 193, 205, 224].
In contrast to direct single shooting, collocation allows to initialize the state trajectory vari-
ables, thereby allowing more a–priori knowledge about the process and its optimal solution
to enter the problem. Small violations of the matching conditions over the course of the NLP
solution help dampen the spreading of perturbations. Although the resulting NLP is very large,
efficient solution methods exist, e.g. [214].
A drawback of collocation methods is the difficulty to include adaptivity of the ODE or DAE
solution process. This concept is of particular importance for the treatment of highly nonlinear
or stiff systems, which require small step sizes in a priori unknown regions of the time horizon,
and thus high values of m in the collocation approach. In addition, certain collocation schemes
may exhibit highly oscillatory behavior on singular arcs of the optimal control, cf. [112],

17

CHAPTER 1
�

� T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D

which may degrade the NLP solver’s performance, and which can be overcome by elaborate
regularization approaches only. Direct multiple shooting methods, to be presented in the next
section, overcome these limitations by making efficient use of state–of–the–art adaptive ODE
and DAE solvers, cf. [5, 4, 15, 61, 165], thereby decoupling state and control discretization.
Finally, the large–scale sparse NLP obtained from the collocation discretization of the OCP is
most efficiently solved by interior–point methods that can easily apply sparse linear algebra,
cf. [28, 214]. For most model predictive control tasks, though, active set methods are preferred
as detailed in chapter 4 due to their better warm starting abilities [13, 137]. The sparsity
patterns introduced by collocation however are not easily exploited in active set methods.

1.2.5 Direct Multiple Shooting

First descriptions of multiple shooting methods for the solution of BVPs can be found in [29,
30, 31, 43, 161]. The direct multiple shooting method for OCP goes back to the works of
[36, 166]. Direct multiple shooting methods are hybrids of direct collocation and direct single
shooting approaches, as they discretize the state trajectory, but still rely on solving IVPs. They
typically have an advantage over direct collocation methods in that they easily allow to use
of highly efficient adaptive solvers for the IVPs, e.g. [5, 4, 15, 61, 165]. Contrary to single
shooting, the initialization of the state trajectory variables is easily possible, also permitting
infeasible initializations. Stability of both the IVP and the BVP solution process is improved. In
addition, computational experience shows that nonlinearity present in the BVP is diminished,
thus improving the speed of convergence [6]. The remainder of this chapter is exclusively
concerned with the direct multiple shooting method for optimal control, which serves as the
foundation for all algorithms to be presented in this thesis.

1.3 The Direct Multiple Shooting Method for Optimal Control

The direct multiple shooting method for optimal control has its origins in the diploma thesis
[166], supervised by HANS GEORG BOCK, and was first published in [36]. Extensions can be
found in e.g. [4, 34, 51, 132, 133, 190]. The direct multiple shooting code MUSCOD-II is
described in detail in [131], and the direct multiple shooting code MuShROOM developed as
part of this thesis is described in appendix B.
We consider the numerical solution of the following class of OCPs that have been introduced
in the previous sections together with various possible extensions:

min
x (·),u(·)

m(tf, x (tf)) +

∫ tf

t0

l(t, x (t), u(t)) dt (1.16)

s. t. ẋ (t) = f (t, x (t), u(t)) ∀t ∈ T ,

0= r eq
i (t i , x (t i)), {t i}0¶i¶nr ⊂ T ,

0¶ r in
i (t i , x (t i)), {t i}0¶i¶nr ⊂ T ,

0¶ c(t, x (t), u(t)) ∀t ∈ T ,

in which we minimize a BOLZA type objective function of a dynamic process x (·) defined on
the horizon T def

= [t0, tf] ⊂ R in terms of an ODE system with right hand side function f .
The process is controlled by a control trajectory u(·) subject to optimization. It shall satisfy

18

T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D
�

� CHAPTER 1

certain inequality path constraints c(·) as well as equality and inequality point constraints
ri(·) imposed on a constraint grid {t i} ⊂ T of nr points on T . We expect all functions to be
twice continuously differentiable with respect to the unknowns of problem (1.16).

1.3.1 Control Discretization

In order to obtain a computationally tractable representation of the infinite–dimensional con-
trol trajectory u(·) we introduce a discretization of u(·) on the control horizon T by partition-
ing T into m not necessarily equidistant intervals

t0 < t1 < . . .< tm−1 < tm = tf (1.17)

that define the shooting grid {t i}. For simplicity of exposition, we assume it to coincide with
the constraint grid of the point constraints used in the introduction of this chapter and in
(1.16). Note however that the presentation to follow can be extended to differing grids for
the controls and point constraints.

On each interval [t i , t i+1], 0¶ i ¶ m−1, we choose base functions bi j : T ×Rnq
i j → R for each

component 1¶ j ¶ nu of the control trajectory. To ensure separability of the discretization the
bi j shall have local support, and are parameterized by a vector of finitely many control pa-

rameters qi j ∈ Rnq
i j . Popular choices for the base functions include piecewise constant controls

(nq
i j = 1)

bi j : [t i , t i+1]×Rnq
i j −→ R, (t, qi j) 7→ qi j , (1.18)

piecewise linear controls (ni j
q = 2)

bi j : [t i , t i+1]×Rnq
i j −→ R, (t,qi j) 7→

t i+1− t

t i+1− t i
qi j1+

t − t i

t i+1− t i
qi j2, (1.19)

or piecewise cubic spline controls (ni j
q = 4)

bi j : [t i , t i+1]×Rnq
i j −→ R, (t,qi j) 7→

4
∑

k=1

qi j kβk

�

t − t i

t i+1− t i

�k−1

(1.20)

with appropriately chosen spline function coefficients β . Evidently, the type of discretization
may be chosen differently for each of the nu components of the control trajectory.

For the ease of notation we introduce an additional discretized control bm(tm,qm) in the last
point tm of the shooting grid {t i}, which shall be implicitly fixed to the final control value of
the previous shooting interval,

bm(tm,qm)
def
= bm−1(tm,qm−1). (1.21)

For certain choices of the control discretization, e.g. for piecewise linear controls, continuity of
the discretized control trajectory may be desired. This can be enforced by imposing additional
control continuity conditions for the trajectory u j(t) in all points of the control discretization

19

CHAPTER 1
�

� T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D

grid {t i},

0= bi j(t i+1,qi)− bi+1, j(t i+1,qi+1), 0¶ i ¶ m− 1. (1.22)

The choice of the control discretization obviously affects the quality of the discretized OCP’s
solution approximation that of the infinite–dimensional one, see e.g. [122].

1.3.2 State Parameterization

In addition to the control discretization, and notably different from single shooting described
in section 1.2.3, we also introduce a parameterization of the state trajectory x (·) on the shoot-
ing grid {t i} that yields m IVPs with initial values si ∈ Rnx

on the intervals [t i , t i+1] of the
horizon T ,

ẋ i(t) = f (t, x i(t), bi(t,qi)) ∀t ∈ [t i , t i+1], 0¶ i ¶ m− 1, (1.23a)

x i(t) = si . (1.23b)

In order to ensure continuity of the obtained trajectory x (·) on the whole of T , we introduce
m− 1 additional matching conditions

0= x i(t i+1; t i , si ,qi)− si+1, 0¶ i ¶ m− 1. (1.24)

Here, the expression x i(t i+1; t i , si ,qi) denotes the final value x (t i+1) obtained as the solution
of the IVP (1.23) on the interval [t i , t i+1] when starting in the initial value x (t i) = si and
applying the control trajectory u(t) = bi(t,qi) on [t i , t i+1]. The evaluation of the residual of
constraint (1.24) thus requires the solution of an IVP by an appropriate numerical method,
see [5, 4, 15, 61] and chapter 3.

Figure 1.2: Illustration of the direct multiple shooting discretization applied to the optimal control
problem. On the left, all shooting nodes were initialized identically and the solution of the
m IVPs violates the matching conditions. On the right, the matching conditions are fulfilled
after convergence of the NLP solver.

More generally, the IVPs (1.23) together with the matching conditions (1.24) may be replaced
by a sufficiently smooth but otherwise arbitrarily chosen mapping

0= ji(t i , t i+1, si , si+1,qi ,qi+1), 0¶ i ¶ m− 1. (1.25)

In particular, the Jacobians of the mappings ji with respect to the subsequent state si+1 or the
control qi+1 need not necessarily be regular. This effectively increases the number of degrees
of freedom of the discretized optimal control problem. In case of singularity of ji with respect

20

T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D
�

� CHAPTER 1

to si+1, we allow for discontinuities of the state trajectory x (·), while singularity of ji with
respect to qi+1 is just a generalization of choosing a discontinuous control discretization.

The resulting vector of (m+ 1)nx+mnq unknowns, assuming nq
i j to be identical for all nodes

and controls, is denoted by

v
def
=
h

s0 q0 . . . sm−1 qm−1 sm

i

. (1.26)

1.3.3 Constraint Discretization

The inequality path constraint c(·) is discretized by enforcing it in the points {t i} of the shoot-
ing grid only,

0¶ ci(t i , si , bi(t i ,qi)), 0¶ i ¶ m. (1.27)

This discretization will in general enlarge the feasible set of the discretized optimal control
problem compared to that of the continuous one, and will thus affect the obtained opti-
mal solution. For most real–world problems, it can be observed that an optimal trajectory
(x ?(·), u?(·)) obtained as solution of the discretized problem shows only negligible violations
of the path constraints c(·) in the interior of shooting intervals if those are enforced on the
shooting nodes. If significant violations are observed or strict feasibility on the whole of T
is of importance, remaining violations can sometimes be treated successfully by choosing an
adapted, possibly finer shooting grid {t i}. Alternatively, a semi–infinite programming algo-
rithm for tracking of constraint violations in the interior of shooting intervals is discussed in
[167, 168].

1.3.4 The Nonlinear Problem

The discretized optimal control problem resulting from application of the direct multiple
shooting discretization to problem (1.16) reads

min
s ,q

m
∑

i=0

li(t i , si ,qi) (1.28)

s. t. 0= x i(t i+1; t i , si ,qi)− si+1, 0¶ i ¶ m− 1,

0= r eq
i (t i , si , bi(t i ,qi)), 0¶ i ¶ m,

0¶ r in
i (t i , si , bi(t i ,qi)), 0¶ i ¶ m,

0¶ ci(t i , si , bi(t i ,qi)), 0¶ i ¶ m.

Here we have written the MAYER term m(tm, sm) as final term lm(tm, sm,qm) of the objective.

Constrained nonlinear programming theory and the SQP method for the solution of problem
(1.28) are presented in chapter 3. In chapter 4, we present the concept of real–time iterations
that improves the efficiency of SQP methods applied to solve NMPC problems. In chapter 6 we
present a nonconvex SQP method for a special class of NLPs obtained from the discretization
of convexified MIOCPs. The quadratic subproblems arising in this SQP method are studied
and an active set algorithm for ttheir solution is presented.

21

CHAPTER 1
�

� T H E D I R E C T M U LT I P L E S H O O T I N G M E T H O D

1.3.5 Separability

We refer to a function of problem (1.28) as separable if it coupling of unknowns (si ,qi) and
(s j ,q j) on different nodes 0 ¶ i, j ¶ m, i 6= j by this function is either absent or linear. In this
case, the Jacobians of that function with respect to (s ,q) show block structure. The property
of separability is crucial for the design of efficient linear algebra for the solution of problem
(1.28) by derivative–based algorithms. Chapters 7 and 8 are concerned with techniques and
contributions of this thesis to the efficient exploitation of structures in problem (1.28).
By choice of the control discretization and the state parameterization, the objective function
and the constraints ci and ri are separable with respect to the unknowns (si ,qi) on the shoot-
ing grid nodes. Unknowns on adjacent nodes of the shooting grid are coupled by the matching
conditions (1.24) exclusively.

1.4 Summary

In this chapter we have defined a class of optimal control problems for dynamic processes
modeled by systems of ODE or semi–implicit index one DAE systems and have described var-
ious extensions of this problem class. A survey of numerical approaches for the solution of
problems of this class considered direct and indirect as well as sequential and simultaneous
approaches. We presented in more detail the direct multiple shooting method for optimal con-
trol, a hybrid approach that can be located between single shooting and collocation methods.
It is known for its excellent convergence properties, yields a highly structured NLP, but al-
lows at the same time the use of state–of–the–art adaptive solvers for the IVPs. The resulting
discretized OCPs are best treated by SQPs methods which will be investigated from different
points of view in several places in this thesis.

22

2 Mixed–Integer Optimal Control

In this chapter we extend the problem class of continuous optimal control problems discussed
in chapter 1 to include control functions that may at each point in time attain only a finite
number of values from a discrete set. We briefly survey different approaches for the solution of
the discretized Mixed–Integer Optimal Control Problem (MIOCP), such as Dynamic Program-
ming, branching techniques, and Mixed–Integer Nonlinear Programming methods. These ap-
proaches however turn out to be computationally very demanding already for off–line optimal
control, and this fact becomes even more apparent in a real–time on–line context. The intro-
duction of an outer convexification and relaxation approach for the MIOCP class allows to
obtain an approximation of the MIOCP’s solution by solving only one single but potentially
much larger continuous optimal control problem using the techniques of chapter 1. We de-
scribe theoretical properties of this problem reformulation that provide bounds on the loss
of optimality for the infinite dimensional MIOCP. Rounding schemes are presented for the
discretized case that maintain these guarantees. We develop techniques for the introduction
of switch costs into the class of MIOCPs and give reformulations that allow for a combination
with direct multiple shooting and outer convexification.

2.1 Problem Formulations

We consider in this chapter the extension of the Optimal Control Problem (OCP) class of
chapter 1 to the following class of Mixed–Integer Optimal Control Problems (MIOCPs).

Definition 2.1 (Mixed–Integer Optimal Control Problem)
A Mixed–Integer Optimal Control Problem (MIOCP) is a continuous optimal control problem with
integer feasibility requirement on a subset of the control trajectories of the following form:

min
x (·),u(·),w (·)

x (tf, m(tf)) +

∫

T
l(t, x (t), u(t), w (t)) dt (2.1)

s. t. ẋ (t) = f (t, x (t), u(t), w (t)) ∀t ∈ T ,

0= r eq
i (t i , x (t i)), {t i} ⊂ T ,

0¶ r in
i (t i , x (t i)), {t i} ⊂ T ,

0¶ c(t, x (t), u(t), w (t)) ∀t ∈ T ,

w (t) ∈ Ω⊂ Rnw ∀t ∈ T , |Ω|= nΩ <∞.

In addition to the conventions of definition 1.1, the dynamic process x (·) is affected by an addi-
tional vector–valued control function w : T → Ω ⊂ Rnw

, t 7→ w (t) which only attains values
from a finite discrete set Ω

def
= {ω1, . . . ,ωnΩ} ⊂ Rnw

with cardinality |Ω|= nΩ <∞. 4

This problem class differs from the class of OCPs treated in chapter 1 by the integer feasibility
requirement imposed on the additionally introduced control function w : T → Ω. Here nw

23

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

denotes the number of scalar integer control functions, and nΩ denotes the finite number of
discrete choices the vector valued integer control trajectory w (·) can attain at each point in
time. For the discussion in this chapter, we restrict the problem class (2.1) to binary control
functions w (t) ∈ {0,1}nw

, i.e., nΩ = 2nw
.

Remark 2.1 (Restriction to Binary Control Functions)
The restriction to binary control functions is not substantial as it is possible to reformulate any
MIOCP involving integer control functions v(t) ∈ {v1, . . . , vnv} ⊂ R by transformation of the
model functions to v̂(t) ∈ {1, . . . , nv} ⊂ N and letting

v̂(t)
def
= 1+

dlog2 nve
∑

i=1

2iwi(t). (2.2)

This reformulation requires dlog2 nve binary control functions wi(t) to replace v(t).

2.2 Mixed–Integer Nonlinear Programming

2.2.1 Discretization to a Mixed–Integer Nonlinear Program

A straightforward approach to solving problem (2.1) is to apply one of the discretization
approaches for optimal control presented in chapter 1, i.e., collocation or direct shooting
methods. The discretization variables introduced for a piecewise constant discretization of
the integer control function w (·) then inherit the integrality property. This approach yields
a Mixed–Integer Nonlinear Program (MINLP) in place of the continuous NLP (1.28). The
multiple shooting discretization of this problem is given in the following definition.

Definition 2.2 (Multiple Shooting Discretized MIOCP)
The multiple shooting discretized counterpart of the mixed–integer optimal control problem (2.1)
with binary control functions is

min
s ,q ,w

m
∑

i=0

li(t i , si ,qi , wi) (2.3)

s. t. 0= x i(t i+1; t i , si , bi(t i ,qi), wi)− si+1, 0¶ i ¶ m− 1,

0= r eq
i (t i , si , bi(t i ,qi), wi), 0¶ i ¶ m,

0¶ r in
i (t i , si , bi(t i ,qi), wi), 0¶ i ¶ m,

0¶ ci(t i , si , bi(t i ,qi), wi), 0¶ i ¶ m,

wi ∈ {0,1}nw
, 0¶ i ¶ m. 4

This multiple shooting discretized MIOCP can be cast as a MINLP as follows.

Definition 2.3 (Mixed–Integer Nonlinear Program)
A Mixed–Integer Nonlinear Program (MINLP) is a Nonlinear Program (NLP) in the unknowns

24

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

x ∈ Rnx
and w ∈ Rnw

with binary feasibility requirement imposed on w ,

min
x ,w

f (x , w) (2.4)

s. t. 0= g (x , w),

0¶ h(x , w),

w ∈ {0, 1}nw
. 4

Note that in this formulation w contains the binary control variables wi of all shooting nodes
0¶ i ¶ m− 1, thus nw has grown by a factor m compared to the last section.

The class of MINLPs problems is NP–hard [78]. Hence, there exist instances of problem (2.4)
than cannot be solved in polynomial runtime on a deterministic machine. In this section we
briefly mention various approaches targeted either at solving the MIOCP or the MINLPs to
optimality, or at approximating a local or global solution.

2.2.2 Enumeration Techniques

Full Enumeration

A naïve approach to solving (2.4) is to fix the binary control variables for every possible choice
of w and solve a continuous optimal control problem. The solution process either indicates
infeasibility of the problem given the chosen w , or yields an optimal objective function value
f (w). The MINLP’s optimal solution is choice w ? that resulted in the smallest objective of
the associated continuous problem. It is a global solution if all solvable continuous OCPs have
been solved to global optimality.

The obvious drawback of this approach is the exponentially increasing number of 2nw
continu-

ous optimal control problems that have to be solved. Even for a scalar binary control function,
the optimal solutions of 2m multiple shooting discretized NLPs need to be computed. The
computational effort very quickly becomes prohibitive.

Dynamic Programming

The principle and technique of dynamic programming has already been presented in section
1.2.2 for continuous optimal control problems. There we needed to choose a discretization
of the continuous control space. For the integer controls w (·), this discretization is given
in a natural way and from this point of view, mixed–integer optimal control problems are
obvious candidates for treatment by dynamic programming approaches. Still, the curse of
dimensionality prevents computational access to problems with more than a few system states.

Some examples of MIOCPs that have been solved using dynamic programming techniques
with applications in the automotive control area can be found in [42, 103]. Fulfilling real–
time constraints on the computation times has however been shown to be possible only by
precomputation or by drastically reducing the search space.

25

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

2.2.3 Branching Techniques

Branch & Bound

Branch & Bound is a general framework for the solution of combinatorial problems that im-
proves upon full enumeration of the search space. The fundamental idea is to perform a tree
search in the space of binary or integer variables, and to solve a continuous linear or nonlin-
ear problem in every node of the tree. The search tree’s root node holds a complete relaxation
of the (mixed–)integer problem. Descending the tree’s branches to its leaves, more and more
integer variables get fixed to one of the admissible choices. This amounts to recursively parti-
tioning the original problem into multiple smaller subproblems, each giving a lower bound for
the objective of all leaf problem on the branch. The minimum of the optimal solutions found
for these subproblems is the optimal solution of the original problem.
The recursive partitioning process can be bounded whenever a subproblem is found to be in-
feasible or an integer solution is found for it. In the first case, further branching is unneccesary
as all problems on the subtree will be infeasible as well. In the second case, an upper bound to
the original problem’s objective is found. Subproblems with higher objective – being a lower
bound — need not be branched on as all subproblems on the subtree will be suboptimal as
well.
In practice, good heuristics for the choice of the next subproblem and the selection of frac-
tional variables to branch on are crucial to quickly obtain feasible solutions and tight upper
bounds. This avoids visits to all possible subproblems, in which case Branch & Bound would
degenerate to full enumeration again. Such heuristics frequently must be tailored to the spe-
cific problem under investigation, and details can be found in e.g. [58, 139].
The first Branch & Bound algorithm for integer linear programming is due to [49, 127].
Extensions to convex nonlinear mixed–integer problems can e.g. be found in [19, 39, 134,
135].

Branch & Cut

The fixation of binary or integer variables to a selected admissible value in the above Branch
& Bound algorithm can be regarded as the introduction of additional inequality constraints
x i ¶ bx?i c and x i ¾ dx?i e respectively for a fractional relaxed optimal solution x ?. These
constraints cut off a part of the feasible set of the preceding problem, and this concept is
further generalized in the Branch & Cut method that adds cutting planes to the subproblems
as the method descends the search tree’s branches.
In the linear case, the optimal solution is known to coincide with a vertex of the convex hull of
the feasible set. The algorithm then aims at adding cutting planes to the subproblems until the
convex hull in a neighborhood of the optimal integer solution is approximated well enough
for the relaxed solution to be integer.
Earliest sources for cutting planes methods can be found in [48, 90]. Again, the determination
of strong cutting planes that retain all integer solutions and invalidate as much as possible of
the relaxed feasible set is crucial and subject of intense research efforts, see e.g. [95, 110, 158,
206]. The application of Branch & Cut to nonlinear integer programs is subject to ongoing
research, see [158, 206].
In the case of a MIOCP, every tree node would hold a separate continuous optimal control

26

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

problem, and a full evaluation of the search tree would have to be carried out to find an
optimal mixed–integer control feedback. Clearly, the achievable run times are not likely to be
competitive. An application of a Branch & Bound technique to an offline time optimal MIOCP
can be found in [80].

2.2.4 Outer Approximation

Outer Approximation

The Outer Approximation method due to [59] was developed for convex MINLPs explicitly. It
aimed at avoiding the potentially large number of NLPs to be solved in a branching method
by replacing them with more accessible Mixed–Integer Linear Programs (MILPs), for which
advanced techniques and solvers have been readily available. To this end, an alternating se-
quence of MILPs, called master problems, and NLPs is solved. Therein, the MILP yields an
integer solution and a lower bound to the original problem’s solution while the NLP with
fixed integer variables yields — if feasible — yields an upper bound and a new linearization
point, improving the outer approximation of the convex feasible set by linearizations of the
constraints.

For applications of Outer Approximation to MIOCPs with time–independent binary variables
we refer to [93, 159].

Generalized Bender’s Decomposition

Generalized Bender’s decomposition, first described by [79], is older than outer approxima-
tion and a straightforward comparison reveals that it is identical except for a weaker formu-
lation of the master program, e.g. [74].

LP/NLP based Branch & Bound

The number of MILPs to be solved in an Outer Approximation method can possibly be further
reduced by an LP/NLP based branch & Bound, cf. [38, 134, 171]. A single master MILP prob-
lem is solved by a Branch & Bound type method. An NLP is then solved for every feasible point
giving a possibly tightened upper bound to the original problem’s solution. Linearizations of
the constraints in the obtained solution are added to the outer approximation of the feasible
set, and pending subproblems in the Branch & Bound search tree are updated appropriately
before continuing the descent along the tree’s branches.

2.2.5 Reformulations

The difficulty of the problem class (2.1) comes from the integer restrictions on some of the
control variables. The idea of replacing the integrality requirement by adding one or more
constraints to the continuous formulation therefore is of obvious appeal. To this end, several
propositions can be found in the literature.

27

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

Relaxation and Homotopies

A first approach is to replace for wi ∈ {0, 1} by the set of constraints

wi(1−wi) = 0, wi ∈ [0, 1]⊂ R.

The feasible sets coincide, and the reformulation thus is exact. As the first constraint is non-
convex, the feasible set is disjoint, and Linear Independence Constraint Qualification (LICQ)
is violated, descent based methods such as Sequential Quadratic Programming (SQP) show
bad performance on this reformulation. This situation can be ameliorated to a certain extent
by introducing the formulation

wi(1−wi)¶ β , wi ∈ [0, 1]⊂ R,

together with a homotopy β → 0+. This technique has found applications in the field of
Mathematical Programs with Equilibrium Constraints (MPECs), cf. [16, 136, 143, 172, 173].
Geometrically motivated reformulations of less general applicability have been proposed by
e.g. [172] for the feasible set {(0,1), (1, 0)} ⊂ N2 and homotopies for relaxation are applied
here as well. In [136] the FISCHER–BURMEISTER function

FFB(w1, w2) = w1+w2−
Æ

w2
1 +w2

2

which is zero if (w1, w2) is binary feasible, is used to extend an SQP method to treat MPECs.
We’ll revisit some of these reformulations in chapter 5.
The disadvantage of virtually all reformulation for Nonlinear Model Predictive Control (NMPC)
is that they involve a homotopy parameter that needs to be driven to zero or infinity in or-
der to approach the MIOCP’s solution. This requires the solution of multiple optimal control
problems at an increased computational effort. Moreover, the homotopy steps can in general
not be determined a priori, such that bounds on the computation time for the solution of an
MIOCP cannot be established.

Convexification and Relaxation

As we have seen, all presented methods require for the case of MIOCP the solution of a po-
tentially large number of discretized optimal control subproblems. In view of the fast solution
times required for the computation of the control feedback, such techniques are unlikely to
be successful approaches for fast mixed–integer NMPC. We therefore continue our presenta-
tion with the introduction of a convexification and relaxation approach that serves to obtain a
good approximation of a local solution of the discretized MIOCP by solving only a single but
possibly larger discretized OCP.

Convexification and relaxation approaches aim at reformulating (2.4) as a purely continuous
NLP for which computationally highly efficient solution methods exist and are presented in
the sequel of this thesis. The crucial point here is that the reformulation should be as tight
as possible in the sense that the feasible set is enlarged as little as possible compared to the
original MINLP. The reader is referred to e.g. [124] for reformulations of a number of popular
combinatorial problems. We mention here two approaches named inner convexification and
outer convexification that have found application to MINLPs arising from the discretization of

28

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

MIOCPs in e.g. [129, 130, 140, 182, 184], and our contributions [119, 120, 122, 186]. The
term convexification in the following refers to a convex reformulation of the dynamics – and
later also the constraints – of problem (2.4) with respect to the integer control. All other parts
of the discretized optimal control problem remain untouched and hence possibly nonlinear
and/or nonconvex. In this sense the techniques to be presented are partial convexifications of
the problem with respect to a selected subset of the unknowns only. In the next section we
study in detail the outer convexification and relaxation technique.

Inner Convexification

A naïve idea for transforming problem (2.1) into a purely continuous NLP is to simply drop the
integrality requirement on the unknown w . This requires that all model functions, compris-
ing the objective function, the Ordinary Differential Equation (ODE) system’s right hand side
function, and all constraint functions can be evaluated in fractional points of the space of un-
knowns, and yield meaningful results that do not prevent optimal solutions from being found.
The locally optimal solution found for the NLP obtained by the inner convexification approach
will in general not be an integer one. Guarantees for integer feasibility of a rounded solution
in the neighborhood of the locally optimal one can in general not be derived, nor can bounds
on the loss of optimality be given. This approach has been used for mixed–integer optimal
control in e.g. [80] in combination with a branching algorithm to overcome the mentioned
problems.

Outer Convexification

Outer convexification due to [182] introduces a new binary variable ωi ∈ {0, 1} (note the
subscript index) for each choice ωi (indicated by a superscript index) contained in the set
Ω of feasible choices for the discrete control. All model functions directly depending on the
integer control function w (·) are partially convexified, i.e., convexified with respect to this
integer control only. The introduced binary variables ωi act as convex multipliers. Replacing
the binary variables ωi by relaxed ones αi ∈ [0, 1] ⊂ R is referred to as relaxation. The
outer convexification reformulation ensures that even after relaxation all model functions are
evaluated in integer feasible choices from the set Ω only. Bounds on the loss of optimality
can be established as will be shown in the next section. In addition, we develop here and
in chapter 5 the application of outer convexification to constraints directly depending on a
binary or integer control function, and show how integer feasibility can be guaranteed after
rounding of the possibly fractional solution obtained for the NLP. For certain optimal control
problems that enjoy a bang–bang property, the convexified and relaxed OCP’s locally optimal
solution itself can be shown to be an optimal solution of the MIOCP.

Example 2.1 (Inner and Outer Convexification)
To stress the difference between the two proposed convexification approaches for nonlinear
functions, we exemplarily study the function f (x , w) = (x − 3w)2 depending on the contin-
uous variable x ∈ R and the integer variable w ∈ Z. The graph gr f w(x) of this function
for integer and relaxed choices of w is shown in figure 2.1. Inner convexification of f (x , w)
with respect to the integer variable w effectively means dropping the integer constraint on
w. Outer convexification of f (x , w), here for the choices w ∈ Ω = {ω1,ω2,ω3} = {−1,0, 1},

29

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

yields after relaxation

f OC(x ,α)
def
= α1 f (x ,−1) +α2 f (x , 0) +α3 f (x , 1),

1= α1+α2+α3, α ∈ [0, 1]3.

If f contributes to the objective function, inner convexification results for relaxed choices
of w in objective function values unattainable for integer choices. If the graph of f denotes
the border of the feasible set, inner convexification leads to constraint violations for relaxed
choices of w. Outer convexification offers a remedy for both situations, as we will see in the
next section.

-3 -2 -1 0 1 2 3
0

2

4

6

8

10

(a) Inner convexification of f (x , w).

-3 -2 -1 0 1 2 3
0

2

4

6

8

10

(b) Outer convexification of f (x , w).

Figure 2.1: Inner and outer convexification at the example f (x , w) = (x − 3w)2. (—) shows the func-
tion’s graph for the integer choices w ∈ {−1, 0,1} and (—) shows the function’s graph in

the relaxed choices w ∈
n

− 3
4
,− 1

2
,− 1

4
, 1

4
, 1

2
, 3

4

o

for inner convexification and corresponding

choices α ∈
n

(3
4
, 1

4
, 0), (1

2
, 1

2
, 0), (1

4
, 3

4
, 0), (0, 3

4
, 1

4
), (0, 1

2
, 1

2
), (0, 1

4
, 3

4
)
o

for outer convexifica-
tion.

2.3 Outer Convexification and Relaxation

In this section we investigate the approximation of solutions of MIOCPs by solving a convexi-
fied and relaxed counterpart problem. To this end it is crucial to derive maximal lower bounds
on the attained objective value in order to judge on the quality of the obtained solution. For
nonlinear or nonconvex problems, the relaxed solution will in general not be binary feasible
and the optimal objective function value can in general not be attained by a binary feasible
solution.

The results of this section were first presented in [182] and apply to the infinite–dimensional
MIOCP prior to any discretization taking place. We present bounds on the objective function
and the constraint residuals of the optimal solutions obtained when applying the outer con-
vexification approach to the MIOCP. We also state the bang–bang principle which allows to
deduce binary feasibility and optimality of relaxed solutions for certain linear optimal control
problems.

30

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

2.3.1 Convexified and Relaxed Problems

For the presentation of theoretical results we restrict ourselves to the following more limited
problem class of MIOCPs.

Definition 2.4 (Binary Nonlinear Problem)
The class of binary nonlinear optimal control problems is the following subclass of (2.1),

min
x (·),u(·),w (·)

ϕ(x (·), u(·), w (·)) (BN)

s. t. ẋ (t) = f (x (t), u(t), w (t)) ∀t ∈ T ,

x (t0) = x0,

w (t) ∈ {0,1}nw ∀t ∈ T . 4

Here we consider the minimization of an objective function computed from the trajectories
of an unconstrained Initial Value Problem (IVP) controlled by continuous and binary control
functions. The set of admissible choices for the binary control here is Ω = {0,1}nw

and the set
members ωi enumerate all nΩ = 2nw

possible assignments of binary values to the components
of w (t).

Definition 2.5 (Relaxed Nonlinear Problem)
The relaxed nonlinear variant of (BN) is the continuous optimal control problem

min
x (·),u(·),w (·)

ϕ(x (·), u(·), w (·)) (RN)

s. t. ẋ (t) = f (x (t), u(t), w (t)) ∀t ∈ T ,

x (t0) = x0,

w (t) ∈ [0,1]n
w ∀t ∈ T . 4

Clearly due to the relaxation that equals the inner convexification approach described above,
the right hand side function f (·) will be evaluated in non–integer choices for the relaxed
binary control w (t).

We now introduce counterparts to the above two problems obtained by applying outer con-
vexification to the set Ω = {0,1}nw

of discrete choices. For each choice w (t) = ωi ∈ Ω we
introduce a new binary control function ωi(t) indicating whether or not the choice ωi was
made at time t ∈ T .

31

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

Definition 2.6 (Binary Convexified Linear Problem)
The binary convexified linear problem is the following convexified counterpart of problem (BN),

min
x (·),u(·),ω(·)

2nw
∑

i=1

ϕ(x (·), u(·),ωi)ωi(·) (BC)

s. t. ẋ (t) =
2nw
∑

i=1

f (x (t), u(t),ωi)ωi(t) ∀t ∈ T ,

x (t0) = x0,

ω(t) ∈ {0,1}2nw

,

1=
2nw
∑

i=1

ωi(t). 4

Here the constant parametersωi indicate evaluation of the right hand side f (·) in the admissi-
ble choice w (t) =ωi . The Special Ordered Set (SOS) type 1 property holds for the trajectory
of convex multipliers ω(·) and is enforced by the additionally imposed constraint.

Definition 2.7 (Special Ordered Set Property)
We say that the variables (ω1, . . . ,ωn) fulfill the special ordered set type 1 property if they
satisfy

n
∑

i=1

ωi = 1, ωi ∈ {0,1}, 1¶ i ¶ n. (SOS1)

4

The relaxed counterpart to (BC) is given in the following definition.

Definition 2.8 (Relaxed Convexified Linear Problem)
The relaxed convexified linear problem is the convexified counterpart of (RN) and the relaxed
counterpart of (BC), the continuous optimal control problem

min
x (·),u(·),α(·)

2nw
∑

i=1

ϕ(x (·), u(·),ωi) αi(·) (RC)

s. t. ẋ (t) =
2nw
∑

i=1

f (x (t), u(t),ωi) αi(t) ∀t ∈ T ,

x (t0) = x0,

α(t) ∈ [0, 1]2
nw

,

1=
2nw
∑

i=1

αi(t). 4

Remark 2.2 (Combinatorial Explosion)
The convexified problems (BC) and (RC) involve a number of control functionsω(·) resp. α(·)
that grows exponentially with the number nw of binary control trajectories w (·) in problem
(BN). Still for most practical problems it is possible to eliminate many binary combinations

32

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

(RN) (RC)

(BN) (BC)

relaxation relaxation

convexification

Figure 2.2: Relation of the four auxiliary problems.

for w (·) that are physically meaningless or can be logically excluded. The number of binary
controls after convexification is e.g. linear in nw in the applications [122, 119, 120, 182, 184,
208]. A second consequence of this convexification is the need for tailored structure exploiting
algorithms that can treat problems with a large number of control parameters efficiently. We
revisit this question in chapter 7.

Remark 2.3 (Scalar Binary Control Functions)
For scalar binary control functions w(·) with nw = 1 the nonlinear and the convexified formu-
lation have the same number of control functions. If the problems (BN) and (RN) are affine
linear in w (·), the nonlinear and the convexified formulations are identical.

Remark 2.4 (Elimination using the SOS1 Constraint)
The SOS1 constraint allows the elimination of one binary control function ωi(·), which can
be replaced by

ωi(t) = 1−
2nw
∑

j=1
j 6=i

ω j(t) ∀t ∈ T . (2.5)

The same is obviously true for the relaxed counterpart function α(·). In mixed–integer linear
programming, this elimination is usually avoided as it destroys to a certain extent the sparsity
structure present in the constraints matrices. For the direct multiple shooting discretization,
this elimination has shown itself to be of advantage for some MIOCPs. Sparsity of the node
constraint Jacobians is usually not exploited and the number of active set iterations spent in
the Quadratic Program (QP) subproblem solution tends to become smaller.

2.3.2 The Bang–Bang Principle

The convexified relaxed control trajectories αi(·) may be optimal on the boundary or in the
interior of [0, 1] ⊂ R. In this section we use the bang–bang principle to show that for a
certain subclass of optimal control problems, the relaxed optimal solutions come to lie on the
boundary of the unit hypercube and are thus binary feasible without any further effort. We
consider linear control problems of the following structure.

33

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

Definition 2.9 (Linear Control Problem)
The problem

ẋ (t) = A(t)x (t) + B(t)u(t) ∀t ∈ T , (2.6)

x (t0) = x0,

u lo ¶ u(t)¶ uup ∀t ∈ T ,

is referred to as a linear control problem. The function u : T → Rnu
, t 7→ u(t) shall be mea-

surable and satisfy lower and upper bounds u lo and uup. The matrix functions A : T → Rnx×nx
,

B : T → Rnx×nu
shall be continuous. 4

We require the definition of the controllable set, and define further two classes Umeas and Ubb

of control functions as follows.

Definition 2.10 (Controllable Set)
The controllable set at time t ∈ T is the set of all points x0 ∈ Rnx

that can be steered back to the
origin x (t) = 0 in time t by control functions from a given set U ,

C(U , t)
def
=
¦

x0 ∈ Rnx �
� ∃u(·) ∈ U : x (t; x0, u(·)) = 0

©

(2.7)

The controllable set is defined to be the union of all controllable sets at time t,

C(U) def
=
⋃

t>0

C(U , t) (2.8)

4

Definition 2.11 (Set of measurable control functions)
The set Umeas of measurable control functions is defined as

Umeas def
=
¦

u : T → Rnu �
� u(·) measurable

©

. (2.9)

4

Definition 2.12 (Set of bang–bang control functions)
The set Ubb of bang–bang control functions is defined as

Ubb def
=
¦

u : T → Rnu �
� ∀t ∈ T , 1¶ i ¶ nu : ui(t) = uup

i ∨ ui(t) = ulo
i

©

. (2.10)

4

With these definitions, the bang–bang principle can be stated as follows.

Theorem 2.1 (Bang–bang principle)
For the class of linear control problems (2.6) it holds that

C(Umeas, t) = C(Ubb, t) ∀t > 0. (2.11)

This set is compact, convex, and continuous in t. 4

Proof Proofs can be found in [104] and [145]. �

34

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

An immediate consequence of theorem 2.1 is that binary feasible and optimal solutions to a
linear time–optimal MIOCP coincide with optimal solutions of the OCP obtained using the
outer convexification and relaxation reformulation, cf. [122, 182, 183, 184, 186] for applica-
tions. On a given discretization grid, this holds for the discretized OCP’s solution except in the
neighborhood of switching points of the convex multiplier trajectories α(·). If those do not fall
onto grid points of the control discreization grid, fractional solutions may be obtained on the
corresponding shooting interval, cf. [122, 182].

Remark 2.5 (Bang–Bang Optimal Problems and Active Set Methods)
Exploiting the bang–bang property also in the numerical methods used to solve the convexified
and relaxed NLP is crucial to achieve maximum computational efficiency. Controls that enter
linearly should s can be removed from a major part of the involved linear algebra by suitable
active set methods as soon as they attain one of the two extremal values. We revisit this
question in chapter 7.

2.3.3 Bounds on the Objective Function

For nonlinear or nonconvex problems, the bang–bang principle 2.1 does not hold, and the
relaxed solution will in general not be binary feasible. In this setion, bounds on the objec-
tive function gap and the constraint residual gap are presented that correlate the auxiliary
problems to each other.

Theorem 2.2 (Objective functions of (BN) and (BC))
The binary nonlinear problem (BN) has an optimal solution (x ?, u?, w ?) if and only if the binary
convexified problem (BC) has an optimal solution (x ?, u?,ω?). Their objective function values
ϕBN and ϕBC are identical. 4

Proof A proof can be found in [182]. �

Theorem 2.2 holds for the pair of binary problems only and is in general not true for the pair
of relaxed problems. This is evident as the feasible set of (RN) will in general be larger than
that of (RC) as could already be seen in example 2.1. We can however relate the solutions of
(BC) and (RC) to each other, which shows the advantage of the convexified formulation (RC)
over the nonlinear formulation (RN).

Theorem 2.3 (Objective functions of (BC) and (RC))
Let (x ?, u?,α?) be an optimal solution of the relaxed convexified problem (RC) with objective
function value ϕRC. Then for every ε > 0 there exists a binary feasible control function ωε and
a state trajectory xε such that (xε, u?,ωε) is a feasible solution of (BC) with objective function
value ϕBC

ε and it holds that ϕBC
ε ¶ ϕRC+ ε. 4

Proof A proof can be found in [182]. �

A synthesis of the interrelations of the optimal solutions of the four auxiliary problems can
now be given in the form of the following theorem.

Theorem 2.4 (Objective Functions of the Auxiliary Problems)
Let (x ?, u?,α?) be an optimal solution of the relaxed convexified problem (RC) with objective
function value ϕRC. Then for every ε > 0

35

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

1. there exists a binary feasible 2nw
–dimensional control function ωε and a state trajectory

xε such that (xε, u?,ωε) is a feasible solution of (BC) with objective function value ϕBC
ε ,

2. there exists a binary feasible nw–dimensional control function wε such that (xε, u?, wε) is
a feasible solution of (BN) with objective function value ϕBN

ε ,

3. it holds for the objective function values that

ϕRN ¶ ϕRC ¶ ϕBC
ε = ϕ

BN
ε ¶ ϕRC+ ε. 4

Proof A proof can be found in [182]. �

The optimal solution of an OCP can thus be approximated arbitrarily close by a feasible solu-
tion on the boundary of the feasible region of the relaxed control functions.

2.3.4 Bounds on the Infeasibility

The four auxiliary problems formulation in section 2.3.1 depart from the more general class
of MIOCPs in a single but critical way: We have so far assumed that no path constraints are
present.

Binary control independent path constraints

Concerning the introduction of path constraints, we distinguish two substantially different
cases. For inequality path constraints c(x (·), u(·), p) that do not explicitly depend on the
binary control function w (·), these constraints can be satisfied to any prescribed tolerance
with bang–bang controls w̃ (·) by virtue of theorem 2.4 as the state trajectory x (·) can be
approximated arbitrarily close.

General path constraints

If the binary control function w (·) enters the path constraints c(·) explicitly, the picture is
different. The bang–bang control ω(·) may lead to violations of the path constraints that
could be satisfied by the relaxed trajectory α(·) and moreover, the original problem may not
even have a binary feasible solution as the following example due to [182, 185] shows.

Example 2.2 (Path constraints depending on a binary control function)
Consider for problem (BN) the one–dimensional control constraint

0¶ c(w (t)) =





1− 10−n−w(t)

w(t)− 10−n



 , n¾ 1.

These constraints exclude all binary feasible solutions for w(·), while the relaxed problem
(RC) may still have a feasible solution in the interior of T × [0,1].

36

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

Outer Convexification of Constraints

One remedy is to extend the outer convexification approach to those constraint functions that
directly depend on the binary control. For the above example 2.2 this results in the following
formulation with convex relaxed multiplier functions α1(·),α2(·) ∈ [0,1] and four constraints
instead of two,

0¶ cOC(w (t)) =















α1(t)(1− 10−n)

−α2(t)10−n

α2(t)(1− 10−n)

−α1(t)10−n















, n¾ 1, α1(t) +α2(t) = 1.

In this variant a feasible solution does not exist even for the convexified and relaxed problem
(RC), which immediately allows to verify infeasibility of the original problem (BN). This re-
formulation however has a number of implications for the NLPs obtained from transferring
(2.3) into its convexified and relaxed counterpart problem. Chapters 5 and 6 are dedicated to
this issue.

2.4 Rounding Strategies

For practical computations we will usually be interested in solving the convexified relaxed
counterpart problem (RC) by means of one of the optimal control problem solving algorithms
of chapter 1, and construct an integer feasible solution from the relaxed optimal one. To this
end we discuss in this section the construction and application of rounding schemes. We as-
sume a relaxed optimal solution α?(·) of the convexified relaxed problem (RC) to be available.
In general, α?(·) will not be binary feasible, and so we are interested in the reconstruction of
binary feasible solutions. We present direct and sum–up rounding schemes due to [182] that
respect the SOS1 property, and give a bound due to [185, 187] on the loss of optimality of
the rounded solution.

2.4.1 The Linear Case

We first consider rounding strategies in the case of nw binary control functions w (·) entering
linearly, in which case no convexification is required and relaxation can be applied immedi-
ately. We first define the two rounding strategies.

Definition 2.13 (Direct Rounding)
Let α?(·) be the solution of (RC). Then the direct rounding solution ω(t)

def
= pi ∈ {0,1}nw

for
t ∈ [t i , t i+1] on the grid {t i}, 0¶ i ¶ m is defined by

pi, j
def
=

¨

1 if
∫ t i+1

t i
α?j (t) dt ¾ 1

2
,

0 otherwise.
1¶ j ¶ nw. (2.12)

4

Definition 2.14 (SUR–0.5 Rounding)
Let α?(·) be the solution of (RC). Then the sum–up rounding solution ω(t)

def
= pi ∈ {0,1}nw

for

37

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

t ∈ [t i , t i+1] on the grid {t i}, 0¶ i ¶ m obtained by applying strategy SUR–0.5 is defined by

pi, j
def
=

¨

1 if
∫ t i+1

t0
α?j (t) dt −∑i−1

k=0 pk, j ¾ 1
2
,

0 otherwise.
1¶ j ¶ nw. (2.13)

4

Direct rounding is immediately obvious and does not exploit the fact that the p? j belong to a
control trajectory in time. Figure 2.3 illustrates the idea of sum–up rounding which strives to
minimize the deviation of the control integrals at any point t on the time horizon T ,

�

�

�

�

�

∫ t

t0

ω(τ)−α(τ) dτ

�

�

�

�

�

.

This strategy is easily extended to non–equidistant discretizations of the control. The follow-
ing theorem allows to estimate the deviation from the relaxed optimal control based on the
granularity of the control discretization if the strategy SUR–0.5 is applied.

Theorem 2.5 (Sum–up Rounding Approximation of the Control Integral)
Let α(t) : T × [0, 1]n

w
be a measurable function. Define on a given approximation grid {t i},

0¶ i ¶ m, a binary control trajectory ω(t)
def
= pi ∈ {0,1}nw

for t ∈ [t i , t i+1]

pi, j
def
=

¨

1 if
∫ t i+1

t0
α j(t) dt −∑i−1

k=0 pk, jδtk ¾ 1
2
δt i ,

0 otherwise.
1¶ j ¶ nw (2.14)

Then it holds for all t ∈ T that
�

�

�

�

�

�

�

�

�

�

∫ t

t0

ω(τ)−α(τ) dτ

�

�

�

�

�

�

�

�

�

�

∞
¶ 1

2
max

i
δt i . (2.15)

4

Proof A proof can be found in [185]. �

For control affine systems, the deviation of the state trajectory x (t; x0,ω(·)) from the relaxed
optimal one x (t; x0,α(·)) can be bounded using the following important result based on the-
orem 2.5 and GRONWALL’s lemma.
Theorem 2.6 (Sum–up Rounding of the State Trajectory)
Let two initial value problems be given on the time horizon T def

= [t0, tf],

ẋ (t) = A(t, x(t))α(t), ∀t ∈ T , x (t0) = x0,

ẏ(t) = A(t, y(t))ω(t), ∀t ∈ T , y(t0) = y0,

for given measurable functions α(t),ω(t) : T → [0,1]n
w

and for A : T × Rnx → Rnx × Rnw

differentiable. Assume that there exist constants C , L ∈ R+ such that it holds for t ∈ T almost
everywhere that

�

�

�

�

�

�

�

�

d

dt
A(t, x (t))

�

�

�

�

�

�

�

�

¶ C ,
�

�

�

�A(t, x (t))− A(t, y(t))
�

�

�

�¶ L
�

�

�

�x (t)− y(t)
�

�

�

� ,

38

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

and assume that A(·, x (·)) is essentially bounded on T × Rnx
by a constant M ∈ R+. Assume

further that there exists a constant ε > 0 such that it holds for all t ∈ T that
�

�

�

�

�

�

�

�

�

�

∫ t

0

ω(s)−α(s) ds

�

�

�

�

�

�

�

�

�

�

¶ ε.

Then it holds for all t ∈ T that

�

�

�

�y(t)− x (t)
�

�

�

�¶
��

�

�

�y0− x0

�

�

�

�+ (M + C(t − t0))ε
�

exp(L(t − t0)). (2.16)

4

Proof A proof can be found in [185]. �

2.4.2 The Nonlinear Case

In the presence of SOS1 constraints that arise from outer convexification, the above round-
ing strategies are not directly applicable as the rounded solution ω(·) may violate the SOS1
property. More specifically, the SOS1 property e.g. is satisfied after rounding if there exists
for all t ∈ T a component α?j (t) ¾

1
2

of the relaxed optimal trajectory α?(t). The following
modifications of the above two schemes are proposed in [182, 185].

Definition 2.15 (Direct SOS1 Rounding)
Let α?(·) be the solution of (RC). Then the direct SOS1 rounding solution ω(t)

def
= pi ∈ {0, 1}nw

for t ∈ [t i , t i+1]⊂ T on the grid {t i}, 0¶ i ¶ m is defined by

pi, j
def
=











1 if (∀k :
∫ t i+1

t i
α̃?i j(t) dt ¾

∫ t i+1

t i
α̃?ik(t) dt)

∧ (∀k,
∫ t i+1

t i
α?i j(t) dt =

∫ t i+1

t i
α̃?ik(t) dt : j < k),

0 otherwise.

1¶ j ¶ nw. (2.17)

4

This rounding strategy chooses for each shooting interval the largest relaxed optimal choice
q̃?i, j amongst all choices 1 ¶ j ¶ nw. If the index j of the largest choice is not unique, smaller
indices are arbitrarily preferred. The equivalent for sum–up rounding is given in the following
definition.

Definition 2.16 (SOS1–SUR Rounding)
Let α?(·) be the solution of (RC). Let further control differences p̂i j for the j-th step of sum–up
rounding be defined as

p̂i, j
def
=

∫ t i

t0

α?j (t) dt −
i−1
∑

k=0

pk, j . (2.18)

Then the sum–up rounding solution ω(t)
def
= pi for t ∈ [t i , t i+1]⊂ T on the grid {t i}, 0¶ i ¶ m

obtained by applying strategy SOS1–SUR–0.5 is defined by

pi, j
def
=

¨

1 if (∀k : p̂i, j ¾ p̂i,k)∧ (∀k, p̂i, j = p̂i,k : j < k),

0 otherwise.
1¶ j ¶ nw. (2.19)

4

39

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

The following variant of theorem 2.5 holds for the control approximation obtained from ap-
plication of the SOS1–SUR–0.5 rounding scheme to the relaxed optimal control trajectory.

Theorem 2.7 (SOS1–SUR–0.5 Approximation of the Control Integral)
Let α(t) : T × [0, 1]n

w
be a measurable function. Define on a given approximation grid {t i},

0¶ i ¶ m, a binary control trajectory ω(t)
def
= pi ∈ {0,1}nw

for t ∈ [t i , t i+1] by

pi, j
def
=

¨

1 if (∀k : p̂i, j ¾ p̂i,k)∧ (∀k, p̂i, j = p̂i,k : j < k),

0 otherwise.
1¶ j ¶ nw. (2.20)

Then it holds for all t ∈ T that
�

�

�

�

�

�

�

�

�

�

∫ t

t0

ω(τ)−α(τ) dτ

�

�

�

�

�

�

�

�

�

�

∞
¶ (nw− 1)max

i
δt i . (2.21)

4

Remark 2.6
It is conjectured that the factor nw− 1 in (2.21) is not tight.

2.4.3 The Discretized Case

In contrast to the discussion of the previous sections, the convexified relaxed problem is solved
e.g. using a direct discretization of the control trajectory ω(·). The optimization space is thus
restricted to a finite number m of degrees of freedom for the relaxed control trajectory ω(·),
parameterized by control parameters qi ∈ Ω⊂ Rnw

on a control grid {t i} ⊂ T with m+1 grid
points,

ωi(t) = qi t ∈ [t i , t i+1]⊂ T , 0¶ i ¶ m− 1. (2.22)

The integer control parameters qi are convexified and relaxed, leading to the introduction of
nΩ control trajectories α(·) parameterized by control parameters qi ∈ {0,1}nΩ on each node
of the grid. In general, the solution q? obtained will not be a vertex of the binary hypercube.
A special property that sets the situation apart from more generic MINLPs is then exploited by
any of the sum–up rounding strategies. The control parameters qi j ∈ [0,1], 0 ¶ i ¶ m are for
any given j discretizations of the same discretized binary control trajectory ω j(·) in different
time points t i ∈ T , and the rounding strategies take this knowledge into account.

2.5 Switch Costs

In this section we are concerned with the introduction of switch costs into the problem class
(2.1) in order to avoid solutions that show frequent switching of the binary control trajectory.

2.5.1 Frequent Switching

Theorem 2.4 is a theoretical result for the infinite–dimensional OCP. The optimal solution
may have to switch infinitely often between the two extremal values on the finite horizon T in

40

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

q̃⋆
(t

i)

Index i

10 20 30 40
0

0.5

1

q(
t i
)

Index i

10 20 30 40
0

0.5

1

In
te

gr
al

ga
p

Index i

10 20 30 40
-0.5

0

0.5

Figure 2.3: Sum–up rounding minimizes the deviation of the control integrals. On this equidistant grid,
the integral gap never exceeds 1

2
.

order to attain the relaxed fractional solution’s objective and state trajectory x (·). Hence, fre-
quent switching of the binary control may be part of the actual optimal solution of the infinite–
dimensional MIOCP, in which case it is referred to as chattering or ZENO’s phenomenon, re-
ferring to the ancient Greek philosopher ZENO OF ELEA1 who was the first to give examples
of obviously paradoxical statements drawing attention to the interpretative difficulties in this
situation.

Remark 2.7 (ZENO’s Phenomenon)
Theorem 2.4 holds for the infinite–dimensional optimization problems prior to any discretiza-
tion. If a relaxed optimal control trajectory w (·) has singular or path constrained arcs, i.e.,
parts of the optimal trajectory attain values in the interior of the relaxed feasible set [0,1]n

w
,

the bang–bang optimal trajectory approximating it may have to switch between the extremal
points infinitely often on a finite time horizon.

The first example of an optimal control problem with a solution that shows ZENO’s phe-
nomenon was given in [76]. Chattering of an integer control may be undesirable from a
point of view of the process under control, and the inclusion of switch costs in the MIOCPs
then becomes a modeling issue. For example, the change of a discrete decisions might take
some process time to complete, incur some operational cost that is to be kept as low as pos-
sible, or may be discouraged due to mechanical wear–off in the physical device realizing the
switch, e.g. in a valve or a gearbox [42, 103]. Closely related is the problem of seeking for
sparse controls that switch only a limited number of times and remain on the lower bound
for most of the time, e.g. when optimizing the application of drugs over time during medical
treatment [63].
We summarize under the term switch costs three different but related settings. First, the num-
ber of switches permitted on the time horizon may be bounded from above by a number
smaller than the number m of available control discretization intervals. Second, it may be
desirable to penalize the occurrence of a switch by a positive contribution to the problem’s
objective, striving for a pareto–optimal solution that constitutes a compromise between max-
imum performance and minimum operation of the switch. Third, operating a switch may
trigger fast transients in the dynamic process states. One possible way of representing these
transients is by approximation using state discontinuities. For the case of implicitly defined,
i.e., state dependent switches this is discussed e.g. in [155, 40, 118]. For the case of externally

1
Ζήνων ὁ ᾿Ελεάτης

41

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

operated switches, i.e., here discretized time–varying control functions with a finite number
of admissible values, such state jumps occur in the discretization points.
It is immediately evident that any inclusion of positive costs of switches of a binary or inte-
ger control, either by penalization of the number of switches in the objective function or by
limiting the number of switches through an additionally imposed constraint, prevents ZENO’s
phenomenon from occurring as the resulting solution would show infinite cost in the first case
and be infeasible in the second case.

2.5.2 Switch Costs in a MILP Formulation

This observation leads us to discuss the inclusion of switch costs on a discretization of the
binary convexified linear problem (BC). Here, the optimal solution can switch only a finite
number of times, at most once in each of the control discretization grid points. Still, frequent
switching of the binary control trajectory may occur after sum–up rounding of the discretized
solution on singular or path constrained arcs of the convexified relaxed optimal solution. For
fine discretizations, the inclusion of switch costs may have a significant impact on the shape
of optimal solutions.
Instead of applying a sum–up rounding strategy to the relaxed OCP solution we proposed in
[189] to solve the following MILP (2.23),

min
p

max
1¶k¶nΩ

max
0¶i¶m−1

�

�

�

�

�

�

i
∑

j=0

�

q̃?jk − p jk

�

δt j

�

�

�

�

�

�

(2.23)

s. t. 1=
nΩ
∑

k=1

pik, 0¶ i ¶ m− 1,

σk ¾
m−1
∑

i=0

�

�pik − pi+1,k

�

� , 0¶ k ¶ nΩ,

pi ∈ {0, 1}nΩ . 0¶ i ¶ m− 1

that computes a binary feasible solution ω(·) from a relaxed optimal one α?(·) subject to
givens limits σ j > 0, 1¶ j ¶ nw for the number σ j of switches of the binary control trajectory

ω j(·) after rounding. Here q?i ∈ [0, 1]n
Ω
, 0 ¶ i ¶ m− 1 denote the control parameters of a

relaxed optimal solution of a direct discretization of (BC), and let pi ∈ {0,1}nΩ denote the
rounded solution respecting switch costs. The relaxed solution serves as an excellent initial
guess that is very cheap to obtain. A combinatorial Branch & Bound algorithm is developed
for this problem in our paper [189] that exploits this information to gain significant compu-
tational speed–ups. In view of the inherent complexity of this MILP and the fast computation
times required for mixed–integer NMPC we focus in the following on an approximate switch
cost formulation that can be readily included in the convexified and relaxed OCP.

2.5.3 Switch Costs for Outer Convexification

In this section we develop a switch cost formulation that is suitable for inclusion into the
convexified relaxed problem (RC) and fits into a direct multiple shooting discretization. The
key issues here are maintaining differentiability and separability of the problem formulation.

42

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

We introduce the following discretized variant of the auxiliary problem (BC) with switch costs
as shown in definition 2.17. Herein, a discretization on a fixed grid {t i} with m nodes,

ω(t)
def
= qi ∈ Ω ∀t ∈ [t i , t i+1), 0¶ i ¶ m− 1, (2.24)

is assumed for the binary convexified control trajectory ω(·), and we remind the reader of the
convenience definition ω(tm)

def
= qm = qm−1. The additionally introduced variable σ counts

the number of changes in each component of the discretized binary control trajectory ω(·)
over time. The number of switches may be constrained by an upper limit σmax or included in
the objective function using a weighting penalization factor π. We further denote by (RCS)
the relaxed counterpart problem of (BCS) only which differs in

qi ∈ [0,1]n
Ω
, 0¶ i ¶ m− 1. (RCS)

Definition 2.17 (Discretized Problem (BC) with Switch Costs)
The multiple shooting discretization of the binary convexified linear problem with switch costs
is the following extension of problem (BC),

min
s ,q

m
∑

i=0

nΩ
∑

j=1

li(t i , si ,ω
j) qi j +

nΩ
∑

j=1

π jσ j (BCS)

s. t. 0=
nΩ
∑

j=1

x i(t i+1; t i , si ,ω
j) qi j − si+1, 0¶ i ¶ m− 1,

s0 = x0,

qi ∈ {0,1}nΩ , 0¶ i ¶ m− 1,

1=
nΩ
∑

j=1

qi j , 0¶ i ¶ m− 1,

σ j =
m−1
∑

i=0

�

�qi+1, j − qi, j

�

� , 1¶ j ¶ nΩ,

σ j ¶ σ j,max, 1¶ j ¶ nΩ. 4

2.5.4 Reformulations

In the following, we address several issues with the problem formulation (BCS). The defining
constraint for σ is nondifferentiable with respect to q , and we present two reformulations
that overcome this. Second, the behavior of (RCS) after relaxation of the binary requirement
is studied. Finally, the above formulation obviously comprises a coupled constraint connecting
control parameters from adjacent shooting intervals. This impairs the separability property of
the NLP’s Lagrangian and we present a separable reformulation in order to maintain compu-
tational efficiency.

43

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

Differentiable Reformulation

Addressing the issue of nondifferentiability, we use a reformulation introducing slack variables
for the constraint defining σk, 1¶ k ¶ nΩ as follows,

σk =
1
2

m−1
∑

i=0

δi, j , (2.25)

δi, j ¾ qi+1, j − qi, j ,

δi, j ¾ qi, j − qi+1, j .

Here, positivity of the slacks δi, j is ensured by the two additionally introduced constraints.
This moves the nondifferentiability to the active set method solving the NLP. At least one of
the two constraints on the positive differences δi, j will be active at any time.

Note that the introduction of switch costs by this formulations introduces for each of the
m · nΩ convex multipliers one additional control parameter into the NLP. Linear algebra tech-
niques for solution of the discretized MIOCP that are tailored to problems with many control
parameters are presented in chapter 7.

After relaxation of the convex multipliers qi, j emerging from the outer convexification ap-
proach, the above differential reformulation has the drawback of attracting fractional solu-
tions. As an example, the relaxed optimal solution qi j =

1
2

for all intervals 0 ¶ i ¶ m − 1
and j = 1,2 should be recognized as a “switching” solution, as the sum–up rounding strategy
would yield a rounded control alternating between zero and one. The differences of adjacent
relaxed optimal control parameters are zero however, which yields σ = 0.

Convex Reformulation

In order to address this issue, we develop a new second approach making use of a convex
reformulation of the nondifferentiability. For two binary control parameters qi, j and qi+1, j

adjacent in the time discretization of the control trajectory, the switch cost σi, j is given by the
expression

σi, j
def
= αi, j(qi, j + qi+1, j) + βi, j(2− qi, j − qi+1, j), αi, j + βi, j = 1, (2.26)

in which αi, j and βi, j are binary convex multipliers introduced as additional degrees of free-
dom into the optimization problem. Note that the SOS1 constraint can again be used to elim-
inate the multiplier βi, j ,

σi, j = (2αi, j − 1)(qi, j + qi+1, j − 1) + 1. (2.27)

Under minimization of the switch cost, this expression yields the solutions listed in table 2.1a.
Figure 2.4a depicts the evaluation points and values.

For the relaxed problem (RCS), this convex reformulation ensures that fractional solutions
are assigned a nonzero cost, in particular any fractional solution is more expensive than the
nonswitching binary ones, and that the switching binary solutions are assigned the highest
cost. Table 2.1b shows the switch costs under minimization for fractional values of the relaxed
control parameters. The convexification envelope is depicted in figure 2.4b.

44

M I X E D – I N T E G E R O P T I M A L C O N T R O L
�

� CHAPTER 2

qi, j qi+1, j αi, j βi, j
1
2
σi, j

0 0 1 0 0

0 1 free free 1

1 0 free free 1

1 1 0 1 0

(a) Switch costs for binary controls.

qi, j + qi+1, j αi, j βi, j
1
2
σi, j

< 1 1 0 < 1

= 1 free free 1

> 1 0 1 < 1

(b) Switch costs for relaxed controls.

Table 2.1: Binary and relaxed optimal solutions for the convex switch cost reformulation.

1

0

11
0

w̃i, j w̃i+1, j

σi, j

(a) Switch costs for binary controls.

1

0

11
0

w̃i, j w̃i+1, j

σi, j

(b) Switch costs for relaxed controls.

Figure 2.4: Convex reformulation of the switch cost constraint for two binary controls adjacent in the
time discretization.

Numerical results obtained from this strategy look promising as detailed in chapter 9, though
the connection to the MILP (2.23) yet remains to be clarified.

Separable Reformulation for Direct Multiple Shooting

Separability of the objective function and all constraint functions with respect to the discretiza-
tion in time is a crucial property of the direct multiple shooting discretization. It introduces
a block structure into the discretized OCP that can be exploited very efficiently as detailed in
chapter 7. The only coupling between adjacent shooting intervals allowed so far has been the
consistency condition imposed on the IVP solutions in the shooting nodes.
Separability of the above differential reformulation can be recovered by formally introducing
an augmented vector of differential states x̂ = [x d] together with the augmented matching
condition







∑nΩ

j=1 x i(t i+1; t i , si ,ω
j) qi j − si+1

qi − qi+1− d






= 0. (2.28)

This matching condition deviates from the classical direct multiple shooting method [36, 166]
in that it depends on the control parameter vector of the subsequent shooting interval. In
chapter 7 we investigate structured linear algebra techniques for SQP subproblems with many
control parameters that support this generalized type of matching condition. The separable

45

CHAPTER 2
�

� M I X E D – I N T E G E R O P T I M A L C O N T R O L

linear reformulation reads

σ = 1
2

m−1
∑

i=0

nΩ
∑

j=1

δi j , δi ¾ di ¾−δi , 0¶ i ¶ m− 1. (2.29)

Separability of the convex reformulation can be recovered in a similar way.

2.6 Summary

In this chapter we have been concerned with reformulations of MIOCPs that allow for the
efficient numerical solution or approximation. Focus has been put on a convex reformulation
of the MIOCP with respect to the binary or integer control. After relaxation, this reformula-
tion allows to obtain an approximation to a solution of an MIOCP by solving only a single
continuous but possibly larger OCP. This is due to the fact that the convexified OCP’s optimal
solution can be approximated with arbitrary quality by a control trajectory on the boundary of
the feasible set. For a discretization of this reformulated OCP, bounds on the loss of optimality
and on the infeasibility of those constraints independent of the integer control can be shown.
Constraints directly depending on the integer control are considered in chapter 5. Rounding
schemes were presented that in the case of fractional optimal solutions of the relaxed OCP
allow to reconstruct an integer feasible solution with a known bound on the loss of optimality.
We have considered an MILP formulation replacing sum–up rounding in the case of upper lim-
its constraining the permitted number of switches. A convexification and relaxation has been
developed for this formulation that does not attract fractional solutions of the convexified
relaxed OCP. It further maintains separability of the objective and constraints functions, and
can thus be included in a direct multiple shooting discretization of the OCP. The presented
switch cost formulations double the number of control parameters emerging out of the convex
reformulation. Linear algebra techniques for the solution of the discretized OCP with many
control parameters are considered in chapter 7.

46

3 Constrained Nonlinear Programming

We have already briefly touched nonlinear programming in the last two chapters, in which we
introduced the multiple shooting discretized optimal control problem, a Nonlinear Program
(NLP), and presented the outer convexification and relaxation approach that allows to com-
pute approximations to local Mixed–Integer Optimal Control Problem (MIOCP) solutions by
solving a reformulated and discretized but possibly much larger Optimal Control Problem
(OCP). This chapter is concerned with theory and numerical methods for the solution of NLPs
and equips the reader with definitions and algorithms required for the following chapters of
this thesis. We present optimality conditions characterizing locally optimal solutions and in-
troduce Sequential Quadratic Programming (SQP) methods for the iterative solution of NLPs.
The evaluation of the matching condition constraints of the discretized optimal control prob-
lem requires the solution of Initial Value Problems (IVPs). To this end, we present one step
methods for non–stiff Ordinary Differential Equations (ODEs) and discuss the efficient and
consistent computation of sensitivities of IVPs solutions.

3.1 Constrained Nonlinear Programming

In this section we prepare our investigation of SQP methods for the solution of the discretized
optimal control problem by repeating definitions of a number of terms commonly arising in
constrained nonlinear programming for further reference. We give an overview over major
results characterizing optimal solutions of NLPs. These can be found in any standard textbook
on nonlinear programming, e.g. [24, 72, 157].

3.1.1 Definitions

This section is concerned with the solution of constrained nonlinear programs of the general
form given in definition 3.1.

Definition 3.1 (Nonlinear Program)
An optimization problem of the general form

min
x∈Rn

f (x) (3.1)

s. t. g (x) = 0,

h(x)¾ 0,

with objective function f : Rn→ R, equality constraints g : Rn→ Rng
, and inequality constraints

h : Rn→ Rnh
is called a Nonlinear Program. 4

The functions f , g , and h are assumed to be twice continuously differentiable with respect to
x . We are interested in finding a point x ? ∈ Rn that satisfies all constraints and minimizes, in

47

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

a neighborhood, the objective function. To this end, we define the subset of feasible points of
problem (3.1).

Definition 3.2 (Feasible Point, Feasible Set)
A point x ∈ Rn is called a feasible point of problem (3.1) if it satisfies the constraints

g (x) = 0,

h(x)¾ 0.

The set of all feasible points of problem (3.1) is denoted by

F def
=
�

x ∈ Rn | g (x) = 0, h(x)¾ 0
	⊆ Rn. (3.2)

4

Applying this definition, we may restate problem (3.1) as a pure minimization problem over
a set F with possibly complicated shape,

min
x∈F f (x).

For any point of the feasible set, the active set denotes the subset of inequality constraints that
are satisfied to equality.

Definition 3.3 (Active Constraint, Active Set)
Let x ∈ Rn be a feasible point of problem (3.1). An inequality constraint hi , i ∈ {1, . . . , nh} ⊂ N,
is called active if hi(x) = 0 holds. It is called inactive otherwise. The set of indices of all active
constraints

A(x) def
= {i | hi(x) = 0} ⊆ {1, . . . , nh} ⊂ N (3.3)

is called the active set associated with x . 4

The restriction of the inequality constraint function h onto the active inequality constraints is
denoted by hA : Rn→ R|A|, x 7→ hA(x).
Constraint Qualifications (CQs) ensure a certain well–behavedness of the feasible set in a
neighborhood of a feasible point x ∈ F . We often require the set of active constraints to be
linear independent.

Definition 3.4 (Linear Independence Constraint Qualification, Regular Point)
We say that Linear Independence Constraint Qualification (LICQ) holds for problem (3.1) in
x ∈ Rn if it holds that

rank





gx (x)
�

hA
�

x (x)



= ng+ nh
A. (3.4)

Then, x is referred to as a regular point of problem (3.1). 4

In irregular points, constraints in the active set A are linearly dependent. Numerical methods
then frequently require that a linear independent subset W ⊂ A is chosen, referred to as the
working set.

48

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

Finally, we have the following formal definition of a local solution to problem (3.1). In the next
section, alternative conditions will be given that can be used to devise numerical algorithms
for finding candidate points for local solutions.

Definition 3.5 (Locally Optimal Point)
A point x ? ∈ F ⊆ Rn is called a locally optimal point of problem (3.1) if there exists an open
ball Bε(x ?) with ε > 0 such that

∀x ∈ Bε(x ?)∩F : f (x)¾ f (x ?).

If in addition it holds that

∀x ∈ Bε(x ?)∩F , x 6= x ? : f (x)> f (x ?)

then x ? is called a strict local optimum of problem (3.1). 4

3.1.2 First Order Necessary Optimality Conditions

In order to state necessary optimality conditions for a candidate point x to be a locally optimal
solution of (3.1), we require the following definitions.

Definition 3.6 (Lagrangian Function)
The function L : Rnx ×Rng ×Rnh → R,

L(x ,λ,µ)
def
= f (x)−λT g (x)−µT h(x) (3.5)

with Lagrange multipliers λ ∈ Rng
and µ ∈ Rnh

is called the Lagrangian (function) of problem
(3.1). 4

The following famous theorem independently found by [114, 125] specifies necessary condi-
tions for local optimality of a regular point that are based on definition 3.6. We will return to
this theorem in chapter 6 and consider it again under weaker assumptions.

Theorem 3.1 (KARUSH–KUHN–TUCKER Conditions)
Let x ? ∈ Rn be a locally optimal point of problem (3.1), and assume that LICQ holds in x ?. Then

there exist Langrange multipliers λ? ∈ Rng
and µ? ∈ Rnh

such that the following conditions are
satisfied:

0= Lx (x
?,λ?,µ?),

0= g (x ?),

0¶ h(x ?),

0¶ µ?,
0= µ?T h(x ?).

The point (x ?,λ?,µ?) is then referred to as a KARUSH–KUHN–TUCKER (KKT) point. 4

Proof Proofs under LICQ can be found in any standard textbook on nonlinear programming,
such as [72, 157]. �

49

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

The condition µ?T h(x ?) = 0 in theorem 3.1 is referred to as complementarity condition.
It specifies that Lagrange multipliers for inactive inequality constraints shall be zero. This
condition may be sharpened as follows.

Definition 3.7 (Strict Complementarity)
Let x ? ∈ Rn be a locally optimal point of problem (3.1) and let λ? ∈ Rng , µ? ∈ Rnh be Lagrange
multipliers such that the conditions of theorem 3.1 are satisfied. We say that strict complemen-
tarity holds in (x ?,λ?,µ?) if µ?i > 0 for all active constraints hi . 4

Active constraints in violation of strict complementarity are called weakly active.

Definition 3.8 (Weakly Active Constraint)
Let x ? ∈ Rn be a locally optimal point of problem (3.1) and let λ? ∈ Rng , µ? ∈ Rnh be some
Lagrange multipliers such that the conditions of theorem 3.1 are satisfied. Then a constraint
hi(x ?) ¾ 0 is called stongly active or binding if hi(x ?) = 0 and µ?i > 0. The constraint hi is
called weakly active if hi(x ?) = 0 and µi = 0 for all µ satisfying the KKT conditions. 4

For a given point KKT point x ? there may be many choices of λ and µ that satisfy the KKT
condition of theorem 3.1. Under LICQ and strict complementarity, uniqueness of the Lagrange
multipliers in a KKT point can be shown. For the design of most derivative based algorithms
for constrained nonlinear optimization, LICQ thus is the CQ assumed most often.

Theorem 3.2 (Uniqueness of Lagrange Multipliers)
Let x ? be a locally optimal point of problem (3.1), and let λ? ∈ Rng , µ? ∈ Rnh be Lagrange
multipliers such that the conditions of theorem 3.1 are satisfied. Let LICQ hold in x ? and let strict
complementarity hold in (x ?,λ?,µ?). Then it holds that the values λ? and µ? are unique. 4

Proof For the equality constraints and the subset of active inequality constraints, this is ev-
ident from linear independence of the gradients gx (x ?) and (hA)x (x ?). For the inactive in-
equality constraints, µ?i = 0 for i /∈A(x ?) is enforced by strict complementarity. �

3.1.3 Second Order Conditions

A necessary and a sufficient condition for local optimality that both use second order deriva-
tive information are given in this section. We require the definition of the reduced or null–
space Hessian.

Definition 3.9 (Reduced Hessian)
Let (x ,λ,µ) ∈ Rnx ×Rng ×Rnh

be a primal–dual point and let Z(x) ∈ Rnx×nz
be a column basis

of the null space of the active constraints in x . The projection of the Hessian Lx x (x ,λ,µ) of the
Lagrangian onto the null space of the active constraints,

H red(x ,λ,µ)
def
= ZT (x) Lx x (x ,λ,µ) Z(x), (3.6)

is called the reduced Hessian. 4
Theorem 3.3 (Second Order Necessary Conditions)
Let x ? ∈ Rnx

be a locally optimal point of problem (3.1). Let LICQ hold in x ? and let λ? ∈ Rng
,

µ? ∈ Rnh
be the unique Lagrange multipliers such that the KKT conditions are satisfied. Then it

holds that the reduced Hessian is positive semidefinite,

∀d ∈ {Z(x ?)dz | dz ∈ Rnz} : dT Lx x (x
?,λ?,µ?) d ¾ 0. 4

50

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

Proof A proof can be found in [157]. �

Theorem 3.4 (Strong Second Order Sufficient Conditions)
Let x ? ∈ Rn be a feasible point of problem (3.1) and let λ ∈ Rng , µ ∈ Rnh be Lagrange multipliers
such that the KKT conditions are satisfied. Further, let the reduced Hessian be positive definite,

∀d ∈ {Z(x ?)dz | dz ∈ Rnz} \ {0} : dT Lx x (x
?,λ?,µ?) d > 0.

Then x ? is a locally strictly optimal point of problem (3.1). 4

Proof A proof can be found in [157]. �

3.1.4 Stability

We are concerned with the stability of a KKT point under small perturbations of the problem
data in (3.1). Under strict complementarity, the active set can be shown to remain invariant
for small perturbations of the solution. To this end we consider the perturbed problem

min
x∈Rn

f (x ,ε) (3.7)

s. t. g (x ,ε) = 0

h(x ,ε)¾ 0

with perturbation parameter ε > 0 for the objective function and the constraint functions.
Further, let the problem functions f , g , and h be continuously differentiable with respect to
the disturbation parameter ε.

Theorem 3.5 (Stability)
Consider the perturbed problem (3.7), and assume that for ε = 0 this problem coincides with
problem (3.1). Let (x ?,λ?,µ?) be a regular point satisfying both strict complementarity and the
assumptions of theorem 3.4 in ε = 0. Then there exists an open interval V(0) ⊂ R, an open ball
W(x ?,λ?,µ?) ⊂ Rnx ×Rng ×Rnh

, and a continuously differentiable mapping ϕ : V → W such
that x ?(ε) is a strict local minimum of (3.7) and ϕ(ε) = (x ?(ε),λ?(ε),µ?(ε)) is the unique
KKT point of (3.7) in W. The set A(x ?(0)) of active inequality constraints remains unchanged in
x ?(ε). 4

Proof A proof can be found in [34]. �

3.2 Sequential Quadratic Programming

In this section we introduce two SQP methods, the full–step exact Hessian SQP method and
the constrained GAUSS–NEWTON method, and mention their local convergence properties.
They may be used to solve OCPs of the class (1.1) after a direct multiple shooting discretiza-
tion.
SQP methods for constrained nonlinear programming were first proposed by [220]. The first
practically successful implementations are due to [100, 169]. For a more extensive treatment
of the underlying theory and possible algorithmic variants we refer to the textbooks [72, 157].
Descriptions of an SQP method tailored to the direct multiple shooting method can be found
e.g. in [131, 133]. Further extensions for large scale systems are described e.g. in [6, 190].

51

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

3.2.1 Basic Algorithm

SQP methods are iterative descent–based methods for finding a KKT point of problem (3.1)
by computing a sequence of iterates {(x k,λk,µk)} starting in an initial guess (x 0,λ0,µ0). The
steps are found from the minimization of local quadratic models of the Lagrangian function
on a linearization of the feasible set in the most recent iterate.

Definition 3.10 (Local Quadratic Subproblem)
The local quadratic subproblem in (x k,λk,µk) ∈ Rnx ×Rng ×Rnh

for problem (3.1) is given by

min
δx k∈Dk

1
2
δx k T

Bkδx k +δx k T
bk (3.8)

s. t. g (x k) + gx (x
k)δx k = 0,

h(x k) + hx (x
k)δx k ¾ 0.

The matrix Bk denotes the Hessian Lx x (x k,λk,µk) of the Lagrangian or a suitable approximation
thereof, and the vector bk denotes the gradient fx (x k) of the objective function. The set Dk ⊆ Rn

may be used to further restrict the set of permitted steps. 4

The solution δx k of (3.8) is used as a step direction to obtain the next iterate x k+1,

x k+1 def
= x k +αkδx k. (3.9)

SQP methods differ in the choice of the Hessian Bk or its approximation, in the choice of the
set Dk of candidate steps, and in the way the length αk ∈ (0, 1]⊂ R of the step is determined.
We refer the reader to [72, 157] for details. By construction of bk the duals λ̂k and µ̂k obtained
from the solution of (3.8) are the new SQP dual iterates after a full step αk = 1, thus we have

λk+1 def
= (1−αk)λk +αkλ̂k, (3.10)

µk+1 def
= (1−αk)µk +αkµ̂k.

For a proof we refer to e.g. [131]. The sequence of SQP iterates can be shown to converge to
a KKT point of (3.1) under certain conditions as detailed below. In practice, it is terminated
once a prescribed convergence criterion is satisfied.

3.2.2 The Full Step Exact Hessian SQP Method

The full step exact Hessian SQP method is named for its choice

Bk = Lx x (x
k,λk,µk), (3.11)

Dk = Rn,

αk = 1

of the algorithmic parameters described in section 3.2.1. It can be shown to be equivalent to
NEWTON–RAPHSON iterations applied to the KKT conditions.

Theorem 3.6 (Equivalence of SQP and NEWTON’s method)
Let Bk(x k,λk,µk) = Lx x (x k,λk,µk), Dk = Rn, and αk = 1 for all k ¾ 1. Then the SQP method
is equivalent to NEWTON’s method. 4

52

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

Algorithm 3.1: A basic SQP algorithm.

input : x 0, λ0, µ0

output: x ?, λ?, µ?

while ¬terminate(x k,λk,µk) do
Evaluate bk, g , gx , h, hx in x k;
Evaluate Bk in (x k,λk,µk);
Determine Dk ⊆ Rn;
Solve subproblem (3.8) for (δx k, λ̂k, µ̂k);
Determine step length αk ∈ (0,1];
x k+1 = x k +αkδx k;
λk+1 = (1−αk)λk +αkλ̂k;
µk+1 = (1−αk)µk +αkµ̂k;
k = k+ 1;

end

For equality constrained problems, this can be seen from the KKT conditions of the local
quadratic subproblem (3.8),

Bkδx k + bk − λ̂k T
gx (x

k) = 0, (3.12)

g (x k) + gx (x
k)δx k = 0.

After substitution λ̂k = λk +δλk (3.12) may be written as

Bkδx k + Lx (x
k,λk,µk)−δλk T

gx (x
k) = 0, (3.13)

g (x k) + gx (x
k)δx k = 0.

This is the NEWTON–RAPHSON iteration for (δx k,δλk) on the KKT system of (3.8),





Lx (x k,λk,µk)

g (x k)



+
d

d(x ,λ)





Lx (x k,λk,µk)

g (x k)









δx k

δλk



= 0. (3.14)

The local convergence rate of the full step exact Hessian SQP method in the neighborhood of
a KKT point thus is quadratic. Good initial guesses for x 0 are required, though. The following
theorem shows that such guesses are not required for the Lagrange multipliers λ0.

Theorem 3.7 (Convergence of the full step exact Hessian SQP Method)
Let (x ?,λ?) satisfy theorem 3.4. Let (x 0,λ0) be chosen such that x 0 is sufficiently close to x ? and
that the KKT matrix of (3.8) is regular. Then the sequence of iterates generated by the full step
exact Hessian SQP method shows local q–quadratic convergence to (x ?,λ?). 4

Proof A proof can be found in [72]. �

In the presence of inequality constraints, if theorem 3.4 and strict complementarity hold,
then the active set does not change in a neighborhood of the KKT point. Indeed, under these
assumptions even if Bk only is some positive definite approximation of the exact Hessian, both

53

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

the optimal active set and the optimal Lagrange multipliers λ?, µ? can be identified knowing
the primal optimal solution x ? only [51, 179].

