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Summary 

Introduction: The base excision repair (BER) pathway is considered to be one of the most 

important pathways involved in the repair of DNA damage induced by ionizing radiation 

(IR). The DNA-(apurinic or apyrimidinic site) lyase (APEX1) and the DNA repair enzyme 

XRCC1 are two of its key players. Inconsistent data exist for the association between 

APEX1 and XRCC1 expression and cellular radiosensitivity. Some investigators have 

demonstrated a positive association, while others have shown little or no correlation. This 

study aims to investigate the effects of a decrease in the expression of APEX1 and XRCC1 

on (i) growth characteristics, (ii) the survival and the cellular sensitivity to ionizing 

radiation, and (iii) the radiation-induced DNA damage. Gene expression profiles were 

determined after silencing and after additional irradiation with 5 Gy to identify possible 

alternative backup repair pathways and differences in the radiation response between 

normal and cancer cells. Thus, the study will elucidate whether imbalances in BER are 

associated with altered radiosensitivity. Such imbalances can be used to predict the 

radiation response after irradiation in cancer patients and will contribute to the 

understanding of normal tissue toxicity due to genetic variation in BER genes. 

Methods: Gene defects were analyzed in two different cell types, the breast 

adenocarcinoma cell line MCF7 and a healthy counterpart, the human mammary 

epithelial cells HMEpC. The APEX1 and/or the XRCC1 gene were silenced in both cell types 

by applying the RNAi knockdown technique. Clonogenic assay and Sulforhodamine B 

assay were performed to assess growth characteristics and sensitivity to radiation. DNA 

damage after irradiation was evaluated with the DNA single-strand break-specific alkaline 

comet assay and the γH2AX assay, which uses an antibody specific for the phosphorylated 

form of the variant histone H2AX (γH2AX) at DNA double-strand breaks. Gene expression 

profiles were determined on Illumina Human Sentrix-8 BeadChip arrays. 

Results: At the time of irradiation, APEX1 and XRCC1 mRNA amounts were decreased by 

more than 80 % in silenced cells, which led to reduced protein levels of up to 90 % in 

MCF7 cells, and up to 86 % in HMEpC. The silencing did not affect the IR-induced p53 

response measured by quantification of CDKN1A mRNA levels. In MCF7, a reduced plating 

efficiency and growth capability was determined in XRCC1 knockdown cells. Silencing of 

APEX1 also resulted in a reduced growth compared to controls. No difference was 

observed in DNA repair rates. However, APEX1-silenced cells showed a trend towards 
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lower initial single-strand breaks after irradiation, whereas XRCC1-silenced cells showed a 

trend towards a higher damage. In HMEpC, the silencing did not affect growth or the 

initial damage induction. The functional consequences caused by the simultaneous 

knockdown of APEX1 and XRCC1 were comparable to the controls in both cell types. 

Further, the irradiation of APEX1- and/or XRCC1-silenced cells and controls showed no 

significant differences regarding radiation sensitivity in both cell types. However, these 

observations are accompanied by a cell type-specific deregulation of DNA repair genes 

and genes involved in the cell cycle, the cellular growth, and the proliferation. In 

particular, genes from the nucleotide excision repair (NER) and mismatch repair (MMR) 

pathway were induced in silenced cells after irradiation. 

Conclusions: We have established a cell model to study the effect of a deficiency in BER 

on cellular radiosensitivity. After silencing APEX1 and/or XRCC1, we did not observe an 

altered radiosensitivity compared to controls. The response to radiation and the 

efficiency of BER depend on all BER components and their multiple interactions within the 

cell. An imbalance in one of the enzymes may be compensated by other components. 

Based on our results, we assume that i) the APEX1-independent pathway and a possible 

XRCC1-independent pathway are used in situations with reduced availability of one of the 

proteins, and ii) other pathways such as NER and MMR are able to serve as a backup 

repair mechanism to repair radiation-induced DNA damage in double knockdown cells. 

This study suggests that APEX1 and XRCC1 are useful targets to modulate cellular 

responses to DNA damaging agents including IR. Our dataset offers several scientific 

directions for future studies with the aim to further investigate the mechanisms 

responsible for the different functions of APEX1 and XRCC1 in BER in primary and cancer 

cells. 
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Zusammenfassung 

Einführung: Die Basen-Exzisions-Reparatur (BER) ist einer der wichtigsten Mechanismen 

zur Reparatur von DNA-Schäden, die durch die Einwirkung von ionisierender Strahlung 

entstehen. Das Enzym Apurinische Endonuklease 1 (APEX1) und das DNA-

Reparaturenzym XRCC1 spielen eine Schlüsselrolle bei der BER. Es liegen nur 

widersprüchliche Daten vor, die einen Zusammenhang zwischen der Expression von 

APEX1 und XRCC1 hinsichtlich der zellulären Strahlenempfindlichkeit erkennen lassen. 

Einige Studien haben eine positive Assoziation nachgewiesen, andere hingegen fanden 

nur eine geringe oder gar keine Assoziation. Diese Arbeit untersucht die Auswirkungen 

einer verminderten Expression von APEX1 und/oder XRCC1 auf (i) das 

Wachstumsverhalten, (ii) das Überleben und die zelluläre Strahlenempfindlichkeit und (iii) 

die Induktion und die Reparatur strahleninduzierter DNA-Schäden. Des Weiteren wurden 

Genexpressionsprofile von Zellen mit herunter reguliertem APEX1 und/oder XRCC1 und 

nach zusätzlicher Behandlung mit ionisierender Strahlung (5 Gy) erstellt, um alternative 

Reparaturmöglichkeiten und Unterschiede in der Strahlenantwort zwischen primären 

Zellen und Krebszellen zu erfassen. Auf diese Weise soll mit der vorliegenden Arbeit 

untersucht werden, ob ein Ungleichgewicht in der BER mit einer veränderten 

Strahlenempfindlichkeit assoziiert ist. Ein solches Ungleichgewicht könnte zur Vorhersage 

der Strahlenantwort in Krebspatienten, die eine Bestrahlung erhalten haben, genutzt 

werden. Des Weiteren werden die Daten zum Verständnis der Strahlentoxizität aufgrund 

genetischer Unterschiede in BER Genen beitragen. 

Methoden: Die Gendefekte wurden in zwei unterschiedlichen Zelltypen untersucht, zum 

einen in der Brustadenokarzinom-Zelllinie MCF7, zum anderen in Brustepithelzellen einer 

gesunden Spenderin, HMEpC. Um die Expression der Gene APEX1 und/oder XRCC1 zu 

vermindern, wurde die Technik der RNA-Interferenz angewendet. Die 

Wachstumseigenschaften und die Strahlenempfindlichkeit wurden mit dem Clonogenic 

Assay und dem Sulforhodamin B Assay bestimmt. Einzelstrangbrüche nach Bestrahlung 

wurden spezifisch mit dem alkalischen Comet Assay, Doppelstrangbrüche (DSB) mit dem 

γH2AX Assay gemessen. Dazu wurde ein Antikörper verwendet, der spezifisch an die 

phosphorylierte Form des Histons H2AX (γH2AX) bindet, da jeder DSB einen γH2AX-Fokus 

verursacht. Die Genexpressionsprofile wurden auf Illumina Human Sentrix-8 BeadChips 

Arrays bestimmt. 

Ergebnisse: Zum Zeitpunkt der Bestrahlung waren sowohl die APEX1 als auch die XRCC1 

mRNA um mehr als 80 % verringert. Die Proteinmengen waren um bis zu 90 % in den 
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MCF7-Zellen und um bis zu 86 % in den primären Zellen reduziert. Diese Verminderung 

hatte jedoch keinen Einfluss auf die strahleninduzierte p53-Antwort, welche durch 

Quantifizierung der CDKN1A mRNA gemessen wurde. In MCF7-Zellen führte die 

Reduktion von XRCC1 zu einer geringeren Anheftungseffizienz und einem vermindertem 

Wachstum. Letzteres wurde auch in Zellen mit reduzierter APEX1-Expression beobachtet. 

Hinsichtlich der DNA-Reparaturraten wurde kein Unterschied festgestellt. Jedoch 

tendierten APEX1-verminderte Zellen direkt nach Bestrahlung zu weniger 

Einzelstrangbrüchen, XRCC1-verminderte Zellen dagegen zu vermehrten 

Einzelstrangbrüchen. In HMEpC hatte die Reduktion von APEX1 und/oder XRCC1 keine 

Auswirkungen auf das Wachstum oder die initialen DNA-Schäden nach Bestrahlung. Die 

gleichzeitige Verminderung von APEX1 und XRCC1 hatte, verglichen mit den Kontrollen, 

keine Auswirkungen in beiden Zelltypen. Darüber hinaus zeigten APEX1- und/oder XRCC1-

verminderte Zellen keine signifikanten Unterschiede bei der Strahlenempfindlichkeit. 

Dennoch gehen diese Beobachtungen mit zelltypspezifischen Deregulierungen von DNA 

Reparaturgenen und Genen, die in der Zellzykluskontrolle, im Zellwachstum und der 

Proliferation eine Rolle spielen, einher. Insbesondere waren Gene aus dem Nukleotid-

Exzisions-Reparaturweg (NER) und dem Mismatch-Reparaturweg (MMR) nach 

Bestrahlung der APEX1- und XRCC1-verminderten Zellen verstärkt exprimiert. 

Schlussfolgerungen: Wir haben ein Zellmodell etabliert, mit dem die Auswirkungen einer 

unzureichenden BER auf die zelluläre Strahlenempfindlichkeit untersucht werden 

konnten. Nach Reduktion von APEX1 und/oder XRCC1 konnten zwar Veränderungen im 

Wachstum aber nicht in der Strahlenempfindlichkeit im Vergleich zu den Kontrollen 

beobachtet werden. Die zellulären Reaktionen nach Bestrahlung und die Effizienz der BER 

hängen von allen Komponenten der BER und ihren vielfältigen Interaktionen ab. Ein 

gestörtes Gleichgewicht in einem der Enzyme vermag durch ein anderes ausgeglichen 

werden. Auf der Basis unserer Ergebnisse zur Genexpression nehmen wir an, dass (i) der 

APEX1-unabhängige und ein möglicher XRCC1-unabhängiger Reparaturweg in Situationen 

mit verminderter Verfügbarkeit in einem der beiden Proteine genutzt wird, und (ii) 

andere Reparaturwege, wie NER und MMR, als alternative Reparaturwege 

strahleninduzierte DNA-Schäden reparieren können. Unsere Arbeit legt nahe, dass APEX1 

und XRCC1 wertvolle Ziele sind, um die zellulären Reaktionen hinsichtlich DNA-

schädigender Agenzien, einschließlich ionisierender Strahlung, zu modifizieren. Unsere 

Daten eröffnen zahlreiche Richtungen für zukünftige Studien mit dem Ziel, die 

Mechanismen, die für die verschiedenen Funktionen von APEX1 und XRCC1 in der BER in 

primären Zellen und Krebszellen verantwortlich sind, weiter zu untersuchen.
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Abbreviations 

Ab  Antibody 

ACTB  Actin, cytoplasmic 1 

APEX1  DNA-(apurinic or apyrimidinic 

  site) lyase 

AP  Apurinic/apyrimidinic or abasic 

ATM  Ataxia telangiectasia mutated 

BER  Base excision repair 

bFGF  Basic fibroblast growth factor 

BPE  Bovine pituitary extract 

BSA  Bovine serum albumin 

BRCA1/2 Breast cancer 1/2, early onset 

CDKN1A  Cyclin-dependent kinase  

  inhibitor 1A (p21, Cip1) 

cDNA  Complementary   

  deoxyribonucleic acid 

CLTC  Clathrin, heavy chain (Hc) 

Cp values Crossing point 

DDR  DNA damage response 

DKO  Double knockdown 

DMSO  Dimethylsulfoxide 

DNA  Desoxyribonucleic acid 

DNA-PKc Protein kinase, DNA-activated, 

  catalytic polypeptide 

DSB  Double strand break 

dsDNA  Double-stranded DNA 

dsRNA  Double-stranded RNA 

dNTP  2-Desoxynucleotide-5’- 

  triphosphate 

DTT  Dithiothreitol 

EDTA  Ethylenediaminetetraacetic acid 

ELISA  Enzyme immunosorbant assay 

EtOH  Ethanol 

FACS  Fluorescence activated cell 

  sorter 

FCS  Fetal calf serum 

FSC  Forward scatter 

g  gravitational acceleration  

  (9.80665 m/s
2
) 

GAPDH  Glyceraldehyde 3-phosphate 

  dehydrogenase 

Gy  Gray, absorbed radiation dose 

  of ionizing radiation (1 Gy = 1 

  J/kg) 

γH2AX  Gamma histone variant H2AX 

h  Hour(s) 

H2DCFDA 2’,7’-dichlorodihydrofluorescein 

  diacetate 

HPRT  Hypoxanthine  

  phosphoribosyltransferase 

HR  Homologous recombination 

HRP  Horseradish peroxidase 

IC50  Inhibitory concentration 50 

 

 

 

IR  Ionizing radiation 

J  Joule 

kDa  Kilodalton 

L  Liter(s) 

LOH  Loss of heterozyygosity 

µL  Microliter(s) 

mg  Milligramm(s) 

µg  Mikrogramm(s) 

min  Minute(s) 

mL  Milliliter(s) 

mm  Millimeter(s) 

MMR  Mismatch repair 

mRNA  Messenger ribonucleic acid 

NER  Nucleotide excision repair 

ng  Nanogramm 

NHEJ  Non-homologous end joining 

PARP1  Poly (ADP-ribose) polymerase 1 

PBS  Phosphate buffered saline 

PCR  Polymerase chain reaction 

PI  Propidium iodide 

PVDF  Polyvinylidenfluoride 

qRT-PCR  quantitative real-time PCR 

r  Correlation coefficient 

RNA  Ribonucleic acid  

RNAi  RNA interference 

RNAse  Ribonuclease 

ROS  Reactive oxygen species 

rpm  Rotations per minute 

RT  Room temperature 

SEM  Standard error of the mean 

SD  Standard deviation 

SDS-PAGE Sodium dodecyl sulfate  

  polyacrylamide gel  

  electrophoresis 

siRNA  small interfering RNA 

SNP  Single nucleotide polymorphism 

SSB  Single-strand break 

SSC  Side scatter 

ssRNA  Single stranded RNA 

TBE  Tris/borate/EDTA 

TBP  TATA box binding protein 

TBS  Tris-buffered saline 

TBST  TBS containing Tween 20 

TCA  Trichloroacetic acid 

TMZ  Temozolomide 

TP53  Tumor protein 53 

U  Unit 

UV  Ultraviolet 

V  Volt 

XRCC1  X-ray repair complementing 

  defective repair in Chinese 

  hamster cells 1 
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1 Introduction 

1.1 Breast cancer 

Breast cancer is the most common form of cancer in women and represents the major 

cause of cancer death among women (1). Around 58.000 women in Germany are 

diagnosed with breast cancer every year, which accounts for over a quarter (29 %) of all 

cancers. Around 17.600 cancer-related deaths occur from breast tumors. The average age 

at onset is 64 year. The relative 5-year survival rates of female breast cancer patients in 

Germany currently lie between 83 % and 87 % (1). At the end of 2006, about 242.000 

women in Germany had been diagnosed with breast cancer within the previous five years 

(5-year prevalence). 

 

1.1.1 Breast cancer risk factors 

Several risk factors have been found to be associated with an increased breast cancer risk. 

First, early age at menarche increases risk of contracting cancer probably due to a 

prolonged exposure of breast epithelium to estrogens (2). Likewise, a delayed menopause 

represents a risk factor (3). Early age at first and second pregnancy, in contrast, has been 

shown to be protective as well as a prolonged lactation (4-6). Additionally, hormone-

replacement therapy during and after the menopause increases the breast cancer risk 

and so does the use of ovulation inhibitors (oral contraceptiva), even up to ten years after 

the end of the use (7). Obesity, weight gain, consumption of alcohol and a folate 

deficiency are serious risk factors for breast cancer (8-11), whereas physical activity and 

the intake of fruits and vegetables containing antioxidants and other compounds in the 

human diet, such as omega-3 unsaturated fatty acids, seem to have a protective effect 

(12-14). Furthermore, the family history of breast cancer is a major risk factor for the 

development of the disease (15;16). 

In the large German case-control study MARIE (Mammakarzinom-Risikofaktoren-

Erhebung), the effects of menopausal hormone therapy by type, regimen, timing and 

progestagenic constituent on postmenopausal breast cancer risk were investigated (17). 

Based on this population, one recently published paper showed an association of 

polymorphisms in genes of the thioredoxin system, CYBA, and MT2A with 

postmenopausal breast cancer risk (18). 
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Mutations in BRCA1 and BRCA2, two of the most common breast-cancer related genes, 

are associated with a significant increase in hereditary breast cancer. BRCA1 is a tumor 

suppressor gene whose main function is maintaining genomic integrity. The protein plays 

a role in transcription, DNA repair of double-stranded breaks, and recombination (19). 

Mutations in this gene are responsible for approximately 40 % of inherited breast cancers 

and more than 80 % of inherited breast and ovarian cancers (20;21). BRCA2 shares 

several functions with BRCA1, but it is specifically involved in the homologous 

recombination pathway for double-strand DNA repair. Mutations in BRCA2 are linked 

with 76 % of breast cancer families. Loss of heterozygosity in both genes is observed in 

hereditary breast cancer (22). p53, the most commonly mutated gene in all human 

cancers, was the first tumor suppressor gene linked to hereditary breast cancer (23). 

Mutations in the phosphatase and tensin homolog-mutated in multiple advanced 

cancers 1 (PTEN) gene, a gene from the p53 repair pathway, the ataxia telangiectasia 

mutated (ATM) gene, the human epidermal growth factor receptor (HER-2) gene and the 

partner and localizer of BRCA2 (PALB2) gene are further related to breast cancer (24;25). 

Polymorphisms in breast cancer-susceptible genes also contribute to the development of 

breast cancer, primarily in combination with endogenous and exogenous factors. 

Polymorphisms in members of the Cytochrome P450 family proteins (CYP450), the 

Glutathione S-transferase (GST), the Alcohol Dehydrogenase (ADH), or the 

Methylenetetrahydrofolate reductase (MTHFR) affect or may modulate breast cancer risk 

(26;27). DNA repair genes represent another group of genes in which polymorphisms 

modify protein functions and the capacity to repair DNA damage (28;29). Also epigenetic 

inactivation due to aberrant hypermethylation of microRNAs is involved in breast cancer 

development (30). 

 

1.2 Treatment of cancer 

The cure of cancer depends on several factors such as the size and position of the tumor 

in the body, the origin of the tissue which it has grown from, and the presence of 

metastatic spread. An early detection and an immediate treatment of the cancer are main 

factors influencing the benefit for the patient. Surgery, chemotherapy and radiotherapy 

are the three bastions in cancer treatment. 
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1.2.1 Surgery 

Surgery is a very effective form of treatment, because solid tumors can be resected in 

their entirety together with all adjacent tissue into which the tumor may have spread. For 

a long time, radical mastectomy has been used to treat women with breast cancer. 

Nowadays, if possible, a segmental mastectomy or breast-conserving therapy is used. This 

treatment aims to maintain a normal breast appearance after the surgery (31). 

 

1.2.2 Chemotherapy 

Chemotherapy is the treatment of cells with cytotoxic drugs that have an effect on the 

cell division. As cancer cells are dividing faster than normal cells, they are more affected 

by the cytotoxic effect. These drugs are generally classified according to their mechanism 

of action into antimetabolites (e.g. 5-fluoruracil), DNA damaging agents (e.g. 

cyclophosphamide), mitosis inhibitors (e.g. taxol) and cancer cell enzyme inactivators (e.g. 

tyrosine-kinase inhibitors). All effective drugs, however, have side effects (31). 

 

1.2.3 Radiotherapy 

The third hallmark of cancer treatment is radiotherapy, whose biggest advantage is that a 

surgical operation can be avoided. Around 50 % of cancer patients are treated with 

radiation therapy, which uses X-ray or γ-rays to destroy the tumor (32). The form, dose, 

and frequency of radiotherapy depend on the cancer type and the health of the patient. 

The delivery of multiple doses of radiation is intended to kill only the tumor while sparing 

normal tissue. This is achieved by an accurate planning and delivery technique, which 

makes it possible to increase the irradiation dose specific to the tumor while limiting the 

dose to the healthy tissue adjacent to the tumor. However, this is not always possible, 

and thus damage to the healthy tissue is likely to occur. This kind of damage is the main 

cause for the occurrence of side effects due to radiotherapy. Ionizing radiation is not only 

a therapeutic agent, but it is also a carcinogen. In rare cases, the damage introduced to 

healthy tissue is repaired incorrectly and contribute to the development of a new cancer. 

Nevertheless, the benefits of radiotherapy are much greater than the risk involved. 
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1.3 Side effects of radiotherapy 

Side effects are classified into early or acute side effects, which occur during or within 

weeks of treatment (like skin irritations, hair loss in the treatment area, mouth sores, 

etc.), and late side effect, which occur 6 months or years after the treatment (like 

thickening of the skin, damage to nerves or organs of the gastrointestinal tract, etc.) (33). 

The severity of side effects after radiotherapy depends, for example, on the tissue type 

and the total radiation dose. Severity is graded according to the toxicity and varies among 

patients. Genetic variations contribute to these inter-individual differences (34-36). It is 

not clear yet how inherited factors influence the risk of contracting the disease and the 

response to therapy after radiation treatment. Improvements in the cure and toxicity of 

the treatment could be achieved by new technologies such as image-guided radiotherapy 

(37;38) and intensity-modulated radiotherapy (39;40). Although many factors influencing 

the radiation toxicity are known, more than 80 % of the variation in normal tissue 

reaction among patients have not been investigated so far or seem to be genetic (41). 

Normal tissue radiosensitivity depends on the variation in several genes, especially DNA 

repair genes. The identification of genetic markers may have the potential to predict 

normal tissue responses after radiotherapy. 

 

1.4 Cellular response to ionizing radiation 

If ionizing radiation is applied to a cell or a cell compartiment, it causes two different 

effects. First, there are direct effects generated by the interaction of the energy with 

macromolecules, like the DNA or proteins; second there are indirect effects created by 

the interaction of the energy with water to produce reactive oxygen species (ROS). For IR 

such as γ-rays, 60 % of damage is caused by indirect effects (42). The effects of ROS 

generation are rapidly amplified through their interaction with lipids, membranes, and 

oxygen. They add up to the normal low-level production of ROS within the cells that is 

generated as a consequence of oxygen metabolism. An excess of ROS results in a state of 

oxidative stress for the cell that further damage DNA. 

IR-induced damage to DNA causes a broad range of base damage, base modifications and 

strand breaks (43;44). IR is thought to produce about 1000 single-strand breaks (SSBs) 

and 25-40 double-strand breaks (DSBs) per cell per gray (45). Base modifications and SSBs 

are efficiently repaired through the BER pathway (46). DSBs can be repaired through 
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either homologous recombination (HR) or non-homologous end joining (NHEJ). If 

unrepaired, DSBs can lead to genetic mutations and trigger carcinogenesis (47). The 

induction of DSBs correlates with the phosphorylation of the variant histone H2AX 

(γH2AX), which can be detected with a specific antibody (48). 

However, most of the damage overlaps with DNA lesions produced by ROS. In general, 

DNA damage leads to the activation of DNA damage response (DDR) pathways within the 

cell, for example by activating cell-cycle checkpoints, DNA repair, transcriptional 

response, chromatin remodeling, and apoptotic programs (49;50). The DDR is activated 

by the detection of the damage through specific sensors. The ataxia telangiectasia 

mutated kinase (ATM) is a crucial sensor in this context. Autophosphorylation of ATM 

activates further ATM-dependent signaling (51). ATM phosphorylates downstream 

targets like p53 and the checkpoint kinases CHK1 and CHK2 (52). p53 is a transcription 

factor for several genes and activates their expression by binding to p53-response-

elements in promoter regions of these genes (e.g. CDKN1A). This leads to cell cycle arrest 

and up-regulation of repair (53-55). p53-dependent cell cycle arrest is primarily mediated 

by the cyclin-dependent kinase inhibitor p21, which is encoded by the cyclin-dependent 

kinase inhibitor 1A (CDKN1A) gene. p21 binds to and inhibits the activity of cyclin-CDK2 or 

-CDK4 complexes, which normally allow the cell to undergo G1/S-phase transition. Thus it 

functions as a regulator of cell cycle progression at G1-phase and as an inhibitor of 

proliferation. Furthermore, it functions as an inhibitor of p53-dependent apoptosis. It is 

not entirely clear how a cell chooses between apoptosis and p21-dependent cell cycle 

arrest after DNA damage and stabilization of p53 (56-58). 

 

1.5 Repair mechanisms 

Normal cells are protected by several defense mechanisms against ionizing radiation and 

subsequent oxidative stress through reactive oxygen species. Enzyme systems scavenging 

oxidative substances and repairing DNA damage play a central role. For nearly every type 

of damage, the cell has a more or less specialized repair pathway to promote its survival 

and to prevent cell death (Figure 1.1). Most of the repair pathways use an excision 

mechanism to remove the damage on one strand of the DNA double helix and use the 

other strand to restore or re-synthesize it. Thus, double-strand breaks are more damaging 

and if unrepaired, contribute to genomic instability. More than 150 genes have been 



 

found to be involved in repair mechanisms 

categorized into at least six

nucleotide excision repair

recombination (HR), the no

synthesis (TLS) (61). Most 

damage. 

 

Figure 1.1. DNA damage, repair mechanisms
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by the MRE11-Rad50-NBS1 complex, which has exonuclease and helicase activity and 

which modifies the DNA for the ligation complex (66). 

The joining of DNA ends with 3’- and 5’ overhangs, hairpins, flaps, or gaps requires an 

additional processing of the ends before sealing. This is done by another protein called 

Artemis, which acts in a complex with DNA-PKcs. Upon phosphorylation, the 

endonuclease activity of Artemis is activated, and the overhangs are degraded and 

prepared for sealing (67). 

 

1.5.1.2 Homologous recombination 

During homologous recombination, the undamaged sister chromatid is used to repair the 

DNA damage. The repair is initiated by 5’ to 3’ nucleolytic resection of the DSB end and by 

the MRE11-Rad50-NBS1 (MRN) complex to generate 3’-single-stranded DNA tails. The 

recruitment of the MRN complex is promoted by the binding of NBS1 to yH2AX. After 

strand resection and protein binding, the resulting complex accesses the complementary 

sequence of the sister chromatid and catalyzes strand-exchange events which displace 

one strand as a D-Loop in the end. This process requires the activity of BRCA2 and RAD51. 

BRCA2 controls the recombinase activity of RAD51 and its loading onto single-stranded 

DNA. RAD51 is assisted by a number of protein factors including BRCA1, RAD52, RAD54. 

After D-loop formation, the annealed 3’-end is extended by repair synthesis beyond the 

original break site to restore the missing sequence information (68;69). 

 

1.5.2 Nucleotide excision repair 

The nucleotide excision repair (NER) pathway deals with a wide range of DNA lesions by 

recognizing abnormal structures of DNA. UV-light induced photolesions like 4-6 

photoproducts and cyclobutane pyrimidine dimers, helix-distorting intrastrand cross-

links, bulky adducts and minor base damages induced by alkylating and oxidizing agents, 

are repaired by NER. Additionally, NER is considered to be a backup system for BER to 

remove oxidative stress induced DNA damage. Several proteins from other repair 

pathway are involved in the removal of oxidative DNA lesions. XPC acts as a cofactor in 

BER by stimulating the activity of the DNA glycosylase OGG1 (70), XPG serves as a 

cofactor for the efficient function of human NTH1 (71) and XPA might have a role in the 
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repair of oxidized bases (72). In yeast, it was demonstrated that BER acts synergistically 

with NER to repair endogenously induced oxidative damage (73). Some investigators 

could show that NER is involved in the repair of 8-oxoG (74;75). It was further shown that 

NER capacity and the expression of NER related genes may be modulated by oxidative 

stress (76). 

Most NER lesions arise from exogenous sources and more than 30 proteins are involved 

in the repair. The NER consists of two pathways: the global genomic repair (GG-NER) and 

the transcription-coupled repair (TC-NER). GG-NER removes lesions from the entire 

genome whereas the TC-NER repairs polymerase-blocking damage on DNA strands of 

actively transcribed genes. Both pathways differ in their DNA damage recognition step 

but share the same mechanism. After the recognition of the damage, a multiprotein 

complex is assembled at the damaged site. Then the DNA is incised 5’ and 3’ several 

nucleotides away from the lesion. The damage containing part is removed, and the 

resulting gap is filled by a DNA polymerase. The newly synthesized strand is sealed by a 

DNA ligase (77-79). 

 

1.5.3 Base excision repair 

The base excision repair pathway is responsible for repairing most endogenous base 

lesions (AP sites) and abnormal bases such as 8-oxoguanine (8-oxoG) or 

formamidopyrimidine (Fapy-G) in the genome (80). BER is also involved in the repair of 

DNA single-strand breaks (Figure 1.3). Among NHEJ and HR, it is considered to be the 

most important pathway involved in the repair of radiation-induced DNA damages (62). 

The majority of damages processed through BER are generated by ROS. However, the 

functional significance of BER in the prevention of diseases remains unclear. No disease 

phenotype has been linked to BER deficiency so far. 

 



 

Figure 1.3. Schematic illustration of the BER pathway (
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In the APEX1-dependent pathway, the monofunctional glycosylases excise the substrate 

base, leaving an AP site cleaved by APEX1 to generate a 3’-OH and a 5’-deoxyribose 

phosphate (dRP) terminus. Bifunction glycosylases like NTH1, which prefers oxidized 

pyrimidines as substrate, and OGG1, which mainly removes 8-oxoG and Fapy-G, catalyze 

β-elimination of desoxyribose phosphate, leaving a 3’-PUA (3’-phospho-α,β–unsaturated 

aldehyde) and a 5’-phosphate. The 3’-PUA is removed by the 3’-phosphodiesterase 

activity of APEX1 to generate a 3’-OH. 

In the APEX1-independent pathway, bifunctional glycosylases like NEIL1 and NEIL2 

catalyze β,δ-elimination, leaving a 3’-phosphate, a poor substrate for APEX1. Here, the 

polynucleotide kinase (PNK) with dual 5’-kinase/3’-phosphate activity takes over the 

cleaning of the 3’ end (80). 

Then the DNA polymerase can continue the repair. DNA polymerase β (Polβ) initiates 

short-patch BER (SP-BER) and fills in the single nucleotide gap. The enzyme has an 

intrinsic dRP lyase activity which cleaves the dRP residue to generate 5’-phosphate. 

Finally, the ligation step is completed by the LIG3/XRCC1 complex. DNA polymerases Polδ 

or Polε lack this activity. These enzymes continue the repair via long-patch BER (LP-BER), 

where the 5’-dRP and 2-10 additional deoxynucleotides, cleaved by flap structure-specific 

endonuclease 1 (FEN-1), are displaced. LP-BER can be promoted through the stimulation 

of the strand-displacement activity of POLβ by FEN1 and the flap-cleavage activity of 

FEN1 by APEX1 (65). The nick is sealed by the DNA ligase LIG1 (81). 

 

 

Figure 1.4. Relationship between damaged bases, DNA structure and recognition by DNA 

glycosylases. DNA glycosylases are shown in blue with arrows to the damaged base(s) recognized. 

Modified bases shown are in red (according to (82)). 

 

Single-strand breaks are intermediates of the BER process or induced by ionizing radiation 

and oxidizing compounds. Unrepaired breaks are mutagenic and cytotoxic. Their repair 
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can be performed through the BER pathway but requires additional activities. The 

PARP1/XRCC1 complex initially detects the SSBs and the 3’-blocking ends like 3’-

phosphate. Further strand processing requires PNK and/or APEX1. PARP1 catalyzes the 

poly(ADP-ribosyl)ation of several proteins. PARP1 interacts with XRCC1, a scaffold protein, 

which recruits other associated proteins to the strand break (65). 

 

1.5.3.1 Polymorphisms in BER genes and radiosensitivity 

Associations between DNA repair gene polymorphisms and radiosensitivity have been 

shown by several investigators (83;84). An association between polymorphisms in the BER 

genes XRCC1, OGG1 and PARP1 and radiosensitivity was shown in a study of cervical 

cancer cells (85). In a different study, the association of three polymorphisms in the 

XRCC1 gene (Arg194Trp, Arg280His and Arg399Gln) and the possibility of developing an 

adverse radiotherapy response were examined in 254 breast cancer cases. The 194Trp 

allele was associated with the risk of developing an adverse response to radiotherapy. 

Additionally, the combination of the 194Trp and the 399Gln allele of XRCC1 were found to 

be more frequent in radiation-sensitive breast cancer patients (86). Furthermore, the 

APEX1 Asp148Glu and the XRCC1 Arg399Gln allele may alter IR sensitivity as measured by 

prolonged cell cycle G2 delay in γ-irradiated lymphocytes, particularly in women with a 

positive family history of breast cancer (87). In a prospective study of female breast 

cancer patients who received radiotherapy after breast-conserving surgery, Chang-Claude 

and colleagues evaluated the association of polymorphisms in XRCC1 (Arg194Trp, 

Arg280His and Arg399Gln) and APEX1 (Asp148Glu) with the risk of acute skin reactions 

after radiotherapy. Even though the development of acute toxicity was not associated 

with the genetic variants studied, they have shown that the XRCC1 Arg399Gln and the 

APEX1 Asp148Glu alleles may be protective against the development of acute side effects 

after radiotherapy in normal weight patients (88). A study of 41 patients who received 

post-mastectomy radiotherapy reported an association of the Arg/Arg genotype in the 

XRCC1 codon 399 with an increased risk of radiation-induced subcutaneous fibrosis. The 

study revealed that the risk of subcutaneous fibrosis correlated with the number of risk 

alleles in other genes. Patients with few risk alleles exhibited radioresistance (89). 

Another study examined the association of polymorphisms in XRCC1 (Arg194Trp, 

Arg280His, Arg399Gln, Gln632Gln) and OGG1 (Ser326Cys) with the development of late 
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radiotherapy reactions. 22 out of 62 women with cervical or endometrial cancer treated 

with radiotherapy showed late adverse reactions. The 194Trp allele of XRCC1 showed a 

significant protective effect. Patients with three or more risk alleles in XRCC1 had a 

significantly increased risk of developing normal tissue reactions (90). 

Since clear associations between various genetic polymorphisms of DNA repair genes and 

their phenotypic consequences are not known, correlations concerning functional 

consequences are of particular interest. Around 30 % of variants of DNA repair proteins 

are likely to substantially affect the protein function (91). However, there is very limited 

information on functional consequences of polymorphisms in the DNA repair genes 

APEX1 and XRCC1. For APEX1, one variant allele, Asn148Glu, was associated with a 

decreased DNA repair rate (91). 

No clear relationship was found between the XRCC1 (exon 10 G → A) Arg399Gln genotype 

and SSB levels measured by comet assay (92). But the repair rates in DNA were affected 

by the XRCC1 Arg399Gln polymorphism, being lower in heterozygous GA and variant AA 

genotype than in GG wild-type carriers (93). In a later study, Vodicka et al. showed again 

that AA carriers in XRCC1 Arg399Gln exhibit a significantly decreased DNA repair rate (91). 

Cornetta et al. observed that AA carriers showed lower amounts of SSBs compared to wt 

or heterozygous subjects, but they did not detected any difference in DNA repair rates 

(94). In contrast, individuals with the XRCC1 399Gln variant allele showed significant 

increases in tail moment values (95). In sum, the entire information of all available data is 

very inconsistent. Some reports showed that the XRCC1 polymorphism in exon 10 

resulted in higher residual DNA damage measured by comet assay (96). Other studies 

concluded that the polymorphism did not influence the DNA damage repair after γ-

irradiation (97;98). 

The studies discussed above suggest that certain polymorphisms are associated with 

either increased or decreased radiosensitivity dependent on the type of cancer. Evidently, 

variants of the APEX1 and XRCC1 protein modify the protein’s functions. For some 

polymorphisms in APEX1 and XRCC1, several studies have linked the variant alleles with 

the risk of side effects and an altered protein function. Thus, APEX1 and XRCC1 appear to 

be good candidates involved in the tissue response to RT. The influence of a lack of those 

proteins on radiosensitivity should be further investigated. 

  



 

1.5.3.2 APEX nuclease (multifunctional 

The APEX nuclease (multifunctional DNA repair enzyme) 1

protein. The gene is located on chromosome 14q11.2

four introns and five exons and encodes a protein of 318 amino 

mass of 35kDa (http://www.ncbi.nlm.nih.gov

copies/cell) and has a relatively lon

observation in (99)). The N

sequence (NLS), is essential for the redox activity

essential for the DNA repair activity 

 

Figure 1.5. Schematic structur

Cysteine 65 (adapted and modified from 

 

APEX1 comprises three important functions: DNA repair activity, red

and acetylation-mediated gene regulation. 

by interacting directly or indirectly with other BER enzymes

interacts with proteins invo

tumor suppressor p53 (104

mammals is unrelated to the DNA repair function 

observation that a mutation of the Cys65 abolishes the redox function but does 

the repair function (107). APEX1 can maintain several transcription factor

growth response protein-1 (

(HIF-1α) and activator protein

the redox status of Cysteine residues

transcription factors (Figure 

the ability of APEX1 to bind indirectly

APEX nuclease (multifunctional DNA repair enzyme) 1 

APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) is a multifunctional 

is located on chromosome 14q11.2-12, 2.6 kb in size

four introns and five exons and encodes a protein of 318 amino acids 

http://www.ncbi.nlm.nih.gov). The protein is abundant (10

has a relatively long half-life time (ca. 8 h) (cited as 

The N-terminal domain, which contains the nuclear localization 

sequence (NLS), is essential for the redox activity through Cys65, while the C

essential for the DNA repair activity of APEX1 (Figure 1.5). 

 

structural features of APEX1. NLS, nuclear localization sequence.

(adapted and modified from (100)). 

APEX1 comprises three important functions: DNA repair activity, redox regulation activity 

mediated gene regulation. APEX1 is involved in the coordination of BER 

by interacting directly or indirectly with other BER enzymes (101-103)

interacts with proteins involved in ribosomal functions and RNA processing,

(104-106). The redox regulatory function which is only found in 

is unrelated to the DNA repair function of APEX1. This was shown by the 

observation that a mutation of the Cys65 abolishes the redox function but does 

APEX1 can maintain several transcription factor

1 (Egr-1), nuclear factor-κΒ (NF-κΒ), hypoxia inducible factor

) and activator protein-1 (AP-1) in a reduced activated state through the control of 

of Cysteine residues located within the DNA-binding domain

transcription factors (Figure 1.6) (reviewed in (108)). The third function is associated to 

the ability of APEX1 to bind indirectly, as a component of a protein complex,

Introduction 

 

14 

is a multifunctional 

2.6 kb in size, and consists of 

acids with a molecular 

The protein is abundant (104-105 

cited as unpublished 

terminal domain, which contains the nuclear localization 

while the C-terminus is 

, nuclear localization sequence. C65, 

ox regulation activity 

APEX1 is involved in the coordination of BER 

103). Furthermore it 

lved in ribosomal functions and RNA processing, and with the 

which is only found in 

This was shown by the 

observation that a mutation of the Cys65 abolishes the redox function but does not affect 

APEX1 can maintain several transcription factors, such as early 

), hypoxia inducible factor-1α 

reduced activated state through the control of 

binding domain of these 

. The third function is associated to 

, as a component of a protein complex, to the 



 

negative calcium response elements (nCaRE) of some promoters a

transcriptional repressor (109;110)

parathyroid hormone (PTH

histone acetyltransferase p300 

 

Figure 1.6. Redox activity of APEX1

 

The APEX1 expression in the cell is ubiquitous but differs among tissue types

types show only nuclear localization, other only cytoplasmic, and some display both 

(108;112). The nuclear localization is thought to point to its DNA repair function whereas 

the cytoplasmic localization reflects its role in redox regulation

The APEX1 expression is regulated 

transcriptional level via post

can be modified via re-

(99;108;112). 

The protein expression is cell cycle dependent, showing the highest expression in earl

middle S-phase (113). Tumors often 

be associated with increased levels of p53 

negative calcium response elements (nCaRE) of some promoters and thereby acting as a 

(109;110). Bhakat et al. showed that the regulation of the 

PTH) gene is regulated by the acetylation of APEX1 through the 

histone acetyltransferase p300 (111). 

Redox activity of APEX1 (according to (112)). 

ession in the cell is ubiquitous but differs among tissue types

types show only nuclear localization, other only cytoplasmic, and some display both 

The nuclear localization is thought to point to its DNA repair function whereas 

the cytoplasmic localization reflects its role in redox regulation (112). 

