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Chapter 1

Introduction

Theories of decision making play a fundamental role in economic theory. Most econom-

ically relevant decisions have to be made in the presence of uncertainty. Uncertainty

pertains to situations in which an agent, called a decision maker, faces the problem

of choosing a course of action. The choice of a course of action, by itself, does not

determine a unique outcome. The decision maker knows which circumstances affect the

outcomes of her actions, but she is incapable of saying which of them she will obtain

with certainty. The standard practice in economics when modeling decision making un-

der uncertainty is to follow the Bayesian approach. In this approach it is assumed that

the decision maker’s subjective beliefs are quantifiable by a unique probability distribu-

tion and that these probabilistic beliefs are used in decision making, typically as a basis

for expected utility maximization. Moreover, the arrival of new information affects the

decision maker’s beliefs, and posterior beliefs are obtained by updating the prior ones

in accordance with Bayes’ rule. The subjective expected utility theory of Savage (1954)

is firmly established as the axiomatic underpinning of the Bayesian paradigm. Savage’s

theory offers an elegant and straightforward tool for modeling not only static and dy-

namic, but also interactive decision problems in the presence of uncertainty. However,

ever since the contributions of Ellsberg (1961) and Aumann (1976) economists began

to acknowledge that the Bayesian approach was too restrictive. Ellsberg pointed to

the limitations of Bayesianism as a descriptive theory, while Aumann questioned the
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explanatory power of asymmetric information within Bayesian frameworks.

In his thought experiments, Daniel Ellsberg (1961) exemplified that Savage’s the-

ory cannot take into account the possibility that probabilities for some events are

known, while for other ones they are not, and that such “ambiguity” may affect the

decision makers’ choice behavior. In particular, Ellsberg observed that most of his

“non-experimental” subjects preferred to bet on events with known probabilities rather

than on ones for which information about their likelihoods is missing. Such behav-

ior, termed ambiguity aversion, has received ample empirical confirmation in recent

years (see Camerer and Weber, 1992). For ambiguity-averse subjects it is impossible

that their choices are based on a single probability distribution. This result implies

that ambiguity-sensitive behavior cannot be modeled by the subjective expected utility

theory of Savage (1954).

In his famous article on “agreeing to disagree”, Robert Aumann (1976) challenged

the role that asymmetric information plays in interactive decision problems. He showed

that, under the assumption of common priors, differences in commonly known decisions

cannot be explained solely by differences in decision makers’ private information. In

particular, if two decision makers share a common probability distribution, and their

posteriors for some event are common knowledge, then these posteriors must coincide,

although they may be conditioned on diverse information. Aumann’s agreement on

posterior beliefs has been extended to posterior expectations by Milgrom (1981) and

Geanakoplos and Sebenius (1983). Based on these extensions, Milgrom and Stokey

(1982) showed that in the absence of heterogeneous prior beliefs asymmetric informa-

tion alone cannot generate any profitable trade opportunities among traders with the

same risk attitudes. These results led to very puzzling consequences for economic the-

ory. Within Bayesian frameworks, neither widely observed gambling behavior nor the

existence of speculation in financial markets can be explained solely on the basis of

asymmetric information. In this thesis I will provide an alternative solution to that

“puzzle”.
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Essentially, the aim of the thesis is to investigate how access to “additional” or

“new” information affects choice behavior under ambiguity. To scrutinize this issue

four topics are suggested and explored by experimental as well as formal methods.

Each topic can be viewed as focusing on a different “aspect” of information that may

be seen as relevant for the decision maker when facing static, dynamic or interactive

decision problems.

The first topic examines the relationship between ambiguity aversion and decision

makers’ attitudes towards objective randomization devices. To cope with the limita-

tions of Bayesianism as pointed out by Ellsberg (1961), several alternatives to Savage’s

subjective expected utility theory have been proposed. The Choquet expected utility

model of Schmeidler (1989), the multiple prior model of Gilboa and Schmeidler (1989),

as well as the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005) are

prominent examples. Many of these alternatives adopt Schmeidler’s notion of ambigu-

ity aversion which states that an ambiguity-averse decision maker should always prefer

random mixtures between two ambiguous bets to each of the involved bet. Existing

explanations for such a preference for mixtures often rely on the idea that access to an

objective randomization device, such as a fair coin, mitigates the problem of lacking

probabilistic information. In the words of Klibanoff (2001a, p.290), randomizing be-

tween two ambiguous bets have “[. . . ] the effect of making the outcomes less subjective

[. . . ]”. However, this explanation is controversial and the logic behind it depends upon

the formal framework used to model uncertainty. When uncertainty is modeled in the

two-stage setting of Anscombe and Aumann (1963), mixtures, indeed, have an intuitive

effect of smoothing expected utilities across states and according to Schmeidler, an

ambiguity-averse decision maker should always be randomization-loving. On the other

hand, when uncertainty is modeled in the one-stage setting of Savage (1954), the effect

of mixtures is not clear at all. Adopting the one-stage setting, Eichberger and Kelsey

(1996b) showed that an ambiguity-averse decision maker with Choquet expected utility

preferences will be randomization-neutral. Motivated by these competing predictions,
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we investigate this issue experimentally. In Chapter 4, we design and implement an

experiment which allows an examination of the relationship between ambiguity and

randomization attitudes.

The second topic focuses on dynamic choice behavior under ambiguity. In dynamic

choice situations, a decision maker is informed sequentially which uncertain event has

occurred. An important question that arises in this context is how preferences are

updated to incorporate the receipt of new information. Many theories of updating pref-

erences assume either dynamic consistency or consequentialism in order to axiomati-

cally underpin the link between prior and posterior preferences. Dynamic consistency

requires that prior choices are respected by updated preferences. According to con-

sequentialism only outcomes that are still possible matter for updated preferences. It

is well-known (see Ghirardato, 2002) that dynamic consistency together with conse-

quentialism satisfied on all events implies that preferences admit subjective expected

utility representation and that updated preferences are obtained by revising the decision

maker’s subjective beliefs according to Bayes’ rule. This result implies that at least one

of these axioms must be relaxed when extending ambiguity models to dynamic choice

situations. An ambiguity-averse (resp. loving) decision maker must violate either dy-

namic consistency or consequentialism, or both. The existing theoretical literature has

not yet reached consensus on which of these axiom is the more plausible assumption. In

Chapter 5, we design a dynamic version of the classical 3-color experiment of Ellsberg

(1961) which allows for differentiation between dynamic consistency and consequential-

ism. To test whether subjects facing ambiguity behave consistent with either of these

two axioms, we conduct the dynamic 3-color experiment.

The third topic explores the link between the dynamic properties of Choquet ex-

pected utility preferences and existing notions of unambiguous events. The idea of

unambiguous events is closely related to the idea of events which support some kind

of probabilistic beliefs. Recently, Nehring (1999) and Zhang (2002) proposed two dif-

ferent notions of unambiguous events. In Chapter 6, we attempt to characterize these
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two notions of unambiguous events by imposing dynamic properties on Choquet prefer-

ences. When extending ambiguity-sensitive preferences to dynamic frameworks, Sarin

and Wakker (1998a), Epstein and Schneider (2003) as well as Eichberger, Grant, and

Kelsey (2005) showed that both axioms, dynamic consistency and consequentialism, can

be maintained, however, at the cost of constraining the analysis to a fixed collection of

events and by imposing restrictions on subjective beliefs. We follow this approach and

ask whether, for Choquet expected utility preferences, dynamic consistency and con-

sequentialism, constrained to a given collection of events, guarantees that these events

are unambiguous in a peculiar sense and vice versa. The results we obtained allow us

to answer this question in the affirmative.

The fourth topic scrutinizes the role that asymmetric information plays in the con-

text of interactive decision problems à la Aumann (1976), Geanakoplos and Sebenius

(1983) and Milgrom and Stokey (1982) under ambiguity. Many results on the impossi-

bility of agreeing to disagree have been formulated in Bayesian frameworks. In Chapter

7, we generalize these results in a non-Bayesian setup. It is assumed that decision

makers share a common, but not-necessarily-additive prior, and that their preferences

admit Choquet expected utility representation. In this setting we characterize prop-

erties of decision makers’ private information which are necessary and sufficient for

the impossibility of agreeing to disagree to be true under ambiguity. The results ob-

tained suggest that asymmetric information does matter and can explain differences in

commonly known decisions due to the ambiguous (in a specific sense) character of the

decision makers’ private information. Thus, the existence of gambling behavior and

speculative trade may be attributed to ambiguity of private information.

This thesis is organized as follows. Chapter 2 concentrates on Bayesian decision

theory. First, historical roots of modern decision theory are reviewed. The main tenets

of Savage’s (1954) subjective expected utility theory are recalled in static as well as

in dynamic setup. The notions of dynamic consistency and consequentialism are in-

troduced. Chapter 3 starts with an explanation of the limitations of Bayesianism as
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pointed out by Ellsberg (1961). The most widely studied ambiguity models are briefly

described. The chapter ends by presenting two alternative approaches used to define

ambiguity attitudes. In Chapter 4, I report on results from experimental study ex-

amining relationship between ambiguity and randomization attitudes. In Chapter 5,

first, the dynamic version of Ellsberg’s 3-color experiment is introduced. The ten-

sion between dynamic consistency, consequentialism and ambiguity-sensitive behavior

is explained. Finally, the data from the dynamic 3-color experiment is evaluated and

discussed. In Chapters 6 and 7 the analysis is constrained to Schmeidler’s (1989) Cho-

quet expected utility model. For this reason, Chapters 6 starts with the definition of

Choquet expected utility preferences. The notions of unambiguous events in the sense

of Nehring (1999) and Zhang (2002) are introduced. Conditional Choquet preferences

and the most widely used updating rules are defined. In the main part, Nehring’s as

well as Zhang’s unambiguous events are characterized by imposing dynamic properties

on Choquet preferences. In Chapter 7, the interpersonal decision model and the notion

of common knowledge are introduced. Sufficient and necessary conditions are estab-

lished for the well-known agreement theorems to hold under ambiguity. The no-trade

theorem of Milgrom and Stokey (1982) is generalized for Choquet preferences. Finally,

I summarize and conclude in Chapter 8.
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Chapter 2

Bayesian Decision Theory

2.1 Historical Backgrounds

Modern decision theory as a branch of economic theory is mainly concerned with pro-

viding an axiomatic foundation of rational decision criteria under uncertainty. The

principle of expected utility maximization is one such criterion. Whether this deci-

sion criterion is tenable for any type of uncertain situation has remained a topic of

investigation for a long time.

When explaining economic phenomena, Knight (1921) emphasized distinguishing

between two types of uncertainty: “measurable” and “unmeasurable”. In his formula-

tion, the measurable uncertainty, or simply risk, designates situations in which prob-

abilities are known. That is, they can be deduced a priori or they can be reasonably

approximated by relative frequencies. Games of chance in which outcomes are influ-

enced by a randomizing device such as a fair roulette wheel or a fair coin, as well as

insurance problems, are typical examples of risky situations. By contrast, the unmea-

surable uncertainty, or simply uncertainty, refers to situations in which probabilities are

not precisely known, in the sense that they can neither be calculated in an objective way

nor they can be estimated from past data. Sporting events such as horse races, elections

or most real investments involve such unmeasurable uncertainties. It took almost three

hundred years before the expected utility maximization rule was axiomatically justified
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as a decision criterion for these two types of uncertainty.

Decision theory is as old as the notion of probability itself. The term probability

emerged around 1660 (see Hacking, 1975). Interestingly, the person who is associ-

ated with the concept of probability, Blaise Pascal, also introduced several concepts of

modern decision theory. In his famous “wager”, a thought designed to convince non-

believers in God that they would be better off becoming believers, Pascal invented three

arguments. These arguments were primarily designed to cope with decision problems

in which experience and experimental data are not available. As Pascal said, “we are

in the same epistemological position as someone who is gambling about a coin whose

aleatory properties are unknown”(Hacking, 1975, p.70). His arguments were based on

three decision criteria: first, if one action is better then another no matter which states

of affairs occur, then one should perform a dominating action; second, if there is no

dominating action and probability can be assessed to each state of affairs, then one

should perform an action with highest expectation; third, if the probabilities of various

states of affairs are not known, but instead the set of probability assignments is known,

then one should perform an action of dominating expectation (see Hacking, 1972). How-

ever, even if Pascal’s technical terminology points to modern notions such as subjective

probabilities or expected utility maximization, his arguments are consistent with the

doctrine of gaming and chances which are characteristic at this time. “The only prob-

ability notion which Pascal uses is hazard, and there is no evidence that he interprets

this notion in terms of degrees of belief”(Hacking, 1972, p.190). Nevertheless, it seems

that Pascal was the first person who perceived that the structure of decision problem

in which probabilities are “objectively” know is isomorphic to the decision problem in

which probabilities are unknown.

In the 18th century, mathematicians and philosophers discovered mainly the mathe-

matical aspects of probability theory. Jacob Bernoulli (1713) discovered the law of large

numbers and Thomas Bayes (1763) introduced the idea of Bayesian updating of “prior”

probabilities to “posterior” ones. During this time Daniel Bernoulli (1738/1954) is the
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only one who contributed to decision theory. To solve the famous St. Petersburg para-

dox he suggested using expected utilities of monetary outcomes rather than expected

values when evaluating games of chance with known probabilities.1

After this inauguration, decision theory had been largely neglected until the begin-

ning of 20th century. At this time it became commonplace for philosophers to interpret

scientific theories as axiomatic calculi in which theoretical terms are related to obser-

vations. This conception of scientific theories is an intellectual achievement of Logical

Positivism, the philosophical position developed by the Vienna Circle.2 One of the main

objectives of Logical Positivism was to eliminate metaphysical entities from philosophy

and science. To avoid unverifiable concepts in science, the members of Vienna Circle

advocated rigorous scientific standards. A scientific theory is to be axiomatized in the

language of mathematical logic. Such theory consists of theoretical and observational

terms. The axioms of the theory are formulations of scientific laws, and specify relations

between theoretical terms. Theoretical terms are connected with observational ones by

explicit definitions, called correspondence rules. Correspondence rules have three func-

tions. First, they define explicitly theoretical terms by means of observational terms;

second, they guarantee the “cognitive significance” of theoretical terms; and third, they

specify the admissible experimental procedure for applying a theory to observations (see

Suppe, 1974). For instance, if a correspondence rule defines a numerical quantity such

as “mass” (the theoretical term) as the result of a particular measurement of an object

under particular circumstances (observational terms), this specifies an empirical pro-

cedure for determining mass, that is, defines “mass” in terms of that procedure and

does so in a way such as to guarantee the cognitive significance of the term “mass”.

Therefore, when the theoretical term “mass” is used for physical laws, one knows how

1St. Petersburg paradox is a situation in which a decision maker is willing to pay only a finite (and

rather very small) amount of money to participate in a game with random outcomes, despite the fact

that the expected value of such game is infinite.

2The movement of the Vienna Circle began in 1929 with the publication of the manifesto entitled

“Wissenschaftliche Weltanschaung - Der Wiener Kreis”, edited by Carnap, Neurath and Hahn.
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the physical laws translate to observations. The notion of revealed preferences in eco-

nomics “[. . . ] is evidently an intellectual descendant of Logical Positivism” (Gilboa,

2009, p.60).

In the spirit of Logical Positivism, Ramsey (1926) proposed defining and measuring

probabilities as a decision maker’s subjective willingness to bet on the occurrence of an

event. In his view, a reasonable decision maker will behave as if she had a subjective

probability which guides her decisions, even if probabilities are not part of the descrip-

tion of a decision problem. In Ramsey’s view (1926, p.71) subjective probabilities reflect

“[. . . ] the degree of beliefs [. . . ], which we can express vaguely as the extent to which

we are prepared to act on it”. Consequently, one could look at pairwise choices between

bets in order to measure the strength of belief: “The-old fashion method of measuring

a person’s belief is to propose a bet, and see what are the lowest odds which (s)he will

accept. This method I regard as fundamentally sound” (Ramsey, 1926, p.73). Invoking

the axiomatic approach and taking the existence of utilities as given, Ramsey sketched

the proof of the existence of subjective probabilities. Independently, de Finetti (1937)

also suggested using pairwise comparison of bets to measure degrees of belief. He of-

fered an axiomatization of subjective probabilities in the context of maximization of

expected monetary value (rather than expected utilities). Regarding the interpretation

of probabilities, however, de Finetti had a more radical view than Ramsey. De Finetti

claimed that “all” probabilistic beliefs are purely subjective. Even in the case of games

of chance, where laws of chance can be deduced objectively, he criticized the view that

these laws should be seen as a demonstration of the existence of an objective probabil-

ity distribution. He argued that this “objectivity” might have its reasons in a common

psychological perception of symmetry, which some people regard as reasonable, and

which has nothing at all to do with objective considerations.

In their foundation of game theory, von Neumann and Morgenstern (1944) offered

an axiomatic derivation of the notion of utility and the expected utility maximization

rule. In their theory, objects of choice are probability distributions over outcomes,
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called lotteries. These probabilities are presupposed to be known in the sense that

they are explicitly incorporated in the description of a decision problem. Von Neumann

and Morgenstern showed that utilities over outcomes can be deduced from observable

choices between such probability distributions. They established a set of simple and

seemingly reasonable axioms imposed on the preferences between lotteries which are

necessary and sufficient for the existence of a utility function over outcomes and for the

expected utility maximization rule. That is, a decision maker, when confronted with

any two lotteries, will choose the one with a higher expected utility. Moreover, such

utility function is unique up to a positive linear transformations, i.e. “cardinal”.

The achievements of Ramsey, de Finetti and von Neumann and Morgenstern cul-

minated in the seminal work of Leonard Savage (1954). He proposed a novel analytical

framework to model decision making under uncertainty without presupposing the ex-

istence of probabilities and utilities. Taking only states of nature and outcomes as

primitives, Savage showed that both utility and probability, together with the expected

utility maximization rule, can be deduced from observable choices among “acts”. In

this general framework, he established a set of axioms imposed on preferences among

acts, which are sufficient and necessary for both the existence of a unique subjective

probability distribution and the existence of a unique (up to a positive linear transfor-

mations) utility function. Moreover, decision makers’ choices are guided by maximizing

subjective expected utility. Thus, Savage showed that his axioms lead to the same rep-

resentation of preferences as in situations in which probabilities are exogenously given.

In other words, the decision problem with known probabilities is isomorphic to the

decision problem with unknown probabilities.

Invoking the axiomatic approach in the dictum of Logical Positivism, the contri-

butions of Ramsey, de Finetti, von Neumann and Morgenstern and Savage guaranteed

that the theoretical terms, such as probability and utility, ware not merely metaphys-

ical entities. They derived these theoretical terms from observable choices, specified a

procedure to measure and interpret them, and thus endowed them with cognitive sig-
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nificance. The axiomatic foundation of the principle of expected utility maximization

under risk and uncertainty had a tremendous impact on economic theory. It allowed

for the formal incorporation of risk and uncertainly into economic theory and the ap-

plication of an important number of results from probability theory. As Machina and

Schmeidler (1992, p. 746) observe, “[. . . ] it is hard to imagine where the theory of

games, the theory of search and the theory of auctions would be without [them]”.

2.2 Subjective Expected Utility Theory

In this section I depict the main components of subjective expected utility theory in the

spirit of Savage (1954) and Anscombe and Aumann (1963). To model choice behavior

under uncertainty Savage offered an analytical framework consisting of a set of states

of nature Ω, a set of outcomes X, a set of acts F and a binary relation < on the set

F . The set Ω is a collection of mutually exclusive and exhaustive states representing

all possible resolution of uncertainty. In Savage’s words (1954, p.8) the state ω is “[. . . ]

a description of the world, leaving no relevant aspects undescribe”. At ex-ante stage a

decision maker does not know which state is the true one and has no influence upon

the truth of the states. Ex-post exactly one state will be true and all uncertainty will

be resolved. An uncertain event A is a subset of Ω. For all A ⊂ Ω, we denote Ω\A, the

complement of A, by Ac. The set X is a list of all possible consequences of any course

of action that affects the decision maker’s well-being. It captures “[. . . ] everything that

may happen to the decision maker”(Savage, 1954, p. 8). The elements of the set F

represent possible courses of action and are called acts. An act f is a function from

Ω to X, assigning to each state ω the outcome f(ω) ∈ X which would result if ω

would be the true state and f would have been chosen. Since the decision maker is

uncertain about which state is the true one, she is uncertain about which outcome will

result from the chosen act. The binary relation < on F represents the decision maker’s

preferences. The preference relation < is viewed as governing the decision maker’s
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choices. In the behavioristic tradition so ubiquitous in economics under the label of

“revealed preferences”, the preference relation < is partially observable. We can only

observe the choices made by the decision maker. That is, if the act f and g are available

to the decision maker and she chooses f rather than g then we can infer that she prefers

f to g, i.e. f < g.

Savage’s idea is to impose some reasonable axioms on preferences and to show that if

the decision maker’s choices satisfy these axioms then she behaves as a person who pos-

sesses a single probability distribution over states and a utility function over outcomes,

with respect to which she maximizes her subjective expected utility when choosing

among acts. Savage postulated six axioms. Some of them, such as completeness and

transitivity, are familiar. Other ones are technical and deal with different forms of

separability and continuity property of preferences. Nevertheless, one postulate is the

core axiom of Savage’s theory and it merits the definition and a brief discussion. It is

called the Sure-Thing-Principle. It requires that preferences between acts depend solely

on the outcomes in states in which the outcomes of the two acts being compared are

distinct. To state it formally, let us denote by fAg an act which assigns the outcome

f(ω) to any state ω in A and the outcome g(ω) to any state ω in Ac.

Axiom 1 (Sure-Thing-Principle). For any act f, g, h, h′ ∈ F and any event A:

fAh < gAh ⇔ fAh
′ < gAh

′. (2.1)

The Sure-Thing-Principle is a separability principle which has a practical meaning.

Namely, when making choices between two acts, it is not necessary to consider states

in which these acts yield the same outcomes. To illustrate the rationale behind this

axiom, consider the following choice problem. A decision maker has to choose between

two acts fAh and gAh, where fAh states: “If Horse A wins the race, you will get a trip

to France; if Horse A does not win, you will get a trip to Holland”, and gAh states:

“If Horse A wins the race, you will get a trip to Greece; if Horse A does not win, you

will get a trip to Holland”. These two acts offer the same trip if Horse A does not
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win the race, but different ones if Horse A does win. When facing the choice between

these two acts the decision maker has only to decide whether she prefers the trip to

France or the trip to Greece, regardless of what trip is offered by both acts in case

Horse A does not win. Then, according to the Sure-Thing-Principle the common part

of these two acts, here the trip to Holland, is immaterial for the choice between fAh and

gAh. If the decision maker prefers fAh to gAh, then she also should prefer fAh
′ to gAh

′

whatever the trip h′ offered in Ac is, let say to Hawaii or to the moon. Bacharach (1985,

p.168) refers to the Sure-Thing-Principe as a “[. . . ] fundamental principle of rational

decision-making”. Nevertheless, Ellsberg (1961) challenged the descriptive validity of

this axiom (see Section 3.1).

Savage showed that his axioms are sufficient and necessary for the identification of

both a utility function on the set of outcomes and a probability measure on the set of

states that jointly characterize the decision maker’s choices among acts by maximization

of her subjective expected utility. Savage’s theorem can be be expressed as follows. A

preference relation < over F satisfies his six axioms (including the Sure-Thing-Principle)

if and only if there exists a unique probability measure π : Ω→ [0, 1] and a unique (up

to a positive linear transformation) utility function u : X → R such that for any pair

of acts f, g ∈ F :

f < g ⇔
∫

Ω

u(f(ω)) dπ(ω) ≥
∫

Ω

u(g(ω)) dπ(ω). (2.2)

In this formula, the measure π represents the decision maker’s beliefs and is interpreted

as a subjective probability distribution over states. The utility index u represents the

decision maker’s tastes, i.e. preferences over outcomes. In particular, when outcomes

are monetary, the curvature of u is a measure of the decision maker’s risk attitude (for

given beliefs). Hence, Savage’s subjective expected utility theory offers an attractive

way to continue working with the expected utility approach even if the probabilities

for uncertain events are unknown. This also means that a decision problem under

uncertainty can be reduced in some sense to a decision problem under risk, with one
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important caveat. Beliefs are purely subjective and consequently two decision makers

may have distinct subjective probability distributions even if they face the same decision

problem.

Two key properties characterizing the subjective expected utility theory merit em-

phasis. First, probabilities assigned to mutually exclusive events are independent of

the act being evaluated. This property is often referred as to “separability of beliefs

from tastes” and it is implied by the Sure-Thing-Principle. Second, utilities assigned

to outcomes are independent of the underlying state of nature. This property can be

labelled as “separability of tastes from states” and has been criticized in a number of

studies, e.g. Karni (1993).

In his original axiomatization, Savage allowed the set of outcomes to be an arbitrary

set at the cost of assuming that the set of states is infinite. Anscombe and Aumann

(1963) showed that if one accepts the existence of a physical (known, objective) random-

ization device such as roulette wheel then derivation of the subjective expected utility

is also possible for a finite state space and with a more parsimonious set of axioms. In

their setting the set of outcomes Z = ∆(X) is taken to be the set of all probability

distributions (or simple lotteries) over some more primitive set of outcomes X with

finite supports, i.e.:

∆(X) =

 p : X → [0, 1]
#{x ∈ X | p(x) > 0} <∞,∑

x∈X p(x) = 1

 . (2.3)

In the theory of Anscombe and Aumann objects of choice are “horse-race/roulette-

wheel acts”. An act f is a function from Ω to ∆(X) assigning to any state a simple

lottery. To distinguish Savage’s style acts from Anscombe and Aumann’s ones we use

H to denote the set of acts. Hence, there are two sources of uncertainty. All uncertainty

is resolved sequentially. First, an outcome of the horse races, that is the state ω with

unknown probability, is realized by determining the lottery f(ω) to be played out.

Second, a roulette wheel is spun and the decision maker gets an outcome x with known

probability f(ω)(x). Denote by f(ω)(x) the probability of outcome x ∈ X in state
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ω ∈ Ω induced by the act f . Furthermore, the set ∆(X) is closed under a mixing

operation, and so is the set H. For every f, g ∈ H and any α ∈ [0, 1], a mixture

αf + (1− α)g belongs to H and is performed state by state, that is:

(
αf + (1− α)g

)
(ω)(x) = αf(ω)(x) + (1− α)g(ω)(x), (2.4)

for all x ∈ X and all ω ∈ Ω. Adapting the independence axiom of von Neumann

and Morgenstern, Anscombe and Aumann showed that their five axioms are sufficient

and necessary for the existence of a unique subjective probability distribution µ and a

unique (up to a positive linear transformation) utility function u such that for any pair

of acts f, g ∈ H:

f < g ⇔
∫

Ω

[∑
x∈X

f(ω)(x)u(x)
]
dµ(ω) ≥

∫
Ω

[∑
x∈X

g(ω)(x)u(x)
]
dµ(ω). (2.5)

In the two-stage setting of Anscombe and Aumann, acts are evaluated by double inte-

gration. First, expectations are taken state by state with respect to known probabilities

(over outcomes) dictated be the act and the states. This yields a function which assigns

an expected utility to each state. In the second stage, an integral of this function is

taken with respect to subjective probabilities for states in which the respective expected

utilities materialize. The two-stage approach of Anscombe and Aumann has been es-

tablished as a convenient setup in which alternative models for decision making under

uncertainty have been developed.

More recently, Wakker (1989b), Nakamura (1990), Gul (1992) and Chew and Karni

(1994) have shown that the subjective expected utility theory can also be derived in

Savage’s setting with a finite set of states by imposing topological restrictions on the

set of outcomes. Sarin and Wakker (1997) simplified the axiomatization further by

showing that the two-stage approach can be reduced to the one-stage approach while

still allowing for a finite state space.
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2.3 Dynamic Decision Problems

The subjective expected utility theory of Savage (1954) offers also an attractive tool for

modeling dynamic decision problems. In dynamic choice situations, a decision maker

receives new information in the form of an event A, and updates her preferences over

acts in view of such information. The central question that arises in this context is

how preferences are updated to incorporate the receipt of new information. Within

Savage’s framework the standard answer is to use Bayesian updating. That is, after

being informed that the event A occurred, the decision maker updates her preferences

by revising her prior beliefs according to Bayes’s rule and by keeping her utility function

unchanged.

There are two arguments used to justify Bayesian updating. The first one is based

on the rationale behind the Sure-Thing-Principle and Savage’s notion of conditional

preferences. The second one relies on the idea of imposing dynamic restrictions on

preferences. To discuss them briefly we limit our attention to events that the decision

maker views as possible, i.e. non-null events. An event A ⊂ Ω is Savage-null if for any

act f, g,∈ F it is true that fAg ∼ g, otherwise it is non-null. Let A′ be a collection of

all non-null events. Before arrival of any information, the decision maker’s preferences

over acts are represented by <, called unconditional (prior) preferences. After being

informed that event A has occurred, the decision maker constructs her conditional

(posterior) preferences over F , represented by <A. Thus, in the dynamic setup the

decision maker is characterized by a class of conditional preferences, {<A}A∈A′ , one for

each possible event. Such conditional preferences are viewed as governing future choice

upon the realization of the event A.

Since conditional preferences govern future choices, it is important to know how

conditional and unconditional preferences are linked to each other. It is a standard

practice to underpin the link behaviorally by means of axioms, which are supposed to

reflect dynamic properties of preferences. Two axioms are cornerstone in the theory of
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updating preferences. The first one, called consequentialism, concerns only the condi-

tional preference relation. It requires that preferences conditional on a non-null event A

are not affected by outcomes outside of the conditioning event, Ac. Intuitively, once the

decision maker is informed that event A occurred, only the uncertainty about states in

A matters for future choices. The uncertainty about the counterfactual states, i.e. these

in Ac, is immaterial. Formally, whenever two acts f and g assign the same outcomes to

states in Ac, then conditional on Ac, the decision maker should be indifferent between

these two acts. The term consequentialism was introduced by Hammond (1988) in the

presence of risk.3

Axiom 2 (Consequentialism). For any non-null event A and all acts f, g ∈ F ,

f(ω) = g(ω) for each ω ∈ A implies f ∼A g.

The second axiom, called dynamic consistency, links directly conditional and uncondi-

tional preferences. It requires that choices made ex-ante be consistently implemented

in the future. Essentially, dynamic consistency excludes reversals. As Machina (1989,

p.1636-7) writes “[. . . ] behavior [. . . ] will be dynamically inconsistent, in the sense that

[. . . ] actual choice upon arriving at decision node would differ from [. . . ] planned choice

for that node”. Formally, when the decision maker prefers f to g without any infor-

mation regarding A, and f and g assign the same outcomes to states in Ac, she should

also prefer f to g after being informed that A occurred, and vice versa. This require-

ment appears in a number of places in the literature, among others in Machina (1989),

Epstein and LeBreton (1993) and in Ghirardato (2002).

Axiom 3 (Dynamic consistency). For any non-null event A and all acts f, g ∈ F

such that f(ω) = g(ω) for each ω ∈ Ac, f < g if and only if f <A g.

