
INAUGURAL - DISSERTATION
zur

Erlangung der Doktorwürde
der

Naturwissenschaftlich-Mathematischen Gesamtfakultät
der

Rupert - Karls - Universität
Heidelberg

vorgelegt von
M.Sc. Guillermo Ańıbal Marcus Mart́ınez

aus Buenos Aires, Argentina

Tag der mündlichen Prüfung: 27.01.2011

Acceleration of Astrophysical Simulations with

Special Hardware

Gutachter: Prof. Dr. Reinhard Männer
Zweiter Gutachter: Prof. Dr. Ralf Klessen

To my family

Zusammenfassung

In dieser Arbeit werden die raceSPH- und raceGRAV-Beschleunigungs-Bibliotheken
vorgestellt, die eine Anbindung astrophysikalischer Simulationen an Spezialhardware
ermöglicht.

Die raceSPH-Bibliothek dient der Beschleunigung von ’Smoothed Particle Hydrody-
namics’ (SPH), einer Methode zur Bestimmung hydrodynamischer Kräfteinteraktionen.
Untersucht wurde die Verwendung von Vector-Einheiten in Mikroprozessoren, Field
Programmable Gate Arrays (FPGAs) und Grafikkarten (GPUs). In synthetischen Mes-
sungen wurden Beschleunigungsfaktoren von 1,2 bis 28 erreicht, in astrophyikalischen
Simulationen von 6 bis 19. Für die gesamte Berechnung wurden Beschleunigungsfak-
toren von 1,6 bis 2,4 erreicht, die nahe an dem theoretisch erreichbaren Faktor 2,5
liegen.

Die raceGRAV-Bibliothek dient der exakten Berechnung von Gravitationskräften
und wurde entworfen, um den GRAPE-Beschleuniger zu ergänzen. Bei direkter Auf-
summierung ist die Performance gleich auf mit den Vector-Einheiten der CPU und bei
Normierung auf die Anzahl der Pipelines vergleichbar mit GRAPE-6.

Für die Entwicklung dieser Bibliotheken wurde eine Reihe zusätzlicher Module en-
twickelt, wie bspw. ein PCI-Treiber für aktuelle Linux-Kernel, eine MPRACE-Bibliothek
zur Kommunikation mit FPGA-Karten und eine Buffer-Management-Bibliothek, die ef-
fiziente Datentransfers ermöglicht.

Abstract

This work presents the raceSPH and raceGRAV accelerator libraries, designed to in-
terface astrophysical simulations with special-purpose hardware. The raceSPH focuses
on the acceleration of Smoothed Particle Hydrodynamics (SPH), a method for approx-
imating force interactions in fluid dynamics. Accelerators used range from vectorizing
units on the microprocessors to Field Programmable Gate Arrays (FPGAs) and Graph-
ics Processing Units (GPUs), and speed-ups range from 1.2x to 28x when measured in
a synthetic benchmark and from 6x to 19x when used inside astrophysical simulations,
for a total wallclock time speed-up of 1.6x to 2.4x, close to the theoretical maximum
of 2.5x.

The raceGRAV library computes gravitational force with high accuracy and is de-
signed to complement the GRAPE accelerator. In direct summation tests, it provides
performance on par with vectorizing units of the processor and comparable to the
GRAPE-6 when normalized against number of pipelines.

For the development of these libraries, a set of supporting modules were developed,
including a PCI driver for modern Linux kernel versions, an MPRACE library for the
communication with FPGA boards and a buffer management library for the efficient
handling of data transfers.

Contents

Introduction 15

I Background Knowledge 19

1 Astrophysical Simulations 21
1.1 Gravity . 21
1.2 Smoothed Particle Hydrodynamics . 22

1.2.1 Artificial viscosity . 24
1.3 Integration techniques . 25
1.4 Time-steps schemes . 26

2 Hardware Accelerators 29
2.1 General Purpose CPUs and Streaming Instructions 30
2.2 Graphic Processors as Scientific Coprocessors 32
2.3 Field Programmable Gate Arrays . 38
2.4 Application Specific Integrated Circuits 44

II Supporting Libraries 47

3 The PCI Driver 51
3.1 Architectural Overview . 52
3.2 Kernel Memory . 53
3.3 User Memory . 54
3.4 Interrupt Handling . 55
3.5 SysFS Interface . 56
3.6 PCI Driver API . 57

3.6.1 C++ Interface . 57
3.6.2 C Interface . 58
3.6.3 Compat Interface . 58

4 The MPRACE library 61
4.1 Architectural Overview . 61
4.2 Register Mapping . 62
4.3 DMA Buffers . 63

11

12 CONTENTS

4.4 DMA Engine . 64

4.4.1 Descriptor List Assembly . 64

4.5 Performance . 67

5 The Buffer Management Library 69

5.1 Buffering Algorithms . 70

5.2 Translation Mechanisms . 72

5.2.1 Translation by subclassing . 72

5.2.2 Templatized Translators . 74

5.3 Profiling and Performance . 74

5.3.1 Performance of the BufferManager classes 74

5.3.2 Performance of the Templatized Managers 80

III Software Integration 83

6 The raceSPH Library 87

6.1 Motivation . 88

6.2 Previous and Related Work . 89

6.3 Formulae . 90

6.4 Architectural Overview . 91

6.5 CPU and SSE implementations . 96

6.6 FPGA implementation . 100

6.7 GPU implementation . 106

6.8 Application performance . 111

6.8.1 Comparison with previous work 112

6.9 The VINE implementation . 114

7 The raceGRAV Library 119

7.1 Previous and Related Work . 120

7.2 Architectural Overview . 121

7.3 CPU and SSE implementations . 122

7.4 FPGA implementation . 122

7.5 Results . 122

8 Summary 127

9 Conclusions and Final Remarks 131

IV Appendices 135

A Buffer Manager Profiling Plots 137

B RaceSPH Profiling Plots 147

C RaceGRAV additional plots 151

CONTENTS 13

List of Figures 155

List of Tables 157

Acronyms 159

References 161

Acknowledgements 173

14 CONTENTS

Introduction

Astrophysicists are in a difficult position. While in other sciences it is possible for the
scientists to perform experiments in order to explore concepts and prove or disprove
conjectures, astrophysicists do not have the benefit of pocket universes or stars laying
in their labs, waiting to perform the next test. They must therefore rely on obser-
vations and knowledge, of physics and chemistry and sometimes other fields, to build
theories and explain what is observed. But even then, their observations are limited to
snapshots of time, as the evolution of most celestial bodies takes place in a time scale
that surpasses the life span of any person. Moreover, because of the huge distances
between Earth and other stars and galaxies, the time it takes for the light to arrive to
Earth has to be considered. Every observation that goes farther from Earth also looks
deeper into the past. For these reasons, astrophysicists resort to simulations in order
to better understand the processes that lead to the phenomena they observe.

Computers provide an environment where these simulations can be done efficiently
and with great flexibility. Their programmability allow the scientists to experiment
with different models and conditions and study their evolution and characteristics.
The computer becomes their virtual laboratory.

One of such models is the N-Body simulation of gravitational interactions. Mod-
elling the system as a collection of particles with a defined mass, their force interactions
can be computed by the law of universal gravitation. In its most basic form, every par-
ticle interacts with each other, so the computation of these forces scales with O(n2). If
we consider that galaxies contain between 100 billion and 1 trillion stars (our galaxy
is estimated to have at least 200 billion1), computing n2 interactions is on the order of
1022 − 1024, quite a big number.

The computation of gravitational interactions is such an important component that
great efforts have been taken to accelerate its calculation. One of such efforts is the
GRAPE, a family of processors specifically designed to compute them, providing speed-
ups by about two orders of magnitude compared to regular processors (at the time of
its release).

After the computation of gravity is accelerated other forces, like the one produced
by the pressure of interstellar gas, consume a significant portion of the remaining com-
puting time. One method to compute these forces is Smoothed Particle Hydrodynamics
(SPH), a meshless particle method that approximates the pressure by interacting only
with a group of local neighbouring particles. A good portion of the current document
will be devoted to the design and integration of accelerators for the computation of

1http://www.seds.org/messier/more/mw.html

15

http://www.seds.org/messier/more/mw.html

16 CONTENTS

SPH into current simulation programs used by astrophysicists.

For this purpose, different technologies are used for the design of the accelerators,
covering from vector units in modern microprocessors to Field Programmable Gate
Arrays (FPGAs) and Graphics Processing Units (GPUs). FPGAs are reconfigurable
arrays of logic elements, allowing the creation of hardware designs and architectures by
simply programming the device. GPUs are basically graphic cards that have evolved
into fully programmable, massively parallel processors.

The requirements of these technologies from the programming point of view are
quite dissimilar, with specialized languages and technical constraints to follow on each
case. While scientific applications in CPUs are most commonly programmed in Fortran,
C or C++, FPGAs are programmed in Verilog or VHDL, while GPUs use CUDA,
BrookGPU or more recently, OpenCL. We will show how to isolate these factors from
the main application without affecting significantly the resulting performance.

In the following work we will present a couple of libraries, raceSPH and raceGRAV,
that respectively abstract the computation of SPH and gravitational forces from the
accelerator used. Their applicability is shown by integrating them with actual as-
trophysical applications. Accelerators presented include CPU optimizations, FPGA
accelerators and GPU coprocessors, that provide different degrees of flexibility, speed
and accuracy.

In particular, FPGA accelerators require the development of specialized access li-
braries for low-level communication. Since boards developed in our research department
were used, these libraries had to be developed and they will also be covered in detail.
More specifically, the consist of a low level driver (the PCI driver), an abstraction
layer for IO functions (the MPRACE library), and a transfer optimization library (the
Buffer Management library). Together, they form the core for our generic framework
for FPGA application development.

The document follows an organization based on chapters, with each chapter covering
a particular module. Because most results are quite specific to the developments on
a given chapter, they are presented and discussed in the same chapter instead of a
separate section of the document. Is the opinion of the author that this organization
makes the content more readable and builds on results from previous chapters as the
document progresses.

The document is therefore organized in three main parts, covering the background
knowledge (Part I), the supporting libraries (Part II) needed to implement the accelera-
tor libraries, and the accelerator libraries themselves (Part III). Conclusions (Chapter 9)
and Appendices (Part IV) round up the final sections.

Part I consists on two chapters, with Chapter 1 dedicated to the astrophysical
concepts involved in the simulations and Chapter 2 focusing in the technologies involved
in the development of high performance accelerators.

Part II is divided in three chapters, each one describing one module at the lowest
level of our software stack. Chapter 3 covers the development of the PCI driver that
used to interface the hardware with the user level program through the Linux kernel.
Chapter 4 provides high-level IO functionality as well as the communication with the
hardware Direct Memory Access (DMA) engine. Chapter 5 documents the Buffer
Management library, a set of abstractions for the efficient communication between the

CONTENTS 17

target application in an accelerator board and the application in the host.
Part III is composed of two chapters. Chapter 6 describes the acceleration of SPH

computations with a variety of different hardware and documents its use with two
astrophysical simulations. Chapter 7 follows a similar structure as the previous chapter
for the acceleration of gravitational forces.

This work was done in the frame of the GRACE project, a collaborative effort be-
tween the Astronomisches Rechen-Institut (ARI) and the Department for Computer
Science V of the University of Heidelberg funded by a Volkswagen Foundation (VWF)
grant. Being an interdisciplinary project, the fruitful collaboration between astrophysi-
cists and computer scientists allows the combination of our expertises for a common
goal.

18 CONTENTS

Part I

Background Knowledge

19

Chapter 1

Astrophysical Simulations

The following chapter covers the basic concepts on astrophysical simulations as re-
lated with the development of hardware accelerators. They are provided as a guide
aimed at a reader with a background in Engineering and no special formation on as-
trophysics. Most sections follow the development by Aarseth in his book Gravitational
N-Body Simulations[6], with the exception of the SPH section that follows the work
of Monaghan[72, 73]. The reader is encouraged to look at those sources for a more in
depth treatment.

1.1 Gravity

The best known description of the gravitational force between two bodies is Newton’s
law of universal gravitation, first described in its Principia Mathematica[77]. When
stated as a vector equation, it is:

F = −Gm1m2

r2
r̂ (1.1)

where F is the resulting force, m1 and m2 are the masses of both bodies, r̂ is
the unit vector between object 1 and object 2 and G is the gravitational constant.
The resulting force is a vector in the same direction as the distance vector with a
magnitude directly proportional to the mass and inversely proportional to the square
of the distance. Depending on the direction of the unit vector, both forces are of equal
magnitude and in opposite directions. When considering a system with more than two
bodies, the force is best computed as a field, where the force at any given point is
determined as the sum of the contributions of the field of the other bodies, thus

Fi = mir̈i = −miG
N∑

j=1;j 6=i

mj(ri − rj)

|ri − rj |3
(1.2)

is the force experienced by the body i with mass mi at position ri for a system
with N-bodies, each with mass mj and position rj . The energy of such system can be
written as

21

22 CHAPTER 1. ASTROPHYSICAL SIMULATIONS

E = T + U +W =
1

2

N∑
i=1

miv
2
i −

N∑
i=1

N∑
j>i

Gmimj

|ri − rj |
(1.3)

with T the total kinetic energy of the system, U the potential energy and W the
energies from external sources. Since the system is closed and has no external interac-
tions, W = 0. The kinetic energy is the first term of Eq. 1.3, the sum of the kinetic
energy of every body, while the potential energy is the second term, the sum of each
unique pairwise combination in the system. These set of equations define the basics
for direct gravitational interactions in an N-body system, and allow us to present the
following three equations which are at the core of the gravitational force accelerators
involved in the following chapters

ai =
∑
j

mjrij

(r2
ij + ε2)3/2

(1.4)

ȧi =
∑
j

mj

[
vij

(r2
ij + ε2)3/2

− 3(vij · rij)rij
(r2

ij + ε2)5/2

]
(1.5)

φi =
∑
j

mj

(r2
ij + ε2)1/2

(1.6)

defining the accelerator, its derivative and the potential for a body i based on the
other bodies of the system. The only new addition is the factor ε, referred to as the
gravitational softening and used to avoid problems with collisions and near collision
situations when r → 0. For a more detailed discussion of gravitational softening, the
publication by Shirokov[87] is an interesting reading.

The acceleration (1.4) is directly related to Eq. 1.2, and together with its derivative
are used in a Taylor series expansion of Eq. 1.2 for the integration of the position in
predictor-corrector methods. The potential φi (Eq. 1.6) is similar to the second term
of Eq. 1.3, but instead of computing the potential for the system is the potential over
i.

1.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a meshless particle method first used by
Lucy[62] and Gingold & Monaghan[31]. The method approximates the value of a
continuous function by sampling it at particle positions and distributing this value over
a certain area (or volume), defined by the SPH kernel. Then, the function at any point
in space is the sum of the contributions of each particle at that point. By example,
when approximating the density by this formulation we get

ρ(ri) ' 〈ρ(ri)〉 =

N∑
j=1

mjW (r− rj , h) (1.7)

1.2. SMOOTHED PARTICLE HYDRODYNAMICS 23

2h

i-particle

j-particles

smoothing radius

force interaction

Figure 1.1: SPH approximation of the density at point ri for a smoothing length h
in two dimensions. Particle i sum the force interactions from j − particles inside the
smoothing radius 2h.

where ρ(ri) is the continuous density function, 〈ρ(ri)〉 denotes its SPH approxima-
tion and W (r, h) is the SPH kernel, with rj the particle position and h defined as the
smoothing length. The density is therefore approximated with N points with mass mj .
Graphically, it can be represented as in Fig. 1.1.

The kernel function has several interesting properties. Because the continuous func-
tion is approximated by sampling, one can consider the kernel as a function of the
family of generalized functions described by the Dirac delta δ(x), which are defined by
the constraints ∫

W (u, h)du = 1 (1.8)

lim
h→0

W (u, h) −→ δ(u)

where the last limit defines the kernel as being an approximation. Since W is a
part of this family, an infinite number of functions exist that can be used as kernels. A
more detailed demonstration can be found in the review by Dalrymple[20].

Another important property of the kernel is that the smoothing of the particle is
confined by the smoothing length. Therefore, in order to compute the approximation
at ri only the particles inside a radius r < kh need to be considered and while the
summation at Eq. 1.7 is in the range j = 1...N , only the interactions inside this radius
are non-zero and the summation can be reduced to only n elements, defined as the
neighbours of i. Most kernels, including the proposed spline kernels by Monaghan[31,
72, 73] normalize r against h and define the range to be x < 2, or (r < 2h).

In order to simulate the system appropriately, the acceleration of the particles is
needed. The Euler equation (Eq. 1.9) relates the acceleration to the pressure and the
density for an inviscid flow:

dv

dt
= −1

ρ
∇P + g (1.9)

24 CHAPTER 1. ASTROPHYSICAL SIMULATIONS

with g = 0 as no external forces are present. Using the relation

1

ρ
∇P = ∇

(
P

ρ

)
+
P

ρ2
∇ρ (1.10)

and approximating each term with the SPH formulation as done in Eq. 1.7

∇
(
P

ρ

)
'
〈
∇
(
P

ρ

)〉
=

N∑
k=1

mk
Pk

ρ2
k

∇W (r− rk, h) (1.11)

∇ρ ' ∇〈ρ〉 =

N∑
k=1

mk∇W (r− rk, h) (1.12)

the acceleration can therefore be written as

dvi

dt
= −

∑
j

mj

(
Pj

ρ2
j

+
Pi

ρ2
i

)
∇iWij (1.13)

= −
∑
j

mj

(
Pj

ρ2
j

+
Pi

ρ2
i

)
∇iW (ri − rj , h) (1.14)

with ∇iWij the gradient of the SPH kernel relative to i.

1.2.1 Artificial viscosity

As cited by Monaghan[72], it was identified in simulations without viscosity that when
two clouds of gas collide, their flow pass right through them. Therefore, Eq. 1.14 was
modified and an additional term Πij added in order to include an artificial viscosity in
the equation, so the acceleration can be written as:

dvi

dt
= −

∑
j

mj

(
Pj

ρ2
j

+
Pi

ρ2
i

+ Πij

)
∇iW (ri − rj , h) (1.15)

the artificial viscosity term has several formulations, but a common one used here
as well as in several other codes[72, 74, 89, 96] is

Πij =

−αcijµij + βµ2

ij

ρij
vijrij ≤ 0

0 vijrij > 0

µij =
hijvij · rij
r2
ij + η2h2

ij

fij

with the smoothing length h, the sound of speed c and the Balsara factor f sym-
metrized as their mean values

1.3. INTEGRATION TECHNIQUES 25

hij =
hi + hj

2
cij =

ci + cj
2

fij =
fi + fj

2

1.3 Integration techniques

After computing all the interacting forces present over a particle (gravity and hydrody-
namics being two of these forces), the positions are computed by the numerical solution
to the differential equations resulting from integrating the acceleration. Generically, if
the position r at time tn is denoted as rn and tn+1 = tn + ∆t denotes a time interval
∆t between tn and tn+1, then we want to compute rn+1 = f(tn, rn), with f being a
generic function.

The easiest of these methods is the Euler method for integration of ordinary differ-
ential equations. From the definition of a derivative we have:

dy

dt
= ẏ = lim

∆t→0

y(t+ ∆t)− y(t)

∆t

and the derivative can be approximated as

ẏ ≈ y(t+ ∆t)− y(t)

∆t

Finally, separating the term of interest and rewriting according of the definitions of
the first paragraph, yn+1 is

y(t+ ∆t) = ∆tẏ + y(t)

yn+1 = yn + ∆tẏn

The approximation of the derivative can also be interpreted as the first two terms
of the Taylor series expansion of function y around tn and evaluated at tn+1. That is,

y(t) =
∞∑
n=0

y(n)(a)

n!
(t− a)n

y(t) ≈ y(0)(a) + y(1)(a)(t− a)

y(t) ≈ y(a) + ẏ(a)(t− a)

y(t+ ∆t) ≈ y(t) + ẏ(t)(t+ ∆t− t)
yn+1 ≈ yn + (∆t)ẏn

This usage of Taylor series expansions allows the construction of several other so-
lutions by using additional terms from the expansion. It also has the advantage that
the error introduced by the approximation can be computed as the solution to the
maximum bound to the infinite series of the truncated section (the remainder).

26 CHAPTER 1. ASTROPHYSICAL SIMULATIONS

An important family of numerical solvers is composed by the predictor-corrector
schemes. In these methods, two phases are necessary, with the first phase (prediction)
computing an initial estimation which is used on the second phase (correction) to
improve over the predicted result.

One such scheme is the Hermite scheme proposed by Makino[64], that according to
Aarseth[6] provides several improvements when used in conjunction with special hard-
ware accelerators. In this topic, it is also worth noting the investigations of Nitadori[79]
regarding the applicability and possible benefits of higher-order integration schemes.

K

0

1

2

3

4

time time

particle 1

particle 2

particle 3

particle 4

particle 5

time

global time-step

fixed

global time-step

variable

Individual time-steps

Hierarchical time-steps

Figure 1.2: Collection of time-step schemes. Global timesteps are shared by all particles.
Individual timesteps are unique for each particle and required interpolation to interact
with other particles. Hierarchical time-steps assign particles to slots of fixed size and
moves them as their time-steps changes. Particles are interpolated to the actual slot
being computed.

1.4 Time-steps schemes

While the previous discussion covered how to compute the next timestep, this section
focuses on different strategies to determine, when to compute a timestep. The basic
assumption from section 1.3 was that all timesteps must be computed on every iteration,
in order to produce a sequence of positions r0, r1, ...rn−1, rn, rn+1, ... for every particle
in the system.

The first and simplest scheme to consider is to use one single, fixed time-step for
all particles, or ts = ∆t = k, with k constant. This is very simple, requiring no special
considerations besides the actual value to use. It is however a very wasteful scheme, as
it computes every timestep at the maximum time resolution even when some particles
are stationary (v = 0) or moving very slowly in comparison to the fastest particle in
the system.

1.4. TIME-STEPS SCHEMES 27

Therefore, it can be improved with a single variable, global timestep. In this scheme,
the timestep is chosen so it ensures the accurate resolution of the fastest moving particle
in the system, by example, so the remainder of the Taylor series expansion is bounded
by the desired error function. In other words, it is possible to define a function ts,i
that computes the timestep for a particle i, and then set the global timestep ts =
min(ts,i). The main drawback of this scheme is that the resolution is driven by the
fastest particle in the system. This might not be an issue for some problems, but
astrophysical simulations have particles that span several different time scales, with
some area highly dynamic and others fairly stationary. Even a single particle crossing
the system at high speed will nullify the advantage of this scheme.

However, it is also possible to assign individual time-steps to every particle. If every
particle keeps track of its own variable time-step, it will be computing its position with
the best accuracy possible and at the optimum rate, which means no force computations
are wasted. But then, the particle time ti will not match with the individual time of
other particles, which is a problem as all particles must be at the same time t to compute
forces for that particular time. A solution proposed by Aarseth[6] is to determine the
next required global time t based in the smallest ts,i, compute the force for particles
with comparable time-steps scales, and interpolate the rest. There is an additional cost
when computing such interpolations, but it is still less than the cost of computing force
interactions.

An alternative to this scheme is to use hierarchical individual time-steps, which
defines a hierarchy of possible time-steps instead of allowing them to vary arbitrarily.
One possible hierarchy is ts = 2−k, x = 0, ...,K, with K + 1 partitions, each half of
the previous. Besides being easier to implement, it provides additional advantages
e.g. when saving data at regular intervals, as there are time-step multiples when all
particles are on the same particle time, so all particles are synchronized and can be
dumped easily. Since the possible time-steps are now fixed particles can be grouped
by time-step. This leads to the concept of active and inactive particles, where active
particles compute the force interactions while inactive particles are interpolated to the
next active timestep.

28 CHAPTER 1. ASTROPHYSICAL SIMULATIONS

Chapter 2

Hardware Accelerators

With the creation of general purpose Central Processing Units (CPUs) an era of generic
processors and generic computing was started. The new CPUs, which were made
popular with the Intel 4004[94] design released in 1971 and latter models like the 8008
in 1972 and the 8080 in 1974, shown that a single-chip processor design can be used to
perform a great variety of tasks effectively, spawning the introduction of several other
similar platforms like the Motorola 6800 also in 1974 and the Zilog Z80 in 1976 and
together defining the start of the microprocessor era.

These new, general purpose hardware architectures became the perfect match for
the contemporary developments in higher level languages, as the hardware provided
the ability to execute a variety of different programs while the higher-level language
provided an adequate abstraction of the platform specifics. Languages like BASIC
and Pascal became very popular with the commercial computers created around these
microprocessors, while FORTRAN, an earlier language until then used mainly in main-
frames and supercomputers, remained oriented to scientific applications. Ultimately,
as microprocessors became commodity hardware and their performance increases, net-
works of off-the-shelf microprocessors replaced the specially designed vector units used
on the supercomputers as their main processing elements[19].

As the microprocessors advanced technologically and they became faster and more
complex, their use broadens, covering also scientific applications previously reserved
for supercomputers. For certain specific tasks, it was clear that adding specialized
hardware units would speed them up significantly. These hardware units took several
forms: from external floating point units (FPUs) in early designs to vector units that
can be used for a variety of applications. Other approaches will use custom add on
boards, as was the case of graphic cards that function first as simple frame buffers and
later as image coprocessors.

In the following sections, we will explore different technologies used to extend the
GP-CPUs performance for specific applications, from improvements that have been
added into the CPUs themselves to specially designed chips (ASICs). We will focus
on technologies useful for scientific applications, particularly those that require floating
point operations.

29

30 CHAPTER 2. HARDWARE ACCELERATORS

2.1 General Purpose CPUs and Streaming Instructions

All modern CPUs use a variety of techniques to improve performance. Several of
these techniques involve circuit design improvements in order to increase the operating
frequency, reduce the operating voltage and improve the thermal dissipation of the
chip. In this section, we will concentrate in architectural improvements that led to
performance gains regardless of the physical characteristics of the device.

CPUs are divided in sections or stages, which each section responsible for a specific
task in the processing of an instruction. Therefore, the modern basic 5-stage division is
Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access (MEM)
and Write Back (WB), with more added as the architectures evolved. However, in the
first implementations a single clock cycle was used to perform all 5 stages for every
instruction, leading to several stages being idle for a good portion of the cycle and only
one instruction being finalized or dispatched per cycle. Very soon it was realised that by
inserting registers between stages, it was possible to increase the operating frequency
of the stages at the cost of latency: the stages will execute faster, but it will take 5
cycles to dispatch one instruction.

As a consequence of this separation, it will also be possible to keep all stages busy on
every clock, by pipelining the stages with different instructions. Assuming non-blocking
instructions, if one instruction is pushed into the pipeline per clock cycle, on every clock
the instruction will advance to the next stage. Following the same 5-stage example,
the first instruction will have a latency of 5 cycles, but subsequently one instruction
will be dispatched on each clock, effectively increasing the performance provided by the
pipeline by a factor of 5.

One important assumption of the last paragraph was that instructions were non-
blocking. Instructions can block each other if a dependency or hazard exists between
them, by example an instruction that reads the value calculated by the previous in-
struction and tries to operate over it. Dealing with these dependencies in hardware
significantly increases the complexity of the architecture. An in-depth analysis of the
subject is out of the scope of this overview, but the de-facto reference for this subject
is the work by Hennessy and Patterson[41].

Another improvement used in modern microprocessors is to make them superscalar,
in order to increase the number of instructions dispatched per clock cycle. The simplest
way to make a pipelined design superscalar is to add another pipeline. Instructions must
be fetched from the same stream and dispatched in order, to maintain the integrity
of the program. In more complex designs, the units are not fixed in a position the
pipeline, but can be used as they become idle. A scoreboard is used to keep track
of the units being in use and the instructions being processed, in order to dispatch
them appropriately. By being able to dispatch more than one instruction per cycle, the
utilization of the execution units can be improved and the performance of the increased.

An alternative to scoreboards, where the hardware processor schedule instructions
on the fly, is to make the execution units visible on the instruction set and let the
compiler make the decisions for instruction scheduling. This leads to architectures like
Explicitly Parallel Instruction Computing (EPIC) and Very Long Instruction Word
(VLIW), were more than one operation is encoded into a single instruction for parallel

2.1. GENERAL PURPOSE CPUS AND STREAMING INSTRUCTIONS 31

Fetch Decode Execute Memory Wr. Back

Clock Edge Clock Edge

Fetch Decode Execute Memory Wr. Back

Fetch Decode Execute Memory Wr. Back

Fetch Decode Execute Memory Wr. Back

Fetch Decode Execute Memory Wr. Back

Fetch Decode Execute Memory Wr. Back

Fetch Decode Execute Memory Wr. Back

Fetch Decode Execute Memory Wr. Back

All stages in use by different instructions

{

Single cycle

Pipelining

Superscalar

Vector SIMD units

INSTR. 1

INSTR. 2

INSTR. 3

INSTR. 4

INSTR. 5

(a)

(b)

(c)

(d)

SIMD
Execution Units

Figure 2.1: CPU techniques overview

execution. Therefore, the decoding of an instruction already provides the information
needed for every execution unit as decided by the compiler.

One way to further increase performance is to combine these concepts. By duplicat-
ing execution units multiple times, more work can be done per clock cycle. However,
more units means longer (wider) instructions, as more bits are needed to decode the
function of the additional units, which in turn means more data needs to be fetched
from memory on every instruction fetch. But if the units are identical, the Single In-
struction, Multiple Data (SIMD) programming model from the vector supercomputers
can be used, were each unit performs the same operation over different data. By limit-
ing the operation performed, only one decode unit is needed. Additional data types can
be defined that further limit the bits needed for addressing the data used. Because the
parallelism is based on the number of execution units used by the SIMD instructions,
the size of the vectors used is fixed. This is a critical distinction from vector com-
puters, where the size of the vectors is variable and defined by the value of a register,
independent of the number of execution units available.

Independently from the architectural improvements, the area occupied by the pro-
cessors keep shrinking as a consequence of other technological improvements like better
lithography processes that allow smaller transistors to be etched in the silicon die.
Therefore, designers were faced with a decision in how to better utilize the additional
area. For a time, it was thought that bigger caches will consume the vast majority of
the surface available[84], but instead the market took the direction of multiplying the

32 CHAPTER 2. HARDWARE ACCELERATORS

number of processors per die. In this way, multicore processors were introduced and the
multithread programming model already available in modern operating systems made
possible the utilization of the additional cores fairly easy. At the present date (end
of 2010), six cores per processor are available commercially and eight cores are in the
horizon. While the power consumption and silicon processes provide a physical limit
on the form of etching resolution and power dissipation, it is nonetheless expected to
see commercial manycore processors with tenths or hundreds of processing cores in a
single die in the next decade.

2.2 Graphic Processors as Scientific Coprocessors

The first graphic cards were little more than frame buffers which provided a computer
with a canvas area that a processor could use to draw information that would be
displayed to the user in a display monitor. Over time, these graphics cards gained
more functionality to aid the processor in the display of increasingly complex data:
first by handling character maps to speed up the display of text and color, later by
assisting the host processor in the drawing of 2D display objects needed for graphical
user interfaces (GUIs) and emerging mechanical and architectural applications.

As the computational power increased and surpassed the requirements of 2D, 3D
graphics became a growing need and manufacturers started to support 3D operations
on graphic cards as well. Given the complexity of transforming a 3D scene into a 2D
raster image for display, the necessary operations are normally arranged in a graphics
pipeline. Current pipelines represent objects as a collection of polygons and are capable
of handling object geometry, lightning, reflections and texturing, where each operation
is described in general form as a shader operation. Two standard pipeline models are
OpenGL[53] and Direct3D[71]. While the first graphics processors operated as a fixed
pipeline over a stream of polygons, concentrated in processing as many polygons as fast
as possible, recent additions to these models allow the use of programmable shaders,
which adds a degree of flexibility to an otherwise static process.

Several languages were created to use the capabilities of the programmable shaders,
the most important being C for Graphics (Cg) by NVIDIA, OpenGL Shading Language
(GLSL) by the OpenGL ARB and High Level Shading Language (HLSL) by Microsoft.
While each language has its specific characteristics, all of them support some form of
floating point operations. Because they are intended to program shaders and output the
result to the display, they do not provide easy communication with the host, specially
in the device-to-host direction. However, clever researchers realized that it was possible
to read the Frame Buffer Objects (FBOs) from the graphics card memory (i.e. the final
image created for display in a monitor, used for off-screen rendering in OpenGL) and
establish a processing workflow where data was sent to the card, the graphic processor
perform certain computing tasks coded as shader operations, and the results read from
the FBO.

Being focused in graphics operations, shader programming languages lack some of
the flexibility needed for general purpose programming. Recognizing this interest, ATI
released as beta the Close-to-Metal (CTM) language, that allowed the generic pro-
gramming of the Graphics Processing Unit (GPU) hardware and gave access for the

2.2. GRAPHIC PROCESSORS AS SCIENTIFIC COPROCESSORS 33

first time to the underlying architecture of the GPUs. Very soon afterwards, Stanford
University released the BrookGPU1[16] programming language, designed for generic
stream processing in multiple platforms. The Brook compiler is capable of transform-
ing Brook code into a multitude of backends, including CTM, OpenCL and DirectX
backends.