3.2.3 The GAUSS-NEWTON Approximation

The GAUSS–NEWTON approximation of the Hessian is applicable to NLPs with objective func-
tion of the structure

f (x) = 1
2
||r (x)||22 = 1

2

nr
∑

i=1

r2
i (x), (3.15)

where r : Rnx → Rnr
, x 7→ r (x) is a vector valued residual function. The gradient fx is

fx (x) =
nr
∑

i=1

ri(x)ri x (x) = r T
x (x)r (x), (3.16)

and the Hessian of this objective is

fx x (x) =
nr
∑

i=1

�

ri
T
x (x)ri x (x) + ri(x)ri x x (x)

�

= r T
x (x)rx (x) +

nr
∑

i=1

ri(x)ri x x (x). (3.17)

The first part of the Hessian fx x can be calculated only from gradient information and in
addition often dominates the second order contribution in the case of small residuals r (x) or
because the model is almost linear close to the solution. This gives rise to the approximation

BGN(x)
def
= r T

x (x)rx (x) (3.18)

which is independent of the Lagrangian multipliers belonging to x . The error in this approxi-
mation can be shown to be of order O(||r (x ?)||), which leads us to expect the GAUSS–NEWTON

method to perform well for small residuals r (x). For more details on the constrained GAUSS–
NEWTON method as an important special case of SQP methods applicable to NLPs with the
objective function (3.15) we refer to [34].

3.2.4 BFGS Hessian Approximation

The BFGS (BROYDEN–FLETCHER–GOLDFARB–SHANNO) approximation belongs to a larger family
of quasi–NEWTON update formulas, of which it is presently considered the most effective one.
One possible way to derive it is the following. Starting with an existing symmetric and positive
definite Hessian approximation Bk, that need not necessarily be a BFGS one, we compute the
new approximation Bk+1 as

Bk+1 def
= Bk − Bkδx kδx k T

Bk T

δx k T Bkδx k
+
δ f k

x δ f k
x

T

δ f k
x

T
δx k

(3.19)

wherein δx k is the step from x k to x k+1 and δ f k
x is the associated gradient change fx (x k+1)−

fx (x k). Different derivations of this update formula can be found in the original papers [41,
71, 87, 197] as well as in the textbooks [72, 157].

54

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

For larger dimensions nx, and thus larger and possibly dense Hessian approximations Bk,
the limited memory variant L-BFGS of this approximation is attractive. Instead of storing the
matrix Bk, a limited number l of historical vector pairs (δx i ,δ f i

x), k− l + 1¶ i ¶ k, is stored
from which the approximation Bk is rebuilt. In each SQP iteration the oldest vector pair is
replaced by the current step and gradient step. While Bk could in principle be computed by
repeated application of (3.19), this requires O(l2nx)multiplications and we refer to e.g. [157]
for compact representations of the L-BFGS update that reduce the computational effort to only
O(lnx) multiplications.
This approximation scheme has also proved itself successful for ill–conditioned problems and
for initial guesses far away from the optimal solution, in which case outdated secant infor-
mation unrelated to the locally optimal solution would accumulate in a conventional BFGS
approximation.
It is of vital importance to note that the rank two update (3.19) can be applied independently
to each Hessian block Bk

i , 0 ¶ i ¶ m of the direct multiple shooting system. This leads to
a rank 2m update for the NLP that significantly improves the convergence speed of the SQP
method as first noted in [36].

3.2.5 Local Convergence

We are interested in sufficient conditions for local convergence for general SQP methods that
produce a series of iterates

yk+1 = yk +δyk = yk −M(yk)r (yk) (3.20)

towards a root y? of the function r : D → Rnr
, D ⊆ Rn, with r (y?) = 0. Here the matrices

M(yk) denote approximations of the inverse of the Jacobians J(yk) of the residuals r (yk). In
the case of SQP methods, r is the gradient of the Lagrangian and M a suitable approximation
of the inverse of the Hessian of the Lagrangian.
We define the set of NEWTON pairs of the iteration (3.20) as follows.

Definition 3.11 (Set of NEWTON Pairs)
The set N of NEWTON pairs is defined as

N def
=
�

(y1, y2) ∈ D×D | y2 = y1−M(y1)r (y1)
	

. (3.21)

4

We require two definitions concerned with the quality of the approximations M(yk) to J−1(yk).

Definition 3.12 (ω–Condition)
The approximation M satisfies the ω–condition in D if there exists ω < ∞ such that for all
t ∈ [0, 1]⊂ R and all (y1, y2) ∈N it holds that

�

�

�

�M(y2)(J(y1+ t(y2− y1))− J(y1))(y1− y2)
�

�

�

�¶ωt
�

�

�

�y1− y2

�

�

�

�

2
. (3.22)

4

Definition 3.13 (Compatibility or κ–Condition)
The approximation M satisfies the κ–condition in D if there exists κ < 1 such that for all

55

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

(y1, y2) ∈N it holds that

�

�

�

�M(y2)(I − J(y1)M(y1))r (y1)
�

�

�

�¶ κ
�

�

�

�y1− y2

�

�

�

� . (3.23)

4

With this, we define with δyk def
=−M(yk)r (yk) the constant

δk def
= κ+ ω

2

�

�

�

�δyk
�

�

�

� (3.24)

and the closed ball

D0(y0)
def
= Bε(y0), ε

def
=
�

�

�

�δy0
�

�

�

�/(1−δ0). (3.25)

We are now prepared to state a local contraction theorem for the sequence {yk} of SQP
iterates.

Theorem 3.8 (Local Contraction Theorem)
Let M satisfy the ω– and κ–conditions and let y0 ∈ D. If δ0 < 1 and D0(y0) ⊂ D, then
yk ∈ D0(y0) and {yk} → y? ∈ D0(y0) with convergence rate

�

�

�

�δyk+1
�

�

�

�¶ δk
�

�

�

�δyk
�

�

�

�= κ
�

�

�

�δyk
�

�

�

�+ ω
2

�

�

�

�δyk
�

�

�

�

2
. (3.26)

Furthermore, the following a–priori estimates hold for j ¾ 1,

�

�

�

�yk+ j − y?
�

�

�

�¶ δ
j
k

1−δk

�

�

�

�δyk
�

�

�

�¶ δ
k+ j
0

1−δ0

�

�

�

�δy0
�

�

�

� . (3.27)

If M(y) is continuous and regular in y? then r (y?) = 0. 4

Proof The proof can be found in [34]. �

We will make use of this local contraction theorem in chapter 4 to proof convergence of the
real–time iteration scheme and its mixed–integer extension.

3.2.6 Termination Criterion

In algorithm 3.1 we have left open the issue of finding a suitable termination criterion. Cer-
tainly, due to approximation errors in the derivatives and due to finite precision and condi-
tioning issues we will in general be able to identify a primal–dual point (x k,λk, muk) that is
satisfies the optimality conditions only to a certain prescribed tolerance. In [132] it has been
proposed to use the KKT tolerance

kkttol(x ,λ,µ)
def
=
�

�

�

� fx (x ,λ,µTδx)
�

�

�

�+
ng
∑

i=1

|λi gi(x)|+
ng
∑

i=1

|µihi(x)|. (3.28)

We terminate the SQP iterations once a prescribed threshold value kktacc, e.g. kktacc =
10−8 is satisfied for some iteration k,

kkttol(x k,λk,µk)< kktacc. (3.29)

56

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

3.2.7 Scaling

The step direction, step length, and the termination criterion are susceptible to scaling of the
unknowns and of the objective function and the constraints functions. Most NLP algorithm
therefore either determine appropriate scale factors automatically, or provide a means for the
user to specify suitable positive scale factors σx ∈ Rnx

, σf ∈ R, σg ∈ Rng
, σh ∈ Rnh

. The
equivalent NLP

min
x∈Rn

σg f̃ (Σxx) (3.30)

s. t. σg,i g̃i(Σxx) = 0, 1¶ i ¶ ng,

σh,i h̃i(Σxx)¾ 0, 1¶ i ¶ nh,

is then solved in place of the original one (3.1). Here Σx = diagσx and f̃ (·), g̃(·), and h̃(·)
are appropriately rescaled counterparts of the original problem functions. In order to avoid
rounding and cutoff errors to be introduced due to limited machine precision, the scale factors
should be chosen as positive powers of two which can be represented exactly and allow for
fast and lossless multiplication and division.

3.3 Derivative Generation

The numerical optimization algorithms presented in this thesis strongly rely on the availabil-
ity of derivative information for the various functions modeling the controlled process. This
includes gradients, directional derivatives, full Jacobian matrices, and second order derivative
information in the form of exact or approximate Hessians. In this section we survey several
numerical and algorithmic strategies to obtain such derivatives and study their respective
precisions and efficiencies. For further details, we refer to e.g. [4] and the textbook [92].

3.3.1 Analytical Derivatives

Using analytical derivatives of model functions assumes that a symbolic expression of the
derivative is available, e.g. in the form of an expression tree. Elementary differentiation rules
known from basic calculus are applied to the operators and elementary functions at the tree
nodes in order to derive a symbolic expression for the desired derivative. While this process
can easily be carried out manually, it is cumbersome for larger model functions and has been
automated in computer algebra systems like Maple V [149] and Mathematica [221]. These
tools also readily provide facilities to translate the symbolic derivative expression into e.g.
Fortran or C source code.
Analytical derivatives of model functions obviously are exact up to machine precision. A sym-
bolic expression may however not always be available or its transferral to a computer alge-
bra system may be difficult to accomplish. Second, the obtained symbolic expression for the
derivative may not be optimally efficient in terms of evaluation time, as demonstrated by the
classical example

f (x1, . . . , xn) =
n
∏

i=1

x i

57

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

due to [199]. Here, the gradient’s entries (fx)i consist of all partial products that omit one
factor x i , while the Hessian’s entries (fx x)i j are the partial products that omit any two factors
x i , x j . The efficient reuse of common subexpressions is up to the compiler that translates the
possibly inefficient symbolic expression into machine code.

3.3.2 Finite Difference Approximations

Directional derivatives fx d of a function f : Rn→ Rm, x 7→ f (x) into a direction d ∈ Rn may
be approximated in a point x0 ∈ Rn based on the TAYLOR series expansion of f in x0,

f (x0+ hd) = f (x0) + h fx (x0)d +O(h2), (3.31)

which yields the one–sided finite difference scheme

fx d =
f (x0+ hd)− f (x0)

h
+O(h), (3.32)

Combination with a second TAYLOR series expansion with negative increment h yields the
improved central difference scheme

fx d =
f (x0+ hd)− f (x0− hd)

2h
+O(h2). (3.33)

Finite difference schemes are generally easy to implement as they only rely on repeated eval-
uations of the model function f in perturbed evaluation points x0±hd. This does not require
knowledge about the internals of the representation of f other than the assurance of suffi-
cient differentiability. The computation of a single directional derivative fx (x0)d ∈ Rm for a
direction d ∈ Rn comes at the cost of only two function evaluations. The full Jacobian matrix
fx (x0) ∈ Rm×n is available at 2n function evaluations.

The precision of finite difference approximations crucially depends on the magnitude h||d|| of
the increments. For larger increments, the truncation error incurred by neglecting the higher–
order terms of the TAYLOR series expansion become predominant, while for tiny increments
cancellation errors due to limited machine precision become predominant. Though dependent
on the actual function f , the recommended perturbations are h||d||= eps

1
2 for one–sided and

h||d|| = eps
1
3 for central finite difference schemes. The number of significant digits of the

obtained derivative approximation is at most one half of that of the function values for one–
sided schemes, and at most two thirds for central schemes.

3.3.3 Complex Step Approximation

Cancellation errors introduced into finite difference approximations of derivatives can be
avoided by using complex arithmetic. As first noted by [144], we can evaluate the function
f̃ : Cn→ Cm obtained from f and apply perturbations ı̂hd to the imaginary part of x0+0̂ı ∈ C.
The directional derivative may be obtained as

fx (x0)d = ℑ
�

f (x0+ ı̂hd)
h

�

+O(h2). (3.34)

58

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

As the perturbation is applied to the imaginary part this approach does not suffer from can-
cellation errors. The perturbation magnitude h||d|| should be chosen small but representable,
e.g. h||d||= 10−100

For the complex step approximation to be applicable, the model function f has to be analytic
and the symbolic representation has to support evaluation in the complex domain. The use of
linear algebra subroutines may prevent this. The computational efficiency of the complex step
approximation depends on the availability of native hardware support for complex arithmetic
on the computational platform in use.

3.3.4 Automatic Differentiation

Like symbolic differentiation to obtain analytical expressions for the derivatives, automatic
differentiation is based on the idea of decomposing the function f into a concatenation of
certain elemental functions. The derivative is obtained by systematic application of the chain
rule. Unlike in symbolic differentiation, this procedure is not applied to the symbolic expres-
sion tree, but instead takes place while evaluating the function f itself in a given point x0.
Pioneering works in the field of automatic differentiation are [115, 217], and for a compre-
hensive reference we refer to [92].

Principle

The idea of representing the function f as a concatenation of elemental functions is sharpened
by the following definition.

Definition 3.14 (Factorable Function)
Let L be a finite set of real–valued elemental functions ϕi : Rn → R, x 7→ ϕ(x). A func-
tion f : Rn → Rm, x 7→ f (x) is called a factorable function iff there exists a finite sequence
{ϕ1−n, . . . ,ϕk}, k ¾ m, such that it holds:

1. For 1 ¶ i ¶ n the function ϕi−n = πn
i is the projection on the i-th component of the

evaluation point x ∈ Rn,

2. For 1 ¶ i ¶ m the function ϕk−m+i = πm
i is the projection on the i-th component of the

evaluation result y = f (x) ∈ Rm,

3. For 1 ¶ i ¶ k−m the function ϕi is constant or a concatenation of one or more functions
ϕ j with 1− n¶ j ¶ i− 1, i.e., of functions preceding ϕi in the concatenation sequence. 4

For simplicity, we assumed scalar valued elemental functions ϕi here, though these can in
principle be vector valued functions as well if it is of computational advantage to treat for
example linear algebra operations on vectors or matrices as elemental. Using a representation
of a factorable function f by a sequence {ϕ1−n, . . . ,ϕk}, the function f can be evaluated by

59

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

algorithm 3.2.

Algorithm 3.2: Zero order forward sweep of automatic differentiation.
input : ϕ1−n, . . . ,ϕk, x0

output: y = f (x0)
v[1−n:0] = x[1:n];
for i = 1 : k do

vi = ϕi(v j≺i);
end
y[1:m] = v[k−m+1:k];

Forward Mode of Automatic Differentiation

The forward mode of automatic differentiation is used to compute a (forward) directional
derivative ẏ = fx (x0)ẋ . The required procedure is algorithm 3.3.

Algorithm 3.3: First order forward sweep of automatic differentiation.
input : ϕ1−n, . . . ,ϕk, x0, ẋ
output: y = f (x0), ẏ = fx (x0)ẋ
v[1−n:0] = x[1:n];
v̇[1−n:0] = ẋ[1:n];
for i = 1 : k do

vi = ϕi(v j≺i);
v̇i =

∑

j≺i(ϕi)v j
(v j≺i) · v̇ j;

end
y[1:m] = v[k−m+1:k];
ẏ[1:m] = v̇[k−m+1:k];

Comparing this algorithm to the zero order forward sweep, we see that the directional deriva-
tive information is initialized with the direction ẋ ∈ Rn. Along with the nominal evaluation
of the function sequence ϕ, derivative information is accumulated in v̇ by application of the
chain rule to the elemental functions ϕi . Algorithm 3.3 can easily be extended to compute
multiple directional derivatives in one sweep. The overall computational effort is bounded by
1+ 3

2
nd function evaluations [92], where nd is the number of forward directions. The com-

puted derivative is exact within machine precision, while slightly more expensive than finite
difference approximations.

Reverse Mode of Automatic Differentiation

The reverse mode of automatic differentiation is used to compute an adjoint directional
derivative x̄ = ȳ T fx (x0). This is achieved by applying the chain rule to the function’s evalua-
tion procedure executed in reverse order, i.e., in a backward sweep. The required procedure

60

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

is algorithm 3.4.

Algorithm 3.4: First order backward sweep of automatic differentiation.
input : ϕ1−n, . . . ,ϕk, v , x0, ȳ
output: y = f (x0), x̄ = ȳ T fx (x0)
v̄[1−n:k−m] = 0;
v̄[k−m+1:k] = ȳ[1:m];
foreach j ≺ i do v̄ j+= v̄i · (ϕi)v j

(v j≺i);

x̄[1:n] = v̄[0:n];

In the backward sweep procedure, the directional derivative information is initialized with the
adjoint direction λ ∈ Rm. Each intermediate derivative value v̄ j accumulates derivative infor-
mation from all intermediate values vi to which v j contributes during a function evaluation,
i.e., during a zero order forward sweep. This procedure can easily be extended to simultane-
ous computation of multiple adjoint derivatives as well. The results v j , j = 1− n, . . . , k of the
intermediate function evaluations need to be known in advance before algorithm 3.4 can be
executed. Thus, a backward sweep is usually preceded by a zero order forward sweep eval-
uating the function f . The computational effort is bounded by 3

2
+ 5

2
nd function evaluations

[92], where nd is the number of adjoint directions. As this bound does not depend on the
number n of independent variables, the computation of adjoint derivatives is especially cheap
if m� n.

3.3.5 Second Order Derivatives

Occasionally we will require second order derivatives of model functions. These can be com-
puted efficiently by combining two sweeps of automatic differentiation on the function f as
follows. The forward directional derivative ẋ obtained from a first order forward sweep can
be viewed as a function ḟ of the forward direction ẋ ,

ḟ (x0, ẋ) = fx (x0)ẋ . (3.35)

Application of the reverse sweep of automatic differentiation to ḟ in the point (x0, ẋ) for the
adjoint direction (ȳ , ¯̇x) yields

¯̇f (x0, ẋ) = ȳ T � fx (x0)ẋ
�

x = ȳ T fx x (x0)ẋ + ¯̇x T fx (x0), (3.36)

an automatic differentiation scheme that can be used to compute the second–order directional
derivative ȳ T fx x ẋ of f in x0.

Computing second–order derivatives using finite difference approximations leads to precisions
of only about eps

1
4 ≈ 10−4, and is considerably more expensive. Using the complex step

method is possible only for first order derivatives, but its combination with finite differences
for the second order reduces the approximation error to about eps

1
2 ≈ 10−8. In [92], TAYLOR

coefficient propagation schemes are described that also allow for the efficient computation of
higher order derivatives.

61

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

3.4 Initial Value Problems and Sensitivity Generation

The evaluation of the dynamic process x (t) on the time horizon T requires the solution of
IVPs on the shooting intervals. In this section, we present RUNGE–KUTTA methods as popular
representatives of one–step methods for non–stiff ODEs.

3.4.1 Runge–Kutta Methods for ODE IVPs

We start by recalling the definition of a parameter dependent IVP on T = [t0, tf] ⊂ R with
initial value x0 ∈ Rn, a time–independent parameter vector p ∈ Rnp

, and ODE right hand side
function f : T ×Rnx ×Rnp → Rnx

, (t, x (t), p) 7→ ẋ(t),

ẋ (t) = f
�

t, x (t), p
� ∀t ∈ T , (3.37)

x (t0) = x0.

We assume f to be LIPSCHITZ continuous on T × Rnx
, which ensures existence, uniqueness,

and continuous differentiability of the IVP’s solution x (t) on the whole of T . For methods
applicable to piecewise LIPSCHITZ continuous functions with implicitly defined discontinuities
we refer to e.g. [155, 40, 118]. One–step methods for the approximate solution of this class
of IVPs can be defined as follows.
Definition 3.15 (One–Step Method)
Let (t0, x0) be an initial time and value for IVPs (3.37) and let a discretization grid {tk}, 0 ¶
k ¶ N be given. A one–step method for the solution of (3.37) is given by a function Φ(t, h, x)
which defines a sequence of approximations {ηk} to the exact solutions {x (tk)} of (3.37) on the
discretization grid {tk} by starting in (t0,η0)

def
= (t0, x0) and applying the iteration scheme

ηk+1 def
= ηk + hk Φ

�

tk, hk,ηk
�

, hk def
= tk+1− tk, 0¶ k ¶ N − 1. (3.38)

4

Within this framework, RUNGE–KUTTA methods, named for the authors of [126, 180], are
one–step methods with a generating function Φ of the following special structure.

Definition 3.16 (RUNGE–KUTTA Method)
A RUNGE–KUTTA method with s ∈ N stages is a one–step method with the generating function

Φ(t, h, x)
def
=

s
∑

i=1

ciki , ki
def
= f
�

t +αih, x + h
s
∑

j=1

Bi jk j

�

, (3.39)

where c ∈ Rs, α ∈ Rs, and B ∈ Rs×s are suitably chosen coefficients. 4

Appropriately chosen coefficients and number of stages yield a consistent and stable RUNGE–
KUTTA method of convergence order p ¾ 1, as shown in the following.

Definition 3.17 (Consistency, Stability, Convergence)
A one–step method Φ is called a consistent method if the consistency error or local discretization
error τ satisfies

lim
h→0

sup
t∈T
||τ (t, h, x)||= 0, τ(t, h, x)

def
=

x (t + h)− x (t)
h

−Φ (t, h, x) . (3.40)

62

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

It is said to have consistency order p if ||τ(h)|| ∈O(hp).

A one–step method Φ is called convergent if

lim
h→0

sup
t∈T
||ε (t, h, x)||= 0, ε (t, h, x)

def
= η− x (t + h). (3.41)

It is said to have convergence order p if ||ε(h)|| ∈O(hp).

A one–step method Φ is called stable if there exists κ <∞ such that ||ε(h)||¶ κ ||τ(h)||. 4

Proposition 3.1 (Consistency, Stability, and Convergence of RUNGE–KUTTA methods)
A RUNGE–KUTTA method is consistent if

∑s
i=1 ci = 1. It is stable if the ODE’s right hand side

function f is LIPSCHITZ continuous. A consistent and stable method is convergent with order p if
it is consistent with order p. 4

Proof Proofs can be found in any standard textbook on numerical analysis, e.g. [204]. �

For general coefficient matrices B, (3.39) is an implicit definition of the vectors ki that requires
the solution of a system of nonlinear equations. A RUNGE–KUTTA method is said to be of the
explicit type if the rows of B can be reordered to form a lower triangular matrix of rank
s−1. This allows for iterative computation of the values ki . Algorithm 3.5 implements a basic
explicit RUNGE–KUTTA method on a given discretization grid {tk} with N + 1 grid points.

Algorithm 3.5: A basic explicit RUNGE–KUTTA method.

input : f , x0, p, {tk}k=0:N
output: {ηk}
η0 = x0;
for k = 0 : N − 1 do

hk = tk+1− tk;

for i = 1 : s do ki = f
�

tk +αih
k,ηk + hk

∑s−1
j=1 Bi jk j , p

�

;

ηk+1 = ηk + hk
∑s

i=1 ciki;
end

The method’s coefficients are commonly given in the form of a so–called BUTCHER tableau
[45], and the tableau of the classical explicit 4th order method is shown in figure 3.1. Other
well–known explicit methods include EULER’s method, HEUN’s method, and SIMPSON’s rule.

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

Figure 3.1: BUTCHER tableau of the classical 4th order explicit RUNGE–KUTTA method.

The choice of the discretization grid {tk} is critical for the accuracy of the obtained approx-
imation to x (tN). A number of authors have extended these classical methods to provide

63

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

various error estimates, see e.g. [55, 65, 66, 212]. A continuous representation of the discrete
solution {ηk} on the grid may be desirable in order to evaluate functions of the trajectory
x (·) independent of the discretization grid {tk}. To address this issue, interpolation polyno-
mials of a certain smoothness and with various error estimates have been described by e.g.
[64, 162, 196]. For further details, we refer to these works and the references found therein.

3.4.2 Sensitivities of Initial Value Problems

The computation of the Lagrangian gradient and Hessian of (1.28) obtained from the direct
multiple shooting discretization requires the computation of first- and second–order sensitiv-
ities of the IVP’s solution with respect to the unknowns. In this section, we discuss several
numerical approaches for the computation of forward and adjoint directional sensitivities.
Emphasis is put on the discussion of methods that satisfy the principle of Internal Numerical
Differentiation (IND) [32, 33].

Perturbed Trajectories

A straightforward approach to obtain sensitivities of the IVP’s solution x (tf)with respect to the
initial values x0 and parameters p is to apply one of the finite difference procedures of section
3.3.2 to the IVP solution method. For one–sided finite differences in directions dx ∈ Rnx

and
dp ∈ Rnp

, we obtain

xd(tf; t0, x0, p) =
η(tf; t0, x0+ hdx, p + hdp)−η(tf; t0, x0, p)

h
+O(tol/h) +O(h)

(3.42)

where η(tf; t, x) denotes the approximation of the IVP’s solution x (tf) obtained when starting
at time t with initial values x , and tol is the local error bound, i.e., the integration tolerance.
From (3.42) it can be seen that the optimal perturbation is h = tol

1
2 , which reveals that

very tight integration tolerances, i.e., very fine discretization grids {tk}, are required to obtain
sufficiently precise approximations of the IVP sensitivities.
This approach is referred to as External Numerical Differentiation (END), as it treats the IVP
solution method as a “black box” to which finite differences are applied externally. Indeed in
(3.42) we have implicitly assumed the numerical method to be a sufficiently smooth mapping
η : T ×Rnx → Rnx

, (t0, x0) 7→ η(tf). For most numerical codes actually available, this assump-
tion however is not satisfied. For the unperturbed initial values (x0, p) and the perturbed ones
(x0 + hdx, p + hdp), nondifferentiabilities and even discontinuities of the mapping η are in-
troduced by adaptive and possibly different choices of the discretization grids {tk}, the use of
pivoting in linear algebra subroutines, and the use of iterative or inexact solvers.

The Principle of Internal Numerical Differentiation

The principle of Internal Numerical Differentiation (IND) was introduced in [32] and is based
on the idea of differentiating the discretization scheme used to compute an approximation
of the nominal solution. This encompasses the need to fix for the perturbed evaluations all
adaptive components of the mapping η to those settings that were used for the unperturbed
evaluation. As this selective freeze of adaptive components requires access to the numerical

64

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

code, the differentiation procedure actually becomes an internal component of that numerical
code. The approximation (3.42) is in this case identical to the simultaneous solution of

ẋd(t) =
f (t, x (t) + hxd, p + hdp)− f (t, x (t), p)

h
∀t ∈ T , (3.43)

xd(t0) = d.

together with the IVP (3.37). The expected local approximation error for xd is reduced to
O(tol) +O(eps

1
2) if h is chosen such that h||xd|| ∈O(eps

1
2).

Thus IND results in a considerable increase in precision of the derivatives for low tolerances
tol and delivers derivatives that are consistent with the discretization scheme. The possibility
of using lower tolerances results in considerable speedups of the sensitivity generation. For
applications of the IND principle to extrapolation schemes and linear multistep methods we
refer to [34]. A discussion of arbitrary–order forward and adjoint sensitivity generation ac-
cording to the IND principle in the variable order variable step size Backward Differentiation
Formula (BDF) method DAESOL-II is found in [4].

Variational Differential Equations

A second possibility of computing IVP sensitivities is to solve the variational differential equa-
tions along with the ODE. The sensitivity IVP into directions dx ∈ Rnx

and dp ∈ Rnp
reads

ẋd(t) = fx (t, x (t), p) · xd(t) + fp(t, x (t), p) · dp ∀t ∈ T , (3.44)

xd(t0) = dx,

assuming the initial value x0 to be independent of p. Here again the IND principle is fulfilled
only if both the IVP and the variational system (3.44) are solved simultaneously using the
same adaptively chosen discretization scheme. For all linear methods it can be shown that this
approach is the limit case of the finite difference approach for h→ 0, cf. [34]. The expected
local approximation error for xd is further reduced to O(tol). This approach also allows to
exploit sparsity patterns in the Jacobians fx and fp of the ODE system’s right hand side.

Adjoint Sensitivities by Automatic Differentiation

Adjoint sensitivities x̄d ∈ Rnx
, p̄d ∈ Rnp

of the discretization scheme for IVP (3.37) into a
direction d̄ ∈ Rnx

can be computed by applying the reverse mode of automatic differentiation,
cf. section 3.3.4. For an explicit RUNGE–KUTTA method (3.39), this yields the adjoint iteration
schemes

x̄ N
d

def
= d̄, x̄ k−1

d
def
= x̄ k

d − hk−1Φ̄x(tk−1, hk−1, x k−1), N ¾ k ¾ 1, (3.45a)

p̄N
d

def
= 0, p̄k−1

d
def
= p̄k

d + hk−1Φ̄p(tk−1, hk−1, x k−1), (3.45b)

65

CHAPTER 3
�

� C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G

with the adjoint one–step method’s generating functions Φ̄x and Φ̄p being

Φ̄x(t, h, x)
def
=

s
∑

i=1

k̄x
i , k̄x

i
def
=−d̄T

i fx (t i , x i , p), d̄i
def
= ci x̄d(t)− h

s
∑

j=i+1

B ji k̄
x
j , (3.46a)

Φ̄p(t, h, x)
def
=

s
∑

i=1

k̄p
i , k̄p

i
def
= d̄T

i fp(t i , x i , p). (3.46b)

A detailed derivation can be found in [34]. The evaluation points (t i , x i , p) of fx are chosen
as in the nominal scheme (3.39), which requires these point to be stored during the nominal
solution for later reuse during the computation of adjoint directional sensitivities (taping).
Adjoint directional derivatives d̄T

i fx ,p of the ODE system’s right hand side can be computed by
the backward mode of automatic differentiation, section 3.3.4, by multiplication with a sparse
Jacobian fx if this can be done efficiently, or by directional finite difference approximations.

Adjoint Variational Differential Equations

The described approach can be interpreted as the integration of the adjoint system

ẋd(t) =− fx
T (t, x (t), p) · xd(t) ∀t ∈ T , (3.47a)

xd(tf) = d̄,

ṗd(t) =− fp
T (t, x (t), p) · d̄ ∀t ∈ T , (3.47b)

pd(tf) = 0,

backwards in time using a special RUNGE–KUTTA method. Certain methods such as the classical
4th order method are self–adjoint in the sense that Φ̄x in (3.46a) actually is the generating
function Φ in (3.39), cf. [34]. The principle of IND is satisfied in this case. Note however
that if system (3.47a) is solved forwards in time, i.e., simultaneously with the nominal IVP,
then the obtained adjoint sensitivity in general is only an approximation of the inverse of the
discretization scheme’s adjoint and does not not satisfy the principle of IND, cf. again [34].

3.4.3 Second Order Sensitivities

The automatic differentiation approach of section 3.3.5 can be transferred to RUNGE–KUTTA

methods in order to compute a directional second order sensitivity

d̄T dx

dx0, p
(tf; t0, x0, p) d (3.48)

into directions d ∈ Rnx+np
, d̄ ∈ Rnx

of the IVP solution. During the forward sweep the sen-
sitivities xd(tk

i) have to be stored in addition to the evaluation points (tk
i , x k

i), 1 ¶ i ¶ s,
0 ¶ k ¶ N . In the backward sweep, these are used to evaluate directional derivatives of fx x ,
fx p , and fpp .
The computation of a second order adjoint directional derivative as required for the compu-
tation of the exact Hessian of the Lagrangian requires a forward sweep through the RUNGE–
KUTTA scheme with nx + nq canonical directions d, and a single backward sweep with the
Lagrangian multipliers d̄ = λm

i of the matching conditions.

66

C O N S T R A I N E D N O N L I N E A R P R O G R A M M I N G
�

� CHAPTER 3

3.5 Summary

In this chapter we have briefly reviewed the theory of nonlinear programming and have intro-
duced SQP algorithms for the solution of NLPs in an active–set framework. Several different
approximation schemes for the Hessian of the Lagrangian have been presented that avoid the
costly computation of second order derivatives. The evaluation of the multiple shooting dis-
cretized OCP’s matching condition constraints requires the solution of IVPs. To this end, we
have briefly presented RUNGE–KUTTA methods for non–stiff ODEs. Derivative and sensitivity
generation for these methods according to the principle of IND have been discussed.

67

4 Mixed–Integer Real–Time Iterations

In this chapter we present an algorithmic framework for mixed–integer Nonlinear Model Pre-
dictive Control (NMPC) that builds on the MIOCP and NLP techniques and algorithms of the
previous chapters. We present the real–time iteration scheme for moving horizons, cf. [51, 53]
that allows to deal with challenges every real–time on–line optimal control algorithm has to
face. Conditions for local contractivity of this algorithm are given. As one central part of this
thesis we develop a new real–time iteration scheme for mixed–integer NMPC problems treated
by the outer convexification reformulation of the previous chapter. Relying on local contrac-
tivity of the classical real–time iteration scheme, we give a proof of local contractivity for the
mixed–integer case in the presence of an arbitrary rounding scheme. A sufficient condition
coupling the contractivity statement to the sampling time is derived and an upper bound on
the allowable sampling time is given that depends on LIPSCHITZ and boundedness properties
of the problem.

4.1 Real–Time Optimal Control

In an online optimal control application, we aim at solving not only one single instance of
the optimal control problem, but rather a sequence of such problems. At every time instant t,
an optimal control problem as described in chapter 1 with an initial value x0(t) representing
the differential state of the process has to be solved instantaneously. The resulting optimal
control u?(t) is fed back to the process at time t. Hence, the trajectory u?(·, x0(·)) constitutes
an optimal feedback control.

t

x (t)

x0(t)

x ⋆(·)

u⋆(·)

t + h

past future

Figure 4.1: Idealized real–time optimal control. For the observed process state x0(t) the infinite–
dimensional predictive control problem is solved instantaneously and the optimal control
u?(t) is fed back to the process at time t, steering it to an optimal state trajectory x ?(·).

68

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

4.1.1 Conventional NMPC Approach

Practical implementations obviously deviate from this idealized description in several points.
First, it is not the optimal control problem that is solved at every time instant, but rather a
finite dimensional approximation obtained by one of the approaches presented in chapter 1.
Second, the solution u?(t) cannot be obtained instantaneously, but requires some computa-
tion time to pass until it is available for feedback to the process under control. The optimal
control problems thus are solved only at discrete sampling times t0, t1, . . . with durations δt0,
δt1, . . . at least as long as the solution of the next optimal control problem takes.

As a consequence, the optimal control is available for feedback with a delay only. If the sam-
pling intervals are not short enough, this delay may impact the performance of the process
controller to an unacceptable degree. On the other hand, the computational effort of solving
an optimal control problem determines an unavoidable minimal delay. This delay in addi-
tion is not known in advance and theoretically may not even be bounded at all if iterative
numerical methods are employed. Practical implementations therefore must use a prescribed
stopping criterion.

t0 t1 t2 t3 t4
. . .

δt0

x (t0)

u⋆(t0)
u⋆(t1)

x (t1)

t + h

past future

Figure 4.2: The conventional NMPC approach. The optimal feedback control u?(t0) for the process
state x (t0) is available only after a computational delay of δt0 and is fed back to the
process for the time interval [t1, t2]. In the meantime, a rather arbitrary and suboptimal
control is applied. The feedback control u?(t0) therefore is unrelated to the process state
x (t1) that has since deviated from the optimal trajectory.

The described conventional NMPC scheme may exhibit bad performance as sudden distur-
bances of the process state x (t) can be accounted for in the optimal control problem only
after a worst case delay of δt. In the meantime, a rather arbitrary and certainly suboptimal
control unrelated to the actual process state is fed back to the process.

4.1.2 The Idea of Real–Time Iterations

It is the fundamental idea of the real–time iteration scheme, cf. [51, 53], to use a predictor
x pred(t + δt) of the process state x (·) at the time instant t + δt when the computed control
u?(t) is anticipated to be ready for feedback to the process. First, a careful initialization of
the SQP method used to solve the discretized optimal control problem allows to reduce the
computational effort to only one SQP iteration for each problem. Second, a separation of the
computations necessary to obtain the feedback control into three phases is made, two of which

69

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

can be completed in advance without knowledge of the actual process state. This approach
reduces the feedback delay δt by orders of magnitude.

t0 t1 t2 t3 t4 . . .

x (t0)

x pred(t1)

u⋆(t1)
u⋆(t1 + δt1)

x0(t1) x0(t1 + δt1)

t + h

past future

Figure 4.3: The real–time iteration scheme for a piecewise constant control discretization of the pre-
dictive control problem. A first order predictor of the process state in t1 is used as an ini-
tialization for the computation of the feedback control u?(t1). The feedback delay δt1 and
thus the feedback duration for the unrelated and suboptimal control is drastically reduced
by the three–phase computation. Consequentially, the actually optimal feedback control
u?(t1 +δt1) does not deviate much from the computed one.

Figure 4.3 depicts the real–time iteration scheme setting. A tangential prediction of the pro-
cess state x (t1) based on the old one x (t0) provides an improved initializer for the computa-
tion of the control feedback u(t1). The deviation of this feedback from the actually optimal
one u?(t1) is diminished as the feedback delay δt0 is drastically reduced by the three–phase
computation.

4.2 The Real–Time Iteration Scheme

Based on these ideas we now derive the real–time iteration scheme as a special SQP method
solving a sequence of NLPs differing only in a homotopy parameter that enters the problems
via a linear embedding.

4.2.1 Parametric Sequential Quadratic Programming

We start by considering the family of NLPs parameterized by a homotopy parameter τ ∈ R,

min
x ,τ

f (x ,τ) (4.1)

s. t. 0= g (x ,τ),

0¶ h(x ,τ),

70

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

under the assumptions of chapter 3. The solution points (x ?(τ),λ?(τ),µ?(τ)) form a contin-
uous and piecewise differentiable curve if they satisfy strong second order conditions for all τ
and if certain technical assumptions hold in addition as shown by theorem 4.1.

Theorem 4.1 (Piecewise Differentiability)
Let (x ?(0),λ?(0),µ?(0)) be a KKT point of (4.1) such that the strong second order conditions

of theorem 3.4 are satisfied. Assume further that the step δ
def
= (δx ?,δλ?,µ?) obtained from the

solution of the Quadratic Program (QP)

min
δx

1
2
δx T Bδx +δx T b (4.2)

s. t. 0= (gxδx)t + (gx)
T
xδx ,

0= (hstrong
x)t + (h

strong
x)Txδx ,

0¶ (hweak
x)t + (h

weak
x)

T
xδx ,

satisfies strict complementarity. Herein B
def
= Lx x and b

def
= (Lx)t are both evaluated in the KKT

point (x ?(0),λ?(0),µ?(0)) and hstrong and hweak denote the restrictions of h onto the strongly
resp. weakly active constraints.
Then there exists ε > 0 and a differentiable curve

γ : [0,ε]→ Rnx ×Rng ×Rnh
, τ 7→ (x ?(τ),λ?(τ),µ?(τ))

of KKT points for problem (4.1) in τ ∈ [0,ε]. The one–sided derivative γτ(0) of the curve γ in
τ= 0+ is given by the QP step δ. 4

Proof Proofs can be found in [51, 96]. �

Tangential Predictor

We now consider the family (4.1) of NLPs including the additional constraint

τ− τ̂= 0 (4.3)

that fixes the free homotopy parameter to a prescribed value τ̂ ∈ R. The addition of this
constraint to problem (4.1) allows for a transition between two subsequent NLPs of the para-
metric family (4.1) for different values of the homotopy parameter τ. Derivatives with respect
to τ are computed for the setup of the QP subproblem, such that a first order approximation
of the solution manifold is provided already by the first SQP iterate.

Theorem 4.2 (Exact Hessian SQP First Order Predictor)
Let (x ?(0),λ?(0),µ?(0)) be a KKT point of problem (4.3) in τ̂ = 0 that satisfies theorem 3.4.
Then the first step towards the solution of (4.3) in τ̂ > 0 sufficiently small, computed by a full
step exact Hessian SQP method starting in the KKT point, equals τ̂γτ(0). 4

Proof A proof can be found in [51]. �

Due to its linearity, the additional embedding constraint (4.3) will already be satisfied after the
first SQP iteration. The additional Lagrange multiplier introduced in the QP for this constraint
does not play a role as the Hessian of the Lagrangian is unaffected.

71

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

Parametric Quadratic Programming

The change in τ̂ is assumed to be sufficiently small in theorem 4.2 in order to ensure that the
active set of the first SQP subproblem is identical to that of the solution point x ?(0). Under
this assumption theorem 4.2 holds even for points x ?(0) in which the active set changes. In
practice, active set changes will occur anywhere on the homotopy path from one homotopy
parameter τ0 to another τ1, and this situation is best addressed by parametric QP methods.
The approach here in to compute the first order predictor (δx ?(τ1),δλ?(τ1),δµ?(τ1)) by
solving the parametric QP on τ ∈ [0, 1]⊂ R for its solution in τ= 1,

min
δx

1
2
δx T B(τ)δx +δx T b(τ) (4.4)

s. t. 0= gx (τ)δx + g (τ),

0¶ hx (τ)δx + h(τ),

and initializing the solution process with the known solution (δx ?(τ0),δλ?(τ0),δµ?(τ0)) =
(0,0,0) in τ= 0. The predictor of theorem 4.2 can then be understood as the initial piece of a
piecewise affine linear homotopy path that potentially crosses multiple active set changes. This
approach has been investigated for Linear Model Predictive Control (LMPC) in e.g. [67, 69].
We consider properties of Parametric Quadratic Programs (PQPs) and an active set method for
their efficient solution in chapter 6 after the implications of our mixed–integer convexification
and relaxation approach for the structure of these PQPs has been investigated in chapter 5.

4.2.2 Initial Value Embedding

We have seen from theorem 4.2 that the first iterate of the exact Hessian SQP method con-
sistutes a first order tangential predictor of the solution of an NLP given an initializer in the
neighborhood. The augmented problem formulation (4.3) was used for this purpose. In our
setting of real–time optimal control, the parametric variable is the initial process state sk that
is fixed to the measured or estimated actual process state x0(tk) by a trivial linear equality
constraint. For the direct multiple shooting discretization (1.28) this initial value embedding
for problem P(t0) reads

min
s ,q

m
∑

i=0

li(t i , si ,qi) (4.5)

s. t. 0= x i(t i+1; t i , si ,qi)− si+1, 0¶ i ¶ m− 1,

0= r eq
i (t i , si , bi(t i ,qi)), 0¶ i ¶ m,

0¶ r in
i (t i , si , bi(t i ,qi)), 0¶ i ¶ m,

0¶ ci(t i , si , bi(t i ,qi)), 0¶ i ¶ m,

0= s0− x0(t
0).

Given an optimal solution (s?(x0(tk)),q?(x0(tk))) to the discretized optimal control problem
P(tk) for the process state x0(tk), the first full step computed by the exact Hessian SQP
method for the neighboring problem with new embedded initial value x0(tk+1) is a first order
predictor of that NLP’s solution.

72

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

4.2.3 Moving Horizons

So far we have assumed that an initializer (s0,q0, . . . , sm−1,qm−1, sm) required for the first
iteration of the SQP algorithm on the multiple shooting discretization of the current problem
is available. Depending on the characteristics of the problem instance under investigation,
different strategies for obtaining an initializer from the previous real–time iteration’s solu-
tion can be designed. In the context of real–time optimal control we are usually interested in
moving prediction horizons that aim to approximate an infinite prediction horizon in a com-
putationally tractable way. Consequentially, the optimal control problems of the sequence can
be assumed to all have the same horizon length m and differ only in the embedded initial
value x0(t) at sampling time t. Strategies for this case and also the case of shrinking horizons
can be found in [51].

Shift Strategy

The principle of optimality can be assumed to hold approximately also for the finite horizon if
that horizon is chosen long enough such that the remaining costs can be safely neglected, e.g.
because the controlled process has reached its desired state already inside the finite horizon.
This is the motivation for the following shift strategy which uses the primal iterate

v k = (s0,q0, . . . , sm−1,qm−1, sm),

the outcome of the first SQP iteration for the NLP with embedded initial value x0(tk) or
equivalently the outcome of the k-th iteration of the real–time iteration scheme, to initialize
the next iteration with v k+1 as follows,

v k+1 def
= (s1,q1, . . . , sm−1,qm−1, sm,qnew

m−1, snew
m).

The new state and control values qnew
m−1 and snew

m can be chosen according to different strate-
gies.

1. An obvious choice is qnew
m−1 = qm−1 and snew

m = sm. The only infeasibility introduced
for iteration k + 1 into a feasible trajectory from iteration k is the potentially violated
matching condition x (tm; tm−1, sm−1,qm−1) = sm.

2. A new state value snew
m that satisfies the matching condition can be determined at the

expense of solving an IVP on the new last shooting interval

ẋm−1(t) = f (t, x (t), b(t,qnew
m−1), p) ∀t ∈ [tm−1, tm]⊂ R, (4.6)

xm−1(tm−1) = sm−1.

employing the control parameter value qnew
m−1. Path and terminal constraints may still be

violated by this initialization.

Note however that constraint violations can be treated in a natural way in a direct multiple
shooting framework and do not introduce additional difficulties.
The shift in the primal variables carries over to that of the dual variables, of the computed
node function values and linearizations, and depending on the approximation scheme also to
the Hessian.

73

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

Warm Start Strategy

For short horizons and problem instances whose solution characteristics are dominated by
terminal constraints or the MAYER–term objective that possibly are introduced to cover the
neglegted cost of an infinite prediction horizon, the solutions of the subsequent problems may
show similar features. In this case a better initialization of the NLP variables may be provided
by v k+1 = v k. The initial value embedding then introduces an infeasibility and the obtained
first SQP iterate is exactly the first order predictor of theorem 4.2 if an exact Hessian method
is used. In this warm start strategy, the sampling times also decouple from the shooting grid
discretization, i.e., the discretization can be chosen coarser than the control feedback.

4.2.4 Local Feedback Laws

The real–time iteration scheme with warm start strategy can be seen as a generator of linear
local feedback laws. In this sense, it’s sampling rate can be fully decoupled from that of the
control feedback. The linear feedback controller evaluates the most recently generated feed-
back law, a computationally very cheap operation, until the real–time iteration scheme has
computed a more recent feedback law based on new function evaluations and linearizations
[51]. This idea can be extended to adaptive reevaluation and relinearization of different parts
of the discretized OCP, and has been realized in a so–called multi–level iteration scheme, see
e.g. [37, 123].
Parts of the real–time iteration scheme can in priciple be transferred to interior–point methods,
see e.g. [223, 224], although the excellent warm starting capabilities of active set methods are
not maintained and the computed tangential predictors are inferior across active set changes
[54].

4.2.5 Immediate Feedback

The quadratic subproblem solved for the step δv = (δs ,δq) in each real–time iteration on a
moving horizon reads

min
δv

1
2
δv T B(v)δv +δv T b(v) (4.7)

s. t. 0= gv (v)δv + g (v),

0¶ hv (v)δv + h(v),

0= s0+δs0− x0(t
k).

It is noteworthy that problem (4.7) depends on the actual or estimated process state x0(tk)
only in the initial value embedding constraint. This suggests that the overwhelming part of
problem (4.5) can be set up without knowledge of x0(tk). In particular, the evaluation and
linearization of all functions — except the linear embedding constraint — as well as the
computation or approximation of the Hessian can be carried out before knowledge of x0(tk)
is required. This includes the solution of the IVPs and the generation of IVPs sensitivities
with respect to the unknowns s and q , a task that usually contributes significantly to the
control feedback delay in conventional NMPC. The follwing three–phase setup for a real–time
iteration realizes this advantage:

74

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

1. Preparation: Prepare the solution of (4.7) as far as possible without knowledge of
x0(tk).

2. Feedback: Solve problem (4.7) for the control feedback δq0 on the first multiple shooting
interval and feed it back to the process.

3. Transition: Complete the solution of (4.7) for the full vector δv of unknowns and make
the transition to the new QP subproblem for tk+1.

In addition, any exploitation of the direct multiple shooting structure hidden in problem (4.7),
such as by condensing methods [36, 51, 131, 166] or by block structured linear algebra [201]
can take place at this stage of the algorithm. We will see in chapter 7 how the immediate
feedback property can be extended to the QP solver’s block structured linear algebra to further
reduce the feedback delay.

4.3 Contractivity of Real–Time Iterations

Nominal stability of the closed–loop NMPC system when using the real–time iteration scheme
to compute control feedback is of vital importance in order to ensure that the NMPC controller
does not accidentally drive the controlled process away from a desired point of operation.
This section sketches a proof of contractivity of the real–time iteration scheme due to [51]. In
the next section we rely on this proof to derive conditions for local contractivity of our new
mixed–integer extension to the real–time iteration scheme.

4.3.1 Fixed Control Formulation

In the previous section we have derived the real–time iteration scheme from a special SQP
method for a family of parametric NLPs, performing one SQP iteration for each problem. We
now consider the real–time iteration scheme first on a shrinking horizon of initial length m
and assume sampling times δtk that sum up to the horizon length h such that the predictive
control problem has been solved after the k-th feedback and the horizon has shrunk to zero
length.
We assume throughout this section that the real–time iterations be started sufficiently close to
a KKT point of the problems, such that the active set is known. Assuming strict complemen-
tarity to hold, we may restrict our presentation to equality–constrained problems. We denote
by P(t0) the problem for the first control feedback on the full horizon of length m,

min
s ,q

f (s ,q) (4.8)

s. t. 0= g (s ,q),

0= s0− x0(t0),

satisfying the standard assumptions of chapter 3. We further assume regularity of gs which
allows us to regard the vector s as dependent variables on the vector of unknowns q . After
the first SQP iteration, the control feedback u0 = q0 + δq0 is known and the next problem
P(t1) is obtained from P(t0) by fixing the unknown q0 to the realized value. Problem P(t1)

75

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

thus comprises the constraints

0= s0− x0(t0), (initial value embedding) (4.9)

0= x0(t1; t0, s0,q0)− s1, (matching condition)

0= q0− u0. (control fixation)

Due to linearity, the correct values for s0 and q0 will be found already after the first SQP
iteration on problem P(t1). This shows that fixing q0 is completely equivalent to solving P(t1)
on a shrinked horizon of length m− 1. For the case of Differential Algebraic Equation (DAE)
dynamics we refer to [51].

Based on this conclusion we define the sequence {P(tk)}k of problems for 0¶ k ¶ m as

min
s ,q

f (s ,q) (4.10)

s. t. 0= g (s ,q),

0= sk − x0(t
k),

0= qi − ui , 0¶ i ¶ k− 1.

For k ¾ m no degrees of freedom remain in the problems P(tk) of this sequence, as the horizon
length has shrunk to zero.

4.3.2 Contraction Constants

We are interested in the tractability of the problems P(tk) by a NEWTON–type method. In
particular, the problems P(tk) should not become more and more difficult to solve as we keep
adding constraints that fix more and more degrees of freedom. To this end, the contraction
constants ω and κ of section 3.2.5 need to be investigated for the problems P(tk). We first
consider contractivity of the off–line problem P(t0) for the NEWTON–type iterations

yk+1 def
= yk +δyk = yk −M(yk)r (yk) (4.11)

wherein r (yk) denotes the Lagrangian gradient of problem (4.8) in the primal–dual point
yk = (x k,λk) and M(yk) denotes the inverse of the KKT matrix J(yk), an approximation to
the inverse of the exact Hessian KKT matrix in yk.

Theorem 4.3 (Off–Line Convergence)
Assume that the inverse M(y) of the KKT matrix J(y) exists and that M(y) be bounded by
β <∞ on the whole of a domain D ⊆ Rnx ×Rng

,

∀y ∈ D : ||M(y)||¶ β . (4.12)

Let J be LIPSCHITZ on D with constant ω/β <∞,

∀y1, y2 ∈ D : β ||J(y1)− J(y2)||¶ω||y1− y2||. (4.13)

Assume further that the deviation of the Hessian approximation B(y) from the exact Hessian

76

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

Lx x (y) is bounded by κ/β < 1/β on D,

∀y ∈ D : β ||B(y)− Lx x (y)||¶ κ < 1. (4.14)

Finally, let the assumptions of the local contraction theorem 3.8 hold; let in particular the first
step δy0 starting in an initial guess y0 be sufficiently small such that

δ0
def
= κ+ ω

2

�

�

�

�δy0
�

�

�

�< 1. (4.15)

Then the sequence of NEWTON–type iterates {yk} converges to a KKT point y? whose primal part
x ? is a strict local minimum of problem (4.8). 4

Proof A proof can be found in [51]. �

The following theorem shows that this property carries over to all problems of the sequence.

Theorem 4.4 (Contraction Constants of the On–Line Problems)
Let the sufficient local convergence conditions (4.3) hold for problem P(t0) (4.8). Then the inverse
Jacobian approximations M for the problems P(tk) satisfy the κ– and ω–conditions of definition
3.12 and 3.13 with the same values of κ and ω. 4

Proof A proof can be found in [51]. �

4.3.3 Contractivity

We now consider contractivity of the sequence {yk}k of iterates computed by the real–time
iteration scheme as more and more control parameters are fixed in the sequence {P(tk)}k
of problems. Each problem P(tk) of this sequence is equivalent to finding the root y? =
(s?,q?,λ?) of the Lagrangian gradient function

r (y)
def
=















Pk
1(q − uk)

Pk
2 Lq (s ,q ,λ)

Ls (s ,q ,λ)

g (s ,q)















. (4.16)

Herein, the vector

uk =
h

u0 . . . uk−1 0 . . . 0
i

∈ Rm·nq
(4.17)

contains the determined feedback controls of the k − 1 completed real–time iterations. The
projectors Pk

1 and Pk
2 project onto the already determined fixed part q0, . . . ,qk−1 and the

unknown free part qk, . . . ,qm−1 of the control parameters q ∈ Rm·nq
respectively,

Pk
1q k def
=
h

q k
0 . . . q k

k−1 0 . . . 0
i

, (4.18)

Pk
2q k def
=
h

0 . . . 0 q k
k . . . q k

m−1

i

.

77

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

Theorem 4.5 (Contractivity of the Real–Time Iterations)
Let the sufficient local contraction conditions of theorem 4.3 hold for the off–line problem P(t0).
Then the sequence of real–time iterates contracts to a feasible point y? ∈ D0. 4

Proof Key to the proof of this theorem is the observation that the step

δyk def
=−Mk(yk)r k(yk) (4.19)

in the NEWTON–type iteration does not change if it is instead defined by

δyk def
=−Mk+1(yk)r k+1(yk), (4.20)

i.e., if the residual function and inverse Jacobian approximation of the next problem P(tk+1)
are used in which the feedback control parameter qk to be determined in problem P(tk) under
investigation is already known. To see this, we only need to show

0= r k+1(yk) + J k+1(yk)δyk (4.21)

=















Pk+1
1 (q k − q k+1)

Pk+1
2 Lq (s k,q k)

Ls (s k,q k)

g (s k,q k)















+

















Pk+1
1 0 0

Pk+1
2 Bqq Pk+1

2 BT
q s Pk+1

2 g T
q

Bq s Bs s g T
s

gq gs 0



























q k+1− q k

s k+1− s k

−(λk+1−λk)











.

Observe now that we have in particular for the already determined control parameters

Pk+1
1 (q k − q k+1) +Pk+1

1 (q k+1− q k) = 0. (4.22)

Hence, any two subsequent real–time iterations can be treated as if they belonged to the same
problem P(tk+1). The contractivity property then follows directly from the local contraction
theorem 3.8.

The full proof can be found in [51]. �

4.4 Mixed–Integer Model Predictive Control

In this section we develop a new algorithm for mixed–integer model predictive control. It is es-
tablished from a synthesis of the convexification and relaxation approach of chapter 2 and the
real–time iteration scheme for NMPC of the previous sections. We transfer rounding schemes
to real–time iterations in order to come up with a fast mixed–integer nonlinear model predic-
tive control algorithm. We show for the first time that this algorithm can be interpreted as an
inexact SQP method. Using this framework, conditions are derived under which contractivity
of the mixed–integer real–time iteration scheme is guaranteed.
Figure 4.4 depicts the mixed–integer variant of the real–time iteration scheme for the case of
a single binary control. The computed integer feedback control w (t1) is available for feedback
to the process after a very small feedback delay only, and thus does not deviate much from
the theoretically optimal feedback w ?(t1). It is rounded to a binary feasible control feedback
that is applied to the process for the duration of the preparation phase of the next real–time
iteration.

78

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

t0 t1 t2 t3 t4 . . .

w ⋆(t1)

w ⋆(t1 + δt1)

x0(t1)
x0(t1 + δt1)

t + h

past future

0

1

Figure 4.4: The mixed–integer real–time iteration scheme for a piecewise constant control discretiza-
tion of a binary control function. The relaxed optimal feedback control w ?(t1) is rounded
to a binary feasible one according to a rounding scheme. The resulting deviation of the
process state x (t) from the computed optimal state trajectory can be bounded by a suitable
choice of the discretization grid.

Several questions obviously arise. An appropriate rounding scheme should ensure binary or
integer feasibility of the control while trying to approximate as closely as possible the relaxed
optimal solution. Rounding the control results in a deviation of the state trajectory from the
optimal one that is attainable only by a fractional control, and this deviation is coupled to
the discretization grid granularity. Investigation of the contractivity properties of the resulting
mixed–integer real–time iteration scheme is crucial in order to guarantee nominal stability.
Ideally, the contractivity argument should yield an estimated upper bound on the allowable
sampling times of the scheme.

4.4.1 Mixed–Integer Real–Time Iterations

We introduce the notation

yk+1 def
= yk −Mk(yk)r k(yk) + ek(yk), δ ỹk def

=−Mk(yk)r k(yk) + ek(yk) (4.23)

for one modified NEWTON–type iteration of the mixed–integer real–time iteration scheme.
Herein, the vector ek(yk) denotes the modification applied to the new iterate after the step
δyk, required in order to obtain an integer feasible control part q k+1

k of the new iterate yk+1.
Assuming binary controls qk and noting that after the NEWTON–type iteration for problem
P(tk) only the k–th control is rounded, we have for the modification ek(yk) the identity

ek(yk) =
h

0 . . . 0 ek
k(y

k
k) 0 . . . 0

i

∈ Rm·nq
, (4.24)

79

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

wherein ek
k(y

k
k) ∈ Rnq

with bounds on ||ek
k(y

k
k)|| possibly depending on the actual rounding

scheme applied. The introduced modification obviously affects the classical real–time iteration
scheme argument in several ways as follows.

• The new fixed control q k+1
k = q k

k + δq̃ k
k to be determined after the NEWTON–type it-

eration for problem P(tk) can be found according to one of several possible rounding
schemes.

• The fixation of q k+1
k in problem P(tk+1) to a possibly different value than that of the true

next NEWTON–type iterate q k + δq k introduces a deviation of the process state x (tk+1)
from the predicted one sk+1.

• Note that in problem P(tk+1) the correct values of s k
k and q k

k are still identified after the
first NEWTON–type iteration for that problem as the two embedding constraints (4.9)
remain linear.

• Nominal stability of this mixed–integer real–time iteration scheme is covered by the
proofs due to [51], see theorem 4.5. Therein the solution of P(tk+1) is identified with
the solution of P(tk) assuming the controls qk to already be fixed to the outcome of
the NEWTON–type step for P(tk). Hence, the implications of modifying this NEWTON–type
step in a rounding scheme need to be studied.

These topics are addressed one by one in the following sections.

4.4.2 Rounding Schemes

We are interested in obtaining after the k–th iteration from q k
k and the NEWTON–type step

δq k
k a binary feasible new mixed–integer real–time iterate q k+1

k . Analogous to the rounding
schemes of chapter 2 for off–line MIOCPs, two different on–line rounding schemes may be
conceived that define a modified step δq̃ k

k to a new binary feasible feedback control q k+1
k .

Direct Rounding

The direct rounding scheme of definition 2.13 can immediately be transferred to the case of
model–predictive control by defining the control part δq̃ k

k of the step δ ỹk to the new binary
feasible mixed–integer real–time iterate yk+1 according to

δq̃k
k j

def
=

¨

1− qk
k if qk

k j +δqk
k j >

1
2
,

− qk
k j otherwise.

1¶ j ¶ nΩ (4.25)

Direct rounding does not take into account the accumulated past deviation from the relaxed
optimal control trajectory incurred by rounding. This situation is improved by sum–up round-
ing as has already been shown in chapter 2.

80

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

Sum–Up Rounding

The sum–up rounding strategy can be adapted to mixed–integer real–time iterations by intro-
ducing a memory of the past rounding decisions according to

δq̃k
k j

def
=

¨

1− qk
k j if

∑k
i=0 qi

i jδt i −∑k−1
i=0 q̃i

i jδt i ¾ 1
2
δtk,

− qk
k j otherwise.

1¶ j ¶ nΩ (4.26)

Note that this rounding strategy can be implemented without the need for a memory of all
past mixed–integer real–time iterates. For the case of SOS1–constraints due to convexifica-
tion of nonlinearly entering integer controls, these rounding strategies need to be adapted to
maintain feasibility as shown in chapter 2.

4.4.3 Initial Value Embedding

The fixation of q k+1
k in problem P(tk+1) to a possibly different value than that of the true next

NEWTON–type iterate q k + δq k introduces a deviation of the process state x (tk+1) from the
predicted one sk+1. Two possibilities to address this can be thought of.

1. The deviation can be considered as an additional source of disturbances of the actual
process under control. A worst–case estimate of the disturbance is provided by GRON-
WALL’s inequality using the rounded control q k+1

k = q k
k +δq̃ k

k ,

�

�

�

�sk+1− xk(t
k+1; tk, s k

k ,q k+1
k , p)

�

�

�

�¶ L
�

�

�

�δq̃ k
k −δq k

k

�

�

�

�exp(L(tk+1− tk)). (4.27)

Here L is the local LIPSCHITZ constant of f . Hence for this approach to yield satisfactory
performance of the mixed–integer real–time iteration scheme, the sampling time δtk

and thus the granularity of the control discretization must be fine enough.

2. A new prediction of the state sk+1 can be computed at the expense of one IVP solution
on the k–th shooting interval using the rounded control q k+1

k = q k
k +δq̃ k

k

ẋk(t) = f (t, x (t),q k+1
k , p) ∀t ∈ [tk, tk+1]⊂ R, (4.28)

xk(tk) = s k+1
k .

This introduces an infeasibility of the matching condition constraint for node sk+1 which
can be naturally treated in the direct multiple shooting framework, as has already been
noticed for the shift strategy.

4.4.4 Contractivity

We investigate contractivity of the mixed–integer real–time iteration scheme. Nominal stabil-
ity of this mixed–integer real–time iteration scheme is covered by the proofs due to [51] if
the argument of identifying the solution of P(tk+1) with the solution of P(tk) assuming the
controls qk to be fixed to the outcome of the NEWTON–type step for P(tk) made in theorem 4.5
remains valid. In particular, if there exists an inexact inverse KKT matrix M̃k(yk) satisfying

81

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

both the assumptions of the local contraction theorem 3.8 and the condition

δ ỹk = δyk + ek(yk) =−M̃k(yk)r k(yk), (4.29)

then the mixed–integer real–time iteration scheme can be written as NEWTON–type iterations

yk+1 = yk − M̃k(yk)r k(yk) (4.30)

and by the assumed properties of the inexact matrix M̃k local contractivity of the off–line prob-
lem, invariance of the contraction constants, and contractivity of the (then mixed–integer)
real–time iterations follow from the presentation of the previous section.

Theorem 4.6 (Local Contractivity of the Mixed–Integer Real–Time Iteration Scheme)
Assume that the modified NEWTON matrices M̃k(yk) satisfying

δyk + ek(yk) =−M̃k(yk)r k(yk) (4.31)

exist, and let M̃k(yk) satisfy the κ–condition with κ < 1. Then the mixed–integer real–time
iteration scheme contracts to a feasible and integer feasible point y?. 4

We first address the question of existence of the matrix M̃k(yk) modifying the NEWTON–type
step δyk such that it includes the rounding of the possibly fractional control component q k+1

k
of the new iterate yk+1. The following lemma shows that a construction of this modified
matrix in yk is possible using symmetric updates of rank one or two.

Lemma 4.1 (Construction of M̃k)
Let yk be a non–stationary point of problem P(tk) and let Mk(yk) denote the approximation to
the inverse of the Jacobian of problem P(tk) in the point yk, giving the NEWTON–type step

δyk def
=−Mk(yk)r k(yk).

Let ek(yk) denote an arbitrary but fixed modification of the step δyk. Then the modified matrix
M̃k(yk) satisfying

δ ỹk def
= δyk + ek(yk) =−M̃k(yk)r k(yk)

exists. If ek(yk)T r k(yk) 6= 0 it is given by the symmetric rank one update

M̃k(yk)
def
= Mk(yk)− ek(yk)ek(yk)T

ek(yk)T r k(yk)
, (4.32)

and it is otherwise given by the symmetric rank two (DFP) update

M̃k(yk)
def
=
�

I − γkδ ỹkr k(yk)T
�

Mk(yk)
�

I − γkr k(yk)δ ỹk T
�

− γkδ ỹkδ ỹk T
, (4.33)

γk def
= 1/(δ ỹk T

r k(yk)). 4

Proof The proof is given by verifying the modified NEWTON–type step property.

82

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

If ek(yk)T r k(yk) 6= 0 we have

− M̃k(yk)r k(yk)

= −
�

Mk(yk)− ek(yk)ek(yk)T

ek(yk)T r k(yk)

�

r k(yk)

= −Mk(yk)r k(yk) + ek(yk)
ek(yk)T r k(yk)

ek(yk)T r k(yk)

= δyk + ek(yk)

= δ ỹk.

Otherwise if δ ỹk T
r k(yk) 6= 0 we have

− M̃k(yk)r k(yk)

=
�

�

I − γkδ ỹkr k(yk)T
�

Mk(yk)
�

I − γkr k(yk)δ ỹk T
�

− γkδ ỹkδ ỹk T
�

r k(yk)

=
�

I − γkδ ỹkr k(yk)T
�

Mk(yk)
�

r k(yk)− r k(yk)
�

+δ ỹk

= δ ỹk.

If finally δ ỹk T
r k(yk) = −δ ỹk T

J k(yk)δy = 0 then δy = 0 by regularity of the exact KKT
matrix J k(yk) and yk was a stationary point. �

For the next problem P(tk+1), which is set up in the new iterate yk+1 with integer feasible
control q k+1

k , we assume that control to be fixed by introduction of an additional constraint
in the approximation J̃ k+1(yk+1) and consequentially in its inverse M̃k+1(yk+1) as has been
detailed in section 4.3.

Having shown existence of the modified matrix M̃k producing the mixed–integer real–time
iteration step, we are now interested in the contractivity properties of that matrix. To this
end, we derive a condition under which the κ–condition of definition 3.13 is satisfied.

Lemma 4.2 (κ–Condition for M̃k)
Let the the assumptions of theorem 4.3 be satisfied with constants β and κM. Assume further that
there exists a constant ε < 1−κM such that the exact Jacobian J k(yk) satisfies

β ||J k(yk)ek(yk)||¶ ε||δyk + ek(yk)||. (4.34)

Then the modified inverse M̃k satisfies the κ–condition with κM̃ = κM+ ε < 1. 4

Proof We evaluate the κ–condition (definition 3.13) for the modified matrix M̃k assuming

83

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

that Mk satisfies it with constant κM,

||M̃k(yk+1)
�

I − J k(yk)M̃k(yk)
�

r k(yk)||
= ||M̃k(yk+1)

�

r k(yk)− J k(yk)M̃k(yk)r k(yk)
�

||
= ||M̃k(yk+1)

�

r k(yk) + J k(yk)δ ỹk
�

||
= ||M̃k(yk+1)

�

r k(yk) + J k(yk)δyk + J k(yk)ek(yk)
�

||
= ||M̃k(yk+1)

��

I − J k(yk)Mk(yk)
�

r k(yk) + J k(yk)ek(yk)
�

||
= ||M̃k(yk+1)

�

I − J k(yk)Mk(yk)
�

r k(yk) + M̃k(yk+1)J k(yk)ek(yk)||
¶ ||M̃k(yk+1)

�

I − J k(yk)Mk(yk)
�

r k(yk)||+ ||M̃k(yk+1)J k(yk)ek(yk)||
¶ κM||δ ỹk||+ ||M̃k(yk+1)|| ||J k(yk)ek(yk)||
¶ κM||δ ỹk||+ β ||J k(yk)ek(yk)||.

Under the assumptions made, this results in the estimate

||M̃k(yk+1)
�

I − J k(yk)M̃k(yk)
�

r k(yk)||¶ (κM+ ε)||δ ỹk||.

which is the κ–condition of definition 3.13 for M̃k with a constant κM̃ = κM + ε. �

It remains to be shown that the quantity J k(yk)ek(yk) can indeed be made small enough such
that ε satisfies the bound κM + ε < 1. The next lemma establishes a coupling of this quantity
to the length δtk

def
= tk+1 − tk of the k–th multiple shooting interval [tk, tk+1] ⊂ R and shows

that this quantity vanishes along with δt.

Lemma 4.3 (Sampling Time κ–Condition for M̃k)
There exists a length δ t̂k > 0 of the k–th multiple shooting interval such that the κ–condition of
lemma 4.2 is satisfied for all δtk ∈ (0,δ t̂k). 4

Proof Observing the direct multiple shooting structure of J k we compute J k(yk)ek(yk) ex-
plicitly as follows:

J k(yk)ek(yk) =

































. . .

Bss
k Bsq

k Rs
k

T Gs
k

T

Bqs
k Bqq

k Rq
k

T Gq
k

T

Rs
k Rq

k

Gs
k Gq

k −I

−I Bss
k+1

. . .

































































...

0

eq
k

0

0

0
...

































=

































...

Bsq
k eq

k

Bqq
k eq

k

Rq
keq

k

Gq
keq

k

0
...

































Observe now that after outer convexification the convex control multipliers q enter linearly
in the objective, the dynamics, and the constraints. We thus have Bqq = 0. We further assume
that bounds on the control parameter q to be rounded are inactive, as no rounding would
occur otherwise. The SOS1 equality constraint is not affected by rounding. Finally, point and
discretized path constraints treated by outer convexification are independent of q in the Hes-
sian of the MPVC Lagrangian. We thus have Rq

keq
k = 0.

84

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

For the remaining two terms we derive estimates depending on δtk = tk+1 − tk. To this end,
we denote by xk(tk+1; tk, sk,qk) the solution of the IVP

ẋ (t) =
nq
∑

i=1

qk,i f (t, x (t),ωi), t ∈ [tk, tk+1],

x (tk) = sk.

and introduce integral forms for the linear time–variant IVPs for the sensitivities of the IVP
solution with respect to sk

dx (tk+1)
dsk

= I +

∫ tk+1

tk

nq
∑

i=1

qk,i fx (t, x (t),ωi)
dx (t)
dsk

dt,

and qk,

dx (tk+1)
dqk

=

∫ tk+1

tk

nq
∑

i=1

�

qk,i fx (t, x (t),ωi)
dx (t)
dqk

+ f (t, x (t),ωi)eT
i

�

dt.

For their solutions we observe by LIPSCHITZ continuity of f that for tk+1→ tk it holds that

dx (tk+1)
dsk

→ I and
dx (tk+1)

dqk
→ 0.

We evaluate the two remaining nonzero terms in the Jacobian vector product. First, we have
for Gq

k

Gq
k =

d

dq

�

xk(tk+1; tk, sk,qk)− sk+1
�

=
dxk(tk+1)

dqk
(4.35)

that Gq
keq

k → 0eq
k = 0 for δk

def
= tk+1− tk→ 0.

Second, we have for Bsq
k that

Bsq
k =

d2

dskdqk

∫ tk+1

tk

l(t, x (t),qk) dt −λT �xk(tk+1; tk, sk,qk)− sk+1
�

!

=

∫ tk+1

tk

lxq (t, x (t),qk)
dx (t)
dsk

dt −λT d2xk(tk+1)
dskdqk

. (4.36)

We further investigate the second term contributing to Bsq
k which is again defined by a linear

time–variant IVP,

d2xk(tk+1)
dskdqk

=
d

dsk

∫ tk+1

tk

nq
∑

i=1

�

qk,i fx (t, x (t),ωi)
dx (t)
dqk

+ f (t, x (t),ωi)eT
i

�

dt (4.37)

=

∫ tk+1

tk

nq
∑

i=1

�

qk,i
dx (t)
dsk

T

fx x (t)
dx (t)
dqk

+ qk,i fx (t)
d2x (t)
dskdqk

+ fx (t)
dx (t)
dsk

eT
i

�

dt,

wherein we have omitted all but the leading argument of f . The limit behavior for tk+1→ tk

85

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

is

d2xk(tk+1)
dskdq

→ 0.

Again by continuity of the integrand, we observe for δk
def
= tk+1− tk→ 0 that Bsq

k eq
k → 0eq

k = 0.

This shows ||J k(yk)ek|| → 0 for δt → 0. By continuity in tk+1 there exists a shooting interval
length δ t̂ such that for all δt < δ t̂ it holds that β

�

�

�

�J k(yk)ek
�

�

�

� < ε for any ε > 0. This
completes the proof. �

Hence, by the proved lemmas, all assumptions of the contractivity theorem 4.6 for our mixed–
integer real–time iteration scheme can actually be satisfied. In particular, for a shifting strategy
we would need to chose a suitably fine choice of the control discretization, leading to a short
sampling time during which rounding of the control causes a deviation of the process trajec-
tory from the predictor. For a warm start strategy, the control discretization is independent
of the sampling time. As long as the sampling time is short enough to satisfy lemma 4.3, the
discretization may be chosen coarser.

4.4.5 Upper Bounds on the Sampling Time

We can extend the proof of the last theorem in order to derive a simple and accessible upper
bound on the sampling time δt to be chosen for the mixed–integer real–time iteration scheme.
for problems with vanishing crossterm Bsq

k of the Hessian of the Lagrangian.

Theorem 4.7 (Sampling Time for Contractivity of M̃k)
Let the approximate inverse of the KKT matrix in the new iterate be bounded by β > 0,

||M̃k(y)||¶ β ∀y ∈ D,

and let the ODE system’s right hand sides after outer convexification f (t, x (t),ωi) be bounded
by bf̃ > 0,

|| f (t, x ,ωi)||¶ bf̃ ∀t ∈ T , x ∈ X ⊂ Rnx
,

and satisfy a LIPSCHITZ condition

|| f (t, x1,ωi)− f (t, x2,ωi)||¶ Af̃||x1− x2|| ∀t ∈ T , x1, x2 ∈ X ⊂ Rnx
.

Assume further that Bsq
k = 0. Then the term

�

�

�

�M̃k(yk+1)J k(yk)ek(yk)
�

�

�

� satisfies with δt
def
=

tk+1− tk

�

�

�

�M̃k(yk+1)J k(yk)ek(yk)
�

�

�

�¶ β bf̃δt exp(Af̃δt). (4.38)

4

Proof In order to consider estimates of the nonzero vector component Gq
keq

k we first require
the explicit solution to the sensitivity IVPs w.r.t. qk. Observe that the explicit solution to the

86

M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S
�

� CHAPTER 4

linear time varying IVP in integral form

u(t1) = 0+

∫ t1

t0

A(t)u(t) + b(t) dt, t1 > t0

is

u(t1) =

∫ t1

t0

b(t)exp

−
∫ t

t0

A(s) ds

!

dt exp

∫ t1

t0

A(t) dt

!

, t1 > t0.

By comparison of terms this gives for Gq
k in (4.35) the explicit solution

Gq
k =

∫ tk+1

tk

f (t)eT
i exp

−
∫ t

tk

qk,i fx (s) ds

!

dt exp

∫ tk+1

tk

fx (t) dt

!

.

Using the estimate
�

�

�

�u(t1)
�

�

�

�¶
∫ t1

t0
||A(t)|| ||u(t)||+ ||b(t)|| dt for the general explicit solution,

we have for the first component’s norm
�

�

�

�Gq
k

�

�

�

� that

�

�

�

�Gq
keq

k

�

�

�

�¶ bf̃δt exp(Af̃δt),

from
�

�

�

�ek(yk)
�

�

�

� ¶ 1 guaranteed by rounding, and by using the assumed bound and LIPSCHITZ

constant on f (·). �

We will see a practical application of this statement in chapter 9.
It is worth noting that the above contractivity statements and estimates crucially rely on the
direct multiple shooting parameterization of the IVP that limits the effect of rounding q k

k
to the interval [tk, tk + δtk]. A single shooting method would have to solve the IVP after
rounding on the entire remaining horizon [tk, tf]. Even if that solution existed, convergence
of the Boundary Value Problem (BVP) might suffer from the potentially exponential deviation
of the state trajectory on the long time horizon.

4.4.6 Mixed–Integer Real–Time Iteration Algorithm

We can summarize the developed mixed–integer real–time iteration scheme in the following
algorithm:

1. Prepare the solution of problem P(tk) as far as possible without knowledge of the actual
observed or estimated process state x0(tk).

2. As soon as an observation or estimate x0(tk) is available, compute the feedback control
qk by completing the prepared NEWTON–type iteration using the current iterate yk as an
initializer. This yields a first order corrector δyk.

3. Apply a rounding scheme to the potentially fractional feedback control parameters qk,0

on the first shooting interval and feed the rounded control back to the process.

4. Define the new primal–dual iterate yk+1 that will serve as an initializer for the next
problem P(tk+1) using a shift or warm start strategy.

87

CHAPTER 4
�

� M I X E D – I N T E G E R R E A L – T I M E I T E R AT I O N S

5. Increase k by one and start over in point 1.

As seen in section 4.2, step 2. of the above algorithm essentially involves the efficient solution
of a QP or a parametric QP making use of the current iterate as an initializer. We need to make
sure, though, that this solution completes as fast as required to maintain local contractivity
and thus nominal stability of the scheme. Appropriate techniques are presented in chapters 7
and 8.

4.5 Summary

In this chapter we have presented the real–time iteration scheme for fast NMPC using active–
set based NLP methods such as Sequential Quadratic Programming to repeatedly compute
feedback controls based on a multiple shooting discretization of the predictive control prob-
lem. The underlying algorithmic ideas have been described and NLP theory has been stud-
ied as necessary to sketch a proof of local contractivity of the real–time iteration scheme.
We have developed a new extension to the real–time iteration scheme that is applicable to
mixed–integer NMPC problems. We have further derived a new sufficient condition for local
contractivity of the mixed–integer real–time iterations. The proof relies on the existing con-
tractivity statement for the continuous case. There, such a statement could be shown under
the assumption that the repeatedly fixed controls are indeed fixed onto the exact outcome of
the last NEWTON–type step. To make this framework accessible, we showed existence of a the-
oretical modification to the approximate inverse KKT matrix that provides the NEWTON–type
step including the contribution due to a rounding scheme being applied afterwards. The proof
of existence relies on a symmetric rank one or BROYDEN type rank two update. We derived
a sufficient condition for the modified KKT matrix to satisfy the κ–condition for local con-
tractivity, and showed that this condition can actually be satisfied by a sampling time chosen
small enough. A dependency on the granularity of the binary or integer control discretization
along the lines of chapter 2 has thus been established also for mixed–integer Model Predictive
Control. Vice versa, we showed that, if appropriate bounds and LIPSCHITZ constants on certain
model functions are available, an upper bound on the sampling time can be derived.

88

5 Outer Convexification of Constraints

In this chapter, we take a closer look at combinatorial issues raised by applying outer con-
vexification to constraints that directly depend on a discrete control. We describe several un-
desirable phenomena that arise when treating such problems with a Sequential Quadratic
Programming (SQP) method, and give explanations based on the violation of Linear Inde-
pendence Constraint Qualification (LICQ). We show that the Nonlinear Programs (NLPs) can
instead be treated favorably as Mathematical Programs with Vanishing Constraints (MPVCs),
a class of challenging problems with complementary constraints and nonconvex feasible set.
We give a summary of a Lagrangian framework for MPVCs due to [3] and others, which al-
lows for the design of derivative based descent methods for the efficient solution of MPVCs in
the next chapter.

5.1 Constraints Depending on Integer Controls

We have seen in chapter 2 that for Mixed–Integer Optimal Control Problems (MIOCPs) with
integer or binary controls that directly enter one or more of the constraints, rounding the
relaxed optimal solution to a binary one is likely to violate these constraints.

5.1.1 The Standard Formulation after Outer Convexification

Having applied outer convexification to the binary control vector w (·) ∈ {0,1}nw
, a constraint

g directly depending on w (t) can be written as constraining the convexified residual

nw
∑

i=1

�

w̃i(t) · g (t, x (t),ωi , p)
�

¾ 0 ∀t ∈ T , (5.1)

nw
∑

i=1

w̃i(t) = 1 ∀t ∈ T .

This ensures that the constraint function g (·) is evaluated in integer feasible controls ωi only.
While in addition it is obvious that any rounded solution derived from the relaxed optimal one
will be feasible, this formulation leads to relaxed optimal solutions that show compensation
effects. Choices w̃i(t)> 0 for some 1¶ i ¶ nw that are infeasible with respect to g (ωi) can be
compensated for by nonzero choices w̃ j(t)> 0 that are not part of the MIOCP’s solution.

5.1.2 Outer Convexification of Constraints

In chapter 2 we already mentioned that this issue can be resolved by applying the outer
convexification technique not only to the process dynamics but also to the affected constraints.

89

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

This amounts to the substitution of

g (t, x (t), u(t), w (t), p)¾ 0 ∀t ∈ T , (5.2)

w (t) ∈ {0,1}nw ∀t ∈ T ,

by

w̃i(t) · g (t, x (t),ωi , p)¾ 0, ∀t ∈ T 1¶ i ¶ nw, (5.3)

w̃ (t) ∈ [0, 1]n
w
,

nw
∑

i=1

w̃i(t) = 1 ∀t ∈ T .

It is immediately clear that an optimal solution satisfying the constraints g for some relaxed
optimal control w̃ ∈ [0, 1]n

w
will also satisfy these constraints for any rounded binary control.

This convexification of the constraints g does not introduce any additional unknowns into the
discretized MIOCP. The increased number of constraints is put in context by the observation
that the majority of the convexified constraints can be considered inactive as the majority
of the components of w̃ is likely to be active at zero. Active set methods are an appropriate
tool to exploit this property. As constraints of type (5.3) violate LICQ in w̃i(t) = 0, we briefly
survey further alternative approaches at maintaining feasibility of g after rounding, before we
investigate the structure of (5.3) in more detail.

5.1.3 Relaxation and Homotopy

In the spirit of a Big–M method for feasibility determination [157], the constraints g can be
relaxed using a relaxation parameter M > 0,

g (t, x (t),ωi , p)¾−M(1− w̃i(t)), ∀t ∈ T 1¶ i ¶ nw, (5.4)

w̃ (t) ∈ [0, 1]n
w
,

nw
∑

i=1

w̃i(t) = 1 ∀t ∈ T .

Clearly for w̃i(t) = 1 feasibility of the constraints g (ωi) is enforced while for w̃i(t) = 0 the
constraint g (ωi) does not affect the solution if M is chosen large enough. This approach has
been followed e.g. by [178]. The drawback of this formulation is the fact that the choice of
the relaxation parameter M is a priori unclear. In addition, the relaxation enlarges the feasible
set of the Optimal Control Problem (OCP) unnecessarily, thereby possibly attracting fractional
relaxed solutions of the OCP due to compensation effects.