Consequentialism and dynamic consistency are appealing and very useful properties of

preferences. In particular, “[. . . ] they provide the basis for backward induction and

3However, Hammond’s notion is conceptually stronger than Axiom 2.

23



dynamic programming, two techniques whose practical importance simply cannot be

overstated” (Siniscalchi, 2009a, p.339).

It is well-known that consequentialism and dynamic consistency are properties in-

herent in Savage’s Sure-Thing-Principle. To illustrate this issue, let us first recall the

notion of conditional preferences proposed by Savage (1954) in his book The Founda-

tions of Statistics. When deriving a “static” version of the Sure-Thing-Principle, Savage

begins with an informal, but in spirit, “dynamic” principle. It is, in essence, this: If a

decision maker prefers some act f to another act g knowing that an event A occurred,

and, if she prefers f to g knowing that an event A did not occur, then she definitely

prefers f to g regardless of whether she knows if A occurred or not. When justifying

this principle Savage (1954, p.22) asked himself: “What technical interpretation can

we attach to the idea that f would be preferred to g, if [A] were known to obtain”.

To answer this question, Savage (1954, p.22) made the following assumption: “Under

any reasonable interpretation, the matter would seem not to depend on the values f

and g assume at states outside of [A]”. Then, one could modify f and g such that, for

instance, they assign the same outcomes to states outside of A, i.e. f(ω) = g(ω) for any

ω ∈ Ac, and as he continues ”[. . . ] f and g are surely to be regarded as equivalent given

Ac; that is, they would be considered equivalent if it were known that A did not obtain”.

This is exactly the idea behind consequentialism. Assuming consequentialism, Savage

derives his conditioning rule as follows. If f and g are modified such that they agree

outside of A and f is preferred to g without knowing that A occurred, then f should

also be preferred to g knowing that A occurred and vice versa. Savage’s conditioning

rule can be expressed formally as follows.4

Definition 1 (Savage’s conditioning rule). For any pair of acts f, g ∈ F and any

non-null event A ∈ A′ there is an act h ∈ F such that:

f <A g if and only if fAh < gAh. (2.6)

4Savage’s conditioning rule has been also suggested for updating more general preferences, see

Gilboa and Schmeidler (1993); Ghirardato (2002).
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Furthermore, as Savage argues, the ranking between f and g will not depend on which

of the modification was actually carried out as long the modified acts are the same

outside of A. In other words, we will never find two acts h and h′ such that fAh < gAh

and fAh
′ ≺ gAh

′. This is precisely the “static” version of the Sure-Thing-Principle (see

Section 2.2) derived from the “dynamic” principle under the assumption of consequen-

tialism. Equivalently, one could restate the Sure-Thing-Principle dynamically by saying

that the above definition of conditional preferences is well-posed.5

In the light of this argument it is not surprising that consequentialism and dynamic

consistency are properties of preferences characterized by the Sure-Thing-Principle and

vice versa. That is, if we start with prior preferences which respect the Sure-Thing-

Principle and conditional preferences are obtained from the prior ones by applying

Savage’s conditioning rule, then theses conditional preferences satisfy consequentialism

and dynamic consistency. Conversely, if conditional preferences respect consequen-

tialism and dynamic consistency, then prior preferences are consistent with the Sure-

Thing-Principle and conditional preferences are obtained from prior ones by applying

Savage’s conditioning rule. This result has been celebrated as the “folk wisdom” of

decision theory. It was formally proved, among others, by Ghirardato (2002, Lemma

2) in Savage’s framework, and by Siniscalchi (2010, Proposition 1) in a more general

framework, where preferences are defined on decision trees. The following lemma states

the result formally.6

Lemma 1. Let {<A}A∈A′ be the class of complete and transitive conditional prefer-

ences which satisfies consequentialism. Then {<A}A∈A′ satisfies dynamic consistency

if and only if < satisfies the Sure-Thing-Principle, and {<A}A∈A′ satisfies Savage’s

conditioning rule.

Finally, it is well-known (for instance, see Kreps, 1988; Ghirardato, 2002) that if

5This is exactly the restatement of the static Sure-Thing-Principle provided by Savage in the back

cover of the Dover edition of his book.

6Note that Lemma 1 applies to a more general class of preferences than the class of subjective

expected utility preferences.
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prior preferences satisfy Savage’s axioms, i.e. they are represented by maximization of

subjective expected utility with respect to prior probability distribution π together with

a utility function u, then the conditional preferences <A are obtained from the prior

ones by updating the prior π according to Bayes’ rule and by maintaining the same

utility function u. That is, the conditional preferences <A are represented as follows:

For all acts f, g ∈ F and any non-null event A:

f <A g ⇔
∫

Ω

u(f(ω)) dπA(ω) ≥
∫

Ω

u(g(ω)) dπA(ω), (2.7)

where πA is the Bayesian update of π conditional on A, i.e.:

πA(B) =
π(B ∩ A)

π(A)
for any B ⊂ Ω. (2.8)

Thus, in view of Lemma 1, dynamic consistency and consequentialism offer an equiva-

lent way to justify Bayesian updating. This issue was scrutinized by Ghirardato (2002).

He showed that, if the class of conditional preferences {<A}A∈A′ satisfies all Savage’s ax-

ioms except the Sure-Thing Principle, plus consequentialism and dynamic consistency,

then the prior preference relation < admits subjective expected utility representation

with respect to a unique prior probability distribution π and a unique (up to a positive

linear transformation) utility function u, and {<A}A∈A′ is a result of Bayesian updating

of <. That is, for any non-null event A, <A is represented as in Equation 2.7 with πA

defined as in Equation 2.8. Conversely, if the prior preference relation < admits subjec-

tive expected utility representation and the class of conditional preferences {<A}A∈A′

is the result of Bayesian updating, then {<A}A∈A′ satisfies dynamic consistency and

consequentialism.

Thus, the subjective expected utility theory of Savage provides a complete theory

of behavior in dynamic decision problems. It underpins Bayesian updating and ensures

that dynamic behavior respect two key properties, dynamic consistency and consequen-

tialism.
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Chapter 3

Non-Bayesian Decision Theory

3.1 Ellsberg’s Experiments

In his famous article titled “Risk, Ambiguity, and the Savage’s axioms”, Daniel Ells-

berg (1961) questioned the descriptive validity of the subjective expected utility theory.

He exemplified that a special type of uncertainty, called ambiguity, will affect subjects’

choice behavior in a way such that it cannot be explained by Savage’s theory. Ellsberg

associated ambiguity with the lack of information about likelihoods in situations charac-

terized neither by “measurable” nor “unmeasurable” uncertainty. Intuitively, ambiguity

designates situations in which probabilities for some events are known, whereas for other

ones they are not. “What is at issue might be called ambiguity of information, a quality

depending on the amount, type, reliability and ‘unanimity’ of information giving rise

to one’s ‘degree of confidence’ in an estimate of relative likelihoods” (Ellsberg, 1961,

p.657). Following Frisch and Baron (1988), Camerer and Weber (1992, p.330) concep-

tualized further the notion of ambiguity as “[. . . ] uncertainty about probability, created

by missing information that is relevant and could be known”. Ellsberg conjectured that

a majority of subjects facing ambiguity will prefer to bet on events with known proba-

bilities rather than on events for which probabilistic information is missing. To test his

claim he designed two experiments incorporating decision problems under ambiguity.

The first experiment, called the 3-color experiment, involves one urn filled with balls of
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three distinct colors.

3-color Experiment. There is an urn containing 30 balls, 10 of which are known

to be yellow and 20 of which are somehow divided between blue and green, with no

further information on the distribution. One ball will be drawn at random from the urn.

Subjects face two choice situations, I and II, in which they have to choose between bets

paying out 4 or nothing, depending on the color of the randomly drawn ball. In the

first choice situation, I, the subjects are asked to choose between two bets: f1, “You

receive 4 if a yellow ball is drawn and nothing otherwise”; and f2, “You receive 4 if a

blue ball is drawn and nothing otherwise”. Similarly, in the second choice situation, II,

the subjects have to choose one of two following bets: f3, “You receive 4 if a yellow or

green is drawn and nothing otherwise”; or f4, “You receive 4 if a blue or green is drawn

and nothing otherwise. Table 3.1 summarizes the two relevant choice problems in the

3-color experiment of Ellsberg.

Y ellow Blue Green

Choice I
f1 4 0 0

f2 0 4 0

Choice II
f3 4 0 4

f4 0 4 4

Table 3.1: Ellsberg’s 3-color experiment

Denote by Y,B and G the event that the ball drawn is yellow, blue and green, respec-

tively. For the moment, we describe an event to be unambiguous if its probability is

known, i.e. deducible from the available information. Events for which probabilities

are unknown are termed to be ambiguous. According to the available information it is

natural to assume that subjects view the events Y and B ∪ G as unambiguous. The

probabilities for their respective occurrence, one third and two thirds, are known. The

remaining events are ambiguous. For instance, the probabilities for the event B as well

as for the event G are only known to be somewhere between nil and two third. Thus,

the observable choices in the 3-color experiment can be viewed as revealing subjects’
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attitudes towards ambiguity. When considering subjects with strong preferences, there

are four possible patterns of preferences. Of course subjects can also be indifferent be-

tween two alternatives, but then it would not be valid to infer the “ambiguity attitude”

from their choices. Each column in Table 3.2 depicts the chosen bet in each of the two

relevant choice problems.

Ambiguity Attitude

Averse Neutral Loving

Choice I f1 f1 f2 f2

Choice II f4 f3 f4 f3

Table 3.2: Ambiguity attitudes in Ellsberg’s 3-color experiment

The choices depicted in the first and fourth column reflect subjects’ sensitive attitude

towards ambiguity. For instance, consider the first column in which the subjects prefer

f1 to f2 and f4 to f3. The subjects displaying such preferences are called ambiguity-

averse, since they are reluctant to bet on events with unknown probabilities. Conversely,

in the last column, the subjects prefer f2 to f1 and f3 to f4. These subjects are said

to exhibit ambiguity-loving behavior, since they favor to bet on events with unknown

probabilities.

These two patterns of choices are inconsistent with Savage’s Sure-Thing-Principle.

To see this illustrated, consider an ambiguity-averse subject with choices f1 and f4.

In the first choice situation, the subject faces two bets f1 and f2 paying off the same

amount, 0, if the ball drawn is green. On the other hand, in the second choice situation

she faces exactly the same bets labelled f3 and f4, but now with the common payoff

of 4 instead of 0 if in the case the ball drawn is green. According to the Sure-Thing-

Principle these common payoffs should not affect her choices. Preferences between

bets depend only on the payoffs in states in which the payoffs of the two bets being

compared are distinct. Thus, if the subject prefers to bet on yellow rather than on blue
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in the first choice situation then she should consequently make the same choices in the

second situation. But, this is exactly the logic being violated by the ambiguity-averse

subject. She reverses the choices in the second choice situation. One could hypothesize

that, the ambiguity-averse subject cannot decide between f3 and f4 without paying

attention to the common payoff of these two bets. Then, looking on all states in which

the payoff of 4 is possible, she recognizes that bet f3 offers 4 with a probability from

the interval between one third and one, whereas bet f4 pays the same amount with

the exact probability of one third. Since she does not know which probability is the

correct one she decides to choose the bet f4 with known probability of getting 4. Thus,

the subject exhibiting aversion towards ambiguity violates the separability property

inherent in the Sure-Thing-Principle. One explanation for this could be, for instance,

that she perceives the events B and G as complementary in the sense that information

given on their union cannot be further elaborated.

Moreover, for the ambiguity-averse subject there is no probability distribution that

can adequately represent her subjective beliefs. If to the contrary, we assume that

she has a subjective probability distribution π, then preferring f1 to f2 implies that

she has a higher probability for a yellow ball than for a blue ball to be drawn, i.e.

π(Y ) > π(B). But, the fact that she prefers f4 to f3 implies that she assigns a higher

probability to the event blue or green to be be drawn than to the event yellow or

green, i.e. π(Y ∪ G) < π(B ∪ G). Thus, by additivity π(Y ) < π(B). These two

deductions are contradictory. Choices revealing ambiguity-averse behavior violate not

only the subjective expected utility theory of Savage, but also any other theory based on

probabilistic sophistication in the sense of Machina and Schmeidler (1992, 1995), Grant

(1995) or Chew and Sagi (2006, 2008). According to this theory, subjects’ subjective

beliefs are represented by a unique and additive probability distribution, but preferences

do not need to have expected utility representation.

The second experiment, called 2-color experiment, was originated by Knight (1921).

It involves two urns each of them filled with balls of two possible colors.
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2-color Experiment. There are two urns, K and U, each containing 100 balls. Each

ball is either yellow or white. Urn K contains 50 yellow and 50 white balls. In Urn U

the proportion of yellow and white balls is unknown. One ball will be drawn at random

from each urn. Subjects face four bets paying out 4 or 0, depending on the urn and

the color of the ball drawn: f1, “You receive 4 if a yellow ball is drawn from Urn K

and nothing otherwise”; f2, “You receive 4 if a white ball is drawn from Urn K and

nothing otherwise”; f3, “You receive 4 if a yellow ball is drawn from Urn U and nothing

otherwise”; f4“You receive 4 if a white ball is drawn from Urn U and nothing otherwise”.

In the first choice situation, I, subjects are asked for each urn respectively which color

do they prefer to bet on. In the second choice situation, II, they are asked for each

color respectively which urn do they prefer to bet on. Table 3.3 summarizes the relevant

bets in the 2-color experiment.

Urn K Urn U

Y ellow White Y ellow White

f1 4 0 f3 4 0

f2 0 4 f4 0 4

Table 3.3: Ellsberg’s 2-color experiment

Denote by Y I and W I the event that a randomly drawn ball from Urn I ∈ {K,U} is

yellow and white, respectively. Since the probability for a yellow ball, as well as a white

one, to be drawn from Urn K is known to be one half, the events Y K and WK are

unambiguous. Conversely, the probability for a yellow ball, respectively a white one, to

be drawn from Urn U is only known to be in the interval between nil and one. Thus, the

events Y U and WU and the whole Urn U are purely ambiguous. Again, subjects’ choices

in the 2-color experiment allow us to draw conclusions about their ambiguity attitude.

For instance, as Ellsberg observed, a majority of his “non-experimental” subjects are

indifferent between betting on yellow and on white when facing Urn K and Urn U,

respectively. That is, f1 ∼ f2 and f3 ∼ f4. But, when asked whether they prefer that

the ball be drawn from Urn K or from Urn U for each color separately, they strictly
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prefer the unambiguous Urn U. That is, f1 � f3 and f2 � f4. Such choices can be

seen as revealing aversion towards ambiguity. Moreover, Ellsberg also observed a small

minority of subjects who prefer a ball to be drawn form Urn U rather than from Urn

K. These subjects seems to be ambiguity-loving. Again, these two pattern of choices

violate the Sure-Thing-Principle and they can not be rationalized by a single probability

distribution (see Gilboa, 2009, Chapter 12).

Ever since the contribution of Ellsberg there has been overwhelming empirical evi-

dence confirming ambiguity-sensitive behavior as a systematic and robust phenomenon.

Camerer and Weber (1992) provide a comprehensive survey of the literature on exper-

imental studies of decision making under ambiguity. They note a number of stylized

facts which emerged from these studies. It is worth mentioning a few of them: “Am-

biguity aversion is found consistently in variants of the Ellsberg problems [. . . ] (fact

1). Ambiguity aversion persists when preference is strict, excluding indifference (fact

2), and when ambiguity is reduced by drawing samples from ambiguous urns (fact 3).

Ambiguity averters have generally not been swayed in experiments that offered writ-

ten arguments against their paradoxical choices (fact 4)” (Camerer and Weber, 1992,

p.340).

As a part of this thesis we also ran the two experiments inspired by Ellsberg (1961).

Our results unequivocally confirm the previous observations. A majority of subjects

exhibit ambiguity-sensitive behavior. In the 2-color experiment conducted to examine

the relationship between ambiguity and randomization attitudes (see Chapter 4) we

observe that: 54.5% of subjects are ambiguity-averse, 11.3% are ambiguity-loving, while

37.5% exhibit neutral attitude towards ambiguity. In the 3-color experiment conducted

to test dynamic choice behavior under ambiguity (see Chapter 5) we find a similar

pattern: 54.8% of subjects prefer to bet on events with known probabilities, 7.4%

prefer to bet on events with unknown probabilities, while 38.1% are ambiguity-neutral.

These observations are true for all subjects with strong preferences.
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3.2 Ambiguity Models

In the wake of strong empirical evidence confirming ambiguity-sensitive behavior, sev-

eral generalizations of Savage’s subjective expected utility theory have been suggested.

These generalizations seek to provide an alternative representation of preferences apt

to explain the Ellsberg-type behavior. The leading idea is to abandon the main tenet

of Bayesianism, namely that subjective beliefs are representable by a single probabil-

ity distribution. When information about probabilities is too scarce, as in Ellsberg’s

experiments, it seems to be more plausible to assume that the decision maker behaves

as though she had many possible priors in mind, rather than a single one. There are

three widely studied approaches adopting this view. They differ from each other with

regard to the notion of subjective beliefs. In the first approach subjective beliefs are

represented by a non-additive prior called a capacity, in the second one, by a set of

priors called multiple priors and in the third one, by a prior over the set of priors called

a second order prior. Note, in these approaches, we discussed below, subjective beliefs

are represented uniquely, but not necessarily by a single prior probability distribution.

Non-Additive Prior. Historically, the first axiomatically sound theory of decision

making under ambiguity is the Choquet expected utility theory developed by Schmeidler

(1989). In this theory subjective beliefs are represented by a capacity. That is, a

normalized and monotone, but non-necessarily-additive, set function. The concept of

capacity generalizes the notion of probability by weakening the additivity property.

The only requirement is that they must satisfy the usual monotonicity property. In

other words, the lack of information about likelihoods hinders the decision maker from

forming beliefs which satisfy all mathematical properties of probabilities. The decision

maker, though, is able to assign weights to uncertain events in such a way that “larger”

events (with respect to set inclusion) are “more likely”. By weakening the separability

property inherent in Savage’s Sure-Thing-Principle, Schmeidler establish a set of axioms
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which are sufficient and necessary for the existence of a unique capacity ν and a unique

(up to a positive linear transformation) utility function u such that for any pair of acts

f, g ∈ F :

f < g ⇔
∫

Ω

u(f(ω)) dν(ω) ≥
∫

Ω

u(g(ω)) dν(ω). (3.1)

In the presence of non-additive beliefs, expected utilities are computed by means of

Choquet integrals, introduced by Gustave Choquet (1954). For this reason this the-

ory is called the theory of Choquet expected utility maximization. In Section 6.1 the

notion of capacities and Choquet integrals is defined and discussed in detail. Within

the Choquet expected utility theory, the decision maker’s attitude towards ambiguity

is mainly captured by the mathematical properties of capacity (see Section 3.3). How-

ever, one issue needs to be clarified. How are subjective beliefs, represented uniquely

by a capacity, linked to the idea of a non-single prior? Roughly speaking, the tech-

nique of Choquet integration provides an answer. The Choquet integral of an act f

with respect to the capacity ν can been written as an expected utility with respect to

an additive probability measure m. However, the probability measure m depends on

the act f being evaluated. More precisely, the measure m depends on how events are

ranked with respect to the attractiveness of their outcomes assigned by the act f . In

other words, the weight ascribed to an event by m depends not only on the event, but

also on how good the outcome yielded by the event under f is in comparison with the

outcomes yielded by the other events. In general, two non-comonotonic acts, i.e. acts

generating distinct ranking position of mutually exclusive events, will be evaluated with

respect to distinct probability measures. Acts generating the same ranking position of

states, so-called comonotonic acts, are evaluated with respect to the same probability

measure. This is the way in which the independence of beliefs from tastes, the key

property of the subjective expected utility theory, is generalized in Schmeidler’s theory.

The separability of beliefs from tastes is respected only among comonotonic acts. One

could term this property, “comonotonic separability of beliefs from tastes”. For these

reasons, the concept of capacities can be seen as a mathematical tool “summarizing”
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all such “rank-dependent” probabilistic scenarios.

Multiple Priors. The second prominent theory known as the maxmin expected utility

theory, or “multiple prior” model, was pioneered by Gilboa and Schmeidler (1989).

This approach relies on the idea that subjective beliefs are represented by a set C of

probability distributions. Intuitively, one can think of each prior in C as describing

a possible probabilistic scenario that the decision maker has in mind. With multiple

priors in mind the decision maker can still compute expected utility of an act as usual,

but now with one expected value per prior. When evaluating the act, the decision

maker considers only the probabilistic scenario in which she gets the lowest expected

utility. To decide between two acts she compares their lowest expected utilities (which

may be obtained with respect to distinct priors) and chooses the one that yields the

maximum, among the lowest, expected utility. Gilboa and Schmeidler (1989) provided

an axiomatic justification for this decision rule. They established a set of axioms that

are necessary and sufficient for the existence of a unique convex and closed set of

probability measures C and a unique (up to a positive linear transformation) utility

function u such that for any pair of acts f and g:

f < g ⇔ min
π∈C

∫
Ω

u(f(ω)) dπ(ω) ≥ min
π∈C

∫
Ω

u(g(ω)) dπ(ω). (3.2)

As in the Savage’s theory, the set C is also purely subjective and represents the decision

maker’s perception of ambiguity. When C = {π} is a singleton then the decision maker

behaves as a subjective expected utility maximizer with a single prior π. By taking the

minimum of the set of all possible expected utility values of an act f the decision maker

reveals her reluctance towards ambiguity. The cautious attitude of the decision maker

featured by the multiple priors model is often viewed as the result of a malevolent “Na-

ture” which can influence the occurrence of events to her disadvantage. That is, Nature

chooses a probability π from the set C with the objective of minimizing her expected

utilities conditional on her choices. Under this view, Maccheroni, Marinacci, and Rus-
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tichini (2006) extended the multiple prior model by generalizing Nature’s constraint.

In their extension, called theory of variational preferences, the constraint on Nature is

given by a cost function associated with the choice of a particular probability distri-

bution. The cost function is then supposed to capture the decision maker’s attitude

towards ambiguity. In other extensions, Ghirardato, Maccheroni, and Marinacci (2004)

derive the α-maxmin expected utility representation. In this representation an act is

evaluated as a linear combination of maxmin expected utility and maxmax expected

utility in which not the worst, but the best expected utility is considered. The maxmin

expected utility is weighted with a coefficient α ∈ [0, 1] while the maxmax expected util-

ity is weighted with the coefficient 1−α. Both maxmin and maxmax expected utilities

are taken with respect to a set of set of priors C, which is a part of the representation.

That is, the set of priors C and the coefficient α are uniquely defined and may be inter-

preted as ambiguity and ambiguity attitude respectively. For instance, α = 1 indicates

an extreme aversion towards ambiguity (as in the multiple prior model). By contrast,

α = 0 reflects purely ambiguity-loving behavior. Furthermore, modeling α-maxmin

preferences in setups with a finite set of states of nature imposes additional restrictions

on the parameter α. For such setups, Eichberger, Grant, Kelsey, and Koshevoy (2010)

showed that preferences over acts satisfy the axioms of Ghirardato, Maccheroni, and

Marinacci (2004) if and only if α = 0 or α = 1. Thus, within finite setups, α-maxmin

preferences may only exhibit the two extreme attitudes towards ambiguity.

Second Order Prior. The third approach, proposed by Nau (2006) and further de-

veloped by Klibanoff, Marinacci, and Mukerji (2005), is often referred to as the second

order prior model, or the smooth ambiguity model. In this approach the decision pro-

cess is modeled as a two-stage process, however, differently than in the tradition of

Anscombe and Aumann (1963). A decision maker starts with a set of all probabilistic

scenarios captured by the set ∆(Ω).1 In addition to it, she comes up with a probability

1That is, ∆(Ω) =
{
p : Ω→ [0, 1] |

∑
ω∈Ω p(ω) = 1

}
.
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distribution µ over the set of priors, called a second order prior. Intuitively, one can

think of the prior µ as describing the probabilistic belief of the decision maker that a

particular probabilistic scenario will occur. For instance, consider the set-up of Ells-

berg’s 3-color experiment described in Section 3.1. The decision maker may think that

the urn has different compositions, each one representing a possible probabilistic sce-

nario. Altogether there are twenty-one possible scenarios (from all 20 balls being blue

to all 20 balls being green). If the decision maker considers all twenty-one scenarios

as possible they will be in the support of her subjective probability distribution µ over

∆(Ω). Furthermore, she can distinguish which of the probabilistic scenarios is subjec-

tively more likely to occur than the other. The decision process can be summed up as

follows. In the first stage a composition of the urn is drawn among a set of hypothetical

compositions according to probability µ. In the second stage, a ball is drawn from the

urn whose composition has been determined by the realisation of µ. Klibanoff, Mari-

nacci, and Mukerji (2005) showed that under the seemingly mild assumption imposed

on preferences over F , the decision maker choices are characterized by the following

decision rule. For any pair of acts f and g, f < g if and only if:∫
∆(Ω)

φ
(∫

Ω

u(f(ω)) dp(ω)
)
dµ(p) ≥

∫
∆(Ω)

φ
(∫

Ω

u(g(ω)) dp(ω)
)
dµ(p), (3.3)

where φ is function from R to R. The function φ expresses the decision maker’s attitude

towards ambiguity. The evaluation of an act f goes as follows. Once the probabilistic

scenario is fixed, the decision maker faces a situation with known probability p and

evaluates the act f by its expected utility. Since there are many possible scenarios, the

decision maker gets a set of expected utilities of f , one for each probabilistic scenario.

Then, instead of taking the minimum of these expected utilities, as the multiple priors

approach does, an expectation of the function φ distorting the expected utilities is

taken. The role of the distortion φ is crucial. If φ is linear then the decision criterion

in Equation (3.3) reduces to the expected utility maximization rule with respect to a

“reduced” probability distribution obtained by the combination of µ and all possible
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p’s. If the distortion φ is not linear, the µ and all p’s cannot be combined to construct

a reduced probability distribution. In this case, the decision maker takes the expected

utility with respect to µ and φ of the expected u-utilities with respect to p’s. A concave

distortion φ reflects aversion towards ambiguity, in the sense that it places larger weights

on lower expected u-utilities. By contrast, a convex distortion φ reflects ambiguity-

loving behavior.

These three prominent models tackle the problem raised by Ellsberg. In particular,

they allow ambiguity and the decision maker’s attitude towards it to play role in decision

making. Nevertheless, they are not immune to criticism. In a recent article Machina

(2009) proposed a counterexample which points out the limitations of the Choquet

expected utility theory of Schmeidler (1989) in the same spirit as Ellsberg’s experiments

point out the limitations of Savage’s theory. He constructed a 4-color experiment and

conjectured that a majority of subjects will exhibit an intuitive pattern of preferences

which cannot be explained by the Choquet expected utility theory. L’Haridon and

Placido (2010) provided experimental evidence which confirms Machina’s conjecture.

Moreover, Baillon, L’Haridon, and Placido (2010) showed that Machina’s paradox poses

difficulties not only for the Choquet expected utility theory, but also for the other

ambiguity models discussed in this section (namely, the multiple priors model, the

variational preferences, the α-maxmin model and the smooth ambiguity model).

3.3 Ambiguity Attitudes

In Section 3.1, we presumed a decision maker to be ambiguity-averse whenever she is

reluctant to bet on events with unknown probabilities. A decision maker who is prone

to bet on such events is called ambiguity-loving. In this section we recall two methods

used in the literature which attempt to operationalize the notion of ambiguity attitudes

in a formal fashion.

Many models incorporating ambiguity-sensitive behavior adopt Schmeidler’s (1989)
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notion. It states that the decision maker is ambiguity-averse if for any two acts she is

indifferent between, she prefers a random mixture between these two acts. The idea

of using randomizing devices in the presence of ambiguity was originally proposed by

Raiffa (1961) in his comment on Ellsberg’s paradox.2 To elucidate the relevant part

of Raiffa’s argument consider again the 2-color experiment by Ellsberg as described in

Section 3.1. A subject who was indifferent between betting on white and on yellow

when facing each urn separately (i.e. f1 ∼ f2 and f3 ∼ f4) was called to be ambiguity-

averse when she strictly preferred to bet on the urn with known proportion of balls

(i.e. f1 � f3 and f2 � f4). Now, suppose that the subject has access to a fair coin

and she flips this coin to decide on which color to bet. The decision maker declares to

choose f3 if heads appears and f4 otherwise. When evaluating such a strategy, Raiffa

(1961), but also Ellsberg (2001, Chapter 8) in his reply to Raiffa, argued that this

“mixed strategy” yields exactly the same chance of getting 4 or 0 as the unambiguous

bets f1 and f2, namely 50 : 50. For the moment, call this strategy a mixture between

f3 and f4 and denote it by h. The argument of Raiffa is the following: Imagine that

the ball has already been drawn from Urn U, but the subject has not yet seen its

color. If, on the one side, the ball drawn is yellow, then the mixture h offers exactly

a 50 : 50 chance of getting 4 or 0; if heads turns up, the subject chooses f3 and gets

4 when the color of the ball drawn is revealed, and if it is tails she chooses f4 and

gets nothing. Likewise if the ball is white, then h offers again a 50 : 50 chance of

4 or 0; if heads turns up, the subject chooses f3 and gets nothing when the color is

revealed, and if it is tails she chooses f4 and gets 4. Thus, the subject is “guaranteed”

a 50 : 50 chance of 4 or 0 regardless whether the ball drawn is yellow or white. For this

reason, she should be indifferent between h and either unambiguous bets f1 and f2. In

view of this argument, the ambiguity-averse subject should always display a preference

2Raiffa (1961) argued that subjective expected utility is a “normative prescription” to which the

decision maker should aspire. Accordingly, as long there is access to an objective randomizing device

such as a coin, there is no reason to behave in an ambiguity-averse manner.
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for mixtures between bets whose outcomes depend upon the realization of ambiguous

events. Note, an implicit assumption in this argument is the fact that first the ball is

drawn and then the coin is flipped to determine the outcome of h. This is exactly the

same way uncertainty resolves in the two-stage approach of Anscombe and Aumann

(1963). In this setting Schmeidler, formulated his definition of ambiguity aversion. As

mentioned in Section 2.2, in the formal framework of Anscombe and Aumann, objects

of choice are horse-race/roulette-wheel acts, and random mixtures between two such

acts are well-defined. Adapting their framework, the bet f3 (resp. f4) can be seen as a

function assigning a degenerate lottery yielding 4 for sure, if the ball drawn from Urn U

is yellow (resp. white); otherwise, a degenerate lottery yields 0 for sure. Consequently,

the mixture between f3 and f4, based an a coin flip, yields a random mixture between

the two degenerate lotteries ascribed to each color by the respective acts f3 and f4.

That is, the mixture h = (1
2
)f3 + (1

2
)f4 yields a lottery which pays 4 with a probability

of one half, and 0 with probability of one half given that the ball drawn from Urn U is

yellow; and it yields exactly the same lottery given that the ball drawn from Urn U is

white. Table 3.4 depicts these three acts.

