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Abstract

The aim of this PhD project was to develop a fast and reliable method for the calculation of ex-

change coupling constants which are used in the descriptionof the coupling of unpaired electrons in

di-, tri- and oligonuclear transition metal complexes. In order to achieve both accurate results and

low computational costs, a combination of quantum chemistry (QC) and molecular mechanics (MM)

calculations has been employed.

The exchange coupling describes the energy gap between the states of ferro- and antiferromagneti-

cally coupled transition metal centers in a molecule and canhelp to gain insight into the electronic and

magnetic properties of a compound. The prediction of exchange coupling constants is vital for virtual

screening of magnetic properties as well as to fit experimental results, e. g. electron paramagnetic

resonance (EPR) or magnetism measurements. While the exchange coupling between two transition

metal centers can be determined by single point calculations based on X-ray structure geometries,

geometry optimization is the key element for predictability when no experimental data is available.

As the method should be usable to not only reproduce experimental data, but also to predict exchange

coupling constants ofin silico-generated complexes, the computational procedure has to involve a

geometry optimization at one point of the process.

A systematic benchmark approach for the deduction of exchange coupling constants from density

functional theory (DFT) single point calculations is presented. Based on benchmark calculations of

a small dinuclear molecule, a suitable functional and basisset combination for the fast and accurate

calculation of coupling constants has been identified and tested on a large series of transition metal

compounds, which include CuII , FeIII , CrIII , VIV , MnII , MnIII , MnIV , NiII and CoIII ions. The calcula-

tions were based on X-ray structure geometries obtained from literature data and have been compared

to exchange coupling constants calculated from DFT-optimized structures. The results based on op-

timized structures were found to have comparable accuracy which shows, that the optimization of a

structure is a viable approach to exchange coupling constant prediction.

A ligand field term has been implemented in a molecular mechanics program, employing the pro-

gramming language C++. This allows for the calculation of electronic effects with MM methods.

Based on reference information from X-ray structures and UV/VIS spectra the ligand field term has

been automatically parametrized . Since the prediction of exchange coupling constants based on

optimized geometries is possible, molecular mechanics calculations with an additional electronic ef-

fect present a computationally efficient way for this step ofthe process. Parametrizations based on
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Abstract

simple test molecules and one or more X-ray structures with transition metal compounds showing

electronic effects like Jahn-Teller distortions are presented and the functional form of the ligand field

term implemented into the software is discussed in detail.

A possible improvement of the parametrization process which uses the information of the first and

second derivatives of the energy with respect to atomic coordinates is presented. Also, a parametriza-

tion based on DFT-optimized structures is discussed. If DFT-optimized structures are used as the

reference data for a force field, all calculations for the determination of exchange coupling constants

are based on the same potential energy surface (PES). Both geometry optimization and the calculation

of the magnetic properties then only involve structures on the DFT hypersurface. This is an advantage

from the theoretical chemists’ point of view, since the usual procedure for the calculation of exchange

coupling constants involves X-ray structure geometries which do not represent a minimum on the

DFT hypersurface.
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Kurzfassung

Das Ziel der vorliegenden Doktorarbeit war die Entwicklungeiner zuverlässigen und schnellen Meth-

ode, um Austauschkopplungskonstanten, die die Kopplung von ungepaarten Elektronen in zwei-, drei-

oder mehrkernigen Übergangsmetallkomplexen beschreiben, zu berechnen. Um genaue Ergebnisse

bei geringem Rechenaufwand zu gewährleisten wurde eine Kombination von quantenchemischenn

Rechenmethoden und Kraftfeldmethoden benutzt.

Die Austauschkopplung beschreibt die Energielücke zwischen den antiferro- und ferromagnetisch

gekoppelten Spinzuständen der Übergangsmetallzentren eines Moleküls und kann Hinweise auf dessen

elektronische und magnetische Eigenschaften geben. Die Vorhersage von Austauschkopplungskon-

stanten ist entscheidend für “Virtual Screening”-Anwendungen und hilft bei der Interpretation von ex-

perimentellen Ergebnissen, die z. B. bei Elektronenspinresonanz (ESR)- und magnetischen Messungen

erhalten werden. Während Austauschkopplungskonstanten eines Moleküls durch “Single Point”-

Rechnungen auf Basis von Röntgenstrukturdaten berechnet werden können, sind Geometrieopti-

mierungen der Schlüsselschritt bei der Vorhersage von magnetischen Eigenschaften von bisher nicht

synthetisierten Molekülen. Da die Methode sowohl bei der Interpretation von Daten zu bereits exper-

imentell bestimmten Strukturen helfen, als auch Werte fürin silico-generierte Strukturen bestimmen

sollte, wurde der Schritt der Geometrieoptimierung in den Gesamtprozess aufgenommen.

Um Austauschkopplungskonstanten mit Hilfe von Dichtefunktionaltheoriemethoden (DFT-Methoden)

zu berechnen, wurde ein systematischer Benchmark-Test durchgeführt. Basierend auf einem di-

nuklearen CuII -Komplex wurde eine geeignete Kombination von Funktional und Basissatz für die

schnelle und akkurate Berechnung der Kopplungskonstanten identifiziert. Die Methode wurde im

Anschluß anhand einer Reihe von Übergangsmetallkomplexen verifiziert, wobei CuII , FeIII , CrIII , VIV ,

MnII , MnIII , MnIV , NiII und CoIII zu den betrachteten Metallionen zählten. Die Berechnungen stützen

sich auf die Röntgenstrukturen der Komplexe, die der Literatur entnommen wurden. Die berech-

neten Kopplungskonstanten wurden mit Ergebnissen, die aufDFT-optimierten Strukturen basierten,

verglichen. Die Ergebnisse beider Berechnungen zeigen ähnlich gute Genauigkeit im Vergleich zu

experimentellen Resultaten. Die Berechnung von Austauschkopplungskonstanten auf Basis von DFT-

optimierten Strukturen erweist sich somit als geeigneter Ansatz für die Vorhersage bei Strukturen, zu

denen noch keine experimentellen Daten vorliegen.
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Um den erforderlichen rechnerischen Aufwand für die Geometrieoptimierung zu reduzieren wurde

ein Ligandenfeldterm in das Kraftfeldprogramm Momec mit Hilfe der Programmiersprache C++ im-

plementiert. Zusätzlich wurde eine automatische Parametrisierung entwickelt, die sowohl Kraftfeld-

parameter für klassische Terme als auch für das Ligandenfeld aus Referenzdaten, bestehend aus Rönt-

genstrukturinformationen und UV/VIS-Spektren, ableitenkann. Durch die Implementierung eines

Ligandenfeldterms können die elektronischen Effekte, dieeinen Einfluß auf die Koordinationsstruk-

tur der Übergangsmetallzentren haben, durch Kraftfeldrechnungen erfaßt werden. Der Prozess der

Geometrieoptimierung wird durch den Einsatz von Kraftfeldmethoden erheblich beschleunigt. Auf

der Basis von Teststrukturen und Röntgenstrukturen von Übergangsmetallkomplexen mit Jahn-Teller-

verzerrten Metallzentren werden Parametrisierungen sowie die funktionelle Form des Ligandenfeld-

potentials diskutiert.

Das letzte Kapitel der vorliegenden Arbeit beschäftigt sich mit der weiteren Entwicklung der Methode

zur Vorhersage von Austauschkopplungskonstanten. Ein neuer Ansatz zur Parametrisierung von

Ligandenfeldkraftfeldern auf der Basis der ersten und zweiten Ableitungen der Energie in Bezug

auf die Atomkoordinaten eines Moleküls wird diskutiert. Erste Ergebnisse in Hinblick auf eine

Parametrisierung auf Basis von DFT-optimierten Strukturenzeigen außerdem, daß durch Referenz-

daten aus DFT-Rechnungen das Problem der verschiedenen Hyperflächen während des Gesamtpro-

zesses der Vorhersage von Austauschkopplungskonstanten vermieden werden kann. Die Berechnung

von Austauschkopplungskonstanten wird in der Regel auf Basisvon Röntgenstrukturen durchge-

führt, die im Allgemeinen nicht ein Minimum auf einer DFT-Hyperfläche darstellen. Durch die

Geometrieoptimierung mit Hilfe der DFT bzw. durch die Optimierung durch ein Kraftfeld, welches

mit Hilfe von DFT-Strukturen parametrisiert wurde, läßt sich sicherstellen, daß die Austauschkopp-

lungskonstante auf Basis einer Minimumsstruktur der DFT-Hyperfläche berechnet wird.
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Single molecule magnets (SMMs)[1–3] present an interesting class of compounds with multiple possi-

ble applications in fields of modern technology, e. g. highlyefficient data storage systems, molecular

freezers[4,5], switches, quantum computers[6] or contrast agents[7]. Therefore, the interest in the de-

velopment of new compounds, which exhibit single molecule magnet behavior at room temperature

or above is high. While experimentalists have been able to synthesize a large number of SMMs with

anisotropy barriers of up to 170 K[8], a systematic approach to find compounds which show SMM

behavior is still lacking and new discoveries of SMMs are often by pure chance. As the synthesis and

characterization of this class of compounds is tedious and time-consuming, the constantly evolving

field of computational chemistry can provide a suitable approach for a more systematic and thorough

investigation in this field of research. While improving computer hardware is constantly opening up

new possibilities for more and more accurate calculations of medium sized molecules, the system-

atic screening of hundreds or thousands of compounds is still impossible with high-level quantum

chemistry (QC) calculations. The goal of this PhD project therefore was to develop an approach for

the calculation of exchange coupling constants of transition metal complexes, which can yield accu-

rate results while the computational costs remains at a reasonable level for large scale calculations.

The exchange coupling describes the energy gap between the different spin states of coupled transi-

tion metal centers (see Part II for a detailed description) and can help to gain insight into the low-lying

electronic states of a molecule. Together with additional parameters like the zero-field splitting (ZFS)

(see Part I) a qualitative and quantitative understanding of the exchange coupling is therefore impor-

tant for the rational design of new SMMs. While the calculation of the actual constant based on X-ray

geometries is feasible with density functional theory (DFT) methods, the geometry optimization nec-

essary for the creation ofin silico-structures is time consuming when QC calculations are involved.

Since geometry optimizations are necessary when no X-ray structure is available, the process of ge-

ometry optimization with subsequent exchange coupling constant calculation may be divided, and

QC and molecular mechanics (MM) methods have been employed.The underlying theory of QC and

MM calculations as well as molecular magnetism is describedin detail in the first Part of this thesis.

MM methods can generate very accurate molecular geometries, which are computed within a couple

of seconds on modern computer hardware. As the molecules of interest contain transition metal ions,

the underlying force fields have to be specifically tailored to this kind of problem and, in order to be

able to correctly describe electronic effects caused by theunpaired electrons on the metal ions, may
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include an additional electronic term. We have chosen to implement a ligand field term[9,10] into our

own molecular mechanics package[11,12], which can correctly reproduce e. g. Jahn-Teller[13] distorted

coordination sites and thus can yield accurate molecular geometries when transition metal centers are

present in the molecule (see Part III for details). As the parametrization of this ligand field term should

be simple, reliable and also possible within an affordable amount of time, the implementation of an

automatic parametrization procedure has also been a goal ofthis PhD project (detailed description

in Part IV). Parametrization is necessary when a new class ofcompounds is investigated or new

functional forms for an energy term are developed, e. g. the change of the ligand field potential form

presented in Part III of this thesis.

With the combination of a ligand field augmented molecular mechanics calculation for the geom-

etry optimization of a complex and the subsequent determination of magnetic properties, e. g. the

exchange coupling constant, by DFT based methods, we have taken a first step towards a systematic

computational screening of possible candidates for singlemolecule magnets. For a more complete

description of the single molecular magnet behavior other terms e. g. the ZFS parameters for axial (D)

or rhombic (E) splitting are necessary. These can also be computed by QC methods but are usually

smaller by an order of magnitude compared to the exchange coupling constant J and are therefore

much more difficult to reproduce correctly.
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Part I. Theoretical Background

1 Quantum Chemistry

1.1 Hartree-Fock Theory

Quantum chemical methods have become a major field of research in the last century and quantum

chemistry calculations are nowadays an important tool to study reaction mechanisms, structural con-

formations, energy profiles and spectroscopic properties.Calculations are used to explain, but also

to support experimental findings. The major difference to force field methods, which will be de-

scribed in Ch. 2 of this Part, is the treatment of electrons, which are explicitly included in quantum

mechanical methods. Therefore, quantum chemistry methodsare able to describe electronic effects,

e. g. Jahn-Teller[13] distortions in transition metal complexes or excited states, and can in principle

describe every property of a given molecule.

1.1.1 The Born-Oppenheimer Approximation

The time-independent Schrödinger equation[14], Eq. 1.1.1, describes the stationary state of a system

and can be used to derive the energy levels of a molecule.

HΨ = EΨ (1.1.1)

whereH is the Hamilton operator,E the energy eigenvalue andΨ the wave function, which is a

function of all electron and nuclei coordinates as well as electron spins. If this equation (or an ap-

proximation to it) is solved without empirical parameters,the method is referred to as anab-initio

method, which means, it is based on first principles and thus rigorously derived from quantum me-

chanics.

For anN electron andM nuclei system, the Hamiltonian[15] is given in Eq. 1.1.2:

H = −
N

∑

i

1

2
∇2i −

M
∑

A

1

2MA

∇2A −
N

∑

i

M
∑

A

ZA

riA

+
N

∑

i

N
∑

j>i

1

rij

+
M

∑

A

M
∑

B>A

ZAZB

RAB

(1.1.2)

Here,MA is the mass of the nucleusA, ZA its atomic number,riA the distance between nucleusA
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and electroni, rij the distance between electronsi andj andRAB the distance between nucleiA and

B. The first term accounts for the kinetic energy of the electrons while the second term represents the

kinetic energy of the nuclei. The third term describes the Coulomb attraction between electrons and

nuclei and terms four and five represent the repulsion between electrons and nuclei, respectively.

Since nuclei are much heavier than electrons, they move moreslowly. With the Born-Oppenheimer

approximation[16,17], one can separate the electronic problem from the motion of the nuclei and treat

the electron movement in a field of point charges generated bythe nuclei. The electronic Hamiltonian

(Eq. 1.1.3) is therefore reduced from Eq. 1.1.2 to only include the terms for the kinetic energy of the

electrons, the Coulomb attraction between electrons and nuclei and the Coulomb repulsion between

electrons. Since the electrons “feel” the nuclei as point charges, the electronic energy of a system also

depends parametrically on the Coulomb repulsion of the nuclei, Eq. 1.1.3:

Helec = −
N

∑

i

1

2
∇2i −

N
∑

i

M
∑

A

ZA

riA

+
N

∑

i

N
∑

j>i

1

rij

+
M

∑

A

M
∑

B>A

ZAZB

RAB

(1.1.3)

Solutions to the Schrödinger equation based on the electronic Hamiltonian are given by the electronic

wave function, Eq. 1.1.4:

Ψelec = Ψelec(ri, RA) (1.1.4)

In this form, the electronic Hamilton operator neglects relativistic and other additional effects[18]. If

those become important, e. g. for fourth or fifth row elements, or if other Hamiltonians, for example

for spin-spin or spin-orbit coupling effects, are needed, the electronic Hamiltonian has to be extended

to account for these interactions. This will be the case, when the broken symmetry formalism is

introduced and the Hamiltonian is extended by a term which describes the interaction between two

transition metal centers (see Pt. II, Ch. 2).

1.1.2 Molecular Orbitals

The electronic Schrödinger equation can only be solved in closed form for one-electron systems like

the hydrogen atom. Approximate, iterative solutions for multi-electron systems are based on the

variational principle, which states that the expectation value of the Hamiltonian is always equal or

higher than the exact energy (Eq. 1.1.5):

〈Ψ|Helec|Ψ〉 ≥ Eexact (1.1.5)

For a correct description of the wave function of a single electron in the nonrelativistic case, two

10
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parts are needed. First, a spatial orbitalΨi, which describes the spatial distribution of an electron in

dependence ofr. The atomic wave functionsΨi are defined to be orthonormal, Eq. 1.1.6:

∫

drΨ∗
i (r)Ψj(r) = δij (1.1.6)

whereδij is the Kronecker-Delta. Second, the electronic spin quantum numbers for an electron with

the two possible states+1
2

and−1
2
, which correspond to the spin up and spin down states of parallel

or anti-parallel alignment along an external magnetic fieldhave to be introducedad hoc[18]. The spin

functions are orthonormal as well, Eq. 1.1.7:

〈α|α〉 = 〈β|β〉 = 1

〈α|β〉 = 〈β|α〉 = 0
(1.1.7)

The combination of both elements yields the spin orbitalsχ, Eq. 1.1.8

χ(x) =



















Ψ(r)α(ω)

or

Ψ(r)β(ω)

(1.1.8)

Given non-interacting electrons, the HamiltonianHelec is a sum of one-electron Hamiltonians and

the corresponding wave function gives rise to the electronic energyEelec, which is a product of one-

electron wave functions, the spin orbitals. The product is called the Hartree product (Eq. 1.1.9):

ΨHartree = χi(x1)χj(x2) . . . χk(xN) (1.1.9)

This represents an uncorrelated ansatz, because the probability of finding electron one at positionx1 is

independent of the probability of finding electron two at position x2. The total probability of finding

each electron at each position is thus the product of all one-electron probabilities[15]. Since electrons

have to be described as fermions obeying the Pauli principle[19], interchanging the coordinates of two

fermions must result in a change of the sign of the wave function. Therefore, the quantum numbers

of two electrons cannot be the same, and the wave function hasto be antisymmetric with respect to

interchanging two electronic coordinates. As the Hartree product does not fulfill this principle, the

linear combination of the Hartree product has to be used instead. For two electrons, the simplest

correct description is (Eq. 1.1.10):

Ψ(x1, x2) =
1√
2
(χi(x1)χj(x2) − χj(x1)χi(x2)) (1.1.10)
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where 1√
2

is a normalization factor and the minus sign ensures the antisymmetry ofΨ(x1, x2)
[15].

This can be written as a determinant, the so-called Slater Determinant[20], given in Eq. 1.1.11 for the

N-electron case:

Ψ(x1, x2, . . . , xN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χi(x1) χj(x1) . . . χk(x1)

χi(x2) χj(x2) . . . χk(x2)
...

...
...

χi(xN) χj(xN) . . . χk(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1.1.11)

In a Slater Determinant, the electronic coordinates are given along the rows, while the columns are

made up by single electron wave functions. These are combined to molecular orbitals when the

electronic Schrödinger equation is solved for a molecule.