The APEX1 expression is regulated both at the transcriptional level and 

transcriptional level via post-transcriptional modifications. Additionally, the expression 

-localization of APEX1 from the cytoplasm to the nucleus

The protein expression is cell cycle dependent, showing the highest expression in earl

Tumors often over express the protein and this over

be associated with increased levels of p53 which implies a fundamental role of the 

Introduction 

 

15 

nd thereby acting as a 

showed that the regulation of the 

) gene is regulated by the acetylation of APEX1 through the 

 

ession in the cell is ubiquitous but differs among tissue types. Some cell 

types show only nuclear localization, other only cytoplasmic, and some display both 

The nuclear localization is thought to point to its DNA repair function whereas 

nal level and at the post-

transcriptional modifications. Additionally, the expression 

localization of APEX1 from the cytoplasm to the nucleus 

The protein expression is cell cycle dependent, showing the highest expression in early or 

and this over expression can 

implies a fundamental role of the 



Introduction 

 

16 

 

protein in preventing cell death and in regulating cell proliferation (114). Several reports 

demonstrated an anti-apoptotic role and a positive effect on cell proliferation of APEX1 

(112;115;116). In contrast, others have shown its role in controlling pro-apoptotic 

functions through p53-mediated activation of p21 leading to cell cycle arrest 

(106;117;118). The association of APEX1 expression on apoptosis has been studied by 

several investigators, but with conflicting results. Down-regulation of APEX1 expression 

was observed with apoptosis in a myeloid leukemia cell line, HL-60 (119). Vascotto and 

colleagues reported a strong correlation between down-regulation of APEX1 expression 

and increased apoptosis (120). Another paper showed an activated apoptosis upon down-

regulation of APEX1 in MCF7 (115). In contrast, decreased APEX1 levels resulted in only a 

slight increase in apoptosis compared to control treated cells in A2780 and CP70 cell lines 

(121), in A549 (122) and in LOVO cells (123). Moreover, Fishel and colleagues observed 

that a reduction in APEX1 did not coincide with an increase in apoptosis 72 h after 

transfection with siRNA (124). Similar results were demonstrated for embryonic bodies 

where a knockdown of APEX1 expression did not trigger apoptosis (125). 

Homologous deletion of APEX1 in the mouse leads to embryonic lethality which 

demonstrates that APEX1 is essential for early embryonic development. The isolation of 

stable APEX1 knockout cell lines has been unsuccessful so far, which makes it difficult to 

explore the importance of each of the three different functions. But the use of specific 

inhibitors of the DNA repair or the redox regulatory function of APEX1 offer a good 

strategy to investigate the biological significance of each function more specifically 

(126;127). 

 

1.5.3.3 X-ray repair cross complementing group 1 

The X-ray repair cross complementing group 1 (XRCC1) gene is a major gene involved in 

BER. It is located on chromosome 19q13.2, spans a genetic distance of 32 kb, comprises 

17 exons, and encodes the DNA repair protein XRCC1. This protein contains 633 amino 

acids and has a molecular weight of 70 kDa (http://www.ncbi.nlm.nih.gov). The protein 

has no known enzymatic activity, but it interacts with many proteins of the BER. By doing 

this it functions as a molecular scaffold protein and recruits BER repair factors at the 

damaged site (128). Interaction partners include the 7,8-dihydro 8-oxo-guanine 

glycosylase (OGG1), APEX1, PNK and Polβ (129;130). XRCC1 harbors two BRCT (BRCA1, 
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1.6 Expression of BER enzymes and radiosensitivity 

Little has been done to investigate the correlation of XRCC1 expression and 

radiosensitivity. XRCC1 mutant EM9 cells were reported previously to be more 

radiosensitive than the wild type AA8 cells (141-143). Horton and colleagues identified 

that XRCC1
-/- mouse fibroblast were hypersensitive to IR (144). In another study Brem and 

Hall demonstrated that a reduction in XRCC1 protein levels resulted in a hypersensitivity 

to ionizing radiation in three human breast cancer cell lines (145). 

However, investigations regarding APEX1 are numerous. Tumors frequently overexpress 

APEX1 and are resistant to chemotherapy and ionizing radiation (146). It is not clear yet 

which cellular mechanism causes the resistance. Inconsistent data exist for the 

association between APEX1 expression and cellular radiosensitivity. Some investigators 

have demonstrated a positive association, while others have found little or no correlation. 

Down-regulation of APEX1 enhanced radioresistance in HeLa cells (147) while enhancing 

sensitivity to radiation in LOVO cells (123), lung carcinoma cells A5186 (148), and three 

radiation-resistant prostate cancer cell lines, LNCaP-IRR, PC3-IRR, and Du145-IRR (149). 

Two recently published papers also showed that inhibition of APEX1 made U87, U251, 

TK6 and HCT116 cells more radiosensitive (150;151). So far the results suggest that there 

is no clear evidence for a relationship between APEX1 expression and (tumor-) 

radiosensitivity. These conflicting results are probably due to the different functions of 

APEX1 in DNA repair and redox regulation. Furthermore, the radiation response or the 

BER efficiency depends on all BER components within the cell. An alteration in one of the 

enzymes may be compensated or intensified by a second alteration. This could explain a 

cell line specific effect. By interfering with the APEX1 expression or another efficient BER 

inhibition, the resistance of tumors to radiation and chemotherapeutic drugs could be 

reversed or at least modified. It has already been shown that the APEX1 expression levels 

and its cellular localization may be used to predict tumor sensitivity towards radio- or 

chemotherapy (152). 

Another strategy would be to combine APEX1 inhibitor with radiotherapy that is applied 

only to the tumor to reduce normal tissue toxicity. The influence of APEX1 inhibitors has 

been explored in different cell models with a deregulated APEX1 expression by using 

knockdown techniques. Counteracting the radioresistance of tumors by targeting these 

aberrant DNA repair is an effective strategy to sensitize tumors to radiation. One concept 
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is the approach of “synthetic lethality”, where PARP inhibitors are applied to BRCA-

defective tumors. The use of PARP inhibitors forces the cell to use HR as a backup repair 

pathway because BER is blocked. The lesions that are normally repaired by BER are 

converted to DSB. Those DSB are usually repaired by HR. HR-proficient cells will survive, 

whereas tumor cells that are deficient in HR because of the BRCA mutation are selectively 

killed (153;154). Blocking or inhibiting DNA damage or DNA damage signaling pathways is 

a good way to take advantage of the differences which exist between tumors and normal 

tissue. 

Based on the present data, it is not possible to distinguish an association between the 

expression of BER genes and their influence on radiosensitivity. The studies above suggest 

that both, APEX1 and XRCC1, might have essential functions in the response to radiation 

treatment and in modulating radiosensitivity. There is a clear need to further elucidate 

the correlations of a deficiency in BER genes and their influence on radiosensitivity. Based 

on functional assays, our results will support and extend the finding reported so far 

regarding the role of APEX1 and XRCC1 in BER. 

 

1.7 Background of this thesis 

The thesis was part of a project in which risk factors for breast cancer risk and the 

development of side effects after radiotherapy should be investigated using data from the 

German case-control study MARIE. 

The first part of the project aims to collect clinical data and late side effects of patients 

from the MARIE study. Further the influence of common SNPs in oxidative stress genes on 

(i) the breast cancer risk, (ii) the occurrence of late side effects after radiotherapy, and (iii) 

the prognosis were assessed (18). 

The second part of the project aims to investigate the influence of genetic variability in 

DNA repair genes on breast cancer risk and radiosensitivity. For this, we firstly focused on 

base excision repair (BER) and the establishment of a cell model where deficiencies in BER 

pathways were simulated by knockdown of APEX1 and XRCC1. Further the functional 

consequences due to the silencing and the effects regarding radiosensitivity were 

investigated. 
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1.8 Aims of the study 

The study aims to investigate the effects of a decrease in the expression of APEX1 and 

XRCC1 on the cellular sensitivity to ionizing radiation. The investigations will not only 

focus on functional consequences due to the silencing of the single genes, but also on the 

effects of a simultaneous silencing of both genes. To date this has never been studied and 

we are the first to report the functional consequences caused by simultaneous silencing 

of both APEX1 and XRCC1. 

Gene defects were analyzed in two different cell types, the breast adenocarcinoma cell 

line MCF7 and a healthy counterpart, the human mammary epithelial cells HMEpC. The 

APEX1 and the XRCC1 gene were silenced in both cell types by using the RNAi knockdown 

technique. In order to assess the functional consequences which are caused by mimicking 

a deficiency in these BER genes, (i) the growth characteristics, (ii) the radiosensitivity and 

the survival, (iii) the radiation-induced DNA damage, and (iv) the gene expression profiles 

of silenced cells before and after irradiation were investigated. 

The growth characteristics and the survival were determined by using the 

Sulforhodamine B and the Clonogenic assay. The induction of single-strand breaks and the 

repair rate were evaluated with the alkaline Comet assay, whereas the induction of 

double-strand breaks and their rejoining were detected with the γH2AX assay, which uses 

an antibody specific for the phosphorylated form of the variant histone H2AX (γH2AX). 

γH2AX is an indicator of double-strand breaks. Gene expression profiles were determined 

24 h and 48 h after silencing and after additional irradiation with 5 Gy. They were used to 

identify possible alternative backup repair pathways and differences in radiation response 

between normal and cancer cells. In particular, the analysis will focus on expression 

changes of DNA repair genes. These changes will provide an insight into the regulation of 

DNA repair in cells with a deficiency in BER. 

This study will reveal how imbalances in BER might be associated with altered cellular 

radiosensitivity. Such imbalances can be used to predict the radiation response in cancer 

patients, and will expand the understanding of normal tissue toxicity due to genetic 

variation. The results of this work will be helpful in adjusting radiotherapy protocols for 

both radiosensitive and –resistant patients. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Cell culture 

CO2-Incubator Jouan IG 150   Astel SA, Chateau Gontier, Frankreich 

CO2 Small-Incubator TECO10   Selutec, Mössingen-Öschingen 

Inverse microscope Wilovert   Leica Microsystems AG, Wetzlar 

Laboratory microscope Loborlux S  Leica Microsystems AG, Wetzlar 

Sterile Werkbank Biogard Hood KL II  Baker, Stanford, USA 

 

2.1.2 Cell culture media and supplements 

Fetal calf serum (FCS)    PAA, Pasching, Österreich 

Mammary Epithelial Cell Growth Medium Cellmade, Archamps, France 

McCoy’s 5A Medium     Invitrogen GmbH, Karlsruhe 

PenStrep 10.000 units/mL Penicillin, 10.000 µg/mL Streptomycin 

      Invitrogen GmbH, Karlsruhe 

Roswell Park Memorial Institute Medium (RPMI) 1640 

      Invitrogen GmbH, Karlsruhe 

Supplements (Streptomycin sulfate, Amphotericin B, Insulin, Hydrocortisione, FBS, BPE, 

bFGF, Heparin, PMA)    Cellmade, Archamps, France 

Trypsin-EDTA (1x)    Invitrogen GmbH, Karlsruhe 

Trypsin-EDTA Solution   Cellmade, Archamps, France 

Trypsin Neutralization Solution  Cellmade, Archamps, France 

 

2.1.3 Cell lines 

HMEpC     Cellmade, Archamps, France 

MCF7      Human tissue and tumor repository, DKFZ,  

      Germany 

 

2.1.4 Centrifuges 

Centrifuge 5402    Eppendorf AG, Hamburg 

Centrifuge 5415C    Eppendorf AG, Hamburg 

Minifuge T     Heraeus, Hanau 
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Minifuge Universal    Hettich, Tuttlingen 

 

2.1.5 Electrophoresis 

Agagel Midi-Wide    Whatman Biometra GmbH, Göttingen 

Agagel Mini     Whatman Biometra GmbH, Göttingen 

Elektrophoresis Power Supply EPS 300 Amersham Biotech GmbH, Freiburg 

Elektrophoresis Power Supply EPS 3500 Amersham Biotech GmbH, Freiburg 

Horizontal Electrophoresis chamber  Renner GmbH, Dannstadt-Schauernheim 

Powerpack 25     Whatman Biometra GmbH, Göttingen 

X Cell Sure Lock    Invitrogen, Karlsruhe 

 

2.1.6 Enzymes 

Benzonase Nuclease     Merck, Darmstadt 

Ribonuclease (RNase)    Sigma-Aldrich Chemie GmbH, München 

RNasin Ribonuclease Inhibitor 40 units/µL Promega GmbH, Mannheim 

Superscript III Reverse Transcriptase 200 units/µL      

      Invitrogen GmbH, Karlsruhe 

Taq DNA Polymerase 5 units/µL  Qiagen GmbH, Hilden 

 

2.1.7 Materials 

24-well plates     Greiner Bio-One GmbH, Frickenhausen 

6-well plates     Greiner Bio-One GmbH, Frickenhausen 

Blue caps (15 mL, 50 mL)   Greiner Bio-One GmbH, Frickenhausen 

CELLCOAT Collagen 6-well plates  Greiner Bio-One GmbH, Frickenhausen 

CELLCOAT Collagen 24-well plates  Greiner Bio-One GmbH, Frickenhausen 

CELLCOAT Collagen 96-well plates  Greiner Bio-One GmbH, Frickenhausen 

Cellstar cell culture flasks 50 mL (T25) Greiner Bio-One GmbH, Frickenhausen 

Cellstar cell culture flasks 250 mL (T75) Greiner Bio-One GmbH, Frickenhausen 

Comet Slides (2 spot, 20 spot)  Trevigen/AMS, Wiesbaden 

Cover Slides (24 x 70 mm)   Menzel, Braunschweig 

Cryo 1° C Freezing Container   Nalge Europe Ltd., Neerijse, Belgien 

Cryo vials (2 mL, 5 mL)    Greiner Bio-One GmbH, Frickenhausen 
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Cuvettes half-micro    Greiner, Labortechnik 

Hematocytometer    Migge, Heidelberg 

Hyperfilm      Amersham Biosciences, Little Chalfont, UK 

Invitrolon PVDF membranes    Invitrogen GmbH, Karlsruhe 

LightCycler 96/384 well plates  Roche Diagnostics GmbH, Mannheim 

NuPAGE Novex Bis-Tris gels    Invitrogen GmbH, Karlsruhe 

PCR tubes 0.2 mL     Biozym Diagnostik, Oldendorf 

PCR tubes (0.5, 1.5, 2.0 mL)   Eppendorf AG, Hamburg 

PCR tubes (0.5, 1.5, 2.0 mL)   Greiner Bio.One GmbH, Frickenhausen 

Pipette tips, non-sterile (10, 20, 100, 200, 1000 µL) 

      Eppendorf AG, Hamburg 

Pipette filter tips, sterile (10, 20, 100, 200, 1000 µL) 

      Nerbe Plus GmbH, Winsen/Luhe 

Round-Bottom tube 14 mL   Becton Dickinson Labware, Heidelberg 

Serological pipettes, sterile (2, 5, 10, 25, 50 mL) 

      Corning B.V. Life Sciences, Niederlande 

Sterile filter (0.2 µm, 0.45 µm)  Millipore, Molsheim 

UV-Cuvette micro    Brand GmbH, Wertheim 

Wide bore Tips (200 µL)   Stratagene, La Jolla, USA 

 

2.1.8 Nucleic acids 

Fluorescein-siRNA    New England Biolabs 

GeneRuler 100 bp DNA Ladder  Fermentas GMBH, St. Leon 

Magic Mark XP Western Protein Standard  Invitrogen GmbH, Karlsruhe 

Oligo (dT)18VN Primer    Applied Biosystems, Darmstadt 

ON-Target plus siRNA Set of 4, APEX1 Dharmacon, Colorado, USA 

ON-Target plus siRNA Set of 4, XRCC1 Dharmacon, Colorado, USA 

ON-Target plus, non-targeting siRNA # 1 Dharmacon, Colorado, USA 

pUC19 DNA/MspI (HpaII) Marker, 23 Fermentas GMBH, St. Leon 

RNA 6000 ladder    Ambion, Inc. Austin, USA 

  



Material and Methods 

 

24 

 

2.1.9 Other devices 

AccuBoy     TecNoMara, Ruhberg 

Agfa Curix 60     Agfa, Köln 

Agilent 2100 Bioanalyzer   Agilent Technologies, Inc., Palo Alto, USA 

Analytic scale A200S    Sartorius AG, Göttingen 

Automated Imaging Microscope  Metasystems, Altlußheim 

Irradiation device OB 58 (0.575 Gy/min) Buchler, Braunschweig 

Biophotometer    Eppendorf AG, Hamburg 

CASY Cell Counter and Analyzer System innovates AG, Reutlingen 

FACS Calibur Becton Dickinson  Labware, Heidelberg 

Gammacell 1000 (10.1 Gy/min)  MDS Nordion, Ottawa, Kanada 

Hybridizing oven OV2    Whatman Biometra GmbH, Göttingen 

Hypercassette     Amersham GE Healthcare, München 

Microwave HMT 832C   Robert Bosch GmbH, Stuttgart 

pH-Meter pH 211    Hanna Instruments Deutschland GmbH, Kehl 

Pipetts (0.1-2.5, 0.5-10, 2-20, 10-100, 20-200, 100-1000 µL)    

      Eppendorf AG, Hamburg 

Scale type 1518    Sartorius AG, Göttingen 

Schüttler Duomax 1030    Heidolph Instruments GmbH, Schwabach 

Schüttler Minishaker MS2   IKA GmbH, Staufen 

Spectramax M5e microplate reader  MDS Molecular devices, USA 

Staining chamber    Migge, Heidelberg 

Thermomixer Comfort   Eppendorf AG, Hamburg 

UV-Densitometer    Herolab, Wiesloch 

Vortex Genie 2    Bender & Hobein, Zürich, Schweiz 

Watherbath WG    Neolab, Heidelberg 

 

2.1.10 PCR devices 

DNA Engine PTC-200    MJ Research, Waltham, USA 

LightCycler 480    Roche Diagnostics GmbH, Mannheim 

Mastercycler epgradient   Eppendorf AG, Hamburg 
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2.1.11 Solutions, chemicals, and buffers 

Agarose, low melting    Biozym Diagnostics, Hameln 

Agarose, PeqGold Universal Agarose PeqLab, Erlangen 

BD FACS Flow     Becton Dickinson Labware, Heidelberg 

BD FACS Rinse     Becton Dickinson Labware, Heidelberg 

Chloroform     Sigma-Aldrich Chemie GmbH, München 

Complete Mini, Protease Inhibitor Cocktail Tablets      

      Roche Diagnostics GmbH, Mannheim 

DharmaFECT 1 Transfection reagent  Dharmacon, Colorado, USA 

Diethylpyrocarbonat    Sigma-Aldrich Chemie GmbH, München 

Dimethylsulfoxide    Merck, Darmstadt 

DL-Dithiothreitol    Sigma-Aldrich Chemie GmbH, München 

dNTP Mix (10 mM each)   MBI Fermentas GmbH, St. Leon-Rot 

Ethanol absolute    Sigma Aldrich Chemie GmbH, München 

Ethidiumbromid (1 mg/mL)   Bio-Rad Laboratories GmbH, München 

Ethylendiamine tetraacetic acid-Disodium-solution (EDTA-Na2), 0,5 M   

      Sigma-Aldrich Chemie GmbH, München 

Glycogen     Invitrogen GmbH, Karlsruhe 

Isopropanol     Sigma-Aldrich Chemie GmbH, München 

Sodium-dihydrogen-phosphat (KH2PO4) Merck, Darmstadt 

Loading Dye 6x    Fermentas GMBH, St. Leon 

Lysoformin      Lysoform AG, Windisch/Brugg, Schweiz 

Magnesium chloride solution  Quiagen GmbH, Hilden 

Methanol      Sigma-Aldrich Chemie GmbH, München 

Milk powder     Carl Roth GmbH, Karlsruhe 

N-Laurylsarcosin-sodium salt   Sigma-Aldrich Chemie GmbH, München 

PageRuler Prestained Protein Plus  Fermentas GMBH, St. Leon 

Phenylmethylsulfonylfluoride  Sigma-Aldrich Chemie GmbH, München 

Phosphate buffered saline   Invitrogen GmbH, Karlsruhe 

Propidium Iodide    Sigma-Aldrich Chemie GmbH, München 

RNase Away     Sigma-Aldrich Chemie GmbH, München 

β-Mercaptoethanol    Sigma-Aldrich Chemie GmbH, München 
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SeaPlaque agarose    Biozym, Oldendorf, Germany 

Sodium chloride     Sigma-Aldrich Chemie GmbH, München 

Sodium hydroxide     Sigma-Aldrich Chemie GmbH, München 

Sodium dodecylsulfate   Sigma-Aldrich Chemie GmbH, München 

SYBR Green I     Molecular Probes, Invitrogen, USA 

Tris(hydroxymethyl)aminomethane  Sigma-Aldrich Chemie GmbH, München 

Triton X-100      Sigma-Aldrich Chemie GmbH, München 

Trizol reagent      Invitrogen GmbH, Karlsruhe 

Tween 20     Sigma-Aldrich Chemie GmbH, München 

Urea pura     Sigma-Aldrich Chemie GmbH, München 

Vectashield     Vector Laboratories, Burlingame, Kanada 

Vectashield Hard Set    Vector Laboratories, Burlingame, Kanada 

Wasser ultra pure, DNase free, RNase free Invitrogen GmbH, Karlsruhe 

 

2.1.12 Ready to use kits and solutions 

Agilent 6000 Nano LabChip Kit   Agilent Technologies, Inc., Palo Alto, USA 

BioRad Protein Assay     Bio-Rad Laboratories, München 

NuPAGE Antioxidant     Invitrogen GmbH, Karlsruhe 

NuPAGE LDS buffer (4x)    Invitrogen GmbH, Karlsruhe 

NuPAGE MOPS SDS Running Buffer (20x)  Invitrogen GmbH, Karlsruhe 

NuPAGE Sample Reducing Agent (10x)  Invitrogen GmbH, Karlsruhe 

NuPAGE Transfer Buffer (20x)  Invitrogen GmbH, Karlsruhe 

QIAquick PCR Purification Kit   Qiagen GmbH, Hilden 

QuantiTect SYBR Green PCR Kit   Qiagen GmbH, Hilden 

RNeasy Mini Kit     Qiagen GmbH, Hilden 

Western Lightning Chemiluminescence Reagent Plus     

      Perkin Elmer, Life Sciences, Inc., Boston, USA 
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2.1.13 Antibodies 

β-Actin (C-4) mouse monoclonal antibody Sigma-Aldrich Chemie GmbH, München 

Alexa488 mouse Anti-H2AX-phosphorylated (Ser139)     

      BioLegend, San Diego, USA 

Anti-phopho-Histone H2AX (Ser139) mouse monoclonal IgG1 Antibody (clone JBW301) 

      Millipore, Temecula, CA, USA 

Goat Anti-Mouse IgG-Cy3   Jackson ImmunoResearch Ltd., Suffolk, UK 

Goat anti-mouse IgG-HRP (sc-2005)  Santa Cruz Biotechnology, Santa Cruz, USA 

Goat anti-rabit IgG-HRP (sc-2004)  Santa Cruz Biotechnology, Santa Cruz, USA 

p21 (C-19) rabbit polyclonal antibody Santa Cruz Biotechnology, Santa Cruz, USA 

p53 (C-11) mouse monoclonal antibody Santa Cruz Biotechnology, Santa Cruz, USA 

Ref-1 (N-16) goat polyclonal antibody Santa Cruz Biotechnology, Santa Cruz, USA 

XRCC1 (H-300) rabbit polyclonal antibody Santa Cruz Biotechnology, Santa Cruz, USA 

 

2.1.14 Software and databases 

Adobe Photoshop 7.0    Adobe Systems Inc., San Jose, USA 

Bead Studio 3.1.3    Illumina Inc., San Diego, USA 

Ensembl Genome Browser    http://www.ensembl.org 

FlowJo 7.6.1     Tree Star Inc., Ashland, USA 

ImageJ  1.41     NIH, USA 

Ingenuity Pathway Software Analysis Ingenuity Systems Inc., Redwood City, USA 

Microsoft Office 2007    Microsoft Cooperation, 2008 

MultiExperiment Viewer   http://www.tm4.org/ 

National Center for Biotechnology Information (NCBI)     

      http://www.ncbi.nlm.nih.gov 

Primer Version 0.5    Whitehead Institute for Biomedical Research, 

      Cambridge, USA 

Prism 5     GraphPad Software Inc. 

Reference Manager 12.0   Thomson Research Soft, Stanford, USA 

Sigma Plot 9.0     Systat Software Inc., Point Richmont, USA 

Specificity Server    http://informatics-eskitis.griffith.edu.au/ 

Table Curve 1.0    Jandel Scientific
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2.2 Methods 

2.2.1 Description of cell lines, their cultivation, and cryoconservation 

2.2.1.1 MCF7 

This human breast adenocarcinoma cell line was supplied from the human tissue and 

tumor repository (tumor bank) of the Department of Cellular and Molecular Pathology, 

DKFZ, Germany. Cells were cultivated in RPMI 1640 media with 10 % fetal calf serum and 

1 % antibiotic at 37° C (degree Celsius) in a 5 % CO2 humidified incubator. Every three to 

four days, the cells were subcultivated. The media was removed from the adherent 

growing cells and cells were washed with PBS. Afterwards cells were shortly washed with 

Trypsin/EDTA and then incubated with 1.5 mL of Trypsin/EDTA for one minute at 37° C. 

The rounded cells were released from the culture surface by gentle pivoting or rocking of 

the flask. For inhibiting further tryptic activity, 6 mL of media was added to the cell 

suspension. Cells were counted with a hemocytometer and inoculated at a density of 

20.000 cells/cm2 for subculturing. For cryoconservation, cells were centrifuged and 

washed with PBS after trypsinization. Cells were resuspended and frozen in RMPI 1640 

with 20 % FBS and 10 % DMSO at a density of 2∙106 cells/mL. 

Cells were controlled for contaminations by multiplex cell contamination test through 

Genomics and Proteomics Core Facility (GPCF) at DKFZ. Samples were tested before 

starting any experiments. Multiplex cell contamination test is a high-throughput test and 

can detect 37 contamination markers for viral contamination, mycoplasma, and cross-

contamination by other cell lines in a single PCR reaction. 

Further, MCF7 cells were tested for their identity by the German Collection of 

Microorganisms and Cell Cultures (DSMZ). They created a DNA profile of eight highly 

polymorphic regions of short tandem repeats (STRs). In addition the cells were tested for 

the presence of DNA sequences from mouse, rat and hamster. 

 

2.2.1.2 HMEpC 

These primary human mammary epithelial cells were purchased from Cellmade, France. 

The sources of the cells were normal mammary glands of a 29 years old female. Cells 

were cultivated in Mammary Epithelial Cell Growth Medium which contained antibiotics 

(Penicillin, Streptomycin sulfate, Amphotericin B), Insulin, Hydrocortisone, FBS, BPE, 

bFGF, Heparin and PMA. Cells were cultivated in a 37° C, 5 % CO2 humidified incubator. 
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Epithelial Cell Growth Medium was changed every 2-3 days. The cells were subcultured 

when they reached a confluency of 60-80 % (every 3-4 days). Subculturing was performed 

at RT. The medium was removed from culture flasks by aspiration and the monolayer of 

cells was washed with HBSS, followed by pipetting of 5 mL of Trypsin/EDTA Solution into 

the flask. 4 mL of the solution was removed immediately to avoid over trypsinization. The 

trypsinization progress was monitored under an inverted microscope. After about one 

minute cells become rounded but still attached to the flask. The rounded cells were 

released from the culture surface by rocking the flask until most of the cells are detached. 

5 mL of Trypsin Neutralizing Solution were added to the flask to inhibit further tryptic 

activity. Cell suspension was transferred from the flask to a 50 mL sterile conical tube. The 

conical tube was centrifuged at 220 x g for 5 minutes to pellet the cells. The supernatant 

was removed and the cells were resuspended in 2 mL of Epithelial Cell Growth Medium 

by gently pipetting the cells to break up the clumps. Cells were counted with a 

hemacytometer or cell counter and subcultivated at a cell density of 7.500 cells/cm2 for 

rapid growth. For cryoconservation, cells were centrifuged and washed with PBS after 

trypsinization. Cells were resuspended and frozen in Mammary Epithelial Cell Growth 

Medium containing 10 % FBS and 10 % DMSO at a density of 1∙106 cells/mL. 

 

2.2.1.3 Determination of cell viability 

The viability of the cells was determined with the trypan blue exclusion assay. Living cells 

exclude the dye Trypan blue, whereas dead or dying cells with a compromised plasma 

membrane take up the dye and turn blue. The cells were counted using a hemocytometer 

or a Cell Counter to estimate the cell concentration and percentage viability. 

 

2.2.1.4 Irradiation of the cells 

To assess the consequences of ionizing radiation on the gene expression pattern in cells 

with silenced genes 24 and 48 h after transfection, several batches of the cells were 

additionally irradiated with a radiation dose of 5 Gy. The lysis of these cells and the 

subsequent DNA/RNA isolation was performed after a further incubation step at 37° C for 

four hours. Changes in gene expression of DNA repair genes were measured via 

quantitative RT-PCR. 
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2.2.2 RNA interference 

Since its discovery in Caenorhabditis elegans, RNAi has become a widely used method for 

studying gene function (155). It is a process by which a specific messenger RNA is targeted 

for degradation by a double-stranded (ds) RNA which is homologous to the corresponding 

mRNA leading to gene silencing (156). 

Briefly, the general mechanism involves the processing of dsRNA into short interfering (si) 

RNA duplexes of 21-23 nucleotides in length. This process is catalyzed by Dicer, which is a 

highly conserved endonuclease. The siRNAs are recognized and rearranged by the RNA-

induced silencing complexes (RISC), which promotes upon activation the recognition and 

the cleavage of complementary single-stranded RNAs, such as mRNAs (157-159). RNA 

silencing is considered to be a defense mechanism of many organisms as a response 

against RNA viruses and transposable elements (160). 

For the silencing of XRCC1 and APEX1, the ON-TARGETplus siRNA from Dharmacon 

Technologies was used. The product “Set of 4” consists of four individual siRNAs each 

targeting a different segment of the mRNA of a gene. Three out of four are guaranteed to 

silence the target gene by 75 % or better. A modification of both strands of the siRNA 

duplex reduces off-target effects. The sense strand is modified to prevent interaction with 

RISC and favor antisense strand uptake. Antisense strand seed region is modified to 

minimize seed-related off-target effects which are primarily driven by antisense strand 

seed activity. Therefore, sense strand inactivation alone does not decrease the total 

number of off-target genes (161;162). 

 

2.2.2.1 Optimization of transfection conditions 

To obtain the highest transfection efficiency with minimal effects on cell viability the 

transfection conditions were optimized for each cell line. Cells were plated at three 

different densities and four DharmaFECT 1 transfection reagent volumes were used as 

recommended by the manufacturer. Luciferase siRNA, non-coding siRNA and untreated 

cells were used as negative controls to find conditions that show target mRNA knockdown 

of > 80 % and > 80 % cell viability. Fluorescein-siRNA was used to estimate transfection 

efficiency. It facilitates parameter optimization such as cell density and amount of 

transfection reagent. These optimized conditions were used for all subsequent 

experiments. 
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2.2.2.2 Transfection procedure 

The transfection was performed according to the manufacturer’s general transfection 

protocol. Each experiment included in triplicate: 1) Untreated cells, 2) Negative control 

siRNA (Luciferase siRNA or non-targeting siRNA), and 3) the target siRNA (APEX1, XRCC1 

siRNA or an equal concentration of both siRNAs). The cells were trypsinized, counted and 

diluted in antibiotic-free complete medium to obtain the appropriate plating density. For 

MCF7, a cell plating density of 6.6∙104 cells per well was used and accordingly for HMEpC 

4∙104 cells per well (24-wells plating format). Cells were then plated in collagen coated cell 

culture plates and incubated at 37° C with 5 % CO2 over night. On the next day, in 

separate tubes, 100 nM of target siRNA and the appropriate volume of DharmaFECT 1 

transfection reagent were diluted with serum-free and antibiotic-free medium. For both 

cell types, 1.33 µL transfection reagent were used per well. The contents were mixed and 

incubated for 5 minutes at RT. Then, the siRNA solution was added to the Dharmafect 

solution and the mixture was incubated for 20 minutes at RT to form a complex. 

Antibiotic-free medium was added to the mix to obtain the desired volume of 

transfection medium. Cell culture medium from plates was replaced with 500 µL of 

transfection medium. Cells were incubated at 37° C in 5 % CO2 for 24-72 h until mRNA and 

protein analysis (DharmaFECT General transfection protocol, Dharmacon Technologies, 

2006). 

 

2.2.3 RNA isolation and analysis 

For isolating RNA from cells, the RNeasy Mini Kit (Qiagen) was used. Isolation was 

performed according the Kit’s protocol. The cells grown in a monolayer were lysed 

directly in the cell culture plate. For this purpose, the cell-culture medium was completely 

aspired and cells were disrupted by adding 350-600 µL Buffer RLT (10 µL mercaptoethanol 

(β-ME) was added per 1 mL Buffer RLT before use). The lysate was transferred into a 

microcentrifuge tube and pipetted to mix. The lysate was homogenized by passing it 

5 times through a blunt 20-gauge needle (0.9 mm diameter) fitted to an RNase-free 

syringe. Then, one volume of 70 % ethanol was added to the homogenized lysate, and 

mixed well by pipetting. After this step, the sample was transferred to a RNeasy spin 

column, which was subsequently centrifuged for 15 s at 8000 x g. Next, the spin column 

was washed once with 700 μL Buffer RW1 and twice with 500 μL Buffer RPE followed by 
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centrifugation. RNA was eluted with 30-50 μL RNase-free water. The eluted RNA was 

stored at -80° C. 

 

2.2.3.1 Qualification and quantification of the isolated RNA 

The concentration of the isolated RNA was determined using the Nanodrop ND 1000 

Spectrophotometer. To characterize the RNA integrity the Agilent 2100 Bioanalyzer was 

used with the Agilent RNA 6000 Nano Kit according to the manufacturer’s protocol. The 

method is based on a laser induced fluorescence of a RNA-binding Cy3 dye (163). Each 

chip contains a set of microchannels that is used for separation of nucleic acid fragments 

based on their size as they are driven through it electrophoretically. During migration of 

the fragments, the RNA strands are stained with a dye. These complexes are detected by 

laser-induced fluorescence (Agilent RNA 6000 Nano Kit Guide). 

With a ladder that contains RNA fragments of known sizes, a standard curve of migration 

time versus fragments size is plotted. Besides the quantification, the ratio of the 

ribosomal RNAs 18s and 28s is determined, giving an indication on the integrity of the 

RNA sample. Based on an algorithm, a RNA Integrity Number (RIN) is calculated 

estimating the integrity of total RNA samples based on the entire electrophoretic trace of 

the RNA sample, including the presence or absence of degradation products. The RIN has 

a range from 1-10 with 10 representing the best quality and nearly no degradation. The 

analysis of the results was completed with the 2100 expert software (Agilent 2100 

Bioanalyzer Compendium, Agilent Technologies, 2007). 

 

2.2.3.2 First-strand cDNA Synthesis 

First-strand cDNA was synthesized using oligo(dT)18 primer and Superscript III reverse 

transcriptase according to the manufacturer’s instructions. Briefly, 500 ng of each total 

RNA sample were diluted with 1 µL of oligo(dT)18 (50 µM), 1 µL 10 mM dNTP Mix (10 mM 

each dATP, dGTP, dCTP and dTTP) and RNAse free water to a volume of 12 µL. This 

mixture was then heated to 65° C for 5 minutes and incubated on ice for at least 

5 minutes. Then, 4 µL of 5x First Strand Buffer, 2 µL 0.1 M DTT, 1 µL RNAse Inhibitor 

(40 units/µL) and 1 µL Superscript III RT (200 units/µL) was added. Mixture was gently 

mixed and incubated at 50° C for 50 minutes. The reaction was inactivated by heating at 

70° C for 15 minutes. cDNA was diluted 1:10 and stored at -80° C. 
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2.2.3.3 Verification of the cDNA integrity 

To verify the reverse transcription and the accessibility of the cDNA for PCR, a Test-PCR 

was performed (Table 2.1). In this PCR, a sequence from the 5’ and 3’ end of the human 

Clathrin gene (CLTC) was amplified. The two products are 570 and 550 bp in length. The 

mRNA of this gene has a length of 8575 base pairs. If a 5’- and a 3’- product of such a long 

mRNA transcript can be amplified the integrity of all other cDNAs will be sufficiently good 

for further accessibility of other target genes with PCR. The amplified PCR products were 

visualized and checked for their size on a 1.5 % Agarose gel. TBE buffer was used as 

running buffer. The gel was stained with Ethidium bromide (1.2 mM). 

 

Table 2.1. Reaction composition 

Component Volume/reaction [µL] Final concentration 

10x PCR Buffer 2.5 1x 

dNTP mix (10 mM each) 0.5 200 µM 

Primer forward (10 µM) 1.25 0.5 µM 

Primer reverse (10 µM) 1.25 0.5 µM 

Taq DNA Polymerase (5 units/µL) 0.5 2.5 units 

Destilled water 18.25 - 

Template DNA 2  

Total volume 26  

 

Table 2.2. Thermal cycler conditions 

Initial denaturation 3 min 94° C 

3 step cycling 

Denaturation 

 

30 sec 

 

94° C 

Annealing 30 sec 56° C 

Extension 30 sec 72° C 

Number of cycles 30  

Final extension 10 min 72° C 
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2.2.3.4 Quantitative real-time RT-PCR 

For the quantification of the mRNA levels of the candidate and reference genes, the real-

time reverse transcription polymerase chain reaction (RT-PCR, qPCR) was used in a 

LightCycler 480 System. 

The real-time RT-PCR is an established technique and the method of choice for the 

quantification of mRNA (164). The technique uses intercalating dyes such as SYBR Green 

fluorescent dye that binds to any double-stranded DNA generated during the PCR and 

emits enhanced fluorescence. The increase in fluorescence is direct proportional to the 

amount of dsDNA. The intensity of the emitted fluorescence can be detected in real-time 

during each PCR cycle. Prior to the analysis of mRNA expression, the RNA has to be 

converted into cDNA by reverse transcription. This cDNA is then used as a template in the 

RT-PCR. The point at which the fluorescence of the sample rises above the background 

fluorescence is called the crossing point (Cp-value) (165). The Cp-value is dependent on 

the amount of cDNA that is present at the beginning of the PCR, but can be used to 

quantitatively analyze the mRNA expression (166-168). During PCR, the fluorescence in 

every reaction is plotted over the cycle number and can be monitored. 

Most of the primers were already established in the lab. For the design of new gene-

specific primer sets, the open source web-based tool Primer 3 was used (169). The source 

mRNA sequence of each gene was taken from the NCBI database Pubmed 

(www.ncbi.nlm.nih.gov). The length of each primer was between 18-22 nucleotides with a 

GC content of 40-60 %. The length of each PCR product was 100-150 bp. The primers 

were designed intron-spanning. This makes sure that primers will only anneal to cDNA 

synthesized from correctly spliced mRNAs, but not to genomic DNA. Thus amplification of 

contaminating DNA is eliminated (QuantiTect SYBR Green PCR Handbook, 2006). The 

sequences of all primers are listed in the appendix (Supplementary Table 1). 

For quantitative real-time PCR the QuantiTect SYBR Green PCR Kit was used. The total 

reaction volume was 10 µL for the 96-well plate format and 7 µL for the 384-well plate 

format. The optimum PCR conditions were determined for every gene. The efficiency E of 

the amplification during the PCR was determined with the following formula (170): 

 

� =  10��/	
��
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The slope of the standard curve describes the kinetics of the PCR amplification and is 

referred to as the efficiency of the amplification (Roche Applied Science, 2008). 

Theoretically, a perfect amplification would result in a standard curve with an efficiency 

of 2, meaning a doubling of the amount of target molecules after each PCR cycle, and can 

be described by following equation: 

�� =  �� � 2� 

 

In PCR experiments the efficiency is influenced by many factors and can be more 

realistically described with: 

�� =  �� � �� 

 

Here, Tn is the amount of target DNA at cycle n, T0 is the initial amount of DNA, n is the 

number of amplification cycles, and E is the efficiency. 

The LightCycler 480 Software calculates the efficiency from the slopes obtained from the 

fluorescence curves. By varying the annealing temperature of the primers, the 

concentration of input DNA and elongation times, the efficiency was optimized to a value 

close to 2 for each PCR reaction. 

 

The 2x QuantiTect SYBR Green PCR Mix, template DNA, primers and RNAse free water 

were thawed and mixed. Then the master mix was prepared according to Table 2.3. In 

every experiment the samples were analyzed in triplicates and H2O was used as a 

negative control. The PCR conditions are shown in Table 2.4. 

 

Table 2.3. Reaction Composition. The components of 2x QuantiTect SYBR Green PCR Mix include 

HotStarTaq, DNA Polymerase, QuantiTect SYBR Green PCR Buffer, SYBR Green I, and ROX passive 

reference dye. 

Component Volume/reaction [µL] Final concentration 

2x QuantiTect SYBR Green PCR Mix 5 µL / 3.5 µL 1x 

Primer forward (10 µM) Variable 0.5 µM 

Primer reverse (10 µM) Variable 0.5 µM 

Destilled water Variable - 

Template DNA 2 µL / 1.7 µL  

Total volume 10 µL / 7 µL  
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Table 2.4. Light Cycler 480 conditions. The annealing temperature was 56° C for ACTB, TBP, 

GAPDH, HPRT, CDKN1A, TP53, APEX1; 61° C for XRCC1 

Initial denaturation 15 min 95° C 

3 step cycling 

Denaturation 

 

30 sec 

 

94° C 

Annealing 30 sec 56° C/61° C* 

Extension 30 sec 72° C 

Number of cycles 30-40  

Final extension 10 min 72° C 

 

The evaluation of the obtained results (Crossing point values, Cp-values) was performed 

via relative quantification analysis with efficiency correction (Roche Applied Science, 

2008). The analysis is based on the relative expression of a target gene in comparison to a 

reference gene in the same sample (171). The reference gene is normally a housekeeping 

gene that is [1] present in all cells, [2] found in constant copy numbers and [3] not 

affected by different treatments such as transfection of irradiation (172;173). However, 

no housekeeping gene always shows constant expression levels under all experimental 

conditions (174). Due to this, several housekeeping genes were tested for their suitability 

to serve as a reference. TBP was found to be most consistent and used as a housekeeping 

gene for evaluation. 