Urn U

Y ellow White

f3 4 0

f4 0 4

h = (1
2
)f3 + (1

2
)f4 (1

2
)4 + (1

2
)0 (1

2
)4 + (1

2
)0

Table 3.4: Random mixture in an Anscombe and Aumann setting

Thus, in the setting of Anscombe and Aumann, the mixture αf + (1 − α)g can be

seen as randomization over f and g with known probabilities α and 1−α, respectively.

Under this interpretation, preference for mixtures implies preference for randomization.

Thus, the decision maker is ambiguity-averse in the sense of Schmeidler if she exhibits
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preference for randomization (or is randomization-loving). Conversely, the decision

maker is ambiguity-loving if she dislikes randomization (or is randomization-averse).

Neutrality towards ambiguity is associated with neutrality towards randomization.

Axiom 4 (Ambiguity attitudes). For any f, g ∈ H and any α ∈ (0, 1) a decision

maker with < over H is said to be:

(i) ambiguity-averse if f ∼ g =⇒ αf + (1− α)g < f (or g),

(ii) ambiguity-loving if f ∼ g =⇒ αf + (1− α)g 4 f (or g),

(iii) ambiguity-neutral if both (i) and (ii) hold.

When evaluating acts in the formal setting of Anscombe and Aumann, first, expec-

tations are taken state by state with respect to known probabilities (over outcomes).

This yields a function which assigns an expected utility to each state. In the second

stage, an integral of this function is taken with respect to state for which probabilities

are unknown. Therefore, random mixtures between two acts are often said to have the

effect of “smoothing” utilities of outcomes across states. In the words of Schmeidler

(1989, p.582), ambiguity aversion “[. . . ] means that “smoothing” or averaging utility

distributions makes the decision maker better off”.

In the Choquet expected utility model, ambiguity aversion is mainly described by

the properties of the capacity characterizing the decision maker’s beliefs. Schmeidler

(1989) showed that a decision maker with Choquet expected utility preferences exhibits

ambiguity aversion if and only if her capacity is convex (see Section 6.1). In the maxmin

expected utility model of Gilboa and Schmeidler (1989) and in its generalization (the

variational preferences of Maccheroni, Marinacci, and Rustichini, 2006), the ambiguity

aversion axiom is imposed directly on preferences. Whether the preferences in the

smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005) display ambiguity

aversion in the sense of Schmeidler has been hotly debated. While Epstein (2010)

excludes this possibility, Klibanoff, Marinacci, and Mukerji (2009) defend the opposite
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position and argue that the decision maker with a strictly concave function φ will also

exhibit preference for randomization.

The preference for randomization as an expression of ambiguity aversion is less

convincing when one evaluates the mixtures between bets conditional on the realisation

of a random device. Suppose that the ambiguity-averse subject has a linear utility

function and values either of the two bets f3 and f4 at prize 1, due to ambiguity.

Then, if the coin comes up heads the subject chooses f3, which she valued at 1, and

if the coin comes up tails she chooses f4, which has the same value as f3. Ellsberg

(2001, Chapter 8) argues that it is plausible to assume that the subject also values

the equiprobable mixture h between these two bets at the same prize, 1. Even when

the coin flip and the draw of a ball from Urn U is carried out simultaneously it is

not clear at all why the ambiguity-averse subject should assign a higher value to the

random mixture between f3 and f4. This issue was scrutinized by Eichberger and Kelsey

(1996b). They argue that the decision maker with non-additive beliefs will display a

strict preference for randomization in the Anscombe and Aumann framework, but she

will not do so in the setting of Savage. In the setting of Anscombe and Aumann,

the randomizing device is incorporated in the structure of the outcome space. In the

setting of Savage, the set of outcomes is an arbitrary set and does not need to be

closed under convex combinations. Therefore, to model a randomizing device, one

needs, for instance, to expand the original state space by forming a product space.

One ordinate in that space describes all possible realisations of the randomizing device.

Adopting such framework, Eichberger and Kelsey (1996b) showed that the ambiguity-

averse decision maker with convex capacities will never display a strict preference for

randomization. That is, in the 2-color experiment, the ambiguity-averse subject should

be indifferent between all three acts h, f3 and f4. Sarin and Wakker (1992), Ghirardato

(1997) and Klibanoff (2001b) have already observed that the choice of the one-stage

setting of Savage as opposed to the two-stage setting of Anscombe and Aumann may

lead to different predictions regarding Choquet preferences. Sarin and Wakker (1992)
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attribute these differences to distinction between one- and two-stage Choquet integrals,

Ghirardato (1997) to failure of Fubini-theorem, while Klibanoff (2001b) attributes it to

violation of stochastic independence. In the next chapter we explore the relationship

between different randomization and ambiguity attitudes in an experimental study.

Recently, Epstein (1999) and Ghirardato and Marinacci (2002) suggested a com-

parative approach to define ambiguity attitudes. In this approach ambiguity attitudes

are defined without requiring the existence of auxiliary concepts such as randomizing

devices. For instance, when defining ambiguity aversion, first a comparative notion

of ambiguity aversion is established, and then an absolute definition is derived. The

comparative definition is based on the following idea: if a subject prefers an unambigu-

ous bet to an ambiguous one, then a more ambiguity-averse subject will do the same.

For the absolute definition, a class of ambiguity-neutral preferences is chosen. Then, a

subject is ambiguity-averse if there is a benchmark preference order in this class such

that the subject is more ambiguity-averse than this benchmark. Epstein (1999) and

Ghirardato and Marinacci (2002) differ in their assumptions about the benchmark and

what can be regarded as an unambiguous bet. For Epstein, unambiguous bets are bets

for which payoffs depend on exogenously given unambiguous events. That is, events

for which randomness is objectively known (for instance a fair coin, an urn with known

proportion of balls, etc.). Ghirardato and Marinacci consider only constant acts as

unambiguous acts. An act is constant, if it assigns the same outcome to all states of

nature. Let Fua be the set of unambiguous bets. Consider two preference relations

<1 and <2 on F . Then, <2 is said to be more ambiguity-averse than <1, if for any

unambiguous bet h ∈ Fua and any bet e ∈ F :

h <1 (�1)e ⇒ h <2 (�2)e. (3.4)

Let <B be a benchmark order in a class of ambiguity-neutral preferences. Then, <

is said to be ambiguity-averse if there exists a benchmark preference relation <B such
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that for any h ∈ Fua and any bet e ∈ F :

h <B (�B)e ⇒ h < (�)e. (3.5)

Conversely, < is said to be ambiguity-loving if there exists a benchmark preference

relation <B such that for any h ∈ Fua and any bet e ∈ F :

h 4B (≺B)e ⇒ h 4 (≺)e. (3.6)

If < is both ambiguity-averse and ambiguity-loving then < is ambiguity-neutral. With

regard to the class of benchmark orders, Epstein (1999) assumes preferences to be prob-

abilistically sophisticated in the sense of Machina and Schmeidler (1992). Ghirardato

and Marinacci (2002) take subjective expected utility preferences in the sense of Savage

(1954) as a benchmark.

In Section 4.2 we apply the comparative approach to derive subjects’ ambiguity atti-

tudes in the 2-color experiment without presupposing that they are indifferent between

betting on white and on yellow when facing each Urn K and Urn U, respectively.
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Chapter 4

Ambiguity and Randomization

Attitudes

In this chapter we examine the relationship between different attitudes towards ambi-

guity and randomization in an experimental study.1 In Section 3.3 we discussed this

relationship from a theoretical point of view and showed that there are different pre-

dictions about randomization attitudes depending on how the randomization device

is modeled. In view of such competing predictions it would be reasonable to look at

real behavior. As Klibanoff (2001b, p.618) writes: “Any discussion of behavior, such

as preference for randomization, that departs from what is considered standard raises

some natural questions. First, descriptively, do actual decision makers behave in this

way? Unfortunately, there are no studies that I am aware of that examine this issue”.

To answer this question, we designed and implemented an experiment suited to study

the relationship between different attitudes towards ambiguity and randomization.

The rest of this chapter is organized as follows. The next section describes our

experimental design. In Section 4.2, we formally define randomization and ambiguity

attitudes and derive our main hypotheses. Section 4.3 deals with the implementation.

Section 4.4 presents the results. We conclude in Section 4.5.

1The content of this chapter is based on the article Dominiak and Schnedler (2010).
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4.1 Experimental Design

In order to examine the relationship between ambiguity and randomization attitude,

information about both attitudes from the same subject is required. We elicited the

value of various bets which are based on three random devices. This section describes

the random devices, the bets, and the elicitation mechanism.

4.1.1 Random Devices and Tickets

During the experiment, we use three different random devices: an urn with 20 table

tennis balls of which half were white and the other half yellow (urn with known propor-

tions or short: Urn K), an urn with 20 table tennis balls with an unknown proportion

of yellow and white balls (short: Urn U), and a coin.

Subjects were informed that only white and yellow balls are used in the experiment.

Urn K’s contents were shown to the subjects before the experiment, while Urn U’s

contents were only revealed after the experiment. During the experiment, both urns

were placed on a table in view of the subjects to demonstrate to them that the contents

cannot be manipulated. For similar reasons, the coin was volunteered by one of the

subjects and not by us.

In the experiment bets were called tickets and outcomes were expressed in Taler, our

experimental currency unit. While subjects knew that they would be offered different

tickets involving the three random devices, they did not know which or how many

tickets they would face. In order to later identify subjects who regard the coin as fair,

we introduced the following tickets.

1. Head ticket, h: 100 Taler are paid if the coin lands heads up and nothing

otherwise.

2. Tails ticket, t: 100 Taler are paid if the coin lands tails up and nothing otherwise.

To elicit ambiguity attitude, we ask the subjects to evaluate the following tickets for

Urn K.
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3. White ticket for Urn K, wK : 100 Taler are paid if the ball drawn from Urn K

is white and nothing otherwise.

4. Yellow ticket for Urn K, yK , 100 Taler are paid if the ball drawn from Urn K

is yellow and nothing otherwise.

Ambiguity attitude is then detected by comparing the subject’s certainty equivalent for

these tickets with that of the following similar tickets for Urn U.

5. Yellow ticket for Urn U, yU : 100 Taler are paid if the ball drawn from Urn U

is yellow and nothing otherwise.

6. White ticket for Urn U, wU : 100 Taler are paid if the ball drawn from Urn U

is white and nothing otherwise.

The next ticket involves two random devices: the coin and Urn U. The subject always

receives a ticket for Urn U. Whether this ticket will be yellow or white is determined

by flipping the coin. Since the color of the ticket changes with the outcome of the coin

toss, we use the name chameleon ticket.

7. Chameleon ticket for Urn U, cU : If the coin lands heads up, the subject

receives a yellow ticket for Urn U. If the coin lands tails up the subject receives a

white ticket for Urn U.2

By comparing the certainty equivalent for the chameleon ticket with that of a yellow

or white ticket for Urn U, we can infer whether a subject is randomization-loving.

For our predictions later, it must be possible to identify whether subjects are indif-

ferent between yellow and white tickets on Urn U. This necessitates that subjects are

asked about both tickets, which in principle allows them to hedge against ambiguity.

The danger of hedging against ambiguity is that subjects no longer exhibit ambiguity

2Put differently, the subject receives 100 Taler in two cases: if the coin lands heads up and the ball

drawn from Urn U is yellow and if the coin lands tails up and the ball drawn from Urn U is white. In

the other two cases, the subject receives nothing.
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aversion. We tried to reduce this danger by not informing subjects about the number

and types of bets and switching the order in which tickets are presented for Urn U.

Consequently, subjects do not know that there will be a hedging opportunity when

evaluating the yellow ticket for Urn U. As we will see later, our method was successful

in the sense that the proportion of ambiguity-averse subjects in our experiment is in

line with that of similar experiments.

4.1.2 Eliciting Ticket Values

In order to elicit ticket values, we employ the following procedure. For each ticket,

the subject had to make twenty choices. The first choice was between a ticket and a

payment of 2.5 Taler. The second was between a ticket and a payment of 7.5 Taler

etc. The payments offered to the subject increased in steps of 5 Taler until the last

choice, in which the subject had to choose between a ticket and 97.5 Taler. The point

at which the subject switches from the ticket to the payment then reveals the value of

the ticket to the subject (up to 5 Taler). All of the subject’s choices were implemented

and affected the subject’s payoff. To ensure independence, a separate draw was carried

out for each ticket. The draws took place after all choices were made to avoid wealth

effects.

Many experiments employ less time-consuming and laborious methods of paying

subjects by combining choices over bets with additional randomization (see e.g. Holt

and Laury, 2002; Becker, DeGroot, and Marschak, 1964). Such methods have also

been used in experiments on ambiguity. For example, Hey, Lotito, and Maffioletti

(2010) randomly select only one of the subjects’ choices to be payoff-relevant, while

Halevy (2007) employs the mechanism by Becker, DeGroot, and Marschak (1964). In

the Becker-DeGroot-Marschak mechanism, the subject receives a ticket and states the

certainty equivalent. Then, a random offer is generated and the subject has to sell the

ticket if the offer exceeds the stated value.

Despite the considerable effort involved, we decided to pay all decisions rather than
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employing a mechanism that relies on additional randomization. We do so for two

reasons. First, as Karni and Safra (1987) point out, a method based on additional ran-

domization, such as the Becker-DeGroot-Marschak mechanism, is no longer guaranteed

to elicit the true (subjective) value for subjects who violate the independence axiom.3

Since ambiguity-averse subjects violate the independence axiom and we are interested

in their valuations, we cannot use this mechanism.4

Second, had we introduced another source of randomness, all bets faced by the

subject would have been compounded; none would have been purely based on the three

devices that we are interested in (Urn K, Urn U, coin). By implementing all choices,

we avoid that randomization attitude interacts with other sources of randomness.

4.2 Ambiguity and Randomization Attitude

In this section, we define randomization and ambiguity attitude, relate them to concepts

from the literature, and derive empirical predictions. Let L be the set of tickets faced

by subjects in our experiment. The binary relation < represents subjects preferences

over L. Denote by µ(l) a subject’s certainty equivalent or value of ticket l in L. For

any two tickets k and l in L, we say that subjects weakly prefer k to l, written k < l,

if and only if µ(k) > µ(l).

4.2.1 Empirical Definitions

Comparing the certainty equivalents for the white and yellow ticket for Urn U with

that for the chameleon ticket, we can classify subjects according to their randomization

attitudes. Consider a subject who favors the yellow ticket yU to the white ticket wU for

3A similar observation has been made by Holt (1986). The Becker-DeGroot-Marschak mechanism

also fails to elicit true valuations if the compound lottery axiom is violated (Segal, 1988).

4Apart from the theoretical argument, there is empirical evidence that preference reversals in mea-

surements of ambiguity aversion occur when using the Becker-DeGroot-Marschak mechanism—see

Trautmann, Vieider, and Wakker (2009).
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urn U , i.e., yU < wU . Such a subject is randomization-averse if she values the chameleon

ticket even less than the white ticket wU . Conversely, this subject is randomization-

loving if she values the chameleon ticket even more than the yellow ticket yU . If a

subject values the chameleon ticket weakly more than the white ticket wU but weakly

less than the yellow ticket wU , we say she is randomization-neutral. The next definition

formalizes this idea, where sU and tU stands for the favorite and least favorite ticket on

Urn U.

Definition 2 (Randomization attitude). A subject with sU < tU , where sU , tU ∈

{yU , wU}, is: (i) randomization-averse if sU < tU � cU ,

(ii) randomization-neutral if sU < cU < tU ,

(iii) randomization-loving if cU � sU < tU .

As will become clear later, this definition coincides with the idea of a preference for

convex combinations embodied in Schmeidler’s ambiguity aversion axiom (1989) for

subjects who are indifferent between the yellow and white ticket on Urn U.

Subjects are typically regarded to be ambiguity-averse if they prefer betting on the

urn with known proportions of yellow and white balls. Let us be more precise about this

statement by considering a subject who weakly prefers the yellow to the white ticket

on both urns (yK < wK and yU < wU). Suppose this subject compares her two favorite

tickets (yK and yU) and her two least favorite tickets (wK and wU) across Urn K and

Urn U. Then this subject is ambiguity-averse if she weakly prefers the tickets on Urn

K to those on Urn U for her favorite as well as least favorite tickets and her preference

is strict in at least one case: yK < yU and wK < wU with at least one strict preference

(�). Conversely, she is ambiguity-loving if she weakly prefers the tickets based on Urn U

in both cases and strictly in at least one case: yU < yK and wU < wK with at least one

strict preference (�). Finally, she is ambiguity-neutral if she either prefers another urn

for her favorite tickets than for her least favorite tickets or if she is indifferent between

urns for the favorite as well as least favorite tickets: yU � yK but wK ≺ wU , or yU � yK

but wK � wU , or yU ∼ yK and wU ∼ wK . The following definition generalizes this

50



idea to arbitrary preferences, where qK and rK stands for the favorite and least favorite

ticket on Urn K, and sU and tU for the favorite and least favorite ticket on Urn U. The

defined order is complete: each preference is either ambiguity-averse, ambiguity-loving,

or ambiguity-neutral.

Definition 3 (Ambiguity attitude). A subject with qK < rK and sU < tU , where

qK , rK ∈ {yK , wK} and sU , tU ∈ {yU , wU}, is:

(i) ambiguity-averse if qK < sU and rK < tU with at least one (�),

(ii) ambiguity-loving if qK 4 sU and rK 4 tU with at least one (≺),

(iii) ambiguity-neutral otherwise, i.e.,

if qK ∼ sU and rK ∼ tU ,

or qK � sU and rK ≺ tU ,

or qK ≺ sU and rK � tU .

In Section 3.3 we briefly described the comparative approach to define ambiguity at-

titudes proposed by Epstein (1999) and Ghirardato and Marinacci (2002). It can be

shown that the comparative approach yields the above definition of ambiguity attitudes

when the class subjective expected utility preferences is taken as a benchmark and when

bets defined on the urn with known proportions of balls are regarded as unambiguous

bets (see Section 4.6 for the proof).

Proposition 4.1. Given that yellow and white ticket defined on urn K are viewed

as unambiguous, yK , wK ∈ Fua, and taking subjective expected utility preferences as

the benchmark, the two-stage approach yields the definition of ambiguity attitude from

Definition 3.

4.2.2 Predictions

The general definitions allow for any combination of ambiguity and randomization at-

titude. For example, a subject may in principle be ambiguity-neutral but like random-

ization or it may be averse to ambiguity and randomization. This section uses existing

theoretical models to restrict the relationship between ambiguity and randomization

attitude and derive predictions.
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In order to represent ambiguity aversion, a large class of models appeals to Schmei-

dler’s notion (1989) that a mixture between two bets is preferred to each of the bets

itself. In the specific framework used by Schmeidler, bets are mappings from events to

probability distributions over the set of payoffs, so that the convex combination of two

bets, f and g: αf + (1− α)g with α ∈ (0, 1) is well defined. Schmeidler calls a subject

with f < g ambiguity-averse if

αf + (1− α)g < g. (4.1)

Intuitively, smoothing utility across ambiguous events makes an ambiguity-averse sub-

ject better off. In perfect analogy, subjects are ambiguity-loving if αf + (1− α)g 4 f.

For subjects who violate the independence axiom, preferences are strict.

Taking ‘yellow’ and ‘white’ to be events and the probability distribution in each

event to result from the coin flip, the chameleon ticket is a convex combination in the

sense of Schmeidler. The axiom then means that ambiguity-averse subjects strictly

prefer the chameleon ticket, i.e., the mixture of two bets, to the least favorite ticket on

Urn U. Likewise, ambiguity-loving subjects should prefer their favorite ticket on Urn U

to the chameleon ticket.

For subjects who are indifferent between white and yellow on Urn U, yU ∼ wU ,

Schmeidler’s notion fully coincides with our definition of randomization attitude (see

Definition 2). Based on the various models that appeal to this notion in order to explain

ambiguity attitude, we hence predict ambiguity-averse subjects to be randomization-

loving and ambiguity-loving subjects to be randomization-averse (given yU ∼ wU).

Hypothesis 1

For subjects who are indifferent between the yellow and white ticket on Urn U, yU ∼ wU ,

ambiguity and randomization attitude are negatively associated: ambiguity-averse sub-

jects are randomization-loving and vice versa.
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As the null hypothesis, we consider that ambiguity and randomization attitude are not

associated.

If ambiguity aversion is modeled using Choquet expected utility models with con-

vex capacities, the relationship between ambiguity and randomization attitude depends

on whether the randomization device is modeled as part of the consequence space (C-

approach) or as a part of an extended state space (S-approach). Eichberger and Kelsey

(1996b) show that ambiguity-averse decision makers who are indifferent between two

bets based on an uncertain urn, yU ∼ wU , and who regard the randomization device as

fair, h ∼ t, are randomization-loving in the C-approach but are randomization-neutral

in the S-approach. This directly leads to the hypotheses.

Hypothesis 2C

Ambiguity-averse subjects with yU ∼ wU and h ∼ t are randomization-loving.

Hypothesis 2S

Ambiguity-averse subjects with yU ∼ wU and h ∼ t are randomization-neutral.

We test these two alternatives against the null hypothesis that ambiguity-averse sub-

jects with yU ∼ wU and h ∼ t are equally likely to be randomization-neutral and

randomization-loving.

4.3 Implementation

We ran a total of 5 sessions with 90 subjects. All sessions were conducted in the

experimental laboratory at the University of Mannheim in September 2008. Subjects

were primarily students who were randomly recruited from a pool of approximately

1000 subjects using an e-mail recruitment system. Each subject only participated in

one of the sessions. Ticket values were elicited electronically using the software z-tree

(Fischbacher, 2007).
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After the subjects’ arrival at the laboratory, they were randomly seated at the

computer terminals. Instructions were read out loud and ticket types were practically

explained. Then, the subjects were given time to study the instructions (see appendix

for a translation). Finally, they were asked to answer a series of questions to test their

understanding of the instructions. During all this time, subjects could ask the experi-

menters clarifying questions. This part lasted about 30 minutes. It was followed by the

evaluation of the tickets. In order to simplify the input for subjects, we programmed

a slider that allowed them to specify their value for each ticket. The program then

automatically selected choices that were consistent with this ticket value. Using the

slider was not obligatory and a subject could arbitrary alter its choice until he or she

decided to finish evaluation of a specific ticket (see Figure 1 in the appendix for a screen

shot). After the evaluation of tickets, we asked subjects questions about their demo-

graphics and attitudes towards ambiguity. We also gave them some problems to test

their statistics knowledge and cognitive ability. Subjects took about 30 minutes for this

second part. The last and final part required drawing balls and flipping coins in order

to determine payoffs. With 8 types of tickets and twenty choices between ticket and

fixed payment for each type, subjects could obtain up to 160 tickets. This last part

required roughly 30 minutes so that the whole experiment lasted about 90 minutes.

At the end of the experiment, we paid each subject privately in cash. All payoffs

were initially explained in Taler that were later converted using the rate of 100 Taler=10

cents. Subjects earned on average 11.35 Euro.

4.4 Results

Two subjects violated transitivity in their choices, which leaves us with 88 independent

observations. In line with previous experimental studies (see Camerer and Weber, 1992),

many subjects exhibit the Ellsberg paradox: a share of about 55% prefer betting on

the urn with known proportions, while ca. 9% prefer betting on the urn with unknown
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proportions, and roughly 36% are indifferent.

4.4.1 Main findings

In order to formally check Hypothesis 1, we restrict our sample to subjects who value

white and yellow ticket on Urn U equally, so that Schmeidler’s notion of mixture prefer-

ence co-incides with the definition of randomization attitude. Since about a third of the

subjects prefer a ticket of one color on Urn U, the analysis is based on 53 observations.

Result 1. For subjects who value white and yellow tickets on Urn U equally, ambiguity

and randomization attitude are not negatively associated.

From the literature, we expect ambiguity-averse subjects to be randomization-loving

and ambiguity-loving subjects to be randomization-averse. Accordingly, observations

should lie on the diagonal from the top-left to the bottom-right in Table 4.1. While 19

out of the 53 observations exhibit this relationship, about two thirds of the observations

lie off the diagonal. Using Fisher’s exact test, we cannot reject the null hypothesis

that there is no association at any conventional level (p-value=0.118).5 Moreover, the

number of observations that lie on the other diagonal and are consistent with a positive

relationship is higher (25 out of 53). Accordingly, Goodman and Kruskal’s γ as well

as Kendall’s τb, which can be used to measure the association between the two ordinal

scaled attitudes, are both positive. If there is any tendency to reject independence it is

hence in favor of a positive rather than a negative relationship.

Recall that S- and C-approach lead to diverging predictions about the randomization

attitude of ambiguity-averse subjects, regard the coin as fair, and value white and yellow

ticket on Urn U equally. This concerns 29 subjects in our sample. The C-approach

predicts these subjects to like randomization, while the S-approach predicts them to be

randomization-neutral. The following result is based on the 20 observations that are in

line with one of these predictions.

5Neither Pearson’s χ2 (p-value=0.163) nor the likelihood ratio test (p-value=0.083) are significant.
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Ambiguity Attitude

Averse Neutral Loving Total

Randomization
Loving 6 0 1 7

Attitude
Neutral 17 12 2 31

Averse 12 2 1 15

Total 35 14 4 53

Table 4.1: Ambiguity and randomization attitude for subjects who value white and

yellow ticket on Urn U equally

Result 2. Consider ambiguity-averse subjects who regard the coin as fair and value

the yellow and white ticket on Urn U equally. These subjects are more likely to be

randomization-neutral rather than randomization-loving.

Sixteen of the 20 subjects are randomization-neutral, while four prefer randomization—

see Figure 4.1. The hypothesis that subjects are equally likely to be randomization-

loving or neutral can be rejected at any conventional level (The respective binomial test

has a p-value below 0.01): a significantly larger fraction of subjects is randomization-

neutral.
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Figure 4.1: Randomization attitudes of ambiguity-averse subjects who regard the coin

as fair and value white and yellow ticket on Urn U equally
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This result can be extended to ambiguity-loving subjects, who are supposed to dislike

randomization according to the C-approach and to be randomization-neutral according

to the S-approach. Two ambiguity-loving subjects are randomization-neutral and one

is randomization-averse. Overall, 18 of 23 observations are in line with the S-approach

and only 5 with the C-approach. Again, a uniform distribution of randomization atti-

tudes can be rejected in favor of the predictions consistent with the S-approach at any

conventional level (p-value below 0.01).

4.4.2 Robustness

The theoretical results, which underpin Hypothesis 1 and 2, only apply to subjects with

specific preferences. Consequently, Result 1 and 2 are based on a selected sample of

subjects, which may not only differ by their preferences but by other characteristics.

We check whether any selection on observables has taken place by running two

probit regressions. Hypothesis 1 requires subjects to be indifferent between the yellow

and white ticket on Urn U. This indifference, however, does not seem to be related

to observables: the null hypothesis that no observable affects the probability of being

indifferent cannot be rejected (p-value of the likelihood ratio test: 0.43, see Table 2 in the

appendix). For Hypothesis 2, subjects must additionally regard the coin as fair. This

time there is some indication that observables affect selection (p-value for the likelihood

ratio test: 0.04). More specifically, subjects who correctly compute the probability of

two independently thrown dice (variable: stats knowledge 2) are significantly more

likely to be in the sample (see Table 3 in the appendix). There is, however, no reason

why statistically more literate subjects should be less inclined to prefer randomization.

The subjects on which we test our hypotheses may also differ in unobservable ways

from our full sample. The independence between ambiguity and randomization atti-

tude could, for example, be driven by the fact that subjects who are indifferent between

white and yellow tickets on Urn U systematically differ from other subjects. In order to

refute this idea, we re-examine the relationship between ambiguity and randomization
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attitude without restricting attention to certain preferences. Of course, Hypotheses 1

and 2 no longer apply in this case. If, however, results are similar, we can be confident

that they do not hinge on an alternative explanation such as a general trait to value

tickets equally. Table 4.2 exhibits the attitudes when all subjects are considered. Both

findings are confirmed. First, the null hypothesis that ambiguity aversion and random

preference are unrelated cannot be rejected (p-value of Fisher’s exact test: 0.18). As

before, the data suggests that ambiguity aversion is associated positively with random-

ization aversion. Second, ambiguity-averse subjects tend to be randomization-neutral

rather than randomization-loving and ambiguity-loving subjects are more likely to be

randomization-neutral than to be randomization-averse (p-value for the two-sided bino-

mial test is below 0.01). This robustness of results gives us some confidence that they

are not driven by selection effects.

4.4.3 Other Findings

In addition to these results, which directly relate to our hypotheses, we also want to

report on two additional and unexpected findings.

The first finding concerns randomization- and ambiguity-averse subjects. We ex-

pected to find very few of them because they are not backed by the most prevalent

models of ambiguity-aversion.

Result 3. A non-negligible fraction of ambiguity-averse subjects dislikes randomization.

Of the 48 ambiguity-averse subjects, 14 express a dislike for randomization (see Ta-

ble 4.2). If we restrict attention to subjects for whom behavior can be predicted using

the S- or C-approach because they regard the coin as fair and have no color preference

on Urn U, a similar picture emerges: 9 out of 29 ambiguity-averse subjects prefer the

pure tickets over the mixture—see Figure 4.1. In both cases, the share is statistically

not distinguishable at any conventional level from the naive prediction by someone who

does not know any of these theories and expects randomization aversion to occur in a
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Ambiguity Attitude

Averse Neutral Loving Total

Randomization
Loving 10 2 2 14

Attitude
Neutral 24 23 6 53

Averse 14 5 2 21

Total 48 30 10 88

Table 4.2: Ambiguity and randomization attitude: all subjects

third of the cases. The observed combination of randomization and ambiguity aversion

is puzzling. The respective subjects prefer to know whether the ticket, which they re-

ceive, is white or yellow—although they are indifferent between receiving a white and a

yellow ticket. Possible reasons are that knowing the color has a value in itself to these

subjects, that they assign lower values to tickets when complexity is involved, or that

they dislike the loss of control associated with the coin.6

In order to accommodate the behavior of these subjects, one would need a more

general model which does not exogenously assume a specific relationship between am-

biguity and randomization attitude. Classes of preferences that do not engender such

specific relationship are the source-dependent preferences axiomatized by Chew and Sagi

(2008), the vector expected utility preferences by Siniscalchi (2009b) and the monotonic,

Bernoullian and continuous preferences by Ghirardato and Siniscalchi (2010).

Our second finding is related to a theoretical result by Klibanoff (2001b). Klibanoff

shows that if a randomizing device is stochastically independent and Choquet-expected

utility preferences are modeled in the S-approach, preferences cannot exhibit ambiguity-

aversion. This implies for our context that subjects whose preferences can be modeled

6Keren and Teigen (2008) argue that such decision makers like to maintain control. Dittmann,

Kübler, Maug, and Mechtenberg (2008) find that experimental subjects are willing to pay a premium

for exerting the right to vote even if the probability that this affects the outcome is very low. On

the other hand, Cettolin and Riedl (2008) observe that subjects with incomplete preferences prefer a

random draw when having to decide.
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using the S-approach because they are ambiguity-averse and randomization-neutral

should regard the coin to be correlated with Urn U. In order to test this, we con-

structed a bet in which a ball is drawn from Urn U; the subject then receives a head

ticket if the ball is yellow and its certainty equivalent of a head ticket if the ball is white.

