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I. Zusammenfassung 

Die Mitglieder der Rho-Familie der kleinen GTPasen wurden ursprünglich durch ihre 

Beteiligung an einer Vielzahl von zellulären Prozessen identifiziert. Sie sind unter anderem 

an der Regulation des F-Aktin-Zytoskelettes und der Mikrotubuli-Dynamik, Zellpolarität, 

Vesikeltransport und Genexpression beteiligt. Zudem wurde in neueren Studien den  

G-Proteinen eine Funktion als Schlüsselregulator innerhalb der Angiogenese zugewiesen. 

So konnte gezeigt werden, dass der G-Protein-Signaltransduktionsweg dabei stark mit 

angiogenen Prozessen wie der Regulation der vaskulären Permeabilität, dem Umbau der 

extrazellulären Matrix, der endothelialen Migration, Proliferation, Morphogenese und dem 

Überleben assoziiert ist. Vieles von unserem derzeitigen Kenntnisstand bezüglich der  

G-Protein-Signalweiterleitung wurde überwiegend durch In-vitro-Experimente oder durch  

In-vivo-Studien mit wirbellosen Tieren gewonnen. Jedoch ist wenig über ihre Regulation und 

Funktion bei Wirbeltieren bekannt. Aus diesem Grund lag das Ziel dieser Arbeit darin, die 

Funktion von ausgewählten G-Proteinen während der Wirbeltierentwicklung und 

insbesondere in der Angiogenese zu charakterisieren. Erst kürzlich wurde das mit dem 

Guanin-Nukleotid-Austausch-Faktor (GEF) Ect-2 interagierende BTB-kelch-Protein KLEIP 

(KLHL20) mit der Angiogenese als neuer und wichtiger Regulator der endothelialen 

Funktion, welcher die VEGF-induzierte Aktivierung der kleinen GTPase RhoA kontrolliert, 

assoziiert. Um die Funktion von Kleip während der Angiogenese in vivo, sowie in der 

Entwicklung, zu studieren, wurde das Kleip-Gen in Mäusen ausgeschaltet. Die konstitutive 

Inaktivierung von Kleip mittels der Gene-Trap-Methode führte zu einem teilweisen letalen 

Phänotyp. Ein geringer Anteil von Kleip-defizienten Embryonen starb während der 

Embryonalentwicklung infolge von kranialen Blutungen. Diese Fehlfunktion innerhalb der 

Aufrechterhaltung der vaskulären Integrität wurde weiterhin durch Studien mit Spleiß-

blocking Morpholino-induzierter klhl20 Herunterregulation in Zebrafischembryonen, sowie 

durch einen In-vitro-Permeabilitäts-Transwell-Assay unterstützt. Die embryonalen Gefäße in 

Kleip-Mutanten wiesen nach whole-mount Immunfärbungen im Vergleich zu ihren Wildtyp-

Geschwistern deutlich erweiterte kraniale Gefäße auf. Dieses deutet neben den 

beobachteten Blutungen ebenfalls auf einen Fehler in der Rekrutierung von muralen Zellen 

zu den sich bildenden Gefäßen hin. Interessanterweise zeigten spezifische NG2 

Immunfärbungen keine Veränderungen in der durch Perizyten vermittelten 

Gefäßstabilisierung. Diese Beobachtungen lassen in ihrer Gesamtheit daher eher einen 

Fehler innerhalb der adhesiven Eigenschaften von Endothelzellen vermuten. Desweiteren 

wurde Kleip als unverzichtbares Molekül für die neonatale Entwicklung identifiziert. 

Homozygote Nachkommen zeigten eine durch Atemnot verursachte hohe 

Säuglingssterblichkeit von ungefähr 50 Prozent. Histologische Untersuch-ungen der Lungen 

von neugeborenen Mutanten zeigten einen reduzierten Alveolarraum und eine deutliche 
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Verdickung der alveolaren Septen. Diese beiden morphologischen Veränderungen sind 

charakteristische Merkmale für Mängel in der Lungenreifung. Demnach zeigen unsere 

Studien den hohen Stellenwert von Kleip für die Lungen-Morphogenese und lassen eine 

mögliche Beteiligung in der Pathogenese des respiratorischen Distress-Syndromes (RDS) 

erkennen.                       

In zusätzlichen Teilprojekten wurden weitere ausgewählte Proteine der G-Protein-

Signalkaskade im Hinblick auf die Angiogenese untersucht. Einerseits konnte zum ersten 

Mal gezeigt werden, dass der von dock180 und elmo1 gebildete GEF für die kleine GTPase 

Rac1 im Zebrafischendothel exprimiert wird. Außerdem resultierte die räumlich und zeitlich 

begrenzte Expressionsminderung von elmo1 im ventralen Mesoderm mittels einem 

photoaktivierbaren Morpholino in einer starken Beeinträchtigung in der Entwicklung der 

Fischvaskulatur, wodurch elmo1 eine zellautonome Funktion im Endothel zugwiesen wird.  

 

Neben der Analyse von GEFs und deren Rolle in der Angiogenese wurden auch die 

nachgelagerten Mediatoren des RhoA Signalweges untersucht. In früher durchgeführten 

Angiogenese relevanten Studien führte die pharmakologische Hemmung der beiden 

Serin/Threonin-Kinasen ROCK I/II mit dem relativ unspezifischen Inhibitor Y-27632 zu 

gegensätzlichen Ergebnissen. In dieser Arbeit konnte gezeigt werden, dass die Inhibition der 

ROCK I/II-Aktivität durch den Einsatz des Inhibitors H-1152 zu einer verstärkten 

Signalweiterleitung im Endothel führt. Folglich wird beiden Kinasen eine Rolle als negative 

Regulatoren der Angiogenese nachgesagt. Zusammenfassend konnten alle untersuchten G-

Protein-Signalmoleküle als essentielle Regulatoren in der Bildung eines funktionellen 

Gefäßsystems identifiziert werden. 
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II. Summary 

The members of the Rho family of small GTPases were originally identified to be involved in 

a variety of cellular processes, including regulation of F-actin cytoskeleton and microtubule 

dynamics, cell polarity, vesicle transport and gene expression. In recent studies G-proteins 

have been implicated to function as key modulators of angiogenesis. G-protein signaling is 

thereby strongly associated with angiogenic processes, such as the regulation of vascular 

permeability, remodeling of the extracellular matrix, endothelial migration, proliferation, 

morphogenesis, and survival. Much of our knowledge regarding G-protein signaling was 

hitherto predominantly obtained by in vitro experiments or by in vivo studies performed in 

invertebrates. However, little is known about their regulation and function in vertebrates. 

Thus, this thesis was aimed at uncovering the role of selected G-proteins during vertebrate 

development with the focus on angiogenesis. Recently, the guanine nucleotide exchange 

factor (GEF) Ect-2 interacting BTB-kelch protein KLEIP (KLHL20) was implicated in 

angiogenesis as a novel and essential regulator of endothelial function that controls the 

VEGF-induced activation of the small GTPase RhoA. In order to unravel Kleip’s function 

during angiogenesis in vivo, as well as during development, the Kleip gene was disrupted in 

mice. Constitutive inactivation of Kleip accomplished by gene-trapping led to a partially lethal 

phenotype. Some Kleip-deficient embryos died between midgestation and birth due to cranial 

hemorrhages. This dysfunction in maintaining vascular integrity was furthermore supported 

by studies with splice-blocking morpholino-induced downregulation of klhl20 in zebrafish 

embryos as well as by an in vitro transwell permeability assay. Whole-mount 

immunostainings of the embryonic vasculature in Kleip-mutants exhibited in comparison to 

their wild-type littermates significantly extended cranial vessels suggesting as well as for the 

bleedings a failure in the recruitment of mural cells to the nascent vessels. Interestingly, 

specific NG2 immunostainings displayed no alterations in pericyte coverage-mediated vessel 

stabilization thereby rather indicating defects in endothelial adhesion. Moreover, Kleip was 

identified to be indispensable for neonatal development. Homozygous offspring exhibited a 

high neonatal mortality from around 50% due to respiratory failure. Histological analysis of 

newborn mutant lungs exhibited reduced airspace, and marked thickening of alveolar septae, 

which represent the characteristic features of maturation defects. Thus, our studies 

demonstrate the importance of Kleip for lung morphogenesis and suggest that it could 

possibly be involved in the pathogenesis of respiratory distress syndroms (RDS).          

In additional subprojects selected proteins of the G-protein signaling cascade were 

characterized with regard to angiogenesis. On the one hand it could be shown for the first 

time that the dock180 and elmo1 formed GEF for the small GTPase Rac1 is expressed in the 

zebrafish endothelium. Furthermore, the spatially and temporarily restricted photoactivatable 

morpholino-based expression-silencing of elmo1 in the ventral mesoderm severely impaired 
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the formation of the fish vasculature, suggesting an endothelial cell autonomous function of 

elmo1. 

Next to the analysis of GEFs during angiogenesis the downstream mediators of RhoA 

signaling were analyzed. In previous studies the pharmacological inhibition of both 

serine/threonine kinases ROCK I/II with the relative unspecific inhibitor Y-27632 revealed 

contrary results. Here it could be demonstrated that inhibition of ROCK I/II activity with the 

inhibitor H-1152 enhanced endothelial signaling implicating that both kinases function as 

negative regulators of sprouting angiogenesis. In conclusion, all analyzed G-protein signaling 

molecules were identified as essential regulators involved in the formation of a functional 

vasculature. 
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1. Introduction 

1.1 Blood vessel development 

The development of a functional vasculature is a crucial and complex process during 

development in the vertebrate embryo. The embryo receives its nutrition and oxygen through 

diffusion across short distances in the earliest stages of embryonic development (100-

150µm). However, with the growth of the embryo it becomes harder to maintain a sufficient 

supply for the developing tissues and organs over longer distances, as well as in the 

elimination of all by-products. These requirements are evolutionary compensated through the 

formation of the cardiovascular system, the first functional organic unit in vertebrates. 

Beyond this, the vasculature serves as a communication system between several tissues 

and organs in the adult, which is accomplished by messenger molecules such as hormones. 

The development of a functional vascular network is thereby subdivided into two distinct 

temporarily distinguishable events, called vasculogenesis and angiogenesis (Semenza, 

2007). 

  

1.1.1 Vasculogenesis 

In general, the process of vasculogenesis is characterized by the de novo formation of a 

primitive vascular network (Adams and Alitalo, 2007; Risau, 1997). During the initial steps of 

vasculogenesis (Figure 1), which start in the mouse around embryonic day (E) 7.5, a 

common progenitor of endothelial and hematopoietic cells, called hemangioblast, is derived 

from the mesoderm (Herbert et al., 2009; Park et al., 2005; Vogeli et al., 2006). An assembly 

of these cells results in the formation of the blood islands, which consist of a peripheral layer 

of angioblasts, the intermediates of the endothelial lineage, and the inner cells of 

hematopoietic precursor cells. In a subsequent step the honeycomb-shaped primary capillary 

plexus is established by an alignment of angioblasts which are connected with each other 

through cellular protrusions. Afterwards, the cytoplasm of angioblasts degenerates and 

becomes contained in vacuoles that fuse with the vacuoles of neighboring angioblasts 

consequently forming lumenized vessels (Downs, 2003). This step is accompanied with the 

differentiation of endothelial cells from the angioblasts. In contrast, a direct aggregation of 

angioblasts gives rise to the major embryonic blood vessels, like the dorsal aorta and 

cardinal vein (Adams and Alitalo, 2007). Additionally, vasculogenesis is not restricted to 

embryonic development, because endothelial progenitor cells that are contributed to vessel 

formation can still be detected in the adult (Rafii et al., 2002). However, the importance and 

the extent of this mechanism remain controversial.  
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Figure 1: Schematic overview of vascular development. 
Mesodermal cells differentiate into the bipotential progenitor cell, called hemangioblasts, of the 
endothelial and hematopoietic cell lineage. During vasculogenesis the angioblasts of the endothelial 
lineage form the honeycomb-shaped primary capillary plexus, which gets remodeled and extended by 
non-sprouting and sprouting angiogenesis. In the following maturation step the vessels get stabilized 
by the recruitment of mural cells, like pericytes (PCT) and smooth muscle cells (SMCs).(Adapted by 
permission from Macmillan Publishers Ltd: Nature (Risau, 1997), copyright 1997) 

 
 

1.1.2 Angiogenesis 

In the following step, the immature and poorly functional vasculature undergoes a remodeling 

and expansion process, which is termed angiogenesis. The process of angiogenesis (Figure 

1) normally occurs embryonically and is completed in the adult. Angiogenesis starts around 

E8.5-E9.5 in the developing mouse embryo. However, under some physiological conditions 

angiogenesis can be induced, like during ovarian cycle and wound healing. Thereby 

angiogenesis can be subdivided into two distinct processes, namely sprouting angiogenesis 

and non-sprouting angiogenesis. Sprouting angiogenesis is defined in sprouting of capillaries 

from pre-existing vessels, whereas non-sprouting angiogenesis is characterized by the 
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splitting of already existing vessels along their longitudinal axis (Burri et al., 2004; Djonov 

and Makanya, 2005; Makanya et al., 2009; Risau, 1997). 

In this intussuspective process of non-sprouting angiogenesis the new developing vessels 

are formed by insertion of interstitial tissue into the lumen of a pre-existing vessel or by 

bridging the vessel lumen with interstitial tissue columns. Intussuseception, first discovered in 

lungs, also includes the establishment of new vessels by formation of loops in large veins.  

Finally, the developing circulatory system needs to be specified into different calibers and 

types of vessels (Figure 2). This differentiation process in which the arterial and venous 

systems emanate is known as arteriovenous differentiation. During arterial differentiation, 

termed arteriogenesis, the maturating arteries have to resist a growing shear stress and 

pulsatile flow. The ensuring of vessel stability is effected by the modification of the basal 

lamina and the recruitment of mural cells, including vascular smooth muscle cells (SMCs) 

and pericytes (von Tell et al., 2006). 

Arteries with an extended luminal vessel diameter are surrounded by a thick layer of SMCs, 

providing viscoelastic and vasomotor properties that enable the regulation of arterial 

perfusion. In contrast the venous low-pressure system is enveloped by fewer SMCs. 

  

 

Figure 2: Morphology of small and large blood vessels stabilized by mural cells. 
Vessel wall assembly is heterogeneous between vessels that differ in size, as well as between their 
arteriovenous differentiation state. Larger vessels are surrounded by multiple layers of cellular and 
extracellular materials (A). In general the vascular wall of larger vessel is composed of an inner 
endothelium (tunica intima) surrounded by a layer of SMCs (tunica media), external elastic tissue and 
fibrous connective tissue (tunica adventitia). In contrast to veins large arteries are enveloped in a 
thicker layer of SMCs to resist high shear stress and pulsatile flow, while the system of fine capillaries 
is covered by pericytes (B). Additionally, veins are the only vessels that have valves for preventing 
backflow of blood. (Adapted by permission from Macmillan Publishers Ltd: Nature Medicine (Cleaver 
and Melton, 2003), copyright 2003) 

A
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1.1.3 Arteriovenous differentiation 

The differentiation of the arteriovenous system during development is a further critical step 

for proper formation of a functional vascular network during angiogenesis. In recent years it 

was believed that arteriovenous differentiation is mediated by physiological factors like the 

onset of blood flow and blood pressure, but several studies in mice and zebrafish models 

rather indicate the involvement of genetic regulation mechanisms (Swift and Weinstein, 

2009; Torres-Vaazquez et al., 2003). Increasing evidence pointed out that the multifunctional 

angiogenic growth factor vascular endothelial growth factor (VEGF) is also involved in the 

promotion of arterial identity. Transgenic Vegf overexpressing mice display a numerical 

increase (Visconti et al., 2002), whereas in contrast a reduction of Vegf in zebrafish causes a 

numerical decrease of arteries (Lawson et al., 2002). A further arterial differentiation 

mechanism that is partially linked to VEGF signaling represents the DELTA/NOTCH 

signaling pathway. Several members of this family, including the ligands Delta4 (Dll4), 

Jagged (Jag)-1, Jag-2 and their transmembrane receptors Notch1, Notch3, and Notch4 are 

predominantly expressed by the arterial endothelium (Villa et al., 2001). 

It has been shown in in vitro experiments that cultured endothelial cells exposed to VEGF-A 

upregulate surface markers, such as DLL4, the NOTCH receptors and ephrinB2 (Hainaud et 

al., 2006; Williams et al., 2006). The NOTCH ligand/receptor interaction mediates a direct 

activation of NOTCH, which in turn results in its proteolytical cleavage accompanied with the 

release of the NOTCH intracellular domain (ICD). The ICD is translocated to the nucleus, 

where it forms a complex with transcriptional regulators and induces the expression of 

transcription factors like e.g. HEY and HES. Mouse mutants that lack components of the 

Delta/Notch signaling pathway display severe vascular defects and die in utero (Fischer et 

al., 2004; Gale et al., 2004; Krebs et al., 2004). Other mediators involved in transcriptional 

regulation of arterial specification are the forkhead box transcription factors FOXC1 and 

FOXC2 (Seo et al., 2006). The chicken ovalbumin upstream promoter-transcription factor II 

(COUP-TFII) is among all known molecules that are restricted to the mediation of arterial 

identity the only molecule which is specifically contributed in the defining of the venous cell 

fate (You et al., 2005). 

Another mechanism required for maintenance of both arterial and venous differentiation after 

vascular network formation comprises the interaction of ephrinB2/EphB4 (Heroult et al., 

2006). Because of the fact that the transmembrane protein ephrinB2 is expressed on arterial 

endothelium and its receptor EphB4 on venous endothelium both proteins are frequently 

used as molecular markers for the identification of arteries and veins. Mutant mice either 

deficient for ephrinB2 or EphB4 die between E10.5-E11.5 days after gestation due to 

vascular maturation and arteriovenous differentiation defects (Gerety et al., 1999; Wang et 

al., 1998). This local distribution of ephrinB2 and EphB4 suggests an important role for the 
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controlling of vascular morphogenesis (Adams et al., 1999). Other molecules involved in 

arteriovenous differentiation include the neuropilins, which also display a distinct expression 

pattern. Neuropilin (Nrp) 1 is exclusively expressed in arteries, whereas Nrp2 is restricted to 

venous and lymphatic endothelial cells (Gu et al., 2003; Yuan et al., 2002). 

 

1.2 Molecular regulation of angiogenesis 

The formation of a functional vascular network is a tightly controlled sequence of events that 

include the angiogenic activation phase and a resolution phase (Carmeliet, 2003; Folkman 

and DAmore, 1996). Both phases are well orchestrated by the interplay of several growth 

factors, chemokines, transcription factors, and adhesion molecules. The existing vessels 

dilate during the activation phase, followed by the degradation of the extracellular matrix 

through the activation of matrix metalloproteinases (MMPs) as well as by an increase in 

vascular permeability. Afterwards, migration and proliferation of endothelial and mural cells 

occur to assemble new vessel sprouts. In the subsequent resolution phase, the mural cells, 

consisting of SMCs and pericytes, are recruited to the nascent vasculature to ensure vessel 

stability and perfusion, also known as arteriogenesis. This phase is finally completed by the 

assembly of a basement membrane between the endothelial cells and the SMCs (Pepper, 

1997). Taken together, only a well coordinated combination of genetic programming and 

extrinsic influences result in a functional network of blood vessels. 

 

1.2.1 Sprouting angiogenesis and vessel maturation 

Sprouting angiogenesis is initiated by various signaling pathways and genetic programs that 

follow a series of sequential activation steps. First, the expression of angiogenic regulators 

such as vascular endothelial growth factor (VEGF) or endothelial nitric oxide synthase 

(eNOS) gets activated (Ku et al., 1993; Ziche et al., 1997; Ziche et al., 1994). During this 

activation phase VEGF stimulates the expression of nitric oxide (NO) with the help of eNOS, 

which catalyzes this production. In response to the VEGF signaling the NO release mediates 

vasodilatation coincidental with the VEGF-induced permeability. Vascular permeability is 

accompanied with the rearrangement of intercellular adhesion molecules, such as vascular 

endothelial (VE)-cadherin and the platelet endothelial cell adhesion molecule (PECAM)-1 

(Dvorak et al., 1999).  

The extracellular matrix (ECM) and basal lamina requires a remodeling/breakdown to 

facilitate angiogenic sprouting formation, which is mediated by several proteinases, such as 

metalloproteases, plasminogen activators, heparinases and cathepsins (Carmeliet, 2003). 

Moreover, the degradation of ECM liberates matrix-bound growth factors like VEGF and 

basic fibroblast growth factor (bFGF) (Lee et al., 2005; Turner et al., 2005).  
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Subsequently, the liberation enables the guided migration of the developing vessel sprout 

(Figure 3) towards a VEGF gradient. The branching vessel can be subdivided into several 

types of specialized endothelial cells with distinct cellular fate specifications (De Smet et al., 

2009; Horowitz and Simons, 2008). During this navigation process the front situated cell, 

termed “tip-cell”, utilizes its numerous filopodial extensions for sensing and responding to 

guidance cues, like VEGF, in their microenviroment (Gerhardt et al., 2003; Ruhrberg, 2003). 

Endothelial cells that are located behind the tip cell are called stalk. Stalk cells are essential 

for the elongation of the vessel branch, which is accomplished by proliferation. This type of 

endothelial cells features further characteristics, like the formation of junctions and lumen. 

Additionally, stalk cells are trailed by the recently discovered phalanx cells that ensure cell 

quiescence elicited to their coverage of mural cells and their tight junctions (Gerhardt, 2008). 

 

During the resolution phase of angiogenesis, the newly formed blood vessels are stabilized 

by the vascular basement membrane and by the recruitment of mural cells, like SMCs and 

pericytes. At least four signaling pathways contribute to this blood vessel maturation process. 

Upon VEGF stimulation platelet derived growth factor (Pdgf) B is primarily secreted by 

endothelial cells thereby mediating the recruitment of pericytes, which express its receptor 

Pdgfr-β (Hellstrom et al., 2001; von Tell et al., 2006). Mice lacking either Pdgf-B or Pdgfr-β 

display diminished pericyte coverage in many, but not all organs (Hellstrom et al., 1999; 

Lindahl et al., 1997). Finally, deficient animals die around birth because of leaky 

microvessels and multiple microaneurysms (Leveen et al., 1994; Soriano, 1994) induced to 

endothelial cell overproliferation and failure in forming inter-endothelial junctions (von Tell et 

al., 2006).  

Another signaling system involved in vessel growth and stabilization is the angiopoietin/Tie- 

system, which consists of the angiopoetins (Ang-1 and Ang-2) and their tyrosine kinase 

receptors (Tie1 and Tie2). Ang-1 is constitutively expressed by numerous cell types, whereas 

its apparent counterpart Ang-2 is almost exclusively endothelial specific. While the binding of 

the growth factor Ang-1 to the receptor Tie-2 implicates cell quiescence and vessel stability, 

the binding of Ang-2 to Tie-2 controls vascular homeostasis through an autocrine loop 

mechanism (Scharpfenecker et al., 2005). In the absence of angiogenic growth factors the  

Ang-2/Tie2 interaction mediates vessel regression caused by detachment of the endothelium 

from SMCs (Maisonpierre et al., 1997; Visconti et al., 2002). In contrast, their presence 

enhances pro-angiogencic function (Visconti et al., 2002). However, the complete role of 

angiopoietin signaling during vessel maturation is not fully understood. Further signaling 

pathways that are associated with vessel maturation and stabilization include the 

transforming growth factor (TGF)-β superfamily (Goumans et al., 2009) and the interaction of 

the G-protein-coupled receptor Edg1 with its ligand sphingosine-1-phosphate (Kluk and Hla, 

2002). 
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Figure 3: Regulation of angiogenesis.  
The activation phase of angiogenesis is induced by VEGF signaling that causes an increase in 
vascular permeability, followed by proteases mediated degradation of basal lamina and extracellular 
matrix, endothelial cell migration and proliferation. Vessel destabilization is supported by Ang-2 which 
enhances the detachment of endothelial cells from SMCs. During the vessel guidance process 
towards the growth factor gradient the developing sprout can be subdivided in tip, stalk and phalanx 
cells. The tip cell stalk cell identity is thereby regulated by the Dll4/Notch signaling pathway. During 
resolution phase, vessels are stabilized by PDGF-B-mediated recruitment of pericytes. Ang-1 and 
TGF-β signaling further support vessel maturation by pericyte differentiation and stabilization, 
respectively. (Adapted by permission from PhD thesis of Markus Thomas) 

 

 

1.2.2 Hypoxia 

Hypoxia was identified as the potent key regulator to induce angiogenesis during embryonic 

development as well as through tumor progression. Hypoxia serves in this regulation process 

as an important homeostatic mechanism that links vascular oxgen supply to metabolic 

demand via a tightly controlled interplay of hypoxia inducible factors (HIFs) and HIF 

hydroxylases. The induction of angiogenesis is mediated by transcritption factors of the HIF 

family, which consists of three family members (HIF-1 to -3). The transcription factors form 

heterodimers existing of either one of three HIF-α subunits together with the HIF-1β subunit. 

