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IX

Abstract

This thesis presents advances in numerical methods for the solution of optimal control problems. In particular, the
new ideas and methods presented in this thesis contribute to the research �elds of structure-exploiting Newton-
type methods for large scale nonlinear programming and sensitivity generation for Initial Value Problems (IVPs)
for ordinary di�erential equations and di�erential algebraic equations. Based on these contributions, a new lifted
adjoint-based partially reduced exact-Hessian SQP (L-PRSQP) method for nonlinear multistage constrained opti-
mization problems with large scale di�erential algebraic process models is proposed. It is particularly well suited for
optimization problems which involve many state variables in the dynamic process but only few degrees of freedom,
i.e., controls, parameter or free initial values. This L-PRSQP method can be understood as an extension of the
work of Schäfer [Sch05] to the case of exact-Hessian SQP methods, making use of directional forward/adjoint sen-
sitivities of second order. It stands hence in the tradition of the direct multiple shooting approaches for di�erential
algebraic equations of index 1 of Bock and co-workers [BP84, Boc87, Sch88, BES88, Lei99]. To the novelties that
are presented in this thesis further belong

� the generalization of the direct multiple shooting idea to structure-exploiting algorithms for Nonlinear
Programs (NLPs) with an internal chain structure of the problem functions,

� an algorithmic trick that allows these so-called lifted methods to compute the condensed subproblems directly
based on minor modi�cations to the user given problem functions and without further knowledge on the
internal structure of the problem,

� a lifted adjoint-based exact-Hessian SQP method that is shown to be equivalent to a full-space approach,
but only has the complexity of an unlifted/single shooting approach per iteration,

� new adjoint schemes for sensitivity generation based on Internal Numerical Di�erentiation (IND) for implicit
Linear Multistep Methods (LMMs) using the example of Backward Di�erentiation Formulas (BDF),

� the combination of univariate Taylor Coe�cient (TC) propagation and IND, resulting in IND-TC schemes
which allow for the �rst time the e�cient computation of directional forward and forward/adjoint sensitivities
of arbitrary order,

� a strategy to propagate directional sensitivities of arbitrary order across switching events in the integration,

� a local error control strategy for sensitivities and a heuristic global error estimation strategy for IVP solutions
in connection with IND schemes,

� the software packages DAESOL-II and SolvIND, implementing the ideas related to IVP solution and sensi-
tivity generation, as well as the software packages LiftOpt and DynamicLiftOpt that implement the lifted
Newton-type methods for general NLP problems and the L-PRSQP method in the optimal control context,
respectively.

The performance of the presented approaches is demonstrated by the practical application of our codes to a series
of numerical test problems and by comparison to the performance of alternative state-of-the-art approaches, if
applicable. In particular, the new lifted adjoint-based partially reduced exact-Hessian SQP method allows the
e�cient and successful solution of a practical optimal control problem for a binary distillation column, for which
the solution using a direct multiple shooting SQP method with an exact-Hessian would have been prohibitively
expensive until now.

Keywords

Large Scale Nonlinear Programming, Optimal Control, Parameter Estimation, Partially Reduced Newton-Type

Methods, Lifted Methods, Constrained Optimization, Gauss-Newton, Exact-Hessian SQP, Direct Multiple Shoot-

ing, Internal Numerical Di�erentiation, Automatic Di�erentiation, Taylor Coe�cient Propagation, Initial Value

Problem Solution, Directional Sensitivity Generation, Ordinary Di�erential Equations, Di�erential Algebraic Equa-

tions



X

Zusammenfassung

Die vorliegende Arbeit präsentiert Fortschritte in numerischen Methoden zur Lösung von Optimalsteuerungspro-
blemen. Insbesondere tragen die präsentierten Ideen und Methoden zur Forschung auf den Gebieten der struk-
turausnutzenden Newton-ähnlichen Verfahren für hochdimensionale nichtlineare Optimierungsprobleme und der
Sensitivitätserzeugung für Lösungen von Anfangswertproblemen (AWP) von gewöhnlichen Di�erentialgleichun-
gen und di�erentiell-algebraischen Gleichungen bei. Basierend auf diesen Beiträgen wird ein neues, sogenanntes
geliftetes, auf adjungierten Sensitivitäten beruhendes, partiell reduziertes SQP-Verfahren mit exakter Hessematrix
(L-PRSQP) zur Behandlung mehrstu�ger, beschränkter Optimierungsprobleme mit hochdimensionalen Modellen
aus di�erentiell-algebraischen Gleichungen vorgestellt. Dieses eignet sich besonders für Optimierungsprobleme,
deren dynamisches Modell viele Zustandsvariablen enthält, und die nur wenige Freiheitsgrade wie Steuerungen,
Parameter oder freie Anfangswerte besitzen. Sie kann als eine Erweiterung des Ansatzes von Schäfer [Sch05] auf
den Fall von SQP-Verfahren mit exakter Hessematrix verstanden werden, die von kombinierten vorwärts/rückwärts
Richtungssensitivitäten zweiter Ordnung Gebrauch macht. Das Verfahren steht damit in der Tradition der von
Bock und Mitarbeitern [BP84, Boc87, Sch88, BES88, Lei99] entwickelten direkten Mehrfachschieÿverfahren für
di�erentiell-algebraische Modelle vom Index 1. Zu den Neuheiten, die in dieser Arbeit vorgestellt werden, gehören
weiterhin

� die Verallgemeinerung der Idee des direkten Mehrfachschieÿverfahrens auf strukturausnutzende Algorithmen
zur Lösung allgemeiner nichtlinearer Optimierungsprobleme, deren Problemfunktionen eine kettenartige
innere Struktur aufweisen,

� ein algorithmischer Trick, der es diesen sogenannten gelifteten Verfahren erlaubt, die kondensierten Sub-
probleme nach kleiner Modi�kation der vom Benutzer bereitgestellten Problemfunktionen und ohne weiter-
gehende Kenntnis der inneren Struktur des Problems, direkt zu berechnen,

� ein e�zientes, geliftetes, auf Adjungierten basierendes SQP-Verfahren mit exakter Hessematrix, von dem
die Äquivalenz zur Vollraummethode bewiesen wird, welches aber pro Iteration nur die Komplexität eines
ungelifteten Verfahrens/Einfachschieÿverfahrens aufweist,

� neue adjungierte Schemata zur Sensitivitätserzeugung basierend auf Interner Numerischer Di�erentiation
(IND) für implizite lineare Mehrschrittverfahren am Beispiel von BDF-Methoden,

� die Kombination von univariater Taylorkoe�zientenpropagation und IND, welche in IND-TC Schemata
resultiert, die erstmals die e�ziente Berechnung von Richtungssensitivitäten beliebiger Ordnung erlauben,

� eine Strategie zur Propagation von Richtungssensitivitäten beliebiger Ordnung durch Schaltpunkte in der
Integration hindurch,

� eine lokale Fehlerkontrolle für Sensitivitäten und einen heuristischen globalen Fehlerschätzer für die AWP-
Lösung, basierend auf den IND Schemata,

� die Softwarepakete DAESOL-II und SolvIND, in welchen die Strategien zur AWP-Lösung und Sensitivitäts-
erzeugung implementiert sind, sowie die Pakete LiftOpt und DynamicLiftOpt, welche die gelifteten Newton-
ähnlichen Verfahren für allgemeine NLPs beziehungsweise das L-PRSQP-Verfahren im Optimalsteuerungskon-
text beinhalten.

Die E�zienz der vorgestellten Ansätze wird mittels der praktischen Anwendung unserer Softwarepakete auf eine
Reihe von numerischen Testproblemen und, wenn möglich, eines Vergleichs mit alternativen state-of-the-art Ver-
fahren demonstriert. Insbesondere erlaubt das neue L-PRSQP-Verfahren eine e�ziente und erfolgreiche Behand-
lung eines praktischen Optimalsteuerungsproblems für eine binäre Destillationskolonne, bei dem der Aufwand der
Lösung mittels eines Mehrfachschieÿverfahrens mit exakter Hessematrix bislang unvertretbar hoch wäre.

Schlagworte

Hochdimensionale nichtlineare Optimierungsprobleme, Optimale Steuerung, Parameterschätzung, Partiell reduzierte
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akter Hessematrix, Direktes Mehrfachschieÿverfahren, Interne Numerische Di�erentiation, Automatisches Di�eren-

zieren, Taylorkoe�zientenpropagation, Lösung von Anfangswertproblemen, Erzeugung von Richtungssensitivitäten,
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0 Introduction

Over the last decades mathematical methods for modeling, simulation and optimization have
gained not only continuously more and more importance in industrial applications, but have also
an ever increasing impact on our everyday life. Processes from nearly all �elds, such as engineering,
chemistry, biology, medicine, physics and economics are now often translated into a mathemati-
cal model and afterwards analyzed, simulated, and optimized using mathematical methods. The
results of this development can be observed in our daily life in many di�erent forms. Examples
are the planning of surgeries and radiation therapies based on an individual model of the patient,
improvements of the operation of industrial plants regarding to quality, safety, throughput, the
use of raw materials, energy consumption, etc., the fast determination of the optimal route to a
target by a GPS-based navigation system in our car or mobile phone (possibly even accounting for
the actual tra�c situation) or the automated trading software agents performing a large number
of deals every fraction of a second autonomously in the stock markets.

To the same extent to which the understanding and the modeling of the processes gets more and
more detailed, the complexity and usually also the size of the resulting mathematical models in-
creases. This in return drives the need for an increased performance in the solution of the related
mathematical simulation and optimization problems.

This is one of the motivations for performing research on the mathematical methods for the sim-
ulation, analysis and optimization of these processes, and hence also for this work. This is even
more the case, as advances in the methods often give rise to enormous speedups and regularly
open up the possibility to treat completely new classes of problems.

Many (dynamic) processes can be described mathematically by a system of nonlinear di�erential
and algebraic equations involving so-called control functions, which together with the initial sys-
tem state determine the development of the process in time. The optimization of this kind of
processes, possibly subject to constraints as costs, time, safety margins, limited ressources, etc.,
is commonly denoted by optimal control.

Optimal Control Problems (OCPs) often occur as �o�ine� problems, i.e., they are solved once and
the resulting optimal controls are then applied to the process. But they also occur in the context
of �online� optimization, e.g., in the framework of Nonlinear Model Predictive Control (NMPC).
Here the optimal control problem is solved repeatedly after every feedback from the process (e.g.,
in form of measurements of the system state), which allows to react to occurring disturbances
based on the recomputed and adapted optimal control pro�le (see, e.g., [RMM94, ABQ+99]). In
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any case, to solve these problems in practice, fast and reliable numerical methods are needed.

The three fundamental approaches to solve the in�nite-dimensional OCPs are given by dynamic
programming, which is based on Bellman's principle of optimality, the indirect approach based
on Pontryagin's maximum principle and the direct approach, based on the transcription of the
optimal control problem into a �nite-dimensional Nonlinear Program (NLP) which is afterwards
solved, e.g., by a tailored Sequential Quadratic Programming (SQP) method. The transcription
is achieved by discretizing the control functions and possibly also the states on a suitable grid.

For the solution of constrained OCPs, methods based on the direct approach have been proven to
be particular successful for practical problems. They can roughly be separated into sequential and
simultaneous approaches. In sequential approaches like direct single shooting ([HR71, SS78, Kra85,
MS86]), the dynamic model is considered as black box, and the optimization algorithm is based
only on the input-output relationship between the discretized control functions and the values
of cost functional and constraints. Simultaneous or all-at-once approaches like direct collocation
([THE75, Bär83, Bie84, CB89, LB92, Sch96]) or direct multiple shooting ([Pli81, BP84, BES88,
Lei95, Lei99, LBBS03, LSBS03, TB95, TB96, PRG+97, GJL+00, BP04, Sch05, Rie06, Sag06]) also
parametrize or discretize the dynamic of the process, and add the resulting variables as additional
degrees of freedom to the NLP, which means that the optimization and the solution of model
dynamics occur simultaneously.

The simultaneous approaches like direct multiple shooting seem to have the disadvantage of a
larger number of variables, but this can be overcome to a large extent by exploiting the resulting
speci�c structure in the Newton-type NLP method. Their advantages include a better possibility
of introducing a priori knowledge of the solution and better convergence properties (see, e.g.,
[BP84, Boc87]). For multiple shooting, the structure exploitation can be performed in di�erent
ways. The �rst possibility is to build the full-space subproblems and to perform afterwards
condensing steps to reduce the size of the QP subproblem to that of the QP in the comparable
single shooting problem. However, this would need the building of the complete sensitivity matrices
of the states, which is, already for moderately large problems, by far the most expensive task in
the optimization algorithm. And it is prohibitively expensive or even impossible in case of large
scale problems that arise, e.g., from spatial discretizations of instationary Partial Di�erential
Equations (PDEs).

Alternatively, the condensed problem can be computed directly by using directional sensitivities in
a suitable way, which avoids the need to form the complete state sensitivities, and instead needs
essentially only sensitivities with respect to the discretized control functions, similar to single
shooting. This is favorable in the case where we have only a few control functions and an, in com-
parison, large number of states of the dynamic system. This reduced approach has been developed
�rst for constrained Gauss-Newton methods [Sch88] and later for update-based SQP methods in
the direct multiple shooting context [Sch05, GJL+00]. However, until now this idea cannot be
used in connection with exact-Hessian SQP methods. In case of a comparatively large number of
control functions and few system states, like it occurs often in methods for mixed-integer optimal
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control, other means like complementary condensing [KBSS11, Ste95] and the direct exploitation
of the QP sparsity are of advantage.

Until now simultaneous approaches usually lead to a higher implementational burden and the
algorithms are tailored to the speci�c structure of the underlying problem, which explains why
direct single shooting is still widely used in practice despite its drawbacks.

Even if by the choice of a reduction approach the number of needed directional sensitivities
can be decreased, sensitivity generation remains, together with the solution of Initial Value
Problems (IVPs), the most expensive subtask in many modern optimization algorithms for large
scale problems. E�cient sensitivity generation is, however, not only of interest in the solution of
dynamic optimization problems, but also, e.g., for the analysis of dynamical systems in general or
for model reduction [LSF08].

Most algorithms for sensitivity generation are based on the solution of the associated forward or
adjoint variational di�erential equation with a discretization grid that is di�erent from the one
of the solution of the nominal IVP. This approach has the advantage that it is relatively easy
to implement, once an IVP solver is at hand. However, drawbacks are that the formulation of
the corresponding variational di�erential equation often has to be done manually, which might
be cumbersome and error-prone especially for large scale systems. Furthermore, these methods
do compute an approximation of the derivative of the exact (analytical) IVP solution, but this
approximation has in general no or only a limited connection to the derivative of the numerical
IVP solution produced by the integrator. This, however, is important for the use in adaptive di-
rect optimization methods, where it is important that the computed derivatives and the function
evaluations are properly related. Another drawback is that the internal structure arising from the
relationship of the nominal IVP and the variational IVP is either not exploited, or this exploitation
has to be done manually.

An approach to overcome these problems is the principle of Internal Numerical Di�erentiation
(IND), invented by Bock [Boc81]. Simply speaking, using IND means to derive the numerical
scheme of the integrator with frozen adaptive components, e.g., using the techniques of Automatic
Di�erentiation (AD) (see, e.g., [Gri00]). The result is a numerical scheme for the approximation
of the sensitivities that delivers always the exact derivative of the numerical IVP solution. Fur-
thermore, IND allows to reuse a lot of information from the nominal integration for the sensitivity
computation and hence leads to an automatic structure exploitation. Over the years, several IND-
based codes have been developed and used with great success. However, with few exceptions all
of them only allow the computation of forward sensitivities of �rst or at most second order. For
implicit multistep methods, that can be applied to sti� IVPs, until now no IND schemes exist for
the computation of adjoint sensitivities, even though they are of great interest, e.g., in the con-
text of SQP methods with inexact constraint Jacobians [JS97, HV01, GW02, BDK04, DWBK09],
whenever gradient-type information is needed or if many control functions and parameter are
present. Also the computation of second order sensitivities, which are needed for exact-Hessian
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approaches, robust optimization [KKBS04, DBK06] and Optimal Experimental Design (OED)
[Bau99, BBKS00, Kör02, KKBS04], in a pure forward way is very ine�cient for medium to large
scale systems. Hence, the possibility to combine a forward and adjoint mode of IND for the com-
putation of second order sensitivities, analogously to the similar concept in the context of AD for
the computation of second order derivatives of ordinary functions is highly desirable and motivates
the research presented in this work.

Goals of this thesis

This thesis aims to make contributions to two major research �elds that are strongly connected to
the e�cient solution of large scale dynamic optimization problems in general and the solution of
optimal control problems in particular: the �eld of structure-exploiting Newton-type methods for
nonlinear programming and the �eld of sensitivity generation for solutions of IVPs for Ordinary
Di�erential Equations (ODEs) and Di�erential Algebraic Equations (DAEs).

On the one hand, we will explain how the idea of direct multiple shooting and the advantages of
this simultaneous approach can be transferred to the more general context of nonlinear program-
ming problems, in which the problem function evaluation possesses a certain internal structure
in form of intermediate values. These intermediate variables are then, as in multiple shooting,
added as degrees of freedom to the problem � thus �lifting� the problem into a space with more
variables � together with corresponding constraints to ensure equivalence of the solution with the
original problem. We then develop lifted algorithms that are able to exploit the internal structure
of the augmented (lifted) problems automatically, without requiring much detailed information
on the problem structure. This also signi�cantly reduces the implementation overhead normally
associated with this approach as well as the dependency of the algorithm on a speci�c problem
structure, which makes them usable for a broader audience. Furthermore, we will investigate �
carrying on the tradition of other structure-exploiting methods developed by Schlöder [Sch88] and
Schäfer [Sch05] in the multiple shooting context � how a lifted exact-Hessian SQP method can be
constructed that possesses the same order of complexity in terms of needed derivatives per non-
linear iteration as a corresponding unlifted/sequential/single shooting method. This is contrary
to the existing exact-Hessian SQP methods which become prohibitively expensive for large scale
problems regarding both run-time and memory demands.

On the other hand, we will present new methods for the e�cient generation of (directional) sensi-
tivities of IVP solutions of sti� systems, a task that is in many cases essential for the construction
of e�cient algorithms for the solution of dynamic optimization problems. We want to bene�t
from both the favorable properties of the adjoint mode of AD and of the principle of IND to
obtain new �rst order adjoint IND schemes for sensitivity generation in a Backward Di�erentia-
tion Formula (BDF) method. In addition, we want to explore the possibilities of transferring the
approach of univariate Taylor Coe�cient (TC) propagation to the IND context to develop IND-
TC schemes that allow for the �rst time the generation of directional sensitivities of arbitrary
order. This is a new capability that is very important not only for exact-Hessian methods for
optimal control problems, but also in the context of robust optimization and OED, where higher-
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order directional sensitivities are needed regularly. Furthermore, several new strategies related to
sensitivity generation are analyzed, e.g., for the propagation of sensitivities across switching events.

To bring these newly developed ideas immediately to a practical application we �nally like to
show, how in connection with a partial reduction technique for DAEs a lifted partially reduced
exact-Hessian SQP (L-PRSQP) method in the framework of direct multiple shooting can be con-
structed. The method shows a complexity that is independent of the number of states of the
dynamic system, which is a signi�cant improvement compared to existing approaches.

Among the novelties that we will present in this thesis are

� the generalization of the direct multiple shooting idea to structure-exploiting algorithms
for general NLPs with intermediate values in their function evaluations, the so-called lifted
methods,

� an algorithmic trick that allows these lifted methods to compute condensed subproblems
directly, based on only minor modi�cation to the given user functions and without further
knowledge on the internal structure of the problem,

� an e�cient adjoint-based lifted exact-Hessian SQP method that is shown to be equivalent to
a full-space approach, but only has the complexity of an unlifted/single shooting approach
per iteration,

� new adjoint IND schemes for implicit Linear Multistep Methods (LMMs) at the example of
BDF methods,

� the combination of univariate TC propagation and IND resulting in the �rst IND-TC
schemes, which allow for the �rst time the e�cient computation of directional forward and
forward/adjoint sensitivities of arbitrary order,

� a strategy to propagate arbitrary order directional sensitivities across switching events in
the integration,

� a local error control strategy for sensitivities and a heuristic for global error estimation for
the IVP solution in connection with IND schemes,

� a lifted partially reduced exact-Hessian SQP (L-PRSQP) method tailored to DAE optimal
control problems in the direct multiple shooting framework, that allows the treatment of
large scale problems that otherwise would be too expensive to solve with an exact-Hessian
SQP method,

� the software packages DAESOL-II and SolvIND, implementing the ideas related to IVP solu-
tion and sensitivity generation, as well as the software packages LiftOpt and DynamicLiftOpt
that implement the lifted Newton-type methods for general NLP problems and the L-PRSQP
method in the optimal control context, respectively.
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Thesis overview

This thesis is organized as follows. In Chapter 1 we present a class of optimal control problems.
We �rst give a basic de�nition of optimal control problems for index 1 DAE models and then
discuss possible extensions. Afterwards, we give a brief overview of the commonly used solution
strategies with an emphasis on direct methods. Here we explain shortly the principles behind
direct single shooting, direct collocation and direct multiple shooting methods and discuss the
individual advantages and disadvantages of the di�erent approaches.

As the computation of derivatives of functions such as cost functionals, constraints or ODE/DAE
model functions will play an important role in most of the later chapters of this thesis we give in
Chapter 2 an overview of di�erent techniques for derivative generation. We present the commonly
known approaches with their advantages and shortcomings. Afterwards, we give a detailed intro-
duction to the basic concept of the derivative generation using AD, as we will use this technique
regularly throughout this thesis. We put a special emphasis here on the generation of higher-order
directional derivatives using univariate TC propagation, as this topic is not so commonly known
but essential to understand the methods we develop in this thesis. At the end, we discuss brie�y
how sparsity can be exploited in the computation of derivatives.

Chapter 3 is dedicated to constrained nonlinear programming. We give a general formulation of
a constrained NLP, as well as some special important subclasses along with the required notation
and de�nitions. Then we address necessary and su�cient conditions for local optimal solutions of
a NLP. In Section 3.3 we explain the solution of NLPs using Newton-type optimization methods.
In particular, we address here the framework of SQP methods and discuss two important members
of the SQP family in more detail. Afterwards, we give a short overview of other SQP variants not
treated in this thesis. The chapter ends with a short presentation on strategies to ensure global
convergence of the algorithms.

In Chapter 4 we present the lifting idea for the solution of NLPs and develop algorithms for their
solution that solve the augmented (lifted) system by a structure-exploiting Newton-type method,
yet do not require any additional knowledge about the structure of the problem functions or the
meaning of the intermediate variables. We explain in Section 4.1 the basic idea at the example
of Newton's method for a root �nding problem and derive a �lifted� Newton algorithm for the
e�cient solution of the problem. In Section 4.2 we discuss the application of the lifting approach
to optimization and derive a lifted Gauss-Newton method and a lifted exact-Hessian SQP method
for equality and inequality constrained NLPs that is based on adjoint gradient computations.
We prove the equivalence of this last method with the iterations obtained by a full-space SQP
method. Afterwards, we discuss in Section 4.3 under which circumstances �lifted� approaches
converge faster than non-lifted ones, and give a proof in a simpli�ed setting. We illustrate the
potential of the developed method with the help of a tutorial example in Section 4.4 and con�rm
here for the numerical solution with our software package LiftOpt also the convergence properties
that we derived theoretically.
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Chapter 5 treats the e�cient numerical solution of (sti�) IVPs for ODEs and DAEs of index 1,
which occur as subproblems, e.g., in the solution of optimal control problems. In Section 5.1 we
state some important de�nitions and results from DAE theory. Afterwards, we explain the proper-
ties of LMMs and the subclass of BDF methods, which form the basis of our numerical integration
code DAESOL-II. The more speci�c strategies related to IVP solution that are used in our code
DAESOL-II are presented in Section 5.3. The di�erent subtasks occurring in the numerical scheme
for IVP solution are discussed in more detail, as they are required for the deeper understanding of
the strategies for sensitivity generation that are developed in the following chapter. Topics pre-
sented here include, e.g., the representation of predictor and corrector polynomials, the monitor
strategy for the Newton-like method used for the solution of the implicit corrector equation as
well as the continuous representation of the IVP solution.

In Chapter 6 we address the computation of sensitivities, i.e., of the derivatives of solutions of
IVPs with respect to initial values and parameter. We start here with the general problem for-
mulation and show that forward and adjoint sensitivities can be represented as solutions of the
so-called forward or adjoint variational ODE/DAE, which could be used to compute the sensi-
tivities analytically (or also numerically). Afterwards, we explain the principle of IND and show
in the following how, based on the IND principle and in connection with AD, e�cient numerical
structure-exploiting schemes for the computation of sensitivities can be derived. We present here
new adjoint IND schemes for implicit LMMs using the example of BDF methods. In Section 6.5
we present the combination of the principle of IND and of univariate TC propagation which en-
ables us to derive the �rst schemes capable of computing directional forward and forward/adjoint
sensitivities of arbitrary order. In particular, the new possibility to compute reduced Hessian sen-
sitivities based on an IND approach is essential for the lifted exact-Hessian SQP method presented
in the following chapter. We give then a comparison of the di�erent IND-based schemes for sen-
sitivity generation and present in Section 6.7 several more speci�c strategies related to sensitivity
generation in general and their implementation in connection with DAESOL-II and SolvIND. We
address here among others the continuous representation of the sensitivities, the computation of
adjoint derivatives of functions de�ned on states on an arbitrary timegrid by adjoint sensitivity
injection and the local error control for forward sensitivities of arbitrary order. Furthermore we
give a proposal for an IND-based a posteriori error estimator for the global error of the ODE/DAE
solution. Finally, we develop for the �rst time a strategy for the propagation of directional sensi-
tivities of arbitrary order across switching events, which makes the computation of higher-order
sensitivities in this context now computationally feasible.

The combination of the developed lifted exact-Hessian SQP method and the new sensitivity gen-
eration schemes in the framework of direct multiple shooting for optimal control problems for
DAEs is presented in Chapter 7. In Section 7.1 we present the fundamentals of our algorithm. We
explain the basic problem structure resulting from the application of the direct multiple shooting
approach to the optimal control problem and how the classical condensing approach is working in
this case. In this context, we address also the partial reduction technique for DAEs. We show that
this approach can be used in connection with our lifted optimization methods to enable them also



8

for the use in the context of DAE problems. Furthermore, we explain how (IND-)TC propagation
can be used in the context of lifting to compute here the condensed QP subproblem directly and
give a basic form of our algorithm. Section 7.2 covers further practical aspects in connection with
our algorithm, such as the termination criterion and the treatment of infeasibilities. We end this
chapter with Section 7.3, where we give a comparison of our lifted partially reduced exact-Hessian
SQP (L-PRSQP) algorithm with an exact-Hessian SQP algorithm based on classical condensing
to illustrate the advantages of our approach.

Numerical examples of the application of our code LiftOpt, in which the lifting idea presented in
Chapter 4 is implemented, are given in Chapter 8. Sections 8.1 and 8.2 illustrate the bene�ts of
the presented lifted optimization methods compared to unlifted methods on a small toy example,
while Section 8.3 treats a very large scale example. The latter one, a parameter estimation prob-
lem for hyperbolic PDEs, demonstrates also the practical feasibility of lifting a large, user given
simulation code with LiftOpt.

In Chapter 9 we present numerical tests for the sensitivity related strategies implemented in our
packages DAESOL-II and SolvIND. We analyze in Section 9.1 the costs of di�erent integration
and sensitivity generation tasks on a scalable test problem given by a model for an SMB process.
In Section 9.2 we compare our newly developed adjoint IND scheme against an alternative ap-
proach based on the solution of the adjoint variational ODE/DAE, implemented in the SUNDIALS
suite. The comparison is based on several test problems from the IVP testset of the University
of Bari and shows the e�ciency of our IND-based schemes. In Section 9.3 we demonstrate that
the proposed strategy for error control of forward sensitivities works and leads to only slightly
larger computational costs. Section 9.4 con�rms numerically that the intermediate adjoint IND
quantities can be used to create an e�cient a posteriori error estimator for the global error of the
IVP solution, also in case of index 1 DAEs.

In Chapter 10 we show that our L-PRSQP algorithm, which is implemented in the package
DynamicLiftOpt, is able to e�ciently solve practical DAE optimal control problems. We demon-
strate this for the example of an optimal control problem for a binary distillation column. In
Section 10.1 we describe brie�y the model of the distillation column. Afterwards, we explain in
Section 10.2 the setup of the optimal control problem and present in Section 10.3 the numerical
results.

Chapter 11 �nally contains a brief summary of the most important ideas and results of this thesis
and addresses several topics that might be interesting as directions of further research.



1 Optimal control problems

In this chapter we present a class of continuous optimal control problems. We de�ne the basic
problem class and discuss possible extensions. Afterwards, we address shortly the di�erent funda-
mental solution strategies, i.e., dynamic programming, indirect methods and direct methods. We
then focus on direct methods and have a closer look at their main ideas, as we will refer to some
of them in the derivation and description of our optimization algorithms in Chapters 4 and 7.

1.1 Problem formulation

In the following, we �rst give a basic formulation of an optimal control problem for dynamic
processes described by Di�erential Algebraic Equations (DAEs).

De�nition 1.1 (Continuous optimal control problem)
A continuous Optimal Control Problem (OCP) for DAEs is a constrained optimization problem
of the form

min
u(·),x(·),z(·),p

c
(
x(·), z(·),u(·),p

)
(1.1a)

s.t.

A(t,x(t), z(t),u(t),p) · ẋ(t) = f(t,x(t), z(t),u(t),p), t ∈ T = [ts, tf ] (1.1b)

0 = g(t,x(t), z(t),u(t),p) (1.1c)

0 ≤ hcont(t,x(t), z(t),u(t),p) (1.1d)

x(ts) = x0. (1.1e)

The di�erent components of the problem are given by

� T = [ts, tf ] ⊂ R represents the �xed time horizon on which the problem is formulated and
the time variable is denoted by t.

� u : T → Rnu is the control function which is to be determined. In the general case, u is
assumed to be a measurable function.

� x : T → Rnx , z : T → Rnz are the di�erential and algebraic states of the dynamic process
under consideration. They must ful�ll the DAE model of the process and hence are assumed
to be at least continuously di�erentiable. x0 ∈ Rnx describes the initial di�erential state of
the process.

9
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� A : T × Rnx × Rnz × Rnu × Rnp → Rnx×nx , f : T × Rnx × Rnz × Rnu × Rnp → Rnx and
g : T × Rnx × Rnz × Rnu × Rnp → Rnz are the DAE model functions describing the time
development of the underlying dynamic process. They are in general assumed to be twice
continuously di�erentiable. Throughout this thesis, we consider only linearly implicit DAEs
of index 1, as they su�ce to describe dynamic processes that occur in a broad variety
of application �elds. Furthermore, their intrinsic structure can be e�ciently exploited by
DAE solvers. We assume that ∂g

∂z
and A are regular along the DAE solution trajectory to

guarantee the index 1 assumption. As a result, the algebraic states are fully determined by
the di�erential states, the control and the parameter. For more details on the properties
and the e�cient numerical integration of the DAE model we refer to Chapter 5.

� p ∈ Rnp is a parameter vector that contains all degrees of freedom of the problem that are
not time-dependent, e.g., the parameter of the DAE model of the dynamic process.

� c is a cost functional de�ned on the control function, the trajectories of the di�erential and
algebraic states as well as the parameter. A common type of cost functional is the Bolza
cost functional. It consists of two parts: a Lagrange term, i.e., the integral over a Lagrange
objective function l(t,x(t), z(t),u(t),p), and a Mayer term, i.e., an end-point contribution
m(tf ,xf , zf ,p). Hence a Bolza objective can be written in the form

c
(
x(·), z(·),u(·),p

)
=

∫ tf

ts

l(t,x(t), z(t),u(t),p)dt+m(tf ,x(tf ), z(tf ),p). (1.2)

We assume in general that the cost functional is twice continuously di�erentiable .

� hcont : T × Rnx × Rnz × Rnu × Rnp → Rndec is a twice continuously di�erentiable function
representing possibly mixed state and control constraints on the time horizon. As they do
not combine the values of states or controls at di�erent points in time they are also called
decoupled constraints.

In addition to this basic problem formulation there exist several possible extensions and special-
izations that are important in practice. These include:

� Variable time horizon, e.g., free end time:

The above OCP is formulated on the �xed time horizon T = [ts, tf ]. The end time or
equivalent the length of the time horizon can be made a degree of freedom by performing a
time transformation. If we de�ne

t(τ) := ts + phτ and ph := tf − ts, (1.3)

we can add ph as degree of freedom to the parameter vector p and reformulate the OCP in
the �normalized� time τ on the time horizon τ ∈ [0, 1]. The di�erential right hand side of
the DAE (1.1b) then transforms to (assuming A ≡ I here for readability)

ẋ(τ) = ph · f(t(τ),x(t(τ)), z(t(τ)),u(t(τ)),p), τ ∈ T = [0, 1] (1.4)

and all function evaluations have to be performed for the �physical� time t(τ).
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� Other constraint types:

There are further possibilities to impose constraints to the OCP. Boundary constraints only
involve the initial and �nal states and hence have the form

0 ≤ hbnd(x(ts), z(ts),x(tf ), z(tf )). (1.5)

Interior (multi-)point constraints may depend on the states at one (or more) time points
within the time horizon as well as on the parameter

0 ≤ hip(x(t1), z(t1), . . . ,x(ti), z(ti), . . . ,x(tn), z(tn),p), ti ∈ [ts, tf ], 1 ≤ i ≤ n (1.6)

We also distinguish between coupled constraints, which may depend beside the parameter
also on the state and the control values at di�erent timepoints, and decoupled constraints,
which depend beside the parameter only on quantities at one time point. An example for
the latter are the continuous path and control constraints in the basic OCP formulation.
Note that in principle all these constraint types can also contain equality constraints, e.g.,
in the case of boundary constraints to describe periodicity conditions.

� Least-squares objective:

An important subtype of cost functionals is given by the so-called least-squares functionals.
They have the form

c
(
x(·), z(·),u(·),p

)
=

∫ tf

ts

‖r(t,x(t), z(t),u(t),p)‖2
2dt, (1.7)

where r : T × Rnx × Rnz × Rnu × Rnp → Rnres is the least-squares residual function. Least-
squares functionals often occur in tracking problems, where the deviation of the states from
a prescribed path is penalized, and in parameter estimation problems. Furthermore, they
can be used to regularize the controls u numerically.

� Multistage problems:

The OCP (1.1) was de�ned based on one speci�c dynamical model with a �xed number
of states, parameter and controls. In practice, however, it can be desirable and sometimes
even necessary to allow changes in the underlying process dynamics or other transitions that
can be modeled by a multistage optimal control problem. Practical examples for this can
be found, e.g., in [Lei99, DLS+02]. A multistage formulation with nmos model stages can
be formed by de�ning on each model stage an OCP of type (1.1) with possibly di�erent
dimensions, dynamic models and constraints. The overall cost functional is then de�ned as
the sum of the cost functionals on the di�erent model stages. In this formulation each model
stage is connected with the next model stage by a transition constraint of the form

xk+1(ts,k+1) = htrans
k (tf,k,xk(tf,k), zk(tf,k),uk(tf,k),pk), 1 ≤ k ≤ nmos − 1, (1.8)

where the subindices k and k + 1 denote to which model stage the quantities belong.
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� Mixed-integer problems:

It is also possible to restrict some of the controls and/or the parameter to a set of dis-
tinct values. This leads to mixed-integer optimal control problems which require a special
treatment. For more information, we refer to [Sag05, KSBS10] .

We refrain here from stating and discussing the optimality conditions for the continuous OCP
as well as the structure of optimal solutions. Necessary optimality conditions are usually derived
using Pontryagin's maximum principle and can be found (for the basic OCP with ODE dynamics),
e.g., in [PBGM62, BH75]. For a derivation of su�cient optimality conditions for certain problem
classes we refer to [MO04] and references therein.

1.2 Solution approaches

Over the years, several di�erent approaches have been developed to (numerically) solve OCPs of
type (1.1). They can be distinguished, e.g., by the space in which the optimization of the problem
occurs, the discretization approach and the order in which discretization and optimization take
place. Depending on the chosen approach, they di�er in the run-time and memory demands for
the numerical solution, the achievable accuracy of the solution, the possibility to compute global
optima, the e�ort for their implementation and, as a result, also in their applicability to certain
problem classes and problem sizes. In general, the solution approaches can be divided into three
larger classes: Dynamic programming, indirect and direct methods.

1.2.1 Dynamic programming

Dynamic programming is an approach that is based on Bellman's principle of optimality [Bel57].
Roughly speaking, it says that any subarc of a given optimal solution of the OCP on the whole
time horizon is also optimal on the corresponding part of the time horizon.

Theorem 1.2 (Bellman's principle of optimality)
If (u∗(·),x∗(·)) is an optimal solution of the OCP (1.1) (for notational ease we consider in the
following only the ODE case with a Bolza type cost functional) on the time horizon [ts, tf ], then
for any given time point t̃ ∈ [ts, tf ] holds, that (u∗(·),x∗(·)) is also an optimal solution of the
problem for the time horizon [t̃, tf ] and the initial value x(t̃) = x∗(t̃).

The vehicle to make practical use of this idea is the cost-to-go function

De�nition 1.3 (Optimal-cost-to-go function)
We de�ne the optimal-cost-to-go function for the OCP (1.1) on the interval [t̃, tf ] as

cost(t̃, x̃) := min
u(·),x(·)

∫ tf

t̃

l(x(t),u(t))dt+m(x(tf )), (1.9)

where the condition x(t̃) = x̃ as well as the constraints of the OCP are imposed.
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Dynamic programming is normally used for discrete time systems. Assuming a timegrid ts =
t1 < t2 < . . . < tn = tf the optimal-cost-to-go function at a gridpoint 1 ≤ j < n can be de�ned
recursively by

cost(tj,xj) := min
u(·),x(·)

∫ tj+1

tj

l(x(t),u(t))dt+ cost(tj+1,x(tj+1)), (1.10)

subject to x(tj) = xj and the OCP constraints.

Dynamic programming algorithms use this recursive version of the optimal-cost-to-go function to
compute an optimal solution backwards from the end of the time horizon to the beginning. Start-
ing with c(tm,xm) = m(x(tm)) in tm, the problem (1.10) has to be solved on every subinterval
[tj, tj+1] for j = m − 1, . . . , 1 for each value x ful�lling the constraints. For continuous variables
x this requires also a discretization of the state space. For each of the solved subproblems, the
obtained cost function values and the corresponding solutions are stored for the use in the com-
putation of the subproblem on the preceding time interval. This storing is called the �tabulation
in state space�.

Dynamic programming has one unique advantage compared to the other approaches presented
later: As the search for the solution occurs in the entire state space, a global optimal solution
of the OCP is found. Another property that is of special use in the context of feedback control
algorithms for online optimization is that the tabulation of the subproblem solution corresponds
to a precomputation of the optimal control moves for any given system state. Hence, the optimal
control feedback can be obtained immediately after the measurement of the system state by a
simple table look-up.
However, these advantages come at a very high price in terms of memory demand and run-time
complexity of the approach which su�ers from the so-called �curse of dimensionality�: The run-time
for a dynamic programming algorithm grows exponentially with the number of states and hence
becomes prohibitively large already for medium size problems. Therefore dynamic programming
is of practical use only for quite small systems.

If the size of the subintervals [tj, tj+1] tends to zero, this leads to the Hamilton-Jacobi-Bellman
equation. This is a partial di�erential equation that can be used to determine the optimal so-
lution for continuous time systems. It shares in principle the advantages and disadvantages of
the dynamic programming approach. For more information on dynamic programming and the
Hamilton-Jacobi-Bellman equation we refer to [Bel57] and in the context of optimal control also
to [Ber05, Ber07].

1.2.2 Indirect methods

The class of indirect methods for the solution of optimal control problems is based on Pontryagin's
maximum principle and can be characterized as ��rst optimize - then discretize�. In this classical
approach the necessary conditions of optimality in the in�nite-dimensional function space are used
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to transform the OCP into a multipoint boundary value problem that has no degrees of freedom
any more. The latter is then solved by suitable numerical methods, as for example multiple
shooting [Osb69, Bul71, Deu74, Boc78a, Boc78b]. No discretization occurs until the boundary
value problem is solved numerically. For some special (small) cases, also an analytical solution
might be possible.
Indirect methods are able to compute the optimal control with a very high accuracy, as no approx-
imation of the control occurs before the optimization step and the in�nite-dimensional problem is
solved. Since the transformation to a boundary value problem eliminates the degrees of freedom
in the controls, indirect method o�er some advantages for problems with many control functions
compared to the number of states. Thus, the size of the problems scales linearly with the number
of states, and hence the complexity is much better than in the case of direct programming or the
use of the Hamilton-Jacobi-Bellman equation.
However, there are a number of drawbacks associated with the indirect approach. The derivation of
the optimality conditions and the transformation into a boundary value problem require knowledge
on the speci�c problem and often a lot of manual work. Furthermore, in the presence of general
path and control constraints or interior point constraints, the solution structure is usually unknown
in advance (see, e.g., in [Boc78a, Pes94, HSV95, Sag05] for more details). Even if the structure of
the optimal solution has been determined once, it is very sensitive to small changes in the problem
formulation, e.g., the addition of a constraint, but also to changes in the initial conditions or
parameter values. Hence, in these cases the possibly lengthy derivation has to be repeated quite
often. For systems with a larger number of states and controls the derivation may simply be
impossible in practice.
For the successful numerical solution of the resulting boundary value problems not only a priori
knowledge about the structure of the optimal solution is of importance. Also suitable initial values
for all variables have to be available, such that the initial guesses lie inside the convergence region
of the numerical method (usually a Newton-type method). This is often di�cult, especially for
the adjoint variables. Hence in some algorithms direct methods (see the following Section 1.2.3)
are used as �starter� for indirect methods to generate the needed initial values for the variables
[BNPvS91].
Note also that the solutions computed by indirect methods are, other than for dynamic program-
ming, not necessarily global optima. Usually, they are only locally optimal.
Summarizing, it can be said that the solution of optimal control problems by indirect methods is
in general an interactive process that requires knowledge about the speci�c problem such that it
cannot be performed in a fully automated manner. As a result, indirect methods are usually not
chosen as foundation of multiple purpose algorithms but are mostly applied if a high accuracy
solution for a speci�c problem class is needed.

1.2.3 Direct methods

Direct methods, contrary to indirect methods, can be characterized by the expression ��rst dis-
cretize - then optimize�. In direct methods the in�nite-dimensional optimal control problem is
transformed into a �nite-dimensional Nonlinear Program (NLP). This resulting optimization
problem is then solved using a suitable numerical algorithm for �nite-dimensional optimization



CHAPTER 1. OPTIMAL CONTROL PROBLEMS 15

as, e.g., the ones presented in the subsequent chapters. To perform the transformation, all di-
rect methods employ a discretization of the control function u(·). The di�erent classes of direct
methods are then distinguished based on their treatment of the system states x(·) and z(·), i.e.,
whether or not the system states are discretized. For a detailed comparison of the di�erent classes
of direct approaches for the solution of optimal control problems we also refer to [BBB+01].

Direct single shooting

In direct single shooting [HR71, SS78, Kra85] the control function u(·) in (1.1) is replaced by a
�nite-dimensional discretization. This discretization can, e.g., be performed by �rst choosing a
time grid ts = t0 < t1 < . . . < tngrid

= tf on the horizon [ts, tf ]. Then, on the subintervals de�ned
by this grid, the control function is approximated piecewise by

u(t) = ψi(t,ui) for t ∈ [ti, ti+1], (1.11)

where ui is a �nite-dimensional control parameter vector and ψi is chosen typically as constant or
linear in each component. At this level, the system states are not discretized and interpreted as
variables that depend on the values of the controls (and of course on the model parameter and the
initial values). To determine the states as a function of them the corresponding DAE Initial Value
Problem (IVP) has to be solved. Thus, direct single shooting is called a sequential approach.

Figure 1.1: Illustration of a direct single shooting discretization of the optimal control problem for ordinary dif-
ferential equations. Here, a piecewise constant discretization of the controls on an equidistant grid is
used.

Based on the control discretization and the representation of the system states as a function of
the control parameter, the original optimal control problem can be written as an NLP in the
unknowns

(u0,u1, . . . ,ungrid−1),

provided that no free parameter are present and that the initial value is �xed. The in�nite-
dimensional path and control constraints of the OCP are either discretized, and thus enforced
only at the discretization points, or added to the cost functional in form of penalty terms. Other
constraints such as interior point constraints can be transferred straightforward to the NLP con-
text.



16 1.2. SOLUTION APPROACHES

The advantages of the direct single shooting approach are that it leads to relatively small NLPs,
as the only degrees of freedom are the control parameter, and that it is quite easy to implement,
provided an NLP solver and a suitable numerical integration code are available. Furthermore,
state-of-the-art adaptive DAE solvers can be used in this context, cf. Chapters 5 and 6, and easily
exchanged to handle speci�c properties of the dynamic model.
On the other hand, there are a number of disadvantages of the direct single shooting approach.
Depending on the nonlinearity and the stability of the dynamics, the initial guess for the control
parameter might have to be chosen very close to the solution in order to guarantee the existence
of a (numerical) solution of the DAE-IVP. It is possible, e.g., for unstable DAEs, that for many
initial guesses for the control parameter no solution of DAE-IVP can be computed, either because
of a singularity or due to numerical instabilities that lead to an explosion of the error during the
integration of the IVP. In these cases, direct single shooting cannot be applied successfully in
practice. Furthermore, no a priori knowledge on the state trajectory of the solution (e.g., in track-
ing or parameter estimation problems) can be used in solution process, because only the control
parameter enter the problem and the state values are regarded as completely determined by them.
The convergence rate of the NLP problem is often determined by the nonlinear dependence of the
DAE solution at the end of the time horizon on the controls at the beginning, i.e., the nonlinearity
�accumulated� over the whole time horizon (see also the discussion on the local convergence of
unlifted methods in Section 4.3). This is di�erent (and usually worse) than, e.g., in the case of
direct collocation and direct multiple shooting, where this nonlinearity might be �distributed� and
hence is e�ectively reduced.

Direct Collocation

Direct collocation for the solution of optimal control problems has �rst been proposed in [THE75]
and was further developed, extended and applied, e.g., in [Bär83, Bie84, Str93, SBS98, KB06,
KB08] and references therein. Here, not only the control u(·) is discretized but also the system
states x(·) and z(·). The approximation is in general based on polynomials and is done on a com-
mon �ne grid with ngrid subintervals, where each subinterval contains ncol collocation points. The
DAE in the OCP is then replaced by an ncol-point collocation formula on each subinterval which
usually means that nx+nz (nonlinear) equality constraints are introduced in each collocation point
on every interval. These conditions can usually be interpreted as a kind of numerical integration
scheme on the intervals that ensures in any case that in the NLP solution the DAE is ful�lled in
the collocation points. As the state trajectory is determined in parallel to the optimization, direct
collocation is called a simultaneous or also an all-at-once approach. Continuous path and control
constraints can be discretized analogously and point constraints can be added straightforward to
the NLP.
Denoting the state values in interval i and collocation point j with wx

i,j and wz
i,j and analogously

the control parameter values with ui,j we obtain a NLP in the variables

(wx
0,0,w

z
0,0,u0,0,w

x
0,1,w

z
0,1,u0,1, . . . ,w

x
ngrid−1,ncol−1,w

z
ngrid−1,ncol−1,ungrid−1,ncol−1,w

x
ngrid,0

,wz
ngrid,0

),

if no free parameter are present. Hence, the resulting NLP is usually huge, but also very sparse and
structured. Despite its size it can be solved quite e�ciently by sparsity exploiting NLP solvers,
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see, e.g., [BGHBW03, WB06].

By the introduction of the discretized state values as variables to the NLP, a priori knowledge
on the state trajectory of the optimal solution can be used. Furthermore, direct collocation is
more robust against nonlinearities and numerical instabilities than direct single shooting as the
propagation of errors over the whole time horizon is damped or even cut-o� by the tolerance in
the collocation matching conditions. Hence, it is also possible to treat unstable systems for which
the OCP itself is well-posed. In a similar way this decoupling leads to a better distribution of the
nonlinearity of the problem.
The main drawback of direct collocation methods is that they do not allow an adaptivity in
time, i.e., in the process of the DAE solution, or at least not in a straightforward manner. The
problem here is that each change in the time-stepping scheme leads to a change in the resulting
NLP, usually even to changes of the dimensions of the NLP. However, a proper solution of highly
nonlinear and sti� problems usually needs a very �ne resolution in time at least on some parts
of the time horizon. These regions are in general not known in advance, and hence very many
gridpoints might be needed since in this case a �ne discretization in time must be used on the
whole time horizon. For large problems or long time horizons this might even not be possible in
practice.
Furthermore, if the collocation scheme itself shall be changed, e.g., to �upgrade� it or to treat a
di�erent model class, this leads to a change in the underlying NLP structure, probably requiring
manual adaptations to further ensure a proper structure exploitation in the algorithm. There-
fore, the change of the scheme is usually signi�cantly more di�cult than changing the numerical
integration method in direct single or multiple shooting.

Direct multiple shooting

Direct multiple shooting can be understood as a kind of hybrid approach between direct single
shooting and direct collocation. In direct multiple shooting the controls are discretized and the
state trajectories are parameterized, which is explained in the following. Direct multiple shooting
goes back to the diploma thesis of Plitt [Pli81], supervised by H.G. Bock, and was �rst pub-
lished in [BP84]. Extensions and applications of the idea in di�erent �elds can, e.g., be found in
[FMT02, LBBS03, BP04, TBK04, Sch05, Sag05, Rie06]. An e�cient implementation of the idea
for the solution of optimal control problems is given by the code MUSCOD-II [DLS01].

In direct multiple shooting the control discretization is performed similar to direct single shooting
(cf. (1.11)) by

u(t) = ψi(t,ui) for t ∈ [ti, ti+1]. (1.12)

The choice that the �nite-dimensional control parameter ui in�uences the control approximation
only locally on the corresponding subinterval contributes to the separability of the problem and
the favorable overall structure of the resulting NLP.

Contrary to direct single shooting and di�erent from direct collocation the state trajectories x(·)
and z(·) are parameterized. This is done by introducing another grid, the so-called multiple
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shooting grid. It can be chosen independently from the discretization grid of the controls and its
gridpoints are called multiple shooting nodes. For notational convenience we assume here that
both grids coincide. In each multiple shooting node new variables wx

i and wz
i , the so-called node

values, are introduced that represent the values of the di�erential and algebraic states x(ti) and
z(ti) at the corresponding multiple shooting node. The value of the states at time points between
the shooting nodes is obtained by the solution of a DAE-IVP on each multiple shooting interval,
where the initial values are given by the corresponding node values wx

i and wz
i at the beginning

of the interval.
The formulation of the algebraic equations is usually relaxed (cf.[BES88, SBS98, Lei99] and Sec-
tion 5.3.7) to allow the integration of the DAE-IVP with inconsistent initial values for the algebraic
variables. In exchange, the algebraic equations in the shooting nodes are added as equality con-
straints to the optimization problem to ensure consistency in the NLP solution. Furthermore,
matching conditions

wx
i+1 − x(ti+1; ti,w

x
i ,w

z
i ) = 0, 0 ≤ i ≤ ngrid − 1, (1.13)

have to be added to the NLP to guarantee continuity of the di�erential state trajectories in the
NLP solution. Here, x(ti+1; ti,w

x
i ,w

z
i ) stands for the di�erential state at the time ti+1 of the

solution of the DAE-IVP on the multiple shooting interval [ti, ti+1] with initial values wx
i and wz

i .
Hence, like direct collocation, direct multiple shooting is an all-at-once approach that solves the
dynamic model in parallel to the optimization. Note that the algebraic state trajectories are not
necessarily continuous on the interval borders, even in the NLP solution. This is the case, e.g.,
if the algebraic equations depend on the controls and the discretized controls themselves are not
continuous.

Figure 1.2: Illustration of a direct multiple shooting discretization of the optimal control problem for ordinary
di�erential equations. Here a piecewise constant discretization of the controls on an equidistant grid is
used. The left image shows the initialization of the problem where all node values are chosen identically
and the resulting IVP solutions do not ful�ll the matching (continuity) conditions. The right image
shows the solution of NLP problem, where the matching conditions are ful�lled.

The continuous path constraints are discretized and added to the NLP. Usually, this is done on the
multiple shooting grid and thus the constraints are enforced only in the multiple shooting nodes.
In practice, however, this is normally already su�cient to ensure that the constraints are satis�ed
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on the whole time horizon, once an NLP solution has been found. If this is not the case, it can
be overcome, e.g., by choosing a �ner grid for the discretization of the controls. An alternative
which makes use of semi-in�nite programming techniques to track and eliminate violations of the
constraints within the shooting intervals is presented in [PBS09]. Point constraints can also be
transferred quite simply to the NLP formulation, even easier if the timepoints in which they are
formulated are part of the multiple shooting grid.

The application of direct multiple shooting to the OCP then leads to an NLP in the variables

(wx
0,w

z
0,u0, . . . ,w

x
ngrid−1,w

z
ngrid−1,ungrid−1,w

x
ngrid

,wz
ngrid

),

which is structured and sparse. This looks similar to the case of direct collocation, however, the
number of gridpoints ngrid and hence the number of NLP variables is much smaller.

The resulting NLP can be solved e�ciently by a suitable �nite-dimensional NLP solver, e.g., a
structure exploiting SQP algorithm like the one presented in Chapter 7. Structure exploitation
can be performed on several algorithmic levels. On the level of the QP subproblems, structure
exploitation can be done, e.g., on the basis of the condensing algorithm presented in [Pli81, BP84],
which e�ciently reduces the size of the quadratic subproblem to be solved in each step to the size
of the QP in the single shooting case. This is preferable if the number of control parameter is
relatively small in comparison to the number of nodes (compare the description of condensing in
the case of lifted methods in Chapters 4 and 7).
Another possibility is to directly exploit the sparsity structure of the SQP subproblem for its
solution as described in [Ste95, Ste02, KBSS11]. This is preferable if the number of control
parameter is relatively large compared to the number of node variables and/or for special problem
classes arising from mixed integer optimal control.
Further developments of structure exploitation (based on the condensing approach) include, e.g.,
the projection onto an invariant manifold [SBS98], the usage of point constraints to eliminate de-
grees of freedom from the problem [Sch88, Sch05, AD10] as well as parallelization of the approach
based on the natural decoupling of the problem on the individual multiple shooting intervals
[GB94, Rie01].

Due to the additional degrees of freedom introduced by the state parametrization, direct multiple
shooting shares the favorable properties of direct collocation: The resulting algorithms are stable
and able to treat unstable systems as well as highly nonlinear problems. A priori knowledge about
the states in the optimal solution can be used for the initialization of the node values. Contrary
to direct single shooting, the convergence of the NLP solver is not governed by the �accumulated�
nonlinearity over the whole time horizon but more by the �maximum� of the nonlinearities on
the individual multiple shooting intervals (see also the discussion on local convergence of lifted
methods in Section 4.3). By this �distribution� of the nonlinearity the �e�ective� nonlinearity of
the NLP is often reduced.
A big advantage compared to direct collocation is the possibility to use adaptive state-of-the-art
integrators for the solution of the DAE-IVP on the shooting intervals. These integrators can also
be exchanged easily in case of improvements or according to the speci�c dynamic model class.





2 Derivative generation

In all theoretical strategies and numerical algorithms presented in this thesis, derivative informa-
tion of the involved functions play a central role. The e�cient generation of function derivatives is
hence a very important issue. This is not only the case for the presented optimization algorithms
but also for the presented numerical methods for the solution of Initial Value Problems (IVPs) for
Ordinary Di�erential Equations (ODEs) and Di�erential Algebraic Equations (DAEs) as well as
the computation of sensitivities of these solutions. The derivative information needed throughout
this thesis includes directional derivatives, dense and sparse Jacobian matrices, gradients as well
as higher-order (directional) derivatives. This chapter explains di�erent strategies to obtain these
derivatives and compares advantages and disadvantages as well as the e�ciency of the di�erent
approaches.

2.1 Symbolic di�erentiation

Symbolic di�erentiation, also called analytical di�erentiation, assumes that a symbolic expression
of the function to be di�erentiated, i.e., an explicit formula describing the output of the func-
tion in terms of the function's inputs, is available. Based on this expression di�erentiation rules
like product, quotient and chain rule are applied stepwise to manipulate the expression and to
�nally obtain a symbolic expression for the derivative. This procedure can be iterated to ob-
tain expressions for higher-order derivatives. The whole process can be done manually, or by a
computer-algebra software like Maple [Map09] or Mathematica [Res08]. Afterwards, the resulting
expression has to be implemented in a programming language to be evaluated by the computer.
Some computer algebra programs also o�er the possibility to directly export a source code for
the symbolic derivative expression. The strength of this approach is that, provided it is executed
correctly, it leads to derivative values without truncation errors, i.e., they are only subject to
round-o� errors. Furthermore, one obtains an expression for the derivative mapping, not only the
evaluation of the derivative in a certain point. There are however some drawbacks: First, there
needs to exist a symbolic expression of the function. In practice it might be the case that the
function which has to be di�erentiated is only given as a potentially large piece of computer code,
from which a symbolic expression is di�cult to obtain. Even if a symbolic expression is avail-
able, a manual manipulation to obtain the derivative of a large and complex function is tedious
and error-prone, while using a computer algebra software may lead to correct but not e�cient
expressions for the derivative. A classical example to illustrate the latter is the following product
function of Speelpenning [Spe80].

21
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Example 2.1 (Speelpenning's function)
We de�ne the scalar valued function f : Rn → R as

f(x1, . . . , xn) =
n∏
i=1

xi. (2.1)

By using symbolic di�erentiation we obtain the gradient ∇f(x1 . . . , xn) ∈ Rn

∇f(x1 . . . , xn) =

(∏
i 6=j

xi

)
j=1,...,n

=


x2 · x3 · · · xn
x1 · x3 · · · xn

...
x1 · x2 · · ·xn−1

 . (2.2)

This symbolic expression for the gradient contains a lot of common subexpressions. They are
usually not automatically exploited when the gradient is implemented based on this formula.
Hence the evaluation of the gradient will not be e�cient. It takes about n− 1 times the e�ort of
the function evaluation of f itself. A similar e�ort is needed to compute one directional derivative
of f . For higher-order derivatives this problem also exists, e.g., the symbolic computation of the
Hessian of f yields the expression

H =

(
∂2

∂xi∂xj

)
i=1,...,n,j=1,...,n

=


0

∏
i 6=1,i 6=2 xi

∏
i 6=1,i 6=3 xi · · ·

∏
i 6=1,i 6=n xi∏

i 6=2,i 6=1 xi 0
∏

i 6=2,i 6=3 xi · · ·
∏

i 6=2,i 6=n xi
...

. . .
...∏

i 6=n,i 6=1 xi · · ·
∏

i 6=n,i 6=n−1 xi 0

 (2.3)

Again, there are a lot of common subexpressions which are usually not automatically exploited
in an implementation. The computation of the Hessian based on this expression takes (n2−n)(n−3)

2

multiplications and therefore approximately n(n−3)
2

times the e�ort of the function evaluation of
f . Note that we already exploited the symmetry of the Hessian in this example.

Summarizing, we can say that the computation of derivatives using symbolic di�erentiation, e.g.,
using a computer algebra package, is a reliable method to compute derivatives with a high accuracy,
provided a symbolic expression for the function is accessible. To obtain an e�cient implementation,
however, often a postprocessing and optimization of the obtained expressions would be necessary.

2.2 Finite di�erences

The idea to approximate the derivative of a given scalar function f(x) : R→ R at a point x0 ∈ R
by �nite di�erences is based on the Taylor expansion of f around x0

f(x0 + h) = f(x0) +
∂f

∂x
(x0)h+O(h2). (2.4)
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This leads to the approximation of the derivative by one-sided �nite di�erences

∂f

∂x
(x0) =

f(x0 + h)− f(x0)

h
+O(h). (2.5)

Developing f twice around x0 with increments h and −h leads to the central �nite di�erence
scheme

∂f

∂x
(x0) =

f(x0 + h)− f(x0 − h)

2h
+O(h2). (2.6)

Both schemes can be transferred directly to compute an approximation of a directional derivative
of a function g : Rnindep → Rndep at a point x0 ∈ Rnindep in direction d ∈ Rnindep by

∂g

∂x
(x0) · d =

g(x0 + hd)− g(x0)

h
+O(h) (2.7)

or
∂g

∂x
(x0) · d =

g(x0 + hd)− g(x0 − hd)

2h
+O(h2). (2.8)

One big advantage of the �nite di�erences approach to compute derivative approximations is
that it is very easy to implement. Furthermore, no knowledge about the inner structure of f is
needed, because a black-box procedure to evaluate f (or g) is su�cient. Also the computation
of a directional derivative is very cheap, as only 2 function evaluations are needed. Hence, the
Jacobian is available at the expense of nindep + 1 function evaluations using the one-sided scheme
and 2nindep function evaluations using the central scheme, respectively. On the other hand, this
approach su�ers from a lack of accuracy of the computed derivative approximations. Furthermore,
the accuracy depends crucially on the choice of the increment h. If h is chosen large, the higher-
order terms become signi�cant and accuracy is lost due to truncation errors. If h is chosen small,
the cancellation errors increase. Even an optimal choice of h, which itself depends strongly on the
function, will typically lead to derivative approximations with an accuracy of only about 1

2
(one-

sided scheme) or 2
3
(central scheme) of the signi�cant digits of the underlying function evaluation.

This is depicted in Figure 2.1 for the example of f(x) = ex and x0 = 1 with double precision
arithmetic.
By comparison with the Taylor series one can derive more accurate (in terms of the truncation
error) approximations, but they require more function evaluations and su�er in principle from
the same problem. This is also true for �nite di�erence schemes for second and higher-order
derivatives. In this case the accuracy problem increases further.

2.3 Complex step derivative approximation

The idea of using complex arithmetic to compute numerical approximations of �rst and higher-
order derivatives of real functions can �rst be found in Lyness [Lyn67] and Lyness and Moler
[LM67]. By comparison with the Taylor series using a complex increment Squire and Trapp [ST98]
gave a simple formula to approximate a directional derivative of a function f : Rnindep → Rndep at
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Figure 2.1: The error made in the derivative approximation of f(x) = ex at x0 = 1 using the �nite di�erences
approach. Depicted is the Euclidean norm of the error for di�erent choices of the increment h for both
the one-sided (2.5) and the central (2.6) �nite di�erence scheme using double precision arithmetic. Even
for the optimal choice of h about half respectively one-third of the signi�cant digits are lost.

a point x0 in direction d ∈ Rnindep

∂f

∂x
(x0) · d = =

(
f(x0 + ihd)

h

)
+O(h2). (2.9)

Usually this approach is referred to as complex step method. At �rst sight it seems somewhat
similar to the �nite di�erences approach presented above. However this approach does not su�er
from cancellation errors for small h. Hence h can and should be chosen very small, e.g., h = 2−256 ≈
10−77. A comparison of the errors made in the evaluation of the derivative of the exponential
function by this approach and one-sided �nite di�erences is given in Figure 2.2. While for small
h the �nite di�erence approach looses accuracy due to cancellation errors, the complex approach
returns for h < 10−8 the derivative within machine precision. Martins et al. [MSA03] and Newman
et al. [NAW98] noted that the complex step method is in the end equivalent to the �rst order
forward mode of automatic di�erentiation explained in the next section. The complex step method
can be straightforward extended to the computation of second order derivatives, but then su�ers
from cancellation errors like the �nite di�erence approach. Recent works of Lai [Lai06] and
Ridout [Rid09] give suggestions for improved second order derivative approximations based on
the complex step method. Overall, the complex step method gives a simple possibility to obtain
accurate derivative information, even if the function is given only as a black-box algorithm. A
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Figure 2.2: The error made in the derivative approximation of f(x) = ex at x0 = 1 using the complex step method
(2.9) and the one-sided �nite di�erences approach (2.5) in double precision arithmetic. Depicted is
the Euclidean norm of the error for di�erent choices of the increment h. While the �nite di�erences
approach is subject to cancellation errors for small h, the complex step method is not and delivers for
h < 10−8 a derivative approximation within machine precision.

prerequisite is, of course, that the platform where the complex step methods is to be implemented
supports complex arithmetic. Also all operations made during the evaluation of the function f
have to support complex arguments. This might sometimes not be the case if, e.g., the evaluation
of f involves calls to the abs or max functions, linear algebra packages, integration routines or in
general third-party software. If this prerequisite is ful�lled, the complex step method delivers a
directional derivative at the cost of one function evaluation of f with complex argument and in
complex arithmetic. The e�ciency depends strongly on the implementation of complex arithmetic
on the target platform, e.g., if hardware support is present or a software emulation of complex
operations is necessary. For some implementations there exist also problems if h is chosen too
small, as was pointed out by Martins et al. [MSA03]. If the implementation of complex arithmetic
is e�cient and reliable, the complex step approach will be nearly as fast as the �nite di�erences
approach and can be recommended as an easy-to-use mean of computing at least �rst order
directional derivatives.
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2.4 Automatic di�erentiation

In this section we describe the powerful technique of automatic di�erentiation (AD). As we use
its ideas and concepts on several other occasions in the di�erent algorithms and strategies de-
veloped in this thesis, it is described here in detail. First the basic ideas and concepts of AD
are presented. Then we discuss algorithmic schemes for �rst order derivative generation using
the so-called forward and reverse modes of AD. Afterwards we give an introduction to the not
so commonly known concept of Taylor coe�cient (TC) propagation for the e�cient computation
of higher-order derivatives. At the end we discuss possibilities how the presented ideas can be
implemented in practice and give an overview on the approaches of generating sparse derivative
matrices in the case of large but structured systems. The presentation and notation in this section
is mainly inspired by the book of Griewank [Gri00], but sometimes modi�ed and extended where
needed.

2.4.1 Basic concepts

The underlying idea of automatic di�erentiation (sometimes also referred to as algorithmic di�er-
entiation or computational di�erentiation) is the decomposition of the function to be di�erentiated
into a sequence of elemental functions and the systematic application of the chain rule known from
basic calculus. Other than in the approach of symbolic di�erentiation presented in Section 2.1
here the chain rule is not applied to manipulate symbolic expressions but works on numerical
values. As the chain rule is known since Leibniz and Newton and hence is a part of the basic
calculus curriculum since many years, AD has been rediscovered and reinvented several times in
di�erent contexts and applications. Here the works of Wengert [Wen64] and Kedem [Ked80] are
sometimes cited as pioneer works in the �eld. For a more complete overview of AD history we
refer to [Iri91, Gri00].
In this section we will consider functions of type f : D ⊂ Rnindep → Rndep , y = f(x), mapping the
�independent� variables x to the �dependent� variables y. We assume further that the evaluation
of f can be decomposed into a sequence of elemental functions, leading from the independent
variables via intermediate variables to the dependent variables. This is usually true for most
functions whose evaluation can be coded as a computer program. To formulate this property
mathematically we use the following de�nition of a factorable function, which is slightly modi�ed
compared to the one given in [Ked80].

De�nition 2.2 (Factorable function)
Let L be a set of real valued functions taking one or more real arguments, the so-called elemental
functions. A function f : D ⊂ Rnindep → Rndep , y = f(x), x = (x1, . . . , xnindep

), y = (y1, . . . , yndep
)

is a factorable function if there exists a �nite sequence of real valued functions ϕ1−nindep
, . . . , ϕk,

such that the following conditions are satis�ed:

� ϕi−nindep
≡ π

nindep

i , for 1 ≤ i ≤ nindep,

� ϕk−ndep+i ≡ π
ndep

i ◦ f , for 1 ≤ i ≤ ndep,
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� for all 1 ≤ j ≤ k − ndep the function ϕj is either a constant function or a composition of an
elemental function with one or more functions ϕl with 1− nindep ≤ l ≤ j − 1, i.e., appearing
earlier in the sequence.

Here πni : Rn → R, (z1, . . . , zn) 7→ zi means the projection onto the i-th component of a vector. If
f is factorable, we call the sequence ϕ1−nindep

, . . . , ϕk an elemental representation of f . L is then
called the elemental library.

Note that there is mathematically no fundamental di�erence if the elemental functions would
have been de�ned as vector valued. This is sometimes of advantage in the practical setup, e.g.,
to treat linear algebra operations such as matrix-vector products on a higher level. But for the
development of the theory we stick for notational simplicity to scalar valued elemental functions.
For a factorable function f we can write down a sequence of instructions describing the evaluation
of the function for a given input x using elemental functions via intermediate values. To simplify
the notation we de�ne the following dependency relation.

De�nition 2.3 (Dependency relation)
Assume that f is factorable and ϕ1−nindep

, . . . , ϕk is an elemental representation of f . We denote
by vi the intermediate quantity that occurs as output of the elemental function ϕi during the
evaluation of f . This means that vi is computed by ϕi from a set of arguments containing the
intermediate value vj with j < i.
The dependency relation ≺ is then de�ned as

j ≺ i ⇔ vi depends directly on vj

⇔ vj is an argument of ϕi. (2.10)

Using the dependency relation we can write the general evaluation procedure, also called a (zero
order) forward sweep, for a factorable function f with input x and output y in the form of Table
2.1.

vi−nindep
= xi | i = 1, . . . , nindep

vi = ϕi(vj)j≺i | i = 1, . . . , k
yndep−i = vk−i | i = ndep − 1, . . . , 0

Table 2.1: General evaluation procedure (�zero order forward sweep�) for a factorable function with independent
variables x, intermediate variables v and dependent variables y.

Another useful possibility to describe the evaluation of f is an acyclic graph visualizing the de-
pendency relations in the function evaluation, the so-called computational graph. We elaborate
on this with the following example.

Example 2.4 (Evaluation procedure and computational graph)
Consider the function f : R3 → R2 de�ned as(

y1

y2

)
≡ f(x1, x2, x3) =

(
ex1(x2 + x3) + sin(x2)

sin(x2)−
√
x2 + x3

)
. (2.11)
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Then f is factorable and the evaluation procedure can be written as given in Table 2.2:

v−2 = x1

v−1 = x2

v0 = x3

v1 = e(v−2)

v2 = v−1 + v0

v3 =
√
v2

v4 = v1v2

v5 = sin(v−1)
v6 = v4 + v5

v7 = v5 − v3

y1 = v6

y2 = v7

Table 2.2: The evaluation procedure for the evaluation of the function f given in (2.11) using a chain of elemental
functions.

The corresponding computational graph of f for this elemental representation is depicted in Fig-
ure 2.3.

dependent
variablesintermediate variablesindependent

variables

Figure 2.3: The computational graph for the evaluation of the function f given in (2.11) using its elemental repre-
sentation given in Table 2.2.

A numerical evaluation of f using the representation in Table 2.2, e.g., at the point x = (0, 0, 1)T

takes the operations given in Table 2.3.

Now that we can write down the evaluation of f systematically in terms of elemental functions we
consider the question how to di�erentiate f e�ciently. First, we de�ne the property that assures
the di�erentiability of the used elemental functions.
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v−2 = 0
v−1 = 0
v0 = 1
v1 = e0

v2 = 0 + 1

v3 =
√

1
v4 = 1 · 1
v5 = sin(0)
v6 = 1 + 0
v7 = 0− 1
y1 = 1
y2 = −1

Table 2.3: The evaluation of the function f given in (2.11) at point x = (0, 0, 1)T using the elemental representation
given by Table 2.2.

De�nition 2.5 (Elemental di�erentiability)
We say that the elemental library L ful�lls the assumption of elemental di�erentiability (ED) of
order k if and only if all elemental functions ϕi ∈ L are k times continuously di�erentiable on
their open domains Di, i.e., ϕi ∈ Ck(Di,R), 0 ≤ k ≤ ∞.