The LightCycler 480 software uses an algorithm to calculate the efficiency-corrected 

concentration ratio of the target and the reference (Efficiency Method). This method is 

based on relative standard curves, which describe the efficiency of the PCR of the target 

and the reference gene. These relative standard curves were generated by setting up a 

standard from the cDNA of untreated cells, which was diluted in 5 steps (1:10 dilutions). 

The obtained standard curves were determined once and stored as external standard 

curves which were used for each analysis. 
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The gene induction after treatment with IR was calculated by dividing the ratio of the 

irradiated sample by the ratio of the non-irradiated sample: 
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A melting point analysis of the PCR products

quantification analysis. The melting temperature 

its length, its sequence and on the buffer conditions

determine the melting temperature of every 

generated by monitoring the fluorescence of the sample

increased. At a certain temperature the fluorescence decreases

the melting point. In case of optimal PCR conditions the same melting peak is expected 

every sample of the analysis. Inefficient PCR or the 

result in an altered melting 

 

2.2.4 Gene expression analysis on Illumina BeadArrays

Whole-genome expression analysis was carried ou

Expression BeadChips from Illumina. 

microspheres (beads) as the array elements. Each microsphere of a diameter of 3 µm, is 

derivatized with a particular oligonucleotide that acts 

sequence in an assay solution 

consisting of an address code and a 50 base gene

 

Figure 2.1. Bead design 

 

Each bead carries > 1∙105 

array, 24.000 bead types are prepared, and equal aliquots of each type are pooled. The 

pool is spread across prefabricated microarrays with defined microwells that fit to the 

bead size. 

The beads are immobilized within the cavities and the 25 base addresses are decoded, to 

allocate each bead to the respective gene sequence 

considered low (< 1∙10-4). Each bead type has an average 30
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of the PCR products was performed directly after the relative 

The melting temperature of a DNA product can vary 

, its sequence and on the buffer conditions. Melting curve analysis 

determine the melting temperature of every PCR product. The melting curves we

generated by monitoring the fluorescence of the samples while the temperature is 

temperature the fluorescence decreases rapidly which indicates 

In case of optimal PCR conditions the same melting peak is expected 

the analysis. Inefficient PCR or the amplification of side products would 

melting point (Roche Applied Science, 2008). 

analysis on Illumina BeadArrays 

genome expression analysis was carried out by using the Sentrix HumanRef

Expression BeadChips from Illumina. Illumina’s BeadArray technology uses silica 

microspheres (beads) as the array elements. Each microsphere of a diameter of 3 µm, is 

derivatized with a particular oligonucleotide that acts as a probe for the complementary 

sequence in an assay solution (175). The oligonucleotides synthesized are >

consisting of an address code and a 50 base gene-specific sequence (Figure 

 

 identical > 72mer oligonucleotides. For a 24

000 bead types are prepared, and equal aliquots of each type are pooled. The 

pool is spread across prefabricated microarrays with defined microwells that fit to the 

lized within the cavities and the 25 base addresses are decoded, to 

allocate each bead to the respective gene sequence (176). The error rate in decoding is 

). Each bead type has an average 30 fold representation on the 
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was performed directly after the relative 

can vary depending on 

. Melting curve analysis was used to 

. The melting curves were 

while the temperature is 

rapidly which indicates 

In case of optimal PCR conditions the same melting peak is expected in 

of side products would 

by using the Sentrix HumanRef-8 

Illumina’s BeadArray technology uses silica 

microspheres (beads) as the array elements. Each microsphere of a diameter of 3 µm, is 

as a probe for the complementary 

. The oligonucleotides synthesized are > 72 bases, 

igure 2.1). 

24k gene expression 

000 bead types are prepared, and equal aliquots of each type are pooled. The 

pool is spread across prefabricated microarrays with defined microwells that fit to the 

lized within the cavities and the 25 base addresses are decoded, to 

. The error rate in decoding is 

representation on the 
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chip – a strategy that provides the statistical accuracy of multiple measurements (Illumina 

Gene Expression Profiling Technical Bulletin, 2010). 

 

Labeling procedure 

1. The total RNA is isolated from the cells. 

2. The RNA is turned into a double stranded DNA copy known as a cDNA. 

3. The cDNA is allowed to go through in vitro transcription back to RNA. This is done 

by having uracil bases tagged with the Biotin. 

4. The Biotin-labeled cRNA is then added to the array. 

5. Anywhere on the array where a RNA fragment and an oligonucleotide on a bead 

are complimentary, the RNA sticks to the probe on the bead. 

6. The array is then washed to remove any RNA that is not stuck to a bead and then 

 stained with the fluorescent molecule that sticks to Biotin. 

7. Lastly, the entire array is scanned with a laser and the information is kept in a 

 computer for quantitative analysis of what genes were expressed and at what 

 approximate level (www.dkfz.de/gpcf). 

 

The expression analysis was conducted by the Genomics & Proteomics Core Facility of the 

DKFZ. Data analysis was performed with Bead Studio Software. For data analysis, the 

expression patterns of the silenced samples were compared to the control siRNA 

transfected samples. In case of irradiation, the gene expression changes of irradiated 

silenced cells were compared to mock irradiated silenced cells. 

 

2.2.5 Protein analysis using Western blot 

Cell culture medium was completely aspired and cells were washed with PBS. After 

trypsinization and determination of cell viability with trypan blue (177), the cells were 

centrifuged for 5 min at 13.000 x g and 4° C. The supernatant was discarded and the cell 

pellet was re-suspended in 100 µL of lysis buffer per 1∙106 cells, vortexed and incubated 

on ice for 20-30 min (Table 2.5). 
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Table 2.5. Lysis buffer. Before use 1 mM MgCl2 and 1 mM PMFS was added. 

Component Final concentration 

Tris (pH 8.5) 20 mM 

Urea 7 M 

DTT 100 mM 

Triton X-100 1 % 

 

After incubation, the suspension was treated with Benzonase (25 units/100 µL lysis 

buffer) for 30 min at 37° C to remove all remaining DNA and RNA. Afterwards the mix was 

centrifuged for 5 min at 13.000 x g and 4° C and the supernatant, containing all nuclear 

and cytoplasmic proteins, was collected. Protein concentration was determined by Bio-

Rad Protein Assay according to the manufacturer’s protocol (178). Isolated proteins were 

stored at -80° C. 

 

2.2.5.1 SDS polyacrylamide gel electrophoresis 

For gel separation of the proteins, the NuPAGE® Electrophoresis System from Invitrogen 

was used. The Laemmli system is the most widely used SDS-PAGE method for separating a 

broad range of proteins according to their size (179). 20-30 µg of proteins were mixed 

with Sample Buffer (4x), Reducing Agent (10x) and deionized water to obtain a total 

volume of 30 µL. The samples were heated at 70° C for 10 minutes. Then, the proteins of 

each sample were separated on a 10 % NuPAGE® Novex Bis-Tris gel using SDS running 

buffer. PageRuler Prestained Protein Ladder was used to monitor protein migration 

during electrophoresis and protein transfer onto membranes during Western blotting. 

MagicMark™ XP Western Protein Standard was used for direct visualization of protein 

standard bands on the blot. Gels were run at a constant voltage of 200 V for 50-60 

minutes. 

 

2.2.5.2 Blotting and immunodetection 

The separated proteins in the gel were transferred to the surface of 

polyvinylidenefluoride - membranes by electroblotting. For this the XCell II™ Blot Module 

(Invitrogen) was used. The transfer of the proteins was performed at a constant voltage 

of 30 V for 1 hour at RT according to the manufacturer’s protocol. 
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After transferring the proteins to the PVDF-membrane, the membrane was saturated 

with 5 % non-fat dry milk in TBST (10 mM Tris pH 8.0, 150 mM NaCl, 0.1 % Tween-20) at 

room temperature or at 4° C overnight and then incubated with the polyclonal anti-Ref-1 

or anti-XRCC1 antibody for 1 h at RT or at 4° C overnight (Table 2.6). After three washes 

with TBST for 10 minutes, the membranes were incubated for 60 minutes with an anti-

rabbit or anti-mouse immunoglobulin coupled to horseradish peroxidase. After 

incubation the membranes were washed three times with TBST and the blots were 

developed using enhanced chemiluminescence procedure (Amersham Pharmacia Biotech, 

Milan, Italy). Normalizations were performed with a polyclonal anti-actin antibody. 

Exposed hyperfilms were digitalized and signals were quantified using Image J. 

 

Table 2.6. Dilution of antibodies and incubation times 

Antibody Dilution Incubation time 

Anti-Ref-1 1:200 1 h 

Anti-XRCC1 1:200 Over night 

Anti-p53 1:500 1 h 

Anti-β-Actin 1:10.000 1 h 

sec. anti-rabbit antibody 1:5000 – 1:10.000 1 h 

sec. anti-goat antibody 1:5000 1 h 

sec. anti-mouse antibody 1:5000 1 h 

 

In order to evaluate several proteins on the same membrane, the antibodies have to be 

removed before further protein detection. For this, the membrane was treated with 

stripping buffer (100 mM Tris pH 6.8, 10 % SDS, 0.08 % β-Mercaptoethanol) for 10-15 

minutes at 50° C in a 50 mL bluecap followed by three washes with TBST for 10 minutes. 

 

2.2.6 Single cell gel electrophoresis 

The comet assay is a simple and sensitive method for studying DNA strand break 

induction and repair of DNA in eukaryotic cells (180;181). It has become a useful tool for 

testing of genotoxic agents, including radiation, chemicals and oxidative stress (182). It is 

frequently utilized in human biomonitoring (183). The method was firstly described by 

Singh and colleagues (184) and was performed with the modifications from 

Popanda et al. (185). 
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Different modifications of the assay have been developed. The most common version 

applies alkaline electrophoretic conditions in combination with an alkaline pre-treatment 

of DNA. This leads to the conversion of alkali-labile sites to strand breaks, and increases 

the spectrum of DNA lesions that can be detected (186). 

The principle of the assay is based upon the ability of denatured DNA fragments to 

migrate out of the cell nucleus under the influence of an electric field. Damaged DNA 

migrates faster and produces a so-called comet tail whereas undamaged DNA migrates 

slower and remains within the confines of the nucleus. Evaluation of the DNA comet tail 

shape and migration pattern allows for assessment of DNA damage (187). 

 

The γ-irradiation of the cells was performed exactly 72 h after transfection. The evening 

before irradiation, the cells were harvested by trypsinization and viability was determined 

with Trypan blue. Cell densitiy was adjusted to 50.000 cells per 5 mL medium and cell 

suspension was pipette onto 2-spot CometSlides, which were placed in Quadriperm cell 

culture vessels. For every siRNA treatment and for every repair timepoint, a slide was 

prepared. After attachment of the cells over night, each spot of the slides was covered 

with 50 µL of low melting agarose (0.7 % SeaPlaque agarose in phosphate-buffered saline 

(PBS), kept at 42° C) to immobilize the cells. The slides were placed on an ice-cold surface 

for 10 min to accelerate gelling of the agarose layer. Then, they were irradiated with 5 Gy 

using a 60Co source (Irradiation device OB 58). One slide was not irradiated and kept 

separately for the determination of the baseline DNA damage. After treatment with IR, 

several slides were kept in cell culture medium at 37° C for 5, 10, 15, 20, 30, and 

60 minutes to allow for DNA repair. The non-irradiated control slide and the slides with 

no time for DNA repair were kept on ice and processed directly after the irradiation 

treatment. All slides were then transferred to pre-cooled lysis solution (2.5 mM NaCl, 10 

mM Tris-HCl at pH 10, 100 mM Na2EDTA, 1 % sodium sarcosinate, 1 % Triton X-100, 10 % 

DMSO) and incubated over night at 4 ° C. After lysis, slides were washed three times with 

PBS and then placed into a horizontal electrophoresis chamber filled with alkaline 

electrophoresis buffer (1 mM Na2EDTA, 300 mM NaOH, pH 13). After 20 min of DNA 

unwinding, electrophoresis was performed at 25 V and 300 mA for 20 min. After 

electrophoresis, the slides were washed three times with PBS, fixed by washing three 

times with absolute ethanol and subsequently air dried. To prevent additional DNA 
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damage, all steps after lysis of cells were carried out under red light. For evaluation, each 

area of the CometSlides was stained with 50 µL SYBR Green solution (10.000x concentrate 

in DMSO) diluted 1:10.000 in TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA). SYBR Green 

is a fluorescent DNA intercalating dye. 51 comets per spot were evaluated by 

fluorescence microscopy and image analysis software (Version 4.0, Kinetic Imaging Ltd, 

Liverpool, UK). The extent of DNA damage was measured quantitatively by the tail 

moment, which is defined as the product of the percentage of DNA in the comet tail and 

the mean distance of migration in the tail (severity of damage). The median values are 

presented, because a normal distribution of tail moment values was not observed. 

Several experimental parameters were evaluated to characterize cellular radiation 

effects: (1) baseline DNA damage in non-irradiated cells, (2) initial DNA damage after 

irradiation (no repair time), (3) DNA damage after 5, 10, 15, and 20 min of time to allow 

for DNA repair and (4) the DNA repair capacity after 5, 10, 15, and 20 min. 

Quantitative and statistical data was generated by analysis of the results using Microsoft 

Excel. 

 

2.2.7 Clonogenic assay of cells in vitro 

The clonogenic assay, or colony-formation assay (CFA), was first described by Puck and 

Marcus and is based on the evaluation of the colony-forming ability of mammalian cells 

plated in culture dishes or plates (188). Colony-forming ability means the ability of a 

single cell to grow into a colony. The assay tests every cell for its ability to undergo 

replication after a specific treatment (189). The clonogenic assay is the method of choice 

to determine the cellular radiosensitivity after treatment with ionizing radiation (190). 

Cells were transfected as described earlier. The evening before irradiation treatment, the 

cells were trypsinized. Then, the cells were counted with a hemocytometer, diluted into 

the desired seeding concentration, and seeded into 6-well plates. After attachment of the 

cells to the plate overnight, the cells were irradiated with increasing doses (1 Gy-5 Gy) 

72 h after transfection. Three wells were used per radiation dose. After irradiation, the 

dishes were placed in an incubator (37° C, 5 % CO2) and left there for a time equivalent to 

at least six cell divisions. Cells in the mock-irradiated control plates should form 

sufficiently large clones. 
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For fixation and staining, the medium was removed and cells were washed once with PBS. 

Then 1 mL of a mixture of 6.0 % glutaraldehyde and 0.5 % crystal violet was added to each 

well. After staining for at least 30 minutes, the staining solution was removed and each 

plate was rinsed with tap water. The plates were dried at room temperature (20° C). 

The colonies were counted using a stereomicroscope. Colonies are considered to 

represent viable cells if they contain at least 50 cells. Firstly, the number of colonies in 

control cells, which were not exposed to IR, is determined to calculate the plating 

efficiency. The surviving fraction of cells after any treatment (IR or transfection with 

siRNA) is always calculated taking into account the PE of control cells (Formula 2.1). 

 

PE =
no. of colonies formed

no. of cells seeded
 x 100 

 

SF =
no. of colonies formed after treatment

no. of cells seeded x PE
 

 

Formula 2.1. Calculations of the plating efficiency (PE) and the surviving fraction (SF). 

 

2.2.8 Sulforhodamine B assay 

The sulforhodamine B (SRB) assay measures the cell density which corresponds to the 

proliferation capability of the cell. The assay is based on the measurement of cellular 

protein content. The SRB dye binds to protein components of cells that have been fixed to 

tissue culture plates by tichloroacetic acid. The aminoxanthene dye harbours two sulfonic 

groups that bind to basic amino-acid residues under acidic conditions, and dissociates 

under basic conditions. The amount of dye extracted from stained cells is directly 

proportional to the cell mass. The assay can be used for in vitro drug toxicity screenings 

and it has been shown to be effective for testing of cancer cell sensitivity to radiation 

(191;192). 

 

Cells were transfected as described above. The assay started 72 h after transfection. 

Shortly before that, the cells were harvested by trypsinization, counted and plated in 96-

well plates. Optimal seeding densities for each cell line were determined to ensure 

exponential growth during the assay. MCF7 were seeded at a density of 500 cells per well 
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and HMEpC at 1000 cells per well. The SRB assay was performed according to the method 

of Skehan et al. with minor modifications (193). The culture medium was aspired prior to 

fixation. The cells were fixed with 100 µL cold 10 % trichloroacetic acid for 1 h at 4° C 

followed by five washing steps with deionized water. The cells were then stained for 

20 minutes with 100 µL 0.4 % (wt/vol) SRB in 1 % acetic acid and subsequently washed 

five times with 1 % acetic acid. The plates were left at room temperature to air dry and 

the protein bound dye was solubilized with 200 µL 10 mM Trisma-Base 

(tris(hydroxymethyl)aminomethane). The optical density (OD) was measured at 490 and 

515 nm using the Spectramax M5e microplate reader. The percentage of cell-growth 

inhibition was calculated with following formula: 

 

2.2.8.1 Radiation treatment 

The radiosensitizing effect was evaluated with the SRB assay. The evening before 

irradiation, the transfected cells were harvested by trypsinization, counted and plated in 

6-well or 96-well plates. After attachment of the cells overnight, the plates were 

irradiated over the range from 0-5 Gy using a 60Co source exactly 72 h after transfection. 

Cells were then incubated for at least six cell divisions before determination of the 

survival by the SRB assay. 

 

2.2.8.2 Temozolomide treatment 

The sensitizing effect of temozolomide (TMZ) on cell growth was investigated with the 

SRB assay. Cells were plated in 96-well plates as described above. 72 h after transfection 

with the respective siRNA, 8 wells of each sample were treated with different 

concentrations of temozolomide dissolved in 4 % (vol/vol) DMSO in PBS ranging from 

50 to 1.600 µM or with a fixed concentration of 775 µM. Solvent only was used as control. 

The final concentration of the DMSO was 0.32 % (vol/vol). Assay plates were then 

incubated at 37° C in a humidified incubator with 5 % CO2 for 3 days or up to 16 days 

followed by fixation and staining procedure. 

 

For IC50 determination, dose-response curves between the compound concentration and 

percent growth inhibition was plotted. IC50 values were derived from logistic dose 

response curves using curve-fit transition function (Table Curve).  
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2.2.9 Measurement of γγγγH2AX 

The histone protein H2AX is involved in DNA repair and a central component of signaling 

pathways in response to DNA double strand breaks. It becomes rapidly phosphorylated 

on a serine residue when located close to a DSB, for example after exposure to ionizing 

radiation or ROS (194-196). Within 30 minutes after DSB formation, γH2AX molecules 

form a focus where DNA repair and chromatin remodeling proteins accumulate (197). 

These foci can be detected using antibody staining and fluorescence microscopy. Once 

the break is rejoined and the DSB is repaired, γH2AX foci disappear, either by 

dephosphorylation of γH2AX or by γH2AX removal from the chromatin (198-202). 

Immunohistochemistry was used to quantify γH2AX protein followed by further validation 

with flow cytrometry. 

 

2.2.9.1 Immunofluorescence microscopy 

Cells which were grown to 70-90 % confluency were harvested by using trypsinisation and 

counted with a hemocytometer. They were diluted into to a seeding concentration of 

50.000 cells/5 mL and seeded on Assistent Diagnostika 3-spot slides lying in a Quadriperm 

cell culture vessel. The cells were incubated overnight (37° C, 5 % CO2). After attachment 

of the cells to the slides, the cells were transfected with either target siRNA or control 

siRNA and incubated for 72 h. After 72 h, some slides were mock irradiated or irradiated 

with a single dose of 5 Gy followed by an incubation step for either 30 minutes or 2 hours 

with subsequent fixation. For fixation, the slides were incubated in 4 % paraform 

aldehyde/PBS for 10 minutes. The slides were washed 3 times for 5 minutes with 0.15 % 

Triton X-100/PBS and 10 minutes with 1 % BSA/0.15 % glycine/PBS. The cells were then 

incubated with 50 µL/spot of Anti-phospho-Histone H2AX (Ser139) mouse monoclonal 

IgG1 Antibody (clone JBW301) in a dilution of 1:300 at 4° C overnight. On the next day, 

the slides were washed once 5 minutes with PBS, 10 minutes with 0.15 % Triton X-

100/PBS, 5 minutes with PBS and then 7 minutes with 1 % BSA/0.15 % glycine/PBS. 50 µL 

of the secondary Antibody (Cy3 Goat Anti-Mouse IgG) (1:300) was applied to each spot of 

the slide and incubated at RT for 45 minutes in the dark. Next the slides were washed 

again twice with 0.15 % Triton X-100/PBS for 5 minutes and PBS for 10 minutes, following 

a nucleus staining step with Hoechst blue (Benzimide-tris-hydrochlorid) for 2 minutes. 
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2.2.9.2 Measurement of γγγγH2AX and cell cycle analysis after irradiation by flow 

cytometry 

The advantage of the flow cytometry consists of a quick sample processing, quantitative 

analysis of single cells and multi-parameter analysis. The fixed cells are carried in a sheath 

stream through a laser beam where fluorescent dyes are excited. 

The staining of surface markers or intracellular molecules with fluorescent dyes allows the 

detection of several transcription factors or phosphoproteins to characterize the sample 

(203). The emitted fluorescence is amplified and collected using photomultiplier tubes. 

Besides the fluorescence, light scatter signals are collected. The forward scatter (FCS) 

characterizes the size of the cell and the side scatter (SSC) the granularity (204;205). By 

staining of the DNA with propidium iodide, a red-fluorescent nuclear and chromosome 

counterstain, the DNA content and further the phase of the cell cycle can be determined. 

Cells were harvested using trypsinisation and counted with a hemocytometer. They were 

diluted into the desired seeding concentration (150.000 cells per well) and seed into 6-

well plates. After attachment of the cells to the plate overnight, the cells were transfected 

with target siRNA or control siRNA and incubated for 72 h. After 72 h, the cells were mock 

irradiated or irradiated with a single dose of 5 Gy followed by immediate fixation or an 

incubation step for either 30 minutes or 2 hours with subsequent fixation. For fixation, 

cells were washed with 1 mL of PBS, trypsinized and immediately resuspended in 2 mL 

ice-cold 5 % AcCOOH/PBS. Fixed cells were incubated for 10 minutes on ice following 

centrifugation at 140 x g for 5 minutes at 6° C. The cell pellet was resuspended in 3 mL of 

ice-cold 70 % Ethanol and incubated for 1 hour at 4° C. After centrifugation, the cells were 

washed 3 times with 3 mL 0.5 % BSA/PBS and then resuspended in RNAse solution (200 

µg/mL 0.5 % BSA/PBS). The cells were incubated for 1 hour at 37° C following another 

centrifugation step. Cells were then resuspended in 100 µL of antibody solution (125 ng 

Alexa488 mouse Anti-H2AX-phosphorylated (Ser139) AK in 100 µL 0.5 % BSA/PBS) for 

1 hour at RT. After antibody binding, cells were mixed with 1 mL PBS and filtered through 

a with a cell strainer lid. For DNA staining 5 µL propidium iodide solution (1 mg/mL) was 

added and incubated for 5 minutes. 

Cells were analyzed on a Becton-Dickinson Calibur using an Argon laser (excitation 

488 nm). For each sample, 25.000 single events were detected and data analysis was 

performed using FlowJo software. 
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2.3 Statistical methods 

2.3.1 Mean, standard deviation, standard error of the mean, median 

As not otherwise specified, the mean is expressed as the arithmetic mean. 

The standard deviation (SD) represents the variability from the mean. A low standard 

deviation indicates that the data points tend to be close to the mean, whereas a high 

standard deviation indicates that the data are spread out over a large range of values. The 

standard deviation is expressed in the same units as the data. 

The standard error of the mean (SEM) is the standard deviation of the sample means over 

all possible samples of a given size drawn from the population. 

The median is described as the numeric value separating the higher half of a population 

or distribution, from the lower half. The median of a list of numbers can be found by 

arranging all the observations from the lowest value to the highest value and picking the 

middle one. If there is an even number of observations, the median is defined as the 

mean of the two middle values. 

 

2.3.2 t-statistics 

The t-distribution is a continuous probability distribution that arises when estimating the 

mean of a normally distributed population. The unpaired t-test with Welch’s correction 

was performed. Welch’s correction does not assume equal variances. p-values were 

displayed two-tailed. 

 

2.3.3 Evaluation of Microarrays 

To correct for differences in expression level across a chip and between chips, quantile 

normalization was applied to log2 transformed data. Gene-wise testing was applied using 

paired t-statistics in order to calculate the induction of differential gene expression in 

response to the knockdown or irradiation in the different cell groups 

(knockdown cells/unirradiated, controls/unirradiated, knockdown cells/irradiated, 

controls/irradiated). Genes were selected as differentially regulated when the adjusted p 

value was < 0.05 and the estimated fold change was either ≥ 2 or ≤ -2. Selected genes 

were used to identify the functional pathways or biological functions that were most 

significant to the dataset by Ingenuity Pathway Analysis (IPA). The p value for the 
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probability of the association between the genes in the dataset and the pathway due to 

chance was calculated by Fisher’s exact test. 

In case of DNA repair genes, a gene was selected as differentially expressed when the 

adjusted p value was < 0.05 and the estimated fold change was either ≥ 1.2 or ≤ -1.2. 

 

 



 

3 Results 

3.1 Silencing of the DNA repair genes 

In order to investigate the consequences caused by mimicking a deficiency in BER genes, 

the APEX1 and the XRCC1 
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expression patterns after knockdown were determined 24 and 48 
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Figure 3.1. Overview of the experimental setup and schedule for MCF7 and HMEpC.

 

Silencing of the DNA repair genes APEX1 and XRCC1 

In order to investigate the consequences caused by mimicking a deficiency in BER genes, 

 gene were silenced in MCF7 cells and HMEpC using RNAi. The 

st point of time for functional analyses was selected to be 72 h after transfection, when 

the mRNA and protein levels of APEX1 and XRCC1 are strongly decreased. Then, we 

expect to reveal the most comprehensive functional consequences of the knockdown 

regarding growth capability, clonogenic survival, induction of SSBs, formation of DNA

DSB, and DNA repair rates in MCF7 and HMEpC cells (Figure 3.1). 

Moreover, to the functional consequences of the silencing, changes in the gene 

expression patterns after knockdown were determined 24 and 48 h after transfection and 

after subsequent irradiation. 

Figure 3.1 presents a detailed time schedule for the different experiments, and the points 

of time when the experiments were performed. 

Figure 3.1. Overview of the experimental setup and schedule for MCF7 and HMEpC.
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Figure 3.1. Overview of the experimental setup and schedule for MCF7 and HMEpC. 
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3.1.1 Optimized transfection conditions lead to effective knockdown of APEX1 mRNA 

transcripts in MCF7 and HMEpC cells 

The APEX1 and XRCC1 genes were silenced in MCF7 and HMEpC cells using ON-

TARGETplus set of 4 siRNA. Luciferase or non-targeting siRNA were used as a negative 

control. The Luciferase siRNA has no target mRNA in human cells. The non-targeting 

siRNA is a random sequence of nucleotides and has also no target mRNA in human cells. 

The negative controls were applied to detect any unspecific effects. Transfection reagent 

treated cells and completely untreated cells (NTC) were included as experimental 

controls. Further, every single siRNA duplex was tested with the in silico method 

“Specificity Server”, which can be used to look for potential off-target effects caused by 

the siRNA down-regulating another gene in a sequence-specific manner. The software 

found some genes which showed sequence homology, but the scoring which ranks the 

potential matches according to likelihood was never higher than 73 (out of 100). Most of 

the siRNA duplexes showed no relevant findings. A score of 73 was found, for instance for 

the RIB3IP gene, and indicated at least three mismatches by comparing the sequence of 

the second duplex of the APEX1 siRNA to the RIB3IP mRNA. 

For MCF7, transfection with 100 nM was recommended together with the appropriate 

conditions supplied by the manufacturer. As the set of 4 was used, the concentration of 

each individual duplex was 25 nM. These transfection conditions were confirmed in an 

experimental setting. 

The transfection medium influenced the attachment of the cells to the plate. The cells 

rounded up and became detached. The transfection is a stress factor and can cause 

rounding and detachment of cells, even though the cells show a good growth rate in 

general. Thus, collagen coated cell culture plates were used. These plates have a positive 

charge on their surface and provide an improved cell adhesion. 

The knockdown was 74 % relative to untreated cells as measured by reduction of APEX1 

mRNA transcripts with qRT-PCR (Figure 3.2). Transfection reagent alone showed no 

toxicity. The viability of the cells was ≥ 85 % in the siRNA transfected sample and in the 

transfected controls (data not shown). The ratio of DharmaFECT 1 transfection reagent 

[µL] to siRNA [µg] was 2:1. The effective knockdown of APEX1 with the given protocol was 

confirmed and showed that the recommended ratio is optimal for the adherent MCF7 

cells. 
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Figure 3.2. Verification of transfection conditions in MCF7. Relative quantification of APEX1 

mRNA levels 24 h after transfection. TBP was used as a reference. Results are shown relative to 

APEX1 mRNA expression in untreated cells (NTC). 

 

For HMEpC, the transfection conditions had to be established. Thus, the primary cells 

were plated at three different plating densities, 2∙104, 4∙104 and 6∙104 cells per well, on a 

24-well plate. The concentration of the target siRNA was kept constant at 100 nM. Four 

different volumes of Dharmafect 1 were used, each representing a different ratio of the 

volume of transfection reagent to the mass of siRNA. The transfection efficiency was 

estimated by using Fluorescein-labeled siRNA. 

The two higher plating densities provided enough RNA to determine APEX1 mRNA 

transcripts. A knockdown of APEX1 mRNA transcripts by ≥ 90 % was achieved with a 

transfection reagent to siRNA ratio of 2.24:1 and with a starting plating density of 

4∙104 cells per well (Figure 3.3.B). The viability of the silenced cells and controls was 

≥ 85 % (data not shown). In order to use the lowest amount of transfection reagent with 

the highest transfection efficiency, a ratio of 2:1 was considered to be optimal. 

The transfection efficiency was greater than 90 % as measured by fluorescence after 

transfection of the cells with Fluorescein-siRNA (Figure 3.3.A). 

These results demonstrate that a plating density of 4∙104cells per well, a siRNA 

concentration of 100 nM, and a ratio of the transfection reagent [µL] to siRNA [µg] of 2:1 

represent the optimal transfection conditions. For all further experiments, these 

optimized transfection conditions were applied. 
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A. 

   white light   blue light (390-430 nm) 

Ratio 2:1  

untransfected  

 

B. 

 
Figure 3.3. Optimization of the transfection conditions for HMEpC. A. Cells observed under 

fluorescence microscope in blue (wavelength 390-490 nm) and white light six hours after 

transfection with 15 nM Fluorescein-siRNA (Ratio DharmaFECT 1 to siRNA 2:1). B. Relative 

quantification of APEX1 mRNA levels 24 h after transfection. TBP was used as a reference. Results 

are relative to APEX1 expression in untreated cells (NTC). Blue bars represent a cell density of 

4∙104 per well and red bars 6∙104 cells per well. 
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3.1.2 Verification of RNA quality 

In order to qualify the isolated RNA from the samples, the Agilent 2100 Bioanalyzer with 

the Agilent RNA 6000 Nano Kit was used. In Figure 3.4, the 18S and 28S bands of the 

ribosomal RNA of different samples are shown on the gel and in the electropherogram. 

These bands are used by the software to make a statement about the quality of the RNA. 

If both appear as a sharp peak, the quality of the total input RNA is good (Figure 3.4. 

sample 1-12). All RNA samples showing degradation or appearing with a RIN of ≤ 8.5, 

which indicates insufficient quality, were excluded from the analyses.  

 

A.      B. 

 

Figure 3.4. RNA quantification and qualification with the Agilent 2100 Bioanalyzer. A. Gel B. 

Electropherogram (of Sample 1). 

 

3.1.3 Verification of cDNA integrity after first-strand synthesis 

The quality and accessibility of the synthesized cDNA after reverse transcription (RT) was 

measured by amplification of the 5’- and the 3’-end of the human Clathrin (CLTR) gene. If 

both products appear with the same intensity on the gel, the quality of the RT is 

satisfactory (Figure 3.5). If one PCR-product was missing, the reverse transcription of the 

input RNA was incomplete. In this casem the RT was repeated for the respective sample. 



 

Figure 3.5. Visualization of the CLTR 3’

selected samples after RT on a 1.5 % agarose gel and after staining with ethidium bromide.

 

 

 

Figure 3.5. Visualization of the CLTR 3’-product (550 bp) and the CLTR 5’-product (570 bp) for 

selected samples after RT on a 1.5 % agarose gel and after staining with ethidium bromide.
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product (570 bp) for 

selected samples after RT on a 1.5 % agarose gel and after staining with ethidium bromide. 
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3.2 Investigations in MCF7 cells 

3.2.1 Effective knockdown of APEX1 72 h after treatment with siRNA 

The APEX1 gene was silenced in exponentially growing MCF7 cells using the transfection 

conditions described. Luciferase siRNA was used as a negative control. To analyze the 

knockdown, the expression of the APEX1 gene was checked both on mRNA and on 

protein level 24, 48, and 72 h after transfection. The experiment was performed with 

three replicates for each treatment. 

As shown in Figure 3.6, the expression of APEX1 was reduced by 88 % 24 h after 

transfection with 100nM APEX1 siRNA and by 91 % after 48 h. The reduction of the gene 

expression remained for at least 72 h. On the protein level, a decrease up to 63 % was 

observed 24 h after transfection and up to 30 % after 48 h. However, the strongest down-

regulation of the protein was determined 72 h after treatment (Figure 3.6.B). 

These results demonstrate that the treatment of MCF7 with 100 nM APEX1 siRNA 

effectively silenced the APEX1 gene and its protein at least for up to 72 h. On the protein 

level, we detected the strongest effect after 72 h. 
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Figure 3.6. APEX1 knockdown in MCF7 cells 24, 48, and 72 h after transfection with siRNA.

Relative quantification of APEX1

after reverse transcription. TBP was used as a reference. Results are shown relative to control. 

Means and standard errors are given for three independent treatments. 

western blots which demonstrate the APEX1 protein levels in silenced and control samples. 

Quantitative analysis of the protein reduction in silenced cells [fold change to controls].

 

3.2.2 XRCC1 expression in MCF7 is down

XRCC1 siRNA 

In a second series of experiments, the 

siRNA was used as a negative control. To confirm the knockdown of 

expression of the gene was verified both at mRNA and protein level 24, 48, and 72 

transfection.  

The expression of XRCC1 was decreased by 83 % 24 

persistent for at least 72 h

72 h after transfection (Figure 3.7.B).

 

knockdown in MCF7 cells 24, 48, and 72 h after transfection with siRNA.

APEX1 expression at mRNA level by real time PCR on LightCycler 480 

after reverse transcription. TBP was used as a reference. Results are shown relative to control. 

Means and standard errors are given for three independent treatments. 

lots which demonstrate the APEX1 protein levels in silenced and control samples. 

Quantitative analysis of the protein reduction in silenced cells [fold change to controls].

expression in MCF7 is down-regulated after transfection with 100 nM 

In a second series of experiments, the XRCC1 gene was silenced in MCF7 cells. Luciferase 

siRNA was used as a negative control. To confirm the knockdown of 

expression of the gene was verified both at mRNA and protein level 24, 48, and 72 

was decreased by 83 % 24 h after transfection. This effect was 

h (Figure 3.7.A). The protein was effectively reduced to 31 % 

after transfection (Figure 3.7.B). 
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knockdown in MCF7 cells 24, 48, and 72 h after transfection with siRNA. A. 

expression at mRNA level by real time PCR on LightCycler 480 

after reverse transcription. TBP was used as a reference. Results are shown relative to control. 

Means and standard errors are given for three independent treatments. B. Representative 

lots which demonstrate the APEX1 protein levels in silenced and control samples. 

Quantitative analysis of the protein reduction in silenced cells [fold change to controls]. 

regulated after transfection with 100 nM 

gene was silenced in MCF7 cells. Luciferase 

siRNA was used as a negative control. To confirm the knockdown of XRCC1, the 

expression of the gene was verified both at mRNA and protein level 24, 48, and 72 h after 

after transfection. This effect was 

(Figure 3.7.A). The protein was effectively reduced to 31 % 



 

A. 

B. 

Figure 3.7. XRCC1 expression in MCF7 cells after transfection with 100 nM 

Relative quantification of XRCC1

reverse transcription. TBP was used as a reference. Results are shown relative to controls. Means 

and standard errors are given for three independent treatments. 

XRCC1 protein levels in lysates of MCF7 cells transfected with 100 nM 

Quantitative analysis of the protein reduction [fold change to controls].

 

3.2.3 Decreased mRNA and protein levels after simultaneous silencing of both 

and XRCC1 

In a third experiment, both the 

in exponentially growing MCF7 cells. In order to keep the total siRNA concentration and 

the amount of transfection reagent constant, 50 nM of each set of 4 target siRNA was 

used to obtain a final concentration of 100 nM. This was essential to avoid toxicity due to 

an increased amount of applied transfection reagent. Non

negative control. To compare the down

0
,1

7

0
,2

0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

100 nM XRCC1 siRNA

R
e

la
ti

v
e

 m
R

N
A

 a
m

o
u

n
ts

 

expression in MCF7 cells after transfection with 100 nM 

XRCC1 mRNA expression by real time PCR on LightCycler 480 after 

reverse transcription. TBP was used as a reference. Results are shown relative to controls. Means 

and standard errors are given for three independent treatments. B. Western blot analysis of 

rotein levels in lysates of MCF7 cells transfected with 100 nM XRCC1

Quantitative analysis of the protein reduction [fold change to controls]. 

Decreased mRNA and protein levels after simultaneous silencing of both 

d experiment, both the APEX1 and the XRCC1 gene were simultaneously silenced 

in exponentially growing MCF7 cells. In order to keep the total siRNA concentration and 

the amount of transfection reagent constant, 50 nM of each set of 4 target siRNA was 

o obtain a final concentration of 100 nM. This was essential to avoid toxicity due to 

an increased amount of applied transfection reagent. Non-targeting siRNA was used as a 

negative control. To compare the down-regulation of both genes, the expression of t

1
,0

0

1
,0

0

0
,2

1

1
,0

0

100 nM XRCC1 siRNA 100 nM control siRNA

Treatment

24 h

48 h

72 h

Results 

 

57 

 

 

expression in MCF7 cells after transfection with 100 nM XRCC1 siRNA. A. 

mRNA expression by real time PCR on LightCycler 480 after 

reverse transcription. TBP was used as a reference. Results are shown relative to controls. Means 

Western blot analysis of 

XRCC1 siRNA for 72 h. 

Decreased mRNA and protein levels after simultaneous silencing of both APEX1 

gene were simultaneously silenced 

in exponentially growing MCF7 cells. In order to keep the total siRNA concentration and 

the amount of transfection reagent constant, 50 nM of each set of 4 target siRNA was 

o obtain a final concentration of 100 nM. This was essential to avoid toxicity due to 

targeting siRNA was used as a 

regulation of both genes, the expression of the 
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mRNA and the protein level were analyzed 24, 48, and 72 h after transfection. The 

experiment was performed with three replicates for each treatment. 

Both genes were strongly reduced in their mRNA expression (Figure 3.8.A). The decrease 

in mRNA levels was detectable at least 72 h. The APEX1 protein was reduced to 23 % and 

the XRCC1 protein to 12 % compared to controls after 72 h (Figure 3.8.B). 
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3.2.4 Growth characteristics after knockdown of APEX1, XRCC1, and DKO
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Taken together, these results demonstrate that both the simultaneous and separate 

transient transfection with APEX1 and XRCC1 siRNA leads to a strong decrease of mRNA 

levels and protein amounts. On mRNA level, a strong reduction was already detected 

and this reduction lasted for at least 72 h. On the protein level, the lowest 

amount of the proteins was always detected 72 h after transfection. Therefore, the 

functional assays were performed after 72 h, mRNA expression analysis after 24 and 48 

Growth characteristics after knockdown of APEX1, XRCC1, and DKO

To investigate the effect of the silencing of APEX1, XRCC1, and both genes on cell growth, 

the ability of siRNA transfected cells to form a colony was explored with the colony

formation assay (CFA). To further verify the results of the CFA assay, the Sulforhodamine 

B (SRB) assay was used to determine the growth kinetics of silenced cells for up to ten 

days after transfection. Non-targeting siRNA was used as negative control. The relative 

mRNA levels of the silenced genes were monitored to confirm the knockdown.

Figure 3.9.B shows that the transfection with siRNA decreased the mRNA expression of 

the respective genes by more than 90 %. 

The plating efficiency which represents the capability of the cell to replicate was 

significantly decreased to 8.5 % ± 1.1 % in XRCC1-silenced cells compared to 
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controls (Figure 3.9.A). The successive down-regulation of both genes eliminated the 

effect observed after the XRCC1 knockdown alone. The plating efficiency for the DKO cells 

was 16.57 % ± 5.19 % and for the controls 16.51 % ± 2.32 %. APEX1-silenced cells showed 

no difference in their plating efficiency compared to controls (26.46 % ± 12.03 %). 

In the SRB assay, silencing of cells with APEX1 and XRCC1 siRNA showed a significant 

inhibition of cell growth compared to controls 10 days after transfection (Figure 3.9.C). 