HIF-α subunits are inducible by hypoxia, whereas HIF-1β subunits are constitutively located 
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in the nucleus. Under normal oxygen conditions the two independent hydroxylation sites on 

the HIF-α subunits provide a dual mechanism of inactivation. On the one hand HIF-α 

subunits get modificated through the prolyl-hydroxylases and degraded by the proteasomal 

degradation pathway, whereas the catalytic hydroxylation of the second site results in 

inhibition of transcriptional activity (Ivan et al., 2001; Mahon et al., 2001; Masson et al., 

2001). In contrast, under low oxygen conditions hydroxylases are inactive and mediate the 

translocalization of the HIF-α subunits into the nucleus. After accumulation of the subunits 

the transcription factors initiate the expression as well as the segregation of angiogenic 

growth factors, such as VEGF, bFGF, angiopoietins, and their receptors (Pugh and Ratcliffe, 

2003). 

 

1.2.3 Guidance molecules 

The vascular system of vertebrates, as well as their nervous system, reveals anatomic and 

structural similarities. Recent studies have highlighted that both blood vessels and nerves 

often follow parallel routes and require a precise control over their guidance and growth to 

establish a functional network. Normally the assembly of an artery, a vein, and a nerve form 

the neurovascular bundle which implicate, based on the close proximity, an advantage for 

both systems. On the one hand the supply of large nerves with oxygen and nutrients is 

ensured by the surrounding vessels, whereas on the other hand especially arteries require 

innervations to control vasoconstriction or dilation (Larrivee et al., 2009). In the past, several 

molecules, also known as guidance cues, were identified to play an important role in the 

guidance of nerves. Guidance molecules, mostly consisting of secreted ligands and 

membrane receptors, were first characterized in the nervous system, before their possible 

role was identified in the vascular system. The outgrowing axons carry specialized terminal 

cells, termed the axonal growth cones that mediate the navigation through the tissue by 

sensing attractive or repulsive signaling cues. Moreover, an equivalent of the growth cones 

was assigned to the tip cells of the growing vascular sprouts (le Noble et al., 2008).  

 

1.2.4 Vascular guidance 

Among the numerous growth factors involved in vascular development, members of the 

VEGF family were identified as the key regulators. In humans and mice the VEGF family 

includes five members (Figure 4), namely VEGF-A to VEGF-D, and placenta growth factor 

(PLGF). In recent years the two related proteins VEGF-E, identified in parapoxvirus (Ogawa 

et al., 1998), and VEGF-F in snake venom could be added (Suto et al., 2005) to the VEGF 

family. All VEGF family members mediate their signaling through binding to tyrosine-kinase 

receptors, like VEGFR-1 (Flt-1), VEGFR-2 (KDR, Flk1) and VEGFR-3 (Flt-4). The 

approximately 230kDa VEGF receptors belong to the transmembrane proteins and are 
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composed of an extra- and intracellular domain. The extracellular domain consists of seven 

(VEGFR-1 and -2) or six (VEGF-3) immunoglobulin (Ig) like domains and the intracellular 

domain is organized by a split tyrosine-kinase. Upon binding of VEGF, the VEGFRs form 

homo- and heterodimers which mediate its activation via an autophosphorylation of several 

tyrosine residues located in the intracellular domain. Activated receptors recruit intracellular 

mediators which activate different downstream signaling pathways. VEGFR-1 and VEGFR-2 

are almost exclusively expressed on endothelial cells, whereas VEGFR-3 is primarily 

expressed by lymphatic endothelial cells in the healthy adult. Although VEGFR-3 signaling is 

mainly restricted to lymphangiogenesis it could be shown that VEGFR-3 is also expressed on 

endothelial cells and involved in cardiovascular development (Dumont et al., 1998). 

 

 
 
Figure 4: Schematic overview of VEGF-receptors and ligands.  
The mammalian vascular endothelial growth factors (VEGF) A-D and Placental growth factor (PLGF) 
bind to three VEGF receptor tyrosine kinases (VEGFR), which are able to form homo- or 
heterodimers. For instance, VEGF-A binds to VEGFR-1 and-2, while VEGF-B and PLGF preferentially 
bind VEGFR1. Proteolytic processing of VEGF-C and -D features VEGFR2-binding. (Adapted and 
modified by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology 
(Olsson et al., 2006), copyright 2006) 

 
 
The most predominant form of the approximately 40kDa secreted ligands which preferentially 

form homodimers is VEGF-A (Muller et al., 1997; Neufeld et al., 1999). Due to alternative 

splicing of the VEGF-A mRNA various number of isoforms with different biological functions 

are generated (Neufeld et al., 1999). In general, the binding of VEGF-A to VEGFR-2 induces 
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endothelial cell proliferation, migration and survival (Ferrara et al., 2003). Furthermore, its 

signaling is linked to cellular processes, such as the regulation of protease production and 

vascular permeability (Senger, 1983). The targeted inactivation of a single Vegf-a allele 

results in embryonic lethality between E11.5 to E12.5 due to vascular abnormalities 

(Carmeliet et al., 1996; Ferrara et al., 1996), whereas a complete disruption of Vegf-a leads 

even to an earlier lethal phenotype (E9.5-E10.5) with severe vascular malformations. Similar 

observations were made in transgenic mice that lack receptor Vegfr-2 (Shalaby et al., 1995). 

Additionally, mice deficient for Vegfr-1 display a disorganized vascular endothelium caused 

by endothelial cell overgrowth resulting in embryonic death around E8.5 (Fong et al., 1995). 

In context to the tip-cell/stalk-cell communication it could be shown that Vegfr-2 is prominent 

expressed in the tips of the sprouts. Tip cells sense and initiate the direct migration towards 

the Vegf-a gradient via its actin-rich protrusions, also known as filopodia. However, the tip 

cells are not capable to elongate the vessel sprout because they do not proliferate. In 

contrast, the sprout extension is accompanied by the subsequently following stalk cells that 

still possess this efficiency. An additional system involved in vessel guidance includes the 

DELTA/NOTCH system. Although its signaling is less associated to chemotactic guidance of 

the forming sprouts, it may be rather important in the regulation of the tip-cell/stalk-cell 

identity (Gerhardt, 2008). In several studies mainly performed in mouse retinae and zebrafish 

it has been recently shown, that Dll4 is upregulated in the tip cells in response to VEGF 

stimulation and hypoxia (Diez et al., 2007; Lobov et al., 2007). The binding of Dll4 to its 

Notch-1 receptor on the neighboring cell activates a signaling cascade, which mediates the 

transformation of these cell into a stalk cell with its typical quiescent and non-sprouting 

identity. Furthermore, it has been hypothesized that NOTCH-1 signaling coincidentally leads 

to a downregulation of VEGFR-2 levels (Williams et al., 2006). This model is supported by in 

vivo findings in which mice and zebrafish deficient for Dll4 exhibit a numeric increase of 

endothelial tip cells (Gerhardt, 2008). 
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1.3 Role of Rho-GTPases during angiogenesis 

Small guanosine triphosphatases (GTPases) from the Ras superfamily of monomeric 20-30 

kDa GTP-binding proteins are known to be key regulators of many diverse developmental 

and cellular events (Wennerberg et al., 2005). Especially the subfamily of Ras homologous 

(Rho) proteins, with its extensively characterized members RhoA, Rac1, and Cdc42, are 

involved in processes including the regulation of cytoskeletal dynamics, cell division, gene 

expression, cell proliferation, apoptosis, vesicle transport, and transcription factor activity 

during normal as well as during pathological conditions (Bryan and D'Amore, 2007). To this 

day 23 members of Rho GTPases have been identified in mammals where all of them 

display an ubiquitous distribution pattern during development (Bustelo et al., 2007). In recent 

years a growing number of studies have implicated the RhoA-GTPases to be involved in the 

regulation of several angiogenic processes, such as vascular permeability, ECM remodeling, 

proliferation, morphogenesis, migration, and survival. RhoA-GTPases were identified to 

function as essential downstream effectors of VEGF signaling. They act as molecular 

switches cycling between an active guanosine triphosphate (GTP)-bound and an inactive 

guanosine diphosphate (GDP)-loaded state. Thus, only the activated state of small GTPases 

binds effectors and allows transmission of upstream signals. This cyclic activation and 

inactivation process is spatiotemporally controlled and tightly coordinated by three known 

classes of regulatory proteins. Guanine nucleotide exchange factors (GEFs) promote the 

activation by the displacement of GDP to GTP, while the GTPase-activating proteins 

stimulate the intrinsic GTP-hydrolytic activity of Rho GTPases, leading to a return to the 

GDP-bound conformation (Beckers et al., 2010; Rossman et al., 2005; Tcherkezian and 

Lamarche-Vane, 2007). In addition, the third class of regulatory proteins consists of the Rho 

guanine nucleotide dissociation inhibitors (GDIs), which are believed to block the GTPase 

cycling by sequestration of the GTPase within the cytosol and the stabilization of the GDP-

bound form (DerMardirossian and Bokoch, 2005). Among the array of Rho-GTPases the 

serine/threonine Rho-associated coiled-coil protein kinases (ROCKs) are the best studied 

RhoA effectors. ROCKs regulate the contractility of the actomyosin cytoskeleton via 

phosphorylation of myosin light chain (MLC) and the myosin-subunit of myosin phosphatase. 

In addition, they are also involved in the activation of LIM-kinase, which in turn contributes to 

Rho-induced reorganization of the actin cytoskeleton via its mediator protein cofilin (Zhao 

and Manser, 2005). However its function during the angiogenic process of vascular 

branching is discussed controversially (van Nieuw Amerongen and van Hinsbergh, 2009). 

Some reports assume that ROCKs mediate pro-angiogenic properties (Hata et al., 2008; Yin 

et al., 2007), whereas others implicate ROCK to function anti-angiogenically. For instance, 

the transient inhibition of RhoA/ROCK-signaling caused an augmentation of blood vessel 

sprouting and length (Mavria et al., 2006; Su et al., 2004). 
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The first phases of sprouting angiogenesis are associated with enhanced vascular 

permeability, which is initiated by alterations in adherens and tight junctions-mediated 

integrity (Mehta and Malik, 2006). Today it is well known that RhoA-signaling promotes 

vascular permeability whereas the small GTPases Rac1 and Cdc42 appear to regulate 

barrier function in an antagonistic manner via stabilization of the integrity of junctional 

complexes. Further, the features and functions of small GTPases in endothelial permeability 

will be explained in detail in chapter 1.4.2.2. Beside the importance of small GTPases in the 

regulation of vascular permeability they have been implicated in degradation of the basement 

membrane and the remodeling of the ECM. Several studies primarily performed in non-

endothelial cells have demonstrated that Rho-signaling induces the expression and secretion 

of MMPs, which in turn results in the modulation of the ECM (Turchi et al., 2003; Turner et 

al., 2005). In contrast to these findings Rac1-signaling mediates opposing effects due to the 

inhibition of MMP activity which is caused by enhanced expression of tissue inhibitors of 

MMPs (TIMPs) (Engers et al., 2001). A similar role of RhoA- and Rac1-signaling in ECM 

reorganization has been reported for endothelial cells. While ectopic expression of 

constitutive active RhoA leads to an increase in MMP-9 secretion and lamelliopodia 

formation (Abecassis et al., 2003), an overexpression of its antagonist TIMP-2 inhibits the 

migratory activity consistent with the subsequent inactivation of Rac1 due to the disassembly 

of the Paxilin-Crk-DOCK180 complex (Oh et al., 2006). Noteworthy is here the dedicator of 

cytokinesis 180 (DOCK180) protein, which acts as a nucleotide exchange factor for the Rho-

protein Rac1 through its Docker GEF domain. Several reports could show that DOCK180 

reveal essential functions during phagocytosis, cell migration, dorsal closure and in the 

organization of the cytoskeleton (Lu and Ravichandran, 2006). Based on the fact that small 

GTPases are key mediators in the regulation of cytoskeletal rearrangements they are 

furthermore important for the angiogenic process of endothelial cell migration. In general, the 

forward movement of a cell is accomplished by the activation of Cdc42 and Rac1 which in 

turn regulate the reorganization of the cytoskeleton and mediate the formation of filopodia 

(Cdc42) and lamellipodia (Rac1) at its leading edge. On the other hand simultaneous RhoA-

signaling promotes cytoskeletal contraction at the rear site of the cell, resulting in the cellular 

detachment and retraction of the cell (Raftopoulou and Hall, 2004). Moreover, the migratory 

process of endothelial cell during angiogenesis is tightly connected to proliferation, which is 

important for the elongation of the developing vessel sprout. In the past several signaling 

pathways such as the Ras/MAPK pathway have been identified to be important for the 

regulation of endothelial cell cycle progression. Another pivotal process involved in 

proliferation represents the Rho-protein-mediated mechanism of cytoskeleton modulation. Its 

importance for proliferation has been demonstrated by the pharmacological disruption of the 

cytoskeleton, which in turn results in a cell cycle arrest in the G1 phase (Huang and Ingber, 
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2002). This suggests that the actin cytoskeleton reorganization is necessary for the transition 

from the G1 to the S phase. Several reports indicate that Rho/ROCK signaling alters cell 

cycle regulatory proteins via multiple mechanisms. For instance, the levels of Cyclin D1 and 

p21(Cip) are upregulated via Ras/MAPK signaling, Cyclin A via LIM-kinase signaling and 

p27(Kip1) via a yet unknown mechanism (Croft and Olson, 2006). Furthermore, activated 

Rac1 and Cdc42 were also identified to increase the expression levels of Cyclin A and Cyclin 

D1 and to participate in the proteasomal degradation of p21 (Cip) (Bao et al., 2002; Page et 

al., 1999; Philips et al., 2000). 

 

 
 
Figure 5: Endothelial migration is coordinated by Rho-proteins.  
At the leading edge of the cell, the spatial activated small GTPases Cdc42 and Rac1 stimulate several 
distinct downstream targets (e.g. PAK) which mediate the rearrangement of the actin cytoskeleton. 
While Cdc42 signaling promotes the formation of migratory and actin-rich filopodia, activated Rac1 
mediates lamellipodia formation. At the rear site RhoA signaling elicits the simultaneous detachment 
of the cell due to the actomyosin-based cytoskeletal contraction. Only a well coordinated interplay of 
both events leads to endothelial cell migration. (Adapted and modified by permission from Springer 
Science & Business: Cellular and Molecular Life Sciences (Bryan and D'Amore, 2007), copyright 
2007) 

 

 

In addition to that only seven of twenty three Rho GTPase family members have been so far 

deleted in mice. Although global RhoA knockout mice do not exist, it has been suggested 

that they display a lethal phenotype, like it was described for Rac1 and Cdc42 knockouts 

(Heasman and Ridley, 2008). In contrast, the characterized phenotypes of conditional Rac1- 

and global RhoB-knockouts indicate the importance for small GTPases in angiogenesis. 
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While specific deletion of Rac1 in Tie-2 expressing endothelial cells results in embryonic 

lethality around E9.5 due to defects in vascular development (Tan et al., 2008), others did 

not observe angiogenic deficiencies by the usage of a Pdgfb-iCreER-inducible system 

(D'Amico et al., 2010). In addition, RhoB-null mice are viable and display beside their growth 

retardation no major developmental defects (Liu et al., 2001). However, it has been shown 

that RhoB-mice exhibit a delay and altered vessel sprouting within the retina (Adini et al., 

2003). 

 

 

1.4 Endothelial barrier function and vascular permeability 

In the vasculature endothelial cells mediate the separation of blood from the surrounding 

tissue. However, the endothelium is not a rigid structure it is moreover a semi-permeable 

barrier which regulates the exchange of plasma fluids and proteins as well as the cellular 

transmigration between the blood and interstitial space (Mehta and Malik, 2006).  

Under normal healthy conditions the endothelial cells of the adult vasculature are adhered 

tightly to each other and their proliferation is contact-inhibited (Lampugnani et al., 1997; 

Vinals and Pouyssegur, 1999). Only one in every 10.000 endothelial cells is in the cell 

division cycle (Engerman et al., 1967; Hobson and Denekamp, 1984). In this state of so 

called “endothelial cell quiescence” the cells are less sensitive to growth factors (Lampugnani 

et al., 2003) and protected from apoptosis. This characteristic is maintained by cell-cell and 

cell-matrix protein interactions. The cell-cell interactions are mediated by adhesive properties 

of specific proteins that comprise the two classes of adherens junctions (AJs) and tight 

junctions (TJs), whereas the cell-matrix protein interactions are achieved by focal adhesions, 

primarily composed of integrins. AJ organization is important for vascular development and 

remodeling, whereas tight junctions are more essential for the regulation of endothelial 

barrier function. Though, the crucial regulation of endothelial permeability is indispensable for 

maintaining vascular homeostasis and physiological function. In contrast, an uncontrolled 

and lasting increase in permeability due to microvascular barrier dysfunction and endothelial 

hyperpermeability is closely linked to pathophysiological conditions and diseases, including 

inflammation, sepsis, ischemia, diabetes and tumor metastasis (Kumar et al., 2009). 

 

1.4.1 Vascular integrity mediated by endothelial cell junctions 

In general, the endothelial-cell junctions, TJs as well as AJs, represent a complex network of 

homophilic transmembrane proteins that form a pericellular zipper-like structure along the 

cell border. In comparison to the epithelium where TJs are usually located at the apical side 

of the intercellular cleft, endothelial cells reveal intermingled tight and adherens junctions all 

the way along the cleft (Dejana, 2004). Furthermore, in contrast to epithelial cells, endothelial 
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cells lack typical desmosomes (Dejana et al., 2009). Although, TJs and AJs display similar 

features both are formed by different molecules. In the endothelium AJs represent the 

majority of interendothelial junctions. AJs are mainly composed of VE-cadherin, a 

transmembrane receptor whose extracellular domain homophilically binds to extracellular 

domain of a further VE-cadherin molecule expressed on the surface of an adjacent cell. 

However, in its absence neuronal (N)-cadherin expression is increased and supports barrier 

stabilization (Navarro et al., 1998). Mice with an inactivation of VE-cadherin gene die at E9.5 

of gestation because of impaired vascular remodeling and maturation accomplished by an 

increase in the number of apoptotic cells (Carmeliet et al., 1999; Gory-Faure et al., 1999). 

VE-cadherin depleted endothelial cells were successive disconnected from each other and 

detached from the basement membrane, implicating vessel regression, collapse and 

hemorrhages. A similar vascular phenotype displays the mice with an endothelial-specific 

deletion of N-cadherin (Luo and Radice, 2005). Moreover, N-cadherin is recommended to be 

important for mediating pericytic-endothelial interaction (Gerhardt et al., 2000; Tillet et al., 

2005). In contrast, the core components of endothelial TJs are mainly formed by the 

adhesive properties of the claudin family (Furuse and Tsukita, 2006; Van Itallie and 

Anderson, 2006), which includes the vascular specific and predominant expressed member 

Claudin-5 (Nitta et al., 2003). Additional transmembrane adhesion proteins that are involved 

in the assembly of TJs includes the members of the occludin family, junctional adhesion 

molecules (JAMs) and endothelial cell selective adhesion molecule (ESAM) (Dejana et al., 

2009). Both AJs and TJs are connected to cytoskeletal and signaling proteins through their 

cytoplasmatic tail, which allows on the one hand the anchoring of the adhesion proteins to 

the actin cytoskeleton as well as the transfer of intracellular signals (Dejana, 2004). The AJ 

component cadherin is associated directly to several intracellular partners including the 

catenins, like β-catenin, plakoglobin and p-120 (Nyqvist et al., 2008), whereas the interaction 

of the TJs with the cytoskeleton is mediated through the proteins Zonula occludens (ZO)1, 

ZO2 and Cingulin (Matter and Balda, 2003). Beside the specialized junctional complexes of 

AJs and TJs EC express further molecules with adhesive properties including the 

immunglobulins PECAM-1 (CD31), S-endo-1 (also known as MUC18 or CD146) and Nectin 

(Dejana, 2004). In addition the cell-matrix interaction is achieved by focal adhesions that are 

primarily formed by the integrin family. Integrins are type I transmembrane glycoproteins and 

comprises in mammals over nineteen α- and eight β-subunits, which combine differentially 

and give rise to an array of 25 heterodimeric adhesive molecules (Humphries, 2000). Next to 

the mediation of cellular connections to ECM proteins like collagen, fibronectin, laminin or 

proteoglycans, integrins are also contributed to cellular migration and activation of 

intracellular pathways (Gumbiner, 1996). Among all integrins ten are reported to be 

expressed on endothelial cells. The most prominent form is thereby αvβ3 integrin, which is 
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strongly upregulated on EC during angiogenesis is αvβ3 integrin. Its targeted inhibiton via 

specific antagonists leads to an increase in venular permeability (Wu et al., 2001). Moreover 

mice lacking the αv subunit exhibit extensive vasculogenesis and angiogenesis consisting 

with intracerebral hemorrhages (Bader et al., 1998). 

 

 
 
Figure 6: Schematic overview of the molecular organization of endothelial cell-junctions. 
Vascular barrier function is mediated through tight (TJs) and adherens (AJs) junctions which are 
composed of transmembrane adhesion proteins. At TJs adhesion is promoted by members of the 
claudin and occludin family as well as by the junctional adhesion molecule (JAM) family, whereas at 
endothelial AJs, adhesion is exclusively mediated through vascular endothelial (VE)-cadherin. 
Transmembrane adhesion proteins thereby bind to different intracellular partners that are associated 
to intracellular signaling and reorganization of the actin cytoskeleton. Platelet endothelial cell adhesion 
molecule (PECAM-1) represents a further molecule contributed to cell-cell adhesion. In contrast 
endothelial expressed neuronal (N)-cadherin probably mediates binding to pericytes or other 
mesenchymal cells. (Adapted by permission from Macmillan Publishers Ltd: Nature Reviews 
Molecular Cell Biology (Dejana, 2004) , copyright 2004) 

 

 

1.4.2 Regulation of junctional permeability 

1.4.2.1 Intracellular signal transduction 

Vascular permeability is mediated by a least two major pathways that allow solutes to 

traverse the endothelium, namely the paracellular and transcellular pathway. The first is 

controlled by a coordinated opening and closure of interendothelial junctions that allows free 

passaging of macromolecules in the range of 3 nm in diameter and beneath (Vandenbroucke 

et al., 2008). In contrast, the transcellular pathway promotes the transport via vesicular 

transport systems, fenestrae and biochemical transporters (Dvorak et al., 1996). However, in 

the following the focus will be set on the regulation of the paracellular pathway. 
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1.4.2.2 Role of small GTPases in control of vascular permeability 

In the past much attention has been given to the regulation of AJs, with their major 

component VE-cadherin. Although the binding of catenins to VE-cadherin is required for 

maintaining AJ integrity, the p120 binding to VE-cadherin is probably the most important 

component in mediating AJ stability (Xia et al., 2003). Unlike β-catenin and plakoglobin, p120 

is not associated to the actin cytoskeleton (Reynolds and Roczniak-Ferguson, 2004). 