5.1.4 Perspective Cuts

A recently emerging idea based on disjunctive programming [93] is to employ a reformulation
based on perspective cuts for a constraint w · g(x) ¾ 0 depending on a continuous variable

90

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

x ∈ [0, xup]⊂ R and a binary variable w ∈ {0,1},

0¶ λg(x/λ), (5.5)

0¶ x ¶ λxup,

λ ∈ [0, 1]⊂ R.

Clearly again for λ = 1 the original constraint on x is enforced, while for λ = 0 is can be
seen by TAYLOR’s expansion of λg(x/λ) that the constraint is always satisfied. For simplicity
of notation let us assume for a moment that g(x(t), w (t)) be a scalar constraint function
depending on a scalar state trajectory x(t). The proposed reformulation then reads

w̃i(t) · g
�

x̃ i(t)
w̃i(t)

,ωi
�

¾ 0 ∀t ∈ T , 1¶ i ¶ nw, (5.6)

w̃i(t) · xup ¾ x̃ i(t) ∀t ∈ T , 1¶ i ¶ nw,

x̃ i(t) ∈ [0, xup],
nw
∑

i=1

x̃ i(t) = x(t) ∀t ∈ T , 1¶ i ¶ nw,

w̃ (t) ∈ [0, 1]n
w
,

nw
∑

i=1

w̃i(t) = 1 ∀t ∈ T .

Here we have introduced slack variables x̃ i(t), 1 ¶ i ¶ nw for the state x(t). Clearly if
w̃i(t) = 1 the constraint g(ωi) will be satisfied by x̃ i(t) and thus by x(t), while if w̃i(t) = 0
this constraint does not affect the solution. This reformulation is promising as LICQ holds for
the resulting convexified NLPs on the whole of the feasible set if it held for the original one.
As the number of unknowns increased further due to introduction of the slack variables x̃ i(t),
structure exploiting methods tailored to the case of many control parameters become even
more crucial for the performance of the mixed–integer OCP algorithm. In addition, a connec-
tion between the convex combination x̃ (t) of the state trajectory x(t) and the convexification
of the dynamics must be established.

5.2 Lack of Constraint Qualification

In this section we investigate numerical properties of an NLP with a constraint depending
on integer or binary variables that has been treated by outer convexification as proposed in
section 5.1.2. We show that certain constraint qualifications are violated which are commonly
assumed to hold by numerical codes for the solution of NLPs. Linearization of constraints
treated by outer convexification bears significant potential for severe ill–conditioning of the
generated linearized subproblems, as has been briefly noted by [3] in the context of truss op-
timization, and we exemplarily investigate this situation. Finally, extensive numerical studies
[116] have revealed that SQP methods attempting to solve MPVCs without special consid-
eration of the inherent combinatorial structure of the feasible set are prone to very frequent
cycling of the active set. We present an explanation of this phenomenon for the case of lin-
earizations in NLP–infeasible iterates of the SQP method.

91

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

5.2.1 Constraint Qualifications

The local optimality conditions of theorem 3.1 were given under the assumption that LICQ
holds in the candidate point x ? in order to ensure a certain wellbehavedness of the feasi-
ble set in its neighborhood. The KARUSH–KUHN–TUCKER (KKT) theorem (3.1) can however be
proven under less restrictive conditions, and various Constraint Qualifications (CQs) differing
in strength and applicability have been devised by numerous authors. We present in the fol-
lowing four popular CQs in order of decreasing strength which will be of interest during the
investigation of MPVCs in section 5.3.
We first require the definitions of the tangent and the linearized cone.

Definition 5.1 (Tangent Cone, Linearized Cone)
Let x ∈ Rn be a feasible point of problem (3.1). The set

T (x ,F) def
=
¦

d ∈ Rn
�

� ∃{x k} ⊆ F , {tk} → 0+ : x k→ x , 1
tk (x k − x)→ d

©

(5.7)

is called the BOULIGAND tangent cone of the set F in the point x . The set

L(x) def
=
¦

d ∈ Rn
�

� gx (x)
T d = 0,

�

hA
�

x (x)
T d ¾ 0

©

(5.8)

is called the linearized cone of problem (3.1) in x . 4

The dual T (x ,F)? of the tangent cone is also referred to as the normal cone of F in x . In the
next section, these cones will play a role in characterizing the shape of the feasible set in a
neighborhood of the point x .

Definition 5.2 (Constraint Qualifications)
Let x ∈ Rn be a feasible point of problem (3.1). We say that

• Linear Independence Constraint Qualification (LICQ) [142] holds in x if the Jacobian





gx (x)
�

hA
�

x (x)



 (LICQ)

has full row rank.

• MANGASARIAN–FROMOVITZ Constraint Qualification (MFCQ) [148] holds in x if the Jaco-
bian gx (x) has full row rank and there exists d ∈ Rn such that

gx (x)
T d = 0, (MFCQ)

�

hA
�

x (x)
T d > 0.

• ABADIE Constraint Qualification (ACQ) [1] holds in x if

T (x ,F) = L(x). (ACQ)

• GUIGNARD Constraint Qualification (GCQ) [97] holds in x if

T (x ,F)? = L(x)?. (GCQ)

4

92

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

In definition 5.2, each CQ implies the next weaker one,

LICQ =⇒ MFCQ =⇒ ACQ =⇒ GCQ

whereas the converse never holds. Proofs of theorem 3.1 assuming each of the above CQs as
well as counterexamples for the converse cases can e.g. be found in [1, 164].

5.2.2 Checking Constraint Qualifications

We start by checking a minimal exemplary problem for constraint qualification according to
definition 5.2.

Example 5.1 (Violation of Constraint Qualifications)
Consider the scalar constraint x1 · g(x2)¾ 0 together with its associated simple bound x1 ¾ 0.
Here, the possibly nonlinear constraint g on x2 vanishes if x1 is chosen to be exactly zero. The
Jacobian C found from a linearization of these two constraints with respect to the unknown
x = (x1, x2) reads

C =





g(x2) x1 · gx(x2)

1 0





We now observe the following:

1. In all points satisfying x1 = 0 the Jacobian C becomes singular and LICQ is violated. All
other points satisfy LICQ.

2. In x1 = 0, g(x2) = 0 we have

C =





0 0

1 0



 .

There is no vector d ∈ R2 such that C T d > 0, which shows that MFCQ is violated in
these points. All other points satisfy MFCQ.

3. In x1 = 0, g(x2) = 0 we have the linearized cone

L(x) = R+0 ×R.

The BOULIGAND tangent cone is the union of two convex cones

T (x ,F) = (R+0 ×R+0)∪ ({0} ×R−0),

which shows that ACQ is violated in this point. All other points satisfy ACQ by implica-
tion.

4. Observe that for the duals of the above cones it holds that

L(x)? = T (x ,F)? = R+0 × {0},

93

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

which finally shows that of the four introduced CQs, GCQ is the only one to hold on the
entire feasible set.

These finding lead us to the following remark about CQs for NLPs with constraints treated by
Outer Convexification.

Remark 5.1 (Violation of CQs)
For constraints treated by Outer Convexification, LICQ is violated if the binary control variable
associated with a vanishing constraint is zero. If in addition the vanishing constraint is active
at its lower or upper bound, MFCQ and ACQ are violated as well. As GCQ holds, locally
optimal points are still KKT points.

5.2.3 Ill–Conditioning

We continue by investigating the numerical behavior of example 5.1 in a neighborhood of the
area of violation of LICQ.

Example 5.2 (Ill–conditioning)
Consider again the constraints of example 5.1. As x1 approaches zero, and thus the area of
violation of LICQ, the Jacobian C approaches singularity and its condition number approaches
infinity. Due to roundoff and truncation errors inevitably experienced by any numerical algo-
rithm, a weakly active bound x1 ¾ 0 may be satisfied with a certain error only. If for example
x1 = 10−12 instead of x1 = 0, the condition number of C is 1/x1 = 1012 if the vanishing
constraint g is active. If the constraint g is inactive, the condition number even grows larger
along with the constraint’s residual.

2
22

4

4
44

6

6
66

8

8
88

10

10

1010

12

12
1212

14

14

1414

16

16
1616

log10 g(x2)

lo
g 1

0
x 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-15

-10

-5

0

Figure 5.1: Logarithm of the Jacobian’s condition number (log10 condC) for a vanishing constraint
x1 · g(x2)¾ 0 and a simple bound x1 ¾ 0, depending on the residuals g(x2) and x1.

The condition numbers of C obtained for this example if gx(x2) = 1 are shown in figure 5.1.
We summarize our findings concerning ill–conditioning of the linearized subproblems with
the following remark.

94

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

Remark 5.2 (Ill–conditioning)
In a neighborhood of the area of violation of LICQ, linearizations of constraints treated by
Outer Convexification are ill–conditioned. For small perturbations ε > 0 of a binary control
variable that is active at zero in the true solution, the condition number of the Jacobian
obtained from linearization of the constraint is at least 1/ε.

5.2.4 Infeasible and Suboptimal Steps

Due to the combinatorial structure of the feasible set, constraint linearizations may fail to
approximate its structure. Figure 5.2 shows the mismatch of linearized feasible sets and the
local neighborhood of the NLP’s feasible set in a linearization point x that satisfies gi(x) = 0,
hi(x) = 0. As clearly visible, both infeasible and suboptimal step decisions (δg ,δh) may be
taken by a descent based optimization method working on the linearized representation of
the feasible set.

δx1

δx2

(a) x1 > 0, g(x2)> 0

δx1

δx2

(b) x1 > 0, g(x2) = 0

δx1

δx2

(c) x1 = 0, g(x2)< 0

δx1

δx2

(d) x1 = 0, g(x2) = 0

δx1

δx2

(e) x1 = 0, g(x2)> 0

δx1

δx2

(f) x1 > 0, g(x2)< 0
(infeasible)

Figure 5.2: Linearized feasible sets (|||) entering the QP subproblems lead to infeasible and subopti-
mal steps of the SQP method. Actually globally feasible steps (�) for the NLP. In cases (a),
(c), (d), and (f), the QP subproblem may determine an NLP–infeasible step. In cases (a),
(b), (e), abd (f), the determined step may be suboptimal.

Remark 5.3 (Infeasible and Suboptimal Steps)
Linearizations of the feasible set of constraints treated by outer convexification may lead to
infeasible NLP iterates if step decisions are made based on the linearizations.

5.2.5 Cycling of Active Set Methods

This third example uses a geometrical interpretation of the ill–conditioning observed numer-
ically in example 5.2 in order to explain frequently observed cycling of the active set when

95

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

solving problems with constraints treated by Outer Convexification with standard active set
methods.

Example 5.3 (Cycling of Active Set Methods)
Consider again the pair of constraints

c(x) = x1 · g(x2)¾ 0,

x1 ¾ 0,

and their linearization in x ,

g(x2)δx1+ x1 gx(x2)δx2 ¾−x1 g(x2),

δx1 ¾−x1.

For a linearization point x that is not degenerate, i.e., x1 > 0, this may be written as

δx1+ βδx2







¾−x1 if x is feasible, i.e., g(x2)> 0,

¶−x1 if x is infeasible, i.e., g(x2)< 0,
β

def
= x1

gx(x2)
g(x2)

∈ R.

Figure 5.3 shows the linearized feasible set of the quadratic subproblem for an SQP iterate
that is feasible. With β → 0, which means x1→ 0 or g(x2)→∞, the angle between the two
constraints approaches π and the corner of the feasible set becomes degenerate. The resulting
ill–conditioning of the linearization was also observed numerically in figure 5.1.
Figure 5.4 shows the linearized feasible set for an infeasible SQP iterate. In contrast to the
previous case, with β → 0 the angle between the constraints approaches 0 and the feasible set
is spike-shaped. Besides ill–conditioning, this may potentially result in many tiny steps being
made by an active set method if the stationary point is located near the spike’s pinpoint. This
phenomenon is known as “zig–zagging”.

δx1

δx2

feasible

(a) gx(x2)> 0.

δx1

δx2

feasible

(b) gx(x2)< 0.

Figure 5.3: Feasible sets of the subproblems obtained by linearization in a feasible iterate. The common
feasible subset of both constraints is indicated by (�) while parts feasible for one of the
two constraints only are indicated by (�).

Remark 5.4 (Cycling of the Active Set)
Linearizations of a constraint treated by Outer Convexification in SQP iterates with binary

96

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

δx1

δx2

infeasible

(a) gx(x2)< 0.

δx1

δx2

infeasible

(b) gx(x2)> 0.

Figure 5.4: Feasible sets of the quadratic subproblems obtained by linearization in an iterate that is
infeasible with respect to the vanishing constraint, i.e., g(x2)< 0.

control variables close to zero or large residuals of the constraint will lead to degenerate
corners of the feasible set polytope. If the linearization point is infeasible, an active set method
solving the linearized subproblem is likely to suffer from zig–zagging.

Remark 5.5 (Bang–Bang Optimal Controls)
For optimal control problems that enjoy a bang–bang property (theorem 2.1), the described
situation will actually be the one encountered most often. Close to the optimal solution, in
each SOS1 set all but one relaxed control variable will be exactly zero for an active set method
in exact arithmetic. In floating–point arithmetic, their values will be close to the machine
precision eps, which results in severe ill–conditioning and spike shaped feasible sets.

5.3 Mathematical Programs with Vanishing Constraints

Theoretical and numerical challenges introduced into the NLP by outer convexification of
constraints depending on binary or integer controls have been exemplarily studied in this
section. Our findings clearly justify the need for deeper investigation of the combinatorial
structure of such NLPs in order to take the structure into account in the design of a tailored
SQP algorithm.

The findings of the first section lead us to investigate NLPs with constraints treated by outer
convexification from a different point of view. In this section we introduce the problem class of
Mathematical Programs with Vanishing Constraints (MPVCs), highly challenging nonconvex
problems that have only recently attracted increased research interest. This problem class
provides a framework for analysis of the shortcomings of the standard Lagrangian approach at
solving MPVCs, and yields new stationarity conditions for a separated, i.e., non–multiplicative
formulation of the vanishing constraints that will in general be much more well conditioned.

Pioneering work on the topic of MPVCs was brought forward only recently by [3, 106, 107].
In these works, MPVCs were shown to constitute a challenging class of problems, as standard
constraint qualifications such as LICQ and MFCQ turn out to be violated for most problem
instances. In the thesis [105] an exhaustive treatment of the theoretical properties of MPVCs
can be found. The theoretical results presented in this section are a summary of those parts of

97

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

[109] and the aforementioned works that are required for the numerical treatment of NLPs
with constraints treated by outer convexification.

5.3.1 Problem Formulations

Definition 5.3 (Nonlinear Program with Vanishing Constraints)
The following NLP with l ¾ 1 complementary inequality constraints

min
x∈Rn

f (x) (5.9)

s. t. gi(x) · hi(x)¾ 0, 1¶ i ¶ l,

h(x)¾ 0

is called a Mathematical Program with Vanishing Constraints (MPVC). 4

The objective function f : Rn → R and the constraint functions gi , hi : R→ R, 1 ¶ i ¶ l are
expected to be at least twice continuously differentiable. The domain of feasibility of problem
(5.9) may be further restricted by a standard nonlinear constraint function c(x)½ 0, including
equality constraints. Such constraints do not affect the theory and results to be presented in
this chapter, and we omit them for clarity of exposition.

Constraint Logic Reformulation

It is easily observed that the constraint functions gi(x) do not impact the question of feasibility
of an arbitrary point x ∈ Rn iff hi(x) = 0 holds. The constraint gi is the said to have vanished
in the point x . This observation gives rise to the following constraint logic reformulation.

Remark 5.6 (Constraint Logic Reformulation for MPVCs)
Problem (5.9) can be equivalently cast as an NLP with m logic constraints,

min
x∈Rn

f (x) (5.10)

s. t. hi(x)> 0 =⇒ gi(x)¾ 0, 1¶ i ¶ m,

h(x)¾ 0.

The logical implication though appears to be unsuitable for derivative based numerical meth-
ods. We will however see in the sequel of this chapter that it can be realized in the framework
of an active set method for Quadratic Programming.

Equilibrium Constraint Reformulation

MPVCs can be related to the well studied class of Mathematical Programs with Equilibrium
Constraints (MPECs) through the following reformulation.

Remark 5.7 (MPEC Reformulation for MPVCs)
Problem (5.9) can be equivalently cast as an MPEC by introduction of a vector ξ ∈ Rl of slack

98

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

variables,

min
x∈Rn

f (x) (MPEC)

s. t. ξi · hi(x) = 0, 1¶ i ¶ l,

h(x)¾ 0,

ξ¶ 0,

g (x)− ξ¾ 0.

Although this opens up the possibility of treating (5.9) using preexisting MPECs algorithms
designed for interior point methods by e.g. [17, 138, 172] and for active set methods by e.g.
[75, 111], this reformulation suffers from the fact that the additionally introduced vector ξ of
slack variables is undefined if hi(x ?) = 0 holds for some index i in an optimal solution x ?. In
fact, MPECs are known to constitute an even more difficult class than MPVCs, as both LICQ
and MFCQ are violated in every feasible point [47]. Consequentially, standard NLP sufficient
conditions for optimality of x ? as presented in section 3.1.3 do not hold. If on the other hand
hi(x ?) 6= 0 for all indices 1 ¶ i ¶ l, we could as well have found the same solution x ? by
including all vanishing constraints gi as standard constraints, which allows to treat problem
(5.9) as a plain NLP.

Relaxation Method

It has frequently been proposed to solve problem (5.9) by embedding it into a family of
perturbed problems. The vanishing constraint that causes violation of constraint qualifications
is relaxed,

min
x∈Rn

f (x) (MPVC(τ))

s. t. gi(x) · hi(x)¾−τ, 1¶ i ¶ l,

h(x)¾ 0

where the scalar τ ¾ 0 is the relaxation parameter. For τ > 0, problem (MPVC(τ)) is regular
in its solution. The level of exactness of this relaxation is investigated e.g. in [109].

Embedding Relaxation Method

A more general relaxation of the vanishing constraint gi(x) · hi(x) ¾ 0 is proposed in [105,
109] that works by embedding it into a function ϕ satisfying

ϕ(a, b) = 0 ⇐⇒ b ¾ 0, a · b ¾ 0,

and introducing a relaxation parameter τ together with a family of functions ϕτ(a, b) for
which it holds that ϕτ(a, b) → ϕ(a, b) for τ → 0. It is argued that smooth functions ϕ
necessarily lead to lack of LICQ and MFCQ, and the use of a family of nonsmooth functions
is proposed and convergence results are obtained similar in spirit to those of [174, 191] for
MPECs.

Finally, two remarks are in order about the applicability of the surveyed reformulations.

99

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

h

g

F

(a) Feasible set of original
problem (5.9).

h

−ξ

F

(b) Feasible set of MPEC
reformulation.

F

τ→ 0+

h

g

(c) Feasible set of relaxed
problem (MPVC(τ)),
τ= 0.1.

Figure 5.5: Feasible sets of various reformulations of problem (5.9).

Remark 5.8 (Ill–Conditioning of Reformulations)
The ill–conditioning investigated in section 5.2.3, inherent to the multiplicative formulation
of the vanishing constraint, is not resolved by either of the two relaxation methods.

Remark 5.9 (Relaxation of Constraints)
Relaxation methods require the problem’s objective and constraint functions to be valid out-
side the feasible set originally described by problem (5.9). As we will see in chapter 9, this
may lead to evaluations of model functions outside the physically meaningful domain. If re-
laxation methods are employed, it is important to allow for such evaluations in a way that
does not prevent the true solution from being found.

5.4 An MPVC Lagrangian Framework

In the following we present an analysis of the standard Lagrangian approach presented in
section 3.1, applied to problem (5.9) as derived by [3, 106] and related works. An alterna-
tive Lagrangian function that introduces separate multipliers for the two parts of a vanishing
constraint is introduced that removes the major source of ill–conditioning. Stationarity and
optimality conditions are presented.

5.4.1 Notation and Auxiliary Problems

We first require some notation to be defined. The notion of an active set for problem MPVC
requires some extension as shown in the following definition of index sets.

Definition 5.4 (Index Sets)
Let x ∈ Rn be a feasible point. In a neighborhood Bε(x) of x , the set {1, . . . , l} ⊂ N of indices of

100

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

the l vanishing constraints is partitioned into the following index sets:

I+
def
= {i | hi(x)> 0}, I+0

def
= {i | hi(x)> 0, gi(x) = 0}, (5.11)

I++
def
= {i | hi(x)> 0, gi(x)> 0},

I0
def
= {i | hi(x) = 0}, I0+

def
= {i | hi(x) = 0, gi(x)> 0},

I00
def
= {i | hi(x) = 0, gi(x) = 0},

I0−
def
= {i | hi(x) = 0, gi(x)< 0}. 4

h

g

I+0

I++

I00

I0−

I0+

Figure 5.6: Index sets for a vanishing constraint. (�) indicates the feasible set.

An interpretation of the index sets as parts of the feasible set is depicted in figure 5.6. In a
neighborhood of x , the feasible set of problem (5.9) can then be expressed as

F =
�

x ∈ Rn
�

� hI0+
(x)¾ 0, hI00

(x)¾ 0, hI0−(x) = 0, (5.12)

gI+0
(x)¾ 0, ∀i ∈ I00 : gi(x) · hi(x)¾ 0

	

.

Clearly, the combinatorial structure of F is induced by exactly those constraints that are found
in I00. If on the other hand I00 = ;, then F is the feasible set of a plain NLP and any combi-
natorial aspect disappears.

Based on (5.9) we further define two auxiliary NLPs, a tightened and a relaxed one, as follows.

Definition 5.5 (Tightened Nonlinear Problem)
Let x ∈ Rn be a feasible point of (5.9). In a neighborhood Bε(x) of x , the tightened problem
(TNLP) is defined as

min
x∈Rn

f (x) (TNLP)

s. t. hI0+
(x)¾ 0, hI00

(x) = 0, hI0−(x) = 0,

gI+0
(x)¾ 0, gI00

(x)¾ 0. 4

Definition 5.6 (Relaxed Nonlinear Problem)
Let x ∈ Rn be a feasible point of (5.9). In a neighborhood Bε(x) of x , the relaxed problem

101

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

(RNLP) is defined as

min
x∈Rn

f (x) (RNLP)

s. t. hI0+
(x)¾ 0, hI00

(x)¾ 0, hI0−(x) = 0,

gI+0
(x)¾ 0. 4

Both problems depart from the original problem (5.9) in those vanishing constraints imposed
on x that are contained in the critical index set I00 in x . Given a partition {I1;I2} of the
critical set I00 into two subsets I1 and I2,

I1 ∪ I2 = I00, I1 ∩ I2 = ;,

the branch problem for {I1;I2}, first used in [107, 109], requires the vanishing constraints in
I1 to be feasible, gi(x)¾ 0, and the constraints in I2 to have vanished, hi(x) = 0.

Definition 5.7 (Branch Problem)
Let x ∈ Rn be a feasible point of (5.9), and let {I1;I2} be a partition of I00. In a neighborhood
Bε(x) of x , the branch problem (BNLP{I1,I2}) for {I1;I2} is defined as

min
x∈Rn

f (x) (BNLP{I1,I2})
s. t. hI0+

(x)¾ 0, hI1
(x)¾ 0, hI2

(x) = 0, hI0−(x) = 0,

gI+0
(x)¾ 0, gI1

(x)¾ 0. 4

There obviously are |P(I00)|= 2|I00| ¶ 2l different branch problems.

Lemma 5.1 (Feasible Sets of the Auxiliary Problems)
For the feasible sets of the auxiliary problems, the following relations hold:

FTNLP
1.
=
⋂

J1∪J2 =I00
J1∩J2=;

FBNLP{J1;J2}
2.⊂ FBNLP{I1;I2}

3.⊂ F 4.
=
⋃

J1∪J2=I00
J1∩J2=;

FBNLP{J1;J2}
5.⊂ FRNLP. (5.13)

4

Proof For 1., consider that for every constraint i ∈ {1, . . . , l} there exists a partition with
i ∈ J1 and one with i ∈ J2. Hence gi(x) ¾ 0 and hi(x) = 0 hold for the intersection set,
satisfying (TNLP). The reverse direction is obvious. Inclusion 2. is obvious as the intersection
includes the case {I1;I2}= {J1;J2}. Inclusion 3. is obvious as any choice of I2 6= ; is a proper
restriction of F . Forming the union of feasible sets of the branch problem lifts any restrictions
imposed by choosing a specific J2 6= ;, and we get equivalence 4. Finally, problem (RNLP)
allows for a violation of vanishing constraints contained in I00 in a neighborhood of x , which
justifies 5. �

5.4.2 Lack of Constraint Qualification for MPVCs

The initial observation that the constraints found in I00 induce the combinatorial nature of
MPVCs gives rise to the following constraint qualification for MPVC.

102

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

Definition 5.8 (Lower Level Strict Complementarity Condition)
Let x ∈ Rn be a feasible point of problem (5.9). If I00 = ; in x , we say that Lower Level Strict
Complementarity (LLSCC) holds for problem (5.9) in x . 4

This complementarity condition is too restrictive, though, and will not be satisfied on the
entire feasible set by most interesting MPVC problem instances. The same has been observed
for strict complementarity conditions for MPECs as well, cf. [143].
If LLSCC is violated, the feasible set F has a combinatorial structure and the constraints of
(5.9) inevitably are degenerate. Constraint qualifications commonly encountered in nonlinear
programming are thus violated, as could already be seen in the first section of this chapter.

Lemma 5.2 (Violation of LICQ)
Let x ∈ Rn be a feasible point of (5.9), and let I0 6= ;. Then LICQ is violated in x . 4

Proof For any i ∈ I0 we have hi(x) = 0 and thus (gi · hi)x (x) = gi(x) · (hi)x (x), i.e., the
gradient of (gi · hi)(x)¾ 0 is a multiple of that of hi(x)¾ 0. Since both constraints are active
in x , LICQ is violated. �

Lemma 5.3 (Violation of MFCQ)
Let x ∈ Rn be a feasible point of (5.9), and let I00 ∪ I0− 6= ;. Then MFCQ is violated in x . 4

Proof For any i ∈ I00 we have (gi · hi)x (x) = 0, so (gi · hi)x (x)
T d = 0 for all vectors d ∈ Rn,

hence MFCQ is violated.
For any i ∈ I0− and for any d ∈ Rn which satisfies (hi)x (x)

T d ¾ 0 we find (gi · hi)x (x)
T d ¶ 0,

hence MFCQ is violated in this case, too. �

In order to investigate the remaining CQs we require a representation of the tangent cone and
the linearized cone of the feasible set of (5.9), which is given by the following lemma.

Lemma 5.4 (Tangent and Linearized Cone of MPVC)
For MPVCs, it holds that

TMPVC(x ,F) =
⋃

J1∪J2=I00
J1∩J2=;

TBNLP{J1;J2}(x ,F) ⊆
⋃

J1∪J2=I00
J1∩J2=;

LBNLP{J1;J2}(x) = LMPVC(x). 4

Proof A proof of this relation can be found in [105]. �

As can be seen, the tangent cone of (5.9) is the union of finitely many NLP tangent cones. Con-
sequentially it is in general a non–polyhedral and non–convex set that does not coincide with
the convex and polyhedral linearized cone, in which case ACQ is violated. Necessary condi-
tions for ACQ to hold for problem (5.9) can be found in [105]. Under reasonable assumptions,
only GCQ can be shown to hold for (5.9).

Theorem 5.1 (Sufficient Condition for GCQ)
Let x ∈ Rn be a feasible point of (5.9), and let LICQ for the auxiliary problem (TNLP) hold in x .
Then GCQ holds in x for problem (5.9). 4

Proof A proof can be found in [105]. �

103

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

This gives rise to the introduction of the following constraint qualification.

Definition 5.9 (MPVC Linear Independence Constraint Qualification)
Let x ∈ Rn be a feasible point of problem (5.9). We say that MPVC–Linear Independence Con-
straint Qualification holds in x if the Jacobian











�

hI0

�

x
(x)

�

gI+0

�

x
(x)

�

gI00

�

x
(x)











(5.14)

has full row rank. 4

Using this definition we can restate theorem 5.1 by saying that for a feasible point of problem
(5.9), MPVC–LICQ is a sufficient condition for GCQ to hold. Consequentially, under MPVC–
LICQ a locally optimal point of problem (5.9) satisfies the KKT conditions of theorem 3.1.

Remark 5.10 (Strength of MPVC–LICQ)
The assumption of MPVC–LICQ is sometimes held for too strong, e.g. in the analogous case
of MPECs, while on the other hand the classical KKT theorem cannot be shown to hold for
MPVCs under less restrictive CQs.
For the case of constraints treated by outer convexification, however, it is reasonable to as-
sume GCQ and thus MPVC–LICQ to hold. Here, hI0

holds active simple lower bounds on the
convex multipliers, while gI00

and gI+0
hold active vanishing constraints independent of the

convex multipliers. This allows us to retain the concept of iterating towards KKT based local
optimality.

h

g

(a) LICQ

h

g

(b) MFCQ

h

g

(c) LLSCC

Figure 5.7: Areas of violation of constraint qualifications (�). The feasible set is indicated by (�).

5.4.3 An MPVC Lagrangian Framework

The standard Lagrangian function according to definition 3.6 for problem 5.9 reads

L(x ,λ)
def
= f (x)−λT

h h(x)−
l
∑

i=1

λgh,i gi(x)hi(x), (5.15)

104

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

wherein λh ∈ Rl and λgh ∈ Rl denote the Lagrange multipliers for the constraints h(x) ¾ 0
and gi(x) · hi(x) ¾ 0 respectively. The multiplicative representation of the vanishing con-
straints has been shown to be the source of severe ill–conditioning in section 5.2. We introduce
a modification of (5.15) that separates the vanishing constraints’ parts g and h.

Definition 5.10 (MPVC Lagrangian Function)
The function Λ : Rnx ×Rl ×Rl → R,

Λ(x ,µg,µh)
def
= f (x)−µT

h h(x)−µT
g g (x) (5.16)

with x ∈ Rn and µg,µh ∈ Rl is called the MPVC Lagrangian (function) of problem (5.9). 4

Based on the KKT conditions for the auxiliary problem (RNLP) we define the notion of strong
MPVC stationarity.

Definition 5.11 (Strong Stationarity)
Let x ? ∈ Rn be a feasible point of (5.9). The point x ? is called a strongly stationary point of
(5.9) if it is stationary for the relaxed auxiliary problem (RNLP) in the classical sense. There exist
MPVC multipliers µ?g ∈ Rl and µ?h ∈ Rl such that

Λx (x
?,µ?g,µ?h) = 0, (5.17)

µ?h,I0+
¾ 0, µ?h,I00

¾ 0, µ?h,I+
= 0,

µ?g,I+0
¾ 0, µ?g,I++

= 0, µ?g,I0
= 0. 4

The strongly stationary points of an MPVC can be shown to coincide with the KKT points, as
mentioned before.

Theorem 5.2 (Strong Stationarity)
Let x ? ∈ Rn be a feasible point of problem (5.9). Then it holds that x ? is a KKT point of problem
(5.9) satisfying theorem 3.1 if and only if x ? is a strongly stationary point of problem (5.9). 4

Proof A proof can be found in [3]. �

Hence, if the assumptions for theorem (3.1) are satisfied, strong stationarity is a necessary
condition for local optimality.

Theorem 5.3 (First Order Necessary Optimality Condition under GCQ)
Let x ? ∈ Rn be a locally optimal point of (5.9) and let GCQ hold in x ?. Then x ? is a strongly
stationary point of (5.9). 4

Proof Every locally optimal point satisfying GCQ is a KKT point by theorem 3.1. Every KKT
point is strongly stationary by theorem 5.2 �

Theorem 5.3 can be recast using the newly introduced notion of MPVC–LICQ as follows. In
addition, we have uniqueness of the MPVC multipliers analogous to the case of LICQ for NLPs.

Theorem 5.4 (First Order Necessary Optimality Condition under MPVC–LICQ)
Let x ? ∈ Rn be a locally optimal point of (5.9) and let MPVC–LICQ hold in x ?. Then x ? is a
strongly stationary point of (5.9). The MPVC–multipliers µg and µh are unique. 4

105

CHAPTER 5
�

� O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S

Proof MPVC–LICQ implies GCQ by definition. Uniqueness of the MPVC–multipliers follows
from linear independence of the gradients. �

We have thus obtained a constrained nonlinear programming framework for MPVC under the
strong assumption of MPVC–LICQ. We have however shown that this CQ may be assumed to
hold for NLPs with constraints treated by outer convexification. The separation of the vanish-
ing constraint functions g and h resolves ill–conditioning of the Jacobian and consequentially
the undesirable phenomena examined in section 5.2.
Less restrictive stationarity conditions such as the notion of MORDUKHOVICH– or M–stationarity
are derived in [105]. They do not require GCQ to hold for (5.9) but instead only assume GCQ
for all branch problems, which is referred to as MPVC–GCQ. As strong stationarity cannot
be expected to constitute a necessary condition for optimality under such CQs, M–stationary
points are not necessarily KKT points of problem (5.9). Vice versa, it holds that every strongly
stationary point is an M–stationary point. Again both notions of stationarity coincide if the
critical index set I00 is empty.

5.4.4 Second Order Conditions

Second-order necessary and sufficient conditions for local optimality of a candidate point
can be devised under MPVC–LICQ, similar to those of theorems 3.3 and 3.4 that hold for
NLPs under LICQ. They are based on the MPVC reduced Hessian, defined analogously to the
reduced Hessian of the Lagrangian in definition 3.9.

Theorem 5.5 (Second Order Necessary Optimality Condition)
Let x ? be a locally optimal point of problem (5.9), and let MPVC–LICQ hold in x ?. Then it holds
that

∀d ∈ LMPVC(x
?) : dTΛx x (x

?,µg,µh) d ¾ 0,

where µg and µh are the MPVC–multipliers satisfying strong stationarity. 4

Proof A proof can be found in [105]. �

Theorem 5.6 (Second Order Sufficient Optimality Condition)
Let (x ?,µg,µh) be a strongly stationary point of problem (5.9). Further, let

∀d ∈ LMPVC(x
?) \ {0} : dTΛx x (x

?,µg,µh) d > 0,

hold. Then x ? is a locally strictly optimal point of problem (5.9). 4

Proof A proof can be found in [105]. �

5.5 Summary

In this chapter we have investigated the theoretical properties of NLPs with constraints that
arise from the application of outer convexification to MIOCP constraints directly depending on
a binary or integer control variable. CQs frequently assumed to hold in the design of descent
based NLP algorithms, such as LICQ and MFCQ, have been shown to be violated by such

106

O U T E R C O N V E X I F I C AT I O N O F C O N S T R A I N T S
�

� CHAPTER 5

NLPs. Consequences for the convergence behavior of such algorithms have been examined
and new explanations for phenomena such as numerical ill–conditioning, infeasible steps, and
cycling of the active set have been given. The NLPs under investigation have been identified
as MPVCs for the first time, a challenging and very young problem class whose feasible set has
a nonconvex combinatorial structure. An constrained nonlinear programming framework for
MPVCs has been presented that allows to retain the KKT theorem and resolves a major cause
of numerical ill–conditioning by introducing a Lagrangian function with separated constraint
parts.

107

6 A Nonconvex Parametric SQP Method

The real–time iteration scheme for Nonlinear Model Predictive Control (NMPC) of chapter 4
was based on the idea of repeatedly performing a single iteration of a NEWTON–type method
to compute control feedback. We have seen that it can be combined with the convexifica-
tion and relaxation method of chapter 2 to develop a new mixed–integer real–time iteration
scheme. For Mixed–Integer Optimal Control Problems (MIOCPs) with constraints depending
directly on an integer control, that method yields an Nonlinear Program (NLP) with vanish-
ing constraints as seen in chapter 5. In this chapter we develop a new Sequential Quadratic
Programming (SQP) method to solve the arising class of NLPs with vanishing constraints in
an active–set framework. It generates a sequence of local quadratic subproblems inheriting
the vanishing constraints property from the NLP. These local subproblems are referred to as
Quadratic Programs with Vanishing Constraints (QPVCs) and are the subproblems to be solved
in the mixed–integer real–time iteration scheme. For this purpose, we develop a new active
set strategy that finds strongly stationary points of a QPVC with convex objective function
but nonconvex feasible set. This active set strategy is based on the idea of using parametric
quadratic programming techniques to efficiently move between convex subsets of the QPVC’s
nonconvex feasible set. Strongly stationary points of QPVCs are locally optimal, and we de-
velop a heuristic that improves these points to global optimality.

6.1 SQP for Nonconvex Programs

Current research on numerical methods for the solution of Mathematical Programs with Van-
ishing Constraints (MPVCs) mainly focuses on regularization schemes for interior point meth-
ods, cf. [3, 105, 106, 107], as convergence analyses available for Mathematical Programs
with Equilibrium Constraints (MPECs) can often be readily transferred to the case of MPVC.
SQP methods for a broader class of nonlinear problems with combinatorial structure, such
as MPECs and bi–level optimization problems, have been considered in [192] and have been
found to require a means of finding and verifying a stationary or locally optimal solution of
the nonconvex subproblems. For the SQP framework described there, [109] conjectures that
MPVC strong stationarity conditions under MPVC–LICQ could be used to design an active set
based method for the subproblems.

In this section, we pursue this idea and develop a parametric SQP methods on nonconvex
feasible sets and show how it can be used for the solution of NLPs with vanishing constraints,
arising from the application of the convexification and relaxation approach of chapter 2 to
MIOCPs with constraints directly depending on binary or integer controls.

108

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

6.1.1 SQP on Nonconvex Feasible Sets

Extensions of SQP methods to nonconvex problems with combinatorial structure are e.g. de-
scribed in [192]. We consider the NLP

min
x∈Rn

f (x) (6.1)

s. t. g (x) ∈ F ,

where the feasible set F is assumed to show a combinatorial structure. Note that F ⊂ Rng

here is a subset of the image space of the constraint function g . Given a primal–dual point
(x ,λ), the SQP subproblem reads

min
δx∈D⊆Rn

1
2
δx T Lx x (x ,λ)δx + fx (x)δx (6.2)

s. t. g (x) + gx (x)δx ∈ F .

We are interested in the assumptions that need to be imposed on the shape of the structurally
nonconvex and nonlinear feasible set F of problem (6.1) in order to establish local conver-
gence of the SQP method.

Definition 6.1 (Local Star Shape)
A set F is called locally star–shaped in a feasible point x ∈ F if there exists a ball Bε(x) such
that it holds that

∀x ∈ F ∩Bε(x), α ∈ [0,1]⊂ R : αx + (1−α)x ∈ F ∩Bε(x). (6.3)

4

It is easily verified that convex sets as well as finite intersections and finite unions of closed
convex sets are locally star–shaped. Under the restriction of local starshapedness, convergence
is established by the following theorem.

Theorem 6.1 (Local Convergence of SQP)
Let x ? be a stationary point of (6.1), and let the feasible set F be locally star–shaped in g (x ?).
Let strict complementary hold in x ? with Lagrange multipliers λ? and let the reduced Hessian
be positive definite in (x ?,λ?). Then the exact Hessian SQP method shows local q–quadratic
convergence to the stationary point x ?. 4

Proof A proof can be found in [192]. �

These are indeed just the strong second order sufficient conditions of theorem 3.4 and the
local convergence theorem 3.7. Strict complementarity permits the extension to inequality
constraints as already mentioned. Finally, local star shape of the feasible set according to
definition 6.1 guarantees that the stationary point (x ?,λ?) indeed is unique in a local neigh-
borhood.

6.1.2 Nonconvex Subproblems

The local subproblems generated by the SQP method described in the previous section are
Quadratic Programs (QPs) with combinatorial structure of the feasible set. For the combina-
torial NLP (6.1) we assume that there exist finitely many subsets Fi , 1 ¶ i ¶ nF that are

109

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

of simpler, convex shape such that a descent–based method is able to find a locally optimal
solution of the subproblems

min
x

1
2
x T Hx + x T g (6.4)

s. t. Ax + b ∈ Fi ,

if given a feasible initializer in Fi .
Local optimality of a candidate point x ? for the subproblems must be linked to local optimality
of the combinatorial NLP (6.1). In particular, if (6.1) has a locally optimal point x ?, this point
should satisfy Ax ? + b ∈ Fi for at least one of the subproblems (6.4). Vice versa, if x ? is a
locally optimal point for one of the subproblems (6.4), and if this point is also locally optimal
for all subproblems j that satisfy x ? ∈ F j , then x ? should be a locally optimal point of (6.1),
cf. [192]. An obvious sufficient condition for both requirements to hold is that

F =
nF
⋃

i=1

Fi . (6.5)

Note that in general the subsets Fi cover F will not form a partition of F , i.e., they need not
be pairwise disjoint but may overlap each other. In particular, if F is closed the subsets Fi

will be closed and share boundary points with adjacent ones. This gives rise to the notion of
adjacent subproblems as follows.

Definition 6.2 (Adjacent Subproblems)
A local subproblem on a subset Fi ⊂ F is called adjacent to a point x ∈ Rnx

if x ∈ Fi holds.
Two subproblems on subsets Fi , F j , i 6= j are called adjacent if a locally optimal point x ? of
subproblem i satisfies x ? ∈ F j . 4

Starting with an initial guess and an associated initial subproblem with convex feasible set
Fi ⊂ F the nonconvex SQP step is computed as follows: After finding a locally optimal point
x ? ∈ Fi using an active set method, optimality is checked for each adjacent subproblem. If
optimality does not hold for one or more adjacent subproblems, one of those is chosen and
the solution is continued therein. This procedure is iterated until local optimality holds for a
subproblem and all adjacent ones.

Theorem 6.2 (Finite Termination)
For convex subproblems with regular solutions, the described decomposition procedure terminates
after a finite number of iterations with either a local minimizer or an infeasible subproblem. 4

Proof A proof can be found in [192]. �

Several points need to be addresses in more detail in order to make this approach viable. First,
it is obviously critical for the performance of the nonconvex SQP method that the convex
subsets Fi of the feasible set F be chosen as large as possible in order to avoid frequent
continuations of the solution process. Second, as F is nonconvex, such continuations certainly
cannot be avoided at all, and the active set method used to solve the subproblem should
thus allow for efficient warm starts. Finally, both the verification of local optimality and the
decision on an adjacent subproblem to continue the solution process need to exploit multiplier
information in order to make efficient progress towards a locally optimal solution of (6.1).

110

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

6.1.3 SQP for a Special Family of MPVCs

We are concerned with applying the presented nonconvex SQP framework to the particular
case of MPVCs obtained by outer convexification of discretized MIOCPs.

Local Convergence

By theorem 5.2 the notion of stationarity in theorem 6.1 can under MPVC–LICQ be substituted
by the equivalent MPVC strong stationarity condition of definition 5.11. The notion of strict
complementarity then refers to the MPVC multipliers. The Hessian approximation methods of
chapter 3 can be readily used also to approximate the Hessian of the MPVC Lagrangian. In
the BFGS case, the well–defined MPVC multiplier step is used in place of the potentially un-
bounded Lagrange multiplier step. Finally, note that the feasible sets obtained for the MPVCs
are indeed locally star–shaped by lemma 5.4.

Quadratic Programs with Vanishing Constraints

The local subproblems to be solved in each iteration of the nonconvex SQP method for MPVCs
obtained by outer convexification of discretized MIOCPs are referred to as Quadratic Programs
with Vanishing Constraints (QPVCs), to be defined next.

Definition 6.3 (Quadratic Program with Vanishing Constraints)
The following extension of problem (6.8)

min
x∈D⊆Rn

1
2
x T Hx + x T g (6.6)

s. t. 0¶ Ax − b,

0¶ (Ci?x − ci)(Di?x − di), 1¶ i ¶ l,

0¶ Dx − d,

where C , D ∈ Rl×n and c,d ∈ Rl , is called a Quadratic Program with Vanishing Constraints
(QPVC). 4

Herein, the affine linear parts

g (x)
def
= C x − c,

h(x)
def
= Dx − d

take the role of the controlling constraint h(x) ¾ 0 and the vanishing constraint g (x) ¾ 0 of
the previous chapter.

A Sufficient Condition for Local Optimality

A remarkable result from [105] holds for MPVCs with convex objective and affine linear parts
of the vanishing constraints, which in particular includes QPVCs with positive semidefinite
Hessian H . Although the problem class of QPVCs must truly be considered nonconvex due to
the shape of its feasible set, the strong stationarity conditions of definition 5.11 are indeed
also sufficient conditions for local optimality.

111

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

Theorem 6.3 (QPVC First Order Sufficient Optimality Condition)
Let the objective function f be convex and let g , h be affine linear in problem (5.9). Further, let
x ? be a strongly stationary point of problem (5.9). Then x ? is a locally optimal point of problem
(5.9). 4

Proof A proof can be found in [105]. �

As equivalence to the KARUSH–KUHN–TUCKER (KKT) conditions strong stationarity has already
been shown to be a necessary condition, the notions of stationarity and local optimality of the
subproblems’ solutions therefore coincide for QPVCs.

A Sufficient Condition for Global Optimality

Figure 6.1 depicts two QPVCs that immediately reveal the difference between local and global
optimality on the nonconvex feasible set. In particular, an active vanishing constraint that is
not permitted to vanish may cause local minima different from the global one as can be seen
from figure 6.1b. This observation is a motivation of the following sufficient condition for
global optimality due to [105].

Theorem 6.4 (Sufficient Global Optimality Condition)
Let the objective function f be convex and let g , h be affine linear in problem (5.9). Further, let
x ? be a strongly stationary point of problem (5.9). Then if µh,I0− ¾ 0 and µg,I+0

= 0, it holds
that x ? is a globally optimal point of problem (5.9). 4

Proof A proof can be found in [105]. �

g

h

bcb

(a) A QPVC with a single optimal point.

g

h
bc

bc

b

(b) A QPVC with a locally and a globally
optimal point.

Figure 6.1: Locally and globally optimal points of a convex QPVC.

Adjacency for QPVCs

The nonconvex SQP framework of section 6.1.1 introduced the notion of adjacency for the
convex subsets of the feasible set. Local optimality of a candidate point on the border of one
convex subset needs to be verified for all adjacent convex subsets. For the case of QPVCs,

112

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

borders of convex subsets are defined by active vanishing constraints gi(x) = 0, i.e., by those
constraints found in the index subset I+0 of the active set, and by active controlling constraints
hi(x) = 0 if the vanishing constraint is infeasible, i.e., by those constraints found in the index
subset I0−. We introduce the following definition of adjacency.

Definition 6.4 (Adjacency)
Let C1 ⊂ FQPVC and C2 ⊂ FQPVC be convex subsets of the feasible set FQPVC of problem (6.6).
Assume that A1 and A2 are the active sets for all points of these subsets,

∀x ∈ Ck : A(x) =Ak, k ∈ {1, 2}. (6.7)

Then the two convex subsets are called QPVC–adjacent if there exists a vanishing constraint
1 ¶ i ¶ l such that constraint i is active in A1 but has vanished in A2, and the active sets are
otherwise identical,

I2
0− = I1

0− ∪ {i}, I2
+0 = I1

+0 \ {i},
I2

00 = I1
00, I2

0+ = I1
0+, I2

++ = I1
++. 4

Loosely speaking, two convex subsets are adjacent if a vanishing constraint that is active in
one of them has vanished in the other.

6.2 Parametric Quadratic Programs

We have seen in chapter 4 that the real–time iteration scheme, by performing only one SQP
iteration per control feedback, essentially solves a sequence of closely related QPs. Parametric
quadratic programming offers a convenient framework for relating two subsequent QPs to
each other by an affine linear homotopy. We will in the sequel of this chapter see that this
relation can also be exploited to efficiently move between convex subsets of the feasible set of
a QPVC. Our presentation of the most important facts about Parametric Quadratic Programs
(PQPs) is guided by [25], [67], and [215].

6.2.1 Parametric Quadratic Programs

The constrained nonlinear optimization theory of chapter 3 obviously holds for the special
case of a QP. Some results can be strengthened by convexity of the objective and affine lin-
earity of the constraints, as detailed in this section.

Definition 6.5 (Quadratic Program)
The standard form of a Quadratic Program is the problem

min
x∈Rn

1
2
x T Hx + x T g (6.8)

s. t. Ax ¾ b,

where g ∈ Rn is the linear term, H ∈ Rn×n is the symmetric quadratic term or Hessian matrix,
A ∈ Rm×n is the constraint matrix, b ∈ Rm is the constraint right-hand side vector. 4

113

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

Definition 6.6 (Convexity)
A QP is called convex iff the quadratic term H ∈ Rn×n is positive semidefinite, and strictly convex
iff H is positive definite. It is called nonconvex otherwise. 4

If feasible, strictly convex QPs have a unique solution. Local optimality can be determined
by the KKT conditions of theorem 3.1, and global optimality follows from strict convexity.
For convex QPs, this solution still exists but is not necessarily unique. For nonconvex QPs,
the problem of determining whether a feasible point is a globally optimal solution of (6.8)
is NP–hard, cf. [156]. In the following, we restrict our presentation to convex QPs, and to
strictly convex QPs where it is appropriate.

The problem class of PQPs is defined as follows.

Definition 6.7 (Parametric Quadratic Program)
The QP in standard form depending on a parameter p ∈ Rnp

min
x∈Rn

1
2
x T Hx + x T g (p) (6.9)

s. t. Ax ¾ b(p),

with gradient g and constraints right hand side b vector being affine functions of the parameter
p,

g (p)
def
= g0+Gp, b(p)

def
= b0+ Bp,

where G ∈ Rn×np
, B ∈ Rm×np

, is called a Parametric Quadratic Program. 4

For any fixed value of p problem (6.9) becomes a QP in standard form, and the results pre-
sented in the previous section remain valid. The purpose of formulating and solving a PQP
instead of an ordinary QP is to exploit prior knowledge of the QP’s solution in p0 ∈ Rnp

to
infer the solution for another parameter p1 ∈ Rnp

.

Definition 6.8 (Set of Feasible Parameters)
The set P of parameters p ∈ Rnp

feasible for problem (6.9) is defined as

P def
=
¦

p ∈ Rnp �
� F(p) 6= ;

©

⊆ Rnp
(6.10)

where F(p) denotes the feasible set of the QP obtained from (6.9) for the parameter p. 4

Affine linearity and continuity of the homotopy path in p induce convexity and closedness of
the set P of feasible parameters.

Theorem 6.5 (Set of Feasible Parameters)
The set P of feasible parameters is convex and closed. 4

Proof A proof can be found e.g. in [22, 67]. �

There is more structure to the set P, which can be partitioned using the optimal solution’s
active set as membership criterion.

114

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

Definition 6.9 (Critical Region)
Let P be the set of feasible homotopy parameters of a strictly convex PQP. Let x ?(p) denote the
optimal solution of the QP in p ∈ P, and denote by A(x ?(p)) the associated active set. The set

C(A) def
= {p ∈ P | A=A(x ?(p))} ⊆ P (6.11)

is called the critical region of P for the index set A⊆ {1, . . . , m} ⊂ N. 4

The critical regions partition the set of feasible parameters as detailed by the following theo-
rem.

Theorem 6.6 (Partition of the Set of Feasible Parameters)
Let C(Ai) denote the critical regions of a strictly convex PQP for the active sets Ai ∈ P({1, . . . , m}),
1¶ i ¶ 2m. Then the following holds:

1. The closures clC(Ai) are closed convex polyhedra.

2. Their interiors are pairwise disjoint,

∀i 6= j : C(Ai)
◦ ∩ C(A j)

◦ = ;. (6.12)

3. The set P is the union of all closures,

P =
2m
⋃

i=1

clC(Ai). (6.13)

4

Proof A proof can e.g. be found in [67, 153]. �

As a result, the optimal solution x ? and the associated objective function are piecewise affine
linear functions of p as they are affine linear functions of p on every critical region C(Ai) in
P, a result that can be found e.g. in [20, 70, 153, 222].
Restricting the considered class of PQPs to that of vector–valued homotopies is not a limitation
if the destination parameter of the homotopy is known in advance. An appropriate problem
transformation is provided by the following theorem.

Theorem 6.7 (Matrix–Valued Homotopy)
Consider a PQP with Hessian matrix H or constraints matrix A being affine functions of the
homotopy parameter p,

min
x∈Rn

1
2
x T H(p)x + x T g (p) (6.14)

s. t. A(p)x ¾ b(p),

where

H(p)
def
= H0+∆Hp, A(p)

def
= A0+∆Ap,

with ∆H ∈ Rn×n×np
, ∆A ∈ Rm×n×np

. Given an arbitrary but fixed homotopy destination point
p1 ∈ P, problem (6.14) can be reformulated to a PQP in standard form with Hessian H̃

def
= H(p1)

115

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

and constraints matrix Ã
def
= A(p1) by letting

b̃(p)
def
= b0+ Bp +∆A(p1− p)x , (6.15a)

g̃ (p)
def
= g0+Gp −∆H(p1− p)x + (∆A(p1− p))Tλ, (6.15b)

such that the optimal solutions (x ?(p),λ?(p)) in p0 and p1 do not change. 4

Proof The KKT conditions (3.1) of problem (6.14) in p ∈ Rnp
read

(A0+∆Ap)x − (b0+ Bp)¾ 0,

(H0+∆Hp)x + (g0+Gp)− (A0+∆Ap)Tλ= 0,

λ¾ 0,

λT ((A0+∆Ap)x − (b0+ Bp)) = 0.

Defining vectors g̃ (p) and b̃(p) depending on the homotopy parameter p as above, these
conditions may equivalently be written as

(A0+∆Ap1)x − b̃(p)¾ 0,

(H0+∆Hp1)x + g̃ (p)− (A0+∆Ap1)
Tλ= 0,

λ¾ 0,

λT ((A0+∆Ap1)x − b̃(p)) = 0.

which are the KKT conditions of a PQP in standard form with gradient and constraint right
hand side homotopy, but with matrices fixed in the homotopy point p1. �

6.3 A Primal–Dual Parametric Active Set Strategy

Active set methods exploit the notion of an active or working set selecting a subset of linear
independent inequality constraints that are assumed to be satisfied to equality. A sequence of
iterates {x k} towards the solution of the QP is computed by solving for each step the Equality
Constrained Quadratic Program (EQP) obtained from restricting the QP to the current working
set W(x k). This task involves the solution of a system of linear equations and appropriate
techniques to accomplish this are considered in chapter 7. Based on its solution, the working
set is updated by adding or removing a blocking constraint, until a linear independent subset
of the active set belonging to the QP’s optimal solution has been found.

6.3.1 Active Set Methods

Active set approaches usually are evaluated under the following aspects concerning their ef-
ficiency, and in this section we present a parametric primal–dual active set method due to
[25, 67] for the solution of parametric QPs that is notably distinguished from more classical
active set methods in several points.

116

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

Finding a Feasible Point

This usually is the first requirement to start an active set method. Between one third and one
half of the total effort of solving a QP is typically spent for finding an initial feasible guess
[88]. The task of identifying such an initial guess is usually referred to as phase one. Several
different approaches exist, such as the solution of an auxiliary Linear Program (LP) or the
relaxation of constraints in a homotopy, cf. [157].
In SQP methods and in Model Predictive Control (MPC), a series of closely related QPs is
solved. For each QP, the preceding QP’s solution is an obvious candidate for a feasible point,
a warm starting technique. Changes to the constraint matrix A or vector b may render this
candidate infeasible, though, mandating a phase one run. Our active set algorithm is able to
start in any predefined primal point.

Determining the Active Set Exchange

This action is necessary whenever more than one component of the dual vector λ indicates
non–optimality. Different pivoting strategies such as choosing the constraint with the lowest
index (lexical pivoting) or with the most negative value λi are in use. Our algorithm adds and
removes constraints in the order they appear on the homotopy path, thereby avoiding the
need for pivoting strategies.

Ensuring Linear Independence of the Active Set

Whenever a constraint is added to the active set, linear dependence must be verified and
its maintenance may require removing another active constraint. There may in addition be
degenerate points in which the full active set is linearly dependent and thus will not be fully
identified. Repeated addition and removal of constraints may happen with steps of zero length
in between if such a point is reached, a situation that has already been investigated from the
NLP point of view in section 5.2. Ultimately, the method may revisit an active set without
having made significant progress in the primal–dual iterate (x ,λ). The method is said to be
cycling, possibly infinitely.
Depending on the class of QPs treated, the cycling phenomenon is either ignored or treated
by simple heuristics. The EXPAND strategy [85] used by many codes [73, 84, 86] perturbs
constraints in order to ensure progress in the primal–dual variables, but was shown to fail
on specially crafted instances [98]. Our active set method monitors positive progress on the
homotopy path and can easily detect and resolve linear dependence. In the case of ties, cycling
may occur and resolution techniques are presented by [215].

KKT Solution and Matrix Updates

Solving the EQP to find the primal–dual step involves a factorization and backsolve with the
KKT matrix associated with the current active set. Computing this factorization is necessary
after each change of the active set, and usually comes at the cost of O(n3) floating–point
operations where n denotes the number of unknowns in the QP. Exploiting structure and
sparsity is crucial for the efficiency of the active set method. For certain factorizations, it is
possible to compute the factorization only once and recover it in O(n2) operations by using
matrix updates after each active set change. These issues are considered in chapters 7 and 8.

117

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

6.3.2 A Primal–Dual Parametric Active Set Strategy

We now present a parametric active set method due to [25, 67] that computes optimal solu-
tions (x ?(τ),λ?(τ))

def
= (x ?(p(τ)),λ?(p(τ))) of a PQP along a homotopy path between given

parameters p0, p1 ∈ P,

p(τ)
def
= p0+τδp, δp

def
= p1− p0, τ ∈ [0, 1]⊂ R, (6.16)

given the optimal solution (x ?(0),λ?(0)) of the PQP in τ = 0, i.e., for the initial parameter
p0 ∈ Rnp

. Gradient and residual can be reparameterized as functions of the scalar homotopy
parameter τ,

b(τ)
def
= b0+ B(p0+τδp), g (τ)

def
= g0+G(p0+τδp). (6.17)

In addition, the distance to the homotopy end point is written as

δb(τ)
def
= b(1)− b(τ) = (1−τ)Bδp, δg (τ)

def
= g (1)− g (τ) = (1−τ)Gδp. (6.18)

Rationale

The basic idea of the parametric active set strategy to be presented is to move along the
homotopy path from the known solution in τ= 0 to the solution sought in τ= 1 while main-
taining both primal and dual feasibility, i.e., optimality of the iterates. This is accomplished by
computing homotopies

x ?(τ) : [0, 1]→ Rn, (6.19)

λ?(τ) : [0, 1]→ Rm,

W(τ) : [0,1]→ {1, . . . , m} ⊂ N,

that satisfy the KKT theorem 3.1 in every point τ ∈ [0, 1] ⊂ R and start in the known point
(x ?(0),λ?(0)) with the working set W(0) =W(x ?(0)). Regularity of the KKT matrix implies
that x ?(·) and λ?(·) are piecewise affine and that x ?(·) in addition is continuous by theorem
6.6. Hence there exist k ¾ 2 primal–dual points (x i ,λi) ∈ Rn+m which for 2 ¶ i ¶ k− 1 are
located on the common boundaries of pairs (Ci−1,Ci) of critical regions, such that

x ?(τ) = x i + (τ−τi)δx i , x (τ1) = x ?(0), (6.20)

λ?(τ) = λi + (τ−τi)δλi , λ(τ1) = λ
?(0), ∀τ ∈ [τi ,τi+1], 1¶ i ¶ k− 1,

x (τi+1) = x (τi) + (τi+1−τi)δx i .

Figure 6.2 depicts this situation in the space P of feasible homotopy parameters.

A Primal–Dual Iteration

In the first iteration k = 1, the algorithm starts for τ1 = 0 in the given optimal solution
(x 1,λ1) = (x ?(0),λ?(0)). The initial working set W1 is chosen as a linear independent subset
of the active set A(x 1).
In iteration k ¾ 1, the primal–dual step direction (δx ,δλ) is obtained as the solution of the

118

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

p0

τ1 = 0τ2

τ3

τ4

τ5 = 1

p1

C1

C2

C3

C4

Figure 6.2: The piecewise affine homotopy path.

linear system







H AT
Wk

AWk











−δx

δλWk



=





δg (τk)

−δbWk(τk)



 (6.21)

for the point τk ∈ [0, 1] ⊂ R on the homotopy path. Appropriate techniques are investigated
in chapter 7. The maximum step length maintaining primal feasibility is found from

αk
prim

def
=min

¨

bi(τk)− Ai?x

Ai?δx −δbi(τk)

�

�

�

�

i /∈Wk ∧ Ai?δx −δbi(τ
k)< 0

«

. (6.22)

Constraints i satisfying this minimum are called primal blocking constraints. Likewise the max-
imum step maintaining dual feasibility is found from

αk
dual

def
=min

¨

− λ j

δλ j

�

�

�

�

j ∈Wk ∧ δλ j < 0

«

, (6.23)

and constraints j satisfying this minimum are called dual blocking constraints. By choosing

αk def
=min

n

1−τk,αk
prim,αk

dual

o

(6.24)

we move onto the closest blocking constraint on the remainder [τk, 1] of the homotopy path,

x k+1 def
= x k +αkδx , λk+1 def

= λk +αkδλ, τk+1 def
= τk +αk. (6.25)

To find the new working set, we distinguish the following three cases:

1. An inactive constraint i enters the working set if τk+1 = τk+αk
prim: Linear independence

of the new working set can be checked by solving







H AT
Wk

AWk











v

w



=





a

0



 (6.26)

119

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

where aT def
= Ai? is the constraint row i of A entering the working set. If v 6= 0 the new

working set Wk+1 def
=Wk∪{i} is linear independent. Linear dependence of the active set

is indicated by v = 0. If then w ¶ 0, the PQP is infeasible for all τ ¾ τk+1. Otherwise,
by removing the constraint

j = argmin

¨

λk+1
j

w j

�

�

�

�

j ∈Wk ∧ w j > 0

«

(6.27)

from the active set we can restore linear independence of Wk+1 def
= Wk ∪ {i} \ { j}. In

addition, we set

λk+1
i

def
= λk+1

j /w j , λk+1
j

def
= 0, λk+1

Wk

def
= λk+1

Wk −λk+1
i wWk . (6.28)

2. An active constraint j leaves the working set if τk+1 = τk + αk
dual: Boundedness of the

new EQP can be checked by solving







H AT
Wk

AWk











v

w



=





0

−e j



 . (6.29)

If w 6= 0, boundedness is maintained. Semidefiniteness of the Hessian is indicated by
w = 0. If then Av ¾ 0, the PQP step is unbounded for all τ ¾ τk+1. Otherwise, by
adding the constraint

i = argmin

¨

bi(τk+1)− Ai?x
(k+1)

Ai?v

�

�

�

�

i /∈Wk ∧ Ai?v < 0

«

(6.30)

we can restore boundedness of the EQP for the new working set Wk+1 def
=Wk ∪{i} \ { j}.

3. The optimal solution (x ?(1),λ?(1)) = (x k+1,λk+1) at the end of the homotopy path is
found if τk+1 = 1.

If τk+1 < 1 the algorithm continues with k
def
= k+ 1 in the new iterate.

Remark 6.1 (Checks for Boundedness)
In our implementation qpHPSC, the check 2. for boundedness has not been included as the
feasible set F is known to be bounded in advance. Both the process state trajectory and the
control trajectory reside in bounded domains.

6.3.3 Proof of the Algorithm

In this section we give proofs for the individual steps of the described parametric active set
strategy. Variants can be found in [25] and [67].

Theorem 6.8 (Linear Independence Test)
Let the constraint matrix AW be linear independent, and let constraint row aT enter the active

120

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

set. Then the new constraint matrix is linear independent iff





H AT
W

AW









v

w



=





a

0



 (6.31)

has a solution v 6= 0. 4

Proof If AW and aT are linear dependent, the point (0, w) is a solution of (6.31). Uniqueness
implies there exists no further solution with v 6= 0. If on the other hand A and aT are linear
independent, there does not exist a solution to (6.31) with v = 0. By theorem 3.1 a solution
with v 6= 0 must exist. �

Theorem 6.9 (Infeasibility Test)
Let the constraint matrix AW be linear independent, and let constraint row aT enter the active
set. Let (x (τk),λ(τk)) be the optimal solution in a point τk ∈ [0,1]⊂ R. If (6.31) has a solution
v = 0, w ¶ 0, the PQP is infeasible for all τ > τk. 4

Proof Assume some x ∈ Rn to satisfy AW x ¾ bW(τ) for some τ > τk. Then the relation

aT x ¶ w T bW(τ) (6.32)

holds by linear dependence of aT on AW . On the other hand, we have infeasibility beyond τk

of the constraint j to be added,

b j(τ)> aT (x +τδx) = w T AW(x +τδx) = w T bW(τ) ∀τ ∈ (τk, 1]. (6.33)

Since x ∈ Rn was chosen feasible but otherwise arbitrary, constraint j remains infeasible for
τ > τk as long as all constraints in W remain feasible. By continuity of the piecewise affine
solution and by convexity of the set P of feasible homotopy parameters, infeasibility of the
PQP for all τ > τk follows. �

Theorem 6.10 (Restoring Linear Independence)
Let the constraint matrix AW be linear independent, and let constraint row aT enter the active
set. Let (x (τk),λ(τk)) be the optimal solution in τk ∈ [0,1] ⊂ R. Let (6.31) have a solution
v = 0 and w with w j > 0 for some j ∈ {1, . . . , m}. Then the matrix AŴ with Ŵ def

=W \{ j} where

j
def
= argmin

(

λ j(τk)

w j

�

�

�

�

j ∈W : w j > 0

)

(6.34)

is linear independent from aT . 4

Proof The stationarity condition of theorem 3.1 holds for (x (τk),λ(τk)),

Hx (τk) + g (τk) = AT
Wλ(τ

k), (6.35)

Multiplying the linear dependence relation by some µ¾ 0 and subtracting from (6.35) yields

Hx (τk) + g (τk) = µa+ AT
W(λ(τ

k)−µw
︸ ︷︷ ︸

def
=λ̂

). (6.36)

121

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

We find that the coefficients (µ, λ̂) are also dual feasible solutions if λ̂ ¾ 0. The largest µ
satisfying this requirement is found as

µ
def
=min

(

λ j(τk)

w j

�

�

�

�

∀ j ∈W : w j > 0

)

. (6.37)

As the dual of the minimizing constraint j is reduced to zero, λ j = 0, it can be removed from

the active set W. For the active set Ŵ def
=W \ { j} the constraint row aT to be added is linear

independent from AŴ , as w j > 0 holds. �

Theorem 6.11 (Continuation after Restored Linear Independence)
Let the assumptions of theorem 6.10 be satisfied and let the primal blocking constraint in τprim

be unique. Then there exists τ2 ∈ (τprim, 1] such that the constraint j removed from the active
set remains inactive for all τ ∈ (τprim,τ2]. 4

Proof The step δx for the segment [τk,τprim] of the homotopy path [0, 1] satisfies

AW x (τ) = bW(τ) ∀τ ∈ [τk, 1],

Ai?x (τ)< bi(τ) ∀τ ∈ [τprim, 1],

such that by linear dependence of Ai? on AW

w T
WbW(τ)< bi(τ) ∀τ ∈ [τprim, 1]. (6.38)

The next segment [τprim,τ2] for the working set W̃ def
=W ∪ {i} \ { j} is chosen such that

AW̃ x (τ) = bW̃(τ) ∀τ ∈ [τprim,τ2].

Again by linear dependence we have for the working set Ŵ def
=W \ { j}

b j(τ) = w T
ŴbŴ(τ) +w jA j?x (τ) ∀τ ∈ [τprim,τ2], (6.39)

By combining (6.38) and (6.39) and noting w j > 0 by theorem 6.10 we find

w j b j(τ)< w jA j?x (τ) ∀τ ∈ [τprim,τ2],

which shows that the removed constraint j remains feasible and strictly inactive. �

Remark 6.2 (Ties)
If the primal blocking constraint is not unique, i.e., more than one constraint is hit in the
same point τprim > τ on the homotopy path, the PQP is said to have primal ties in τprim.
In this situation, additional computational effort is required to identify a new active set that
permits a step of nonzero length to be made before the removed constraint becomes active
again.

For typical MPC problems computational evidence suggests that ties frequently can be cir-
cumvented by choice of suitable starting points and by sorting heuristics for the constraints in
question. We refer to [215] for analytical methods to resolve ties in PQPs and do not further

122

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

consider this situation. In our code qpHPSC we currently detect ties but do no take special
action to resolve them, and have so far not experienced any numerical problems.

Theorem 6.12 (Finite Termination)
If the PQP has no ties, the parametric quadratic active set algorithm terminates after finitely
many steps. 4

Proof There exist at most 2m critical regions associated with the active sets Ai , 1 ¶ i ¶ 2m,
and by theorem 6.6 every point τ ∈ [0,1] belongs to at most two critical regions as no primal
ties exist. By theorem 6.11 a step of positive length in τ on the homotopy path is made after
every active set change involving the addition of a primal blocking constraint to the current
active set. Thus after at most 2m active set changes, the end point τ= 1 of the homotopy path
is reached. �

In practice, exponential run time of the parametric active set method is observed on specially
crafted problem instances only.

6.3.4 Finding a Feasible Initializer

A Phase One Procedure

The described algorithm assumes that the optimal solution (x ?(0),λ?(0)) in the start τ= 0 of
the homotopy path be known. This allows for highly efficient hot–starting of the QP solution
if the solution of a closely related QP has already been computed for some purpose. If not, the
following auxiliary QP

min
x∈Rn

1
2
x T Hx (6.40)

s. t. Ax ¾ 0,

with optimal solution (x ?,λ?) = (0,0) can be used together with the homotopy

g (τ)
def
= τg (p1),

b(τ)
def
= τb(p1),

from the auxiliary QP (6.40) to the one whose solution is sought. This procedure effectively
describes a phase one type approach for our PQP algorithm that achieves feasibility simulta-
neously with optimality in the end point τ= 1 of the homotopy.

Starting in an Arbitrary Guess

Theorem 6.7 actually hints at a more general initialization and hot starting approach that can
be realized in the framework of our PQP method. Given an primal–dual point (x̂ , λ̂) ∈ Rn+m

that satisfies only dual feasibility and complementary slackness, e.g.

λ̂¾ 0, λT (Ax̂ − b) = 0, (6.41)

123

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

but is otherwise chosen arbitrarily, the following modification of the gradient and residual

b̂(τ) = b(τ)− A(x − x̂), (6.42)

ĝ (τ) = g (τ) +H(x − x̂)− AT (λ− λ̂)

makes (x̂ , λ̂) the optimal solution of the modified QP in τ. This is easily verified by checking
theorem 3.1. The working set W(x̂) needs to be chosen appropriately. The modification (6.42)
can be applied before starting the PQP algorithm to the purpose of using (x̂ , λ̂) as an initial
guess of the PQP’s solution in τ= 1. Moreover, it can in principle be applied to the QP’s right
hand side in any point τ ∈ [0, 1) of the homotopy path during the execution of the described
PQP algorithm. We will make extensive use of this property in section 6.4.

6.3.5 Parametric Quadratic Programming for SQP Methods

Linearizations

In an SQP method in iteration k ¾ 1 the homotopy accomplishes the transition from the
previous SQP iterate (x k,λk) found from the known optimal solution of the PQP in τ = 0 to
the next SQP iterate (x k+1,λk+1) found from the optimal solution in τ= 1 to be computed.
The Hessian H and constraints matrix A will in general differ in τ= 0 and τ= 1 as they have
been updated or recomputed by a linearization in the k-th iterate. By virtue of theorem 6.7
the PQP can be reformulated to use the new matrix data only.

Bounds

In SQP methods, the quadratic subproblem usually is set up to deliver the primal step x ?QP =
δx k

SQP to be added to the SQP algorithm’s current iterate x k
SQP. This is convenient for globaliza-

tion methods that potentially shrink the SQP step length but maintain the direction. Roundoff
errors that have accumulated during the QP’s solution may lead to tiny nonzero residuals
bi − δxk

i for active simple bounds i. If a parametric active set method is used to infer the
quadratic subproblem’s solution from the known one of the previous SQP iteration’s quadratic
subproblem, one observes that these errors disturb the next right hand side homotopy step
computed as δb = b(τ1)− (x k+1 − b(τ0)), leading to “chattering” of the bounds. The deter-
mination of the primal step length τprim (6.22) on the homotopy path is then prone to flipping
signs in the denominator, making the active set method numerically unstable. This leads us to
the following remark.

Remark 6.3 (Setup of the PQP Subproblem)
If active set PQP methods are used to solve the QP subproblems in an SQP method, these
subproblems should be set up to deliver the new iterate x ?QP = x k+1

SQP instead.

In this case, the right hand side homotopy step for the simple bounds need not be computed,
as δb(τ) = b(τ1)− b(τ0) = 0.

6.4 Parametric Quadratic Programming for Nonconvex Problems

We develop an extension of the presented parametric active set strategy to the case of QPVCs.
We restrict our discussion to the following special class of QPVC.

124

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

Definition 6.10 (QPVC with Constraints Vanishing on a Bound)
The restricted problem class of a QP with constraints vanishing on a bound is given by

min
x∈Rn

1
2
x T Hx + x T g (6.43)

s. t. 0¾ xξi
(bi − Ai?x), 1¶ i ¶ l,

xξ ¾ 0,

where ξ ∈ {1, . . . , n}l ⊂ N is a fixed index vector selecting the controlling component xξi
of the

unknown x ∈ Rn for each of the vanishing constraints 1¶ i ¶ l. 4

In problem (6.43), any of the l constraints Ax−b ¾ 0 vanishes if the associated component of
the unknown x is active at its lower bound x = 0. Standard linear affine constraints are omit-
ted from problem (6.43) for clarity of exposition. They do not affect the ensuing presentation
of the nonconvex PQP strategy as long as the feasible set of (6.43) remains connected if it is
not empty. Note that the consideration of (6.43) is not a true restriction of the applicability
of our methods, as the following slack reformulation can be used to transform (6.6) to the
restricted form.

Definition 6.11 (Slack Reformulation of QPVC)
The slack reformulation of a QPVC to the restricted form (6.43) is given by

min
x ,s

1
2
x T Hx + x T g (6.44)

s. t. C x − s ¾ d,

−C x + s ¾−d,

0¾ si(bi − Ai?x), 1¶ i ¶ l,

s ¾ 0,

where s ∈ Rl is a vector of slack variables. 4

Note that (6.44) still has a strictly convex objective if H is positive definite, as the slack is
never a free unknown. In the case of QPVCs arising from outer convexification and relaxation
of constraints direct depending on an integer control, s in (6.44) and xξ in (6.43) take the
role of the relaxed convex multipliers α of chapter 2.

6.4.1 Nonconvex Primal Strategy

We are concerned with devising a primal active set exchange strategy for the vanishing con-
straints of QPVC (6.43).

Primal Blockings

The feasible set F of (6.43) is nonconvex as detailed in section 5.4, and can be partitioned
in at most 2l convex subsets Ci , each one associated with unique subset Vi ∈ P({1, . . . , l}) of
vanishing constraints that are feasible and VC

i of vanishing constraints that have vanished,

Ci
def
= {x ∈ Rn | (i ∈ Vi ∧ Ai?x ¾ bi) ∨ (i ∈ VC

i ∧ xξi
= 0)}. (6.45)

125

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

An exhaustive search of these convex subsets by solving up to 2l smaller standard QPs is
prohibitive and would indeed lead our efforts in applying outer convexification and relaxation
to the MIOCP ad absurdum, as has already been noticed in section 5.4.
We instead modify the active set exchange rule (6.22) for primal blocking constraints and
adapt it to the nonconvex shape of the feasible set as follows,

αk
prim

def
=min

¨

bi(τk)− Ai?x

Ai?δx −δbi(τk)

�

�

�

�

i /∈ (Wk ∪ I0) ∧ (Ai?δx −δbi(τ
k)< 0)

«

. (6.46)

Using the primal test (6.46), a vanishing constraint i becomes active only if it is primally
blocking and the associated control variable xξi

is nonzero, i.e., the constraint i ∈ I+ is not
permitted to vanish beyond its bound. If the controlling variable is zero, i.e., i ∈ I0, the van-
ishing constraint is free to vanish and reappear as indicated by the unknowns x . In addition,
as soon as its associated controlling variable hits its simple lower bound any active vanish-
ing constraint also vanishes and is removed from the active set Wk. This ensures I00 = ;
after all primal blockings, i.e., no bound or constraint ever enters the critical subset I00 of
the active set. Hence these two kinds of move between adjacent convex subsets is naturally
accomplished by the primal exchange strategy.

Primal Continuation after Infeasibility

The described strategy allows to move between the convex subsets of the feasible set as long
as the piecewise affine homotopy path does not cross the boundary of the nonconvex feasible
set F into infeasibility before the end τ = 1 of the homotopy has been reached. In the latter
case, infeasibility of the PQP by theorem 6.9 is detected by the parametric active set method
of section 6.3. For the case of a QPVC this means that for τ= 1 no strongly stationary point is
located in the current convex critical region. Two cases can be distinguished here.

1. The blocking part of the critical region’s boundary is defined by an active regular con-
straint. In this case the QPVC actually is infeasible if no vanishing constraint is found in
I+0.

2. The blocking constraint is a vanishing constraint becoming active and entering the in-
dex set I+0. A strongly stationary point could possibly be found if the constraint were
allowed to vanish.

In both cases, let A and X denote the active sets for the constraints and simple bounds asso-
ciated with this critical region, and let j ∈ I+0 ⊆A denote an active vanishing constraint. The
solution may be continued in the adjacent critical region associated with the active set A\{ j}
for the constraints and X ∪ {i}, i = ξ j for the simple bounds on the unknowns. The control-
ling variable x j is set to zero. In this critical region, the active vanishing constraint blocking
the progress of the homotopy has vanished. Maintenance of linear independence may require
removal of an additional constraint from A or X .
This procedure effectively describes a primal continuation of the homotopy in a critical region
that does not share a common boundary with the one the homotopy path terminated in. This
involves a modification of the primal point x , the active set, and consequentially also the dual
point. Numerical techniques to realize this continuation in the framework of the parametric
active set method of section 6.3 are developed in the sequel of this section.

126

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

6.4.2 Nonconvex Dual Strategy

We are concerned with devising a dual active set exchange strategy for the vanishing con-
straints of QPVC (6.43). In accordance with the notation of chapter 5 we denote the MPVC
multipliers of the vanishing constraints Ai?x ¾ b by µg and those of the controlling variables’
simple bounds xξ ¾ 0 by µh.

Dual Blockings

By theorem 6.3, for a QPVC strong stationarity is equivalent to local optimality. In order to
detect dual blocking constraints whose removal allows the homotopy path to make progress
towards optimality, the dual blocking constraints rule (6.23) is modified according to the
optimal multiplier signs known from the notion of strong MPVC stationarity introduced by
definition 5.11, which is repeated here for convenience.

Definition 6.12 (Strong Stationarity)
A feasible point x ∈ Rn of an MPVC is called strongly stationary if it holds that

Λx (x ,µ) = 0, (6.47)

µh,I0+
¾ 0, µh,I00

¾ 0, µh,I+ = 0,

µg,I+0
¾ 0, µg,I++ = 0, µg,I0

= 0. 4

As I00 = ; is guaranteed by the primal strategy, the only index set relevant for the dual
exchange of vanishing constraints is the set I0− of vanishing constraints that are infeasible and
were permitted to vanish as the associated controlling variable is zero. The following QPVC
dual active set exchange rule for simple bounds prevents the affected controlling variables
from leaving their lower bounds.

τdual def
=min

¨

− λ j

δλ j

�

�

�

�

j ∈Wk \ I0− ∧ δλ j < 0

«

. (6.48)

Dual Continuation

An additional modification to the dual exchange strategy is required in two places, namely
whenever moving from one of the two convex subsets of a scalar vanishing constraint’s non-
convex feasible set to the other one. As we will see in the next section, this modification has
a close connection to the question of global optimality of the MPVC strongly stationary point
identified by this QPVC active set strategy.

1. MPVC strong stationarity requires µg,i = 0 for an active vanishing constraint i ∈ I+0

entering I0− via I00, i.e., if the controlling variable was free and is about to enter its
lower bound, causing the vanishing constraint i to actually vanish beyond its bound.
Then, if we had µg,i > 0 in I+0, the homotopy path shows a dual discontinuity which
can be treated as shown in the sequel of this section.

2. Likewise µh,i ¾ 0 is required for a controlling variable active at its lower bound in I0−
entering I0+ via I00, i.e., if the associated vanishing constraint reappears. We find that
a dual discontinuity of the homotopy path occurs if we had µh,i < 0 in I0−.

127

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

The resulting active set strategy is depicted in figure 6.3 as a state machine. Nodes show
the index sets, subsets of the active set, and arcs show the primal and dual conditions for
transition of a simple bound or a vanishing constraint from one index set to the other.

I0+ I++

I00 I+0

I0−

gi(x)ց 0 µg, j < 0

µh, j < 0

x i ց 0

µh, j < 0

xξi
ց 0 ∧ µg,i = 0

gi(x)ց 0 µg, j < 0

µg, j > 0 gi(x)ր 0 ∧ µh,ξi
¾ 0

Figure 6.3: Active set exchange rules for MPVC strong stationarity. Constraints never remain in the
state I00 which is shown for clarity only. Dotted lines indicate convex feasible subsets.

6.4.3 A Heuristic for Global Optimality

A sufficient condition for global optimality of a QPVCs due to [105] can be established. As a
consequence, the QPVC subproblems generated by our nonconvex SQP method can actually
be solved to global optimality, as is the case for standard convex QP subproblems with positive
semidefinite Hessian matrices. The sequence of SQP iterates thus actually inherits the local
convergence properties of the corresponding standard Lagrangian SQP method.

Theorem 6.13 (Global Optimality Conditions)
Let the objective function f be convex and let g , h be affine linear in problem (5.9). Further, let
x ? be a strongly stationary point of problem (5.9). Then if µh,I0− ¾ 0 and µg,I+0

= 0, it holds
that x ? is a globally optimal point of problem (5.9). 4

Proof A proof can be found in [105]. �

Theorem 6.13 indicates that the active set strategy for MPVC strong stationarity presented
in the previous section can potentially be improved further. Note that the global optimality
conditions of the above theorem correspond to the two conditions for a dual discontinuity
of the homotopy path. In detail, a dual discontinuity arises if and only if the affected active
vanishing constraint or simple bound has an MPVC multiplier in violation of the sufficient
conditions for global optimality.
This observation leads to the following modification of the primal active set strategy. When-
ever a vanishing constraint Ai?x ¾ bi becomes active and is about to enter the index set I+0

128

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

because its controlling variable xξi
is nonzero, the associated MPVC multiplier µg,i would vi-

olate the sufficient global optimality conditions. We then choose to immediately continue the
solution in an adjacent convex critical region of the feasible set in which the primal blocking
constraint has vanished, if such a region exists. This can be realized in the same way as primal
continuation after infeasibility has been realized in the previous section. The resulting active
set strategy is depicted in figure 6.4 again as a state machine. Due to our global optimality
heuristic, the arc from I+0 to I0− has no counterpart in the reverse direction.