Growth inhibition was greatest in XRCC1-silenced cells. Again, the silencing of both genes 

abolished the reduced growth effect determined after knockdown of the single genes. 

The results demonstrate that silencing the XRCC1 gene strongly affects the growth 

capability of MCF7 cells, whereas the DKO cells behave like the controls. 

 

A. 
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B. 

 

C. 

 

Figure 3.9. Growth capability after transfection with APEX1 and XRCC1 siRNA. A. Plating 

efficiency of MCF7 cells determined with the clonogenic assay. Assay was performed in six well 

plates after transfection with the respective siRNA. Means and standard errors are from three 

replicates. Results are shown for three independent experiments. B. Relative quantification of 

APEX1 and XRCC1 mRNA expression by real time PCR 24 h after transfection. C. Growth curves 

were obtained with the SRB assay. The results are expressed as mean ± SEM from two 

experiments with 20 replicates. Statistical analysis was done using t-test. ***p < 0.001. 
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3.2.5 Analysis of gene expression profiles 

To identify genes which show expression changes as a consequence of the silencing of 

APEX1 or XRCC1 or both, the gene expression patterns of silenced cells and controls were 

compared 24 h and 48 h after transfection by using the Sentrix HumanRef-8 Expression 

BeadChips from Illumina. Before the silenced samples were analyzed for their gene 

expression pattern changes, the successful knockdown of target genes was verified by 

qRT-PCR (see Figure 3.6.A, 3.7.A, and 3.8.A). 

 

3.2.5.1 Pathway analysis 24 h after silencing of APEX1, XRCC1, and DKO 

In order to get more insights into the pathways which are affected after knockdown of 

APEX1 and XRCC1, the Ingenuity Pathway Analysis (IPA) software was used to explore the 

entire set of differentially expressed genes. The software was applied to interpret the 

obtained data sets in the context of deregulated pathways, biological processes, and 

molecular networks. A gene was considered to be differentially expressed when the 

expression fold change was ≥ 2 or ≤ -2. 

In APEX1-silenced cells, the knockdown was highly specific for the APEX1 gene (Table 3.1). 

In XRCC1-silenced cells, 38 genes showed a differential expression. The oxidative 

phosphorylation, the ubiquinone biosynthesis, and the mitochondrial dysfunction were 

the three significant pathways in which NDUFA3 and NDUFA13 were down-regulated 

(Figure 3.10.A). 

Again, in double knockdown cells, the silencing was specific for APEX1 and XRCC1. Here, 

several pathways involved in the cellular immune response were up-regulated in their 

expression (Figure 3.10.B). 

 

Table 3.1. Genes with expression changes ≥ 2 fold caused by silencing of the respective gene in 

MCF7 after 24 h. 

Regulatory effect of silencing 

(compared to controls) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 1 

(0/1) 

0.13 

XRCC1 38 

(3/35) 

0.28-2.13 

DKO 9 

(7/2) 

0.11-4.01 
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A. 

 

B. 

 

Figure 3.10. Pathway analysis of silencing-induced gene regulation in MCF7 cells. The 

significance of the association between the dataset and the identified pathway is represented by 

the ratio (yellow line with data points) and the p-value (blue bars). The ratio is calculated as the 

number of molecules in a given pathway that meet cutoff criteria divided by the total number of 

molecules that make up that pathway. The p-value is calculated by Fisher’s exact test to 

determine the probability of the association between the genes in the dataset and the pathway 

due to chance. The threshold indicates a significance of p < 0.05. A. XRCC1 knockdown B. DKO. 

 

3.2.5.2 Pathway analysis 48 h after transfection 

The knockdown of APEX1 was still highly specific in APEX1-silenced cells. ERBB3 was the 

only up-regulated gene (Table 3.2). 

In XRCC1-silenced cells, a contrary pattern was observed with reference to the pattern 

after 24 h. More genes were up-regulated than down-regulated in their expression. These 

genes could not be assigned to common pathways with sufficient probability, but they 

have multiple functions in regulating gene expression, DNA replication and repair, and cell 

cycle (Figure 3.11). 

In DKO cells, the silencing was highly specific. No specific pathways or functions were 

altered as only four genes were changed. 
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Table 3.2. Genes with expression changes ≥ 2 fold caused by silencing of the respective gene in 

MCF7 after 48 h. 

Regulatory effect of silencing 

(compared to controls) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 2 

(1/1) 

0.09-2.05 

XRCC1 22 

(17/5) 

0.22-3.47 

DKO 4 

(2/2) 

0.13-2.22 

 

 

Figure 3.11. Analysis of biological functions and processes which are affected after silencing of 

XRCC1. The blue bars represent the p-value. The yellow line designates the threshold with 

p < 0.05. 

 

In order to verify that the “Specificity Server” predicted genes which showed a sequence 

homology to some siRNA duplexes were not affected by the knockdown, the expression 

values of the genes were compared. A differential expression was not detected for any of 

the predicted genes, neither 24 h nor 48 h after silencing (data not shown). This result 

shows that the expression profiles are not influenced by off-target effects. 

 

3.2.6 Changes of DNA repair pathways 

The evaluation of the gene expression patterns focused on genes involved in DNA repair 

pathway because, there, major changes were expected due to the disruption of the BER 

pathway. The expression lists were sorted for a total of 150 genes involved in DNA repair. 

For a detailed list of repair genes see (60). Genes were ranked according to their 

expression fold change compared to the reference, which was the control siRNA 

transfected sample in all cases. But here, more stringent parameters were used than for 

the analysis of differentially expressed DNA repair genes. In general, a gene was 
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considered to be differentially expressed in silenced cells when the p-value was less than 

0.05, the fold change was ≥ 1.2 or ≤ -1.2, and the mean average expression intensity was 

greater than 100 in either sample. 

 

3.2.6.1 Deregulation of DNA repair pathways 24 h after silencing 

The silencing of the target gene APEX1 was already confirmed with the genome-wide 

approach. The expression of APEX1 was reduced to 13 % of the reference. Besides APEX1, 

ALKBH2 was reduced in its expression. HUS1, MSH3 (MMR), ERCC3 (NER), POLE, and the 

polymerase subunit POLD1 were found to be up-regulated after silencing of APEX1. 

The most changes in the gene expression pattern were observed for the XRCC1-silenced 

cells. Here, seven genes mainly involved in BER and NER became co-down-regulated. 

These were besides the target gene XRCC1, NEIL2 and NTHL1 (BER), SHFM1 and XRCC2 

(HR), GTF2H5 and RPA3 (NER). Twelve genes were up-regulated in their expression, 

among them APEX1 and FEN1, EME1 and RAD54B (HR), and ERCC3 and GTF2H4 (NER). 

Further, the IR-inducible genes CDKN1A and GADD45A showed a higher expression level 

compared to controls. Together with XPC, which is also up-regulated after irradiation, the 

silencing of XRCC1 causes an over-expression of p53 response genes involved in DNA 

repair. 

In DKO cells, besides the reduced expression of APEX1 and XRCC1, which confirmed the 

successful silencing, PARP1 was down-regulated from the BER pathway. Moreover CCNH 

(NER) was less expressed compared to controls. Up-regulated genes were ERCC2 (NER), 

XRCC5 (NHEJ), and the two DNA polymerases POLG and REV1L (Figure 3.12). It is notable 

that in nearly all cases where a gene is changed in its expression in the single silenced 

cells, the effect is abrogated in the DKO cells. 

 

The changes in the gene expression profile of silenced cells clearly demonstrate that the 

silencing of APEX1, XRCC1, or both affects the expression pattern of genes involved in 

DNA repair pathway. Silencing of XRCC1 affects the cell to a greater extent than the 

APEX1 knockdown or the simultaneous silencing of both genes, especially regarding 

survival and growth. 

  



 

Figure 3.12. Gene expression changes in silenced cells 24

genes which showed a reduction in the gene expression by 

≥ 120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

siRNA transfected genes were used as a reference

knockdown cells. 24h_X. XRCC1

 

 

Figure 3.12. Gene expression changes in silenced cells 24 h after transfection.

genes which showed a reduction in the gene expression by ≤ 80 % (bright yellow) or an increase 

120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

siRNA transfected genes were used as a reference. The gene names are indicated. 

XRCC1. knockdown cells. 24h_AX. DKO cells. 

 

Results 

 

66 

h after transfection. All DNA repair 

≤ 80 % (bright yellow) or an increase 

120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

. The gene names are indicated. 24h_A. APEX1 
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3.2.6.2 Gene expression is still altered 48 h after knockdown 

In APEX1-silenced cells, the down-regulation of APEX1 was also confirmed after 48 h. 

PARP1, another gene from the BER pathway which is involved in repair of SSB, showed a 

reduced expression. The DNA damage response gene TP53, the HR gene DMC1, and the 

three NER genes RAD23A, RAD23B, and RPA3 were down-regulated. Only GTF2H5 was 

up-regulated. 

Several genes were observed to be down-regulated with XRCC1 48 h after knockdown. 

These were NTHL1, ALKBH2, CHEK2, PSMA4, XRCC3, RAD23A, POLG and GADD45A. Here, 

PARP1 was up-regulated. Also genes from HR (MUS81), NER (ERCC3, ERCC6) and the 

repair of cross links (TDP1) seemed to be activated upon XRCC1 knockdown. 

After silencing of APEX1 and XRCC1, the expression pattern revealed a down-regulation of 

several genes. MBD4 and PARP1, which are involved in BER, were down-regulated. 

Further, CDK7 (NER), DMC1 (HR), and XRCC5 (NHEJ) were reduced in their expression. 

Two genes, GTF2H1 and ERCC6, showed an increased expression (Figure 3.13). 

Taken together, 48 h after transfection most of the siRNA treated cells showed a pattern 

of co-silenced genes. Only a few genes were up-regulated in their expression.  

 

3.2.6.3 Comparison of differentially expressed DNA repair genes 

In APEX1-silenced cells, only APEX1 remained down-regulated after 48 h. In XRCC1 

silenced cells, the XRCC1 and the NTHL1 genes still showed a reduced expression, 

whereas ERCC3 and REV3L were still over-expressed. TDP1 was the only gene which 

showed an inverse expression. It was reduced after 24 h and became over-expressed 

after 48 h. In DKO, APEX1, XRCC1, and PARP1 showed an ongoing reduced expression 

after 48 h. Moreover, REV1L was still up-regulated. Here, the XRCC5 gene was up-

regulated after 24 h and demonstrated a reduced expression after 48 h. 

All other patterns of differentially expressed genes which were observed after 24 h were 

not detectable any more after 48 h or replaced by new patterns (see above). 

  



 

Figure 3.13. Gene expression changes in silenced cells 48

genes which showed a reduction in the gene expression by 

≥ 120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

siRNA transfected cells were used as a reference

knockdown cells. 48h_X. XRCC1

 

 

Figure 3.13. Gene expression changes in silenced cells 48 h after transfection.

genes which showed a reduction in the gene expression by ≤ 80 % (bright yellow) or an increase 

120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

siRNA transfected cells were used as a reference. The gene names are indicated. 

XRCC1. knockdown cells. 48h_AX. DKO cells. 
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h after transfection. All DNA repair 

≤ 80 % (bright yellow) or an increase 

120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

. The gene names are indicated. 48h_A. APEX1 
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3.2.7 General conditions for the irradiation treatment 

For the analysis of the functional impact of the silencing, cells were irradiated 72 h after 

knockdown when mRNA and protein levels were strongly reduced. Gene expression 

patterns were obtained from silenced cells 24 and 48 h after transfection and an 

additional treatment with IR followed by a further incubation step at 37° C for four hours. 

For a detailed experimental overview, see Figure 3.1. The mRNA expression levels of 

silenced cells in the corresponding functional experiment at the time point of irradiation 

are summarized in Table 3.3. 

 

Table 3.3. Relative mRNA amounts of APEX1 and XRCC1 in silenced cells obtained in the 

functional assays at the time of irradiation. Values are normalized to the control. 

 APEX1 mRNA 

(APEX1-silenced cells) 

XRCC1 mRNA 

(XRCC1-silenced cells) 

APEX1/XRCC1 mRNA 

(DKO cells) 

CFA/SRB assay 0.06 0.03 0.09/0.04 

Comet assay 0.07 0.08 0.10/0.09 

γH2AX assay 0.09 0.07 0.19/0.13 

 

3.2.8 Irradiation of silenced and control cells showed no difference of radiation 

sensitivity 

In order to investigate the effect of the knockdown of APEX1 and XRCC1 on 

radiosensitivity, silenced MCF7 cells were irradiated with increasing doses of ionizing 

radiation (0-5 Gy). The radiation dose-survival curves were determined with the CFA and 

the SRB assay. The treatment with ionizing radiation affected the colony-forming ability of 

the silenced cells in a dose-dependent manner. Considering the standard deviations, the 

inhibition of expression of XRCC1 or APEX1 or both did not influence the radiosensitivity 

of the cells as determined with the colony-formation assay and the SRB assay (Figure 

3.14.A+B). 
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A. 

 

B. 

 
Figure 3.14. Effect of silencing on radiosensitivity and on response to IR. A. Colony-forming 

ability of silenced and control cells after treatment with IR. Means ± SD are for three independent 

experiments. B. Radiation dose-survival curves determined with the SRB assay. Means ± SD are 

from sixteen replicates.  
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Another way of determining the cell’s answer to ionizing radiation is to measure the 

activation of the p53 signal cascade. p53 itself is not regulated upon irradiation, but it 

activates the expression of several genes such as CDKN1A. Consequently, increased 

expression levels of CDKN1A confirm the treatment with IR and the cell’s response to it. 

 

As shown in Figure 3.15, treatment with IR caused a strong p53 response measured by 

CDKN1A mRNA induction. However, the silencing of APEX1 and XRCC1 did not change the 

p53 response compared to controls. 

 

 

Figure 3.15. p53 response after irradiation. Cells were mock-irradiated or irradiated with 5 Gy 

24 h after transfection. CDKN1A expression was measured four hours after irradiation. 

Normalized values are expressed as mean ± SD from three replicates. 

 

3.2.9 Initial DNA damage induction is affected after irradiation of silenced cells as 

measured by the Comet Assay 

To investigate the influence of a deficiency in the BER pathway on radiation-induced DNA 

damage, the expression of APEX1 and XRCC1 was inhibited by transfecting siRNA into 

exponentially growing MCF7 cells. Then, the cells were irradiated with 5 Gy 72 h after 

transfection and assayed for their DNA damage by using the alkaline comet assay. Non-

targeting siRNA was used as negative control. 

No difference was observed between silenced cells and controls in comparison to the 

residual damage. In all treatments, the DNA repair rates were comparable and within the 
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variability of the experiment. Nevertheless, a trend regarding the initial damage induction 

was observed. APEX1-silenced cells showed a trend for a lower initial damage induction 

whereas XRCC1-silenced cells showed a trend for a higher initial damage induction (Figure 

3.16). For APEX1, this was shown in three independent experiments; for XRCC1, it was 

shown in two independent experiments. 

In sum, a difference between the silencing of APEX1 and XRCC1 can be detected in their 

response to rejoin DNA single-strand breaks and alkali-labile sites immediately after 

irradiation. The initial amount of SSB in XRCC1-silenced cells is 1/3 higher than in controls. 

This clearly shows a deficiency in the processing of SSB at a very early stage after damage 

induction. APEX1-silenced cells show a lower tailmoment compared to controls which 

indicates a lower amount of IR-induced SSB immediately after irradiation. 

 

 

Figure 3.16. Radiation induced DNA damage. APEX1 and XRCC1 siRNA treated cells were 

irradiated with 5 Gy, and alkaline comet assay was carried out. Tailmoment distributions were 

determined by the scoring of at least 102 cells per sample. Distributions were determined for 

mock-irradiated cell, and irradiated cells directly, 10 minutes and 20 minutes after irradiation. 

Absolute values of the mock-irradiated cells were subtracted from values of the irradiated cells. 

Results are expressed as the median. 
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3.2.10 Formation of DNA double strand breaks is not affected after silencing of APEX1 

and XRCC1 

In addition to the analysis of SSB and their repair with the comet assay, we examined the 

effect of a reduced expression of APEX1 and XRCC1 on the repair of IR-induced DNA-DSBs. 

The induction of DNA double-strand breaks (DSBs) correlates with the phosphorylation of 

the variant histone H2AX (γH2AX), which can be detected with a specific antibody. Cells 

were analyzed for their number of γH2AX foci before and after irradiation. To further 

validate the results, the changes in total γH2AX signal intensity were investigated in 

APEX1-silenced cells by flow cytometry. The total γH2AX signal intensity was assessed 

either for the whole cell population or according to the individual cell cycle stages. 

No difference was observed between the knockdown and the absolute numbers of foci 

30 minutes after irradiation the. Two hours after irradiation, the rejoining of DSB was 

more efficient in APEX1-silenced cells than in controls, ranging from 44 foci to 13 foci, and 

less efficient in XRCC1-silenced cells (Figure 3.17.A). 

Investigating the total γH2AX signal intensity, no alterations were detected after the 

transfection with APEX1 siRNA or control siRNA (Figure 3.17.B). Moreover, the γH2AX 

signal intensity was not dependent on the cell cycle (data not shown). 

In sum, the different siRNA treatments caused no difference in the formation of DSBs 

0.5 h after irradiation. Therefore, DSBs do not contribute to the observed results in the 

comet assay. 

A. 
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B. 

 

Figure 3.17. Inhibiting the expression of APEX1 and XRCC1 by siRNA has no influence on the 

repair of DSBs. A. Cells were mock-irradiated or irradiated with 5 Gy 72 h after transfection. Cells 

were fixed 0.5 and two hours after irradiation and stained for γH2AX foci and DNA. At least 250 

nuclei were evaluated for each treatment. Results are expressed as the median. B. Total signal 

intensity of γH2AX in mock-irradiated and irradiated cells. Values are displayed as the median. The 

asterisks indicate robust CV. 

 

3.2.11 Cell cycle distribution of cells is affected after transfection with APEX1 siRNA but 

not after additional treatment with ionizing radiation 

As irradiation affects the cell cycle and radiosensitivity depends on cell cycle position and 

progression, APEX1-silenced cells were analyzed for cell cycle by flow cytometry. Silenced 

cells were either mock-irradiated or irradiated with 5 Gy followed by 30 and 120 minutes 

of incubation to allow for repair. 

72 h after transfection, the APEX1 knockdown cells showed 33 % of cells in the G2-M 

stage whereas in controls, only 10 % of cells were in G2-M. However, most of the treated 

cells were in the G1 stage (Figure 3.18.A). Further, a reduction in APEX1 did not coincide 

with an increase in apoptosis as detected by sub-G1 fraction (0.2 % versus 0.8 %). 

After treatment of the cells with IR, neither a difference in the cell cycle profile of silenced 

cells and controls nor an increase in apoptosis was detected (Figure 3.18.B+C). 
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A. 

 

B. 

 

C. 

 

Figure 3.18. Cell cycle profiles of silenced cells before and after irradiation 72 h after 

transfection, cells were either mock-irradiated or irradiated with 5 Gy. After fixation and DNA 

staining with propidium iodide, cells were analyzed for their cell cycle stages by flow cytometry. 

For each sample 25.000 single events were detected. Values are expressed in percent. A. Mock-

irradiated cells. B. Irradiated cells followed by 30 minutes of rejoining time. C. Irradiated cells 

followed by 120 minutes of rejoining. 
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3.2.12 The irradiation of silenced cells results in changes in the gene expression 

patterns 

Ionizing radiation causes multiple DNA damage and a complex damage response signaling 

within the cell. To investigate the effect of ionizing radiation on the gene expression 

pattern of silenced cells, exponentially growing MCF7 cells were transfected with either 

APEX1 or XRCC1 siRNA or both. Cells were mock-irradiated or irradiated with 5 Gy 24 or 

48 h after knockdown. Gene expression changes were analyzed on a genome-wide scale 

on Sentrix HumanRef-8 Expression BeadChips four hours after irradiation. 

As shown in Figure 3.19.A+B, the BER-deficient cells remain silenced in their target mRNA 

levels four hours after irradiation and prior to expression profiling. 

A. 

 

B. 

 

Figure 3.19. Knockdown is still effective after irradiation. Relative quantification of APEX1 and 

XRCC1 mRNA expression by real time PCR four hours after irradiation. A. 24 h after transfection. 

B. 48 h after transfection. 
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3.2.12.1 Pathway analysis of radiation-induced gene regulation in MCF7 cells 24 h after 

silencing of APEX1 and XRCC1 

In APEX1 knockdown cells, 21 genes regulating 35 canonical pathways were differentially 

expressed (Table 3.4). These included pathways known to be involved in radiation 

response such as p53 signaling, ATM signaling and the cell cycle regulation 

(Figure 3.20.A). Furthermore, CYP1A1 and CYP1B1 were highly over-expressed, which 

activated metabolizing pathways such as the aryl hydrocarbon receptor signaling 

pathway. 

XRCC1-silenced cells showed the largest pattern of differentially expressed genes, which 

caused an enrichment of eight different pathways. Among them, the oxidative 

phosphorylation, the ubiquinone biosynthesis, and the metabolizing cytochrome P450 

system were most affected (Figure 3.20.B). Again, CYP1A1 and CYP1B1 were highly 

expressed  

The effect of irradiation in DKO cells was smaller than in the single knockdowns. However, 

27 pathways were affected due to the additional treatment with IR. Radiation response 

pathways were determined among the top hits besides several cell cycle regulating 

pathways (Figure 3.20.C). 

The irradiated controls showed a large overlap in differentially expressed genes compared 

to the DKO sample. Seven out of twelve up-regulated genes were identical. For that 

reason, in the controls similar pathways became deregulated compared to the DKO 

(Figure 3.20.D). A detailed overview of regulated genes is presented in Table 3.4. 

 

Moreover, seven genes were up-regulated in all four siRNA treatments: ACTA2, BTG2, 

CDKN1A, GDF15, GRIN2C, PHLDA3, and SESN1. Consequently, all treatments showed 

similar patterns of functions which were deregulated due to the treatment with IR 

(p < 0.05). The genes share functions in regulating the cell cycle, the cellular growth and 

proliferation, and influencing the cell morphology and cell death. 
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Table 3.4. Genes with expression changes ≥ 2 fold induced by silencing the respective gene and 

additional irradiation in MCF7 after 24 h. 

Regulatory effect of irradiation on cells 

with a silenced background (compared to 

mock-irradiated silenced cells) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 21 

(18/3) 

0.46-10.54 

XRCC1 67 

(65/2) 

0.46-10.15 

DKO 10 

(9/1) 

0.45-4.85 

Control siRNA 12 

(12/0) 

2.01-3.78 

 

A. 

 

B. 
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C. 

 

D. 

 

Figure 3.20. Top affected pathways after irradiation. The significance of the association between 

the dataset and the identified pathway is represented by the ratio (yellow line with data points) 

and the p-value (blue bars). The ratio is calculated as the number of molecules in a given pathway 

that meet cutoff criteria divided by the total number of molecules that make up that pathway. 

The p-value is calculated by Fisher’s exact test to determine the probability of the association 

between the genes in the dataset and the pathway due to chance. The threshold indicates a 

significance of p < 0.05. A. APEX1 knockdown cells B. XRCC1-silenced cells C. DKO cells D. controls 
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3.2.12.2 Pathway analysis 48 h after silencing and additional irradiation 

Irradiation caused less expression changes 48 h after transfection. Mainly up-regulated 

genes were determined except for the gene CCDC58, which was down-regulated in the 

controls (Table 3.5). 

Nevertheless, a common pattern of differentially expressed genes was observed in all 

four treatments. The genes ACTA2, CDKN1A, GDF15, SESN1, and TNFRSF10B were all up-

regulated to a similar extent. Consequently, the identical canonical pathways were 

activated in all treatments, namely the radiation response pathways such as p53-

signaling, ATM-signaling, and cell cycle regulating pathway. 

These genes share common functions in regulating the cell cycle, the cellular growth and 

proliferation, and cell death and in influencing cell morphology. A similar pattern had 

been determined after 24 h. 

Additionally, in APEX1-silenced cells, the interferon signaling was affected (Figure 3.21.A). 

XRCC1-silenced cells, again, showed an activation of the cytochrome P450 system after 

irradiation by a strong increase in the expression of the CYP1A1 and CYP1B1 genes 

(Figure 3.21.B). 

 

Table 3.5. Genes with expression changes ≥ 2 fold induced by silencing of the respective gene in 

MCF7. 

Regulatory effect of irradiation on cells 

with a silenced background (compared to 

mock-irradiated silenced cells) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 10 

(10/0) 

2.01-4.59 

XRCC1 15 

(15/0) 

2.01-7.40 

DKO 5 

(5/0) 

2.24-4.76 

Control siRNA 7 

(6/1) 

0.49-4.47 
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A. 

 

B. 

 

Figure 3.21. Top affected pathways after irradiation in A. APEX1 knockdown cells B. XRCC1-

silenced cells (for explanations see Figure 3.20). 
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3.2.13 Changes in DNA repair and DNA damage response pathways after irradiation 

In general, after silencing and additional irradiation, more DNA repair genes were altered 

in their expression compared to the mock-irradiated silenced cells. The expression of IR-

inducible genes like CDKN1A, XPC, GADD45A, and MDM2 was up-regulated by at least 

20 % after irradiation (Figure 3.22). Further changes in the profile of DNA repair genes 

were dependent on the treatment of the cell with the respective siRNA. First, the 

observed expression patterns in the irradiated controls will be described. The second part 

will focus on the differentially expressed genes regulated only in the knockdown cells. 

 

3.2.13.1 Gene expression profiles 24 h after transfection and subsequent irradiation 

with 5 Gy 

The irradiation of controls induced the expression of RAD23A and CDK7 (NER), DDB2 

(NER-related) and REV3L. Other genes like ALKBH2, GTF2H2, CHEK1 (DNA damage 

response), POLD1, and MSH6 were down-regulated (Figure 3.22). 

After irradiation of APEX1 siRNA treated cells, MUTYH (BER), CLK2 and RAD9A (DNA 

damage response), PRKDC (NHEJ), and ERCC3 and MMS19L (NER) became down-

regulated. Interestingly, three DNA polymerases (POLG, POLQ, and POLE) were less 

expressed compared to the mock-irradiated silenced sample. Further, FDXR, PSMA4, 

RAD23B and ALKBH2 were up-regulated in their expression. 

XRCC1-silenced cells showed a unique pattern of up-regulated genes, in particular, 

SMUG1 and NEIL2 (BER), XRCC2 and SHFM1 (HR), MSH3 and MSH4 (MMR), and RPA3 and 

GTF2H5 (NER). In addition to the activation of classic repair genes, the MGMT and the 

XAB2 (NER-related) gene showed an increased expression. 

In DKO cells, only a few changes in the gene expression pattern were detectable. Besides 

PNKP (BER), LIG1 and CCNH (NER), which were up-regulated upon irradiation, only 

ALKBH2 was reduced in its expression profile compared to mock-irradiated silenced cells. 

After irradiation, the DKO cells showed a gene expression profile which is totally different 

compared to the single knockdowns, except for the IR-inducible genes. 

  



 

Figure 3.22. Gene expression changes in silenced cells 24

treatment with ionizing radiation.

expression by ≤ 80 % (bright yellow) or an increase ≥ 120 % (bright red) co

irradiated silenced cells (here controls) in either one of the treatments are displayed. Mock

irradiated silenced cells were used as a reference sample. Gene names are indicated. 

APEX1 siRNA transfected cells. 

24h_control_IR. Control siRNA transfected cells.

 
3.22. Gene expression changes in silenced cells 24 h after transfection and additional 

treatment with ionizing radiation. All DNA repair genes which showed a reduction in the gene 

≤ 80 % (bright yellow) or an increase ≥ 120 % (bright red) co

irradiated silenced cells (here controls) in either one of the treatments are displayed. Mock

irradiated silenced cells were used as a reference sample. Gene names are indicated. 

siRNA transfected cells. 24h_X_IR. XRCC1 siRNA transfected cells. 24h_AX_IR.

Control siRNA transfected cells. 
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h after transfection and additional 

All DNA repair genes which showed a reduction in the gene 

≤ 80 % (bright yellow) or an increase ≥ 120 % (bright red) compared to mock-

irradiated silenced cells (here controls) in either one of the treatments are displayed. Mock-

irradiated silenced cells were used as a reference sample. Gene names are indicated. 24h_A_IR. 

24h_AX_IR. DKO cells. 
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3.2.13.2 Small changes in the gene expression patterns of silenced cells 48 h after 

transfection and irradiation with 5 Gy 

48 h after transfection, the treatment with ionizing radiation caused fewer changes in the 

expression of DNA repair genes as compared to the pattern obtained after 24 h. For all 

three knockdown treatments, the detected pattern was comparable with only minor 

differences. 

Again, the treatment with IR caused the induction of the expression of IR-inducible genes: 

CDKN1A, GADD45A, and XPC in all four treatments. In contrast, the MMR gene MSH6 was 

down-regulated in all four siRNA treatments. MSH3 was down-regulated in DKO cells and 

controls, PMS2L3 only in XRCC1-silenced cells (Figure 3.23). 

The irradiated controls showed the most deregulated pattern of differentially expressed 

genes. Here, several genes showed a decrease in expression compared to the other 

treatments. FEN1, MBD4 (BER), RPA2 (NER), XRCC2 and XRCC3 (HR), RAD9A, RAD52B, and 

TOP3A were decreased in their expression. ERCC2 (NER) showed an increased expression 

level compared to mock-irradiated cells. 

In APEX1-silenced cells, treatment with IR led to the induction of the NER genes CETN2 

and RAD23A, the DNA polymerase REV3L, and PARG. A down-regulation was observed for 

the HR genes DMC1 and MUS81. Moreover, the DNA polymerase REV1L was reduced in 

its expression. 

In XRCC1-silenced cells, again, HR (DMC1, MUS81), BER (MBD4), RAD9A, and POLD1 were 

observed to be down-regulated, whereas two NER genes (GTF2H3 and RAD23B) became 

up-regulated in their expression. Also MDM2 and REV3L were up-regulated after 

irradiation compared to the mock-irradiated sample. 

In DKO cells, only a few genes were differentially expressed 48 h after transfection and 

additional irradiation. These were besides the IR-inducible and MMR genes, CDK7 (NER), 

PSMA4, MGMT. All of them were up-regulated, whereas ALKBH2 (direct reversal) showed 

a reduced expression. 

  



 

Figure 3.23. Gene expression changes in silenced cells 48

treatment with ionizing radiation.

expression by ≤ 80 % (bright yellow) or an increase ≥ 120 % (bright red) compared to to mock

irradiated silenced cells (here controls) in either one of the treatments are displayed. Mock

irradiated silenced cells were used as a reference sample. Gene names are indicated. 

APEX1 siRNA transfected cells. 

48h_control_IR. Control siRNA transfected cells.

 
Figure 3.23. Gene expression changes in silenced cells 48 h after transfection and additional 

treatment with ionizing radiation. All DNA repair genes which showed a reduction in the gene 

≤ 80 % (bright yellow) or an increase ≥ 120 % (bright red) compared to to mock

irradiated silenced cells (here controls) in either one of the treatments are displayed. Mock

silenced cells were used as a reference sample. Gene names are indicated. 

siRNA transfected cells. 48h_X_IR. XRCC1. siRNA transfected cells. 48h_AX_IR.

Control siRNA transfected cells. 
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h after transfection and additional 

All DNA repair genes which showed a reduction in the gene 

≤ 80 % (bright yellow) or an increase ≥ 120 % (bright red) compared to to mock-

irradiated silenced cells (here controls) in either one of the treatments are displayed. Mock-

silenced cells were used as a reference sample. Gene names are indicated. 48h_A_IR. 

48h_AX_IR. DKO cells. 
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3.2.13.3 Comparison of DNA repair pathways obtained 24 and 48 h of silencing 

In all four different samples, the IR-inducible genes CDKN1A, XPC, and GADD45A were up-

regulated after 24 h and after 48 h. In contrast, several other down-regulated genes were 

not altered in their expression pattern after 48 h. In APEX1-silenced cells, it was MSH6. In 

XRCC1 knockdown cell, PMS2L3, RAD9A, and MSH6 were still silenced. DKO cells revealed 

ALKB2H as a gene which is still down-regulated after 48 h. In the controls, POLD1 and 

MSH6 showed a reduced expression even after 48 h. 

 

3.2.14 Challenging BER with temozolomide leads to growth inhibition in XRCC1 

deficient cells 

Ionizing radiation of cells causes a heterogeneous pattern of DNA damage which is not 

necessarily or only partly processed by BER. As it was seen in the gene expression 

patterns of silenced cells, several other pathways can be up-regulated after DNA damage 

induction through irradiation. These pathways may repair lesions which are normally 

thought to be repaired via BER. 

In order to induce more specifically DNA lesions to be repaired via BER, APEX1 and XRCC1-

silenced cells were treated with temozolomide (TMZ) and analyzed for their dose-

response curves. 

Temozolomide is a potent DNA methylating agent. In cells, the drug is rapidly converted 

to the highly reactive methyldiazonium ion. This ion causes methylation of bases with 

three major products: N7-methylguanine (65-80 %), O6-methylguanine (8 %), and N3-

methyladenine (9 %). N7-methylguanine accounts for most of the lesions, but it is less 

toxic than O6-methylguanine, which is responsible for the cytotoxic effect of TMZ. O6-

methylguanine incorrectly pairs with thymine during replication, which leads to cell death 

or C:G to T:A transitions. Moreover, TMZ can induce G2/M arrest and apoptosis. The most 

important DNA repair systems to repair the lesions caused by TMZ are the MMR, O6-

methylguanine-DNA-methyltransferase (MGMT), and BER (206;207). 

 

First, dose-response curves were determined for the individually silenced cells. As shown 

in Figure 3.24, increasing concentrations of temozolomide inhibit silenced cell in a dose-

dependent manner. IC50-values were estimated and are shown in Table 3.6. APEX1- and 
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XRCC1-silenced cells appeared to be more sensitive, but as the standard deviations of the 

particular data points overlap, the difference was not considered to be significant. 

 

Table 3.6. IC50 values calculated from dose-response curves 

APEX1 siRNA XRCC1 siRNA DKO Control siRNA 

IC50 [µM/L] 668 775 822 795 

 

 

Figure 3.24. Silenced cells showed no difference in their growth behavior 72 h after 

temozolomide treatment. Growth curves were determined with the SRB assay in a 96-well 

format. Three days after transfection cells were treated with varying concentrations of 

temozolomide for 72 h subsequent to fixation. Results are shown as mean ± SD from two 

independent experiments with eight replicates each. 

 

To further elucidate the effect of the knockdown and the temozolomide treatment on cell 

growth, silenced cells were treated with a temozolomide concentration of 775 µM, and 

cell growth was monitored over 16 days. The concentration represents the average of the 

IC50-values calculated in Table 3.6. 
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The XRCC1 knockdown showed a strong inhibition of cell growth, whereas the APEX1 

siRNA transfected cells showed no inhibition compared to controls. Silencing both genes 

caused a growth inhibition comparable with the XRCC1 knockdown alone (Figure 3.25). 

The differences in growth capability after knockdown and temozolomide treatment were 

not visible before day ten after transfection. 

To conclude, in the first part of the experiment, the cells were fixed and stained six days 

after transfection, but at least ten days are necessary to detect any difference regarding 

growth inhibition after tranfection of the cells with the siRNAs and after an additional 

treatment with TMZ. Between days ten and sixteen, the growth curves of the individually 

transfected cells clearly showed a separation. The XRCC1 siRNA treated cells showed a 

significantly reduced growth capability compared to controls. The growth inhibition was 

similar for the DKO cells. APEX1-silenced cells displayed no growth inhibition compared to 

controls. 

 

 

Figure 3.25. XRCC1 deficient cells showed an inhibition in cell growth after temozolomide 

treatment. Growth curves were determined with the SRB assay in a 96-well format. Three days 

after transfection, cells were treated with 775 µM temozolomide for 72 h following media 

replacement. Cells were cultivated up to 16 days after transfection. Media was replaced every 

four days. Results are shown as mean ± SEM from eight replicates.  



 

3.3 Investigations in HMEpC

3.3.1 Strong inhibition of 

The optimized transfection conditions were applied to the HMEpC to reduce the 

expression of APEX1 on mRNA and protein level. Luciferase was used as the negative 

control. In order to verify the efficient silencing 24, 48, and 72 

treatment, the expression of 

The expression of APEX1 on mRNA level was strongly reduced to 5 % compared to control 

values 24 h after transfection. The efficient silencing was still detectable after 48 

and after 72 h (7 %) (Figure 3.26.A).

On protein levels, only a minor decrease was determined 24 

greatest silencing of the protein was found after 72 

(Figure 3.26.B). 
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Strong inhibition of APEX1 after transfection with 100 nM APEX1

The optimized transfection conditions were applied to the HMEpC to reduce the 

on mRNA and protein level. Luciferase was used as the negative 

control. In order to verify the efficient silencing 24, 48, and 72 h 

treatment, the expression of APEX1 was determined by using qRT-PCR.

on mRNA level was strongly reduced to 5 % compared to control 

h after transfection. The efficient silencing was still detectable after 48 

(7 %) (Figure 3.26.A). 

On protein levels, only a minor decrease was determined 24 h after transfection. The 

greatest silencing of the protein was found after 72 h with a reduction of 43 % 
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APEX1 siRNA 

The optimized transfection conditions were applied to the HMEpC to reduce the 

on mRNA and protein level. Luciferase was used as the negative 

 after APEX1 siRNA 

PCR. 

on mRNA level was strongly reduced to 5 % compared to control 

h after transfection. The efficient silencing was still detectable after 48 h (11 %) 

after transfection. The 

with a reduction of 43 % 
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Figure 3.26. APEX1 knockdown in MCF7 cells 24, 48, and 72 h after transfection with siRNA. A. 

Relative quantification of APEX1 mRNA expression by real time PCR on LightCycler 480 after 

reverse transcription. TBP was used as a reference. Results are shown relative to controls. Means 

and standard errors are given for three independent treatments. B. Representative western blots 

which demonstrate the APEX1 protein levels in silenced and control samples. β-Actin was used as 

a reference. Quantitative analysis of the protein reduction after APEX1 silencing [fold change to 

controls]. 

 

3.3.2 XRCC1 mRNA is strongly reduced in its expression after silencing of the gene 

The XRCC1 gene was down-regulated in exponentially growing HMEpC to analyze the 

knockdown of the XRCC1 gene on both the mRNA and protein level 24, 48, and 72 h after 

transfection. Luciferase siRNA was used as the negative control. 

As shown in Figure 3.27.A, the expression of XRCC1 was reduced by 80 % 24 h after 

transfection with 100nM XRCC1 siRNA and by 82 % after 48 h. The reduction in the gene 

expression remained for at least 72 h. 

On the protein level, a decrease up to 48 % was observed 24 h after transfection and to 

41 % after 48 h. Here, the strongest decrease in protein amounts was found. However, 

72 h after treatment, the protein expression slightly increased up to 47 % of control 

amounts (Figure 3.27.B). 
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B. 

Figure 3.27. XRCC1 expression in MCF7 cells after transfection with 100 nM 

Relative quantification of XRCC1

TBP was used as a reference. Results are shown relative to controls. Means and standard errors 

are given for three independent treatments. 

lysates of MCF7 cells transfected with 100 nM 

reference. Quantitative analysis of the protein reduction after 

controls]. 

 

3.3.3 Double knockdown of 

levels of both genes

In the next experiment, the silencing of the two genes at the same time was elucidated in 

a time-dependent manner. To confirm the knockdown of 

expression of the gene was verified 

transfection. 

Again each gene was targeted with a concentration of 50 nM of the set of four siRNA. The 

concentration of every single siRNA duplex was 12.5 nM respectively. Non

siRNA was used as control.

Both genes were highly reduced in their mRNA expression (Figure 3.28.A). The decrease 

in mRNA levels was detectable at least 72 

cultures were sampled to assay for APEX1 and XRCC1 expression by immunobl

After 72 h, the APEX1 protein was reduced to 14 % and the XRCC1 protein to 48 % (Figure 

3.28.B). 

 

expression in MCF7 cells after transfection with 100 nM 

XRCC1 mRNA expression by real time PCR after reverse transcription. 

TBP was used as a reference. Results are shown relative to controls. Means and standard errors 

are given for three independent treatments. B. Western blot analysis of XRCC1 protein levels in 

sates of MCF7 cells transfected with 100 nM XRCC1 siRNA for 72 h. β-Actin was used as a 

reference. Quantitative analysis of the protein reduction after XRCC1 silencing [fold change to 

Double knockdown of APEX1 and XRCC1 leads to reduced mRNA and protein 

levels of both genes 

In the next experiment, the silencing of the two genes at the same time was elucidated in 

dependent manner. To confirm the knockdown of APEX1

expression of the gene was verified both at mRNA and protein level 24, 48, and 72 

Again each gene was targeted with a concentration of 50 nM of the set of four siRNA. The 

concentration of every single siRNA duplex was 12.5 nM respectively. Non

s control. 

Both genes were highly reduced in their mRNA expression (Figure 3.28.A). The decrease 

in mRNA levels was detectable at least 72 h. At various times after transfection, the 

cultures were sampled to assay for APEX1 and XRCC1 expression by immunobl

, the APEX1 protein was reduced to 14 % and the XRCC1 protein to 48 % (Figure 
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expression in MCF7 cells after transfection with 100 nM XRCC1 siRNA. A. 

mRNA expression by real time PCR after reverse transcription. 