The use of graphics processors as General Purpose Graphics Processing Units
(GPGPUs) became mainstream with the introduction of the G80 architecture from
NVIDIA and its Compute Unified Device Architecture (CUDA) programming language.
The G80 architecture was one of the first graphic cards to switch from a dedicated
graphic pipeline to a fully generic architecture that can cover the requirements of both
a graphic pipeline as well as general purpose computing. Its more significant architec-
tural characteristics can be summarized as follow:

• Hundreds of Processing Elements (PE). The first generation of fully pro-
grammable GPUs, the G80, contains up to 128 processing units, organized as 16
Multiprocessors (MP) with 8 Processing Elements (PE) each. The Multiproces-
sors (MPs) are actually SIMD processors with 8 elements-wide vectors, with each
PE being an element of the vector. Therefore, the Processing Elements (PEs) are
not fully independent, but the software architecture ensures this is not a limita-
tion for most operations. Newer architectures increase the number of PEs up to
240 cores in the G200 and up to 512 cores in the latest GF100 architectures.

• Higher memory bandwidth. In order to keep as many PEs as possible occu-
pied, data needs to be fetched from memory at a higher rate than on a normal
CPU. While a modern CPU like an Intel i7 has a peak data transfer rate of
25.6 GB/s, the G80 GPU has a raw bandwidth of 86.4 GB/s. Newer architec-
tures increase even further, with a raw bandwidth of 141.7 GB/s for the G200
and 177.4 GB/s for the GF100.

• Non-cached, Non-coherent memory model. An important difference with
a normal CPU is the memory model on the GPUs. Most modern CPUs have
a complex memory hierarchy with several levels of memory cache (L1, L2, L3)
between the cores and the main memory of the system. Because every memory
cell consumes at least 6 transistors[93], their size occupies a significant area of the
chip, regularly over 50%, with researchers predicting in excess of 90% dedicated
to caches in future designs. GPUs like the G80 remove this limitation caused
by caches by forcing accesses from main memory on every transaction, while
providing a small shared area on each MP that can be used as scratchpad by the
execution units (the shared memory). Removing the cache memory enable the
designers to allocate much more execution units into the chip.

In addition, a normal CPU dedicates a good deal of hardware to keep coherence
between memory operations. It involves ensuring all transactions propagate the
correct value needed to perform the required operation transparently, that is, that
the program is not aware of these dependencies. By example, when a read-after-
write occurs, it has to guarantee that the read value is correct for all subsequent

1See http://www.graphics.stanford.edu/projects/brookgpu/

http://www.graphics.stanford.edu/projects/brookgpu/

34 CHAPTER 2. HARDWARE ACCELERATORS

read operations after the write is issued. This is a problem that requires extra
logic even in a simple pipeline (e.g. a write operation followed by a read operation,
while the write has not been dispatched yet). The task is further complicated
when taking into account the memory hierarchy (L1, L2, L3 caches and main
memory) and multi-threading programs with multiple CPUs and cores present,
which requires a specialized protocol to synchronize the data state among all the
hardware units and cores. All these requires a significant amount of hardware
design that increases the complexity, consumes chip area and ultimately reduces
the operating frequency of the CPU.

On the other hand, GPUs relax memory coherence in order to reduce the com-
plexity of the cores. Therefore, it is not guaranteed that a read after a write will
return the correct value, when a read is performed by a different PE (coherence is
maintained on each PE and its local data). The memory hierarchy is different on
GPUs, with cached and non-cached regions, as well as shared memory areas where
coherence can be ensured by explicit memory fences. These shared memory areas
are accessible to all threads executing in the same MP. It is therefore the respon-
sibility of the compiler (or the programmer) to maintain the coherence of the data
being processed, instead of being guaranteed by the hardware. The new GF100
architecture adds additional caches as part of the shared memory area to relax
some of these memory restrictions, as well as the capability to do system-wide
(across MPs) memory fences, giving the option to synchronize memory accesses
over the whole GPU.

• Thread execution manager in hardware. Another important difference with
most modern CPUs is the handling of concurrent threads. A normal CPU is ca-
pable of handling one or two threads per core (Intel calls this feature hyperthread-
ing), with the notable exception of Sun UltraSPARC T1 and T2 processors, which
support up to 32 concurrent threads. The scheduling of these threads is usually
handled by the operating system, which maps them as virtual cores. On the
other hand, a G80 GPU supports a high number number of concurrent threads,
768 threads per MP or up to 12,288 parallel threads in-flight (resident) in a sin-
gle GPU. The assignment of threads is done as a combination of hardware and
software. Part of the scheduling is done in software by grouping the threads into
blocks, with each block being assigned to a MP. Depending on the resources avail-
able, up to 8 blocks can be assigned to a single MP. The partition in blocks is
done by the programmer at design time, and will be described in detail in the next
section, but their assignment to available MPs is done at runtime. Threads inside
a MP are grouped in fixed segments called warps, and executed in SIMD fashion
by the MP and its PEs. With only 128 PE available, many of these threads are in
practice waiting to be scheduled, but the thread manager uses the delays between
warp executions to hide long latency operations and greatly increase the pipeline
efficiency of the MPs. Also, the use of warps to handle the scheduling makes the
cost of context switching virtually zero.

Since architectural differences are bound to occur as new versions of GPUs are
released, the CUDA platform defines Compute Capabilitys (CCs) in order to group

2.2. GRAPHIC PROCESSORS AS SCIENTIFIC COPROCESSORS 35

Block
0,0

Block
0,1

Block
0,2

Block
1,0

Block
1,1

Block
1,2

T(0,0) T(0,1) T(0,2)

T(1,0) T(1,1) T(1,2)

T(2,0) T(2,1) T(2,2)

T(3,0) T(3,1) T(3,2)

CUDA Grid CUDA Block

CUDA Thread

Application

Kernel call

...

...

Host GPU

Figure 2.2: CUDA Thread hierarchical organization

different devices according to the functionality available and made the programs aware
of them, so optimizations can be made on each case.

As it was mentioned earlier, the success of the GPUs as mainstream coprocessors was
a combination of the new architecture and the introduction of the CUDA programming
language. A variant of the C programming language, the most important feature of
the language is its massively parallel programming model based on threads. With a
hierarchical organization, thousands or even millions of threads are supported within a
single program.

CUDA follows a Single Instruction, Multiple Thread (SIMT) paradigm, where each
thread executes the same code, called a kernel. As a coprocessor, kernels must be
invoked (launched) by the application running on the host to start the execution on
the GPU. Threads are organized hierarchically in a generic grid of blocks, where each
block is a collection of threads (see Fig. 2.2). Every block in the grid can execute
independently of each other, and no communication is allowed between them. Blocks
are assigned for execution to a single MP, and they remain resident in the MP until
all threads in the block finish execution. Provided that enough resources are available,
multiple blocks can be assigned to one MP, but they remain isolated of each other.
Threads inside a block are executed concurrently in SIMT fashion, with one thread
being processed by one PE. Every thread in the system is aware of its position inside
the grid and the block, by means of predefined variables provided by the runtime
environment.

One important consequence of the independence of each block is that the platform
becomes scalable. The effect is similar to dispatching units of work to workers, where
idle MPs consume blocks, and new blocks are assigned to MPs as they become avail-
able. This is repeated until the grid is exhausted and no more work is pending. From
the programming point of view, programs are mostly unaware of the number of MPs
present, and this is why GPU programmers prefer to have many blocks with many
threads, so programs can be executed mostly independent from the number of MPs,
distributing work both among PEs inside an MP as well as among as many MPs as
possible. This leads to another advantage from a business point of view for NVIDIA,
as they can customize the hardware offerings to different market segments by just ad-
justing the number of MPs and the amount of memory included. In this way, the GPU

36 CHAPTER 2. HARDWARE ACCELERATORS

Size Latency Location Cached Access Scope

Register 8K regs 1 On-chip no R/W per thread
Local global 400/800 Off-chip noa R/W per thread
Shared 16 KB 2b On-chip no R/W per block
Global ≤1.5 GB 400/800 Off-chip no R/W system
Constant 64 KB 1/800 Off-chip yes read only system
Texture global 1/800 Off-chip yes read only system

a Local memory accesses are cached for devices with Compute Capability ≥2.x
b If there is no bank conflicts. Otherwise accesses are serialized and the latency increases

Table 2.1: Memory Regions available in a GPU. Sizes and latencies are rep-
resentative for a G80 architecture. System scope represents all threads in the
GPU plus the host system.

becomes modular and the MPs are the basic building block.

CUDA also makes a distinct separation of the memory regions available within
a GPU, which are Register, Global, Shared, Local, Constant and Texture memory
(see Tab. 2.1 for a summary). Registers are used by automatic variables and regular
variables per thread, but the total amount of registers available inside a MP is fixed.
Therefore, the number of registers which can be used by a thread is a function of the
number of threads in the MP, which is also dependent of the number of threads per
block and the number of blocks assigned to the MP. On the extreme case where 768
threads are assigned to the MP (being one block of 768 threads2, 3 blocks of 256, or 8
blocks of 96), every thread has only b8192/768c = b10.6̄c, or 10 registers available per
thread.

Global memory is the main GPU memory, with up to 1.5 GB for the G80 architec-
ture and available to all threads in the MPs as well as the host system. Global memory
is not cached, so any access by a thread implies a latency of 400-800 cycles before the
data is available. However, the memory controller is capable under certain conditions
to process multiple requests from multiple threads simultaneously. These conditions
are in general described as coalesced accesses, and they group a set of memory ac-
cess patterns where a set of active threads access a contiguous set of addresses. One
simple example is when each thread in a block reads an element in an array, and the
index of the element being read corresponds to the thread id of the requesting thread
(i.e. x=array[thread id] on every thread). Depending on the Compute Capability
of the GPU, other access patterns support shifting or interleaving of the addresses
as variations of this basic pattern. Non-coalesced accesses require additional mem-
ory transactions that severely affect the memory performance of the program. When
properly combining the latency of the coalesced memory accesses with the number of
threads resident, it is possible to completely hide the memory latency and fully utilize
both the memory bandwidth and PEs available.

2Not really possible on the G80 architecture, as a block is limited to 512 threads for devices with
Compute Capability <2.0

2.2. GRAPHIC PROCESSORS AS SCIENTIFIC COPROCESSORS 37

While the CUDA optimizing compiler is quite aggressive in register reuse, it is still
possible that not enough registers are available for the execution of a single block,
causing register spilling into local memory. Local memory can therefore be defined
as using global memory for variables that otherwise do not fit or would consume too
many resources in the register space. This applies to requiring too many registers in
a block, local (per thread) arrays and certain transcendental functions that require
local memory. The use of local memory is undesirable, as it has all the drawbacks
of accessing global memory and none of the advantages of registers, but is a fallback
solution for an otherwise not-executable code.

Shared memory is a scratchpad area, shared among all threads within a block.
Therefore, shared memory can be used by the threads inside a block to share data and
coordinate work among them. Accesses to shared memory have a latency similar to
registers, but they are further constrained by bank conflicts, so caution is advised when
designing multithread access to shared memory. When a bank conflict occurs (i.e. two
or more threads try to access different addresses in the same bank), the access to the
bank is serialized and additional latency is introduced.

Constant memory is a small area of global memory that is optimized for access to
read-only data, like system parameters and computing constants, which can only be
written by the host. In contrast with global memory, the constant memory is cached
by a small, 8 KB size cache on every MP, providing a latency comparable to register
access for a cache hit and a worst case of hundreds of cycles for a miss. In practice,
the worst case is seen rarely, as constants can be prefetched by the MP and therefore
reduce significantly the latency involved.

Texture memory is another redefinition of the global memory. As it name implies, its
main purpose is to support texture accesses for the graphics pipeline, so its optimized
for 2D and 3D data locality but it has certain features that can be used by generic
programs. When part of the global memory is assigned to a texture buffer (a process
called binding), it is also marked as read-only and cached by the MPs, so it is an
alternative for caching data access of big areas from global memory that do not need
to be written3. In addition, textures make use of the texture units present on each MP,
which besides direct data access can perform data conversion (8-bit and 16-bit integers
to 32-bit floating point numbers) as well as linear, bilinear and trilinear interpolations
with dedicated hardware, independent from the PEs. Because the texture binding is
done by the host and the memory is set to read-only, loading a texture in memory
can be done only by the host program. Writing to the global memory associated with
a texture by the device has undefined results, as it collides with the operation of the
texture cache.

During the previous discussion on the memory spaces of the GPU, several con-
straints and limitations have been shown that affect the performance of a program.
Some, like coalesced memory accesses, are runtime limitations; but most of them are
related to features like number of threads per block and grid dimensions, which are set
at compile time by the programmer, or number of registers per thread, which is a by-
product of the compiler after processing the source code. With relatively few of these

3In devices with Compute Capability below 2.0. Newer devices have a cache for global memory
access, and it is preferable to the texture binding for most situations.

38 CHAPTER 2. HARDWARE ACCELERATORS

CLB IOB Switch Routing

Figure 2.3: An uniform FPGA array with a matrix of 4x5 CLBs and 22 IOBs.

parameters and the NVIDIA Occupancy Calculator, a tool which includes the limits
for all Compute Capability devices, it is possible to compute easily the percentage of
occupancy of the MPs as well as to identify the most restrictive parameters, together
with the scaling and variance of them as the number of threads is varied. For a more
detailed analysis of the code, the CUDA profiler provides access to the performance
counters in the GPU, analysing the code as its executed in debug mode.

For a more in depth study of the CUDA programming platform, the more relevant
references are the CUDA C Programming Guide[82] and the book by Kirk and Hwu,
Programming Massively Parallel Processors[54]. Valuable information on optimization
techniques for the platform is also provided by the CUDA Reference Manual[83] and
the CUDA Best Practices Guide[81].

2.3 Field Programmable Gate Arrays

Most programmable logic was developed in order to reduce component count in circuit
boards and increase density. The most generic device of this family is a simple memory
device, where the address lines are the inputs and the data lines the outputs. With m
inputs and n outputs, it can map n functions with m variables of arbitrary complexity.

Signetics, once a mayor manufacturer of integrated circuits[104], first introduced
a programmable array in 1975 as part of their efforts to further increase density on
circuits boards. These arrays where the first to include logic building elements: an
array of AND and an array of OR gates that could be interconnected to create logical
functions. Monolithic Memories (MMI) created the Programmable Array Logic (PAL)
in 1978, introducing the concept of a macrocell that implements a function as a sum-
of-products.

Xilinx introduced the first commercial Field Programmable Gate Array (FPGA)

2.3. FIELD PROGRAMMABLE GATE ARRAYS 39

in 19854. FPGAs consist mostly of an array of Configurable Logic Blocks (CLBs),
IO Blocks (IOBs), and a routing interconnect network, with a generic arrangement
depicted in Fig. 2.3. IOBs provide connectivity between the IO pads and elements
in the array via the interconnect, while CLBs provide the logic elements. Switching
elements provides the configurability, routing signals between elements by switching
connections among static routes. The function performed by a CLB, IOB settings
and the chosen routes are all configurable by memory locations, so the program of the
FPGA can be uploaded or changed by reloading the associated configuration memory.
Routing in a FPGA design is static, which means that once a configuration is loaded,
the routing does not change. Even new developments like the SpaceTime technology by
Tabula5 use static routing, as this technology is more related to rapid reconfiguration,
not dynamic signal routing.

Modern CLBs contain multiple slices that can be combined to create more complex
functions. Fig. 2.4 shows the CLB structure from a Xilinx Virtex II FPGA. In this
architecture, every CLB contains 4 slices, with each slice containing 2 function genera-
tors, 2 Flip-Flops (FFs) and some additional logic, mostly to implement multiplexers,
dedicated carry lines and to support specific operating modes of the FF. The function
generators are 4-inputs, 1-bit output that similarly to the ROM example, can be used
as a small 16x1 RAM, a 16-level shift register, or as a Look-Up Table (LUT).

FPGA manufactures need to balance the amount and distribution of routing and
logic elements very carefully, as too few routing elements may lead to all available routes
being exhausted quickly, requiring the reuse of logic blocks as pass-through shortcuts.
Similarly, too many routing elements may waste chip area that could otherwise be used
by logic.

Given their complexity and the proprietary nature of the internal designs, FPGA
development is always done in Hardware Description Languages (HDLs), with vendor
independent and vendor-specific tools that follow a workflow to generate a program-
ming image (a bitfile) which can be uploaded to the configuration memory of the device.
The two most common HDL languages are Verilog and VHDL, but many more exist.
While these languages are high level with many abstract constructs, they can also be
used to describe electronic designs in great detail, therefore used to create behavioural,
functional and structural models of components. Abstract constructions are normally
used for simulation, very representative of the task, but usually not possible to convert
into actual circuits. Special tools are used to convert functional or structural represen-
tations into low-level equivalents. Several attempts have been done to use traditional
languages like C[61, 56] or Java[11] to describe hardware, with limited success.

The tools in the workflow transform higher-level representations (like HDLs) into
simpler representations that can finally be used to generate a wiring diagram between
standard building blocks, not unlike many other Electronic Design Automation (EDA)
tools for hardware synthesis. The basic steps of this process can be summarized as
follows:

• Synthesis. Is the process of converting and optimizing the high level description

4XC2064, http://www.xilinx.com/company/history.htm
5See http://www.tabula.com/technology/technology.php for more info

http://www.xilinx.com/company/history.htm
http://www.tabula.com/technology/technology.php

40 CHAPTER 2. HARDWARE ACCELERATORS

G4

SOPIN

A4

G3 A3

G2 A2

G1 A1

WG4 WG4

WG3 WG3

WG2 WG2

WG1

BY

WG1

Dual-Port

LUT

FF
LATCH

RAM
ROM

Shift-Reg

D

0

MC15

WS

SR

SR

REV

DI

G

Y

G2

G1
BY

1
0

PROD

D Q

CECE
CKCLK

MUXCY
YB

DIG

DY

Y

0 1

MUXCY
0 1

1

SOPOUT

DYMUX

GYMUX

YBMUX

ORCY

WSG
WE[2:0]

SHIFTOUT

CYOG

XORG

WE

CLK

WSF

ALTDIG

CE

SR

CLK

SLICEWE[2:0]

MULTAND

Shared between
x & y Registers

SHIFTIN COUT

CIN DS031_01_112502

Q

Figure 15: Virtex-II Slice Configuration

Register

MUXF5

MUXFx

CY

SRL16

RAM16

LUT
G

Register

Arithmetic Logic

CY
LUT

F

DS031_31_100900

SRL16

RAM16

ORCY

Figure 14: Virtex-II CLB Element

Slice
X1Y1

Slice
X1Y0

Slice
X0Y1

Slice
X0Y0

Fast
Connects
to neighbors

Switch
Matrix

DS031_32_101600

SHIFT
CIN

COUT

TBUF X0Y1
COUT

CIN

TBUF X0Y0

A CLB with
multiple slices

A Slice with
multiple configuration options

Equivalent schematic of the top section of one slice

Figure 2.4: Virtex-II CLB Element, from [98]

2.3. FIELD PROGRAMMABLE GATE ARRAYS 41

in HDL in order to generate a LUT-level netlist[49]. Its output is typically a logic
circuit built with common blocks known to the vendor-specific tools. Several
third-party tools exist, that provide varying levels of flexibility, measured on
both their ability to recognize and transform abstract constructions into logic
circuits, and their capacity to optimize these circuits to meet the required design
constraints. The process is similar to an optimizing compiler, which transforms
source code into an optimized object code for a target platform.

• Translation. Specific to the Xilinx implementation flow, this step converts the
LUT-level netlist, generic UNISIM primitives (common to many Xilinx device
families) into SIMPRIM primitives, specific to a device, and insert additional tim-
ing constraints for the design, together with any black-box definition[49]. Other
vendors implement this step into their mapping tool.

• Mapping. The Map tool assigns primitive elements to actual element types in
the platform device. Logic Functions are therefore assigned to LUTs, registers are
assigned to FFs, and so on. At this point, the tool can verify device occupation
and add switching time information for the next stage.

• Placing and Routing. While two separate tasks, placing and routing are often
performed together. After the design has being mapped, the components must
be allocated (placed) in the FPGA array. When adding the interconnects, the
routes available and the distance between components add delay to the signals,
that can (and very often does) fail the required timing. Placing and Routing
are difficult, NP-hard problems[24], that is both computationally intensive and
time consuming. Many implementations perform iterative processes in order to
determine the best implementation (but not necessarily optimal).

• Bitfile Generation. Convert the generated implementation into a binary rep-
resentation suitable for upload to the device configuration memory.

Specialized Elements

As the number of CLBs increased, users started to do more complex designs. From
replacing logic elements, FPGAs turned to be ideal for hardware prototyping and to
process data streams. As integer adders, multipliers and buffers were more often re-
quired, the amount of CLBs needed to implement these design blocks (cores) rose
exponentially. For this reason, FPGA manufacturers have departed from uniform ar-
rays and added specialized elements to the architecture fabric. Because these blocks are
implemented directly in hardware, they are both faster and more compact than their
CLB counterparts, allowing a better utilization of the chip area. Four areas summarize
the specialized units present in modern FPGAs, with examples depicted in Fig. 2.5 for
the Virtex-6 family:

• Clock Manipulation. Because routing networks can cause strong variations in
skew and signal distances keep increasing as the density increases, newer FPGAs
required to implement dedicated clock networks for low-skew signal distribution,

42 CHAPTER 2. HARDWARE ACCELERATORS

760K
Logic Cell

Device

Common Resources

LUT-6 CLB

DSP Slices

BlockRAM

HSS Transceivers*

Parallel I/O FIFO Logic

System Monitor

Tri-mode EMAC

PCIe® Interface

High-performance Clocking

Virtex-6 Architecture Overview

X-Ref Target - Figure 1-1

UG369_c1_01_052109

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

X

17-Bit Shift

17-Bit Shift

0

Y

Z

1

0

0

48

48

4

48

BCIN* ACIN*

OPMODE

PCIN*

MULTSIGNIN*

PCOUT*

CARRYCASCOUT*

MULTSIGNOUT*

CREG/C Bypass/Mask

CARRYCASCIN*

CARRYIN

CARRYINSEL

A:B

ALUMODE

B

B

A

C

M

P

P
P

C

MULT
25 X 18

A

18

30

3

PATTERNDETECT

PATTERNBDETECT

CARRYOUT

4

7

48

48

30

18

P

P

5

D 25

25

INMODE

BCOUT* ACOUT*

18

30

4 1

3018

Dual B Register

Dual A, D,

and Pre-adder

Virtex-6 DSP48E Slice

Figure 2.5: Virtex-6 Overview, from [100]

2.3. FIELD PROGRAMMABLE GATE ARRAYS 43

as well as clock subdomains to localize clock signals to certain areas of the chip.
Additionally, dedicated hardware has been added for signal synchronization like
Phase-Locked Loops (PLLs) and Digital Delay Lines (DLLs), as well as clock
dividers and multipliers.

• Memories. Adding dedicated memories, like the BlockRAM in the Xilinx plat-
form, frees many registers from the CLB logic. Memories are primarly used to
create buffers, FIFOs and big LUTs, all very common design cores.

• Arithmetic. The first arithmetic addition was the dedicated carry chain to the
CLB logic, that serves the specific task to speed-up adders/substractors, a very
important addition based in the ubiquitous presence of counters and incrementers
on any design. The next significant addition was the inclusion of hardware mul-
tipliers. While targeted primarly to Digital Signal Processor (DSP) designs, mul-
tipliers are useful in a range of applications and critical for the implementation
of floating point multipliers units. The DSP support was extended with the
inclusion of XtremeDSP slices with the Virtex-4 family and DSP48 units with
the Virtex-5, supporting pipelined multipliers and a hardware accumulator and
making the implementation of multiply-and-accumulate operations very easy. In
order to better utilize the density of newer devices without requiring substantially
more routing resources, Virtex-5 devices also introduced 6-input LUTs.

• Communication. In communication units, three additions are noteworthy: the
management of DDR and differential signals by the IOBs, the inclusion of serial
transceivers for high-speed serial communication, and the inclusion in hardware
of PCI Express (PCIe) cores in select devices. While the first two are required
to support current communication standards, the PCIe core is targeted at in-
terconnection with computing devices, being as PCIe coprocessors in PCs or in
embedded systems.

The biggest drawback of the specialized units is that they loose the flexibility of
the FPGA. If a design does not use the particular functionality of a unit, it becomes
wasted space on the chip that cannot be reused by the design in any other way. For
this reason FPGA families became fragmented, offering different mixtures of units to
better match the requirements of particular application segments.

Fortunately, the improvements provided by the specialized are very appropriate for
the use of FPGAs as coprocessors. The principal limitation of ancient devices for their
use in scientific applications was that they required Floating Point (FP) operations and
the devices did not have enough CLBs to implement them. As the number of CLBs
increased, Floating Point Units (FPUs) became feasible. The addition of hardware mul-
tipliers greatly improved both the performance and number of possible FP multipliers.
Several libraries were developed that implement a set of FP operations [58][68], some
of them parametrizable to obtain the best balance between area, speed and accuracy,
depending on the needs of the application. As the number of operators implemented
reached hundreds, automatic tools were created for the assembly of complex pipelines
from formula descriptions. Much more limited than actual compilers, tools like the
Pipeline Generator by Lienhart[60] and the PGPG by Hamada[35] provided a huge

44 CHAPTER 2. HARDWARE ACCELERATORS

improvement in development time. Other improvements beneficial for the coprocessor
design are the PCIe cores for interconnection to the host and the Double Data Rate
(DDR) support for faster memory controllers. All combined with the flexibility of re-
programmability, modern FPGAs provide a hardware solution to accelerate complex
applications.

2.4 Application Specific Integrated Circuits

Application Specific Integrated Circuits (ASICs) are at the other end of the spectrum
from CPUs. While CPUs aim at good performance with a wide range of applications,
ASICs focus in performing a single task, or a small range of tasks, extremely well.
Because they are custom-designed to perform this job, they tend to be very fast and
consume less power, as well as being very efficient at it, both in terms of sustained
vs. peak performance and performance per watt. For high volume applications, ASIC
are also the cheapest solution. The main drawback is its lack of flexibility, so they are
best suited to perform tasks that are not likely to be modified. The next important
drawback is the cost: design and production costs are very high, and only compensated
by a high volume production. In the case of scientific research, because the target is
usually a single specialized application that requires a limited number of pieces, the
manufacturing costs are very high for small quantities.

There are several ways to achieve the ASIC level of performance. The obvious
route is to design a custom chip from scratch, but this is a very long process. Several
companies like Mentor Graphics, Cadence and IBM provide Intellectual Property (IP)
libraries and EDA tools for the assembly of preoptimized building blocks that can
speed up the development and testing phases considerably. Other companies like ARM
specialize in custom CPU cores (the ARM architecture) that are available as IP cores
and can be extended and modified to suit the needs of the design. In practice, most
ASIC designs are the assembly of standard-cell blocks from an IP library, which are
already optimized for a specific manufacturing process.

An alternative to the traditional ASIC design flow is the use of a compromise
solution, Structured Application Specific Integrated Circuits (s-ASICs). Instead of
optimizing every element of the design on the lowest level, s-ASICs use an array of
fixed elements and provide an standard interconnect, not unlike an FPGA architecture.
Positioned to be an alternative between FPGAs and fully custom ASICs, s-ASICs
aim at lower design and production costs while providing better performance, better
power efficiency and a high degree of compatibility with FPGA designs. By removing
the reconfigurability of the interconnect, several designs elements can be optimized:
interconnect networks can be replaced by wires, read-only memories can be replaced
vias in the manufacturing process, and so on. Several leading companies in the FPGA
sector offer s-ASIC alternatives, like HardCopy [1] from Altera and EasyPath[2] from
Xilinx that provide a migration path from FPGAs into medium volume production.

One example of a successful ASIC that got a lot of attention by the media was Deep
Blue by IBM. Developed by Feng-Hsiung Hsu and his team as the next generation from

2.4. APPLICATION SPECIFIC INTEGRATED CIRCUITS 45

Deep Thought6, an FPGA coprocessor for computing chess moves using brute force
evaluation, Deep Blue 1 and 2 were improvements in speed and capabilities provided
by both the chip and many refinements in the associated software[45]. Mostly regarded
as a public-relations stunt by IBM Research[51, 86], it exemplifies well the target for
accelerators: computing intensive, massive parallel, and focused in small number of
tasks.

Since our scientific interest is in accelerating astrophysical applications, this dis-
cussion would not be complete without an overview of the GRAPE hardware. The
GRAvity PipE (GRAPE) is an ongoing project led by Jun Makino that uses cus-
tom hardware to accelerate the computation of Newtonian forces in N-body systems.
Because forces are computed by a very well known formula, the complexity of the
computation was high – O(n2) for direct summation – plus they easily consumed over
90% of the computational time as simulation size increased, these forces where perfect
candidates for acceleration with ASICs. The GRAPE-1, their first prototype system
from 1989 was capable of a peak performance of 240 Mflops, while GRAPE-4 systems
released on 1995 was capable of 1.1 Tflops, being the fastest supercomputer in the world
between 1995-1997[46]. Subsequently, the GRAPE-5 and GRAPE-6 designs received 3
Gordon Bell prizes in 1999, 2000 and 2001 for their contributions to high performance
computing.

The detailed architecture of the GRAPE-6 chip is described by Makino et al. at
PASJ[67], but it is basically an upgrade to the GRAPE-4 in order to improve the
performance of the pipelines. Every GRAPE-6 chip contains 6 pipelines to compute
force-interaction, 1 pipeline for position and velocity prediction, and a neighbour list
unit. The 6 pipelines are further organized as 48 virtual pipelines[64], reducing memory
requirements per pipeline. The GRAPE chips provide a modular architecture that is
fully exploited in the GRAPE-6, with 16 chips interconnected in big clusters boards
while each GRAPE-6A card[28], a smaller PCI version suitable for direct use with PC
hosts, contains 4 chips.

According to Makino[67], a critical point in the design of the GRAPE-6 chips is
to reduce the amount of communication between the host and the GRAPEs, and to
achieve this it is best to send only the particles that have changed in the current time-
step. Therefore, the GRAPE-6 has a predictor unit that is able to interpolate the
position of the inactive particles.

The GRAPE-6 also has a dedicated unit to compute neighbour lists. While limited
to 256 neighbours per list, the units are very useful to a variety of applications. Not
only are they useful for neighbour list based gravity schemes [6, 9] but they can be
reused to assist in the calculation of SPH [75, 92]. Unfortunately, the relatively slow
communication link limits the performance for this use.

The GRAPE family of accelerators is the story of a successful ASIC for scientific
computing. By supporting only a very small set of functions, it has been capable
to produce enormous gains in performance, enabling scientists worldwide to advance
research in ways that otherwise would have been impossible. The latest generation
in the family, the GRAPE-DR[65], provides an ASIC with SIMD programmable cores
tailored for the computation of cumulative forces, with an architecture not unlike that

6named after the fantastic computer from Douglas Adams’ novels[7]

46 CHAPTER 2. HARDWARE ACCELERATORS

Figure 2.6: The GRAPE-6A board

of modern GPUs.

Part II

Supporting Libraries

47

49

S
u
p
p
o
rt
 L
ib
ra
ri
e
s

PCI Driver

MPRACE Library

BUFMGR Library

raceSPH raceGRAV

Applications

NVIDIA Driver

CUDA

Accelerator

Software

Integration

Libraries

Application

Layer
H
a
rd
w
a
re
 S
u
p
p
o
rt
 L
a
y
e
r

The diagram shows a simplified view of the software stack developed. For an appli-
cation and an accelerator to communicate, they must go over some route through the
software stack and into the hardware. Every layer defines certain level of operations,
with the application being on top and using some of the higher level functionality ex-
ported by the software integration layer, responsible of abstracting the accelerators as
computing cores. The hardware support layer is responsible for the communication and
functionality needed to access the accelerators in a general level, and it is needed by
any accelerator used. Therefore, GRAPE cards need special drivers and libraries, as do
the FPGA and GPU cards, that are normally provided together with the boards. In
this diagram, CUDA and the NVIDIA driver blocks represent proprietary components
provided by NVIDIA for the use of their graphic cards and used by the integration
layer when accessing GPU accelerators.

The following three chapters will describe the development of the components
marked as supporting libraries in the hardware support layer, needed in order to access
the FPGA boards. They abstracting functionality in the cards and aim at sustain-
ing the available transfer rates of the interconnect between the FPGA and the host,
typically a PCIe link or a PCI bus.

50

Chapter 3

The PCI Driver

In modern operating systems, the function of a device driver is to provide the logic
needed to communicate the devices connected to the system with the applications
using them. Like any other device in the system, our FPGA boards need a driver
to handle the communication with the operating system. The PCI driver fits on our
software stack at the lowest level, providing the OS dependent functions that makes
most of the remaining libraries OS independent.

Our previous PCI driver, used by boards like the µEnable and the MPRACE-1, was
developed under Linux 2.4. When the Linux kernel 2.6 finally arrived, patches were
made to continue usage and development. However, the kernel 2.6 brings significant
changes in device administration, memory handling and DMA configuration, as well
as new features like SysFS. It was clear that a new driver was needed to support the
requirements of the new MPRACE-2, as well as the ABB and future boards.

The driver has to support the needs of several ongoing projects in our research
groups, namely the ROBIN boards for the CERN, the ABB board for the CBM, and
the MPRACE-2 for the GRACE project. Each one adds a certain range of restrictions:
the CERN platform runs mainly in Scientific Linux CERN v4 (SLC4), a variant of
Red Hat v4 running kernel 2.6.9. The Titan cluster of the GRACE project, where the
MPRACE-2 has to be installed, runs a distribution with kernel 2.6.13; while the CBM
project required at least kernel 2.6.18 to properly support the runtime extensions and
infiniband cards used.

