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Abstract

This thesis presents advances in numerical methods for the solution of optimal control problems. In particular, the
new ideas and methods presented in this thesis contribute to the research fields of structure-exploiting Newton-
type methods for large scale nonlinear programming and sensitivity generation for Initial Value Problems (IVPp)
for ordinary differential equations and differential algebraic equations. Based on these contributions, a new lifted
adjoint-based partially reduced exact-Hessian SQP (L-PRSQP) method for nonlinear multistage constrained opti-
mization problems with large scale differential algebraic process models is proposed. It is particularly well suited for
optimization problems which involve many state variables in the dynamic process but only few degrees of freedom,
i.e., controls, parameter or free initial values. This L-PRSQP method can be understood as an extension of the
work of Schéfer [Sch05] to the case of exact-Hessian SQP methods, making use of directional forward/adjoint sen-
sitivities of second order. It stands hence in the tradition of the direct multiple shooting approaches for differential
algebraic equations of index 1 of Bock and co-workers [BP84] [Boc87, [Sch88|, BES88, [Lei99]. To the novelties that
are presented in this thesis further belong

e the generalization of the direct multiple shooting idea to structure-exploiting algorithms for Nonlinear
Programs (NLPp) with an internal chain structure of the problem functions,

e an algorithmic trick that allows these so-called lifted methods to compute the condensed subproblems directly
based on minor modifications to the user given problem functions and without further knowledge on the
internal structure of the problem,

e a lifted adjoint-based exact-Hessian SQP method that is shown to be equivalent to a full-space approach,
but only has the complexity of an unlifted/single shooting approach per iteration,

e new adjoint schemes for sensitivity generation based on Internal Numerical Differentiation (INDJ) for implicit
Linear Multistep Methods (LMME) using the example of Backward Differentiation Formulas (BDF),

e the combination of univariate Taylor Coefficient (TC) propagation and IND}| resulting in IND-TC schemes
which allow for the first time the efficient computation of directional forward and forward/adjoint sensitivities
of arbitrary order,

e a strategy to propagate directional sensitivities of arbitrary order across switching events in the integration,

e alocal error control strategy for sensitivities and a heuristic global error estimation strategy for IVP solutions
in connection with IND schemes,

e the software packages DAESOL-II and SolvIND, implementing the ideas related to IVP solution and sensi-
tivity generation, as well as the software packages LiftOpt and DynamicLiftOpt that implement the lifted
Newton-type methods for general problems and the L-PRSQP method in the optimal control context,
respectively.

The performance of the presented approaches is demonstrated by the practical application of our codes to a series
of numerical test problems and by comparison to the performance of alternative state-of-the-art approaches, if
applicable. In particular, the new lifted adjoint-based partially reduced exact-Hessian SQP method allows the
efficient and successful solution of a practical optimal control problem for a binary distillation column, for which
the solution using a direct multiple shooting SQP method with an exact-Hessian would have been prohibitively
expensive until now.

Keywords

Large Scale Nonlinear Programming, Optimal Control, Parameter Estimation, Partially Reduced Newton-Type
Methods, Lifted Methods, Constrained Optimization, Gauss-Newton, Exact-Hessian SQP, Direct Multiple Shoot-
ing, Internal Numerical Differentiation, Automatic Differentiation, Taylor Coefficient Propagation, Initial Value
Problem Solution, Directional Sensitivity Generation, Ordinary Differential Equations, Differential Algebraic Equa-

tions



Zusammenfassung

Die vorliegende Arbeit préasentiert Fortschritte in numerischen Methoden zur Losung von Optimalsteuerungspro-
blemen. Insbesondere tragen die préisentierten Ideen und Methoden zur Forschung auf den Gebieten der struk-
turausnutzenden Newton-dhnlichen Verfahren fiir hochdimensionale nichtlineare Optimierungsprobleme und der
Sensitivititserzeugung fiir Losungen von Anfangswertproblemen (AWP) von gewohnlichen Differentialgleichun-
gen und differentiell-algebraischen Gleichungen bei. Basierend auf diesen Beitrdgen wird ein neues, sogenanntes
geliftetes, auf adjungierten Sensitivitdten beruhendes, partiell reduziertes SQP-Verfahren mit exakter Hessematrix
(L-PRSQP) zur Behandlung mehrstufiger, beschrinkter Optimierungsprobleme mit hochdimensionalen Modellen
aus differentiell-algebraischen Gleichungen vorgestellt. Dieses eignet sich besonders fiir Optimierungsprobleme,
deren dynamisches Modell viele Zustandsvariablen enthélt, und die nur wenige Freiheitsgrade wie Steuerungen,
Parameter oder freie Anfangswerte besitzen. Sie kann als eine Erweiterung des Ansatzes von Schéfer [Sch05] auf
den Fall von SQP-Verfahren mit exakter Hessematrix verstanden werden, die von kombinierten vorwarts,/riickwérts
Richtungssensitivititen zweiter Ordnung Gebrauch macht. Das Verfahren steht damit in der Tradition der von
Bock und Mitarbeitern [BP84, [Boc87, [Sch88, IBES88, [Lei99] entwickelten direkten Mehrfachschiefiverfahren fiir
differentiell-algebraische Modelle vom Index 1. Zu den Neuheiten, die in dieser Arbeit vorgestellt werden, gehdren
weiterhin

e die Verallgemeinerung der Idee des direkten Mehrfachschieiverfahrens auf strukturausnutzende Algorithmen
zur Losung allgemeiner nichtlinearer Optimierungsprobleme, deren Problemfunktionen eine kettenartige
innere Struktur aufweisen,

e ein algorithmischer Trick, der es diesen sogenannten gelifteten Verfahren erlaubt, die kondensierten Sub-
probleme nach kleiner Modifikation der vom Benutzer bereitgestellten Problemfunktionen und ohne weiter-
gehende Kenntnis der inneren Struktur des Problems, direkt zu berechnen,

e cin effizientes, geliftetes, auf Adjungierten basierendes SQP-Verfahren mit exakter Hessematrix, von dem
die Aquivalenz zur Vollraummethode bewiesen wird, welches aber pro Iteration nur die Komplexitat eines
ungelifteten Verfahrens/Einfachschiefverfahrens aufweist,

e neue adjungierte Schemata zur Sensitivitédtserzeugung basierend auf Interner Numerischer Differentiation
(IND) fiir implizite lineare Mehrschrittverfahren am Beispiel von BDF-Methoden,

e die Kombination von univariater Taylorkoeffizientenpropagation und IND, welche in IND-TC Schemata
resultiert, die erstmals die effiziente Berechnung von Richtungssensitivitdten beliebiger Ordnung erlauben,

e cine Strategie zur Propagation von Richtungssensitivitaten beliebiger Ordnung durch Schaltpunkte in der
Integration hindurch,

e cine lokale Fehlerkontrolle fiir Sensitivitdten und einen heuristischen globalen Fehlerschitzer fiir die AWP-
Losung, basierend auf den IND Schemata,

o die Softwarepakete DAESOL-II und SolvIND, in welchen die Strategien zur AWP-Losung und Sensitivitats-
erzeugung implementiert sind, sowie die Pakete LiftOpt und DynamicLiftOpt, welche die gelifteten Newton-
dhnlichen Verfahren fiir allgemeine NLPs beziehungsweise das L-PRSQP-Verfahren im Optimalsteuerungskon-
text beinhalten.

Die Effizienz der vorgestellten Ansitze wird mittels der praktischen Anwendung unserer Softwarepakete auf eine
Reihe von numerischen Testproblemen und, wenn mdglich, eines Vergleichs mit alternativen state-of-the-art Ver-
fahren demonstriert. Insbesondere erlaubt das neue L-PRSQP-Verfahren eine effiziente und erfolgreiche Behand-
lung eines praktischen Optimalsteuerungsproblems fiir eine binére Destillationskolonne, bei dem der Aufwand der
Losung mittels eines Mehrfachschiefverfahrens mit exakter Hessematrix bislang unvertretbar hoch wére.

Schlagworte

Hochdimensionale nichtlineare Optimierungsprobleme, Optimale Steuerung, Parameterschitzung, Partiell reduzierte
Newton-dhnliche Verfahren, Geliftete Verfahren, Beschrankte Optimierung, Gauss-Newton, SQP-Verfahren mit ex-
akter Hessematrix, Direktes Mehrfachschiefverfahren, Interne Numerische Differentiation, Automatisches Differen-
zieren, Taylorkoeffizientenpropagation, Losung von Anfangswertproblemen, Erzeugung von Richtungssensitivitéten,
Gewohnliche Differentialgleichungen, Differentiell-algebraische Gleichungen



O Introduction

Over the last decades mathematical methods for modeling, simulation and optimization have
gained not only continuously more and more importance in industrial applications, but have also
an ever increasing impact on our everyday life. Processes from nearly all fields, such as engineering,
chemistry, biology, medicine, physics and economics are now often translated into a mathemati-
cal model and afterwards analyzed, simulated, and optimized using mathematical methods. The
results of this development can be observed in our daily life in many different forms. Examples
are the planning of surgeries and radiation therapies based on an individual model of the patient,
improvements of the operation of industrial plants regarding to quality, safety, throughput, the
use of raw materials, energy consumption, etc., the fast determination of the optimal route to a
target by a GPS-based navigation system in our car or mobile phone (possibly even accounting for
the actual traffic situation) or the automated trading software agents performing a large number
of deals every fraction of a second autonomously in the stock markets.

To the same extent to which the understanding and the modeling of the processes gets more and
more detailed, the complexity and usually also the size of the resulting mathematical models in-
creases. This in return drives the need for an increased performance in the solution of the related
mathematical simulation and optimization problems.

This is one of the motivations for performing research on the mathematical methods for the sim-
ulation, analysis and optimization of these processes, and hence also for this work. This is even
more the case, as advances in the methods often give rise to enormous speedups and regularly
open up the possibility to treat completely new classes of problems.

Many (dynamic) processes can be described mathematically by a system of nonlinear differential
and algebraic equations involving so-called control functions, which together with the initial sys-
tem state determine the development of the process in time. The optimization of this kind of
processes, possibly subject to constraints as costs, time, safety margins, limited ressources, etc.,
is commonly denoted by optimal control.

Optimal Control Problems (OCPf) often occur as “offline” problems, i.e., they are solved once and
the resulting optimal controls are then applied to the process. But they also occur in the context
of “online” optimization, e.g., in the framework of Nonlinear Model Predictive Control (NMPC).
Here the optimal control problem is solved repeatedly after every feedback from the process (e.g.,
in form of measurements of the system state), which allows to react to occurring disturbances
based on the recomputed and adapted optimal control profile (see, e.g., [RMM94, ABQ799|). In



any case, to solve these problems in practice, fast and reliable numerical methods are needed.

The three fundamental approaches to solve the infinite-dimensional are given by dynamic
programming, which is based on Bellman’s principle of optimality, the indirect approach based
on Pontryagin’s maximum principle and the direct approach, based on the transcription of the
optimal control problem into a finite-dimensional Nonlinear Program which is afterwards
solved, e.g., by a tailored Sequential Quadratic Programming method. The transcription
is achieved by discretizing the control functions and possibly also the states on a suitable grid.

For the solution of constrained [OCPp, methods based on the direct approach have been proven to
be particular successful for practical problems. They can roughly be separated into sequential and
simultaneous approaches. In sequential approaches like direct single shooting ([HR71, [SS78|, [Kra85,
MSS86]), the dynamic model is considered as black box, and the optimization algorithm is based
only on the input-output relationship between the discretized control functions and the values
of cost functional and constraints. Simultaneous or all-at-once approaches like direct collocation
([THET7S, Bar83l Bies4l, (CB8Y, [LB92, [Sch96]) or direct multiple shooting (|Pli81, BP84l BES8S,
Lei95) [Lei99, LBBS03, [LSBS03), TB95L TBY6, PRGTI7, (GJLT00, BP04, [Sch05l Rie06, [Sag06]) also
parametrize or discretize the dynamic of the process, and add the resulting variables as additional
degrees of freedom to the [NLP| which means that the optimization and the solution of model
dynamics occur simultaneously.

The simultaneous approaches like direct multiple shooting seem to have the disadvantage of a
larger number of variables, but this can be overcome to a large extent by exploiting the resulting
specific structure in the Newton-type [NLP| method. Their advantages include a better possibility
of introducing a priori knowledge of the solution and better convergence properties (see, e.g.,
IBP84], Boc&7]). For multiple shooting, the structure exploitation can be performed in different
ways. The first possibility is to build the full-space subproblems and to perform afterwards
condensing steps to reduce the size of the QP subproblem to that of the QP in the comparable
single shooting problem. However, this would need the building of the complete sensitivity matrices
of the states, which is, already for moderately large problems, by far the most expensive task in
the optimization algorithm. And it is prohibitively expensive or even impossible in case of large
scale problems that arise, e.g., from spatial discretizations of instationary Partial Differential

Equations (PDEES).

Alternatively, the condensed problem can be computed directly by using directional sensitivities in
a suitable way, which avoids the need to form the complete state sensitivities, and instead needs
essentially only sensitivities with respect to the discretized control functions, similar to single
shooting. This is favorable in the case where we have only a few control functions and an, in com-
parison, large number of states of the dynamic system. This reduced approach has been developed
first for constrained Gauss-Newton methods [Sch88| and later for update-based SQP methods in
the direct multiple shooting context [Sch05, IGJLT00]. However, until now this idea cannot be
used in connection with exact-Hessian SQP methods. In case of a comparatively large number of
control functions and few system states, like it occurs often in methods for mixed-integer optimal
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control, other means like complementary condensing [KBSS11] [Ste95] and the direct exploitation
of the QP sparsity are of advantage.

Until now simultaneous approaches usually lead to a higher implementational burden and the
algorithms are tailored to the specific structure of the underlying problem, which explains why
direct single shooting is still widely used in practice despite its drawbacks.

Even if by the choice of a reduction approach the number of needed directional sensitivities
can be decreased, sensitivity generation remains, together with the solution of Initial Value
Problems ), the most expensive subtask in many modern optimization algorithms for large
scale problems. Efficient sensitivity generation is, however, not only of interest in the solution of
dynamic optimization problems, but also, e.g., for the analysis of dynamical systems in general or
for model reduction [LSF0§].

Most algorithms for sensitivity generation are based on the solution of the associated forward or
adjoint variational differential equation with a discretization grid that is different from the one
of the solution of the nominal IVP. This approach has the advantage that it is relatively easy
to implement, once an [VP] solver is at hand. However, drawbacks are that the formulation of
the corresponding variational differential equation often has to be done manually, which might
be cumbersome and error-prone especially for large scale systems. Furthermore, these methods
do compute an approximation of the derivative of the exact (analytical) IVP solution, but this
approximation has in general no or only a limited connection to the derivative of the numerical
IVP solution produced by the integrator. This, however, is important for the use in adaptive di-
rect optimization methods, where it is important that the computed derivatives and the function
evaluations are properly related. Another drawback is that the internal structure arising from the
relationship of the nominal [VP]and the variational [VP]is either not exploited, or this exploitation
has to be done manually.

An approach to overcome these problems is the principle of Internal Numerical Differentiation
, invented by Bock [Boc81]. Simply speaking, using means to derive the numerical
scheme of the integrator with frozen adaptive components, e.g., using the techniques of Automatic
Differentiation (AD) (see, e.g., [Gri00]). The result is a numerical scheme for the approximation
of the sensitivities that delivers always the exact derivative of the numerical IVP solution. Fur-
thermore, IND allows to reuse a lot of information from the nominal integration for the sensitivity
computation and hence leads to an automatic structure exploitation. Over the years, several IND-
based codes have been developed and used with great success. However, with few exceptions all
of them only allow the computation of forward sensitivities of first or at most second order. For
implicit multistep methods, that can be applied to stiff [VPp, until now no IND schemes exist for
the computation of adjoint sensitivities, even though they are of great interest, e.g., in the con-
text of SQP methods with inexact constraint Jacobians [JS97, [HV01l [GW02, BDK04, DWBK09],
whenever gradient-type information is needed or if many control functions and parameter are
present. Also the computation of second order sensitivities, which are needed for exact-Hessian



approaches, robust optimization [KKBS04, [DBKO06] and Optimal Experimental Design (OED))
[Bau99, BBKS00, Kor(2, IKKBS04|, in a pure forward way is very inefficient for medium to large
scale systems. Hence, the possibility to combine a forward and adjoint mode of IND for the com-
putation of second order sensitivities, analogously to the similar concept in the context of [AD] for
the computation of second order derivatives of ordinary functions is highly desirable and motivates
the research presented in this work.

Goals of this thesis

This thesis aims to make contributions to two major research fields that are strongly connected to
the efficient solution of large scale dynamic optimization problems in general and the solution of
optimal control problems in particular: the field of structure-exploiting Newton-type methods for
nonlinear programming and the field of sensitivity generation for solutions of for Ordinary
Differential Equations (ODEE) and Differential Algebraic Equations (DAER).

On the one hand, we will explain how the idea of direct multiple shooting and the advantages of
this simultaneous approach can be transferred to the more general context of nonlinear program-
ming problems, in which the problem function evaluation possesses a certain internal structure
in form of intermediate values. These intermediate variables are then, as in multiple shooting,
added as degrees of freedom to the problem — thus “lifting” the problem into a space with more
variables — together with corresponding constraints to ensure equivalence of the solution with the
original problem. We then develop lifted algorithms that are able to exploit the internal structure
of the augmented (lifted) problems automatically, without requiring much detailed information
on the problem structure. This also significantly reduces the implementation overhead normally
associated with this approach as well as the dependency of the algorithm on a specific problem
structure, which makes them usable for a broader audience. Furthermore, we will investigate —
carrying on the tradition of other structure-exploiting methods developed by Schléder [Sch88| and
Schéfer [Sch05] in the multiple shooting context — how a lifted exact-Hessian SQP method can be
constructed that possesses the same order of complexity in terms of needed derivatives per non-
linear iteration as a corresponding unlifted /sequential /single shooting method. This is contrary
to the existing exact-Hessian SQP methods which become prohibitively expensive for large scale
problems regarding both run-time and memory demands.

On the other hand, we will present new methods for the efficient generation of (directional) sensi-
tivities of IVP solutions of stiff systems, a task that is in many cases essential for the construction
of efficient algorithms for the solution of dynamic optimization problems. We want to benefit
from both the favorable properties of the adjoint mode of [AD] and of the principle of to
obtain new first order adjoint IND schemes for sensitivity generation in a Backward Differentia-
tion Formula (BDF]) method. In addition, we want to explore the possibilities of transferring the
approach of univariate Taylor Coefficient propagation to the context to develop IND-
TC schemes that allow for the first time the generation of directional sensitivities of arbitrary
order. This is a new capability that is very important not only for exact-Hessian methods for
optimal control problems, but also in the context of robust optimization and where higher-
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order directional sensitivities are needed regularly. Furthermore, several new strategies related to
sensitivity generation are analyzed, e.g., for the propagation of sensitivities across switching events.

To bring these newly developed ideas immediately to a practical application we finally like to
show, how in connection with a partial reduction technique for a lifted partially reduced
exact-Hessian SQP (L-PRSQP) method in the framework of direct multiple shooting can be con-
structed. The method shows a complexity that is independent of the number of states of the
dynamic system, which is a significant improvement compared to existing approaches.

Among the novelties that we will present in this thesis are

the generalization of the direct multiple shooting idea to structure-exploiting algorithms
for general [NLPp with intermediate values in their function evaluations, the so-called lifted
methods,

an algorithmic trick that allows these lifted methods to compute condensed subproblems
directly, based on only minor modification to the given user functions and without further
knowledge on the internal structure of the problem,

an efficient adjoint-based lifted exact-Hessian SQP method that is shown to be equivalent to
a full-space approach, but only has the complexity of an unlifted /single shooting approach
per iteration,

new adjoint IND schemes for implicit Linear Multistep Methods (LMMS5) at the example of
[BDF] methods,

the combination of univariate propagation and resulting in the first IND-TC
schemes, which allow for the first time the efficient computation of directional forward and
forward /adjoint sensitivities of arbitrary order,

a strategy to propagate arbitrary order directional sensitivities across switching events in
the integration,

a local error control strategy for sensitivities and a heuristic for global error estimation for
the IVP solution in connection with IND schemes,

a lifted partially reduced exact-Hessian SQP (L-PRSQP) method tailored to DAE optimal
control problems in the direct multiple shooting framework, that allows the treatment of

large scale problems that otherwise would be too expensive to solve with an exact-Hessian
SQP method,

the software packages DAESOL-IT and SolvIND, implementing the ideas related to IVP solu-
tion and sensitivity generation, as well as the software packages LiftOpt and DynamicLiftOpt
that implement the lifted Newton-type methods for general NLP|problems and the L-PRSQP
method in the optimal control context, respectively.



Thesis overview

This thesis is organized as follows. In Chapter [1| we present a class of optimal control problems.
We first give a basic definition of optimal control problems for index 1 DAE models and then
discuss possible extensions. Afterwards, we give a brief overview of the commonly used solution
strategies with an emphasis on direct methods. Here we explain shortly the principles behind
direct single shooting, direct collocation and direct multiple shooting methods and discuss the
individual advantages and disadvantages of the different approaches.

As the computation of derivatives of functions such as cost functionals, constraints or
model functions will play an important role in most of the later chapters of this thesis we give in
Chapter 2] an overview of different techniques for derivative generation. We present the commonly
known approaches with their advantages and shortcomings. Afterwards, we give a detailed intro-
duction to the basic concept of the derivative generation using [AD] as we will use this technique
regularly throughout this thesis. We put a special emphasis here on the generation of higher-order
directional derivatives using univariate [TC| propagation, as this topic is not so commonly known
but essential to understand the methods we develop in this thesis. At the end, we discuss briefly
how sparsity can be exploited in the computation of derivatives.

Chapter [3] is dedicated to constrained nonlinear programming. We give a general formulation of
a constrained [NLP] as well as some special important subclasses along with the required notation
and definitions. Then we address necessary and sufficient conditions for local optimal solutions of
a[NLP] In Section [3.3 we explain the solution of using Newton-type optimization methods.
In particular, we address here the framework of methods and discuss two important members
of the family in more detail. Afterwards, we give a short overview of other SQP variants not
treated in this thesis. The chapter ends with a short presentation on strategies to ensure global
convergence of the algorithms.

In Chapter [4] we present the lifting idea for the solution of and develop algorithms for their
solution that solve the augmented (lifted) system by a structure-exploiting Newton-type method,
yet do not require any additional knowledge about the structure of the problem functions or the
meaning of the intermediate variables. We explain in Section the basic idea at the example
of Newton’s method for a root finding problem and derive a “lifted” Newton algorithm for the
efficient solution of the problem. In Section we discuss the application of the lifting approach
to optimization and derive a lifted Gauss-Newton method and a lifted exact-Hessian SQP method
for equality and inequality constrained that is based on adjoint gradient computations.
We prove the equivalence of this last method with the iterations obtained by a full-space SQP
method. Afterwards, we discuss in Section under which circumstances “lifted” approaches
converge faster than non-lifted ones, and give a proof in a simplified setting. We illustrate the
potential of the developed method with the help of a tutorial example in Section and confirm
here for the numerical solution with our software package Lift0Opt also the convergence properties
that we derived theoretically.
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Chapter [5] treats the efficient numerical solution of (stiff) [VP for [ODEs and of index 1,
which occur as subproblems, e.g., in the solution of optimal control problems. In Section we
state some important definitions and results from DAE theory. Afterwards, we explain the proper-
ties of and the subclass of methods, which form the basis of our numerical integration
code DAESOL-II. The more specific strategies related to IVP solution that are used in our code
DAESOL-II are presented in Section [5.3] The different subtasks occurring in the numerical scheme
for IVP solution are discussed in more detail, as they are required for the deeper understanding of
the strategies for sensitivity generation that are developed in the following chapter. Topics pre-
sented here include, e.g., the representation of predictor and corrector polynomials, the monitor
strategy for the Newton-like method used for the solution of the implicit corrector equation as
well as the continuous representation of the IVP solution.

In Chapter [6] we address the computation of sensitivities, i.e., of the derivatives of solutions of
with respect to initial values and parameter. We start here with the general problem for-
mulation and show that forward and adjoint sensitivities can be represented as solutions of the
so-called forward or adjoint variational which could be used to compute the sensi-
tivities analytically (or also numerically). Afterwards, we explain the principle of and show
in the following how, based on the IND principle and in connection with [AD] efficient numerical
structure-exploiting schemes for the computation of sensitivities can be derived. We present here
new adjoint IND schemes for implicit using the example of BDF methods. In Section
we present the combination of the principle of [ND] and of univariate [TC| propagation which en-
ables us to derive the first schemes capable of computing directional forward and forward /adjoint
sensitivities of arbitrary order. In particular, the new possibility to compute reduced Hessian sen-
sitivities based on an IND approach is essential for the lifted exact-Hessian SQP method presented
in the following chapter. We give then a comparison of the different IND-based schemes for sen-
sitivity generation and present in Section several more specific strategies related to sensitivity
generation in general and their implementation in connection with DAESOL-IT and SolvIND. We
address here among others the continuous representation of the sensitivities, the computation of
adjoint derivatives of functions defined on states on an arbitrary timegrid by adjoint sensitivity
injection and the local error control for forward sensitivities of arbitrary order. Furthermore we
give a proposal for an IND-based a posteriori error estimator for the global error of the ODE/DAE
solution. Finally, we develop for the first time a strategy for the propagation of directional sensi-
tivities of arbitrary order across switching events, which makes the computation of higher-order
sensitivities in this context now computationally feasible.

The combination of the developed lifted exact-Hessian SQP method and the new sensitivity gen-
eration schemes in the framework of direct multiple shooting for optimal control problems for
is presented in Chapter[7] In Section [7.I] we present the fundamentals of our algorithm. We
explain the basic problem structure resulting from the application of the direct multiple shooting
approach to the optimal control problem and how the classical condensing approach is working in
this case. In this context, we address also the partial reduction technique for DAEs. We show that
this approach can be used in connection with our lifted optimization methods to enable them also



for the use in the context of DAE problems. Furthermore, we explain how (IND-)TC propagation
can be used in the context of lifting to compute here the condensed QP subproblem directly and
give a basic form of our algorithm. Section covers further practical aspects in connection with
our algorithm, such as the termination criterion and the treatment of infeasibilities. We end this
chapter with Section [7.3] where we give a comparison of our lifted partially reduced exact-Hessian
SQP (L-PRSQP) algorithm with an exact-Hessian SQP algorithm based on classical condensing
to illustrate the advantages of our approach.

Numerical examples of the application of our code Lift0Opt, in which the lifting idea presented in
Chapter [] is implemented, are given in Chapter [§] Sections [8.1] and [8.2] illustrate the benefits of
the presented lifted optimization methods compared to unlifted methods on a small toy example,
while Section treats a very large scale example. The latter one, a parameter estimation prob-
lem for hyperbolic PDEs, demonstrates also the practical feasibility of lifting a large, user given
simulation code with Lift0Opt.

In Chapter [J] we present numerical tests for the sensitivity related strategies implemented in our
packages DAESOL-II and SolvIND. We analyze in Section the costs of different integration
and sensitivity generation tasks on a scalable test problem given by a model for an SMB process.
In Section we compare our newly developed adjoint IND scheme against an alternative ap-
proach based on the solution of the adjoint variational ODE/DAE, implemented in the SUNDIALS
suite. The comparison is based on several test problems from the IVP testset of the University
of Bari and shows the efficiency of our IND-based schemes. In Section we demonstrate that
the proposed strategy for error control of forward sensitivities works and leads to only slightly
larger computational costs. Section confirms numerically that the intermediate adjoint IND
quantities can be used to create an efficient a posteriori error estimator for the global error of the
IVP solution, also in case of index 1 DAESs.

In Chapter we show that our L-PRSQP algorithm, which is implemented in the package
DynamicLiftOpt, is able to efficiently solve practical DAE optimal control problems. We demon-
strate this for the example of an optimal control problem for a binary distillation column. In
Section we describe briefly the model of the distillation column. Afterwards, we explain in
Section the setup of the optimal control problem and present in Section the numerical
results.

Chapter |11} finally contains a brief summary of the most important ideas and results of this thesis
and addresses several topics that might be interesting as directions of further research.



1 Optimal control problems

In this chapter we present a class of continuous optimal control problems. We define the basic
problem class and discuss possible extensions. Afterwards, we address shortly the different funda-
mental solution strategies, i.e., dynamic programming, indirect methods and direct methods. We
then focus on direct methods and have a closer look at their main ideas, as we will refer to some
of them in the derivation and description of our optimization algorithms in Chapters [ and

1.1 Problem formulation

In the following, we first give a basic formulation of an optimal control problem for dynamic
processes described by Differential Algebraic Equations (DAEE).

Definition 1.1 (Continuous optimal ¢ontr
A continuous Optimal Control Problem (OCP,

ol p1

roble

for

DAE

m)
s is a constrained optimization problem

of the form
min
u(')vx(‘)vz(')vp
s.t.

A(t,x(t),z(t),u(t),p) - x(t) =

0 =

0 <

x(ts) =

c(x(-).z(-),u(-), ) (1.1a)

f(t,X(t),Z(t),u(t),p), teTl = [ts7tf]
t,x(t),z(t),u(t),p)
he™ (¢, x(t), z(t), u(t), p)

g(

Xo0-

The different components of the problem are given by

o T = [ts,tf] C R represents the fixed time horizon on which the problem is formulated and

the time variable is denoted by t.

e u: 1T — R™ js the control function which is to be determined. In the general case, u is

assumed to be a measurable function.

e x: T — R"™ z:T — R™ are the differential and algebraic states of the dynamic process
under consideration. They must fulfill the DAE model of the process and hence are assumed
to be at least continuously differentiable. xo € R"* describes the initial differential state of

the process.
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e A: T xR"™ xR"™ x R"™ x R — R"™*" f : T x R%™ x R" x R™ x R — R" and
g: T xR™ x R" x R™ x R — R" are the [DAF] model functions describing the time
development of the underlying dynamic process. They are in general assumed to be twice
continuously differentiable. Throughout this thesis, we consider only linearly implicit DAFEs
of index 1, as they suffice to describe dynamic processes that occur in a broad variety
of application fields. Furthermore, their intrinsic structure can be efficiently exploited by
DAEF solvers. We assume that % and A are regular along the DAFE solution trajectory to
guarantee the index 1 assumption. As a result, the algebraic states are fully determined by
the differential states, the control and the parameter. For more details on the properties
and the efficient numerical integration of the DAE model we refer to Chapter [3

e p € R"™ is a parameter vector that contains all degrees of freedom of the problem that are
not time-dependent, e.g., the parameter of the DAE model of the dynamic process.

e c is a cost functional defined on the control function, the trajectories of the differential and
algebraic states as well as the parameter. A common type of cost functional is the Bolza
cost functional. It consists of two parts: a Lagrange term, i.e., the integral over a Lagrange
objective function I(t,x(t),z(t),u(t), p), and a Mayer term, i.e., an end-point contribution
m(ty,X¢, z¢, p). Hence a Bolza objective can be written in the form

ly
C(X(')>Z(')vu(')>p) = / l(t,X(t),Z(t%ll(t),p)dt—i—m(tf,X(tf),Z(tf),p). (12)
ts
We assume in general that the cost functional is twice continuously differentiable .

o heont . T x R" x R" x R"™ x R™ — RMec jg a twice continuously differentiable function
representing possibly mixed state and control constraints on the time horizon. As they do
not combine the values of states or controls at different points in time they are also called
decoupled constraints.

In addition to this basic problem formulation there exist several possible extensions and special-
izations that are important in practice. These include:

e Variable time horizon, e.g., free end time:

The above is formulated on the fixed time horizon T' = [t,,ts]. The end time or
equivalent the length of the time horizon can be made a degree of freedom by performing a
time transformation. If we define

t(1) :=ts+ppr and pp =ty —t,, (1.3)

we can add py, as degree of freedom to the parameter vector p and reformulate the in
the “normalized” time 7 on the time horizon 7 € [0, 1]. The differential right hand side of
the DAE (1.1b]) then transforms to (assuming A = T here for readability)

X(1) = pn - £(8(7),x(1(7)), 2(t(7)), u(t(7)),p),  T€T=101] (1.4)

and all function evaluations have to be performed for the “physical” time ¢(7).



CHAPTER 1. OPTIMAL CONTROL PROBLEMS 11

e Other constraint types:

There are further possibilities to impose constraints to the Boundary constraints only
involve the initial and final states and hence have the form

0 < hP™(x(t.), 2(t,), x(t7), 2(t,)). (1.5)

Interior (multi-)point constraints may depend on the states at one (or more) time points
within the time horizon as well as on the parameter

0 < h®(x(t1),z(t1),...,x(t),z(t:), ..., x(tn), 2(tn), P), ti € [ts,t;], 1<i<n (1.6)

We also distinguish between coupled constraints, which may depend beside the parameter
also on the state and the control values at different timepoints, and decoupled constraints,
which depend beside the parameter only on quantities at one time point. An example for
the latter are the continuous path and control constraints in the basic formulation.
Note that in principle all these constraint types can also contain equality constraints, e.g.,
in the case of boundary constraints to describe periodicity conditions.

e Least-squares objective:

An important subtype of cost functionals is given by the so-called least-squares functionals.
They have the form

c(x(),z("), u("), p) Z/tf||r(t,X(t),Z(t),U(t),p)H%dt, (1.7)

where r : T' x R™ x R™ x R"™ x R™ — R™e is the least-squares residual function. Least-
squares functionals often occur in tracking problems, where the deviation of the states from
a prescribed path is penalized, and in parameter estimation problems. Furthermore, they
can be used to regularize the controls u numerically.

e Multistage problems:

The was defined based on one specific dynamical model with a fixed number
of states, parameter and controls. In practice, however, it can be desirable and sometimes
even necessary to allow changes in the underlying process dynamics or other transitions that
can be modeled by a multistage optimal control problem. Practical examples for this can
be found, e.g., in [Lei99, IDLST02]. A multistage formulation with n.s model stages can
be formed by defining on each model stage an of type (L.1) with possibly different
dimensions, dynamic models and constraints. The overall cost functional is then defined as
the sum of the cost functionals on the different model stages. In this formulation each model
stage is connected with the next model stage by a transition constraint of the form

Xier1 (tsprr) = D (tp g, xuc(trn), Ze(trn), W (E 1 1), P, 1 <k < nos — 1, (1.8)

where the subindices k£ and k + 1 denote to which model stage the quantities belong.
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e Mixed-integer problems:

It is also possible to restrict some of the controls and/or the parameter to a set of dis-
tinct values. This leads to mixed-integer optimal control problems which require a special
treatment. For more information, we refer to [Sag05l, [KSBS10] .

We refrain here from stating and discussing the optimality conditions for the continuous
as well as the structure of optimal solutions. Necessary optimality conditions are usually derived
using Pontryagin’s maximum principle and can be found (for the basic with ODE dynamics),
e.g., in [PBGM62, BH75|. For a derivation of sufficient optimality conditions for certain problem
classes we refer to [MOOQ4]| and references therein.

1.2 Solution approaches

Over the years, several different approaches have been developed to (numerically) solve of
type . They can be distinguished, e.g., by the space in which the optimization of the problem
occurs, the discretization approach and the order in which discretization and optimization take
place. Depending on the chosen approach, they differ in the run-time and memory demands for
the numerical solution, the achievable accuracy of the solution, the possibility to compute global
optima, the effort for their implementation and, as a result, also in their applicability to certain
problem classes and problem sizes. In general, the solution approaches can be divided into three
larger classes: Dynamic programming, indirect and direct methods.

1.2.1 Dynamic programming

Dynamic programming is an approach that is based on Bellman’s principle of optimality [Bel57].
Roughly speaking, it says that any subarc of a given optimal solution of the on the whole
time horizon is also optimal on the corresponding part of the time horizon.

Theorem 1.2 (Bellman’s principle of optlimality)

If (u*(-),x*(+)) is an optimal solution of the |OCP (for notational ease we consider in the
following only the ODE case with a Bolza type cost functional) on the time horizon [ts,ts|, then
for any given time point t € [t,t7] holds, that (u*(-),x*(-)) is also an optimal solution of the
problem for the time horizon [t,t;] and the initial value x(t) = x*({).

The vehicle to make practical use of this idea is the cost-to-go function

Definition 1.3 (Optimal-cost-to-go function
We define the optimal-cost-to-go function for the|(OCH (1.1) on the interval [t,ts] as

cost(t,X) := u%r)uxr%)/t l(x(t),u(t))dt + m(x(ty)), (1.9)

where the condition x(t) = % as well as the constraints of the are imposed.
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Dynamic programming is normally used for discrete time systems. Assuming a timegrid ¢, =
t <ty < ...<t, =ty the optimal-cost-to-go function at a gridpoint 1 < j < n can be defined
recursively by

tjr1
cost(t;,%;) = min / Hx(8), ut))dt + cost(ty 41, X(t511)). (1.10)
u(-),x(-) J¢

subject to x(t;) = x; and the constraints.

Dynamic programming algorithms use this recursive version of the optimal-cost-to-go function to
compute an optimal solution backwards from the end of the time horizon to the beginning. Start-
ing with ¢(t,,,Xm) = m(x(t,,)) in t,,, the problem has to be solved on every subinterval
[t;,tj41] for j =m —1,...,1 for each value x fulfilling the constraints. For continuous variables
X this requires also a discretization of the state space. For each of the solved subproblems, the
obtained cost function values and the corresponding solutions are stored for the use in the com-
putation of the subproblem on the preceding time interval. This storing is called the “tabulation
in state space”.

Dynamic programming has one unique advantage compared to the other approaches presented
later: As the search for the solution occurs in the entire state space, a global optimal solution
of the is found. Another property that is of special use in the context of feedback control
algorithms for online optimization is that the tabulation of the subproblem solution corresponds
to a precomputation of the optimal control moves for any given system state. Hence, the optimal
control feedback can be obtained immediately after the measurement of the system state by a
simple table look-up.

However, these advantages come at a very high price in terms of memory demand and run-time
complexity of the approach which suffers from the so-called “curse of dimensionality”: The run-time
for a dynamic programming algorithm grows exponentially with the number of states and hence
becomes prohibitively large already for medium size problems. Therefore dynamic programming
is of practical use only for quite small systems.

If the size of the subintervals [t;,%,41] tends to zero, this leads to the Hamilton-Jacobi-Bellman
equation. This is a partial differential equation that can be used to determine the optimal so-
lution for continuous time systems. It shares in principle the advantages and disadvantages of
the dynamic programming approach. For more information on dynamic programming and the
Hamilton-Jacobi-Bellman equation we refer to [Bel57] and in the context of optimal control also
to [Ber05, Ber07].

1.2.2 Indirect methods

The class of indirect methods for the solution of optimal control problems is based on Pontryagin’s
maximum principle and can be characterized as “first optimize - then discretize”. In this classical
approach the necessary conditions of optimality in the infinite-dimensional function space are used
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to transform the [OCP]into a multipoint boundary value problem that has no degrees of freedom
any more. The latter is then solved by suitable numerical methods, as for example multiple
shooting [Osb69), Bul71l, Deu74. Boc78al Boc78b]. No discretization occurs until the boundary
value problem is solved numerically. For some special (small) cases, also an analytical solution
might be possible.

Indirect methods are able to compute the optimal control with a very high accuracy, as no approx-
imation of the control occurs before the optimization step and the infinite-dimensional problem is
solved. Since the transformation to a boundary value problem eliminates the degrees of freedom
in the controls, indirect method offer some advantages for problems with many control functions
compared to the number of states. Thus, the size of the problems scales linearly with the number
of states, and hence the complexity is much better than in the case of direct programming or the
use of the Hamilton-Jacobi-Bellman equation.

However, there are a number of drawbacks associated with the indirect approach. The derivation of
the optimality conditions and the transformation into a boundary value problem require knowledge
on the specific problem and often a lot of manual work. Furthermore, in the presence of general
path and control constraints or interior point constraints, the solution structure is usually unknown
in advance (see, e.g., in [Boc78al, [Pes94, [HSV95|, [Sag05] for more details). Even if the structure of
the optimal solution has been determined once, it is very sensitive to small changes in the problem
formulation, e.g., the addition of a constraint, but also to changes in the initial conditions or
parameter values. Hence, in these cases the possibly lengthy derivation has to be repeated quite
often. For systems with a larger number of states and controls the derivation may simply be
impossible in practice.

For the successful numerical solution of the resulting boundary value problems not only a priori
knowledge about the structure of the optimal solution is of importance. Also suitable initial values
for all variables have to be available, such that the initial guesses lie inside the convergence region
of the numerical method (usually a Newton-type method). This is often difficult, especially for
the adjoint variables. Hence in some algorithms direct methods (see the following Section
are used as “starter” for indirect methods to generate the needed initial values for the variables
IBNPvS91].

Note also that the solutions computed by indirect methods are, other than for dynamic program-
ming, not necessarily global optima. Usually, they are only locally optimal.

Summarizing, it can be said that the solution of optimal control problems by indirect methods is
in general an interactive process that requires knowledge about the specific problem such that it
cannot be performed in a fully automated manner. As a result, indirect methods are usually not
chosen as foundation of multiple purpose algorithms but are mostly applied if a high accuracy
solution for a specific problem class is needed.

1.2.3 Direct methods

Direct methods, contrary to indirect methods, can be characterized by the expression “first dis-
cretize - then optimize”. In direct methods the infinite-dimensional optimal control problem is
transformed into a finite-dimensional Nonlinear Program . This resulting optimization
problem is then solved using a suitable numerical algorithm for finite-dimensional optimization
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as, e.g., the ones presented in the subsequent chapters. To perform the transformation, all di-
rect methods employ a discretization of the control function u(-). The different classes of direct
methods are then distinguished based on their treatment of the system states x(-) and z(-), i.e.,
whether or not the system states are discretized. For a detailed comparison of the different classes
of direct approaches for the solution of optimal control problems we also refer to [BBBT01].

Direct single shooting

In direct single shooting [HRT71, [SS78| [Kra85| the control function u(-) in is replaced by a
finite-dimensional discretization. This discretization can, e.g., be performed by first choosing a
time grid t, =ty <t < ... <tlp,,, =ty on the horizon [t,,¢7]. Then, on the subintervals defined
by this grid, the control function is approximated piecewise by

U(t) = ’lpi(t, ui) for ¢t € [ti7ti+1]7 (111)

where u; is a finite-dimensional control parameter vector and 1, is chosen typically as constant or
linear in each component. At this level, the system states are not discretized and interpreted as
variables that depend on the values of the controls (and of course on the model parameter and the
initial values). To determine the states as a function of them the corresponding DAE Initial Value
Problem has to be solved. Thus, direct single shooting is called a sequential approach.

A

X0

f f f >

to t1 t2 trgia—1 Tt

Figure 1.1: Illustration of a direct single shooting discretization of the optimal control problem for ordinary dif-
ferential equations. Here, a piecewise constant discretization of the controls on an equidistant grid is
used.

Based on the control discretization and the representation of the system states as a function of
the control parameter, the original optimal control problem can be written as an [NLP|in the
unknowns

(u07 u17 c 7ungrid71)7

provided that no free parameter are present and that the initial value is fixed. The infinite-
dimensional path and control constraints of the [OCP| are either discretized, and thus enforced
only at the discretization points, or added to the cost functional in form of penalty terms. Other
constraints such as interior point constraints can be transferred straightforward to the NLP con-
text.
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The advantages of the direct single shooting approach are that it leads to relatively small NLPE,
as the only degrees of freedom are the control parameter, and that it is quite easy to implement,
provided an NLP solver and a suitable numerical integration code are available. Furthermore,
state-of-the-art adaptive DAE solvers can be used in this context, cf. Chapters[5and [0 and easily
exchanged to handle specific properties of the dynamic model.

On the other hand, there are a number of disadvantages of the direct single shooting approach.
Depending on the nonlinearity and the stability of the dynamics, the initial guess for the control
parameter might have to be chosen very close to the solution in order to guarantee the existence
of a (numerical) solution of the DAE-IVP. It is possible, e.g., for unstable DAEE, that for many
initial guesses for the control parameter no solution of DAEHIVP|can be computed, either because
of a singularity or due to numerical instabilities that lead to an explosion of the error during the
integration of the In these cases, direct single shooting cannot be applied successfully in
practice. Furthermore, no a priori knowledge on the state trajectory of the solution (e.g., in track-
ing or parameter estimation problems) can be used in solution process, because only the control
parameter enter the problem and the state values are regarded as completely determined by them.
The convergence rate of the NLP problem is often determined by the nonlinear dependence of the
DAE solution at the end of the time horizon on the controls at the beginning, i.e., the nonlinearity
“accumulated” over the whole time horizon (see also the discussion on the local convergence of
unlifted methods in Section [4.3)). This is different (and usually worse) than, e.g., in the case of
direct collocation and direct multiple shooting, where this nonlinearity might be “distributed” and
hence is effectively reduced.

Direct Collocation

Direct collocation for the solution of optimal control problems has first been proposed in [THET75]
and was further developed, extended and applied, e.g., in [Bar83l Bie84, [Str93, [SBS98, [KBO6,
KBO08| and references therein. Here, not only the control u(-) is discretized but also the system
states x(+) and z(+). The approximation is in general based on polynomials and is done on a com-
mon fine grid with ng4q subintervals, where each subinterval contains n.q collocation points. The
DAE in the OCP is then replaced by an ng,-point collocation formula on each subinterval which
usually means that n,+n, (nonlinear) equality constraints are introduced in each collocation point
on every interval. These conditions can usually be interpreted as a kind of numerical integration
scheme on the intervals that ensures in any case that in the NLP solution the DAE is fulfilled in
the collocation points. As the state trajectory is determined in parallel to the optimization, direct
collocation is called a simultaneous or also an all-at-once approach. Continuous path and control
constraints can be discretized analogously and point constraints can be added straightforward to
the NLP.

Denoting the state values in interval ¢ and collocation point j with wi;
the control parameter values with u;; we obtain a NLP in the variables

and w{; and analogously

X VA X VA X VA X VA
(W0,07 Wo0,00 10,0 W01, Wo,1, 00,15 - - s W 1n0—10 Wigia—1ne0—10 Ungria—1ne0—1) Wn 4.0 anrid,o)v

if no free parameter are present. Hence, the resulting NLP is usually huge, but also very sparse and
structured. Despite its size it can be solved quite efficiently by sparsity exploiting NLP solvers,
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see, e.g., [BGHBWO03, WBO06].

By the introduction of the discretized state values as variables to the NLP, a priori knowledge
on the state trajectory of the optimal solution can be used. Furthermore, direct collocation is
more robust against nonlinearities and numerical instabilities than direct single shooting as the
propagation of errors over the whole time horizon is damped or even cut-off by the tolerance in
the collocation matching conditions. Hence, it is also possible to treat unstable systems for which
the OCP itself is well-posed. In a similar way this decoupling leads to a better distribution of the
nonlinearity of the problem.

The main drawback of direct collocation methods is that they do not allow an adaptivity in
time, i.e., in the process of the DAE solution, or at least not in a straightforward manner. The
problem here is that each change in the time-stepping scheme leads to a change in the resulting
NLP, usually even to changes of the dimensions of the NLP. However, a proper solution of highly
nonlinear and stiff problems usually needs a very fine resolution in time at least on some parts
of the time horizon. These regions are in general not known in advance, and hence very many
gridpoints might be needed since in this case a fine discretization in time must be used on the
whole time horizon. For large problems or long time horizons this might even not be possible in
practice.

Furthermore, if the collocation scheme itself shall be changed, e.g., to “upgrade” it or to treat a
different model class, this leads to a change in the underlying NLP structure, probably requiring
manual adaptations to further ensure a proper structure exploitation in the algorithm. There-
fore, the change of the scheme is usually significantly more difficult than changing the numerical
integration method in direct single or multiple shooting.

Direct multiple shooting

Direct multiple shooting can be understood as a kind of hybrid approach between direct single
shooting and direct collocation. In direct multiple shooting the controls are discretized and the
state trajectories are parameterized, which is explained in the following. Direct multiple shooting
goes back to the diploma thesis of Plitt [Pli81], supervised by H.G. Bock, and was first pub-
lished in [BP84|. Extensions and applications of the idea in different fields can, e.g., be found in
[EMT02, LBBS03, BP04, TBKO04, [Sch05l, [Sag05, Rie06]. An efficient implementation of the idea
for the solution of optimal control problems is given by the code MUSCOD-II [DLSO1].

In direct multiple shooting the control discretization is performed similar to direct single shooting
(cf. (L.11)) by

u(t) = ;(t,w;) for t € [t;, tirq]. (1.12)
The choice that the finite-dimensional control parameter u; influences the control approximation
only locally on the corresponding subinterval contributes to the separability of the problem and
the favorable overall structure of the resulting NLP.

Contrary to direct single shooting and different from direct collocation the state trajectories x(-)
and z(-) are parameterized. This is done by introducing another grid, the so-called multiple
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shooting grid. Tt can be chosen independently from the discretization grid of the controls and its
gridpoints are called multiple shooting nodes. For notational convenience we assume here that
both grids coincide. In each multiple shooting node new variables wi and wf, the so-called node
values, are introduced that represent the values of the differential and algebraic states x(t;) and
z(t;) at the corresponding multiple shooting node. The value of the states at time points between
the shooting nodes is obtained by the solution of a DAE-IVP on each multiple shooting interval,
where the initial values are given by the corresponding node values wi* and wf at the beginning
of the interval.

The formulation of the algebraic equations is usually relaxed (cf.[BES88, [SBS98|, [Lei99] and Sec-
tion to allow the integration of the DAE-IVP with inconsistent initial values for the algebraic
variables. In exchange, the algebraic equations in the shooting nodes are added as equality con-
straints to the optimization problem to ensure consistency in the NLP solution. Furthermore,
matching conditions

Wi, — X(tip b, Wi, wi) =0, 0<4 <nga — 1, (1.13)

have to be added to the NLP to guarantee continuity of the differential state trajectories in the
NLP solution. Here, x(t;11;t;, Wi, w?) stands for the differential state at the time t;;1 of the
solution of the DAE-IVP on the multiple shooting interval [t;,¢;;] with initial values w* and w?.
Hence, like direct collocation, direct multiple shooting is an all-at-once approach that solves the
dynamic model in parallel to the optimization. Note that the algebraic state trajectories are not
necessarily continuous on the interval borders, even in the NLP solution. This is the case, e.g.,
if the algebraic equations depend on the controls and the discretized controls themselves are not
continuous.
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Figure 1.2: Illustration of a direct multiple shooting discretization of the optimal control problem for ordinary
differential equations. Here a piecewise constant discretization of the controls on an equidistant grid is
used. The left image shows the initialization of the problem where all node values are chosen identically
and the resulting IVP solutions do not fulfill the matching (continuity) conditions. The right image
shows the solution of NLP problem, where the matching conditions are fulfilled.

The continuous path constraints are discretized and added to the NLP. Usually, this is done on the
multiple shooting grid and thus the constraints are enforced only in the multiple shooting nodes.
In practice, however, this is normally already sufficient to ensure that the constraints are satisfied
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on the whole time horizon, once an NLP solution has been found. If this is not the case, it can
be overcome, e.g., by choosing a finer grid for the discretization of the controls. An alternative
which makes use of semi-infinite programming techniques to track and eliminate violations of the
constraints within the shooting intervals is presented in [PBS09|. Point constraints can also be
transferred quite simply to the NLP formulation, even easier if the timepoints in which they are
formulated are part of the multiple shooting grid.

The application of direct multiple shooting to the OCP then leads to an NLP in the variables

X z X z X z
<W07 WO’ uo’ Tt anrid_l’ wngrid_l’ ungridi]" w“grid’ anrid)’
which is structured and sparse. This looks similar to the case of direct collocation, however, the
number of gridpoints ngiq and hence the number of NLP variables is much smaller.

The resulting NLP can be solved efficiently by a suitable finite-dimensional NLP solver, e.g., a
structure exploiting SQP algorithm like the one presented in Chapter Structure exploitation
can be performed on several algorithmic levels. On the level of the QP subproblems, structure
exploitation can be done, e.g., on the basis of the condensing algorithm presented in [PLi81, [BP8&4],
which efficiently reduces the size of the quadratic subproblem to be solved in each step to the size
of the QP in the single shooting case. This is preferable if the number of control parameter is
relatively small in comparison to the number of nodes (compare the description of condensing in
the case of lifted methods in Chapters [4] and [7)).

Another possibility is to directly exploit the sparsity structure of the SQP subproblem for its
solution as described in [Ste95, [Ste02, [KBSS11|. This is preferable if the number of control
parameter is relatively large compared to the number of node variables and /or for special problem
classes arising from mixed integer optimal control.

Further developments of structure exploitation (based on the condensing approach) include, e.g.,
the projection onto an invariant manifold [SBS98]|, the usage of point constraints to eliminate de-
grees of freedom from the problem [Sch88 [Sch05, [AD10] as well as parallelization of the approach
based on the natural decoupling of the problem on the individual multiple shooting intervals
[GB94, Rie01].

Due to the additional degrees of freedom introduced by the state parametrization, direct multiple
shooting shares the favorable properties of direct collocation: The resulting algorithms are stable
and able to treat unstable systems as well as highly nonlinear problems. A priori knowledge about
the states in the optimal solution can be used for the initialization of the node values. Contrary
to direct single shooting, the convergence of the NLP solver is not governed by the “accumulated”
nonlinearity over the whole time horizon but more by the “maximum” of the nonlinearities on
the individual multiple shooting intervals (see also the discussion on local convergence of lifted
methods in Section . By this “distribution” of the nonlinearity the “effective” nonlinearity of
the NLP is often reduced.

A big advantage compared to direct collocation is the possibility to use adaptive state-of-the-art
integrators for the solution of the DAE-IVP on the shooting intervals. These integrators can also
be exchanged easily in case of improvements or according to the specific dynamic model class.






2 Derivative generation

In all theoretical strategies and numerical algorithms presented in this thesis, derivative informa-
tion of the involved functions play a central role. The efficient generation of function derivatives is
hence a very important issue. This is not only the case for the presented optimization algorithms
but also for the presented numerical methods for the solution of Initial Value Problems (I[VP}) for
Ordinary Differential Equations (ODE) and Differential Algebraic Equations (DAEE) as well as
the computation of sensitivities of these solutions. The derivative information needed throughout
this thesis includes directional derivatives, dense and sparse Jacobian matrices, gradients as well
as higher-order (directional) derivatives. This chapter explains different strategies to obtain these
derivatives and compares advantages and disadvantages as well as the efficiency of the different
approaches.

2.1 Symbolic differentiation

Symbolic differentiation, also called analytical differentiation, assumes that a symbolic expression
of the function to be differentiated, i.e., an explicit formula describing the output of the func-
tion in terms of the function’s inputs, is available. Based on this expression differentiation rules
like product, quotient and chain rule are applied stepwise to manipulate the expression and to
finally obtain a symbolic expression for the derivative. This procedure can be iterated to ob-
tain expressions for higher-order derivatives. The whole process can be done manually, or by a
computer-algebra software like Maple [Map09] or Mathematica [Res08|. Afterwards, the resulting
expression has to be implemented in a programming language to be evaluated by the computer.
Some computer algebra programs also offer the possibility to directly export a source code for
the symbolic derivative expression. The strength of this approach is that, provided it is executed
correctly, it leads to derivative values without truncation errors, i.e., they are only subject to
round-off errors. Furthermore, one obtains an expression for the derivative mapping, not only the
evaluation of the derivative in a certain point. There are however some drawbacks: First, there
needs to exist a symbolic expression of the function. In practice it might be the case that the
function which has to be differentiated is only given as a potentially large piece of computer code,
from which a symbolic expression is difficult to obtain. Even if a symbolic expression is avail-
able, a manual manipulation to obtain the derivative of a large and complex function is tedious
and error-prone, while using a computer algebra software may lead to correct but not efficient
expressions for the derivative. A classical example to illustrate the latter is the following product
function of Speelpenning [Spe80].

21
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Example 2.1 (Speelpenning’s function)
We define the scalar valued function f: R" — R as

f(:l:l,...,a:n):Hxi. (2.1)

By using symbolic differentiation we obtain the gradient Vf(z;...,z,) € R"

x2.x3...xn

VE(rr.. ) — (Hx> _ xlx‘”"”” . (2.2)

X1 Tg " Tp_q

This symbolic expression for the gradient contains a lot of common subexpressions. They are
usually not automatically exploited when the gradient is implemented based on this formula.
Hence the evaluation of the gradient will not be efficient. It takes about n — 1 times the effort of
the function evaluation of f itself. A similar effort is needed to compute one directional derivative
of f. For higher-order derivatives this problem also exists, e.g., the symbolic computation of the
Hessian of f yields the expression

2
H = o
0205 ) imy _nj=1,..n

0 Hi;él,iyéQ Ti Hi;él,i7£3 Li T Hi;él,iyén Li
Hi;ézz‘;él L 0 Hi¢27i7£3 Ty e Hz‘;&z,i;&n Li
= . . . (2.3)
Hi#n,i;él Li T Hi¢n,i¢n—1 Ty 0

Again, there are a lot of common subexpressions which are usually not automatically exploited

in an implementation. The computation of the Hessian based on this expression takes W

multiplications and therefore approximately @ times the effort of the function evaluation of
f. Note that we already exploited the symmetry of the Hessian in this example.

Summarizing, we can say that the computation of derivatives using symbolic differentiation, e.g.,
using a computer algebra package, is a reliable method to compute derivatives with a high accuracy,
provided a symbolic expression for the function is accessible. To obtain an efficient implementation,
however, often a postprocessing and optimization of the obtained expressions would be necessary.

2.2 Finite differences

The idea to approximate the derivative of a given scalar function f(z): R — R at a point 2o € R
by finite differences is based on the Taylor expansion of f around xg

Flo+h) = Flan) + oL o)+ O(R?). 2.4)
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This leads to the approximation of the derivative by one-sided finite differences

ﬁ(x):f(l’o—f‘h)—f(fco)
dx " h

+O(h). (2.5)

Developing f twice around xy with increments h and —h leads to the central finite difference

scheme

of _ flwo+h) = f(zg—h)
720 = 2h
Both schemes can be transferred directly to compute an approximation of a directional derivative
of a function g : R™nder — R™er gt a point xg € R"nder in direction d € R™nder by

+ O(h?). (2.6)

g g(xo + hd) — g(x0)
" 0g _ 8(x0 + hd) — g(xo — hd) 2
= (x0)-d = o + O(h?). (2.8)

One big advantage of the finite differences approach to compute derivative approximations is
that it is very easy to implement. Furthermore, no knowledge about the inner structure of f is
needed, because a black-box procedure to evaluate f (or g) is sufficient. Also the computation
of a directional derivative is very cheap, as only 2 function evaluations are needed. Hence, the
Jacobian is available at the expense of niqep + 1 function evaluations using the one-sided scheme
and 2ningep function evaluations using the central scheme, respectively. On the other hand, this
approach suffers from a lack of accuracy of the computed derivative approximations. Furthermore,
the accuracy depends crucially on the choice of the increment h. If h is chosen large, the higher-
order terms become significant and accuracy is lost due to truncation errors. If h is chosen small,
the cancellation errors increase. Even an optimal choice of h, which itself depends strongly on the
function, will typically lead to derivative approximations with an accuracy of only about % (one-
sided scheme) or 2 (central scheme) of the significant digits of the underlying function evaluation.
This is depicted in Figure for the example of f(x) = e* and zg = 1 with double precision
arithmetic.

By comparison with the Taylor series one can derive more accurate (in terms of the truncation
error) approximations, but they require more function evaluations and suffer in principle from
the same problem. This is also true for finite difference schemes for second and higher-order
derivatives. In this case the accuracy problem increases further.

2.3 Complex step derivative approximation

The idea of using complex arithmetic to compute numerical approximations of first and higher-
order derivatives of real functions can first be found in Lyness [Lyn67] and Lyness and Moler
[ILM67]. By comparison with the Taylor series using a complex increment Squire and Trapp [ST98|
gave a simple formula to approximate a directional derivative of a function f : R™nder — R™der at
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Figure 2.1: The error made in the derivative approximation of f(z) = e® at xy = 1 using the finite differences
approach. Depicted is the Euclidean norm of the error for different choices of the increment A for both
the one-sided and the central finite difference scheme using double precision arithmetic. Even
for the optimal choice of h about half respectively one-third of the significant digits are lost.

a point xg in direction d € R™ndep

g_i(x()) d=S (M) + O(h?). (2.9)

Usually this approach is referred to as complex step method. At first sight it seems somewhat
similar to the finite differences approach presented above. However this approach does not suffer
from cancellation errors for small h. Hence h can and should be chosen very small, e.g., h = 27256 ~
10-7". A comparison of the errors made in the evaluation of the derivative of the exponential
function by this approach and one-sided finite differences is given in Figure While for small
h the finite difference approach looses accuracy due to cancellation errors, the complex approach
returns for 4 < 107® the derivative within machine precision. Martins et al. [MSAQ3| and Newman
et al. [NAWOS| noted that the complex step method is in the end equivalent to the first order
forward mode of automatic differentiation explained in the next section. The complex step method
can be straightforward extended to the computation of second order derivatives, but then suffers
from cancellation errors like the finite difference approach. Recent works of Lai [Lai06] and
Ridout [Rid09| give suggestions for improved second order derivative approximations based on
the complex step method. Overall, the complex step method gives a simple possibility to obtain
accurate derivative information, even if the function is given only as a black-box algorithm. A
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Figure 2.2: The error made in the derivative approximation of f(z) = e” at 29 = 1 using the complex step method
and the one-sided finite differences approach in double precision arithmetic. Depicted is
the Euclidean norm of the error for different choices of the increment h. While the finite differences
approach is subject to cancellation errors for small A, the complex step method is not and delivers for
h < 10~% a derivative approximation within machine precision.

prerequisite is, of course, that the platform where the complex step methods is to be implemented
supports complex arithmetic. Also all operations made during the evaluation of the function f
have to support complex arguments. This might sometimes not be the case if, e.g., the evaluation
of f involves calls to the abs or max functions, linear algebra packages, integration routines or in
general third-party software. If this prerequisite is fulfilled, the complex step method delivers a
directional derivative at the cost of one function evaluation of f with complex argument and in
complex arithmetic. The efficiency depends strongly on the implementation of complex arithmetic
on the target platform, e.g., if hardware support is present or a software emulation of complex
operations is necessary. For some implementations there exist also problems if A is chosen too
small, as was pointed out by Martins et al. [MSAQ3]. If the implementation of complex arithmetic
is efficient and reliable, the complex step approach will be nearly as fast as the finite differences
approach and can be recommended as an easy-to-use mean of computing at least first order
directional derivatives.
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2.4 Automatic differentiation

In this section we describe the powerful technique of automatic differentiation (AD). As we use
its ideas and concepts on several other occasions in the different algorithms and strategies de-
veloped in this thesis, it is described here in detail. First the basic ideas and concepts of AD
are presented. Then we discuss algorithmic schemes for first order derivative generation using
the so-called forward and reverse modes of AD. Afterwards we give an introduction to the not
so commonly known concept of Taylor coefficient (TC) propagation for the efficient computation
of higher-order derivatives. At the end we discuss possibilities how the presented ideas can be
implemented in practice and give an overview on the approaches of generating sparse derivative
matrices in the case of large but structured systems. The presentation and notation in this section
is mainly inspired by the book of Griewank [Gri00], but sometimes modified and extended where
needed.

2.4.1 Basic concepts

The underlying idea of automatic differentiation (sometimes also referred to as algorithmic differ-
entiation or computational differentiation) is the decomposition of the function to be differentiated
into a sequence of elemental functions and the systematic application of the chain rule known from
basic calculus. Other than in the approach of symbolic differentiation presented in Section
here the chain rule is not applied to manipulate symbolic expressions but works on numerical
values. As the chain rule is known since Leibniz and Newton and hence is a part of the basic
calculus curriculum since many years, AD has been rediscovered and reinvented several times in
different contexts and applications. Here the works of Wengert [Wen64] and Kedem [Ked80] are
sometimes cited as pioneer works in the field. For a more complete overview of AD history we
refer to [Iri91) [Gri00].

In this section we will consider functions of type f : D C R"ndee — R™er y = f(x), mapping the
“independent” variables x to the “dependent” variables y. We assume further that the evaluation
of f can be decomposed into a sequence of elemental functions, leading from the independent
variables via intermediate variables to the dependent variables. This is usually true for most
functions whose evaluation can be coded as a computer program. To formulate this property
mathematically we use the following definition of a factorable function, which is slightly modified
compared to the one given in [Ked8().

Definition 2.2 (Factorable function)

Let L be a set of real valued functions taking one or more real arguments, the so-called elemental
functions. A function f : D C RMrder — R™er y = £(x), X = (T1, .-, Tnpgey ), Y = W1y -+ -5 Yngep)
is a factorable function if there exists a finite sequence of real valued functions p1_p, 4., -5 Pk,
such that the following conditions are satisfied:

Nindep

4 sz'—nindcp =T ) for 1 S ? S Nindep,

— nd .
® Ok ngptri =1 L of, for 1 <i < ngep,
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o forall 1 < j <k —ngep the function ¢, is either a constant function or a composition of an
elemental function with one or more functions ¢; with 1 — ninaep < [ < j — 1, i.e., appearing
earlier in the sequence.