Based on this de�nition we obtain immediately the following result regarding the di�erentiability
of f . For a proof, we refer to [Gri00].

Proposition 2.6
Let f be a factorable function with a representation of elements out of the elemental library L.
Assume that L ful�lls the assumption ED of order k. Then the set D of points x ∈ D for which
the function y = f(x) is well de�ned by the evaluation procedure given in Table 2.1 forms an open
subset of Rnindep and f ∈ Ck(D,Rndep).

If not indicated otherwise we assume in the following that the functions are factorable and that
the elemental library L ful�lls the assumption ED with an order k ≥ 1. This means that, e.g.,
{+,−, ∗, /, exp, sin, cos} ⊂ L, but {max,min, abs} ∩ L = ∅.

2.4.2 First order derivatives

Based on the elemental representation of f we now derive algorithmic schemes to compute �rst
order derivatives of f . This is done by di�erentiating the general evaluation procedure in Table
2.1 and applying the chain rule.
Depending on whether the application of the chain rule is done in the direction of the function
evaluation procedure or opposite to it, we speak of the forward or the reverse mode of AD.
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Forward mode

The forward mode of AD is used to compute for a given evaluation point x and a given direction
ẋ ∈ Rnindep the directional derivative

ẏ =
∂f

∂x
(x) · ẋ. (2.12)

It should be noted that usually, in contrast to symbolic di�erentiation, the Jacobian ∂f
∂x

(x) is
not built explicitly and afterwards multiplied by ẋ when AD is used for the computation of a
directional derivative. This would only be e�cient if a larger number of directional derivatives at
the same point x is needed. Instead by applying the general tangent procedure, also referred to
as �rst order forward sweep, given in Table 2.4, we directly compute the directional derivative.

[vi−nindep
, v̇i−nindep

] = [xi, ẋi] | i = 1, . . . , nindep

[vi, v̇i] = [ϕi(vj)j≺i ,
∑

j≺i
∂
∂vj
ϕiv̇j] | i = 1, . . . , k

[yndep−i, ẏndep−i] = [vk−i, v̇k−i] | i = ndep − 1, . . . , 0

Table 2.4: General tangent procedure (��rst order forward sweep�) for a factorable function with independent
variables x, intermediate variables v and dependent variables y. Here ẋ describes the derivative direction,
v̇i the derivatives of the intermediate quantities and ẏ the directional derivative.

The forward sweep is initialized with the independent variables x and the derivative direction ẋ.
Then step by step the derivative is computed simultaneously to the evaluation of the function itself.
This is achieved by accumulating in every intermediate quantity v̇i the derivative information
from all quantities that have directly contributed to vi, until the end of the evaluation is reached.
This means that after the accumulation of an intermediate variable vi is completed, v̇i holds the
directional derivative of vi in direction ẋ. The simultaneous treatment of function and derivative
evaluation is of advantage because usually, except in case that ϕi is constant or linear, for the
evaluation of the partial derivatives cij := ∂ϕi

∂vj
the values of either vi or vj are needed. If the

evaluation of the derivative is not done simultaneously to that of the function, we call this a
pure (�rst order) forward derivative sweep. Here either the intermediate variables have to be
recalculated or some of the intermediate variables (alternatively the cij) that have been stored
somewhere during a prior function evaluation, have to be retrieved. The �rst order forward sweep
can easily be extended to compute several directional derivatives simultaneously with the function.
The overall e�ort of computing p �rst order directional derivatives at once using the forward mode
of AD can be theoretically bounded from above by 1+1.5p times the e�ort of a function evaluation
(cf. [Gri00]). Compared to the �nite di�erences approach this is a slightly higher e�ort. On the
other side, the AD approach is only subject to round-o� errors and hence produces derivative
approximations within machine precision. We give now an example of a practical application of
the forward mode by computing the Jacobian of the function of Example 2.4.
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Example 2.7 (Jacobian computation using the forward mode)
Consider the function f : R3 → R2 de�ned as

(
y1

y2

)
≡ f(x1, x2, x3) =

(
ex1(x2 + x3) + sin(x2)

sin(x2)−
√
x2 + x3

)
.

We now want to evaluate the Jacobian J of f

J(x) =

(
ex1 (x2 + x3) ex1 + cos (x2) ex1

0 cos (x2)− 1
2
√
x2+x3

− 1
2
√
x2+x3

)
(2.13)

at point x = (0, 0, 1)T using the forward mode of AD. We achieve this by computing the nindep = 3
directional derivatives along the Cartesian coordinates, each one yielding one column of the Jaco-
bian, i.e., we choose ẋ1 = (1, 0, 0)T , ẋ2 = (0, 1, 0)T and ẋ3 = (0, 0, 1)T . The forward sweep is then
performed abstractly by the following calculations for each derivative direction:

Function evaluation Derivative evaluation

v−2 = x1 v̇−2 = ẋ1

v−1 = x2 v̇−1 = ẋ2

v0 = x3 v̇0 = ẋ3

v1 = ev−2 v̇1 = v1v̇−2

v2 = v−1 + v0 v̇2 = v̇−1 + v̇0

v3 =
√
v2 v̇3 = v̇2/(2v3)

v4 = v1v2 v̇4 = v̇1v2 + v1v̇2

v5 = sin(v−1) v̇5 = cos(v−1)v̇−1

v6 = v4 + v5 v̇6 = v̇4 + v̇5

v7 = v5 − v3 v̇7 = v̇5 − v̇3

y1 = v6 ẏ1 = v̇6

y2 = v7 ẏ2 = v̇7

In practice only the actual numerical values are propagated and this is done for all directions
simultaneously. The superscripts in the follwing computations denote the direction to which a
quantity belongs.
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Function evaluation Der. eval. dir. 1 Der. eval. dir. 2 Der. eval. dir. 3

v−2 = 0 v̇1
−2 = 1 v̇2

−2 = 0 v̇3
−2 = 0

v−1 = 0 v̇1
−1 = 0 v̇2

−1 = 1 v̇3
−1 = 0

v0 = 1 v̇1
0 = 0 v̇2

0 = 0 v̇3
0 = 1

v1 = e0 v̇1
1 = 1 · 1 v̇2

1 = 1 · 0 v̇3
1 = 1 · 0

v2 = 0 + 1 v̇1
2 = 0 + 0 v̇2

2 = 1 + 0 v̇3
2 = 0 + 1

v3 =
√

1 v̇1
3 = 0/(2 · 1) v̇2

3 = 1/(2 · 1) v̇3
3 = 1/(2 · 1)

v4 = 1 · 1 v̇1
4 = 1 · 1 + 1 · 0 v̇2

4 = 0 · 1 + 1 · 1 v̇3
4 = 0 · 1 + 1 · 1

v5 = sin(0) v̇1
5 = cos(0) · 0 v̇2

5 = cos(0) · 1 v̇3
5 = cos(0) · 0

v6 = 1 + 0 v̇1
6 = 1 + 0 v̇2

6 = 1 + 1 v̇3
6 = 1 + 0

v7 = 0− 1 v̇1
7 = 0− 0 v̇2

7 = 1− 1/2 v̇3
7 = 0− 1/2

y1 = 1 ẏ1
1 = 1 ẏ2

1 = 2 ẏ3
1 = 1

y2 = −1 ẏ1
2 = 0 ẏ2

2 = 1/2 ẏ3
2 = −1/2

In the end, we have computed along with the function value y = f(x) = (1,−1)T the correct
Jacobian J(x) at point x = (0, 0, 1)T

J(x) =

(
1 2 1
0 1

2
−1

2

)
(2.14)

using nindep = 3 directional derivatives. It should be noted that the intermediate variables vi of
the function evaluation and also the partial derivatives of the ϕi only had to be computed once
for the whole set of directions.

Summarizing, the forward mode of AD allows the e�cient computation of directional derivatives
of a given function with slightly higher e�ort than the �nite di�erences approach. As in all AD-
based approaches the function cannot be treated as a black box. At least a piece of computer
code describing the evaluation must be available. However, the forward mode computes derivatives
within machine precision and does not rely on the support and the e�ciency of complex arithmetic
on the speci�c platform or the algorithms used. The computation of the Jacobian of f using the
forward mode requires nindep directional derivatives of f , like the �nite di�erences approach and
the complex step method.

Reverse mode

The reverse mode of AD is used to compute for a given evaluation point x and a given so-called
adjoint direction ȳ ∈ Rndep the so-called adjoint directional derivative

x̄T = ȳT
∂f

∂x
(x). (2.15)

Again, this is done through di�erentiation of the general evaluation procedure in Table 2.1 using
the chain rule. However, other than in the forward mode the order in which the chain rule



CHAPTER 2. DERIVATIVE GENERATION 33

is applied is reverse to the evaluation procedure, i.e., starting at the dependent variables and
going back until the independent variables are reached. We call this a �rst order reverse sweep.
Once again, for the computation of the partial derivatives of some elemental functions ϕi the
values of the corresponding intermediate variables vi are needed. More speci�cally, the arguments
of nonlinear elemental functions and the results of the power and the exponential function are
needed during a reverse sweep. Hence in general a reverse sweep is preceded by a zero order
forward sweep computing the values of the intermediate variables in the function evaluation and
storing the ones needed later on a so-called tape. Alternatively, if the evaluation point x has not
changed, also the taped intermediate values of an earlier forward sweep can be used. Table 2.5
shows the computations for a general reverse sweep in the variant with a preceding zero order
forward sweep. We show here the incremental version where the accumulation in the intermediate
variable v̄i is done stepwise for each operation occurring in the function evaluation. The reverse
sweep could also be formulated nonincrementally, i.e., by grouping the accumulation operations
by variables and summing up directly all contributions to a single v̄i.

v̄i = 0 | i = 1− nindep, . . . , k − ndep

vi−nindep
= xi | i = 1, . . . , nindep

vi = ϕi(vj)j≺i | i = 1, . . . , k
yndep−i = vk−i | i = ndep − 1, . . . , 0

v̄k−i = ȳndep−i | i = 0, . . . , ndep − 1

v̄j += v̄i
∂
∂vj
ϕi ∀j ≺ i | i = k, . . . , 1

x̄i = v̄i−nindep
| i = nindep, . . . , 1

Table 2.5: General incremental �rst order reverse sweep for a factorable function with independent variables x,
intermediate variables v and dependent variables y. Here ȳ describes the adjoint derivative direction,
v̄i the intermediate adjoint quantities and x̄ the adjoint derivative. The reverse sweep is preceded by
a zero order forward sweep for the computation of the intermediate values v of the function evaluation
that are needed during the reverse sweep. At the very beginning, the intermediate adjoint variables v̄i
are initialized to zero. Note that the += here stands for the add-assign operation: u+= v is equivalent
to u = u+ v.

The reverse sweep is initialized with the adjoint direction ȳ. During the reverse sweep for each
intermediate quantity v̄j derivative information from all values vi to which vj has contributed to is
accumulated incrementally until, at the end of the procedure, x̄ contains the value of the adjoint
derivative. Like for the forward sweep, the procedure can be easily extended to compute several
adjoint directional derivatives simultaneously, thereby making e�cient use of common terms. For
the computation of p adjoint directional derivatives including the preceding zero order forward
sweep, an upper complexity bound of 1.5 + 2.5p times the cost of the function evaluation itself
can be shown (cf. [Gri00]). In this estimate the cost of accessing the tape is neglected, which is a
reasonable assumption if the whole tape can be stored in the main memory or even in the cache. If
this is not the case, other strategies like checkpointing (cf. Walther [Wal00]) may be advisable to
obtain more e�cient schemes. Apart from this, it is very important to note that this bound does
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not depend on the number of independent variables nindep. This makes the reverse mode of AD
extremely useful for the computation of gradients or Jacobians of functions with ndep � nindep.
We illustrate now the reverse mode in detail using the well-known function of Example 2.4 and
show afterwards the full power of the reverse mode for gradient computation using the example
of Speelpenning's function (2.1).

Example 2.8 (Jacobian computation using the reverse mode)
Consider again the function f : R3 → R2 de�ned as(

y1

y2

)
≡ f(x1, x2, x3) =

(
ex1(x2 + x3) + sin(x2)

sin(x2)−
√
x2 + x3

)
.

We now want to compute the Jacobian J of f at point x = (0, 0, 1)T using the reverse mode of
AD. We do this by computing the ndep = 2 adjoint directional derivatives along the Cartesian
coordinates in the target space, each one yielding one row of the Jacobian, i.e., we choose ȳ1 =
(1, 0)T and ȳ2 = (0, 1)T . The reverse sweep (with preceding forward sweep) for f is then abstractly
performed by the calculations given in Table 2.6 for each adjoint derivative direction ȳ. Note
that we assume that the v̄i are initialized with zero and that �rst the instructions on the left
side are executed (forward sweep) and afterwards the ones on the right (reverse sweep). In the

Forward sweep Reverse sweep

v−2 = x1 v̄7 = ȳ2
v−1 = x2 v̄6 = ȳ1
v0 = x3 v̄5 += v̄7

v̄3 += −v̄7
v1 = ev−2 v̄4 += v̄6
v2 = v−1 + v0 v̄5 += v̄6
v3 =

√
v2 v̄−1 += v̄5 cos(v−1)

v4 = v1v2 v̄1 += v̄4v2
v5 = sin(v−1) v̄2 += v̄4v1
v6 = v4 + v5 v̄2 += v̄3/(2v3)
v7 = v5 − v3 v̄−1 += v̄2

v̄0 += v̄2
v̄−2 += v̄1v1
x̄3 = v̄0

y1 = v6 x̄2 = v̄−1
y2 = v7 x̄1 = v̄−2

Table 2.6: Abstract forward and reverse sweep for f of Example 2.8. We see that in the reverse sweep only
intermediate values vi are needed that have been arguments of nonlinear elementals or that were the
results of power or exponential function.

actual computation only the numerical values are propagated and this is done for all directions
simultaneously. The superscripts in the following computations denote the adjoint direction to
which a quantity belongs. We again assume that the intermediate adjoint quantities v̄ji have been
initialized to zero. In the end we have computed along with the function value y = f(x) = (1,−1)T
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Forward sweep Rev. sweep dir. 1 Rev. sweep dir. 2

v−2 = 0 v̄17 = 1 v̄27 = 0
v−1 = 0 v̄16 = 0 v̄26 = 1
v0 = 1 v̄15 += 1 v̄25 += 0

v̄13 += −1 v̄23 += 0
v1 = e0 v̄14 += 0 v̄24 += 1
v2 = 0 + 1 v̄15 += 0 v̄25 += 1

v3 =
√

1 v̄1−1 += 1 · 1 v̄2−1 += 1 · 1
v4 = 1 · 1 v̄11 += 0 · 1 v̄21 += 1 · 1
v5 = sin(0) v̄12 += 0 · 1 v̄22 += 1 · 1
v6 = 1 + 0 v̄12 += −1/(2 · 1) v̄22 += 0/(2 · 1)
v7 = 0− 1 v̄1−1 += −1/2 v̄2−1 += 1

v̄10 += −1/2 v̄20 += 1
v̄1−2 += 0 · 1 v̄2−2 += 1 · 1
x̄13 = −1/2 x̄23 = 1

y1 = 1 x̄12 = 1/2 x̄22 = 2
y2 = −1 x̄11 = 0 x̄21 = 1

Table 2.7: Actual forward and reverse sweep for f of Example 2.8 using ndep = 2 adjoint directions for the compu-
tation of the Jacobian at point x = (0, 0, 1)T . We see that for each adjoint unit direction one row of the
Jacobian is computed.

the Jacobian J(x) at point x = (0, 0, 1)T row-wise by ndep = 2 adjoint directional derivatives. Like
for the forward mode it should be noted that the intermediate values of the function evaluation
and the partial derivatives of the ϕi only had to be computed once for the whole set of directions.

Example 2.9 (Gradient computation of Speelpennings's function)
Consider now Speelpenning's function from (2.1) that maps from Rn to R:

f(x1, . . . , xn) =
n∏
i=1

xi.

To compute the gradient of f at point x we need one adjoint directional derivative with adjoint
direction ȳ1 = 1. The �rst order reverse sweep with preceding zero order forward sweep then has
the form
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Forward sweep Reverse sweep

v1−n = x1 v̄n−1 = ȳ1
... v̄n−2 += v̄n−1v0

v0 = xn v̄0 += v̄n−1vn−2

v1 = v2−nv1−n v̄n−3 += v̄n−2v−1

v2 = v1v3−n v̄−1 += v̄n−2v−3
...

...
vn−1 = vn−2v0 v̄2−n += v̄1v1−n

v̄1−n += v̄1v2−n
x̄n = v̄0

...
y1 = vn−1 x̄1 = v̄1−n

We observe that for the zero order forward sweep, i.e., the function evaluation, n−1 multiplications
are needed, while the reverse sweep needs 2(n − 1) multiplications. This means the e�ort of a
gradient computation for Speelpenning's function using the reverse mode costs roughly 3 times a
function evaluation, which is below the theoretical bound stated above. Furthermore, we see that
this is true for any number of independent variables nindep = n. The independence of the cost of
a gradient computation with respect to the number of independent variables is an advantage that
is unique to the reverse mode, because for all other derivative generation approaches the e�ort of
a gradient computation grows at least linearly with nindep.

Summarizing, the reverse mode of AD is the only derivative generation approach that allows the
computation of �rst order adjoint directional derivatives, i.e., linear combinations of rows of the
Jacobian. This allows the computation of a Jacobian with ndep adjoint directional derivatives and
the computation of the gradient of a scalar function using only one adjoint direction. Furthermore,
the cost of the adjoint directional derivative can be bounded in terms of the function evaluation
itself and is independent of the number of independent variables, which makes it very e�cient
to compute gradient type derivative information and, e.g., Jacobians if ndep � nindep. Like the
forward mode, it is only subject to round-o� errors and hence computes derivatives within machine
precision. The drawback is that some of the intermediate quantities of the function evaluation
have to be stored on a tape which leads to a larger memory consumption. If for very complex
functions the tape does not �t into main memory any more, the reverse sweep might loose a lot of
e�ciency and checkpointing strategies might have to be considered. As in all approaches based on
AD, at least a program code describing the evaluation of the function must be available to apply
the reverse mode.
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2.4.3 Higher-order derivative generation

So far we have described how to obtain �rst order directional derivatives using the idea of automatic
di�erentiation. We now present two approaches for the e�cient computation of higher-order
derivatives based on Automatic Di�erentiation (AD). We �rst explain some shortcomings of
an intuitive extension of �rst order schemes and introduce afterwards the approach of Taylor
Coe�cient (TC) propagation that allows the development of e�cient arbitrary order schemes.

Repeated application of �rst order schemes

The �rst approach is based on the fact that the �rst order forward and reverse sweeps themselves
can be viewed as factorable functions. Hence, AD could be applied to di�erentiate them in order
to obtain schemes for higher-order derivatives. We explain this at the example of deriving a �rst
order reverse sweep once more using the forward and the reverse mode, respectively, to obtain
second order derivatives.

Example 2.10 (Second order derivatives by deriving reverse scheme)
Consider the general function f : Rnindep → Rndep . Applying the reverse mode once for the
point x and the adjoint direction ȳ leads to a scheme that can be interpreted as a function
f̄ : Rnindep × Rndep → Rndep × Rnindep , (x, ȳ) 7→ (y, x̄)

y = f(x) (2.16a)

x̄T = ȳT
∂f

∂x
(x). (2.16b)

To this function, again the forward or the reverse mode can be applied. An application of
the reverse mode for the point (x, ȳ) and the adjoint direction (ỹ, ˜̄x) leads to a function f :
Rnindep+ndep+ndep+nindep → Rndep+nindep+ndep+nindep , (x, ȳ, ỹ, ˜̄x) 7→ (y, x̄, ˜̄y, x̃) which calculates besides
(2.16) also

˜̄y =
∂f

∂x
(x)˜̄x (2.17a)

x̃T = ȳT
∂2f

∂x2
(x)˜̄x + ỹT

∂f

∂x
(x). (2.17b)

On the other hand, an application of the forward mode to f̄ for the point (x, ȳ) and the forward di-

rection (ẋ, ˙̄y) leads to a function ḟ : Rnindep+ndep+nindep+ndep → Rndep+nindep+ndep+nindep , (x, ȳ, ẋ, ˙̄y) 7→
(y, x̄, ẏ, ˙̄x) that computes besides (2.16) also

ẏ =
∂f

∂x
(x)ẋ (2.18a)

˙̄x
T

= ȳT
∂2f

∂x2
(x)ẋ + ˙̄y

T ∂f

∂x
(x). (2.18b)

From this example we learn two things that also hold for the other AD-based schemes for higher-
order derivatives presented later. First, we see that for the computation of the Hessian of a scalar
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function a complexity bound independent of nindep, like for the gradient computation using the

reverse mode, cannot be established. To compute a Hessian, in general at least nindep calls of f or

ḟ are needed. Second, we observe that if we identify ẋ ≡ ˜̄x and ˙̄y ≡ ỹ in (2.17) and (2.18) then we
obtain ˜̄y = ẏ and x̃ = ˙̄x. This means that the quantities obtained by a repeated application of the
reverse sweep can also be obtained by a combination of a forward and a reverse sweep. Repeating

the previous process for ḟ and so on shows that this is also true for derivatives of order greater
than 2. Note that every application of the reverse mode leads to another pair of a forward and
reverse sweeps. The length of these sweeps increases with each use, as the forward sweep in the
n-th order scheme consists of all computations made to obtain the results of the scheme with order
(n − 1). This �nally results in a complexity that is exponentially increasing with the derivative
order of the scheme. As a consequence, a repeated application of the reverse mode should be

avoided. While the derivation of an e�cient second order forward/reverse scheme for ḟ is still
relatively easy, the derivation and implementation of e�cient schemes for derivatives of arbitrary
order based on the �rst order sweeps is complex and error-prone, sometimes even for a speci�c,
explicitly given function. To overcome this di�culty we now discuss an alternative approach to
compute higher-order derivatives. This approach is based on the propagation of a truncated Taylor
series through the function that shall be di�erentiated and allows the development of schemes with
quadratic complexity in the derivative order.

Taylor coe�cient propagation

In this section we describe the approach of Taylor coe�cient (or also Taylor polynomial) propa-
gation that allows a compact formulation of e�cient schemes for the computation of derivative
tensors of arbitrary order, or speci�c parts of them. We explain here a variant that allows an
e�cient implementation due to very regular data access patterns. The �rst step on this way is the
forward propagation of an univariate Taylor polynomial through a function evaluation, as already
described, e.g., in [Moo66, Wan69, Ral81]. Based on this, higher-order (univariate) directional
derivatives can be obtained by simple scaling of the coe�cients of the propagated polynomials. As
an extension a reverse propagation scheme for the computation of higher-order adjoint derivatives
can be derived. To �nally obtain elements of higher-order derivative tensors in the multivariate
case, �rst a family of univariate Taylor polynomials is propagated through the evaluation of the
function. From the propagated quantities the elements of the derivative tensors can be obtained
by so-called exact interpolation, which we describe at the end of this section. Finally we present
practical examples of the actual application of the higher-order forward and reverse schemes to
facilitate a better understanding of the approach.

Univariate Taylor coe�cient propagation The �rst step is the computation of univariate
higher-order directional derivatives. Here we separate between pure forward and forward/adjoint
directional derivatives.

De�nition 2.11 (Higher-order directional derivatives)
Let f : Rnindep → Rndep be an at least k + 1 times continuously di�erentiable function. We then
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de�ne a univariate forward directional derivative of order k in a direction d ∈ Rnindep by

ḟ (k)(x,d) :=
∂kf

∂xk
(x)dk =

∂k

∂tk
f(x + td)

∣∣∣∣
t=0

∈ Rndep (2.19)

and a univariate forward/adjoint directional derivative of order k + 1 in (forward) direction d ∈
Rnindep and adjoint direction ȳ ∈ Rndep by

˙̄f (k)(ȳ,x,d) := ȳT
∂

∂x
ḟ (k)(x,d)(x)

= ȳT
∂k+1

∂xk+1
f(x)dk

=
∂k

∂tk
ȳT

∂

∂x
f(x + td)

∣∣∣∣
t=0

∈ Rnindep . (2.20)

Here the multiplications with dk are to be understood as k contractions with the direction d in
the domain space of the derivative tensor. In the forward case, where the degree of the derivative
tensor equals k, this leads to a vector in Rndep . In the forward/adjoint case, where the degree of
the derivative tensor is k + 1, the combination with one contraction with ȳ in the range space
leads to a vector in Rnindep .

We �rst address the issue of computing higher-order forward derivatives of type ḟ (k)(x,d) by
propagating a Taylor polynomial x(t) of degree k

x(t) = x0 + x1t+ x2t
2 + . . .+ xkt

k ∈ Rnindep (2.21)

forward through the function f , i.e., we want derive from x(t) and f a Taylor polynomial y(t) of
degree k ful�lling

y(t) = y0 + y1t+ y2t
2 + . . .+ ykt

k = f(x(t)) +O(tk+1) ∈ Rndep . (2.22)

Here the xi ∈ Rnindep ,yi ∈ Rndep are called Taylor coe�cients of degree i or also the i-th Taylor
coe�cients of x(t) and y(t). We will use the abbreviation TC synonymously also for the whole
set of Taylor coe�cients x0, . . . ,xk that describes a Taylor polynomial, and for which we use the
matrix-like notation X = [x0, . . . ,xk] ∈ Rnindep×(k+1). We use X and x(t) synonymously, depending
on the context. The Taylor coe�cient of degree i of component j of x(t) is then indexed by Xj,i.
We use the notation Y = f(X) for the propagation of TCs through f . The dependency of the TC
yi on the TC xj can be expressed in functional form as follows.

De�nition 2.12 (Taylor coe�cient function)
Assuming elemental di�erentiability of order k we de�ne the Taylor coe�cient functions fi :

Rnindep×(i+1) → Rndep , i ≤ k,
yi = fi(x0,x1, . . . ,xi) (2.23)

as the relation of the corresponding quantities in (2.21) and (2.22). We also write shorter yi =
fi(X) and hence allow formally more arguments to be present that might not be used in the
evaluation of fi. Note that due to the elemental di�erentiability of order k the Taylor coe�cient
function fi is at least k − i-times continuously di�erentiable.



40 2.4. AUTOMATIC DIFFERENTIATION

If we assume that we know how to evaluate the fi for an input X, i.e., how to propagate x(t) through
f and compute y(t), then we can compute the higher-order directional derivative ḟ (k)(x0,d) at a
point x0 ∈ Rnindep and in direction d ∈ Rnindep simply by a rescaling of the k-th Taylor coe�cient
yk of the propagated Taylor polynomial for the input x(t) = x0 + td.

Proposition 2.13 (Forward directional derivatives by univariate TC propagation)
Let f : Rnindep → Rndep be an at least k ≥ 1 times continuously di�erentiable function. Denote with
y(t) the propagated Taylor polynomial ful�lling (2.22) for the input polynomial x(t) of degree
k with Taylor coe�cients X, such that yi = fi(X) for 0 ≤ i ≤ k. Then the univariate forward
directional derivative of order k at a point x0 ∈ Rnindep and in direction d ∈ Rnindep is obtained by

ḟ (k)(x0,d) = k! yk = k! fk(X), (2.24)

where the TCs of the input polynomial are chosen as X = [x0,d,0, . . . ,0] ∈ Rnindep×(k+1).

Proof:

Using the input polynomial x(t) = x0 + td and di�erentiating (2.22) k-times with respect to t
leads to

k!yk =
∂kf

∂xk
(x0 + td) dk +O(t), (2.25)

where the multiplication with dk is again to be understood as tensor contractions. Setting t = 0
then gives the desired result and completes the proof.

2

TC forward propagation rules To compute the Taylor coe�cient functions fi and the propa-
gated coe�cients yi, respectively, we have to propagate Taylor coe�cients through the elemental
functions respectively the corresponding intermediate variables. Hence we have to de�ne Taylor
polynomials also for the intermediate variables v.

De�nition 2.14 (Taylor polynomials of intermediate variables)
For a given k-times continuously di�erentiable input x(t) : (−ε, ε)→ Rnindep , ε > 0, we denote the
corresponding intermediate variables by v(x(t)) : (−ε, ε)→ R and de�ne its Taylor polynomial as

v(t) = v0 + v1t+ v2t
2 + . . .+ vkt

k = v(x(t)) +O(tk). (2.26)

We denote the vector of Taylor coe�cients corresponding to an intermediate variable vi with
vi = [vi,0, . . . , vi,k] ∈ R1×(k+1).

With the previous de�nitions we can now describe rules for the propagation of Taylor coe�cients
through elemental functions. In the following we restrict ourselves to scalar functions working on
scalar arguments u and w. There are mainly two possibilities to obtain forward propagation rules
for Taylor coe�cients. For basic operations like addition, multiplication or division the rules can
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be derived by (truncated) polynomial arithmetic. Consider for example the Taylor polynomials
u(t) and w(t) of degree 2, then we obtain in polynomial arithmetic v(t) = u(t)w(t) as

v(t) = (u0 + u1t+ u2t
2)(w0 + w1t+ w2t

2)

= u0w0 + (u1 + w1)t+ (u0w2 + u1w1 + u2w0)t2 +O(t3). (2.27)

In truncated polynomial arithmetic the terms with order greater than 2 are dropped and hence the
Taylor coe�cients of v(t) can be expressed as v0 = u0w0, v1 = u1w0 +u0w1 and v2 = u0w2 +u1w1 +
u2w0. Note that the coe�cient v0 is the result of the corresponding �ordinary� multiplication
on real arguments. This is true for all elemental operations, i.e., if v(t) = ϕ(u(t), w(t)) then
v0 = ϕ(u0, w0). Also note that computations leading to the �rst order coe�cient v1 are equal to
the computations in the �rst order forward sweep presented earlier. Also this is true in general,
such that �rst order Taylor propagation is equivalent to a �rst order forward sweep.
To construct propagation rules for the univariate nonlinear elemental functions of interest, such
as exp, sin and cos, we can use the interpretation of the elemental function as solution of a linear
ODE. All elemental functions v = ϕ(u) satisfy an equation of the type

b(u)
∂ϕ(u)

∂u
− a(u)ϕ(u) = c(u), (2.28)

where the coe�cients a(u), b(u) and c(u) can be computed in terms of arithmetic operation and
univariate elemental functions for which the propagation rules are already known. This means
that the Taylor coe�cients ai, bi, ci of the elementals a(u), b(u) and c(u) can be computed from
the coe�cients ui of the input. Examples would be the exponential ϕ(u) = eu with coe�cients
a(u) = b(u) = 1 and c(u) = 0 or the power function ϕ(u) = ur for which a(u) = r, b(u) = u and
c(u) = 0 holds.
To obtain now the propagation rules, we di�erentiate v(x(t)) = ϕ(u(x(t))) for a given input x(t)
with respect to t and multiply with b

(
u(x(t))

)
. This leads to

b
(
u(x(t))

)dv(x(t))

dt
=
(
c
(
u(x(t))

)
+ a
(
u(x(t))

)
v(x(t))

)du(x(t))

dt
. (2.29)

If we assume ED up to order k then u(x(t)) and v(x(t)) are at least k-times continuously di�er-
entiable with the expansion for the derivative of u(x(t))

du(x(t))

dt
= u1 + 2tu2 + . . .+ kt(k−1)uk +O(tk) (2.30)

and analogously for v(x(t)). Substituting these into the equation above and comparing coe�cients
leads to the following proposition given in [Gri00].

Proposition 2.15 (Taylor polynomials of ODE solutions)
Under the condition that b0 ≡ b(u0) 6= 0 it holds that

vi =
1

ib0

(
i∑

j=1

(ci−j + ei−j)juj −
i−1∑
j=1

bi−jjvj

)
, for i = 1, . . . , k, (2.31)
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with

ei :=
i∑

j=0

ajvi−j, for j = 1, . . . , k − 1. (2.32)

The rules for the propagation of Taylor polynomials through the most common elemental functions
are shown in Table 2.8. Note that the operation count for the propagation of Taylor coe�cients of

Operation Propagation rule for i = 1, . . . , k
v = u+ cv, c ∈ R vi = ui + cwi
v = uw vi =

∑i
j=0 ujwi−j

v = u/w vi = 1
w0

(
ui −

∑i−1
j=0 vjwi−j

)
v =
√
u vi = 1

2v0

(
ui −

∑i−1
j=1 vjvi−j

)
v = log u vi = 1

iu0

(
iui −

∑i−1
j=1 ui−jjvj

)
v = eu vi = 1

i

∑i
j=1 vi−jjuj

v = ur vi = 1
iu0

(
r
∑i

j=1 vi−jjuj −
∑i−1

j=1 ui−jjvj

)
s = sin(u) si = 1

i

∑i
j=1 ci−jjuj

c = cos(u) ci = −1
i

∑i
j=1 si−jjuj

Table 2.8: Propagation of Taylor coe�cients through elemental functions. While the �rst four rules are easily
derived by truncated polynomial arithmetic similar to (2.27), the last four are obtained via their inter-
pretation as ODE solutions via Proposition 2.15.

degree k is in general O(k2). Only scalar multiplications and additions are signi�cantly cheaper
with a complexity of O(k). Based on the presented propagation rules for elemental functions
the forward propagation of TCs through an arbitrary factorable function f is simply done by
concatenation of the elemental propagations according to the elemental representation of f . We
call the forward propagation of a Taylor polynomial of degree k through f also a k-th order
forward sweep. Note further that with respect to addition and multiplication given in Table 2.8
the polynomials

Pk :=

{
v(t) =

k−1∑
j=0

vjt
j, vj ∈ R

}
(2.33)

form for every k > 0 a commutative ring which is in general not free of zero divisors. With the
modulus de�ned by

|v(t)| :=
k−1∑
j=0

|vj| ∈ R (2.34)

the triangle inequality as well as the relation |u(t)v(t)| ≤ |u(t)||v(t)| hold in Pk. Hence we can,
like for real numbers, perform arithmetic on Taylor polynomials. Vectors of Taylor polynomials
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out of Pk with n components form a free module over R which we denote with Pnk . On Pnk we
de�ne the Euclidean norm ∥∥∥∥∥∥∥

v
1(t)
...

vn(t)


∥∥∥∥∥∥∥ :=

√√√√ n∑
j=1

|vj(t)|2. (2.35)

Then it follows from multivariate calculus that any k−1-times continuously di�erentiable function
f : Rnindep → Rndep has a unique extension to a mapping Ek(f) : Pnindep

k → Pndep

k . This means for
k > 0 that there exists a linear extension operator

Ek : Ck−1(Rnindep ,Rndep)→ C0(Pnindep

k ,Pndep

k ). (2.36)

This more abstract framework for TC propagation will be helpful in the next section for the
derivation of reverse TC propagation schemes.

Reverse TC propagation schemes After discussing the propagation of TCs forward through
a function evaluation and the computation of univariate forward directional derivatives of type
(2.19) we now discuss how univariate forward/adjoint directional derivatives of type (2.20) can be
computed by reverse TC propagation. The straightforward idea to develop a reverse TC propa-
gation scheme is based on the application of the reverse mode of AD to the actual computations
arising in the forward TC propagation. In this way corresponding reverse propagation formulas
could be derived for all elemental functions, which could be used to obtain an adjoint derivative of a
k-th order forward sweep. By rescaling, analogously to Proposition 2.13, then the forward/adjoint
derivative could be obtained. However, instead of deriving and implementing reverse TC propa-
gation formulas for all elemental functions it is more economical to use the reverse mode not on
the instruction level of forward TC propagation, but on the level of Taylor arithmetic. To achieve
this transition, we have to show that di�erentiation and the application of the extension operator
Ek (2.36) commute, i.e., lead in the end to the same Taylor coe�cients for the Jacobian mapping
of the underlying function f . Based on the elemental representation of f we can then perform an
�ordinary� reverse sweep, which now simply has to be executed in Taylor arithmetic to propagate
(adjoint) Taylor polynomials reverse to the evaluation procedure. The �rst step to show commu-
tativity is the following relation between the partial Jacobians of the Taylor coe�cient functions
and the Taylor coe�cients of the Jacobian mapping of a function.

Proposition 2.16 (Jacobians of Taylor functions)
Let f : Rnindep → Rndep be k-times continuously di�erentiable in a neighborhood of a point x0 ∈
Rnindep . Then

∂yj

∂xi

=
∂fj
∂xi

≡ Aj−i(x0,x1, . . . ,xj−i), ∀0 ≤ i ≤ j < k, (2.37)

holds for the partial Jacobians of the Taylor coe�cient functions, where Ai is the i-th Taylor
coe�cient of the Jacobian mapping J of f at x(t), i.e.,

J(x(t)) =
k−1∑
i=0

Ait
i + o(tk−1). (2.38)
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Proof:

Provided t is su�ciently small, the value y(x(t)) = f(x(t)) is k-times continuously di�erentiable
with respect to t and xi. Hence di�erentiation with respect to t and xi commutes and therefore
we have for j < k:

∂yj

∂xi

=
1

j!

∂

∂xi

(
∂j

∂tj
y(x(t))

∣∣∣∣
t=0

)
=

1

j!

∂j

∂tj
∂

∂xi

y(x(t))

∣∣∣∣
t=0

=
1

j!

∂j

∂tj

(
J(x(t))ti

)∣∣∣∣
t=0

by chain-rule

=
i!

j!

(
j

i

)
∂j−i

∂tj−i
J(x(t))

∣∣∣∣
t=0

by Leibniz's rule

=
1

(j − i)!
∂j−i

∂tj−i
J(x(t))

∣∣∣∣
t=0

= Aj−i (2.39)

2

We also can express the derivative of the Taylor calculus using the Ai according to the following
proposition.

Proposition 2.17 (Derivative of Taylor calculus)
Let f : Rnindep → Rndep be k-times continuously di�erentiable in a neighborhood of a point x0 ∈
Rnindep and let ∆x(t) =

∑k−1
j=0 t

j∆xj ∈ P
nindep

k be any perturbation that is su�ciently small with
respect to the Euclidean norm (2.35). Then the polynomial

∆y(t) =
k−1∑
j=0

tj∆yj = f(x(t) + ∆x(t))− y(t) + o(tk−1) ∈ Pndep

k (2.40)

satis�es

∆yi −
i∑

j=0

Ai−j∆xj = o(‖∆x(t)‖), ∀0 ≤ i < k, (2.41)

respectively written as power series

∆y(t) = A(t)∆x(t) = o(‖∆x(t)‖), (2.42)

with

A(t) =
k−1∑
j=0

tjAj = J(x(t)) + o(tk−1) ∈ Pm×nk . (2.43)

Proof:

For each i holds that yi +∆yi is a continuously di�erentiable function of the ∆xj with xj �xed for
j = 0, . . . , i. From Proposition 2.16 we have that the Jacobians with respect to these real vectors
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are the Ak−j. Hence the result follows by ordinary multivariate calculus on real numbers.
2

As a consequence, we have shown that di�erentiation and the linear extension operator Ek com-
mute. This means if we assume f ∈ Ck(Rnindep ,Rndep) it does not matter if we �rst develop a
scheme in real arithmetic to compute the Jacobian mapping J of f and then apply Ek, i.e., replace
the operations in real arithmetic by operations in Taylor arithmetic or if we �rst use Ek to switch
from f ∈ Ck(Rnindep ,Rndep) to Ek(f) ∈ C1(Pnindep

k ,Pndep

k ) and then di�erentiate in module space.
This result can now be used to compute forward/adjoint directional derivatives of type (2.20) by
a reverse sweep in Taylor arithmetic.

Proposition 2.18 (Forward/adjoint directional derivatives by reverse TC propagation)
Let the function f : Rnindep → Rndep be at least k + 1 times continuously di�erentiable (k ≥ 1)
in the point x0 ∈ Rnindep . Let d ∈ Rnindep and ȳ ∈ Rndep be arbitrary forward and adjoint
directions, respectively. Furthermore, denote with x̄k ≡ f̄k(ȳ,x0,d) ∈ Rnindep the k-th Taylor
coe�cient of the adjoint Taylor polynomial ∇(Ek+1(ȳT f)) ∈ Pnindep

k+1 for the input x0 + td. Then
the univariate forward/adjoint directional derivative of order k + 1 at point x0 ∈ Rnindep and in
direction d ∈ Rnindep and adjoint direction ȳ ∈ Rndep is obtained by

˙̄f (k)(ȳ,x0,d) = k! x̄k ≡ k! f̄k(ȳ,x0,d). (2.44)

Here ∇ stands for the Jacobian operator in Pk.

Proof:

Consider for �xed ȳ the real valued function g(x) := ȳTx. Then g ∈ Ck+1(Rnindep ,R) and we have
for the adjoint Taylor polynomial with general Taylor coe�cients f̄j

∇(Ek+1(g))(x(t)) =
k∑
j=0

tj f̄j =
∂

∂x
g(x(t)) + o(tk) =

∂

∂x
(ȳT f)(x(t)) + o(tk), (2.45)

and hence for the input x(t) = x0 + td we obtain by di�erentiating k times and evaluating at
t = 0

k!̄fk(ȳ,x0,d) =
∂k

∂tk
∂

∂x
(ȳT f)(x0 + td)

∣∣∣∣
t=0

= ȳT
∂k+1

∂xk+1
f(x0)dk

= ˙̄f (k)(ȳ,x0,d). (2.46)

2

For the actual computation of the coe�cients f̄k(ȳ,x0,d) of the adjoint Taylor polynomial we
use the commutativity we have just shown: First we apply a �rst order reverse sweep to obtain
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a computational scheme for ȳT ∂f
∂x

in real arithmetic. Then we apply Ek+1 to get the Taylor
coe�cients of the adjoint Taylor polynomial. In the end this means that we execute the operations
of the �rst order reverse scheme in k-th order Taylor arithmetic, which we call a (k + 1)-th order
reverse sweep. This can be performed using the normal TC propagation rules for elemental
functions which we already know, i.e., there is no need to derive and implement special reverse
TC propagation rules. Analogously to the �rst order reverse sweep a (k+1)-th order reverse sweep
has to be preceded by a forward sweep of order k that computes the values of the intermediate
TCs that are needed for the reverse sweep. The complete forward/reverse scheme to compute one
forward/adjoint directional derivative is then given by the following steps:

� Initialize the forward TC propagation with input X =
[
x0 d 0 . . . 0

]
.

� Propagate the TCs forward through the evaluation of f by applying the TC propagation
rules to the operations of the elemental representation of f . Store the TCs needed for a
reverse sweep.

� Set the initial adjoint TCs for the reverse sweep according to the adjoint direction to Ȳ =[
ȳ 0 . . . 0

]
.

� Reverse propagate adjoint TCs by applying the TC propagation rules to the chain of oper-
ations resulting from a �rst order reverse sweep for f .

Note that the cost of this forward/reverse sweep can be bounded in terms of the function evaluation
of f . If we neglect the cost of accessing the tape with the stored intermediate TCs, the cost is
proportional to (k + 1)2 evaluations of the function f .

Multivariate higher-order derivatives Based on univariate Taylor propagation we have pre-
sented e�cient schemes for the computation of univariate forward and forward/adjoint directional
derivatives. Unfortunately not all entries of higher-order derivative tensors can be directly com-
puted this way. Consider for example the general function f(x, y, z) : R3 → R and let eni be the
i-th unit vector in Rn. Then, e.g., the tensor entry fxxx ≡ ∂3f

∂x3
can be computed as third order

univariate forward derivative in direction e3
1, and fyzz ≡ ∂3f

∂y∂z2
can be obtained as third order

forward/adjoint univariate directional derivative with adjoint direction 1 and forward direction
e3

3, but this is not the case for the mixed derivative fxyz ≡ ∂3f
∂x∂y∂z

. In the remainder of this section
we present strategies to compute also these entries of the derivative tensors. More general, we
consider now the task to compute for a function f : Rnindep → Rndep derivative tensors of arbi-
trary order, restricted to a subspace of dimension p ≥ 1 spanned by the columns of the matrix
S ∈ Rnindep×p. Given the parametrization x(z) = x(0) + Sz, with z ∈ Rp we can understand the
intermediate variables v and the dependent variables as functions of the reduced variables z and
denote their derivatives w.r.t. z at z = 0 with ∇Sv.
To directly compute all entries of a derivative tensor in the multivariate case one could use a
multivariate version of the chain rule and transfer most of the previous results for TC propagation
to this context. Note that also multivariate Taylor polynomials (with bounded total degree) form
algebras in which arithmetic can be performed. An example for this approach can be found, e.g.,
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in [Nei92]. For a complexity analysis of this approach we consider the multiplication u = vw. Its
propagation rules for the �rst two orders are then given by

∇Sv = u∇Sw + w∇Su (2.47)

and
∇2

Sv = u∇2
Sw +∇Su(∇Sw)T +∇Sw(∇Su)T + w∇2

Su. (2.48)

In general, the number of operations to perform this multivariate multiplication rule is given by(
2p+ k

k

)
≈ (2p)k

k!
, if k � p, (2.49)

where k is the derivative order. Like for univariate TC propagation, the cost for a division and
other nonlinear elementals are roughly the same as for the multiplication. The problem of this
direct approach is the storing and the manipulation of the tensor entries in memory. The k-th
order derivative tensor ∇k

Sv has p
k entries, of which only(
p+ k − 1

k

)
≈ pk

k!
, if k � p, (2.50)

are distinct. This means a lot of memory is wasted if symmetry is not exploited and also the
operation count is higher, as more elements have to be carried through the propagation process.
On the other hand, the use of a symmetric storage scheme leads to additional e�ort for the
computation of the memory locations of speci�c elements and to a more irregular data access.
This irregular data access pattern might lead to cache misses and a signi�cant loss of performance.
As until now this problem has not been solved in a satisfying manner, we now present another
approach that was developed by Bischof et al. [BCG93]. It tries to reconstruct the multivariate
Taylor polynomial corresponding to the tensor ∇k

Sv from the coe�cients of as few propagated
univariate Taylor polynomials as possible. The directions corresponding to this set of propagated
Taylor polynomials are called rays and the process of reconstruction is called exact interpolation.
As a motivating example let us again have a look at the computation of fxyz from above. First note
that fyz cannot be computed directly by an univariate forward directional derivative. However it
can be expressed as a linear combination of such directional derivatives, namely as

fyz =
1

2
(fdd − fyy − fzz), where d = (0, 1, 1)T . (2.51)

As a result fxyz can then be obtained by a linear combination of univariate forward/adjoint
directional derivatives. Fortunately such a linear interpolation scheme can be obtained not only
in this simple setup, but also for every tensor element of arbitrary order for an arbitrary vector
valued function. This has been shown for the case of forward TC propagation in the paper of
Griewank et al. [GUW00] and is formulated in the following proposition.

Proposition 2.19 (Exact interpolation of tensor elements using Taylor coe�cients)
Let the function f : Rnindep → Rndep be at least k-times di�erentiable at a point x ∈ Rnindep . Denote
with fi(x,d) the i-th Taylor coe�cient of f(x + td) at t = 0 for a direction d ∈ Rnindep . Then



48 2.4. AUTOMATIC DIFFERENTIATION

for any seed matrix of directions S = [d1, . . . ,dp] ∈ Rnindep×p and any multi-index m ∈ Np with
|m| ≤ k we have with z ∈ Rp that

∂|m|f(x + z1d1 + z2d2 + . . .+ zpdp)

∂zm1
1 ∂zm2

2 . . . ∂z
mp
p

∣∣∣∣
z=0

=
∑
|j|=k

γmjf|m|(x,Sj), (2.52)

where the coe�cients γmj are given by

γmj =
∑

0<l≤m

(−1)|m−l|
p∏
i=1

(
mi

li

)(
k(li/|l|)

ji

)(
|l|
k

)|m|
. (2.53)

The coe�cients γmj only depend on the derivative degree k and the number of directions p ≤ nindep

in the seed matrix and are therefore independent of the evaluation point x, the directions S and
the function f .

Proof:

For the long and detailed proof we refer to the paper of Griewank et al. [GUW00].
2

Note that the number of rays needed to reconstruct the complete derivative tensor ∇k
Sf by forward

TC propagation equals the number of distinct elements in the tensor. This is somehow intuitive,
as only one coe�cient per univariate direction carries information about ∇k

Sf . We also see that
as a by-product all entries of the derivative tensors with order smaller k can as well be computed
from the ray coe�cients. Concerning the complexity of this approach it can be shown that usually
the computation count for the propagation of the rays lies close to the cost for the multivariate
propagation while allowing a very regular data access pattern. The cost of the �nal interpolation
can usually be neglected. A drawback is the increase of required memory by a factor of roughly
pk/(p+k). If this should become a problem in practice, the propagation can be done sequentially
for several subsets of the needed rays. Also note that despite the name the exact interpolation may
be subject to cancellation errors for k ≥ 2 if the entries of the derivative tensor have very di�erent
scales. The case where cancellation might occur can simply be detected, but even if detected not
necessarily avoided. We describe now the practical application of this approach using the example
of Hessian tensor calculation using a second order forward TC sweep.

Example 2.20 (Hessian computation using forward TC sweep)
Consider the function f : R3 → R2 from Example 2.4 on page 27 de�ned as(

y1

y2

)
≡ f(x1, x2, x3) =

(
ex1(x2 + x3) + sin(x2)

sin(x2)−
√
x2 + x3

)
.

We now want to compute the complete second-order derivative tensor given by the Hessians of
the function components

H1 :=
∂2y1

∂x2
=

ex1(x2 + x3) ex1 ex1

ex1 − sin(x2) 0
ex1 0 0

 (2.54)
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and

H2 :=
∂2y2

∂x2
=

0 0 0
0 − sin(x2) + 1

4
(x2 + x3)−3/2 1

4
(x2 + x3)−3/2

0 1
4
(x2 + x3)−3/2 1

4
(x2 + x3)−3/2

 (2.55)

at the point p = (0, 0, 1)T using forward TC propagation. This means we use Taylor polynomials
of degree k = 2 and propagate a family of rays through the evaluation procedure of f given in
Example 2.4. To compute the needed rays we �rst de�ne the set of underlying directions as the
unit directions of the R3, i.e., we use the direction matrix S = I3. The multi-indices corresponding
to the distinct elements constituting the tensor are then given by

m1 =

2
0
0

 , m2 =

1
1
0

 , m3 =

0
2
0

 , m4 =

1
0
1

 , m5 =

0
1
1

 , m6 =

0
0
2

 .

(2.56)
In this special case, where exactly the elements of the tensor with degree k shall be computed, it
holds for the multi-indices ji with |ji| = k = 2 corresponding to the rays that ji = mi, 1 ≤ i ≤ 6.
The interpolation coe�cients γmj are computed from Equation (2.53) and are given by

Γ := (γmijl)
l=1,...,6
i=1,...,6 =


0.5 0 0 0 0 0
−0.25 1 −0.25 0 0 0

0 0 0.5 0 0 0
−0.25 0 0 1 0 −0.25

0 0 −0.25 0 1 −0.25
0 0 0 0 0 0.5

 . (2.57)

As there are no zero columns, all rays are needed for the computation of the requested derivatives.
The Taylor coe�cients of the rays to be propagated are given by Xi = [p,S ji, 0], i.e.,

X1 =

0 2 0
0 0 0
1 0 0

 , X2 =

0 1 0
0 1 0
1 0 0

 , X3 =

0 0 0
0 2 0
1 0 0

 ,
X4 =

0 1 0
0 0 0
1 1 0

 , X5 =

0 0 0
0 1 0
1 1 0

 , X6 =

0 0 0
0 0 0
1 2 0

 . (2.58)

The propagation of a Taylor polynomial of degree 2 with TCs X through the evaluation of f is
done in Taylor arithmetic by the following operations
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v−2,0 = X1,0 v−2,1 = X1,1 v−2,2 = X1,2

v−1,0 = X2,0 v−1,1 = X2,1 v−1,2 = X2,2

v0,0 = X3,0 v0,1 = X3,1 v0,2 = X3,2

v1,0 = ev−2,0 v1,1 = v1,0v−2,1 v1,2 = (v1,1v−2,1 + 2v1,0v−2,2)/2
v2,0 = v−1,0 + v0,0 v2,1 = v−1,1 + v0,1 v2,2 = v−1,2 + v0,2

v3,0 =
√
v2,0 v3,1 = v2,1/(2v3,0) v3,2 = (v2,2 − v3,1v3,1)/(2v3,0)

v4,0 = v1,0v2,0 v4,1 = v1,1v2,0 + v1,0v2,1 v4,2 = v1,2v2,0 + v1,1v2,1 + v1,0v2,2

v5,0 = sin(v−1,0) v5,1 = cos(v−1,0)v−1,1 v5,2 = cos(v−1,0)v−1,2 − v2
−1,1 sin(v−1,0)/2

v6,0 = v4,0 + v5,0 v6,1 = v4,1 + v5,1 v6,2 = v4,2 + v5,2

v7,0 = v5,0 − v3,0 v7,1 = v5,1 − v3,1 v7,2 = v5,2 − v3,2

Y1,0 = v6,0 Y1,1 = v6,1 Y1,2 = v6,2

Y2,0 = v7,0 Y2,1 = v7,1 Y2,2 = v7,2

Note that here the �rst two columns represent the same calculations we made in the computation
of the function value and the �rst derivative using the forward mode in Example 2.7.
By propagating the rays Xi we obtain the intermediate TCs

vj
i j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1
[
1 2 2

] [
1 1 1

2

] [
1 0 0

] [
1 1 1

2

] [
1 0 0

] [
1 0 0

]
i = 2

[
1 0 0

] [
1 1 0

] [
1 2 0

] [
1 1 0

] [
1 2 0

] [
1 2 0

]
i = 3

[
1 0 0

] [
1 1

2
−1

8

] [
1 1 −1

2

] [
1 1

2
−1

8

] [
1 1 −1

2

] [
1 1 −1

2

]
i = 4

[
1 2 2

] [
1 2 3

2

] [
1 2 0

] [
1 2 3

2

] [
1 2 0

] [
1 2 0

]
i = 5

[
0 0 0

] [
0 1 0

] [
0 2 0

] [
0 0 0

] [
0 1 0

] [
0 0 0

]
and �nally

Y1 =

[
1 2 2
−1 0 0

]
, Y2 =

[
1 3 3

2

−1 1
2

1
8

]
, Y3 =

[
1 4 0
−1 1 1

2

]
,

Y4 =

[
1 2 3

2

−1 −1
2

1
8

]
, Y5 =

[
1 3 0
−1 0 1

2

]
, Y6 =

[
1 2 0
−1 −1 1

2

]
. (2.59)

Now we can use the exact interpolation, described in Proposition 2.19 on page 47, to obtain the
entries of the derivative tensor:

(
H1

11

H2
11

)
= 0.5 y1

2 =

(
1
0

)
,

(
H1

22

H2
22

)
= 0.5 y3

2 =

(
0
1
4

)
,

(
H1

33

H2
33

)
= 0.5 y6

2 =

(
0
1
4

)
,

(
H1

12

H2
12

)
= −0.25 y1

2 + y2
2 − 0.25 y3

2 =

(
1
0

)
,

(
H1

13

H2
13

)
= −0.25 y1

2 + y4
2 − 0.25 y6

2 =

(
1
0

)
,
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(
H1

23

H2
23

)
= −0.25 y3

2 + y5
2 − 0.25 y6

2 =

(
0
1
4

)
. (2.60)

Hence we obtain the derivative tensor as

H1 =

1 1 1
1 0 0
1 0 0

 , H2 =

0 0 0
0 1

4
1
4

0 1
4

1
4

 . (2.61)

After this example of univariate forward TC propagation and exact interpolation we now present
how the idea of exact interpolation can also be used in connection with univariate forward/reverse
TC sweeps to obtain elements of higher-order derivative tensors. For this, we extend the results
of [GUW00] stated in Proposition 2.19 for the use of forward/adjoint directional derivatives.

Proposition 2.21 (Exact interpolation of higher-order adjoint derivatives)
Let the function f : Rnindep → Rndep be at least k + 1-times di�erentiable at a point x ∈ Rnindep .
Denote with f̄i(ȳ,x,d) the i-th Taylor coe�cient of the adjoint polynomial for input x + td at
t = 0 for a direction d ∈ Rnindep and an adjoint direction ȳ ∈ Rndep . Then for any adjoint direction
ȳ ∈ Rndep , any seed matrix of directions S = [d1, . . . ,dp] ∈ Rnindep×p and any multi-index m ∈ Np

with |m| ≤ k we have that with z ∈ Rp

ȳT
∂|m|+1f(x + z1d1 + z2d2 + . . .+ zpdp)

∂zm1
1 ∂zm2

2 . . . ∂z
mp
p

∣∣∣∣
z=0

=
∑
|j|=k

γmjf̄|m|(ȳ,x, Sj), (2.62)

where the coe�cients γmj are given by (2.53) in Proposition 2.19 on page 47.

Proof:

The proposition follows directly from Proposition 2.19. Because the coe�cients γmj do not depend
on the function f and the exact interpolation described in Proposition 2.19 is linear in the Taylor
coe�cients, adjoint di�erentiation and exact interpolation simply commute.

2

We see that the number of rays needed for the computation of a complete derivative tensor of
order k + 1 is smaller than in the pure forward case, namely equal to the number of distinct
elements of the derivative tensor with order k. Also the degree of the Taylor polynomials to
be propagated is only k. On the other hand we need to propagate a total of ndep sets of these
rays backwards. Hence like in the case of �rst order sweep it depends on the number of rays
and the size of ndep whether the application of reverse TC propagation will be more e�cient for
the computation of the whole tensor than a pure forward TC propagation. In the optimization
context the forward/reverse TC propagation scheme is usually the method of choice, because here
we usually need higher-order adjoint derivatives involving one adjoint direction only, namely the
gradient of the Lagrangian w.r.t. the output values of f . In the �nal example of this section
we now present the practical application of the exact interpolation using the forward/reverse TC
propagation for the computation of the Hessian tensor of our well-known example function.
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Example 2.22 (Hessian computation using forward/reverse TC sweep)
Consider the function f : R3 → R2 from Example 2.4 on page 27 de�ned as(

y1

y2

)
≡ f(x1, x2, x3) =

(
ex1(x2 + x3) + sin(x2)

sin(x2)−
√
x2 + x3

)
.

We again want to compute the complete second-order derivative tensor given by the Hessians of
the function components

H1 :=
∂2y1

∂x2
=

ex1(x2 + x3) ex1 ex1

ex1 − sin(x2) 0
ex1 0 0

 (2.63)

and

H2 :=
∂2y2

∂x2
=

0 0 0
0 − sin(x2) + 1

4
(x2 + x3)−3/2 1

4
(x2 + x3)−3/2

0 1
4
(x2 + x3)−3/2 1

4
(x2 + x3)−3/2

 (2.64)

at the point p = (0, 0, 1)T using forward/reverse TC propagation. This is done by propagating
a family of rays of degree k = 1 forward through the evaluation of f given in Example 2.4.
Afterwards we do reverse TC propagation along this set of rays for a number of adjoint directions.
To compute the needed rays we �rst de�ne the set of underlying directions as the unit directions
of the R3, i.e., we use the direction matrix S = I3. The multi-indices for the forward propagation,
here corresponding to the unit directions, are then given by

m1 =

1
0
0

 , m2 =

0
1
0

 , m3 =

0
0
1

 . (2.65)

In this case, these are also the multi-indices of the rays for degree k = 1, i.e., ji = mi, 1 ≤ i ≤ 3.
The interpolation coe�cients γmj are computed from (2.53) and are simply given by

Γ := (γmijl)
l=1,...,3
i=1,...,3 =

1 0 0
0 1 0
0 0 1

 . (2.66)

As there are no zero columns, all rays are needed for the computation of the requested derivatives.
The Taylor coe�cients of the rays to be propagated are given by Xi = [p,S ji], i.e.,

X1 =

0 1
0 0
1 0

 , X2 =

0 0
0 1
1 0

 , X3 =

0 0
0 0
1 1

 . (2.67)

The propagation of a Taylor polynomial of degree 1 with TCs X through the evaluation of f is
done in Taylor arithmetic by the following operations:
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v−2,0 = X1,0 v−2,1 = X1,1

v−1,0 = X2,0 v−1,1 = X2,1

v0,0 = X3,0 v0,1 = X3,1

v1,0 = ev−2,0 v1,1 = v1,0v−2,1

v2,0 = v−1,0 + v0,0 v2,1 = v−1,1 + v0,1

v3,0 =
√
v2,0 v3,1 = v2,1/(2v3,0)

v4,0 = v1,0v2,0 v4,1 = v1,1v2,0 + v1,0v2,1

v5,0 = sin(v−1,0) v5,1 = cos(v−1,0)v−1,1

v6,0 = v4,0 + v5,0 v6,1 = v4,1 + v5,1

v7,0 = v5,0 − v3,0 v7,1 = v5,1 − v3,1

Y1,0 = v6,0 Y1,1 = v6,1

Y2,0 = v7,0 Y2,1 = v7,1

By propagation of the rays Xi we obtain

v1
1 =

[
1 1

]
, v2

1 =
[
1 0

]
, v3

1 =
[
1 0

]
, (2.68a)

v1
2 =

[
1 0

]
, v2

2 =
[
1 1

]
, v3

2 =
[
1 1

]
, (2.68b)

v1
3 =

[
1 0

]
, v2

3 =
[
1 1

2

]
, v3

3 =
[
1 1

2

]
, (2.68c)

v1
4 =

[
1 1

]
, v2

4 =
[
1 1

]
, v3

4 =
[
1 1

]
, (2.68d)

v1
5 =

[
0 0

]
, v2

5 =
[
0 1

]
, v3

5 =
[
0 0

]
, (2.68e)

Y1 =

[
1 1
−1 0

]
, Y2 =

[
1 2
−1 1

2

]
, Y3 =

[
1 1
−1 −1

2

]
. (2.68f)

In the reverse sweep, we propagate backwards one adjoint TC for each ray and for each adjoint
direction. As ndep = 2 we need the two adjoint directions

ȳ1 =

(
1
0

)
, ȳ2 =

(
0
1

)
, (2.69)

to compute the complete derivative tensor. This results in the following 6 adjoint TCs Ȳi,j to
propagate, where i denotes the corresponding ray and j the corresponding adjoint direction:

Ȳ1,1 = Ȳ2,1 = Ȳ3,1 =

[
1 0
0 0

]
, Ȳ1,2 = Ȳ2,2 = Ȳ3,2 =

[
0 0
1 0

]
. (2.70)

As explained earlier, the reverse TC sweep is performed for each adjoint TC like the regular �rst
order reverse sweep, given in Example 2.8 on page 34, only that now the operations are performed
in Taylor arithmetic. This leads for each adjoint TC Ȳ to the following operations (already
accumulated for every variable):
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v̄5,0 = Ȳ2,0 + Ȳ1,0 v̄5,1 = Ȳ2,1 + Ȳ1,1

v̄4,0 = Ȳ1,0 v̄4,1 = Ȳ1,1

v̄3,0 = −Ȳ2,0 v̄3,1 = −Ȳ2,1

v̄2,0 = v̄4,0v1,0 v̄2,1 = v̄4,0v1,1 + v̄4,1v1,0

+ v̄3,0/(2v3,0) + (v̄3,1 − (v̄3,0/v3,0)v3,1)/(2v3,0)
v̄1,0 = v̄4,0v2,0 v̄1,1 = v̄4,0v2,1 + v̄4,1v2,0

X̄3,0 = v̄2,0 X̄3,1 = v̄2,1

X̄2,0 = v̄5,0 cos(v−1,0) X̄2,1 = −v̄5,0 sin(v−1,1v−1,1) + v̄5,1 cos(v−1,0)
+ v̄2,0 + v̄2,1

X̄1,0 = v̄1,0v1,0 X̄1,1 = v̄1,0v1,1 + v̄1,1v1,0

Hence we obtain for the propagation of the Ȳ i,j the intermediate adjoint TCs

v̄j,k
i (j, k) = (1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2)

i = 5
[
1 0

] [
1 1

] [
1 1

] [
0 0

] [
0 0

] [
0 0

]
i = 4

[
1 1

] [
1 0

] [
1 0

] [
−1

2
0
] [
−1

2
1
4

] [
−1

2
1
4

]
i = 3

[
0 0

] [
0 0

] [
0 0

] [
−1 0

] [
−1 0

] [
−1 0

]
i = 2

[
1 0

] [
1 0

] [
1 0

] [
0 0

] [
0 0

] [
0 0

]
i = 1

[
1 0

] [
1 0

] [
1 0

] [
1 0

] [
1 0

] [
1 0

]
and the propagated adjoint TCs corresponding to the propagated adjoint Taylor polynomials

X̄1,1 =

1 1
2 1
1 1

 , X̄2,1 =

1 1
2 0
1 0

 , X̄3,1 =

1 1
2 0
1 0

 , (2.71)

X̄1,2 =

 0 0
1
2

0
−1

2
0

 , X̄2,2 =

 0 0
1
2

1
4

−1
2

1
4

 , X̄3,2 =

 0 0
1
2

1
4

−1
2

1
4

 . (2.72)

Finally, we use the adjoint version of exact interpolation described in Proposition 2.21 on page 51
to obtain the entries of the derivative tensor:

H1
11

H1
21

H1
31

 = x̄1,1
1 =

1
1
1

 ,

H1
12

H1
22

H1
32

 = x̄2,1
1 =

1
0
0

 ,

H1
13

H1
23

H1
33

 = x̄3,1
1 =

1
0
0

 ,

H2
11

H2
21

H2
31

 = x̄1,2
1 =

0
0
0

 ,

H2
12

H2
22

H2
32

 = x̄2,2
1 =

0
1
4
1
4

 ,

H2
13

H2
23

H2
33

 = x̄3,2
1 =

0
1
4
1
4

 . (2.73)
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Hence we obtain the derivative tensor as

H1 =

1 1 1
1 0 0
1 0 0

 , H2 =

0 0 0
0 1

4
1
4

0 1
4

1
4

 . (2.74)

Note that in the Hessian case the exact adjoint interpolation is always trivial and hence not subject
to cancellation errors.
Summarized, we have seen in this section how the approach of univariate Taylor coe�cient propa-
gation is used to obtain e�cient forward and reverse schemes for the computation of higher-order
directional derivatives of arbitrary order. With the help of exact interpolation univariate TC
propagation can also be used to generate all elements of a derivative tensor of arbitrary order by
the propagation of a family of rays of the corresponding order. This can be done quite e�cient
due to very regular data access pattern. We rely on the approach of univariate Taylor coe�-
cient propagation later in this thesis for the e�cient computation of a reduced Hessian matrix
in our lifted optimization algorithm as well as, in connection with the idea of Internal Numerical
Di�erentiation (IND), for the computation of derivatives of arbitrary order of the solutions of
IVPs for ODEs and DAEs in our numerical integration schemes.

2.4.4 AD implementations

In the previous part of the section we have derived various strategies for derivative generation
based on the idea of automatic di�erentiation. While the derivation of the actual schemes and
their evaluation can be done for a speci�c function by hand, as done in the presented examples, the
real power of AD lies in the automatic derivation of the speci�c derivative generation scheme for
a given function from its evaluation procedure by an AD software tool. Otherwise, the error-free
derivation of a derivative generation scheme for a function de�ned by possibly several thousand
lines of source code would be nearly impossible. Also for every new function there would be
the need for a lot of additional manual work. This would be not desirable, if at all feasible, if
an AD approach should be used as part of a multiple purpose simulation or optimization code.
Fortunately, all the presented schemes can be derived e�ciently from the function de�nition in an
automatic way. A good overview on available AD tools, as well as on publications related to AD,
can be found on the �AutoDi�� homepage [Bis]. AD software can be separated mainly into two
large groups, depending on the approach it is based on. In any case, for most of the tools some
modi�cations of the original function evaluation code are needed, e.g., to specify independent and
dependent variables.
The �rst group of AD software is based on source code transformation. Here from the given source
for the evaluation of the function that is to be di�erentiated, the AD tool generates as a kind of
precompiler a source code for the computation of the derivative of the function by using one of
the presented AD schemes. This source code for the derivative can then be compiled and linked
to the program or library where it should be used. A big advantage of this approach is that, since
the generation of the derivative code is not done at run-time and usually only once for a function,
a deep analysis of the function evaluation procedure and a very sophisticated approach for the
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generation of the derivative scheme can usually be applied. Furthermore, the instructions of the
resulting derivative code are known and can be analyzed and optimized by the compiler, leading to
a very e�cient derivative evaluation. Note that this compiler based optimization would be most
e�cient when also the order of the derivatives to be generated, the number of directions, etc.,
would already be known at compile time, which unfortunately is usually not the case. Also a new
compilation process is needed whenever the de�nition of the underlying function changes or a new
function is de�ned. This makes a fully automatic handling inside of a multiple purpose code more
di�cult, as, e.g., user speci�ed functions are normally not known at the time of the compilation of
the core code. There sometimes also exist technical problems, e.g., when the source code for the
function evaluation is scattered over more than one source �le. Nowadays, there exist many AD
tools based on source code transformation for computer languages like Fortran (e.g., ADIFOR
[BCKM96], OpenAD [HNN02], TAPENADE [HP04]), C/C++ (ADIC [BRM97], RAPSODIA
[CU09]) or MATLAB (ADiMat [BBL+02], tomsym [Inc]). While nearly all of them support at
least �rst order forward/reverse schemes, Jacobian and maybe even Hessian generation, only very
few of them support forward TC propagation for a prede�ned order and until now none of them
supports forward/reverse TC propagation schemes of arbitrary order. Considering the supported
languages, it should be noted that the target language does not have to be the same as the source
language. There exist several specialized tools, that generate for a special function class from its
problem speci�c description language expressions for function and derivative evaluation in another
language like Fortran, C, or C++. Examples are the code of Rücker [Rüc99] that generates from
a description of a chemical reaction system Fortran or C source code for the model equations
and their �rst (forward) derivatives, or the ADOPT package by Schmidt [Sch08]. ADOPT uses
the SBML [HFH+07] description of a process in system biology to generate C++ function and
derivative code that supports forward/reverse TC propagation and that is optimized for the use
as model description in the SolvIND integrator suite.

The second group of AD tools is based on operator overloading. This means the de�nitions of
the elemental functions in a computer language that allows operator overloading, like C++, are
rede�ned, usually for a new data type speci�c to the AD tool. For example, they could be changed
to the corresponding operations in Taylor arithmetic to perform a forward TC sweep. If used in
this sense, operator overloading is in the end quite similar to a source code transformation, only
that the transformation is done in this case directly by the compiler itself. However, often the
elemental functions are adapted to record the operations performed during a function evaluation
onto an operation tape. This can later be used as basis for the subsequent execution of forward
and reverse derivative generation schemes at di�erent evaluation points and for di�erent derivative
directions and derivative orders. Other than in the case of source code transformation, this means
that e�ectively the derivative generation scheme is constructed at run-time of the calling program.
This makes the tools based on operator overloading in general a lot more �exible and more suited
for the use in multiple-purpose codes, where the number of derivative directions, as well as type and
order of derivatives, might not be known at compile-time. In exchange, the derivative evaluation
they provide is usually slower than for code obtained from source code transformation, as it cannot
be optimized by a compiler for the actual system architecture. Furthermore, additional memory is
needed to store the tape of operations. Like for the approach of source code transformation there
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exists a variety of AD tools based on operator overloading for di�erent languages like MATLAB,
newer Fortran versions or C++. Examples are here ADMAT [CV98], COSY INFINITY [Ber02],
TaylUR [vH06], FADBAD++/FADBAD-TADIFF [BS96], CppAD [Bel] and ADOL-C [GJU96].
All of the tools support one kind of �rst order derivative generation, some also higher-order
forward derivative schemes, but so far ADOL-C and CppAD seem to remain the only ones to
support forward/reverse TC propagation for higher-order derivative generation.
Note that not all AD tools can be clearly put into one of the two categories, as for example they
might generate derivative code that contains overloaded operations for speci�c AD data types.
Alternatively, they might use operator overloading to record the operations occurring during a
function evaluation to build up a representation of the function evaluation and generate afterwards,
based on this representation, source code for the evaluation of the derivatives. The partition of
the tools presented here is mainly based on whether the construction of the derivative generation
scheme is done at compile-time or at run-time.