Subjects who view coin and ball draw as independent should attach the same value to

this bet, which we call combination ticket, and a head ticket. We restrict attention to

subjects who regard the coin as fair, value white and yellow tickets on Urn U equally,

and are randomization-neutral. Following Klibanoff’s argument, we expect these sub-

jects to be less likely to attach different values to the combination and head ticket

if they are ambiguity-neutral. Indeed, the respective share of subjects is lower among

ambiguity-neutral subjects (20%) than amongst other ambiguity-averse subjects (31%);

however, the difference is not significant at any conventional level (p-value of one-sided

two-sample test of proportion: 0.26). More surprising, the proportion of all subjects

who value the head ticket more than the combination ticket is 37%. Put differently,

these subjects prefer a head ticket to a mixture of head ticket and its certainty equiva-

lent. While a possible explanation is that subjects regard coin throw and ball draw as

correlated, there is an interesting link between this finding and randomization aversion:

subjects who favor the heads to the combination ticket also tend to favor tickets of a

specific color to the chameleon ticket (Kendall’s τb=0.1966, p-value: 0.0559). A first

tentative conclusion may thus be that both results are driven by the same explanation,

e.g., a contempt for complexity.

4.5 Summary

We started our analysis with the classical observation from the two-color experiment

by Ellsberg (1961): individuals prefer to bet in situations about which they are better

informed. Existing explanations for such behavior often rely on the idea that access

to an objective randomization device mitigates the problem of lacking information.
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Accordingly, ambiguity-averse individuals are supposed to prefer randomization. The

data from our experiment, however, does not support this view: there is no negative

association between ambiguity and randomization attitude. Ambiguity-averse subjects

are more likely to be randomization-neutral than randomization-loving. This behav-

ior can be explained within Choquet-expected utility theory, when the randomization

device is modeled within the Savage setup rather than using the consequence space in

the tradition of Anscombe-Aumann. However, we also observe a considerable number

of ambiguity-averse subjects who exhibit a contempt for randomization. This observa-

tion indicates that for many subjects, the randomization device does not reduce but

enhances the problem of missing information.

4.6 Proof

Proof of Proposition 4.1. Let L be the set of tickets faced by subjects in our exper-

iment and let < be a binary relation that represents subjects’ preferences over F . For

any bet k, l,m ∈ L we write k < {l,m} to denote k < l and k < m. Throughout, we

consider a subject with the following preferences:

qK < rK and sU < tU , (4.2)

where qK , rK ∈ {yK , wK} and sU , tU ∈ {yU , wU}. Let QK , RK ∈ {Y K ,WK} be the

corresponding (unambiguous) events to which subjects assign probabilities π[Y K ] and

π[WK ], while , SU , TU ∈ {Y U ,WU} are the ambiguous events.

The preferences of a subjective expected utility maximizer fall into one of the fol-

lowing three sets:

qK ∼B sU <B tU ∼B rK , (4.3)

qK �B sU <B tU �B rK , (4.4)

sU �B qK <B rK �B tU . (4.5)

These three sets provide the benchmark preferences. For the proof, we decompose

all preferences into three classes: (i) qK < sU and rK < tU with at least one strict
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preference relation (≺) , (ii) qK 4 sU and rK 4 tU with at least one strict preference

relation (≺), and (iii) qK ∼ sU and rK ∼ tU , or qK � sU and rK ≺ tU , or qK ≺ sU

and rK � tU . We now show that the two-stage approach implies ambiguity-aversion for

the first class (Step 1), ambiguity-love for the second class (Step 2), and ambiguity-

neutrality for the last class (Step 3). These are exactly the ambiguity attitudes from

Definition 3.

Step 1. qK < sU and rK < tU with at least one strict preference relation (�). In this

step, we examine two cases: qK ∼ rK and qK � rK .

Case 1: qK ∼ rK . In this case, we obtain:

qK ∼ rK < sU < tU , (4.6)

with at least one strict preference. Take <B as in (4.3) with πB(QK) = π(QK)

and:

qK ∼B sU ∼B tU ∼B rK . (4.7)

Comparing < from (4.6) with <B as in (4.7), we get:

qK ∼B {rK , sU , tU} ⇒ qK ∼ {rK} < {sU} < {tU},

rK ∼B {qK , sU , tU} ⇒ rK ∼ {qK} < {sU} < {tU},

where at least one of the weak preference is strict in each row. Thus, there exists

<B such that < is more ambiguity-averse then <B according to (3.5). Further-

more, there does not exist <B such that < is more ambiguity-loving then <B.

Case 2: qK � rK . In this case, one of the following can occur:

qK � rK < sU < tU , or (4.8)

qK < sU � rK < tU , (4.9)

with at least one strict preference in each case. As a benchmark, take <B as in

(4.3) with πB(QK) = π(QK) and: qK ∼B sU �B tU ∼B rK . Comparing this <B

with < as in (4.8), we get:

qK ∼B {sU} �B {rK , tU} ⇒ qK � {rK , sU , tU},

rK ∼B {tU} ⇒ rK < {sU , tU}.
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Analogously, the comparison with < as in (4.9), yields:

qK ∼B {sU} �B {rK , tU} ⇒ qK < {sU} < {rK , tU},

rK ∼B {tU} ⇒ rK � {tU}.

Thus, for preference ordering < as in (4.8) and as in (4.9), there exists <B such

that < is more ambiguity-averse then <B according to (3.5) and again, there is

no such <B for which < is more ambiguity-loving then <B. Summarizing both

cases, we have seen that for qK < sU or rK < tU with at least one strict pref-

erence relation (�), < is ambiguity-averse, which coincides with (i) in Definition 3.

Step 2. qK 4 sU and rK 4 tU with at least one strict preference relation (≺). Again,

we consider two cases: qK ∼ rK and qK � rK .

Case 1: qK ∼ rK . In this case, we obtain:

sU < tU < qK ∼ rK , (4.10)

with at least one strict preference. Take <B with πB(QK) = π(QK) as in (4.3)

such that:

qK ∼B sU ∼B tU ∼B rK . (4.11)

Comparing the respective <B with < from (4.10), we obtain:

qK ∼B {rK , sU , tU} ⇒ qK ∼ {rK} 4 {sU} 4 {tU},

rK ∼B {qK , sU , tU} ⇒ rK ∼ {qK} 4 {sU} 4 {tU},

where at least one of the weak preference is strict in each row. Thus, there exists

<B such that < is more ambiguity-loving then <B and there exist no <B such

that < is more ambiguity-averse then <B. Hence, < is ambiguity-loving according

to (3.6).

Case 2: qK � rK . In this case, one of the following can occur:

sU < tU < qK � rK , or (4.12)

sU < qK � tU < rK , (4.13)

with at least one strict preference in each case. Take <B with πB(QK) = π(QK)

as in (4.3) such that:

qK ∼B sU �B tU ∼B rK . (4.14)
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Comparing this <B with < from (4.12), we obtain:

qK ∼B {sU} ⇒ qK 4 {tU} 4 {sU},

rK ∼B {tU} ≺ {sU , qK} ⇒ rK ≺ {qK , tU , sU}.

Comparing the same benchmark with < from (4.13), we get:

qK ∼B {sU} ⇒ qK 4 {sU},

rK ∼B {tU} ≺ {sU , qK} ⇒ rK 4 {tU} ≺ {qK , sU}.

Thus, in both cases, there exists <B such that < is more ambiguity-loving then <B

and there exists no such <B for which < is more ambiguity-averse then <B. Thus,

we conclude that < is ambiguity-loving according to (3.6). Hence, if qK 4 sU or

rK 4 tU with at least one strict preference relation (≺), then < is ambiguity-

loving, which coincides with (ii) in Definition 3.

Step 3. qK ∼ sU and rK ∼ tU , or qK � sU and rK ≺ tU , or qK ≺ sU and rK � tU .

Suppose now that qK ∼ sU and rK ∼ tU , or qK � sU and rK ≺ tU , or qK ≺ sU

and rK � tU . Then one of the following can occur:

qK ∼ sU < tU ∼ rK , (4.15)

qK � sU < tU � rK , (4.16)

sU � qK < rK � tU . (4.17)

Take <B with πB(QK) = π(QK) as in (4.3), in (4.4) and in (4.5). Any < as in

(4.15), in (4.16) and in (4.17) is order equivalent with <B as in (4.3), in (4.4) and

in (4.5), respectively. Thus, for any < as in (4.15), in (4.16) and in (4.17) there

exists <B such that both is true: < is more ambiguity-averse than <B and < is

more ambiguity-loving than <B. Therefore, < is ambiguity-neutral according to

(3.5) and (3.6).
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Chapter 5

Dynamic Ellsberg Urn Experiment

In this chapter we explore experimentally dynamic choice behavior under ambiguity.1

In order to apply ambiguity models to dynamic decision problems, a theory of how

to update preferences in the face of new information is needed. Recently, several ap-

proaches for updating ambiguity-sensitive preferences have been proposed. As opposed

to the subjective expected utility theory, in which Bayesian updating is a logical conse-

quence of Savage’s Sure-Thing-Principle, updating of non-expected utility preferences is

rather a complicated task. The reason is the following one: On the one hand, sensitivity

towards ambiguity, as manifested in the Ellsberg-type choices, entails violation of the

Sure-Thing-Principle (see Section 3.1). On the other hand, the Sure-Thing-Principle

is a property of preferences implied by dynamic consistency and consequentialism (see

Lemma 1, Section 2.3). Consequently, if one is interested in a theory of updating

ambiguity-sensitive preferences, then either consequentialism or dynamic consistency

(or both) must be relaxed in some respect. The existing theoretical literature on dy-

namic extensions of subjective ambiguity models has not yet reached consensus on

whether dynamic consistency or consequentialism is the more plausible assumption.

Sarin and Wakker (1998a), Epstein and Schneider (2003) and Eichberger, Grant, and

Kelsey (2005) show that it is possible to maintain both, however, at the cost of con-

straining the analysis to a fixed collection of events and by imposing restrictions on

1The content of this chapter is based on the article Dominiak, Dürsch, and Lefort (2010).
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subjective beliefs. Other theories focus on one property. For instance, Gilboa and

Schmeidler (1993), Pires (2002), Eichberger, Grant, and Kelsey (2007) and Siniscalchi

(2010) drop dynamic consistency and maintain consequentialism, whereas Hanany and

Klibanoff (2007) and Eichberger and Kelsey (1996a) advocate dynamic consistency and

drop consequentialism.2 More recently, Al-Najjar and Weinstein (2009) and Siniscalchi

(2009a) have provided a very insightful discussion on the normative appeal of these

different approaches to dynamic choices under ambiguity. In this chapter we conduct a

dynamic version of the classical 3-color Ellsberg experiment which allows us to differ-

entiate between consequentialism and dynamic consistency and test whether subjects

behave consistently with either of these two properties.

The first experimental evidence on dynamically inconsistent behavior in the presence

of risk was reported by Tversky and Kahneman (1981). More recently, the properties

of dynamic consistency and consequentialism were tested by Cubitt, Starmer, and Sug-

den (1998) and by Busemeyer, Weg, Barkan, Li, and Ma (2000) in a framework with

exogenously given probability distributions. In the presence of ambiguity, there are two

other contributions which investigate dynamic choice behavior. Cohen, Gilboa, Jaffray,

and Schmeidler (2000) test the Full-Bayesian versus the Maximum-Likelihood updat-

ing rule using a design very similar to ours. However, in contrast to our paper, they

assume that subjects always maintain consequentialism. Maher and Kashima (1997)

run a series of six differently framed Ellsberg urns to test behavior of subjects who dis-

play ambiguity aversion. They use questions similar to those in this study, but do not

test for dynamic consistency or consequentialism (they assume “separability”, which is

close to consequentialism, throughout most of the paper). They also use some strong

implicit assumptions, e.g. Bayesian updating for ambiguity-averse subjects and a very

2There are other approaches relaxing consequentialism. Lehrer (2005) characterizes updating rules

using geometric properties of non-additive conditional expectations. Ozdenoren and Peck (2007) elu-

cidate the concept of dynamic consistency by interpreting the dynamic Ellsberg experiment as a game

against a malevolent nature.
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strong form of ambiguity aversion, when conducting their analysis. Both studies do not

incentivize decisions through payment to subjects. We do incentivize and conduct the

analysis in a model-free setup.

The rest of this chapter is organized as follows. In the section, the dynamic extension

of Ellsberg’s 3-color experiment is presented. In Section 5.2 the experimental design is

described. In Section 5.3 the empirical results are presented and discussed. Finally, we

conclude in Section 5.4.

5.1 Dynamic 3-color experiment

In this section we show that it is impossible for ambiguity-sensitive preferences to

satisfy both consequentialism and dynamic consistency on all events. For this purpose

we consider a dynamic version of the classical 3-color Ellsberg. In the dynamic version,

there is an interim stage at which subjects are informed whether or not the ball drawn

is green. Conditional on the revealed information subjects are allowed to update their

preferences. As a mind experiment it was described by Ghirardato, Maccheroni, and

Marinacci (2008) and Siniscalchi (2010).

Dynamic 3-color Experiment. Consider Ellsberg’s 3-color experiment described in

Section 3.1. There are two stages, ex-ante and interim stage. At the ex-ante stage

subject face two choice situations, I and II, with the same information about the com-

position of the urn as it was described initially. At the interim stage subjects face again

two choice problems, III and V I, with an additional information about the outcome of

a random draw from the urn. Bets in the third choice situation, III, are identical to

those in I and bets in the fourth choice problem, IV , are identical to those in II with

one exception, namely that subjects are informed that the randomly drawn ball is not

green, i.e. Y ∪ B. For the sake of completeness we summarize the two relevant choice

problems III and IV in Table 5.1.

Depending on the choices subjects made at ex-ante and interim stage, one can conclude

whether subjects behave consistently with either dynamic consistency or consequen-
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Ball is not Green!

Y ellow Blue Green

Choice III
f1 4 0 0

f2 0 4 0

Choice IV
f3 4 0 4

f4 0 4 4

Table 5.1: Ellsberg’s 3-color experiment

tialism. Table 5.2 depicts implications on dynamic consistency and consequentialism

resulting from choices made ex-ante and choices made on the interim stage. The columns

refer to choices made in the static Ellsberg experiment. Correspondingly, rows refer to

choices made after being informed that the ball drawn is not green.

Ambiguity Attitude

Averse Neutral Loving

(f1; f4) (f1; f3) (f2; f4) (f1; f4)

I
n
te
ri
m
C
h
oi
ce
s

(f1; f4) DC,¬C ¬DC,¬C ¬DC,¬C ¬DC,¬C

(f1; f3) ¬DC,C DC,C ¬DC,C ¬DC,C

(f2; f4) ¬DC,C ¬DC,C DC,C ¬DC,C

(f2; f3) ¬DC,¬C ¬DC,¬C ¬DC,¬C DC,¬C

Table 5.2: Dynamic consistency and consequentialism in the dynamic 3-color experi-

ment

Consider for instance an ambiguity-averse subject (first column with choices (f1; f4)).

At the interim stage there are again four possible patterns of conditional (strict) pref-

erences, Y ∪ B. As we will see some of them respect dynamic consistency, (DC), and

other ones respect consequentialism, (C), but not both.

(DC) Since f1 = f2 and f3 = f4 on the event G and they differ only on states in

the conditional event Y ∪ B, dynamic consistency requires that the conditional
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preferences have to respect the choices made ex-ante, i.e.:

f1 � f2 =⇒ f1 �Y ∪B f2, and

f4 � f3 =⇒ f4 �Y ∪B f2.

(C) Since f1 = f3 and f2 = f4 on the event Y ∪ B and they differ only outside

of that event, consequentialism requires that the subject must be conditionally

indifferent between them, i.e. f1 ∼Y ∪B f3 and f2 ∼Y ∪B f4. Furthermore, it

implies that either (i) or (ii) must be true:

(i) f1 �Y ∪B f2 =⇒ f3 �Y ∪B f4 and vice versa, or

(ii) f1 ≺Y ∪B f2 =⇒ f3 ≺Y ∪B f4 and vice versa.

It can be immediately seen that in the dynamic 3-color experiment the ambiguity-averse

subject must violate either the property of dynamic consistency or consequentialism

(or both). Then, if conditional preferences respect dynamic consistency (first row with

f1; f4) then the property of consequentialism is violated (henceforth ¬C). On the other

hand, if the conditional preferences remain consistent with consequentialism (as in

second and third row with f1; f3 and f2; f4 respectively) then exactly one of the ex-ante

preferences is reversed, what violates dynamic consistency (henceforth ¬DC). Finally,

if conditionally on the event Y ∪B the ambiguity-averse subject reverses both ex-ante

preferences (as in fourth row with f2; f3) then the interim choices are neither consistent

with dynamic consistency nor with consequentialism (henceforth ¬DC and ¬C).

5.2 Experimental Design

The experiment was conducted in December 2008 in Mannheim in the experimental

lab of SFB504. A total of 90 subjects participated in four sessions, with each subject

participating only once. 46 participants were male, 44 female; all but one subject were

students from various majors. Subjects were recruited via ORSEE (Greiner (2004))
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and paid in private and cash directly after the experiment. On average they earned

14.00 Euro in about 60 minutes.

The urn was represented by a bucket with white table tennis balls (with yellow, blue

or green stickers on them). Before making their choices, subjects were shown one ball of

each color, taken from the bucket. So subjects were informed that the urn included at

least one ball of each color. The bucket remained in the room for the whole experiment

and after the drawings were finished, subjects had the opportunity to look at the balls

inside the bucket. After receiving and reading the instructions detailing the complete

experiment, all subjects were handed the decision sheet, on which they marked their

bets.

To implement the choice problem described above, subjects were asked to make 4

decisions. The first two decisions were equivalent to choices I and II in Table 3.1. The

third and forth decision where designed to test the conditional preferences as described

in section three. Choice III was identical to choice I and choice IV identical to choice II,

with one exception: at the end of each question, we added the sentence “if you come to

know that the ball drawn is not green”.3 Dubois and Prade (1994) distinguish between

dynamic choice situations which they call “focusing” and those they call “learning”. In

the terminology of Dubois and Prade, the situation we implement is focusing. utility

maximizer will update according to Bayes rule to express her preferences.

A particular problem in ambiguity related experiments is how to deal with indiffer-

ence. One possible solution is to force subjects to make a choice, the drawback being

that some data points will reflect indifferent subjects, such that inferences from the

Ellsberg decisions could be wrong (e.g. what looks like a preference reversal is not

inconsistent with subjective expected utility theory if the subject was indifferent). On

the other hand, including an explicit indifferent option raises problems in incentivized

experiments: How will the subjects marking indifferent be paid? Choosing any rule,

such as “the experimenter flips a coin” turns the problem into a decision with three

3See the appendix for complete instructions.
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alternatives, the coin flip being one of them. Subjects who prefer the coin flip need not

be identical with those who are indifferent in the original two alternative decision. To

solve this problem, we did not offer an indifferent option. However, additionally to each

decision, subjects were asked to mark “How strong is your liking for the alternative you

choose?” on a scale ranging from 0 (nil) to 5 (very strong).4 We interpret subjects who

marked zero as having no confidence that their choices are better than the alternatives,

that is, as being indifferent. These subjects where paid according to their decisions,

but discarded from the analysis.

When everyone had finished their decisions, subjects took part in a timed 10 minute

statistics and cognitive ability test, with 9 questions in total (3 questions from Shane

Frederick’s cognitive ability test (Frederick, 2005), the Wason selection task (Wason

and Shapiro, 1971) and 5 simple statistics questions). Each correct answer was paid

with 1 Euro. Finally, subjects were asked to answer an unpaid questionnaire which

included demographics.

The draws took place at the end of the experiment. A randomly selected subject

blindly drew a ball for each question. The balls were returned to the bucket after being

shown to all subjects, so that all drawings were with replacement. Regarding question

three and four, the following was stated in the instructions and implemented if needed:

“If the first ball drawn happens to be green, we will continue drawing balls till a non-

green ball is drawn.” After the drawings were done, each subject was paid according

to his/her decisions (each winning bet paid 4 Euro) and answers and the experiment

ended.

4Our question is similar to the one used by Chen, Katuscak, and Ozdenoren (2007). Curley, Young,

and Yates (1989) test three methods to measure ambiguity in an experiment and find that a question

about confidence in the decision performs best.
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5.3 Results

Out of our 90 subjects, 6 marked a confidence of nil for at least one of their choices.

We interpret these subjects as indifferent and drop them from the following analysis

since we are interested in strict preferences, leaving us with 84 data points.5

First, we look at the choices in the first two questions, which replicate the static

Ellsberg experiment. The last row in Table 5.3 shows the proportion of ambiguity-

averse, neutral and loving subjects. We confirm previous observations (see Camerer

and Weber, 1992) that a majority of people are ambiguity-averse in this decision task:

54.8% prefer to bet on colors with known probabilities; 7.1% are ambiguity loving, while

38.1% exhibit ambiguity-neutral behavior.

According to the responses in the third and forth question, we can classify 21 sub-

jects as both dynamically consistent and consequentialist, 44 as not dynamically con-

sistent, but consequentialist, 6 as dynamically consistent but not consequentialist and

13 as neither dynamically consistent, nor consequentialist.6 Taken together, 32.1%

are dynamically consistent, while 77.4% are consequentialist. This difference is highly

significant using a McNemar test. This result does not change when we look only at sub-

jects who are ambiguity-averse or ambiguity-loving according to the first two questions.

The two bold numbers in Table 5.3 highlight subjects who would be classified as

ambiguity-neutral in the static Ellsberg urn, yet who turn out to be not Bayesian

in the dynamic urn. Thus, we find additional violations of subjective expected utility

theory in the dynamic experiment.

5For us, only those subjects are truly indifferent who mark 0 in the confidence question. However,

when we use a wider definition of indifference and also exclude subjects who marked 1 in at least one

of their choices, our results stay qualitatively the same for all results and for the main results in table

5 the significance levels are unchanged as well (or, in one case, even stronger).

6Note that in our experiment, it is not possible for subjects to be ambiguity-averse/loving, dynam-

ically consistent and consequentialist at the same time. Similar, there are no choice combinations that

allow subjects to be ambiguity neutral, dynamically consistent, but not consequentialist.
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Ambiguity Attitude

Averse Neutral Loving Total

DC,C - 21 - 21

¬DC,C 35 3 6 44

DC,¬C 6 - 0 6

¬DC,¬C 5 8 0 13

Total 46 32 6 84

Table 5.3: Distribution of dynamically consistent/consequentialist and ambiguity-

averse/neutral/loving subjects

The results in Table 5.3 suggest that when subjects are not both dynamically consis-

tent and consequentialist, they rather drop dynamic consistency than consequentialism.

However, due to the design of the urn, there are more combinations of choices which

are consequentialist than dynamically consistent.

Random Observed Binomial test

two− sided

All subjects
DC 25% 32% .132

C 50% 77% .000

Non− neutral
DC 25% 12% .024

C 50% 79% .000

Table 5.4: Fraction of dynamically consistent and consequentialist subjects

To check this result for robustness, we list in Table 5.4 the hypothetic distributions

we would expect if all our subjects chose purely randomly and compare them to the ob-

served results. Looking at all subjects, there are more consequentialist and dynamically

consistent choices than under a random distribution. However this result is significant

only for consequentialism. The difference is even more pronounced when we restrict

the analysis to subjects who are non-neutral towards ambiguity. Now significantly less

subjects than under random choice are dynamically consistent, while, still, there are
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significantly more consequentialist ones.

Result 1: More subjects than expected under random choice are consequentialist.

Among the non-neutral subjects, less than expected are dynamically consistent.

Regarding the way subjects update preferences, Dubois and Prade (1994) distinguish

two different approaches, learning and focusing, which coincide in the additive case

thank to the Bayes rule, but need not coincide outside of subjective expected utility.

They consider two different updating rules: Maximum-Likelihood updating and Full-

Bayesian updating.7 Intuitively, in the case of learning, the decision maker learns

something about the composition of the urn. In this case, Dubois and Prade (1994)

argue for the use of the Maximum Likelihood rule. On the other hand, focusing is a

situation in which no information is provided regarding the composition of the urn, as

it is the case in our experiment. Dubois and Prade (1994) argue that in this situation

of focusing the Full-Bayesian rule should be used. In their paper, Cohen, Gilboa,

Jaffray, and Schmeidler (2000) test whether subjects follow the Full-Bayesian or the

Maximum-Likelihood updating rule using a design very similar to ours. The questions

they use are identical to our questions one, two and four. Then, ambiguity averse agents

using the Maximum-Likelihood rule would choose blue in question four and while those

updating according to Full-Bayesian updating would choose yellow. However, Cohen

et al. assume that subjects are consequentialist. We repeat their test using only our

consequentialist subjects. Similar to their results, we find significantly more support for

the Full-Bayesian updating rule (p-value below 0.001, chi square test) among ambiguity-

averse subjects. The result for ambiguity-loving subjects is not significant, very likely

due to the small number of ambiguity-loving subjects in our experiment.

Result 2: More subjects who are ambiguity-averse and consequentialist use the Full-

7Roughly speaking the Full-Bayesian updating rule is a rule where the decision maker updates

all the probabilistic scenarios she has in mind and derives the conditional preference relation from

these updated probabilities. According to the Maximum-Likelihood updating rule the decision maker

updates only the probabilities that maximize the event which has occurred.
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Bayesian updating rule than the Maximum-Likelihood updating rule.

Averse Loving

Full −Bayesian 82.9% 66.7%

Maximum− Likelihood 17.1% 33.3%

Table 5.5: Full-Bayesian vs Maximum-Likelihood

Moreover, we asked all subjects about their confidence in their choices for each question.

Apart from using these responses to discard indifferent subjects from the analysis, it is

also interesting to look at the different levels of confidence for each question. Again,

we start by looking at the first two questions, the static Ellsberg case. As Figure 5.1

Figure 5.1: Confidence and ambiguity attitudes

shows, all subjects are less confident in their second answer compared to the first one.

This difference is significant at the 1% level for ambiguity-averse and ambiguity-neutral

subjects, but not significant for ambiguity loving subjects in a Wilcoxon test. However,

the “amount” of confidence that subjects lose depends on their choices: ambiguity
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averse subjects lose more confidence than ambiguity-neutral ones.8

Result 3: Ambiguity averse subjects report a higher loss of confidence in their second

choice compared to ambiguity-neutral ones.

Next, we turn to confidence levels for all four answers. Figure 5.2 depicts the confidence

levels for subjects depending on their adherence to dynamic consistency and consequen-

tialism. To evaluate the impact of going from a static to a dynamic Ellsberg urn, we look

Figure 5.2: Confidence in the dynamic 3-color experiment

at the difference in average confidence in the first two compared to the last two ques-

tions: confidence loss = (confidence1+ confidence2)− (confidence3+ confidence4).

The first impression that subjects who adhere to the rationality arguments lose less

confidence in the dynamic case is confirmed. As Table 5.6 shows, they have a signif-

8The two-sided p-value of a Mann-Whitney-U-Test on confidence1 − confidence2 comparing

ambiguity-averse with ambiguity-neutral subjects is 0.032. No comparison with ambiguity loving

subjects is significant. In both cases, the insignificant results for ambiguity-loving subjects might be

due to their small number in our experiment.
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icantly lower confidence loss than those subjects who violate one or both properties.

DC,C ¬DC,C DC,¬C ¬DC,¬C

DC,C - - - -

¬DC,C 0.024 - - -

DC,¬C 0.011 0.371 - -

¬DC,¬C 0.000 0.455 0.01 -

Table 5.6: Significance levels from two-sided MW test on updating confidence loss

In a multinomial logistic regression that controls for demographics and subjects’ score

in our cognitive ability questions (see Table 4 in the appendix) we also find significantly

lower confidence for subjects who do not behave according to dynamic consistency and

consequentialism, compared to those who do. Our results for subjects’ confidence can

be explained with the assumption that subjects are more confident in their choice if they

know of a way to rationally argue in favor of that choice. The probabilistic Bayesian

theory is the most mathematically simple and arguably the only one which our subjects

might consciously use in the experiment. We find the highest levels of confidence for

choices two to four exactly for those subjects who behave probabilistic Bayesian. We

do not test this assumption, so other explanations are possible. However, we do not

find an effect of the demographics and the cognitive ability.9

Result 4: Subjects who adhere to both dynamic consistency and consequentialism

loose less confidence in the dynamic choice situation, compared to those who

violate one or both of these properties.

9The variable cognitive ability codes the number of a subject’s correctly answered questions in

questionnaire 1.
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5.4 Summary

People who display the Ellsberg paradox can not be dynamically consistent and con-

sequentialist at the same time. We conduct a dynamic extension of Ellsberg’s 3-color

experiment and find that, in our setup, significantly more subjects behave in accordance

with consequentialism rather than with dynamic consistency. As such, our results can

be seen as support for theories which retain consequentialism.

We observe that being ambiguity-neutral when facing the static Ellsberg urn does

not necessarily imply that subjects always behave Bayesian. Several subjects who are

classified as ambiguity neutral in the static choice situation can not be described by

subjective expected utility theory in the dynamic extension.

Furthermore, we measure confidence. While all subjects are more confident in

their first choice, ambiguity-neutral subjects lose less confidence in later choices than

ambiguity-averse ones. Similarly, Bayesian subjects lose less confidence compared to

those who violate dynamic consistency or consequentialism.

The dynamic Ellsberg urn experiment provides a tool to test both static and dynamic

properties of decision making under uncertainty. We hope that our results will be

informative for future theoretical work.
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Chapter 6

Dynamic Choquet Preferences and

Unambiguous Events

The objective of this chapter is to explore the link between updating Choquet expected

utility preferences and two existing notions of unambiguous events.1 In particular,

we ask whether, for Choquet expected utility preferences, the property of dynamic

consistency, constrained to a given collection of events, guarantees that its elements

are unambiguous and vice versa. The results we have obtained allow us to answer this

question in the affirmative.

Recently, a number of extensions of Choquet expected utility preferences to dy-

namic decision problems have been proposed (see Sarin and Wakker (1998a), Eich-

berger, Grant, and Kelsey (2005), Eichberger, Grant, and Kelsey (2007)). Here, we

constrain the analysis to some fixed collection of events and characterize properties

of these events on which Choquet preferences respect dynamic consistency and conse-

quentialism. Natural candidates for such events on which both axioms are satisfied are

events which support some kind of probabilistic beliefs, for instance events, with known

probabilities, i.e. Y and B ∪G in the 3-color experiment presented in Section 3.1. The

idea of events characterized by probabilistic beliefs is closely related to the recently sug-

gested notions of unambiguous events by Nehring (1999), Epstein and Zhang (2001),

1The content of this chapter is based on the article Dominiak and Lefort (2011b).
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Zhang (2002) and Ghirardato, Maccheroni, and Marinacci (2004).