Here 7" : R — R, (21, ..., 2,) — z; means the projection onto the i-th component of a vector. If
f is factorable, we call the sequence p1_p .. ,-- -,k an elemental representation of f. L is then
called the elemental library.

Note that there is mathematically no fundamental difference if the elemental functions would
have been defined as vector valued. This is sometimes of advantage in the practical setup, e.g.,
to treat linear algebra operations such as matrix-vector products on a higher level. But for the
development of the theory we stick for notational simplicity to scalar valued elemental functions.
For a factorable function f we can write down a sequence of instructions describing the evaluation
of the function for a given input x using elemental functions via intermediate values. To simplify
the notation we define the following dependency relation.

Definition 2.3 (Dependency relation)

Assume that f is factorable and @1 _p .., -, % IS an elemental representation of f. We denote
by v; the intermediate quantity that occurs as output of the elemental function ; during the
evaluation of £. This means that v; is computed by ¢; from a set of arguments containing the
intermediate value v; with j < 1.

The dependency relation < is then defined as

] =<1 & v; depends directly on v;
& v; is an argument of ;. (2.10)

Using the dependency relation we can write the general evaluation procedure, also called a (zero
order) forward sweep, for a factorable function f with input x and output y in the form of Table

2.1

Ui—nindep = I ‘ 1= 17 -« «y Nindep
V; = Soi(vj)j-<i ‘ 1= 1,...,]{}
yndep—i = Vk— | 1 = Ndep — 1a cee 70

Table 2.1: General evaluation procedure (“zero order forward sweep”) for a factorable function with independent
variables x, intermediate variables v and dependent variables y.

Another useful possibility to describe the evaluation of f is an acyclic graph visualizing the de-
pendency relations in the function evaluation, the so-called computational graph. We elaborate
on this with the following example.

Example 2.4 (Evaluation procedure and computational graph)
Consider the function f : R3 — R? defined as

() =t = (G2 ) o
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Then f is factorable and the evaluation procedure can be written as given in Table [2.2}

V_g = T
v_1 = )

Vo = T3

v, = e(v—2)
Vg = U_1+
V3 = \/U_Q
V4 = V1V2
vs = sin(v_q)
Vg = Uyt Us
Ur = Us — U3
o = Vg

Y2 = U7

Table 2.2: The evaluation procedure for the evaluation of the function f given in (2.11)) using a chain of elemental
functions.

The corresponding computational graph of f for this elemental representation is depicted in Fig-

ure 2.3

o TE

independent intermediate variables i
variables variables

Figure 2.3: The computational graph for the evaluation of the function f given in (2.11)) using its elemental repre-
sentation given in Table

A numerical evaluation of f using the representation in Table , e.g., at the point x = (0,0,1)T
takes the operations given in Table

Now that we can write down the evaluation of f systematically in terms of elemental functions we
consider the question how to differentiate f efficiently. First, we define the property that assures
the differentiability of the used elemental functions.
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V_g =
v_1 =
Vo
U1
V2

Il

@)
§|+®o>—loo

—_

V3 =

V4 = 1-1
vs = sin(0)
v6 = 140
vy = 0-—1
Y1 = 1
vy = -1

Table 2.3: The evaluation of the function f given in (2.11) at point x = (0,0, 1)7 using the elemental representation
given by Table

Definition 2.5 (Elemental differentiability)

We say that the elemental library L fulfills the assumption of elemental differentiability (ED) of
order k if and only if all elemental functions p; € L are k times continuously differentiable on
their open domains D;, i.e., p; € C*(D;,R), 0 < k < oo.

Based on this definition we obtain immediately the following result regarding the differentiability
of f. For a proof, we refer to [Gri00)].

Proposition 2.6

Let f be a factorable function with a representation of elements out of the elemental library L.
Assume that L fulfills the assumption ED of order k. Then the set D of points x € D for which
the function y = f(x) is well defined by the evaluation procedure given in Table forms an open
subset of R™nder and f € CF(D, R™er).

If not indicated otherwise we assume in the following that the functions are factorable and that
the elemental library £ fulfills the assumption ED with an order £ > 1. This means that, e.g.,
{+, —, , /,exp,sin, cos} C L, but {max, min,abs} N L = (.

2.4.2 First order derivatives

Based on the elemental representation of f we now derive algorithmic schemes to compute first
order derivatives of f. This is done by differentiating the general evaluation procedure in Table
and applying the chain rule.

Depending on whether the application of the chain rule is done in the direction of the function
evaluation procedure or opposite to it, we speak of the forward or the reverse mode of AD.
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Forward mode

The forward mode of AD is used to compute for a given evaluation point x and a given direction
X% € R™nder the directional derivative

of
y = 8_X<X> - X. (2.12)
It should be noted that usually, in contrast to symbolic differentiation, the Jacobian %(X) is

not built explicitly and afterwards multiplied by X when AD is used for the computation of a
directional derivative. This would only be efficient if a larger number of directional derivatives at
the same point x is needed. Instead by applying the general tangent procedure, also referred to
as first order forward sweep, given in Table [2.4] we directly compute the directional derivative.

I:/Uifnindel:ﬂ 'l.}ifnindep] - [x'“ xl] ‘ Z - 17 ) nindep
[Ui, @i] = [@i(”j)j<z‘ ) Zj_ﬂ‘ %%@j] | i=1,...,k
[yndep—iy yndep—i] - [Uk—i7 Uk—z] | 1= Ndep — 17 ey 0

Table 2.4: General tangent procedure (“first order forward sweep”) for a factorable function with independent
variables x, intermediate variables v and dependent variables y. Here x describes the derivative direction,
¥; the derivatives of the intermediate quantities and y the directional derivative.

The forward sweep is initialized with the independent variables x and the derivative direction X.
Then step by step the derivative is computed simultaneously to the evaluation of the function itself.
This is achieved by accumulating in every intermediate quantity ©; the derivative information
from all quantities that have directly contributed to v;, until the end of the evaluation is reached.
This means that after the accumulation of an intermediate variable v; is completed, ©; holds the
directional derivative of v; in direction x. The simultaneous treatment of function and derivative
evaluation is of advantage because usually, except in case that ¢; is constant or linear, for the
evaluation of the partial derivatives c;; := gf; the values of either v; or v; are needed. If the
evaluation of the derivative is not done simultaneously to that of the function, we call this a
pure (first order) forward derivative sweep. Here either the intermediate variables have to be
recalculated or some of the intermediate variables (alternatively the ¢;;) that have been stored
somewhere during a prior function evaluation, have to be retrieved. The first order forward sweep
can easily be extended to compute several directional derivatives simultaneously with the function.
The overall effort of computing p first order directional derivatives at once using the forward mode
of AD can be theoretically bounded from above by 1+ 1.5p times the effort of a function evaluation
(cf. [Gri00]). Compared to the finite differences approach this is a slightly higher effort. On the
other side, the AD approach is only subject to round-off errors and hence produces derivative
approximations within machine precision. We give now an example of a practical application of
the forward mode by computing the Jacobian of the function of Example [2.4]
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Example 2.7 (Jacobian computation using the forward mode)
Consider the function f : R?® — R? defined as

(1) o= (s )

We now want to evaluate the Jacobian J of

) (2.13)

1
2v/xo+w3 2\/xa+x3

e (x9 + x3 e 4 cos (x et
ool = ( (w2 + ) (22) >

0 cos (xg) —

at point x = (0,0, 1)” using the forward mode of AD. We achieve this by computing the njqe, = 3
directional derivatives along the Cartesian coordinates, each one yielding one column of the Jaco-
bian, i.e., we choose x; = (1,0,0), %, = (0,1,0)” and %3 = (0,0, 1)?. The forward sweep is then
performed abstractly by the following calculations for each derivative direction:

Function evaluation | Derivative evaluation
V_o = W5} @_2 = j,’l

v_1 = ) 1.)_1 = i’g

Vo = T3 i)o = i‘g

U1 = ev-2 ’l.}l = ’Ull.)_g

(%) = V_1 + Vg @2 = 1'1_1 + 2'10
V3 = \/@ 2)3 = 1')2/(2’03)
Vg = V1V 2.}4 = 1')1?)2 + Uﬂ)z
Vs = SiIl(U_l) @5 = COS(U_l)i')_l
Vg = V4 + Vs ’IIJ6 = 1.14 + ’05
(V4 = Vs — U3 @7 = 1.)5 — 1)3
Yy = Vg = Ve

Y2 = U7 Y2 = U7

In practice only the actual numerical values are propagated and this is done for all directions
simultaneously. The superscripts in the follwing computations denote the direction to which a
quantity belongs.
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Function evaluation\ Der. eval. dir. 1 ‘ Der. eval. dir. 2 ‘ Der. eval. dir. 3
V_g = 0 0, = 1 0, = 0 03, = 0
Vo = 0 o, = 0 vt = 1 v, = 0

vy = 1 0y = 0 0 = 0 vy = 1

vy = eV I 1-1 0P = 1-0 07 = 1-0
vy = 0+1 s = 0+0 03 = 140 3 = 0+1
vy = V1 vi o= 0/(2-1) | 92 = 1/(2-1) |9 = 1/(2-1)
vy = 1-1 v = 1-1+1-0[ 93 = 0-14+1-1|9 = 0-1+1-1
vs = sin(0) v = cos(0)-0 | ¥2 = cos(0)-1 | ¥ = cos(0)-0
vg = 1+0 S 1+0 0 = 1+1 vy = 1+0
vy = 0—-1 0l = 0-0 02 o= 1-1/2 |0 = 0-1/2
n = 1 o= 1 go= 2 W= 1

w o= -1 |go= 0 |@ = 12 |§ = -1

In the end, we have computed along with the function value y = f(x) = (1, —1)T the correct
Jacobian J(x) at point x = (0,0,1)7

M@I(ég_%) (2.14)

using ningep = 3 directional derivatives. It should be noted that the intermediate variables v; of
the function evaluation and also the partial derivatives of the ¢; only had to be computed once
for the whole set of directions.

Summarizing, the forward mode of AD allows the efficient computation of directional derivatives
of a given function with slightly higher effort than the finite differences approach. As in all AD-
based approaches the function cannot be treated as a black box. At least a piece of computer
code describing the evaluation must be available. However, the forward mode computes derivatives
within machine precision and does not rely on the support and the efficiency of complex arithmetic
on the specific platform or the algorithms used. The computation of the Jacobian of f using the
forward mode requires ningep directional derivatives of f, like the finite differences approach and
the complex step method.

Reverse mode

The reverse mode of AD is used to compute for a given evaluation point x and a given so-called
adjoint direction y € R the so-called adjoint directional derivative

of
T _ T
X' =y ax(X). (2.15)

Again, this is done through differentiation of the general evaluation procedure in Table using
the chain rule. However, other than in the forward mode the order in which the chain rule
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is applied is reverse to the evaluation procedure, i.e., starting at the dependent variables and
going back until the independent variables are reached. We call this a first order reverse sweep.
Once again, for the computation of the partial derivatives of some elemental functions ¢; the
values of the corresponding intermediate variables v; are needed. More specifically, the arguments
of nonlinear elemental functions and the results of the power and the exponential function are
needed during a reverse sweep. Hence in general a reverse sweep is preceded by a zero order
forward sweep computing the values of the intermediate variables in the function evaluation and
storing the ones needed later on a so-called tape. Alternatively, if the evaluation point x has not
changed, also the taped intermediate values of an earlier forward sweep can be used. Table
shows the computations for a general reverse sweep in the variant with a preceding zero order
forward sweep. We show here the incremental version where the accumulation in the intermediate
variable v; is done stepwise for each operation occurring in the function evaluation. The reverse
sweep could also be formulated nonincrementally, i.e., by grouping the accumulation operations
by variables and summing up directly all contributions to a single v;.

?71‘ = 0 | izl—nindep,...,k—ndep
,Ui_nindep = Z; | 1= 1, -+« s Nindep

Vi = ¢i(v))j<i | i=1,.. .k

Yngep—i = Up_; | i=1ngep—1,...,0

@k_i = gndep—i ’ 1= 07 s >ndep —1

v; += @ia%% Vi<i | i=k,...,1

X; = Q_Ji,nmdep ’ 1= Nindeps - - - » 1

Table 2.5: General incremental first order reverse sweep for a factorable function with independent variables x,
intermediate variables v and dependent variables y. Here ¥ describes the adjoint derivative direction,
v; the intermediate adjoint quantities and X the adjoint derivative. The reverse sweep is preceded by
a zero order forward sweep for the computation of the intermediate values v of the function evaluation
that are needed during the reverse sweep. At the very beginning, the intermediate adjoint variables o;
are initialized to zero. Note that the += here stands for the add-assign operation: u+= v is equivalent
tou=u-+v.

The reverse sweep is initialized with the adjoint direction y. During the reverse sweep for each
intermediate quantity v; derivative information from all values v; to which v; has contributed to is
accumulated incrementally until, at the end of the procedure, X contains the value of the adjoint
derivative. Like for the forward sweep, the procedure can be easily extended to compute several
adjoint directional derivatives simultaneously, thereby making efficient use of common terms. For
the computation of p adjoint directional derivatives including the preceding zero order forward
sweep, an upper complexity bound of 1.5 + 2.5p times the cost of the function evaluation itself
can be shown (cf. [Gri00]). In this estimate the cost of accessing the tape is neglected, which is a
reasonable assumption if the whole tape can be stored in the main memory or even in the cache. If
this is not the case, other strategies like checkpointing (cf. Walther [Wal00]) may be advisable to
obtain more efficient schemes. Apart from this, it is very important to note that this bound does
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not depend on the number of independent variables ni,gep. This makes the reverse mode of AD
extremely useful for the computation of gradients or Jacobians of functions with ngep, < Nindep-
We illustrate now the reverse mode in detail using the well-known function of Example and
show afterwards the full power of the reverse mode for gradient computation using the example
of Speelpenning’s function (2.1)).

Example 2.8 (Jacobian computation using the reverse mode)
Consider again the function f : R? — R? defined as

v\ _ [ €"(x2 + x3) + sin(xy)
( " ) = (@1, 72,25) = < sin(r2) — Va2 T 75 > '
We now want to compute the Jacobian J of f at point x = (0,0,1)? using the reverse mode of
AD. We do this by computing the nqe, = 2 adjoint directional derivatives along the Cartesian
coordinates in the target space, each one yielding one row of the Jacobian, i.e., we choose y; =
(1,0)" and y, = (0,1)7. The reverse sweep (with preceding forward sweep) for f is then abstractly
performed by the calculations given in Table for each adjoint derivative direction y. Note
that we assume that the o; are initialized with zero and that first the instructions on the left
side are executed (forward sweep) and afterwards the ones on the right (reverse sweep). In the

Forward sweep || Reverse sweep
Vg = T v = Y2
v = T2 vg = Y1

v9g = T3 U5 += U7
vy += —U7
v = ev-2 vy += Vg
V2 = v_1+ Vo 1_)5 += 1_}6
vy = V02 V-1 += v5cos(v_1)
Vg = V1 V2 U1 = V42
vy = sin(v_l) Uy  += V401
Vg = Vgt s Uy  += @3/(21}3)
(%rd = V5 — U3 1_)_1 += 1_12
vg += V2
Vg += V101
T3 = ()
Yy = Ve T2 = v
Y2 = U7 = U_g

Table 2.6: Abstract forward and reverse sweep for f of Example We see that in the reverse sweep only
intermediate values v; are needed that have been arguments of nonlinear elementals or that were the
results of power or exponential function.

actual computation only the numerical values are propagated and this is done for all directions
simultaneously. The superscripts in the following computations denote the adjoint direction to
which a quantity belongs. We again assume that the intermediate adjoint quantities 175 have been
initialized to zero. In the end we have computed along with the function value y = f(x) = (1, —1)7
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Forward sweep H Rev. sweep dir. 1 ‘ Rev. sweep dir. 2
vy = 0 v = 1 2 = 0
vy = 0 vy = 0 v = 1
vw = 1 v: = 1 2 4= 0
03 4= -1 73 4= 0
vy, = € vy 4= 0 v 4= 1
ve = 0+11| 88 4= 0 02 = 1
vs = V1 ||oY, += 1-1 72, = 1-1
vy = 1-1 | o = 0-1 7 4= 1-1
vs = sin(0) || o3 = 0-1 2 4= 1-1
vg = 140 o3 += —-1/(2:1)| 23 += 0/(2-1)
ve = 0-1|2, += —=1/2 |93, += 1
oy +=  —1/2 7 4= 1
7.]1_2 +— O . 1 1_]32 +— 1 1
L = —1/2 |13 = 1
vy o= 1 Iy = 1/2 i3 = 2
v = -1 |z = 0 2 = 1

Table 2.7: Actual forward and reverse sweep for f of Example using ndep = 2 adjoint directions for the compu-
tation of the Jacobian at point x = (0,0,1)7. We see that for each adjoint unit direction one row of the
Jacobian is computed.

the Jacobian J(x) at point x = (0,0, 1)” row-wise by nqge, = 2 adjoint directional derivatives. Like
for the forward mode it should be noted that the intermediate values of the function evaluation
and the partial derivatives of the ¢; only had to be computed once for the whole set of directions.

Example 2.9 (Gradient computation of Speelpennings’s function)
Consider now Speelpenning’s function from (2.1 that maps from R" to R:

n

flxy, ... x,) = l_IxZ

=1

To compute the gradient of f at point x we need one adjoint directional derivative with adjoint
direction ¢, = 1. The first order reverse sweep with preceding zero order forward sweep then has
the form
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Forward sweep H Reverse sweep
Vien = 1 Up—1 = U1
Up—2 += Un_179
vy = T Vo += Up_1Up-2
V1 = VpU1-p || Un-3 += Up-2V_1
Vg = U1Us_p U1 += Up2VU_3
Up—1 = Up2Vy | Voop += V1014
Vlen += V102,
i’n - ’DQ
N = Up—1 x1 = U1y

We observe that for the zero order forward sweep, i.e., the function evaluation, n—1 multiplications
are needed, while the reverse sweep needs 2(n — 1) multiplications. This means the effort of a
gradient computation for Speelpenning’s function using the reverse mode costs roughly 3 times a
function evaluation, which is below the theoretical bound stated above. Furthermore, we see that
this is true for any number of independent variables ningep = 1. The independence of the cost of
a gradient computation with respect to the number of independent variables is an advantage that
is unique to the reverse mode, because for all other derivative generation approaches the effort of
a gradient computation grows at least linearly with niyqep-

Summarizing, the reverse mode of AD is the only derivative generation approach that allows the
computation of first order adjoint directional derivatives, i.e., linear combinations of rows of the
Jacobian. This allows the computation of a Jacobian with nge, adjoint directional derivatives and
the computation of the gradient of a scalar function using only one adjoint direction. Furthermore,
the cost of the adjoint directional derivative can be bounded in terms of the function evaluation
itself and is independent of the number of independent variables, which makes it very efficient
to compute gradient type derivative information and, e.g., Jacobians if ngep < nNingep. Like the
forward mode, it is only subject to round-off errors and hence computes derivatives within machine
precision. The drawback is that some of the intermediate quantities of the function evaluation
have to be stored on a tape which leads to a larger memory consumption. If for very complex
functions the tape does not fit into main memory any more, the reverse sweep might loose a lot of
efficiency and checkpointing strategies might have to be considered. As in all approaches based on
AD, at least a program code describing the evaluation of the function must be available to apply
the reverse mode.
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2.4.3 Higher-order derivative generation

So far we have described how to obtain first order directional derivatives using the idea of automatic
differentiation. We now present two approaches for the efficient computation of higher-order
derivatives based on Automatic Differentiation (AD]). We first explain some shortcomings of
an intuitive extension of first order schemes and introduce afterwards the approach of Taylor
Coefticient propagation that allows the development of efficient arbitrary order schemes.

Repeated application of first order schemes

The first approach is based on the fact that the first order forward and reverse sweeps themselves
can be viewed as factorable functions. Hence, AD could be applied to differentiate them in order
to obtain schemes for higher-order derivatives. We explain this at the example of deriving a first
order reverse sweep once more using the forward and the reverse mode, respectively, to obtain
second order derivatives.

Example 2.10 (Second order derivatives by deriving reverse scheme)

Consider the general function f : R™nder — R™er.  Applying the reverse mode once for the
point x and the adjoint direction y leads to a scheme that can be interpreted as a function
f : Rrindep x RMdep —3 RMer x RMinder (X, §) = (y,X)

y = f(x) (2.16a)
%! = yTg—i(x). (2.16b)

To this function, again the forward or the reverse mode can be applied. An application of

the reverse mode for the point (x,¥) and the adjoint direction (¥,X) leads to a function f :
RMindepFndep+ndeptindep —y R7dep+NindepFtnaep Frinder (x § ¥ X) + (y, X, ¥, X) which calculates besides

[19) also
of

y = ax(x)f{ (2.17a)
0, | - of

=T _ ST = crot

N (x)x+y aX(X). (2.17b)

On the other hand, an application of the forward mode to f for the point (x, ¥) and the forward di-

rection (%,y) leads to a function f : R™ndep*7deptninaeptnaep _y RMdep+MindepFnacptinacr (x, §, X, ) >
(y,X,y,X) that computes besides (2.16)) also

. of , .

y = &(X)x (2.18a)
T . —T an . LTﬁ
X =¥ 55 (X)X +¥y o (x). (2.18b)

From this example we learn two things that also hold for the other AD-based schemes for higher-
order derivatives presented later. First, we see that for the computation of the Hessian of a scalar
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function a complexity bound independent of ningep, like for the gradient computation using the
reverse mode, cannot be established. To compute a Hessian, in general at least ningep calls of f or

f are needed. Second, we observe that if we identify x = X and y =y in (2.17) and (2.18)) then we
obtain ¥ = ¥ and X = x. This means that the quantities obtained by a repeated application of the
reverse sweep can also be obtained by a combination of a forward and a reverse sweep. Repeating

the previous process for f and so on shows that this is also true for derivatives of order greater
than 2. Note that every application of the reverse mode leads to another pair of a forward and
reverse sweeps. The length of these sweeps increases with each use, as the forward sweep in the
n-th order scheme consists of all computations made to obtain the results of the scheme with order
(n — 1). This finally results in a complexity that is exponentially increasing with the derivative
order of the scheme. As a consequence, a repeated application of the reverse mode should be

avoided. While the derivation of an efficient second order forward/reverse scheme for f is still
relatively easy, the derivation and implementation of efficient schemes for derivatives of arbitrary
order based on the first order sweeps is complex and error-prone, sometimes even for a specific,
explicitly given function. To overcome this difficulty we now discuss an alternative approach to
compute higher-order derivatives. This approach is based on the propagation of a truncated Taylor
series through the function that shall be differentiated and allows the development of schemes with
quadratic complexity in the derivative order.

Taylor coefficient propagation

In this section we describe the approach of Taylor coefficient (or also Taylor polynomial) propa-
gation that allows a compact formulation of efficient schemes for the computation of derivative
tensors of arbitrary order, or specific parts of them. We explain here a variant that allows an
efficient implementation due to very regular data access patterns. The first step on this way is the
forward propagation of an univariate Taylor polynomial through a function evaluation, as already
described, e.g., in [Moo66, Wan69, [Ral81]. Based on this, higher-order (univariate) directional
derivatives can be obtained by simple scaling of the coefficients of the propagated polynomials. As
an extension a reverse propagation scheme for the computation of higher-order adjoint derivatives
can be derived. To finally obtain elements of higher-order derivative tensors in the multivariate
case, first a family of univariate Taylor polynomials is propagated through the evaluation of the
function. From the propagated quantities the elements of the derivative tensors can be obtained
by so-called exact interpolation, which we describe at the end of this section. Finally we present
practical examples of the actual application of the higher-order forward and reverse schemes to
facilitate a better understanding of the approach.

Univariate Taylor coefficient propagation The first step is the computation of univariate
higher-order directional derivatives. Here we separate between pure forward and forward/adjoint
directional derivatives.

Definition 2.11 (Higher-order directional derivatives)
Let f : R™nder — R™er he an at least k + 1 times continuously differentiable function. We then
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define a univariate forward directional derivative of order k in a direction d € R"nder by

) k k
f®(x,d) := %(x)dk = a—f(x +td)| € R"er (2.19)

otk -0
and a univariate forward/adjoint directional derivative of order k + 1 in (forward) direction d €
RmMnder and adjoint direction y € R™er by

K2 8 .
) (o . T (k)
f9(y,x,d) = § P £ (x,d)(x)

ak—f—l
_ ST
=Y ok
ok .0
= %yTa—Xf(ertd) € RMnder, (2.20)
t=0

f(x)d"

Here the multiplications with d* are to be understood as k contractions with the direction d in
the domain space of the derivative tensor. In the forward case, where the degree of the derivative
tensor equals k, this leads to a vector in R™er. In the forward/adjoint case, where the degree of
the derivative tensor is k + 1, the combination with one contraction with y in the range space
leads to a vector in R™ndep,

We first address the issue of computing higher-order forward derivatives of type f'(k)(x, d) by
propagating a Taylor polynomial x(¢) of degree k

x(t) = X0 + X1t + Xat® + ... + xict" € RMrder (2.21)

forward through the function f, i.e., we want derive from x(¢) and f a Taylor polynomial y(t) of
degree £ fulfilling

y(t) = yo + yit + yat® + ...+ yit” = f(x(t)) + O(") € Raer, (2.22)

Here the x; € R"nder y; € R™er gre called Taylor coefficients of degree ¢ or also the i-th Taylor
coefficients of x(t) and y(¢). We will use the abbreviation TC synonymously also for the whole
set of Taylor coefficients Xq, ..., xy that describes a Taylor polynomial, and for which we use the
matrix-like notation X = [Xo, ..., xy] € RMinaee(5+1) We nuse X and x(¢) synonymously, depending
on the context. The Taylor coefficient of degree i of component j of x(¢) is then indexed by Xj;.
We use the notation Y = f(X) for the propagation of TCs through f. The dependency of the TC
yi on the TC x; can be expressed in functional form as follows.

Definition 2.12 (Taylor coefficient function)
Assuming elemental differentiability of order k we define the Taylor coefficient functions f; :
Rnindcpx(i+1) N Rndcp, i< k}

yi = fi(x0, X1, ..., Xj) (2.23)
as the relation of the corresponding quantities in and (2.22). We also write shorter y; =
fi(X) and hence allow formally more arguments to be present that might not be used in the
evaluation of f;. Note that due to the elemental differentiability of order k the Taylor coefficient
function f; is at least k — i-times continuously differentiable.
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If we assume that we know how to evaluate the f; for an input X, i.e., how to propagate x(¢) through
f and compute y(t), then we can compute the higher-order directional derivative £®(xq,d) at a
point xg € R™nder and in direction d € R™»der simply by a rescaling of the k-th Taylor coefficient
vk of the propagated Taylor polynomial for the input x(¢) = x¢ + td.

Proposition 2.13 (Forward directional derivatives by univariate TC propagation)

Let f : RMnder — R™er be an at least k > 1 times continuously differentiable function. Denote with
y(t) the propagated Taylor polynomial fulfilling for the input polynomial x(t) of degree
k with Taylor coefficients X, such that y; = £;(X) for 0 < i < k. Then the univariate forward
directional derivative of order k at a point xq € R™n»de» and in direction d € R"»d» s obtained by

£0)(xq,d) = klyyx = k! fi(X), (2.24)

where the TCs of the input polynomial are chosen as X = [xo,d,0,...,0] € [R7indep X (k+1)

Proof:

Using the input polynomial x(¢) = x¢ + td and differentiating (2.22)) k-times with respect to t

leads to
k

o~f &
where the multiplication with d* is again to be understood as tensor contractions. Setting ¢t = 0
then gives the desired result and completes the proof.
U

TC forward propagation rules To compute the Taylor coefficient functions f; and the propa-
gated coeflicients y;, respectively, we have to propagate Taylor coefficients through the elemental
functions respectively the corresponding intermediate variables. Hence we have to define Taylor
polynomials also for the intermediate variables v.

Definition 2.14 (Taylor polynomials of intermediate variables)
For a given k-times continuously differentiable input x(t) : (—¢,€) — R"nder ¢ > 0, we denote the
corresponding intermediate variables by v(x(t)) : (—¢,€) — R and define its Taylor polynomial as

v(t) = vo 4+ vit + vot® 4 .. vpt® = v(x(t)) + O(tF). (2.26)

We denote the vector of Taylor coefficients corresponding to an intermediate variable v; with
Vi = [Ui,07 Ce ,U@]J € Rlx(k+1).

With the previous definitions we can now describe rules for the propagation of Taylor coefficients
through elemental functions. In the following we restrict ourselves to scalar functions working on
scalar arguments v and w. There are mainly two possibilities to obtain forward propagation rules
for Taylor coefficients. For basic operations like addition, multiplication or division the rules can
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be derived by (truncated) polynomial arithmetic. Consider for example the Taylor polynomials
u(t) and w(t) of degree 2, then we obtain in polynomial arithmetic v(t) = u(t)w(t) as

v(t) = (ug+ urt + ugt®)(wo + wit + wot?)
= UpgWo + (U1 + wl)t + (u0w2 + uiwy + u2w0)t2 -+ O(tg) (227)

In truncated polynomial arithmetic the terms with order greater than 2 are dropped and hence the
Taylor coefficients of v(t) can be expressed as vy = ugwy, v1 = ugwo+ugw; and vy = ugws +ugwy +
uswy. Note that the coefficient vy is the result of the corresponding “ordinary” multiplication
on real arguments. This is true for all elemental operations, i.e., if v(t) = @(u(t),w(t)) then
vo = p(up, wp). Also note that computations leading to the first order coefficient v; are equal to
the computations in the first order forward sweep presented earlier. Also this is true in general,
such that first order Taylor propagation is equivalent to a first order forward sweep.

To construct propagation rules for the univariate nonlinear elemental functions of interest, such
as exp, sin and cos, we can use the interpretation of the elemental function as solution of a linear
ODE. All elemental functions v = p(u) satisfy an equation of the type

b 22 auyptu) = efw), (2.9

where the coefficients a(u), b(u) and c(u) can be computed in terms of arithmetic operation and
univariate elemental functions for which the propagation rules are already known. This means
that the Taylor coefficients a;, b;, ¢; of the elementals a(u), b(u) and c(u) can be computed from
the coefficients w; of the input. Examples would be the exponential p(u) = e* with coefficients
a(u) = b(u) = 1 and ¢(u) = 0 or the power function ¢(u) = u” for which a(u) = r, b(u) = v and
c(u) = 0 holds.

To obtain now the propagation rules, we differentiate v(x(t)) = ¢(u(x(t))) for a given input x(t)
with respect to ¢ and multiply with b(u(x(t))). This leads to

b(u(x(t)))@ - (c(u(x(t))) + a(u(x(t»)v(x(t)))@. (2.29)

If we assume ED up to order k then u(x(t)) and v(x(t)) are at least k-times continuously differ-
entiable with the expansion for the derivative of u(x(t))

du(x(t))
dt

= uy 4 2tuy + ... + kt* Yy, + O(tF) (2.30)

and analogously for v(x(t)). Substituting these into the equation above and comparing coefficients
leads to the following proposition given in [Gri00].

Proposition 2.15 (Taylor polynomials of ODE solutions)
Under the condition that by = b(ug) # 0 it holds that

% i—1

1 ) ) .
v= g (Z(CH + eimg)ju; — Zbijﬂh) , fori=1,....k, (2.31)

J=1 J=1
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with

€, . — a;Vi—j, forj = 1, cey k—1. (232)
j=0

The rules for the propagation of Taylor polynomials through the most common elemental functions
are shown in Table [2.8] Note that the operation count for the propagation of Taylor coefficients of

Operation Propagation rule for i =1,... k
v=u-+cuv,c v; = u; + cw;
tev, c€ER +
7

v = uw U =D 5o UjWi—j

_ 1 i—1
v =u/w vi = g (U= 250 Uj“’Fj)

_ _ 1 i1
v=/u U = g (u, -2 Uj“i—j)

1 . 1—1 .

v=1logu U = g <zui — ijl Ui_jjvj>

LU 1 2 :
v=ce Vi = 7)o ViU

—— = 1 @ g Nl
v=u Vi = G <T Dot VieJUi = Djo uz—ﬂ“3>

o 1 7 :
s —sin(u) P S

_ 1 i .
¢ = cos(u) Ci = =7 D e Si—jJU;

Table 2.8: Propagation of Taylor coefficients through elemental functions. While the first four rules are easily
derived by truncated polynomial arithmetic similar to (2.27)), the last four are obtained via their inter-
pretation as ODE solutions via Proposition [2.15]

degree k is in general O(k?). Only scalar multiplications and additions are significantly cheaper
with a complexity of O(k). Based on the presented propagation rules for elemental functions
the forward propagation of TCs through an arbitrary factorable function f is simply done by
concatenation of the elemental propagations according to the elemental representation of f. We
call the forward propagation of a Taylor polynomial of degree k through f also a k-th order
forward sweep. Note further that with respect to addition and multiplication given in Table
the polynomials

P = {v(t) = ivjtj, vj € ]R} (2.33)

form for every k > 0 a commutative ring which is in general not free of zero divisors. With the
modulus defined by

T
I

)] =S Ju; € R (2.34)

<.
I
o

the triangle inequality as well as the relation |u(t)v(t)| < |u(t)||v(t)| hold in P,. Hence we can,
like for real numbers, perform arithmetic on Taylor polynomials. Vectors of Taylor polynomials
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out of P, with n components form a free module over R which we denote with P;’. On P} we
define the Euclidean norm

vi(t)

: (2.35)

v (1)
Then it follows from multivariate calculus that any k& — 1-times continuously differentiable function

f : R"nder — R™er has a unique extension to a mapping Ej(f) : 73,? dep _y 73,? 4® " This means for
k > 0 that there exists a linear extension operator

Ek : Ck?—l(Rnindep’ Rnder)) — CO(P:i“dCP’ 'P:d':p), (236)

This more abstract framework for TC propagation will be helpful in the next section for the
derivation of reverse TC propagation schemes.

Reverse TC propagation schemes After discussing the propagation of TCs forward through
a function evaluation and the computation of univariate forward directional derivatives of type
(2.19) we now discuss how univariate forward /adjoint directional derivatives of type can be
computed by reverse TC propagation. The straightforward idea to develop a reverse TC propa-
gation scheme is based on the application of the reverse mode of AD to the actual computations
arising in the forward TC propagation. In this way corresponding reverse propagation formulas
could be derived for all elemental functions, which could be used to obtain an adjoint derivative of a
k-th order forward sweep. By rescaling, analogously to Proposition , then the forward/adjoint
derivative could be obtained. However, instead of deriving and implementing reverse TC propa-
gation formulas for all elemental functions it is more economical to use the reverse mode not on
the instruction level of forward TC propagation, but on the level of Taylor arithmetic. To achieve
this transition, we have to show that differentiation and the application of the extension operator
By commute, i.e., lead in the end to the same Taylor coefficients for the Jacobian mapping
of the underlying function f. Based on the elemental representation of f we can then perform an
“ordinary” reverse sweep, which now simply has to be executed in Taylor arithmetic to propagate
(adjoint) Taylor polynomials reverse to the evaluation procedure. The first step to show commu-
tativity is the following relation between the partial Jacobians of the Taylor coefficient functions
and the Taylor coefficients of the Jacobian mapping of a function.

Proposition 2.16 (Jacobians of Taylor functions)

Let f : R"ndee — R™er be k-times continuously differentiable in a neighborhood of a point xqo €

R"nder, Then 5 oF
822 - axji = A (X0, X1,.. .. %), YO<i<j<k, (2.37)

holds for the partial Jacobians of the Taylor coefficient functions, where Aj; is the i-th Taylor

coefficient of the Jacobian mapping J of f at x(t), i.e.,

k—1

J(x(t)) =Y Ast’ +o(t*). (2.38)

1=0
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Proof:

Provided ¢ is sufficiently small, the value y(x(t)) = f(x(t)) is k-times continuously differentiable
with respect to t and x;. Hence differentiation with respect to ¢ and x; commutes and therefore

we have for 7 < k:
dy; 10 [ 1o 9
i ( ) = i ey (o)
t=0 ' 1

oxi ﬁ@xi %Y(X(t))
1 ;
= <15 (J<)r)
it (5 o7
-4 (Z) O Ix(0)

- ()

by chain-rule

by Leibniz’s rule

t=0

-1 (2.39)

O

We also can express the derivative of the Taylor calculus using the A; according to the following
proposition.

Proposition 2.17 (Derivative of Taylor calculus)

Let f : R"nder — R™er be k-times continuously differentiable in a neighborhood of a point xqo €
R"inder and let Ax(t) = Zf;é t1Ax; € P, be any perturbation that is sufficiently small with
respect to the Euclidean norm (2.35)). Then the polynomial

k—1

Ay(t) =Y Ay = £(x(t) + Ax(t)) — y(t) + o(t" ") € P (2.40)
j=0
satisfies .
Ayi— > A Ax; = of|Ax(D)]), YO <i<k, (2.41)

J=0

respectively written as power series

Ay(t) = A(t)Ax(t) = o([|ax(t)]]), (2.42)
with -
A(t) =) A= J(x(t) +o(t*") € Py, (2.43)
Proof:

For each 7 holds that y; + Ay; is a continuously differentiable function of the Ax; with x; fixed for
7 =20,...,7. From Proposition we have that the Jacobians with respect to these real vectors



CHAPTER 2. DERIVATIVE GENERATION 45

are the Ayx_;. Hence the result follows by ordinary multivariate calculus on real numbers.
U

As a consequence, we have shown that differentiation and the linear extension operator Ej com-
mute. This means if we assume f € CF(RMrder, R%er) it does not matter if we first develop a
scheme in real arithmetic to compute the Jacobian mapping J of f and then apply F, i.e., replace
the operations in real arithmetic by operations in Taylor arithmetic or if we first use Fj to switch
from f € CF(Rmnder RNaer) to Ey(f) € CHP, ™, P,*") and then differentiate in module space.
This result can now be used to compute forward/adjoint directional derivatives of type by
a reverse sweep in Taylor arithmetic.

Proposition 2.18 (Forward/adjoint directional derivatives by reverse TC propagation)
Let the function f : R"nder — R™er be at least k + 1 times continuously differentiable (k > 1)
in the point xo € R"nder. [Let d € R"nder and y € R™er be arbitrary forward and adjoint
directions, respectively. Furthermore, denote with X, = fi(¥,%o,d) € R"»» the k-th Taylor
coefficient of the adjoint Taylor polynomial V(Ej1(y"f)) € P, for the input xo + td. Then
the univariate forward/adjoint directional derivative of order k + 1 at point xo € R"nder and in
direction d € R™»der and adjoint direction y € R"dr js obtained by

£09(5, x0,d) = kI Ry = k1 Fie(§, %o, d). (2.44)

Here V stands for the Jacobian operator in Py.

Proof:

Consider for fixed § the real valued function g(x) := §"x. Then g € C**'(R"»=» R) and we have
for the adjoint Taylor polynomial with general Taylor coefficients f;

0

V(Brn(0)(x(0) = 308 = < glx(1)) + o(t) = <L (FR)(x(1)) + o(t), (2.45)

and hence for the input x(¢) = xo + td we obtain by differentiating k& times and evaluating at
t=20
k' (¥, %0,d) = a—ki(_Tf)(x + td)
<Lk Ya 0, - atk aX y 0
o 6k+1

=Y G
= 10(5, %0, d). (2.46)

t=0

f(xq)d"

O

For the actual computation of the coefficients fi(¥,xo,d) of the adjoint Taylor polynomial we
use the commutativity we have just shown: First we apply a first order reverse sweep to obtain
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a computational scheme for yT% in real arithmetic. Then we apply Er.1 to get the Taylor

coefficients of the adjoint Taylor polynomial. In the end this means that we execute the operations
of the first order reverse scheme in k-th order Taylor arithmetic, which we call a (k + 1)-th order
reverse sweep. This can be performed using the normal TC propagation rules for elemental
functions which we already know, i.e., there is no need to derive and implement special reverse
TC propagation rules. Analogously to the first order reverse sweep a (k+1)-th order reverse sweep
has to be preceded by a forward sweep of order & that computes the values of the intermediate
TCs that are needed for the reverse sweep. The complete forward /reverse scheme to compute one
forward /adjoint directional derivative is then given by the following steps:

e Initialize the forward TC propagation with input X = [xg d 0 ... 0].

e Propagate the TCs forward through the evaluation of f by applying the TC propagation
rules to the operations of the elemental representation of f. Store the TCs needed for a
reverse sweep.

e Set the initial adjoint TCs for the reverse sweep according to the adjoint direction to Y =
[y o ... 0]

e Reverse propagate adjoint TCs by applying the TC propagation rules to the chain of oper-
ations resulting from a first order reverse sweep for f.

Note that the cost of this forward /reverse sweep can be bounded in terms of the function evaluation
of f. If we neglect the cost of accessing the tape with the stored intermediate TCs, the cost is
proportional to (k + 1)? evaluations of the function f.

Multivariate higher-order derivatives Based on univariate Taylor propagation we have pre-
sented efficient schemes for the computation of univariate forward and forward /adjoint directional
derivatives. Unfortunately not all entries of higher-order derivative tensors can be directly com-
puted this way. Consider for example the general function f(z,y,2) : R> — R and let e be the

i-th unit vector in R™. Then, e.g., the tensor entry f,... = % can be computed as third order

univariate forward derivative in direction €3, and f,.., = % can be obtained as third order
forward/adjoint univariate directional derivative with adjoint direction 1 and forward direction
eg, but this is not the case for the mixed derivative f,,. = %Jaz. In the remainder of this section
we present strategies to compute also these entries of the derivative tensors. More general, we
consider now the task to compute for a function f : R"nder — R™er derivative tensors of arbi-
trary order, restricted to a subspace of dimension p > 1 spanned by the columns of the matrix
S € R"nder*P_ Given the parametrization x(z) = x(0) + Sz, with z € R? we can understand the
intermediate variables v and the dependent variables as functions of the reduced variables z and
denote their derivatives w.r.t. z at z = 0 with Vgu.

To directly compute all entries of a derivative tensor in the multivariate case one could use a
multivariate version of the chain rule and transfer most of the previous results for TC propagation
to this context. Note that also multivariate Taylor polynomials (with bounded total degree) form

algebras in which arithmetic can be performed. An example for this approach can be found, e.g.,
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in [Nei92|]. For a complexity analysis of this approach we consider the multiplication u = vw. Its
propagation rules for the first two orders are then given by

Vsv = uVsw + wVsu (2.47)
and
Viv = uViw + Vsu(Vsw)” + Vsw(Vsu)' + wViu. (2.48)
In general, the number of operations to perform this multivariate multiplication rule is given by
2p+ k 2p)F
(p/: )z—<l§‘> . ifk<p, (2.49)

where k is the derivative order. Like for univariate TC propagation, the cost for a division and
other nonlinear elementals are roughly the same as for the multiplication. The problem of this
direct approach is the storing and the manipulation of the tensor entries in memory. The k-th
order derivative tensor Viv has p* entries, of which only

k—1 k
(p+ . > ~ %, if k< p, (2.50)

are distinct. This means a lot of memory is wasted if symmetry is not exploited and also the
operation count is higher, as more elements have to be carried through the propagation process.
On the other hand, the use of a symmetric storage scheme leads to additional effort for the
computation of the memory locations of specific elements and to a more irregular data access.
This irregular data access pattern might lead to cache misses and a significant loss of performance.
As until now this problem has not been solved in a satisfying manner, we now present another
approach that was developed by Bischof et al. [BCG93|. It tries to reconstruct the multivariate
Taylor polynomial corresponding to the tensor Vv from the coefficients of as few propagated
univariate Taylor polynomials as possible. The directions corresponding to this set of propagated
Taylor polynomials are called rays and the process of reconstruction is called exact interpolation.
As a motivating example let us again have a look at the computation of f,,. from above. First note
that f,. cannot be computed directly by an univariate forward directional derivative. However it
can be expressed as a linear combination of such directional derivatives, namely as

fyz = %(fdd - fyy - fzz), where d = (O, 1, 1)T (251)

As a result f,,, can then be obtained by a linear combination of univariate forward/adjoint
directional derivatives. Fortunately such a linear interpolation scheme can be obtained not only
in this simple setup, but also for every tensor element of arbitrary order for an arbitrary vector
valued function. This has been shown for the case of forward TC propagation in the paper of
Griewank et al. [GUWO0| and is formulated in the following proposition.

Proposition 2.19 (Exact interpolation of tensor elements using Taylor coefficients)
Let the function f : R™nder — R™er he at least k-times differentiable at a point x € R™ndee. Denote
with fi(x,d) the i-th Taylor coefficient of f(x + td) at t = 0 for a direction d € R™»der. Then
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for any seed matrix of directions S = [dy,...,d,] € R"nde*? and any multi-index m € NP with
|m| < k we have with z € RP that

8‘m|f(x + Zldl -+ Zng + ...+ Zpdp)
02702y ... 0z"

= D Ymifim|(x, 5), (2.52)

#=0 jl=k

where the coefficients vym; are given by

= 3 (1) H (nlz) (ku;iw) (|]1€|)'““ 2.53)

0<1<m

The coefficients vym; only depend on the derivative degree k and the number of directions p < Nindep
in the seed matrix and are therefore independent of the evaluation point x, the directions S and
the function f.

Proof:

For the long and detailed proof we refer to the paper of Griewank et al. [GUWOQ.
O

Note that the number of rays needed to reconstruct the complete derivative tensor VEf by forward
TC propagation equals the number of distinct elements in the tensor. This is somehow intuitive,
as only one coefficient per univariate direction carries information about VEf. We also see that
as a by-product all entries of the derivative tensors with order smaller £ can as well be computed
from the ray coefficients. Concerning the complexity of this approach it can be shown that usually
the computation count for the propagation of the rays lies close to the cost for the multivariate
propagation while allowing a very regular data access pattern. The cost of the final interpolation
can usually be neglected. A drawback is the increase of required memory by a factor of roughly
pk/(p+ k). If this should become a problem in practice, the propagation can be done sequentially
for several subsets of the needed rays. Also note that despite the name the exact interpolation may
be subject to cancellation errors for k£ > 2 if the entries of the derivative tensor have very different
scales. The case where cancellation might occur can simply be detected, but even if detected not
necessarily avoided. We describe now the practical application of this approach using the example
of Hessian tensor calculation using a second order forward TC sweep.

Example 2.20 (Hessian computation using forward TC sweep)
Consider the function f : R3 — R? from Example [2.4 on page 27| defined as

(1) =ty = (s m ) )

We now want to compute the complete second-order derivative tensor given by the Hessians of
the function components

1

9y, e (xy + x3) e
H' .= o emt —sin(zy) 0 (2.54)
x et 0 0
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and
52 0 0 0
B i= T8 (0 —in(es) + s a0) 02 Ko+ 2y) 02 (2.55)
0 %(m_i_%)—s/z i<x2+x3)_3/2

at the point p = (0,0, 1) using forward TC propagation. This means we use Taylor polynomials
of degree k£ = 2 and propagate a family of rays through the evaluation procedure of f given in
Example To compute the needed rays we first define the set of underlying directions as the
unit directions of the R3, i.e., we use the direction matrix S = I3. The multi-indices corresponding
to the distinct elements constituting the tensor are then given by

2 1 0 1 0 0
m; = 0 , Mg = 1 , INg = 2 , Iy = 0 , Iy = 1 , INg = 0
0 0 0 1 1 2

In this special case, where exactly the elements of the tensor with degree k shall be computed, it
holds for the multi-indices j; with |j;| = k£ = 2 corresponding to the rays that j; = m;, 1 < i <6.
The interpolation coefficients v,,; are computed from Equation (2.53) and are given by

05 0 0 00 0
~025 1 025 0 0 0
,_ =16 0 0 05 00 0
Pe=Oma)iae= | 025 0 0 10 -025 (2:57)
0 0 —025 0 1 —025
0 0 0 00 05

As there are no zero columns, all rays are needed for the computation of the requested derivatives.
The Taylor coefficients of the rays to be propagated are given by X! = [p, Sj;, 0], i.e.,

X' =

Xt = (2.58)

_— O = O O N
_— =0 O =

N OO OO

The propagation of a Taylor polynomial of degree 2 with TCs X through the evaluation of f is
done in Taylor arithmetic by the following operations
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V20 = Xl,o V_21 X1,1 V22 = X1,2
U_19 = X2 Vo1 X2 V_19 = Xa2
Voo = Xs,o Vo1 = X3,1 Vo2 = X3,2
v, = €20 v = V1,00-2,1 Vg = (V1121 + 201 gU_22)/2
Vgo = V_10+ Voo | V21 = V_1,1 + Vo1 VUgo = V_1,2 + Vo2
Uzo = V2,0 (EREE v2,1/(2v3,0) Uzg = (v2,2 — v31031)/(2U30)
Vg = V1,0V2,0 V4,1 V1,1V2,0 + V10V2,1 | Va2 = V1,2V2,0 + V1,1V2,1 + V1,0V2,2
Us,0 = Sil’l(U_LO Us,1 COS(U—I,(])U—I,I Us,2 = COS(U_L(])U_LQ — Uzl,l Sin(’U_Lo)/Q
Vo = V40T Uso | U1 Vg1t U5 Ve2 = Vg2 + Us2
V7o = Usp—U3o | Ura Us1 — U3l Ur2 = Us5,2 — U3 2
YI,O = V6,0 Y1,1 V6,1 Y1,2 = V6,2
Y2,0 = V7.0 Y2,1 V71 Y2,2 = V7.2

Note that here the first two columns represent the same calculations we made in the computation
of the function value and the first derivative using the forward mode in Example [2.7
By propagating the rays X! we obtain the intermediate TCs

vi | g=1 | j=2 | j=3 | j=4 | j=5 | j=6
i=1]1 2 2[[ [1 100 11 3 100 100
i=2[[1 00| 1 1 20 110 1 20 1 20
i=3[[1 00 []1 111 =3[ 3 —5][[11 3]t 1 —3]
i=4] 1 2 2/ 1 1 20 1 2 3 1 20 1 20
i=5[10 0 0] [0 020 000 | [01 0 000
and finally
1 [1 2 2 . [1 3 2 s [1 40
velvad el el
1 s 1 30 1 2 0
4 5 6 __
veln Ay veliell welh A e

Now we can use the exact interpolation, described in Proposition [2.19 on page 47] to obtain the

entries of the derivative tensor:

Hi, _ 1 (1
(H121>—0.5y2— 0]

i) =0t= (1)
= 05y3 = :
(1) v

H} 1
(H@ = —0.25y; +y5 —0.25y5 = <o> ,

H 1
Hg) = —0.25y3 +y5—0.25y5 = <0) ,
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1
H?; = —0.25y5 +y5 — 025y = : (2.60)
H23

Hence we obtain the derivative tensor as

1
H'= |1 H? = (2.61)
1

o O =
o O =
o O O

N L )
B = O

After this example of univariate forward TC propagation and exact interpolation we now present
how the idea of exact interpolation can also be used in connection with univariate forward /reverse
TC sweeps to obtain elements of higher-order derivative tensors. For this, we extend the results
of [GUWO0] stated in Proposition for the use of forward/adjoint directional derivatives.

Proposition 2.21 (Exact interpolation of higher-order adjoint derivatives)

Let the function f : R"nder — R™er he at least k + 1-times differentiable at a point x € RMndep,
Denote with £;(¥,x,d) the i-th Taylor coefficient of the adjoint polynomial for input x + td at
t = 0 for a direction d € R"»der and an adjoint direction y € R"r. Then for any adjoint direction
y € R™e» any seed matrix of directions S = [dy, . ..,d,] € R"d>*P and any multi-index m € N?
with |m| < k we have that with z € R?

O (x 4 20dy + 2zody + ..+ 2,dp)
Y e e B

= Vil (¥, %, S3), (2.62)

2=0 ljl=k

where the coefficients v are given by (2.53) in Proposition |2.19 on page 47,

Proof:

The proposition follows directly from Proposition 2.19] Because the coefficients ymj do not depend
on the function f and the exact interpolation described in Proposition is linear in the Taylor
coefficients, adjoint differentiation and exact interpolation simply commute.

O

We see that the number of rays needed for the computation of a complete derivative tensor of
order k + 1 is smaller than in the pure forward case, namely equal to the number of distinct
elements of the derivative tensor with order k. Also the degree of the Taylor polynomials to
be propagated is only k. On the other hand we need to propagate a total of nge, sets of these
rays backwards. Hence like in the case of first order sweep it depends on the number of rays
and the size of nge, whether the application of reverse TC propagation will be more efficient for
the computation of the whole tensor than a pure forward TC propagation. In the optimization
context the forward /reverse TC propagation scheme is usually the method of choice, because here
we usually need higher-order adjoint derivatives involving one adjoint direction only, namely the
gradient of the Lagrangian w.r.t. the output values of f. In the final example of this section
we now present the practical application of the exact interpolation using the forward /reverse TC
propagation for the computation of the Hessian tensor of our well-known example function.
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Example 2.22 (Hessian computation using forward /reverse TC sweep)
Consider the function f : R3 — R? from Example [2.4 on page 27| defined as

() = tlonmnay = ( ez o) contr) ),

We again want to compute the complete second-order derivative tensor given by the Hessians of
the function components

o2 ez +x3) e €™
H' = y21 = em —sin(zy) 0 (2.63)
ox ent 0 0
and
9y 0 0 0
H? = 5 22 =10 —sin(zs) + 3(22 + x3)73/2 1(za + x3) 73/ (2.64)
X 0 %1(952 +x3)—3/2 %1(332 +x3)_3/2

at the point p = (0,0,1) using forward/reverse TC propagation. This is done by propagating
a family of rays of degree k = 1 forward through the evaluation of f given in Example [2.4]
Afterwards we do reverse TC propagation along this set of rays for a number of adjoint directions.
To compute the needed rays we first define the set of underlying directions as the unit directions
of the R3, i.e., we use the direction matrix S = I3. The multi-indices for the forward propagation,
here corresponding to the unit directions, are then given by

1 0 0
my = 0 s mso = 1 R msg = 0]. (265)
0 0 1

In this case, these are also the multi-indices of the rays for degree k =1, i.e., jy = m;, 1 <1 < 3.
The interpolation coefficients 7,,; are computed from (2.53)) and are simply given by

,,,,,

1 00
I':= (,ymijl)éz} ..... ?:; =101 0. (2.66)
0 01

As there are no zero columns, all rays are needed for the computation of the requested derivatives.
The Taylor coefficients of the rays to be propagated are given by X' = [p, Sjil, i.e.,

X' = , X?= , XP= (2.67)

— o O
O O =
_ o O
O = O
_ o O
_ o O

The propagation of a Taylor polynomial of degree 1 with TCs X through the evaluation of f is
done in Taylor arithmetic by the following operations:
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V20 = X170 V21 = X1

Vo0 = Xopo Vo1 = Xo1

Voo = X3,o Vo1 = X3

vig = ev=20 v = V1,0V_2,1

Vg = V_10+ Vo | V21 = V_1,1 T Vo,1

v30 = V2,0 vzl = U1/ (2v30)

V4,0 U1,0V2,0 Vg1 = U1,1V20 + V1,021

Uso = SiIl(U_Lo) Us,1 = COS(U_L())U_Ll

Vo = V40t Us0 | Vs1 = Vg1 + Us1

V7o = Uso—U3p0 Ur1 = Us,1 — V3,1

Yio = V6,0 Yi, = V1

Yz,o = V7.0 Y2,1 = V7.1

By propagation of the rays X! we obtain
vi=[1 1], vi=1[1 0], vi=1[1 0], (2.68a)
vy =[1 0], vy =[1 1], vy =[1 1], (2.68D)
vg=[1 0], vi=1[1 3], vi=1[1 3], (2.68¢)
vi=[1 1], vi=1[1 1], vi=1[1 1], (2.68d)
vi=1[o 0], vZ=1o 1], vi=1[0 0], (2.68¢)
1 1 1 2 1 1
v!— [ ] : Y2 — [ 1] , Y3 = [ 11 : (2.68f)
-1 0 -1 3 -1 —3

In the reverse sweep, we propagate backwards one adjoint TC for each ray and for each adjoint
direction. As ngep, = 2 we need the two adjoint directions

71 = ((1)) A ((1)) , (2.69)

to compute the complete derivative tensor. This results in the following 6 adjoint TCs Y to
propagate, where ¢ denotes the corresponding ray and j the corresponding adjoint direction:

S S 10 S S 0 0
11 _ <21 31 _ 1,2 _ 2,2 32
Y =Yy2l=Y3 {O O] Y2 =Y22=Y% [1 01 (2.70)
As explained earlier, the reverse TC sweep is performed for each adjoint TC like the regular first
order reverse sweep, given in Example [2.8 on page 34| only that now the operations are performed
in Taylor arithmetic. This leads for each adjoint TC Y to the following operations (already
accumulated for every variable):
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Uso = Yao+Yip Usn = Yoi+Yi,

U0 = Yip g1 = Y

Uzg = —Yapo V31 = —Ya,

Ugg = Us0V1p0 Ug1 = UgoU1,1 + Ug1V10
+ 030/ (2v30) + (U331 — (U3,0/v30)v31)/(2v30)

Ui = UsoU20 U1 = Ua0V2,1 + Ug1020

Xs0 = TUap Xs1 = Ua;

X270 = 17570 COS(’U_LQ) X2,1 = —@570 sin(v_mv_l,l) + @571 COS(U_L())
+ '1_1270 + 772,1

Xi0 = Viovip Xi1 = Ui + U111

Hence we obtain for the propagation of the Y%/ the intermediate adjoint TCs

‘_]‘i]7k H (]’ k) - (L 1) ‘ (2, 1) ‘ (37 1) ‘ (1’2) ‘ (272) ‘ (3’2)
i=5 10 1 1]t 1]] [o o] | [0 0 [0 0
i=a| [ [T ol [ o [[=F o7 [[=F T1[-% 1]
i=3 0 0 0 0/[[0o 0f][-1 0]][-1 0]]][-1 0]
i=2 10 1 of[[1 o] [00 00 00
i=1 10 1 o[ o] [To] | [to] | 1o

and the propagated adjoint TCs corresponding to the propagated adjoint Taylor polynomials

X21

— h
NI

V= O

X22 _

o O O

N

11 11
2 0|, X =12 0], (2.71)
10 10
0 0 ) [0 0
11 1 1
2 4 L 2 4

Finally, we use the adjoint version of exact interpolation described in Proposition [2.21 on page 51|

to obtain the entries of the derivative tensor:

Hy 1 Hi,
Hy | =577 = (1], Hy | =%
H3 1 Hj,
m\ [0 i3,
H | =x"=|0], HZ | =%
3 0 3,

1 Hi; 1
=10, Hy | =537 = (0],
0 H}, 0
0 H 0
2= % , 5223 =x7% = % (2.73)
4 33 4
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Hence we obtain the derivative tensor as

1
H'= |1 H? = (2.74)
1

o O =
o O =
o O O

e L )
A== O

Note that in the Hessian case the exact adjoint interpolation is always trivial and hence not subject
to cancellation errors.

Summarized, we have seen in this section how the approach of univariate Taylor coefficient propa-
gation is used to obtain efficient forward and reverse schemes for the computation of higher-order
directional derivatives of arbitrary order. With the help of exact interpolation univariate TC
propagation can also be used to generate all elements of a derivative tensor of arbitrary order by
the propagation of a family of rays of the corresponding order. This can be done quite efficient
due to very regular data access pattern. We rely on the approach of univariate Taylor coeffi-
cient propagation later in this thesis for the efficient computation of a reduced Hessian matrix
in our lifted optimization algorithm as well as, in connection with the idea of Internal Numerical
Differentiation (IND]), for the computation of derivatives of arbitrary order of the solutions of
IVPs for ODEs and DAESs in our numerical integration schemes.

2.4.4 AD implementations

In the previous part of the section we have derived various strategies for derivative generation
based on the idea of automatic differentiation. While the derivation of the actual schemes and
their evaluation can be done for a specific function by hand, as done in the presented examples, the
real power of AD lies in the automatic derivation of the specific derivative generation scheme for
a given function from its evaluation procedure by an AD software tool. Otherwise, the error-free
derivation of a derivative generation scheme for a function defined by possibly several thousand
lines of source code would be nearly impossible. Also for every new function there would be
the need for a lot of additional manual work. This would be not desirable, if at all feasible, if
an AD approach should be used as part of a multiple purpose simulation or optimization code.
Fortunately, all the presented schemes can be derived efficiently from the function definition in an
automatic way. A good overview on available AD tools, as well as on publications related to AD,
can be found on the “AutoDiff” homepage [Bis|. AD software can be separated mainly into two
large groups, depending on the approach it is based on. In any case, for most of the tools some
modifications of the original function evaluation code are needed, e.g., to specify independent and
dependent variables.

The first group of AD software is based on source code transformation. Here from the given source
for the evaluation of the function that is to be differentiated, the AD tool generates as a kind of
precompiler a source code for the computation of the derivative of the function by using one of
the presented AD schemes. This source code for the derivative can then be compiled and linked
to the program or library where it should be used. A big advantage of this approach is that, since
the generation of the derivative code is not done at run-time and usually only once for a function,
a deep analysis of the function evaluation procedure and a very sophisticated approach for the
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generation of the derivative scheme can usually be applied. Furthermore, the instructions of the
resulting derivative code are known and can be analyzed and optimized by the compiler, leading to
a very efficient derivative evaluation. Note that this compiler based optimization would be most
efficient when also the order of the derivatives to be generated, the number of directions, etc.,
would already be known at compile time, which unfortunately is usually not the case. Also a new
compilation process is needed whenever the definition of the underlying function changes or a new
function is defined. This makes a fully automatic handling inside of a multiple purpose code more
difficult, as, e.g., user specified functions are normally not known at the time of the compilation of
the core code. There sometimes also exist technical problems, e.g., when the source code for the
function evaluation is scattered over more than one source file. Nowadays, there exist many AD
tools based on source code transformation for computer languages like Fortran (e.g., ADIFOR
[IBCKM96|, OpenAD [HNNO2|, TAPENADE [HP04]), C/C++ (ADIC |[BRM97|, RAPSODIA
[CU09]) or MATLAB (ADiMat [BBL™02|, tomsym [Inc|). While nearly all of them support at
least first order forward /reverse schemes, Jacobian and maybe even Hessian generation, only very
few of them support forward TC propagation for a predefined order and until now none of them
supports forward /reverse TC propagation schemes of arbitrary order. Considering the supported
languages, it should be noted that the target language does not have to be the same as the source
language. There exist several specialized tools, that generate for a special function class from its
problem specific description language expressions for function and derivative evaluation in another
language like Fortran, C, or C++. Examples are the code of Riicker |[Riic99| that generates from
a description of a chemical reaction system Fortran or C source code for the model equations
and their first (forward) derivatives, or the ADOPT package by Schmidt [Sch08]. ADOPT uses
the SBML |[HEHT07| description of a process in system biology to generate C++ function and
derivative code that supports forward /reverse TC propagation and that is optimized for the use
as model description in the SolvIND integrator suite.

The second group of AD tools is based on operator overloading. This means the definitions of
the elemental functions in a computer language that allows operator overloading, like C++, are
redefined, usually for a new data type specific to the AD tool. For example, they could be changed
to the corresponding operations in Taylor arithmetic to perform a forward TC sweep. If used in
this sense, operator overloading is in the end quite similar to a source code transformation, only
that the transformation is done in this case directly by the compiler itself. However, often the
elemental functions are adapted to record the operations performed during a function evaluation
onto an operation tape. This can later be used as basis for the subsequent execution of forward
and reverse derivative generation schemes at different evaluation points and for different derivative
directions and derivative orders. Other than in the case of source code transformation, this means
that effectively the derivative generation scheme is constructed at run-time of the calling program.
This makes the tools based on operator overloading in general a lot more flexible and more suited
for the use in multiple-purpose codes, where the number of derivative directions, as well as type and
order of derivatives, might not be known at compile-time. In exchange, the derivative evaluation
they provide is usually slower than for code obtained from source code transformation, as it cannot
be optimized by a compiler for the actual system architecture. Furthermore, additional memory is
needed to store the tape of operations. Like for the approach of source code transformation there
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exists a variety of AD tools based on operator overloading for different languages like MATLAB,
newer Fortran versions or C++. Examples are here ADMAT [CV98|, COSY INFINITY [Ber02],
TaylUR [vHO6], FADBAD-++/FADBAD-TADIFF [BS96|, CppAD [Bel| and ADOL-C [GJU96].
All of the tools support one kind of first order derivative generation, some also higher-order
forward derivative schemes, but so far ADOL-C and CppAD seem to remain the only ones to
support forward/reverse TC propagation for higher-order derivative generation.

Note that not all AD tools can be clearly put into one of the two categories, as for example they
might generate derivative code that contains overloaded operations for specific AD data types.
Alternatively, they might use operator overloading to record the operations occurring during a
function evaluation to build up a representation of the function evaluation and generate afterwards,
based on this representation, source code for the evaluation of the derivatives. The partition of
the tools presented here is mainly based on whether the construction of the derivative generation
scheme is done at compile-time or at run-time.