2.5 Generation of sparse derivatives

While most strategies and algorithms presented in this thesis strive to avoid the forming of com-
plete Jacobians or full higher-order derivative tensors and aim to minimize the number of di-
rectional derivatives, sometimes the building of a full Jacobian matrix cannot be avoided. This
is for example the case in the presented schemes for numerical integration of ODEs and DAEs.
However, if the computation of a full Jacobian or derivative tensor cannot be avoided, its speci�c
structure should be exploited if possible. This is especially true for high-dimensional functions,
where otherwise the memory consumption and also the operation count for operations involving
these tensors becomes prohibitively large. Hence we give in this section a short overview on strate-
gies for the generation of sparse Jacobian and Hessian matrices, i.e., matrices where the number
elements that might be nonzero is signi�cantly smaller than the total number of matrix elements.
The �rst group of strategies is based on AD ideas and relies on the availability of an elemental
representation of the function or the computational graph of the function, respectively. In this
case, sparse storage versions of the presented �rst order forward and reverse mode can be obtained
quite easily [BKBC96]. However, their implementation may su�er a lack of e�ciency when the
internal dependencies of the function evaluations are not known at compile time. Similarly, also
second-order schemes using sparse storage can be derived. More interesting AD-based approaches
are working on the computational graph of the function. They also use the chain rule, but
make use of the freedom that it does not have to be applied in a strictly sequential manner to
accumulate derivative information, like it is done in the forward and in the reverse mode. Instead,
it can also be used to eliminate vertices or edges from the computational graph in arbitrary order,
until a bipartite graph only containing dependent and independent variables remains. From this
graph the Jacobian and also its sparsity pattern can be immediately obtained. Furthermore, it
should be noted that in this approach the sparsity structure is automatically exploited. The
problem of �nding the accumulation scheme for a Jacobian with the minimum number of �oating
point operations is in general NP-complete [Nau08]. However, there exist a number of heuristic
accumulation strategies, see, e.g., [GR91, Nau99, Nau02, Gri00] and references therein. These
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are usually much more e�cient than a Jacobian computation by a (sparse) forward or a (sparse)
reverse mode. Heuristics have also been proposed for the accumulation of Hessians [GR05].
Another group of strategies for sparse Jacobian computation is based on compression. They are
not relying on the availability of an elemental representation of the function, but only on the
possibility to evaluate the function in a black-box manner and on the knowledge of the sparsity
pattern of the Jacobian. Compression based approaches use the sparsity pattern of the Jacobian
J ∈ Rndep×nindep for the construction of so-called seed matrices S ∈ Rnindep×p and/or T ∈ Rndep×q

that allow the reconstruction of all Jacobian entries from the computation of �rst order directional
derivatives. The use of directional forward derivatives of the form

B = J · S (2.75)

is called row compression, whereas the use of adjoint directional derivatives

CT = TT · J, (2.76)

is called column compression. In both cases the strategies aim to minimize the number of needed
directional derivatives, i.e., the number of columns p and q, respectively, of the seed matrices. The
matrices B and C are called compressed Jacobians. The evaluation of the directional derivatives
can be done with any suitable strategy presented above, depending on the accuracy requirements.
Let Xi be the set of column numbers containing nonzero elements in the i-th row of J and let
bi ∈ Rp the i-th row of B and ji ∈ Rpi , pi := |Xi|, the vector of the nonzero elements in the
i-th row, ordered by their size. If we furthermore de�ne Si := ((e

nindep

j )TS)j∈Xi ∈ Rpi×p as the
�projection� of S onto the nonzero columns in the i-th row of J we see that for a given choice of
S the row of the compressed Jacobian bi is determined by

Si
T ji = bi. (2.77)

This means on the other hand that the row ji of the uncompressed Jacobian can only be determined
uniquely from bi, if p ≥ pi. An immediate consequence for the complexity of the row compression
is that for the number of directional derivatives needed it holds p ≥ max1≤i≤ndep

pi. Analogously,
the bound q ≥ max1≤i≤nindep

Yi for the column compression can be derived, where Yi is the number
of nonzero elements in the i-th column of J.
For the construction of S there exist di�erent approaches, where the mostly used ones were pro-
posed by Curtis, Powell and Reid (CPR) [CPR74] and by Newsam and Ramsdell (NR) [NR83].
CPR seeding constructs seed matrices S ∈ {0, 1}nindep×p for which the Si are permutations of
[Ipi 0] ∈ Rpi×p. Because �nding such a seed matrix with minimal p is equivalent to the graph col-
oring problem and hence NP-hard [CM84], CPR uses heuristic strategies, which usually work �ne,
but may also lead to a p much larger than needed theoretically. An advantage of CPR seeding is
that once a suitable S is found, the entries of the uncompressed Jacobian can be obtained directly
from the compressed one without further algorithmic operations. NR seeding on the other hand
uses Vandermonde matrices for the S, where p is chosen at its lower bound. The drawback is that
linear systems have to be solved to reconstruct the uncompressed Jacobian from the compressed
one. The choice of the Vandermonde matrices was inspired by complexity considerations, as linear
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systems involving these matrices can be solved quite e�ciently [GvL96], especially compared to the
e�ort for the derivative computation. On the other hand these systems might be ill-conditioned
such that modi�cations for stability improvement have been proposed, e.g., the use of orthogonal
polynomials or coloring based approaches [GUG96]. Note that both the CPR and the NR seeding
can also be adapted for the use in column compression. Furthermore also a combination of row
and column compression has been proposed [CV96], leading to a signi�cantly reduced number
of needed derivatives for special matrix types. Concerning Hessian computation there also exist
compression techniques based on two-sided compression of the Hessian tensor that also exploit its
symmetry, as, e.g., presented in [CC86].
Summarizing, it can be said that also for the exploitation of sparsity in Jacobian and Hessian
computation there exists no optimal approach for all cases. Instead, it depends much on the
speci�c problem which approach performs best. The choice of the most suitable approach is
also strongly in�uenced by the availability of an elemental representation of the function to be
di�erentiated and by the question whether the computational graph or the sparsity patterns is
known already at compile-time or only at run-time.





3 Nonlinear Programming

In this chapter the problem class of (smooth) Nonlinear Programs (NLPs) and their basic prop-
erties are presented. We give a short overview over the local optimality conditions of these type
of problems as well as their numerical solution using Newton-type methods. Finally, the topic of
globalization is addressed shortly. In this chapter we consider only the general NLP formulation,
e.g., we neglect any internal structure that the problems might have. The topics discussed in
this chapter are the foundation for the lifted Newton-type methods presented in Chapter 4 and
Chapter 7.

3.1 Notation and de�nitions

In this section we give the basic problem formulation and the de�nitions needed in the discussions
that follow. The de�nitions and the (omitted) proofs of the presented theorems can be found in
many textbooks on optimization, e.g., in the book of Nocedal and Wright [NW99] or the book of
Fiacco and McCormick [FM90].

We start by de�ning the fundamental problem class.

De�nition 3.1 (Nonlinear Program (NLP))
Let c ∈ C1(Rnu ,R), g ∈ C1(Rnu ,Rneq) and h ∈ C1(Rnu ,Rnineq) be nonlinear functions. The general
NLP is then given by

min
u∈Rnu

c(u) (3.1a)

subject to

g(u) = 0 (3.1b)

h(u) ≥ 0. (3.1c)

Here c represents a cost function, and g and h represent equality and inequality constraints,
respectively. The inequality in (3.1c) is to be understood component-wise. We denote the scalar-
valued component functions of g and h with gi(u), 1 ≤ i ≤ neq and hi(u), 1 ≤ i ≤ nineq.

We also state here two important subclasses of NLPs. The nonlinear least-squares program occurs
often in practice, e.g., in the treatment of parameter estimation problems or tracking problems.

61
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De�nition 3.2 (Nonlinear least-squares program)
Let r ∈ C1(Rnu ,Rnres), g ∈ C1(Rnu ,Rneq) and h ∈ C1(Rnu ,Rnineq) be nonlinear functions. The
nonlinear least-squares problem is then given by

min
u∈Rnu

1

2
‖r(u)‖2

2 (3.2a)

subject to

g(u) = 0 (3.2b)

h(u) ≥ 0. (3.2c)

Here we call r the residual function and g and h represent, as before, equality and inequality
constraints.

The Quadratic Program (QP) also often occurs in practice, and it is the common subproblem class
to be solved in each iteration of the Newton-type methods presented in this and later chapters.

De�nition 3.3 (Quadratic Program (QP))
A Quadratic Program (QP) is an optimization problem with a quadratic cost function and linear
constraints, e.g., of the form

min
u∈Rnu

1

2
uTAu + aTu (3.3a)

subject to

g + Gu = 0 (3.3b)

h + Hu ≥ 0. (3.3c)

where a ∈ Rnu , g ∈ Rneq , h ∈ Rnineq are given vectors and A ∈ Rnu×nu , G ∈ Rneq×nu , H ∈ Rnineq×nu

given matrices.

After presenting the fundamental problem classes we de�ne the notation of points ful�lling the
constraints of the NLP.

De�nition 3.4 (Feasibility)
A point ũ ∈ Rnu is feasible with respect to the (equality) constraint gi(u) = 0, i� gi(ũ) = 0. Then
we say that the constraint gi is satis�ed at ũ. If this is not the case, we call ũ infeasible and say
that the constraint gi is violated at ũ.
A point ũ ∈ Rnu is feasible with respect to the (inequality) constraint hi(u) ≥ 0, i� hi(ũ) ≥ 0.
Then we say that the constraint hi is satis�ed at ũ. If this is not the case, we call ũ infeasible
and say that the constraint hi is violated at ũ.
We call ũ a feasible point (of the NLP (3.1)), i� it is feasible with respect to all constraints. We
denote the set of all feasible points with F .

The following de�nition characterizes a solution (or minimum) of the NLP.
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De�nition 3.5 (Local and global minimum)
Let u∗ ∈ Rnu be a feasible point.

u∗ is a local minimum of the NLP (3.1), i� there exists an ε > 0, such that

c(u∗) ≤ c(u) ∀u ∈ F ∩ Uε(u∗). (3.4)

We call u∗ a strict local minimum, i� there exists an ε > 0, such that

c(u∗) < c(u) ∀u ∈ F ∩ Uε(u∗),u 6= u∗. (3.5)

u∗ is a global minimum, i�

c(u∗) ≤ c(u) ∀u ∈ F . (3.6)

A strict global minimum is de�ned analogously. A local (or global) minimum, that is not strict,
is also called a weak local (or global) minimum.

Based on this de�nition, the next important question is how to test, whether a given feasible point
u is a local (or global) minimum. For the nonlinear problems occurring in practice, it is usually
impossible to obtain a closed representation of the set of feasible points in the neighborhood of u
and to test its optimality using the criteria of De�nition 3.5.
Note that in general �nding a global minimum of the NLP is a signi�cantly di�erent and usually
also more di�cult task compared to �nding a local minimum. Only for some special cases, e.g.,
convex problems, it can be shown that a local minimum is also a global minimum. In the following
we restrict ourselves to algorithms that �nd local minima of the NLP only. For an overview on
possible approaches to �nd global minima, refer ,e.g., to the review article [FAC+05].
As a result, we need tools to systematically describe and characterize the set of feasible points in
the direct neighborhood of a feasible point u.

De�nition 3.6 (Feasible path and feasible direction)
Let u ∈ Rnu be a feasible point and ε > 0.
A feasible path for the point u is a mapping ψ ∈ C1([0, ε),F) with

ψ(0) = u and ψ(s) 6= u ∀s ∈ (0, ε).

The tangent to the feasible path in the point u is called a feasible direction.

Loosely speaking, a feasible path is a way starting in u and remaining in the feasible set. Gener-
ally, a feasible path has to be nonlinear to achieve this. A feasible direction describes a direction
in which we could go from u at least an in�nitesimal small step while remaining feasible.

We now divide the constraints into two separate classes to study how each of them in�uences the
set of feasible directions.
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De�nition 3.7 (Active set and active constraints)
Let ũ ∈ Rnu be a feasible point.

An inequality constraint hi is called active in ũ, i� hi(ũ) = 0. If hi(ũ) > 0 it is called inactive in
ũ. The active set of the inequality constraints h in a point (ũ) is de�ned as

I(ũ) := {i ∈ {1, . . . , nineq}|hi(ũ) = 0} , (3.7)

i.e., as the set of indices of the active inequality constraints hi in that point.

We de�ne the combination of equality constraints and active inequality constraints as active
constraints

g̃(u) :=

(
(g(u))1≤i≤neq

(h(u))i∈I(u)

)
∈ Rneq+|I(u)| (3.8)

Based on these de�nitions we observe the following: An active inequality constraint allows (in-
�nitesimal) movements into directions where the constraint remains active, and also into directions
where it becomes inactive. An inactive inequality constraint on the other side does allow in�nites-
imal movements in all directions, hence it does not restrict the set of possible feasible directions.
An equality constraint �nally allows only movements into directions where one remains on the
manifold de�ned by the constraint. We can formalize this by the following Lemma.

Lemma 3.8
Let u ∈ Rnu be a feasible point for the NLP (3.1) and ψ ∈ C1([0, ε),F) a feasible path for u.

Then the corresponding feasible direction d = ∂ψ(s)
∂s

∣∣∣
s=0

ful�lls

∇ugi(u)Td = 0, 1 ≤ i ≤ neq, (3.9a)

∇uhi(u)Td ≥ 0, i ∈ I(u). (3.9b)

Proof:

This follows directly from the feasibility conditions for the path, i.e., g(ψ(s)) = 0 ∀s ∈ [0, ε) and
h(ψ(s)) ≥ 0 ∀s ∈ [0, ε).

2

Hence the equations (3.9) are necessary conditions for every feasible direction. But in general they
are not su�cient, i.e., not every vector ful�lling (3.9) is a feasible direction. Only in case of linear
constraint functions g and h the conditions (3.9) completely characterize the set of feasible direc-
tions. For nonlinear constraints, one usually imposes additional conditions, so-called constraint
quali�cations, to avoid such problems. There exist several concepts of constraint quali�cations,
but we will only state here a very commonly used one that we need also for the derivations that
follow.



CHAPTER 3. NONLINEAR PROGRAMMING 65

De�nition 3.9 (First order constraint quali�cation)
Let u ∈ Rnu be a feasible point. We say that the �rst order constraint quali�cation holds in u, i�
every vector d ∈ Rnu , d 6= 0, ful�lling the conditions (3.9) is a feasible direction.

As we want to establish later also second order optimality conditions, the following constraint
quali�cation is needed.

De�nition 3.10 (Second order constraint quali�cation)
Let u ∈ Rnu be a feasible point. We say that the second order constraint quali�cation holds in u,
i� every vector d ∈ Rnu , d 6= 0, that ful�lls

∇ugi(u)Td = 0, 1 ≤ i ≤ neq (3.10a)

∇uhi(u)Td = 0, i ∈ I(u), (3.10b)

is a feasible direction of a twice continuously di�erentiable feasible path ψ(s), for which addition-
ally hi(ψ(s)) ≡ 0 holds for all i ∈ I(u).

A commonly used criterion to ensure that these constraint quali�cations hold is the following
condition.

De�nition 3.11 (Linear Independence Constraint Quali�cation (LICQ))
We say that the Linear Independence Constraint Quali�cation (LICQ) holds in a feasible point u,
if the gradients of the active constraints ∇ug̃i(u), 1 ≤ i ≤ neq + |I(u)|, are linearly independent.

De�nition 3.12 (Regular point)
A regular point is a feasible point that ful�lls the LICQ.

For a regular point, �nally the following theorem can be proven, see, e.g., [FM90].

Theorem 3.13
Let u ∈ Rnu be a regular point. Then the �rst and the second order constraint quali�cations hold
in u.

Note that also in non-regular points the constraint quali�cation might hold, i.e., the preceding
theorem is only a su�cient and not a necessary condition. However, in practical problems the
solution u∗ will often be a regular point.
Based on the preceding characterization of the set of feasible directions, we present in the next
section �rst and second order conditions for local minima of the NLP (3.1).

3.2 Local optimality conditions

The tool that we will use in the following for the determination and characterization of possible
solutions of the NLP, e.g., in the optimality conditions, is the so-called Lagrange function.
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De�nition 3.14 (Lagrange function and Lagrange multipliers)
The Lagrange function of the NLP (3.1) is de�ned by

L(u,λ,µ) := c(u)− λTg(u)− µTh(u). (3.11)

Here λ and µ are called Lagrange multiplier.

Using the Lagrange function, we can formulate the well-known Karush-Kuhn-Tucker (KKT) con-
ditions, which are �rst order necessary conditions for a local minimum of the NLP. They were �rst
derived by Karush [Kar39] and later independently by Kuhn and Tucker [KT51]. A proof can,
e.g., be found in [NW99].

Theorem 3.15 (Karush-Kuhn-Tucker (KKT) conditions)
Let the �rst order constraint quali�cation hold in u∗ ∈ Rnu and let furthermore u∗ be a local
minimum of the NLP (3.1).

Then there exist Lagrange multiplier λ∗ ∈ Rneq and µ∗ ∈ Rnineq , such that (u∗,λ∗,µ∗) satisfy:

∇uL(u∗,λ∗,µ∗) = 0 (3.12a)

g(u∗) = 0 (3.12b)

h(u∗) ≥ 0 (3.12c)

µ∗ ≥ 0 (3.12d)

µ∗ih
∗
i (u
∗) = 0, 1 ≤ i ≤ nineq. (3.12e)

Here the condition (3.12e) is called complementarity condition.

A triple (u∗,λ∗,µ∗) is called a KKT point and is a candidate for a local minimum of the NLP.

If the local minimum is also a regular point, the following theorem can be proven.

Theorem 3.16 (Multiplier uniqueness)
Let u∗ ∈ Rnu be a regular point and also a local minimum of the NLP (3.1). Then the Lagrange
multiplier λ∗ ∈ Rneq and µ∗ ∈ Rnineq in Theorem 3.15 are unique.

The complementary conditions of Theorem 3.15 imply that the multiplier corresponding to inactive
constraints are equal to zero. Depending on whether the multiplier for the active inequality
constraints are zero or not, we classify the corresponding constraints.

De�nition 3.17 (Weakly and strongly active constraints, strict complementarity)
Let (u∗,λ∗,µ∗) be a KKT point. Then we say that an active inequality constraint hi(u

∗) = 0 is
weakly active, if µi = 0. Otherwise we say the constraint is strongly active.
We denote the set of the indices of the weakly active constraints with

I0(u∗) := {i ∈ {1, . . . , nineq}|hi(u∗) = 0 ∧ µ∗i = 0} ,
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and the set of the indices of the strongly active constraints with

I+(u∗) := {i ∈ {1, . . . , nineq}|hi(u∗) = 0 ∧ µ∗i > 0} ,

such that I(u∗) = I0(u∗) ∪̇ I+(u∗).
If all active constraints are strongly active, i.e., I(u∗) = I+(u∗), we say that the KKT point ful�lls
the strong complementary condition.

Remark 3.18
The geometrical interpretation of the �rst condition (3.12a) is that the gradient of the objective
function can be expressed as linear combination of the gradients of the constraint functions.
Alternatively, we can say that u∗ is a stationary point for the Lagrange function L(u,λ,µ) (with
respect to u and provided that λ = λ∗ and µ = µ∗).

Remark 3.19 (Shadow prices)
The Lagrange multiplier of the active constraints can be interpreted as the costs of ful�lling the
corresponding constraints and are hence often called shadow prices. More strictly speaking, if we
interpret the cost function (via the changing KKT point) as a function of the right-hand side of
the constraints, the Lagrange multiplier are the values of the directional derivative of the cost
function in the positive direction. This means they describe how the cost function varies in the
optimal solution, if the right-hand side of a constraint is changed from zero to an in�nitesimal
small positive value. This interpretation also gives an intuitive explanation for the condition
(3.12d) that demands nonnegativity of the inequality multipliers in an optimal solution.

Example 3.20 (KKT conditions for QPs)
Consider the QP described in De�nition 3.3. Then the KKT conditions of the problem are given
for a point (u∗,λ∗,µ∗) by

Au∗ + a−GTλ∗ −HTµ∗ = 0 (3.13a)

g + Gu∗ = 0 (3.13b)

h + Hu∗ ≥ 0 (3.13c)

µ∗ ≥ 0 (3.13d)

µ∗j(hj + Hj·u
∗) = 0, 1 ≤ i ≤ nineq, (3.13e)

where Hj· denotes here the j-th row of the matrix H.

De�nition 3.21 (KKT matrix)
If we consider a QP without inequalities, the KKT conditions in Example 3.20 can be written in
a more compact form as (

A GT

G 0

)(
u∗

−λ∗
)

= −
(

a
g

)
, (3.14)

where the matrix on the left side in called KKT matrix. It can be shown that the KKT matrix
is regular, provided that G has full rank (e.g., when u∗ is a regular point) and that A is positive
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de�nite on the null space of G. For a proof, see, e.g., in [NW99]. In this case the equality
constrained QP has exactly one KKT point. For inequality constrained QPs the existence and
uniqueness of a KKT point can be proven, e.g., under the additional conditions that there exist
feasible points and that the combined constraint Jacobian (GT ,HT )T has full rank.

While the presented �rst order conditions o�er a possibility to determine candidates for local
minima, it is not possible to give �rst order su�cient conditions without imposing strong conditions
on the cost and constraint functions. Hence in the following we present second order necessary and
su�cient conditions, that allow additional tests for (non-)optimality at a given KKT point. Here
we assume that all functions occurring in the NLP are at least twice continuously di�erentiable.

Theorem 3.22 (Second order necessary conditions)
Let the �rst and second order constraint quali�cations hold in u∗ ∈ Rnu and let furthermore u∗

be a local minimum of the NLP (3.1).

Then there exist Lagrange multiplier λ∗ ∈ Rneq and µ∗ ∈ Rnineq , such that (u∗,λ∗,µ∗) is a KKT
point and that every vector d ∈ Rnu , d 6= 0 with

∇ugi(u
∗)Td = 0, 1 ≤ i ≤ neq (3.15a)

∇uhi(u
∗)Td = 0, i ∈ I(u∗), (3.15b)

also ful�lls
dT∇2

uuL(u∗,λ∗,µ∗)d ≥ 0. (3.15c)

This means that the Hessian of the Lagrange function with respect to (w.r.t.) u needs to be
positive semide�nite on the subspace de�ned by (3.15a) and (3.15b).

This second order necessary condition can be used to eliminate possible solution candidates that
represent, e.g., local maxima or saddle-points which would ful�ll the �rst order necessary condi-
tions.
Next, we formulate a su�cient condition which allows us to actually verify whether or not a point
is a strict local minimum.

Theorem 3.23 (Second order su�cient conditions)
Let u∗ ∈ Rnu be feasible.

If there exist Lagrange multiplier λ∗ ∈ Rneq and µ∗ ∈ Rnineq , such that (u∗,λ∗,µ∗) is a KKT point
and if every vector d ∈ Rnu , d 6= 0 with

∇ugi(u
∗)Td = 0, 1 ≤ i ≤ neq (3.16a)

∇uhi(u
∗)Td = 0, i ∈ I+(u∗), (3.16b)

∇uhi(u
∗)Td ≥ 0, i ∈ I0(u∗), (3.16c)

also ful�lls
dT∇2

uuL(u∗,λ∗,µ∗)d > 0, (3.16d)
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then u∗ is a strict local minimum of the NLP (3.1).
This means that the Hessian of the Lagrange function w.r.t. u needs to be positive de�nite on the
subspace de�ned by (3.16a) to (3.16c). A similar su�cient condition can be given for weak local
minima, see, e.g., [FM90].

Example 3.24 (Minimum of a convex QP)
Consider a convex QP, i.e., a QP of the type (3.3) with positive de�nite matrix A. Furthermore,
let (u∗,λ∗,µ∗) be a KKT point of the problem. Then u∗ is the only local minimum of the QP
and also strict. Additionally, it can be shown that it is also the global minimum of the problem.

Note that there might exist points which ful�ll the necessary conditions of Theorem 3.22 but
cannot be veri�ed using the su�cient condition in Theorem 3.23. It is possible to formulate more
complex conditions that are both necessary and su�cient at once. But, as they often cannot be
veri�ed in practice, we will not state them here.
We �nally formulate conditions that assure not only the existence of a local solution, but also
guarantee the nonsingularity of the Jacobian of the KKT conditions in the solution. This allows
in principle the successful use of Newton's method for the solution of the NLPs, provided the
iterations are started with initial guesses for variables and multipliers that are close enough to the
solution.

Theorem 3.25 (Su�cient condition for nonsingularity of KKT Jacobian)
Let u∗ ∈ Rnu be regular and (u∗,λ∗,µ∗) a KKT point in which the strict complementarity
condition holds.
Furthermore, assume that every vector d ∈ Rnu , d 6= 0 with

∇ugi(u
∗)Td = 0, 1 ≤ i ≤ neq (3.17a)

∇uhi(u
∗)Td = 0, i ∈ I+(u∗), (3.17b)

also ful�lls
dT∇2

uuL(u∗,λ∗,µ∗)d > 0. (3.17c)

Then u∗ is a strict local minimum of the NLP (3.1) and the Jacobian JKKTof the KKT conditions
(3.12a), (3.12b) and (3.12e) in the KKT point, which is given by

JKKT(u∗,λ∗,µ∗) =

∇2
uuL(u∗,λ∗,µ∗) −∇g(u∗) −∇h(u∗)
∇g(u∗)T 0 0

diag(µ)h(u∗)T 0 diag(h(u∗))

 (3.18)

is nonsingular.

3.3 Newton-type methods for NLP solution

Solution methods for the constrained NLP (3.1) are often based on the principle of attacking a
simpler problem, that is in some sense related to the original NLP and that tries to captures its
essential properties. In practice, this idea leads to iterative methods for the solution of the NLP
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that solve a series of simpler subproblems where each, at least locally, approximates the original
NLP in the current iterate.
In the case of an unconstrained problem it is for example very common to use a local quadratic
approximation of the cost function. For the constrained NLP (3.1) we will discuss here methods
that are based on a quadratic approximation of the Langrage function of the NLP and a lineariza-
tion of the constraint functions in the current iterate. In each iteration, these methods solve a
QP of the type (3.3) and are hence called Sequential Quadratic Programming (SQP) methods.
The motivation to choose this speci�c type of subproblem is given by the su�cient conditions for
optimality presented in the last section. There, it has be shown that the optimality of a point can
be decided based on the curvature of the Lagrange function on the null-space of the Jacobians of
the active constraints.
In the following, we present the general class of SQP methods as well as two important members of
the class in more detail. We also show how the members of the SQP-family can be understood as
Newton-type methods for the solution of the KKT conditions and address their local convergence
properties. The approximation of NLPs by QPs is in general only locally of acceptable accuracy
and this has also to be taken into account in practice during the computation of the next iterate.
Therefore, we will shortly present globalization strategies, that ensure that in each iteration an
actual progress towards the NLP solution is made by adapting the step length or restricting the
step to an area where the approximation can be trusted.

3.3.1 The SQP framework

An SQP method tries to �nd a KKT point of the NLP (3.1) iteratively, starting at a initial guess
(u(0),λ(0),µ(0)) for optimization variables and Lagrange multiplier. Afterwards, it iteratesu(k+1)

λ(k+1)

µ(k+1)

 =

u(k)

λ(k)

µ(k)

+ α(k)

 ∆u(k)

λQP(k) − λ(k)

µQP(k) − µ(k)

 , k = 0, 1, 2, . . . , (3.19)

until a KKT point has been found, or a prescribed termination criterion is ful�lled, respectively.
The α(k) ∈ (0, 1] is called the stepsize of the SQP step. If α(k) is set to one for all steps we speak
of a full step method.

The increment ∆u(k) in step k and the multiplier λQP(k)
and µQP(k) are computed from the

solution of the following QP.

min
∆u∈Ω(k)⊆Rnu

1

2
∆uTB(k)∆uT +∇uc(u

(k))T∆u (3.20a)

subject to

g(u(k)) + G(k)∆u = 0 (3.20b)

h(u(k)) + H(k)∆u ≥ 0. (3.20c)
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Here B(k) is usually chosen as B(k) ≈ ∇2
uuL(u(k),λ(k),µ(k)), i.e., as an approximation of the

Hessian of the Lagrange function with respect to u at the current values of optimization variables
and multiplier. G(k) := ∂g

∂u
(u(k)) and H(k) := ∂h

∂u
(u(k)) are the Jacobians of the constraint functions

with respect to u.
In practice, SQP methods di�er mainly in the choice of the Hessian approximation B(k) and in the
choice, or the heuristic, respectively, to determine the stepsizes α(k) and/or the region of allowed
steps Ω(k) ⊆ Rnu in the QP subproblem. By suitable choices of α(k) or Ω(k) a convergence of the
algorithm to a local minimum (if existing) can be achieved regardless of the initial guess. This is
addressed in Section 3.3.5.
Note that for the solution of the QP subproblems there exist several sophisticated algorithms
with e�cient implementations, which contribute to a large part to the overall e�ciency and also
the success of SQP methods in practice. Other favorable properties of SQP methods are that
they are self-terminating and, especially, that they are able to identify the correct active set and
the multiplier values of the NLP solution from the QP subproblem without the need for a prior
knowledge of them. This is formulated in the following Lemma.

Lemma 3.26 (Self-termination and identi�cation of the active set)
Let (u∗,λ∗,µ∗) be a KKT point of the NLP, i.e., ful�lling the KKT conditions (3.12). Then the QP
subproblem formulated in (u∗,λ∗,µ∗) has the solution (0,λ∗,µ∗). If the Hessian approximation
B in the QP subproblem is positive de�nite on the null space of the constraint Jacobian we
can see from the remarks in De�nition 3.21 that this is also the unique KKT point of the QP
subproblem. Hence, the QP subproblem will in this case never generate a step away from the
KKT point of the NLP. The other way round it is true that if the QP subproblem formulated at
a point (u(k),λ(k),µ(k)) has the KKT point (0,λ

(k)
QP,µ

(k)
QP), then (u(k),λ

(k)
QP,µ

(k)
QP) is a KKT point

of the NLP. If we assume that in (u∗,λ∗,µ∗) additionally the second order su�cient conditions
of Theorem 3.23 as well as the strict complementarity condition are ful�lled it can be shown
that the SQP algorithm determines the correct active set also in a neighborhood of the solution
(u∗,λ∗,µ∗).

Proof:

The �rst claims follow directly from the comparison of the KKT conditions for the NLP (3.12)
with the KKT conditions for the corresponding QP. A more detailed discussion and a proof of the
last claim can be found in [Rob74].

2

Remark 3.27 (Warm start of the QP subproblems)
While in the solution of the QP subproblems the active set and the multiplier values for the
current QP subproblem can be found independently of their initial guesses, SQP methods bene�t
in practice very much of the possibility to warm start the QP subproblem solution in connection
with active set QP solvers. The solution process of the QP is often much faster if the active set
and the multiplier of the current QP are initialized with the values from the last QP subproblem.
This is especially the case if the algorithm comes closer to the solution, as here the steps become
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smaller and one can then argue that the subproblems (and hence also their active sets) are more
and more related to each other.

3.3.2 Full step exact-Hessian SQP

The full step exact-Hessian SQP method has �rst been presented by [Wil63]. It is characterized by
the choice of α(k) = 1 and Ω(k) = Rnu for all k as well as B(k) = ∇2

uuL(u(k),λ(k),µ(k)). This choice
of the Hessian approximation leads to a very good local convergence behavior. To see this, we
consider �rst an equality constrained NLP. The KKT conditions for the QP subproblem solution
(∆u(k),λ

(k)
QP) in the point (u(k),λ(k)) are then given by

∇2
uuL(u(k),λ(k))∆u(k) +∇uc(u

(k))−G(u(k))Tλ
(k)
QP = 0 (3.21a)

g(u(k)) + G(u(k))∆u(k) = 0. (3.21b)

This can be written in matrix form as(
∇2

uuL(u(k),λ(k)) −G(u(k))T

G(u(k)) 0

)(
∆u(k)

λ
(k)
QP

)
= −

(
∇uc(u

(k))
g(u(k))

)
. (3.22)

By rewriting λ(k)
QP = λ(k) + ∆λ(k) and regarding that ∇uL(u(k),λ(k)) = ∇uc(u

(k))−G(u(k))Tλ(k)

we obtain (
∇2

uuL(u(k),λ(k)) −G(u(k))T

G(u(k)) 0

)(
∆u(k)

∆λ(k)

)
= −

(
∇uL(u(k),λ(k))

g(u(k))

)
. (3.23)

This rule for the determination of the step in variables and multipliers of the NLP in the exact-
Hessian SQP is now identical to the formula for the increment in Newton's method, if it is applied
to the KKT conditions of the NLP given by(

∇uL(u(k),λ(k))
g(u(k))

)
=

(
0
0

)
. (3.24)

Hence the convergence of the full step exact-Hessian SQP is locally quadratic, like the convergence
of Newton's method. Note that it is su�cient to consider an equality constrained problem also
to analyze the local convergence behavior of the method in the case of an NLP with inequality
constraints, provided the KKT point ful�lls the su�cient optimality conditions of Theorem 3.23
and the strict complementarity conditions. In this case, like addressed shortly in Lemma 3.26,
the active set remains constant in the vicinity of the KKT point, the QP subproblem can be
interpreted as a small perturbation of the original problem and the SQP method will eventually
�nd the correct active set. This is proven and discussed in more detail in [Rob74].
Based on the considerations above, both the initial guess for the variables as well as for the mul-
tiplier would have to be close enough to the solution values to obtain the quadratic convergence.
However, by exploiting the special structure of the KKT system and its linearization, this restric-
tion on the initial multiplier guess can be softened. This has been proven by Fletcher [Fle87] in
the following theorem.
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Theorem 3.28 (Local convergence of full step exact-Hessian SQP)
Let (u∗,λ∗) satisfy the su�cient optimality conditions of Theorem 3.23 for an equality constrained

NLP (3.1). If the initial value u(0) is close enough to u∗ and the initial multiplier value λ(0) is
chosen such that the KKT matrix(

∇2
uuL(u(0),λ(0)) G(u(0),λ(0))T

G(u(0),λ(0)) 0

)
(3.25)

is nonsingular, then the sequence of iterates (u(k),λ(k)) obtained by applying the full step exact-
Hessian SQP method converges quadratically to (u∗,λ∗), i.e.,∥∥∥∥(u(k+1) − u∗

λ(k+1) − λ∗
)∥∥∥∥ ≤ κ

∥∥∥∥(u(k) − u∗

λ(k) − λ∗
)∥∥∥∥2

, (3.26)

with a constant κ ≥ 0.

Remark 3.29
The equivalence of the solution of the QP subproblem in the exact-Hessian SQP and a Newton step
for the solution of the KKT conditions of the NLP motivates the interpretation of SQP methods
as Newton-type methods for the NLP solution. The use of an approximation of the Hessian of the
Lagrangian in an SQP method can be understood as the use of an approximation of the Jacobian
in the corresponding Newton method.

3.3.3 Full step constrained Gauss-Newton

The constrained Gauss-Newton method performs very well on the special class of Nonlinear Least-
Squares (NLSQ) problems de�ned in (3.2). It is characterized by the choices α(k) = 1 and Ω(k) =
Rnu for all k and the Hessian approximation

B(k) = JTJ, with J :=
∂r

∂u
(u(k)). (3.27)

If we compare this approximation with the exact Hessian of the Lagrangian of the problem, which
is given by

∇2
uuL(u,λ) =

∂

∂u

[
∂r

∂u
(u)T r(u) + G(u)Tλ+ H(u)Tµ

]
=

∂r

∂u
(u)T

∂r

∂u
(u)︸ ︷︷ ︸

=JTJ

+
nres∑
i=1

ri(u)
∂2ri
∂u2

(u) +

neq∑
i=1

λi
∂2gi
∂u2

(u) +

nineq∑
i=1

µi
∂2hi
∂u2

(u),(3.28)

we can expect that the approximation will be good in the vicinity of a solution, e.g., if the problem
functions are only mildly nonlinear, or if the residual function r becomes small and additionally
the multiplier can be bounded in terms of the residual function.



74 3.3. NEWTON-TYPE METHODS FOR NLP SOLUTION

Note that the Gauss-Newton approximation of the Hessian only needs �rst order derivatives of the
residual function, which makes the computation somewhat simpler than that of the exact Hessian.
Furthermore, it is independent of the Lagrange multiplier. It should also be noted that for the
resulting subproblem class specialized solutions approaches exist, which do not need the explicit
computation of the matrix JTJ, but rather work based on J, see, e.g., [Boc87].
The local convergence behavior of the full-step constrained Gauss-Newton method is determined
by the accuracy of the Hessian approximation. In general, only linear convergence can be expected.
A criterion to determine whether the method converges at all and to estimate the convergence
rate is given by the local contraction theorem for Newton-type methods which can be found in
[Boc87], and also later in this work as Proposition 5.62 on page 131.

3.3.4 Other SQP variants

In the last two sections we presented two common SQP-type methods that are also of importance
later in this thesis. Besides them, there exist a variety of other SQP-type methods. Most prominent
among them and widely used are SQP methods that use a Quasi-Newton method for the approx-
imation of the Hessian of the Lagrangian. This means that the Hessian approximation B(k+1)

is obtained based on B(k) and an update formula such as the Davidon-Fletcher-Powell (DFP)
or Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. This idea was �rst proposed by Garcia
Palomares and Mangasarian in [PM76]. It was further developed by Han [Han76] and Powell
[Pow78c, Pow78a, Pow78b], who also presented a very successful implementation of his algorithm.
These algorithms achieve usually a locally superlinear convergence to a local minimum ful�lling
the usual conditions. An overview on these and more SQP variants working with approximations
of the Hessian can be found in [Lei99].
Another class of SQP methods is given by methods that do not only approximate the Hessian of the
Lagrangian, but also the constraint Jacobians G and/or H. This kind of methods is called inexact
SQP methods, where the term inexact refers here to the Jacobian approximation, not to an inexact
solution of the QP subproblem, e.g., using iterative methods, as it can also be found in literature.
The local convergence of these methods can again be proven, depending on the quality of the
approximation, by interpreting them as Newton-type methods and applying the local contraction
theorem. They can be very e�cient in practice, because for each iteration they need, besides the
computation of the Hessian and Jacobian approximations, mainly the gradient of the Lagrangian
which can be computed e�ciently using the adjoint mode of Automatic Di�erentiation (AD). For
more information on inexact methods for equality constrained problems we refer to [JS97, HV01]
and the works of Griewank and Walther [GW02, Wal08] as well as the references therein. For the
extension to problems with inequality constraints consult the works of Bock, Diehl and coworkers
[BDK04, BDKS07, DWBK09] and the references therein. An implementation of an inexact SQP
method in the context of Nonlinear Model Predictive Control (NMPC) is described in [Wir06], an
application to optimal control in [WAK+08].
Although we will not go deeper into the details of these class of methods in this work, the lifting
approach presented in this thesis can in principle also be used in connection with update strategies
and inexact methods to obtain e�cient algorithms.
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3.3.5 Globalization strategies

Until now, we only considered the local convergence properties of SQP methods. In practice,
however, it is important that the methods also converge to a local minimum if they are not
started in the direct vicinity of the solution. In general, this cannot be guaranteed for full step
methods, hence a so-called globalization strategy is needed. The globalization strategy ensures
that during the iterations a �su�cient� progress towards the solution is made.
This progress can be measured in the unconstrained case directly by the achieved reduction in the
cost functional. In the constrained case this is more di�cult, as it is a priori not possible to say
whether it is better to improve in a step the cost function while increasing the infeasibility of the
constraints or vice versa. A common tool to measure the progress to the solution in the constrained
case are so-called merit functions, that usually combine the cost function with weighted penalty
terms for constraint violations. Ideally, a merit function is exact, i.e., that a local minimum of
the merit function is also a local minimum of the corresponding NLP. A popular choice is the l1
penalty function

P(u, λ̄, µ̄) = c(u) +

neq∑
i=1

λ̄i|gi(u)|+
nineq∑
i=1

µ̄i|min(0, hi(u))|. (3.29)

This merit function is exact, provided that the penalty factors are chosen in a way that

λ̄ ≥ λ∗ and µ̄ ≥ µ∗. (3.30)

Then. a KKT point ful�lling the conditions of Theorem 3.25 is a strict local minimizer not only
of the NLP, but also of the l1 penalty function (see, e.g., [Fle87, Han77]). Another important
requirement is the compatibility of the step direction ∆u generated by the QP subproblem with
the merit function, i.e., that ∆u 6= 0 should always be a descent direction for the merit function.
The merit function can then be used to test the progress to the NLP solution after the computation
of the step. If the progress is not su�cient, then the step is rejected and will be modi�ed by the
globalization strategy until it is accepted.
An alternative to the use of merit functions, is the so-called class of �lter methods [FL02, WB02]
employing ideas from multi-objective optimization. These methods take into account the (inde-
pendent) objectives of feasibility and minimization of the cost functional and accept a new iterate
if it improves at least one of these objectives compared to the iterates already present in the
�lter. Afterwards, this new iterate might be added to the �lter, based on some heuristic criterion.
Usually, �lter methods are not scaling invariant with respect to the variables and the problem
functions, contrary to the approaches based on the l1 merit function which we address in this
thesis.
Ideally, a globalization strategy should be designed in a way that the usually good local convergence
properties of the SQP method are not destroyed by rejecting full steps close to the solution, thus
avoiding, e.g., the Maratos e�ect [Mar78]. In practice there exist two major classes of globalization
strategies in connection with merit functions: line-search strategies and trust-region strategies.
We will shortly explain both of them in the following. A more detailed overview on globalization
strategies including measures to avoid the Maratos e�ect, like second-order-correction [MP82] or
a watchdog strategy, [CLPP82] is given, e.g., in [Lei99].



76 3.3. NEWTON-TYPE METHODS FOR NLP SOLUTION

Line-search methods

Line search strategies for globalization work by modifying the step size α(k) of the SQP step. This
means �rst the step direction ∆u(k) is computed by solving the QP subproblem with Ω(k) = Rnu ,
and afterwards α(k) ∈ (0, 1] is determined such that enough progress to the solution is made. In an
exact line search strategy the minimum of the merit function on the line {ũ|ũ = u(k) +α∆u(k), 0 <
α ≤ 1} is determined and the corresponding α is taken as steplength for the current step. Although
theoretically very appealing, the exact line search is normally not used in practice due to its e�ort.
Hence, heuristics are employed that usually start by testing if a full-step will give �su�cient�
progress and reduce the stepsize if necessary by certain rules until the test is ful�lled. Note that line
search strategies require in general a positive de�nite Hessian approximation in the SQP method
(or at least the positive de�niteness of the projected Hessian, i.e., the Hessian approximation on
the null space of the Jacobians of the active constraints) to ensure that the computed direction is
indeed a descend direction for the merit function.

Trust-region methods

Trust-region strategies are based on the idea of determining a region in which the current quadratic
approximation of the NLP is reasonable, the so-called trust region. The trust region is imposed as
additional restriction on the QP subproblem in form of the set Ω(k), while α(k) is set to 1. Usually
the trust region is chosen in form of ‖∆u‖ ≤ ρ, where as norm mostly the 1-norm or the euclidean
norm in Rnu are used. ρ is here called the trust radius. The radius of the trust region is usually
adapted heuristically from iteration to iteration, based on the performance of the the computed
step, or the new iterate based on this step, respectively. If the expected improvement in the merit
function has been achieved, the trust region is normally increased. If not, it is decreased until
the improvement is satisfying. A trust region strategy is especially well-suited for exact-Hessian
SQP methods, as here inde�nite Hessians might occur regularly during the iteration process.
The additional trust-region constraints help to cope with the problem of an inde�nite projected
Hessian in the QP subproblem and with the resulting possibility of an unbounded QP solution.
One drawback of the trust-region strategy is that it might leads to infeasible QP subproblems.
A reason for this is, e.g., that at some point, if the trust region becomes too small, the trust
regions constraints will probably contradict the linearized NLP constraints in the QP. In this case
a relaxation of the constraints might be a possible remedy. We will shortly address later in Section
7.2.2 a suitable choice of a merit function and the implementation of a corresponding trust-region
strategy in the framework of our lifted exact-Hessian SQP algorithm.



4 Lifted methods for Nonlinear

Programming

In this chapter we describe a new �lifting� approach for the solution of nonlinear optimization
problems (NLPs) that have objective and constraint functions with intermediate variables. The
approach has �rst been presented in [AD10]. It has been observed, in particular in the context of
the solution of boundary value problems by shooting methods, that transferring a nonlinear root
�nding problem into a higher-dimensional space might o�er advantages in terms of convergence
rates and region of attraction [Boc78a, Osb69, SB92].
This classical �multiple shooting� method works, like described in Section 1.2.3 for the Optimal
Control Problem (OCP) case, by introducing intermediate variables as additional degrees of free-
dom and corresponding constraints to ensure equivalence of the solutions with the original prob-
lem. It then solves this equivalent augmented system - which we call the �lifted� system - in-
stead of the original system by a Newton-type method. At �rst sight, the increased size of the
lifted system seems to render each Newton-type iteration more expensive. This can be overcome,
however, to a large extent by structure-exploiting linear algebra in each Newton-type step (see
[Sch88, Lei99, Sch05]).
Besides the classical domain of multiple shooting, parameter estimation and optimal control for
ODEs and DAEs, where the natural choice of intermediate values are the system states at di�erent
timepoints, there exist other problem classes that can bene�t from �lifting�. A direct transfer of the
idea can be made to the case of discrete time models or optimization in the context of kinematic
chains arising in robotics.
However, �multiple shooting� and related �lifted� approaches are often not used due to the increased
programming burden. Usually, it would be necessary to split up the original algorithm according to
the choice of intermediate values and the structure of the problem into a sequence of subfunctions.
From these, one has to compute and to assemble the quantities and derivatives of the augmented
system. Afterwards, the augmented problem has to be �condensed� again to obtain small reduced
subproblems needed for an e�cient step computation. All of these steps are technically non-trivial
to implement.
In this chapter we propose algorithms for the solution of nonlinear optimization problems that
solve the augmented system by a structure-exploiting Newton-type method, yet do not require
any additional user knowledge about the structure of the problem functions or the meaning of the
intermediate variables. We show that the cost of each iteration of these �lifted� methods is nearly
identical to the cost of one iteration for the solution of the original problems. Furthermore, we
make a �rst step towards proving the superior local convergence speed of lifted Newton methods.
We �rst explain the idea of lifting in Section 4.1 at the example of Newton's method for a root
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�nding problem and derive a �lifted� Newton algorithm. In Section 4.2 we discuss the application
of the lifting approach to optimization and derive a lifted Gauss-Newton method as well as a
lifted SQP method for equality and inequality constrained optimization problems that is based
on adjoint gradient computations. Equivalence of the last method with the iterations obtained
by a full-space SQP method is proven. In Section 4.3 we discuss under which circumstances
�lifted� approaches converge faster than non-lifted ones, and give a proof in a simpli�ed setting.
In Section 4.4 we present a �rst tutorial application example for the lifted Newton algorithm.
More numerical examples are given later on in Chapter 8.

4.1 The Lifted Newton Method

We �rst consider the problem of solving a nonlinear system of equations, represented by

f(u) = 0, (4.1)

where the evaluation of the function f ∈ C1(Rnu ,Rnu) is given in form of a possibly complex
algorithm with several intermediate variables. Denoting these intermediate variables by xi ∈ Rni ,
for i = 1, 2, . . . ,m, and disregarding further internal structure, we summarize the algorithm in the
generic form

xi := φi(u,x1,x2, . . . ,xi−1), for i = 1, 2, . . . ,m, (4.2)

where the �nal output f(u) is given by

φf (u,x1,x2, . . . ,xm). (4.3)

It is straightforward to see that the original system (4.1) is equivalent to the �lifted� system of
nonlinear equations

g(u,x) = 0, (4.4)

with nx =
∑m

i=1 ni, x = (x1, . . . ,xm) and where g ∈ C1(Rnu × Rnx ,Rnu × Rnx) is given by

g(u,x) =


φ1(u) − x1

φ2(u,x1) − x2
...

φm(u,x1, . . . ,xm−1) − xm

φf (u,x1, . . . ,xm)

 . (4.5)

To solve the augmented system (4.4) the lifted Newton method iterates, starting at a guess
(x(0),u(0)), (

x(k+1)

u(k+1)

)
=

(
x(k)

u(k)

)
+

(
∆x(k)

∆u(k)

)
(4.6a)

with (
∆x(k)

∆u(k)

)
= −

[
∂g

∂(u,x)
(x(k),u(k))

]−1

g(x(k),u(k)). (4.6b)
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To initialize the value x(0), we can simply call the algorithm de�ning the original function f(u(0))
and add a few lines to output all intermediate variables, i.e., we call Algorithm 4.1. Please note
that we are also free to choose the intermediate values otherwise, and that it is often advantageous
to do so.

Algorithm 4.1: Function with output of intermediate variables
Input : u ∈ Rnu

Output: x1 ∈ Rn1 , . . . ,xm ∈ Rnm , f ∈ Rnu

begin
for i = 1, 2, . . . ,m do

xi = φi(u,x1,x2, . . . ,xi−1);
end for
f := φf (u,x1,x2, . . . ,xm);

end

By modifying the user given Algorithm 4.1 slightly, we can easily de�ne the residual function
g(u,y), as follows by Algorithm 4.2.

Algorithm 4.2: Residual function g(u,y)

Input : u,y1, . . . ,ym

Output: g1, . . . ,gm, f
begin

for i = 1, 2, . . . ,m do
xi = φi(u,x1,x2, . . . ,xi−1);
gi = xi − yi;
xi = yi;

end for
f = φf (u,x1,x2, . . . ,xm);

end

Thus, it is easy to transform a given user function into a function that outputs the residuals.
Note that it is not necessary that all xi are distinct variables with separately allocated memory
within the program code. The only code modi�cation is to add after each computation of an
intermediate variable two lines (or even only one line calling a more convenient function de�ned
in Algorithm 4.7 on page 85) that store the residual and set the variable to the given input value yi.



80 4.1. THE LIFTED NEWTON METHOD

For notational convenience, we de�ne

φ(u,x) :=


φ1(u)
φ2(u,x1)
...
φm(u,x1, . . . ,xm−1)

 , (4.7)

such that

g(u,x) =

(
φ(u,x)− x
φf (u,x)

)
. (4.8)

It is straightforward to see that Algorithm 4.1 delivers, for given u, the unique solution x̃ of
φ(u, x̃)− x̃ = 0.

To perform a Newton method on the augmented system we have to calculate the increments in
(4.6b). Dropping the index k for notational convenience, we have to solve in every iteration the
linear system

φ(u,x)− x +

(
∂φ

∂x
(u,x)− Inx

)
∆x +

∂φ

∂u
(u,x)∆u = 0, (4.9a)

φf (u,x) +
∂φf

∂x
(u,x)∆x +

∂φf

∂u
(u,x)∆u = 0, (4.9b)

where Inx represents the identity operator in Rnx . Due to the fact that the square matrix(
∂φ
∂x

(u,x)− Inx
)
is lower triangular with nonzero diagonal, and thus invertible, (4.9a) is equivalent

to

∆x = −
(
∂φ

∂x
(u,x)− Inx

)−1

(φ(u,x)− x)︸ ︷︷ ︸
=:a

+

−
(
∂φ

∂x
(u,x)− Inx

)−1
∂φ

∂u
(u,x)︸ ︷︷ ︸

=:A

∆u

= a + A∆u.

(4.10)

Based on this, we can �condense� the second equation to

0 = φf (u,x) + ∂φf

∂x
(u,x)a +

(
∂φf

∂u
(u,x) + ∂φf

∂x
(u,x)A

)
∆u

=: b + B ∆u
(4.11)

If the �reduced quantities� a, A, b and B were known, we could easily compute the step by

∆u = −B−1 b (4.12a)

∆x = a + A ∆u. (4.12b)
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4.1.1 An algorithmic trick for e�cient computation of reduced
quantities

In the following we will present an algorithmic trick to compute the vectors a, b and the matrices
A, B e�ciently, without the need to form or invert the derivatives of φ explicitly. This trick is
a generalization of �Schlöder's trick� [Sch88] which is since long known in the context of multiple
shooting for parameter estimation, and was extended to optimal control by Schäfer [Sch05]. In
all these existing approaches, however, the algorithms are specially tailored to speci�c sparsity
structures. On the other hand, the new generalized trick does not require any structure or user
input, apart from a minimal number of extra lines of code into the function to be �lifted�, as
illustrated in Algorithm 4.6.
To derive the trick, we introduce a function z(u,d) as follows. For given vectors u and d, the
unique solution z̃ of the system φ(u, z̃) − z̃ − d = 0, that we will denote in the following by
z(u,d), can be computed easily by Algorithm 4.3. The algorithm simultaneously computes the
value φf (u, z(u,d)).

Algorithm 4.3: Modi�ed function z(u,d)

Input : u,d1, . . . ,dm

Output: z1, . . . , zm, f
begin

for i = 1, 2, . . . ,m do
xi = φi(u,x1,x2, . . . ,xi−1);
zi = xi − di;
xi = zi;

end for
f = φf (u,x1,x2, . . . ,xm);

end

The derivatives of the function z(u,d) with respect to u and d help us in computing the vector
a and the matrix A as well as b and B. To see this, we �rst observe that

z(u,φ(u,x)− x) = x.

Thus, by setting d = φ(u,x)− x, we can call Algorithm 4.3 to obtain x = z(u,d) and φf (u,x).
On the other hand, from the de�ning equation of z(u,d), namely

φ(u, z(u,d))− z(u,d)− d = 0,

we obtain the following two equations by total di�erentiation with respect to u and d:

∂φ

∂u
(u,x) +

∂φ

∂x
(u,x)

∂z

∂u
(u,d)− ∂z

∂u
(u,d) = 0

and
∂φ

∂x
(u,x)

∂z

∂d
(u,d)− ∂z

∂d
(u,d)− Inx = 0.
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Note that we have assumed d = φ(u,x) − x so that z(u,d) = x. The two relations above are
equivalent to

∂z

∂u
(u,d) = −

(
∂φ

∂x
(u,x)− Inx

)−1
∂φ

∂u
(u,x)

and
∂z

∂d
(u,d) =

(
∂φ

∂x
(u,x)− Inx

)−1

.

Therefore, the derivatives a and A can e�ciently be computed as directional derivatives of z,

a = − ∂z

∂d
(u,d) d and A =

∂z

∂u
(u,d),

by di�erentiation of Algorithm 4.3. As a by-product, the vector b and the matrix B are obtained
as the derivatives of the last output f of Algorithm 4.3.
Summarizing, we propose Algorithm 4.4 on the facing page to perform the computations within
the lifted Newton method.

4.1.2 Simple practical implementation

The described Algorithms 4.1 to 4.3 used in the lifted Newton method can be obtained with
minimal modi�cation of the original function evaluation by adding calls to a �node� function. For
this, we assume that the original function evaluation is given in the abstract form of Algorithm 4.5
on page 84, where the wi, i = 1, . . . ,m now denote the intermediate values that should be used
for lifting. It is then su�cient, as illustrated in Algorithm 4.6 on page 84, to add after each
computation of an intermediate value wi a call to the node function de�ned in Algorithm 4.7 on
page 85. This modi�ed function then evaluates the di�erent Algorithms 4.1 to 4.3, depending on
the value of the global �ag mode, which has to be set appropriately by the calling function. The
global variables x, z and d serve as input/output values, depending on the chosen algorithm.
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Algorithm 4.4: The Lifted Newton Method

Input : u(0), tol, manNodeInit, x
(0)
user

Output: u∗,x∗,d∗, f∗

begin
Set k = 0;
if manNodeInit == false then

// Initialize node values x(0) by function evaluation

Set d(0) = 0;
Call Algorithm 4.3 with inputs u(0),d(0) and set
x(0) = z(u(0),d(0));
f (0) = φf (u

(0), z(u(0),d(0)));
else

// Initialize node values x(0) manually

Set x(0) = x
(0)
user;

Call Algorithm 4.2 with inputs u(0),x(0) to obtain d(0), f (0);
end

while ‖f (k)‖+ ‖d(k)‖ ≥ tol do
Di�erentiate Algorithm 4.3 directionally at (u(k),d(k)) to obtain
a(k) = − ∂z

∂d
(u(k),d(k))d;

A(k) = ∂z
∂u

(u(k),d(k));

b(k) = f (k) − dφf (u,z(u,d))
dd

d;

B(k) = dφf (u,z(u,d))
du

;
Solve the condensed Newton system to obtain
∆u(k) = −(B(k))−1b(k);
Perform the Newton step
x(k+1) = x(k) + a(k) + A(k)∆u(k);
u(k+1) = u(k) + ∆u(k);
Call Algorithm 4.2 with inputs (u(k+1),x(k+1)) to obtain
d(k+1) = φ(u(k+1),x(k+1))− x(k+1);
f (k+1) = φf (u

(k+1),x(k+1));
Set k = k + 1;

end
Set
u∗ = u(k);
x∗ = x(k);
d∗ = d(k);
f∗ = f (k);

end
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Algorithm 4.5: Original function evaluation
Input : u ∈ Rnu

Output: f ∈ Rnu

begin
for i = 1, 2, . . . ,m do

wi = φi(u,w1,w2, . . . ,wi−1);
end for
f := φf (u,w1,w2, . . . ,wm);

end

Algorithm 4.6: Function evaluation modi�ed for use in lifted algorithms
Input : u ∈ Rnu

Output: f ∈ Rnu

begin
for i = 1, 2, . . . ,m do

wi = φi(u,w1,w2, . . . ,wi−1);
Call node(wi);

end for
f := φf (u,w1,w2, . . . ,wm);

end
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Algorithm 4.7: The node function: node (v)
Global Variables: x1, . . . ,xm, z1, . . . , zm,d1, . . . ,dm, i, mode
Input / Output : v
begin

switch mode do
case mode == �original�

end
case mode == �init�

// (see Algorithm 4.1);
xi := v;
i := i+ 1;

end
case mode == �residual�

// (see Algorithm 4.2);
di := v − xi;
v := xi;
i := i+ 1;

end
case mode == �reduced�

// (see Algorithm 4.3);
zi := v − di;
v := zi;
i := i+ 1;

end

end

end
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4.2 Application to Optimization

The idea of lifting can also be used in the context of optimization. Let us see how we can use the
new trick to e�ciently generate the quantities needed for �lifted� Gauss-Newton and Sequential
Quadratic Programming (SQP) methods. The new methods shall need to solve only subproblems
in the original degrees of freedom to determine a step, while the iterations will be operating in
the whole variable space. We also need to show that the iterations made by the proposed lifting
approach and by full-space methods are identical.

4.2.1 A lifted Gauss-Newton method

Using the idea of lifting from above, we can develop a lifted Gauss-Newton method to solve
least-square type problems with (in)equality constraints. We consider the following nonlinear
least-squares optimization problem

min
u

1
2
‖r(u)‖2

2 (4.13a)

s.t.

h(u)
{

=
≥

}
0, (4.13b)

where r : Rnu → Rnres is a nonlinear vector valued function describing the residual vector, and the
function h : Rnu → Rnc represents nonlinear equality and inequality constraints.
The Gauss-Newton approach then uses, as mentioned in Section 3.3.3, the Jacobian Jr(u) := ∂r

∂u
(u)

to compute an approximation Jr(u)TJr(u) of the Hessian of the Lagrangian of the system. The
increments ∆u(k) are in the constrained Gauss-Newton method computed via the solution of the
subproblem

min
∆u

1
2
‖r(u(k)) + Jr(u

(k))∆u‖2
2 (4.14a)

s.t.

h(u(k)) + Jh(u(k))∆u
{

=
≥

}
0. (4.14b)

The Gauss-Newton approach can also be lifted, which o�ers impressive advantages in convergence
speed, as has been demonstrated by Bock [Boc87], Schlöder [Sch88] and Kallrath, et al. [KBS93].
The augmented problem after the introduction of intermediate values xi, i = 1, . . . ,m reads then
in the notation from Section 4.1

min
u,x

1
2
‖φr(u,x)‖2

2 (4.15a)

s.t.

φh(u,x)
{

=
≥

}
0 (4.15b)

φ(u,x)− x = 0. (4.15c)
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This results in the following augmented Quadratic Program (QP) for the step determination:

min
∆u,∆x

1

2

∥∥∥∥φr(u
(k),x(k)) +

∂φr

∂(u,x)
(u(k),x(k))

(
∆u
∆x

)∥∥∥∥2

2

(4.16a)

s.t.

φh(u(k)) +
∂φh

∂(u,x)
(u(k),x(k))

(
∆u
∆x

) {
=
≥

}
0 (4.16b)

φ(u(k),x(k))− x(k) +
∂φ

∂(u,x)
(u(k),x(k))

(
∆u
∆x

)
−∆x = 0. (4.16c)

While at �rst sight this transformation seems to be disadvantageous due to the increased size of the
QP and the need to compute the derivatives of the functions also with respect to the intermediate
values x, the problem can be set up and solved at roughly the cost of one Gauss-Newton iteration
of the original problem, which is formulated only with variables u as degrees of freedom. This was
discovered by Schlöder [Sch88] in the context of multiple shooting for parameter estimation and
extended to direct multiple shooting for optimal control by Schäfer [Sch05].
In order to compute the iterates e�ciently we propose here to simply lift the evaluation of f(u) :=
(r(u)T ,h(u)T )T and use Algorithm 4.4 to compute directly the condensed quantities a, A, b =
(b1

T ,b2
T )T and B = (B1

T ,B2
T )T needed for the condensed QP and the following step expansion.

The condensed QP is of the form

min
∆u

1
2
‖b1 + B1∆u‖2

2 (4.17a)

s.t.

b2 + B2∆u
{

=
≥

}
0. (4.17b)

It is then solved using the same least-squares QP solver as in the non-lifted Gauss-Newton method
to generate a solution ∆uk. This is then expanded using the relation ∆x(k) = a + A∆u(k). This
procedure obviously delivers the same result as solving (4.15). Numerical results for our new way
to implement this well-known approach are given in Section 8.1 and Section 8.3.

4.2.2 Nonlinear optimization via the lifted Newton method

We can also derive a partially-reduced Sequential Quadratic Programming (SQP) method for
nonlinear optimization that is based on the lifting idea. By �partially-reduced� we understand in
this context that the constraints resulting from the introduction of intermediate variables and the
intermediate variables themselves are eliminated from the subproblems, while the constraints of
the non-lifted nonlinear problem remain. Fully reduced methods also eliminate these constraints,
which leads to some inconveniences in the treatment of inequality constraints. For a discussion
of reduced SQP method see, e.g., [Sch96]. In the following we �rst show equivalence of the lifted
SQP iterations with a classical full-space SQP approach in the simpler unconstrained case, and
afterwards we treat the general constrained case.
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Full-space exact-Hessian SQP iterations

Let us consider the solution of an unconstrained Nonlinear Program (NLP). Assume that we
want to minimize a scalar function c(u), c : Rnu → R and we have lifted the evaluation of c
by introducing additional variables wi, i = 1 . . . ,m. This results in the augmented optimization
problem (with the notation from above):

min
u,w

φc(u,w1,w2, . . . ,wm) (4.18a)

s.t.

g(u,w) =


φ1(u) − w1

φ2(u,w1) − w2
...

φm(u,w1, . . . ,wm−1) − wm

 = 0, (4.18b)

with the corresponding KKT system for the �rst order necessary optimality conditions

∇uL(u,w,λ) = ∇uφc(u,w) +∇ug(u,w)λ = 0 (4.19a)

∇wL(u,w,λ) = ∇wφc(u,w) +∇wg(u,w)λ = 0 (4.19b)

∇λL(u,w,λ) = g(u,w) = 0, (4.19c)

using the notation∇uf(u) = ∂f
∂u

(u)T . The variables λ are the Lagrange multipliers for the equality
constraints concerning the intermediate values w and L(u,w) is the Lagrange function of the
augmented optimization system. The standard full-space exact-Hessian approach then employs a
standard Newton method to solve this root �nding problem, iterating in the full variable space of
(u,w,λ).

How to compute the full-space iterations e�ciently

To use the lifting approach e�ciently we start by evaluating the gradient ∇c of the original
objective using the principles of the adjoint mode of automatic di�erentiation that we described
earlier in Section 2.4.2 on page 32. This leads to the following evaluation sequence of the function
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f : u 7→ ū ≡ ∇uc with intermediate values w and w̄:

w1 = φ1(u) (4.20a)

w2 = φ2(u,w1) (4.20b)
...

wm = φm(u,w1, . . . ,wm−1) (4.20c)

y ≡ φc(u,w1, . . . ,wm) (4.20d)

w̄m = ∇wmφc (4.20e)

w̄m−1 = ∇wm−1φc +∇wm−1φmw̄m (4.20f)
...

w̄1 = ∇w1φc +
m∑
i=2

∇w1φiw̄i (4.20g)

ū = ∇uφc +
m∑
i=1

∇uφiw̄i. (4.20h)

We now lift all intermediate variables x := (w1, . . . ,wm, w̄m, . . . , w̄1) in the gradient evaluation
procedure f(u), i.e., we interpret (4.20a)-(4.20g) to be φ(u,x)− x = 0, as before, and (4.20h) as
ū = φf (u,x). Doing this, we can show that the lifted Newton iterations towards the solution of

φf (u,x) = 0 (4.21a)

φ(u,x)− x = 0 (4.21b)

and the iterations of a full-space exact-Hessian SQP method to solve system (4.19) in variables
u, w and λ are identical. To see this �rst observe that (4.20a) - (4.20c) is equivalent to (4.19c),
(4.20e) - (4.20g) to (4.19b) if we set λ ≡ w̄ and that (4.20h) with ū = 0 is equivalent to (4.19a).
As a result, we obtain the following theorem.

Theorem 4.1
The lifted Newton iterations in variables (u,x) applied to the lifted equivalent of the function
f(u) := ∇uc(u) are identical to the exact-Hessian full-space SQP iterates in variables (u,w,λ).

4.2.3 A lifted SQP method

Let us now consider the constrained NLP

min
u

c(u) (4.22a)

s.t.

h(u)
{

=
≥

}
0, (4.22b)
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where c : Rnu → R is a nonlinear cost function and h : Rnu → Rnconstr represents again nonlinear
equality and inequality constraints. The unlifted full step exact-Hessian SQP of Section 3.3.2 then
computes the increments by solving the quadratic problem

min
∆u

1
2
∆uTB(k)∆u +∇uc(u

(k))T∆u (4.23a)

s.t.

h(u(k)) +∇uh(u(k))T∆u
{

=
≥

}
0, (4.23b)

where B(k) = ∇2
uuL(u(k),µ(k)). The iteration uses the QP solution ∆uk as step in the primal

variables, and the corresponding QP multipliers as new multiplier guess µ(k+1). If we now introduce
intermediate variables wi, i = 1, . . . ,m we obtain the augmented optimization problem of the form

min
u

φc(u,w) (4.24a)

s.t.

φh(u,w)
{

=
≥

}
0 (4.24b)

g(u,w) = 0, (4.24c)

with the Lagrangian L(u,w,λ,µ) = φc(u,w) + λTg(u,w) + µTφh(u,w). The full-space QP
subproblem in case of an exact-Hessian SQP method then reads

min
∆u,∆w

1

2

(
∆u
∆w

)T
∇2L(·)

(
∆u
∆w

)
+∇φc(u(k),w(k))T

(
∆u
∆w

)
(4.25a)

s.t.

φh(u(k),w(k)) +∇φh(u(k),w(k))T
(

∆u
∆w

) {
=
≥

}
0 (4.25b)

g(u(k),w(k)) +∇g(u(k),w(k))T
(

∆u
∆w

)
= 0. (4.25c)

Again, we can use the lifting algorithm to compute the iterates more e�ciently than by solving the
full-space QP. By a straightforward application of the lifting idea to the combined function eval-

uation f(u,µ) := ∇L(u,µ) ≡
(
∇uc(u) +∇uh(u)µ

h(u)

)
we obtain the required condensed quantities

b1, b2, B1 and B2 for the condensed QP

min
∆u

1
2
∆uTB1∆u + b1

T∆u (4.26a)

s.t.

b2 + B2∆u
{

=
≥

}
0, (4.26b)
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which can afterwards be expanded using the multiplier of the QP subproblem solution to a step
∆µ and using a and A �nally to steps ∆w and ∆λ. Note that it is su�cient in this case
to build the condensed quantities only for the degrees of freedom u to obtain valid b1,b2 and
B1,B2 for the condensed QP. After the QP is solved and ∆µ is computed, one has to compute
one additional directional derivative to expand the step to ∆w and ∆λ. Again, equivalence
of iterations generated by the lifted algorithm and the full-space SQP iterations can be shown,
provided that the lifting is done as described in the unconstrained case. The derivation of this
equivalence and the details of the step expansion procedure for the constrained case are described
in the following section.
Note that all directional derivatives of both the lifted constraints and the lifted Lagrage gradient
needed in this context can be computed e�ciently by the means of Automatic Di�erentiation (AD)
and the forward/adjoint Taylor Coe�cient (TC) propagation presented in Chapter 2. For that,
the implementation of the Algorithms 4.7 and 4.4 can be modi�ed for the use in connection with
an AD tool like ADOL-C such that only the combined evaluation of the Lagrange function and
constraints, including calls to the node function, has to be supplied.

4.2.4 Equivalence of lifted SQP and full-space iterations in the
constrained case

We consider here the equality constrained nonlinear optimization problem

min
u
c(u) (4.27a)

subject to

h(u) = 0, (4.27b)

with c ∈ C2(Rnu ,R), h ∈ C2(Rnu ,Rneq), to show the equivalence and to explain the computation
of the reduces quantities. The results follow directly for the case of inequality constraints from the
equivalence of Newton's method for the KKT conditions and the exact-Hessian SQP presented in
Section 3.3.2.

Augmented problem

Introducing additionally intermediate values w occurring during evaluation of c and h as variables,
we obtain the equivalent augmented full-space problem

min
u,w

φc(u,w) (4.28a)

subject to

g(u,w) = 0, (4.28b)

φh(u,w) = 0, (4.28c)

with φc ∈ C2(Rnu × Rnw ,R), g ∈ C2(Rnu × Rnw ,Rnw), φh ∈ C2(Rnu × Rnw ,Rneq).
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KKT-Conditions for the full-space problem

We de�ne the Lagrangian of the augmented problem

L(u,w,λ,µ) := φc(u,w) + λTg(u,w) + µTφh(u,w).

The necessary �rst order optimality conditions are then given by

∇L(u∗,w∗,λ∗,µ∗) :=


∇uφc(v

∗) +∇ug(v∗)λ∗ +∇uφh(v∗)µ∗

∇wφc(v
∗) +∇wg(v∗)λ∗ +∇wφh(v∗)µ∗

g(v∗)
φh(v∗)

 !
= 0. (4.29)

Here and in the following ∇yψ ≡ ∂ψ
∂y

T
denotes the transpose of the Jacobian of a function ψ

with respect to y , ∇2
yzψ ≡

∂2ψ
∂y∂z

the (here mixed) Hessian and v = (u,w,λ,µ). For improved
readability we sometimes omit the arguments of the functions, if no ambiguity is caused.

Full-space iterations

We use Newton's Method to solve the system for the KKT-conditions, which is then an exact-
Hessian SQP method. It iterates

∇2
uuL ∇2

uwL ∇ug ∇uφh

∇2
wuL ∇2

wwL ∇wg ∇wφh

∇ugT ∇wgT 0 0
∇uφh

T ∇wφh
T 0 0

 ·


∆u
∆w
∆λ
∆µ

 = −


∇uL
∇wL

g
φh

 . (4.30)

From the assumed structure of g

g(u,w) =


φ1(u) −w1

φ2(u,w1) −w2
...