I0+ I++

I00 I+0

I0−

gi(x)ց 0 µg, j < 0

µh, j < 0

x i ց 0

gi(x)ց 0 µg, j < 0

µg, j > 0
gi(x)ր 0

∧ µh,ξi
¾ 0

continue in xξi
= 0

Figure 6.4: Active set exchange rules for MPVC strong stationarity with heuristic for global optimality.
Constraints never remain in the states I00 and I+0 which are shown for clarity only. Due
to our global optimality heuristic, the arc from I+0 to I0− has no counterpart arc in the
reverse direction.

Resolution of Degeneracy

Forcing xξi
= 0 and adding this simple lower bound to the active set may cause linear depen-

dence of the active constraints. A first attempt at resolving this is to use the linear dependence
check and resolution procedure of section 6.3.

In the case of SOS1 constraints, however, it is possible that the only active constraints poten-
tially resolving the degeneracy are the simple lower bounds on variables xξ j

, j 6= i, controlling
vanishing constraints, and it is further possible that all vanishing constraints j 6= i actually
have vanished. In this situation, one of these simple bounds has to be removed from the ac-
tive set, and the associated vanishing constraint has to reappear, i.e., to be made feasible by
continuing in an adjacent critical region after a primal discontinuity. The criterion of theo-
rem 6.10 does not provide information on which simple bound to remove from the active set,
though, as there is no signedness requirement on MPVC strong stationarity of the multipliers
µh in I0−. In this situation, problem dependent resolution heuristics are required to step in
and indicate a vanishing constraint resolving the degeneracy.

129

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

1. Based on the sufficient optimality criterion a simple bound with multiplier µh,i < 0 can
be chosen.

2. Another possibility is to choose the vanishing constraint j 6= i that would show the
smallest violation of feasibility if xξ j

were nonzero, and thus leads to the smallest primal
discontinuity,

j
def
= argmin{b j − A j?x | j ∈ I0−}. (6.49)

3. The move to an adjacent convex feasible region could be rejected and the blocking van-
ishing constraint enters the set I+0 in violation of the sufficient optimality conditions.

6.4.4 Continuations for a Parametric Active Set Method

The primal and dual strategies of the previous section require the parametric active set method
to cope with both primal and dual discontinuities of the homotopy path. As mentioned before,
these can be regarded as restarts of the method in a different convex critical section of the
nonconvex feasible set that is adjacent to the previous one in the sense of definition 6.4.

We now present two numerical techniques that make these continuations possible in a highly
efficient way. The underlying idea is that any arbitrary primal–dual point can serve as an ini-
tializer for the parametric active set method in τ= 0 as long as it satisfies all KKT conditions.
The techniques to be presented guarantee this by modifying the right hand side homotopy
from the initial gradient and right hand side g (0), b(0) to the final one g (1), b(1) to make
sure that all KKT conditions in the new starting point are satisfied.

Primal Continuation

The primal continuation, used a) if infeasibility of the QPVC in the current convex subset is
diagnosed, and b) in the heuristic for global optimality if a vanishing constraint is primally
blocking, requires a primal variable xξi

to jump to zero. The feasibility gap after letting xξi
= 0

can be computed as

b̂ j
def
=







max{b j − A j?x , 0} if xξ j
> 0

0 otherwise.
1¶ j ¶ l, (6.50)

and the new initial right hand side is

b(0)
def
= b(τprimal)− b̂. (6.51)

Setting the MPVC multiplier µh,ξi
of the simple bound entering the active set as xξi

= 0 to
some positive value bounded away from zero has proven useful in order to avoid primal ties
in the ensuing active set iterations. The introduced stationarity defect is easily covered by
modifying the gradient g (0) analogously to the following dual continuation.

130

A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D
�

� CHAPTER 6

Dual Continuation

The dual continuation requires either of the MPVC multipliers µg,i or µh,ξi
to jump to zero.

The stationarity gap after letting e.g. µg,i = 0 can be computed as

ĝ
def
= Hx + g (τdual)− ATµg−µh (6.52)

and the new initial gradient is

g (0)
def
= g (τdual)− ĝ (6.53)

satisfying

0
def
= Hx + g (0)− ATµg−µh. (6.54)

Dual feasibility is always maintained even after a dual discontinuity.

The computational effort of continuing in an adjacent critical section is thus limited to the
computation of at most three matrix–vector products and in the case of the primal continua-
tion a recomputation or an update of the KKT system’s factorization.

6.4.5 Active Set Exchange Rules Summary

In this section, we collect the exchange rules for the parametric active set strategy solving a
QPVC.

blocking index sets action

kind type from to

primal bound I++ I0+ conventional

I+0 I00 move to I0−, dual discontinuity if µg,i 6= 0

happens if global heuristic not used

primal vanishing I++ I+0 if global heuristic used: continue in I0−
constraint otherwise: conventional

I0+ I00 move to I0−
I0− I00 move to I0+, dual discontinuity if µh,i < 0

dual bound I0+ I++ conventional

I00 I+0 never happens; no constraint ever is in I00

I0− — never happens due to dual step decision

dual vanishing I+0 I++ conventional; happens if global heuristic is not used

constraint I00 I0+ never happens; no constraint ever is in I00

Table 6.1: Possible active set exchanges in the parametric active set strategy for QPVCs.

131

CHAPTER 6
�

� A N O N C O N V E X PA R A M E T R I C S Q P M E T H O D

6.5 Summary

In this chapter we developed a parametric nonconvex SQP method for the efficient numerical
solution of discretized MIOCPs with vanishing constraints arising from outer convexification
of constraints directly depending on a binary or integer control parameter. This method re-
lies on solving the generated nonconvex subproblems to local optimality on a convex subset
of their feasible sets, and continuing resp. verifying the solution in all adjacent convex sub-
sets. For MIOCPs the local subproblems generated by our SQP method are QPs with convex
objective and affine linear vanishing constraints (QPVCs). Though these are truly nonconvex
problems, KKT points of QPVCs are locally optimal solutions that can be found by an appro-
priate active set method. We have introduced a primal–dual parametric active set method
that efficiently computes solutions to a sequence of convex QPs. This method can be used in
a natural way to find locally optimal solutions of a sequence of QPVCs restricted to a convex
subset of the nonconvex feasible set. To this end, the shape of the feasible set and the MPVC
strong stationarity conditions are accounted for in the definition of the closest primal and
dual blocking constraints. Using the adjacency relation for QPVCs we developed a continu-
ation method that allows to efficiently move between adjacent convex subsets. This enables
the parametric active set strategy to find a locally optimal solution that can be repetitively
verified or improved in all adjacent convex feasible subsets. We further described a heuristic
for finding a globally optimal point, based on a sufficient condition for global optimality of
convex MPVC. This heuristic relies on problem instance specific information in one particular
case arising if moving from one convex feasible subset to another adjacent one causes linear
dependence of the active set.

132

7 Linear Algebra for Block Structured QPs

In this chapter we survey linear algebra techniques for solving Quadratic Programs (QPs)
and Quadratic Programs with Vanishing Constraints (QPVCs) with block structure due to di-
rect multiple shooting. After a review of existing techniques, we present a novel algorithmic
approach tailored to QPs with many control parameters due to the application of outer con-
vexification. Our approach consists of a block structured factorization of the KARUSH–KUHN–
TUCKER (KKT) systems that completes in O(mn3) operations without generating any fill–in. It
is derived from a combined null–space range–space method due to [201]. All operations on
the KKT factorization required for the parametric active set algorithm for QPVC of chapter 6
are presented in detail, and efficient implementations are discussed. We investigate the run
time complexity of this algorithm, the number of floating–point operations required for the
individual steps of the presented factorization and backsolve, and give details on the memory
requirements.
In chapter 8, the presented KKT factorization is further improved to a runtime complexity of
O(mn2) for all but the first iteration of the active set method.

7.1 Block Structure

In this section we have a closer look at the block structure of the QPs stemming from the direct
multiple shooting discretization of the Optimal Control Problem (OCP), given in the following
definition.
Definition 7.1 (Direct Multiple Shooting Quadratic Program)
The quadratic program obtained from a local quadratic model of the Lagrangian of the direct
multiple shooting Nonlinear Program (NLP) (1.28) is

min
v

m
∑

i=0

�

1
2
v T

i Hi vi + v T
i gi

�

(7.1)

s. t. ri ¶ Ri vi , 0¶ i ¶ m,

hi = Gi vi + Pi+1vi+1, 0¶ i ¶ m− 1.

Herein vi ∈ Rnv
i denote the m vectors of unknowns. The Hessian blocks are denotes by Hi ∈ Rnv

i×nv
i

and gradients by gi ∈ Rnv
i . Linearized point constraints are denoted by matrices Ri ∈ Rnr

i×nv
i

and right hand side vectors ri ∈ Rnr
i . Linearized matching conditions are written using sensitivity

matrices Gi ∈ Rnh×nv
i and coupling matrices Pi ∈ Rnh×nv

i+1 with right hand side vectors hi ∈ Rnh
i .4

In a direct multiple shooting discretization we will usually have identical dimensions nv
i =

nx+ nq for all nodes 0¶ i ¶ m and assume one matching condition per Ordinary Differential
Equation (ODE) state, i.e., nh

i = nx.
Two different structure exploiting approaches at solving QP (7.1) can be distinguished. Con-
densing methods apply variants of Gaussian elimination to the block diagonal Hessian H and

133

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

the block bi–diagonal constraints matrix with entries from R, G, and P to obtain a dense but
considerably smaller QP. This is then solved with a structure–free active set method. Condens-
ing methods for direct multiple shooting are presented in section 7.2.1.
One may also conceive active set methods on the large QP, wherein the block structure is ex-
ploited by the KKT system factorization in every iteration of the active set loop. The challenge
here lies with the varying size and structure of the KKT matrix over the course of active set
changes. For a given active set A(v), the QP (7.1) is reduced to a purely equality constrained
QP as follows.

Definition 7.2 (Direct Multiple Shooting Equality Constrained Quadratic Program)
The Equality Constrained Quadratic Program (EQP) obtained from the direct multiple shooting
QP (7.1) for a given active set A(v) (cf. definition 3.3) is

min
v

m
∑

i=0

�

1
2
v T

i Hi vi + v T
i gi

�

(7.2)

s. t. rA
i = RA

i vi , 0¶ i ¶ m,

hi = Gi vi + Pi+1vi+1, 0¶ i ¶ m− 1.

The notation RA
i and rA

i denotes the restriction of Ri and ri on the rows resp. elements of the
constraints in the active set A(v). 4

The KKT system associated with this EQP according to theorem 3.1 is given in the following
definition.

Definition 7.3 (KKT System of the Direct Multiple Shooting EQP)
For a given active set A(v) the KKT system of problem (7.2) reads





































H0 RA
0

T GT
0

RA
0

G0 P1

PT
1 H1 RA

1
T GT

1

RA
1

. . .

G1
. . . Pm

PT
m Hm RA

m
T

RA
m









































































−v0

µA0

λ0

−v1

µA1
...

−vm

µAm





































=





































g0

−rA
0

−h0

g1

−rA
1

...

gm

−rA
m





































(7.3)

with Lagrange multipliers µAi ∈ RnrA
i of the linearized decoupled point constraints and λi ∈ Rnx

of the linearized matching conditions. 4

The performance of active set methods crucially depends on the ability to efficiently exploit
simple bounds on the unknown v . In particular when treating Mixed–Integer Optimal Con-
trol Problems (MIOCPs) by outer convexification, many relaxed binary control parameters in
resulting NLPs and QP will be active at their lower or upper bound. Active simple bounds
correspond to components vi that can immediately be eliminated from the KKT system (7.3).
This reduces the computational effort of the ensuing factorization. To gain additional insight

134

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

into the structure of simple bounds, we define the multiple shooting QP with simple bounds
on v and derive the more detailed KKT system.

Definition 7.4 (Direct Multiple Shooting QP with Simple Bounds)
The quadratic program obtained from a local quadratic model of the Lagrangian of the direct
multiple shooting NLP (1.28) is

min
v

m
∑

i=0

�

1
2
v T

i Hi vi + v T
i gi

�

(7.4)

s. t. li ¶ vi ¶ ui , 0¶ i ¶ m,

ri ¶ Ri vi , 0¶ i ¶ m,

hi = Gi vi + Pi+1vi+1, 0¶ i ¶ m− 1. 4

In the following, the active set A(v) refers to the active linear inequality constraints only. We
introduce the active set X (v) of active simple bounds on the unknown v by straightforward
extension of definition 3.3, and denote by F(v) its complement set in the index set of all
simple bounds.

Definition 7.5 (Active Simple Bound, Active Set of Simple Bounds)
Let x ∈ Rn be a feasible point of problem (7.4). A simple bound on v i j , 0 ¶ i ¶ m, 1 ¶ j ¶ nv

i is
called active if v i j = li j or v i j = ui j holds. It is called inactive otherwise. The set of indices of all
active simple bounds

X (v) def
= {(i, j) | v i j = li j ∨ v i j = ui j} ⊂ N0×N (7.5)

is called the active set of the simple bounds associated with v . We denote by F(v) the comple-
ment of X (v) in the set {(i, j) | 0¶ i ¶ m, 1¶ j ¶ nv

i }. 4

Definition 7.6 (Direct Multiple Shooting EQP with Simple Bounds)
The EQP obtained from the direct multiple shooting QP (7.4) for a given active set A(v) is

min
v

m
∑

i=0

�

1
2
v T

i Hi vi + v T
i gi

�

(7.6)

s. t. bi = IXi vi , 0¶ i ¶ m,

ri = RA
i vi , 0¶ i ¶ m,

hi = Gi vi + Pi+1vi+1, 0¶ i ¶ m− 1.

The matrices IXi contain the subsets of rows of the identity matrix I belonging to active simple
bounds. The vectors bi contain an element–wise combination of the entries of the vectors li and
ui as indicated by the current set X of fixed unknowns, i.e., active simple bounds. 4

135

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

Definition 7.7 (KKT System of the Direct Multiple Shooting EQP with Simple Bounds)
For a given active set A(v) the KKT system of problem (7.6) reads







































































HFF
0 HFX

0 RAF
0

T G?F0
T

HXF
0 HXX

0 IXX
0

T RAX
0

T G?X0
T

IXX
0

RAF
0 RAX

0

G?F0 G?X0 P?F1 P?X1

P?F1
T HFF

1 HFX
1 RAF

1
T G?F1

T

P?X1
T HXF

1 HXX
1 IXX

1
T RAX

1
T G?X1

T

IXX
1

RAF
1 RAX

1

. . .

G?F1 G?X1

. . . P?Fm P?Xm

P?Fm
T HFF

m HFX
m RAF

m
T

P?Xm
T HXF

m HXX
m IXX

m
T RAX

m
T

IXX
m

RAF
m RAX

m













































































































































−vF
0

−vX
0

νX
0

µA
0

λ0

−vF
1

−vX
1

νX
1

µA
1

...

−vF
m

−vX
m

νX
m

µA
m







































































=







































































gF
0

gX
0

−bX
0

−rA
0

−h0

gF
1

gX
1

−bX
1

−rA
1

...

gF
m

gX
m

−bX
m

−rA
m







































































(7.7)

Here, νX
i ∈ RnX

are the Lagrange multipliers of the active simple bounds. The set superscripts
A, F , and X denote the subsets of rows (first) and columns (second) of the matrices, while an
asterisk (?) indicates that all rows are chosen. 4

From system (7.7) we can already see that vX
i can be easily determined. Possible factorizations

of the remainder of system (7.7) should exploit its symmetry and block banded structure, and
generate as little fill–in as possible outside the band of block matrices.

7.2 Survey of Existing Methods

In this section we survey existing structure exploiting methods for either the preprocessing
of QP (7.1) or for the factorization of the EQP’s KKT system (7.3). We present condensing
methods and RICCATI recursion as block structured techniques, and generic sparse approaches
such as LBLT and LU factorizations. All presented methods will be evaluated with regard to
their runtime complexity in terms of the number of control parameters nq and the length m of
the discretization grid. Both may be large in mixed–integer Model Predictive Control (MPC)
problems. Emphasis is put on the applicability of the structure exploitation in conjunction
with active set methods as discussed in chapters 4 and 6. Where available, we mention repre-
sentative implementations of the presented techniques.

7.2.1 Condensing

Condensing algorithms for direct multiple shooting have been first described by [34, 36, 161,
166] and later extended in e.g. [133, 190]. A detailed description can be found in [131]. We
start by reordering the unknown

v = (s0,q0, . . . , sm−1,qm−1, sm)

136

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

of QP (7.1) to separate the additionally introduced node values v2 from the single shooting
values v1 as follows,

v1
def
= (s0,q0, . . . ,qm−1), (7.8a)

v2
def
= (s1, . . . , sm). (7.8b)

Assuming classical multiple shooting coupling matrices Pi = [Ps
i Pq

i] = [−I 0] this yields for
QP (7.1) the reordered constraints matrix











































Gs
0 Gq

0 −I

Gq
1 Gs

1 −I
.

Gq
m−1 Gs

m−1 −I

Rs
0 Rq

0

Rq
1 Rs

1
.

Rq
m−1 Rs

m−1

Rs
m











































. (7.9)

Here, superscripts s and q denote the subset of columns of the matrices belonging to the states
and controls respectively. We may now use the negative identity matrix blocks of the match-
ing condition equalities as pivots to formally eliminate the additionally introduced multiple
shooting state values v2 from system (7.9), analogous to Gaussian elimination. From this
elimination procedure the dense constraint matrix





G −I

R





def
=







































Gs
0 Gq

0 −I

Gs
1Gs

0 Gs
1Gq

0 Gq
1 −I

...
...

...
.

Γm−1
0 Γm−1

1 Gq
0 Γm−1

2 Gq
1 · · · Gq

m−1 −I

Rs
0 Rq

0

Rs
1Gs

0 Rs
1Gq

0 Rq
1

...
...

...
. . .

Rs
mΓ

m−1
0 Rs

mΓ
m−1
1 Gq

0 Rs
mΓ

m−1
2 Gq

1 · · · Rs
mGq

m−1







































(7.10)

is obtained, with sensitivity matrix products Γ j
i defined as

Γ j
i

def
=







j
∏

l=i
Gs

l
def
= Gs

j · . . . ·Gs
i if 0¶ i ¶ j ¶ m− 1,

I if i > j.

(7.11)

137

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

From (7.10) we deduce that, after this elimination step, the transformed QP in terms of the
two parts v1 and v2 of the unknown reads

min
v1,v2

1

2





v1

v2





T 



H11 H12

H
T
12 H22









v1

v2



+





v1

v2





T 



g 1

g 2



 (7.12)

s. t. 0= Gv1− I v2− h,

0µ Rv1− r ,

wherein the Hessian blocks and the gradient are obtained by reordering H and g . The right
hand side vectors h and r are computed by applying the Gaussian elimination steps to h and
r . System (7.12) easily lends itself to the elimination of the unknown v2. By this step we
arrive at the final condensed QP

min
v1

1
2
v1

T Hv1+ v T
1 g (7.13)

s. t. 0¶ Rv1− r

with the following dense Hessian matrix and gradient obtained from substitution of v2 in the
objective of (7.12)

H = H11+H12G +G
T
H

T
12+G

T
H22G, (7.14a)

g = g 1+G
T
g 2− 2(H

T
12h+G

T
H22h). (7.14b)

The matrix multiplications required for the computation of these values are easily laid out to
exploit the block structure of G and H , cf. [131]. The dense QP (7.13) can be solved using
one of the widely available numerical codes for dense Quadratic Programming, such as QPOPT
[86] or qpOASES [68]. In addition, from the above elimination steps one easily recovers v2

from the solution v1 of the condensed QP (7.13),

v2 = Gv1− h. (7.15)

Implementations of condensing techniques can e.g. be found in the multiple shooting code for
optimal control MUSCOD-II [131, 133].

Remark 7.1 (Runtime Complexity of Condensing)
The computation of (7.10) and of H evidently takes O(m2n3) operations, where n = nx+ nq.
Hence condensing techniques are efficient for problems with short horizons, i.e., small values
of m. The resulting condensed QP (7.13) has nx +mnq unknowns, which makes condensing
techniques attractive for QPs with considerably more states than control parameters, i.e.,
nq� nx.

Remark 7.2 (Variant for the Case of Many Controls)
If condensing methods are used at all for MIOCPs with nq > nx after outer convexification,
the computation of the chains of sensitivity matrices should at least be rearranged to postpone
the prolongations onto the control space as long as possible, e.g.

Γk
j+1Gq

j =
�

Gs
k · . . . ·Gs

j+1

�

Gq
j instead of Γk

j+1Gq
j = Gs

k

�

Gs
k+1

�

. . .Gs
j+1

�

Gq
j

�

. . .
��

138

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

This usually is not the case for existing implementations of condensing methods, which use
the second formulation preferable in the case nq� nx.

For comparative studies, the above variant of condensing is realized in our multiple shooting
real–time online optimization method MuShROOM, see appendix B and the numerical results in
chapter 9.

Potentially Active Bounds Strategy

We have so far ignored simple bounds on the additionally introduced direct multiple shooting
states s1, . . . , sm. Under the condensing elimination procedure, these become linear constraints
depending on all predecessor node states and controls. The computation of their Jacobians
comes at the cost of O(m2n3) and their inclusion in the condensed QP would lead to an
unnecessarily large constraints dimension. In [132] it has therefore been proposed to use a
potentially active bounds strategy. In each Sequential Quadratic Programming (SQP) iteration,
the condensed quadratic subproblem is solved without computing or including the condensed
bounds on s1, . . . , sm. If the optimal solution after the blowup step is found to violate one of the
simple bounds – this test is fast –, only the condensed Jacobians for the violating simple state
bounds are computed and the QP is resolved with the old solution serving as a hot starting
guess. The included bounds are remembered for the subsequent SQP iterations, allowing the
QP subproblems to gradually grow as required to maintain feasibility of the multiple shooting
node states.

7.2.2 RICCATI Recursion

The solution of QP (7.1) can be attacked in the framework of dynamic programming, which
leads to a RICCATI recursion scheme. Our presentation can be found in [51] and we refer to
[201, 175] for algorithmic variants and further details.
Starting with the cost function

Φm(sm)
def
= 1

2
s T

mH ss
m sm+ s T

mgm (7.16)

for the last shooting node, the cost–to–go function for any node 0 ¶ i ¶ m− 1 is constructed
from that of the successor node i+1 as the solution of the small QP in the following unknown
vi = (si ,qi)

min
qi ,si+1

v T
i Hi vi + v T

i gi +Φi+1(si+1) (7.17)

s. t. Gi vi + Pi+1vi+1 = hi .

which yields for any given state si the optimal control choice qi minimizing the cost–to–go to
si+1 and recursively to the final node m. As the objective function of the m− 1 QPs remains
quadratic, this procedure is efficient.
In a backward sweep running in node i = m−1 and running to the initial node i = 0, the state
vectors si+1 are eliminated using the matching condition. This allows to derive an analytic
expression for the solution qi(si) of the small equality constrained QP (7.17), and thus for the
cost to go functions Φi(si). The actual value s0 is the measured or estimated process state, and

139

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

needs to be known only after the backward sweep has been completed. From s0, the sequence
of optimal control parameters q and the new state trajectory values s can be determined. We
refer to [51] for details on the involved linear algebra operations.

Remark 7.3 (Applicability of RICCATI recursion)
As RICCATI recursion makes no provisions for treating inequality constraints, it can either be
applied to solve purely equality constrained QPs, or it can be used as a KKT solver inside
the active set loop by applying it to the equality constrained subproblem (EQP) for a given
active set. Matrix update techniques are not applicable, however, and the runtime complexity
remains at O(mn3).

RICCATI recursion techniques have primarily found application in interior point methods, cf.
[14, 102, 175, 176]. The dual active set code QPSchur [12] applies related SCHUR complement
techniques that allow for matrix updates. In section 7.3 we present in detail a factorization
related to RICCATI recursion. Matrix updates for this factorization are derived in chapter 8.

7.2.3 Symmetric Indefinite Factorization

Direct methods for the solution of system (7.3) have gained increased interest because ar-
bitrary sparsity patterns of the KKT matrix to be factorized can be exploited more easily. An
appropriate choice for system (7.3) are symmetric indefinite factorizations K = LBLT , where
L is a lower triangular factor and B is a block diagonal matrix with 2× 2 pivot blocks on the
diagonal that capture the indefiniteness of the KKT system [44, 157].
Symmetric indefinite factorizations have become the workhorses for most interior point meth-
ods, e.g. [82, 211, 213, 214]. The drawback that usually makes these factorizations ineffec-
tive for use in active set methods is the lack of fast matrix updates procedures, cf. [128]. This
means that the factors L and B of the KKT matrix K cannot be recovered in a computationally
inexpensive way after an active set change, but have to be recomputed from scratch.

The dense symmetric indefinite factorization code DSYTRF is available as part of the publicly
available Linear Algebra Package (LAPACK) [9]. Highly efficient sparse codes are the multi-
frontal symmetric indefinite solvers MA27 [57] and MA57 [56] which are part of the Harwell
Subroutine Library (HSL).

7.2.4 LU Factorization

LU factorization codes do not take advantage of the symmetry of the KKT system, but provide
facilities for matrix updates after active set changes. Appropriate techniques can be found in
[62, 219].
The banded dense LU factorization code DGBTRF is available as part of the publicly avail-
able Linear Algebra Package (LAPACK) [9] and can exploit a considerable part of the sparsity
present in the multiple shooting structured KKT system (7.3) for small sizes n and larger
numbers m of the KKT blocks, i.e., when the block banded matrix is nearly component–wise
banded. If unsymmetric pivoting is used, the bandwidth of the L factor cannot be bounded
and the factorization fills in, cf. [89].
Multifrontal LU factorizations exploting arbitrary sparsity patterns are provided e.g. by the
software package UMFPACK [50]. Matrix updates to sparse factorizations tend to fill in over the
course of a few active set changes, then requiring recomputation of the LU decomposition from

140

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

scratch. This approach is explored in the code QPBLU for large–scale Quadratic Programming
by [108] and coworkers. Here, updates of the LU factorization are computed using LUMOD, cf.
[62] and also [219] for the underlying elementary transformations.

7.3 A Factorization for Structured KKT Systems with Many
Controls

In this section we present a factorization of the KKT matrix of the direct multiple shooting
QP (7.6) that is particularly suitable for the case of many control parameters. It works on the
block structure of the KKT matrix, and is free of fill–in effects. The approach to be presented
is based on previous work on a family of combined Hessian projection and SCHUR comple-
ment reductions of the multiple shooting QP in [200, 201, 202]. Extension of these works to
tree–structured QPs can be found in [203]. The application of the presented factorization to
MIOCPs has been first shown in [119, 120].
We present the individual steps of this new factorization for one selected shooting node in-
dexed by i. The described steps have to be performed for all nodes 0¶ i ¶ m. To avoid having
to specially treat the first (i = 0) and last (i = m) shooting nodes, we define the following
empty extra matrices and vectors with appropriate dimensions,

P0
def
= 0, λ−1

def
= 0, λ̃−1

def
= 0,

Gm
def
= 0, Pm+1

def
= 0, hm

def
= 0, λm

def
= 0.

7.3.1 Fixed Variables Step

We start by solving in system (7.7) for the step of the subset vX
i of the primal unknowns vi

fixed to their simple upper or lower bounds. This yields

IXi (−vX
i) =−bX

i (7.18)

which trivially reduces to vX
i = bX

i . Hence, any fixed component of vi moves exactly onto the
bound it is fixed to. From the stationarity conditions for gX

i in system (7.7) we may recover
the bounds multipliers νX

i once vi , λi−1, λi , and µAi are known

νX
i = gX

i −RAX
i

T
µAi −G?Xi

T
λi − P?Xi

T
λi−1+HXF

i vF
i +HXX

i vX
i . (7.19)

7.3.2 Hessian Projection Step

Assuming regularity of the current active set A(v), the number of active decoupled point
constraints does not exceed the number of free unknowns. This allows us to perform a QR
decomposition of the transpose of the decoupled point constraints matrix RAF

i . We write this
decomposition as a TQ decomposition that is obtained from a QR decomposition by transpo-
sition reversal of the order of columns of the QR factors,

RAF
i Qi =

h

0 Ti

i

, Qi =
h

Zi Yi

i

(7.20)

141

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

The orthogonal matrix Qi ∈ Rnv
i×nv

i is separated into column orthogonal bases Yi ∈ Rnv
i×nY

and Zi ∈ Rnv
i×nZ

of the range space Y and the null space Z of RAF
i respectively. The matrix

Ti ∈ RnY×nY
is a southeast triangular factor. Accordingly, we partition the step of the free

subset vF
i of the primal unknowns vi into components vY

i and vZ
i ,

vF
i = Yi v

Y
i + Zi v

Z
i . (7.21)

Using this relation to solve the primal feasibility condition for decoupled point constraints in
system (7.7) for the range space part of vF

i yields

Ti v
Y
i = rA

i −RAX
i vX

i (7.22)

which requires a backsolve with the southeast triangular factor Ti . We continue by projecting
the remaining equations of system (7.7) onto the null space of the free variables part RAF

i of
the decoupled point constraints by multiplication with Y T

i from the left. Substituting Yi v
Y
i for

vF
i in the stationarity conditions for gF

i of system (7.7) we find

Yi
T P?Fi

T
λi−1− Yi

T HFF
i Yi v

Y
i − Yi

T HFF
i Zi v

Z
i + Yi

T RAF
i

T
µAi + Yi

T G?Fi
T
λi (7.23)

= Yi
T gF

i + Yi
T HFX

i vX
i

from which we may recover the point constraint multipliers µAi using a backsolve with T T
i

once vZ
i , λi−1, and λi are known

T T
i µ

A
i = Y T

i

�

gF
i +HFF

i vF
i +HFX

i vX
i −G?Fi

T
λi − P?Fi

T
λi−1

�

. (7.24)

Finally, substituting Yi v
Y
i + Zi v

Z
i for vF

i in the matching conditions and Zi v
Z
i for vF

i in the
stationarity conditions of system (7.7) we find

ZT
i P?Fi

T
λi−1− ZT

i HFF
i Zi v

Z
i + ZT

i RAF
i

T
µAi + ZT

i G?Fi
T
λi (7.25a)

= ZT
i gF

i + ZT
i HFF

i Yi v
Y
i + ZT

i HFX
i vX

i ,

G?Fi Zi v
Z
i + P?Fi+1Zi+1vZ

i+1 = hi −G?Fi Yi v
Y
i −G?Xi vX

i − P?Fi+1Yi+1vY
i+1− P?Xi+1vX

i+1. (7.25b)

For further treatment of these equations in the SCHUR complement step to follow, let us define
null space projections as follows:

H̃i
def
= ZT

i HFF
i Zi , G̃i

def
= G?Fi Zi , P̃i

def
= P?Fi Zi , (7.26a)

g̃i
def
= ZT

i

�

gF
i +HFF

i Yi v
Y
i +HFX

i vX
i

�

, (7.26b)

h̃i
def
= hi −G?Fi Yi v

Y
i − P?Fi+1Yi+1vY

i+1−G?Xi vX
i − P?Xi+1vX

i+1. (7.26c)

With this notation, the system of equations (7.25a) reduces to

P̃T
i λi−1− H̃i v

Z
i + G̃T

i λi = g̃i , (7.27a)

G̃i v
Z
i + P̃i+1vZ

i+1 = h̃i (7.27b)

142

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

and the remaining linear system to be solved for vZ and λ can be put in matrix form as



























H̃0 G̃T
0

G̃0 P̃1

P̃T
1 H̃1 G̃T

1

G̃1
. . .

. . . P̃m

P̃T
m H̃m





















































−vZ
0

λ0

−vZ
1

λ1
...

−vZ
m



























=



























g̃0

−h̃0

g̃1

−h̃1
...

g̃m



























. (7.28)

7.3.3 Schur Complement Step

Solving (7.27a) for the null space part vZ
i of the free subset vF

i of the primal unknowns, we
find

H̃i v
Z
i =

�

P̃T
i λi−1+ G̃T

i λi − g̃i

�

, (7.29)

which yields vZ
i , assuming knowledge of the matching condition duals λ. Inserting this rela-

tion into (7.27b) and collecting for λi yields

G̃iH̃
−1
i P̃T

i λi−1+ (G̃iH̃
−1
i G̃T

i + P̃i+1H̃−1
i+1P̃T

i+1)λi + P̃i+1H̃−1
i+1G̃T

i+1λi+1 (7.30)

= G̃iH̃
−1
i g̃i + P̃i+1H̃−1

i+1g̃i+1+ h̃i .

Assuming positive definiteness of the Hessian blocks Hi on the null space Z of the active
simple bounds and point constraints, we may employ a CHOLESKY decomposition UT

i Ui = H̃i

of the projected Hessian. We define the following symbols to simplify the notation of (7.30):

Ĝi
def
= G̃iU

−1
i P̂i

def
= P̃iU

−1
i ĝi

def
= U−T

i g̃i (7.31a)

Ai
def
= ĜiĜ

T
i + P̂i+1P̂T

i+1 Bi
def
= Ĝi P̂

T
i ai

def
= Ĝi ĝi + P̂i+1ĝi+1+ h̃i (7.31b)

With this, relation (7.29) for vZ
i can be written as

Ui v
Z
i =

�

P̂T
i λi−1+ ĜT

i λi − ĝi

�

(7.32)

and (7.30) simplifies to

Biλi−1+ Aiλi + BT
i+1λi+1 = ai (7.33)

which can be put in matrix form as

















A0 B1
T

B1 A1
. . .

. . . Bm−1
T

Bm−1 Am−1

















λ= a. (7.34)

143

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

7.3.4 Block Tridiagonal Factorization and Backsolve

The linear system (7.34) is symmetric by construction and positive definite under reason-
able assumptions, see theorem 7.1 on page 149. It has block tridiagonal shape and can be
factorized by a tailored CHOLESKY decomposition [9] as follows. We may assume w.l.o.g. the
following shape





V0 D1

V1,...,m−1





of the CHOLESKY factor of matrix (7.34). Here we have separated the upper triangular diago-
nal block V0 ∈ Rnh

0×nh
0 and its off–diagonal block row D1 ∈ Rnh

0×nh
1 from the CHOLESKY factor

V1,...,m−1 of the remainder of the system. From this we obtain for system (7.34) the represen-
tation





VT
0 0

DT
1 VT

1,...,m−1









V0 D1

0 V1,...,m−1



=





VT
0 V0 VT

0 D1

DT
1 V0 DT

1 D1+ VT
1,...,m−1V1,...,m−1



 (7.35)

which yields the identities

VT
0 V0 = A0, VT

0 D1 = [BT
1 0 ... 0] , VT

1,...,m−1V1,...,m−1 = A1,...,m−1− DT
1 D1. (7.36)

Observe now that the block column D1 consists of zero blocks except for the single side–
diagonal block entry V−T

0 BT
1 , and observe further that the block product DT

1 D1 affects the
block A1 of the remainder A1,...,m−1 of system (7.34) only. Hence the block structure is carried
over to the CHOLESKY factor, which allows us to apply the presented identities to the subse-
quent blocks 1 to m−1 as well. This is summarized in the following block tridiagonal CHOLESKY

decomposition procedure to be carried out in ascending order for all nodes 0¶ i ¶ m− 1:

VT
i Vi = Ai , (7.37a)

VT
i Di+1 =

h

BT
i+1 0 . . . 0

i

, if i ¶ m− 2, (7.37b)

Ai+1 = Ai+1− Di+1DT
i+1 if i ¶ m− 2. (7.37c)

Using this decomposition the solution of system (7.34) to find the vector λ of matching con-
dition duals is now straightforward according to the following recurrence relation:

VT
i λ̃i = ai − DT

i−1λ̃i−1, 0¶ i ¶ m− 1, (7.38a)

Viλi = λ̃i − Diλi+1, m− 1¾ i ¾ 0. (7.38b)

7.3.5 Efficient Implementation

The arrangement and number of matrix and vector operations required to compute the oper-
ations of the Hessian Projection Schur Complement (HPSC) factorization and backsolve can
be further improved, as detailed in this section.

The performance of a literal implementation of the presented relations suffers from two prob-
lems. First, hidden common subexpressions are not exploited. Second and more significant,

144

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

Algorithm 7.1: The HPSC factorization for the multiple shooting EQP’s KKT system.

input : KKT system blocks HFF ,G?F , P?F ,RAF .
output: HPSC factorization T , Y ,Z,U , V , D.
for i = 0 : m do
[Ti , Yi ,Zi] = tq(RAF

i
T);

Ui = chol(ZT
i HFF

i Zi);
Ji = Zi/Ui;
if i < m then Ĝi = G?Fi Ji;
if i > 0 then P̂i = P?Fi Ji;

end
A0 = 0;
for i = 0 : m− 1 do

Ai+= ĜiĜ
T
i + P̂i+1P̂T

i+1;
Vi = chol(Ai);
if i < m− 1 then

Di+1 = VT
i \P̂i+1ĜT

i ;
Ai+1 =−DT

i+1Di+1;
end

end

linear algebra operations on subsets of the rows and columns of the involved matrices as se-
lected by the current active set result in widely inferior performance as highly efficient Level 2
and Level 3 BLAS routines, e.g. available from the ATLAS library [218], cannot be employed.
To ameliorate this situation, we introduce intermediates

ji,1
def
= Hi

�

Yi v
Y
i + vX

i

�

+ gi , (7.39a)

ji,2
def
= ji,1− PT

i λi−1−GT
i λi , (7.39b)

Ji
def
= ZiU

−1
i , (7.39c)

which can be computed efficiently. Precomputing (7.39c) additionally saves two backsolves
with Ui in the computation of the SCHUR complements Ĝi and P̂i . Using these intermediate
values, the right hand side of the block tridiagonal system reads

ĝi
def
= J T

i jFi,1, (7.40)

ai
def
= Ĝi ĝi + P̂i+1ĝi+1+Gi vi + Pi+1vi+1− hi (7.41)

and the backsolve steps (7.19), (7.24), and (7.32) reduce to

Zi v
Z
i = Ji J

T
i jFi,2, (7.42a)

ji,3
def
= ji,2+





HFF
i

HXF
i



Zi v
Z
i , (7.42b)

T T
i µ

A
i = Y T

i jFi,3, (7.42c)

νi = jXi,3−RAX
i

T
µi . (7.42d)

145

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

Algorithm 7.2: The backsolve with the HPSC factorization to find the primal–dual step.
input : HPSC factorization T , Y ,Z,U , V , D,

KKT system blocks H , G, P, RAX ,
KKT right hand side g , b, r , h.

output: KKT solution v ,λ,µ,ν .
for i = 0 : m do

vX
i = bX

i ;
vF

i = Yi Ti\
�

ri −RAX
i bX

i

�

;
j1 = Hi vi + gi;
ĝi = VT

i jFi ;
if i > 0 then λi−1 = Ĝi−1ĝi−1+ P̂i ĝi +Gi−1vi−1+ Pi vi − hi−1;

end
λ0 = VT

0 \λ0;
for i = 1 : m− 1 do
λi = VT

i \
�

λi − DT
i λi−1

�

;
end
λm−1 = Vm−1\λm−1;
for i = m− 2 : 0 do
λi = Vi\

�

λi − Di+1λi+1
�

;
end
for i = 0 : m do

if i < m then j1−=GT
i λi;

if i > 0 then j1−=PT
i λi−1;

ṽZ
i = Ji J

T
i jF1 ;

vi+= vZ
i ;

j1+=[HFF
i HXF

i]T ṽZ
i ;

µAi = T T
i \Y T

i jF1 ;

νi = jX1 −RAX
i

T
µi;

end

with an additional intermediate term j3. In (7.42b), indexed access to a subset of the columns
of Hi is required, but the accessed columns are continuous, allowing at least the use of Level
1 BLAS. Indexed linear algebra operations on the subsets of the intermediates j1, j2, and j3
can be avoided by copying the affected vector elements to continuous storage in only O(n)
additional memory access operations.

The HPSC factorization is given in algorithm 7.1. The described improved backsolve with
the factorization is summarized in algorithm 7.2. Both algorithms are implemented in our
structure exploiting QP code qpHPSC, see appendix B.

7.3.6 Testing for Degeneracy and Boundedness

The tests for linear independence of the new active set and for positive definiteness of the
new Hessian, given in theorem 6.8, require a backsolve with a special right hand side that has
only a single nonzero block. In this section we describe a tailored backsolve procedure for the
degeneracy test.

146

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

Testing for Degeneracy

Testing for linear independence of the new active set requires a backsolve with the following
special right hand side:

1. If the constraint entering the active set is point constraint row k of node j

g = 0, h = 0, b = 0, ri =

¨

RA
j,k? if i = j,

0 otherwise, 0¶ i ¶ m.
(7.43)

2. If the constraint entering the active set is a simple bound on variable xk of node i

g = 0, h = 0, r = 0, bi =

¨

ek if i = j,

0 otherwise, 0¶ i ¶ m.
(7.44)

As constraints only affect a single node in the block structured QP (7.4), the block vector has a
single nonzero block only. This property may be exploited to speed up the linear independence
test as follows.

Let a point constraint in node j become active, and let r j
def
= RA

j,k? denote the new constraint

row k of RA
j . We find vX = 0 for all blocks, vY

i = 0 for all i 6= j, and vY
j = T−1

j r j . The
intermediate terms introduced in section 7.3.5 simplify to

ji,1
def
=







H jY j v
Y
j + g j if i = j,

0 otherwise,
(7.45a)

ji,2
def
= ji,1− PT

i λi−1+GT
i λi . (7.45b)

For the block tridiagonal system’s right hand side we find

ai =











0 if i < j− 1 or i > j,

P̂ j ĝ j + PF
j Y j v

Y
j if i = j− 1,

Ĝ j ĝ j +GF
j Y j v

Y
j if i = j.

(7.46)

The forward sweep then yields λ̃i = 0 for all i < j− 1, while we cannot infer λi = 0 from any
of the backward sweep steps. At this point no further significant savings can be made.

If a simple bound on the unknown xk of node j becomes active, the new constraint row to be
tested is ek, 0 ¶ k ¶ nx. We find vX

i = 0 for all i 6= j, and vX
j = ek. Further, vY

i = 0 for all

i 6= j, and vY
j = −T−1

j rk. Thus, we effectively test for linear independence after adding the
previously fixed column k of the point constraints RA

i of this node. The intermediate term ji,1
introduced in section 7.3.5 simplifies to

ji,1
def
= Hi

�

Yi v
Y
i + ek

�

+ gi if i = j, ji,1
def
= 0 otherwise. (7.47a)

With this, the argument continues as above.

147

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

Testing for Boundedness

The HPSC factorization does not allow for significant savings to be made when testing for
boundedness of the Parametric Quadratic Program (PQP) after a constraint has left the active
set.

In our implementation of the block structured parametric active set code QPHPSC we assume
the null space Hessian matrix blocks ZT

i HFF
i Zi to be positive definite for all occurring active

sets. Tests for positive definiteness, i.e., for boundedness of the PQP are thus omitted. This
is additionally justified by noting that in an MPC problem formulation, all system states and
control parameters typically reside in bounded domains.

7.3.7 A Simplification based on Conjugacy

If the Hessian blocks HFF
i are positive definite for all occuring active sets, and the QP thus is

strictly convex, a simplification of the presented factorization and backsolve procedure can be
derived based on conjugacy, cf. [157].

Instead of computing a TQ decomposition of the constraints matrices Ri as in section 7.3.2,
the idea here is to compute a column orthogonal base Qi of RAF

i satisfying

QT
i HFF

i Qi = I , RAF
i Qi =

h

0 Ti

i

. (7.48)

This means that the columns of Qi are additionally required to be conjugate with respect to
the Hessian block HFF

i of the free variables. The matrix Qi can be constructed easily from a
TQ decomposition of Ri

RAF
i Q̃i =

h

0 T̃i

i

(7.49)

and a CHOLESKY decomposition of the symmetric positive definite product Q̃T
i HFF

i Q̃i = LiL
T
i .

Then (7.48) is satisfied with

Qi
def
= Q̃iL

−T , Ti
def
= T̃iL

−T . (7.50)

Partitioning Qi into null–space and range–space column orthogonal bases Zi and Yi as in
section 7.3.2 we get the following identities to be exploited in both the factorization and the
backsolve steps:

ZT
i HFF

i Zi = I , ZT
i HFF

i Yi = 0, Y T
i HFF

i Yi = I . (7.51)

The HPSC factorization simplifies as follows. In the Hessian projection step we find

H̃i = I , jFi,1
def
= HFX

i vX
i + gi , g̃i

def
= ZT

i jFi,1. (7.52)

As the projected Hessian is the identity, the SCHUR complement step including the CHOLESKY

decomposition of the projected Hessian vanishes completely,

Ĝi = G̃i , P̂i = P̃i , ĝi = g̃i , (7.53)

148

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

and the block tridiagonal system factorization can proceed immediately. An efficient imple-
mentation of the backsolve with the computed simplified HPSC factorization differs from
section 7.3.5 in

Zi v
Z
i = ZiZ

T
i jFi,2, (7.54a)

T T
i µi = vY

i + Y T
i jFi,2, (7.54b)

νi = tXi,2−RX
i

T
µi +HXF

i Zi v
Z
i . (7.54c)

7.4 Properties and Extensions

In this section we investigate the applicability and numerical stability of the presented HPSC
factorization. Pivoting of the applied factorizations as well as iterative refinement of the ob-
tained solution are mentioned. A dynamic programming interpretation of the HPSC factoriza-
tion as given in [201] is stated.

7.4.1 Applicability

The following theorem shows that, given a KKT system with direct multiple shooting block
structure, the HPSC factorization is as widely applicable as the popular null space method for
solving the KKT system of a dense QP.

Theorem 7.1 (Applicability of the HPSC Factorization)
The HPSC factorization is applicable to a KKT system with

1. direct multiple shooting block structure,

2. linear independent active constraints (LICQ, definition 3.4),

3. positive definite Hessian on the null space of the active set. 4

Proof Assumption (2.) implies regularity of the RAF
i and thus existence of the TQ decom-

positions. Assumption (3.) guarantees the existence of the CHOLESKY decompositions of the
projected Hessian blocks H̃i = ZT

i HFF
i Zi . It remains to be shown that the block tridiagonal

system (7.34) which we denote by K is positive definite. To this end, observe that we have for
(7.34) the representation

K =

















A0 BT
1

B1 A1 BT
2

B2 A2
. . .

.

















(7.55)

=

















G0 P1

G1 P2

G2
. . .
. . .

































H̃0

H̃1

H̃2
. . .

































GT
0

PT
1 GT

1

PT
2 GT

2
.

















def
= MH̃M T .

149

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

By assumption (3.) we have positive definiteness of all diagonal blocks H̃i of H̃ and hence of
H̃ itself, i.e., it holds that

∀w 6= 0 : w T H̃w > 0. (7.56)

By assumption (2.) the matrix M of equality matching conditions has full row rank and for all
v 6= 0 it holds that w = M T v 6= 0. Hence

∀v 6= 0 : (M T v)T H̃(M T v) = v T (MH̃M T)v = v T K v > 0 (7.57)

which is the condition for positive definiteness of the system K . This completes the proof. �

7.4.2 Uniqueness

We investigate the uniqueness of the HPSC factorization.

Theorem 7.2 (Uniqueness of the HPSC Factorization)
The HPSC factorization is unique up to the choice of the signs of the reverse diagonal entries of
the southeast triangular factors Ti , and up to the choice of the orthonormal null space column
basis vectors Zi . 4

Proof The employed CHOLESKY factorizations are unique. Thus the uniqueness properties of
the initial block QR factorizations carry over to the HPSC factorization. The thin TQ factoriza-
tions RAF

i
T Yi = Ti are unique up to the signs of the reverse diagonal elements of the Ti and

the choice of Zi is free subject to orthonormality of Qi = [Zi Yi]. For proofs of the uniqueness
properties of CHOLESKY and QR factorizations we refer to e.g. [89]. �

7.4.3 Stability

In this section, we address the stability of the HPSC factorization. We are interested in the
propagation of roundoff errors in the gradient g and right hand side (b, r , h) through the
backsolve with a HPSC factorization to the primal–dual step (v ,λ,µ,ν).

Like condensing methods and RICCATI iterations, the HPSC factorization fixes parts of the
pivoting sequence, which may possibly lead to stability problems for ill–conditioned KKT sys-
tems. The Mathematical Program with Vanishing Constraints (MPVC) Lagrangian formalism
introduced in chapter 6 has been introduced specifically to eliminate the major source of ill–
conditioning in the targeted class of problems, QPs resulting from MIOCPs treated by outer
convexification. Furthermore, all employed factorizations of the matrix blocks are stable un-
der the assumptions of theorem 7.1. The use of a SCHUR complement step in section 7.3.3 still
mandates caution for problems with ill–conditioned matching condition Jacobians. This may
potentially be the case for processes with highly nonlinear dynamics on different time scales.
For the numerical results presented in chapter 9, no problems were observed after use of the
MPVC Lagrangian formalism. In the following we briefly mention iterative refinement and
opportunities for pivoting of the involved factorizations to improve the backsolve’s accuracy,
should the need arise.

150

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

Pivoting

Pivoting algorithms can be incorporated into the HPSC factorization in several places to help
with the issue of ill–conditioning. Possible extensions include a pivoted QR decomposition of
the point constraints,

ΠR
i RAF

i
T
Qi =

h

0 Ti

i

. (7.58)

and a symmetrically pivoted block cholesky decomposition of the null space Hessian

ΠH
i

T
H̃iΠ

H
i = UT

i Ui . (7.59)

We refer to [89] and the references found therein for details. The most promising option prob-
ably is symmetric block pivoting of the block tridiagonal CHOLESKY decomposition of system
(7.34). This last option requires cheap condition estimates of the diagonal blocks Ai and can
be shown to produce at most one additional off-diagonal block in system (7.34).

Iterative Refinement

A different possibility to diminish the error in the KKT system’s solution found using the
backsolve algorithm 7.2 is to apply iterative refinement, cf. [89]. This allows to increase the
number of significant digits of the primal–dual step from n to N · n at the expense of N − 1
additional backsolves with the residuals. The procedure is given in algorithm 7.3. Iterative
refinement has been included in our implementation qpHPSC, see appendix B.

Algorithm 7.3: Iterative refinement of a backsolve with the HPSC factorization.
input : HPSC factorization H = (T , Y ,Z,U , V , D),

KKT system blocks K = (H ,G, P,R),
KKT right hand side k = (g , b, r , h),
N

output: KKT solution v ,λ,µ,ν .
[v ,λ,µ,ν] = 0;
δk = k;
for i = 1 : N do
[v ,λ,µ,ν]+=hpsc_backsolve(H,K,δk);
δk = kkt_multiply(H, [v ,λ,µ,ν])−δk;

end

7.4.4 A Dynamic Programming Interpretation

In [201] a dynamic programming interpretation of system (7.1) is given as shown in figure
7.1. The KKT factorization determines the unknowns (x i , ui) on the range spaces of the point
constraints defined by Ri , ei . The null space part remains free and are defined as the result of
optimization problems on the manifolds

Ni(x)
def
=
¦

u ∈ Rnu | Rx
i x +Ru

i u = ei

©

.

151

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

u0 u1

x0 G0, P1, h0 G1, P2, h1 . . .

R0, e0 R1, e1 Rm, em

x1 x2 xm

Figure 7.1: Dynamic programming interpretation of the HPSC factorization.

We further define the manifolds of feasible states under the mapping defined by Gi , Pi+1, hi ,

Si(x i+1, ui+1)
def
=
¦

x ∈ Rnx | ∃u ∈N (x) : Gx
i x +Gu

i u + Px
i+1x i+1+ Pu

i+1ui+1 = hi

©

,

and the manifold of feasible controls for a given feasible initial state x i alike,

Ui(x i , x i+1, ui+1)
def
=
¦

u ∈N (x i) | Gx
i x i +Gu

i u + Px
i+1x i+1+ Pu

i+1ui+1 = hi

©

.

For a given state xm−1, the optimal control um−1, steering the process to the terminal state
xm ∈ Sm is now chosen according to BELLMAN’s principle as minimizer of the objective ϕ

um−1(xm−1) = argmin
u

�

ϕm−1(u, xm−1, xm) | u ∈ Um−1(xm−1, xm)
	

. (7.60)

As can be seen, this control can be determined locally, i.e., without consideration of the un-
knowns 0 ¶ i ¶ m− 2, once we have found xm−1. In the same spirit, all further values can
be found during a backward sweep starting with i = m− 2 as solutions of local optimization
problems depending on the preceeding state,

ui(x i) = argmin
u

�

ϕi(u, x i , x i+1) | u ∈ Ui(x i , x i+1, ui+1)
	

, 0¶ i ¶ m− 2. (7.61)

The initial state x0 is finally found by minimizing over S0, and determines all other unknowns.
In the case of Nonlinear Model Predictive Control (NMPC), S0 only contains one element, the
estimated or measured system state embedded by the initial value embedding constraint.

7.5 Computational Complexity

In this section we investigate the computational effort in computing the HPSC factorization
and performing a backsolve to find the primal–dual step.

7.5.1 Floating–Point Operations

We investigate the runtime complexity of the HPSC factorization in terms of the number of
shooting nodes m, the number of control parameters nq which may be high after application
of outer convexification to a MIOCP, and the number of states nx which is assumed to be
reasonably small.

152

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

We denote for a single shooting node by n the sum nx + nq, by nF and nX the numbers of
free and fixed unknowns, by nR and nR

A the total number and the number of active point
constraints, and finally by nZ and nY the dimensions of the null space and the range space of
the active point constraints. For the purpose of complexity estimates, it obviously holds that
nR
A = nY, nZ+ nY = nF and nF+ nX = n.

In the following, a Floating–Point Operation (FLOP) is understood to comprise a floating–
point multiplication and addition at once. The exact number of FLOPs spent in a numerical
code is implementation dependent and may vary by a constant factor, but not in complex-
ity, from the numbers given below. In all FLOP counts, we drop lower order terms that are
independent of the problem’s dimensions.

Cost of a Factorization

The QR decomposition of the transposed active point constraints Jacobians RAF
i takes nr

A
2(n−

1
3
nr
A) FLOPs, whereafter nY = nr

A under rank assumptions. The particular case of MIOCPs
with constraints treated by outer convexification mandates discussion. We may assume nr =
Cnq vanishing constraints where C is a small constant, e.g. C = 2. Under MPVC–LICQ, at
most nr

A = C of these can be active for each SOS1 set per shooting node, which results in
C2(n − 1

3
C) ∈ O(n) FLOPs. The operation counts for all further steps of algorithm 7.1 can

be found in table 7.1. Overall, the runtime complexity of the factorization is O(mn3) and in
particular O(mn)+O(mn2nx) under MPVC–LICQ for MIOCPs treated by outer convexification.

Step FLOPs

QR decomposition C2(n− C
3
)

Projected Hessian nZnF(nZ+ nF)

CHOLESKY decomposition 1
3
nZ3

Temporary J1 nFnZ2

SCHUR complements 2nxnFnZ

Tridiagonal blocks 2nx3

CHOLESKY decomposition 7
3
nx3

Table 7.1: FLOP counts per shooting node for the HPSC factorization, algorithm 7.1.

Cost of a Backsolve

The operation counts for all steps of the backsolve algorithm 7.2 with the HPSC factorization
can be found in table 7.2. Overall, the computational effort is bounded by m(15n2 +O(n)).
It is obvious that the computational effort crucially depends on the relative size of the range
space and null space of the active constraints as well as on the number of free and fixed
unknowns. In table 7.3, upper bounds on the runtime complexity for different assumptions
on the active set’s dimensions nX and nY are listed.
The backsolve’s runtime complexity grows quadratically in the number of states and controls.
The growth rate is significantly lower for the dependency on the number nq of control pa-
rameters. This is appropriate for MIOCPs treated by outer convexification, which tend to have

153

CHAPTER 7
�

� L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S

more control parameters than differential states.

Step FLOPs

Fixed variables step —

Range space step nFnX+ nY2+ nFnY+ nY

Temporary j1 n2+ n

Temporary ĝi nZnF

Right hand side ai 2nxnZ+ 2nxn+ n

Matching condition multipliers 4nx2+ nx

Temporary j2 2nxn

Null space step 2nZnF

Temporary j3 nZn

Point constraint multipliers nY2+ nYnF

Simple bounds multipliers nXnY+ nX

Table 7.2: FLOP counts per shooting node for a backsolve with the HPSC factorization, algorithm 7.2.

The backsolve completes faster as more variables are fixed to at their upper or lower bounds,
i.e., as nX approaches n and nF approaches zero. For MIOCPs treated by outer convexification,
most control parameters will be active at either bound, cf. also theorem 2.1. Note that the limit
case nx = n, nY = 0 violates Linear Independence Constraint Qualification (LICQ) and allows
further savings as we have λ = 0 for the matching conditions multipliers. The FLOP bound
in table 7.3 is put in parentheses. Concerning point constraints in the case of MIOCPs treated
by outer convexification, the majority of constraints are likely of the vanishing constraint type
and will not enter the active set. The gains in the backsolve runtime for increasing numbers
of active constraints are small, though.

Active Set FLOP bound in terms of nx, nq

nX = 0, nY = 0 15nx2+ 5nq2+ 16nxnq

nX = 0, nY = n
3

13.9nx2+ 4.6nq2+ 14.4nxnq

nX = n
3
, nY = 0 12.6nx2+ 3.3nq2+ 11.8nxnq

nX = n
3
, nY = n

3
11.7nx2+ 3nq2+ 10.7nxnq

nX = n, nY = 0 (9nx2+ nq2+ 6nxnq)

Table 7.3: FLOP bounds for a backsolve with the HPSC factorization depending on the active set. Lower
order terms are dropped.

7.5.2 Memory Requirements

The memory requirements of the matrices and factors computed by the HPSC factorization
according to algorithm 7.1 can be found in table 7.4. All matrices are allocated with their
worst case dimensions such that reallocations during the active set iterations are not necessary.
For simplicity and as the dimension of the block local factors can be expected to be small,

154

L I N E A R A L G E B R A F O R B L O C K S T R U C T U R E D Q P S
�

� CHAPTER 7

triangular factors are held in square matrix storage where one half of the storage space is
never touched. The overall memory footprint of the HPSC factorization is m(4n2 + 2nxn +
2nx2+O(n)) which is bounded by m(8n2+O(n)).

Matrix Ti Qi Ui Ji Ĝi P̂i Vi Di

rows nY nF nZ nF nx nx nx nx

columns nY nF nZ nZ nZ nZ nx nx

doubles allocated n2 n2 n2 n2 nxn nxn nx2 nx2

Table 7.4: Memory requirements per shooting node for the matrices and factors computed by the HPSC
factorization, algorithm 7.2.

7.6 Summary

In this section, we have examined in detail the block structure of the quadratic subproblems
induced by the multiple shooting discretization. We have surveyed block structured algorithms
for its solution, such as condensing that preprocesses the block structured QP into a smaller
but dense one, and RICCATI iterations which can be derived by a dynamic programming argu-
ment. Factorizations of the QP’s KKT system that exploit arbitrary sparsity patterns, such as
LDLT and LU decompositions, have been mentioned. Examination of these menthods showed
that they either are inappropriate for OCPs with many control parameters, cannot easily be
incorporated in active set methods, or are likely to suffer from fill–in after a few iterations of
the active set method.
To address this issue, we have presented a new block structured factorization of the QP’s KKT
system that can for the case of MIOCPs be computed efficiently in O(mn) +O(mn2nx) opera-
tions, and is thus ideally suited for long horizons and problems with many control parameters.
We have investigated a computationally efficient implementation of this factorization in the
context of the parametric active set method for QPVCs of chapter 6 that has been realized in
our block structured QP code qpHPSC. We have derived a simplification based on conjugacy ap-
plicable to problems with positive definite Hessian. Memory requirements and floating point
operations for all parts of the factorization algorithm and the backsolve algorithm have been
presented in detail.

155

8 Matrix Updates for the Block Structured
Factorization

The ability to update the KARUSH–KUHN–TUCKER (KKT) system’s factorization after addition or
deletion of a constraint or simple bound is of vital importance for the efficiency of any active–
set method, as described in section 6.3. The Hessian Projection Schur Complement (HPSC)
factorization of the KKT system introduced in the previous chapter combines block local
TQ decompositions, CHOLESKY decompositions, and SCHUR complements. A block tridiagonal
CHOLESKY decomposition of the remaining symmetric positive definite system completes the
factorization. In [200, 201, 202] a closely related factorization was used in an interior–point
method. These methods typically perform few but expensive iterations using a modification
of the KKT system of the entire Quadratic Program’s in each iteration, and thus by design do
not require matrix updates.
In this chapter we show how established matrix update techniques, also referred to as basis
repair techniques, can be transferred from dense matrices and active–set methods to the block
structure of the KKT system of direct multiple shooting Quadratic Programs (QPs) and to
the HPSC factorization. The aim is to make the HPSC factorization applicable for use in a
fast block structured active–set method. We derive matrix updates for all four cases of active
set changes, namely adding or deleting a simple bound and for adding or deleting a point
constraint. These update techniques allow to infer a factorization of the KKT matrix from
the preceding one after the active set has changed. Using these updates we design a block
structured active set method that computes the feedback control parameters with a run time
complexity of only O(mn2) after an initial factorization has been computed.

8.1 Matrix Updates Overview

Techniques for updating the factorizations of matrices with various properties have been stud-
ied for many years, and a multitude of updates tailored to special situations have been de-
veloped. A good overview over QR and CHOLESKY techniques is already found in [83]. In this
section we briefly introduce the fundamental ideas behind some selected techniques to pro-
mote an initial understanding of the matrix updates issue. We mention GIVENS plane rotations
and orthogonal eliminations as an important tool to modify the pattern of nonzero entries of
an arbitrary matrix in a numerically stable way. They will be used throughout this chapter in
order to restore the triangular shape of certain matrix factors.

8.1.1 Existing Techniques

In this section we briefly present the principal ideas behind selected existing matrix updates
for CHOLESKY and QR factorizations to familiarize the reader with the issues and techniques

156

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

of updating matrix factors. We refer to [83] for proofs of correctness and details on numerical
stability, alternative approaches, and a comparison of their computational effort.

Appending a Row and Column to a CHOLESKY Factorization

A CHOLESKY factorization A = RT R of a symmetric positive definite matrix A can be updated
after adding a row and column to A,





A a

aT α



=





RT 0

r T %









R r

0T %



=





RT R RT r

r T R r T r +%2



 . (8.1)

From this relation we easily determine expressions for the new column entries r and % of the
updated CHOLESKY factor,

r = R−T a, (8.2)

% = (α− r T r)
1
2 .

Positive definiteness of A is maintained only if α > r T r . From (8.1) it can also be seen that
removing the last row and column of A is virtually free as the CHOLESKY factor R simply looses
the last row and column as well.

Rank 1 Modifications of a CHOLESKY Factorization

Another frequently needed modification of CHOLESKY factorization is a rank one modification
A±α · aaT , α > 0 to the entire symmetric positive definite matrix. This modification is called
an update if the dyadic product is added, and a downdate if it is subtracted. For a rank one
update, the identity

h

α
1
2 a RT

i





α
1
2 aT

R



= RT R+αaaT (8.3)

provides factors of the updated matrix which are rectangular and whose pattern of nonzero
entries does not show upper triangular shape. Orthogonal eliminations can be used to restore
the shape and yield an updated CHOLESKY factor. A downdate can be realized by observing





r T %

RT 0









r R

% 0



=





α aT

a RT R



 (8.4)

wherein the entries r and % of the first column of the extended factor are chosen as in (8.2).
The extended factor is specifically constructed to allow the use of orthogonal eliminations for
the transformation of the factors on the left hand side to the new shape





0T α
1
2

R?T α
1
2 a









0 R?

α
1
2 α

1
2 aT



=





α αaT

αa R?T R?+αaaT



 (8.5)

157

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

which yields the new CHOLESKY factor R? satisfying the desired identity R?T R? = RT R−αaaT .
Positive definiteness is again maintained only if α > r T r .

Appending a Row to a QR Factorization

For the QR factorization we start by discussing the addition of a row to the matrix A ∈ Rm×n

with m ¾ n and full column rank. We can easily extend the QR factorization of A to include
the new row aT ,





A

aT



=





Q1 Q2 0

0T 0T 1















R

0

aT











. (8.6)

Orthogonality of the new matrix Q? is obviously maintained, and we can again apply orthogo-
nal eliminations to obtain the upper triangular factor R? and clear the row aT in the null space
block below. Deleting an arbitrary row is possible for example by reversal of this process. The
row of Q in question is transformed to the unit vector en by applying orthogonal eliminations,
and the triangular shape of R is restored by the same means after removal of the row.

Appending a Column to a QR Factorization

The addition of a column a to the matrix A ∈ Rm×n with m ¾ n and full column rank of the
extended matrix [A a] is possible by observing

h

A a
i

=
h

Q?1 Q?2

i











R r

0T %

0 0











(8.7)

where Q?1 has gained a row from Q2. This allows to compute the new elements r and % of the
triangular factor by exploiting orthogonality of Q? to find

Q?1
T a =





r

%



 . (8.8)

Deleting an arbitrary column from A destroys the triangular shape of the factor R after its cor-
responding column has been deleted. The shape can again be restored by applying orthogonal
eliminations to Q and R.

8.1.2 Orthogonal Eliminations

As seen in the previous section, orthogonal eliminations realized by GIVENS plane rotations
are an important tool used to modify the pattern of nonzero elements in matrix factors. They
play a central role in the construction of updated matrix factors from existing ones.

Definition 8.1 (GIVENS Matrix)
For a given angle ϕ ∈ [0, 2π) and indices i, j with 1 ¶ i < j ¶ n, the GIVENS matrix O j

i (ϕ) ∈

158

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

Rn×n is defined

O j
i (ϕ)

def
=





















Ii−1

cosϕ sinϕ

I j−i−1

− sinϕ cosϕ

In− j





















. (8.9)

4

Multiplication of O j
i with a vector from the right (O j

i v) represents a clockwise rotation of
the (i, j) plane by the angle ϕ, while multiplication from the left (v T O j

i) represents a coun-
terclockwise rotation in a standard right–handed coordinate system. GIVENS matrices can be
constructed to zero out a single element of a vector by modifying another single element only.

Definition 8.2 (Orthogonal Eliminations O j
i
)

The orthogonal elimination matrix O j
i (v) ∈ Rn×n, 1 ¶ i, j ¶ n, i 6= j for a vector v ∈ Rn is

defined element–wise as

�

O j
i (v)

�

kl

def
=



























vi/% if (k, l) = (i, i)∨ (k, l) = (j, j),

v j/% if (k, l) = (i, j),

−v j/% if (k, l) = (j, i),

1 if k = l ∧ k 6= i ∧ k 6= j,

0 otherwise.

%
def
=
Æ

v2
i + v2

j . (8.10)

4

From the above definition it can be seen that orthogonal elimination matrices can actually
be constructed without the need to evaluate trigonometric functions in order to compute
the angle ϕ. The following lemma formally states the properties of orthogonal elimination
matrices.

Lemma 8.1 (Identities for the Orthogonal Eliminations)
The orthogonal elimination matrix O j

i (v) of definition 8.2 satisfies the following identities:

1. Orthogonality: O j
i (v)O

j
i (v)

T
= I .

2. Modification of element i:
�

O j
i (v)v

�

i
= %.

3. Elimination of element j:
�

O j
i (v)v

�

j
= 0.

4. All elements except i and j remain unmodified:
�

O j
i (v)v

�

k
= vk for k 6= i, k 6= j. 4

Proof Easily verified by direct calculation. �

In particular, the multiplication O j
i A applies the GIVENS rotation to all columns of A, while the

multiplication AO jT
i applies it to all rows of A. Algorithm 8.1 is an exemplary way of com-

puting and storing an orthogonal elimination that eliminates v j by modifying vi . It requires
four multiplications and a square root. In [89, 99] details on the fast and numerically stable

159

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

Algorithm 8.1: Computing and storing an orthogonal elimination matrix.
input : v ∈ Rm, i, j
output: c, s
% =

Æ

v2
i + v2

j ;

c = vi/%;
s = v j/%;

computation of orthogonal elimination matrices can be found that improve algorithm 8.1 and
are used in our implementation qpHPSC.
Orthogonal eliminations can be applied to all rows or columns of a matrix A ∈ Rm×n in only
4mn multiplications by exploiting their special structure. Algorithm 8.2 exemplarily shows
how an orthogonal elimination can be applied to all columns of a matrix. A row–wise ver-
sion of this algorithm is easily derived. Alternatively, algorithm 8.2 can be applied to AT and
then also yields the transpose of the desired result. In [99], a more elaborate storage and
multiplication scheme is discussed that requires only 3mn multiplications.

Algorithm 8.2: Orthogonal elimination in all columns of a matrix.

input : A ∈ Rm×n, c, s, i, j
output: A= O j

i (v)A
for k = 1 : n do

a = Aik;
b = A jk;
Aik = ac+ bs;
A jk = bc− as;

end

8.1.3 Applications

For dense active set range space and null space methods it is known that a sequence of a
QR decomposition and a CHOLESKY decomposition can be updated properly after active set
changes. A description of the necessary steps for a dense null space active set method can be
found e.g. in [67, 157]. Update techniques for the LU factorization can be found in [62] and
are used in an active set method in [108], but are not relevant for the HPSC factorization.
SCHUR complement updates are used in a dual active set method by [12] that assumes a block
diagonal Hessian.

8.2 Updating the Block Local Reductions

In this section, we derive matrix updates for the block local reductions of the HPSC factoriza-
tion for all four cases of active set changes. The first steps of the matrix updates concerning
the TQ decomposition and the CHOLESKY decomposition of the null space Hessian are known
from the dense null space method, cf. [157] and the description of an actual implementation
in [67]. The extensions to the SCHUR complement step and the block tridiagonal CHOLESKY

160

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

decomposition are new contributions and have first been published in [121]. Matrix updates
for the block tridiagonal CHOLESKY decomposition of the reduced symmetric positive definite
system (7.34) are treated in the next section.

8.2.1 Preliminaries

Notation

In the following, we denote by the list of matrices

K(A) def
= (H ,R,G, P)

the block structured KKT system 7.7 on page 136 for a given active set A. We further denote
by the list of matrices

H(A) def
= (T ,Z, Y ,U , Ĝ, P̂, V , D)

an associated HPSC factorization of the block structured KKT system K(A). We further distin-
guish by an asterisk (?) a factorization or matrix after the update from its counterpart before
the update.

Permutations

We are concerned with modifications of the HPSC factorization of chapter 7 after a permuta-
tion of the vector of unknowns. Such permutations will allow us to make assumptions about
the index position of the unknown affected by a matrix update.

Theorem 8.1 (HPSC Factorization after Permutation of the Unknowns)
Let H be a HPSC factorization of the block structured KKT system K(A) = (H ,R,G, P). Further,

let Πi ∈ RnF
i ×nF

i be permutation matrices such that xF
i
? def
= Πi x

F
i are the permuted vectors of free

unknowns. Then a HPSC factorization H? of the permuted KKT system K?(A) is given by

Y ?i
def
= ΠiYi , Z?i

def
= ΠiZi , (8.11)

while the matrices T ?,U?, Ĝ?, P̂?, V? and D? of the new factorization H? are identical to those of
the old one H. 4

Proof We first consider the block matrix entries of the permuted KKT system K?. For invari-
ance of the KKT system under the permutations Πi of the free unknowns xF

i , it holds that

RAF
i

? = RAF
i ΠT

i , =⇒ RAF
i

?
xF

i
? = RAF

i ΠT
i Πi x

F
i = RAF

i xF
i ,

GF
i
? = GF

i Π
T
i , =⇒ GF

i
?
xF

i
? = GF

i Π
T
i Πi x

F
i = GF

i xF
i ,

PF
i
? = PF

i Π
T
i , =⇒ PF

i
?
xF

i
? = PF

i Π
T
i Πi x

F
i = PF

i xF
i ,

HFF
i

? = ΠiH
FF
i ΠT

i , =⇒ xF
i
?T

HFF
i

?
xF

i
? = xF

i
TΠT

i ΠHFF
i ΠT

i Πi x
F
i = xF

i
T
HFF

i xF
i .

For the first step of the HPSC factorization, the block local TQ factorizations of the free un-

161

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

knowns part of the active point constraints’ Jacobians RAF
i , observe

h

0 Ti

i

= RAF
i

h

Zi Yi

i

= RAF
i ΠT

i Πi
︸ ︷︷ ︸

=I

h

Zi Yi

i

(8.12)

= RAF
i

?
h

ΠiZi ΠiYi

i

= RAF
i

?
h

Z?i Y ?i

i

=
h

0 T ?i

i

,

which proves the relations (8.11) for Y ?i , Z?i and invariance of the southest triangular factor
T ?i = Ti . For the CHOLESKY factors Ui of the projected Hessians H̃i , we find

U?i
T U?i = Z?i

T HFF
i

?
Z?i = ZT

i Π
T
i (Πi
︸ ︷︷ ︸

=I

HFF
i ΠT

i)Πi
︸ ︷︷ ︸

=I

Zi = ZT
i HFF

i Zi = UT
i Ui , (8.13)

hence the CHOLESKY factors U?i of the permuted KKT system’s HPSC factorization are identical
to the factors Ui of the original one. The SCHUR complements Ĝi and P̂i are unaffected as well,

Ĝ?i
def
= GF

i
?
Z?i U−1

i
? = (GF

i Π
T
i)Πi
︸ ︷︷ ︸

=I

ZiU
−1
i = GF

i ZiU
−1
i = Ĝi , (8.14)

P̂?i
def
= PF

i
?
Z?i U−1

i
? = (PF

i Π
T
i)Πi
︸ ︷︷ ︸

=I

ZiU
−1
i = PF

i ZiU
−1
i = P̂i .

This evidently carries over to the blocks A?i and B?i of the positive definite block tridiagonal
system (7.34) on page 143,

A?i
def
= Ĝ?i Ĝ?i

T + P̂?i P̂?i
T = ĜiĜi

T + P̂i P̂i
T = Ai , (8.15)

B?i
def
= Ĝ?i P̂?i

T = Ĝi P̂i
T = Bi ,

and hence also to the CHOLESKY factor blocks Vi , Di of this system. This completes the proof.�

Note finally that permutations of the fixed part vX
i of the unknowns do not affect the factoriza-

tion. The Lagrange multipliers νX
i of the active simple bounds must be permuted accordingly.

Projectors

We will frequently need to remove the last row or column of a matrix, reflecting the fact
that the number of free unknowns, or the size of the range space or null space of a TQ
decomposition has decreased by one. To this end, we introduce the projector I that serves
to cut a column or a row off a matrix A, and give a proof of two useful properties of this
projector.

Definition 8.3 (Projector I)
Let A ∈ Rm×n be an arbitrary matrix. The column cutting projection AI and the row cutting
projection IT A are defined as

I
def
=





In−1

0T



 ∈ Rn×n−1, IT def
=
h

Im−1 0
i

∈ Rm−1×m. (8.16)

4

162

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

Lemma 8.2 (Identities for the Projectors)
The projector I of definition 8.3 satisfies the following identities.

1. For all A =
h

Ã a
i

∈ Rm×n it holds that AI = Ã ∈ Rm×n−1, i.e., the matrix A looses the
last column.

2. For all AT =





ÃT

aT



 ∈ Rn×m it holds that IT AT = Ã ∈ Rm−1×n, i.e., the matrix A looses

the last row.

3. For regular triangular A ∈ Rn×n it holds that if IT AI is regular then
�

IT AI
�−1
= IT A−1I.

4. For O ∈O(n,R) it holds OIIT OT = I − ooT where o is the last column of O. 4

Proof Identities 1. and 2. are easily verified by direct calculation. To prove 3. we write

A=





Ã a1

aT
2 a3



 , A−1 def
= B =





B̃ b1

bT
2 b3





such that IT AI = Ã and IT A−1I = B̃. For the inverse we have the defining relation AB = I ,
implying ÃB̃ + a1bT

2 = I and Ã−1 = B̃ holds iff a1 = 0 or b2 = 0. This includes, but is not
limited to, the case of lower or upper triangular matrices A, as claimed. Finally to prove 4. we
let O = [Õ o] such that OI= Õ and find

I = OOT = ÕÕT + ooT = OIIT OT + ooT . �

Algorithms

In the following, all matrix updates are also summarized in the form of algorithms, on which
we have several remarks to be made concerning their presentation and efficiency.
We make use of a function givens(v , i, j) that computes a GIVENS rotation eliminating v j by
modifying vi , and a function apply(L, s, c, i, j) that applies a GIVENS rotation defined by s, c
to the elements i and j of all rows of a given list L of matrices. Any extra checks required
for the first node i = 1 and the last node i = m have been omitted for clarity of exposition.
The numbers nF , nY , and nZ are understood to refer to the dimensions prior to the active set
change. In the same spirit, all KKT blocks refer to the KKT matrix associated with the active
set prior to the update.
Truly efficient implementations require some further modifications that have been excluded
in order to improve readability. For example, one would frequently make use of a temporary
rolling column to avoid having to enlarge certain matrices prior to applying a sequence of
GIVENS rotations. Also, the eliminations of those elements that define the GIVENS rotations
would be applied already during computation of the GIVENS rotation in order to guarantee
exact zeros in the eliminated components. These improvements are realized in our imple-
mentation qpHPSC. The runtime complexity bound of O(mn2) is still satisfied by all simplified
algorithms.

163

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

8.2.2 Adding a Simple Bound

If a simple bound vFi j = bi j becomes active, we may assume w.l.o.g. that the unknown to
be fixed is the last component j = nF

i of vF
i . This can be ensured by applying a suitable

permutation to the unknown vF
i and the matrix Qi , cf. theorem 8.1. In the following theorem

we show how to restore the block local reductions of a HPSC factorization for the new KKT
matrix with active simple bound on vFi j .

Theorem 8.2 (Adding a Simple Bound to the Block Local Reductions)
Let H(A) be a HPSC factorization of the KKT system K(A). Let the simple bound vi j = bi j on the
last free component j = nF

i of the unknown of node 0¶ i ¶ m be inactive in A, and denote by A?
the otherwise identical active set with activated simple bound. Assume further that A? satisfies
Linear Independence Constraint Qualification (LICQ). Then there exists a HPSC factorization
H?(A?) of the KKT matrix K?(A?) that satisfies

Q?i = IT QiOZTI, T ?i = TiOTI, (8.17a)

U?i = ITOUUiOZI, (8.17b)
h

Ĝ?i ĝ
i

= ĜiO
T
U,

h

P̂?i p̂
i

= P̂iO
T
U, (8.17c)

A?i−1 = Ai−1− p̂ p̂T , A?i = Ai − ĝ ĝ T , B?i = Bi − ĝ p̂T (8.17d)

where OZT with subsequences OZ and OT, and OU are appropriately chosen sequences of GIVENS

rotations. 4

Proof We first consider relation (8.17a) for the TQ factorization matrices Z?i , Y ?i , and T ?i .
We add the simple bound’s constraint row vector e = (0, . . . , 0, 1) to the extended constraints
matrix of node i, comprising the simple bounds and the decoupled point constraints











eT 0T

0 IXi
RAF

i RAX
i















Zi Yi

IXi



=











t T
Z t T

Y

IXi
Ti RAX

i











. (8.18)

Herein, t T def
= eT Qi , i.e., t T

Z
def
= eT Zi and t T

Y
def
= eT Yi . The right hand side of (8.18) has lost

the southeast triangular shape present in Ti , hence (8.18) does not yet provide a proper TQ
factorization of RAF

i
?. In order to restore this shape we eliminate the elements of t using a

sequence OZOT of nF
i − 1 GIVENS rotations

OZ
def
= O1

2
T
O2

3
T · . . . ·OnZ−1

nZ

T
, (8.19)

OT
def
= OnZ

nZ+1

T
O2

3
T · . . . ·OnF−1

nF

T
,

OZT
def
=





OZ

I



OT,

164

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

that serve to transform t T = (t T
Z , t T

Y) into the unit row vector eT ,











t T
Z t T

Y

IXi
0 Ti RAX

i















OZT

I



=











0T 0T 1

IXi
T ?i r RAX

i











def
=





IXi
?

0 T ?i RAX
i

?



 .

(8.20)

The last nF
i − nZ rotations of the sequence OT introduce a reverse subdiagonal into Ti . By

shifting Ti to the left we obtain the new TQ factor T ?i and the null space dimension shrinks
by one. The remaining column r belongs the now fixed component vi j of the unknown and
enters RAX

i to form the new fixed part of the active point constraints matrix RAX
i

?. Having
applied the GIVENS rotations to the right hand side of (8.18) we do so in the same way for the
left hand side to recover equality and find the new null space and range space bases Z?i and
Y ?i ,





Zi Yi

IXi









OZT

I



=











Z?i y Y 0

0 0 1

IXi











def
=





Z?i Y ?i
IXi
?



 . (8.21)

This yields the identity
h

Z?i Y ?i

i

= Q?i = IT QiOZTI, (8.22)

which proves the relations (8.17a) for the TQ factorization matrices Z?i , Y ?i , and T ?i .

We next consider the reduced Hessian’s CHOLESKY factor U?i (8.17b). We have separated the
first nZ − 1 rotations of the sequence OZT as they affect the new null space basis matrix Z?i
only, such that (8.22) can be for the new null space basis Z?i as

Z?i = IT ZiOZI. (8.23)

The projected Hessian’s new CHOLESKY factor U?i is found from

U?i
T U?i = Z?i

T HFF
i

?
Z?i = ITOT

Z ZT
i I(I

T HFF
i I)IT ZiOZI (8.24)

= ITOT
Z ZT

i





I 0

0T 0



HFF
i





I 0

0T 0



ZiOZI.

Apparently the terms IIT obstruct the reuse of the existing CHOLESKY factorization ZT
i HFF

i Zi =
UT

i Ui . Observe now that the last row of the matrix ZiOZI is zero as can be seen from (8.21)
and is cut off in the definition of Z?i in (8.23). We may therefore replace the terms IIT in
(8.24) by I without impacting equality and find

U?i
T U?i = Z?i

T HFF
i

?
Z?i = ITOT

Z ZT
i HFF

i ZiOZI (8.25)

= ITOT
Z UT

i UiOZI= (UiOZI)
T UiOZI.

Hence the new factor would be UiOZI which is no longer a CHOLESKY factor as it is non–

165

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

square and has an additional subdiagonal of nonzero elements introduced by OZ. The upper
triangular shape is restored by a second sequence of nZ − 1 GIVENS rotations denoted by OU,

OU
def
= OnZ−1

nZ · . . . ·O2
3O1

2 , (8.26)

and constructed to eliminate each subdiagonal element in UiOZI using the diagonal element
located directly above. The last row becomes zero and is cut off, which yields the CHOLESKY

factor U?i of Z?i
T HFF

i
?Z?i ,

U?i = ITOUUiOZI. (8.27)

This proves the relation (8.17b) for the CHOLESKY factor U?i of the reduced Hessian HFF
i

?.