2.5 Generation of sparse derivatives

While most strategies and algorithms presented in this thesis strive to avoid the forming of com-
plete Jacobians or full higher-order derivative tensors and aim to minimize the number of di-
rectional derivatives, sometimes the building of a full Jacobian matrix cannot be avoided. This
is for example the case in the presented schemes for numerical integration of ODEs and DAEs.
However, if the computation of a full Jacobian or derivative tensor cannot be avoided, its specific
structure should be exploited if possible. This is especially true for high-dimensional functions,
where otherwise the memory consumption and also the operation count for operations involving
these tensors becomes prohibitively large. Hence we give in this section a short overview on strate-
gies for the generation of sparse Jacobian and Hessian matrices, i.e., matrices where the number
elements that might be nonzero is significantly smaller than the total number of matrix elements.
The first group of strategies is based on AD ideas and relies on the availability of an elemental
representation of the function or the computational graph of the function, respectively. In this
case, sparse storage versions of the presented first order forward and reverse mode can be obtained
quite easily [BKBC96|. However, their implementation may suffer a lack of efficiency when the
internal dependencies of the function evaluations are not known at compile time. Similarly, also
second-order schemes using sparse storage can be derived. More interesting AD-based approaches
are working on the computational graph of the function. They also use the chain rule, but
make use of the freedom that it does not have to be applied in a strictly sequential manner to
accumulate derivative information, like it is done in the forward and in the reverse mode. Instead,
it can also be used to eliminate vertices or edges from the computational graph in arbitrary order,
until a bipartite graph only containing dependent and independent variables remains. From this
graph the Jacobian and also its sparsity pattern can be immediately obtained. Furthermore, it
should be noted that in this approach the sparsity structure is automatically exploited. The
problem of finding the accumulation scheme for a Jacobian with the minimum number of floating
point operations is in general NP-complete [Nau08|. However, there exist a number of heuristic
accumulation strategies, see, e.g., [GR91, Nau99, Nau02l [Gri00] and references therein. These
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are usually much more efficient than a Jacobian computation by a (sparse) forward or a (sparse)
reverse mode. Heuristics have also been proposed for the accumulation of Hessians [GRO5].
Another group of strategies for sparse Jacobian computation is based on compression. They are
not relying on the availability of an elemental representation of the function, but only on the
possibility to evaluate the function in a black-box manner and on the knowledge of the sparsity
pattern of the Jacobian. Compression based approaches use the sparsity pattern of the Jacobian
J € RMep*ninder for the construction of so-called seed matrices S € R™nder*? and /or T € R™der*4
that allow the reconstruction of all Jacobian entries from the computation of first order directional
derivatives. The use of directional forward derivatives of the form

B=1J-S (2.75)
is called row compression, whereas the use of adjoint directional derivatives
ct=17.7, (2.76)

is called column compression. In both cases the strategies aim to minimize the number of needed
directional derivatives, i.e., the number of columns p and ¢, respectively, of the seed matrices. The
matrices B and C are called compressed Jacobians. The evaluation of the directional derivatives
can be done with any suitable strategy presented above, depending on the accuracy requirements.
Let X; be the set of column numbers containing nonzero elements in the i-th row of J and let
b; € R? the i-th row of B and j; € RPi| p; := |X;|, the vector of the nonzero elements in the
i-th row, ordered by their size. If we furthermore define S; := ((e;"**)7S);cx, € RP*? as the
“projection” of S onto the nonzero columns in the i-th row of J we see that for a given choice of

S the row of the compressed Jacobian b; is determined by
Si"ji = by. (2.77)

This means on the other hand that the row j; of the uncompressed Jacobian can only be determined
uniquely from by, if p > p;,. An immediate consequence for the complexity of the row compression
is that for the number of directional derivatives needed it holds p > max;<;<n,,, pi- Analogously,
the bound ¢ > max;<i<p,q., Vi for the column compression can be derived, where ); is the number
of nonzero elements in the i-th column of J.

For the construction of S there exist different approaches, where the mostly used ones were pro-
posed by Curtis, Powell and Reid (CPR) [CPR74] and by Newsam and Ramsdell (NR) [NR&3].
CPR seeding constructs seed matrices S € {0, 1}"nde»*? for which the S; are permutations of
[L,, 0] € RP*P. Because finding such a seed matrix with minimal p is equivalent to the graph col-
oring problem and hence NP-hard [CM84|, CPR uses heuristic strategies, which usually work fine,
but may also lead to a p much larger than needed theoretically. An advantage of CPR seeding is
that once a suitable S is found, the entries of the uncompressed Jacobian can be obtained directly
from the compressed one without further algorithmic operations. NR seeding on the other hand
uses Vandermonde matrices for the S, where p is chosen at its lower bound. The drawback is that
linear systems have to be solved to reconstruct the uncompressed Jacobian from the compressed
one. The choice of the Vandermonde matrices was inspired by complexity considerations, as linear
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systems involving these matrices can be solved quite efficiently [GvL96], especially compared to the
effort for the derivative computation. On the other hand these systems might be ill-conditioned
such that modifications for stability improvement have been proposed, e.g., the use of orthogonal
polynomials or coloring based approaches [GUG96]. Note that both the CPR and the NR seeding
can also be adapted for the use in column compression. Furthermore also a combination of row
and column compression has been proposed [CV96], leading to a significantly reduced number
of needed derivatives for special matrix types. Concerning Hessian computation there also exist
compression techniques based on two-sided compression of the Hessian tensor that also exploit its
symmetry, as, e.g., presented in [CC86).

Summarizing, it can be said that also for the exploitation of sparsity in Jacobian and Hessian
computation there exists no optimal approach for all cases. Instead, it depends much on the
specific problem which approach performs best. The choice of the most suitable approach is
also strongly influenced by the availability of an elemental representation of the function to be
differentiated and by the question whether the computational graph or the sparsity patterns is
known already at compile-time or only at run-time.






3 Nonlinear Programming

In this chapter the problem class of (smooth) Nonlinear Programs (NLP) and their basic prop-
erties are presented. We give a short overview over the local optimality conditions of these type
of problems as well as their numerical solution using Newton-type methods. Finally, the topic of
globalization is addressed shortly. In this chapter we consider only the general NLP formulation,
e.g., we neglect any internal structure that the problems might have. The topics discussed in
this chapter are the foundation for the lifted Newton-type methods presented in Chapter [4] and
Chapter

3.1 Notation and definitions

In this section we give the basic problem formulation and the definitions needed in the discussions
that follow. The definitions and the (omitted) proofs of the presented theorems can be found in
many textbooks on optimization, e.g., in the book of Nocedal and Wright [NW99] or the book of
Fiacco and McCormick [FM90].

We start by defining the fundamental problem class.

Definition 3.1 (Nonlinear Program (NLPJ))
Let c € C}(R™ R), g € C}(R™,R™a) and h € C'(R",R"=a) be nonlinear functions. The general

is then given by

urélxégu c(u) (3.1a)
subject to

g(u)=0 (3.1b)

h(u) > 0. (3.1¢)

Here ¢ represents a cost function, and g and h represent equality and inequality constraints,
respectively. The inequality in (3.1c]) is to be understood component-wise. We denote the scalar-
valued component functions of g and h with g;(u), 1 < i < neq and h;(u), 1 < i < Nypeq-

We also state here two important subclasses of NLPk. The nonlinear least-squares program occurs
often in practice, e.g., in the treatment of parameter estimation problems or tracking problems.

61
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Definition 3.2 (Nonlinear least-squares program)
Let v € C*(R™,R™=) g € C'(R™,R") and h € C'(R"™, R"na) be nonlinear functions. The
nonlinear least-squares problem is then given by

1 2
min > r(u)] (3.22)
subject to
g(u)=0 (3.2b)
h(u) > 0. (3.2¢)

Here we call r the residual function and g and h represent, as before, equality and inequality
constraints.

The Quadratic Program (QP)) also often occurs in practice, and it is the common subproblem class
to be solved in each iteration of the Newton-type methods presented in this and later chapters.

Definition 3.3 (Quadratlic Program (QP)))
A Quadratic Program (QP) is an optimization problem with a quadratic cost function and linear
constraints, e.g., of the form

1
min —u’ Au+a’u (3.3a)
ucRn"u
subject to
g+Gu=0 (3.3b)
h + Hu > 0. (3.3¢)

wherea € R™ g € R"a h € R"»ea are given vectors and A € R"*" G € R"%a*" H € RMneaXMu
given matrices.

After presenting the fundamental problem classes we define the notation of points fulfilling the
constraints of the NLPl

Definition 3.4 (Feasibility)

A point u € R™ is feasible with respect to the (equality) constraint g;(u) = 0, iff g;(1) = 0. Then
we say that the constraint g; is satisfied at u. If this is not the case, we call u infeasible and say
that the constraint g; is violated at u.

A point u € R"™ is feasible with respect to the (inequality) constraint h;(u) > 0, iff h;(q) > 0.
Then we say that the constraint h; is satisfied at u. If this is not the case, we call u infeasible
and say that the constraint h; is violated at u.

We call 0 a feasible point (of the (3-1)), iff it is feasible with respect to all constraints. We
denote the set of all feasible points with F.

The following definition characterizes a solution (or minimum) of the [NLP
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Definition 3.5 (Local and global minimum)
Let u* € R™ be a feasible point.

u* is a local minimum of the[NLH (3.1)), iff there exists an € > 0, such that
c(u*) < ¢(u) Yu € FNU(ua"). (3.4)
We call u* a strict local minimum, iff there exists an € > 0, such that
c(u*) < c(u) Yu e FNU-(u"),u#u". (3.5)

u* is a global minimum, iff

c(u”) < c(u) Yu e F. (3.6)

A strict global minimum is defined analogously. A local (or global) minimum, that is not strict,
is also called a weak local (or global) minimum.

Based on this definition, the next important question is how to test, whether a given feasible point
u is a local (or global) minimum. For the nonlinear problems occurring in practice, it is usually
impossible to obtain a closed representation of the set of feasible points in the neighborhood of u
and to test its optimality using the criteria of Definition 3.5

Note that in general finding a global minimum of the NLP is a significantly different and usually
also more difficult task compared to finding a local minimum. Only for some special cases, e.g.,
convex problems, it can be shown that a local minimum is also a global minimum. In the following
we restrict ourselves to algorithms that find local minima of the NLP only. For an overview on
possible approaches to find global minima, refer ,e.g., to the review article [FACT05].

As a result, we need tools to systematically describe and characterize the set of feasible points in
the direct neighborhood of a feasible point u.

Definition 3.6 (Feasible path and feasible direction)
Let u € R™ be a feasible point and € > 0.
A feasible path for the point u is a mapping 1 € C'([0,¢), F) with

P(0) =u and (s) #u Vs € (0,¢).
The tangent to the feasible path in the point u is called a feasible direction.

Loosely speaking, a feasible path is a way starting in u and remaining in the feasible set. Gener-
ally, a feasible path has to be nonlinear to achieve this. A feasible direction describes a direction
in which we could go from u at least an infinitesimal small step while remaining feasible.

We now divide the constraints into two separate classes to study how each of them influences the
set of feasible directions.
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Definition 3.7 (Active set and active constraints)
Let u € R™ be a feasible point.

An inequality constraint h; is called active in u, iff h;(a) = 0. If h;(0) > 0 it is called inactive in
u. The active set of the inequality constraints h in a point (@) is defined as

Z(a) :={i € {1,..., Nineq (1) = 0}, (3.7)
i.e., as the set of indices of the active inequality constraints h; in that point.

We define the combination of equality constraints and active inequality constraints as active
constraints

5(1) — (g(u))lgz’Sneq Neq+Z(w)|
£ = ( (i) ) <F 35)

Based on these definitions we observe the following: An active inequality constraint allows (in-
finitesimal) movements into directions where the constraint remains active, and also into directions
where it becomes inactive. An inactive inequality constraint on the other side does allow infinites-
imal movements in all directions, hence it does not restrict the set of possible feasible directions.
An equality constraint finally allows only movements into directions where one remains on the
manifold defined by the constraint. We can formalize this by the following Lemma.

Lemma 3.8
Let u € R™ be a feasible point for the [NLP| (3.1) and ¥ € C!([0,¢),F) a feasible path for u.

Then the corresponding feasible direction d = azg_f:) fulfills
s=0
Vagi()'d = 0, 1< < g, (3.9a)
Vuohi(w)'d > 0, i € Z(u). (3.9b)

Proof:

This follows directly from the feasibility conditions for the path, i.e., g(¥(s)) =0 Vs € [0,¢) and
h(¢(s)) >0 Vse[0,¢).
O

Hence the equations are necessary conditions for every feasible direction. But in general they
are not sufficient, i.e., not every vector fulfilling is a feasible direction. Only in case of linear
constraint functions g and h the conditions completely characterize the set of feasible direc-
tions. For nonlinear constraints, one usually imposes additional conditions, so-called constraint
qualifications, to avoid such problems. There exist several concepts of constraint qualifications,
but we will only state here a very commonly used one that we need also for the derivations that
follow.
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Definition 3.9 (First order constraint qualification)
Let u € R™ be a feasible point. We say that the first order constraint qualification holds in u, iff
every vector d € R™, d # 0, fulfilling the conditions (3.9)) is a feasible direction.

As we want to establish later also second order optimality conditions, the following constraint
qualification is needed.

Definition 3.10 (Second order constraint qualification)
Let u € R™ be a feasible point. We say that the second order constraint qualification holds in u,
iff every vector d € R™, d # 0, that fulfills

Vagi(w)'d = 0, 1 < < negq (3.10a)
Vehi(w)'d = 0, i € Z(u), (3.10b)

is a feasible direction of a twice continuously differentiable feasible path 1)(s), for which addition-
ally h;(¢(s)) = 0 holds for all i € Z(u).

A commonly used criterion to ensure that these constraint qualifications hold is the following
condition.

Definition 3.11 (Linear Independence Constraint Qualification (LICQ)))
We say that the Linear Independence Constraint Qualification (LIC(Q)|) holds in a feasible point u,
if the gradients of the active constraints Vyg;(u), 1 <1i < ne, + |Z(u)|, are linearly independent.

Definition 3.12 (Regular point)
A regular point is a feasible point that fulfills the |LICQ)

For a regular point, finally the following theorem can be proven, see, e.g., [FM90].

Theorem 3.13
Let u € R™ be a regular point. Then the first and the second order constraint qualifications hold
in u.

Note that also in non-regular points the constraint qualification might hold, i.e., the preceding
theorem is only a sufficient and not a necessary condition. However, in practical problems the
solution u* will often be a regular point.

Based on the preceding characterization of the set of feasible directions, we present in the next
section first and second order conditions for local minima of the NLP .

3.2 Local optimality conditions

The tool that we will use in the following for the determination and characterization of possible
solutions of the [NLP| e.g., in the optimality conditions, is the so-called Lagrange function.
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Definition 3.14 (Lagrange [fundtion and Lagrange multipliers)
The Lagrange function of the|NLP| (3.1)) is defined by

L(u, A, p) = c(u) — A'g(u) — p"h(u). (3.11)
Here A\ and p are called Lagrange multiplier.

Using the Lagrange function, we can formulate the well-known Karush-Kuhn-Tucker con-
ditions, which are first order necessary conditions for a local minimum of the NLP. They were first
derived by Karush [Kar39| and later independently by Kuhn and Tucker [KT51]. A proof can,
e.g., be found in [NW99.

Theorem 3.15 (Karush-Kuhn-Tucker (KKT|) conditions)
Let the first order constraint qualification hold in u* € R™ and let furthermore u* be a local

minimum of the (3.1).

Then there exist Lagrange multiplier X* € R"a and p* € R"nea such that (u*, A", u*) satisfy:

Val(u™, A", ") 0 (3.12a)
gu’) =0 (3.12b)

h(u) > 0 (3.12¢)

p >0 (3.12d)

pihi(u) = 0, 1< < Nineq. (3.12¢)

Here the condition (3.12¢]) is called complementarity condition.

A triple (u*, X", u*) is called a[KKT] point and is a candidate for a local minimum of the NLP.

If the local minimum is also a regular point, the following theorem can be proven.

Theorem 3.16 (Multiplier uniqueness)
Let u* € R™ be a regular point and also a local minimum of the|NLP| (3.1). Then the Lagrange
multiplier \* € R" and p* € R™»a jn Theorem are unique.

The complementary conditions of Theorem imply that the multiplier corresponding to inactive
constraints are equal to zero. Depending on whether the multiplier for the active inequality
constraints are zero or not, we classify the corresponding constraints.

Definition 3.17 (Weakly and strongly active constraints, strict complementarity)

Let (u*, X", u*) be a KKT point. Then we say that an active inequality constraint h;(u*) = 0 is
weakly active, if p; = 0. Otherwise we say the constraint is strongly active.

We denote the set of the indices of the weakly active constraints with

I(](u*) = {Z € {1, Ce ,nineq}\hi(u*) =0 /\/L;k = 0},



CHAPTER 3. NONLINEAR PROGRAMMING 67

and the set of the indices of the strongly active constraints with
Zo(u") ={ie{l,...,nineqthi(0*) =0A p; >0},

such that Z(u*) = Zy(u*) U Z, (u*).
If all active constraints are strongly active, i.e., Z(u*) = Z, (u*), we say that the KKT point fulfills
the strong complementary condition.

Remark 3.18

The geometrical interpretation of the first condition is that the gradient of the objective
function can be expressed as linear combination of the gradients of the constraint functions.
Alternatively, we can say that u* is a stationary point for the Lagrange function £(u, A, p) (with
respect to u and provided that A = A* and p = p*).

Remark 3.19 (Shadow prices)

The Lagrange multiplier of the active constraints can be interpreted as the costs of fulfilling the
corresponding constraints and are hence often called shadow prices. More strictly speaking, if we
interpret the cost function (via the changing KKT point) as a function of the right-hand side of
the constraints, the Lagrange multiplier are the values of the directional derivative of the cost
function in the positive direction. This means they describe how the cost function varies in the
optimal solution, if the right-hand side of a constraint is changed from zero to an infinitesimal
small positive value. This interpretation also gives an intuitive explanation for the condition
that demands nonnegativity of the inequality multipliers in an optimal solution.

Example 3.20 (KKT| conditions for [QBs)
Consider the |QP|described in Definition 3.3 Then the [KKT| conditions of the problem are given
for a point (u*, A", u*) by

Au* +a—-G'X*-H'p* = 0 (3.13a)
g+Gu =0 (3.13b)
h+Hu > 0 (3.13¢)

w >0 (3.13d)
wi(h; + Hju*) = 0, 1 <@ < Nipeq, (3.13e)

where H;. denotes here the j-th row of the matrix H.

Definition 3.21 (KKT| matrix)
If we consider a|QP| without inequalities, the |KKT| conditions in Example |3.20) can be written in

a more compact form as
A GT u* a
(& 9)(5)=-6) @1

where the matrix on the left side in called matrix. It can be shown that the [KKT1 matrix
is regular, provided that G has full rank (e.g., when u* is a regular point) and that A is positive
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definite on the null space of G. For a proof, see, e.g., in [NW99|. In this case the equality
constrained QP has exactly one point. For inequality constrained [QPs the existence and
uniqueness of a point can be proven, e.g., under the additional conditions that there exist
feasible points and that the combined constraint Jacobian (G, HT)T has full rank.

While the presented first order conditions offer a possibility to determine candidates for local
minima, it is not possible to give first order sufficient conditions without imposing strong conditions
on the cost and constraint functions. Hence in the following we present second order necessary and
sufficient conditions, that allow additional tests for (non-)optimality at a given point. Here
we assume that all functions occurring in the NLP|are at least twice continuously differentiable.

Theorem 3.22 (Second order necessary conditions)
Let the first and second order constraint qualifications hold in u* € R™ and let furthermore u*

be a local minimum of the ([3.1)).

Then there exist Lagrange multiplier A* € R and p* € R™»ea  such that (u*, \*, u*) is a
point and that every vector d € R™ d # 0 with

Vagi(u)d = 0, 1 <i < neg (3.15a)
Vohi(u)fd = 0, ieZ(u), (3.15b)

also fulfills
d? V3. L(u, N ph)d > 0. (3.15¢)

This means that the Hessian of the Lagrange function with respect to (M) u needs to be
positive semidefinite on the subspace defined by (3.15a) and (3.15b)).

This second order necessary condition can be used to eliminate possible solution candidates that
represent, e.g., local maxima or saddle-points which would fulfill the first order necessary condi-
tions.

Next, we formulate a sufficient condition which allows us to actually verify whether or not a point
is a strict local minimum.

Theorem 3.23 (Second order sufficient conditions)

Let u* € R™ be feasible.

If there exist Lagrange multiplier \* € R™ and p* € R™a  such that (u*, \*, u*) is a[KKT| point
and if every vector d € R™, d # 0 with

Vagi(u)fd = 0, 1< < Mg (3.16a)
Vahi(u)'d = 0, i € T, (u"), (3.16b)
Vahi(u)fd > 0, i € To(u®), (3.16¢)

also fulfills
d' V4. L(u, N, ph)d > 0, (3.16d)
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then u* is a strict local minimum of the (3.1)).
This means that the Hessian of the Lagrange function u needs to be positive definite on the

subspace defined by (3.16a]) to (3.16c|). A similar sufficient condition can be given for weak local
minima, see, e.g., [FM90].

Example 3.24 (Ninjmum pf a convex QP)

Consider a convex |QP| i.e., a [QP|of the type (3.3) with positive definite matrix A. Furthermore,
let (u*, A", u*) be a [KKT]| point of the problem. Then u* is the only local minimum of the
and also strict. Additionally, it can be shown that it is also the global minimum of the problem.

Note that there might exist points which fulfill the necessary conditions of Theorem but
cannot be verified using the sufficient condition in Theorem [3.23] Tt is possible to formulate more
complex conditions that are both necessary and sufficient at once. But, as they often cannot be
verified in practice, we will not state them here.

We finally formulate conditions that assure not only the existence of a local solution, but also
guarantee the nonsingularity of the Jacobian of the KKT conditions in the solution. This allows
in principle the successful use of Newton’s method for the solution of the [NLP, provided the
iterations are started with initial guesses for variables and multipliers that are close enough to the
solution.

Theorem 3.25 (Sufficient condition for nonsingularity of KKT Jacobian)

Let u* € R™ be regular and (u*, X", u*) a KKT point in which the strict complementarity
condition holds.

Furthermore, assume that every vector d € R™, d # 0 with

Vagi(u)d = 0, 1 <i < neg (3.17a)
Vohi(u)d = 0, i€, (u), (3.17b)

also fulfills
d' V4. L(u*, X*, p)d > 0. (3.17c)

Then u* is a strict local minimum of the[NLH (3.1) and the Jacobian J*¥Tof the KKT conditions
(3.12a)), (3.12b)) and (3.12¢)) in the KKT point, which is given by

Vi L(u N p*) —Vg(u*) —Vh(u*)
JEET (0 X%, w*) = Vg(u*)T 0 0 (3.18)
diag(p)h(u*)” 0 diag(h(u*))

is nonsingular.

3.3 Newton-type methods for NLP solution

Solution methods for the constrained (3.1) are often based on the principle of attacking a
simpler problem, that is in some sense related to the original NLP and that tries to captures its
essential properties. In practice, this idea leads to iterative methods for the solution of the NLP
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that solve a series of simpler subproblems where each, at least locally, approximates the original
in the current iterate.

In the case of an unconstrained problem it is for example very common to use a local quadratic
approximation of the cost function. For the constrained we will discuss here methods
that are based on a quadratic approximation of the Langrage function of the NLP and a lineariza-
tion of the constraint functions in the current iterate. In each iteration, these methods solve a
of the type and are hence called Sequential Quadratic Programming methods.
The motivation to choose this specific type of subproblem is given by the sufficient conditions for
optimality presented in the last section. There, it has be shown that the optimality of a point can
be decided based on the curvature of the Lagrange function on the null-space of the Jacobians of
the active constraints.

In the following, we present the general class of SQP| methods as well as two important members of
the class in more detail. We also show how the members of the SQPHamily can be understood as
Newton-type methods for the solution of the KK'T conditions and address their local convergence
properties. The approximation of by is in general only locally of acceptable accuracy
and this has also to be taken into account in practice during the computation of the next iterate.
Therefore, we will shortly present globalization strategies, that ensure that in each iteration an
actual progress towards the [NLP| solution is made by adapting the step length or restricting the
step to an area where the approximation can be trusted.

3.3.1 The framework
An [SQP| method tries to find a point of the (3.1) iteratively, starting at a initial guess
0) A 0

(u ), 1) for optimization variables and Lagrange multiplier. Afterwards, it iterates
uk+D) u®) Au®
AGTD | = [ AB | 4 a® [ APH _x® | k=012, (3.19)
H(k+1) “(k) HQP(’f) _ 'u(k)

until a point has been found, or a prescribed termination criterion is fulfilled, respectively.
The o®) € (0,1] is called the stepsize of the step. If a® is set to one for all steps we speak
of a full step method.

Qpr(k)

The increment Au'® in step k and the multiplier APH and n are computed from the

solution of the following

1
min —Au"BP AT + Vyc(u®)T Au (3.20a)
AucQ*) CRu

subject to

g(u®) +GPAu=0 (3.20b)
h(u®™) + H® Au > 0. (3.20c)
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Here B® is usually chosen as B® ~ VZ,L(u® A® 4®) je. as an approximation of the
Hessian of the Lagrange function with respect to u at the current values of optimization variables
and multiplier. G*) ;= g—i(u(’“)) and H® := 92 (u™) are the Jacobians of the constraint functions
with respect to u.

In practice, [SQP] methods differ mainly in the choice of the Hessian approximation B®) and in the
choice, or the heuristic, respectively, to determine the stepsizes a®*) and /or the region of allowed
steps Q) C R™ in the subproblem. By suitable choices of a® or Q%) a convergence of the
algorithm to a local minimum (if existing) can be achieved regardless of the initial guess. This is
addressed in Section 3.3.5

Note that for the solution of the QP subproblems there exist several sophisticated algorithms
with efficient implementations, which contribute to a large part to the overall efficiency and also
the success of SQP methods in practice. Other favorable properties of SQP methods are that
they are self-terminating and, especially, that they are able to identify the correct active set and
the multiplier values of the NLP solution from the QP subproblem without the need for a prior
knowledge of them. This is formulated in the following Lemma.

Lemma 3.26 (Self-termination and identification of the active set)

Let (u*, A", u*) be a KKT point of the NLP, i.e., fulfilling the KKT conditions (3.12). Then the QP
subproblem formulated in (u*, A*, u*) has the solution (0, A", u*). If the Hessian approximation
B in the QP subproblem is positive definite on the null space of the constraint Jacobian we
can see from the remarks in Definition that this is also the unique KKT point of the QP
subproblem. Hence, the QP subproblem will in this case never generate a step away from the
KKT point of the NLP. The other way round it 1s true that if the QP subproblem formulated at
a point (ul®), AR L *)) has the KKT point (0, )\QP,/,LQP) then (u(’“),)\g?p, ug?)) is a KKT point
of the NLP. If we assume that in (u*, X*, u*) additionally the second order sufficient conditions
of Theorem [3.23] as well as the strict complementarity condition are fulfilled it can be shown
that the SQP algorithm determines the correct active set also in a neighborhood of the solution

(u*, A%, p*).
Proof:

The first claims follow directly from the comparison of the KKT conditions for the NLP ((3.12))
with the KKT conditions for the corresponding QP. A more detailed discussion and a proof of the
last claim can be found in [Rob74].

O

Remark 3.27 (Warm start of the QP subproblems)

While in the solution of the QP subproblems the active set and the multiplier values for the
current QP subproblem can be found independently of their initial guesses, SQP methods benefit
in practice very much of the possibility to warm start the QP subproblem solution in connection
with active set QP solvers. The solution process of the QP is often much faster if the active set
and the multiplier of the current QP are initialized with the values from the last QP subproblem.
This is especially the case if the algorithm comes closer to the solution, as here the steps become
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smaller and one can then argue that the subproblems (and hence also their active sets) are more
and more related to each other.

3.3.2 Full step exact-Hessian SQP

The full step exact-Hessian SQP method has first been presented by [Wil63|. It is characterized by
the choice of a®) = 1 and Q*®) = R" for all k as well as B® = V2, L(u® A® p®) This choice
of the Hessian approximation leads to a very good local convergence behavior. To see this, we
consider first an equality constrained NLP. The KK'T conditions for the QP subproblem solution
(Au®), /\g?,) in the point (u® A%®)) are then given by

V2 L@ AN AW 4 Vye(u®) — Gu®)TAG, = 0 (3.21a)
g(u®) + Gu®)au® = o. (3.21b)

This can be written in matrix form as

2 k) \k)y ()\T Au (k)
ViL(u®, AW) —G(u®) uY (Ve (3.22)
G (u®) 0 Agp u

By rewriting }\g?) = A" + AX® and regarding that V,L(u®, A®) = V,c(u®) — G(u®)TA®
we obtain

Vil (@®, A) - —G®)T\ (Au®N - (GLm®, AD) 3.23
< G(u) 0 )(Aw)) - _( C) ) (3.23)

This rule for the determination of the step in variables and multipliers of the NLP in the exact-
Hessian SQP is now identical to the formula for the increment in Newton’s method, if it is applied
to the KKT conditions of the NLP given by

i) - )

Hence the convergence of the full step exact-Hessian SQP is locally quadratic, like the convergence
of Newton’s method. Note that it is sufficient to consider an equality constrained problem also
to analyze the local convergence behavior of the method in the case of an NLP with inequality
constraints, provided the KKT point fulfills the sufficient optimality conditions of Theorem [3.23|
and the strict complementarity conditions. In this case, like addressed shortly in Lemma |3.26]
the active set remains constant in the vicinity of the KKT point, the QP subproblem can be
interpreted as a small perturbation of the original problem and the SQP method will eventually
find the correct active set. This is proven and discussed in more detail in [Rob74].

Based on the considerations above, both the initial guess for the variables as well as for the mul-
tiplier would have to be close enough to the solution values to obtain the quadratic convergence.
However, by exploiting the special structure of the KKT system and its linearization, this restric-
tion on the initial multiplier guess can be softened. This has been proven by Fletcher [Fle87) in
the following theorem.
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Theorem 3.28 (Local convergence of full step exact-Hessian SQP)

Let (u*, X*) satisfy the sufficient optimality conditions of Theorem|3.23 for an equality constrained
NLP . If the initial value u(® is close enough to u* and the initial multiplier value A©) is
chosen such that the KK matrix

V2. L@, A©)  Gu©®, XOHT
( G(u(0)7A(O)) 0 )

(3.25)

is nonsingular, then the sequence of iterates (u®), )\(k)) obtained by applying the full step exact-
Hessian SQP method converges quadratically to (u*, X*), i.e

(k+1 u* u(k:) —ut
A(k+1 % S R A(k) A\

2

, (3.26)

with a constant k > 0.

Remark 3.29

The equivalence of the solution of the QP subproblem in the exact-Hessian SQP and a Newton step
for the solution of the KKT conditions of the NLP motivates the interpretation of SQP methods
as Newton-type methods for the NLP solution. The use of an approximation of the Hessian of the
Lagrangian in an SQP method can be understood as the use of an approximation of the Jacobian
in the corresponding Newton method.

3.3.3 Full step constrained Gauss-Newton

The constrained Gauss-Newton method performs very well on the special class of Nonlinear Least-
Squares (NLSQ) problems defined in (3.2). It is characterized by the choices a®) = 1 and Q*) =
R™ for all £ and the Hessian approximation

or

B® =J7J withJ:= 811( k),

(3.27)

If we compare this approximation with the exact Hessian of the Lagrangian of the problem, which
is given by

0 |or
VL) = 9w ) + G A H(uw]
_Or, gor < a O o 52 9%y - 9%h,
= () %(uH;m ZA ;“Z’W“‘)’(?’Qg)

=J7J

we can expect that the approximation will be good in the vicinity of a solution, e.g., if the problem
functions are only mildly nonlinear, or if the residual function r becomes small and additionally
the multiplier can be bounded in terms of the residual function.
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Note that the Gauss-Newton approximation of the Hessian only needs first order derivatives of the
residual function, which makes the computation somewhat simpler than that of the exact Hessian.
Furthermore, it is independent of the Lagrange multiplier. It should also be noted that for the
resulting subproblem class specialized solutions approaches exist, which do not need the explicit
computation of the matrix J7J, but rather work based on J, see, e.g., [Boc87].

The local convergence behavior of the full-step constrained Gauss-Newton method is determined
by the accuracy of the Hessian approximation. In general, only linear convergence can be expected.
A criterion to determine whether the method converges at all and to estimate the convergence
rate is given by the local contraction theorem for Newton-type methods which can be found in
[Boc87], and also later in this work as Proposition [5.62 on page 131|

3.3.4 Other |SQP]| variants

In the last two sections we presented two common SQP-type methods that are also of importance
later in this thesis. Besides them, there exist a variety of other SQP-type methods. Most prominent
among them and widely used are SQP methods that use a Quasi-Newton method for the approx-
imation of the Hessian of the Lagrangian. This means that the Hessian approximation B®*+1
is obtained based on B® and an update formula such as the Davidon-Fletcher-Powell
or Broyden-Fletcher-Goldfarb-Shanno update. This idea was first proposed by Garcia
Palomares and Mangasarian in [PM76]. It was further developed by Han [Han76] and Powell
[Pow78c, [PowT78al, [Pow78b|, who also presented a very successful implementation of his algorithm.
These algorithms achieve usually a locally superlinear convergence to a local minimum fulfilling
the usual conditions. An overview on these and more SQP variants working with approximations
of the Hessian can be found in |Lei99).

Another class of SQP methods is given by methods that do not only approximate the Hessian of the
Lagrangian, but also the constraint Jacobians G and/or H. This kind of methods is called inexact
SQP methods, where the term inexact refers here to the Jacobian approximation, not to an inexact
solution of the QP subproblem, e.g., using iterative methods, as it can also be found in literature.
The local convergence of these methods can again be proven, depending on the quality of the
approximation, by interpreting them as Newton-type methods and applying the local contraction
theorem. They can be very efficient in practice, because for each iteration they need, besides the
computation of the Hessian and Jacobian approximations, mainly the gradient of the Lagrangian
which can be computed efficiently using the adjoint mode of Automatic Differentiation (AD]). For
more information on inexact methods for equality constrained problems we refer to [JS97, [HVO01]
and the works of Griewank and Walther [GW02, [Wal08| as well as the references therein. For the
extension to problems with inequality constraints consult the works of Bock, Diehl and coworkers
[IBDK04, BDKS07, DWBKO09| and the references therein. An implementation of an inexact SQP
method in the context of Nonlinear Model Predictive Control is described in [Wir(6], an
application to optimal control in [WAK™0§|.

Although we will not go deeper into the details of these class of methods in this work, the lifting
approach presented in this thesis can in principle also be used in connection with update strategies
and inexact methods to obtain efficient algorithms.
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3.3.5 Globalization strategies

Until now, we only considered the local convergence properties of SQP methods. In practice,
however, it is important that the methods also converge to a local minimum if they are not
started in the direct vicinity of the solution. In general, this cannot be guaranteed for full step
methods, hence a so-called globalization strategy is needed. The globalization strategy ensures
that during the iterations a “sufficient” progress towards the solution is made.

This progress can be measured in the unconstrained case directly by the achieved reduction in the
cost functional. In the constrained case this is more difficult, as it is a priori not possible to say
whether it is better to improve in a step the cost function while increasing the infeasibility of the
constraints or vice versa. A common tool to measure the progress to the solution in the constrained
case are so-called merit functions, that usually combine the cost function with weighted penalty
terms for constraint violations. Ideally, a merit function is exact, i.e., that a local minimum of
the merit function is also a local minimum of the corresponding NLP. A popular choice is the [;
penalty function

P(u, A, ) = c(u) + Z Ailgi(w)] + Z fii| min(0, h;(w))]. (3.29)

This merit function is exact, provided that the penalty factors are chosen in a way that
A>X" and p>pt (3.30)

Then. a KKT point fulfilling the conditions of Theorem is a strict local minimizer not only
of the NLP, but also of the [; penalty function (see, e.g., |[Fle87, [Han77|). Another important
requirement is the compatibility of the step direction Au generated by the QP subproblem with
the merit function, i.e., that Au # 0 should always be a descent direction for the merit function.
The merit function can then be used to test the progress to the NLP solution after the computation
of the step. If the progress is not sufficient, then the step is rejected and will be modified by the
globalization strategy until it is accepted.

An alternative to the use of merit functions, is the so-called class of filter methods [FL02, WB02|
employing ideas from multi-objective optimization. These methods take into account the (inde-
pendent) objectives of feasibility and minimization of the cost functional and accept a new iterate
if it improves at least one of these objectives compared to the iterates already present in the
filter. Afterwards, this new iterate might be added to the filter, based on some heuristic criterion.
Usually, filter methods are not scaling invariant with respect to the variables and the problem
functions, contrary to the approaches based on the [; merit function which we address in this
thesis.

Ideally, a globalization strategy should be designed in a way that the usually good local convergence
properties of the SQP method are not destroyed by rejecting full steps close to the solution, thus
avoiding, e.g., the Maratos effect [Mar78|. In practice there exist two major classes of globalization
strategies in connection with merit functions: line-search strategies and trust-region strategies.
We will shortly explain both of them in the following. A more detailed overview on globalization
strategies including measures to avoid the Maratos effect, like second-order-correction [MP82] or
a watchdog strategy, [CLPP82] is given, e.g., in [Lei99].
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Line-search methods

Line search strategies for globalization work by modifying the step size a® of the SQP step. This
means first the step direction Au® is computed by solving the QP subproblem with Q®) = R™
and afterwards a® € (0, 1] is determined such that enough progress to the solution is made. In an
exact line search strategy the minimum of the merit function on the line {t1ja = u® +aAu® 0 <
a < 1} is determined and the corresponding « is taken as steplength for the current step. Although
theoretically very appealing, the exact line search is normally not used in practice due to its effort.
Hence, heuristics are employed that usually start by testing if a full-step will give “sufficient”
progress and reduce the stepsize if necessary by certain rules until the test is fulfilled. Note that line
search strategies require in general a positive definite Hessian approximation in the SQP method
(or at least the positive definiteness of the projected Hessian, i.e., the Hessian approximation on
the null space of the Jacobians of the active constraints) to ensure that the computed direction is
indeed a descend direction for the merit function.

Trust-region methods

Trust-region strategies are based on the idea of determining a region in which the current quadratic
approximation of the NLP is reasonable, the so-called trust region. The trust region is imposed as
additional restriction on the QP subproblem in form of the set Q®), while a® is set to 1. Usually
the trust region is chosen in form of ||Au|| < p, where as norm mostly the 1-norm or the euclidean
norm in R™ are used. p is here called the trust radius. The radius of the trust region is usually
adapted heuristically from iteration to iteration, based on the performance of the the computed
step, or the new iterate based on this step, respectively. If the expected improvement in the merit
function has been achieved, the trust region is normally increased. If not, it is decreased until
the improvement is satisfying. A trust region strategy is especially well-suited for exact-Hessian
SQP methods, as here indefinite Hessians might occur regularly during the iteration process.
The additional trust-region constraints help to cope with the problem of an indefinite projected
Hessian in the QP subproblem and with the resulting possibility of an unbounded QP solution.
One drawback of the trust-region strategy is that it might leads to infeasible QP subproblems.
A reason for this is, e.g., that at some point, if the trust region becomes too small, the trust
regions constraints will probably contradict the linearized NLP constraints in the QP. In this case
a relaxation of the constraints might be a possible remedy. We will shortly address later in Section
[7.2.2] a suitable choice of a merit function and the implementation of a corresponding trust-region
strategy in the framework of our lifted exact-Hessian SQP algorithm.



4 Lifted methods for Nonlinear
Programming

In this chapter we describe a new “lifting” approach for the solution of nonlinear optimization
problems (NLPs) that have objective and constraint functions with intermediate variables. The
approach has first been presented in [AD10]. It has been observed, in particular in the context of
the solution of boundary value problems by shooting methods, that transferring a nonlinear root
finding problem into a higher-dimensional space might offer advantages in terms of convergence
rates and region of attraction [Boc78al, [Osb69, [SB92].

This classical “multiple shooting” method works, like described in Section for the Optimal
Control Problem case, by introducing intermediate variables as additional degrees of free-
dom and corresponding constraints to ensure equivalence of the solutions with the original prob-
lem. It then solves this equivalent augmented system - which we call the “lifted” system - in-
stead of the original system by a Newton-type method. At first sight, the increased size of the
lifted system seems to render each Newton-type iteration more expensive. This can be overcome,
however, to a large extent by structure-exploiting linear algebra in each Newton-type step (see
[Sch88, ILei99, [Scho5]).

Besides the classical domain of multiple shooting, parameter estimation and optimal control for
ODEs and DAESs, where the natural choice of intermediate values are the system states at different
timepoints, there exist other problem classes that can benefit from “lifting”. A direct transfer of the
idea can be made to the case of discrete time models or optimization in the context of kinematic
chains arising in robotics.

However, “multiple shooting” and related “lifted” approaches are often not used due to the increased
programming burden. Usually, it would be necessary to split up the original algorithm according to
the choice of intermediate values and the structure of the problem into a sequence of subfunctions.
From these, one has to compute and to assemble the quantities and derivatives of the augmented
system. Afterwards, the augmented problem has to be “condensed” again to obtain small reduced
subproblems needed for an efficient step computation. All of these steps are technically non-trivial
to implement.

In this chapter we propose algorithms for the solution of nonlinear optimization problems that
solve the augmented system by a structure-exploiting Newton-type method, yet do not require
any additional user knowledge about the structure of the problem functions or the meaning of the
intermediate variables. We show that the cost of each iteration of these “lifted” methods is nearly
identical to the cost of one iteration for the solution of the original problems. Furthermore, we
make a first step towards proving the superior local convergence speed of lifted Newton methods.
We first explain the idea of lifting in Section at the example of Newton’s method for a root

7
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finding problem and derive a “lifted” Newton algorithm. In Section we discuss the application
of the lifting approach to optimization and derive a lifted Gauss-Newton method as well as a
lifted SQP method for equality and inequality constrained optimization problems that is based
on adjoint gradient computations. Equivalence of the last method with the iterations obtained
by a full-space SQP method is proven. In Section we discuss under which circumstances
“lifted” approaches converge faster than non-lifted ones, and give a proof in a simplified setting.
In Section we present a first tutorial application example for the lifted Newton algorithm.
More numerical examples are given later on in Chapter [§

4.1 The Lifted Newton Method

We first consider the problem of solving a nonlinear system of equations, represented by
f(u) =0, (4.1)

where the evaluation of the function f € C'(R™ R™) is given in form of a possibly complex
algorithm with several intermediate variables. Denoting these intermediate variables by x; € R™,
fori =1,2,...,m, and disregarding further internal structure, we summarize the algorithm in the
generic form

X; = ¢;(u,x1,Xa,...,X;_1), for i=1,2....m, (4.2)

where the final output f(u) is given by

¢¢(U,X1,X2, ..., Xm)- (4.3)

It is straightforward to see that the original system (4.1)) is equivalent to the “lifted” system of
nonlinear equations
g(u,x) =0, (4.4)

with n, =37 iy x = (X1, ..., Xm) and where g € C*(R™ x R" R™ x R") is given by

¢1(u) - X1
¢2(u7 Xl) - X2
g(u,x) = : : (4.5)
Gm(W, X1, .., Xm_1) — Xm
dp(U, X1, ..., Xpm)

To solve the augmented system (4.4) the lifted Newton method iterates, starting at a guess
(x0,u®),
(k+1) (k) Ax(®)
X X X
( uk+1) ) - ( u®) ) + ( Au® ) (4.6a)

Ax® o S
(ane )= [asgonh] e (1.6)

with
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To initialize the value x(®, we can simply call the algorithm defining the original function f(u(®)

and add a few lines to output all intermediate variables, i.e., we call Algorithm [1.1] Please note
that we are also free to choose the intermediate values otherwise, and that it is often advantageous
to do so.

Algorithm 4.1: Function with output of intermediate variables
Input :ueR™
Output: x; €e R" ... x, € R" f € R™

begin
fori=1,2,...,mdo
| xi = ¢y(u,x1,X2,. .., Xi1);
end for
f:= ¢e(u,x1,X2,...,Xm);
end

By modifying the user given Algorithm slightly, we can easily define the residual function
g(u,y), as follows by Algorithm

Algorithm 4.2: Residual function g(u,y)
Input :w,yi,...,¥m
Output: g1,...,8m,f
begin
for:=1,2,...,m do
x; = ¢;(u,X1,X2,. .., Xi_1);
8i = Xi —¥i
Xi =Y
end for
f = ¢¢(u,x1,X2,...,Xm);
end

Thus, it is easy to transform a given user function into a function that outputs the residuals.
Note that it is not necessary that all x; are distinct variables with separately allocated memory
within the program code. The only code modification is to add after each computation of an
intermediate variable two lines (or even only one line calling a more convenient function defined
in Algorithm [4.7 on page 85|) that store the residual and set the variable to the given input value y;.
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For notational convenience, we define

¢1(u)
¢2 (u7 Xl)

¢(u,x) = | . : (4.7)
¢m(u7 X1y JXm71>
such that

g(u,x) = ( zil(lﬁ,xi)_ * ) . (4.8)

It is straightforward to see that Algorithm delivers, for given u, the unique solution x of
¢(u,x) —x = 0.

To perform a Newton method on the augmented system we have to calculate the increments in
(4.6b)). Dropping the index k for notational convenience, we have to solve in every iteration the
linear system

¢(u,x) — x + (g—f(u,x) - ]Im) Ax + g—¢(u,x)Au = 0, (4.9a)
¢e(u,x) + %( X)AX + a(if( ,X)Au = 0, (4.9b)

where I, represents the identity operator in R"*. Due to the fact that the square matrix

(g¢ (u, x) — I,,, ) is lower triangular with nonzero diagonal, and thus invertible, (4.9a)) is equivalent

to
5 -1
Ax = (ai (u X) H'r%) (d)(u? X) - X) +
9 N 4.10
(a(i(u X) — an) %(u, x) Au ( )
= a+ AAu. B

Based on this, we can “condense” the second equation to

_ O¢¢ Oy d¢f
0 = ¢¢(u,x)+FH(u,x)a + <8u (u,x) + £ (u, X)A) Au (411)
=: b + B Au
If the “reduced quantities” a, A, b and B were known, we could easily compute the step by

Au = -B7'b (4.12a)
Ax = a+ A Au (4.12b)



CHAPTER 4. LIFTED METHODS FOR NONLINEAR PROGRAMMING 81

4.1.1 An algorithmic trick for efficient computation of reduced
quantities

In the following we will present an algorithmic trick to compute the vectors a, b and the matrices
A, B efficiently, without the need to form or invert the derivatives of ¢ explicitly. This trick is
a generalization of “Schloder’s trick” [Sch88] which is since long known in the context of multiple
shooting for parameter estimation, and was extended to optimal control by Schéfer [Sch05]. In
all these existing approaches, however, the algorithms are specially tailored to specific sparsity
structures. On the other hand, the new generalized trick does not require any structure or user
input, apart from a minimal number of extra lines of code into the function to be “lifted”, as
illustrated in Algorithm

To derive the trick, we introduce a function z(u,d) as follows. For given vectors u and d, the
unique solution z of the system ¢(u,z) — z — d = 0, that we will denote in the following by
z(u,d), can be computed easily by Algorithm The algorithm simultaneously computes the
value ¢¢(u,z(u,d)).

Algorithm 4.3: Modified function z(u,d)
Input :u,dq,...,dny
Output: z1,...,2y,,
begin
fori=1,2,....mdo
x; = ¢;(u, X1,X2,. .., Xi_1);
zi = X; — dj;
Xi = Zj;
end for
f = ¢e(u,x1,X2,...,Xm);
end

The derivatives of the function z(u,d) with respect to u and d help us in computing the vector
a and the matrix A as well as b and B. To see this, we first observe that

z(u, p(u,x) — x) = x.

Thus, by setting d = ¢(u, x) — x, we can call Algorithm to obtain x = z(u,d) and ¢¢(u, x).
On the other hand, from the defining equation of z(u, d), namely

¢(u,z(u,d)) —z(u,d) —d =0,

we obtain the following two equations by total differentiation with respect to u and d:

0 1)) 0z 0z B
%(u,x) + &(u, X)%(u, d) — %(u,d) =0
and ¢ P 5
z z
8_X<uvx)a_d<u7d) - 8_d(u7 d) - ]Inz = 0.
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Note that we have assumed d = ¢(u,x) — x so that z(u,d) = x. The two relations above are
equivalent to

Oz O 1 og
S-S0 -1.) P
and .
0z 9J0) B
— === —1I )
Gt = (G -1, )
Therefore, the derivatives a and A can efficiently be computed as directional derivatives of z,
a:—g—(zl(u,d)d and Azg—lzl(u,d),

by differentiation of Algorithm As a by-product, the vector b and the matrix B are obtained
as the derivatives of the last output f of Algorithm

Summarizing, we propose Algorithm 4.4 on the facing page| to perform the computations within
the lifted Newton method.

4.1.2 Simple practical implementation

The described Algorithms to used in the lifted Newton method can be obtained with
minimal modification of the original function evaluation by adding calls to a “node” function. For
this, we assume that the original function evaluation is given in the abstract form of Algorithm
lon page 84 where the wi, 7 = 1,...,m now denote the intermediate values that should be used
for lifting. It is then sufficient, as illustrated in Algorithm (4.6 on page 84l to add after each
computation of an intermediate value w; a call to the node function defined in Algorithm
[page 85 This modified function then evaluates the different Algorithms [4.1] to [£.3] depending on
the value of the global flag mode, which has to be set appropriately by the calling function. The
global variables x, z and d serve as input/output values, depending on the chosen algorithm.
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Algorithm 4.4: The Lifted Newton Method

Input : u®, tol, manNodelInit, <

Output: u*, x*, d*, f*

begin
Set k£ =0;
if manNodeInit == false then
// Initialize node values x(*) by function evaluation
Set d© = 0;

Call Algorithm [4.3| with inputs u®,d©® and set

X(O) = Z(u(0)7 d(o))7

£ — (), a(u, dO));

else

// Initialize node values x(® manually

Set x(© = xO;

Call Algorithm 4.2 with inputs u(®,x(® to obtain d©, f©);

end

hile [[f®|| + ||d®| > tol do
Differentiate Algorithm [4.3| directionally at (u®,d®) to obtain
alh) = 92 (yk) q*)qd;

od ; ;

Ak — g_Z(u(k)7 d®);
b*) — k) _ d¢f(u7Z(u,d))d.

Y

g

Y

k d¢ u,z uvd .

Solve the condensed Newton system to obtain

Au®) = —(B®)~1pk),

Perform the Newton step

Call Algorithm [4.2| with inputs (u*+9 x*+1)) to obtain
AGHD) = (a0 x(E+1)) — x(k+D)

flk+1) — ¢f(u(k+1)7 X(kﬂ))

bl

bl

Set k=Fk+1;
end
Set
u* = u®;
x* = xk),
d* =d®;
£ = k),

end
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Algorithm 4.5: Original function evaluation

Input :ueR™
Output: f € R™

begin
for:=1,2,...,m do
| Wi = ¢(u, w1, Wa, ..., Wi_q);
end for
f:=c¢e(u,wy,wa,...,Wn);

end

Algorithm 4.6: Function evaluation modified for use in lifted algorithms

Input :ueR™
Output: f € R™

begin
for:=1,2,....,m do
w; = ¢;(u, Wi, Wa, ..., Wi_1);
Call node(w;);
end for
f:=¢e(u,wi,Wa,...,Wp);

end
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Algorithm 4.7: The node function: node (v)

Global Variables: x1,...,Xmn,21,...,%m,d1,...,dny, 7, mode
Input / Output : v

begin

switch mode do

case mode == “original”

end
case mode == “init”
// (see Algorithm [4.1];
Xj ‘= V]
1:=1+1;
nd
ase mode —= ‘“residual”
// (see Algorithm [4.2));

d; =v —x

o O

V = Xj;
=14+ 1;
end
case mode —— “reduced”
// (see Algorithm [4.3);
z; .= v —dj;
V=7
1 =1+ 1;
end

end
end
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4.2 Application to Optimization

The idea of lifting can also be used in the context of optimization. Let us see how we can use the
new trick to efficiently generate the quantities needed for “lifted” Gauss-Newton and Sequential
Quadratic Programming (SQP) methods. The new methods shall need to solve only subproblems
in the original degrees of freedom to determine a step, while the iterations will be operating in
the whole variable space. We also need to show that the iterations made by the proposed lifting
approach and by full-space methods are identical.

4.2.1 A lifted Gauss-Newton method

Using the idea of lifting from above, we can develop a lifted Gauss-Newton method to solve
least-square type problems with (in)equality constraints. We consider the following nonlinear
least-squares optimization problem

min  g[lr(w)[3 (4.13a)

h(u) {2} 0, (4.13b)
where r : R™ — R™e is a nonlinear vector valued function describing the residual vector, and the
function h : R™ — R™ represents nonlinear equality and inequality constraints.

The Gauss-Newton approach then uses, as mentioned in Section , the Jacobian J(u) := 25(u)
to compute an approximation J.(u)?J.(u) of the Hessian of the Lagrangian of the system. The
increments Au®) are in the constrained Gauss-Newton method computed via the solution of the

subproblem

min Hr@®) + J,(u®)Aul|2 (4.14a)
s.t.
h(u®) + Jp(u®)Au {i} 0. (4.14b)

The Gauss-Newton approach can also be lifted, which offers impressive advantages in convergence
speed, as has been demonstrated by Bock [Boc87|, Schloder [Sch88| and Kallrath, et al. [KBS93].
The augmented problem after the introduction of intermediate values x;,7 = 1,...,m reads then
in the notation from Section 4.1]

min 1, (u, )| (1.150)
s.t.
bp.(u, ) {;} 0 (4.15b)

o(u,x) — x 0. (4.15¢)
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This results in the following augmented Quadratic Program (QP)) for the step determination:

. 1 0] Au) |I?
— (k) (k) _rr (q® x*)
Jnin 5 Hcﬁr(u X)) + A(u.x) ('™, x'") ( \ x) 2 (4.16a)
s.t.
0¢p Au -
(k) h (k) (k)
dn(u'™) + A x) (u'"™) x'") ( \ x> {Z} 0 (4.16b)
0¢p Au
(k) x(B)y _ (k) (k) (k) _ -
Pp(u"” x\") —x +8(u,x)(u , X )(!x> Ax 0. (4.16¢)

While at first sight this transformation seems to be disadvantageous due to the increased size of the
and the need to compute the derivatives of the functions also with respect to the intermediate
values x, the problem can be set up and solved at roughly the cost of one Gauss-Newton iteration
of the original problem, which is formulated only with variables u as degrees of freedom. This was
discovered by Schloder [Sch88| in the context of multiple shooting for parameter estimation and
extended to direct multiple shooting for optimal control by Schifer [Sch05].

In order to compute the iterates efficiently we propose here to simply lift the evaluation of f(u) :=
(r(u)”,; h(u)")T and use Algorithm |4.4] to compute directly the condensed quantities a, A, b =
(b, by")T and B = (B1”, By")” needed for the condensed |QP|and the following step expansion.
The condensed is of the form

min 5lb1 + B1Au||3 (4.17a)
s.t.
by + BoAu {i} 0. (4.17b)

It is then solved using the same least-squares solver as in the non-lifted Gauss-Newton method
to generate a solution Auy. This is then expanded using the relation Ax® = a+ AAu®™. This
procedure obviously delivers the same result as solving . Numerical results for our new way
to implement this well-known approach are given in Section and Section

4.2.2 Nonlinear optimization via the lifted Newton method

We can also derive a partially-reduced Sequential Quadratic Programming method for
nonlinear optimization that is based on the lifting idea. By “partially-reduced” we understand in
this context that the constraints resulting from the introduction of intermediate variables and the
intermediate variables themselves are eliminated from the subproblems, while the constraints of
the non-lifted nonlinear problem remain. Fully reduced methods also eliminate these constraints,
which leads to some inconveniences in the treatment of inequality constraints. For a discussion
of reduced SQP method see, e.g., [Sch96|. In the following we first show equivalence of the lifted
[SQP] iterations with a classical full-space [SQP| approach in the simpler unconstrained case, and
afterwards we treat the general constrained case.
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Full-space exact-Hessian iterations

Let us consider the solution of an unconstrained Nonlinear Program . Assume that we
want to minimize a scalar function c(u),c¢ : R™ — R and we have lifted the evaluation of ¢
by introducing additional variables wi,2 = 1...,m. This results in the augmented optimization
problem (with the notation from above):

min Ge(U, W1, Wa, ..., Wp) (4.18a)
¢1(u) - w1

g(u,w) = ¢2(u:’ ") - 2o (4.18b)
G, W1, . Wiy 1) — Wiy

with the corresponding KKT system for the first order necessary optimality conditions

Vul(u,w,A) = Vyoo(u,w)+ Vyg(u,w)A =0 (4.19a)
VwLl(u,w,A) = Vyo.(u,w)+ Vyg(u,w)A =0 (4.19Db)
Val(u,w,A) = g(u,w) =0, (4.19¢)

using the notation V, f(u) = %(u)T. The variables A are the Lagrange multipliers for the equality
constraints concerning the intermediate values w and L£(u,w) is the Lagrange function of the
augmented optimization system. The standard full-space exact-Hessian approach then employs a
standard Newton method to solve this root finding problem, iterating in the full variable space of
(u,w, A).

How to compute the full-space iterations efficiently

To use the lifting approach efficiently we start by evaluating the gradient Ve of the original
objective using the principles of the adjoint mode of automatic differentiation that we described
earlier in Section [2.4.2 on page 32| This leads to the following evaluation sequence of the function
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f:u— u= V,c with intermediate values w and w:

wiy = ¢(u) (4.20a)
Wy = ¢o(u,wy) (4.20b)
Wm = ¢ (0, wi,..., Wp_1) (4.20¢)
Yy = ¢(u,wy,..., Wpn) (4.20d)
Wm = Vw.Pec (4.20e)
Wm-1 = Vwm @t Vi @mWm (4'20f)
W1 = Vadet Y VbW (4.20g)

=2
0 = Vet Y VWi (4.20h)

i=1

We now lift all intermediate variables x := (Wq,..., Wy, Wi, ..., Wy) in the gradient evaluation

procedure f(u), i.e., we interpret (4.20a))-(4.20g) to be ¢(u,x) —x = 0, as before, and (4.20h) as
u = ¢¢(u,x). Doing this, we can show that the lifted Newton iterations towards the solution of
¢e(u,x) = 0 (4.21a)

o(u,x)—x = 0 (4.21b)

and the iterations of a full-space exact-Hessian SQP method to solve system (4.19)) in variables
u, w and X are identical. To see this first observe that (4.20a)) - (4.20c) is equivalent to (4.19¢]),

(4.20€) - (4.20g) to (4.19b) if we set A = w and that (4.20h]) with @ = 0 is equivalent to (4.19a)).
As a result, we obtain the following theorem.

Theorem 4.1
The lifted Newton iterations in variables (u,x) applied to the lifted equivalent of the function
f(u) := Vyc(u) are identical to the exact-Hessian full-space SQP iterates in variables (u, w, X).

4.2.3 A lifted SQP method

Let us now consider the constrained [NLP]

min c(u) (4.22a)

u

s.t.

h(u) {;} 0, (4.22b)
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where ¢ : R™ — R is a nonlinear cost function and h : R™ — Rt represents again nonlinear
equality and inequality constraints. The unlifted full step exact-Hessian SQP of Section then
computes the increments by solving the quadratic problem

min  1Au"B®Au+ V,e(u®™)" Au (4.23a)
Au
S.t.

h(u®) + Vah(u®™)” Au {i} 0, (4.23b)

where B® = V2,L(u®, u®). The iteration uses the QP solution Auy, as step in the primal
variables, and the corresponding QP multipliers as new multiplier guess 1. If we now introduce

intermediate variables w;, i = 1,..., m we obtain the augmented optimization problem of the form
min de(u, w) (4.24a)
s.t.
¢ (u, w) {i} 0 (4.24Db)
gu,w) = 0, (4.24¢)

with the Lagrangian L(u,w, A, p) = é.(u,w) + XMg(u,w) + u" ¢, (u,w). The full-space
subproblem in case of an exact-Hessian [SQP| method then reads

. 1/ Au g 2 Au (k) (KT Au
Artrll,glw 2 (AW) ViLE) (AW> + Voe(u™, w) Aw (4.252)
s.t.
Au -
k) ok k) o (R\T
Pn(u®, W®) 1 Ve, (u®, w®) (AW) {2} o (4.25b)
Au
(k) (k) (k) (k)T _
g(u'", w'") + Vg(u", w) <Aw) 0. (4.25¢)

Again, we can use the lifting algorithm to compute the iterates more efficiently than by solving the

full-space [QP] By a straightforward application of the lifting idea to the combined function eval-

Vac(u) + Vih(u)p
h(u)

b1, b, By and B, for the condensed

uation f(u, p) := VL(u, p) = ) we obtain the required condensed quantities

nAnn 1Au"B;Au+b;"Au (4.26a)

.t.
S by + B2 Au {;} 0, (4.26b)
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which can afterwards be expanded using the multiplier of the [QP] subproblem solution to a step
Ap and using a and A finally to steps Aw and AX. Note that it is sufficient in this case
to build the condensed quantities only for the degrees of freedom u to obtain valid by, by and
B, B, for the condensed [QP] After the is solved and Ap is computed, one has to compute
one additional directional derivative to expand the step to Aw and AAX. Again, equivalence
of iterations generated by the lifted algorithm and the full-space [SQP] iterations can be shown,
provided that the lifting is done as described in the unconstrained case. The derivation of this
equivalence and the details of the step expansion procedure for the constrained case are described
in the following section.

Note that all directional derivatives of both the lifted constraints and the lifted Lagrage gradient
needed in this context can be computed efficiently by the means of Automatic Differentiation
and the forward/adjoint Taylor Coefficient propagation presented in Chapter 2] For that,
the implementation of the Algorithms [4.7] and can be modified for the use in connection with
an [AD] tool like ADOL-C such that only the combined evaluation of the Lagrange function and
constraints, including calls to the node function, has to be supplied.

4.2.4 Equivalence of lifted SQP and full-space iterations in the
constrained case

We consider here the equality constrained nonlinear optimization problem

min c(u) (4.27a)

u
subject to

h(u) = 0, (4.27b)

with ¢ € C*(R™,R), h € C*(R™,R™a), to show the equivalence and to explain the computation
of the reduces quantities. The results follow directly for the case of inequality constraints from the
equivalence of Newton’s method for the KKT conditions and the exact-Hessian SQP presented in

Section

Augmented problem

Introducing additionally intermediate values w occurring during evaluation of ¢ and h as variables,
we obtain the equivalent augmented full-space problem

min ¢.(u, w) (4.28a)
subject to

g(u,w) = 0, (4.28b)

¢n(u,w) = 0, (4.28¢)

with ¢, € C2(R™ x R™ R), g € C2(R™ x R™ R™), ¢, € C2(R™ x R Rnea),
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KKT-Conditions for the full-space problem

We define the Lagrangian of the augmented problem
LW, A, 1) 1= do(u,w) + X g1, w) + iy (0, w).

The necessary first order optimality conditions are then given by
Vude(v¥) + Vug(v A" + Vugy, (v p*

VL(u, w* A", u*) = o (v)
én(v7)

Here and in the following V¢ = g-;”T denotes the transpose of the Jacobian of a function v

= 2% the (here mixed) Hessian and v = (u, w, A, p). For improved

with respect to y , Vf,zi/) = 5yos
readability we sometimes omit the arguments of the functions, if no ambiguity is caused.

Full-space iterations
We use Newton’s Method to solve the system for the KKT-conditions, which is then an exact-

Hessian SQP method. It iterates
Vil V3L YVig Yoy, Au VL
Vil ViwL Vug Vo, Aw Vi £
vu¢hT Vw¢hT 0 0 Al'l' ¢h
From the assumed structure of g
¢1(u) —W1
u,w —W
glu,w) = P2l . 2 o (4.31)
¢m(u7 Wi, >W1’n—1) —Wm
we have
L, 0 e 0
92 T :
Vgl (u,w) = | o™ oz (4.32)
: 0
Opm 0P,

OWm-—1

and thus Vg and Vg’ are invertible. Therefore we can solve the third equation of (4.30)) for
Aw and the second equation for A to obtain
= Vg Vg’ (4.33)

Aw = a, + AlAu, with ay = — wg’Tg, AL =
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and
AX=ay+ AYAu+ ASAp (4.34)

with
ax = —Vug ' (VL + Viwl(—Vig 'g)) (4.34a)
AR = Vg (Vawl(—Vag ' Vug") + Vivul) (4.34b)
AL = —V,g 'V .. (4.34c)

Now we can condense the problem to

Vil + Vi LAY + VugAy Vady, + VugAR\ (Au
YVt + Vg T AY 0 Ap

vuL + v2uw/~" ay + vug ax
- _ 4.35
( ot VudyTax ) (4:35)

solve for Au, Ap and afterwards expand to Aw, AX using (4.33) and (4.34) to obtain the com-
plete full-space SQP step. Note that this system is symmetric of the form

B; By"\ (Au) _ (VuLl+ ViwLax+ Vugay (4.36)
B, 0 Ap) bn + Vot ax ’ '

with symmetric

Bl = v2uu»C - vQUWJCVWg_TVugT - Vungg_lv2wu£
+VugVi g ' ViwLVig T Vag” (4.37)

and

By = Voo, — Vi, Viwg T Vug! (4.38)

Lifted Newton formulation

We assume that the combined evaluation of

Vo Lo18 Vuc + Vih
) ()

is lifted in such a way that the computation of £ and h use common intermediate values w which
are introduced as nodes. Furthermore, the evaluation of VL is done in the way of the adjoint
mode of automatic differentiation, and the corresponding adjoint values w are also introduced as
nodes.
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The nodes (w, w) are then defined by the equations

Y1 (a4, W g\u, w

'Y(uaW7W7N)— / 1( ) \ = / ( ) \ =

\72<U7W7W7/~l’)/ \72(“7“’7“’7”’)/
$1(u) —W1
¢2<u7 Wl) —W2
¢ (u, Wl,...,wm_l) —Wm

p T
. T

e a¢h(“gv;;""wm Ry %WTWI s
8¢>c(u,gv‘:/,l.‘.,wm) + 8¢h(u,(;vv;...,wm A+ Zm 0o ( uv;;;.l..,wi,l) W —Wy

Following the lifting approach we then apply Newton to solve the root finding problem

VoLl(u,w,w, p)

d)h(u? W) _

ol w) = 0. (4.42)
72(117 W, Wa I“l’)

We compare now this system with system from the full-space approach. We observe that,
if identifying w; with A; and exchanging equations 2 and 4 in ([4.42)), the systems are identical.
As a result, the Newton method we apply to these systems in both cases will lead to the same
iterations, which shows the equivalence of the lifted SQP approach and full-space exact-Hessian
iterations. Note that by construction the lifted approach leads to the same condensed system as
the full-space approach.