...
φm(u,w1, . . . ,wm−1) −wm

 (4.31)

we have

∇wgT (u,w) =


−Inw1

0 . . . 0
∂φ2

∂w1
−Inw2

. . .
...

...
. . . . . . 0

∂φm

∂w1
. . . ∂φm

∂wm−1
−Inwm

 (4.32)

and thus ∇wg and ∇wgT are invertible. Therefore we can solve the third equation of (4.30) for
∆w and the second equation for ∆λ to obtain

∆w = ax + Au
x∆u, with ax := −∇wg−Tg, Au

x := −∇wg−T∇ugT (4.33)
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and

∆λ = aλ + Au
λ∆u + Aµ

λ∆µ (4.34)

with

aλ := −∇wg−1
(
∇wL+∇2

wwL(−∇xg−Tg)
)

(4.34a)

Au
λ := −∇wg−1

(
∇2

wwL(−∇wg−T∇ugT ) +∇2
wuL

)
(4.34b)

Aµ
λ := −∇wg−1∇wφh. (4.34c)

Now we can condense the problem to(
∇2

uuL+∇2
uwLAu

x +∇ugAu
λ ∇uφh +∇ugAµ

λ

∇uφh
T +∇wφh

TAu
x 0

)
·
(

∆u
∆µ

)
= −

(
∇uL+∇2

uwL ax +∇ug aλ
φh +∇wφh

Tax

)
, (4.35)

solve for ∆u,∆µ and afterwards expand to ∆w,∆λ using (4.33) and (4.34) to obtain the com-
plete full-space SQP step. Note that this system is symmetric of the form(

B1 B2
T

B2 0

)
·
(

∆u
∆µ

)
= −

(
∇uL+∇2

uwL ax +∇ug aλ
φh +∇wφh

Tax

)
, (4.36)

with symmetric

B1 = ∇2
uuL −∇2

uwL∇wg−T∇ugT −∇ug∇wg−1∇2
wuL

+∇ug∇wg−1∇2
wwL∇wg−T∇ugT (4.37)

and

B2 = ∇uφh
T −∇wφh

T∇wg−T∇ugT . (4.38)

Lifted Newton formulation

We assume that the combined evaluation of(
∇uLorig

h

)
=

(
∇uc+∇uhµ

h

)
, (4.39)

is lifted in such a way that the computation of L and h use common intermediate values w which
are introduced as nodes. Furthermore, the evaluation of ∇uL is done in the way of the adjoint
mode of automatic di�erentiation, and the corresponding adjoint values w̄ are also introduced as
nodes.
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The nodes (w, w̄) are then de�ned by the equations

γ(u,w, w̄,µ) =

(
γ1(u,w)

γ2(u,w, w̄,µ)

)
=

(
g(u,w)

γ2(u,w, w̄,µ)

)
=

φ1(u) −w1

φ2(u,w1) −w2
...

φm(u,w1, . . . ,wm−1) −wm

∂φc(u,w1,...,wm)
∂wm

+ ∂φh(u,w1,...,wm)
∂wm

T
µ −w̄m

...
∂φc(u,w1,...,wm)

∂w2
+ ∂φh(u,w1,...,wm)

∂w2

T
µ+

∑m
i=3

∂φi(u,w1,...,wi−1)

∂w2

T
w̄i −w̄2

∂φc(u,w1,...,wm)
∂w1

+ ∂φh(u,w1,...,wm)
∂w1

T
µ+

∑m
i=2

∂φi(u,w1,...,wi−1)

∂w1

T
w̄i −w̄1


= 0 (4.40)

and for the gradient ∇uL of the Lagrangian we have

∇uL(u, w, w̄,µ) =
(
∂φc(u,w1,...,wm)

∂u
+ ∂φh(u,w1,...,wm)

∂u

T
µ+

∑m
i=1

∂φi(u,w1,...,wi−1)

∂u

T
w̄i

)
. (4.41)

Following the lifting approach we then apply Newton to solve the root �nding problem
∇uL(u,w, w̄,µ)
φh(u,w)
g(u,w)

γ2(u,w, w̄,µ)

 = 0. (4.42)

We compare now this system with system (4.30) from the full-space approach. We observe that,
if identifying w̄i with λi and exchanging equations 2 and 4 in (4.42), the systems are identical.
As a result, the Newton method we apply to these systems in both cases will lead to the same
iterations, which shows the equivalence of the lifted SQP approach and full-space exact-Hessian
iterations. Note that by construction the lifted approach leads to the same condensed system as
the full-space approach.
Furthermore, we observe that for the computation of B1 and B2 of the symmetric system (4.36)
by using the modi�ed function of the lifting approach only directional derivatives in u are needed.
After the computation of ∆u and ∆µ from the condensed system we �rst can expand the step
to ∆w via (4.33), as ax and Au

x have been computed together with B1,B2. Afterwards, we need
one additional directional derivative of the modi�ed function to expand the step to ∆λ via (4.34).

4.3 Local Convergence Analysis of Lifted Newton Methods

While a main contribution of this thesis lies in the derivation of easy-to-implement algorithms
for lifted Newton methods that each have the same computational complexity per iteration as
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the corresponding non-lifted methods, the idea of �lifting� in itself is an old idea. However, its
convergence properties are not well understood. For solution of boundary value problems with
underlying nonlinear ODE models, the multiple shooting method (which can be regarded a lifted
algorithm) is since long known to outperform the single shooting method [Osb69]. Three reasons
are often cited for the superiority of the �lifted� compared to the non-lifted Newton approaches:

� more freedom for initialization,

� better conditioned and block-sparse linear systems, and

� faster local convergence.

While the �rst two reasons are well-understood, no detailed local convergence analysis exists so far
that explains this superior local convergence of �lifted� Newton methods. In order to make a �rst
step to approach this question, we regard a model root �nding problem f(u) = 0 where we have
a chain of nonlinear functions that each only depend on the output of the immediate predecessor
function, and that all have the same input and output dimensions:

x1 = φ1(u), x2 = φ2(x1), . . . ,xm = φm(xm−1) and φf (xm) ≡ xm+1(xm).

In order to further simplify the following discussion, we will now restrict ourselves to the simplest
case, were u and all other variables are scalar. We regard the local convergence rate in the
neighborhood of the solution. At this solution (u∗,x∗), all Jacobians must be invertible. Therefore,
by suitable a�ne variable transformations for x0 := u and for x1, . . . , xm we can both assume that
the solution is zero for all variables, and that all functions φi are given by

φi(x) = x+ bi(x)2 +O(|x|3). (4.43)

Here the a�ne transformations to the new variables and functions can be expressed as follows

xnewi = (xi − x∗i )/ai a0 := 1, ai :=
i∏

j=1

φ′j(x
∗
j−1), 1 ≤ i ≤ m+ 1, and

φnewi (xnewi−1 ) =
1

ai
(φi(xi−1)− x∗i ) , bi :=

φ′′i (x
∗
i−1)

2φ′i(x
∗
i−1)

i−1∏
j=1

φ′j(x
∗
j−1)

4.3.1 Local Convergence of the Non-Lifted Newton Method

In the simpli�ed setting outlined above, the non-lifted function f(u) is given by

f(u) = φm+1(φm(. . . φ1(u) . . .)) = u+
(m+1∑

i=1

bi

)
u2 +O(|u|3)
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and its derivative is given by

f ′(u) :=
∂f

∂u
(u) = 1 + 2

(m+1∑
i=1

bi

)
u+O(|u|2).

To regard the local convergence behavior near zero, we �rst note that for any Newton method
holds that

u(k+1) = u(k) − f ′(u(k))−1f(u(k)) = f ′(u(k))−1
(
f ′(u(k))u(k) − f(u(k))

)
and due to the fact that in our case

f ′(u(k))u(k) =

(
u(k) + 2

(m+1∑
i=1

bi

)
(u(k))2 +O(|u(k)|3)

)
this leads to the iteration formula

u(k+1) =
(m+1∑

i=1

bi

)
(u(k))2 +O(|u(k)|3).

Thus, the local contraction constant for quadratic convergence is given by
(∑m+1

i=1 bi

)
.

4.3.2 Local Convergence of the Lifted Newton Method

In the simpli�ed setting outlined above, the lifted function g(u,x) is given by

g(u,x) =


u+ b1u

2 − x1

x1 + b2x
2
1 − x2

...
xm−1 + bmx

2
m−1 − xm

xm + bm+1x
2
m

+O

(∥∥∥∥( u
x

)∥∥∥∥3
)

(4.44)

and its derivative ∂g(u,x)
∂(u,x)

is given by
1 + 2b1u −1

1 + 2b2x1 −1
. . . . . .

1 + 2bmxm−1 −1
1 + 2bm+1xm

+O

(∥∥∥∥( u
x

)∥∥∥∥2
)
.

From this particular form follows �rst, that

∂g(u,x)

∂(u,x)
·
(
u
x

)
=


u+ 2b1u

2 − x1

x1 + 2b2x
2
1 − x2

...
xm1 + 2bmx

2
m1

− xm
xm + 2bm+1x

2
m

+O

(∥∥∥∥( u
x

)∥∥∥∥3
)
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and second, that

∂g(u,x)

∂(u,x)

−1

=


1 1 1 . . . 1

1 1 . . . 1
. . . . . .

...
1 1

1

+O

(∥∥∥∥( u
x

)∥∥∥∥) .
Using again the formula for the Newton iteration(

u
x

)(k+1)

=
∂g(u(k),x(k))

∂(u,x)

−1
(
∂g(u(k),x(k))

∂(u,x)
·
(
u
x

)(k)

− g(u(k),x(k))

)
we obtain the iteration

u

x1

...

xm−1

xm



(k+1)

=



b1

(
u(k)
)2

+
∑m+1

i=2 bi

(
x

(k)
i−1

)2

∑m+1
i=2 bi

(
x

(k)
i−1

)2

...

bm

(
x

(k)
m−1

)2

+ bm+1

(
x

(k)
m

)2

bm+1

(
x

(k)
m

)2


+O

∥∥∥∥∥
(
u
x

)(k)
∥∥∥∥∥

3
 .

It can be seen that, neglecting third order terms, the last component, xm, converges independently
from all others with quadratic contraction constant bm+1. All other components xi converge based
on their own quadratic contraction constant, bi+1, and those of the higher indexed components,
and the same holds for u. Thus, xm is leading the convergence, with xm−1 as follower, etc, until
u.

4.3.3 Comparison of Lifted and Non-Lifted Newton Method

We have to compare the non-lifted quadratic convergence constant(m+1∑
i=1

bi

)
with the interdependent chain of quadratically converging sequences xi in the lifted case, each with
its dominant quadratic convergence constant bi+1. Let us assume we start the non-lifted variant
close to the solution with u(0) = ε, and the lifted variant with the corresponding values resulting
from a forward function evaluation, which in our special setting turn out to be x(0)

i = ε+O(|ε|2).
As expected, the �rst step in u is identical in both methods, and results in

u(1) =
(m+1∑

i=1

bi

)
ε2 +O(|ε|3).
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However, in the lifted variant, the values xi have been contracted according to their own contrac-
tion constants, to values

x
(1)
j =

( m+1∑
i=j+1

bi

)
ε2 +O(|ε|3).

In the second iteration, the di�ering values for x will already lead to di�erent iterates u(2). Which
of the two methods converges faster depends on the signs of the bi.

Same direction of curvature If all bi have the same sign, i.e., all subfunctions φi are curved in
the same direction, then the contraction constants for all xi are better than the non-lifted variant,
with the last component xm converging fastest. The improved convergence speed of x spills over
to the convergence of u and therefore makes the lifted Newton method converge faster.
To see the e�ect at an example, let us regard the simplest setting with only one intermediate
function evaluation, i.e., m = 1, with constants b1 = b2 = 1. After four iterations, the value of
u in the non-lifted variant is u(4) = 215 ε16 while in the lifted variant it is u(4) = 677 ε16 which is
more than two decimal digits more accurate.

Opposite directions of curvature In the other extreme, let us regard a setting where all bi
add to zero, but are each independently di�erent from zero. Note that this can only occur if the
subfunctions φi have di�erent directions of curvature. In this case, the non-lifted variant converges
even faster than quadratically, while the lifted variant has the usual quadratic rate.
To see this at at an even more extreme example, regard the simple chain of two functions φ1(u) =
1
2
(1 + u)2 − 1

2
and φ2(x1) =

√
1 + 2x1 − 1. These functions satisfy our assumptions with b1 = 1

and b2 = −1. Moreover, they are constructed such that f(u) = u. As f is a linear function,
the non-lifted Newton method converges in the �rst iteration, u(1) = 0, while the lifted Newton
method performs the same favorable �rst step in u, but as x1 is not yet converged, it will continue
iterating and changing u until both variables have been converged to su�cient accuracy.

Practical Advice In a practical application, even if we would have a chain of subsequent func-
tions each depending only on the output of its predecessor, we do not know which local curvature
constants the typically multi-input-multi-output functions φi would have relatively to each other,
after the a�ne variable transformation based on linearization at the solution, to make them com-
parable. However, we might make an educated guess in the following case that occurs, e.g., in the
simulation of continuous time dynamic systems: if we have repeated calls of the same function,
i.e., φi+1 = φi, and the variables xi+1 and xi di�er only slightly then we can expect lifting to have
a favorable e�ect on the required number of Newton iterations, even if both methods are initialized
identically. A second case where a lifted approach surely is bene�cial is the case where the freedom
for initializing the xi based on extra knowledge can be used, e.g., when state measurement data
are present in parameter estimation problems [Boc87]. On the other hand, lifting should not be
applied to simple linear subfunctions φi, i.e., scalar multiplications and additions/subtractions,
as no accelerated convergence can be gained, but memory requirement and operation counts are
increased. In all other cases, we do not dare to make predictions, but suggest to experiment with
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the lifted and non-lifted Newton methods in speci�c application examples. It is one aim of this
thesis to propose an algorithmic trick and a software package that makes the switching between
the two methods as simple as possible. In the past, the implementation of structure-exploiting
lifted algorithms was often a tedious task, deterring many users that might have bene�tted from
the lifted approach. The insight gained in this section can be expressed by the following theorem
that characterizes the local convergence speed of lifted and non-lifted Newton methods.

Theorem 4.2 (Local convergence speed of lifted and non-lifted Newton methods)
Let fi : R → R, 1 ≤ i ≤ m + 1 be a chain of twice continuously di�erentiable scalar functions,
such that f(u) = φm+1(φm(. . . (φ1(u)) . . .)), x1 = φ1(u) and xi = φi(xi−1), 2 ≤ i ≤ m+ 1. Assume
that the solution of the problem f(u) = 0 is given by u∗ and that in the solution the Jacobians of
φi, 1 ≤ i ≤ m+ 1 are invertible. De�ne

ai :=
i∏

j=1

φ′j(x
∗
j−1), 1 ≤ i ≤ m+ 1 (4.45a)

b1 :=
φ′′1(u∗)

2φ′1(u∗)
, (4.45b)

bi :=
φ′′i (x

∗
i−1)

2φ′i(x
∗
i−1)

φ′i−1(x∗i−2) . . . φ′1(u∗), 2 ≤ i ≤ m+ 1, (4.45c)

with x∗i = φi(φi−1(. . . (φ1(u∗)) . . .)). Then the local convergence speed of an non-lifted Newton
method for the solution of f(u) = 0 is given by

|u(k+1) − u∗| ≤

(
m+1∑
i=1

bi

)
|u(k) − u∗|2 +O(|u(k) − u∗|3),

and the local convergence of the lifted Newton iterates is componentwise staggered, following the
estimation∣∣∣∣∣x(k+1)

i − x∗i
ai

∣∣∣∣∣ ≤
m+1∑
j=i+1

bj

∣∣∣∣∣x
(k)
j−1 − x∗j−1

aj

∣∣∣∣∣
2

+O

(∥∥∥∥( u(k) − u∗
x(k) − x∗

)∥∥∥∥3
)
, 1 ≤ i ≤ m

|u[k+1] − u∗| ≤ b1|u(k) − u∗|2 +
m+1∑
j=i+1

bj

∣∣∣∣∣x
(k)
j−1 − x∗j−1

aj

∣∣∣∣∣
2

+O

(∥∥∥∥( u(k) − u∗
x(k) − x∗

)∥∥∥∥3
)
.

Cost comparison

To compare the overall numerical e�ort for the solution of the example we analyze the cost of a
single iteration in the lifted, non-lifted and also full-space approach in more detail. We estimate
computational e�ort in terms of �oating point operations (�ops). We follow the usual convention
that an addition, subtraction and multiplication, as well as a combined multiply-add cost 1 �op,
while one division takes 4 �ops. The cost in �ops for the evaluation of the subfunctions φi are
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denoted with cφi
, where we set for notational convenience φm+1 := φf . The cost to compute their

directional derivative cdφi
. To the cost to solve a n-dimensional linear equation system we refer

with cLS(n), which can in general be estimated with cLS(n) = 2n3+3n2−5n
6

+ 2n(n + 1) �ops. For
simplicity we assume one-dimensional node values and omit the cost of memory access. We split
the cost for one iteration into the cost for (cf. Algorithm 4.4)

� evaluation of the residuals and the value of f ,

� computation of the quantities of the Newton system,

� the solution of the Newton system to compute the step,

� application of the step, which in the lifted case includes the cost for the expansion of the
step in the controls u to the the step in the nodes.

Table 4.1 on the next page shows a comparison of these costs for the three approaches, as well
as the resulting overall e�ort. Note that the cost estimation in the full-space approach is based
on the assumption that no further internal structure of the problem is known and exploited than
the decomposition of f(u) into the sequence of mappings φi. Further exploitation of the internal
structure might lead to a higher e�ciency of a full-space approach, but already this relative simple
exploitation of structure will lead to signi�cantly higher implementation e�ort compared to the
non-lifted and lifted approach. Additionally, to be e�cient, it has to be adjusted manually for
each new problem (and also each new decomposition of f).

4.4 A tutorial root �nding example

To end this chapter, we illustrate the numerical behavior of the lifted Newton method, along with
a convergence and cost comparison discussion, using a tutorial root �nding problem that is given
by

f(u) := u16 − 2 = 0.

We introduce m = 4 intermediate values x1, . . . , x4 and lift the evaluation of f in the following
way:

x1 := u2, x2 := x2
1,

x3 := x2
2, x4 := x2

3,

f := x4 − 2.

To solve the problem we employ Algorithm 4.4, as well as a standard full-step Newton iteration
applied to the non-lifted problem. The termination criterion is based on the Euclidean norm of
the function value, plus, in the lifted case, the Euclidean norm of the actual node residual. We
require this sum to be smaller than 10−6.
For the initial value u(0) = 0.8 we obtain convergence after 7 iterations in the lifted case and 27
iterations in the non-lifted. The progress of the iterates towards the solution during the iterations is
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non-lifted lifted

residual evaluation
∑m+1

i=1 cφi
∑m+1

i=1 cφi +m

Newton system nu
∑m+1

i=1 cdφi (nu + 1)(
∑m+1

i=1 cdφi + 2m) + nu
step computation cLS(nu) cLS(nu)
step application nu nu +m+ num

full-space

residual evaluation
∑m+1

i=1 cφi +m

Newton system
∑m+1

i=1 (nu + i− 1)cdφi
step computation cLS(nu +m)
step application nu +m

overall e�ort per iteration

non-lifted cLS(nu) +
∑m+1

i=1 [cφi + nucdφi ] + nu
lifted cLS(nu) +

∑m+1
i=1 [cφi + (nu + 1)cdφi ] + 3num+ 3m+ 2nu

full-space cLS(nu +m) +
∑m+1

i=1 [cφi + (nu + i− 1)cdφi ] + 2m+ nu

Table 4.1: Cost analysis (in �ops) for one iteration of an non-lifted, lifted and a full-space Newton method. De-
scribed are the costs for the di�erent phases of an iteration (top, middle) and the overall cost for one
iteration (bottom). nu is the number of controls, m the number of nodes and cφi

, cdφi
describe the cost

of an evaluation and a directional derivative of the subfunction φi, respectively. The quantity cLS(n)
stands for the e�ort to solve a linear equation system with n unknowns.

depicted in Figure 4.1 on the following page. The �rst iteration is identical, as it is always the case
if the node values x in the lifted algorithm are initialized by a function evaluation (cf. Algorithm
4.1). In subsequent iterations we observe that the lifted version bene�ts from the additional
degrees of freedom which results in a much faster progress towards the solution u∗ ≈ 1.044.

Convergence analysis

We now analyze the local convergence of the test example. f was decomposed into φi(x) = x2,
1 ≤ i ≤ 4 and φ5(x) = x− 2, with the solution (u∗, x∗1, x

∗
2, x
∗
3, x
∗
4) = ( 16

√
2, 8
√

2, 4
√

2,
√

2, 2). We then
compute using Theorem 4.2

b1 =
1

2 16
√

2
≈ 0.478801,

b2 =
1

2 8
√

2
2

16
√

2 =
1

16
√

2
≈ 0.957603,

b3 =
1

2 4
√

2
4

16
√

2
8
√

2 =
2

16
√

2
≈ 1.91521,

b4 =
1

2 2
√

2
8

16
√

2
8
√

2
4
√

2 =
4

16
√

2
≈ 3.83041,

b5 = 0.
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Figure 4.1: Iterates u(k) of lifted and non-lifted approach for the solution of f(u) := u16 − 2 = 0, and solution
value u∗ ≈ 1.044. After an identical �rst iteration, which is due to the automatic initialization of the
intermediate values using a function evaluation, the lifted method makes much faster progress towards
the solution.

This leads to a non-lifted local quadratic contraction constant of b ≈ 7.18202.
Figure 4.2 on the next page shows the error of the iterates and the convergence rates for each
iteration during solution with the non-lifted and the lifted Newton method. The convergence rates
are determined numerically for each component using the formula

β(k)
y ≈

‖y(k) − y∗‖
‖y(k+1) − y∗‖2

.

We observe, besides the faster convergence of the lifted iterations already described, that, as we
approach the solution, the predicted convergence rates are reached in both cases. Additionally,
it can be seen, as predicted by Theorem 4.2, that in the lifted case the components converge in
a staggered way, starting with x4, which converges due to linearity of φ5 in one step, followed by
x3, x2, ... until �nally u is converged.
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Figure 4.2: Shown is a comparison of the behavior of the iterates of the non-lifted and lifted Newton method on the
root �nding example f(u) = u16−2 = 0 with start value u0 = 0.8 and tolerance tol = 10−6. Depicted is
the Euclidean norm of the errors of the iterates (upper left pictures) and the local convergence estimates
(upper right pictures), where in the lifted case the quantities are depicted componentwise with exception
of x4, as it converges after the �rst iteration due to linearity of φ5. Additionally, the lower 4 pictures
show for the lifted method for each component (except x4) the convergence rate estimate as well as its
theoretical prediction. We observe that in both the non-lifted and the lifted case the convergence rates
�nally reach the predicted values. Furthermore the lifted case shows the staggered convergence of the
components that is predicted by theorem 4.2.





5 Solution of initial value problems for

ODEs and index 1 DAEs

In this chapter we address the task of computing solutions of Initial Value Problems (IVPs) for
Ordinary Di�erential Equations (ODEs) and Di�erential Algebraic Equations (DAEs) reliably
and e�ciently. We present the needed underlying theory as well as e�cient methods for the fast
numerical solution of these types of IVPs. The topic of e�cient derivative computation for these
solutions is addressed in the next chapter.
This chapter is organized as follows. In Section 5.1 we state some well-known facts from DAE
theory. In Section 5.2 the theoretical foundation and the basic properties of the numerical methods
we use for the solution of the ODE- and DAE-IVPs are presented. Finally, in Section 5.3 we address
the speci�c strategies implemented in our solver DAESOL-II to e�ciently solve the ODE/DAE-
IVPs based on variable order variable stepsize backward di�erentiation formulas (BDF).

5.1 Basic DAE theory

In this section we shortly present the de�nitions and theoretical properties of DAE systems we use
later during the description of the strategies for the numerical solution. Furthermore, we shortly
address existence and uniqueness of the solutions.

5.1.1 Notation and de�nitions

The most general type of a DAE is the fully implicit DAE, which cannot explicitly be split up
into a di�erential and an algebraic part.

De�nition 5.1 (Fully implicit DAE)
A fully implicit DAE is a system of equations

b(t,y(t), ẏ(t)) = 0, (5.1)

where b : R × Rny × Rny → Rny and y : R → Rny are vector-valued functions and t is the
independent variable. Here and in the following ẏ means the derivative of y with respect to t.

It is often the case in our applications that the DAE problem can be described in a more structured
way, which leads to the type of the linearly implicit DAE.

105
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De�nition 5.2 (Linearly implicit DAE)
A DAE is called linearly implicit, if it can be divided into a di�erential and an algebraic part
with corresponding di�erential variables x and algebraic variables z, and the time derivatives of
x enter the problem linearly, which results in the following form.

A(t,x(t), z(t)) ẋ(t) = f(t,x(t), z(t)) ∈ Rnx (5.2)

0 = g(t,x(t), z(t)) ∈ Rnz ,

where A(t,x(t), z(t)) ∈ Rnx×nx , x : R → Rnx and z : R → Rnz . If A is equal to the identity
matrix, we call the DAE semi-explicit.

De�nition 5.3 (Solution of a DAE)
A classical solution of a DAE on an interval I ⊂ R is a continuously di�erentiable function

y(t) =

(
x(t)
z(t)

)
: R→ Rny = Rnx × Rnz ,

which ful�lls the given equations for all t ∈ I.

From these de�nitions we see that a DAE can be understood as an ODE with some algebraic
constraints. These constraints de�ne a manifold on which the solution of the DAE remains.
Furthermore, every su�ciently smooth DAE can be transformed into an ODE by di�erentiation
of the algebraic part of the system with respect to t. For the characterization of the algebraic part
of a DAE system and the relationship between ODEs and DAEs the di�erential index, invented
by Gear [Gea88], plays an important role.

De�nition 5.4 (Di�erential index of a DAE)
The implicit DAE

b(t,y(t), ẏ(t)) = 0

is of di�erential index k ∈ N (short: index), if k is the smallest number, such that ẏ(t) is fully
determined by the (k + 1) equations:

b(t,y(t), ẏ(t)) = 0

d

dt
b(t,y(t), ẏ(t)) = 0

...
dk

dtk
b(t,y(t), ẏ(t)) = 0.

Example 5.5 (Example of an index 1 DAE)
Consider a semi-explicit DAE and the (total) derivative of the algebraic equations g(t,x(t), z(t)) =
0 with respect to t. We obtain (omitting the arguments)

gt + gxẋ + gzż = 0,
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where subscripts denote the partial derivative with respect to the corresponding variables. Let gz

be regular, then we can transform the equation to

ż = −gz
−1(gt + gxẋ)

and we end up with the coupled ODE system

ẋ(t) = f(t,x(t), z(t))

ż(t) = −gz
−1(t,x(t), z(t)) [gt(t,x(t), z(t)) + gx(t,x(t), z(t))ẋ(t)] .

Therefore, by De�nition 5.4 a semi-explicit DAE is of di�erential index 1 if gz is regular.

Remark 5.6 (DAEs of index larger than 1)
A DAE with index k > 1 can be transformed into an index 1 DAE by di�erentiating the algebraic
equations (k − 1) times with respect to t. The analytic solution of an index-reduced system
full�lls the algebraic equations of the original problem and their �rst (k− 1) derivatives. Hence it
is identical to the analytic solution of the original problem. The system consisting of the algebraic
equations and their �rst (k − 1) derivatives is called the invariants of the index reduced system.

Remark 5.7 (Numerical problems)
The numerical solution of DAEs with index larger than 1 is more complicated than it would
seem after the previous explications. During the numerical computation it is inevitable that
the numerical solution leaves the manifold de�ned by the invariants due to discretization and
round-o� errors. Therefore, it has to be ensured that the invariants remain ful�lled during the
computation. The numerical treatment of such problems is described in more details in the works
of Eich [Eic91, Eic93], von Schwerin [vS97], Petzold et al. [PRG+97] or Pantelides et al. [PSV94]
and will not further be discussed in this thesis.

The next theoretical concept that is important for the numerical treatment of DAEs is the per-
turbation index. It describes the sensitivity of the system with respect to small disturbances in
the right hand side or the initial values of the system. It was introduced by Hairer et al. [HLR89].

De�nition 5.8 (Perturbation index of a DAE)
For a DAE (5.1) the perturbation index along a solution y(t), t ∈ [t0, tf ] is de�ned as the smallest
natural number k, such that for all functions ŷ(t) with the defect

b(t, ŷ(t), ˙̂y(t)) = δ(t)

the estimate

‖ ŷ(t)− y(t) ‖ ≤ C(b, |tf − t0|)
(
‖ ŷ(0)− y(0) ‖

+ max
0≤t̃≤t

‖
∫ t̃

0

δ(τ)dτ ‖ (5.3)

+ max
0≤t̃≤t

‖ δ(t̃) ‖ + . . .+ max
0≤t̃≤t

‖ δ(k−1)(t̃) ‖
)
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holds, provided that δ(t) is small enough. Here C(b, |tf − t0|) stands for a constant that depends
only on the function b and the length of the time horizon.

Remark 5.9
The importance of the perturbation index for the numerical treatment lies in the characterization
of the in�uence of round-o� errors in b on the numerical solution. If the DAE is of perturbation
index k, we have as part of (5.3) the (k − 1)-th derivative of δ. While the perturbation δ itself
can be very small (e.g., in the order of the machine precision), its derivative can be very large.
In the end this may lead to problems in the numerical solution if k is larger than 1. It can be
shown that the accuracy of the numerical solution is in�uenced by round-o� and discretization
errors with order O(h(1−k)), where h is the maximum stepsize during the numerical solution.

Gear showed the following connection between di�erential index and perturbation index of a DAE,
for a proof see [HW96].

Theorem 5.10 (Gear, 1990)
For the DAE (5.1) it holds that

pi ≤ di+ 1

if the di�erential index di and the perturbation index pi exist.

Remark 5.11
The perturbation index is 0, if the estimate

‖ ŷ(t)− y(t) ‖≤ C(b, |tf − t0|)

(
‖ ŷ(0)− y(0) ‖ + max

0≤t̃≤t
‖
∫ t̃

0

δ(τ)dτ ‖

)
holds. This is always the case for ODEs with Lipschitz-continuous right hand side. In case of
semi-explicit DAEs it can be shown that the di�erential index is equal to the perturbation index.

5.1.2 Existence and uniqueness of solutions

In the theory of ODE systems there exist quite simple theorems concerning existence and unique-
ness of initial values problems, e.g., the well-known theorems of Peano and Picard-Lindelöf (see,
e.g., [Wal93]). Some results from ODE theory can be transferred to the DAE context by under-
standing DAEs as ODEs with the restriction that the solution has to lie on a speci�c manifold,
as described above. This approach was used for example by Rheinboldt [Rhe84].
For the general solvability of DAEs we have the following theorem.

De�nition 5.12 (Solvability of DAEs)
Let I ⊂ R be open, Ω an open and connected subset of R × Rny × Rny and b : Ω → Rny

di�erentiable. The DAE (5.1) is then solvable in Ω on the interval I, if there is an r-dimensional
family of solutions Y(t, c), that are de�ned on a connected set I × Ω̃, Ω̃ ⊂ Rr, such that

1. Y(t, c) is de�ned for all t ∈ I and for all c ∈ Ω̃,
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2. (t,Y(t, c), Ẏ(t, c)) ∈ Ω for (t, c) ∈ I × Ω̃,

3. if w(t) is another solution with (t,w(t), ẇ(t)) ∈ Ω, then it holds w(t) = Y(t, c) for a certain
c ∈ Ω̃,

4. the graph of Y as function of (t, c) is a (r + 1)-dimensional manifold.

This concept of solvability implies that no bifurcations exist. For the case of a linearly implicit
DAE (5.2) of index 1 one obtains the following results.

Proposition 5.13 (Existence and uniqueness for index 1 DAEs)
Let A : R × S −→ Rnx × Rnz , f : R × S −→ Rnx and g : R × S −→ Rnz be Cr-functions, r ≥ 2,
S ⊂ Rnx+nz open and y = (xT , zT )T ∈ Rny .
Then

S0 =

{
(t,y) ∈ R× S : rank

(
A(t,y) 0 −f(t,y)
gx(t,y) gz(t,y) gt(t,y)

)
= ny

}
is an open subset of R1+ny . For the manifold

M(g,S) = {(t,y) ∈ R× S : g(t,y) = 0},

it holds in the case ofM0 = M(g,S) ∩ S0 6= ∅ thatM0 is a submanifold ofM(g,S) and there
exists for all (t0,y0) a unique Cr−1-solution of (5.2) which goes through (t0,y0).

Remark 5.14 (Numerical solution of index 1 DAEs)
Be

S1 =

{
(t,y) ∈ R× S : rank

(
A(t,y) 0
gx(t,y) gz(t,y)

)
= ny

}
and

M1 =M(g,S) ∩ S1 6= ∅.

For the numerical solution of DAE (5.2) with standard methods additionally (t,y) ∈ M1 should
hold for all points of the solution.
Then the matrices A and gz are regular for all (t,y) ∈M1, their inverse matrices are bounded and
for consistent initial values (t0,y0) ∈M1 the initial value problem for (5.2) has a unique solution
y(t). This solution depends continuously and (r − 1)-times di�erentiable on the initial values x0.
In this case z0 is uniquely determined by x0 via the consistency conditions g(t0,x0, z0) = 0.

5.2 Numerical solution of initial value problems for DAEs

of index 1

In the following we introduce the class of Linear Multistep Methods (LMMs) for the solution
of IVPs for ODEs and DAEs. We will lay the focus on the Backward Di�erentiation Formulas
(BDFs), a particular class of LMMs which has proven itself to be very e�cient for the numerical
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solution of sti� ODEs and DAEs. We will present and analyze the methods �rst for ODEs on
equidistant grids. Afterwards we switch to variable grids and �nally to the case of linearly implicit
DAEs. For further details on these topics we refer, e.g., to the text book of Strehmel and Weiner
[SW95] or the text books of Hairer et al. [HW96, HNW93]. In these books also the proofs of that
theorems that are just stated here, and for which no other references are given, can be found.

5.2.1 Linear multistep methods on equidistant grids

We �rst consider the numerical solution of initial value problems for ODEs on equidistant grids.
It is assumed that the initial value problems are of the following type.

De�nition 5.15 (IVP for ODEs)
Let be I = [t0, tf ] ⊂ R, f : R× Rnx −→ Rnx . The initial value problem is de�ned as the problem
of �nding a function x : R −→ Rnx which ful�lls the system

ẋ(t) = f(t,x(t))

and the initial values
x(t0) = x0.

t0 is called the start or initial time and tf is called the end or �nal time.

Remark 5.16 (Parameter dependency of the IVP)
Note that especially in the framework of an optimization problem the right hand side function
f , and possibly also the initial values x0, could also depend on some system parameter, control
functions or similar. As these are usually either constant or depend at most on t for a speci�c
IVP solution process, we can skip them for notational simplicity in the following discussion. We
will consider the more general parameter dependent case in Chapter 6 on sensitivity generation.

Remark 5.17 (Sti�ness)
Particularly dynamic models of chemical and biological processes, occasionally also of mechanical
and electrical processes, often possess a certain property called sti�ness. This was discovered
and �rst described by Curtiss and Hirschfelder [CH52]. Summarized their description is that sti�
equations are equations on which certain implicit methods, namely BDF methods, work better,
usually tremendously better, than explicit ones. Hairer and Wanner [HW96] characterize this even
more concise: Sti� equations are problems for which explicit methods do not work. Until today
there is no standardized de�nition of sti�ness. Usual characterizations for sti� systems are

� The IVP has slowly changing solutions and other solutions in their neighborhood approach
them fast,

� There exist eigenvalues λi of the matrix ∂f
∂x

for which

<(λi)� 0

holds, where f is the right hand side of an ODE with∥∥∥ ∂f

∂x
(t,x(t))

∥∥∥|tf − t0| � 1.
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A well known example for a sti� system is a system of chemical reactions where some reactions
take place at a much faster rate than others. It should be noted that sti�ness is in general not a
property of the whole system but, more precisely, a property of the initial value problem which is
sti� for certain initial values.

De�nition 5.18 (General linear multistep methods)
The general form of a k-step linear multistep method for the computation of a grid function xh(t)
on an equidistant grid

Ih = {t ∈ [t0, tf ] : t = tm,m = 0, 1, . . . , N, tm = t0 +mh}

as approximation of the solution x(t) of an IVP is de�ned by

1. k start values xm = xh(tm),m = 0, 1, . . . , k − 1 and

2. a di�erence equation for the computation of the next approximated values xm+k

k∑
l=0

αlxm+l = h
k∑
l=0

βlf(tm+l,xm+l), m = 0, 1, . . . , N − k, (5.4)

with αl, βl ∈ R and αk 6= 0, |α0|+ |β0| 6= 0.

Remark 5.19
� The method is called linear because the method function

φ(tm, . . . , tm+k,xm, . . . ,xm+k;h) = h
k∑
l=0

βlf(tm+l,xm+l)

depends linearly on f(tm+l,xm+l).

� The condition ak 6= 0 ensures that the implicit equation (5.4) has a (locally) unique solution
xm+k (at least for su�ciently small h).

� The condition |α0|+ |β0| 6= 0 ensures that the number k of steps is uniquely determined.

� For βk = 0 the method is explicit and the solution can be computed directly. Otherwise the
method is implicit and in every step we have to solve an equation system of the type

xm+k = h
βk
αk

f(tm+k,xm+k) + v, (5.5)

where

v =
1

αk

k−1∑
l=0

[hβlf(tm+l,xm+l)− αlxm+l]

is independent of (tm+k,xm+k). This system is in general nonlinear and it is usually solved,
depending on the problem class, by functional iteration or Newton's (or a Newton-type)
method.
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Remark 5.20
By De�nition 5.18 we observe that a LMM consists of 2 phases:

� The start-up phase where the approximations x1, . . . ,xk−1 are computed using, e.g., a one-
step method or a LMM with fewer steps, and

� the run phase described by (5.4) where in every step a system of equations has to be solved
that in general is nonlinear.

Order of a LMM

In this part we introduce concepts that allow us to quantify how exact the approximations gener-
ated by a LMM are.

De�nition 5.21 (Generating polynomials)
For a LMM 5.18 we de�ne the generating polynomials as

ρ(ξ) = αkξ
k + αk−1ξ

k−1 + · · ·+ α0 (5.6)

χ(ξ) = βkξ
k + βk−1ξ

k−1 + · · ·+ β0. (5.7)

De�nition 5.22 (Local discretization error, consistency error)
The local discretization error σ and the consistency error τ of a LMM are de�ned as

hτ(x(t), h) := σ[x(t), h] := L[x(t), h] :=
k∑
l=0

[αlx(t+ lh)− hβlẋ(t+ lh)] ,

where L is called the linear di�erence operator of the LMM.

De�nition 5.23 (Consistency order of a LMM)
A LMM is of consistency order p, if for all x ∈ Cp+1([t0, tf ],Rnx)

L[x(t), h] = O(hp+1)

holds for h→ 0. The consistency order describes how fast the local error tends to zero for h→ 0.

Lemma 5.24
A LMM is of consistency order p, if the following conditions are ful�lled

k∑
l=0

αl = 0, (5.8)

k∑
l=0

(lαl − βl) = 0, (5.9)

k∑
l=0

[
1

ν!
lναl −

1

(ν − 1)!
lν−1βl

]
= 0, ν = 2, 3, . . . , p. (5.10)
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Remark 5.25 (Consistency conditions)
The necessary conditions for a LMM to be of consistency order 1 are called consistency conditions.
They can be written using the generating polynomials as

ρ(1) = 0, ρ′(1) = χ(1).

If the consistency order of a method is at least one, then ξ1 = 1 is a root of ρ(ξ) and the method
is called consistent.

Zero stability of a LMM

One observes that a consistent LMM is not necessarily convergent, even if it is of high consistency
order and the local error is therefore small. This is due to the error propagation through inexact
earlier approximations xm and the evaluations of the right hand side f at these values.
If we neglect for the moment the error propagation through the fm-terms and analyze the case
h → 0, we obtain the concept of zero stability. Zero stability of a method assures that the error
propagation through the historical values remains bounded.

De�nition 5.26 (Zero stability)
A LMM is called zero stable, if the generating polynomial ρ(ξ) satis�es:

a) The roots of ρ(ξ) lie on or inside the unit circle and

b) the roots on the unit circle are simple roots.

Remark 5.27
If all roots besides ξ1 = 1 lie inside the unit circle, the method is called strongly stable.

Convergence of a LMM

Dahlquist showed in 1956 [Dah56] that consistency and zero stability are necessary and su�cient
conditions for the convergence of a LMM.

De�nition 5.28 (Convergence of a LMM)
A LMM is convergent, if for all IVPs with Lipschitz-continuous right hand side f on S :=
{(t,x) : t0 ≤ t ≤ tf ,x ∈ Rnx} and for all start values xh(t0 +mh), m = 0, 1, . . . , k − 1 with

||x(t0 +mh)− xh(t0 +mh)|| → 0 for h→ 0

holds that

ε(x(t), h) := ||x(t)− xh(t)|| → 0, h→ 0, t ∈ [t0, tf ],

where ε is called the global error of the LMM.
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De�nition 5.29 (Order of convergence)
A LMM is convergent of order p if for all IVPs with f smooth enough on S there exists an h0 > 0
such that for all start values xh(t0 +mh), m = 0, 1, . . . , k − 1 with

||x(t0 +mh)− xh(t0 +mh)|| ≤ C0h
p for h ∈ (0, h0]

||x(t)− xh(t)|| ≤ Chp, for h ∈ (0, h0]

holds.

De�nition 5.30 (Stability of LMMs)
A LMM is stable if for all su�ciently smooth functions y(t) there exist constants C1, C2 ∈ R that
are independent of h such that for all grids Ih it holds:

max
t∈Ih
||ε(x(t), t)|| ≤ C1 max

t∈Ih
||τ(x(t), t)||+ C2 εstart,

where εstart is the maximum of the norms of the errors in the start values.

Corollary 5.31
If a LMM is consistent and stable and the errors in the start values are zero, then it is convergent
and the order of convergence is equal to the consistency order.

Theorem 5.32 (Dahlquist)
Let y(t) ∈ C2(I,Rny) and f be Lipschitz-continuous, then a zero stable and consistent LMM is
stable.

Theorem 5.33 (Criterion for convergence)
A LMM is convergent i� it is zero stable and consistent.
A LMM is convergent of order p i� it is zero stable and of consistency order p.

The order of a k-step LMM cannot be arbitrarily high, as Dahlquist showed in [Dah56] that the
consistency order of a zero stable k-step LMM is bounded. This fact is called the �rst Dahlquist
barrier.

Theorem 5.34 (First Dahlquist barrier)
The consistency order p of a zero stable k-step LMMs satis�es

p ≤ k + 2 if k even,

p ≤ k + 1 if k odd,

p ≤ k if
βk
αk
≤ 0 (i.e., particularly for explicit LMMs).
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Absolute stability of a LMM

The concept of zero stability neglects the error propagation through the right hand side terms
f(tm,xm), as it analyzes the behavior for h → 0. This may cause the fact that even if a LMM
is zero stable and consistent, and thus convergent, reasonable results can only be achieved for
very small stepsizes h. Analyzing the error propagation through the right hand side leads to the
concept of absolute stability.
This analysis is usually done by investigating the behavior of the LMM on a characteristic scalar
test equation, the so called Dahlquist test equation

ẋ(t) = λx(t), λ ∈ C,x(t) ∈ C. (5.11)

If we apply a k-step LMM to solve this equation we obtain the linear di�erence equation

(αk − hλβk)xm+k + . . .+ (α0 − hλβ0)xm = 0. (5.12)

This equation has stable solutions xl, i� all roots of the characteristic equation

ρ(ξ)− hλχ(ξ) = 0

lie on or inside the unit circle, and multiple roots lie inside the unit circle.
This inspires the following de�nition of the region of absolute stability.

De�nition 5.35 (Region of absolute stability)
The region of absolute stability (or short stability region) of a LMM is de�ned as

D :=

{
hλ ∈ C : All roots of (5.12) satisfy |ξi(hλ)| ≤ 1,

and multiple roots additionally satisfy |ξi(hλ)| < 1

}
.

Remark 5.36
For h = 0 this is the de�nition of zero stability. Therefore zero stability is equivalent to 0 ∈ D.

Example 5.37 (Stability regions of the Euler methods)
For the characteristic equation of the explicit Euler method xm+1 = xm + hf(tm,xm) we have

−1 + ξ − hλ = 0,

and hence |1 + hλ| ≤ 1 for hλ ∈ D.
For the implicit Euler method xm+1 = xm + hf(tm+1,xm+1) we obtain

−1 + ξ − hλξ = 0.

Therefore |1− hλ| ≥ 1 for hλ ∈ D (cf. Figure 5.1).
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Figure 5.1: Stability regions for the explicit (left) and implicit (right) Euler methods. The stability regions are
displayed as white areas.

Remark 5.38
The explicit Euler method is a representative example for the ine�ciency of explicit methods in
the treatment of sti� problems. Transferred to the test equation sti�ness corresponds usually
to <(λ) � 0. Because of the bounded stability region (which is a characteristic of all explicit
methods) we may be forced to choose very small stepsizes, regardless of the local discretization
error. For instance <(λ) = −1000 implies necessarily h < 10−3.

Therefore the property that C− = {z ∈ C : <(z) ≤ 0} is a subset of the stability region D is
highly desired in the treatment of sti� problems. These property has been de�ned by Dahlquist
as A-stability.

De�nition 5.39 (A-stability of a LMM)
A LMM is A-stable if C− ⊂ D.

Dahlquist showed in [Dah63] that there exists an order limit for an A-stable LMM.

Theorem 5.40 (Second Dahlquist barrier)
An A-stable LMM has a consistency order of p ≤ 2.

A consistency order of at most 2 is not su�cient in pratice to solve problems e�ciently. This led
to a slightly weaker de�nition, introduced by Widlund, to describe nearly A-stable methods.

De�nition 5.41 (A(α)-stability of a LMM)
A convergent LMM is A(α)-stable with 0 < α < π/2 if

Dα := {hλ : | arg(−hλ)| < α, hλ 6= 0} ⊂ D,
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where arg stands for the complex argument. In other words, α describes the angle between a
straight line through the origin and the negative real axis in C−, such that the area between the
straight line and the negative real axis belongs to the stability region.

5.2.2 LMMs on variable grids

After having introduced basic notation and de�nitions as well as having presented the most impor-
tant properties of LMMs on equidistant grids, we now proceed with the case of variable grids. We
will see that most of the de�nitions and results can be transferred with only minor modi�cations.

De�nition 5.42 (General LMM on variable grids)
A general k-step LMM on a variable grid

Ih = {t ∈ [t0, tf ] : t = tm,m = 0, 1, . . . , N, tm = tm−1 + hm−1 for m 6= 0}

is de�ned by

k∑
l=0

αlmxm+l = hm+k−1

k∑
l=0

βlmf(tm+l,xm+l), m = 0, . . . , N − k, (5.13)

xh(tm) = xm, m = 0, . . . , k − 1,

where αlm, βlm ∈ R, |α0m|+ |β0m| 6= 0 and αlm, βlm depend on the stepsize changes ωi := hi/hi−1,
i = m+ 1, . . . ,m+ k − 1.

Consistency order of LMM on variable grids

Similar to 5.23 we de�ne the consistency of a LMM on a variable grid.

De�nition 5.43 (Consistency order on variable grids)
A LMM (5.13) has consistency order p, if for all polynomials q(t) with deg(q) ≤ p and all grids
Ih it holds that

k∑
l=0

αlmq(tm+l) = hm+k−1

k∑
l=0

βlmq̇(tm+l).

Theorem 5.44
Be the LMM (5.13) of consistency order p and f ∈ Cp(S,Rnx). Additionally it shall hold:

1. The stepsize changes ωi = hi/hi−1, i = m+ 1, . . . ,m+ k − 1, are bounded for all m and

2. the coe�cients αlm, βlm are bounded.

Then the local discretization error, which is de�ned analogously to the equidistant case, is of order
O(hp+1

m ).
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Stability

De�nition 5.45
Assume that the coe�cients αlm of the LMM are normalized, such that αkm = 1. We then de�ne
for a LMM (5.13) with coe�cients αlm the matrices

Am :=


−αk−1,m −αk−2,m . . . −α1,m −α0,m

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

De�nition 5.46 (Stability on variable grids)
A LMM on a variable grid is stable, if there exists M ∈ R such that

||Am+jAm+j−1 . . .Am+1Am|| ≤M

for all m and j ≥ 0.

Crouzeix and Lisbona [CL84] have proven the following connection between stability on variable
grids and strong stability on equidistant grids.

Theorem 5.47 (Stability on variable grids)
Assume for the LMM (5.13) it holds that

1.
∑k

l=0 αlm = 0,

2. the coe�cients αlm = αlm(ωm+1, . . . , ωm+k−1) are continuous in a neighborhood of (1, . . . , 1)
and

3. the LMM is strongly stable on all equidistant grids.

Then there exist ω,Ω ∈ R with ω < 1 < Ω, such that the LMM is stable provided

ω ≤ ωm ≤ Ω

holds for all m.

Convergence

Finally we can formulate a convergence criterion for variable grids.

Theorem 5.48 (Convergence of a LMM on variable grid)
Let the LMM (5.13) be stable, of consistency order p and let the coe�cients αlm, βlm be bounded.
For the start values xh(tm), m = 0, 1, . . . , k − 1 it holds that

||x(tm)− xh(tm)|| = O(hp0)
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and the stepsize changes ωm are bounded for all m ≥ 1.
Then the LMM is convergent of order p, i.e., there exists a C ∈ R, such that

||x(tm)− xh(tm)|| ≤ Chp, tm ∈ [t0, tf ], h = max
m

hm.

5.2.3 BDF methods

After the analysis of general LMMs on equidistant and variable grids we now present the class of
Backward Di�erentiation Formulas (BDF). This speci�c class of LMMs is the basis of DAESOL-II,
our numerical integration code. We employ BDF methods in this thesis as they are very e�cient
for the solution of sti� problems. BDF methods were invented by Curtiss and Hirschfelder [CH52]
for the solution of sti� ODEs and became more famous through the analysis of Gear [Gea71] who
used them for the �rst time also in the DAE context. We start with BDF methods and their
properties for ODEs and explain afterwards how the results can be transferred to the DAE case.

BDF methods for ODEs

The underlying idea of BDF methods is to interpolate the last (k + 1) values xm, . . . ,xm+k using
a polynomial and to require that the interpolation polynomial satis�es the ODE at point tm+k.

De�nition 5.49 (BDF method)
The k-step BDF method is de�ned by specifying the k start values and the di�erence equation

k∑
l=0

αlmxm+l = hm+k−1f(tm+k,xm+k), m = 0, . . . , N − k,

with αlm ∈ R, α0, αk 6= 0. The αlm are obtained as the coe�cients of the derivative of the
interpolation polynomial multiplied by hm+k−1. BDF methods are implicit methods as βk = 1 6= 0.

Theorem 5.50 (Order of BDF methods)
A k-step BDF method is by construction of consistency order k.

Unlike other LMMs the BDF methods are not zero stable by construction. Cryer [Cry72] showed
for the zero stability of BDF methods the following theorem.

Theorem 5.51 (Zero stability of BDF methods)
BDF methods (on equidistant grids) are zero stable for k ≤ 6 and unstable for k ≥ 7.

As direct consequence of this and Theorem 5.33, BDF methods with k ≤ 6 are also convergent of
order k. Hence in practice only methods up to k = 6 are relevant, and the method with k = 7 is
only of use for local error estimation.

Theorem 5.52 (Stability regions of BDF methods)
BDF methods are A-stable for k ≤ 2 and A(α)-stable for k ≤ 6 with the following values for α:
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k 1 2 3 4 5 6
α 90° 90° 86.03° 73.35° 51.84° 17.84°

The stability regions of the BDF methods with an order up to 7 are displayed in Figure 5.2 on
the facing page.

Griegorie� [Gri83] analyzed the behavior of BDF methods on variable grids and proved stability
under speci�c restrictions on the stepsize changes:

Theorem 5.53 (Stability of BDF methods on variable grids)
BDF methods are stable on variable grids, if the following bounds on stepsize changes are satis�ed:

k 2 3 4 5 6
ω 0 0.836 0.979 0.997 1− δ1

Ω 2.414 1.127 1.019 1.003 1 + δ2

with 0 < δ1, δ2 < 0.001. The 1-step BDF method is a one-step method which is stable on every
grid.

Remark 5.54 (Stepsize changes)
The above bounds for stepsize changes in methods of order k ≥ 3 are very restrictive since they take
all possible series of stepsize changes into account. For an e�cient stepsize strategy in practical
applications these bounds are of no use. We will address this issue in more detail in Section 5.3.4.
It should be noted, however, that the speci�ed bound for order k = 2 is also necessary, i.e., the
method is unstable for larger stepsize changes.

5.2.4 BDF methods for index 1 DAEs

We consider now the IVP for the linearly implicit DAE (5.2)

A(t,x(t), z(t)) ẋ(t) = f(t,x(t), z(t)), x(t0) = x0 ∈ Rnx , (5.14)

0 = g(t,x(t), z(t)), z(t0) = z0 ∈ Rnz ,

t ∈ [t0, tf ] ⊂ R,
x(t) ∈ Rnx ,

z(t) ∈ Rnz ,

A(t,x(t), z(t)) ∈ Rnx×nx regular

gz(t,x(t), z(t)) ∈ Rnz×(nx+nz) regular.

We choose the so-called indirect approach to transfer the BDF discretization scheme from ODEs
to index 1 DAEs. As we assume that gz and A are regular in this case, we can use the implicit
function theorem to obtain a unique local representation of the algebraic variables through the
di�erential ones. More speci�cally, the implicit function theorem assures that there exist in a
neighborhood of a solution for all t ∈ [t0, tf ] a smooth function g̃ : Rnx 7→ Rnz and a locally
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Figure 5.2: The upper three rows show the domains of absolute stability for the BDF methods of order 1 to 6,
where the stable area is drawn in white. We see that for order 1 and 2 the methods are A-stable and
A(α)-stable with decreasing α up to order 6. The lower row shows on the left the outline the stability
region for the method of order 7, which is not zero-stable any more, i.e., zero is not in the stability
domain. On the lower right plot a comparison of the stability regions for the orders 1 to 6 is given. In
every plot the x-axis corresponds to the real part of hλ and the y-axis to the imaginary part of hλ.
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unique solution z(t) = g̃(x(t)) of the algebraic equations.
Inserting this solution into the original problem leads to the IVP

A(t,x(t), g̃(x(t))) ẋ(t) = f(t,x(t), g̃(x(t))), x(t0) = x0 ∈ Rnx .

We apply now a BDF method to this IVP and obtain on a variable grid the discretization scheme

A(tm+k,xm+k, zm+k)
k∑
l=0

αlmxm+l = hm+k−1f(tm+k,xm+k, zm+k)

0 = g(tm+k,xm+k, zm+k), (5.15)

with m = 0, . . . , N − k.
The convergence of BDF methods applied to the IVP (5.14) follows from the following theorem.

Theorem 5.55
Let the LMM (5.13) be of consistency order p and let 0 be in the stability region. Furthermore,
let the start values of the DAE be consistent, i.e., g(t0,x0, z0) = 0 and assume that the errors in
the start values of the BDF method are of order O(hp). Then the LMM is convergent of order p.

5.3 Strategies used in DAESOL-II

In this section we describe the strategies implemented in our integrator DAESOL-II which is part
of our SolvIND integrator suite. We address here only the aspects directly relevant for the IVP
solution. The strategies related to sensitivity generation are presented at the end of the corre-
sponding Chapter 6. Note that some of the more technical details concerning the IVP solution
strategies can only be roughly sketched in the frame of this thesis. For a more detailed description
we refer to [Alb05], as well as to the works of Bleser [Ble86], Eich [Eic87], and Bauer [Bau99] which
describe in more detail the ideas already implemented in the preceding Fortran code DAESOL.

5.3.1 Representation of the interpolation polynomials

The core of DAESOL-II is a BDF method for the solution of linearly implicit DAE-IVPs as described
in Section 5.2.4. To represent the interpolation polynomials needed for the BDF method we use
Newton's representation. This allows an e�cient storage as well as an e�cient update between
integration steps.

De�nition 5.56 (Newton's representation)
In Newton's representation the interpolation polynomial P through the (k+1) points vi = v(ti) ∈
Rnv , i = 0, . . . , k at point t is given by

P(t; v0, . . . ,vk) =
k∑
i=0

Ni(t)v[tk, . . . , tk−i]. (5.16)
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Here the divided di�erences v[. . .] are de�ned recursively by

v[ti] := v(ti)

v[ti+j, . . . , ti] :=
v[ti+j, . . . , ti+1]− v[ti+j−1, . . . , ti]

ti+j − ti
(5.17)

and the Newton polynomials Ni as

Ni(t) =

{ ∏i−1
l=0(t− tk−l) for i = 1, . . . , k

1 for i = 0.
(5.18)

For the implementation of the BDF method in the n-th integration step the method's corre-
sponding interpolation polynomial PC

n+1 is needed for the computation of yn+1. In a k-step BDF
method this polynomial is of degree k and interpolates the (k + 1) values xn+1−i, i = 0, . . . , k of
the di�erential variables and PC, respectively its time derivative, satis�es the ODE/DAE at point
tn+1. By these conditions PC

n+1 and its value xC
n+1 = PC

n+1(tn+1) are uniquely de�ned. We call
this interpolation polynomial corrector polynomial and its value xC

n+1 at tn+1 the corrector.
As the equation system in the discretization scheme (5.15) is nonlinear, we solve it iteratively.
Therefore a start value for the di�erential and algebraic variables is needed, which we call predic-
tor. We obtain the predictor by use of a second interpolation polynomial PP

n+1 of degree k through
the last k + 1 values yn+1−i, i = 1, . . . , k + 1 that is called predictor polynomial.
We de�ne the following notation to e�ciently describe how the interpolation polynomials are cal-
culated and stored as well as how the transition from one integration step to the next is made.

De�nition 5.57
We de�ne the factors of Newton's polynomials (5.18) (at point t = tn+1)

ψi(n+ 1) := tn+1 − tn+1−i = hn + . . .+ hn+1−i = ψi−1(n) + hn, (5.19)

the quotients of the new and old Ni's

χi(n+ 1) :=

{
1 for i = 1

ψ1(n+1)·...·ψi−1(n+1)
ψ1(n)·...·ψi−1(n)

for i > 1,
(5.20)

the modi�ed divided di�erences

Φi(n) :=

{
yn for i = 1

ψ1(n) · . . . · ψi−1(n) y[tn, . . . , tn−i+1] for i > 1,
(5.21)

and furthermore

Φ∗i (n) := χi(n+ 1) Φi(n) (5.22)

γi(n+ 1) :=
i−1∑
j=1

1

ψj(n+ 1)
(5.23)

δi(n+ 1) :=
i∑

j=1

Φ∗j (n). (5.24)
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Here empty products should have the value 1, empty sums the value 0.

Now we show how predictor and corrector can be represented using these quantities.

Lemma 5.58 (Representation of the predictor)
For the predictor polynomial in step n+ 1 it holds that

PP
n+1(tn+1−i) = yn+1−i, i = 1, . . . , k + 1. (5.25)

Using Newton's representation (5.16) and the de�nitions above we obtain the representation

yP
n+1 = PP

n+1(tn+1)

=
k∑
j=0

j−1∏
i=0

(tn+1 − tn−i) y[tn, . . . , tn−j]

=
k+1∑
j=1

ψ1(n+ 1) . . . ψj−1(n+ 1) y[tn, . . . , tn−j+1]

=
k+1∑
j=1

Φ∗j (n) (5.26)

= δk+1(n+ 1).

Hence δi(n+ 1) are the partial sums of the corrector in step n+ 1. Note that in case of DAEs we
denote the di�erential part of the predictor with xP

n+1 and the algebraic part with zP
n+1.

The time derivative ṖP
n+1(tn+1) at point tn+1 is then obtained as

ṖP
n+1(tn+1) =

k∑
j=0

d

dt

j−1∏
i=0

(t− tn−i) y[tn, . . . , tn−j]

∣∣∣∣∣
t=tn+1

=
k∑
j=0

j−1∑
l=0

j−1∏
i=0,i 6=l

(t− tn−i) y[tn, . . . , tn−j]

∣∣∣∣∣
t=tn+1

=
k∑
j=0

j−1∑
l=0

1

ψl+1(n+ 1)

j−1∏
i=0

ψi+1(n+ 1) y[tn, . . . , tn−j]

=
k∑
j=0

γj+1(n+ 1)Φ∗j+1(n)

=
k+1∑
j=1

γj(n+ 1)Φ∗j (n). (5.27)
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Lemma 5.59 (Representation of the corrector derivative)
Both predictor polynomial and corrector polynomial interpolate the k values xn, . . . ,xn−k+1 ex-
actly. If we take only the di�erential part of the predictor into account, we can write the di�erence
of predictor and corrector polynomial as

PC
n+1(t)− PP

n+1(t) = ∆(t)(xC
n+1 − xP

n+1). (5.28)

As ∆(t) is the di�erence of two polynomials of degree k, it is itself a polynomial of degree ≤ k,
that is uniquely de�ned by the k + 1 conditions

∆(tn+1−i) =

{
1 for i = 0
0 for i = 1, . . . , k.

(5.29)

Therefore, we obtain

∆(t) =
k∏
j=1

t− tn+1−j

tn+1 − tn+1−j
(5.30)

and by di�erentiation and evaluation at point tn+1

∆̇(t) =
d

dt

k∏
j=1

t− tn+1−j

tn+1 − tn+1−j

∣∣∣∣∣
t=tn+1

=
k∑
j=1

1

tn+1 − tn+1−j

k∏
i=1,i 6=j

t− tn+1−i

tn+1 − tn+1−i

∣∣∣∣∣
t=tn+1

=
k∑
j=1

1

tn+1 − tn+1−j

= γk+1(n+ 1). (5.31)

We di�erentiate (5.28) and obtain �nally at tn+1 using (5.27) and (5.26)

ẋC
n+1 = ṖC

n+1(tn+1)

= ṖP
n+1(tn+1) + ∆̇(tn+1)(xC

n+1 − xP
n+1)

=
k+1∑
j=1

γj(n+ 1)Φ∗j (n) + γk+1(n+ 1)(xC
n+1 −

k+1∑
j=1

Φ∗j (n))

=
k+1∑
j=1

(γj(n+ 1)− γk+1(n+ 1))Φ∗j (n) + γk+1(n+ 1)xC
n+1

= −
k∑
j=1

1

ψj(n+ 1)

j∑
i=1

Φ∗i (n) + γk+1(n+ 1)xC
n+1

= −
k∑
j=1

1

ψj(n+ 1)
δj(n+ 1) + γk+1(n+ 1)xC

n+1. (5.32)
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Here we again took only the di�erential part of ṖP
n+1 and the Φ∗i (n) and δi(n) into account. The

term

xCC
n+1 := −

k∑
j=1

1

ψj(n+ 1)
γj(n+ 1) (5.33)

describing the part of the representation of the corrector derivative that does not depend on the
corrector value is called corrector constant.

Lemma 5.60 (Update of the modi�ed divided di�erences)
For given yn and δi(n) we obtain Φi+1(n) as

Φi+1(n) = ψ1(n) . . . ψi(n)y[tn, . . . , tn−i]

= ψ1(n) . . . ψi−1(n)
ψi(n)

tn − tn−i
(y[tn, . . . , tn−i+1]− y[tn−1, . . . , tn−i])

= ψ1(n) . . . ψi−1(n)(y[tn, . . . , tn−i+1]− y[tn−1, . . . , tn−i])

= Φi(n)−Φ∗i (n− 1)

= yn − δi(n). (5.34)

Hence we obtain for Φ∗i (n)
Φ∗i (n) = χi(n+ 1)(yn − δi−1(n)), (5.35)

and we can compute the term Φ∗i (n) needed in step n using the δi−1(n) from the last step (n− 1)
and the last value yn.

Implementation in the code DAESOL-II

The practical computation of predictor and corrector in step (n+ 1), based on the step n, is done
as follows.

Let ψi(n), δi(n) and yn be given from step n. Then we compute in the following order

a) the ψi(n+ 1) with (5.19)

ψi(n+ 1) = ψi−1(n) + hn, i = k, . . . , 2, ψ1(n+ 1) = hn,

b) the χi(n+ 1) using (5.20)

χ1(n+ 1) = 1, χi(n+ 1) = χi−1(n+ 1)
ψi−1(n+ 1)

ψi−1(n)
, i = 2, . . . , k,

c) γk+1(n+ 1) using (5.23)

γk+1(n+ 1) =
k∑
i=1

1

ψi(n+ 1)
,



CHAPTER 5. SOLUTION OF IVPS FOR ODES AND INDEX 1 DAES 127

d) the new predictor yP
n+1 with (5.26)

yP
n+1 =

k+1∑
j=1

Φ∗j (n)

= yn +
k∑
j=1

Φ∗j+1(n)

= yn +
k∑
j=1

χj+1(n+ 1)[yn − δj(n)] using (5.35),

e) and the new corrector constant

xCC
n+1 = −

k∑
j=1

1

ψj(n+ 1)
δj(n+ 1).

The corrector derivative can then be represented as

ẋC
n+1 = γk+1(n+ 1)xC

n+1 + xCC
n+1

and for the coe�cients αk of the BDF method it holds that

αk = hnγk+1(n+ 1). (5.36)

Again, here only the di�erential part of the δj(n+ 1) is used.

Remark 5.61
During integration only the last values of ψi(n), δi(n) and yn need to be stored. Note that the
δi(n + 1) are stored during the computations under d), i.e., they do not have to be computed
separately.

5.3.2 Error estimation

In an e�cient adaptive numerical method we want to adapt the stepsize and the order of the
method to the actual problem in such a way that the e�ort for performing the integration becomes
minimal, while the error remains below a user given tolerance. To do this, obviously an estimate
for the error in each integration step is needed. Based on this estimate we can then decide whether
to accept the step, or to reject it and repeat it with an adapted stepsize.
Ideally, we would compute the global error of the method. Unfortunately, this is not easy in
the actual practical setup: The global error is the accumulation of the local errors made in
the individual steps and the error propagation. Especially the error propagation is not easily
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accessible for a quantitative analysis during the normal integration procedure. An approximation
of the global error ε = (εxT , εzT )T in step (n+ 1) is given in [Bau99] by the formula(

αkA + AxẋC
n+1 + hfx Azẋ

C
n+1 + hfz

gx gz

)(
εx

n+1

εz
n+1

)
=(

hν1 −A(hσx
n+1 − hεCC

n+1)
ν2

)
. (5.37)

Here we summarize in ν1 and ν2 the error from premature termination of the iterative method
used to solve the nonlinear equation system and the higher orders of the errors εx, εz and σ,
respectively. These quantities, as well as the corrector constant εCC, are not directly computable.
We will see later at the end of Chapter 6 how an approximation of the global error can be obtained
a posteriori, i.e., after the integration, by the use of adjoint sensitivity information. For now we
restrict ourselves to an error control based on an estimation of the local discretization error, in
the way it is found in [Bau99] or [Eic91] and similar also in [Gea71] and [LP86, PL86].

Estimation of the local error

From De�nition 5.22 and the representation of the derivative of the method's interpolation poly-
nomial we obtain in step (n+ 1) the local discretization error for a k-step BDF method as

σn+1 := σ[y(ex)(tn+1), hn] = ẏ(ex)(tn+1)− ẏ
C(ex)
n+1

= ẏ(ex)(tn+1)− ṖP(ex)
n+1 (tn+1)

−γk+1(n+ 1)
(
y(ex)(tn+1)− PP(ex)

n+1 (tn+1)
)
.

Here and in the following the superscript (·)(ex) denotes that the corresponding quantities are
computed using the exact solution y(ex)(t) of the DAE. The de�nition of the divided di�erences
and the Newton representation of PP(ex)

n+1 (t) now imply

y(ex)(t)− PP(ex)
n+1 (t) =

k∏
i=0

(t− tn−i) y(ex)[t, tn, . . . , tn−k]. (5.38)

By di�erentiation we obtain

ẏ(ex)(t)− ṖP(ex)
n+1 (t) =

d

dt

(
k∏
i=0

(t− tn−i)

)
y(ex)[t, tn, . . . , tn−k]

+
k∏
i=0

(t− tn−i)
d

dt
y(ex)[t, tn, . . . , tn−k].

Furthermore, we have

d

dt
y(ex)[t, tn, . . . , tn−k] = y(ex)[t, t, tn, . . . , tn−k],
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where we de�ne y(ex)[t, t] := ẏ(ex)(t). Additionally, it holds that

k∏
i=0

(tn+1 − tn−i) =
k+1∏
i=1

ψi(n+ 1) and

d

dt

k∏
i=0

(tn+1 − tn−i) =
k+1∑
j=1

1

ψj(n+ 1)

k∏
i=0

(tn+1 − tn−i)

= γk+2(n+ 1)
k+1∏
i=1

ψi(n+ 1).

So we obtain for σn+1

σn+1 = γk+2(n+ 1)
k+1∏
i=1

ψi(n+ 1) y(ex)[tn+1, . . . , tn−k]

+
k+1∏
i=1

ψi(n+ 1) y(ex)[tn+1, tn+1, . . . , tn−k]

−γk+1(n+ 1)
k+1∏
i=1

ψi(n+ 1) y(ex)[tn+1, . . . , tn−k]

= (γk+2(n+ 1)− γk+1(n+ 1))
k+1∏
i=1

ψi(n+ 1) y(ex)[tn+1, . . . , tn−k]

+
k+1∏
i=1

ψi(n+ 1) y(ex)[tn+1, tn+1, . . . , tn−k] (5.39)

=

(
k+1∑
i=1

1

ψi(n+ 1)
−

k∑
i=1

1

ψi(n+ 1)

)
Φ

(ex)
k+2(n+ 1)

+
k+1∏
i=1

ψi(n+ 1) y(ex)[tn+1, tn+1, . . . , tn−k]

=
1

ψk+1(n+ 1)
Φ

(ex)
k+2(n+ 1) +

k+1∏
i=1

ψi(n+ 1) y(ex)[tn+1, tn+1, . . . , tn−k].

The terms that have been computed here using the exact solution are replaced in the practical
implementation with the corresponding terms of the numerically approximated solution, as the
exact solution is in general not available. Gear showed that this estimation is asymptotically
correct for equidistant grids [Gea74].
Similar to the approximation of the global error (5.37), the following approximation of the local
error made in one integration step, denoted with µ, can be derived based on the local discretization
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error σ [Bau99].(
αkA + AxẋC

n+1 + hfx Azẋ
C
n+1 + hfz

gx gz

)(
µx

n+1

µz
n+1

)
=

(
−hAσx

n+1

0

)
. (5.40)

Practical implementation of the error estimation in DAESOL-II

The calculation of the local error (and also of a new stepsize in the framework of stepsize control)
using the Formula (5.40) would be computationally very expensive, as in every step the equation
system had to be solved. Hence in DAESOL-II the following simpli�ed formula for local error
estimation is used:

Ek(n+ 1, hn) = hn||σn+1||

= hn

∣∣∣∣∣∣ 1

ψk+1(n+ 1)
Φk+2(n+ 1)

+
k+1∏
i=1

ψi(n+ 1) y[tn+1, tn+1, . . . , tn−k]
∣∣∣∣∣∣

.
= hn

1

ψk+1(n+ 1)

∣∣∣∣∣∣ k+1∏
i=1

ψi(n+ 1) y[tn+1, . . . , tn−k]
∣∣∣∣∣∣

= hn

k∏
i=1

ψi(n+ 1)
∣∣∣∣∣∣y[tn+1, . . . , tn−k]

∣∣∣∣∣∣. (5.41)

After every integration step it is checked whether this estimation for Ek(n+ 1, hn) is smaller than
the user given tolerance. If this is the case, the step is accepted. Otherwise, the step is rejected
and repeated with a reduced stepsize. More details on the reduction of the stepsize are given in
Section 5.3.4.