The updates (8.17c) to the projected sensitivity matrices Ĝi and P̂i can be computed construc-
tively from Z?i and U?i as

Ĝ?i = GF
i
?
Z?i U?i

−1 = GF
i I
�

IT ZiOZI
��

ITOUUiOZI
�−1

(8.28)

= GF
i (II

T)ZiOZI
�

ITOUUiOZI
�−1

which by replacing again the first occurrence of IIT by I becomes

= GF
i ZiOZI

�

ITOUUiOZI
�−1

(8.29)

and according to 3. in lemma 8.2 becomes,

= GF
i ZiOZII

T �OUUiOZ
�−1

I (8.30)

= GF
i Zi

�

OZII
TOT

Z

�

U−1
i OT

UI

and with 4. in lemma 8.2, letting z
def
= (OZ)[:,nZ], this becomes

= GF
i Zi

�

I − zzT
�

U−1
i OT

UI (8.31)

=
�

GF
i ZiU

−1
i

�

OT
UI−GF

i Zi z
�

zT U−1
i OT

UI
�

= ĜiO
T
UI−GF

i Zi z
�

zT U−1
i OT

UI
�

.

Consider now that zT U−1
i OT

U is the last row of the inverse of the updated upper triangular
factor OUUiOZ. This row is zero by construction of OU, except for the last element which is
cut off, hence

Ĝ?i = ĜiO
T
UI. (8.32)

The corresponding relation P̂?i = P̂iO
T
UI is shown in exactly the same way. This finally proves

the claimed relations (8.17c).

For the tridiagonal system blocks A?i−1, A?i and B?i in (8.17d) affected by the updates to Ĝi and

166

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

P̂i we find constructively that

A?i = Ĝ?i Ĝ?i
T + P̂i+1P̂T

i+1 = ĜiO
T
RI
�

ĜiO
T
UI
�T
+ P̂i+1P̂T

i+1 (8.33)

= Ĝi

�

OT
UII

TOU

�

ĜT
i + P̂i+1P̂T

i+1

which again by 4. in lemma 8.2 and uT def
= (OU)[nZ ,:] is

= Ĝi

�

I − uuT
�

ĜT
i + P̂i+1P̂T

i+1 (8.34)

= ĜiĜ
T
i − (Ĝiu)(Ĝiu)

T + P̂i+1P̂T
i+1

= Ai − (Ĝiu)(Ĝiu)
T

= Ai − ĝ ĝ T , ĝ
def
= Ĝiu.

By the same argument we find

A?i−1 = Ai−1− p̂ p̂T , p̂
def
= P̂iu, B?i = Bi − ĝ p̂T . (8.35)

This proves the relations (8.17d) for the tridiagonal system blocks A?i−1, A?i , and B?i . �

The resulting factorization update procedure is summarized in in algorithm 8.3 on page 174.
The modifications to A and B of system (7.7) take the form of an subtraction of a dyadic
product from a 2× 2 subblock as can be seen by writing



























. . .
. . .

. . . A?i−2 B?i−1
T

B?i−1 A?i−1 B?i
T

B?i Ai B?i+1
T

Bi+1 Ai+1
. . .

. . .
. . .



























=



























. . .
. . .

. . . Ai−2 Bi−1
T

Bi−1 Ai−1 Bi
T

Bi Ai Bi+1
T

Bi+1 Ai+1
. . .

. . .
. . .



























+

























...

0

p̂

ĝ

0
...

























·

























...

0

p̂

ĝ

0
...

























T

.

A suitable downdate to the block tridiagonal CHOLESKY factorization is derived in section 8.3.2.

8.2.3 Adding a Point Constraint

If a point constraint on the unknown vi of node i becomes active, it can be appended to the
list of previously active point constraints, as their relative order is of no significance. In the
following theorem we show how to restore the block local reductions of a HPSC factorization
for the new KKT matrix with active point constraint on vi .

Theorem 8.3 (Adding a Point Constraint to the Block Local Reductions)
Let H(A) be a HPSC factorization of the KKT system K(A). Let the point constraint (Ri) j?vi ¾ ri j

on the unknown vi of node 0 ¶ i ¶ m be inactive in the active set A, and denote by A? the
otherwise identical active set with activeated point constraint. Assume further that A? satisfies

167

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

LICQ. Then there exists a HPSC factorization H?(A?) of the KKT matrix K?(A?) that satisfies

h

Z?i y
i

= ZiOZ, Y ?i =
h

y Yi

i

T ?i =





0 Ti

τ (R?Fi) j?Yi



 (8.36a)

U?i = ITOUUiOZI (8.36b)
h

Ĝ?i ĝ
i

= ĜiO
T
U

h

P̂?i p̂
i

= P̂iO
T
U (8.36c)

A?i−1 = Ai−1− p̂ p̂T , A?i = Ai − ĝ ĝ T , B?i = Bi − ĝ p̂T , (8.36d)

where OZ and OU are appropriately chosen sequences of GIVENS rotations, and τ=
�

�

�

�

�

�R?Fi, j?ZiOZ

�

�

�

�

�

�.4

Proof We first consider the relations (8.36a) for the matrices Z?i , Y ?i , and T ?i of the TQ fac-
torization of the active point constraints. If an inactive point constraint 1 ¶ j ¶ nr

i on node i

becomes active, the row vector r T def
= (R?Fi) j? is appended to the bottom of the matrix of active

point constraints RAF
i and its TQ factorization





RAF
i

r T





h

Zi Yi

i

=





0 Ti

t T
Z t T

Y



 , (8.37)

wherein t T = r T Qi , i.e., t T
Z = r T Zi and t T

Y = r T Yi . To restore the southeast triangular shape
of the right hand side of (8.37), a series of nZ − 1 GIVENS rotations

OZ
def
= O1

2
T
O2

3
T · . . . ·OnZ−1

nZ

T
(8.38)

is applied, eliminating all entries of tZ outside the triangular shape,





0 Ti

t T
Z t T

Y









OZ

I



=





0 0 Ti

0T τ t T
Y





def
=
h

0 T ?i

i

. (8.39)

The factor T ?i gains a row and column as the range space dimension increases and the null
space dimension decreases, To maintain equality in (8.37) we apply the sequence OZ also to
the left hand side,

RAF
i

?
h

Zi Yi

i





OZ

I



= RAF
i

?
h

Z?i y Yi

i

def
= RAF

i
?
h

Z?i Y ?i

i

(8.40)

from which find the bases Z?i and Y ?i ,

h

Z?i y
i

= ZiOZ, Y ?i =
h

y Yi

i

. (8.41)

This proves the relations (8.36a) for the TQ factorization matrices Z?i , Y ?i , and T ?i .
The projected Hessian factor U?i would be

U?i
T U?i = Z?i

T HFF
i

?
Z?i = ITOT

Z ZT
i HFF

i ZiOZI= ITOT
Z UT

i UiOZI, (8.42)

and similar to section 8.2.2 the upper triangular shape of UiOZI is lost in (8.42) and needs to

168

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

be recovered by the sequence

OU
def
= OnZ

nZ−1 · . . . ·O3
2O2

1 , (8.43)

again resulting in

U?i
def
= ITOUUiOZI. (8.44)

This shows relation (8.36b) for the reduced Hessian’s CHOLESKY factor U?i . With this result
the proof of the remaining relations (8.36c) for Ĝ?i and P̂?i and (8.36d) for Â?i−1, Â?i , and B̂?i
proceeds exactly as in section 8.2.2. �

The resulting factorization update procedure is summarized in algorithm 8.4 on page 174.

8.2.4 Deleting a Simple Bound

If a simple bound on vXi j becomes inactive on node i, we may assume w.l.o.g. that the unknown
to be freed from its bound is the first component j = 1 of the fixed unknowns vX

i , and
that it becomes the new last component nF + 1 of the free unknowns vF

i . This can again be
ensured by applying a suitable permutation to the unknown vX

i and the matrix Qi , cf. theorem
8.1. In the following theorem we show how to restore the block local reductions of a HPSC
factorization for the new KKT matrix with inactive simple bound on vXi j .

Theorem 8.4 (Deleting a Simple Bound from the Block Local Reductions)
Let H(A) be a HPSC factorization of the KKT system K(A). Let the simple bound on the first fixed
component vXi1 of the unknown vi of node 0 ¶ i ¶ m be active in A, and denote by A? the oth-
erwise identical active set with inactivated simple bound. Then there exists a HPSC factorization
H?(A?) of the KKT matrix K?(A?) that satisfies

Z?i =





Zi z

0T ζ



 ,





z Y ?i
ζ 0T



=





Yi

1



OT, (8.45a)

h

0 T ?i

i

=
h

Ti (RX
i)?1

i

OT, (8.45b)

U?i =





Ui u

0T %



 ,
u = U−T

i Zi
T (HFF

i z+ hζ),

% =
p

zT (HFF
i z+ hζ) + ζ(hT z+ηζ)− uT u,

(8.45c)

Ĝ?i =
h

Ĝi ĝ
i

with ĝ = (GF
i
?
z− Ĝu)/%, (8.45d)

P̂?i =
h

P̂i p̂
i

with p̂ = (PF
i
?
z− P̂u)/%,

A?i−1 = Ai−1+ p̂ p̂T , (8.45e)

A?i = Ai + ĝ ĝ T ,

B?i = Bi + ĝ p̂T ,

where OT is an appropriately chosen sequence of GIVENS rotations. 4

169

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

Proof We again consider the TQ factorization of RAF
i

? first. In the extended constraints matrix





IXi
RF

i RX
i









Zi Yi

IXi



=





IXi
0 Ti RX

i



 , (8.46)

the row belonging to the simple bound is removed on the left hand side. Consequentially, the
first column of RX

i belonging to the unknown vXi1 to be freed from its bound becomes the last
one of Ti on the right hand side,





IXi
?

RF
i rX

1 RX
i
?















Zi Yi

1

IXi
?











=





IXi
?

0 Ti rX
1 RX

i
?



 . (8.47)

The southeast triangular shape of the factor
h

Ti rX
1

i

is restored by a sequence of nY GIVENS

rotations

OT
def
= OnF+1

nF

T · . . . ·OnZ+2
nZ+1

T
(8.48)

by eliminating each element on the reverse subdiagonal using the element to the right thereby
transforming the first column to zero,

h

Ti rX
1

i

OT
def
=
h

0 T ?i

i

. (8.49)

This proves relation (8.45b) for the new southeast triangular TQ factor T ?i .

To maintain equivalence in (8.47) we apply the sequence OT to the left hand side as well.
By construction this sequence leaves Zi unaffected, but affects the first column of Yi which
becomes the new last one of Z?i as the null space dimension grows by one,





Zi Yi

1









I

OT



=





Z z Y ?i
0T ζ y T





def
=
h

Z?i Y ?i

i

(8.50)

This proves relations (8.45a) and (8.45b) for the null space and range space bases Z?i and Y ?i .

In order to prove relation (8.45c) for U?i , we denote the elements of the new last row and
column of the Hessian HFF

i
? by a known row/column vector h and a known scalar η for the

new diagonal element. For the Hessian’s CHOLESKY factor U?i yet to be determined, these are
denoted by an unknown column vector u and an unknown scalar % for the new diagonal
element,

HFF
i

? def
=





HFF
i h

hT η



 , U?i
def
=





Ui u

0T %



 . (8.51)

For the new projected Hessian factor U?i we find from expanding Z?i
T HFF

i
?Zi

? = U?i
T U?i to





Zi
T 0

zT ζ









HFF
i h

hT η









Zi z

0T ζ



=





Ui
T Ui Ui

T u

uT Ui uT u +%2



 (8.52)

170

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

that we can compute the factor’s new column entries u and % from the entries h and η of
HFF

i
? as follows,

UT
i u = Zi

T (HFF
i z+ hζ), (8.53a)

% =
Æ

zT (HFF
i z+ hζ) + ζ(hT z+ηζ)− uT u. (8.53b)

This proves relation (8.45c) for the reduced Hessian’s CHOLESKY factor U?i .

We next consider the SCHUR complement relations (8.45d). Since the initial nZ columns of Z?i
and U?i are identical to those of Zi and Ui , we find for the SCHUR complements Ĝi and P̂i that

Ĝ?i =
h

Ĝi ĝ
i

where ĝ is an additional column that can be found as follows:

Ĝ?i U?i = GF
i
?
Z?i (8.54)

⇐⇒
h

Ĝi ĝ
i





Ui u

0T %



=
h

GF
i gX

1

i





Zi z

0T ζ





⇐⇒
h

ĜiUi Ĝiu + ĝ%
i

=
h

GF
i Zi GF

i z+ gX
1 ζ

i

with gX
1 denoting the first column of the fixed variables part GX

i of Gi . Solving for ĝ yields

ĝ ? = (GF
i z+ gX

1 ζ− Ĝu)/%. (8.55)

This proves relation (8.45d) for Ĝ?i and the proof for P̂?i can be carried out in the same way.

Finally, to show relation (8.45e) for the tridiagonal system blocks A?i−1, A?i , and B?i we compute

A?i = Ĝ?i Ĝ?i
T + P̂i+1P̂T

i+1 = ĜiĜ
T
i + ĝ ĝ T + P̂i+1P̂T

i+1 = Ai + ĝ ĝ T . (8.56)

The block Ai is thus affected by a rank one update, and identical relations hold for Ai−1 and
Bi . This completes the proof. �

The resulting factorization update procedure is summarized in algorithm 8.5 on page 175.

Observe now that the rank one modification to the 2 × 2 subblock of the block tridiagonal
system has positive sign as the active set shrinks. A suitable update to the block tridiagonal
CHOLESKY factorization is derived in section 8.3.

8.2.5 Deleting a Point Constraint

If a decoupled point constraint on node i becomes inactive, a row j is removed from RAF
i . In

the following theorem we show how to restore the block local reductions of a HPSC factoriza-
tion for the new KKT matrix with inactive point constraint.

Theorem 8.5 (Deleting a Point Constraint from the Block Local Reductions)
Let H(A) be a HPSC factorization of the KKT system K(A). Let the point constraint (Ri)[j,:]vi ¾
ri j on the unknown vi of node 0¶ i ¶ m be active in A, and denote by A? the otherwise identical
active set with inactive point constraint. Then there exists a HPSC factorization H?(A?) of the

171

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

KKT matrix K?(A?) satisfying

Z?i =
h

Zi z
i

,
h

z Y ?i

i

= YiOT,
h

0 T ?i

i

= TiOT, (8.57a)

U?i =





Ui u

0T %



 with





u

%



=





U−T
i ZT

i HFF
i z

p

zT HFF
i z− uT u



 , (8.57b)

Ĝ?i =
h

Ĝi ĝ ?
i

with ĝ ? = (GF
i z− Ĝu)/%, (8.57c)

P̂?i =
h

P̂i p̂?
i

with p̂? = (PF
i z− P̂u)/%,

A?i−1 = Ai−1+ p̂? p̂?T , A?i = Ai + ĝ ?ĝ ?T , B?i = Bi + ĝ ? p̂?T , (8.57d)

where OT is an appropriately chosen sequence of GIVENS rotations. 4

Proof We again start with the proof of relation (8.57a) for the TQ factorization matrices
Z?i , Y ?i , and the southeast triangular factor T ?i . The row j of RAF

i belonging to the point
constraint to be inactivated is removed from both RAF

i and the triangular factor Ti in the TQ
factorization. This yields

RAF
i

?
h

Zi Yi

i

=
h

0 T̃i

i

(8.58)

where the triangular shape of T̃i has been destroyed by the removal of row j. We restore it
using the series of nY − j GIVENS rotations

OT
def
= OnY− j+1

nY− j

T · . . . ·O2
1

T
. (8.59)

Applied to the right hand side of (8.58) this transformation results in

h

0 T̃i

i





I

OT





def
=
h

0 0 T ?i

i

. (8.60)

We find that Ti shrinks by one row and column reflecting the increased dimension of the null
space. Applying OT to the right hand side of (8.58) to maintain equality, the null space basis
Zi remains unaffected we obtain

h

Zi Yi

i





InZ

OT



=
h

Zi z Y ?i

i

def
=
h

Z?i Y ?i

i

. (8.61)

This proves relation (8.57a) for the TQ factorization matrices Z?i , Y ?i , and T ?i .

Relation (8.57b) for CHOLESKY factor U?i of the reduced Hessian Z?i
T HFF

i
?Z?i is derived as

follows. Denoting the new elements of the Hessian factor again with a vector u and a scalar
%,

U?i =





Ui u

0T %



 , (8.62)

172

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

we determine the new column entries of the Hessian factor U?i similar to 8.2.4 from

h

Zi z
iT

HFF
i

?
h

Zi z
i

=





Ui
T Ui Ui

T u

uT Ui uT u +%2



 . (8.63)

Observing HFF
i

? = HFF
i as the set of active simple bounds did not change, this yields

u = U−T
i Zi

T HFF
i z, % =

Æ

zT HFF
i z− uT u. (8.64)

This proves relation (8.57b) for the CHOLESKY factor U?i of the reduced Hessian.
Finally, relation (8.57c) for the SCHUR complements Ĝ?i and P̂?i can again be found construc-

tively in the form Ĝ?i =
h

Ĝi ĝ
i

as the initial nZ columns of Zi and Ui remained unchanged.
Here again ĝ is an additional column that is determined as follows. From

h

Ĝi ĝ
i

u?i = GF
i Z?i ⇐⇒

h

ĜiUi Ĝiu + ĝ%
i

=
h

GF
i Zi GF

i z
i

(8.65)

we determine that new column by solving for ĝ,

ĝ = (GF
i z− Ĝiu)/%. (8.66)

With this result for Ĝ?i and the analogous one for P̂?i relation (8.57c) is shown and the proof
of relation (8.57d) for the tridiagonal system blocks A?i−1, A?i , and B?i proceeds as in section
8.2.4. �

The resulting update procedure is summarized in algorithm 8.6 on page 175.

8.3 Modifying the Block Tridiagonal Cholesky Factorization

We conclude the presentation of the block structured update procedures by deriving the up-
date and a downdate procedure for the tridiagonal block CHOLESKY factorization of system
(7.34). In detail, our update will treat a rank one modification of some or all blocks Ai to-
gether with the appropriate rank one modification of the affected subdiagonal blocks Bi . As
we have seen, this situation arises as common final part of all four cases of active set changes,
where two blocks Ai−1 and Ai are updated or downdated together with the interleaving sub-
diagonal block Bi .
To this end, the shape restoration approach initially presented in section 8.1.1 for a dense
CHOLESKY factorization cannot be applied to the block tridiagonal system, as the zero pattern
cannot be represented by a single dyadic product. Hence, efficient exploitation of the tridiag-
onal structure is necessary to individually apply the rank one update to every diagonal and
side diagonal block.

8.3.1 A Rank 1 Update

In order to derive O(mn2) algorithms for both procedures instead, we carry out a single step
of the block tridiagonal CHOLESKY factorization of section 7.3.4, incorporating the addition or
subtraction of the dyadic product.

173

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

Algorithm 8.3: Matrix updates when adding a simple bound to the active set.
input : K, H, i
output: H?
t = Qi[nF ,:];
for k = 1 : nZ − 1 do
[s, c] = givens(t , k+ 1, k);
[t ,Qi ,Ui] = apply([t ,Qi ,Ui], s, c, k+ 1, k);

end

Ti =
h

zeros(nY , nZ) Ti

i

;

for k = nZ : nF − 1 do
[s, c] = givens(t , k+ 1, k);
[t ,Qi , Ti] = apply([t ,Qi , Ti], s, c, k+ 1, k);

end
Ti = Ti[:,nZ :nF−1];
for k = 1 : nZ − 1 do
[s, c] = givens(U[:,k], k, k+ 1);
[UT

i , Ĝi , P̂i] = apply([UT
i , Ĝi , P̂i], s, c, k, k+ 1);

end
Ui = Ui[1:nZ−1,1:nZ−1];
ĝ = Ĝi[:,nZ];
p̂ = P̂i[:,nZ];
Ĝi = Ĝi[:,1:nZ−1];
P̂i = P̂i[:,1:nZ−1];
[V , D] = block_tri_choldown(V , D, ĝ , p̂, i);

Algorithm 8.4: Matrix updates when adding a point constraint to the active set.
input : K, H, i, j
output: H?
t = Ri[j,F]Qi;
for k = 1 : nZ − 1 do
[s, c] = givens(t , k+ 1, k);
[t ,Qi ,Ui] = apply([t ,Qi ,Ui], s, c, k+ 1, k);

end

Ti =
h

zeros(nY , 1) Ti; t[nZ+1:nF]

i

;

for k = 1 : nZ − 1 do
[s, c] = givens(U[:,k], k, k+ 1);
[UT

i , Ĝi , P̂i] = apply([UT
i , Ĝi , P̂i], s, c, k, k+ 1);

end
Ui = Ui[1:nZ−1,1:nZ−1];
ĝ = Ĝi[:,nZ];
p̂ = P̂i[:,nZ];
Ĝi = Ĝi[:,1:nZ−1];
P̂i = P̂i[:,1:nZ−1];
[V , D] = block_tri_choldown(V , D, ĝ , p̂, i);

174

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

Algorithm 8.5: Matrix updates when deleting a simple bound from the active set.
input : K, H, i, j
output: H?
Ti =

h

Ti RAX
i [:,1]

i

;

Qi =
h

Qi zeros(nF , 1); zeros(1, nF) 1
i

;

for k = 1 : nY do
[s, c] = givens(Ti[:,k], nY + 2− k, nY + 1− k);
[Ti , Yi] = apply([Ti , Yi], s, c, nY + 2− k, nY + 1− k);

end
Ti = Ti[:,2:nY+1];
[z;ζ] = Qi[:,nZ+1];
[h;η] = [HFX

i [:,1]; HXX
i [1,1]];

u = UT
i \(ZT

i HFF
i z+ hζ);

% = sqrt(zT HFF
i z+ ζ(hT z+ηζ)− uT u);

Ui =
h

Ui u; zeros(1, nZ) %
i

;

ĝ = (GF
i z+GX

i [:,1]ζ− Ĝu)/%;

p̂ = (PF
i z+ PX

i [:,1]ζ− P̂u)/%;

Ĝi =
h

Ĝi ĝ
i

;

P̂i =
h

P̂i p̂
i

;

[V , D] = block_tri_cholup(V , D, ĝ , p̂, i);

Algorithm 8.6: Matrix updates when deleting a point constraint from the active set.
input : K, H, i, j
output: H?
Ti =

h

Ti[1: j−1,:] Ti[j+1:nY ,:]

i

;

for k = j : nY − 1 do
[s, c] = givens(Ti[k,:], nY − k+ 1, nY − k);
[Ti , Yi] = apply([Ti , Yi], s, c, nY − k+ 1, nY − k);

end
Ti = Ti[:,2:nY];
[z;ζ] = Qi[:,nZ+1];
u = UT

i \(ZT
i HFF

i z);
% = sqrt(zT HFF

i z− uT u);

Ui =
h

Ui u; zeros(1, nZ) %
i

;

ĝ = (GF
i z− Ĝu)/%;

p̂ = (PF
i z− P̂u)/%;

Ĝi =
h

Ĝi ĝ
i

;

P̂i =
h

P̂i p̂
i

;

[V , D] = block_tri_cholup(V , D, ĝ , p̂, i);

175

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

Theorem 8.6 (Update to a Block Tridiagonal CHOLESKY Factorization)
Let (A, B) with Ai ∈ Rn×n, 0 ¶ i ¶ m− 1 and Bi ∈ Rn×n, 1 ¶ i ¶ m− 1 be the diagonal and
subdiagonal blocks of a positive definite block tridiagonal system. Let (A?, B?) be a positive rank
one modification of (A, B) defined by vectors yi ∈ Rn,

A?i = Ai + yi y
T
i , 0¶ i ¶ m− 1, (8.67)

B?i = Bi + yi−1y T
i , 1¶ i ¶ m− 1.

Further, let (V , D) be the upper triangular and subdiagonal blocks of the CHOLESKY factorization
of (A, B). Then it holds that the CHOLESKY factorization (V?, D?) of (A?, B?) is obtained from
(V , D) as

V?i = OT
i Vi + oi z

T
i , 0¶ i ¶ m− 1, (8.68)

D?i = OT
i−1(Di + V−T

i−1zi−1y T
i), 1¶ i ¶ m− 1,

with vectors zi defined by the recursion formula

z0 = y0, zi = δi−1(D
T
i V−T

i−1zi−1− yi), 1¶ i ¶ m− 2, (8.69)

and the sequences OVi
of GIVENS rotations eliminating the diagonal of VT

i denoted by the matrix

OVi

def
=





oT
i δi

Oi −δiV
−T
i yi



 . (8.70)

4

Proof For updating the diagonal blocks we employ a variant of method C3 described in [83].
Forming a sequence OV of GIVENS rotations

OV
def
= O2

1O3
2 · . . . ·On

n−1 (8.71)

to eliminate the diagonal elements of VT
0 , we restore the lower triangular shape of the follow-

ing system:





z0 VT
0

1 0T









oT
21 %22

O11 o12





︸ ︷︷ ︸

=OV

=





V?0
T 0

r T δn



 . (8.72)

Correctness can be verified by multiplying each side of (8.72) by its transpose and comparing
entries, which yields the identity VT

0 V0+ z0zT
0 = V?0

T V?0 . For the new CHOLESKY factor we find
V?0

T = VT
0 O11+ z0oT

21 as claimed. Besides, the following identities hold:

o12 =−δnV−T
0 z0 o21 = r %22 = δn (8.73)

From the block tridiagonal CHOLESKY algorithm we have the identity D?1 = V?0
−T B?1

T which
gives D?1 = O−1

11 V−T
0 (B

T
1 + z0y T

1). The difficulty here lies with finding O−1
11 , as O11 is not

176

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

orthogonal. To address this issue, we expand the above identity to





D?1
d



=





o21 OT
11

%22 oT
12









0 1

V−T
0 −V−T

0 z0









BT
1 + z0y T

1

0



=





OT
11D1+OT

11V−T
0 z0y T

1

oT
12D1+ oT

12V−T
0 z0y T

1



 .

Herein, we have exploited orthogonality of OV and formed the inverse explicitly. We find that
the columns of D1 are affected by the GIVENS sequence like the rows of V1,

D?1 = OT
11(D1+ V−T

0 z0y T
1) (8.74)

as claimed. We now compute D?1
T D?1, the new downdate to the following diagonal block A1.

By orthogonality of OV we have with v
def
= V−T

0 z0

O11OT
11 = I − o12oT

12 = I −δ2
nv v T (8.75)

and can express D?1
T D?1 as

D?1
T D1 = (D

T
1 + y1v T)O11OT

11(D1+ v y T
1) (8.76)

= (DT
1 + y1v T)(D1+ v y T

1)−δ2
n(D

T
1 v + y1v T v)(v T D1+ v T v y T

1).

By expanding, collecting identical terms, and using the identity 1−δ2
nv T v = δ2

n which is easily
verified using (8.73) and orthogonality of OV, we find

D?1
T D1 = DT

1 D1+δ
2
n(D

T
1 v − y1)(D

T
1 v − y1)

T + y1y T
1 . (8.77)

Using this relation, the update of the next diagonal block A1 reads

V?1
T V?1 = A?1− D?1

T D?1 + y1y T
1 = A1− DT

1 D1− z1zT
1 = VT

1 V1− z1zT
1 (8.78)

with a vector z1 = δn(DT
1 V−T

0 z0 − y1) as claimed. Closing the loop by continuing with the
update of V1, we eventually obtain the claimed relations for all further blocks by repeating
the argument for the nodes 1, . . . , m− 1. This completes the proof. �

All required computations can be carried out in at most O(n2) operations per block, where
n is the size of the square matrices Ai or Bi . The update sequence obviously can start at any
block i ¾ 0, but must always run until the last block m− 1 has been updated. The number of
nodes affected is m− i, thus the total runtime complexity is bounded by O(mn2). A summary
of this update procedure for the block tridiagonal CHOLESKY factorization is given in algorithm
8.7.

8.3.2 A Rank 1 Downdate

In this section, we finally derive a rank one downdate procedure for the block tridiagonal
CHOLESKY factorization of system (7.34), to be used when adding a simple bound or decoupled
point constraint to the active set. The derivation is technically equivalent to that for the rank
one update of section 8.3 and differs only in several minor steps. As the obtained downdate
formulas are slightly different, we give the full derivation for completeness here.

177

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

Algorithm 8.7: Updating a block tridiagonal CHOLESKY decomposition.
input : V , D, g , p, i
output: V?, D?

for j = i : m do
v = VT

j−1\p;

V j−1 = [pT ; V j−1];
p = DT

j v − g ;

D j = [zeros(1, nx); D j + vg T];
d = [1;zeros(nx, 1)];
for k = 1 : nx do
[s, c] = givens(V j−1[k,:], k, k+ 1);
[VT

j−1, DT
j ,dT] = apply([VT

j−1, DT
j ,dT], s, c, k, k+ 1);

end
V j−1 = V j−1[1:nx,:];

D j = D j[1:nx,:];

p = d[nx]p;
g = 0;

end

Theorem 8.7 (Downdate to a Block Tridiagonal CHOLESKY Factorization)
Let (A, B) with Ai ∈ Rn×n, 0 ¶ i ¶ m− 1 and Bi ∈ Rn×n, 1 ¶ i ¶ m− 1 be the diagonal and
subdiagonal blocks of a positive definite block tridiagonal system. Let (A?, B?) be a negative rank
one modification of (A, B) defined by vectors yi ∈ Rn,

A?i = Ai − yi y
T
i , 0¶ i ¶ m− 1, (8.79)

B?i = Bi − yi−1y T
i , 1¶ i ¶ m− 1.

Further, let (V , D) be the upper triangular and subdiagonal blocks of the CHOLESKY factorization
of (A, B). Then it holds that the CHOLESKY factorization (V?, D?) of (A, B) is obtained from (V , D)
as

V?i = OiVi , 0¶ i ¶ m− 1, (8.80)

D?i = (Oi−1− oi−1
1
δn
(V−T

i−1zi−1)
T)(Di − V−T

i−1zi−1yi), 1¶ i ¶ m− 1,

with vectors zi defined by the recursion formula

z0 = y0, zi =
1
δn
(V−T

i−1zi−1)
T (Di − V−T

i−1zi−1yi)−δnyi , 1¶ i ¶ m− 2, (8.81)

and the sequences OVi
of GIVENS rotations eliminating the diagonal of VT

i denoted by the matrix

OVi

def
=





Oi oi

zT
i V−1

i δi



 . (8.82)

4

Proof For downdating the diagonal blocks we again employ method C3 of [83], who for a

178

U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N
�

� CHAPTER 8

downdate now form




v V0

δn 0T



 (8.83)

with v
def
= V−T

0 z0, δn
def
=
p

1− v T v , and project
h

v T δn

i

onto the unit row vector eT
n by

applying a sequence of GIVENS plane rotations

OV
def
= O1

n+1 · . . . ·On−1
n+1 ·On

n+1 (8.84)

to (8.83), yielding





O11 o12

oT
21 %22





︸ ︷︷ ︸

=OV





v V0

δn 0T



=





0 V?0
1 zT

0



 . (8.85)

Correctness can be verified by multiplying each side of (8.85) by its transpose and comparing
entries, which yields the identity and V?0

T V?0 = VT
0 V0 − z0zT

0 . From (8.85) we get for V?0 the
expression V?0 = O11V0 and the identity o21 = v to be used in the next section. As in section
8.3 we expand the identity D?1 = V?0

−T B?1
T to exploit orthogonality of OV and by forming the

inverse of (8.83) explicitly we find





D?1
d



=OV







0 V−T
0

1
δn
− 1
δn

v T V−T
0











0

BT
1 − z0y T

1



=OV







D1− v y T
1

− 1
δn

v T (D1− v y T
1)






(8.86)

As claimed, D1 is updated and its rows are affected by the GIVENS sequence like the rows
of V0. A nontrivial dyadic term is added, though, due to non–orthogonality of O11. We now
compute D?1

T D?1 for the third step. We note 1/(1− v T v) = 1/δ2
n = 1/%2

22.

D?1
T D?1 = B?1V−1

0 O−1
11 O−T

11 V−T
0 B?1

T (8.87)

= B?1V−1
0 (I − o21oT

21)
−1V−T

0 B?1
T

= B?1V−1
0

�

I +δ−2
n v v T

�

V−T
0 B?1

T

= (DT
1 − y1v T)(D1− v y T

1) +δ
−2
n (D

T
1 v − y1v T v)(v T D1− v T v y T

1)

Here we have exploited orthogonality of OV and applied the SHERMAN–MORRISON formula to
find (OT

11O11)−1. Expanding, collecting identical terms and using the identity 1+ δ−2
n v T v =

δ−2
n we find

D?1
T D?1 = DT

1 D1+δ
−2
n (D

T
1 v − y1)(D

T
1 v − y1)

T − y1y T
1 (8.88)

Using this relation, the downdate of the next diagonal block A1 reads

V?1
T V?1 = A?1− D?1

T D?1 − y1y T
1 = A1− DT

1 D1− z1zT
1 = VT

1 V1− z1zT
1 (8.89)

179

CHAPTER 8
�

� U P D AT E S F O R T H E B L O C K S T R U C T U R E D FA C T O R I Z AT I O N

with a vector z1 =
1
δn
(DT

1 v − y1). This vector can be written more conveniently as

zT
1 =

1
δn

v T (D1− v y T
1)−δny1 (8.90)

which allows to reuse intermediate terms from (8.86). Closing the loop by continuing with the
downdate of V1, we eventually obtain the claimed relations for all further blocks by repeating
the argument for the nodes 1, . . . , m− 1. This completes the proof. �

A summary of this downdate procedure for the block tridiagonal CHOLESKY factorization is
given in algorithm 8.8.

Algorithm 8.8: Downdating a block tridiagonal CHOLESKY decomposition.
input : V , D, g , p, i
output: V?, D?

for j = i : m do
v = VT

j−1\p;

if v T v > 1 then error("positive definiteness lost");
δn = sqrt(1− v T v);
p = v T D j/δn− gδn;
g = 0;
V j−1 = [V j−1; zeros(1, nx)];
D j = [D j; −v T D j/δn];
v = [v ; δn];
for k = nx :−1 : 1 do
[s, c] = givens(v , nx+ 1, k);
[v T , VT

j−1, DT
j] = apply([v T , VT

j−1, DT
j], s, c, nx+ 1, k);

end
V j−1 = V j−1[1:nx,:];

D j = D j[1:nx,:];

end

8.4 Summary

In this section we derived fast matrix updates for the HPSC factorization presented in chapter
7. We covered all four cases of active set changes that can arise when solving the QP with
direct multiple shooting block structure by an active set method, namely addition or removal
of a simple bound and addition or removal of a decoupled point constraint. We gave formal
proofs of the matrix update procedures based on established techniques due to [83, 157],
and provided efficient algorithmic realizations. All presented matrix updates have a runtime
complexity that is bounded by O(mn2) and are implemented in our numerical code qpHPSC,
see appendix B. The algorithmic techniques presented in this chapter are key to giving fast
control feedback in Nonlinear Model Predictive Control (NMPC) problems with many control
parameters, such as mixed–integer problems treated by outer convexification.

180

9 Numerical Results

In this chapter we present mixed–integer optimal control problems and mixed–integer model
predictive control problems of the form of definition 2.1. They serve as example applications
used to demonstrate the various theoretical results and the applicability and performance of
the new algorithms presented in this thesis.

In section 9.1 a switched–mode dynamic system is considered to study both the sum–up
rounding approximation theorem and the convexified switch costs formulation of chapter
2 at its example. The problem’s relaxed optimal solution after partial outer convexification
features bang–bang arcs, a path–constrained arc, and a singular arc and sum–up rounding
solutions chatter on the later ones. Solutions obtained by penalization and constraining of
switches of the integer control are presented.
In section 9.2 we study the contractivity estimate for the mixed–integer real–time iteration
scheme of chapter 4 at the example of a nonlinear system with instable steady state. We derive
bounds, LIPSCHITZ constants, and estimates of the contractivity constants required to evaluate
the sampling time estimate. The behavior of the mixed–integer Nonlinear Model Predictive
Control (NMPC) scheme is examined for various sampling times and is found to be in good
accordance with our estimate.
In section 9.3 we investigate an autonomous robot path–following and communication prob-
lem that is frequently studied in the literature and give an Mathematical Program with Vanish-
ing Constraints (MPVC) reformulation of this problem. We show that the nonconvex active set
method developed in this thesis is indeed able solve this problem to optimality. We study the
consequences of constraint violation at the example of an interior point method that fails to
solve a significant number of problem instances if no appropriate reformulation of the MPVC
is used. Our implementation is competitive both in terms of computation time and quality of
the obtained locally optimal solutions.
In section 9.4, a Mixed–Integer Optimal Control Problem (MIOCP) modelling a time–optimal
test driving scenario is presented and the newly developed structure exploiting linear algebra
techniques are compared against various alternative possibilities of solving the block struc-
tured KARUSH–KUHN–TUCKER (KKT) systems. A detailed investigation of the run times for a
large number of problem instances reveals that our algorithmic techniques have significant
performance advantages for all but the smallest problem instances.
Finally in section 9.5 we consider a nonlinear model–predictive cruise controller including
predictive gear shifts, a challenging real–world industrial problem. A vehicle model is derived
from first principles and parameterized by real–world data. The combinatorial nature of the
engine speed constraint depending on the selected gear is identified and a vanishing constraint
formulation is adopted after examination of the reformulations proposed in chapter 5. The
algorithmic techniques for long prediction horizons and many control parameters developed
in chapter 7 and 8 are applied to this problem in order to achieve sampling times and control
feedback delays small enough to verify that our techniques are indeed capable of solving

181

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

this problem on–board the truck under demanding real–time constraints even on a supposed
hardware platform with limited computational power.

9.1 Mixed–Integer Optimal Control with Switch Costs

In this section we investigate a nonlinear switched dynamic system introduced in [60]. We
present a MIOCP formulation due to [185] and solve it using the outer convexification and
relaxation approach. The problem’s relaxed optimal solution features bang–bang arcs, a path
constrained arc, and a singular arc. Convergence of the integer feasible sum–up rounding so-
lution’s objective to that of the relaxed Optimal Control Problem (OCP) with increasingly fine
discretizations of the control trajectory is investigated. The sum–up rounding solutions show
chattering behavior on the path–constrained and the singular arc. We apply our convexified
switch cost formulation to this problem in order to penalize frequent switching and to obtain
solutions that switch only a predefined number of times.

9.1.1 Problem Formulation

We consider a nonlinear MIOCP formulation of the investigated problem on the time horizon
T def
= [t0, tf]

def
= [0,1]⊂ R as presented in [185] is given is (9.1).

min
x (·),w (·)

x3(tf) (9.1)

s. t. ẋ1(t) =−
x1(t)
sin(1)

sin(w1(t))

+
�

x1(t) + x2(t)
�

w2
2(t)

+
�

x1(t)− x2(t)
�

w3
3(t) ∀t ∈ T ,

ẋ2(t) =
�

x1(t) + 2x2(t)
�

w1(t)

+
�

x1(t)− 2x2(t)
�

w2(t)

+
�

x1(t)x2(t)− x3(t)
�

�

w2
2(t)−w3

2(t)
�

+
�

x1(t) + x2(t)
�

w3(t) ∀t ∈ T ,

ẋ3(t) = x2
1(t) + x2

2(t) ∀t ∈ T ,

x1(t)¾ 0.4 ∀t ∈ T ,

w (t) ∈ {(1,0, 0), (0,1, 0), (0,0, 1)} def
= Ω ∀t ∈ T ,

x (t0) =
�

1
2
, 1

2
, 0
�

.

This MIOCP can be relaxed by letting w (t) ∈ [0,1]3 and requiring
∑3

i=1 wi(t) = 1 for all
t ∈ T . This relaxation amounts to inner convexification of the problem and yields a nonlinear
continuous OCP.
The nonlinear Ordinary Differential Equation (ODE) system (9.1) has been specially construc-
tion to include a number of nonlinearities that become apparent in an inner convexification
formulation that relaxes the binary control vector w (t), but vanish if the ODE dynamics are
evaluated in binary feasible choices ωi ∈ Ω only. In the outer convexification reformulation,
we introduce one binary control trajectory ωi(t) ∈ {0, 1} for all t ∈ T per choice ωi found in
the set Ω, and relax these trajectories to αi(t) ∈ [0, 1] for all t ∈ T . The resulting problem is

182

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

given in (9.2).

min
x (·),α(·)

x3(tf) (9.2)

s. t. ẋ1(t) =−x1(t)α1(t)

+ (x1(t) + x2(t))α2(t)

+ (x1(t)− x2(t))α3(t) ∀t ∈ T ,

ẋ2(t) = (x1(t) + 2x2(t))α1(t)

+ (x1(t)− 2x2(t))α2(t)

+ (x1(t) + x2(t))α3(t) ∀t ∈ T ,

ẋ3(t) = x2
1(t) + x2

2(t) ∀t ∈ T ,

x1(t)¾ 0.4 ∀t ∈ T ,

α(t) ∈ [0,1]3 ∀t ∈ T ,
3
∑

i=1

αi(t) = 1 ∀t ∈ T ,

x (t0) =
�

1
2
, 1

2
, 0
�

.

Problem (9.2) is by construction identical to the switched system introduced in [60] with an
additional path constraint on x1(t) introduced to obtain a path–constrained arc.

9.1.2 Optimal Solutions

In table 9.1 the objective function values x3(tf) and the remaining infeasibility of the optimal
solution for the relaxed problem after outer convexification with respect to the integer con-
trol w (t) (9.2), and for the integer feasible solution obtained from the partially convexified
relaxed one by application of sum–up rounding can be found for increasingly fine control dis-
cretizations m. All problems have been solved to an acceptable KKT tolerance of 10−10. As
can be seen clearly from table 9.1, the sum–up rounding solution’s objective converges to that
of the partially convexified relaxed problem while the infeasibility of the control–independent
path constraint converges to zero.

Convexified relaxed Sum–up rounding

m Objective Infeasibility Objective Infeasibility Switches

20 0.9976458 1.19 · 10−13 1.050542 5.29 · 10−2 9

40 0.9956212 3.93 · 10−13 0.9954084 2.13 · 10−4 12

80 0.9955688 1.50 · 10−14 0.9957063 1.37 · 10−4 23

160 0.9955637 1.66 · 10−14 0.9956104 4.66 · 10−5 47

320 0.9955615 1.16 · 10−12 0.9958528 2.91 · 10−4 93

Table 9.1: Objective function values and infeasibilities of the outer convexified relaxed problem (9.2),
and the integer feasible solutions obtained from the latter by sum–up rounding.

183

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

t

x 1
(t
)

0 0.5 1
0.4

0.6

0.8

1

(a) State x1(·) for m= 20.
t

x 2
(t
)

0 0.5 1
0.4

0.6

0.8

1

(b) State x2(·) for m= 20.
t

x 3
(t
)

0 0.5 1
0

0.5

1

(c) State x3(·) for m= 20.

t

α
1
(t
)

0 0.5 1
0

0.5

1

(d) Control α1(·) for m= 20.
t

α
2
(t
)

0 0.5 1
0

0.5

1

(e) Control α2(·) for m= 20.
t

α
3
(t
)

0 0.5 1
0

0.5

1

(f) Control α3(·) for m= 20.

t

x 1
(t
)

0 0.5 1
0.4

0.6

0.8

1

(g) State x1(·) for m= 320.
t

x 2
(t
)

0 0.5 1
0.4

0.6

0.8

1

(h) State x2(·) for m= 320.
t

x 3
(t
)

0 0.5 1
0

0.5

1

(i) State x3(·) for m= 320.

t

α
1
(t
)

0 0.5 1
0

0.5

1

(j) Control α1(·) for m= 320.
t

α
2
(t
)

0 0.5 1
0

0.5

1

(k) Control α2(·) for m= 320.
t

α
3
(t
)

0 0.5 1
0

0.5

1

(l) Control α3(·) for m= 320.

Figure 9.1: Relaxed optimal solutions of the partially convexified problem (9.2) for discretizations m=
20 and m= 320 of the control trajectory.

184

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(a) SUR-0.5 state trajectory x (·) for m= 20.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(b) SUR-0.5 control trajectory ω(·) for m = 20. Con-
trol has 9 switches.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(c) SUR-0.5 state trajectory x (·) for m= 40.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(d) SUR-0.5 control trajectory ω(·) for m = 40. Con-
trol has 12 switches.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(e) SUR-0.5 state trajectory x (·) for m= 80.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(f) SUR-0.5 control trajectory ω(·) for m = 80. Con-
trol has 23 switches.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(g) SUR-0.5 state trajectory x (·) for m= 160.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(h) SUR-0.5 control trajectory ω(·) for m = 160.
Control has 47 switches.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(i) SUR-0.5 state trajectory x (·) for m= 320.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(j) SUR-0.5 control trajectory ω(·) for m= 320. Con-
trol has 93 switches.

Figure 9.2: Sum–up rounding solutions of problem (9.2) for increasingly fine control discretizations
m = 20,40, 80,160, 320. Sum–up rounding state trajectories are colored as x1(t) (—),
x2(t) (—), and x3(t) (—). Chattering between w(t) = 2 and w(t) = 3 occurs on the path
constrained arc and chattering between w(t) = 1 and w(t) = 2 occurs on the singular arc.
The integer control trajectory w(t) =

∑3
i=1 iαi(t) is shown in the right column.

185

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

This would not be the case if we had applied sum–up rounding to the solution of the original
nonlinear problem (9.1). Due to sum–up rounding of the control, the state trajectory x1(t)
violates the path constraint x1(t)¾ 0.4 on the path–constrained arc.
The solutions to the partially convexified and relaxed problem (9.2) are also depicted in figure
9.1 for two choices m= 20 and m= 320 of the control trajectory. Figure 9.2 shows the sum–up
rounding solutions corresponding to table 9.1. On the path–constrained arc and the singular
arc, sum–up rounding leads to chattering of the integer control trajectory.

9.1.3 Switch Cost Formulation

Being interested in solutions to problem (9.1) that avoid frequent switchs of the integer con-
trol trajectory w (t), we address the chattering behavior of the solutions to problem (9.2)
using our convex switch cost formulation of section 2.5. The appropriate formulation after a
direct multiple shooting discretization for problem (9.2) on a horizon T def

= [0,1] divided into
m intervals [t i , t i+1]⊂ T , 0¶ i ¶ m− 1, of length 1/m is

min
x ,α,σ,a

xm,3+π
m−1
∑

i=0

3
∑

j=1

σi, j (9.3a)

s. t. 0= x i(t i+1; x i ,αi)− x i+1, 0¶ i ¶ m− 1, (9.3b)

x i,1 ¾ 0.4, 0¶ i ¶ m,

αi ∈ [0,1]3, 0¶ i ¶ m− 1,
3
∑

j=1

αi j = 1, 0¶ i ¶ m− 1,

x0 =
�

1
2
, 1

2
, 0
�

,

σi, j = ai, j(αi, j +αi+1, j) 0¶ i ¶ m− 1, 1¶ j ¶ 3, (9.3c)

+ (1− ai, j)(2−αi, j −αi+1, j),

σmax ¾
m−1
∑

i=0

3
∑

j=1

σi, j , (9.3d)

ai ∈ [0,1]3, 0¶ i ¶ m− 1.

Herein, the ODE representation of this switched nonlinear system is hidden in the matching
condition notation (9.3b). Changes in one of the three relaxed convex multipliers α j at time
t i ∈ T is indicated by σi, j > 0 according to our convex switch cost formulation (9.3c). The
accumulated sum of switch costs is penalized by a penalty factor π > 0 in the objective (9.3a)
and constrained by an admissible maximum σmax > 0 in (9.3d). Obviously the penalty factor
π may be chosen as zero or the admissible maximum σmax may be chosen sufficiently large if
it is desired to remove either of the two possibilities from the formulation.

9.1.4 Switch Cost Penalizing and Constraining Solutions

In its convexified switch cost formulation, problem (9.3) is solved using a discretization of
m= 100 control intervals and for various penalizations π= 2p, −10¶ p ¶ 3, and switch cost
constraints 8¶ σmax ¶ 12. Objective function values, the number of switches, and the number

186

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

of fractional convex relaxed control multipliers αi, j are listed in table 9.2 for the penalization
and in table 9.3 for the constraining of switches. For comparison, the sum–up rounding so-
lution obtained for (9.2) and m = 100 yields an objective function value of 0.956409 and
switches 29 times.
The penalization approach (9.3) to reduce the total number of switches yields integer feasible
results, consequentially with an integer number of switches, for π ¾ 2−7. For smaller pe-
nalizations, fractional relaxed results are obtained and integer feasible ones are computed by
sum–up rounding. The number of switches coincides with the rounded–up number of switches
computed for the relaxed solution. As has already been observed in [182] for the case of re-
laxations of MIOCPs, the penalization approach does not allow immediate conclusions on the
relation between the penalization π and the resulting optimal solution to be established. In
particular, heavy penalizations p ¾ 1 attracted solutions switching more frequently than those
obtained for 2−4 ¶ p ¶ 2−1.
Numerical results obtained using the constraining approach enforcing a strict upper bound
σmax on the total number of switches are listed in table 9.3 for 9 ¶ σmax ¶ 12. For tighter
constraints, our Sequential Quadratic Programming (SQP) method failed to converge due
to infeasible Quadratic Program (QP) subproblems. Ill–conditioning of the L–BFGS approxi-
mation of the Hessian of the Lagrangian is one reason for this behavior. Approximating the
curvature of the convex switch cost formulation (9.3c) using a secant update accumulates
ill–conditioned information similar to the situation investigated in chapter 5 for the Jacobian
of complementary inequalities. We may expect significantly improved convergence behavior
of our convex switch cost formulation constraining the total number of switches if an exact
Hessian SQP method is used.
An overview over all computed switch cost penalizing or constraining solutions to problem
(9.3) is shown in figure 9.3. For example using a penalization of p = 2−8 for the total switch
cost, the number of switches is reduced to 5 or 17% of the original 29 switches, at the cost
of increasing the objective function value x2(tf) to 1.124183 or 118% of the original value
0.956409.

9.1.5 Summary

In this section we presented a MIOCP formulation for a nonlinear switched dynamic system
which in its outer convexification reformulation coincides with a problem due to [60]. Its
relaxed solution featured bang–bang arcs, a path–constrained arc, and a singular arc. Sum–
up rounding on increasingly fine control discretizations has been investigated and shown to
approximate the relaxed solution’s objective as expected from theorem 2.4. The obtained in-
teger feasible control trajectories showed chattering behavior on the path–constrained and
the singular arc. The convex switch cost formulation proposed in chapter 2 was used to com-
pute relaxed solutions to the (partially) convexified reformulation that penalize or constrain
switches of the control trajectory. With both approaches we obtained integer feasible control
trajectories with only a limited number of switches and analyzed the increase in the objective
function’s value. Future work includes the computation of tighter switch cost constraining
solutions using an exact Hessian SQP method avoiding ill–conditioned secant updates.

187

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

Penalty π Convexified relaxed Sum–up rounding
= 2p, p = Objective Switches # Fractional Objective Infeasibility Switches

3 1.337647 3 0 dto. – dto.
2 1.385266 3 0 dto. – dto.
1 1.232517 2 0 dto. – dto.
0 1.456469 2 0 dto. – dto.
−1 1.693815 1 0 dto. – dto.
−2 1.813649 1 0 dto. – dto.
−3 1.847532 1 0 dto. – dto.
−4 1.813649 1 0 dto. – dto.
−5 1.456299 2 0 dto. – dto.
−6 1.362813 2 0 dto. – dto.
−7 1.310834 3 0 dto. – dto.
−8 1.129062 5.50 2 1.124183 1.36 · 10−4 5
−9 1.021471 8.51 6 1.020104 2.17 · 10−4 9
−10 1.004172 9.78 7 1.003216 3.29 · 10−4 10

Table 9.2: Solutions penalizing the number of switches found for problem (9.3) and m = 100 using
our convex switch cost formulation.

Constraint Convexified relaxed Sum–up rounding
σmax = Objective Switches # Fractional Objective Infeasibility Switches

9 1.025428 9 5 1.043467 0 10
10 1.020497 10 9 1.017587 1.80 · 10−4 11
11 1.015846 11 10 1.017741 7.00 · 10−5 11
12 1.011306 12 13 1.007177 3.27 · 10−4 13

Table 9.3: Solutions constraining the number of switches found for problem (9.3) and m = 100 using
our convex switch cost formulation.

Objective x2(tf)

N
um

be
r

of
sw

it
ch

es

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

5

10

15

Figure 9.3: Objective function values and number of switches for all solutions to (9.3) penalizing (◦)
or constraining (◦) the number of switches

188

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(a) SUR-0.5 state trajectory x (·) for π= 2−6.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(b) SUR-0.5 control trajectory ω(·) for π= 2−6.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(c) SUR-0.5 state trajectory x (·) for π= 2−7.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(d) SUR-0.5 control trajectory ω(·) for π= 2−7.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(e) SUR-0.5 state trajectory x (·) for π= 2−8.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(f) SUR-0.5 control trajectory ω(·) for π= 2−8.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(g) SUR-0.5 state trajectory x (·) for π= 2−9.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(h) SUR-0.5 control trajectory ω(·) for π= 2−9.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(i) SUR-0.5 state trajectory x (·) for π= 2−10.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(j) SUR-0.5 control trajectory ω(·) for π= 2−10.

Figure 9.4: Selected sum–up rounding solutions of problem (9.3) penalizing the total switch cost for
m = 100 and penalties of π = 2−6 to π = 2−10 on the total switch cost of the convexified
relaxed problem’s solution. Sum–up rounding state trajectories are colored as x1(t) (—),
x2(t) (—), and x3(t) (—).

189

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(a) SUR-0.5 state trajectory x (·) for σmax = 9.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(b) SUR-0.5 control trajectory α(·) for σmax = 9. Con-
trol has 10 switches.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(c) SUR-0.5 state trajectory x (·) for σmax = 10.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(d) SUR-0.5 control trajectory α(·) for σmax = 10.
Control has 11 switches.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(e) SUR-0.5 state trajectory x (·) for σmax = 11.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(f) SUR-0.5 control trajectory α(·) for σmax = 11.
Control has 11 switches.

t

x
(t
)

0 0.2 0.4 0.6 0.8 1
0

1

2

(g) SUR-0.5 state trajectory x (·) for σmax = 12.
t

w
(t
)

0 0.2 0.4 0.6 0.8 1
1

2

3

(h) SUR-0.5 control trajectory α(·) for σmax = 12.
Control has 13 switches.

Figure 9.5: Selected sum–up rounding solutions of problem (9.3) constraining the total number of
switches for m = 100 and constraints σmax = 9 to σmax = 12 on the number of switches
of the convexified relaxed problem’s solution. If the relaxed solutions are not integer fea-
sible, sum–up rounding solutions may switch slightly more often. Sum–up rounding state
trajectories are colored as x1(t) (—), x2(t) (—), and x3(t) (—).

190

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

9.2 Mixed–Integer NMPC Scheme Contractivity

In this section we study the application of the contractivity estimates for the mixed–integer
real–time iteration scheme of chapter 4 at the example of a small but nonlinear and instable
problem due to [51]. We demonstrate again the outer convexification reformulation and the
sum–up rounding approximation. We derive certain bounds, LIPSCHITZ constants, and contrac-
tivity constants for this example. The mixed–integer real–time iteration contractivity theorem
and the resulting sampling time bound are evaluated and numerical computations are per-
formed for its verification.

9.2.1 Problem Formulation

We consider this problem in a mixed–integer variant (9.4) in which the control w(t) is allowed
to take one of the three discrete choices {−1,0, 1} only,

min
x(·),w(·)

1
2

∫ 3

0

x2(t) +w2(t) dt (9.4)

s. t. ẋ(t) = (1+ x(t)) x(t) +w(t) ∀t ∈ [0, 3],

x(0) = xmeas,

x(3) = 0,

x(t) ∈ [−1, 1] ∀t ∈ [0, 3],

w(t) ∈ {−1,0, 1} ∀t ∈ [0, 3].

Given an estimated or observed initial state xmeas of the process x(t) on 0s ¶ t ¶ 3s the
purpose of the formulation (9.4) is to steer x(·) back into its steady–state x(·) = 0 by applying
an additive control w(·). The optimal control trajectory achieving this for an initial value of
x(0) = 0.05 is depicted in figure 9.6.

t

x(
t)

0 1 2 3
0

0.05

0.1

(a) Differential state trajectory x(·).
t

w
(t
)

0 1 2 3

-0.1

-0.05

0

0.05

0.1

(b) Relaxed piecewise constant optimal control trajec-
tory w(·).

Figure 9.6: Relaxed optimal solution for problem (9.4), steering the process back from an initial value
x(0) = 0.05 into its unstable steady state within the time interval [0s, 3s].

The steady–state is instable, i.e., any slight deviation ε > 0 will trigger a run–away of the
process. This is depicted in figure 9.7 for an initial value of x(0) = 0.05 and no control

191

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

applied. The process can be steered back into its steady state as long as

ẋ(t) = (1+ x(t))x(t) +w(t)

¨

¶ 0 if x(t)> 0,

¾ 0 if x(t)< 0,
(9.5)

can be satisfied within the bounds of w(t). The applicable control w(·) is bounded by −1 and
1, hence the steady state can be reached only for

|(1+ x(t))x(t)|< 1 ⇐⇒ x(t) ∈
h

−1
2
−
p

5
2

,−1
2
+
p

5
2

i

≈ [−1.618, 0.618]. (9.6)

In the real–time iteration scheme, the first preparation and feedback phase pass without an
appropriate control being available for feedback to the process. In this case, the runaway
behavior further reduces the set of admissible initial values that can be steered back to the
instable steady state.

0 1 2 3
-2

-1

0

1

(a) Instable steady state x(t) = 0 and the stable one
x(t) =−1; no control applied

0 1 2 3
-2

-1

0

1

(b) States below x(t) = 1
2
(−1+

p
5) can be steered

back to the steady state using u(t)¾−1.

Figure 9.7: Vector fields showing stable and instable steady state of problem (9.4).

We apply the outer convexification reformulation to the objective function and the dynamics
of problem (9.4) that depend on the integer control w(·). In problem (9.7) three convex
control multipliers named w−1(·), w0(·) and w1(·) are introduced for the admissible integer
choices of w(·) as follows,

min
x(·),w (·)

1
2

∫ 3

0

x2(t) +w−1(t) +w1(t) dt (9.7)

s. t. ẋ(t) = (1+ x(t)) x(t)−w−1(t) +w1(t) ∀t ∈ [0, 3],

x(0) = xmeas,

x(3) = 0,

x(t) ∈ [−1,1] ∀t ∈ [0, 3],

w (t) ∈ {0,1}3 ∀t ∈ [0, 3],
1
∑

i=−1

wi(t) = 1 ∀t ∈ [0, 3].

The convex multiplier w0(t) lends itself to straightforward elimination, making the SOS–1

192

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

constraint an inequality constraint.

As the steady state is inherently instable, we cannot expect an integer control in {−1, 0,1}
applied on a fixed discretization grid to steer the process back to its steady state. We instead
desire the process to be kept in a close neighborhood of the steady state and expect that fre-
quent integer control feedback needs to be applied to counteract the runaway behavior. This
is shown in table 9.4 and figure 9.8 again for an initial value of x(0) = 0.05 and choices
of increasingly fine equidistant control discretizations. The integer feasible SUR–0.5 solution
succeeds in approximating the solution of the relaxed convexified problem (9.7), while the
relaxed nonlinear one shows a much lower objective, as expected from theorem 2.4. Note
that for m= 320 the sum–up rounding objective is actually better than that of the convexified
relaxed problem, but at the price of violating the end–point constraint. For all relaxed convex-
ified solutions, one of the m relaxed controls is fractional as the optimal time for switching
from −1 to 0 does not coincide with the control discretization grid point times. This could be
further improved by a switching time optimization, see e.g. [122, 182], in which the shoot-
ing interval durations are subject to optimization while the controls are fixed to the SUR-0.5
solution values.

Relaxed Nonlinear Relaxed Convexified RC and SUR–0.5

m Objective Objective # Frac. Objective Infeasibility

20 3.1952 · 10−3 2.7054 · 10−2 1 2.3484 · 10+1 1.7060 · 10+1

40 3.1397 · 10−3 2.6014 · 10−2 1 6.7006 · 10−2 3.1365 · 10−1

80 3.1140 · 10−3 2.5774 · 10−2 1 4.3250 · 10−2 3.5548 · 10−1

160 3.1018 · 10−3 2.5708 · 10−2 1 3.0076 · 10−2 8.5880 · 10−2

320 3.0958 · 10−3 2.5696 · 10−2 1 2.5471 · 10−2 9.2865 · 10−2

640 3.0928 · 10−3 2.5691 · 10−2 1 2.5810 · 10−2 4.2590 · 10−3

1280 3.0913 · 10−3 2.5691 · 10−2 1 2.5809 · 10−2 4.2590 · 10−3

Table 9.4: Objective functions and 1–norms of infeasibilities of the solutions to problem (9.7) shown
in figure 9.8. With increasingly finer granularity of the control discretization, the SUR-0.5
solution succeeds in approaching feasibility of the end point constraint and approximating
the objective of the convexified relaxed problem.

9.2.2 Constants

Problem (9.4) is simple enough to permit carrying out an explicit derivation of certain LIP-
SCHITZ constants and bounds that will be required in the following to demonstrate the con-
tractivity estimate developed for our mixed–integer real–time iteration scheme.

• The bound on the ODE system’s right hand side after convexification f̃ (t, x(t)) =
x2(t) + x(t) on the domain (t, x) ∈ D(x0)

def
= [0, 3] × [−1, x0] depending on the pa-

rameter x0 >−1 is

sup
D
|x2+ x |= |x2

0 + x0| def
= bf̃(x0), bf̃(−1

2
+ 1

2

p
5) = 1. (9.8)

193

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

t

x(
t)

0 1 2 3
0

0.5

1

(a) Differential state trajectory x(·) for m= 20.
t

w
(t
)

0 1 2 3
-1

0

1

(b) SUR-0.5 control trajectory w(·) for m= 20.

t

x(
t)

0 1 2 3
-1

-0.5

0

(c) Differential state trajectory x(·) for m= 40.
t

w
(t
)

0 1 2 3
-1

0

1

(d) SUR-0.5 control trajectory w(·) for m= 40.

t

x(
t)

0 1 2 3
0

0.5

1

(e) Differential state trajectory x(·) for m= 80.
t

w
(t
)

0 1 2 3
-1

0

1

(f) SUR-0.5 control trajectory w(·) for m= 80.

t

x(
t)

0 1 2 3
-1

-0.5

0

(g) Differential state trajectory x(·) for m= 160.
t

w
(t
)

0 1 2 3
-1

0

1

(h) SUR-0.5 control trajectory w(·) for m= 160.

t

x(
t)

0 1 2 3
0

0.5

1

(i) Differential state trajectory x(·) for m= 320.
t

w
(t
)

0 1 2 3
-1

0

1

(j) SUR-0.5 control trajectory w(·) for m= 320.

t

x(
t)

0 1 2 3
-0.1

0

0.1

(k) Differential state trajectory x(·) for m= 640.
t

w
(t
)

0 1 2 3
-1

0

1

(l) SUR-0.5 control trajectory w(·) for m= 640.

Figure 9.8: Sum–up rounding integer solution for problem (9.7) attempting to keep the process in
a neighborhood of its instable steady state, starting from an initial value of x(0) = 0.05
Solutions are shown for different granularities m = 20, 40,80, 160,320, 640 of the control
discretization. Clearly, the choice of m and thus of δt = 3s/m has a decisive influence on
the deviation of the process x(t) from its steady state and on the violation of the control
independent end point constraint at t = 3s, as shown in chapter 2.

194

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

• The local LIPSCHITZ constant on the ODE system’s right hand side after convexification
f̃ (t, x(t)) on D(x0) is

sup
D
|2x + 1|= |2x0+ 1| def

= Af̃(x0), Af̃(−1
2
+ 1

2

p
5) =

p
5. (9.9)

• The two contraction constants κ and ω of theorem 4.3 and the bound β on the norm of
M̃k+1(yk+1) are not easily derived explicitly. We instead compute underestimates after
every SQP iteration of the classical real–time iteration scheme on the problem (9.7)
using definitions 3.12 and 3.13. The maximal underestimators obtained over 100 real–
time iterations for various initial values and control discretizations are shown in figure
9.9 from which we determine κ ¶ 0.34 and ω ¶ 0.56. The norm bound β depends on
m and we find β = 26.67 for m= 20.

xmeas

κ

-0.4 -0.2 0 0.2 0.4 0.6
0

0.5

1

(a) Estimates of contraction constant κ.

xmeas

ω

-0.4 -0.2 0 0.2 0.4 0.6
0

0.5

1

(b) Estimates of contraction constant ω.

Figure 9.9: Maximal underestimators of the contraction constants κ and ω according to definitions
3.12 and 3.13 for the convexified example (9.7), computed for various initial values xmeas
and control discretizations m= 20 (· · ·), m= 40 (· · ·), m= 80 (· · ·), and m= 160 (· · ·).

It is worth noting that figure 9.9 reveals a frequently observed advantage of direct multiple
shooting. As the number m of introduced multiple shooting nodes increases, the nonlinearity
of the boundary value problem estimated by ω decreases, which helps to improve the speed
of convergence. For a special case proof of this property see [6].

9.2.3 Sampling Time Estimate

In figure 9.10 primal state and control component and dual matching condition Lagrange
multiplier components of the NEWTON step modification M̃k+1(yk+1)J k(yk)ek(yk) can be seen
for the worst–case choice eq

k = 1 and increasingly fine control discretizations, i.e., shorter
sampling times δt. Clearly, the primal component sk+1 and the dual one λk belonging to the
matching condition coupling to shooting node k+ 1 dominate the step modification.

With the determined constants, the estimate provided by theorem 4.7 in chapter 4 yields an
upper bound on δt determined by the solution of

β b f̃ δt exp(A f̃ δt)< 2
ω
(1−κ)2, (9.10)

195

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

Shooting Node

0 20 40 60 80
-0.5

0

0.5

1

(a) Primal part; state and control components alter-
nate.

Shooting Node

0 20 40 60 80
0

0.5

1

(b) Matching condition Lagrange multiplier part.

Figure 9.10: State and control part and matching condition Lagrange multiplier part of the term
M̃ k+1(y k+1)J k(y k)ek(y k) for the first mixed–integer real–time iteration of the example
problem (9.4). The modification eq

k = 1 and m = 10 (· · ·), m = 20 (· · ·), m = 40 (· · ·),
m = 80 (· · ·) shooting intervals were chosen. The components of the additional vector
term arising in the κ–condition due to the inexactness introduced to cover rounding of
the control approach zero as the length of the first shooting interval decreases.

for δt, which is not analytically available. For m= 20 shooting intervals and using the worst–
case constants at hand, i.e., κ= 0.34, ω= 0.56, β = 26.67, and if choosing x(t)¶−1

2
+ 1

2

p
5

for all t which leads to b f̃ = 1 and Ad̃ =
p

5, this estimate evaluates to δt < 0.052s. Hence we
may expect the mixed–integer real–time iteration scheme to successfully control the process
for a choice of m = 20 and e.g. δt = 0.05. Figure 9.12 shows the trajectory and controls
produced by 2000 seconds of mixed–integer real–time iterations with δt = 0.05, i.e., 40,000
iterations. The process is successfully kept in a small neighborhood of the instable steady state
x = 0 (figure 9.11a) with a maximum deviation of about 0.03 (figure 9.11b). The computed
integer control trajectory chatters between the three admissible values (figure 9.11d). A dis-
crete FOURIER transformation of the control trajectory (figure 9.11c) clearly reveals periodicity
of the obtained control.

Note, however, that the bound δt < 0.052s is neither a necessary nor a sufficient condition
and will in general not be tight, as we have underestimated the contraction constants κ and
ω, overestimated the quantity (1−κ)||∆ ỹk||, and overestimated the actually applying bounds
and LIPSCHITZ constants by choice of D. In addition, larger bounds on the sampling times
δt are obtained if more restrictive upper bounds imposed on the deviation of x(·) from zero
can be satisfied. Figures 9.12 and 9.13 show trajectories and controls produced with gradually
growing sampling times δt. It is easily seen that the mixed–integer real–time iteration scheme
is able to keep the process in a close neighborhood of the instable steady state as long as the
perturbation of the system state due to rounding does indeed satisfy the increasingly strict
bounds imposed by the larger sampling times. The scheme fails to contract and runaway of
the process is observed within the time bound of 2000 seconds once the respective bound
seen from table 9.5 is violated. Starting with δt = 0.15s in figure 9.13, the system’s behavior
becomes more and more erratic and fails to track the instable steady state.

196

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

t

x(
t)

0 500 1000 1500 2000
-1

0

1

(a) State trajectory x(·) for δt = 0.05s.
t

x(
t)

1000 1002 1004 1006 1008 1010

-0.1

0

0.1

(b) State trajectory detail for t ∈ [1000s, 1010s].

f [Hz]

0 2 4 6 8 10
0

0.5

1

(c) Amplitude spectrum of control trajectory w(·).
t

w
(t
)

1000 1002 1004 1006 1008 1010
-1

0

1

(d) Control trajectory detail for t ∈ [1000s, 1010s].

Figure 9.11: 2000 seconds of successfully contracting mixed–integer real–time iterations that keep the
process (9.7) in a neighborhood of its instable steady state, starting from an initial value
of x(0) = 0.05. As expected from the contractivity estimate, the mixed–integer real–time
iteration scheme is able to control the process for a sampling time of δt = 0.05s. The
chattering integer control exhibits two significant frequencies as shown by the amplitude
spectrum obtained by discrete FOURIER transformation of the computed integer control
trajectory in figure 9.11c.

For the example (9.4, 9.7) at hand, we have chosen to track the instable steady state for which,
due to the exponential runaway behavior of the process, we may expect the derived estimate
to be quite close to the actual bounds on δt that can be observed by numerical computations.
Indeed we can analyze the solution obtained for the first sampling time δt = 0.15s that lead to
failure of the scheme. We find from figure 9.13 that the offending perturbation of the process
is x0 = 0.3875, leading to the maximal underestimators κ = 0.14 and ω = 0.56 for the
contraction constants as seen from figure 9.9, and to b f̃ = 0.54 and A f̃ = 1.78 derived from
equations (9.8) and (9.9). Indeed, for these constants our mixed–integer real–time iteration
contractivity estimate yields the (certainly not tight) upper bound δt < 0.140s, indicating
in agreement with our numerical observations that the chosen sampling time of 0.15s is too
large to expect contractivity of the scheme if faced with a deviation of 0.3875.

x0,max 0.618 0.5 0.4 0.3875 0.3 0.2 0.1

κ 0.34 0.17 0.15 0.15 0.15 0.15 0.15

b f̃ 1.00 0.75 0.56 0.54 0.39 0.24 0.11

A f̃ 2.24 2.00 1.80 1.78 1.60 1.40 1.20

δtmax in s 0.052 0.101 0.136 0.140 0.185 0.275 0.489

Table 9.5: Upper bounds on δt for example (9.7), depending on upper bounds on x(t). The values
ω= 0.56 and β = 26.67 are independent of the bound on x(t).

197

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

9.2.4 Observations

Two noteworthy observations can be made about the obtained integer feedback control trajec-
tories. First, in figures 9.11, 9.12 and 9.13 discrete FOURIER transformations of the chattering
control trajectories are shown in place of the actual trajectory that could not possibly be rep-
resented in print. From these figures, it can be easily seen that all stable feedback schemes
generate controls that exhibit two distinct periodic chattering frequencies. In contrary, the
control does not exhibit such a periodicity for all diverging schemes, as indicated by the obvi-
ous lack of a distinct peak in the amplitude spectrum.
Second, phase diagrams of the process state and integer feedback control as shown in figures
9.14 lead us to the observation that for all stable schemes, one or more small neighborhoods of
process states can be associated with each admissible integer control. The chattering feedback
control trajectories could essentially be generated by a finite state machine with four states
(figure 9.14a for δt = 0.05s) or three states (figures 9.14c and 9.14d for δt ¾ 0.1s). In
figure 9.14b for δt = 0.075s an overlay of both is observed as the sampling time increases.
In contrary, this phenomenon cannot be observed for any of the diverging schemes in figure
9.15. Both observations certainly merit further detailed investigations.

9.2.5 Summary

In this section we investigated the newly developed mixed–integer real–time iteration scheme
of chapter 4 at the example of a small nonlinear system due to [51] that shows finite–time
blowup of the solution if left uncontrolled. This system was to be kept in a neighborhood of
its instable steady state applying one of three possible integer control choices. The simplicity
of the problem allowed to explicitly derive certain bounds and LIPSCHITZ constants and we
provided numerical estimates of required contractivity constants. The developed sampling
time estimate was applied to the problem and the obtained sampling time of 0.05s yielded
a highly periodic chattering integer control that kept the system stable over the whole of
the examined period of 2000 seconds. Tighter bounds on the maximum deviation from the
instable steady state led to larger admissible sampling times and corresponding solutions were
presented. In accordance with the predictions made by our developed sampling time estimate,
the mixed–integer real–time iteration scheme failed to control the investigated system as soon
as its deviation from the instable steady state violated the boundedness assumption used to
derive the sampling time estimate. Future work includes the more detailed investigation of
the chattering behavior of the obtained integer feedback controls.

198

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

t

x(
t)

0 500 1000 1500 2000
-1

0

1

(a) State trajectory x(·) for δt = 0.075s.
t

x(
t)

1000 1002 1004 1006 1008 1010

-0.1

0

0.1

(b) State trajectory detail for t ∈ [1000s, 1010s].

f [Hz]

0 2 4 6 8 10
0

0.5

1

(c) Amplitude spectrum of control trajectory w(·).
t

w
(t
)

1000 1002 1004 1006 1008 1010
-1

0

1

(d) Control trajectory detail for t ∈ [1000s, 1010s].

t

x(
t)

0 500 1000 1500 2000
-1

0

1

(e) State trajectory x(·) for δt = 0.1s.
t

x(
t)

1000 1002 1004 1006 1008 1010

-0.1

0

0.1

(f) State trajectory detail for t ∈ [1000s, 1010s].

f [Hz]

0 2 4 6 8 10
0

0.5

1

(g) Amplitude spectrum of control trajectory w(·).
t

w
(t
)

1000 1002 1004 1006 1008 1010
-1

0

1

(h) Control trajectory detail for t ∈ [1000s, 1010s].

t

x(
t)

0 500 1000 1500 2000
-1

0

1

(i) State trajectory x(·) for δt = 0.125s.
t

x(
t)

1000 1002 1004 1006 1008 1010

-0.1

0

0.1

(j) State trajectory detail for x ∈ [1000s, 1010s].

f [Hz]

0 2 4 6 8 10
0

0.5

1

(k) Amplitude spectrum of control trajectory w(·).
t

w
(t
)

1000 1002 1004 1006 1008 1010
-1

0

1

(l) Control trajectory detail for t ∈ [1000s, 1010s].

Figure 9.12: 2000 seconds of successfully contracting mixed–integer real–time iterations that keep the
process (9.7) in a neighborhood of its instable steady state, starting from an initial value
of x(0) = 0.05.The mixed–integer real–time iteration scheme is able to control the process
also for the larger sampling times δt = 0.075s, δt = 0.1s, and δt = 0.125s. The maxi-
mum deviation of the process trajectory from the instable steady state x(t) = 0 remains
bounded by ±0.1, such that the obtained estimate δt < 0.052 is overly conservative.

199

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

t

x(
t)

0 100 200 300
-1

0

1

(a) State trajectory x(·) for δt = 0.15s.
t

x(
t)

370 375 380 385
-1

0

1

(b) State trajectory near point of divergence.

f [Hz]

0 2 4 6 8 10
0

0.5

1

(c) Amplitude spectrum of control trajectory w(·).
t

w
(t
)

370 375 380 385
-1

0

1

(d) Control trajectory near point of divergence.

t

x(
t)

0 100 200 300 400 500
-1

0

1

(e) State trajectory x(·) for δt = 0.175s.
t

x(
t)

550 555 560 565
-1

0

1

(f) State trajectory near point of divergence.

f [Hz]

0 2 4 6 8 10
0

0.5

1

(g) Amplitude spectrum of control trajectory w(·).
t

w
(t
)

550 555 560 565
-1

0

1

(h) Control trajectory near point of divergence.

t

x(
t)

0 200 400 600 800
-1

0

1

(i) State trajectory x(·) for δt = 0.2s.
t

x(
t)

860 865 870 875
-1

0

1

(j) State trajectory near point of divergence.

f [Hz]

0 2 4 6 8 10
0

0.5

1

(k) Amplitude spectrum of control trajectory w(·).
t

w
(t
)

860 865 870 875
-1

0

1

(l) Control trajectory near point of divergence.

Figure 9.13: Non–contracting mixed–integer real–time iterations failing to keep the process (9.7) in a
neighborhood of its instable steady state, starting from an initial value of x(0) = 0.05. As
expected from the contractivity estimate, the mixed–integer real–time iteration scheme
fails for sampling times δt ¾ 0.15. Note how the amplitude spectrum no longer exhibits
any significant frequency of the erratically chattering integer control.

200

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

x(t)

w
(t
)

-0.1 0 0.1
-1

-0.5

0

0.5

1

(a) δt = 0.05s.

x(t)

w
(t
)

-0.1 0 0.1
-1

-0.5

0

0.5

1

(b) δt = 0.075s.

x(t)

w
(t
)

-0.1 0 0.1
-1

-0.5

0

0.5

1

(c) δt = 0.1s.

x(t)

w
(t
)

-0.1 0 0.1
-1

-0.5

0

0.5

1

(d) δt = 0.125s.

Figure 9.14: Phase space diagrams of the mixed–integer real–time iterates for gradually increasing
sampling times. Choices δt = 0.05s, 0.075s, 0.1s, 0.125s for the sampling time succeed
in controlling the system (9.7).

x(t)

w
(t
)

-1 0 1
-1

-0.5

0

0.5

1

(a) δt = 0.15s.

x(t)

w
(t
)

-1 0 1
-1

-0.5

0

0.5

1

(b) δt = 0.175s.

x(t)

w
(t
)

-1 0 1
-1

-0.5

0

0.5

1

(c) δt = 0.2s.

Figure 9.15: Phase space diagrams of the mixed–integer real–time iterates for gradually increasing
sampling times. Choices δt = 0.15s, 0.175s, 0.2s for the sampling time result in state
trajectories that ultimately violate the estimated upper bound on the system state x(t)
derived from the choice of δt (indicated by the leftmost dotted line). The solutions quickly
diverge after this happened for the first time.

201

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

9.3 OCPs and NLPs with Vanishing Constraints

In this section we investigate an autonomous robot path–following and communication prob-
lem that has frequently been studied in the literature, see e.g. [2] and the references found
therein. We give an Nonlinear Program (NLP) formulation of this problem that includes van-
ishing constraints that model communication restrictions. These constraints violate constraint
qualifications and lead to severe ill–conditioning as detailed in chapter 5. We give a reformu-
lation of this problem as an ODE dynamic optimal control problem with vanishing constraints.
We show that the nonconvex active set SQP method developed in this thesis is indeed able
solve this problem to optimality, even though it is unrelated to the outer convexification re-
formulation for which our method has been developed. We compared the obtained solutions
to those obtained for the ill–posed NLP formulation using the popular interior point method
IPOPT [213, 214].

9.3.1 A Multiple Robot Path Coordination Problem

The multiple robot path coordination problem arises in autonomous exploration and surveil-
lance of areas by a swarm of autonomous vehicles referred to as robots. These robots shall
traverse the designated area on predefined paths and can decide autonomously on accelera-
tion or braking.

b

s

x

y
a, v

Figure 9.16: Schematic of a single robot with states and controls.

The swarm of n > 1 robots shall maintain a communication network which, for the purpose
of our investigation, is modelled by a maximum transmission or communication radius T > 0,
and a minimum connectivity K > 0. At all times, each of the n robots may communicate with
one or more of the other robots inside its communication radius. The swarm is expected to
maintain connectivity by ensuring at all times that each robot can communicate with at least
K other robots. The goal is for all robots to reach the final point of their respective predefined
paths under these constraints. This of course may mean for some of the robots to advance
slower or to wait in appropriate positions in order to uphold connectivity of the entire swarm.

202

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

x

y

0 2 4 6 8 10
0

2

4

6

Figure 9.17: Predefined paths to be completed by the swarm of ten robots, cf. [2].

In this section, we present a variant of an NLP formulation for this problem due to [2] and
develop an ODE dynamic optimal control problem formulation with vanishing constraints.
Obviously, decreasing the communication radius T or increasing the connectivity requirement
K increases the difficulty of this problem as the set of feasible solutions shrinks until the
problem becomes infeasible for too small values of T or too large values of K . A specific
instance of this problem for n = 10 robots is given by the predefined paths whose cartesian
coordinates (x , y) ∈ R2 in the plane are described by the piecewise cubic spline paths found
in tables 9.9 and 9.10 and depicted in figure 9.17.

Snapshots of the optimal solution of this particular problem for T = 2.5 and K = 2 at different
times t ∈ [t0, tf] are shown in figure 9.18. Circles denote the communication radius of each
robot. Note the active communication constraint for the lower right robot at t ∈ [0.6h, 0.7h]
and at t = 0.9h.

9.3.2 NLP Problem Formulation and Solution

Our NLP formulation of this multiple robot path coordination problem is given in (9.11). An
overview of the variables used in this formulation can be found in table 9.6. In all equations
we assume i ∈ {1, . . . , m}, j, j1, j2 ∈ {1, . . . , n}.

Variable Dimension Description

a m× n ai, j is the acceleration of robot j in [τi−1,τi]

c m× n× n ci, j1, j2 > 0 if robots j1 and j2 can communicate at time τi

h 1 The length in seconds of each of the m time intervals

s m× n si, j gives the spline parameter of the position of robot j at time τi

v m× n vi, j is the tangential velocity of robot j at time τi

(x , y) m× n (x i, j , yi, j) are the cartesian coordinates of robot j at time τi

Table 9.6: Variables of the NLP formulation for the robot path coordination problem.