Furthermore, we observe that for the computation of B; and By of the symmetric system (4.36))
by using the modified function of the lifting approach only directional derivatives in u are needed.
After the computation of Au and Ap from the condensed system we first can expand the step
to Aw via (4.33)), as ay and AY have been computed together with By, Ba. Afterwards, we need
one additional directional derivative of the modified function to expand the step to AN via (4.34)).

4.3 Local Convergence Analysis of Lifted Newton Methods

While a main contribution of this thesis lies in the derivation of easy-to-implement algorithms
for lifted Newton methods that each have the same computational complexity per iteration as
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the corresponding non-lifted methods, the idea of “lifting” in itself is an old idea. However, its
convergence properties are not well understood. For solution of boundary value problems with
underlying nonlinear ODE models, the multiple shooting method (which can be regarded a lifted
algorithm) is since long known to outperform the single shooting method [Osb69|. Three reasons
are often cited for the superiority of the “lifted” compared to the non-lifted Newton approaches:

e more freedom for initialization,
e better conditioned and block-sparse linear systems, and
e faster local convergence.

While the first two reasons are well-understood, no detailed local convergence analysis exists so far
that explains this superior local convergence of “lifted” Newton methods. In order to make a first
step to approach this question, we regard a model root finding problem f(u) = 0 where we have
a chain of nonlinear functions that each only depend on the output of the immediate predecessor
function, and that all have the same input and output dimensions:

X1 = ¢1(0), X2 = P3(X1), ..., Xm = Oy (Xm-1) and P¢(Xm) = Xm+1(Xm)-

In order to further simplify the following discussion, we will now restrict ourselves to the simplest
case, were u and all other variables are scalar. We regard the local convergence rate in the
neighborhood of the solution. At this solution (u*, x*), all Jacobians must be invertible. Therefore,
by suitable affine variable transformations for xy := u and for z4, ..., x,, we can both assume that
the solution is zero for all variables, and that all functions ¢; are given by

¢i(r) = x + bi(x)* + O(|2|*). (4.43)

Here the affine transformations to the new variables and functions can be expressed as follows
i
™ = (x; — 27)/a; ap:=1, a;:= Hgb;(x;‘_l), 1<i<m+1, and
j=1

i—1

1 ¢} (x7_1)
new newy - A _ r* , bz = AN el T /. #f,
¢z (xzfl) a; (¢ (':E 1) xz) 2¢;<I’;k_1> ]1:[1 ¢](:Cj 1)
4.3.1 Local Convergence of the Non-Lifted Newton Method
In the simplified setting outlined above, the non-lifted function f(u) is given by

m+1

F) = b (G- 01(u) ) =t (3 be)u? + Olul?)

/N
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and its derivative is given by

ggm):1+2(§§@)r+OWW)

=1

fi(u) =
To regard the local convergence behavior near zero, we first note that for any Newton method
holds that
M“”ZM“—fWWYVWW)ZfWWY%fWWWW—fWWD

and due to the fact that in our case

£ () <>:< +2(mzb) )2+ O(|ut* \))

this leads to the iteration formula
m+1

uk ) (Zb) )+ O(ju®™ ).
m+1b

Thus, the local contraction constant for quadratic convergence is given by (Zi:l Z)

4.3.2 Local Convergence of the Lifted Newton Method
In the simplified setting outlined above, the lifted function g(u,x) is given by

u 4 byu? —
I + bgl’% — X9 3
g(u,x) = : +0OK§) > (4.44)
Ty + U172,
and its derivative dég((“ )) is given by
1 + 2b2[E1 —1 2
e e(Jean)
X
14+ 2b,2m_1 -1
1+ 2berliL)m
From this particular form follows first, that
u + 2byu? —
T1 + 2by? — 9

22(2)-

Ty + 2622, — T
T + 2bp 122,
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and second, that

—_ =
—_ =
—_ =

Og(u,x) " A
o(u,x) o
Using again the formula for the Newton iteration

. (ht1) ) ag(u(k)’x(k))il 8g(u(k),X(k)) ‘ U (k) B g(u(k) X(k’))
X d(u, x) (u, x) * |

we obtain the iteration

" (k+1) by (u(’“ ) 4 Zm+1 ( )
2
T1 Z?:gl bi (iﬂﬁﬂ)

: a : 2 2 H
Ton—1 bm <$£7I§)_1) + berl <9E$))

—_
—_ =

2
Lm bm+1 (l'»g;))

It can be seen that, neglecting third order terms, the last component, x,,, converges independently
from all others with quadratic contraction constant b,, ;. All other components x; converge based
on their own quadratic contraction constant, b, 1, and those of the higher indexed components,
and the same holds for u. Thus, z,, is leading the convergence, with x,,_; as follower, etc, until
Uu.

4.3.3 Comparison of Lifted and Non-Lifted Newton Method

We have to compare the non-lifted quadratic convergence constant

m+1

530

with the interdependent chain of quadratically converging sequences x; in the lifted case, each with
its dominant quadratic convergence constant b;, . Let us assume we start the non-lifted variant
close to the solution with u(®) = ¢, and the lifted variant with the corresponding values resulting
from a forward function evaluation, which in our special setting turn out to be 2\ = ¢ + O(|¢|?).
As expected, the first step in u is identical in both methods, and results in

m+1

ut) = < ; bz-> e+ O(le]?).



98 4.3. LOCAL CONVERGENCE ANALYSIS OF LIFTED NEWTON METHODS

However, in the lifted variant, the values z; have been contracted according to their own contrac-

tion constants, to values
m—+1

) = ( 3 bi>62+0(\e|3).

i=j+1

In the second iteration, the differing values for x will already lead to different iterates «(?. Which
of the two methods converges faster depends on the signs of the b;.

Same direction of curvature If all b; have the same sign, i.e., all subfunctions ¢; are curved in
the same direction, then the contraction constants for all x; are better than the non-lifted variant,
with the last component z,, converging fastest. The improved convergence speed of x spills over
to the convergence of u and therefore makes the lifted Newton method converge faster.

To see the effect at an example, let us regard the simplest setting with only one intermediate
function evaluation, i.e., m = 1, with constants by = by = 1. After four iterations, the value of
u in the non-lifted variant is u®) = 2% ¢!6 while in the lifted variant it is u® = 677 €'6 which is
more than two decimal digits more accurate.

Opposite directions of curvature In the other extreme, let us regard a setting where all b;
add to zero, but are each independently different from zero. Note that this can only occur if the
subfunctions ¢; have different directions of curvature. In this case, the non-lifted variant converges
even faster than quadratically, while the lifted variant has the usual quadratic rate.

To see this at at an even more extreme example, regard the simple chain of two functions ¢ (u) =
s(1+u)? — 5 and ¢o(21) = v/1+ 227 — 1. These functions satisfy our assumptions with b; = 1
and by = —1. Moreover, they are constructed such that f(u) = w. As f is a linear function,
the non-lifted Newton method converges in the first iteration, u') = 0, while the lifted Newton
method performs the same favorable first step in u, but as x; is not yet converged, it will continue

iterating and changing u until both variables have been converged to sufficient accuracy.

Practical Advice In a practical application, even if we would have a chain of subsequent func-
tions each depending only on the output of its predecessor, we do not know which local curvature
constants the typically multi-input-multi-output functions ¢; would have relatively to each other,
after the affine variable transformation based on linearization at the solution, to make them com-
parable. However, we might make an educated guess in the following case that occurs, e.g., in the
simulation of continuous time dynamic systems: if we have repeated calls of the same function,
i.e., ¢ 1 = ¢y, and the variables x;,1 and x; differ only slightly then we can expect lifting to have
a favorable effect on the required number of Newton iterations, even if both methods are initialized
identically. A second case where a lifted approach surely is beneficial is the case where the freedom
for initializing the x; based on extra knowledge can be used, e.g., when state measurement data
are present in parameter estimation problems [Boc87]. On the other hand, lifting should not be
applied to simple linear subfunctions ¢;, i.e., scalar multiplications and additions/subtractions,
as no accelerated convergence can be gained, but memory requirement and operation counts are
increased. In all other cases, we do not dare to make predictions, but suggest to experiment with
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the lifted and non-lifted Newton methods in specific application examples. It is one aim of this
thesis to propose an algorithmic trick and a software package that makes the switching between
the two methods as simple as possible. In the past, the implementation of structure-exploiting
lifted algorithms was often a tedious task, deterring many users that might have benefitted from
the lifted approach. The insight gained in this section can be expressed by the following theorem
that characterizes the local convergence speed of lifted and non-lifted Newton methods.

Theorem 4.2 (Local convergence speed of lifted and non-lifted Newton methods)

Let f; :R — R, 1 <i<m+ 1 be a chain of twice continuously differentiable scalar functions,
such that f(u) = ¢pmy1(dm(. .. (61(w))...)), 21 = ¢1(u) and x; = ¢;(x;_1), 2 < i < m+1. Assume
that the solution of the problem f(u) = 0 is given by u* and that in the solution the Jacobians of
¢i,1 <1 < m+1 are invertible. Define

a; = [[¢=;), 1<i<m+1 (4.45a)
j=1

by = 242,1(53), (4.45D)

b= )y e ), 2<i<met, (4.450)

20 ()

with xf = ¢i(d;_1(...(¢1(u*))...)). Then the local convergence speed of an non-lifted Newton
method for the solution of f(u) = 0 is given by

m+1

D) —*| < <Z bi> [u® — w2+ O(ju® — u*?),
i=1

and the local convergence of the lifted Newton iterates is componentwise staggered, following the

estimation
(k+1) * m+1 (k) o« 2 (k) % 3
€T: — T xX: €T _ _
L +O<H(z<k>—i*> ) 1<i<m
! j=i+1 J
m+1 (k) « |7 3
T — Xk (k) _ 4%
k * k * -1 -1 Uu u
I *O( (s ) )
J=i+1

Cost comparison

To compare the overall numerical effort for the solution of the example we analyze the cost of a
single iteration in the lifted, non-lifted and also full-space approach in more detail. We estimate
computational effort in terms of floating point operations (flops). We follow the usual convention
that an addition, subtraction and multiplication, as well as a combined multiply-add cost 1 flop,
while one division takes 4 flops. The cost in flops for the evaluation of the subfunctions ¢, are
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denoted with cg,, where we set for notational convenience ¢, ; := ¢¢. The cost to compute their
directional derivative cgp,. To the cost to solve a n-dimensional linear equation system we refer

with ¢ps(n), which can in general be estimated with ¢ s(n) = m + 2n(n + 1) flops. For

simplicity we assume one-dimensional node values and omit the cost of memory access. We split
the cost for one iteration into the cost for (cf. Algorithm [4.4)

e evaluation of the residuals and the value of f,

e computation of the quantities of the Newton system,

e the solution of the Newton system to compute the step,

e application of the step, which in the lifted case includes the cost for the expansion of the
step in the controls u to the the step in the nodes.

Table [4.1 on the next page| shows a comparison of these costs for the three approaches, as well
as the resulting overall effort. Note that the cost estimation in the full-space approach is based
on the assumption that no further internal structure of the problem is known and exploited than
the decomposition of f(u) into the sequence of mappings ¢;. Further exploitation of the internal
structure might lead to a higher efficiency of a full-space approach, but already this relative simple
exploitation of structure will lead to significantly higher implementation effort compared to the
non-lifted and lifted approach. Additionally, to be efficient, it has to be adjusted manually for
each new problem (and also each new decomposition of f).

4.4 A tutorial root finding example

To end this chapter, we illustrate the numerical behavior of the lifted Newton method, along with
a convergence and cost comparison discussion, using a tutorial root finding problem that is given
by

flu) :=u'®-2=0.

We introduce m = 4 intermediate values x4, ..., x4 and lift the evaluation of f in the following
way:

Ty = u?, Ty =17,

T3 ‘= Ig, Ty = ZE%,

f =Ty — 2.

To solve the problem we employ Algorithm [4.4] as well as a standard full-step Newton iteration
applied to the non-lifted problem. The termination criterion is based on the Euclidean norm of
the function value, plus, in the lifted case, the Euclidean norm of the actual node residual. We
require this sum to be smaller than 107°.

For the initial value u(?) = 0.8 we obtain convergence after 7 iterations in the lifted case and 27
iterations in the non-lifted. The progress of the iterates towards the solution during the iterations is
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H non-lifted ‘ lifted
residual evaluation | S ¢, S g +m
Newton system Ny > Cag | (ny + 1) cag, +2m) + 1,
step computation crs(ny) crs(ny)
step application Ty Ny +m + n,m
full-space

residual evaluation S g +m
Newton system S (g, + i — 1)cag,
step computation crs(ny, +m)
step application Ny +m

H overall effort per iteration
non-lifted | crg(ny) + St o, + NuCas;] + N
lifted crs(nu) + 30 g, + (i + V)cag,] + 3num + 3m + 2n,
full-space || crs(ny +m) + Sor cp, + (N 4+ i — 1)cag,] + 2m + ny

Table 4.1: Cost analysis (in flops) for one iteration of an non-lifted, lifted and a full-space Newton method. De-
scribed are the costs for the different phases of an iteration (top, middle) and the overall cost for one
iteration (bottom). n, is the number of controls, m the number of nodes and cy,, c4¢, describe the cost
of an evaluation and a directional derivative of the subfunction ¢;, respectively. The quantity cps(n)
stands for the effort to solve a linear equation system with n unknowns.

depicted in Figure 4.1 on the following pagel The first iteration is identical, as it is always the case
if the node values x in the lifted algorithm are initialized by a function evaluation (cf. Algorithm
4.1). In subsequent iterations we observe that the lifted version benefits from the additional
degrees of freedom which results in a much faster progress towards the solution u* ~ 1.044.

Convergence analysis

We now analyze the local convergence of the test example. f was decomposed into ¢;(z) = 2,

1 <i < 4and ¢5(x) =z — 2, with the solution (u*,xt, x5, 25, 2%) = ( V2, V2, v2,v/2,2). We then
compute using Theorem

1
by = —— ~ 0.478801,
' 2 /2
1 1
by = 2V2 = — ~0.957603,
P 22 2
1 2
by = 4V/2V2 = — ~ 1.91521,
Y5 /2

1 4
by = SV2V2V2 = ——
R YT) V2
bs = 0.

~ 3.83041,
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“““““““ solution u*
— lifted
"""" unlifted

2.5

control U,

..
~.
~.
~,

0 5 10 15 20 25
iteration number k

Figure 4.1: Tterates u(®) of lifted and non-lifted approach for the solution of f(u) := u'® — 2 = 0, and solution
value u* ~ 1.044. After an identical first iteration, which is due to the automatic initialization of the
intermediate values using a function evaluation, the lifted method makes much faster progress towards
the solution.

This leads to a non-lifted local quadratic contraction constant of b ~ 7.18202.

Figure 4.2 on the next page| shows the error of the iterates and the convergence rates for each
iteration during solution with the non-lifted and the lifted Newton method. The convergence rates
are determined numerically for each component using the formula

B A ly®™ — 7| .
Yoo ly D — |2

We observe, besides the faster convergence of the lifted iterations already described, that, as we
approach the solution, the predicted convergence rates are reached in both cases. Additionally,
it can be seen, as predicted by Theorem [£.2] that in the lifted case the components converge in
a staggered way, starting with x4, which converges due to linearity of ¢5 in one step, followed by
x3, To, ... until finally u is converged.
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Figure 4.2: Shown is a comparison of the behavior of the iterates of the non-lifted and lifted Newton method on the
root finding example f(u) = u'®—2 = 0 with start value ug = 0.8 and tolerance tol = 106, Depicted is
the Euclidean norm of the errors of the iterates (upper left pictures) and the local convergence estimates
(upper right pictures), where in the lifted case the quantities are depicted componentwise with exception
of x4, as it converges after the first iteration due to linearity of ¢5. Additionally, the lower 4 pictures
show for the lifted method for each component (except z4) the convergence rate estimate as well as its
theoretical prediction. We observe that in both the non-lifted and the lifted case the convergence rates
finally reach the predicted values. Furthermore the lifted case shows the staggered convergence of the
components that is predicted by theorem






5 Solution of initial value problems for
ODEs and index 1 DAEs

In this chapter we address the task of computing solutions of Initial Value Problems ) for
Ordinary Differential Equations ) and Differential Algebraic Equations ) reliably
and efficiently. We present the needed underlying theory as well as efficient methods for the fast
numerical solution of these types of [VP. The topic of efficient derivative computation for these
solutions is addressed in the next chapter.

This chapter is organized as follows. In Section we state some well-known facts from DAE
theory. In Section [5.2)the theoretical foundation and the basic properties of the numerical methods
we use for the solution of the ODE- and DAE-IVPs are presented. Finally, in Section[5.3]we address
the specific strategies implemented in our solver DAESOL-II to efficiently solve the ODE/DAE-
IVPs based on variable order variable stepsize backward differentiation formulas (BDF).

5.1 Basic DAE theory

In this section we shortly present the definitions and theoretical properties of DAE systems we use
later during the description of the strategies for the numerical solution. Furthermore, we shortly
address existence and uniqueness of the solutions.

5.1.1 Notation and definitions

The most general type of a DAE is the fully implicit DAE, which cannot explicitly be split up
into a differential and an algebraic part.

Definition 5.1 (Fully implicit DAE)
A fully implicit DAFE is a system of equations

b(t, y(t),y(t)) = 0, (5.1)

where b : R x R™ x R™ — R™ and y : R — R™ are vector-valued functions and t is the
independent variable. Here and in the following y means the derivative of y with respect to t.

It is often the case in our applications that the DAE problem can be described in a more structured
way, which leads to the type of the linearly implicit DAE.

105
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Definition 5.2 (Linearly implicit DAE)

A DAE is called linearly implicit, if it can be divided into a differential and an algebraic part
with corresponding differential variables x and algebraic variables z, and the time derivatives of
x enter the problem linearly, which results in the following form.

A(t,x(t),z(t)) x(t) = f(t,x(t),z(t)) € R™ (5.2)
0 = g(t,x(t),z(t)) € R,

where A(t,x(t),z(t)) € R™*™ x: R — R™ and z : R — R". If A is equal to the identity
matrix, we call the DAE semi-explicit.

Definition 5.3 (Solution of a DAE)
A classical solution of a DAFE on an interval Z C R is a continuously differentiable function

y(t) = ( z(t; ) PR = R™ =R"™ xR,

which fulfills the given equations for allt € T.

From these definitions we see that a DAE can be understood as an ODE with some algebraic
constraints. These constraints define a manifold on which the solution of the DAE remains.
Furthermore, every sufficiently smooth DAE can be transformed into an ODE by differentiation
of the algebraic part of the system with respect to t. For the characterization of the algebraic part
of a DAE system and the relationship between ODEs and DAEs the differential indez, invented
by Gear [Gea88|, plays an important role.

Definition 5.4 (Differential index of a DAE)
The implicit DAE
b(t, y(£), 9(t)) = 0
is of differential index k € N (short: index), if k is the smallest number, such that y(t) is fully
determined by the (k + 1) equations:

Sh(ty(0).5(0) = 0
d* :
Eop(ty (1) 5(1) = 0

Example 5.5 (Example of an index 1 DAE)
Consider a semi-explicit DAE and the (total) derivative of the algebraic equations g(t,x(t),z(t)) =
0 with respect to t. We obtain (omitting the arguments)

gt + 8xX + 82,2 =0,
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where subscripts denote the partial derivative with respect to the corresponding variables. Let g,
be regular, then we can transform the equation to

z = _gz71<gt + ng)

and we end up with the coupled ODE system

x(t) = f(t,x(t),2(t))
2(t) = —g  (Lx(t),2(t)) [ge(t, x(t), 2(t)) + &x(t, x(t), 2(t))%(t)] .

Therefore, by Definition a semi-explicit DAE is of differential index 1 if g, is regular.

Remark 5.6 (DAEs of index larger than 1)

A DAE with index k£ > 1 can be transformed into an index 1 DAE by differentiating the algebraic
equations (k — 1) times with respect to t. The analytic solution of an index-reduced system
fullfills the algebraic equations of the original problem and their first (k — 1) derivatives. Hence it
is identical to the analytic solution of the original problem. The system consisting of the algebraic
equations and their first (k — 1) derivatives is called the invariants of the index reduced system.

Remark 5.7 (Numerical problems)

The numerical solution of DAEs with index larger than 1 is more complicated than it would
seem after the previous explications. During the numerical computation it is inevitable that
the numerical solution leaves the manifold defined by the invariants due to discretization and
round-off errors. Therefore, it has to be ensured that the invariants remain fulfilled during the
computation. The numerical treatment of such problems is described in more details in the works
of Eich [Eic91l [Eic93|, von Schwerin [vS97], Petzold et al. [PRGT97| or Pantelides et al. [PSV94]
and will not further be discussed in this thesis.

The next theoretical concept that is important for the numerical treatment of DAEs is the per-
turbation index. It describes the sensitivity of the system with respect to small disturbances in
the right hand side or the initial values of the system. It was introduced by Hairer et al. [HLRS9].

Definition 5.8 (Perturbation index of a DAE)
For a DAE (p.1)) the perturbation index along a solution y(t), t € [to, ;] is defined as the smallest
natural number k, such that for all functions y(t) with the defect

b(t,§(1),5(t)) = d(t)

the estimate

Iy@) —y@) [ < C(b,t —tol)(ll y(0) —y(0) |l

t

+ max || [ 8(r)dr | (5.3)

o<i<t  Jo

+ max || 6(f) || +... 4 max || % V(D) H>
o<i<t

0<t<t
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holds, provided that &(t) is small enough. Here C (b, |t; —to|) stands for a constant that depends
only on the function b and the length of the time horizon.

Remark 5.9

The importance of the perturbation index for the numerical treatment lies in the characterization
of the influence of round-off errors in b on the numerical solution. If the DAE is of perturbation
index k, we have as part of the (k — 1)-th derivative of §. While the perturbation & itself
can be very small (e.g., in the order of the machine precision), its derivative can be very large.
In the end this may lead to problems in the numerical solution if k is larger than 1. It can be
shown that the accuracy of the numerical solution is influenced by round-off and discretization
errors with order O(h'=%)), where h is the maximum stepsize during the numerical solution.

Gear showed the following connection between differential index and perturbation index of a DAE,
for a proof see [HW96].

Theorem 5.10 (Gear, 1990)
For the DAE (5.1)) it holds that
pi < di+1

if the differential index di and the perturbation index pi exist.

Remark 5.11
The perturbation index is 0, if the estimate

19(t) —y(t) [|< C(b, [ty —to]) (II y(0) = y(0) [} + max | /0 d(r)dr I|)

holds. This is always the case for ODEs with Lipschitz-continuous right hand side. In case of
semi-explicit DAEs it can be shown that the differential index is equal to the perturbation index.

5.1.2 Existence and uniqueness of solutions

In the theory of ODE systems there exist quite simple theorems concerning existence and unique-
ness of initial values problems, e.g., the well-known theorems of Peano and Picard-Lindelof (see,
e.g., [Wal93]). Some results from ODE theory can be transferred to the DAE context by under-
standing DAEs as ODEs with the restriction that the solution has to lie on a specific manifold,
as described above. This approach was used for example by Rheinboldt [Rhe&4].

For the general solvability of DAEs we have the following theorem.

Definition 5.12 (Solvability of DAEs)

Let T C R be open, €2 an open and connected subset of R x R™ x R™ and b :  — R™
differentiable. The DAE is then solvable in §) on the interval T, if there is an r-dimensional
family of solutions Y (¢, c), that are defined on a connected set I x Q, Q C R", such that

1. Y(t,c) is defined for all t € Z and for all ¢ € €,
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2. (t,Y(t,c),Y(t,c)) € Q for (t,c) € T x Q,

3. if w(t) is another solution with (t,w(t), w(t)) € €2, then it holds w(t) = Y (t,c) for a certain

ce ),
4. the graph of Y as function of (t,c) is a (r + 1)-dimensional manifold.

This concept of solvability implies that no bifurcations exist. For the case of a linearly implicit
DAE (5.2) of index 1 one obtains the following results.

Proposition 5.13 (Existence and uniqueness for index 1 DAEs)
Let A:RxS —R" xR* f:RxS — R"™ and g: R xS — R"™ be C"-functions, r > 2,
S C R™*" gpen and y = (27, 21)T € R™.

Then
_ . A(t,y) 0 —f(ty))\ _
S0 = {(t’y) € Rox S rank (gx(t>Y) 2.(t,y) gt(t,y)> B ny}

is an open subset of R1*™ . For the manifold
M(g,S) ={(t,y) e R xS :g(t,y) =0},

it holds in the case of My = M(g,S) NSy # 0 that M, is a submanifold of M(g,S) and there
exists for all (ty,yo) a unique C"'-solution of (5.2)) which goes through (o, yo)-

Remark 5.14 (Numerical solution of index 1 DAEs)
Be
51:{(157}’)€R><S:rank (gA(tvy) 0 >> :ny}

For the numerical solution of DAE with standard methods additionally (¢,y) € M; should
hold for all points of the solution.

Then the matrices A and g, are regular for all (¢,y) € M, their inverse matrices are bounded and
for consistent initial values (¢, yo) € M; the initial value problem for has a unique solution
y(t). This solution depends continuously and (r — 1)-times differentiable on the initial values xq.
In this case zg is uniquely determined by xq via the consistency conditions g(to,Xo, Zo) = 0.

and

5.2 Numerical solution of initial value problems for DAEs
of index 1

In the following we introduce the class of Linear Multistep Methods (LMMS) for the solution
of [VPk for ODEs and DAEs. We will lay the focus on the Backward Differentiation Formulas
(BDFE), a particular class of LMMs which has proven itself to be very efficient for the numerical



110 5.2. NUMERICAL SOLUTION OF IVPS FOR DAES OF INDEX 1

solution of stiff ODEs and DAEs. We will present and analyze the methods first for ODEs on
equidistant grids. Afterwards we switch to variable grids and finally to the case of linearly implicit
DAEs. For further details on these topics we refer, e.g., to the text book of Strehmel and Weiner
[SWO5] or the text books of Hairer et al. [HW96, [HNWO93]. In these books also the proofs of that
theorems that are just stated here, and for which no other references are given, can be found.

5.2.1 Linear multistep methods on equidistant grids

We first consider the numerical solution of initial value problems for ODEs on equidistant grids.
It is assumed that the initial value problems are of the following type.

Definition 5.15 (IVP for ODEs)
Let be T = [to,t;] C R, f: R x R"™ — R™. The initial value problem is defined as the problem
of finding a function x : R — R"™ which fulfills the system

x(t) = f(t,x(1))

and the initial values
X(to) = Xp-

to is called the start or initial time and ty is called the end or final time.

Remark 5.16 (Parameter dependency of the IVP)

Note that especially in the framework of an optimization problem the right hand side function
f, and possibly also the initial values xq, could also depend on some system parameter, control
functions or similar. As these are usually either constant or depend at most on ¢ for a specific
IVP solution process, we can skip them for notational simplicity in the following discussion. We
will consider the more general parameter dependent case in Chapter [6] on sensitivity generation.

Remark 5.17 (Stiffness)

Particularly dynamic models of chemical and biological processes, occasionally also of mechanical
and electrical processes, often possess a certain property called stiffness. This was discovered
and first described by Curtiss and Hirschfelder [CH52|. Summarized their description is that stiff
equations are equations on which certain implicit methods, namely BDF methods, work better,
usually tremendously better, than explicit ones. Hairer and Wanner [HW96| characterize this even
more concise: Stiff equations are problems for which explicit methods do not work. Until today
there is no standardized definition of stiffness. Usual characterizations for stiff systems are

e The IVP has slowly changing solutions and other solutions in their neighborhood approach
them fast,

e There exist eigenvalues \; of the matrix % for which
R(N) <0
holds, where f is the right hand side of an ODE with

H%(t’x(t))H!ff — o] > 1.
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A well known example for a stiff system is a system of chemical reactions where some reactions
take place at a much faster rate than others. It should be noted that stiffness is in general not a
property of the whole system but, more precisely, a property of the initial value problem which is
stiff for certain initial values.

Definition 5.18 (General linear multistep methods)
The general form of a k-step linear multistep method for the computation of a grid function xy(t)
on an equidistant grid

I ={t € [to,tf] : t =t,,m=0,1,...,N,t, =ty +mh}
as approximation of the solution x(t) of an IVP is defined by
1. k start values X, = Xp(t;,),m =0,1,...,k — 1 and

2. a difference equation for the computation of the next approximated values Xy 1k

k k
> axmp=hY_ Bf(tmis, Xmp), m=0,1,....N -k, (5.4)
=0 =0

with aq, /; € R and «ay # 0, || + |5o| # 0.

Remark 5.19
e The method is called linear because the method function

k
¢(tm7 ce. 7t’m+k’7 Xmy - - 7Xm+k; h) = h Z ﬁlfofm—i-la Xm-‘rl)
=0

depends linearly on f(¢,,1, Xm11)-

e The condition a; # 0 ensures that the implicit equation (5.4]) has a (locally) unique solution
Xm1k (at least for sufficiently small h).

e The condition |ag| + |5o| # 0 ensures that the number k of steps is uniquely determined.

e For B = 0 the method is explicit and the solution can be computed directly. Otherwise the
method is implicit and in every step we have to solve an equation system of the type

ok = h%f(t,m, Xemst) 4 V, (5.5)
k
where
=
v=—>Y [hBf(tmti; Xm+1) — MXm1]
Qg

l

Il
=)

is independent of (¢,,4%, Xm+x). This system is in general nonlinear and it is usually solved,
depending on the problem class, by functional iteration or Newton’s (or a Newton-type)
method.
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Remark 5.20
By Definition [5.18| we observe that a LMM consists of 2 phases:

e The start-up phase where the approximations x1,...,Xx_1 are computed using, e.g., a one-
step method or a LMM with fewer steps, and

e the run phase described by (5.4) where in every step a system of equations has to be solved
that in general is nonlinear.

Order of a LMM

In this part we introduce concepts that allow us to quantify how exact the approximations gener-
ated by a LMM are.

Definition |5.21 (Generating polynomials)
For a LMM |5.18 we define the generating polynomials as

p(§) = ot +ar &+ 4 (5.6)
X(€) = Bu"+ a4 Bo. (5.7)

Definition 5.22 (Local discretization error, consistency error)
The local discretization error ¢ and the consistency error 7 of a LMM are defined as

hr(x(t), h) == o[x(t), h] == L[x(t), h] := Z lagx(t + 1h) — hpx(t + Ih)]

where L is called the linear difference operator of the LMM.

Definition 5.23 (Consistency order of a LMM)
A LMM is of consistency order p, if for all x € CP™([to, t;], R™)

L[x(t),h] = O(h"*)
holds for h — 0. The consistency order describes how fast the local error tends to zero for h — 0.

Lemma 5.24
A LMM is of consistency order p, if the following conditions are fulfilled

> =0, (5.8)

Z(l@z—ﬁl) = 0, (5.9)

=0

"T1 1
v v—1 _ _
E [—V!l ay — o= 1)!l Bl} =0, v=2,3,...,p. (5.10)

=0
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Remark 5.25 (Consistency conditions)
The necessary conditions for a LMM to be of consistency order 1 are called consistency conditions.
They can be written using the generating polynomials as

If the consistency order of a method is at least one, then & = 1 is a root of p(¢) and the method
is called consistent.

Zero stability of a LMM

One observes that a consistent LMM is not necessarily convergent, even if it is of high consistency
order and the local error is therefore small. This is due to the error propagation through inexact
earlier approximations x,, and the evaluations of the right hand side f at these values.

If we neglect for the moment the error propagation through the f,,-terms and analyze the case
h — 0, we obtain the concept of zero stability. Zero stability of a method assures that the error
propagation through the historical values remains bounded.

Definition 5.26 (Zero stability)
A LMM is called zero stable, if the generating polynomial p(§) satisfies:

a) The roots of p(§) lie on or inside the unit circle and
b) the roots on the unit circle are simple roots.

Remark 5.27
If all roots besides & = 1 lie inside the unit circle, the method is called strongly stable.

Convergence of a LMM

Dahlquist showed in 1956 [Dah56] that consistency and zero stability are necessary and sufficient
conditions for the convergence of a LMM.

Definition 5.28 (Convergence of a LMM)
A LMM is convergent, if for all IVPs with Lipschitz-continuous right hand side f on § =
{(t,x) : to <t <ty,x € R™} and for all start values xy(to +mh), m =0,1,... k — 1 with

||x(to + mh) — xn(to + mh)|| = 0 forh — 0

holds that
e(x(t),h) == ||x(t) = xn(t)|| = 0, h = 0, t € [to, ty],

where € is called the global error of the LMM.
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Definition 5.29 (Order of convergence)
A LMM is convergent of order p if for all IVPs with f smooth enough on S there exists an hg > 0
such that for all start values xy(to +mh), m =0,1,... k — 1 with

HX(tO + mh) — Xh<t0 + mh)|| S Oghp for h € (0, ho]

l|x(t) —xn(t)|| < CRP, for h € (0, ho)

holds.

Definition 5.30 (Stability of LMMs)
A LMM is stable if for all sufficiently smooth functions y(t) there exist constants Cy,Cy € R that
are independent of h such that for all grids I, it holds:

<
max [[e(x(t), 1)[| < Crmax ||7(x(t), £)]| + Cx €stant;

where €44+ 1S the maximum of the norms of the errors in the start values.

Corollary 5.31
If a LMM is consistent and stable and the errors in the start values are zero, then it is convergent
and the order of convergence is equal to the consistency order.

Theorem 5.32 (Dahlquist)
Let y(t) € C*(I,R™) and f be Lipschitz-continuous, then a zero stable and consistent LMM is
stable.

Theorem 5.33 (Criterion for convergence)
A LMM is convergent iff it is zero stable and consistent.
A LMM is convergent of order p iff it is zero stable and of consistency order p.

The order of a k-step LMM cannot be arbitrarily high, as Dahlquist showed in [Dah56] that the
consistency order of a zero stable k-step LMM is bounded. This fact is called the first Dahlquist
barrier.

Theorem 5.34 (First Dahlquist barrier)
The consistency order p of a zero stable k-step LMMs satisfies

p < k+2 ifk even,
p < k+1 ifkodd,

k if B < 0 (i.e., particularly for explicit LMMs).

6973

s
IN
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Absolute stability of a LMM

The concept of zero stability neglects the error propagation through the right hand side terms
f(tm,Xm), as it analyzes the behavior for h — 0. This may cause the fact that even if a LMM
is zero stable and consistent, and thus convergent, reasonable results can only be achieved for
very small stepsizes h. Analyzing the error propagation through the right hand side leads to the
concept of absolute stability.

This analysis is usually done by investigating the behavior of the LMM on a characteristic scalar
test equation, the so called Dahlquist test equation

x(t) = Ax(t), A € C,x(t) € C. (5.11)
If we apply a k-step LMM to solve this equation we obtain the linear difference equation
(g — hABk)Xmik + - - - + (g — hABy)xm = 0. (5.12)
This equation has stable solutions x;, iff all roots of the characteristic equation

p(§) = hAx(§) =0

lie on or inside the unit circle, and multiple roots lie inside the unit circle.
This inspires the following definition of the region of absolute stability.

Definition 5.35 (Region of absolute stability)
The region of absolute stability (or short stability region) of a LMM is defined as

D= {h)\ € C: All roots of (b.12)) satisfy |£;(hA)| < 1,
and multiple roots additionally satisfy |&;(h\)| < 1}.

Remark 5.36
For h = 0 this is the definition of zero stability. Therefore zero stability is equivalent to 0 € D.

Example 5.37 (Stability regions of the Euler methods)
For the characteristic equation of the explicit Euler method Xpy, 11 = Xm + hf(t,,, Xm) we have

1+ E—hA=0,

and hence |1+ hA| <1 for h\ € D.
For the implicit Euler method Xp11 = Xm + Af(t41, Xme1) We obtain

14+ E—hAE=0.

Therefore |1 — hA| > 1 for hA € D (cf. Figure [5.1)).
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Region of absolute stability of explicit Euler method Region of absolute stability of implicit Euler method
5 5
: 20 : Y
£ \_ £ N

S 0 5 S 0 5
Re (h\) Re (h\)

Figure 5.1: Stability regions for the explicit (left) and implicit (right) Euler methods. The stability regions are
displayed as white areas.

Remark 5.38

The explicit Euler method is a representative example for the inefficiency of explicit methods in
the treatment of stiff problems. Transferred to the test equation stiffness corresponds usually
to R(\) < 0. Because of the bounded stability region (which is a characteristic of all explicit
methods) we may be forced to choose very small stepsizes, regardless of the local discretization
error. For instance $(\) = —1000 implies necessarily h < 1073.

Therefore the property that C- = {z € C: R(z) <0} is a subset of the stability region D is
highly desired in the treatment of stiff problems. These property has been defined by Dahlquist

as A-stability.

Definition 5.39 (A-stability of a LMM)
A LMM is A-stable if C- C D.

Dahlquist showed in [Dah63| that there exists an order limit for an A-stable LMM.

Theorem 5.40 (Second Dahlquist barrier)
An A-stable LMM has a consistency order of p < 2.

A consistency order of at most 2 is not sufficient in pratice to solve problems efficiently. This led
to a slightly weaker definition, introduced by Widlund, to describe nearly A-stable methods.

Definition 5.41 (A(«)-stability of a LMM)
A convergent LMM is A(a)-stable with 0 < a < 7/2 if

D, = {hX : |arg(—h\)| < a, hA # 0} C D,
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where arg stands for the complex argument. In other words, o describes the angle between a
straight line through the origin and the negative real axis in C~, such that the area between the
straight line and the negative real axis belongs to the stability region.

5.2.2 LMMs on variable grids

After having introduced basic notation and definitions as well as having presented the most impor-
tant properties of LMMs on equidistant grids, we now proceed with the case of variable grids. We
will see that most of the definitions and results can be transferred with only minor modifications.

Definition 5.42 (General LMM on variable grids)
A general k-step LMM on a variable grid

Iy ={telto,tyl:t=t,,m=0,1,...,N, t,, =ty_1+ hy_1 form # 0}

is defined by

k K
> tmXmit = bkt D B (bt Xman), m =0,... N =k, (5.13)
1=0 1=0

Xn(tm) = Xm, m=20,....k—1,
where qupm, Bim € R, |aom| + |Bom| # 0 and oy, By depend on the stepsize changes w; :== h;/h;_1,
t=m+1,...,m+k—1.

Consistency order of LMM on variable grids

Similar to [5.23| we define the consistency of a LMM on a variable grid.

Definition 5.43 (Consistency order on variable grids)
A LMM (5.13)) has consistency order p, if for all polynomials q(t) with deg(q) < p and all grids
I, it holds that

k k
> m(tmst) = hnik-1 > Bim@(tmsi)-
=0 =0
Theorem 5.44
Be the LMM (j5.13)) of consistency order p and f € C*(S,R"). Additionally it shall hold:
1. The stepsize changes w; = h;/h;_1,1=m+1,...,m+ k — 1, are bounded for all m and
2. the coefficients oy,,, By, are bounded.

Then the local discretization error, which is defined analogously to the equidistant case, is of order
O(hrh.
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Stability

Definition 5.45
Assume that the coefficients oy, of the LMM are normalized, such that oy, = 1. We then define
for a LMM (5.13)) with coefficients «y,, the matrices

—Op—1m —Og—2m ... —O1m —Qom
1 0 . 0 0
A= 0 1 ... 0 0
0 0 . 1 0

Definition 5.46 (Stability on variable grids)
A LMM on a variable grid is stable, if there exists M € R such that

H-Am+j~’4m+jfl .- -Am+1AmH < M

for all m and j > 0.

Crouzeix and Lisbona [CL84] have proven the following connection between stability on variable
grids and strong stability on equidistant grids.

Theorem 5.47 (Stability on variable grids)
Assume for the LMM (j5.13) it holds that

k

1. leo Ay, — 0,

2. the coefficients ay, = qum(Wmit, - - -, Wmik—1) are continuous in a neighborhood of (1,...,1)
and

3. the LMM is strongly stable on all equidistant grids.
Then there exist w, ) € R with w < 1 < §Q, such that the LMM is stable provided
w< Wy, <0

holds for all m.

Convergence

Finally we can formulate a convergence criterion for variable grids.

Theorem 5.48 (Convergence of a LMM on variable grid)
Let the LMM (5.13)) be stable, of consistency order p and let the coefficients oy, B, be bounded.
For the start values xy(t,,), m = 0,1,...,k — 1 it holds that

[x(tm) = Xu(tm)|| = O(hg)
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and the stepsize changes w,, are bounded for all m > 1.
Then the LMM is convergent of order p, i.e., there exists a C' € R, such that

[X(tm) = Xn(tn)|| < CR?, b € [to tg], b = maxhy,

5.2.3 BDF methods

After the analysis of general LMMs on equidistant and variable grids we now present the class of
Backward Differentiation Formulas (BDF). This specific class of LMMs is the basis of DAESOL-IT,
our numerical integration code. We employ BDF methods in this thesis as they are very efficient
for the solution of stiff problems. BDF methods were invented by Curtiss and Hirschfelder [CH52]
for the solution of stiff ODEs and became more famous through the analysis of Gear |[Gea7l] who
used them for the first time also in the DAE context. We start with BDF methods and their
properties for ODEs and explain afterwards how the results can be transferred to the DAE case.

BDF methods for ODEs

The underlying idea of BDF methods is to interpolate the last (k + 1) values Xy, . .., Xm ik using
a polynomial and to require that the interpolation polynomial satisfies the ODE at point ¢, .

Definition 5.49 (BDF method)
The k-step BDF method is defined by specifying the k start values and the difference equation

k
E UmXm+1 = hm+k—1f(tm+ka Xm+k)7 m=0,..., N — ka
=0

with o, € R, ag,ap # 0. The «y,, are obtained as the coefficients of the derivative of the
interpolation polynomial multiplied by h,, 1. BDF methods are implicit methods as 8, = 1 # 0.

Theorem 5.50 (Order of BDF methods)
A k-step BDF method is by construction of consistency order k.

Unlike other LMMs the BDF methods are not zero stable by construction. Cryer |[Cry72] showed
for the zero stability of BDF methods the following theorem.

Theorem 5.51 (Zero stability of BDF methods)
BDF methods (on equidistant grids) are zero stable for k < 6 and unstable for k > 7.

As direct consequence of this and Theorem [5.33] BDF methods with £ < 6 are also convergent of
order k. Hence in practice only methods up to k = 6 are relevant, and the method with k£ = 7 is
only of use for local error estimation.

Theorem 5.52 (Stability regions of BDF methods)
BDF methods are A-stable for k < 2 and A(«a)-stable for k < 6 with the following values for a:
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k|1 2 3 4 5 6
a | 90° 90° 86.03° 73.35° 51.84° 17.84°

The stability regions of the BDF methods with an order up to 7 are displayed in Figure
[the facing pagel

Griegorieff [Gri83| analyzed the behavior of BDF methods on variable grids and proved stability
under specific restrictions on the stepsize changes:

Theorem 5.53 (Stability of BDF methods on variable grids)
BDF methods are stable on variable grids, if the following bounds on stepsize changes are satisfied:

k|2 3 4 5 6
w |0 0.836 0.979 0.997 1—6,
Q| 2414 1.127 1.019 1.003 146,

with 0 < 01,09 < 0.001. The 1-step BDF method is a one-step method which is stable on every
grid.

Remark 5.54 (Stepsize changes)

The above bounds for stepsize changes in methods of order k£ > 3 are very restrictive since they take
all possible series of stepsize changes into account. For an efficient stepsize strategy in practical
applications these bounds are of no use. We will address this issue in more detail in Section [5.3.4]
It should be noted, however, that the specified bound for order k = 2 is also necessary, i.e., the
method is unstable for larger stepsize changes.

5.2.4 BDF methods for index 1 DAEs
We consider now the IVP for the linearly implicit DAE (j5.2)

A(t,x(t),z(t)) x(t) = f£(t,x(t),z(t)), =x(ty) =x¢ € R", (5.14)
0 = g(t,x(t),z(t)), z(to) =120 € R™,
t € [to,ts] CR,
x(t) € R",
z(t) € R,
A(t,x(t),z(t)) € R"™" regular
g.(t,x(t),2(t)) € R=Xatn:) pegylar,

We choose the so-called indirect approach to transfer the BDF discretization scheme from ODEs
to index 1 DAEs. As we assume that g, and A are regular in this case, we can use the implicit
function theorem to obtain a unique local representation of the algebraic variables through the
differential ones. More specifically, the implicit function theorem assures that there exist in a
neighborhood of a solution for all ¢ € [to,tf] a smooth function g : R™ +— R" and a locally
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Figure 5.2: The upper three rows show the domains of absolute stability for the BDF methods of order 1 to 6,

where the stable area is drawn in white. We see that for order 1 and 2 the methods are A-stable and
A(a)-stable with decreasing « up to order 6. The lower row shows on the left the outline the stability
region for the method of order 7, which is not zero-stable any more, i.e., zero is not in the stability
domain. On the lower right plot a comparison of the stability regions for the orders 1 to 6 is given. In
every plot the z-axis corresponds to the real part of A\ and the y-axis to the imaginary part of hA.



122 5.3. STRATEGIES USED IN DAESOL-II

unique solution z(t) = g(x(t)) of the algebraic equations.
Inserting this solution into the original problem leads to the IVP

At x(1), 8(x(1)) x(1) = £(t,x(1), &(x(1))),  x(to) = x0 € R™.

We apply now a BDF method to this IVP and obtain on a variable grid the discretization scheme

k
A(tm+k’xm+kvzm+k)Zalmxm—H = Pk f(tnks Xmotk, Zmoyk)
=0
0 = g(tm+k: Xmik Zmik); (5.15)

withm =0,...,N — k.
The convergence of BDF methods applied to the IVP (5.14)) follows from the following theorem.

Theorem 5.55

Let the LMM be of consistency order p and let 0 be in the stability region. Furthermore,
let the start values of the DAE be consistent, i.e., g(to,Xq,2o) = 0 and assume that the errors in
the start values of the BDF method are of order O(h?). Then the LMM is convergent of order p.

5.3 Strategies used in DAESOL-II

In this section we describe the strategies implemented in our integrator DAESOL-II which is part
of our SolvIND integrator suite. We address here only the aspects directly relevant for the IVP
solution. The strategies related to sensitivity generation are presented at the end of the corre-
sponding Chapter [0l Note that some of the more technical details concerning the ITVP solution
strategies can only be roughly sketched in the frame of this thesis. For a more detailed description
we refer to [AIb05], as well as to the works of Bleser [Ble86], Eich [Eic87], and Bauer [Bau99] which
describe in more detail the ideas already implemented in the preceding Fortran code DAESOL.

5.3.1 Representation of the interpolation polynomials

The core of DAESOL-IT is a BDF method for the solution of linearly implicit DAE-IVPs as described
in Section To represent the interpolation polynomials needed for the BDF method we use
Newton’s representation. This allows an efficient storage as well as an efficient update between
integration steps.

Definition 5.56 (Newton’s representation)
In Newton’s representation the interpolation polynomial P through the (k+1) points v; = v(t;) €
R™ ¢=0,...,k at point t is given by

P(t;vo, ..., Vi) = ZM(t)v[tk, ot (5.16)
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Here the divided differences v|...] are defined recursively by
V[tl] = V(tl)
biireetivg] — V[tiio1s .
V[ti+j, cee ,tl] = V[ al +1] V[ -l ] (517)
biyj — Li

and the Newton polynomials N; as

_ ot —tyy) fori=1,... k
Nilt) = { - 1 for i = 0. (5.18)
For the implementation of the BDF method in the n-th integration step the method’s corre-
sponding interpolation polynomial PSH is needed for the computation of y, 1. In a k-step BDF
method this polynomial is of degree k and interpolates the (k + 1) values x,41-4,7 = 0,...,k of
the differential variables and PC, respectively its time derivative, satisfies the ODE/DAE at point,
tn+1. By these conditions P ; and its value x5, = PS;(fn11) are uniquely defined. We call
this interpolation polynomial corrector polynomial and its value xS +1 at t,41 the corrector.
As the equation system in the discretization scheme is nonlinear, we solve it iteratively.
Therefore a start value for the differential and algebraic variables is needed, which we call predic-
tor. We obtain the predictor by use of a second interpolation polynomial PF 41 of degree £ through
the last £+ 1 values yn11-5,2 = 1,...,k + 1 that is called predictor polynomial.
We define the following notation to efficiently describe how the interpolation polynomials are cal-
culated and stored as well as how the transition from one integration step to the next is made.

Definition 5.57
We define the factors of Newton’s polynomials (5.18)) (at point t = t,,,1)

@bZ(TL + ].) = tn+1 — tn+1—i = hn +...+ hn+1—i = @Di_l(n) + hn, (519)
the quotients of the new and old N;’s

1) { 1 fori=1 (5.20)
Xi(n = YD) (0t : :
1%(”)'.”.%_1(”) fori > 1,
the modified divided differences
Yn fori=1
P;(n) = . 5.21
(n) { ¢1(n) L wi_l(n) y[tn, .. 7tn—i+1] for v > 1, ( )
and furthermore
®i(n) = xi(n+1) ®i(n) (5.22)
1—1
1
viln+1) = - (5.23)
Zl Yi(n+1)

Si(n+1) = Y ®i(n). (5.24)
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Here empty products should have the value 1, empty sums the value 0.

Now we show how predictor and corrector can be represented using these quantities.

Lemma 5.58 (Representation of the predictor)
For the predictor polynomial in step n + 1 it holds that

Proitniii) = Yot i=1,..., k+ 1. (5.25)

Using Newton’s representation ((5.16)) and the definitions above we obtain the representation

YEH = Pn+1(n+1>
k j—1

= Z H(tn+1 - tn—i) Y[tm s vtn—j]

§=0 i=0
k41

= D i+ 1)+ 1) Yt ]
=1

k+1

- S aw (5.2
= (Sk—i-l (n + 1).

Hence d;(n + 1) are the partial sums of the corrector in step n + 1. Note that in case of DAEs we
denote the differential part of the predictor with x},.; and the algebraic part with zy,,

The time derivative Pf +1(tn41) at point ¢, is then obtained as

k J
PP (tny1) = Zi (t —t tns]
n+1\‘n+1) — d n— 2 bnyoeoy n—j

t
=0 i=0 t=tn+1
k j—-1 5-—-1
e H t_tnz n77tn7.]j|
j=0 1=0 i=0,i#l t=tn+1
k j—1 1 Jj—1
= Z H%H n+1) yltn, tn—j]
=0 =0 ¢l+1 n+1
k
— Z’yj+1(n+ )@j+1( )
=0
k+1

= Y vn+1)@;(n). (5.27)



CHAPTER 5. SOLUTION OF IVPS FOR ODES AND INDEX 1 DAES 125

Lemma 5.59 (Representation of the corrector derivative)

Both predictor polynomial and corrector polynomial interpolate the k values Xy, ..., Xy k11 €x-
actly. If we take only the differential part of the predictor into account, we can write the difference
of predictor and corrector polynomial as

Pn+1( ) — 7Dn+1( )= A(t)(xg+1 - XE+1)' (5.28)

As A(t) is the difference of two polynomials of degree k, it is itself a polynomial of degree < k,
that is uniquely defined by the £ 4+ 1 conditions

1 forte=0
Altns1-) _{ 0 fori=1,...,k (5:29)
Therefore, we obtain
ot —ta
A) =[] —=22—— (5.30)

~7 b — g
and by differentiation and evaluation at point ¢,

k

. d t—tpa1—
Aty = —“ !
dt n+1 tn—l—l—j
t= tn+1
k k
= i H P
j=1 tn—‘rl - tn—‘rl ] —1,itj n+1 - tn+1—z bt in
D
= byl — tng1—j
= Yer1(n+1). (5.31)
We differentiate (5.28)) and obtain finally at ¢, using (5.27)) and (5.26])
XS+1 = 73n+1( n+1)
= Pn+1(t7’b+1) + A(tnﬂ)(xg-i-l - XE+1)
k+1 k+1
= Y v+ 1) + e (n+ D(xTy Z<I>*
k+1
= > (y(n+1) = g (n + 1))@} (n) + 1 (n+ XG4
j=1
k 1 j
= -y —— N & 1)x¢
; 1/}](71 n 1) ; i (TL) + fykJrl(n + )Xn+1
k

— _Z.;é (n_|_1)_|_7k+1(n+1) Xpyi1- (5.32)
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Here we again took only the differential part of PE ; and the ®;(n) and &;(n) into account. The

term
k

1
X1 = — ; m%‘(” +1) (5.33)

describing the part of the representation of the corrector derivative that does not depend on the

corrector value is called corrector constant.

Lemma 5.60 (Update of the modified divided differences)
For given y, and d;(n) we obtain ®; 1(n) as

®i1(n) = Yi(n).. . bi(n)yltn, ... ta ]
= i(n)...i1(n) tfi(?j_i (¥ltns -+ tncivt] — Ylbaots -« s tas))
= 1(n) e P () (Vs bist] — Vbt s tai])
— ®in) - B{(n 1)
= yn— 6i(n). (5.34)

Hence we obtain for ®;(n)

®{(n) = xi(n + 1)(yn = di-2(n)), (5.35)
and we can compute the term ®}(n) needed in step n using the d;_1(n) from the last step (n — 1)
and the last value y,,.

Implementation in the code DAESOL-II

The practical computation of predictor and corrector in step (n + 1), based on the step n, is done
as follows.

Let ¥;(n), d;i(n) and y, be given from step n. Then we compute in the following order
a) the v;(n + 1) with (5.19)
wl(n_'—l):wl*l(n)_'_hrw Z:k7727 wl(n‘f’l):hn?

b) the x;(n + 1) using (5.20)

Yioi(n+1)

,1=2,....,k,
wi—l(n)

xi(n+1) =1, Xi(n+1) = xi—1(n+1)

¢) Ye+1(n + 1) using (5.23)

Vrri(n+1) =

Mw

7bzn+1

=1
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d) the new predictor yy,,; with (5.26)

k+1

Yor1 = Z@j(n)
j=1

k
= Yn T Z P51 (n)
=1
k
— Yat Y+ iya - 5(w)] using (539,
=1

e) and the new corrector constant

k
1
KCC = _N" 1 sn+1).
+1 ]Zl¢](n+1) J( )

The corrector derivative can then be represented as

- C _ C CC
XnJrl - 7k+1(n + 1)XnJrl + XnJrl

and for the coefficients oy, of the BDF method it holds that
ar = hpYip1(n +1). (5.36)
Again, here only the differential part of the ;(n + 1) is used.

Remark 5.61

During integration only the last values of ¢;(n), d;(n) and y, need to be stored. Note that the
di(n + 1) are stored during the computations under d), i.e., they do not have to be computed
separately.

5.3.2 Error estimation

In an efficient adaptive numerical method we want to adapt the stepsize and the order of the
method to the actual problem in such a way that the effort for performing the integration becomes
minimal, while the error remains below a user given tolerance. To do this, obviously an estimate
for the error in each integration step is needed. Based on this estimate we can then decide whether
to accept the step, or to reject it and repeat it with an adapted stepsize.

Ideally, we would compute the global error of the method. Unfortunately, this is not easy in
the actual practical setup: The global error is the accumulation of the local errors made in
the individual steps and the error propagation. Especially the error propagation is not easily
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accessible for a quantitative analysis during the normal integration procedure. An approximation
of the global error € = (€*7,€#")T in step (n + 1) is given in [Bau99] by the formula

( arA + AXS  + hf, AXS + hf, ) ( €xi1 ) _
gx gz Efl+1
( hwy — A(hoyy,, — heSs)) ) _ (5.37)

Va

Here we summarize in v and v, the error from premature termination of the iterative method
used to solve the nonlinear equation system and the higher orders of the errors €*, €* and o,
respectively. These quantities, as well as the corrector constant €€, are not directly computable.
We will see later at the end of Chapter [f|how an approximation of the global error can be obtained
a posteriori, i.e., after the integration, by the use of adjoint sensitivity information. For now we
restrict ourselves to an error control based on an estimation of the local discretization error, in
the way it is found in [Bau99| or |[Eic91| and similar also in |[Gea71] and |[LP86) PL86].

Estimation of the local error

From Definition and the representation of the derivative of the method’s interpolation poly-
nomial we obtain in step (n + 1) the local discretization error for a k-step BDF method as
X - (ex - C(ex
Tur = oy (i) ] = F () — 3
- (ex 5P (ex
= ¥ (tni1) _PnJ(rl)(thrl)
ex P(ex
1 (n+1) (¥ (i) = Pris (bnn) )
Here and in the following the superscript (-)(*9 denotes that the corresponding quantities are

computed using the exact solution y(™(¢) of the DAE. The definition of the divided differences
and the Newton representation of Pffflx) (t) now imply

k
v t) = P () =[]t = tu-i) ¥ Lt ts . tasl. (5.38)

By differentiation we obtain

- (ex SP(ex
v (8) — PES (1)

Il
&l <
N
Z
ES
—~
~
o~
i
= N
v
«
N
R
T~
~
3
~
7
K

Furthermore, we have

—y Ot stk = YU, o
dty [7n7 7nk] y [77n7 7nk]7
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where we define y(®9[t, ] := y(*9(¢). Additionally, it holds that
k k+1
H(tn-l—l — i) = le(n +1) and
i=0 '
R k+1 k
- tn - tn—i = n
dtg( =t Z%”“%ll -
k+1
= Yeran+ 1) [[witn+1).
i=1
So we obtain for o,
k+1
Tn+1 Yera(n+ 1) [ il + 1)y ftnias ot
i=1
k+1
+[ e+ 1) ¥y tnsr tasr, - ]
k+1
_’Yk‘-l-l n+1 H¢z n + 1) y(eX)[ n+17 s 7tn—k]
i=1
k+1
(Ve+2(n +1) = Yg41(n + 1)) H Yi(n+ 1) y s, s b
i=1
kot
+ H Gi(n+1) Y i1, tgrs -tk (5.39)
i=1
k1 k 1
— | (n+1
<Z Yi(n +1) ;wi(nﬂ)) izl + 1)
k1
+H¢l n+1 (eX)[n-‘rl?tn-‘rlw"vtn—k]
i=1
1 k+1
m@fﬁé(n + 1) + H wz<n + 1) y(ex) [thrla tn+1, . ,tn,k].

The terms that have been computed here using the exact solution are replaced in the practical
implementation with the corresponding terms of the numerically approximated solution, as the

exact solution is in general not available.

correct for equidistant grids [Gea74].
Similar to the approximation of the global error (5.37)), the following approximation of the local
error made in one integration step, denoted with p, can be derived based on the local discretization

Gear showed that this estimation is asymptotically



130 5.3. STRATEGIES USED IN DAESOL-II

error o [Bau99).

( A + AXS,, + hf,  AXS,, + If, ) < [T ) _ ( —hAo ) . (5.40)
Sx e M1 0

Practical implementation of the error estimation in DAESOL-II

The calculation of the local error (and also of a new stepsize in the framework of stepsize control)
using the Formula would be computationally very expensive, as in every step the equation
system had to be solved. Hence in DAESOL-II the following simplified formula for local error
estimation is used:

Ek(n+1ah7L) = hnHUn—l-lH
1
[ R
Yrr1(n+1) 2 )
k+1
+H¢z(n+1) Y[tn—i-latn—i-la'--atn—k]H

i=1
k+1

b | [Toitr+ 1 yltwsrso oot

- hnf[zpi(wr 1) Hy[tn+1,...,tn_k]H. (5.41)

After every integration step it is checked whether this estimation for Ey(n+ 1, h,) is smaller than
the user given tolerance. If this is the case, the step is accepted. Otherwise, the step is rejected
and repeated with a reduced stepsize. More details on the reduction of the stepsize are given in

Section [(.3.4

5.3.3 Solution of the nonlinear corrector equation

As BDF methods are implicit methods, in every integration step a nonlinear system of equations
has to be solved. Because the problems considered in this thesis are usually stiff, we use in
DAESOL-II for the solution of these systems a Newton-like method together with a “monitor
strategy” that we discuss in the following. As the equation solver is modularized in DAESOL-IT,
also other equation solving approaches (possibly specifically designed for certain problem classes)
may be implemented without too much programming effort.

We write the discretization scheme of the BDF method for a linearly implicit DAE at time
tpt1 A8

fEDF(ym_l) =0, where again y,11 = (xn+1T,zn+1T)T. (5.42)

Newton’s method for the iterative solution of the equation system in step (n+ 1) is then given by

(0)

a start value y, \; and the iteration

it1 i i
YE1+1) = yl(q)+1 + AYfl)ﬂa
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where Ayr(lill is obtained as solution of the linear equation system

J.(y9 )Aayd, = —BPF(y 0 ). (5.43)

8fBDF(y( i)

3y denotes the Jacobian of fBDF The Jacobian has the form

Tere Ju(yS),) =

(i) ):<ozA+A (ozxnﬂ—l—h xn+1)+h f, A (ozanrl—i-h Xn+1)+h f, ) (5.44)

gx gz

where « is the coefficient of the BDF-method that corresponds to x,,7. The start value is ob-
tained as the value yﬂl = yhi1 = Pry1(tns1) of the predictor polynomial at time ¢,4;.

To solve the equation systems using the original Newton’s method one has to construct and de-
compose the Jacobian in every iteration. Usually this is the most expensive part in the integration.
Especially in the case of large ODE/DAE systems and if the evaluation of the derivatives of the
model functions f, g and A is very costly.

However, often the Jacobian does not change very much from iteration to iteration, or even during
several integration steps of the BDF method. This motivates a strategy to reduce the computa-
tional effort, where the Jacobian is kept constant as long as possible. This Newton-like method
has slightly inferior convergence properties compared to the pure Newton method. As a result,
some additional iterations are needed, but this additional effort is in general much smaller than
the benefits gained by fewer evaluations and decompositions of the Jacobian.

We present now a monitor strategy for the Jacobians that assures the convergence of the Newton-
like method in a few iteration steps while reusing the Jacobian and the model function derivatives
as long as possible. This monitor strategy was first presented by Bock and Eich and can be found
in [Eic87].

As foundation of the strategy we first analyze the convergence behavior of Newton-like methods,
for which Bock [Boc87] proved the following theorem:

Proposition 5.62 (Local contraction theorem )

Let D C R™ be open and v : D — R™ a C'-function. We denote with J(y) =
Jacobian of v and with M an approximation of the inverse of J.

Assume that for all T € [0,1], for all y,y + Ay € D with Ay = —Mv(y) and for all m there
exist w and k, such that:

g—;(y) the

1. A generalized Lipschitz condition holds:

IM[J(y™ + 7Ay™) — J(y™)]Ay! m)|| ) ym)
m) < < A4
Ay < Wl <w < oo, (5.45)

2. the quality of the approximated inverse M in direction of the Newton-increments is sufficient:

M[v(y™) — I (y"™) Ay

o m om
< kM M <Kk <1, 5.46
[Ay™] (5.46)
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3. the start value y© of the iteration satisfies the condition

O
4. and the ball D, with center y® and radius r = % lies in D.

Then it follows:

1. The iteration y™+1) = ym) 1 Ay™) = Ay — _Mv(y™) is well-defined and remains in
DO;

2. there exists a root y* € Dy, against which the series y™) converges,

3. the series y™) converges at least linearly with

(m—1)
m w m— m— m— m—
lAay™| < ( Ay V]| + 1)) lay™ V]| < |ay™Y|
4. and the a priory estimate
6777,
(m) _ o < 20 | Ay(©)
ly Y||_1_50|| vad|

holds.

The convergence of the Newton-like method inside the BDF method can then be controlled using
an estimate of the convergence rate dy. This estimate can be obtained after 2 Newton iterations
by
1
5o i= M < dp.
Ay @]
The termination criterion for the Newton-like method is based on the increment norm ||Ay®||.
If HAy(i)H < Chewton * t01 then the method is considered as converged. Here cpewton < 1 and tol
is the user given relative tolerance.
Because usually the start value y(®) = y® lies near the solution y*, the start value should be inside
the local convergence region of the Newton-like method. Therefore, with the exception of very
nonlinear problems, the aim is not to find a solution at all, but to compute it with the smallest
possible effort per integration step. The effort consists of the calculation and decomposition of
the Jacobian and of the solution of the linear equation system using the decomposed matrix. To
limit the effort connected to the solution of the equation systems we demand a convergence rate
that assures convergence after at most three iterations: Two iterations are needed in any case
to estimate the convergence rate, and we admit an additional third iteration, if the estimated
convergence rate predicts convergence for it.
A survey on the choice of the limit for 8y depending on the number of desired iterations m and
the desired error improvement factor c,q in the estimation |[y™ — y*|| < cieq|ly @ — y*|| after
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m iterations is given by von Schwerin [vS97]. For DAESOL-II we choose m = 2 iterations and
Crod = % and obtain the condition dy < 0.25.