5.3.3 Solution of the nonlinear corrector equation

As BDF methods are implicit methods, in every integration step a nonlinear system of equations
has to be solved. Because the problems considered in this thesis are usually sti�, we use in
DAESOL-II for the solution of these systems a Newton-like method together with a �monitor
strategy� that we discuss in the following. As the equation solver is modularized in DAESOL-II,
also other equation solving approaches (possibly speci�cally designed for certain problem classes)
may be implemented without too much programming e�ort.
We write the discretization scheme (5.15) of the BDF method for a linearly implicit DAE at time
tn+1 as

fBDF
n (yn+1) = 0, where again yn+1 = (xn+1

T , zn+1
T )T . (5.42)

Newton's method for the iterative solution of the equation system in step (n+ 1) is then given by
a start value y

(0)
n+1 and the iteration

y
(i+1)
n+1 = y

(i)
n+1 + ∆y

(i)
n+1,



CHAPTER 5. SOLUTION OF IVPS FOR ODES AND INDEX 1 DAES 131

where ∆y
(i)
n+1 is obtained as solution of the linear equation system

Jn(y
(i)
n+1)∆y

(i)
n+1 = −fBDF

n (y
(i)
n+1). (5.43)

Here Jn(y
(i)
n+1) :=

∂fBDF
n (y

(i)
n+1)

∂y
denotes the Jacobian of fBDF

n . The Jacobian has the form

Jn(y
(i)
n+1) =

(
αA + Ax(αx

(i)
n+1 + hn xCC

n+1) + hn fx Az(αx
(i)
n+1 + hn xCC

n+1) + hn fz
gx gz

)
, (5.44)

where α is the coe�cient of the BDF-method that corresponds to xn+1. The start value is ob-
tained as the value y

(0)
n+1 := yP

n+1 = PP
n+1(tn+1) of the predictor polynomial at time tn+1.

To solve the equation systems using the original Newton's method one has to construct and de-
compose the Jacobian in every iteration. Usually this is the most expensive part in the integration.
Especially in the case of large ODE/DAE systems and if the evaluation of the derivatives of the
model functions f , g and A is very costly.
However, often the Jacobian does not change very much from iteration to iteration, or even during
several integration steps of the BDF method. This motivates a strategy to reduce the computa-
tional e�ort, where the Jacobian is kept constant as long as possible. This Newton-like method
has slightly inferior convergence properties compared to the pure Newton method. As a result,
some additional iterations are needed, but this additional e�ort is in general much smaller than
the bene�ts gained by fewer evaluations and decompositions of the Jacobian.
We present now a monitor strategy for the Jacobians that assures the convergence of the Newton-
like method in a few iteration steps while reusing the Jacobian and the model function derivatives
as long as possible. This monitor strategy was �rst presented by Bock and Eich and can be found
in [Eic87].
As foundation of the strategy we �rst analyze the convergence behavior of Newton-like methods,
for which Bock [Boc87] proved the following theorem:

Proposition 5.62 (Local contraction theorem )
Let D ⊆ Rny be open and v : D −→ Rny a C1-function. We denote with J(y) = ∂v

∂y
(y) the

Jacobian of v and with M an approximation of the inverse of J.
Assume that for all τ ∈ [0, 1], for all y,y + ∆y ∈ D with ∆y = −M v(y) and for all m there
exist ω and κ, such that:

1. A generalized Lipschitz condition holds:

‖M[J(y(m) + τ∆y(m))− J(y(m))]∆y(m)‖
τ‖∆y(m)‖2

≤ ω(m), ω(m) ≤ ω ≤ ∞, (5.45)

2. the quality of the approximated inverse M in direction of the Newton-increments is su�cient:

‖M[v(y(m))− J(y(m))∆y(m)]‖
‖∆y(m)‖

≤ κ(m), κ(m) ≤ κ < 1, (5.46)
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3. the start value y(0) of the iteration satis�es the condition

δ0 :=
ω(0)

2
‖∆y(0)‖+ κ(0) < 1, (5.47)

4. and the ball D0 with center y(0) and radius r = ‖∆y(0)‖
1−δ0 lies in D.

Then it follows:

1. The iteration y(m+1) = y(m) + ∆y(m) , ∆y(m) = −M v(y(m)) is well-de�ned and remains in
D0,

2. there exists a root y∗ ∈ D0, against which the series y(m) converges,

3. the series y(m) converges at least linearly with

‖∆y(m)‖ ≤
(
ω(m−1)

2
‖∆y(m−1)‖+ κ(m−1)

)
‖∆y(m−1)‖ ≤ ‖∆y(m−1)‖

4. and the a priory estimate

‖y(m) − y∗‖ ≤ δm0
1− δ0

‖∆y(0)‖

holds.

The convergence of the Newton-like method inside the BDF method can then be controlled using
an estimate of the convergence rate δ0. This estimate can be obtained after 2 Newton iterations
by

δ̃0 :=
‖∆y(1)‖
‖∆y(0)‖

≤ δ0.

The termination criterion for the Newton-like method is based on the increment norm ‖∆y(i)‖.
If ‖∆y(i)‖ ≤ cnewton · tol then the method is considered as converged. Here cnewton < 1 and tol

is the user given relative tolerance.
Because usually the start value y(0) = yP lies near the solution y∗, the start value should be inside
the local convergence region of the Newton-like method. Therefore, with the exception of very
nonlinear problems, the aim is not to �nd a solution at all, but to compute it with the smallest
possible e�ort per integration step. The e�ort consists of the calculation and decomposition of
the Jacobian and of the solution of the linear equation system using the decomposed matrix. To
limit the e�ort connected to the solution of the equation systems we demand a convergence rate
that assures convergence after at most three iterations: Two iterations are needed in any case
to estimate the convergence rate, and we admit an additional third iteration, if the estimated
convergence rate predicts convergence for it.
A survey on the choice of the limit for δ̃0 depending on the number of desired iterations m and
the desired error improvement factor cred in the estimation ‖y(m) − y∗‖ ≤ cred‖y(0) − y∗‖ after
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m iterations is given by von Schwerin [vS97]. For DAESOL-II we choose m = 2 iterations and
cred = 1

12
and obtain the condition δ0 ≤ 0.25.

This means in practice that we have to test besides the termination criterion also if the estimated
convergence rate remains below 0.25 after the second iteration. If this is not the case, i.e., if the
convergence rate of the Newton-like method is too bad, this can have several reasons:

a) The quality of the iteration matrix is not good enough, i.e., the κ in the local contraction
theorem is too large:

� The coe�cient α of the BDF method or the stepsize h have changed considerably, e.g.,
through stepsize or order changes.

� The derivatives of the model functions f , g or A have changed considerably.

b) The start value y(0) is too far away from the solution, e.g., if the problem is �too nonlinear�.
This means the ω in the local contraction theorem is too large and the start values do not
lie in the local convergence region.

Based on these considerations we present the following so-called monitor strategy for the Newton-
like iterations, which aims to reduce the e�ort for the solution of the corrector equation as much
as possible.

Implementation of the monitor strategy in DAESOL-II

In DAESOL-II the monitor strategy to control the Newton-like iterations is implemented in the
following way:

a) After every iteration the termination criterion is tested. If it is ful�lled the solution of the
system is considered successful and is terminated.

b) After two iterations the convergence rate is estimated. If the estimation is smaller than 0.25,
a third iteration is admitted, otherwise the iteration is solution as failed and aborted.

c) If after 3 iterations the termination criterion is not ful�lled, the solution is also aborted.

The reuse or the recalculation of the derivatives and the decomposition of the iteration matrix,
respectively, is done according to the following hierarchical scheme:

1. As long as the estimate of the convergence rate δ̃0 remains below 0.25, the Jacobian approx-
imation is kept constant and its decomposition is reused.

2. If no convergence is achieved, a new Jacobian approximation is built using the actual values
of α and h and the �old� derivative values fy, gy, and AyẋC. It is decomposed and the
solution is repeated with this new iteration matrix.

3. If again no convergence is achieved, also the derivatives fy, gy, and AyẋC are computed
anew, are stored and the Jacobian approximation is rebuild and decomposed. The solution
is repeated.
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4. If still no convergence is achieved, the complete BDF-step is repeated using a smaller stepsize.
The details of the stepsize reduction strategy are discussed in Section 5.3.4.

Here especially the second step is not used widely in other integrator codes. However if the
derivatives of the model functions change only slowly and are expensive to evaluate, this approach
promises a large bene�t [Eic87].

Stability regions of BDF predictor-corrector scheme

In the previous sections we have presented details on the practical implementation of the predictor-
corrector method used in DAESOL-II to solve the nonlinear equations that arise in BDF methods.
The focus of the presented monitor strategy is the e�cient reduction of the error in the corrector
equation, but not necessarily a solution of the equation up to machine precision, which would be
unnecessarily expensive. This means in practice that we do not employ a truly implicit method.
Although this approach has been applied very successfully during the last decades and similar
approaches are used in other codes based on BDF methods, this gives rise to the question how the
stability regions of the method are in�uenced by this. For Adams-PECE methods there have been
some works ([Cha62],[CK65],[Kro66],[Ste68]) that show that the stability regions are seriously
reduced compared to the implicit schemes and that propose adapted schemes to improve stability.
For BDF methods the only existing analysis is given by Krogh and Steward [KS84], analyzing
the special case of asymptotic absolute stability of BDF predictor-corrector methods for the case
h→∞. Hence we present in the following a heuristic analysis of the regions of absolute stability
that is more speci�cally tailored to our setup of BDF based predictor-corrector schemes.
We perform the analysis as it is usual on an equidistant grid with stepsize h for the test equation
of Dahlquist (5.11). Other than in the analysis of the implicit method, we have to imitate now the
predictor-corrector scheme and substitute the formula for the predictor value into the corrector
equation and perform a number of Newton-like iterations. In the framework of this analysis we
assume a �xed number of s Newton-like iterations per integration step, and the quality of our
Jacobian approximation is described by the value of κ in the local contraction theorem (5.46).
We demonstrate this now at the example of the method with order 2. The predictor value for
xP

n+1 is then obtained as
xP

n+1 = 3xn − 3xn−1 + xn−2. (5.48)

The predictor value is then inserted into the corresponding corrector equation

3

2
xC

n+1 − 2xn +
1

2
xn−1 − (hλ)xC

n+1
!

= 0 (5.49)

and we apply a Newton-like iteration with the Jacobian approximation

J̃(κ, µ) =
3

2
− µ+

1

2

κ (−3 + 2µ)

−1 + κ
, (5.50)

where we have set µ := hλ. This leads then to the �rst iterate

xn−1 − 4 xn−2 + κ(8 xn−1 − 5 xn−2 − 3 xn) + κµ(2 xn − 6 xn−1 + 6 xn−2)

−3 + 2µ
(5.51)
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from which we obtain the characteristic equation for the method with order 2 and one Newton-like
iteration

−3 z3 + 2µ z3 − z + 4 z2 − 8 zκ+ 5 z2κ+ 3κ− 2κµ+ 6µ zκ− 6 z2µκ

z2 (−3 + 2µ)
= 0. (5.52)

Using De�nition 5.35 of the stability region we can determine the root locus curve, i.e., the
potential bound of the stability region, for a given κ by solving this equation for each z = eiθ with
0 ≤ θ < 2π. The same analysis can be repeated using a higher number of Newton-like iterations
to obtain a series of stability regions for a given Jacobian quality κ. The Figures 5.3, 5.4 and
5.5 show the stability regions for the predictor-corrector methods of order 1,2 respectively 5 using
between 1 and 4 Newton-like iterations for the di�erent values κ1 = 1

4
, κ2 = −1

4
, κ3 = i

4
and

κ4 = 1√
32

+ i√
32

of the left-hand term of (5.46), such that always |κi| = 1
4
holds.

This is motivated by the constraint in our monitor strategy to allow only Jacobian approximations
with |κ| < 1

4
(as ω = 0 in this case), i.e., the chosen values represent in this sense examples for

the worst case of the admitted Jacobians in our strategy. In general it can be observed that the
stability regions become with increasing number of Newton-like iterations more and more similar
to the regions of the implicit methods. Not surprisingly this occurs the faster, the smaller the
absolute value of κ is. Interesting for our setup is that even for examples of the worst case of κ the
method of order 1 remains A-stable and the method of order 2 preserves A-stability if at least 2
iterations are made. The higher-order methods might require, especially in the case of a complex
κ, several Newton-like iterations to obtain reasonable stability regions similar to their implicit
counterparts. But considering that in practice most of the time Jacobian approximation with far
better values for κ are used, we can reasonably expect that our predictor-corrector scheme will
in general not be a�ected by a serious loss of stability. Otherwise, more Newton-like iterations
should be enforced in the monitor strategy to assure better stability properties.
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Figure 5.3: Depicted are the borders of the domains of absolute stability for the predictor-corrector BDF schemes
(dashed and dashed-dotted lines) and for the truly implicit BDF scheme (solid lines) of order 1 for
di�erent Jacobian approximations and di�erent numbers of Newton-like iterations between 1 and 4.
The values of κ for the Jacobian approximations are κ1 = 1

4 , κ2 = − 1
4 , κ3 = i

4 and κ4 = 1√
32

+ i√
32
.

We see that for order 1 the predictor-corrector scheme remains A-stable like the implicit method, and
if using 2 or more Newton-like iterations the stability regions of the predictor-corrector scheme and the
implicit method very much coincide.
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Figure 5.4: Depicted are the borders of the domains of absolute stability for the predictor-corrector BDF schemes
(dashed and dashed-dotted lines) and for the truly implicit BDF scheme (solid lines) of order 2 for
di�erent Jacobian approximations and di�erent numbers of Newton-like iterations between 1 and 4.
The values of κ for the Jacobian approximations are κ1 = 1

4 , κ2 = − 1
4 , κ3 = i

4 and κ4 = 1√
32

+ i√
32
. We

see that for order 2 the predictor-corrector scheme remains A-stable if 2 or more Newton-like iterations
are applied. For more than 2 iterations the stability regions of the predictor-corrector scheme and the
implicit method are nearly the same.
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Figure 5.5: Depicted are the borders of the domains of absolute stability for the predictor-corrector BDF schemes
(dashed and dashed-dotted lines) and for the truly implicit BDF scheme (solid lines) of order 5 for
di�erent Jacobian approximations and di�erent numbers of Newton-like iterations between 1 and 4.
The values of κ for the Jacobian approximations are κ1 = 1

4 , κ2 = − 1
4 , κ3 = i

4 and κ4 = 1√
32

+ i√
32
. We

see that for order 5 the predictor-corrector is unstable if less than 3 Newton-like iterations are applied.
For complex values of κ this is also the case if 3 iterations are made. For 4 iterations the stability
regions of the predictor-corrector scheme and the implicit method are similar.
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5.3.4 Stepsize and order control

In this section we describe the strategy for the stepsize and order control used in DAESOL-II.
Its aim is to plan the next integration step with a stepsize as large as possible while keeping the
occurring local error below a prescribed tolerance tol such that the step will be accepted.

Estimation of hn+1

Assume for the following that step (n + 1) has been accepted. To determine a new stepsize hn+1

for the next step, we need an estimate for the local error in step (n + 2), assuming that the new
step is performed with an order of k and the stepsize hn+1. Based on formula (5.39) for the local
discretization error σn+1 we obtain for σn+2

σn+2 =
k∏
i=1

ψi(n+ 2) y(ex)[tn+2, . . . , tn−k+1]

+
k+1∏
i=1

ψi(n+ 2) y(ex)[tn+2, tn+2, . . . , tn−k+1],

and hence the estimation for the local error

Ek(n+ 2, hn+1) = hn+1‖σn+1‖

.
= hn+1

k∏
i=1

ψi(n+ 2)
∥∥∥y[tn+2, . . . , tn−k+1]

∥∥∥. (5.53)

Here, the still unknown divided di�erence can be estimated conservatively by [BSS94]∥∥∥y[tn+2, . . . , tn−k+1]
∥∥∥ ≤ ∥∥∥y[tn+1, . . . , tn−k]

∥∥∥
+ψk+2(n+ 2)

∥∥∥y[tn+1, . . . , tn−k−1]
∥∥∥. (5.54)

We end up with the condition for hn+1

Ek(n+ 2, hn+1)
.
= hn+1

k∏
i=1

ψi(n+ 2) ·
(∥∥y[tn+1, . . . , tn−k]

∥∥
+ψk+2(n+ 2)

∥∥y[tn+1, . . . , tn−k−1]
∥∥)

≤ c · tol, (5.55)

where c ≤ 1 is a safety factor, e.g., c = 0.5. Because this inequality depends polynomially on
hn+1, it is di�cult to obtain a suitable hn+1 directly. Therefore we �rst compute the largest ad-
mittable stepsize for the given tolerance on an equidistant grid as an approximation and reduce
it, if needed, according to the inequality above.
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On an equidistant grid we obtain for a step with order k the estimation

Êk(n+ 2, h) = k! hk+1‖y[tn+1, . . . , tn−k]‖.

Demanding Êk(n+ 2, h) ≤ c · tol this leads to the so-called maximal uniform stepsize [Ble86]:

ĥk̂ = k̂+1

√
c · tol

k̂! ‖y[tn+1, . . . , tn−k̂]‖
. (5.56)

ĥk̂ is computed for the actual integration order k̂ = k, as well as for k̂ = k− 1 and k̂ = k+ 1. The
values are compared and the order is changed for the next step, if for the new order the stepsize
would be signi�cantly larger. Finally ĥk∗ is checked against the error estimation formula

Ek∗(n+ 2, ĥk∗) ≤ c · tol

on variable grid. If this check is passed, the stepsize is accepted, and the next step is planned using
hn+1 = ĥk̂. Otherwise the step stepsize is adjusted using (5.55). For that, we use the formula

h2
k∗ = c·tol

q(ĥk∗ ) (‖y[tn+1,...,tn−k∗ ]‖+(ĥk∗+ψk+1(n+1))‖y[tn+1,...,tn−k−1]‖) , (5.57)

where

q(h) :=
k∗−1∏
i=1

(h+ ψi(n+ 1))

is monotonically increasing in h.
As hk∗ < ĥk∗ holds, it follows h2

k∗q(hk∗) < h2
k∗q(ĥk∗) and hk∗ ful�lls

Ek∗(n+ 2, hk∗) ≤ c · tol

and is used as stepsize for the next step.

This strategy performs order and stepsize control based on the actual variable grid and allows a
�exible adaption of stepsizes and orders. As Bleser [Ble86] and later Eich [Eic91] have demon-
strated, this strategy is very e�cient. It reduces the number of step rejections, allows to switch the
order of the steps faster and leads to a more stable integration procedure compared to ordinary
stepsize strategies based on uniform grids.

Remark 5.63 (Stepsize changes and stability)
As presented in Section 5.2.2, stability of BDF methods on variable grids can without further
assumptions only be proven for very limited stepsize changes. These strict bounds prohibit espe-
cially for higher orders an e�cient stepsize control. As a consequence, investigations were made
to establish less strict bounds on the allowed stepsize changes under some additional assumptions.
Calvo et al. [CLM87] computed for BDF methods on pseudo-equidistant grids (Nordsieck-methods,
[Nor62]) bounds for stepsize changes that guarantee stability. Here the stepsize is kept constant
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for some time after a stepsize change, which allows more relaxed stepsize bounds. The bounds
become the more relaxed the longer stepsize is kept constant. Gear and Tu [GT74] proved under
the assumption of continuous stepsize changes less strict bounds on the allowed stepsize changes
than Griegorie� in [Gri83].
The stepsize control in DAESOL-II aims for continuous stepsize changes and avoids all-too large
jumps in the stepsizes. Therefore the narrow bounds from theorem 5.53 do not need to be ful�lled
strictly in practice. We also can allow in DAESOL-II stepsize changes after every integration step.

Remark 5.64 (Order changes and stability)
Like stepsize changes, also changes of the order of the BDF method can lead to stability problems
during integration. Strictly speaking, an order change is in the end a change of the used LMM.
We take care of this point in DAESOL-II by freezing the order for a certain amount of steps after
an order change, like proposed by Gear and Wanatabe [GW74]. Depending on the last order and
if the order was previously increased or decreased, the order is kept constant for between one and
four integration steps.

Stepsize reduction after step rejections

The analysis given above considered the estimation of a new stepsize for the case that the actual
step has been accepted. The question remains how to choose the stepsize for the repetition of the
actual step (n+ 1), if it was rejected. Here we distinguish between the two possible reasons for a
step rejection in DAESOL-II:

a) The estimated error Ek(n+ 1, hn) is too large.

b) The Newton-like method does not converge in three steps despite rebuild and decomposition
of the Jacobian.

In case a) we compute a new stepsize for the step repetition from the error formula (5.55) on
variable grid by

h(new)
n = h(old)

n

√
c · tol

Ek(n+ 1, h
(old)
n )

. (5.58)

In case b) the stepsize is reduced implicitly by imposing a stricter tolerance. Here the new
stepsize shall be chosen in a way, that for the expected new convergence rate δnew

0 ≤ 0.25 holds.
This corresponds to a predicted convergence of the Newton-like method in two steps [Enk84].
Because the step rejection is the last action in the monitor strategy, the actual Jacobian including
up-to-date model derivatives has already been computed and decomposed. Therefore in the quality
criterion for the iteration matrix in the local contraction theorem (5.46) κ = 0 holds.
An estimation of ω(0) based on the quantities computed in the rejected step is obtained using
(5.47) as:

ω(0) ≈ 2
δ

(rejected)
0

‖∆y
(0)
n+1(rejected)‖

. (5.59)
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Then the condition

δ
(new)
0 =

ω(0)

2
‖∆y

(0)
n+1(new)‖ ≤

1

4

can be transformed into

‖∆y
(0)
n+1(new)‖ ≤

‖∆y
(0)
n+1(rejected)‖

4 δ
(rejected)
0

. (5.60)

Considering the estimation of the local error, then with

‖yC
n+1 − yP

n+1‖ =
k+1∏
i=1

ψi(n+ 1)‖y[tn+1, . . . , tn−k]‖

and the approximation
‖∆y

(0)
n+1‖ ≈ ‖yC

n+1 − yP
n+1‖

we obtain using (5.41) the approximation

Ek(n+ 1, h) =
h

ψk+1(n+ 1)
‖∆y

(0)
n+1‖. (5.61)

If we now tighten tol, such that

tol =
h

ψk+1(n+ 1)

‖∆y
(0)
n+1(rejected)‖

4δ
(rejected)
0

(5.62)

and therefore demand in the stepsize determination that

Ek(n+ 1, h(new)
n ) ≤ c · tol

we �nally accomplish

δ
(new)
0 ≤ 1

4
.

5.3.5 Start-up of the BDF method

A k-step BDF method needs at least k �historical� values. At the begin of the integration of an
IVP only the initial value y0 = (x0

T , z0
T )T is available. There exist several possibilities to start

the integration.
In a self starting method we start with a one-step BDF method and increase the order subsequently
according to the stepsize and order control. A disadvantage of this approach might be, that in
the beginning due to the low order often very small steps have to be made. Possibly the solution
might be less accurate and errors that are made at the begin of the integration might dominate
the overall error of the method for some time (cf. [Bau99]). Additionally, several rebuilds and
decompositions of the iteration matrix are to be expected during the process of increasing the
stepsize and order.
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Another possibility would be to make a small integration step backwards using a one-step method,
and to start with a two-step method afterwards.
Finally, a one-step method of higher order could be used to produce several start values to start
afterwards with a LMM of higher order. Gear [Gea80] used for the �rst time a Runge-Kutta-
method to start a LMM. Von Schwerin and Bock [vSB95] used an explicit Runge-Kutta-method
(RK) as a starter for an Adams-method. Other than in the approach of Gear, in this method some
of the internal stages are of higher order, such that with one step of the Runge-Kutta-method all
needed start values can be produced.
For BDF methods Bauer [Bau99] developed an implicit RK-method that follows the approach of
Bock and von Schwerin: Several internal stages are of higher order. Hence with one step of the
RK-method, the start values for a fourth order BDF method can be produced. Furthermore this
method is designed in such a way that the iteration matrix of the RK-method can be reused in
the BDF method.

In DAESOL-II there are currently two of these approaches implemented. The RK-starter approach
of Bauer and the self starting approach. As in the �rst integration step of a self starting method
there are also not enough historical values available to build the predictor polynomial, here an
explicit Euler step is used to obtain the predictor value. The starter strategy of the integration is
also modularized, such that a later extension with additional approaches is possible. An e�cient
start-up strategy is especially important in the case of discontinuities of the model functions, or
their lower order derivatives, because in all these points the integration has to be stopped and
restarted. Also in the treatment of problems where the dynamic model switches depending on
the current state as well as during the solution of delay di�erential equations often integration
restarts are needed.

5.3.6 Computation of consistent initial values

To solve an initial value problem for DAEs, consistent initial values are needed. In an actual
application these might not be known exactly, e.g., because they are not measurable directly. In
the fully-implicit setup consistency means that b(t0,y0, ẏ0) = 0 holds. In the linearly implicit
index 1 case the di�erential variables x0 are free, and the algebraic variables z0 are implicitly
de�ned due to the regularity of gz and the consistency condition g(t0,x0, z0) = 0.
If the integration would be started with non-consistent initial values, after one step a consistent
point would be reached, provided the iterative Newton-like method for the corrector equation has
converged. But in this case problems with the error estimation and the quality of the computed
�solution� would arise, because in the �rst step h0 → 0 does not imply any more that the error
tends to 0, as a non-vanishing contribution of the inconsistency remains.
For a linearly implicit index 1 DAE-IVP the generation of initial values is equivalent to �nding
the root of the algebraic equations g(t0,x0, z) with only z as variables.
A simple approach to solve this problem implemented in DAESOL-II is a full-step Newton method.
The drawback here is that convergence is only achieved, if the initial estimates for the algebraic
variables lie in the local convergence region (see also 5.62) of the Newton method.
For highly nonlinear problems or very bad initial estimates it is therefore possible that no consistent
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algebraic start value can be found. In this case globally convergent root �nding methods would
be needed, like, e.g., damped Newton or homotopy methods, which are described in [BSS94] or
[Bau99]. As the routines for the consistent initialization are implemented as modules, some of
these more advanced approaches can be added later to DAESOL-II if needed.

5.3.7 Relaxed formulation of the algebraic equations

For the iterative solution of an optimization problem involving a DAE model it is often more
convenient (and also more e�cient) to allow the solution of DAE-IVPs with originally inconsistent
initial values. For example, if the algebraic variables depend on free variables that are to be
optimized, the consistency conditions will usually be violated after every optimization iteration.
In this case a relaxed formulation of the algebraic variables is of advantage [BES88], where the
optimization algorithm has to ensure consistency in the solution of the optimization problem.
This can be achieved for example by adding the algebraic equations in the start points of the
IVPs as equality constraints to the optimization problem, as, e.g., done in [Lei99]. The relaxed
formulation leads to an DAE-IVP of the type

A(t,x, z)ẋ = f(t,x, z)
0 = g(t,x, z)− θ(t)g(t0,x0, z0),

x(t0) = x0,
z(t0) = z0.

(5.63)

Here we assume that the damping function θ : R → R is su�ciently smooth, that θ(t0) = 1,
θ(t) ≥ 0 and that θ(t) is monotonically decreasing. This formulation means that we force the
initial values to be consistent by a slight change of the constraint manifold of the DAE and hence
of the actual problem we solve. This allows us now in the optimization context to start the in-
tegration with arbitrary initial values. And if we �nally use at some point of the optimization
�truly� consistent initial values, the relaxing term vanished and we solve again our original problem.

The standard choice in DAESOL-II is the damping function

θ(t) = e
−prelax

(
t−t0

tend−t0

)
,

where prelax may be chosen by the user and is per default set to prelax = 5.

Note that if the damping is su�ciently strong and the integration horizon is performed over a long
horizon, the use of f ≡ 0 and the �normal� g provides another way to compute consistent initial
values.

5.3.8 Scaling

When solving problems numerically, it is necessary to take into account the possibly di�erent
order of magnitudes of di�erent components of the variables. Hence in the strategies for error
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estimation and stepsize control a weighted norm is used instead of the plain Euclidean l2-norm
‖y‖2. It is calculated by the formula

∥∥yn+1

∥∥ =
1

ny

√√√√ ny∑
i=1

(
yn+1,i

vscaln+1,i

)2

, (5.64)

where vscal ∈ Rny is the scaling vector containing the di�erent scaling factors and the i denotes
the i-th component of the corresponding vector.
Up to now, in DAESOL-II are four di�erent scaling methods implemented which di�er in the choice
of the update strategy of the scaling vector:

1. The DASSL scaling [BCP96] which is also used in many integrator code besides DASSL:

vscaln+1,i = |yn+1,i|+ atoli/tol, i = 1, . . . , ny.

2. Gear scaling:
vscaln+1,i = max{|yn+1,i|, vscaln,i}, i = 1, . . . , ny.

3. Old Deu�hard scaling:

vscaln+1,i = max{|yn+1,i|, vscaln,i, cmin}, i = 1, . . . , ny,

with cmin = max
ny
i=1 yn+1,i · εmach · 100

tol
.

4. New Deu�hard scaling which is used in the LIMEX code:

vscaln+1,i = max{|yn+1,i|, vscaln,i, atoli}, i = 1, . . . , ny.

We use here vscal0 = 0, εmach is the machine precision, tol the user given relative tolerance and
atol a user given absolute tolerance.
With the exception of the DASSL scaling the scaling vector depends in every step on its last value
in order to take the maximal absolute values of the components into account. If one component
becomes very small during integration but is still signi�cant for the computation, then the DASSL
scaling should be preferred.
Di�erent orders of magnitude in the di�erent components can be taken into account by a cor-
responding choice of the components of the atol vector. In the DASSL scaling atol has the
meaning of an absolute error tolerance, in the new Deu�hard scaling it corresponds to a scaling
factor.

5.3.9 Continuous representation of the solutions

The polynomial interpolation of the latest computed trajectory values, which is the foundation of
the BDF methods, provides a simple and e�cient possibility to generate a continuous representa-
tion of the solution. This allows us to decouple the output grid of the solution from the actual in-
tegration grid and to evaluate the trajectories error-controlled at arbitrary points that are not con-
tained in the integration grid. This representation is also the foundation for extensions of the inte-
grator code for the treatment of problems with implicitly de�ned switching points, where the model
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equations change or non-di�erentiabilities occur (cf. [Kir06],[Ehr05],[BP04], [Eic91],[GO84]). Also
for the treatment of delay di�erential equations this representation plays a crucial role. In the gen-
eral case, where the delays are state-dependent, historical trajectory values are needed at points
that usually do not belong to the discretization grid and that are not known in advance.

We obtain the continuous representation of the solution in the interval [tn, tn+1] from the interpo-
lation polynomial PI

n+1(t) that interpolates the values yn+1, . . . ,yn−k exactly. This means that
it is identical with the corrector polynomial of the actually completed step. If no order change
occurs, it is also identical with the predictor polynomial of the next step. Hence we get

PI
n+1(t) =

k∑
j=0

j−1∏
i=0

(t− tn+1−i) y[tn+1, . . . , tn+1−j] (5.65)

= PC
n+1(t)

= PP
n+2(t) (if order remains the same).

It can be shown that this continuous interpolation of the solution ful�lls the conditions of �natural
interpolation� [BS81] at least on equidistant grids. This means that, asymptotically, the interpo-
lation error from the evaluation of PI is smaller than the discretization error of the BDF method
at the gridpoints.

The output of solutions in DAESOL-II is based on this representation and uses a plug-in system
implemented in the SolvIND interface. The user can pass a self-written plug-in to the integrator,
de�ning di�erent actions for di�erent kinds of events, as well as an arbitrary output grid, for which
interpolated values are generated by the integrator and passed back to the plug-in.



6 Sensitivity generation

In this chapter we present e�cient strategies and algorithms for the numerical computation of
sensitivities, i.e., the derivatives of solutions of Initial Value Problems (IVPs) for sti� Ordinary
Di�erential Equations (ODEs) and Di�erential Algebraic Equations (DAEs) of index 1 with respect
to initial values and/or parameter. The e�cient and accurate computation of sensitivities is of
interest, e.g., in the analysis of dynamic systems or in model reduction strategies. Furthermore,
it is an essential part of all derivative based algorithms for the optimization of dynamic systems
such as Gauss-Newton and SQP methods. In these algorithms the sensitivity generation is usually
the most time consuming task, especially for large scale systems.

The type of required sensitivities depends on the application context. While normally for ordi-
nary Gauss-Newton-type methods, e.g., for parameter estimation, �rst order forward sensitivities
are su�cient, Gauss-Newton approaches for robust optimization and exact-Hessian SQP meth-
ods as presented in this thesis need at least second order sensitivity information. For optimal
experimental design even (directional) sensitivities of third order might be of interest. Inexact
SQP approaches, on the other hand, need adjoint sensitivity information to be e�cient. In the
following we present numerical schemes for the computation of all these types of sensitivities. For
the derivation of these schemes we use the idea of Internal Numerical Di�erentiation (IND), in-
vented by Bock [Boc81, Boc83], which leads to sensitivity generation schemes strongly intertwined
with the numerical schemes used for the solution of the corresponding nominal IVPs. While the
presented �rst order forward schemes are well-known, we present new adjoint based IND schemes
for LMMs and the �rst schemes for arbitrary order sensitivity generation at all. Furthermore, we
give the �rst approach for the propagation of higher-order directional sensitivities across switching
events.

This chapter is organized as follows. First, we recall in Section 6.1 the de�nition of the sensi-
tivity generation problem. Then, we describe in Section 6.2 how sensitivities could be obtained
analytically as solution of variational DAEs. Afterwards, in Section 6.3, we introduce the idea of
IND, before in Section 6.4 IND-based schemes for �rst order sensitivity generation are given. In
Section 6.5 we present numerical schemes for the computation of sensitivities of arbitrary order.
We compare numerical e�ort and memory usage of the presented strategies in Section 6.6, before
we �nally address in Section 6.7 the strategies implemented in DAESOL-II that are related to
sensitivity generation.
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6.1 Problem formulation

In this chapter we consider the computation of sensitivities, i.e., the computation of the derivatives
of the solutions of relaxed parameter dependent initial value problems for linearly implicit index
1 DAEs

A(τ,x(τ), z(τ),p) ẋ(τ)− f(τ,x(τ), z(τ),p) = 0, x(τ0) = x0, (6.1a)

g(τ,x(τ), z(τ),p)− θ(τ) g(τ0,x0, z0,p) = 0, z(τ0) = z0, (6.1b)

with respect to the initial values x0, z0 and the parameter p. In this formulation we assume to be
in the direct multiple shooting context such that τ ∈ [τ0, τe] ⊂ [0, 1] is already the normalized time
and p = (pq

T ,pp
T ,ph

T )T ∈ Rnq+np+nh a set of parameter combining the parameter of a possible
control parametrization, the system parameter as well as the stage lengths in case of a multistage
formulation. We also assume here that the initial values do not depend on the parameter vector
p. If this should be the case, the corresponding sensitivity information with respect to p can be
easily obtained by application of the chain rule.

Wronski matrices

We denote by

W(τ ; τ0,x0, z0,p) :=
dy(τ ; τ0,x0, z0,p)

d(x0, z0,p)
∈ R(nx+nz)×(nx+nz+np) (6.2)

the (�rst order) sensitivities of the DAE-IVP solution y(τ) = (x(τ)T , z(τ)T )T at time τ for the
initial time τ0, initial values x0, z0 and parameter p. These sensitivity matrices are called Wronski
matrices. To describe the submatrices of the Wronski matrix we de�ne (omitting the arguments)

W :=

(
Wx

Wz

)
:=

(
Wx

y0
Wx

p

Wz
y0
Wz

p

)
:=

(
Wx

x0
Wx

z0
Wx

p

Wz
x0
Wz

z0
Wz

p

)
. (6.3)

In the following we present strategies to compute approximations for the Wronski matrices W
as well as for matrix-vector and vector-matrix products between direction vectors and W . This
leads in one case to so-called forward sensitivities WD with a matrix of forward directions D ∈
R(nx+nz+np)×nfwdDir

WD =W ·D ∈ R(nx+nz)×nfwdDir (6.4)

and in the other case to adjoint sensitivities W̄Ȳ with a matrix of adjoint directions Ȳ ∈
R(nx+nz)×nadjDir

W̄Ȳ =WT · Ȳ ∈ R(nx+nz+np)×nadjDir . (6.5)

For a more convenient notation we omit here and in the following the sensitivity of the DAE
solution with respect to the initial time τ0, as it is usually not needed for the algorithms presented
in this thesis. However, the derivations and strategies presented in this chapter can be transferred
with at most small modi�cations to this case, leading to schemes for the generation of sensitivities
with respect to the initial time.
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6.2 Variational DAEs

We now discuss how the sensitivities can be described in an analytical way. Provided that the
model functions A, f and g are smooth enough, the solution of the so-called nominal IVP (6.1) is
di�erentiable with respect to the initial time τ0, the initial values x0, z0 and the parameter p. We
can thus derive for the nominal DAE-IVP the corresponding variational DAE-IVPs to compute
sensitivities.

Forward variational DAE

The simple formal di�erentiation of the solution of the nominal IVP leads to an IVP for the
sensitivities, also called forward variational DAE, which has the form (omitting the arguments)

AẆx =
(

fx −Ax fz −Azẋ fp −Apẋ
)  Wx

x0
Wx

z0
Wx

p

Wz
x0
Wz

z0
Wz

p

0 0 Inp

 (6.6a)

0 =
(

gx gz gp

)  Wx
x0
Wx

z0
Wx

p

Wz
x0
Wz

z0
Wz

p

0 0 Inp

− θ · ( gx,0 gz,0 gp,0

)
(6.6b)

with initial values

W(τ0; τ0,x0, z0,p) =

(
Inx 0 0
0 Inz 0

)
. (6.6c)

Here the index zero at the g terms indicates the evaluation at the initial time and for the initial
values. Alternatively, the variational DAE can be formulated directly for a matrix of directions

D =

Dx

Dz

Dp

 ∈ R(nx+nz+np)×nfwdDir (6.7)

to compute the forward sensitivities WD via the IVP

AẆD,x =
(

fx −Axẋ fz −Azẋ fp −Apẋ
)  WD,x

WD,z

Dp

 (6.8a)

0 =
(

gx gz gp

)  WD,x

WD,z

Dp

− θ · ( gx,0 gz,0 gp,0

)
·D (6.8b)

with initial values

WD(τ0; τ0,x0, z0,p) =

(
Dx

Dz

)
. (6.8c)

Note that both versions for the forward sensitivity DAEs are linear and obviously have the same
sti�ness properties as the nominal IVP. Furthermore, for the solution of the variational IVP we
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need the solution of the nominal IVP, such that the solution of both systems should be performed
simultaneously in practice. In principle every numerical integration code suitable for the solution
of the nominal IVP could be used in a black-box manner to solve the combined systems as well.
However, because of the close relation between nominal and variational IVP, there is a lot of
structure that should be exploited in the solution process. The algorithmic schemes based on IND
presented later in this chapter exploit this structure automatically by construction, while this is
not the case for commonly used integration routines, where special modi�cations have to be made.

Adjoint variational DAE

An alternative possibility to compute the sensitivities is based on the solution of the adjoint
variational DAE which we derive in the following for the relaxed index 1 DAE-IVP case. We do
this similar to the derivation that Cao et al. [CLPS03] give for the case of a non relaxed fully-
implicit DAE. For this derivation we assume that ϕ(x(τe), z(τe)) is a smooth scalar function that
depends on the values of the solution of the DAE-IVP (6.1) at the �nal time. Examples for ϕ
could be a component of the solution or a linear combination of them. Based on the derivative of
ϕ with respect to x0, z0 and p we can obtain adjoint sensitivities of type (6.5) via suitable choices
of ϕ. Consider now the function

χ
(
x(τe; x0, z0,p), z(τe; x0, z0,p)

)
= ϕ

(
x(τe; x0, z0,p), z(τe; x0, z0,p)

)
−
∫ τe

τ0

λx(τ)T [A(τ,x(τ), z(τ),p)ẋ(τ)− f(τ,x(τ), z(τ),p)]︸ ︷︷ ︸
≡0

dτ

−
∫ τe

τ0

λz(τ)T [g(τ,x(τ), z(τ),p)− θ(τ)g(τ0,x0, z0,p)]︸ ︷︷ ︸
≡0

dτ.

(6.9)

We then obtain for the derivative of ϕ with respect to y0 =

(
x0

z0

)
(only displaying the time

arguments)

dϕ
(
x, z)

dy0

=
dχ
(
x, z)

dy0

= ϕx(τe)
dx(τe)

dy0

+ ϕz(τe)
dz(τe)

dy0

−
∫ τe

τ0

λx(τ)T
[
A(τ)

dẋ(τ)

dy0

+ (Ay(τ)ẋ(τ))
dy(τ)

dy0

− fy(τ)
dy(τ)

dy0

]
dτ

−
∫ τe

τ0

λz(τ)T
[
gy(τ)

dy(τ)

dy0

− θ(τ)gy(τ0)

]
dτ. (6.10)

Integration by parts leads to∫ τe

τ0

λx(τ)TA(τ)
dẋ(τ)

dy0

dτ =

[
λx(τ)TA(τ)

dx(τ)

dy0

]∣∣∣∣τe
τ0

−
∫ τe

τ0

d(λx(τ)TA(τ))

dτ

dx(τ)

dy0

dτ. (6.11)
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Together with (6.10) this results in

dϕ
(
x, z)

dy0

=
[
ϕx(τe)− λx(τe)

TA(τe)
] dx(τe)

dy0

+ ϕz(τe)
dz(τe)

dy0

+ λx(τ0)TA(τ0)
(
Inx 0

)
−
∫ τe

τ0

[(
−d(λx(τ)TA(τ))

dτ
0
)

+ λx(τ)T (Ay(τ)ẋ(τ))− λx(τ)T fy(τ)
]

︸ ︷︷ ︸
=:a1

dy(τ)

dy0

dτ

−
∫ τe

τ0

[
λz(τ)Tgy(τ)

]︸ ︷︷ ︸
=:a2

dy(τ)

dy0

dτ +

∫ τe

τ0

θ(τ)λz(τ)Tgy(τ0)dτ. (6.12)

We require now a1 + a2 ≡ 0 which leads to the adjoint DAE system

A(τ)T λ̇
x
(τ) = (Ax(τ)ẋ(τ)− fx(τ))Tλx(τ) + gx(τ)Tλz(τ)−At(τ)Tλx(τ) (6.13a)

0 = (Az(τ)ẋ(τ)− fz(τ))Tλx(τ) + gz(τ)Tλz(τ). (6.13b)

Furthermore, we can use the implicit function theorem on the relaxed algebraic equations at the
�nal time to express dz(τe)

dy0
in terms of dx(τe)

dy0
and the relaxation as

dz(τe)

dy0

= −g−1
z (τe)

(
gx(τe)

dx(τe)

dy0

− θ(τe)gy(τ0)

)
. (6.14)

Then, Equation (6.12) for the derivative becomes

dϕ
(
x, z)

dy0

= λx(τ0)TA(τ0)
(
Inx 0

)
+
[
ϕx(τe)− λx(τe)

TA(τe)− ϕz(τe)g
−1
z (τe)gx(τe)

]︸ ︷︷ ︸
=:b

dx(τe)

dy0

+θ(τe)ϕz(τe)g
−1
z (τe)gy(τ0) +

∫ τe

τ0

θ(τ)λz(τ)Tgy(τ0)dτ. (6.15)

Demanding b ≡ 0 de�nes the initial values for the adjoint DAE system (6.13)

A(τe)
Tλx(τe) = ϕx(τe)

T − gx(τe)
Tgz(τe)

−Tϕz(τe)
T . (6.16)

Solving the adjoint DAE system (6.13) with these initial values backwards in time from τe to τ0

allows us to express the derivative as

dϕ
(
x, z)

dy0

= λx(τ0)TA(τ0)
(
Inx 0

)
+θ(τe)ϕz(τe)g

−1
z (τe)gy(τ0) +

∫ τe

τ0

θ(τ)λz(τ)Tgy(τ0)dτ, (6.17)
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where λx(τ0) is the solution of the adjoint DAE. The integral term can be integrated along with
the solution of the adjoint DAE. Analogously, the derivative of ϕ with respect to the parameter
p can be derived, leading to the expression

dϕ
(
x, z)

dp
= −

∫ τe

τ0

λx(τ)T ((Ap(τ)ẋ(τ)− fp(τ)) + λz(τ)T (gp(τ)− θ(τ)gp(τ0))dτ

−ϕz(τe)g
−1
z (τe)(gp(τe)− θ(τe)gp(τ0)). (6.18)

Note that also in this case the integral part can be computed along with the solution of the adjoint
DAE-IVP, such that all derivatives of a function ϕ can be computed by a single solution of the
adjoint variational DAE. The adjoint variational DAE is, like the forward variational DAE, linear.
If we solve now the adjoint variational DAEs for a sequence of ϕ corresponding to the single
components of the DAE solution, we can compute the full Wronskian matrix (6.3) with (nx + nz)
solutions of the adjoint variational DAE. These are fewer solutions than needed in the case of
using the forward variational DAE (6.6), which requires (nx + nz + np) solutions. Note also that
only nadjDir solutions of the adjoint variational DAE are needed to compute an adjoint sensitivity
of type (6.5).
A drawback of the adjoint approach is that the nominal IVP and the adjoint variational IVP cannot
be solved simultaneously, but in general the solution values of the nominal IVP are nevertheless
needed for the solution of the adjoint IVP. Hence a nominal integration has to be performed �rst
to obtain a representation of the nominal solution and afterwards the adjoint IVP can be solved.
In codes not based on IND, such as CVODES and IDAS of the SUNDIALS [HBG+05] suite (and
all other codes capable of adjoint sensitivity computation in the DASSL family tree), the needed
nominal solution values are usually obtained by interpolation based on the solution values on
the discretization grid of the nominal IVP solution. This is necessary in these codes, since the
discretization grids for the nominal IVP and the adjoint IVP in general do not coincide. This
increases the computational e�ort and possibly introduces further numerical errors. As we will
see later, the IND-based adjoint schemes developed in this thesis can reuse here more information
that already has been computed during solution of the nominal IVP.

Higher-order sensitivities

For the computation of higher-order sensitivities theoretically the di�erentiation procedure leading
to the forward variational DAE could be iterated, resulting in forward variational DAEs for the
computation of higher-order sensitivities. For second order sensitivities for DAEs this is described,
e.g., in [Bau99, Kör02]. For higher orders it becomes even more tedious and error-prone to per-
form this process. A combined forward/adjoint approach inspired by AD techniques to obtain a
variational ODE for reduced second order sensitivities is given in [OB05]. The numerical solution
of this variational DAE, however, needs also a specially tailored ODE solver.

After de�ning forward and adjoint sensitivities and describing the variational DAE-IVPs that are
commonly used for their approximation, we now describe the principle of IND and how it can be
used to obtain e�cient schemes for sensitivity generation.
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6.3 The principle of internal numerical di�erentiation

In this section we describe how, based on a numerical scheme for the solution of the nominal prob-
lem, a scheme for the numerical approximation of the sensitivities can be derived. The simplest
approach, using a given integration code to obtain sensitivity information, treats the integrator
as black box. It calculates �nite di�erences after solving the nominal IVP for the original initial
values and parameter and once again for slightly perturbed initial values and/or perturbed pa-
rameter. This approach is called external numerical di�erentiation (END). Although very easy to
implement, the END su�ers from the fact that the output of an adaptive integrator usually does
not depend continuously on the input: Jumps in the range of the integration tolerance can always
occur for di�erent sets of initial values and parameter, e.g., due to a change in the stepsize and
order strategy. Therefore, the number of signi�cant digits in the solution of the IVP has to be
approximately twice as high as the needed accuracy of the derivatives. This leads to a very high
and often unacceptable numerical e�ort.
The idea of Internal Numerical Di�erentiation (IND) [Boc81, Boc83] is to freeze the adaptive
components of the integrator and to di�erentiate not the whole adaptive integrator code, but the
adaptively generated discretization scheme (�xing the used stepsizes, orders, iteration matrices
and number of Newton-like iterations). This scheme can be interpreted as a sequence of di�er-
entiable mappings, each leading from the solution at one timepoint of the discretization grid via
intermediate values to the next. Hence it can be di�erentiated, for example, using �nite di�er-
ences, the complex step method or the techniques of automatic di�erentiation. This leads to
numerical schemes for the computation of the sensitivities that are strongly intertwined with the
computation of the nominal solution.

In fact, by using the principle of IND we are not only able to reuse a lot of information already
computed during the solution of the nominal problem, but we also obtain, together with the
approximation of the analytical sensitivities, the exact derivative of the numerical solution of the
nominal problem. This is a very desirable property of IND-based schemes that most of the other
available codes do not share. They often use only the same numerical method for the nominal
and the variational IVP, but not the same discretization scheme, even when they exploit some
parts of the problem structure. This may lead to problems in adaptive optimization algorithms
relying on the sensitivity information, e.g., when for lower integration tolerances the behavior of
the numerical nominal solution predicted by the sensitivities does not correspond to its actual
behavior.

Following the idea of IND, we now decompose the integration scheme generated adaptively dur-
ing the numerical solution of the nominal problem into a sequence of di�erentiable �elementary�
mappings. Using the derivatives of these elementary mappings and applying the chain rule, we
can derive numerical schemes for sensitivity computation using the AD techniques presented in
Chapter 2. Depending on the used approach we will obtain IND schemes for the approximation
of �rst order forward or adjoint sensitivities as well as of higher-order sensitivities. Although the
presentation in the following is given mainly in the context of BDF methods, the presented strate-
gies, including the new adjoint and the arbitrary order schemes, can be immediately transferred
to other implicit LMMs and even easier to explicit LMMs and Runge-Kutta methods.
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For the derivation of the IND schemes we �rst recall from Section 5.3.3 the computations made
during an (accepted) step for the computation of yn+1. We denote the stepsize of this step with hn,
the BDF order with kn, the iteration matrix with Mn and the number of performed Newton-like
iterations with sn.
In a single BDF step, �rst the predictor value yP

n+1 is computed by the interpolation polynomial
through the last kn + 1 values, extrapolated at time tn+1, resulting in

yP
n+1 =

kn∑
i=0

αPi,n yn−i, (6.19)

with predictor coe�cients αPi,n depending only on the stepsize series hn, . . . , hn−kn . The predictor
value is then used as start value for the iterative solution of the implicit corrector equation. The
time derivative ẋC

n+1 of the corrector polynomial through the values xn+1, . . . ,xn+1−kn can be
written as

ẋC
n+1 =

kn∑
i=0

αCi,n xn+1−i = xCC
n+1 + αC0,nxn+1, (6.20)

with corrector constant

xCC
n+1 =

kn∑
i=1

αCi,n xn+1−i. (6.21)

It summarizes the contribution of the last di�erential states to ẋC
n+1, with the exception of the

value xn+1 which is to be determined by the integration step. Note that for an easier notation in
this context we have relabeled the coe�cients from Chapter 5, such that αCi,n now corresponds to
the α(kn−i)(n+1−kn) of De�nition 5.18.

For the solution of the implicit system (5.15) we apply a Newton-like method using the approxi-
mation Mn instead of the actual Jacobian Jn := ∂fBDF

n

∂y
of the method function

fBDF
n (xn+1, zn+1; xCC

n+1,p,x0, z0) :=(
A(tn+1,xn+1, zn+1,p)(xCC

n+1 + αC0,nxn+1)− hnf(tn+1,xn+1, zn+1,p)
g(tn+1,xn+1, zn+1,p)− θ(tn+1) g(t0,x0, z0,p)

)
. (6.22)

The iterations to �nd a root of fBDF
n are started with the predictor value y

(0)
n+1 = yP

n+1. We
perform sn Newton iterations

y
(i+1)
n+1 = y

(i)
n+1 + ∆y

(i)
n+1, 0 ≤ i ≤ sn − 1, (6.23)

where the increment is given by

∆y
(i)
n+1 = −M−1

n fBDF
n (y

(i)
n+1). (6.24)
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Figure 6.1: The dependencies in the calculations made during the n-th step of a BDF method with order kn and
iteration matrix Mn.

Now, we interpret the computations made in the equations (6.19)-(6.24) as elementary operations
for which the partial derivatives are easily determined, cf. Section 6.4.1. Figure 6.1 shows the
dependencies of the quantities and the elementary operations used in one BDF step. In the
following section we use the AD techniques described in Chapter 2 on this elemental representation
of a BDF step to propagate sensitivities through the integration process.

6.4 First order sensitivity generation for DAEs

In this section we derive IND-based schemes for the computation of �rst order sensitivities. The
�rst IND-based schemes for the computation of �rst order forward sensitivities for ODEs were
derived by Bock [Boc81, Boc83] for the code METAN1 of Deu�hard and Bader [DB83], using the
semi-implicit midpoint rule, and the code DIFSYS of Bulirsch and Stoer [BS66], using the explicit
midpoint rule. Plitt [Pli81] and later von Schwerin [vS92] used �rst order forward IND schemes
derived from Runge-Kutta-Fehlberg [Feh69, Feh70] codes. Von Schwerin and Winckler [SW96]
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presented �rst order forward IND schemes for ODE and DAE systems with discontinuities based
on Dormand-Prince Runge-Kutta methods [DP80, PD81] and on an Adams PECE [BA83, Mil26,
Mou26] method implemented in the MBSSIM [SW94] integrator library. The �rst forward IND
schemes for the computation of �rst order DAE sensitivities using BDF methods were presented
in the code DAESOL by Eich [Eic87]. Later, Støren and Hertzberg [SH99] augmented the DAE code
DASSL [Pet82, BCP96] by a �rst order forward IND scheme and called this method DASSP. First
order adjoint IND schemes for DAEs have �rst been presented for BDF methods by Albersmeyer
[AB08] in the code DAESOL-II, for ODEs using explicit Runge-Kutta methods by Bock [Boc87]
and later using explicit Runge-Kutta-Fehlberg methods by Wirsching [Wir06]. As a starting point
we present now the derivation of �rst order IND schemes using the nomenclature and presentation
style of AD.

6.4.1 Forward sensitivity generation

For the derivation of �rst order forward IND schemes we have the choice between two slightly
di�erent variants. The strict application of the IND principle to the predictor-corrector scheme of
the nominal solution leads to the so-called iterative IND scheme. The (not entirely appropriate)
assumption that the implicit equation of the nominal problem has been solved exactly leads,
together with the application of the implicit function theorem, to the so-called direct IND scheme.

Iterative forward IND

To di�erentiate the predictor-corrector scheme we de�ne the elementary functions corresponding
to the equations (6.19)-(6.24)

φP
n (yn, . . . ,yn−kn) :=

kn∑
i=0

αPi,n yn−i, (6.25a)

φCC
n (xn, . . . ,xn+1−kn) :=

kn∑
i=1

αCi,n xn+1−i, (6.25b)

φit
n (yn+1,∆yn+1) := yn+1 + ∆yn+1, (6.25c)

φ∆
n (yn+1,x

CC
n+1,p,y0, z0) := −M−1

n fBDF
n (yn+1; xCC

n+1,p,y0, z0). (6.25d)
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The partial derivatives of these elementary functions are then easily calculated as (omitting the
arguments)

∂φP
n

∂yn−i

= αPi,n Iny , 0 ≤ i ≤ kn (6.26a)

∂φCC
n

∂xn+1−i

= αCi,n Inx , 1 ≤ i ≤ kn (6.26b)

∂φit
n

∂yn+1

= Iny ,
∂φit

n

∂∆yn+1

= Iny , (6.26c)

∂φ∆
n

∂v
= −M−1

n

∂fBDF
n

∂v
for v ∈ {xCC

n+1,p,x0, z0}. (6.26d)

In this way, the whole nominal integration performed using the predictor-corrector scheme can
be understood as a sequence of elementary functions φm(φm−1(. . . (φ0(y0,p) . . .))) of the above
types. As in a �rst order AD forward sweep (see Section 2.4.2), we propagate the sensitivity
information starting with a sensitivity direction d = (dTx ,d

T
z ,d

T
p)T ∈ Rnx+nz+np along with the

computation of the nominal values. We use the common AD notation and denote the intermediate
quantities in the forward sweep by a dot over the corresponding nominal value. For the elementary
functions in (6.25) and their results we then obtain (again omitting the arguments)

ẏP
n+1 =

kn∑
i=0

∂φP
n

∂yn−i

ẏn−i =
kn∑
i=0

αPi,n ẏn−i, (6.27a)

ẋCC
n+1 =

kn∑
i=1

∂φCC
n

∂xn+1−i

ẋn+1−i =
kn∑
i=1

αCi,n ẋn+1−i, (6.27b)

ẏ
(l+1)
n+1 = ẏ

(l)
n+1 + ∆ẏ

(l)
n+1, (6.27c)

∆ẏ
(l+1)
n+1 = −M−1

n

[
Jnẏ

(l)
n+1 + An+1ẋCC

n+1

+

(
Ap,n+1(xCC

n+1 + αC0,nxn+1)− hnfp,n+1

gp,n+1 − θn+1gp,0

)
ṗ

+

(
0 0

−θn+1gx,0 −θn+1gz,0

)(
ẋ0

ż0

)]
, (6.27d)

where we initialize
ẋ0 = dx, ż0 = dz and ṗ = dp (6.28)

using the sensitivity direction d. Note that all model function derivatives needed in (6.27d) can
be e�ciently computed as directional derivatives. Furthermore, the IND predictor ẏP

n+1 and the
IND corrector constant ẋCC

n+1 can be computed via modi�ed divided di�erences in the same way as
it is described in Section 5.3.1 for the predictor and corrector constant of the nominal trajectory.
Having a closer look at the derived scheme (6.27), we see that it represents again a predictor-
corrector scheme. More precisely, it is the BDF predictor-corrector scheme for the directional
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formulation of the forward variational DAE (6.8) when the discretization scheme (including iter-
ation matrices) of the computation of the nominal trajectory is used. Note that this equivalence
between the derivative of the nominal discretization scheme and the discretization scheme for the
variational ODE/DAE holds not only for BDF methods, but for all linear discretization schemes
[Boc87].
We give the iterative forward IND approach in algorithmic form in two variants: Simultaneous
with the nominal integration (see Algorithm 6.1) and deferred for a later determination of forward
sensitivities (see Algorithm 6.2), assuming that the complete discretization scheme of the nominal
integration as well as the nominal solution at the integration gridpoints is somehow available. Note
that the algorithms, although here described for one sensitivity direction, can easily be modi�ed
to compute several directional sensitivities in parallel, which is also used in practice to improve
e�ciency.
The �rst order iterative forward IND scheme is equal to the �staggered corrector method� that
was proposed later by Feehery et al. [FTB97], provided that the staggered corrector method uses
the same number of Newton iterations for the solution of the corrector equation in the variational
DAE as used for the nominal solution. Otherwise the IND principle would be violated.

Algorithm 6.1: First order iterative forward IND scheme (simultaneous)
Input: t0, tf , h0, initial values y0, parameter p, sensitivity direction d.
Output: Nominal solution yN, forward directional sensitivity ẏN =W · d.
set k0 = 1, n = 0;
initialize nominal integration with y0, p and sensitivities with d (6.28);
while tf not reached do

compute yn+1 by nominal integration step for hn, kn including sn
Newton-like iterations using matrix Mn to solve the corrector equation;

if step accepted then
// corrector equation successfully solved,

// error estimation accepted

compute IND predictor (6.27a) and IND corrector constant (6.27b);
using yn+1, hn and M−1

n , make sn iterations (6.27c)/(6.27d)
for the IND corrector equation to obtain ẏn+1;

tn+1 = tn + hn;
determine hn+1 and kn+1 for next step;
n = n+ 1;

else
// corrector equation solving failed or

// error estimation too large

update Jacobian approximation Mn according to monitor strategy or reduce stepsize
hn;

end

end
N = n;
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Algorithm 6.2: First order iterative forward IND scheme (deferred)

Input: Discretization scheme stored from nominal integration (stepsizes hi, orders ki,
trajectory values yi, number of Newton iterations si, used iteration matrix
factorizations M−1

i ), number of integration steps N , sensitivity direction d.
Output: Directional sensitivity ẏN =W · d.
set n = 0, initialize sensitivities with d (6.28);
while n < N do

get tn, hn, kn from stored discretization scheme;
compute IND predictor (6.27a) and IND corrector constant (6.27b) ;
get sn, M−1

n and yn+1 from stored scheme;
using yn+1, hn and M−1

n , make sn iterations (6.27c)/(6.27d) for the IND
corrector equation to obtain ẏn+1;

n = n+ 1;
end

Direct forward IND

In the direct forward approach we assume that during the nominal integration we have solved the
corrector equation (6.22) exactly in every integration step, i.e., fBDF

n (yn+1; xCC
n+1,p,x0, z0) = 0.

Then we use the implicit function theorem to describe the dependency of yn+1 on the other
quantities

∂yn+1

∂v
= −

[
∂fBDF

n

∂yn+1

]−1
∂fBDF

n

∂v
= −J−1

n

∂fBDF
n

∂v
, (6.29)

for v ∈ {xCC
n+1,p,x0, z0}.

We summarize over all dependencies to obtain ẏn+1

ẏn+1 = −J−1
n

[
∂fBDF

n

∂xCC
n+1

+
∂fBDF

n

∂p
ṗ +

∂fBDF
n

∂x0

ẋ0 +
∂fBDF

n

∂z0

ż0

]
= −J−1

n

[(
An+1ẋCC

n+1

0

)
+

(
Ap,n+1(xCC

n+1 + αC0,nxn+1)− hnfp,n+1

gp,n+1 − θn+1gp,0

)
ṗ

+

(
0 0

−θn+1gx,0 −θn+1gz,0

)(
ẋ0

ż0

)]
. (6.30)

Using the direct approach, the corresponding implicit BDF discretization scheme of the integration
step is di�erentiated and not the actual predictor-corrector method. Hence in this approach
no predictor dependency occurs and no Newton-like iterations are made for the IND equation.
Instead, the building and decomposition of the actual Jacobian Jn is needed in every step, which
in most cases renders the direct approach more expensive than the iterative one. The other model
derivatives can be obtained e�ciently by directional forward derivatives. The algorithmic form of
the direct forward IND approach is given for the simultaneous version in Algorithm 6.3 and for
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the deferred version in Algorithm 6.4. Note that in the simultaneous version, the computed and
decomposed Jacobian can be used as iteration matrix for the next nominal integration step.
Additionally, note that (6.30) can be understood as the direct solution of the corrector equation of
the forward variational DAE, since it is a linear equation. This is very similar to the strategy used
by Caracotsios and Stewart [CS85] in their DASSL based code DDASAC. Later this approach was
referred to as the staggered direct method [FTB97].

Algorithm 6.3: First order direct forward IND scheme (simultaneous)
Input: t0, tf , h0, initial values y0, parameter p, sensitivity direction d
Output: Nominal solution yN, forward directional sensitivity ẏN.
set k0 = 1, n = 0;
initialize nominal integration with y0 and p and sensitivities with d (6.28);
while tf not reached do

compute yn+1 by nominal integration step for hn, kn including sn Newton-like
iterations using matrix Mn to solve the corrector equation;

if step accepted then
// corrector equation successfully solved,

// error estimation accepted

compute IND corrector constant (6.27b);
using yn+1 and hn, compute Jn from (5.44),
factorize Jn and solve system (6.30) to obtain ẏn+1;

M−1
n+1 = J−1

n , tn+1 = tn + hn;
determine hn+1 and kn+1 for next step;
n = n+ 1;

else
// corrector equation solving failed or

// error estimation too large

update Jacobian approximation Mn according to monitor strategy or reduce stepsize
hn;

end

end
N = n;

Remark 6.1 (Forward IND schemes versus solution of the forward variational DAE)
The presented forward IND schemes lead to a very e�cient way to compute approximations for
the forward sensitivities. Compared to other codes that are constructed around the solution
of the forward variational DAE in addition to the nominal DAE they o�er by construction a
natural exploitation of the inherent problem structure. This structure exploitation has to be
taken into account additionally when using a non IND-based approach. It should be noted that
the convergence of the forward IND schemes to the true sensitivities is assured with the same order
as for the nominal solution, due to their interpretation as discretization scheme for the forward
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Algorithm 6.4: First order direct forward IND scheme (deferred)

Input: Discretization scheme stored from nominal integration (stepsizes hi, orders ki,
trajectory values yi), sensitivity direction d

Output: Directional sensitivity ẏN.
initialize sensitivities with d;
n = 0;
while n < N do

get tn, hn, kn from stored discretization scheme;
compute IND corrector constant (6.27b);
get yn+1 from stored scheme;
using yn+1 and hn, compute Jn from (5.44),
factorize Jn and solve system (6.30) to obtain ẏn+1;

n = n+ 1;
end

variational DAE. And hence also the intermediate quantities of the forward IND sweep converge
against the trajectory of the solution of the forward variational DAE.

Forward IND using �nite di�erences

If a lower precision of the computed sensitivities is su�cient, a third approach to compute �rst
order forward sensitivities is possible. Since the integrator code DAESOL-II allows the storage
and reuse of the discretization scheme, a later �replay� of the integration for di�erent initial
values and parameter is possible. Also a simultaneous computation of several trajectories with
one discretization scheme, determined either by the �rst trajectory or by all trajectories together,
is supported. Therefore, also a �nite di�erence based IND approach can be used to compute
sensitivities. In this approach, the original trajectory and trajectories for slightly perturbed initial
values and parameter are computed using the same discretization scheme, and afterwards the �nite
di�erences are calculated. Since the same discretization scheme is used for all trajectories, the
principle of IND is ful�lled. As in the case of ordinary functions, one can only expect an accuracy
of roughly the square-root of the machine precision, even for the optimal choice of the perturbation
size. On the other hand, no additional derivatives of the model functions are needed in addition
to the ones needed anyway during nominal integration. Depending on the e�ort for derivative
evaluation this might lead to signi�cant savings in computational time, provided some accuracy of
the sensitivities can be spent. This approach was later also used by Støren and Hertzberg [SH99]
in their DASSL based code DASSP. Note that using this approach a computation of adjoint
sensitivities is not possible.

6.4.2 Adjoint sensitivity generation

After the derivation of the well-known �rst order forward IND schemes for BDF methods, we
now develop in the same framework the new �rst order adjoint IND schemes �rst presented in
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[AB08]. Like in the forward case, we present two slightly di�erent schemes based on the actual
predictor-corrector method and on the corresponding implicit scheme, respectively.

Iterative adjoint IND

We start with the development of the iterative adjoint IND scheme. Like the iterative forward
scheme it is based on the actual predictor-corrector scheme for the nominal trajectory. We as-
sume that the nominal integration has been performed and that the discretization scheme including
stepsizes, orders, iteration matrices (respectively their factorizations), iteration numbers as well
as the nominal solution at the integration gridpoints has been stored. Note that, due to the
monitor strategy used within the Newton-like method (cf. Section 5.3.3), the number of di�er-
ent iteration matrices is signi�cantly smaller than the overall number of accepted integration steps.

For a given adjoint direction ȳ ∈ Rnx+nz the sensitivity information is propagated backwards
through the sequence of elementary operations representing the nominal integration scheme. The
elementary operations are here also given by (6.25). Following the common AD notation, we
denote the adjoint quantity corresponding to the nominal quantity v by v̄. The adjoint IND
sweep starts by setting all intermediate adjoint quantities to zero and initializing ȳN := ȳ. Then
we apply the reverse mode of AD to the elemental representation of the nominal integration
scheme to propagate the sensitivity information backward through the integration process. With
the partial derivatives (6.26) of the elementary functions we obtain the propagation rules (not
displaying the arguments)

ȳn−i += αPi,nȳ
P
n+1, 0 ≤ i ≤ kn, (6.31a)

x̄n+1−i += αCi,nx̄
CC
n+1, 1 ≤ i ≤ kn, (6.31b)

ȳ
(l)
n+1 += ȳ

(l+1)
n+1 , (6.31c)

∆ȳ
(l)
n+1 = ȳ

(l+1)
n+1 , (6.31d)

(ȳ
(l)
n+1)T += −∆ȳ

(l)
n+1

T
M−1

n Jn, (6.31e)

p̄T += −∆ȳ
(l)
n+1

T
M−1

n

(
Ap,n+1(xCC

n+1 + αC0,nxn+1)− hnfp,n+1,
gp,n+1 − θn+1gp,0

)
, (6.31f)

(x̄CC
n+1)T += −∆ȳ

(l)
n+1

T
M−1

n An+1, (6.31g)

(x̄T0 , z̄
T
0 ) += −∆ȳ

(l)
n+1

T
M−1

n

(
0 0

−θn+1gx,0 −θn+1gz,0

)
. (6.31h)

The model function derivatives in (6.31e) and (6.31f) can e�ciently be evaluated together by one
adjoint directional derivative of f , g and Aẋ. With (6.31) we can write the iterative backward
IND scheme in algorithmic form, leading to Algorithm 6.5.
During the computations, systems of the type µ = M−T

n ȳn+1 have to be solved. Note that in most
direct linear algebra packages (e.g., ATLAS [WPD01], UMFPACK [Dav04]) a given factorization
of Mn can be reused for the solution of systems incorporating the transposed matrix MT

n , such
that in the adjoint IND scheme neither an explicit transposition nor a new factorization is needed.
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Algorithm 6.5: First order iterative adjoint IND scheme
Input: Discretization scheme stored from nominal integration (stepsizes, orders, trajectory

values, iteration matrix factorizations, iteration counts), adjoint sensitivity direction
ȳ.

Output: Adjoint directional sensitivity ȳ0, p̄.
initialize sensitivities with ȳN = ȳ;
n = N − 1;
while n ≥ 0 do

ȳ
(sn)
n+1 = ȳn+1;

get yn+1, tn, hn, kn, M−1
n , sn from stored discretization scheme;

for l = sn − 1 : 0 do

knowing (6.31d), solve µ = M−T
n ȳ

(l+1)
n+1 ;

using µ, compute respectively increment ȳ
(l)
n+1, p̄, x̄

CC
n+1, x̄0, z̄0 by applying (6.31c),

(6.31e), (6.31f), (6.31g) and (6.31h);
end

ȳP
n+1 = ȳ

(0)
n+1;

propagate corrector constant dependency backwards using (6.31b);
propagate predictor dependency backwards using (6.31a);
// all contributions of yn taken into account,

// value of ȳn is final

n = n− 1;
end

Direct adjoint IND

To derive the �rst order direct adjoint IND scheme, we suppose again that the nominal integra-
tion has been performed. Furthermore, the discretization scheme including stepsizes, orders and
trajectory values at the integration grid of the nominal integration has been stored. Other than
in the iterative reverse scheme, we assume that during nominal integration all corrector equations
have been solved exactly.
Like in the direct forward approach the corresponding implicit integration scheme is di�erentiated
and hence the predictor dependency and the Newton-like iterations are not taken into account.
Instead, the implicit function theorem is used to propagate the sensitivities backwards. With the
partial derivatives (6.29) of the trajectory values yn+1 and using the reverse mode of AD we obtain



164 6.4. FIRST ORDER SENSITIVITY GENERATION FOR DAES

the propagation rules

(x̄CC
n+1)T = −x̄Tn+1

(
Inx 0

)
J−1

n

(
An+1 0

0 0

)
, (6.32a)

p̄T += −x̄Tn+1

(
Inx 0

)
J−1

n

(
Ap,n+1(xCC

n+1 + αC0,nxn+1)− hnfp,n+1

gp,n+1 − θn+1gp,0

)
, (6.32b)

(x̄T0 , z̄
T
0 ) += −x̄Tn+1

(
Inx 0

)
J−1

n

(
0 0

−θn+1gx,0 −θn+1gz,0

)
. (6.32c)

Thus, in every step the building and decomposition of the Jacobian J−1
n is needed. All other model

function derivatives in (6.32b) are obtained as adjoint directional derivatives. Algorithm 6.6 shows
the algorithmic form of the direct adjoint IND sweep. Note that the algorithm is given for an
input direction x̄ ∈ Rnx with respect to the di�erential variables only. However, using the implicit
function theorem and the algebraic equations at the �nal time, an adjoint sensitivity direction
containing a nonzero algebraic part can be expressed by an adjoint direction only containing a
di�erential part. Note furthermore, that in practice the algorithms should be implemented with
the possibility to propagate several adjoint sensitivities at once, as this increases the e�ciency
signi�cantly, e.g., by savings during the derivative evaluations of the model functions.