First, we focus on the definition Nehring (1999) provides, since it mimics the de-

sirable separability property of expected utility theory.2 His definition is based on the

idea, which stems from Sarin and Wakker (1998b), to interpret capacities in terms

of rank-dependent probability assignments. According to this interpretation, subjective

probabilities used for evaluating acts depend on the rank ordering of their consequences.

In general, two acts generating distinct ranks are evaluated with respect to different sub-

jective probabilities. Thus, the separability of preferences and beliefs may be achieved

for acts that generate the same rank. Such acts are called comonotonic. In the instance

that the subjective likelihood of an event is unaffected by changing its position, it must

be viewed as unambiguous. Correspondingly, Nehring calls an event unambiguous,

henceforth N-unambiguous, if the subjective probability attached to the event does not

depend on the ranking position of states.

We argue that conditional on N -unambiguous events, the Bayes updating rule for

capacities is the most appropriate updating rule. The reason is twofold. First, because

updating on N -unambiguous events according to the Bayes revision rule is the only way

to retain dynamic consistency. Second, when conditioning on N -unambiguous events,

the Bayesian updating rule coincides with other popular updating rules. These include

the Full-Bayesian updating rule introduced by Jaffray (1992) and all the h-Bayesian

updating rules as axiomatized by Gilboa and Schmeidler (1993). Motivated by this

rationale we show that consequentialist Choquet expected utility preferences satisfy

dynamic consistency on a fixed filtration if and only if the algebra generated by the

smallest elements in the filtration belongs to the algebra generated by N -unambiguous

events. This result on its own may be viewed as an alternative characterization of

2Separability of preferences and beliefs is a key property of expected utility theory. It means that

subjective probabilities assigned to uncertain events are not affected by outcomes that are associ-

ated to these events. This property is also satisfied by the more general class of preferences, called

probabilistically sophisticated preferences axiomatized by Machina and Schmeidler (1992).
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N -unambiguous events in a conditional decision problem.

Furthermore, Nehring (1999) emphasized the restrictiveness of Choquet expected

utility preferences, since the collection of N -unambiguous events must be always an

algebra. However, there may be potentially interesting ambiguity situations, as exem-

plified by Zhang (2002) in his 4-color example, in which the candidates for unambiguous

events form a weaker structure. By departing from the intuition behind Savage’s key

axiom, called the Sure-Thing-Principle, Zhang (2002) suggested a weaker definition

of unambiguous events, henceforth Z-unambiguous. Thus, it is impossible to maintain

dynamic consistency on events that are Z-unambiguous. An illustrative dynamic exten-

sion of the 4-color example is given in Section 5. Adopting an axiom, called conditional

certainty equivalence consistency and constraining the dynamic consistency to partition

measurable acts, we provide a dynamic characterization of Z-unambiguous events in a

conditional decision problem.

This chapter is organized as follows. Section 6.1.1 presents the Choquet expected

utility. First, the necessary notation is introduced. In Section 6.1.2, the definitions of

N -unambiguous events and Z-unambiguous events are provided. Section 6.1.3 presents

the main concepts regarding the conditional Choquet preferences. In Section 6.2.1 we

provide a characterization of N -unambiguous events in a conditional decision problem.

Moreover, we make some remarks on the related literature. In Section 6.2.2, we provide

an illustrative example and establish a dynamic characterization of Z-unambiguous

events. Finally, we conclude in Section 6.3.

6.1 Choquet Expected Utility Theory

6.1.1 Static Choquet Preferences

Let Ω a finite set of states of nature. An event A is a subset of Ω. The algebra generated

by Ω is denoted by A. Let X be the set of outcomes. An act f is a function from Ω

to X. For instance, an act f = (A1, x1; . . . ;An, xn) assigns the outcome xj to each
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ω ∈ Aj, j = 1, . . . , n, where A1, . . . , An are events partitioning Ω. Let fAg be an act

that assigns the outcome f(ω) to each ω ∈ A and the outcome g(ω) to each ω ∈ Ac.

An act f that assigns a constant outcome f(ω) = x to each ω ∈ Ω is called a constant

act. Denote the set of all acts by F . In Schmeidler’s (1989) theory subjective beliefs

are represented by capacities.

Definition 4. A capacity ν : A → R is a normalized and monotone set function, i.e.:

(i) ν(∅) = 0, ν(Ω) = 1,

(ii) ν(E) ≤ ν(F ) for any E ⊂ F ⊂ Ω.

Thus, the capacity is not required to be additive, although it must satisfy a monotonicity

property that has natural interpretation in terms of qualitative beliefs: ”larger” events

are ”more likely”. A capacity ν, that satisfies an additional condition (iii) ν(A)+ν(B) ≤

ν(A ∪ B) + ν(A ∩ B) for all A,B ∈ A, is called a convex capacity. In a behavioral

context Schmeidler (1989) showed that convex capacities reflect agents’ aversion to-

wards ambiguity. Moreover, if ν satisfies the condition (iii) with equality then ν is a

probability distribution.

Let < be a preference relation defined on the set of acts F . A decision maker is said

to have Choquet expected utility preferences if there exists a utility function u and a

capacity ν such that for any f, g ∈ F :

f < g ⇔
∫

Ω

u ◦ f dν ≥
∫

Ω

u ◦ g dν. (6.1)

The expectations are taken in the following sense. For a given act f let A1, A2, . . . , An

be a partition ordered from least to most favorable events, i.e. such that u(f(A1)) ≤

u(f(A2)) ≤ · · · ≤ u(f(An)). Then, the Choquet integral of f with respect to a capacity

ν and an utility function u is defined as:∫
Ω

u ◦ f dν = u(f(A1)) +
n∑
i=2

[u(f(Ai))− u(f(Ai−1))] ν(Ai, . . . , An).

Choquet Expected Utility preferences have been justified axiomatically by Schmeidler

(1989), Gilboa (1987) and Sarin and Wakker (1992) for an infinite state space. Im-

posing some richness conditions on the set of outcomes and allowing for a finite state
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space Choquet expected utility preferences has been axiomatized by Wakker (1989a),

Nakamura (1990) and Chew and Karni (1994).

Throughout the chapter we assume that preferences admit Choquet expected utility

representation. Additionally we restrict the set of outcomes X and preferences < on F

by assuming that:

Assumption 1. (Continuity) The utility function u : X → R is continuous.

Assumption 2. (Solvability) For any f ∈ F there exists x ∈ X such that f ∼ x.

Solvability serves as a richness condition on < and X. It is satisfied in all axiomati-

zations of Choquet expected utility theory in finite state space set-up. For instance,

Nakamura (1990) and Chew and Karni (1994) impose it directly on <, while Wakker

(1989b) requires X to be a connected and separable topological space.

6.1.2 Unambiguous Events

This section provides a behavioral characterization of unambiguous events. In the

context of ambiguity it is important to localize events that a decision maker perceive

as unambiguous, i.e. events on which she has some kind of probabilistic beliefs. We

begin with the characterization suggested by Nehring (1999), who interprets capacities

in terms of rank-dependent probability assignments. Let ρ be a bijection ρ : Ω →

{n, . . . , 1}. The mapping ρ expresses the ranking position of states associated with

an act f , i.e. the favorableness of their outcome relative to the outcomes obtained

under other states. Let R be a set of such rankings and let ∆Ω be a set of probability

distributions over Ω. Two ranks ρ and ρ′, for which at most two adjacent states swapped

their ranking position, are said to be neighboring ranks. Formally, we say that ρ is a

neighbor of ranking ρ′, written ρNρ′, if and only if for at most two states ω ∈ Ω,

ρ(ω) = ρ′(ω), and for all ω ∈ Ω, |ρ(ω) − ρ′(ω)| ≤ 1. A mapping m : R → ∆Ω

is called rank-dependent probability assignment if and only if for all ρ, ρ′ ∈ R such

that ρNρ′, and all ω ∈ Ω such that ρ(ω) = ρ′(ω): mρ(ω) = mρ′(ω). For a given
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capacity ν on Ω the rank-dependent probability assignment mρ may be defined as

follows mρ(ω) = ν(ω′ : ρ(ω′) ≤ ρ(ω))− ν(ω′ : ρ(ω′) < ρ(ω)).3 The mapping mρ may be

interpreted as the marginal capacity contribution of the state ω to all states yielding

better outcomes. The Choquet integral of an act f with respect to ν and u can be

written as the Choquet integral with respect to mρ and∫
Ω

u ◦ f dν =

∫
Ω

u ◦ f dmρ

= u(f(A1)) +
n∑
i=2

[u(f(Ai))− u(f(Ai−1))]mρ(Ai, . . . , An).

By abuse of notation, we denote a measure mρ(f), such that mρ(f)(Ai, . . . , An) =

v(Ai, . . . , An) with 1 ≤ i ≤ n, as the rank-dependent probability assignment mρ as-

sociated with an act f . Thus, throughout the paper we write the Choquet expectation

of f , taken with respect the measure mρ(f), as:∫
Ω

u ◦ f dν =

∫
Ω

u ◦ f dmρ(f).

Call a pair of acts f and g comonotonic, if there are no two states ω, ω′ such that

f(ω) < f(ω′)and g(ω) > g(ω′). For any act g, comonotonic with f and measurable

with respect to f , the Choquet integral of g with respect to ν and u is equal to the

expectation of g with respect to mρ(f)and u.

According to this view, Nehring (1999) associates ambiguity of events with their

rank dependence. In particular, he calls an event A unambiguous, henceforth N -

unambiguous, if the probability attached to the event does not depend on the ranking

position of A.

Definition 5. Fix an event A ∈ A. A is N-unambiguous if mρ(A) = ν(A) for all

ρ ∈ R, otherwise A is N-ambiguous.

Let AUN be the set of all N -unambiguous events. Nehring (1999) proves that for any

capacity ν the set AUN is an algebra. Moreover, any capacity ν is always additively

3Nehring (1999) showed that there is a one-to-one relation between capacities and rank-dependent

probability assignments, mρ. In his definition the superscript ν is used formν
ρ. We drop it for notational

simplicity.
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separable across its unambiguous events. That is, let A ∈ AUN be a N -unambiguous

event, then for all B ∈ A:

ν(B) = ν(B ∩ A) + ν(B ∩ Ac). (6.2)

An alternative way to characterizeN -unambiguous events is to use Savage’s Sure-Thing-

Principle. However, since the Sure-Thing-Principle, applied to the whole algebra of

events A, implies that beliefs are probabilistic, we have to constrain its domain to some

events. Thus, we say that the Sure-Thing-Principle holds at A and Ac if: (i) For any

f, g, h, h
′ ∈ F :

fAh < gAh ⇔ fAh
′ < gAh

′, (6.3)

and (ii) The condition (i) is also satisfied if A is everywhere replaced by Ac. The

Sure-Thing-Principle constrained to A and Ac guarantees that the ranking of pairs

of acts remains unchanged whatever the common parts are. Thus, an event A is N -

unambiguous if and only if the Sure-Thing-Principle holds at A and Ac.

Proposition 6.1. Fix an event A ∈ A. The following two statements are equivalent:

i) A is N-unambiguous, i.e. A ∈ AUN .

ii) The Sure-Thing-Principle at A and Ac is satisfied.

Ghirardato, Maccheroni, and Marinacci (2004) provide the behavioral counterpart to

N -unambiguous events in a different setup, assuming a convex structure on the set of

consequences. In particular, an event A is N -unambiguous if for any x, x′ ∈ X bets of

the form xAx
′ cannot not be used for hedging other acts. According to their Proposition

10 all such bets (called crisp acts) are evaluated with respect to the same probability

distribution. Thus, the measure of an event A, mρ(xAx′)
(A), is independent of the rank

ρ, meaning that A is N -unambiguous event.

Zhang (2002) suggested an alternative definition of unambiguous events by weak-

ening the Sure-Thing-Principle. He calls an event A to be unambiguous, henceforth

Z-unambiguous, if replacing a constant outcome x outside of A by any other constant

outcome x′ does not change the ranking of the pair of acts being compared.
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Definition 6. Fix an event A ∈ A. A is Z-unambiguous if: (i) For any f, g ∈ F and

for any outcome x, x
′ ∈ X

fAx < gAx ⇔ fAx
′ < gAx

′

and (ii) The condition (i) is also satisfied if A is everywhere replaced by Ac. Otherwise

A is Z-ambiguous.

Let AUZ be the collection of all Z -unambiguous events. In terms of capacities Zhang

(2002) showed that A ∈ AUZ if and only if for all B ∈ A such that B ⊂ Ac:

ν(A ∪B) = ν(A) + ν(B). (6.4)

Thus, the additive separability property of ν is satisfied only on subevents of their

unambiguous complements. It is worth to mention that AUN ⊂ AUN , since AUZ does not

need to be an algebra. It is a λ-system, a collection of events that contains Ω and that

is closed under complements and disjoint unions, but not under intersections.4

6.1.3 Updating Choquet Preferences

We limit our attention to updating on events that the decision maker views as possible

to occur, i.e. non-null events. An event A ∈ A is non-null if ν(A) > 0.5 As time

progresses the decision maker is informed that the true state of the nature ω is an

element of an event A, i.e. ω ∈ A. A natural way to model information is by means

of event trees represented by a filtration. We assume that time is discrete, finite and

goes over the index set T = {0, . . . , T}. Let Pt be a partition of the state space Ω.

A filtration P = {Pt}t∈T is a collection of partitions such that P0 = {Ω}, any Pt+1

is finer than Pt for all t < T , and PT = {{ω} : ω ∈ Ω}. A filtration is given and

4For more general preferences than Choquet preferences Kopylov (2007) showed that AUZ is weaker

than originally claimed λ- systems, it is a mosaic. A mosaic is a collection of events closed under

complements but not under all disjoint unions.

5When an event A is either N -unambiguous or Z-unambiguous this definition of null events is

equivalent to the stronger notion, A is null if ν(A ∪B) = ν(B) for any B ∈ A.
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fixed throughout. Let AP be the algebra generated by the smallest elements of a given

filtration P .

At the ex-ante stage, t = 0, the decision maker formulates a complete contingent plan

of action. When no information is given, the relation < represents the decision maker’s

unconditional preferences, that is < is equivalent to <Ω. At any interim stage, t < T ,

the decision maker faces new information and has a chance to review the contingent

plan for the remaining time periods. We denote by <A the Choquet expected utility

preferences over F conditional on A ∈ Pt, i.e. for all f, g ∈ F ,

f <A g ⇔
∫

Ω

u ◦ fdνA ≥
∫

Ω

u ◦ gdνA

with νA a capacity conditional onA. In the conditional decision problem the information

available at time of the single choice is finer then just the knowledge of Ω. In the spirit

of Ghirardato (2002) we reduce conditional decision problems to static ones.

Throughout the chapter, we assume that preferences satisfy consequentialism (see

Axiom 2 in Section 2.3). To underpin the link between conditional and unconditional

preferences we consider two axioms, dynamic consistency and conditional certainty

equivalent consistency. Dynamic consistency has been already defined and discussed in

Section 2.3 (see Axiom 3).

The second property, called conditional certainty equivalent consistency, is adopted

from Pires (2002).6 This property is a weaker version of dynamic consistency. It states:

if and only if conditional on a non-null event A, the decision maker is indifferent between

the act f and the constant payment x, then the unconditional preferences should also

express indifference between the outcome x and the act fAx, which agrees with the act

f on A and otherwise assigns the constant outcome x.

Axiom 5 (Conditional certainty equivalent consistency). For any non-null A ∈ A any

outcome x ∈ X and any f ∈ F , f ∼A x ⇔ fAx ∼ x.

6In her paper Pires (2002) axiomatizes the Full-Bayesian updating rule for the multiple prior pref-

erences of Gilboa and Schmeidler (1989).
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At the interim stage, the revealed information is taken into account by updating

the decision maker’s subjective beliefs. For Choquet expected utility preferences, there

are several ways of defining the conditional capacity νA. The most common updating

rules used to revise capacities are: the Bayes updating rule, the Maximum-Likelihood

updating rule and the Full-Bayesian updating rule. For the sake of completeness, we

recall the respective definitions.

Definition 7. Let ν be a capacity on Ω and let A ⊂ Ω. If A is observed and B ⊂ A,

then:

i) the Bayes updating rule (B) is given by

νA(B) =
ν(B ∩ A)

ν(A)
,

ii) the Maximum-Likelihood updating rule (ML) is given by

νML
A (B) =

ν((B ∩ A) ∪ Ac)− ν(Ac)

1− ν(Ac)
,

ii) the Full-Bayesian updating rule (FB) is given by

νFBA (B) =
ν(B)

1− ν(B ∪ Ac) + ν(B ∩ A)
.

Gilboa and Schmeidler (1993) characterize behaviorally the Maximum-Likelihood

updating rule, introduced by Dempster (1968) and Shafer (1976). Eichberger, Grant,

and Kelsey (2007) provide an axiomatic characterization of the Full-Bayesian updating

rule for Choquet expected utility preferences. Moreover, the Maximum-Likelihood and

the Bayes updating rule belong to the class of so called h-Bayesian updating rules

introduced by Gilboa and Schmeidler (1993).

Definition 8 (h-Bayesian updating rule). There is an act h ∈ F such that for all

f, g ∈ F and all A ∈ A, f <A g ⇔ fAh < gAh.

When preferences admit a Choquet expected utility representation then for the

Maximum-Likelihood (or pessimistic) updating rule, the act h = x∗ is a constant act

yielding the most preferred outcome in X. That is, under the Maximum-Likelihood
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updating rule, the conditionally null event, Ac, is associated with the best outcome

possible. For the Bayes (or optimistic) updating rule the act h = x∗ is a constant act

associating the worst possible outcome in X (note that w.l.o.g. we suppose that such x∗

and x∗ exist). According to Gilboa and Schmeidler (1993) the decision maker exhibits

“happiness” that an event A occurred and decisions are made as if she were always

in “the best of all possible worlds” (happiness comes from the fact that the event Ac,

which did not occur, was associated by the decision maker with the worst outcomes).

All the h-Bayesian updating rules satisfy consequentialism but not necessarily dynamic

consistency.

6.2 Dynamic Characterization of Unambiguous Events

6.2.1 N-Unambiguous Events

The objective of this section is to establish the necessary and sufficient conditions for

Choquet expected utility preferences to be dynamically consistent on events in a fixed

filtration. We begin by looking for an appropriate updating rule on the filtration P

made up of N -unambiguous events, i.e. AP ⊂ AUN . It turns out that the Bayes revision

rule for capacities is the only way to ensure dynamic consistency on the filtration P ,

whose elements are N -unambiguous events. Moreover, when the conditional event is N -

unambiguous, then the property of conditional certainty equivalent consistency implies

that beliefs are revised according to the Bayes updating rule. These observations are

summarized in the following proposition.

Proposition 6.2. Let ν be a capacity on Ω and let A ∈ AUN be a N-unambiguous event,

then the following three statements are equivalent:

i) Conditional certainty equivalent consistency is satisfied.

ii) The capacity ν is updated according to Bayes updating rule.

iii) Dynamic consistency is satisfied.
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Remark 6.1. Ghirardato, Maccheroni, and Marinacci (2008) provide a similar result

for a larger class of preferences than the class of Choquet expected utility preferences,

the invariant biseparable preferences. However, the properties that they obtain are not

available for all acts but only for acts which are unambiguous (i.e. acts measurable with

respect to the unambiguous partition).

As next we state that the Full-Bayesian updating rule and all the h-Bayesian up-

dating rules coincide with the Bayes revision rule when the conditional event A belongs

to the algebra generated by N -unambiguous events, i.e. A ∈ AUN .

Proposition 6.3. Let ν be a capacity on Ω and let A ∈ AUN be a N-unambiguous event,

then the Full-Bayesian updating rule and all the h-Bayesian updating rules coincide with

the Bayes updating rule.

Now we are ready to state our first theorem. It claims that Choquet expected

utility preferences satisfy dynamic consistency on events in a fixed filtration if and

only if the algebra generated by the events from that filtration belongs to the algebra

generated by N -unambiguous events. Intuitively, Choquet expected utility preferences

respect dynamic consistency on a fixed collection of events, which are not affected by

ambiguity.

Theorem 6.1. Let P = {Pt}t∈T be a fixed filtration on Ω and let AP be an algebra

generated by P. If the decision maker has Choquet expected utility preferences then the

following conditions are equivalent:

i) The decision maker is dynamically consistent with respect to P.

ii) AP belongs to AUN and ν is updated according to the Bayes updating rule.

Some remarks regarding the theorem and the related literature are in order.

Remark 6.2. Our result extends the theorem of Eichberger, Grant, and Kelsey (2005),

which is true only for convex capacities, to all capacities. Then, for a capacity ν being

convex, the additivity on A ∈ A, i.e. ν(Ac) + ν(A) = 1, is equivalent to A being N-

unambiguous. The proof relies on their Lemma 2.1 stating that if ν(Ac) + ν(A) = 1,
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then for any B ∈ A, ν(B) = ν(Ac ∩B) + ν(A ∩B). Instead of assuming the Bayesian

updating rule as in Eichberger, Grant, and Kelsey (2005) we show that it is actually

the only way to retain the property of dynamic consistency.

Remark 6.3. Sarin and Wakker (1998a) show in their Theorem 3.2 that dynamic con-

sistency is equivalent to the additivity of the Choquet functional. Our theorem strength-

ens this result by showing that dynamic consistency on fixed filtration actually implies

that the algebra generated by this filtration belongs to the algebra of N-unambiguous

events and vice versa.

6.2.2 Z-Unambiguous Events

We begin this section by presenting the 4-color experiment, suggested by Zhang (2002),

and extend it to a dynamic framework. In particular it illustrates that conditionally

on a Z-unambiguous event (which is not N -unambiguous) it is impossible that a con-

sequentialist decision maker satisfies the property of dynamic consistency.

Example 6.1. Consider an urn containing 100 balls. The color of each ball may be

black (B), red (R), gray (G) or white (W). The decision maker is supposed to rank six

acts, f, f ′, g, g′, h, h′ ∈ F , which are defined as below. At the ex-ante stage (t = 0) the

decision maker is told that that the sum of black and red balls is 50 and the sum of black

and gray is also 50. At interim stage (t = 1) one ball is drawn at random from the urn

and the decision maker is informed the event {B,R} occurred.

Suppose that at the ex-ante stage (t = 0) the decision maker is ambiguity averse and

displays the following pattern of preferences:

f =


1 if ω ∈ B

100 if ω ∈ R

0 if ω ∈ G

0 if ω ∈ W

 �


100 if ω ∈ B

0 if ω ∈ R

0 if ω ∈ G

0 if ω ∈ W

 = f ′
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g =


1 if ω ∈ B

100 if ω ∈ R

100 if ω ∈ G

0 if ω ∈ W

 ≺


100 if ω ∈ B

0 if ω ∈ R

100 if ω ∈ G

0 if ω ∈ W

 = g′

h =


1 if ω ∈ B

100 if ω ∈ R

100 if ω ∈ G

100 if ω ∈ W

 �


100 if ω ∈ B

0 if ω ∈ R

100 if ω ∈ G

100 if ω ∈ W

 = h′

The decision maker prefers f to f ′ and she also prefers h and h′, because the chance

of getting 100 by choosing f is the same as by choosing f ′, but also with additional

chance of getting 1 under f . The same way of reasoning holds for the preference relation

between the act h and the act h′. Furthermore, the decision maker prefers g′ to g. Choos-

ing the act g′ leads to the payment of 100 with probability of one half, since the probability

of the event {B,G} is known to be one half, whereas the act g pays 100 only with prob-

ability in the range between null and one half. Moreover, changing the outcome on the

event {G,W} in the pair of acts {f, f ′} and {h, h′} leaves the preference relation between

these acts unchanged. Thus, the event {B,R} is Z-unambiguous. In particular the col-

lection of all Z-unambiguous events, AUZ = {∅, {B,R}, {G,W}, {B,G}, {R,W},Ω}, is

not an algebra, since it is not closed under intersections. However, as mentioned before,

it is a λ-system.

Consider now the filtration P = {P0,P1}, with P0 = Ω and P1 = {{B,R}, {G,W}}.

At the interim stage (t = 1) the decision maker is informed that the event {B,R}

occurred. Since all acts a, b ∈ {f, g, h} and all acts a′, b′ ∈ {f ′, g′, h′} are the same on the

event {B,R}, a = b and a′ = b′, and differ only outside of that event, consequentialism

requires that a ∼{B,R} b and a′ ∼{B,R} b′ and furthermore a �{B,R} a′ (or a ≺{B,R} a′

respectively). But this is possible only by reversing the conditional preference relation

between g and g′. Thus, it is impossible for the ambiguity-averse decision maker to

respect dynamic consistency on the fixed filtration P made up of Z-unambiguous events.

We maintain dynamic consistency for all acts measurable with respect to the filtra-

tion P . That is for all f ∈ F such that for any x ∈ X, f−1(x) ∈ P . Denote by FP
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the set of all acts measurable with respect to the filtration P . We say that an event

A ∈ A is P measurable if the indicator function of A is measurable with respect to the

filtration P .

Axiom 6 (P-Dynamic Consistency). For any non-null event A ∈ A which is P mea-

surable and for any f, g ∈ FP , f ∼A g ⇔ fAg ∼ g.

In the same spirit as forN -unambiguous events, we look for the most natural revision

rule to update capacities conditionally on Z-unambiguous events. According to the next

result, applying the Bayes revision rule is the only way to ensure that the conditional

certainty equivalent consistency and the P-dynamic consistency are satisfied.

Proposition 6.4. Let ν be a capacity on Ω and let A ∈ AUZ be a Z-unambiguous event,

then the following two statements are equivalent:

i) The capacity ν is updated according to the Bayes updating rule.

ii) Conditional certainty equivalent consistency and P-dynamic consistency are satis-

fied.

Next we show that conditional on Z-unambiguous events the Bayes revision rule

coincides with all the h-Bayesian updating rules, whenever h is a constant act, and

with the Full-Bayesian updating rule.

Proposition 6.5. Let ν be a capacity on Ω and let A ∈ AUZ be an Z-unambiguous

event, then the Full-Bayesian updating rule and all the h-Bayesian updating rules, with

h = x for some x ∈ X, coincide with the Bayes updating rule.

In the following, we assume that the finest partition in P contains at least three

elements. Then we provide a necessary and sufficient condition for Z-unambiguous

events in a conditional decision problem.

Theorem 6.2. Let P = {Pt}t∈T be a fixed filtration on Ω. If a decision maker has

Choquet expected utility preferences then the following conditions are equivalent:
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i) Conditional certainty equivalent consistency and P-dynamic consistency are satisfied

on P.

ii) AP belongs to AUZ and ν is updated according to the Bayes updating rule.

Remark 6.4. If conditional certainty equivalent consistency is satisfied but not P-

dynamic consistency, then the event fails to be Z-unambiguous. When updated accord-

ing to the Full-Bayes updating rule, the capacities known as ε-contamination respect

conditional certainty equivalent consistency. For a characterization of capacities which

satisfies the conditional certainty equivalent consistency on all events see Eichberger,

Grant, and Lefort (2010).

Remark 6.5. This characterization of Z-unambiguous events through conditional cer-

tainty equivalent consistency is a specific property of Choquet expected utility prefer-

ences. For instance when preferences admit the multiple prior representation, then ac-

cording to the result of Pires (2002) conditional certainty equivalent consistency holds

on all events whenever the Full-Bayesian updating rule is used.

6.3 Summary

In this chapter the notion of unambiguous events is related to conditional decision

problems. We consider a consequentialist decision maker with Choquet expected utility

preferences. We look for a fixed collection of events on which the decision maker respects

dynamic consistency. It turns out that dynamic consistency satisfied on a fixed filtration

guarantees that its elements are N -unambiguous events. The converse is also true,

when the capacity is updated according to the Bayes updating rule. As an implication,

the decision maker will in general violate dynamic consistency on events which are Z-

unambiguous (but not N -unambiguous). However, when the fixed filtration is made

up of Z-unambiguous events, the decision makers’s preferences respect an axiom called

conditional certainty equivalence consistency and dynamic consistency constrained to

partition measurable acts.
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On the one side, the tight structure of Choquet expected utility models can be seen

as a drawback of these models. On the other, side it allows to characterize sharply

the usual dynamic properties of preferences from the static point of view. We hope

that these results on their own may give some new insights into the nature of dynamic

Choquet expected utility preferences and may also contribute to the existing debate

regarding the suitable notion of unambiguous events.

6.4 Proofs

Proof of Proposition 6.1. First we show that i) ⇒ ii) is true. Let A be a N -

unambiguous event. Suppose that there are four acts f, f ′, g, g′ ∈ F such that fAg <

f ′Ag, but fAg
′ ≺ f ′Ag

′. By computing the Choquet expectations of fAg we get∫
Ω

u ◦ (fAg) dν = u(x1) +
n∑
j=2

[u(xj)− u(xj−1)]ν(Aj, . . . , An)

= u(x1)(ν(A) + ν(Ac))

+
n∑
j=2

[u(xj)− u(xj−1)](ν((Aj, . . . , An) ∩ A) + ν((Aj, . . . , An) ∩ Ac))

=

∫
A

u ◦ f dν +

∫
Ac

u ◦ g dν.

Furthermore, after computing the Choquet expectations of f ′Ag, fAg
′, and f ′Ag

′ we

obtain ∫
A

u ◦ f dν ≥
∫
A

u ◦ f ′ dν,

and ∫
A

u ◦ f dν <
∫
A

u ◦ f ′ dν.

Thus, we get a contradiction.

Now, we show that ii)⇒ i) is true.

Step 1. Fix an event A ∈ A. For any act f ∈ F take an outcome x ∈ X such that

fAx ∼ x. Let mρ(fAx) be a rank-dependent probability assignment for rank ρ

generated by fAx. Hence,
∫

Ω
u ◦ (fAx) dν =

∫
Ω
u ◦ (fAx) dmρ(fAx). Take any

y ∈ X such that fAx and fAy are comonotonic. By the Sure-Thing-Principle we
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have fAy ∼ xAy. After computing the Choquet integral we obtain∫
A

u ◦ f dmρ(fAx) + u(x)mρ(fAx)(A
c) = u(x),

thus, ∫
A

u ◦ f dmρ(fAx) = u(x)mρ(fAx)(A).

Furthermore, whenever u(x) < u(y) we have

u(x)mρ(fAx)(A) + u(y)mρ(fAx)(A
c) = u(y)ν(Ac) + u(x)(1− ν(Ac)).

By continuity of u there are infinitely many such outcomes y and therefore we get

ν(Ac) = mρ(fAx)(A
c).

Let now B ∈ A be an event such that B = {ω|f(ω) � x}, then

mρ(fAx)(A
c) = ν(Ac ∪B)− ν(B)

and

ν(Ac) = ν(Ac ∪B)− ν(B).

This holds for any B ∈ A such that B ∩ Ac = ∅. Since the Sure-Thing-Principle

is satisfied at Ac as well, then

ν(A) = ν(A ∪ C)− ν(C)

for any C ∈ A such that A ∩ C = ∅.