1.1.3 The Fock Operator

As the variational principle states, the energy of the best wave function obtainable with an approxi-

mate functional form is equal or higher to the exact energy ofthe electronic problem. The variation

of this problem is induced by the choice of spin orbitals and the aim is to choose the best set of

spin orbitals for a given problem. The equation, which describes the best set of spin orbitals, is the

Hartree-Fock integro-differential equation[15], given in Eq. 1.1.12 for the case of a single electron

denoted as electron-one, which yields the orbital energyǫa of the spin orbitalχa.

[

h(1) +
∑

b 6=a

Jb(1) −
∑

b 6=a

Kb(1)

]

χa(1) = ǫaχa(1) (1.1.12)

Here,h(1) is the operator for the kinetic energy and the potential energy for the attraction of a single

electron to the nuclei. The two sums overb 6= a depend on electron-electron interactions, where the

first term is the Coulomb term and the second term is the exchange term. The Coulomb term can be

interpreted as a one-electron potential in Hartree-Fock (HF) theory, since the summation over allb 6= a

corresponds to an averaged potential of the N - 1 electrons, which act on electronχa (Eq. 1.1.13):

vcoul
a (1) =

∑

b 6=a

∫

dx2|χb(2)|2r−1
12 χa(1) (1.1.13)
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We can therefore define a Coulomb operator, Eq. 1.1.14

Jb(1) =

∫

dx2|χb(2)|2r−1
12 (1.1.14)

which defines the average local potential atx1, arising from an electron inχb.

The exchange operatorK, Eq. 1.1.15, does not have a classical interpretation as theCoulomb operator,

but one can defineK by its effect when it operates on a spin orbitalχa(1):

Kb(1)χa(1) =

[∫

dx2χ
∗
b(2)r−1

12 χa(2)

]

χb(1) (1.1.15)

The Coulomb operator can be expressed in a similar form, Eq. 1.1.16:

Jb(1)χa(1) =

[∫

dx2χ
∗
b(2)r−1

12 χb(2)

]

χa(1) (1.1.16)

The comparison of Eqs. 1.1.15 and 1.1.16 shows, that the Coulomb operator is a local operator, which

acts on the same electron (χb(2)) whereas the exchange operator is a non-local operator, which acts

on two different electrons (χb(2) andχa(2)).

With Eq. 1.1.15 and Eq. 1.1.16 it follows, that the difference between Coulomb and exchange opera-

tor acting on electron-one inχa is zero, Eq. 1.1.17:

[Ja(1) − Ka(1)] χa(1) = 0 (1.1.17)

This term, when added to Eq. 1.1.12, eliminates the restriction of the sum, which now runs over all

spin orbitalsb. The HF equation can now be written as (Eq. 1.1.18)

f(i)χ(xi) = ǫχ(xi) (1.1.18)

with the Fock operatorf(i) (Eq. 1.1.19):

f(i) = −1

2
∇2i −

N
∑

i

M
∑

A

ZA

riA

+ vHF (i) (1.1.19)

wherevHF (i) represents the combined Coulomb and exchange operator, which reduces the many-

electron problem of the original Hamiltonian (the electron-electron interaction terms) to an effective

one-electron problem. As the field of electrons used in this one-electron problem depends on the
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spin orbitals of the electrons and thus the Fock operator depends on its eigenfunctions, the equation

system is nonlinear and must be solved iteratively. This iteration procedure is called the self-consistent

field (SCF) method, as the field of electrons has to be varied, until overall self-consistency is achieved.

When a set of initial coefficients for the molecular orbitals is chosen, the average field the electrons

induce on each other can be calculated and the HF equation (Eq. 1.1.18) can be solved to arrive at a

new set of orbitals. The new set of orbitals is then again usedto calculate the field, solve the equation,

etc., until the orbitals (and thus the determinant) no longer change and self-consistency is achieved.

The orbitals with their respective eigenvalues now represent the canonical molecular orbitals (MOs)

with orbital energies of the best solution for the ground state of a given molecule.

1.2 Basis Sets

As seen in the preceding Chapter, the objective of an SCF calculation is to find a set of MO coefficients

which minimize the energy of the electronic eigenvalue problem. So far, we have only derived the

operator acting on the MOs; now, the functional form of the wave function built from the MOs will

be discussed. Since the exact functional form of the MOs is unknown, the MOs are expressed as a set

of functions of which the functional form is known. For a correct description, an infinite amount of

functions would be needed, which is not feasible for a calculation. Therefore, a finite set of functions

is used, the so called basis set. Each MO is then expressed by atomic orbitals (AOs) of this basis set

in a linear combination (LCAO).

There are two commonly used types of AOs in quantum chemistrymethods: Slater type orbitals

(STOs)[21] (Eq. 1.1.20) and Gaussian type orbitals (GTOs)[22] (Eq. 1.1.21).

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1e−ζr (1.1.20)

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr2

(1.1.21)

Here,N is a normalization constant,Yl,m(θ, φ) represent the spherical harmonic functions andr adds

the radial dependence to form the AOs. While STOs are more exact from a chemical point of view,

since STOs represent the exact description for the hydrogenatom, GTOs are much easier to calculate,

since the product of two GTOs is again a GTO. To achieve STO accuracy with GTOs, roughly three

times as many basis functions are needed[18].

The minimum basis set of a given atom consists of the minimum number of AOs to contain all

electrons present on the atom. For a hydrogen atom, this would simply be one s-orbital (1s), for

a carbon a set of two s- (1s, 2s) and three p-orbitals (px, py, pz). To increase the accuracy of the

MO-description, one can introduce additional basis functions. A double zeta (DZ) basis set consists
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of twice the amount of basis functions needed to form the minimum basis set, i. e. two s-functions

for a hydrogen atom, four s- and six p-functions for a carbon atom. The amount of functions can be

similarly increased to triple zeta (TZ), quadruple zeta (QZ), quintuple zeta (5Z) or higher order basis

set expansions.

Additionally, the description of the electron distribution can be improved by adding polarization func-

tions with a higher angular momentum1. Polarizing an s-orbital requires p-functions, polarizing a

p-orbital requires d-functions etc. Commonly found are alsodiffuse functions, which help to describe

the tail of an atomic orbital far away from the nucleus.

To reduce the amount of basis functions for a given atom, onlythe valence shell orbitals can be

described by an additional set of basis functions. This produces a split valence basis set and is justified

by the fact, that core electrons are rarely involved in chemical bonding and behavior of the chemical

environment of an atom.

Another very common approach which goes in the same direction is the basis set contraction. Core

orbitals may be represented by a fixed linear combination of basis functions and therefore the number

of functions varied during the calculation is reduced. The contracted Gaussian type orbitals (CGTOs)

are expressed by a sum of primitive Gaussian type orbitals (PGTOs) (Eq. 1.1.22):

χ(CGTO) =
k

∑

i

aiχi(PGTO) (1.1.22)

Pople style basis sets, for example 6-31G[23], make use of this contraction. The 6-31G basis set is a

split valence basis, where the core orbitals are described by a contraction of six, the inner part of the

valence shell by three and the outer part of the valence by onePGTO. Another example is the TZV

basis set by Ahlrichs and coworkers[24,25], which for example contracts a 11s6p1d basis for a carbon

atom to a 5s3p1d pattern2. The core orbitals are again described as a contraction of six orbitals, and

the degree of contraction decreases when moving towards thevalence shell orbitals.

If this approach is taken a step further, effective core potentials (ECPs) can be introduced. Expanding

the core orbitals of a third or higher row element needs many basis functions, but the electrons are

normally not involved from a chemical point of view. Therefore, ECP basis sets model the core

orbitals by a single function and by that reduce the number ofrequired basis functions drastically[27,28].

An example for an ECP basis is the LACV3P[29,30] basis used in Pt. II of this work.

1 This is extremely important e. g. when describing bonds in transition metal complexes.
2 Taken from an Orca 2.6 output file[26]
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1.3 Density Functional Theory

Density functional theory (DFT) has become one of the most important tools for the theoretical

chemist in the last decades and is nowadays also widely used by experimentalists to support their

findings[31,32]. With the ongoing development in computer hard- and software, DFT today allows

the treatment of molecules with 100-200 atoms readily and thus can be used to solve many of the

challenges which arise in modern computational chemistry.

The fundamentals of DFT go back to Hohenberg and Kohn[33], who proved that the ground-state

energy of a system can be completely described by the electron densityρ. The4N variable (three

Cartesian coordinates and one spin coordinate for each electron) problem of the wave function ap-

proach is reduced to a three coordinate problem for the density, which is independent of the number

of electrons. The density is calculated from the square of the wave function, integrated over N - 1

electron coordinates. While this approach simplifies the calculation of a ground-state energy sig-

nificantly, the following problem arises: Since the electron density is correlated to the ground-state

energy, a different density also produces a different energy. The functional3 which connects these

entities is unknown and to find the functional, which correctly describes the relation between electron

density and the energy of a molecule, is the main problem of DFT.

As shown in one of the preceding Chapters, the electronic energy can be divided into four parts, and

we can adapt this approach from HF theory. The total energy ofa molecule in the HF framework

consists of the kinetic energyT [ρ], the nuclei-electron attractionEne[ρ], and the electron-electron

repulsion consisting of the Coulomb and Exchange part,J [ρ] andK[ρ]. Since we use the Born-

Oppenheimer approximation, the nuclear-nuclear repulsion Enn can again be treated as constant (Eqs.

1.1.23 to 1.1.26).

TTF [ρ] =
3

10
(3π2)

2
3

∫

ρ
5
3 (r)dr (1.1.23)

Ene[ρ] =
∑

a

∫

Zaρ(r)

|Ra − r|dr (1.1.24)

J [ρ] =
1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′| drdr′ (1.1.25)

KD[ρ] = −3

4
(
3

π
)

1
3

∫

ρ
4
3 (r)dr (1.1.26)

In the Thomas-Fermi[34,35] approach, the electrons are treated as a non-interacting uniform electron

3 A functional is a function of a function, where the inner function depends on parameters and the outer function
depends on this inner function.
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gas. The total energy, Eq. 1.1.27,

E[ρ] = TTF [ρ] + Ene[ρ] + J [ρ] (1.1.27)

is known as the Thomas-Fermi energy[34,35]. Including the exchange partKD[ρ] yields the Thomas-

Fermi-Dirac energy[36,37].

Since the approximation of a non-interacting uniform electron gas is not valid for molecules, the ener-

gies calculated in the Thomas-Fermi-Dirac model are unacceptable with respect to chemical accuracy

(∼ 1 kcal/mol or 4 kJ/mol). To improve the model, Kohn and Sham introduced the Kohn-Sham (KS)

orbitals[38]. Since the kinetic energy is represented poorly in the Thomas-Fermi description, the idea

by Kohn and Sham was to split this functional in a part, which can be calculated exactly, and another

part, which is a small correction to the exact energy. The KS orbitals are used to calculate the exact

part of the kinetic energy for a system of non-interacting electrons, which are described by a single

Slater determinant of molecular orbitals, which is re-introduced to the DFT formalism. Calculating

the electron density of such a determinant, the kinetic energy, Eq. 1.1.28, is given as

TS =
N

∑

i

〈

φi

∣

∣

∣

∣

−1

2
∇2

∣

∣

∣

∣

φi

〉

(1.1.28)

Even with Eq. 1.1.28, the total kinetic energy of a system cannot be calculated, since the approx-

imation of non-interacting electrons is still used. To get to the exact kinetic energy, an exchange-

correlation term has to be included. The total DFT energy is then (Eq. 1.1.29)

EDFT [ρ] = TS[ρ] + Ene[ρ] + J [ρ] + EXC [ρ] (1.1.29)

whereEXC is defined as (Eq. 1.1.30)[32]

EXC [ρ] = (T [ρ] − TS[ρ]) + (Eee[ρ] − J [ρ]) (1.1.30)

The exchange-correlation functional can also be separatedinto a pure exchange and a pure correlation

part, Eq. 1.1.31:

EXC [ρ] = EX [ρ] + EC [ρ] (1.1.31)

The objective is now similar to HF theory, namely one has to find a set of orbitals, which minimize

the energy of the system. As the exchange and kinetic parts depend on the density, the orbitals have

to be determined iteratively.
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With the definition of a KS operatorhKS, one can define the KS equations, Eq. 1.1.32

hKSψi(x) = ǫiψi(x)

hKS = −1

2
∇2 + Veff

(1.1.32)

which lead to the energy eigenvalues. Here,Veff is defined as (Eq. 1.1.33)

Veff (r) = Vne(r) +

∫

ρ(r′)

|r − r′|dr′ + VXC(r) (1.1.33)

andVXC , the exchange-correlation potential, is the derivative ofthe exchange-correlation energy with

respect to the density (Eq. 1.1.34):

VXC(r) =
∂EXC [ρ]

∂ρ(r)
(1.1.34)

The orbitals can again be expressed in a set of basis functions, comparable to the HF method. It

should be noted however, that the energy of the orbitals willbe different compared to the HF result.

Deriving the basics of DFT, it becomes clear, that the theoryis quite similar to HF theory. The major

difference is, that DFT includes correlation consistently, including the Coulomb correlation, which

describes the electron-electron interaction of two electrons with the same spin, while HF theory does

not. So in principle, if the exact functional would be known,the exact energy of a system within the

given model chemistry could be calculated.

1.3.1 Local Density Methods (LDA)

One approach to define the exchange functional are the local density approximation (LDA) methods.

Here, it is assumed, that the density can locally be treated as a uniform electron gas. The exchange

energy is then given by the Dirac formula (Eq. 1.1.35)

ELDA
X [ρ] = −3

4
(
3

π
)

1
3

∫

ρ
3
4 (r)dr (1.1.35)

Popular examples of LDA methods are theXα method by Slater[39], the VWN functional by Vosko,

Wilk and Nusair[40] or the PW91 functional by Perdew and Wang[41]. Common to the LDA functionals

is a general underestimation of the exchange energy and an overestimation of the electron correlation

energy. Therefore, bonds are normally too strong (“over-binding”) when this approach is used, but

the overall accuracy is often comparable to HF methods[18].
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1.3.2 Gradient Corrected Methods (GGA)

Gradient corrected methods (or generalized gradient approximation (GGA) ) extend LDA methods to

a non-uniform treatment of the electron gas. Gradients of the electron density are used to improve

exchange and correlation energies. As GGAs still only take the density of a given point into account,

GGAs are also local methods[18].

Members of the family of GGA methods include the PW86 functional by Perdew and Wang[42] and

the B88 correction proposed by Becke[43], both modifying the LDA approach exchange functional.

For the correlation energy, Lee, Yang and Parr[44] proposed their LYP functional and Perdew[45,46]

published the P86 functional, which was later modified by Perdew and Wang[47] to PW91.

1.3.3 Hybrid Methods

Hybrid methods include a fraction of exact exchange calculated by HF methods into the total exchange-

correlation energy. Given the two extremes of non-interacting electrons, where the correlation energy

is zero, and fully interacting electrons, where the energy is described by correlation and exchange,

the true system can be described by an average between those points, Eq. 1.1.36:

EXC ≃ 1

2
〈Ψ0 |VXC(0)|Ψ0〉 +

1

2
〈Ψ1 |VXC(1)|Ψ1〉 (1.1.36)

The exchange energy at point zero can be described exactly byHF methods, if the KS orbitals are

identical to the HF orbitals4. The total exchange-correlation energy of this “half-and-half” functional

(Eq. 1.1.37), proposed by Becke[48], then relates to

EH+H
XC =

1

2
EHF

X +
1

2
(ELDA

X + ELDA
C ) (1.1.37)

Another very popular example of a hybrid method is the B3LYP functional, which consists of the

Becke three-parameter functional and the Lee, Yang, Parr description of the correlation energy[49–51].

Here, the exchange-correlation energy is calculated by a combination of exact HF exchange energy,

LDA exchange energy, an additional correction to the exchange energy and a LDA and GGA part for

the correlation energy (Eq. 1.1.38):

EB3
XC = (1 − a)ELDA

X + aEHF
X + b∆EB88

x + ELDA
C + c∆EGGA

C (1.1.38)

4 This is generally not the case, but nevertheless representsa good approximation to the problem
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The coefficientsa, b andc are determined empirically. In the original B3LYP functional a = 0.20,

b = 0.72 andc = 0.81, so 20% of the total exchange-correlation energy is given bythe exact HF

exchange. The amount of exact HF exchange can be increased, which has been done in functionals

like B1LYP[52] (25% of exact HF exchange), or decreased, e. g. in B3LYP*[53,54] (15% of exact HF

exchange).
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2 Force Field Methods

Force field methods represent one of the more simplistic but nevertheless very popular and powerful

approaches in computational chemistry. Opposed to quantumchemistry calculations, force fields do

not handle electrons explicitly, but are parametrized to include electronic effects implicitly. Force

fields are generally more applicable to problems related to relative energies of conformers or isomers,

cavity sizes, conformational searches and molecular dynamics, all of which are mostly governed by

steric effects, and can be used for large scale calculations, as the computational cost is significantly

lower compared to QC methods.

Force field methods handle molecules as an ensemble of atoms connected by bonds with a given

connectivity. Forces between atoms can either occur along abond, e. g. bond stretching or valence

angle bending, or through space, e. g. van der Waals interactions and electrostatics. Through bond

interactions are usually described by a classical mechanics “balls and springs” model. Therefore,

force field methods are also referred to as molecular mechanics methods[18].

The steric (or strain) energyEsteric in a force field is calculated by the deviation of the individual

interactions from their reference values. Reference valuesfor bond distances, valence bond angles,

torsion angles etc. are usually gathered empirically from crystal structures, spectroscopic data or

quantum mechanical calculations. The complete steric energy of a molecule can be described as a

sum over all these individual contributions (Eq. 1.2.1):

Esteric =
∑

Estretch +
∑

Ebend +
∑

Etorsion +
∑

EvdW +
∑

Eelectrostatic (1.2.1)

Additional cross terms, e. g. out of plane interactions or a stretch-bend term, can also be included in

the force field. As Saunders and Jarret have shown[55], interactions for bond and torsion angles can

also be replaced by distances in a central force field approach.

In the force field used by Momec[11,12,56–61], the individual contributions from Eq. 1.2.1 are calculated

as follows, Eqs. 1.2.2 to 1.2.6:

Estretch(r − r0) =
1

2
k(r − r0)

2 (1.2.2)

Ebend(θ − θ0) =
1

2
k(θ − θ0)

2 (1.2.3)
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Etorsion(ω) =
∑

n=1

Vncos(nω) (1.2.4)

EvdW (r) = Ae−Br − C

r6
(1.2.5)

Eelec.(r) =
QAQB

ǫr
(1.2.6)

The stretch energyEstretch (Eq. 1.2.2) is treated by Hook’s Law and described by a Taylorseries

around an equilibrium bond length, which in the simplest fashion gives a harmonic oscillator.k is

the force constant andr0 the equilibrium bond length, both of which are parameters ofthe force field.