TBP was used as a reference. Results are shown relative to controls. Means and standard errors 

Western blot analysis of XRCC1 protein levels in 

Actin was used as a 

silencing [fold change to 

leads to reduced mRNA and protein 

In the next experiment, the silencing of the two genes at the same time was elucidated in 

APEX1 and XRCC1, the 

both at mRNA and protein level 24, 48, and 72 h after 

Again each gene was targeted with a concentration of 50 nM of the set of four siRNA. The 

concentration of every single siRNA duplex was 12.5 nM respectively. Non-targeting 

Both genes were highly reduced in their mRNA expression (Figure 3.28.A). The decrease 

. At various times after transfection, the 

cultures were sampled to assay for APEX1 and XRCC1 expression by immunoblotting. 

, the APEX1 protein was reduced to 14 % and the XRCC1 protein to 48 % (Figure 



 

A. 

B. 

Figure 3.28. Double knockdown in MCF7 cells 24, 48, and 72 h after transfection with siRNA.

Quantitative real-time RT-PCR analysis of 

cells transfected with 100 nM siRNA (50 nM 

indicated period of time. TBP was used as a reference. Results are shown relative to control. 

Means and standard errors are given for three independent treatments. 

protein levels in silenced cells and controls analyzed by

reference. Reduction of the protein after silencing [fold change to controls].
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Double knockdown in MCF7 cells 24, 48, and 72 h after transfection with siRNA.

PCR analysis of APEX1 and XRCC1 mRNA levels in total RNA of MCF7 

cells transfected with 100 nM siRNA (50 nM APEX1 siRNA and 50 nM XRCC1

indicated period of time. TBP was used as a reference. Results are shown relative to control. 

Means and standard errors are given for three independent treatments. B.

protein levels in silenced cells and controls analyzed by western blot. β-Actin was used as the 

reference. Reduction of the protein after silencing [fold change to controls]. 
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Double knockdown in MCF7 cells 24, 48, and 72 h after transfection with siRNA. A. 

mRNA levels in total RNA of MCF7 

XRCC1 siRNA) for the 

indicated period of time. TBP was used as a reference. Results are shown relative to control. 

B. APEX1 and XRCC1 

Actin was used as the 

  



 

These results show that the transfection with siRNA which targets either 

or both causes a transient but efficient reductio

transfection, the knockdown was determined to be very high. The decrease of the mRNAs 

was consistent for at least 72 

On protein levels the silencing was not as effective as it was on mRNA levels. In cells 

where either APEX1 or XRCC1

around 50 % compared to controls after 72 

simultaneously, the APEX1 protein was strongly reduced by more than 86 %. In contrast, 

the XRCC1 protein was reduced by only 52 %.

 

3.3.4 Growth characteristics are not influenced after silencing

To determine whether the silencing of 

HMEpC, a time course of the growth characteristics of silenced cells was measured with 

the SRB assay. 

The plating efficiency was not evaluated due to the special growth characteristics of the 

primary cells. These cells do not form

scattered cell assembly pattern during cultivation as compared to MCF7 cells 

(Figure 3.29). Consequently, growth characteristics were detected with the SRB assay as a 

powerful technique to determine growth

(see 3.2.4). 

 

A.    

Figure 3.29. Colony-forming ability. 

1000 cells/well and incubated for 6 population doubling times. Cells were fixed and stained with 

crystal violet. A. MCF7 B. HMEpC.

 

These results show that the transfection with siRNA which targets either 

or both causes a transient but efficient reduction of the mRNA amount. Already 24 

transfection, the knockdown was determined to be very high. The decrease of the mRNAs 

was consistent for at least 72 h. 

On protein levels the silencing was not as effective as it was on mRNA levels. In cells 

XRCC1 was silenced, the protein amounts were only decreased to 

around 50 % compared to controls after 72 h. In cells where both genes were silenced 

simultaneously, the APEX1 protein was strongly reduced by more than 86 %. In contrast, 

XRCC1 protein was reduced by only 52 %. 

Growth characteristics are not influenced after silencing 

To determine whether the silencing of APEX1 and XRCC1 influences the growth of 

HMEpC, a time course of the growth characteristics of silenced cells was measured with 

The plating efficiency was not evaluated due to the special growth characteristics of the 

primary cells. These cells do not form proper colonies and show a more or less loose and 

scattered cell assembly pattern during cultivation as compared to MCF7 cells 

3.29). Consequently, growth characteristics were detected with the SRB assay as a 

powerful technique to determine growth characteristics of cells as validated for MCF7 

   B. 

  

forming ability. Cells were seeded in 96-well plates with a density of 

cells/well and incubated for 6 population doubling times. Cells were fixed and stained with 

HMEpC. 
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These results show that the transfection with siRNA which targets either APEX1 or XRCC1 

n of the mRNA amount. Already 24 h after 

transfection, the knockdown was determined to be very high. The decrease of the mRNAs 

On protein levels the silencing was not as effective as it was on mRNA levels. In cells 

was silenced, the protein amounts were only decreased to 

. In cells where both genes were silenced 

simultaneously, the APEX1 protein was strongly reduced by more than 86 %. In contrast, 

influences the growth of 

HMEpC, a time course of the growth characteristics of silenced cells was measured with 

The plating efficiency was not evaluated due to the special growth characteristics of the 

proper colonies and show a more or less loose and 

scattered cell assembly pattern during cultivation as compared to MCF7 cells 

3.29). Consequently, growth characteristics were detected with the SRB assay as a 

characteristics of cells as validated for MCF7 

 

well plates with a density of 

cells/well and incubated for 6 population doubling times. Cells were fixed and stained with 
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In the SRB assay, treatment of the cells with APEX1 and/or XRCC1 siRNA showed no 

significant inhibition of cell growth compared to controls between days 3 and 10 after 

transfection (Figure 3.30.B). The silencing of the genes after transfection was verified on 

mRNA levels and showed a strong reduction of target mRNA amounts (Figure 3.30.A). 

These results demonstrate that the down-regulation of APEX1 and XRCC1 does not 

influence the growth and proliferation capability of HMEpC cells. 
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B. 

 

Figure 3.30. No alteration of growth characteristics after transfection with APEX1 or XRCC1 

siRNA. A. Relative quantification of APEX1 and XRCC1 expression at mRNA level by real time PCR 

72 h after transfection. B. Growth curves were obtained with the SRB assay. The results are 

expressed as mean ± SD from two experiments with 16 replicates each. 

 

3.3.5 Investigations of gene expression patterns after silencing 

To identify genes which show expression changes as a consequence of the silencing of 

APEX1 or XRCC1 or both, the gene expression patterns of silenced cells and controls were 

compared 24 h and 48 h after transfection by using the Sentrix HumanRef-8 Expression 

BeadChips. 

The gene lists were analyzed for differentially expressed genes which share common 

functions or which show a common involvement in different pathways. For this analysis 

the Ingenuity Pathway Analysis Software was used. Here, again, a gene was considered to 

be differentially expressed when the expression fold change was greater than 2. 
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To determine the knockdown of the target genes APEX1 and XRCC1 24 h and 48 h after 

transfection, the mRNA amounts were measured with qRT-PCR. The mRNA levels of the 

genes were highly decreased 24 h and 48 h after transfection (Figure 3.26.A, 3.27.A, and 

3.28.A). 

 

3.3.5.1 Pathway analysis 24 h after silencing of APEX1, XRCC1 and DKO 

The silencing of APEX1 in HMEpC cells caused an induction of immune response 

pathways. Further, several functions seemed to be deregulated in following categories: 

DNA replication, recombination and repair, cell death, cellular growth and proliferation; 

and cell cycle (Figure 3.31). 

Only four genes were differentially expressed in XRCC1-silenced cells (Table 3.7). The IFI6 

gene, which is induced by interferon, was up-regulated. This indicates the activation of an 

immune response in the cell. 

In DKO cells, the silencing was specific for APEX1 and XRCC1. Only MX1 was co-down-

regulated. 

 

Table 3.7. Genes with expression changes ≥ 2 fold after silencing of APEX1, XRCC1, and DKO in 

HMEpC. 

Regulatory effect of silencing 

(compared to controls) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 10 

(1/9) 

0.10-2.20 

XRCC1 4 

(2/2) 

0.45-2.63 

DKO 3 

(0/3) 

0.31-0.48 

 

 

Figure 3.31. Biological functions affected after silencing of XRCC1. The blue bars represent the p-

value. The yellow line designates the threshold with p < 0.05. 
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3.3.5.2 Pathway analysis 48 h after silencing of APEX1, XRCC1, and DKO 

In APEX1-silenced cells, a down-regulation of 17 genes which are involved in several 

pathways of the immune response was determined (Figure 3.32.A). 

The silencing of XRCC1 resulted in a large amount of differentially expressed genes in 24 

different pathways. Pathways with a significant p-value are shown in Figure 3.32.B. The 

genes of the pathway mismatch repair in eukaryotes were up-regulated, whereas the 

genes of the other pathway were down-regulated. Several amino acid metabolizing 

pathways were affected after silencing of XRCC1. The large amount of genes led to a 

manifold deregulation of biological processes (Figure 3.33). 

In DKO cells, the silencing was specific for APEX1. The fold change of XRCC1 was 0.59. 

However, the reduced expression of XRCC1 was confirmed with qRT-PCR. The ZNF91 gene 

was up-regulated (Table. 3.8). 

 

Table 3.8. Genes with expression changes ≥ 2 fold induced 48 h after silencing. 

Regulatory effect of silencing 

(compared to controls) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 17 

(0/17) 

0.12-0.50 

XRCC1 111 

(61/50) 

0.29-8.29 

DKO 2 

(1/1) 

0.28-2.22 

 

A. 
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B. 

 

Figure 3.32. Pathway analysis of gene regulation in silenced cells 48 h after transfection. The 

significance of the association between the dataset and the identified pathway is represented by 

the ratio (yellow line with data points) and the p-value (blue bars). The ratio is calculated as the 

number of molecules in a given pathway that meet cutoff criteria, divided by the total number of 

molecules that make up that pathway. The p-value is calculated by Fisher’s exact test to 

determine the probability of the association between the genes in the dataset and the pathway 

due to chance. The threshold indicates a significance of p < 0.05. A. APEX1-silenced cells. B. 

XRCC1-silenced cells. 

 

 

Figure 3.33. Biological functions affected 48 h after silencing of XRCC1. The blue bars represent 

the p-value. The yellow line designates the threshold with p < 0.05. 
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3.3.6 Gene expression changes of DNA repair genes 

This part of the results focuses on changes in the gene expression pattern of DNA repair 

genes as it was done for the MCF7 cells. Gene lists were sorted according to 

Wood et al. (60). A gene was considered to be differentially expressed when the p-value 

was less than 0.05, the fold change was ≥ 1.2 or ≤ -1.2, and the mean average expression 

intensity was greater than 100 in either sample. 

 

3.3.6.1 XRCC1-silenced cells show multiple changes in their gene expression pattern 

24 h after transfection 

APEX1 siRNA treated cells showed a highly specific silencing of the APEX1 gene by 10 fold 

compared to control. The GADD45A gene was co-down-regulated. The DNA polymerase 

REV1L was up-regulated in its expression (Figure 3.34). 

In XRCC1 siRNA treated cells, a large number of differentially expressed genes was 

detected. Next to XRCC1, mainly NER-related (CDK7, CETN2, CCNH, and GTF2H5) and 

MMR genes (PMS2L3 and MSH6) were co-silenced. The polymerase subunit POLD1, 

RAD23A, MGMT, SALL3, and XAB2 showed an increased expression compared to controls. 

In DKO cells, the silencing of APEX1 and XRCC1 was accompanied by POLD1, CDK7 (NER) 

and EME2 (HR). The genes MSH3 (HR) and TDP1 were up-regulated. 



 

Figure 3.34. Gene expression changes in 

genes which showed a reduction in the gene expression by 

≥ 120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

siRNA transfected cells were used as a reference. The gene names are indicated. 

siRNA transfected cells. 24h_X.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene expression changes in silenced cells 24 h after transfection

genes which showed a reduction in the gene expression by ≤ 80 % (bright yellow) or an increase 

120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

siRNA transfected cells were used as a reference. The gene names are indicated. 

24h_X. XRCC1. siRNA transfected cells. 24h_AX. DKO cells.
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h after transfection All DNA repair 

≤ 80 % (bright yellow) or an increase 

120 % (bright red) compared to controls in either one of the treatments are displayed. Control 

siRNA transfected cells were used as a reference. The gene names are indicated. 24h_A. APEX1 

DKO cells. 
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3.3.6.2 Several genes are differentially expressed 48 h after transfection 

In APEX1-silenced cells, the knockdown affected HR where three genes (MUS81, DMC1, 

and XRCC2) were co-down-regulated. Interestingly, three other BER genes were enhanced 

in their expression. These were XRCC1, NTHL1, and SMUG1. Further, GTF2H, MNAT1 

(NER), XAB2 (NER-related), POLD1, POLM, RAD9, and BRCA1 (HR) were up-regulated. 

Treatment with XRCC1 siRNA resulted in a strong decrease of XRCC1. Moreover, silencing 

XRCC1 resulted in a co-silencing of several other DNA repair genes. HR was affected with 

four genes (DMC1, RAD54L, SHFM1, and XRCC3), NER with six genes (LIG1, RPA3, RPA2, 

GTF2H5, CETN2, and RPA1) and three DNA damage response genes (RAD9A, CHEK1, and 

UBE2N). In addition, PCNA and several DNA polymerases such as POLQ, POLG, and POLE 

were decreased in their expression levels. In contrast, APEX1 and NEIL2 (both BER), 

MUS81 (HR), CCNH (NER), and ALKBH3 showed a higher expression pattern compared to 

the reference. Additionally, the normally IR-inducible genes GADD45A, CDKN1A, and XPC 

showed a higher expression level. 

The DKO cells showed only little changes in their gene expression levels of DNA repair 

genes. The silencing of APEX1 and XRCC1 initiated a down-regulation of RAD54L (HR), 

FEN1, RAD1, RECQL, and POLQ. SALL3 and EME2 (HR) were over-expressed (Figure 3.35). 

 

3.3.6.3 Comparison of changes in the DNA repair pathways 24 h and 48 h after 

knockdown 

More DNA repair genes were differentially expressed 48 h after silencing compared to the 

24 h point of time. 

In XRCC1-silenced cells, GADD45A was still up-regulated after 48 h. CETN2, GTF2H5, and 

MSH6 remained silenced after 48 h. But some genes showed a different expression 

pattern. POLD1 and POLE were up-regulated after 24 h showed a reduced expression 

after 48 h. In contrast, CCNH and NEIL2 silenced after 24 h were up-regulated after 48 h. 

In DKO, EME2 were reduced in its expression after 24 h and became up-regulated after 

48 h. 

Besides these results, each silencing caused a distinctive pattern of deregulated DNA 

repair pathway. This pattern changed after 48 h.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35. Gene expression changes in 

silenced cells 48 h after transfection

repair genes which showed a reduction in the 

gene expression by ≤ 80 % (bright yellow) or an 

increase ≥ 120 % (bright red) compared to 

controls in either one of the treatments are 

displayed. Control siRNA transfected cells were 

used as a reference. The gene names are 

indicated. 48h_A. APEX1

cells. 48h_X. XRCC1. siRNA transfected cells. 

48h_AX. DKO cells. 
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Gene expression changes in 

48 h after transfection All DNA 

repair genes which showed a reduction in the 

≤ 80 % (bright yellow) or an 

≥ 120 % (bright red) compared to 

controls in either one of the treatments are 

displayed. Control siRNA transfected cells were 

. The gene names are 

APEX1 siRNA transfected 

. siRNA transfected cells. 
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3.3.7 Expression levels of APEX1 and XRCC1 are strongly reduced at the time of 

irradiation in the functional assays 

To determine the impact of the knockdown on radiosensitivity, the irradiation treatment 

and the functional investigations were performed 72 h after transfection when mRNA and 

protein levels were strongly reduced. Global gene expression patterns were determined 

in silenced cells 24 and 48 h after transfection and after additional treatment with IR. 

Quantitative RT-PCR showed that the mRNA levels of APEX1 and XRCC1 were strongly 

reduced as compared to controls at the time of irradiation. 

Table 3.9 summarizes the mRNA expression levels of silenced cells in the corresponding 

functional experiment at the time of irradiation. 

 

Table 3.9. Relative mRNA levels of APEX1 and XRCC1 in silenced cells obtained in functional 

analyses at the time of irradiation. Values are normalized to the control. 

 APEX1 mRNA 

(APEX1-silenced cells) 

XRCC1 mRNA 

(XRCC1-silenced cells) 

APEX1/XRCC1 mRNA 

(DKO cells) 

CFA/SRB assay 0.05 0.03 0.06/0.05 

Comet assay 0.06 0.05 0.07/0.05 

γH2AX assay 0.10 0.17 0.16/0.15 

Expression profiling 24 h 0.06 0.14 0.17/0.12 

Expression profiling 48 h 0.09 0.17 0.19/0.11 

 

3.3.8 Radiosensitivity of cells is not affected after silencing of APEX1 and XRCC1 and 

subsequent treatment with varying doses of IR 

In order to investigate the effect of the knockdown of APEX1 and XRCC1 on 

radiosensitivity, silenced cells were irradiated with increasing doses of ionizing radiation. 

The survival curves were determined with the SRB assay, which was shown to be as useful 

as the CFA assay for the research on radiotherapy interactions in cell lines (191). In our 

experiments with MCF7 cells, the results of both assays were comparable (see 3.2.8). 

Irradiation of the cells affected the survival in a dose-dependent manner. Higher 

irradiation doses caused less survival. The inhibition of expression of XRCC1 or APEX1 or 

both did not affect the radiosensitivity of the cells compared to controls as determined 

with the SRB assay (Figure 3.36). 
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A. 

 

Figure 3.36. Effect of the silencing on radiosensitivity and on response to IR. A. Radiation dose-

survival curves were determined with the SRB assay. Means ± SD are from sixteen replicates. 

 

Ionizing radiation caused an induction of p53 response genes as measured by the 

induction of CDKN1A mRNA expression levels. Silencing of APEX1 and XRCC1 did not alter 

the p53 response (Figure 3.37). However, the response was not as strong as seen in MCF7 

cells. 

 

Figure 3.37. p53 response after irradiation. Cells were mock-irradiated or irradiated with 5 Gy 

24 h after transfection. CDKN1A expression was measured four hours after irradiation. 

Normalized values are shown as mean ± SD from three replicates.  
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3.3.9 Reduced protein levels of APEX1 and XRCC1 do not influence the initial damage 

induction 

To investigate whether a reduced BER capacity caused by down-regulation of APEX1 

and/or XRCC1 results in a difference in the initial amount of DNA damage, silenced cells 

were assayed for their DNA repair ability after irradiation with 5 Gy by the comet assay. 

Non-targeting siRNA was used as negative control. The irradiation of silenced cells caused 

a large amount of SSBs immediately after irradiation. Almost all SSBs were repaired within 

the first ten minutes. 

No difference was observed in the initial damage induction and in repair rates between 

silenced cells and controls (Figure 3.38). 

 

 

Figure 3.38. Residual damage after irradiation. A. Relative quantification of APEX1 and XRCC1 

expression at mRNA level by real time PCR at the time of irradiation. B. APEX1 and XRCC1 siRNA 

treated cells were irradiated with 5 Gy, and alkaline comet assay was carried out. Tailmoment 

distributions were determined by scoring at least 102 cells per sample. Distributions were 

determined for non-irradiated cell, and irradiated cells directly, 10 minutes and 20 minutes after 

irradiation. Values of the non-irradiated cells are subtracted from values of the irradiated cells. 

Values are expressed as the median. 
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3.3.10 Formation of γγγγH2AX foci is not affected after knockdown of APEX1 and XRCC1 

To determine the induction of DSBs after treatment with IR, the formation of γH2AX foci 

was detected in silenced cells by using a specific antibody which binds to the 

phosphorylation site of the H2AX variant. 

The irradiation of silenced cells caused a strong induction of DSBs. Silencing APEX1 and/or 

XRCC1 did not significantly affect the amount of DSBs determined 30 minutes after 

irradiation. No difference was observed comparing the repair rates determined after 

zwo hours in silenced cells. (Figure 3.39). 

 

 

Figure 3.39. Inhibiting the expression of APEX1 and XRCC1 by siRNA has no influence on the 

repair of DSB. Cells were mock-irradiated or irradiated with a single dose of 5 Gy 72 h after 

transfection. Cells were fixed 0.5 and two hours after irradiation and stained for γH2AX foci and 

DNA. At least 150 nuclei were evaluated for each treatment. Results are expressed as the median. 

 

3.3.11 Gene expression patterns after transfection and additional irradiation 

In order to investigate the effect of ionizing radiation on the gene expression pattern of 

silenced cells, exponentially growing MCF7 cells were transfected with either APEX1 or 

XRCC1 siRNA or both. Cells were mock-irradiated or irradiated with 5 Gy 72 h after 

transfection and further incubated for four hours. 

As shown in Table 3.9, silenced cells showed a strong reduction in target gene mRNA 

levels four hours after irradiation. 
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3.3.11.1 Pathway analysis 24 h after transfection and additional irradiation 

The radiation response genes, which normally show an increased expression after 

treatment with IR, were not among the hit lists after the sorting. This was due to the 

minor increase in gene expression after irradiation. None of the radiation response genes 

had an increase in their expression level ≥ 2 fold. This was also observed in the global 

gene expression levels 48 h after silencing. 

 

However, in APEX1-silenced cells, only the two genes CDC14B and GDF15 were induced in 

their expression. They could not be assigned to any pathway, but CDC14B is involved in 

cell cycle control and regulates the function of p53. GDF15 is a member of the 

transforming growth factor-beta superfamily. These are multifunctional proteins that 

regulate proliferation, differentiation, adhesion, migration, and other functions in many 

cell types. 

In XRCC1-silenced cells, 20 genes were differentially expressed. Two immune response 

pathways, the Granzyme A Signaling and the IL-8 Signaling, were affected after 

irradiation. Moreover, the metabolism of xenobiotics became deregulated by the strong 

induction of CYP1B1 (Figure 3.40). Eighteen genes which have function in several 

biological processes like cell cycle, DNA replication, and cell growth and proliferation were 

down-regulated (Figure 3.41). 

In DKO cells, four genes were differentially expressed. KPNA2, NOLA1, and CDC14B were 

down-regulated, whereas the TP53INP1 gene was induced upon irradiation treatment. 

Irradiation of controls resulted in an over-expression of GDF15 and TP53INP1. 

 

Table 3.10. Genes with expression changes ≥ 2 fold after irradiation. 

Regulatory effect of silencing 

(compared to controls) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 2 

(2/0) 

2.05-2.61 

XRCC1 20 

(2/18) 

0.39-2.90 

DKO 4 

(1/3) 

0.35-2.11 

Control siRNA 2 

(2/0) 

2.09-2.19 
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Figure 3.40. Pathway analysis of radiation-induced gene regulation in XRCC1-silenced HMEpC. 

The significance of the association between the dataset and the identified pathway is represented 

by the ratio (yellow line with data points) and the p-value (blue bars). The ratio is calculated as the 

number of molecules in a given pathway that meet cutoff criteria, divided by the total number of 

molecules that make up that pathway. The p-value is calculated by Fisher’s exact test to 

determine the probability of the association between the genes in the dataset and the pathway 

due to chance. The threshold indicates a significance of p < 0.05. 

 

 

Figure 3.41. Analysis of biological functions in XRCC1-silenced cells four hours after irradiation. 

Blue bars represent the p-value. The yellow line designates the threshold with p < 0.05. 
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3.3.11.2 Pathway analysis 48 h after transfection and additional irradiation 

In APEX1-silenced cells, four genes got differentially expressed after irradiation 

treatment. These were GDF15, IFI6, IFI27, and MX1, which suggested a deregulation of 

immune response pathways. The functions of GDF15 have already been explained 

(see 3.3.11.1). 

Irradiation of XRCC1-silenced cells resulted in a large amount of regulated genes. 202 

genes were differentially expressed in more than 19 different canonical pathways. Most 

of them indicated a down-regulation of the IL-8-signaling pathways, but also the p53- and 

the ATM-signaling were affected (Figure 3.42). These genes have implications in around 

60 biological processes. Cancer, cell death, cell cycle, and cellular growth and proliferation 

were among the most significant processes (Figure 3.43.A). 

In DKO cells, irradiation caused an enrichment of seven genes involved in immune 

response signaling. Several processes were affected, among them cellular movement, cell 

morphology, and cell signaling (Figure 3.43.B). 

The controls showed exactly the same pattern of up-regulated genes as the DKO. This 

resulted in the same deregulation pattern of pathways and functions. Two genes were 

down-regulated after irradiation, BUB1 and ANGPTL4. 

 

Table 3.11. Genes with expression fold changes ≥ 2 determined 48 h after silencing and 

additional treatment with IR. 

Regulatory effect of silencing 

(compared to controls) 

Number of regulated genes 

(up-/down-regulated) 

Fold change 

(min-max) 

APEX1 4 

(4/0) 

2.07-3.88 

XRCC1 202 

(73/129) 

0.06-3.30 

DKO 7 

(7/0) 

2.01-3.79 

Control siRNA 8 

(6/2) 

0.45-4.35 
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Figure 3.42. Pathway analysis of radiation-induced gene regulation in XRCC1-silenced HMEpC 

cells 48 h after transfection. (see Figure 3.41 for figure legend). 

 

A. 

 

B. 

 

Figure 3.43. Deregulated functions in HMEpC 48 h after transfection and irradiation treatment. 

A. XRCC1-silenced cells. B. DKO cells.  
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3.3.12 Changes in DNA repair pathways 

3.3.12.1 Silencing of target genes in HMEpC and additional treatment with IR causes 

large changes in the gene expression pattern of DNA repair genes 

The irradiation increased the expression of IR-inducible genes like CDKN1A, GADD45A, 

and XPC (NER) in APEX1-silenced cells and controls. In XRCC1-silenced cells, CDKN1A and 

GADD45A were induced after irradiation. In DKO cells, only XPC was up-regulated 

(Figure 3.44). 

Changes of DNA repair genes in the control sample were evaluated first. The evaluation of 

the BER-deficient samples focused only on the differences compared to the controls. 

 

The examination of the expression patterns in irradiated controls showed that the NER 

gene, RAD23B, was up-regulated whereas three NER genes (CCNH, RPA1, and RPA2) 

showed a reduced expression. Moreover, EME2, DMC1, and RAD54L (HR), SMUG1 (BER), 

MSH6 (MMR), and TOP3A showed a reduced expression. 

In APEX1 down-regulated cells, the BER gene PNKP and the NER genes MNAT1 and LIG1 

were co-up-regulated. NEIL2 (BER) showed a decreased expression. 

The most deregulated gene expression pattern was detected in XRCC1-silenced cells. 

APTX, RAD52B PSMA4 and the NER genes CETN2 and CCNH were up-regulated after 

treatment with IR. 16 genes were reduced in their expression. These genes are involved in 

several DNA repair pathways: XRCC2 and BRCA1 (HR); RAD23A (NER); MSH3 and MSH6 

(MMR); and MBD4 (BER). Also, three DNA Polymerases were found to be decreased in 

their expression: POLE, MAD2L2, and POLQ. 

Cells transfected with APEX1 and XRCC1 siRNA showed a strong up-regulation of NER and 

NER-related genes after irradiation: LIG1 and CDK7 (NER), XAB2 and MMS19L (NER-

related). In contrast, the HR gene EME1, the DCLRE1A gene, the MMR gene MSH3, and 

the BER gene NTHL1 were expressed to a lesser extent. 

In sum, these results demonstrate that XRCC1 siRNA treatment shows the strongest effect 

both after knockdown and after additional treatment with IR. In XRCC1-silenced cells, the 

gene expression pattern of DNA repair genes becomes strongly deregulated. 
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3.3.12.2 Irradiation of silenced cells leads to a deregulation of genes of several DNA 

repair pathways 48 h after transfection 

The irradiation of siRNA treated cells affected again the p53 response genes which were 

increased in their expression after treatment with ionizing radiation. The genes CDKN1A 

and XPC were induced in APEX1 siRNA, DKO, and control siRNA samples. In XRCC1-

silenced cells, only CDKN1A was up-regulated in its expression. Furthermore, GADD45A 

was induced in the controls (Figure 3.45). 

Little changes were observed in the irradiated controls. PER1 (DNA damage response) and 

POLE showed a reduced expression, whereas PARG, XAB2 (NER), and SMUG1 (BER) were 

decreased in their expression compared to the mock-irradiated sample. 

The irradiation of APEX1-silenced cells caused an up-regulation of UBE2N (RAD6 

pathway), DMC1, and XRCC2 (HR) and a strong up-regulation of genes involved in NER 

(RAD23B, GTF2H3, ERCC4, XPA, and GTF2H1). Two BER genes (XRCC1 and NTHL1), MNAT1 

(NER), and three DNA polymerases (POLD1, POLM, and POLI) showed a reduced 

expression. 

In XRCC1 siRNA treated cells, most genes were up-regulated. These perform functions in 

multiple DNA repair pathways like BER (NTHL1, APEX2, and MBD4), NER (RPA2, GTF2H5, 

LIG1, RAD23B, RPA1, and CCNH), HR (XRCC2, SHFM1), MMR (MSH6 and PMS1), and NHEJ 

(XRCC5). Other up-regulated genes were UBE2N, FEN1, RAD9A, TREX1, PSMA4, RAD1, 

RECQL, TOP3A, and PCNA. Some NER genes (XPC, CDK7, RAD23A, and MMS19L), TP53, 

and GADD45A showed a reduced expression compared to the mock-irradiated silenced 

sample. 

In DKO cells, again, an up-regulation of NER genes was observed as it had been for the 

XRCC1-silenced cells. These were RAD23B, GTF2H3, ERCC4, CDK7, and CCNH. Further, 

RAD52B, HEL308, and RAD1 were increased in their expression. Two BER genes, APEX2 

and NEIL2, were found to be down-regulated. 
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3.3.12.3 Comparison of DNA repair pathways obtained 24 and 48 h after transfection 

and additional treatment with IR. 

The expression patterns of the IR-inducible genes were the same after 24 h and after 48 h 

with only one exception. In XRCC1-silenced cells, the GADD45A genes induced after 24 h 

showed a decreased expression after 48 h. 

Further, in XRCC1-silenced cells, PSMA4, CCNH (both increased), RAD23A, and MAD2L2 

(both decreased) showed the same expression pattern. A contrary expression pattern was 

determined for XRCC2, MBD4, MSH6, TOP3A, NTHL1, and for FEN1, which were down-

regulated after 24 h and became up-regulated after 48 h. 

Such genes were also found in the other treatments. In DKO cells, CCNH, and in the 

controls, SMUG1 showed a similar pattern. 
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4 Discussion 

In this research project, we investigated the impact of a reduced APEX1 and/or XRCC1 

expression on cell growth, cellular radiosensitivity and survival, DNA damage induction, 

and on the global and DNA repair gene expression before and after irradiation. Gene 

defects were analyzed in two different cell types - the breast adenocarcinoma cell line 

MCF7 as well as a healthy counterpart, the human mammary epithelial cells HMEpC - in 

order to differentiate between cancer specific effects and effects unique to healthy cells. 

We were the first to investigate the effects of a deficiency in BER in primary healthy cells. 

Further, we explored the effects of a simultaneous silencing of APEX1 and XRCC1 on 

radiosensitivity. In this study, siRNA treatment effectively reduced APEX1 and XRCC1 

mRNA by ≥ 80 %. 

APEX1 is a multifunctional protein involved in DNA repair and in the activation of 

transcription factors. Both functions are independent in their actions and are essential for 

mammalian cells. Through its redox regulatory function APEX1 can activate transcription 

factors which modulate gene expression of genes involved in cell cycle arrest, apoptosis, 

and cell growth. APEX1 is an abundant protein and it is ubiquitously expressed in every 

tell type. Many tumors over-express the APEX1 protein (108;112). 

XRCC1 is a major gene involved in BER. It is a scaffold protein and interacts with many 

proteins of the BER pathway. Moreover, XRCC1 has been shown to participate in the 

repair of SSBs and might modulate the repair of DSBs. 

 

4.1 MCF7 

4.1.1 Effects of the knockdown on growth characteristics 

In MCF7, reduced levels of XRCC1 resulted in a significantly reduced plating efficiency 

compared to controls. APEX1-silenced MCF7 showed no difference in plating efficiency. 

Silencing of both genes resulted in a plating efficiency similar to controls. Moreover, 

APEX1 and XRCC1-silenced cells showed a significant growth inhibition 10 days after 

transfection. Again, the DKO had no effect on the growth capability compared to controls. 

The slower growth induced by silencing of APEX1 is not a result of the induction of cell 

death by apoptosis, as flow cytometry revealed an accumulation of cells in G2-M phase of 

the cell cycle than an increase in apoptotic sub-G1. 
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The viability of the cells due to reduced levels of APEX1 or XRCC1 was not affected for up 

to 72 h. This result verifies the observation of Lee et al. who also showed that the viability 

of APEX1 shRNA-treated HaCaT cells is not affected (208). 

Several authors have demonstrated an inhibition of cell growth after reduction of the 

APEX1 expression (115;124). When it comes to comparing growth characteristics of 

APEX1-silenced cells, our results are consistent with Fishel’s and Fung’s findings 

(115;124). However, it is not sure whether the reduced growth in APEX1-silenced cells 

results from the inhibition of the DNA repair function or its redox regulatory function. We 

did not measure the redox activity of APEX1. With regards to the cell’s ability to replicate 

and to form a colony, our result shows no difference in APEX1-silenced cells whereas 

Vascotto et al. measured a strong inhibition with the CFA (120). 

APEX1 is an important redox activator which induces the DNA binding activity of several 

transcription factors, such as AP-1, NF-κB, Egr-1, NF-Y, p53, and HIF1α (117;209-213). 

Many of their target genes are unknown, which makes it difficult to estimate the 

consequences of the knockdown for global gene expression and the biological relevance 

in controlling differentiation, proliferation, and apoptosis of cells. Egr-1 is regulated by 

growth factors and may play a role in growth and differentiation (214). NF-Y interacts 

with cell cycle genes including cyclin A, CDC25C, and CDK1 and represses the expression 

of cytochrome p450-dependent monooxygenases (215). 

APEX1 was shown to be a modulator of the cell cycle and is, along with other components 

of BER, physically associated with cell cycle regulatory proteins, cyclin A, and DNA 

replication proteins (216). The expression of CDC25B is regulated by redox signaling. 

Moreover, APEX1 is known to regulate cell cycle status in hematopoietic progenitors and 

G1-S transition in embryonic bodies (125). It is possible that APEX1 regulates CDC25B by 

its redox function and thereby modulates the G2-M transition of MCF7 cells. This would 

support our findings of an accumulation of cells in the G2-M phase after silencing of 

APEX1. 

Analyzing the gene expression patterns of APEX1-silenced cells, we could observe a highly 

specific down-regulation of APEX1. Further, the expression of HUS1 was up-regulated, 

which is involved in the activation of cell cycle checkpoints and in the modulation of cell 

cycle arrest. After 48 h of silencing, we detected a reduced expression of TP53, which is a 

master regulator of the cell cycle. Its activation can induce cell cycle arrest or apoptosis 
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(217). The increased expression of HUS1 and the delayed down-regulation of TP53 in 

APEX1-knockdown cells may result in a delayed cell cycle or arrest. We observed a 

reduced growth capability; this observation is not accompanied with changes in 

apoptosis. 

There are conflicting results regarding the correlation between a reduced APEX1 

expression and its impact on apoptosis. On the one hand, some investigators have shown 

apoptosis as a consequence of APEX1 protein reduction; on the other, several reports 

have shown no or only a slight increase (151). In one study, Fung et al. already showed an 

activation of apoptosis upon down-regulation of APEX1 in MCF7. We did not measure an 

increase in apoptosis in the absence of DNA damage in APEX1-silenced MCF7 cells, which 

is in contrast to former observations. However, our results were not able to solve the 

overall contradictory situation found in previous studies. One reason for this may be that 

in all studies different cellular systems were used. Different cell types may have individual 

signaling pathways to regulate apoptosis. Another reason may be that the diversity of the 

results is a reflection of the variety of experimental methods which were used to measure 

apoptosis after knockdown. 

 

The silencing of XRCC1 has been shown once to have no effect on the cell proliferation in 

MCF7 cells (137). We found a significant decrease of the plating efficiency in the CFA and 

of growth in the SRB assay after XRCC1 knockdown. Our result deviates from Kwok et al., 

who investigated a combined treatment of XRCC1 siRNA and cisplatin (137). We 

measured the consequences of the XRCC1 silencing alone for cell growth. XRCC1 interacts 

with many cell cycle checkpoint proteins via its BRCT domain. Thus, it may regulate the 

cell cycle and affect growth. 

Moreover, we found an increased expression of at least 12 genes involved in multiple 

DNA repair pathways in the expression profiles of XRCC1-silenced cells. These up-

regulated genes included CDKN1A, GADD45A, and RAD9A. Both, CDKN1A and GADD45A 

are major regulators of the cell cycle, and their activation induces cell cycle arrest. 

p21/CDKN1A binds to and inhibits the activity of cyclin-CDK2 or -CDK4 complexes, which 

normally allow the cell to undergo G1-S-phase transition. Furthermore, it acts as an 

inhibitor of p53-dependent apoptosis (57;58). Thus, it functions as a regulator of cell cycle 

progression at G1-phase and as an inhibitor of proliferation. GADD45A is an interaction 
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partner of p21. It negatively influences the activity of CDK1 and inhibits G2-M transition 

(218). Finally, RAD9A is involved in the regulation of the cell cycle, and its over-expression 

supports the findings of a cell cycle delay (219). 

It was shown that XRCC1 physically interacts with APEX1 and stimulates its enzymatic 

activity (136). In the expression profiles, we could identify APEX1 as one of the up-

regulated repair genes 24 h after silencing of XRCC1. This result is in agreement with 

observations in XRCC1 mutant cells, where up-regulated APEX1 levels were measured 

(136). The activation of APEX1 confirms the physical interaction of XRCC1 and APEX1 and 

can explain how a deficiency in XRCC1 results in reduced cell growth and an altered 

replication capability through the redox regulatory functions of APEX1. Further, in XRCC1 

knockdown cells, several DNA repair genes showed a differential expression. The co-

silencing of NTHL1 and NEIL2 may restrict the use of BER as the major repair pathway in 

the cell, while other pathways such as NER and HR become up-regulated. 

We also determined a down-regulation of genes such as NDUFA3 and NDUFA13, which 

are involved in the mitochondria dysfunction pathway 24 h after silencing of XRCC1. This 

suggests a reduced energy metabolism in the cell, which may prevent additional 

formation of reactive oxygen species produced by the consumption of oxygen in 

mitochondria. We assume that the cells may prevent a situation of oxidative stress which 

could cause an excess of oxidative DNA damage. Oxidative DNA damage is principally 

repaired via BER, which is deficient in XRCC1-silenced cells. This confirms the essential 

functions of XRCC1 in BER as a major player and interaction partner. Angell et al. already 

showed that the NDUFA13 protein alters the viability of MCF7 cells (220). 

An increased expression of genes which have functions in controlling gene expression, 

DNA repair and cell cycle was determined 48 h after silencing. In contrast, CHEK2 was 

reduced in its expression. CHEK2 is a cell cycle checkpoint regulator and gets activated in 

response to DNA damage. The protein is known to inhibit CDC25C phosphatase, which 

prevents the entry into mitosis; it has been shown to stabilize the tumor suppressor 

protein p53, which leads to cell cycle arrest in G1. p53 may also trigger G2-M arrest (221). 

Additionally, it interacts with BRCA1, thus, allowing BRCA1 to restore survival after DNA 

damage. In sum, the changes in the gene expression levels are an additional rationale to 

explain the effects of the XRCC1 knockdown in the functional analyses causing a delay or 

arrest in the cell cycle. 
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For DKO cells, we have assumed that the silencing of both genes has a greater impact on 

cell growth than the single knockdowns. In contrast to the observation for the single 

knockdowns, no difference in growth capability and in the plating efficiency was found 

compared to controls. We are the first to describe these findings after a simultaneous 

silencing of APEX1 and XRCC1. 

Analysis of gene expression patterns showed an activation of immune response 

pathways, which is already known to occur after transfection of cells with siRNA. Apart 

from that, the silencing was highly specific for APEX1 and XRCC1, and no other 

deregulated pathways were found. We do not exactly know why the simultaneous 

silencing of two important BER enzymes has no effects on the cell growth compared to 

controls. 

Consequently, it was not surprising that only minor expression changes of DNA repair 

genes occurred. Analysis of differentially expressed DNA repair genes revealed that CCNH 

and CDK7 were silenced after transfection. Both are regulators of the cell cycle and are 

important genes during the G2 phase of the cell cycle and the G2-M transition. Many DNA 

repair genes were down-regulated 48 h after silencing including GADD45A. These changes 

did not affect the cell growth or the ability to replicate. Further analysis is required to 

reveal the underlying mechanism. 

 

4.1.2 Effects of the knockdown on radiosensitivity 

Repair of DNA damage is vital for maintaining genomic stability and for cell survival. 

Reducing the DNA repair capability of cancer cells could enhance cytotoxicity of 

radiotherapy. In contrast, the increased expression of DNA repair enzymes in tumor cells 

may enhance resistance to radiotherapy because cells can repair the DNA and evade the 

cytotoxic effects of the treatment. 