Moreover, p120 functions as a scaffold for regulatory proteins, such as cadherins, kinases, 

phosphatases and RhoGTPases, which in turn modulate AJs function by controlling the 

phosphorylation state of p120 and other AJ binding partners (Mehta and Malik, 2006; 

Reynolds and Roczniak-Ferguson, 2004). In addition to that further studies allocate p120 to 

play role in the regulation of VE-cadherin expression, because of its interaction properties 

with the molecular motor kinesin and transcription factor kaiso (Kondapalli et al., 2004; 

Yanagisawa et al., 2004). All of these described p120-functions are capable to control 

endothelial permeability by multiple mechanisms. In general the regulation of vascular 

permeability is accompanied with the dynamic interactions between the junctional proteins 

among each other and with the actin cytoskeleton. Both events are tightly controlled by small 

GTPases. In a quiescent endothelium AJs and TJs are stabilized by a cortical actin band 

(Spindler et al., 2010), whereas RhoA-mediated reorganization of actin into contractile stress 

fibers leads to disassociation of the adhesion-mediating components, which in turn leads to 

an increase of vascular permeability. Stress fibers are thereby composed of filamentous (F) 

actin and myosin II. In one of the first steps of stress fiber formation the MLC gets 

phosphorylated by a MLC kinase (MLCK) in a Ca2+/calmodulin-dependent manner 

(Goeckeler and Wysolmerski, 1995). Though, the phosphorylation state of MLC is 

additionally enhanced through the coincidental inhibition of the MLC phosphatase activity. 

Both steps are mediated through the Rho kinases (ROCKs), downstream effectors of the 

small GTPase RhoA (Amano et al., 2000). Consisting with the induced actin-myosin 

contraction, centripetal forces are generated that actively pulls membranes of adjacent cells 

apart. This event in turn results in disassociation of AJs, thereby producing interendothelial 

gaps (Millan et al., 2010; Moy et al., 1996).  

A further mechanism that is responsible for AJ disassociation and interendothelial gap 

formation involves microtubule disassembly (Mehta and Malik, 2006). Vasoactive agents, 

including TNF-α, thrombin and TGF-β, have been reported to cause microtubule disassembly 

and induce barrier breakdown through increased endothelial contraction (Birukova et al., 

2005). Microtubule destabilization is induced by a RhoA/Rock-dependent, but MLCK-

independent, signaling pathway (Petrache et al., 2003). Instead it has been recently 

demonstrated that thrombin-stimulated endothelial cells mediate their signaling through the 

Lim domain containing kinase 1 (LIMK1), another downstream target of ROCK, and thereby 
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regulating microtubule disassembly and stress fiber formation/linking microtubule dynamics 

to actin-myosin contraction (Gorovoy et al., 2005). 

 

 
 
Figure 7: Vascular barrier integrity is regulated by small GTPases. 
The assembly and disassembly of tight junctions and adherens junctions and thus endothelial 
permeability is primarily mediated through small GTPases. While RhoA-signaling primarily destabilizes 
cell-cell-interaction Rac1 and Cdc42 are involved in maintaining and strengthening of the integrity. For 
further details see text. (Adapted by permission from Oxford University Press: Cardiovascular 
Research (Spindler et al., 2010), copyright 2010) 

 

 

Beside the involvement of small GTPases in cytoskeleton dynamics, they are also involved in 

the regulation of vascular integrity on the level of cell junctions. Several permeability-

increasing agonists which mediate their signaling via small GTPases such as thrombin and 

VEGF induces tyrosine-phosphorylation of AJ components like VE-cadherin, β-catenin or 

p120-catenin (Dejana et al., 2008). For instance, the Ser665 residue phoshorylation of VE-

cadherin due to VEGF-signaling leads to its internalization in a clathrin-dependent manner 

(Gavard and Gutkind, 2006). However, binding of p120 to VE-cadherin prevents endocytosis, 

introducing the concept that p120 may acts as a plasma membrane retention signal (Dejana 

et al., 2008). In addition, the level of cytoplasmatic p120 increases after cadherin 

internalization, which in turn results in decrease of active RhoA and enhances the levels of 

barrier stabilizing GTPases, Rac1 and Cdc42 (Lampugnani et al., 1997). Moreover Rac1 

improves barrier conditions by inducing the tranlocalization of the cortical actin-modulating 

protein cortactin from the cytoplasm to the cell borders, where it accumulates (Jacobson et 

al., 2006; Weed et al., 1998; Zhao et al., 2009). Another mechanism involved in the cortical 

actin strengthening of endothelial barrier includes the LIM kinase/cofilin pathway. With the 

help of epithelial cells it has been shown that the small GTPases Rac1 and Cdc42 are 

capable to activate LIM kinase via their specific effectors of the PAK family, which in turn 

leads to cofilin phosphorylation (Bernard, 2007). Thus, the inactivation of cofilin prevents its 
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binding to actin and filament disassociation, which leads to the stabilization of the cortical 

actin cytoskeleton (Bamburg and Wiggan, 2002).  

In addition, RhoA and ROCK were primarily associated to the negative regulation of barrier-

mediating properties it has been recently shown that they are also partially involved in 

stabilization of the actin cytoskeleton. On the one hand ROCKs were identified to inhibit 

cofilin-mediated actin disassembly by LIM-kinase phosphorylation (Bernard, 2007; Sahai and 

Marshall, 2002), while on the other hand RhoA promotes the strengthening of cortical actin 

via its effector Dia in a profilin-dependent manner (Sahai and Marshall, 2002; Watanabe et 

al., 1997). In order to strengthen the endothelial barrier the modulation of cortical actin is not 

the only mechanism. Several other mediators, such as prostaglandins and atrial natriuretic 

peptide, were identified in the past to increase cyclic adenosine monophosphate (cAMP), 

which in turn activates Rac1 and Cdc42 via the Epac/Rap1 signaling cascade (Birukova et 

al., 2008; Birukova et al., 2007). Taken together, vascular permeability is primarily mediated 

through RhoA-signaling which is induced by binding of permeability-increasing agonists to 

their respective receptors on the EC surface. In contrast the small GTPases Rac1, Cdc42 

and Rap1 act antagonistically by maintaining and stabilizing micorvascular endothelial barrier 

function. 

 

 

1.5 Lung development 

During evolution of vertebrates several organs with hierarchical tubular networks were 

formed with its prominent representative, the vascular system (Horowitz and Simons, 2008). 

Another organ with highly branched structures is represented by the lungs which are 

developed relatively late in evolution according to terrestrial live. In general, lung 

morphogenesis can be subdivided into five morphologically and biochemically defined 

stages. In the initial phase of murine lung development, the embryonic phase (E9-11.5), lung 

buds and major bronchi are getting formed. This stage is continued by the pseudoglandular 

stage (E11.5-E16.5), which is characterized by the formation of the respiratory tree due to 

branching morphogenesis. The following canalicular stage (E16.5-E17.5) is mainly marked 

by the expansion of the terminal bronchioles, which in turn form the respiratory ducts and 

sacs. During the saccular stage (E17.5-P5) the respiratory endothelium undergoes a 

differentiation process. Furthermore, the lung mesenchyme gets thinner coincidentally with 

an increase in vascularity of saccules. In the final alveolar stage (>P5) the developing lungs 

mature, whereby growth and septation of the alveoli occur (Maeda et al., 2007). In correlation 

to the vascular network which is continuously formed by a monolayer of endothelial cells the 

respiratory system only consists of epithelial cells. However both systems reveal similarities 

in the formation of such tubular structures. Branching morphogenesis occurs in both systems 
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based on a migratory process of specified cells towards a hypoxia induced guidance cue 

(Centanin et al., 2008; Jarecki et al., 1999; Pugh and Ratcliffe, 2003). While epithelial cells of 

the developing tracheal system of Drosophila melanogaster or the respiratory tract of 

vertebrates react on the interaction of branchless and its tyrosine kinase receptor breathless 

or its mammalian orthologs such as fibroblast growth factor and the FGF-receptor 

respectively, migration in the vascular system is induced by the binding of VEGF-A to 

VEGFR2 (De Smet et al., 2009; Samakovlis et al., 1996; Sekine et al., 1999). Another 

similarity that is shared by both systems comprises the concept of tip and stalk cell formation. 

During Drosophila airway development, as well as in the vasculature of vertebrates, the 

determination of tip cell and stalk cell identity is controlled through Delta-Notch signaling. In 

contrast, this process is triggered by TGF-β signaling in the developing mammalian lung 

(Horowitz and Simons, 2008). 

 

 
 
Figure 8: Schematic overview over the five stages of murine lung development.  
In the initial phase of lung development, the embryonic phase (E9-11.5), lung buds and major bronchi 
are getting formed. This phase is followed by the pseudoglandular phase (E11.5-16.5) that is 
characterized by growth and dichotomous branching of the respiratory tube. In the following 
canalicular phase (E16.5-17.5) the terminal bronchioles expand to form the respiratory sacs and 
ducts. During the saccular phase (E17.5-P5) dilation of peripheral airspaces, as well as the 
differentiation of the respiratory endothelium occurs. Furthermore, this phase is characterized by an 
increasing vascularity of the saccules while the alveolar septae are attenuated. From stage P5 
onwards, the alveolar phase growth and septation of the alveoli proceeds. (Adapted and modified from 
the webpage www.cincinnatichildrens.org; division pulmonary biology and (Maeda et al., 2007)) 

 

 

1.6 The family of kelch proteins 

The first kelch protein was identified and characterized in Drosophila melanogaster, nearly 

two decades ago. The Drosophila kelch protein Orf1 is expressed in the actin-rich 

intracellular bridges, also known as the ring canals, which connect the 15 supporting nurse 

cells with the oocyte in the developing egg. This kelch protein is important for the regulation 
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and stabilization of the ring canals to maintain the cytoplasmic transport to the oocyte 

(Robinson et al., 1994; Xue and Cooley, 1993). The deletion of this protein leads to the 

defined and eponymous goblet-shaped chorion (Schupbach and Wieschaus, 1991) (Figure 

9).  

The family of kelch proteins includes to currently available information around 71 members 

within the human genome (Prag and Adams, 2003). However, little is known about their 

function. Nevertheless, those kelch proteins that were already characterized feature their 

importance for cellular processes, like for example the regulation of cellular morphology, 

migration and gene expression (Adams et al., 2000). 

 

 

Figure 9: Identification of the kelch protein in Drosophila melanogaster.  
The left side of (A) indicates the chorion of a wild-type egg, whereas on the right side the open ended 
chorion of the nomenclatured kelch mutant is represented. (B) Illustration of a Drosophila egg 
chamber after specific antibody staining for actin (red) and kelch (green). The colocalization of both 
proteins (yellow) display the expression pattern of kelch at ring canals of connecting nurse cells to 
each other and to the oocyte. (A: Adapted from (Schupbach and Wieschaus, 1991); B: Adapted by 
permission from Elsevier: Trends in Cell Biology (Adams et al., 2000), copyright 2000) 

 
 

1.6.1 Organization and structure of the BTB-kelch-family members 

The majority of the kelch family members belong to the group of BTB-domain containing 

kelch proteins, that consist in general of three motifs (Prag and Adams, 2003). In detail: 

BTB/POZ domain, the kelch domain and the BACK domain.  

The BTB/POZ domain is located at the N-terminal site of several kelch proteins. BTB/POZ 

stands for broad-complex, tramtrack and bric a brac/ poxvirus and zinc-finger. The BTB/POZ 

domain is composed of around 120 aminoacids and mediates processes like protein-protein 

interaction (Stogios and Prive, 2004) and it controls Golgi complex localization (Nacak et al., 

2006). Furthermore, it is involved in the regulation of the proteasomal protein degradation 

pathway (Geyer et al., 2003).  

A B 
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Figure 10: Representative illustration of BTB-kelch protein structure with the help of the KLEIP 
protein.  
(A) Schematic of the BTB-kelch domain organization. The characteristic BTB/POZ domain is located 
at the N-terminal part, whereas the kelch domain, containing of the six-tandem kelch repeats (40-50 
amino acid residues in length) is located at the C-terminal end. (B) Crystal structure analysis 
represents the β-propeller structure formed by the kelch domain mediating interaction with actin 
cytoskeleton. (Adapted from PhD thesis of Tanju Nacak) 

 

 

The C-terminal site normally consists of the kelch repeats. Each kelch repeat is a sequence 

of 44-56 amino-acids in length. In addition, the clustering of four to seven kelch repeats 

establishes the functional unit, termed kelch domain. Crystal structure analyses have 

revealed that each kelch repeat forms a four-stranded antiparallel β-sheet (Prag and Adams, 

2003). After assembling of all kelch repeats the kelch domain forms the characteristic β-

propeller structure, which mediates the binding to cytoskeleton structures like actin-filaments 

or mikortubuli. 

In between of the BTB/POZ and the kelch domain is the BACK domain located. The BTB and 

C-terminal kelch repeat-domain was mainly found in vertebrates (53 in humans), but its 

function is still speculative (Stogios and Prive, 2004).  

 

1.6.2 Functional heterogeneity of the BTB-kelch-family members 

In the last decade several novel BTB-kelch proteins were identified, but so far little is known 

about their physiological and biochemical function. However, those BTB-kelch-family 

members that were already identified and described in the past reveal heterogenous 

functionality. Nevertheless, the majority of the characterized kelch proteins display the 

common feature of being associated to the cytoskeleton, mediating its stabilization as well as 

playing an important role in membrane elongation and ruffling (Williams et al., 2005). 

Previous studies demonstrated that in the brain predominantly expressed BTB-kelch protein 

Mayven binds to actin filaments in stress fibers and cortical actin-rich regions, including the 

process tips in oligodendrocyte precursor cells. Moreover, Mayven has been reported to be 

involved in the dynamic organization of the actin-cytoskeleton and oligodendroccyte 

A

 
A B  
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elongation (Soltysik-Espanola et al., 1999; Williams et al., 2005). However, not all BTB-kelch 

family members interact with the actin cytoskeleton. The most considerable BTB-kelch family 

member which participates in the regulation of cellular microtubule stability is the neuronal 

expressed gigaxonin (Allen et al., 2005). Furthermore gigaxonin binds via its BTB/POZ 

domain to the ubiquitin-activating enzyme E1 and mediates the proteasomal degradation of 

its binding partner, the microtubule-associated protein 1B (MAP1B). Gigaxonin is not the only 

described BTB-kelch protein which is linked to the protein degradation pathway (Allen et al., 

2005; Cleveland et al., 2009). Other BTB-kelch family members, such as KLHL9 (Sumara et 

al., 2007), KLHL12 (Rondou et al., 2008), KLHL13 (Sumara et al., 2007), KLHL21, KLHL22 

(Maerki et al., 2009) and Keap1 (Kobayashi et al., 2004), were reported to function as 

substrate adaptors for the E3 ubiquitin ligase complexes. However little is known about their 

function in vivo. So far, only six BTB-kelch proteins have been deleted in mice. Mutations of 

each of these BTB-kelch molecules lead to severe and distinct developmental defects.  

1.) The homozygous deletion of the BTB-kelch protein Keap1 results in postnatal lethality, 

because of a constitutive activation of the transcription factor Nrf2 (Wakabayashi et al., 

2003). 

2.) Deletion of KLHL10 results in infertility of heterozygous male mice (Yan et al., 2004),  

3.) whereas the loss of the BTB-kelch protein giaxonin in mice and humans lead to a 

disease, called giant axonal neuropathy. This autosomal recessive neurodegeneration 

process is caused by an impaired axonal transport due to the accumulation of the 

microtubule-associated protein MAP8 (Ding et al., 2006).  

4.) Further neurodegenerative changes were observed in the KLHL1 knockout mice, which 

displayed deficits in Purkinje cell function attended by abnormal gait and progressive loss of 

motor coordination (He et al., 2006b). 

 5.) In turn others could allocate the kelch family member ND1 a role in wound healing 

(Fujimura et al., 2004).  

These distinct developmental defects suggest that the hitherto not widely recognized kelch 

family may harbor numerous other unknown molecules of major biological relevance. 

 

1.6.3 The BTB-kelch protein KLEIP 

The BTB-kelch protein kelch-like ECT2 interacting protein (KLEIP) was initially identified in a 

yeast two-hybrid screen as a actin-binding protein that is associated to epithelial-cell 

transforming gene 2 (ECT2) (Hara et al., 2004), a Rho nucleotide exchange factor involved in 

the regulation of cytokinesis (Miki et al., 1993; Tatsumoto et al., 1999). Like other BTB-kelch 

proteins KLEIP contains a BTB/POZ domain and a BACK domain, whereas in contrast the 

characteristic β-propeller is formed by six-tandem repeats of highly conserved 40-50-amino 

acid sequence. Phylogenetic analysis revealed amino acid identities of 43% between 
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Drosophila kelch and human KLEIP. However the Drosophila protein Diablo displays a 

higher homology and seems to be the orthologue of the human protein (Hara et al., 2004). 

Although the biological function of Drosophila Kelch is well characterized, the function of 

Diablo remains elusive. In the mammalian system KLEIP has several synonyms. It is also 

known as KLHL20 or Kelch X. 

In recent years several studies were performed to identify KLEIPs role in cellular processes, 

with the outcome that KLEIP has a diverse function as it was already reported for other BTB-

kelch proteins. At the beginning of this century KLEIP has been identified in in vitro studies to 

be involved in the actin assembly at the cell-cell adhesions sites of epithelial cells which are 

mediated through E-cadherin. Interestingly, KLEIP localization was only detected in areas of 

forming cell-cell-contacts, but not at maturated junctions (Hara et al., 2004). In addition to 

that it has been reported that the small RhoA-GTPase Rac1 promotes the E-cadherin 

mediated cell adhesion (Jou and Nelson, 1998; Takaishi et al., 1997). Experiments with 

constitutively activated Rac1 implicated the augmentation of KLEIP, as well as F-actin 

recruitment to the adhesion sites. From this findings it was proposed that KLEIP is necessary 

for Rac1-induced organization of the actin cytoskeleton (Hara et al., 2004). In contrast, 

others uncovered recently KLEIP to function as a substrate adaptor. Based on the capability 

of KLEIP to bind to the death-associated protein kinase (DAPK) via its kelch-repeat domain it 

is furthermore involved in the transportation of DAPK to Cullin3 (Cul3). Both proteins, KLEIP 

and Cul3, are components of the KLEIP-Cul3-ROC1 E3 ligase complex, which promotes the 

proteasomal degradation of DAPK due to its polyubiquitination (Lee et al., 2010). 

Nevertheless, little is known about the role of BTB-kelch proteins in context to angiogenic 

processes. In a previous study KLEIP was identified to be preferentially expressed in human 

umbilical vein endothelial cells (HUVECs), at which KLEIP-mRNA levels were strongly 

upregulated under hypoxic conditions. In addition to that hypoxia is known to be the 

strongest inducer of angiogenic signaling. Furthermore, functional analysis have 

demonstrated that KLEIP is important for the accumulation with ECT2 in a VEGF-dependent 

manner and functions as a bipartite nucleotide exchange factor for the small GTPase RhoA, 

thereby regulating several angiogenic processes, such as endothelial migration and 

sprouting angiogenesis (Nacak et al., 2007). In addition to KLEIP’s interaction with the GEF 

ECT2 it has to be mentioned that Ect2-null mice die in utero (Hansen et al., 2003). However 

the reason for this lethal phenotype remains to be determined. Beside KLEIP, the protein 

KLHL6 represents another BTB-kelch protein which is contributed to angiogenesis. KLHL6 

has been reported to be exclusively expressed in embryonic endothelial cells and B-

lymphocytes. However, the KLHL6 knockout mice reveal no obvious vascular malformations, 

instead they display defects in B-cell proliferation and signaling (Kroll et al., 2005). 
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1.7 Aim of the study 

In the field of understanding the guidance of vessel sprouts towards an angiogenic stimulus 

during angiogenesis in vivo much progress was achieved in the past. However, the 

downstream signaling pathways responsible for blood vessels formation are to this day 

poorly understood. In previously performed in vitro studies the cell-autonomous molecules of 

the RhoGTPase family, were mainly associated to cellular processes, such as 

morphogenesis, migration, cell division and adhesion (Heasman and Ridley, 2008). 

Moreover, it has been shown that the small GTPases RhoA, Rac1, Cdc42, as well as their 

downstream targets, regulate migration of endothelial cells during angiogenesis (Bryan and 

D'Amore, 2007; van Nieuw Amerongen and van Hinsbergh, 2009). However, the knowledge 

of small GTPases and their molecular mechanisms in controlling angiogenesis was 

predominantly acquired by in vitro experiments, so their functions in vivo remain to be 

determined. Thus, this present study was aimed at clarifying the role of selected G-protein 

signaling molecules during vertebrate development with the main focus on angiogenic 

processes.  

The first and major part of this work deals with the characterization of the BTB-kelch protein 

Kleip. The nucleotide exchange factor for the small GTPase RhoA was recently identified in 

biochemical studies and in cellular functional assays as an essential regulator for endothelial 

migration and sprouting angiogenesis in a VEGF-dependent manner (Nacak et al., 2007). 

Based on the in vitro data our group allocated hypothetically a possible role for Kleip during 

in vivo angiogenic processes. In order to decipher its function during development Kleip-

deficient mice were generated via the gene-trap technology and analyzed to distinct 

developmental stages. 

The second part of this thesis gives a short insight into the signaling of the serine/threonine 

kinases ROCK I and ROCK II. In previous reports the inhibition of both downstream 

mediators of RhoA signaling with the relative unspecific inhibitor Y-27632 led to contrary 

findings in the field of angiogenesis that are still controversially discussed (Mavria et al., 

2006; van Nieuw Amerongen et al., 2003). For the exploration of its endothelial function both 

kinases were pharmacological inhibited in this study with the specific inhibitor H-1152 and 

investigated. 

Finally, the third part comprises the by ELMO1 and Dock180 formed complex, acting as an 

unusual bipartite GEF for Rac1. The small GTPase Rac1 was recently described as a pivotal 

factor for embryonic development as its endothelial specific deletion leads to an embryonic 

lethal phenotype (Tan et al., 2008). In order to analyze the function of the ELMO1/DOCK180 

complex in vascular development its expression was silenced in transgenic zebrafish 

embryos. 
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2. Results 

2.1 Role of Kleip during mouse development 

The BTB-kelch protein KLEIP has been identified in several in vitro studies to be involved in 

the initialization of cell-cell adhesion and angiogenesis, as well as in proteasomal protein 

degradation, but so far nothing is known about its function during vertebrate development 

(Hara et al., 2004; Lee et al., 2010; Nacak et al., 2007). Previous protein alignment analysis 

revealed that human KLEIP displays a higher homology to Drosophila protein Diablo than to 

its eponymous kelch protein (Hara et al., 2004). In this present study it could be furthermore 

shown that KLEIP is an evolutionary highly conserved protein among vertebrates (Figure 1), 

which exhibits highly amino acids identities of 100% between human and mouse KLEIP. 

Beyond that, the zebrafish orthologue of mouse Kleip displays a sequence identity of 98%.  
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Figure 11: KLHL20 is highly conserved during vertebrate evolution.  
(A) Phylogenetic analysis of KLHL20-related proteins (also known as KLEIP) from vertebrates and 
invertebrates. Among the vertebrates, especially the mammalia, KLHL20 is highly conserved 
throughout evolution. The bar indicates the relative evolutionary distance. (B) Multiple amino acid 
comparison of human (Homo sapiens), zebrafish (Danio rerio) and mouse (Mus musculus) KLHL20. 
Numbers represent amino acid positions. Conserved amino acids are labeled by asterisk. The bottom 
lines represent the protein specific domains: BTB/POZ domain (black line), BACK domain (red line) 
and the region of six-tandem kelch repeats forming Kelch domain (blue line). Accession codes: 
Drosophila melanogaster (Diablo: NP_524989.2), Danio rerio (Klhl20: NP_998166.1), Gallus gallus 
(KLHL20: NP_001026500.1), Mus musculus (Klhl20: NP_001034571.1), Rattus norwegicus (Klhl20: 
NP_001100662.1), Homo sapiens (KLHL20: NP_055273.2) 
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2.1.1 Kleip function during embryogenesis 

2.1.1.1 Genetic approach for the deletion of murine Kleip 

To dissect the function of the BTB-kelch protein Kleip during vertebrate development, the 

Kleip gene was disrupted in mice. For this reason the genetic modified embryonic stem cell 

line XF202 was purchased from the company baygenomics, which manipulated these cells 

via the gene trap technology. The feature of this method is the gene disruption mediated 

through an integration of a β-galactosidase (β-gal) encoding vector in sense orientation. 