Algorithm 6.6: First order direct adjoint IND scheme
Input: Discretization scheme stored from nominal integration (stepsizes, orders, trajectory

values), adjoint sensitivity direction x̄.
Output: Adjoint directional sensitivities ȳ0, p̄.
initialize sensitivities x̄N = x̄;
n = N − 1;
while n ≥ 0 do

get yn+1, tn, hn, kn from stored discretization scheme;

solve µ = J−Tn

(
x̄n+1

0

)
;

using µ, increment x̄CC
n+1, p̄, x̄0, z̄0 by applying (6.32a), (6.32b), (6.32c);

propagate corrector constant dependency backwards using (6.31b);
// all contributions of xn taken into account,

// value of x̄n is final

n = n− 1;
end

Remark 6.2 (Adjoint IND schemes versus solution of adjoint variational DAE)
The presented adjoint IND schemes are to the best of our knowledge the �rst and only ones
implemented for implicit methods in general as well as for LMMs. All other codes supporting
adjoint sensitivity generation are based on the solution of the adjoint variational DAE. Compared
to them the IND schemes we developed o�er the possibility to reuse matrix factorizations and
trajectory values from the nominal integration and have no need to interpolate trajectory values.
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Hence in comparison this usually leads to a signi�cantly better performance of the IND approach,
which we con�rm numerically on several IVP examples in Section 9.2 on page 232. Also only when
using IND the sensitivity approximations represent the exact derivative of the numerical solution
of the nominal IVP.
It should be noted that we have convergence of the numerical sensitivities computed by the adjoint
IND schemes to the true adjoint sensitivities with the same order as for the nominal solution when
the stepsizes of the nominal integration tend to zero. However the intermediate quantities in the
adjoint IND scheme will in general not converge to the trajectory values of the solution of the
adjoint variational DAE. This is di�erent from the case of the forward IND schemes described in
Remark 6.1. The adjoint IND scheme does for LMMs in general not correspond to a consistent
discretization scheme of the adjoint variational DAE, and hence we cannot expect convergence.
The only exception here would be the case of a method with �xed order and equidistant stepsizes.
Another way to understand this discrepancy is to ignore for the moment a possible parameter
dependency and analyze the meaning of the intermediate adjoint quantities. The �nal value
of an adjoint intermediate quantity in the IND schemes holds the derivative information about
how the result of the numerical scheme at the �nal time depends on the single trajectory value
of the numerical solution at the corresponding integration gridpoint. In a predictor-corrector
LMM, however, no trajectory point, except the initial value, determines alone the progress of the
numerical solution over time. Even when we consider the truly implicit BDF method this is only
the case for values of gridpoints, where the BDF order of the following integration step is equal to
one. In all other cases more than one historical trajectory point contributes to a new trajectory
value and they determine the progress of the numerical solution together. Hence in a general LMM
only in the adjoint quantity corresponding to the initial value the full derivative information on
the dependency of the �nal numerical values is accumulated.
In the solution trajectory of the adjoint variational DAE on the other hand every trajectory point
carries in a sense the full sensitivity information of the nominal solution values (or a function
depending on them) at the �nal time. This is in analogy to that any trajectory point of the
analytical nominal solution fully determines the development of the analytical nominal solution
over time (uniqueness of the solution is here always assumed).
As a result of these considerations we can expect that the lower the maximum order of the used
LMM (or the maximum number of historical trajectory values contributing to a new one) is, the
closer the intermediate adjoint quantities will be to the trajectory of the adjoint variational DAE.
This behavior is illustrated for a simple test problem in Example 6.3 that follows below.
Note that this di�erence from the solution of the adjoint variational DAE is not a drawback
or shortcoming of the adjoint IND scheme as we are only interested here in the adjoint sen-
sitivity information over the whole integration horizon. However, for certain strategies that
use in their derivation the properties of the solution trajectory of the adjoint variational DAE,
such as strategies for a posteriori estimation of the global integration error or strategies for
the control of the global error by choosing a suitable discretization scheme during integration
[BR01, CP04, LV07, TB09], we might have to take this di�erence into account if we want to use
them in connection with adjoint IND schemes.
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Example 6.3 (Adjoint IND scheme versus solution of adjoint variational DAE)
We consider the ODE-IVP

ẋ1(t) = x1(t)

ẋ2(t) = x2(t) + x1(t)x1(t)

ẋ3(t) = x3(t) + x1(t)x2(t)

ẋ4(t) = x4(t) + x1(t)x3(t) + x2(t)x2(t)

ẋ5(t) = x5(t) + x1(t)x4(t) + x2(t)x3(t)

t ∈ [0, 1], x(0) = (1, 1, 0.5, 0.5, 0.25)T , (6.33)

with the solution x(t) = (et, e2t, 0.5 e3t, 0.5 e4t, 0.25 e5t)T . We compute the sensitivity of the compo-
nent x5(1) at the �nal time with respect to the initial values using a directional adjoint sensitivity.
We do this by the �rst order iterative adjoint IND scheme presented above, that is implemented
in our integrator code DAESOL-II, for di�erent choices of kmax, the maximum BDF order during
nominal integration. Additionally, we compute the sensitivity by solving the corresponding adjoint
variational ODE. The resulting intermediate adjoint values obtained in the IND scheme and the
adjoint trajectory computed from the variational ODE are depicted in Figure 6.2 on the facing
page.

We see that for a maximum BDF order of kmax = 1, intermediate adjoint values of the BDF scheme
and the solution of the adjoint variational ODE practically coincide, while larger deviations occur
when a higher BDF order is allowed. Note that these deviations will in general also not vanish
if the stepsizes in the nominal integration are forced to be very small (or alternatively, if a very
high integration accuracy is demanded). The more regular �o�set� between the two approaches
that is observed for higher BDF orders can in principle be reduced in exchange for signi�cantly
increased computational costs by scaling the adjoint IND values with the BDF Jacobian of the
corresponding step. The peaks and the �oscillating� behavior however cannot be eliminated in this
way and these e�ects are especially present in regions where order and signi�cant stepsize changes
occurred during the integration.
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Figure 6.2: Comparison of the intermediate values of the �rst order iterative adjoint IND scheme for di�erent
choices of the maximum BDF order kmax during integration and the solution of the corresponding
adjoint variational equation for the ODE-IVP (6.33). The lower the maximum BDF order the more
similar the intermediate values in the adjoint IND scheme and the solution of the adjoint variational
ODE become.



168 6.5. GENERATION OF SENSITIVITIES OF ARBITRARY ORDER

6.5 Generation of sensitivities of arbitrary order

After presenting e�cient IND-based schemes for the computation of �rst order forward and adjoint
sensitivities in the last section we now proceed to the question, how the m-th order sensitivity
tensor

W(m)(τ ; τ0,y0,p) :=
dmy(τ ; τ0,y0,p)

d(y0,p)m
∈ R(nx+nz)×(nx+nz+np)m (6.34)

or certain parts or contractions thereof can be computed. Here y(τ) = (x(τ)T , z(τ)T )T is again
the solution of the DAE-IVP (6.1). The e�cient computation of higher-order sensitivities is of
vital importance not only for the exact-Hessian optimization algorithm presented in this thesis,
but also in the areas of robust optimization and optimal experimental design or in the analysis
of dynamic systems in general. However, normally not the complete sensitivity tensor is needed,
but only a subtensor with respect to a subset of variables, or only a contraction of the tensor
in target and source space. An example for the last would be the directional derivative of a
gradient, corresponding to a reduced second order derivative tensor that is often needed in opti-
mization algorithms. Hence we will address more speci�cally the task of developing schemes for
the computation of higher-order forward directional sensitivities

ẇ(m)(τ,d; τ0,y0,p) :=
dmy(τ ; τ0,y0,p)

d(y0,p)m
dm ∈ Rnx+nz (6.35)

of orderm for a direction d ∈ Rnx+nz+np . Here we understand the multiplication with dm as tensor
contractions. The second kind of schemes we develop computes higher-order forward/adjoint
sensitivities

˙̄w
(m)

(τ, ȳ,d; τ0,y0,p) := ȳT
dm+1y(τ ; τ0,y0,p)

d(y0,p)m+1 dm ∈ Rnx+nz+np (6.36)

of order k + 1 for a forward direction d and an adjoint direction ȳ. From suitable sets of these
directional sensitivities any part or also the whole higher-order sensitivity tensor can be obtained,
either directly or using exact interpolation, as explained in the Section 2.4.3. Before we derive
in the following the forward directional variational DAE-IVP that can be used to compute the
forward directional sensitivity (6.35) of order m we state the set partition based version [Joh02]
of Faà di Bruno's formula [FdB57], which is needed in the derivations.

Lemma 6.4 (Higher-order chain rule)
Let ψ : Rn1 → Rn2 and χ : R → Rn1 be su�ciently smooth. Then it holds for t ∈ R and m ∈ N
that

dmψ(χ(t))

dtm
=

∑
π∈Π(m)

ψ|π|(χ(t))
m∏
i=1

(χ(i)(t))ri , (6.37)

where Π(m) is the set of all partitions of {1, 2, . . . ,m}, |π| the number of blocks in a partition π
and ri the number of blocks within π containing exactly i elements. The superscripts |π| and (i)
denote here the derivative degree of ψ and χ, respectively.
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With the help of this lemma and the de�nition

vd,(j)(τ) :=

(
djy(τ)

d(x0,z0,p)j
· dj

djp

d(x0,z0,p)j
· dj

)
=

ẇ
(j)
x (τ,d)

ẇ
(j)
z (τ,d)
δ1j dp

 ∈ Rnx+nz+np , (6.38)

where δij is the Kronecker-delta, we can derive the higher-order forward directional variational
DAE for the computation of forward sensitivities of type (6.35).

Higher-order forward directional variational DAE

We obtain the higher-order forward directional variational DAE-IVP of order m by forming the
m-th derivative of the nominal IVP (6.1) with respect to initial values and parameter in a direction
d = (dTx ,d

T
z ,d

T
p)T ∈ Rnx+nz+np . We can write the forward directional variational DAE of order m

(only indicating the time dependency) with the help of (6.37) and (6.38) as

dm(A(τ)∂x(τ)
∂τ

)

d(x0, z0,p)m
· dm =

∑
π∈Π(m)

∂|π|f(τ)

∂(x, z,p)|π|

m∏
j=1

(vd,(j)(τ))rj (6.39a)

0 =
∑

π∈Π(m)

∂|π|g(τ)

∂(x, z,p)|π|

m∏
j=1

(vd,(j)(τ))rj − θ(τ)
∂mg(τ0)

∂(x, z,p)m
· dm (6.39b)

with the initial values

ẇ(j)(τ0,d) = δ1j

(
dx

dz

)
. (6.39c)

Also here the multiplications with dj respectively vd,(j) are to be understood as tensor contractions.
From the Leibniz rule we obtain for the left-hand term in (6.39a)

dm(A(τ)∂x(τ)
∂τ

)

d(x0, z0,p)m
· dm =

m∑
j=0

(
djA(τ)

d(x0, z0,p)j

(
dm−j ∂x(τ)

∂τ

d(x0, z0,p)m−j
· dm−j

))
· dj

=
m∑
j=0

(
djA(τ)

d(x0, z0,p)j
∂ẇ(m−j)(τ,d)

∂τ

)
· dj. (6.40)

From the formulas (6.39) and (6.40) we learn several things. First, we observe that for m = 1
we indeed obtain the directional forward variational DAE-IVP given in (6.8), in this case for one
sensitivity direction. Besides that, the m-th order equation is linear. Furthermore, we see that
the equation contains in general besides the nominal solution y(τ) also terms involving ẇ(j)(τ,d)
for all 1 ≤ j ≤ m. Hence the m-th order sensitivity cannot be computed �isolated�, but only in
connection with the directional sensitivities in direction d of all lower orders 1 ≤ j < m, which
also have to be computed by forming and solving the corresponding equations. This can be done
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like in the �rst order case either simultaneously or in a staggered way. Note that a general higher-
order analogon for the adjoint variational DAE cannot be obtained straightforward.

Until today to the best of our knowledge only very few integration codes are available at all that
are able to generate second order sensitivity information for ODEs or DAEs in an automatic way.
These are the IND-based BDF code DAESOL-II presented in this thesis, supporting second order
directional forward and forward/adjoint sensitivities, the earlier IND-based BDF code DAESOL,
which has been extended by Bauer [Bau99] for the computation of second order forward sensitiv-
ities, as well as the latest versions of the BDF codes CVODES and IDAS, computing directional
second order forward/adjoint sensitivities from a forward/adjoint variational DAE system pre-
sented by Özyurt and Barton [OB05] for ODEs. Alternatively, the nominal IVP could always be
augmented manually by the corresponding �rst and second order forward variational DAE prob-
lem and this augmented system then can be solved together using an arbitrary integrator code.
However, then usually the structure of the problem is not adequately exploited, which leads to a
very high integration e�ort. There exists so far one implementation besides DAESOL-II that can
generate arbitrary order forward sensitivities. It is described by Barrio [Bar06] and is based on an
explicit Taylor series integration method. Hence it cannot be e�ciently applied to sti� systems.
The generation of arbitrary order forward/adjoint sensitivities is until now only supported by
DAESOL-II.

In the following we develop the �rst numerical schemes based on IND that allow the computation
of arbitrary order directional forward and forward/adjoint sensitivities. The key to the derivation
of �exible e�cient schemes that work not only for the second order but also for arbitrary orders is
the combination of the IND principle with the AD technique of univariate Taylor Coe�cient (TC)
propagation explained in Section 2.4.3. Note that we will only develop the higher-order IND
schemes here for higher-order analoga of the iterative IND schemes. However, also a version
corresponding to the direct schemes can be derived, using Taylor coe�cient propagation rules for
implicitly de�ned functions, which are described in [Ked80, WSW10]. As we will address in the
comparison of the e�ort of the di�erent IND schemes, the direct schemes are more e�cient than
the iterative schemes only in very special cases, which do not occur in the framework of the thesis.
Hence we skip the derivation, which can be done however in complete analogy to the derivation
of the iterative schemes presented here.

6.5.1 Higher-order forward schemes

To derive the higher-order (iterative) forward IND scheme of order m, we use again the elemental
representation of the discretization scheme of the nominal IVP given by the Equations (6.25).
Other than in the �rst order scheme we now propagate a univariate Taylor polynomial of order
m through this elemental representation to propagate the derivative information through the
integration process. In other words, we perform a forward TC sweep of order m for the elemental
representation of the integration process. The nominal integration constitutes in this framework
the propagation of the zero order Taylor coe�cients, which can be done independently from the
propagation of the coe�cients of higher order. Hence the nominal integration process can remain
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unchanged and we use the trajectory values as zero order Taylor coe�cients in the calculations
of the forward TC sweep. We initialize, like we would for an ordinary function, the TCs for the
sensitivity propagation process based on the direction d as

X0 =
[
x0 dx 0 · · · 0

]
∈ Rnx×(m+1),

Z0 =
[
z0 dz 0 · · · 0

]
∈ Rnz×(m+1),

P =
[
p dp 0 · · · 0

]
∈ Rnp×(m+1). (6.41)

We then denote the intermediate Taylor coe�cients belonging to the gridpoint τn with Yn =[
yn,0 yn,1 · · · yn,m

]
, where yn,0 ≡ yn.

Because the operations (6.25a)-(6.25c) in the integration, that do not involve the evaluation of
the model functions, are all just additions or scalar multiplications, the TC propagation rules to
obtain the corresponding values YP

n and XCC
n are very easy to implement and the additional e�ort

for them compared to a nominal integration scales linearly with m. Also the decomposition of
Mn in (6.25d) can be reused, only the number of right-hand side vectors for which the system
has to be solved increases from 1 to m + 1 in the higher-order forward scheme. To understand
this we remember that the solution of a linear system for a �xed matrix also only constitutes a
series of scalar multiplications, divisions and additions operating on the right-hand side data. The
main numerical e�ort is therefore to be expected in the propagation through fBDF

n , involving the
usually nonlinear model functions of the DAE.
The (simultaneous) forward IND-TC scheme for an arbitrary order m is given in algorithmic form
by Algorithm 6.7. Note that this scheme can also be derived in an deferred version as well as
be extended for the parallel propagation of several directional sensitivities. In this case, the zero
order coe�cients, i.e., the nominal trajectory, which are identical for all directions, need to be
computed and stored only once. Note also that the operations performed in the �rst order forward
IND-TC scheme are equal to the operations of the �ordinary� iterative �rst order IND scheme,
i.e., both schemes are the same.
By the use of an m-th order forward IND-TC sweep we clearly obtain the (scaled) m-order di-
rectional derivatives of the numerical solution within machine precision. However the relation
between the intermediate TCs in this scheme and the solution trajectory of the m-th order for-
ward directional variational DAE-IVP (6.39) approximating the directional forward sensitivities
(6.35) is not obvious. Hence we formulate the following proposition.

Proposition 6.5 (Forward IND-TC sweep versus directional variational DAE)
Let d = (dTx ,d

T
z ,d

T
p )T ∈ Rnx+nz+np be a forward sensitivity direction. Denote the TC at

gridpoint τn that has been computed using the higher-order forward IND scheme of order m
given in Algorithm 6.7 with Yn. Furthermore de�ne for a given TC Y the scaled quantities
Ỹ =

[
0! y0 1! y1 2! y1 · · · m! ym

]
. Finally denote with

Ẇ(j)(τn,d) :=
[
yn(τn) ẇ

(1)
n (τn,d) · · · ẇ

(j)
n (τn,d)

]
the grouping of the nominal trajectory values and the forward sensitivities up to order j at the
gridpoint τn that have been obtained by the solution of the forward directional variational DAE-
IVPs (6.39) up to order j using the same BDF discretization scheme as for the solution of the
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Algorithm 6.7: Arbitrary order forward IND-TC scheme (simultaneous)
Input: t0, tf , h0, initial values y0, parameter p, sensitivity direction d, sensitivity order m
Output: Taylor coe�cients YN containing nominal solution yN and scaled forward

sensitivities 1
j!
ẇ

(j)
N for 1 ≤ j ≤ m.

set k0 = 1, n = 0;
initialize with Taylor coe�cients (6.41) according to initial values and sensitivity direction d;
while tf not reached do

compute yn+1 by nominal integration step for hn, kn including sn
Newton-like iterations using matrix Mn to solve the corrector equation;

if step accepted then
// corrector equation successfully solved,

// error estimation accepted

propagate Taylor polynomials through predictor (6.25a) and corrector constant
(6.25b) computation ;
using yn+1, hn and M−1

n , propagate Taylor coe�cients through sn Newton-like
iterations by propagation through (6.25c)/(6.25d) to obtain Yn+1;
tn+1 = tn + hn;
determine hn+1 and kn+1 for next step;
n = n+ 1;

else
// corrector equation solving failed or

// error estimation too large

update Jacobian approximation Mn according to monitor strategy or reduce stepsize
hn;

end

end
N = n;

nominal DAE-IVP.

Then it holds

Ẇ(m)(τn,d) = Ỹn ∀n ∈ N. (6.42)

In other words, the higher-order forward IND scheme of order m is equivalent to solving the set
of scaled directional forward variational DAEs up to order m simultaneously using the same BDF
discretization scheme as for the computation of the nominal trajectory.

Proof:

Note that form = 0 the claim is trivial and as the �rst order forward TC based IND scheme is equal
to the ordinary iterative forward IND scheme, the case m = 1 is also true. To prove the general
case, we �rst apply the BDF discretization scheme to the directional variational DAE (6.39).
With the abbreviations ẇ

(j)
n+1 := ẇ(j)(τn+1,d) (analogously for the other quantities and functions),
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v := (x0, z0,p) and the higher-order sensitivity corrector constant ẇ
x,CC(j)
n+1 :=

∑kn
i=1 α

C
i,nẇ

x(j)
n+1−i

we obtain for the BDF step n with order kn the scheme

0 = An+1

(
αC0,nẇ

x(m)
n+1 + ẇ

x,CC(m)
n+1

)
+

m∑
j=1

(
djAn+1

d(x0, z0,p)j

(
αC0,nẇ

x(m−j)
n+1 + ẇ

x,CC(m−j)
n+1

))
· dj

−hn
∑

π∈Π(m)

∂|π|fn+1

∂v|π|

m∏
j=0

(v
d,(j)
n+1 )rj (6.43a)

0 =
∑

π∈Π(m)

∂|π|gn+1

∂v|π|

m∏
j=0

(v
d,(j)
n+1 )rj − θ(τn+1)

∂mg0

∂vm
· dm (6.43b)

for the computation of the new sensitivity value ẇ
(m)
n+1. We de�ne the right-hand side of the system

now as a function

fBDF(m)
n (ẇ

(m)
n+1; ẇ

x,CC(m)
n+1 ,Ẇ(m−1)

n , . . . ,Ẇ
(m−1)
n+1−kn

,p,x0, z0), (6.44)

which depends besides on the value ẇ
(m)
n+1 to be computed also on kn historical values of the m-th

order sensitivity, the current and kn historical values of the directional sensitivities of all lower
orders and also on the initial values and parameter.
To see now the equivalence between the m-th order forward IND-TC sweep and the solution
of these systems up to order m we �rst analyze the Jacobian of the system (6.43) with respect
to the values ẇ

(m)
n+1 that are to be computed. Applying the higher-order chain rule (6.37) also

to the terms involving the derivatives of the matrix An+1 and considering that the partition
π̃ := {12 . . .m} ∈ Π(m) for which |π̃| = 1, r1 = . . . = rm−1 = 0 and rm = 1 is the only one leading
to terms containing ẇ

(m)
n+1 in the summations above, we can write the system as

0 = αC0,nAn+1ẇ
x(m)
n+1 +

(
∂An+1

∂(x,z)
(αC0,nxn+1 + xCC

n+1)

)(
ẇ

x(m)
n+1

ẇ
z(m)
n+1

)

−hn
∂fn+1

∂(x,z)

(
ẇ

x(m)
n+1

ẇ
z(m)
n+1

)
+Rx (6.45a)

0 =
∂gn+1

∂(x,z)

(
ẇ

x(m)
n+1

ẇ
z(m)
n+1

)
+Rz, (6.45b)

where the terms Rx and Rz do not depend on m-th order terms ẇ
(m)
i . Hence we see that for any

order m the Jacobian in the BDF predictor-corrector scheme for the solution of the variational
DAE of order m is the same as the Jacobian (5.44) for the computation of the nominal trajectory.
Hence it is sensible to use the same iteration matrix for the treatment of the nominal trajectory
and the variational DAEs of higher order.
It remains to be shown that for an arbitrary integration step n it holds that if the historical
values and lower order sensitivities Ẇ

(m−1)
n+1 , Ẇ

(m)
n , . . ., Ẇ

(m)
n+1−kn

ful�ll the induction assumption
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(6.42), then also the newly computed sensitivity value ẇ
(m)
n+1 does. The proposition then follows

by induction over the sensitivity order m and the integration steps n from the fact that the initial
Taylor coe�cients (6.41) for the higher-order forward IND scheme and the initial sensitivities
(6.39c) of the forward variational DAE-IVP up to order m trivially ful�ll (6.42).
First we note that as we use the same discretization scheme for nominal and variational problem,
the computation of the predictor and corrector constant for the variational DAEs uses the same
coe�cients as for the nominal trajectory. As a result, the corresponding values YP

n and XCC
n+1

computed by Taylor propagation through (6.25a) and (6.25b) still ful�ll the analogon of (6.42)
for intermediate quantities. Likewise we can argue for the Newton iterates and the correspond-
ing quantities in the forward IND-TC scheme obtained by Taylor propagation through (6.25c).
Hence, it is su�cient to show that them-th order coe�cient of the result of the Taylor propagation
through fBDF

n is equal to 1
m!

f
BDF(m)
n in the solution of the variational DAE. Comparing (6.22) and

(6.43) shows, however, that f
BDF(m)
n can be understood as the m-th order directional derivative

of fBDF
n , such that the last claim follows from the induction assumption and Proposition 2.13 on

page 40.
2

Summarizing, we see that the combination of IND and forward TC propagation allows the deriva-
tion of e�cient schemes for the generation of arbitrary order forward sensitivities and eliminates
the tedious and error-prone process of forming and coding the corresponding directional varia-
tional DAEs for an arbitrary order. Furthermore the IND-TC approach encapsulates the complex
dependencies between the sensitivities of di�erent order in the propagation process through the
model functions, rendering the scheme on the integrator code level quite simple. This ensures also
an e�cient exploitation of the problem structure, as by propagation through the model functions
the sensitivities of all orders can here be treated simultaneously without blowing up the system
size. This has to be achieved manually in case of using the approach involving the variational
DAEs by adapting the integration scheme to use a staggered computation of the di�erent orders.
Even then this staggered computation of the di�erent orders leads to more overhead and a higher
e�ort compared to the IND-TC approach. Nevertheless we obtain by using the forward IND-
TC scheme approximations of the forward sensitivities at every gridpoint that are guaranteed to
converge against the true forward sensitivities with the same order as the nominal trajectory.

6.5.2 Higher-order forward/adjoint schemes

In this section we present how the combination of IND and TC propagation can be used to
obtain approximations of forward/adjoint sensitivities ˙̄w

(m)
(τ0, ȳ,d) of an arbitrary order. To

derive the forward/adjoint IND-TC scheme of order m for the forward direction d and the adjoint
direction ȳ, we use once more the elemental representation of the discretization scheme of the
nominal IVP given by the Equations (6.25). Like in the �rst order (iterative) adjoint scheme,
we assume that the nominal integration has been performed and the discretization scheme, i.e.,
stepsizes, BDF orders of the steps, used iteration matrices and iteration counts, has been stored.
Other than for the �rst order adjoint schemes we additionally assume that not only the values
of the nominal trajectories at the gridpoints have been stored, but also the intermediate Taylor
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coe�cients Yn of a forward IND-TC sweep of order m for the forward direction d. Based on this
information and the already derived �rst order adjoint scheme, a higher-order adjoint IND-TC
sweep can be obtained to compute forward/adjoint sensitivities. For this we initialize the adjoint
Taylor coe�cients Ȳ =

[
ȳ 0 . . . 0

]
∈ Rny×(m+1) based on the adjoint direction. Afterwards

the operations of the �rst order adjoint sweep given by (6.31) are performed in Taylor arithmetic
of order m, as explained in Section 2.4.3. Doing this we obtain, analogously to Proposition 2.18
for ordinary functions, scaled forward/adjoint sensitivities. The algorithmic form of the adjoint
IND-TC sweep for an arbitrary order m is given in Algorithm 6.8. We keep in mind that the order
m here refers to the order of the propagated adjoint Taylor polynomials, but the derivative degree
occurring in ˙̄w

(m)
is m + 1. Also this algorithm can be extended to propagate several forward

and adjoint directions simultaneously. Like in the iterative �rst order adjoint IND scheme, we can
reuse the factorization of the iteration matrices from the solution of the nominal problem.

Algorithm 6.8: Arbitrary order forward/adjoint IND-TC scheme

Input: Discretization scheme stored from a forward IND-TC sweep of order m (stepsizes,
orders, iteration matrix factorizations, iteration counts, Taylor coe�cients), adjoint
sensitivity direction ȳ.

Output: Adjoint Taylor coe�cients Ȳ0, P̄ containing scaled forward/adjoint sensitivities
1
j!

˙̄w
(j)

(τe, ȳ,d), 0 ≤ j ≤ m.

initialize sensitivities with ȲN =
[
ȳ 0 . . . 0

]
;

n = N − 1;
while n ≥ 0 do

Ȳ
(sn)
n+1 = Ȳn+1;

get Yn+1, tn, hn, kn, M−1
n , sn from stored discretization scheme;

for i = sn − 1 : 0 do

knowing (6.31d), solve Λ = M−T
n Ȳ

(i+1)
n+1 ;

using Λ, compute respectively increment Ȳ
(i)
n+1, P̄, X̄

CC
n+1, X̄0, Z̄0 by applying (6.31c),

(6.31e), (6.31f), (6.31g) and (6.31h) in Taylor arithmetic of order m;
end

ȲP
n+1 = Ȳ

(0)
n+1;

propagate corrector constant dependency backwards using (6.31b);
propagate predictor dependency backwards using (6.31a);
// all contributions of yn taken into account,

// value of Ȳn is final

n = n− 1;
end

Remark 6.6 (Interpretation of intermediate adjoint Taylor coe�cients)
Similar to the �rst order adjoint IND case, we have convergence of the (rescaled) propagated
adjoint Taylor coe�cients obtained by the forward/adjoint IND-TC scheme to the corresponding
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analytical forward/adjoint sensitivities. However, the intermediate adjoint Taylor coe�cients of
order greater than zero cannot be interpreted as an approximation to an forward/adjoint sen-
sitivity of type (6.36). This is here not caused by the application of the IND approach, but a
more general property which would also occur if a corresponding forward/adjoint variational DAE
would be derived and solved, as, e.g., done for the second-order case in [OB05]. This can be under-
stood by realizing that for an intermediate gridpoint τn with n > 0 in general the corresponding
stored Taylor coe�cients at this gridpoint obtained by the preceding forward IND-TC scheme of
order m will not have the form Yn =

[
yn d̂ 0 . . . 0

]
. Only in this case the adjoint Taylor

coe�cients at τn with order greater than zero could be interpreted as a forward/adjoint sensitivity
˙̄w

(m)
(τe, ȳ, d̂; τn,yn,p). It should be emphasized that analogously to the �rst order case even this

is only true for the IND-TC scheme, if the integration process would have been restarted in τn or
the truly implicit scheme of order 1 had been used in this step. Note furthermore that the zero
order components of the adjoint Taylor coe�cients are identical to the intermediate values of an
iterative �rst order adjoint IND sweep and hence the observations in Remark 6.2 are also valid
for them.

6.6 Comparison of the di�erent IND-based schemes

After presenting the di�erent �rst and higher-order forward and adjoint IND-based schemes for
sensitivity generation, we analyze in this section the computational e�ort and the memory demand
of the di�erent IND approaches. We compare the approaches among themselves and also to the
solution of the nominal IVP as well as to the repetition of the nominal integration based on a
previously stored discretization scheme, a so-called integration replay.

6.6.1 Computational e�ort

The two main computational tasks in the solution of the nominal IVP and also in the IND sweeps
are the computations related to the interpolation process for predictor and corrector polynomial
on the one hand and the solution of the corrector equations on the other hand. For the solution
of the nominal IVP additional computations, related to the error control as well as to the stepsize
and order strategy, are needed.
Considering the �rst task, suppose the predictor and corrector coe�cients are known. Then the
computational costs to form the predictor and the corrector constant via (6.25a) and (6.25b) are
theoretically identical for the nominal solution and a replay of the integration. They grow linearly
with the number of states ny and the number of integration steps N .
In practice, some more e�ort is needed during the nominal solution for the computation of the
interpolation coe�cients, the update of the modi�ed divided di�erences scheme, the computation
of higher-order modi�ed di�erences for error estimation and the scaling. The complexity of these
additional computations is either bounded by a constant, or grows linearly with ny and the number
of integration steps, including rejected steps. For large scale systems usually this additional e�ort
is not signi�cant compared to the overall e�ort.
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The e�ort for the computation of the corresponding quantities in the sensitivity propagation using
the �rst order forward and adjoint IND schemes by the operation (6.27a) and (6.27b) (respectively
their adjoint variants) is equal to the one for the nominal solution, if one directional sensitivity is
computed. Otherwise it scales linearly with the number of sensitivity directions.

The e�ort for the operations related to the predictor and corrector constant quantities in the
higher-order forward and forward/adjoint IND-TC schemes additionally grows linearly with the
order m.

Considering the second task, it can be said that for large scale systems the solution of the corrector
equations is the most time-consuming part. It can be divided into the cost of building the iteration
matrix, the matrix factorizations and the cost for the actual solution of the linear systems based
on the factorized matrix.

During the nominal solution, this e�ort is given by the needed decompositions of the iteration
matrix and the rebuilds of the Jacobian (5.44) according to the monitor strategy. The complexity
of one of these decompositions depends strongly on the sparsity structure of the iteration matrix.
In the worst case of a dense matrix, it will grow with n3

y. A matrix rebuild brings the additional
expenses of computing the complete Jacobians of the model functions. Again, the sparsity struc-
tures of the Jacobians determine here the e�ort. The worst case assumption of a dense matrix
and the complexity bounds from AD theory (see, e.g., [Gri00]) lead to the theoretical bound of
approximately 2.5ny times the time of a model function evaluation. Fortunately, usually not in
every step a decomposition or rebuild is needed. Furthermore, in every Newton-like iteration
occurring in the nominal integration, the solution of a linear system and one evaluation of the
model functions are needed. This is also true for an integration replay. In the worst case of dense
matrices, the complexity of the solution of the linear systems is n2

y.

During integration replays and iterative IND-based forward and adjoint sweeps of any order, no
decompositions or rebuilds of the iteration matrix are needed. In the �rst order schemes for ev-
ery Newton-like iteration and for every sensitivity direction one linear system solution and one
directional forward or adjoint directional derivative of the model functions is needed. Here, using
AD theory, the e�ort for one model derivative can be bounded in the forward mode by 2.5 times
a function evaluation, in the adjoint mode by a factor of 4. In the higher-order schemes, the
solution of m linear systems is needed per Newton iteration and sensitivity direction, as well as
the propagation of a Taylor polynomial of degree m through the model functions. The e�ort for
this scales with m2 times the e�ort of a model function evaluation.
In the �rst order direct IND schemes, for every integration step one matrix rebuild, one linear
system solution and one directional model function derivative are needed. This shows that the
direct schemes are only of interest if the cost of a matrix factorization is not too high compared
to a linear system solution and a model function derivative.
In the deferred forward IND schemes, the backward IND schemes and the replay, there are ad-
ditional costs for storing and loading the components of the discretization scheme. For now we
assume that all these values can be kept in the main memory, such that this kind of e�ort is
probably negligible.
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In Table 6.1 we sum up the number of di�erent operations needed in the di�erent approaches where
we refer to the deferred versions of the IND schemes. If we assume that for large scale systems

Integration Replay IND iterative IND direct IND-TC order m

e�ort for error
estimation, step-
size and order
control, rejected
steps

yes no no no no

matrix rebuilds
and decomposi-
tions

according
to monitor
strategy,
usually
<< N

0 0 N 0

model function
evaluations

∑N−1
i=0 sn

∑N−1
i=0 sn 0 0 0

model function
derivatives

0 0
∑N−1

i=0 sn N 0

TC propaga-
tions trough
model function

0 0 0 0
∑N−1

i=0 sn

solutions of lin-
ear systems

∑N−1
i=0 sn

∑N−1
i=0 sn

∑N−1
i=0 sn N m

∑N−1
i=0 sn

Table 6.1: Comparison of the number of di�erent types of operations needed to perform a nominal integration, an
integration replay, a �rst order iterative respectively direct deferred forward or backward IND sweep for
one sensitivity direction, as well as the forward or adjoint IND-TC sweep of order m for one respectively
one pair of sensitivity directions. The operation counts are given in terms of the overall number of
(accepted) integration steps N and the number of Newton-like iterations in each integration step sn.

the model function and especially the model derivative evaluation dominates the integration pro-
cess, we obtain immediately a conservative theoretically upper bound for the cost of a �rst order
directional sensitivity using the iterative IND schemes: a directional �rst order forward sensitivity
costs at most 2.5 nominal integrations, and a directional �rst order adjoint sensitivity at most
4 nominal integrations. However, in practice better values are to be expected, as for large scale
problems the matrix factorization during nominal integration are also an expensive task. Note
that if we sacri�ce some accuracy and use a replay to obtain a �rst order forward sensitivity using
the �nite di�erences IND approach, the cost can obviously be bounded by 2 nominal integrations.
But also in this case a better practical performance is expected. We con�rm these estimations
numerically on a scalable test problem in Section 9.1 on page 225.
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6.6.2 Memory usage

To analyze the overall needed storage for the presented approaches, we split the memory con-
sumption into two main parts: the temporary storage needed for the current nominal integration,
replay or IND sweep, and the memory needed to store the discretization scheme for a later replay
or IND sweep.

For the nominal integration the memory used during integration consists of the memory needed
for the interpolation process, the solution of the corrector equation and for stepsize and order
control. The latter is bounded by a small constant and can be neglected. The memory needed
for the interpolation process and the solution of the linear systems in the Newton-like iterations,
except the iteration matrix and the model function Jacobians, grows linearly in ny + np and can
be bounded by C := [2(kmax + 2) + 6]ny + np. The storage for the iteration matrix and the model
function Jacobians (that need to be kept to perform the second step in the monitor strategy (cf.
Section 5.3.3)) is in both cases bounded by two times the nonzero entries of the Jacobians plus
ny, which means in the worst case of dense matrices it is equal to n2

y + ny.
A replay does not consume additional memory compared to the nominal integration, as one can
use the actual iteration matrix factorization in the stored discretization scheme.
Deferred iterative �rst order forward and adjoint IND sweeps for one direction also consume less
memory for the actual computation than a nominal integration. Again, the matrix factorizations
can be used by referencing the stored scheme. The needed storage for intermediate sensitivity
quantities grows linearly in ny + np and as the trajectory point yn+1 depends on at most kn + 1
earlier values during a sweep only the corresponding number of sensitivity values has to be kept
at a time. This leads in the end more or less to the same bound C on memory consumption
as in the nominal case, however without the need for matrix storage. This is not the case if we
perform a simultaneous �rst order forward IND sweep. Here we have approximately to double the
linear bound C of the nominal integration. On the other hand, no storing of the discretization
scheme is needed. Note that for all IND sweeps the memory consumption grows also linearly in
the number of sensitivity directions treated in parallel. For the higher-order IND-TC sweeps the
memory consumption grows also linearly with the order m.

The memory consumption for storing the discretization scheme depends in the �rst place on
what is actually stored on the tape. Depending on whether a replay should be performed, a direct
or iterative �rst order IND sweep or a higher-order forward or forward/adjoint IND-TC sweep,
di�erent information is required for each of these operations (see Table 6.2).
A replay needs the used stepsizes, orders, iteration matrices and iteration counts, while a deferred
�rst order direct forward or direct adjoint sweep needs the used stepsizes, orders and the nominal
trajectory values and parameter. The deferred �rst order iterative IND sweeps and the higher-
order forward IND-TC sweep also need the iteration matrices used during nominal integration and
the number of Newton-like iterations in each integration step. Finally, the higher-order adjoint
IND-TC sweep of order m needs additionally the stored trajectory Taylor coe�cients up to order
m.
This means that to allow for a later replay, the size of the stored discretization scheme grows
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linearly with the number of accepted integration steps N plus the needed storage for the iteration
matrices, which depends on their sparsity structure and their overall number. For a direct IND
sweep it grows linearly with N + Nny + np, and for the iterative IND sweeps and the higher-
order forward IND-TC sweep linearly in N + Nny + np plus the needed storage for the iteration
matrices, which again depends on their sparsity structure and their overall number. Finally, for
the higher-order adjoint IND-TC sweep of order m it grows linearly with N +Nmny +mnp plus
the matrix storage.

Replay IND direct IND iterative & fwd. IND-TC fwd/adj IND-TC

stepsizes, orders yes yes yes yes
nominal trajec-
tory values and
parameter

no yes yes yes

trajectory Tay-
lor coe�cients

no no no yes

used itera-
tion matrices
and number
of Newton-like
iterations

no no yes yes

Table 6.2: Overview over the types of information that has be stored on the tape to enable the di�erent kinds of
deferred operations.

Remark 6.7 (Checkpointing)
As we have seen, to perform a replay or a deferred IND sweep, some information of the nomi-
nal integration or a previous IND-TC sweep has to be stored on the tape, which for large scale
problems and long time horizons might become quite large. It should be noted here that applying
IND in the presented way to derive the sensitivity generation schemes instead of treating the
integrator as a black box leads automatically to a �vertical checkpointing�. In contrast to the
checkpointing strategies commonly used for integration codes that operate on the time horizon
(horizontal checkpointing), here we end up with a hierarchical scheme: The intermediate values
of the evaluations of the model functions f , g and A are not stored, but recalculated as needed
in an adjoint IND sweep. This reduces the overall memory consumption in IND-based schemes
drastically compared to the application of an black-box AD approach. In the context of a multiple
shooting method also the partition of the whole time horizon into subintervals leads to a so-called
�natural checkpointing�. For some problems, for which the tape does not �t into the main mem-
ory any more, the investigation of other checkpointing strategies, as, e.g., described by Walther
[Wal00], may be interesting. For example, the factorizations of the iteration matrices are very
expensive, in a sequential checkpointing scheme these could preferably be kept and some parts of
the nominal trajectory might be dropped and recomputed on demand.
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6.7 Other sensitivity related topics

After presenting and comparing the di�erent IND-based approaches for �rst and higher-order
sensitivity generation we now address in this section some more speci�c topics related to sensitivity
generation and, if applicable, their implementation in the packages DAESOL-II and SolvIND.

6.7.1 Exact interpolation

The presented higher-order forward and forward/adjoint IND schemes allow the e�cient compu-
tation of univariate directional sensitivities of arbitrary order. Sometimes however, also entries
or parts of the higher-order sensitivity tensor might be needed that are not directly computable
as such an univariate directional sensitivity. To obtain them we can use the method of exact
interpolation presented in Section 2.4.3 for ordinary functions. The idea is directly transferable
to the IND-TC context and can be used here to compute any entry of a sensitivity tensor of a
given order based on a suitable set of propagated rays, as described in the Propositions 2.19 and
2.21. To simplify higher-order sensitivity generation as well as the usage of exact interpolation
for the user, SolvIND provides a ray manager that computes, based on a given set of directions
and a given set of multi-indices describing the desired multivariate derivatives, the minimal set of
needed rays and builds the corresponding initial Taylor coe�cients for the IND-TC sweep.
Additionally, the ray manager can be used to execute the exact interpolation after the forward or
forward/adjoint IND sweep has been performed. It takes the propagated forward or adjoint Taylor
coe�cients and interpolates the desired multivariate sensitivities based on the multi-indices passed
earlier. Note that multivariate sensitivities of di�erent orders can be computed simultaneously by
only one execution of an IND-TC scheme.

6.7.2 Tape management

As mentioned in Section 6.6, to enable, e.g., a later replay, or any IND-based adjoint sweep, speci�c
parts of the discretization scheme and of the trajectory information have to be stored on a tape
and need to be retrieved later. DAESOL-II contains a tape management system that allows the
creation of an arbitrary number of distinct tapes (only limited by the available memory), as well
as the possibility to store, access, overwrite or delete each of them independently. Also the kind
of information to be stored on a tape can be selected. This allows the e�cient use of DAESOL-II
also in the context of adaptive optimization algorithms, including the lifted methods presented in
this thesis and other (direct) multiple shooting based methods. In the context of these methods
it is desirable, sometimes also essential, that several distinct tapes can be kept. In general one
wants to keep here at least one tape for each subinterval of the partitioned time horizon of the
underlying problem. Then one can perform, for example, e�cient forward and adjoint sensitivity
sweeps over the whole time horizon. In an adaptive framework it might also be of interest to reuse
some of the tapes for replay and sensitivity computation during several optimization iterations,
while others should be updated and overwritten. If the memory is not large enough, some of the
tapes might be considered to be deleted and recomputed later. DAESOL-II allows all the needed
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operations and furthermore supports these scenarios by keeping additional information on the
quantities available on a speci�c tape as well as the tape size.

6.7.3 Continuous representation of sensitivities

The IND-based sensitivity generation schemes presented above aim mainly at the e�cient com-
putation of the derivative of the solution of the nominal IVP at the end time τe of the integration
horizon with respect to initial values and parameter. In certain cases however, as already ad-
dressed in Section 5.3.9 for the values of the nominal trajectory, it is highly interesting to obtain
also derivatives of trajectory values at timepoints inside the integration horizon with respect to
initial values and parameter. For reason of stability and e�ciency this should be possible without
forcing the integration gridpoints to contain these points.
For the forward sensitivities computed by forward IND(-TC) schemes this can be achieved, because
as described in Remark 6.1 and Proposition 6.5 they can be understood as solution trajectories
of forward variational DAE-IVPs obtained by a BDF-discretization scheme. Hence we can obtain
an error controlled continuous representation of the forward sensitivities in exactly the same way
as for the nominal trajectory values in Section 5.3.9 on page 145, i.e., by using the interpolation
polynomial of the underlying BDF method to interpolate sensitivity values at arbitrary timepoints
in the integration horizon. In the case of higher-order forward sensitivities it is also possible to
use exact interpolation on these interpolated sensitivities, if desired.
Note again that no corresponding natural (and hence error controlled) interpolation procedure
exists in the IND framework for the adjoint sensitivities, i.e., the computation of the derivatives
of the trajectory values at τe with respect to the values at an arbitrary time inside integration
horizon. The only possibility here is to start the integration process at this timepoint. This is
due to the fact that the adjoint IND(-TC) schemes cannot be interpreted as an BDF-method (or
another consistent LMM) for the solution of the adjoint variational DAE, as mentioned in Remark
6.2.

6.7.4 Sensitivity injection

In the optimization context it is often needed to compute the derivatives of functions which do
not only depend on the system states y(τe) at the endpoint of the integration horizon, but also on
system states inside the integration interval. Imagine here for example least-square objective terms
penalizing the deviation of the state of the system from measurements or also point constraints
on the system states at some given timepoints. The evaluation of these functions and also of
their derivatives with respect to initial values and parameter of the DAE-IVP can be performed
based on the continuous representation of the nominal trajectory and the forward sensitivities
described in the Sections 5.3.9 and 6.7.3. This however is not always desirable, because in this
way the �rst and higher-order adjoint IND(-TC) schemes could not be employed, but only forward
IND schemes. One possibility to use adjoint schemes would be to choose each of the necessary
timepoints as an endpoint of an integration process and compute the adjoint sensitivities according
to the function's derivative. This however will become prohibitively costly already for a moderate
number of intermediate timepoints treated this way.
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Hence we present now a possibility to �inject� additional adjoint directions respectively adjoint
Taylor coe�cients at arbitrary timepoints during an adjoint IND(-TC) sweep. Based on this
approach, we can compute �rst and higher-order derivatives of functions depending on the systems
states at arbitrary timepoints by executing a �rst order adjoint IND scheme or a higher-order
forward/adjoint IND-TC scheme, respectively, only once.
The injection itself is again based on the combination of IND and AD. Suppose the nominal
integration has been performed, and the discretization scheme has been determined. Then the
trajectory value at an arbitrary point τI ∈ [τn, τn+1] can be computed by an evaluation of the
corrector polynomial of integration step n, leading to

y(τI) =
kn∑
i=0

αIi,n(τI)yn+1−i, (6.46)

where the coe�cients αIi,n only depend on the relative position of τI with respect to the gridpoints
τn+1, . . . , τn+1−kn . The same holds for the case of the computation of forward sensitivities of any
order. To obtain now adjoint injection rules that comply with the IND principle, we consider this
interpolation again as an elementary function. Then we apply the reverse AD mode to obtain the
rules

ȳn+1−i += αIi,n(τI)ȳ(τI), 0 ≤ i ≤ kn. (6.47)

The value of ȳ(τI) is here determined by the (adjoint) derivative of the dependent function with
respect to y(τI) in the �rst order case, or the adjoint Taylor coe�cient propagated through the
function in the framework of a higher-order forward/adjoint scheme.
Note that the injection has to occur before any of the values ȳn+1−i, 0 ≤ i ≤ kn is itself used in the
computation of other values in the adjoint IND(-TC) sweep. As on the other hand for e�ciency
only kmax+2 intermediate values ȳi are kept in the adjoint sweep at a time, the injection cannot be
done too much in advance (e.g., at the start of the adjoint sweep). Hence the injection is performed
in precisely that moment, where the value ȳn+1 would have been accumulated completely in the
ordinary adjoint sweep. The whole procedure for the forward/adjoint IND-TC scheme is described
in Algorithm 6.9 on the next page.
The adjoint injection can be used in DAESOL-II simply by passing a list of timepoints where the
injection should occur and registering a call-back function, that delivers the value ȳ(τI) for the
corresponding τI when called by the integrator as the injection takes place. By this mechanism,
the ȳ(τI) can either be computed on demand when the function is called, or be precomputed
before the adjoint sweep is started and then simply passed to the integrator, depending on the
user's needs in the speci�c context.

Example 6.8 (Hessian of Lagrangian depending on states at arbitrary timepoints)
We illustrate a possible use of the continuous sensitivity output and adjoint injection in DAESOL-II

using an example from optimization. Imagine a scalar objective function

ψ(y(τa1), . . . ,y(τal),y(τe)), τai ∈ [τ0, τe] for 1 ≤ i ≤ l1,

and a set of point constraints

hj(y(τbj)) ≥ 0 with τbj ∈ [τ0, τe] for 1 ≤ j ≤ l2.
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Algorithm 6.9: Adjoint sensitivity injection (forward/adjoint IND-TC version)

Input: Discretization scheme stored from a forward IND-TC sweep of order m (stepsizes,
orders, iteration matrix factorizations, iteration counts, Taylor coe�cients), adjoint
sensitivity direction ȳ, injection times τIj ∈ [τ0, τe], 1 ≤ j ≤ l (sorted), adjoint Taylor
coe�cients to inject ȲI

j , 1 ≤ j ≤ l.
Output: Adjoint Taylor coe�cients Ȳ0, P̄ containing scaled forward/adjoint sensitivities

respecting injected sensitivities.
initialize sensitivities with ȲN =

[
ȳ 0 . . . 0

]
;

n = N − 1, j = l;
while n ≥ 0 do

get τn, kn from stored discretization scheme;
while τIj >= τn do

compute coe�cients αIi,n(τIj), 1 ≤ i ≤ kn;
for i = 0 : kn do

Ȳn+1−i += αIi,n(τIj)Ȳ
I
j ;

end
j = j − 1;

end

Ȳ
(sn)
n+1 = Ȳn+1;

get Yn+1, hn, M−1
n , sn from stored discretization scheme;

for i = sn − 1 : 0 do
propagate through Newton-like iteration;

end

ȲP
n+1 = Ȳ

(0)
n+1;

propagate corrector constant dependency backwards using (6.31b);
propagate predictor dependency backwards using (6.31a);
// all contributions of yn taken into account,

// value of Ȳn is final

n = n− 1;
end

Here y(τ ; τ0,y0,p) is given as the solution of a corresponding DAE-IVP on the integration horizon
[τ0, τe].

Then using the continuous output and adjoint injection capabilities of DAESOL-II we can compute
the Hessian of the Lagrangian L := ψ−

∑l2
j=1µj

Thj with respect to (y0,p) using only one forward

IND-TC sweep of order 1 with the unit directions e
ny+np

j , 1 ≤ j ≤ ny + np, as forward sensitivity
directions, followed by only one adjoint IND-TC sweep. The work�ow for this using DAESOL-II

might then be as follows.

1. Register a plug-in with the output grid containing the set of timepoints {τa1 , . . . , τal , τb1 , . . . , τbk}
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in ascending order that stores the propagated forward Taylor Coe�cients Y(τI) at the cor-
responding timepoints when called from the integrator.

2. Let the integrator perform a forward IND-TC sweep of order 1 initialized with the directions
e

ny+np

j , 1 ≤ j ≤ ny +np (with storage of the whole discretization scheme) to obtain forward
Taylor coe�cients at τe and the output grid.

3. Using the forward Taylor coe�cients, perform a forward/reverse TC propagation through the
objective function ψ with adjoint direction ȳψ = 1 to obtain the adjoint Taylor coe�cient
Ȳ(τe) for the initialization of the adjoint IND-TC sweep, as well as the adjoint Taylor
coe�cients Ȳ(τai) to inject at the τai . Likewise perform forward/reverse TC propagations
through the constraint functions hj with adjoint directions µj to obtain the adjoint Taylor
coe�cients Ȳ(τbi) to inject at the τbi .

4. Register the adjoint injection grid (in this case equal to the output grid in 1.) and the
call-back routine delivering Ȳ(τai), or Ȳ(τbi), respectively, when called from the integrator
with the corresponding gridpoint.

5. Let the integrator perform an adjoint IND-TC sweep of order 1 based on the discretization
scheme stored in 2., propagating ny + np adjoint TCs, each initialized with the adjoint TC
Ȳ(τe).

6. The propagated adjoint TCs Ȳi
0, P̄

i, 1 ≤ 1 ≤ ny + np now contain each in the zero order
coe�cients the gradient of the Lagrangian. Furthermore, in its �rst order coe�cients the
i-th TC contains the y0-part and the p-part, respectively, of i-th column of the Hessian of
the Lagrangian with respect to (y0,p).

6.7.5 Error control of forward sensitivities

The presented forward IND(-TC) schemes for sensitivity generation are all based on the same
discretization scheme that is used by the solution process for the nominal DAE-IVP. In this solution
process the discretization scheme normally is determined adaptively by the error estimation and
the stepsize and order control strategies presented in Chapter 5 for the nominal trajectory only.
Hence the produced discretization scheme will only lead to error controlled nominal trajectory
values, not necessarily to error controlled sensitivities. For the forward sensitivities we have only
the convergence results stated above for the case that the stepsizes tend to zero.
Usually, this is not a big problem in practice. First, by the use of IND we always obtain the
exact sensitivity of the numerical nominal solution. Furthermore, practical observations show
that in most applications the loss of accuracy lies in the region of one order of magnitude, which
often is tolerable. However, there are situations where a high accuracy of the computed forward
sensitivities is desired or where the determination of the discretization scheme based only on the
nominal solution will lead to a blow-up for the sensitivities and/or completely wrong sensitivity
approximations. The latter is for example the case if some of the possibly instable modes of the
system's dynamic are not triggered during the solution of the nominal DAE-IVP for the speci�c
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set of initial values and parameter, while the solution of the forward variational would do. A very
simple academic example where this behavior might occur is the Dahlquist equation.

Example 6.9
Consider the simple ODE-IVP

ẋ(τ) = px(τ), p ∈ R, x(0) = x0, t ∈ [0, 1].

Its nominal solution is x(τ) = x0e
pτ . The �rst order variational DAE-IVP is then given by

ẋx0(τ) = pxx0(τ), p ∈ R, xx0(0) = 1, t ∈ [0, 1],

with the solution xx0(τ) = epτ . If we now choose x0 = 0 and perform a �rst order forward
IND sweep, we will obtain approximations for xx0 that are completely useless. This is caused by
the fact that the solution process indeed computes the correct solution x(τ) ≡ 0 and that the
error estimation in this case tells us that the local error in each step is equal to zero. Hence
the stepsize strategy will continuously and rapidly increase the used stepsizes. This leads to a
discretization scheme that is perfect for the solution of the nominal IVP but of course disastrous
for the approximation of the sensitivities. This behavior is also shown in practice in Section 9.3
on page 242.

The interpretation of the forward IND(-TC) scheme as BDF discretization scheme for the varia-
tional IVPs here again is the key to a possible remedy. The computed forward sensitivities are then
to be understood as approximations of the solution trajectory of the corresponding variational IVP
computed by a BDF method. Hence in principle the same mechanisms described earlier for the
estimation of the local error in the approximation of the nominal solution can be applied to them.
As the error estimation is mainly based on the modi�ed divided di�erences and the increments of
the Newton-like method, which need to be computed anyway also for the sensitivity approxima-
tions, this leads only to a relatively small increase of the e�ort and needs moderate changes in the
original integration code. Once a local error estimation has been established for the sensitivity
approximation, analogously the presented stepsize and order strategies can be used to obtain a
suitable new stepsize and order for the computation of the next sensitivity approximation. In
this way, a suitable discretization scheme for the computation of the sensitivity approximations
can be generated. It should be noted here that it is advisable to modify the scaling factors for
the forward sensitivity trajectories at least according to the norm of the corresponding sensitivity
direction. This is sensible, because if we multiply the sensitivity direction by 2 this will change
the �rst order forward sensitivities by the factor 2, the second order forward sensitivities by the
factor 22 and so on.
To obey to the IND principle, i.e., to use the same discretization scheme for the nominal and
sensitivity trajectories, we use a modi�ed simultaneous iterative forward IND(-TC) sweep that is
described in its �rst order version in Algorithm 6.10 on the next page. Here in an integration
step the Newton-like iterations and the corresponding contraction estimations are performed si-
multaneously for nominal and forward sensitivity trajectories. If the iterations do not converge
for any of the trajectories, then the corrector equation solution is considered as failed. Otherwise



CHAPTER 6. SENSITIVITY GENERATION 187

the local error is estimated for all trajectories, and again the step is rejected, if any of the error
estimations is too large. Otherwise the next step is planned for each trajectory separately and
the most pessimistic estimation will be used in the next integration step for all trajectories. In
case that the step has failed, the monitor strategy respectively the presented strategies for stepsize
reduction are applied, based on the trajectories that caused the step failure. Also here the most
pessimistic estimation for the stepsize will then be used for the computation of all trajectories
during the repetition of the step.

Algorithm 6.10: Error control for forward sensitivities
Input: t0, tf , h0, initial values y0, parameter p, set of sensitivity directions D

Output: Nominal solution yN, forward sensitivities ẎN =W ·D.
set k0 = 1, n = 0;
initialize nominal integration with y0, p and sensitivities with D (6.28);
while tf not reached do

compute interpolation coe�cients using hn and kn;
compute nominal and IND predictor and corrector constant;
compute yn+1 and Ẏn+1 by sn Newton-like iterations using matrix Mn to solve the
nominal respectively IND corrector equation;
if Newton-like method converged for all trajectories then

Perform error estimation separately for all trajectories;
if error check passed for all trajectories then

tn+1 = tn + hn;
determine stepsize and order for next step separately for all trajectories;
choose the smallest of proposed stepsizes as hn+1 and the corresponding order as
kn+1 for the next step;
n = n+ 1;

else
compute reduced stepsizes for all trajectories for which the error check failed and
choose smallest of them as hn;

end

else
update Jacobian approximation Mn according to monitor strategy or compute
reduced stepsizes for all trajectories for which Newton-like method didn't converge
and choose smallest of them as hn;

end

end
N = n;

Using this approach we obtain a commonly generated discretization scheme for both the nominal
trajectory and the forward sensitivities. This allows an error controlled computation of both the
nominal solution and of forward sensitivities of any order. A numerical example for the application
of this strategy is given in Section 9.3 on page 242. Note that compared to a normal simultaneous
iterative forward IND(-TC) sweep, the e�ort will usually be higher. The �rst reason for this is,
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of course, that in general a �ner discretization grid will be used. However, even in the case that
the common discretization scheme has in the end been determined only by the nominal solution,
i.e., is equal to the one without error control of the sensitivities, the e�ort will be higher. This is
caused for one part by the additional e�ort for the error estimation on the sensitivity trajectories.
For the other part a step rejection is now more expensive. Compared to the usual approach,
here also for a rejected step the Newton-like iterations for the sensitivity trajectories have been
performed, including the computation of the model function derivatives, or the corresponding TC
propagation, respectively. Hence in practice it is advisable to enable the error control for the
forward sensitivities only if necessary.

6.7.6 Global error estimation

The stepsize selection and error control strategies described in Section 5.3.4 are all based on the
estimation of the local integration error, described in Section 5.3.2. They are usually an e�ective
and e�cient mean to obtain an error controlled numerical solution of the underlying IVP problem
with high performance. However, in some cases they might not be su�cient. One occasion might
be an IVP for which the global error of the solution at the end of the integration horizon is not in
the range of the prescribed local integration tolerance, because of the accumulation of the errors
made in each step as well as error propagation. In this case it would be interesting to have (at
least) an estimation of the global error. Another example is the case where not the error of the
solution of the IVP itself but the error in a quantity depending on the solution is of interest. Here,
a so-called goal-oriented error estimation, and maybe also error control, is desired.
There exist a number of proposed strategies for the global error estimation for ODE and DAE
solutions in literature, refer, e.g., to [Ske86, Joh88, Est95, JV98, MSTZ03, CP04, ALW07, LV07,
TB09] and references therein. Mostly the strategies are developed for �nite element, collocation or
one-step methods. Approaches for BDF methods in the ODE case can be found in [CP04, TB09].
The two main ideas repeatedly mentioned in literature are, on the one hand, the solution of an
IVP approximating the global error in parallel with the computation of the original IVP solution.
On the other hand, there is the usage of adjoint sensitivity information in connection with a local
error or defect estimation to compute a global error estimate, which is partly inspired by the
analogous approach in PDE numerics [BR01]. For a global error estimation of the IVP solution
both approaches deliver, in general, reliable results (cf. [LV07]). The adjoint approach is favorable
when a goal-oriented a posteriori error estimation is desired as the complexity does not depend
on the dimension of the IVP in this case.
To allow both an e�cient global error estimation of the solution of the IVP as well as an e�cient
goal-oriented error analysis, the following adjoint based strategy for an a posteriori error estimation
is implemented in DAESOL-II. We assume that a nominal integration for a given tolerance has
been performed using N integration steps and that the local error estimates εloc,i, 1 ≤ i ≤ N ,
have been stored on the tape. Furthermore, we denote the (scalar) quantity of interest with φ(yN)
which is assumed to depend directly on the IVP solution yN at the end time. To compute an
error estimation for φ(yN) we perform a �rst order adjoint IND sweep with adjoint direction ∂φ

∂yN

which yields the adjoint quantities ȳi, N ≥ i ≥ 0. Then, the goal-oriented error estimate εφ is
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simply obtained as

εφ :=
N∑
i=1

εloc,i
T ȳi, (6.48)

where εloc,i is the local error estimation in the i-th step of the integration, as presented in Section
5.3.4. Note that we only use quantities that are computed anyway during a nominal integration
and a �rst order adjoint sweep, respectively. Hence the error estimation does not cause additional
numerical e�ort besides the storage of the local errors and the summation. The approach can be
extended directly to quantities of interest that depend on intermediate values of the solution by
combination with the idea of adjoint sensitivity injection described in Section 6.7.4.
In some sense, our approach is quite similar to the approach presented by Cao and Petzold
[CP04], as both are based on the use of adjoint sensitivity information in combination with the
local error estimation of the nominal IVP solution. However, in our approach we do not use
the solution of the adjoint variational di�erential equation (6.13) but the intermediate adjoint
sensitivity quantities of the presented adjoint IND sweep. Hence, it is also directly applicable to
DAEs, in contrast to the approach of Cao and Petzold. Furthermore, by the use of higher-order
adjoint sweeps in principle a global error estimation of forward sensitivities can be obtained as
well. Because the intermediate adjoint quantities are the exact derivatives of the numerical IVP
solution w.r.t. the corresponding trajectory value (see Remark 6.2), they can be interpreted as the
sensitivities of the numerical solution w.r.t. perturbations or errors in these trajectory values. In
this sense, our approach can be understood as a �rst order estimate for the error in the quantity
of interest based on a condition estimate of the numerical integration scheme. This is similar to
the approaches of estimating the in�uences of round-o� error in numerical algorithms presented,
e.g., in [Lin76, Stu80] and numerous later works.
The e�ciency of our approach is demonstrated numerically on several test problems in Section 9.4
on page 245.

6.7.7 Time and control transformations of function and derivatives

In general we like to be able to solve the following relaxed index one DAE-IVP type, that occurs,
e.g., in a multistage multiple shooting setup in stage i

Â(t,x(t), z(t),u(t),pp) ẋ(t)− phi · f̂(t,x(t), z(t),u(t),pp) = 0, x(t0) = x0, (6.49a)

ĝ(t,x(t), z(t),u(t),pp)− θ̂(t) ĝ(t0,x0, z0,u(t0),pp) = 0, z(t0) = z0, (6.49b)

where t ∈ [t0, te] ⊂ [
∑i−1

j=1 phj ,
∑i

j=1 phj ]. This problem formulation is obtained from the formula-
tion (6.1), which we have considered throughout this whole chapter, by the time transformation
t =

∑i−1
j=1 phj + phi · τ and by assuming a �nite-dimensional parametrization of the control func-

tions u(t) : R → Rnu by control parameter u(t) ≡ u(pq; τ). Therefore, it is sensible to derive
the numerical strategies and to implement the corresponding integration routines only for the
problem type (6.1), as from both the mathematical and the implementational point of view the
integration routine does not need to know about the possible transformation. Instead, when the
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integrator demands an evaluation, derivative computation or the propagation of TCs through one
of the model function f , g or A �living� in the integrator context, suitable transformations have
to be performed before and after the corresponding model function Â, f̂ , ĝ formulated in the user
context are called. In SolvIND these transformations are handled by the TEvaluator module and
derived classes. The transformations are fully transparent for the integrator, such that all inte-
grator codes in the SolvIND suite can simply be written for the IVP class (6.1) and nevertheless
handle problems of type (6.49). In this way, the transformation code has only to be written once
and can be maintained and extended in one dedicated module, which is a clear advantage com-
pared, e.g., to the MUSCOD-II[DLS01] package. Furthermore, this architecture allows to switch
easily between di�erent control parametrization and to add new ones without the need to change
the formulation of the model functions Â, f̂ , ĝ or to make changes to the integration code itself.

The transformations that are needed for an ordinary evaluation of a model function are straight-
forward. For the evaluation at (τ,y,p) we �rst have to translate the integrator time τ to the
�physical� time t

t =
i−1∑
j=1

phj + phi · τ (6.50a)

and to evaluate the actual control values for the given parametrization

u = u(pq; τ). (6.50b)

Then the user-space model function Â, f̂ or ĝ can be evaluated at (t,y,u,pp). In the case of
the di�erential right hand side f̂ the result then has to be scaled afterwards by the actual time
transformation factor phi

f(τ,y,p) = phi · f̂(t,y,u,pp). (6.50c)

In the case of a derivative evaluation or a TC propagation, additionally the derivative directions
and the obtained derivatives or the input TCs and the propagated TCs have to be transformed.

For the forward case it is straightforward to transform τ -directions/TCs and ph-directions/TCs
into t-directions/TCs by applying the forward AD/TC propagation rules presented in Chapter 2
to (6.50a). Likewise we use the actual de�nition of (6.50b) to transform pq-directions/TCs into
u-directions/TCs. Based on the transformed directions or TCs the derivatives of the user-de�ned
model functions Â, f̂ or ĝ can be evaluated. For the di�erential right hand side the obtained
derivative or the propagated TCs have to be transformed afterwards based on (6.50c).

An analogous process has to be performed to evaluate an adjoint directional derivative: In the
case of the di�erential right hand side after an evaluation of the function itself, �rst the adjoint
directions have to be transformed. This is not needed for the other model functions. Then
the adjoint derivatives of the user given model function can be computed, and afterwards the
obtained adjoint derivatives have to be transformed. If we denote the adjoint direction with λ̄,
the evaluation of the adjoint derivative, e.g., for the di�erential right hand side starts after the
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corresponding function evaluation with

phi+= λ̄
T
f̂(t,y,u,pp) (only for f) (6.51a)

ˆ̄λ = phi · λ̄. (only for f) (6.51b)

Then the adjoint derivative of f̂(t,y,u,pp) with adjoint direction ˆ̄λ is evaluated. Afterwards the
obtained derivatives with respect controls and time are transformed using

q̄T+= ūT
∂u(pq; τ)

∂q
(6.51c)

τ̄+= ūT
∂u(pq; τ)

∂τ
, (6.51d)

and

p̄hj+= t̄, (1 ≤ j ≤ i− 1) (6.51e)

p̄hi+= t̄ · τ (6.51f)

τ̄+= t̄ · phi . (6.51g)

Finally, we have obtained the adjoint derivative (τ̄ , ȳ, p̄) of the integrator-space model function
f(τ,y,p) in direction ȳ. To perform an adjoint TC propagation, we can apply basically the same
scheme and replace the operations (6.51) by the corresponding operations in Taylor arithmetics,
as explained earlier.

6.7.8 Sensitivity propagation across switching events

In this section we consider the extension of the presented �rst and higher-order IND(-TC) schemes
to the case of IVPs where the model dynamic is possibly subject to implicitly de�ned state and
parameter dependent discontinuities and/or non-di�erentiabilities. We call these events switches.
Although this type of problems is not the focus of the applications in this thesis, the treatment
of these switching events is important in many �elds of application. We consider here the relaxed
index 1 DAE-IVP

ẋ(τ)− f(τ,x(τ), z(τ),p, sgn(σ(τ,x(τ), z(τ),p))) = 0 (6.52a)

g(τ,x(τ), z(τ),p, sgn(σ(τ,x(τ), z(τ),p))− θ(τ) g(τ0,x0, z0,p) = 0 (6.52b)

x(τ0) = x0, z(τ0) = z0, τ ∈ [τ0, τe],

where we call σ : [τ0, τe]× Rnx × Rnz × Rnp → R the switch function and assume in the following
that it is su�ciently smooth, but at least continuously di�erentiable in all variables. Note that
this formulation can be easily extended to the case of a vector-valued switch function. However,
also in this case one generally assumes that only one switch function becomes zero at the same
time, such that we restrict our analysis to the case of one switch function. Also note that for
notational simplicity we only consider the case A ≡ I here, while the derivation for the general
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case can be made analogously. The roots of the switch function de�ne the timepoints where
switching events occur. By the implicit function theorem we can interpret the switching time τs
as implicitly de�ned by the values (τ0,y0,p).
We assume for now that only one switching event occurs, and that this event occurs at time τs.
Then we denote the limits of the di�erential variables at τs from the left and right with

x−(τs; τ0,y0,p) := lim
ε↘0

x(τs − ε; τ0,y0,p) (6.53)

and

x+(τs; ∆x; τs,y
−,p) := lim

ε↘0
x(τs + ε; ∆x; τs,x

−,p), (6.54)

where

∆x : [τ0, τe]× Rnx × Rnp → Rny , (τ,x−(τ),p) 7→ x+(τ), (6.55)

describes a possible jump in the di�erential variables occurring at the switching event

x+(τs; ∆x) := x−(τs) + ∆x(τ,x−(τ),p). (6.56)

We assume here that the jump does not explicitly depend on the algebraic variables and also
that a corresponding jump ∆z in the algebraic variables always conserves the consistency of
the algebraic equations. Then the states after the switching event are fully determined by the
di�erential variables and we write for the algebraic variables at τs

z−(τs; τ0,y0,p) := lim
ε↘0

z(τs − ε; τ0,y0,p) (6.57)

and

z+(τs; ∆z; τ0,y0,p) := z(τs; τs,x
+(τs; ∆x; τ0,y0,p),p). (6.58)

We denote furthermore the model functions before the switch with f1 and g1, and after the switch
with f2 and g2.