In addition, the kernel development switched from a version-based release schedule
to a features-based, continuous development model: instead of limiting major version
numbers for feature addition and minor numbers for fixes, each version release might
contain new features. This has the advantage that the kernel evolves quickly, but adds
significant maintenance cost to out-of-tree code –each release might break existing code.

Therefore, the driver has to be general enough to support a range of platforms and
distributions: from very ancient kernel releases up to the latest version, while providing
the functionality required to communicate with our FPGA boards.

The driver needs to support multiple, generic PCI devices in 32- and 64-bits systems,
and provides mapping of PCI(e) base address registers (BARs), access to the device
configuration space, memory management for kernel- and user- space memory, hot-
plug capability, dynamic chardev allocation, SysFS accessibility and a C / C++ user

51

52 CHAPTER 3. THE PCI DRIVER

interface, as well as a compatibility layer for applications using our old driver.

3.1 Architectural Overview

The Linux Architecture defines several memory spaces in order to create protective
barriers. The most generic setup has a device memory space, a kernel memory space,
and user memory space. These spaces map to the different buses (the PCI bus in
our case) and to the physical memory address space. Both kernel and user memory
are mapped to separate areas of physical memory, see Fig. 3.1. The kernel space is
on a fixed area, while the memory manager of the kernel takes care of dynamically
mapping the user space assigned to each process to the available physical memory (or
eventually, the swap file). The user memory space is virtual, so each user process has
an independent space. Memory pages are assigned on demand. The IO-MMU takes
care of mapping addresses between the device memory space and the physical memory
space, and to add a bounce buffer if required.

Device
mem. area 1

kernel

page 200

page 4096

page 4095

kernel

User process 2

User process 1

Kernel space

Physical MemoryPCI Bus

IO-MMU

Figure 3.1: Memory Space

The basic infrastructure of the driver follow the guidelines of the book Linux Device
Drivers[18]. Traditional Linux device drivers can be described as monolithic drivers:
They encapsulate all their functionality inside an opaque interface, exporting infor-
mation to the device and application using well defined interfaces. The driver code
executes exclusively in kernel space, and is expected to manage all operations related
to the device from this position. This is the approach taken by some of the other
accelerators, like the driver used by the GRAPE cards.

In contrast, our device driver seeks to be a generic PCI driver. We try to leave most
of the logic in user space, exporting the required kernel structures and functions when
needed. This creates in practice an hybrid driver, with support functions in kernel
space for operations that cannot be done otherwise, and leaving all device logic on
user space. This approach has given good results in the previous version[44], and is
the method used by commercial solutions like Jungo, PLX, and the video drivers of
both NVIDIA and AMD used by the GPUs. In theory, we could have used the Jungo
driver to provide a functionality similar to the one provided by this driver, but we had
two reasons not to do so: after a code review, we concluded that the implementation

3.2. KERNEL MEMORY 53

of the Jungo driver bypasses many kernel functions and accesses the kernel structures
directly (by far, not the recommended way); and it was not clear the implied licensing
cost for some organizations like the GSI. It was finally decided to implement our own
and provide a generic open source solution for other researchers in the same situation.

The driver structure can be divided in two big, separate blocks: a kernel driver,
which we call the driver, and a user space interface which we call the API. The driver
takes care of device initialization, memory and IO mapping to both device and user
space, interrupts and SysFS interface. The API abstracts the functionality provided
by the kernel driver, making the interface platform and version independent.

This approach brings some advantages as well as some disadvantages. On the plus
side, the API provides a platform independent layer which allows an easy path for
platform migration, as most operating systems provide similar functionality to their
devices; the interface also isolates kernel changes from the rest of the software stack;
and finally, it provides a cleaner, function driver functionality. On the other side, the
export of kernel structures to the system can potentially reduce the system stability, as
it gives the application in user space the capability to issue commands that can crash
the system (i.e. a wrong DMA descriptor list can cause memory corruption), and forces
several operations to be done potentially out of specification. This risk is minimized
by the fact that the driver API is accessed in our software stack only by the mprace
library, which provides the device logic.

3.2 Kernel Memory

Kernel memory is allocated inside the kernel, and mapped into the user and device
spaces. Kernel memory is a single block of contiguous memory, which is most useful for
small transfers or devices that do not allow scatter / gather lists. Its setup time is low
compared to user memory, and as it is allocated from kernel space, it is quite scarce.
Contiguous blocks decrease in size and availability as the system uptime increases, with
a maximum size of 8 MB on boot and typical sizes of a few kilobytes.

kernel

mem

kmem

list

user proc

driver

mmaped

+

1

2

3

4

mmaped

device space

user space

kernel space

2

Figure 3.2: Typical kernel memory allocation

In Fig. 3.2 we can see a simplified representation of a kernel memory allocation.

54 CHAPTER 3. THE PCI DRIVER

First, (1) the application running in user space requests the driver a new kernel memory
buffer of a fixed size. Then, (2) the driver allocates the memory, and during the same
process maps the area to the device space, making the buffer available to the device.
Next, (3) it adds a new entry to the kmem list list for management purposes. The
driver finally returns to the application with the device address (to pass via commands
to the device) and an ID of the buffer. Finally, in an separate step, (4) the buffer is
mapped to the user space for access by the application.

The dual mapping allows both the device and the application to access the same
memory area from their respective address range. In order to guarantee that any
modification to a buffer is visible to the other part, the driver provides a sync func-
tion, that acts as a memory barrier, ensuring all pending operations are committed.
The kmem list list serves to keep tracks of allocated resources. It serves to locate
buffers quickly when referenced by ID, and can also be used to release allocated buffers
manually when an application exists unexpectedly or automatically when the driver is
unloaded.

3.3 User Memory

User memory, as its name suggests, is a buffer which is allocated in user space. Memory
allocated in user space differs significantly from kernel memory in that it is not a
contiguous block, but a collection of segments of physical memory (as small as a page)
ordered virtually in user space via mapping. The list describing the mapping of the
segments is called a scatter/gather (SG) list. From the user point of view, this mapping
is transparent: the application accesses the memory as a contiguous block in its user
space. It is even possible (actually, quite common), that a page initialization being
delayed by the OS until first accessed (via a minor page fault) or that a page be stored
swap memory on disk.

However, in order for the device to access an user space buffer, all pages of a buffer
must be available, mapped into memory and into device space. But the mapping to
device space is not contiguous as in user space, mostly because some platforms share
the memory and device bus. This means the device needs a scatter/gather list for
device space, which in turn means each physical memory segment must be mapped
to the device space in order. The list is then transferred to the device as needed for
accessing the buffer. This is done by the device driver following the procedure in Fig.
3.3, detailed as follows:

On the first place, (1) the buffer is allocated by the application or by the driver
library on user space. Next, (2a) the buffer pages are locked in memory and mapped
by the driver into device space and (2b) a new scatter/gather list is created, along an
entry into the umem list. The driver then returns to the library basic information, like
the size of the SG list and handle ID. Afterwards, (3) the library calls the driver in
order to retrieve the SG entries of the list. This list is (4) copied into another structure
inside the library, and then discarded. The application can now pass to the device, as
needed, the provided SG list which contains device addresses for every entry.

The driver requires to store and copy the SG list several times. First, the driver
requires a copy as provided by the kernel in order to release it correctly when required.

3.4. INTERRUPT HANDLING 55

umem

list

driver

user mem

+

1

2

3

device space

user space

kernel space

2a

buffer

pagesmmaped

SG list

2b

tmp. SG list

SG list

4

Figure 3.3: Preparation of a user memory buffer for access by the device

But the list provided by the kernel is wasteful and unnecessarily long, because older
kernels give a page-by-page list, instead of a merged list. Therefore, when the library
requests the SG list of a buffer, it has the option to merge consecutive entries that will
make a linear block. By this very simple procedure, the size of the SG list is reduce
on average a factor of 6, and the performance of transfers is improved by the use of
longer segments. On the worst case scenario (when no segments can be merged), the
list remains unchanged and the additional processing time is not significant.

3.4 Interrupt Handling

An interrupt is a signal originating in hardware or software that can be issued by a
device in order to raise attention of the CPU and the OS. An interrupt triggers the
execution of an interrupt handler, which is a small function registered by drivers with
the kernel. Since interrupts are asynchronous and the raising of an interrupt can occur
at almost any time, the interrupt handler must execute in kernel space, and once inside
a handler, the control must be returned as soon as possible to the normal OS thread.

In our driver architecture, the application waits for an interrupt to be raised. This
is correct in the application level, as an interrupt can be handled by a separate process.
It is implemented as a function which once called, only returns after the requested
interrupt has been raised. However, it poses a problem at kernel level. The kernel
expects the interrupt handler to acknowledge the interrupt to a device very quickly,
and return the control to the kernel. However, the interrupt handler must at the
same time enable the application to continue execution by returning from the wait
function. This involves a cross in domain from interrupt-handler mode in kernel level
to user code in application level. Some of the most interesting developments in this
direction come from the User-Level Device Drivers project of the Gelato Federation,
using file system hooks and events for rapid interrupt dispatching. But some of our
compatibility requirements clash with their developments, in particular the handling
of interrupts over a user-space mapping via SysFS, which is not available in some of
the platforms we need to support. The future of the project itself is another matter
of concern, as they focused primarily in the Itanium architecture and the development

56 CHAPTER 3. THE PCI DRIVER

group seems to have disbanded. So we had to implement a compromise solution.

Our driver registers an interrupt handler for each device during initialization, and
creates per device a wait queue for each possible interrupt source (every device is
assigned a maximum number of sources). When the application requests to wait for an
interrupt, it makes an IOctl call to the driver. The driver then waits for an event in the
corresponding event queue, and sends the process to sleep. When the correct interrupt
source arrives, the interrupt handler sends an event to the wait queue. This will awake
the process, but not immediately. Instead, it will reschedule the process, which will
be executed on the next scheduler round after the interrupt handler is finalized. This
allows for the handler to finalize fast and cleanly, and to resume the application process
without complications. The drawback is that the interrupt acknowledge is not generic,
it has to be modified to support every additional device, as every device requires an
unique response. This is the only critical point in the driver that requires device
specific code, beside the normal initialization IDs, but provides very fast release of
interrupts, which is critical for several of the applications we intend to support, like
high-throughput data acquisition.

3.5 SysFS Interface

SysFS is a virtual file system that exports system and device driver information. It
allows any user with sufficient permissions to communicate directly with the kernel
subsystems and device drivers. It replaces some functionality assigned earlier to procfs.
In our case, we use SysFS to provide a direct way to interact with the driver from
a program or the command line without the need for an additional utility. This is
useful in order to monitor and debug applications, as well as to recover from crashed
programs. Scripts can be written that monitor an application, warn on non-caught
interrupts, keep track of allocated buffers or clean up mappings that are not properly
released upon exit.

Entries are listed under /sys/class/fpga/fpgaXX, where XX is the device number
assigned to each device by the driver upon initialization. Every device has its own
set of entries. Table 3.1 shows a summary of the SysFS entries available for a device,
sorted per association. Kernel Memory entries list, allocate, release and reference kernel
buffers. Similarly, User Memory entries allow listing, unmap and reference of user
memory buffers; no allocation or release is possible, as it must be handled internally
by the user process. Interrupt entries provide statistics on the interrupts handled by
the driver. Additionally, the SysFS provides links to the entries provided by the PCI
subsystem.

In our original design for the PCI driver, no IOctl functions were used, and all
kernel driver functionality was provided using SysFS entries. However, early during
development we found out that SysFS was not present in versions earlier than 2.6.11,
and that several additional functions of SysFS (like the file operation mmap) were not
present until 2.6.13. We found also some inconsistencies depending on the distributions,
as some decided to incorporate SysFS earlier than others. Therefore, we had to reduce
the importance of SysFS from our original design to a mainly informational source and
keep usage of IOctl functions as the main communication channel.

3.6. PCI DRIVER API 57

Kernel Memory

kbuffers List the currently allocated kernel buffers
kmem alloc Receives the size, returns the ID of the new buffer
kmem free Receives the buffer ID, and releases it
kmem count Returns the value of the internal buffer counter
kbufXX Access the buffer with ID XX

User Memory

umappings List the mmapped user buffers
umem unmap Receives the buffer ID, and unmaps it
umemXX Access the buffer with ID XX

Interrupts

irq count Return the total count of interrupts received
irq queues List the number of pending interrupts in the wait queues

Table 3.1: SysFS entries

3.6 PCI Driver API

The PCI driver API provides an abstraction of the functionality provided by the kernel
driver. Its main purpose is to give a layer of abstraction which isolates the specifics
of the kernel and allows multiplatform support. In addition, it also provides locking
mechanisms for certain operations that have to be performed atomically. Most of the
time, the driver interface is used only by a support library that provides higher level
functionality. In this sense, the PCI driver API is not intended for direct use, but it
is needed if a new platform is to be supported. The PCI Driver API provides similar
functionality in diverse interfaces. The C++ interface is the main and most used, as is
the one used directly by the mprace library. The C interface is provided as convenience
for future developments, and the compat interface is used for compatibility with the
uelib, as a replacement of the original PCI driver interface.

3.6.1 C++ Interface

The C++ interface reorganizes the IOctl calls around 3 basic classes: PciDevice,
KernelMemory and UserMemory. Both KernelMemory and UserMemory represent the
memory buffers which can be created, and provide functions to get the mapping infor-
mation needed for a device to access them. However, their creation is handled directly
by the PciDevice class, which also provides all other functions, like IO BAR mappings
and PCI configuration space RW. Fig. 3.4 shows a class diagram of the whole C++
API.

58 CHAPTER 3. THE PCI DRIVER

pciDriver

open
close
getHandle
getBus
getSlot
allocKernelMemory
mapUserMemory
mmap_lock
mmap_unlock
waitForInterrupt
clearInterrutQueue
getBARsize
mapBAR
unmapBAR
readConfigByte
readConfigWord
readConfigDWord
writeConfigByte
writeConfigWord
writeConfigDWord

PciDevice
handle
device
name
mmap_mutex

getPhysicalAddress
getSize
getBuffer
sync

pa
size
handle_id
mem
device

KernelMemory

sync
getSGcount
getSGentryAddress
getSGentrySize

vma
size
handle_id
device
nents
sg

UserMemory
getType
toString
what

type
descriptions

Exception

Figure 3.4: Class Diagram of the C++ API

3.6.2 C Interface

The C interface is a reimplementation of the C++ interface in C. It provides similar
structures as the C++ classes, and same functions. While it could have been imple-
mented as a wrapper of the C++ interface, it was decided to reimplement them fully,
as the complexity is not high and the overhead of a C++-to-C wrapper would have
been too high. Tab. 3.2 summarizes the C API.

3.6.3 Compat Interface

The Compat interface (short for Compatibility), reimplements the old PCI Driver in-
terface using the new driver. It is intended to be a drop-in replacement for older code,
enabling the use of the uelib library and all their code base for MPRACE-1, µEnable
and their applications.

3.6. PCI DRIVER API 59

Structures

pd device t Represents a PCI device
pd kmem t Describes a Kernel Memory buffer
pd umem t Describes a User Memory buffer
pd umem sgentry t Represent a single SG list entry

Device Functions

pd open Open the device
pd close Close the device
pd mapBAR Map a BAR to user space
pd unmapBAR Unmap a BAR from user space
pd getBARsize Return the size of a BAR area
pd readConfigXX Read XX from the PCI config. space
pd writeConfigXX Write XX to the PCI config. space

Kernel Memory

pd allocKernelMemory Allocate a Kernel Memory buffer
pd freeKernelMemory Release a Kernel Memory buffer
pd syncKernelMemory Synchronize the content of a Kernel Buffer

User Memory

pd mapUserMemory Map User Memory to the device
pd unmapUserMemory Unmap User Memory from the device
pd syncUserMemory Synchronize the content of a User Buffer

Interrupts

pd waitForInterrupt Wait for an Interrupt from a device
pd clearInterruptQueue Clear the interrupt Queue for a device

Table 3.2: C interface

60 CHAPTER 3. THE PCI DRIVER

Chapter 4

The MPRACE library

The MPRACE library is the next level library in our software stack. It sits directly
above the PCI driver, and provides additional, higher functionality to our FPGA
boards. Its main purpose is to provide common operations used by applications, oper-
ations like register IO, DMA transfers and FPGA configuration. These are functions
specific to the developed hardware and must be put together for every new board
developed. In this sense, the MPRACE library is the successor of our uelib library,
which provided similar functionality to our older boards: the µEnable, ATLANTIS
and MPRACE-1.

With the new MPRACE library, we aimed at supporting the MPRACE-2 and ABB
boards, with the option to extend to others. The main reason to start a new devel-
opment, instead of extending the old one to support the new hardware, is that a lot
of the old code was specific to PLX-based PCI controllers, like the PLX9656 on the
MPRACE-1. Since the new boards are PCIe-based and use a mixture of software and
hardware cores inside the FPGAs, little code could be reused. In addition, many FPGA
families of the old boards are no longer supported by the development tools, so it was
decided to be phased out and clean the code, in order to avoid the false impression that
some new designs could be supported by boards of the very old series. Nevertheless, if
some are eventually needed, we can still use the PCI driver wrapper to support them
using the old uelib library.

From the application point of view, the library abstracts the functionality of most
of the common cores added to our designs, allowing the user to concentrate in the
development of FPGA applications and software instead of routine tasks. While register
IO is a relatively simple task, boards like the MPRACE-2 have a DMA engine capable
of scatter/gather transfers, an operation that requires significant initialization on the
software host side.

4.1 Architectural Overview

The architecture of the library is centered around the Board class and its subclasses. All
other elements are support components to the main interface provided by these classes.
In a general sense, classes in the library represent either physical components (like an
MPRACE-2 board), logical components (like a DMA engine) or software components

61

62 CHAPTER 4. THE MPRACE LIBRARY

(like a DMA buffer). Fig. 4.1 shows a class diagram of the main elements of the library.
We can highlight the different boards available, the use of the DMA Engine in them,
and the relationships with the PCI driver library objects.

mprace pciDriver

Board

ABB

MPRACE2

PROGRAPE4

MPRACE1

DMABuffer

Driver

PCIDriver

DMADescriptorList

DMADescriptorListWG

DMAEngine

DMAEngineWG PciDevice

KernelMemory

UserMemory

*

1

1

0..1

1 0..1

*

1

Figure 4.1: MPRACE library class diagram

4.2 Register Mapping

Register read and write is the most basic IO operation that any system can perform,
but even such a simple task can be performed in several different ways. In the most
basic mapping, a register behaves exactly as a memory location: writing to it sets the
register to a new value, reading from it returns its current value. Some architectures
handle this as a completely separate address space (i.e. the SPARC architecture),
while others handle registers as memory mapped areas, where a memory address is
catched and redirected to access the register instead. A similar method is used to map
whole areas of a PCI device into the PCI bus: the device provides one or more base
address registers (BARs) and their sizes in the device configuration area, each which
are assigned (mapped) during boot to an non-colliding address range in the PCI bus
address space. Then it is the task of the operating system and the driver to map the
BARs and make them accessible to the application. This library maps these areas
into the application memory space and uses wrapper functions to provide a clear and
consistent interface for the user: namely a getRegister() and setRegister() pair of
functions.

While this method is sufficient for most operations, other registers (by example,
IO pins), might require separate addresses for read or write, a direction and/or a
high-impedance control, each one which might be mapped to an additional register.
This arrangement is very common in small microcontrollers, like those of the PIC[4]
and AVR[3] families (from Microchip and Atmel, respectively), because of their simple
implementation and ease of use. For the same reasons, they are also used sometimes in
FPGA designs. As an example, our designs use this approach to map the SelectMAP

4.3. DMA BUFFERS 63

interface on the MPRACE-2 board, which permits the programming of the Main FPGA
from the Bridge. In order to make the access of any of these configurations easier for
the potential developer, a set of classes are provided that implement the respective
methods.

4.3 DMA Buffers

A DMABuffer class gives a consistent interface to two basic, dissimilar entities: the
Kernel Memory buffer and the User Memory buffer, both structures provided by the
underlying PCI driver. While the mapping to user space is very clear and comes in the
form of a regular pointer, the additional data required by the DMA Engine to perform
a transfer is very different on each case. The DMABuffer class provides encapsulation
of this data and a convenient way to pass it to the library on each transfer request.

Because a kernel buffer is by definition a contiguous area, an user pointer, a physical
address and a size is enough to completely describe the buffer and its mapping into user
space, and all of them are provided by the KernelMemory class of the PCI driver. On
the other hand, an user memory buffer is composed of a collection of memory pages.
From user space it is a single contiguous area, but the sequence of the physical pages
involved is defined in the scatter/gather list. However, the scatter/gather list provided
by the driver is not guaranteed to be neither available nor arranged in a way compatible
with whatever structure is required by the DMA Engine used by the board. Therefore,
we abstract this additional mapping with a new DMADescriptorList class.

DMADescriptorListWG
descriptors
blocks
uBuf

List of DMADescriptorWG

List of Blocks

DMABuffer

descriptors
parent

native_descriptor
DMADescriptorWG

pointer
physical_addr

block

Memory Pages in Buffer

page

block content

native desc.

Physical Arrangement in Memory

Regular Path for Descriptor Access

Internal Partition of the list

Figure 4.2: DMA Descriptor List diagram

The DMADescriptorList class is a virtual class, which simply abstracts the access
methods for an array of hypothetical DMADescriptor elements. What really inter-
ests us is the DMADescriptorListWG class, which implements it for the DMAEngineWG,
as shown in Fig. 4.2. Each element of the DMADescriptorListWG array is of type
DMADescriptorWG. The class actually composites two arrays. One array is a linear ar-
ray of DMADescriptorWG elements, where each element references to a native descriptor
(section C). This is the array that is accessed regularly when manipulating the descrip-
tor list. The second array is used to store the native descriptors as required by the
board, and organized as a collection of blocks where each block is a single memory page

64 CHAPTER 4. THE MPRACE LIBRARY

from an independent DMA Buffer, this is the section A. This means the native descrip-
tor list is stored in a DMA buffer which is accessible by the board. Each block links a
native descriptor to an element of the scatter/gather list, providing the board access to
the list required for processing a DMA transfer, while at the same time linking the nec-
essary data structures to the DMABuffer being transferred. The DMADescriptorListWG
limits the number of DMADescriptorWGs that can be stored per block in order to guar-
antee that there is neither a partial descriptor in a block nor the descriptors cross a page
memory boundary. This relationship is depicted in section B. Section B is initialized
by the DMAEngineWG, and once setup, allows for fast manipulation of the descriptors.

4.4 DMA Engine

The DMA Engine is a module that handles transfers between the device and host
memory autonomously, offloading the CPU from this task. The DMA Engine is located
in the board, and it can be part of an integrated circuit, like the PLX9656 in the
MPRACE-1, or part of an FPGA design like the DMA Engine WG in the MPRACE-
2 (WG stands for Wenxue Gao, the main developer of the module). Each of them
needs a software counterpart in the library that implements the necessary logic to
initialize, monitor and finalize each transaction. The virtual class DMAEngine defines
the minimum interface needed to perform these operations, while the DMAEngineWG

class implements it for the DMA Engine WG module.

In particular, the following sections will describe how descriptor lists are assembled
for several types of transfers, using the structures described in the previous section.
The DMAEngineWG has two independent channels, one for each direction of transfer:
Host-to-Board and Board-to-Host, that allows the engine to operate concurrently in
both directions.

4.4.1 Descriptor List Assembly

Each native descriptor of the DMAEngineWG follows the structure shown in Fig. 4.3.
Each DMA descriptor represents a contiguous memory area to be transferred, referred
by its source and destination addresses, and its size. The control word has several flags,
that are used in different stages of the transfer. The next descriptor field is used to
point to the address in host memory with the next descriptor of the list, effectively
building a linked list. The engine is capable of fetching the next descriptors from host
memory without additional program intervention.

In order to perform a transfer, the host prepares a descriptor list with one or more
descriptors, and then copies the first descriptor (the head of the list) to the appropriate
channel registers in the board to start the transfer. Depending if the transfer is blocking
of non-blocking, the software will wait until the transfer finishes or times-out, or will
return immediately and make the application responsible for monitoring the status
itself.

The list of descriptors contains three important points to consider: the first, the
second and the last descriptor. The first descriptor is the one loaded directly into the
engine. This descriptor is normally copied into, not referenced by the board for remote

4.4. DMA ENGINE 65

periph. addr. H

periph. addr. L

host addr. H

host addr. L

next BDA H

next BDA L

length

control

Peripheral
Address

Host
Address

Next Descriptor
Address

Reset the channel CTRL_RESET

Cancel the current transfer CTRL_END

Autoincrement Peripheral Address CTRL_INC

Use Peripheral Address CTRL_UPA

Last descriptor in the list CTRL_LAST

Descriptor is Valid CTRL_V

Enable CTRL_EDI

Enable CTRL_EEI

Enable CTRL_ESEI

BAR for the transaction CTRL_BAR

{
{
{

Figure 4.3: DMA Descriptor

access. This is also the only descriptor that defines the peripheral (device) address, as
for all other, this address is computed internally by the engine, based on this address
and the increment control flag. The second descriptor is the first loaded automatically
by the engine. Both the first and the second must contain the appropriate transfer flags
for BAR destination, board address increment and interrupt signalling. These flags are
not required in the remaining descriptors. The last descriptor must also contain the
last descriptor flag, signalling the next descriptor address to be invalid and the end of
the transaction.

In theory, the descriptor list could be constructed before each transaction, and
destroyed when it’s finished. However, building a descriptor list is a time consuming
task, especially when the user buffer is very big. A buffer with hundreds of megabytes
contains thousands of memory pages, which can be distributed in hundreds of segments
and require a list that spans tens of blocks itself. This is summarized in Fig. 4.4, where
each sample point is averaged 500 times. The allocation time is plotted against the
buffer size as well as the number of descriptors and the number of blocks used. It can be
seen that for small buffers, the allocation time is mostly constant, as it is dominated by
the algorithm overhead, then it scales linearly. It is worth to remark the jump present
on the plot at 32MB buffer size. The best explanation for it is related to the underlying
allocation algorithm from the linux kernel, where the memory manager chooses to use
bigger consecutive blocks (possibly bigger pages too) to precisely keep the size of the
descriptor lists under control, at the expense of a longer allocation time. Finally, the
descriptor list remains mostly static because pages are pinned in memory, so only 3
descriptors at most need to be modified per transaction, independently of buffer size.
Therefore, the list is built only during buffer allocation, and modified as needed for

66 CHAPTER 4. THE MPRACE LIBRARY

 0.01

 0.1

 1

 10

 100

 1000

4KB
8KB

16KB

32KB

64KB

128KB

256KB

512KB

1024KB

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B

512M
B

1024M
B

 1

 10

 100

 1000

 10000

T
im

e
 (

m
s
)

n

Buffer size

Time used for Buffer allocation by size

descriptors
blocks

allocation time
min descriptors

min blocks

Figure 4.4: DMA Descriptor Characteristics per Buffer Size

each transaction.

We now need to consider 8 cases: two buffer types, Kernel and User Memory, with
four possible scenarios each, based in offset and size of the transfer: a full buffer transfer,
a partial (smaller than maximum) transfer, with an initial offset, or both.

The simplest case is the transfer of a kernel buffer, because it requires a single
descriptor. Therefore, the four cases can be summarized easily in the table 4.1.

parameters descriptor configuration

offset size hostAddress count

0 max physicalAddress max
0 X physicalAddress size
X max physicalAddress+offset max-offset
X Y physicalAddress+offset size

Table 4.1: Kernel DMA Descriptor cases

The user buffer cases are more complex. Since the User Memory buffer has a list of
descriptors, modifying the starting or the ending point of the transfer requires walking
the descriptor list to identify the first, second and last descriptors that correspond to
the transfer setup. Then, their contents are backed up to be restored at the end of the
transfer, and finally, the entries and control flags are modified appropriately.

4.5. PERFORMANCE 67

start

end

start

end

start

end

start

end

1
2
3
4
5

start

end

1
2
3
4
5

start

end

1
2
3
4
5

start

end

1
2
3
4
5

start

end

User View Page View User View Page View

User View Page View User View Page View

(a) (b)

(c) (d)

Figure 4.5: User DMA Descriptor cases

Fig. 4.5 summarizes the four cases for the user buffer, as seen by the user buffer
and its corresponding page view, which correlates to the descriptor list. The diagrams
show how certain areas of the buffer map into the pages. The diagram (a) shows the
transaction for the full buffer (offset=0, size=max); the next diagrams are for (b) size
< max and (c) offset 6= 0; and case (d) when both offset 6= 0 and size < max . On the
easy case (a), the full buffer is transferred. This means that for the prebuilt descriptor
list, the first descriptor is the first of the list, and the last is the last, so little to no
modification of the control flags is necessary. On case (b), only the last descriptor
needs to be modified. Therefore, the DMAEngineWG has to walk the descriptor list until
it reaches the requested size for the transfer. Then it saves this descriptor for later
restore and modifies it to signal the last descriptor. Similarly, for case (c), it has to
walk the list to find the first descriptor, which is going to be copied to the board.
Finally, case (d) has to do both: walk the descriptor list to find the first descriptor,
then continue until it reaches the required size.

4.5 Performance

In Fig. 4.6 we summarize the DMA performance of the library. For the test, a host
with an Intel Xeon E5420 @ 2.5 GHz was used, together with an AVNET Virtex-5
V5LX110T board using a DMA Engine developed by Wenxue Gao[30]. A transfer
sweep from 4KB to 64MB gives the transfer function until the bus saturates. This
occurs at ∼700 MB/s for DMA writes and at ∼380 MB/s.

The 4-lane PCIe interconnect is capable of 10 Gbit/s transfer on each direction
(full-duplex), which leads to 1 GB/s after taking into account the 10/8 bit encoding.
This does not take into account the PCIe protocol and OS stack overhead. From the
protocol alone, we know that for every packet with 20 words of data, 2 additional words
are used as header. So, from the protocol alone, we can estimate roughly 10% overhead.
With simpler DMA engines, we have measured maximum performance of 800 MB/s for

68 CHAPTER 4. THE MPRACE LIBRARY

 100

 200

 300

 400

 500

 600

 700

4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

32768

65536

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

DMA UserMem Performance- Virtex5 board @ autana

DMAwrite-int
DMAread-int

Figure 4.6: DMA Performance in a 4-lane Virtex-5 board

writes and 700 MB/s for reads, dependent on the platform. An additional 10% can be
accounted for by the SW IO TLB mechanism, which uses an additional bounce buffer
for the device-to-memory transfer. We can conclude that a 700 MB/s for DMA writes
is a sensible result.

However, the DMA read performance is below the expected level by about half the
bandwidth. We have experienced severe degradation depending on the platform in spu-
rious tests, that is, significant differences between chipsets and between AMD and Intel
architectures. However, the results presented here are verified over several platforms
and chipsets with less than 5% performance difference. It is therefore attributed to a
bottleneck in the FPGA design, that is currently under investigation.

Chapter 5

The Buffer Management Library

To achieve the closest match to the theoretical performance maximum of a communica-
tion channel with the minimum resource usage has been for a long time a goal of device
driver and application developers. Using diverse buffer management algorithms, like
Buffer partition in chunks or Double Buffering to achieve these goals, has been done for
years. However, FPGAs pose a particular challenge as their communication patterns
are determined by the design loaded, precluding optimizations of data transformation.
Then must the application take care of these optimizations. The Buffer Management
library provides a framework to facilitate this task.

The Buffer Management Library (bufmgr for short) provides optional functionality
for efficient use of the DMA buffers and DMA transfers. It provides a common interface
to transfer a certain buffer in memory using only a limited amount of buffers efficiently,
following certain known buffer algorithms. In addition, it provides the ability to de-
crease the number of copy operations needed when data has to be converted to a certain
format before or after the transfer, by merging the data transformation into the data
copy loop of the selected algorithm.

The library fills several needs. For once, it reduces the amount of memory needed
as DMA buffer to a fixed amount (for a certain buffer algorithm), independent of
the amount of memory being transferred. This means a multi-gigabyte array can be
transferred efficiently using only some megabytes of DMA buffers. This saves time
and complexity, especially when transfers are of varying size during the life of the
application. In addition, the library improves the performance of applications which
are transfer-bounded. A transfer bounded application is one where the performance of
the algorithm is bounded by the data transfer speed from or to the host, as is the case
in our SPH designs (see Chapter 6 for more details). This improvement is based not
only in a more optimized data transfer loop, but in the ability to merge the data format
transformation into the buffer algorithm, once again, as needed by our SPH designs.

Besides the data transformation, the library provides advantages in the form of
reduced DMA buffer usage, which translates in less pinned memory; multiple back-
ends (for the MPRACE and uelib libraries); and a simple and common interface for
even complex buffering schemes. These translates into less coding and more efficient
transfers without adding complexity to an application.

It is worth mentioning that unlike the PCIDriver or the MPRACE library, the

69

70 CHAPTER 5. THE BUFFER MANAGEMENT LIBRARY

Buffer Management library is entirely optional. The boards can be used and the ap-
plications can be written that take full potential of the FPGAs without using it. As
such, this library is provided as a tool to maintain performance and simplify application
development.