However, the insertion of the vector into the mouse genome is a random process. 

Nevertheless due to a genetic screen the stem cell line XF202 was identified to display its 

vector integration somewhere within the intronic sequence between the first two encoding 

exons of the Kleip gene (Figure 12A). After implantation of modified ES cell containing 

blastocytes into pseudo-pregnant foster mothers and germline transmission in the resulting 

offspring bred heterozygous Kleip animals were used for the establishment of a specific 

genotyping protocol. In order to identify the exact integration site heterozygous Kleip mice 

were intercrossed and embryos were dissected at day 10.5 post coitum from pregnant 

mothers. Further DNA was isolated from the yolk sacs, while mRNA was isolated from the 

complete embryo. The DNA was than tested for β-gal integration via LacZ-polymerase chain 

reaction (PCR) to exclude the wild-type DNA for the following analysis. For the mapping of 

the β-gal integration site within this 20kb intronic sequence 20 sense-primers with a distance 

from approximately 1000bp from each other were designed. In the next step PCRs were 

performed with LacZ positive tested DNA, whereas these sense-primers were combined with 

the anti-sense primer Pr.21. Sense-primer Pr.20 was identified to be the closest to the β-gal 

integration site, because the combination of Pr.20 with Pr.21 generated a positive PCR 

signal (Figure. 12A and 12B). The β-gal integration into the Kleip gene was also confirmed by 

several other approaches, including genotyping with from yolk sacs isolated mRNA 

transcribed into cDNA, as well as by sequencing and restriction analyses (data not shown). 

In contrast, the wild-type signal is generated through the primers Pr.20 and the anti-sense 

primer Pr.22. Furthermore, expression studies with primers that bind behind the integration 

site revealed that homozygous Kleip embryos are not able to generate a functional Kleip 

mRNA (Figure 12C). Yet, it is currently not possible to verify those expression data by 

Western Blotting due to a lack of a functional antibody. 



Results 

33 

 
Figure 12: Generation of transgenic Kleip mice and its identification.  
(A) Genomic Kleip-DNA and gene trap vector; genomic Kleip-DNA after random insertion of the gene 
trap vector in sense orientation; after transcription and splicing of the RNA transcript the trapped gene 
results in a truncated mRNA consisting of Exon1/Exon 2 together with ß-geo; translation leads to the 
Kleip-fusion protein. (B) Protocol establishment for the genotyping of Kleip

+/+
-, Kleip

+/-
- und Kleip

-/-
-

animals. Upper wild-type PCR signal is generated through the primer Pr.20 and Pr.22, lower PCR 
signal (recombinant band) is generated through the primer Pr.20 and Pr.21 after vector integration. (C) 
Kleip expression-analysis of different genotypes (samples from B) via RT-PCR shows a complete loss 
of Kleip mRNA in homozygous Kleip-embryos. Abbreviation: SD: Splice Donor; SA: Splice Acceptor; 
En2: engrailed; ß-geo: fusion gene of β-galactosidase (ß-gal) and neomycin resistance, pA: 
polyadenylation signal. 
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2.1.1.2 Loss of Kleip results in partial embryonic and neonatal lethality 

After establishment of a specific genotyping protocol to distinguish between wild-type, 

heterozygous and homozygous animals, haplodeficient C57BL/6 mice were intercrossed and 

phenotopically characterized. To all analyzed time-points the genotypes of isolated embryos 

and born animals were recovered. As shown in figure 13 Kleip-deficiency was identified to 

result in partially both embryonic as well as postnatal mortality. At embryonic stage E11.5 

27.9% of 158 analyzed mouse embryos lacked Kleip expression, whereas after delivery (P0) 

only 22.1% of 95 puppies were homozygous for Kleip (Figure 13B). These data represent 

that 20.8% of the Kleip deficient embryos die in utero.  

 

 
 
Figure 13: Global knockdown of Kleip in mice results in part to midgestional and neonatal 
lethality.  
The diagram (A) represents the percentages of animals with indicated genotypes, recovered from 
heterozygous Kleip intercrosses (C57BL/6) at different embryonic stages or after birth. The group of 
neonates includes complete offspring sacrificed for experimental approaches as well as animals that 
were recovered dead between birth and postnatal stage P28. From embryonic stage 11.5 to birth 
around twenty-one percent of homozygous animals die in utero (*). Furthermore nearly fifty percent of 
Kleip deficient neonates do not survive the following 24 hours (**).  Additionally, table (B) represents 
the total numbers of analyzed animals to distinct time-points. 

 

A 
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The mild embryonic lethal phenotype can be further supported with the finding that in nine of 

thirty nine analyzed matings definitive no homozygous puppies were detected after birth. 

Moreover, nearly fifty percent of those homozygous embryos that reaches birth die shortly 

after, mainly within a few hours to one day (P1: 14.6%; n=82). However, an obvious cause of 

neonatal death was not clear from their appearance or behavior. 

 

 

2.1.1.3 Kleip deficient embryos exhibit developmental defects and hemorrhages 

In order to analyze the effects of Kleip-deficiency on embryonic development, embryos were 

analyzed to certain time-points. Till embryonic stage (E) 10.5 Kleip-/--embryos appeared 

developmentally normal (Figure 16). However, one day later at E11.5, Kleip-mutants 

displayed partially gross morphological changes (Figure 14A). Numeric determination of the 

embryonic somites, which was nearly similar between the analyzed Kleip+/+ and Kleip-/- 

littermates, revealed that the observed gross morphological alterations were due to growth 

retardation. Further macroscopic analysis exposed that around 16% of the deficient Kleip 

embryos at E11.5 suffer from severe hemorrhages, which are predominantly located in the 

embryonic head. However, such bleedings sometimes also occurred in the passage of the 

head to torso. 
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Figure 14: Kleip-deficiency causes growth retardation and hemorrhages. 
In (A) one E11.5 heterozygous- and one homozygous- Kleip embryo are illustrated after dissection. 
Some Kleip

-/-
-embryos revealed growth retardation and severe intracranial hemorrhages in 

comparison to their wild-type and heterozygous littermates. Scale bars, upper row 1mm, lower row 
500µm. (B) Representative confocal image illustrates the Kleip

-/-
-embryo from (A) after whole-mount 

endomucin immunofluorescence staining. The ruptured and dilated cranial vessel is indicated by 
asterisk. Blood vessel ablation is indicated by arrow. Scale bars, left image 250µm, right image 
100µm. 
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2.1.1.4 Kleip-deficiency leads to cranial vessel dilatation 

To study the function of Kleip during in vivo angiogenesis more in detail whole-mount 

endomucin stainings of E11.5 embryos were performed. Endomucin is a specific endothelial 

marker for the mucin like memebrane gylcoproteine, which is expressed in venous 

endothelium and in capillaries (Morgan et al., 1999). The performed analyses revealed no 

differences in vascular branching of the forming vessel network within the cranial 

mesenchyme of the developing brain. Instead the larger vessels in the mutant embryos 

appeared wider in vessel diameter and partially compressed than those observed in wild-

type embryos (Figure 15). For quantification, the diameter of cranial vessels was measured 

in four different regions (I-V). The data indicate that the macrovessels in the region II of 

Kleip-null embryos (73.38 ± 2.84µm) are in comparison to wild-type embryos (52.61µm ± 

2.52µm) up to 40 percent significantly extended. The measurements also revealed in region 

III a dilatation of microvessels in Kleip-deficient embryos from around 22%.  

 

 
Figure 15: Loss of Kleip results in the dilatationof cranial vasculature. 
(A) Whole-mount endomucin immunofluorescence staining of the cranial vasculature of E11.5 wild-
type and Kleip-deficient embryos. Scale bars, 250µm. In (B) the diameter of macrovessels (I, II) and 
microvessels (III, IV) of E11.5 embryos were measured. For analysis 13 head halves of 7 homozygous 
and respectively 9 of 5 wild-type embryos were quantified. Values are mean ± s.e.m * p=0.0008 (II) 
and p=0.009 (III).  
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Such gross morphological changes of cranial vessels were also observed in E10.5 Kleip 

deficient embryos that were immunohistochemical stained for the endothelial specific marker 

CD31 and analyzed with a stereomicroscope (Figure 16). Consistent with the increased 

diameter of the macro- and microvessels of mutant embryos, those embryos suffering from 

massive hemorrhages revealed ruptured and ablated vessels, as shown in figure 14B. 

Beside the morphological differences in the cranial vasculature it is worth mentioning that 

Kleip-deficient embryos exhibited a moderate sprouting defect within the region of 

intersomitic vessels (Figure 16 H-I). 

 

 
Figure 16: Kleip-deficient embryos exhibit a moderate angiogenic phenotype at E10.5. 
CD31 whole-mount immunohistochemical stained homozygous Kleip-embryos (B, C) and wild-type 
littermates (A) displayed no gross morphological differences till embryonic stage (E) 11.5 when 
compared to each other. Instead Kleip-deficiency led to extended intracranial vessels (arrows; E&F). 
Furthermore, Kleip mutant displayed moderate sprouting defect within the region of intersomitic 
vessels (labeled by dotted lines, H &I). All images were captured on a stereomicroscope connected to 
a camera. Images A, D, G illustrates one Kleip wild-type embryo and B, C, E, F, H, I represent two 
homozygous littermates. Scale bars (A-C), 500µm, and (D-I) 250µm. 
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2.1.1.5 Kleip has no effect on endothelial network formation in a p-Sp-culture system 

Previous results from in vitro experiments have demonstrated that KLEIP is necessary for 

endothelial migration and angiogenic sprouting (Nacak et al., 2007). Consisting with the 

findings observed in figures 15 and 16, in which Kleip-deficient animals display enlarged and 

partially compressed cranial vessel, the effect of Kleip during vascular network formation was 

analyzed in a further ex vivo approach, namely the paraaortic splanchnopleural (p-Sp-

explant) assay. This assay was performed in cooperation with Anja Runge, a staff scientist of 

the Prof. Hellmut Augustin laboratory. For the generation of p-Sp –explants embryos were 

removed 9.5 days after fertilization and the p-Sp mesodermal tissue was isolated. This 

mesodermal tissue consists of the dorsal aorta, genital ridge/gonad, and pro/mesonephros-

region (AGM-region). This AGM-region has been described as a possible origin of 

intraembryonic endothelial and hematopoiectic progenitors (de Bruijn et al., 2002; Dieterlen-

Lievre et al., 2002; North et al., 2002). While explants were co-cultured for 14 days with OP9 

stromal cells and stimulated with a cocktail of different chemokines, such as erythropoietin 

(EPO), interleukin-6 (IL-6) and murine stem cell factor (SCF) endothelial cells form in a first 

step a sheet-like structure. This initial step of the vascular bed formation represents 

vasculogenesis, whereas the following “vascular network formation” step, characterized by 

circular migration and sprouting of maturated endothelial cells into periphery, imitates the 

process of angiogenesis (Takakura et al., 1998). After specific immunostaining for the 

endothelial marker CD31 (Figure 17), no alterations regarding the migratory behavior or 

thickening of the agiogenic sprouts were observed in the explants of Kleip-deficient embryos 

when compared to the control. 

 
Figure 17: Vascular network formation in p-Sp explants of Kleip-deficient embryos is not 
affected. 
Isolated P-Sp-explants of E9.5 Kleip-null or wild-type embryos were cultivated for 14 days on OP-9 
feeder cells and stimulated with a cocktail of cytokines, consisting of interleukin-6 (IL-6), erythropoietin 
(Epo) and stem cell factor (SCF). After immunochemical staining for CD31 p-Sp-explants were 
analyzed. P-Sp-explants of homozygous Kleip embryos display a comparable vascular network 
formation as observed in wild-type embryos. Scale bars, 1mm. 
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2.1.1.6 Pericyte coverage is not affected in Kleip-deficient embryos 

Several studies performed in mice lacking proteins that are involved in the recruitment of 

mural cells or mediate critical functions of endothelial cells display defects during 

angiogenesis and die frequently due to  embryonic or perinatal hemorrhages (Carmeliet, 

2003; Liu et al., 2000; McCarty et al., 2002; Zhu et al., 2002). To address the question, 

whether the observed hemorrhages in Kleip-null embryos are caused by defects in the 

association of mural cells to the endothelium, specific immunofluorescence whole-mount 

doublestainings for endomucin and NG2 were performed and subsequently analyzed and 

recorded with a confocal microscope. The proteoglycan NG2 is well known to be expressed 

in the macrosvasculature by smooth muscle cells and in nascent microvessels by pericytes 

(Ozerdem et al., 2001). Although the recorded images (Figure 18) convey the light 

impression that the amount of blood vessel surrounding pericytes is increased in Kleip-

mutants as in comparison to their wild-type counterparts, comparable analysis revealed no 

obvious alterations in pericyte coverage. These results indicate that the observed 

hemorrhages in Kleip-null embryos are not caused by a failure in the recruitment of pericytes. 

 

Figure 18: Pericytes cover properly the cranial vasculature of mutant Kleip embryos. 
In order to identify possible alterations in the coverage of the embryonic vasculature by mural cells, 
E11.5 Kleip

+/+
 and Kleip

-/-
 embryos were whole-mount stained and confocal microscopic analyzed. 

Endomucin was used as a microvascular endothelial marker (red), whereas NG2 was utilized for the 
detection of pericytes (green). Comparable analyses exhibit no obvious changes in the pericyte-
mediated stabilization. Scale bars, 50µm. 
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2.1.1.7 Partial embryonic lethality of Kleip-mutants is not caused by defects in extra- 

embryonic tissues  

To date it is well known from several transgenic mouse lines that embryos can perish from 

any placental malformations and/or from vascular defects in the embryonic yolk sac 

(Adelman et al., 2000; Qian et al., 2000; Steingrimsson et al., 1998). To exclude such 

possible alterations the extraembryonic tissues were examined microscopically before and 

after immunohistochemical staining. As representative shown in figure 19A the freshly 

dissected yolk sac of a E11.5 staged homozygous embryo display a normal branched and 

with blood perfused vascular network similar to the yolk sac vasculature observed in wild-

type embryos, indicating a proper blood circulation. These findings were furthermore 

confirmed by an immunohistochemical staining for the endothelial specific marker CD31 

(Figure 19B). 

 

 
 

Figure 19: Normal vascular network morphogenesis in Kleip
-/-

 yolk sacs. 
In (A) one wild-type and one homozygous Kleip embryo, still surrounded by the yolk sac, are 
illustrated after dissection at E11.5. Even the yolk sacs of Kleip-deficient embryos exhibit a normal 
branched and with blood-perfused vasculature. Scale bars, 1mm. (B) Yolk sacs of both genotypes (+/+ 
and -/-) displayed a similar blood vessel pattern after specific CD31 immunohistochemical staining. 
Scale bars, 250µm. 
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Furthermore, it could be shown that to all analyzed time-points, from E11.5 to E13.5, the 

Kleip-mutation had no affect on the formation of the three distinct placental tissue layers, 

such as giant trophoblast cell layer, spongiotrophoblast layer, and labyrinthine layer. 

Especially the high vascularized labyrinth, characterized as the gateway of maternal and fetal 

exchange of oxygen, nutrients and waste, did not differ morphological from each other when 

CD31 stained placentas of wild-type embryos were compared with homozygous ones (Figure 

20). 

  

 
 

 
 
Figure 20: Placental tissue of Kleip-mutant embryos display no morphological changes. 
(A) Paraffin sections (8µm) of Kleip

+/+
 and Kleip

-/-
 placentas (E13.5) after immunohistological staining 

of the vasculature with a CD31 antibody. Blood vessel network formation in the labyrinth of 
homozygous placentas resembled the extraembryonic tissue morphology of wild-type embryos.       
(B) Placentas of Kleip-deficient (E11.5) embryos display after H&E staining a proper distribution of the 
specific tissue layers. Abbreviation: ch: chorion; la: labyrinth; sp: spongiotrophoblasts; gc: giant cells. 
Scale bars, 250µm. 
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2.1.1.8 Silencing of klhl20 in zebrafish results in cranial hemorrhages 

For the confirmation that loss of Kleip, a synonym for Klhl20, causes hemorrhages the 

zebrafish was used as an additional model organism. The practical advantages of the 

zebrafish model are beside the development of the embryo outside the mother’s body the 

transparency of the zebrafish embryo itself. In this study the transgenic zebrafish line 

tg(fli:EGFP) was used, which express the fluorescent protein EGFP under the endothelial 

specific fli promoter. In order to test the functionality of the used splice blocking morpholino 

(SB-Mo), 8ng of this pre-mRNA splicing modifier was injected into the one cell stage of a 

fertilized egg. RT-PCR analysis after 72 hours post fertilization (hpf) revealed that the klhl20 

knockdown is partially sufficient (Figure 21C). In comparison to control morpholino (co-Mo) 

injected embryos, two PCR products were detectable in those treated with the SB-Mo. The 

upper signal represents the wild-type transcript, whereas the lower signal is generated due to 

defective splicing. However, the stronger wild-type signal indicates that the SB-Mo is not 

capable to mediate a complete knockdown. Although high concentrations of the SB-Mo were 

used zebrafish embryos were to all analyzed time-points morphological indistinguishable 

from co-Mo injected counterparts (Figure 21A). However, 48 hours after klhl20 morpholino 

injection the zebrafish embryos began to suffer from severe intracranial hemorrhages (Figure 

21 A&B). At 48hpf and later stages the klhl20 morphants showed around 40% more 

bleedings, as in comparison to the control embryos (Figure 21D). These consistent 

appearing hemorrhages mostly concentrated in or near to the hindbrain ventricle indicate 

differences in endothelial barrier integrity.  

 

 
 

 

 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=distinguishable&trestr=0x8004
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Figure 21: Klhl20 is essential to maintain vascular integrity in vivo. 
Morpholino-based silencing of klhl20 does not affect zebrafish morphology (A). Representatively 
shown are one control morpholino (8ng) and one klhl20 splice blocking morpholino (8ng) injected 
embryo at 72hpf. Instead zebrafish embryos suffer from intracranial hemorrhages (A, B; arrows). 
Embryos were analyzed 48 and 72hpf under dissecting microscope. (B) Upper lane lateral view, lower 
lane dorsal view. (C) Expression silencing of klhl20 in zebrafish (72hpf) verified by RT-PCR. Upper 
signal represents wild-type transcript, lower signal the morphant transcript. (D) Quantification of 
observed intracranial hemorrhages after 48 and 72hpf in control morpholino versus splice blocking 
morpholino injected embryos. Scale bars, 500µm. 

 
 
2.1.1.9 Loss of KLEIP increases in vitro permeability 

In order to further examine directly the role of KLEIP in endothelial barrier function in vitro, 

immortalized human umbilical vein endothelial cells (HUE cells) were silenced for their KLEIP 

expression and were tested in a transwell permeability assay. In this experimental setting the 

control siRNA or with either one of two independent KLEIP siRNA treated HUE cells were 

plated 24 hours post transfection on collagen precoated transwell chambers. After 72h of 

cultivation FITC-dextran was added on top of the grown HUE monolayer in the upper 

chamber. To distinct time-points probes of the lower chambers were collected and 

photometrically with a wavelength of 492nm (excitation) and 520nm (emission) analyzed. 

Additionally, co siRNA transfected and with VEGF stimulated HUE cells were used as 

positive control. The collected data (Figure 22) revealed a rapid and significant increase in 

permeability within the first 240 minutes across KLEIP siRNA-treated endothelial 
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monolayers. Already after 30 minutes the detected fluorescence units were twice as high in 

those that were treated with KLEIP siRNA 1 as observed in the control. From this time-point 

on this specific KLEIP siRNA had an even more drastic and consistent effect on permeability 

than the VEGF stimulated control siRNA transfected HUE cells. To confirm the efficient 

silencing of KLEIP, control siRNA and KLEIP siRNA transfected HUE cells were lysed and 

KLEIP expression was analyzed by RT-PCR. Primers detecting the coding mRNA of the 

murine tata box-binding protein were used as loading control. Respectively a 75%-84% 

reduction of KLEIP mRNA expression was reached after KLEIP siRNA transfection (Figure 

22B). 
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Figure 22: In vitro downregulation of KLEIP induces endothelial permeability. 
(A) Immortalized HUE cells, either treated with control or specific KLEIP siRNA, were seeded on 
collagen precoated transwell chambers. After 72 hours of cultivation FITC-dextran was added to the 
upper chamber. To distinct time-points probes from the lower chamber were collected and 
photometrically analyzed. Experiments were performed in three independent trials. Results are 
expressed as mean ± s.e.m *p<0.05;** p<0.002 compared to control transfected cells. (B) RT-PCR 
analysis confirmed the specific down-regulation of KLEIP in HUE cells, after transfection with two 
independent siRNAs against KLEIP. Human TATA box-binding protein served as loading control. 
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2.1.1.10 Gene expression profiling of Kleip-/- isolated embryonic endothelial cells 

exhibit no significant change 

After having demonstrated in vivo, as well as in vitro, that Kleip seems to be essential for the 

mediation of vascular integrity the effect of Kleip-deficiency on its downstream targets was 

furthermore investigated. For this reason microarray analysis were performed comparing 

mRNA of Kleip+/+ and Kleip-/- endothelial cells isolated from E11.5 embryos via FACS sorting. 

Only the CD31+CD34+ endothelial cells with purity over ≥ 98% after isolation were used. Prior 

to expression profiling the isolated endothelial cells were tested on their Kleip mRNA 

expression by semi quantitative RT- PCR (Figure 23). The obtained data indicate on the one 

hand that Kleip is expressed in endothelial cells of Kleip wild-type embryos, whereas it is 

missing in the vasculature of Kleip-mutants. 

 

 

 

 

 

 
 
 
Figure 23: Kleip is expressed in murine endothelial cells. 
Prior to expression profiling studies semi quantitative real-time PCR with transcribed endothelial 
mRNA isolated of E11.5 Kleip-mutant and wild-type embryos were performed. RT-PCR analysis 
indicates endothelial Kleip expression in wild-type embryos, whereas its expression is not detectable 
in Kleip-deficient embryos. Murine TATA box-binding protein was used as loading control. 

 

 

For the performed illumina beadchip hybridization experiment the total number of three 

homozygous Kleip embryos and three wild-type littermates, from two independent 

dissections, were utilized. In table 1 some selected genes of the transcriptomic analysis are 

summarized that were at least 1.4-fold up- or downregulated. Among these genes six of 

them are known to be involved in angiogenic processes. In particular: SNF related kinase 

(Chun et al., 2009), BMX non-receptor tyrosine kinase (He et al., 2006a) and the RhoA 

guanine exchange factor Syx, also known as pleckstrin homology domain containing family 

G member 5 (Garnaas et al., 2008) are up-regulated. In contrast, genes like platelet-

activating factor receptor (Hudry-Clergeon et al., 2005), Semaphorin 3F (Kessler et al., 2004) 

and CREB binding protein (Crebbp; (Tanaka et al., 2000) are down regulated. Because of 

the obvious marginal changes within the endothelial expressions pattern between Kleip wild-

type and Kleip-deficient embryos further investigations for the identification of possible 

downstream target genes of Kleip were discontinued. 
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Table 1:  Summary of selected genes down- or up-regulated in Kleip-deficient endothelial cells  
of E11.5 embryos. 

 

Note: The table represents genes that are at least 1.4-fold up- or downregulated. The bold typed 
genes are known to be relevant for angiogenic processes. 
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2.1.2 Kleip and its role during neonatal life 

2.1.2.1 Homozygous Kleip puppies die neonatally due to respiratory distress 

 

Figure 24: Kleip-mutant neonates suffer from aerophagia. 
Immediately after sudden death Kleip-mutant puppies were macroscopically analyzed. As control, 
wild-type litters from the same heterozygous Kleip-intercross were sacrificed by decapitation. While 
perished Kleip

-/-
-puppies (right image) suffered from with air-expanded stomachs (indicated by arrow) 

and intestinal-tract the control littermates (left image) showed a normal seized with milk filled stomach. 
Scale bars, 2mm. 
 