A correlation of the expression of APEX1 and XRCC1 and radiosensitivity has previously 

been investigated but with opposing results. Some studies have demonstrated that the 

down-regulation of APEX1 causes radiosensitivity, but others have found little or no 

correlation. In one study a radioresistance after knockdown of APEX1 was reported. In 

our study, the knockdown of APEX1 or XRCC1 or both did not affect the radiosensitivity of 

the cells as determined with the clonogenic and the SRB assay. 



Discussion 

 

121 

 

The result for APEX1-silenced cells overlaps with reports which showed no correlation 

between an APEX1 activity and radiosensitivity. A clear association between APEX1 

expression and cellular radiosensitivity remains to be demonstrated and is may be 

explained by existence of an APEX1-independent DNA repair pathway in the cell which 

can be used in a situation where APEX1 is depleted or deficient (see Chapter 1.5.3 and 

Figure 1.3). BER is the most important pathway involved in the repair of radiation-induced 

DNA damage. Incomplete repair would cause cell cycle arrest or apoptosis. Consequently, 

it is comprehensible that cells have an alternative BER sub-pathway in situations when 

the other pathway cannot be used, or one major player of the pathway fails. 

Another reason which favors the APEX1-independent pathway might be the type of 

damage produced after IR. The APEX1-independent pathway is initiated by bifunctional 

glycosylases with β,δ-elemination activity. The bifunctional glycosylases repair specifically 

oxidized base lesions. Treatment with ionizing radiation mainly causes DNA damage 

through the interaction of DNA with ROS and results in an increased occurrence of 

oxidized base modifications. We assume that the APEX1-independent pathway is mainly 

used to repair damage caused by IR. This hypothesis is supported by the finding that 

radiosensitivity is not altered in APEX1 knockdown cells after treatment with IR. 

An abnormal distribution of APEX1-silenced cells throughout the cell cycle might influence 

radiosensitivity. Cells in G1 stage of the cell cycle are more radioresistant (147) and are 

more radiosensitive in the G2-M stage (150). Indeed, we measured an accumulation of 

APEX1-silenced cells in G2-M stage of the cell cycle prior to irradiation. Unexpectedly, the 

accumulation of APEX1-silenced cells in G2-M did not alter the radiosensitivity 

investigated with the colonogenic assay. In conclusion, these findings favor the possibility 

that APEX1 knockdown cells process IR-induced DNA damage via the postulated APEX1-

independent DNA repair pathway. The cell cycle distribution of silenced cells is not 

affected. 

Looking at the gene expression profiles, we determined a regulation of pathways involved 

in radiation response such as the p53-signaling, ATM-signaling, and cell cycle regulation. 

In detail, these genes were CDKN1A, GADD45A, XPC, and MDM2, which is an inhibitor of 

p53. Further, we observed a deregulation of genes involved in BER, NER, MMR, and NHEJ. 

This indicates that APEX1-silenced cells modify several other DNA repair pathways in their 

activity to deal with the IR-induced DNA damage. This is corroborated by investigations 
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that showed that NER and MMR can serve as a backup repair system to repair oxidative 

base lesions (see below). The down-regulation of DNA polymerases after APEX1 

knockdown and treatment with IR and the up-regulation of GDF15 might be an indication 

for cell cycle arrest (222). The GDF15 protein decreases the viability of MCF7 cells, but as 

it is induced in all treatments, it causes no difference regarding survival in knockdown 

cells and controls. Again, an increase in apoptosis was not observed in APEX1-silenced 

after irradiation. This is in contrast to the induction of the TNFRSF10B gene after 

irradiation, which was shown to increase apoptosis in MCF7 cells (223). It remains to be 

seen whether XRCC1 knockdown and DKO cells show an increase in apoptosis compared 

to controls. We further observed a strong induction of the cytochrome p450-dependent 

monooxygenases CYP1A1 and CYP1B1 in APEX1-silenced cells. Clearly, this is due to the 

interaction of APEX1 with NF-Y which modulates the expression of the metabolizing 

enzymes. 

 

Mutant mice or CHO cells with no functional XRCC1 were hypersensitive to ionizing 

radiation (142;143). For XRCC1-silenced cells, our result is in disagreement with the 

studies mentioned above. The reason for this might be that we explored the XRCC1 

deficiency in human cells, whereas the majority of studies investigated radiosensitivity in 

rodent cells. A species-specific association is possible. One report, however, 

demonstrated an increased sensitivity to IR after XRCC1 knockdown in three human 

breast cancer cell lines (145). Here, the difference in the reduction of the XRCC1 levels 

might reflect the difference in radiosensitivity. We were able to decrease the XRCC1 

protein levels up to 31 % compared to controls, whereas Brem et al. achieved a reduction 

up to 16 %. The cell might be able to cope with a deficiency in XRCC1 levels up to a 

defined threshold. If XRCC1 protein levels fall below that threshold, the cells fate might be 

influenced, and cell cycle arrest and/or apoptosis might be induced. 

Another explanation is the identification of a cell type-specific effect. All cancer cells 

exhibit their individual genetic profile and background of variations. The malignant 

transformation of a “normal” cell to a cancer cell represents a very complex multistep 

process in which several factors are thought to alter cell growth regulatory pathways and 

other signaling cascades. These alterations result in uncontrolled proliferation, which is a 

characteristic of tumorigenesis. 
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It has been shown that XRCC1 interacts with several proteins involved in BER and 

coordinates the steps of the repair process. Several studies have illustrated the 

involvement of XRCC1 in BER. However, we do not know at which stages the protein is 

essential. Some models leave the possibility of a pathway where XRCC1 might not be 

necessary. The LP-BER pathway is a potential candidate to repair DNA damage in 

situations when XRCC1 levels are low (80). Further experiments are required, however. 

 

The radiosensitivity of cells due to a simultaneous knockdown of APEX1 and XRCC1 has 

not been investigated to date. The double knockdown offers great potential to investigate 

its consequences on radiosensitivity because the expression of two important players of 

the BER pathway is reduced. The APEX1-dependent and the APEX1-independent pathway 

where XRCC1 is important for processing are limited in their efficiency to repair radiation-

induced DNA damage. Further, for the double knockdown a strong reduction of APEX1 

and XRCC1 protein levels were achieved. Surprisingly, an unexpected outcome was 

observed in the radiosensitivity assay. We could not detect any difference in 

radiosensitivity of DKO compared to controls. This is in strong contrast to our 

assumptions. 

The explanation of this phenomenon may be the existence of backup systems for BER to 

remove oxidative stress-induced DNA damage. NER was shown to be involved in the 

repair of oxidative base lesions. In particular, the removal of 8-oxoG, which is one of the 

most abundant oxidative lesions after oxidative damage induction was carried out by NER 

(see 1.5.2). Similar directions exist for the mismatch repair pathway, which is involved in 

repair of 8-oxoG:A mismatches (224-226). Several lines of evidence indicate that also 

translesional synthesis plays a role in the repair of oxidative DNA damage (227;228). Most 

of the studies identified the removal of 8-oxoG by these “backup” repair pathways. It 

remains to be demonstrated that also other oxidative base lesions are repaired via these 

alternative pathways. Additionally, it needs to be shown if the repair is as efficient as BER. 

Nevertheless, we assume that in cases where the BER pathway cannot properly process 

IR-induced damage, due to a deficiency of APEX1 and XRCC1, the cells might be able to 

repair the damage via alternative pathways. 

The DKO cells showed a similar pattern in their gene expression profile as it was observed 

in APEX1-silenced cells. In general, radiation response pathways and DNA repair genes 
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were deregulated. Moreover, the GDF15 and the TNFRSF10B gene were up-regulated as it 

has already been shown for the APEX1-silenced cells (see above). 

Summarizing this part, we showed that the interference with BER leads to multiple effects 

on the gene expression level. BER-deficient cells appear to show a cell cycle delay or 

arrest but no increase in apoptosis. Probably they activate alternative DNA repair 

pathways to process the DNA damage introduced by IR. At one point, they overcome the 

arrest and continue growing. The differences detected on gene expression level could not 

be confirmed with the functional assay. Probably, our clonogenic assay, as it was 

performed, is not sensitive enough to elucidate the effects of the knockdown of APEX1 

and XRCC1 on the survival. Refinement of the model may enable us to show that the 

changes in the gene expression profiles of silenced cells have a direct consequence on the 

survival after radiation treatment. 

 

4.1.3 Effects of the knockdown on DNA damage induction and repair after irradiation 

Single-strand breaks are among the most frequent lesions produced by direct interaction 

of IR with DNA. SSBs can be detected with the alkaline comet assay. Additionally, IR 

induces base modifications which result in DNA nicks and alkali-labile sites followed by 

initiation of BER. The repair of IR-induced SSBs is very rapid and occurs within the first 20 

minutes. 

The knockdown of APEX1 or XRCC1 did not affect the repair rate of SSBs after IR-

treatment with 5 Gy. This observation is in contrast to irradiated XRCC1 mutant CHO cells 

(141;229) and XRCC1
-/- mouse fibroblasts (144), which showed a reduced rate of repair of 

SSBs by alkaline comet assay. We do not know why the knockdown of XRCC1 has no 

implications on the repair rate of MCF7 cells. XRCC1 has essential functions in the repair 

of SSBs and the coordination of BER. More importantly, the PARP1/XRCC1 complex 

initially detects the SSBs and accelerates the repair (81). However, APEX1 and XRCC1 

knockdown cells demonstrate a considerable capability to repair IR-induced damage even 

with a deficiency in repair mechanisms in which APEX1 and XRCC1 have been implicated. 

Further, XRCC1 is important for SSB repair, but not critical. This is supported by Caldecott 

et al., who proposed a XRCC1-independent pathway for the repair of SSBs (135). 

A trend towards a lower initial damage was determined in APEX1-silenced cells. This 

result is in disagreement with the functions of APEX1 in BER. In general, APEX1 processes 
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an AP site by cleaving the deoxyribose phosphate backbone of the DNA, which generates 

a 3’-OH and a 5’-deoxyribose phosphate (dRP) terminus. We suggest that in APEX1-

silenced cells, the AP sites are inefficiently processed compared to normal APEX1 status 

and that the AP sites accumulate. We expected to observe an increase of SSB with the 

comet assay due to an accumulation of AP sites and their conversion to DNA breaks under 

alkaline conditions. It is not exactly known why the knockdown of APEX1 causes fewer 

changes on initial damage induction. The APEX1-independent repair pathway can be 

applied to repair, but then, the control cells should have shown a lower damage 

compared to APEX1-silenced cells. The controls are able to process the initial DNA 

damage via both pathways, the APEX1-dependent and -independent ones. Another 

explanation is that APEX1 was reported to suppress SSB-induced PARP1 activation (230). 

Cells which show reduced levels of APEX1 might be more capable to repair SSB via 

recognition by PARP1/XRCC1 complex. 

In contrast, irradiated XRCC1 mutant CHO cells (141) and XRCC1
-/- mouse fibroblasts (144) 

were shown to have a trend for a slightly higher initial DNA damage directly after 

irradiation. Our result that XRCC1-silenced cells showed a trend for a higher initial 

damage induction is in agreement with the central functions of XRCC1 in the repair of 

SSBs (see above). 

DKO cells showed no difference in their initial damage induction compared to controls. 

On the basis of the present data, we do not know why a knockdown of two major players 

of BER did not alter the amount of SSBs induced by IR. One reason might be that the 

regulation of the repair of SSBs after irradiation is still not well understood. In our 

experiment, it is very likely that other factors contribute to the repair of SSBs. A complete 

picture thus requires further investigations of the mechanisms behind the DKO. 

 

We further investigated whether the different trends in the initial damage induction are 

due to a difference in DSB formation after irradiation. DSBs are a direct result of IR or can 

be produced when a replication fork runs into a SSB. The BER pathway may also produce 

DSB during the repair of base damage within multiple damage sites composed of more 

than one lesion (base damage, base loss or strand break) within one or two helical turns 

of DNA (231). 
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We assume that a defect in SSB repair due to XRCC1 knockdown may result in an increase 

of DSB through a longer duration of persistent SSB and in the increased possibility that 

SSBs are created in close proximity to opposite DNA strands. A deficiency in APEX1 may 

result in less DSB due to the reduced AP endouclease activity of APEX1 within multiple 

damage sites. 

In addition, XRCC1 has been shown to participate in DSB repair. Levy et al. demonstrated 

that XRCC1 is phosphorylated by the DNA-dependent protein kinase (DNA-PK), a core 

component in NHEJ (134). Further, XRCC1 stimulates the activity of PNK during the repair 

of DSBs (232) and is involved in a complex with LIG3 in a PARP1-dependent backup 

pathway of NHEJ (233). It was already reported that XRCC1 deficient EM9 cells show a 

large number of basal γH2AX foci after radiation treatment (134). Toulany et al. could 

confirm this observation in human A549 and MO59K cells transfected with XRCC1 siRNA 

(234). In two other studies, a slower rate of rejoining DSB in XRCC1 mutant EM9 cells was 

identified after neutral elution experiments (235;236). 

In our analysis, no difference between the siRNA treatment and the absolute numbers of 

γH2AX foci after irradiation was detected. Interestingly, the knockdown has no effect on 

the total amount of DSB, which is caused by IR. Consequently, DSBs do not contribute to 

the differences in the initial damage induction, which were measured by the comet assay. 

 

4.1.4 Effects of the knockdown and additional treatment with temozolomide 

The DNA damaging agent temozolomide causes methylation of bases. The repair of these 

lesions is processed more specifically via BER. We had expected that the treatment of 

APEX1 and XRCC1 deficient cells with temozolomide causes more effects on the growth 

characteristic than IR treatment. XRCC1-silenced cells showed a strong inhibition of cell 

growth whereas the APEX1-silenced cells showed no inhibition compared to controls. 

Silencing of both genes caused a growth inhibition comparable to the XRCC1 knockdown 

alone. Both observations are clearly connected to the deficiency in XRCC1. Our results 

support the findings by Horton et al. who showed that XRCC1 deficient mouse fibroblasts 

are hypersensitive to temozolomide (144). The hypersensitivity data obtained for TMZ in 

MCF7 are consistent with the proposal that XRCC1 plays fundamental role in facilitating 

BER. 
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For APEX1-silenced cells our results contradict former observations which showed that 

knockdown of APEX1 sensitizes cancer cells to alkylating agents such as temozolomide 

(237-239). The hypersensitivity might be due to an inhibition of the DNA repair activity of 

APEX1 (240;241). Again, as an explanation for our results, we have to mention the APEX1-

independent repair pathway, which can be used to repair alkylated bases in situations 

when the functions of APEX1 are deficient. 

 

4.2 HMEpC 

We also have to consider that the relationship between a reduced expression of APEX1 

and XRCC1 on radiosensitivity may be dependent on the cell type. Thus, we explored 

radiosensitivity after knockdown of APEX1 and XRCC1 in a second cell line, healthy 

HMEpC. Basically, all the mechanisms we discussed for the MCF7 cells after silencing of 

APEX1 and XRCC1 can be applied to the primary cells, too, but they are not necessarily 

the same because tumor cells often show a resistance to radiation treatment and an 

enhanced DNA repair. 

Consequently, the investigations in HMEpC enable us to explore the differences in 

radiosensitivity between a cancer cell line and a healthy counterpart. The results might 

have the potential to shed light onto the hidden mechanisms which determine the 

success of the radiotherapy. Many patients who receive radiotherapy suffer from side 

effects due to normal tissue reaction. Additionally, the project can have implications on 

the prediction of the occurrence of side effects in normal tissue after irradiation 

treatment, especially if these side effects are accompanied with a deficiency in BER. 

 

4.2.1 Effects of the knockdown on growth characteristics 

The silencing of either APEX1 or XRCC1 caused no inhibition of cell growth compared to 

controls 10 days after transfection. This result is in contrast to our findings in MCF7. One 

explanation for this might be that the knockdown of our target genes on the protein level 

was much weaker than in MCF7, even though we determined a strong inhibition on 

mRNA level. This is a very crucial observation that implicates that the effects of the 

knockdown on growth characteristics are dependent on the quality of the silencing. 

APEX1 is an abundant protein, and an insufficient knockdown causes no functional 

consequences because the residual activity of APEX1 is enough for the cell to undergo 
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normal cell cycle. A similar association is possible after silencing of XRCC1. We achieved a 

strong reduction of the genes on mRNA levels, but the reduction of the proteins could be 

more effective after silencing. 

The effects of the DKO regarding cell growth are identical to those found in MCF7. The 

DKO did not influence the growth capability of the cells. Here, the knockdown was more 

efficient for APEX1 on the protein level than for XRCC1. In HMEpC, it is more realistic to 

assume that other mechanisms may play a role in regulating the growth than APEX1 and 

XRCC1 where they have been implicated in. 

This explanation is supported by the changes in the gene expression profile. In APEX1-

silenced cell we observed a down-regulation of GADD45A and RAD9, which are involved 

in cell cycle regulation and other genes such as BRCA1, which affect cellular growth and 

proliferation. 

Looking at the changes in XRCC1-silenced cells, we detected a large amount of 

deregulated genes affecting 24 pathways. They could mainly be assigned to have 

functions in regulating cell death, cellular growth, cell cycle, gene expression, and DNA 

replication and repair. The DNA repair genes CDK7 and CCNH, both reduced in their 

expression, are regulators in G2 phase and influence G2-M transition. Moreover CHEK1 

and RAD9 were down-regulated. CHEK1 is a negative regulator of cell proliferation. This 

indicates that the cell modulates the activity of several genes to maintain normal growth 

and to prevent cell cycle inhibition or arrest. Evidently, more work has to be done to 

identify further involvements of XRCC1 in regulating cell growth, cell cycle control, and 

apoptosis. 

 

4.2.2 Effects of the knockdown on radiosensitivity 

We could not detect a difference in radiosensitivity after down-regulation of APEX1 

and/or XRCC1 compared to controls. The result is identical to the results obtained for 

MCF7. Again, the reason for this may be that the knockdown on protein levels was not 

very efficient in the single siRNA treatments. However, in the DKO cells, the APEX1 

protein was reduced by 86 % compared to controls. 

Nevertheless, the radiation itself affected the survival of the cell in a dose-dependent 

manner. Comparing the shape of the survival curves of silenced cells after irradiation, we 

identified a difference between the two cell lines. Interestingly, the survival curves of the 
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HMEpC showed a significant shoulder. In contrast, in MCF7, the survival curves were 

more linear or even parabolic in the SRB assay. This raises the probability that the primary 

cells are more radioresistant than MCF7. We confirmed this observation by calculating 

the mean IC50 value for all curves obtained in the SRB assay for both cell types. For 

HMEpC, the IC50 value was 4.47 Gy, and for MCF7 0.69 Gy (data not shown). This confirms 

our assumption that the primary cells are probably more radioresistant, even though 

there is no difference between the individual siRNA treatments. 

Looking at the gene expression profiles, we initially determined a moderate induction of 

radiation response genes, such as CDKN1A, GADD45A, and XPC, 24 h after knockdown. 

Most of them were still up-regulated after 48 h. 

As already stated for MCF7, we suggest that APEX1-deficient cells are able to repair 

radiation-induced DNA damage via the APEX1-independent pathway and confirmed that 

suggestion in a second cell type. CDC14B, a regulator of the cell cycle and of p53, and 

GDF15 were induced in their expression after irradiation. In addition, HR and four genes 

of the NER pathway were strongly up-regulated, which indicates that other DNA repair 

pathways become activated after silencing of APEX1 and additional irradiation. 

The strongest changes in the gene expression pattern were detected in XRCC1-silenced 

cells. Here, 202 genes were enriched in 19 different pathways. These genes mainly have 

functions in the cell cycle, cellular growth and proliferation, regulation of gene 

expression, and apoptosis. Strikingly, several other DNA repair genes involved in NER, 

MMR, and HR were highly up-regulated in their expression. Also CETN2, CCNH, RAD1, and 

RAD9A showed an increased expression. Further, we cannot exclude the existence of an 

XRCC1-independent pathway in the XRCC1-silenced cell, but this remains to be 

demonstrated. 

To explain the observation obtained in DKO cells, we once more have to refer to previous 

studies and the evidence that other pathways such as NER and MMR participate in the 

repair of radiation-induced DNA damage. Certainly, this is possible for all siRNA 

treatments. In all the expression profiles of silenced cells, we see a strong activation of 

other DNA repair pathway, mainly NER and MMR, but also HR, which probably “replace” 

the BER in processing the damage. Regulators of the cell cycle and growth, such as CDK7, 

CCNH, and RAD1 were also up-regulated as well as TP53INP1, which induces the 

transcriptional activation of p53 target promoters such as those of CDKN1A. Over-
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expression provokes a G1 cell cycle arrest and apoptosis in vitro, which suggests a tumor 

suppressor activity (242). 

 

4.2.3 Effects of the knockdown on radiation-induced DNA damage and repair 

The investigation of the initial amount of radiation-induced SSBs revealed no difference 

after silencing of APEX1 and/or XRCC1. Further, the silencing did not affect the initial 

amount of DSB. The rates to repair SSBs and rejoin DSBs were comparable in all four 

knockdown cells. 

How can we explain the differences in MCF7 and in HMEpC? First of all, we have to 

consider that we did the experiments with two completely different cell types. MCF7 cells 

are cancer cells whereas the HMEpC were obtained from a healthy donor. Both harbor 

their own genetic background. MCF7 cells have overcome several functions which are 

attributed to being “normal”. We could assume that we observed a cell type-specific 

effect of the knockdown on radiation-induced DNA damage. 

Moreover, Scott et al. found that about 40 % of breast cancer patients are radiosensitive 

in comparison to about 9 % of healthy controls (243). This observation explains why the 

effects of the knockdown on growth and radiosensitivity were weaker in primary HMEpC 

compared to MCF7 cells. Additionally, genetic polymorphisms influence the DNA repair 

ability of cells and their radiosensitivity. A possible explanation for the differences 

between HMEpC and MCF7 is the fact that we obtained the primary cells from a donor 

who was already radioresistant. We provided strong evidence for this in the survival 

curves (see above). The analysis of possible polymorphisms in DNA repair genes in the 

primary cell and in MCF7 has the potential to further elucidate the results obtained from 

the functional assays in this study. 
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4.3 Conclusions 

We have established a cell model to study the effects of a decreased expression of APEX1 

and/or XRCC1 on radiosensitivity. After silencing of APEX1 and/or XRCC1 we did not 

observe an altered radiosensitivity. Our data represent an attempt to gain a detailed view 

of the functional role of APEX1 and XRCC1 on radiosensitivity. We clearly showed that 

both APEX1 and XRCC1 play a central role in different biological processes and provided a 

basis for explaining their multifunctional biological activity. We suggest the possibility of 

compensatory mechanisms after the knockdown and the presence of indirect effects 

responsible for the observed results. The response to radiation and the efficiency of BER 

depend on all BER components and their multiple interactions within the cell. A deficiency 

in one of the enzymes may be compensated by other components. Based on our results 

we assume that i) the APEX1-independent pathway and a possible XRCC1-independent 

pathway are used in situations with reduced availability of one of the proteins, and ii) 

other pathways, such as NER and MMR, are able to serve as a backup repair mechanism 

to repair radiation-induced DNA damage in double knockdown cells. In the specific case, 

these assumptions are supported by the finding that both cell lines exhibit a very 

different gene expression profile. Several DNA repair pathways are deregulated after 

silencing of APEX1 and XRCC1 and an additional treatment with IR. 

This work and the related studies discussed above suggest that APEX1 and XRCC1 are 

useful targets to modulate cellular responses to DNA damaging agents including IR. Our 

dataset offers several scientific directions for future studies with the aim to further 

investigate the mechanisms responsible for the different functions of APEX1 and XRCC1 in 

BER in primary and cancer cells. 

 



Appendix 

 

132 

 

Appendix 

Supplementary Table 1: List of primers 

Primer name Accesson Number   Sequence (5'-3') 

APEX1 NM_001641.2 
for GCTGCCTGGACTCTCTCATC 

rev TCATGCTCCTCATCGCCTAT 

ACTB AF582799 
for GGCATCCTCACCCTGAAGTA 

rev GGGGTGTTGAAGGTCTCAAA 

CDKN1A AF497972 
for GTCCGTCAGAACCCATGC 

rev AGTGGTGTCTCGGTGACAAA 

CLTR, 3' NM_004859.3 
for GCTCACATGGGAATGTTCAC 

rev ATGTTGTCAAAGTTGTCATAAG 

CLTR, 5' NM_004859.3 
for GACAGTGCCATCATGAATCC 

rev TTTGTGCTTCTGGAGGAAAAGAA 

HPRT NM_000194.2 
for GACTGTAGATTTTATCAGACTGA 

rev TGGATTATACTGCCTGACCAA 

TBP NM_003194.3 
for AGCCAAGAGTGAAGAACAGTCC 

rev CACAGCTCCCCACCATATTC 

TP53 NM_000546.2 
for GCACTGGTGTTTTGTTGTGG 

rev CCCCTGGTTAAGTACGGTGA 

XRCC1 NM_006297.2 
for GTGGGTGCTGGACTGTCAC 

rev GCTTGGGGGCTTCATCTC 
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Supplementary Tables 2: Gene lists of differentially expressed genes with an expression fold 

change ≥ 2 or ≤ -2 obtained 24 h and 48 h after knockdown (values are displayed as fold changes 

to controls). 

MCF7 

APEX1-silenced cells_24 h DKO_24 h 

Symbol ProbeID regul. Symbol ProbeID regul. 

APEX1 1190647 -7.7 APEX1 6510053 -8.9 

XRCC1 4590139 -3.0 

XRCC1-silenced cells_24 h ACTG2 4610431 2.1 

Symbol ProbeID regul. PRIC285 5960343 2.1 

ATOX1 5560131 -2.1 IRF7 6400176 2.5 

ATP5I 1580603 -2.7 OAS2 7320561 3.3 

BOLA2 1740717 -2.3 SP110 1340491 2.0 

C14orf102 10551 -2.1 ISGF3G 2000022 2.3 

C17orf61 2340521 -2.7 IFIT1 2000148 4.0 

C19orf33 630470 -2.0 

C20orf52 5220438 -2.6 APEX1-silenced cells_48 h   

C3orf34 1850040 -2.6 Symbol ProbeID regul. 

CCDC34 7040184 -2.1 APEX1 6510053 -11.2 

CCL5 7570408 -2.4 ERBB3 4560288 2.1 

CNFN 7570494 -2.3 

DPM3 7320435 -3.1 XRCC1-silenced cells_48 h 

HCFC1R1 5420347 -2.1 Symbol ProbeID regul. 

HIST1H4C 3890349 -2.1 C14orf147 1410050 -2.1 

LOC653328 6650564 -2.1 FLJ35767 2680390 -4.5 

LRAP 1010296 -2.3 GPX2 5090278 -2.4 

LSMD1 6480184 -2.6 GPX3 5490019 -2.3 

MT1A 6200402 -3.0 XRCC1 4590139 -3.3 

MT1F 4220672 -2.1 ARID5B 1410408 2.0 

MT1X 6620528 -3.5 C1QTNF6 1010446 3.5 

MT2A 450615 -2.4 C3orf34 1850040 2.0 

NDUFA3 50240 -2.9 CDC42SE2 6770161 2.2 

RPS21 2690338 -2.4 DCP2 6960349 2.0 

RPS26L 4670048 -2.1 DNAJC8 5960706 3.2 

RPS28 650349 -2.2 E2F5 6650196 2.5 

S100A4 5290270 -2.2 FGFR3 6520139 2.2 

S100A6 2810315 -2.4 FLJ21749 670671 2.3 

S100P 1510424 -2.5 PPFIBP2 6900053 2.1 

TCEB2 4730743 -2.2 RPL34 2490379 2.7 

TDP1 2060110 -2.8 S100A9 5390220 2.1 

TFF3 7570484 -2.1 SPFH2 5570048 2.0 

UBL5 6420541 -2.0 TDP1 2060110 2.5 

UPF2 5390603 -2.1 TMEM134 5690711 2.1 

XRCC1 4590139 -3.5 TMEM8 270129 2.3 

ZMAT3 6560601 -3.1 ZMAT3 6560601 2.1 

DNAJC8 5960706 2.1 DKO_48 h 

HMG20B 5670110 2.0 Symbol ProbeID regul. 

SERTAD1 4290072 2.0 APEX1 6510053 -7.7 

XRCC1 4590139 -2.8 

FAM46C 6860347 2.2 

KCNF1 4610161 2.0 
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HMEpC 

APEX1-silenced cells_24 h XRCC1-silenced cells_48 h 

Symbol ProbeID regul. Symbol ProbeID regul. 

APEX1 3120309 -9.9 ACLY 4200259 -2.4 

CRYAB 6110079 -2.3 APAF1 1820324 -2.1 

CXCL2 4670390 -2.2 ARHGDIB 1570193 -2.1 

DUSP1 6860377 -2.3 ASF1B 2630673 -2.0 

GEM 1170246 -2.0 B3GNT6 2260220 -2.2 

IL6 4040576 -2.7 C10orf10 2900747 -2.5 

KRTAP21-2 2070079 -4.0 CCNA2 2650608 -2.1 

SOD2 3420373 -2.1 CCNE2 4760154 -2.3 

TNF 2640301 -2.2 CDC42 5270386 -2.1 

RPL34 2490379 2.2 CDCA5 130022 -2.3 

CKS2 780528 -2.3 

XRCC1-silenced cells_24 h DBI 2480338 -2.1 

Symbol ProbeID regul. DLG7 240221 -2.3 

SCML1 1430152 -2.2 ENO2 50402 -2.5 

XRCC1 4590139 -2.0 FEN1 3370703 -3.0 

CSNK1G2 1240192 2.6 FLJ20647 1780259 -2.2 

G1P3 5090215 2.3 FLJ34969 1740685 -2.1 

HMGCS1 5270112 -2.7 

DKO cells_24 h HMMR 4050400 -2.0 

Symbol ProbeID regul. HSPA1A 6380717 -2.7 

MX1 1690066 -2.5 HSPA1B 3850433 -2.3 

XRCC1 4590139 -2.1 IDI1 2640670 -2.4 

APEX1 6510053 -3.2 INSIG1 1820332 -2.1 

KCTD14 2940632 -2.1 

APEX1-silenced cells_48 h KDELR3 540129 -2.3 

Symbol ProbeID regul. KIFC1 5090095 -2.4 

APEX1 6510053 -7.6 LMNB1 3420593 -2.2 

CPA4 520682 -2.1 LRP8 4780411 -2.1 

CXCL10 6270553 -5.3 LRRC20 6620379 -2.0 

FLJ40504 4880333 -2.1 MCM2 6770408 -2.1 

IFI27 3990170 -2.0 MCM4 6020170 -2.2 

IFI44 2570300 -2.4 MCM6 5690274 -2.3 

IFI44L 3870338 -3.0 MPHOSPH1 5900433 -2.0 

IFI6 1010246 -2.1 MT1X 6620528 -2.1 

IFIT1 2000148 -5.1 OSR1 3940500 -2.0 

IFIT2 2600747 -2.9 PAQR4 3460132 -2.1 

IFIT3 1500280 -4.6 PCNA 6900079 -2.0 

IFITM1 5360156 -2.9 PFKFB3 4120053 -2.0 

IRF7 6400176 -2.1 PFKFB4 7400653 -2.6 

ISG15 2100196 -2.6 POLE2 1170326 -2.1 

MX1 1690066 -8.4 PPFIA4 1740167 -2.2 

NCBP2 1820025 -2.2 RNASE4 6590041 -2.2 

OAS2 7320561 -2.5 STC1 2650730 -2.6 

STAT1 2570079 -2.3 STIL 6220050 -2.3 
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TMEM97 3420541 -2.3 PRDM1 6220288 2.2 

TUBA1A 5340187 -2.2 PSAT1 4850674 3.6 

TUBB3 4050040 -3.4 PTGS2 1820632 2.2 

UBE2C 5310471 -2.0 RPIA 3400482 2.1 

VRK1 2600739 -2.0 RPL34 2490379 2.1 

XRCC1 4590139 -2.3 RPS6KA2 5360424 2.6 

AARS 290603 2.0 SESN2 6650630 2.2 

ADM2 2970452 3.5 SHMT2 10341 2.1 

ARTN 6560494 2.4 SLC3A2 5420575 2.0 

ASNS 1510296 5.1 SLC6A9 3190608 2.9 

ASS 110433 2.1 STC2 1170170 8.3 

ATF3 4780128 2.2 TRIB3 1990630 2.8 

C6orf48 7150017 2.3 TUFT1 5220035 2.3 

C9orf150 2600379 2.0 TXNIP 1240440 2.4 

CAMSAP1L1 6280209 2.0 UPP1 7570673 2.6 

CBS 1230047 2.3 ZNF419 7320148 2.4 

CCL20 4220246 3.2 

CCNA1 7400279 3.9 DKO cells_48 h 

CD55 2340220 2.9 Symbol ProbeID regul. 

CEBPG 4230431 2.1 APEX1 6510053 -3.5 

CHAC1 1500082 2.1 XRCC1 4590139 -1.7 

CHIC2 3130576 2.5 ZNF91 2640619 2.2 

CLDN1 5960296 2.9 

DDIT3 830619 4.6 

E2F5 6650196 2.7 

EIF1 3710544 2.0 

FOXA2 4610592 2.4 

FST 6020286 2.2 

G0S2 6180427 2.3 

GADD45B 4920110 2.6 

GDF15 5090671 3.3 

GPT2 5290148 2.5 

H1F0 630278 2.6 

HBEGF 1820594 3.6 

HSD17B2 6980458 2.1 

IFNGR1 2470358 3.5 

IFRD1 2340082 2.4 

IL1A 1980672 5.6 

IL1B 840685 2.9 

KIAA1754 2690324 2.7 

KLF4 2810059 2.3 

KRT23 630152 2.2 

LARP6 4830433 2.6 

LMO4 7210450 2.2 

MAT2A 7150176 2.5 

MKKS 3830519 2.4 

MTHFD2 6620689 2.0 

NTN4 3190021 2.3 

PCK2 1780446 3.8 

PHACTR3 3440341 2.2 

PPP1R15A 1340600 3.3 
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Supplementary Tables 3: Gene lists of differentially expressed genes with an expression fold 

change ≥ 2 or ≤ -2 obtained 24 h and 48 h after knockdown and additional irradiation (values are 

displayed as fold changes to mock-irradiated silenced cells). 

MCF7 

APEX1-silenced cells_24 h_IR CCDC34 7040184 2.0 

Symbol ProbeID regul. CDKN1A 4230201 3.3 

JAG2 1500451 -2.1 CNFN 7570494 2.5 

KIAA1875 5050524 -2.0 COMMD6 4260484 2.1 

LAMA5 2030102 -2.2 CYP1A1 2940332 10.1 

ACTA2 430338 2.5 CYP1B1 2120053 5.2 

ALDH1A3 360291 2.1 DPM3 7320435 2.5 

BTG2 110390 2.7 ECGF1 2350504 2.0 

C12orf5 7050706 2.2 EID2B 2350543 2.0 

CDKN1A 3140066 3.9 FAM14A 1940274 2.0 

CYP1A1 4900541 10.5 GDF15 5090671 4.5 

CYP1B1 6760255 5.3 GRIN2C 1300678 3.2 

FAS 7610196 2.2 HIST1H4C 3890349 2.2 

GADD45A 3140239 2.4 HIST2H2AC 6100022 2.2 

GDF15 5260242 4.4 LOC653328 6650564 2.5 

GRIN2C 4760050 2.2 LRAP 1010296 3.1 

MDM2 2750128 2.1 LSM7 5670315 2.2 

PHLDA3 4010010 2.6 LSMD1 6480184 2.1 

SESN1 3310377 3.1 MGC59937 6450162 2.6 

SLC30A1 730544 2.1 MRPL53 2750309 2.0 

TIPARP 5720681 2.6 MT1A 6200402 2.6 

TNFRSF10B 6450767 2.3 MT1X 6620528 3.0 

WIG1 870397 2.1 MT2A 450615 2.1 

XRCC1-silenced cells_24 h_IR MTA2 2000204 2.1 

Symbol ProbeID regul. NDUFA13 2320367 2.4 

IFIT1 2000148 -2.2 NDUFA3 50240 2.9 

TINF2 1740471 -2.0 NDUFC1 1110575 2.2 

ACTA2 6480059 3.2 PAQR7 4150017 2.0 

ALDH1A3 4920148 3.6 RND1 7570053 2.0 

ANAPC11 4760288 2.0 RPS21 2690338 2.3 

ATOX1 5560131 2.1 RPS26L 4670048 2.1 

ATP5I 1580603 3.0 RPS28 650349 2.1 

ATP5J2 6590593 2.0 RTN2 5090594 2.1 

BAX 3520092 2.2 S100A13 5860148 2.0 

BLOC1S1 1450377 2.0 S100A6 2810315 2.4 

BOLA2 1740717 2.3 S100P 1510424 2.6 

BTG2 1010487 2.6 SEMA3E 1580608 2.4 

C10orf116 6290168 2.2 SERF2 1580309 2.4 

C14orf102 10551 2.5 SESN1 1240553 2.1 

C17orf61 2340521 2.8 TCEB2 4730743 2.3 

C18orf56 1450682 2.2 TDP1 2060110 4.0 

C19orf33 630470 2.1 TFF3 7570484 2.3 

C1orf53 990382 2.1 TIPARP 6760546 2.4 

C20orf52 5220438 3.2 TOMM7 6940377 2.1 

C3orf34 1850040 3.2 ZMAT3 6560601 3.5 

C6orf129 1340400 2.0 ZSWIM1 4230286 2.0 
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DKO_24 h_IR XRCC1-silenced cells_48 h_IR 

Symbol ProbeID regul. Symbol ProbeID regul. 

CCDC58 3610300 -2.2 ACTA2 6480059 3.8 

BTG2 1010487 2.9 ALDH1A3 4920148 4.1 

SESN1 1240553 2.7 BTG2 1010487 2.6 

GRIN2C 1300678 2.1 CDKN1A 4230201 4.7 

C12orf5 2350762 2.4 CYP1A1 2940332 7.4 

PHLDA3 3520743 3.0 CYP1B1 2120053 6.4 

CDKN1A 4230201 4.0 FHL2 6110025 2.0 

GDF15 5090671 4.8 GDF15 5090671 4.9 

ACTA2 6480059 2.2 GRIN2C 1300678 2.2 

XPC 6560441 2.1 PHLDA3 3520743 2.0 

RND1 7570053 2.1 

control_24 h_IR 
 

SESN1 1240553 2.2 

Symbol ProbeID regul. SPATA18 2490215 2.3 

BTG2 1010487 3.1 TNFRSF10B 2600463 2.2 

SESN1 1240553 2.5 XPC 6560441 2.0 

GRIN2C 1300678 2.4 

IFIT1 2000148 2.7 DKO_24 h_IR 

TNFRSF10B 2600463 2.0 Symbol ProbeID regul. 

PHLDA3 3520743 2.7 SESN1 1240553 2.3 

CDKN1A 4230201 3.8 TNFRSF10B 2600463 2.2 

GADD45A 4880673 2.0 CDKN1A 4230201 4.8 

GDF15 5090671 4.4 GDF15 5090671 3.3 

IRF7 6400176 2.0 ACTA2 6480059 3.6 

ACTA2 6480059 2.5 

OAS2 7320561 2.8 control_48 h_IR 

Symbol ProbeID regul. 

APEX1-silenced cells_48 h_IR IFI6 1010246 2.2 

Symbol ProbeID regul. SESN1 1240553 2.2 

ACTA2 6480059 3.2 PHLDA3 3520743 2.1 

BTG2 1010487 2.3 CCDC58 3610300 -2.1 

C12orf5 2350762 2.4 CDKN1A 4230201 4.5 

CDKN1A 4230201 4.6 GDF15 5090671 2.3 

FLJ11259 4280482 2.0 ACTA2 6480059 3.5 

GDF15 5090671 4.1 

PHLDA3 3520743 2.0 

SESN1 1240553 2.1 

SPATA18 2490215 2.0 

TNFRSF10B 2600463 2.1 
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HMEpC 

APEX1-silenced cells_24 h_IR XRCC1-silenced cells_48 h_IR 

Symbol ProbeID regul. Symbol ProbeID regul. 