The harmonic approximation fails to reproduce the correct dissociation behavior for a bond, as the

energy tends to infinity with larger bond lengths. For a correct description, a Morse potential, Eq.

1.2.7, or a Taylor expansion around the equilibrium bond length has to be used instead:

EMorse(r − r0) = D[1 − eα(r−r0)]2 (1.2.7)

D is the dissociation energy andα the curvature, which is related to the force constant by Eq. 1.2.8:

α =

√

k

2D
(1.2.8)

However, for small deviations from the equilibrium bond length, a harmonic description of the stretch

interaction is sufficient.

Thebending energyEbend (Eq. 1.2.3) is treated similarly to the stretch energy by Hook’s law and a

Taylor expansion around the equilibrium angle, usually terminated at second order. Again,k is the

force constant andθ0 the equilibrium bond angle parametrized in the force field.

Thetorsional energyEtorsion (Eq. 1.2.4) for a torsion around a bond B-C in a sequence of fourbonded

atoms A-B-C-D has to account for the periodicity of the torsion. Therefore, the energy is given as a

Fourier series wheren describes the periodicity of the torsion andVn gives the appropriate rotation

barrier around B-C.

Thevan der Waals energyEvdW (Eq. 1.2.5) describes the repulsion at very short, attraction at medium

and no interaction at very large distances of non-bonded atoms. The “Buckingham” or “Hill” poten-

tial [62] is one approach to describe van der Waals interactions whereA, B and C are interaction

specific constants parametrized in the force field. The Lennard-Jones potential[63], Eq. 1.2.9, is also

commonly used:

V (r) = 4D

{

(σ

r

)12

−
(σ

r

)6
}

(1.2.9)
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whereD is the depth of the potential well andσ the equilibrium distance.

The electrostatic energyEelec. (Eq. 1.2.6) describes the interaction between charged atoms. The

classical interaction between point charges is given by theCoulomb potential whereQA andQB are

the atomic charges of atoms A and B andǫ is the vacuum permittivity, which is defined as (Eq. 1.2.10):

ǫ =
1

µ0c2
0

(1.2.10)

whereµ0 is the vacuum permeability andc0 the speed of light.

In addition to the functional form of a force field, which has just been described, one also has to

define a suitable set of parameters. To account for differentbonding situations, e.g. of a carbon atom,

atom types are introduced. In the Momec97[56–61] force field (see Appendix C for details) currently

14 different carbon atom types are defined, which range from ageneral tetrahedral sp3 hybridization

(Atom type CT) to very specific bonding situations like a carbon atom in an imine bound to a CuI

center (Atom type CI). Atom types are based on the general assumption that a molecule is built from

functional units and that the general behavior of these units is transferable between molecules. As an

example, a bond between two carbon sp3 atoms has a bond length of about 1.54 Å in every molecule

and thus can be parametrized with an equilibrium bond lengtharound that value.

In contrast to the definition of multiple atom types per element, Rappé et al. proposed a universal

force field (UFF) approach[64–66], where the force field parameters are automatically calculated for

every atom type of the periodic table. The parameters are derived from literature values, e. g. atom-

type specific single bond order radii.

Force field methods are inexpensive when it comes to computational cost. Geometry optimizations

can normally be performed within a few seconds, even with large molecules like proteins. Given a

well parametrized force field, molecular mechanics methodscan make accurate predictions of geome-

tries and relative energies for a large number of compounds quickly and are often the only method to

investigate the full potential energy surface (PES) of a molecule.
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3 Molecular Magnetism

Molecular magnetism represents one of the emerging fields inmodern chemistry. First transition

metal complexes which exhibit cooperative magnetic properties of magnetic centers were discovered

as early as in the 1950s[67], while interest in the field heightened just at the end of the last century[68–70].

Following shortly was the discovery of a new class of compounds, the so called single molecule

magnets (SMMs)[1–3]. SMMs contain unpaired electron spins, usually in form of transition metal

centers, and show a slow relaxation of the magnetization at low temperatures. They therefore retain

their magnetic information, which makes these compounds attractive e. g. for highly efficient data

storage systems, molecular freezers[4,5], switches and quantum computers[6].

To understand the theory behind SMMs, some fundamental aspects of magnetism have to be intro-

duced. When a material enters a magnetic field, the field lines are distorted. One can distinguish

between diamagnetic materials, where the magnetic field inside the material is smaller than the outer

field, or paramagnetic materials, where unpaired electronsalign along the outer field and thus gen-

erate a larger total field inside the compound. The difference between inner and outer field is the

magnetizationM , Eq. 1.3.1:

M = (B − H0)/4π (1.3.1)

Here,B is the inner field andH0 the outer field.

If multiple magnetic centers, e. g. atoms or molecules, interact with each other, three different situa-

tions may occur: ferromagnetic, anti-ferromagnetic or ferrimagnetic behavior. One can observe these

properties for example in the well-known Weiss domains[71]. Parallel alignment of all spins in one do-

main induces ferromagnetism, anti-parallel alignment induces anti-ferromagnetism. Ferrimagnetism

is similar to anti-ferromagnetism, but in this case the number of spins pointing in opposite directions

differ, which leads to an overall reduced magnetization.

Given the derivative of the magnetizationM with respect to the outer fieldH, one can define a new

quantity, the molar magnetic susceptibility[72], Eq. 1.3.2

χ =
∂M

∂H
(1.3.2)
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which is defined as a molar quantity. It is important to note, that the cgsemu unit system is often

used in the field of molecular magnetism, since important constants, like the permeability in vacuum,

which is equal to one, are easier to handle in this system. Therefore, the magnetizationM is often

given in units of Gauss.

If only a weak magnetic field is present, the magnetizationM is linearly dependent on the outer field

H and Eq. 1.3.2 simplifies to Eq. 1.3.3

M = χH (1.3.3)

The susceptibility consists of a negative diamagnetic (χD) and a positive paramagnetic (χP ) part. If

χD is much larger thanχP , the material shows diamagnetic behavior, whereas the compound shows

paramagnetic behavior, ifχP is larger thanχD.

SinceχD is independent of the outer field and the temperature, it can be approximated by a simple

formula, Eq. 1.3.4:

χD = kM × 10−6mol−1 (1.3.4)

wherek is a molecule-specific constant between 0.4 and 0.5 andM is the molecular weight of the

molecule. Pascal[73] also introduced an additive method to estimate the diamagnetic susceptibility.

With the definition of the molar magnetic susceptibility as the interaction between the outer field

and the total spin of the molecule, this relation can be transferred to classical mechanics, where the

magnetization depends on the change in energyE of the system with respect to the outer magnetic

field H (Eq. 1.3.5):

M = −∂E

∂H
(1.3.5)

Quantum mechanics introduces the description of the total energy of a molecule by discrete energy

levelsEn. Thus, the microscopic magnetizationµn is defined as the change of these energy levels

with respect to the change of the outer field (Eq. 1.3.6):

µn = −∂En

∂H
(1.3.6)

If the Boltzmann distribution is used over all energy levels and a summation is done over all possible

statesn, one can define the macroscopic magnetizationM (Eq. 1.3.7) as:
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M = N

∑

n

−∂En

∂H
exp(−En

kT
)

∑

n

exp(−En

kT
)

(1.3.7)

Eq. 1.3.7 is the “fundamental expression in molecular magnetism” [72], since the formula relies solely

on constants and observables and does not contain any approximations.

3.1 The van Vleck Equation

While Eq. 1.3.7, derived in the previous section, is able to describe the exact magnetization of a given

molecule, this would only be possible if all statesEn which depend on the applied magnetic field are

known. Since this is not the case, van Vleck proposed an approximation in 1932[74], based on a few

simplifications.

He stated, that the energy of one of the microscopic states,En, can be expressed as a Taylor series

expansion of the outer fieldH given in Eq. 1.3.8

En = E(0)
n + E(1)

n H + E(2)
n H2 + . . . (1.3.8)

whereE
(0)
n stands for the energy of the system in zero field andE

(1)
n , E

(2)
n , . . . represent the Zeeman

coefficients of first, second and higher order. This expansion can be used together with the definition

of the microscopic magnetization (Eq. 1.3.6) and the following expression can be derived (Eq. 1.3.9):

µn = −E(1)
n − 2E(2)

n H + . . . (1.3.9)

In addition, van Vleck assumed, that the ratioH/kT is small compared to unity, if the outer field is

small compared to the temperature. This approximation is used together with the series expansion in

Eq. 1.3.7 and the magnetizationM can be expressed as (Eq. 1.3.10)

M = N

∑

n

(−E
(1)
n − 2E

(2)
n H)(1 − E

(1)
n

H
kT

)exp(−E
(0)
n

kT
)

∑

n

(1 − E
(1)
n

H
kT

)exp(−E
(0)
n

kT
)

(1.3.10)

Since the magnetization vanishes in zero field, it follows that (Eq. 1.3.11):

∑

n

E(1)
n exp(−E

(0)
n

kT
) = 0 (1.3.11)
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If Eq. 1.3.11 is used in conjunction with Eq. 1.3.10 and only terms linear inH are retained, the

magnetization is then defined as given in Eq. 1.3.12

M = N

H
∑

n

(E
(1)2
n

kT
− 2E

(2)
n )exp(−E

(0)
n

kT
)

∑

n

exp(−E
(0)
n

kT
)

(1.3.12)

and the magnetic susceptibility as

χ = N

∑

n

(E
(1)2
n

kT
− 2E

(2)
n )exp(−E

(0)
n

kT
)

∑

n

exp(−E
(0)
n

kT
)

(1.3.13)

Eq. 1.3.13 is called the van Vleck-formula, which allows to calculate the susceptibility from the

energiesE(0)
n , E

(1)
n andE

(2)
n . If E

(0)
n and the eigenfunctions|n〉 of the Hamilton operator in zero field

are know,E(1)
n andE

(2)
n can be determined by perturbation theory (Eq. 1.3.14 and 1.3.14):

E(1)
n = 〈n |HZE|n〉 (1.3.14)

E(2)
n =

∑

E
(0)
m 6=E

(0)
n

〈n |HZE|n〉2

(E
(0)
n − E

(0)
m )

(1.3.15)

HZE is the Zeeman operator which describes the interaction between the magnetic field and the

electronic angular momenta (Eq. 1.3.16)

HZE = β
∑

i

(Ii + gesi) · H (1.3.16)

Ii stands for the orbital momentum andsi for the spin momentum of electroni. ge is the gyromagnetic

factor of the free electron (2.0023) andβ is the Bohr magneton (4.669 · 10−5cm−1G−1).

3.2 Curie’s Law

In its simplest form, molecular magnetism is represented bya single magnetic center, e. g. a transition

metal with unpaired electrons. If the electronic ground-state does not have an angular momentum,

i. e. the total spin is not larger than1
2
, and the excited energy levels are much higher in energy, the

spin states are degenerate in zero magnetic field.
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When the external field is applied, the energy levels are splitinto the Zeeman levels, Eq. 1.3.17:

En = MSgβH (1.3.17)

whereMs varies from−S to +S andg represents the isotropic gyromagnetic factor. This splitting

can be assumed, since the excited states are much higher in energy and thus cannot couple with the

ground state.

With the approximations of van Vleck (Eq. 1.3.13), the energy terms of zeroth (Eq. 1.3.18) and first

order (Eq. 1.3.19) are

E(0)
n = 0 (1.3.18)

E(1)
n = MSgβ (1.3.19)

The magnetic susceptibility then equals to (Eq. 1.3.20)

χ =
Ng2β2

3kT

+S
∑

MS=−S

M2
S

(2S + 1)
(1.3.20)

which can be expressed as

χ =
Ng2β2

3kT
S(S + 1) (1.3.21)

As all factors other than the temperature are constants, themolar magnetic susceptibility can also be

expressed asχ = C/T , whereC is the Curie constant which depends on the total spin of the ground

state. Eq. 1.3.21 is known as Curies law, postulated in 1895 byPierre Curie[75].

3.3 Zero-Field Splitting

When introducing Curie’s law, we assumed, that only a single electron with spin1
2

is present on the

magnetic center of interest. If the number of spins is larger, e. g. in transition metal centers with

multiple unpaired electrons and thus a multiplicity largerthan 2, a splitting of the Zeeman levels in

zero field due to spin-orbit coupling is observed. The so called zero-field splitting (ZFS) leads to

magnetic anisotropy even without an external magnetic field.
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Figure 1.3.1: ZFS in a NiII ion in a trigonally distorted octahedral coordination geometry[72]

Given a NiII ion in octahedral symmetry (Oh point group) one can explain the ZFS in a qualitative

way1 (see also Fig. 1.3.1). NiII has a t26e2 ground-state with a3A2g term and a t25e3 excited state with

a 3T1g and a3T2g term. Since the3T2g term is lower in energy, we will use it during the following

illustration. Splitting of the energetic levels may be achieved by two effects: symmetry reduction and

spin-orbit coupling. Lowering of the symmetry from Oh to e. g. D3 splits the3T2g term of the excited

state into an3A1 term and a doubly degenerate3E term while the ground-state term3A2 is retained.

Applying spin-orbit coupling leaves the molecular symmetry unchanged, but applies a T1g operation

to both ground and excited states. The direct product of T1g×T2g is A2g+E+T1g+T2g, splitting the

excited state into a singly, doubly and two triply degenerate terms. For the ground state, T1g×A2g is

T2g, so the ground state retains its degeneracy. Applying both distortions, the degeneracy of the ground

state is lifted. If spin-orbit coupling is applied first, thefollowing reduction of the symmetry to D3
splits the T2g ground state into A1 and E. If the symmetry is reduced first, the spin-orbit operation

transforms as A2 and E and thus also splitting the ground state into A1 and E. The ZFS is usually

characterized by two constants, the axial ZFS parameterD and the rhombic ZFS parameterE. Given

a low symmetry, degeneracies may not be lifted totally. States which retain their double degeneracy

are called Kramers doublets and may occur in systems with even spin multiplicity.

3.4 Single Molecule Magnets

When a magnetic field is applied to a magnetic material until the maximum magnetization has been

reached, the relaxation of the magnetization after switching off the field can be measured. The relax-

ation timeτ defines the rate at which the magnetization decays. Assumingan exponential behavior

of the relaxation, Eq. 1.3.22 can be formulated[76]

1 For a detailed introduction to the term symbols used here seePt. III Ch. 1
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M(t) = Meq(H) + δM0exp(−t/τ) (1.3.22)

Here,Meq(H) is the equilibrium magnetization andτ the relaxation time. Ifτ is measured in depen-

dence of the temperatureT , an Arrhenius correlation can be derived, Eq. 1.3.23

τ = τ0exp(T/T0) (1.3.23)

whereT0 is the calculated maximum energy barrier in Kelvin at which the magnetization is retained

(see below). At very low temperatures however, the Arrhenius law is not observed in measurements

of SMMs such as Mn12ac[2] ([Mn12O12(CH3COO)16(H2O)4]). The magnetization is retained, even

when the magnetic field is switched off. This behavior can be explained if a potential barrierU which

separates the−S from the+S states (Fig. 1.3.2) is assumed, whereS is the total spin of the molecule.

Figure 1.3.2: Potential barrier between the S=-10 and S=10 states in Mn12ac.

The barrier between the two states of maximum magnetizationis described by the Hamiltonian given

in Eq. 1.3.24

H = DS2
z (1.3.24)

whereD is the axial ZFS andSz the total spin of the system along the magnetization axis. The sign

of D has to be negative in order for the states with maximumS to be the low lying states. Relaxation

of the magnetization can occur via thermal relaxation or quantum tunneling between the lowest lying

or excited states. The potential barrierU and thus the effectiveness of an SMM directly depends on

D andS. For integer spin systems, the barrier is calculated by Eq. 1.3.25 (a) whereas for half-integer

systems the barrier is given by Eq. 1.3.25 (b)

(a) U = |DS2|
(b) U = |D(S2 − 1/4)|

(1.3.25)
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1 Introduction

As explained in greater detail in the general introduction of this thesis, a thorough understanding

of the electronic structure of transition metal centers andthe quantitative estimate of the exchange

coupling are of great interest in the field of molecular magnetism. In order to be able to design and

prepare new efficient SMMs, an accurate prediction of the exchange coupling constant is of impor-

tance, as the exchange coupling can give insights about the low-lying electronic states of transition

metal complexes[77]. After initial calculations based on theXα method[78], the broken symmetry

approach[79] was developed, which will be described in greater detail in the following Chapter. More

involved quantum-chemical calculations such as complete active space SCF (CASSCF)[18] or config-

uration interaction (CI)[18] methods have been applied to calculate exchange interactions[80], but are

to date only rarely used because of the computational demands. Semi-empirical methods have been

used for a qualitative description of magnetic interactions, but DFT methods have been established as

the method of choice for quantitative calculations[81].

As a systematic benchmark for different DFT functionals, basis sets and software packages was not

available in the literature, a simple dinuclear complex waschosen and used to benchmark the bro-

ken symmetry method. The well-characterized bisphenolato-bridged dicopper(II) complex[82,83] (Fig.

2.1.1) with two antiferromagnetically coupled CuII centers shows an exchange coupling constant1 of

J = -298 cm-1. Since the system is relatively small, it is attractive for asystematic study, because the

computational cost for calculations is low and an efficient and thorough testing of different methods

and software packages is possible.

1 Based on Eq. 2.2.1; the derivation of the exchange coupling constant and the Heisenberg-Dirac-van-Vleck Hamilto-
nian will be presented in detail in Ch. 2 of this Part.
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Figure 2.1.1: Bisphenolato-bridged dicopper(II) complex

The information obtained from the benchmark procedure was then used to calculate the exchange

coupling constant for a wide range of oligonuclear compounds which contained CuII , FeIII , CrIII , VIV ,

MnII , MnIII , MnIV , NiII and CoIII transition metal ions.

Since the aim of this project was to predict exchange coupling constants, geometry optimizations

have also been done where possible and the exchange couplingconstants have been calculated from

the optimized structures. The geometry optimization of a structure represents the only way to obtain

magnetic properties for novel complexes, where X-ray structure data is not available as a starting

geometry for the calculation.
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2 The Broken Symmetry Approach

If unpaired electrons are present on the metal centers of an oligonuclear transition metal complex, the

spins of these electrons can couple either ferro- or antiferromagnetically, Figs. 2.2.1 and 2.2.2:

M M'

L

Figure 2.2.1: Ferromagnetic coupling of two metal centers viaσ-bonding

M M'

L

Figure 2.2.2: Anti-ferromagnetic coupling of two metal centers viaσ-bonding

Given the interaction between the two centers, atomic spin quantum numbers are no longer valid to

describe the coupled spin system. A total spin quantum number S, which in the simplest case of one

unpaired electron at each of the metal centers (e. g. CuII
2) is either S = 0 for the antiferromagnetically

coupled or S = 1 for the ferromagnetically coupled state, is used for a proper description of the sys-

tem. The energy difference between the two states is described by the exchange coupling constant J.