 

In figure 13 it has been shown that disruption of Kleip-expression during mouse 

embryogenesis results in a marginal lethal phenotpye. Moreover, the majority of Kleip 

mutants die within 24 hours after birth presumably due to respiratory distress. Autopsies of 

dead newborns (P0.5) exhibit in some cases large amounts of air in their stomach and 

intestinal tract (Figure 24) as compared to wild-type puppies which showed instead a normal 

with milk filled stomach. The made observations suggest that these homozygous Kleip 

neonates failed to breathe properly. In previous studies the respiratory distress is sometimes 

attended by malformations within skeletal architecture, such as in the cranial formation of the 

secondary palate (Jiang et al., 1998; Kaartinen et al., 1995).  

During normal palate morphogenesis in the embryo the primordial palatal shelves are 

bilaterally elevated, which is followed by growing towards the above the tongue located 

midline. In a final step these shelves fuse and form the roof of the oral cavity, the secondary 

cleft palate (Ferguson, 1988). Examination of the oral cavity revealed a normal formation of 

secondary palate in Kleip-mutants (Figure 25). Moreover, osseous related abnormalities that 

impair normal breathing, like rib malformations, were not observed (data not shown). These 

findings indicated that the respiratory failure is due to either cardiovascular or to lung defects. 
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Figure 25: Kleip-mutants display a normal-shaped secondary palate. 
Macroscopically analyses exclude possible defects in the formation of the secondary palate as reason 
for aerophagia. Images represent the caudal view of the secondary palate of a Kleip

+/+
 and Kleip

-/-
 

neonate at P0.5.For analyses animals were decapitated and mandible removed. Abbreviation: dors.: 
dorsal; ventr.: ventral; arrows: plicae palatinae transversae; asterisk: palatine raphe. Scale bars, 
500µm. 

 

 

2.1.2.2 The transition from placental to respiratory circulation is not affected in Kleip-/--

neonates 

With the onset of breathing after birth dramatic changes occur in the circulatory system of 

mammalian neonates. The major challenging one is thereby the switch from embryonic, 

placental to respiratory blood circulation. This process of transition is accomplished by a 

large specialized vessel, called ductus ateriosus, which connects the pulmonary artery to the 

aorta. During fetal life the ductus arteriosus bypasses blood flow away from the pulmonary 

circulation. Simultaneously with the initiation of respiration the thick muscular wall of ductus 

arteriosus starts to contract and mediates its closure. The initial closure occurs 30 minutes 

after delivery and is functionally completed after 3 hours (Tada and Kishimoto, 1990). 

Several studies with transgenic mouse models, as well as in humans, demonstrate that a 

patent ductus ateriosus implicate live threatening respiratory complications (Coggins et al., 

2002; Loftin et al., 2001; Vaughan and Basson, 2000). Examinations of born Kleip-mutants 

that died less than 3 hours after birth revealed still a fully lumenized ductus arteriosus. 

However, the majority that died between postnatal stages P0.5 to P1 did not reveal any 

defects in ductus arteriosus closure mechanism (Figure 26), as well as in the descending 

congenital vessels. These made findings display that absence of functional Kleip protein to 

be responsible for rather lung malformations than cardiovascular defects. 
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Figure 26: Closure mechanism of ductus arteriosus functions properly in newborn Kleip-
deficient neonates. 
P0.5 to P1 Kleip-deficient and wild-type puppies were sacrificed. Upon opening of thorax the closure 
state of ductus arteriosus was examined. Although Kleip-mutants exhibited a closed ductus arteriosus 
as wild-type animals (black arrow), they displayed lung defects (white arrow). Lungs were 
hypomorphic and displayed altered branching morphogenesis. Scale bars, 1mm. 
 

 

2.1.2.3 Lung maturation defects in Kleip-deficient neonates 

During mouse development the formation of the lung can be divided into five structural 

stages (Maeda et al., 2007). Normal developing, healthy newborns should be in the saccular 

stage (E17.5 to P5) which is characterized by dilation of peripheral airspaces, differentiation 

of respiratory epithelium, as well as in an increase of vascularization of the saccules. 

According to the observed postnatal lethality and presumable respiratory distress it is more 

likely that Kleip-deficient neonates suffer from a delay in lung development. Macroscopic 

analyses of lungs from newborn Kleip-mutants displayed no obvious gross changes, when 

compared to wild-type littermates, instead the mutant lungs are inmature. Especially, the 

branching morphogenesis appeared to be partially inhibited (Figure 26 and 27).  
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Figure 27: Kleip-mutant neonates display lung maturation deficiencies. 
Homozygous lung of P0.5 newborns show after birth less branching morphogenesis and are more 
hypomorph (Ward et al.), when compared to wild-type littermates. Illustrated are the fresh issected 
lungs of one wild-type (A) and one homozygous littermate (B), while (C) represents the lung of a 
perished Kleip

-/-
-neonate (P0.5). Scale bars, 2mm. 

 

 

Histological examinations of lungs from Kleip-null puppies (P0.5) revealed a lung architecture 

that was characterized by narrowed alveolar sacs, considerable thickened interalveolar 

septae and a dense cellularity, when compared to wild-type lungs (Figure 28). To underline 

the made observations the lung section were metricially quantified. The mean alveolar areas 

of Kleip-deficient (1988µm2±109) neonates were in contrast to wild-type animals 

(5608µm2±340) significantly reduced. Coincidental the alveolar septae of Kleip-/- lungs were 

significantly extended (Kleip+/+: 9.15µm± 0.12; Kleip-/-:13.83µm±0.3). In order to determine 

whether the greater alveolar septae are the result of hyperproliferation the nuclei were 

furthermore counted. Comparable analyses elicited that the mean number of counted nuclei 

was significantly increased in the alveolar wall of Kleip-mutants than in Kleip wild-type 

animals. In addition to these findings it could be shown that to all analyzed time-points the 

lungs of both genotypes were not drastically infiltrated by inflammatory cells. 
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Figure 28: Decreased lung maturation in Kleip-mutant neonates. 
Paraffin sections (8µm) of P0-P0.5 lungs after H&E staining. Kleip

+/+
 lungs revealed a normal and 

ventilated lung morphology (A, A’, A’’), while Kleip
-/-

 lungs displayed reduced to nearly missing 
sacculation (B, B’, B’’, C). Furthermore, comparable analyses of lungs from Kleip

+/+
 and Kleip

-/- 

newborns exhibited significant changes in septal thickening (B’’). For quantification the lungs of 
Kleip

+/+ 
(n=5) and Kleip

-/- 
(n=4) newborns were measured in relation to their alveolar area (D), septae 

thickening (E) and the total number of nuclei per alveolar septum (F). Results are expressed as mean 
± s.e.m *p<0.0002;** p<0.005. Scale bars, 500µm (upper row), 100µm (middle and lower row). 
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2.2 Further G-protein signaling molecules in relation to angiogenesis 

2.2.1 ROCK signaling involved in angiogenesis 

From the literature it is well known that VEGF triggers upon binding to its VEGFR-2 several 

downstream signaling cascades. One of its downstream mediators is thereby represented by 

the small GTPase RhoA, which in turn activates the serine/threonine kinases ROCK I and 

ROCK II (Fujisawa et al., 1996). Previous reports have demonstrated that endothelial 

inhibition of these kinases with a relatively unspecific pharmacological inhibitor (Y-27632) led 

to contrary findings, which are still controversially discussed. While some suggested that in 

vitro inhibition of the serine/threonine kinases ROCK I/II leads to a reduction of endothelial 

migration and capillary-like tube formation (van Nieuw Amerongen et al., 2003), the same 

and others have demonstrated that the inhibition induces capillary-like sprout-formation and 

tube stability (Mavria et al., 2006; van Nieuw Amerongen et al., 2003). For the intrinsic 

determination of the function of ROCK I and ROCK II in angiogenic processes both kinases 

were inhibited with the specific inhibitor H-1152 and investigated (Ikenoya et al., 2002). 

 
 

2.2.1.1 Pharmacological inhibition of ROCK I/ II activates angiogenic signaling. 

Based on the results of Jens Kroll and Daniel Epting (both CBTM, Mannheim) which 

identified the Rho-dependent kinases ROCK I/II to function as negative regulators of in-gel 

sprouting angiogenesis their role on VEGF-induced signaling was further determined. For the 

confirmation, that endothelial specific pharmacological inhibition of ROCK I/II increases 

VEGF-induced angiogenic signaling endothelial cells were treated with the ROCK I/II inhibitor 

H-1152 and tested for the activation of their downstream targets, such as the extracellular 

signal-regulated kinase (ERK) 1/2 pathway. The obtained data indicated an increase in the 

ERK activation upon VEGF-stimulation in H-1152 pretreated endothelial cells than in the 

control (Figure29). 

 

 
 
Figure 29: Pharmacological inhibition of ROCK I/II enhances VEGF-induced ERK 1/2 signaling. 
Pharmacological inhibition of the endothelial ROCK I/II mediator in the VEGF signaling cascade via H-
1152 leads to an increased activation of ERK 1/2. For analyses HUVE cells were prior to stimulation 
with VEGF (25ng/ml) incubated for 30 minutes with H-1152. Subsequent cell lysates were analyzed by 
Western blotting against phosphorylated ERK 1/2 and total ERK 1/2. Experiments were performed in 
three independent trials with similar results. 
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2.2.2 Elmo1/Dock180 complex regulates Rac1-driven vessel formation in    

         zebrafish 

Next to the small GTPase RhoA other Rho family members, including the key regulators 

Rac1 and Cdc42, have been identified to regulate migratory processes during angiogenesis 

(Dormond et al., 2001; Nacak et al., 2007; Tan et al., 2008). Recently, it has been 

demonstrated that the endothelial specific disruption of Rac1 in mice result in an early 

embryonic lethal phenotype effected by an impaired vasculature (Tan et al., 2008). In other 

model organisms, such as Caenorhabditis elegans, Drosophila melanogaster, and in human 

glioblastomas the ELMO1/DOCK180 (engulfment and cell motility 1/ dedicator of cytokinesis 

180) complex was identified as a bipartite guanine nucleotide exchange factor regulating the 

activation of the small GTPase Rac1 and consequently cellular migration (Jarzynka et al., 

2007; Lu and Ravichandran, 2006). In order to study elmo1 and dock180 interaction and its 

function during angiogenesis the expression of both genes were silenced in zebrafish 

embryos. 

 

2.2.2.1 Dock180 is predominantly expressed in the zebrafish vasculature 

Recent findings indicate that dock180 is ubiquitously expressed during early somitogenesis 

stages of the zebrafish embryo (Moore et al., 2007). For the examination whether dock180 is 

expressed in the zebrafish vasculature specific immunhistological stainings were performed. 

Dock180 immunofluorescence stained transverse sections of 48hpf tg(fli:EGFP) embryos 

display a strong expression pattern within the vascular system, such as the dorsal aorta and 

the posterior cardinal vein (Figure 30). 

 
Figure 30: Dock180 is highly expressed in the zebrafish vasculature. 
Immunostainings of transverse sections of 48hpf tg(fli:EGFP) zebrafish embryos reveal vascular 
expression of dock180 in the posterior cardinal vein (Ward et al.) and dorsal aorta (arrowhead). 
Representatively illustrated is the confocal captured fluorescence of endothelial specific EGFP-
expression (left), in red the with antibody detected distribution of dock180 (Kleyman et al.)and the 
merged images (right). Abbreviation: sc: spinal chord, nc: notochord. Scale bar, 25µm. 
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2.2.2.2 Elmo1 regulates vascular morphogenesis in zebrafish 

In further experiments Daniel Epting (CBTM, Mannheim) showed that a global morpholino-

based expression silencing of elmo1 in zebrafish leads to tremendous alterations in the 

formation of the vasculature, including the intersomitic vessels, the dorsal longitudinal 

anastomotic vessel (DLAV), the parachordal vessel (PAV), and the development of the 

thoracic duct (Epting et al., 2010). In order to confirm that the observed vascular phenotype 

is caused autonomously by endothelial cells and not in response due to other cellular 

functions in the surrounding tissue, a spatial and temporarily restricted expression silencing 

of elmo1 in the ventral mesoderm was performed. For this analysis a photoactivatable 

morpholino for elmo1 (PhotoMorphelmo1) was injected into a fertilized egg and activated after 

20hpf. Prior to investigation and quantification the experimental settings were tested. In a first 

step the PhotoMorphelmo1 functionality was verified in zebrafish embryos that were globally 

treated at 20hpf with UV light. After another 28 hours, mRNA was isolated, transcribed and 

analyzed for Elmo1 expression. Figure 31 represents that UV treatment generated a 

substantial increase of the morphant splice products, like it was observed in SB-Moelmo1-

injected embryos. As a positive control for spatial restricted irradiation Kaede-mRNA was 

injected into zebrafish embryos. After light treatment of the embryonic ventral mesoderm at 

20hpf only the irradiated field displayed a photoconversion from green to red fluorescence, 

indicating the functionality of this experimental approach. Hence, the performance of spatial-

restricted expression silencing of elmo1 recapitulates largely a similar vascular phenotype as 

the global expression silencing. The activation of PhotoMorphelmo1 in the ventral mesoderm 

disrupts the formation of the DLAV, as well as the PAV.  
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Figure 31: Spatial expression silencing of elmo1 impairs vascular morphogenesis in zebrafish. 
(A) Expression silencing of elmo1 in 48hpf tg(fli1:EGFP)

 
zebrafish embryos mediated through the 

injection of an elmo1 specific photomorph (PhotoMorph
elmo1

). RT-PCR after global UV irradiation at 
20hpf causes a substantial increase of the morphant (mo) splice products at 48hpf. SB-Mo

elmo1
-

injected embryos were utilized as positive control. (B) For the confirmation of spatial-restricted 
photmorph activation tg(fli1:EGFP) zebrafish embryos were injected with Kaede mRNA. 
Photoconversion from green into red fluorescence due to light treatment, detected by confocal 
microscopy, indicates the regional activation within the ventral mesoderm of the zebrafish embryos. 
Left images, Bright field images. Middle images, green and red fluorescence images of Kaede. 
Right images, merged images. (C) Spatial-restricted expression silencing of elmo1 reflects a similar 
vascular phenotype, as the global epression silencing. After light treatment (at 20hpf) the 
PhotoMorph

elmo1
-injected embryos display at 48hpf a disrupted formation of the DLAV (asterisks) and 

the PAV (arrows).Scale bars, 100µm. 
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3. Discussion 

In the last three decades strong efforts have been performed to identify and understand the 

function and the molecular mechanisms involved in the formation of a proper vascular 

system. Interestingly, much attention was given thereby to the role of VEGF and its influence 

on EC migration and proliferation (Ferrara et al., 2003). Beside the discovery of VEGF a 

large number of further molecules were characterized, which either mediates vessel 

guidance due to the setting of an attractant or repellent stimulus to ECs, for example, such 

as the DELTA/NOTCH- or Eph/Ephrin-system (Gerhardt, 2008; Heroult et al., 2006). In 

contrast other factors were identified to function endothelial cell-autonomously. Many of 

these cell-autonomous endothelial factors belong to the Rho GTPase family or are involved 

in the modulation of G-protein signaling. In previous performed in vitro studies the Rho 

GTPase family members were predominantly correlated to basic cellular processes such as 

cell migration, proliferation and the mediation of cell polarity (Fryer and Field, 2005; 

Kranenburg et al., 2004; Tan et al., 2008). However, their molecular mechanisms in 

controlling angiogenesis in vivo remain to be determined. Thus, this study was aimed to 

elucidate the role of G-proteins such as Kleip, elmo1, dock180, and the downstream target of 

RhoA signaling ROCK in the regulation of angiogenesis in vivo in vertebrates.  

 

3.1 Role of Kleip during murine development 

The first modulator of G protein signaling that is predominantly edited in this thesis comprises 

the BTB-kelch protein Kleip, which was recently contributed to angiogenesis. In these 

previous performed studies KLEIP was identified as an actin-binding protein, which is 

strongly upregulated under hypoxic conditions and acts VEGF-dependent as a functional 

guanine nucleotide exchange factor for the small GTPase RhoA during in vitro angiogenesis. 

Based on these findings it was suggested that KLEIP function could be essential for 

physiological and pathological angiogenesis in vivo as well as during mouse development 

(Nacak et al., 2007). 

 

3.1.1 Generation of Kleip deficient mice 

In order to explore the role of Kleip during mouse development, especially in the formation of 

a functional vascular system, the transgenic Kleip embryonic stem cell line XF202 was 

purchased from the company Baygenomics. This modified ES cell line originates from a gene 

trap screen, which is characterized by the random insertion of the pGT2LXf construct into the 

intronic sequence between exon 2 and exon 3 of the mouse Kleip gene. In recent years the 

gene-trapping method has gained more and more prominence among other genome 

modifying methodologies, such as chemical mutagenesis, and RNA interference-mediated 

gene silencing chromosome engineering as a high-throughput technology to study the 
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causes of human diseases. The advantages of this mutagenesis method are beside the 

gene-orientation the fact that the mutated gene is known from the beginning due to its 

reverse genetics approaches. Furthermore this cost-effective technology of generating 

mouse mutants is an unique and effective tool to study the expression pattern of the gene of 

interest due to the integration of a reporter gene. Especially for genes that are differentially 

regulated during murine development, as well as for those that are expressed in different cell 

types and stages. Here in this study the reportergene β-geo was used, which encodes for the 

fusion protein consisting of the first aminoacids of the Kleip-protein tagged to β-galactosidase 

and further for neomycin resistance as a by-product. In contrast to gene targeting via 

homologous recombination this method exhibits yet one noteworthy disadvantage, namely 

the random insertion of the reporter gene into the genome (Lee et al., 2007; Skarnes, 2005). 

  

3.1.2 Kleip-deficiency leads to a lethal phenotype 

In this present study the transgenic founder animals were subsequently crossed after 

germline transmission into the inbred strain C57BL/6. Due to the establishment of a specific 

genotyping protocol, as well as the validation of Kleip loss of function via semi quantitative 

RT-PCR (Figure 12), the transgenic Kleip mice could be used for their further phenotopically 

characterization. Several rounds of performed heterozygous matings have revealed for the 

first time that incipient cogenic Kleip-deficient mice die in two waves during their 

development (Figure 13). A small percentage from around 21% of the homozygous progeny 

die during embryogenesis between embryonical stage E11.5 and their delivery, whereas 

nearly half of those that reaches birth die within twenty four hours. In addition, those that 

survived displayed developmental defects in the eye formation otherwise Kleip-mutants were 

healthy and fertile (data not shown).  

Interestingly, at this point one could argue that there is no real embryonic lethal phenotype. 

In accordance with Mendel a distribution of 25% homozygous, 50% heterozygous, and 25% 

wild-type littermates would be normally expected. However, the data from the graphic and 

table in figure 13 reveal that the percentage of Kleip-mutants at stage E11.5 is slightly 

increased (25% + 2.9%; n=158). In contrast, at birth (P0) only 22.1% (n=95) of the progeny 

are homozygous. However, the embryonic lethal phenotype can be furthermore supported by 

the finding that in nine of thirty nine performed heterozygous intercrosses no homozygous 

newborns were detectable. Yet, from these findings it was hypothesized that Kleips 

molecular function is crucial for embryonic and neonatal development which will be further 

elucidated in the following chapters. 
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3.1.3 Role of Kleip during embryogenesis 

3.1.3.1 Kleip is essential for the maintenance of vascular integrity 

To date it is well accepted that the establishment of a functional blood vessel network starts 

in the mouse embryo around E7.5 with the de novo formation of a primitive vascular plexus 

(Adams and Alitalo, 2007; Risau, 1997). Thereby the process of vasculogenesis is 

dependent on the growth factor VEGF and endothelial tyrosine kinase receptors, such as 

VEGFR1 and VEGFR2. The targeted disruption of these genes in mice leads in all three 

cases to embryonic lethality between E8.5 and E9.5 due to perturbations during the 

formation of the primitive vasculature (Fong et al., 1995; Shalaby et al., 1995). Between 

E8.5-E9.5 this initial step is followed by angiogenesis, which is characterized by the 

remodeling and expansion of the immature and poorly functional vasculature (Adams and 

Alitalo, 2007). Among the factors involved in angiogenesis the endothelial expressed tyrosine 

kinase receptor Tie-2 and its ligand adopt a key role. Transgenic mice either for Tie-2 or 

angiopoetin-1 die around E10.5 because of defects in vessel sprouting, branching, and 

remodeling (Dumont et al., 1994; Suri et al., 1996). In context to the BTB-kelch protein KLEIP 

it has been recently shown in in vitro analysis with cultured HUVE cells that KLEIP, as a 

guanine nucleotide exchange factor, plays an important role in the downstream regulation of 

VEGF-induced endothelial migration and sprouting angiogenesis (Nacak et al., 2007). For 

this reason, intercrosses of heterozygous Kleip animals were performed and the mouse 

embryos were to distinct developmental stages first macroscopically and later on 

microscopically analyzed. On the one hand it has been shown, that some homozygous Kleip-

mutants displayed growth morphological differences. However such malformation only 

became evident at E11.5 (Figure 14A). Prior to this date homozygous embryos were 

indispensable from their wild-type littermates (Figure 16). Previous performed studies have 

demonstrated that growth retardation as well as embryonic lethality can be caused by 

multiple malfunctions. In general, these phenotypes are often correlated with defects during 

embryonic implantation or cardiovascular development (Conway et al., 2003; Wang and Dey, 

2006). Interestingly, beside the growth retardation further analyses have demonstrated that 

around 16% of the homozygous embryos exhibit at E11.5 life-threatening hemorrhages 

(Figure 14A). Additionally, such bleedings were mainly located in the embryonic head area. 

These findings support furthermore the hypothesis that Kleip deficiency during embryonic 

development leads to a low penetrant, but lethal phenotype. Moreover the made 

observations emphasize a possible vascular phenotype.  

In order to confirm the bleedings first observed in Kleip-mutant mouse embryos another in 

vivo model was chosen to gain further insights into the function of Kleip on vascular integrity. 

For this purpose the zebrafish model organism with its advantages such as the extra-

maternal and rapid development and the embryonic transparency was utilized (Figure 21). 
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Gene silencing of Klhl20, the zebrafish ortholog of murine Kleip, was achieved by the 

injection of a specific splice blocking morpholino into fertilized transgenic fli:EGFP zebrafish 

eggs. Although high doses of splice blocking morpholino were injected only a partial 

downregulation of Klhl20 was reached in the zebrafish embryos (Figure 21C). Nevertheless 

klhl20 silenced embryos displayed increasing intracranial hemorrhages from 48hpf onward 

(Figure 21 A&B&D). In summary it has been shown, that the disruption of Kleip in mice, as 

well as the silencing of Klhl20 in zebrafish, causes in both in vivo models life-threatening 

intracranial hemorrhages.  

Furthermore, these findings were reinforced by an additional in vitro experiment, the 

transwell permeability assay. Knock-down of KLEIP in immortalized HUE cells using two 

specific and independent siRNAs lead in comparison to the scramble control transfected 

cells to a statistical significant increase in monolayer permeability within the first 120min 

(Figure 22). Interestingly, even with KLEIP siRNA 1 transfected cells revealed a higher 

permeability in comparison to the positive control. Taken together, these findings implicate 

an essential role for Kleip in the maintenance of vascular integrity. 