This means in practice that we have to test besides the termination criterion also if the estimated
convergence rate remains below 0.25 after the second iteration. If this is not the case, i.e., if the
convergence rate of the Newton-like method is too bad, this can have several reasons:

a) The quality of the iteration matrix is not good enough, i.e., the s in the local contraction
theorem is too large:

— The coefficient « of the BDF method or the stepsize h have changed considerably, e.g.,
through stepsize or order changes.

— The derivatives of the model functions f, g or A have changed considerably.

b) The start value y(© is too far away from the solution, e.g., if the problem is "too nonlinear”.
This means the w in the local contraction theorem is too large and the start values do not
lie in the local convergence region.

Based on these considerations we present the following so-called monitor strategy for the Newton-
like iterations, which aims to reduce the effort for the solution of the corrector equation as much
as possible.

Implementation of the monitor strategy in DAESOL-II

In DAESOL-II the monitor strategy to control the Newton-like iterations is implemented in the
following way:

a) After every iteration the termination criterion is tested. If it is fulfilled the solution of the
system is considered successful and is terminated.

b) After two iterations the convergence rate is estimated. If the estimation is smaller than 0.25,
a third iteration is admitted, otherwise the iteration is solution as failed and aborted.

c¢) If after 3 iterations the termination criterion is not fulfilled, the solution is also aborted.

The reuse or the recalculation of the derivatives and the decomposition of the iteration matrix,
respectively, is done according to the following hierarchical scheme:

1. As long as the estimate of the convergence rate do remains below 0.25, the Jacobian approx-
imation is kept constant and its decomposition is reused.

2. Tf no convergence is achieved, a new Jacobian approximation is built using the actual values
of o and h and the “old” derivative values f;, g, and Ayicc. It is decomposed and the
solution is repeated with this new iteration matrix.

3. If again no convergence is achieved, also the derivatives f,, gy, and A x€ are computed
anew, are stored and the Jacobian approximation is rebuild and decomposed. The solution
is repeated.
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4. If still no convergence is achieved, the complete BDF-step is repeated using a smaller stepsize.
The details of the stepsize reduction strategy are discussed in Section

Here especially the second step is not used widely in other integrator codes. However if the
derivatives of the model functions change only slowly and are expensive to evaluate, this approach
promises a large benefit [Eic87].

Stability regions of BDF predictor-corrector scheme

In the previous sections we have presented details on the practical implementation of the predictor-
corrector method used in DAESOL-ITI to solve the nonlinear equations that arise in BDF methods.
The focus of the presented monitor strategy is the efficient reduction of the error in the corrector
equation, but not necessarily a solution of the equation up to machine precision, which would be
unnecessarily expensive. This means in practice that we do not employ a truly implicit method.
Although this approach has been applied very successfully during the last decades and similar
approaches are used in other codes based on BDF methods, this gives rise to the question how the
stability regions of the method are influenced by this. For Adams-PECE methods there have been
some works ([Cha62],|[CK65|,[Kro66],[Ste68]) that show that the stability regions are seriously
reduced compared to the implicit schemes and that propose adapted schemes to improve stability.
For BDF methods the only existing analysis is given by Krogh and Steward |[KS84|, analyzing
the special case of asymptotic absolute stability of BDF predictor-corrector methods for the case
h — oo. Hence we present in the following a heuristic analysis of the regions of absolute stability
that is more specifically tailored to our setup of BDF based predictor-corrector schemes.
We perform the analysis as it is usual on an equidistant grid with stepsize h for the test equation
of Dahlquist (5.11]). Other than in the analysis of the implicit method, we have to imitate now the
predictor-corrector scheme and substitute the formula for the predictor value into the corrector
equation and perform a number of Newton-like iterations. In the framework of this analysis we
assume a fixed number of s Newton-like iterations per integration step, and the quality of our
Jacobian approximation is described by the value of x in the local contraction theorem ((5.46|).
We demonstrate this now at the example of the method with order 2. The predictor value for
Xy, 1 is then obtained as

Xh. 1 = 3Xn — 3Xn_1 + Xn_2. (5.48)

The predictor value is then inserted into the corresponding corrector equation

3 G 1 !

2 Xn+1 2xp, + 5Xn-1— (hN)x$,, =0 (5.49)
and we apply a Newton-like iteration with the Jacobian approximation
~ 3 1k (=3+2p)
j _2_ S S el 5.50
(kop) =5 —nt g (5.50)
where we have set i := hA. This leads then to the first iterate
Xn 1 —4Xn 2+ K(B8Xp 1 —HXp 2 —3Xy) + ku(2x, — 6%y 1 + 6%, 2) (5.51)

—3+2u
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from which we obtain the characteristic equation for the method with order 2 and one Newton-like
iteration

32 +2pu2° — 24422 - 82+ 52k +3Kk -2k pu+6pzk —62°uK

2 (=3+2p) B

0. (5.52)

Using Definition [5.35] of the stability region we can determine the root locus curve, i.e., the
potential bound of the stability region, for a given s by solving this equation for each z = €% with
0 < 6 < 27m. The same analysis can be repeated using a higher number of Newton-like iterations
to obtain a series of stability regions for a given Jacobian quality x. The Figures and
5.5l show the stability regions for the predictor-corrector methods of order 1,2 respectively 5 using
between 1 and 4 Newton-like iterations for the different values k; = }1, Ko = —}L, K3 = ;i and
Ky = \/%,?2 + —& of the left-hand term of (5.46), such that always |r;| = 1 holds.

This is motivated by the constraint in our monitor strategy to allow only Jacobian approximations
with || < 7 (as w = 0 in this case), i.e., the chosen values represent in this sense examples for
the worst case of the admitted Jacobians in our strategy. In general it can be observed that the
stability regions become with increasing number of Newton-like iterations more and more similar
to the regions of the implicit methods. Not surprisingly this occurs the faster, the smaller the
absolute value of k is. Interesting for our setup is that even for examples of the worst case of x the
method of order 1 remains A-stable and the method of order 2 preserves A-stability if at least 2
iterations are made. The higher-order methods might require, especially in the case of a complex
k, several Newton-like iterations to obtain reasonable stability regions similar to their implicit
counterparts. But considering that in practice most of the time Jacobian approximation with far
better values for k are used, we can reasonably expect that our predictor-corrector scheme will
in general not be affected by a serious loss of stability. Otherwise, more Newton-like iterations
should be enforced in the monitor strategy to assure better stability properties.
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Figure 5.3: Depicted are the borders of the domains of absolute stability for the predictor-corrector BDF schemes
(dashed and dashed-dotted lines) and for the truly implicit BDF scheme (solid lines) of order 1 for
different Jacobian approximations and different numbers of Newton-like iterations between 1 and 4.

The values of « for the Jacobian approximations are k1 = 1, ko = =1, k3 = % and k4 = \/% + -

We see that for order 1 the predictor-corrector scheme remains A-stable like the implicit method, and
if using 2 or more Newton-like iterations the stability regions of the predictor-corrector scheme and the
implicit method very much coincide.




CHAPTER 5. SOLUTION OF IVPS FOR ODES AND INDEX 1 DAES

137

Im (h))

Im (hX)

== % - - =% —— implicit
Order 2, 1 iteration
5
3
0 N =
N !/ >
- -4 g
2 0 2 4 6
Order 2, 2 iterations
5
/——\
)
0 {
X g
-5
-2 0 2 4 6
Order 2, 3 iterations
5
0 >+
Y
-5
-2 0 2 4 6
Order 2, 4 iterations
5
0 Q
-5 s
-2 0 2 4 6

- = X3 - - -% —— implicit
Order 2, 1 iteration
5
NG -
/ ~ ~
2 0 2 4 s
Order 2, 2 iterations
5
oL T
’
0 .
-5
-2 0 2 4 6
Order 2, 3 iterations
5
RN N
T N7
-5
-2 0 2 4 6
Order 2, 4 iterations
5
o
_5 s ‘
-2 0 2 4 6
Re ( hL)

Figure 5.4: Depicted are the borders of the domains of absolute stability for the predictor-corrector BDF schemes
(dashed and dashed-dotted lines) and for the truly implicit BDF scheme (solid lines) of order 2 for
different Jacobian approximations and different numbers of Newton-like iterations between 1 and 4.

The values of £ for the Jacobian approximations are k1 = I, ko = —1, kg = % and kg = \/% +

We

see that for order 2 the predictor-corrector scheme remains A-stable if 2 or more Newton-like iterations
are applied. For more than 2 iterations the stability regions of the predictor-corrector scheme and the
implicit method are nearly the same.
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Figure 5.5: Depicted are the borders of the domains of absolute stability for the predictor-corrector BDF schemes
(dashed and dashed-dotted lines) and for the truly implicit BDF scheme (solid lines) of order 5 for
different Jacobian approximations and different numbers of Newton-like iterations between 1 and 4.
The values of £ for the Jacobian approximations are k1 = I, ko = —1, kg = % and kg = \/% + \/’33 We
see that for order 5 the predictor-corrector is unstable if less than 3 Newton-like iterations are applied.
For complex values of x this is also the case if 3 iterations are made. For 4 iterations the stability
regions of the predictor-corrector scheme and the implicit method are similar.
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5.3.4 Stepsize and order control

In this section we describe the strategy for the stepsize and order control used in DAESOL-IT.
Its aim is to plan the next integration step with a stepsize as large as possible while keeping the
occurring local error below a prescribed tolerance tol such that the step will be accepted.

Estimation of 7,

Assume for the following that step (n + 1) has been accepted. To determine a new stepsize h,;
for the next step, we need an estimate for the local error in step (n + 2), assuming that the new
step is performed with an order of k and the stepsize h, ;. Based on formula for the local
discretization error o, 1 we obtain for o,

k
Ont2 = H Yi(n +2) y () tnto, - taoks]
i=1

k+1

+ H wz(n + 2) y(eX) [tn—l—Qa tn+2a s 7tn—k+1]7
i=1

and hence the estimation for the local error

Er(n+2,hn1) = hogal|onal

k
= bt [T+ 2)|[yltnsas s (5.53)
i=1
Here, the still unknown divided difference can be estimated conservatively by [BSS94|

”y[tn+2,...,tn_k+1]H < Hy[tn+1,...,tn_k]H

psa(n +2) ‘y[tnﬂ, S| (5.54)
We end up with the condition for h, 1
k
Er(n+2,hp1) = hpp H%(n +2)- <||Y[tn+l> Il
i—1
+pa(n + 2)Hy[tn+17 oy tnok—] H)
< ¢-tol, (5.55)

where ¢ < 1 is a safety factor, e.g., ¢ = 0.5. Because this inequality depends polynomially on
hni1, it is difficult to obtain a suitable h,.; directly. Therefore we first compute the largest ad-
mittable stepsize for the given tolerance on an equidistant grid as an approximation and reduce
it, if needed, according to the inequality above.



140 5.3. STRATEGIES USED IN DAESOL-II

On an equidistant grid we obtain for a step with order &k the estimation
Ep(n+2,h) = K B Y|y ltnst, - toeil]l-

Demanding Ek(n +2,h) < c-tol this leads to the so-called mazimal uniform stepsize |Ble86|:

N -tol
hy = b 120 . (5.56)
kU [t -t

ﬁ,; is computed for the actual integration order k= k, as well as for k=k—1and k=k+1 The
values are compared and the order is changed for the next step, if for the new order the stepsize
would be significantly larger. Finally h;- is checked against the error estimation formula

Ep(n+ Q,ilk*) <c-tol

on variable grid. If this check is passed, the stepsize is accepted, and the next step is planned using
hyi1 = hy. Otherwise the step stepsize is adjusted using (5.55). For that, we use the formula

2 _ c-tol
I = a(hgex ) ([¥[tn1 et — i I+ (hagr 051 (D) Y [t 1oeest—i—1] 1) ° (5.57)
where
k*—1
g(h) = [] (h+i(n+1))
=1

is monotonically increasing in h.

As hye < hye holds, it follows hZ.q(hy) < h.q(hy-) and hy. fulfills
Ek*(n + 2, hk*) S c-tol
and is used as stepsize for the next step.

This strategy performs order and stepsize control based on the actual variable grid and allows a
flexible adaption of stepsizes and orders. As Bleser [Ble86] and later Eich [Eic91] have demon-
strated, this strategy is very efficient. It reduces the number of step rejections, allows to switch the
order of the steps faster and leads to a more stable integration procedure compared to ordinary
stepsize strategies based on uniform grids.

Remark 5.63 (Stepsize changes and stability)

As presented in Section [5.2.2] stability of BDF methods on variable grids can without further
assumptions only be proven for very limited stepsize changes. These strict bounds prohibit espe-
cially for higher orders an efficient stepsize control. As a consequence, investigations were made
to establish less strict bounds on the allowed stepsize changes under some additional assumptions.
Calvo et al. [CLM87| computed for BDF methods on pseudo-equidistant grids (Nordsieck-methods,
[Nor62|) bounds for stepsize changes that guarantee stability. Here the stepsize is kept constant
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for some time after a stepsize change, which allows more relaxed stepsize bounds. The bounds
become the more relaxed the longer stepsize is kept constant. Gear and Tu [GT74]| proved under
the assumption of continuous stepsize changes less strict bounds on the allowed stepsize changes
than Griegorieff in |Grig3].

The stepsize control in DAESOL-IT aims for continuous stepsize changes and avoids all-too large
jumps in the stepsizes. Therefore the narrow bounds from theorem do not need to be fulfilled
strictly in practice. We also can allow in DAESOL-IT stepsize changes after every integration step.

Remark 5.64 (Order changes and stability)

Like stepsize changes, also changes of the order of the BDF method can lead to stability problems
during integration. Strictly speaking, an order change is in the end a change of the used LMM.
We take care of this point in DAESOL-II by freezing the order for a certain amount of steps after
an order change, like proposed by Gear and Wanatabe [GW74]. Depending on the last order and
if the order was previously increased or decreased, the order is kept constant for between one and
four integration steps.

Stepsize reduction after step rejections

The analysis given above considered the estimation of a new stepsize for the case that the actual
step has been accepted. The question remains how to choose the stepsize for the repetition of the
actual step (n + 1), if it was rejected. Here we distinguish between the two possible reasons for a
step rejection in DAESQL-ITI:

a) The estimated error Ex(n + 1, h,) is too large.

b) The Newton-like method does not converge in three steps despite rebuild and decomposition
of the Jacobian.

In case a) we compute a new stepsize for the step repetition from the error formula (5.55) on
variable grid by

pnew) — pold) corol (5.58)
n n Ek(n + 17 h7(101d)>

In case b) the stepsize is reduced implicitly by imposing a stricter tolerance. Here the new
stepsize shall be chosen in a way, that for the expected new convergence rate 65" < 0.25 holds.
This corresponds to a predicted convergence of the Newton-like method in two steps [Enk84].
Because the step rejection is the last action in the monitor strategy, the actual Jacobian including
up-to-date model derivatives has already been computed and decomposed. Therefore in the quality
criterion for the iteration matrix in the local contraction theorem k = 0 holds.

An estimation of w® based on the quantities computed in the rejected step is obtained using

5(rejected)
w® 2 © . (5.59)
1Ay I

n+1(rejected)
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Then the condition

w(© 1
(new)
6 ”A n+1 new)” Z
can be transformed into -
” yn+1(rejected) H
HAyn-‘rl(neW)H - 4 5(rejected) (560)
0
Considering the estimation of the local error, then with
k+1
1y S = yaeall = [ sn+ Dllyltnsss - ta il
i=1
and the approximation
IAYSL ]~ 1ySia = vl
we obtain using (5.41) the approximation
Eun+1,h) = —"— | ay@,|. (5.61)
’ ’ Gra(n 1)
If we now tighten tol, such that
Tol — h ||Ayn+1(rejected) || (562)

¢k+1 (TL + 1) 450rejected)
and therefore demand in the stepsize determination that
Ep(n+ 1, < ¢ %ol

we finally accomplish
6[()new) <

SN,

5.3.5 Start-up of the BDF method

A k-step BDF method needs at least k “historical” values. At the begin of the integration of an
IVP only the initial value yo = (xo,2zo? )7 is available. There exist several possibilities to start
the integration.

In a self starting method we start with a one-step BDF method and increase the order subsequently
according to the stepsize and order control. A disadvantage of this approach might be, that in
the beginning due to the low order often very small steps have to be made. Possibly the solution
might be less accurate and errors that are made at the begin of the integration might dominate
the overall error of the method for some time (cf. [Bau99|). Additionally, several rebuilds and
decompositions of the iteration matrix are to be expected during the process of increasing the
stepsize and order.
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Another possibility would be to make a small integration step backwards using a one-step method,
and to start with a two-step method afterwards.

Finally, a one-step method of higher order could be used to produce several start values to start
afterwards with a LMM of higher order. Gear |[Gea80| used for the first time a Runge-Kutta-
method to start a LMM. Von Schwerin and Bock [vSB95| used an explicit Runge-Kutta-method
(RK) as a starter for an Adams-method. Other than in the approach of Gear, in this method some
of the internal stages are of higher order, such that with one step of the Runge-Kutta-method all
needed start values can be produced.

For BDF methods Bauer [Bau99| developed an implicit RK-method that follows the approach of
Bock and von Schwerin: Several internal stages are of higher order. Hence with one step of the
RK-method, the start values for a fourth order BDF method can be produced. Furthermore this
method is designed in such a way that the iteration matrix of the RK-method can be reused in
the BDF method.

In DAESOL-IT there are currently two of these approaches implemented. The RK-starter approach
of Bauer and the self starting approach. As in the first integration step of a self starting method
there are also not enough historical values available to build the predictor polynomial, here an
explicit Euler step is used to obtain the predictor value. The starter strategy of the integration is
also modularized, such that a later extension with additional approaches is possible. An efficient
start-up strategy is especially important in the case of discontinuities of the model functions, or
their lower order derivatives, because in all these points the integration has to be stopped and
restarted. Also in the treatment of problems where the dynamic model switches depending on
the current state as well as during the solution of delay differential equations often integration
restarts are needed.

5.3.6 Computation of consistent initial values

To solve an initial value problem for DAEs, consistent initial values are needed. In an actual
application these might not be known exactly, e.g., because they are not measurable directly. In
the fully-implicit setup consistency means that b(tg,yo,¥o) = 0 holds. In the linearly implicit
index 1 case the differential variables xq are free, and the algebraic variables zq are implicitly
defined due to the regularity of g, and the consistency condition g(to, Xo,2o) = O.

If the integration would be started with non-consistent initial values, after one step a consistent
point would be reached, provided the iterative Newton-like method for the corrector equation has
converged. But in this case problems with the error estimation and the quality of the computed
“solution” would arise, because in the first step hy — 0 does not imply any more that the error
tends to 0, as a non-vanishing contribution of the inconsistency remains.

For a linearly implicit index 1 DAE-IVP the generation of initial values is equivalent to finding
the root of the algebraic equations g(to,xo,z) with only z as variables.

A simple approach to solve this problem implemented in DAESOL-IT is a full-step Newton method.
The drawback here is that convergence is only achieved, if the initial estimates for the algebraic
variables lie in the local convergence region (see also of the Newton method.

For highly nonlinear problems or very bad initial estimates it is therefore possible that no consistent
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algebraic start value can be found. In this case globally convergent root finding methods would
be needed, like, e.g., damped Newton or homotopy methods, which are described in [BSS94| or
[Bau99]. As the routines for the consistent initialization are implemented as modules, some of
these more advanced approaches can be added later to DAESOL-IT if needed.

5.3.7 Relaxed formulation of the algebraic equations

For the iterative solution of an optimization problem involving a DAE model it is often more
convenient (and also more efficient) to allow the solution of DAE-TVPs with originally inconsistent
initial values. For example, if the algebraic variables depend on free variables that are to be
optimized, the consistency conditions will usually be violated after every optimization iteration.
In this case a relaxed formulation of the algebraic variables is of advantage [BES88|, where the
optimization algorithm has to ensure consistency in the solution of the optimization problem.
This can be achieved for example by adding the algebraic equations in the start points of the
IVPs as equality constraints to the optimization problem, as, e.g., done in [Lei99]. The relaxed
formulation leads to an DAE-IVP of the type

A(t,x,z)x = f(t,x,2)

0 = g(t,X,Z) — Q(t)g(to,xo,zg),
x(ty) = xo, (5.63)
Z(to) = Zy.

Here we assume that the damping function ¢ : R — R is sufficiently smooth, that 6(¢y) = 1,
6(t) > 0 and that 6(t) is monotonically decreasing. This formulation means that we force the
initial values to be consistent by a slight change of the constraint manifold of the DAE and hence
of the actual problem we solve. This allows us now in the optimization context to start the in-
tegration with arbitrary initial values. And if we finally use at some point of the optimization
“truly” consistent initial values, the relaxing term vanished and we solve again our original problem.

The standard choice in DAESOL-IT is the damping function

I

t—1
9(t> = eiprelax(tend Bt0>
where preax may be chosen by the user and is per default set to Prejax = 5.
Note that if the damping is sufficiently strong and the integration horizon is performed over a long

horizon, the use of f = 0 and the “normal” g provides another way to compute consistent initial
values.

5.3.8 Scaling

When solving problems numerically, it is necessary to take into account the possibly different
order of magnitudes of different components of the variables. Hence in the strategies for error
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estimation and stepsize control a weighted norm is used instead of the plain Euclidean [>-norm
|lyll2- Tt is calculated by the formula

1 | Ynira )2
n = —_—— —’ 9 5.64
Hy +1|| Ty ; (Uscaln+1,i ( )

where vy, € R™ is the scaling vector containing the different scaling factors and the ¢ denotes
the i-th component of the corresponding vector.

Up to now, in DAESOL-IT are four different scaling methods implemented which differ in the choice
of the update strategy of the scaling vector:

1. The DASSL scaling [BCP96| which is also used in many integrator code besides DASSL:

Uscalpy1,i — |yn+1,i| + atoli/tol, 1=1,... y Ny

2. Gear scaling:

Uscaly,y1,i — maX{|yn+1,i|a Uscaln,i}7 1= 17 ey Ny

3. Old Deuflhard scaling:

Uscalpt1,i — max{’yn+l,i’; Uscalp i Cmin}7 1= 17 ey Ny,
. o Ty 100
with cpin = max;?y Yny1,i * €mach - Tol’

4. New Deuflhard scaling which is used in the LIMEX code:
Uscal,, 11,0 = max{‘yn+1,i‘a Uscalp, i atOli}a 1= 1a ey Ny

We use here vy, = 0, €macn 15 the machine precision, tol the user given relative tolerance and
atol a user given absolute tolerance.

With the exception of the DASSL scaling the scaling vector depends in every step on its last value
in order to take the maximal absolute values of the components into account. If one component
becomes very small during integration but is still significant for the computation, then the DASSL
scaling should be preferred.

Different orders of magnitude in the different components can be taken into account by a cor-
responding choice of the components of the atol vector. In the DASSL scaling atol has the
meaning of an absolute error tolerance, in the new Deuflhard scaling it corresponds to a scaling
factor.

5.3.9 Continuous representation of the solutions

The polynomial interpolation of the latest computed trajectory values, which is the foundation of
the BDF methods, provides a simple and efficient possibility to generate a continuous representa-
tion of the solution. This allows us to decouple the output grid of the solution from the actual in-
tegration grid and to evaluate the trajectories error-controlled at arbitrary points that are not con-
tained in the integration grid. This representation is also the foundation for extensions of the inte-
grator code for the treatment of problems with implicitly defined switching points, where the model
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equations change or non-differentiabilities occur (cf. [Kir06],[Ehr05],[BP04], |[Eic91],[GO84]). Also
for the treatment of delay differential equations this representation plays a crucial role. In the gen-
eral case, where the delays are state-dependent, historical trajectory values are needed at points
that usually do not belong to the discretization grid and that are not known in advance.

We obtain the continuous representation of the solution in the interval [t,,t,,1] from the interpo-
lation polynomial P}, (¢) that interpolates the values yni1,...,yn—k exactly. This means that
it is identical with the corrector polynomial of the actually completed step. If no order change
occurs, it is also identical with the predictor polynomial of the next step. Hence we get

1

J

k
Pra) = D> T = tosiod) yltnsrs - turiy] (5.65)
7=0 =0
Pia(t)

= Pr.,(t) (if order remains the same).

It can be shown that this continuous interpolation of the solution fulfills the conditions of “natural
interpolation” [BS81| at least on equidistant grids. This means that, asymptotically, the interpo-
lation error from the evaluation of P! is smaller than the discretization error of the BDF method
at the gridpoints.

The output of solutions in DAESOL-II is based on this representation and uses a plug-in system
implemented in the SolvIND interface. The user can pass a self-written plug-in to the integrator,
defining different actions for different kinds of events, as well as an arbitrary output grid, for which
interpolated values are generated by the integrator and passed back to the plug-in.



6 Sensitivity generation

In this chapter we present efficient strategies and algorithms for the numerical computation of
sensitivities, i.e., the derivatives of solutions of Initial Value Problems ([VPp) for stiff Ordinary
Differential Equations (ODEp) and Differential Algebraic Equations (DAEE) of index 1 with respect
to initial values and/or parameter. The efficient and accurate computation of sensitivities is of
interest, e.g., in the analysis of dynamic systems or in model reduction strategies. Furthermore,
it is an essential part of all derivative based algorithms for the optimization of dynamic systems
such as Gauss-Newton and SQP methods. In these algorithms the sensitivity generation is usually
the most time consuming task, especially for large scale systems.

The type of required sensitivities depends on the application context. While normally for ordi-
nary Gauss-Newton-type methods, e.g., for parameter estimation, first order forward sensitivities
are sufficient, Gauss-Newton approaches for robust optimization and exact-Hessian SQP meth-
ods as presented in this thesis need at least second order sensitivity information. For optimal
experimental design even (directional) sensitivities of third order might be of interest. Inexact
SQP approaches, on the other hand, need adjoint sensitivity information to be efficient. In the
following we present numerical schemes for the computation of all these types of sensitivities. For
the derivation of these schemes we use the idea of Internal Numerical Differentiation (IND]), in-
vented by Bock [Boc81l, [Boc83|, which leads to sensitivity generation schemes strongly intertwined
with the numerical schemes used for the solution of the corresponding nominal IVPs. While the
presented first order forward schemes are well-known, we present new adjoint based IND schemes
for LMMs and the first schemes for arbitrary order sensitivity generation at all. Furthermore, we
give the first approach for the propagation of higher-order directional sensitivities across switching
events.

This chapter is organized as follows. First, we recall in Section the definition of the sensi-
tivity generation problem. Then, we describe in Section how sensitivities could be obtained
analytically as solution of variational DAEs. Afterwards, in Section [6.3] we introduce the idea of
IND] before in Section [6.4] IND-based schemes for first order sensitivity generation are given. In
Section we present numerical schemes for the computation of sensitivities of arbitrary order.
We compare numerical effort and memory usage of the presented strategies in Section [6.6] before
we finally address in Section the strategies implemented in DAESOL-II that are related to
sensitivity generation.

147
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6.1 Problem formulation

In this chapter we consider the computation of sensitivities, i.e., the computation of the derivatives
of the solutions of relaxed parameter dependent initial value problems for linearly implicit index
1 DAEs

A(r,x(7),z(7),p) x(7) — f(7,x(7),2(7),p) = O, x(79) = Xo, (6.1a)
g(r,x(7),z(7),p) — 0(7) g(70, X0, 20, P) = O, z(7y) = 2o, (6.1b)

with respect to the initial values xq, z¢ and the parameter p. In this formulation we assume to be
in the direct multiple shooting context such that 7 € [r9, 7] C [0, 1] is already the normalized time
and p = (pq’,Pp’,Pn’)! € Rt g set of parameter combining the parameter of a possible
control parametrization, the system parameter as well as the stage lengths in case of a multistage
formulation. We also assume here that the initial values do not depend on the parameter vector
p. If this should be the case, the corresponding sensitivity information with respect to p can be
easily obtained by application of the chain rule.

Wronski matrices

We denote by

dY(T, To, X0, Z0, p) c R(n$+nz)x(”m+7LZ+TLl’) (62)

W(T;7-07X07207p) = d(XO Zo p)

the (first order) sensitivities of the DAE-IVP solution y(7) = (x(7)7,z(7)")T at time 7 for the
initial time 7y, initial values xq, zg and parameter p. These sensitivity matrices are called Wronski
matrices. To describe the submatrices of the Wronski matrix we define (omitting the arguments)

(W Woy W L Wi Wae Wh
wis (e )= (o 0 )= (0 We k) (03

In the following we present strategies to compute approximations for the Wronski matrices W
as well as for matrix-vector and vector-matrix products between direction vectors and V. This

leads in one case to so-called forward sensitivities WP with a matrix of forward directions D €
R(Tlm+nz+7lp)xnfwd])ir

WD =W.De€e R(”er"z)anwdDir (64)

and in the other case to adjoint sensitivities WY with a matrix of adjoint directions Y €
R(nz+nz)><nadeir

WY — WT . 'Y‘ c R(nm“rnz‘i’np)xnadeir' (65)

For a more convenient notation we omit here and in the following the sensitivity of the DAE
solution with respect to the initial time 7y, as it is usually not needed for the algorithms presented
in this thesis. However, the derivations and strategies presented in this chapter can be transferred
with at most small modifications to this case, leading to schemes for the generation of sensitivities
with respect to the initial time.
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6.2 Variational DAEs

We now discuss how the sensitivities can be described in an analytical way. Provided that the
model functions A, f and g are smooth enough, the solution of the so-called nominal IVP is
differentiable with respect to the initial time 7y, the initial values xq, zg and the parameter p. We
can thus derive for the nominal DAE-TVP the corresponding variational DAE-IVPs to compute
sensitivities.

Forward variational DAE

The simple formal differentiation of the solution of the nominal IVP leads to an IVP for the
sensitivities, also called forward variational DAE, which has the form (omitting the arguments)

, Weo Wao Wo
AWS = (fo—Ax f,— A% f,— Ak ) [ Wz wz we (6.6a)
o o0 I,
Weo Wao o
0 = (gx gz gp) W)Z(O szo W}:z) _'9'(gx,0 82,0 gp,O) (66b)
o o0 I,

with initial values

L, 0 O
W(T();TO,XO,ZO,p) = ( 09: I 0 ) . (660)

Here the index zero at the g terms indicates the evaluation at the initial time and for the initial
values. Alternatively, the variational DAE can be formulated directly for a matrix of directions

Dy
D=1|D,| € R (Ratnz+np) X nfwdDic (67)
Dp

to compute the forward sensitivities WWP via the IVP

WD,x
ANWP = (fi— Ak f,— A% f,—Ayx) | WP~ (6.8a)
Dp
WD,X
0 = (8« 8 8 ) | WP | —0-(8x0 8.0 8po) D (6.8b)
DP
with initial values
D
WP (70; 0, X0, Zo, P) = ( Dx > : (6.8¢)

Note that both versions for the forward sensitivity DAEs are linear and obviously have the same
stiffness properties as the nominal IVP. Furthermore, for the solution of the variational IVP we
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need the solution of the nominal IVP, such that the solution of both systems should be performed
simultaneously in practice. In principle every numerical integration code suitable for the solution
of the nominal IVP could be used in a black-box manner to solve the combined systems as well.
However, because of the close relation between nominal and variational IVP, there is a lot of
structure that should be exploited in the solution process. The algorithmic schemes based on IND
presented later in this chapter exploit this structure automatically by construction, while this is
not the case for commonly used integration routines, where special modifications have to be made.

Adjoint variational DAE

An alternative possibility to compute the sensitivities is based on the solution of the adjoint
variational DAE which we derive in the following for the relaxed index 1 DAE-IVP case. We do
this similar to the derivation that Cao et al. [CLPS03| give for the case of a non relaxed fully-
implicit DAE. For this derivation we assume that ¢(x(7.),z(7)) is a smooth scalar function that
depends on the values of the solution of the DAE-IVP at the final time. Examples for ¢
could be a component of the solution or a linear combination of them. Based on the derivative of
© with respect to xg, zp and p we can obtain adjoint sensitivities of type via suitable choices
of ¢. Consider now the function

X(X(Te;Xo,Zo,p)7Z(Te;X0,ZO;P)) = @(X(Te;xo,Zoap)aZ<Te;X0,Z0,p))
- [N (A x(r).a(0), () ~ £ (7). 2(0). ) dr
— /Te )\Z(T)T\[g(T,X(T), z(7),p) ZQ(T)g(TO,XO, Zo, p)ldT.

=0

(6.9)
We then obtain for the derivative of ¢ with respect to yo = ()ZCO> (only displaying the time
0
arguments)
dy(x, z) dx(x,2)
dyo dyo

= ox(7e) dzs(—)e) + 0u(Te) ———

Integration by parts leads to

A ()" A B gy {X‘(T)TA(T)

0 Yo
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Together with (6.10) this results in

D) ot - XA B 4 ) 2D 4 s (1, o)
_/Te K_%?’L(T)) 0) + NS ()T (Ay (1)%(7)) — )\X(T)Tfy(T)} dg’}(’:)')dT
Te . dy =:a1 Z
_/TO M dyo S +/ O(T)A" ()" gy(0)dr. (6.12)

=:a2

We require now a; + as = 0 which leads to the adjoint DAE system

A(T)T}\X(T) = (A (T)X(T) = £ (7)) TX(7) + g ()TN (7) — A(T)"XX(7)  (6.13a)
0 = (AL(T)X(T) — £,(7)"X(7) + g, (7)) A% (7). (6.13b)

Furthermore, we can use the implicit function theorem on the relaxed algebraic equations at the

final time to express dg(Te) in terms of dxife and the relaxation as
dz(7,) . ( dx(7) >
= =8, (Te x\Te -0 Te T . 6.14
ave g, (7e) | 8x(Te) dye (7e)8y(T0) (6.14)

Then, Equation ([6.12) for the derivative becomes

de (X7 Z) T
— = X A I, O
dyo (70)" A(70) ( - )
X _ dx (7,
+ foxln) = XITAM) — palr)ey ()] S
—b
+0(7e)a(e)g, (7o) 8y (T0) + / 0(T)N* (1) gy (10)dT. (6.15)
70
Demanding b = 0 defines the initial values for the adjoint DAE system (6.13))
A(Te)TAX(Te) = SOX(Te)T - gX<Te)TgZ(Te)_TSDZ(Te)T~ (6.16)

Solving the adjoint DAE system ([6.13) with these initial values backwards in time from 7, to 7
allows us to express the derivative as

dgp(x, z)

e X*(10)"A(7o) (I, 0)

+0(7—e)90z(7—e)gz_1(Te)gy(TO) + /Te 0<T)AZ(7)Tgy(TO)dTa (617)

70
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where X*(7p) is the solution of the adjoint DAE. The integral term can be integrated along with
the solution of the adjoint DAE. Analogously, the derivative of ¢ with respect to the parameter
p can be derived, leading to the expression

%’;Z) _ /TOTQ,\X@)T((Ap(T);‘c(T)—fp(T))+>\Z<T>T(gp(T)—e(T)gp(T(]))dT

_@Z(Te)gz_1<7'e)(gp(7_e) — 0(7e)gp(10))- (6.18)

Note that also in this case the integral part can be computed along with the solution of the adjoint
DAE-IVP, such that all derivatives of a function ¢ can be computed by a single solution of the
adjoint variational DAE. The adjoint variational DAE is, like the forward variational DAE, linear.
If we solve now the adjoint variational DAEs for a sequence of ¢ corresponding to the single
components of the DAE solution, we can compute the full Wronskian matrix (6.3|) with (n, +n,)
solutions of the adjoint variational DAE. These are fewer solutions than needed in the case of
using the forward variational DAE (6.6]), which requires (n, + n, 4+ n,) solutions. Note also that
only 7aqipir solutions of the adjoint variational DAE are needed to compute an adjoint sensitivity
of type (6.5).

A drawback of the adjoint approach is that the nominal IVP and the adjoint variational [VP cannot
be solved simultaneously, but in general the solution values of the nominal IVP are nevertheless
needed for the solution of the adjoint IVP. Hence a nominal integration has to be performed first
to obtain a representation of the nominal solution and afterwards the adjoint IVP can be solved.
In codes not based on IND, such as CVODES and IDAS of the SUNDIALS [HBG™05] suite (and
all other codes capable of adjoint sensitivity computation in the DASSL family tree), the needed
nominal solution values are usually obtained by interpolation based on the solution values on
the discretization grid of the nominal IVP solution. This is necessary in these codes, since the
discretization grids for the nominal IVP and the adjoint IVP in general do not coincide. This
increases the computational effort and possibly introduces further numerical errors. As we will
see later, the IND-based adjoint schemes developed in this thesis can reuse here more information
that already has been computed during solution of the nominal IVP.

Higher-order sensitivities

For the computation of higher-order sensitivities theoretically the differentiation procedure leading
to the forward variational DAE could be iterated, resulting in forward variational DAEs for the
computation of higher-order sensitivities. For second order sensitivities for DAEs this is described,
e.g., in [Bau99, [K6r02]. For higher orders it becomes even more tedious and error-prone to per-
form this process. A combined forward/adjoint approach inspired by AD techniques to obtain a
variational ODE for reduced second order sensitivities is given in [OB05]. The numerical solution
of this variational DAE, however, needs also a specially tailored ODE solver.

After defining forward and adjoint sensitivities and describing the variational DAE-TVPs that are
commonly used for their approximation, we now describe the principle of IND and how it can be
used to obtain efficient schemes for sensitivity generation.
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6.3 The principle of internal numerical differentiation

In this section we describe how, based on a numerical scheme for the solution of the nominal prob-
lem, a scheme for the numerical approximation of the sensitivities can be derived. The simplest
approach, using a given integration code to obtain sensitivity information, treats the integrator
as black box. It calculates finite differences after solving the nominal IVP for the original initial
values and parameter and once again for slightly perturbed initial values and/or perturbed pa-
rameter. This approach is called external numerical differentiation (END). Although very easy to
implement, the END suffers from the fact that the output of an adaptive integrator usually does
not depend continuously on the input: Jumps in the range of the integration tolerance can always
occur for different sets of initial values and parameter, e.g., due to a change in the stepsize and
order strategy. Therefore, the number of significant digits in the solution of the IVP has to be
approximately twice as high as the needed accuracy of the derivatives. This leads to a very high
and often unacceptable numerical effort.

The idea of Internal Numerical Differentiation (IND) [Boc81), Boc83| is to freeze the adaptive
components of the integrator and to differentiate not the whole adaptive integrator code, but the
adaptively generated discretization scheme (fixing the used stepsizes, orders, iteration matrices
and number of Newton-like iterations). This scheme can be interpreted as a sequence of differ-
entiable mappings, each leading from the solution at one timepoint of the discretization grid via
intermediate values to the next. Hence it can be differentiated, for example, using finite differ-
ences, the complex step method or the techniques of automatic differentiation. This leads to
numerical schemes for the computation of the sensitivities that are strongly intertwined with the
computation of the nominal solution.

In fact, by using the principle of IND we are not only able to reuse a lot of information already
computed during the solution of the nominal problem, but we also obtain, together with the
approximation of the analytical sensitivities, the exact derivative of the numerical solution of the
nominal problem. This is a very desirable property of IND-based schemes that most of the other
available codes do not share. They often use only the same numerical method for the nominal
and the variational IVP, but not the same discretization scheme, even when they exploit some
parts of the problem structure. This may lead to problems in adaptive optimization algorithms
relying on the sensitivity information, e.g., when for lower integration tolerances the behavior of
the numerical nominal solution predicted by the sensitivities does not correspond to its actual
behavior.

Following the idea of IND, we now decompose the integration scheme generated adaptively dur-
ing the numerical solution of the nominal problem into a sequence of differentiable “elementary”
mappings. Using the derivatives of these elementary mappings and applying the chain rule, we
can derive numerical schemes for sensitivity computation using the AD techniques presented in
Chapter 2] Depending on the used approach we will obtain IND schemes for the approximation
of first order forward or adjoint sensitivities as well as of higher-order sensitivities. Although the
presentation in the following is given mainly in the context of BDF methods, the presented strate-
gies, including the new adjoint and the arbitrary order schemes, can be immediately transferred
to other implicit LMMs and even easier to explicit LMMs and Runge-Kutta methods.
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For the derivation of the IND schemes we first recall from Section the computations made
during an (accepted) step for the computation of y, 1. We denote the stepsize of this step with h,,,
the BDF order with k,, the iteration matrix with M, and the number of performed Newton-like
iterations with s,,.

In a single BDF step, first the predictor value y* 41 is computed by the interpolation polynomial
through the last &, + 1 values, extrapolated at time ¢, 1, resulting in

kn
Yai1 = D Ol Yoois (6.19)

with predictor coefficients o’ depending only on the stepsize series hy, ..., h,_r,. The predictor
value is then used as start Value for the iterative solution of the implicit corrector equation. The
time derivative x '+, of the corrector polynomial through the values xni1,...,Xn11-k, can be

written as
kn

_ LCC C
n+1 E Oé n Xn+1-i = Xp11 + A nXn+t1; (620)

with corrector constant

n+1 - Za Xn41—i- (621)

It summarizes the contribution of the last differential states to x§,, with the exception of the
value x,1 which is to be determined by the integration step. Note that for an easier notation in
this context we have relabeled the coefficients from Chapter [5, such that a ,, now corresponds to
the ok, —i)(nt+1-k,) of Definition m

For the solution of the implicit system (5 we apply a Newton-like method using the approxi-

mation M, instead of the actual J acoblan J _ oty a5 of the method function

BDF . CC —
fn (Xn+1a Zni1; Xn+1a P, Xo, ZO) =

A(tni1; Xn1, Zni, p)(XS-El + %C,an+1) — hpf(tnt1, X041, Zns1, P) (6.22)
g(tn+1, Xnt1,Znr1, P) — O(tny1) 8(to, Xo, Zo, P)

The iterations to find a root of fBPF

perform s,, Newton iterations

are started with the predictor value y'%, = y®, = We

yor =y + Ayl 0<i<s,—1, (6.23)

where the increment is given by

AYI('li—)‘rl = _MHIfEDF(YSL)- (6-24)
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Figure 6.1: The dependencies in the calculations made during the n-th step of a BDF method with order k,, and
iteration matrix M,,.

Now, we interpret the computations made in the equations (6.19)-(6.24) as elementary operations
for which the partial derivatives are easily determined, cf. Section Figure shows the
dependencies of the quantities and the elementary operations used in one BDF step. In the
following section we use the AD techniques described in Chapter[2Jon this elemental representation
of a BDF step to propagate sensitivities through the integration process.

6.4 First order sensitivity generation for DAEs

In this section we derive IND-based schemes for the computation of first order sensitivities. The
first IND-based schemes for the computation of first order forward sensitivities for ODEs were
derived by Bock [Boc81l Boc83| for the code METANT of Deuflhard and Bader [DB83], using the
semi-implicit midpoint rule, and the code DIFSYS of Bulirsch and Stoer [BS66], using the explicit
midpoint rule. Plitt [Pli81] and later von Schwerin [vS92] used first order forward IND schemes
derived from Runge-Kutta-Fehlberg [Feh69, Feh70] codes. Von Schwerin and Winckler [SW96]
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presented first order forward IND schemes for ODE and DAE systems with discontinuities based
on Dormand-Prince Runge-Kutta methods [DP80), [PD8&1| and on an Adams PECE [BA83 [Mil26]
Mou26| method implemented in the MBSSIM [SW94] integrator library. The first forward IND
schemes for the computation of first order DAE sensitivities using BDF methods were presented
in the code DAESOL by Eich [Eic87|. Later, Stgren and Hertzberg [SH99] augmented the DAE code
DASSL [Pet82, BCP96| by a first order forward IND scheme and called this method DASSP. First
order adjoint IND schemes for DAEs have first been presented for BDF methods by Albersmeyer
[ABOS§] in the code DAESOL-II, for ODEs using explicit Runge-Kutta methods by Bock [Boc&7]
and later using explicit Runge-Kutta-Fehlberg methods by Wirsching [Wir06]. As a starting point
we present now the derivation of first order IND schemes using the nomenclature and presentation
style of AD.

6.4.1 Forward sensitivity generation

For the derivation of first order forward IND schemes we have the choice between two slightly
different variants. The strict application of the IND principle to the predictor-corrector scheme of
the nominal solution leads to the so-called iterative IND scheme. The (not entirely appropriate)
assumption that the implicit equation of the nominal problem has been solved exactly leads,
together with the application of the implicit function theorem, to the so-called direct IND scheme.

Iterative forward IND

To differentiate the predictor-corrector scheme we define the elementary functions corresponding

to the equations ((6.19)-(6.24)

k"L
¢E(yn7 s 7Yn—kn) = Z Oéfn Yn-i, (625&)
=0
k"l
c,i)gc(xn, e Xntloky) = Z agn Xnt1-i, (6.25b)
i=1
A (Yo, Aynt1) = Yni1 + Aynia, (6.25¢)

¢ﬁ(yn+17ngl7p7y07z(]) = _Mr—llfr]?DF<yn+1;ngl7p7y07Z0)‘ (625d)
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The partial derivatives of these elementary functions are then easily calculated as (omitting the
arguments)

P
8a¢n _ aan L,,, 0<i<k, (6.26a)
Yn-i '
CcC
a‘%—n = a9 1, 1<i<k, (6.26b)
Xn+1-i '
OYnt1 v OAyni1 ny’ '
) A 8fBDF
P = M forve (xS, poxo,70). (6.264)

In this way, the whole nominal integration performed using the predictor-corrector scheme can
be understood as a sequence of elementary functions ¢,,(¢d,,_1(- . (do(yo,P)--.))) of the above
types. As in a first order AD forward sweep (see Section , we propagate the sensitivity
information starting with a sensitivity direction d = (df,d;,d})" € R™*"=*" along with the
computation of the nominal values. We use the common AD notation and denote the intermediate
quantities in the forward sweep by a dot over the corresponding nominal value. For the elementary
functions in and their results we then obtain (again omitting the arguments)

kn a¢P kn
i=0 Yn—i i=0
XS—EI = Z 8X—il-kn+l_i = Z agn Xnt1-i) (6.27b)
i=1 nLm i=1
. (141 . (1 . (1
yal = yuh + Ay (6.27¢)
A = [Jnysal -

+ (Ap7n+1(ng1 + O‘/gnxn"rl) - hnfp,n+1) :
_p p
gp,n-f—l n—i—lgp,O

0 0 Xo
. ) 6.27d
N (—9n+1gx,o —9n+1gz,o) (Zo) ] ( )

%o =dy, #9=d, and p=d, (6.28)

using the sensitivity direction d. Note that all model function derivatives needed in can
be efficiently computed as directional derivatives. Furthermore, the IND predictor y* 41 and the
IND corrector constant X can be computed via modified divided differences in the same way as
it is described in Section for the predictor and corrector constant of the nominal trajectory.
Having a closer look at the derived scheme , we see that it represents again a predictor-
corrector scheme. More precisely, it is the BDF predictor-corrector scheme for the directional

where we initialize
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formulation of the forward variational DAE when the discretization scheme (including iter-
ation matrices) of the computation of the nominal trajectory is used. Note that this equivalence
between the derivative of the nominal discretization scheme and the discretization scheme for the
variational ODE/DAE holds not only for BDF methods, but for all linear discretization schemes
[Boc87].

We give the iterative forward IND approach in algorithmic form in two variants: Simultaneous
with the nominal integration (see Algorithm and deferred for a later determination of forward
sensitivities (see Algorithm |6.2), assuming that the complete discretization scheme of the nominal
integration as well as the nominal solution at the integration gridpoints is somehow available. Note
that the algorithms, although here described for one sensitivity direction, can easily be modified
to compute several directional sensitivities in parallel, which is also used in practice to improve
efficiency.

The first order iterative forward IND scheme is equal to the “staggered corrector method” that
was proposed later by Feehery et al. [FTB97|, provided that the staggered corrector method uses
the same number of Newton iterations for the solution of the corrector equation in the variational
DAE as used for the nominal solution. Otherwise the IND principle would be violated.

Algorithm 6.1: First order iterative forward IND scheme (simultaneous)

Input: g, t¢, ho, initial values yo, parameter p, sensitivity direction d.
Output: Nominal solution yn, forward directional sensitivity yn = W - d.
set kg = 1, n=0;

initialize nominal integration with yo, p and sensitivities with d ;

while t; not reached do
compute y,+1 by nominal integration step for h,, k, including s,

Newton-like iterations using matrix M, to solve the corrector equation;
if step accepted then
// corrector equation successfully solved,
// error estimation accepted

compute IND predictor (6.27a) and IND corrector constant (6.27h));
using yn i1, h, and M, make s, iterations (6.27c))/(6.27d)

for the IND corrector equation to obtain y,1;
tn+1 == tn + hn7
determine h,; and k,.; for next step;
n=n-+1;
else
// corrector equation solving failed or
// error estimation too large
update Jacobian approximation M, according to monitor strategy or reduce stepsize
P
end

N =n;
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Algorithm 6.2: First order iterative forward IND scheme (deferred)

Input: Discretization scheme stored from nominal integration (stepsizes h;, orders k;,
trajectory values y;, number of Newton iterations s;, used iteration matrix
factorizations M '), number of integration steps NN, sensitivity direction d.

Output: Directional sensitivity yn = W - d.

set n = 0, initialize sensitivities with d (6.28));

while n < N do

get t,, h,, k, from stored discretization scheme;

compute IND predictor (6.27a) and IND corrector constant (6.27h)) ;

get s,, M;! and y, 1 from stored scheme;

using yny1, b, and My !, make s, iterations (6.27¢)/(6.27d) for the IND
corrector equation to obtain y,1;

n=n+1;

end

Direct forward IND

In the direct forward approach we assume that during the nominal integration we have solved the
corrector equation exactly in every integration step, i.e., foPF (yni1; x5S, P, X0, 20) = 0.
Then we use the implicit function theorem to describe the dependency of y,.1 on the other
quantities

¢BDF 11 5¢BDF ¢BDF
Oy [Of} R (6.29)
ov OYni1 ov v

CcC
for v € {Xn+1>p7X07Z0}'

We summarize over all dependencies to obtain y,1

QLT OEPDF | OfBDF . OESOF
ox8G op P ke 0T Tz 2O

— _J1 KAnHXSEl) + (Ap,n+1(ngl + %C,nxnﬂ) - hnfp,n+1) P
n 0 gp7n+1 - en—‘rlgp,O

0 0 Xo
+ . . 6.30
(—9n+1gx,0 —9n+1gz,0) (Zo)] ( )

Using the direct approach, the corresponding implicit BDF discretization scheme of the integration
step is differentiated and not the actual predictor-corrector method. Hence in this approach
no predictor dependency occurs and no Newton-like iterations are made for the IND equation.
Instead, the building and decomposition of the actual Jacobian J, is needed in every step, which
in most cases renders the direct approach more expensive than the iterative one. The other model
derivatives can be obtained efficiently by directional forward derivatives. The algorithmic form of
the direct forward IND approach is given for the simultaneous version in Algorithm and for

}.In-&-l = _J;l
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the deferred version in Algorithm Note that in the simultaneous version, the computed and
decomposed Jacobian can be used as iteration matrix for the next nominal integration step.
Additionally, note that can be understood as the direct solution of the corrector equation of
the forward variational DAE, since it is a linear equation. This is very similar to the strategy used
by Caracotsios and Stewart [CS85] in their DASSL based code DDASAC. Later this approach was
referred to as the staggered direct method [F'TB97].

Algorithm 6.3: First order direct forward IND scheme (simultaneous)
Input: o, ty, ho, initial values yqo, parameter p, sensitivity direction d
Output: Nominal solution yn, forward directional sensitivity yn.
set kg = 1, n=0;
initialize nominal integration with yo and p and sensitivities with d (6.28));

while t; not reached do
compute y, 1 by nominal integration step for h,, k, including s,, Newton-like

iterations using matrix M,, to solve the corrector equation;
if step accepted then
// corrector equation successfully solved,

// error estimation accepted
compute IND corrector constant ;
using yn41 and h,, compute J, from (5.44)),
factorize J,, and solve system to obtain yni1;
M;j_l = nga lnt1 =tn + hn7
determine h, 1 and k,.; for next step;
n=n+1;
else
// corrector equation solving failed or
// error estimation too large
update Jacobian approximation M, according to monitor strategy or reduce stepsize
P
end

N =n;

Remark 6.1 (Forward IND schemes versus solution of the forward variational DAE)
The presented forward IND schemes lead to a very efficient way to compute approximations for
the forward sensitivities. Compared to other codes that are constructed around the solution
of the forward variational DAE in addition to the nominal DAE they offer by construction a
natural exploitation of the inherent problem structure. This structure exploitation has to be
taken into account additionally when using a non IND-based approach. It should be noted that
the convergence of the forward IND schemes to the true sensitivities is assured with the same order
as for the nominal solution, due to their interpretation as discretization scheme for the forward
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Algorithm 6.4: First order direct forward IND scheme (deferred)

Input: Discretization scheme stored from nominal integration (stepsizes h;, orders k;,
trajectory values yj), sensitivity direction d

Output: Directional sensitivity yN.

initialize sensitivities with d;

n =0;

while n < N do

get t,, h,, k, from stored discretization scheme;

compute IND corrector constant (6.27b));

get yni1 from stored scheme;

using yn41 and h,, compute J, from ((5.44]),

factorize J, and solve system to obtain y,i1;
n=n+1;
end

variational DAE. And hence also the intermediate quantities of the forward IND sweep converge
against the trajectory of the solution of the forward variational DAE.

Forward IND using finite differences

If a lower precision of the computed sensitivities is sufficient, a third approach to compute first
order forward sensitivities is possible. Since the integrator code DAESOL-II allows the storage
and reuse of the discretization scheme, a later “replay” of the integration for different initial
values and parameter is possible. Also a simultaneous computation of several trajectories with
one discretization scheme, determined either by the first trajectory or by all trajectories together,
is supported. Therefore, also a finite difference based IND approach can be used to compute
sensitivities. In this approach, the original trajectory and trajectories for slightly perturbed initial
values and parameter are computed using the same discretization scheme, and afterwards the finite
differences are calculated. Since the same discretization scheme is used for all trajectories, the
principle of IND is fulfilled. As in the case of ordinary functions, one can only expect an accuracy
of roughly the square-root of the machine precision, even for the optimal choice of the perturbation
size. On the other hand, no additional derivatives of the model functions are needed in addition
to the ones needed anyway during nominal integration. Depending on the effort for derivative
evaluation this might lead to significant savings in computational time, provided some accuracy of
the sensitivities can be spent. This approach was later also used by Stgren and Hertzberg [SH99]
in their DASSL based code DASSP. Note that using this approach a computation of adjoint
sensitivities is not possible.

6.4.2 Adjoint sensitivity generation

After the derivation of the well-known first order forward IND schemes for BDF methods, we
now develop in the same framework the new first order adjoint IND schemes first presented in
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[ABOS8]. Like in the forward case, we present two slightly different schemes based on the actual
predictor-corrector method and on the corresponding implicit scheme, respectively.

Iterative adjoint IND

We start with the development of the iterative adjoint IND scheme. Like the iterative forward
scheme it is based on the actual predictor-corrector scheme for the nominal trajectory. We as-
sume that the nominal integration has been performed and that the discretization scheme including
stepsizes, orders, iteration matrices (respectively their factorizations), iteration numbers as well
as the nominal solution at the integration gridpoints has been stored. Note that, due to the
monitor strategy used within the Newton-like method (cf. Section [5.3.3), the number of differ-
ent iteration matrices is significantly smaller than the overall number of accepted integration steps.

For a given adjoint direction ¥ € R™ ™™= the sensitivity information is propagated backwards
through the sequence of elementary operations representing the nominal integration scheme. The
elementary operations are here also given by . Following the common AD notation, we
denote the adjoint quantity corresponding to the nominal quantity v by v. The adjoint IND
sweep starts by setting all intermediate adjoint quantities to zero and initializing yn := ¥. Then
we apply the reverse mode of AD to the elemental representation of the nominal integration
scheme to propagate the sensitivity information backward through the integration process. With
the partial derivatives of the elementary functions we obtain the propagation rules (not
displaying the arguments)

Yni += @ Fnp1, 0<i<ky, (6.31a)
Rnt1-i += o Xeq, 1<i<k, (6.31b)
Vuia += Yai1 (6.31c)
Ayl = vt (6.31d)
(}_’E'll-)l—l)T += —Ag’gilTMgl Jn, (6.31e)
BT o= —ayl, My (AP’“+1<XIC‘;E17HTIO‘§”;‘;+1;1); h"fp’““’), (6.311)
(xgm)" 4= —A}_’EBATMHI Ania, (6.31g)
&0zl += —-AyY, My (_anng’O _anlgz’o). (6.31h)

The model function derivatives in (6.31e]) and can efficiently be evaluated together by one
adjoint directional derivative of f, g and Ax. With we can write the iterative backward
IND scheme in algorithmic form, leading to Algorithm [6.5

During the computations, systems of the type g = M_ 7§, .1 have to be solved. Note that in most
direct linear algebra packages (e.g., ATLAS [WPDO01], UMFPACK [Dav04]) a given factorization
of M, can be reused for the solution of systems incorporating the transposed matrix MZ, such
that in the adjoint IND scheme neither an explicit transposition nor a new factorization is needed.
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Algorithm 6.5: First order iterative adjoint IND scheme

Input: Discretization scheme stored from nominal integration (stepsizes, orders, trajectory
values, iteration matrix factorizations, iteration counts), adjoint sensitivity direction

y.
Output: Adjoint directional sensitivity ¥o, p.

initialize sensitivities with yn = ¥;

n=N—1;

while n > 0 do

arl = Fasti

get Yni1s tn, I, kny, MY, s, from stored discretization scheme;
for/=s,—1:0do

knowing (6.31d), solve p = M7y,
using p, compute respectively increment yf})ﬂ, P, XSS, X0, Zo by applying (6.31d)),

(6.31¢), (6.311), (6.31g) and (6.31NL):

end

}_’Eﬂ = }_’1(10421;

propagate corrector constant dependency backwards using ;
propagate predictor dependency backwards using ([6.31al);

// all contributions of y, taken into account,

// value of y, is final

n=n-—1;

end

Direct adjoint IND

To derive the first order direct adjoint IND scheme, we suppose again that the nominal integra-
tion has been performed. Furthermore, the discretization scheme including stepsizes, orders and
trajectory values at the integration grid of the nominal integration has been stored. Other than
in the iterative reverse scheme, we assume that during nominal integration all corrector equations
have been solved exactly.

Like in the direct forward approach the corresponding implicit integration scheme is differentiated
and hence the predictor dependency and the Newton-like iterations are not taken into account.
Instead, the implicit function theorem is used to propagate the sensitivities backwards. With the
partial derivatives of the trajectory values y,,; and using the reverse mode of AD we obtain
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the propagation rules

xS = &L, (I, 0)J;! (A‘(‘)“ 8) , (6.32a)
_ _ (A (xS€ + af , xni1) — haf )
T _ T 1 p,n+1\*nt1 0,n*n+1 nipn+l
+= —x, (L, 0)J, 7 ,  (6.32b
P i ( B ) ( gp7n+1 - 9n+1gp70 ( )

(Xg.Zg) += —%p.q (I, 0)J;" (_ anlgxp B anlgz,o) . (6.32¢)
Thus, in every step the building and decomposition of the Jacobian J;! is needed. All other model
function derivatives in are obtained as adjoint directional derivatives. Algorithm [6.6shows
the algorithmic form of the direct adjoint IND sweep. Note that the algorithm is given for an
input direction X € R™ with respect to the differential variables only. However, using the implicit
function theorem and the algebraic equations at the final time, an adjoint sensitivity direction
containing a nonzero algebraic part can be expressed by an adjoint direction only containing a
differential part. Note furthermore, that in practice the algorithms should be implemented with
the possibility to propagate several adjoint sensitivities at once, as this increases the efficiency
significantly, e.g., by savings during the derivative evaluations of the model functions.

Algorithm 6.6: First order direct adjoint IND scheme

Input: Discretization scheme stored from nominal integration (stepsizes, orders, trajectory
values), adjoint sensitivity direction X.

Output: Adjoint directional sensitivities yg, P.

initialize sensitivities XN = X;

n=N—1;

while n > 0 do

get Yui1, tn, hpn, k, from stored discretization scheme;

solve pu = J7 (Xn+1);

0
using p, increment X5, P, Xo, Zo by applying (6.324)), (6.32D)), (6.32¢);
propagate corrector constant dependency backwards using ;
// all contributions of x, taken into account,
// value of X, is final
n=n-—1;
end

Remark 6.2 (Adjoint IND schemes versus solution of adjoint variational DAE)

The presented adjoint IND schemes are to the best of our knowledge the first and only ones
implemented for implicit methods in general as well as for LMMs. All other codes supporting
adjoint sensitivity generation are based on the solution of the adjoint variational DAE. Compared
to them the IND schemes we developed offer the possibility to reuse matrix factorizations and
trajectory values from the nominal integration and have no need to interpolate trajectory values.
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Hence in comparison this usually leads to a significantly better performance of the IND approach,
which we confirm numerically on several IVP examples in Section[9.2 on page 232 Also only when
using IND the sensitivity approximations represent the exact derivative of the numerical solution
of the nominal IVP.

It should be noted that we have convergence of the numerical sensitivities computed by the adjoint
IND schemes to the true adjoint sensitivities with the same order as for the nominal solution when
the stepsizes of the nominal integration tend to zero. However the intermediate quantities in the
adjoint IND scheme will in general not converge to the trajectory values of the solution of the
adjoint variational DAE. This is different from the case of the forward IND schemes described in
Remark The adjoint IND scheme does for LMMs in general not correspond to a consistent
discretization scheme of the adjoint variational DAE, and hence we cannot expect convergence.
The only exception here would be the case of a method with fixed order and equidistant stepsizes.

Another way to understand this discrepancy is to ignore for the moment a possible parameter
dependency and analyze the meaning of the intermediate adjoint quantities. The final value
of an adjoint intermediate quantity in the IND schemes holds the derivative information about
how the result of the numerical scheme at the final time depends on the single trajectory value
of the numerical solution at the corresponding integration gridpoint. In a predictor-corrector
LMM, however, no trajectory point, except the initial value, determines alone the progress of the
numerical solution over time. Even when we consider the truly implicit BDF method this is only
the case for values of gridpoints, where the BDF order of the following integration step is equal to
one. In all other cases more than one historical trajectory point contributes to a new trajectory
value and they determine the progress of the numerical solution together. Hence in a general LMM
only in the adjoint quantity corresponding to the initial value the full derivative information on
the dependency of the final numerical values is accumulated.

In the solution trajectory of the adjoint variational DAE on the other hand every trajectory point
carries in a sense the full sensitivity information of the nominal solution values (or a function
depending on them) at the final time. This is in analogy to that any trajectory point of the
analytical nominal solution fully determines the development of the analytical nominal solution
over time (uniqueness of the solution is here always assumed).

As a result of these considerations we can expect that the lower the maximum order of the used
LMM (or the maximum number of historical trajectory values contributing to a new one) is, the
closer the intermediate adjoint quantities will be to the trajectory of the adjoint variational DAE.
This behavior is illustrated for a simple test problem in Example that follows below.

Note that this difference from the solution of the adjoint variational DAE is not a drawback
or shortcoming of the adjoint IND scheme as we are only interested here in the adjoint sen-
sitivity information over the whole integration horizon. However, for certain strategies that
use in their derivation the properties of the solution trajectory of the adjoint variational DAE,
such as strategies for a posteriori estimation of the global integration error or strategies for
the control of the global error by choosing a suitable discretization scheme during integration
[BROT, [CP04, [LVO7, [TB0O9], we might have to take this difference into account if we want to use
them in connection with adjoint IND schemes.
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Example 6.3 (Adjoint IND scheme versus solution of adjoint variational DAE)
We consider the ODE-IVP

21(t) = z1(t)
To(t) = wo(t) + 1 ()21 (2)
t3(t) = x3(t) + x1(t)xo(t)
T4(t) = x4(t) + 21 () 23(t) + 22(t) 22(1)
T5(t) = x5(t) + 21 ()24 (t) + 2o(t)23(¢)
t€0,1, =x(0)=(1,1,0.5,0.5,0.25)", (6.33)

with the solution x(t) = (ef, €%, 0.5, 0.5 e, 0.25 e5*)T. We compute the sensitivity of the compo-
nent z5(1) at the final time with respect to the initial values using a directional adjoint sensitivity.
We do this by the first order iterative adjoint IND scheme presented above, that is implemented
in our integrator code DAESOL-II, for different choices of k., the maximum BDF order during
nominal integration. Additionally, we compute the sensitivity by solving the corresponding adjoint
variational ODE. The resulting intermediate adjoint values obtained in the IND scheme and the
adjoint trajectory computed from the variational ODE are depicted in Figure [6.2 on the facing]

[PAZ

We see that for a maximum BDF order of k.., = 1, intermediate adjoint values of the BDF scheme
and the solution of the adjoint variational ODE practically coincide, while larger deviations occur
when a higher BDF order is allowed. Note that these deviations will in general also not vanish
if the stepsizes in the nominal integration are forced to be very small (or alternatively, if a very
high integration accuracy is demanded). The more regular “offset” between the two approaches
that is observed for higher BDF orders can in principle be reduced in exchange for significantly
increased computational costs by scaling the adjoint IND values with the BDF Jacobian of the
corresponding step. The peaks and the “oscillating” behavior however cannot be eliminated in this
way and these effects are especially present in regions where order and significant stepsize changes
occurred during the integration.
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Figure 6.2: Comparison of the intermediate values of the first order iterative adjoint IND scheme for different
choices of the maximum BDF order k. during integration and the solution of the corresponding
adjoint variational equation for the ODE-IVP . The lower the maximum BDF order the more
similar the intermediate values in the adjoint IND scheme and the solution of the adjoint variational

ODE become.
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6.5 Generation of sensitivities of arbitrary order

After presenting efficient IND-based schemes for the computation of first order forward and adjoint
sensitivities in the last section we now proceed to the question, how the m-th order sensitivity
tensor .