203

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

min
a,c,s ,

v ,x ,y ,h

hm (9.11a)

s. t. x i, j =
3
∑

l=0

αx, j,k,l(si, j −τ j,k−1)
l ∀i, j, si, j ∈ [τ j,k−1,τ jk], (9.11b)

yi, j =
3
∑

l=0

αy, j,k,l(si, j −τ j,k−1)
l ∀i, j, si, j ∈ [τ j,k−1,τ jk], (9.11c)

0= xmj − ex, j ∀ j, (9.11d)

0= ymj − ey, j ∀ j, (9.11e)

K + 1¶
n
∑

j2=1

ci, j1, j2 ∀i, j1, (9.11f)

0¶ (T − di, j1, j2)ci, j1, j2 ∀i, j1, j2, (9.11g)

si, j = si−1, j +
h
2
(vi, j−1+ vi, j) ∀i, j, (9.11h)

vi, j = vi−1, j + hai, j ∀i, j, (9.11i)

0¶ si, j ¶ τ j,5 ∀i, j, (9.11j)

0¶ vi, j ¶ 0.5 ∀i, j, (9.11k)

−1¶ ai, j ¶ 0.5 ∀i, j, (9.11l)

0¶ ci, j ¶ 1 ∀i, j. (9.11m)

In addition, we define the initial positions, velocities, and start point of the spline parameter-
ization as

s0, j
def
= 0, v0, j

def
= 0, τ j,0

def
= 0. (9.12)

We further require the definitions of the two distance functions di, j of robot j to the endpoint
and di, j1, j2 of robot j1 to robot j2,

di, j
def
=
Æ

(x i j − ex, j)2+ (yi j − ey, j)2, (9.13a)

di, j1, j2
def
=
Æ

(x i, j1 − x i, j2)
2+ (yi, j1 − yi, j2)

2, (9.13b)

wherein (ex, j , ey, j) ∈ R2 are the terminal points of the n spline paths.

In problem (9.11) we have discretized the time horizon required for completion of the sce-
nario into m > 0 intervals of equidistant length h subject to optimization The optimal objec-
tive then is tmax = hm. Constraints (9.11b) and (9.11c) determine the cartesian coordinates
of robot j at time point i required for distance computations, given the robot’s advance si j on
the spline path. Constraints (9.11d) and (9.11e) ensure that all robots actually have arrived at
their final destinations (ex, j , ey, j) at the end of the time horizon. The mentioned communica-
tion constraint is (9.11f) which requires each robot j1 to be within the communication range
of at least K other robots. This communication range is computed in (9.11g) which forces
the communication flag ci, j1, j2 to zero if the pair (j1, j2) of robots is farther apart than the
transmission radius T . This constraint takes the shape of a vanishing constraint as presented

204

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

in chapter 5. Note that in this case there is no outer convexification reformulation behind this
constraint. Constraint (9.11h) and (9.11i) are discretizations of the integration of the accel-
eration and the tangential velocity v(t) along the spline path. Constraints (9.11j), (9.11k),
and (9.11l) impose simple upper and lower bounds on the position of the robot on the spline
path, the tangential velocity of the robot, and the acceleration of the robot.

Problem (9.11) is a variation of the formulation presented in [2]. It differs in allowing for
fractional objective function values tmax = hm whereas the reference employed a formulation
that is restriced to integral ones. In order to achieve better comparability to our ODE dynamic
formulation, we introduced acceleration of the robots as independent variables and modified
(9.11h) accordingly, whereas the reference imposed a secant constraint on the velocities.

6
(a) t = 0s.

6
(b) t = 0.1h.

6
(c) t = 0.2h.

6
(d) t = 0.3h.

6
(e) t = 0.4h.

6
(f) t = 0.5h.

6
(g) t = 0.6h.

6
(h) t = 0.7h.

6
(i) t = 0.8h.

6
(j) t = 0.9h.

6
(k) t = tf.

Figure 9.18: Snapshots of the optimal solution to problem (9.11) for a communication radius T = 2.5
and constraint K = 2 at different times t ∈ [0s, tf], where tf = h= 7.995748s.

205

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

Choice of Initial Values

Problem (9.11) may for certain choices of the constraint parameters T and K have several
local minima due to nonlinearity of the spline paths. The choice of initial values therefore is
crucial to maintain comparability. We choose for all computations

a = 0, c = 1, s = 0, v = 1, (x , y) = (0,0). (9.14)

NLP Solutions by IPOPT

Choosing a discretization of m = 10 intervals and a swarm of n = 10 robots, the NLP formu-
lation of this problem has 1461 unknowns and 920 inequality constraints, 450 of which are
vanishing constraints, and 380 equality constraints.

The time optimal solution for this formulation in absence of any communication constraint
(i.e., K = 0), and hence in absence of any combinatorial structure in the problem, is 7.99575
seconds after 30 interior point iterations. Table 9.7 lists the solutions found by IPOPT (version
3.6) for choices of the maximal communication distance T from 2 to 5 in steps of one half,
and for choices of the communication constraint K from 1 to 9. For all problem instances that
could be solved successfully, the objective function tmax is shown together with the number of
required interior point iterations.

Failure to converge to a locally optimal solution is indicated by (F). For these instances IPOPT
without exception terminates with the message “Restoration phase converged to a feasible
point that is unacceptable to the filter for the original problem. Restoration phase in the
restoration phase failed.”, indicating high degeneracy, wrong derivatives, or lack of constraint

Radius T Communication Constraint K

1 2 3 4 5 6 7 8 9

2.0 (F)

6512

2.5 (F) 24.1320 26.2376 33.2259

2935 2233 2026 1755

3.0 (F) (F) (F) 20.2341 22.3159

200 160 185 1774 1202

3.5 (F) (F) (F) (F) 17.9407

2415 1533 1691 1022 1045

4.0 7.99575 7.99575 7.99575 (F) (F) 25.7857 25.8223 42.5870

1580 868 2412 866 1905 406 506 417

4.5 (F) (F) 7.99575 (F) 7.99575 7.99575 7.99575 30.9573 37.4242

166 126 1197 164 409 993 1363 73 55

5.0 7.99575 7.99575 7.99575 7.99575 (F) 7.99575 7.99575 7.99575 20.4304

339 397 363 379 91 474 373 567 41

Table 9.7: Objective function values and iteration counts for the locally optimal solutions found by AMPL
and IPOPT (version 3.6) for NLP (9.11). Failure to converge to a locally optimal solution is
indicated by (F). Solutions that are better than the ones found by our software package
MuShROOM are printed in boldface, all others are inferior ones or are identical.

206

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

qualification as is the case for the problem at hand. Empty cells belong to instances that have
been found infeasible by the AMPL presolve step.

From table 9.7 it can be clearly deduced that the violations of constraint qualification due
to the combinatorial structure of the problem pose a significant challenge to this pure NLP
solver. For low values of the communication constraint K that do not cut off a significant
part of the possible combinatorial choices, the iteration counts grow noticably and failures of
convergence can be observed for 15 of the 41 instances. In addition, inconsistencies can be
seen in table 9.7 for instances (T, K) = (4.0,4), (4.0,5), (4.5, 4) and (5.0, 4) which failed to
converge to a locally optimal solution even though all adjacent instances did.

We close this investigation with the important note that the observed behavior of IPOPT is
expected and can be understood from our analysis in chapter 5. We refer to e.g. [3, 105] for
techniques for numerically efficient treatment of vanishing constraints in an interior point
method; techniques that clearly cannot be expected to be present in the default configuration
of IPOPT.

9.3.3 Dynamic Optimal Control Problem Formulation and Solution

We now give an ODE dynamic optimal control problem formulation for (9.11) that fits into
the general problem class (1.16) of chapter 1. In all equations we again assume i ∈ {1, . . . , m},
j, j1, j2 ∈ {1, . . . , n}, and the normalized time horizon is T def

= [0, 1]⊂ R.

min
a(·),s(·),v(·)

c(·),x (·),y(·),h

h (9.15)

s. t. ṡ j(t) = hv j(t) ∀t ∈ T , ∀ j,

v̇ j(t) = ha j(t) ∀t ∈ T , ∀ j,

x j(t) =
3
∑

l=0

αx, j,k,l(s j(t)−τ j,k−1)
l ∀t ∈ T , ∀ j, s j(t) ∈ [τ j,k−1,τ jk],

y j(t) =
3
∑

l=0

αy, j,k,l(s j(t)−τ j,k−1)
l ∀t ∈ T , ∀ j, s j(t) ∈ [τ j,k−1,τ jk],

0= x j(tf)− ex, j ∀ j,

0= y j(tf)− ey, j ∀ j,

K + 1¶
n
∑

j2=1

c j1, j2(t) ∀t ∈ T , ∀ j1,

0¶
�

T − d j1, j2(t)
�

c j1, j2(t) ∀t ∈ T , ∀ j1, j2,

0¶ s j(t)¶ τ j,5 ∀t ∈ T , ∀ j,

0¶ v j(t)¶ 0.5 ∀t ∈ T , ∀ j,

−1¶ a j(t)¶ 0.5 ∀t ∈ T , ∀ j,

0= s j(t0) ∀ j,

0= v j(t0) ∀ j,

0¶ c j(t)¶ 1 ∀t ∈ T , ∀ j.

207

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

Note again the vanishing constraint defining the communication function c j1, j2(t) for the pair
(j1, j2) of robots. After applying a direct multiple shooting discretization with m= 10 shooting
intervals, all constraints are enforced in the shooting nodes only, as was the case for the
time–discrete NLP (9.11). The ODE defining s(·) and v(·) is solved by a fixed–step 4th–order
RUNGE–KUTTA method, differing from (9.11) which used a single EULER step. As the exact
solution to the ODEs is quadratic in a j(t) which is constant on each shooting interval, the
obtained numerical solutions are identical up to machine precision.

Optimal Control Problem Solutions by MuShROOM

The ODE dynamic optimal control problem formulation (9.15) with n= 10 robots has nx = 21
differential state trajectories (including the Lagrangian objective) and nu = 55 control trajec-
tories. The multiple shooting discretization of the OCP with m= 10 multiple shooting intervals
has 836 unknowns, 550 inequality constraints of which 450 are vanishing constraints, and 10
equality constraints.
The time optimal solution for this formulation in absence of any communication constraint
(i.e., K = 0), and hence in absence of any combinatorial structure in the problem, is 7.995748
seconds after 14 SQP iterations and agrees up to the sixth digit with the one found by IPOPT

for the NLP formulation. Table 9.8 lists the solutions found by our nonconvex SQP method of
chapter 6 for choices of the maximal communication distance T from 2 to 5 in steps of one
half, and for choices of the communication constraint K from 1 to 9.
For all problem instances that could be solved successfully, the objective function tmax is shown
together with the number of SQP and nonconvex SQP iterations. Failure to converge to a

Radius T Communication Constraint K

1 2 3 4 5 6 7 8 9

2.0 28.0376

15/1254

2.5 7.99575 7.99575 33.5581 52.44043

14/1014 15/728 10/914 13/1004

3.0 7.99575 7.99575 9.88516 10.01863 (F)

13/818 14/659 19/773 47/11257

3.5 7.99575 7.99575 7.99575 8.97033 17.9407

13/751 13/760 14/792 23/1823 15/1294

4.0 7.99575 7.99575 7.99575 7.99575 7.99575 12.1859 25.8223 42.5870

13/644 13/645 13/658 13/667 13/725 13/649 9/1096 15/1459

4.5 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575 16.7284 (F)

13/658 12/632 13/636 13/630 13/692 18/951 14/1035 14/1381

5.0 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575 (F)

13/624 13/599 13/602 13/594 13/625 13/652 13/773 12/891

Table 9.8: Objective function values and SQP and QPVC iteration counts for the locally optimal solu-
tions found for problem (9.15) by the software package MuShROOM developed in this thesis.
Instances found to be infeasible by the AMPL presolve step have not been evaluated. Termi-
nation due to infeasibility of a QPVC subproblem is indicated by (F). Solutions better than
the ones found by IPOPT are printed in boldface, all others are identical or inferior ones.

208

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

locally optimal solution due to infeasibility of a Quadratic Program with Vanishing Constraints
(QPVC) subproblem is indicated by (F). Again, empty cells belong to instances that have been
found infeasible by the AMPL presolve step.
As can be seen from table 9.8 our nonconvex active set method succeeds in identifying an
optimal solution of problem (9.15) for 38 of the 41 instances, and finds the globally optimal
one resp. one that equals or beats the one identified by IPOPT in 36 of the 41 instances.
Notably different from the previous table 9.7, we manage to find a solution for all cases with
low values of K that contain most of the combinatorial structure of the feasible set. Most QPVC
iteration counts are smaller than the respective interior point iteration counts, which shows
a performance advantage given that an active set exchange is significantly cheaper than an
interior point iteration. We fail to identify a solution for the largest feasible choice of K in
three cases, and converge to a locally optimal solution that is inferior to the one found by
IPOPT in two further cases. This may be attributed to the lack of an efficient globalization
strategy in our nonconvex SQP algorithm, which has been omitted from the investigations in
this thesis in view of the targeted model–predictive application.

9.3.4 Summary

In this section we investigated an NLP and an OCP formulation of a multi–robot pathfind-
ing and communication problem frequently considered in the literature, cf. e.g. [2] and the
references found therein. The problem features combinatorial constraints on the communi-
cation ability of the robot swarm and can in its NLP or direct multiple shooting discretized
OCP variant be cast as a MPVC. By varying the communication radius and connectivity con-
straint, 41 feasible instances of this problem were created. We demonstrated the findings of
our investigation in chapter 5 at the example of a popular interior point method without pro-
vision for MPVC and — as expected — found this method to fail on a significant number of
the examined problem instances. It should be noted that appropriate relaxation schemes as
e.g. briefly presented in chapter 5 can be employed to ensure convergence of interior point
method on MPVC, cf. e.g. [3, 105] for details. We examined the numerical behavior of our
developed nonconvex SQP and active set QP algorithms and could solve to optimality all but
three problem instances. Future work includes a globalization method for our nonconvex SQP
algorithm that promises to allow for the solution of the remaining three unsolved instances.

209

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

Path Pc. Endtime Cubic Spline Coefficients
j k τ j,k αx, j,k,0 αx, j,k,1 αx, j,k,2 αx, j,k,3

1 1 2.453106 4.477237 · 10−3 −4.463778 · 10−2 1.081046 · 10+0 3.182241 · 10+0

2 6.192309 4.477237 · 10−3 −1.168837 · 10−2 9.428721 · 10−1 5.631637 · 10+0

3 6.499764 −1.617869 · 10+0 3.853553 · 10−2 1.043259 · 10+0 9.227876 · 10+0

4 6.717541 1.797329 · 10+0 −1.453731 · 10+0 6.081502 · 10−1 9.505253 · 10+0

5 7.094522 1.797329 · 10+0 −2.794821 · 10−1 2.306972 · 10−1 9.587312 · 10+0

2 1 0.719730 1.974769 · 10−1 −5.900103 · 10−1 8.137196 · 10−1 2.196213 · 10+0

2 1.755341 1.974769 · 10−1 −1.636201 · 10−1 2.713092 · 10−1 2.549865 · 10+0

3 4.545408 −1.059837 · 10−1 4.499077 · 10−1 5.677917 · 10−1 2.874689 · 10+0

4 5.395421 1.008450 · 10−1 −4.371970 · 10−1 6.032553 · 10−1 5.659279 · 10+0

5 9.042091 1.008450 · 10−1 −1.800383 · 10−1 7.859725 · 10−2 5.918103 · 10+0

3 1 0.701435 −3.607221 · 10−2 2.278598 · 10−1 7.517282 · 10−1 4.341381 · 10+0

2 5.294225 −3.607221 · 10−2 1.519529 · 10−1 1.018142 · 10+0 4.968329 · 10+0

3 6.705357 1.944934 · 10−1 −3.450634 · 10−1 1.312257 · 10−1 9.355053 · 10+0

4 7.109989 −4.585450 · 10−1 4.783041 · 10−1 3.192459 · 10−1 9.399629 · 10+0

5 7.831900 −4.585450 · 10−1 −7.832159 · 10−2 4.810916 · 10−1 9.576739 · 10+0

4 1 0.463724 2.987846 · 10−1 −7.525442 · 10−1 6.660323 · 10−1 7.327532 · 10−2

2 4.404544 2.987846 · 10−1 −3.368831 · 10−1 1.608383 · 10−1 2.500980 · 10−1

3 4.404545 −7.554764 · 10−2 4.641145 · 10−1 2.745345 · 10−1 3.380200 · 10−1

4 5.526758 4.259639 · 10−2 −2.265124 · 10−1 9.985563 · 10−1 3.346500 · 10+0

5 9.483206 4.259639 · 10−2 −8.310577 · 10−2 6.510987 · 10−1 4.242031 · 10+0

5 1 2.993341 1.061627 · 10−1 −9.091490 · 10−1 2.542810 · 10+0 1.766382 · 10+0

2 4.243686 1.061627 · 10−1 4.419476 · 10−2 −4.629289 · 10−2 4.079171 · 10+0

3 6.125856 −1.137983 · 10−1 4.424149 · 10−1 5.621371 · 10−1 4.297902 · 10+0

4 6.252180 9.410743 · 10−2 −2.001483 · 10−1 1.018124 · 10+0 6.164449 · 10+0

5 7.109012 9.410743 · 10−2 −1.644841 · 10−1 9.720620 · 10−1 6.290058 · 10+0

6 1 0.533397 −1.727867 · 10−2 1.314124 · 10−1 6.990012 · 10−1 6.813538 · 10−1

2 3.181970 −1.727867 · 10−2 1.037633 · 10−1 8.244431 · 10−1 1.088965 · 10+0

3 4.697061 −6.571663 · 10−3 −3.352815 · 10−2 1.010466 · 10+0 3.679426 · 10+0

4 7.956284 1.283920 · 10−2 −6.339815 · 10−2 8.636139 · 10−1 5.110555 · 10+0

5 9.629187 1.283920 · 10−2 6.213927 · 10−2 8.595110 · 10−1 7.696325 · 10+0

7 1 2.117809 2.610206 · 10−2 −1.407050 · 10−1 5.908824 · 10−1 7.995148 · 10−1

2 4.439924 2.610206 · 10−2 2.513259 · 10−2 3.461221 · 10−1 1.667747 · 10+0

3 5.377170 −9.408543 · 10−2 2.069685 · 10−1 8.850872 · 10−1 2.933834 · 10+0

4 6.393691 9.362890 · 10−3 −5.757535 · 10−2 1.025105 · 10+0 3.867726 · 10+0

5 10.84583 9.362890 · 10−3 −2.902265 · 10−2 9.370768 · 10−1 4.860108 · 10+0

8 1 2.139324 4.671267 · 10−2 −4.713362 · 10−1 1.698084 · 10+0 5.740170 · 10−1

2 4.437165 4.671267 · 10−2 −1.715356 · 10−1 3.227733 · 10−1 2.506968 · 10+0

3 5.238881 3.830499 · 10−2 1.504793 · 10−1 2.743893 · 10−1 2.909683 · 10+0

4 6.947479 −2.736644 · 10−2 2.426085 · 10−1 5.895342 · 10−1 3.246125 · 10+0

5 11.99107 −2.736644 · 10−2 1.023337 · 10−1 1.178902 · 10+0 4.825149 · 10+0

9 1 0.327073 8.628040 · 10−2 2.607762 · 10−3 9.145666 · 10−1 2.302828 · 10+0

2 0.613287 8.628040 · 10−2 8.726778 · 10−2 9.439624 · 10−1 2.605257 · 10+0

3 2.996172 −7.160251 · 10−2 1.613518 · 10−1 1.015121 · 10+0 2.884604 · 10+0

4 4.260422 1.002396 · 10−1 −3.505099 · 10−1 5.643789 · 10−1 5.250891 · 10+0

5 6.974522 1.002396 · 10−1 2.967373 · 10−2 1.587619 · 10−1 5.606730 · 10+0

10 1 0.850283 −8.839177 · 10−2 3.401199 · 10−1 7.238078 · 10−1 1.928650 · 10+0

2 2.830360 −8.839177 · 10−2 1.146459 · 10−1 1.110487 · 10+0 2.735654 · 10+0

3 3.746608 2.911314 · 10−1 −4.104217 · 10−1 5.248285 · 10−1 4.697786 · 10+0

4 5.573033 −6.543230 · 10−2 3.898242 · 10−1 5.059561 · 10−1 5.058044 · 10+0

5 8.198829 −6.543230 · 10−2 3.130260 · 10−2 1.275113 · 10+0 6.883866 · 10+0

Table 9.9: Spline data for the x coordinates of the predefined robot paths, cf. [2]. For each of the ten
robots, a piecewise cubic spline path with five pieces is given according to equations (9.11b)
and (9.11c).

210

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

Path Pc. Endtime Cubic Spline Coefficients
j k τ j,k αy, j,k,0 αy, j,k,1 αy, j,k,2 αy, j,k,3

1 1 2.453106 −4.824523 · 10−3 7.705987 · 10−2 −1.050283 · 10−1 1.705615 · 10−1

2 6.192309 −4.824523 · 10−3 4.155467 · 10−2 1.859457 · 10−1 3.054211 · 10−1

3 6.499764 1.490503 · 10+0 −1.256496 · 10−2 2.943441 · 10−1 1.329485 · 10+0

4 6.717541 −1.679867 · 10+0 1.362223 · 10+0 7.093035 · 10−1 1.462114 · 10+0

5 7.094522 −1.679867 · 10+0 2.647167 · 10−1 1.063613 · 10+0 1.663839 · 10+0

2 1 0.719730 −2.184328 · 10−1 5.854056 · 10−1 5.627694 · 10−1 1.888007 · 10−2

2 1.755341 −2.184328 · 10−1 1.137676 · 10−1 1.065985 · 10+0 6.457309 · 10−1

3 4.545408 1.335763 · 10−1 −5.648668 · 10−1 5.988219 · 10−1 1.629082 · 10+0

4 5.395421 −1.162024 · 10−1 5.531931 · 10−1 5.662514 · 10−1 1.803814 · 10+0

5 9.042091 −1.162024 · 10−1 2.568724 · 10−1 1.254818 · 10+0 2.613463 · 10+0

3 1 0.701435 2.820936 · 10−2 −1.978950 · 10−1 5.733788 · 10−1 1.545459 · 10−1

2 5.294225 2.820936 · 10−2 −1.385340 · 10−1 3.373959 · 10−1 4.691027 · 10−1

3 6.705357 −1.021893 · 10−1 2.501451 · 10−1 8.500022 · 10−1 1.829390 · 10+0

4 7.109989 1.675799 · 10−1 −1.824629 · 10−1 9.455107 · 10−1 3.239818 · 10+0

5 7.831900 1.675799 · 10−1 2.096161 · 10−2 8.801621 · 10−1 3.603629 · 10+0

4 1 0.463724 −2.259429 · 10−1 4.635446 · 10−1 7.580771 · 10−1 3.218164 · 10−1

2 4.404544 −2.259429 · 10−1 1.492190 · 10−1 1.042231 · 10+0 7.505051 · 10−1

3 4.404545 8.425308 · 10−2 −4.565006 · 10−1 7.676383 · 10−1 1.639787 · 10+0

4 5.526758 −6.504696 · 10−2 3.137081 · 10−1 3.325207 · 10−1 2.124036 · 10+0

5 9.483206 −6.504696 · 10−2 9.471852 · 10−2 7.908623 · 10−1 2.800338 · 10+0

5 1 2.993341 −9.665596 · 10−2 7.819162 · 10−1 −8.396571 · 10−1 1.054661 · 10+0

2 4.243686 −9.665596 · 10−2 −8.605649 · 10−2 1.243288 · 10+0 2.954950 · 10+0

3 6.125856 1.124010 · 10−1 −4.486164 · 10−1 5.747627 · 10−1 4.186014 · 10+0

4 6.252180 1.341168 · 10−1 1.860571 · 10−1 8.058147 · 10−2 4.428020 · 10+0

5 7.109012 1.341168 · 10−1 2.368838 · 10−1 1.340092 · 10−1 4.441439 · 10+0

6 1 0.533397 3.886394 · 10−2 −2.816279 · 10−1 7.841650 · 10−1 7.123465 · 10−1

2 3.181970 3.886394 · 10−2 −2.194382 · 10−1 5.168980 · 10−1 1.056389 · 10+0

3 4.697061 8.927566 · 10−3 8.936378 · 10−2 1.723862 · 10−1 1.608161 · 10+0

4 7.956284 −3.007048 · 10−2 1.299420 · 10−1 5.046544 · 10−1 2.105525 · 10+0

5 9.629187 −3.007048 · 10−2 −1.640772 · 10−1 3.934001 · 10−1 4.089544 · 10+0

7 1 2.117809 −5.211729 · 10−2 3.251461 · 10−1 4.572550 · 10−1 9.688517 · 10−2

2 4.439924 −5.211729 · 10−2 −5.977349 · 10−3 1.133194 · 10+0 2.028540 · 10+0

3 5.377170 1.913342 · 10−1 −3.690442 · 10−1 2.623508 · 10−1 3.975136 · 10+0

4 6.393691 −2.893632 · 10−2 1.689379 · 10−1 7.480168 · 10−2 4.054370 · 10+0

5 10.84583 −2.893632 · 10−2 8.069480 · 10−2 3.285583 · 10−1 4.274579 · 10+0

8 1 2.139324 −2.624566 · 10−2 2.979107 · 10−1 −8.869163 · 10−2 2.013635 · 10−1

2 4.437165 −2.624566 · 10−2 1.294668 · 10−1 8.256073 · 10−1 1.118101 · 10+0

3 5.238881 −8.699898 · 10−2 −5.145824 · 10−2 1.004859 · 10+0 3.380377 · 10+0

4 6.947479 2.495162 · 10−2 −2.607037 · 10−1 7.545934 · 10−1 4.108083 · 10+0

5 11.99107 2.495162 · 10−2 −1.328068 · 10−1 8.224211 · 10−2 4.760762 · 10+0

9 1 0.327073 3.797745 · 10−2 −3.016288 · 10−1 4.754113 · 10−1 1.076684 · 10+0

2 0.613287 9.189236 · 10−2 −2.317556 · 10−1 1.482934 · 10−1 1.263559 · 10+0

3 2.996172 9.189236 · 10−2 −2.317556 · 10−1 1.482934 · 10−1 1.263559 · 10+0

4 4.260422 −1.170335 · 10−1 4.251512 · 10−1 6.091328 · 10−1 1.544321 · 10+0

5 6.974522 −1.170335 · 10−1 −1.872768 · 10−2 1.122954 · 10+0 2.757460 · 10+0

10 1 0.850283 1.321956 · 10−1 −5.503894 · 10−1 6.873854 · 10−1 6.399094 · 10−1

2 2.830360 1.321956 · 10−1 −2.131784 · 10−1 3.813679 · 10−2 9.077261 · 10−1

3 3.746608 −4.211263 · 10−1 5.720942 · 10−1 7.488177 · 10−1 1.173704 · 10+0

4 5.573033 1.074587 · 10−1 −5.854745 · 10−1 7.365581 · 10−1 2.016156 · 10+0

5 8.198829 1.074587 · 10−1 3.321288 · 10−3 −3.267010 · 10−1 2.063089 · 10+0

Table 9.10: Spline data for the y coordinates of the predefined robot paths, cf. [2]. For each of the
ten robots, a piecewise cubic spline path with five pieces is given according to equations
(9.11b) and (9.11c).

211

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

9.4 Block Structured Factorization and Updates

In this section we investigate the performance of our block structured active set QP solver
qpHPSC at the example of a nonlinear time optimal mixed–integer control problem treated in
our papers [119, 120, 122, 186] and in [80, 81] who also gives run times for a branch &
bound based solution approach and a switching time optimization approach.

9.4.1 Vehicle Model

We give a brief description of the nonlinear vehicle dynamics that can be found in more detail
in e.g. [80, 122]. We consider a single-track model, derived under the simplifying assumption
that rolling and pitching of the car body can be neglected. Consequentially, only a single front
and rear wheel are modeled, located in the virtual center of the original two wheels. Motion
of the car body is considered on the horizontal plane only.

Figure 9.19: Coordinates and forces in the single-track vehicle model. The figure aligns with the ve-
hicle’s local coordinate system while dashed vectors denote the earth-fixed coordinate
system chosen for computations.

Four controls represent the driver’s choice on steering and velocity, and are listed in table
9.11. We denote with wδ the steering wheel’s angular velocity. The force FB controls the total
braking force, while the accelerator pedal position ϕ is translated into an accelerating force
according to the torque model presented in (9.26). Finally, the selected gear µ influences
the effective engine torque’s transmission ratio. The single-track dynamics are described by a
system of ordinary differential equations. The individual system states are listed in table 9.12.
Figure 9.19 visualizes the choice of coordinates, angles, and forces. Equations of motion are
derived as follows.

Name Description Domain Unit

wδ Steering wheel angular velocity [−0.5, 0.5] rad
s

FB Total braking force [0, 1.5 · 104] N

ϕ Accelerator pedal position [0, 1] –

µ Selected gear {1, . . . , nµ} –

Table 9.11: Controls used in the single–track vehicle model.

The center of gravity is denoted by the coordinate pair (cx, cy) which is obtained by integration

212

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

over the directional velocity,

ċx(t) = v(t) cos
�

ψ(t)− β(t)�, (9.16a)

ċy(t) = v(t) sin
�

ψ(t)− β(t)�. (9.16b)

Acceleration is obtained from the sum of forces attacking the car’s mass m in the direction of
driving,

v̇(t) =
1

m

�

�

Fµlr − FAx

�

cosβ(t) + Flf cos
�

δ(t) + β(t)
�

(9.17)

−
�

Fsr− FAy

�

sinβ(t)− Fsf sin
�

δ(t) + β(t)
�

�

.

The steering wheel’s angle is obtained from the corresponding controlled angular velocity,

δ̇(t) = wδ. (9.18)

The slip angle’s change is controlled by the steering wheel and counteracted by the sum of
forces attacking perpendicular to the car’s direction of driving. The forces’ definitions are given
in (9.22ff).

β̇(t) = wz(t)−
1

m v(t)

�

�

Flr− FAx
�

sinβ(t) + Flf sin
�

δ(t) + β(t)
�

(9.19)

+
�

Fsr− FAy

�

cosβ(t) + Fsf cos
�

δ(t) + β(t)
�

�

.

The yaw angle is obtained by integrating over its change wz,

ψ̇(t) = wz(t), (9.20)

which in turn is the integral over the sum of forces attacking the front wheel in direction
perpendicular to the car’s longitudinal axis of orientation,

ẇz(t) =
1

Izz

�

Fsf lf cosδ(t)− Fsr lsr− FAy eSP+ Flf lf sinδ(t)
�

. (9.21)

Name Description Unit

cx Horizontal position of the car m

cy Vertical position of the car m

v Magnitude of directional velocity of the car m
s

δ Steering wheel angle rad

β Side slip angle rad

ψ Yaw angle rad

wz Yaw angle velocity rad
s

Table 9.12: Coordinates and states used in the single–track vehicle model.

We now list and explain the individual forces used in this ODE system. We first discuss lateral

213

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

and longitudinal forces attacking at the front and rear wheels. In view of the convex reformu-
lation we’ll undertake later, we consider the gear µ to be fixed and denote dependencies on
the selected gear by a superscript µ. The side (lateral) forces on the front and rear wheels as
functions of the slip angles αf and αr according to the so-called magic formula due to [163]
are

Fsf,sr(αf,r)
def
= Df,r sin

�

Cf,r arctan
�

Bf,r αf,r− Ef,r(Bf,r αf,r− arctan(Bf,r αf,r))
�

�

, (9.22)

The front slip and rear slip angles are obtained from

αf
def
= δ(t)− arctan

�

lf ψ̇(t)− v(t) sinβ(t)
v(t) cosβ(t)

�

, (9.23a)

αr
def
= arctan

�

lr ψ̇(t) + v(t) sinβ(t)
v(t) cosβ(t)

�

. (9.23b)

The longitudinal force at the front wheel is composed from braking force FBf and resistance
due to rolling friction FRf

Flf
def
=−FBf− FRf. (9.24)

Assuming a rear wheel drive, the longitudinal force at the rear wheel is given by the trans-
mitted engine torque Mwheel and reduced by braking force FBr and rolling friction FRr. The
effective engine torque Mµ

mot is transmitted twice. We denote by iµg the gearbox transmission
ratio corresponding to the selected gear µ, and by it the axle drive’s fixed transmission ratio.
R is the rear wheel radius.

Fµlr
def
=

iµg it
R

Mµ
mot(ϕ)− FBr− FRr. (9.25)

The engine’s torque, depending on the acceleration pedal’s position ϕ, is modeled as follows:

Mµ
mot(ϕ)

def
= f1(ϕ) f2(w

µ
mot) + (1− f1(ϕ)) f3(w

µ
mot), (9.26a)

f1(ϕ)
def
= 1− exp(−3 ϕ), (9.26b)

f2(wmot)
def
=−37.8+ 1.54 wmot− 0.0019 w2

mot, (9.26c)

f3(wmot)
def
=−34.9− 0.04775 wmot. (9.26d)

Here, wµmot is the engines rotary frequency in Hertz. For a given gear µ it is computed from

wµmot
def
=

iµg it
R

v(t). (9.27)

The total braking force FB is controlled by the driver. The distribution to front and rear wheels
is chosen as

FBf
def
=

2

3
FB, FBr

def
=

1

3
FB. (9.28)

214

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

The braking forces FRf and FRr due to rolling resistance are obtained from

FRf(v)
def
= fR(v)

m lr g

lf+ lr
, FRr(v)

def
= fR(v)

m lf g

lf+ lr
, (9.29)

where the velocity-dependent amount of friction is modeled by

fR(v)
def
= 9 · 10−3+ 7.2 · 10−5 v+ 5.038848 · 10−10 v4. (9.30)

Finally, drag force due to air resistance is given by FAx, while we assume that no sideward
drag forces (e.g. side wind) are present.

FAx
def
= 1

2
cw%Av2(t), FAy

def
= 0. (9.31)

The values and units of all model parameters can be found in table 9.13.

Name Description Value Unit

A Effective flow surface 1.437895 m2

Bf PACEJKA tyre model stiffness factor (front) 10.96 –

Br PACEJKA tyre model stiffness factor (rear) 12.67 –

Cf, Cr PACEJKA tyre model shape factor (front, rear) 1.3 –

Df PACEJKA tyre model peak value (front) 4560.40 –

Dr PACEJKA tyre model peak value (rear) 3947.81 –

Ef, Er PACEJKA tyre model curvature factor (front, rear) −0.5 –

Izz Vehicle’s moment of inertia 1752 kg m2

R Wheel radius 0.302 m

cw Air drag coefficient 0.3 –

eSP Distance of drag mount point to center of gravity 0.5 m

g Gravity force 9.81 kg

m s2

iµg Gearbox torque transmission ratio see text –

it Engine torque transmission ratio 3.91 –

lf Distance of front wheel to center of gravity 1.19016 m

lr Distance of rear wheel to center of gravity 1.37484 m

m Mass of vehicle 1239 kg

% Air density 1.249512 kg

m3

Table 9.13: Parameters used in the single–track vehicle model.

Track Model

The double-lane change maneuver presented in [80, 81, 122] is realized by constraining the
car’s position onto a prescribed track at any time t ∈ T def

= [t0, tf], see Figure 9.20. Starting in
the left position with an initial prescribed velocity, the driver is asked to manage a change of
lanes modeled by an offset of 3.5 meters in the track. Afterwards he is asked to return to the

215

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

starting lane. This maneuver can be regarded as an overtaking move or as an evasive action
taken to avoid hitting an obstacle suddenly appearing on the straight lane.

Figure 9.20: Track constraints of the double–lane change maneuvre for which a time–optimal solution
is sought in problem (9.34).

The constraints Pl(x) and Pu(x) are given by the following piecewise splines assuming a width
of B = 1.5 meters for the vehicle,

Pl(x)
def
=















































0 if x ∈ [0,44],

13.5(x − 44)3 if x ∈ [44.0, 44.5],

13.5(x − 45)3+ 3.5 if x ∈ [44.5, 45.0],

3.5 if x ∈ [45.0, 70.0],

13.5(70− x)3+ 3.5 if x ∈ [70.0, 70.5],

13.5(71− x)3 if x ∈ [70.5,71],

0 if x ∈ [71,140],

(9.32a)

Pu(x)
def
=















































1.9 if x ∈ [0,15],

14.6(x − 15)3+ 1.9 if x ∈ [15.0, 15.5],

14.6(x − 16)3+ 5.55 if x ∈ [15.5, 16.0],

5.55 if x ∈ [16.0, 94.0],

13.4(94− x)3+ 5.55 if x ∈ [94.0, 94.5],

13.4(95− x)3+ 2.2 if x ∈ [94.5, 95.0],

2.2 if x ∈ [95, 140].

(9.32b)

9.4.2 Mixed–Integer Time–Optimal Control Problem

Problem Formulation

We denote with x the state vector of the ODE system and by f the corresponding right-hand
side function as described in section 9.4.1. The vector u shall be the vector of continuous

216

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

controls, whereas the integer control µ(·) will be written in a separate vector,

x (t)
def
=
h

cx(t) cy(t) v(t) δ(t) β(t) ψ(t) wz(t)
i

, (9.33a)

u(t)
def
=
h

wδ(t) FB(t) ϕ(t)
i

, (9.33b)

w (t)
def
=
h

µ(t)
i

. (9.33c)

With this notation, the resulting mixed-integer optimal control problem reads

min
x (·),u(·),w (·),tf

tf+

∫ tf

0

w2
δ(t) dt (9.34a)

s.t. ẋ (t) = f
�

t, x (t), u(t), w (t)
� ∀t ∈ [t0, tf], (9.34b)

cy(t) ∈
�

Pl(cx(t)) + 0.75, Pu(cx(t))− 0.75
� ∀t ∈ [t0, tf], (9.34c)

wδ(t) ∈ [−0.5,0.5] ∀t ∈ [t0, tf], (9.34d)

FB(t) ∈ [0,1.5 · 104] ∀t ∈ [t0, tf], (9.34e)

ϕ(t) ∈ [0,1] ∀t ∈ [t0, tf], (9.34f)

µ(t) ∈ {1, . . . , nµ} ∀t ∈ [t0, tf], (9.34g)

x (t0) =
�−30, free, 10,0, 0,0, 0

�

, (9.34h)

cx(tf) = 140, (9.34i)

ψ(tf) = 0. (9.34j)

By employing the objective function (9.34a) we strive to minimize the total time tf required to
traverse the test course, and to do so with minimal steering effort wδ(t). At any time, the car
must be positioned within the test course’s boundaries; this requirement is formulated by the
double inequality path constraint (9.34c). The system’s initial values are fixed in (9.34h) with
the exception of the car’s initial vertical position on the track, which remains a free variable
only constrained by the track’s boundary. Finally, constraints (9.34i, 9.34j) guarantee that the
car actually arrives at the end of the test course driving straight ahead.

Solutions

The ODE system is solved using a fixed–step RUNGE–KUTTA method with 20 steps per shooting
interval. We use one–sided finite difference approximations to the derivatives of all model
functions. The Hessian is approximated by a limited–memory BFGS scheme with a memory
length of l = 15 in order to avoid accumulation of ill–conditioned secant information due
to the rapidly changing curvature of the path constraint. All QP subproblem are solved to an
optimality tolerance of 10−8 by our block structured parametric active set method qpHPSC. The
NLP problem is solved to a KKT tolerance of 10−10. The optimal solutions of problem (9.34)
for m = 20 and m = 160 direct multiple shooting intervals are shown in figure 9.21. The
discretization of the path constraint enforcing the track’s boundaries has a significant influence
on the minimal objective function value that can be attained, as corners can be cut for low
values of m. Table 9.14 lists for nµ = 4 and various choices of m the problem’s dimensions,
i.e., the number of unknowns nvar and the number of equality and inequality constraints ncon,
together with the obtained optimal solution tf, the 2-norm of the remaining infeasibility, and

217

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

the number nfrac of fractional relaxed convex multipliers for the integer control. The number
of SQP iterations and active set QP iterations is given along with the overall computation time.
Total CPU time grows roughly quadratically with the number m of multiple shooting nodes,
as the runtime per SQP iteration is O(m) (in sharp contrast to classical condensing methods)
and the number of SQP iterations to convergence appears to grow roughly linearly with m.
Using our block structured active set QP method qpHPSC, over 90 percent of this time is spent
in the solution of the ODE system and the computation of sensitivities.

Dimensions Solution Computation

m nvar ncon Objective tf Infeasibility nfrac SQP QP CPU Time

20 336 64 6.781176 1.83 · 10−11 0 71 567 00m 04.3s

40 656 124 6.791324 2.65 · 10−11 0 142 1485 00m 16.7s

80 1296 244 6.795562 3.03 · 10−12 0 237 3434 00m 56.3s

160 2576 484 6.804009 2.22 · 10−12 3 334 8973 02m 47.7s

Table 9.14: Optimal solutions of problem (9.34) for nµ = 4 as in [80, 81, 122]. With increasily fine dis-
cretization of the path constraint modelling the track, the time optimal objective increases
as cutting of corners is reduced.

9.4.3 Comparison of Structure and Sparsity

In table 9.15 an account of the number of unknowns and constraints of the NLP obtained from
the direct multiple shooting discretization, outer convexification, and relaxation of the MIOCP
(9.34) is given. In addition, the amount of sparsity present in the Hessian and the constraints
Jacobian of the resulting QP subproblem is listed. All compared algorithms work on this large
structured QP subproblem. The classical condensing algorithm preprocesses it into a smaller
but densely populated one. Its dimensions and sparsity can be compared to the original one
by using table 9.16.
As can be seen, the condensed Hessian matrix is densely populated and does not contain any
remaining structural zero elements. The condensed constraints Jacobian matrix is populated
to almost 40%. With increasing length or granularity m of the multiple shooting discretization,
the number of nonzero elements grows twice as fast in the condensed constraints Jacobian
compared to the block structured one. The dense active set method QPOPT however is not
able to exploit the remaining sparsity but instead computes dense factors of this constraints
Jacobian. Note in addition that the simple bounds on the additionally introduced shooting
node values s1, . . . , sm would become linear constraints after condensing as mentioned in
chapter 7, and are thus omitted from the initial condensed problem. In addition, as an be seen
in table 9.17 the runtime complexity of O(m2) leads to long condensing run times for larger
values of m that make this algorithmic approach at structure exploitation unattractive for
long horizons or fine discretization of the control trajectory. With increasing number of nq =
3+ nµ control parameters, the advantage of eliminating the additionally introduced shooting
node variables is clearly surpassed by the disadvantage of loosing the structural properties
of the problem. The number nx of matching conditions used to eliminate the additionally
introduced shooting node values s1, . . . , sm is hidden by the dominant dimension nq of the
control parameters q0, . . . ,qm−1 that remain in the QP’s matrices.

218

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

cx(t)

c y
(t
)

0 20 40 60 80 100 120 140

0

2

4

6

(a) Car’s trajectory on track, m= 20. Corners are cut as path constraints are enforced in the shooting nodes only.

t

v(
t)

0 2 4 6
0

20

40

(b) Car’s velocity.
t

ψ
(t
)

0 2 4 6

-0.1

0

0.1

(c) Car’s yaw angle.

t

w
δ
(t
)

0 2 4 6
-0.1

0

0.1

(d) Steering wheel angular velocity.
t

µ
(t
)

0 2 4 6

2

4

(e) Selected gear.

cx(t)

c y
(t
)

0 20 40 60 80 100 120 140

0

2

4

6

(f) Car’s trajectory on track, m= 160. Constraints are active in the track’s corners.

t

v(
t)

0 2 4 6
0

20

40

(g) Car’s velocity.
t

ψ
(t
)

0 2 4 6

-0.1

0

0.1

(h) Car’s yaw angle.

t

w
δ
(t
)

0 2 4 6
-0.1

0

0.1

(i) Steering wheel angular velocity.
t

µ
(t
)

0 2 4 6

2

4

(j) Selected gear.

Figure 9.21: Details of the optimal solution of problem (9.34) for m= 20 (top) and m= 160 (bottom)
multiple shooting intervals.

219

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

m nµ Hessian of the Lagrangian Jacobian of the Constraints
Size Elements Nonzeros Rows Elements Nonzeros

20 4 336 112,896 5262 4.7% 264 88,704 1906 2.1%
8 420 176,400 7878 4.5% 264 110,880 2465 2.2%

12 504 254,016 11,918 4.7% 264 133,056 3024 2.3%
16 588 345,744 16,254 4.7% 264 155,232 3584 2.3%

40 4 656 430,336 10,382 2.4% 524 343,744 3806 1.1%
8 820 672,400 15,814 2.4% 524 429,680 4924 1.1%

12 984 968,256 22,718 2.3% 524 515,616 6044 1.2%
16 1148 1,317,904 31,934 2.4% 524 601,552 7166 1.2%

80 4 1296 1,679,616 20,622 1.2% 1044 1,353,024 7607 0.6%
8 1620 2,624,400 30,950 1.2% 1044 1,691,280 9845 0.6%

12 1944 3,779,136 46,478 1.2% 1044 2,029,536 12,087 0.6%
16 2268 5,143,824 60,478 1.2% 1044 2,367,792 14,325 0.6%

160 4 2576 6,635,776 41,048 0.6% 2084 5,368,384 15,208 0.3%
8 3220 10,368,400 62,316 0.6% 2084 6,710,480 19,688 0.3%

12 3864 14,930,496 92,208 0.6% 2084 8,052,576 24,169 0.3%
16 4508 20,322,064 121,924 0.6% 2084 9,394,672 28,648 0.3%

Table 9.15: Numbers of NLP (equiv. QP) unknowns and constraints, and percentage of nonzero ele-
ments in the Hessian and constraints Jacobian of the QP for problem (9.34), listed for
various choices of the number m of multiple shooting intervals and the number nq = 3+nµ

of control parameters.

m nµ Hessian of the Lagrangian Jacobian of the Constraints
Size Elements Nonzeros Rows Elements Nonzeros

20 4 130 16,900 16,900 100% 64 (264) 8,320 3117 37%
8 264 55,440 55,440 100% 64 (264) 13,440 5036 37%

12 290 84,100 84,100 100% 64 (264) 18,560 6955 37%
16 370 136,900 136,900 100% 64 (264) 23,680 8875 37%

40 4 250 62,500 62,500 100% 124 (524) 31,000 11,017 36%
8 410 168,100 86,010 100% 124 (524) 50,840 18,055 36%

12 570 324,900 324,900 100% 124 (524) 70,680 24,095 36%
16 730 532,900 532,900 100% 124 (524) 90,520 32,137 36%

80 4 490 240,100 240,100 100% 244 (1044) 119,560 41,218 34%
8 810 656,100 656,100 100% 244 (1044) 197,640 68,096 34%

12 1130 1,276,900 1,276,900 100% 244 (1044) 275,720 94,978 34%
16 1450 2,102,500 2,102,500 100% 244 (1044) 353,800 121,856 34%

160 4 970 940,900 940,900 100% 484 (2084) 469,480 159,219 34%
8 1610 2,592,100 2,592,100 100% 484 (2084) 779,240 264,179 34%

12 2250 5,062,500 5,062,500 100% 484 (2084) 1,089,000 369,140 34%
16 2890 6,022,760 6,022,760 100% 484 (2084) 1,398,760 474,099 34%

Table 9.16: Numbers of unknowns and constraints, and percentage of nonzero elements in the con-
densed Hessian and condensed constraints jacobian of the QP (cf. section 7.2.1) for prob-
lem (9.34), listed for various choices of the number m of multiple shooting intervals and
the number nq = 3+nµ of control parameters. Structure and sparsity are lost as the number
of control parameters increases.

220

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

9.4.4 Comparison of Runtimes

We study the run time of various combinations of numerical codes for the solution of the
direct multiple shooting block structured QP, which include

1. The classical condensing algorithm for the block structured QP combined with the dense
null–space active set QP solver QPOPT [86] with default settings. This algorithmic ap-
proach is taken e.g. in the software package MUSCOD-II [131, 133].

2. Our parametric active set method qpHPSC with dense, sparse, and block structured
solvers for the structured KKT system:

• The block structured Hessian Projection Schur Complement (HPSC) factorization
of chapter 7 with the matrix update techniques of chapter 8.

• The block structured HPSC factorization of chapter 7 without matrix updates but
otherwise identical settings.

• The sparse multifrontal symmetric indefinite code MA57 [56], with standard set-
tings.

• The unsymmetric multifrontal LU code UMFPACK [50], with standard settings. Sym-
metry of the KKT system cannot be exploited here and two backsolves with the
unsymmetric factors are required.

3. Our parametric active set method qpHPSC with the following LAPACK [9] routines as
reference KKT solvers:

• The banded unsymmetric LU code DGBTRF, with the same restrictions that apply to
UMFPACK.

• The dense symmetric indefinite code DSYTRF that does not exploit any structure
and will therefore yield inferior performance.

Figure 9.22 and table 9.17 summarize the computational effort required by each of the in-
vestigated QP solving algorithms for increasingly fine discretizations m of the control and
an increasing number of available gear choices nµ i.e., control parameters nq = 3+ nµ per
shooting interval.
As expected, due to the runtime complexity of O(m2n3) classical condensing and the dense
active set QP solver quickly fall behind in performance as either of the problem dimensions
increases. Quadratic growth of the condensing runtime in both m and nq can be observed
from the third column. For the smallest instances, the banded LU decomposition provided by
LAPACK is sufficient for structure exploitation and even shows linear runtime growth in m. Its
absolute performance falls behind as m or nq get larger. All structure or sparsity exploiting
approaches show linear growth of the runtime in m. The performance of MA57 and UMFPACK

falls behind as the problem instances get larger. This can be explained by the densely popu-
lated Initial Value Problem (IVP) sensitivity matrices generated by the direct multiple shooting
method. Generic sparse solvers are more appropriately employed in conjunction with collo-
cation methods that yield much larger but sparsely populated sensitivity matrices. UMFPACK
in addition cannot exploit the KKT system’s symmetry and requires two backsolves with the
unsymmetric factors. Matrix updates could be realized for the unsymmetric sparse LU factor-
ization provided by UMFPACK, though, see e.g. [108]. Fill–in is however reported to happen.

221

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

m, nµ

Ti
m

e
in
m
s

20,4 20,8 20,12 20,16 40,4 40,8 40,12 40,16 80,4 80,8 80,12 80,16 160,4 160,8 160,12 160,16
0

20

40

60

Figure 9.22: Average runtime in milliseconds (ms) per QP solver iteration for problem (9.34), de-
pending on the numbers (m, nµ) of multiple shooting intervals m and control parameters
nµ. (◦) qpHPSC with matrix updates, (+) qpHPSC without updates, (�) MA57, (4)
LAPACK DGBTRF, (+×) QPOPT on the condensed QP without runtime spent in condensing,
(�) UMFPACK. Runtime for LAPACK DSYTRF is not shown.

Condensing QPOPT1 qpHPSC qpHPSC MA57 UMFPACK LAPACK LAPACK

m nµ (once) +upd. DGBTRF DSYTRF

20 4 4.49 0.247 0.737 0.457 1.366 1.396 1.734 35.89

8 7.14 0.359 0.632 0.439 1.992 6.119 2.664 57.63

12 10.3 0.365 0.765 0.426 2.550 6.129 4.116 108.6

16 14.0 0.656 0.681 0.447 3.316 6.487 7.488 125.5

40 4 24.9 1.010 1.035 0.717 2.589 9.588 3.426 225.4

8 42.6 1.392 1.130 0.750 3.429 11.58 5.304 380.3

12 64.0 1.916 1.154 0.751 4.832 11.88 14.12 666.0

16 90.6 2.763 1.234 0.797 6.299 13.09 14.15 1621

80 4 158 4.337 1.922 1.261 4.995 19.21 6.204 —2

8 289 5.478 2.161 1.384 6.637 23.11 9.360

12 451 9.101 2.703 1.402 9.278 23.97 14.31

16 662 15.60 2.327 1.502 12.17 26.39 27.32

160 4 1128 17.10 3.755 2.410 10.18 38.90 13.55 —2

8 2224 26.92 4.115 2.601 13.88 46.35 22.67

12 3577 38.04 4.311 2.706 19.21 47.25 30.78

16 5322 55.30 4.586 2.907 25.39 53.79 59.06

Table 9.17: Average runtime in milliseconds (ms) per QP solver iteration for problem (9.34), depend-
ing on the number nq of control parameters and the number m of multiple shooting inter-
vals. Averages have been taken over the first 30 SQP iterations.
1The QPOPT per iteration runtime applies to the condensed QP whose computation requires
additional runtime as indicated by the third column.
2LAPACK DSYTRF performance has not been investigated for m= 80 and m= 160.

222

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

The HPSC factorization with updates developed in this thesis may be regarded as a suitable
substitute for structure exploitation in direct multiple shooting, and yields without exception
the fastest run times among all investigated structure exploiting KKT solvers. This is true even
without the application of our new update techniques, which reduce the runtime by a further
factor of at most 2 for all investigated problem instances. A particular and unique feature
of the HPSC factorization developed in this thesis is the very small and linear growth of the
runtime with increasing number nq of control parameters. The largest investigated dimension
nq = 16 makes the additional speedup gained by the matrix updates most apparent, but at
the same time shows that much larger control dimension could be treated without significant
loss in computational performance. The dense active set solver QPOPT yields faster per iter-
ation run times only for the smallest problem instances, albeit at the cost of the condensing
preprocessing step. Condensing costs the runtime equivalent of at least 20 and at most 100
iterations of QPOPT, or at least 10 and at most 2000 iterations of our code qpHPSC for the
investigated problem instances. Our approach is easily competitive against recently emerging
code generation approaches, e.g. [150]. Therein, an average iteration time of 425µs for an
KKT system with 1740 nonzero elements is reported on a 1.7 GHz machine. For comparison,
our problem instance m = 20, nµ = 4 has a KKT matrix of 9074 nonzero elements (well over
5 times more) and we achive a quite similar average iteration time of 457µs on a very similar
machine about 1.5 times faster, running at 2.6 GHz.

9.4.5 Summary

In this section we investigated a MIOCP from automobile test driving and varied the problem’s
size by increasing the number nµ of available gears and the granularity m of the control
discretization. At the example of this problem we examined the performance of our new active
set QP code qpHPSC with block structured factorization and matrix updates and compared
it to the classical condensing algorithm coupled with the dense active set QP code QPOPT

as well as to various structure exploiting linear algebra codes used to solve the structured
QP’s KKT system. For optimal control problems, our new algorithm allows for the efficient
treatment of problems with very long horizons or very fine discretizations of the control that
could not be treated before. Consequentially for Model Predictive Control (MPC) problems
it promises faster sampling times as the condensing preprocessing step is eliminated, and
allows much longer prediction horizons to be treated under tight runtime constraints. Convex
reformulations of MIOCPs that employ a large number of block local control parameters acting
as convex multipliers pose a significant challenge to the classical condensing algorithm that
effectively prevented larger problem instances from being solved efficiently. Such problems
greatly benefit from the newly developed HPSC factorization with matrix updates.

223

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

9.5 Application: A Predictive Cruise Controller

In this section we apply the numerical theory and algorithms developed in this thesis to a chal-
lenging real–world industrial problem: real–time capable nonlinear model–predictive control
of a heavy–duty truck including predictive choice of gears based on a 3D profile of the traveled
roads.

9.5.1 Overview

Human drivers of heavy-duty trucks ideally control their vehicles in pursuit of maintaining a
desired velocity, keeping the fuel consumption at a minimum. To this end, the driver repeti-
tively chooses the truck’s input controls, comprising engine torque, braking torque, and gear
choice, according to human experience and anticipation of estimated road and traffic con-
ditions. In this paper we present a novel numerical method for model-predictive control of
heavy-duty trucks, acting as a cruise controller including fully automatic gear choice. The
combination of nonlinear dynamics, constraints, and objective, with the hybrid nature of the
gear choice makes this problem extremely difficult.

Coupled to a navigation system providing a 3D digital map of the road sections ahead of the
truck, it is able to compute an optimal choice of controls not only with respect to the current
system state but also with respect to anticipated future behavior of the truck on the predic-
tion horizon. The presented algorithm is based on the direct multiple-shooting method for the
efficient solution of optimal control problems constrained by ODEs or DAEs. Optimal control
feedback to the truck is computed from the successive solution of a sequence of nonlinear
programs resulting from the multiple-shooting discretization of the optimal control problem.
Encouraging real-time capable feedback rates are achieved by exploitation of problem struc-
tures and similarities of the sequentially obtained solutions.

Today’s heavy duty trucks feature a powertrain that is composed of several units. A diesel
engine acts as driving unit, while several braking devices such as engine brakes, a retarder,
and service brakes exist. Engine braking works by generating a retarding torque using the
diesel engine. Unlike the service brakes, engine brakes and also the retarder don’t suffer from
wearout. Under normal circumstances, their usage is preferred over using the service brakes.
The powertrain is also equipped with an automated manual gearbox with eight to sixteen
gears.

In many cases an experienced truck driver chooses to accelerate, brake, or shift gears based on
his ability to predict future load changes of the powertrain. In this, his chooses the operation
point of the truck in a fashion suited to an oncoming period of time rather than for the current
observable system state only. For example, the driver might shift down just right in time
before entering a steep slope, knowing that initiating the relatively long lasting process of gear
shifting later during the climb would cause too large a decrease in the truck’s velocity. Also
acceleration and braking of the truck can be adapted to the road conditions by an experienced
driver. For instance, it may be desirable to gain speed while cruising through a valley in order
to build up momentum for the next oncoming hill. Speed limit zones or slower drivers in front
of the truck may require braking maneuvers or downshift of the gear as well.

It becomes clear that cruise controllers that operate solely on the knowledge of the truck’s
current system state inevitably will make control decisions inferior to those of an experienced

224

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

heavy-duty truck driver [42, 208, 103]. The presented paper aims at the design and imple-
mentation of a cruise control system for heavy-duty trucks that predicts the behavior of the
truck over a longer prediction horizon, taking into account information about the conditions
of the road section ahead. To this end, we describe a novel numerical algorithm that repeat-
edly computes a set of controls for the truck that are optimal with respect to a performance
criterion evaluated over the course of a prediction horizon. The algorithm thereby imitates
the behavior of an experienced driver who repeatedly adapts his acceleration, brake, and gear
choice to the desired velocity as well as the observed road and traffic conditions.

9.5.2 Dynamic Truck Model

This section holds a description of a 1D truck model with track slope and curvature informa-
tion, introduced in different variants in [42, 103, 208] that has been used for all computations.
More background information on modelling in automotive engineering can be found e.g. in
[117].

We start the presentation of the truck model with the control inputs to be optimized later. The
truck’s acceleration is governed by the indicated engine torque, whose rate of change Rind can
be controlled. The total braking torque’s rate of change Rbrk can be controlled as well. The
actual truck system uses three separate sources of brake torques: engine brake torque MEB,
retarder torque Mret, and service brakes torque MSB, all with separate state-dependent upper
bounds.

Mbrk(s)
def
= iT(y)MEB(s) +Mret(s) +MSB(s) (9.35)

It is not necessary to separate these sources within the model used for optimization, though.
We rather chose to perform an a-posteriori separation into three brake torques once the opti-
mal sum Mbrk(s) has been decided upon. This opens up the additional possibility of modeling
hierarchical brake systems e.g. to prefer using the retarder Mret over using the engine brakes
MEB, which again are preferred over using the service brakes MSB. Finally, the gear y enters
the problem as an integer control variable that chooses from the available gearbox transmis-
sion ratios iT(y) and corresponding degrees of efficiency ηT(y). The list of controls influencing
the truck’s behavior is given in table 9.18.

Name Description Unit Domain

Rind Indicated engine torque rate Nm/s [Rind,min, Rind,max]

Rbrk Brake torque rate Nm/s [Rbrk,min, Rbrk,max]

y Gear – {1, . . . , ymax}

Table 9.18: Controls of the truck model.

The ODE system of the truck model comprises four differential states. The location s ∈ S def
=

[s0, sf] (in meters) on the map is chosen as the independent variable. This limits the model’s
applicability to the domain of strictly positive velocities. Time t(s) depending on position s

225

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

and velocity v(s) are recaptured using the differential equation

ṫ(s) =
1

v(s)
, t(s0) = 0. (9.36)

The truck’s velocity is computed from the summation of accelerating torques Macc, braking
torques Mbrk, and resisting torques Mair and Mroad due to turbulent and rolling friction. The
parameter m denotes the truck’s mass. The rear axle’s transmission ratio is denoted by iA while
the static rear tire radius is rstat. The acceleration is given by

v̇(s) =
1

m v(s)

�

iA
rstat

�

Macc−Mbrake
�−Mair−Mroad

�

. (9.37)

For rate-limited controls, we control the corresponding rates of change and recover the actual
control values as follows.

Ṁind(s) =
1

v(s)
Rind(s), (9.38a)

Ṁbrk(s) =
1

v(s)
Rbrk(s). (9.38b)

The consumed amount of fuel is given by

Q̇(s) =
1

v(s)
Qfuel(Mind(s), neng(s)) (9.39)

where Qfuel gives the specific consumption rate depending on the indicated engine torque and
engine speed. In table 9.19 the list of differential states of this vehicle model is given.

Name Description Unit Domain

t Time s R
v Velocity m/s (0, vmax]

Mind Indicated engine torque Nm [0, Mind,max]

Mbrk Total brake torque Nm [0, Mbrk,max]

Q Fuel consumption l [0,∞)

Table 9.19: Differential states of the truck model.

In the above system of differential equations, several terms are still missing and are computed
from fixed algebraic formulas as follows. The accelerating torque Macc is computed from the
corresponding control depending on the transmission ratio iT(y) and the degree of efficiency
ηT(y) of the selected gear y ,

Macc(s)
def
= iT(y) ηT(y) Mind(s). (9.40)

The sum of braking torques Mbrk is computed from Mret and MEB, increased by resisting
torques due to friction Mfric in the engine. The value neng denotes the engine’s speed in revo-

226

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

lutions per minute.

Mbrake(s)
def
= iT(y)MEB(s) +Mret(s) +MSB(s) + iT(y) Mfric(neng(s)). (9.41)

Additional braking torques, independent of the selected gear, due to turbulent friction Mair and
road conditions Mroad are taken into account. The parameter A denotes the truck’s effective
flow surface, while cw is the aerodynamic shape coefficient and %air the density of air,

Mair(s)
def
= 1

2
cw A%air v2(s). (9.42)

The road conditions term accounts for rolling friction with coefficient fr and downhill force
depending on the slope γ(s) available from the 3D map data of the road. The parameter g is
the gravity constant.

Mroad(s)
def
= m g (sinγ(s) + fr cosγ(s)). (9.43)

Finally, the engine’s speed in revolutions per minute, depending on the selected gear y , can
be recaptured from the truck’s current velocity,

neng(s)
def
= v(s)

iA iT(y(s))
rstat

60 [s]

2π
. (9.44)

Table 9.20 holds the list of fixed model parameters.

Name Description Unit

A Front facing area m2

cw Aerodynamic shape coefficient –

fr Coefficient of rolling friction –

γ(s) Road’s slope rad

g Gravity constant m/s2

iA(y) Rear axle transmission ratio –

iT(y) Gearbox transmission ratio –

κ(s) Road’s curvature –

m Vehicle mass kg

neng,min Minimum engine speed 1/min

neng,max Maximum engine speed 1/min

ηT Gearbox degree of efficiency –

%air Air density kg/m3

rstat Static rear tire radius m

Table 9.20: Parameters of the truck model.

The truck engine’s characteristics are defined by the functions Mind,max, Mbrk,max, and Mfric

giving the maximum indicated torque, braking torque amd torque loss due to friction, all
depending on the engine speed neng. In addition, the specific fuel consumption rate Qfuel

227

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

depends on both Mind and neng. Representative examples of those functions are shown in
figure 9.23.

neng [1/min]

M
in

d,
m

ax
[N
m
]

500 1000 1500 2000
0

500

1000

1500

2000

2500

3000

(a) Maximum indicated engine torque Mind depend-
ing on the engine speed neng.

neng [1/min]

M
br

k,
m

ax
[N
m
]

500 1000 1500 2000
-3500

-3000

-2500

-2000

-1500

-1000

-500

(b) Maximum engine brake torque MEB and retarder
torque Mret depending on the engine speed neng.

neng [1/min]

M
fr

ic
[N
m
]

500 1000 1500 2000
0

100

200

300

400

(c) Torque loss due to friction Mfric depending on the
engine speed neng.

neng [1/min]
Mind [Nm]

Q
fu

el
[l
/
s]

0 0.01 0.02 0.03 0.04 0.05

500
1000

1500
2000

0

1000

2000

3000
0

0.01

0.02

0.03

0.04

0.05

(d) Specific fuel consumption rate Qfuel depending on
the indicated engine torque Mind and the engine
speed neng.

Figure 9.23: Exemplary nonlinear truck engine characteristics.

9.5.3 Environment Model

The truck system is subjected to various environmental conditions changing over time as the
position s of the truck advances. The unique feature of this predictive truck control problem
is the changing slope γ(s) and curvature κ(s) of the road. This information is obtained from
a 3D map available in electronic form on board the truck. Positioning information is made

228

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

available with the help of the Global Positioning System (GPS) and allows to map a position
s on the track to cartesian coordinates (x , y) and road conditions (γ,κ). Figure 9.24 shows a
representative section of 3D map data.

x

y

z

-50 0 50 100 150 200

-1
0

1
×104

-1

0

1
×104

-50

0

50

100

150

200

(a) 3D map data colored by height profile.

x

y

z

-0.1 -0.05 0

0.05
0.1

-1

-1

0

1
×104

-50

0

50

100

150

200

(b) 3D map data colored by slope profile.

Position s [m]

Sl
op

e
γ
[r
a
d
]

0 1 2 3 4 5 6 7 8
×104

-0.1

0

0.1

(c) Slope profile of 3D map data.

Position s [m]

C
ur

va
tu

re
κ
[–
]

0 1 2 3 4 5 6 7 8
×104

-0.1

0

0.1

(d) Curvature profile of 3D map data.

Figure 9.24: Exemplary real–world 3D map data describing road conditions for the truck predictive
control problem on a track of over 80 kilometers length. Sharp spikes in the curvature
profile 9.24d correspond to major changes in the general direction of travelling in figures
9.24a and 9.24b.

On the prediction horizon, the truck system needs to respect certain mechanical constraints,
such as velocity and engine speed limits. Beside the bounds on the truck controls given in table
9.18 and on the truck system’s differential states listed in table 9.19, the truck’s velocity v(s)

229

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

is subject to several constraints, the most significant ones being the velocity limits imposed by
law,

v(s)¶ vlaw(s) ∀s ∈ S. (9.45)

From the available 3D map data, the predictive optimal control algorithm, the curvature κ(s)
of the road at position s is extracted and converted to a maximum allowable velocity vcurve(s),

v(s)¶ vcurve (κ(s)) ∀s ∈ S. (9.46)

The indicated and brake torques must respect state-dependent upper limits as specified by the
engine characteristics

0¶ Mind(s)¶ Mind,max

�

neng (s)
�

∀s ∈ S, (9.47a)

0¶ Mbrk(s)¶ Mbrk,max

�

neng (s)
�

∀s ∈ S. (9.47b)

Finally, the engine’s revolutionary speed neng, depending on the truck’s velocity and the se-
lected gear, must stay within prescribed limits according to the engine’s specification,

neng,min ¶ neng
�

v(s), y(s)
�

¶ neng,max ∀s ∈ S. (9.48)

9.5.4 Design of a Performance Index

We’re interested in computing continuous optimal control trajectories Rind(·), Rbrk(·) and an
integer optimal control trajectory y(·) on a section S of a track described by parameters
γ(·) and κ(·) varying in space such that the truck completes this track satisfying a chosen
compromise between minimal energy consumption and earliest arrival time. The integral cost
criterion to be minimized in each of the successive steps of the moving horizon predictive
control algorithm is composed of a weighted sum of three different objectives.

1. Deviation from a desired velocity:

The deviation of the truck’s observed velocity from the desired one is penalized in a
least-squares sense over the length H of the prediction horizon S def

= [s0, s0+H] starting
at the truck’s current position s0 on the road,

Φdev
def
=

∫ s0+H

s0

�

v(s)− vdes(s)
�2 ds. (9.49)

This computation of a profile of desired velocities to be tracked by the predictive con-
troller is automated and will in general match the maximum velocity permitted by law.
For sharp bends of the road, a heuristic is applied to adapt the velocity to be tracked
to the truck’s physical capabilities. This avoids large residuals of the objective that im-
pede the numerical behavior of the GAUSS–NEWTON least squares tracking. In addition,
several parameters of this heuristic can be exposed to the truck driver to grant some ad-
ditional freedom for adaptation to environmental conditions such as traffic or weather
extending over the premises made by the predictive control algorithm.

230

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

2. Fuel consumption:

The fuel consumption is identified from the specific fuel consumption rate map exem-
plarily shown in figure 9.23d, and is minimized by the objective contribution

Φfuel
def
=

∫ s0+H

s0

1

v(s)
Q
�

neng(s), Mind(s)
�

ds. (9.50)

3. Driving comfort:

Rapid changes of the indicated engine torque degrade the driving comfort as experi-
enced by the truck driver:

Φcomf
def
=

∫ s0+H

s0

1

v(s)
�

Rind(s) + Rbrk(s)
�2 ds. (9.51)

This objective part can be seen as tracking zero acceleration in absence of slope, or as a
control regularization from a numerical point of view.

Weighting the objective function contributions and summing up, we obtain the combined
objective function

Φ
def
= λ1Φdev+λ2Φfuel+λ3Φcomf. (9.52)

The weighting factor λ3 is chosen to be comparably small in our computations. The choice
of λ1 and λ2 allows for a gradual selection of a compromise between meeting the desired
velocity that can even be chosen on–line by the truck driver who may prefer to travel faster at
the cost of increased fuel consumption or, being ahead of his schedule, may prefer to save on
fuel by following an economic operating mode of the truck at the cost of longer travel times.
For more details on the investigation of pareto–optimality of mixed–integer control problems
we refer to our paper [140].

9.5.5 Mixed–Integer Optimal Control Problem

Problem Formulation

The MIOCP resulting from the presented vehicle and environment model is given in (9.55).
We summarize the state vectors

x (s) =
h

v(s) Mind(s) Mbrk Q(s) t(s)
i

(9.53)

and the continuous controls vectors

u(s) =
h

Rind(s) Rbrk(s)
i

(9.54)

231

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

and denote by w (s) = y(s) the gear choice control.

min
x (·),u(·),w (·)

λ1Φdev+λ2Φfuel+λ3Φcomf (9.55a)

s. t. ẋ(s) = f (s, x (s), u(s), w (s), p) ∀s ∈ S, (9.55b)

v(s)¶ vlaw(s) ∀s ∈ S,

v(s)¶ vcurve(s) ∀s ∈ S,

Mind(s) ∈ [0, Mind,max(v(s), y(s))] ∀s ∈ S, (9.55c)

Mbrk(s) ∈ [0, Mind,brk(v(s), y(s))] ∀s ∈ S, (9.55d)

Rind(s) ∈ [Rind,min, Rind,max] ∀s ∈ S,

Rind(s) ∈ [Rbrk,min, Rbrk,max] ∀s ∈ S,

neng(v(s), y(s)) ∈ [neng,min, neng,max] ∀s ∈ S. (9.55e)

y(s) ∈ {1, . . . , ny} ∀s ∈ S. (9.55f)

In (9.55) the ODE system (9.55b) comprises the vehicle ODE model derived in section 9.5.2.
The engine speed constraints (9.55e) depends on the integer control y(s) in (9.55f).

Outer Convexification Reformulation

We first address the reformulation of this MIOCP using outer convexification of the objective
and ODE dynamics with respect to the integer gear choice, and relaxation of the introduced
binary convex multipliers. We introduce ny binary control functions ω j(·) ∈ {0,1}, 1¶ j ¶ ny

each indicating whether the j-th gear is selected at location s ∈ S on the prediction horizon,
together with their relaxed counterpart functions α j(·) ∈ [0,1] ⊂ R. From these the selected
gear may be computed as

y(s) =
ny
∑

j=1

jα j(s), s ∈ S, (9.56)

and is integral if the multipliers α j(s) are binary. We convexify the contributing term Φfuel of
the objective (9.52) of problem (9.55) with respect to the integer control y(·) as follows,

Φfuel(s)
def
=

∫ s0+H

s0

1

v(s)

ny
∑

j=1

α j(s)Q
�

neng(v(s), j), Mind(s)
�

ds, (9.57)

while the contributing terms Φdev and Φcomf are independent of w(t) and hence remains
unchanged. We further convexify the dynamics of problem (9.55) with respect to the integer
control y(·) as follows,

ẋ(s) =
ny
∑

j=1

α j(s) f (s, x (s), u(s), j, p) ∀s ∈ S, (9.58)

232

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

where the gear choice constraint (9.55f) is replaced by

α j(s) ∈ [0, 1], 1¶ j ¶ ny,
ny
∑

j=1

α j(s) = 1, ∀s ∈ S. (9.59)

The torque constraints (9.55c) and (9.55d) are written as

0¶Mind(s)¶
ny
∑

j=1

α j(s)Mind,max(v(s), j), (9.60a)

0¶Mbrk(s)¶
ny
∑

j=1

α j(s)Mbrk,max(v(s), j). (9.60b)

Reformulations of the Engine Speed Constraint

In chapter 5 we have proposed several possible reformulations of path constraints directly
depending on an integreal control. For the engine speed constraint (9.48) depending on the
gear choice y(s), we study again three of the proposed reformulations.

Inner Convexification We briefly look at the effect of treating y(s) as a continuous variable,
referred to as inner convexification of the gear choice in this works. This modelling approach
results in the formulation

neng,min ¶ neng(v(s), y(s))¶ neng,max, y(s) ∈ [1, ny]⊂ R. (9.61)

From an engineering point of view, inner convexification amounts to assuming an idealized
continuous transmission gearbox that is able to run on arbitrary ratios of the engine speed
and the vehicle resp. wheel speed. An appropriate formulation might also introduce the en-
gine speed neng(s) as a free control trajectory on S subject to optimization, and impose a
transmission ratio constraint,

iT,min ¶
neng(s)

v(s)
rstat

iA

2π

60 [s]
¶ iT,max, neng(s) ∈ [neng,min, neng,max]⊂ R. (9.62)

This formulation is appropriate for vehicles with a built–in CVT (continuously variable trans-
mission) drive, but for gearboxes with a finite number ny of available gears, several issues
arise. Optimal solutions computed using this modelling approach need to to be “rounded”
towards an actually available transmission ratio resp. engine speed. Bounds on the loss of op-
timality or feasibility of the rounded solution cannot be given. As an example, in figure 9.25
the constraint on Mind(s) is shown in its inner convexification reformulation i.e., with the gear
choice y(s) treated as continuous control, and in its outer convexification formulation. Con-
straint violations for fractional gear choices caused by the inner convexification reformulation
are clearly visible in figure 9.25a and are avoided in figure 9.25b. Finally, engine and vehicle
characteristics most often represented as tabulated and interpolated data need to be extended
to physically unavailable transmission ratios in a sufficiently often continuously differentiable
way in order to make the mathematical model of both engine and vehicle evaluatable.

233

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

v [m/s]

M
in

d,
m

ax
[N
m
]

10 15 20 25
2000

2100

2200

2300

2400

2500

(a) Inner convexification.

v [m/s]
M

in
d,

m
ax
[N
m
]

10 15 20 25
2000

2100

2200

2300

2400

2500

(b) Outer convexification.

Figure 9.25: Inner and outer convexification of the indicated engine torque constraint for two adjacent
gears. Constraint violations for fractional gear choices caused by the inner convexification
reformulation are clearly visible.

Standard Formulation after Outer Convexification We next consider the formulation of
(9.48) after outer convexification of the objective and dynamics with respect to the integer
gear choice,

neng,min ¶
ny
∑

j=1

α j(s)neng(v(s), j)¶ neng,max. (9.63)

Here, outer convexification with respect to y(s) is applied to the engine speed neng(v(s), y(s)),
and the constraint is imposed on the engine speed obtained by evaluation of the convex com-
bination. Contrary to the inner convexification approach, this formulation relieves us from the
need to evaluate the engine and vehicle model functions for fractional gear choices. Observe
though that the engine speed neng(v(s), j) resulting for an individual (partially) selected gear
j with a j(s)> 0 may violate either bound as long as there exists another gear k compensating
for this violation in the summed-up residual (9.63). This effect is shown in figure 9.30 on page
239 for the mixed–integer optimal control scenario of figure 9.29, page 238.

Outer Convexification of the Constraint In this thesis we proposed for the first time to ap-
ply outer convexification also to the path constraint directly depending on the integer control,

0¶ α j(s)
�

neng(v(s), j)− neng,min

�

, 1¶ j ¶ ny, (9.64a)

0¶ α j(s)
�

neng,max− neng(v(s), j)
�

. (9.64b)

Instead of a single constraint on the engine speed resulting from a convex combination, we
now impose a separate constraint on the engine speed for each available gear.

234

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

y

v
[m
/
s]

2 4 6 8 10 12 14 16
0

10

20

30

40

50

Figure 9.26: Feasible vehicle speeds v(s) for a given choice y(s) = j of the gear. The figure re-
veals the combinatorial structure of the feasible set created by the constraints neng,min ¶
neng(v(s), j)¶ neng,max that vanish if the associated convex multiplier α j(s) is zero.

vα1

α2

α3

α4

(a) Feasible velocities v(s) for four gears
y(s) ∈ {1, 2,3, 4} associated with convex
multipliers α j(s) ∈ [0, 1].

vα1

α2

α3

α4

(b) Feasible velocities for convex combinations
α j(s) +α j+1(s) = 1 of two adjacent gears j
and j+ 1.

Figure 9.27: Schematic of the nonconvex feasible set for the vehicle velocity v described by the engine
control reformulation (9.64) with four gears (ny = 4). Arrows indicate axes of the space
(v,α) ∈ R+× [0, 1]n

y

. The feasible set is depicted in 9.27a for integral choices of the gear
(α j = 1 for some 1 ¶ j ¶ ny, αk = 0 for all k 6= j), and in 9.27b under the restriction that
a convex combination is formed between two adjacent gears only, i.e., that a special order
set 2 constraint is imposed on the convex multipliers α j , 1¶ j ¶ ny.

Clearly, if α j(s) = 0 and gear j is not chosen at point s ∈ S, the two constraints (9.64) are
feasible regardless of the actual velocity v(s). If α j(s) > 0 and gear j enters the convex com-
bination, feasibility of the associated engine speed neng(v(s), j) is required. Different from the

235

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

previous formulation, this requirement must be satisfied even though the convex multiplier
α j(s) might be less than 1. Consequentially, the individual engine speeds of all gears entering
the convex combination are indeed feasible on their own. Rounding of a fractional relaxed
optimal solution to the partially convexified problem (9.55) hence does not violate the critical
engine speed constraint.

9.5.6 Exemplary Mixed–Integer Optimal Control Scenarios

In this section we present MIOCP solutions to problem (9.55) that demonstrate the predictive
nature of the modelled cruise controller at the example of two short road sections with a steep
slope and a speed limit imposed. Compensation effects of the standard constraint formulation
after outer convexification are investigated.

Example: Steep Slope Scenario

Figure 9.28 on page 237 shows the optimal solution to a mixed–integer optimal control sce-
nario on a road section of two kilometers length with a steep slope of 8% for 500 meters,
starting at 500 meters into the section. No curvature is present. The desired velocity is set
at vdes = 80 km/h = 22.2 m/s as indicated in figure 9.28a, while the initial velocity at the
start of the scenario is set to 19 m/s. Objective function weights are chosen as λdev = 10−2,
λfuel = 10−2, λcomf = 10−4 such that contribution tracking the desired velocity dominates the
objective. The truck enters the slope with a velocity exceeding the desired one, as can be seen
in figure 9.28a. This happens in order to maximize the remaining exit velocity after the slope
has been tackled. Figure 9.28b shows the accumulated fuel consumption. In figure 9.28c the
effective torque Mind(s)−Mbrk(s) can be seen together with its engine speed dependent upper
bound. Figure 9.28d shows the associated torque rate. In figure 9.28e downshifting of the gear
from 13 down to 10 can be seen in order to maintain an engine speed of over 1500 1/min
seen in figure 9.28f, as the velocity drops from 25 m/s down to 13 m/s at the exit of the
slope. The fast acceleration sequence starting at 1000 meters into the section is accompanied
by rapid upshifting to the highest gear number 16 as the desired velocity has been reached
again.

Example: Speed Limit Scenario

In figure 9.29 on page 238, the slope has been replaced by a speed limit of 40 km/h and the
truck’s initial speed has been set to 40 km/h as well. Acceleration and braking can be seen in
figure 9.29a and 9.29c to minimize the time until the entry of the speed limit zone. This zone
is crossed at the lowest possible engine speed in order to save fuel. The acceleration back to
the desired velocity is accompanied by upshift of the gear to keep the engine speed above
1500 1/min again, while the remainder of the road section is completed at around 800 1/min
in gear 16 as the desired velocity has been reached.

236

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

v
[m
/
s]

s [m]

0 500 1000 1500 2000
10

15

20

25

(a) Velocity v(s), and desired velocity vdes.

Q
[l
]

s [m]

0 500 1000 1500 2000
0

1

2

3

(b) Consumed fuel Q(s).

M
[N
m
]

s [m]

0 500 1000 1500 2000
0

1000

2000

3000

(c) Engine torque Mind(s) − Mbrk(s), and path con-
straint Mind,max enfored in shooting nodes only.

R
[N
m
/
s]

s [m]

0 500 1000 1500 2000

-500

0

500

(d) Engine torque rate Rind(s)− Rbrk(s).

y

s [m]

0 500 1000 1500 2000
8

10

12

14

16

(e) Convexified relaxed gear choice y(s), and enve-
lope of admissible gears at velocity v(s).

n e
ng
[1
/
m
in
]

s [m]

0 500 1000 1500 2000
500

1000

1500

2000

(f) Engine speed neng(s).

Figure 9.28: Optimal engine torque and gear choice computed for problem (9.55) with outer convex-
ification and relaxation applied to dynamics and path constraints. On a road section of
two kilometers length with a slope of 8% for one kilometer, the controller aims at a com-
promise between maintaining a velocity of 80 km/h and burning as little fuel as possible.
The entry velocity exceeds the desired one in figure 9.29a in order to maximize the exit
velocity that drops due to the steep slope. Downshifts from gear 13 to gear 10 in figure
9.29e keep the engine speed above 1500 1/min in figure 9.29f. Once the slope has been
tackled, the highest available gear 16 is selected and the engine speed drops to 800 1/min
in order to save fuel while maintaining the desired velocity.

237

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

v
[m
/
s]

s [m]

0 500 1000 1500 2000
10

15

20

25

(a) Velocity v(s), and desired velocity vdes.
Q
[l
]

s [m]

0 500 1000 1500 2000
0

0.5

1

1.5

2

(b) Consumed fuel Q(s).

M
[N
m
]

s [m]

0 500 1000 1500 2000
-1000

0

1000

2000

3000

(c) Torque Mind(s) − Mbrk(s), and path constraint
Mind,max enfored in shooting nodes only.

R
[N
m
/
s]

s [m]

0 500 1000 1500 2000

-500

0

500

(d) Torque rate Rind(s)− Rbrk(s)

y

s [m]

0 500 1000 1500 2000
8

10

12

14

16

(e) Convexified relaxed gear choice y(s), and enve-
lope of admissible gears at velocity v(s).

n e
ng
[1
/
m
in
]

s [m]

0 500 1000 1500 2000
500

1000

1500

2000

(f) Engine speed neng(s).