 

3.1.3.2 Dilatation of cranial vessels in Kleip-null embryos 

In general, under normal healthy conditions endothelial cells of the vasculature maintain 

vascular integrity, as well as permeability, through the regulation of cell-cell and cell-matrix 

protein interaction (Dejana et al., 2008; Vandenbroucke et al., 2008). In order to identify the 

reasons for the observed intracranial bleedings whole-mount immunofluorescence stainings 

either with the specific endothelial marker CD31 or endomucin were performed (Figure 14, 

15, 16). Kleip-mutants that suffer from hemorrhages revealed ruptured and dilated cranial 

vessels (Figure 14B), while the greatest possible extent of the body vasculature and the 

extra-embryonic tissues (Figure 19&20) did not reveal an apparent vascular phenotype. The 

only exception was exhibited by E10.5 staged Kleip-deficient embryos, which displayed 

diminished intersomitic vessel sprouting (Figure 16). Moreover, even those Kleip-deficient 

embryos that displayed no bleedings showed a significant increase in cranial vessel 

diameter, when compared to wild-type littermates (Figure 15). Although the hemorrhages 

were first visible at E11.5 such vascular abnormalities were already observed in E10.5 

embryos (Figure 16). These made findings are in accordance with those that were previously 

published by Hellström et al., who showed that mouse mutants either for Pdgf-B or Pdgf 

receptor-β exhibited a lethal phenotype with widened cranial microvessels and an increase in 

transendothelial permeability during embryogenesis (Hellstrom et al., 2001). In order to 

support these findings an additional ex vivo p-Sp-explant assay which mimics 

vasculogenesis and angiogenesis was utilized (Takakura et al., 1998). Surprisingly, this in 
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collaboration with Anja Runge (DKFZ, Heidelberg) performed assay displayed no similar 

angiogenic alterations with regard to vessel extention (Figure 17).  

In addition, the silencing of klhl20 in zebrafish tg(fli:EGFP) embryos had no effect on the 

formation of the intersomitic vessels. In contrast, the cranial vessels appeared thinner in the 

klhl20-silenced embryos than in control-morpholino injected ones (personal communication 

with Kristina Jörgens, CBTM, Mannheim). 

Normally the functional blood vessel is constructed of endothelial tubes surrounded by tightly 

associated and organized mural cells that mediate vessel stability. However, a dysfunction in 

the vessel attachment of pericytes and SMCs leads to vessel dilatation and even under worst 

conditions to the formation of microaneurysms and vessel wall disruption accompanied with 

hemorrhages (Hellstrom et al., 2001). In the previous mentioned mouse models that either 

lack Pdgf-B or Pdgfr-β the life-threatening hemorrhages are primarily caused by a diminished 

pericyte coverage which implicates endothelial cell overproliferation and failure in forming 

inter-endothelial junctions (von Tell et al., 2006). A similar phenotype is resembled by the G-

protein-coupled receptor Edg1 and its ligand shingosine-1-phosphate, indicating that both 

pathways are closely linked to each other (Kluk and Hla, 2002). Another signaling system 

involved in vessel growth and stabilization is the angiopoietin/Tie-system. While the binding 

of Ang-1 to the receptor Tie-2 mediates cell quiescence and vessel stability, the binding of 

Ang-2 to Tie-2 controls vascular homeostasis through an autocrine loop mechanism 

(Scharpfenecker et al., 2005). The absence of Ang-2/Tie2 interaction during mouse 

embryogenesis leads to vessel regression caused by detachment of the endothelium from 

smooth muscle cells (Maisonpierre et al., 1997; Visconti et al., 2002). From these described 

mouse models and our obtained in vivo data the question arose whether the served 

hemorrhages are also caused by the loss or disorganization of mural cell attachment to the 

affected vessels. Interestingly, whole-mount double immunofluorescence stainings for 

endomucin and the pericyte marker NG2 did not display major changes in the attachment of 

mural cells to the nascent vessels in the cranium of Kleip deficient embryos (Figure 18), 

arguing against defective migration and recruitment of pericytes as a cause for the leaky 

vascular phenotype. 

 

3.1.3.3 Possible role of Kleip during prenatal angiogenesis 

Taken together, the findings of the present study implicate so far a pivotal role for Kleip’s 

function during prenatal angiogenesis. Although the microvasculature of the central nervous 

system in Kleip-deficient embryos appears to be normally covered and stabilized by pericytes 

the observed cranial hemorrhages might be rather caused due to defects in the assembly of 

adhesive junctions between endothelial cells or between endothelial cells and the 

extracellular matrix. Nevertheless, it has to be considered that the observed vascular 
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leakiness is presumably caused by defective association of endothelial cells with pericytes 

and extracellular matrix like it is described for T-synthase-deficient embryos (Xia et al., 

2004). Another example for embryonic lethal hemorrhages with non-impaired pericyte 

recruitment is provided by the orphan G protein-coupled receptor GPR124. LacZ knock-in 

null embryos for GPR124 rather reveal numerous packed endothelial cells with diminished 

cytoplasm (Kuhnert et al., 2010). Based on these two phenotypes we suggest performing 

comparative ultrastructural analyses, using electron microscopy.  

As mentioned above it is more likely that the observed vascular phenotype results of defects 

in the molecular organization of adhesive junctions. Defects in the organization of these 

endothelial junctions are often associated with human pathologies, such as vascular 

malformations, hemorrhagic stroke or edema (Dejana et al., 2009). The inter-endothelial 

adhesion is thereby mediated by adherens junctions, whereas the adhesive properties to the 

extracellular matrix are known as tight junctions (Nyqvist et al., 2008; Vandenbroucke et al., 

2008). In a previous work Hara and co-workers already identified KLEIP to be involved in 

actin remodeling at new forming cell-cell contact sites of epithelial cells in a calcium-

dependent manner. From these data it was proposed that KLEIP functions as an actin-cross-

linker at E-cadherin mediated adherens junctions during the initiation of cell-cell adhesion 

(Hara et al., 2004). Furthermore, our group could verify in HUVE cells that KLEIP is located 

in the cytoplasm, however upon VEGF stimulation it translocates to the cell membrane 

(Nacak et al., 2007). Moreover, based on the fact that the immortalized HUE cells used here 

in the in vitro permeability assay were not co-cultured with mural cells we rather propose 

defects in the assembly of inter-endothelial junctions or within the focal adhesions between 

the endothelial cells with the surrounding cell-matrix. A starting point for further experiments 

will be the examination of several components that are associated to the assembly of 

adhesive junctions. For instance, endothelial adherens junctions predominantly consist of 

VE-cadherin a molecule that mechanically connects neighboring endothelial cells by linking 

α-, β- and γ-catenin to the cytoskeleton (Mehta and Malik, 2006). However, a direct 

association of both β-catenin and actin to α-catenin has not been reported (Weis and Nelson, 

2006). Another important interaction partner is represented by p120, which binds to a 

juxtamembrane domain of VE-cadherin (Xia et al., 2003). In addition, it is well known that 

p120 functions as an inhibitor of Rho family GTPases (Anastasiadis et al., 2000). A deletion 

of these genes during mouse development results in all these cases in an embryonic lethal 

phenotype with vascular leakiness and severe hemorrhages (Nyqvist et al., 2008; Oas et al., 

2010). In contrast to the interendothelial junctions the cell-matrix contacts are primarily 

composed of integrins. Mice lacking the α5 subunit of integrins display severe vascular 

defects, such as leaky and distended blood vessels (Yang et al., 1993). In addition, others 

implicated for the integrin α5β1 rather to be required for the proper formation and 
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maintenance of blood vessels than in initial vasculogenesis (Bouvard et al., 2001). 

Furthermore, it has been shown for the αv subunit of integrins that its absence during murine 

development is consistent with intracerebral and intestinal hemorrhages (Bader et al., 1998). 

In summary, alterations within these signaling pathways have an impact in the organization 

of cytoskeleton which furthermore results in the modification of endothelial cell-cell contact 

and vessel integrity. Furthermore, a helpful tool to study the role of Kleip in maintaining 

vascular integrity would be the usage of a conditional knockout mouse model, which allows 

site-specific recombinase (such as Cre and Flp) to inactivate genes in a spatial and 

temporally controlled manner during mouse development (Garcia-Otin and Guillou, 2006; 

Nagy, 2000). 

Yet, prior to the performance of the mentioned experimental approaches the identification of 

Kleip’s expression pattern during murine development is still of exceptional importance. In 

spite of several attempts with several commercially available antibodies directed against the 

Kleip protein, it was not possible to perform expression studies. None of the tested 

antibodies were useful for biochemical or immunofluoresence stainings due to the lack of 

acceptable antibody sensitivity and/or specificity. Similarly and unsatisfactorily results were 

obtained after specific X-Gal staining (data not shown). Only the endothelial RT-PCR 

analyses in this study (Figure 23), as well as in those performed by Nacak et al. demonstrate 

its expression in endothelial cells (Nacak et al., 2007). To solve this problem several 

antibodies have been generated and tested currently for their specificity. Another approach 

to overcome such deficits would be the performance of in situ hybridization experiments. 

 

3.1.4 Role of Kleip during neonatal development 

3.1.4.1 Kleip-null mutant neonates die presumably due to respiratory distress 

At the edge of embryogenesis and neonatal development diverse life-challenging events 

occur in the neonates after parturition. Beside the birth process itself, other abnormalities in 

breathing, suckling and homeostasis, as well as the resulting perturbations of these 

physiological processes can affect neonatal survival (Turgeon and Meloche, 2009). As 

previously described above, we could show within the scope of this thesis that only a few 

number of homozygous Kleip embryos die during embryonic development, whereas the 

majority of those that reaches birth die shortly after within one day (Figure 13). This made 

observation implies that Kleip is of essential importance for neonatal survival. The first 

extrauterine and most important challenge of newborns is thereby probably the switch from 

embryonic oxygen supply accomplished by the mother to independent breathing. Detailed 

macroscopically examination of perished Kleip-mutant neonates pointed out that neonatal 

lethality is presumably caused by respiratory distress, because some Kleip-deficient puppies 

suffered form with air extended stomachs (Figure 24).  
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Strongly associated to breathing is the closure of a specialized vessel called ductus 

arteriosus that mediates the connection between the pulmonary artery and the aorta. During 

embryogenesis the blood circulation is shunted from the developing lungs. However with the 

onset of breathing the closure mechanism gets initialized that furthermore implies the switch 

form fetal circulation to pulmonary circulation. Failure in this closing process threatens the 

health status of neonates as shown by respiratory complications in human newborns 

presenting a patent ductus arteriosus (Vaughan and Basson, 2000). While the closure 

mechanism of the ductus arteriosus as well as the morphology of the congenital vessels is 

persistently not impaired in Kleip-deficient newborns (Figure 26) we rather suggested 

morphological alterations in the formation of the respiratory tract. Several reports have 

demonstrated before that asphyxia can be caused by craniofacial defects. Especially 

alterations in the forming of the secondary plate, which separates the nasal cavity form the 

oral cavity (Jiang et al., 1998; Kaartinen et al., 1995). Its absence leads to a defective 

suckling because of the lacking of negative pressure that is normally build up during this 

process (Turgeon and Meloche, 2009). However, our studies have shown that the by 

respiratory distress caused alterations in homozygous Kleip neonates are rather caused by a 

failure in lung morphogenesis and not due craniofacial defects (Figure 25). Yet, it should be 

noted that asphyxia can be also a result of obstruction in the upper airways like it was 

previously described for retinalaldehyde dehydrogenase type 3 (Aldh1a3) mouse mutants 

(Dupe et al., 2003). During the attempt to breathe nasal malformations in these mouse 

mutants lead to the pulling of the tongue to the palate, thereby resulting in obstruction of the 

upper respiratory tract and neonatal lethality within 10 hours after birth. Yet, this was not 

investigated in Kleip-mutants so far. 

 

3.1.4.2 Kleip-mutants exhibit retarded pulmonary development 

During the late embryonic phase of lung development, the saccular stage, the fetal lung 

undergoes structural and functional maturation processes that are required for adaptation to 

air breathing at birth. The main characteristics of this stage are in particular the formation of 

terminal lung saccules accompanied with a differentiation process of type I and type II 

pneumocytes. Prior to parturition lung saccules dilatation mediates the thinning of the 

pulmonary mesenchyme in the periphery. In parallel apposition of juxtaposed capillaries and 

saccules facilitates the forthcoming gas exchange. With the first attempts of breathing the 

pulmonary blood flow increases in the neonates while the in the lung remaining fluid is 

getting resorbed. In contrast the de novo pulmonary surfactant protein/lipid biosynthesis and 

secretion in the peripheral saccules is activated. A dysregulation of these processes result in 

pulmonary immaturity and surfactant deficiency accompanied with the respiratory distress 

syndrome (RDS), which is likely the most important disorder for morbidity and mortality in 
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human newborns (Jobe, 2010). Based on the previous made findings the lungs of 

homozygous Kleip neonates were intensively analyzed. Lungs of Kleip-deficient newborns 

did neither exhibit an abnormal lobulation pattern nor gross morphological alterations (Figure 

27). In contrast, histological examinations displayed strikingly changes in the pulmonary 

tissue structure. Lungs of Kleip-mutants revealed in comparison to wild-type littermates 

significantly reduced airspace, and marked thickening of alveoloar septae (Figure 28). 

Although branching morphogenesis was slightly inhibited (Figure 26 & 27), the observed 

neonatal alveolar hypoplasia implicates rather a developmental arrest at the beginning of the 

saccular stage. All of our made findings are thereby in accordance to previously published 

mouse studies, such as the specific respiratory epithelial disruption of the transcription factor 

FOXA2 (Wan et al., 2004), calcineurin b1 (Cnb1) (Dave et al., 2006) or the global deletion of 

glucocorticoid receptor (GRα) (Cole et al., 1995). Mutation of FOXA2 and Cnb1 in mice also 

did not substantially affect early lung branching morphogenesis, instead the lungs showed 

altered sacculation consistent with a generalized maturation arrest. Expression studies in 

theses mouse mutants revealed that the respiratory distress is induced by an impaired 

regulation of surfactant metabolism. Surfactant proteins are known to prevent the collapse of 

with air-filled alveoli due to the reduction of surface tension.  

During the saccular stage lung maturation is closely linked to the differentiation of the lung 

epithelium into type I and type II pneumocytes. Further the surfactant is synthesized by type 

II pneumocytes and intracellularly stored by lamellar bodies. In order to identify such a failure 

in epithelial differentiation or lung maturation it would be helpful to study the expression of 

several genes that are tightly associated to these processes in Kleip-mutant lungs. For 

instance the carboxypeptidase M (Nagae et al., 1993) and Aqp-5 (Funaki et al., 1998) genes 

are expressed in type I pneumocytes, whereas the four main surfactant proteins (SP-A to –

D), and VEGF (Bhatt et al., 2000) are expressed in type II pneumocytes and the epithelial 

progenitor cells (Clara cells) of small bronchioles. In addition, we suggest performing electron 

microscopy analysis to unravel potential cellular alteration in the differentiation process.  

Next to defective maintenance of surfactant synthesis the inadequate lung clearance of 

remaining embryonic fluids after birth can also affect breathing and neonatal survival. This 

vital process is dependent on Na+ absorption (Olver et al., 2004). Mouse mutants for the α-

subunit of the epithelial sodium channel (αENaC) displayed an abolished Na+ transport and 

developed RDS. Although αENaC mutants were initially able to breathe and inflate their 

lungs the increasing accumulation of liquid in the pulmonary system caused neonatal death 

within 40 hours after birth (Hummler et al., 1996). In context, mortality of Kleip-deficient 

neonates was obvious visible around ten hours after birth. An important tool to determine 

whether liquid accumulation is responsible for the neonatal lethal phenotype in Kleip-mutants 

is thereby presumably the weighing of the freshly isolated wet lung. 
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Another feature that is necessary for transition to air breathing at birth is the increasing 

vascularity of the saccules that ensures proper respiratory gas exchange. Recently it has 

been demonstrated by Han et al. that the majority of eNOS-deficient mice die neonatal due 

to alveolar capillary dyplasia. Next to a marked thickening of saccular septae and reduced 

surfactant the lungs of mutant newborns exhibited reduced distal arteriol branches 

accompanied with hypoperfused capillary regions (Han et al., 2004). However, preliminary 

experiments with after birth isolated Kleip-/--lungs displayed no alterations in the vascular 

network in comparison to those of wild-type littermates (data not shown), suggesting that the 

observed lethal phenotype is rather a result of defects in the previous mentioned lung 

maturation or clearance.  

Although our data hitherto only describes morphological changes during the saccular stage 

of lung development, we conclude that Kleip is indispensable for lung maturation. Transgenic 

Kleip mice may provide a useful model to investigate the processes and signaling pathways 

of late gestational and neonatal lung maturation more in detail. In addition heterozygous as 

well as some homozygous Kleip mice that do not display any viability defects are presumably 

more susceptible to pathophysiological lung alterations in consequence of stress conditions 

or to pulmonary infections. 

 

3.2 Further G-protein proteins and their role in angiogenesis  

Beside the BTB-kelch protein Kleip, our group is also interessted in other G-proteins that play 

a putative role during angiogenesis, such as ROCKI/II, and the DOCK180/ELMO1 complex 

that modulates directly the activation of the small GTPase Rac1. In the scope of this thesis I 

was able to substantiate the findings of Daniel Epting who was primarily working on these 

two last mentioned G-proteins. 

 

3.2.1 ROCK I/II functions as negative regulators of VEGF-induced angiogenesis 

The first side project deals with the downstream targets of RhoA signaling during 

angiogenesis-related processes, namely the two highly related Rho-associated coiled-coil 

forming protein kinases ROCK I and ROCK II. To date it is well known that upon VEGF 

stimulation RhoA signaling is partially mediated by the activation of ROCK I/II, which in turn 

promotes actomyosin mediated contractile force generation through the phosphorylation of 

numerous downstream target proteins. Based on its essential functions during endothelial 

migration and other angiogenic processes, ROCK I/II become more and more attractive as a 

therapeutic target for several cardiovascular diseases. Yet, previous studies have 

demonstrated that the pharmacological inhibition of ROCK I/II apparently led to conflicting 

results with respect to regulation of angiogenic processes and thereby relying mainly on the 

usage of the inhibitors Y-27632 and fasudil. For Y-27632 it has been shown that even with 
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the use of the same concentrations the inhibition of ROCK I/II can affect endothelial 

migration and sprouting positively (Mavria et al., 2006) as well as negatively (van Nieuw 

Amerongen et al., 2003). Furthermore, on the one hand the usage of fasudil was reported to 

inhibit angiogenesis (Yin et al., 2007), whereas on the other hand fasudil was identified to 

improve endothelial function in patients (Nohria et al., 2006). In order to shed some light on 

theses discrepancies, we used the supposed specific pharmacological inhibitor H-1152 

(Davies et al., 2000) for in vivo as well as for in vitro studies. Interestingly it could be shown 

that the blockade of ROCK I/II led to an activation of VEGF-driven retinal neovascularization 

and sprouting angiogenesis (Kroll et al., 2009). Moreover, these data could be verified by 

biochemical experiments. While Daniel Epting demonstrated that inhibition of ROCK I/II with 

the help of H-1152 or ROCK I/II-specific siRNAs resulted in an enhanced VEGF-induced 

VEGF-receptor kinase domain receptor- or ERK1/2-phosphorylation respectively, I could 

reinforce these findings by showing that the activation status of ERK1/2 is dependent on the 

used H-1152 concentration (Figure 29). Taken together, our data identify the inhibition of 

ROCK I/II activity in endothelial cells as an interesting therapeutic target to enhance 

angiogenesis. Yet, it cannot be ruled out that H-1152 inhibit additional kinases. For this 

reason it becomes more and more important to identify further specific inhibitors, which either 

block ROCK I or ROCK II alone or both of them. Furthermore, the generation of conditional 

knockout mice for ROCK I and/or ROCK II would be helpful to decipher the specific roles of 

these two Rho-associated kinases in the cardiovascular system.  

 

3.2.2 The Rac1 regulator elmo1 controls vascular morphogenesis in zebrafish 

The last part of this thesis deals with the Dock180/Elmo1 complex, a nucleotide exchange 

factor for the small GTPase Rac1, which was also investigated in our group. The small 

GTPase Rac1 is beside RhoA and Cdc42 a major regulator of endothelial cell migration 

during angiogenesis (Tan et al., 2008) and in other biological systems (Sugihara et al., 

1998). Initially the ELMO1/DOCK180 complex has been described as a bipartite guanine 

nucleotide exchange factor regulating Rac1 activation (Lu and Ravichandran, 2006). The 

data presented herein show for the first time that the interaction of elmo1 and dock180 is 

also important for the formation of the zebrafish vasculature in vivo. Dock180 as well as 

Elmo1 were identified to be expressed in the endothelium (Figure 30 and data from (Epting 

et al., 2010)). Further Daniel Epting has shown that morpholino based silencing of dock180 

alone did not affect vessel formation in zebrafish while the downregulation of elmo1 resulted 

in an aberrant vessel morphogenesis (Epting et al., 2010). Especially the intersomitic vessels 

displayed morphological alterations and were unable to shape the dorsal longitudinal 

anastomotic vessel. Most strikingly,elmo1 morpholino-injected embryos were unable to form 

the parachordal vessel. Based on the findings that the parachordal vessel is the origin of the 
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thoracic duct and the future lymphatic system (Isogai et al., 2003; Yaniv et al., 2006), it was 

implied that the formation of the lymphatics may also be affected.  

During the paper revision process the question arose whether the observed phenotype is 

caused autonomously by endothelial cells or in response due to other cellular functions in the 

surrounding tissue. In order to address this question a spatial and temporarily restricted 

expression silencing of elmo1 was performed by myself using a photoactivatable morpholino 

(PhotoMorphelmo1) (Shestopalov et al., 2007). Inactivation of elmo1 in the ventral mesoderm 

at 20hpf recapitulated largely a similar vascular phenotype at 48hpf (Figure 31) as the global 

expression silencing of elmo1 suggesting a cell-autonomous function of elmo1 in the 

vasculature. 
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4. Materials and Methods 

4.1 Materials 

4.1.1 Equipment   

 

Equipment Company      

Agarose gel documentation system  Intas 

Analytical balance (ABS) Kern 

Cell Counting Chamber  Neolab 

Centrifuge (Rotina™ 420R) Hettich 

Chemiluminescence-imaging system Peqlab Biotechnology GmbH 

CO2 cell culture incubator (HERA cell 150®) Thermo Scientific 

Confocal microscope (A1R) Nikon 

Cryostat (CM1900) Leica 

Electrophoresis power supply Consort 

FACSAria cell sorter BD 

Fluorescence microscope Axio Imager 2 Zeiss 

Incubator  Memmert 

Inverted fluorescence microscope (DMI 6000B)  Leica 

Inverted light microscope (Type 090-135.001) Leica  

Magnetic stirrer  IKA 

Microbiological Safety Cabinets (HERAsafe®) Thermo Scientific 

Microplate reader (Infinite® 200 Pro) Tecan 

Microcentrifuge (Mikro™ 200R) Hettich 

Microtome (HM 355S)  Microm 

Microwave LG 

Minicentrifuge (Rotilabo® Uni-fuge) Carl Roth 

Paraffin Embedding machine  Sakura 

PCR Cycler (MyCycler™, MJ Mini) Bio-Rad 

pH-meter WTW 

Photometer (NanoDrop 8000) Thermo Scientific 

Precision balance (PC2200) Mettler 

Rocking shaker Neolab 

Section flattening plate (SW 85)  Adamas Instrumenten bv 

Stereomicroscope (MZ 9.5) Leica 

Thermo Mixer (MHR11) HLC BioTech  

Vacuum pump  Integra Biosciences 

Vortex Mixer  Scientific Industries 

Water bath  Julabo 
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4.1.2 Chemicals 

Bulk chemicals were obtained from the following companies: 

 

 AppliChem (www.applichem.com) 

 Carl Roth (www.carl-roth.de) 

 Fermentas (www.fermentas.de) 

 Merck (www.merck.de) 

 Roche (www.roche-applied-science.com) 

 Sigma-Aldrich (www.sigma-aldrich.com) 

 

 

4.1.3 Primers 

All used primers were purchased from MWG (www.mwg-biotech.com) 

 
Table 2:  Regular used primers 
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Table 3:  Irregular used primers 
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4.1.4 Small interfering RNA (siRNA) 

Knock-down of KLEIP via siRNA was achieved using Silencer® pre-designed siRNA 

purchased from Ambion (www.ambion.com): 

 

Table 4:  Used siRNA 
 

 

As a negative control the Ambion Silencer® Negative Control siRNA #1 (AM4635) was used. 