A negative value of J denotes an anti-ferromagnetic ground state while a positive J indicates a fer-

romagnetic ground state[72]. The energy and the magnetic properties of dinuclear transition metal

systems can be described by the Heisenberg-Dirac-van VleckHamiltonian[74,84–86]:

ĤHDV V = −2J12Ŝ1Ŝ2 (2.2.1)

Here,J12 is the exchange coupling constant between the two metal centers, and̂S1 andŜ2 are the spin

operators for the magnetic centers. At this point it is important to note, that several definitions of the
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Heisenberg-Dirac-van Vleck Hamiltonian are used in the literature[81]. While results in this thesis are

consistently based on Eq. 2.2.1 if not noted otherwise, one may encounter the following definitions

elsewhere (Eqs. 2.2.2 to 2.2.4):

ĤHDV V2 = 2J12Ŝ1Ŝ2 (2.2.2)

ĤHDV V3 = J12Ŝ1Ŝ2 (2.2.3)

ĤHDV V4 = −J12Ŝ1Ŝ2 (2.2.4)

The calculation of the exchange coupling constant J causes aproblem with the underlying DFT theory.

While the high spin state for a dinuclear system (↑↑) is easily described in the density functional theory

framework, the low spin state (↑↓ − ↓↑) can only be described by multiple determinants, which is not

possible in DFT[31].

An approach for this problem is the so called broken symmetrymethod which was first proposed by

Noodleman[79]. Starting from a single determinant wave function (↑↓ or ↓↑) as a guess for the true

low spin state, the variational principle to re-optimize the orbitals is applied[87]. The relaxed wave

function then represents the broken symmetry solution to the problem. As an artifact of this method,

the result will yield the correct charge density of the molecule, but an incorrect spin density. The true

spin density of the low spin state should be zero throughout the whole molecule, which is not the case

for the broken symmetry solution (see Fig. 2.2.3).

Figure 2.2.3: Spin densities of the broken symmetry solution for the CuII
2 benchmark system. Clearly visible

are the two uncoupled spins in the dx2-y2 orbitals of the two metal centers. Some spin density is
also delocalized over the bridging atoms.

With the spin Hamiltonian (Eq. 2.2.1) and the correct chargedensity and thus the correct energy of

the high- and low-spin state of the dinuclear complex one nowcan compute the exchange coupling

constant between metal centers 1 and 2. Given the relation inEq. 2.2.5, wherêS is the total spin
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operator and̂S1, Ŝ2 are the spin operators for the individual magnetic centers,

Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1Ŝ2 (2.2.5)

the Heisenberg-Dirac-van Vleck Hamiltonian (Eq. 2.2.6) becomes

ĤHDV V (spin) = −J(Ŝ2 − Ŝ2
1 − Ŝ2

2) (2.2.6)

If one assumes, that the wave functions of the high- and low-spin states are eigenfunctions ofŜ2
1 and

Ŝ2
2 , the expectation values are, Eqs. 2.2.7 and 2.2.8

EHS = −J(〈Ŝ2〉HS − S1(S1 + 1) − S2(S2 + 1)) (2.2.7)

EBS = −J(〈Ŝ2〉BS − S1(S1 + 1) − S2(S2 + 1)) (2.2.8)

where〈Ŝ2〉HS and〈Ŝ2〉BS are the spin expectation values of the high- and low-spin state, respectively.

When Eq. 2.2.7 and Eq. 2.2.8 are subtracted from each other andthe result is solved forJ , Eq. 2.2.9

can be derived:

J = − EHS − EBS

〈Ŝ2〉HS − 〈Ŝ2〉BS

(2.2.9)

Eq. 2.2.9 has been proposed by Yamaguchi et al.[88,89] and represents an “interpolative”[77] broken

symmetry solution. In the extreme cases of an uncoupled system or a “true” coupled low-spin con-

figuration, Eq. 2.2.9 reduces to the so called spin-projected equation (Eq. 2.2.10) for the former, or

spin-unprojected equation (Eq. 2.2.11) for the latter case:

J = −EHS − EBS

S2
max

(2.2.10)

J = − EHS − EBS

Smax(Smax + 1)
(2.2.11)

The spin-projected formalism is directly implied by Noodlemans[79] treatment of the broken symme-

try problem while the spin-unprojected approach was developed by Ruiz et al.[90]
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3 Computational Methods

In order to benchmark available DFT methods, correspondingbasis sets and software packages, a

large number of calculations on the bisphenolato-bridged dicopper(II) complex were performed (Fig.

2.1.1 and Table 2.4.1). Gaussian 03 (G03)[91], Jaguar 6.5[92] and Orca 2.6.04[26] were chosen as

software packages, since the majority of all calculations in this field of research are done with one

of these packages. As DFT functionals, a number of hybrid (B3LYP[49–51], B3P86[45], B3PW91[93]),

GGA (BLYP[43,44,94], BP86[43–45,94], BPW91[93], PBE[95]) and LDA (SVWN[33,40]) functionals were

compared. For the basis sets, the small basis 3-21G[96–101] was compared to the triple zeta basis

TZV [24,25], the polarized triple zeta TZVP[24,25] and basis set combinations of TZVP for metal atoms

and DZP[102–104] for the remaining atoms as well as TZVP for metal atoms plus first coordination

sphere and 6-31G*[23,105–113]for the remaining atoms (see Fig. 2.3.1)1.

Figure 2.3.1: Split basis set approach shown on the CuII benchmark system; orange atoms are described by a
high basis (TZVP or LACV3P++**) while blue atoms are described with the 6-31G* basis set.

As the goal for this benchmark was to identify an accurate, fast and reliable method for the calculation

of exchange coupling constants, a performance criterion was also the amount of time needed to obtain

the result as well as accuracy compared to experimental results.

1 For technical reasons concerning calculations on more thanone processor, TZVP was substituted by the qualitatively
similar basis set LACV3P++**[29,30] in parallel calculations done with the Jaguar program.
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Initial guesses for the electronic structure of the high-spin state are trivial to get in all three software

packages, and Jaguar was used to get the broken symmetry initial guess for G032. While the genera-

tion of broken symmetry states was already possible with a combination of Gaussview and G03 (but

included a tedious identification of the magnetic orbitals), the fragment approach of the new release

Gaussian 09 (G09)[114] introduced a similar functionality to Jaguars’ atomic section and thus makes

the generation of the initial guess with Jaguar obsolete. For Orca, the “BrokenSym” keyword of the

%scf section has been used.

All calculations were converged to a threshold of 10-6 hartree (= 2.625·10-3 kJ/mol) for the change

in energy and a root mean square deviation in the density of 10-8. For geometry optimizations, the

high-spin state was used as a reference for the multiplicityand default options were used for Jaguar

as well as for Orca3. Geometries were checked for PES minima by frequency calculations and single

points were calculated to yield the exchange coupling constants.

Since calculated values are compared to experimental values, the root mean square deviation (RMSD)

was calculated according to the following formula:

RMSD(J) =

√

√

√

√

√

N
∑

n=1

(Jn(calc) − Jn(ref))2

N
(2.3.1)

2 keyword ip160 = 4
3 The iascf=4 flag was set in Jaguar to achieve faster convergence.
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4 Results and Discussion

In order to establish a reliable and fast method to compute exchange coupling constants, the first step

was to benchmark the software packages, functionals and basis sets mentioned in the preceding Chap-

ter on the dinuclear copper(II) system (see Fig. 2.1.1). Theresults of these benchmark calculations

are given in Table 2.4.1.

Table 2.4.1: Exchange coupling constant J calculated for the benchmark complex
(Fig. 2.1.1, Jexp = -298 cm-1) with different basis sets, software packages and functionals.

method JG03 [cm-1]a JOrca [cm-1] JJaguar[cm-1] CPU timeJaguar[h]

B3LYP/TZV -229 -231 -231 4.60
B3P86/TZV -238 -227 -241 3.71
B3PW91/TZV -228 -230 -227 3.44
BLYP/TZV -838 -838 -854 4.00
BP86/TZV -861 -834 -880 4.26
BPW91/TZV -831 -832 -848 4.20
PBE/TZV -841 -841 -854 4.31
SVWN/TZV -1156 -1178 -1181 5.07
B3LYP/3-21G -103 -99 -114 0.56
B3LYP/TZVP -215 -214 -231 4.60
B3LYP/DZP/TZVPb -218 -246 4.12
B3LYP/6-31G*/TZVPc -237 -216 -239 2.38

a Initial guess obtained with Jaguar 6.5, see Pt. II Ch. 3
b TZVP for CuII , DZP for the remaining atoms
c TZVP for CuII and the donor atoms, 6-31G* for the remaining atoms

As not only the accuracy but also the time needed to get to a result was of interest, Figure 2.4.1 shows

a comparison of speed and accuracy of the Jaguar calculations.
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Figure 2.4.1: CPU time required for the computation of J [Quad-Core Q9450 (one processor), 8GB RAM; light
gray] and accuracy compared with the experimental value of J (dashed line, J = -298 cm-1) of the
bisphenolato-bridged dicopper(II) complex shown in Fig. 2.1.1, as a function of the method used
(see Table 2.4.1; calculations performed with Jaguar).

From a qualitative point of view, the three software packages used in the benchmark study perform

equally well. There are differences in the amount of time needed to prepare the input files and to

perform the actual calculation, but no significant advantage has been found for one of the software

packages and therefore only Jaguar timings are presented here. Having a closer look at the func-

tionals, the hybrid functionals are superior to the GGA and LDA functionals, which supports earlier

findings[115]. The reason is the poor description of the broken symmetry state in case of the functionals

BLYP, BP86, BPW91, PBE and SVWN which leads to an overestimation of the exchange coupling

constant J. Adjusting the amount of exact HF exchange in the hybrid functionals did not lead to an

improvement in the accuracy compared to experimental results (values not shown here).

As expected, very small basis sets like 3-21G are not sufficient to describe the energy difference

between the high- and low-spin state. Employing basis sets larger than DZP for the whole molecule

however does not further improve the results. To account forthis observation, a combination of the

TZVP basis on the metal centers and the DZP basis on the remaining ligand has been widely used in
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the literature[116,117]. Based on these findings we decided to not only describe the metal centers but

also the first coordination sphere with a large basis, to improve the quality of the calculations (see

Figs. 2.3.1 and 2.4.1). To save computer time, the remainingatoms were described by the smaller

6-31G* basis set. As seen in Table 2.4.1 and Fig. 2.4.1, the cost in computational time could be cut

in half while the accuracy was practically unaffected. Thissplit basis method was therefore used in

the successive studies. By this approach, it was possible to study larger spin clusters in a reasonable

amount of time.

Table 2.4.2: Comparison of experimental and computed exchange coupling constants J of a series of transition
metal complexes with CrIII , MnII , MnIII , FeIII and CuII centers (Jcalc is obtained with Eq. 2.2.9 and
is derived from the experimental structure (Jaguar, 6-31G*/LACV3P++**); see Appendix A for
structures of the complexes)

compound Jcalc [cm-1] Jexp [cm-1] notea Figure references

TPP[HO-Cr(cyclam)-NC-Cr(CN)5]b −33.1c −29.8 Cr – Cr 6.2.1a 118
Na[HO-Cr(cyclam)-NC-Cr(CN)5]b −41.4c −35.5 Cr – Cr 6.2.1b 119

trans-Cr[MnL1]2Cld
−12.5c −12.8 Mn – Cr

6.2.1c
5.0c 0.9 Mn – Mn

120

trans-Fe[MnL1]2Clb,d 9.6c 8.0 Mn – Fe
6.2.1d−7.7c −0.5 Mn – Mn

120

trans-Fe[MnL1]2PF6
b,d 6.8c 4.2 Mn – Fe

6.2.1e−8.3c −0.3 Mn – Mn
120

[Tp2(Me3tacn)3Cu3Fe2(CN)6]4+
9.1 8.5 Cu – Fee

6.2.1f−8.8 - Cu – Cue

9.9 - Fe – Fee
121

a Denotes the pairs of magnetic centers for which the exchange coupling constant has been calculated
b Counterions are given for reference and have not been included in the calculations. However, the slight

distortions in crystal packing induced by the counterions have a measurable effect on the exchange coupling
constant, which can be seen from the calculated values.

c The spin-unprojected formulaJ =
EBS−EHS

2S1S2+S2
has been used to calculate the exchange coupling constant of

this complex for better agreement with experimental results.
d L1 = 3-methyl-9-oxo-2,4-di-(2-pyridyl)-7-(2-pyridylmethyl)-3,7-diazabicyclo[3.3.1]-nonane-1,5-

dicarboxylic acid dimethylester
e In this pentanuclear complex (trigonal bipyramidal, see Appendix A; single-molecular magnetic material)

three of the five paramagnetic centers were substituted by diamagnetic Zn2+ ions for an efficient calculation
of the coupling constant between the remaining two paramagnetic ions. Experimental values for the ex-
change coupling constants between Cu-Cu and Fe-Fe are not available,because the coupling was neglected
in the original publication[121].

Table 2.4.2 shows some results for the calculation of J for larger spin clusters. The overall agreement

with experiment is very good, since not only the sign of the exchange coupling constant but also the

magnitude is correctly predicted from the calculation. Of special interest in this series of compounds

is the pentanuclear complex [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+ (see Appendix A, Fig. 6.2.1f). The ex-

perimental data has been fitted only with the Cu-Fe coupling while the Cu-Cu and Fe-Fe interactions
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have been neglected[121]. Our calculations show that there is a significant exchange interaction be-

tween all three different pairs of metal centers. To obtain this result, we have substituted three of

the five transition metal centers by diamagnetic ZnII ions to reduce the overall number of possible

interactions. To explicitly consider all possible coupling pathways, 11 spin states which lead to 10

different J values would have to be considered. Table 2.4.2 shows, that the CuII /CuII pairs are coupled

antiferromagnetically while the CuII /FeIII and FeIII /FeIII pairs are coupled ferromagnetically. The total

magnetic behavior measured experimentally may then be observed as ferromagnetic.

In addition to the oligonuclear complexes shown in Table 2.4.2 a series of dinuclear complexes which

contain various transition metals have been calculated. Table 2.4.4 shows the comparison of the

calculated values generated with Jaguar and Orca with the experimental values. Also shown is the

effect of the basis set reduction from TZVP or LACV3P++** for all atoms to the split basis method

described in the preceding Chapter. As can be seen from the data in the table, the overall RMSD(J)

and thus the overall accuracy compared to experiment is almost unaffected by the basis set reduction.

Table 2.4.3 compares calculated and experimental values with values obtained after optimizing the

structures for the same series of compounds. As discussed, optimizing a structure is of critical im-

portance for the design of new SMMs. Optimizing a molecule toa potential minimum of the cor-

responding method gives the “right” answer considering theenergy, but may induce large structural

changes. As the exchange coupling constant is very sensitive to the structure around the metal cen-

ters[120,138–142], this may lead to significant discrepancies compared to the experimental values.

As the values in Table 2.4.3 show, the overall agreement to experiment gets slightly better when pre-

optimizing the structures. However, the sign of the J value is calculated incorrect in three of the 25

cases. In two complexes, [Cu2(µ-OH)2(bipym)2]2+ and [HB(pz)3VO(OH)2]2, this may be due to a

wrong starting geometry, whereas in the third case, [(VO(Hsabhea))2], the absolute value of J is very

small and certainly below the accuracy of the method. One generally has to assume that agreement

with the experiment is by pure chance in cases with very smallJ values.

So far we have studied molecules in the “gas phase” and crystal packing effects have not been included

in the calculations. To efficiently model exchange couplingof new SMMs one would have to include

these effects. In the series of compounds studied here, crystal packing distortions seem to be of minor

importance or structures are enforced in specific conformations even during the optimization step.