The library evolved in two parts, which are called version 1 (v1) and version 2 (v2).
Version 1 is a class hierarchy of BufferManager classes, which implement translation
as class composition. This version provides support for the uelib set of functions only,
as it was developed before the MPRACE library was finalized. Version 2, in the other
hand, is a set of template classes, which uses compile time composition via template
parameters to add back-end and translation operations. The rest of the chapter dis-
cusses the buffering algorithms implemented, the translation mechanisms used, and the
performance of both approaches.

5.1 Buffering Algorithms

The Buffering algorithms is the core of the library functionality. It organizes one or more
DMA buffers under a common interface that provides varying degrees of complexity
and performance. The simplest buffer manager is just a wrapper around a DMA Buffer.
Others provides partitioning, allowing to transfer an unlimited amount of data using
either one, two or many DMA buffers. Some of them provide concurrent transfer and
copy operations, others do not. Depending on the need of the application, a simpler
buffer can provide better performance for small transfers (as the overhead is lower),
while a more complex one would be advantageous in complex data transformations.
An overview of the buffer structures is shown in Fig. 5.1

App Buffer Manager

Memory

DMA Buffer

Queue

Board

Copy

Translation

(a) DIRECT (b) BOUNCE

(c) CHUNK (d) DOUBLE (e) POOLED

1

2

n

Figure 5.1: Buffer Managers

5.1. BUFFERING ALGORITHMS 71

In the direct buffer scheme, shown in 5.1(a), a memory region is allocated and
provided to the application. This memory region is the actual buffer to be transferred,
allowing for direct manipulation of the buffer to be sent without the need to copy
any data around. This limits the amount of memory that can be allocated for this
task and prevents the data from being translated. This buffer is a wrapper for the
DMA buffer, and it does not provides any data transformation capability. A major
disadvantage is that the memory must be allocated by the manager, preventing or
making it very complicated to interact between different programming languages like
C++ and Fortran, as pointers are handled differently. This manager is seldom used
and is provided as a reference implementation, only in the v1 part of the library.

Bounce buffers, shown in 5.1(b), the buffer manager uses a memory region provided
by the application as source or destination, depending if it is a write or read operation.
The actual read or write is done over an internal buffer, so the data has to ”bounce” over
the internal buffer before being transferred. The data has to be copied once between
the bounce and the source/destination buffer, but provides the separation of memory
regions (the application memory area does not have restrictions on memory type) and
translation is also allowed during this copy. It also makes interoperability between
languages much easier. This scheme duplicates memory consumption, and still limits
the amount of memory that can be transferred, as it cannot be bigger than the internal
buffer. Both Direct and Bounce Buffers are implemented by our SimpleBufferManager
class in the v1 part of the library.

A chunk buffer, shown in 5.1(c), uses a small internal buffer similar to a bounce
buffer, but instead of copying all the data at once, data is processed (translated and
sent; or received and translated) in small portions, or chunks. Memory consumption is
reduced to the size of the internal buffer. The communication pattern changes, as the
chunk buffer is now a cycle of translate/transfer operations. The conversion and transfer
are done sequentially, as both operate over the same memory region, preventing them
from overlapping. This causes the CPU to be idle while the transfer is being performed,
wasting some resources, but saving potentially a lot of memory, which will save time
if memory would otherwise need to be swapped in and out of memory. This scheme is
implemented by our ChunkBufferManager class, and by the TChunkBuffer template.

Fig. 5.1(d) shows the traditional Double Buffer algorithm. In the double buffer
scheme, two internal buffers are used instead of one. While one buffer is being trans-
ferred, the other can be filled and translated, allowing for the overlapping of both op-
erations. Memory consumption is doubled compared to the chunk buffer, but resources
(CPU and bus transfer) are used more efficiently. In the ideal case, the translation of
data takes exactly the same time as the data transfer, allowing both the CPU and the
transfer to be pipelined without any contention waiting for the next chunk. This scheme
is implemented in the DoubleBufferManager class and the TDoubleBuffer template.

For the Pool of Buffers scheme, shown in 5.1(e), a variable number of buffers are
used. Buffers are allocated from a pool as needed and returned when not used any-
more, and transfer and conversion operations are handled asynchronously by means of
queues. Three queues are needed: one for writing chunks to the board, one for reading
chunks from the board, and another to handle the conversion of read chunks. This
provides greater flexibility for the transfer to accommodate under different conditions

72 CHAPTER 5. THE BUFFER MANAGEMENT LIBRARY

of bus contention or CPU load, but the more complex handling increases the overhead,
so it is most useful when the data transformation is a complex operation. Memory
consumption depends of the amount of buffers present in the pool. This scheme is
implemented by the PooledBufferManager class and the TPoolBuffer template.

5.2 Translation Mechanisms

Most buffer algorithms must implement a copy loop, where data is copied from the
source structure in regular memory, into a DMA buffer for its transfer; or being received
into a DMA buffer and then copied into the main memory. The translator mechanisms
provide the means to integrate the transformation of data into the copy loop of the
buffer algorithms. Therefore, the buffer algorithm can use the same copy loop to
perform operations over the data as it is read or written, saving one copy operation
that would otherwise being implemented as an additional loop or another completely
separate operation. Similarly, implementing the optimized version without the bufmgr

library involves rewriting the algorithm to include the specific translation.

The separation from the translation and buffer algorithms simplifies the develop-
ment, as the algorithms can be heavily reused, and customized via translators to per-
form the required customization without loss of generality, and very little to no loss of
performance (see Sec. 5.3).

The translation mechanism is implemented different in v1 and v2. v1 uses subclass-
ing and class composition, which allows dynamic change in runtime of the translation
mechanism. v2 uses templates and compile time composition, so the transformation
is defined at compile time. This was decided to be desirable, as it gives the compiler
additional optimization opportunities, and the runtime change is seldom used. In case
several different translators are needed, multiple translator implementations can be
shared over the same DMA buffer set, as the buffers are not bounded to a single man-
ager. Clearly, they cannot be used concurrently in this case, if the buffer is in use by
another manager.

5.2.1 Translation by subclassing

The Translator class is an abstract interface that the application extends by creating
and using a derived class. It allows the buffer manager to translate a single element from
format In to format Out and to translate a set of elements, with additional parameters
to adjust input and output offsets. A simple translator class that multiplies one integer
by 2 is shown in Listing 5.1. It extends the Translator class, implementing the methods
required by the managers.

The BufferManager class relies on this interface to save an intermediate copy op-
eration by adjusting the input and output offsets when dealing with chunks. This
separation also makes possible to implement advanced, cache optimized conversions
(by example, by using SSE instructions or memory prefetch commands) without any
need to modify the buffering scheme. All required classes are included in a library, and
the developer implements subclasses of the translators as needed. The application uses
a simple read/write interface to the buffer managers, passing arrays of the desired data

5.2. TRANSLATION MECHANISMS 73

Listing 5.1: A Dummy Translator

class DummyTranslator : public Trans la tor {
public :

DummyTranslator ()
{

i n S i z e = s izeof (int) ;
outS i ze = s izeof (int) ;

}

inl ine bool convert (void ∗ in , void ∗out)
{

int ∗ i = static cast<int ∗>(in) ;
int ∗o = static cast<int ∗>(out) ;

∗o = (∗ i)∗2 ;

return true ;
}

inl ine unsigned int convertMult i (
unsigned int count ,
void ∗ in , void ∗out ,
unsigned int i nOf f s e t ,
unsigned int outOf f s e t)

{
int ∗ i = static cast<int ∗>(in) ;
int ∗o = static cast<int ∗>(out) ;

for (int j =0; j < count ; j++) {
o [j+outOf f s e t] = i [j+i n O f f s e t] ∗ 2 ;

}

return count ;
}

} ;

74 CHAPTER 5. THE BUFFER MANAGEMENT LIBRARY

types.

5.2.2 Templatized Translators

In v2, the translators are implemented as methods in a class with an specific signature.
This class is used as a parameter when the template is instantiated, and the translation
mechanism fixed for this implementation of the template. This approach, as mention
earlier, has the advantage of giving the compiler more optimization opportunities at
the cost of a small degree of functionality: translators cannot be changed in runtime,
without losing any of the main advantages of using the library. Listing 5.2 shows the
same example as before, as it is used for a templatized buffer.

In addition, the templatized buffers separate the DMA operations by a similar
mechanism, allowing the buffer managers to have a back-end which we use to exchange
the library used for communication with the boards: the uelib or the mprace libraries.

5.3 Profiling and Performance

As the main goal of using this library is to provide better performance for the trans-
fers, we present in the following sections a detail characterization of both versions of
the library. We include in the library a set of profiler classes that allow the easy char-
acterization of both classes and templates, so the user can run similar tests for their
specific setups.

5.3.1 Performance of the BufferManager classes

A workstation with an Intel Xeon processor at 2.66GHz, a 533MHz FSB and 512KB of
L2 cache on a Broadcom ServerWorks chipset motherboard, 2GB of DDR-266 RAM, a
mpRACE-1 board and running RedHat Enterprise Linux 4 was used for the tests. The
mpRACE-1 board is equipped with a Xilinx Virtex-II FPGA[98] and a PLX Technolo-
gies 9656 interface controller [5] capable of 264MB/s using a PCI-X bus at 66MHz. The
FPGA was loaded with a simple design that provides a memory region for IO access.

To measure time precisely during program execution, we utilize the Timestamp
Counter (TSC) of the processor, allowing the readout of clockticks under normal con-
ditions (non-sleep modes). This provides nanosecond resolution for measurement of
transfer times. Each transfer measure is repeated 10 times and the result is averaged
to minimize spurious behaviour.

Performance without Translation

First, the performance of direct buffer accesses without any data translation is mea-
sured and displayed in Figs. 5.2-5.3. They provide information about the maximum
performance that can be achieved, as any scheme ultimately relies on a direct transfer.
It also shows the overhead associated with the transfer setup and any other device
driver operations involved. In out testbench, we obtain a maximum of 255MB/s from
a theoretical maximum of 264MB/s, but only if the transfer is bigger than 32KB. This
is one of the important observations: The transfer rate varies over different transfer

5.3. PROFILING AND PERFORMANCE 75

Listing 5.2: A dummy translator for the templatized buffer managers. It is functionally
equivalent to the DummyTranslator presented in Listing 5.1

// Header
class TrDummy {
public :

typedef int hos t type ;
typedef int board type ;

stat ic void host2board (
unsigned int const count ,
int ∗ in ,
int ∗out ,
unsigned int const i n o f f s e t ,
unsigned int const o u t o f f s e t

) ;

stat ic void board2host (
unsigned int const count ,
int ∗ in ,
int ∗out ,
unsigned int const i n o f f s e t ,
unsigned int const o u t o f f s e t

) ;
} ;

// Implementation
void TrDummy : : host2board (

unsigned int const count ,
int ∗ in ,
int ∗out ,
unsigned int const i n o f f s e t ,
unsigned int const o u t o f f s e t

)
{

for (int i =0; i<count;++ i)
out [o u t o f f s e t+i] = in [i n o f f s e t+i] / 2 ;

}

void TrDummy : : board2host (
unsigned int const count ,
int ∗ in ,
int ∗out ,
unsigned int const i n o f f s e t ,
unsigned int const o u t o f f s e t

)
{

for (int i =0; i<count;++ i)
out [o u t o f f s e t+i] = in [i n o f f s e t+i] ∗ 2 ;

}

76 CHAPTER 5. THE BUFFER MANAGEMENT LIBRARY

 0

 50

 100

 150

 200

 250

 300

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write Performance without Translation

Direct
Bounce

Chunk-4K
Chunk-32K
DblBuf-32K
Pooled-32K

Figure 5.2: Write without translation

Write (eff) Read (eff)

Direct 255 MB/s 255 MB/s
Bounce 234 MB/s (91%) 234 MB/s (91%)
Chunk-32K 213 MB/s (83%) 198 MB/s (77%)
DblBuf-32K 230 MB/s (90%) 215 MB/s (84%)
Pooled-32K 225 MB/s (88%) 215 MB/s (84%)

Table 5.1: Transfer Rate Efficiency (w/o Translation)

sizes. This leads to the exploration of the different techniques here presented. The
figures translate into 96% efficiency for the direct transfer. From now on, all efficiency
numbers are compared to the direct transfer. Efficiency numbers for the cases shown
in Figs. 5.2-5.3 are presented in Tab. 5.1.

Using a bounce buffer inserts a copy operation of the full buffer, and provides
information about the cost of simply copying the data around from one memory region
to another. It also enables the use of translators, so this is the maximum performance
that can be achieved when using a translator, which will be discussed in section 5.3.1.

By using chunks, we add two more variables: the size of the chunk, and the number
of chunks used. A single chunk is used by the Chunk Buffer (Chunk), two by the
Double Buffer (DblBuf), and 32 by the Pooled Buffer (Pooled). Tests were run with
chunk sizes between 4KB and 1MB, but only selected cases are presented due to space
restrictions. Chunk-4K is presented to show that for small chunk size, the maximum
transfer rate is the limiting factor.

What is important to notice from these figures is that for sensible chunk sizes, none
of the Buffer Managers present significant performance degradation when operating

5.3. PROFILING AND PERFORMANCE 77

 0

 50

 100

 150

 200

 250

 300

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read Performance without Translation

Direct
Bounce

Chunk-4K
Chunk-32K
DblBuf-32K
Pooled-32K

Figure 5.3: Read without translation

without translation. The use of a Double Buffering or a Pooled scheme looks like the
best choices, providing 88% efficiency for writing and 84% for reading. The effects of
choosing non-optimal chunk sizes will be discussed in section 5.3.1.

Performance with Translation

For the translation tests, a Translator that converts double precision floating point
numbers to single precision is implemented. This operation requires the use of the
FPU unit of the CPU, so this translator effectively forces the data to be fetched and
processed. It also exemplifies a critical conversion operation used by our application
libraries interfacing to a custom core that uses floating point arithmetic.

On Figs. 5.4-5.5, write and read performance plots for transfers with translation,
and direct access performance is displayed as reference. When using a Bounce buffer,
data is translated as it is copied to/from the internal buffer, but can be seen that
performance drops dramatically as it approaches 512KB. Evidence suggests that it is
the effect of increasing cache misses as the size of the buffer get closer to the physical
cache size of the CPU. As a general fact, the translation puts more pressure in the
transfer performance for reading data from the board to the host.

The same behaviour can be seen when using a single chunk, where performance
shows a drop and stabilizes in after 512KB. The performance improves with the use of
double buffers or pooled buffers compared to the single chunk, as both schemes allow
for overlapping of transfer and conversion time.

From Tab. 5.2 can be seen that the Double Buffering scheme shows the best effi-
ciency with 89% for writing and 76% for reading, with the Pooled scheme below by a
2%. More important, when compared with the figures of Tab. 5.1, the translation adds
only 1% overhead for writing, and 8% for reading.

78 CHAPTER 5. THE BUFFER MANAGEMENT LIBRARY

 0

 50

 100

 150

 200

 250

 300

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write Performance with Translation

Direct
Bounce

Chunk-4K
Chunk-32K
DblBuf-32K
Pooled-32K

Figure 5.4: Write with translation

 0

 50

 100

 150

 200

 250

 300

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read Performance with Translation

Direct
Bounce

Chunk-4K
Chunk-32K
DblBuf-32K
Pooled-32K

Figure 5.5: Read with translation

5.3. PROFILING AND PERFORMANCE 79

Write (eff) Read (eff)

Direct 255 MB/s 255 MB/s
Bounce 185 MB/s (72%) 163 MB/s (63%)
Chunk-32K 183 MB/s (71%) 177 MB/s (69%)
DblBuf-32K 228 MB/s (89%) 194 MB/s (76%)
Pooled-32K 224 MB/s (87%) 189 MB/s (74%)

Table 5.2: Transfer Rate Efficiency (w/ Translation)

Non-optimal Chunk Sizes

On the previous sections, chunk sizes were selected for good performance. But an
application writer may choose chunk sizes that lead to non-optimal results. In this
section we present the consequences of using too small or too big chunk sizes for the
different buffering schemes.

The result of choosing a small chunk size has already been presented in Figs. 5.2-
5.5, with a size of 4K. When it is below 32K the transfer time is limited by the Direct
Transfer plot for that size, so full performance is not possible above this level.

When the chunk size is too big, the observed behaviour depends on the buffering
scheme used, and several examples are depicted in Fig. 5.6. For a simple chunk size,
the chunk follows the Bounce buffer plot of Fig. 5.2, plus the overhead of the chunk
management. With the addition of a translator, an additional overhead from the cache
misses can be seen as a gap between plots Chunk-1M and Chunk-1M+TR.

A double buffering scheme adds a cutting point with the size of the internal buffer.
Up to this point, it behaves like a single chunk until it passes the buffer size, then it
can take advantage of the additional buffer and the performance improves significantly.
If the buffer is too big, this cutting point is already outside the cache of the processor
and creates a valley. The cutting points can be clearly seen in the plots DlbBuf-512K
and DblBuf-1M on Fig. 5.6. Then, for this particular system, the advantage of the
double buffer lies in a range between 32K and 512K, even while the cutting point is
still present in 128K and 256K curves (not shown) but is less critical.

The Pooled buffer tries to resolve this issue and provide a more sustained trans-
fer rate for all transfer sizes. In particular, when the chunk size fits in the cache, a
move/translation can be done very fast, but then the processor has to wait until the
other buffer finishes the transfer to continue moving/translating data. The pooled
buffer makes more buffers available to maintain the processor busy as long as possible.
Therefore, the pooled buffer would only exhibit a cutting point when used with big
chunk sizes. However, the management of pooled buffers adds some overhead, that
may or may not justify the use of this scheme. It will depend on the balance between
the transfer speed, the CPU speed, and the complexity of the translation being made.

80 CHAPTER 5. THE BUFFER MANAGEMENT LIBRARY

 0

 50

 100

 150

 200

 250

 300

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write Performance for non-optimal Chunk sizes

Direct
Chunk-1M

Chunk-1M+TR
DblBuf-512K

DblBuf-1M
Pooled-64K

Figure 5.6: Non-optimal Chunk Sizes (write)

A Simple Case Comparison

As a simple case comparison, we performed a test that involves taking a buffer with
data and doing the translation externally, comparing the transfer time for the differ-
ent buffering schemes performing the same translation. The results are summarized in
Tab. 5.3. The first two entries (ext-2cp and ext-1cp) are reference cases, performing
translations externally, and they will use direct buffer when possible (512KB), otherwise
they will use a chunk buffer (32MB). All chunks are of size 32KB, and the pool, when
used, contains 32 buffers. ’ext-2cp’ creates first a temporary array with the translated
values, and then sends this array. ’ext-1cp’ uses the direct buffer when possible as the
target of the external translation, eliminating one copy. ’tr’ uses a bounce buffer for
512KB and a chunk buffer for 32MB, and performs the translation internally. There-
fore, ’tr’ shows the advantage of using the translation in the loop. The advantages of
using chunks, double buffering or pooled buffers have already been discussed and are
confirmed by the results in this table, ranging from 23% to 82% improvements.

5.3.2 Performance of the Templatized Managers

A workstation with two Intel Xeon E5420 processors at 2.5 GHz, a 1066 MHz FSB
and 6MB of L2 cache on a Intel 5400 chipset motherboard, 4GB of DDR2-667 RAM,
and an AVNET V5LX110T Virtex-5 board and running Linux Debian was used for the
tests. The Virtex-5 board uses a hardware PCIe Core from Xilinx paired with a custom
made DMA Engine from Wenxue Gao[30]. The 4-lane PCIe interconnect is capable of
1 GB/s peak performance. The FPGA was loaded with a simple design that provides
a memory region for IO access.

Similarly as with the previous tests, to measure time precisely during program exe-
cution, we utilize the Timestamp Counter (TSC) of the processor allowing the readout

5.3. PROFILING AND PERFORMANCE 81

Write Read

512KB 32MB 512KB 32MB
(speedup) (speedup) (speedup) (speedup)

ext-2cp 4.231 ms 252.7 ms 3.886 ms 266.4 ms
- - - -

ext-1cp 3.181 ms 251.8 ms 3.142 ms 264.3 ms
38% 0.3% 23% 0.7%

tr 3.182 ms 186.0 ms 3.055 ms 214.3 ms
38% 35% 27% 24%

chunk 2.987 ms 185.4 ms 3.031 ms 215.0 ms
41% 36% 28% 23%

double 2.321 ms 145.4 ms 2.593 ms 181.7 ms
82% 73% 49% 46%

pooled 2.587 ms 148.5 ms 2.626 ms 180.4 ms
63% 70% 47% 47%

Table 5.3: Simple Case Results

of clockticks under normal conditions (non-sleep modes). This provides nanosecond
resolution for measurement of transfer times. Each transfer measure is repeated 10
times and the result is averaged to minimize spurious behaviour.

Performance without Translation

The DMA performance with templatized buffer managers is summarized in Figs. 5.7
and 5.8. Transfer functions are presented for the mprace library (a direct transfer) as
well as chunk and double buffer managers. The first difference with the previous plots
is the minimum data amount needed to saturate the channel. While the MPRACE-1
required ∼16 KB to saturate above 250 MB/s, this design requires ∼128 KB to saturate
above 600 MB/s. Of course, the bandwidth to reach is higher in this case, and the plots
concentrate on the differences above 4 KB transfers.

The next significant difference is the gap between the mprace results and the chunk
buffers. The size of the gap represents an additional overhead, until the size of the chunk
saturates the transfer into a constant plateau. This gap is reduced when compared
with the double buffer performance, because the double buffer overlaps the transfer
and copy operations. Also, because the double buffer reaches very closely the mprace
performance for big data transfers, we can conclude that most of the copy operation
time is hidden by this overlap. Therefore, the gap can be explained by the copy time
needed to transfer the data in or out of the buffer, which is more significant in this case
because of the higher bandwidth involved.

However, this is only true for big data transfers (>4 MB), and using relatively

82 CHAPTER 5. THE BUFFER MANAGEMENT LIBRARY

big (1 MB) buffers. We are currently experimenting with a templatized pooled buffer
manager, with the intention of reducing the performance penalty for smaller transfers.

 0

 100

 200

 300

 400

 500

 600

 700

4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

DMA Write Performance- Virtex5 board @ autana

mprace
cb-32K
cb-1M
db-1M

Figure 5.7: Write without translation

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

DMA Read Performance- Virtex5 board @ autana

mprace
cb-32K
cb-1M
db-1M

Figure 5.8: Read without translation

Part III

Software Integration

83

85

Software

Integration

Libraries

PCI Driver

MPRACE Library

BUFMGR Library

raceSPH raceGRAV

Applications

NVIDIA Driver

CUDA

Accelerator

H
a
rd
w
a
re
 S
u
p
p
o
rt
 L
a
y
e
r

Application

Layer

The following two chapters document the software integration libraries, raceSPH
and raceGRAV, that abstract the operations needed to compute SPH and gravitational
interactions into computing cores used by applications, and use the functionality devel-
oped on the previous chapters to interact with FPGA boards. In addition to analyse
their results in synthetic benchmarks, they discuss their integration with applications
provided by our colleagues at the ARI and the Munich Observatory.

86

Chapter 6

The raceSPH Library

Integrating a hardware accelerator into an existing high performance application can
be a daunting task. First of all, the accelerator normally addresses a very defined part
of the algorithm, which may or may not map directly to the implementation being
used. Next, the data structures in the implementation typically do not match the data
structures in the accelerator. Also, the application is normally optimized to run in a
certain platform, and inserting an accelerator collides with this optimization.

In order to address these points efficiently, we created the raceSPH library. The
library implements a generic interface to compute 2-step Smoothed Particle Hydro-
dynamics in its more generic form, following the equations described in 1.2 for the
computation of density, pressure and acceleration, as well as entropy, the divergence
and curl of the velocity. The equation of state is not computed by the library, but by the
application between steps. This is done because the equation of state can vary greatly
between one application and another, as it is independent from the SPH equations
used.

This coarse separation in step1 and step2 might seem at first too simplistic, as
it does not allow any modifications on the SPH model used. However, most of the
astrophysical simulations we have encountered do not use other implementations. In
particular, VINE[96], NBODY6++ and GADGET2[88] all use the original derivation
from Gingold & Monaghan[31] that we implement in the accelerator. In addition, most
differences arise from the treatment of boundary particles, or the formulation of the ar-
tificial viscosity in step2. However, boundary particles are rarely used in astrophysical
simulations, with the notable exception of periodic boundary conditions[55], in which
case they can be computed independently on the host, and depending on the formu-
lation, also using the same accelerator. In this case, the application might modify the
neighbour list accordingly, or use the accelerator in an independent stage to compute
the contributions of boundary particles separately. Finally, different formulations of
artificial viscosity can be added for special cases by modifying the processing pipeline
of the accelerator to accommodate the new equation, a task that can be achieved easily
by the Pipeline Generator used to build it. This pipeline is described in PPL language,
and simple or moderate changes can be introduced without much knowledge of hard-
ware design. For more details on the pipeline architecture of the accelerator or the
Pipeline Generator, see the work by Lienhart[58, 60].

87

88 CHAPTER 6. THE RACESPH LIBRARY

This high level representation also allow us to implement the library in multiple
platforms. In this chapter we will cover a reference implementation, as well as special-
ized versions for SSE instructions, FPGA and GPUs.

6.1 Motivation

No discussion of this library would be complete without a review of its main motivation.
In all astrophysical simulations with self-gravity, specially direct gravitational n-body
simulations, the computation of these forces is by far the most time consuming task. As
the time required to compute gravity scales with O(n2) for the number of particles in
the system, it becomes dominant very quickly. Therefore, a lot of time and research was
spent in ways to accelerate its computation, which eventually led to the development of
specialized hardware accelerators like the family of GRAPE cards. These accelerators
reduce the order of the gravity computations to O(n) time by means of parallelizing
the computations for a good range of the number of particles.

When using such accelerator for gravity with a simple code which also includes
gas hydrodynamics with SPH, the gravity computation is no longer the most time
consuming part. Fig. 6.1 shows the time fraction spent in the 3 most time consuming
tasks for particle number between one thousand and one million. It can be seen that
SPH consumes between 50 and 60 percent of the time, while gravity only consumes
between 15 and 30 percent. The last component is the generation of the neighbour lists
used by the SPH computation, which takes 20 to 30 percent.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 4 16 64 256 1024

T
im

e
 f
ra

c
ti
o

n

N [in K]

Time Fraction distribution

NL construction
Gravity

SPH on CPU

Figure 6.1: Time fraction distribution on CPU, computing gravity with an accelerator
and SPH with the CPU. Plot by Peter Berczik, reproduced with permission

From this plot we can also conclude that if the SPH computations take 50-60%,
the maximum speed-up over the whole execution time that can be achieved from ac-

6.2. PREVIOUS AND RELATED WORK 89

celerating this part of the algorithm is in the order of 2x-2.5x speed-up, by Amdahl’s
law[10, 43]. The first question that comes to mind is, if it is worth the effort to imple-
ment an accelerator for such gain.

The answer comes from the application of Gustafson’s law[32]. For a given problem
size, gravity and SPH can be parallelized by dividing work among processors. The
creation of neighbour lists can also be parallelized by following several constraints.
Therefore, the serial part of the algorithm is minimal. As we distribute the application
among P processors and α is the non-parallel fraction, the speed-up would be S =
P − α(P − 1) ≈ P , as α is said to be small. In consequence, we can profit from
this speed-up in the local node when running the application in a cluster, as it will
be compounded by the number of processors used, and for a given time, allows the
simulation of a bigger problem size.

6.2 Previous and Related Work

There have been several developments on the acceleration of SPH, both inside and out
of the astrophysical community. One of the first attempts has been the GRACESPH,
which uses the capabilities of the neighbour list generation of the GRAPE boards to
reduce the computational time of SPH in the host. Introduced by Steinmetz in 1996,
GRAPESPH[92] does not compute the SPH forces in special hardware, but instead
profits from the dedicated unit in the GRAPE boards to generate the interactions lists,
which in turn are used to compute the SPH interactions in the host. While using very
different CPUs than at present time, the time fractions presented for non-accelerated
code, 50-55% for the force computation, are very similar to ours from Fig. 6.1. He was
also one of the first to identify the readout of the neighbour lists from the GRAPE as
a main bottleneck for this approach.

An improvement over the single node implementation by Steinmetz is shown by
Nakasato et al. in 1997 in conjunction with the Remote-GRAPE[75], where they build
over the previous results to conclude that the computation of SPH was the actual
bottleneck in the system, proceeding to distribute it among several hosts by their
newly introduced Remote-GRAPE interface and therefore improving its performance
further.

A significant development in the computation of the SPH forces was the introduction
in 2004 by Lienhart[58, 60] of the first SPH pipelines implemented in FPGA, together
with the corresponding analysis necessary for the tuning of precision in the floating
point operations without affecting the accuracy of the computations significantly.

Another related development is presented by Nakasato[74] et al. in 2007 with the
SPH computation using PROGRAPE-3 systems, providing a similar development with
the introduction of an automatic pipeline assembler and limited precision floating point
units. An interesting variation is the use of multiple FPGAs in a single board (the
PROGRAPE-3 has 4 dedicated to computation) for the calculation, and how they
compare multiple task distribution schemes for the computation of gravity and SPH.
Another important remark is the effect on performance of the data transfers, as their
board deviated from the designed speed by a wide margin.

Parallel to these developments, other researchers focused in the acceleration of SPH

90 CHAPTER 6. THE RACESPH LIBRARY

computations for other applications. Particularly, fluid dynamics simulations were quite
active as for them, this is the most time consuming task in their programs. In addition,
SPH is a method also used when creating high speed visualizations of fluids, like water
or smoke in a game, as it provides a physical model which is approximate enough
and easy to integrate into other particles systems for visualization. One important
distinction of the following GPU implementations is that normally have much simpler
integration schemes, without distinction of active or inactive particles in their systems.

Focusing in GPUs, one early work using GPUs is by Harada[37] et al. using a
first-generation CUDA card for a full implementation of a simulation inside a GPU,
that is, all tasks done by the GPU and no work left to perform by the CPU, showing
speed-ups of up to 28 times for the computation.

Another important development was the work from van Kooten et al. presented in
the GPU Gems 3 book[78], where they do not only compute the SPH forces but also
provide a hash method to construct efficiently the neighbours by a grid of neighbouring
cells. Unfortunately they work is focused in visualization, so the performance metrics
used of frames per second are difficult to compare with our target interest.

More recently but focused in scientific applications of fluid dynamics, it is worth
noting the work of Herault[42], Dalrymple[23, 21] and the team of GPU-SPHysics with
the simulation of tsunamis and lava flows.

6.3 Formulae

Since some variations of the formulas are possible in the form of different kernel func-
tions or artificial viscosity formulations, it is worth to list the actual implementation
used. A W4 kernel function is used, together with the standard formulation of artificial
viscosity as shown in 1.2.1. The kernel is normalized against the symmetrized smooth-
ing length (see again 1.2.1), and the scalar part of the gradient denoted as Ω(x), so
they both can be rewritten as follows

W ′(x) =

1− 3

2
x2 +

3

4
x3 if 0 ≤ x < 1

1

4
(2− x)3 if 1 ≤ x < 2

0 otherwise

Ω(x) =

−1 +

3

4
x2 if 0 ≤ x < 1

−1

4
x+ 1 +

1

x
if 1 ≤ x < 2

0 otherwise

Note that some constants are moved out of the kernel in order to reduce the number
of operations performed, and that in the following equations, the terms at the right side
of the equation are computed by the accelerator. The density function from Eq. 1.15
is therefore computed in step 1 as:

6.4. ARCHITECTURAL OVERVIEW 91

πρi =
∑
j

mj

h3
ij

W ′
(
|rij |
hij

)
(6.1)

together with the curl and the divergence of the velocity:

− π

3
ρi (∇ · v)i =

∑
j

mj

h5
ij

(v · r) Ω

(
|rij |
hij

)
(6.2)

− π

3
ρi (∇× v)i =

∑
j

mj

h5
ij

(v × r) Ω

(
|rij |
hij

)
(6.3)

Since the density is needed to compute the acceleration, this is done in step 2 as

π

3

dvi

dt
= −

∑
j

mj

h2
ij

(
Pj

ρ2
j

+
Pi

ρ2
i

+ Πij

)
Ω(
|rij |
hij

) (6.4)

together with the entropy and the max(µ) from the artificial viscosity, with the
entropy (more properly, the irreversible thermal energy introduced by the artificial
viscosity[96]) computed as

π

3
ρi
dui
dt

=
∑
j

mj

h5
ij

Πij (v · r) Ω

(
|rij |
hij

)
(6.5)

6.4 Architectural Overview

When we consider the racesph library at system level, it is the uppermost component of
our software stack, and the sole element that interacts with the astrophysical simulation.
It is therefore the interface that the user sees, hiding the complexity of the different
elements and libraries below, namely the PCI driver, the mprace library, the buffer
management library as well as the accelerator hardware itself.

In Fig. 6.2 we can see an overview of the classes of the library, with a focus in
the SPHCore hierarchy. The subclasses are grouped according to the accelerator used:
Software Cores, FPGA Cores and GPU Cores. In addition, we group together a set
of Profiling Cores, which are used for debugging, logging and profiling purposes. Also
shown are the two interface classes to use the library with C code, as well as the Fortran
library for specific use with the VINE application. Data types and Translator classes
are represented here only as a package. Each accelerator core will be covered in detail
in their own section in this chapter, while the data structures and supporting features
will be described later in this section.