In the following, we will consider the task of generating �rst and higher-order derivatives of the
solutions of the IVP (6.52). For the question of how the implicitly de�ned switching time τs can
be determined e�ciently in a numerical integration scheme refer to [Kir06, BP04, Ehr05] and
references therein. The proof of the di�erentiability of the solution of (6.52) has been given by
Bock in [Boc87] for the ODE case, and an extension of the theorem for the index 1 DAE case is
stated in [BP04]. Both versions require that the switching is consistent, i.e., that

dσ−

dτ
(τs,x

−, z−) · dσ+

dτs
(τs,x

+, z+) > 0, (6.59)
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where σ− and σ+ are the one-sided derivatives of the switch function. Consistent switching hence
requires that the switch function changes its sign at τs.

Note that the sensitivities of the algebraic variables after the switch are uniquely determined by
the sensitivities of the di�erential variables and by the consistency conditions. For educational
purposes we now derive the formulas for the full �rst order sensitivities

dx(τe)

dx0

and
dx(τe)

dz0

in the �classical� way. Similar derivations are presented in [Boc87, Mom01, Kir06] for the case of
ODEs and in [BP04] for index 1 DAEs.

We start by de�ning the abbreviations

f− := f1(τs,x
−, z−,p) f+ := f2(τs,x

+, z+,p)

σ := σ(τs,x
−, z−,p) ∆ := ∆(τs,x

−,p)

ż− := ż(τs,x
−, z−,p) xe := x(τe; τs,x

+,p),

where ż can be obtained by applying the implicit function theorem to the consistency conditions.
Then we have

dx+

dx0

=
∂x−

∂τs

dτs
dx0

+
∂x−

∂x0

+
∂∆

∂τs

dτs
dx0

+
∂∆

∂x−

(
∂x−

∂τs

dτs
dx0

+
∂x−

∂x0

)
=

(
f− +

∂∆

∂τs
+
∂∆

∂x−
f−
)

dτs
dx0

+

(
I +

∂∆

∂x−

)
∂x−

∂x0

(6.60)

and

dx+

dz0

=
∂x−

∂τs

dτs
dz0

+
∂x−

∂z0

+
∂∆

∂τs

dτs
dz0

+
∂∆

∂x−

(
∂x−

∂τs

dτs
dz0

+
∂x−

∂z0

)
=

(
f− +

∂∆

∂τs
+
∂∆

∂x−
f−
)

dτs
dz0

+

(
I +

∂∆

∂x−

)
∂x−

∂z0

. (6.61)

From the implicit function theorem, applied to σ, we obtain

dτs
dx0

= −
(
∂σ

∂τs
+

∂σ

∂x−
f− +

∂σ

∂z−
ż−
)−1(

∂σ

∂x−
∂x−

∂x0

+
∂σ

∂z−
∂z−

∂x0

)
︸ ︷︷ ︸
( ∂σ
∂x− + ∂σ

∂z− ((g−
z )−1g−

x )) ∂x−∂x0

(6.62)

dτs
dz0

= −
(
∂σ

∂τs
+

∂σ

∂x−
f− +

∂σ

∂z−
ż−
)−1(

∂σ

∂x−
∂x−

∂z0

+
∂σ

∂z−
∂z−

∂z0

)
︸ ︷︷ ︸
( ∂σ
∂x− + ∂σ

∂z− ((g−
z )−1g−

x )) ∂x−∂z0

. (6.63)
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Furthermore, we have

∂xe

∂τs
= − ∂xe

∂x+
f+. (6.64)

Combing all this leads to

dxe

dx0

=
∂xe

∂τs

dτs
dx0

+
∂xe

∂x+

dx+

dx0

(6.64)
=

∂xe

∂x+

(
−f+ dτs

dx0

+
dx+

dx0

)
(6.60)
=

∂xe

∂x+

[(
−f+ + f− +

∂∆

∂τs
+
∂∆

∂x−
f−
)

dτs
dx0

+

(
I +

∂∆

∂x−

)
∂x−

∂x0

]
(6.62)
=

∂xe

∂x+

[(
f+ − f− − ∂∆

∂τs
− ∂∆

∂x−
f−
)(

∂σ

∂τs
+

∂σ

∂x−
f− +

∂σ

∂z−
ż−
)−1

·
(
∂σ

∂x−
+

∂σ

∂z−
((g−z )−1g−x )

)
+

(
I +

∂∆

∂x−

)]
∂x−

∂x0

(6.65)

and

dxe

dz0

=
∂xe

∂τs

dτs
dz0

+
∂xe

∂x+

dx+

dz0

(6.64)
=

∂xe

∂x+

(
−f+ dτs

dz0

+
dx+

dz0

)
(6.61)
=

∂xe

∂x+

[(
−f+ + f− +

∂∆

∂τs
+
∂∆

∂x−
f−
)

dτs
dz0

+

(
I +

∂∆

∂x−

)
∂x−

∂z0

]
(6.63)
=

∂xe

∂x+

[(
f+ − f− − ∂∆

∂τs
− ∂∆

∂x−
f−
)(

∂σ

∂τs
+

∂σ

∂x−
f− +

∂σ

∂z−
ż−
)−1

·
(
∂σ

∂x−
+

∂σ

∂z−
((g−z )−1g−x )

)
+

(
I +

∂∆

∂x−

)]
∂x−

∂z0

. (6.66)

Finally, we have obtained the relation

Wx
x (τe; τ0) =Wx

x (τe; τs) Ux
x (τs) Wx

x (τs; τ0) (6.67)

and

Wx
z (τe; τ0) =Wx

x (τe; τs) Ux
x (τs) Wx

z (τs; τ0) (6.68)

with the update matrix

Ux
x (τs) :=

[(
f+ − f− − ∂∆

∂τs
− ∂∆

∂x−
f−
)(

∂σ

∂τs
+

∂σ

∂x−
f− − ∂σ

∂z−
ż−
)−1

·
(
∂σ

∂x−
+

∂σ

∂z−
((g−z )−1g−x )

)
+

(
I +

∂∆

∂x−

)]
. (6.69)
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Likewise, the sensitivities with respect to the parameter can be obtained as

Wx
p(τe; τ0) =Wx

x (τe; τs)
(
Ux

x (τs) Wx
p(τs; τ0) + Ux

p (τs)
)

+Wx
p(τe; τs), (6.70)

with the parameter related update matrix

Ux
p (τs) :=

[(
f+ − f− − ∂∆

∂τs
− ∂∆

∂x−
f−
)(

∂σ

∂τs
+

∂σ

∂x−
f− − ∂σ

∂z−
ż−
)−1

·
(
∂σ

∂p

)
+
∂∆

∂p

]
. (6.71)

We observe that already the derivation of the update matrices for the full �rst order sensitivities
is lengthy and leads to complex formulas that are not easy to implement e�ciently (and error-
free). In case of few needed directional sensitivities the e�ciency can be increased signi�cantly
by employing forward or adjoint directional derivatives wherever possible in the equations above.
The derivation of second (or even higher-order) updates in this classical way however is a tedious
and error-prone work. Mombaur [Mom01] presents the lengthy formulas for second order updates
in the ODE case, but refrains from their implementation due to the implementational and com-
putational complexity they give rise to.

As second and higher-order sensitivity update formulas computed in the classical way are worth-
less in practice we develop now the �rst strategy for the computation of �rst and higher order
sensitivities based on the propagation of TCs across the switching event. This allows to obtain
an e�cient formulation of schemes for the generation of arbitrary order sensitivities also in the
presence of switches.
We start by recalling the chain of dependencies between the quantities involved in a switching
event in the practical computation. First, we remember that by means of the implicit function
theorem the switch time τs is uniquely determined by the initial values and parameter. In this
sense, we can interpret the switch function as a function of the switch time and initial values
and parameter σ̃(τs,y0,p) := σ(τs,y(ts; y0,p),p). Based on the switch time the corresponding
states y− at τs can be determined. The sensitivity of the y− is then composed of their �ordinary�
dependence of initial values and parameter and their dependence on the switching time. From
y− one then obtains y+ by application of the state jump ∆. Afterwards y(τe) can be computed
based on the new initial time τs and new initial values y+. The sensitivities of y(τe) consist then
of the �ordinary� dependency on the initial value y+ and the parameter as well as the initial
time τs. Before we are able to use this chain of dependencies for the formulation of a forward
TC propagation scheme, we �rst need the following results concerning the propagation of TCs
through an implicitly de�ned function as well as the computation of the TCs of an ODE solution
at the start or end time of the integration horizon based on the corresponding right hand side
function.

Lemma 6.10 (TC propagation through implicitly de�ned functions)
We consider a function σ ∈ Ck(Rnv+nu ,Rnv), with k su�ciently large, that implicitly de�nes the
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value v ∈ Rnv in terms of u ∈ Rnu by the equation

σ(v,u) ≡ 0. (6.72)

This means we assume silently that σv is regular. Let u0, . . . ,uk be the TCs of a Taylor poly-
nomial u(s) of the truly independent variables and denote with v0, . . . ,vk the TCs of the Taylor
polynomial of the dependent variable v(u(s)) that we desire to compute. Finally, denote with
σ0, . . . ,σk the TCs resulting from a forward propagation of the TCs v0, . . . ,vk and u0, . . . ,uk

through the function σ.

Then the TCs of the Taylor polynomial corresponding to v(u(s)) can be obtained from the TCs
of the input Taylor polynomial u(s) for any k ≥ 1 by the following iterative scheme.

1. Compute v0 = v(u0) and v1 = −
(

dσ
dv

(v0,u0)
)−1 dσ

du
(v0,u0)u1

2. For j = 2, . . . k do

a) Perform a forward TC propagation of order j through σ using input coe�cients v̂ :=[
v0 · · · vj−1 0

]
and û :=

[
u0 · · · uj−1 0

]
to obtain σ̂j.

b) Solve vj = −
(

dσ
dv

(v0,u0)
)−1 (dσ

du
(v0,u0)uj + σ̂j

)
Proof:

For a proof of a slightly more general version of the Lemma refer to Wagner et al. [WSW10].
2

Lemma 6.11 (TCs of ODE solution at start time)
Let ε > 0, f ∈ Ck([t̂− ε, t̂+ ε]× Rnx × Rnp ,Rnx) and x(t) be the solution of the problem

ẋ(t) = f(t,x(t),p), t ∈]t̂− ε, t̂+ ε[, x(t̂0) = x̂0. (6.73)

Let furthermore t̂(s) =
∑k

i=0 t̂is
i, x̂(s) =

∑k
i=0 x̂is

i and p(s) =
∑k

i=0 pis
i be Taylor polynomials

of order k in s and denote with x0, . . . ,xk the Taylor coe�cients of the expansion of the solution

x(t̂0; t̂(s), x̂(s),p(s)) = x0 + x1s+ . . .+ xks
k +O(sk+1) (6.74)

at time t̂0. Then the TCs xi can be computed, e.g., by a Taylor series expansion with respect to
s of the representation

x(t; t̂(s), x̂(s),p(s)) = x̂(s) +

∫ t

t̂(s)

f(τ ; x(τ, t̂(s), x̂(s),p(s)),p(s))dτ (6.75)

around s = 0 and its evaluation in t0. The �rst coe�cients are then given by the recurrence

x0 = x̂0 (6.76a)

x1 = x̂1 − f(t̂0, x̂0,p0) · t̂1 (6.76b)

x2 = x̂2 − f(t̂0, x̂0,p0) · 2t̂2 − t̂1
∂f(t̂0, x̂0,p0)

∂(t,x,p)

 t̂1
x̂1 + x1

2p1

 (6.76c)
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Proof:

Given f is su�ciently smooth, the integral in (6.75) can be di�erentiated with respect to both its
integrand and its limits. The application of basic calculus rules then leads to the given formulas
of the coe�cients. It should be noted that in practice the TCs of the solution can be e�ciently
obtained with the help of an AD-tool and adapted model functions or, at least for lower orders,
by directional derivatives of f .

2

Remark 6.12 (TCs of ODE solution at end time)
The preceding Lemma can be used to immediately obtain the TCs of the ODE solution at the end
time when the end time is given by a Taylor polynomial t̂(s) by simply multiplying the t̂i, 1 ≤ i ≤ k
by −1 in the formulas above.

Based on the described dependencies in the computations occurring at a switching event, the TC
propagation rules through the implicit function theorem and for the computation of the start/end
time TCs of an ODE solution, we formulate now in Algorithm 6.11 on page 202 and Algorithm 6.12
on page 202 a sensitivity generation scheme for arbitrary order directional forward sensitivities for
the case that switching events (may) occur. In the �rst order case Algorithm 6.12 can also be used
to compute the update matrices described earlier by using unit directions as input TCs. However,
if only a small number (compared to the overall number of variables) of directional sensitivities
is needed, it is much more e�cient to propagate these directional sensitivities directly across the
switch. Note that by application of the reverse mode of AD on the instruction level we can obtain
higher-order forward/adjoint schemes for sensitivity propagation across switching events.

Example 6.13 (First and second order sensitivities of a bouncing ball)
Consider a ball thrown away in a gravitational �eld which bounces on the �oor after some time
and is re�ected. We describe the system by the 4 di�erential states x = (px, vx, py, vy) describing
the balls horizontal and vertical position and velocity. The initial equations of motions are then
given by

∂px(τ)

∂τ
= vx

∂vx(τ)

∂τ
= 0

∂py(τ)

∂τ
= vy

∂vy(τ)

∂τ
= −g,

with initial values x1(τ0) = (px0 , v
x
0 , p

y
0, v

y
0). The parameter g represents here the vertical accelera-

tion of the ball due to the gravitational �eld.
The event that the ball hits the �oor is then characterized by the root of the switch function σ = py.
We describe the re�exion of the ball with the jump function ∆(t, vy, r) = (0, 0, 0,−(1 + r)vy)T ,
where r is a damping factor. We further assume that the �oor consists of sensor elements, that with
each contact activate or deactivate, respectively, a force �eld. If activated, it causes a horizontal
acceleration a of the ball. We assume that at time t0 this force �eld is deactivated. Combining
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p = (g, r, a) we then have the two model functions for the system

f1(x,p) =


vx

0
vy

−g

 f2(x,p) =


vx

a
vy

−g

 .

In this relative simple setup we can still determine the solution analytically. Assume that τe is
chosen for simplicity in a way that the only one ground contact takes place at τs. Then we have
as solution x1(τ) on the �rst part (τ0 ≤ τ ≤ τs)

px(τ) = px0 + vx0 (τ − τ0), vx(τ) = vx0 ,

py(τ) = py0 + vy0(τ − τ0)− 1

2
g(τ − τ0)2, vy(τ) = vy0 − g(τ − τ0). (6.77)

From this we can determine the impact time, where σ = py(τ) = 0, as

τs =
gτ0 + vy0 +

√
(vy0)2 + 2gpy0
g

. (6.78)

Denoting the states of x2(τs) at the switch time (after the application of the jump) with an
subscript ·s, we obtain as solution x2(τ) on the second part (τs ≤ τ ≤ τe)

px(τ) = pxs + vx0 (τ − τs) +
1

2
a(τ − τs)2, vx(τ) = vxs + a(τ − τs),

py(τ) = pys + vys (τ − τs)−
1

2
g(τ − τs)2, vy(τ) = vys − g(τ − τs). (6.79)

By inserting the expressions for τs and the solutions of the �rst part at τ0, as well as the state
jump, we obtain expressions for the solution x2(τe) at the end time in terms of initial values and
parameter, which can then be di�erentiated analytically to obtain the desired sensitivities of the
solutions. The calculation of these expressions is straight-forward, but technically and leads to
large and complex terms, such that we state here only the numerical values of some sensitivities
of interest. For the computations to follow, we assume a setup described by the values

τ0 = 0 px0 = 0 vx0 = 1

τe = 3 py0 = 1.8 vy0 = 8

g = 10 r = 0.9 a = 2. (6.80)

Then the switch time is obtained as τs = 1.8. The solution at τs before the jump is given by
x1(τs) = (9

5
, 1, 0,−10)T and at the end time by x2(τe) = (111

25
, 17

5
, 18

5
,−3)T . The complete �rst

order sensitivities that we obtain from the analytical representation of the complete solution are

W(τe) ≡
∂x2(τe)

∂(x0,p)
=


1 3 − 6

25
− 54

125
243
625

0 18
25

0 1 −1
5
− 9

25
81
250

0 6
5

0 0 69
50

351
250

−2529
2500

12 0

0 0 19
10

63
25

−1329
500

10 0

 . (6.81)
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The second order sensitivities with respect to py0, v
y
0 and g are then given by

∂2x2(τe)

∂(py0)2 =


11
250
1
50

−209
500

− 19
100

 ,
∂2x2(τe)

∂(vy0)2 =


351
6250

− 9
1250

− 6669
12500
171
2500

 ,
∂2x2(τe)

∂g2
=


−15309
625000

− 8019
125000

− 632529
1250000

− 1539
250000

 . (6.82)

We will now show how the (�rst and) second order sensitivities of the solution at the end time with
respect to py0, v

y
0 and g can be computed by the forward IND-TC propagation scheme presented in

the Algorithms 6.11 and 6.12. Analogously to Example 2.20 on page 48, we initialize the TCs X0

and P for the di�erent directional sensitivities at the begin of the integration process according
to the corresponding rays to

X0
p0
y

=


0 0 0
1 0 0
9
5

2 0
8 0 0

 ,Pp0
y

=

10 0 0
9
10

0 0
2 0 0

 , X0
v0
y

=


0 0 0
1 0 0
9
5

0 0
8 2 0

 ,Pv0
y

=

10 0 0
9
10

0 0
2 0 0

 ,

X0
g =


0 0 0
1 0 0
9
5

0 0
8 0 0

 ,Pg =

10 2 0
9
10

0 0
2 0 0

 . (6.83)

We then use the ordinary second order forward IND-TC sweep including switch detection, as
described in Algorithm 6.11, to obtain the TCs X− at the switch time τs = 1.8 as

X−p0
y

=


9
5

0 0
1 0 0
0 2 0
−10 0 0

 , X−v0
y

=


9
5

0 0
1 0 0
0 18

5
0

−10 2 0

 , X−g =


9
5

0 0
1 0 0
0 −81

25
0

−10 −18
5

0

 . (6.84)

Next we compute the switch time TCs τ s as described in Algorithm 6.12. Using Lemma 6.10 with
v = τs, u = ((x−)T ,pT )T we �rst obtain with f− = (1, 0,−10,−10)T (skipping the arguments)

dσ

dv
=
∂σ

∂τ
+

∂σ

∂x−
f− = −10 and

dσ

du
=

dσ

d(x−,p)
=
(
0 0 1 0 0 0 0

)
, (6.85)

such that (
dσ

dv

)−1
dσ

du
=
(
0 0 − 1

10
0 0 0 0

)
. (6.86)

With Lemma 6.10 we then obtain

τ
p0y
s,1 = −(− 1

10
) · 2 =

1

5
, τ

v0y
s,1 = −(− 1

10
) · 18

5
=

9

25
, τ gs,1 = −(− 1

10
) · (−81

25
) = − 81

250
. (6.87)
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To compute the τs,2 we perform a forward TC propagation sweep of second order to compute σ̂2.
As inputs we use the zeroth and �rst order coe�cients of τ s, which we just have computed as well
as the ones of X− and P. The second order coe�cients are set to zero for all inputs. By using
the formulas (6.76a)-(6.76c) of Lemma 6.11 (and negating the τs) we then obtain

σ̂
p0y
2 = −1

5
, σ̂

v0y
2 =

9

125
, σ̂g2 =

8019

12500
, (6.88)

and hence �nally the switch time TCs

τ
p0
y

s =
[

9
5

1
5
− 1

50

]
, τ

v0
y

s =
[

9
5

9
25

9
1250

]
, τ g

s =
[

9
5
− 81

250
8019

125000

]
. (6.89)

Using again the formulas in Lemma 6.11 based on −τ s, X−, P we then adapt the TCs of the
solution x− at the switch time before the application of the jump according to its end time
dependency. This leads to the adapted TCs XJ− given by

XJ−
p0
y

=


9
5

1
5
− 1

50

1 0 0
0 0 0
−10 −2 1

5

 , XJ−
v0
y

=


9
5

9
25

9
1250

1 0 0
0 0 0
−10 −1

5
− 9

125

 , XJ−
g =


9
5
− 81

250
8019

125000

1 0 0
0 0 0
−10 − 9

25
81

12500

 . (6.90)

We then propagate τ s, XJ−, P through the jump based on the jump function ∆ to obtain the
TCs XJ+ after the jump as

XJ+
p0
y

=


9
5

1
5
− 1

50

1 0 0
0 0 0
9 9

5
− 9

50

 , XJ+
v0
y

=


9
5

9
25

9
1250

1 0 0
0 0 0
9 36

25
81

1250

 , XJ+
g =


9
5
− 81

250
8019

125000

1 0 0
0 0 0
9 81

250
− 729

125000

 . (6.91)

Finally we adapt the XJ+ according to the start time dependency of x+. We compute the corrected
TCs XJ+ by using again Lemma 6.11 based on τ s, XJ+, P as well as the value and Jacobian of
f+ at the switch after the application of the jump

f+ =


1
2
9
−10

 ,
∂f+

∂(t,x,p)
=


0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0

 . (6.92)

which leads to

X+
p0
y

=


9
5

0 1
25

1 −2
5

1
25

0 −9
5
−19

50

9 19
5
−19

50

 , X+
v0
y

=


9
5

0 81
625

1 −18
25
− 9

625

0 −81
25
−1539

1250

9 126
25

171
1250

 , X+
g =


9
5

0 6561
62500

1 81
125

− 8019
62500

0 729
250

−124659
125000

9 −729
250
− 1539

125000

 . (6.93)
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The X+ are then used as start values for an ordinary second order forward IND-TC sweep from
τs to τe. The resulting TCs containing the desired (scaled) sensitivities at the end time are then
given by

Xe
p0
y

=


111
25
−12

25
11
125

17
5
−2

5
1
25

18
5

69
25

−209
250

−3 19
5

−19
50

 , Xe
v0
y

=


111
25
−108

125
351
3125

17
5
−18

25
− 9

625
18
5

351
125

−6669
6250

−3 126
25

171
1250

 , Xe
g =


111
25

486
625

− 15309
312500

17
5

81
125

− 8019
62500

18
5
−2529

1250
−632529

625000

−3 −1329
250

− 1539
125000

 .
(6.94)

Performing exact interpolation by dividing the �rst and second order coe�cients of the TCs
at the end time by 2 and comparing them with (6.82) and (6.81) we see that by following the
propagation scheme described in Algorithms 6.11 and 6.12 we have computed the desired elements
of the sensitivity Hessian tensor along with the corresponding columns of the Wronskian matrix.
We further observe that all needed model function derivatives can be computed e�ciently either
by directional derivatives or (IND-)TC propagation. Finally, it should be noted that if we use this
scheme for a �rst order sweep the actual performed operations are identical to the operation needed
when using the formulas (6.67), (6.68) and (6.70) to compute �rst order sensitivities, only that
now all needed derivatives are evaluated as directional derivatives. Hence also for the computation
of �rst order sensitivities the application of the newly proposed scheme does normally lead to an
improved performance, as no computation of the complete update matrices is needed.
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Algorithm 6.11: Arbitrary order forward IND-TC scheme including switches
Input: τ0, τe, h0, initial values y0, parameter p, sensitivity direction d, sensitivity order m
Output: Taylor coe�cients YN containing nominal solution yN and scaled forward

sensitivities 1
j!
ẇ

(j)
N for 1 ≤ j ≤ m.

set k0 = 1, n = 0;
initialize with Taylor coe�cients (6.41) according to initial values and sensitivity direction d;
while τe not reached do

compute yn+1 by nominal integration step;
if step accepted then

propagate Taylor polynomials to obtain Yn+1;
perform switch detection;
if switch detected then

determine switch time τs;
compute trajectory values y− and TCs Y− at τs from continuous representation;
propagate TCs across switch event as described in Algorithm 6.12;
restart integration at τs with Y+ and possibly switched model functions;

end
tn+1 = tn + hn;
determine hn+1 and kn+1 for next step;
n = n+ 1;

else
update Jacobian approximation Mn according to monitor strategy or reduce stepsize
hn;

end

end
N = n;

Algorithm 6.12: Forward TC propagation across switching event

Input: Switch time τs, Taylor coe�cients Y− and P, sensitivity order m
Output: Taylor coe�cients Y+ for further propagation after the switch event.

using τs, y0
− and p0 compute f− = ∂x−(τs)

∂t
as well as ∂z−(τs)

∂t
by using the implicit function

theorem on g;

compute τs,1, . . . , τs,m by application of Lemma 6.10 (intertwined with Lemma 6.11) with
v = τs and u = (y−,p) to the switch function σ;

adapt Y− according to the end time dependency of y− using Lemma 6.11 to obtain adapted
TCs XJ− and along with them ZJ− by application of Lemma 6.10 to g;

propagate τ s, YJ− and P through the jump using ∆ and obtain YJ+;

adapt YJ+ according to the start time dependency of y+ using Lemma 6.11 to obtain
adapted TCs X+ and along with them Z+ by application of Lemma 6.10 to g;



7 A lifted exact-Hessian SQP method

for OCPs with DAEs

In Chapter 4 we have shown how the lifting idea can be used to obtain an exact-Hessian Sequential
Quadratic Programming (SQP) method for the solution of Nonlinear Programs (NLPs) with a
certain internal structure of the problem functions. Furthermore, we have presented in Chapter
6 how Taylor Coe�cient (TC) propagation in connection with the principle of Internal Numeri-
cal Di�erentiation (IND) can be used to derive e�cient schemes for the computation of higher-
order directional sensitivities of Initial Value Problem (IVP) solutions for Di�erential Algebraic
Equations (DAEs). In this chapter we will now describe how both ideas can be combined and
adapted to create an e�cient Lifted Partially Reduced Sequential Quadratic Programming (L-
PRSQP) algorithm with exact Hessians for the solution of Optimal Control Problems (OCPs)
involving DAEs in the framework of direct multiple shooting.

7.1 The fundamentals of the method

We consider for now a (single stage) OCP for index 1 DAEs of the type (1.1) with a Mayer term
cost functional and possibly coupled (multi-)point constraints, which includes interior point and
boundary constraints as special cases. Furthermore, we assume that we have introduced the length
of the horizon as parameter, using the time transformation described in Section 1.1, and that this
is already accounted for in the model functions, such that the OCP has the following form

min
u(·),x(·),z(·),p

c
(
x(1), z(1),p

)
s.t.

A(t,x(t), z(t),u(t),p) · ẋ(t) = f(t,x(t), z(t),u(t),p), t ∈ T = [0, 1]

0 = g(t,x(t), z(t),u(t),p)

0 ≤ hcont(t,x(t), z(t),u(t),p)

0
{

=
≤

}
hpoint({ti,x(ti), z(ti)|ti ∈ T, 1 ≤ i ≤ npct},p),

where the point constraints shall also contain the �xation of the initial values x(0) = x0.
We apply now the direct multiple shooting approach presented in Section 1.2.3 to transform
this OCP into a NLP. In this process, we make use of the relaxed formulation of the algebraic
equations (cf. Section 5.3.7). For notational convenience we assume that the discretization grids
of the control functions and the continuous path and control constraints are chosen identical with

203
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the multiple shooting grid, de�ned by the timepoints 0 = t0 < t1 < . . . < ti < . . . < tnms = 1.
Furthermore, we assume that the timepoints, in which the point conditions are de�ned, are also
part of the shooting grid. In the end, this leads to the following structured NLP

min
wx

0 ,w
z
0,u0,...,wx

nms ,w
z
nms ,unms ,p

c
(
wx

nms
,wz

nms
,p
)

(7.2a)

s.t.

0 = wx
i+1 − x(ti+1; ti,w

x
i ,w

z
i ,ui,p), 0 ≤ i ≤ nms − 1 (7.2b)

0 = g(ti,w
x
i ,w

z
i ,ui,p), 0 ≤ i ≤ nms (7.2c)

0 ≤ hcont(ti,w
x
i ,w

z
i ,ui,p), 0 ≤ i ≤ nms (7.2d)

0
{

=
≤

}
hpoint({ti,wx

i ,w
z
i |1 ≤ i ≤ nms},p), (7.2e)

where we use here and in the following for notational simplicity the same symbols for the functions
as in the continuous OCP before, even if, e.g., they only depend now indirectly on the control
parameter. We now like to solve this NLP using a structure exploiting exact-Hessian SQP method
based on the lifting approach presented in Chapter 4.

7.1.1 The structure of the QP subproblem

To see how we can use the lifting approach in this case, we �rst have a closer look at the structure
of the QP subproblems arising in the solution of (7.2) using an SQP method.

In each step of the SQP method, the following subproblem must be solved for the determination of
the step in the variables and for the determination of the new multiplier values (cf. Section 3.3.1).
Note that in the following sometimes super�uous dependencies, e.g., for the cost functional or for
the point constraints, are not eliminated for notational convenience.

min
∆wx,∆wz,∆u,∆p



∆wx
0

∆wz
0

∆u0
...

∆wx
nms

∆wz
nms

∆unms

∆p



T

B



∆wx
0

∆wz
0

∆u0
...

∆wx
nms

∆wz
nms

∆unms

∆p


+ ∇cT



∆wx
0

∆wz
0

∆u0
...

∆wx
nms

∆wz
nms

∆unms

∆p


(7.3a)
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s.t.

0 = di + ∆wx
i+1 −

∂x(ti+1; ti,w
x
i ,w

z
i ,ui,p)

∂(wx
i ,w

z
i ,ui,p)


∆wx

i

∆wz
i

∆ui

∆p

 , 0 ≤ i ≤ nms − 1 (7.3b)

0 = gi +
∂g(ti,w

x
i ,w

z
i ,ui,p)

∂wx
i ,w

z
i ,ui,p


∆wx

i

∆wz
i

∆ui

∆p

 , 0 ≤ i ≤ nms (7.3c)

0 ≤ hcont
i +

∂hcont(ti,w
x
i ,w

z
i ,ui,p)

∂(wx
i ,w

z
i ,ui,p)


∆wx

i

∆wz
i

∆ui

∆p

 , 0 ≤ i ≤ nms (7.3d)

0
{

=
≤

}
hpoint(. . .) +

nms∑
i=0

∂hpoint(. . .)

∂(wx
i ,w

z
i )

(
∆wx

i

∆wz
i

)
+
∂hpoint(. . .)

∂p
∆p, (7.3e)

where we de�ne

∆wx := (∆wx
0, . . . ,∆wx

nms
)

∆wz := (∆wz
0, . . . ,∆wz

nms
)

∆u := (∆u0, . . . ,∆unms)

di := wx
i+1 − x(ti+1; ti,w

x
i ,w

z
i ,ui,p)

gi := g(ti,w
x
i ,w

z
i ,ui,p)

and abbreviate analogously for the other functions. As a result, the corresponding KKT Matrix
has a characteristic structure that is depicted in Figure 7.1 on the following page.
The classical condensing approach [BP84] would �rst compute all the quantities, especially the
complete Hessian blocks and constraint Jacobians, in the above QP and then eliminates the steps
in the di�erential nodes ∆wx

i , 1 ≤ i ≤ nms from the problem by using the linearized continuity
conditions (7.3b). Note that in the case of �xed initial values, ∆wx

0 can also be eliminated
trivially. The QP has now been condensed to a smaller problem in ∆wz, ∆u and ∆p, from
which afterwards the step ∆wx (and also the new multiplier of the continuity conditions) can be
expanded.
Note furthermore that in the more general case of nonlinearly coupled multi-point constraints or
a cost functional that does not decouple properly on the di�erent shooting intervals, the structure
of the Hessian would not be block-sparse, but dense. While this would not make a di�erence
for the lifted approach presented here, it would render the classical condensing approach more
complicated. Here either some reformulations would be needed to regain some structure, or in the
worst case the complete full-space Hessian would have to be approximated.

In principle, we could now employ the lifted exact-Hessian SQP approach from Chapter 4 in
a straightforward way to solve the NLP (7.2). The function to be lifted in this context is the
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Figure 7.1: The characteristic structure of the (full-space) KKT-Matrix of the QPs arising in the direct multiple
shooting approach, if we assume the decoupling of the cost functional and only linearly coupled multi-
point constraints. Note that free global parameter possibly have to be �localized� on the intervals to
obtain above structure. The Hessian (upper left part) is block-sparse and also the constraints (lower
left part) are typically to a large extent block sparse. From top to bottom we see here the structure
of the linearized continuity conditions, the linearized consistency conditions, the linearized decoupled
node constraints and the linearized coupled node constraints.

combined evaluation of the Lagrange gradient and of the discretized path and control constraints
(7.2d), the point constraints (7.2e) and consistency conditions (7.2c). The nodes in the lifting
sense are the di�erential multiple shooting node values and the corresponding multiplier of the
continuity conditions. By applying the lifted Newton method to this function we then obtain a
lifted exact-Hessian SQP method that computes the quantities of the condensed QP directly by
univariate forward/reverse TC propagation in directions of the control parameter, parameter and
the algebraic variables at the shooting nodes. Unfortunately, for large scale systems with a lot of
algebraic states and in comparison only a few control parameter, this would lead to an ine�cient
approach, as the resulting QP would still be very large. Hence the aim is also to eliminate the
steps in the algebraic shooting node variables from the QP, such that it is reduced in size to the
�true� degrees of freedom. How this can be achieved is presented in the next section.

7.1.2 Partial reduction technique for DAEs

As mentioned before, the lifting idea can be used straightforward to compute directly a condensed
QP in the steps of control parameter, parameter and algebraic variables. The reason why it is not
possible to obtain easily a reduced QP only in the control and parameter steps are the possible
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discontinuities in the algebraic state trajectories and the fact that the algebraic states are only
de�ned implicitly through the other variables. This prohibits to formulate corresponding explicit
matching conditions, which would be needed for the direct application of the lifting approach to
eliminate the steps in the algebraic variables in a fully automated way.

However, the partial reduction technique for DAEs presented in [Lei99] in context of the classical
condensing can fortunately be transferred to the context of our lifted SQP method presented in
Section 4.2.3 to overcome this problem. The partial reduction strategy for the classical condensing
makes use of the index 1 assumption on the underlying DAE model and uses the linearized
consistency conditions (7.3c) to eliminate the algebraic steps from the problem. Recall that due
to the index 1 assumption the Jacobian of g with respect to the algebraic variables is invertible.
Hence we can reformulate (7.3c) to

∆wz
i = −

(
∂g(ti,w

x
i ,w

z
i ,ui,p)

∂z

)−1
gi +

∂g(ti,w
x
i ,w

z
i ,ui,p)

∂(x,u,p)

∆wx
i

∆ui

∆p

 . 0 ≤ i ≤ nms (7.4)

This relationship can be used to eliminate the steps in the algebraic variables from the QP in
terms of the steps in di�erential variables, control parameter and parameter. One then arrives at
a partially reduced QP of the form
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s.t.
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 , 0 ≤ i ≤ nms − 1 (7.5b)
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where we de�ne
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.

The structure of this QP is still similar to the full-space QP as we can see in Figure 7.2.

Figure 7.2: The characteristic structure of the KKT-Matrix of the QPs arising in the direct multiple shooting
approach, after applying the partial reduction technique for DAEs to eliminate the algebraic variables
from the problem. The transformed Hessian (upper left part) is still block-sparse and also the remaining
constraints (lower left part) have very much the same block-sparse structure as before.

The quantities of this �preprocessed� QP can be computed by directional derivatives according
to the direction matrices Vv,i . Afterwards, the steps in the di�erential variables can again be
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eliminated by classical condensing using the conditions (7.5b) to arrive at a small QP in ∆u and
∆p with a structure depicted in Figure 7.3. Once these steps are computed, ∆wx and ∆wz can
be expanded based on (7.5b) and (7.4), as well as the multiplier values with the exception of the
multiplier of the consistency conditions (7.3c) (see [Lei99] for more details).

Figure 7.3: The characteristic structure of the KKT-Matrix of the QPs arising in the direct multiple shooting
approach, after applying the partial reduction technique for DAEs and condensing to eliminate the
di�erential and algebraic states from the problem. The condensed Hessian (upper left part) is now
dense and the remaining condensed constraints (lower left part) have a stair-like shape.

If one compares now the quantities of this preprocessed QP and the quantities that occur during
the computations of the lifted SQP, one can observe that the partial reduction and elimination of
the algebraic steps can be achieved in the lifted SQP simply by substituting the original residuals
di by the modi�ed residuals d̃i in the suitable computations (and analogously for the constraints
and the cost function) and by modifying the directional derivatives computed in the lifting algo-
rithm according to the Vv,i. With these modi�cation of our lifted SQP approach we can directly
compute the quantities of the condensed QP in ∆u and ∆p using directional derivatives only in
the �true� degrees of freedom u and p (plus one)).

7.1.3 Computing the condensed QP using lifting and IND-TC
propagation

We apply in our lifted SQP algorithm univariate �rst and second order (IND-)TC propagation for
the computation of the directional derivatives of the problem functions and the directional sen-
sitivities of the IVP solutions. These approaches were presented and developed in the Chapters
2 and 6, respectively. We now address shortly how (IND-)TC propagation is used in the multi-
ple shooting context to perform the evaluation of the residual and the reduced function as well
as of the derivatives of the reduced function that occur in the lifted Newton algorithm in Chapter 4.

First let us recall once more that the lifted exact-Hessian SQP is based on the lifted Newton
method (Algorithm 4.4), where the function that is lifted is the combined evaluation of the La-
grange gradient and of the constraints (7.2d) and (7.2e) (cf. Section 4.2.3). The constraints are in
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the following summarized as h. The nodes that are introduced in the lifting context are here the
di�erential multiple shooting node values wx

i (also called primal nodes) and the multiplier λi (also
called dual nodes) of the corresponding continuity conditions (7.2b). The multiplier associated
with the constraints h we denote in the following with µ. With di and d̄i we denote the primal
and dual node residuals, respectively.

The di�erent operations of the lifting framework are then performed as follows.

� To update the node residuals and to evaluate in parallel the reduced function (cf. Algorithm
4.3), in this case the constraints and the Lagrange gradient, a sequence of IVP solutions and
node function evaluations is performed forward through the time horizon. This is followed
by corresponding �rst order adjoint (IND-)TC sweeps backwards through the time horizon.
This is described exemplarily in Algorithm 7.1 for the ODE case.

Algorithm 7.1: L-PRSQP: Residual and function evaluation

for i = 0 : nms − 1 do
Solve IVP on interval [ti, ti+1] for initial values wx

i , and parameter ui, p to obtain
xi+1 := x(ti+1; ti,w

x
i ,ui,p). During integration store the discretization scheme and the

trajectory values on tape;
Update di := wx

i+1 − xi+1;

for i = 0 : nms do
Compute the constraint residuals hi and the adjoint derivatives of the constraints h̄i for
the adjoint derivative direction µi;
Compute the cost functional contribution of the node i and its gradient c̄i with respect to
the variables in node i;

for i = nms − 1 : 0 do
Update the dual node residuals d̄i := λi − h̄i+1 − c̄i+1 − x̄i+1 (assume x̄nms ≡ 0 and only
consider the x-parts of the adjoint derivatives here);
Perform a �rst order adjoint IND sweep through the interval [ti, ti+1] with adjoint
sensitivity direction λi to obtain x̄i;

Update the Lagrange gradient by adding the corresponding ui and p parts of x̄0 as well as of
h̄i and c̄i for 0 ≤ i ≤ nms;

� To compute the derivatives of the reduced function w.r.t. the degrees of freedom, �rst order
forward sweeps through the IVP solutions and the node function evaluations are employed,
followed by second order reverse sweeps. The number of forward sensitivity directions in-
creases here from nu + np on the �rst interval to (nms − 1)nu + np on the last interval.
Accordingly, the number of adjoint TCs to be propagated by (IND-)TC decreases from the
last to the �rst interval from (nms − 1)nu + np to nu + np.

� The directional derivative of the reduced function in direction of the (primal and dual) node
residual vector (dT , d̄T )T is computed in a similar way by a �rst order forward (IND-)TC
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sweep, followed by a second order adjoint IND-TC/TC sweep through the IVP solutions and
the node function evaluations. Here only one forward and adjoint direction is needed.

� Finally, the steps ∆p, ∆u and ∆µ in the parameter, the control parameter and the con-
straint multiplier, respectively, that are computed by the solution of the condensed QP, have
to be expanded to the steps ∆wx, ∆λ and ∆wz in the di�erential node variables, the cor-
responding multiplier and the algebraic node variables, respectively. This can be achieved
by one additional �rst order forward sweep through the problem functions combined with a
following second order adjoint (IND-)TC sweep backwards through the time horizon for one
sensitivity direction.

Note that usually only in the update of the node and constraint residuals an ordinary IVP solution
with determination of the discretization grid and tape storing has to be performed. All other
IND operations are performed based on the stored discretization schemes and use the taped
information. This leads to a signi�cantly increased performance by avoiding, e.g., additional
matrix factorizations and step rejections. Furthermore, it ensures that the numerically computed
derivative information is consistent with the numerical function evaluation.
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7.1.4 The basic L-PRSQP algorithm

We now formulate our lifted exact-Hessian SQP method for DAE-OCPs, employing the partial
reduction technique for DAEs and (IND-)TC propagation for the computation of the needed
derivatives and sensitivities.

The basic algorithm then reads as (compare also the lifted Newton Algorithm 4.4 on page 83):

1. Initialization. Set u and p to their initial values. Initialize wx and wz either to given
values or by a zero order forward sweep (the sequential solution of the corresponding initial
values problems). Initialize the multiplier of the discretized path and control constraints
and of the point constraints to zero. Initialize the multiplier of the continuity conditions by
a �rst order adjoint sweep.

2. Residual and function evaluation. Evaluate the current primal (node) residuals as well
as the constraint residuals and the cost functional by sequential zero order forward sweeps
(IVP solutions) on the multiple shooting intervals. Evaluate the dual (multiplier) residuals
and the Lagrange gradient by adjoint sweeps (cf. Section 7.1.3). In this context also evaluate
the Jacobians of the consistency conditions with respect to the algebraic variables in the
gridpoints and store them (usually these are quite sparse matrices).

3. Termination check. If the maximum number of iterations is exceeded or the termination
criterion is ful�lled, then STOP.

4. Computation of condensed QP quantities. Compute the constraint Jacobians by se-
quential �rst order forward sweeps in the directions of the control parameter and parameter.
Perform afterwards second order reverse sweeps to obtain the Hessian and the Lagrange gra-
dient. Finally compute the �correction� term for the constraint residuals and the Lagrange
gradient by a �rst order forward and following second adjoint sweep in the direction of the
node and multiplier residuals.

5. QP solution. Compute and set the simple step bounds for control parameter and param-
eter. Assemble the QP data and pass them to QP solver. Initialize the active set of the QP
solver with the one of the previous QP solution. Solve the QP.

6. Step expansion. Expand the computed step in control parameter and parameter to the
step in the di�erential and algebraic nodes. Compute the step in the constraint multipliers
for the discretized path/control constraints and point constraints from the multipliers of
the QP solution. Expand this multiplier step to the step in the multiplier of the continuity
conditions by a following second order adjoint sweep.

7. Step application. Apply the computed step in variables and multipliers, then go to 2.
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7.2 Further aspects

In order to apply our proposed algorithm successfully for the e�cient solution of practical appli-
cations, there are some additional aspects to consider. The most important are addressed in the
following.

7.2.1 Termination criterion

An important question in practice is when to stop the algorithm. Usually, if we let the algorithm
iterate freely, at one point the algorithm will mainly work to compensate quasi-random discretiza-
tion and round-o� errors introduced, e.g., by the IVP solution on varying integration grids. In
this case, iterating further will not improve the solution signi�cantly but only lead to unnecessary
computational e�ort. Sometimes the solution is also needed only with a lower accuracy. Hence in
general it is sensible to de�ne a suitable termination criterion for the algorithm.

We use in our SQP algorithm the so-called KKT tolerance, that goes back to Powell and has been
later used also by other authors, e.g., [CS84, Lei99]. The KKT tolerance is de�ned by

kktTol := |∇c(ξ)T∆ξ|+
neq∑
i=1

|λeq
i h

eq
i (ξ)|+

nineq∑
i=1

|µineq
i hineq

i (ξ)|, (7.6)

where ξ combines all NLP variables, heq and hineq subsume all equality and inequality constraints of
the problem, respectively, and λeq and µineq are the corresponding multiplier. The KKT tolerance
hence combines the possible improvement in the cost functional and the weighted constraint
violations. We stop our algorithm as soon as the KKT tolerance decreases below a user given
accuracy.

7.2.2 Trust region globalization

As discussed in Section 3.3.5, an exact-Hessian SQP method needs in practice a (trust region)
globalization strategy. We use in our algorithm the Trust Region (TR) globalization strategy
given in [Lei99]. Although global convergence of the algorithm to a local minimum based on this
strategy cannot be proven rigorously, it has been used successfully for several years now in the
code MUSCOD-II and hence proven reliable.
The TR strategy is based on the modi�ed l1 penalty function, given by

P(ξ, ν, λ̄, µ̄) = c(ξ) + ν

n1∑
i=1

λ̄eq
1,i|h

eq
1,i(ξ)|+

neq−n1∑
i=1

λ̄eq
2,i|h

eq
2,i(ξ)|+

nineq∑
i=1

|µineq
i min(0, hineq

i (ξ))|, (7.7)

where ξ combines all NLP variables, heq
1 contains all consistency conditions and heq

2 as well as hineq

subsume all other equality and the inequality constraints of the problem, respectively. λeq and
µineq are the corresponding multiplier. As common, the size of the weights must be larger than
the absolute values of the corresponding multiplier to ensure exactness and compatibility with the
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search direction. As the multiplier of the consistency conditions are not available, a heuristic is
used for the choice of ν. For more details on this topic, we refer to [Lei99]. Based on this merit
function, we employ a box trust region strategy, where the step in NLP variables in the QP is
limited to ‖∆ξ‖∞ ≤ ρ. After the step candidate has been computed, it is tested for improvement
of the merit function using the criterion

P(ξ + ∆ξ, ν, λ̄, µ̄)
!

≤ P(ξ, ν, λ̄, µ̄) + εD∆ξP(ξ, ν, λ̄, µ̄),

where, e.g., ε = 10−4 and D∆ξ describes the directional derivative in direction ∆ξ. The trust
region is then adapted as follows. If the criterion is ful�lled in the �rst attempt and a trust region
bound is active, the trust region radius is doubled and the QP solution is repeated. If the test
fails, the trust region size is decreased by the factor 2 and the QP solution is repeated. Otherwise,
the trust region radius remains unchanged, the step is accepted and the algorithm proceeds.

7.2.3 Infeasible subproblems

In practice, it might happen that in some SQP iteration the QP subproblem becomes infeasible,
e.g., due to a very small trust region radius. This is usually detected by the QP solver and the
violated constraints are identi�ed and hence can be obtained from the QP solver. To overcome
this problem, we employ a constraint relaxation strategy which loosens the linearized constraints
of the QP in the following way: For each violated constraint the violation is computed and
the corresponding constraint bound is shifted by 1 + δ times the violation, with, e.g., δ = 0.1.
Afterwards, the QP solution is repeated and the algorithm proceeds. However, the corresponding
SQP iteration is marked as relaxed and after too many relaxed iteration in a row, e.g., 10, the
algorithm terminates with an error.

7.2.4 Treatment of node bounds

In principle, simple bounds on the di�erential and algebraic nodes can be treated as inequality
constraints in the multiple shooting gridpoints. Then they are partially reduced and condensed
like normal constraints and �nally enter the condensed QP subproblem. For larger systems, adding
all these inequalities leads to QP subproblems with very many inequality constraints. This in turn
complicates their solution and slows the algorithm down signi�cantly.
However, it can observed for practical problems that most of these bounds never become active.
This motivates us to use a so-called potentially active bounds strategy proposed also in [Lei99]:
Only the node bounds that are marked as potentially active are added to the problem, all other
node bounds are ignored. This set of potentially active bounds is empty at the beginning of the
solution process. After each QP solution and step expansion it is tested, whether a node bound
is violated. If this is the case, the corresponding bound will be added to the set of potentially
active bounds (and will remain there for the rest of the solution process). Then the QP solution
is repeated based on the new set of potentially active bounds. Note that no complete recalcu-
lation of the condensed QP quantities is needed in the case where new node bounds enter the
set of potentially active bounds. All information that is needed to construct the corresponding
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new condensed constraint is readily available or can be obtained by one additional directional
derivative.

7.2.5 Problem scaling

Theoretically, a Newton method (and our exact-Hessian SQP could in principle be understood as
such) should be invariant regarding to the problem's scaling. In practice, however, the scaling of
a problem seems to have a signi�cant impact on the performance of all types of SQP methods
(see, e.g., [CS84]), which probably is often a result of error-ampli�cation due an ill-conditioning.
Also the solution of the occurring IVP problems, and here especially the internal error estimation
of the integrator, relies on a proper model scaling, or on suitable scale factors (see also Section
5.3.8). In general, it would favorable when a proper scaling would have been performed completely
in advance by the modeler creating the problem description. However, as this cannot always be
expected and sometimes is also not possible in practice (e.g., due to auto-generated models),
we o�er in our algorithmic setup the possibility to scale all occurring variables, as well as the
constraints and cost functionals.

7.2.6 Free initial values

We like to mention here that the presented algorithm can also be extended straightforward to the
case, where a part or all of the initial (di�erential) states are true degrees of freedom. Even if all
initial values are free our lifted SQP approach can be employed, but will probably not give rise to
a speedup compared to the classical condensing approach.

7.2.7 Other cost functionals

In the problem description above, we restricted ourselves to the case of a Mayer term cost func-
tional. However, of course other cost functional types can be used in connection with our algorithm.

A Lagrange cost functional can, e.g., simply be introduced by adding the Lagrange term as ad-
ditional di�erential state with initial value zero and by adding the value of this state at the �nal
time to the Mayer term.

For nonlinear least-squares problem we o�er the possibility to de�ne the least-square residual
function that is then evaluated in the gridpoints. This can be used either in connection with the
lifted SQP described above, or with the lifted Gauss-Newton method which is also implemented.

An extension of this is a least-square function de�ned on an arbitrary timegrid, which is often de-
sired in parameter estimation problems or in optimal experimental design. This can be achieved by
the use of the continuous forward sensitivity output and the adjoint sensitivity injection facilities
of our integrator DAESOL-II (cf. Sections 6.7.3 and 6.7.4). Combined with the use of integra-
tor plugins also a continuous least-squares function can be achieved, e.g., based on a numerical
quadrature formula.
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7.2.8 Multistage problems

The algorithm can be extended in a straightforward manner for the treatment of multistage
problems. The forward sweeps are in this case not terminated at the end of the �rst stage, but
instead continued through the stage transition function to the next stage and so on. Similarly,
the corresponding adjoint sweeps are performed beginning on the last multiple shooting interval
of the last stage and proceeding backwards to the �rst interval of the �rst stage, also passing the
stage transition functions in the reverse order in this process .

7.3 Comparison with a classical condensing approach

At the end of this chapter, we give a short comparison of the estimated memory and run-time
demands of our L-PRSQP algorithm and an exact-Hessian PRSQP algorithm employing classical
condensing, such as implemented in MUSCOD-II [DLS01].
We assume in the following that we solve a one stage problem with Mayer term cost functional,
nms shooting intervals, nconstr decoupled constraints in each timepoint of the multiple shooting
grid and �xed initial values. Furthermore, we assume a piecewise constant discretization of the
controls, such that we have nu control parameter for each interval.

To compare now our lifting based strategy with the approach using classical condensing, we �rst
note that for large scale problems usually the costs for derivative/sensitivity computations domi-
nate the costs of the overall solution process. In this particular comparison, the cost for sensitivity
generation also constitutes the main di�erence between the two approaches, as the size of the QP
subproblems solved in each step is identical and comparably small.

If we consider now a PRSQP approach based on the classical condensing, the main computational
costs here are related to the computation of the Hessians (and Jacobians) of the problem functions,
the generation of the sensitivities of the IVP-solutions needed for the condensing, and the con-
densing of the QP subproblem itself. In our lifting approach, the costs associated with condensing
do not exist, and the Hessians and Jacobian only need to be computed in a smaller subspace,
given by a set of directions. On the other hand, another directional derivative is needed here
for the expansion of the QP solution to the step in the NLP variables (cf. Section 4.2.3). In the
end, the complexity of the lifted approach does not depend on the number of states of the problem.

Regarding the memory demands of the two approaches, the classical condensing needs to store
the complete Hessian matrix of the Lagrangian and the complete constraint Jacobians w.r.t the
di�erential states, parameter and control parameter as well as the full sensitivity matrices on the
multiple shooting intervals. Note that the Hessian of the Lagrange function and the constraint
Jacobians are block-sparse, where the degree of sparsity is mainly determined by the number and
the dependencies of the coupled constraints. Without nonlinearly coupled constraints (and using
�localized� parameter), the Hessian will be block-diagonal, where one block corresponds to one
multiple shooting interval.
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The Tables 7.1 and 7.2 show the complexity of the computational costs for the classical approach
and the lifted approach, respectively, and Table 7.3 on the following page gives a comparison of
the memory demand of both approaches for the case of decoupled (or at most linearly coupled
multi-point) constraints. For a more detailed explanation on the computational costs and the
memory demand arising in the classical approach refer, e.g., to [Lei99].

Computational task Complexity classical condensing

Hessian + constr. Jac. O(nms(nx + np + nu)) [IVP]
(fwd/adj IND-TC) O(nconstrnms(nx + np + nu)) [F]
Hessian + constr. Jac. O(nms(nx + np + nu)

2) [IVP]
(Finite di�.) O(nconstrnms(nx + np + nu)

2) [F]
Condensing O(nms(nconstr + nx)nx(nx + np + nu)) [O]
QP solution O((np + nmsnu)

3)[O]
Step expansion O(nmsnx(nx + np + nu))[O]
Other calculations O(nms(nconstr + nx + np + nu))[O]

Table 7.1: Estimated costs of the tasks in one SQP step of methods based on classical condensing, using the partial
reduction strategy for DAEs. The costs are stated in terms of IVP solutions on one interval [IVP],
nonlinear scalar function evaluations [F] or general multiply-add operations [O], e.g., resulting from
matrix-matrix or matrix-vector products. Only the leading complexity terms are given.

Computational task Complexity lifting

condensed Hessian + O(nms(
nms+1

2
nu + np)) [IVP]

condensed constr.Jac. O(nms(
nms+1

2
nu + np)) [F]

QP solution O((np + nmsnu)
3)[O]

Step expansion O(nms)[IVP]
Other calculations O(nms(nconstr + nx + np + nu))[O]

Table 7.2: Estimated costs of the tasks in one SQP step of methods based on lifting, using the partial reduction
strategy for DAEs. The costs are stated in terms of IVP solutions on one interval [IVP], nonlinear scalar
function evaluations [F] or general multiply-add operations [O], e.g., resulting from matrix-matrix or
matrix-vector products. Only the leading complexity terms are given.

These comparisons demonstrate clearly that for large scale problems with few degrees of freedom
the L-PRSQP approach based on lifting outperforms the classical approach by far. For these
problems, the classical approach will also often be computational infeasible. Consider for example
a problem with nx = 10000 di�erential states and nu = 15 controls, that is discretized with
piecewise constant controls on a grid with nms = 20 gridpoints. The resulting storage capacity
needed in the classical approach, only for the Hessian blocks, is then 20 · 10015 · 10015 · 8 bytes or,
approximately, 14.95 GB, which is nowadays near the limits of workstation memory (especially,
if we consider that also some memory is needed for IVP solution and sensitivity generation).
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Quantity Memory classical condensing Memory lifting

Hessian blocks O(nms(nx + nu + np)
2) �

condensing matrices O(nmsnx(nx + nu + np)) �
constraint Jacobians O((nconstr + nx)nms(nx + nu + np)) �
Jacobians Gz,i O(nmsn

2
z) (sparse, worst case)

condensed Hessian O((nmsnu + np)
2)

condensed constr. Jacobian O(nconstrnms(nu + np))
other QP data and O(nms(nconstr + nx + nz + nu + np))
variables, residuals,etc.

Table 7.3: Estimated memory demand of exact-Hessian SQP methods based on classical condensing and on lifting,
respectively, using the the partial reduction strategy for DAEs. Only the leading complexity terms are
given.

Furthermore, in each SQP step the equivalent of more than (21·20·0.5·15+20·10000)·10 = 2031500
IVP solutions (provided the second order forward/adjoint IND-TC/TC approaches presented in
this thesis is used for the Hessian computation, more than 2 billions if the Hessian is computed
by �nite di�erences or pure forward IND as, e.g., in MUSCOD-II) has to be performed, which is
usually not possible within a reasonable timeframe without using a large parallel computer. The
L-PRSQP approach needs in this case a storage capacity in the order of several megabytes and the
equivalent of about 21·20·0.5·15·10 = 31500 IVP solutions and will hence still be computationally
feasible on an ordinary desktop PC.



8 Numerical examples for lifting-based

optimization

In this chapter we illustrate with the help of several numerical examples the properties and ad-
vantages of the lifted optimization methods derived in Chapter 4 in more detail.
The �rst two sections show applications of the lifted Gauss-Newton and the lifted SQP algorithm,
respectively, to a toy example from optimal control. In the third section we illustrate how the
lifting idea can be used to adapt a given numerical simulation code for the e�cient solution of a
large scale parameter estimation problem with LiftOpt.

8.1 A Gauss-Newton toy example

For this �rst toy example we consider the tutorial optimal control problem for a one-dimensional
dynamical system from [DBDW06]

min
x(·),u(·)

∫ 3

0
|x(t)|2 + |u(t)|2dt (8.1a)

s.t.

ẋ(t) = x(t) (x(t) + 1) + u(t) (8.1b)

x(0) = x0 (8.1c)

x(3) = 0 (8.1d)

|x(t)| ≤ 1 (8.1e)

|u(t)| ≤ 1. (8.1f)

The objective is to minimize the absolute value of the state over the whole time horizon while
penalizing the control. Note that the system cannot be controlled and �blows up� if the state goes
beyond xb ≈ 0.619.
To solve this in�nite-dimensional problem, we employ a direct multiple shooting discretization
and divide, as explained in Section 1.2.3, the time horizon into a grid with 30 equal subintervals
of length 0.1 and discretize the controls to be piecewise constant on each of these intervals.
The integral objective is approximated as a sum, where the function evaluations are made at
the grid points. The state constraints are enforced also only at the grid points. To solve the
system dynamics we use Euler's method with time steps equal to the subintervals. Doing this,
we obtain a �nite-dimensional NLP which we solve using the lifted Gauss-Newton algorithm,
proposed in Section 4.2.1 on page 86 as well as with the non-lifted version, both implemented in
LiftOpt. We employ here the full-step methods without globalization strategies. The lifting is
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done by introducing the 30 state values at the grid points as intermediate values. The arising QP
subproblems are solved using qpOASES [Fer07].
In this example, we employ two di�erent initialization strategies when using the lifted approach.
To begin with, we apply the lifted Gauss-Newton approach and use a function evaluation to
initialize the intermediate values. Additionally, we use the fact that we want to minimize the
absolute values of the states and set all intermediate values to zero. The convergence criterion
is based on the sum of the Euclidean norm of the step in the controls, the Euclidean norm of
the constraint violations and, in the lifted case, the Euclidean norm of the residual vector. The
tolerance was chosen to be 10−6.
In Table 8.1 we show a comparison of the results for di�erent initial values x0 of the dynamical
system. The controls are initialized to zero on all subintervals in every case which means that
with growing initial state the problems become more di�cult to solve. We observe that although
the lifted approach performs in most cases already slightly better than the non-lifted one, we can
still improve the performance considerably by using a priori information in node initialization,
an advantage well known from the context of direct multiple shooting [Boc87]. Furthermore, we
observe that a reasonable initialization of the nodes makes the optimization more robust against
bad initial guesses of the controls. This allows a quick solution, even when in the non-lifted or
automatically initialized lifted algorithm the initial guess for the controls would lead to a blow up
of the system.

x0 # iterations #iterations #iterations
unlifted lifted (autom. init.) lifted (zero init.)

0.02 5 5 4
0.03 6 5 4
0.04 6 6 4
0.05 7 6 4
0.06 8 7 5
0.07 9 7 5
0.08 10 8 5
0.09 13 10 5
0.10 17 13 5
0.20 errnan errnan 6
0.30 errnan errnan 7

Table 8.1: Results of the Gauss-Newton approaches for the optimal control example described in Section 8.1.
Shown are the number of iterations needed until convergence for di�erent initial states x0 of the dy-
namical system. errnan denotes that the run was not successful, because the system �blew up� during
integration at some iterate, such that the QP solver quits due to �nan�-values. Compared are here the
non-lifted Gauss-Newton approach, the lifted Gauss-Newton approach with automatic initialization of
the intermediate values by system integration and the lifted Gauss-Newton approach when started with
nodes initialized to zero.
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8.2 An SQP toy example

To test the lifted SQP algorithm, proposed in Section 4.2.3 on page 89, we consider again the
optimal control problem (8.1). We use the same setup as in the previous Gauss-Newton case
with small modi�cations. The gradient of the Lagrangian is evaluated using the adjoint mode
of automatic di�erentiation. To lift the system we introduce along with the system states at
the gridpoints the corresponding adjoint values which leads to 60 intermediate values. Again
we apply and compare the proposed (full-step) exact-Hessian SQP algorithm in three variants:
(i) the non-lifted version, (ii) the lifted version using automatic node initialization and (iii) the
lifted version using a zero initialization. The results are shown in Table 8.2. First, we observe
that, compared to the Gauss-Newton methods, the SQP versions sometimes lag slightly behind,
especially the unlifted version when we start at some distance from the solution. In this case,
the Gauss-Newton approximation leads to faster convergence than the exact Hessian with its bad
initial multiplier guesses. As we use here an exact-Hessian and undamped method, in one case we
cannot avoid the bad luck to run into an area where the Hessian is not positive de�nite, leading
the QP solver qpOASES [Fer07] to quit the iterations. When started closer to the solution by zero
initialization, we see that the SQP method converges faster than Gauss-Newton due to the better
local convergence properties. Besides that, comparing the lifted and non-lifted versions of the SQP
we again see a better performance of the lifted versions and again the zero initialization leads to
much faster convergence and to a more robust behavior.

x0 # iterations #iterations #iterations
unlifted lifted (autom. init.) lifted (zero init.)

0.02 6 5 3
0.03 7 5 3
0.04 8 6 3
0.05 9 6 3
0.06 10 6 3
0.07 12 7 4
0.08 15 8 4
0.09 19 11 4
0.10 25 errpd 4
0.20 errnan errnan 4
0.30 errnan errnan 4

Table 8.2: Results of the SQP approaches for the optimal control example described in Section 8.2. Shown are
the number of iterations needed until convergence for tolerance tol = 10−6 and di�erent initial states x0
of the dynamical system. errnan denotes that the run was not successful, because the system �blew up�
during integration at some iterate, such that the QP solver quits due to �nan�-values. errpd denotes that
the run was not successful, because at some point the Hessian became inde�nite, leading to an exit of
the convex QP solver. Compared are here the non-lifted SQP approach, the lifted SQP approach with
automatic initialization of the intermediate values by system integration and the lifted SQP approach
when started with nodes initialized to zero.
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8.3 Lifting a simulation code for the shallow water equation

In this section we illustrate the possibilities of the lifting idea for the extension of user given
simulation/evaluation code. As application example we choose a parameter estimation example
involving a shallow water equation model describing wave propagation in a basin that we found
on the internet [Cop] in search for some truly large scale �user function� for use within LiftOpt.
The model is described by a system of hyperbolic Partial Di�erential Equations (PDEs) and the
corresponding equations are given by

∂tu(t, x, y) = −g∂xh(t, x, y)− bu(t, x, y)

∂tv(t, x, y) = −g∂yh(t, x, y)− bv(t, x, y)

∂th(t, x, y) = −H [∂xu(t, x, y) + ∂yv(t, x, y)] ,

where u, v are the horizontal and vertical water velocities, h is the deviation of the water surface
from the mean water height H, g ≈ 9.81 is the gravitational constant and b the viscous drag.
As �true� values for b and H we use b = 2 and H = 0.01. For the numerical test we assume a
quadratic basin corresponding to Ω = (0, 0.2) × (0, 0.2) and consider the time horizon t ∈ [0, 1].
Furthermore, we assume that the basin is bounded by walls that re�ect the incoming waves.
We use an equidistant discretization in space of 30-by-30 gridpoints, �nite di�erences in space,
and for time-stepping we use the stepsize dt = 10−4 with an explicit Euler scheme, resulting in
3 · 30 · 30 · 104 = 27 · 106 internal variables. In our scenario we start with a plain surface and
add at start time a splash of height 0.01 and radius 0.03. The numerical solution is depicted for
component h in Figure 8.1 on the next page. During system simulation we take measurements
only of component h every 100th time step.
The least-squares objective function we use in the parameter estimation to determine b and H
is the quadratic deviation of h from the measured data in Euclidean norm, summed up over all
90000 measurements. As constraints we impose that neither b nor H should become negative.
The convergence criterion is based on the sum of the Euclidean norm of the step in the controls,
the Euclidean norm of the constraint violations and, in the lifted case, the Euclidean norm of
the residual vector. The tolerance was chosen to be 10−6. We apply the lifted and non-lifted
Gauss-Newton approach to solve the problem. The lifting is done by introducing the values of h
at the measurement times as node values, leading to overall 90000 node values.
The test was performed on a Linux machine with a 3.0 GHz Pentium D CPU, 3 GB RAM and
GCC compiler version 4.3.2. The needed derivatives are computed by automatic di�erentiation
using the tool ADOL-C [GJU96] in version 2.0, that has been coupled to LiftOpt. Linear algebra
operations are performed using the ATLAS [WPD01] library and the QP subproblems are solved
using qpOASES [Fer07].
In the lifted case, we test using automatic node initialization as well as using the measurement
data for node initialization. The results for di�erent initial guesses of b and H are displayed in
Table 8.3 on page 224. The average time needed for one iteration in the unlifted case is 8.86s,
while one lifted iteration takes on average 11.81s. Note that this di�erence in the e�ort for one
lifted versus one unlifted iteration will usually be smaller for problems with a larger number of
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(a) (b)

(c) (d)

Figure 8.1: Numerical solution for component h of the shallow water equation model described in Section 8.3 for
the true values b = 2 and H = 0.01, depicted at timepoints (a): t = 0.1, (b): t = 0.25, (c): t = 0.5 and
(d): t = 1.0.

degrees of freedom, due to a comparatively smaller overhead.

We observe that lifting does not improve the performance much if we start close to the true
parameter values. On the other hand, if we start at more distance from the solution, the lifted
approach again leads to a signi�cantly faster convergence, especially for perturbations in the
parameter H. When the lifted approach is initialized with the measurement data, the performance
is even better, although only a part of the system state, i.e., h, is measured here.
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b H # iterations #iterations #iterations
unlifted lifted (autom. init.) lifted (meas init.)

0.5 0.01 5 5 4
5 0.01 6 5 4
15 0.01 17 7 6
30 0.01 27 7 6
2 0.005 31 9 5
2 0.02 38 12 5
2 0.1 44 13 8
0.2 0.001 33 12 7
1 0.005 47 10 5
4 0.02 56 10 5
1 0.02 44 9 6
20 0.001 24 10 6

Table 8.3: Results of the parameter estimation example for the shallow water equation model described in Section
8.3. Shown are the number of iterations needed until convergence for tolerance tol = 10−6 and di�erent
sets of initial parameter guesses. Compared are here the non-lifted Gauss-Newton approach, the lifted
Gauss-Newton approach with automatic initialization of the intermediate values by system simulation
and the lifted approach when using the measurement data for node initialization. The �true� parameter
values are b = 2 and H = 0.01. The average time needed for one unlifted iteration is 8.86s versus 11.81s
for one lifted iteration.



9 Numerical examples for sensitivity

related strategies

In this chapter we demonstrate the performance and e�ciency of the sensitivity related strategies
presented in Chapter 6 on several test setups by the use of our integrator code DAESOL-II together
with our integrator package SolvIND.
We begin in the �rst section with an analysis of the di�erent IND-based strategies on a scalable
test example. In the second section we compare on several examples from an IVP testset our
new adjoint IND schemes for sensitivity generation with the alternative, commonly used approach
of solving the adjoint variational equation. The third section shows the practical applicability
of our error control strategy for forward sensitivities. In the fourth section we demonstrate the
e�ectivity of our global error estimation strategy by a comparison with an alternative approach
from literature on a series of test examples.

9.1 Comparison of the di�erent IND-based strategies for

sensitivity generation

We compare in this section how the di�erent IND-based sensitivity generation strategies presented
in Chapter 6 perform numerically on a scalable ODE test problem from chemical engineering,
which is explained shortly in the following.

9.1.1 The SMB model

The example we consider here is the MODICON variant of the Simulated Moving Bed (SMB)
chromatography process with two species and six columns. It is described by a general rate
Partial Di�erential Equation (PDE) model which is explained in more detail in [TED+07]. For
both species i = 1, 2 the general rate model considers three phases: the instationary phase ci,
the liquid stationary phase cp,i and the adsorbed stationary phase qp,i. The general rate model
consists of

∂tci = Pe−1
i ∂2

zci − ∂zci − Sti (ci − cp,i|r=1) , (t, z) ∈ (0, T )× (0, 1), (9.1)

∂t ((1− εp)qp,i + εpcp,i) = ηi
(
r−2∂r

(
r2∂rcp,i

))
, (t, r) ∈ (0, T )× (0, 1), (9.2)

and the boundary conditions

∂zci(t, 0) = Pei (ci(t, 0)− cin(t)) , ∂zci(t, 1) = 0, (9.3)

∂rcp,i(t, 0) = 0, ∂rcp,i(t, 1) = Bii (ci(t, z)− cp,i(t, 1)) , (9.4)
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with positive constants εp (porosity), ηi (nondimensional di�usion coe�cient), Pei (Péclet number),
Sti (Stanton number), and Bii (Biot number). The two stationary phases are coupled by an
algebraic condition, the nonlinear Bi-Langmuir isotherm equation

qp,i =
H1
i cp,i

1 + k1
1cp,1 + k1

2cp,2

+
H2
i cp,i

1 + k2
1cp,1 + k2

2cp,2

, (9.5)

with non-negative constants Hj
i (Henry coe�cients) and kji (isotherm parameter). The PDE

has essentially only one spatial dimension, as the dynamics inside the particles can be elimi-
nated [Gu95].

For the discretization in space a higher-order Nodal Discontinuous Galerkin method is used, which
is described by Hesthaven and Warburton [HW08]. This approach leads to a large, structured
ODE system in time. For more details on the discretization we refer to Potschka et al. [PBE+08].

9.1.2 The test setup

For the numerical tests we use a series of di�erent discretization orders and di�erent numbers of
discretization points. The resulting number of variables in the IVP is n = 24m(l+ 1) + 13, where
l is the discretization order and m the number of discretization elements per column. The total
size splits up into nx = 24m(l + 1) + 7 di�erential states, npp = 1 parameter, npq = 4 control
parameter and nph = 1 parameter for the length of the time horizon. The iteration matrix in the
BDF method is block sparse. Enlarging the number of elements increases the number of blocks,
whereas increasing the order leads to a larger blocksize. This is sketched in Figure 9.1.
An analysis of the eigenvalues of the Jacobian of the right-hand side function of the ODE model
of the SMB process shows that with increasing problem size, i.e., a �ner discretization in space,
more and more eigenvalues move closer to the imaginary axis. This situation is demonstrated in
Figure 9.2. Hence, stability problems for higher-order BDF methods are to be expected and have
also been con�rmed numerically in tests for the maximum orders kmax = 4, 5 and 6. Therefore,
we restrict the maximum BDF order to kmax = 3 for our tests.