Using a geometry optimization to generate a structure for the calculation of the exchange coupling

between two transition metal centers seems to be a viable approach for compounds which have not

yet been synthesized. However, since the optimization stepwith DFT involves much computational

effort, reducing the time for the initial optimization is only possible by using MM methods. The

procedure towards a MM approach will be described in the following Parts of this work.
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Table 2.4.3: Comparison of B3LYP-calculated and experimental J values of a series ofdinuclear complexes (Jcalc and Jopt are obtained with Eq. 2.2.9, Jcalc is derived
from the experimental structure (Jaguar, 6-31G*/LACV3P++**) and Jopt from the DFT-refined structure (high-spin state, Orca, 6-31G*/TZVP); see
Appendix A for structures of the complexes, the numbers in parentheses inthe table refer to the corresponding Figures)

compound Jcalc [cm-1] Jopt [cm-1] Jexp [cm-1] Figure references

[Cu2(MeC(OH)(PO3)2)2]4- −103.0 −118.2 −30.9 6.2.2a 77, 122
[(Et5dien)2Cu2(µ-C2O4)]2+ −99.0 −112.2 −37.4 6.2.2b 77, 123
[Mn(Me6-[14]ane-N4)Cu(oxpn)]2+ −40.8 −37.0 −15.7 6.2.2c 77, 124
[(µ-OCH3)VO(maltolato)]2 −84.3 −83.4 −107.0 6.2.2d 77, 125
[Fe2OCl6]2- −148.0 −109.5 −112.0 6.2.2e 77, 126
[MnMn(µ-O)2(µ-OAc)DTNE]2+ −156.3 −117.9 −110.0 6.2.2f 77, 116
[Cu2(µ-OH)2(bipym)2]2+ 95.8 −98.5 57.0 6.2.2g 77, 127
[(Dopn)Cu(OH2)Cr(OCH3)Me3tacn]2+ 12.8 31.5 18.5 6.2.2h 77, 128
[(Dopn)Cu(µ-CH3COO)Mn(Me3tacn)]2+ 54.2 54.9 54.4 6.2.2i 77, 128
[V2O2(µ-OH)2([9]aneN3)2]2+ −241.8 −52.5 −177.0 6.2.2j 129, 130
[Et3NH]2[(VO)2(BBAC)2] −160.9 −81.6 −167.9 6.2.2k 129, 131
[HB(pz)3VO(OH)2]2 14.3 29.2 −38.8 6.2.2l 129, 132
[(VO)2(cit)(Hcit)]3- −267.8 −29.0 −212.0 6.2.2m 129, 133
[V2O2(µ-OH)(tpen)]2+ −461.7 −19.1 −150.0 6.2.2n 129, 134
[(VO)2L(µ-SO4)] −132.6 −121.9 −128.0 6.2.2oa 129, 135
[V2O2(OH)(C4O4)2(H2O)3]- −245.7 −211.2 −117.0 6.2.2p 129, 136
[(VO(Hsabhea))2] 8.9 −2.5 1.5 6.2.2q 129, 137
[(VO(Hsabhea))(VO(acac)(HOMe))(µ2-OMe)] 18.6 15.4 5.3 6.2.2r 129, 137
[Cu2(tren)2CN](ClO4)3

b −98.6 −98.3 −79.0 6.2.2s 138
[Cu2(tren)2CN](BF4)3

b −119.1 −71.9 −80.0 6.2.2t 138
[Cu2(tren)2CN](ClO4)(PF6)2

b −77.0 −79.2 −91.5 6.2.2u 138
[Cu2(tmpa)2CN](ClO4)3

b −70.1 −57.8 −52.0 6.2.2v 138
[Cu2(tmpa)2CN](BF4)3

b −69.8 −57.9 −50.0 6.2.2w 138
[Cu2(tmpa)2CN](BF4)3·(CH3CN)2b −76.9 −57.9 −49.5 6.2.2x 138
[Ni2(tetren)2CN][Cr(CN)6] −15.4 −9.3 −12.5 6.2.2y 138

RMSD(J) (see Eq. 2.3.1) 75.6 71.2

a see ref.[135] and references therein for detailed structural information
b Counterions are given for reference and have not been included in the calculations.
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Table2.4.4:ComparisonofB3LYP-calculatedandexperimentalJvaluesofaseriesof oligonuclearcomplexesusingdifferentsoftwarepackagesandbasiss etsfor
thecalculationoftheexchangecouplingconstant.

compoundJJ65[cm-1]aJJ65[cm-1]bJJ65[cm-1]cJJ65[cm-1]dJOrca[cm-1]eJOrca[cm-1]fJexp[cm-1]

[Cu2(MeC(OH)(PO3)2)2]4-−131.9−61.6−103.0−143.4−120.1−109.4−30.9
[(Et5dien)2Cu2(µ-C2O4)]2+−100.8−29.7−99.0−108.4−102.3−103.4−37.4
[Mn(Me6-[14]ane-N4)Cu(oxpn)]2+−44.6−57.7−40.8−40.0−43.7−42.7−15.7
[(µ-OCH3)VO(maltolato)]2−85.5−87.9−84.3−79.4−101.1−101.0−107.0
[Fe2OCl6]2-−158.2−158.2−148.0−148.0−159.4−159.4−112.0
[MnMn(µ-O)2(µ-OAc)DTNE]2+−166.8−163.8−156.3−157.7−168.3−168.2−110.0
[Cu2(µ-OH)2(bipym)2]2+67.071.995.885.088.781.857.0
[(Dopn)Cu(OH2)Cr(OCH3)Me3tacn]2+15.212.412.812.411.910.518.5
[(Dopn)Cu(µ-CH3COO)Mn(Me3tacn)]2+83.946.654.243.249.148.154.4
[V2O2(µ-OH)2([9]aneN3)2]2+−263.8−262.1−241.8−241.7−278.9−270.0−177.0
[Et3NH]2[(VO)2(BBAC)2]−172.3−145.0−160.9−159.2−186.6−185.3−167.9
[HB(pz)3VO(OH)2]210.56.614.333.08.49.4−38.8
[(VO)2(cit)(Hcit)]3-−286.3−294.4−267.8−260.5−298.3−303.5−212.0
[V2O2(µ-OH)(tpen)]2+−493.7−498.7−461.7−459.9−529.7−525.8−150.0
[(VO)2L(µ-SO4)]−135.9−146.2−132.6−134.9−140.7−149.7−128.0
[V2O2(OH)(C4O4)2(H2O)3]-−255.6−257.6−245.7−242.0−261.5−259.1−117.0
[(VO(Hsabhea))2]−0.1−3.88.915.27.26.21.5
[(VO(Hsabhea))(VO(acac)(HOMe))( µ2-OMe)]13.116.418.619.614.615.15.3
[Cu2(tren)2CN](ClO4)3−101.8−100.3−98.6−108.1−103.0−104.0−79.0
[Cu2(tren)2CN](BF4)3−120.7−130.2−119.1−129.3−119.5−120.7−80.0
[Cu2(tren)2CN](ClO4)(PF6)2−80.1−83.5−77.0−88.8−85.6−86.7−91.5
[Cu2(tmpa)2CN](ClO4)3−71.3−71.4−70.1−70.1−63.1−72.3−52.0
[Cu2(tmpa)2CN](BF4)3−70.0−66.8−69.8−56.9−69.7−68.7−50.0
[Cu2(tmpa)2CN](BF4)3·(CH3CN)2−78.7−65.7−76.9−72.1−77.1−78.5−49.5
[Ni2(tetren)2CN][Cr(CN)6]−16.5−15.5−15.4−15.5−16.8−17.0−12.5

RMSD(J)(seeEq.2.3.1)84.682.775.677.991.490.2

a6-31G*/TZVPbTZVPc6-31G*/LACV3P++**dLACV3P++**e6-31G*/TZVPfTZVP48
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1 Introduction to Ligand Field Theory

1.1 Crystal Field Theory

ligand field theory (LFT) represents a theoretical approachto describe the d-orbital splitting of transi-

tion metal compounds and can be used to interpret electronicand magnetic properties, like UV/VIS,

circular dichroism (CD) or magnetic circular dichroism (MCD)spectra or the zero-field splitting

(ZFS). Based on a symmetry treatment, LFT can predict the number, range and intensity of transitions

and can quantify parameters in Hamiltonians which describethese interactions. Since the coordina-

tion geometry and its underlying symmetry is mainly responsible for the splitting of the d-orbitals in a

transition metal ion, LFT allows for a semi-quantitative approach to describe the energetics involved

in these splittings.

The origins of LFT go back to Bethe[143] and van Vleck[144], who derived the underlying crystal field

theory (CFT). Treating ions in a crystal lattice as point charges, they described the potential acting on

the central ion, e. g. a Fe3+, by the sum of all individual potentials generated by the surrounding ions,

e. g. Cl-. They explained the coordination geometry solely by the interaction of these point charges,

that is, a pure electrostatic treatment of the metal to ligand interaction. Since Bethe’s research was

based on lattices, which in his assumption could only occur in a crystal, he referred to the theory

as CFT[145]. The expansion of this idea to a more general form of a centralion in a field of the

surrounding ligands (treating not only their electrostatic contribution and not necessarily assuming

alignment in a crystal lattice) lead to the concept of LFT[146]. CFT can be seen as a special case of

LFT, where the influence of the ligands on the central ion is ofpurely electrostatic nature, that is, the

electrons of the ligands do not mix with the electrons of the central metal ion[145]. LFT introduces

covalency and treats cases, where the interaction between the ligand and the metal electrons is not

zero.

LFT is mainly concerned with the elements of the three d-transition series. Here, the ligand field

effects are stronger than the other effects responsible forperturbation of the d-orbital energies, e. g.

spin-orbit coupling. As mentioned above, the coordinationgeometry is mainly responsible for the

splitting of the d-orbitals, and LFT connects the positionsof the ligands with the energetics of the

d-orbitals and thus with the physical properties seen in thespectra of the molecule[145].

With the underlying aspects of CFT, the general splitting of the d-orbitals e. g. in an octahedral field
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can be deduced. As the central metal ion enters the field of theligands, the energy of the degenerate

set of orbitals is raised, as the interaction between the spherical field of point charges leads to a general

destabilization of the d-orbitals. Since the real ligand field is not of spherical symmetry, the five-fold

degenerate set is split into two sets of orbitals. Thet2g set consist of thedxy, dxz anddyz orbitals,

which have their lobes pointing between the ligands, and theeg set consists of thedx2−y2 anddz2

orbitals pointing directly at the ligands. The coordinate system for the description of the molecule is

chosen to match these assumptions. Thet2g set is thus stabilized, theeg set destabilized compared to

the five-fold degenerate set of orbitals in the spherical field of ligands. The energy difference between

the two sets is 10 Dq or∆oct (see Figure 3.1.1). In a tetrahedral coordination geometry, the order of

the sets is reversed and the splitting is only4
9
∆oct.

Figure 3.1.1: d-Orbital splitting in an octahedral crystal field.

1.2 The Inter-Electronic Repulsion

While CFT is sufficient to explain e. g. the transition around 20,000 cm-1 in the one-electron system

Ti3+, which can be associated with the transition of the single electron from the set of orbitals corre-

sponding to at2g term to theeg term orbital set, it fails to interpret more complex spectra, e. g. that of

the d2 system V3+. The two transitions at 17,800 and 25,700 cm-1 cannot be assigned to a single and

double excitation from the lower lyingt2g term to the orbitals corresponding to aeg term. Even if the

first transition could be assigned to the single excitation,the double excitation should appear at much

higher energies.

In order to be able to describe the spectra of the d2 system correctly, the simple term picture is not

sufficient, but a more complex approach has to be used instead. Terms describe a group of energy

equivalent multi-electron wave functions and are characterized by the term symbols, consisting of

the total spin angular momentum S and the total orbital angular momentum L. The spin quantum
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number MS, the multiplicity, runs from -S to +S in half-integer steps,the quantum number ML runs

from -L to +L in integer steps. The total degeneracy of the term is thus (2S+1)(2L+1). The term

symbol is labeled(2S+1)X, where X stands for a capital letter, which represents the total orbital angular

momentum. X equals to S for L = 0, P for L = 1, D for L = 2, F for L = 3 and continues alphabetically

afterwards.

Given the electron configuration of d2, the corresponding terms can be derived as follows: Arranging

two electrons with either spin up or spin down in five d-orbitals gives rise to 45 different possibilities,

called micro-states. The different micro-states can be grouped according to their ML and MS values.

This leads to 2 micro-states with ML = ± 4, 8 micro-states with ML = ± 3, 10 micro-states with ML
= ± 2, 16 micro-states with ML = ± 1 and 9 micro-states with ML = 0. The micro-states can also

be grouped according to their multiplicity, which then gives 20 micro-states with MS = ± 1 and 25

micro-states with MS = 0.

To arrive at the terms for the d2 configuration, the table of micro-states has to be reduced systemati-

cally, starting with the highest orbital angular momentum number ML = 4. ML = 4 equals to a G term

and since two electrons cannot have the same spin in the same orbital (Pauli principle[19]), the term

has to be a singlet1G term. Subtracting a1G term from the list of micro-states results in a maximum

ML = 3, which corresponds to an F-term. The reduction of the micro-states is done systematically,

until all micro-states are assigned to terms. The final result is, that the d2 configuration splits into a
1G, 3F, 1D, 3P and a1S term.

Given Hund’s rules[147–149], which describe how electrons tend to minimize the repulsion with each

other, we can define the energetic order of the terms as3F, 1D, 3P, 1G and1S (from lowest to highest

energy).

1.3 The Ligand Field Splitting

In the last section, the terms for a free transition metal ionhave been derived. If the ion is brought

into a field of ligands, the terms split according to group theory. The angular momentum of a term

acts analogously to one-electron wave functions. The3F-term, which is the ground state of the d2

configuration, is seven-fold degenerate. In an octahedral field, the term splits into3A2g, 3T1g and3T2g

terms, where the3T1g term represents the new ground state.

When both the inter-electronic repulsion and the ligand fieldtreatment are taken into account, the two

bands visible in the V3+ spectrum can now be explained. The two bands belong to the transitions

between the T1g ground term and the two terms T2g and A2g, which are higher in energy. If the sym-

metry of the coordination sphere is lowered a further ligandfield splitting can be induced. Correlation

tables, from which this splitting can be derived, are found in the literature[145].
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So far, we have used the “weak field” approach to describe the splitting of the energy levels in tran-

sition metal complexes, assuming, that the magnitude of theinter-electronic repulsion is larger than

the ligand field. In the “weak field” approach, the free ion terms are deduced first and the ligand field

acts as a perturbation on these terms. If the ligand field is oflarger magnitude than the inter-electronic

repulsion, the “strong field” approach has to be used for the description of the orbital splitting.

In the strong field approach, the energy levels are solely described by electron configurations, which

are then again split into terms by the inter-electronic repulsion which acts as a perturbation. The

configurations for the d2 case would include a t2g
2eg*0 ground state, i. e. two electrons would be in the

t2g set, a first excited state t2g
1eg*1 with one electron in each of the orbital sets and a second excited

state t2g
0eg*2. To arrive at the according terms, the direct product of the terms which describe the two

electrons has to be taken. For the ground state, the direct product is (Eq. 3.1.1):

T2g × T2g = T1g + T2g + Eg + A1g (3.1.1)

If the direct product for the first and second excited configurations is calculated, the derived terms are

the same as the ones, which have been derived with the weak field approach, but the energetic order is

different. The qualitative correlation between the two approaches can be visualized with correlation

diagrams[145] whereas a quantitative visualization has been proposed by Tanabe and Sugano[150–152].
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2 The Angular Overlap Model

In the preceding Chapter, the splitting of the d-orbitals hasbeen described by perturbations of the

inter-electronic repulsion and the field generated by the ligands surrounding the central metal ion.

Another approach for the description of the energetic levels of the d-orbitals is the angular overlap

model (AOM)[153], which is based on a simple MO approach and describes the metal to ligand bonds

in terms of covalentσ, π and δ interactions[145]. The AOM is a parametrized model, where the

parameters directly correlate with experimental findings.Since the parameters do not refer to a certain

complex geometry or coordination but to a single metal-ligand pair, the parameters are not transferable

among different structures[154–157]. However, calculations have shown[154,158], that parameters can be

used approximatively for a wider range of complexes with thesame structural motif.

In order to derive the parameters for a specific metal-ligandinteraction, the AOM makes use of basic

quantum mechanics. As seen in Pt. I Ch. 1, the energyEi of a molecular orbitalφi is obtained by the

Schrödinger equation, Eq. 3.2.1

Hφi = Eiφi (3.2.1)

If the multi-orbital problem is simplified to the case of one metal d-orbital and one ligand orbital, the

wave functionφi becomes (Eq. 3.2.2)

φi = ciMφM + ciLφL (3.2.2)

with the orbital coefficientsci for the atomic orbitalsφM andφL. The energies of the metal and ligand

orbital can be derived from the secular determinant, Eq. 3.2.3

∣

∣

∣

∣

∣

HM − E HML − SMLE

HML − SMLE HL − E

∣

∣

∣

∣

∣

= 0 (3.2.3)

whereHM andHL are the orbital energies of the metal and ligand, respectively, HML is the exchange

integral andSML is the overlap integral between metal and ligand orbitals. Since the d-orbitals are

higher in energy than the ligand orbitals,HM is large compared toHL. If the overlap integral is

assumed to be small, the energiesEa which destabilize the resulting anti-bonding MO relative to the
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level of the d-orbitals, andEb which stabilize the bonding MO relative to the ligand orbital level are

(Eq. 3.2.4):

Ea = HM +
(HML − HMSML)

HM − HL

Eb = HM − (HML − HLSML)

HM − HL

(3.2.4)

HM andHL are known as the valence state ionization energies of the metal and ligand orbitals and

the overlap integralSML can be calculated numerically[145]. With the Wolfsberg-Helmholtz approxi-

mation[159], the exchange integralHML can be expressed as (Eq. 3.2.5)

HML ≃ SML
(HM + HL)

2
(3.2.5)

With this approximation, Eq. 3.2.4 then becomes (Eq. 3.2.6)

Ea ≃ HM +
H2

LS2
ML

HM − HL

Eb ≃ HM − H2
MS2

ML

HM − HL

(3.2.6)

The energy raise of the anti-bonding MOEa, and thus the perturbation of the metal d-orbitals when

the metal is coordinated by the ligands, can be further approximated as seen in Eq. 3.2.7, since the

energyEa is mainly defined by the metal orbital energyHM :

e ≈ KS2
ML

K ≈ H2
L

HM − HL

(3.2.7)

The newly introduced parametere, which describes the energy raise of the anti-bonding MO, ispro-

portional to the square of the overlap integral and the factor K can be directly calculated from the

valence state ionization energies of the metal and ligand. Ligands normally bind either viaσ- or π-

bonding, so three e-parameters are needed for a complete description of the shift in orbital energy

of the anti-bonding MO.eσ describes theσ-interaction and because of its anti-bonding nature with

respect to the metal d-orbitals,eσ usually has a positive value. Theeπx andeπy parameters (x andy

denoting the cartesian axes orthonormal to thez (ligand metal) bond axis) can be positive or negative,

depending on a destabilizing (donor) or stabilizing (acceptor) effect of theπ-bonding to the metal

d-orbital, respectively. An additional parameter,eds, which accounts for the d-s-mixing between the

dz2 and the 4s orbital and effectively lowers the energy of thedz2 orbital, can also be assigned to a

metal-ligand pair. A good approximation is to assume a valueof about 1/4 ofeσ for eds
[160].
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As stated above, the overlap integralSML can be calculated numerically. Since the local coordinate

system around the ligand defines theeσ, eπx andeπy parameters, the global coordinate system, which

is centered on the metal, is used to express the position of the ligands in space in polar coordinates.

If d is the vector between the metal and the ligand,θ defines the angle between the global z-axis zM

andd while φ is the angle between the projection ofd onto the global xMyM plane (the vectord′) and

the global xM axis. The ligands zL-axis is always treated as being collinear tod, while a third angleψ

defines the final rotation of the ligands’ xL- and yL-axis along the zL-axis (see Figure 3.2.1, the insert

shows the view along the ligand metal axis).

Figure 3.2.1: Ligand coordinate system (xL ,yL ,zL) in the global metal coordinate system (xM ,yM ,zM) [145]

With these polar coordinates, the angular overlap factors which define the overlap integral between a

metal d-orbital and a ligand orbital can be derived as given in Table 3.2.1[153,161]:
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Table 3.2.1: Angular overlap factors forσ andπ interactions between metal d-orbitals and ligand orbitals pro-
posed by Schäffer and Jørgensen[153,161].