Figure 9.29: Optimal engine torque and gear choice computed for problem (9.55) with outer convex-
ification and relaxation applied to dynamics and path constraints. On a road section of
two kilometers length with a speed limit of 40 km/h imposed for a section of 500 meters,
the controller aims at maintaining a velocity of 80 km/h.

238

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

Example: Compensatory Effects

In figure 9.30 the choice convex multipliers α(s) for the gear y(s) can be seen if the first
example of figure 9.29 is solved with the standard formulation (9.63) of the engine speed
constraint (9.48) after outer convexification, instead of using the vanishing constraint for-
mulation proposed in this thesis. Figure 9.30 shows for each of the 16 available gears the
resulting engine speed if a (partial) selection of the respective gear is indicated by the convex
relaxed multipliers α(s). Compensatory effects are clearly revealed. They allow for a selection
of infeasible gears violating the engine speed constraints (e.g. gears 5 to 9 in figure 9.30), if
this violation is compensated for by (partial) selection of other gears that either do not hit
the engine speed constraint or violate the opposite constraint (e.g. gears 14 to 16) such that
violations cancel out in (9.63)

t

n e
ng
(y

5
)

0 1000 2000

(a) Gear 5.
t

n e
ng
(y

6
)

0 1000 2000

(b) Gear 6.
t

n e
ng
(y

7
)

0 1000 2000

(c) Gear 7.

t

n e
ng
(y

8
)

0 1000 2000

(d) Gear 8.
t

n e
ng
(y

9
)

0 1000 2000

(e) Gear 9.
t

n e
ng
(y

10
)

0 1000 2000

(f) Gear 10.

t

n e
ng
(y

11
)

0 1000 2000

(g) Gear 11.
t

n e
ng
(y

12
)

0 1000 2000

(h) Gear 12.
t

n e
ng
(y

13
)

0 1000 2000

(i) Gear 13.

t

n e
ng
(y

14
)

0 1000 2000

(j) Gear 14.
t

n e
ng
(y

15
)

0 1000 2000

(k) Gear 15.
t

n e
ng
(y

16
)

0 1000 2000

(l) Gear 16.

Figure 9.30: Compensatory effects arising for inner convexification of the engine speed constraint at
the example of figure 9.29.

239

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

9.5.7 Mixed–Integer Predictive Control Results

We finally present mixed–integer model–predictive control results for their cruise controller
using the above MIOCP formulation. Using a prediction horizon of 2000 meters length, dis-
cretized into m= 40 direct multiple shooting intervals of 50 meters length each, we compute
mixed–integer feedback control trajectories for a south german highway of 150 kilometers
length. We give feedback every 10 meters and use the warm starting strategy of section 4.2.3
for initialization. In figure 9.31 spread across pages 241 to 243 the highway’s slope profile, the
realized feedback controls, and the obtained system states are shown for the entire distance
of 150 kilometers. For this solution, we chose λdev = 10−2, λfuel = 10−2, and λcomf = 10−4 to
obtain a speed–oriented behavior of the cruise controller.
We can see in figure 9.31d that the desired velocity vdes of 80 km/h is kept during the majority
of the truck’s journey. Minor deviations are accepted to prevent unnecessary acceleration or
braking maneuvres that would impact the driver’s comfort and burn additional fuel. Major
deviations have to be accepted on steep sloped parts of the highway that make it impossible
for the truck to sustain the desired velocity at a load of m = 40 metric tonnes. Gear 12 is
selected most of as seen in figure 9.31g, keeping the engine speed neng well above 1500 rpm
to ensure maximum responsiveness of the truck according to its engine characteristics. This of
course comes at the cost of increased fuel consumption. Sloped parts of the highway see very
regular downshift and upshift sequences of the gear as the truck enters and exits the sloped
sections. The highest available gear 16 is occasionally chosen on flat sections to save on fuel
if the desired velocity has already been reached.
In figure 9.32 on page 244, details of this feedback solution can be studied for a highway
section of 6 kilometers length starting after a traveled distance of 54 kilometers. Here, a steep
slope of two kilometers length is present with the relative altitude of the highway rising to 400
meters, up from around 230 meters above the truck’s initial position, see figure 9.32b. The
predictive nature of the controller’s behavior can be seen clearly. In figure 9.32c the velocity
can be seen to rise above the desired velocity well before the truck actually enters the steep
sloped section. This ameliorates the exit velocity that nonetheless drops to about 40 km/h
down from over 90 km/h. The engine runs at maximum indicated torque (figure 9.32e) and
the total amount of consumed fuel rises (figure 9.32d) accordingly. Downshifts of the gear
seen in figure 9.32g keep the engine’s speed around 1500 rpm as seen in figure 9.32h, the
engine’s most efficient mode of operation. An upshift sequence ending at the highest available
gear 16 completes the studied excerpt once the steep slope has been crossed successfully. As
already noted above, the predictive controller returns to gear 12 as the desired velocity has
been reached again.
Figure 9.33 shows mixed–integer feedback control trajectories for the same scenario with
modified objective function weights λdev = 10−3, λfuel = 10−1, and λcomf = 10−4 to achieve a
more fuel consumption aware behavior of the predictive cruise controller. Consequentially, the
highest available gear 16 is chosen significantly more frequently, leading to an overall engine
speed that is much lower than before. Downshift and upshift sequences during sloped parts of
the highway are more prominent, and less chattering of the gear choice is observed in figure
9.33g. The fuel consumption over 150 kilometers has been noticeably reduced (figure 9.33c).
This of course comes at the cost of significantly larger deviations from the desired velocity
(figure 9.33d).

240

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

γ

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

-0
.10

0.
1

(a
)

Sl
op

e
γ
(s
).

Height[m]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

0

50
0

10
00

(b
)

H
ei

gh
t.

Q[l]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

05010
0

(c
)

To
ta

lf
ue

lc
on

su
m

pt
io

n
Q
(s
).

241

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

v[m/s]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

0102030

(d
)

Ve
lo

ci
ty

v(
s)

w
it

h
de

si
re

d
ve

lo
ci

ty
v d

es
(s
)
=

80
k
m
/
h

an
d

m
ax

im
al

ve
lo

ci
ty

v m
ax
=

10
0
k
m
/
h
.

M[Nm]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

-5
00

00

50
00

(e
)

To
rq

ue
M

in
d
(s
)−

M
br

k
(s
).

R[Nm/s]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

-5
00

0

50
0

(f
)

To
rq

ue
ra

te
R

in
d
(s
)−

R
br

k
(s
)

w
it

h
bo

un
ds

.

242

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

y

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

51015

(g
)

Se
le

ct
ed

ge
ar

y(
s)

ou
t

of
16

av
ai

la
bl

e
ge

ar
s.

neng[1/min]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

10
00

20
00

(h
)

En
gi

ne
sp

ee
d

n e
ng
(s
)

at
se

le
ct

ed
ge

ar
y(

s)
.

Fi
gu

re
9.

31
:S

im
ul

at
ed

m
ix

ed
–i

nt
eg

er
m

od
el

–p
re

di
ct

iv
e

co
nt

ro
lr

es
ul

ts
fo

r
th

e
pr

ed
ic

ti
ve

cr
ui

se
co

nt
ro

lle
r

pr
ob

le
m

on
a

so
ut

he
rn

G
er

m
an

hi
gh

w
ay

se
ct

io
n

of
15

0
ki

lo
m

et
er

s
le

ng
th

.T
he

de
si

re
d

an
d

pe
rm

it
te

d
ve

lo
ci

ti
es

ar
e

v d
es
=

80
k
m
/
h

an
d

v m
ax
=

10
0
k
m
/
h
.A

pr
ed

ic
ti

on
ho

ri
zo

n
of

H
=

20
00
m

le
ng

th
w

as
us

ed
,

di
sc

re
ti

ze
d

in
to

m
=

40
di

re
ct

m
ul

ti
pl

e
sh

oo
ti

ng
in

te
rv

al
s.

C
on

tr
ol

fe
ed

ba
ck

w
as

gi
ve

n
ev

er
y

10
m

.
O

bj
ec

ti
ve

fu
nc

ti
on

w
ei

gh
ts
λ

de
v
=

10
−2

,
λ

fu
el
=

10
−2

,
an

d
λ

co
m

f
=

10
−4

w
er

e
ch

os
en

an
d

yi
el

d
a

sp
ee

d–
or

ie
nt

ed
be

ha
vi

or
.

Fi
gu

re
s

9.
31

a
an

d
9.

31
b

on
pa

ge
24

1
sh

ow
th

e
sl

op
e

an
d

he
ig

h
pr

ofi
le

of
th

e
hi

gh
w

ay
in

cl
ud

in
g

se
ve

ra
lc

ha
lle

ng
in

g
st

ee
p

se
ct

io
ns

.F
ig

ur
es

9.
31

c
sh

ow
s

th
e

to
ta

la
m

ou
nt

of
fu

el
co

ns
um

ed
.I

nc
re

as
ed

co
ns

um
pt

io
n

is
ob

vi
ou

s
on

st
ee

p
se

ct
io

ns
of

th
e

ro
ad

,
an

d
th

e
ov

er
al

l
co

ns
um

pt
io

n
is

hi
gh

in
th

is
sp

ee
d–

or
ie

nt
ed

se
tt

in
g.

Fi
gu

re
9.

31
d

on
pa

ge
24

1
sh

ow
s

th
e

co
rr

es
po

nd
in

g
ve

lo
ci

ty
pr

ofi
le

.S
m

al
ld

ev
ia

ti
on

s
fr

om
th

e
de

si
re

d
ve

lo
ci

ty
ar

e
pe

rm
it

te
d

to
sa

ve
on

fu
el

co
ns

um
pt

io
n

an
d

pr
ev

en
t

ex
ce

ss
iv

e
w

ea
r-

of
f

of
th

e
br

ak
es

.A
tt

he
ex

it
of

st
ee

p
sl

op
es

,t
he

tr
uc

k’
s

ve
lo

ci
ty

ha
s

dr
op

pe
d

to
be

lo
w

30
k
m
/
h
.T

he
to

rq
ue

pr
ofi

le
s

in
fig

ur
e

9.
31

e
an

d
9.

31
fs

ho
w

th
at

is
ca

nn
ot

be
av

oi
de

d
as

th
e

en
gi

ne
is

ru
nn

in
g

at
m

ax
im

al
ca

pa
ci

ty
on

th
es

e
ro

ad
se

ct
io

ns
.F

ig
ur

e
9.

31
g

on
th

is
pa

ge
sh

ow
s

th
e

se
le

ct
ed

ge
ar

.S
eq

ue
nc

es
of

up
sh

if
ts

an
d

do
w

ns
hi

ft
s

ca
n

be
cl

ea
rl

y
m

at
ch

ed
to

ra
is

in
g

an
d

fa
lli

ng
se

ct
io

ns
of

th
e

ro
ad

.O
ve

ra
ll,

ge
ar

12
is

ch
os

en
as

th
e

m
os

t
ef

fic
ie

nt
on

e
fo

r
ac

ce
le

ra
ti

on
,w

hi
le

th
e

hi
gh

es
t

av
ai

la
bl

e
ge

ar
16

is
ch

os
en

to
sa

ve
on

fu
el

co
ns

um
pt

io
n

if
po

ss
ib

le
.F

ig
ur

e
9.

31
h

sh
ow

s
th

e
re

su
lt

in
g

en
gi

ne
sp

ee
ds

,
cl

ea
rl

y
w

it
hi

n
th

e
en

gi
ne

’s
sp

ec
ifi

ed
lim

it
s

of
op

er
at

io
n.

243

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

γ

s [m]

5.4 5.6 5.8 6
×104

-0.1

0

0.1

(a) Slope γ(s).

H
ei

gh
t
[m
]

s [m]

5.4 5.6 5.8 6
×104

200

400

600

(b) Height.

v
[m
/
s]

s [m]

5.4 5.6 5.8 6
×104

10

20

30

(c) Velocity v(s).
Q
[l
]

s [m]

5.4 5.6 5.8 6
×104

40

50

60

(d) Consumed fuel Q(s).

M
[N
m
]

s [m]

5.4 5.6 5.8 6
×104

0

2000

4000

(e) Torque Mind(s)−Mbrk(s).

R
[N
m
/
s]

s [m]

5.4 5.6 5.8 6
×104

-500

0

500

(f) Torque rate Rind(s)− Rbrk(s).

y

s [m]

5.4 5.6 5.8 6
×104

5

10

15

(g) Gear y(s).

n e
ng
[1
/
m
in
]

s [m]

5.4 5.6 5.8 6
×104

1000

2000

(h) Engine speed neng(s).

Figure 9.32: Simulated mixed–integer model–predictive control results for the predictive cruise con-
troller problem on a highway in southern Germany presented in figure 9.31. Details are
shown for a selected, sloped section of 6 kilometers length at 54 kilometers into the track.
Climbing the steep slope causes the truck with a mass of 40,000 kg to slow down below 40
km/h. In anticipation of this event the predictive cruise controller accelerates to the max-
imum permitted velocity just before the steep slope starts. Downshifts of the gear y keep
the engine speed neng up in order to maintain the largest possible maximum torque Mind.
More economic low engine speeds are chosen by an appropriate upshift as the slope de-
creases and even the height decrease. Consequentially, the total amount of fuel consumed
grows slowest on this section of the road.

244

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

γ

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

-0
.10

0.
1

(a
)

Sl
op

e
γ
(s
).

Height[m]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

0

50
0

10
00

(b
)

H
ei

gh
t.

Q[l]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

05010
0

(c
)

To
ta

lf
ue

lc
on

su
m

pt
io

n
Q
(s
).

245

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

v[m/s]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

0102030

(d
)

Ve
lo

ci
ty

v(
s)

w
it

h
de

si
re

d
ve

lo
ci

ty
v d

es
(s
)
=

80
k
m
/
h

an
d

m
ax

im
al

ve
lo

ci
ty

v m
ax
=

10
0
k
m
/
h
.

M[Nm]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

-5
00

00

50
00

(e
)

To
rq

ue
M

in
d
(s
)−

M
br

k
(s
).

R[Nm/s]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

-5
00

0

50
0

(f
)

To
rq

ue
ra

te
R

in
d
(s
)−

R
br

k
(s
)

w
it

h
bo

un
ds

.

246

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

y

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

51015

(g
)

Se
le

ct
ed

ge
ar

y(
s)

ou
t

of
16

av
ai

la
bl

e
ge

ar
s.

neng[1/min]

s
[m
]

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15 ×1

04

10
00

20
00

(h
)

En
gi

ne
sp

ee
d

n e
ng
(s
)

at
se

le
ct

ed
ge

ar
y(

s)
.

Fi
gu

re
9.

33
:S

im
ul

at
ed

m
ix

ed
–i

nt
eg

er
m

od
el

–p
re

di
ct

iv
e

co
nt

ro
lr

es
ul

ts
fo

r
th

e
pr

ed
ic

ti
ve

cr
ui

se
co

nt
ro

lle
r

pr
ob

le
m

on
a

so
ut

he
rn

G
er

m
an

hi
gh

w
ay

se
ct

io
n

of
15

0
ki

lo
m

et
er

s
le

ng
th

.T
he

de
si

re
d

an
d

pe
rm

it
te

d
ve

lo
ci

ti
es

ar
e

v d
es
=

80
k
m
/
h

an
d

v m
ax
=

10
0
k
m
/
h
.A

pr
ed

ic
ti

on
ho

ri
zo

n
of

H
=

20
00
m

le
ng

th
w

as
us

ed
,

di
sc

re
ti

ze
d

in
to

m
=

40
di

re
ct

m
ul

ti
pl

e
sh

oo
ti

ng
in

te
rv

al
s.

C
on

tr
ol

fe
ed

ba
ck

w
as

gi
ve

n
ev

er
y

10
m

.
O

bj
ec

ti
ve

fu
nc

ti
on

w
ei

gh
ts
λ

de
v
=

10
−3

,
λ

fu
el
=

10
−1

,a
nd
λ

co
m

f
=

10
−4

w
er

e
ch

os
en

an
d

yi
el

d
a

co
m

pr
om

is
e

be
tw

ee
n

sp
ee

d–
or

ie
nt

ed
an

d
fu

el
–s

av
in

g
be

ha
vi

or
.I

n
fig

ur
e

9.
33

h
it

ca
n

be
se

en
th

at
tr

uc
k

is
op

er
at

ed
at

m
uc

h
lo

w
er

en
gi

ne
sp

ee
ds

th
an

in
th

e
pr

ev
io

us
se

t
of

re
su

lt
s.

Th
e

hi
gh

es
t

av
ai

la
bl

e
ge

ar
16

is
se

le
ct

ed
in

fig
ur

e
9.

33
g

un
le

ss
sl

op
es

re
qu

ir
e

ac
ce

le
ra

ti
on

or
br

ak
in

g
m

an
eu

ve
rs

.C
on

se
qu

en
ti

al
ly

,t
he

to
ta

la
m

ou
nt

of
fu

el
co

ns
um

ed
is

re
du

ce
d

in
fig

ur
e

9.
33

c.
Th

is
co

m
es

at
th

e
co

st
of

m
uc

h
la

rg
er

de
vi

at
io

ns
fr

om
th

e
de

si
re

d
ve

lo
ci

ty
in

fig
ur

e
9.

33
d.

247

CHAPTER 9
�

� N U M E R I C A L R E S U LT S

9.5.8 Computational Demand

We finally investigate the computational demand of our mixed–integer model–predictive cruise
controller at the example of the results presented in figure 9.31 on page 243. The number of
iterations of our QPVC active set method is shown in figure 9.34a. The problem’s dimensions
are m = 40, nx = 3, and nq = 17. Clearly, at least one iteration is performed per feedback
phase of the mixed–integer real–time iteration scheme. Most iteration counts remain below
20, with few exceptions attributed to searching adjacent convex feasible subsets for improve-
ments to identified strongly MPVC–stationary points as described in chapter 6.

Q
PV

C
It

er
at

io
ns

SQP Iteration

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

(a) Number of QPVC iterations for the results of figure 9.31.

Fe
ed

ba
ck

Ti
m

e
[m
s]

SQP Iteration

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

(b) Overall per–SQP iteration runtime of the QPVC solver for the results of figure 9.31.

Figure 9.34: Number of QPVC iterations required to compute the mixed–integer control feedback of
the predictive cruise controller (m = 20 shooting intervals, horizon length H = 2000 m,
feedback given every 10 m, 16 available gears). Major spikes in the number of QPVC
iterations are caused by searching adjacent convex feasible sets in order to improve an
identified stationary point.

248

N U M E R I C A L R E S U LT S
�

� CHAPTER 9

The computational effort of the feedback phase of our mixed–integer real–time iteration
scheme is shown in figure 9.34b and is closely correlated with the number of QPVC itera-
tions. This indicates that the runtime of the HPSC factorization and updates is dominated by
the length m = 40 of the direct multiple shooting grid. Approximately 500 µs are spent per
active set iteration, such that the total feedback delay remains below 10 milliseconds for most
mixed–integer feedback controls computed. Concerning real–time capability of the presented
algorithm, consider that for a feedback granularity of 10 meters as employed for the presented
results, the feedback has to be ready after at most 10[m]/v(s) seconds, e.g. after 360 ms at
v(s) = 100 km/h. Reserving half of this time for the preparation phase, our QPVC method is
real–time capable below 180ms ·500 µs/iteration, i.e., 360 iterations on the desktop machine
used for the presented computations. Considering that most mixed–integer feedback controls
could be computed in 20 QPVC iterations, and given the additional possibility to constrain our
primal–dual parametric algorithm to 20 iterations while still obtaining a physically meaning-
ful iterate, we come up with a rough estimate of a factor 15 that an industrial target device
could be slower than our desktop machine. We finally note that a condensing method on this
problem would require a computation time in excess of ten seconds, though attributed to the
preparation phase of the real–time iteration scheme, before the computation of a feedback
control could be started.

9.5.9 Summary

In this section we have applied the new algorithmic techniques developed in this thesis, in-
cluding the mixed–integer real–time iteration scheme, the nonconvex active set method for
QPVCs, and the block structured HPSC factorization, to a challenging predictive cruise con-
trol problem of high relevance to current industrial practice. We have formulated a vehicle
model including nonlinear dynamics, and various nonlinear physical constraints e.g. on en-
gine torque and velocity. On a prediction horizon supplied with look–ahead information on
the road conditions, an optimal control problem has been formulated to minimize a nonlin-
ear objective function composed from several contributing terms, motivated by the predictive
cruise controller’s goals such as tracking of a prescribed velocity or minimizing fuel consump-
tion. The described problem becomes a combinatorial one by including the optimal choice of
transmission ratio and associated gearbox degree of efficiency, assuming, in contrast to a CVT
drive, a gearbox with a fixed number of available gears. We have considered the gear choice
in each discretization point on the whole of the prediction horizon, which led to a large search
space prohibiting the use of exhaustive search techniques.
Previous work has attacked this predictive control problem using dynamic programming tech-
niques, or by considering only a single gear shift on the prediction horizon. We have demon-
strated that the techniques developed in this thesis allow for a computationally very efficient
solution of this mixed–integer model–predictive control problem. We achieved mixed–integer
control feedback times as low as one millisecond, staying below 10 milliseconds for most
feedback computations and below 50 milliseconds for all scenarios investigated.

249

A Supplementary Material

This appendix reprints some frequently used definitions and theorems for the reader’s conve-
nience.

Definition A.1 (LANDAU Symbol O)
For a scalar function f : N→ N we define

O(f) def
=
¦

g : N→ N
�

� ∃α,β , N ∈ N0 : ∀n ∈ N, n¾ N : g(n)¶ α f (n) + β
©

to denote the set of mappings between natural numbers that asymptotically do not grow faster
than f . 4

Definition A.2 (MOORE–PENROSE Pseudoinverse)
For a matrix A ∈M(m, n,R) the MOORE–PENROSE pseudoinverse of A is defined as the unique
matrix A† ∈M(n, m,R) satisfying

AA†A= A (MP1)

A†AA† = A† (MP2)

(AA†)
T
= AA† (MP3)

(A†A)
T
= A†A (MP4)

4

If A is a regular (square) matrix, the pseudoinverse A† coincides with A−1.

Definition A.3 (Condition)
For a linear equation Ax = b with A ∈M(m, n,R), x ∈ Rn, b ∈ Rm, the condition number
cond A is defined as the maximum ratio of the relative error in the solution x = A†b divided by
the relative error of the right hand side b,

cond A
def
=max

¨ ||A†εb||/||A†b||
||εb||/||b||

�

�

�

�

x ∈ Rn

«

. (A.1)

4

This is more conveniently expressed as a product of the matrix norms induced by || · ||,

cond A=
�

�

�

�

�

�A†
�

�

�

�

�

� ·
�

�

�

�

�

�A
�

�

�

�

�

�. (A.2)

Definition A.4 (Machine precision)
The machine precision ε is defined as the smallest floating–point number representable by the
machine for which 1+ ε 6= 1 holds. 4

Typical values are ε = 2−53 ≈ 1.11× 10−16 for double precision arithmetics and ε = 2−23 ≈
1.19× 10−7 for single precision arithmetics.

250

S U P P L E M E N TA R Y M AT E R I A L
�

� APPENDIX A

Definition A.5 (Convex Function, Convex Set)
A function f : Rn→ R is convex iff for all x1, x2 ∈ Rn

α f (x1) + (1−α) f (x2)¾ f (αx1+ (1−α)x2). (A.3)

holds for all α ∈ [0,1]. A subset K ⊆ Rn is convex iff for all x1, x2 ∈ K

αx1+ (1−α)x2 ∈ K. (A.4)

holds for all α ∈ [0,1]. 4

Definition A.6 (Convex Combination)
A convex combination of pairwise different elements xi ∈ K ⊆ Rn, 1 ¶ i ¶ k for some k > 0, is
a linear combination of the special form

x =
k
∑

i=1

αkxk (A.5)

where αi ∈ R, αi ¾ 0 for all 1¶ i ¶ k, and the special ordered set type 1 constraint holds,

1=
k
∑

i=1

αk. (A.6)

4

Definition A.7 (Polyhedron, Polytope)
A subset P ⊆ Rn is called a (convex) polyhedron if it has finite representation

P = {x ∈ Rn | Ax ¾ b}, (A.7)

with A ∈ Rm×n, b ∈ Rm, 0 ¶ m < ∞. It is called a (convex) polytope if in addition P is
bounded. 4

Definition A.8 (Cone)
Let X ⊂ Rn. The (linear) cone C(X) of the set X is defined as

C(X) def
= {λx | x ∈ X , 0< λ ∈ R} (A.8)

The cone C is said to be salient if it does not contain pairs of opposite vectors,

C ∩−C ⊆ {0}, (A.9)

and it is said to be convex if any convex combination of v , w ∈ C is also contained in C,

∀v , w ∈ C, α,β ¾ 0, α+ β = 1 : αv + βw ∈ C. (A.10)

The dual cone C? of C is defined as

C? def
=
¦

v ∈ Rn
�

� ∀d ∈ C : v T d ¾ 0
©

(A.11)

251

APPENDIX A
�

� S U P P L E M E N TA R Y M AT E R I A L

and the polar cone of C is defined as

C◦ def
=
¦

v ∈ Rn
�

� ∀d ∈ C : v T d ¶ 0
©

=−C?. (A.12)

4

Definition A.9 (Kernel, Null Space)
The kernel or null space of a matrix A ∈M(m, n,R) is the vector space of all values in Rn that
are mapped to 0 ∈ Rm by the linear mapping described by A,

ker A
def
= {x ∈ Rn | Ax = 0} ⊆ Rn. (A.13)

4

Definition A.10 (Image, Range Space)
The image or range space of a matrix A ∈M(m, n,R) is the vector space of all values in Rm

attainable by the linear mapping described by A,

im A
def
= {Ax | x ∈ Rn} ⊆ Rm. (A.14)

4

Definition A.11 (Rates of Convergence)
A sequence {x k} ⊂ Rn of iterates is said to be q–convergent with limit x ? ∈ Rn if there exists
p ¾ 1 and µ ∈ [0,1)⊂ R such that

lim
k→∞

�

�

�

�x k+1− x ?
�

�

�

�

�

�

�

�x k − x ?
�

�

�

�

p = µ. (A.15)

If p = 1, the sequence is said to converge q–linearly. If in addition µ = 0, the sequence is said to
converge q–superlinearly. If p = 2, the sequence is said to converge q–quadratically. 4

Theorem A.1 (SHERMAN–MORRISON Formula)
Let A ∈M(n,R) be a regular matrix, and let u, v ∈ Rn be vectors such that 1+ v T Au 6= 0. Then
it holds

�

A+ uv T
�−1
= A−1− A−1uv T A−1

1+ v T Au
. (A.16)

4

In particular, if A is the identity matrix, it holds

�

I + uv T
�−1
= I −

�

1+ uT v
�−1

uv T . (A.17)

Proof A proof can be found in [11]. �

Theorem A.2 (LLT or Cholesky Decomposition)
Every symmetric positive definite matrix A ∈M(n,R) has a unique representation

A= LDLT , (A.18)

252

S U P P L E M E N TA R Y M AT E R I A L
�

� APPENDIX A

where L ∈M(n,R) is a lower triangular matrix with unit diagonal entries, and D ∈M(n,R) is
a diagonal matrix with positive entries. By letting L

def
= LD

1
2 the LLT decomposition

A= LL
T

(A.19)

is obtained. 4

Theorem A.3 (QR Decomposition)
Every matrix A ∈M(m, n,R), m¾ n has a representation

A= Q





R

0



 , (A.20)

where Q ∈ O(m,R) is an orthogonal matrix, and R ∈M(n,R) is an upper triangular matrix. If
A has full column rank, this representation is unique up to the signs of the diagonal elements of
R. With

h

Y Z
i

def
= Q (A.21)

the matrices Y ∈M(m, n,R) and Z ∈M(m, m−n,R) are column orthogonal bases of the range
space and the null space of A, respectively. If A is regular, then Y = Q and A= QR. 4

Theorem A.4 (TQ Decomposition)
Every matrix A ∈M(m, n,R), m¶ n has a representation

A=
h

0 T
i

Q. (A.22)

Given factors Q̃ and R defined by a QR decomposition of AT , the factor T
def
= RT I is a lower right

triangular matrix and Q
def
= IQ̃T . The reversed identity matrix is denoted by I . 4

253

B Implementation

B.1 The Multiple–Shooting Real–Time Online Optimization
Method MuShROOM

The mixed–integer optimal control algorithm developed and presented in this thesis has been
implemented in C in the “multiple shooting real–time online optimization method”, short
MuShROOM. This section contains a brief discussion of the modular architecture, data structures,
model functions and problem description, and the command line based user interface of this
software.

B.1.1 Software Architecture

Modular Architecture

We have adopted the paradigm of two central data structures containing the static descrip-
tion of the Mixed–Integer Optimal Control Problem (MIOCP) model on the one hand, and the
iterative data for the mixed–integer real–time iteration scheme on the other hand. The algo-
rithmic components of this scheme can be naturally separated into five modules as depicted in
figure B.1 that have read access to the static model description, and read/write access to the
iterative data. While this paradigm does not provide per–module protection of data, it gives
the freedom to change data access patterns as algorithms continue to be developed.

Evaluator Integrator

Model description Hessian

Iteration data SQP

QP

read

read/write

Figure B.1: Modular architecture of the software MuShROOM.

Algorithmic Variants

The five modules depicted in figure B.1 are abstract placeholders for one of several concrete
implementations of the respective module. Currently available implementations are listed in
table B.1. For the evaluation module, the integrator module, and the SQP module, only one

254

I M P L E M E N TAT I O N
�

� APPENDIX B

standard implementation is available. The Hessian approximation can be chosen as appro-
priate for the problem instance under investigation. The GAUSS–NEWTON Hessian requires a
least–squares objective. Two QP solver modules are available that provide the classical con-
densing algorithm and the parametric active set strategy for QPVCs. Details on the latter can
be found in section B.2.

Module Variants Description

Evaluator EvaluatorStd Standard module for evaluation of multiple

shooting model functions and derivatives

Hessian HessianDiagonal Constant diagonal approximation of the Hessian

HessianGaussNewton GAUSS–NEWTON approximation

HessianBFGS BFGS approximation

HessianLBFGS Limited–memory BFGS approximation

Integrator IntegratorRK Explicit fixed–step RUNGE–KUTTA method

SQP SqpStdSolver Standard SQP method

QP QpCondenseSolver Condensing QP solver;

the condensed QP is solved by QPOPT [86]
QpHPSCSolver Parametric active–set QP solver for QPVCs;

see section B.2 for details

Table B.1: Available algorithmic variants for the modules of the MuShROOM software.

B.1.2 Description, Implementation, and Solution of a Problem

This section describes the interface of the MuShROOM software exposed to the user implement-
ing a MIOCP problem instance. We present the layout and creation of all input files required
to describe and implement an optimal control problem. We further address to different ways
of using the MuShROOM software in order to solve the problem, namely using the command
line interface or using a set of C functions provided for this purpose.

Input and Output

An Optimal Control Problem (OCP) is described by a MATLAB file holding the static model
description, and a shared object file holding all compiled C model functions, i.e., the ODE
system’s right hand side function, the objective function terms, and all constraint functions.
Furthermore, concrete implementations of the five algorithmic modules are made available as
shared objects as well and can be selected via the MATLAB model description. The solution
of an OCP is made available both in MATLAB and in plain text format. If the command line
interface is used, the iterative solution process can be followed on the screen. This setup is
depicted in figure B.2 and will be explained in more detail in the ensuing sections.

255

APPENDIX B
�

� I M P L E M E N TAT I O N

MATLAB problem description MATLAB results file

Shared object holding

C model functions
MuShROOM Text results file

Shared objects

holding algorithms
C interface Console output

Figure B.2: Input and output files of the MuShROOM software.

MATLAB Problem Description

The problem description is read from a MATLAB file which is expected to contain a structured
variable named model with structure fields as listed in table B.3. The dimensions notation
indicates the MATLAB array type expected; {·} denotes a cell array and (·) denotes a vector or
matrix. The flags structure mandates some more detailed explanation. The software supports
two–sided point constraints (rtype 3) only if the two residuals are affine linear, i.e., their
jacobians coincide. A point constraint can be declared as a vanishing constraint by associating
it with the lower bound of an unknown on the same shooting node via the flag vanish.
Possible values for the algorithm fields are listed in table B.1. The individual algorithms ac-
cept several options and settings as listed in table B.2. Options inappropriate for the selected
algorithmic module are silently ignored.

C Model Functions

All model functions are expected to be implemented as callable C functions residing in the
shared object file specified in the MATLAB problem description. The shared object is expected
to export a single function int initialize (model) that is called by the MuShROOM software
to obtain function pointers to all model functions. The shared object is expected to make these
function pointers known by calling for each required function and for each shooting node or
interval the callback function

modelSetFunction (model, function, range, kind, level, pointer);

with arguments as described in table B.4. The ODE nominal right hand side and one nominal
objective function term are mandatory. A MAYER type objective can be set on the final shooting
node only. For all functions, derivatives in the form of dense Jacobians may optionally be pro-
vided. Unavailable dense Jacobians are approximated by one–sided finite differences. For the
ODE system’s right hand side, sparse Jacobians or dense directional forward derivatives may
be provided in addition. Unavailable directional forward derivatives of the ODE system’s right
hand side are computed by multiplication with the sparse (preferred) or dense (discouraged)
Jacobian, or are approximated by directional one–sided finite differences.

All model functions are expected to have the C signature

256

I M P L E M E N TAT I O N
�

� APPENDIX B

int function (args)

regardless of their type and level. They all accept the same call arguments structure args with
fields listed in table B.6 as single argument, and to return a success or error code according to
table B.5. The valid input fields and expected output fields of this arguments structure depend-
ing on the model function and type are listed in table B.7. Jacobians of the function’s value are
stored in either dense column–major format or in sparse triplets format. Directional deriva-
tives are always stored in dense format and are used for the ODE system’s right hand side
function only. The point constraint functions evaluation two–sided point constraint (rtype
3) compute two residuals. The single Jacobian is computes in the lower residual, such that
two–sided point constraints must always be affine linear. The extended matching condition
functions couple (x (t i+1), ui) and (si+1, ii+1) values belonging to shooting node i + 1 and
the two adjacent shooting intervals [t i , t i+1] and [t i+1, t i+2]. Consequentially, Jacobians with
respect to the four inputs must be computed.

An Exemplary Model

An exemplary MATLAB file for the very simple NMPC problem

min
x(·),u(·)

∫ 3

0

x2(t) + u2(t) dt (B.1)

s. t. ẋ(t) = (1+ x(t))x(t) + u(t) ∀t ∈ [0, 3],

x(0) = xmeas,

x(3) = 0,

x(t) ∈ [−1,1] ∀t ∈ [0, 3],

u(t) ∈ [−1,1] ∀t ∈ [0, 3].

that properly sets up a model description structure is given in figure B.3. An exemplary C file
for problem (B.1) that makes use of the documented functions is given in figure B.4. As can be
seen, nominal functions and dense Jacobian functions for the ODE system’s right hand side,
a least–squares objective, and an end–point constraint are implemented, and are registered
with MuShROOM during initialization of the shared object containing this model.

B.1.3 User Interface

Two user interfaces are provided for this software package. The command line interface allows
to solve off–line optimal control problems. The C interface provides a facility for embedding
measured or estimated system states using the initial value embedding techniques, thus solv-
ing a simulated or real on–line optimal control problem.

Command Line Interface

The MuShROOM software can be used through a command line interface invoked by the shell
command

./mushroom problem [--switch[=value] ...]

257

APPENDIX B
�

� I M P L E M E N TAT I O N

Fi
el

d
Ty

pe
D

ef
au

lt
D

es
cr

ip
ti

on

i
n
t
e
g
r
a
t
o
r
.
s
t
e
p
s

do
ub

le
20

N
um

be
r

of
in

te
gr

at
or

st
ep

s

h
e
s
s
i
a
n
.
l
i
m
i
t

in
t

30
M

em
or

y
le

ng
th

of
th

e
L–

B
FG

S
H

es
si

an

h
e
s
s
i
a
n
.
l
e
v
m
a
r

do
ub

le
0.

0
LE

V
E

N
B

E
R

G
–M

A
R

Q
U

A
R

D
T

re
gu

la
ri

za
ti

on
of

th
e

G
A

U
S

S–
N

E
W

T
O

N
H

es
si

an

s
q
p
s
o
l
v
e
r
.
k
k
t
a
c
c

do
ub

le
10
−6

A
cc

ep
ta

bl
e

K
K

T
to

le
ra

nc
e

fo
r

te
rm

in
at

io
n

s
q
p
s
o
l
v
e
r
.
i
t
m
a
x

in
t

10
0

M
ax

im
um

nu
m

be
r

of
SQ

P
it

er
at

io
ns

q
p
s
o
l
v
e
r
.
f
e
a
t
o
l

do
ub

le
10
−8

To
le

ra
nc

e
fo

r
vi

ol
at

io
n

of
Q

P
co

ns
tr

ai
nt

s

q
p
s
o
l
v
e
r
.
o
p
t
t
o
l

do
ub

le
10
−8

O
pt

im
al

it
y

to
le

ra
nc

e
fo

r
Q

P
so

lu
ti

on

q
p
s
o
l
v
e
r
.
r
a
n
k
t
o
l

do
ub

le
10
−1

4
A

ct
iv

e
se

t
de

ge
ne

ra
cy

to
le

ra
nc

e

q
p
s
o
l
v
e
r
.
i
t
m
a
x

in
t

10
,0

00
M

ax
im

um
nu

m
be

r
of

Q
P

so
lv

er
it

er
at

io
ns

q
p
s
o
l
v
e
r
.
s
u
b
s
o
l
v
e
r

st
ri

ng
Q
p
H
P
S
C
S
o
l
v
e
r
:K

K
T

so
lv

er
fo

r
th

e
bl

oc
k

st
ru

ct
ur

ed

K
K

T
sy

st
em

;s
ee

se
ct

io
n

B
.2

fo
r

po
ss

ib
le

va
lu

es

Q
p
C
o
n
d
e
n
s
e
S
o
l
v
e
r
:Q

P
so

lv
er

fo
r

th
e

co
nd

en
se

d

Q
P;

m
us

t
be

Q
p
O
p
t
S
o
l
v
e
r

to
us

e
Q
P
O
P
T
[8

6]

q
p
s
o
l
v
e
r
.
e
x
p
a
n
d

in
t

50
Q
P
O
P
T

an
ti

–c
yc

lin
g

st
ra

te
gy

se
tt

in
g

q
p
s
o
l
v
e
r
.
f
e
a
i
t
m
a
x

in
t

10
,0

00
Q
P
O
P
T

m
ax

.n
um

be
r

of
ph

as
e

on
e

it
er

at
io

ns

q
p
s
o
l
v
e
r
.
r
e
l
a
x

do
ub

le
1.

1
Q
P
O
P
T

in
fe

as
ib

le
co

ns
tr

ai
nt

s
re

la
xa

ti
on

fa
ct

or

q
p
s
o
l
v
e
r
.
p
r
i
n
t

in
t

0
Q
P
O
P
T

pr
in

t
le

ve
lf

or
it

er
at

io
ns

q
p
s
o
l
v
e
r
.
u
p
d
a
t
e
s

in
t

1
q
p
H
P
S
C

fla
g

to
en

ab
le
/d

is
ab

le
m

at
ri

x
up

da
te

s;

ef
fe

ct
iv

e
on

ly
fo

r
K
K
T
S
o
l
v
e
r
H
P
S
C
.

q
p
s
o
l
v
e
r
.
k
k
t
c
h
e
c
k

in
t

0
q
p
H
P
S
C

de
bu

g
co

ns
is

te
nc

y
ch

ec
ks

q
p
s
o
l
v
e
r
.
r
e
f
i
n
e

in
t

0
q
p
H
P
S
C

nu
m

be
r

of
it

er
at

iv
e

re
fin

em
en

t
st

ep
s

q
p
s
o
l
v
e
r
.
p
r
i
n
t
_
i
t
e
r

in
t

0
q
p
H
P
S
C

pr
in

t
le

ve
lf

or
it

er
at

io
ns

q
p
s
o
l
v
e
r
.
p
r
i
n
t
_
p
r
i
m
a
l

in
t

0
q
p
H
P
S
C

pr
in

t
le

ve
lf

or
pr

im
al

bl
oc

ki
ng

te
st

s

q
p
s
o
l
v
e
r
.
p
r
i
n
t
_
d
u
a
l

in
t

0
q
p
H
P
S
C

pr
in

t
le

ve
lf

or
du

al
bl

oc
ki

ng
te

st
s

q
p
s
o
l
v
e
r
.
p
r
i
n
t
_
d
e
g
e
n

in
t

0
q
p
H
P
S
C

pr
in

t
le

ve
lf

or
de

ge
ne

ra
cy

re
so

lu
ti

on

Ta
bl

e
B

.2
:A

lg
or

it
hm

ic
se

tt
in

gs
in

th
e

M
AT

LA
B

m
od

el
de

sc
ri

pt
io

n
fil

e.

Fi
el

d
D

im
en

.
Ty

pe
D

es
cr

ip
ti

on

l
i
b
r
a
r
y

1
st

ri
ng

N
am

e
of

sh
ar

ed
ob

je
ct

fil
e

a
l
g
o
r
i
t
h
m

.
e
v
a
l
u
a
t
o
r
.
n
a
m
e

1
st

ri
ng

N
am

e
of

th
e

Ev
al

ua
te

m
od

ul
e

to
us

e

.
h
e
s
s
i
a
n
.
n
a
m
e

1
st

ri
ng

N
am

e
of

th
e

H
es

si
an

m
od

ul
e

to
us

e

.
i
n
t
e
g
r
a
t
o
r
.
n
a
m
e

1
st

ri
ng

N
am

e
of

th
e

In
te

gr
at

or
m

od
ul

e
to

us
e

.
s
q
p
s
o
l
v
e
r
.
n
a
m
e

1
st

ri
ng

N
am

e
of

th
e

SQ
P

m
od

ul
e

to
us

e

.
q
p
s
o
l
v
e
r
.
n
a
m
e

1
st

ri
ng

N
am

e
of

th
e

Q
P

m
od

ul
e

to
us

e

d
i
m
.
l
s
q

1
in

t
D

im
en

.l
of

th
e

le
as

t–
sq

ua
re

s
ob

je
ct

iv
e

l(
·)∈
Rl

d
i
m
.
n
o
d
e
s

1
in

t
N

um
be

r
m

of
m

ul
ti

pl
e

sh
oo

ti
ng

no
de

s

d
i
m
.
p

1
in

t
N

um
be

r
np

of
gl

ob
al

m
od

el
pa

ra
m

et
er

s
p
∈R

np

d
i
m
.
q

1
in

t
N

um
be

r
nq

of
co

nt
ro

lp
ar

am
et

er
s

q
∈R

nq

d
i
m
.
r

(
m
)

in
t

N
um

be
rs

nr i
of

po
in

t
co

ns
tr

ai
nt

s
r i
(·)
∈R

nr i

d
i
m
.
x

1
in

t
N

um
be

r
nx

of
di

ff
er

en
ti

al
st

at
es

x
(·)
∈R

nx

f
l
a
g
s
.
r
t
y
p
e

{
m
}
(
nr i)

in
t

Ty
pe

s
of

th
e

po
in

t
co

ns
tr

ai
nt

s
r i
(·)

;0
fo

r
lo

w
er

,

f
l
a
g
s
.
v
a
n
i
s
h

{
m
}
(
nr i)

in
t

In
de

x
of

bo
un

d
co

nt
ro

lli
ng

r i
j(
·)

as
a

va
ni

sh
in

g
co

ns
tr

ai
nt

;−
1

fo
r

a
no

rm
al

co
ns

tr
ai

nt

f
l
a
g
s
.
x
s
p
e
c

1
in

t
In

it
ia

liz
at

io
n

of
th

e
m

ul
ti

pl
e

sh
oo

ti
ng

no
de

st
at

es
;

0
if

al
lg

iv
en

,1
fo

r
in

te
rp

ol
at

io
n,

2
fo

r
in

te
gr

at
io

n

f
l
a
g
s
.
i
v
e

1
in

t
En

ab
le

or
di

sa
bl

e
in

it
ia

l–
va

lu
e

em
be

dd
in

g

m
i
n
,m

a
x
.
p

(
np

)
do

ub
le

Lo
w

er
an

d
up

pe
r

bo
un

d
fo

r
pa

ra
m

et
er

s
p

m
i
n
,m

a
x
.
q

{
m
}
(
nq

)
do

ub
le

Lo
w

er
an

d
up

pe
r

bo
un

d
fo

r
co

nt
ro

lp
ar

am
et

er
s

q
i

m
i
n
,m

a
x
.
t

1
do

ub
le

St
ar

t
an

d
en

d
of

ti
m

e
ho

ri
zo

n

m
i
n
,m

a
x
.
x

{
m
}
(
nx

)
do

ub
le

Lo
w

er
an

d
up

pe
r

bo
un

d
fo

r
sh

oo
ti

ng
no

de
st

at
es

s i

v
a
l
.
p

(
np

)
do

ub
le

In
it

ia
lv

al
ue

s
fo

r
pa

ra
m

et
er

s
p

v
a
l
.
q

{
m
}
(
nq

)
do

ub
le

In
it

ia
lv

al
ue

fo
r

co
nt

ro
lp

ar
am

et
er

s
q

i

v
a
l
.
x

{
m
}
(
nx

)
do

ub
le

In
it

ia
lv

al
ue

fo
r

no
de

st
at

es
s i

s
c
a
.
p

(
np

)
do

ub
le

Sc
al

e
fa

ct
or

s
fo

r
pa

ra
m

et
er

s
p

s
c
a
.
q

{
m
}
(
nq

)
do

ub
le

Sc
al

e
fa

ct
or

s
fo

r
co

nt
ro

lp
ar

am
et

er
s

q
i

s
c
a
.
r

{
m
}
(
nr i)

do
ub

le
Sc

al
e

fa
ct

or
s

fo
r

po
in

t
co

ns
tr

ai
nt

re
si

du
al

s
r i

s
c
a
.
x

{
m
}
(
nx

)
do

ub
le

Sc
al

e
fa

ct
or

s
fo

r
no

de
st

at
es

s i

f
i
x
.
q

{
m
}
(
nq

)
in

t
Fi

xa
ti

on
fla

gs
fo

r
co

nt
ro

lp
ar

am
et

er
s

q
i

f
i
x
.
x

{
m
}
(
nx

)
in

t
Fi

xa
ti

on
fla

gs
fo

r
sh

oo
ti

ng
no

de
st

at
es

s i

Ta
bl

e
B

.3
:D

at
a

fie
ld

s
of

th
e

M
AT

LA
B

m
od

el
de

sc
ri

pt
io

n
fil

e.

258

I M P L E M E N TAT I O N
�

� APPENDIX B

A
rg

um
en

t
Po

ss
ib

le
Va

lu
es

D
es

cr
ip

ti
on

m
o
d
e
l

Po
in

te
r

to
th

e
st

at
ic

m
od

el
de

sc
ri

pt
io

n

f
u
n
c
t
i
o
n

r
i
g
h
t
H
a
n
d
S
i
d
e

Se
ts

th
e

O
D

E
ri

gh
t

ha
nd

si
de

fu
nc

ti
on

l
e
a
s
t
S
q
u
a
r
e
s
O
b
j
e
c
t
i
v
e

Se
ts

th
e

le
as

t–
sq

ua
re

s
ob

je
ct

iv
e

fu
nc

ti
on

m
a
y
e
r
O
b
j
e
c
t
i
v
e

Se
ts

th
e

M
A

Y
E

R
ty

pe
ob

je
ct

iv
e

fu
nc

ti
on

p
o
i
n
t
C
o
n
s
t
r
a
i
n
t

Se
ts

th
e

de
co

up
le

po
in

t
co

ns
tr

ai
nt

fu
nc

ti
on

c
o
n
t
i
n
u
i
t
y
C
o
n
d
i
t
i
o
n

Se
ts

th
e

ex
te

nd
ed

m
at

ch
in

g
co

nd
it

io
n

fu
nc

ti
on

r
a
n
g
e

a
l
l
I
n
t
e
r
v
a
l
s

Se
le

ct
s

al
li

nt
er

va
ls

a
l
l
N
o
d
e
s

Se
le

ct
al

ln
od

es
e
n
d
N
o
d
e

Se
le

ct
th

e
la

st
no

de
i
n
t
e
r
i
o
r
N
o
d
e

Se
le

ct
al

ln
od

es
ex

ce
pt

th
e

fir
st

an
d

la
st

no
de

s
t
a
r
t
N
o
d
e

Se
le

ct
th

e
fir

st
no

de
or

in
te

rv
al

an
y

va
lu

e
0
¶

i¶
m

Se
le

ct
s

th
e

si
ng

le
no

de
0
¶

i¶
m

or
th

e
si

ng
le

in
te

rv
al

0
¶

i¶
m
−

1

k
i
n
d

C
Th

e
fu

nc
ti

on
is

a
C

fu
nc

ti
on

f
i
n
i
t
e
D
i
f
f
e
r
e
n
c
e

Th
e

fu
nc

ti
on

sh
ou

ld
be

ap
pr

ox
im

at
ed

by
fin

it
e

di
ff

er
en

ce
s,

av
ai

la
bl

e
on

ly
if
l
e
v
e
l

is
no

t
n
o
m
i
n
a
l
.

s
p
a
r
s
e
C
o
n
v
e
r
t

Th
e

de
ns

e
Ja

co
bi

an
sh

ou
ld

be
co

m
pu

te
d

by
co

nv
er

ti
ng

th
e

sp
ar

se
on

e,
av

ai
la

bl
e

on
ly

if
l
e
v
e
l

is
d
e
n
s
e
J
a
c
.

s
p
a
r
s
e
M
u
l
t
i
p
l
y

Th
e

di
re

ct
io

na
ld

er
iv

at
iv

e
sh

ou
ld

be
co

m
pu

te
d

by
m

ul
ti

pl
ic

at
io

n
w

it
h

th
e

sp
ar

se
ja

co
bi

an
,a

va
ila

bl
e

on
ly

if
l
e
v
e
l

is
f
w
d
D
i
r
D
e
r

or
a
d
j
D
i
r
D
e
r
.

d
e
n
s
e
M
u
l
t
i
p
l
y

Th
e

di
re

ct
io

na
ld

er
iv

at
iv

e
sh

ou
ld

be
co

m
pu

te
d

by
m

ul
ti

pl
ic

at
io

n
w

it
h

th
e

de
ns

e
Ja

co
bi

an
,a

va
ila

bl
e

on
ly

if
l
e
v
e
l

is
f
w
d
D
i
r
D
e
r

or
a
d
j
D
i
r
D
e
r
.

l
e
v
e
l

n
o
m
i
n
a
l

N
om

in
al

m
od

el
fu

nc
ti

on
d
e
n
s
e
J
a
c

D
en

se
Ja

co
bi

an
fu

nc
ti

on
s
p
a
r
s
e
J
a
c

Sp
ar

se
Ja

co
bi

an
fu

nc
ti

on
(O

D
E

on
ly

)
f
w
d
D
i
r
D
e
r

D
ir

ec
ti

on
al

de
ri

va
ti

ve
s

fu
nc

ti
on

(O
D

E
on

ly
)

p
o
i
n
t
e
r

Po
in

te
r

to
th

e
m

od
el

fu
nc

ti
on

(i
f
k
i
n
d

is
C
)

Ta
bl

e
B

.4
:C

al
la

rg
um

en
ts

of
th

e
ro

ut
in

e
s
e
t
M
o
d
e
l
F
u
n
c
t
i
o
n
.

Er
ro

r
co

de
D

es
cr

ip
ti

on

<
0

In
di

ca
te

s
an

er
ro

r
du

ri
ng

th
e

ev
al

ua
ti

on
of

th
e

fu
nc

ti
on

.
=

0
In

di
ca

te
s

su
cc

es
sf

ul
ev

al
ua

ti
on

of
th

e
fu

nc
ti

on
.

g
r
o
w
S
p
a
r
s
e
M
a
t
r
i
x

In
di

ca
te

s
in

su
ffi

ci
en

t
st

or
ag

e
sp

ac
e

fo
r

a
sp

ar
se

Ja
co

bi
an

.T
he

ca
lle

r
sh

ou
ld

gr
ow

th
e

st
or

ag
e

sp
ac

e
an

d
re

tr
y

ev
al

ua
ti

on
.

Ta
bl

e
B

.5
:P

os
si

bl
e

re
tu

rn
co

de
s

of
a

m
od

el
fu

nc
ti

on
.

Fi
el

d
D

im
en

.
Ty

pe
D

es
cr

ip
ti

on

t
1

do
ub

le
M

od
el

ti
m

e
t
∈[

t 0
,t

f]
x

nx
do

ub
le

D
if

fe
re

nt
ia

ls
ta

te
s

x
(t
)

u
nu

do
ub

le
C

on
tr

ol
s

u
(t
)

p
np

do
ub

le
G

lo
ba

lm
od

el
pa

ra
m

et
er

s
p

r
e
s
0

nf
do

ub
le

Fu
nc

ti
on

’s
pr

im
ar

y
re

tu
rn

va
lu

e
r
e
s
1

nf
do

ub
le

Fu
nc

ti
on

’s
se

co
nd

ar
y

re
tu

rn
va

lu
e

d
t

nf
×

1
de

pe
nd

s
D

er
iv

at
iv

e
of

r
e
s
0

w
.r.

t.
th

e
ti

m
e

t
d
x

nf
×

nx
de

pe
nd

s
D

er
iv

at
iv

e
of

r
e
s
0

w
.r.

t.
th

e
di

ff
er

en
ti

al
st

at
es

x
(t
)

d
u

nf
×

nu
de

pe
nd

s
D

er
iv

at
iv

e
of

r
e
s
0

w
.r.

t.
th

e
co

nt
ro

lu
(t
)

d
i
r
[
3
]

(1
,n

x
,n

u
)×

nd
do

ub
le

(t
,x

,u
)

pa
rt

s
of

th
e

de
ri

va
ti

ve
di

re
ct

io
ns

d
e
r

nf
×

nd
do

ub
le

D
ir

ec
ti

on
al

de
ri

va
ti

ve
s

in
to

di
re

ct
io

ns
d
i
r

Ta
bl

e
B

.6
:F

ie
ld

s
of

th
e

m
od

el
fu

nc
ti

on
ca

ll
ar

gu
m

en
ts

st
ru

ct
ur

e
a
r
g
s
.

Th
e

di
-

m
en

si
on

nf
is

a
pl

ac
eh

ol
de

r
fo

r
th

e
fu

nc
ti

on
va

lu
e’

s
ac

tu
al

di
m

en
si

on
th

at
de

pe
nd

s
on

th
e

fu
nc

ti
on

ty
pe

.

Fu
nc

ti
on

Le
ve

l
A

rg
um

en
ts

st
ru

ct
ur

e
fie

ld
s

t
x

x
2

u
u
2

p
r
e
s
0

r
e
s
1

d
t

d
x

d
x
2

d
u

d
u
2

d
i
r

d
e
r

r
i
g
h
t
H
a
n
d
S
i
d
e

n
o
m
i
n
a
l

I
I

I
I

O
d
e
n
s
e
J
a
c

I
I

I
I

I
O

O
O

s
p
a
r
s
e
J
a
c

I
I

I
I

I
O

O
O

f
w
d
D
i
r
D
e
r

I
I

I
I

I
I

O

l
e
a
s
t
S
q
u
a
r
e
s
-

n
o
m
i
n
a
l

I
I

I
I

O
O
b
j
e
c
t
i
v
e

d
e
n
s
e
J
a
c

I
I

I
I

I
O

O
O

m
a
y
e
r
O
b
j
e
c
t
i
v
e

n
o
m
i
n
a
l

I
I

I
I

O
d
e
n
s
e
J
a
c

I
I

I
I

I
O

O
O

p
o
i
n
t
C
o
n
s
t
r
a
i
n
t

n
o
m
i
n
a
l

I
I

I
I

O
O

d
e
n
s
e
J
a
c

I
I

I
I

I
O

O
O

c
o
n
t
i
n
u
i
t
y
-

n
o
m
i
n
a
l

I
I

I
I

I
I

O
C
o
n
d
i
t
i
o
n

d
e
n
s
e
J
a
c

I
I

I
I

I
I

I
O

O
O

O
O

Ta
bl

e
B

.7
:V

al
id

in
pu

t
an

d
ou

tp
ut

fie
ld

s
in

th
e

ar
gu

m
en

ts
st

ru
ct

ur
e

fo
r

al
lf

un
c-

ti
on

s
an

d
le

ve
ls

.
“I

”
de

no
te

s
va

lid
in

pu
ts

an
d

“O
”

de
no

te
s

ex
pe

ct
ed

ou
tp

ut
s.

Em
pt

y
fie

ld
s

ar
e

un
us

ed
an

d
sh

ou
ld

no
t

be
re

ad
or

w
ri

tt
en

to
by

th
e

ca
lle

d
fu

nc
ti

on
.

259

APPENDIX B
�

� I M P L E M E N TAT I O N

m
o
d
e
l
.
l
i
b
r
a
r
y
=
’
l
i
b
n
m
p
c
1
’
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
c
o
n
d
e
n
s
e
r
.
n
a
m
e

=
’
C
o
n
d
e
n
s
e
r
D
e
n
s
e
’
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
e
v
a
l
u
a
t
o
r
.
n
a
m
e

=
’
E
v
a
l
u
a
t
o
r
’
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
h
e
s
s
i
a
n
.
n
a
m
e

=
’
H
e
s
s
i
a
n
G
a
u
s
s
N
e
w
t
o
n
’
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
i
n
t
e
g
r
a
t
o
r
.
n
a
m
e

=
’
I
n
t
e
g
r
a
t
o
r
R
K
’
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
s
q
p
s
o
l
v
e
r
.
n
a
m
e

=
’
S
q
p
S
t
d
S
o
l
v
e
r
’
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
q
p
s
o
l
v
e
r
.
n
a
m
e

=
’
Q
p
C
o
n
d
e
n
s
e
S
o
l
v
e
r
’
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
h
e
s
s
i
a
n
.
l
e
v
m
a
r

=
0
.
0
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
i
n
t
e
g
r
a
t
o
r
.
s
t
e
p
s
=
i
n
t
3
2
(
5
)
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
s
q
p
s
o
l
v
e
r
.
i
t
m
a
x

=
i
n
t
3
2
(
1
0
0
0
)
;

m
o
d
e
l
.
a
l
g
o
r
i
t
h
m
.
s
q
p
s
o
l
v
e
r
.
k
k
t
a
c
c
=
1
e
-
8
;

m
o
d
e
l
.
d
i
m
.
n
o
d
e
s
=
i
n
t
3
2
(
3
1
)
;

m
o
d
e
l
.
d
i
m
.
l
s
q

=
i
n
t
3
2
(
2
)
;

m
o
d
e
l
.
d
i
m
.
p

=
i
n
t
3
2
(
1
)
;

m
o
d
e
l
.
d
i
m
.
q

=
i
n
t
3
2
(
1
)
;

m
o
d
e
l
.
d
i
m
.
x

=
i
n
t
3
2
(
1
)
;

m
o
d
e
l
.
d
i
m
.
s
o
s

=
i
n
t
3
2
(
0
)
;

m
o
d
e
l
.
d
i
m
.
h
f

=
i
n
t
3
2
(
0
)
;

m
o
d
e
l
.
m
i
n
.
t
=
0
.
0
;

m
o
d
e
l
.
m
a
x
.
t
=
3
.
0
;

m
o
d
e
l
.
m
i
n
.
o
f

=
0
.
0
;

m
o
d
e
l
.
m
a
x
.
o
f

=
0
.
2
;

m
o
d
e
l
.
s
c
a
.
o
f

=
1
.
0
;

m
o
d
e
l
.
s
c
a
.
m
a
y

=
1
.
0
;

m
o
d
e
l
.
s
c
a
.
l
s
q
(
1
:
2
)
=
1
.
0
;

m
o
d
e
l
.
d
i
m
.
r
(
m
o
d
e
l
.
d
i
m
.
n
n
o
d
e
s
)

=
i
n
t
3
2
(
1
)
;

m
o
d
e
l
.
f
l
a
g
s
.
r
t
y
p
e
(
m
o
d
e
l
.
d
i
m
.
n
n
o
d
e
s
)
=
i
n
t
3
2
(
3
)
;

m
o
d
e
l
.
s
c
a
.
r
{
m
o
d
e
l
.
d
i
m
.
n
n
o
d
e
s
}
(
1
)
=
1
.
0
;

m
o
d
e
l
.
f
l
a
g
s
.
x
s
p
e
c
=
2
;

m
o
d
e
l
.
f
l
a
g
s
.
i
v
e

=
1
;

f
o
r
i
i
=
1
:
m
o
d
e
l
.
d
i
m
.
n
n
o
d
e
s

m
o
d
e
l
.
v
a
l
.
x
(
i
i
,
1
)
=

0
.
0
5
;

m
o
d
e
l
.
m
i
n
.
x
(
i
i
,
1
)
=
-
1
.
0
;

m
o
d
e
l
.
m
a
x
.
x
(
i
i
,
1
)
=

1
.
0
;

m
o
d
e
l
.
s
c
a
.
x
(
i
i
,
1
)
=

1
.
0
;

m
o
d
e
l
.
f
i
x
.
x
(
i
i
,
1
)
=

0
;

e
n
d

f
o
r
i
i
=
1
:
m
o
d
e
l
.
d
i
m
.
n
n
o
d
e
s
-
1

m
o
d
e
l
.
v
a
l
.
q
(
i
i
,
1
)
=

0
.
0
;

m
o
d
e
l
.
m
i
n
.
q
(
i
i
,
1
)
=
-
1
.
0
;

m
o
d
e
l
.
m
a
x
.
q
(
i
i
,
1
)
=

1
.
0
;

m
o
d
e
l
.
s
c
a
.
q
(
i
i
,
1
)
=

1
.
0
;

m
o
d
e
l
.
f
i
x
.
q
(
i
i
,
1
)
=

0
;

e
n
d Fi

gu
re

B
.3

:A
n

ex
em

pl
ar

y
M
u
S
h
R
O
O
M

de
sc

ri
pt

io
n

of
pr

ob
le

m
(B

.1
)

in
M

AT
LA

B
.

i
n
t
f
f
c
n
(
s
t
r
u
c
t
m
o
d
e
l
_
T
N
o
m
i
n
a
l
A
r
g
s
*
a
r
g
s
)
{

r
e
s
(
0
)
=
(
1
.
0
+
x
(
0
)
)
*
x
(
0
)
+
u
(
0
)
;

r
e
t
u
r
n
0
;

} i
n
t
f
f
c
n
_
d
(
s
t
r
u
c
t
m
o
d
e
l
_
T
D
e
n
s
e
J
a
c
A
r
g
s
*
a
r
g
s
)
{

d
x
(
0
,
0
)
=
2
.
0

*
x
(
0
)
+
1
.
0
;

d
u
(
0
,
0
)
=
1
.
0
;

r
e
t
u
r
n
0
;

} i
n
t
l
s
q
f
c
n
(
s
t
r
u
c
t
m
o
d
e
l
_
T
N
o
m
i
n
a
l
A
r
g
s
*
a
r
g
s
)
{

r
e
s
(
0
)
=
x
(
0
)
;

r
e
s
(
1
)
=
u
(
0
)
;

r
e
t
u
r
n
0
;

} i
n
t
l
s
q
f
c
n
_
d
(
s
t
r
u
c
t
m
o
d
e
l
_
T
D
e
n
s
e
J
a
c
A
r
g
s

*
a
r
g
s
)
{

d
x
(
0
,
0
)
=
1
.
0
;

d
u
(
1
,
0
)
=
1
.
0
;

r
e
t
u
r
n
0
;

} i
n
t
r
d
f
c
n
_
e
(
s
t
r
u
c
t
m
o
d
e
l
_
T
N
o
m
i
n
a
l
A
r
g
s
*
a
r
g
s
)
{

r
e
s
(
0
)
=
x
(
0
)
;

r
e
t
u
r
n
0
;

} i
n
t
r
d
f
c
n
_
e
_
d
(
s
t
r
u
c
t
m
o
d
e
l
_
T
D
e
n
s
e
J
a
c
A
r
g
s
*
a
r
g
s
)
{

d
x
(
0
,
0
)
=
1
.
0
;

r
e
t
u
r
n
0
;

} i
n
t
i
n
i
t
i
a
l
i
z
e
(
s
t
r
u
c
t
m
o
d
e
l
_
T
M
o
d
e
l
*
p
M
o
d
e
l
)
{

m
o
d
e
l
S
e
t
F
u
n
c
t
i
o
n
(
p
M
o
d
e
l
,
m
o
d
e
l
R
i
g
h
t
H
a
n
d
S
i
d
e
,
m
o
d
e
l
A
l
l
I
n
t
e
r
v
a
l
s
,

m
o
d
e
l
C
,
m
o
d
e
l
N
o
m
i
n
a
l
,

f
f
c
n
)
;

m
o
d
e
l
S
e
t
F
u
n
c
t
i
o
n
(
p
M
o
d
e
l
,
m
o
d
e
l
R
i
g
h
t
H
a
n
d
S
i
d
e
,
m
o
d
e
l
A
l
l
I
n
t
e
r
v
a
l
s
,

m
o
d
e
l
C
,
m
o
d
e
l
D
e
n
s
e
J
a
c
,
f
f
c
n
_
d
)
;

m
o
d
e
l
S
e
t
F
u
n
c
t
i
o
n
(
p
M
o
d
e
l
,
m
o
d
e
l
L
e
a
s
t
S
q
u
a
r
e
s
O
b
j
e
c
t
i
v
e
,
m
o
d
e
l
A
l
l
N
o
d
e
s
,

m
o
d
e
l
C
,
m
o
d
e
l
N
o
m
i
n
a
l
,

l
s
q
f
c
n
)
;

m
o
d
e
l
S
e
t
F
u
n
c
t
i
o
n
(
p
M
o
d
e
l
,
m
o
d
e
l
L
e
a
s
t
S
q
u
a
r
e
s
O
b
j
e
c
t
i
v
e
,
m
o
d
e
l
A
l
l
N
o
d
e
s
,

m
o
d
e
l
C
,
m
o
d
e
l
D
e
n
s
e
J
a
c
,
l
s
q
f
c
n
_
d
)
;

m
o
d
e
l
S
e
t
F
u
n
c
t
i
o
n
(
p
M
o
d
e
l
,
m
o
d
e
l
P
o
i
n
t
C
o
n
s
t
r
a
i
n
t
,
m
o
d
e
l
E
n
d
N
o
d
e
,

m
o
d
e
l
C
,
m
o
d
e
l
N
o
m
i
n
a
l
,

r
d
f
c
n
_
e
)
;

m
o
d
e
l
S
e
t
F
u
n
c
t
i
o
n
(
p
M
o
d
e
l
,
m
o
d
e
l
P
o
i
n
t
C
o
n
s
t
r
a
i
n
t
,
m
o
d
e
l
E
n
d
N
o
d
e
,

m
o
d
e
l
C
,
m
o
d
e
l
D
e
n
s
e
J
a
c
,
r
d
f
c
n
_
e
_
d
)
;

r
e
t
u
r
n
0
;

}

Fi
gu

re
B

.4
:A

n
ex

em
pl

ar
y
M
u
S
h
R
O
O
M

C
m

od
el

fil
e

fo
r

pr
ob

le
m

(B
.1

).

260

I M P L E M E N TAT I O N
�

� APPENDIX B

where problem must be substituted by the full file name of a MATLAB problem description
file. All algorithmic settings, tolerances, etc. are specified in this MATLAB file as detailed in
the previous section. One or more command line switches from table B.8 may be specified in
addition to the problem’s name.

Switch Description

--[no]aset Print (do not print) the active set after each SQP iteration

--continue Continue solution in primal–dual iterate found in the results file

--info Print information about the MuShROOM build, and quit

--plugin=filename Load an additional shared object (library) and initialize it

--verbose=p Set verbosity level of text output to p ¾ 0

--[no]writemodel Write (do not write) a textual protocol of the model description

Table B.8: MuShROOM command line switches.

The output of MuShROOM if called using the command line interface for problem (B.1) with
embedded initial value xmeas = 0 and the settings from figure B.3 is shown in figure B.5. The
individual columns of the textual output are described in table B.9.

it qp kkttol sobj infcon infmatch laggrd varstep mulstep
0 4.763137e-01 0.00e+00 5.85e-01
1 1 2.10e-01 4.630546e-02 1.33e-15 2.32e-01 4.318604e-02 2.42e+00 2.95e-01
2 1 8.25e-03 2.868694e-03 1.25e-16 2.34e-02 2.322964e-03 8.51e-01 2.47e-01
3 1 3.37e-04 2.535345e-03 1.57e-16 3.05e-04 2.219919e-04 1.15e-01 6.07e-02
4 1 8.66e-06 2.543811e-03 7.16e-19 1.59e-08 1.707440e-06 1.98e-03 1.89e-03
5 1 5.15e-10 2.543811e-03 4.05e-22 5.27e-13 1.895692e-08 8.35e-06 7.19e-06

it qp kkttol sobj infcon infmatch laggrd varstep mulstep
6 1 3.33e-14 2.543811e-03 6.31e-23 1.50e-16 3.278265e-10 9.77e-08 8.03e-08

Figure B.5: Output of the command line interface to MuShROOM for the exemplary problem (B.1).

Column Description

it Running count of SQP iterations

qp Number of QP or QPVC solver iterations spent

kkttol Convergence criterion, satisfied if KKTTol< kktacc

sobj Scaled objective function to be minimized

infcon Infeasibility of the point and vanishing constraints

infmatch Infeasibility of the matching conditions

laggrd Euclidean norm of the gradient of the (MPVC–)Lagrangian

step Euclidean norm of the primal step

mulstep Euclidean norm of the dual step

Table B.9: Columns of the textual output provided by MuShROOM.

261

APPENDIX B
�

� I M P L E M E N TAT I O N

C Interface

The MuShROOM software can also be invoked from inside another program. To this end, a
selection of function calls are provided that deal with proper initialization, loading of the
problem description, and execution of the SQP iterations providing control feedback.
The C interface mirrors the software architecture described in this section. All algorithmic
modules as well as all model functions are contained in shared object files, referred to as li-
braries, and the C interface provides facilities to load one or more libraries and maintains a
list of loaded libraries. The static model description is contained in a MATLAB file, and the C
interface can create and fill a model description structure given the name of a MATLAB file.
One or more sets of iterative data can be created and initialized given a model description.
To these data sets, the real–time iteration scheme can be applied by way of three C inter-
face functions mirroring the three phases of that scheme. The most important functions are
listed in table B.11 together with a brief explanation of their arguments. For a more extensive
description we refer to the program’s documentation.

Model Description Structure

The static model description data structure reflects that of a MIOCP problem. It is initialized
from a user provided problem description and is not modified during the program’s execution.

Field Subfields Description

bndl of, q, x Lower bounds of the objective, control parameters, and node states

bndu of, q, x Upper bounds of the objective, control parameters, and node states

dim Problem dimensions

fix q, x Fixation flags for control parameters and node states

flag Miscellaneous flags, see text

func Pointers to the ANSI C model functions

init p, q, x Initial values of the model parameters, control parameters, and

node states

scal of, p, q, x Scale factors of the objective, the model parameters, control

parameters, and node states

time tmin, tmax Start and end time of the time horizon

Table B.10: Static model description structure.

Iteration Data Structure

The iteration data structure holds all values computed for one iteration of the mixed–integer
real–time iteration scheme. The evaluation modules computes function values and derivatives
in the current iterate and stores the in the eval.fun and eval.der structures. The Hessian
module computes an node–wise approximation of the Hessian of the Lagrangian based on
these values, and stores the Hessian blocks in the structure hessian. The sparse QP structure
qp.sparse is populated with references to these values. Depending on the selected QP solver,
this QP is either solved directly by the QpHPSC module, or condensed to a smaller dense QP

262

I M P L E M E N TAT I O N
�

� APPENDIX B

by the QpCondense module, which can then be found in the qp.dense structure. The SQP
module uses the solution of this Quadratic Program (QP) to populate the sqp.iterStep and
sqp.mulStep or sqp.iter and sqp.mul, depending on the setup of the QP.

An Exemplary NMPC Loop

An exemplary NMPC loop realizing the real–time iteration scheme using this C interface to
MuShROOM is given in figure B.6.

file = ioFileNew (MatlabFile, "model.mat", 0ul, ioOpenRead|ioOpenExisting);
modelReadModel (&model, file, "model");
delete(file);

interfaceLoadLibrariesInPath (&libs, "");
interfaceLoadLibrary (&libs, "model.so");

interfaceInitializeLibraries (&libs, &model);
interfaceCreateInstances (&model.inst, &model);
interfaceNewData (&model, &data);

sqpStartup (model.inst.sqpsolver, &data.sqp, sqpColdStart);

while (data.sqp.stepInfo.uStatus != sqpStopped) {

sqpPrepareStep (model.inst.sqpsolver, &data.sqp);

// To do: obtain or estimate system state ’system_state’

sqpFeedbackStep (model.inst.sqpsolver, &data.sqp, system_state, &control_feedback);

// To do: feed ’control_feedback’ back to process

sqpTransitionStep (model.inst.sqpsolver, &data.sqp);
}

interfaceDeleteData (&model, &data);
interfaceFinalizeLibraries (&libs);
modelDelModel (&model);
interfaceUnloadLibraries (&libs);

Figure B.6: An exemplary NMPC loop using the C interface to MuShROOM.

263

APPENDIX B
�

� I M P L E M E N TAT I O N

Fu
nc

ti
on

D
es

cr
ip

ti
on

m
o
d
e
l
R
e
a
d
M
o
d
e
l

Lo
ad

a
m

od
el

de
sc

ri
pt

io
n

fr
om

a
M

AT
LA

B
fil

e
m
o
d
e
l

St
at

ic
m

od
el

de
sc

ri
pt

io
n

st
ru

ct
ur

e
to

be
in

it
ia

liz
ed

f
i
l
e

O
pe

n
M

AT
LA

B
fil

e
to

re
ad

fr
om

n
a
m
e

N
am

e
of

th
e

va
ri

ab
le

co
nt

ai
ni

ng
th

e
m

od
el

de
sc

ri
pt

io
n

m
o
d
e
l
D
e
l
M
o
d
e
l

D
el

et
e

a
m

od
el

de
sc

ri
pt

io
n

m
o
d
e
l

In
it

ia
liz

ed
m

od
el

de
sc

ri
pt

io
n

st
ru

ct
ur

e
to

be
de

le
te

d

i
n
t
e
r
f
a
c
e
L
o
a
d
L
i
b
r
a
r
i
e
s
I
n
P
a
t
h

Lo
ad

al
la

lg
or

it
hm

lib
ra

ri
es

fo
un

d
in

a
di

re
ct

or
y

l
i
b
s

Li
br

ar
y

st
ru

ct
ur

e
to

be
in

it
ia

liz
ed

or
ap

pe
nd

ed
p
a
t
h

D
ir

ec
to

ry
to

be
se

ar
ch

ed
fo

r
al

go
ri

th
m

m
od

ul
es

i
n
t
e
r
f
a
c
e
L
o
a
d
L
i
b
r
a
r
y

Lo
ad

a
sp

ec
ifi

c
al

go
ri

th
m

or
m

od
el

lib
ra

ry
l
i
b
s

Li
br

ar
y

st
ru

ct
ur

e
to

be
in

it
ia

liz
ed

or
ap

pe
nd

ed
n
a
m
e

Fu
ll

pa
th

an
d

na
m

e
of

th
e

sh
ar

ed
ob

je
ct

to
be

lo
ad

ed

i
n
t
e
r
f
a
c
e
U
n
l
o
a
d
L
i
b
r
a
r
i
e
s

U
nl

oa
d

al
ll

oa
de

d
al

go
ri

th
m

or
m

od
el

lib
ra

ri
es

l
i
b
s

Li
br

ar
y

st
ru

ct
ur

e
co

nt
ai

ni
ng

al
ll

oa
de

d
lib

ra
ri

es

i
n
t
e
r
f
a
c
e
I
n
i
t
i
a
l
i
z
e
L
i
b
r
a
r
i
e
s

In
it

ia
liz

e
al

ll
oa

de
d

al
go

ri
th

m
or

m
od

el
lib

ra
ri

es
l
i
b
s

Li
br

ar
y

st
ru

ct
ur

e
co

nt
ai

ni
ng

al
ll

oa
de

d
lib

ra
ri

es
m
o
d
e
l

In
it

ia
liz

ed
st

at
ic

m
od

el
de

sc
ri

pt
io

n
st

ru
ct

ur
e

i
n
t
e
r
f
a
c
e
F
i
n
a
l
i
z
e
L
i
b
r
a
r
i
e
s

Fi
na

liz
e

al
ll

oa
de

d
al

go
ri

th
m

or
m

od
el

lib
ra

ri
es

.
l
i
b
s

Li
br

ar
y

st
ru

ct
ur

e
co

nt
ai

ni
ng

al
ll

oa
de

d
lib

ra
ri

es

i
n
t
e
r
f
a
c
e
N
e
w
D
a
t
a

C
re

at
e

an
it

er
at

iv
e

da
ta

st
ru

ct
ur

e
fo

r
a

m
od

el
m
o
d
e
l

In
it

ia
liz

ed
st

at
ic

m
od

el
de

sc
ri

pt
io

n
st

ru
ct

ur
e

d
a
t
a

It
er

at
iv

e
da

ta
st

ru
ct

ur
e

to
be

in
it

ia
liz

ed

i
n
t
e
r
f
a
c
e
D
e
l
e
t
e
D
a
t
a

D
el

et
e

an
it

er
at

iv
e

da
ta

st
ru

ct
ur

e
m
o
d
e
l

In
it

ia
liz

ed
st

at
ic

m
od

el
de

sc
ri

pt
io

n
st

ru
ct

ur
e

d
a
t
a

In
it

ia
liz

ed
it

er
at

iv
e

da
ta

st
ru

ct
ur

e
to

be
de

le
te

d

s
q
p
S
t
a
r
t
u
p

In
it

ia
liz

e
th

e
SQ

P
fo

r
th

e
fir

st
it

er
at

io
n

s
q
p
s
o
l
v
e
r

SQ
P

so
lv

er
m

od
ul

e
in

st
an

ce
s
q
p
d
a
t
a

SQ
P

su
bs

et
of

th
e

it
er

at
iv

e
da

ta
st

ru
ct

ur
e

to
us

e
s
t
a
r
t

s
q
p
C
o
l
d
S
t
a
r
t
/s
q
p
W
a
r
m
S
t
a
r
t

fo
r

a
co

ld
/w

ar
m

st
ar

t

s
q
p
P
r
e
p
a
r
e
S
t
e
p

Pr
ep

ar
at

io
n

ph
as

e
of

an
SQ

P
it

er
at

io
n

s
q
p
s
o
l
v
e
r

SQ
P

so
lv

er
m

od
ul

e
in

st
an

ce
s
q
p
d
a
t
a

SQ
P

su
bs

et
of

th
e

it
er

at
iv

e
da

ta
st

ru
ct

ur
e

to
us

e

s
q
p
F
e
e
d
b
a
c
k
S
t
e
p

Fe
ed

ba
ck

ph
as

e
of

an
SQ

P
it

er
at

io
n

s
q
p
s
o
l
v
e
r

SQ
P

so
lv

er
m

od
ul

e
in

st
an

ce
s
q
p
d
a
t
a

SQ
P

su
bs

et
of

th
e

it
er

at
iv

e
da

ta
st

ru
ct

ur
e

to
us

e
s
t
a
t
e

M
ea

su
re

d
or

es
ti

m
at

ed
st

at
e

to
be

em
be

dd
ed

c
o
n
t
r
o
l

C
on

tr
ol

to
be

fe
d

ba
ck

to
th

e
pr

oc
es

s

s
q
p
T
r
a
n
s
i
t
i
o
n
S
t
e
p

Tr
an

si
ti

on
ph

as
e

of
an

SQ
P

it
er

at
io

n
s
q
p
s
o
l
v
e
r

SQ
P

so
lv

er
m

od
ul

e
in

st
an

ce
s
q
p
d
a
t
a

SQ
P

su
bs

et
of

th
e

it
er

at
iv

e
da

ta
st

ru
ct

ur
e

to
us

e

Ta
bl

e
B

.1
1:

Fu
nc

ti
on

s
of

th
e

C
in

te
rf

ac
e

to
th

e
M
u
S
h
R
O
O
M

so
ft

w
ar

e.