Step 2. For any x, z ∈ X such that u(x) < u(z), there exists y ∈ X with u(x) <

u(y) < u(z) such that fAg ∼ f ′Ag where the acts fAg and f ′Ag are defined as

follows

fAg =


z if ω ∈ A ∩B

x if ω ∈ A ∩Bc

x if ω ∈ Ac

 and f ′Ag =


y if ω ∈ A ∩B

y if ω ∈ A ∩Bc

x if ω ∈ Ac

 .

By the Sure-Thing-Principle fAg ∼ f ′Ag ⇒ fAh ∼ f ′Ah for any fAh and f ′Ah

defined as
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fAh =


z if ω ∈ A ∩B

x if ω ∈ A ∩Bc

z if ω ∈ Ac ∩B

x if ω ∈ Ac ∩Bc

 and f ′Ah =


y if ω ∈ A ∩B

y if ω ∈ A ∩Bc

z if ω ∈ Ac ∩B

x if ω ∈ Ac ∩Bc

 .

Now by computing the Choquet integrals, we get

fAg = u(x)(1− ν(A ∩B)) + u(z)ν(A ∩B)

f ′Ag = u(x)(1− ν(A)) + u(y)ν(A)

fAh = u(x)(1− ν(B)) + u(z)ν(B)

f ′Ah = u(x)(1− ν(A ∪ (Ac ∩B))) + u(y)(ν(A ∪ (Ac ∩B))− ν(Ac ∩B))

+u(z)ν(Ac ∩B).

Since fAg ∼ f ′Ag we obtain

u(x)(1− ν(A ∩B)) + u(z)ν(A ∩B) = u(x)(1− ν(A)) + u(y)ν(A)

u(x)(ν(A)− ν(A ∩B)) = u(y)ν(A)− u(z)ν(A ∩B).

From Step 1 we have ν(A) = ν(A ∪ (Ac ∩ B))− ν(Ac ∩ B) and since fAh ∼ f ′Ah

we obtain

u(x)(ν(A ∪ (Ac ∩B))− ν(B)) = u(y)ν(A)− u(z)(ν(Ac ∩B)− ν(B)).

Since this equation is true for any x, z ∈ X, then ν(B) = ν(B ∩ A) + ν(B ∩ Ac)

for any B ∈ A and we conclude that A is a N -unambiguous event, i.e. A ∈ AUN .

Proof of Proposition 6.2. i)⇒ ii) Let us suppose that conditional certainty equiv-

alent consistency is satisfied. Let f = yBx be a simple bet with u(x) < u(y). By

solvability, there is z ∈ X such that f ∼A z. Thus, by conditional certainty equivalent

consistency, we have fAz ∼ z. After rearranging terms, we get

u(z) = u(x)(1− νA(B)) + u(y)νA(B)

u(z) = u(x)(1− ν(Ac ∪B)) + u(z)(ν(Ac ∪ (B ∩ A))− ν(B)) + u(y)ν(B ∩ A).
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Thus,

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

1− ν(Ac ∪B) + ν(A ∩B)
.

Since A is a N -unambiguous event, then by the property of additive separability, we

get 1 − ν(Ac ∪ B) + ν(B) = 1 − ν(Ac) − ν(A ∩ B) + ν(A ∩ B) = ν(A). Thus, for any

outcomes x, y ∈ X such that u(x) < u(y) the following is true

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

ν(A)

= u(x)(1− νA(B)) + u(y)νA(B).

Therefore, we have

νA(B) =
ν(A ∩B)

ν(A)
.

ii)⇒ iii) Now, suppose that the capacity ν is updated according to the Bayes updating

rule. Let the events A and B be N -unambiguous. Consider acts f, g ∈ F with the

following conditional preference relation: f ≺A g and f ≺B g. By computing the

conditional Choquet expected utilities we get∫
Ω

u ◦ fdνA = u(x1) +
n∑
j=2

[u(xj)− u(xj−1)]νA(Aj, . . . , An)

= u(x1) +
n∑
j=2

[u(xj)− u(xj−1)]
ν((Aj, . . . , An) ∩ A)

ν(A)
,

∫
Ω

u ◦ fdνA∪B = u(x1) +
n∑
j=2

[u(xj)− u(xj−1)]νA∪B(Aj, . . . , An)

= u(x1) +
n∑
j=2

[u(xj)− u(xj−1)]
ν((Aj, . . . , An) ∩ (A ∪B))

ν(A ∪B)
.

Since the eventA∪B isN -unambiguous we have ν((Aj, . . . , An)∩(A∪B)) = ν((Aj, . . . , An)∩

A) + ν((Aj, . . . , An)∩B) for any j = 2, . . . , n. Hence, the conditional Choquet integral∫
Ω
u ◦ fdνA∪B is proportional to the sum of

∫
Ω
u ◦ fdνA and

∫
Ω
u ◦ fdνB. Therefore, we

obtain f ≺A∪B g.

iii)⇒ i) Dynamic consistency directly implies conditional certainty equivalent con-

sistency.

Proof of Proposition 6.3. Consider the Full-Bayesian updating rule,

νFBA (B) =
ν(A ∩B)

1− ν(Ac ∪B) + ν(A ∩B)
.
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Since the conditional event A is N -unambiguous, ν(Ac ∪ B) = ν(Ac) + ν(A ∩ B) and

ν(Ac) + ν(A) = 1, therefore we have

νFBA (B) =
ν(A ∩B)

ν(A)
.

Consider now the Maximum-Likelihood updating rule,

νML
A (B) =

ν((A ∩B) ∪ Ac)− ν(Ac)

ν(A)
.

Since A is a N -unambiguous event, ν((A∩B)∪Ac)−ν(Ac) = ν(A∩B)+ν(Ac)−ν(Ac),

therefore we have

νML
A (B) =

ν(A ∩B)

ν(A)
.

Since A is N -unambiguous event, then for any f ∈ F we get∫
Ω

u ◦ fdν = u(x1) +
n∑
j=2

[u(xj)− u(xj−1)]ν(Aj, . . . , An)

= u(x1)(ν(A) + ν(Ac))

+
n∑
j=2

[u(xj)− u(xj−1)](ν((Aj, . . . , An) ∩ A) + ν((Aj, . . . , An) ∩ Ac))

=

∫
A

u ◦ f dν +

∫
Ac

u ◦ f dν.

Thus, by definition of the h-Bayesian updating rules: f �A g iff fAh � gAh. For a N -

unambiguous event this is equivalent to
∫
A
u ◦ f dν ≤

∫
A
u ◦ g dν which is independent

of h. So all the h-Bayesian updating rules coincide when the conditional event A is

N -unambiguous.

Proof of Theorem 6.1. i) ⇒ ii) Let A ∈ A be an event on which dynamic con-

sistency is satisfied. It is well known (see Ghirardato, Maccheroni, and Marinacci

(2008)) that dynamic consistency implies that the utility functions u and uA are the

same up to an affine transformation. Let f = (A1, x1; . . . ;An, xn) be an act such that

u(xi) < u(xi+1) with 1 ≤ i ≤ n−1. The Choquet expectation of f is taken with respect

to a rank-dependent probability assignment mρ(f) with rank ρ given the act f , i.e.∫
Ω

u ◦ f dν =

∫
Ω

u ◦ f dmρ(f).

By solvability, there is an outcome x ∈ X such that f ∼A x. Without loss of generality,

we assume that f does not take the value x, i.e. x 6= xi with i = 1, . . . , n. Consider acts
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fAy for any y ∈ X. Let mρ(fAy) be a rank-dependent probability assignment associated

with the act g. Let ν be a capacity such that ν(A) + ν(Ac) = 1 and let νA be a

conditional capacity given A. In the first step we prove that

1

ν(A)

∫
A

u ◦ f dmρ(fAy) =

∫
A

u ◦ f dνA.

In the second step, it is shown that for any act f ∈ F

1

ν(A)

∫
A

u ◦ f dmρ(f) =

∫
A

u ◦ f dνA.

In the third step we conclude that that mρ(f)(A) = ν(A) for any act f ∈ F . Thus, for

any ranking position of states, that is for all ranks ρ ∈ R, mρ(A) = ν(A) and therefore

A is a N -unambiguous event.

Step 1. Since f ∼A x, by dynamic consistency we get fAy ∼ xA for any y ∈ X.

i) Let y be an outcome such that u(y) < u(x). Since
∫

Ω
u◦g dν =

∫
Ω
u◦ (fAy) dmρ(fAy)

we have∫
A

u ◦ fdmρ(fAy) + u(y)mρ(fAy)(A
c) = u(y)(1− ν(A)) + u(x)ν(A).

This equality is true for any such outcome y for which the ranking ρ given the

act fAy and the ranking ρ′ given the act xAy are the same, i.e. ρ = ρ′. Thus, we

get the following equality u(y)mρ(fAy)(A
c) = u(y)(1− ν(A)), which implies that

mρ(fAy)(A) = v(A). (1)

Therefore, we conclude that
∫
A
u ◦ fdmρ(fAy) = u(x)mρ(fAy)(A).

ii) Let y∗ be an outcome such that u(x) < u(y∗). Again, since
∫

Ω
u ◦ (fAy

∗) dν =∫
Ω
u ◦ (fAy

∗) dmρ(fAy∗) we have∫
A

u ◦ f dmρ(fAy∗) + u(y∗)mρ(fAy∗)(A
c) = u(y∗)(1− ν(A)) + u(x)ν(A).

This equality is true for all outcomes y∗ which keep the same ranking. Namely,

the rank ρ associated with the act fAy
∗ and the rank ρ′ associated with the act

xAy
∗ are the same, i.e. ρ(ω) = ρ′(ω) for all ω ∈ Ω. So we have the equality

u(y∗)mρ(fAy∗)(A
c) = u(y∗)ν(Ac), which implies that

mρ(fAy∗)(A
c) = ν(Ac). (2)

Therefore, we have
∫
A
u ◦ fdmρ(fAy∗) = u(x)(1− ν(Ac)).
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iii) Consider now an act fAx. Let mρ(fAx) be a rank-dependent probability assignment

with rank ρ given the act fAx. Since the act f does not take the value x, there is

an outcome y ∈ X such that u(y) = u(x)−ε and there is an outcome y∗ ∈ X such

that u(y∗) = u(x)+ε and such that the act fAy and the act fAy
∗ are comonotonic

acts. This is possible by continuity of u. By applying (1) and (2) to mρ(fAx)

we can deduce that mρ(fAx)(A) = ν(A) and mρ(fAx)(A
c) = ν(Ac) and therefore

ν(A) + ν(Ac) = 1.

Thus, for any outcome y ∈ X and for any rank-dependent probability assignment

mρ(fAy) with rank ρ given the act fAy we have

u(x) =
1

v(A)

∫
A

u ◦ f dmρ(fAy) =

∫
A

u ◦ f dvA.

Step 2. Since f ∼A x, dynamic consistency implies that f ∼ xAf . Let mρ(xAf) be a

rank-dependent probability assignment for a rank ρ given the act xAf . Thus, we

have∫
A

u ◦ f dmρ(f) +

∫
Ac

u ◦ f dmρ(f) =

∫
Ac

u ◦ f dmρ(xAf) + u(x)mρ(xAf)(A).

Let us consider an act f ∗ ∈ F such that f(ω) = f ∗(ω) for any ω ∈ A, but

f(ω) 6= f ∗(ω) for at least one ω ∈ Ac. Moreover, let f ∗ be comonotonic with f

and let xAf be comonotonic with xAf
∗. According to dynamic consistency we

have fAf
∗ ∼ xAf

∗. Therefore, we obtain the following equality∫
A

u ◦ f dmρ(f) +

∫
Ac

u ◦ f ∗ dmρ(f) =

∫
Ac

u ◦ f ∗ dmρ(xAf) + u(x)mρ(xAf)(A
c),

which implies that
∫
A
u ◦ f dmρ(f) = u(x)mρ(xAf)(A). Since dynamic consistency

is satisfied on the event A, it is also satisfied on the complementary event Ac.

Thus, applying Step 1 to Ac we get mρ(xAf)(A) = ν(A).

Step 3. From Step 2 we have

u(x) =
1

v(A)

∫
A

u ◦ f dmρ(f).

From Step 1 we have for any y ∈ X

u(x) =
1

v(A)

∫
A

u ◦ f dmρ(fAy).
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Therefore, we have for any y ∈ X∫
A

u ◦ f dmρ(f) =

∫
A

u ◦ f dmρ(fAy).

Let us consider an act g that is f measurable and comonotonic with the act f .

Then,
∫

Ω
u◦f dmρ(f) =

∫
Ω
u◦ g dmρ(g). For any outcome y∗ there is an outcome y

such that gAy
∗ is fAy measurable and comonotonic with the act fAy. By applying

the same way of reasoning for act g as for act f in Step 1 and in Step 2 we obtain∫
A

u ◦ g dmρ(g) =

∫
A

u ◦ f dmρ(f) =

∫
A

u ◦ g dmρ(gay∗) =

∫
A

u ◦ f dmρ(fAy).

This implies that on the algebra on A generated by f we obtain mρ(f) = mρ(fAy).

From Step 1 we have that ν(A) = mρ(fAy)(A). Therefore, we get ν(A) = mρ(f)(A)

for any act f ∈ F .

ii)⇒ i) See Proposition 5.1. ii) ⇒ iii).

Proof of Proposition 6.4. i) ⇒ ii) P-Dynamic Consistency follows directly: the

capacity on the filtration constructed from Z-unambiguous events is additive. Applying

the Bayes updating rule on it ensures dynamic consistency for filtration measurable

acts. f ∼A x ⇔ fAx ∼ x is satisfied if the updating rule is h-Bayesian with h = x.

In Proposition 6.2. we prove that all the h-Bayesian updating rules with h constant

coincide on Z-unambiguous events. Since the Bayes updating rule corresponds to h-

Bayesian updating rule with h = x, such that x is the worst possible outcome in X,

the property of conditional certainty equivalent consistency holds on Z-unambiguous

events, when applying this updating rule.

ii)⇒ i) Let us suppose that conditional certainty equivalent consistency is satisfied.

Let f = yBx be a simple bet with u(x) < u(y). By solvability there is z ∈ X such that

f ∼A z. Thus, by conditional certainty equivalent consistency we have fAz ∼ z. After

some computations we get

u(z) = u(x)(1− νA(B)) + u(y)νA(B)

u(z) = u(x)(1− ν(Ac ∪B)) + u(z)(ν(Ac ∪ (B ∩ A))− ν(B)) + u(y)ν(B ∩ A).
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Thus,

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

1− ν(Ac ∪B) + ν(A ∩B)
.

Since A is a Z-unambiguous event, then by the characterization of Z-unambiguous

events, we get 1− ν(Ac ∪B) + ν(B) = 1− ν(Ac)− ν(A∩B) + ν(A∩B) = ν(E). Thus,

for any outcomes x, y ∈ X such that u(x) < u(y) the following is true:

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

ν(A)

= u(x)(1− νA(B)) + u(y)νA(B).

Therefore, we have

νA(B) =
ν(A ∩B)

ν(A)
.

Proof of Proposition 6.5. From the definition of Z-unambiguous events it follows

directly that all the h-Bayesian updating rules with h being constant act coincide with

the Bayes updating rule. If A is observed and B ⊂ A then the Full-Bayesian updating

rule is given by

νFBA (B) =
ν(B)

1− ν(B ∪ Ac) + ν(B ∩ A)
.

Since A is Z-unambiguous then v(A ∪ Ec) = v(A) + v(Ec). Thus,

νFBA (B) =
ν(B)

ν(A)
.

Proof of Theorem 6.2. (i) ⇒ (ii). Let P be the fixed filtration and Aj the atoms of

this filtration with 1 ≤ j ≤ n. From Eichberger, Grant, and Kelsey (2007) we know that

conditional certainty equivalent consistency guarantees that the same utility index u is

used for conditional and unconditional preference relation. Let f = (A1, x1; . . . ;An, xn)

be a P-measurable act such that u(xj) < u(xj+1) with 1 ≤ j ≤ n − 1. The Choquet

expectation of f is taken with respect to a rank-dependent probability assignment mρ(f)

associated with the act f , i.e.∫
Ω

u ◦ f dν =

∫
Ω

u ◦ f dmρ(f).
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Let us assume that Aci , with i 6= 1 and i 6= n, has occurred. In the first Step we show

that
1

mρ(f)(Aci)

∫
Ac

i

u ◦ f dmρ(f) =

∫
Ac

i

u ◦ f dvAc
i
.

Step 1. By solvability there is an outcome y ∈ X such that f ∼Ac
i
y. As next we con-

struct an act g that is comonotonic with the act f . The construction is conducted

as follows. If u(y) ≤ u(xi−1), we define g on Aci as g = z on An with z ∈ X and

g = f otherwise. By choosing z properly, that is, such that u(z) > u(xn), we

obtain g such that g ∼Ac
i
x with u(xi−1) < u(x) < u(xi+1). By continuity of u

this is possible. On the other hand, if u(xi+1) ≤ u(y) we define another act g by

decreasing x1, such that g ∼Ac
i
x with u(xi−1) < u(x) < u(xi+1). Then the acts

f and g are comonotonic, because g is different of f only on the lowest value of

f , and this lowest value of g can only be lower than the lowest value of f , or the

highest value of f , and this highest value of g can only be higher than the highest

value of f . Therefore, we get∫
Ac

i

u ◦ g dvAc
i

=

∫
Ac

i

u ◦ g mρ(g),

where mρ(g) is the rank-dependent probability assignment associated with the act

g. Now, we apply conditional certainty equivalent consistency and get gAc
i
x ∼ x.

Since u(xi−1) < u(x) < u(xi+1), the act f and the act gAc
i
x are comonotonic. Thus,

their Choquet integrals are computed with respect to the same measure mρ(f),

namely
∫

Ω
u ◦ (gAc

i
x) dv =

∫
Ω
u ◦ (gAc

i
x) dmρ(f). Thus, we have

∫
Ω
u ◦ (gAc

i
x) dv =

u(x). Therefore, we get

u(x) =

∫
Ac

i

u ◦ g dmρ(f) +mρ(f)(Ai)u(x).

Finally, we obtain

u(x) =
1

mρ(f)(Aci)

∫
Ac

i

u ◦ g dmρ(f) =

∫
Ac

i

u ◦ g dvAc
i
,

which is also true for the act f

1

mρ(f)(Aci)

∫
Ac

i

u ◦ f dmρ(f) =

∫
Ac

i

u ◦ f dvAc
i
.
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Step 2. We show that the above result is true for any possible permutation of the

indexes {2, . . . , n − 1} of the atoms {A2, . . . , An−1}. That is for any such P-

measurable act f ∗ the rank-dependent probability assignment mρ(f∗) associated

with the act f ∗ is independent of the ranking position of the event Ai provided that

i 6= 1 and i 6= n. Consider an act f ∗ = (A1, x
∗
1; . . . ;An, x

∗
n) such that f ∗ ∼Ac

i
y for

some outcome y ∈ X and such that u(xi) is between u(x∗j) and u(x∗j+1). Consider

also an another act f ∗∗ = (A1, x
∗∗
1 ; . . . ;An, x

∗∗
n ) with different rearrangements of

atoms, such that u(xi) is between u(x∗∗j ) and u(x∗∗j+1) and such that f ∗∗ ∼Ac
i
y.

Let mρ(f∗) and mρ(f∗∗) be a rank-dependent probability assignment associated

with the act f ∗, respectively with f ∗∗. By applying Step 1 we obtain

1

mρ(f∗)(Aci)

∫
Ac

i

u ◦ f dmρ(f∗) =
1

mρ(f∗∗)(Aci)

∫
Ac

i

u ◦ f dmρ(f∗∗). (1)

Now, we can vary the values of x∗1 and x∗∗1 , equality (1) remains true, provided

that f ∗ and f ∗∗ have still the same certainty equivalent conditional on the Aci , i.e.

there is some z such that f ∗ ∼Ac
i
z and f ∗∗ ∼Ac

i
z. Thus, it must be true that

mρ(f∗)(A
c
i) = mρ(f∗∗)(A

c
i). Then, we have

mρ(f∗)(A
c
i) = 1−mρ(f∗)(Ai) = 1− v(Ai ∪ A∗j+1, . . . , An) + v(A∗j+1, . . . , An), (2)

and

mρ(f∗∗)(A
c
i) = 1−mρ(f∗∗)(Ai) = 1− v(Ai ∪A∗∗j+1, . . . , An) + v(A∗∗j+1, . . . , An). (3)

Equations (2) and (3) lead to the following

v(Ai ∪A∗j+1, . . . , An)− v(A∗j+1, . . . , An) = v(Ai ∪A∗∗j+1, . . . , An)− v(A∗∗j+1, . . . , An).

The last equation is true for any f . Let Ai = E with i 6= 1 and i 6= n. Moreover, let

F = (A∗j+1, . . . , An) and letG = (A∗∗j+1, . . . , An). The left hand side of the equation

is true if (Ai∪A∗j+1, . . . , An)−(A∗j+1, . . . , An) 6= 1, i.e. v(F ) 6= 0 and v(F ∪E) 6= 1.

The right hand side of the equation is true if (Ai∪A∗∗j+1, . . . , An)−(A∗∗j+1, . . . , An) 6=

1, i.e. v(G) 6= 0 and v(G ∪ E) 6= 1. Thus, we get

v(F ∪ E)− v(F ) = v(G ∪ E)− v(G).
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Step 3. Since P-dynamic consistency holds on the algebra generated by the filtration

P the capacity ν is additive on this algebra.

Case 1. There exists an event F ∈ P such that v(F ) 6= 0 and v(F ∪ E) 6= 1.

Thus, by additivity of v on P we get v(F ∪ E) − v(F ) = v(E). Then from the

result in Step 1 we conclude that v(A ∪ E) = v(A) + v(E) for all A ⊂ Ec.

Case 2. Suppose that there exists no such event F and then let us assume at least

three atoms in P . There exists E ′ and E ′′ in P such that E = E ′ ∪ E ′′ and the

complements of E ′ and E ′′ are not atoms in P . Therefore, we can apply case 1

to them obtaining

ν(F ∪ E)− ν(F ) = ν(F ∪ E ′ ∪ E ′′)− ν(F ∪ E ′) + ν(F ∪ E ′)− ν(F )

= ν(E ′) + ν(E ′′)

= ν(E).

Therefore, we have v(A ∪ E) = v(A) + v(E) for all A ⊂ Ec.

By applying Step 1, Step 2 and Step 3 to the complementary event, Ec, we can conclude

that E and Ec are Z-unambiguous events.

(ii) ⇒ (i). The converse follows immediately from the Proposition 6.4.
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Chapter 7

“Agreeing to Disagree” Type

Results Under Ambiguity

In this chapter we apply Schmeidler’s (1989) Choquet expected utility theory to inter-

personal decision problems.1 There is a finite group of agents. Each agent is charac-

terized by her private information represented by a partition over a finite set of states

of nature. The agents share identical prior beliefs over states. Conditional on her

private information, each agent generates her posterior beliefs by updating the prior

ones. These posterior beliefs are used by the agents as the basis for making individual

decisions. An interesting question that arises here is, which role does asymmetric infor-

mation play in the context of interpersonal decision problems? In particular, suppose

that at some state the agents make distinct decisions which are common knowledge

among them. That is, each agent knows the decisions of the other agents, and each

agent knows that each agent knows the decisions of the other agents, . . . , and so on,

ad infinitum. Can asymmetric information alone explain the differences in agent’s de-

cisions? Surprisingly, within Bayesian frameworks, the answer is “No”. This negative

answer is due to Aumann’s (1976) celebrated result, known as Agreement Theorem.

Aumann showed that, if two agents share a common additive probability distribution,

and their posteriors for some event are common knowledge, then these posteriors must

1The content of this chapter is based on the article Dominiak and Lefort (2011a).
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coincide, despite the fact that they may be conditioned on diverse information. Au-

mann’s impossibility of “agreeing to disagree” in posterior beliefs has been extended by

Geanakoplos and Sebenius (1983) to posterior expectations, and by Bacharach (1985)

to actions maximizing conditional expectation. Following this line of research, Milgrom

(1981) and Milgrom and Stokey (1982) established an even more puzzling result. In a

simple exchange economy under uncertainty, they showed that differences in traders’

private information alone cannot generate any profitable trade opportunities. That is,

given an ex-ante Pareto-efficient allocation, after the receipt of private information,

there will be no transaction with the property that it is common knowledge among the

traders (with the same risk attitudes) that each of them is willing to carry it out. This

result is often interpreted as establishing the impossibility of “speculative” trade. To

paraphrase Werlang (1989, p.83): “Their result is a problem for the theory of specula-

tive markets: asymmetric information alone cannot be responsible for the existence of

large stock exchanges. A very important research project in the finance literature is to

find where Milgrom-Stokey’s model departs from reality. It is a point that is crucial for

the understanding of the very complex speculative markets we see nowadays”. In this

chapter we pursue Werlang’s desiderata.

Aumann’s Agreement Theorem as well as Milgrom-Stokey’s no-trade theorem rely

on two main assumptions which can be questioned. It is assumed that the traders

share common prior beliefs and that the priors are represented by additive probability

distribution. Morris (1994) advocated weakening the “commonness” assumption, while

still assuming that the traders are subjective expected utility maximizers. Essentially,

he identified which types of heterogeneous prior beliefs will lead to speculative trade in

the presence of asymmetric information. Here, we suggest an alternative approach. We

maintain the assumption of common priors, but weaken the “additivity” requirement

by allowing the traders to be Choquet expected utility maximizers. We assume that the

agents share a common-but-not-necessarily-additive prior beliefs which are represented

by a capacity. Each agent incorporates the receipt of new information by updating
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the prior capacity conditional on her private information. The posterior capacities are

used as a basis for individual decisions. Our objective is to characterize the properties

of events in each agent’s information partition which guarantee that disagreement in

commonly known decisions is impossible. In turns out that, whenever each agent’s

information partition is made up of unambiguous events in the sense of Nehring (1999),

then it is impossible that they disagree on their commonly known decisions, whatever

these decisions are, whether posterior capacities or conditional Choquet expectations.

Conversely, an agreement in conditional expectations, but not in posterior beliefs, im-

plies that each agent’s private information consists of Nehring-unambiguous events.

Based on these results, we can generalize the no-trade theorem of Milgrom and Stokey

(1982) in the context of ambiguity. It is shown that, whenever each agent’s informa-

tion partition is made up of Nehring-unambiguous events there will be no-trade among

Choquet expected utility maximizers. The results obtained suggest that within non-

Bayesian frameworks asymmetric information does matter and can explain differences

in commonly known decisions. In particular, the existence of gambling behavior and

speculative trade may be attributed to differences in agents’ private and ambiguous

information.

The rest of this chapter is organized as follows. In Section 7.1.1, the partitional

information structure is introduced and the notion of common knowledge is presented.

In Section 7.1.2, we define an interpersonal decision model. In Section 7.2, sufficient as

well as necessary conditions are established for agreement theorems to be true in the

presence of ambiguity. In Section 7.3, Milgrom-Stokey’s no-trade theorem is generalized

for Choquet expected utility preferences.
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7.1 Preliminaries

7.1.1 Knowledge Structure

We consider a finite set Ω of states. An event E is a subset of Ω. Let A = 2Ω be the

set of all subsets of Ω. For any E ⊂ Ω we denote Ω \ E, the complement of E, by Ec.

There is a finite group of agents I indexed by i = 1, . . . , N . Each agent i is endowed

with a partition Pi of Ω, which represents i’s private information in the following sense.

If the true state is ω, then i is informed of the atom Pi(ω) of Pi to which ω belongs.

Intuitively, Pi(ω) is the set of all states that agent i considers possible at ω. In other

words: if the true state is ω, then the agent i does not know that, but knows only that

the true state is a member of Pi(ω) containing ω. Given this information structure

it is said that the agent i knows an event E at ω if Pi(ω) ⊂ E. The event that i

knows E, denoted by KiE, is a set of all states in which i knows E. Thus, an operator

Ki : A → A, defined as:

KiE = {ω ∈ Ω : Pi(ω) ⊂ E}. (7.1)

is called i’s knowledge operator. An event E is common knowledge at a state ω if

everyone knows E at ω, everyone knows that everyone knows E at ω, and so on, ad

infinitum. The event that everyone knows an event E is captured by an operator

K1 : A → A defined as:

K1 = K1E ∩ · · · ∩KnE =
N⋂
i=1

KiE. (7.2)

A common knowledge operator CK : A → A is defined as an infinite application of the

operator K1, i.e.:

CKE = K1E ∩K1K1E ∩K1K1K1K1E · · · =
∞⋂
m=1

Km(E). (7.3)

Then, E is commonly known at ω if ω ∈ CKE. The concept of common knowledge

can be expressed equivalently in the following way. Let M = ∧Ni=1Pi be the meet (i.e.

finest common coarsening) and J = ∨Ni=1Pi the joint (i.e. coarsest common refinement)
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of all agents’ partitions. Denote byM(ω) the member ofM that contains ω. Then, E

is commonly known at ω if and only ifM(ω) ⊂ E (see Aumann, 1976; Milgrom, 1981).

7.1.2 Interpersonal Decision Model

Let X be a set of outcomes. In this chapter we refer to mappings f : Ω → X as

actions. Let F be a set of all actions. For any f1, f2, . . . , fn ∈ F denote by f =

(f1, E1; f2, E2; . . . ; fn, En) an action that assigns the outcome f(ω) = fj(ω) to any state

ω in Ej where the collection of events E1, E2, . . . , En form a partition of Ω. An action

f = xEy that assigns the same outcome f(ω) = x to all states in E and f(ω) = y to all

states in Ec, is called a bet. If the true state is ω, each agent makes a decision. Let D be

a non-empty set of possible decisions. Decisions are determined by i’s decision function

di : Ω → D which is a function of i’s private information, i.e. di(ω) = di(Pi(ω)). A

collection I = (I,Ω,F , (Pi, di)i∈I) where I is the set of agents, Ω the set of states, F

the set of actions, (Pi)i∈I the agents’ information partitions, and (di)i∈I the agents’

decision functions is called an interpersonal decision model. An interpersonal decision

model I can be viewed as a formal setup to study the role of common knowledge and

of private information in interactive decision problems.

Essentially, an Agreement Theorem states that if at some state agents’ decisions are

common knowledge then they must be the same the same. For a given interpersonal

decision problem I let Di(ξi) = {ω : d(Pi(ω)) = ξi} be the event that the agent i makes

a decision ξi. We say that at some state ω the agents’ decisions are commonly known

among them (or common knowledge) if and only ifM(ω∗) ⊆ D1(ξ1)∩· · ·∩DI(ξI). The

impossibility of “agreeing to disagree” on commonly known decisions can be stated

formally as follows.

Agreement Theorem. Let I be an interpersonal decision model and let Di(ξi) = {ω :

d(Pi(ω)) = ξi} be the event that the agent i makes a decision ξi. If at some state ω∗ the

event
⋂
i∈I
Di(ξi) is common knowledge, i.e. M(ω∗) ⊂

⋂
i∈I
Di(ξi), then ξ1 = ξ2 = · · · = ξN .