The computations are performed using DAESOL-II/SolvIND on a desktop computer with an In-
tel Pentium D CPU with 3.0 GHz and 3.8 GB of RAM, running under the Ubuntu 8.04 64-bit
operating system. The code was compiled with GCC version 4.3.2. The generation of the model
derivatives is done using the tool ADOL-C [GJU96] in version 2.1.0. UMFPACK [Dav04] in ver-
sion 5.0.2 is used for sparse matrix operations. We run a series of tests for orders r = 2, . . . , 12
and with m = 2, . . . , 24 elements for each order. The number of di�erential states lies between
nx = 151 and nx = 7495 and the maximum number of nonzero elements in the iteration matrix is
nnz = 160249. As tolerance for the integration we choose tol = atol = 10−6.

For each combination of discretization order and elements, we perform a nominal integration on
the time horizon [0, 10] as base reference for comparison and one nominal integration with storage
of the scheme including trajectory values and matrices. Based on the stored discretization scheme,
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Figure 9.1: Sparsity structure of the iteration matrix in the BDF method for the SMB example for the case of
l = 2,m = 10 and the case l = 9,m = 3, both leading to a problem of size nx = 727. We see that a
larger discretization order results in larger blocks of nonzero entries and in a larger number of nonzero
elements in the iteration matrix.

we perform a deferred �rst order iterative forward IND sweep and a �rst order iterative adjoint
IND sweep, each for one sensitivity direction. The direct schemes are not considered here due to
the high e�ort that would be needed in this example to build and factorize the iteration matrices
in every IND step. Then we perform a second order forward IND-TC sweep and a second order
forward/adjoint IND-TC sweep, also for one directional sensitivity in each case. Finally, we per-
form an integration replay based on the stored discretization scheme with disturbed initial values
and parameter to generate a forward sensitivity by IND using �nite di�erences. For each of these
actions, a number of timings and statistics is taken. The results are depicted in Figure 9.3 on
page 230 and Figure 9.4 on page 231.

For the comparison, we choose the number of the nonzero elements of the iteration matrix nnz
as problem size. This quantity correlates directly to the costs for the matrix operations and the
derivative evaluation, which together normally dominate the overall e�ort.

In Figure 9.3 we see that the numbers of integration steps, of Newton-like iterations and of needed
matrix decompositions grow at �rst with the problem size, but then reach an upper limit. Due
to the monitor strategy only about every 20 integration steps a new iteration matrix is used
and overall only 2 Jacobian evaluations (for matrix rebuilds) are needed. The combination of
the monitor strategy and the exploitation of the good sparsity structure of the problem leads
in the end to a linear relation between the total integration time and the problem size. In the
nominal integration, half of the time is spent for model function and model derivative evaluation
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Figure 9.2: The stability regions of the (equidistant) BDF methods for orders 3 to 6 and a subset of the eigenvalues
of the right-hand side Jacobian of the SMB process for the cases of order r = 9 and m = 3 and m = 20,
respectively, scaled by the factor 0.001. The stability regions are the areas outside the solid boundary
lines. We observe that for larger problem sizes the (already scaled) eigenvalues do not lie inside the
stability regions for BDF orders larger than 3. This leads to stability problems with higher-order
BDF methods, enforcing very small stepsizes regardless of the local discretization error. Therefore, a
maximum BDF order of kmax = 3 is advisable for the numerical solution of the problem.

and about one third for matrix factorizations and the solution of the linear systems. The average
ratios between the time needed for the nominal integration and the time needed for di�erent other
operation are given in Table 9.1.
We observe that an integration replay costs only about a half of a nominal integration, as no
additional matrix decomposition and derivative evaluations are needed in this case. The ratios of
the iterative �rst and second order forward IND(-TC) sweeps are signi�cantly below the bounds
that given in AD theory for ordinary functions, as also here no additional matrix factorization
and Jacobian evaluations are needed. Also the �rst order adjoint IND sweep and the second order
forward/adjoint IND-TC sweep are a very e�cient mean for sensitivity generation and their ratios
are still below the theoretical bounds for ordinary functions.
However, as we can see in Figure 9.4 on page 231, especially for the adjoint sweeps there is still
room for larger performance improvements. The key to obtain an even better performance is in
this case not an improvement of the IND schemes themselves, but in speeding-up the generation
of the model function derivatives, as they cause in average 87 percent of the e�ort in the �rst order
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Average ratio between nominal integration and ...

integration replay 0.53
forward IND sweep 1.38
adjoint IND sweep 3.73

2nd order fwd IND-TC sweep 2.19
2nd order fwd/adj IND-TC sweep 10.67

Table 9.1: The time needed for di�erent integrator operations compared to the time for the nominal integration of
the SMB example.

adjoint sweep and about 94 percent in the second order forward/adjoint IND-TC sweep. If we
keep in mind that the number of model function evaluations in the nominal integration is equal
to the number of model function derivatives needed for a �rst order iterative adjoint IND sweep,
we see that the e�ort for the subtask of model function derivative evaluation does not respect the
theoretical bounds. In theory, the derivative evaluation in the �rst order adjoint IND sweep should
take between 3 and 4 times the time of the function evaluation in the nominal integration. Instead,
the average ratio for the SMB example is 12.40. Hence, bringing the e�ort of the model derivative
evaluation nearer to its theoretical bounds will improve the performance of our adjoint IND(-TC)
schemes tremendously. Of course, to a smaller extent this would also improve the performance of
the forward IND(-TC). Therefore, an investigation of other means of AD-based model derivative
generation besides operator overloading, such as a source code transformation that respects the
model-inherent structure including matrix-vector operations, would be very interesting for large
scale problems.
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Figure 9.3: This �gure shows several statistics for the SMB example in relation to the problem size (nonzero
elements of the iteration matrix). The upper left �gure shows the number of integration steps and
the overall number of Newton-like iterations. Both numbers grow at �rst with the problem size but
then remain below an upper bound. The same holds for the number of required decompositions of the
iteration matrix. The number of needed iteration matrix rebuilds is independent of the problem size
(upper right). The middle row shows that the total time for the nominal integration increases linearly
with the problem size, where the evaluation of model functions and derivatives takes about half of the
time (middle left) and matrix factorization and the solution of linear systems about one third (middle
right). The lower left �gure shows the timings for an integration replay, where the model function
evaluations take about half the time. The lower right �gure shows a comparison of the overall times
needed for the di�erent integrator operations.
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Figure 9.4: This �gure shows the timings for di�erent kinds of IND sweeps for the SMB example: a �rst order
iterative forward IND sweep (upper left), a �rst order iterative adjoint IND sweep (upper right), a
second order forward IND-TC sweep (lower left) and a second order forward/adjoint IND-TC sweep
(lower right). Displayed are in each case the overall time needed, as well as the time needed for
evaluation of the model function derivatives and for the solution of the linear systems. We observe that
the derivative evaluation is in each case the most time consuming subtask, taking in average about 66
and 82 percent of the time in the forward IND(-TC) sweeps, respectively, and about 87 and 94 percent
in the adjoint IND(-TC) schemes, respectively.
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9.2 Adjoint IND versus solution of adjoint variational

equation

In this section we compare the IND-based (�rst order) iterative adjoint scheme developed in this
thesis against the commonly used approach of solving the adjoint variational equation numeri-
cally. More speci�cally, we compare the performance of the implementation of our strategies in
DAESOL-II with the performance of the widely used integrator codes CVODES and IDAS from the
SUNDIALS [HBG+05] integrator suite. These are the quasi standard codes for a not IND-based
generation of adjoint sensitivity information of ODE/DAE-IVPs. A comparison of the strategies
related to nominal IVP solution and (�rst order) forward sensitivity generation implemented in
DAESOL-II with other integrator codes can be found in [Bau99]. As test problems we choose
three examples from the IVP testset of the university of Bari [MI08]: two nonlinear ODE-IVPs
and an index 1 DAE-IVP.
The computations are performed using DAESOL-II and CVODES/IDAS from the SUNDIALS
suite in version 2.6.0. The platform is a desktop computer with an Intel Pentium D CPU with
3.0 GHz and 3.8 GB of RAM, running under the Ubuntu 8.04 64-bit operating system. The code
was compiled with GCC version 4.3.2. For all codes the required model functions and model
derivatives are evaluated via the SolvIND evaluator layer to obtain comparable results. For the
generation of the model function derivatives SolvIND uses the tool ADOL-C in version 2.1.0.

In the following we explain each of the problems and present the setup as well as the results of
the corresponding numerical tests.

9.2.1 The HIRES problem

The HIRES problem is a sti� IVP consisting of 8 nonlinear ODEs. It was �rst presented by
Schäfer [Sch75] and describes the so-called High Irradiance Responses of photomorphogenesis on
the basis of phytochrome by a chemical reaction system of 8 species. The IVP is de�ned by

ẋ(t) =



−k1x1(t) + k2x2(t) + k6x3(t) + oks
k1x1(t)− (k2 + k3)x2(t)

−(k1 + k6)x3(t) + k2x4(t) + k5x5(t)
k3x2(t) + k1x3(t)− (k2 + k4)x4(t)
−(k1 + k5)x5(t) + k2(x6(t) + x7(t))

−k+x6(t)x8(t) + k4x4(t) + k1x5(t)− k2x6(t) + k∗x7(t)
k+x6(t)x8(t)− (k2 + k− + k∗)x7(t)
−k+x6(t)x8(t) + (k2 + k− + k∗)x7(t)


(9.6)

t ∈ [0, 321.8122], x(0) = (1, 0, 0, 0, 0, 0, 0, 5.7 · 10−3)T ,

where the parameter, taken from [HW96], are given by

k1 = 1.71 k3 = 8.32 k5 = 0.035 k+ = 280 k∗ = 0.69

k2 = 0.43 k4 = 0.69 k6 = 8.32 k− = 0.69 oks = 7 · 10−4.



CHAPTER 9. NUMERICAL EXAMPLES FOR SENSITIVITY RELATED STRATEGIES 233

The numerical reference solution of the IVP is taken from [MI08] and is given by

x∗(321.8122) =



0.7371312573325668 · 10−3

0.1442485726316185 · 10−3

0.5888729740967575 · 10−4

0.1175651343283149 · 10−2

0.2386356198831331 · 10−2

0.6238968252742796 · 10−2

0.2849998395185769 · 10−2

0.2850001604814231 · 10−2


. (9.7)

The numerical reference values for the Wronskian Wref are generated by CVODES with all toler-
ances set to 10−15.

We solve the problem using DAESOL-II and CVODES, respectively, for the series of tolerances
toli = atoli = 10−

4+i
4 , 1 ≤ i ≤ 44, and initial stepsize 10−2. Besides the nominal solution

we compute adjoint sensitivities for nadjDir = 1, 2, 3 and the Wronskian W using nadjDir = nx = 8
adjoint directions. For both codes, checkpointing is disabled and we use dense direct linear algebra
for matrix and vector operations. In CVODES the tolerance for the solution of the adjoint
variational ODE was set to bTol = 10 · tol.
From the obtained solution and the reference solution we compute the global error ε at the end
of the time horizon and the number of signi�cant digits scd = − log10(‖ε‖∞) of the solution.
For the comparison of the sensitivities we compute the deviation from the reference values by
∆W = ‖W −Wref‖∞.

Based on this setup, we compare the performance of both integrator codes for adjoint sensitivity
generation. Figure 9.5 on page 235 shows the results of the comparison. We observe that the
stepsize and error control strategy in DAESOL-II needs about half of the integration steps of
CVODES to reach a given number of signi�cant digits for the nominal solution. Concerning the
deviation from the reference Wronskian, we see that both codes show a similar improvement in the
approximation with increasing accuracy of the nominal solution. DAESOL-II shows here slightly
higher �turbulences�. However, this is to be expected, as, by construction, there exists no explicit
error control for the adjoint IND scheme. Nevertheless, the Wronskian approximation is in nearly
all cases as good as the one computed by CVODES.
We recall now that by construction of our adjoint IND scheme the number of required matrix
decompositions and Jacobian evaluations in DAESOL-II remains the same for the pure nominal
integration and the combination of nominal integration with the computation of an arbitrary
number of directional adjoint sensitivities. We observe that for lower integration accuracies, con-
sidering only the nominal integration, DAESOL-II and CVODES need about the same number of
decompositions and Jacobian evaluations, whereas for higher integration accuracies, the monitor
strategy of DAESOL-II seems to work better than the corresponding mechanism in CVODES as
signi�cantly fewer decompositions/evaluations are needed. Furthermore, in CVODES the number
of decompositions and evaluations grows approximately linearly with the number of directional
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adjoint sensitivities that are computed. The number of directional adjoint model function deriva-
tives grows in DAESOL-II strictly linearly with the number of adjoint sensitivities, in CVODES
approximately linearly, while the absolute number needed in CVODES is slightly higher than in
DAESOL-II.
In the end, all this leads to an overall computational time of CVODES for the nominal inte-
gration combined with the adjoint sensitivity generation that is signi�cantly larger than that of
DAESOL-II. For lower integration accuracies, DAESOL-II is about 10 times faster and for very
high accuracies still about 1.5 to 3 times. For this example, the latter is due to the fact that
for very high accuracies DAESOL-II needs more Newton-like iterations in the nominal integration
than CVODES. Furthermore, these are relatively expensive compared to the matrix factorizations
due to the small size of the example.
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Figure 9.5: The numerical results of applying DAESOL-II and CVODES to the HIRES example. The upper row
shows on the left the total number of integration steps needed for the nominal integration in relation to
the accuracy of the solution expressed by the number of signi�cant digits. The upper right �gure shows
the sup-norm of the deviation of the numerically computed Wronskian approximation from the reference
Wronskian. The middle row shows the number of needed decompositions of the iteration matrix (left)
and of the needed Jacobian evaluations (right). Both quantities are depicted for DAESOL-II (where they
are independent of the number of adjoint sensitivities) and for CVODES for the cases of a pure nominal
integration as well as the combination of nominal integration with the computation of 1, 2, 3 adjoint
sensitivities and the Wronskian (8 adj. sens.). The lower row shows for both codes the number of needed
directional adjoint derivatives of the model functions (left) as well as the overall computational time
(right). Each quantity is depicted for the combination of the nominal integration with the computation
of one adjoint sensitivity and the computation of the Wronskian, respectively.
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9.2.2 The Pleiades problem

The Pleiades problem is a nonsti� ODE-IVP problem with 28 equations. The formulation and
the setup are taken from [HNW93]. The problem originates from a celestial mechanics problem
of seven stars in the plane, described by the coordinates xx ∈ R7, xy ∈ R7 and masses mi := i,
1 ≤ i ≤ 7. The equations of motion of the system are derived from the law of gravity, where the
gravitational constant is assumed as equal to one. Combining x := (xTx ,x

T
y )T and formulating the

problem as a �rst order ODE system leads to the equations

d

(
x(t)
ẋ(t)

)
/dt =

(
ẋ(t)
f(x)

)
.

Here the acceleration is given by f(x(t)) =

(
fx(x(t))
fy(x(t))

)
, where the components of the functions

are de�ned by

fxi (x(t)) =
∑
j 6=i

mj
xx,j − xx,i

((xx,j − xx,i)2 + (xy,j − xy,i)2)
3
2

f yi (x(t)) =
∑
j 6=i

mj
xy,j − xy,i

((xx,j − xx,i)2 + (xy,j − xy,i)2)
3
2

.

We solve the problem on the time horizon t ∈ [0, 3] and for the initial values

xx(0) = (3, 3,−1,−3, 2,−2, 2)T , xy(0) = (3,−3, 2, 0, 0,−4, 4)T ,

ẋx(0) = (0, 0, 0, 0, 0, 1.75,−1.5)T , ẋy(0) = (0, 0, 0,−1.25, 1, 0, 0)T .

The numerical reference solution as given in [MI08] is

x∗x(3) =



0.3706139143970502 · 100

0.3237284092057233 · 101

−0.3222559032418324 · 101

0.6597091455775310 · 100

0.3425581707156584 · 100

0.1562172101400631 · 101

−0.7003092922212495 · 100


, x∗y(3) =



−0.3943437585517392 · 101

−0.3271380973972550 · 101

0.5225081843456543 · 101

−0.2590612434977470 · 101

0.1198213693392275 · 101

−0.2429682344935824 · 100

0.1091449240428980 · 101


,

ẋ∗x(3) =



0.3417003806314313 · 101

0.1354584501625501 · 101

−0.2590065597810775 · 101

0.2025053734714242 · 101

−0.1155815100160448 · 101

−0.8072988170223021 · 100

0.5952396354208710 · 100


, ẋ∗y(3) =



−0.3741244961234010 · 101

0.3773459685750630 · 100

0.9386858869551073 · 100

0.3667922227200571 · 100

−0.3474046353808490 · 100

0.2344915448180937 · 101

−0.1947020434263292 · 101


.

The numerical reference values for the Wronskian Wref are generated by CVODES with all toler-
ances set to 10−15.
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We solve the problem using DAESOL-II and CVODES, respectively, for the series of tolerances
toli = atoli = 10−

4+i
4 , 1 ≤ i ≤ 44, and initial stepsize 10−2. Besides the nominal solution we

compute adjoint sensitivities for nadjDir = 1, 2, 3 and the Wronskian W using nadjDir = nx = 28
adjoint directions. For both codes, checkpointing is disabled and we use dense direct linear algebra
for matrix and vector operations. In CVODES the tolerance for the solution of the adjoint
variational ODE was set to bTol = 10 · tol.
From the obtained solution and the reference solution we compute the global error ε at the end
of the time horizon and the number of signi�cant digits scd = − log10(‖ε‖∞) of the solution.
For the comparison of the sensitivities we compute the deviation from the reference values by
∆W = ‖W −Wref‖∞.

Based on this setup, we compare the performance of both integrator codes for adjoint sensitivity
generation. Figure 9.6 on the next page shows the results of the comparison. We observe that the
stepsize error control strategy in DAESOL-II needs in general fewer integration steps than CVODES
to reach a given number of signi�cant digits for the nominal solution. Concerning the deviation
of the reference Wronskian, we see that both codes deliver a similarly accurate approximation of
the reference Wronskian, while the deviation of DAESOL-II is in general slightly larger.
We recall again that by construction of the adjoint IND scheme the number of required matrix
decompositions and Jacobian evaluations in DAESOL-II remains the same for the pure nominal
integration and the nominal integration combined with the computation of an arbitrary number of
directional adjoint sensitivities. We observe that already for the nominal integration DAESOL-II

needs signi�cantly less matrix decompositions and Jacobian evaluations than CVODES. Addi-
tionally, in CVODES the number of needed decompositions and evaluations grows approximately
linearly with the number of directional adjoint sensitivities that are computed. The number of di-
rectional adjoint model function derivatives grows in DAESOL-II strictly linearly with the number
of adjoint sensitivities, in CVODES approximately linearly, while the absolute number needed in
CVODES is about 2 times that of DAESOL-II.
In the end, all this leads to an overall computational time of CVODES for the nominal integration
combined with the adjoint sensitivity generation that is signi�cantly larger than that of DAESOL-II.
For one adjoint sensitivity direction CVODES needs about 1.25 times the time of DAESOL-II.
Concerning the computation of the complete Wronskian DAESOL-II is about 5 times faster than
CVODES.
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Figure 9.6: The numerical results of applying DAESOL-II and CVODES to the Pleiades example. The upper row
shows on the left the total number of integration steps needed for the nominal integration in relation to
the accuracy of the solution expressed by the number of signi�cant digits. The upper right �gure shows
the sup-norm of the deviation of the numerically computed Wronskian approximation from the reference
Wronskian. The middle row shows the number of needed decompositions of the iteration matrix (left)
and of the needed Jacobian evaluations (right). Both quantities are depicted for DAESOL-II (where
they are independent of the number of adjoint sensitivities) and for CVODES for the cases of a pure
nominal integration as well as the combination of nominal integration with the computation of 1, 2,
3 adjoint sensitivities and the Wronskian (28 adj. sens.). The lower row shows for both codes the
number of needed directional adjoint derivatives of the model functions (left) as well as the overall
computational time (right). Each quantity is depicted for the combination of the nominal integration
with the computation of one adjoint sensitivity and the computation of the Wronskian, respectively.
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9.2.3 The chemical Akzo Nobel problem

The chemical Akzo Nobel problem is a sti� DAE-IVP of index 1 in �ve di�erential and one
algebraic equation. The setup and parameter values of the problem are presented in [Sto98].
The problem originates from the Akzo Nobel laboratories and describes a chemical process in
which 2 species are mixed to obtain a third one, while carbon dioxide is added continuously. Due
to commercial reasons, the species themselves are not disclosed. The overall number of species
involved in the reaction is 6. The DAE system is given by

ẋ(t) =


−2r1 + r2 − r3 − r4

−0.5r1 − r4 − 0.5r5 + Fin

r1 − r2 + r3

−r2 + r3 − 2r4

r2 − r3 + r5

 , (9.8a)

0 = Ksx1(t)x4(t)− z1(t). (9.8b)

Here, the auxiliary variables ri and Fin are given by

r1 = k1x1(t)4
√
x2(t), r3 =

k2

K
x1(t)x5(t), r5 = k4z1(t)2

√
x2(t),

r2 = k2x3(t)x4(t), r4 = k3x1(t)x4(t)2, Fin = A(
pCO2

H
− x2(t)),

and the parameter values by

k1 = 18.7, k4 = 0.42, Ks = 115.83,

k2 = 0.58, K = 34.4, pCO2 = 0.9,

k3 = 0.09, A = 3.3, H = 737.

We solve the problem on the time horizon t ∈ [0, 180] and for the initial values

x(0) = (0.444, 0.00123, 0, 0.007, 0)T , z(0) = Ksx1(0)x4(0). (9.9)

The numerical reference solution taken from [MI08] is

x(180) =


0.1150794920661702 · 100

0.1203831471567715 · 10−2

0.1611562887407974 · 100

0.3656156421249283 · 10−3

0.1708010885264404 · 10−1

 ,

z(180) = 0.4873531310307455 · 10−2. (9.10)

The numerical reference values for the Wronskian Wref are generated by IDAS with all tolerances
set to 10−15.



240 9.2. ADJOINT IND VERSUS SOLUTION OF ADJOINT VARIATIONAL EQUATION

We solve the problem using DAESOL-II and IDAS, respectively, for the series of tolerances toli =
atoli = 10−

4+i
4 , 1 ≤ i ≤ 44, and initial stepsize h0 = toli. Besides the nominal solution

we compute adjoint sensitivities for nadjDir = 1, 2, 3 and the Wronskian W using nadjDir = ny = 6
adjoint directions. For both codes, checkpointing is disabled and we use dense direct linear algebra
for matrix and vector operations. In IDAS the tolerance for the solution of the adjoint variational
DAE was set to bTol = 10 · tol.
From the obtained solution and the reference solution we compute the global error ε at the end
of the time horizon and the number of signi�cant digits scd = − log10(‖ε‖∞) of the solution.
For the comparison of the sensitivities we compute the deviation from the reference values by
∆W = ‖W −Wref‖∞.

Based on this setup, we compare the performance of both integrator codes for adjoint sensitivity
generation. Figure 9.6 on page 238 shows the results of the comparison. We observe that the
stepsize error control strategy in DAESOL-II needs in general signi�cantly fewer integration steps
than IDAS to reach a given number of signi�cant digits for the nominal solution. Concerning
the deviation of the reference Wronskian, we see that both codes deliver very similarly accurate
approximations of the reference Wronskian for higher integration accuracies. For lower accuracies,
the deviations show some �uctuations for DAESOL-II which is not entirely surprising because, by
construction, there is no explicit error control in the adjoint IND scheme.
We recall again that by construction of our adjoint IND scheme the number of required matrix
decompositions and Jacobian evaluations in DAESOL-II remains the same for the pure nominal
integration and the nominal integration combined with the computation of an arbitrary number of
directional adjoint sensitivities. We observe that already for the nominal integration DAESOL-II

needs signi�cantly less matrix decompositions and Jacobian evaluations than IDAS. Additionally,
in IDAS the number of needed decompositions and evaluations grows approximately linearly with
the number of directional adjoint sensitivities that are computed. The number of required direc-
tional adjoint model function derivatives grows in DAESOL-II strictly linearly with the number of
adjoint sensitivities, in IDAS it grows approximately linearly, while the absolute number in IDAS
is slightly larger than in DAESOL-II.
In the end, all this leads to an overall computational time of IDAS for the nominal integration
combined with the adjoint sensitivity generation that is signi�cantly larger than for DAESOL-II.
For one adjoint sensitivity direction IDAS needs at least 2 times the time of DAESOL-II. Again
this di�erence is smallest for very high integration accuracies, as here DAESOL-II needs in this
example more Newton-like iterations than IDAS in the nominal integration. When computing the
complete Wronskian DAESOL-II is at least 4 times faster than IDAS.
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Figure 9.7: The numerical results of applying DAESOL-II and IDAS to the chemical Akzo Nobel example. The
upper row shows on the left the total number of integration steps needed for the nominal integration in
relation to the accuracy of the solution expressed by the number of signi�cant digits. The upper right
�gure shows the sup-norm of the deviation of the numerically computed Wronskian approximation
from the reference Wronskian. The middle row shows the number of needed decompositions of the
iteration matrix (left) and of the needed Jacobian evaluations (right). Both quantities are depicted
for DAESOL-II (where they are independent of the number of adjoint sensitivities) and for IDAS for
the cases of a pure nominal integration as well as the combination of nominal integration with the
computation of 1, 2, 3 adjoint sensitivities and the Wronskian (6 adj. sens.). The lower row shows for
both codes the number of needed directional adjoint derivatives of the model functions (left) as well as
the overall computational time (right). Each quantity is depicted for the combination of the nominal
integration with one adjoint sensitivity direction and the computation of the Wronskian, respectively.
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9.2.4 Test summary

The results of the numerical tests on the three relatively small but numerically challenging exam-
ples from the IVP testset of the university of Bari can be summarized as follows. Concerning the
solution of the nominal IVP, it can be seen that the stepsize and monitor-strategy implemented
in DAESOL-II leads, in general, to a smaller number of integration steps and to fewer iteration
matrix decompositions and Jacobian evaluations compared to the SUNDIALS codes. For these
examples, this advantage is, to some part, compensated for very high integration accuracies by a
larger number of Newton-like iterations needed in DAESOL-II as these are relatively expensive for
these rather small problems. With respect to the adjoint sensitivity generation, the adjoint IND
approach implemented in DAESOL-II shows its strength compared to the solution of the adjoint
variational equation by not needing additional matrix decompositions nor Jacobian evaluations
and no additional interpolation of the system states. All this is required by the SUNDIALS codes.
As a result, DAESOL-II is signi�cantly faster on all presented examples, even more if only a medium
integration accuracy is needed. The advantages of DAESOL-II become more explicit the larger the
problem size becomes and the more directional adjoint sensitivities are required. A theoretical
drawback of the adjoint IND scheme, although it did not show up in these examples, might be
that by construction there is no explicit error control for the adjoint sensitivities, as they are the
exact derivatives of numerical scheme for the nominal IVP solution. Furthermore, for the iterative
adjoint IND scheme without checkpointing, that we used here, the iteration matrices used in the
nominal solution need to be stored, leading to a slightly increased memory demand compared to
the SUNDIALS codes.
Note that these results transfer directly to the task of computing second order sensitivities by the
forward/adjoint IND-TC scheme in DAESOL-II and by the solution of the corresponding variational
ODE/DAE [OB05], respectively, which is implemented in the SUNDIALS solvers. First note
that the coding of this variational equation is cumbersome and error-prone. Furthermore, in
SUNDIALS the states as well as the forward sensitivities have to be interpolated during the
backward integration of the problem and additional matrix factorizations and Jacobian evaluations
are needed, like in the �rst order case. Hence, DAESOL-II can be expected to perform signi�cantly
better than the SUNDIALS codes also for the task of second order sensitivity generation, because
the number of needed model function derivatives is, as in the �rst order case, similar in both
codes.

9.3 Error control for forward sensitivities

In this section we illustrate at hand of a numerical example the problem that may arise for the
sensitivity computation by IND-based schemes, if the discretization scheme is determined only
based only on the nominal IVP solution. Furthermore, we show that the strategy we propose in
Section 6.7.5 on page 185 o�ers an e�cient remedy for this problem.

Consider �rst the simple ODE-IVP

ẋ(t) = px(t), x(0) = x0, t ∈ [0, 1], p ∈ R, (9.11)
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with analytical solution x(t) = x0 · ept. If we solve this problem numerically for the initial value
x0 = 0, then the error and stepsize control in DAESOL-II will choose ever increasing stepsizes,
as the estimated (and in this case also the true) local error is equal to zero. This is perfect
for the nominal IVP solution, as it minimizes the overall e�ort. However, if we compute based
on this discretization scheme the directional forward sensitivity w.r.t. the initial value x0, then
the obtained value will be a very bad approximation for the analytical sensitivity Wx0(t) = ept.
This is due to the fact that in this singular case the error estimation for the nominal problem is
completely invalid for the sensitivity problem. Choosing the discretization grid based on both the
nominal problem and the sensitivity, as described in Algorithm 6.10 on page 187, leads to a good
approximation of the analytical sensitivity, at the expense of more integration steps: 47 (p = 2)
respectively 74 (p = −10) compared to 22 are needed in this case. This is depicted in Figure 9.8.
When using Algorithm 6.10 the discretization scheme is identical to the one we obtain if we only
solve the nominal IVP with x0 = 1.
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Figure 9.8: The �gure shows the analytical and the numerically computed sensitivity of IVP (9.11) with respect to
the initial value x0, which is obtained by �rst order iterative forward IND. The upper row shows the
results for a value of p = 2, the lower row for p = −10. In the left column the discretization scheme
is only determined by the nominal IVP solution process, while in the right column it is determined by
Algorithm 6.10, i.e., respecting also the sensitivities. The vertical bars in all the �gures indicate the
timepoints of the used discretization grid.
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This approach is e�cient not only for the previous illustrative, somewhat exotic example, but also
for more commonly occurring problems. Consider, e.g., the damped harmonic oscillator, described
by the ODE-IVP

ẋ(t) =

(
x2(t)

−2p1x2(t)− p2
2x1(t)

)
, x(0) = (2, 0)T , p1 = 0.1, p2 = 1, t ∈ [0, 10]. (9.12)

For the choice of parameter the analytical solution is then given by

x(t) =

(
Ce−p1t cos(ωt+ arctan(φ));

−p1x1(t) + Ce−p1t(−p2 sin(ωt+ arctan(φ)))

)
. (9.13)

where ω :=
√
p2

2 − p2
1, φ := −x2(0)+p1x1(0)

ωx1(0)
and C := x1(0)

√
1 + φ2.

We now compute the nominal IVP solution, as well as the Wronskian matrix by iterative forward
IND sweeps using DAESOL-II using the tolerances tol = atol = 10−i for i = 3, 5, 7. This is
done once using the discretization scheme only determined by the nominal IVP solution, and once
using a discretization scheme that is based on both the nominal IVP solution and the sensitivities.
We compare the results with the analytical values and compute the errors in sup-norm. The
results are displayed in Table 9.2 below. We observe that by using Algorithm 6.10 we obtain
the Wronskian matrix with about the same order of accuracy that is obtained in the ordinary
case for the nominal solution. As a side-e�ect the nominal solution is in exchange now computed
with a higher accuracy as before. Both observations are characteristical for the approach. As the
numerical IVP solution and the numerical sensitivities are not decoupled in this approach, but
the computed sensitivities are also here the exact derivatives of the computed numerical solution,
it is reasonable that enforcing a higher accuracy of the sensitivities leads to a higher accuracy of
the underlying numerical solution. Finally, we observe that the activation of forward sensitivity
error control leads to a moderate increase of the computational costs.

tol sens. err. ctrl. error x error W # steps # decomp. # eval.

10−3 o� 5.56 · 10−3 9.84 · 10−2 47 2 1
on 1.01 · 10−3 1.79 · 10−3 56 2 1

10−5 o� 1.36 · 10−4 1.97 · 10−3 72 2 1
on 1.98 · 10−5 3.06 · 10−4 92 2 1

10−7 o� 3.09 · 10−6 5.36 · 10−5 115 2 1
on 4.95 · 10−7 9.00 · 10−6 147 3 1

Table 9.2: Comparison of the accuracy and the computation cost of the computation of the nominal solution x
and Wronskian W for the example of the damped harmonic oscillator (9.12) with and without activated
error control for the forward sensitivities. Displayed are the error in the solution and the Wronskian,
and the number of needed integration steps as well as the number of needed matrix decompositions and
Jacobian evaluations.
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9.4 Global error estimation

In this section we present a set of 7 ODE and 1 DAE-IVP examples that is used to test our global
error estimation strategy, presented in Section 6.7.6 on page 188, and implemented in DAESOL-II.
We compare our strategy to the one proposed by [CP04] for BDF methods. The latter strategy
has been tested on the 7 ODE examples in [TB09], which enables us to make a proper comparison
of both approaches.

The setups for the IVPs are as follows.

� Example 1. The Dahlquist equation

ẋ(t) = λx(t), t ∈ [0, T ], x(0) = x0. (9.14)

It is solved for the three setups

a) λ = 1, x0 = 10−4, T = 10,

b) λ = −1, x0 = 1, T = 1,

c) λ = −20, x0 = 1, T = 1.

The analytical solution is given by x(t) = x0 · eλt.

� Example 2.

ẋ(t) = −(0.25 + sin(πt))x(t)2, t ∈ [0, 1], x(0) = 1. (9.15)

The analytical solution is given by x(t) = π/(π + 1 + 0.25πt− cos(πt)).

� Example 3.

ẋ1(t) =
1

2(1− t)
x1(t)− 2tx2(t)

ẋ2(t) =
1

2(1− t)
x2(t) + 2tx1(t)

t ∈ [0, 10], x(0) = (1, 0)T . (9.16)

The analytical solution is given by x(t) =
√

1 + t

(
cos(t2)
sin(t2)

)
.

� Example 4.

ẋ1(t) = −x2(t)

ẋ2(t) = −x1(t)

t ∈ [0, 10], x(0) = (2 · 10−4, 0)T . (9.17)

The analytical solution is given by x(t) = 10−4

(
e−t + et

e−t − et
)
.
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� Example 5.

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

t ∈ [0, 50], x(0) = (0, 1)T . (9.18)

The analytical solution is given by x(t) =

(
sin(t)
cos(t)

)
.

� Example 6.

ẋ1(t) = x1(t)

ẋ2(t) = x2(t) + x1(t)x1(t)

ẋ3(t) = x3(t) + x1(t)x2(t)

ẋ4(t) = x4(t) + x1(t)x3(t) + x2(t)x2(t)

ẋ5(t) = x5(t) + x1(t)x4(t) + x2(t)x3(t)

t ∈ [0, 1], x(0) = (1, 1, 0.5, 0.5, 0.25)T . (9.19)

The analytical solution is given by x(t) =


et

e2t

0.5 e3t

0.5 e4t

0.25 e5t

.
� Example 7.

ẋ(t) = −L(x(t)− sin(πt)) + π cos(πt))

t ∈ [0, 1], L = 50, x(0) = 0. (9.20)

The analytical solution is given by x(t) = sin(πt).

� Example 8.

As DAE example we use the chemical Akzo Nobel problem, described in Section 9.2.3 on
page 239.

We solve every IVP for the 8 di�erent tolerances tol = 10−2, . . . , 10−10. During the nominal
solution the local error estimates for each (successful) integration step are stored. Afterwards, we
perform a �rst order adjoint IND sweep, initialized with the set of unit directions, corresponding
to the components of the solution. During the adjoint sweep, the global error estimates are
accumulated using Formula (6.48). Finally, we compare each global error estimate ε̃ with the
corresponding real global error ε of the numerical solution at the end of the integration horizon.
To do this, we compute the so-called e�ectivity index of the estimation, given by

I :=
‖ε̃‖2

‖ε‖2

. (9.21)
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Clearly, in theory a value of I = 1.0 would be desirable. However, in practice values between
I = 0.5 and I = 2.0 represent already very good estimations, and also somewhat larger deviations
are actually good enough for the practical application in adaptive algorithms.

The e�ectivity indices obtained by solving the above examples and estimating the global error
using (6.48) are given in Table 9.3 and compared to the results of the approach of Cao and Petzold
stated in [TB09], which have been obtained using IDAS. We observe that our approach based on
the intermediate values of the adjoint IND sweep delivers for the ODE examples in general a more
precise and more reliable error estimation as the e�ectivity indices lie closer to 1.0. Exceptions are
some singular overestimations of the error in case of Example 1 for large integration tolerances.
For Example 8 we observe that our approach transfers directly to (index 1) DAEs with good
results.
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Example/solver
tol

10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

1a
IDAS 7.13 7.23 7.09 9.12 8.95 8.54 16.72 9.18
DAESOL-II 1.30 0.81 0.51 0.88 1.48 0.69 1.29 1.81

1b
IDAS 13.41 3.22 2.96 129.2 6.74 2.45 8.67 5.73
DAESOL-II 4.75 28.19 3.00 3.24 1.87 0.92 15.67 3.34

1c
IDAS 0.61 1.59 0.46 0.45 2.08 7.63 10.12 10.36
DAESOL-II 86.33 86.79 3.42 6.74 3.65 3.04 2.75 2.04

2
IDAS 5.63 9.27 106.9 19.36 72.67 13.98 16.38 0.31
DAESOL-II 2.75 0.83 2.38 4.97 1.98 6.93 3.13 2.42

3
IDAS 13.58 13.02 13.66 13.00 11.59 10.92 10.77 11.35
DAESOL-II 2.67 2.68 2.54 2.73 2.67 2.72 2.90 2.42

4
IDAS 7.13 7.25 7.08 6.45 8.68 12.10 15.70 12.45
DAESOL-II 1.30 0.77 0.73 0.94 2.00 1.50 1.66 1.88

5
IDAS 4.13 8.89 15.04 7.98 1.45 7.63 8.64 4.16
DAESOL-II 3.16 2.75 2.89 2.73 2.72 2.58 2.71 2.67

6
IDAS 6.14 10.54 14.31 8.09 12.94 4.62 8.35 13.86
DAESOL-II 0.86 2.33 1.90 1.89 2.26 2.70 2.63 2.53

7
IDAS 0.003 0.04 0.002 0.008 1 · 10−4 2 · 10−4 7 · 10−5 1 · 10−5

DAESOL-II 6.86 12.35 14.31 7.70 2.05 4.48 3.96 2.61

8 DAESOL-II 1.07 1.08 6.11 14.54 0.99 2.39 2.38 2.38

Table 9.3: The table shows the e�ectivity indices de�ned by (9.21) obtained by the solution of Examples 1 to 7 of
this section for di�erent tolerances using Formula (6.48) implemented in DAESOL-II and the approach
of Cao and Petzold implemented in IDAS, respectively, to estimate the global error at the end of the
integration horizon. For the Example 8 only the results of our approach are given, as the approach
in [CP04] is not directly applicable to DAEs. It can be observed that the approach implemented in
DAESOL-II leads in general to more accurate and more reliable estimations, with the exception of some
signi�cant overestimations of the error for Example 1 and large integration tolerances. Also for the DAE
example DAESOL-II delivers good estimates.



10 Optimal control of a distillation

column

In this Chapter, we use the new adjoint based exact-Hessian SQP method proposed in Chapter
7 to solve a real world application problem. We use here the implementation of our algorithm
in the C++ code DynamicLiftOpt, together with SolvIND/DAESOL-II for the evaluation of the
model functions and their derivatives as well as the solution of the Initial Value Problems (IVPs)
and the corresponding sensitivity generation.
As application example we choose the optimal control of a high purity binary distillation column.
The model is taken from [Die02] and describes a pilot plant distillation column of the �Institut
für Systemdynamik und Regelungstechnik� of the University of Stuttgart. The numerical setup
of the optimization problem is taken from [SBPD+07].
In the following, we �rst give a brief description of the model of the distillation column. Afterwards,
we present the setup of the optimal control problem. Finally, we present the results obtained by
the numerical solution of the problem using DynamicLiftOpt and, for comparison, MUSCOD-II.

10.1 Description of the distillation column

The distillation column we consider here is used for the separation of a (binary) mixture of
methanol and n-propanol. It consists of 40 bubble cap trays and has an overall height of 7m and a
diameter of 10cm. The reboiler is heated electrically and the overhead vapor is totally condensed
in a water cooled condenser that is open to atmosphere. The preheated feed stream enters the
column at the feed tray as saturated liquid.
In our case, the inputs that can be used to control the process are given by the heat input q
to the reboiler and the volumetric re�ux �ow lvol. The basic aim is to full�ll given high purity
requirements for the distillate dvol and the bottom product bvol at any time. The scheme of the
distillation column is depicted in Figure 10.1 on the next page.

As the DAE model of the column is described in detail in [Die02], we give here only a short
summary. We number the ntrays = 40 bubble cap trays from bottom to top with k = 1, . . . , 40,
where the tray with number nfeed = 20 is the feed tray. The index k = 0 denotes in the following
the reboiler and the index ntrays + 1 = 41 the condenser.
On each tray k, we denote the molar �uxes of the liquid phase with lk and of the vapor phase with
vk. The corresponding temperatures are given by θk. The molar vapor �ux out of the reboiler is
denoted by v0 and the molar �ux of the liquid bottom product stream with b. The molar liquid
re�ux from the condenser to the top tray is given by lntrays+1 and the distillate stream with d. The

249
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Figure 10.1: Flowsheet of the binary distillation column

liquid molar feed stream entering at the feed tray we denote with lfeed. The molar �uxes in the
distillation column are shown in Figure 10.2 on the facing page.
Furthermore, we denote with clk the liquid methanol concentrations. Note that, as we have a
binary distillation column, the concentrations of n-propanol can then be determined by the clos-
ing conditions cn−propanol,k = 1 − clk. The pressures in reboiler, condenser and on the trays are
denoted with pk, the liquid volume holdups with νvk , the molar holdups with νk and the methanol
concentration in the vapor phase with cvk.
We assume in the following that the liquid volume holdups of reboiler and condenser are constant
as well as the pressures in the reboiler, on the trays and in the condenser. The condenser pressure
is �xed to the outside pressure ptop and the pressure loss between two trays is constant, i.e.,

pk := pk+1 + ∆pk.

With these assumptions a sti� nonlinear DAE model can be derived as follows.

� The mass balances for the molar holdup on the trays give

ν̇k = vk−1 − vk + lk+1 − lk, (10.1a)

for k ∈ {1, . . . , nfeed − 1, nfeed + 1, . . . , ntrays}. For the feed tray we have with k = nfeed

ν̇k = vk−1 − vk + lk+1 − lk + lfeed. (10.1b)
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condenser

reboiler

Figure 10.2: Molar �ows in the binary distillation column

� Mass conservation for methanol requires in the reboiler

ċl0ν0 + cl0ν̇0 = −v0c
v
0 + l1c

l
1 − bcl0 (10.2a)

and in the condenser (with k = ntrays)

ċlk+1νk+1 + clk+1ν̇k+1 = vkc
v
k − dclk+1 − lk+1c

l
k+1. (10.2b)

For the feed tray (k = nfeed) we have

ċlkνk + clkν̇k = vk−1c
v
k−1 − vkcvk + lk+1c

l
k+1 − lkclk + lfeedc

l
feed, (10.2c)

where clfeed is the concentration of methanol in the feed �ow. Finally, on the rest of the trays
(k ∈ {1, . . . , nfeed − 1, nfeed + 1, . . . , ntrays}) it holds

ċlkνk + clkν̇k = vk−1c
v
k−1 − vkcvk + lk+1c

l
k+1 − lkclk. (10.2d)

� If we denote the liquid and vapor stream enthalpies as hlk := hl(clk, θk) and h
v
k := hv(cvk, θk, pk),

respectively, the enthalpy balance gives us in the reboiler

ν̇0h
l
0 + ν0

(
∂hl0
∂cl0

ċl0 +
∂hl0
∂θ0

θ̇0

)
= q − qloss − v0h

v
0 + l1h

l
1 − bhl0, (10.3a)
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where qloss accounts for possible heat losses. For the top tray we have with k = ntrays

ν̇kh
l
k + νk

(
∂hlk
∂clk

ċlk +
∂hlk
∂θk

θ̇k

)
= vk−1h

v
k−1 − vkhvk + lk+1h

l(clk+1, θcond, pk+1)− lkhlk, (10.3b)

where θcond is the temperature in the condenser and hence also of the liquid re�ux lk+1 to
the top tray. On the feed tray (k = nfeed) we obtain

ν̇kh
l
k + νk

(
∂hlk
∂clk

ċlk +
∂hlk
∂θk

θ̇k

)
= vk−1h

v
k−1 − vkhvk + lk+1h

l
k+1 − lkhlk + lfeedh

l(clfeed, θfeed, pfeed),

(10.3c)

and for the rest of the trays with k ∈ {1, . . . , nfeed − 1, nfeed + 1, . . . , ntrays − 1}

ν̇kh
l
k + νk

(
∂hlk
∂clk

ċlk +
∂hlk
∂θk

θ̇k

)
= vk−1h

v
k−1 − vkhvk + lk+1h

l
k+1 − lkhlk. (10.3d)

� Hydrodynamics: The liquid �ow lk out of each tray is determined based on the �Francis weir
formula� and given for k = 1, . . . , ntrays by

lkµ(clk, θk) = wk(ν
v
k − νref

k )
3
2 , (10.4)

where µ(clk, θk) is the molar volume of the liquid mixture, νref
k the reference volume and wk

are parameter to be de�ned.

� The temperatures on each tray k = 0, . . . , ntrays+1 are implicitly de�ned by Dalton's formula

pk − ps1(θk)c
l
k − ps2(θk)(1− clk) = 0, (10.5a)

where the partial pressures psj(θk), j = 1, 2, are de�ned by the Antoine equation as

psj(θ) = exp

(
πAa,j −

πAb,j
θ + πAc,j

)
(10.5b)

and the coe�cients are given as follows.

j πAa,j πAb,j[K] πAc,j[K]

methanol 1 23.480 3626.6 -34.29
n-propanol 2 22.437 3166.4 -80.15

Some of the quantities in the equations above can be computed directly in terms of other quantities
such that they can be eliminated:
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� The vapor concentrations cvk are computed using parameter αk to account for non-ideality
of the trays and unmodeled e�ects for k = 1, . . . , ntrays as

cvk = αk
ps1(θk)

pk
clk + (1− αk)cvk−1 (10.6)

and for k = 0 as cv0 =
ps1(θ0)

p0
cl0.

� The molar volumes µ(clk, θk) of the liquid mixture are given by

µ(cl, θ)(cl, θ) := clµ1(θ) + (1− cl)µ2(θ), (10.7a)

where the molar volumes of the undiluted components µj(θ) are computed by

µj(θ) :=
1

πva,j
expπvb,j(1 + exp(1−θ/πvc,j)

(πvd,j)). (10.7b)

Here the coe�cients are given as

j πva,j [kmol l−1] πvb,j πvc,j[K] πvd,j
methanol 1 2.288 0.26850 512.4 0.2453
n-propanol 2 1.235 0.27136 536.4 0.2400

� The molar feed �ow lfeed can be obtained from the volumetric one lfeed,vol by

lfeed,vol = µ(clfeed, θfeed)lfeed. (10.8)

� Analogously, the molar liquid re�ux lntrays+1 can be obtained from the volumetric one lvol by

lntrays+1 = µ(clntrays+1, θntrays+1)lvol. (10.9)

� The vapor �ux v0 can be computed from (10.3a).

� We assume that the volume νv0 and νvntrays+1 of reboiler and condenser, respectively, are �xed.
Then ν0 and νntrays+1 can be eliminated via

0 = ν̇vk = µ(clk, θk)ν̇k +

(
∂µ(clk, θk)

∂cl
ċl +

∂µ(clk, θk)

∂θ
θ̇

)
νk, (10.10a)

for k = 0, ntrays + 1 and the mass conservation in the reboiler is given by

ν̇0 = −v0 + l1 − b (10.10b)

and in the condenser by

ν̇ntrays = vntrays − lntrays+1 − d. (10.10c)
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� Finally the liquid and vapor enthalpies hl(cl, θ) and hv(cv, θ, p) are given by

hl(cl, θ) := clhl,1(θ) + (1− cl)hl,2(θ), (10.11a)

hv(cv, θ, p) := cvhv,1(θ, p) + (1− cv)hv,2(θ, p). (10.11b)

Here the pure liquid enthalpies hl,j(θ) are determined by

hl,j(θ) := 4.186
J

mol

[
πhj,1(θ − πθ0) + πhj,2(θ − πθ0)2 + πhj,3(θ − πθ0)3

]
, (10.11c)

where πθ0 = 273.15K. The pure vapor enthalpies hv,j(θ, p) are given by

hv,j(θ, p) := hl,j(θ) + 8.3147
J

mol K
πθc,j

√√√√1− p

πpc,j

(
θ

πθc,j

)−3

(10.11d)

·

6.09648− 1.28862
θ

πθc,j
+ 1.016

(
θ

πθc,j

)7

+πΩ
j

15.6875− 13.4721
θ

πθc,j
+ 2.615

(
θ

πθc,j

)7
 ,

where the coe�cients used here are given as

j πhj,1 [K−1] πhj,2 [K−2] πhj,3 [K−3] πθc,j [K] πpc,j [Pa] πΩ
j

methanol 1 18.31 1.713 · 10−2 6.399 · 10−5 512.6 8.096 · 106 0.557
n-propanol 2 31.92 4.490 · 10−2 9.663 · 10−5 536.7 5.166 · 106 0.612

The values of the remaining system parameter have been estimated based on the real column.
The resulting estimates are given by

parameter value parameter value

νv0 8.5 [l] ptop 939 [h Pa]
νvntrays+1 0.17 [l] ∆p0, . . . ,∆pnfeed−1 2.5 [h Pa]

νref
1 , . . . , νref

ntrays
0.155 [l] ∆pnfeed

, . . . ,∆pntrays 1.9 [h Pa]

α0, . . . , αnfeed
62% θfeed 71 [◦C]

αnfeed+1, . . . , αntrays 35% θcond 47.2 [◦C]

w0, . . . , wntrays 0.166 [l−1/2 s−1] lfeed,vol 14.0 [l h−1]
qloss 0.51 [kW] clfeed 0.32

For a detailed description of the parameter estimation refer to [Die02].
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Based on the considerations above the equations can be summarized as an index 1 DAE system
consisting of the 82 di�erential variables

x = (cl0, . . . , c
l
41, ν1, . . . , ν40)

and the 122 algebraic variables

z = (l1, . . . , l40, v1, . . . , v40, θ0, . . . , θ41).

The di�erential equations are given by (10.1) and (10.2), whereas the algebraic equations are given
by (10.3b)-(10.3d), (10.4) and (10.5a).

10.2 Description of the optimal control problem

The setup of the optimization problem is taken from [SBPD+07]. The fundamental control aim
is to satisfy high purity constraints for the product concentrations cl0 and clntrays+1. As usual
in distillation control the product concentrations are not controlled directly. Instead, the con-
centrations on trays 14 and 28 are controlled as they are much more sensitive to disturbances
than the product concentrations. If they are kept constant at a suitable given setpoint the prod-
uct purities are usually safely guaranteed for a wide range of process conditions. Since concen-
trations are di�cult to measure, we use here the temperatures on the tray 14 and 28, which
are directly coupled to the concentration by Dalton's formula and the Antoine equation. The
desired setpoint is chosen as θref := (θref

28 , θ
ref
14 )T := (70 ◦C, 88 ◦C)T and we denote the corre-

sponding steady-state of the system with (xs
T , zs

T )T . The corresponding control us is given by
us := (lsvol, q

s)T := (4.1833 l/h, 2.4899 kW)T .

The objective function of the Optimal Control Problem (OCP) is chosen as the integral over a
least-squares term which penalizes the deviation from the setpoint temperatures and regularizes
the control. It can be written as∫ tend

t0

[
‖(θ̃z− θref)‖2

2 + ‖R(u− us)‖2
2

]
dt, (10.12)

where θ̃ stands for the projection matrix that extracts the temperatures at trays 14 and 28 from
the vector of algebraic variables z. Furthermore, R = diag(0.05 ◦C h l−1, 0.05 ◦C kW−1) is a small
diagonal weighting matrix for the regularization term and the time horizon is given by t0 = 0 and
tend = 5400s.
The constraints of the OCP are given by the DAE model of the distillation column presented in
the last section, the prescribed initial states of the process as well as the requirement that the
bottom product �ux and the distillate �ux are always non-negative.

In our speci�c setup, the aim of the optimal control is to drive the process from a disturbed initial
state, caused by a malfunction in the heating system, as close as possible to the desired reference
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setpoint (and the corresponding steady-state) in the given time. To solve the problem, we employ
a direct multiple shooting discretization of the problem. We approximate the control functions as
piecewise constant. We use 7 multiple shooting intervals where the length of the �rst six intervals
is set to 300s and the last one to 3600s. On the last interval the control is �xed to the setpoint
steady-state control us. The overall number of variables in the resulting (full-space) optimization
problem is 1684.

10.3 Numerical results

We solve the problem for a set of scenarios where the initial state of the system is perturbed
due to an abnormal increase in heating of ρ percent compared to the reference setpoint, with
ρ ∈ {10, 20, 30, 40, 50}. We initialize the values at the �rst 6 multiple shooting nodes according
to this disturbed state and at the last 2 nodes with the desired reference steady-state. Then
we use our L-PRSQP algorithm, presented in Chapter 7 and implemented in our C++ package
DynamicLiftOpt, and the software package MUSCOD-II [DLS01] to solve this problem. From the
MUSCOD-II package, which is based on classical condensing, we employ the SQP variant that uses
high-rank block-wise BFGS updates for the Hessian.

The computations are performed on a desktop computer with an Intel Pentium D CPU with 3.0
GHz and 3.8 GB of RAM, running under the Ubuntu 8.04 64-bit operating system. The code was
compiled with GCC version 4.3.2. The generation of the model derivatives in SolvIND is done
using the tool ADOL-C [GJU96] in version 2.1.5. UMFPACK [Dav04] in version 5.0.2 is used for
sparse matrix operations within DAESOL-II. The occurring QP subproblems were solved using the
code QPOPT [GMS95] in version 1.0.
As tolerance for the integration we choose tol = 10−8 and for the optimization kktTol = 10−6 as
termination criterion (see Section 7.2.1).

The Figures 10.3 on page 258 to 10.5 on page 260 show exemplarily the optimal solution computed
by DynamicLiftOpt for the cases of a disturbance in heating of ρ = 10, 30 and 50 percent. We
observe that in each case the optimal control is able to drive the system back to the desired
setpoint.
A comparison of the objective values of the results computed by DynamicLiftOpt and MUSCOD-II

is given in Table 10.1 on the next page. We observe that both algorithms �nd essentially the same
numerical solutions, except in the case of ρ = 50, where MUSCOD-II converges accidentally to a
suboptimal solution.
The statistics of the computations are given in Table 10.2 on the facing page. It can be observed
that DynamicLiftOpt needs generally about half the number of SQP iterations to �nd a solution
compared to the BFGS approach in MUSCOD-II. Also the number of matrix factorizations during
integration and sensitivity generation is signi�cantly smaller, because DynamicLiftOpt is able to
reuse the discretization scheme for sensitivity sweeps via the capabilities of SolvIND/DAESOL-II.
Furthermore, we see that one L-PRSQP iteration is about 2.5 to 3 times as expensive as a BFGS
iteration. Note that this is mainly due to the high computational e�ort for (�rst and) second
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order adjoint AD/TC-sweeps through the DAE model functions. This bottleneck causes between
74.7 and 75.2 percent of the overall CPU load of the solution process. As already observed in
the SMB example in Section 9.1, the actual implementation based on operator overloading does
in practice not perform near to the theoretical complexity bounds. Hence, further improvements
in this area will directly improve the performance of our algorithm considerably. Assuming ad-
joint TC propagation through the model functions would be possible near the theoretical bounds,
our L-PRSQP algorithm would become competitive against the BFGS approach even in terms of
computational time per iteration.

Finally, it can be seen that, compared to the corresponding exact-Hessian approach of MUSCOD-II,
our L-PRSQP approach is about 30 times faster. This superior performance makes our L-PRSQP
approach also feasible for the use in online strategies for closed-loop real-time optimal control. It
is the �rst exact-Hessian algorithm based on direct multiple shooting that allows for reasonable
sampling times in the context of practical applications.

Objective value
ρ DynamicLiftOpt(L-PRSQP) MUSCOD-II(BFGS)
10 1.821626e+02 1.821693e+02
20 3.215875e+02 3.215885e+02
30 4.798845e+02 4.799006e+02
40 6.313409e+02 6.313454e+02
50 7.688280e+02 8.565571e+02

Table 10.1: Objective value of the numerical solutions of the optimal control problem for the binary distillation
column. The values are shown for disturbances of ρ = 10, 20, 30, 40, 50. The solutions are computed
by the L-PRSQP approach implemented in DynamicLiftOpt as well as the high-rank BFGS update
version of MUSCOD-II. We observe that both algorithms compute the same solutions, except in the case
of ρ = 50 where MUSCOD-II converges accidentally to a suboptimal solution.

DynamicLiftOpt MUSCOD-II

L-PRSQP BFGS ex. Hess
ρ #iter avg. time #step #fac #iter avg. time #step #fac avg. time

10 8 1:03 15564 492 16 0:23 25658 14266 32:19
20 9 1:05 18475 583 13 0:24 22012 12138 32:56
30 9 1:05 20445 607 17 0:26 33763 16401 34:42
40 10 1:02 19925 601 19 0:24 33081 18060 36:58
50 13 1:05 25365 762 25 0:24 48781 23878 36:49

Table 10.2: Statistics of the numerical solution of the optimal control problem for the binary distillation column
using DynamicLiftOpt and MUSCOD-II. For each disturbance scenario ρ = 10, 20, 30, 40, 50 the number
of SQP iterations are given, the average time per SQP iteration (in mm:ss) as well as the overall
number of integration steps and matrix factorizations in the integrator. For the purpose of comparison
additionally the average time per SQP iteration needed by the exact-Hessian approach of MUSCOD-II
is shown, which is based on a �nite-di�erence approximation of the Hessian.
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Figure 10.3: Numerical solution of the optimal control problem for the binary distillation column with ρ = 10
computed by DynamicLiftOpt. The upper row shows the concentrations of methanol in the boiler and
the condenser, respectively, corresponding to the purities of the distillate and the bottom product.
The middle row shows the temperatures on the �reference� trays 14 and 28. The lower row shows the
computed optimal control moves for the volumetric re�ux from the condenser to the top tray and for
the heating in the reboiler.
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Figure 10.4: Numerical solution of the optimal control problem for the binary distillation column with ρ = 30
computed by DynamicLiftOpt. The upper row shows the concentrations of methanol in the boiler and
the condenser, respectively, corresponding to the purities of the distillate and the bottom product.
The middle row shows the temperatures on the �reference� trays 14 and 28. The lower row shows the
computed optimal control moves for the volumetric re�ux from the condenser to the top tray and for
the heating in the reboiler.
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Figure 10.5: Numerical solution of the optimal control problem for the binary distillation column with ρ = 50
computed by DynamicLiftOpt. The upper row shows the concentrations of methanol in the boiler and
the condenser, respectively, corresponding to the purities of the distillate and the bottom product.
The middle row shows the temperatures on the �reference� trays 14 and 28. The lower row shows the
computed optimal control moves for the volumetric re�ux from the condenser to the top tray and for
the heating in the reboiler.



11 Summary and Outlook

In the following we give a short summary of the ideas and results presented in this thesis. As there
emerge a number of application scenarios and open topics for future research and for extensions
of the methods developed in this thesis, we will discuss some of them here. This includes both
theoretical aspects as well as aspects related to the numerical packages DAESOL-II/SolvIND [AKa,
AKb] and LiftOpt/DynamicLiftOpt [AD10, Alb10, Alb] that have been developed in connection
with this thesis.

11.1 Summary

This thesis contains several novelties and new ideas for e�cient �rst and higher-order sensitivity
generation of IVP solutions on the one hand and for (automatically) structure-exploiting NLP
solvers on the other hand. The new approaches from these two �elds are merged to obtain a new
lifted exact-Hessian SQP method for the solution of Optimal Control Problems (OCPs) involving
models consisting of Di�erential Algebraic Equations (DAEs) of index 1.

Regarding strategies related to numerical IVP solution and sensitivity generation strategies for
IVP solutions, we have presented in this thesis

� a brief, heuristic analysis of the impact of the fact that in practice a predictor-corrector
scheme is employed in our BDF-method on the stability of the method at the example of
the Dahlquist equation. It shows that in the context of our monitor strategy this premature
termination of the Newton-like iterations will usually lead to only a moderate loss of stability
compared to the �true� implicit method (Section 5.3.3 on page 134).

� the development and implementation of new adjoint IND schemes for implicit Linear Mul-
tistep Methods (LMMs) at the example of Backward Di�erentiation Formula (BDF) meth-
ods. They allow the e�cient computation of �rst order adjoint sensitivity information (Sec-
tion 6.4.2 on page 161). We have shown with the help of several examples from the Bari IVP
testset that our adjoint IND approach outperforms the state-of-the-art implementation of
the widely used approach based on the solution of the adjoint variational ODE/DAE given
by the SUNDIALS solver suite (Section 9.2 on page 232).

� a proposal for a simple a posteriori estimator for the global error of the IVP solution, based
on the intermediate quantities of the adjoint IND sweep, that can also be used in the index
1 DAE case (Section 6.7.6 on page 188). We demonstrated that it performs well compared

261
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to a similar approach based on the solution of the adjoint variational equation on a series of
examples from the literature (Section 9.4 on page 245).

� the combination of the IND principle with the technique of univariate Taylor Coe�cient
(TC) propagation, which enabled us to derive the new IND-TC schemes. These allow for
the �rst time the e�cient computation of directional sensitivities of DAE-IVP solutions of
arbitrary order. Sensitivities can be generated both by a pure forward mode as well as by a
forward/adjoint mode that allows, e.g., the e�cient computation of Hessian-type sensitivity
information of the IVP solution (Section 6.5 on page 168).

� how the forward IND/IND-TC sweeps can be adapted to generate forward sensitivities that
are (locally) error controlled. This is done by choosing the integration time grid based on the
properties of both the nominal and the variational trajectories (Section 6.7.5 on page 185).
We demonstrated on some simple test problems, how the modi�ed algorithm correctly chose
a common �ner grid to ful�ll the error tolerances for the forward sensitivities (Section 9.3
on page 242).

� the description of the propagation of higher-order directional sensitivities across switching
events by TC propagation without the need to form complete update matrices (Section 6.7.8
on page 191). This makes the use of higher-order sensitivities in the optimization of problems
involving switching events for the �rst time computationally feasible.

� the creation of the C++ package SolvIND [AKa, AKb] (with co-author Christian Kirches)
as interface to integrator codes supporting IND, like, e.g., the newly created DAESOL-II.
SolvIND can also be used as building block for dynamic optimization software and facilitates,
e.g., semi-automatic ADOL-C support for the generation of �rst and higher-order model
function derivatives as well as the transparent use of time and control transformations that
are needed frequently in the solution of OCPs and dynamic optimization in general.

Concerning the development of structure-exploiting NLP solvers using the lifting idea, we have in
this thesis

� explained how the multiple shooting idea can be generalized to the lifting idea for nonlinear
functions in which cost function and constraints are explicitly computed via intermediate
values. We showed that per iteration the complexity of the solution of the lifted problem is
the same as for the unlifted problem. In particular, the complexity does not depend on the
number of newly introduced intermediate �node� variables (Section 4.1 on page 78).

� demonstrated how by the use of an algorithmic trick the evaluation of a given user prob-
lem function can be lifted by the introduction of node values in a minimally invasive way.
Furthermore, we have shown how the quantities needed for the forming of the reduced sub-
problem in each step of a lifted Newton method can be computed e�ciently by derivatives
of this modi�ed function evaluation (Section 4.1.1 on page 81).

� used the lifting idea to derive automatically structure-exploiting Newton-type NLP solvers
in form of a lifted constrained Gauss-Newton and lifted exact-Hessian SQP method. The
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developed Gauss-Newton approach can be understood as a generalization of the ideas used
in the multiple shooting codes of Schlöder (FIXFIT [Sch88]) and Schäfer (MSOPT [Sch05]),
while the lifted exact-Hessian SQP based on adjoint derivative information has never been
proposed before. Furthermore, we showed the equivalence of the iterates generated by our
algorithm compared to the iterations of a full-space SQP operating in the combined space
of original degrees of freedom and node variables (Section 4.2 on page 86).

� given a local convergence analysis and comparison for the lifted and unlifted Newton method
on a tutorial problem, to gain a �rst understanding on why and in which cases the use of a
lifted method might be useful or not (Sections 4.3 and 4.4).

� developed and implemented the C++ package LiftOpt [Alb]. It implements a lifted Newton,
Gauss-Newton and SQP method and can be used to lift user given simulation or function
evaluation codes in an easy way for the use in connection with the implemented lifted
optimization routines.

� presented the successful application of LiftOpt and the proposed lifted Gauss-Newton and
lifted SQP on a simple test example as well as for the solution of a large scale NLP. The latter
resulted from a parameter estimation problem for a system of hyperbolic PDEs describing
a shallow water equation model (Sections 8.1 to 8.3).

Finally, we have merged some of the new ideas from the two areas and

� derived an adjoint-based exact-Hessian SQP method in the framework of Bock's direct multi-
ple shooting [BP84] for the solution of optimal control problems. Here we combined the lifted
exact-Hessian SQP and the capability to compute higher-order forward/adjoint directional
sensitivities using IND-TC with the partial reduction technique for DAEs of Leineweber
[Lei99] (Section 7.1 on page 203).

� showed that the complexity in terms of run-time and memory demand of this algorithm
is far superior to exact-Hessian alternatives based on the classical condensing approach.
The inherent structure exploitation of our algorithm makes the computational treatment of
general large scale systems with an exact-Hessian SQP multiple shooting method for the
�rst time computationally feasible (Section 7.3 on page 216).

� implemented our algorithm in the C++ code DynamicLiftOpt and applied it successfully
for the solution of an optimal control problem for a practical application from chemical
engineering in form of a distillation column. Here we also demonstrated the superior per-
formance of our approach compared to existing exact-Hessian multiple shooting based SQP
methods and its competitiveness with update-based methods employing classical condensing
(Section 10 on page 249).
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11.2 Outlook and future work

The ideas and methods presented above give rise to a variety of application scenarios and exten-
sions, which cannot be addressed completely in the framework of this thesis. We hence propose
in the following some directions for interesting future research.

� Parallelization: For the treatment of very large scale systems and/or for further speedup the
parallelization of our algorithms would be of interest. Concerning our integrator DAESOL-II,
it would, for example, be interesting to use parallel linear equation solvers in the Newton-like
method.

Regarding the lifted optimization algorithms, it should be noted that here a parallelization
approach similar to the one for classical direct multiple shooting [GB94], i.e., based on
the decoupled shooting intervals (or the individual node function evaluations in the general
lifting context, respectively), is not possible. This is because, as we have seen, the derivatives
need to be propagated sequentially through the node functions (or the shooting intervals,
respectively), as the propagated derivatives of the �earlier� node functions are needed as
inputs for the propagation through the later ones.

However, a parallelization could be based on the distribution of the computation of the
di�erent directional derivatives to di�erent cores, as each forward/adjoint TC propagation
can be performed independently. Considering that for large scale problems the costs are
mainly given by the costs for the derivative computations, this might well lead to an e�cient
parallel approach. Especially, if we recall that the IND-TC schemes o�er to reuse the
integration grid and the iteration matrices from the nominal integration for all of these
parallel sensitivity sweeps and hence no additional integration overhead is to be expected.
A similar speedup can be expected if the TC propagation through the model functions could
be parallelized, e.g., if a suitable AD tool is developed.

� Adaptive control of the integration accuracy and/or the integration grid: To improve the
overall e�ciency of optimization algorithms, it would be interesting to develop strategies that
adapt the integration accuracy and/or the integration grid according to the actual needs of
the optimization routine. The needed accuracy of the sensitivities could be estimated, e.g.,
based on the contractivity of the Newton-type iterations or the error in a quantity of interest
(e.g., cost functional, merit function).

At the moment, a simple integration grid adaptivity can be realized based on the capabil-
ities of DAESOL-II by freezing the integration grid over several optimization iterations and
recomputing it with a new tolerance when the estimated error becomes too large. Here the
proposed a posteriori global error estimator based on adjoint IND can be used.

A possible improvement on the integrator level would be the ability to choose the integration
grid during the integration based on adjoint sensitivity information from a previous run to
ensure that a global error bound on a given quantity of interest is satis�ed. This might reduce
the overall number of integration steps signi�cantly compared to a strategy that is based on
the accuracy of the system states only. While implementations of this idea, based on the
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solution of the adjoint variational equations, already exist, these are not trivially transferable
to IND-based LMM schemes and hence an interesting subject for further research.

� Nonlinear Model Predictive Control (NMPC): In this thesis we presented the application of
our lifted methods in connection with the o�-line solution of optimal control problems only.
However, lifting o�ers interesting possibilities also in the context of NMPC and the real-time
iteration scheme [Die02, DBS05], as initial value and parameter embedding can be achieved
very easily by letting the values enter the problem via lifted node values. Furthermore, it will
be interesting to analyze the performance of the lifted exact-Hessian SQP method in online
optimization. It allows the treatment of problems using an exact-Hessian SQP method with
much smaller sampling intervals than before, at the expense of a slightly prolonged feedback
phase (not all QP quantities can be computed without the knowledge of the current system
state). As a further extension, our method could also be employed as part of a hierarchical
multi-level NMPC scheme [BDKS07, ABK+09].

� Inexact Newton-type methods for optimization: The reduced gradient and constraint in-
formation that can be computed cheaply by a second-order forward/adjoint IND-TC sweep
can be used in connection with inexact Newton-type methods that are based on update
strategies for the Hessian and Jacobian [GW02, DWBK09, Wal08] to further decrease the
cost of one NLP iteration and to render the number of directional derivatives needed in
each step constant. An alternative approach to achieve this would be, at least for equal-
ity constrained problems, the use of lifting in connection with a Krylov-type optimization
method, which would also allow the treatment of even larger systems, as it would lead to a
completely matrix-free method. Finally, it would be interesting in this context to analyze
the possibility of computing so-called high-rank BFGS updates of the Hessian matrix [BP84]
more e�ciently by using forward/adjoint IND-TC propagation.

� Globalization: It would be interesting, especially in the context of the lifted exact-Hessian
SQP method, to develop alternative globalization approaches, e.g., based on natural level
functions and the restrictive monotonicity test [BKS00].

� Optimization problems involving higher-order derivatives: The IND-TC schemes presented
in this thesis can compute directional sensitivities of IVP solutions of arbitrary order (in-
cluding the case of models with switching events). Hence the possible application scenarios
for them are not limited to an exact-Hessian SQP method for optimal control. They can
be used, e.g., to immediately speedup some existing algorithms for robust optimization
[KKBS04, DBK06] and Optimal Experimental Design (OED) [Kör02, KKBS04]. Here at
least second order sensitivity information is needed, which is nowadays normally computed
by the solution of a second order forward variational equation. Furthermore, they allow for
the �rst time the extension of these algorithms for the use of exact-Hessian information,
which would correspond to the need of third order sensitivities. Additionally, it would be of
course highly interesting to extend the lifted exact-Hessian SQP method presented in this
thesis for the use in robust optimization and OED, or even robust OED.





Notation

A general convention throughout this thesis is the use of normal font for scalar quantities and the
use of a bold font for vectors and matrices. This holds analogously for scalar and vector-valued
functions. Unless indicated otherwise an n-dimensional vector shall always be understood as being
equivalent to an n × 1 matrix, i.e., all vectors are �column�-vectors. In the following let x ∈ Rn

be a vector and H ∈ Rn×m be a matrix. a and b shall stand for scalar values.

List of mathematical symbols

HT Transposed of matrix H
< Real part of a complex function or value
= Imaginary part of a complex function or value
a� b a is much smaller than b
fx Short for the Jacobian ∂f

∂x

In Identity matrix or identity operator in Rn

R Set of real numbers
N Set of natural numbers (including 0)
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