W (775, yo, p) = 4"y (770, Y0, P) g R(atnz)x(netnztny)™ (6.34)

d(yo,p)™

or certain parts or contractions thereof can be computed. Here y(7) = (x(7)%,z(7)")? is again
the solution of the DAE-IVP (6.1). The efficient computation of higher-order sensitivities is of
vital importance not only for the exact-Hessian optimization algorithm presented in this thesis,
but also in the areas of robust optimization and optimal experimental design or in the analysis
of dynamic systems in general. However, normally not the complete sensitivity tensor is needed,
but only a subtensor with respect to a subset of variables, or only a contraction of the tensor
in target and source space. An example for the last would be the directional derivative of a
gradient, corresponding to a reduced second order derivative tensor that is often needed in opti-
mization algorithms. Hence we will address more specifically the task of developing schemes for
the computation of higher-order forward directional sensitivities

T

dm .
w™ (7. d; 79, o0, P) := }(;((;07—01;322’ P) d™ e Rt (6.35)

of order m for a direction d € R"*":*" Here we understand the multiplication with d as tensor
contractions. The second kind of schemes we develop computes higher-order forward/adjoint
sensitivities

A"y (7370, Yo,
T, }—,’ (j7 70, Yo, p) = }—,T Y<7_ TOm};(i p) dm c Rnw+nz+nP (636)
d(yo. p)

of order k£ + 1 for a forward direction d and an adjoint direction y. From suitable sets of these
directional sensitivities any part or also the whole higher-order sensitivity tensor can be obtained,
either directly or using exact interpolation, as explained in the Section Before we derive
in the following the forward directional variational DAE-IVP that can be used to compute the
forward directional sensitivity of order m we state the set partition based version [Joh(2]
of Faa di Bruno’s formula [FdB57|, which is needed in the derivations.

Lemma 6.4 (Higher-order chain rule)
Let ¢ : R™ — R™ and y : R — R™ be sufficiently smooth. Then it holds for ¢t € R and m € N
that

d™y(x(1)) . T )
= 2 e [T @ (6.37)
well(m) i=1
where II(m) is the set of all partitions of {1,2,... ,m}, |7| the number of blocks in a partition 7

and r; the number of blocks within 7 containing exactly ¢ elements. The superscripts || and (7)
denote here the derivative degree of v and y, respectively.
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With the help of this lemma and the definition

M .dJ x (7—7 d)
viU(r) = <d<"‘gf§"’y _d]) = | Wi (r,d) | e R, (6.38)
d(xo,zo,p)j 51]' dp

where §;; is the Kronecker-delta, we can derive the higher-order forward directional variational
DAE for the computation of forward sensitivities of type (6.35]).

Higher-order forward directional variational DAE

We obtain the higher-order forward directional variational DAE-IVP of order m by forming the
m-th derivative of the nominal IVP (6.1)) with respect to initial values and parameter in a direction
d = (d},d;,d})" € R%* "=+ We can write the forward directional variational DAE of order m
(only indicating the time dependency) with the help of and as

d™(A(1)%2) omle(r) |
T2 dm = [ S v ,(4) 7)) 6.304
d(xo, 2o, P) WG;( a(x, 7p)\ﬂ| ]1:[1( (7)) ( )
well(m ( p) ]:1 8(x, z, p)
with the initial values
W (70,d) = 4y (3") : (6.39¢)

Also here the multiplications with d’ respectively v&() are to be understood as tensor contractions.
From the Leibniz rule we obtain for the left-hand term in (6.39a)

m ox(7) m m—j 0x(1)
PAD) g = 3o (EAD (0 gnei) )
d(x0, zo, P) =0 d(xo, Zo, p) d(xo,20,p)" "’
“ dIA(T d '
_ Z( oI, ))-dﬂ. (6.40)
=0 X(),Z(),I)) 87—

From the formulas and we learn several things. First, we observe that for m = 1
we indeed obtain the directional forward variational DAE-IVP given in , in this case for one
sensitivity direction. Besides that, the m-th order equation is linear. Furthermore, we see that
the equation contains in general besides the nominal solution y(7) also terms involving w) (7, d)
for all 1 < j < m. Hence the m-th order sensitivity cannot be computed “isolated”, but only in
connection with the directional sensitivities in direction d of all lower orders 1 < j < m, which
also have to be computed by forming and solving the corresponding equations. This can be done
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like in the first order case either simultaneously or in a staggered way. Note that a general higher-
order analogon for the adjoint variational DAE cannot be obtained straightforward.

Until today to the best of our knowledge only very few integration codes are available at all that
are able to generate second order sensitivity information for ODEs or DAEs in an automatic way.
These are the IND-based BDF code DAESOL-II presented in this thesis, supporting second order
directional forward and forward/adjoint sensitivities, the earlier IND-based BDF code DAESOL,
which has been extended by Bauer [Ban99| for the computation of second order forward sensitiv-
ities, as well as the latest versions of the BDF codes CVODES and IDAS, computing directional
second order forward/adjoint sensitivities from a forward/adjoint variational DAE system pre-
sented by Ozyurt and Barton [OB05] for ODEs. Alternatively, the nominal IVP could always be
augmented manually by the corresponding first and second order forward variational DAE prob-
lem and this augmented system then can be solved together using an arbitrary integrator code.
However, then usually the structure of the problem is not adequately exploited, which leads to a
very high integration effort. There exists so far one implementation besides DAESOL-II that can
generate arbitrary order forward sensitivities. It is described by Barrio [Bar06] and is based on an
explicit Taylor series integration method. Hence it cannot be efficiently applied to stiff systems.
The generation of arbitrary order forward/adjoint sensitivities is until now only supported by
DAESOL-TT.

In the following we develop the first numerical schemes based on IND that allow the computation
of arbitrary order directional forward and forward/adjoint sensitivities. The key to the derivation
of flexible efficient schemes that work not only for the second order but also for arbitrary orders is
the combination of the IND principle with the AD technique of univariate Taylor Coefficient
propagation explained in Section [2.4.3] Note that we will only develop the higher-order IND
schemes here for higher-order analoga of the iterative IND schemes. However, also a version
corresponding to the direct schemes can be derived, using Taylor coefficient propagation rules for
implicitly defined functions, which are described in [Ked80, WSW10]. As we will address in the
comparison of the effort of the different IND schemes, the direct schemes are more efficient than
the iterative schemes only in very special cases, which do not occur in the framework of the thesis.
Hence we skip the derivation, which can be done however in complete analogy to the derivation
of the iterative schemes presented here.

6.5.1 Higher-order forward schemes

To derive the higher-order (iterative) forward IND scheme of order m, we use again the elemental
representation of the discretization scheme of the nominal IVP given by the Equations (6.25).
Other than in the first order scheme we now propagate a univariate Taylor polynomial of order
m through this elemental representation to propagate the derivative information through the
integration process. In other words, we perform a forward sweep of order m for the elemental
representation of the integration process. The nominal integration constitutes in this framework
the propagation of the zero order Taylor coefficients, which can be done independently from the
propagation of the coefficients of higher order. Hence the nominal integration process can remain
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unchanged and we use the trajectory values as zero order Taylor coefficients in the calculations
of the forward TC sweep. We initialize, like we would for an ordinary function, the TCs for the
sensitivity propagation process based on the direction d as

XO = |:X0 dx o --- Oi| c anx(m+l)7
Zo = [ZO d, 0 --- 0} c anx(m—i-l)7
P = [pdp 0 - 0feR™ ™. (6.41)

We then denote the intermediate Taylor coefficients belonging to the gridpoint 7, with Y, =
[Yn,O Yn1 - Yn,m]v where Yn0 = Yn-

Because the operations — in the integration, that do not involve the evaluation of
the model functions, are all just additions or scalar multiplications, the TC propagation rules to
obtain the corresponding values Y¥ and XS€ are very easy to implement and the additional effort
for them compared to a nominal integration scales linearly with m. Also the decomposition of
M,, in can be reused, only the number of right-hand side vectors for which the system
has to be solved increases from 1 to m + 1 in the higher-order forward scheme. To understand
this we remember that the solution of a linear system for a fixed matrix also only constitutes a
series of scalar multiplications, divisions and additions operating on the right-hand side data. The
main numerical effort is therefore to be expected in the propagation through fBPF involving the
usually nonlinear model functions of the DAE.

The (simultaneous) forward IND-TC scheme for an arbitrary order m is given in algorithmic form
by Algorithm [6.71 Note that this scheme can also be derived in an deferred version as well as
be extended for the parallel propagation of several directional sensitivities. In this case, the zero
order coefficients, i.e., the nominal trajectory, which are identical for all directions, need to be
computed and stored only once. Note also that the operations performed in the first order forward
IND-TC scheme are equal to the operations of the “ordinary” iterative first order IND scheme,
i.e., both schemes are the same.

By the use of an m-th order forward IND-TC sweep we clearly obtain the (scaled) m-order di-
rectional derivatives of the numerical solution within machine precision. However the relation
between the intermediate TCs in this scheme and the solution trajectory of the m-th order for-
ward directional variational DAE-IVP approximating the directional forward sensitivities
(6.35)) is not obvious. Hence we formulate the following proposition.

Proposition 6.5 (Forward IND-TC sweep versus directional variational DAE)

Let d = (df,d],d])" € R™*"*" be a forward sensitivity direction. Denote the TC at
gridpoint 7, that has been computed using the higher-order forward IND scheme of order m
given in Algorithm with Y,. Furthermore define for a given TC Y the scaled quantities

Y = [O!yo Ny, 2lyy - m!ym}. Finally denote with
WO, d) = [yn(r) W (md) - W (7.d)]

the grouping of the nominal trajectory values and the forward sensitivities up to order j at the
gridpoint 7,, that have been obtained by the solution of the forward directional variational DAFE-
IVPs (6.39)) up to order j using the same BDF discretization scheme as for the solution of the
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Algorithm 6.7: Arbitrary order forward IND-TC scheme (simultaneous)
Input: g, t¢, ho, initial values yo, parameter p, sensitivity direction d, sensitivity order m
Output: Taylor coefficients Yn containing nominal solution yn and scaled forward
sensitivities %Wl(\JI) for 1 < j<m.
set ko = 1, n=0;
initialize with Taylor coefficients according to initial values and sensitivity direction d;
while t; not reached do
compute y,1 by nominal integration step for h,, k, including s,
Newton-like iterations using matrix M, to solve the corrector equation;
if step accepted then
// corrector equation successfully solved,
// error estimation accepted
propagate Taylor polynomials through predictor and corrector constant
(6.25b)) computation ;
using yny1, hn and M, propagate Taylor coefficients through s, Newton-like
iterations by propagation through / to obtain Yp1;
tn+1 =t, + hn;
determine h,, 1 and k,,; for next step;
n=n++1;
else
// corrector equation solving failed or
// error estimation too large
update Jacobian approximation M, according to monitor strategy or reduce stepsize
P
end

N =n;

nominal DAE-IVP.

Then it holds
W (r,.d)=Y, VneN. (6.42)

In other words, the higher-order forward IND scheme of order m is equivalent to solving the set
of scaled directional forward variational DAEs up to order m simultaneously using the same BDF
discretization scheme as for the computation of the nominal trajectory.

Proof:

Note that for m = 0 the claim is trivial and as the first order forward TC based IND scheme is equal
to the ordinary iterative forward IND scheme, the case m = 1 is also true. To prove the general
case, we first apply the BDF discretization scheme to the directional variational DAE (6.39).

With the abbreviations Wl(i)rl := W) (7,11,d) (analogously for the other quantities and functions),
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v := (X0, 20, p) and the higher-order sensitivity corrector constant w7 := Sk af, wx0)

n+1—i
we obtain for the BDF step n with order k,, the scheme

« X(m e X m = den e xX(m—yj e X m—j i
0 = An+1 <agn ng—l) + n—f:lC )> + Z ( = J (aoc,nwng-l 7 +an10( ])>) -d’

X07Z07p)
™ 1 ™ .
S == | (LSO (6.432)
well(m) v j=0
0 = 3 LB [Ta0) o) LB gn (6.43b)
8V|7r| n+1 n+1 v .

well(m) Jj=0

for the computation of the new sensitivity value \ivr(fi)l. We define the right-hand side of the system
now as a function

fEDF(m)(Wﬁ)ﬁVVﬁflc(m) W(m D,... Wfﬁll)knvvaOvZO) (6.44)

which depends besides on the value v'vfﬁ)l to be computed also on £, historical values of the m-th
order sensitivity, the current and k,, historical values of the directional sensitivities of all lower
orders and also on the initial values and parameter.
To see now the equivalence between the m-th order forward IND-TC sweep and the solution
of these systems up to order m we first analyze the Jacobian of the system (6.43) with respect
to the values v'qu”l)l that are to be computed. Applying the higher-order chain rule also
to the terms involving the derivatives of the matrix A,.; and considering that the partition
7:={12...m} € II(m) for which |7| =1, =... =r,_1 =0 and r,, = 1 is the only one leading
to terms containing v'vfl"l)l in the summations above, we can write the system as

i OA, v.Vx(m)
0 = Oéoc An+1WnE|—1) + (8( s (%C,nxnﬂ +ngl)> (Wg(ﬁ)

X,Z) n+1
£, « x(m)
_py D1 Wil ) 4 RX (6.45a)
a<XZ) n+1
x(m)
o — J8nn Wit ) 4 R (6.45b)
a(X,Z) Wn+1

where the terms R* and R* do not depend on m-th order terms Wl(m) Hence we see that for any

order m the Jacobian in the BDF predictor-corrector scheme for the solution of the variational
DAE of order m is the same as the Jacobian for the computation of the nominal trajectory.
Hence it is sensible to use the same iteration matrix for the treatment of the nominal trajectory
and the variational DAEs of higher order.

It remains to be shown that for an arbltrary mtegramon step n it holds that if the historical
values and lower order sensitivities W7, W™ Wfﬁ)l_kn fulfill the induction assumption
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, then also the newly computed sensitivity value w,ﬁ”ﬁl does. The proposition then follows
by induction over the sensitivity order m and the integration steps n from the fact that the initial
Taylor coefficients for the higher-order forward IND scheme and the initial sensitivities
of the forward variational DAE-IVP up to order m trivially fulfill (6.42).

First we note that as we use the same discretization scheme for nominal and variational problem,
the computation of the predictor and corrector constant for the variational DAEs uses the same
coefficients as for the nominal trajectory. As a result, the corresponding values Y} and XS$¢
computed by Taylor propagation through and still fulfill the analogon of
for intermediate quantities. Likewise we can argue for the Newton iterates and the correspond-
ing quantities in the forward IND-TC scheme obtained by Taylor propagation through (6.25d).
Hence, it is sufficient to show that the m-th order coefficient of the result of the Taylor propagation
through £2PF is equal to L fiy DF(™) i the solution of the variational DAE. Comparing and
shows, however, that £EPF(™) can be understood as the m-th order directional derivative
of £BPF such that the last claim follows from the induction assumption and Proposition
page 40|

O

Summarizing, we see that the combination of IND and forward TC propagation allows the deriva-
tion of efficient schemes for the generation of arbitrary order forward sensitivities and eliminates
the tedious and error-prone process of forming and coding the corresponding directional varia-
tional DAEs for an arbitrary order. Furthermore the IND-TC approach encapsulates the complex
dependencies between the sensitivities of different order in the propagation process through the
model functions, rendering the scheme on the integrator code level quite simple. This ensures also
an efficient exploitation of the problem structure, as by propagation through the model functions
the sensitivities of all orders can here be treated simultaneously without blowing up the system
size. This has to be achieved manually in case of using the approach involving the variational
DAEs by adapting the integration scheme to use a staggered computation of the different orders.
Even then this staggered computation of the different orders leads to more overhead and a higher
effort compared to the IND-TC approach. Nevertheless we obtain by using the forward IND-
TC scheme approximations of the forward sensitivities at every gridpoint that are guaranteed to
converge against the true forward sensitivities with the same order as the nominal trajectory.

6.5.2 Higher-order forward/adjoint schemes

In this section we present how the combination of IND and TC propagation can be used to
obtain approximations of forward/adjoint sensitivities & (70,¥,d) of an arbitrary order. To
derive the forward/adjoint IND-TC scheme of order m for the forward direction d and the adjoint
direction y, we use once more the elemental representation of the discretization scheme of the
nominal IVP given by the Equations (6.27). Like in the first order (iterative) adjoint scheme,
we assume that the nominal integration has been performed and the discretization scheme, i.e.,
stepsizes, BDF orders of the steps, used iteration matrices and iteration counts, has been stored.
Other than for the first order adjoint schemes we additionally assume that not only the values

of the nominal trajectories at the gridpoints have been stored, but also the intermediate Taylor
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coefficients Y, of a forward IND-TC sweep of order m for the forward direction d. Based on this
information and the already derived first order adjoint scheme, a higher-order adjoint IND-TC
sweep can be obtained to compute forward/adjoint sensitivities. For this we initialize the adjoint
Taylor coefficients Y = [}7 o ... O} € R™*(m+1D) based on the adjoint direction. Afterwards
the operations of the first order adjoint sweep given by are performed in Taylor arithmetic
of order m, as explained in Section [2.4.3] Doing this we obtain, analogously to Proposition [2.1§|
for ordinary functions, scaled forward/adjoint sensitivities. The algorithmic form of the adjoint
IND-TC sweep for an arbitrary order m is given in Algorithm We keep in mind that the order
m here refers to the order of the propagated adjoint Taylor polynomials, but the derivative degree
occurring in %™ is m + 1. Also this algorithm can be extended to propagate several forward
and adjoint directions simultaneously. Like in the iterative first order adjoint IND scheme, we can
reuse the factorization of the iteration matrices from the solution of the nominal problem.

Algorithm 6.8: Arbitrary order forward/adjoint IND-TC scheme

Input: Discretization scheme stored from a forward IND-TC sweep of order m (stepsizes,
orders, iteration matrix factorizations, iteration counts, Taylor coefficients), adjoint
sensitivity direction y.

Output: Adjoint Taylor coefficients Yo, P containing scaled forward/adjoint sensitivities

(5.4, 0<j<m.

initialize sensitivities with Yn = [}7 0o ... O];

n=N—1;

while n > 0 do

Yl(ms-zi = Yn-‘rl;

get Yoi1, tn, A, kn, M1, s, from stored discretization scheme;

fori=s,—1:0do

knowing (6.31d), solve A = M;TYD.
using A, compute respectively increment YS}FI, P, X§C,, X0, Zo by applying (6.31d),
(6.31¢€)), (6.311)), (6.31g) and in Taylor arithmetic of order m;

end

YEH = Yﬂl;

propagate corrector constant dependency backwards using (6.31D));

propagate predictor dependency backwards using (6.31a));

// all contributions of y, taken into account,

// value of Y, is final

n=n-—1;

end

Remark 6.6 (Interpretation of intermediate adjoint Taylor coefficients)
Similar to the first order adjoint IND case, we have convergence of the (rescaled) propagated
adjoint Taylor coefficients obtained by the forward/adjoint IND-TC scheme to the corresponding



176 6.6. COMPARISON OF THE DIFFERENT IND-BASED SCHEMES

analytical forward/adjoint sensitivities. However, the intermediate adjoint Taylor coefficients of
order greater than zero cannot be interpreted as an approximation to an forward/adjoint sen-
sitivity of type (6.36). This is here not caused by the application of the IND approach, but a
more general property which would also occur if a corresponding forward /adjoint variational DAE
would be derived and solved, as, e.g., done for the second-order case in [OB05]. This can be under-
stood by realizing that for an intermediate gridpoint 7,, with n > 0 in general the corresponding
stored Taylor coefficients at this gridpoint obtained by the preceding forward IND-TC scheme of
order m will not have the form Y, = [yn d o ... O}. Only in this case the adjoint Taylor
coefficients at 7, with order greater than zero could be interpreted as a forward /adjoint sensitivity
VLV(m)<Te, y, El; Tn, ¥Yn, P). It should be emphasized that analogously to the first order case even this
is only true for the IND-TC scheme, if the integration process would have been restarted in 7, or
the truly implicit scheme of order 1 had been used in this step. Note furthermore that the zero
order components of the adjoint Taylor coefficients are identical to the intermediate values of an
iterative first order adjoint IND sweep and hence the observations in Remark are also valid
for them.

6.6 Comparison of the different IND-based schemes

After presenting the different first and higher-order forward and adjoint IND-based schemes for
sensitivity generation, we analyze in this section the computational effort and the memory demand
of the different IND approaches. We compare the approaches among themselves and also to the
solution of the nominal TVP as well as to the repetition of the nominal integration based on a
previously stored discretization scheme, a so-called integration replay.

6.6.1 Computational effort

The two main computational tasks in the solution of the nominal IVP and also in the IND sweeps
are the computations related to the interpolation process for predictor and corrector polynomial
on the one hand and the solution of the corrector equations on the other hand. For the solution
of the nominal IVP additional computations, related to the error control as well as to the stepsize
and order strategy, are needed.

Considering the first task, suppose the predictor and corrector coefficients are known. Then the
computational costs to form the predictor and the corrector constant via (6.25al) and (6.25b)) are
theoretically identical for the nominal solution and a replay of the integration. They grow linearly
with the number of states n, and the number of integration steps N.

In practice, some more effort is needed during the nominal solution for the computation of the
interpolation coefficients, the update of the modified divided differences scheme, the computation
of higher-order modified differences for error estimation and the scaling. The complexity of these
additional computations is either bounded by a constant, or grows linearly with n, and the number
of integration steps, including rejected steps. For large scale systems usually this additional effort
is not significant compared to the overall effort.
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The effort for the computation of the corresponding quantities in the sensitivity propagation using
the first order forward and adjoint IND schemes by the operation (6.27a) and (6.27b)) (respectively
their adjoint variants) is equal to the one for the nominal solution, if one directional sensitivity is
computed. Otherwise it scales linearly with the number of sensitivity directions.

The effort for the operations related to the predictor and corrector constant quantities in the
higher-order forward and forward/adjoint IND-TC schemes additionally grows linearly with the
order m.

Considering the second task, it can be said that for large scale systems the solution of the corrector
equations is the most time-consuming part. It can be divided into the cost of building the iteration
matrix, the matrix factorizations and the cost for the actual solution of the linear systems based
on the factorized matrix.

During the nominal solution, this effort is given by the needed decompositions of the iteration
matrix and the rebuilds of the Jacobian according to the monitor strategy. The complexity
of one of these decompositions depends strongly on the sparsity structure of the iteration matrix.
In the worst case of a dense matrix, it will grow with n?‘j A matrix rebuild brings the additional
expenses of computing the complete Jacobians of the model functions. Again, the sparsity struc-
tures of the Jacobians determine here the effort. The worst case assumption of a dense matrix
and the complexity bounds from AD theory (see, e.g., [Gri00]) lead to the theoretical bound of
approximately 2.5n,, times the time of a model function evaluation. Fortunately, usually not in
every step a decomposition or rebuild is needed. Furthermore, in every Newton-like iteration
occurring in the nominal integration, the solution of a linear system and one evaluation of the
model functions are needed. This is also true for an integration replay. In the worst case of dense
matrices, the complexity of the solution of the linear systems is nz

During integration replays and iterative IND-based forward and adjoint sweeps of any order, no
decompositions or rebuilds of the iteration matrix are needed. In the first order schemes for ev-
ery Newton-like iteration and for every sensitivity direction one linear system solution and one
directional forward or adjoint directional derivative of the model functions is needed. Here, using
AD theory, the effort for one model derivative can be bounded in the forward mode by 2.5 times
a function evaluation, in the adjoint mode by a factor of 4. In the higher-order schemes, the
solution of m linear systems is needed per Newton iteration and sensitivity direction, as well as
the propagation of a Taylor polynomial of degree m through the model functions. The effort for
this scales with m? times the effort of a model function evaluation.

In the first order direct IND schemes, for every integration step one matrix rebuild, one linear
system solution and one directional model function derivative are needed. This shows that the
direct schemes are only of interest if the cost of a matrix factorization is not too high compared
to a linear system solution and a model function derivative.

In the deferred forward IND schemes, the backward IND schemes and the replay, there are ad-
ditional costs for storing and loading the components of the discretization scheme. For now we
assume that all these values can be kept in the main memory, such that this kind of effort is
probably negligible.
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In Table[6.T] we sum up the number of different operations needed in the different approaches where
we refer to the deferred versions of the IND schemes. If we assume that for large scale systems

| Integration | Replay | IND iterative | IND direct | IND-TC order m

effort for error yes no no no no
estimation, step-
size and order
control, rejected
steps
matrix rebuilds || according 0 0 N 0
and decomposi- | to monitor
tions strategy,

usually

<< N
model function | SN ts, | SN s, 0 0 0
evaluations
model function 0 0 Zi\:olsn N 0
derivatives
TC propaga- 0 0 0 0 Zij\;)l Sn
tions trough
model function
solutions of lin- ZZ.]\:OI Sn Z@'J\:ol Sn Zf\;l Sn N m Ef:ol Sn
ear systems

Table 6.1: Comparison of the number of different types of operations needed to perform a nominal integration, an
integration replay, a first order iterative respectively direct deferred forward or backward IND sweep for
one sensitivity direction, as well as the forward or adjoint IND-TC sweep of order m for one respectively
one pair of sensitivity directions. The operation counts are given in terms of the overall number of
(accepted) integration steps N and the number of Newton-like iterations in each integration step s,.

the model function and especially the model derivative evaluation dominates the integration pro-
cess, we obtain immediately a conservative theoretically upper bound for the cost of a first order
directional sensitivity using the iterative IND schemes: a directional first order forward sensitivity
costs at most 2.5 nominal integrations, and a directional first order adjoint sensitivity at most
4 nominal integrations. However, in practice better values are to be expected, as for large scale
problems the matrix factorization during nominal integration are also an expensive task. Note
that if we sacrifice some accuracy and use a replay to obtain a first order forward sensitivity using
the finite differences IND approach, the cost can obviously be bounded by 2 nominal integrations.
But also in this case a better practical performance is expected. We confirm these estimations
numerically on a scalable test problem in Section [9.1 on page 225|
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6.6.2 Memory usage

To analyze the overall needed storage for the presented approaches, we split the memory con-
sumption into two main parts: the temporary storage needed for the current nominal integration,
replay or IND sweep, and the memory needed to store the discretization scheme for a later replay
or IND sweep.

For the nominal integration the memory used during integration consists of the memory needed
for the interpolation process, the solution of the corrector equation and for stepsize and order
control. The latter is bounded by a small constant and can be neglected. The memory needed
for the interpolation process and the solution of the linear systems in the Newton-like iterations,
except the iteration matrix and the model function Jacobians, grows linearly in n, 4+ n, and can
be bounded by C' := [2(kpaz + 2) + 6|0, +ny,. The storage for the iteration matrix and the model
function Jacobians (that need to be kept to perform the second step in the monitor strategy (cf.
Section [5.3.3)) is in both cases bounded by two times the nonzero entries of the Jacobians plus
ny, which means in the worst case of dense matrices it is equal to ”5 + ny.

A replay does not consume additional memory compared to the nominal integration, as one can
use the actual iteration matrix factorization in the stored discretization scheme.

Deferred iterative first order forward and adjoint IND sweeps for one direction also consume less
memory for the actual computation than a nominal integration. Again, the matrix factorizations
can be used by referencing the stored scheme. The needed storage for intermediate sensitivity
quantities grows linearly in n, 4+ n, and as the trajectory point y,,; depends on at most &, + 1
earlier values during a sweep only the corresponding number of sensitivity values has to be kept
at a time. This leads in the end more or less to the same bound C' on memory consumption
as in the nominal case, however without the need for matrix storage. This is not the case if we
perform a simultaneous first order forward IND sweep. Here we have approximately to double the
linear bound C of the nominal integration. On the other hand, no storing of the discretization
scheme is needed. Note that for all IND sweeps the memory consumption grows also linearly in
the number of sensitivity directions treated in parallel. For the higher-order IND-TC sweeps the
memory consumption grows also linearly with the order m.

The memory consumption for storing the discretization scheme depends in the first place on
what is actually stored on the tape. Depending on whether a replay should be performed, a direct
or iterative first order IND sweep or a higher-order forward or forward/adjoint IND-TC sweep,
different information is required for each of these operations (see Table [6.2)).

A replay needs the used stepsizes, orders, iteration matrices and iteration counts, while a deferred
first order direct forward or direct adjoint sweep needs the used stepsizes, orders and the nominal
trajectory values and parameter. The deferred first order iterative IND sweeps and the higher-
order forward IND-TC sweep also need the iteration matrices used during nominal integration and
the number of Newton-like iterations in each integration step. Finally, the higher-order adjoint
IND-TC sweep of order m needs additionally the stored trajectory Taylor coefficients up to order
m.

This means that to allow for a later replay, the size of the stored discretization scheme grows
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linearly with the number of accepted integration steps N plus the needed storage for the iteration
matrices, which depends on their sparsity structure and their overall number. For a direct IND
sweep it grows linearly with N + Nn, + n,, and for the iterative IND sweeps and the higher-
order forward IND-TC sweep linearly in N 4+ Nn, + n, plus the needed storage for the iteration
matrices, which again depends on their sparsity structure and their overall number. Finally, for
the higher-order adjoint IND-TC sweep of order m it grows linearly with N + Nmn, 4+ mn,, plus
the matrix storage.

| Replay | IND direct | IND iterative & fwd. IND-TC | fwd/adj IND-TC |

stepsizes, orders yes yes yes yes
nominal trajec- no yes yes yes
tory values and
parameter

trajectory Tay- no no no yes
lor coefficients
used itera- no no yes yes
tion matrices
and number
of Newton-like
iterations

Table 6.2: Overview over the types of information that has be stored on the tape to enable the different kinds of
deferred operations.

Remark 6.7 (Checkpointing)

As we have seen, to perform a replay or a deferred IND sweep, some information of the nomi-
nal integration or a previous IND-TC sweep has to be stored on the tape, which for large scale
problems and long time horizons might become quite large. It should be noted here that applying
IND in the presented way to derive the sensitivity generation schemes instead of treating the
integrator as a black box leads automatically to a “vertical checkpointing”. In contrast to the
checkpointing strategies commonly used for integration codes that operate on the time horizon
(horizontal checkpointing), here we end up with a hierarchical scheme: The intermediate values
of the evaluations of the model functions f, g and A are not stored, but recalculated as needed
in an adjoint IND sweep. This reduces the overall memory consumption in IND-based schemes
drastically compared to the application of an black-box AD approach. In the context of a multiple
shooting method also the partition of the whole time horizon into subintervals leads to a so-called
“natural checkpointing”. For some problems, for which the tape does not fit into the main mem-
ory any more, the investigation of other checkpointing strategies, as, e.g., described by Walther
[Wal00], may be interesting. For example, the factorizations of the iteration matrices are very
expensive, in a sequential checkpointing scheme these could preferably be kept and some parts of
the nominal trajectory might be dropped and recomputed on demand.
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6.7 Other sensitivity related topics

After presenting and comparing the different IND-based approaches for first and higher-order
sensitivity generation we now address in this section some more specific topics related to sensitivity
generation and, if applicable, their implementation in the packages DAESOL-II and SolvIND.

6.7.1 Exact interpolation

The presented higher-order forward and forward /adjoint IND schemes allow the efficient compu-
tation of univariate directional sensitivities of arbitrary order. Sometimes however, also entries
or parts of the higher-order sensitivity tensor might be needed that are not directly computable
as such an univariate directional sensitivity. To obtain them we can use the method of exact
interpolation presented in Section for ordinary functions. The idea is directly transferable
to the IND-TC context and can be used here to compute any entry of a sensitivity tensor of a
given order based on a suitable set of propagated rays, as described in the Propositions 2.19 and
2.21L To simplify higher-order sensitivity generation as well as the usage of exact interpolation
for the user, SolvIND provides a ray manager that computes, based on a given set of directions
and a given set of multi-indices describing the desired multivariate derivatives, the minimal set of
needed rays and builds the corresponding initial Taylor coefficients for the IND-TC sweep.
Additionally, the ray manager can be used to execute the exact interpolation after the forward or
forward /adjoint IND sweep has been performed. It takes the propagated forward or adjoint Taylor
coefficients and interpolates the desired multivariate sensitivities based on the multi-indices passed
earlier. Note that multivariate sensitivities of different orders can be computed simultaneously by
only one execution of an IND-TC scheme.

6.7.2 Tape management

As mentioned in Section [6.6] to enable, e.g., a later replay, or any IND-based adjoint sweep, specific
parts of the discretization scheme and of the trajectory information have to be stored on a tape
and need to be retrieved later. DAESOL-II contains a tape management system that allows the
creation of an arbitrary number of distinct tapes (only limited by the available memory), as well
as the possibility to store, access, overwrite or delete each of them independently. Also the kind
of information to be stored on a tape can be selected. This allows the efficient use of DAESOL-II
also in the context of adaptive optimization algorithms, including the lifted methods presented in
this thesis and other (direct) multiple shooting based methods. In the context of these methods
it is desirable, sometimes also essential, that several distinct tapes can be kept. In general one
wants to keep here at least one tape for each subinterval of the partitioned time horizon of the
underlying problem. Then one can perform, for example, efficient forward and adjoint sensitivity
sweeps over the whole time horizon. In an adaptive framework it might also be of interest to reuse
some of the tapes for replay and sensitivity computation during several optimization iterations,
while others should be updated and overwritten. If the memory is not large enough, some of the
tapes might be considered to be deleted and recomputed later. DAESOL-II allows all the needed
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operations and furthermore supports these scenarios by keeping additional information on the
quantities available on a specific tape as well as the tape size.

6.7.3 Continuous representation of sensitivities

The IND-based sensitivity generation schemes presented above aim mainly at the efficient com-
putation of the derivative of the solution of the nominal IVP at the end time 7, of the integration
horizon with respect to initial values and parameter. In certain cases however, as already ad-
dressed in Section for the values of the nominal trajectory, it is highly interesting to obtain
also derivatives of trajectory values at timepoints inside the integration horizon with respect to
initial values and parameter. For reason of stability and efficiency this should be possible without
forcing the integration gridpoints to contain these points.

For the forward sensitivities computed by forward IND(-TC) schemes this can be achieved, because
as described in Remark and Proposition they can be understood as solution trajectories
of forward variational DAE-IVPs obtained by a BDF-discretization scheme. Hence we can obtain
an error controlled continuous representation of the forward sensitivities in exactly the same way
as for the nominal trajectory values in Section [5.3.9 on page 145 i.e., by using the interpolation
polynomial of the underlying BDF method to interpolate sensitivity values at arbitrary timepoints
in the integration horizon. In the case of higher-order forward sensitivities it is also possible to
use exact interpolation on these interpolated sensitivities, if desired.

Note again that no corresponding natural (and hence error controlled) interpolation procedure
exists in the IND framework for the adjoint sensitivities, i.e., the computation of the derivatives
of the trajectory values at 7, with respect to the values at an arbitrary time inside integration
horizon. The only possibility here is to start the integration process at this timepoint. This is
due to the fact that the adjoint IND(-TC) schemes cannot be interpreted as an BDF-method (or
another consistent LMM) for the solution of the adjoint variational DAE, as mentioned in Remark
6.2

6.7.4 Sensitivity injection

In the optimization context it is often needed to compute the derivatives of functions which do
not only depend on the system states y(7.) at the endpoint of the integration horizon, but also on
system states inside the integration interval. Imagine here for example least-square objective terms
penalizing the deviation of the state of the system from measurements or also point constraints
on the system states at some given timepoints. The evaluation of these functions and also of
their derivatives with respect to initial values and parameter of the DAE-IVP can be performed
based on the continuous representation of the nominal trajectory and the forward sensitivities
described in the Sections and [6.7.3] This however is not always desirable, because in this
way the first and higher-order adjoint IND(-TC) schemes could not be employed, but only forward
IND schemes. One possibility to use adjoint schemes would be to choose each of the necessary
timepoints as an endpoint of an integration process and compute the adjoint sensitivities according
to the function’s derivative. This however will become prohibitively costly already for a moderate
number of intermediate timepoints treated this way.
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Hence we present now a possibility to “inject” additional adjoint directions respectively adjoint
Taylor coefficients at arbitrary timepoints during an adjoint IND(-TC) sweep. Based on this
approach, we can compute first and higher-order derivatives of functions depending on the systems
states at arbitrary timepoints by executing a first order adjoint IND scheme or a higher-order
forward /adjoint IND-TC scheme, respectively, only once.

The injection itself is again based on the combination of IND and AD. Suppose the nominal
integration has been performed, and the discretization scheme has been determined. Then the
trajectory value at an arbitrary point 7; € [7,,7,41] can be computed by an evaluation of the
corrector polynomial of integration step n, leading to

kn
y(71) = ZC“iI,n(TI)YnJrlfia (6.46)
i=0

where the coefficients al{ ., only depend on the relative position of 7; with respect to the gridpoints
Tnt1s - Tntl—k,- Lhe same holds for the case of the computation of forward sensitivities of any
order. To obtain now adjoint injection rules that comply with the IND principle, we consider this
interpolation again as an elementary function. Then we apply the reverse AD mode to obtain the
rules

Vot +=al (my (),  0<i<k,. (6.47)

The value of y(77) is here determined by the (adjoint) derivative of the dependent function with
respect to y(77) in the first order case, or the adjoint Taylor coefficient propagated through the
function in the framework of a higher-order forward/adjoint scheme.

Note that the injection has to occur before any of the values .13, 0 < ¢ < k,, is itself used in the
computation of other values in the adjoint IND(-TC) sweep. As on the other hand for efficiency
only knax+2 intermediate values y; are kept in the adjoint sweep at a time, the injection cannot be
done too much in advance (e.g., at the start of the adjoint sweep). Hence the injection is performed
in precisely that moment, where the value y,,1 would have been accumulated completely in the
ordinary adjoint sweep. The whole procedure for the forward/adjoint IND-TC scheme is described
in Algorithm [6.9 on the next page|

The adjoint injection can be used in DAESOL-II simply by passing a list of timepoints where the
injection should occur and registering a call-back function, that delivers the value y(7;) for the
corresponding 7; when called by the integrator as the injection takes place. By this mechanism,
the y(77) can either be computed on demand when the function is called, or be precomputed
before the adjoint sweep is started and then simply passed to the integrator, depending on the
user’s needs in the specific context.

Example 6.8 (Hessian of Lagrangian depending on states at arbitrary timepoints)
We illustrate a possible use of the continuous sensitivity output and adjoint injection in DAESOL-II
using an example from optimization. Imagine a scalar objective function

w(y(Ta1)7 cee 7Y(Taz)’ Y(Te))’ Ta; € [TOa Te] for 1 S { S l17
and a set of point constraints

hj(y(m,)) > 0 with 7, € [r, 7] for 1 < j <.
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Algorithm 6.9: Adjoint sensitivity injection (forward/adjoint IND-TC version)

Input: Discretization scheme stored from a forward IND-TC sweep of order m (stepsizes,

orders, iteration matrix factorizations, iteration counts, Taylor coefficients), adjoint
sensitivity direction y, injection times 77, € [79, 7], 1 < j < (sorted), adjoint Taylor

coefficients to inject YI, 1 < j <.

Output: Adjoint Taylor coefficients Yy, P containing scaled forward /adjoint sensitivities

respecting injected sensitivities.
initialize sensitivities with Yn = [y 0 ... 0];
n=N-—-1,7=1
while n > 0 do
get 7,, k, from stored discretization scheme;
while 7, >= 7, do
compute coefficients o, (77,), 1 < i < ky;
fori=0:k, do
Yn+1_i += OZZ-{n(T[j)YjI;

end
J=7-L
end
Yl(‘ls—‘::)l = Yni1;
get Yoi1, hny, M1 s, from stored discretization scheme;
fori=s5,—1:0do

| propagate through Newton-like iteration;
end
YEH = YﬂlB
propagate corrector constant dependency backwards using (6.31D));
propagate predictor dependency backwards using (6.31a));
// all contributions of y, taken into account,
// value of Y, is final
n=n-—1;
end

Here y(7; 70, Yo, P) is given as the solution of a corresponding DAE-IVP on the integration horizon

[T0, Te|-

Then using the continuous output and adjoint injection capabilities of DAESOL-II we can compute
the Hessian of the Lagrangian £ := ¢ — Z?:l ujThj with respect to (yo, p) using only one forward

IND-TC sweep of order 1 with the unit directions e;ly+np, 1 <j < ny+ny,, as forward sensitivity
directions, followed by only one adjoint IND-TC sweep. The workflow for this using DAESOL-II

might then be as follows.

1. Register a plug-in with the output grid containing the set of timepoints {7, . .

<y Tays Thyy -

..,Tbk}
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in ascending order that stores the propagated forward Taylor Coefficients Y (77) at the cor-
responding timepoints when called from the integrator.

2. Let the integrator perform a forward IND-TC sweep of order 1 initialized with the directions
e/ 1< j < ny,+n, (with storage of the whole discretization scheme) to obtain forward
Taylor coefficients at 7. and the output grid.

3. Using the forward Taylor coefficients, perform a forward /reverse TC propagation through the
objective function ¢ with adjoint direction ¢, = 1 to obtain the adjoint Taylor coefficient
Y (7.) for the initialization of the adjoint IND-TC sweep, as well as the adjoint Taylor
coefficients Y (7,,) to inject at the 7,,. Likewise perform forward /reverse TC propagations
through the constraint functions hy with adjoint directions p; to obtain the adjoint Taylor
coefficients Y (7,) to inject at the 7,.

4. Register the adjoint injection grid (in this case equal to the output grid in 1.) and the
call-back routine delivering Y (7,,), or Y (7,), respectively, when called from the integrator
with the corresponding gridpoint.

5. Let the integrator perform an adjoint IND-TC sweep of order 1 based on the discretization
scheme stored in 2., propagating n, + n, adjoint TCs, each initialized with the adjoint TC

Y (7).

6. The propagated adjoint TCs Y§, P!, 1 < 1 < n, + n, now contain each in the zero order
coefficients the gradient of the Lagrangian. Furthermore, in its first order coefficients the
i-th TC contains the yo-part and the p-part, respectively, of i-th column of the Hessian of
the Lagrangian with respect to (yo, p).

6.7.5 Error control of forward sensitivities

The presented forward IND(-TC) schemes for sensitivity generation are all based on the same
discretization scheme that is used by the solution process for the nominal DAE-IVP. In this solution
process the discretization scheme normally is determined adaptively by the error estimation and
the stepsize and order control strategies presented in Chapter 5] for the nominal trajectory only.
Hence the produced discretization scheme will only lead to error controlled nominal trajectory
values, not necessarily to error controlled sensitivities. For the forward sensitivities we have only
the convergence results stated above for the case that the stepsizes tend to zero.

Usually, this is not a big problem in practice. First, by the use of IND we always obtain the
exact sensitivity of the numerical nominal solution. Furthermore, practical observations show
that in most applications the loss of accuracy lies in the region of one order of magnitude, which
often is tolerable. However, there are situations where a high accuracy of the computed forward
sensitivities is desired or where the determination of the discretization scheme based only on the
nominal solution will lead to a blow-up for the sensitivities and/or completely wrong sensitivity
approximations. The latter is for example the case if some of the possibly instable modes of the
system’s dynamic are not triggered during the solution of the nominal DAE-IVP for the specific
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set of initial values and parameter, while the solution of the forward variational would do. A very
simple academic example where this behavior might occur is the Dahlquist equation.

Example 6.9
Consider the simple ODE-IVP

z(r) =px(r), peR, x(0)==z ¢te][0,1].
Its nominal solution is x(7) = x¢e?”. The first order variational DAE-IVP is then given by
Ty (T) = pxﬂ?o(T)7 PeER, 1y (0) =1, te [07 1]7

with the solution x,,(7) = €P”. If we now choose zy = 0 and perform a first order forward
IND sweep, we will obtain approximations for x,, that are completely useless. This is caused by
the fact that the solution process indeed computes the correct solution z(7) = 0 and that the
error estimation in this case tells us that the local error in each step is equal to zero. Hence
the stepsize strategy will continuously and rapidly increase the used stepsizes. This leads to a
discretization scheme that is perfect for the solution of the nominal IVP but of course disastrous

for the approximation of the sensitivities. This behavior is also shown in practice in Section
pag 42

The interpretation of the forward IND(-TC) scheme as BDF discretization scheme for the varia-
tional IVPs here again is the key to a possible remedy. The computed forward sensitivities are then
to be understood as approximations of the solution trajectory of the corresponding variational IVP
computed by a BDF method. Hence in principle the same mechanisms described earlier for the
estimation of the local error in the approximation of the nominal solution can be applied to them.
As the error estimation is mainly based on the modified divided differences and the increments of
the Newton-like method, which need to be computed anyway also for the sensitivity approxima-
tions, this leads only to a relatively small increase of the effort and needs moderate changes in the
original integration code. Once a local error estimation has been established for the sensitivity
approximation, analogously the presented stepsize and order strategies can be used to obtain a
suitable new stepsize and order for the computation of the next sensitivity approximation. In
this way, a suitable discretization scheme for the computation of the sensitivity approximations
can be generated. It should be noted here that it is advisable to modify the scaling factors for
the forward sensitivity trajectories at least according to the norm of the corresponding sensitivity
direction. This is sensible, because if we multiply the sensitivity direction by 2 this will change
the first order forward sensitivities by the factor 2, the second order forward sensitivities by the
factor 22 and so on.

To obey to the IND principle, i.e., to use the same discretization scheme for the nominal and
sensitivity trajectories, we use a modified simultaneous iterative forward IND(-TC) sweep that is
described in its first order version in Algorithm [6.10 on the next pagel Here in an integration
step the Newton-like iterations and the corresponding contraction estimations are performed si-
multaneously for nominal and forward sensitivity trajectories. If the iterations do not converge
for any of the trajectories, then the corrector equation solution is considered as failed. Otherwise
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the local error is estimated for all trajectories, and again the step is rejected, if any of the error
estimations is too large. Otherwise the next step is planned for each trajectory separately and
the most pessimistic estimation will be used in the next integration step for all trajectories. In
case that the step has failed, the monitor strategy respectively the presented strategies for stepsize
reduction are applied, based on the trajectories that caused the step failure. Also here the most
pessimistic estimation for the stepsize will then be used for the computation of all trajectories
during the repetition of the step.

Algorithm 6.10: Error control for forward sensitivities
Input: ?y, ty, ho, initial values yo, parameter p, set of sensitivity directions D

Output: Nominal solution yy, forward sensitivities YN =W -D.

set ko = 1, n = 0;

initialize nominal integration with yo, p and sensitivities with D ;

while ¢; not reached do

compute interpolation coefficients using h,, and k,;

compute nominal and IND predictor and corrector constant;

compute y,1 and Ynﬂ by s, Newton-like iterations using matrix M, to solve the
nominal respectively IND corrector equation;

if Newton-like method converged for all trajectories then
Perform error estimation separately for all trajectories;

if error check passed for all trajectories then

tn-‘,—l =t, + hn;

determine stepsize and order for next step separately for all trajectories;

choose the smallest of proposed stepsizes as h,, 1 and the corresponding order as
k.1 for the next step;

n=mn-+1;

else

compute reduced stepsizes for all trajectories for which the error check failed and
choose smallest of them as h,,;

end

else

update Jacobian approximation M, according to monitor strategy or compute
reduced stepsizes for all trajectories for which Newton-like method didn’t converge
and choose smallest of them as h,,;

end

N =n;

Using this approach we obtain a commonly generated discretization scheme for both the nominal
trajectory and the forward sensitivities. This allows an error controlled computation of both the
nominal solution and of forward sensitivities of any order. A numerical example for the application
of this strategy is given in Section [9.3 on page 242| Note that compared to a normal simultaneous
iterative forward IND(-TC) sweep, the effort will usually be higher. The first reason for this is,
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of course, that in general a finer discretization grid will be used. However, even in the case that
the common discretization scheme has in the end been determined only by the nominal solution,
i.e., is equal to the one without error control of the sensitivities, the effort will be higher. This is
caused for one part by the additional effort for the error estimation on the sensitivity trajectories.
For the other part a step rejection is now more expensive. Compared to the usual approach,
here also for a rejected step the Newton-like iterations for the sensitivity trajectories have been
performed, including the computation of the model function derivatives, or the corresponding TC
propagation, respectively. Hence in practice it is advisable to enable the error control for the
forward sensitivities only if necessary.

6.7.6 Global error estimation

The stepsize selection and error control strategies described in Section [5.3.4] are all based on the
estimation of the local integration error, described in Section [5.3.2] They are usually an effective
and efficient mean to obtain an error controlled numerical solution of the underlying IVP problem
with high performance. However, in some cases they might not be sufficient. One occasion might
be an IVP for which the global error of the solution at the end of the integration horizon is not in
the range of the prescribed local integration tolerance, because of the accumulation of the errors
made in each step as well as error propagation. In this case it would be interesting to have (at
least) an estimation of the global error. Another example is the case where not the error of the
solution of the IVP itself but the error in a quantity depending on the solution is of interest. Here,
a so-called goal-oriented error estimation, and maybe also error control, is desired.

There exist a number of proposed strategies for the global error estimation for ODE and DAE
solutions in literature, refer, e.g., to [Ske86) [Joh88 [Est95, [TV98, MSTZ03|, [CP04, [ALW07, LVO07,
TBO09| and references therein. Mostly the strategies are developed for finite element, collocation or
one-step methods. Approaches for BDF methods in the ODE case can be found in [CP04] [TB09].
The two main ideas repeatedly mentioned in literature are, on the one hand, the solution of an
IVP approximating the global error in parallel with the computation of the original IVP solution.
On the other hand, there is the usage of adjoint sensitivity information in connection with a local
error or defect estimation to compute a global error estimate, which is partly inspired by the
analogous approach in PDE numerics [BR0O1]. For a global error estimation of the IVP solution
both approaches deliver, in general, reliable results (cf. [LV07]). The adjoint approach is favorable
when a goal-oriented a posteriori error estimation is desired as the complexity does not depend
on the dimension of the IVP in this case.

To allow both an efficient global error estimation of the solution of the IVP as well as an efficient
goal-oriented error analysis, the following adjoint based strategy for an a posteriori error estimation
is implemented in DAESOL-II. We assume that a nominal integration for a given tolerance has
been performed using N integration steps and that the local error estimates €ioci, 1 < ¢ < N,
have been stored on the tape. Furthermore, we denote the (scalar) quantity of interest with ¢(yn)
which is assumed to depend directly on the IVP solution yn at the end time. To compute an
error estimation for ¢(yn) we perform a first order adjoint IND sweep with adjoint direction a(%
which yields the adjoint quantities ¥;, NV > ¢ > 0. Then, the goal-oriented error estimate €, is
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simply obtained as

€¢ = Z €10c7iT}_’i, (648)

where €joc; is the local error estimation in the i-th step of the integration, as presented in Section
Note that we only use quantities that are computed anyway during a nominal integration
and a first order adjoint sweep, respectively. Hence the error estimation does not cause additional
numerical effort besides the storage of the local errors and the summation. The approach can be
extended directly to quantities of interest that depend on intermediate values of the solution by
combination with the idea of adjoint sensitivity injection described in Section [6.7.4]

In some sense, our approach is quite similar to the approach presented by Cao and Petzold
[CP04], as both are based on the use of adjoint sensitivity information in combination with the
local error estimation of the nominal IVP solution. However, in our approach we do not use
the solution of the adjoint variational differential equation but the intermediate adjoint
sensitivity quantities of the presented adjoint IND sweep. Hence, it is also directly applicable to
DAEs, in contrast to the approach of Cao and Petzold. Furthermore, by the use of higher-order
adjoint sweeps in principle a global error estimation of forward sensitivities can be obtained as
well. Because the intermediate adjoint quantities are the exact derivatives of the numerical IVP
solution w.r.t. the corresponding trajectory value (see Remark , they can be interpreted as the
sensitivities of the numerical solution w.r.t. perturbations or errors in these trajectory values. In
this sense, our approach can be understood as a first order estimate for the error in the quantity
of interest based on a condition estimate of the numerical integration scheme. This is similar to
the approaches of estimating the influences of round-off error in numerical algorithms presented,
e.g., in [Lin76l [Stu80] and numerous later works.

The efficiency of our approach is demonstrated numerically on several test problems in Section

on page 249

6.7.7 Time and control transformations of function and derivatives

In general we like to be able to solve the following relaxed index one DAE-IVP type, that occurs,
e.g., in a multistage multiple shooting setup in stage ¢

A(t,x(t),(t), u(t), pp) %(t) = pn, - £(t,x(t), 2(t), u(t),pp) = 0,  x(ty) = X0, (6.49a)
g( ,x(t),z(t),u(t) ) 9( )g(thXmZOa (t())?pp) = 0, Z(to) = Zo, (649b)

where t € [to, te] C [Z;ll Dh 22:1 pn,]- This problem formulation is obtained from the formula-
tion (6.1), which we have considered throughout this whole chapter, by the time transformation
t = Z;;l Ph; + Pn; - T and by assuming a finite-dimensional parametrization of the control func-
tions u(t) : R — R™ by control parameter u(t) = u(pq; 7). Therefore, it is sensible to derive
the numerical strategies and to implement the corresponding integration routines only for the
problem type , as from both the mathematical and the implementational point of view the
integration routine does not need to know about the possible transformation. Instead, when the
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integrator demands an evaluation, derivative computation or the propagation of TCs through one
of the model function f, g or A “living” in the integrator context, suitable transformations have
to be performed before and after the corresponding model function A, f , g formulated in the user
context are called. In SolvIND these transformations are handled by the TEvaluator module and
derived classes. The transformations are fully transparent for the integrator, such that all inte-
grator codes in the SolvIND suite can simply be written for the IVP class and nevertheless
handle problems of type . In this way, the transformation code has only to be written once
and can be maintained and extended in one dedicated module, which is a clear advantage com-
pared, e.g., to the MUSCOD-II|DLSOI]| package. Furthermore, this architecture allows to switch
easily between different control parametrization and to add new ones without the need to change
the formulation of the model functions A, f, g or to make changes to the integration code itself.

The transformations that are needed for an ordinary evaluation of a model function are straight-
forward. For the evaluation at (7,y,p) we first have to translate the integrator time 7 to the
“physical” time ¢

i—1
j=1
and to evaluate the actual control values for the given parametrization
u=u(pq;7)- (6.50b)

Then the user-space model function A,f or g can be evaluated at (¢,y,u,pp). In the case of

the differential right hand side f the result then has to be scaled afterwards by the actual time
transformation factor pp,

f<7-7 Yy, p) = DPh; * f(t7 y,u, pp) (650C)
In the case of a derivative evaluation or a TC propagation, additionally the derivative directions
and the obtained derivatives or the input TCs and the propagated TCs have to be transformed.

For the forward case it is straightforward to transform 7-directions/TCs and pp-directions/TCs
into t-directions/TCs by applying the forward AD/TC propagation rules presented in Chapter
to (6.50a). Likewise we use the actual definition of to transform pg-directions/TCs into
u-directions/TCs. Based on the transformed directions or TCs the derivatives of the user-defined
model functions A,f or g can be evaluated. For the differential right hand side the obtained
derivative or the propagated TCs have to be transformed afterwards based on (6.50c]).

An analogous process has to be performed to evaluate an adjoint directional derivative: In the
case of the differential right hand side after an evaluation of the function itself, first the adjoint
directions have to be transformed. This is not needed for the other model functions. Then
the adjoint derivatives of the user given model function can be computed, and afterwards the
obtained adjoint derivatives have to be transformed. If we denote the adjoint direction with A,
the evaluation of the adjoint derivative, e.g., for the differential right hand side starts after the
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corresponding function evaluation with

=X f(t,y,u, Pp) (only for f) (6.51a)
= Ph, * A (only for f) (6.51Db)

s
T

Then the adjoint derivative of f(t, y,u,pp) with adjoint direction X is evaluated. Afterwards the
obtained derivatives with respect controls and time are transformed using

_ a (pqv 7)

6.51
q'+= 9q (6.51c)
__ —p0u(pg;T)
= — % 51d
T+=u o , (6.51d)
and
Prt=1 (6.51f)
T+=1"pp,. (6.51g)

Finally, we have obtained the adjoint derivative (7,y,p) of the integrator-space model function
f(7,y,p) in direction y. To perform an adjoint TC propagation, we can apply basically the same
scheme and replace the operations by the corresponding operations in Taylor arithmetics,
as explained earlier.

6.7.8 Sensitivity propagation across switching events

In this section we consider the extension of the presented first and higher-order IND(-TC) schemes
to the case of IVPs where the model dynamic is possibly subject to implicitly defined state and
parameter dependent discontinuities and/or non-differentiabilities. We call these events switches.
Although this type of problems is not the focus of the applications in this thesis, the treatment
of these switching events is important in many fields of application. We consider here the relaxed
index 1 DAE-TVP

x(1) — £(7,x(7),2(7), p,sgn(o (7, x(7),2(7),p))) = 0 (6.52a)
g(7,x(7),z(7),p,sgn(o(7,x(7),z(7),p)) — 0(7) g&(70, X0, Z0,P) = 0 (6.52b)
x(719) = Xo, z(70) = 2o, T € [10,7e),

where we call o : [15, 7] X R™ x R™ x R™ — R the switch function and assume in the following
that it is sufficiently smooth, but at least continuously differentiable in all variables. Note that
this formulation can be easily extended to the case of a vector-valued switch function. However,
also in this case one generally assumes that only one switch function becomes zero at the same
time, such that we restrict our analysis to the case of one switch function. Also note that for
notational simplicity we only consider the case A = I here, while the derivation for the general
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case can be made analogously. The roots of the switch function define the timepoints where
switching events occur. By the implicit function theorem we can interpret the switching time 7
as implicitly defined by the values (79, yo, p)-

We assume for now that only one switching event occurs, and that this event occurs at time ;.
Then we denote the limits of the differential variables at 7, from the left and right with

X" (7570, Yo, P) = lim x(7, — €70, Yo, P) (6.53)
and
X (7 ATy D) = i x(r, + 6 A7, X ), (6.54)
where
Ay 10, 7] X R™ x R™ — R™, (1,x(7),p) = x" (1), (6.55)

describes a possible jump in the differential variables occurring at the switching event
X (16; Ay) =% (15) + Ax(7,x (1), P). (6.56)

We assume here that the jump does not explicitly depend on the algebraic variables and also
that a corresponding jump A, in the algebraic variables always conserves the consistency of
the algebraic equations. Then the states after the switching event are fully determined by the
differential variables and we write for the algebraic variables at 7

Z_(7'5§7'07YO7P) = li{‘ISZ(TS - 6;7—0>y0ap) (657)
and
Z+<Ts; Az§ To, Yo, p) = Z<Ts; Ts, X+(Ts; Ax; 70, Yo, p)7 p) (658)

We denote furthermore the model functions before the switch with f! and g!, and after the switch
with f2 and g2.

In the following, we will consider the task of generating first and higher-order derivatives of the
solutions of the IVP (6.52). For the question of how the implicitly defined switching time 7, can
be determined efficiently in a numerical integration scheme refer to [Kir06, BP04, [Ehr05] and
references therein. The proof of the differentiability of the solution of has been given by
Bock in [Boc87]| for the ODE case, and an extension of the theorem for the index 1 DAE case is
stated in [BP04]. Both versions require that the switching is consistent, i.e., that

do~ ~__do*
_(Tsa X ,Z ) .
drg

dr

(1e,x1,2%) >0, (6.59)
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where o~ and o are the one-sided derivatives of the switch function. Consistent switching hence
requires that the switch function changes its sign at 7.

Note that the sensitivities of the algebraic variables after the switch are uniquely determined by
the sensitivities of the differential variables and by the consistency conditions. For educational
purposes we now derive the formulas for the full first order sensitivities

dx(7e) and dx(7e)
dXO dZO

in the “classical” way. Similar derivations are presented in [Boc87, [Mom01l [KirO6] for the case of
ODEs and in [BP04] for index 1 DAEs.

We start by defining the abbreviations

f— = fl(TS,X_,Z_,p) ft .= fz(rs,x+,z+,p)
0= U(Tsaxiaziap) A= A(TS’Xi’p)
7z = Z(TS,X_,Z_,p) Xe = X(TQ;TS’XJ’_’p)’

where z can be obtained by applying the implicit function theorem to the consistency conditions.
Then we have

dx*  Ox” dr, N 0x~ N 0A dr, N 0A [(O0x dr, 0x
dxe O, dxg Oxo O1sdxe Ox~ \ 01, dxo O%o

A 9A A\ 9x
- <f‘ L8 9 f‘) i | <]I+ a_) Ox_ (6.60)

o1, Ox~ dxg ox~ ) 0xg

and

dx®  Ox” dry N Ox~ N OA dr, N 0A [ 0x~ dr, N 0x~
dzg  O1s dzg Ozo Orsdzg Ox— \ 01 dzg Ozo

_0A  0A _ \ d7g 0A '\ Ox~
= <f T T P ) T (]I+ ax—_) o (6.61)

From the implicit function theorem, applied to o, we obtain

dr, L 8a+8_0f7+ﬁzf R 8X‘+ Oo 0z~ (6.62)
dxe ors 0x~ 0z~ Ox— 0xg 0z 0xo '
(6‘;’(%+6‘1"_((g2)*1g£))%"7;
dr oo Do do 00 Ox~ OO0 Oz
2= —f + —7 ) )
dzo (875 * ox~ * 0z ) (8}( 0z¢ * 0z~ 8z0> (6.63)

N

-~

(P=+2=((e2) 'er)) 5ag
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Furthermore, we have

OXe  OXe
i (6.64)
Combing all this leads to
dxe Oxe dry = 0%e dx*
dxe 01, dxe OxT dxg
0xe _fJF% + E
o Oxt dxe dxg
6:60) OXe et _0A  0A \ dr, 8_A 8£
- Ox*t [( 41 +E)TS+8X—f dx0+ H+8X_ 0Xo
E8) O%Xe (v o OA 0A_N\(00c do .  do .  \
- Ox*t [(f f 0T, 8X—f 0T, + 8x—f + 0z—z
do 0 o OA \ | 0x~
(y 8z__((gz) gx)) + (H+ yﬂ xg (6.65)
and
dxe OXedry = Oxedx™
dzg 07, dze Ox* dzo
O%e (_pdrs | dx*
N ox+t dZ() dZO
G61) OXe ~ 0A  O0A \ dr, O0A\ Ox~
= —fF 4 f — ) —
o+ K e Tt )dz0+(l+8x—) Gzol
©63) OXe . 0A 0A Oo oo . o . \ "
= fr—f — ——f —_— —_—
ox+ [( or,  0x~ > (87'3 - ax—f T 0z )
Oo oo, _ | _ 0A '\ | 0x~
N ik T+ 22 )| & .
(5 + ptte)e0) + (14 5 ) | (6.60)
Finally, we have obtained the relation
Wi (Te; T0) = Wi (Te; 75) U (T5) WX(Ts; T0) (6.67)
and
WX (Te; T0) = Wi (Te; 75) UX(T5) Wi (7s; T0) (6.68)
with the update matrix
0A  0A do o do .\
X . + _ = R o T
Us(rs) 1= l(f b o ot ) (673 Tt T )
0o Jo ,, ., _ 0A
: (8? + az—_((gz) gx>> + <H+ a?)] - (6.69)
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Likewise, the sensitivities with respect to the parameter can be obtained as
W (Te; T0) = Wi (Te; Ts) (Z/{,’:(Ts) W (753 T0) —i—UL’f(TS)) + Wi (Te; Ts), (6.70)

with the parameter related update matrix
dA DA do  Oo do .\
x = [ fT —f — ——f"" —f ——2
i) [( o7, ox ) (aTs o T )

)5l

We observe that already the derivation of the update matrices for the full first order sensitivities
is lengthy and leads to complex formulas that are not easy to implement efficiently (and error-
free). In case of few needed directional sensitivities the efficiency can be increased significantly
by employing forward or adjoint directional derivatives wherever possible in the equations above.
The derivation of second (or even higher-order) updates in this classical way however is a tedious
and error-prone work. Mombaur [Mom01] presents the lengthy formulas for second order updates
in the ODE case, but refrains from their implementation due to the implementational and com-
putational complexity they give rise to.