The interface of the base class, SPHCore, defines the interface that has to be im-
plemented by all subclasses, which is also the interface used by the applications. It is
more clearly summarized in Table 6.1, where functions are grouped by task, so we have
functions for Step 1, Step 2, as well as control functions and Translator setter methods.
This interface is inspired primarily by the FPGA accelerator interface, because it is
the more restrictive of them, as well as one of the first implemented. After several

92 CHAPTER 6. THE RACESPH LIBRARY

SPHCore

SoftSPHCore

SoftSPHCoreSSE

FPGAsphCore

FPGAsphCoreMPRACE2

CUDAsphCore

StreamSPHCoreBase

DebugSPHCore

LogSPHCore

TimingSPHCore

InstrumentedSPHCore

Software Cores

FPGA Cores

GPU Cores

Profiling Cores

InterfaceC

InterfaceVINE

Translators

Data Types

Figure 6.2: RACESPH library class diagram

iterations, we found this set of functions to be flexible enough to cover the use cases
presented by the applications under study without sacrificing performance, and to be
adaptable to a large set of platforms. We can now focus our attention in two main
aspects: the data formats and the use case scenario.

The data formats are summarized in Fig. 6.3. While the particle data is unique
and can be visualized as a simple array of particles, three structures (s1 particle,
s2 particle and mhc particle) are used to represent the particle data uploaded to
the accelerator at different stages. The particle data is organized in three arrays, were
each array if of one data type. The arrays are synchronized, so any index i refers to
the data of particle i in all three arrays. Each structure does not represent data from
a different particle, but data for the same particle to be uploaded at a different stage,
so the data of particle i is uploaded using 3 different data structures. Consequently,
Step 1 requires the data from s1 particle only, while Step 2 requires the data from
both s1 particle and s2 particle. However, the smoothing length h and the speed
of sound c change between Step 1 and Step 2 because of the equation of state. The
structure mhc particle is used to update this data without the need to send the full set
of data of s1 particle, saving communication time. Finally, from the computations
of each step, one array of type s1 result (from Step 1) or s2 result (from Step 2) is
returned.

The final data structures are related to the communication of the neighbour lists
to the accelerator. The neighbour lists are passed as a very long unidimensional array
(NL array), with one neighbour list after the other. The cutpoints array contains
the offset were each neighbour list starts, serving as a pointer or shortcut to a certain
list. Every neighbour list is a list of indexes in the particle array. The indexes of

6.4. ARCHITECTURAL OVERVIEW 93

Step 1

s1Prepare Prepare Accelerator to compute Step 1
s1SetParticles Write Step 1 Particles into the accelerator
s1Calculate Calculate Step 1 and Read Results

Step 2

s2Prepare Prepare Accelerator to compute Step 2
s2SetParameters Set Parameters required for Step 2
s2UpdateMHC Update m, h, c in particles
s2SetParticles Write Step 2 Particles into the accelerator
s2Calculate Calculate Step 2 and Read Results

Control Functions

getStep Get the current processing step
setFlag Set a Flag in the Accelerator
getFlag Get a Flag value from the Accelerator
setRegister Set a Register in the Accelerator
getRegister Get a Register value from the Accelerator

Translators

setParticle1Translator Set the Particle 1 Translator
setParticle2Translator Set the Particle 2 Translator
setMHCTranslator Set the MHC Translator
setResult1Translator Set the Result from Step 1 Translator
setResult2Translator Set the Result from Step 2 Translator

Table 6.1: SPHCore class interface

K i-particles are listed first, were K is the number of concurrent i-particles that can
be computed with the same neighbour list, and a fixed number that depends on the
accelerator. Typically K = 1, but it can be higher if more than one i-particle share
the same neighbour list, as in a shared-list scheme. Next in the neighbour list comes
the number of neighbours N , followed by N indexes for the corresponding j-particles.
N can be fixed or variable, depending on the method used to construct the neighbour
lists: fixed neighbours N but variable smoothing length h, fixed smoothing length h
and variable number of neighbours, or both parameters varying.

To better understand the relationship between the interface and the data structures,
it is best to explore the use cases scenarios for it. The first scenario to consider is the
processing of a single time-step with all particles active (see 1.4 for a discussion of
active/inactive particles). This process involves a sequence of operations started by the
application and directed to a SPH Core object, shown in Fig. 6.4 and whose can be
described as follows:

94 CHAPTER 6. THE RACESPH LIBRARY

x, y, z
vx, vy, vz
m
h
c

s1_particle

rho
p
f

s2_particle
m
h
c

mhc_particle

Particle Data

density
divV
rotVX, rotVY, rotVZ

s1_result
dvx, dvy, dvz
entropy
maxMu

s2_result

Result Data

Neighbour List Format

Neighbour List 1 Neighbour List 2 Neighbour List 3

ip1 ip2 ... ipK N jp1 jp2 ... jpN

c1 c2 c3 ...Cutpoints

NL array

Neighbour List detail

Figure 6.3: RACESPH data structures

1. Prepare Step 1. This must be done before doing any other operation which
involves Step 1. It is used to prepare the accelerator for this task, like setting
flags changing the mode of operation, cleaning temporary data, or loading a new
design into an FPGA.

2. Load Step 1 Particles. This step receives from the application the data needed
to compute Step 1 and loads it into the accelerator. This operation is also re-
sponsible of any data transformation of particle data. By means of an optional
translator object and the bufmgr library, the racesph library is capable of includ-
ing a conversion step efficiently into this transfer. In this way, the data passed
to this operation can be in the native format of the application, but it is loaded
into the accelerator by whatever data structure it requires natively (typically an
array of s1 particle elements).

3. Calculate Step 1. This is the operation that computes Step 1 and returns the
results to the application. It receives the neighbour lists structures and passes
it to the accelerator core for processing. The accelerator returns an array of
s1 result elements, which is again optionally transformed by a translator object
into the desired data format of the application.

4. Compute Equation of State. This is done entirely by the application, and it
is a required operation between Step 1 and Step 2 in order to update the sound
of speed and possibly the smoothing length of the particles being computed.

5. Prepare Step 2. Similar to Prepare Step 1, this operation prepares the accel-
erator to perform operations related to Step 2.

6. Set Parameters. This operation loads dataset-wide parameters into the ac-
celerator. Currently, it sets the constants alpha, beta and eta required for the
computation of artificial viscosity.

6.4. ARCHITECTURAL OVERVIEW 95

Application SPHCore

s1Prepare()

s1SetParticles()

s1Calculate()

return s1 results

s2Prepare()

s2SetParticles()

s2Calculate()

return s2 results

s2SetParameters()

comp EoS

s2UpdateMHC()

Figure 6.4: SPH usage

7. Update MHC Data. This operation uploads to the accelerator updated values
for mass, smoothing length and sound of speed. New values of the smoothing
length and sound of speed were computed by the EoS and need to be uploaded.
Similarly to other data uploads, this can use an optional data translator to match
the need of the accelerator. In this data set, only the sound of speed has a
significant change on every step as a consequence of the EoS. The smoothing
length can in theory change, but in practice is much more dependent on the
neighbour configuration and therefore slow changing, as is sometimes reused by
as much as 10 time-steps. The mass doesn’t need to be updated, but is present
here because a data dependency on the FPGA design: these three values are in
the same data line in the FPGA board memory, so writing the data line requires
to update all 3 values. Reading the data back from the FPGA would cut memory
performance in half and affect the overall performance significantly, so we chose
to read it back from the host as a better alternative.

8. Load Step 2 Particles. As with Load Step 1 Particles, this operation loads the
additional particle data needed for Step 2 into the accelerator. It does not reloads
the Step 1 data (that is done by Load Step 1 Particles and Update MHC data),
but it uploads the data corresponding to s2 particles. Similarly, a translator
can be used for data format conversion.

9. Calculate Step 2. Computes the Step 2 and returns the results to the appli-
cation. It receives the neighbour lists structures again, and passes them to the
accelerator. Since the neighbour lists is the same for both steps, the SPH Core
in use has the option to cache the neighbour lists and ignore the input, saving

96 CHAPTER 6. THE RACESPH LIBRARY

communication time. The accelerator returns an array of s2 result elements
which can be transformed by a translator into the data format of the application.

This sequence describes the sequence that all applications execute to use a SPH Core
of the racesph library, and all use cases are variations over this main sequence. The
first variation to consider is when not all particles are active in the current timestep.
From the neighbour list point of view, it means that only the neighbour lists where
these active particles are i-particles need to be computed. In terms of the particle data
needed to compute these neighbour lists, it is composed of the active particles (the
i-particles) plus all neighbour particles in the lists (the combined j-particles). While
the list of i-particles is very easy to obtain, the list of j-particles is a more complicated
subject, as it involves walking all active neighbour lists and selecting the j-particles.
Then, the combined set of i- and j-particles is loaded into the accelerator.

However, the upload of a subset of the particles involves a gather operation, as
the particles are distributed across the memory and must be collected for transfer. In
addition, since the particle index inside the accelerator is important (the neighbour lists
use particle indexes), the gather operation will change the indexes, so the neighbour
lists will in turn need to be rewritten with these new indexes. Furthermore, the results
that come back from the accelerator need also to be scattered in memory following the
same mapping in the opposite direction.

The process just described consumes too much time, relative to the actual compu-
tational time. As some time-steps have very few active particles, the problem represent
an even bigger overhead in these cases. Therefore, we opt for a different approach:
we use the accelerator when only a minimum number of particles is present, and we
then load the whole particle data set to the accelerator, which is faster than loading
several small data sets of gathered data, and send only the neighbour lists for the active
particles for computation, effectively ignoring the non-used particles.

Handling boundary particles presents a special case. While astrophysical simula-
tions do not usually have boundaries, for the applications that do require them like a
fluid in a box for a dam break simulation, the use of the accelerator depends on the
boundary model used. There are many ways to handle them, but models like repulsive
force or negative mass can be used and handled by the accelerator as any other particle.
Other models that involve computing special interactions with regular particles must
be handled by the CPU.

6.5 CPU and SSE implementations

The CPU and Streaming SIMD Extensions (SSE) classes cover the implementations to
be run exclusively in the host. The CPU implementation serves several purposes: it
provides a reference implementation, that users wanting to integrate with an accelerator
can use to test the functionality of the library and its interaction with the application
without the need to access any special hardware. Once the integration with the appli-
cation is done, the CPU core also provides the capability to test the effects of using
single precision floating point operations for the SPH computations, instead of the dou-
ble precision floating point more commonly used. Finally, being very straightforward

6.5. CPU AND SSE IMPLEMENTATIONS 97

code (i.e. without optimizations), it allows developers to test the effect of changes in
the computations before implementing them in an accelerator.

The regular CPU version consist of a loop that processes sequentially every neigh-
bour list passed to the core, and for every neighbour list, it computes sequentially each
interaction. Every interaction accumulates the result for that particular neighbour list
and returns it as the result for that i-particle when the neighbour list has been processed
fully. This loop is repeated for both Step 1 and Step 2.

The SSE version uses the streaming SIMD instructions available in most modern
processors to compute the SPH interactions. These instructions operate over 128-
bit registers and allow a single CPU core to execute up to 4 single precision opera-
tions concurrently. The functional units share registers with the regular floating-point
pipeline, and depending on the architecture, it has available 8 FP registers and 8 128-
bit (XMM) registers in 32-bits architectures, or 16 FP and 16 XMM registers in 64-bits
architectures[48]. Under proper conditions, SSE instructions enable the application
to use the peak performance of the CPU, being the two more important constraints
that enough data is available, and that all functional units are used during a SIMD
instruction.

Because of the low number of registers available and the SIMD nature of the in-
structions, the performance is very sensitive to data dependencies and starvation. Data
dependencies come as operations that require a previous pending operation to complete
before it can be executed, while starvation (which can be considered a consequence of
a not fulfilled data dependency) involves data that is not accessible when needed or
accessing memory that is not present in the cache, requiring a delay until it becomes
accessible. For a more in depth analysis of data dependencies on performance, see [41].

These constraints require careful crafting of an SSE program to keep the functional
units as busy as possible. From a high level language like C++, there are several ways to
use SSE instructions in a program, which lead to several combinations of optimizations
being available. One approach is to embed assembly code directly into the program;
to use intrinsic functions to guide the compiler very closely in the SSE operations to
perform; or to use vectorizing compilers to convert the code automatically from a serial
description into SSE implementations.

The first, and most straightforward, is to assembly code directly into the program.
This can be done by some compilers like gcc with special directives, or by linking an
external function which is been assembled independently. The biggest advantage of this
approach is that the programmer has complete control of the code: the instructions,
registers and algorithms being used all need to be specified by the programmer. Because
of the same reason, this solution becomes quite inflexible: any change requires rework-
ing the optimizations. Techniques like register reuse, instruction reordering, function
inlining and loop unrolling have to be implemented manually by the programmer, and
as the number of registers changes between 32- and 64-bit platforms, separate versions
of the code are required to cope with the optimizations for each case.

The second method is to use SSE intrinsic functions. SSE intrinsic functions are
function wrappers for SSE instructions, where each instruction is paired with a func-
tion, so each instruction is seems as a regular C function by the language. Specific
data types are used to ensure the correct data alignment and register association of

98 CHAPTER 6. THE RACESPH LIBRARY

the instruction and the memory. Intrinsic functions rely on the compiler for register
allocation, instruction reordering, inlining and loop unrolling, while leaving to the pro-
grammer the vectorization of the algorithm and the choice of actual instructions to
execute. Because register allocation is done by the compiler, the same program can be
compiled in 32- and 64-bits platforms and the best register allocation will be used, up
to the capabilities of the compiler and the platform. Another advantage is that intrinsic
functions are fully supported by the two main compilers for the x86 platform: GNU
gcc and Intel C Compiler icc. The main disadvantage is that the compiler might not
be as effective in optimizing the code as a skilled programmer, but that is true for any
compiler.

The last method we mentioned earlier, using a vectorizing compiler, gives full control
of the process to the compiler. By crafting code in predefined patterns (typically as
loops), one can guide a capable compiler into converting code into SSE equivalent
instructions. In this case, the successful conversion is very limited by the capability of
the compiler to recognize useful fragments and parallelize the code. Both the gcc and
icc have parallelizing capabilities, and be will discuss them in the next paragraphs.

On a first instance, we tested the vectorization capabilities of the Intel (icc ver-
sion 8) and GNU compilers (gcc versions 3.3 and 4.2), and evaluated the generated
code using Intel VTune Performance Analyzer 8, a profiling tool with code inspection
capabilities. Our first conclusion was that gcc 3.3 was able to parallelize only the sim-
plest loops, equivalent to reductions, vector additions, and such. We also found that it
could not perform any significant optimization when dealing with intrinsic functions,
performing only straightforward unwrapping and no significant register reuse. Since
the SPH computing loops contain long computing sequences, we concluded it was not
suitable for our complex pipeline, and we concentrated in gcc 4.2 and icc 8.

However, both gcc 4.2 and icc 8 had limitations processing the SPH pipeline. The
first issue is that the double loop (all neighbour lists, all interactions per list) is divided
into 3 function calls, and the innermost call, a loop to compute the interaction of one
i-particle with its neighbour list, consists of a very long inner iteration. This means
the compiler cannot identify the loop as a candidate for automatic SSE optimization,
because of its length and complexity. Dividing them in smaller tasks provide little
help, as a lot of code is repeated on each task, while several divergent branches are
still present. These divergent branches are the consequence of the SPH kernel being a
piecewise function (see Sec. 6.3). Because of these drawbacks, it was finally decided to
not try to use the vectorization capabilities of the compilers, and we focused in using
intrinsic functions.

The SSE intrinsic functions provided the best balance between flexibility and per-
formance. The data model to follow is that of each vector unit in a SSE instruction acts
as a single thread, so 4 interactions can be computed in parallel, provided they share
the same i-particle, which means they are part of the same neighbour list. Individual
contributions are then sequentially added to the final result for the active particle. The
first task we did was to create a couple of custom data types, shown in 6.1, to pack
and unpack float and integer values easily. These structures provide data alignment
and easy access to data in XMM format, as well as easy access for the rest of the code.

Afterwards, the original loop functions were modified in order to perform particle

6.5. CPU AND SSE IMPLEMENTATIONS 99

Listing 6.1: XMM union data types

union v4 {
m128 xmm;

f loat v [4] ;
} a t t r i b u t e ((a l i gned (1 6))) ;

union i 4 {
m128i xmm;

int i [4] ;
} a t t r i b u t e ((a l i gned (1 6))) ;

data fetching and packing at the start of each iteration, to comply with XMM data
formats. Then, the actual interaction was ported to be computed with SSE instructions,
4 interactions in parallel. In order to reduce the expensive cost of branching for special
cases when less than 4 interactions are left in the list, we use dummy particles that
provide no contribution to the final result. This makes the code more readable and
only requires a single branch at the end of the neighbour list to perform a partial data
fetch.

As each vector unit is computing an independent interaction in parallel, it is pos-
sible for the SPH kernel function to diverge, that is, to take different values on each
interaction. In order to handle this efficiently, we always compute all 3 options, and
use an integer mask to select which contribution to use. This is best shown with an
example. Let’s assume a function y(x) with 3 possible cases, as shown in Eq. 6.6.

y(x) =

A for x ≤ k1

B for k1 < x ≤ k2

C for x > k2

(6.6)

We can present a solution as in Fig. 6.5. Each case can be computed independently,
and we can call the partial results y1, y2, y3. Then, each condition of x is evaluated,
and a mask produced for each case. The mask is used to select and combine the partial
results with the final result y, as shown in the figure.

The actual code for the SPH kernel is shown in Listing 6.2. The main difference
with the example is that both the kernel and its derivative are selected and combined
using the same mask. At the end of the interaction loop, the results are accumulated,
one partial result per vector unit. When the loop is finished, the partials are combined
into a single result. This is done in two possible ways: with a small loop with normal FP
operations, or using an horizontal add, an instruction available in the SSSE3 instruction
set only. The horizontal add looks more elegant, but in practice both approaches give
very similar results, with less than 3% difference in out tests.

The computation times and speed-up are summarized in Fig. 6.6. Results shown
are for a synthetic benchmark executed in two 64-bits machines: a 3.2 GHz Xeon (mp-
pc109) and a 2.5 GHz Xeon E5420 (autana). Important to note in the computation
time plot is the nearly linear scaling, from 100 up to 200,000 particles. This linearity
tell us that there are no extraneous effects like cache sizes or memory barriers affecting

100 CHAPTER 6. THE RACESPH LIBRARY

y1_3 y1_2 y1_1 y1_0y1

y2_3 y2_2 y2_1 y2_0y2

y3_3 y3_2 y3_1 y3_0y3

x3 x2 x1 x0x

k1 k1 k1 k1k1

k2 k2 k2 k2k2

k3 k3 k3 k3k3

0 1 0 0mask

y3_3 y1_2 y2_1 y2_0y

x3 x2 x1 x0x

k1 k1 k1 k1k1

x ≤ k1

y1 AND mask

y1_2y y OR temp

y1_3 y1_2 y1_1 y1_0y1

0 y1_2 0 0temp

0 0 1 1mask k1 < x ≤ k2

0 0 y2_1 y2_0temp

y1_2 y2_1 y2_0y

y2 AND mask

y OR temp

1 0 0 0mask x > k2

y3_3 0 0 0temp

y3_3 y1_2 y2_1 y2_0y

y3 AND mask

y OR temp

Compute the piecewise values

Vectorize conditions

Compute the masks, and combine them
into the final register, y.

1

2

3

4

v0v1v2v3

For this example, we assume x2 < k1; k1 < x0,x1 < k2; x3 > k2

First condition

Second condition

Third condition

Figure 6.5: Example for the computation of a piecewise function with SSE instructions

the performance. From the speed-up plot, we only see a small effect for very small
data sets (100 particles), and smaller variations as the number of particles increases.
Both machines show similar speed-ups averaging 2.1x-2.3x, which is somehow deviated
from the expected maximum of 4x. The main difference can be attributed to the newer
architecture and bigger caches of autana, which makes the machine faster even when the
clock speed is lower. Additional code is also needed to prefetch data and convert data
formats, which represent a linear overhead that scales with the number of particles.

6.6 FPGA implementation

As mention earlier, to provide the FPGA implementation with a usable framework was
the initial and main goal of the raceSPH library. While CPU or GPU implementations
can be more or less directly integrated with actual code, the additional requirements
for an FPGA board would make it very difficult, in particular the interactions with the
PCI driver, the uelib or mprace libraries, and the bufmgr library, in addition to the
actual code required for data processing.

In order to understand the design choices for the FPGA implementation, an overview
of the FPGA coprocessor is needed. First of all, the FPGA coprocessor is an FPGA
board that communicates with the host system via a high speed bus. The board it-
self contains a bridge which is in charge of the communications with the host, and
a main FPGA dedicated to the computations. Additional memory connected to the
main FPGA is available for the coprocessor to use. The main characteristics of the
coprocessor boards used are summarized in Tab. 6.2.

The main FPGA is, for this application, loaded with a design that computes SPH
interactions and in order to better understand the work done by the FPGACore class, we
will do a short overview of its functionality. The design follows the internal structure
as shown in Fig. 6.7. The modules shown represent actual blocks in the design with
very defined tasks, as follows: The I/O block controls the data flow to and from the

6.6. FPGA IMPLEMENTATION 101

Listing 6.2: Computing the SPH kernel with SSE instructions

// case 1 : x <= 1.0
// smooting k e r n e l
x2 .xmm = mm mul ps (x .xmm, x .xmm) ;
W c1 .xmm = mm mul ps (threeFourth .xmm, x .xmm) ;
W c1 .xmm = mm sub ps (th r e eHa l f .xmm, W c1 .xmm) ;
W c1 .xmm = mm mul ps (x2 .xmm, W c1 .xmm) ;
W c1 .xmm = mm sub ps (one .xmm, W c1 .xmm) ;

// d e r i v a t i v e o f smoothing k e r n e l
O c1 .xmm = mm mul ps (threeFourth .xmm, x .xmm) ;
O c1 .xmm = mm add ps (minusOne .xmm, O c1 .xmm) ;

// case 2 : 1 < x <= 2.0
// smooting k e r n e l
y .xmm = mm sub ps (two .xmm, x .xmm) ;
W c2 .xmm = mm mul ps (y .xmm, y .xmm) ;
W c2 .xmm = mm mul ps (W c2 .xmm, y .xmm) ;
W c2 .xmm = mm mul ps (W c2 .xmm, oneFourth .xmm) ;

// d e r i v a t i v e o f smoothing k e r n e l
temp .xmm = mm div ps (one .xmm, x .xmm) ;
O c2 .xmm = mm mul ps (minusOneFourth .xmm, x .xmm) ;
O c2 .xmm = mm add ps (O c2 .xmm, one .xmm) ;
O c2 .xmm = mm sub ps (O c2 .xmm, temp .xmm) ;

// case 3 : x > 2.0
// smooting k e r n e l
W c3 .xmm = zero .xmm;
// d e r i v a t i v e o f smoothing k e r n e l
O c3 .xmm = zero .xmm;

// S e l e c t proper case f o r each p a r t i c l e
// x <= 1.0
mask .xmm = mm cmple ps (x .xmm, one .xmm) ;
W.xmm = mm and ps (W c1 .xmm, mask .xmm) ;
O.xmm = mm and ps (O c1 .xmm, mask .xmm) ;

// 1 < x <= 2.0
temp .xmm = mm cmple ps (x .xmm, two .xmm) ;
mask .xmm = mm xor ps (mask .xmm, temp .xmm) ;
temp .xmm = mm and ps (W c2 .xmm, mask .xmm) ;
W.xmm = mm or ps (W.xmm, temp .xmm) ;
temp .xmm = mm and ps (O c2 .xmm, mask .xmm) ;
O.xmm = mm or ps (O.xmm, temp .xmm) ;

// x > 2.0
mask .xmm = mm cmpgt ps (x .xmm, two .xmm) ;
temp .xmm = mm and ps (W c3 .xmm, mask .xmm) ;
W.xmm = mm or ps (W.xmm, temp .xmm) ;
temp .xmm = mm and ps (O c3 .xmm, mask .xmm) ;
O.xmm = mm or ps (O.xmm, temp .xmm) ;

102 CHAPTER 6. THE RACESPH LIBRARY

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

T
im

e
 (

m
s
)

Particles (n)

Computation Time

soft (autana)
SSE (autana)

soft (mppc109)
SSE (mppc109)

 100 1000 10000 100000 1e+06
 0

 0.5

 1

 1.5

 2

 2.5

S
p
e
e
d
u
p

Particles (n)

Speedup

autana
mp-pc109

Figure 6.6: Computation Time and Speed-up for Software and SSE cores

bridge chip. The Memory Controller handles the signal protocol and data organization
in the external memory. The SPH pipeline computes the interactions, and the SPH
control handles the control signals. The Result FIFO hold the results produced by the
SPH pipeline until the host is ready to fetch them.

The design handles streams of data, both as inputs and outputs, in different steps
detailed in Section 6.4. Every stream has it own address in the Address Map of the
design, so the decoding is very simple. When data is being uploaded, data is written
to the PARTICLEDATA address, and the data stream is routed to the memory controller
for upload. Similarly, when computing interactions, a stream of neighbour lists is
received from IO at CALCULATEDATA. This stream is routed to the control unit and the
pipeline, and particle data is fetched from memory according to the interaction list for
computation by the pipeline, and results are pushed into the Result FIFO when ready.
Afterwards, these results are fetched by the host when reading from the RESULTDATA

address.

Additionally, the memory controller performs data width conversion. This is needed
as data is received as single precision floating point, but stored in memory (and used by
the pipeline) as limited precision. The actual precision used for each value was deter-
mined by Lienhart and Wetzstein, and documented at Lienhart’s PhD dissertation[58]
for the first implementation of the SPH pipeline, in order to not affect the result of the
SPH computation significantly.

Another reason for this conversion is to be able to store more particles in the limited
memory of the FPGA. As the memory banks are organized as a very wide array of 144
bits (18 bytes), the reduction in precision corresponds to less bits used, which in turn
allows to store the data for each particle in only two memory lines (36 bytes). This has

6.6. FPGA IMPLEMENTATION 103

MPRACE-1 MPRACE-2

Bridge
Part PLX9656 Virtex4-FX20
Manufacturer PLX Technology Xilinx
Host Link PCI-X PCI Express x4
Max Bandwidth 264 MB/s 1 GB/s
Bridge-Main Link
Link Type Local Bus Serial Links
Link Size 32-bits/64 MHz 4 links @ 1.25 GHz
Link Bandwidth 256 MB/s 1 GB/s
Main FPGA
Part Virtex2-3000 Virtex4-FX60
Max Clock Source 125 MHz 250 MHz
Memory Banks
Banks 4 2
Type ZBT-SRAM DDR2-SRAM
Arrangement 512k*36 bits 1M*72 bits
Total 9 MB 18 MB
SO-DIMM Module SDRAM DDR2
SO-DIMM Max Size 256 MB 1 GB

Table 6.2: FPGA board specifications

two main consequences: the computation between particle index and memory address
is very simple; and the maximum data rate for input to the pipeline is limited to half
of the data rate of the memory.

For the MPRACE-1, this is 125 MHz for the memory and 62,5 MHz for the pipeline
input. This means that, because the pipeline can compute one interaction per cycle,
it needs a constant input of one particle per cycle. The i-particle data is fixed in
registers and do not consume extra bandwidth during the computation of an interaction.
Then, the particle data stream effectively limits the performance of the design on the
MPRACE-1. However, this is not a huge loss, as the neighbour list comes as a stream
from the Local Bus at a rate of 64 MHz, and the SPH control sends the particle
index request to the Memory Controller at the same rate. It follows that additional
improvements in particle fetch will give only a minimal improvement on the performance
of the design for a single pipeline. It could lead to an improvement with more pipelines
available, but there is not enough space on the current device for it. The design can
therefore be considered balanced on its performance constraints.

It can also be established that the performance of the SPH design on the FPGA is
determined by the speed at which the particle data is loaded, and more importantly
for big data sets, the speed at which the neighbour list is transferred to the board. The
computation time by the FPGA is then proportional to Tload(n) + Tnl(nam), where n
is the number of particles in the system, na the number of active particles, and m the

104 CHAPTER 6. THE RACESPH LIBRARY

Memory Controller

IO
block

Result
FIFO

SPH
Pipeline

SPH Control

Memory Banks

T
o
 t
h
e
 B
ri
d
g
e
 F
P
G
A

Figure 6.7: FPGA SPH design block diagram

average size of the neighbour lists. The fetching of results should also be a factor, but
is proportional to Tres(na) and therefore not significant for most cases.

With a clearer view of the requirements of the FPGA design, we can now set
goals for the FPGACore class implementation. We can highlight three key operations
that need to done as fast as possible: load particle data, send neighbour lists and fetch
results. Loading particle data occurs only once per computed timestep of the simulation
(three times if we consider step 1, step 2 and updateMHC separate instances), and it
is related linearly with the number of particles. To send the neighbour lists is to take
the data structure received by the function and send it to the FPGA, as the data
structure provide can be interpreted by the FPGA design directly. However, it scales
with the number of active particles and the number of average neighbours as O(mn).
To fetch results involves reading the data from the Result FIFO and transferring it
to the appropriate structures in the application (it scales directly with the number of
active particles).

It is important to note that both operations, load particles and fetch results, may
require data transformations between the FPGA data format and the application data
format. It is with this purpose that the bufmgr library was developed, as it provides
a very flexible interface to add a high performance transfer between the host and the
FPGA board. As detailed in Chapter 5, the library handles the data conversion into
the same copy loop necessary for the DMA transfer. In addition, it provides the racesph
with a simplified mechanism to deal with the change of FPGA library, being both the
MPRACE and the uelib libraries handled by the bufmgr.

The sending of the neighbour lists has a couple of special considerations. First,
because the data format recognized by the FPGA is the same as the input format, no
additional data transformation is needed. Second, the Result FIFO in the FPGA can

6.6. FPGA IMPLEMENTATION 105

hold only a very limited amount of data (in the order of 4 KB for the MPRACE-1).
Therefore, in order to process a full set of lists we need to regularly empty the FIFO
to avoid it to overflow. The overflow can be limited by sending only the appropriate
number of lists to the FPGA, therefore producing a known number of results.

Then, a loop is implemented to send a subset of the neighbour lists and fetch
the corresponding results on each iteration. This division on segments adds another
restriction, as we cannot send partial lists (that is, a list is sent with all its neighbours
or not sent at all), because it is not supported by the design. For this to be done
efficiently, the library uses the cutpoints array (see Fig. 6.3). This array allows the
library quick access to lists in the nl array, so we can select the subsection of the nl

array easily. Afterwards we use a separate buffer manager to send the selected section
to the FPGA, wait for results to be available, and fetch them with another buffer
manager, in order to handle the data transformation. This is repeated until all lists in
the array are processed.

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

T
im

e
 (

m
s
)

Particles (n)

Computation Time

soft (autana)
soft (mppc109)

FPGA (mprace1)

 100 1000 10000 100000 1e+06
 0

 0.5

 1

 1.5

 2

 2.5

 3

S
p
e
e
d
u
p

Particles (n)

Speedup

mprace1 vs. autana
mprace1 vs. mp-pc109

Figure 6.8: Computation Time and Speedup for FPGA core on MPRACE-1

Performance figures for the MPRACE-1 are shown in Fig. 6.8. Execution times
for the FPGA include both calculation and particle load time, in order to have a fair
comparison with the CPU reference code. The synthetic benchmark used for the tests
simulates the computation of an all active particles timestep, with the ratio between
load and computation time being fairly regular with a ratio of 0.1 for step 1 (load time
10% of the computation time) and a ratio of 0.05 for step 2. From the plots, we can
see that the performance of the FPGA design is about 3x faster than the reference in
mp-pc109, and about 1.5x faster than autana. Some overhead is visible for the range
10-1000 particles, being compensated by the coprocessor working at full performance
for the range 10k-200k particles. The effects on actual applications will be documented

106 CHAPTER 6. THE RACESPH LIBRARY

in following sections (6.8 and 6.9), after the GPU cores are explained.

6.7 GPU implementation

The GPU Core implementation is intended to profit from the highly parallel architecture
of modern graphics coprocessors. As described in Ch. 2.2, newer architectures are
fully programmable and have hundreds of floating point units, paired with very fast-
access memory. This implementation targets NVIDIA GPUs, as it uses the CUDA
programming language. This restricts it to a single provider, as CUDA is only available
for NVIDIA-powered cards, but other free, multi-platform options were not available
at the time of initial development. In order to bridge the part of the GPU Core written
on C++ to the CUDA specific code, a separate cudasph library is created, containing
all CUDA specific code and exporting regular C functions. This library is then linked
to the GPU Core class in the racesph as regular functions. This division allows, among
other things, to create a clear cut defining where CUDA specifics are allowed and
where they are not, as well as operations related to the library architecture (like data
transformation) or the GPU architecture (like CUDA contexts to hold device specific
pointers).