Fi
el

d
Su

bfi
el

ds
D

es
cr

ip
ti

on

e
v
a
l
.
f
u
n

b
n
d
l

R
es

id
ua

ls
of

th
e

lo
w

er
bo

un
ds

b
n
d
u

R
es

id
ua

ls
of

th
e

up
pe

r
bo

un
ds

m
a
y

M
A

Y
E

R
ty

pe
ob

je
ct

iv
e

fu
nc

ti
on

va
lu

e
l
s
q

Le
as

t–
sq

ua
re

s
ob

je
ct

iv
e

fu
nc

ti
on

va
lu

e
m
a
t
c
h

R
es

id
ua

ls
of

th
e

m
at

ch
in

g
co

nd
it

io
ns

r
e
s
l

R
es

id
ua

ls
of

th
e

lo
w

er
co

ns
tr

ai
nt

s
r
e
s
u

R
es

id
ua

ls
of

th
e

up
pe

r
co

ns
tr

ai
nt

s
e
v
a
l
.
d
e
r

m
a
y

G
ra

di
en

t
of

th
e

M
A

Y
E

R
ty

pe
ob

je
ct

iv
e

l
s
q

Ja
co

bi
an

of
th

e
le

as
t–

sq
ua

re
s

ob
je

ct
iv

e
s
e
n
s

O
D

E
se

ns
it

iv
it

y
w

.r.
t.

th
e

in
it

ia
lv

al
ue

s
c
o
u
p

C
ou

pl
in

g
m

at
ri

x
r
e
s

Ja
co

bi
an

of
th

e
co

ns
tr

ai
nt

s
re

si
du

al
s

h
e
s
s
i
a
n

q
q

H
es

si
an

of
th

e
La

gr
an

gi
an

w
.r.

t.
th

e
co

nt
ro

lp
ar

am
et

er
s

q
x
,x

q
M

ix
ed

H
es

si
an

of
th

e
La

gr
an

gi
an

x
x

H
es

si
an

of
th

e
La

gr
an

gi
an

w
.r.

t.
th

e
no

de
st

at
es

q
p
.
d
e
n
s
e

c
o
n
s
t
r
a
i
n
t
s

C
on

de
ns

ed
co

ns
tr

ai
nt

s
m

at
ri

x
g
r
a
d
i
e
n
t

C
on

de
ns

ed
gr

ad
ie

nt
ve

ct
or

h
e
s
s
i
a
n

C
on

de
ns

ed
H

es
si

an
r
e
s
B
n
d
l

R
es

id
ua

ls
of

th
e

lo
w

er
bo

un
ds

r
e
s
B
n
d
u

R
es

id
ua

ls
of

th
e

up
pe

r
bo

un
ds

r
e
s
l

C
on

de
ns

ed
re

si
du

al
s

of
th

e
lo

w
er

co
ns

tr
ai

nt
s

r
e
s
u

C
on

de
ns

ed
re

si
du

al
s

of
th

e
up

pe
r

co
ns

tr
ai

nt
s

a
c
t
i
v
e
S
e
t

A
ct

iv
e

se
t

of
th

e
Q

P
so

lu
ti

on
d
u
a
l
P
o
i
n
t

D
ua

ls
ol

ut
io

n
of

th
e

co
nd

en
se

d
Q

P
p
r
i
m
a
l
P
o
i
n
t

Pr
im

al
so

lu
ti

on
of

th
e

co
nd

en
se

d
Q

P

q
p
.
s
p
a
r
s
e

c
o
n
C
o
u
p

M
at

ch
in

g
co

nd
it

io
n

co
up

lin
g

Ja
co

bi
an

s
c
o
n
P
o
i
n
t

Po
in

t
co

ns
tr

ai
nt

Ja
co

bi
an

c
o
n
S
e
n
s

M
at

ch
in

g
co

nd
it

io
n

se
ns

it
iv

it
y

Ja
co

bi
an

s
g
r
a
d
i
e
n
t

N
od

e
gr

ad
ie

nt
s

of
th

e
ob

je
ct

iv
e

h
e
s
s
i
a
n

N
od

e
H

es
si

an
s

of
th

e
La

gr
an

gi
an

r
e
s
B
n
d
l

N
od

e
re

si
du

al
s

of
th

e
lo

w
er

bo
un

ds
r
e
s
B
n
d
u

N
od

e
re

si
du

al
s

of
th

e
up

pe
r

bo
un

ds
r
e
s
M
a
t
c
h

N
od

e
re

si
du

al
s

of
th

e
m

at
ch

in
g

co
nd

it
io

ns
r
e
s
P
o
i
n
t
l

N
od

e
re

si
du

al
s

of
th

e
lo

w
er

co
ns

tr
ai

nt
s

r
e
s
P
o
i
n
t
u

N
od

e
re

si
du

al
s

of
th

e
up

pe
r

co
ns

tr
ai

nt
s

a
c
t
i
v
e
S
e
t

A
ct

iv
e

se
t

of
th

e
Q

P
so

lu
ti

on
d
u
a
l
P
o
i
n
t

D
ua

ls
ol

ut
io

n
of

th
e

Q
P

p
r
i
m
a
l
P
o
i
n
t

Pr
im

al
so

lu
ti

on
of

th
e

Q
P

s
q
p

a
s
e
t

A
ct

iv
e

se
t

i
t
e
r

Pr
im

al
it

er
at

e
i
t
e
r
S
t
e
p

Fu
ll

pr
im

al
st

ep
to

ne
xt

it
er

at
e

m
u
l

D
ua

li
te

ra
te

m
u
l
S
t
e
p

Fu
ll

du
al

st
ep

to
ne

xt
it

er
at

e
o
b
j

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

s
t
e
p
I
n
f
o

In
fo

rm
at

io
n

ab
ou

t
th

e
cu

rr
en

t
st

ep

Ta
bl

e
B

.1
2:

It
er

at
io

n
da

ta
st

ru
ct

ur
e.

264

I M P L E M E N TAT I O N
�

� APPENDIX B

B.2 The Block Structured PQP Code qpHPSC

The parametric active set code qpHPSC is part of the MuShROOM software. Its purpose is to
efficiently compute optimal solutions of a sequence of parametric QPs with vanishing con-
straints and with block structure as induced by a direct multiple shooting discretization. It can
be used as a QP solver module replacing the condensing and QPOPT modules. In addition, it
can be used as a stand–alone tool for Model Predictive Control (MPC) of discrete–time linear
systems with vanishing constraints. qpHPSC implements the parametric active set strategy of
chapter 6 and its extension to the special class of Quadratic Programs with Vanishing Con-
straints (QPVCs) obtained from applying Sequential Quadratic Programming (SQP) methods
to a discretized MIOCP with constraints treated by outer convexification. For the solution of
the KKT system, the HPSC factorization with matrix updates as developed in chapters 7 and 8
is implemented along with interfaces to several dense and sparse linear algebra packages for
comparison purposes.

B.2.1 Software Architecture

The software architecture of qpHPSC is depicted in figure B.8. The main active set loop is
implemented and executed as detailed in chapter 6, with the possibility to either update or
recompute the factorization of the KARUSH–KUHN–TUCKER (KKT) system using one of several
KKT solvers. The main internal data structures of our implementation are listed in table B.14.

KKT Solvers

For the factorization of the block structured KKT system, one of several available decomposi-
tion codes can be chosen by the user. Choices are two applicable LAPACK routines for dense
symmetric and banded unsymmetric factorization [9], the sparse symmetric indefinite fac-
torization code MA57 [56] of the Harwell Subroutine Library (HSL), and the unsymmetric
multifrontal factorization code UMFPACK [50] may be used. The newly developed Hessian
Projection Schur Complement (HPSC) factorization of chapter 7 is tailored to the direct mul-
tiple shooting block structure. Matrix updates for the KKT system factorization are provided
for this last factorization only, as detailed in chapter 8. Note that matrix updates could in
principle be realized for a dense or sparse LU factorization of the structured KKT system as
well, as detailed in chapter 7 and done e.g. by [108].

B.2.2 C Interface

C Interface Functions

The C interface to the qpHPSC code is straightforward. We provide two functions that start
and continue the solution of a sequence of QPVCs, see table B.16. The problem description is
expected as detailed for the field qp.sparse of the MuShROOM iterative data structure in table
B.12. Upon successful solution, the fields primalPoint, dualPoint and activeSet hold the
primal–dual optimal solution of the QPVC at the end of the homotopy path together with the
associated active set.

265

APPENDIX B
�

� I M P L E M E N TAT I O N

Output

At the user’s choice, the qpHPSC code provides an account of the steps and active set exchanges
performed. Some exemplary iterations are shown in figure B.7 and the columns are further
explained in table B.13. In iteration 1232 a continuation of the QPVC solution process in an
adjacent convex subset can be seen, indicated by a reset of the homotopy parameter.

it distance length ki ty no id vc sides case act regularity

1225 8.7174e-01 1.2826e-01 pr bd 9 1 . fr>up . . 8.9796e+08

1226 8.0012e-01 8.2157e-02 du bd 19 16 16 lo>fr . . na

1227 7.8728e-01 1.6045e-02 pr bd 19 15 15 fr>lo . . 2.9517e+07

1228 7.2650e-01 7.7206e-02 du bd 19 17 17 lo>fr . . na

1229 7.1765e-01 1.2181e-02 pr bd 19 16 16 fr>lo . . 5.1027e+07

1230 5.2708e-01 2.6555e-01 du bd 18 15 15 lo>fr . . na

1231 5.1628e-01 2.0490e-02 pr bd 18 14 14 fr>lo . . 1.7937e+07

1232 2.5533e-01 5.0544e-01 pr bd 17 14 14 fr>lo +0>0- deg 0.0000e+00

1.2822e-06 du bd 17 13 13 lo>fr +0>0- . na

1233 1.0000e+00 0.0000e+00 pr bd 17 13 13 fr>lo +0>0- deg 0.0000e+00

3.2162e-06 du bd 17 15 15 lo>fr +0>0- . na

1234 5.9516e-01 4.0484e-01 du bd 18 16 16 lo>fr . . na

1235 5.7512e-01 3.3666e-02 pr bd 18 15 15 fr>lo . . 2.0223e+07

1236 4.4086e-01 2.3344e-01 du bd 18 17 17 lo>fr . . na

1237 4.2675e-01 3.2023e-02 pr bd 18 16 16 fr>lo . . 3.5430e+07

1238 2.9008e-01 3.2025e-01 pr bd 10 1 . fr>up . . 9.2597e+08

1239 0.0000e+00 1.0000e+00 ub opt

Figure B.7: Output of some exemplary active set iterations as provided by the qpHPSC code.

Column Description

it Overall running count of QP iterations completed

distance Remaining distance 1−τk to the end τ1 = 1 of the homotopy path

length Length of the step onto the next blocking constraint on the remainder

[τk, 1] of the homotopy path

ki The kind of a blocking; pr for primal and du for dual

ty The type of a blocking; bd for a simple bound and pc for a point constraint

no The shooting node of the blocking bound or constraint

id The index of the blocking bound or constraint on the shooting node

vc The associated vanishing constraint, if any

sides The active set exchange taking place

case The MPVC index set exchange taking place, if any

act The action taken; deg for degeneracy resolution, inf for an infeasible problem,

and opt for the optimal solution at the end of the homotopy path

regularity The linear independence measure

Table B.13: Columns of the per–iteration textual output of the qpHPSC code.

266

I M P L E M E N TAT I O N
�

� APPENDIX B

KKT Factorization HPSC Factorization

Blocking Constraints LAPACK DGBTRF

Step Length LAPACK DSYTRF

Degeneracy Handling UMFPACK

Homotopy Advance HSL MA57

KKT Update HPSC Update

Figure B.8: Control flow of the QP solver module qpHPSC. The two alternative loops show recomputa-
tion or updating of the KKT system’s factorization after an active set exchange.

267

APPENDIX B
�

� I M P L E M E N TAT I O N

Fi
el

d
Su

bfi
el

d
D

im
.

D
es

cr
ip

ti
on

d
i
m

n
n
o
d
e
s

1
N

um
be

r
m

of
m

ul
ti

pl
e

sh
oo

ti
ng

no
de

s
n
x

m
N

um
be

rs
n

of
st

at
es

pl
us

co
nt

ro
ls

pe
r

no
de

n
F

m
N

um
be

rs
nr i

of
po

in
t

co
ns

tr
ai

nt
s

pe
r

no
de

n
G

m
N

um
be

r
of

m
at

ch
in

g
co

nd
it

io
ns

pe
r

no
de

n
P

m
N

um
be

r
of

co
up

lin
g

co
nd

it
io

ns
pe

r
no

de

a
s
e
t
.
b
i
d
x
,

s
t
a
t
e
s

m
×

n,
nr i

A
ct

iv
e

se
t

st
at

es
of

th
e

si
m

pl
e

bo
un

ds
an

d
po

in
t

co
ns

tr
ai

nt
s

a
s
e
t
.
F
i
d
x

a
c
t
i
v
e

m
×
|A
|,|

X
|

In
di

ce
s

of
th

e
ac

ti
ve

si
m

pl
e

bo
un

ds
an

d
po

in
t

co
ns

tr
ai

nt
s

i
n
a
c
t
i
v
e

m
×
|A

C
|,|

F
|

In
di

ce
s

of
th

e
in

ac
ti

ve
/v

an
is

he
d

si
m

pl
e

bo
un

ds
an

d
po

in
t

co
ns

tr
ai

nt
s

v
a
n
i
s
h

m
×

n,
nr i

M
ap

pi
ng
ξ

of
si

m
pl

e
lo

w
er

bo
un

ds
to

va
ni

sh
in

g
co

ns
tr

ai
nt

s
an

d
vv

.

m
a
t

F
m
×

nr i
×

n
D

ec
ou

pl
ed

po
in

t
co

ns
tr

ai
nt

s
Ja

co
bi

an
s

R
i

G
m
×

nx
×

n
M

at
ch

in
g

co
nd

it
io

n
se

ns
it

iv
it

y
m

at
ri

ce
s

G
i

P
m
×

nx
×

n
M

at
ch

in
g

co
nd

it
io

n
co

up
lin

g
m

at
ri

ce
s

P i
H

m
×

n
×

n
H

es
si

an
m

at
ri

ce
s

H
i

c
u
r
r
e
n
t
,

f
m
×

n
C

ur
re

nt
,s

te
p,

an
d

fin
al

gr
ad

ie
nt

on
ho

m
ot

op
y

pa
th

d
e
l
t
a
,

b
l
,b

u
m
×

n
C

ur
re

nt
,s

te
p,

an
d

fin
al

si
m

pl
e

bo
un

ds
on

ho
m

ot
op

y
pa

th
e
n
d

e
l
,e

u
m
×

nr i
C

ur
re

nt
,s

te
p,

an
d

fin
al

co
ns

tr
ai

nt
re

si
du

al
s

on
ho

m
ot

op
y

pa
th

h
m
×

nx
C

ur
.,

st
ep

,a
nd

fin
al

m
at

ch
in

g
co

nd
it

io
n

re
si

du
al

s
on

ho
m

ot
op

y
pa

th

i
t
e
r

x
m
×

n
C

ur
re

nt
op

ti
m

al
pr

im
al

it
er

at
e

v
=
(s

,q
)

l
m
×

nx
C

ur
re

nt
op

ti
m

al
m

ul
ti

pl
ie

rs
λ

of
th

e
m

at
ch

in
g

co
nd

it
io

ns
m

m
×

nr i
C

ur
re

nt
op

ti
m

al
m

ul
ti

pl
ie

rs
µ

of
th

e
po

in
t

co
ns

tr
ai

nt
s

n
m
×

n
C

ur
re

nt
op

ti
m

al
m

ul
ti

pl
ie

rs
ν

of
th

e
si

m
pl

e
bo

un
ds

k
k
t
m
a
t

F
,F

f
,F

x
,F

i
m
×

..
.

Po
in

t
co

ns
tr

ai
nt

ja
cb

ob
ia

n
bl

oc
ks

F
,

F
A

F
,

F
A

X
,

F
A

C

G
,G

f
,G

x
m
×

..
.

M
at

ch
in

g
co

nd
it

io
n

se
ns

it
iv

it
y

bl
oc

ks
G

,G
F

,G
X

P
,P

f
,P

x
m
×

..
.

M
at

ch
in

g
co

nd
it

io
n

co
up

lin
g

bl
oc

ks
P

,P
F

,P
X

H
,H

f
f
,H

x
f
,H

x
x

m
×

..
.

H
es

si
an

m
at

ri
x

bl
oc

ks
H

,H
F

F
,H

X
F

,H
X

X

k
k
t
r
h
s

f
,f
f
,f
x

m
×

n,
nF i

,n
X i

G
ra

di
en

t
ve

ct
or

s
g

,g
F

,g
X

b
a

m
×

nX i
A

ct
iv

e
si

m
pl

e
bo

un
ds

bX

e
a

m
×

nA i
A

ct
iv

e
po

in
t

co
ns

tr
ai

nt
re

si
du

al
s

eA

h
a

m
×

nx
(A

ct
iv

e)
m

at
ch

in
g

co
nd

it
io

n
re

si
du

al
s

h

k
k
t
s
o
l

x
,x

f
,x

x
m
×

n,
nF i

,n
X i

Pr
im

al
st

ep
δ

x

l
a

m
×

nx
(A

ct
iv

e)
m

at
ch

in
g

co
nd

it
io

n
m

ul
ti

pl
ie

rs
st

ep
δ
λ

m
a

m
×

nA i
A

ct
iv

e
po

in
t

co
ns

tr
ai

nt
s

m
ul

ti
pl

ie
rs

st
ep
δ
µ
A

n
a

m
×

nX i
A

ct
iv

e
si

m
pl

e
bo

un
ds

m
ul

ti
pl

ie
rs

st
ep
δ
ν
X

Ta
bl

e
B

.1
4:

M
ai

n
da

ta
st

ru
ct

ur
es

of
th

e
bl

oc
k

st
ru

ct
ur

ed
Q

PV
C

so
lv

er
co

de
q
p
H
P
S
C
.

K
K

T
so

lv
er

So
ft

w
ar

e
R

ef
.

C
ap

ab
ili

ti
es

D
es

cr
ip

ti
on

St
r.

U
pd

.

K
K
T
S
o
l
v
e
r
H
P
S
C

Th
is

th
es

is
ye

s
ye

s
Se

e
ch

ap
te

rs
7

an
d

8

K
K
T
S
o
l
v
e
r
B
a
n
d
L
U

LA
PA

CK
D

G
BT

RF
[9
]

ye
s

no
B

an
de

d
un

sy
m

m
et

ri
c

LU
de

co
m

po
si

ti
on

K
K
T
S
o
l
v
e
r
D
e
n
s
e
L
B
L

LA
PA

CK
D

SY
TR

F
[9
]

no
no

D
en

se
sy

m
m

et
ri

c
LB

LT
de

co
m

po
si

ti
on

K
K
T
S
o
l
v
e
r
M
A
5
7

H
SL

M
A5

7
[5

6]
ye

s
no

Sp
ar

se
sy

m
m

et
ri

c
LB

LT
de

co
m

po
si

ti
on

K
K
T
S
o
l
v
e
r
U
M
F
P
A
C
K

U
M

FP
AC

K
[5

0]
ye

s
no

Sp
ar

se
un

sy
m

m
et

ri
c

LU
de

co
m

po
si

ti
on

Ta
bl

e
B

.1
5:

A
va

ila
bl

e
K

K
T

so
lv

er
fo

r
th

e
bl

oc
k

st
ru

ct
ur

ed
K

K
T

sy
st

em
.N

ot
e

th
at

th
e

de
ns

e
LB

LT
de

co
m

po
si

ti
on

yi
el

ds
in

fe
ri

or
pe

rf
or

m
an

ce
,a

nd
th

at
de

ns
e

up
da

te
s

fo
r

a
de

ns
e

or
sp

ar
se

LU
de

co
m

po
si

ti
on

co
ul

d
be

re
-

al
iz

ed
,c

f.
[6

2,
10

8]
.

Fu
nc

ti
on

D
es

cr
ip

ti
on

h
p
s
c
H
o
m
o
t
o
p
y
S
t
a
r
t

St
ar

t
th

e
so

lu
ti

on
of

a
ne

w
pa

ra
m

et
ri

c
Q

PV
C

t
h
i
s

In
st

an
ce

of
th

e
q
p
H
P
S
C

so
lv

er
to

us
e

d
a
t
a

Po
in

te
r

to
a

sp
ar

se
Q

P
da

ta
in

pu
t/

ou
tp

ut
st

ru
ct

ur
e

ac
co

rd
in

g
to

th
e

fie
ld

q
p
.
s
p
a
r
s
e

in
ta

bl
e

B
.1

2

h
p
s
c
H
o
m
o
t
o
p
y
C
o
n
t
i
n
u
e

C
on

ti
nu

e
th

e
so

lu
ti

on
of

a
st

ar
te

d
pa

ra
m

et
ri

c
Q

PV
C

t
h
i
s

In
st

an
ce

of
th

e
q
p
H
P
S
C

so
lv

er
to

us
e

d
a
t
a

Po
in

te
r

to
a

sp
ar

se
Q

P
da

ta
in

pu
t/

ou
tp

ut
st

ru
ct

ur
e

ac
co

rd
in

g
to

th
e

fie
ld

q
p
.
s
p
a
r
s
e

in
ta

bl
e

B
.1

2

Ta
bl

e
B

.1
6:

Fu
nc

ti
on

s
of

th
e

C
in

te
rf

ac
e

to
th

e
bl

oc
k

st
ru

ct
ur

ed
Q

PV
C

co
de

q
p
H
P
S
C
.

268

Bibliography

[1] J. Abadie. On the Kuhn–Tucker theorem. In J. Abadie and S. Vajda, editors, Nonlinear
Programming, pages 21–36. John Wiley & Sons, Inc., New York, NY, 1967.

[2] P. Abichandani, H. Benson, and M. Kam. Multi-vehicle path coordination under com-
munication constraints. In American Control Conference, pages 650–656, 2008.

[3] W. Achtziger and C. Kanzow. Mathematical programs with vanishing constraints: op-
timality conditions and constraint qualifications. Mathematical Programming Series A,
114:69–99, 2008.

[4] J. Albersmeyer. Adjoint based algorithms and numerical methods for sensitivity gen-
eration and optimization of large scale dynamic systems. PhD thesis, Ruprecht–Karls–
Universität Heidelberg, 2010.

[5] J. Albersmeyer and H. Bock. Sensitivity Generation in an Adaptive BDF-Method. In
H. G. Bock, E. Kostina, X. Phu, and R. Rannacher, editors, Modeling, Simulation and
Optimization of Complex Processes: Proceedings of the International Conference on High
Performance Scientific Computing, March 6–10, 2006, Hanoi, Vietnam, pages 15–24.
Springer Verlag Berlin Heidelberg New York, 2008.

[6] J. Albersmeyer and M. Diehl. The Lifted Newton Method and its Application in Opti-
mization. SIAM Journal on Optimization, 20(3):1655–1684, 2010.

[7] F. Allgöwer and A. Zheng. Nonlinear Predictive Control, volume 26 of Progress in Systems
Theory. Birkhäuser, Basel Boston Berlin, 2000.

[8] F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings, and S. Wright. Nonlinear predictive con-
trol and moving horizon estimation – An introductory overview. In P. Frank, editor,
Advances in Control, Highlights of ECC’99, pages 391–449. Springer, 1999.

[9] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 3rd edition, 1999.
ISBN 0-89871-447-8 (paperback).

[10] V. Bär. Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunkt-
randwertaufgaben mit Schalt– und Sprungbedingungen mit Anwendungen in der
optimalen Steuerung und der Parameteridentifizierung. Diploma thesis, Rheinische
Friedrich–Wilhelms–Universität Bonn, 1983.

[11] M. Bartlett. An inverse matrix adjustment arising in discriminant analysis. Annals of
Mathematical Statistics, 22(1):107–111, 1951.

269

BIBLIOGRAPHY

[12] R. Bartlett and L. Biegler. QPSchur: A dual, active set, schur complement method for
large-scale and structured convex quadratic programming algorithm. Optimization and
Engineering, 7:5–32, 2006.

[13] R. Bartlett, A. Wächter, and L. Biegler. Active set vs. interior point strategies for model
predicitve control. In Proceedings of the American Control Conference, pages 4229–4233,
Chicago, IL, 2000.

[14] R. Bartlett, L. Biegler, J. Backstrom, and V. Gopal. Quadratic programming algorithms
for large-scale model predictive control. Journal of Process Control, 12:775–795, 2002.

[15] I. Bauer. Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Gener-
ierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben
in Chemie und Verfahrenstechnik. PhD thesis, Ruprecht–Karls–Universität Heidelberg,
1999.

[16] B. Baumrucker and L. Biegler. MPEC strategies for optimization of a class of hybrid
dynamic systems. Journal of Process Control, 19(8):1248 – 1256, 2009. ISSN 0959-
1524. Special Section on Hybrid Systems: Modeling, Simulation and Optimization.

[17] B. Baumrucker, J. Renfro, and L. Biegler. MPEC problem formulations and solution
strategies with chemical engineering applications. Computers and Chemical Engineer-
ing, 32:2903–2913, 2008.

[18] R. Bellman. Dynamic Programming. University Press, Princeton, N.J., 6th edition, 1957.
ISBN 0-486-42809-5 (paperback).

[19] P. Belotti. Couenne: a user’s manual. Technical report, Lehigh University, 2009.

[20] A. Bemporad, F. Borrelli, and M. Morari. Model Predictive Control Based on Linear
Programming — The Explicit Solution. IEEE Transactions on Automatic Control, 47
(12):1974–1985, 2002.

[21] A. Bemporad, S. di Cairano, E. Henriksson, and K. Johansson. Hybrid model predic-
tive control based on wireless sensor feedback: An experimental study. International
Journal of Robust and Nonlinear Control, 20:209–225, 2010.

[22] A. Berkelaar, K. Roos, and T. Terlaky. Recent Advances in Sensitivity Analysis and Para-
metric Programming, chapter 6: The Optimal Set and Optimal Partition Approach to
Linear and Quadratic Programming, pages 6–1–6–45. Kluwer Publishers, Dordrecht,
1997.

[23] D. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and 2. Athena
Scientific, Belmont, MA, 1995.

[24] D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2003.

[25] M. Best. An Algorithm for the Solution of the Parametric Quadratic Programming Prob-
lem, chapter 3, pages 57–76. Applied Mathematics and Parallel Computing. Physica-
Verlag, Heidelberg, 1996.

270

BIBLIOGRAPHY

[26] L. Biegler. Solution of dynamic optimization problems by successive quadratic pro-
gramming and orthogonal collocation. Computers and Chemical Engineering, 8:243–
248, 1984.

[27] L. Biegler. An overview of simultaneous strategies for dynamic optimization. Chemical
Engineering and Processing, 46:1043–1053, 2007.

[28] L. Biegler, O. Ghattas, M. Heinkenschloss, and B. Bloemen Waanders. Large-Scale PDE-
Constrained Optimization, volume 30 of Lecture Notes in Computational Science and
Engineering. Springer, Heidelberg, 2003.

[29] H. Bock. Numerische Optimierung zustandsbeschränkter parameterabhängiger Pro-
zesse mit linear auftretender Steuerung unter Anwendung der Mehrzielmethode.
Diploma thesis, Universität zu Köln, 1974.

[30] H. Bock. Zur numerischen Behandlung zustandsbeschränkter Steuerungsprobleme mit
Mehrzielmethode und Homotopieverfahren. Zeitschrift für Angewandte Mathematik
und Mechanik, 57(4):T266–T268, 1977.

[31] H. Bock. Numerical solution of nonlinear multipoint boundary value problems with
applications to optimal control. Zeitschrift für Angewandte Mathematik und Mechanik,
58:407, 1978.

[32] H. Bock. Numerical treatment of inverse problems in chemical reaction kinetics.
In K. Ebert, P. Deuflhard, and W. Jäger, editors, Modelling of Chemical Reaction Sys-
tems, volume 18 of Springer Series in Chemical Physics, pages 102–125. Springer, Hei-
delberg, 1981. URL http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/

Bock1981.pdf.

[33] H. Bock. Recent advances in parameter identification techniques for ODE. In P. Deu-
flhard and E. Hairer, editors, Numerical Treatment of Inverse Problems in Differen-
tial and Integral Equations, pages 95–121. Birkhäuser, Boston, 1983. URL http:

//www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1983.pdf.

[34] H. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nicht-
linearer Differentialgleichungen, volume 183 of Bonner Mathematische Schriften.
Rheinische Friedrich–Wilhelms–Universität Bonn, 1987. URL http://www.iwr.

uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf.

[35] H. Bock and R. Longman. Computation of optimal controls on disjoint control sets
for minimum energy subway operation. In Proceedings of the American Astronomical
Society. Symposium on Engineering Science and Mechanics, Taiwan, 1982.

[36] H. Bock and K. Plitt. A Multiple Shooting algorithm for direct solution of optimal con-
trol problems. In Proceedings of the 9th IFAC World Congress, pages 243–247, Budapest,
1984. Pergamon Press. URL http://www.iwr.uni-heidelberg.de/groups/agbock/

FILES/Bock1984.pdf.

271

http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1981.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1981.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1983.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1983.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf

BIBLIOGRAPHY

[37] H. Bock, M. Diehl, E. Kostina, and J. Schlöder. Constrained Optimal Feedback Control
for DAE. In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloe-
men Waanders, editors, Real-Time PDE-Constrained Optimization, chapter 1, pages 3–
24. SIAM, 2007.

[38] P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee, A. Lodi,
F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex mixed
integer nonlinear programs. Discrete Optimization, 5(2):186–204, 2009.

[39] B. Borchers and J. Mitchell. An improved Branch and Bound algorithm for Mixed
Integer Nonlinear Programming. Computers and Operations Research, 21(4):359–367,
1994.

[40] U. Brandt-Pollmann. Numerical solution of optimal control problems with implicitly
defined discontinuities with applications in engineering. PhD thesis, Ruprecht–Karls–
Universität Heidelberg, 2004.

[41] C. G. Broyden. The convergence of a class of double–rank minimization algorithms.
Journal of the Institute of Mathematics and its Applications, 6:76–90, 1970.

[42] A. Buchner. Auf Dynamischer Programmierung basierende nichtlineare modellprädik-
tive Regelung für LKW. Diploma thesis, Ruprecht–Karls–Universität Heidelberg, Jan-
uary 2010. URL http://mathopt.de/PUBLICATIONS/Buchner2010.pdf.

[43] R. Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randw-
ertproblemen und Aufgaben der optimalen Steuerung. Technical report, Carl–Cranz–
Gesellschaft, Oberpfaffenhofen, 1971.

[44] J. Bunch and B. Parlett. Direct methods for solving symmetric indefinite systems of
linear equations. SIAM Journal of Numerical Analysis, 8(4):639–655, December 1971.

[45] J. Butcher. The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and
General Linear Methods. Wiley, 1987. ISBN 0-471-91046-5 (paperback).

[46] E. Camacho and C. Bordons. Model Predictive Control. Springer, London, 2004.

[47] Y. Chen and M. Florian. The nonlinear bilevel programming problem: Formulations,
regularity, and optimality conditions. Optimization, 32:193–209, 1995.

[48] V. Chvatal. Edmonds polytopes and weakly Hamiltonian graphs. Mathematical Pro-
gramming, 5:29–40, 1973.

[49] R. Dakin. A tree-search algorithm for mixed integer programming problems. The
Computer Journal, 8:250–255, 1965.

[50] T. Davis. Algorithm 832: UMFPACK - an unsymmetric-pattern multifrontal method with
a column pre-ordering strategy. ACM Trans. Math. Software, 30:196–199, 2004.

[51] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. PhD
thesis, Ruprecht–Karls–Universität Heidelberg, 2001. URL http://www.ub.

uni-heidelberg.de/archiv/1659/.

272

http://mathopt.de/PUBLICATIONS/Buchner2010.pdf
http://www.ub.uni-heidelberg.de/archiv/1659/
http://www.ub.uni-heidelberg.de/archiv/1659/

BIBLIOGRAPHY

[52] M. Diehl, H. Bock, J. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-time opti-
mization and nonlinear model predictive control of processes governed by differential-
algebraic equations. J. Proc. Contr., 12(4):577–585, 2002. URL http://www.iwr.

uni-heidelberg.de/groups/agbock/FILES/Diehl2002b.pdf.

[53] M. Diehl, H. Bock, and J. Schlöder. A real-time iteration scheme for nonlinear opti-
mization in optimal feedback control. SIAM Journal on Control and Optimization, 43
(5):1714–1736, 2005.

[54] M. Diehl, H. Ferreau, and N. Haverbeke. Efficient numerical methods for nonlinear mpc
and moving horizon estimation. In L. Magni, D. Raimondo, and F. Allgöwer, editors,
Nonlinear Model Predictive Control, volume 384 of Springer Lecture Notes in Control and
Information Sciences, pages 391–417. Springer-Verlag, Berlin, Heidelberg, New York,
2009.

[55] J. Dormand and P. Prince. A reconsideration of some embedded Runge–Kutta formulae.
Journal of Computational and Applied Mathematics, 15(2):203–211, 1986.

[56] I. Duff. MA57 — a code for the solution of sparse symmetric definite and indefinite
systems. ACM Transactions on Mathematical Software, 30(2):118–144, 2004.

[57] I. Duff and J. Reid. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9(3):302–325, 1983.

[58] M. Dür and V. Stix. Probabilistic subproblem selection in branch-and-bound algorithms.
Journal of Computational and Applied Mathematics, 182(1):67–80, 2005.

[59] M. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36(3):307–339, 1986.

[60] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-time optimization for switched-
mode dynamical systems. IEEE Transactions on Automatic Control, 51:110–115, 2006.

[61] E. Eich. Projizierende Mehrschrittverfahren zur numerischen Lösung von Bewegungs-
gleichungen technischer Mehrkörpersysteme mit Zwangsbedingungen und Unstetigkeiten.
Dissertation, Universität Augsburg 1991, erschienen als Fortschr.-Ber. VDI Reihe 18 Nr.
109. VDI-Verlag, Düsseldorf, 1992.

[62] S. Eldersveld and M. Saunders. A block-LU update for large scale linear programming.
SIAM Journal of Matrix Analysis and Applications, 13:191–201, 1992.

[63] M. Engelhart. Modeling, simulation, and optimization of cancer chemotherapies.
Diploma thesis, Ruprecht–Karls–Universität Heidelberg, 2009. URL http://mathopt.

uni-hd.de/PUBLICATIONS/Engelhart2009.pdf.

[64] W. Enright. Continuous numerical methods for ODEs with defect control. Journal of
Computational and Applied Mathematics, 125(1):159–170, December 2001.

[65] E. Fehlberg. Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit
Schrittweiten-Kontrolle. Computing, 4:93–106, 1969.

273

http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Diehl2002b.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Diehl2002b.pdf
http://mathopt.uni-hd.de/PUBLICATIONS/Engelhart2009.pdf
http://mathopt.uni-hd.de/PUBLICATIONS/Engelhart2009.pdf

BIBLIOGRAPHY

[66] E. Fehlberg. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit
Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Comput-
ing, 6:61–71, 1970.

[67] H. Ferreau. An online active set strategy for fast solution of parametric quadratic pro-
grams with applications to predictive engine control. Diploma thesis, Ruprecht–Karls–
Universität Heidelberg, 2006. URL http://homes.esat.kuleuven.be/~jferreau/

pdf/thesisONLINE.pdf.

[68] H. Ferreau, G. Lorini, and M. Diehl. Fast nonlinear model predictive control of gasoline
engines. In Proceedings of the IEEE International Conference on Control Applications,
Munich, pages 2754–2759, 2006.

[69] H. Ferreau, H. Bock, and M. Diehl. An online active set strategy to overcome the
limitations of explicit MPC. International Journal of Robust and Nonlinear Control, 18
(8):816–830, 2008.

[70] A. Fiacco. Introduction to sensitivity and stability analysis in nonlinear programming.
Academic Press, New York, 1983.

[71] R. Fletcher. A new approach to variable metric algorithms. Computer Journal, 13:
317–322, 1970.

[72] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, 2nd edition, 1987.
ISBN 0-471-49463-1 (paperback).

[73] R. Fletcher. Resolving degeneracy in quadratic programming. Numerical Analysis Re-
port NA/135, University of Dundee, Dundee, Scotland, 1991.

[74] C. Floudas. Nonlinear and Mixed-Integer Optimization - Fundamentals and Applications.
Topics in Chemical Engineering. University Press, Oxford, 1995.

[75] M. Fukushima and P. Tseng. An implementable active–set algorithm for computing a B–
stationary point of a mathematical program with linear complementarity constraints.
SIAM Journal on Optimization, 12:724–739, 1999.

[76] A. Fuller. Study of an optimum nonlinear control system. Journal of Electronics and
Control, 15:63–71, 1963.

[77] C. Garcia and M. Morari. Internal model control. 1. a unifying review and some new
results. Ind. Eng. Chem. Process Des. Dev., 24:472–484, 1985.

[78] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1979.

[79] A. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and
Applications, 10:237–260, 1972.

[80] M. Gerdts. Solving mixed-integer optimal control problems by Branch&Bound: A case
study from automobile test-driving with gear shift. Optimal Control Applications and
Methods, 26:1–18, 2005.

274

http://homes.esat.kuleuven.be/~jferreau/pdf/thesisONLINE.pdf
http://homes.esat.kuleuven.be/~jferreau/pdf/thesisONLINE.pdf

BIBLIOGRAPHY

[81] M. Gerdts. A variable time transformation method for mixed-integer optimal control
problems. Optimal Control Applications and Methods, 27(3):169–182, 2006.

[82] E. Gertz and S. Wright. Object-oriented software for quadratic programming. ACM
Transactions on Mathematical Software, 29:58–81, 2003.

[83] P. Gill, G. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factor-
izations. Mathematics of Computation, 28(126):505–535, 1974.

[84] P. Gill, W. Murray, M. Saunders, and M. Wright. Procedures for optimization prob-
lems with a mixture of bounds and general linear constraints. ACM Transactions on
Mathematical Software, 10(3):282–298, 1984.

[85] P. Gill, W. Murray, M. Saunders, and M. Wright. A practical anti-cycling procedure
for linearly constrained optimization. Mathematical Programming, 45(1–3):437–474,
1989.

[86] P. Gill, W. Murray, and M. Saunders. User’s Guide For QPOPT 1.0: A Fortran Package For
Quadratic Programming, 1995.

[87] D. Goldfarb. A family of variable metric updates derived by variational means. Mathe-
matics of Computation, 24:23–26, 1970.

[88] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming, 27:1–33, 1983.

[89] G. Golub and C. van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, 3rd edition, 1996.

[90] R. Gomory. Outline of an algorithm for integer solutions to linar programs. Bulletin of
the American Mathematical Society, 64:275–278, 1958.

[91] J. Gondzio. Multiple centrality corrections in a primal–dual interior point method for
linear programming. Computational Optimization and Applications, 6:137–156, 1996.

[92] A. Griewank. Evaluating Derivatives, Principles and Techniques of Algorithmic Differenti-
ation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

[93] I. Grossmann. Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optimization and Engineering, 3:227–252, 2002.

[94] I. Grossmann, P. Aguirre, and M. Barttfeld. Optimal synthesis of complex distillation
columns using rigorous models. Computers and Chemical Engineering, 29:1203–1215,
2005.

[95] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988. ISBN 3-540-
13624-X, 0-387-13624-X (U.S.).

[96] J. Guddat, F. G. Vasquez, and H. Jongen. Parametric Optimization: Singularities, Path-
following and Jumps. Teubner, Stuttgart, 1990.

275

BIBLIOGRAPHY

[97] M. Guignard. Generalized Kuhn–Tucker conditions for mathematical programming
problems in a Banach space. SIAM Journal on Control, 7(2):232–241, 1969.

[98] J. Hall and K. McKinnon. The simplest examples where the simplex method cycles and
conditions where the EXPAND method fails to prevent cycling. Mathematical Program-
ming: Series A and B, 100(1):133–150, 2004.

[99] S. Hammarling. A note on modifications to the givens plane rotation. J. Inst. Maths
Applics, 13:215–218, 1974.

[100] S. Han. Superlinearly convergent variable-metric algorithms for general nonlinear pro-
gramming problems. Mathematical Programming, 11:263–282, 1976.

[101] C. Hargraves and S. Paris. Direct trajectory optimization using nonlinear programming
and collocation. AIAA J. Guidance, 10(4):338–342, 1987.

[102] N. Haverbeke, M. Diehl, and B. de Moor. A structure exploiting interior-point method
for moving horizon estimation. In Proceedings of the 48th IEEE Conference on Decision
and Control (CDC09), pages 1–6, 2009.

[103] E. Hellström, M. Ivarsson, J. Aslund, and L. Nielsen. Look-ahead control for heavy
trucks to minimize trip time and fuel consumption. Control Engineering Practice, 17:
245–254, 2009.

[104] H. Hermes and J. Lasalle. Functional analysis and time optimal control, volume 56 of
Mathematics in science and engineering. Academic Press, New York and London, 1969.

[105] T. Hoheisel. Mathematical Programs with Vanishing Constraints. PhD thesis, Julius–
Maximilians–Universität Würzburg, July 2009.

[106] T. Hoheisel and C. Kanzow. First- and second-order optimality conditions for mathema-
tical programs with vanishing constraints. Applications of Mathematics, 52(6):459–514,
2007.

[107] T. Hoheisel and C. Kanzow. Stationary conditions for mathematical programs with
vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl., 337:
292–310, 2008.

[108] H. Huynh. A Large-Scale Quadratic Programming Solver Based On Block-LU Updates of
the KKT System. PhD thesis, Stanford University, 2008.

[109] A. Izmailov and M. Solodov. Mathematical programs with vanishing constraints: Opti-
mality conditions, sensitivity, and a relaxation method. Journal of Optimization Theory
and Applications, 142:501–532, 2009.

[110] E. Johnson, G. Nemhauser, and M. Savelsbergh. Progress in linear programming-based
algorithms for integer programming: An exposition. INFORMS Journal on Computing,
12(1):2–23, 2000.

[111] J. Júdice, H. Sherali, I. Ribeiro, and A. Faustino. Complementarity active-set algo-
rithm for mathematical programming problems with equilibrium constraints. Journal
of Optimization Theory and Applications, 134:467–481, 2007.

276

BIBLIOGRAPHY

[112] S. Kameswaran and L. Biegler. Simultaneous dynamic optimization strategies: Recent
advances and challenges. Computers and Chemical Engineering, 30:1560–1575, 2006.

[113] N. Karmarkar. A new polynomial time algorithm for linear programming. Combinator-
ica, 4(4):373–395, 1984.

[114] W. Karush. Minima of functions of several variables with inequalities as side conditions.
Master’s thesis, Department of Mathematics, University of Chicago, 1939.

[115] G. Kedem. Automatic differentiation of computer programs. ACM Trans. on Math. Soft.,
6:150–165, 1980.

[116] F. Kehrle. Optimal control of vehicles in driving simulators. Diploma thesis, Ruprecht–
Karls–Unversität Heidelberg, March 2010. URL http://mathopt.de/PUBLICATIONS/

Kehrle2010.pdf.

[117] U. Kiencke and L. Nielsen. Automotive Control Systems. Springer Verlag, 2000.

[118] C. Kirches. A numerical method for nonlinear robust optimal control with im-
plicit discontinuities and an application to powertrain oscillations. Diploma the-
sis, Ruprecht–Karls–Universität Heidelberg, October 2006. URL http://mathopt.de/

PUBLICATIONS/Kirches2006.pdf.

[119] C. Kirches, H. Bock, J. Schlöder, and S. Sager. Complementary condensing for the
direct multiple shooting method. In H. Bock, E. Kostina, H. Phu, and R. Rannacher,
editors, Proceedings of the Fourth International Conference on High Performance Scien-
tific Computing: Modeling, Simulation, and Optimization of Complex Processes, Hanoi,
Vietnam, March 2–6, 2009, Berlin Heidelberg New York, 2010. Springer Verlag. URL
http://mathopt.de/PUBLICATIONS/Kirches2010a.pdf. (accepted for publication).

[120] C. Kirches, H. Bock, J. Schlöder, and S. Sager. Block structured quadratic programming
for the direct multiple shooting method for optimal control. Optimization Methods and
Software, 2010. (available online in advance of print).

[121] C. Kirches, H. Bock, J. Schlöder, and S. Sager. A factorization with update pro-
cedures for a KKT matrix arising in direct optimal control. URL http://www.

optimization-online.org/DB_HTML/2009/11/2456.html.

[122] C. Kirches, S. Sager, H. Bock, and J. Schlöder. Time-optimal control of automobile
test drives with gear shifts. Optimal Control Applications and Methods, 31(2):137–153,
March/April 2010. URL http://mathopt.de/PUBLICATIONS/Kirches2010.pdf.

[123] C. Kirches, L. Wirsching, S. Sager, and H. Bock. Efficient numerics for nonlinear model
predictive control. In Proceedings of the 13th Belgian–French–German Conference on Op-
timization, 2010. URL http://mathopt.de/PUBLICATIONS/Kirches2010c.pdf. (ac-
cepted for publication).

[124] B. Korte and J. Vygen. Combinatorial Optimization. Springer Verlag, Berlin Heidelberg
New York, 3rd edition, 2006. ISBN 3-540-25684-9 (hardcover).

277

http://mathopt.de/PUBLICATIONS/Kehrle2010.pdf
http://mathopt.de/PUBLICATIONS/Kehrle2010.pdf
http://mathopt.de/PUBLICATIONS/Kirches2006.pdf
http://mathopt.de/PUBLICATIONS/Kirches2006.pdf
http://mathopt.de/PUBLICATIONS/Kirches2010a.pdf
http://www.optimization-online.org/DB_HTML/2009/11/2456.html
http://www.optimization-online.org/DB_HTML/2009/11/2456.html
http://mathopt.de/PUBLICATIONS/Kirches2010.pdf
http://mathopt.de/PUBLICATIONS/Kirches2010c.pdf

BIBLIOGRAPHY

[125] H. Kuhn and A. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
1951. University of California Press.

[126] M. Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen.
Zeitschrift für Mathematik und Physik, 46:435–453, 1901.

[127] A. Land and A. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28:497–520, 1960.

[128] S. Lauer. SQP–Methoden zur Behandlung von Problemen mit indefiniter reduzierter
Hesse–Matrix. Diploma thesis, Ruprecht–Karls–Universität Heidelberg, February 2010.

[129] D. Lebiedz, S. Sager, H. Bock, and P. Lebiedz. Annihilation of limit cycle oscillations
by identification of critical phase resetting stimuli via mixed-integer optimal control
methods. Physical Review Letters, 95:108303, 2005.

[130] D. Lebiedz, S. Sager, O. Shaik, and O. Slaby. Optimal control of self-organized dy-
namics in cellular signal transduction. In Proceedings of the 5th MATHMOD conference,
ARGESIM-Reports, ISBN 3-901608-25-7, Vienna, 2006.

[131] D. Leineweber. Analyse und Restrukturierung eines Verfahrens zur direkten Lösung
von Optimal-Steuerungsproblemen. Diploma thesis, Ruprecht–Karls–Universität Hei-
delberg, 1995.

[132] D. Leineweber. Efficient reduced SQP methods for the optimization of chemical processes
described by large sparse DAE models, volume 613 of Fortschritt-Berichte VDI Reihe 3,
Verfahrenstechnik. VDI Verlag, Düsseldorf, 1999.

[133] D. Leineweber, I. Bauer, A. Schäfer, H. Bock, and J. Schlöder. An efficient multiple
shooting based reduced SQP strategy for large-scale dynamic process optimization
(Parts I and II). Computers and Chemical Engineering, 27:157–174, 2003.

[134] S. Leyffer. Deterministic methods for mixed-integer nonlinear programming. PhD thesis,
University of Dundee, 1993.

[135] S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear pro-
gramming. Computational Optimization and Applications, 18(3):295–309, 2001.

[136] S. Leyffer. Complementarity constraints as nonlinear equations: Theory and numerical
experiences. Technical report, Argonne National Laboratory, June 2003.

[137] S. Leyffer. The return of the active–set method. preprint ANL/MCS-P1277-0805, Ar-
gonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA, Febru-
ary 2005.

[138] S. Leyffer, G. López-Calva, and J. Nocedal. Interior methods for mathematical programs
with complementarity constraints. SIAM Journal on Optimization, 17(1):52–77, 2006.

[139] J. Linderoth and M. Savelsbergh. A computational study of branch and bound search
strategies for mixed integer programming. INFORMS Journal on Computing, 11:173–
187, 1999.

278

BIBLIOGRAPHY

[140] F. Logist, S. Sager, C. Kirches, and J. van Impe. Efficient multiple objective optimal
control of dynamic systems with integer controls. Journal of Process Control, 20(7):
810–822, August 2010.

[141] C. Long and E. Gatzke. Model predictive control algorithm for prioritized objective
inferential control of unmeasured states using propositional logic. Ind. Eng. Chem.
Res., 44:3575–3584, 2005.

[142] D. Luenberger. Optimization by vector space methods. Wiley Professional Paperback
Series. John Wiley & Sons, Inc., New York, NY, 1969. ISBN 0471-18117-X (paperback).

[143] Z. Luo, J. Pang, and D. Ralph. Mathematical Programs with Equlibrium Constraints.
Cambridge University Press, Cambridge, 1996.

[144] J. Lyness and C. Moler. Numerical differentiation of analytic functions. SIAM Journal
on Numerical Analysis, 4:202–210, 1967.

[145] J. Macki and A. Strauss. Introduction to optimal control theory. Springer, Heidelberg,
1995.

[146] L. Magni, D. Raimondo, and F. Allgöwer, editors. Nonlinear Model Predictive Control:
Towards New Challenging Applications, volume 384 of Lecture Notes in Control and In-
formation Sciences. Springer, 2009.

[147] L. Magni, D. Raimondo, and F. Allgöwer, editors. Proceedings of the international
workshop on assessment and future directions of nonlinear model predictive control
(NMPC’08), Pavia, Italy, September 5–9, 2008, volume 384 of Lecture Notes in Control
and Information Sciences, Berlin Heidelberg New York, 2009. Springer Verlag.

[148] O. Mangasarian and S. Fromovitz. Fritz John necessary optimality conditions in the
presence of equality and inequality constraints. Journal of Mathematical Analysis and
Applications, 17:37–47, 1967.

[149] Maplesoft. Maple 13. Maplesoft, Inc., 2009.

[150] J. Mattingley and S. Boyd. Automatic code generation for real-time convex optimiza-
tion. In Y. Eldar and D. Palomar, editors, Convex Optimization in Signal Processing and
Communications. Cambridge University Press, 2010.

[151] D. Q. Mayne. Nonlinear model predictive control: Challenges and opportunities. In
F. Allgöwer and A. Zheng, editors, Nonlinear Predictive Control, volume 26 of Progress
in Systems Theory, pages 23–44, Basel Boston Berlin, 2000. Birkhäuser.

[152] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems. IEEE
Transactions on Automatic Control, 35(7):814–824, 1990.

[153] D. Q. Mayne and S. Rakovic. Optimal control of constrained piecewise affine discrete-
time systems. Computational Optimization and Applications, 25:167–191, 2003.

[154] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization, 2(4):575–601, 1992.

279

BIBLIOGRAPHY

[155] K. Mombaur. Stability Optimization of Open-loop Controlled Walking Robots.
PhD thesis, Ruprecht–Karls–Universität Heidelberg, 2001. URL http://www.ub.

uni-heidelberg.de/archiv/1796.

[156] K. Murty. Some NP-complete problems in quadratic and nonlinear programming. Ma-
thematical Programming, 39:117–129, 1987.

[157] J. Nocedal and S. Wright. Numerical Optimization. Springer Verlag, Berlin Heidelberg
New York, 2nd edition, 2006. ISBN 0-387-30303-0 (hardcover).

[158] I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Nonlinear Program-
ming. Birkhäuser, Basel Boston Berlin, 2005.

[159] J. Oldenburg. Logic–based modeling and optimization of discrete–continuous dynamic
systems, volume 830 of Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag,
Düsseldorf, 2005.

[160] J. Oldenburg, W. Marquardt, D. Heinz, and D. Leineweber. Mixed logic dynamic op-
timization applied to batch distillation process design. AIChE Journal, 49(11):2900–
2917, 2003.

[161] M. Osborne. On shooting methods for boundary value problems. Journal of Mathema-
tical Analysis and Applications, 27:417–433, 1969.

[162] B. Owren and M. Zennaro. Derivation of efficient continuous explicit runge–kutta
methods. SIAM Journal on Scientific and Statistical Computing, 13:1488–1501, 1992.

[163] H. Pacejka and E. Bakker. The magic formula tyre model. Vehicle System Dynamics, 21:
1–18, 1993.

[164] D. Peterson. A review of constraint qualifications in finite dimensional spaces. SIAM
Review, 15(3):639–654, July 1973.

[165] L. Petzold, S. Li, Y. Cao, and R. Serban. Sensitivity analysis of differential-algebraic
equations and partial differential equations. Computers and Chemical Engineering, 30:
1553–1559, 2006.

[166] K. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung be-
schränkter optimaler Steuerungen. Diploma thesis, Rheinische Friedrich–Wilhelms–
Universität Bonn, 1981.

[167] A. Potschka. Handling path constraints in a direct multiple shooting method for optimal
control problems. Diploma thesis, Ruprecht–Karls–Universität Heidelberg, 2006. URL
http://apotschka.googlepages.com/APotschka2006.pdf.

[168] A. Potschka, H. Bock, and J. Schlöder. A minima tracking variant of semi-infinite pro-
gramming for the treatment of path constraints within direct solution of optimal con-
trol problems. Optimization Methods and Software, 24(2):237–252, 2009.

[169] M. Powell. Algorithms for nonlinear constraints that use Lagrangian functions. Mathe-
matical Programming, 14(3):224–248, 1978.

280

http://www.ub.uni-heidelberg.de/archiv/1796
http://www.ub.uni-heidelberg.de/archiv/1796
http://apotschka.googlepages.com/APotschka2006.pdf

BIBLIOGRAPHY

[170] S. Qin and T. Badgwell. Review of nonlinear model predictive control applications. In
B. Kouvaritakis and M. Cannon, editors, Nonlinear model predictive control: theory and
application, pages 3–32, London, 2001. The Institute of Electrical Engineers.

[171] I. Quesada and I. Grossmann. An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems. Computers and Chemical Engineering, 16:937–
947, 1992.

[172] A. Raghunathan and L. Biegler. Mathematical programs with equilibrium constraints
(MPECs) in process engineering. Computers and Chemical Engineering, 27:1381–1392,
2003.

[173] A. Raghunathan, M. Diaz, and L. Biegler. An mpec formulation for dynamic optimiza-
tion of distillation operations. Computers and Chemical Engineering, 28:2037–2052,
2004.

[174] D. Ralph and S. J. Wright. Some properties of regularization and penalization schemes
for mpecs. Optimization Methods and Software, 19:527–556, 2004.

[175] C. Rao, S. Wright, and J. Rawlings. Application of interior-point methods to model
predictive control. Journal of Optimization Theory and Applications, 99:723–757, 1998.

[176] J. Rawlings and D. Mayne. Model Predictive Control: Theory and Design. Nob Hill
Publishing, LLC, 2009.

[177] J. Rawlings, E. Meadows, and K. Muske. Nonlinear model predictive control: A tutorial
and survey. In Proc. Int. Symp. Adv. Control of Chemical Processes, ADCHEM, Kyoto,
Japan, 1994.

[178] A. Richards and J. How. Model predictive control of vehicle maneuvers with guaran-
teed completion time and robust feasibility. In Proceedings of the IEEE American Control
Conference (ACC 2003), Denver, CO, USA, June 4–6, 2003, volume 5, pages 4034–4040,
2003.

[179] S. Robinson. Perturbed kuhn-tucker points and rates of convergence for a class of
nonlinear programming algorithms. Mathematical Programming, 7:1–16, 1974.

[180] C. D. T. Runge. Über die numerische Auflösung von Differentialgleichungen. Mathe-
matische Annalen, 46(2):167–178, 1895.

[181] R. Russell and L. Shampine. A collocation method for boundary value problems. Nu-
merische Mathematik, 19:1–28, 1972.

[182] S. Sager. Numerical methods for mixed–integer optimal control problems. Der an-
dere Verlag, Tönning, Lübeck, Marburg, 2005. URL http://sager1.de/sebastian/

downloads/Sager2005.pdf. ISBN 3-89959-416-9.

[183] S. Sager, H. Bock, M. Diehl, G. Reinelt, and J. Schlöder. Numerical methods for op-
timal control with binary control functions applied to a Lotka-Volterra type fishing
problem. In A. Seeger, editor, Recent Advances in Optimization (Proceedings of the 12th

281

http://sager1.de/sebastian/downloads/Sager2005.pdf
http://sager1.de/sebastian/downloads/Sager2005.pdf

BIBLIOGRAPHY

French-German-Spanish Conference on Optimization), volume 563 of Lectures Notes in
Economics and Mathematical Systems, pages 269–289, Heidelberg, 2006. Springer.

[184] S. Sager, M. Diehl, G. Singh, A. Küpper, and S. Engell. Determining SMB superstruc-
tures by mixed-integer control. In K.-H. Waldmann and U. Stocker, editors, Proceedings
OR2006, pages 37–44, Karlsruhe, 2007. Springer.

[185] S. Sager, H. Bock, and M. Diehl. Solving mixed-integer control problems by sum up
rounding with guaranteed integer gap. Preprint, IWR, University of Heidelberg, 2008.
URL http://www.ub.uni-heidelberg.de/archiv/8384.

[186] S. Sager, C. Kirches, and H. Bock. Fast solution of periodic optimal control problems
in automobile test-driving with gear shifts. In Proceedings of the 47th IEEE Conference
on Decision and Control (CDC 2008), Cancun, Mexico, pages 1563–1568, 2008. ISBN:
978-1-4244-3124-3.

[187] S. Sager, H. Bock, and M. Diehl. The integer approximation error in mixed-
integer optimal control. Optimization Online, 2:1–16, 2009. URL http://www.

optimization-online.org/DB_HTML/2009/02/2224.html. (Submitted to Mathema-
tical Programming A.)

[188] S. Sager, G. Reinelt, and H. Bock. Direct methods with maximal lower bound for mixed-
integer optimal control problems. Mathematical Programming, 118(1):109–149, 2009.
URL http://mathopt.de/PUBLICATIONS/Sager2009.pdf.

[189] S. Sager, M. Jung, and C. Kirches. Combinatorial integral approximation. 2010.
URL http://www.optimization-online.org/DB_HTML/2010/05/2612.html. (sub-
mitted).

[190] A. Schäfer. Efficient reduced Newton-type methods for solution of large-scale struc-
tured optimization problems with application to biological and chemical processes.
PhD thesis, Ruprecht–Karls–Universität Heidelberg, 2005. URL http://archiv.ub.

uni-heidelberg.de/volltextserver/volltexte/2005/5264/.

[191] S. Scholtes. Convergence properties of a regularization scheme for mathematical pro-
grams with complementarity constraints. SIAM Journal on Optimization, 11:918–936,
2001.

[192] S. Scholtes. Nonconvex structures in nonlinear programming. Operations Research, 52
(3):368–383, May–June 2004.

[193] V. Schulz, H. Bock, and M. Steinbach. Exploiting invariants in the numerical solution of
multipoint boundary value problems for DAEs. SIAM Journal on Scientific Computing,
19:440–467, 1998.

[194] C. Schweiger and C. Floudas. Interaction of design and control: Optimization with
dynamic models. In W. Hager and P. Pardalos, editors, Optimal Control: Theory, Algo-
rithms, and Applications, pages 388–435. Kluwer Academic Publishers, 1997.

282

http://www.ub.uni-heidelberg.de/archiv/8384
http://www.optimization-online.org/DB_HTML/2009/02/2224.html
http://www.optimization-online.org/DB_HTML/2009/02/2224.html
http://mathopt.de/PUBLICATIONS/Sager2009.pdf
http://www.optimization-online.org/DB_HTML/2010/05/2612.html
http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2005/5264/
http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2005/5264/

BIBLIOGRAPHY

[195] O. Shaik, S. Sager, O. Slaby, and D. Lebiedz. Phase tracking and restoration of circadian
rhythms by model-based optimal control. IET Systems Biology, 2:16–23, 2008.

[196] L. F. Shampine. Interpolation for Runge–Kutta formulas. SIAM Journal on Numerical
Analysis, 22(5):1014–1027, October 1985.

[197] D. F. Shanno. Conditioning of Quasi–Newton methods for function minimization.
Mathematics of Computation, 24(111):647–656, July 1970.

[198] M. Soliman, C. Swartz, and R. Baker. A mixed-integer formulation for back–off under
constrained predictive control. Computers and Chemical Engineering, 32:2409–2419,
2008.

[199] B. Speelpenning. Compiling fast partial derivatives of functions given by algorithms. PhD
thesis, University of Illinois at Urbana-Champaign, 1980.

[200] M. Steinbach. A structured interior point SQP method for nonlinear optimal control
problems. In R. Bulirsch and D. Kraft, editors, Computational Optimal Control, volume
115 of International Series of Numerical Mathematics, pages 213–222. Birkhäuser, Basel
Boston Berlin, 1994. ISBN 0-8176-5015-6.

[201] M. Steinbach. Fast recursive SQP methods for large-scale optimal control problems. PhD
thesis, Ruprecht–Karls–Universität Heidelberg, 1995.

[202] M. Steinbach. Structured interior point SQP methods in optimal control. Zeitschrift für
Angewandte Mathematik und Mechanik, 76(S3):59–62, 1996.

[203] M. Steinbach. Tree-sparse convex programs. Math. Methods Oper. Res., 56(3):347–376,
2002.

[204] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, 1992.

[205] O. Stryk. Numerical solution of optimal control problems by direct collocation. In
Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods,
volume 111, pages 129–143. Bulirsch et al., 1993.

[206] R. Stubbs and S. Mehrotra. Generating convex quadratic inequalities for mixed 0-1
programs. Journal of Global Optimization, 24:311–332, 2002.

[207] O. Stursberg and S. Engell. Optimal control of switched continuous systems using
mixed-integer programming. In 15th IFAC World Congress, Barcelona, 2002. Paper
Th-A06-4.

[208] S. Terwen, M. Back, and V. Krebs. Predictive powertrain control for heavy duty trucks.
In Proceedings of IFAC Symposium in Advances in Automotive Control, pages 451–457,
Salerno, Italy, 2004.

[209] T. Tsang, D. Himmelblau, and T. Edgar. Optimal control via collocation and non-linear
programming. International Journal on Control, 21:763–768, 1975.

283

BIBLIOGRAPHY

[210] G. Vainikko. On the stability and convergence of the collocation method. Differ-
entsial’nye Uravneniya, 1:244–254, 1965. (In Russian. Translated in Differential Equa-
tions, 1 (1965), pp. 186–194).

[211] R. Vanderbei. LOQO: An interior point code for quadratic programming. Optimization
Methods and Software, 11(1–4):451–484, 1999.

[212] J. H. Verner. Explicit Runge–Kutta methods with estimates of the local truncation error.
SIAM Journal on Numerical Analysis, 15(4):772–790, August 1978.

[213] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with
Applications in Process Engineering. PhD thesis, Carnegie Mellon University, 2002.

[214] A. Wächter and L. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):
25–57, 2006.

[215] X. Wang. Resolution of ties in parametric quadratic programming. Master’s thesis,
University of Waterloo, Ontario, Canada, 2004.

[216] Y. Wang and S. Boyd. Fast Model Predictive Control Using Online Optimization. 2008.

[217] R. Wengert. A simple automatic derivative evaluation program. Commun. ACM, 7(8):
463–464, 1964.

[218] R. Whaley and A. Petitet. Minimizing development and maintenance costs in support-
ing persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121,
February 2005.

[219] J. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

[220] R. Wilson. A simplicial algorithm for concave programming. PhD thesis, Harvard Uni-
versity, 1963.

[221] Wolfram Research, Inc. Mathematica. Wolfram Research, Inc., Champaign, Illinois, 5.0
edition, 2003.

[222] E. Zafiriou. Robust model predictive control of processes with hard constraints. Com-
puters & Chemical Engineering, 14(4–5):359–371, 1990.

[223] V. Zavala and L. Biegler. The advanced–step NMPC controller: optimality, stability and
robustness. Automatica, 45(1):86–93, January 2009. submitted.

[224] V. Zavala, C. Laird, and L. Biegler. A fast computational framework for large-scale
moving-horizon estimation. In Proceedings of the 8th International Symposium on Dy-
namics and Control of Process Systems (DYCOPS), Cancun, Mexico, 2007.

284

Nomenclature

Throughout this thesis, lowercase romand and greek letter in boldface (x , y , λ, µ) are used
for vectors. Matrices use uppercase roman letters in boldface (A, B, C). Scalars are denoted
by lowercase roman and greek letters (f , g, λ, µ), while sets use uppercase calligraphic style
(A, F , X). Finally, number spaces are denoted in uppercase blackboard style (N, R, Z).

Several notational conventions mandate a brief explanation. Vector values are printed in bold-
face and are assumed to be column vectors. Transposition of a vector v is indicated by v T and
is omitted in the concatenation of column vectors,

v =
h

v1 v2

i

def
=
h

v T
1 v T

2

iT
.

Sets are denoted by calligraphic letters in upper case and may at times be used as index sets
selecting a subset of elements of a vector or matrix. To this end, we use the convention

vI
def
=
�

vi
�

i∈I

for a vector v ∈ Rn and for a matrix A ∈ Rm×n we write

AI
def
=
�

Ai j

�

i∈I, j∈{1,...,n} , A?J
def
=
�

Ai j

�

i∈{1,...,m}, j∈J , AIJ
def
=
�

Ai j

�

i∈I, j∈J .

The gradient of a scalar valued function f : Rn→ R with respect to a vector valued unknown
x is denoted by fx and is understood as a row vector,

fx (x)
def
=

d f (x)
dx

=
h

∂ f (x)
∂ x1

· · · ∂ f (x)
∂ xn

i

,

while the derivative of a vector valued function f : R→ Rm with respect to the scalar valued
unknown x is denoted by fx and is understood as a column vector,

fx(x)
def
=

d f (x)
dx

=











d f1(x)
dx
...

d fm(x)
dx











,

Consequentially, the Jacobian of a vector valued function f : Rn → Rm, denoted by fx , is an
m× n matrix composed from the m gradients of the component functions fi : Rn→ R,

fx (x)
def
=

d f (x)
dx

=











f1,x (x)
...

fm,x (x)











=













∂ f1(x)
∂ x1

· · · ∂ f1(x)
∂ xn

...
. . .

...
∂ fm(x)
∂ x1

· · · ∂ fm(x)
∂ xn













.

285

NOMENCLATURE

List of Symbols

4 End of a definition, lemma, theorem, or corollary
� End of a proof
def
= Defined to be equal
(·) Wildcard notation for the omitted list of function arguments
|·| Component-wise mapping of a real number to the absolute value
||·|| The (euclidean) norm of a matrix or vector
{ } Set delimiters, Sequence
∪ Set–theoretic union (“unified with”)
∩ Set–theoretic intersection (“intersected with”)
⊆,⊂ Subset of a set (“is a (proper) subset of”)
⊇,⊃ Superset of a set (“is a (proper) superset of”)
∈, 6∈ Set membership (“is (not) an element of”)
× Cartesian product of sets, multiplication in literal numbers
; The empty set
∀ Universal quantifier (“for all”)
≺ Dependency of the right–hand side on the left–hand one (“preceds”).
∧ Logical conjunction (“and”)
∨ Logical inclusive disjunction (“or”)
A? j j–th column of matrix A, a column vector
AI Submatrix of rows of A whose indices are contained in I ⊂ N
A?J Submatrix of columns of A whose indices are contained in J ⊂ N
AIJ Submatrix of rows of A in I and columns of A in J
AT , x T Transpose of matrix or vector
A−1 Inverse of regular matrix A
A−T Inverse of transposed regular matrix A
A† MOORE–PENROSE pseudoinverse of matrix A
fx Gradient of the scalar function f (·) w.r.t. unknown x
fx Jacobian of the vector valued function f (·) w.r.t. unknown x
xI Subvector of elements of x whose indices are contained in I ⊂ N
Roman Symbols

A Linear constraints matrix of a QP
B Hessian of the Lagrangian function, or an approximation thereof
D Block CHOLESKY factor off–diagonal block
G Sensitivity matrix of the matching conditions w.r.t. the initial values
H Hessian of the Lagrangian function, or an approximation thereof
I The identity matrix
I The reversed identity matrix
J Jacobian matrix
L Lagrangian function
M Approximation of the inverse of a Jacobian
P Coupling matrix of the matching conditions to the next shooting node
Q Column orthogonal base of the null and range spaces
R Linearized decoupled point constraints matrix

286

NOMENCLATURE

T Southeast triangular factor
U CHOLESKY factor of the null space Hessian
V Block CHOLESKY factor diagonal block
Y Column orthogonal base of the range space
Z Column orthogonal base of the null space
b Gradient of the objective function
bi Multiple shooting control discretization base functions
c(·) Path constraint function c(·) ∈ Rnc

ei The i–th unit column vector
eps Machine precision
f NLP objective function
f ODE system right hand side f (·) ∈ Rnx

g NLP equality constraint function g (·) ∈ Rng

h NLP inequality constraint function h(·) ∈ Rnh

ı̂ The imaginary unit, ı̂2
def
=−1

i, j, l Subscript component indices
k Iteration index
m Number of nodes in a direct multiple shooting discretization
n Dimension of a vector, row or column dimension of a matrix
ng Dimension of the equality constraints function g (·)
nh Dimension of the inequality constraints function h(·)
nq Number of control parameters p
nu Number of controls u(·)
nw Number of integer controls w (·)
nx Number of differential states x (·)
ny Dimension of the range space
nz Dimension of the null space
nΩ Number of admissible choices for an integer control.
p Vector of constant model parameters p ∈ Rnp

q Vector of multiple shooting control parameters qi ∈ Rnq
, 0¶ i ¶ m− 1

ri Decoupled point constraint function ri(·) ∈ Rnr
i , 0¶ i ¶ m

s Vector of multiple shooting states si ∈ Rnx
, 0¶ i ¶ m

t Model or process time t ∈ T
t0 Initial model or process time, start of time horizon T
tf Final model or process time, end of time horizon T
u(·) Trajectory of continuous process controls u(t) ∈ Rnu

, t ∈ T
v Vector of multiple shooting unknowns (s ,q)
w (·) Trajectory of integer process controls w (t) ∈ Ω, t ∈ T
x Vector of primal NLP unknowns
x (·) Trajectory of ODE system states x (t) ∈ Rnx

, t ∈ T
x0(tk) Observed process state at time tk for initial value embedding
y Primal–dual point (x ,λ,µ)

Greek Symbols

∆ Prefix for a matrix step to a new iterate
Λ MPVC Lagrangian function

287

NOMENCLATURE

Ω Set of admissible choices for an integer control trajectory w (·)
Ξ j

i Product of sensitivity matrices
Π Permutation matrix
Φ(·) Generating function of a one–step method
α Step length
α(·) Trajectory of relaxed convex multipliers.
δ Prefix for a vector step to a new iterate
κ Incompatibility constant
λ Lagrange multiplier of the equality constraints, or the matching conditions
µ Lagrange multiplier of the inequality constraints, or the active point constraints
µg MPVC multiplier of the controlling part of a vanishing constraint
µh MPVC multiplier of the vanishing part of a vanishing constraint
ν Lagrange multiplier of the simple bounds
ξ Vector of slack variables
τ Homotopy parameter, model or process time in integrals
ω Contractivity LIPSCHITZ constant
ω(·) Trajectory of binary convex multipliers.
ωi i-th admissible choice from the set Ω for an integer control w (·).
Calligraphic Symbols

A The set of indices of active constraints
C Critical region in a parametric active set strategy
F The set of indices of free variables (inactive simple bounds)
H List of matrices involved in a HPSC factorization
I0+ Set of inactive vanishing constraints
I00 Critical set of active vanishing constraints violating LICQ
I0− Set of vanished vanishing constraints
I+0 Set of active vanishing constraints
I++ Set of inactive vanishing constraints
K List of matrices in a direct multiple shooting block structured KKT system
L(x) Linearized cone of NLP constraints in x
N The set of NEWTON pairs
NP The set of problems solvable in nondeterministic polynomial time
O LANDAU symbol
T Time horizon T = [t0, tf]⊂ R for an ODE
T (x ,F) Tangential cone of the Nonlinear Program (NLP) feasible set F in x ∈ F
X The set of indices of fixed variables (active simple bounds)

Blackboard Symbols

C Set of complex numbers
N,N0 Set of natural numbers excluding (including) zero
R,R+0 ,R−0 Set of real (nonnegative real, nonpositive real) numbers
Rn Space of n–vectors with elements from the set R
Rm×n Space of m× n–matrices with elements from the set R

288

List of Figures

1.1 Illustration of the direct single shooting discretization. 16
1.2 Illustration of the direct multiple shooting discretization. 20

2.1 Inner and outer convexification at the example f (x , w) = (x − 3w)2. 30
2.2 Relation of the four auxiliary problems. 33
2.3 Sum–up rounding minimizes the deviation of the control integrals. 41
2.4 Convex reformulation of the switch cost constraint. 45

3.1 BUTCHER tableau of the classical 4th order explicit RUNGE–KUTTA method. 63

4.1 Schematic of idealized real–time optimal control. 68
4.2 Schematic of the conventional NMPC approach. 69
4.3 Schematic of the real–time iteration approach. 70
4.4 Schematic of the mixed–integer real–time iteration approach. 79

5.1 Jacobian’s condition number for a vanishing constraint and a simple bound. . . 94
5.2 Infeasible and suboptimal SQP steps. 95
5.3 Feasible sets of the subproblems obtained by linearization in a feasible iterate. 96
5.4 Feasible sets obtained by linearization in an infeasible iterate. 97
5.5 Feasible sets of various reformulations of an MPVC. 100
5.6 Index sets for a vanishing constraint. 101
5.7 Areas of violation of constraint qualifications. 104

6.1 Locally and globally optimal points of a convex QPVC. 112
6.2 The piecewise affine homotopy path. 119
6.3 Active set rules for MPVC strong stationarity. 128
6.4 Active set rules for strong stationarity with global optimality heuristic. 129

7.1 Dynamic programming interpretation of the HPSC factorization. 152

9.1 Relaxed optimal solutions of problem (9.2). 184
9.2 SUR-0.5 solutions of problem (9.2). 185
9.3 Objective function values and number of switches for solutions to problem (9.2).188
9.4 Switch cost penalizing optimal solutions of problem (9.3). 189
9.5 Switch cost constraining optimal solutions of problem (9.3). 190
9.6 Relaxed optimal solution for problem (9.4). 191
9.7 Vector fields showing stable and instable steady state of problem (9.4). 192
9.8 Sum–up rounding integer solution for problem (9.7). 194
9.9 Maximal underestimators of the constants κ and ω for example (9.7). 195
9.10 Components of the additional κ–condition term for example (9.4). 196

289

LIST OF FIGURES

9.11 Contracting mixed–integer real–time iterations for example (9.7), δt = 0.05s. 197
9.12 Contracting mixed–integer real–time iterations for example (9.7), larger δt. . 199
9.13 Mixed–integer real–time iterations failing to control example (9.7). 200
9.14 Phase space diagrams of the mixed–integer real–time iterates for problem (9.7). 201
9.15 Phase space diagrams of the mixed–integer real–time iterates for problem (9.7). 201
9.16 Schematic of a single robot with states and controls. 202
9.17 Predefined paths to be completed by the swarm of ten robots. 203
9.18 Snapshots of the optimal solution to problem (9.11). 205
9.19 Coordinates and forces in the single-track vehicle model. 212
9.20 Double–lane change maneuvre. 216
9.21 Optimal solutions of problem (9.34) for m= 20 and m= 160. 219
9.22 Average per iteration QP solver runtimes for problem (9.34). 222
9.23 Exemplary nonlinear truck engine characteristics. 228
9.24 Exemplary real–world 3D map data describing road conditions. 229
9.25 Inner and outer convexification of the indicated engine torque constraint. . . . 234
9.26 Feasible sets of the vanishing constraints for the truck model. 235
9.27 Schematic of the nonconvex feasible set for the vehicle velocity v(s). 235
9.28 Optimal engine torque and gear choice on road section with slope. 237
9.29 Optimal engine torque and gear choice on road section with speed limit. 238
9.30 Compensatory effect for inner convexification of the engine speed constraint. . 239
9.31 Results for the predictive cruise controller problem. 243
9.32 Details of figure 9.31 for a selected section of 6 kilometer length. 244
9.33 Results for the predictive cruise controller problem. 247
9.34 QPVC iterations required to compute the control feedback of the cruise controller.248

B.1 Modular architecture of the software MuShROOM. 254
B.2 Input and output files of the MuShROOM software. 256
B.3 An exemplary MuShROOM problem description in MATLAB. 260
B.4 An exemplary MuShROOM C model file. 260
B.5 Output of the command line interface to MuShROOM. 261
B.6 An exemplary NMPC loop using the C interface to MuShROOM. 263
B.7 Output of some exemplary active set iterations as provided by the qpHPSC code. 266
B.8 Control flow of the QP solver module qpHPSC. 267

290

List of Tables

2.1 Binary and relaxed optimal solutions for the convex switch cost reformulation. 45

6.1 Possible active set exchanges in the parametric active set strategy for QPVCs. . 131

7.1 FLOP counts for the HPSC factorization. 153
7.2 FLOP counts per shooting node for the HPSC backsolve. 154
7.3 FLOP counts for the HPSC backsolve depending on the active set size. 154
7.4 Memory requirements of the HPSC factorization. 155

9.1 Objective function values and infeasibilities of the solutions of problem (9.1). . 183
9.2 Solutions penalizing the number of switches found for problem (9.3). 188
9.3 Solutions constraining the number of switches found for problem (9.3). 188
9.4 Objective functions and infeasibilities of SUR-0.5 solution of problem (9.7). . . 193
9.5 Upper bounds on δt for example (9.7). 197
9.6 Variables of the NLP formulation for the robot path coordination problem. . . . 203
9.7 Solutions for the NLP formulation (9.11) obtained with AMPL and IPOPT. 206
9.8 Solutions for the ODE optimal control problem (9.15) obtained with MuShROOM. 208
9.9 Piecewise cubic spline data for the predefined robot paths. 210
9.10 Piecewise cubic spline data for the predefined robot paths. 211
9.11 Controls used in the single–track vehicle model. 212
9.12 Coordinates and states used in the single–track vehicle model. 213
9.13 Parameters used in the single–track vehicle model. 215
9.14 Optimal solutions of problem (9.34). 218
9.15 Dimensions and sparsity of the uncondensed QPs for problem (9.34). 220
9.16 Dimensions and sparsity of the condensed QPs for problem (9.34). 220
9.17 Average per iteration QP solver runtime for problem (9.34). 222
9.18 Controls of the truck model. 225
9.19 Differential states of the truck model. 226
9.20 Parameters of the truck model. 227

B.1 Available algorithmic variants for the modules of the MuShROOM software. . . . 255
B.2 Algorithmic settings in the MATLAB model description file. 258
B.3 Data fields of the MATLAB model description file. 258
B.4 Call arguments of the routine setModelFunction. 259
B.5 Possible return codes of a model function. 259
B.6 Fields of the model function call arguments structure. 259
B.7 Valid input/output fields in the arguments structure for all functions and levels. 259
B.8 MuShROOM command line switches. 261
B.9 Columns of the textual output provided by MuShROOM. 261

291

LIST OF TABLES

B.10 Static model description structure. 262
B.11 Functions of the C interface to the MuShROOM software. 264
B.12 Iteration data structure. 264
B.13 Columns of the per–iteration textual output of the qpHPSC code. 266
B.14 Main data structures of the block structured QPVC solver code qpHPSC. 268
B.15 Available KKT solver for the block structured KKT system by qpHPSC 268
B.16 Functions of the C interface to the block structured QPVC code qpHPSC. 268

292

List of Algorithms

3.1 A basic SQP algorithm. 53
3.2 Zero order forward sweep of automatic differentiation. 60
3.3 First order forward sweep of automatic differentiation. 60
3.4 First order backward sweep of automatic differentiation. 61
3.5 A basic explicit RUNGE–KUTTA method. 63

7.1 The HPSC factorization for the multiple shooting EQP’s KKT system. 145
7.2 The backsolve with the HPSC factorization to find the primal–dual step. 146
7.3 Iterative refinement of a backsolve with the HPSC factorization. 151

8.1 Computing and storing an orthogonal elimination matrix. 160
8.2 Orthogonal elimination in all columns of a matrix. 160
8.3 Matrix updates when adding a simple bound to the active set. 174
8.4 Matrix updates when adding a point constraint to the active set. 174
8.5 Matrix updates when deleting a simple bound from the active set. 175
8.6 Matrix updates when deleting a point constraint from the active set. 175
8.7 Updating a block tridiagonal CHOLESKY decomposition. 178
8.8 Downdating a block tridiagonal CHOLESKY decomposition. 180

293

List of Acronyms

ACQ ABADIE Constraint Qualification
BDF Backward Differentiation Formula
BFGS BROYDEN–FLETCHER–GOLDFARB–SHANNO

BVP Boundary Value Problem
CQ Constraint Qualification
DAE Differential Algebraic Equation
DFP DAVIDON–FLETCHER–POWELL

END External Numerical Differentiation
EQP Equality Constrained Quadratic Program
FLOP Floating–Point Operation
GCQ GUIGNARD Constraint Qualification
HPSC Hessian Projection Schur Complement
IND Internal Numerical Differentiation
IVP Initial Value Problem
KKT KARUSH–KUHN–TUCKER

LICQ Linear Independence Constraint Qualification
LLSCC Lower Level Strict Complementarity Condition
LMPC Linear Model Predictive Control
LP Linear Program
MFCQ MANGASARIAN–FROMOVITZ Constraint Qualification
MILP Mixed–Integer Linear Program
MINLP Mixed–Integer Nonlinear Program
MIOC Mixed–Integer Optimal Control
MIOCP Mixed–Integer Optimal Control Problem
MIQP Mixed–Integer Quadratic Program
MPBVP Multi–Point Boundary Value Problem
MPC Model Predictive Control
MPCC Mathematical Program with Complementarity Constraints
MPEC Mathematical Program with Equilibrium Constraints
MPVC Mathematical Program with Vanishing Constraints
NLP Nonlinear Program
NMPC Nonlinear Model Predictive Control
OCP Optimal Control Problem
ODE Ordinary Differential Equation
PQP Parametric Quadratic Program
QP Quadratic Program
QPVC Quadratic Program with Vanishing Constraints
SOS Special Ordered Set
SQP Sequential Quadratic Programming

294

	Zusammenfassung
	Abstract
	Danksagung
	Contents
	0 Introduction
	1 The Direct Multiple Shooting Method for Optimal Control
	1.1 Problem Formulations
	1.2 Solution Methods for Optimal Control Problems
	1.3 The Direct Multiple Shooting Method for Optimal Control
	1.4 Summary

	2 Mixed–Integer Optimal Control
	2.1 Problem Formulations
	2.2 Mixed–Integer Nonlinear Programming
	2.3 Outer Convexification and Relaxation
	2.4 Rounding Strategies
	2.5 Switch Costs
	2.6 Summary

	3 Constrained Nonlinear Programming
	3.1 Constrained Nonlinear Programming
	3.2 Sequential Quadratic Programming
	3.3 Derivative Generation
	3.4 Initial Value Problems and Sensitivity Generation
	3.5 Summary

	4 Mixed–Integer Real–Time Iterations
	4.1 Real–Time Optimal Control
	4.2 The Real–Time Iteration Scheme
	4.3 Contractivity of Real–Time Iterations
	4.4 Mixed–Integer Model Predictive Control
	4.5 Summary

	5 Outer Convexification of Constraints
	5.1 Constraints Depending on Integer Controls
	5.2 Lack of Constraint Qualification
	5.3 Mathematical Programs with Vanishing Constraints
	5.4 An MPVC Lagrangian Framework
	5.5 Summary

	6 A Nonconvex Parametric SQP Method
	6.1 SQP for Nonconvex Programs
	6.2 Parametric Quadratic Programs
	6.3 A Primal–Dual Parametric Active Set Strategy
	6.4 Parametric Quadratic Programming for Nonconvex Problems
	6.5 Summary

	7 Linear Algebra for Block Structured QPs
	7.1 Block Structure
	7.2 Survey of Existing Methods
	7.3 A Factorization for Structured KKT Systems with Many Controls
	7.4 Properties and Extensions
	7.5 Computational Complexity
	7.6 Summary

	8 Updates for the Block Structured Factorization
	8.1 Matrix Updates Overview
	8.2 Updating the Block Local Reductions
	8.3 Modifying the Block Tridiagonal Cholesky Factorization
	8.4 Summary

	9 Numerical Results
	9.1 Mixed–Integer Optimal Control with Switch Costs
	9.2 Mixed–Integer NMPC Scheme Contractivity
	9.3 OCPs and NLPs with Vanishing Constraints
	9.4 Block Structured Factorization and Updates
	9.5 Application: A Predictive Cruise Controller

	A Supplementary Material
	B Implementation
	B.1 The Multiple–Shooting Real–Time Online Optimization Method
	B.2 The Block Structured Parametric Quadratic Programming Code
	Bibliography
	Nomenclature
	Figures, Tables, Algorithms, Acronyms