 

 

4.1.5 Splice-site blocking morpholinos 

Splice-site blocking (SB) morpholinos for silencing of klhl20 and elmo1 in zebrafish were 

purchased from GeneTools (www.gene-tools.com). 

 

 

4.1.6 RT-PCR and PCR reagents, buffers, nucleotides 

The following reagents were used for RT-PCR and PCR 

 

Reagents source of supply  

E.coli RNase H, 2U/µl Invitrogen 

DEPC-treated water Invitrogen 

dNTP mix, 10mM each  Invitrogen & Peqlab 

DTT, 0.1M Invitrogen 

Magnesium chloride, 25mM Invitrogen 

random hexamers, 50ng/µl Invitrogen 

10x Reaction buffer S Peqlab 

Ribonuclease inhibitor, 40 U/µl Invitrogen 

RNaseOUT™ recombinant  Invitrogen 

10x RT buffer Invitrogen 

SuperScript™ II reverse transcriptase, 50U/µl Invitrogen 

Taq DNA polymerase 5U/µl Peqlab 
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4.1.7 Kits 

 

Kits source of supply 

DAB Peroxidase Substrate Kit  Vector Laboratories 

RNeasy® Micro Kit Qiagen 

RNeasy® Mini Kit Qiagen 

SuperScript™ First-Strand Synthesis System for RT-PCR Invitrogen 

VECTASTAIN Elite ABC Kit (Rabbit IgG) Vector Laboratories 

 

 

4.1.8 Transfection reagents 

 

Reagents source of supply 

Oligofectamine™ Invitrogen 

 

 

4.1.9 Antibodies 

4.1.9.1 Primary antibodies 

 

Specification Host source of supply 

anti-mouse CD31 (MEC 13.3), monoclonal  rat BD Pharmingen (553370) 

anti-mouse CD31 (MEC 13.3), 

monoclonal, FITC-conjugated  rat BD Pharmingen (553372) 

anti-human CD31 (JC70A), monoclonal mouse Dako (M0823) 

anti-mouse CD34 (RAM 34), 

monoclonal, Alexa 647-conjugated rat BD Pharmingen (560230) 

anti-DOCK 180 (H-70), polyclonal  rabbit   Santa Cruz (sc-5625) 

anti-mouse Endomucin (V.1A7), monoclonal rat Santa Cruz (sc-53940) 

anti-ERK1/2 (K-23), polyclonal rabbit Santa Cruz (sc-94) 

anti-NG2, polyclonal rabbit Milipore (AB5320) 

anti-phospho-ERK1/2 (E-4), monoclonal mouse Santa Cruz (sc-7383) 

anti-human SMA (1A4), monoclonal mouse Dako (M0851) 
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4.1.9.2 Secondary antibodies 

 

Specification Host source of supply 

anti-mouse IgG, HRP rabbit Dako (P0260) 

anti-mouse IgG, Alexa 546 goat Molecular Probes (A-11003) 

anti-rabbit IgG, Alexa 488 donkey Molecular Probes (A-21206) 

anti-rabbit IgG, Alexa 546 goat Molecular Probes (A-11071) 

anti-rabbit IgG, HRP goat Dako (P0448) 

anti-rat IgG, Alexa 546 goat Molecular Probes (A-11081) 

anti-rat IgG, biotin rabbit Dako (E0468) 

anti-rat IgG, HRP     rabbit  Dako (P0450)   

 

 

4.1.10 Nuclei Staining reagents 

 

Specification  source of supply 

Hoechst Dye (DAPI; 33258) 10mg/ml    Sigma Aldrich 

  

 

 

4.1.11 Additional staining reagents 

 

Specification  source of supply 

CAS Block Invitrogen  

DAB-tablet, 10mg Sigma Aldrich 

Pap Pen Dako 

DPX mounting medium Sigma Aldrich 

Eosin Y Solution Sigma Aldrich 

FITC-dextran Sigma Aldrich 

Fluorescent Mounting Medium Dako 

Hydrogen peroxide, 30% Roth  

Kaiser’s glycerol gelatine Merck 

Mayer`s Hematoxylin solution Roth 

Mouse BD Fc Block™  

(rat anti-mouse CD16/CD32; clone 2.4G2) BD Pharmingen 

Nickel chloride Sigma Aldrich 
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4.1.12 Markers  

 

Specification  source of supply 

GeneRuler™ DNA Ladder Mix Fermentas (SM0331) 

PagerRuler™ Protein Ladder Fermentas (SM1811)  

 

 

4.1.13 Miscellaneous 

 

Specification  source of supply 

Blotting Papers (Grade GB003) Whatman 

Fibronectin Sigma-Aldrich 

Injection needles  

(0.4 x 19mm, 27G ¾” – Nr.20) BD 

(0.7 x 30mm, 22G 1¼” – Nr.12) BD 

Lab-Tek chambered coverglass Nunc 

Low Melting Agarose Promega 

Microscope coverglasses   Thermo Scientific / 

  Langenbrinck 

Microscope glass slides Thermo Scientific / 

 Langenbrinck 

Microtome blades (S35) Feather 

Optitran Nitrocellulose membrane (0.2µm) Whatman 

Paraplast McCormick 

PBS (powder) Sigma    

PCR-Tubes Starlab 

Pierce ECL Western Blotting Substrate Thermo Scientific 

Proteinase K Roche 

RNase-Free DNase Set Qiagen  

Syringe (1ml and 30ml) BD  

Tissue embedding cassettes Langenbrinck 

Tissue embedding molds Polysciences 

Tissue-Tek O.C.T. Compound Sakura 
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4.1.14 Cell culture 

4.1.14.1 Cell culture consumables 

 

Specification  source of supply 

Cell scraper Greiner 

Cell strainer (70µm) BD  

FACS Tubes BD 

Pasteur pipettes Buddeberg 

Plastic cell culture flasks, T75 Greiner 

Safe-Lock Tubes (1.5ml, 2.0ml) Eppendorf 

Sterile filters (0.22µm and 0.45 µm) Roth 

Sterile pipettes  BD 

Tissue culture and suspension plates 

6-, 24-, 96-well  Greiner 

4-well Nunc 

Transwell®, 6.5mm insert, 0.4µm pore seize Corning 

Tubes: 15ml and 50ml  BD 

 

 

4.1.14.2 Cells 

 

Specification  source of supply 

Human umbilical vein endothelial cells (HUE cells) freshly isolated 

Immortalized human umbilical vein endothelial cells (HUE cells) Ulrike Fiedler Freiburg 

OP9 feeder cells (CRL-2749™) ATCC 

 

 

4.1.14.3 Cell Culture Media 

 

Specification  source of supply 

RPMI 1640  Gibco 

Endothelial Cell Growth Medium  Promocell 

Endothelial Cell Basal Medium   Promocell 

 

 

 

 



Materials and Methods 

77 

4.1.14.4 Supplements and antibiotics 

 

Specification  source of supply 

Fetal bovine serum (FCS), heat inactivated  PAA Laboratories 

Penicillin/Streptomycin, 100x  PAA Laboratories 

 

 

4.1.14.5 Miscellaneous 

 

Specification  source of supply 

β-mercaptoethanol  

(tissue culture tested) Sigma 

Collagen Wothington 

Dimethlysulfoxide (DMSO)  Roth 

Dulbecco’s phosphate buffered saline (PBS), -Ca2+,-Mg2+ Gibco 

Opti-MEM® Gluta max Invitrogen 

Trypsin-EDTA solution (25%) Gibco 

 

 

4.1.15 Growth factors and inhibitors 

 

Growth factors and inhibitors source of supply 

Recombinant human Erythropoietin R&D systems 

Recombinat human VEGF-A165 R&D systems 

Recombinant mouse Interleukin 6 R&D systems 

Recombinant mouse SCF R&D systems 

ROCK I/II inhibitor H1152 Calbiochem 
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4.1.16 Solutions and buffers 

Solutions and buffers for agarose-gels, SDS-PAGE and Western blotting were prepared 

according to standard methods (Sambrook and Russell, 2001) 

 

 

4.1.16.1 Lysis buffer 

 

Lysis buffer      Components 

10x Erythrocytes lysis buffer 1.55mM  NH4Cl  

0.1M    NH4HCO3  

1mM   EDTA  

aqua dest. ad 1000ml 

 

Mouse tail lysis buffer 100mM Tris / HCl pH8.5 

 5mM EDTA 

 0.2% SDS  

 200mM NaCl 

 Proteinase K (final concentration

 100µg/ml) 

 

Nonidet P-40 (NP-40) cell lysis buffer 150mM NaCl 

50mM Tris / HCl pH 7.4 

10mM EDTA 

1% NP-40 (v/v) 

10% Glycerol (v/v) 

1% Protease Inhibitor Cocktail 

 (Sigma-Aldrich) (v/v) 

 

 

Sodium vanadate (Na3VO4) lysis buffer NP-40 Lysis buffer 

 1% Vanadate (v/v) 
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4.1.16.2 Staining solution 

 

Staining solution   Components 

 

3,3'-Diaminobenzidine (DAB)  

staining solution 1.step: dissolving 

 10mg DAB tablet (Sigma-Aldrich)  

 10ml 1x PBS (w/o Ca2+ and Mg2+) 

 2.step: dilution  

 3ml DAB/PBS 

 7ml 1x PBS (w/o Ca2+ and Mg2+) 

 (final concentration 0.3mg/ml)   

    

 

4.1.16.3 Tissue fixation solutions 

 

Tissue fixation solutions  Components 

4% PFA/PBS    0.2g Sodium hydroxide (NaOH) 

     4g Paraformaldehyde  

     0.84g Sodium di hydrogen phosphate (NaH2PO4) 

     pH 7.2 

     aqua dest. ad 100ml  

 

Zinc fixative    1l 0.1M TRIS, pH 7.4 

     0.5g Calcium acetate (C4H6O4Ca) 3.2mM 

     5g Zinc acetate (Zn(CH3CO2)2) 27.3mM 

     5g Zinc chloride (ZnCl2) 36.7mM 

 

 

4.1.16.4 Washing buffer 

 

Washing buffer   Components 

PBSMT    3% instant milk powder (w/v) 

     0.1% Triton X-100 (v/v) 

     1x PBS (w/o Ca2+ and Mg2+) 

 

PBST 0.1%    0.1% Tween 20 (v/v) 

     1x PBS (w/o Ca2+ and Mg2+) 
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Washing buffer   Components 

FACS buffer    0.5% FCS (v/v) 

     1x PBS (w/o Ca2+ and Mg2+) 

 

FACS washing buffer   2.5% FCS (v/v) 

     1x PBS (w/o Ca2+ and Mg2+)   

 

 

4.1.16.5 Miscellaneous buffer 

 

Miscellaneousbuffer  Components 

PBT    0.2% BSA (w/v) 

    0.1% Triton X-100 (v/v)    

   1x PBS (w/o Ca2+ and Mg2+) 

 

Stripping buffer   0.375g Glycine 

     500µl fuming HCl  

     aqua dest. ad 50ml 

 

50x TAE    242g Tris 

    57.1ml Acetic acid 

    100ml 0.5 EDTA  

    pH 8.5 

     aqua dest. ad 1000ml  

 

10x TE buffer    100ml 1M Tris / HCl, pH 7.5 

     20ml 500mM EDTA, pH 8.0  

aqua dest. ad 1000ml  

 

 

4.1.16.6 Blocking solutions 

 

Blocking solutions   Components 

3%BSA/PBS    3% Bovine Serum Albumin (w/v) 

     1x PBS (w/o Ca2+ and Mg2+) 

 

5% milk powder/PBST  5% instant milk powder (w/v) 

     1x PBST 0.1% (w/o Ca2+ and Mg2+) 
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4.1.16.7 Sample buffers 

      

Sample buffers   Components 

5x protein sample buffer  250mM Tris / HCl, pH 6.8 

0.5M DTT (1.4-Dithiothreitol) 

10% SDS(v/v) 

0.5% Bromphenol Blue solution (v/v) 

50% Glycerol (v/v) 

 

5x DNA sample buffer  0.2% Bromphenol Blue solution (v/v) 

50% Glycerol (v/v) 

10mM EDTA 
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4.2 Methods 

4.2.1 Molecular Biology 

4.2.1.1 RNA isolation 

For RNA isolation of animal cells the cell suspension was centrifuged (198 x g, 5min, 4°C; 

Hettich) and the supernatant aspirated. 350µl RLT buffer (RNeasy® Mini Kit or RNeasy® 

Micro Kit) were mixed with β-Mercaptoethanol (10μl β-Mercaptoethanol/1ml RLT buffer) and 

added to the cell pellet. After incubation at -20°C the RLT buffer was defrosted and the cell 

lysate was homogenized by passing through a 22-gauge (0.9mm) needle attached to a 1ml 

syringe for at least 15 times. The following RNA isolations steps, as well as the optional 

DNAse digestion, were performed according to the manufacturer’s instructions. The RNA 

was eluted in 14-30µl RNase-free water and stored at -80°C. The RNA concentration was 

measured photometrically with NanoDrop (Thermo Scientific). For the RNA isolation of 

human cells the procedure from above were used with the following modifications. Prior to 

cell lysis with 600µl RLT buffer the adherent growing cells were washed twice with PBS to 

remove the culture medium. Furthermore, for RNA elution 30-50µl RNase-free water was 

used. 

  

4.2.2 Reverse transcription and Polymerase Chain Reaction (RT-PCR) 

4.2.2.1 Reverse Transcription 

RT-PCR was performed to detect the expression levels of Kleip (Klhl20) in vertebrates, such 

as zebrafish, human or mice, as well as zebrafish elmo1. As control the analogous 

housekeeping gene tata box binding protein (TBP) was used. The transcription from mRNA 

into copy DNA (cDNA) was performed according to the SuperScript™ First-Strand Synthesis 

System for RT-PCR (invitrogen) instruction manual. For reverse transcription 1 to 5µg total 

cellular RNA was transferred into a PCR tube and mixed with 3µl random hexamer primer 

(50ng/µl) and 1µl of dNTP mix (10mM each). The total volume of 10µl was adjusted by 

adding DEPC-treated water. After incubation at 65°C for 5 minutes the reaction unit was 

chilled on ice, before the following RT-reaction buffers and nucleotides were added: 2µl 10x 

RT buffer, 4µl MgCl2 (25mM), 2µl DTT (0.1M) and 1µl RNaseOUT recombinant ribonuclease 

inhibitor. The components were collected by a brief centrifugation step with the 

minicentrifuge (Carl Roth) and incubated at 25°C for 2 minutes. After addition of 1µl 

SuperScript™ II RT (50U/µl) further incubation steps followed: 25°C for 10min, 42°C for 

50min. The reverse transcription reaction was stopped by heating to 70°C for 15min, 

followed by a short cooling on ice. Before the cDNA was used for expression analysis, the 

RNA was digested in a final step by adding 1µl of RNaseH (2U/µl) with an additional 

incubation for 20min at 37°C. Excessive cDNA was stored at -20°C. 
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4.2.2.2 Polymerase Chain Reaction (PCR) 

In general, PCR was performed using 1-2μl cDNA / DNA, 0.04μl of the corresponding 

primers (4pmol), 2μl 10x reaction buffer S, 0.4μl dNTP-mix (10mM each), and 0.2μl Taq DNA 

polymerase (5U/μl). The reaction volume was adjusted to 20μl with water. For genotyping of 

mouse tails the amplification reaction was performed as follows: 

 

First denaturation: 94°C, 3min 

Denaturation: 94°C, 45sec 

Annealing: 58°C, 30sec 

Extension: 72°C, 1min 30sec 

Final extension: 72°C, 10min 

 

The reaction ran for 32 cycles in a Bio-Rad PCR Cycler. Amplification of the product was 

confirmed by 1% - 2% gel electrophoresis (Sambrook and Russell, 2001). For RT-PCR 

analysis the running conditions were slightly modified. The extension time was reduced to 

45-60 sec and the number of cycles was increased to 34 cycles. 

 

4.2.3 Cell culture and transfection 

4.2.3.1 Cell culture conditions 

Normal and immortalized human vein endothelial cells were cultivated in endothelial cell 

growth medium containing 10% FCS, 1% Penicilin/Streptomycin and the corresponding 

supplements. OP-9 feeder cells were cultured in RPMI charged with 10% FCS and 1% 

Penicilin/Streptomycin. All used cells were cultured in a humidified incubator with constant 

conditions of 37°C and 5% CO2. HUVE cells were used for experiments between passage 2 

and 5. For stimulation experiments cells were starved in endothelial basal medium containing 

2.5% FCS overnight followed by stimulation with VEGF (25ng/ml). 

  

4.2.3.2 Isolation of endothelial cells from umbilical chord 

For the isolation of endothelial cells from a fresh umbilical chord a buttoned cannula was 

inserted into the vein and fixed with a vascular clamp. After a washing step to remove 

excessive blood the umbilical chord was closed with another clamp at the opposite end. 

Subsequently, vein got filled with a solution containing PBS (with Ca2+ and Mg2+) and 

collagenase (1mg/ml; Worthington). To detach the endothelial cells from the venous vessel 

wall the buttoned cannula was carefully removed and the umbilical chord was incubated for 

15 minutes at 37°C. Next the venous vessel was flushed with PBS and isolated endothelial 

cells were collected. After centrifugation (198 x g, 5min, 4°C; Hettich) the HUVE cells were 

resuspended in fresh growth medium and plated on a flask. In addition medium was changed 
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twice after an incubation period of 3 hours. At passage 1 endothelial identity was verified by 

CD31 (JC70A, DAKO) and αSMA (1A4, DAKO) single immunofluorescence stainings. Cells 

were first fixed with 4% phosphate buffered paraformaldehyde for 30min and than stained 

with primary antibodies (1:25) for 1h. Labelling of the primary antibodies was accompanied 

by the incubation with anti-mouse secondary Alexa 546 coupled antibodies (1:250, Molecular 

Probes) for 30min. After nuclei staining with DAPI (1:5000) for 10min cells were embedded in 

Kaiser’s glycerol gelatine (Merck). 

 

4.2.3.3 Passaging, freezing and thawing of cells 

Confluent cells were splitted to mediate cellular expansion. Therefore exhausted growth 

medium was removed by aspiration and the cell layer was washed once with PBS (w/o Ca 

and Mg). To detach the cells from the flask a trypsin solution (25%; Gibco) was added and 

incubated at 37°C for several minutes. Trypsin-dependent digestion was stopped by 10% 

serum containing medium, followed by a centrifugation step (198 x g, 5min at 4°C; Hettich) to 

collect the cells. Subsequently, the cells were resuspended in fresh culture medium and 

splitted on new flasks. 

For storage the cells were detached from the flask as described above. After and careful 

aspiration of the supernatant the cells were resuspended in freezing medium, consisting of 

endothelial growth medium charged with 10% DMSO and 10% FCS. Next, the cell-freezing 

medium suspension was transferred to cryostatic vials, which got rapidly frozen in an 

isopropanol containing box at -80°C overnight. Cells were then stored in liquid nitrogen at -

165°C. 

For thawing vials were transferred in a 37°C pre-warmed water bath and immediately mixed 

with culture medium. After a centrifugation step supernatant was discarded and replaced 

against fresh medium. The resuspended cells were then plated onto a flask. 

 

4.2.3.4 Seeding of cells 

For the maintenance of stable conditions during in vitro experiments a certain amount of cells 

was utilized. Prior to determination cells were first detached from the flask bottom by 

trypsinization, centrifuged and resuspended as described above. For enumeration 10µl of the 

cell suspension was transferred into a Neubauer counting chamber. After counting from at 

least on large square by using an inverted light microsope (Leica), the total cell number was 

calculated according to the following formula. 

 

Total cell number = number of cells per square x volume x chamber factor x dilution.  
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The chamber factor is 104 due to the dimension of the counting chamber. Subsequently the 

required cell number was adjusted with culture medium and distributed either in 6-well plate 

or transwell inserts. 

 

4.2.3.5 Transfection of HUE cells with siRNA 

HUE cells were seeded in a 6-well plate at a density of 12x104 cells per well 24 hours prior to 

transfection and were grown to 70-80% confluence. Knock-down of KLEIP was thereby 

achieved by using pre-designed annealed siRNA from ambion. Per 6-well, 10µl pre-designed 

specific siRNA against KLEIP (20µM) were mixed with 90µl Opti-MEM (solution A) and 6µl 

Oligofectamine were mixed with 94µl Opti-MEM (solution B). As negative control 5µl 

scrambled siRNA #1 (40µM) was mixed with 95µl Opti-MEM, respectively. Both solutions 

were incubated for 10min at RT, afterwards mixed and incubated for further 30min. In the 

meantime, cells were washed twice with Opti-MEM. Subsequently, 800µl of Opti-MEM were 

added to the siRNA-Oligofectamine mixture, which in turn was given drop-wise to the cells. 

After 4hours of incubation the mixture was changed to normal growth medium. Transfected 

HUE cells were than cultured for additional 24 hours before they were used for the 

permeability assay. Knock-down efficiency was determined by mRNA isolation and following 

semi-quantitative RT-PCR. PCR signals were quantified using Gel-Pro Analyzer 6.0 (Intas) 

and normalized to its respective loading controls. 

 

4.2.4 Cellular assays 

4.2.4.1 Endothelial cell permeability assay 

Insert membrane of a transwell unit were coated with fibronectin (10µg/ml in PBS with Ca2+ 

and Mg2+) for at least 1h at RT. Meanwhile, the transfected HUE cells were trypsinized and 

collected by centrifugation as described in 4.2.3.3. After removing fibronectin and washing of 

the insert membrane with 100µl serum-free culture medium transfected HUE cells were 

diluted to the required cell concentration (30 x 104 cells/ml) and 100µl of the cell suspension 

was pipetted on top of the membrane in the upper compartment. In parallel 600µl of 

endothelial growth medium were added into the lower compartment. For each condition 

triplicates were performed. After another 72 hours of cultivation 2.5µl of FITC-dextran 

(20mg/ml in PBS w/o Ca and Mg) was added in the upper compartment. To distinct time-

points 50µl were sampled from the lower compartment, without removing the upper unit. To 

maintain hydrostatic equilibrium, the volume sample was replaced against 50µl fresh culture 

medium. For measuring with a microplate reader at 492nm (absorbance) and 520nm 

(emission) samples were diluted 1:20 in PBS (w/o Ca2+ and Mg2+). From each dilution the 

volume of 100µl was pipetted to a 96-well microtiter plate in triplicates. As positive control 

transfected HUE cells were starved overnight and shortly before sampling stimulated with 
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VEGF (25ng/ml). For starvation the media in both compartments were exchanged, while for 

stimulation VEGF was added only to the upper one. 

 

4.2.5 In vivo and ex vivo assays 

4.2.5.1 Animals 

Transgenic mice were housed in a climatic controlled room under specific pathogen-free 

conditions according to the animal facility regulations of “Zentrum für Medizinische 

Forschung”. Mice were quarterly checked for their state of health according to FELASA 

guidelines. All animal experiments, either with mice or zebrafish, were conducted in 

accordance with guidelines outlined by the Regierungspräsidium Karlsruhe (approved 

protocol number: 35-9185.64). For the investigation of the role of Kleip during embryonic 

development intercrosses of 8 week old heterozygous mice were performed. Females were 

checked each morning and the presence of a vaginal plug was considered to be E0.5. To 

certain embryonic stages pregnant females were killed by cervical dislocation and the uterus 

was removed and placed into PBS. Embryos were dissected and parts of the yolk sac or of 

the embryonic tail were used for genotyping. State of being alive or dead was determined by 

the presence or absence of heart beat. Neonates were sacrificed by decapitation. 

For zebrafish experiments the published transgenic zebrafish line tg(fli:EGFP) was raised 

under animal husbandry conditions (Lawson and Weinstein, 2002). Zebrafish embryos were 

kept in E3 solution at 28.5°C with or without 0.003% 1-phenyl-2-thiourea (Sigma) to suppress 

pigmentation and staged according to somite number or hours post-fertilization (hpf)(Kimmel 

et al., 1995).  