A GPU card has several similarities with a FPGA board, among the obvious differ-
ences. Like the FPGA accelerators, a GPU is an add-on card that interfaces with the
host over a bus (typically a 16-lane PCIe bus). This means that data must be copied
to and from the card, similar to an FPGA board, but with the important difference
that we do not control the data-copying loop. Therefore, we cannot extend the bufmgr

library to handle the required data transformations as efficiently as it could be, so
we need to implement the data transformation separately in this case. An additional
complication is that data alignment in the GPU can (and will) be different that in the
host. As a consequence, the same data structure might consume a different amount of
memory in the host or the device, making a direct copy of an array of these structures
impossible. Dealing with this limitations will lead to higher memory consumption on
the host and a performance penalty.

The performance gain in an FPGA comes from the ability to pipeline long com-
putational chains, producing one result per clock cycle. In the case of the GPU, the
gain comes from the massively parallel architecture and its capacity to distribute work
among many units, mostly independent threads, while properly accessing the required
data in memory. The FPGA is capable of executing all computations at the same time,
so it can be pipelined for optimal performance for an specific algorithm, but the GPU
can execute only one given instruction per SM at the same time. Therefore, the paral-
lelization of the algorithm for use on a GPU is closer to a many-core SIMD architecture
than to a dataflow architecture, and must be addressed differently.

One good way to visualize the computing model of NVIDIA GPUs is to consider
them lightweight threads. In fact, CUDA threads are lightweight threads, with some
additional platform restrictions based on thread affinity and locality that apply to
threads in the same CUDA block. The SPH algorithm can be parallelized in many
ways on this architecture, and we will present three of them, summarized in Fig. 6.9.

On version 1 (Fig. 6.9.a), SPH computations are parallelized by computing one full

6.7. GPU IMPLEMENTATION 107

N
L
1

N
L
2

N
L
3

...

N
L
x

ip

jp

re
d
u
c
ti
o
n

N
L
1

N
L
2

N
L
3

...

N
L
x

ip

(a) Version 1 (b) Version 2 (c) Version 3

Shared Memory

Potentially fully parallel

Reduction, fixed width, fully parallel

Potentially wasted parallelism

Neighbour Lists

Versions 1,2

Version 3

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 ..

0 1 2 3 4 5 6 7 8 9 ..

Grid Distribution - Every block is a CUDA block

Block Distribution - Every column is a CUDA thread

e
x
e
c
u
ti
o
n
 t
im
e

Figure 6.9: Parallelization strategies for the different CUDA versions.

neighbour list per thread. With this approach, every i-particle is assigned to a single
thread, while j-particles are gathered from global memory on demand. Because the
length of every neighbour list is not fixed, some threads in the same CUDA block will
have to wait until the longest list of the block has been processed before completing
the execution of the block, wasting some computational resources. Also in this version,
the data is organized as an array of structures (AOS), so the data organization is
very similar to the arrays on the host memory. This version represents a valid but
straightforward porting of the algorithm to GPUs, as a reference point to measure
other GPU implementations against.

Version 2 (Fig. 6.9.b) is a variant of the previous one, that uses a different data
arrangement in global memory. In this case, data is stored as an structure of arrays
(SOA), so each value (or vector) is stored in a separate array. This allows the compiler
to better optimize the memory accesses and to avoid fetching unneeded data. Also, the
i-particle data is cached in shared memory by each thread, as it will be reused for the
whole neighbour list.

Version 3 (Fig. 6.9.c) is a different approach. Each neighbour list is assigned to a
single block, and each interaction in the list is computed in parallel by a thread inside
that block. Because the list is assigned to the whole block, only a single i-particle has
to be cached in shared memory, reducing the limitation of the shared memory size.
Also, as the interactions are now distributed among several threads, the accumulation
of the results has to be performed as a reduction operation, following the recommended
procedure from Mark Harris in documented in [39].

108 CHAPTER 6. THE RACESPH LIBRARY

The performance of all three implementations is summarized in Fig. 6.10. At low
particle number, version 3 is faster than versions 1 and 2, but all of them converge
to approximately the same speed-up as it reaches the bigger data set. Overall, they
provide a maximum speed-up of 26x compared to mp-pc109, and 14x compared to
autana. As the speed-up is not constant, there is a more complex interaction operating
as a limiting factor. A better understanding of these factors will provide a better path
for improvement, therefore a profiling of the code is needed.

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

T
im

e
 (

m
s
)

Particles (n)

Computation Time

soft (mp-pc109)
soft (autana)

cuda-v1 (gtx480)
cuda-v2 (gtx480)
cuda-v3 (gtx480)

 100 1000 10000 100000 1e+06
 0

 5

 10

 15

 20

 25

 30

S
p
e
e
d
u
p

Particles (n)

Speedup

cuda-v1 vs. autana
cuda-v2 vs. autana
cuda-v3 vs. autana

cuda-v1 vs. mp-pc109
cuda-v2 vs. mp-pc109
cuda-v3 vs. mp-pc109

Figure 6.10: Computation Time and Speedup for CUDA core using a GTX480.

Fig. 6.11 provides a gross overview of the GPU time (in percentage of the total)
for both 1k and 200k particles. For one thousand particles, both version 1 and 2 have
a similar distribution, with the GPU spending approximately the same proportion in
communication and kernel execution: 17% communication, 83% execution. However,
version 3 spends a much higher fraction in Host-to-Device communication with 47%
in communication and 53% in execution, but because the data load time is almost
identical for all versions, the conclusion is that the kernel executions are significantly
faster for version 3 than for the other versions, which is in agreement with the execution
times in Fig. 6.10.

However, this advantage practically disappears for the case of 200k particles, where
all three versions show a very similar distribution of around 45% communication and
55% execution. It can be explained as follows: For a small number of particles, the
parallelization of one-list-per-thread is not able to fully occupy the resources of the
GPU because not enough blocks are created, thus limiting the performance. For one
thousand particles, when using 128 thread blocks only 8 blocks are active, which is
not enough to use all 30 MPs in the GTX480. On the other hand, the one-list-per-
block approach allows a better occupancy of the MPs, distributing them evenly as more

6.7. GPU IMPLEMENTATION 109

lists are present. This provides an increase of about 2x in speed-up. As the number
of particles increases, the number of units occupied in the GPU saturates and only
algorithmic differences are present, being version 3 better by a small margin.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

cuda-v1 cuda-v2 cuda-v3

%
 G

P
U

 t
im

e

1k particles

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

cuda-v1 cuda-v2 cuda-v3

200k particles

memcpyHtoD
s1_kernel
s2_kernel

memcpyDtoH

Figure 6.11: Profiling of CUDA core versions running in a GTX480 for a 1k and 200k
particles datasets.

From the 45% - 55% distribution of communication and execution for all three
versions with high particle numbers, it cannot be said that either one is dominant
and in order to improve the performance, both must be reduced. The communication
time is determined mainly by the bus speed (already a 16-lane PCIe v2, a very fast
interconnect) and the amount of data to be transferred. The bus speed can only be
changed by newer generations of GPUs, so the focus has to be in reducing the amount
of data. For the 200k particles data set, 40% of the communication (that is, 18%
of the total time) is consumed in the transfer of the neighbour lists. Optimally, the
neighbour lists can be computed in the GPU, making the transfer unnecessary. As an
alternative, the neighbour lists can be transferred asynchronously and overlapped with
the computations.

As for the particle data, the data transfer can be reduced only if the active particles
in the previous timestep are updated and an interpolation kernel is added. Positions
and velocities of all other particles are computed internally by the GPU, bringing them
to the current timestep without the need for a transfer. In this way, the full dataset
needs to be transferred only a fraction of the time.

In order to analyse the execution of the kernels, in particular the parallelization
strategies used by the CUDA compiler and its effect in the performance, the CUDA
Occupancy Calculator is used to analyse all kernels, and the output is summarized in
Tab.6.3. On a first glance, the device occupancy is below 50% and all kernels use too

110 CHAPTER 6. THE RACESPH LIBRARY

version 1 version 2 version 3

S1 S2 S1 S2 S1 S2

Threads / Block 128 128 128 128 64 64
Registers 28 33 23 27 23 28
Shared Memory 48 56 4688 6768 424 476

Occupancy 50% 38% 38% 25% 50% 50%
Warps 4 4 4 4 2 2
Registers 3584 4608 3072 3584 1536 2048
Shared Memory 512 512 5120 7168 512 512
Limiting Regs. Regs. S.M. S.M. Warps Regs.
Max Blocks / MP 4 3 3 2 8 8

Table 6.3: Characteristics of CUDA kernels versions, summarizing resource usage and
GPU occupancy for a GTX480 in CC 1.3 mode. The top part are settings/compiler
results, while the bottom part are analysis values produced by the CUDA Occupancy
calculator.

many registers: above 23, when the optimal is typically less than 12 (for CC 1.3 devices).
Interestingly, the limiting factor for maximum occupancy(see 2.2) varies together with
the version. Some kernels are limited by the number of registers used, others by the
amount of shared memory, and one by the number of warps.

The limitation of number of registers used comes primarily from the size of each
kernel. All of them compute the full interaction, and many variables are passed and
used during the whole execution span. Kernels from version 1 used more registers,
because the i-particle data is stored in registers. This is reduced in versions 2 and 3,
as it is moved to shared memory. Eliminating the iteration over the neighbour list in
version 3 does not reduces the number of registers, so in order to reduce it further, the
kernels will need to be split in smaller operations, which will add additional IO between
the MP and the global memory.

The advantage of caching i-particle data in shared memory is evident for version 2.
Instead of using registers, the use of shared memory allows a reduction in IO from global
memory, as the i-particle has to be fetched only once and all subsequent accesses are
from faster, shared memory. This advantage is compromised by the lower occupancy
of the kernels, when compared to version 1. The lower usage is shown as the actual
number of blocks allocated to a MP is reduced by one, in practice computing a lower
number of neighbour lists in approximately the same time.

The number of allocated blocks is at maximum in version 3, with 8 concurrent
blocks per MP. In this case, the occupation is also higher than in previous versions, but
still not using the full capability of the GPU with a top occupancy of 50%. Nonetheless,
it provides a measurable difference for smaller datasets.

However, this advantage is reduced as the number of particles increases, being
version 2 slightly faster for our 200k particles dataset. From this behaviour we can

6.8. APPLICATION PERFORMANCE 111

infer that as particle number increases, the amount of IO between the MP and the
global memory saturates the available bandwidth and becomes dominant of the kernel
execution time. This is reasonable, as particles are randomly distributed in memory
and requiring a gather operation to fetch the particle data needed, which prevents
coalesced accesses. In order to improve the memory accesses, data or neighbour lists
indexes must be reordered in memory to regularize them.

Reordering the NLs is a very expensive task with limited benefit, as it is required
to analyse all lists and reorder the interactions for locality. This will break the caching
of the i-particle data and partition the reduction algorithm at the end of version 3.
Reordering the particle data is more feasible, as the smoothing length defines the range
around the locality needs to apply. Combining this previous analysis with an efficient
tree algorithm in the GPU device will provide advantages both in the memory transfer
between the host and the GPU and the computing time for the SPH kernels.

6.8 Application performance

The library code was integrated with a testing application developed by Peter Berczik.
Working together with him, the following results were produced that exemplify the
successful integration and use of the library with actual astrophysical code. Tests were
performed in a single node in the Titan cluster, were every node is technically equivalent
to mp-pc109. The GPU code used is a previous version of the library, equivalent to
the code described as CUDA version 1 in Section 6.7, running in a GeForce 8800GTX
(CC 1.0).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 4 16 64 256 1024

T
im

e
 f
ra

c
ti
o
n

N [in K]

Time Fraction distribution

NL construction
Gravity

SPH on GPU

Figure 6.12: Computing Gravity with an Accelerator and SPH with a GPU. Plot by
Peter Berczik, reproduced with permission.

Fig. 6.12 shows the effect of using the accelerator in the time fraction distribution.

112 CHAPTER 6. THE RACESPH LIBRARY

Compared to Fig. 6.1, the SPH computational time is reduced from more than 50% to
less than 10%, balancing the time distribution almost equally between the neighbour
list construction and the accelerated gravity force computation. A detailed profile of the
performance gains in the SPH fraction is shown in Fig. 6.13, along with a comparison
of the FPGA and GPU cores. Performance gains are shown to be in the order of 5x-12x
for the FPGA core with an MPRACE-1 and 13x-19x for the GPU core.

It is also important to see the global execution time for the application and the
effect on its performance. This is summarized in Fig. 6.14, with both cores providing
a speed-up in the range of 1.6x to 2.4x. From the Amdahl Law estimation of 2x-2.5x
shown in Section 6.1, we can consider it a good result. Improvements can be done for
medium number of particles, but since the maximum bound is 2.5x the possible overall
gain will be low, so further improvements for the application should focus in other more
time consuming sections like the neighbour list construction.

 0.001

 0.01

 0.1

 1

 10

 100

 1 4 16 64 256 1024

∆
T

 (
o
n
e
 s

h
a
re

d
 t
im

e
s
te

p
)

[s
e
c
]

N [in K]

Computation Time

SPH on CPU
SPH on MPRACE-1

SPH on GPU

 1 4 16 64 256 1024
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

S
p
e
e
d
u
p

N [in K]

Speedup

ratio: CPU/MPRACE-1
ratio: CPU/GPU

Figure 6.13: Computation Time and Speedup with reference code for the SPH fraction.

6.8.1 Comparison with previous work

When comparing the FPGA core with the results from Nakasato, several advantages
can be pointed out: They are faster, a modest improvement providing a 6-12x speed-up
against their result of 5-11x, but using 1/4th of the hardware resources, because the
MPRACE-1 board uses 1 Virtex-II FPGA while the PROGRAPE-3 has 4 Virtex-II
Pro. In this sense, it provides 4 times better efficiency for approximately the same
end performance. Building over their remarks in the importance of the FPGA-to-host
communication, which we also described in the FPGA section, the improvement over
previous work can be attributed to the efficiency of the bufmgr library when handling

6.8. APPLICATION PERFORMANCE 113

 0.01

 0.1

 1

 10

 100

 1 4 16 64 256 1024

∆
T

 (
o
n
e
 s

h
a
re

d
 t
im

e
s
te

p
)

[s
e
c
]

N [in K]

Computation Time

SPH on CPU
SPH on MPRACE-1

SPH on GPU

 1 4 16 64 256 1024
 0

 0.5

 1

 1.5

 2

 2.5

S
p
e
e
d
u
p

N [in K]

Speedup

ratio: CPU/MPRACE-1
ratio: CPU/GPU

Figure 6.14: Computation Time and Speedup with reference code for the full applica-
tion.

the transfers, as they are directly related. Furthermore, by recognizing the boundaries
of achievable performance, we can also plan better the next developments.

Comparing with the work from Harada is possible within some limitations, as his
computing time includes rendering and a clear fraction allotted to it is not given. Also,
to be fair, it should be done against a similar GPU. This could be done with the aid of
Fig. B.1 in Appendix B, where the performance with a GF8000GTX as the one used by
Harada is shown. However, their CPU reference takes 6.725 s to do 262,144 particles,
which can be normalized to 200,000 in 5.130 s, while our CPU implementation taking
only 1.371 s for the same number of particles. Similarly, their GPU computing time
would be 179.9 ms, very similar to our results of 142.7 ms. The computing times in
GPU are therefore comparable, but the speed-up figures are not. The performance
itself is dependent on the characteristics of the system simulated, so while the results
are very comparable, it is important to be aware of the possible differences.

In order to compare with the work from Herault, we can extrapolate our results
with a GTX280 to 600k particles. From 200k in 102.7 ms, that would be 308.1 ms for
our simulations, while their code takes only 207 ms for the same task. However, their
implementation does the neighbour search inside the GPU, so their force computation
does not include any data transfer, which in our case accounts for 40% of the time, or
123.24 ms. We could then compare their 207 ms to our computational fraction time
without neighbour list transfer of 184,86 ms, or an 11% improvement for the force
computation.

114 CHAPTER 6. THE RACESPH LIBRARY

6.9 The VINE implementation

VINE is an astrophysical simulation application, originally developed by Markus Wetz-
stein in collaboration with Thorsten Naab and Andy Nelson. The application is de-
signed to perform best on shared memory supercomputers, but has also been ported
to distributed memory systems. It is built around a particle tree and hierarchical
time-steps, using aggressive caching methods to prefetch blocks (clumps) of data and
compute them efficiently. The clumps can also be seen as a flattening of the tree leaves,
used for performance optimization. An aggregation of clumps, called groups, allow the
use of accelerator boards like the GRAPE-6 board for gravity computation. This is
because in order to compensate for overhead and fully utilize the pipelining capabilities
of the board, it is necessary to have a big number of particles for processing, so the
best way to accomplish this while keeping the advantages of the tree algorithms is to
aggregate the clumps. For a more detailed discussion of the effect of group size in
performance, see Markus Wetzstein Dissertation [95].

Particles in the system are classified in at least 2 types: SPH and NBODY. SPH
particles are subject to hydrodynamic and gravitational forces, while NBODY particles
do not have hydrodynamic interactions. Other types are possible, but are not of interest
for our tests. Particle data is organized as a collection of arrays, where data is linked by
index among arrays and every index corresponds to a single particle. Tridimensional
arrays are used to store velocities and other vector variables, while unidimensional
arrays are used to store scalar variables like density. Other values used very often
together, like position and mass, are stored in a joint, fourth-dimensional array.

For the SPH section, the code reuses the clumps to create neighbour lists for active
particles, and stores them in temporary structures organized as a small matrix. The
size of this matrix is chosen so it fits easily in the cache of current microprocessors.
As the matrix contains only the indices for the neighbouring particles, the code must
still fetch the particle data to compute the interactions, so it has to perform a gather
operation among all the involved data arrays by following the indexes stored in the
temporary matrix. After all the interactions for the matrix have been computed, it
first checks for more neighbours for the current set of active particles, until no more
neighbours are available. This is done in this way in order to benefit from both the
data locality in the matrix and the tree. After the current set of active particles has
been fully computed, a new set is selected from the list of active particles, until all of
them are processed.

However, this algorithm brings several complications when ported to interact with
an accelerator. First of all, we have to transform this temporary matrix into a linear
neighbour list array, while respecting the limitation that a neighbour list cannot be
partitioned. Second, we have to increase the number of lists to process in any given
batch in order to reach efficiency. For this last point, similar to the GRAPE boards for
gravity, we can apply the same technique and merge clumps to create bigger temporary
structures for use by the racesph library.

For the linearisation of the array, since the tree walk with the temporary matrix
gives potentially partial lists, before computing the interactions it is needed for the host
to walk the full set of neighbours for any given particle. Doing this one by one would

6.9. THE VINE IMPLEMENTATION 115

be very time consuming, so it was chosen to extend the merged clump to not only more
active particles but also more neighbours, and once it has been fetched, it will walk the
merged clump to produce a set of neighbour lists that can be safely processed. This
might seem like it imposes a very arbitrary limitation to the length of the neighbour
lists for any given particle, but in fact this is already limited artificially during the tree
walk by constants configured in the program. We can therefore guarantee that for any
given active particle, we can store its neighbour list up to the limits established by the
code.

In addition to these modifications, it is necessary to consider when the use of an
accelerator will result in a performance gain, particularly because the tree code is very
efficient. For this context, performance means less computing time, and this is directly
related to the number of active particles in the system at any given time-step. Since
VINE has the option to use hierarchical time-steps, it is possible that for a certain
time-step only a very reduced number of particles are active, so it will not be profitable
to use the accelerator as the CPU can handle this case much more efficiently. For this
reason, we added threshold conditions to VINE, so it uses the accelerator only if a
minimum number of particles is active. After some experimentation and evaluating the
results from Fig. 6.8 and 6.10, we set up the threshold at one thousand particles for
our test system.

Last but not least, it is important to note that like many other scientific applications,
VINE is written in Fortran. This brings some technical challenges on how to interface
a C++ library to Fortran code, which can be summarized as follows:

• Compiler optimizations. Accessing functions in one language from another
imposes several restrictions, the most important being that the compiler cannot
cross language boundaries (from Fortran to C++ or vice-versa) to perform op-
timizations. Compiler hints like inlining will be ignored, and loop unrolling or
register reuse will not be possible. Therefore, function calls will be full-function
calls, so tight loops with many calls across the boundary must be avoided and no
optimizations across the border must be assumed.

• Parameter passing. When calling a function, the way parameters are passed
must follow a certain convention, and Fortran and C++ follow different ones.
While Fortran passes all parameters by reference (the address of the variable is
copied into the stack), C++ passes by default all scalar values by value (the value
of the parameter is copied into the stack), and arrays are passed by reference.
C++ supports optionally pass-by-reference for scalar parameters, but it must be
selected for every parameter passed.

• Array ordering. When storing a multidimensional array in memory, Fortran
and C++ follow also different conventions. In Fortran, arrays are stored in
column-major order, while in C++ they are stored as row-major. This has the
consequence that when a reference to an array is passed across the border, the
order on the indexes has to be reversed: An array with indexes [i][j][k] in Fortran
has to be accessed as an array with indexes [k][j][i] in C++.

116 CHAPTER 6. THE RACESPH LIBRARY

• Exception handling. Error conditions in C++ programs are typically signalled
by the use of exceptions. However, Fortran has no exception handling mechanism,
so exceptions have to catched and appropriate return codes sent by the library
over the return path to VINE.

• Function name mangling. C++ uses name mangling (also known as name
decoration) to create unique names for functions and add additional information
to the function specification that can be used by the linker. Because the name
mangling is not standardized and changes with the compiler used, C++ functions
calls cannot be added directly from Fortran without also fixing the C++ compiler
used.

For all these reasons, the Fortran code cannot be interfaced directly to the C++
and a wrapper class was implemented. While a C wrapper was already in place and
covers part of the issues mentioned, it still leaves parameter passing and array ordering
as non-addressed issues. Since modifying VINE to change the array ordering would be
counter productive, as the code is already optimized for this arrangement, the library
gets a new wrapper interface to improve the communication with VINE specifically.

In this new interface, the translators to convert the data from VINE format to the
library format for particle and result data is located inside the wrapper interface. This
allows for the use of the translation capabilities of the library without interfering with
the VINE data arrangement. In addition, instead of processing the extended neighbour
matrix in the Fortran code, the matrix is passed to the wrapper and processed inside
the library, displacing two tight loops from Fortran to the C++ side and improving the
readability of code.

The results for VINE are analysed in two ways. First, there are correctness tests,
where a simulation running in a single host is compared with results using the racesph

library. The second are performance tests, where the computing time is compared for
the same simulations.

The correctness can be summarized in Fig. 6.15. The plot shows the energy evo-
lution for the collapse of an adiabatic sphere of 5K particles. Curves for each core
are superimposed, providing a visual comparison. Because the system evolves, small
changes accumulate and will effect the results as it develops. This is most visible for the
CUDA core, as the system is most dynamic, it starts to deviate from the solution with
other cores. Because the software and SSE cores have the same equivalent precision
and use the same VINE interface, the difference can only be attributed to the CUDA
core itself. This result is present with both a GTX260 and a GTX480 card, so it is
not attributed to the limited accuracy of the previous generations (the GTX480 has
the same accuracy as a CPU for single precision operations). Deeper investigation is
pending to uncover either the exact causes of this discrepancy, possibly a programming
mistake.

Performance results are detailed in Tab. 6.4. In short, the accelerator library brings
little to no benefit for the overall execution of VINE, a 23.85% improvement in the
computation of SPH, but no gain in the total execution time. This result is in agreement
with the independent results provided by Markus Wetzstein with an earlier version of

6.9. THE VINE IMPLEMENTATION 117

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5

e
n
e

rg
y

time

Energies

reference-Ekin
reference-Egrav

reference-U
soft-Ekin

soft-Egrav
soft-U

sse-Ekin
sse-Egrav

sse-U
cuda-Ekin

cuda-Egrav
cuda-U

Figure 6.15: Energies from the collapse of an adiabatic sphere with five thousand
particles, compared for several computing cores.

the library and the MPRACE-1 board. It is interesting to understand the reasons and
implications of it. First, the problem size is five thousand particles, so for the CUDA
core, the speed is limited to ∼7.5x maximum. But even if the size of the problem would
be increased, the clumping of neighbour lists would limit the size of lists processed at
any given time to approximately this amount. Increasing the size further would be
detrimental for the tree performance, so a balance of the parameters must be reached.

Additionally, the clumping has some negative consequences on the neighbour list
construction. Clumping the particles implies that only a subset of neighbour lists are
sent to the GPU on any given time. Because these clumps are (hypothetically) only
a fraction of the total size, the transfer time is less than optimal, as GPUs benefit
from big data transfers. In consequence, to process one step, multiple clumps must be
processed one after another, and the full set of neighbour lists is never constructed, so
the list cannot be cached and reused by the GPU in a later step. Since the neighbour
list transfer is a significant portion of the CUDA core execution time, this affects the
performance accordingly. The effect would be even more dramatic when processing
time steps with only a fraction of the particles active.

When analysing the execution time, it is important to remember that the 7.5x speed-
up factor does not applies to the full execution time of the application but only to the
SPH computations, which in this case amounts to less than 20%, and the percentage on
the accelerated runs include the overhead of the VINE interface. From the information
provided, we can approximate the overhead time to be 19.37 s, assuming a constant

118 CHAPTER 6. THE RACESPH LIBRARY

autana autana SSE GTX260 GTX480

Total time 158 s 158 s 165 s 174 s

Gravity 123.43 s 125.22 s 131.11 s 147.9 s
Percentage 78.09% 79.125% 79.144% 84.6726%

SPH 30.85 s 29.19 s 30.34 s 23.49 s
Percentage 19.51% 18.445% 18.31% 13.445%

Table 6.4: Comparison of execution times for VINE with and without acceleration of
SPH

speed-up of 7.5x and not compensating for tree traversing and smaller time-steps.
All in all, while the results of integrating with VINE are not as successful as desired,

they provided valuable information that will be used for the implementation of more
advanced simulations codes that can use accelerators efficiently for SPH. VINE also
provided an opportunity to demonstrate the extensibility of the library. While the
main development for VINE was done oriented to the use of an FPGA accelerator,
when the GPU cores were available they could be used with minimal changes to the
VINE code, only a few flags and constants to instruct the library to use the new core
and to accommodate for bigger clumps.

Chapter 7

The raceGRAV Library

Gravity forces are unlike the SPH forces computed in the previous chapter in several
aspects. First, they are long range forces, so they are not localized in one region of
the simulation but can interact any other particle in the system. Next, the complexity
is lower, as they are computed in one single step and there are fewer FP operations
needed. The formulas computed by this implementation correspond to those described
in 1.1. Similarly to other accelerator implementations, the derivative of the acceleration
(jerk) is also computed in order to support the implementation of 4th order Hermite
integrator schemes[64].

Direct force summation is the computation of force interactions between every parti-
cle in the system. Because the direct force summation scales as O(n2) with the number
of particles and every interaction is independent, it is an easily parallelizable task. As
it also consumes the most significant portion of computation in the CPU, significant
efforts have been done to speed it up. One of the most successful has been the GRAPE
family of accelerators, already described in Section 2.4. Other implementations have
been done for FPGAs[74, 35, 85, 29].

The goal of the raceGRAV and the implementations described in this section is not
to compete with these other implementations but to complement them. Makino and
Aarseth[66] describe how special hardware can support other schemes different than
direct summation, in this case the Ahmad-Cohen scheme (ACS)[9]. In this scheme,
the gravitational force is divided in two components, a far reaching force that interacts
with distant regions of the systems and a local force that interacts only with neigh-
bouring particles, with each component using different time-steps. While their tests
with GRAPE hardware were promising, it also shown that the full performance of the
board was not reached because the average number of active particles was too low.
Our goal with the raceGRAV is to provide an accelerator that can work concurrently
with the direct summation implementations, efficiently accelerating the computation
of local forces.

In the following sections we will review the architecture of the library, the CPU and
FPGA implementations, and discuss the results in terms of performance and accuracy.
A GPU implementation is not done because several good ones already exist, and it
would be a more sensible approach to modify them for ACS than made a completely
new implementation.

119

120 CHAPTER 7. THE RACEGRAV LIBRARY

7.1 Previous and Related Work

There are many developments for acceleration of the gravitational forces, but arguably
the best known is the GRAPE family of accelerator by Makino et al.[27, 67, 65]. The
GRAPE is an ASIC design with multiple pipelines for the parallel computation of
gravitational forces by direct summation, that can be scaled up to several hundred
processors by a combination of hardware and software[67]. Since its introduction in the
1990s and until recently, it provided a level of performance unmatched by any other
solution, with speed-ups several orders of magnitude above the performance of CPUs.
The GRAPE cards enabled scientists to perform simulations in a timely manner that
where otherwise not possible or prohibitively time consuming.

Because the computing pipelines are fixed in the hardware design, it lacks the
flexibility to be useful in other applications or to address some assumptions made during
its design. An alternative to the GRAPE based in configurable FPGA technology is the
PROGRAPE (PROgrammable GRAPE) series introduced by Hamada et al. [33], with
a performance comparable to the GRAPE-3. The PROGRAPE-3[36], as mentioned
previously, contains multiple FPGAs that can be used to compute different parts of
the algorithm simultaneously, like some dedicated to gravity and others to SPH. The
performance is higher than a GRAPE-6A for direct summation, and it is capable of
supporting Barnes-Hut tree algorithms. A disadvantage is that it does not provide
discrete local memory onboard (only memory inside the FPGAs), so the computation
is limited to 16000 particles at a time, but it can be supported by partitioned in software.
In theory, they can also be used to compute gravitational interaction lists.

Being the use of the GRAPE cards so common and with the increasing speed of
CPUs, Nitadori[80] created a replacement version of the GRAPE libraries that use the
SSE capabilities of the processor instead of the actual hardware, providing a fraction of
the performance while maintaining code compatibility without the need for any special
hardware.

With the introduction of programmable GPUs, higher bandwidth and performance
became available. Because of its highly scalable and ease to program nature, gravitation
was one of the proof of concept fields used to exemplify the capabilities of the new
platform. One such proof of concept applications was done by Harris et al. and
documented at the GPU Gems 3 book[78], providing the same performance of a GRAPE
card with the advantages of programmability at only a fraction of the cost.

An subsequent implementation is the Chamomile Scheme from Hamada[35], which
fully utilizes the capabilities of the GPU for the computation of direct summation
forces. The GraCCA cluster[85] was one of the first parallel implementations to show
the efficient usage of GPUs in a cluster install, with parallel efficiency over 90%.

An interesting development is also the work by Portegies Zwart et al., were the im-
plement a GPU accelerator using Cg[103], and later rework it to work with CUDA[29],
as itt provides a clear comparison of the advantages of CUDA against the older and
more limited Cg. While the performance is very similar, the flexibility of CUDA is
much higher. The performance with Cg is slower than the GRAPE cards, but the
newer implementation in CUDA improved over it in a relatively short time.

7.2. ARCHITECTURAL OVERVIEW 121

Gravity Functions

getMaxIPcount Maximum Nr. of i-particles permitted
getMaxParticles Maximum Nr. of Particles
setEpsilon Set Epsilon
setParticles Load Particles
calcDirectSummation Perform direct summation over the particles
calcInteractionList Compute interactions following a list

Translators

setParticleTranslator Set the Particle Translator
setResultTranslator Set the Result from Translator

Debug Functions

log Output string to the log
debug Output string to the debug log

Table 7.1: GravCore class interface

7.2 Architectural Overview

The architecture of the raceGRAV library is a simplified version of the raceSPH archi-
tecture, together with a few additions. It follows the same concept of computing cores,
but simplifies the debug interface. Buffer Managers and Translators are supported in
the same way. The main distinction comes in the functionality supported. Two com-
puting functions are implemented in the base core class, in order to support both direct
summation and neighbour list based force interactions.

Computations performed are based in Load-Compute-Read cycles, that is: Load
particles, compute forces and Read results back. Computations to be performed are
defined based in the particles indexes of the loaded set. Direct summation follows the
same organization as the GRAPE accelerators, defining i and j particles and comput-
ing the force summation of all j-particles over every i-particle in the array, with one
difference: both i and j particles are part of the same particle set uploaded to the
processor. Table 7.1 summarizes them.

On the design phase of the library, we realized that several versions would be needed.
In particular, separate designs might be needed to implement direct summation and
interaction lists, and we could devise additional versions including, by example, pre-
dictor units for inactive particles in the accelerator memory or interaction lists with
shared neighbours among i-particles. It was therefore needed a mechanism to pair the
designs used to the core implementations containing the appropriate driving code.

Our solution was a Design class, containing both the design file together with a
Capabilities set, specifying the operations supported by the design. Cores can therefore
inspect the capabilities of the design being used and use the corresponding code. A set
of access methods complete the required functions.

122 CHAPTER 7. THE RACEGRAV LIBRARY

7.3 CPU and SSE implementations

As usual, the CPU implementation is a reference for validation of the results when
integrated with application codes. The SSE implementation follows the same basic
guidelines used in the raceSPH library, using XMM structures as depicted in List-
ing 6.1. No pairwise functions are used in the computation of gravity forces, but the
accumulation is sensitive to the precision used. A simple implementation would accu-
mulate one i-particle per SSE vector, accumulating the result using the single precision
operation. On tests (see Fig. 7.2 in Sec. 7.5) this shown to be inadequate, so it was
replaced by an accumulation over a regular (non-SSE) double precision register. Other
alternatives tested used Kahan’s summation algorithm[50], and yet another a partial
accumulation on SSE that is accumulated over regular intervals on a double precision
register, with very similar results both in speed and accuracy.