Fσ[d, L(θ, ψ, φ)] Fπx[d, L(θ, ψ, φ)] Fπy[d, L(θ, ψ, φ)]

dx2−y2 (
√

3/4) cos 2φ(1 − cos 2φ)
− sin 2φ sin θ sin ψ+

1

2
cos 2φ sin 2θ cos ψ

− sin 2φ sin θ cos ψ−
1

2
cos 2φ sin 2θ sin ψ

dz2 (1 + 3 cos 2θ)/4 (−
√

3/2) sin 2θ cos ψ (
√

3/2) sin 2θ sin ψ

dxy (
√

3/4) sin 2φ(1 − cos 2φ)
cos 2φ sin θ sin ψ+

1

2
sin 2φ sin 2θ cos ψ

cos 2φ sin θ cos ψ−
1

2
sin 2φ sin 2θ sin ψ

dxz (
√

3/2) cos φ sin 2θ
− sin φ cos θ sin ψ+

cos φ cos 2θ cos ψ

− sin φ cos θ cos ψ−
cos φ cos 2θ sin ψ

dyz (
√

3/2) sin φ sin 2θ
cos φ cos θ sin ψ+

sin φ cos 2θ cos ψ

cos φ cos θ cos ψ−
sin φ cos 2θ sin ψ

The perturbation from the ligands acting on the metal d-orbitals can be summed up over all individual

metal-ligand contributions. The matrix elements of the ligand field matrix are given in Eq. 3.2.8[162]

〈di |VLF | dj〉 =
∑

λω

N
∑

n=1

eλωF (di, Ln)F (dj, Ln) (3.2.8)

Here,di is the respective d-orbital,λω the interaction type (σ or π interaction) andF (di, Ln) the

overlap integral given in Table 3.2.1. Given the matrix elements, the symmetrical5 × 5 ligand field

matrix can be formed. The eigenvectors of the matrix correspond to the wave function which describes

the d-orbitals. Their respective orbital energies are given by the eigenvalues. Since the off-diagonal

elements of the ligand field matrix are generally not zero, the AOM wave function is a mixture of the

five d-functions[145]. Given the trigonometric basis of the AOM overlap integrals, the following sum

rule can be derived[153,162], Eq. 3.2.9

N
∑

n

5
∑

i=1

F (di, Ln)2 = N (3.2.9)

stating that the sum over all angular overlap factors is equal to the number of coordinating ligandsN .
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3 Implementation of a Ligand Field Term

in Momec

3.1 Ligand Field Molecular Mechanics

The eigenvalues of the5×5 ligand field matrix derived in Chapter 2 of Part III can be used to calculate

the total ligand field stabilization energy (LFSE)[9,156,163,164](Eq. 3.3.1):

ELFSE =
∑

a

naea (3.3.1)

Here,na is the occupation number of the respective d-orbital (0, 1 or2, which corresponds to the

number of electrons in the orbital) andea is the d-orbital energy, given by the eigenvalues of the

ligand field matrix.

As the LFSE implicitly depends on the coordination geometryand coordination number of a transition

metal in a molecule, it can be used to include electronic effects e. g. Jahn-Teller distortions[13] or the

spin-orbit coupling in a standard MM force field. This methodhas been proposed by Deeth and

coworkers[9,10,165,166]and has been termed ligand field molecular mechanics (LFMM).It has been

used with great success to calculate structures of various transition metal complexes[167,168], different

spin states of a transition metal[169] and dinuclear compounds[170].

The LFSE can be included in a classical force field as an additional term to the total strain energy,

Eq. 3.3.2:

Esteric =
∑

Estretch +
∑

Ebend +
∑

Etorsion +
∑

EvdW +
∑

Eelectrostatic +
∑

ELFSE (3.3.2)

Because the d-orbital energies calculated from the symmetrical5× 5 ligand field matrix are barycen-

tered to zero, the energy added by theELFSE term is intrinsically negative and thus always stabilizes

the calculated structure. Since the original implementation of the ligand field potential by Deeth et al.

(see below) is monotonically decreasing with increasing bond lengths, the interaction has to be bal-
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anced with an additional classical bond stretch term which then adds up to the correct bond distances

when compared to experimental results. Deeth et al. use a Morse fuction (see Pt. I Ch. 2) to describe

the classical part of the total metal ligand stretch. The L-M-L bend energy implicitly contained in the

LFSE is balanced with additional ligand-ligand repulsion terms, which are of the van der Waals type.

As the overlap integrals between metal d-orbitals and the ligand orbitals are calculated by trigono-

metric functions, the only parameters which have to be parametrized in the force field are the ligand

eλω-parameters (see Pt. III Ch. 2, Eqs. 3.2.5 to 3.2.7). In the first approaches to LFMM, Deeth et al.

parametrized a singleeλ parameter with a linear dependence of the metal-ligand bondlengthr and

used numerical first derivatives to calculate displacements during geometry optimizations[9]. In more

recent publications, a series expansion around the bond lengthr is used for the parametrization of the

AOM parameters[171], Eq. 3.3.3, which allows for a greater flexibility of the force field.

eλω = a0 + a1r + a2r
−2 + a3r

−3 + a4r
−4 + a5r

−5 + a6r
−6 (3.3.3)

an are parameters of the force field andeλω are the resulting AOM parameters. Terms forπ-interactions

and d-s-mixing as well as analytical first derivatives have also been implemented[172].

The first LFMM code was implemented in the program package DOMMINO [9], and has later become

a part of the Molecular Operating Environment (MOE) software package[173] under the name of Dom-

miMOE as a plug-in written in C and controlled by MOE’s internal Scientific Vector Language (SVL).

Other implementations of an additional LFSE term to the total energy have been done by Woodley

et al. in the GULP program[174] and Giessner-Prettre et al. in SIBFA[175]. A different approach to

the modeling of the transition metal coordination geometryhas been used by Comba and Ströhle[176],

who implemented an additional harmonic sine function, which acts as an electronic perturbation. The

sine function has minima at 90 and 180◦ and the electronic effect of the interaction between the d-

orbitals of the metal and the ligand orbitals is therefore modelled by this additional potential. The

drawback of this method comes with the introduction of the additional parameters in the force field.

The force constants of the since function are only valid for specific coordination geometries whereas

the ligand field parameters used in the LFMM approach by Deethcan model several geometries with

a single set of parameters.

3.2 Comparison between DommiMOE and Momec

The original code was donated to us by R. Deeth to whom we extendour gratitude at this point. In

order to implement the ligand field code in the software package Momec, of which a new version is

currently in development[12,177], it has been adopted and rewritten in C++ to make it compatibleto

the Momec source code. In contrast to the original implementation in MOE, the ligand field code is
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not added to Momec as an external plug-in, but has become an integral part of the program, which

has some significant advantages shown below. In order to maintain the functionality of the code, high

priority was set on the correct output and verification of calculated values during the implementa-

tion process. Several tests including sample ligand field calculations with different types of ligands

were implemented and the results of the calculated eigenvectors and eigenvalues as well as the first

derivatives were carefully checked against results generated with MOE.

Here, we encountered several problems regarding numericalstability. Due to the origin of the code,

which is based on a FORTRAN source, its first application was on32-bit machines where the data

type “double” represented the 32-bit floating point precision, which corresponds to seven significant

digits. Therefore, this data type was used throughout the code to assure the maximum accuracy

possible at that time. However today, modern computers havea 64-bit architecture and therefore the

type “double” has an increased accuracy of at least 15 significant digits. Since the calculation of the

AOM overlap integrals is very sensitive to precision, this induced some numerical instabilities and

lead to a slight change in the energetic order of the d-orbitals and eigenvectors calculated from the

5 × 5 ligand field matrix compared to the original implementation. In some cases we have observed

degenerate orbitals, which has not been the case in the original implementation of the code because

of the differences in precision. However, since the formulae have all been verified, the increased

precision is a wanted effect and the data type has even been expanded to “long double” (at least 31

bits precision). No efforts have therefore been made to exactly reproduce the original eigenvalues and

vectors and their respective order by arbitrarily loweringthe precision of the calculated values.

For comparison of the original implementation in MOE with the current implementation in Momec,

the work flow during a single point or geometry optimization for both implementations is shown in

Fig. 3.3.1.

In both programs the usage of a graphical user interface (GUI) to either draw or import a molecu-

lar structure is straightforward. Common to both implementations is also the atom type assignment

done during the import procedure. Here additions had to be made to the force fields present in MOE,

since support for transition metals is missing in the force fields originally build into the program (e. g.

the MMFF94 force field[178–184]). Additional typing rules for coordinating ligands such assaturated

amines are also needed, since standard type rules are not aware of ligand to metal coordination[171].

In Momec, which contains a force field tailored explicitly totransition metals and their coordination

chemistry, such atom types and type rules are implemented bydefault[177,185]. Setting up the calcula-

tion is again very similar in both implementations. Settingup the force field and executing the actual

calculation, however, is quite different in both programs.

61



Part III. Development of a Molecular Mechanics Force Field with a Ligand Field Term

(a) MOE/LFMM (b) Momec

Figure 3.3.1: Work flow during a MOE/LFMM calculation compared to a Momec calculation

In the MOE/LFMM scheme, the molecule is divided into two parts in a QM/MM-like approach. The

ligand field code only treats the metal center and the surrounding ligand atoms, whereas the standard

force field present in MOE computes the steric energy of the remaining atoms. The ligand field

part contains a metal-ligand bond length component, which has to be counterbalanced with a Morse

stretch, and a ligand-metal-ligand angle bend component, which has to be balanced with a van der

Waals interaction. The part treated by the standard force field contains all steric energy contributions

from the remaining atoms as well as angle bends and torsion angles connecting the coordination

region, namely the metal and the surrounding ligand atoms, and the ligand region, which is the rest

of the molecule. To calculate only the coordination region,the respective atoms are identified by

SVL routines and passed to the external ligand field code. Thecalculated energies and derivatives are

then again passed back to the main program via SVL code. At this point, one of the drawbacks of the

MOE/LFMM implementation becomes clear. Since the calculation in the main MOE program is done

on the entire molecule, the interactions treated exclusively by the ligand field code, that is the M-L

bond stretches and L-M-L bend angles, have to be zeroed. On the other hand, any solvation effects

which act on the coordination region have to be retained, since they are not treated by the ligand field

calculation. Since MOE automatically assigns missing parameters in the force field, simple deleting

the metal ligand interactions is not possible. Additionally, the SVL code does not allow to delete

62



Part III. Development of a Molecular Mechanics Force Field with a Ligand Field Term

specific interactions from the calculation[171]. Therefore, the additional contribution to the total strain

energy by the coordination region has to be calculated separately and subtracted from the final result.

This has to be done both for the energy and for the derivativesand involves an additional calculation.

Eqs. 3.3.4 to 3.3.6 summarize the process:

Etot(MM) = EM(MM) + EL(MM) + EML(MM) + Esolv (3.3.4)

Etot(LF ) = EM(LF ) (3.3.5)

Etot(LFMM) = EM(LF ) + EL(MM) + EML(MM) + Esolv

= Etot(MM) − EL(MM) + EM(LF )

(3.3.6)

Eq. 3.3.4 gives the total energyEtot(MM) calculated with the conventional force field in MOE, which

consist of the coordination regionEM(MM), the ligand regionEL(MM), the cross terms connecting

the two regionsEML(MM) and the solvation energy for the whole moleculeEsolv. The total ligand

field energy given in Eq. 3.3.5 is calculated by the ligand field code and consists of the LFSE, the

Morse contributions for the M-L bond stretches and the ligand-ligand van der Waals interactions, all

of which are parts of the total ligand field energy for the coordination regionEM(LF ). Eq. 3.3.6 then

gives the total energy consisting of the ligand field energy for the coordination part, the conventional

energy for the cross-terms and the remaining ligand and the solvation energy.

Compared to this tedious approach in the MOE/LFMM implementation, the implementation in Mo-

mec is straightforward. Since the ligand field code is an integral part of the whole Momec program,

the treatment of the ligand field between the metal center andthe surrounding ligands is just an addi-

tional interaction, which has to be accounted for during a calculation. Since Momec uses a harmonic

description for a bond stretch by default, switching to a Morse description is still required, but can be

done without additional effort. As Momec uses a points on a sphere model for the L-M-L interactions

by default, no additional interactions have to be modified totreat the bending terms involving the

metal center correctly.

To summarize, the ligand field implementation in Momec is just a matter of adding an additional

interaction to the total list of interactions accounted forduring a calculation, where with MOE/LFMM

it involves multiple calculations. Additionally, the implementation in C++ allows for transferability to

other molecular mechanics packages, since the code no longer depends on the MOE SVL architecture.
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3.3 Implementation in Momec

Since the source code of Momec and thus of the ligand field codeis open source, no detailed descrip-

tion will be given here and the reader is referred to the Momecwebsite[177]. However, an overview

of the routines involved in the ligand field calculation willbe given with a short description. As

mentioned before, the code was adopted to C++ but the overall functionality has not been changed to

retain maximum compatibility and consistency with respectto the resulting values. Apart from the

different programming language, the routines are very similar to the implementation of the plug-in to

MOE.

The actual ligand field calculation starts with the identification of the transition metal centers and their

coordination regions. If a metal is found, the charge and multiplicity given in the input file are used

to calculate the number of electrons and the spin state on themetal. With the help of a connection

table, the ligand atoms connected to the metal as well as the atoms connected to the ligand atoms

are identified. This is necessary in order to define the local ligand coordinate system with respect

to theπx andπy AOM parameters. Since the ligand field part only treats a partof the molecule,

the information about the relevant atoms is copied to a format which is different from the remaining

Momec program1. In order to be able to add the ligand field derivatives to the respective atoms later,

atom numbers between Momec and the ligand field code are mapped. In addition to the relevant

atoms, the ligand field parameters given in the force field arealso passed to the ligand field code. This

process is done for every transition metal center and every centers’ ligand field is calculated separately.

Deeth et al. have shown, that this is a valid approach and interactions between the individual centers

can be neglected in specific cases[170] in a first order approximation.

When the atoms relevant to the ligand field calculation and theparameters in the force field are

identified, the actualeλω values along with their first derivatives are generated according to Eq. 3.3.3.

This is followed by the calculation of the overlap integralsin the Schäffer-Jørgensen formalism (see

Pt. III Ch. 2 Table 3.2.1) and the calculation of the5 × 5 ligand field matrix elements. The matrix

is then diagonalized. After the matrix is solved, the LFSE iscalculated according to Eq. 3.3.1 and

the first and second derivatives are prepared. Here, the firstderivatives are calculated analytically[172]

whereas the second derivatives are computed numerically. The second derivatives are not used in the

DommiMOE implementation and therefore no reference valueswere available. However, in Momec

the numerical second derivatives are used in the geometry optimization2.

When the LFSE, the d-orbital energies and the first and second derivatives have been calculated, the

results are passed back into the main Momec calculation routine. The energy is treated as a part of the

total strain energy, the d-orbital energies are plotted to the output file and the derivatives are added to

the respective atoms in the Jacobian and Hessian during a geometry optimization.

1 This is due to the implementation process, since formats have been kept untouched where possible
2 Future plans include a complete overhaul of this part of the program as well as the implementation of analytical

second derivatives.
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3.4 Input File Structure

As mentioned, the ligand field code calculates the number of unpaired electrons present on a transition

metal center with the charge and the multiplicity of the atomgiven in the input file. Since the input

file format used in the 1997 version of Momec[185], the Hyperchem input file[186], only supports the

declaration of a charge of an atom, a new and more flexible file format was needed for the new Momec

release and the ligand field code. The decision was taken to use the SD file format[187] in the current

version 3. The most important features of this format will bepresented here.

The SD file consist of two blocks, where the first block is in fixed format and describes the atom

coordinates, while the second block is in free format and contains user-defined tags which can be

created without restrictions. An example for the fixed format block is shown in listing 3.3.1:

DUSJAC01

0 0 0 0 0 999 V3000

M V30 BEGIN CTAB

M V30 COUNTS 49 54 0 0 0

M V30 BEGIN ATOM

M V30 1 Cu 3.2295 3.0724−0.0405 0

M V30 2 N 1.7115 1.3752 0.2577 0

M V30 .

M V30 .

M V30 .

M V30 49 H 4.5678 6.4336−1.3823 0

M V30 END ATOM

M V30 BEGIN BOND

M V30 1 1 1 2

M V30 2 1 1 3

M V30 .

M V30 .

M V30 .

M V30 54 1 19 49

M V30 END BOND

M V30 END CTAB

M END

$$$$

Listing 3.3.1: Fixed format block of a version 3 SD file used in Momec

The fixed format block begins with a single line which usuallycontains the name of the molecule.
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The following line can contain some information about the user, the name of the program etc.[187],

but can also be replaced by a blank line. The third line contains comments whereas the fourth line

is fixed format as written in Listing 3.3.1. Line six includesthe number of atoms, followed by the

number of bonds and some additional information about the chirality [187]. "BEGIN ATOM" marks

the beginning of the atom coordinates whereas "BEGIN BOND" starts the section about the bond

information. Here, the number following the index specifiesthe bond order (1 = single, 2 = double, 3

= triple, 4 = aromatic) whereas numbers three and four give the bond partners. The fixed block ends

with four dollar signs. Note that each line of the connectiontable ("BEGIN CTAB") starts with an

"M" followed by two spaces, "V30" for the version and another space.

An example for the free format block adopted during the implementation of the ligand field code3 in

Momec is given in listing 3.3.2.

The free format block in the SD file consists of different sections, where each section starts with a tag

in the format “> <Description>”. Everything except the angle brackets which define the beginning

of a tag is free format. For Momec, we decided to implement tags which contain a version number

in the tag itself for easier future versioning. Since the SD files are either parsed by Perl scripts or by

C++ routines, including the version in the tags assures that older file formats can still be parsed cor-

rectly, even if the tag format changes. The tags used in Momeccan be divided into three categories:

reference tags, calculation tags and general tags. Reference tags contain information about reference

structures used in the parametrization of a force field4, e. g. stretches, bends and torsions of the ref-

erence geometry or spectroscopic data like UV/VIS transitions. Calculation tags contain information

generated during a calculation done in Momec, e. g. stretches, bends and torsions of the optimized

structure, calculated charges etc. General tags are connected to the molecule or to the file format and

include information about the atom types used by the force field, the units used in the SD file5 and the

charge and multiplicity used by the ligand field code. The free format supported by the SD tags also

allows an implementation of a hierarchy in the information given in the file. In the example above, the

calculated energies of the molecule consist of a bond deformation energy, a non-bonded interaction

energy etc. and this can be directly imported into a tree-like data structure in the program and depicts

this structure in the output files.

3 The design of the ligand field tags of the free format block as well as numerous sets of test molecules have been
prepared together with Tobias Lauterbach during his research internship.

4 see Pt. IV for a detailed description of the parametrizationprocess
5 Future plans include the implementation of a unit system in Momec to support the input of e. g. energies in multiple

units and the automatic conversion to another unit in the program.