 

4.2.5.2 Generation of transgenic Kleip mice 

In order to analyze the function of Kleip during mouse development, especially in angiogenic 

processes, transgenic knockout mice were generated with the help of the gene-trap 

technology. In brief, the β-geo encoding vector pGT2Lxf was integrated into the Kleip gene of   

mouse embryonic stem cells originating from the mouse inbred strain 129SvEv. The 

company Baygenomics (http://baygenomics.ucsf.edu/) confirmed the integration molecularly 

via 5’-RACE. The embryonic stem cell clone XF202 was then injected into a blastocyst of the 

C57BL/6 inbred strain and furthermore implanted in a CD1 (outbred strain) foster mother. 

After germline transmission progeny was first crossed onto a CD1 background. Later on 

heterozygous Kleip animals were backcrossed onto a pure C57BL/6 background. For 

analysis only the mice from the F6 and following generations were used. Currently the mice 

are in the F9 generation and are nomenclatured as B6.129SvEv-Klhl20tm1/Mhm.  
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4.2.5.3 DNA isolation of mouse tissue 

Embryonic tissues and tail biopsies of 4 to 10 week old mice were transferred in safe-lock 

tubes. Per each tube up to 500µl mouse tail lysis buffer were added and transferred on a 

rotating thermo mixer (HLC BioTech) at 55°C overnight. The consistent agitation is 

necessary for complete tissue lysis. Subsequently, samples were centrifuged with a 

microcentrifuge (18.625 x g, 10min, RT; Hettich) and the supernatant was transferred into 

with equal volumes of isopropanol filled tube. After homogenization of the lysate on a vortex 

mixer (Scientific Industries) the visual appearing precipitate got centrifuged (18.625 x g, 

5min, RT; Hettich). The supernatant was removed and the DNA pellet washed with 70% 

ethanol prior to a final centrifugation step. In addition the pellet was dried at 37°C and then 

dispersed in 20-500µl elution buffer (5mM Tris/HCl, pH 8.5; Marcherey-Nagel). 

 

4.2.5.4 Gene silencing in zebrafish 

Klhl20 gene silencing in zebrafish was performed through splice blocking morpholino 

injection. Before 1µl of the specific splice blocking morpholinos (Gene Tools) were injected 

through the chorion of a 1-cell or 2-cell embryo the morpholinos were diluted in 0.1M KCl to 

concentrations of 8µg/µl. For the determination of splice blocking morpholino induced gene 

silencing efficiency RNA was isolated at 48 or 72hpf, transcribed and checked for expression 

by RT-PCR analysis. As control zebrafish embryos were injected with a standard control 

morpholino.  

 

4.2.5.5 Caged Morpholino/PhotoMorph experiments 

The PhotoMorph (Shestopalov et al., 2007; Tomasini et al., 2009) caging strand for elmo1 

was synthesized by SuperNova Life Science and annealed to the SB-Moelmo1 according to 

the supplier’s protocol in a ratio of 1:5 (SB-Moelmo1 : PhotoMorph). One nanoliter of this 

dilution (PhotoMorphelmo1) was injected through the chorion of 1-cell or 2-cell stage 

tg(fli1:EGFP) embryos reaching an effective concentration for the SB-Moelmo1 of 2ng. To test 

the functionality of the PhotoMorphelmo1 the injected 20hpf embryos were globally treated 

with UV light for 30min and analyzed by RT-PCR at 48hpf. In addition, UV treated 

tg(fli1:EGFP) embryos were analyzed at different developmental stages until 48hpf regarding 

morphology and EGFP fluorescence intensity. Yet, no differences were visible as compared 

to non UV treated tg(fli1:EGFP) embryos. For activation of the PhotoMorphelmo1, the ventral 

mesoderm of dechorionated 20hpf old PhotoMorphelmo1 injected tg(fli1:EGFP) embryos was 

irradiated using the confocal microscope for 20 seconds and analyzed and quantified for 

vascular defects at 48hpf. Spatial restricted irradiation in 20hpf tg(fli1:EGFP) embryos was 

controlled by investigation of Kaede protein photoconversion from green to red fluorescence 

(150pg kaede mRNA injection, 1 min UV irradiation by confocal microscope). For confocal 
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image capturing and irradiation zebrafish embryos were anesthetized with 0.003% tricaine. 

Moreover, 48hpf embryos were embedded in 1% low melting agarose prior to confocal 

imaging. 

 

4.2.5.6 Isolation and cultivation of p-Sp-explants  

P-Sp-explants were generally isolated and cultivated from E9.5 embryos according to the 

described protocol in the Takakura paper (Takakura et al., 1998). Modifications are 

described in the following. After isolation of the embryonic AMG region the explant was 

transferred to the center of a 4-well plate and cocultured on a cell layer of OP-9 stromal cells 

(ATCC). Explants were cultured for 14 days in RPMI 1640 (Gibco) with 10% cell culture 

tested FCS (a gift from the transgenic service unit at the DKFZ) supplemented with IL-6 

(20ng/ml), EPO (2U/ml), mSCF (50ng/ml), and tissue culture graded β-mercaptoethanol (10-5 

M). Every second day media was replaced. Assay was stopped by overnight fixation with 4% 

formaldehyde at 4°C. 

 

4.2.5.7 Isolation of embryonic endothelial cells via FACS sorting 

From heterozygous Kleip intercrosses E11.5 embryos were dissected and transferred 

individually into with ice cold PBS filled 50ml tubes. In parallel the yolk sac from each embryo 

was removed for genotyping. Embryos were washed several times in PBS before they were 

mechanically shredded in 5ml digest solution (PBS with Ca2+ and Mg2+, collagenase 2mg/ml, 

dispase 0.5U/ml) and incubated at 37°C for 30 minutes. After homogenization each cell 

suspension was filtered with a 70µm cellstrainer (BD) and washed several times with PBS 

(w/o Ca2+ and Mg2+) supplemented with 2.5% FCS (FACS washing buffer). Next the in 2ml 

PBS resuspended pellet was mixed with 18ml erythrocytes lysis buffer (1x) and incubated for 

additional 10 minutes at RT. Lysis was stopped by adding PBS supplemented with 0.5% 

FCS (FACS buffer). For cell labeling embryonic cells were transferred in a 15ml tube and 

blocked with FACS buffer containing 1% mouse BD Fc Block™. Afterwards cells were 

incubated with direct-labeled CD31-FITC and CD34-APC antibodies for 30 minutes at 4°C in 

the dark. In addition the cells were washed twice with FACS buffer to remove all non-binding 

antibodies. At the end the cells were resuspended in 250µl FACS buffer. Only the 

CD31+CD34+ endothelial cells were isolated in the in-house FACS core facility with FACS 

Aria sorter. Finally RNA was isolated with the RNeasy® Micro Kit. 
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4.2.5.8 Microarray 

For transcript expression profiling studies a whole genome BeadChip® microarray was 

performed. After RNA isolation the RNA amount of the triplicates for Kleip-deficient or wild-

type embryos was photometrically determined (Nano Drop 8000). Hybridization of the 

processed samples on Illumina MouseWG-6 v2.0 Sentrix BeadChip® arrays was performed 

by the Genomics and Proteomics Core Facility at the DKFZ, Heidelberg according to the 

manufacturer’s protocol. 

 

4.2.6 Immunohistochemistry 

4.2.6.1 Processing of extraembryonic tissue and neonatal lungs for paraffin sections 

Immediately after dissection of the placenta and neonatal lungs, the tissues were fixed in 

zinc fixative overnight at 4°C. The next day, tissues were washed several times to get rid of 

excess fixation solution. Afterwards, the samples were dehydrated in an ascending alcohol 

series (table 5) before they were manual embedded in paraffin. 

 
Table 5:  Dehydration of tissue samples for paraffin embedding 

 

 

In the following step serial sections (8µm) were performed with a microtome (Microm), 

whereby the sections were mounted on glass slides. The sections were smoothened on a 

42°C warm plate. Finally sections were deparaffinized and reyhdrated in a descending 

alcohol series as indicated in table 6. 
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Table 6:  Rehydration of tissue samples for different staining 
 

 

 

4.2.6.2 H&E staining 

For hematoxylin and eosin staining lung or placenta paraffin sections (8µm) of murine 

neonates were deparaffinized and rehydrated in a descending alcohol series as described 

above. Nuclei were then stained with freshly filtered Mayer’s haemalaun for 2min and 

washed for 3min in tap water. In contrast the cytoplasm was stained with Eosin Y for 1min. 

Afterwards the sections were washed in tap water for 3min, followed by dehydration with 

sequential increasing ethanol washing steps (table 6 in reverse order; each step 2min) and 

mounted in DPX. Lung tissue morphology was analyzed with the Axio Imager 2 (Zeiss) and 

quantified with the axiovision software. 

 

4.2.6.3 CD31 DAB staining on paraffin sections 

Paraffin sections were deparaffinized and rehydrated as described above. In order to prevent 

the sections from dehydration the following steps were performed in a humid chamber. After 

rehydration sections were framed by the usage of a pap pen (Dako). Tissue antigen retrieval 

was accompanied by incubation with in 1x TE buffer diluted Proteinase K (20μg/ml) for up to 

8min at 37°C. This step was followed by three PBS washing steps (5min each). For blocking 

of the endogenous peroxidase the on slides-mounted sections were incubated in 3% H2O2 

for 12min. Thereafter slights were washed several times with PBST and unspecific binding 

was blocked for 30min at RT with 1%BSA/ 8%FCS/ PBST. The primary rat anti-mouse CD31 

(MEC13.3) antibody was diluted 1:100 in the previous blocking solution and incubated over 

night at 4°C. Next day, slides were washed three times with PBST before the placental tissue 

was incubated with the corresponding biotin-labelled secondary antibody (1:100) for 45min at 

RT. During secondary antibody incubation the VECTASTAIN- and DAB- solutions were 

prepared. For the VECTASTAIN-solution 2.5ml PBS was respectively charged with one drop 
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of reagent A and B of the VECTASTAIN Elite ABC Kit (Vector Laboratories). After a short 

accumulation phase from around 15-20min the in the meanwhile with PBS washed sections 

(3x 5min) were incubated with this solution for additional 20min. Subsequently the slides 

were transferred into with DAB-solution filled cuvette. For color development 1µl of 30% 

hydrogen peroxide (0.03% final concentration) was added to the DAB-solution. Prior to 

analysis with the inverted DMI 6000B fluorescence microscope (Leica) slides were 

intensively washed with PBS and mounted with fluorescent mounting medium (Dako). 

  

4.2.6.4 Dock-180 immunfluorescence staining on zebrafish cryo-sections 

For immunhistological Dock-180 staining 48hpf tg(fli1:EGFP) zebrafish embryos were first 

fixed in phosphate buffered paraformaldehyde for 2h at 4°C. This step was continued by 

intensive washing in PBS. Subsequently embryos were dehydrated in 18% sucrose/PBS 

overnight at 4°C. The following day embryos were embedded in O.C.T medium (Sakura) and 

cut into 20µm sections. In order to guarantee the investigation of intersomitic vessels only the 

cross-sections in the area of the yolk extension were further processed. Cryo-sections were 

initially rehydrated with PBS under humid conditions before the samples were pretreated with 

0.3% Triton-X for up to 8min. After a 30min blocking step with CAS-Block slides were 

incubated with primary Dock-180 antibody (Santa Cruz; 1:50) over night at 4°C. Next, excess 

and unbound primary antibodies were removed by washing with PBS. This step was followed 

by incubation with the recommended secondary Alexa 546 labeled antibody (Molecular 

Probes; 1:500) for 45min at RT. Finally zebrafish sections were washed again and mounted 

with fluorescent mounting medium (Dako). Confocal images were taken with the A1R (Nikon) 

at the Nikon imaging center in Heidelberg. 

 

4.2.6.5 Whole-mount CD31 DAB staining 

The whole-mount CD31 staining was performed based on the protocol of (Sato and 

Bartunkova, 2000). In brief, embryos (E10.5) or yolk sacs were fixed in 4% PFA in PBS at 

4°C overnight and washed in PBS several times. Prior to dehydration through graded 

methanol series, a sharp incision was made along the dorsal midline of the embryonic 

hindbrain with the help of a pulled injection needle.  This step was followed by tissue 

bleaching of and blocking of the endogenous peroxidase via the usage of 5% H2O2/ 

methanol (4-5 hours). Bleaching was stopped by rinsing the embryos or yolk sacs in 

methanol for two times. At this time-point samples can be stored at -20°C. After rehydration 

and blocking in PBSMT embryos or yolk sacs were incubated with rat anti-mouse CD31 

(Mec13.3) antibody diluted 1:50 in blocking buffer at 4°C overnight. Followed by extensive 

washing embryos were incubated furthermore with the secondary rabbit anti-rat, HRP 

conjugated antibody (1:100) at 4° overnight. Instead yolk sacs were incubated with a rabbit 
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anti-rat, biotin conjugated antibody (1:100). Before color development yolks sacs were 

furthermore incubated for 20minutes with a solution consisting of PBT and the A&B reagents 

of the VECTASTAIN Elite ABC Kit (Vector Laboratories). For color development embryos 

and yolk sacs were incubated with a DAB-PBT solution for 20min before the reaction was 

started by adding 1µl of 30% hydrogen peroxide. Afterwards samples were rinsed and post-

fixed in 2%PFA / 0.1% glutaraldehyde / PBS overnight at 4°C. Before stereomicroscopic 

(Leica) analysis stained samples were equilibrated in 50% and 70% glycerol for one hour 

each.  

For staining of p-Sp explants the protocol for yolk sacs was modified. P-Sp-explants were 

washed with PBST (0.1% Tween) after fixation and bleaching lasted only 30 minutes. 

Primary CD31 antibody was diluted 1:300 in PBST supplemented with 2% instant milk 

powder. The secondary HRP conjugated antibody was used in the dilution of 1:1000. 

Visualization was enhanced by the incubation with the reagents of the DAB Peroxidase 

Substrate Kit (Vector Laboratories). Therefore, 2.5ml distilled water was charged with one 

drop of buffer stock solution (pH7.5), two drops of DAB substrate reagent and one drop of 

hydrogen peroxide. After approximately 10min the color developed and the staining solution 

was replaced with PBS. Finally, the CD31 stained p-Sp-explants of somite-matched wild-type 

and homozygous Kleip embryos were compared and recorded under a stereomicroscope 

(Leica) with a Leica camera. 

 

4.2.6.6 Whole-mount immunofluorescence staining 

For whole-mount CD31 and NG2 immunufluorescence staining, the heads of E11.5 embryos 

were fixed in 4% paraformaldehyde/PBS at 4°C overnight. The following steps were 

performed at room temperature. Subsequently after washing with PBS for three times, heads 

were dehydrated through graded methanol series (50%, 80%, 100%, freezing and storage at 

-20°C possible). After rehydration embryonic heads were blocked with 1% BSA, 0.5% Triton-

X 100 in PBS for at least two hours. Afterwards the heads were cut along the ventral midline 

and incubated over night at 4°C in presence of rat anti-mouse endomucin (1:20) and rabbit 

anti-NG2 (1:100) antibodies diluted in the blocking buffer. Prior to incubation with the 

fluorescent-labeled secondary antibodies (1:200) the halves were washed extensively with 

PBS for one hour each. After washing off the secondary antibody with PBS the next day, as 

described before, the heads were equilibrated in 50% and 70% glycerol. For confocal 

imaging with the A1R (Nikon) the halves were embedded in 1% low melting point agarose 

(Promega) on a chambered coverglass (Nunc). Quantification of the widening of the cranial 

vessels was achieved by the usage of the NIS-Elements Imaging software. 
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4.2.7 Biochemical analysis 

4.2.7.1 Inhibition of ROCK signaling in HUVE cells  

For inhibitor experiments HUVE cells were seeded in 6-well dishes at a density of 15x104 per 

well 24h prior to overnight starvation with 2.5% FCS supplemented endothelial growth 

medium. Next day starving medium was collected and supplemented with either 0.1µM or 

1µM of the specific ROCK H-1152 inhibitor. Cells were than incubated with this modified 

culture medium for 25min at 37°C. Shortly before stimulation with VEGF (25ng/ml) cells were 

incubated for additional 5min with a mixture composed of exhausted starving medium and 

the phosphatase inhibitor vanadate (Na3VO4). After VEGF stimulation for 5 min HUVE cells 

were washed with ice-cold PBS and finally lysed with a NP40 lysis buffer-vanadate-mixture. 

Cell lysates were than stored at -20°C. For gel electrophoresis cell lysates were thawed on 

ice and subsequently transferred to 1.5ml reaction tubes. In order to remove cellular debris, 

lysates were centrifuged for 5min at 18.625 x g and 4°C. Pellet was removed and the 

supernatant was boiled at 95°C in 5x protein sample buffer for 10min and were separated by 

10% SDS-PAGE. After Western blotting the membrane was blocked for 1h at RT with 5% 

milk powder in PBST. The membrane was incubated with a mouse anti-phosphorylated 

ERK1/2 antibody (clone E4, 1:200) overnight at 4°C. Next, the membrane was washed three 

times with PBST. The membrane was then incubated with the corresponding HRP-labelled 

secondary antibody (1:3000) for 1h at RT. Detection of chemiluminescence was performed 

with the CHEMI-SMART 5100 system (Peqlab). For reprobing membrane was washed three 

times with PBST and stripped for 30min at RT. To detect total ERK, membrane was 

extensively washed followed by overnight incubation with a rabbit anti-ERK1/2 antibody 

(clone K-23,1:500) at 4°C. Subsequent membrane was rinsed again, followed by incubation 

with the secondary anti-rabbit HRP (1:3000) conjugated antibody for 1h at RT. Visualization 

of bound antibody was repeated as described before. All incubation and washing steps were 

performed on rocking shaker. Western blot signals were first quantified using Gel-Pro 

Analyzer 6.0 (INTAS) and then normalized to its respective loading control. 

 

4.2.8 Statistical analysis 

All results are expressed as mean ± standard error of the mean (SEM). To define significant 

differences of experimental groups, the two-tailed student t-test was used. p<0.05 was 

considered as statistically significant. 
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4.2.9 Phylogenetic analysis 

For phylogenetic relationship and protein alignment analysis the sequences of KLEIP-related 

proteins from invertebrates and vertebrates the bioinformatic program ClustalW was used 

(Thompson et al., 2002).  
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5. Abbreviations 

 

A 

AJ adherens junction(s) 

AMG dorsal aorta, genital ridge/gonad, and pro/mesonephros-region 

Ang angiopoietin 

 

B 

β-gal beta-galactosidase (Szatmari et al.) 

β-geo fusion gene of beta-galactosidase and neomycin resistance 

BACK BTB and C-terminal Kelch repeat  

bFGF                  basic fibroblast growth factor 

bp base pairs 

BSA bovine serum albumin 

BTB broad-complex, tramtrack and bric-a-brac 

 

C 

C                    Celsius 

cAMP cyclic adenosine monophosphate 

CD cluster of differentiation 

Cdc42               cell division cycle 42 

cDNA                  complementary DNA 

ch chorion 

co control 

CO2 carbon dioxide 

COUP-TFII chicken ovalbumin upstream promoter-transcription factor II 

Crebbp CREB binding protein 

Cul cullin 

 

D 

DAB 3,3'-Diaminobenzidine 

DAPK death-associated protein kinase 

DLAV dorsal longitudinal anastomotic vessel 

Dll4                    delta-like 4 

DMSO          dimethylsulfoxide 

DNA                     deoxyribonucleic acid 

dNTP                  equal molar mix of the deoxy-nucleotides dATP, dCTP, dGTP and dTTP 
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DTT dithiothreitol 

DOCK                 dedicator of cytokinesis 

dors dorsal 

 

E 

E                          embryonic day 

EC endothelial cell(s) 

ECL enhanced chemoluminescence 

ECM                   extracellular matrix 

Ect-2 epithelial cell transforming gene 2  

EDTA ethylendiamine-tetraacetic acid 

EGF                    epidermal growth factor 

eGFP                  enhanced green fluorescent protein 

ELMO                engulfment and cell motility protein 

En engrailed 

eNOS                  endothelial nitric oxide synthase 

EPO erythropoietin 

ERK extracellular signal-regulated kinase 

ESAM endothelial cell selective adhesion molecule 

 

F 

F-actin filamentous actin 

Fc Fc end of immunoglobulin 

FCS                     fetal calf serum 

FITC fluorescein thioisocyanate 

Flk-1                   fetal liver kinase 1 

Flt-1                     fms-like tyrosine kinase 

FOXC2 Forkhead box C2 transcription factor 

 

G 

g gram 

gc giant cell 

GDI                   guanine dissociation inhibitor 

GDP                guanosine diphosphate 

GEF                  guanine exchange factor 

GTP                guanosine triphosphate 

GTPase guanosine triphosphatase 
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H 

h hour(s)  

H2O water 

HCl hydrochloric acid 

HIF hypoxia-inducible factor 

hpf                  hours post fertilization 

HRP                   horse radish peroxidase 

HUEC            immortalized human umbilical vein endothelial cell(s) 

HUVEC           human umbilical vein endothelial cell(s) 

 

I 

ICD  intracellular domain 

Ig                      immunoglobulin 

IL interleukin 

 

J 

Jag jagged 

JAM junctional adhesion molecule 

 

K 

kb                  kilo base pairs 

kDa                  kilo Dalton 

KDR                insert kinase domain receptor 

KLEIP Kelch-like Ect-2 interacting protein 

Klhl kelch-like 

 

L 

L liter 

La labyrinth 

LacZ beta-galactosidase  

LIMK limk domain containing kinase 

 

M 

µ micro 

M                       molar 

MAP1B microtubule-associated protein 1B 

MAPK           mitogen-activated protein kinase 
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min                   minute(s) 

MLC myosin light chain 

MLCK myosin light chain kinase 

MMP               matrix metalloproteinase 

Mo                   morpholino antisense oligonucleotide 

mRNA               messenger RNA 

 

N 

n nano 

nc notochord 

N-cadherin neuronal cadherin 

No                 nitric oxide 

NP40 Nonidet P-40 

Nrp                   neuropilin 

 

P 

P postnatal 

pA polyadenylation signal 

PAGE polyacrylamid gel electrophoresis 

PAK                  p21-activated protein kinase 

PAV parachordal vessel  

PBS                   phosphate buffered saline 

PBST Phosphate buffered saline with 0.1 % Tween 20 

PCR                  polymerase chain reaction 

PCT                  pericyte  

PDGF               platelet derived growth factor 

PDGFR         platelet derived growth factor receptor 

PECAM           platelet endothelial cell adhesion molecule 

PFA Paraformaldehyde 

pH                     pH value 

PhotoMorph photoactivatable morpholino 

PlGF placental growth factor 

POZ poxvirus and zinc-finger 

p-Sp paraaortic-splanchnopleural 
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R 

RAC1 ras-related C3 botulinum toxin substrate-1 

RACE               rapid amplification of cDNA ends 

RDS  respiratory distress syndrome 

Rho  ras homologous 

RNA                 ribonucleic acid 

RNase  Ribonuclease 

ROCK             Rho-associated coiled-coil forming protein kinases 

RT room temperature 

RT-PCR          reverse transcription PCR 

 

S 

S                     synthesis 

SA splice acceptor 

SB splice blocking 

sc spinal chord 

SCF stem cell factor 

SD splice donor 

SDS                 sodium dodecyl sulphate 

sec second(s) 

s.e.m standard error of the mean 

siRNA small interfering RNA 

SMA smooth muscle actin 

SMC                 smooth muscle cell(s) 

sp spongiotrophoblast 

 

T 

TBP                 TATA box-binding protein 

tg                     transgenic 

TGF-ß              transforming growth factor-beta 

Tie tyrosine kinase with immunoglobulin and epidermal growth 

 factor (EGF) homology domains 

TIMP              tissue inhibitors of MMPs 

TJ tight junction(s) 

 

U 

UV ultra violet 
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V 

VE-Cadherin      vascular endothelial cadherin 

VEGF                 vascular endothelial growth factor 

VEGFR              vascular endothelial growth factor receptor 

ventr ventral 

 

Z 

ZO                     zona occludens 
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