As second and higher-order sensitivity update formulas computed in the classical way are worth-
less in practice we develop now the first strategy for the computation of first and higher order
sensitivities based on the propagation of TCs across the switching event. This allows to obtain
an efficient formulation of schemes for the generation of arbitrary order sensitivities also in the
presence of switches.

We start by recalling the chain of dependencies between the quantities involved in a switching
event in the practical computation. First, we remember that by means of the implicit function
theorem the switch time 7, is uniquely determined by the initial values and parameter. In this
sense, we can interpret the switch function as a function of the switch time and initial values
and parameter (75, yo,P) := 0(7s,¥(ts; Yo, P), P). Based on the switch time the corresponding
states y~ at 7, can be determined. The sensitivity of the y~ is then composed of their “ordinary”
dependence of initial values and parameter and their dependence on the switching time. From
y~ one then obtains y* by application of the state jump A. Afterwards y(7.) can be computed
based on the new initial time 7, and new initial values y*. The sensitivities of y(7.) consist then
of the “ordinary” dependency on the initial value y™ and the parameter as well as the initial
time 7,. Before we are able to use this chain of dependencies for the formulation of a forward
TC propagation scheme, we first need the following results concerning the propagation of TCs
through an implicitly defined function as well as the computation of the TCs of an ODE solution
at the start or end time of the integration horizon based on the corresponding right hand side
function.

Lemma 6.10 (TC propagation through implicitly defined functions)
We consider a function o € C*(R™*"« R™), with k sufficiently large, that implicitly defines the
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value v € R™ in terms of u € R™ by the equation
o(v,u)=0. (6.72)

This means we assume silently that o is regular. Let ug,...,ux be the TCs of a Taylor poly-
nomial u(s) of the truly independent variables and denote with vy, ..., vy the TCs of the Taylor
polynomial of the dependent variable v(u(s)) that we desire to compute. Finally, denote with
09, ...,0x the TCs resulting from a forward propagation of the TCs vg,..., vk and uo, ..., ux
through the function o.

Then the TCs of the Taylor polynomial corresponding to v(u(s)) can be obtained from the TCs
of the input Taylor polynomial u(s) for any k£ > 1 by the following iterative scheme.

1. Compute vp = v(ug) and vy = — (j—‘;(vo,uo))_l 42 (vg, ug)uy

2. For j=2,...kdo

a) Perform a forward TC propagation of order j through o using input coefficients v :=

[VO e Viog 0} and 0 := [uo SR P 0] to obtain aj.
—1 .
b) Solve vj = — (42(vo,u0)) ~ (42 (vo, uo)u; + ;)
Proof:
For a proof of a slightly more general version of the Lemma refer to Wagner et al. [WSW10).
O
Lemma 6.11 (TCs of ODE solution at start time)
Let € >0, f € CF([t — ¢, + €] x R™ x R™ R"™) and x(t) be the solution of the problem
x(t) = f(t,x(t),p), t et —e t+€, x(ty) = %o. (6.73)
Let furthermore #(s) = Y21 #is%, %(s) = Yor_%is' and p(s) = >.F_, pis’ be Taylor polynomials
of order k in s and denote with xg, ..., xyx the Taylor coefficients of the expansion of the solution
x(to; 1(s),%(s),p(s)) = X0 + X158 + ... + xi8" + O(s"1) (6.74)

at time #,. Then the TCs x; can be computed, e.g., by a Taylor series expansion with respect to
s of the representation

~

x(t:1(s), %(s), p(s)) = X(s) + /E( )f(T;X(T,t(S)J?(S), p(s)),p(s))dr (6.75)

around s = 0 and its evaluation in ¢3. The first coefficients are then given by the recurrence
Xg = 5(0 (6763)
X1 = 5\(1 — f(tA(), }A((), po) . tAl (676b)
t
)A(]_ + X1 (676C)
2p;

A . . Of(ty, %o,
x2 = X2 — £(to, X0, Po) - 212 _tlw
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Proof:

Given f is sufficiently smooth, the integral in can be differentiated with respect to both its
integrand and its limits. The application of basic calculus rules then leads to the given formulas
of the coefficients. It should be noted that in practice the TCs of the solution can be efficiently
obtained with the help of an AD-tool and adapted model functions or, at least for lower orders,
by directional derivatives of f.

O

Remark 6.12 (TCs of ODE solution at end time)

The preceding Lemma can be used to immediately obtain the TCs of the ODE solution at the end
time when the end time is given by a Taylor polynomial #(s) by simply multiplying the £;,1 < i < k
by —1 in the formulas above.

Based on the described dependencies in the computations occurring at a switching event, the TC
propagation rules through the implicit function theorem and for the computation of the start/end
time TCs of an ODE solution, we formulate now in Algorithm [6.11 on page 202/and Algorithm[6.12]
a sensitivity generation scheme for arbitrary order directional forward sensitivities for
the case that switching events (may) occur. In the first order case Algorithm[6.12]can also be used
to compute the update matrices described earlier by using unit directions as input TCs. However,
if only a small number (compared to the overall number of variables) of directional sensitivities
is needed, it is much more efficient to propagate these directional sensitivities directly across the
switch. Note that by application of the reverse mode of AD on the instruction level we can obtain
higher-order forward /adjoint schemes for sensitivity propagation across switching events.

Example 6.13 (First and second order sensitivities of a bouncing ball)

Consider a ball thrown away in a gravitational field which bounces on the floor after some time
and is reflected. We describe the system by the 4 differential states x = (p®, v*, p¥, v¥) describing
the balls horizontal and vertical position and velocity. The initial equations of motions are then
given by

or v or 0
o'(r) ¥(r)
87’ —v 87’ =9

with initial values x*(70) = (p&, v, p§, v§). The parameter g represents here the vertical accelera-
tion of the ball due to the gravitational field.

The event that the ball hits the floor is then characterized by the root of the switch function o = pY.
We describe the reflexion of the ball with the jump function A(¢,v¥,r) = (0,0,0, —(1 + T)Uy)T,
where 7 is a damping factor. We further assume that the floor consists of sensor elements, that with
each contact activate or deactivate, respectively, a force field. If activated, it causes a horizontal

acceleration a of the ball. We assume that at time ¢, this force field is deactivated. Combining
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p = (g,7,a) we then have the two model functions for the system

vr vr
0 a
f'x,p)=| ., F(x,p)= | ,
—g —g

In this relative simple setup we can still determine the solution analytically. Assume that 7. is
chosen for simplicity in a way that the only one ground contact takes place at 75. Then we have
as solution x*(7) on the first part (10 < 7 < 73)

p*(7) = po + g (T — 7o), v (1) = vy,

p(r) = B+ o§(r — 1) — 59 — 7o), W)=l =gl ). (677

From this we can determine the impact time, where o = p¥(7) = 0, as

_ gm0+ vy + /(05)? + 291
g

Denoting the states of x?(7) at the switch time (after the application of the jump) with an
subscript -, we obtain as solution x?(7) on the second part (7, < 7 < 7¢)

1

(6.78)

S

pe(1) =pi +ui(r — 75) + §a(r —7)% V(1) = o5 + alT — T),
1
py(,]-) = pls/ + Ugs/(T - 7_3) - 59(7_ - Ts)2> Uy(T) = Ug - g(T - 7—5)' (679)

By inserting the expressions for 7, and the solutions of the first part at 7y, as well as the state
jump, we obtain expressions for the solution x?(7.) at the end time in terms of initial values and
parameter, which can then be differentiated analytically to obtain the desired sensitivities of the
solutions. The calculation of these expressions is straight-forward, but technically and leads to
large and complex terms, such that we state here only the numerical values of some sensitivities
of interest. For the computations to follow, we assume a setup described by the values

70 =10 Py =0 vy =1
Te =3 py=1.8 vy =8
g=10 r=0.9 a=2. (6.80)

Then the switch time is obtained as 7, = 1.8. The solution at 7, before the jump is given by
x'(1;) = (£,1,0,—10)" and at the end time by x?(7.) = (5, &, 2, —3)". The complete first
order sensitivities that we obtain from the analytical representation of the complete solution are

6 4 43
1 3 —3 —1575 % 0 %
1 9 81 6
W= 20m (01 k5 s 0 651
¢ 0(x0,P) 00 % % _% 120
00 63 _ 1329 19

10 25 500
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The second order sensitivities with respect to p§, v and g are then given by

11 351 —15309
250 6250 62
st N DSOS R I h BRCE USRI .
8( y)2 =1 209 |[> a(vy)g = | _ 6669 |- 52 = | _ 63%529 | - .
Po B 51_090 0 12500 _12155030900
100 2500 250000

We will now show how the (first and) second order sensitivities of the solution at the end time with
respect to py, vg and g can be computed by the forward IND-TC propagation scheme presented in
the Algorithms and Analogously to Example [2.20 on page 48] we initialize the TCs X°
and P for the different directional sensitivities at the begin of the integration process according
to the corresponding rays to

(1)88 10 0 O ?88 10 0 O
5 20 0 5 2 00
8 0 0 8 2 0
[0 0 O]

X0_100P_19020
8 0 0

We then use the ordinary second order forward IND-TC sweep including switch detection, as
described in Algorithm [6.11] to obtain the TCs X~ at the switch time 7, = 1.8 as

5 00 2 00 2 0 0

_ 1 00 _ 1 0 0 _ 1 0 0
ng 0 2 0]’ XVS o 0 % 0l Xg = 0 _% 0 (6.84)

—10 0 O —10 2 O —10 _1? 0

Next we compute the switch time TCs 74 as described in Algorithm Using Lemma with
v=r1, u=((x")7,p")T we first obtain with f~ = (1,0, —10, —10)” (skipping the arguments)

do Oo Jo do do

=4 =210 d —=————=(0 010000 6.85
dv  oOr + ox— W qu d(x~,p) ( ) 7 (6:85)
such that
do\ ' do
— — =0 0 =X 0 0 0 0). )
() T-00 4 ) (6.86)

With Lemma we then obtain

pg 1 1 )

0 1, 18 9 1 81 81
(o) 2= Th= ) T T ()

—55) = 5y (687)
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To compute the 7,5 we perform a forward TC propagation sweep of second order to compute 0.
As inputs we use the zeroth and first order coefficients of 74, which we just have computed as well
as the ones of X~ and P. The second order coefficients are set to zero for all inputs. By using

the formulas (6.76a))-(6.76¢) of Lemma (and negating the 7,) we then obtain

G0 1 e 9, 8019
72 5 72 T 1250 727 12500° (6.88)
and hence finally the switch time TCs
Py 19 1 1 v9 9 9 9 79 81 8019
" =3 5 ) 7' =[5 % 18l TE=[3 —2% o800 - (6.89)

Using again the formulas in Lemma based on —714, X7, P we then adapt the TCs of the
solution x~ at the switch time before the application of the jump according to its end time
dependency. This leads to the adapted TCs X7~ given by

9 1 _ 1 9 9 9 9 _ 81 8019
i 8 050 i 2(35 12050 i 850 12%)00
- _ - _ - _
e =10 o0 o ®~lo o o % o o o | ©%
1 1 9 9 81
—-10 -2 3 —10 =5 -1 —10 =3 1500

We then propagate 75, Xj_, P through the jump based on the jump function A to obtain the
TCs Xy after the jump as

9 1 _ 1 9 9 9 9 _ 81 8019
i (5) 050 i 205 126)0 i 850 1256000
J+ _ J+ _ J+ _
Xee=1oo ol X¢=loo ol % =]o o 0 (6.91)
g 9 _9 g 36 81 g 8 _ 72
5 50 25 1250 250 125000

Finally we adapt the X7+ according to the start time dependency of x*. We compute the corrected
TCs X7+ by using again Lemma based on T4, X?*, P as well as the value and Jacobian of
f* at the switch after the application of the jump

1 001 00 0 00O
o 2 oft 100000 O 01 (6.92)
- 9 ’ d(t,x,p) 10 0001 0 00 ’
—10 00 0O0O0-100
which leads to
9 1 9 81 9 6561
2 0 = z 0 = z 0 200
P ¥ P e o
Xjo=|y 1 |, X=1|, 8 B, Xi=|, B _B&| 69
y 5 0 y 25 1250 250 125000
g W _1 g 16 17 g _129 _ 1539
5 50 25 1250 250 125000
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The X are then used as start values for an ordinary second order forward IND-TC sweep from
Ts t0 Te. The resulting TCs containing the desired (scaled) sensitivities at the end time are then
given by

w12 o1 108 351 1486 _ 15300

25 25 125 25 125 3125 25 625 312500

# % % #® Ow w8

e __ 5 5 25 e __ 5 25 625 e _ 5 12 62500
Xpo= |1 6 _Bwl; o= |1 s _eh| Xg= |1k B0y
5 25 250 5 125 67250 5 1238 625000

-3 B _D —3 126 A7 —3 129 _ 1559

5 50 25 1250 250 125000

(6.94)

Performing exact interpolation by dividing the first and second order coefficients of the TCs
at the end time by 2 and comparing them with (6.82)) and we see that by following the
propagation scheme described in Algorithms and we have computed the desired elements
of the sensitivity Hessian tensor along with the corresponding columns of the Wronskian matrix.
We further observe that all needed model function derivatives can be computed efficiently either
by directional derivatives or (IND-)TC propagation. Finally, it should be noted that if we use this
scheme for a first order sweep the actual performed operations are identical to the operation needed
when using the formulas (6.67)), (6.68) and (6.70) to compute first order sensitivities, only that
now all needed derivatives are evaluated as directional derivatives. Hence also for the computation
of first order sensitivities the application of the newly proposed scheme does normally lead to an
improved performance, as no computation of the complete update matrices is needed.
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Algorithm 6.11: Arbitrary order forward IND-TC scheme including switches
Input: 7y, 7, ho, initial values yq, parameter p, sensitivity direction d, sensitivity order m
Output: Taylor coefficients Yn containing nominal solution yn and scaled forward

sensitivities %Wg) for 1 < j <m.

set kg = 1, n =0;
initialize with Taylor coefficients according to initial values and sensitivity direction d;
while 7. not reached do

compute y,+1 by nominal integration step;

if step accepted then

propagate Taylor polynomials to obtain Y, .1;

perform switch detection;

if switch detected then
determine switch time 7y;

compute trajectory values y~ and TCs Y at 7, from continuous representation;
propagate TCs across switch event as described in Algorithm [6.12}
restart integration at 7, with Y and possibly switched model functions;

end
tn—H =t, + hn;
determine h, 1 and k,.; for next step;
n=n+1;
else
update Jacobian approximation M, according to monitor strategy or reduce stepsize
s
end
end
N = n;

Algorithm 6.12: Forward TC propagation across switching event

Input: Switch time 7, Taylor coefficients Y~ and P, sensitivity order m
Output: Taylor coefficients YT for further propagation after the switch event.

—8X;§TS) 827—1(:5) by using the implicit function

as well as 5

using 7s, Yo~ and pg compute f~ =
theorem on g;

compute 71, ..., Tsm by application of Lemma m (intertwined with Lemma|6.11]) with
v =7, and u = (y~, p) to the switch function o;

adapt Y~ according to the end time dependency of y~ using Lemma to obtain adapted
TCs X7~ and along with them Z?~ by application of Lemma to g;

propagate Ts, Y7~ and P through the jump using A and obtain Y77;

adapt Y77 according to the start time dependency of y* using Lemma to obtain
adapted TCs X T and along with them Z* by application of Lemma to g;




7 A lifted exact-Hessian SQP method
for OCPs with DAEs

In Chapter 4] we have shown how the lifting idea can be used to obtain an exact-Hessian Sequential
Quadratic Programming method for the solution of Nonlinear Programs (NLPf) with a
certain internal structure of the problem functions. Furthermore, we have presented in Chapter
6] how Taylor Coefficient propagation in connection with the principle of Internal Numeri-
cal Differentiation can be used to derive efficient schemes for the computation of higher-
order directional sensitivities of Initial Value Problem solutions for Differential Algebraic
Equations (DAEf). In this chapter we will now describe how both ideas can be combined and
adapted to create an efficient Lifted Partially Reduced Sequential Quadratic Programming
algorithm with exact Hessians for the solution of Optimal Control Problems (OCPk)
involving in the framework of direct multiple shooting.

7.1 The fundamentals of the method

We consider for now a (single stage) for index 1 [DAEE of the type (1.1)) with a Mayer term
cost functional and possibly coupled (multi-)point constraints, which includes interior point and

boundary constraints as special cases. Furthermore, we assume that we have introduced the length
of the horizon as parameter, using the time transformation described in Section and that this
is already accounted for in the model functions, such that the has the following form

min c(x(1), z(1),
u(-)x(-),z(-).p ( (1),2(1) p)

s.t.
A(t,x(t),z(t),u(t),p) - x(t

~—

= f(t,x(t),z(t),u(t),p), teT =10,1]
= g(t,x(t),z(t),u(t),p)
< h™(t,x(t),z(t),u(t),p)

(
{z} hpomt({tiax(ti);Z(ti)lti € Ta 1 S Z S npct}ap)v

S O O

where the point constraints shall also contain the fixation of the initial values x(0) = xo.

We apply now the direct multiple shooting approach presented in Section to transform
this into a In this process, we make use of the relaxed formulation of the algebraic
equations (cf. Section [5.3.7). For notational convenience we assume that the discretization grids
of the control functions and the continuous path and control constraints are chosen identical with

203
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the multiple shooting grid, defined by the timepoints 0 =ty < t; < ... < t; < ... < t, . = L.
Furthermore, we assume that the timepoints, in which the point conditions are defined, are also
part of the shooting grid. In the end, this leads to the following structured NLP

. L ¢(Wier Wi P) (7.2a)
W§,WE, U0, W WA Unp P
s.t.
0 Wity — X(tip s, Wi, wihug, p), 0 <d <npg—1 (7.2b)
0 = g(ti7w?7wiz7ui7p)a 0 < l < Nms (72(3)
0 <  hot,wEwiu,p), 0<i<nn (7.2d)
0 {Z} e ({t, wi w1 < i <, p). (7.2¢)

where we use here and in the following for notational simplicity the same symbols for the functions
as in the continuous OCP before, even if, e.g., they only depend now indirectly on the control
parameter. We now like to solve this NLP using a structure exploiting exact-Hessian SQP method
based on the lifting approach presented in Chapter

7.1.1 The structure of the QP subproblem

To see how we can use the lifting approach in this case, we first have a closer look at the structure
of the QP subproblems arising in the solution of (7.2) using an SQP method.

In each step of the SQP method, the following subproblem must be solved for the determination of
the step in the variables and for the determination of the new multiplier values (cf. Section [3.3.1)).
Note that in the following sometimes superfluous dependencies, e.g., for the cost functional or for
the point constraints, are not eliminated for notational convenience.

T
Awg AW] Awg
z z z
AWE AW} Awp
Allo AUO Allo
min : B : + v : (7.3a)
Aw* Aw? Au,Ap AW;(I Awﬁ Awi
ms ms ms
z z z
Awnms Awnms A Nms
Aunms Aunms A.u'nms,
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s.t.
Aw}
OxX(tiv1;ts, Wi, w2 u;, p) | Aw? .
— : x i) 7 b i <i<
0 d; + Awy,, H(wF, w?, s, p) Au | 0<i<mnm—1 (7.3b)
Ap
Aw}
ag(th W?cv W'z7 uj, p) Aw? .
= g i i <i<
0 g + GWE,WE Au | 0 <7< npys (7.3¢)
Ap
Aw}
ahcont tz 'xv _z’ i 7 .
0 S hicont+ ( y Wi, Wi, U p) AWI 7 0 SZ Snms (73(1)
a(W:{, Wizv uj, p) Aui
Ap
= i el 8hp°int(. ) [AwEF 8hp°int(. )
0 {2} men( g 30O Ay ) 2
< 2 G \aws) T gy AP (7-3¢)
where we define
Aw* = (Awg,...,Awy )
Aw® = (Awg,...,Awy )
Au = (Auy,...,Au,,,)
d, = W?+1 _X(ti+1;ti7wz(7wiz7uiap)
gi = g(ti7w?7wizvui7p)

and abbreviate analogously for the other functions. As a result, the corresponding KKT Matrix
has a characteristic structure that is depicted in Figure [7.1 on the following page|

The classical condensing approach [BP84| would first compute all the quantities, especially the
complete Hessian blocks and constraint Jacobians, in the above QP and then eliminates the steps
in the differential nodes Aw,1 < i < ny, from the problem by using the linearized continuity
conditions (7.3b). Note that in the case of fixed initial values, Awy can also be eliminated
trivially. The QP has now been condensed to a smaller problem in Aw? Au and Ap, from
which afterwards the step Aw* (and also the new multiplier of the continuity conditions) can be
expanded.

Note furthermore that in the more general case of nonlinearly coupled multi-point constraints or
a cost functional that does not decouple properly on the different shooting intervals, the structure
of the Hessian would not be block-sparse, but dense. While this would not make a difference
for the lifted approach presented here, it would render the classical condensing approach more
complicated. Here either some reformulations would be needed to regain some structure, or in the
worst case the complete full-space Hessian would have to be approximated.

In principle, we could now employ the lifted exact-Hessian SQP approach from Chapter [4] in
a straightforward way to solve the NLP (7.2). The function to be lifted in this context is the
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L
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=
]

—
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Figure 7.1: The characteristic structure of the (full-space) KKT-Matrix of the arising in the direct multiple
shooting approach, if we assume the decoupling of the cost functional and only linearly coupled multi-
point constraints. Note that free global parameter possibly have to be “localized” on the intervals to
obtain above structure. The Hessian (upper left part) is block-sparse and also the constraints (lower
left part) are typically to a large extent block sparse. From top to bottom we see here the structure
of the linearized continuity conditions, the linearized consistency conditions, the linearized decoupled
node constraints and the linearized coupled node constraints.

combined evaluation of the Lagrange gradient and of the discretized path and control constraints
, the point constraints and consistency conditions . The nodes in the lifting
sense are the differential multiple shooting node values and the corresponding multiplier of the
continuity conditions. By applying the lifted Newton method to this function we then obtain a
lifted exact-Hessian SQP method that computes the quantities of the condensed QP directly by
univariate forward /reverse propagation in directions of the control parameter, parameter and
the algebraic variables at the shooting nodes. Unfortunately, for large scale systems with a lot of
algebraic states and in comparison only a few control parameter, this would lead to an inefficient
approach, as the resulting QP would still be very large. Hence the aim is also to eliminate the
steps in the algebraic shooting node variables from the QP, such that it is reduced in size to the
“true” degrees of freedom. How this can be achieved is presented in the next section.

7.1.2 Partial reduction technique for DAEs

As mentioned before, the lifting idea can be used straightforward to compute directly a condensed
QP in the steps of control parameter, parameter and algebraic variables. The reason why it is not
possible to obtain easily a reduced QP only in the control and parameter steps are the possible
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discontinuities in the algebraic state trajectories and the fact that the algebraic states are only
defined implicitly through the other variables. This prohibits to formulate corresponding explicit
matching conditions, which would be needed for the direct application of the lifting approach to
eliminate the steps in the algebraic variables in a fully automated way.

However, the partial reduction technique for DAEs presented in [Lei99] in context of the classical
condensing can fortunately be transferred to the context of our lifted SQP method presented in
Section [4.2.3]to overcome this problem. The partial reduction strategy for the classical condensing
makes use of the index 1 assumption on the underlying DAE model and uses the linearized
consistency conditions to eliminate the algebraic steps from the problem. Recall that due
to the index 1 assumption the Jacobian of g with respect to the algebraic variables is invertible.
Hence we can reformulate to

_ AwX
8 tz o 7 i) ! 8 t’ia ?(a ‘z7 i !

Awp = — (28lewi i wep)) o sl WE WP A 0<i<nm (74)
0z J(x,up) Ap

This relationship can be used to eliminate the steps in the algebraic variables from the QP in
terms of the steps in differential variables, control parameter and parameter. One then arrives at
a partially reduced QP of the form

=0

Awy Awy Awy
AUO Auo AUO
~ : —~ T :
min : B : + Ve : (7.5a)
Aw* Aw?z Au,Ap Awflms Awr’ims Awims
A.l'lnms Aunms A1'1nms,
Ap Ap Ap
s.t.
AwE
1 OX(tir; i, Wi, W, w4, ' :
0 - d+aws, -2 L Wi W B Py [aw |, 0<i<nn—1 (7.50)
a(wi 7Wi , Ui, p) Ap
AwE
T oo ahcont ti) ?{7 'Z7 i ! .
0 < hey a(< b i M u) Py (aw |, 0<i<nm (7.5¢)
W, W2, u;,
1) 1) p Ap
= —— =L OhPorE(L ) ~ 1 ohrPomt( )
0 { } faoint ( VA | + 8 Ap 7.5d
<p P ) U\ AN T 2P (750
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where we define

Fycont
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—_~—
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The structure of this QP is still similar to the full-space QP as we can see in Figure

N

Figure 7.2: The characteristic structure of the KKT-Matrix of the arising in the direct multiple shooting
approach, after applying the partial reduction technique for DAEs to eliminate the algebraic variables
from the problem. The transformed Hessian (upper left part) is still block-sparse and also the remaining
constraints (lower left part) have very much the same block-sparse structure as before.

The quantities of this “preprocessed” QP can be computed by directional derivatives according

to the direction matrices Vy; .

Afterwards, the steps in the differential variables can again be
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eliminated by classical condensing using the conditions to arrive at a small QP in Au and
Ap with a structure depicted in Figure [7.3] Once these steps are computed, Aw* and Aw?” can
be expanded based on ([7.5b)) and , as well as the multiplier values with the exception of the
multiplier of the consistency conditions (see |Lei99] for more details).

Figure 7.3: The characteristic structure of the KKT-Matrix of the arising in the direct multiple shooting
approach, after applying the partial reduction technique for DAEs and condensing to eliminate the
differential and algebraic states from the problem. The condensed Hessian (upper left part) is now
dense and the remaining condensed constraints (lower left part) have a stair-like shape.

If one compares now the quantities of this preprocessed QP and the quantities that occur during
the computations of the lifted SQP, one can observe that the partial reduction and elimination of
the algebraic steps can be achieved in the lifted SQP simply by substituting the original residuals
d; by the modified residuals d; in the suitable computations (and analogously for the constraints
and the cost function) and by modifying the directional derivatives computed in the lifting algo-
rithm according to the V, ;. With these modification of our lifted SQP approach we can directly
compute the quantities of the condensed QP in Au and Ap using directional derivatives only in
the “true” degrees of freedom u and p (plus one)).

7.1.3 Computing the condensed QP using lifting and IND-TC
propagation

We apply in our lifted SQP algorithm univariate first and second order (IND-)TC propagation for
the computation of the directional derivatives of the problem functions and the directional sen-
sitivities of the IVP solutions. These approaches were presented and developed in the Chapters
and @, respectively. We now address shortly how (IND-)TC propagation is used in the multi-
ple shooting context to perform the evaluation of the residual and the reduced function as well
as of the derivatives of the reduced function that occur in the lifted Newton algorithm in Chapter [4]

First let us recall once more that the lifted exact-Hessian SQP is based on the lifted Newton
method (Algorithm [4.4), where the function that is lifted is the combined evaluation of the La-
grange gradient and of the constraints (7.2d) and (7.2¢) (cf. Section [4.2.3]). The constraints are in
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the following summarized as h. The nodes that are introduced in the lifting context are here the
differential multiple shooting node values w¥ (also called primal nodes) and the multiplier A; (also
called dual nodes) of the corresponding continuity conditions . The multiplier associated
with the constraints h we denote in the following with p. With d; and d; we denote the primal
and dual node residuals, respectively.

The different operations of the lifting framework are then performed as follows.

e To update the node residuals and to evaluate in parallel the reduced function (cf. Algorithm
[4.3), in this case the constraints and the Lagrange gradient, a sequence of IVP solutions and
node function evaluations is performed forward through the time horizon. This is followed
by corresponding first order adjoint (IND-)TC sweeps backwards through the time horizon.
This is described exemplarily in Algorithm for the ODE case.

Algorithm 7.1: L-PRSQP: Residual and function evaluation

fori=0:n,,—1do
Solve IVP on interval [t;, ¢;,1] for initial values w, and parameter u;, p to obtain
Xit1 = X(tip1; t;, Wi, u;,p). During integration store the discretization scheme and the
trajectory values on tape;
Update d; := Wi, — Xj1;

for i = 0: ny do
Compute the constraint residuals h; and the adjoint derivatives of the constraints h; for
the adjoint derivative direction p;;
Compute the cost functional contribution of the node ¢ and its gradient ¢; with respect to
| the variables in node 1;
fori=n,s—1:0do
Update the dual node residuals d; := \; — I_li+1 — Cir1 — Xiy1 (assume X, = 0 and only
consider the x-parts of the adjoint derivatives here);
Perform a first order adjoint IND sweep through the interval [¢;,¢;,1] with adjoint
| sensitivity direction A; to obtain X;;
Update the Lagrange gradient by adding the corresponding u; and p parts of X as well as of
h; and &; for 0 < i < nyg;

e To compute the derivatives of the reduced function w.r.t. the degrees of freedom, first order
forward sweeps through the IVP solutions and the node function evaluations are employed,
followed by second order reverse sweeps. The number of forward sensitivity directions in-
creases here from n, + n, on the first interval to (nms — 1)n, + n, on the last interval.
Accordingly, the number of adjoint TCs to be propagated by (IND-)TC decreases from the
last to the first interval from (nm,s — 1)n, + n, to ny + n,.

e The directional derivative of the reduced function in direction of the (primal and dual) node
residual vector (d”,d”)7T is computed in a similar way by a first order forward (IND-)TC
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sweep, followed by a second order adjoint IND-TC/TC sweep through the IVP solutions and
the node function evaluations. Here only one forward and adjoint direction is needed.

e Finally, the steps Ap, Au and A in the parameter, the control parameter and the con-
straint multiplier, respectively, that are computed by the solution of the condensed QP, have
to be expanded to the steps Aw*, AX and Aw? in the differential node variables, the cor-
responding multiplier and the algebraic node variables, respectively. This can be achieved
by one additional first order forward sweep through the problem functions combined with a
following second order adjoint (IND-)TC sweep backwards through the time horizon for one
sensitivity direction.

Note that usually only in the update of the node and constraint residuals an ordinary IVP solution
with determination of the discretization grid and tape storing has to be performed. All other
IND operations are performed based on the stored discretization schemes and use the taped
information. This leads to a significantly increased performance by avoiding, e.g., additional
matrix factorizations and step rejections. Furthermore, it ensures that the numerically computed
derivative information is consistent with the numerical function evaluation.



212 7.1. THE FUNDAMENTALS OF THE METHOD

7.1.4 The basic L-PRSQP algorithm

We now formulate our lifted exact-Hessian SQP method for DAE-OCPs, employing the partial
reduction technique for DAEs and (IND-)TC propagation for the computation of the needed
derivatives and sensitivities.

The basic algorithm then reads as (compare also the lifted Newton Algorithm [4.4 on page 83):

1. Initialization. Set u and p to their initial values. Initialize w* and w” either to given
values or by a zero order forward sweep (the sequential solution of the corresponding initial
values problems). Initialize the multiplier of the discretized path and control constraints
and of the point constraints to zero. Initialize the multiplier of the continuity conditions by
a first order adjoint sweep.

2. Residual and function evaluation. Evaluate the current primal (node) residuals as well
as the constraint residuals and the cost functional by sequential zero order forward sweeps
(IVP solutions) on the multiple shooting intervals. Evaluate the dual (multiplier) residuals
and the Lagrange gradient by adjoint sweeps (cf. Section[7.1.3)). In this context also evaluate
the Jacobians of the consistency conditions with respect to the algebraic variables in the
gridpoints and store them (usually these are quite sparse matrices).

3. Termination check. If the maximum number of iterations is exceeded or the termination
criterion is fulfilled, then STOP.

4. Computation of condensed QP quantities. Compute the constraint Jacobians by se-
quential first order forward sweeps in the directions of the control parameter and parameter.
Perform afterwards second order reverse sweeps to obtain the Hessian and the Lagrange gra-
dient. Finally compute the “correction” term for the constraint residuals and the Lagrange
gradient by a first order forward and following second adjoint sweep in the direction of the
node and multiplier residuals.

5. QP solution. Compute and set the simple step bounds for control parameter and param-
eter. Assemble the QP data and pass them to QP solver. Initialize the active set of the QP
solver with the one of the previous QP solution. Solve the QP.

6. Step expansion. Expand the computed step in control parameter and parameter to the
step in the differential and algebraic nodes. Compute the step in the constraint multipliers
for the discretized path/control constraints and point constraints from the multipliers of
the QP solution. Expand this multiplier step to the step in the multiplier of the continuity
conditions by a following second order adjoint sweep.

7. Step application. Apply the computed step in variables and multipliers, then go to 2.
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7.2 Further aspects

In order to apply our proposed algorithm successfully for the efficient solution of practical appli-
cations, there are some additional aspects to consider. The most important are addressed in the
following.

7.2.1 Termination criterion

An important question in practice is when to stop the algorithm. Usually, if we let the algorithm
iterate freely, at one point the algorithm will mainly work to compensate quasi-random discretiza-
tion and round-off errors introduced, e.g., by the IVP solution on varying integration grids. In
this case, iterating further will not improve the solution significantly but only lead to unnecessary
computational effort. Sometimes the solution is also needed only with a lower accuracy. Hence in
general it is sensible to define a suitable termination criterion for the algorithm.

We use in our SQP algorithm the so-called KKT tolerance, that goes back to Powell and has been
later used also by other authors, e.g., [CS84] Lei99]. The KKT tolerance is defined by

kktTol := [Ve(€) AE| + ) INIKTUE)] + Y 1" hi™ (&), (7.6)
i=1 i=1

where € combines all NLP variables, h®d and h®d subsume all equality and inequality constraints of
the problem, respectively, and A°? and p'"°9 are the corresponding multiplier. The KKT tolerance
hence combines the possible improvement in the cost functional and the weighted constraint
violations. We stop our algorithm as soon as the KK'T tolerance decreases below a user given
accuracy.

7.2.2 Trust region globalization

As discussed in Section an exact-Hessian SQP method needs in practice a (trust region)
globalization strategy. We use in our algorithm the Trust Region (TR) globalization strategy
given in [Lei99]. Although global convergence of the algorithm to a local minimum based on this
strategy cannot be proven rigorously, it has been used successfully for several years now in the
code MUSCOD-II and hence proven reliable.

The TR strategy is based on the modified [; penalty function, given by

Neq—N1 TMineq

P& v A m) = c(§) vy AURIEN+ D AhH@)] + Y 1™ min(0, " (E)],  (7.7)
i=1 i=1

=1

where € combines all NLP variables, h{* contains all consistency conditions and h5! as well as hi"¢d
subsume all other equality and the inequality constraints of the problem, respectively. A°? and
pined are the corresponding multiplier. As common, the size of the weights must be larger than
the absolute values of the corresponding multiplier to ensure exactness and compatibility with the
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search direction. As the multiplier of the consistency conditions are not available, a heuristic is
used for the choice of v. For more details on this topic, we refer to [Lei99]. Based on this merit
function, we employ a box trust region strategy, where the step in NLP variables in the QP is
limited to ||A&||o < p. After the step candidate has been computed, it is tested for improvement
of the merit function using the criterion

P(é + A£7 v, x? ﬂ) S P(€7V75\7ﬂ) + 6DA£P(€7 v, xu ﬂ)?

where, e.g., ¢ = 107* and Dag describes the directional derivative in direction AE. The trust
region is then adapted as follows. If the criterion is fulfilled in the first attempt and a trust region
bound is active, the trust region radius is doubled and the QP solution is repeated. If the test
fails, the trust region size is decreased by the factor 2 and the QP solution is repeated. Otherwise,
the trust region radius remains unchanged, the step is accepted and the algorithm proceeds.

7.2.3 Infeasible subproblems

In practice, it might happen that in some SQP iteration the QP subproblem becomes infeasible,
e.g., due to a very small trust region radius. This is usually detected by the QP solver and the
violated constraints are identified and hence can be obtained from the QP solver. To overcome
this problem, we employ a constraint relaxation strategy which loosens the linearized constraints
of the QP in the following way: For each violated constraint the violation is computed and
the corresponding constraint bound is shifted by 1 + 0 times the violation, with, e.g., 6 = 0.1.
Afterwards, the QP solution is repeated and the algorithm proceeds. However, the corresponding
SQP iteration is marked as relaxed and after too many relaxed iteration in a row, e.g., 10, the
algorithm terminates with an error.

7.2.4 Treatment of node bounds

In principle, simple bounds on the differential and algebraic nodes can be treated as inequality
constraints in the multiple shooting gridpoints. Then they are partially reduced and condensed
like normal constraints and finally enter the condensed QP subproblem. For larger systems, adding
all these inequalities leads to QP subproblems with very many inequality constraints. This in turn
complicates their solution and slows the algorithm down significantly.

However, it can observed for practical problems that most of these bounds never become active.
This motivates us to use a so-called potentially active bounds strategy proposed also in |Lei99):
Only the node bounds that are marked as potentially active are added to the problem, all other
node bounds are ignored. This set of potentially active bounds is empty at the beginning of the
solution process. After each QP solution and step expansion it is tested, whether a node bound
is violated. If this is the case, the corresponding bound will be added to the set of potentially
active bounds (and will remain there for the rest of the solution process). Then the QP solution
is repeated based on the new set of potentially active bounds. Note that no complete recalcu-
lation of the condensed QP quantities is needed in the case where new node bounds enter the
set of potentially active bounds. All information that is needed to construct the corresponding
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new condensed constraint is readily available or can be obtained by one additional directional
derivative.

7.2.5 Problem scaling

Theoretically, a Newton method (and our exact-Hessian SQP could in principle be understood as
such) should be invariant regarding to the problem’s scaling. In practice, however, the scaling of
a problem seems to have a significant impact on the performance of all types of SQP methods
(see, e.g., [CS84]), which probably is often a result of error-amplification due an ill-conditioning.
Also the solution of the occurring IVP problems, and here especially the internal error estimation
of the integrator, relies on a proper model scaling, or on suitable scale factors (see also Section
. In general, it would favorable when a proper scaling would have been performed completely
in advance by the modeler creating the problem description. However, as this cannot always be
expected and sometimes is also not possible in practice (e.g., due to auto-generated models),
we offer in our algorithmic setup the possibility to scale all occurring variables, as well as the
constraints and cost functionals.

7.2.6 Free initial values

We like to mention here that the presented algorithm can also be extended straightforward to the
case, where a part or all of the initial (differential) states are true degrees of freedom. Even if all
initial values are free our lifted SQP approach can be employed, but will probably not give rise to
a speedup compared to the classical condensing approach.

7.2.7 Other cost functionals

In the problem description above, we restricted ourselves to the case of a Mayer term cost func-
tional. However, of course other cost functional types can be used in connection with our algorithm.

A Lagrange cost functional can, e.g., simply be introduced by adding the Lagrange term as ad-
ditional differential state with initial value zero and by adding the value of this state at the final
time to the Mayer term.

For nonlinear least-squares problem we offer the possibility to define the least-square residual
function that is then evaluated in the gridpoints. This can be used either in connection with the
lifted SQP described above, or with the lifted Gauss-Newton method which is also implemented.

An extension of this is a least-square function defined on an arbitrary timegrid, which is often de-
sired in parameter estimation problems or in optimal experimental design. This can be achieved by
the use of the continuous forward sensitivity output and the adjoint sensitivity injection facilities
of our integrator DAESOL-II (cf. Sections [6.7.3| and [6.7.4). Combined with the use of integra-
tor plugins also a continuous least-squares function can be achieved, e.g., based on a numerical
quadrature formula.
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7.2.8 Multistage problems

The algorithm can be extended in a straightforward manner for the treatment of multistage
problems. The forward sweeps are in this case not terminated at the end of the first stage, but
instead continued through the stage transition function to the next stage and so on. Similarly,
the corresponding adjoint sweeps are performed beginning on the last multiple shooting interval
of the last stage and proceeding backwards to the first interval of the first stage, also passing the
stage transition functions in the reverse order in this process .

7.3 Comparison with a classical condensing approach

At the end of this chapter, we give a short comparison of the estimated memory and run-time
demands of our L-PRSQP algorithm and an exact-Hessian PRSQP algorithm employing classical
condensing, such as implemented in MUSCOD-II [DLSO1].

We assume in the following that we solve a one stage problem with Mayer term cost functional,
nms shooting intervals, neonsty decoupled constraints in each timepoint of the multiple shooting
grid and fixed initial values. Furthermore, we assume a piecewise constant discretization of the
controls, such that we have n, control parameter for each interval.

To compare now our lifting based strategy with the approach using classical condensing, we first
note that for large scale problems usually the costs for derivative/sensitivity computations domi-
nate the costs of the overall solution process. In this particular comparison, the cost for sensitivity
generation also constitutes the main difference between the two approaches, as the size of the QP
subproblems solved in each step is identical and comparably small.

If we consider now a PRSQP approach based on the classical condensing, the main computational
costs here are related to the computation of the Hessians (and Jacobians) of the problem functions,
the generation of the sensitivities of the IVP-solutions needed for the condensing, and the con-
densing of the QP subproblem itself. In our lifting approach, the costs associated with condensing
do not exist, and the Hessians and Jacobian only need to be computed in a smaller subspace,
given by a set of directions. On the other hand, another directional derivative is needed here
for the expansion of the QP solution to the step in the NLP variables (cf. Section . In the
end, the complexity of the lifted approach does not depend on the number of states of the problem.

Regarding the memory demands of the two approaches, the classical condensing needs to store
the complete Hessian matrix of the Lagrangian and the complete constraint Jacobians w.r.t the
differential states, parameter and control parameter as well as the full sensitivity matrices on the
multiple shooting intervals. Note that the Hessian of the Lagrange function and the constraint
Jacobians are block-sparse, where the degree of sparsity is mainly determined by the number and
the dependencies of the coupled constraints. Without nonlinearly coupled constraints (and using
“localized” parameter), the Hessian will be block-diagonal, where one block corresponds to one
multiple shooting interval.
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The Tables and show the complexity of the computational costs for the classical approach
and the lifted approach, respectively, and Table [7.3 on the following page| gives a comparison of
the memory demand of both approaches for the case of decoupled (or at most linearly coupled
multi-point) constraints. For a more detailed explanation on the computational costs and the
memory demand arising in the classical approach refer, e.g., to [Lei99].

Computational task H Complexity classical condensing
Hessian + constr. Jac. | O(nms(ne +ny +ny)) [IVP]

(fwd/adj IND-TC) O (Neonstrms (N + 1y + 110)) [F]

Hessian + constr. Jac. | O(nms(ng +n, +ny)?) [IVP]

(Finite diff.) O (MeonstrTms (M + 1y + 114)°) [F]
Condensing O (Nms(Mconstr + N )Nw (Mg + 1 +104,)) [O]
QP solution O((1p + nimsnu)”)[O]

Step expansion O (Nmsnz (ng + ny +ny,))|O]

Other calculations O (Nms (Neonstr + Mz + 1 + 114,) ) [O]

Table 7.1: Estimated costs of the tasks in one SQP step of methods based on classical condensing, using the partial
reduction strategy for DAEs. The costs are stated in terms of IVP solutions on one interval [IVP],
nonlinear scalar function evaluations [F] or general multiply-add operations [O], e.g., resulting from
matrix-matrix or matrix-vector products. Only the leading complexity terms are given.

Computational task H Complexity lifting

condensed Hessian + || O(nps(225%n, +n,)) [IVP]

condensed constr.Jac. || O(nys(25tn, +n,)) [F]

QP solution O((ny + nmsny)?)[0]
Step expansion O(nms)[IVP]
Other calculations O (Nms (Neonstr + Mz + 1y 4 14,) ) [O]

Table 7.2: Estimated costs of the tasks in one SQP step of methods based on lifting, using the partial reduction
strategy for DAEs. The costs are stated in terms of IVP solutions on one interval [IVP], nonlinear scalar
function evaluations [F| or general multiply-add operations [O], e.g., resulting from matrix-matrix or
matrix-vector products. Only the leading complexity terms are given.

These comparisons demonstrate clearly that for large scale problems with few degrees of freedom
the L-PRSQP approach based on lifting outperforms the classical approach by far. For these
problems, the classical approach will also often be computational infeasible. Consider for example
a problem with n, = 10000 differential states and n, = 15 controls, that is discretized with
piecewise constant controls on a grid with n,s = 20 gridpoints. The resulting storage capacity
needed in the classical approach, only for the Hessian blocks, is then 20-10015- 10015 - 8 bytes or,
approximately, 14.95 GB, which is nowadays near the limits of workstation memory (especially,
if we consider that also some memory is needed for IVP solution and sensitivity generation).
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Quantity H Memory classical condensing ‘ Memory lifting
Hessian blocks O(nums(ng + ny + ny)?) —
condensing matrices O (NmsNe(Ng + My + 1)) —
constraint Jacobians O((Nconstr + Ma) s (Mg + 1y + 1)) —
Jacobians G ; O(nmsn?) (sparse, worst case)

condensed Hessian O((nmsny +np)?)

condensed constr. Jacobian O (NconstrMms (M, + 1))

other QP data and O (Nms (Neonstr + M + 1z + 1y + 1))
variables, residuals,etc.

Table 7.3: Estimated memory demand of exact-Hessian SQP methods based on classical condensing and on lifting,
respectively, using the the partial reduction strategy for DAEs. Only the leading complexity terms are
given.

Furthermore, in each SQP step the equivalent of more than (21-20-0.5-15+20-10000)-10 = 2031500
IVP solutions (provided the second order forward/adjoint IND-TC/TC approaches presented in
this thesis is used for the Hessian computation, more than 2 billions if the Hessian is computed
by finite differences or pure forward IND as, e.g., in MUSCOD-II) has to be performed, which is
usually not possible within a reasonable timeframe without using a large parallel computer. The
L-PRSQP approach needs in this case a storage capacity in the order of several megabytes and the
equivalent of about 21-20-0.5-15-10 = 31500 IVP solutions and will hence still be computationally
feasible on an ordinary desktop PC.



8 Numerical examples for lifting-based
optimization

In this chapter we illustrate with the help of several numerical examples the properties and ad-
vantages of the lifted optimization methods derived in Chapter [4]in more detail.

The first two sections show applications of the lifted Gauss-Newton and the lifted SQP algorithm,
respectively, to a toy example from optimal control. In the third section we illustrate how the
lifting idea can be used to adapt a given numerical simulation code for the efficient solution of a
large scale parameter estimation problem with Lift0Opt.

8.1 A Gauss-Newton toy example

For this first toy example we consider the tutorial optimal control problem for a one-dimensional
dynamical system from [DBDWOG|

mm fo |z (t)|* + |u(t)]?dt (8.1a)
s.t.

(1) = a(t) (z(t) +1) + u(t) (8.1b)

2(0) = 20 (8.1¢)

(3) —0 (8.1d)

|z(t)] <1 (8.1¢)

Ju(t)] <1 (8.1f)

The objective is to minimize the absolute value of the state over the whole time horizon while
penalizing the control. Note that the system cannot be controlled and “blows up” if the state goes
beyond x;, &~ 0.619.

To solve this infinite-dimensional problem, we employ a direct multiple shooting discretization
and divide, as explained in Section the time horizon into a grid with 30 equal subintervals
of length 0.1 and discretize the controls to be piecewise constant on each of these intervals.

The integral objective is approximated as a sum, where the function evaluations are made at
the grid points. The state constraints are enforced also only at the grid points. To solve the
system dynamics we use Euler’s method with time steps equal to the subintervals. Doing this,
we obtain a finite-dimensional NLP which we solve using the lifted Gauss-Newton algorithm,
proposed in Section [4.2.1T on page 86| as well as with the non-lifted version, both implemented in
LiftOpt. We employ here the full-step methods without globalization strategies. The lifting is

219
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done by introducing the 30 state values at the grid points as intermediate values. The arising QP
subproblems are solved using qpOASES [Fer(7].

In this example, we employ two different initialization strategies when using the lifted approach.
To begin with, we apply the lifted Gauss-Newton approach and use a function evaluation to
initialize the intermediate values. Additionally, we use the fact that we want to minimize the
absolute values of the states and set all intermediate values to zero. The convergence criterion
is based on the sum of the Fuclidean norm of the step in the controls, the Euclidean norm of
the constraint violations and, in the lifted case, the Euclidean norm of the residual vector. The
tolerance was chosen to be 1076,

In Table we show a comparison of the results for different initial values x( of the dynamical
system. The controls are initialized to zero on all subintervals in every case which means that
with growing initial state the problems become more difficult to solve. We observe that although
the lifted approach performs in most cases already slightly better than the non-lifted one, we can
still improve the performance considerably by using a priori information in node initialization,
an advantage well known from the context of direct multiple shooting [Boc87|. Furthermore, we
observe that a reasonable initialization of the nodes makes the optimization more robust against
bad initial guesses of the controls. This allows a quick solution, even when in the non-lifted or
automatically initialized lifted algorithm the initial guess for the controls would lead to a blow up
of the system.

X # iterations #iterations #iterations
unlifted lifted (autom. init.) | lifted (zero init.)
0.02 5 5 4
0.03 6 5 4
0.04 6 6 4
0.05 7 6 4
0.06 8 7 5
0.07 9 7 5
0.08 10 8 5
0.09 13 10 5
0.10 17 13 5
0.20 err an err,an 6
0.30 eIt an err an 7

Table 8.1: Results of the Gauss-Newton approaches for the optimal control example described in Section
Shown are the number of iterations needed until convergence for different initial states zy of the dy-
namical system. err,,, denotes that the run was not successful, because the system “blew up” during
integration at some iterate, such that the QP solver quits due to ‘nan”-values. Compared are here the
non-lifted Gauss-Newton approach, the lifted Gauss-Newton approach with automatic initialization of
the intermediate values by system integration and the lifted Gauss-Newton approach when started with
nodes initialized to zero.
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8.2 An SQP toy example

To test the lifted SQP algorithm, proposed in Section 4.2.3 on page 89| we consider again the
optimal control problem . We use the same setup as in the previous Gauss-Newton case
with small modifications. The gradient of the Lagrangian is evaluated using the adjoint mode
of automatic differentiation. To lift the system we introduce along with the system states at
the gridpoints the corresponding adjoint values which leads to 60 intermediate values. Again
we apply and compare the proposed (full-step) exact-Hessian SQP algorithm in three variants:
(i) the non-lifted version, (ii) the lifted version using automatic node initialization and (iii) the
lifted version using a zero initialization. The results are shown in Table First, we observe
that, compared to the Gauss-Newton methods, the SQP versions sometimes lag slightly behind,
especially the unlifted version when we start at some distance from the solution. In this case,
the Gauss-Newton approximation leads to faster convergence than the exact Hessian with its bad
initial multiplier guesses. As we use here an exact-Hessian and undamped method, in one case we
cannot avoid the bad luck to run into an area where the Hessian is not positive definite, leading
the QP solver gpOASES [Fer07| to quit the iterations. When started closer to the solution by zero
initialization, we see that the SQP method converges faster than Gauss-Newton due to the better
local convergence properties. Besides that, comparing the lifted and non-lifted versions of the SQP
we again see a better performance of the lifted versions and again the zero initialization leads to
much faster convergence and to a more robust behavior.

X # iterations #iterations #iterations
unlifted lifted (autom. init.) | lifted (zero init.)
0.02 6 5 3
0.03 7 5 3
0.04 8 6 3
0.05 9 6 3
0.06 10 6 3
0.07 12 7 4
0.08 15 8 4
0.09 19 11 4
0.10 25 err,q 4
0.20 eIt an err an 4
0.30 eIt pan erT an 4

Table 8.2: Results of the SQP approaches for the optimal control example described in Section Shown are
the number of iterations needed until convergence for tolerance tol = 10~¢ and different initial states
of the dynamical system. err,,, denotes that the run was not successful, because the system “blew up”
during integration at some iterate, such that the QP solver quits due to “nan”-values. err,, denotes that
the run was not successful, because at some point the Hessian became indefinite, leading to an exit of
the convex QP solver. Compared are here the non-lifted SQP approach, the lifted SQP approach with
automatic initialization of the intermediate values by system integration and the lifted SQP approach
when started with nodes initialized to zero.
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8.3 Lifting a simulation code for the shallow water equation

In this section we illustrate the possibilities of the lifting idea for the extension of user given
simulation /evaluation code. As application example we choose a parameter estimation example
involving a shallow water equation model describing wave propagation in a basin that we found
on the internet [Cop| in search for some truly large scale “user function” for use within Lift0Opt.
The model is described by a system of hyperbolic Partial Differential Equations (PDEE) and the
corresponding equations are given by

owu(t,x,y) = —goh(t,x,y) —bu(t,x,y)
8tU(t,]],y) = _gayh(t7x7y) - bv(t,x,y)
Oh(t,x,y) = —H[Ou(t,z,y)+ oyt z,y)l,

where u, v are the horizontal and vertical water velocities, h is the deviation of the water surface
from the mean water height H, g &~ 9.81 is the gravitational constant and b the viscous drag.
As “true” values for b and H we use b = 2 and H = 0.01. For the numerical test we assume a
quadratic basin corresponding to © = (0,0.2) x (0,0.2) and consider the time horizon ¢ € [0, 1].
Furthermore, we assume that the basin is bounded by walls that reflect the incoming waves.
We use an equidistant discretization in space of 30-by-30 gridpoints, finite differences in space,
and for time-stepping we use the stepsize dt = 10~* with an explicit Euler scheme, resulting in
3-30-30-10* = 27 - 10° internal variables. In our scenario we start with a plain surface and
add at start time a splash of height 0.01 and radius 0.03. The numerical solution is depicted for
component h in Figure 8.1 on the next pagel During system simulation we take measurements
only of component h every 100th time step.

The least-squares objective function we use in the parameter estimation to determine b and H
is the quadratic deviation of h from the measured data in Euclidean norm, summed up over all
90000 measurements. As constraints we impose that neither b nor H should become negative.
The convergence criterion is based on the sum of the Euclidean norm of the step in the controls,
the Euclidean norm of the constraint violations and, in the lifted case, the Euclidean norm of
the residual vector. The tolerance was chosen to be 107¢. We apply the lifted and non-lifted
Gauss-Newton approach to solve the problem. The lifting is done by introducing the values of h
at the measurement times as node values, leading to overall 90000 node values.

The test was performed on a Linux machine with a 3.0 GHz Pentium D CPU, 3 GB RAM and
GCC compiler version 4.3.2. The needed derivatives are computed by automatic differentiation
using the tool ADOL-C [GJU96] in version 2.0, that has been coupled to LiftOpt. Linear algebra
operations are performed using the ATLAS [WPDO1] library and the QP subproblems are solved
using qpOASES [Fer(07].

In the lifted case, we test using automatic node initialization as well as using the measurement
data for node initialization. The results for different initial guesses of b and H are displayed in
Table [8.3 on page 224 The average time needed for one iteration in the unlifted case is 8.86s,
while one lifted iteration takes on average 11.81s. Note that this difference in the effort for one
lifted versus one unlifted iteration will usually be smaller for problems with a larger number of
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Figure 8.1: Numerical solution for component i of the shallow water equation model described in Section for
the true values b = 2 and H = 0.01, depicted at timepoints (a): ¢ = 0.1, (b): ¢t = 0.25, (¢): ¢ = 0.5 and
(d): t =1.0.

degrees of freedom, due to a comparatively smaller overhead.

We observe that lifting does not improve the performance much if we start close to the true
parameter values. On the other hand, if we start at more distance from the solution, the lifted
approach again leads to a significantly faster convergence, especially for perturbations in the
parameter H. When the lifted approach is initialized with the measurement data, the performance
is even better, although only a part of the system state, i.e., h, is measured here.
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b H # iterations #iterations #iterations
unlifted lifted (autom. init.) | lifted (meas init.)
0.5 ] 0.01 5 5 4
5 | 0.01 6 5 4
15| 0.01 17 7 6
30 | 0.01 27 7 6
2 | 0.005 31 9 5
2 | 0.02 38 12 5
2 0.1 44 13 8
0.2 | 0.001 33 12 7
1 ]0.005 47 10 5
4 | 0.02 56 10 5
1 | 0.02 44 9 6
20 | 0.001 24 10 6

Table 8.3: Results of the parameter estimation example for the shallow water equation model described in Section
Shown are the number of iterations needed until convergence for tolerance tol = 107¢ and different
sets of initial parameter guesses. Compared are here the non-lifted Gauss-Newton approach, the lifted
Gauss-Newton approach with automatic initialization of the intermediate values by system simulation
and the lifted approach when using the measurement data for node initialization. The “true” parameter
values are b = 2 and H = 0.01. The average time needed for one unlifted iteration is 8.86s versus 11.81s
for one lifted iteration.



9 Numerical examples for sensitivity
related strategies

In this chapter we demonstrate the performance and efficiency of the sensitivity related strategies
presented in Chapter [6]on several test setups by the use of our integrator code DAESOL-II together
with our integrator package SolvIND.

We begin in the first section with an analysis of the different IND-based strategies on a scalable
test example. In the second section we compare on several examples from an IVP testset our
new adjoint IND schemes for sensitivity generation with the alternative, commonly used approach
of solving the adjoint variational equation. The third section shows the practical applicability
of our error control strategy for forward sensitivities. In the fourth section we demonstrate the
effectivity of our global error estimation strategy by a comparison with an alternative approach
from literature on a series of test examples.

9.1 Comparison of the different IND-based strategies for
sensitivity generation

We compare in this section how the different IND-based sensitivity generation strategies presented
in Chapter [6] perform numerically on a scalable ODE test problem from chemical engineering,
which is explained shortly in the following.

9.1.1 The SMB model

The example we consider here is the MODICON variant of the Simulated Moving Bed (SMB)
chromatography process with two species and six columns. It is described by a general rate
Partial Differential Equation (PDE|) model which is explained in more detail in [TEDT07|. For
both species i = 1,2 the general rate model considers three phases: the instationary phase c;,
the liquid stationary phase c,; and the adsorbed stationary phase g,;. The general rate model
consists of

Oic; = Pe; 10%¢; — 0,¢; — Sti (¢ — pilr1) s (t,z) € (0,T7) x (0,1), (9.1)
O (1 — €p)ap,i + €pCpi) =1 (T_Q& (TQ&CW)) ) (t,r) € (0,T) x (0,1),

and the boundary conditions
0.¢i(t,0) = Pe; (¢;(t,0) — ein(t)), 0.¢i(t, 1) = (9.3)
Orcpi(t,0) =0, Orcpi(t, 1) Bi; (¢;(t, 2) — ¢pi(t, 1)), (9.4)
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with positive constants e, (porosity), n; (nondimensional diffusion coefficient), Pe; (Péclet number),
St; (Stanton number), and Bi; (Biot number). The two stationary phases are coupled by an
algebraic condition, the nonlinear Bi-Langmuir isotherm equation

1 2
H;cy; Hiey,

— + :
L+ Fkicpr +kicpa 1+ kiepr +kicpo

Qp,i (95)

with non-negative constants H? (Henry coefficients) and %/ (isotherm parameter). The PDE
has essentially only one spatial dimension, as the dynamics inside the particles can be elimi-
nated [Gu95|.

For the discretization in space a higher-order Nodal Discontinuous Galerkin method is used, which
is described by Hesthaven and Warburton [HWO08|. This approach leads to a large, structured
ODE system in time. For more details on the discretization we refer to Potschka et al. [PBET08].

9.1.2 The test setup

For the numerical tests we use a series of different discretization orders and different numbers of
discretization points. The resulting number of variables in the IVP is n = 24m(l + 1) + 13, where
[ is the discretization order and m the number of discretization elements per column. The total
size splits up into n, = 24m(l + 1) + 7 differential states, n, = 1 parameter, n, = 4 control
parameter and n,, = 1 parameter for the length of the time horizon. The iteration matrix in the
BDF method is block sparse. Enlarging the number of elements increases the number of blocks,
whereas increasing the order leads to a larger blocksize. This is sketched in Figure |9.1

An analysis of the eigenvalues of the Jacobian of the right-hand side function of the ODE model
of the SMB process shows that with increasing problem size, i.e., a finer discretization in space,
more and more eigenvalues move closer to the imaginary axis. This situation is demonstrated in
Figure Hence, stability problems for higher-order BDF methods are to be expected and have
also been confirmed numerically in tests for the maximum orders k.. = 4,5 and 6. Therefore,
we restrict the maximum BDF order to kpa = 3 for our tests.

The computations are performed using DAESOL-II/SolvIND on a desktop computer with an In-
tel Pentium D CPU with 3.0 GHz and 3.8 GB of RAM, running under the Ubuntu 8.04 64-bit
operating system. The code was compiled with GCC version 4.3.2. The generation of the model
derivatives is done using the tool ADOL-C [GJU96] in version 2.1.0. UMFPACK [Dav04] in ver-
sion 5.0.2 is used for sparse matrix operations. We run a series of tests for orders r = 2,...,12
and with m = 2,...,24 elements for each order. The number of differential states lies between
n, = 151 and n, = 7495 and the maximum number of nonzero elements in the iteration matrix is
nny = 160249. As tolerance for the integration we choose tol = atol = 107°.

For each combination of discretization order and elements, we perform a nominal integration on
the time horizon [0, 10] as base reference for comparison and one nominal integration with storage
of the scheme including trajectory values and matrices. Based on the stored discretization scheme,
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Figure 9.1: Sparsity structure of the iteration matrix in the BDF method for the SMB example for the case of
Il =2,m = 10 and the case [ = 9,m = 3, both leading to a problem of size n, = 727. We see that a
larger discretization order results in larger blocks of nonzero entries and in a larger number of nonzero
elements in the iteration matrix.

we perform a deferred first order iterative forward IND sweep and a first order iterative adjoint
IND sweep, each for one sensitivity direction. The direct schemes are not considered here due to
the high effort that would be needed in this example to build and factorize the iteration matrices
in every IND step. Then we perform a second order forward IND-TC sweep and a second order
forward /adjoint IND-TC sweep, also for one directional sensitivity in each case. Finally, we per-
form an integration replay based on the stored discretization scheme with disturbed initial values
and parameter to generate a forward sensitivity by IND using finite differences. For each of these
actions, a number of timings and statistics is taken. The results are depicted in Figure
and Figure 9.4 on page 231|

For the comparison, we choose the number of the nonzero elements of the iteration matrix ny,
as problem size. This quantity correlates directly to the costs for the matrix operations and the
derivative evaluation, which together normally dominate the overall effort.

In Figure[9.3 we see that the numbers of integration steps, of Newton-like iterations and of needed
matrix decompositions grow at first with the problem size, but then reach an upper limit. Due
to the monitor strategy only about every 20 integration steps a new iteration matrix is used
and overall only 2 Jacobian evaluations (for matrix rebuilds) are needed. The combination of
the monitor strategy and the exploitation of the good sparsity structure of the problem leads
in the end to a linear relation between the total integration time and the problem size. In the
nominal integration, half of the time is spent for model function and model derivative evaluation
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Figure 9.2: The stability regions of the (equidistant) BDF methods for orders 3 to 6 and a subset of the eigenvalues
of the right-hand side Jacobian of the SMB process for the cases of order r = 9 and m = 3 and m = 20,
respectively, scaled by the factor 0.001. The stability regions are the areas outside the solid boundary
lines. We observe that for larger problem sizes the (already scaled) eigenvalues do not lie inside the
stability regions for BDF orders larger than 3. This leads to stability problems with higher-order
BDF methods, enforcing very small stepsizes regardless of the local discretization error. Therefore, a
maximum BDF order of k., = 3 is advisable for the numerical solution of the problem.

and about one third for matrix factorizations and the solution of the linear systems. The average
ratios between the time needed for the nominal integration and the time needed for different other
operation are given in Table

We observe that an integration replay costs only about a half of a nominal integration, as no
additional matrix decomposition and derivative evaluations are needed in this case. The ratios of
the iterative first and second order forward IND(-TC) sweeps are significantly below the bounds
that given in AD theory for ordinary functions, as also here no additional matrix factorization
and Jacobian evaluations are needed. Also the first order adjoint IND sweep and the second order
forward /adjoint IND-TC sweep are a very efficient mean for sensitivity generation and their ratios
are still below the theoretical bounds for ordinary functions.