66



Part III. Development of a Molecular Mechanics Force Field with a Ligand Field Term

> <MOMEC_ATOM_TYPES_V1>

1 CU2

.

.

.

49 H

> <MOMEC_REF_STRETCHES_V2>

1 R[U1]=2 .29646@1. 0 C=1 ,2

.

.

.

54 R[U1]=0 .90522@0. 0 C=19 ,49

> <MOMEC_REF_COMMENTS_V1>

Refcode : DUSJAC01

> <MOMEC_MULTIPLICITY_V1>

1 2

> <MOMEC_CHARGES_V1>

1 2

> <MOMEC_UNITS_V1>

U1 Angstrom

U4 kJ / mol

> <MOMEC_CALC_RESULTS_V1>

S t a t u s = no t converged

S teps =1

RMS=0.00000

E n e r g i e s [U4]=>Bond d e f o r m a t i o n energy =433.42326

>Non−bonded i n t e r a c t i o n energy =34.83976

>Valence a n g l e d e f o r m a t i o n energy =29.55635

> To rs i on a n g l e d e f o r m a t i o n energy =35.96001

> E l e c t r o s t a t i c i n t e r a c t i o n energy =0.00000

>Out o f p l a n e d e f o r m a t i o n energy =0.00000

>Hydrogen bond i n t e r a c t i o n energy =0.00000

>Twis t a n g l e energy =0.00000

>Ligand f i e l d i n t e r a c t i o n =0.00000

> T o t a l s t r a i n energy =533.77939

Listing 3.3.2: Free format block of a SD file version 3 used in Momec
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3.5 Changes to the Functional Form of the Ligand Field

Term

The functional form of the ligand field term has been investigated and modified in order to enable

automatic parametrization. In the original implementation by Deeth et al., the AOM parameterseλω

are derived from a series expansion around the metal-ligandbond lengthr, Eq. 3.3.7:

eλω = a0 + a1r + a2r
−2 + a3r

−3 + a4r
−4 + a5r

−5 + a6r
−6 (3.3.7)

The energy of a metal-ligand bond which results from the calculation of the LFSE with the AOM

parameters based on this equation can be plotted vs. the bondlength. Figure 3.3.2 shows the energy

plot for different values ofa5 which corresponds to anr−5 dependence of the overlap integral on the

metal-ligand bond length. This can be assumed for a simple octahedral case[188,189].

Figure 3.3.2: Metal-ligand bond energy in dependence ofr for the original implementation (r−5 dependence
only) of the ligand field potential

As already mentioned in Pt. III Ch. 3, the negative contribution to the total strain energy of the

LFSE has to be balanced with the positive contribution of an additional Morse stretch term in order

to generate reasonable bond lengths. As can be seen in Fig. 3.3.2, depending on the choice ofa,

the ligand field potential is very steep in the region of interest between 1.5 and 3.5 Ångstroms, and

the complexity of the form of the function is increased further when additional terms (e. g.r−4 or

r−6 dependence) or interactions (π-bonding and d-s-mixing) are included. Balancing both ligand

field and Morse terms during an automatic parametrization iscomplicated, since multiple parameters

68



Part III. Development of a Molecular Mechanics Force Field with a Ligand Field Term

have a drastic effect on only one interaction, namely the total metal-ligand bond stretch energy and

its derivatives with respect tor. The problems that arise from two unbalanced potentials areshown

graphically in Fig. 3.3.3:

Figure 3.3.3: Summation of the bond energies calculated for the “classical” Morse potential(D = 300,a = 1,
r0 = 2.0) and the original description of the ligand field potential (parameters are given in the
plot)

The summation of the ligand field part and the Morse potentialshould result in a shifted Morse

potential, which still has a defined local minimum. Depending on the overlap integral calculated

in the ligand field part of the code, the minimum will be shifted to longer or shorter bond lengths,

which reflects a destabilization or stabilization, respectively. However, such a minimum on the PES

is only achieved in a number of cases, where the two potentials are balanced (black and blue lines).

Unbalanced potentials will either result in no significant ligand field effects (EMorse » ELF ), not

shown in Fig. 3.3.3, or a strong stabilization of the bond (EMorse « ELF ). In addition, the limiting

behavior of the total potential in the case of very short bonds is non-physical. Even if this issue is

not encountered in the parametrizations, since bond lengths involving transition metals are normally

not found to be within this range, a Monte Carlo parameter optimization trial step can in principle

generate parameters which reflect this situation.

To avoid the difficulties in the summation presented here during the automatic parametrization, the

functional form of the ligand field parameters has been changed. As the original ligand field potential

does not have a defined minimum, which in turn is a difficult problem for the parametrization algo-

rithm, the potential has been replaced by potentials which do have such a defined minimum. While

the actual results will be presented in Pt. IV Ch. 3, the theorywill be discussed in the following.
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As stated above, the ligand field effect can be seen as a perturbation to a classical Morse bond stretch,

which shifts the minimum to either longer or shorter bond lengths. As the superposition of two Morse

functions gives again a Morse function, our first approach was to mimic the ligand field potential by

an additional Morse function of the following form, Eq. 3.3.8:

eλω = −D(1 − e−a(r−r0))2 + D (3.3.8)

whereD is the depth of the potential,a the curvature andr0 the equilibrium bond length. The negative

sign of the firstD and the addition of the secondD result in a maximum ofeλω at r0. Figure 3.3.4

shows the energy plot with respect tor of the Morse ligand field function.

Figure 3.3.4: Metal-ligand bond energy in dependence ofr for the Morse implementation of the ligand field
potential

As can be seen from Fig. 3.3.5, when a second Morse interaction which describes the “classical” part

of the bond stretch is added, the minimum of the potential is retained. Compared to the equilibrium

value of 2.0 Ångstroms for the “classical” Morse potential,the equilibrium bond length is shifted to

higher values by the addition of the ligand field potential.
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Figure 3.3.5: Summation of the bond energies calculated for the “classical” Morse potential(D = 300,a = 1,
r0 = 2.0) and the Morse description of the ligand field potential (parameters given in the plot)

While this Morse function does have a local minimum and simplifies the overall complexity of the

problem (parameter reduction from potentially 7 parameters in the original potential to 3 parameters

in the Morse potential), ther−5 dependence of the LFSE with respect to the bond length known from

experiments and theory is no longer present in this approach. Also, the limiting behavior is only

correct in the case of very long bonds, whereas very short bonds are still stabilized by the ligand field

and, depending on the parameters chosen by the parametrization algorithm, will dominate the Morse

potential for the “classical” part of the metal-ligand bondstretch.

For a more realistic description of the ligand field interaction, a potential featuring an inverse quadratic

and sixth degree function has been used, Eq. 3.3.9 and Fig. 3.3.6, which resembles an asymmetric

Gauss distribution:

eλω =
D

a2((r − b)2 + (r − c)6) + 1
(3.3.9)

whereD, a, b andc are parameters of the force field andr is the bond length.
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Figure 3.3.6: Metal-ligand bond energy in dependence ofr for the “Gauss-type” implementation of the ligand
field potential

When this potential form for the ligand field effect is used, the energy for both very short and very

longs bonds is zero, and the additional Morse stretch will dominate the total effect on the stretch.

Also, the choice of a quadratic and sixth degree polynomial with different equilibrium bond lengthsb

andc ensures an asymmetry in the potential form and adds more flexibility to describe the PES around

the equilibrium bond length. As in the Morse description of the ligand field, this potential also has a

local minimum, which improves convergence during the automatic parametrization process.

The summation of the “Gauss-type” potential for the ligand field and a Morse potential for the “clas-

sical” bond stretch results in a shifted Morse potential forthe full description of a bond stretch, which

includes the ligand field perturbation (as shown in Fig. 3.3.7).
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Figure 3.3.7: Summation of the bond energies calculated for the “classical” Morse potential(D = 300,a = 1,
r0 = 2.0) and the “Gauss-type” description of the ligand field potential (parameters given in the
plot)

The problem of balancing the “classical” contribution to the stretch interaction with the ligand field

contribution results in a shifted Morse description for thecombined potential. Our third attempt to

solve this problem was to include the classical contribution in the ligand field contribution and there-

fore describe the whole interaction with just one potential. Since the contribution of every bond to the

ligand field matrix is unique, because the overlap integral between the metal and each ligand is dif-

ferent, the combined effect of classical and ligand field energy can be represented with one potential

which describes the AOM parameterseλω and such, the LFSE. We have implemented this approach

both with the Morse and the “Gauss-type” description given above (Eqs. 3.3.8 and 3.3.9). The draw-

back of this approach is, that properties correlated to one of the potentials (either “classical” or ligand

field) can no longer be directly derived from the combined potential, e. g. the UV/VIS transitions ob-

tainable from the ligand field code are no longer connected tothe ligand field parameters used in the

parametrization. However, since the primary goal of this work was to generate meaningful molecular

structures with a ligand field molecular mechanics approach, this drawback has been tolerated at this

point.
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1 Introduction to Parametrization

Methods

As discussed previously in Pt. I Ch. 2, a molecular force field consists of a set of functions, prede-

fined atom types and parameters. The accuracy of a force field is therefore directly correlated to the

quality of the parameters and thus, the parametrization of aforce field is of crucial importance. The

parametrization process includes: a) selection of reference data, on which the force field parameters

are based, b) the definition of a parametrization method, which derives the force field parameters from

the reference data and c) the optimization and validation ofthe force field. The data considered for the

parametrization process should be adopted to the problem athand, e. g. a general force field should

include a wide selection of reference structures which cover a large chemical variety of a certain in-

teraction. On the other hand, a force field tailored to a specific problem may be parametrized with a

small but representative number of reference structures. The selection of the parametrization method

mostly influences the performance of the parametrization process and should, in principle, not affect

the resulting force field. However, certain algorithms are better suited for specific parametrization

problems than others. The optimization and validation of a force field includes leave-one-out tests,

where parts of the training set are left out for the parametrization and the resulting force field is then

used to calculate the geometry or a molecular property from the left out data. If the force field is

stable, the removal of one structure from the training set should still produce a valid force field. With

this procedure structures, which are critical for the parametrization, can be identified and additional

data exhibiting a comparable geometry can be added to the training set in order to make the force field

more robust.

1.1 Selection of Reference Data

Reference data can include a variety of molecular properties, namely structural information, relative

energies of conformers, spectroscopic data or informationabout atomic charges. Structural data is

included in most force field parametrizations[190], since molecular properties almost always depend

on the molecular structure. Sources for structural information are geometries measured by X-ray

crystallography or calculated by QC methods or a mixture of both[191,192]. Since crystals will often

contain some sort of crystal lattice effects, flexible interactions like torsions will easily be distorted
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with respect to their equilibrium value, whereas stretchesand bends are more robust with regard

to these distortions, as these interactions contain more energy. Therefore, individual interactions

should be compared against the reference set opposed to an all-atom overlay[190]. If interactions are

compared in a pairwise fashion, individual weighting and extraction of relevant data from the entire

structure is possible , e. g. the interactions involving hydrogen atoms can be omitted, since they are

often not resolved accurately in X-ray structures. An approximation commonly made during force

field parametrizations is to neglect condensed phase effects, which are assumed to average out, if the

data set taken for the parametrization is large enough[193].

Apart from structural information, energies, spectroscopic data and charges can also be used to

parametrize a molecular force field. Relative energies of conformers or rotational energy profiles

can be derived from QC calculations, which has been used e. g.in the OPLS all-atom force field[194].

Reference data concerning atomic charges are also derived from QC calculations and rarely from

experiments, since atomic charges are no observables and thus can only be indirectly obtained from

experimental results[190]. An example for a charge parametrization is the implementation of a fluctu-

ating charge model, which allows to study polarization effects in proteins in a liquid solution, in the

CHARMM [195] force field. The reference charges are based on DFT calculations of small molecules

in the vicinity of a small dipolar probe, which mimics a watermolecule[196]. Rappé[197] proposed a

charge equilibration method (QEq) which can predict the charge distribution in a molecule and can be

used e. g. in molecular dynamics simulations. The model is based on experimental atomic ionization

potentials, electron affinities and atomic radii. Spectroscopic data such as IR or Raman vibrations

can be included in a parametrization to estimate force constants. Since assignment of experimental

results to specific interactions becomes non-trivial with larger structures, vibrational frequencies are

often generated by QC methods and the data is directly derived from first and second derivatives of

the energy with respect to atomic coordinates[178,190,198]. A detailed description of this approach will

be given below.

The definition of the reference data is an important step in the force field development, as the refer-

ence data will determine the final accuracy and performance of the force field. In principle, any data

from experiments or QC calculations can be used, but should be carefully validated, as errors in the

reference data set will directly influence the obtained force field parameters.

1.2 Parametrization Algorithms

After the definition of a reference data set, on which the force field is based, the actual parametrization

algorithm has to be selected. The general parametrization concept involves a set of starting parame-

ters, which are used to generate the molecular structure or property. The calculated values are then

compared to the data contained in the reference set and an error function, such as the weighted root

mean square deviation (RMSD) (Eq. 4.1.1), is used to calculate the quality of the parameter set with

respect to the reference data.
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RMSD =

√

√

√

√

1

N

N
∑

n=1

wn(vn(calc) − vn(ref))2 (4.1.1)

Here,wn is the weighting factor for interactionn, andvn(ref) andvn(calc) are the reference and calcu-

lated values of the interaction, respectively. The force field parameters are then varied in an iterative

scheme, until the optimum set of parameters is found and the error between reference and calculated

data is minimized. The parametrization procedure therefore is a minimization problem and can also

be seen as a constrained minimization, if some of the force field parameters are restricted to min-

imum and/or maximum values. For problems which involve a very limited number of interactions,

this parametrization procedure can be done by hand. However, when the number of interactions, atom

types and reference structures involved in the problem becomes larger, automatic algorithms based

on the simple general scheme outlined above may be preferable.

The general approach to automatic parameter estimation canbe divided into techniques with or with-

out the usage of first and second derivatives of the error function with respect to the individual param-

eters[190]. Methods, which do not use gradient information, include systematic searches, Monte Carlo

approaches, the downhill simplex method[199,200] and genetic algorithms[201–204].

The systematic search over all individual parameters is only applicable to problems which involve a

limited number of parametrization variables. Also, if the parameter surface is very diverse, the step

size between individual points (i. e. points on the parameter surface) has to be small, which makes

systematic searches computationally expensive. However,the method is intrinsically parallelizable

and thus can benefit from modern computer architectures and supercomputers.

Monte Carlo methods involve random variations of parametersand can be used to scan large param-

eter surfaces. Hæffner et al.[205] have applied a Monte Carlo parametrization scheme to derive CuI

parameters for the AMBER[206] force field. Monte Carlo methods can also be used to gain insights on

the parameter surface and restrict a second parametrization scheme to a certain area of interest.

The downhill simplex method[199,200]constructs a N+1 polyhedron of points on the surface of the error

function, where N is the number of parameters varied during the parametrization. The minimum of the

error function is found by systematically eliminating the highest point of the simplex, until all points

are within a predefined convergence range. The simplex method is very robust and converges fast for

a limited number of variables, but shows slow convergence when the dimension of N is increased.

Norrby et al. showed, that the overall convergence can be improved by including the error function in

the simplex algorithm[193].

Genetic algorithms[201–204]represent another approach, which does not take any information about the

first and second derivatives of the error function into account. Huttner et al.[207,208]used this technique

on a set of tripodal metal complexes and defined a binary string based on the parameters and their

respective variation range and resolution. The result of the error function was used in conjunction
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with the binary strings to generate a starting population. Parts of the binary string were then varied

by “single bit”- or “crossing over”-mutation to spawn a generation of offspring. During this process,

binary strings with a low error function value had an increased effect on the next generation and were

preferred during mutations. The process was repeated, until convergence was achieved. Tafipolsky

and Schmid also used genetic algorithms to parametrize Metal-Organic Frameworks (MOFs) from

a set of QC reference calculations[209] and Strassner et al.[210,211] presented an automated tool for

the generation of MM3 force fields, which uses genetic algorithms for the parametrization process.

Cukrowski and Marques[212] used artificial neural networks to derive a set of force field parameters

for modelling metalloporphyrins of MnII , MnIII , MnIV , MnV, ConI, CoII , CoIII , NiII and CuII . Artificial

neural networks consists of interconnected neurons and based on the information, that comes in and

out of the network, the structure and information flow is changed and optimized in the course of the

parametrization.

Algorithms which involve gradient information make use of the first (and possibly second) derivatives

of the error function with respect to the parameters. With the vector information of the gradient, the

optimal direction for the next set of parameters can be identified and so even parametrizations which

involve many parameters can be converged. As the curvature around a minimum of the parameter sur-

face tends to zero, gradient based methods generally converge slowly when close to the minimum[190].

Examples for gradient based methods are the Broyden-Fletcher-Goldfarb-Shanno (BFGS)[213–216]and

the Fletcher-Reeves-Polak-Ribiere (FRPR)[217,218] algorithm. The BFGS method belongs to the fam-

ily of Quasi-Newton methods and makes use of first derivatives and an approximation to the Hessian

matrix of second derivatives. The FRPR algorithm only uses gradient information and is a represen-

tative of the Conjugate Gradient methods.

The information present in the Jacobian and Hessian matrices of QC calculations can also be used to

parametrize force fields. The Jacobian (Eq. 4.1.2) is the gradient of the energy with respect to the

atomic coordinates whereas the Hessian (Eq. 4.1.3) is a matrix of all second derivatives of the energy.
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The potential energy surface described by the Hessian matrix is used as the reference data set and

a functional form, namely the force field, is used to reproduce this surface. Maple et al.[219] used

this approach and probed the surface of the formiate ion by slightly distorting the molecule from its
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equilibrium configuration. The changes in first and second derivatives were weighted and summed in

an error function, which then was minimized with respect to the force field parameters, Eq. 4.1.4:

S = wk

∑

α,i

(gα,i − g0
α,i)

2 + wH

∑

α,ij

(Hα,ij − H0
α,ij)

2 (4.1.4)

Here,wk andwH are the weighting factors andgα,i andHα,ij the first and second derivatives, respec-

tively, where the superscript0 denotes the reference values obtained from QC calculations. Similar

approaches have been used by Palmö et al.[220], Leonard and Ashman[221], Hagler and coworkers[198],

Seminario[222], Dasgupta[223–225] and Norrby et al.[193]. We have implemented a strategy which in-

volves a maximum force field, where the resulting Jacobian and Hessian matrices are used as the

reference data set for a parametrization. This approach will be discussed in detail in Pt. V Ch. 2.