Many famous Agreement Theorems have been formulated within a Bayesian framework.
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That is, it is assumed that agents share a common prior probability distribution π over

Ω, where π(Pi(ω)) > 0 for any ω and all i ∈ I. If the true state is ω, then the agent

i is informed of the atom Pi(ω) of her partition Pi to which ω belongs and revises the

prior π given Pi(ω) according to Bayes’ rule. The posterior probability π(· | Pi(ω)) is

then used as a basis for agents’ decisions. Usually, the decision function d(·) is either:

i) a conditional probability (posterior belief) for some event E in A:

di(ω) = π(E | Pi(ω)), (7.4)

or ii) a conditional expectation (posterior expectation) of some action f in F :

di(ω) =

∫
Ω

u ◦ f dπ(· | Pi(ω)). (7.5)

For a given set of feasible actions B ⊂ F the decision function di(·) may also be

defined as a mapping, choosing an action f maximizing conditional expectations from

the feasible set B. When the decision function di(·) is defined as a conditional probability

(7.4) and the Agreement Theorem holds, we designate this situation as an Agreement

in Beliefs. When the decision function di(·) is defined as a conditional expectation (7.5)

and the Agreement Theorem holds, we term this situation an Agreement in Expectations.

Under the common prior assumption, an Agreement in Beliefs was proved by Aumann

(1976) and Bacharach (1985), and an Agreement in Expectations by Milgrom (1981),

Geanakoplos and Sebenius (1983), Bacharach (1985) and Rubinstein and Wolinsky

(1990). All “agreeing to disagree” type results established within Bayesian setting are

referred to as probabilistic Agreement Theorems. In the next section we extend these

results to non-Bayesian setups in which agents’ subjective beliefs are represented by a

common-but-non-necessarily-additive prior distribution.
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7.2 Agreement Theorems under Ambiguity

7.2.1 Sufficient Condition

Throughout our study we consider an interpersonal decision model I with a finite

group of agents. Each agent is endowed with Choquet expected utility preferences.

Furthermore, it is assumed that the agents share a common capacity distribution ν on

the state space Ω where ν(Pi(ω)) > 0 for all states ω ∈ Ω and for all i ∈ I. If the

true state is ω, each agent i revises the prior capacity ν given her private information

Pi(ω) by applying one of the possible updating rules (see Section 6.1.3). Again, the

updated capacity ν(· | Pi(ω)) serve as a basis for agents’ decisions. As in the Bayesian

framework we mainly consider two types of decision functions:

i) a conditional capacity for some event E ∈ A,

di(ω) = ν(E | Pi(ω)), (7.6)

or ii) a conditional Choquet expectation for some action f ∈ F ,

di(ω) =

∫
Ω

u ◦ f dν(· | Pi(ω)). (7.7)

In the existing non-Bayesian extensions of probabilistic Agreement Theorems, estab-

lished by, among others Cave (1983) and Bacharach (1985), the nature of agents’ sub-

jective beliefs is inessential and the decision function may be an arbitrary function.

To guarantee that the Agreement Theorem holds it is required, that agents are ”like-

minded”, i.e. they would make the same decisions if they had the same information,

and that the decision function d(·) satisfies the Sure-Thing-Condition (STC).

(STC). The decision function di satisfies the Sure-Thing Condition if and only if, for

any partition E1, . . . , En of Ω it is true that:

di(E1) = · · · = di(En) = ξi ⇒ d(
n⋃
j=1

Ej) = ξi. (7.8)
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Let E1, . . . , En be a partition of Ω. The Sure-Thing-Condition requires that, if an

agent i makes the same decision ξi knowing which of the mutually exclusive events

Ej has occurred, then she also should make the same decision ξi without knowing

which one occurred, i.e. E1∪ . . .∪En. Bacharach (1985) refers to the condition (7.8) as

a“[. . . ] fundamental principle of rational decision-making”. Cave (1983) and Bacharach

(1985) showed that if the agents follow the same decision function satisfying the Sure-

Thing-Condition then the Agreement Theorem holds. Note, in the class of probabilistic

models, decision functions such as conditional probabilities, conditional expectations, as

well as actions maximizing conditional expectations, satisfy the Sure-Thing-Condition

on any partition. In non-probabilistic models, however, the decision function may

satisfy the Sure-Thing-Condition on some fixed partitions, but not on others.

For this reason our first objective is to fix a partition and to look at properties of

events of that partition which are sufficient for a decision function d(·) to satisfy the

Sure-Thing-Condition on it. It turns out that the decision function di(·), defined as

a conditional capacity or a conditional Choquet expectation or an action maximizing

conditional expectations, satisfies the Sure-Thing-Condition on partitions made up of

N -unambiguous events. This condition on its own is a sufficient condition for Agree-

ment Theorem to hold under ambiguity. That is, if each agent i’s private information is

represented by a partition Pi made up of N -unambiguous events, then the agents can-

not disagree on their commonly known decisions, whatever these decisions are: whether

conditional capacities, conditional Choquet expectations or actions maximizing condi-

tional Choquet expectations. In other words, the unambiguous character of agents’

private information precludes the possibility of agreeing to disagree on their decisions

despite the fact that these decisions are based on diverse information. In view of this

result, it seems that asymmetries in private information do matter and that they can ex-

plain differences in agents’ commonly known decisions due to ambiguity of their private

information. This result is formally stated and proved in Theorem 1.

Theorem 7.1. Let ν be a common capacity distribution on Ω and let AUN ⊂ A be a
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collection of N-unambiguous events. Let P i
1, . . . , P

i
k, . . . , P

i
K be the events in i’s partition

Pi. If P i
k ∈ AUN for all k = 1, . . . , K and all agents i ∈ I, then the following statements

are true:

(i) Agreement in Beliefs holds,

(ii) Agreement in Expectations holds.

How strong is the sufficiency condition in Theorem 7.1? In particular, suppose that

we adapt a weaker notion of unambiguous events, for instance, the one proposed by

Zhang (2002). Is the claim still true that a disagreement in commonly known decisions

is impossible? Example 7.1 answers this question negatively. Even a small departure

from Nehring’s notion of unambiguous events may create disagreement opportunities.

That is, if for an agent i her information partition Pi is made up of Z-unambiguous

events, which are not N -unambiguous, then her decision function may violate the Sure-

Thing-Condition on Pi. Consequently, we may construct information partitions for

other agents and find a state in which agents’ decisions are common knowledge and

do not coincide after all. Example 7.1 demonstrates a possibility of a disagreement

on posterior beliefs among two agents, where one agent is endowed with information

partition consisting of Z-unambiguous events.

Example 7.1 (Disagreement in Beliefs). Consider an interpersonal decision model I

with two agents I = {A,B}, called Anna and Bob, the set of states Ω = {ω1, ω2, ω3, ω4},

the set of decisions D = [0, 1] and the decision function defined as in (7.6). Let PA =

{{ω1, ω2}, {ω3, ω4}} and PB = {ω1, ω2, ω3, ω4} be the agents’ information partitions.

Anna and Bob face the following capacity distribution on A:

ν(ωj) = 1
10

, for any j = 1, . . . , 4,

ν(ωj, ωk) = 1
2
, for any j + k 6= 5,

ν(ωj, ωk) = α, for any j + k = 5 where α ∈ [ 1
10

; 1
2
),

ν(ωj, ωk, ωl) = 6
10

, for any j, k, l = 1, . . . , 4.

Note, all events {ωj, ωk} with j + k 6= 5 are Z-unambiguous, but not N-unambiguous.

To see this, consider the event {ω1, ω2} and its complement {ω3, ω4}. On this par-

tition the capacity sums up to one. Now, if these events were N-unambiguous, then
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according to the additive separability property (6.2) the capacity for the event {ω1, ω3}

were ν(ω1, ω3) = ν(ω1) + ν(ω3) = 1
5
, but not 1

2
. One can verify that the capacity

ν satisfies the additive separability property (6.4) only on subevents of its unambigu-

ous complements. For instance, ν(ω1, ω2, ω3) = ν(ω1, ω2) + ν(ω3) = 6
10

. Accordingly,

AUZ = {∅, {ω1, ω2}, {ω3, ω4}, {ω1, ω3}, {ω2, ω4},Ω} is the collection of Z-unambiguous

events.

Therefore, Anna’s partition is made up of Z-unambiguous events which are not N-

unambiguous. Consider the event E = {ω1, ω3}. At any state Anna and Bob announce

their posterior beliefs for the occurrence of E given their private information. Given

Bob’s private information he announces dB(ω) = ν(E | PB(ω)) = 1
2

at any state ω ∈ Ω.

Anna has finer information than Bob and therefore her decision equals the conditional

capacity, i.e. dA(ω) = ν(E | PA(ω)) = 1
5

for all ω ∈ Ω. Note, Anna’s decision function

dA(·) violates the Sure-Thing Condition on her partition. Furthermore, since M = Ω,

the event that Anna’s decision is 1
5

and that Bob’s decision is 1
2

is commonly known at

any state. That is, M(ω) = DA(1
5
) ∩ DB(1

2
) = Ω for all ω ∈ Ω. But, these decisions

are in fact not the same. This shows that, if for one agent her private information is

made up of Z-unambiguous events, which are not N-unambiguous, than the Sure-Thing

Condition is violated and it is possible that the agents end up agreeing to disagree after

all!

Suppose now Anna’s partition PA = {{ω1, ω2}, {ω3, ω4}} were made up of N-unambiguous

events. In this case, the capacity for the event E must be equal to 1
5

due to the additive

separability property (6.2). Now, 1
5

is Bob’s decision which he announces in all states.

Therefore, agents decisions are commonly known at any state and in fact they are the

same. Thus, when agents’ private information is made up of N-unambiguous events it

is impossible for them to agree to disagree on their posterior capacities.

7.2.2 Agreement Theorem - The Converse Result

In this section we address the following issue. Suppose that agents’ decisions satisfy

the Sure-Thing Condition on their information partitions and that the agents cannot

disagree on their commonly known decisions. Can we infer something about the nature

of agents’ private information? In principle, the answer is “yes”. However, what we may
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infer observing an agreement depends on the type of decisions on which agents agree to

agree. There are situations in which Agreement in Beliefs is present and nothing can

be said about the nature of agents’ private information. Example 7.2 illustrates this

point. We consider an interpersonal decision model I in which agents’ decisions are

posterior capacities for some event E. Then, it is possible to find a common capacity

distribution and an updating rule such that the conditional capacities for E satisfy

the Sure-Thing-Condition on their private information partitions, and such that at

some state Agreement in Beliefs holds, but agents’ partitions are neither made up of

N -unambiguous, nor of Z-unambiguous events.

Example 7.2. Consider the interpersonal decision model I as it was described in Ex-

ample 7.1. Suppose now, Anna and Bob face the following capacity distribution on

A:

ν(ωj) = 1
9
, ν(ωj, ωk) = 1

3
, ν(ωj, ωk, ωl) = 4

9
,

where j, k, l ∈ {1, . . . , 4} are distinct indexes. Consider the event E = {ωj, ωk} where

j+k = 5. Suppose that at any state agents announce posterior capacities for E. To esti-

mate their posteriors, the agents apply the Bayesian updating rule given their private in-

formation. Note that the Bayesian update coincides here with the Maximum-Likelihood

and the Full-Bayesian update. Then, given Anna’s information her announcement is

1
3

at any state, i.e. dA(ω,B) = ν(E | PA(ω)) = 1
3

for all ω. Given Bobs’s informa-

tion, his announcement is also 1
3

at any state, i.e. dB(ω,B) = ν(E | PB(ω)) = 1
3

for

all ω. Anna’s as well as Bobs’s decision function satisfy the Sure-Thing-Condition on

their individual partitions. Thus, it is impossible that at some state agents’ posteriors

for the event E are commonly known and not the same. However, this Agreement in

Beliefs does not indicate that Anna’s or Bob’s private information is in some sense

unambiguous. Events in Anna’s partition are made up neither of N-unambiguous, nor

of Z-unambiguous events. On Anna’s partition the capacity ν does not even add up to

one.

Such examples for Agreement in Beliefs can be constructed easily when one constrains

the analysis to a particular class of capacities. For instance, in Dominiak and Lefort
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(2010) we consider the class of neo-additive capacities axiomatized by Chateauneuf,

Eichberger, and Grant (2007).2 We characterize the family of updating rules for neo-

additive capacities which are necessary and sufficient for Aumann’s Agreement Theorem

to hold in the context of such beliefs. The neo-additive capacities, by construction, are

not suitable to model unambiguous events, neither in the sense of Nehring (1999) nor

in the one of Zhang (2002). This observation provides an additional argument for the

claim that an Agreement in Beliefs is too “weak” to infer something about the nature

of agents’ private information.

Furthermore, it turns out that if at some state ω it impossible that the agents agree

to disagree on conditional capacities for some event E then it is also impossible at

ω that they agree to disagree on conditional Choquet expectations of binary actions

defined on the event E. A binary action or bet b = xEy is a function which assigns

the constant outcome f(ω) = x ∈ X to each state ω in E and the constant outcome

f(ω) = y ∈ X to each ω in Ec. The next proposition states this observation formally.

Proposition 7.1. Let ν be a common capacity distribution ν on Ω. Let Pi be i’s

information partition and let di(·) be i’s conditional capacity for some event E ∈ A.

Suppose that at some state ω∗ Agreement in Beliefs holds for E. Consider a bet b = xEy

defined on the event E with x, y ∈ X. Let d̃i be i’s conditional Choquet expectation of

b. Then, Agreement in Expectations holds at ω∗ for b.

Thus, knowing that agents cannot agree to disagree on expectations for some bet,

nothing can be said about the nature of events representing their private information.

Then, in the view of Example 7.2 we may find a common capacity distribution and an

updating rule such that for some event E an Agreement in Beliefs holds. According to

Proposition 7.1, agents will also reach an Agreement in Expectations for bets on the

2A neo-additive capacity ν is defined as follows: for any ∅ 6⊆ E 6⊆ Ω, ν(E) = δα + (1 − δ)π(E),

where π is a probability measure with support equal to Ω, and α, δ ∈ [0, 1] are parameters. A neo-

additive capacity describes situations in which an agent behaves as if she had an additive probability

distribution, but she doubts whether this distribution is the correct one. The parameter 1−δ measures

the agent’s confidence in π. The parameter α can be viewed as reflecting the agent’s ambiguity attitude.
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event E and the agents’ partitions will neither be made up of N -unambiguous, nor of

Z-unambiguous events.

For this reason we constrain our attention to the whole set of possible actions F

and ask again whether it is possible to infer something about the nature of events in an

agent’s partition knowing that the agents reached Agreement in Expectations for more

general action f . Theorem 7.2 answers this question in the affirmative. Agreement in

Expectations for an action implies that agents’ information partitions are made up of

N -unambiguous events.

Theorem 7.2. Let ν be a common capacity distribution on Ω. Let A′ be a sub-algebra

of A. Let di(·) be the Choquet conditional expectation for some action f in F . If for any

information partition Pi = P i
1, . . . , P

i
k, . . . , P

i
K such that P i

k ∈ A′ for all k = 1, . . . , K

and all agents i ∈ I, di(·) satisfies the Sure-Thing-Condition on Pi, then A′ is the

algebra made up of N-unambiguous events.

7.3 Speculative Trade under Ambiguity

In this section the no-trade theorem of Milgrom and Stokey (1982) is generalized within

the class of Choquet expected utility preferences. In the view of the aforementioned

results, we are able to characterize the properties of agents’ private information which

are sufficient to guarantee that asymmetric information alone cannot generate any prof-

itable trade opportunities under ambiguity.

We interpret an interpersonal decision model I as a pure exchange economy with

as a single commodity. That is, let X = R+ be the commodity space and call elements

of F contingent consumption bundles. An allocation a is a family a = [a1, . . . , aN ]

where each ai ∈ F represents i’s contingent consumption bundle. An initial allocation

is denoted by e = [e1, . . . , eN ], where each ei ∈ F is referred to as i’s endowment.

As in the previous sections, it is assumed that the agents share an identical capacity

distribution ν on A. Moreover, each agent i is characterized by her preferences over

F which are supposed to admit Choquet expected utility representation, an initial
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endowment ei ∈ A, and her private information Pi. A trade t = [t1, . . . , tN ] is an N -

tuple of functions ti : Ω → R. If the true state is ω, ti(ω) corresponds to i’s net trade

of the single commodity. We say that the trade t is feasible, if:

N∑
i=1

ti(ω) ≤ 0 ∀ ω ∈ Ω,

ei(ω) + ti(ω) ≥ 0 ∀ ω ∈ Ω, ∀i ∈ I.

(7.9)

An initial allocation e is called ex-ante efficient if there does not exist a feasible trade

t such that at ex-ante stage each agent i prefers the contingent consumption bundle

ei + ti to her endowment ei, i.e.:∫
Ω

u ◦ (ei + ti) dν ≥
∫

Ω

u ◦ ei dν ∀i ∈ I. (7.10)

Suppose that the agents trade to an ex-ante efficient allocation e before any information

is revealed. After the receipt of private information the market is reopened and the

agents have the chance to reallocate the initial allocation e through a feasible trade t.

That is, when the true state is ω, each agent i observes Pi(ω) and then the feasible

trade t is proposed. We call the feasible trade t acceptable at ω (or weakly preferable

to a zero trade) if each agent i prefers the contingent consumption bundle ei + ti to her

endowment ei given Pi(ω), i.e.:∫
Ω

u ◦ (ei + ti) dν(· | Pi(ω)) ≥
∫

Ω

u ◦ ei dν(· | Pi(ω)). (7.11)

In Bayesian frameworks, where all uncertainty is quantifiable by a common additive

probability distribution, the receipt of private information can not create any incentives

to re-trade an ex-ante efficient allocation, even though the information the agents receive

may be distinct. What are the conditions on agents private information which are

sufficient to ensure that the no-trade theorem still holds in the presence of common, but

non-additive priors? It turns out that as long as agents’ information partitions are made

up of N -unambiguous events, at interim stage the agents will not find it advantageous

to re-trade an initially efficient allocation. In other words, when each agent’s private

information is free from ambiguity it is impossible that purely speculative trade occurs
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only due to differences in their private information. This result is stated in the following

theorem.

Corollary 7.1 (No-Trade Theorem). Let ν be a common capacity distribution on Ω

and let AUN ∈ A be a collection of N-unambiguous events. Let P i
1, . . . , P

i
k, . . . , P

i
K be

the events in i’s partition Pi. Suppose that P i
k ∈ AUN for all k = 1, . . . , K and for all

agents i ∈ I. Suppose the initial allocation e = [e1, . . . , eN ] is ex-ante efficient. Let

t = [t1, . . . , tN ] be a trade proposed at interim stage. If it is common knowledge at ω∗

that t is feasible and acceptable, then t1(ω∗) = . . . = tN(ω∗) = 0.

Corollary 7.1 provides an intuitive explanation for the existence of speculative trade.

As was already stipulated by Knight (1921), it is the presence of ambiguity, or what he

called “unmeasurable uncertainty”, that generates profitable trade opportunities. When

agents’ private information is ambiguous, then, conditional on different information

agents may expect gains from re-trading an initially efficient allocation. Example 7.3

illustrates how gains from trade may occur even when one agent’s private information

partition is made up of Z-unambiguous events, which are not N -unambiguous.

Example 7.3. Let X = R+ be the set of outcomes. Consider an interpersonal decision

model I with the set of contingent consumption bundles F = {a | a : Ω→ R+} and the

same information structure and the same capacity distribution as in Example 7.1. Let

e = [eA = (2, 0, 2, 0), eB = (1, 2, 1, 0)] be the initial allocation. Suppose Anna and Bob

are risk neutral. By computing the Choquet expectations of eA and eB with respect to u

and ν for both agents, we get:∫
u ◦ eA dν = 2

1

2
+ 0[1− 1

2
] = 1. (7.12)

∫
u ◦ eB dν = 2

1

10
+ 1[

6

10
− 1

10
] + 0[1− 6

10
] =

7

10
, (7.13)

At ex-ante stage there is no feasible trade t that would make both agents better off. In

fact, the contingent consumption bundle eA makes Bob better off, but any feasible trade

would make Anna worse off. Hence, e is ex-ante efficient. Now, let ω1 be the true state.

Because of Bob’s information at ω1, i.e. PB(ω1) = Ω, his evaluation of eA and eB does

not change. Given Anna’s information at ω1, i.e. PA(ω1) = {ω1, ω2}, she updates her
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preferences by taking into account the conditional capacities ν(ω1 | PA(ω1)) = ν(ω2 |

PA(ω1)) = 2
10

and calculates the conditional Choquet expectations of eA and eB:∫
u ◦ eA dν(· | PA(ω1)) = 2

2

10
+ 0[1− 2

10
] =

4

10
. (7.14)∫

u ◦ eB dν(· | PA(ω1)) = 2
2

10
+ 1[1− 2

10
] =

12

10
, (7.15)

Now, consider the trade t := [tA = (−1, 2,−1, 0), tB = (1,−2, 1, 0)] proposed at the

interim stage. Note, since eA+tA = eB and eB+tB = eA the trade t is feasible. By (7.14)

and (7.15) Anna prefers eB to eA and by (7.12) and (7.13) Bob prefers eA to eB making

the trade t acceptable at ω1. At ω1 it is commonly known between Anna and Bob that

the trade t is feasible and acceptable and t is not the null-trade. The events in Anna’s

partition are Z-unambiguous, but not N-unambiguous; due to this fact differences in

agents’ private information matter and make a profitable trade possible.

A few remarks with regard to the related literature are in order. Close to our ap-

proach are the contributions of Rubinstein and Wolinsky (1990) and Dow, Madrigal,

and Werlang (1990). Their results are obtained without constraining the analysis to

a particular class of ambiguity-sensitive preferences. Rubinstein and Wolinsky (1990)

argued that Milgrom-Stokey’s result is valid for any theory of decision making under

uncertainty as long as preferences satisfy dynamic consistency. Dow, Madrigal, and

Werlang (1990) showed that the no-trade theorem is true if and only if preferences

are representable by a state-additive utility function. Corollary 7.1 can be viewed as

characterizing those properties of events in information partitions on which dynamic

consistency as well as state-additivity of Choquet preferences are satisfied. Then, if

a fixed partition is made up of N -unambiguous events, then Choquet expected utility

preferences respect dynamic consistency on that partition (see Section 6.2.1). Further-

more, Choquet preferences respect dynamic consistency on a fixed partition if and only

if the Choquet integral satisfies the additivity property constrained to that partition

(see Sarin and Wakker, 1998a). In two other related works, Ma (2002) and Halevy

(2004) attempt to establish sufficient condition for the no-trade theorem to be true for

the class of preferences violating consequentialism in some respect.

122



7.4 Proofs

Proof of Theorem 7.1. First we show that (ii) is true.

Step 1 Consider an agent i ∈ I. Let P1, . . . , Pk, . . . , PK be the events in the agent i’s

partition Pi. That is Pi(ω) = Pi(ω
′
) for all states ω, ω′ ∈ Pk. Suppose that the

i’s information partition Pi is made up off N -unambiguous events, i.e. Pk ∈ AUN
for any k = 1, . . . , K. Fix an action f ∈ F . Let di be the Choquet decision

rule defined as in (7.7). Furthermore, we assume that the agent i computes the

posterior capacity ν(· | Pk) conditional on Pk by applying Bayes’ rule. This as-

sumption is reasonable, since all other updating rules, among others those defined

in Section 6.1.3, coincide with Bayes’ rule when conditioning on partitions made

up off N -unambiguous events (see Proposition 6.3). Suppose that for any index

k = 1, . . . , K the conditional Choquet expectation of f given Pk is equal to ξ:

di(P1) = . . . di(Pk) = . . . = di(PK) = ξ, (7.16)

where:

di(Pk) =

∫
Ω

u ◦ f dν(· | Pk)

=
n−1∑
j=1

[u(xj)− u(xj+1)]
ν(E1, . . . , Ej ∩ Pk)

ν(Pk)

= ξ.

By the additive separability condition (6.2) of N -unambiguous events the Choquet

expected value of f with respect to the prior capacity ν can be written as:∫
Ω

u ◦ f dν =
n∑
k=1

∫
Pk

u ◦ f dν. (7.17)

Thus, we obtain:∫
Ω

u ◦ f dν(·) =
n∑
k=1

ν(Pk)

∫
Pk

u ◦ f dν(· | Pk) =
n∑
k=1

ν(Pk) ξ = ξ.

Therefore, di(
K⋃
j=1

Pj) = ξ shows that the Choquet conditional expectations of

f satisfy the Sure-Thing-Condition on partitions made up off N -unambiguous

events.
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Step 2 Fix an agent i. Let Di(ξi) = {ω : d(Pi(ω)) = ξi} be the event that the i’s de-

cision is ξi. Suppose at some state ω∗ the event
⋂
i∈I
Di(xi) is common knowledge,

i.e. M(ω∗) ⊆
⋂
i∈I
Di(xi). Denote by Q =M(ω∗) the member of M that contains

ω∗. Let Q1, . . . , Ql, . . . , QL be events in i’s partition Pi such that Q =
L⋃
l=1

Ql. By

assumption,M(ω∗) ⊆ Di(ξi) and di(Pi(ω)) = ξi for any ω ∈ Ql with l = 1, . . . , L.

Furthermore, since each event Ql is N -unambiguous the decision function di(·)

satisfies the Sure-Thing-Condition by Step 1. Thus, di(Q) = ξi. The same argu-

ment is true for any agent j ∈ I \ {i}. That is, dj(Q) = ξj. Thus, ξ1 = . . . = ξN .

The fact that the Sure-Thing-Principle is sufficient for Agreement Theorem to be

true has been proved, among others, by Bacharach (1985, Theorem 3, p.182).

Proof of Proposition 7.1. Fix an event E. Let Di(αi) = {ω : ν(E | Pi(ω)) = αi} be

the event that i’s conditional capacity of E is αi. Suppose that at some state ω∗ the

agents reached Agreement in Beliefs. That is, the event
⋂
i∈I
Di(αi) is common knowledge

at ω∗ and agents’ conditional capacities for E are the same, α1 = . . . = αN .

For any x, y ∈ X such that x � y let b = xEy be a bet. Fix an agent i. Let

P1, . . . , Pk, . . . , Pn be events in i’s information partition Pi. Let di(Pk) be the i’s

conditional Choquet expectation of b given Pk. Suppose that di(Pk) = βi for any

k = 1, . . . , K, i.e.:

di(P
i
k) =

∫
Ω

u ◦ b dν(· | Pk)

= [u(x)− u(y)]ν(E | P i
k) + u(y)

= βi,

Rearranging the above equation we get for any k = 1, . . . , n:

ν(E | P i
k) =

β − u(y)

u(x)− u(y)

= αi.

Thus, since Agreement in Beliefs holds it follows that:

ν(E |
K⋃
k=1

Pk) =
β − u(y)

u(x)− u(y)

= αi.
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Therefore:

di(
K⋃
k=1

P i
k) =

∫
Ω

u ◦ b dν(·)

= [u(x)− u(y)]ν(E) + u(y)

= βi.

Let Di(βi) = {ω : d(Pi(ω)) = βi} be the event that i’s conditional Choquet expecta-

tion of b is βi. Since the Sure-Thing Condition holds, the event
⋂
i∈I
Di(βi) is common

knowledge at ω∗ and in fact β1 = . . . = βN . Therefore, we conclude that an Agreement

in Beliefs implies an Agreement in Expectations for binary actions.

Proof of Theorem 7.2. Let A′ be a sub-algebra of A. In Step 1 we show that for

any event E ∈ A′ and all events F,G ∈ A such that ∅ 6⊆ F,G 6⊆ Ec, the capacity ν has

the following property:

ν(E ∪G)− ν(G) = ν(E ∪ F )− ν(F ). (7.18)

In Step 2 it is shown that for any event E ∈ A′ the capacity ν is separable among all

subevents of Ec, i.e. for any F ⊂ Ec:

ν(E) = ν(E ∪ F )− ν(F ) = 1− ν(Ec). (7.19)

Step 1. Let A1, A2, A3 ∈ A be a collection of disjoint events partitioning the event

Ec. Consider an action f = (x1A1, x2A2, x3A3) with outcomes x1, x2, x3 ∈ X such

that x1 < x2 < x3. Suppose that the Choquet expected utility of f conditional

on Ec equals x, i.e.:

f ∼Ec x. (7.20)

By computing the conditional Choquet expectation of f we get:∫
u ◦ f dν(· | Ec) = u(x1)

[
1− ν(A2, A3 | Ec)

]
+ u(x2)

[
ν(A2, A3 | Ec)− ν(A3 | Ec)

]
+ u(x3) ν(A3 | Ec) = x. (7.21)

Now, consider an action g = fEcx. By the assumption (7.20) the conditional Cho-

quet expectation of g satisfies the Sure-Thing-Condition on the partition E,Ec,

i.e.: ∫
u ◦ g dν(· | Ec) = x , and

∫
u ◦ g dν(· | E) = x
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implies ∫
u ◦ g dν(· | Ω) = x. (7.22)

When computing the unconditional Choquet integral (7.22) of g with respect to

ν we consider two cases. In Case 1 we consider any x such that x2 < x < x3. In

Case 2, we consider any x such that x1 < x < x2.