However, as we can see in Figure [9.4 on page 231] especially for the adjoint sweeps there is still
room for larger performance improvements. The key to obtain an even better performance is in
this case not an improvement of the IND schemes themselves, but in speeding-up the generation
of the model function derivatives, as they cause in average 87 percent of the effort in the first order
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‘ Average ratio between nominal integration and ... H ‘

integration replay | 0.53

forward IND sweep || 1.38

adjoint IND sweep || 3.73

2nd order fwd IND-TC sweep || 2.19
2nd order fwd/adj IND-TC sweep || 10.67

Table 9.1: The time needed for different integrator operations compared to the time for the nominal integration of
the SMB example.

adjoint sweep and about 94 percent in the second order forward/adjoint IND-TC sweep. If we
keep in mind that the number of model function evaluations in the nominal integration is equal
to the number of model function derivatives needed for a first order iterative adjoint IND sweep,
we see that the effort for the subtask of model function derivative evaluation does not respect the
theoretical bounds. In theory, the derivative evaluation in the first order adjoint IND sweep should
take between 3 and 4 times the time of the function evaluation in the nominal integration. Instead,
the average ratio for the SMB example is 12.40. Hence, bringing the effort of the model derivative
evaluation nearer to its theoretical bounds will improve the performance of our adjoint IND(-TC)
schemes tremendously. Of course, to a smaller extent this would also improve the performance of
the forward IND(-TC). Therefore, an investigation of other means of AD-based model derivative
generation besides operator overloading, such as a source code transformation that respects the
model-inherent structure including matrix-vector operations, would be very interesting for large
scale problems.
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Figure 9.3: This figure shows several statistics for the SMB example in relation to the problem size (nonzero
elements of the iteration matrix). The upper left figure shows the number of integration steps and
the overall number of Newton-like iterations. Both numbers grow at first with the problem size but
then remain below an upper bound. The same holds for the number of required decompositions of the
iteration matrix. The number of needed iteration matrix rebuilds is independent of the problem size
(upper right). The middle row shows that the total time for the nominal integration increases linearly
with the problem size, where the evaluation of model functions and derivatives takes about half of the
time (middle left) and matrix factorization and the solution of linear systems about one third (middle
right). The lower left figure shows the timings for an integration replay, where the model function
evaluations take about half the time. The lower right figure shows a comparison of the overall times
needed for the different integrator operations.
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Figure 9.4: This figure shows the timings for different kinds of IND sweeps for the SMB example: a first order
iterative forward IND sweep (upper left), a first order iterative adjoint IND sweep (upper right), a
second order forward IND-TC sweep (lower left) and a second order forward/adjoint IND-TC sweep
(lower right). Displayed are in each case the overall time needed, as well as the time needed for
evaluation of the model function derivatives and for the solution of the linear systems. We observe that
the derivative evaluation is in each case the most time consuming subtask, taking in average about 66
and 82 percent of the time in the forward IND(-TC) sweeps, respectively, and about 87 and 94 percent
in the adjoint IND(-TC) schemes, respectively.
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9.2 Adjoint IND versus solution of adjoint variational
equation

In this section we compare the IND-based (first order) iterative adjoint scheme developed in this
thesis against the commonly used approach of solving the adjoint variational equation numeri-
cally. More specifically, we compare the performance of the implementation of our strategies in
DAESOL-II with the performance of the widely used integrator codes CVODES and IDAS from the
SUNDIALS [HBGT05| integrator suite. These are the quasi standard codes for a not IND-based
generation of adjoint sensitivity information of ODE/DAE-IVPs. A comparison of the strategies
related to nominal IVP solution and (first order) forward sensitivity generation implemented in
DAESOL-IT with other integrator codes can be found in [Bau99]. As test problems we choose
three examples from the IVP testset of the university of Bari [MIO8]: two nonlinear ODE-IVPs
and an index 1 DAE-IVP.

The computations are performed using DAESOL-II and CVODES/IDAS from the SUNDIALS
suite in version 2.6.0. The platform is a desktop computer with an Intel Pentium D CPU with
3.0 GHz and 3.8 GB of RAM, running under the Ubuntu 8.04 64-bit operating system. The code
was compiled with GCC version 4.3.2. For all codes the required model functions and model
derivatives are evaluated via the SolvIND evaluator layer to obtain comparable results. For the
generation of the model function derivatives So1vIND uses the tool ADOL-C in version 2.1.0.

In the following we explain each of the problems and present the setup as well as the results of
the corresponding numerical tests.

9.2.1 The HIRES problem

The HIRES problem is a stiff IVP consisting of 8 nonlinear ODEs. It was first presented by
Schéfer [Sch75] and describes the so-called High Irradiance Responses of photomorphogenesis on
the basis of phytochrome by a chemical reaction system of 8 species. The IVP is defined by

—ky1x1(t) + kowa(t) + kexs(t) + o,
k?ll’l(t) — (k)g + kg)l’g(t)

—(kl + kG)ZEQ,(t) + k?21’4(t) + k?5$5
k‘giEQ(t) -+ k’liBg(t) — (k’z + k’4)l“4(

(t)
t

(9.6)

t
)

— (k1 + ks)xs(t) + ko(z6(t) + 27(1))

—k+$6(t)$8(t) + ]‘J4.§L’4(t) + ]471135@) — k‘zl’ﬁ(t) + ]C*SL’7(t)
kiwg(t)ws(t) — (ko + ko 4 k*)aq(t)

t)

t
—k?+$6(t)$8(t) + (k’g + k_ + l{?*>ZE7<
t €10,321.8122], x(0) = (1,0,0,0,0,0,0,5.7-10~*)%,
where the parameter, taken from [HW96|, are given by

ky =0.43 k4 = 0.69 kg = 8.32

k* = 0.69
op, =7-107%

key = 280
k_ = 0.69
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The numerical reference solution of the IVP is taken from [MIO8| and is given by

0.7371312573325668 - 1073
0.1442485726316185 - 1073
0.5888729740967575 - 10~*
0.1175651343283149 - 102
0.2386356198831331 - 102
0.6238968252742796 - 102
0.2849998395185769 - 102
0.2850001604814231 - 102

x*(321.8122) = (9.7)

The numerical reference values for the Wronskian W, are generated by CVODES with all toler-
ances set to 1071°.

We solve the problem using DAESOL-II and CVODES, respectively, for the series of tolerances
tol;, = atol; = 10’%, 1 < i < 44, and initial stepsize 1072. Besides the nominal solution
we compute adjoint sensitivities for nyqjpir = 1,2,3 and the Wronskian W using nagjpir = ng = 8
adjoint directions. For both codes, checkpointing is disabled and we use dense direct linear algebra
for matrix and vector operations. In CVODES the tolerance for the solution of the adjoint
variational ODE was set to bTol = 10 - tol.

From the obtained solution and the reference solution we compute the global error € at the end
of the time horizon and the number of significant digits scd = —log;,(||€||o) of the solution.
For the comparison of the sensitivities we compute the deviation from the reference values by

AW = W = Wil -

Based on this setup, we compare the performance of both integrator codes for adjoint sensitivity
generation. Figure 9.5 on page 235| shows the results of the comparison. We observe that the
stepsize and error control strategy in DAESOL-II needs about half of the integration steps of
CVODES to reach a given number of significant digits for the nominal solution. Concerning the
deviation from the reference Wronskian, we see that both codes show a similar improvement in the
approximation with increasing accuracy of the nominal solution. DAESOL-II shows here slightly
higher “turbulences”. However, this is to be expected, as, by construction, there exists no explicit
error control for the adjoint IND scheme. Nevertheless, the Wronskian approximation is in nearly
all cases as good as the one computed by CVODES.

We recall now that by construction of our adjoint IND scheme the number of required matrix
decompositions and Jacobian evaluations in DAESOL-II remains the same for the pure nominal
integration and the combination of nominal integration with the computation of an arbitrary
number of directional adjoint sensitivities. We observe that for lower integration accuracies, con-
sidering only the nominal integration, DAESOL-II and CVODES need about the same number of
decompositions and Jacobian evaluations, whereas for higher integration accuracies, the monitor
strategy of DAESOL-II seems to work better than the corresponding mechanism in CVODES as
significantly fewer decompositions/evaluations are needed. Furthermore, in CVODES the number
of decompositions and evaluations grows approximately linearly with the number of directional
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adjoint sensitivities that are computed. The number of directional adjoint model function deriva-
tives grows in DAESOL-IT strictly linearly with the number of adjoint sensitivities, in CVODES
approximately linearly, while the absolute number needed in CVODES is slightly higher than in
DAESOL-TIT.

In the end, all this leads to an overall computational time of CVODES for the nominal inte-
gration combined with the adjoint sensitivity generation that is significantly larger than that of
DAESOL-II. For lower integration accuracies, DAESOL-II is about 10 times faster and for very
high accuracies still about 1.5 to 3 times. For this example, the latter is due to the fact that
for very high accuracies DAESOL-II needs more Newton-like iterations in the nominal integration
than CVODES. Furthermore, these are relatively expensive compared to the matrix factorizations
due to the small size of the example.
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Figure 9.5: The numerical results of applying DAESOL-II and CVODES to the HIRES example. The upper row
shows on the left the total number of integration steps needed for the nominal integration in relation to
the accuracy of the solution expressed by the number of significant digits. The upper right figure shows
the sup-norm of the deviation of the numerically computed Wronskian approximation from the reference
Wronskian. The middle row shows the number of needed decompositions of the iteration matrix (left)
and of the needed Jacobian evaluations (right). Both quantities are depicted for DAESOL-II (where they
are independent of the number of adjoint sensitivities) and for CVODES for the cases of a pure nominal
integration as well as the combination of nominal integration with the computation of 1, 2, 3 adjoint
sensitivities and the Wronskian (8 adj. sens.). The lower row shows for both codes the number of needed
directional adjoint derivatives of the model functions (left) as well as the overall computational time
(right). Each quantity is depicted for the combination of the nominal integration with the computation
of one adjoint sensitivity and the computation of the Wronskian, respectively.
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9.2.2 The Pleiades problem

The Pleiades problem is a nonstiff ODE-IVP problem with 28 equations. The formulation and
the setup are taken from [HNWO93|. The problem originates from a celestial mechanics problem
of seven stars in the plane, described by the coordinates x, € R7, x, € R” and masses m; := 1,
1 <1 < 7. The equations of motion of the system are derived from the law of gravity, where the
gravitational constant is assumed as equal to one. Combining x := (x%,x1)7 and formulating the

X ? Yy
problem as a first order ODE system leads to the equations

() - ()

Here the acceleration is given by f(x(t)) = (iygggg) , where the components of the functions
are defined by

LTyj — Tgi

frx() = m

J#i

3
(T — Tai)? + (Ty5 — 2y4)?)>

Lyj — Ly,

fx(t) = m

.
i (o = 024)> + (g, — y))?

We solve the problem on the time horizon ¢ € [0, 3] and for the initial values
Xy(o) = (37 _37 27 O) 07 _47 4)T7
%,(0) = (0,0,0,—-1.25,1,0,0)".

The numerical reference solution as given in [MIO§]| is

x.(0) = (3,3, -1,-3,2,-2,2)7,
%x(0) = (0,0,0,0,0,1.75, —=1.5)T,

0.3706139143970502 - 10°

—0.3943437585517392 - 10!

0.3237284092057233 - 10! —0.3271380973972550 - 10!
—0.3222559032418324 - 10! 0.5225081843456543 - 10!
x5 (3) 0.6597091455775310 - 10° (3) —0.2590612434977470 - 10!
0.3425581707156584 - 10° 0.1198213693392275 - 10!
0.1562172101400631 - 10! —0.2429682344935824 - 10°
—0.7003092922212495 - 10° 0.1091449240428980 - 10!
0.3417003806314313 - 10! —0.3741244961234010 - 10!
0.1354584501625501 - 10! 0.3773459685750630 - 10°
—0.2590065597810775 - 10 0.9386858869551073 - 10"
x5 (3) 0.2025053734714242 - 10! <7 (3) 0.3667922227200571 - 10°
—0.1155815100160448 - 10! —0.3474046353808490 - 10°
—0.8072988170223021 - 10° 0.2344915448180937 - 10!

The numerical reference values for the Wronskian W, are generated by CVODES with all toler-

0.5952396354208710 - 10°

ances set to 10712,

—0.1947020434263292 - 10!
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We solve the problem using DAESOL-II and CVODES, respectively, for the series of tolerances
tol; = atol; = 10_%7 1 < i < 44, and initial stepsize 1072. Besides the nominal solution we
compute adjoint sensitivities for n,qjpir = 1,2,3 and the Wronskian W using nagjpir = n, = 28
adjoint directions. For both codes, checkpointing is disabled and we use dense direct linear algebra
for matrix and vector operations. In CVODES the tolerance for the solution of the adjoint
variational ODE was set to bTol = 10 - tol.

From the obtained solution and the reference solution we compute the global error € at the end
of the time horizon and the number of significant digits scd = —log;,(||€||o) of the solution.
For the comparison of the sensitivities we compute the deviation from the reference values by

AW = [[W = Wiet| o

Based on this setup, we compare the performance of both integrator codes for adjoint sensitivity
generation. Figure[9.6 on the next page|shows the results of the comparison. We observe that the
stepsize error control strategy in DAESOL-IT needs in general fewer integration steps than CVODES
to reach a given number of significant digits for the nominal solution. Concerning the deviation
of the reference Wronskian, we see that both codes deliver a similarly accurate approximation of
the reference Wronskian, while the deviation of DAESOL-IT is in general slightly larger.

We recall again that by construction of the adjoint IND scheme the number of required matrix
decompositions and Jacobian evaluations in DAESOL-II remains the same for the pure nominal
integration and the nominal integration combined with the computation of an arbitrary number of
directional adjoint sensitivities. We observe that already for the nominal integration DAESOL-II
needs significantly less matrix decompositions and Jacobian evaluations than CVODES. Addi-
tionally, in CVODES the number of needed decompositions and evaluations grows approximately
linearly with the number of directional adjoint sensitivities that are computed. The number of di-
rectional adjoint model function derivatives grows in DAESOL-IT strictly linearly with the number
of adjoint sensitivities, in CVODES approximately linearly, while the absolute number needed in
CVODES is about 2 times that of DAESOL-IT.

In the end, all this leads to an overall computational time of CVODES for the nominal integration
combined with the adjoint sensitivity generation that is significantly larger than that of DAESOL-ITI.
For one adjoint sensitivity direction CVODES needs about 1.25 times the time of DAESOL-II.
Concerning the computation of the complete Wronskian DAESOL-ITI is about 5 times faster than
CVODES.
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Figure 9.6: The numerical results of applying DAESOL-II and CVODES to the Pleiades example. The upper row
shows on the left the total number of integration steps needed for the nominal integration in relation to
the accuracy of the solution expressed by the number of significant digits. The upper right figure shows
the sup-norm of the deviation of the numerically computed Wronskian approximation from the reference
Wronskian. The middle row shows the number of needed decompositions of the iteration matrix (left)
and of the needed Jacobian evaluations (right). Both quantities are depicted for DAESOL-II (where
they are independent of the number of adjoint sensitivities) and for CVODES for the cases of a pure
nominal integration as well as the combination of nominal integration with the computation of 1, 2,
3 adjoint sensitivities and the Wronskian (28 adj. sens.). The lower row shows for both codes the
number of needed directional adjoint derivatives of the model functions (left) as well as the overall
computational time (right). Each quantity is depicted for the combination of the nominal integration
with the computation of one adjoint sensitivity and the computation of the Wronskian, respectively.
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9.2.3 The chemical Akzo Nobel problem

The chemical Akzo Nobel problem is a stiff DAE-IVP of index 1 in five differential and one
algebraic equation. The setup and parameter values of the problem are presented in [Sto98].
The problem originates from the Akzo Nobel laboratories and describes a chemical process in
which 2 species are mixed to obtain a third one, while carbon dioxide is added continuously. Due
to commercial reasons, the species themselves are not disclosed. The overall number of species
involved in the reaction is 6. The DAE system is given by

—2r1 4+ 19 —1T3—1y4
—0.57"1 — T4 — 0.57’5 + En
X(t) = T — 1o+ T3 s (98&)
—T9 + T3 — 2T4
o — T3+ T

Here, the auxiliary variables r; and Fj, are given by

ks

r = klxl(t)4 $2<t), rs = EI1(1§)I5(1§), s = /{?421(t>2 l’g(t),
ry = kpws(t)za(t), ra = ks (H)za(t), P = A(]% — 22(t)),

and the parameter values by

ky = 18.7, by = 0.42, K, = 115.83,
ke = 0.58, K = 34.4, pco, = 0.9,
ke = 0.09, A=33, H =737,

We solve the problem on the time horizon ¢ € [0, 180] and for the initial values
x(0) = (0.444,0.00123,0, 0.007,0)7, z(0) = K,21(0)24(0). (9.9)
The numerical reference solution taken from [MI0§] is

0.1150794920661702 - 10°
0.1203831471567715 - 102
x(180) = | 0.1611562887407974 - 10° |,
0.3656156421249283 - 1073
0.1708010885264404 - 10~*

z(180) = 0.4873531310307455 - 102, (9.10)

The numerical reference values for the Wronskian W, are generated by IDAS with all tolerances
set to 1071°.
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We solve the problem using DAESOL-II and IDAS, respectively, for the series of tolerances tol; =
atol; = 10_%7 1 < i < 44, and initial stepsize hg = tol;. Besides the nominal solution
we compute adjoint sensitivities for nygjpi = 1,2, 3 and the Wronskian W using nagjpir = ny = 6
adjoint directions. For both codes, checkpointing is disabled and we use dense direct linear algebra
for matrix and vector operations. In IDAS the tolerance for the solution of the adjoint variational
DAE was set to bTol = 10 - tol.

From the obtained solution and the reference solution we compute the global error € at the end
of the time horizon and the number of significant digits scd = —log;,(||€||oc) of the solution.
For the comparison of the sensitivities we compute the deviation from the reference values by

AW = [[W = Wiet| o

Based on this setup, we compare the performance of both integrator codes for adjoint sensitivity
generation. Figure 9.6 on page 238| shows the results of the comparison. We observe that the
stepsize error control strategy in DAESOL-II needs in general significantly fewer integration steps
than IDAS to reach a given number of significant digits for the nominal solution. Concerning
the deviation of the reference Wronskian, we see that both codes deliver very similarly accurate
approximations of the reference Wronskian for higher integration accuracies. For lower accuracies,
the deviations show some fluctuations for DAESOL-II which is not entirely surprising because, by
construction, there is no explicit error control in the adjoint IND scheme.

We recall again that by construction of our adjoint IND scheme the number of required matrix
decompositions and Jacobian evaluations in DAESOL-II remains the same for the pure nominal
integration and the nominal integration combined with the computation of an arbitrary number of
directional adjoint sensitivities. We observe that already for the nominal integration DAESOL-II
needs significantly less matrix decompositions and Jacobian evaluations than IDAS. Additionally,
in IDAS the number of needed decompositions and evaluations grows approximately linearly with
the number of directional adjoint sensitivities that are computed. The number of required direc-
tional adjoint model function derivatives grows in DAESOL-IT strictly linearly with the number of
adjoint sensitivities, in IDAS it grows approximately linearly, while the absolute number in IDAS
is slightly larger than in DAESOL-II.

In the end, all this leads to an overall computational time of IDAS for the nominal integration
combined with the adjoint sensitivity generation that is significantly larger than for DAESOL-II.
For one adjoint sensitivity direction IDAS needs at least 2 times the time of DAESOL-II. Again
this difference is smallest for very high integration accuracies, as here DAESOL-II needs in this
example more Newton-like iterations than IDAS in the nominal integration. When computing the
complete Wronskian DAESOL-I1I is at least 4 times faster than IDAS.
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Figure 9.7: The numerical results of applying DAESOL-II and IDAS to the chemical Akzo Nobel example. The
upper row shows on the left the total number of integration steps needed for the nominal integration in
relation to the accuracy of the solution expressed by the number of significant digits. The upper right
figure shows the sup-norm of the deviation of the numerically computed Wronskian approximation
from the reference Wronskian. The middle row shows the number of needed decompositions of the
iteration matrix (left) and of the needed Jacobian evaluations (right). Both quantities are depicted
for DAESOL-II (where they are independent of the number of adjoint sensitivities) and for IDAS for
the cases of a pure nominal integration as well as the combination of nominal integration with the
computation of 1, 2, 3 adjoint sensitivities and the Wronskian (6 adj. sens.). The lower row shows for
both codes the number of needed directional adjoint derivatives of the model functions (left) as well as
the overall computational time (right). Each quantity is depicted for the combination of the nominal
integration with one adjoint sensitivity direction and the computation of the Wronskian, respectively.
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9.2.4 Test summary

The results of the numerical tests on the three relatively small but numerically challenging exam-
ples from the IVP testset of the university of Bari can be summarized as follows. Concerning the
solution of the nominal IVP, it can be seen that the stepsize and monitor-strategy implemented
in DAESOL-IT leads, in general, to a smaller number of integration steps and to fewer iteration
matrix decompositions and Jacobian evaluations compared to the SUNDIALS codes. For these
examples, this advantage is, to some part, compensated for very high integration accuracies by a
larger number of Newton-like iterations needed in DAESOL-II as these are relatively expensive for
these rather small problems. With respect to the adjoint sensitivity generation, the adjoint IND
approach implemented in DAESOL-ITI shows its strength compared to the solution of the adjoint
variational equation by not needing additional matrix decompositions nor Jacobian evaluations
and no additional interpolation of the system states. All this is required by the SUNDIALS codes.
As a result, DAESOL-IT is significantly faster on all presented examples, even more if only a medium
integration accuracy is needed. The advantages of DAESOL-II become more explicit the larger the
problem size becomes and the more directional adjoint sensitivities are required. A theoretical
drawback of the adjoint IND scheme, although it did not show up in these examples, might be
that by construction there is no explicit error control for the adjoint sensitivities, as they are the
exact derivatives of numerical scheme for the nominal IVP solution. Furthermore, for the iterative
adjoint IND scheme without checkpointing, that we used here, the iteration matrices used in the
nominal solution need to be stored, leading to a slightly increased memory demand compared to
the SUNDTIALS codes.

Note that these results transfer directly to the task of computing second order sensitivities by the
forward /adjoint IND-TC scheme in DAESOL-II and by the solution of the corresponding variational
ODE/DAE |OBO05|, respectively, which is implemented in the SUNDIALS solvers. First note
that the coding of this variational equation is cumbersome and error-prone. Furthermore, in
SUNDTIALS the states as well as the forward sensitivities have to be interpolated during the
backward integration of the problem and additional matrix factorizations and Jacobian evaluations
are needed, like in the first order case. Hence, DAESOL-ITI can be expected to perform significantly
better than the SUNDIALS codes also for the task of second order sensitivity generation, because
the number of needed model function derivatives is, as in the first order case, similar in both
codes.

9.3 Error control for forward sensitivities

In this section we illustrate at hand of a numerical example the problem that may arise for the
sensitivity computation by IND-based schemes, if the discretization scheme is determined only
based only on the nominal IVP solution. Furthermore, we show that the strategy we propose in
Section [6.7.5 on page 185 offers an efficient remedy for this problem.

Consider first the simple ODE-IVP
z(t) = px(t), z(0) = xo, tel0,1], peR, (9.11)
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with analytical solution z(t) = o - €?*. If we solve this problem numerically for the initial value
xo = 0, then the error and stepsize control in DAESOL-II will choose ever increasing stepsizes,
as the estimated (and in this case also the true) local error is equal to zero. This is perfect
for the nominal IVP solution, as it minimizes the overall effort. However, if we compute based
on this discretization scheme the directional forward sensitivity w.r.t. the initial value x(, then
the obtained value will be a very bad approximation for the analytical sensitivity W, (t) = e’.
This is due to the fact that in this singular case the error estimation for the nominal problem is
completely invalid for the sensitivity problem. Choosing the discretization grid based on both the
nominal problem and the sensitivity, as described in Algorithm [6.10 on page 187] leads to a good
approximation of the analytical sensitivity, at the expense of more integration steps: 47 (p = 2)
respectively 74 (p = —10) compared to 22 are needed in this case. This is depicted in Figure
When using Algorithm the discretization scheme is identical to the one we obtain if we only
solve the nominal IVP with zq = 1.

w/o fwd. sens. error control ()&):0, p=2) with fwd. sens. error control ()&):O, p=2)
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Figure 9.8: The figure shows the analytical and the numerically computed sensitivity of IVP (9.11) with respect to
the initial value xg, which is obtained by first order iterative forward IND. The upper row shows the
results for a value of p = 2, the lower row for p = —10. In the left column the discretization scheme
is only determined by the nominal IVP solution process, while in the right column it is determined by
Algorithm [6.10] i.e., respecting also the sensitivities. The vertical bars in all the figures indicate the
timepoints of the used discretization grid.
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This approach is efficient not only for the previous illustrative, somewhat exotic example, but also

for more commonly occurring problems. Consider, e.g., the damped harmonic oscillator, described
by the ODE-IVP

. . I‘Q(t) . T - .
X(t) - (—2p1$2(t) —p%xl(t)) ) X(O) = (2,0) , PpP1= 017 P2 = 1, t e [O, 10] (912)

For the choice of parameter the analytical solution is then given by

_ Ce Pt cos(wt + arctan());
x= <—p1x1(t) + Ce P (—p, sin(wt + arctan(qb)))) : (9.13)

where w := /p3 — p}, ¢ := —%’7&;1(0) and C' := x1(0)+/1 + ¢2.

We now compute the nominal IVP solution, as well as the Wronskian matrix by iterative forward
IND sweeps using DAESOL-II using the tolerances tol = atol = 107% for ¢ = 3,5,7. This is
done once using the discretization scheme only determined by the nominal IVP solution, and once
using a discretization scheme that is based on both the nominal IVP solution and the sensitivities.
We compare the results with the analytical values and compute the errors in sup-norm. The
results are displayed in Table below. We observe that by using Algorithm we obtain
the Wronskian matrix with about the same order of accuracy that is obtained in the ordinary
case for the nominal solution. As a side-effect the nominal solution is in exchange now computed
with a higher accuracy as before. Both observations are characteristical for the approach. As the
numerical IVP solution and the numerical sensitivities are not decoupled in this approach, but
the computed sensitivities are also here the exact derivatives of the computed numerical solution,
it is reasonable that enforcing a higher accuracy of the sensitivities leads to a higher accuracy of
the underlying numerical solution. Finally, we observe that the activation of forward sensitivity
error control leads to a moderate increase of the computational costs.

] tol \ sens. err. ctrl. H error x \ error W H # steps \ # decomp. \ # eval. ‘
10-3 off 5.56-1073 | 9.84 - 1072 47 2 1
on 1.01-107% ] 1.79-1073 56 2 1
10-5 off 1.36-107* | 1.97- 1073 72 2 1
on 1.98-107° | 3.06 - 10~* 92 2 1
10-7 off 3.09-107% | 5.36-107° 115 2 1
on 4.95-107719.00-107° 147 3 1

Table 9.2: Comparison of the accuracy and the computation cost of the computation of the nominal solution x
and Wronskian W for the example of the damped harmonic oscillator with and without activated
error control for the forward sensitivities. Displayed are the error in the solution and the Wronskian,
and the number of needed integration steps as well as the number of needed matrix decompositions and
Jacobian evaluations.
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9.4 Global error estimation

In this section we present a set of 7 ODE and 1 DAE-IVP examples that is used to test our global
error estimation strategy, presented in Section [6.7.6 on page 188] and implemented in DAESOL-IT.
We compare our strategy to the one proposed by [CP04] for BDF methods. The latter strategy
has been tested on the 7 ODE examples in [TB09|, which enables us to make a proper comparison
of both approaches.

The setups for the IVPs are as follows.
e Example 1. The Dahlquist equation
(t) = Ax(t), tel0,T], x(0)=xo. (9.14)
It is solved for the three setups
a) =1, 7o = 1074, T = 10,
b) )\:—1, 1’0:1,T:1,
c) A=-20,20=1,T=1.
The analytical solution is given by z(t) = x¢ - ™.
e Example 2.
i(t) = —(0.25 +sin(nt))z(t)?, te€[0,1], z(0)=1. (9.15)

The analytical solution is given by x(t) = w/(7m + 1 4+ 0.257t — cos(mt)).

e Example 3.
Ba(t) = 5 (11_ (1) =210
t€10,10], x(0)=(1,0)". (9.16)

2
The analytical solution is given by x(t) = 1+t ((sjfr?((;;)

e Example 4.
a1 (t) = —z2(t)

t€10,10], x(0)=(2-107*0)". (9.17)

—1 t
The analytical solution is given by x(t) = 1074 (Z_t j_L Zt).
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e Example 5.
[E1<t) = IQ(t)
y(t) = =21 (1)
t €10,50], x(0)=(0,1)". (9.18)
The analytical solution is given by x(t) = sin?)
Y given by ~ \cos(t) )"
e Example 6.
a1 (t) = a1 (t)
2 (t) = 22(t) + @1 (¢) w1 (2)
$4(t> = 1‘4(t) + l’l(t)l’g(t) + I’Q(t)l’g(t)
a5 (t) = x5(t) + 1(8)x4(t) + 22(t)2s(t)
te[0,1, x(0)=(L,1,0.5,0.5,0.25) (9.19)
et
o2t
The analytical solution is given by x(¢t) = | 0.5 &%
0.5 et
0.25 e5t
e [Example 7.
t(t) = —L(xz(t) — sin(nwt)) + 7 cos(mt))
tef0,1, L=50, x(0)=0. (9.20)
The analytical solution is given by z(t) = sin(nt).
e [xample 8.

As DAE example we use the chemical Akzo Nobel problem, described in Section

We solve every IVP for the 8 different tolerances tol = 1072,...,10710.

During the nominal

solution the local error estimates for each (successful) integration step are stored. Afterwards, we
perform a first order adjoint IND sweep, initialized with the set of unit directions, corresponding

to the components of the solution.
accumulated using Formula (6.48]).

During the adjoint sweep, the global error estimates are
Finally, we compare each global error estimate € with the

corresponding real global error € of the numerical solution at the end of the integration horizon.

To do this, we compute the so-called effectivity index of the estimation, given by

me
[©

I = .
lella

(9.21)
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Clearly, in theory a value of I = 1.0 would be desirable. However, in practice values between
I = 0.5 and I = 2.0 represent already very good estimations, and also somewhat larger deviations
are actually good enough for the practical application in adaptive algorithms.

The effectivity indices obtained by solving the above examples and estimating the global error
using are given in Table and compared to the results of the approach of Cao and Petzold
stated in [TB09|, which have been obtained using IDAS. We observe that our approach based on
the intermediate values of the adjoint IND sweep delivers for the ODE examples in general a more
precise and more reliable error estimation as the effectivity indices lie closer to 1.0. Exceptions are
some singular overestimations of the error in case of Example 1 for large integration tolerances.
For Example 8 we observe that our approach transfers directly to (index 1) DAEs with good
results.
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Example/solver — — — — t871 — — —r
10 ‘ 10 ‘ 10 ‘ 10 ‘ 10 ‘ 10 ‘ 10 ‘ 10
1a IDAS 713 | 723 | 7.09 |9.12 | 895 8.54 16.72 9.18
DAESOL-IT || 1.30 | 0.81 0.51 0.88 1.48 0.69 1.29 1.81
1b IDAS 13.41 | 3.22 | 2.96 129.2 | 6.74 2.45 8.67 5.73
DAESOL-IT || 4.75 | 28.19 | 3.00 | 3.24 | 1.87 0.92 15.67 3.34
le IDAS 0.61 1.59 | 046 |0.45 | 2.08 7.63 10.12 10.36
DAESOL-IT || 86.33 | 86.79 | 3.42 | 6.74 | 3.65 3.04 2.75 2.04
9 IDAS 5.63 | 9.27 | 106.9 | 19.36 | 72.67 13.98 16.38 0.31
DAESOL-IT || 2.75 | 0.83 | 2.38 |4.97 | 1.98 6.93 3.13 2.42
3 IDAS 13.58 | 13.02 | 13.66 | 13.00 | 11.59 10.92 10.77 11.35
DAESOL-II || 2.67 | 2.68 | 2.54 | 2.73 | 2.67 2.72 2.90 2.42
A IDAS 713 | 725 | 7.08 |6.45 | 8.68 12.10 15.70 12.45
DAESOL-II || 1.30 | 0.77 | 0.73 |0.94 | 2.00 1.50 1.66 1.88
5 IDAS 4.13 | 8.89 15.04 | 7.98 1.45 7.63 8.64 4.16
DAESOL-IT || 3.16 | 2.75 | 2.89 | 2.73 | 2.72 2.58 2.71 2.67
6 IDAS 6.14 | 10.54 | 14.31 | 8.09 12.94 4.62 8.35 13.86
DAESOL-IT || 0.86 | 2.33 1.90 1.89 | 2.26 2.70 2.63 2.53
7 IDAS 0.003 | 0.04 | 0.002 [ 0.008 | 1-107*|2-10*|7-107° | 1-107°
DAESQOL-IT || 6.86 12.35 | 14.31 | 7.70 | 2.05 4.48 3.96 2.61
| 8 | DAESOL-II [1.07 [1.08 [6.11 [1454]0.99 [239 [238 |2.38
Table 9.3: The table shows the effectivity indices defined by obtained by the solution of Examples 1 to 7 of

this section for different tolerances using Formula implemented in DAESOL-II and the approach
of Cao and Petzold implemented in IDAS, respectively, to estimate the global error at the end of the
integration horizon. For the Example 8 only the results of our approach are given, as the approach
in [CP04] is not directly applicable to DAEs. It can be observed that the approach implemented in
DAESQOL-IT leads in general to more accurate and more reliable estimations, with the exception of some
significant overestimations of the error for Example 1 and large integration tolerances. Also for the DAE
example DAESOL-ITI delivers good estimates.



10 Optimal control of a distillation
column

In this Chapter, we use the new adjoint based exact-Hessian SQP method proposed in Chapter
to solve a real world application problem. We use here the implementation of our algorithm
in the C++ code DynamicLiftOpt, together with SolvIND/DAESOL-II for the evaluation of the
model functions and their derivatives as well as the solution of the Initial Value Problems (IVP})
and the corresponding sensitivity generation.

As application example we choose the optimal control of a high purity binary distillation column.
The model is taken from [Die(2] and describes a pilot plant distillation column of the “Institut
fiir Systemdynamik und Regelungstechnik” of the University of Stuttgart. The numerical setup
of the optimization problem is taken from [SBPDT07].

In the following, we first give a brief description of the model of the distillation column. Afterwards,
we present the setup of the optimal control problem. Finally, we present the results obtained by
the numerical solution of the problem using DynamicLiftOpt and, for comparison, MUSCOD-ITI.

10.1 Description of the distillation column

The distillation column we consider here is used for the separation of a (binary) mixture of
methanol and n-propanol. It consists of 40 bubble cap trays and has an overall height of 7m and a
diameter of 10cm. The reboiler is heated electrically and the overhead vapor is totally condensed
in a water cooled condenser that is open to atmosphere. The preheated feed stream enters the
column at the feed tray as saturated liquid.

In our case, the inputs that can be used to control the process are given by the heat input ¢
to the reboiler and the volumetric reflux flow [,,;. The basic aim is to fullfill given high purity
requirements for the distillate d,, and the bottom product by, at any time. The scheme of the
distillation column is depicted in Figure [L10.1 on the next page|

As the DAE model of the column is described in detail in [Die02|, we give here only a short
summary. We number the ng.y = 40 bubble cap trays from bottom to top with & = 1,...,40,
where the tray with number ng.q = 20 is the feed tray. The index k = 0 denotes in the following
the reboiler and the index ngays + 1 = 41 the condenser.

On each tray k, we denote the molar fluxes of the liquid phase with [, and of the vapor phase with
vg. The corresponding temperatures are given by 6. The molar vapor flux out of the reboiler is
denoted by vy and the molar flux of the liquid bottom product stream with b. The molar liquid
reflux from the condenser to the top tray is given by [, .+1 and the distillate stream with d. The

249
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Figure 10.1: Flowsheet of the binary distillation column

liquid molar feed stream entering at the feed tray we denote with lgeq. The molar fluxes in the
distillation column are shown in Figure [10.2 on the facing pagel

Furthermore, we denote with ¢! the liquid methanol concentrations. Note that, as we have a
binary distillation column, the concentrations of n-propanol can then be determined by the clos-
ing conditions ¢n_propanolk = 1 — cff. The pressures in reboiler, condenser and on the trays are
denoted with py, the liquid volume holdups with v}, the molar holdups with v, and the methanol
concentration in the vapor phase with cj.

We assume in the following that the liquid volume holdups of reboiler and condenser are constant
as well as the pressures in the reboiler, on the trays and in the condenser. The condenser pressure

is fixed to the outside pressure pi,, and the pressure loss between two trays is constant, i.e.,

Pk = Pry1 + Apy.
With these assumptions a stiff nonlinear DAE model can be derived as follows.

e The mass balances for the molar holdup on the trays give
l)k = Vp_1 — VU + lk—i—l - lk, (101&)
for k€ {1,...,Nfeea — 1, Mfeea + 1, ..., Nirays}. For the feed tray we have with k& = nseeq

Uk = Ug—1 — Uk + lgo1 — Ik + lioed- (10.1b)
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Figure 10.2: Molar flows in the binary distillation column

e Mass conservation for methanol requires in the reboiler
b + chpy = —voch + lid) — be (10.2a)
and in the condenser (with k& = ngyays)
é§c+1Vk+1 + Céc+1’)k:+1 = UpCy — dc§c+1 - lk+10§c+1‘ (10.2b)
For the feed tray (k = ngeeq) we have
vy + i = vp_1ch_y — UkCh + L1 Gy — Iy + lieedChoed (10.2¢)

where ¢}, is the concentration of methanol in the feed flow. Finally, on the rest of the trays
(k € {17 o+ o5 Nfeed — 17nfeed + 17 ce 7ntrays}) it holds

N . ! !
Culk + Culk = Vp—1C_y — VkCpy + L1 Gy — Ly (10.2d)

e If we denote the liquid and vapor stream enthalpies as hl, := h!(c,, ;) and hY := h®(c?, O, ),
respectively, the enthalpy balance gives us in the reboiler

hl ht .
0 0 + %90) =g — Qoss — ’UOhS + llhll - bhlﬂ? (1033)

l/ohé + 1y (8_0600 890
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where gioss accounts for possible heat losses. For the top tray we have with £ = nyays

(9hl

Oh!
—Fké kek) = kalhzf1 - Ukhz + lk+1hl(ci;+1, econdakarl) - lkhégu (10-3]3)
k

where 6,4 is the temperature in the condenser and hence also of the liquid reflux ., to
the top tray. On the feed tray (k = ngeq) we obtain

. onl Ohl
l/khlic + v (a lk + aek ek) = ’kalhz_l - vkhz + lk+1h§g+1 - Zkhgg + lfeedhl(clfeed7 efeedapfeed>7
k k
(10.3c)
and for the rest of the trays with &k € {1,...,nfeea — 1, feea + 1, . ., Ntrays — 1}

) Ohl Ohl
b+ (a k4 20 9k> = By — 0+ bl — Ll (10.3d)

k

Hydrodynamics: The liquid flow [, out of each tray is determined based on the “Francis weir
formula” and given for k = 1,. .. ngays by

L, 0y) = wi(vp — Vi3, (10.4)

where p(ck, 6y,) is the molar volume of the liquid mixture, v} the reference volume and wy
are parameter to be defined.

The temperatures on each tray & = 0, .. ., ngays+1 are implicitly defined by Dalton’s formula

i = 1y ()¢, — p3(0k) (1 — ¢;,) = 0, (10.5a)
where the partial pressures p3(y), j = 1,2, are defined by the Antoine equation as
A

s _ A 7Tb,'
p(0) = exp (wa,j - ;fj) (10.5b)

and the coefficients are given as follows.

' \ Tari \ Wﬁlj[K] \ oy K] ‘

J
methanol | 1 | 23.480 | 3626.6 | -34.29
n-propanol | 2 | 22.437 | 3166.4 | -80.15

Some of the quantities in the equations above can be computed directly in terms of other quantities
such that they can be eliminated:
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e The vapor concentrations c; are computed using parameter oy, to account for non-ideality
of the trays and unmodeled effects for k = 1,. .., nyays as

i (6r)

A+ (1—ap)ey (10.6)
Pk

cp = oy,

3 (6
and for k =0 as ¢ = %c@.

e The molar volumes p(ck, 0;) of the liquid mixture are given by
u(c,0)(E,0) = i (6) + (1 — )6), (10.72)

where the molar volumes of the undiluted components f,;(6) are computed by

1 v
1;(0) = pr exXpry (14 eXp(i_g/ne ) (Ta))- (10.7b)

a?]

Here the coefficients are given as

[j [ mo, kmol I [ mp [ wl K] wy, |
methanol |1 2.288 0.26850 [ 512.4 [ 0.2453
n-propanol | 2 1.235 0.27136 | 536.4 | 0.2400

e The molar feed flow lteq can be obtained from the volumetric one lgeq vol by
lrecd,vol = [1(Cloeds Orecd ) lieed- (10.8)
e Analogously, the molar liquid reflux /,,,, .1 can be obtained from the volumetric one I, by
Dntsayst 1 = HCryu 15 Doyt 1) Dol (10.9)

e The vapor flux vy can be computed from ([10.3al).

e We assume that the volume v and A of reboiler and condenser, respectively, are fixed.
Then vy and v, .41 can be eliminated via

L9 L0 -
0= i = plch 0 + (a“ <;’;; by O <gg ’“)f)) Ve, (10.10a)

for k = 0, ntrays + 1 and the mass conservation in the reboiler is given by
D(] = —g + ll —b (1010b)
and in the condenser by

Dntrays = Untrays - lntrays+1 - d (10100)



254 10.1. DESCRIPTION OF THE DISTILLATION COLUMN

e Finally the liquid and vapor enthalpies h!(c!,0) and h*(c’, 8, p) are given by

R (', 0) == R (0) + (1 — &R (0), (10.11a)
RY(c’,0,p) = c"h* (0, p) + (1 — ")h*2 (0, p). (10.11b)
Here the pure liquid enthalpies k' () are determined by
B9 (0) = 4.186% [0 (6 — 7) + 76 — 7)2 + (6 — 70)7] (10.11¢)
where 7§ = 273.15K. The pure vapor enthalpies h"7 (6, p) are given by
-3
Ke3(0,p) = W (0) + 8.3147mo‘]1 |1 ng (%) (10.11d)

0
6.09648 — 1.28862—— + 1.016

Te,j

7
b
T
7
v
8, ’

0
+7¢ [ 15.6875 — 13.4721—- + 2.615

J

e
where the coefficients used here are given as
gl K] s (K] | wfs (K] [l (K] [ a, [Pa] [ nf |
methanol | 1 18.31 1.713-1072 [ 6.399-107° | 512.6 | 8.096 - 10° | 0.557
n-propanol | 2 31.92 4.490 - 1072 | 9.663 - 107° | 536.7 | 5.166-10° | 0.612

The values of the remaining system parameter have been estimated based on the real column.
The resulting estimates are given by

’ parameter \ value H parameter \ value ‘
vy 8.5 [1] Drop 939 [h Pa]
Y rayet 1 0.17 [1] Apo, ..., App..,—1 | 2.5 [h Pa]
e, 0.155 [] APngesis - -+ s ADpraye | 1.9 [h Pa)
o, -y Qg oy 62% efeed 71 [OC]
Oneoa+1s - - - s Ungraye 35% Bcona 47.2 [°C]
Wo, -+ Wy 0.166 [1_1 2 S_l] lfeed,vol 14.0 [1 h_l]
Qloss 0.51 [kW] Chood 0.32

For a detailed description of the parameter estimation refer to [Die02].
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Based on the considerations above the equations can be summarized as an index 1 DAE system
consisting of the 82 differential variables

o !
X = (Chye-vsCopyVis- -y Va0)

and the 122 algebraic variables

zZ = (ll,...,l40,1}1,...7’l}40,90,...,941).

The differential equations are given by (10.1]) and ((10.2)), whereas the algebraic equations are given

by (10.3b)-(10.3d)), (10.4) and (10.5al).

10.2 Description of the optimal control problem

The setup of the optimization problem is taken from [SBPDT07|. The fundamental control aim
is to satisfy high purity constraints for the product concentrations ¢l and clnmys 41+ As usual
in distillation control the product concentrations are not controlled directly. Instead, the con-
centrations on trays 14 and 28 are controlled as they are much more sensitive to disturbances
than the product concentrations. If they are kept constant at a suitable given setpoint the prod-
uct purities are usually safely guaranteed for a wide range of process conditions. Since concen-
trations are difficult to measure, we use here the temperatures on the tray 14 and 28, which
are directly coupled to the concentration by Dalton’s formula and the Antoine equation. The
desired setpoint is chosen as 8™ := (g5 2NHT = (70 °C,88 °C)T and we denote the corre-
sponding steady-state of the system with (xs7,zs7)?. The corresponding control ug is given by
ug = (I5,,,¢°)" = (4.1833 1/h, 2.4899 kW7,

The objective function of the Optimal Control Problem is chosen as the integral over a
least-squares term which penalizes the deviation from the setpoint temperatures and regularizes
the control. It can be written as

/tmd [H(éz — 0 D3 + [R(u—~ us)\|§] dt, (10.12)

to

where 0 stands for the projection matrix that extracts the temperatures at trays 14 and 28 from
the vector of algebraic variables z. Furthermore, R = diag(0.05 °C h 171,0.05 °C kW) is a small
diagonal weighting matrix for the regularization term and the time horizon is given by ¢, = 0 and
tena = H400s.

The constraints of the are given by the DAE model of the distillation column presented in
the last section, the prescribed initial states of the process as well as the requirement that the
bottom product flux and the distillate flux are always non-negative.

In our specific setup, the aim of the optimal control is to drive the process from a disturbed initial
state, caused by a malfunction in the heating system, as close as possible to the desired reference
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setpoint (and the corresponding steady-state) in the given time. To solve the problem, we employ
a direct multiple shooting discretization of the problem. We approximate the control functions as
piecewise constant. We use 7 multiple shooting intervals where the length of the first six intervals
is set to 300s and the last one to 3600s. On the last interval the control is fixed to the setpoint
steady-state control us. The overall number of variables in the resulting (full-space) optimization
problem is 1684.

10.3 Numerical results

We solve the problem for a set of scenarios where the initial state of the system is perturbed
due to an abnormal increase in heating of p percent compared to the reference setpoint, with
p € {10,20,30,40,50}. We initialize the values at the first 6 multiple shooting nodes according
to this disturbed state and at the last 2 nodes with the desired reference steady-state. Then
we use our L-PRSQP algorithm, presented in Chapter 7] and implemented in our C-++4 package
DynamicLiftOpt, and the software package MUSCOD-II [DLSOI] to solve this problem. From the
MUSCOD-ITI package, which is based on classical condensing, we employ the SQP variant that uses
high-rank block-wise BFGS updates for the Hessian.

The computations are performed on a desktop computer with an Intel Pentium D CPU with 3.0
GHz and 3.8 GB of RAM, running under the Ubuntu 8.04 64-bit operating system. The code was
compiled with GCC version 4.3.2. The generation of the model derivatives in SolvIND is done
using the tool ADOL-C [GJU96| in version 2.1.5. UMFPACK [Dav04] in version 5.0.2 is used for
sparse matrix operations within DAESOL-II. The occurring QP subproblems were solved using the
code QPOPT |[GMS95] in version 1.0.

As tolerance for the integration we choose tol = 10~% and for the optimization kktTol = 107° as
termination criterion (see Section [7.2.1).

The Figures|[10.3 on page 258 to[10.5 on page 260|show exemplarily the optimal solution computed
by DynamicLiftOpt for the cases of a disturbance in heating of p = 10,30 and 50 percent. We
observe that in each case the optimal control is able to drive the system back to the desired
setpoint.

A comparison of the objective values of the results computed by DynamicLift0Opt and MUSCOD-II
is given in Table[10.1 on the next page, We observe that both algorithms find essentially the same
numerical solutions, except in the case of p = 50, where MUSCOD-II converges accidentally to a
suboptimal solution.

The statistics of the computations are given in Table [10.2 on the facing pagel It can be observed
that DynamicLiftOpt needs generally about half the number of SQP iterations to find a solution
compared to the BFGS approach in MUSCOD-II. Also the number of matrix factorizations during
integration and sensitivity generation is significantly smaller, because DynamicLift0Opt is able to
reuse the discretization scheme for sensitivity sweeps via the capabilities of So1vIND/DAESOL-II.
Furthermore, we see that one L-PRSQP iteration is about 2.5 to 3 times as expensive as a BFGS
iteration. Note that this is mainly due to the high computational effort for (first and) second
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order adjoint AD/TC-sweeps through the DAE model functions. This bottleneck causes between
74.7 and 75.2 percent of the overall CPU load of the solution process. As already observed in
the SMB example in Section [9.1] the actual implementation based on operator overloading does
in practice not perform near to the theoretical complexity bounds. Hence, further improvements
in this area will directly improve the performance of our algorithm considerably. Assuming ad-
joint TC propagation through the model functions would be possible near the theoretical bounds,
our L-PRSQP algorithm would become competitive against the BFGS approach even in terms of
computational time per iteration.

Finally, it can be seen that, compared to the corresponding exact-Hessian approach of MUSCOD-1IT,
our L-PRSQP approach is about 30 times faster. This superior performance makes our L-PRSQP
approach also feasible for the use in online strategies for closed-loop real-time optimal control. It
is the first exact-Hessian algorithm based on direct multiple shooting that allows for reasonable
sampling times in the context of practical applications.

Objective value
p | DynamicLiftOpt(L-PRSQP) | MUSCOD-II(BFGS)
10 1.821626e+02 1.821693e+02
20 3.215875e+02 3.215885e+02
30 4.798845e+02 4.799006e+02
40 6.313409e+02 6.313454e-+02
50 7.688280e+02 8.565571e+02

Table 10.1: Objective value of the numerical solutions of the optimal control problem for the binary distillation
column. The values are shown for disturbances of p = 10, 20, 30,40,50. The solutions are computed
by the L-PRSQP approach implemented in DynamicLiftOpt as well as the high-rank BFGS update
version of MUSCOD-II. We observe that both algorithms compute the same solutions, except in the case
of p = 50 where MUSCOD-II converges accidentally to a suboptimal solution.

DynamicLiftOpt MUSCOD-II

L-PRSQP BFGS ex. Hess
p || #iter | avg. time | #step | #fac | #iter | avg. time | #step | #fac | avg. time
10 8 1:03 15564 | 492 16 0:23 25658 | 14266 32:19
20 9 1:05 18475 | 583 13 0:24 22012 | 12138 32:56
30 9 1:05 20445 | 607 17 0:26 33763 | 16401 34:42
40 10 1:02 19925 | 601 19 0:24 33081 | 18060 36:58
50 13 1:05 25365 | 762 25 0:24 48781 | 23878 36:49

Table 10.2: Statistics of the numerical solution of the optimal control problem for the binary distillation column
using DynamicLiftOpt and MUSCOD-II. For each disturbance scenario p = 10, 20, 30, 40, 50 the number
of SQP iterations are given, the average time per SQP iteration (in mm:ss) as well as the overall
number of integration steps and matrix factorizations in the integrator. For the purpose of comparison
additionally the average time per SQP iteration needed by the exact-Hessian approach of MUSCOD-II
is shown, which is based on a finite-difference approximation of the Hessian.
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Figure 10.3: Numerical solution of the optimal control problem for the binary distillation column with p = 10
computed by DynamicLiftOpt. The upper row shows the concentrations of methanol in the boiler and
the condenser, respectively, corresponding to the purities of the distillate and the bottom product.
The middle row shows the temperatures on the “reference” trays 14 and 28. The lower row shows the
computed optimal control moves for the volumetric reflux from the condenser to the top tray and for
the heating in the reboiler.
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Figure 10.4: Numerical solution of the optimal control problem for the binary distillation column with p = 30
computed by DynamicLiftOpt. The upper row shows the concentrations of methanol in the boiler and
the condenser, respectively, corresponding to the purities of the distillate and the bottom product.
The middle row shows the temperatures on the “reference” trays 14 and 28. The lower row shows the
computed optimal control moves for the volumetric reflux from the condenser to the top tray and for
the heating in the reboiler.
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Figure 10.5: Numerical solution of the optimal control problem for the binary distillation column with p = 50
computed by DynamicLiftOpt. The upper row shows the concentrations of methanol in the boiler and
the condenser, respectively, corresponding to the purities of the distillate and the bottom product.
The middle row shows the temperatures on the “reference” trays 14 and 28. The lower row shows the
computed optimal control moves for the volumetric reflux from the condenser to the top tray and for
the heating in the reboiler.



11 Summary and Outlook

In the following we give a short summary of the ideas and results presented in this thesis. As there
emerge a number of application scenarios and open topics for future research and for extensions
of the methods developed in this thesis, we will discuss some of them here. This includes both
theoretical aspects as well as aspects related to the numerical packages DAESOL-II/SolvIND [AKa
AKD| and LiftOpt/DynamicLiftOpt [AD10, [AIb10, [AIb] that have been developed in connection
with this thesis.

11.1 Summary

This thesis contains several novelties and new ideas for efficient first and higher-order sensitivity
generation of IVP solutions on the one hand and for (automatically) structure-exploiting NLP
solvers on the other hand. The new approaches from these two fields are merged to obtain a new
lifted exact-Hessian SQP method for the solution of Optimal Control Problems (OCP}) involving
models consisting of Differential Algebraic Equations (DAEE) of index 1.

Regarding strategies related to numerical IVP solution and sensitivity generation strategies for
IVP solutions, we have presented in this thesis

e a brief, heuristic analysis of the impact of the fact that in practice a predictor-corrector
scheme is employed in our BDF-method on the stability of the method at the example of
the Dahlquist equation. It shows that in the context of our monitor strategy this premature
termination of the Newton-like iterations will usually lead to only a moderate loss of stability
compared to the “true” implicit method (Section [5.3.3 on page 134)).

e the development and implementation of new adjoint IND schemes for implicit Linear Mul-
tistep Methods ) at the example of Backward Differentiation Formula (BDF]) meth-
ods. They allow the efficient computation of first order adjoint sensitivity information (Sec-
tion[6.4.2 on page 161)). We have shown with the help of several examples from the Bari IVP
testset that our adjoint IND approach outperforms the state-of-the-art implementation of
the widely used approach based on the solution of the adjoint variational ODE/DAE given
by the SUNDTALS solver suite (Section [9.2 on page 232)).

e a proposal for a simple a posteriori estimator for the global error of the IVP solution, based
on the intermediate quantities of the adjoint IND sweep, that can also be used in the index
1 DAE case (Section [6.7.6 on page 188]). We demonstrated that it performs well compared

261



262 11.1. SUMMARY

to a similar approach based on the solution of the adjoint variational equation on a series of
examples from the literature (Section [9.4 on page 245)).

e the combination of the IND principle with the technique of univariate Taylor Coefficient
(TC]) propagation, which enabled us to derive the new IND-TC schemes. These allow for
the first time the efficient computation of directional sensitivities of DAE-IVP solutions of
arbitrary order. Sensitivities can be generated both by a pure forward mode as well as by a
forward /adjoint mode that allows, e.g., the efficient computation of Hessian-type sensitivity
information of the IVP solution (Section 6.5 on page 168)).

e how the forward IND/IND-TC sweeps can be adapted to generate forward sensitivities that
are (locally) error controlled. This is done by choosing the integration time grid based on the
properties of both the nominal and the variational trajectories (Section [6.7.5 on page 185)).
We demonstrated on some simple test problems, how the modified algorithm correctly chose
a common finer grid to fulfill the error tolerances for the forward sensitivities (Section

on page 242|).

e the description of the propagation of higher-order directional sensitivities across switching
events by TC propagation without the need to form complete update matrices (Section m
. This makes the use of higher-order sensitivities in the optimization of problems
involving switching events for the first time computationally feasible.

e the creation of the C+-+ package SolvIND [AKal [AKD| (with co-author Christian Kirches)
as interface to integrator codes supporting IND, like, e.g., the newly created DAESOL-ITI.
SolvIND can also be used as building block for dynamic optimization software and facilitates,
e.g., semi-automatic ADOL-C support for the generation of first and higher-order model
function derivatives as well as the transparent use of time and control transformations that
are needed frequently in the solution of and dynamic optimization in general.

Concerning the development of structure-exploiting NLP solvers using the lifting idea, we have in
this thesis

e explained how the multiple shooting idea can be generalized to the lifting idea for nonlinear
functions in which cost function and constraints are explicitly computed via intermediate
values. We showed that per iteration the complexity of the solution of the lifted problem is
the same as for the unlifted problem. In particular, the complexity does not depend on the
number of newly introduced intermediate “node” variables (Section 4.1 on page 78|).

e demonstrated how by the use of an algorithmic trick the evaluation of a given user prob-
lem function can be lifted by the introduction of node values in a minimally invasive way.
Furthermore, we have shown how the quantities needed for the forming of the reduced sub-
problem in each step of a lifted Newton method can be computed efficiently by derivatives
of this modified function evaluation (Section 4.1.1 on page 81)).

e used the lifting idea to derive automatically structure-exploiting Newton-type NLP solvers
in form of a lifted constrained Gauss-Newton and lifted exact-Hessian SQP method. The
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developed Gauss-Newton approach can be understood as a generalization of the ideas used
in the multiple shooting codes of Schléder (FIXFIT [Sch88|) and Schéifer (MSOPT [Sch05]),
while the lifted exact-Hessian SQP based on adjoint derivative information has never been
proposed before. Furthermore, we showed the equivalence of the iterates generated by our
algorithm compared to the iterations of a full-space SQP operating in the combined space
of original degrees of freedom and node variables (Section 4.2 on page 86]).

e given a local convergence analysis and comparison for the lifted and unlifted Newton method
on a tutorial problem, to gain a first understanding on why and in which cases the use of a

lifted method might be useful or not (Sections [4.3] and [4.4)).

e developed and implemented the C++ package LiftOpt [Alb]. It implements a lifted Newton,
Gauss-Newton and SQP method and can be used to lift user given simulation or function
evaluation codes in an easy way for the use in connection with the implemented lifted
optimization routines.

e presented the successful application of Lift0Opt and the proposed lifted Gauss-Newton and
lifted SQP on a simple test example as well as for the solution of a large scale NLP. The latter
resulted from a parameter estimation problem for a system of hyperbolic PDEs describing
a shallow water equation model (Sections [8.1] to [8.3).

Finally, we have merged some of the new ideas from the two areas and

e derived an adjoint-based exact-Hessian SQP method in the framework of Bock’s direct multi-
ple shooting [BP84] for the solution of optimal control problems. Here we combined the lifted
exact-Hessian SQP and the capability to compute higher-order forward/adjoint directional
sensitivities using IND-TC with the partial reduction technique for DAEs of Leineweber
[Lei99] (Section [7.1 on page 203)).

e showed that the complexity in terms of run-time and memory demand of this algorithm
is far superior to exact-Hessian alternatives based on the classical condensing approach.
The inherent structure exploitation of our algorithm makes the computational treatment of
general large scale systems with an exact-Hessian SQP multiple shooting method for the
first time computationally feasible (Section [7.3 on page 216]).

e implemented our algorithm in the C+-+ code DynamicLiftOpt and applied it successfully
for the solution of an optimal control problem for a practical application from chemical
engineering in form of a distillation column. Here we also demonstrated the superior per-
formance of our approach compared to existing exact-Hessian multiple shooting based SQP
methods and its competitiveness with update-based methods employing classical condensing
(Section [10 on page 249)).
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11.2 Outlook and future work

The ideas and methods presented above give rise to a variety of application scenarios and exten-
sions, which cannot be addressed completely in the framework of this thesis. We hence propose
in the following some directions for interesting future research.

e Parallelization: For the treatment of very large scale systems and/or for further speedup the
parallelization of our algorithms would be of interest. Concerning our integrator DAESOL-IT,
it would, for example, be interesting to use parallel linear equation solvers in the Newton-like
method.

Regarding the lifted optimization algorithms, it should be noted that here a parallelization
approach similar to the one for classical direct multiple shooting [GB94], i.e., based on
the decoupled shooting intervals (or the individual node function evaluations in the general
lifting context, respectively), is not possible. This is because, as we have seen, the derivatives
need to be propagated sequentially through the node functions (or the shooting intervals,
respectively), as the propagated derivatives of the “earlier” node functions are needed as
inputs for the propagation through the later ones.

However, a parallelization could be based on the distribution of the computation of the
different directional derivatives to different cores, as each forward/adjoint TC propagation
can be performed independently. Considering that for large scale problems the costs are
mainly given by the costs for the derivative computations, this might well lead to an efficient
parallel approach. Especially, if we recall that the IND-TC schemes offer to reuse the
integration grid and the iteration matrices from the nominal integration for all of these
parallel sensitivity sweeps and hence no additional integration overhead is to be expected.
A similar speedup can be expected if the TC propagation through the model functions could
be parallelized, e.g., if a suitable AD tool is developed.

e Adaptive control of the integration accuracy and/or the integration grid: To improve the
overall efficiency of optimization algorithms, it would be interesting to develop strategies that
adapt the integration accuracy and/or the integration grid according to the actual needs of
the optimization routine. The needed accuracy of the sensitivities could be estimated, e.g.,
based on the contractivity of the Newton-type iterations or the error in a quantity of interest
(e.g., cost functional, merit function).

At the moment, a simple integration grid adaptivity can be realized based on the capabil-
ities of DAESOL-II by freezing the integration grid over several optimization iterations and
recomputing it with a new tolerance when the estimated error becomes too large. Here the
proposed a posteriori global error estimator based on adjoint IND can be used.

A possible improvement on the integrator level would be the ability to choose the integration
grid during the integration based on adjoint sensitivity information from a previous run to
ensure that a global error bound on a given quantity of interest is satisfied. This might reduce
the overall number of integration steps significantly compared to a strategy that is based on
the accuracy of the system states only. While implementations of this idea, based on the
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solution of the adjoint variational equations, already exist, these are not trivially transferable
to IND-based LMM schemes and hence an interesting subject for further research.

e Nonlinear Model Predictive Control : In this thesis we presented the application of
our lifted methods in connection with the off-line solution of optimal control problems only.
However, lifting offers interesting possibilities also in the context of NMPC and the real-time
iteration scheme [Die02, [DBS05], as initial value and parameter embedding can be achieved
very easily by letting the values enter the problem via lifted node values. Furthermore, it will
be interesting to analyze the performance of the lifted exact-Hessian SQP method in online
optimization. It allows the treatment of problems using an exact-Hessian SQP method with
much smaller sampling intervals than before, at the expense of a slightly prolonged feedback
phase (not all QP quantities can be computed without the knowledge of the current system

state). As a further extension, our method could also be employed as part of a hierarchical
multi-level NMPC scheme [BDKS07, IABKT09).

e Inexact Newton-type methods for optimization: The reduced gradient and constraint in-
formation that can be computed cheaply by a second-order forward /adjoint IND-TC sweep
can be used in connection with inexact Newton-type methods that are based on update
strategies for the Hessian and Jacobian [GW02, DWBKO09., Wal(08] to further decrease the
cost of one NLP iteration and to render the number of directional derivatives needed in
each step constant. An alternative approach to achieve this would be, at least for equal-
ity constrained problems, the use of lifting in connection with a Krylov-type optimization
method, which would also allow the treatment of even larger systems, as it would lead to a
completely matrix-free method. Finally, it would be interesting in this context to analyze
the possibility of computing so-called high-rank BFGS updates of the Hessian matrix [BP84]
more efficiently by using forward /adjoint IND-TC propagation.

e Globalization: It would be interesting, especially in the context of the lifted exact-Hessian
SQP method, to develop alternative globalization approaches, e.g., based on natural level
functions and the restrictive monotonicity test [BKS00].

e Optimization problems involving higher-order derivatives: The IND-TC schemes presented
in this thesis can compute directional sensitivities of IVP solutions of arbitrary order (in-
cluding the case of models with switching events). Hence the possible application scenarios
for them are not limited to an exact-Hessian SQP method for optimal control. They can
be used, e.g., to immediately speedup some existing algorithms for robust optimization
[KKBS04, DBK06| and Optimal Experimental Design [Kor02, [KKBS04]. Here at
least second order sensitivity information is needed, which is nowadays normally computed
by the solution of a second order forward variational equation. Furthermore, they allow for
the first time the extension of these algorithms for the use of exact-Hessian information,
which would correspond to the need of third order sensitivities. Additionally, it would be of
course highly interesting to extend the lifted exact-Hessian SQP method presented in this
thesis for the use in robust optimization and or even robust






Notation

A general convention throughout this thesis is the use of normal font for scalar quantities and the
use of a bold font for vectors and matrices. This holds analogously for scalar and vector-valued
functions. Unless indicated otherwise an n-dimensional vector shall always be understood as being
equivalent to an n x 1 matrix, i.e., all vectors are “column”vectors. In the following let x € R"
be a vector and H € R™™ be a matrix. a and b shall stand for scalar values.

List of mathematical symbols

HT Transposed of matrix H

R Real part of a complex function or value

Ry Imaginary part of a complex function or value

a<b a is much smaller than b

fx Short for the Jacobian %

I, Identity matrix or identity operator in R"

R Set of real numbers

N Set of natural numbers (including 0)

N* Set of natural numbers (excluding 0)

(Z) Binomial coefficients

C'(X,Y) Set of functions between spaces X and Y that are (at least) continuous
on some open domain of X

CH(X,Y) Set of functions between spaces X and Y that are (at least) k-times

(k € NT) continuously differentiable on some open domain of X

e] i-th Cartesian unit/basis vector in R”
U-(x) Neighborhood around point x with radius e.
ut+=nv Add-assign operation: u = u + v
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List of acronyms

AD Automatic Differentiation

BDF Backward Differentiation Formula

BFGS Broyden-Fletcher-Goldfarb-Shanno

DAE Differential Algebraic Equation

DFP Davidon-Fletcher-Powell

IND Internal Numerical Differentiation

IVP Initial Value Problem

KKT Karush-Kuhn-Tucker

LICQ Linear Independence Constraint Qualification
LMM Linear Multistep Method

NLP Nonlinear Program

NLSQ Nonlinear Least-Squares

NMPC Nonlinear Model Predictive Control

ocCP Optimal Control Problem

ODE Ordinary Differential Equation

OED Optimal Experimental Design

PDE Partial Differential Equation

PRSQP Partially Reduced Sequential Quadratic Programming
L-PRSQP Lifted Partially Reduced Sequential Quadratic Programming
QP Quadratic Program

SQP Sequential Quadratic Programming

s.t. such that

TC Taylor Coefficient

w.r.t. with respect to
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