CDC14B 6280504 2.05 AARS 290603 -2.4 

GDF15 5090671 2.61 ABCG1 5860377 -2.8 

ADM2 2970452 -5.7 

XRCC1-silenced cells_24 h_IR ALOXE3 990685 -2.3 

Symbol ProbeID regul. ALPK1 540390 -2.1 

BRD3 6660626 -2.3 ARG2 5720725 -2.2 

C10orf10 2900747 -2.2 ARHGEF2 4120411 -2.6 

C9orf140 1010470 -2.0 ARID5B 1410408 -2.8 

CCNF 3130541 -2.1 ARTN 6560494 -2.3 

CDCA8 4830634 -2.1 ASNS 1510296 -3.6 

CDKN2D 7050326 -2.0 ATF3 4780128 -2.0 

CENPA 2600392 -2.1 ATF4 3460309 -2.5 

CXCL2 4670390 -2.5 BHLHB2 2640735 -2.2 

DKFZp762E1312 3180367 -2.2 BIRC3 5080021 -7.4 

FBXO32 1990079 -2.4 C1orf106 7100021 -2.1 

FZD2 5720180 -2.3 C20orf100 1400601 -3.3 

G1P3 5090215 -2.1 C3orf40 3940564 -2.1 

GRB7 5900243 -2.2 C6orf48 7150017 -2.3 

HMGB2 5900482 -2.0 CBS 1230047 -2.7 

IL8 1340743 -2.4 CCL20 4220246 -5.4 

KIFC1 5090095 -2.6 CCNA1 7400279 -2.0 

PSRC1 1070762 -2.2 CCNB1IP1 510114 -2.0 

STIL 6220050 -2.0 CD55 2340220 -2.0 

CYP1B1 2120053 2.9 CEBPB 20446 -2.1 

FGFBP1 7650441 2.2 CEBPD 5490408 -2.6 

CEBPG 4230431 -2.4 

DKO cells_24 h_IR CHAC1 1500082 -2.1 

Symbol ProbeID regul. CHIC2 3130576 -3.3 

NOLA1 130326 -2.3 CLDN1 5960296 -4.5 

LOC643995 4230196 -2.2 CTDSP2 650681 -2.6 

CDC14B 6280504 -2.8 CXCL2 4670390 -3.2 

TP53INP1 5420538 2.1 DDIT3 830619 -3.7 

DDIT4 3190148 -2.3 

controls_24 h_IR DOC1 110307 -2.3 

Symbol ProbeID regul. EGFR 1050671 -2.1 

GDF15 5090671 2.2 EGR1 870338 -4.4 

TP53INP1 5420538 2.1 ERRFI1 7100639 -3.5 

ETS2 4220605 -2.1 

APEX1-silenced cells_48 h_IR FAM100B 520278 -3.1 

Symbol ProbeID regul. FAM113B 4200541 -2.5 

GDF15 5090671 2.1 FANCE 5720192 -2.3 

IFI6 1010246 3.9 FBXL20 4900240 -2.1 

IFI27 3990170 2.3 FBXO32 1990079 -3.2 

MX1 1690066 3.3 FLJ20152 6420309 -2.1 

 

  



Appendix 

 

139 

 

FNDC6 3400095 -2.2 RPS29 2760452 -2.3 

FOXA2 4610592 -3.2 RPS6KA2 5360424 -2.5 

GABARAPL1 6420465 -2.1 SAV1 2070025 -2.3 

GADD45B 4920110 -2.1 SCNN1G 6270735 -2.4 

GDF15 5090671 -2.2 SESN2 6650630 -2.2 

GPT2 5290148 -4.6 SH3RF2 5570348 -3.1 

GRB7 5900243 -4.0 SHMT2 10341 -2.0 

GTF2IRD1 4200577 -2.3 SIAH1 7570537 -2.1 

H1F0 630278 -2.9 SIX4 20653 -2.1 

HBEGF 1820594 -5.9 SIX5 5810672 -2.8 

HMGB2 5900482 -2.3 SLC2A3 3800168 -2.4 

HNRPDL 6860678 -2.0 SLC6A9 3190608 -3.4 

IBRDC2 70630 -2.7 SOCS2 6770673 -2.1 

ID1 670386 -2.8 SPIRE1 5690246 -2.6 

IFNGR2 2570291 -2.3 STC2 1170170 -15.8 

IL1A 1980672 -2.6 TNFAIP3 3360681 -2.7 

IL8 1340743 -6.4 TP73L 6060131 -2.2 

IRAK2 3930750 -4.0 TRIB1 4810520 -2.0 

IRS2 6110736 -2.2 TRIB3 1990630 -5.5 

JAG1 1010376 -2.0 TRIM8 940435 -3.1 

JUNB 7550500 -2.6 TSC22D3 6350446 -4.9 

KIAA0247 3170093 -2.4 TXNIP 1240440 -2.1 

KIAA0427 730273 -2.1 UBE2H 4900746 -2.0 

KIAA1754 2690324 -2.8 UPP1 7570673 -3.5 

KLF9 3390292 -2.2 VEGFA 2640224 -2.4 

LARP6 4830433 -3.9 WASL 6380138 -2.1 

LIF 2650390 -2.2 YPEL3 130750 -2.1 

LMO4 7210450 -2.5 ZBTB16 5080450 -2.6 

MAP1LC3B 2490754 -2.4 ZC3H12A 2490017 -2.2 

MGC10992 1660681 -2.2 ZNF161 510341 -2.3 

MKKS 3830519 -2.1 ZNF218 4890292 -2.0 

MKNK2 1300347 -2.3 ZNF277 5870180 -2.1 

MTHFD2 6620689 -2.2 ZNF419 7320148 -2.2 

NAV2 4230195 -2.1 ZSWIM4 1170072 -2.6 

NCOA7 630091 -3.1 ANKRD38 7610128 2.6 

NFKBIZ 2470348 -3.0 ATF5 1570484 2.0 

NUPR1 4040181 -2.5 C21orf127 2570707 2.1 

OGT 1430176 -2.2 CALM1 1660477 2.0 

PCK2 1780446 -4.4 CD24 610437 2.1 

PHACTR3 3440341 -2.7 CDKN1A 5290475 2.1 

PHF21A 6580164 -3.6 CMKOR1 450424 2.7 

PHGDH 240086 -2.2 CTSC 1510433 2.3 

PIM1 3130301 -2.8 CXCR7 4860114 2.2 

PLAU 5360670 -2.3 CYP1B1 2120053 2.2 

PPP1R15A 1340600 -3.0 DNAJA1 1980632 2.6 

PRDM1 6220288 -4.4 DTNA 6350164 2.2 

PRKCH 3290731 -2.0 DUSP4 2650041 2.5 

PSAT1 4850674 -3.7 DYNLL1 6220086 2.0 

PSPH 870753 -2.0 ENC1 7150563 2.6 

RELB 730440 -2.2 FAM43B 4860743 2.1 

RNF39 1980255 -2.4 FEN1 3370703 2.1 
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FLJ13149 6650220 2.0 TUBB3 4050040 2.8 

G3BP1 5720300 2.1 TUBB4Q 1990327 2.2 

GAL 60452 2.2 TUBB6 1570092 2.0 

GPR110 6960367 2.0 ZC3HAV1 6620750 2.5 

HAS3 380504 2.3 ZNF365 4180301 2.3 

HIST1H2BD 6200669 2.6 

HIST1H2BK 6110630 2.0 DKO cells_48 h_IR 

HMFN0839 2060477 2.1 Symbol ProbeID regul. 

HMGB3 7570050 2.3 MX1 1690066 3.8 

HMGCS1 5270112 2.8 IFIT1 2000148 2.3 

HMOX1 6660601 2.2 IFI44L 3870338 2.8 

HPS6 2940301 2.2 GDF15 5090671 2.5 

HS3ST1 4230332 2.6 IFITM1 5360156 2.0 

HS3ST2 5870435 3.3 CXCL10 6270553 3.8 

HSPA1A 6380717 3.3 OAS2 7320561 2.1 

HSPA1B 3850433 2.9 

HSPA2 6270274 2.6 controls_48 h_IR 

HSPA8 2650619 2.8 Symbol ProbeID regul. 

HSPH1 150327 2.3 BUB1 2070224 -2.2 

ID2 1660296 2.1 ANGPTL4 2450592 -2.2 

IDI1 2640670 2.4 MX1 1690066 4.3 

IKIP 3170605 2.0 IFIT1 2000148 2.1 

INSIG1 1820332 2.0 IFI44L 3870338 2.5 

KBTBD8 6370523 2.2 GDF15 5090671 2.3 

KITLG 5090500 2.0 IFITM1 5360156 2.2 

METTL1 1990358 2.2 OAS2 7320561 2.1 

MGC23985 1450161 2.5 

MVD 1440020 2.2 

NP 6840075 2.6 

NSDHL 4260392 2.1 

OSR1 3940500 2.3 

PCNA 6900079 2.1 

POLR2L 6200017 2.0 

POP1 3840397 2.7 

PRR5 6130630 2.1 

PTHLH 6900414 2.3 

RBM12 2850438 2.1 

RBM14 6660343 2.8 

RIS1 3130220 2.4 

RPL29 2450167 2.4 

S100A2 2970017 2.2 

SACS 7510379 2.6 

SDF2L1 3120079 2.0 

SIPA1L2 3460053 2.1 

SPHK1 2470689 2.1 

TMEM20 3460551 2.0 

TNFRSF10D 830113 2.3 

TRIM21 6560075 2.3 

TUBA1 4760474 2.1 

TUBB2A 450292 2.1 

TUBB2C 2070368 3.0 
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Supplementary Tables 4: Gene lists of differentially expressed DNA repair genes with an 

expression fold change greater than 20 % obtained 24 h and 48 h after knockdown (values are 

displayed as fold changes to controls). 

MCF7 

Symbol Pathway 24h_A 24h_X 24h_AX 

ALKBH2 Direct reversal 74.90 81.80 102.35 

APEX1 BER 13.05 123.67 12.09 

CCNH NER 95.09 98.16 75.36 

CDK7 NER 100.28 91.30 107.44 

CDKN1A Others 98.40 132.54 96.53 

CHEK1 DNA damage response 93.23 100.36 89.68 

CLK2 DNA damage response 100.20 100.55 103.56 

DCLRE1B suspected DNA repair 101.89 113.12 109.64 

DDB2 NER-related 90.68 108.26 101.99 

EME1 HR 93.20 123.25 92.85 

ERCC2 NER 112.92 115.61 123.29 

ERCC3 NER 133.57 128.55 98.55 

FDXR Others 89.79 107.53 106.75 

FEN1 Editing and processing nucleases 88.17 125.68 95.02 

GADD45A Others 91.72 125.71 117.82 

GTF2H2 NER 96.36 104.37 82.32 

GTF2H4 NER 99.94 122.49 101.14 

GTF2H5 NER 87.49 69.59 106.22 

HUS1 DNA damage response 121.99 96.04 94.61 

LIG1 NER 93.28 106.40 83.37 

MDM2 Others 92.94 101.00 98.81 

MGMT Direct reversal 90.70 85.72 92.29 

MMS19L NER-related 121.55 81.77 91.51 

MSH3 MMR 122.11 107.24 88.92 

MSH4 MMR 100.41 86.45 105.71 

MSH6 MMR 105.09 108.68 86.06 

MUTYH BER 90.64 111.85 104.14 

NEIL2 BER 86.77 65.84 85.62 

NTHL1 BER 85.98 79.57 92.54 

PARP1 BER 116.25 97.05 78.16 

PMS2L3 MMR 93.94 114.24 102.30 

PNKP BER 99.10 103.60 95.82 

POLD1 Polymerases 136.78 103.48 95.65 

POLE Polymerases 124.75 111.46 100.56 

POLG Polymerases 103.37 104.71 120.35 

POLQ Polymerases 104.62 129.47 93.99 

PRKDC NHEJ 89.44 99.89 105.87 

PSMA4 Others 101.64 95.61 92.21 

RAD23A NER 93.07 94.14 105.43 

RAD23B NER 81.77 88.22 99.15 

RAD54B HR 109.40 121.46 100.59 

RAD9A DNA damage response 100.98 123.74 117.46 

RECQL suspected DNA repair 104.77 114.54 99.34 

REV1L Polymerases 103.28 112.11 121.46 
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REV3L Polymerases 117.63 128.62 107.64 

RPA3 NER 86.70 67.12 105.54 

SHFM1 HR 94.78 66.12 97.79 

SMUG1 BER 84.71 83.36 118.98 

TDP1 Repair of DNA-protein crosslinks 118.56 75.75 97.09 

XAB2 NER-related 106.55 93.38 90.88 

XPC NER 111.08 127.77 104.51 

XRCC1 BER 94.08 28.30 33.35 

XRCC2 HR 110.28 75.26 88.88 

XRCC5 NHEJ 110.01 96.03 128.23 
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Symbol Pathway 48h_A 48h_X 48h_AX 

ALKBH2 Direct reversal 111.55 55.29 83.52 

APEX1 BER 10.03 113.67 13.17 

CDK7 NER 112.67 115.90 76.86 

CDKN1A Others 96.41 114.95 83.94 

CETN2 NER 97.36 92.84 116.26 

CHEK2 DNA damage response 97.57 79.47 89.22 

DMC1 HR 75.77 115.19 74.82 

ERCC2 NER 109.32 108.55 100.95 

ERCC3 NER 89.93 147.55 99.38 

ERCC6 NER-related 104.57 122.65 121.38 

FEN1 Editing and processing nucleases 86.29 90.63 100.10 

GADD45A Others 110.50 81.97 77.26 

GTF2H1 NER 84.62 99.89 121.61 

GTF2H3 NER 86.44 84.37 90.56 

GTF2H5 NER 123.00 95.54 107.70 

HEL308 suspected DNA repair 96.19 114.81 106.77 

MBD4 BER 84.10 107.36 70.97 

MDM2 Others 96.07 95.68 91.70 

MGMT Direct reversal 109.30 94.64 109.18 

MSH3 MMR 109.29 115.02 89.27 

MSH6 MMR 94.01 106.90 96.61 

MUS81 HR 106.66 120.28 82.73 

NTHL1 BER 118.86 78.84 104.76 

PARG Others 92.62 95.15 109.56 

PARP1 BER 75.60 131.50 80.20 

PMS2L3 MMR 111.68 96.76 87.81 

POLD1 Polymerases 84.33 110.44 84.17 

POLG Polymerases 104.08 79.89 98.64 

PSMA4 Others 99.54 79.50 91.32 

RAD23A NER 76.40 75.42 96.86 

RAD23B NER 76.00 89.25 89.49 

RAD52B suspected DNA repair 105.88 96.22 96.65 

RAD9A DNA damage response 105.08 101.66 84.47 

REV1L Polymerases 107.57 111.43 119.73 

REV3L Polymerases 88.72 139.97 108.08 

RPA2 NER 95.63 95.83 80.84 

RPA3 NER 76.73 96.90 89.93 

TDP1 Repair of DNA-protein crosslinks 98.68 145.43 96.01 

TOP3A Others 105.23 97.44 84.50 

TP53 DNA damage response 77.23 94.29 92.29 

XPC NER 109.02 114.01 103.28 

XRCC1 BER 106.40 30.22 36.06 

XRCC2 HR 84.31 114.89 80.28 

XRCC3 HR 110.59 75.42 96.53 

XRCC5 NHEJ 104.67 112.62 78.96 
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HMEpC 

Symbol Pathway 24h_A 24h_X 24h_AX 

APEX1 BER 10.03 102.54 27.76 

APTX suspected DNA repair 113.42 91.45 103.07 

BRCA1 HR 96.94 109.96 103.90 

CCNH NER 103.43 75.01 95.99 

CDK7 NER 89.99 79.81 74.42 

CDKN1A Others 92.66 108.03 98.84 

CETN2 NER 88.40 74.26 100.97 

CHEK1 DNA damage response 105.43 95.13 97.12 

DCLRE1A suspected DNA repair 96.36 93.38 93.16 

DMC1 HR 103.87 96.58 116.56 

EME1 HR 105.43 106.99 117.71 

EME2 HR 97.36 94.92 71.19 

FEN1 Editing and processing nucleases 86.13 103.48 89.56 

GADD45A Others 76.51 119.93 97.27 

GTF2H5 NER 103.53 79.23 98.63 

LIG1 NER 95.45 105.61 103.19 

MAD2L2 Polymerases 103.30 107.23 90.80 

MBD4 BER 110.31 94.05 107.92 

MGMT Direct reversal 97.27 126.00 105.99 

MMS19L NER-related 106.18 117.69 86.97 

MNAT1 NER 99.27 118.81 119.32 

MSH3 MMR 94.19 105.29 128.09 

MSH6 MMR 107.63 77.26 97.35 

NEIL2 BER 114.96 80.62 100.82 

NTHL1 BER 100.85 105.50 90.97 

PMS2L3 MMR 98.68 78.65 87.83 

PNKP BER 89.22 115.69 105.30 

POLB Polymerases 112.54 76.75 98.54 

POLD1 Polymerases 91.39 143.99 71.68 

POLE Polymerases 89.09 119.42 99.73 

POLQ Polymerases 106.33 86.71 100.19 

PSMA4 Others 107.57 73.62 111.33 

RAD23A NER 92.51 127.16 89.39 

RAD23B NER 109.96 87.90 93.03 

RAD52B suspected DNA repair 104.14 73.66 113.72 

RAD54L HR 88.73 112.95 83.56 

REV1L Polymerases 122.20 83.82 106.43 

RPA1 NER 97.29 106.73 102.50 

RPA2 NER 105.68 101.83 94.63 

SALL3 Others 93.37 137.07 107.55 

SMUG1 BER 106.73 94.39 85.80 

TDP1 Repair of DNA-protein crosslinks 95.48 95.64 121.18 

TOP3A Others 103.09 99.24 94.01 

XAB2 NER-related 112.74 140.14 95.93 

XPC NER 116.96 98.80 101.37 

XRCC1 BER 90.34 48.99 48.49 

XRCC2 HR 111.10 92.57 103.99 
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Symbol Pathway 48h_A 48h_X 48h_AX 

ALKBH3 Direct reversal 103.07 127.32 101.68 

APEX1 BER 14.01 121.27 28.49 

APEX2 BER 101.06 86.17 109.59 

BRCA1 HR 123.21 91.29 99.70 

CCNH NER 99.42 120.90 97.62 

CDK7 NER 118.51 111.51 85.33 

CDKN1A Others 92.10 132.39 97.09 

CETN2 NER 108.22 79.68 98.63 

CHEK1 DNA damage response 91.98 74.20 100.14 

DMC1 HR 51.23 74.29 96.04 

EME2 HR 84.56 102.35 125.14 

ERCC4 NER 88.89 100.62 85.42 

FEN1 Editing and processing nucleases 103.99 33.51 81.05 

GADD45A Others 99.43 198.84 105.77 

GTF2H1 NER 95.10 115.32 103.26 

GTF2H3 NER 121.91 103.08 87.67 

GTF2H5 NER 102.21 71.68 109.00 

HEL308 suspected DNA repair 102.60 124.44 95.91 

LIG1 NER 116.50 53.34 92.76 

MAD2L2 Polymerases 102.66 101.09 108.55 

MBD4 BER 92.64 88.08 88.69 

MMS19L NER-related 96.40 113.49 113.16 

MNAT1 NER 120.61 93.74 111.43 

MSH6 MMR 94.01 56.58 98.08 

MUS81 HR 74.55 123.60 82.87 

NEIL2 BER 94.72 120.94 114.54 

NTHL1 BER 124.23 83.13 100.23 

PARG Others 109.57 88.10 112.04 

PCNA Polymerases 102.54 76.28 98.56 

PER1 DNA damage response 116.05 114.68 108.61 

PMS1 MMR 108.75 86.45 87.28 

POLD1 Polymerases 127.47 77.61 95.00 

POLE Polymerases 103.94 67.34 89.71 

POLG Polymerases 117.71 76.92 94.50 

POLI Polymerases 113.67 84.10 94.31 

POLM Polymerases 133.66 82.25 96.37 

POLQ Polymerases 101.19 53.67 77.50 

PSMA4 Others 105.19 93.18 108.56 

RAD1 DNA damage response 106.92 105.06 95.86 

RAD1 DNA damage response 116.03 90.57 76.61 

RAD23A NER 111.07 106.98 108.72 

RAD23B NER 85.39 93.95 83.51 

RAD52B suspected DNA repair 101.32 96.44 81.37 

RAD54L HR 106.52 76.14 79.72 

RAD9A DNA damage response 119.18 61.86 110.01 

RECQL suspected DNA repair 105.79 65.07 80.04 

RPA1 NER 107.73 68.52 96.15 
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RPA2 NER 122.21 70.76 96.33 

RPA3 NER 107.93 54.43 81.86 

SALL3 Others 107.71 124.54 127.93 

SHFM1 HR 105.72 78.75 87.70 

SMUG1 BER 121.58 108.65 116.35 

SPO11 Editing and processing nucleases 122.18 104.20 99.54 

TOP3A Others 99.28 81.14 85.03 

TP53 DNA damage response 85.38 99.03 113.93 

TREX1 DNA damage response 96.87 102.92 111.72 

UBE2N Rad6 pathway 84.00 76.47 91.43 

XAB2 NER-related 126.07 101.75 116.90 

XPA NER 95.88 94.70 91.87 

XPC NER 120.29 124.19 112.79 

XRCC1 BER 142.12 43.75 58.91 

XRCC2 HR 70.48 88.56 84.07 

XRCC3 HR 81.29 74.36 97.41 

XRCC5 NHEJ 99.55 90.16 102.11 
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Supplementary Tables 5: Gene lists of differentially expressed DNA repair genes with an 

expression fold change greater than 20 % obtained 24 h and 48 h after knockdown and additional 

irradiation (values are displayed as fold changes to mock-irradiated silenced cells). 

MCF7 

Symbol Pathway 24h_A_IR 24h_X_IR 24h_AX_IR 24h_control_IR 

ALKBH2 Direct reversal 120.08 111.41 72.45 77.65 

APEX1 BER 95.27 78.88 100.55 89.55 

CCNH NER 100.97 97.95 123.49 111.27 

CDK7 NER 100.67 94.32 112.81 123.09 

CDKN1A Others 281.44 223.17 293.21 277.11 

CHEK1 DNA damage response 108.34 82.55 97.11 79.47 

CLK2 DNA damage response 77.95 90.08 114.67 108.17 

DCLRE1B suspected DNA repair 86.77 79.38 77.36 92.77 

DDB2 NER-related 155.20 102.89 131.94 119.71 

EME1 HR 85.96 95.30 111.89 90.85 

ERCC2 NER 84.74 104.38 90.39 114.93 

ERCC3 NER 79.60 79.09 100.58 100.98 

FDXR Others 163.94 96.94 86.03 100.28 

FEN1 Editing and processing 96.61 77.89 96.84 81.93 

GADD45A Others 240.18 145.28 147.73 200.03 

GTF2H2 NER 109.47 99.13 95.38 76.96 

GTF2H4 NER 82.86 70.17 97.32 104.39 

GTF2H5 NER 110.51 154.30 103.74 99.58 

HUS1 DNA damage response 98.06 106.00 111.85 106.41 

LIG1 NER 104.46 94.15 128.64 112.28 

MDM2 Others 138.01 119.00 127.06 125.75 

MGMT Direct reversal 114.59 127.56 118.13 118.12 

MMS19L NER-related 79.38 100.85 107.08 91.66 

MSH3 MMR 101.91 131.23 86.30 100.62 

MSH4 MMR 97.95 121.52 91.32 94.29 

MSH6 MMR 61.13 78.29 82.55 65.22 

MUTYH BER 76.98 93.34 92.40 100.84 

NEIL2 BER 107.41 144.60 90.78 89.64 

NTHL1 BER 96.84 107.90 108.86 85.29 

PARP1 BER 80.95 99.07 112.52 87.61 

PMS2L3 MMR 100.00 76.84 93.05 106.45 

PNKP BER 99.15 84.51 122.11 117.35 

POLD1 Polymerases 68.24 98.33 109.24 77.77 

POLE Polymerases 58.89 93.73 104.71 93.87 

POLG Polymerases 79.37 88.34 89.26 109.80 

POLQ Polymerases 72.11 86.05 104.24 101.15 

PRKDC NHEJ 62.44 89.85 94.60 102.07 

PSMA4 Others 125.26 100.84 104.98 114.44 

RAD23A NER 96.45 115.42 111.60 125.01 

RAD23B NER 129.45 109.62 111.76 116.67 

RAD54B HR 100.26 80.07 96.42 100.67 
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RAD9A DNA damage response 60.76 77.33 83.15 94.20 

RECQL suspected DNA repair 99.22 74.88 88.01 83.77 

REV1L Polymerases 100.04 104.19 97.28 99.16 

REV3L Polymerases 94.64 97.68 111.67 122.00 

RPA3 NER 99.63 142.96 90.57 95.26 

SHFM1 HR 118.30 141.49 102.26 94.13 

SMUG1 BER 102.78 124.43 90.52 111.68 

TDP1 DNA-protein crosslinks 90.79 205.47 107.66 97.71 

XAB2 NER-related 92.76 122.90 117.32 96.48 

XPC NER 186.31 169.06 213.89 198.08 

XRCC1 BER 97.73 115.18 111.30 99.38 

XRCC2 HR 89.97 128.53 88.73 103.56 

XRCC5 NHEJ 87.90 91.63 82.91 101.64 
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Symbol Pathway 48h_A_IR 48h_X_IR 48h_AX_IR 48h_control_IR 

ALKBH2 Direct reversal 88.85 125.21 80.74 82.70 

APEX1 BER 95.78 92.37 91.31 92.88 

CDK7 NER 106.37 111.51 164.79 92.46 

CDKN1A Others 298.90 302.33 319.89 293.56 

CETN2 NER 128.27 90.93 86.71 110.00 

CHEK2 DNA damage response 102.27 93.53 93.83 106.40 

DMC1 HR 79.82 74.35 85.19 83.97 

ERCC2 NER 111.48 93.95 106.25 120.40 

ERCC3 NER 104.94 91.68 90.11 87.17 

ERCC6 NER-related 90.54 90.98 104.63 110.34 

FEN1 Editing and processing 80.47 90.27 83.59 78.09 

GADD45A Others 144.38 182.83 156.49 145.72 

GTF2H1 NER 95.65 106.89 94.00 108.90 

GTF2H3 NER 109.32 125.17 100.41 103.57 

GTF2H5 NER 106.96 102.43 112.18 105.39 

HEL308 suspected DNA repair 108.79 121.74 109.35 104.71 

MBD4 BER 89.23 81.30 95.65 77.32 

MDM2 Others 118.38 125.85 112.38 106.95 

MGMT Direct reversal 119.00 93.83 130.52 119.36 

MSH3 MMR 81.35 84.13 69.60 71.05 

MSH6 MMR 64.32 75.05 70.21 64.20 

MUS81 HR 79.09 78.85 118.81 95.73 

NTHL1 BER 91.38 86.83 90.74 85.28 

PARG Others 122.48 98.50 86.38 107.12 

PARP1 BER 96.12 96.43 107.11 94.46 

PMS2L3 MMR 88.00 78.44 100.22 101.53 

POLD1 Polymerases 85.86 78.20 85.52 73.87 

POLG Polymerases 101.45 93.46 91.21 92.44 

PSMA4 Others 103.25 90.35 129.61 105.58 

RAD23A NER 120.77 112.19 100.03 101.12 

RAD23B NER 99.01 123.27 109.00 91.57 

RAD52B suspected DNA repair 105.30 108.20 104.59 78.38 

RAD9A DNA damage response 85.59 69.87 95.97 71.00 

REV1L Polymerases 75.37 92.58 95.32 107.86 

REV3L Polymerases 127.34 130.52 109.55 110.62 

RPA2 NER 88.41 87.24 96.22 75.94 

RPA3 NER 100.42 97.38 98.15 90.84 

TDP1 DNA-protein crosslinks 97.62 96.49 93.62 90.59 

TOP3A Others 91.15 99.87 87.42 70.40 

TP53 DNA damage response 108.03 98.74 111.35 86.00 

XPC NER 191.97 200.83 196.04 172.01 

XRCC1 BER 87.14 105.08 94.16 101.90 

XRCC2 HR 91.82 95.27 91.17 66.69 

XRCC3 HR 101.73 100.52 90.81 77.16 

XRCC5 NHEJ 88.10 86.48 113.68 84.08 
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HMEpC 

Symbol Pathway 24h_A_IR 24h_X_IR 24h_AX_IR 24h_siCON_IR 

APEX1 BER 88.42 97.87 101.68 101.60 

APTX suspected DNA repair 91.81 123.83 104.64 99.99 

BRCA1 HR 88.10 72.86 85.34 85.83 

CCNH NER 107.51 124.50 77.39 79.43 

CDK7 NER 102.73 95.80 121.43 113.36 

CDKN1A Others 149.87 143.92 111.35 132.52 

CETN2 NER 116.64 127.76 99.42 96.77 

CHEK1 DNA damage response 88.83 75.29 83.79 89.66 

DCLRE1A suspected DNA repair 91.21 82.45 72.06 88.03 

DMC1 HR 92.60 76.00 82.46 75.05 

EME1 HR 92.91 86.59 68.86 88.19 

EME2 HR 103.46 104.18 102.74 72.46 

FEN1 Editing and processing 91.95 66.96 85.44 72.61 

GADD45A Others 124.07 120.81 109.03 126.37 

GTF2H5 NER 97.46 111.58 103.79 106.14 

LIG1 NER 123.65 87.07 121.38 106.46 

MAD2L2 Polymerases 110.95 75.66 112.91 83.36 

MBD4 BER 86.40 79.65 82.38 98.59 

MGMT Direct reversal 114.96 85.17 103.24 95.04 

MMS19L NER-related 96.05 90.70 122.05 95.82 

MNAT1 NER 120.93 101.41 82.38 115.09 

MSH3 MMR 90.66 72.56 68.82 98.51 

MSH6 MMR 83.21 75.98 83.97 81.36 

NEIL2 BER 79.66 97.10 111.11 94.89 

NTHL1 BER 95.56 72.92 78.45 81.83 

PMS2L3 MMR 91.86 114.53 112.74 92.03 

PNKP BER 122.35 88.36 98.74 108.17 

POLB Polymerases 116.06 106.40 108.41 102.85 

POLD1 Polymerases 94.40 59.30 88.29 62.50 

POLE Polymerases 109.93 74.18 102.64 98.23 

POLQ Polymerases 92.45 79.73 85.14 92.54 

PSMA4 Others 106.05 127.14 86.94 93.79 

RAD23A NER 113.22 79.16 102.41 81.35 

RAD23B NER 105.95 105.99 131.81 128.29 

RAD52B suspected DNA repair 103.91 130.95 99.30 105.66 

RAD54L HR 101.62 73.26 86.58 68.42 

REV1L Polymerases 93.61 104.04 98.60 96.96 

RPA1 NER 104.97 85.13 87.02 79.05 

RPA2 NER 76.53 81.55 83.03 71.76 

SALL3 Others 95.60 81.40 96.73 82.64 

SMUG1 BER 107.28 111.84 101.00 77.21 

TDP1 DNA-protein crosslinks 96.91 96.65 89.30 107.66 

TOP3A Others 83.51 76.94 83.90 81.31 

XAB2 NER-related 100.81 90.72 124.78 102.41 

XPC NER 130.54 118.76 126.22 129.16 

XRCC1 BER 109.49 85.14 105.20 93.36 

XRCC2 HR 86.64 66.35 99.98 86.15 
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Symbol Pathway 48h_A_IR 48h_X_IR 48h_AX_IR 48h_siCON_IR 

ALKBH3 Direct reversal 95.58 90.64 117.63 115.80 

APEX1 BER 83.94 91.20 104.74 110.48 

APEX2 BER 90.00 133.74 79.12 85.62 

BRCA1 HR 85.40 106.84 111.17 101.53 

CCNH NER 93.66 126.32 134.04 92.09 

CDK7 NER 109.14 77.46 130.40 109.90 

CDKN1A Others 157.39 173.49 161.35 143.40 

CETN2 NER 104.78 112.82 102.44 107.73 

CHEK1 DNA damage response 98.38 81.66 83.41 93.81 

DMC1 HR 144.58 105.53 105.26 94.75 

EME2 HR 113.80 90.97 82.07 98.25 

ERCC4 NER 128.04 91.16 120.92 100.44 

FEN1 Editing and processing 104.50 208.78 106.18 82.40 

GADD45A Others 112.00 66.46 107.51 125.45 

GTF2H1 NER 121.41 101.44 97.48 94.93 

GTF2H3 NER 131.32 85.44 134.49 113.21 

GTF2H5 NER 93.09 134.17 88.30 94.50 

HEL308 suspected DNA repair 102.70 90.52 124.66 105.06 

LIG1 NER 93.78 161.42 113.25 91.25 

MAD2L2 Polymerases 88.84 73.68 103.03 104.40 

MBD4 BER 110.31 126.24 100.36 89.73 

MMS19L NER-related 83.98 65.22 96.97 102.58 

MNAT1 NER 77.19 86.70 81.43 99.68 

MSH6 MMR 102.00 144.37 95.43 86.12 

MUS81 HR 115.00 87.35 89.70 82.85 

NEIL2 BER 100.05 90.57 74.20 101.12 

NTHL1 BER 77.19 132.53 94.66 102.40 

PARG Others 119.98 122.36 105.56 125.49 

PCNA Polymerases 109.62 148.42 111.04 110.71 

PER1 DNA damage response 92.54 86.93 88.80 76.81 

PMS1 MMR 97.04 127.07 102.95 86.91 

POLD1 Polymerases 76.63 104.94 111.31 100.41 

POLE Polymerases 84.09 104.16 92.17 75.86 

POLG Polymerases 97.17 108.55 115.03 86.74 

POLI Polymerases 78.17 116.68 99.62 99.49 

POLM Polymerases 72.42 105.67 100.45 98.40 

POLQ Polymerases 87.79 110.69 95.62 83.24 

PSMA4 Others 109.37 120.56 101.32 99.22 

RAD1 DNA damage response 86.03 120.31 124.17 92.47 

RAD1 DNA damage response 98.85 106.33 126.59 86.87 

RAD23A NER 89.87 64.50 104.14 96.76 

RAD23B NER 122.87 121.90 123.51 112.13 

RAD52B suspected DNA repair 113.07 114.26 130.69 96.28 

RAD54L HR 95.78 97.11 118.95 83.73 

RAD9A DNA damage response 87.44 124.43 103.40 100.83 

RECQL suspected DNA repair 105.43 134.77 118.15 97.63 

RPA1 NER 88.72 122.20 102.76 97.11 
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RPA2 NER 80.96 142.25 91.11 91.99 

RPA3 NER 81.11 117.28 109.89 89.46 

SALL3 Others 87.01 90.89 88.40 99.85 

SHFM1 HR 94.59 133.73 116.09 98.03 

SMUG1 BER 95.19 103.01 90.95 124.13 

SPO11 Editing and processing 90.81 97.67 101.20 111.74 

TOP3A Others 104.81 127.77 107.01 86.08 

TP53 DNA damage response 90.30 78.04 90.09 97.01 

TREX1 DNA damage response 108.96 125.55 100.59 112.20 

UBE2N Rad6 pathway 143.77 166.77 94.43 90.94 

XAB2 NER-related 80.92 107.83 110.33 135.43 

XPA NER 123.46 95.02 99.01 87.28 

XPC NER 126.64 77.43 137.74 153.10 

XRCC1 BER 62.92 98.67 100.41 110.53 

XRCC2 HR 126.81 128.95 101.93 102.98 

XRCC3 HR 97.34 107.44 97.96 97.58 

XRCC5 NHEJ 96.79 123.03 111.32 81.91 

 

 



Reference List 

 

153 

 

Reference List 

 

 (1)  Husmann G, Kaatsch P, Kalinic A, Bertz J. Cancer in Germany 2005/2006 - Incidence and 

Trends. 7th ed. Robert Koch Institute and the Association of Population-based Cancer 
Registries in Germany; 2010. 

 (2)  Berkey CS, Frazier AL, Gardner JD, Colditz GA. Adolescence and breast carcinoma risk. 
Cancer 1999 Jun 1;85(11):2400-9. 

 (3)  Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 

53 297 women with breast cancer and 100 239 women without breast cancer from 54 

epidemiological studies. Collaborative Group on Hormonal Factors in Breast Cancer. 

Lancet 1996 Jun 22;347(9017):1713-27. 

 (4)  Pathak DR, Osuch JR, He J. Breast carcinoma etiology: current knowledge and new insights 

into the effects of reproductive and hormonal risk factors in black and white populations. 

Cancer 2000 Mar 1;88(5 Suppl):1230-8. 

 (5)  McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, 

risk factors, and genetics. BMJ 2000 Sep 9;321(7261):624-8. 

 (6)  Lipworth L, Bailey LR, Trichopoulos D. History of breast-feeding in relation to breast 

cancer risk: a review of the epidemiologic literature. J Natl Cancer Inst 2000 Feb 

16;92(4):302-12. 

 (7)  Breast cancer and hormonal contraceptives: further results. Collaborative Group on 

Hormonal Factors in Breast Cancer. Contraception 1996 Sep;54(3 Suppl):1S-106S. 

 (8)  Huang Z, Hankinson SE, Colditz GA, Stampfer MJ, Hunter DJ, Manson JE, et al. Dual effects 

of weight and weight gain on breast cancer risk. JAMA 1997 Nov 5;278(17):1407-11. 

 (9)  Lahmann PH, Hoffmann K, Allen N, van Gils CH, Khaw KT, Tehard B, et al. Body size and 

breast cancer risk: findings from the European Prospective Investigation into Cancer And 

Nutrition (EPIC). Int J Cancer 2004 Sep 20;111(5):762-71. 

 (10)  Singletary KW, Gapstur SM. Alcohol and breast cancer: review of epidemiologic and 

experimental evidence and potential mechanisms. JAMA 2001 Nov 7;286(17):2143-51. 

 (11)  Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 

1999;55(3):578-92. 

 (12)  Lagerros YT, Hsieh SF, Hsieh CC. Physical activity in adolescence and young adulthood and 

breast cancer risk: a quantitative review. Eur J Cancer Prev 2004 Feb;13(1):5-12. 

 (13)  Van Duyn MA, Pivonka E. Overview of the health benefits of fruit and vegetable 

consumption for the dietetics professional: selected literature. J Am Diet Assoc 2000 

Dec;100(12):1511-21. 

 (14)  Lee IM. Antioxidant vitamins in the prevention of cancer. Proc Assoc Am Physicians 1999 

Jan;111(1):10-5. 

 (15)  Lux MP, Fasching PA, Beckmann MW. Hereditary breast and ovarian cancer: review and 

future perspectives. J Mol Med 2006 Jan;84(1):16-28. 



Reference List 

 

154 

 

 (16)  Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological 

studies including 58,209 women with breast cancer and 101,986 women without the 

disease. Lancet 2001 Oct 27;358(9291):1389-99. 

 (17)  Flesch-Janys D, Slanger T, Mutschelknauss E, Kropp S, Obi N, Vettorazzi E, et al. Risk of 
different histological types of postmenopausal breast cancer by type and regimen of 

menopausal hormone therapy. Int J Cancer 2008 Aug 15;123(4):933-41. 

 (18)  Seibold P, Hein R, Schmezer P, Hall P, Liu J, Dahmen N, et al. Polymorphisms in oxidative 

stress-related genes and postmenopausal breast cancer risk. Int J Cancer 2010 Nov 12. 

 (19)  Deng CX, Brodie SG. Roles of BRCA1 and its interacting proteins. Bioessays 2000 

Aug;22(8):728-37. 

 (20)  Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity 

and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The 

Breast Cancer Linkage Consortium. Am J Hum Genet 1998 Mar;62(3):676-89. 

 (21)  Linger RJ, Kruk PA. BRCA1 16 years later: risk-associated BRCA1 mutations and their 
functional implications. FEBS J 2010 Aug;277(15):3086-96. 

 (22)  Osorio A, de la Hoya M, Rodriguez-Lopez R, Martinez-Ramirez A, Cazorla A, Granizo JJ, et 

al. Loss of heterozygosity analysis at the BRCA loci in tumor samples from patients with 

familial breast cancer. Int J Cancer 2002 May 10;99(2):305-9. 

 (23)  Malkin D. Germline p53 mutations and heritable cancer. Annu Rev Genet 1994;28:443-65. 

 (24)  de Jong MM, Nolte IM, te Meerman GJ, van der Graaf WT, Oosterwijk JC, Kleibeuker JH, et 

al. Genes other than BRCA1 and BRCA2 involved in breast cancer susceptibility. J Med 

Genet 2002 Apr;39(4):225-42. 

 (25)  Simpson S. PALB2-new breast-cancer susceptibility gene. Lancet Oncol 2007 Feb;8(2):105. 

 (26)  Campbell IG, Baxter SW, Eccles DM, Choong DY. Methylenetetrahydrofolate reductase 

polymorphism and susceptibility to breast cancer. Breast Cancer Res 2002;4(6):R14. 

 (27)  Coutelle C, Hohn B, Benesova M, Oneta CM, Quattrochi P, Roth HJ, et al. Risk factors in 

alcohol associated breast cancer: alcohol dehydrogenase polymorphism and estrogens. 

Int J Oncol 2004 Oct;25(4):1127-32. 

 (28)  Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with 

cancer risk. Cancer Epidemiol Biomarkers Prev 2002 Dec;11(12):1513-30. 

 (29)  Eccles D, Tapper W. The influence of common polymorphisms on breast cancer. Cancer 

Treat Res 2010;155:15-32. 

 (30)  Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, et al. 
Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 

2008 Jan;214(1):17-24. 

 (31)  Stephens FO, Aigner KR. Basics of Oncology. Springer; 2009. 

 (32)  World Health Organization. World Cancer Report 2008.  International Agency for 
Research on Cancer (IARC); 2008.  



Reference List 

 

155 

 

 (33)  Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology 

meets molecular pathology. Nat Rev Cancer 2006 Sep;6(9):702-13. 

 (34)  Bentzen SM, Overgaard J. Patient-to-Patient Variability in the Expression of Radiation-

Induced Normal Tissue Injury. Semin Radiat Oncol 1994 Apr;4(2):68-80. 

 (35)  Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, et al. Normal tissue 

reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 

2009 Feb;9(2):134-42. 

 (36)  Holscher T, Bentzen SM, Baumann M. Influence of connective tissue diseases on the 

expression of radiation side effects: a systematic review. Radiother Oncol 2006 

Feb;78(2):123-30. 

 (37)  Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. 

Lancet Oncol 2006 Oct;7(10):848-58. 

 (38)  van HM. Different styles of image-guided radiotherapy. Semin Radiat Oncol 2007 

Oct;17(4):258-67. 