7.4 FPGA implementation

The FPGA pipelines were described using our in-house Pipeline Generator[60], using
a frame design (the logic surrounding the pipeline) similar to the raceSPH. Designs
were prepared by Gerhard Lienhart and finalized by Yang Yuning, and validated in a
MPRACE-1 board. In addition to the force computation, the design implements virtual
pipelines similar to those implemented in GRAPE, in order to reduce the memory
transfer requirements as noted by Makino[64]

One important consideration the library needs to make is the handling of the virtual
pipelines for the direct summation. The design contains 16 virtual pipelines imple-
mented in software as separate i-particles, that communicate to one physical pipeline.
However, the design requires between 14 and 16 i-particles to operate properly be-
cause of constraints in the latency needed for the accumulators, so the library must
fill with dummy particles the empty slots when less than 14 particles are sent. The
design presented here contain one physical pipeline, but up to four physical pipelines
are supported based in the memory bandwidth, more if additional CLBs are available.

7.5 Results

Tests were run with their own test applications by two astrophysicists, Peter Berczik
and Ingo Berentzen. Studied was the performance, in wall-clock time and Gflops, as
well as the relative error when measured against a reference CPU implementation.

Performance tests are run in a Intel workstation with a Core2Quad Q6600 Quad-
Core 2.4 GHz CPU with 4 GB of DDR2-1066 memory running Ubuntu Linux, using
an MPRACE-1 board with the direct-summation design and a GRAPE-6A board. For
CPU tests, only one core is used. The GPU performance shown is a GeForce 8800GTX
(CC 1.0) running an early version of CUNBODY-1[35].

Fig. 7.1 shows the execution time for a particle range between 1k and 128k, within
the limitations of the GRAPE memory. Here, both FPGA and SSE implementations
are faster than the CPU for most relevant ranges, but still about one order of magnitude
slower than the GRAPE-6A or the GPU.

7.5. RESULTS 123

However, when comparing the Gflops normalized per pipeline, the MPRACE-1 and
the GRAPE-6a have similar relative performance, with the MPRACE-1 showing an
advantage for small number of particles without penalty for bigger numbers, which
is the desired use case when switching to interaction lists. The Gflops for the SSE
shows the performance per CPU core, but it could also be considered a 4-pipeline
implementation, in which case the normalization would be a curve slightly over the
CPU line.

The three remaining plots in Fig. 7.1 show the relative error for the potential, the
acceleration and its derivative. Here the MPRACE-1 shows a better accuracy than
the GRAPE-6A for the potential and the jerk, but slightly lower accuracy for the
acceleration. This can be attributed to the limited precision used in several of the
internal operations in the pipeline. The increased accuracy of the jerk is the important
factor to improve the results of the integrator.

Fig.7.2 shows a more detailed comparison of the accuracy of the accelerators for
a simulation with 64k particles. Plots are a distribution of relative error against the
radius, providing a visual distribution of the error values inside the sphere. MPRACE-
low refers to implementations with single precision accumulators, while MPRACE-high
use double precision accumulators for the force summation. These plots show very
clearly the effect of the precision of the accumulator in the pipeline over the accuracy
of the results produced, with MPRACE-low roughly two orders of magnitude below
the GRAPE-6A for the potential and the acceleration. Increasing the precision sets
the accuracy on the same order of magnitude, although with differences in shape. The
jerk from the GRAPE-6A is known to be of limited accuracy, and the MPRACE-1 is
capable of providing between a relative error that is roughly from one to three orders
of magnitude better.

Comparing the performance of the SSE core with the hand written routines from
Nitadori over the GRAPE interface library, his routines provide an additional 0.5x -
1.0x advantage against our cores. After inspecting the generated assembly language
for our code, it can be attributed to non-optimal register placement by the compiler,
which in our case is done automatically. This is in our opinion, an acceptable trade-off
for more portable and more readable source code, that can improve with newer version
of the compiler used.

124 CHAPTER 7. THE RACEGRAV LIBRARY

Figure 7.1: Direct Summation Performance. Plots by Peter Berczik and Ingo Berentzen,
reproduced with permission

7.5. RESULTS 125

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01 0.1 1 10 100

d
p
/p

radius

64k

GRAPE-6a
MPRACE-EMU low

MPRACE low
MPRACE-EMU high

MPRACE high

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01 0.1 1 10 100

d
a

/a

radius

64k

GRAPE-6a
MPRACE-EMU low

MPRACE low
MPRACE-EMU high

MPRACE high

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01 0.1 1 10 100

d
a

d
o

t/
a

d
o

t

radius

64k

GRAPE-6a
MPRACE-EMU low

MPRACE low
MPRACE-EMU high

MPRACE high

Figure 7.2: Accuracy of the cores. Plots by Ingo Berentzen, reproduced with permission

126 CHAPTER 7. THE RACEGRAV LIBRARY

Chapter 8

Summary

The goal of this work was to use special hardware to increase the performance of actual
astrophysical simulations by accelerating the computation of SPH forces as well as the
gravitational forces with high accuracy. The rest of this section makes an overview of
the achievements documented in this work, providing a contribution to the state of the
art in SPH computations with special hardware and the modelling and refinement of
the software interfaces for communication of accelerators with special hardware.

FPGA development and software integration

When using FPGAs as coprocessors together with host computers, it is easy to focus
on the FPGA design and forget on the required software and how it can affect the
performance. Most devices require at least a device driver, but if high speed transfers
are needed a DMA engine is the only option. This is normally complex and very
dependent on the engine used.

A set of libraries were implemented in order to allow the efficient communication
between FPGA based accelerators and the application code. They represent the two
lowest levels of a software stack, or framework, for general coprocessor application
development, as both the PCI driver and the MPRACE library are generic enough to
be used by many boards and in several applications. In addition, the MPRACE handles
the communication with the DMA engine developed by Gao.

Currently, the framework is a candidate to replace the current driver implementation
used by the next-generation ROBIN board at CERN, is the main choice for the ABB
boards to be used by the GSI in the CBM experiment and has been used by Hamada
during his experiments with the late prototypes of PROGRAPE-4 boards.

Buffer management schemes

Efficient IO transfers alone is not enough to ensure good performance, as it is easy to
spend the same time in the transfer as preparing the data to be transferred (or the data
received). The Buffer Management library provides a novel approach to the problems
of data buffering.

In the past, known buffering schemes like double buffering or pools of buffers were
unaware of the characteristics of the data being transferred, as they were implemented

127

128 CHAPTER 8. SUMMARY

in a generic way. Specific implementations were needed when the characteristics of the
data provided or required special treatment. This requires that as new needs arise, the
buffer algorithms have to be reimplemented, and if a new scheme is to be used, it has
to be ported into every single application.

By properly defining the operations performed, we are able to make the buffer
scheme aware of the data structures being transferred while keeping the scheme generic.
The buffer management scheme and the data handling can be specified independently
of each other. This two operations are composited together into the inherent data-
copy loop of the buffer manager, integrating a data copy/transformation operation and
reducing the number of data operations needed.

Acceleration of SPH computations

While an SPH accelerator based on FPGAs was already developed in an earlier phase
of the project, the software infrastructure presented several challenges, as the previous
libraries and drivers could not operate in the intended target system. It was there-
fore decided that a new software stack was needed to ensure compatibility with newer
systems and newer boards in development.

The integration with the application was done as an abstraction layer, where the
functionality exported represents tasks to be performed as required by the target ap-
plication, but taking into account its effect in the performance of the hardware. In
particular, it was important that the neighbour lists be assembled easily and that the
data transfer be done efficiently, as the performance of the FPGA design is a direct
function of the data transfer rate of the board. The buffer management library was
created as a solution to these needs, to have constant high speed transfers by means
of a double buffer scheme and to transform the data between the format used in the
application and the format needed by the accelerator by the use of data translators
inserted directly in the buffer manager.

The raceSPH library provides a generic interface to multiple SPH engines in di-
verse accelerators, but it was designed to interact firstly with the FPGA accelerators.
A previous FPGA based design for SPH computations as well as implementations for
SSE instructions and GPUs were integrated into a single interface. In total, six im-
plementations were developed in the frame of this work. The library was used and
tested with two astrophysical applications, with mixed results. While one presented
very good speed-up (5-19x for SPH) and a result in accordance with the expected per-
formance (1.6x-2.4x total time speed-up), the other presented almost no improvement.
The difference in the integration of both cases allow us to stress the importance of the
hardware/software/application interface when using hardware accelerators, as a mis-
matched interface will nullify its benefits. This is in itself a success, as we can now
identify the potential for acceleration in a code and design new algorithms that use the
accelerators effectively.

Acceleration of Gravity computations

The raceGRAV library implements an interface similar to the raceSPH, oriented at
the computation of gravitational interactions. While the direct summation of gravity

129

interactions has already being successfully accelerated with special hardware like the
GRAPE-6, this particular implementation aims at working together with these acceler-
ators by using a modified ACS, with the GRAPE-6 accelerating regular forces and the
raceGRAV irregular ones. This would be of interest as the irregular forces are based
in interaction with local neighbours, not unlike SPH, and because the computational
pattern does not profit from the full speed of the GRAPE.

The tests of direct summation in the raceGRAV show that it provides a fraction
of the performance of a GRAPE-6 with better accuracy, and comparable or better
performance when normalized per pipeline. However, with the publication of several
GPU implementations with single and double precision cores as well as higher perfor-
mance, more study is the current scenario is required before continuing with this line
of development.

130 CHAPTER 8. SUMMARY

Chapter 9

Conclusions and Final Remarks

The goal of this work was to use special hardware to increase the performance of actual
astrophysical simulations by accelerating the computation of SPH forces as well as the
gravitational forces with high accuracy. The rest of the section discusses the achieve-
ments documented in this work as well as considerations for future steps, presented as
a series of topics and questions.

SPH is accelerated by hardware, is it worth to go faster?

It was shown that the SPH accelerator cores can provide an speed-up of the SPH com-
putations between 6x and 19x for a reference astrophysical simulation, which translates
to 1.6x to 2.4x speed-up of the overall wall clock time of the application running in
a single node, close to the theoretical maximum set by Amdahl’s law at 2.5x. From
this, we could conclude that it is not profitable to accelerate the SPH further, as its
percentage of utilization is already below 10%. However, additional scenarios need to
be considered: What if gravity is computer faster, the number of particle increases, or
the application is distributed in a cluster?

If gravity is computed faster, the SPH percentage of the total computational time
will increase again, needing a corresponding increase of the SPH accelerator to maintain
the same time-fraction distribution. Therefore, faster SPH accelerators are needed to
maintain the computational load balanced between tasks inside the same application.

As the number of particle increases, the maximum number of particles allowed
per accelerator will be reached. In this case, additional strategies are needed (in the
application level) to properly partition the particle sets into computable subsets, so
each neighbour for a neighbour list is present in the actual set. An alternative can be
borrowed from the SPH implementation of GADGET2, were partial accumulations are
done for the same i-particle and later added together. The effectiveness of this approach
would need to be validated for the case of hardware accelerators, as GADGET2 uses it
for MPI particles across nodes.

If the application is distributed in a cluster, then Gustafson’s law let us state that
the speed-up of the application will be S ≈ P if the serial part of the program is
sufficiently small. This also means that as the number of processors increase, so does
the absolute benefit provided by the SPH accelerator. It follows that having a faster

131

132 CHAPTER 9. CONCLUSIONS AND FINAL REMARKS

SPH accelerator will be beneficial for this case. However, Gustafson’s law does not
account for network data transfer times, that is a significant factor in the scaling of
this simulations, so this point must be studied in further detail.

Another important point is that when integrated with VINE, the result was less
than ideal. In contrast with the previous figures, the performance with VINE shows
very little improvement. While this can be attributed to the particular format of the
tree data in the application, it is worth to study more in detail the interaction with
other tree implementations, as the interaction list format is suited for computation in
conjunction with a tree walk.

Furthermore, there are other applications that do not require the computation of
gravity. SPH is also used to compute fluid dynamics in several other fields, applying
them e.g. in the simulation of lava flows or oil spills. In these cases, the computation
of the SPH forces is the most significant part of the computing time, so they would
benefit directly for a coprocessor that is as fast as possible.

Gravity is accelerated and computed with high accuracy

The main purpose of the raceGRAV library is to support the computation of irregular
forces when using an AC integration scheme, because the GRACE accelerator has
limited precision. In this context, it would be of benefit. However, its practical use is
shadowed by other solutions using GPUs to replace GRAPE boards, as they provide an
accuracy comparable to that of the reference CPU. While a core could be programmed
to run in a GPU in a similar way as with the raceSPH library, it will then collide with
these other solutions, requiring device sharing or a separate GPU to do this task in
parallel. It seems more reasonable to extend the existing GPU libraries to include the
computation of irregular forces, instead of using a separate accelerator.

The next steps in astrophysical accelerators

The next logical step in the acceleration of the simulations we have focused on is to
deal with the generation of the neighbour lists and the use of tree codes. The neighbour
list generation was shown in the raceSPH analysis to be the next most demanding task
after the computations. In addition, the results from VINE suggests that tree walks
might be another potential focus to further improve the performance.

Furthermore, as several tasks are accelerated, possibly by diverse cores, a growing
concern is to minimize the communication times. Loading and retrieving data is a
significant portion of the time used by accelerators, as shown in the profiling of CUDA
cores and the analysis of the FPGA cores of raceSPH. With multiple cores it is necessary
to avoid unnecessary transfers. While this can be done manually, a more automatic
method of compositing tasks might keep track of this requirement and insert data
transfers as needed, facilitating the exchange of tasks between multiple accelerators.

Is there a future for FPGAs in HPC?

From the performance figures presented, one could ask why spend so much effort with
the FPGA cores when the GPUs provide such clear advantages? The point to bring

133

into consideration is that GPUs are relatively new to the High Performance Computing
(HPC) world (CUDA was released in 2007), while FPGAs have been growing steadily
on a niche segment of it. FPGAs also consume less absolute power than a GPU, which
makes them more suitable for big or green installations. When comparing the GFlops
per Watt, the GPUs have a clear advantage when considering both devices working at
the same efficiency. However, a GPU is not able to reach its peak performance in many
but the most optimized applications, and the gather operations needed by a neighbour
list in SPH require random accesses to memory that prevent coalesced accesses and
drives the efficiency low. FPGAs are, in the other hand, a custom design built for this
purpose that does not have this limitation, therefore wasting much less energy.

It cannot be denied that GPUs will play a more central role in scientific computing
in the future. FPGAs face three main obstacles to overcome to compete in this area:
interconnect speed to host, component density and ease of programmability.

We have already mention the importance of the communication between the accel-
erator and the host. The GPUs have in this case a clear advantage, with hardware
designs that can use the bandwidth of 16 lanes of PCIe v2. In contrast, current FPGAs
reach at most 8 lanes at PCIe v1 or 4 lanes at PCIe v2, equivalent to one fourth of the
bandwidth usable by a GPU. Using higher speed interconnects like HyperTransport
has been suggested to reduce this gap, but the options of motherboards supporting this
technology are rather limited.

Component density relates to how many computing units fit in a device. For GPUs,
this number is fixed to the number of PEs present, while for FPGAs it is the number
of FP units that can be implemented, which varies according to the size of the device,
the number of FP operations to include and their chosen precision (and even the im-
plementation used). However, it is clear that a FP operation in a FPGA will be slower
and take more area than in a GPU, as those are precisely the advantages of using an
ASIC. The exploration of coarse-grained architectures, with building blocks closer to
the needs of floating point operators, would be an alternative to balance this obstacle.

The last point to consider is a long standing one. FPGAs are difficult to program,
with many attempts been done to reduce the complexity of this task, but it is still closer
to hardware design than to actual computer programming. This gap has been reduced
with the development of pipeline generators, but they are still very specific solutions,
adapted to certain computational patterns like summations. We saw an opportunity
in this direction with the introduction of the OpenCL as a platform neutral language
for accelerators that provides explicit work distribution (similar to CUDA) and in
consequence, started a research line to bring the language to FPGAs.

FPGAs still have a clear advantage when dealing with IO, specially when processing
input streams to be loaded into the host, or when processing outgoing streams. They
are also competitive for the processing of integer-type data sets. But for the case
requiring floating point operations for scientific computing, is the opinion of the author
that GPUs will take a leading position in the following years.

134 CHAPTER 9. CONCLUSIONS AND FINAL REMARKS

Clusters of the future, no more hosts?

With such big portion of the algorithms moving into specialized platforms, it is only
logical to ask what will be the role left for the host processors. On the extreme case
where e.g. a GPU does all the computing work, the host will only serve as a bridge
between the network communication, the saving of data to disk, and the accelerator.
This is not an hypothetical question, as several applications using GPUs are already
migrating to these arrangement. This questions the reason to have a high-end micro-
processor handling this task, which can be achieved equally well by a much smaller and
power efficient low-end CPU.

In order to study the advantages and challenges of this approach, a research project
together with the Department for Computer Architecture of the Institute of Computer
Engineering of the University of Heidelberg (ZITI) is being prepared, in order to replace
the host in a first prototype with a minimal system based on a ultra-low power processor
and a dedicated network, and with the farther goal of detaching the accelerator from
the host altogether.

How will software look like for Exascale computing?

With the introduction of multi-core CPUs and the massively parallel architecture of
GPUs, a small revolution is taking place. In the span of only a few years, their use as
coprocessors has moved from research institutions to desktop applications and into the
operating system itself. In clusters, the nodes can reach several thousands, with some
reaching in the tenths of thousands. With the number of cores increasing and GPUs
including even more PEs, it is well possible that the number of threads in a program are
counted in millions. It is then necessary to ask, how are these heterogeneous machines
will be programmed.

Most of the individual parts require special languages, with CUDA used by GPUs,
mostly C/C++ or FORTRAN in the CPUs, and VHDL or Verilog in the FPGAs.
The communication is also partitioned, with technologies like OpenMP or the Intel
Threading Building Blocks being common APIs used to distribute the work among the
processors, while Message Passing Interface (MPI) is used to pass data among nodes
in a cluster. It is therefore necessary to consider at least four levels of communication
for a program to utilize the resources of a modern cluster with GPUs, with inter-node
communication handled by MPI, intra-node communication by OpenMP, the node-
accelerator transfers handled by CUDA specifics and inter-thread communication inside
the GPU done in the CUDA program itself.

It is very possible that we are close to a generational change in software development,
where new paradigms and algorithms capable of handling millions of cores will emerge.
This is in itself a very general and broad topic, but it can be explored in a more focused
way if we restrict it to the realm of astrophysical applications. In order to explore this
direction further, a proposal was submitted and granted for the research of domain-
specific languages for astrophysical applications, that will allow the continuation of the
ongoing collaboration with our colleagues in astrophysics and provide very valuable
preparation to fully utilize the capabilities of these new generation of machines as they
become available.

Part IV

Appendices

135

Appendix A

Buffer Manager Profiling Plots

Running a profile for a buffer manager sweeps over the data transfer size and the buffer
size, generating one transfer function per buffer size. The following figures provide
additional insight on the behaviour of the buffer managers.

Buffer Managers on MPRACE-1

Figures A.1,A.2,A.3,A.4, A.5 and A.6

Templatized Buffers on ABB (Virtex 5)

Figures A.7 and A.8

137

138 APPENDIX A. BUFFER MANAGER PROFILING PLOTS

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write without Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write with Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

Figure A.1: Chunk Buffer Manager Write, v1

139

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read without Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read with Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

Figure A.2: Chunk Buffer Manager Read, v1

140 APPENDIX A. BUFFER MANAGER PROFILING PLOTS

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write without Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write with Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

Figure A.3: Double Buffer Manager Write, v1

141

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read without Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read with Translation

512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M

Figure A.4: Double Buffer Manager Read, v1

142 APPENDIX A. BUFFER MANAGER PROFILING PLOTS

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write without Translation

4K
8K

16K
32K
64K

128K

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write with Translation

4K
8K

16K
32K
64K

128K

Figure A.5: Double Buffer Manager Write,x4 v1

143

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read without Translation

4K
8K

16K
32K
64K

128K

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read with Translation

4K
8K

16K
32K
64K

128K

Figure A.6: Pooled Buffer Manager Read,x4 v1

144 APPENDIX A. BUFFER MANAGER PROFILING PLOTS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write without Translation

4K
8K

16K
32K
64K

128K
256K
512K

1M

 0

 50

 100

 150

 200

 250

 300

 350

4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read without Translation

4K
8K

16K
32K
64K

128K
256K
512K

1M

Figure A.7: Chunk Buffer Manager, v2

145

 0

 100

 200

 300

 400

 500

 600

 700

4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Write without Translation

4K
8K

16K
32K
64K

128K
256K
512K

1M

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Buffer size

Read without Translation

4K
8K

16K
32K
64K

128K
256K
512K

1M

Figure A.8: Double Buffer Manager, v2

146 APPENDIX A. BUFFER MANAGER PROFILING PLOTS

Appendix B

RaceSPH Profiling Plots

The following plots cover the three versions of the CUDA core and its performance
across several GPUs. Included are versions with CUDA Compute Capability 1.0, 1.1,
1.3 and 2.0

147

148 APPENDIX B. RACESPH PROFILING PLOTS

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

T
im

e
 (

m
s
)

Particles (n)

Computation Time

mp-pc109
autana

GF8800GTX

8800GT
GTX-280
GTX-480

 100 1000 10000 100000 1e+06
 0

 5

 10

 15

 20

 25

 30

S
p

e
e

d
u

p

Particles (n)

Speedup

GF8800GTX/autana
8800GT/autana

GTX-280/autana
GTX-480/autana

GF8800GTX/mp-pc109
8800GT/mp-pc109

GTX-280/mp-pc109
GTX-480/mp-pc109

Figure B.1: Performance of CUDA core version 1, compared per GPU

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

T
im

e
 (

m
s
)

Particles (n)

Computation Time

mp-pc109
autana

GF8800GTX

8800GT
GTX-280
GTX-480

 100 1000 10000 100000 1e+06
 0

 5

 10

 15

 20

 25

 30

S
p
e
e
d
u
p

Particles (n)

Speedup

GF8800GTX/autana
8800GT/autana

GTX-280/autana
GTX-480/autana

GF8800GTX/mp-pc109
8800GT/mp-pc109

GTX-280/mp-pc109
GTX-480/mp-pc109

Figure B.2: Performance of CUDA core version 2, compared per GPU

149

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

T
im

e
 (

m
s
)

Particles (n)

Computation Time

mp-pc109
autana

GF8800GTX

8800GT
GTX-280
GTX-480

 100 1000 10000 100000 1e+06
 0

 5

 10

 15

 20

 25

 30

S
p
e

e
d

u
p

Particles (n)

Speedup

GF8800GTX/autana
8800GT/autana

GTX-280/autana
GTX-480/autana

GF8800GTX/mp-pc109
8800GT/mp-pc109

GTX-280/mp-pc109
GTX-480/mp-pc109

Figure B.3: Performance of CUDA core version 3, compared per GPU

150 APPENDIX B. RACESPH PROFILING PLOTS

Appendix C

RaceGRAV additional plots

The following plots (Figs. C.1 and C.2) provide additional views of the results presented
for the raceGRAV library.

151

152 APPENDIX C. RACEGRAV ADDITIONAL PLOTS

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000

C
P
U
 t
im
e
 [
s
e
c
]

CPU
EMU

MPRACE
GRAPE-6a

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000

S
p
e
e
d
 [
G
fl
o
p
s
]

particle number

CPU
EMU

MPRACE
GRAPE-6a

Figure C.1: Performance. Plots by Ingo Berentzen, reproduced with permission

153

 0.001

 0.01

 0.1

 1

 10

 0.01 0.1 1 10 100

|!
|

radius

Plummer model - 64k particles - "=10
-4

CPU
CPU MPR
CPU sse
Grape6a

MPRACE1
GPU
theory

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.01 0.1 1 10 100

|(
!
-!

c
p
u
)/
!
c
p
u
|

radius

Plummer model - 64k particles - "=10
-4

CPU sse
CPU MPR
Grape6a

MPRACE1
GPU

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

|a
|

radius

Plummer model - 64k particles - !=10
-4

CPU
CPU MPR
CPU sse
Grape6a

MPRACE1
GPU
theory

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.01 0.1 1 10 100

|(
a
-a
c
p
u
)/
a
c
p
u
|

radius

Plummer model - 64k particles - !=10
-4

CPU sse
CPU MPR
Grape6a

MPRACE1
GPU

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 0.01 0.1 1 10 100

|j
|

radius

Plummer model - 64k particles - !=10
-4

CPU
CPU sse

CPU MPR
Grape6a

MPRACE1
GPU
theory

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.01 0.1 1 10 100

|(
j-
j c
p
u
)/
j c
p
u
|

radius

Plummer model - 64k particles - !=10
-4

CPU sse
CPU MPR
Grape6a

MPRACE1
GPU

Figure C.2: Results. Plots by Ingo Berentzen, reproduced with permission

154 APPENDIX C. RACEGRAV ADDITIONAL PLOTS

List of Figures

1.1 SPH approximation of the density . 23

1.2 Time-step schemes . 26

2.1 CPU techniques overview . 31

2.2 CUDA Thread hierarchical organization 35

2.3 FPGA Array . 38

2.4 Virtex-II CLB Element . 40

2.5 Virtex-6 Overview . 42

2.6 The GRAPE-6A board . 46

3.1 Memory Space . 52

3.2 Typical kernel memory allocation . 53

3.3 Preparation of a user memory buffer for access by the device 55

3.4 Class Diagram of the C++ API . 58

4.1 MPRACE library class diagram . 62

4.2 DMA Descriptor List diagram . 63

4.3 DMA Descriptor . 65

4.4 DMA Descriptor Characteristics per Buffer Size 66

4.5 User DMA Descriptor cases . 67

4.6 DMA Performance in a 4-lane Virtex-5 board 68

5.1 Buffer Managers . 70

5.2 Write without translation . 76

5.3 Read without translation . 77

5.4 Write with translation . 78

5.5 Read with translation . 78

5.6 Non-optimal Chunk Sizes (write) . 80

5.7 Write without translation . 82

5.8 Read without translation . 82

6.1 Time fraction distribution on CPU . 88

6.2 RACESPH library class diagram . 92

6.3 RACESPH data structures . 94

6.4 SPH usage . 95

6.5 Computation of a piecewise function with SSE instructions 100

155

156 LIST OF FIGURES

6.6 Computation Time and Speed-up for Software and SSE cores 102
6.7 FPGA SPH design block diagram . 104
6.8 Computation Time and Speedup for FPGA core on MPRACE-1 105
6.9 Parallelization strategies for the different CUDA versions. 107
6.10 Computation Time and Speedup for CUDA core using a GTX480. . . . 108
6.11 Profiling of CUDA core versions . 109
6.12 Computing Gravity with an Accelerator and SPH with a GPU 111
6.13 Computation Time and Speedup for SPH fraction 112
6.14 Computation Time and Speedup for Application runtime 113
6.15 Energies from the collapse of an adiabatic sphere 117

7.1 Direct Summation performance . 124
7.2 Accuracy . 125

A.1 Chunk Buffer Manager Write, v1 . 138
A.2 Chunk Buffer Manager Read, v1 . 139
A.3 Double Buffer Manager Write, v1 . 140
A.4 Double Buffer Manager Read, v1 . 141
A.5 Pooled Buffer Manager Write,x4 v1 . 142
A.6 Pooled Buffer Manager Read,x4 v1 . 143
A.7 Chunk Buffer Manager, v2 . 144
A.8 Double Buffer Manager, v2 . 145

B.1 Performance of CUDA core version 1 . 148
B.2 Performance of CUDA core version 2 . 148
B.3 Performance of CUDA core version 3 . 149

C.1 Performance . 152
C.2 Results . 153

List of Tables

2.1 Memory Regions available in a GPU. 36

3.1 SysFS entries . 57
3.2 C interface . 59

4.1 Kernel DMA Descriptor cases . 66

5.1 Transfer Rate Efficiency (w/o Translation) 76
5.2 Transfer Rate Efficiency (w/ Translation) 79
5.3 Simple Case Results . 81

6.1 SPHCore class interface . 93
6.2 FPGA board specifications . 103
6.3 Characteristics of CUDA kernels versions 110
6.4 Comparison of execution times for VINE 118

7.1 GravCore class interface . 121

157

158 LIST OF TABLES

Acronyms

ACS Ahmad-Cohen scheme. 119, 129

ARI Astronomisches Rechen-Institut. 17

ASIC Application Specific Integrated Circuit. 44, 45, 120, 133

CC Compute Capability. 34, 111, 122

Cg C for Graphics. 32

CLB Configurable Logic Block. 39, 41, 43, 122

CPU Central Processing Unit. 29, 30

CTM Close-to-Metal. 32, 33

CUDA Compute Unified Device Architecture. 33, 35–38, 134

DDR Double Data Rate. 44

DLL Digital Delay Line. 43

DMA Direct Memory Access. 16

DSP Digital Signal Processor. 43

EDA Electronic Design Automation. 39, 44

EPIC Explicitly Parallel Instruction Computing. 30

FBO Frame Buffer Object. 32

FF Flip-Flop. 39, 41

FP Floating Point. 43, 119

FPGA Field Programmable Gate Array. 9, 16, 38, 39, 41, 43–45, 112, 122

FPU Floating Point Unit. 43

GLSL OpenGL Shading Language. 32

159

160 Acronyms

GPU Graphics Processing Unit. 9, 16, 32–38, 46, 112

HDL Hardware Description Language. 39, 41

HLSL High Level Shading Language. 32

HPC High Performance Computing. 133

IOB IO Block. 39, 43

IP Intellectual Property. 44

LUT Look-Up Table. 39, 41, 43

MP Multiprocessor. 33–38

MPI Message Passing Interface. 134

PAL Programmable Array Logic. 38

PCIe PCI Express. 43, 44

PE Processing Element. 33–37, 133, 134

PLL Phase-Locked Loop. 43

s-ASIC Structured Application Specific Integrated Circuit. 44

SIMD Single Instruction, Multiple Data. 31, 97, 106

SIMT Single Instruction, Multiple Thread. 35

SPH Smoothed Particle Hydrodynamics. 9, 15, 17, 22–24, 112, 119

SSE Streaming SIMD Extensions. 96–99, 122, 123

VLIW Very Long Instruction Word. 30

VWF Volkswagen Foundation. 17

ZITI Institute of Computer Engineering of the University of Heidelberg. 134

Bibliography

[1] Electronic.
URL http://www.altera.com/products/devices/hardcopy-asics/about/

hrd-index.html

[2] Electronic.
URL http://www.xilinx.com/products/easypath/index.htm

[3] AVR Microcontroller Architecture.
URL http://www.atmel.com/products/avr/default.asp?family_id=

607&source=redirect

[4] PIC Microcontroller Architecture.
URL http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_

PAGE&nodeId=2551

[5] PLX9656 Datasheet.
URL http://www.plxtech.com/products/io/pci9656

[6] S. Aarseth. Gravitational N-Body Simulations. Tools and Algorithms. Cambridge
University Press, 2003. ISBN 978-0-521-43272-6.

[7] D. Adams. The Ultimate Hitchhiker’s Guide. Wings Books/Random House, 1996.
ISBN 0-517-14925-7.