Case 1. For any x such that x2 < x < x3 the unconditional Choquet integral of g

yields:∫
u ◦ g dν = u(x1)

[
1− ν(A2, E,A3)

]
+ u(x2)

[
ν(A2, E,A3)− ν(E,A3)

]
+ u(x)

[
ν(E,A3)− ν(A3)

]
+ u(x3) ν(A3)

= x. (7.23)

Solving Equation (7.23) for x we get:∫
u ◦ g dν(· | E) =

1

1− ν(E,A3) + ν(A3)

{
u(x1)

[
1− ν(A2, E,A3)

]
+ u(x2)

[
ν(A2, E,A3)− ν(E,A3)

]
+ u(x3) ν(A3)

}
= x. (7.24)

Equation (7.24) is true for any x1, x2, x3 such that x1 < x2 < x3 and any g = fEcx

with x such that x2 < x < x3. Thus, when fixing the values x1, x2 and varying

the value of x3 we get from Equation (7.21) and (7.24):

ν(A3 | E) =
ν(A3)

1− ν(E,A3) + ν(A3)
(7.25)

Case 2. For x such that x1 < x < x2 computing the unconditional Choquet

integral of g yields:∫
u ◦ g dν = u(x1)

[
1− ν(E,A2, A3)

]
+ u(x)

[
ν(E,A2, A3)− ν(A2, A3)

]
+ u(x2)

[
ν(A2, A3)− ν(A3)

]
+ u(x3) ν(A3)

= x. (7.26)

Solving the above Equation (7.26) for x′′ we get:∫
u ◦ g dν(· | E) =

1

1− ν(E,A2, A3) + ν(A2, A3)

{
u(x1)

[
1− ν(E,A2, A3)

]
+ u(x2)

[
ν(E,A2, A3)− ν(A2, A3)

]
+ u(x3) ν(A3)

}
= x. (7.27)
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Again, Equation (7.27) is true for any x1, x2, x3 such that x1 < x2 < x3 and any

g = fEcx with x such that x1 < x < x2. Thus, when fixing the values x1, x2 and

varying the value of x3 we get from Equations (7.21) and (7.27):

ν(A3 | E) =
ν(A3)

1− ν(E,A2, A3) + ν(A2, A3)
. (7.28)

From Equations (7.25) and (7.28) we conclude that:

ν(E,A3)− ν(A3) = ν(E,A2, A3)− ν(A2, A3). (7.29)

Now, we repeat the same argument for an action h = (y1A1, y2A2, y3A3) with out-

comes y1, y2, y3 ∈ X such that y1 < y3 < y2. Suppose that h ∼Ec y and construct

an action k = hEcy. By construction, the conditional Choquet expectation of k

satisfies the Sure-Thing-Condition on the partition E,Ec. After having consid-

ered two cases, Case 1 in which y is such that y3 < y < y2 and in Case 2 in which

y is such that y1 < y < y3, we conclude:

ν(E,A2)− ν(A2) = ν(E,A2, A3)− ν(A2, A3). (7.30)

From Equation (7.29) and Equation 7.30 it follows then that:

ν(E,A2)− ν(A2) = ν(E,A3)− ν(A3). (7.31)

Therefore, it is true that for any event E ∈ A′ for all events F,G ∈ A such that

∅ 6⊆ F,G 6⊆ Ec:

ν(E ∪G)− ν(G) = ν(E ∪ F )− ν(F ). (7.32)

Step 2. Let A1, A2 ∈ A be two disjoint events partitioning the event E and A3, A4 ∈ A

two events partitioning Ec. Consider an action f = (x1A1, x2A2, x3A3, x4A4)

with outcomes x1, x2, x3, x4 ∈ X such that x1 < x3 < x4 < x2. Suppose the

conditional Choquet expectation of f satisfies the Sure-Thing-Condition on the

partition E,Ec, i.e.:∫
u ◦ f dν(· | Ec) = x and

∫
u ◦ f dν(· | E) = x

implies ∫
u ◦ f dν(· | Ω) = x. (7.33)
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By computing the respective conditional Choquet integrals of f we have:∫
u ◦ f dν(· | E) = x1

[
1− ν(A2 | E)

]
+ x2 ν(A2 | E) = x, (7.34)∫

u ◦ f dν(· | Ec) = x3

[
1− ν(A4 | Ec)

]
+ x4 ν(A4 | Ec) = x. (7.35)

The unconditional Choquet integrals of f is:∫
u ◦ f dν = x1

[
1− ν(A3, A4, A2)

]
+ x3

[
ν(A3, A4, A2)− ν(A4, A2)

]
+ x4

[
ν(A4, A2)− ν(A2)

]
+ x2 ν(A2). (7.36)

From Step 1 and Equation (7.34) we obtain the following equation:

x1

[
1− ν(A3, A4, A2)

]
+ x4 ν(A4) = x

[
1− ν(A4, A3, A2) + ν(A4)

]
, (7.37)

and thus:

x1

[
1− ν(A3, A4, A2)

]
+ x

[
ν(A4, A3, A2)− ν(A4)

]
+ x4 ν(A4) = x. (7.38)

From Equation (7.36) and (7.38) we get:

x2

[
ν(A3, A4, A2)−ν(A3, A4)

]
+x3

[
ν(A3, A4)−ν(A4)

]
= x

[
ν(A3, A4, A2)−ν(A4)

]
.

(7.39)

and thus:

x2

[
ν(A3, A4, A2)− ν(A3, A4)

]
[
ν(A3, A4, A2)− ν(A4)

] + x3

[
ν(A4, A2)− ν(A4)

]
[
ν(A3, A4, A2)− ν(A4)

] = x. (7.40)

Recall, in Equation (7.35) we had:

x3

[
1− ν(A4 | Ec)

]
+ x4 ν(A4 | Ec) = x, (7.41)

Therefore, for any x3, x4 ∈ X such that x3 < x4 we have:

ν(A4 | Ec) =
ν(A4, A2)− ν(A4)

ν(A3, A4, A2)− ν(A4)
, (7.42)

and

1− ν(A4 | Ec) =
ν(A3, A4, A2)− ν(A3, A4)

ν(A3, A4, A2)− ν(A4)
. (7.43)
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Now, let us consider an action g = (x1A1, x2A2, x3A3, x4A4) with outcomes x1,

x2, x3, x4 ∈ X such that x1 < x4 < x3 < x2. The same argument as above leads

to the conclusion that:

1− ν(A3 | Ec) =
ν(A3, A4, A2)− ν(A3, A4)

ν(A3, A4, A2)− ν(A4)
. (7.44)

After applying Step 1 to the partition A4, A
c
4 we get:

ν(A3, A4, A2)− ν(A3, A2) = ν(A4, A2)− ν(A2). (7.45)

Thus, by Equation (7.42), (7.44) and (7.45) we have:

ν(A4 | Ec) = 1− ν(A3 | Ec). (7.46)

After applying Step 1 to the partition E,Ec we get:

ν(A4 | Ec) =
ν(A4)

1 + ν(A4)− ν(A4, E)
, (7.47)

and

ν(A3 | Ec) =
ν(A3)

1 + ν(A3)− ν(A3, E)
. (7.48)

Thus, by Equation (7.46), (7.47) and (7.48) we obtain:

ν(A4)

1 + ν(A4)− ν(A4, E)
=

1− ν(A3, E)

1 + ν(A3)− ν(A3, E)
, (7.49)

From Step 1 we know that:

ν(A4, E)− ν(A4) = ν(A3, E)− ν(A3). (7.50)

and therefore:

ν(A4) + ν(A4, E) = 1, (7.51)

ν(A4) + ν(Ac4) = 1. (7.52)

Step 3. Let A1, A2, A3 ∈ A be events partitioning the event E and Let A4, A5 ∈ A be

events partitioning the complementary event Ec. By applying the argument from

Step 1 when deriving the updating rule we obtain:

ν(A2, A3 | E)−ν(A3 | E) =
ν(A2, A3)

1 + ν(A2, A3)− ν(Ec, A2, A3)
− ν(A2)

1 + ν(A2)− ν(Ec, A2)
.
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From the property of the capacity ν derived in Step 1 we get:

ν(A2, A3 | E)− ν(A3 | E) =
ν(A2, A3)− ν(A2)

1 + ν(A1)− ν(Ec, A1)
. (7.53)

Furthermore, from Step 2 we get:

ν(A2, A3 | E) =
ν(A2, A3, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A4)
, (7.54)

ν(A3 | E) =
ν(A2, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A4)
. (7.55)

Some computations yield:

ν(A2, A3 | E)− ν(A3 | E) =
ν(A2, A3, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A2, A4)
, (7.56)

=
ν(A2, A3)− ν(A3)

ν(A1, A2, A3, A4)− ν(A4)
, (7.57)

=
ν(A2, A3)− ν(A3)

1 + ν(A1)− ν(Ec, A4)
. (7.58)

and thus:

ν(A1, A2, A3, A4)− ν(A4) = 1 + ν(A1)− ν(Ec, A4). (7.59)

Again, from Step 1 and 2 we get the following equality:

ν(A1 | E) =
ν(A1, A4)− ν(A4)

ν(A1, A2, A3, A4)− ν(A4)
=

ν(A1)

1 + ν(A1)− ν(Ec, A4)
. (7.60)

By Equation (7.59) the denominators are the same and thus:

ν(A1) = ν(A1, A4)− ν(A4), (7.61)

and the capacity ν is updated according to Bayes’ rule, i.e.:

ν(A1 | E) =
ν(A1)

ν(E)
. (7.62)

Step 4. Fix an event E ∈ A′ and let A ∈ A be an event such that E ∩ A 6= ∅ and

Ec ∩ A 6= ∅. Suppose that:

ν(A | E) = α, (7.63)

ν(A | Ec) = β < α. (7.64)

Let x be an outcome for which Choquet conditional expectation of the action

f = xA0 is equal to α, i.e.:∫
u ◦ f dν(· | Ec) = x ν(A | Ec),

= α. (7.65)
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Now, consider an action g = (x,Ec∩A; 1, E∩A; 0). Suppose the conditional Cho-

quet expectation of g satisfies the Sure-Thing-Condition on the partition E,Ec,

i.e.: ∫
u ◦ g dν(· | Ec) = α and

∫
u ◦ g dν(· | E) = α

implies ∫
u ◦ g dν(· | Ω) = α. (7.66)

The unconditional Choquet expectation of g is:∫
u ◦ g dν = 1

[
ν(A)− ν(A ∩ Ec)

]
+ xν(A ∩ Ec),

= α. (7.67)

From Step 3 we know that the updating rule is Bayes’ rule:

ν(A | Ec) =
ν(Ec ∩ A)

ν(Ec)
,

and thus:

x ν(A | Ec) = α ν(Ec). (7.68)

From Equation (7.67) and (7.68) we have:∫
u ◦ g dν = 1

[
ν(A)− ν(A ∩ Ec)

]
+ α ν(Ec),

= α. (7.69)

From Equation (7.68) and Step 2 we obtain:∫
u ◦ g dν = 1

[
ν(A)− ν(A ∩ Ec)

]
= α(1− ν(Ec)),

= α ν(E). (7.70)

Thus we have:

ν(A)− ν(A ∩ Ec)

ν(E)
=

ν(A ∩ E)

ν(E)
= x, (7.71)

showing that E is N -unambiguous event, that is for any A ∈ A the capacity ν is

additive separable:

ν(A) = = ν(A ∩ Ec) + ν(A ∩ E). (7.72)

Proof of Corollary 7.1. Follows directly from Theorem 6.1 and 7.2

131



Chapter 8

Conclusion

The goal of this thesis is to examine how new information affects choice behavior under

ambiguity. We focused on static, dynamic, and interpersonal decision problems. Our

first experimental results unequivocally confirm that ambiguity-sensitive behavior is a

robust phenomenon. In each of the two Ellsberg experiments, run as a part of this thesis,

we observed that fifty percent of subjects exhibit ambiguity-averse behavior and about

ten percent of subjects are ambiguity-loving. Neither of these two attitudes towards

ambiguity can be modeled by the subjective expected utility theory of Savage (1954).

To accommodate ambiguity-sensitive behavior, several alternatives to Savage’s theory

have been proposed in the literature. However, to make these alternatives attractive for

economic applications it is important to know first how well they perform descriptively,

and second, which economic facts can they explain in contrast to the orthodox expected

utility theory.

Our first investigation concerned static decision problems. We tested the descriptive

validity of the widely accepted methodology used to formalize the notion of different

ambiguity attitudes, namely, that ambiguity-averse subjects are randomization-loving,

while ambiguity-loving subjects are randomization-averse. Our experimental data do

not support this view. Ambiguity-averse subjects are more likely to be randomization-

neutral rather than randomization-loving. This behavior can be explained by Choquet

expected utility theory within Savage’s framework when the randomization device is

132



modeled as part of an extended state space, but not in the Anscombe-Aumann frame-

work. Furthermore, we also observe a considerable number of ambiguity-averse subjects

who exhibit a contempt for randomization. These observations suggest that ambiguity

models which do not exogenously assume a specific relationship between ambiguity and

randomization attitudes would be better suited to describe real behavior in the presence

of ambiguity.

Next, we focused on dynamic decision problems. In a dynamic version of the classi-

cal 3-color experiment of Ellsberg (1961) we tested whether subjects behave consistently

with either dynamic consistency or consequentialism. We find that more subjects act in

line with consequentialism rather than with dynamic consistency and that this result is

even stronger among ambiguity-averse subjects. This evidence can be seen as support

for theories of updating ambiguity-sensitive preferences which maintain consequential-

ism and relax dynamic consistency. This approach is pursued, for instance, to justify

behaviorally the Full-Bayesian updating rule for the Choquet expected utility prefer-

ences by Eichberger, Grant, and Kelsey (2007) and for the maxmin expected utility

preferences by Pires (2002). Furthermore, we find additional violation of the subjective

expected utility theory in the dynamic experiment. Several subjects who are classified

as ambiguity-neutral in the static choice situation do not exhibit Bayesian behavior in

the dynamic extension. They violate either dynamic consistency or consequentialism.

Therefore, the dynamic version of the 3-color experiment can also be seen as a tool to

test Bayesianism and to make the observation from static experiment more robust.

In the second part we continued to study dynamic choice problems, but constrained

our attention to the class of Choquet expected utility preferences. We argued that this

class of preferences has a very attractive feature. Namely, it is possible to characterize

dynamic properties of Choquet preferences from a static point of view by constraining

the analysis to a fixed collection of events. Assuming consequentialism, we showed

that Choquet expected utility preferences respect dynamic consistence on a fixed col-

lection of events if and only if these events are unambiguous in the sense of Nehring
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(1999). Accordingly, one can apply the same techniques used in expected utility theory

to solve optimization problems, e.g. backward induction and dynamic programming,

presupposed that the events in a fixed decision tree are Nehring-unambiguous events.

In the last part of this thesis we applied the Choquet expected utility theory to

interpersonal decision problems. We showed that for this class of models asymmetric

information matters and can explain differences in commonly known decisions. Under

the common capacity assumption it was shown that whenever agents’ private informa-

tion partitions are made up of unambiguous events in the sense of Nehring (1999) then

it is impossible that the agents disagree on commonly known decisions, whatever these

decisions are, whether conditional beliefs or conditional expectations. Consequently,

the possibility of speculative trade is precluded only if private information is made up

of unambiguous events in this peculiar sense. Even a small departure from that no-

tion of unambiguous events creates profitable trade opportunities due to differences in

agents’ private and ambiguous information. The presence of ambiguity offers an intu-

itive explanation for the existence of gambling behavior and of speculative trade. This

explanation seems to be less radical than the heterogeneous priors approach of Morris

(1994).

Our experimental results strengthen the evidence that subjects facing ambiguity

behave in a manner inconsistent with Bayesianism. Non-Bayesian decision theory offers

attractive tools to incorporate such behavior into economic theory. I argue that the

Choquet expected utility theory is a particularly interesting and promising approach.

First, the Choquet expected utility theory makes accurate predictions with regards

to ambiguity and randomization attitudes. Second, it allows for characterization of

dynamic properties of preferences from static point of view. Finally, Choquet expected

utility theory makes it possible to gain new insights into the role that ambiguity plays in

economic decisions. One such insight is that differences in private information matter

due to ambiguity and can explain, unlike the subjective expected utility theory, the

existence of purely speculative behavior.
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Instructions

Welcome to our experiment! These instructions are the same for all participants. During the 
experiment, we ask you to remain silent and not to talk with other participants. Please switch 
off your mobile phones and leave them switched off until the end of the experiment. If you 
have any questions, please raise your hand and one of the experimentators will come to you.

Aim and structure of the experiment

This experiment is about decisions under uncertainty. You will be presented with different 
tickets and asked to value these tickets. To do so, you get a choice between the ticket and 
different fix payments. There are no „right“ or „wrong“ answers. Only your preferences count. 
Depending on your preferences, it may well be that you find this easy. Respond truthfully 
whether you prefer the ticket or the fix payment because these alternatives are real and not 
only hypothetical. So, if you decide for a ticket, you will actually get this ticket. If you decide 
for a fix payment, you will receive this payment.

Throughout the experiment, Taler are used as a currency unit, which are later converted at a 
rate of 100 Talern = 10 Cent. The amount will be rounded up to full cents and paid out. The 
deciscions of other participants have no effect on your payoff.

Uncertainty

Three sources of uncertainty play a role for  the tickets.

● A coin will be thrown and the payoff depends on whether it shows tails or heads up. 
We will ask you or another participant to lend us the coin.

● A Ball will be drawn from a bucket and the payoff depends on whether the ball is 
yellow or white. There are two buckets. In both buckets there are 20 table tennis balls. 
We only use table tennis balls that are either white or yellow.
○ Bucket H: Half of the balls is white, the other is yellow.
○ Bucket U: It is not known how many of the balls are white and how many are 

yellow.
This is the only difference between bucket H and bucket U.

There are the following simple tickets:
Coin tickets

● Head ticket: A head ticket pays 100 Taler if the coin lands heads up and nothing else.

● Tail ticket: A tail ticket pays 100 Taler if the coin lands tails up and nothing else.

Color tickets

● White ticket: A white ticket pays 100 Taler if the drawn ball is white and nothing else.

● Yellow ticket: A yellow ticket pays 100 Taler if the drawn ball is yellow and nothing 
else.

● Chameleon ticket: The color of the chameleon ticket is determined by a coin throw.
○ If the coin lands heads up, the chameleon ticket becomes a yellow ticket.
○ If the coin lands tails up, the chameleon ticket becomes a white ticket.

135



For color tickets, it will be specified to which bucket they apply: H or U. A yellow ticket for 
bucket U thus means that a ball is drawn from the bucket with unknown proportions and that 
100 Taler are paid if this ball is yellow..

Apart from these tickets there will be other variations that you will get to know during the 
experiment.

Decitions and the value of tickets

For each ticket there will be a set of questions. For example:
Head ticket Fix payment of ...

Question 1 (  ) ...68 Taler (    )
Question 2 (  ) ...96 Taler (    )
For Question 1 you have to decide between a head ticket or a fix payment of 68 Taler. For 
Question 2 between a head ticket and 96 Taler.

For each question concerning the same color ticket, a new ball will be drawn; already drawn 
balls are replaced. For each question concerning a coin ticket, the coin is thrown. All draws are 
hence completely independent of each other. Your payoff is hence maximized if you answer 
according to the value of the ticket.

If for example the ticket is worth 80 Taler to you, then you should prefer the ticket to a fix 
payment of 68 Taler (otherwise you lose 12 Taler). If you have the choice between the ticket 
and 96 Talern, you should choose 96 Taler (otherwise you lose sixteen Taler).

Input assistant

The close relationship between the value of a ticket and your decisions is used by the program 
to facilitate the input. You have the possibility to directly specify the value of a ticket in steps 
of 5 Taler using a slider. The program then automatically marks the corresponding decisions. 
If you want to you can change these decisions. The program then adjusts the value of the 
ticket. Note that the value of the ticket cannot always be computed. For example, if you select 
a fix payment of 58 Taler rather than the ticket but also choose the ticket rather than a fix 
payment of 63 Taler, this means that the ticket is worth less than 58 Taler to you but also more 
than 63 Taler. In this case, it is impossible to determine the value of the ticket to you.

Sequence

The experiment starts with a few problems, which should help you to acquaint yourself with 
the different types of questions. Moreover, we want to ensure that you have not misunderstood 
the instructions. Decisions during this part do not affect your payoffs. After the understanding 
part, the main part of the experiment begins. The decision during this part are for real. They 
hence affect your payoffs. Finally, we ask you some general questions. Altogether the 
experiment will take 90 minutes. You have enough time for your answers since the draws only 
start if all participants are ready.

136



Figure 1: Valuation screen for head ticket (in German)
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Variable name Dummy variables which take the value one if...

no color preference subject indifferent between white and yellow ticket for Urn U

coin fair subject regards coin as fair

male subject male

economics student subject studies economics

business student subject studies business administration

stats knowledge 1 Prob(10-sided fair dice shows 2 or less) computed correctly

stats knowledge 2 Prob(two 10-sided fair dice show two ones) computed correctly

stats knowledge 3 Prob(10-sided fair dice shows 4| even number)* computed correctly

stats knowledge 4 Prob(10-sided fair dice shows 4| odd number) computed correctly

stats knowledge 5 average payoff of two bets, one which pays 100 in case of even

the other pays 100 in case of odd computed correctly

cognitive ability 1 correct answer to... A bat and a ball cost $1.10. The bat

costs $1.00 more than the ball. How much does the ball cost?

cognitive ability 2 correct answer to... 5 machines need 5 min to produce 5 pieces.

How long do 100 machines need to produce 100 pieces?

cognitive ability 3 correct answer to... A lake is covered by sea roses. The covered

surface doubles every day. If 48 days are needed until the lake is

entirely covered, how long does it take until half the lake is covered?

Variable name Subjective agreement with following statements

on a scale from 1 (totally disagree) to 7 (totally agree)

superstition There are unlucky numbers.

god God is important in my life.

religion Religion gives me strength and support.

fate What one achieves in life depends on fate and luck.

* Prob(A|B) denotes the conditional probability of event A to occur after the occurrence of B.

Table 1: Variable definitions
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Table 2: Selection on observables: Hypothesis 1

Dependent variable: No color preference on Urn U (yU ∼ wU)

Variable Coefficient Stand. Error p− value

male 0.150 0.116 0.196

economics student -0.214 0.194 0.271

business student 0.188 0.130 0.147

stats knowledge 1 -0.021 0.181 0.906

stats knowledge 2 0.143 0.131 0.275

stats knowledge 3 0.243 0.146 0.094

stats knowledge 4 -0.124 0.177 0.480

stats knowledge 5 -0.046 0.143 0.747

cognitive ability1 -0.108 0.131 0.409

cognitive ability2 -0.009 0.140 0.947

cognitive ability3 0.022 0.150 0.883

superstitious -0.017 0.042 0.681

god 0.083 0.069 0.222

religion -0.104 0.072 0.144

fate -0.004 0.038 0.923

Number of Obs. = 88

Log likelihood = -51.495

Prob > χ2 = 0.43

Pseudo R2 = 0.129

Significance levels:*(5%), **(2%), ***(1%)
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Table 3: Selection on observables: Hypothesis 2

Dependent variable: fair coin (t ∼ h) and no color preference (yU ∼ wU)

Variable Coefficient Stand. Error p− value

male 0.067 0.125 0.593

economics student -0.252 0.188 0.180

business student 0.183 0.144 0.205

reference group: other fields of study (mostly: teaching, law, languages)

stats knowledge 1 0.028 0.214 0.895

stats knowledge 2 0.293* 0.131 0.025

stats knowledge 3 0.189 0.157 0.228

stats knowledge 4 -0.320 0.189 0.090

stats knowledge 5 -0.027 0.162 0.869

cognitive ability1 -0.094 0.138 0.493

cognitive ability2 0.131 0.144 0.364

cognitive ability3 0.204 0.150 0.175

superstitious -0.006 0.047 0.899

god 0.050 0.073 0.492

religion -0.064 0.076 0.401

fate -0.041 0.040 0.305

Number of Obs. = 88

Log likelihood = -48.160

Prob > χ2 = 0.042

Pseudo R2 = 0.210

Significance levels:*(5%), **(2%), ***(1%)
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All instructions translated from German. Original instructions are available from the authors 
upon request.  
 

Instructions 
 
 
Welcome to our Experiment! Please read these instructions carefully. The instruction 
is identical for all participants. During the entire experiment, we want to ask you to be 
quiet and not to talk with the other participants. Please turn your mobile phone off 
and keep it turned off till the end of the experiment. If you have any questions, please 
raise your hand and one of the experimenters will come to you. 
 
 

Goal of the experiment 
 
This experiment includes decisions under uncertainty. In the decision phase, there 
are no “right” or “wrong” decisions. Only your personal preferences count. Depending 
on your preferences, it could well be that the decision will be very easy for you. The 
alternatives are real and not only hypothetical. Every participant will be privately paid 
in cash. The decisions of the other participants have no influence on your payment. 
 
 

Structure of the experiment 
 
At the start of the experiment, we will answer questions regarding the instructions. 
Afterwards we start the decision phase. Decisions in this phase are real. They do 
have an impact on your payment. Please take your time in answering, the experiment 
only continues once all participant are done. At the end, the payments for the 
decision phase will be determined and all participants are paid. 
 
Overall, the experiment will take approximately 60 minutes.  
 
 

Bucket 
 
The bucket contains 30 table tennis balls. Every table tennis ball has a colored 
sticker, which determines the color of the ball. There are 10 yellow table tennis balls. 
The other 20 table tennis balls are either blue or green. The exact number of the blue 
and green table tennis balls is unknown. However, taken together, there are exactly 
20 blue and green balls. 
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Decision phase 
 
At the end of the experiment, 4 independent draws (with replacement) will be taken 
from the bucket – one draw for each of the 4 questions, which you answer on the 
decision sheet. Your payment depends on your answers and on the result of the 
draws. 
 
On the decision sheet, you have to choice 4 times between 2 alternatives. The 
alternatives are as follows: 
 

- Alternative W: You receive a payment of 4€, if a yellow or green ball is drawn. 
- Alternative X:  You receive a payment of 4€, if a blue or green ball is drawn. 
- Alternative Y:  You receive a payment of 4€, if a yellow ball is drawn. 
- Alternative Z:  You receive a payment of 4€, if a blue ball is drawn. 

 
Questionnaire 1 

 
The decision phase is followed by questionnaire 1. Here right and wrong answers 
exist! In total, you have 10 minutes to answer all questions. For each correct answer, 
you will be paid 1€ at the end of the experiment. 
 

Questionnaire 2 
 
Questionnaire 2 collects some personal data. This information will only be used for 
the evaluation of this experiment. The answers in questionnaire 2 do have no 
influence on your payment. 
 

Draws 
 
In the end, there will be 4 draws, one for each question from the decision phase. 
After each draw, the table tennis ball will be put back into the bucket. The draws will 
be taken by a randomly chosen participant. 
 
It it happens that the first drawn ball is green for question 3 or question 4, there will 
be additional draws till the drawn ball is not green. 
 

Payment 
 
For each draw, you receive a payment if and only if the color of the drawn table 
tennis ball matches the color of the answer you marked. Additionally, you receive 1€ 
for each correctly answered question in questionnaire 1. 
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Decision Sheet          ID: _______ 
 
 
- Alternative W: You receive a payment of 4€, if a yellow or green ball is drawn. 
- Alternative X:  You receive a payment of 4€, if a blue or green ball is drawn. 
- Alternative Y:  You receive a payment of 4€, if a yellow ball is drawn. 
- Alternative Z:  You receive a payment of 4€, if a blue ball is drawn. 
 
 

Question 1 
 
What do you like more?: 
 
‪ W  ‪ X   
 
How strong is your liking for the alternative you choose? 
 
Nil ‪          ‪          ‪          ‪          ‪ Very strong 
 

Question 2 
 
What do you like more?: 
 
‪ Y  ‪ Z  
 
How strong is your liking for the alternative you choose? 
 
Nil ‪          ‪          ‪          ‪          ‪ Very strong 
 

Question 3 
 
What do you like more, if you come to know that the drawn ball is not green: 
 
‪ W  ‪ X  
 
How strong is your liking for the alternative you choose? 
 
Null ‪          ‪          ‪          ‪          ‪ Very strong 
 

Question 4 
 
What do you like more, if you come to know  that the drawn ball is not green: 
 
‪ Y  ‪ Z  
 
How strong is your liking for the alternative you choose? 
 
Null ‪          ‪          ‪          ‪          ‪ Very strong 
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Questionnaire 1          ID: _______ 
 
 
Page 1: 5 minutes maximum 
 
 
 
 
 
Please assume for all questions that dice are six-sided and fair. 
 

Answer 

Question 1: What is the probability that the number in a throw of a die is smaller 
or equal 2? 
 

 

Question 2: What  is the probability that in two throws, the number is both times 
equal to 4? 
 

 

Question 3: Look at a single throw. Assume that the result is an even number. 
What  is the probability that the number is equal to 2?  
 

 

Question 4: Assume that the number 3 was thrown 5 times in a row. What is the 
probability that the next throw will result in a 3? 
 

 

Question 5: Assume 4 dice are thrown and the numbers added. What is the total 
number on average? 
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Questionnaire 1 
 
 
Page 2: 5 minutes maximum 
 
 
 
 
 
 
Question 6: A bat and a ball cost $1.10 in total. The bat costs $1.00 more than 
the ball. How much does the ball cost? 
 

 

Question 7: If it takes 5 machines 5 minutes to make 5 widgets, how long would 
it take 100 machines to make 100 widgets? 
  

 

Question 8: In a lake, there is a patch of lily pads. Every day, the patch doubles 
in size. If it takes 48 days for the patch to cover the entire lake, how long would 
it take for the patch to cover half of the lake? 
 

 

Question 9: Assume you see 4 double sided cards in front of you. Each card has 
a number on one side and a letter on the other side. Which card or cards do you 
have to turn around to test whether the following assertion is true: “If there is a 
vowel (A,E,I,O,U) on one side, there is an even number on the other side.” 
 

E K 4 7 
Card 11 Card 12 Card 13 Card 14 
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Questionnaire 2          ID: _______ 
 
 
 
The questions on this questionnaire are not payoff relevant. 
  
Question 1: Please give an estimate, how many balls are in the urn: 
 
______ blue balls  _______ yellow balls  _______ green balls 
 
 
Question 2: What is your gender? ‪ male  ‪ female 
 
 
Question 3: How tall are you?  _______ cm 
 
 
Question 5: What is your major? ________________________  ‪ not a student 
 
 
Question 6: Did you participate in a statistics course before? ‪ yes  ‪ no 
 
 
Question 7: Would you call yourself politically left wing or right wing? 

  
Left ‪               ‪               ‪               ‪               ‪ Right 

 
Question 8: Are you religious? ‪ yes  ‪ no 
 
 
Question 9: Which of the following game do you play occasionally? 
‪ Lottery 
‪ Roulette 
‪ Poker 
‪ Sports bets 
‪ Lottery scratch tickets 
‪ others: ______________________ 
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Variable Coef . Std. Err. z P > |z| 95% Conf . Interval
n
o
t

D
C

,
C

Religious -0.271 0.718 -0.38 0.705 -1.679 1.136

Male -0.802 1.058 -0.76 0.448 -2.877 1.272

Size -0.009 0.057 -0.17 0.869 -0.122 0.103

Gambling 0.127 0.467 0.27 0.786 -0.789 1.043

Cog. Ability 0.203 0.270 0.75 0.451 -0.325 0.732

Conf. loss -0.630 0.302 -2.09 0.037 -1.222 -0.038

Cons. 3.772 10.292 0.37 0.714 -16.402 23.945

D
C

,
n

o
t

C

Religious -1.055 1.203 -0.88 0.381 -3.414 1.304

Male 0.924 1.690 0.55 0.585 -2.389 4.237

Size 0.077 0.095 0.81 0.419 -0.110 0.264

Gambling 1.329 0.628 2.12 0.034 0.098 2.559

Cog. Ability 0.099 0.481 0.21 0.836 -0.843 1.042

Conf. loss -0.668 0.523 -1.28 0.201 -1.693 0.357

Cons. -15.310 17.173 -0.89 0.373 -48.970 18.349

D
C

,
C

Religious -0.548 0.843 -0.65 0.516 -2.199 1.104

Male -0.583 1.211 -0.48 0.630 -2.957 1.791

Size 0.033 0.068 0.50 0.618 -0.099 0.166

Gambling 0.473 0.515 0.92 0.359 -0.537 1.483

Cog. Ability -0.229 0.325 -0.70 0.481 -0.865 0.407

Conf. loss -1.092 0.373 -2.93 0.003 -1.823 -0.361

Cons. -3.833 12.124 -0.32 0.752 -27.595 19.929

Number of Obs. = 84

Log likelihood = -82.151742

LR χ2 (18) = 31.01

Prob > χ2 = 0.0287

Pseudo R2 = 0.1588

not DC, not C is the base outcome. Cog. Ability = avg. score in questionnaire 1.

Table 4: Multinomial Logistic Regression
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