 (39)  Glatstein E. Intensity-modulated radiation therapy: the inverse, the converse, and the 

perverse. Semin Radiat Oncol 2002 Jul;12(3):272-81. 

 (40)  Moran JM, Elshaikh MA, Lawrence TS. Radiotherapy: what can be achieved by technical 

improvements in dose delivery? Lancet Oncol 2005 Jan;6(1):51-8. 

 (41)  Turesson I, Nyman J, Holmberg E, Oden A. Prognostic factors for acute and late skin 

reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 1996 Dec 1;36(5):1065-75. 

 (42)  Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment - 

tumorigenesis and therapy. Nat Rev Cancer 2005 Nov;5(11):867-75. 

 (43)  Feinendegen LE, Bond VP, Sondhaus CA, Muehlensiepen H. Radiation effects induced by 
low doses in complex tissue and their relation to cellular adaptive responses. Mutat Res 

1996 Nov 4;358(2):199-205. 

 (44)  Wallace SS. DNA damages processed by base excision repair: biological consequences. Int 

J Radiat Biol 1994 Nov;66(5):579-89. 

 (45)  Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing 

radiation. Radiat Res 1998 Nov;150(5 Suppl):S42-S51. 

 (46)  Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage 

in mammalian cells. Annu Rev Genet 2004;38:445-76. 

 (47)  Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. 

GammaH2AX and cancer. Nat Rev Cancer 2008 Dec;8(12):957-67. 

 (48)  MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL. Expression of phosphorylated 

histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 2003 

May;79(5):351-8. 

 (49)  Mullenders L, Atkinson M, Paretzke H, Sabatier L, Bouffler S. Assessing cancer risks of low-

dose radiation. Nat Rev Cancer 2009 Aug;9(8):596-604. 



Reference List 

 

156 

 

 (50)  Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 

2009 Oct 22;461(7267):1071-8. 

 (51)  Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular 

autophosphorylation and dimer dissociation. Nature 2003 Jan 30;421(6922):499-506. 

 (52)  Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA 

damage. Science 2002 Jul 26;297(5581):547-51. 

 (53)  el-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol 1998;8(5):345-57. 

 (54)  Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, et al. The transcriptional 

program following p53 activation. Cold Spring Harb Symp Quant Biol 2000;65:475-82. 

 (55)  Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, et al. Analysis of p53-

regulated gene expression patterns using oligonucleotide arrays. Genes Dev 2000 Apr 

15;14(8):981-93. 

 (56)  Bae I, Fan S, Bhatia K, Kohn KW, Fornace AJ, Jr., O'Connor PM. Relationships between G1 

arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of 
human lymphoma cells. Cancer Res 1995 Jun 1;55(11):2387-93. 

 (57)  Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein 

Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993 Nov 19;75(4):805-16. 

 (58)  Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. 

Mol Cancer Ther 2002 Jun;1(8):639-49. 

 (59)  Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science 2001 Feb 

16;291(5507):1284-9. 

 (60)  Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutat Res 2005 Sep 

4;577(1-2):275-83. 

 (61)  Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of 

oxidative DNA damage. Mutat Res 2003 Oct 29;531(1-2):231-51. 

 (62)  Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001 

May 17;411(6835):366-74. 

 (63)  Lavelle C, Salles B, Wiesmuller L. DNA repair, damage signaling and carcinogenesis. DNA 

Repair (Amst) 2008 Apr 2;7(4):670-80. 

 (64)  Featherstone C, Jackson SP. Ku, a DNA repair protein with multiple cellular functions? 

Mutat Res 1999 May 14;434(1):3-15. 

 (65)  Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular 

mechanisms to health implications. Antioxid Redox Signal 2008 May;10(5):891-937. 

 (66)  Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an 

update. Toxicology 2003 Nov 15;193(1-2):3-34. 

 (67)  Rassool FV. DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) 

pathways in human leukemia. Cancer Lett 2003 Apr 10;193(1):1-9. 



Reference List 

 

157 

 

 (68)  Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: from 

mechanistic understanding to cancer treatment. DNA Repair (Amst) 2007 Jul 1;6(7):923-

35. 

 (69)  Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well. Annu Rev 
Genet 2006;40:363-83. 

 (70)  D'Errico M, Parlanti E, Teson M, de Jesus BM, Degan P, Calcagnile A, et al. New functions 

of XPC in the protection of human skin cells from oxidative damage. EMBO J 2006 Sep 

20;25(18):4305-15. 

 (71)  Klungland A, Hoss M, Gunz D, Constantinou A, Clarkson SG, Doetsch PW, et al. Base 

excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 1999 

Jan;3(1):33-42. 

 (72)  Dusinska M, Dzupinkova Z, Wsolova L, Harrington V, Collins AR. Possible involvement of 

XPA in repair of oxidative DNA damage deduced from analysis of damage, repair and 

genotype in a human population study. Mutagenesis 2006 May;21(3):205-11. 

 (73)  Gellon L, Barbey R, Auffret vdK, Thomas D, Boiteux S. Synergism between base excision 

repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in 

the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Mol Genet 

Genomics 2001 Aug;265(6):1087-96. 

 (74)  Reardon JT, Bessho T, Kung HC, Bolton PH, Sancar A. In vitro repair of oxidative DNA 

damage by human nucleotide excision repair system: possible explanation for 

neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A 1997 

Aug 19;94(17):9463-8. 

 (75)  Sunesen M, Stevnsner T, Brosh RM, Jr., Dianov GL, Bohr VA. Global genome repair of 8-
oxoG in hamster cells requires a functional CSB gene product. Oncogene 2002 May 

16;21(22):3571-8. 

 (76)  Langie SA, Knaapen AM, Houben JM, van Kempen FC, de Hoon JP, Gottschalk RW, et al. 

The role of glutathione in the regulation of nucleotide excision repair during oxidative 

stress. Toxicol Lett 2007 Feb 5;168(3):302-9. 

 (77)  Batty DP, Wood RD. Damage recognition in nucleotide excision repair of DNA. Gene 2000 

Jan 11;241(2):193-204. 

 (78)  Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer 

2001 Oct;1(1):22-33. 

 (79)  Nouspikel T. DNA repair in mammalian cells : Nucleotide excision repair: variations on 
versatility. Cell Mol Life Sci 2009 Mar;66(6):994-1009. 

 (80)  Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand 

interruption repair pathway in mammalian cells. Cell Res 2008 Jan;18(1):27-47. 

 (81)  Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein 

complexes regulated by post-translational modification. DNA Repair (Amst) 2007 Jun 

1;6(6):695-711. 



Reference List 

 

158 

 

 (82)  Xu G, Herzig M, Rotrekl V, Walter CA. Base excision repair, aging and health span. Mech 

Ageing Dev 2008 Jul;129(7-8):366-82. 

 (83)  Popanda O, Marquardt JU, Chang-Claude J, Schmezer P. Genetic variation in normal tissue 

toxicity induced by ionizing radiation. Mutat Res 2009 Jul 10;667(1-2):58-69. 

 (84)  Gossage L, Madhusudan S. Cancer pharmacogenomics: role of DNA repair genetic 

polymorphisms in individualizing cancer therapy. Mol Diagn Ther 2007;11(6):361-80. 

 (85)  Gurska S, Farkasova T, Gabelova A. Radiosensitivity of cervical cancer cell lines: the impact 

of polymorphisms in DNA repair genes. Neoplasma 2007;54(3):195-201. 

 (86)  Moullan N, Cox DG, Angele S, Romestaing P, Gerard JP, Hall J. Polymorphisms in the DNA 

repair gene XRCC1, breast cancer risk, and response to radiotherapy. Cancer Epidemiol 

Biomarkers Prev 2003 Nov;12(11 Pt 1):1168-74. 

 (87)  Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD. Amino acid substitution 

variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. 

Carcinogenesis 2001 Jun;22(6):917-22. 

 (88)  Chang-Claude J, Popanda O, Tan XL, Kropp S, Helmbold I, von FD, et al. Association 

between polymorphisms in the DNA repair genes, XRCC1, APE1, and XPD and acute side 

effects of radiotherapy in breast cancer patients. Clin Cancer Res 2005 Jul 1;11(13):4802-

9. 

 (89)  Andreassen CN, Alsner J, Overgaard M, Overgaard J. Prediction of normal tissue 

radiosensitivity from polymorphisms in candidate genes. Radiother Oncol 2003 

Nov;69(2):127-35. 

 (90)  De RK, Van EM, Claes K, Morthier R, De PA, Vral A, et al. Radiation-induced damage to 

normal tissues after radiotherapy in patients treated for gynecologic tumors: association 
with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro 

chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 2005 Jul 

15;62(4):1140-9. 

 (91)  Vodicka P, Stetina R, Polakova V, Tulupova E, Naccarati A, Vodickova L, et al. Association 

of DNA repair polymorphisms with DNA repair functional outcomes in healthy human 

subjects. Carcinogenesis 2007 Mar;28(3):657-64. 

 (92)  Naccarati A, Soucek P, Stetina R, Haufroid V, Kumar R, Vodickova L, et al. Genetic 

polymorphisms and possible gene-gene interactions in metabolic and DNA repair genes: 

effects on DNA damage. Mutat Res 2006 Jan 29;593(1-2):22-31. 

 (93)  Vodicka P, Kumar R, Stetina R, Sanyal S, Soucek P, Haufroid V, et al. Genetic 
polymorphisms in DNA repair genes and possible links with DNA repair rates, 

chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis 2004 

May;25(5):757-63. 

 (94)  Cornetta T, Festa F, Testa A, Cozzi R. DNA damage repair and genetic polymorphisms: 

assessment of individual sensitivity and repair capacity. Int J Radiat Oncol Biol Phys 2006 

Oct 1;66(2):537-45. 



Reference List 

 

159 

 

 (95)  Weng H, Weng Z, Lu Y, Nakayama K, Morimoto K. Effects of cigarette smoking, XRCC1 

genetic polymorphisms, and age on basal DNA damage in human blood mononuclear 

cells. Mutat Res 2009 Sep;679(1-2):59-64. 

 (96)  Aka P, Mateuca R, Buchet JP, Thierens H, Kirsch-Volders M. Are genetic polymorphisms in 
OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and 

genotoxicity in workers exposed to low dose ionising radiations? Mutat Res 2004 Nov 

22;556(1-2):169-81. 

 (97)  Godderis L, Aka P, Mateuca R, Kirsch-Volders M, Lison D, Veulemans H. Dose-dependent 

influence of genetic polymorphisms on DNA damage induced by styrene oxide, ethylene 

oxide and gamma-radiation. Toxicology 2006 Feb 15;219(1-3):220-9. 

 (98)  Rzeszowska-Wolny J, Polanska J, Pietrowska M, Palyvoda O, Jaworska J, Butkiewicz D, et 

al. Influence of polymorphisms in DNA repair genes XPD, XRCC1 and MGMT on DNA 

damage induced by gamma radiation and its repair in lymphocytes in vitro. Radiat Res 

2005 Aug;164(2):132-40. 

 (99)  Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. The many functions of APE1/Ref-1: not only a 

DNA repair enzyme. Antioxid Redox Signal 2009 Mar;11(3):601-20. 

 (100)  Gorman MA, Morera S, Rothwell DG, de La FE, Mol CD, Tainer JA, et al. The crystal 

structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-

helical deoxyribose at DNA abasic sites. EMBO J 1997 Nov 3;16(21):6548-58. 

 (101)  Hill JW, Hazra TK, Izumi T, Mitra S. Stimulation of human 8-oxoguanine-DNA glycosylase 

by AP-endonuclease: potential coordination of the initial steps in base excision repair. 

Nucleic Acids Res 2001 Jan 15;29(2):430-8. 

 (102)  Bennett RA, Wilson DM, III, Wong D, Demple B. Interaction of human apurinic 
endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl 

Acad Sci U S A 1997 Jul 8;94(14):7166-9. 

 (103)  Masuda Y, Bennett RA, Demple B. Dynamics of the interaction of human apurinic 

endonuclease (Ape1) with its substrate and product. J Biol Chem 1998 Nov 

13;273(46):30352-9. 

 (104)  Vascotto C, Fantini D, Romanello M, Cesaratto L, Deganuto M, Leonardi A, et al. APE1/Ref-

1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process. 

Mol Cell Biol 2009 Apr;29(7):1834-54. 

 (105)  Zhou J, Ahn J, Wilson SH, Prives C. A role for p53 in base excision repair. EMBO J 2001 Feb 

15;20(4):914-23. 

 (106)  Hanson S, Kim E, Deppert W. Redox factor 1 (Ref-1) enhances specific DNA binding of p53 

by promoting p53 tetramerization. Oncogene 2005 Feb 24;24(9):1641-7. 

 (107)  Luo M, Delaplane S, Jiang A, Reed A, He Y, Fishel M, et al. Role of the Multifunctional DNA 

Repair and Redox Signaling Protein Ape1/Ref-1 in Cancer and Endothelial Cells: Small-

Molecule Inhibition of the Redox Function of Ape1. Antioxid Redox Signal 2008 Jul 16. 

 (108)  Evans AR, Limp-Foster M, Kelley MR. Going APE over ref-1. Mutat Res 2000 Oct 

16;461(2):83-108. 



Reference List 

 

160 

 

 (109)  Okazaki T, Chung U, Nishishita T, Ebisu S, Usuda S, Mishiro S, et al. A redox factor protein, 

ref1, is involved in negative gene regulation by extracellular calcium. J Biol Chem 1994 

Nov 11;269(45):27855-62. 

 (110)  Fuchs S, Philippe J, Corvol P, Pinet F. Implication of Ref-1 in the repression of renin gene 
transcription by intracellular calcium. J Hypertens 2003 Feb;21(2):327-35. 

 (111)  Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S. Role of acetylated human AP-

endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene. EMBO J 2003 

Dec 1;22(23):6299-309. 

 (112)  Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization of APE1/Ref-1: 

more than a passive phenomenon? Antioxid Redox Signal 2005 Mar;7(3-4):367-84. 

 (113)  Fung H, Bennett RA, Demple B. Key role of a downstream specificity protein 1 site in cell 

cycle-regulated transcription of the AP endonuclease gene APE1/APEX in NIH3T3 cells. J 

Biol Chem 2001 Nov 9;276(45):42011-7. 

 (114)  Couture C, Raybaud-Diogene H, Tetu B, Bairati I, Murry D, Allard J, et al. p53 and Ki-67 as 
markers of radioresistance in head and neck carcinoma. Cancer 2002 Feb 1;94(3):713-22. 

 (115)  Fung H, Demple B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA 

damage in human cells. Mol Cell 2005 Feb 4;17(3):463-70. 

 (116)  Mitra S, Izumi T, Boldogh I, Bhakat KK, Chattopadhyay R, Szczesny B. Intracellular 

trafficking and regulation of mammalian AP-endonuclease 1 (APE1), an essential DNA 

repair protein. DNA Repair (Amst) 2007 Apr 1;6(4):461-9. 

 (117)  Gaiddon C, Moorthy NC, Prives C. Ref-1 regulates the transactivation and pro-apoptotic 

functions of p53 in vivo. EMBO J 1999 Oct 15;18(20):5609-21. 

 (118)  Jayaraman L, Murthy KG, Zhu C, Curran T, Xanthoudakis S, Prives C. Identification of 
redox/repair protein Ref-1 as a potent activator of p53. Genes Dev 1997 Mar 1;11(5):558-

70. 

 (119)  Robertson KA, Hill DP, Xu Y, Liu L, Van ES, Hockenbery DM, et al. Down-regulation of 

apurinic/apyrimidinic endonuclease expression is associated with the induction of 

apoptosis in differentiating myeloid leukemia cells. Cell Growth Differ 1997 Apr;8(4):443-

9. 

 (120)  Vascotto C, Cesaratto L, Zeef LA, Deganuto M, D'Ambrosio C, Scaloni A, et al. Genome-

wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian 

cells. Proteomics 2009 Feb;9(4):1058-74. 

 (121)  Zhang Y, Wang J, Xiang D, Wang D, Xin X. Alterations in the expression of the 
apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) in human ovarian 

cancer and indentification of the therapeutic potential of APE1/Ref-1 inhibitor. Int J Oncol 

2009 Nov;35(5):1069-79. 

 (122)  Wang D, Xiang DB, Yang XQ, Chen LS, Li MX, Zhong ZY, et al. APE1 overexpression is 

associated with cisplatin resistance in non-small cell lung cancer and targeted inhibition of 

APE1 enhances the activity of cisplatin in A549 cells. Lung Cancer 2009 Dec;66(3):298-304. 



Reference List 

 

161 

 

 (123)  Xiang DB, Chen ZT, Wang D, Li MX, Xie JY, Zhang YS, et al. Chimeric adenoviral vector 

Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to 

radiotherapy in vitro and in vivo. Cancer Gene Ther 2008 Oct;15(10):625-35. 

 (124)  Fishel ML, He Y, Reed AM, Chin-Sinex H, Hutchins GD, Mendonca MS, et al. Knockdown of 
the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and 

tumor growth. DNA Repair (Amst) 2008 Feb 1;7(2):177-86. 

 (125)  Zou GM, Luo MH, Reed A, Kelley MR, Yoder MC. Ape1 regulates hematopoietic 

differentiation of embryonic stem cells through its redox functional domain. Blood 2007 

Mar 1;109(5):1917-22. 

 (126)  Bapat A, Fishel ML, Kelley MR. Going ape as an approach to cancer therapeutics. Antioxid 

Redox Signal 2009 Mar;11(3):651-68. 

 (127)  Fishel ML, Kelley MR. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic 

and chemopreventive target. Mol Aspects Med 2007 Jun;28(3-4):375-95. 

 (128)  Fan J, Wilson DM, III. Protein-protein interactions and posttranslational modifications in 
mammalian base excision repair. Free Radic Biol Med 2005 May 1;38(9):1121-38. 

 (129)  Marsin S, Vidal AE, Sossou M, Menissier-de MJ, Le PF, Boiteux S, et al. Role of XRCC1 in 

the coordination and stimulation of oxidative DNA damage repair initiated by the DNA 

glycosylase hOGG1. J Biol Chem 2003 Nov 7;278(45):44068-74. 

 (130)  Wong HK, Wilson DM, III. XRCC1 and DNA polymerase beta interaction contributes to 

cellular alkylating-agent resistance and single-strand break repair. J Cell Biochem 2005 Jul 

1;95(4):794-804. 

 (131)  Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM, III. XRCC1 co-localizes and 

physically interacts with PCNA. Nucleic Acids Res 2004;32(7):2193-201. 

 (132)  Mortusewicz O, Leonhardt H. XRCC1 and PCNA are loading platforms with distinct kinetic 

properties and different capacities to respond to multiple DNA lesions. BMC Mol Biol 

2007;8:81. 

 (133)  Kiran M, Saxena R, Kaur J. Distribution of XRCC1 genotypes in north Indian population. 

Indian J Med Res 2010 Jan;131:71-5. 

 (134)  Levy N, Martz A, Bresson A, Spenlehauer C, de MG, Menissier-de MJ. XRCC1 is 

phosphorylated by DNA-dependent protein kinase in response to DNA damage. Nucleic 

Acids Res 2006;34(1):32-41. 

 (135)  Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair (Amst) 2003 Sep 

18;2(9):955-69. 

 (136)  Vidal AE, Boiteux S, Hickson ID, Radicella JP. XRCC1 coordinates the initial and late stages 

of DNA abasic site repair through protein-protein interactions. EMBO J 2001 Nov 

15;20(22):6530-9. 

 (137)  Kwok JM, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC, et al. FOXM1 confers 

acquired cisplatin resistance in breast cancer cells. Mol Cancer Res 2010 Jan;8(1):24-34. 



Reference List 

 

162 

 

 (138)  Thompson LH, Rubin JS, Cleaver JE, Whitmore GF, Brookman K. A screening method for 

isolating DNA repair-deficient mutants of CHO cells. Somatic Cell Genet 1980 

May;6(3):391-405. 

 (139)  Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH, et al. 
Requirement for the Xrcc1 DNA base excision repair gene during early mouse 

development. Dev Biol 1999 Apr 15;208(2):513-29. 

 (140)  Sterpone S, Cozzi R. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-

Induced DNA Damage and Repair. J Nucleic Acids 2010;2010. 

 (141)  Thompson LH, Brookman KW, Jones NJ, Allen SA, Carrano AV. Molecular cloning of the 

human XRCC1 gene, which corrects defective DNA strand break repair and sister 

chromatid exchange. Mol Cell Biol 1990 Dec;10(12):6160-71. 

 (142)  Taverna P, Hwang HS, Schupp JE, Radivoyevitch T, Session NN, Reddy G, et al. Inhibition of 

base excision repair potentiates iododeoxyuridine-induced cytotoxicity and 

radiosensitization. Cancer Res 2003 Feb 15;63(4):838-46. 

 (143)  Neijenhuis S, Begg AC, Vens C. Radiosensitization by a dominant negative to DNA 

polymerase beta is DNA polymerase beta-independent and XRCC1-dependent. Radiother 

Oncol 2005 Aug;76(2):123-8. 

 (144)  Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH. XRCC1 and 

DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. 

Cell Res 2008 Jan;18(1):48-63. 

 (145)  Brem R, Hall J. XRCC1 is required for DNA single-strand break repair in human cells. 

Nucleic Acids Res 2005;33(8):2512-20. 

 (146)  Kakolyris S, Kaklamanis L, Giatromanolaki A, Koukourakis M, Hickson ID, Barzilay G, et al. 
Expression and subcellular localization of human AP endonuclease 1 (HAP1/Ref-1) 

protein: a basis for its role in human disease. Histopathology 1998 Dec;33(6):561-9. 

 (147)  Batuello CN, Kelley MR, Dynlacht JR. Role of Ape1 and base excision repair in the 

radioresponse and heat-radiosensitization of HeLa Cells. Anticancer Res 2009 

Apr;29(4):1319-25. 

 (148)  Chen DS, Olkowski ZL. Biological responses of human apurinic endonuclease to radiation-

induced DNA damage. Ann N Y Acad Sci 1994 Jul 29;726:306-8. 

 (149)  Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA, Schiestl B, et al. Intracellular 

signaling pathways regulating radioresistance of human prostate carcinoma cells. 

Proteomics 2008 Nov;8(21):4521-33. 

 (150)  Naidu MD, Mason JM, Pica RV, Fung H, Pena LA. Radiation resistance in glioma cells 

determined by DNA damage repair activity of ape1/ref-1. J Radiat Res (Tokyo) 

2010;51(4):393-404. 

 (151)  Fung H, Demple B. Distinct roles of Ape1 protein in the repair of DNA damage induced by 

ionizing radiation or bleomycin. J Biol Chem 2010 Nov 15. 

 (152)  Herring CJ, West CM, Wilks DP, Davidson SE, Hunter RD, Berry P, et al. Levels of the DNA 

repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are 



Reference List 

 

163 

 

associated with the intrinsic radiosensitivity of cervical cancers. Br J Cancer 1998 

Nov;78(9):1128-33. 

 (153)  Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, et al. Resistance to 

therapy caused by intragenic deletion in BRCA2. Nature 2008 Feb 28;451(7182):1111-5. 

 (154)  Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-

ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009 Jul 

9;361(2):123-34. 

 (155)  Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic 

interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 Feb 

19;391(6669):806-11. 

 (156)  Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-

stranded RNA. Nat Rev Genet 2001 Feb;2(2):110-9. 

 (157)  Hannon GJ. RNA interference. Nature 2002 Jul 11;418(6894):244-51. 

 (158)  De PD, Bentley MV, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA 
delivery and targeting. RNA 2007 Apr;13(4):431-56. 

 (159)  Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-

nucleotide RNAs. Genes Dev 2001 Jan 15;15(2):188-200. 

 (160)  Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004 

Sep 16;431(7006):343-9. 

 (161)  Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, et al. Position-specific 

chemical modification of siRNAs reduces "off-target" transcript silencing. RNA 2006 

Jul;12(7):1197-205. 

 (162)  Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, et al. Widespread siRNA "off-
target" transcript silencing mediated by seed region sequence complementarity. RNA 

2006 Jul;12(7):1179-87. 

 (163)  Mueller O, Hahnenberger K, Dittmann M, Yee H, Dubrow R, Nagle R, et al. A microfluidic 

system for high-speed reproducible DNA sizing and quantitation. Electrophoresis 2000 

Jan;21(1):128-34. 

 (164)  Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR--a perspective. J 

Mol Endocrinol 2005 Jun;34(3):597-601. 

 (165)  Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of 

DNA amplification reactions. Biotechnology (N Y ) 1993 Sep;11(9):1026-30. 

 (166)  Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase 
chain reaction. J Biomol Tech 2004 Sep;15(3):155-66. 

 (167)  Bustin SA. Absolute quantification of mRNA using real-time reverse transcription 

polymerase chain reaction assays. J Mol Endocrinol 2000 Oct;25(2):169-93. 

 (168)  Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis 

using real-time PCR. Methods 2010 Apr;50(4):227-30. 



Reference List 

 

164 

 

 (169)  Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist 

programmers. Methods Mol Biol 2000;132:365-86. 

 (170)  Rasmussen R. Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K, 

editors. Rapid Cycle Real-time PCR, Methods and Applications. 1 ed. Heidelberg: Springer 
Press; 2001. p. 21-34. 

 (171)  Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. 

Nucleic Acids Res 2001 May 1;29(9):e45. 

 (172)  Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and 

considerations. Genes Immun 2005 Jun;6(4):279-84. 

 (173)  Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De PA, et al. Accurate normalization 

of real-time quantitative RT-PCR data by geometric averaging of multiple internal control 

genes. Genome Biol 2002 Jun 18;3(7):RESEARCH0034. 

 (174)  Janssens N, Janicot M, Perera T, Bakker A. Housekeeping genes as internal standards in 

cancer research. Mol Diagn 2004;8(2):107-13. 

 (175)  Steinberg G, Stromsborg K, Thomas L, Barker D, Zhao C. Strategies for covalent 

attachment of DNA to beads. Biopolymers 2004 Apr 5;73(5):597-605. 

 (176)  Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C, et al. Decoding 

randomly ordered DNA arrays. Genome Res 2004 May;14(5):870-7. 

 (177)  Toni Lindl, Gerhard Gstraunthaler. Zell- und Gewebekultur : von den Grundlagen zur 

Laborbank. 6th ed. Heidelberg: Spektrum Akademischer Verlag; 2008. 

 (178)  Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities 

of protein utilizing the principle of protein-dye binding. Anal Biochem 1976 May 7;72:248-

54. 

 (179)  Laemmli UK. Cleavage of structural proteins during the assembly of the head of 

bacteriophage T4. Nature 1970 Aug 15;227(5259):680-5. 

 (180)  Collins AR. The comet assay for DNA damage and repair: principles, applications, and 

limitations. Mol Biotechnol 2004 Mar;26(3):249-61. 

 (181)  Olive PL, Banath JP, Durand RE. Heterogeneity in radiation-induced DNA damage and 

repair in tumor and normal cells measured using the "comet" assay. Radiat Res 1990 

Apr;122(1):86-94. 

 (182)  Dusinska M, Collins AR. The comet assay in human biomonitoring: gene-environment 

interactions. Mutagenesis 2008 May;23(3):191-205. 

 (183)  Wasson GR, McKelvey-Martin VJ, Downes CS. The use of the comet assay in the study of 
human nutrition and cancer. Mutagenesis 2008 May;23(3):153-62. 

 (184)  Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low 

levels of DNA damage in individual cells. Exp Cell Res 1988 Mar;175(1):184-91. 

 (185)  Popanda O, Ebbeler R, Twardella D, Helmbold I, Gotzes F, Schmezer P, et al. Radiation-

induced DNA damage and repair in lymphocytes from breast cancer patients and their 



Reference List 

 

165 

 

correlation with acute skin reactions to radiotherapy. Int J Radiat Oncol Biol Phys 2003 

Apr 1;55(5):1216-25. 

 (186)  Collins AR. Investigating oxidative DNA damage and its repair using the comet assay. 

Mutat Res 2009 Jan;681(1):24-32. 

 (187)  McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Meo MP, Collins A. The 

single cell gel electrophoresis assay (comet assay): a European review. Mutat Res 1993 

Jul;288(1):47-63. 

 (188)  PUCK TT, MARCUS PI. Action of x-rays on mammalian cells. J Exp Med 1956 May 

1;103(5):653-66. 

 (189)  Franken NA, Rodermond HM, Stap J, Haveman J, van BC. Clonogenic assay of cells in vitro. 

Nat Protoc 2006;1(5):2315-9. 

 (190)  Plumb JA. Cell sensitivity assays: clonogenic assay. Methods Mol Med 2004;88:159-64. 

 (191)  Pauwels B, Korst AE, de Pooter CM, Pattyn GG, Lambrechts HA, Baay MF, et al. 

Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro 
chemoradiation studies. Cancer Chemother Pharmacol 2003 Mar;51(3):221-6. 

 (192)  Griffon G, Merlin JL, Marchal C. Comparison of sulforhodamine B, tetrazolium and 

clonogenic assays for in vitro radiosensitivity testing in human ovarian cell lines. 

Anticancer Drugs 1995 Feb;6(1):115-23. 

 (193)  Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric 

cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990 Jul 4;82(13):1107-

12. 

 (194)  Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks 

induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998 Mar 
6;273(10):5858-68. 

 (195)  Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in 

DNA double-strand breaks in vivo. J Cell Biol 1999 Sep 6;146(5):905-16. 

 (196)  Hagen U. Mechanisms of induction and repair of DNA double-strand breaks by ionizing 

radiation: some contradictions. Radiat Environ Biophys 1994;33(1):45-61. 

 (197)  Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role 

for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr 

Biol 2000 Jul 27;10(15):886-95. 

 (198)  Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. gamma-H2AX 

dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. 
Mol Cell 2005 Dec 9;20(5):801-9. 

 (199)  Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC, et al. A 

phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage 

checkpoint recovery. Nature 2006 Jan 26;439(7075):497-501. 



Reference List 

 

166 

 

 (200)  Chowdhury D, Xu X, Zhong X, Ahmed F, Zhong J, Liao J, et al. A PP4-phosphatase complex 

dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 2008 Jul 

11;31(1):33-46. 

 (201)  Nakada S, Chen GI, Gingras AC, Durocher D. PP4 is a gamma H2AX phosphatase required 
for recovery from the DNA damage checkpoint. EMBO Rep 2008 Oct;9(10):1019-26. 

 (202)  Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, et al. Binding of 

chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol 

Cell 2004 Dec 22;16(6):979-90. 

 (203)  Nolan JP, Yang L. The flow of cytometry into systems biology. Brief Funct Genomic 

Proteomic 2007 Jun;6(2):81-90. 

 (204)  Shapiro HM. Practical flow cytometry. 4th ed. New York: Wiley-Liss; 2003. 

 (205)  Tung JW, Parks DR, Moore WA, Herzenberg LA, Herzenberg LA. New approaches to 

fluorescence compensation and visualization of FACS data. Clin Immunol 2004 

Mar;110(3):277-83. 

 (206)  Chalmers AJ, Ruff EM, Martindale C, Lovegrove N, Short SC. Cytotoxic effects of 

temozolomide and radiation are additive- and schedule-dependent. Int J Radiat Oncol Biol 

Phys 2009 Dec 1;75(5):1511-9. 

 (207)  Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De VL. Triazene compounds: 

mechanism of action and related DNA repair systems. Pharmacol Res 2007 Oct;56(4):275-

87. 

 (208)  Lee HM, Yuk JM, Shin DM, Yang CS, Kim KK, Choi DK, et al. Apurinic/apyrimidinic 

endonuclease 1 is a key modulator of keratinocyte inflammatory responses. J Immunol 

2009 Nov 15;183(10):6839-48. 

 (209)  Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein 

that facilitates AP-1 DNA-binding activity. EMBO J 1992 Feb;11(2):653-65. 

 (210)  Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M, et al. Spatial redox 

regulation of a critical cysteine residue of NF-kappa B in vivo. J Biol Chem 2002 Nov 

15;277(46):44548-56. 

 (211)  Huang RP, Adamson ED. Characterization of the DNA-binding properties of the early 

growth response-1 (Egr-1) transcription factor: evidence for modulation by a redox 

mechanism. DNA Cell Biol 1993 Apr;12(3):265-73. 

 (212)  Nakshatri H, Bhat-Nakshatri P, Currie RA. Subunit association and DNA binding activity of 

the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem 
1996 Nov 15;271(46):28784-91. 

 (213)  Lando D, Pongratz I, Poellinger L, Whitelaw ML. A redox mechanism controls differential 

DNA binding activities of hypoxia-inducible factor (HIF) 1alpha and the HIF-like factor. J 

Biol Chem 2000 Feb 18;275(7):4618-27. 

 (214)  Christy B, Nathans D. DNA binding site of the growth factor-inducible protein Zif268. Proc 

Natl Acad Sci U S A 1989 Nov;86(22):8737-41. 



Reference List 

 

167 

 

 (215)  Poch MT, Al-Kassim L, Smolinski SM, Hines RN. Two distinct classes of CCAAT box 

elements that bind nuclear factor-Y/alpha-actinin-4: potential role in human CYP1A1 

regulation. Toxicol Appl Pharmacol 2004 Sep 15;199(3):239-50. 

 (216)  Parlanti E, Locatelli G, Maga G, Dogliotti E. Human base excision repair complex is 
physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids 

Res 2007;35(5):1569-77. 

 (217)  Bitomsky N, Hofmann TG. Apoptosis and autophagy: Regulation of apoptosis by DNA 

damage signalling - roles of p53, p73 and HIPK2. FEBS J 2009 Nov;276(21):6074-83. 

 (218)  Zhan Q. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA 

damage. Mutat Res 2005 Jan 6;569(1-2):133-43. 

 (219)  Lieberman HB, Bernstock JD, Broustas CG, Hopkins KM, Leloup C, Zhu A. The role of RAD9 

in tumorigenesis. J Mol Cell Biol 2011 Feb;3(1):39-43. 

 (220)  Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV. Identification of GRIM-19, 

a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid 
combination, using a genetic approach. J Biol Chem 2000 Oct 27;275(43):33416-26. 

 (221)  Jin S, Levine AJ. The p53 functional circuit. J Cell Sci 2001 Dec;114(Pt 23):4139-40. 

 (222)  Li PX, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, et al. Placental transforming 

growth factor-beta is a downstream mediator of the growth arrest and apoptotic 

response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 2000 Jun 

30;275(26):20127-35. 

 (223)  Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death 

domain-containing receptor for TRAIL. Science 1997 Aug 8;277(5327):815-8. 

 (224)  Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL. Human MutY homolog, a DNA 
glycosylase involved in base excision repair, physically and functionally interacts with 

mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 

2002 Mar 29;277(13):11135-42. 

 (225)  Mazurek A, Berardini M, Fishel R. Activation of human MutS homologs by 8-oxo-guanine 

DNA damage. J Biol Chem 2002 Mar 8;277(10):8260-6. 

 (226)  Colussi C, Parlanti E, Degan P, Aquilina G, Barnes D, Macpherson P, et al. The mammalian 

mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP 

pool. Curr Biol 2002 Jun 4;12(11):912-8. 

 (227)  Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S. Efficient and accurate replication in 

the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet 2000 
Aug;25(4):458-61. 

 (228)  Avkin S, Livneh Z. Efficiency, specificity and DNA polymerase-dependence of translesion 

replication across the oxidative DNA lesion 8-oxoguanine in human cells. Mutat Res 2002 

Dec 29;510(1-2):81-90. 

 (229)  Nocentini S. Rejoining kinetics of DNA single- and double-strand breaks in normal and 

DNA ligase-deficient cells after exposure to ultraviolet C and gamma radiation: an 



Reference List 

 

168 

 

evaluation of ligating activities involved in different DNA repair processes. Radiat Res 

1999 Apr;151(4):423-32. 

 (230)  Peddi SR, Chattopadhyay R, Naidu CV, Izumi T. The human apurinic/apyrimidinic 

endonuclease-1 suppresses activation of poly(adp-ribose) polymerase-1 induced by DNA 
single strand breaks. Toxicology 2006 Jul 5;224(1-2):44-55. 

 (231)  Weinfeld M, Rasouli-Nia A, Chaudhry MA, Britten RA. Response of base excision repair 

enzymes to complex DNA lesions. Radiat Res 2001 Nov;156(5 Pt 2):584-9. 

 (232)  Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC. Involvement of human 

polynucleotide kinase in double-strand break repair by non-homologous end joining. 

EMBO J 2002 Jun 3;21(11):2827-32. 

 (233)  Audebert M, Salles B, Calsou P. Involvement of poly(ADP-ribose) polymerase-1 and 

XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol 

Chem 2004 Dec 31;279(53):55117-26. 

 (234)  Toulany M, Dittmann K, Fehrenbacher B, Schaller M, Baumann M, Rodemann HP. PI3K-Akt 
signaling regulates basal, but MAP-kinase signaling regulates radiation-induced XRCC1 

expression in human tumor cells in vitro. DNA Repair (Amst) 2008 Oct 1;7(10):1746-56. 

 (235)  Schwartz JL, Giovanazzi S, Weichselbaum RR. Recovery from sublethal and potentially 

lethal damage in an X-ray-sensitive CHO cell. Radiat Res 1987 Jul;111(1):58-67. 

 (236)  vanAnkeren SC, Murray D, Meyn RE. Induction and rejoining of gamma-ray-induced DNA 

single- and double-strand breaks in Chinese hamster AA8 cells and in two radiosensitive 

clones. Radiat Res 1988 Dec;116(3):511-25. 

 (237)  Silber JR, Bobola MS, Blank A, Schoeler KD, Haroldson PD, Huynh MB, et al. The 

apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma 
cell resistance to alkylating agents and is elevated by oxidative stress. Clin Cancer Res 

2002 Sep;8(9):3008-18. 

 (238)  McNeill DR, Wilson DM, III. A dominant-negative form of the major human abasic 

endonuclease enhances cellular sensitivity to laboratory and clinical DNA-damaging 

agents. Mol Cancer Res 2007 Jan;5(1):61-70. 

 (239)  McNeill DR, Lam W, DeWeese TL, Cheng YC, Wilson DM, III. Impairment of APE1 function 

enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol 

Cancer Res 2009 Jun;7(6):897-906. 

 (240)  Fishel ML, He Y, Smith ML, Kelley MR. Manipulation of base excision repair to sensitize 

ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res 2007 Jan 
1;13(1):260-7. 

 (241)  Taverna P, Liu L, Hwang HS, Hanson AJ, Kinsella TJ, Gerson SL. Methoxyamine potentiates 

DNA single strand breaks and double strand breaks induced by temozolomide in colon 

cancer cells. Mutat Res 2001 May 10;485(4):269-81. 

 (242)  Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, et al. Tumor protein 53-

induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res 

2009 Jan 1;69(1):219-26. 



Reference List 

 

169 

 

 (243)  Scott D, Barber JB, Levine EL, Burrill W, Roberts SA. Radiation-induced micronucleus 

induction in lymphocytes identifies a high frequency of radiosensitive cases among breast 

cancer patients: a test for predisposition? Br J Cancer 1998 Feb;77(4):614-20. 

 

 

 



Poster presentations 

 

170 

 

Poster presentations 

 

Popanda O., Seibold P., Hausmann S., Flesch-Janys D., Chang-Claude J., Schmezer P. 

Polymorphisms in base excision repair genes and postmenopausal breast cancer risk in a 

German case-control study. 11th Biennual DGDR Meeting held by the German Society for 

Research on DNA Repair, Jena, September 2010. 

 

Hausmann S., Schmezer P., Chang-Claude J., Popanda O. DNA-(apurinic or apyrimidinic 

site) lyase and its role in the repair of radiation-induced DNA damage. 11th Biennual DGDR 

Meeting held by the German Society for Research on DNA Repair, Jena, September 2010. 

 

Hausmann S., Popanda O., Schmezer P. APEX1 knockdown affects cellular response to 

ionizing radiation. DKFZ Poster Presentation, Heidelberg, December 2009. 

 

Kuhmann C., Hausmann S., Schmezer P., Popanda O. Determination of apurinic sites in 

APEX1-downregulated cells. Gesellschaft für Umwelt-Mutationforschung e.V. (GUM), 

Würzburg, 2008. 

 



Acknowledgements 

 

171 

 

Acknowledgements 

 

I want to thank my supervisors PD Dr. Odilia Popanda and Dr. Peter Schmezer for giving 

me the opportunity to write my PhD thesis at the DKFZ. Without their encouragement 

and suggestions, I would have never finished the dissertation. Special thanks go to Odilia 

for her helpful feedback, particularly during the final phase of my work. 

 

I also want to thank Prof. Dr. Gert Fricker for taking the role of second reader and PD Dr. 

Heinz Schmeiser for all his scientific input and personal advice. Additionally, I would like 

to express my gratitude to Prof. Dr. Jürgen Kleinschmidt and Prof. Dr. Christoph Plass. 

 

I am thankful to the Dietmar Hopp Foundation for supporting this project financially. 

 

My special thanks go to the Group DNA Repair and Epigenomics. I thank Reinhard 

Gliniorz, Peter Waas, and Otto Zelezny for their excellent assistance during my 

experiments. I would like to thank Jittiporn Chaisaingmongkol, Céline Dutruel, Lea 

Geiselhart, and Christine Kuhmann for the friendly atmosphere and the great time in and 

outside the lab. I am thankful for their help and support throughout my entire project. 

 

I want to thank Dr. Christian Maul for all his encouragement, excellent proof-reading 

skills, and for always believing in me. 

 

Last, but not least, I want to thank my family, Helga, Bernd, Niklas, Benedikt, and Florian 

Hausmann for all their support and love. I dedicate my work to them. 