[8] O. Agertz, B. Moore, J. Stadel, D. Potter, F. Miniati, J. Read, L. Mayer,
A. Gawryszczak, A. Kravtsov, Å. Nordlund, F. Pearce, V. Quilis, D. Rudd,
V. Springel, J. Stone, E. Tasker, R. Teyssier, J. Wadsley, and R. Walder.
Fundamental differences between SPH and grid methods. Monthly Notices
of the Royal Astronomical Society, volume 380:page 963, Sep 2007. doi:
10.1111/j.1365-2966.2007.12183.x.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2007MNRAS.380..963A&link_type=ABSTRACT

[9] A. Ahmad and L. Cohen. A numerical integration scheme for the N-body
gravitational problem. J. Comput. Phys., volume 12:page 389, Jan 1973.
doi:10.1016/0021-9991(73)90160-5.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

1973JCoPh..12..389A&link_type=EJOURNAL

161

http://www.altera.com/products/devices/hardcopy-asics/about/hrd-index.html
http://www.altera.com/products/devices/hardcopy-asics/about/hrd-index.html
http://www.xilinx.com/products/easypath/index.htm
http://www.atmel.com/products/avr/default.asp?family_id=607&source=redirect
http://www.atmel.com/products/avr/default.asp?family_id=607&source=redirect
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2551
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2551
http://www.plxtech.com/products/io/pci9656
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007MNRAS.380..963A&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007MNRAS.380..963A&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1973JCoPh..12..389A&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1973JCoPh..12..389A&link_type=EJOURNAL

162 BIBLIOGRAPHY

[10] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. AFIPS spring joint computer conference, pages 483–485,
Feb 1967.
URL http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

[11] P. Bellows and B. Hutchings. JHDL-an HDL for reconfigurable systems. FPGAs
for Custom Computing Machines, 1998. Proceedings. IEEE Symposium on,
pages 175 – 184, 1998. doi:10.1109/FPGA.1998.707895.
URL http://ieeexplore.ieee.org/search/srchabstract.jsp?

tp=&arnumber=707895&queryText%253D%2528%2528jhdl%2529%2529%

2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+

Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%

2526searchField%253DSearch+All

[12] P. Berczik, N. Nakasato, I. Berentzen, R. Spurzem, G. Marcus, G. Lienhart,
A. Kugel, R. Männer, A. Burkert, and M. Wetzstein. Special, hardware acceler-
ated, parallel SPH code for galaxy evolution. Proceedings of the 2nd SPHERIC
Workshop, 2007.
URL http://webs.uvigo.es/spheric/documents/Spheric_Book.pdf

[13] G. Bilotta, A. Hérault, C. D. Negro, G. Russo, and A. Vicari. Complex fluid
flow modeling with SPH on GPU. EGU General Assembly 2010, volume 12:page
12233, May 2010.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2010EGUGA..1212233B&link_type=ARTICLE

[14] I. Buck. High level languages for GPUs. SIGGRAPH ’05: SIGGRAPH 2005
Courses, Jul 2005.
URL http://portal.acm.org/ft_gateway.cfm?id=1198772&type=pdf&coll=

DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676

[15] I. Buck. GPU Computing: Programming a Massively Parallel Processor. CGO
’07: Proceedings of the International Symposium on Code Generation and Opti-
mization, Mar 2007.
URL http://portal.acm.org/ft_gateway.cfm?id=1252526&type=pdf&coll=

DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676

[16] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: stream computing on graphics hardware. SIGGRAPH
’04: SIGGRAPH 2004 Papers, Aug 2004.
URL http://portal.acm.org/ft_gateway.cfm?id=1015800&type=pdf&coll=

DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676

[17] D. Buell, T. El-Ghazawi, K. Gaj, and V. Kindratenko. Guest Editors’
Introduction: High-Performance Reconfigurable Computing. Computer, vol-
ume 40(3):pages 23–27, 2007.
URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=

Retrieve&dopt=AbstractPlus&list_uids=4133992@ieeejrns

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=707895&queryText%253D%2528%2528jhdl%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=707895&queryText%253D%2528%2528jhdl%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=707895&queryText%253D%2528%2528jhdl%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=707895&queryText%253D%2528%2528jhdl%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=707895&queryText%253D%2528%2528jhdl%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://webs.uvigo.es/spheric/documents/Spheric_Book.pdf
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010EGUGA..1212233B&link_type=ARTICLE
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010EGUGA..1212233B&link_type=ARTICLE
http://portal.acm.org/ft_gateway.cfm?id=1198772&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://portal.acm.org/ft_gateway.cfm?id=1198772&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://portal.acm.org/ft_gateway.cfm?id=1252526&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://portal.acm.org/ft_gateway.cfm?id=1252526&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://portal.acm.org/ft_gateway.cfm?id=1015800&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://portal.acm.org/ft_gateway.cfm?id=1015800&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=4133992@ieeejrns
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=4133992@ieeejrns

BIBLIOGRAPHY 163

[18] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers. O’Reilly
Media, 2005. ISBN 978-0-596-00590-0.

[19] Cray. CRAY-1 Computer System Hardware Reference Manual.
URL http://bitsavers.trailing-edge.com/pdf/cray/

2240004C-1977-Cray1.pdf

[20] R. Dalrymple. Particle Methods and Waves, with Emphasis on SPH. ce.jhu.edu,
Jan 2007.
URL http://www.ce.jhu.edu/dalrymple/classes/785/Interpolation.pdf

[21] R. Dalrymple and A. Herault. Levee Breaching with GPU-SPHysics Code. 4th
International SPHERIC Workshop, 2009.
URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=

Retrieve&dopt=AbstractPlus&list_uids=related:F2GmpSt5oiYJ

[22] R. Dalrymple and B. Rogers. Numerical modeling of water waves with the SPH
method. Coastal Engineering, Jan 2006.
URL http://linkinghub.elsevier.com/retrieve/pii/S0378383905001304

[23] R. A. Dalrymple and A. Herault. Modeling of Waves with Smoothed Particle
Hydrodynamics on the GPU. American Geophysical Union, volume 12:page 01,
Dec 2008.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2008AGUFMOS12B..01D&link_type=ABSTRACT

[24] F. D. Dinechin, W. Luk, and S. Mckeever. Towards Portable Hierarchical Place-
ment for FPGAs. INRIA Report, 1999.

[25] T. El-Ghazawi, K. Gaj, N. Alexandridis, A. Michalski, D. Fidanci, M. Taher,
E. El-Araby, E. Chitalwala, and P. Saha. Reconfigurable computers: an empirical
analysis (abstract only). FPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays, Feb 2005.

[26] E. Elsen, V. Vishal, M. Houston, V. Pande, P. Hanrahan, and E. Darve. N-body
simulations on GPUs. Proceedings of ACM/IEEE onference on Supercomputing,
2006.

[27] T. Fukushige, T. Ito, J. Makino, T. Ebisuzaki, and D. Sugimoto. GRAPE-1A:
Special-Purpose Computer for N-body Simulation with a Tree Code. Publications
of the . . . , Jan 1991.
URL http://adsabs.harvard.edu/full/1991PASJ...43..841F

[28] T. Fukushige, J. Makino, and A. Kawai. GRAPE-6A: A Single-Card GRAPE-6
for Parallel PC-GRAPE Cluster Systems. Publications of the Astronomical
Society of Japan, volume 57:page 1009, Dec 2005.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2005PASJ...57.1009F&link_type=ABSTRACT

http://bitsavers.trailing-edge.com/pdf/cray/2240004C-1977-Cray1.pdf
http://bitsavers.trailing-edge.com/pdf/cray/2240004C-1977-Cray1.pdf
http://www.ce.jhu.edu/dalrymple/classes/785/Interpolation.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:F2GmpSt5oiYJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:F2GmpSt5oiYJ
http://linkinghub.elsevier.com/retrieve/pii/S0378383905001304
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008AGUFMOS12B..01D&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008AGUFMOS12B..01D&link_type=ABSTRACT
http://adsabs.harvard.edu/full/1991PASJ...43..841F
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005PASJ...57.1009F&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005PASJ...57.1009F&link_type=ABSTRACT

164 BIBLIOGRAPHY

[29] E. Gaburov, S. Harfst, and S. P. Zwart. SAPPORO: A way to turn your
graphics cards into a GRAPE-6. New Astronomy, volume 14:page 630, Oct 2009.
doi:10.1016/j.newast.2009.03.002.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2009NewA...14..630G&link_type=ABSTRACT

[30] W. Gao, A. Kugel, R. Männer, and G. Marcus. PCI Express DMA Engine Design.
CBM Progress Report 2006, page 54, Sep 2007.
URL http://www.gsi.de/documents/DOC-2007-Mar-137-1.pdf

[31] R. Gingold and J. Monaghan. Smoothed particle hydrodynamics-theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical
Society, Jan 1977.
URL http://adsabs.harvard.edu/full/1977MNRAS.181..375G

[32] J. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, vol-
ume 31(5):pages 532–533, 1988. doi:10.1145/42411.42415.
URL http://portal.acm.org/citation.cfm?doid=42411.42415

[33] T. Hamada, T. Fukushige, A. Kawai, and J. Makino. PROGRAPE-1: A
Programmable, Multi-Purpose Computer for Many-Body Simulations. Publ. of
the Astronomical Society of Japan, volume 52:page 943, Oct 2000.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2000PASJ...52..943H&link_type=ABSTRACT

[34] T. Hamada, T. Fukushige, and J. Makino. PGPG: An Automatic Generator
of Pipeline Design for Programmable GRAPE Systems. Publications of the
Astronomical Society of Japan, volume 57:page 799, Oct 2005.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2005PASJ...57..799H&link_type=ABSTRACT

[35] T. Hamada and T. Iitaka. The Chamomile Scheme: An Optimized Algorithm
for N-body simulations on Programmable Graphics Processing Units. eprint
arXiv, page 3100, Mar 2007.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2007astro.ph..3100H&link_type=ABSTRACT

[36] T. Hamada and N. Nakasato. Massively parallel processors generator for
reconfigurable system. Field-Programmable Custom Computing Machines,
2005. FCCM 2005. 13th Annual IEEE Symposium on, pages 329 – 330, 2005.
doi:10.1109/FCCM.2005.45.
URL http://ieeexplore.ieee.org/search/srchabstract.jsp?

tp=&arnumber=1508576&queryText%253D%2528%2528Massively+

Parallel+Pro-+cessors+Generator+for+Reconfigurable+System%

2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_

Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%

2526searchField%253DSearch+All

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009NewA...14..630G&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009NewA...14..630G&link_type=ABSTRACT
http://www.gsi.de/documents/DOC-2007-Mar-137-1.pdf
http://adsabs.harvard.edu/full/1977MNRAS.181..375G
http://portal.acm.org/citation.cfm?doid=42411.42415
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000PASJ...52..943H&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000PASJ...52..943H&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005PASJ...57..799H&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005PASJ...57..799H&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007astro.ph..3100H&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007astro.ph..3100H&link_type=ABSTRACT
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1508576&queryText%253D%2528%2528Massively+Parallel+Pro-+cessors+Generator+for+Reconfigurable+System%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1508576&queryText%253D%2528%2528Massively+Parallel+Pro-+cessors+Generator+for+Reconfigurable+System%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1508576&queryText%253D%2528%2528Massively+Parallel+Pro-+cessors+Generator+for+Reconfigurable+System%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1508576&queryText%253D%2528%2528Massively+Parallel+Pro-+cessors+Generator+for+Reconfigurable+System%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1508576&queryText%253D%2528%2528Massively+Parallel+Pro-+cessors+Generator+for+Reconfigurable+System%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1508576&queryText%253D%2528%2528Massively+Parallel+Pro-+cessors+Generator+for+Reconfigurable+System%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All

BIBLIOGRAPHY 165

[37] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed particle hydrodynamics
on gpus. Proc. of Computer Graphics International, Jan 2007.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.

1665&rep=rep1&type=pdf

[38] S. Harfst, A. Gualandris, D. Merritt, R. Spurzem, S. P. Zwart, and
P. Berczik. Performance analysis of direct N-body algorithms on special-
purpose supercomputers. New Astronomy, volume 12:page 357, Jul 2007.
doi:10.1016/j.newast.2006.11.003.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2007NewA...12..357H&link_type=ABSTRACT

[39] M. Harris. Optimizing Parallel Reduction in CUDA. NVIDIA CUDA SDK Doc-
umentation, pages 1–38, Nov 2007.

[40] J. Held, J. Bautista, and S. Koehl. From a few cores to many: A tera-scale
computing research overview. Intel Corporation, 2006.

[41] J. Hennessy and D. Patterson. Computer Architecture, A Quantitative Approach.
Morgan Kaufmann, 1996. ISBN 1-55860-372-7.

[42] A. Herault, G. Bilotta, and R. Dalrymple. SPH on GPU with CUDA. Journal
of Hydraulic Research, volume 48:pages 74–79, Jan 2010.
URL http://cat.inist.fr/?aModele=afficheN&cpsidt=22746053

[43] M. Hill and M. Marty. Amdahl’s law in the multicore era. Computer, vol-
ume 41(7):pages 33–38, 2008.

[44] C. Hinkelbein. Control Software for Reconfigurable Processors. Ph.D. thesis,
University of Mannnheim, 2005.

[45] F.-H. Hsu. Behind Deep Blue. Princeton University Press, 2002. ISBN 0-691-
11818-3.

[46] P. Hut and J. Makino. Astrophysics on the GRAPE Family of Special-
Purpose Computers. Science, volume 283:page 501, Jan 1999. doi:
10.1126/science.283.5401.501.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

1999Sci...283..501H&link_type=ABSTRACT

[47] W. Hwu, S. Ryoo, S. Ueng, J. Kelm, I. Gelado, S. Stone, R. Kidd, S. Bagh-
sorkhi, A. Mahesri, and S. Tsao. Implicitly parallel programming models for
thousand-core microprocessors. Design Automation Conference, 2007. DAC’07.
44th ACM/IEEE, pages 754–759, 2007.

[48] Intel Corporation. Intel C++ Compiler Intrinsics Reference.
URL http://cache-www.intel.com/cd/00/00/34/76/347603_347603.pdf

[49] J. Jones and M. Stettler. Dynamic Reconfiguration and Incremental Firmware
Development in the Xilinx Virtex 5. CERN.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.1665&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.1665&rep=rep1&type=pdf
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007NewA...12..357H&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007NewA...12..357H&link_type=ABSTRACT
http://cat.inist.fr/?aModele=afficheN&cpsidt=22746053
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999Sci...283..501H&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999Sci...283..501H&link_type=ABSTRACT
http://cache-www.intel.com/cd/00/00/34/76/347603_347603.pdf

166 BIBLIOGRAPHY

[50] W. Kahan. Pracniques: further remarks on reducing truncation errors. Commu-
nications of the ACM, volume 8(1):page 40, Jan 1965. doi:10.1145/363707.363723.
URL http://portal.acm.org/citation.cfm?id=363707.363723

[51] G. Kasparov. Garry Kasparov On ’Chess Metaphors’: The Chess Master and
the Computer. Electronic, Mar 2010.
URL http://www.huffingtonpost.com/2010/01/22/

gary-kasparov-on-chess-me_n_432043.html

[52] A. Kawai, T. Fukushige, M. Taiji, J. Makino, and D. Sugimoto. The PCI
Interface for GRAPE Systems: PCI-HIB. Publ. of the Astronomical Society of
Japan, volume 49:page 607, Oct 1997.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

1997PASJ...49..607K&link_type=ABSTRACT

[53] Khronos Group. OpenCL 1.1 Specification.
URL http://www.khronos.org/opencl/

[54] D. Kirk and W.-m. Hwu. Programming Massively Parallel Processors. Morgan
Kaufmann, 2010. ISBN 978-0-12-381472-2.

[55] R. Klessen. GRAPESPH with fully periodic boundary conditions - Fragmenta-
tion of molecular clouds. Royal Astronomical Society, volume 292:page 11, Nov
1997.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

1997MNRAS.292...11K&link_type=ABSTRACT

[56] Kornmesser. The FPGA Development System CHDL. Field-Programmable Cus-
tom Computing Machines, 2001. FCCM ’01. The 9th Annual IEEE Symposium
on, pages 271 – 272, 2001. doi:10.1109/FPGM.2001.184278.
URL http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=

&arnumber=1420931&queryText%253D%2528%2528chdl+kornmesser%

2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_

Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%

2526searchField%253DSearch+All

[57] T. Kuberka, A. Kugel, R. Männer, H. Singpiel, R. Spurzem, and R. Klessen.
AHA-GRAPE: Adaptive Hydrodynamic Architecture-GRAvity PipE. Field Pro-
grammable Logic and Applications, pages 417–424, 2004.

[58] G. Lienhart. Beschleunigung Hydrodynamischer Astrophysikalischer Simulation
mit FPGA-Basierten Rekonfigurierbaren Koprozessoren. Ph.D. thesis, University
of Heidelberg, 2004.

[59] G. Lienhart, A. Kugel, and R. Männer. Rapid development of high perfor-
mance floating-point pipelines for scientific simulation. Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International, 2006. doi:
10.1109/IPDPS.2006.1639439.

http://portal.acm.org/citation.cfm?id=363707.363723
http://www.huffingtonpost.com/2010/01/22/gary-kasparov-on-chess-me_n_432043.html
http://www.huffingtonpost.com/2010/01/22/gary-kasparov-on-chess-me_n_432043.html
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997PASJ...49..607K&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997PASJ...49..607K&link_type=ABSTRACT
http://www.khronos.org/opencl/
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997MNRAS.292...11K&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997MNRAS.292...11K&link_type=ABSTRACT
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1420931&queryText%253D%2528%2528chdl+kornmesser%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1420931&queryText%253D%2528%2528chdl+kornmesser%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1420931&queryText%253D%2528%2528chdl+kornmesser%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1420931&queryText%253D%2528%2528chdl+kornmesser%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1420931&queryText%253D%2528%2528chdl+kornmesser%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All

BIBLIOGRAPHY 167

URL http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=

&arnumber=1639439&queryText%253D%2528%2528Authors%253Alienhart%

2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_

Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%

2526searchField%253DSearch+All

[60] G. Lienhart, G. Marcus, A. Kugel, and R. Männer. Rapid Design of Special-
Purpose Pipeline Processors with FPGAs and its Application to Computa-
tional Fluid Dynamics. Field-Programmable Custom Computing Machines, 2006.
FCCM ’06. 14th Annual IEEE Symposium on, pages 301 – 302, Apr 2006. doi:
10.1109/FCCM.2006.60.

[61] S. Loo, B. Wells, N. Freije, and J. Kulick. Handel-C for rapid prototyping of
VLSI coprocessors for real time systems. System Theory, 2002. Proceedings of the
Thirty-Fourth Southeastern Symposium on DOI - 10.1109/SSST.2002.1026994,
pages 6– 10, 2002.

[62] L. Lucy. A numerical approach to the testing of the fission hypothesis. The
Astronomical Journal, Jan 1977.
URL http://adsabs.harvard.edu/full/1977AJ.....82.1013L

[63] D. Luebke, M. Harris, J. Krüger, T. Purcell, N. Govindaraju, I. Buck, C. Woolley,
and A. Lefohn. GPGPU: general purpose computation on graphics hardware.
SIGGRAPH ’04: SIGGRAPH 2004 Course Notes, Aug 2004.
URL http://portal.acm.org/ft_gateway.cfm?id=1103933&type=pdf&coll=

DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676

[64] J. Makino. Optimal order and time-step criterion for aarseth-type n-body inte-
grators. The Astrophysical Journal, Jan 1991.
URL http://adsabs.harvard.edu/full/1991ApJ...369..200M

[65] J. Makino. Modified SIMD architecture suitable for single-chip implementation.
eprint arXiv, page 9278, Sep 2005.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2005astro.ph..9278M&link_type=ABSTRACT

[66] J. Makino and S. J. Aarseth. On a Hermite integrator with Ahmad-Cohen scheme
for gravitational many-body problems. PASJ: Publications of the Astronomical
Society of Japan (ISSN 0004-6264), volume 44:page 141, Apr 1992.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

1992PASJ...44..141M&link_type=ABSTRACT

[67] J. Makino, T. Fukushige, M. Koga, and K. Namura. GRAPE-6: Massively-
Parallel Special-Purpose Computer for Astrophysical Particle Simulations.
Publications of the Astronomical Society of Japan, volume 55:page 1163, Dec
2003.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2003PASJ...55.1163M&link_type=ABSTRACT

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1639439&queryText%253D%2528%2528Authors%253Alienhart%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1639439&queryText%253D%2528%2528Authors%253Alienhart%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1639439&queryText%253D%2528%2528Authors%253Alienhart%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1639439&queryText%253D%2528%2528Authors%253Alienhart%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1639439&queryText%253D%2528%2528Authors%253Alienhart%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://adsabs.harvard.edu/full/1977AJ.....82.1013L
http://portal.acm.org/ft_gateway.cfm?id=1103933&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://portal.acm.org/ft_gateway.cfm?id=1103933&type=pdf&coll=DL&dl=GUIDE&CFID=111712980&CFTOKEN=43270676
http://adsabs.harvard.edu/full/1991ApJ...369..200M
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005astro.ph..9278M&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005astro.ph..9278M&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1992PASJ...44..141M&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1992PASJ...44..141M&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003PASJ...55.1163M&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003PASJ...55.1163M&link_type=ABSTRACT

168 BIBLIOGRAPHY

[68] G. Marcus, P. Hinojosa, A. Avila, and J. Nolazco-Flores. A fully synthesiz-
able single-precision, floating-point adder/substractor and multiplier in VHDL
for General and Educational Use. Proceedings of the Fifth IEEE Interna-
tional Caracas Conference on Devices, Circuits and Systems, Nov 2004. doi:
10.1109/ICCDCS.2004.1393405.

[69] G. Marcus, A. Kugel, R. Männer, P. Berczik, I. Berentzen, R. Spurzem, T. Naab,
M. Hilz, and A. Burkert. Accelerating Smoothed Particle Hydrodynamics for
Astrophysical Simulations: A comparison of FPGAs and GPUs. Proceedings of
3rd SPHERIC Workshop, pages 1–6, Apr 2008.

[70] G. Marcus, G. Lienhart, A. Kugel, R. Männer, P. Berczik, R. Spurzem, M. Wetz-
stein, T. Naab, and A. Burkert. An FPGA-based hardware coprocessor for SPH
computations. Proceedings of the 2nd SPHERIC Workshop, pages 63–66, 2007.
URL http://webs.uvigo.es/spheric/documents/Spheric_Book.pdf

[71] Microsoft. Programming Guide for Direct3D 10.
URL http://msdn.microsoft.com/en-us/library/bb205123(v=VS.85).aspx

[72] J. Monaghan. An introduction to SPH. Computer Physics Communications,
volume 48(1):pages 89–96, 1988.

[73] J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics,
Jan 2005.
URL http://iopscience.iop.org/0034-4885/68/8/R01

[74] N. Nakasato, T. Hamada, and T. Fukushige. Galaxy Evolution with Reconfig-
urable Hardware Accelerator. EAS Publications Series, volume 24:page 291, Jan
2007. doi:10.1051/eas:2007043.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2007EAS....24..291N&link_type=ABSTRACT

[75] N. Nakasato, M. Mori, and K. Nomoto. Smoothed Particle Hydrodynamics with
GRAPE and Parallel Virtual Machine. Astrophysical Journal v.484, volume
484:page 608, Jul 1997. doi:10.1086/304352.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

1997ApJ...484..608N&link_type=ABSTRACT

[76] A. F. Nelson, M. Wetzstein, and T. Naab. Vine—A Numerical Code for Simulat-
ing Astrophysical Systems Using Particles. II. Implementation and Performance
Characteristics. The Astrophysical Journal Supplement, volume 184:page 326,
Oct 2009. doi:10.1088/0067-0049/184/2/326.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2009ApJS..184..326N&link_type=ABSTRACT

[77] I. Newton. The Principa Mathematical Principles of Natural Philosophy. Berke-
ley: University of California Press, 1999. ISBN 0-520-08817-4. Translation into
English by I. Bernard Cohen and Anne Whitman, with help from Julia Budenz.

http://webs.uvigo.es/spheric/documents/Spheric_Book.pdf
http://msdn.microsoft.com/en-us/library/bb205123(v=VS.85).aspx
http://iopscience.iop.org/0034-4885/68/8/R01
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007EAS....24..291N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007EAS....24..291N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997ApJ...484..608N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997ApJ...484..608N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ApJS..184..326N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ApJS..184..326N&link_type=ABSTRACT

BIBLIOGRAPHY 169

[78] H. Nguyen, editor. GPU Gems 3. Addison-Wesley, 2008. ISBN 978-0-321-51526-
1.

[79] K. Nitadori and J. Makino. Sixth- and eighth-order Hermite integrator for
N-body simulations. New Astronomy, volume 13:page 498, Oct 2008. doi:
10.1016/j.newast.2008.01.010.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2008NewA...13..498N&link_type=ABSTRACT

[80] K. Nitadori, J. Makino, and P. Hut. Performance tuning of N-body codes
on modern microprocessors: I. Direct integration with a hermite scheme on
x86 64 architecture. New Astronomy, volume 12:page 169, Dec 2006. doi:
10.1016/j.newast.2006.07.007.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2006NewA...12..169N&link_type=ABSTRACT

[81] NVIDIA. CUDA C Best Practices Guide.
URL http://developer.download.nvidia.com/compute/cuda/3_2_prod/

toolkit/docs/CUDA_C_Best_Practices_Guide.pdf

[82] NVIDIA. CUDA C Programming Guide.
URL http://developer.download.nvidia.com/compute/cuda/3_2_prod/

toolkit/docs/CUDA_C_Programming_Guide.pdf

[83] NVIDIA. CUDA Reference Manual.
URL http://developer.download.nvidia.com/compute/cuda/3_2_prod/

toolkit/docs/CUDA_Toolkit_Reference_Manual.pdf

[84] Patterson. A case for intelligent RAM. Micro, IEEE, volume 17(2):pages 34 –
44, 1997. doi:10.1109/40.592312.
URL http://ieeexplore.ieee.org/search/srchabstract.jsp?

tp=&arnumber=592312&queryText%253D%2528%2528IRAM%2529+

AND+%2528patterson%2529%2529%2526openedRefinements%253D*%

2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%

2526rowsPerPage%253D50%2526searchField%253DSearch+All

[85] H.-Y. Schive, C.-H. Chien, S.-K. Wong, Y.-C. Tsai, and T. Chiueh. Graphic-
card cluster for astrophysics (GraCCA) Performance tests. New Astronomy,
volume 13:page 418, Aug 2008. doi:10.1016/j.newast.2007.12.005.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2008NewA...13..418S&link_type=ABSTRACT

[86] V. Schumacher. Zuviel Respekt vor der Maschine. Der Spiegel, May 1997.
URL http://www.spiegel.de/spiegel/print/d-8716749.html

[87] A. Shirokov. Gravitational Softening and Adaptive Mass Resolution. eprint
arXiv, volume 0711:page 2989, Nov 2007.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2007arXiv0711.2989S&link_type=ABSTRACT

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008NewA...13..498N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008NewA...13..498N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006NewA...12..169N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006NewA...12..169N&link_type=ABSTRACT
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_Toolkit_Reference_Manual.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_Toolkit_Reference_Manual.pdf
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=592312&queryText%253D%2528%2528IRAM%2529+AND+%2528patterson%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=592312&queryText%253D%2528%2528IRAM%2529+AND+%2528patterson%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=592312&queryText%253D%2528%2528IRAM%2529+AND+%2528patterson%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=592312&queryText%253D%2528%2528IRAM%2529+AND+%2528patterson%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=592312&queryText%253D%2528%2528IRAM%2529+AND+%2528patterson%2529%2529%2526openedRefinements%253D*%2526sortType%253Ddesc_Publication+Year%2526matchBoolean%253Dtrue%2526rowsPerPage%253D50%2526searchField%253DSearch+All
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008NewA...13..418S&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008NewA...13..418S&link_type=ABSTRACT
http://www.spiegel.de/spiegel/print/d-8716749.html
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007arXiv0711.2989S&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007arXiv0711.2989S&link_type=ABSTRACT

170 BIBLIOGRAPHY

[88] V. Springel. The cosmological simulation code GADGET-2. Monthly Notices
of the Royal Astronomical Society, volume 364:page 1105, Dec 2005. doi:
10.1111/j.1365-2966.2005.09655.x.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2005MNRAS.364.1105S&link_type=ABSTRACT

[89] V. Springel, N. Yoshida, and S. D. M. White. GADGET: a code for collisionless
and gasdynamical cosmological simulations. New Astronomy, volume 6:page 79,
Apr 2001. doi:10.1016/S1384-1076(01)00042-2.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2001NewA....6...79S&link_type=ABSTRACT

[90] R. Spurzem. Astrophysical N-body simulations: algorithms and challenges. arXiv,
volume astro-ph, Nov 1997.
URL http://arxiv.org/abs/astro-ph/9711238v1

[91] R. Spurzem, P. Berczik, G. Marcus, A. Kugel, G. Lienhart, I. Berentzen,
R. Männer, R. Klessen, and R. Banerjee. Accelerating astrophysical particle
simulations with programmable hardware (FPGA and Computer Science-
Research and Development, volume 23(3-4):pages 231–239, May 2009. doi:
10.1007/s00450-009-0081-9.
URL http://www.springerlink.com/content/ew838w1334511061/

[92] M. Steinmetz. GRAPESPH: cosmological smoothed particle hydrodynamics
simulations with the special-purpose hardware GRAPE. Monthly Notices of the
Royal Astronomical Society, volume 278:page 1005, Feb 1996.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

1996MNRAS.278.1005S&link_type=ABSTRACT

[93] V.S.Bagad. VLSI Design - Page 5-41. page 416, Jan 2009.
URL http://books.google.com/books?id=g8np-4m2MN4C&printsec=

frontcover

[94] W. Warner. Great moments in microprocessor history. Electronic, Dec 2004.
URL http://www.ibm.com/developerworks/library/pa-microhist.html

[95] M. Wetzstein. WINE – A New Code for Astrophysical Particle Simulations.
Master’s thesis, University of Heidelberg, 2000.

[96] M. Wetzstein, A. F. Nelson, T. Naab, and A. Burkert. Vine—A Numerical
Code for Simulating Astrophysical Systems Using Particles. I. Description of the
Physics and the Numerical Methods. The Astrophysical Journal Supplement,
volume 184:page 298, Oct 2009. doi:10.1088/0067-0049/184/2/298.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2009ApJS..184..298W&link_type=ABSTRACT

[97] Xilinx. XC3000 Datasheet. pages 1–76, Feb 1999.

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005MNRAS.364.1105S&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005MNRAS.364.1105S&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001NewA....6...79S&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001NewA....6...79S&link_type=ABSTRACT
http://arxiv.org/abs/astro-ph/9711238v1
http://www.springerlink.com/content/ew838w1334511061/
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996MNRAS.278.1005S&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996MNRAS.278.1005S&link_type=ABSTRACT
http://books.google.com/books?id=g8np-4m2MN4C&printsec=frontcover
http://books.google.com/books?id=g8np-4m2MN4C&printsec=frontcover
http://www.ibm.com/developerworks/library/pa-microhist.html
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ApJS..184..298W&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ApJS..184..298W&link_type=ABSTRACT

BIBLIOGRAPHY 171

[98] Xilinx. Xilinx DS031 Virtex-II Platform FPGAs: Complete Data Sheet. pages
1–318, Nov 2007.
URL http://www.xilinx.com/support/documentation/data_sheets/ds031.

pdf

[99] Xilinx. Xilinx UG073 XtremeDSP for Virtex-4 FPGAs User Guide, User Guide.
pages 1–121, May 2008.
URL http://www.xilinx.com/support/documentation/user_guides/ug073.

pdf

[100] Xilinx. Virtex-6 FPGA Extended Overview. pages 1–96, Apr 2009.
URL http://www.opensparc.net/pubs/preszo/09/brussels/12_MD_Virtex_

6_Overview.pdf

[101] Xilinx. Xilinx UG369 Virtex-6 FPGA DSP48E1 Slice, User Guide. pages 1–50,
Sep 2009.
URL http://www.xilinx.com/support/documentation/user_guides/ug369.

pdf

[102] K. Yoshikawa and T. Fukushige. PPPM and TreePM Methods on GRAPE
Systems for Cosmological N-Body Simulations. Publications of the Astronomical
Society of Japan, volume 57:page 849, Dec 2005.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2005PASJ...57..849Y&link_type=ABSTRACT

[103] S. F. P. Zwart, R. G. Belleman, and P. M. Geldof. High-performance direct
gravitational N-body simulations on graphics processing units. New Astronomy,
volume 12:page 641, Nov 2007. doi:10.1016/j.newast.2007.05.004.
URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2007NewA...12..641P&link_type=ABSTRACT

[104] J. Zygmont. Microchip. Perseus Publishing, 2003. ISBN 0-7382-0561-3.

http://www.xilinx.com/support/documentation/data_sheets/ds031.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds031.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.opensparc.net/pubs/preszo/09/brussels/12_MD_Virtex_6_Overview.pdf
http://www.opensparc.net/pubs/preszo/09/brussels/12_MD_Virtex_6_Overview.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005PASJ...57..849Y&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005PASJ...57..849Y&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007NewA...12..641P&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007NewA...12..641P&link_type=ABSTRACT

This page is not intentionally left blank

Acknowledgements

.
To Reinhard Männer, for his support and guidance during the last six years.

To Rainer Spurzem, Peter Berczik and Ingo Berentzen, for they guidance in the
field of astrophysics and high performance computing.

To Gerhard Lienhart and Andreas Kugel, for the interesting work in coprocessor
design.

To Andrea Seeger and Christiane Glasbrenner, for their everyday support to a
newcomer.

To Michael Stapelberg, for his contributions to the PCI driver and the MPRACE
library.

To my friends, specially to Erika Fuentes, Carlos Morra and Jesus Zerpa, for all the
good times that keep me going.

To all of them, I thank you sincerely for your support during the time that has
taken me to write this thesis.

173

	Introduction
	I Background Knowledge
	Astrophysical Simulations
	Gravity
	Smoothed Particle Hydrodynamics
	Artificial viscosity

	Integration techniques
	Time-steps schemes

	Hardware Accelerators
	General Purpose CPUs and Streaming Instructions
	Graphic Processors as Scientific Coprocessors
	Field Programmable Gate Arrays
	Application Specific Integrated Circuits

	II Supporting Libraries
	The PCI Driver
	Architectural Overview
	Kernel Memory
	User Memory
	Interrupt Handling
	SysFS Interface
	PCI Driver API
	C++ Interface
	C Interface
	Compat Interface

	The MPRACE library
	Architectural Overview
	Register Mapping
	DMA Buffers
	DMA Engine
	Descriptor List Assembly

	Performance

	The Buffer Management Library
	Buffering Algorithms
	Translation Mechanisms
	Translation by subclassing
	Templatized Translators

	Profiling and Performance
	Performance of the BufferManager classes
	Performance of the Templatized Managers

	III Software Integration
	The raceSPH Library
	Motivation
	Previous and Related Work
	Formulae
	Architectural Overview
	CPU and SSE implementations
	FPGA implementation
	GPU implementation
	Application performance
	Comparison with previous work

	The VINE implementation

	The raceGRAV Library
	Previous and Related Work
	Architectural Overview
	CPU and SSE implementations
	FPGA implementation
	Results

	Summary
	Conclusions and Final Remarks

	IV Appendices
	Buffer Manager Profiling Plots
	RaceSPH Profiling Plots
	RaceGRAV additional plots
	List of Figures
	List of Tables
	Acronyms
	References
	Acknowledgements