As the simplex and BFGS methods were used extensively in this study, the methods will be explained

in more detail at this point. In the simplex method, among theN+1 points spanning the polyhedron

on the surface of the error function, the one with the highesterror is identified and reflected through

the barycenter of all points (excluding the one with the highest error). If the reflected point does not

yield a lower error function value, the simplex is contracted, expanded or the parameter function of

the lowest point is mixed with all the other points to generate a new simplex matrix. Fig. 4.1.1 depicts

the possible simplex steps. The N+1 dimensional simplex “crawls” along the parameter surface, until

the difference between the matrix elements of the simplex isbelow a certain threshold.

Figure 4.1.1: Possible simplex operations on the N+1 polyhedron on the parameter surface: (a) original sim-
plex (b) reflection of Phigh (c) reflection and expansion of Phigh (d) contraction of Phigh (e) con-
traction of all points except Plow. (Phigh denotes the point with the highest value of the error
function, Plow the lowest point and Pnew the new point of the simplex. The star represents the
barycenter of the simplex)
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In the BFGS algorithm, the search direction is evaluated by Eq. 4.1.5:

Bkpk = −∇f(xk) (4.1.5)

whereBk is the Hessian matrix approximated from gradient information, pk is the search direction

andf(xk) is the value of the error function at pointx. After the search direction has been found, a

line search is done along the vectorpk to identify the step sizeαk and set a new point for the next

BFGS iteration (Eq. 4.1.6), which starts with the calculation of the new gradient and updates the

approximated Hessian matrix.

xk+1 = xk + αkpk (4.1.6)

A graphical representation of the BFGS algorithm is shown schematically in Fig. 4.1.2. Here the

perpendicular orientation of the gradient of one step to thenext can be seen.

Figure 4.1.2: Schematic representation of the BFGS algorithm
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2 Implementation

Automatic parametrization of the ligand field term in Momec has been implemented with a combina-

tion of Perl scripts for the initialization of the parametrization and the actual parametrization code in

the C++ programming language. The use of Perl scripts allowedfor increased flexibility during the

development of the input format (see Pt. III Ch. 3) and due to its simple syntax, changes to the code

could be implemented quickly.

2.1 Implementation of a Parametrization Setup Routine

with Perl

As discussed, a force field parametrization involves several steps: a set of reference data has to be

selected, the parameters and their functional form have to be identified, a suitable parametrization

algorithm has to be chosen and the resulting force field has tobe validated against data which is not

part of the training set (cross-validation). The Perl scripts used during the parametrization of the

ligand field term in Momec primarily deal with the first two objectives, namely the reference data and

the parameters for the parametrization.

As the ligand field term adds an additional energy for transition metal ions, X-ray geometries of

transition metal compounds with different degrees of distortion from the regular octahedral geometry

were used for the reference data set. Detailed information about the different training sets used during

the parametrization will be given in Ch. 3 of this Part. As discussed in Pt. III Ch. 3, the reference

information is incorporated in the SD file format, which alsoallows for different weighting factors

for every interaction. Listing 4.2.1 recalls the format explained previously and shows an excerpt of

the stretches section of a reference SD file.
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> <MOMEC_REF_STRETCHES_V2>

1 R[U1]=2 .29646@1. 0 C=1 ,2

2 R[U1]=2 .04872@1. 0 C=1 ,3

3 R[U1]=2 .08575@1. 0 C=1 ,4

4 R[U1]=2 .06225@1. 0 C=1 ,5

5 R[U1]=2 .04997@1. 0 C=1 ,6

6 R[U1]=2 .34478@1. 0 C=1 ,7

7 R[U1]=1 .46898@0. 0 C=2 ,8

8 R[U1]=1 .47210@0. 0 C=2 ,10

9 R[U1]=0 .74690@0. 0 C=2 ,20

Listing 4.2.1: Excerpt of the stretches reference information in a SD file

Tags which specify reference information begin with the “MOMEC_REF” keyword. In the listing

above, one line represents a single stretch interaction with its respective unit (U1 = Ångstroms in the

example) given in brackets. The actual value (= bond length)is followed by the “@” symbol and the

weight for this interaction1. The weight is followed by the connectivity of the interaction, which is

printed mainly due to technical reasons to ease interactionwith the Perl scripts, but also as a reference

for the user. In the example above, the atom with number 1 is the transition metal whereas atoms 2–7

are the coordinating ligand atoms, bonded to atom 1.

Preparation of the reference data set has been mainly done byhand, since extracting the data from the

CSD database[226], checking for errors in the structure, removing the counterions, generating the SD

files needed for the parametrization and setting the weightsrequires chemical intuition and can only

be automated in parts of the process. Future plans include touse the experimental errors given in the

files from the CSD database and to derive an automatic weighting scheme for stretches, bends and

torsions from these values.

The actual setup of the parametrization with Perl scripts has been implemented in a two step process.

In the first step, the user calls a setup script, which initializes the directory structure, scans the ref-

erence files and creates a control file. The user is then able toedit the control file and thus specifies

which parameters to optimize. The actual parametrization is started with a second script and does not

need any user interaction.

2.1.1 The Parametrization Setup

The setup script accepts a single command line parameter, which is the location of a setup command

file. The command file structure is given in Listing 4.2.2:

1 In the ligand field parametrization, weights were set to one,when one of the bonding partners of a stretch or the
central atom of a bend is a metal. This is due to the fact that the ligand field code only affects the positions of the
metal and its coordinating ligand atoms.
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s d f i l e s =/ pa th / t o / r e f e r e n c e / sd / f i l e s

workd i r = / pa th / t o / work ing / d i r e c t o r y

f o r c e f i e l d = / pa th / t o / i n i t i a l / f o r c e / f i e l d / f i l e s

m u l t i =10

rms =0.0001

popt = s imp lex

we igh t = c o n s t

mc_steps =500

u n s c a l e d _ h i s t o r y =0

c a l c = op t

chunks =1

j a c _ h e s s =0

l f =1

debug=0

Listing 4.2.2: Command file structure for the parametrization setup script

The individual options are:

• sdfilespoints to the path where the reference SD files used during theparametrization will be

copied from.

• workdir sets the working directory for the parametrization, where all files generated during the

process are stored.

• forcefieldpoints to a folder containing a Momec force field which is thenused as a starting

point for the parametrization.

• multi specifies the maximum number of parallel Momec instances during a single parametriza-

tion step (integer value).

• rmsspecifies the convergence criterion for a Momec geometry optimization in Ångstroms. The

RMS shift in Momec is the root mean square of all elements of theJacobian matrix (floating-

point value).

• popt specifies, which parametrization algorithm to use during the parametrization (possible

values: “simplex”, “bfgs” or “frpr”, see Ch. 1 of this Part).

• weightspecifies the weighting scheme (possible values: “const” for a scaling of weights with

wstretches > wbends > wtorsions > wUV/V IS−transitions or “uni” for no scaling).

• mc_stepsactivates an initial Monte Carlo search with the given numberof steps prior to the

actual parametrization specified bypopt. The parameter set yielding the lowest error is then

used as a starting point for the actual parametrization (integer value).
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• unscaled_historywhen set the parameters printed in the history file are not scaled. The progress

of a parametrization including all parameter sets and the respective error values is printed in a

history file in table form. Since parameters used during the parametrization are scaled to a value

between 0 and 1 (which will be explained in detail below), thevalues in the history file can be

printed unscaled for improved readability (boolean value).

• calc sets the calculation mode for Momec during a parametrization (possible values: “opt” for

geometry optimization or “sp” for single point).

• chunkssets the number of chunks used during a parametrization (theconcept of chunks will be

explained later) (integer value).

• jac_hessswitches to the Jacobian/Hessian parametrization method (see Pt. V Ch. 2) (boolean

value).

• lf turns on the ligand field calculation for a parametrization (boolean value).

• debugturns on debug messages (boolean value).

Running the setup script creates a new directory, where all necessary executables of the Momec

program, needed library files, Perl scripts, the reference SD files and the force field files are copied

to. After loading the initial force field, the SD files are parsed one at a time and all interactions

with a weight greater than zero are collected in a list. Setting a weight greater than zero enables

the interaction and the corresponding parameters in the force field. A list of all possible force field

parameters is written to the control file (see 4.2.3). In addition to the weighted interactions the setup

script also scans for missing parameters in the force field. Asingle point calculation is performed on

every reference structure and if stretch or bend parametersnecessary for a complete description of

the molecule are missing in the force field, the parameters are collected in a second list, which is then

written to the control file. Missing force constants are set to a default value of 1.0 mdyn/Ångstrom

for stretch interactions and 0.1 mdyn/rad for bend interactions and missing equilibrium values are set

to the average of all the values present in the reference dataset.
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An example for the control file produced by the setup script isgiven in Listing 4.2.3:

> <MOMEC_PARAMETRIZATION_VARIABLES>

chunk1 STR CT CT k =5.000 r0 =1.500

chunk2 STR CT NT k =6.000 r0 =1.490

chunk3 BEN CT CT H k =0.360 a0 =1.909

chunk4 NBD CT r_vdW =1.900 e p s i =0.044 _ c o n s t

> </MOMEC_PARAMETRIZATION_VARIABLES>

> <MOMEC_FORCEFIELD_AUTO_CONSTANTS>

STR H ND k =1.000 r0 =0.8011250

BEN OW CT OW k =0.100 a0 =2.2613500

> </MOMEC_FORCEFIELD_AUTO_CONSTANTS>

> <MOMEC_PARAMETRIZATION_COMMANDS>

debug=0

m u l t i =1

mc_steps =1

chunks =4

we igh t = c o n s t

pop t = s imp lex

u n s c a l e d _ h i s t o r y =1

c a l c = op t

l f =0

> </MOMEC_PARAMETRIZATION_COMMANDS>

Listing 4.2.3: Control file generated after the execution of the setup script

The control file consists of three sections, which are markedby tags as in the SD file format, allowing

for an easy incorporation of the parametrization control structure in a combined SD file in the future.

The first section contains all parameters which should be optimized during the parametrization. A

line consists of the chunk, in which the parameter should be parametrized, the interaction type2,

the corresponding atom types and the force field parameters followed by the starting values. If a

value is followed by “_const”, the parameter is fixed and thusexcluded from the parametrization. A

chunked parametrization proceeds as follows: As force fieldparameters are independent of each other

to first order, each parameter can be parametrized independently of all other parameters3. Dividing the

parameter set into smaller chunks reduces the time needed toconverge to a force field and increases

the overall performance of a parametrization. Also, only the reference data for the parameters in

the chunk are included which may reduce the number of structures to calculate in each step, e. g. in

the example above only structures which have a CT-CT bond will be used to parametrize the CT-CT

2 STR for stretch, MSTR for Morse stretch, BEN for bend, TOR fortorsion, NBD for non-bonded, CHG for charge,
LF for ligand field

3 This is true e. g. for stretch parameters, which affect different regions of a molecule. Coupled parameters, e. g.
non-bonded interactions, have to be parametrized at the same time.
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stretch interaction in chunk 1. Even if the resulting force field of a chunked parametrization may not

be as good as the result of a full parametrization from a quantitative point of view, iterating multiple

times will improve the overall result and may still be fasterthan a complete parametrization over all

parameters (see Chapter 3 of this Part for detailed results).

The second section of the control file gives the list of missing parameters in the force field and the

respective parameter values, which will be added automatically, but which will not be included in

the parametrization process. Completing a force field in thatway helps to generate meaningful struc-

tures and avoids convergence problems. Parameters added inthis way have to be parametrized with

additional reference data afterwards to generate optimal values.

The third section repeats the settings given in the command file and is given mainly for reference.

Since the control file does not change during the parametrization process, it can be archived together

with the actual parametrization results and all information regarding the setup of the parametrization

is therefore kept in one place for review purposes.
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2.2 The Implementation of the Parametrization Algorithm

in C++

When the parametrization is set up, a second Perl script, the run script, starts the actual process. Af-

ter the additional force field parameters (“MOMEC_FORCEFIELD_AUTO_CONSTANTS” of the

control file) are written to the force field files used during the parametrization, the actual parametriza-

tion algorithm implemented in C++ is called. The code is basedon an earlier implementation by

Martin[227]. The general parametrization procedure is given in Figure 4.2.1:

Figure 4.2.1: General parametrization work flow

When the “mc_steps” option is given in the command file, an initial Monte Carlo parametrization

will be done before calling the actual algorithm. The Monte Carlo routine returns the parameter set

with the minimum error value compared to the reference data found during the random search. This
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set is then used as a starting point for the subsequent parametrization. As the parameters are scaled,

each Monte Carlo step generates a random number between 0 and 1for each parameter. The scaling

of the parameters is done in order to ensure consistent step sizes for all parameters for the different

parametrization algorithms. The maximum value for each parameter is chosen according to its nature,

e. g. the maximum value for an equilibrium bond length is set to 4 Ångstroms, which equals to a scaled

value of 1 in the parametrization.

After the Monte Carlo steps, the parametrization algorithm is started (for references see Ch. 1 of

this Part). For each data point, the force field is adjusted toreflect the parameters of the current step

and Momec is called to generate the new structures or properties from the reference data, either via

a geometry optimization or single point. The resulting values are passed back to the parametrization

algorithm, the error function is evaluated for each interaction and the total error calculated according

to Eq. 4.1.1 is used to generate the next step of the parametrization. For a single point, this pro-

cedure is straightforward and repeated until convergence with respect to the parameters is achieved.

For a geometry optimization however, problems concerning the convergence of the individual geom-

etry optimizations may arise. Since the parametrization algorithm varies the parameters only with

respect to the minimization of the error function, non-physical parameters may occur and this may

lead to non-converging structures during the Momec geometry optimizations. In order to make the

parametrization “aware” of this problem, several approaches have been tested.

A first approach was to add a penalty function, which adds an additional value for each uncon-

verged structure to the error function after calculating the difference between reference and calcu-

lated structure. The aim was to make data points involving unconverged structures unfavorable for

the parametrization algorithm. However, adding a large penalty value to the total RMS error “dis-

oriented” the algorithm and often resulted in non-converging parametrizations. On the other hand,

adding small penalty values had almost no effect on the parametrization process.

A more successful approach was to add penalties to individual interactions. Lower and upper bound-

ary values for an interaction were defined and if e. g. a stretch was found to be outside of these

boundaries after a geometry optimization, a penalty value was added to the total RMS value. The

penalty function used is given in Eq. 4.2.1 for the lower boundary case:

pabs = |pcalc − pmin|
pnorm = pabs − 5.0

ppenalty =
xscale

1 + exp(−1.0 ∗ pnorm)

(4.2.1)

The absolute valuespabs were normalized to the lower end of the exponential functionat a value of

−5.0 and the penalty function was scaled according to the parameter type byxscale (100 in the case of

a bond stretch). To include the force constant in this approach, an additional boundary condition for

the strain energy in one interaction was defined, compared tothe energy calculated from the parameter
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set, and a penalty was added to the total RMSD value using the equation 4.2.1. While this approach

helped to keep the individual interactions in a reasonable parameter range, the convergence problems

were only resolved to some extent.

Another approach to the problem was attempted by using the “best” geometry of a non-converged

optimization. Since the geometry optimization in molecular mechanics minimizes the strain energy

of a given molecule, the “best” geometry in a non-converged optimization should be the one with the

lowest energy. This approach was tested and whenever a geometry optimization failed, the structure

with the lowest energy was returned to the parametrization routines in favor of the geometry of the

last step, after which the optimization was aborted. However, since the geometry optimizations were

always started from the crystal structure of the molecule, which also represents the reference structure

for the parametrization, the lowest energy structure was inmany cases the structure after the first

optimization step. While the structure is changed after one step, it is still very close to the crystal

structure and therefore, the value of the error function is low. The overall parametrization therefore

favors non-converged structures, and this approach did notsolve the convergence problems.

The convergence problems were finally solved by modifying the actual algorithm of the parametriza-

tion, which is described in detail using the example of the simplex algorithm.

Figure 4.2.2: Possible simplex operations for the modified version of the simplex algorithm, whichavoids
convergence failures in Momec. The new pointpnew (depicted in red, no geometry convergence)
is shifted back along the vector towardsphigh until a converging pointpnew (green) is found.

The starting simplex polyhedron shown in Fig. 4.2.2 consists of a pointphigh with the highest error

value, a pointplow with the lowest error value andN − 1 points in between. All of these points

represent parameter sets and all of these sets are assumed toproduce converging structures for the
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full reference data set4. The reflection ofphigh through the barycenter of the polyhedron generates

a new pointpnew, where convergence of a Momec geometry optimization is not guaranteed. At this

point, the algorithm is modified as follows: the convergenceof the parameter setpnew is checked:

if all structures converge, the point is valid and the algorithm continues in its regular fashion; if the

parameter set leads to unconverged structures, the selected point is shifted along the reflection vector

towardsphigh, at which the convergence is guaranteed. The calculation isrestarted at pointp′new and

convergence is checked again. This procedure is repeated while reducing the size of the shift towards

phigh every time, until a point for which all structures converge is found. In the worst case, this

point is almost identical tophigh, but the simplex continues with a different simplex operation and

still contains valid parameter values. The same procedure was implemented for the other simplex

operations, namely the reflection + expansion, the contraction and the mixing of a fraction ofplow

into all other points. Figure 4.2.2 shows the modified simplex operations.

The BFGS algorithm can in principle be modified in a similar way. However, since the calculation of

one point involves deriving the gradient for every parameter, recalculation of the gradient at a different

point drastically increases the computational effort. Instead of a calculation of all structures for one

parameter set (simplex algorithm), the derivatives for N parameters would have to be calculated,

which involves N calculations for all structures. As the derivatives are calculated numerically[227], the

number of calculations is even higher. Therefore, the checks for unconverged structures were only

implemented in the line search part of the BFGS algorithm, while the calculation of the gradients was

not modified.

4 This can be ensured by a Monte Carlo parametrization prior tothe actual simplex parametrization. The Monte Carlo
results are also checked for unconverged structures in every step and the parameter set producing only converged
structures and giving the lowest error is passed to the simplex algorithm.
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3 Results and Discussion

The algorithms and the options to define the general procedure of the automatic parametrization

evolved in the course of this thesis which allowed for an increase in the complexity of the parametriza-

tion tasks. The initial parametrizations did not take any ligand field effect into account, but simply

tested the parametrization algorithms on standard force field parameters like a carbon-carbon stretch

interaction. The incremental parametrization approach already mentioned in Ch. 2 of this Part was

tested and the proper functioning of the ligand field code wasconfirmed with a number of hypothetical

test structures. The procedure was tested on a single X-ray structure and UV/VIS data was included

as reference data for the parametrization. Finally, a larger ligand field reference data set was used in

the automatic parametrization and leave-one-out tests were carried out for verification of the obtained

force field. Timings for the individual parametrizations are not presented at this point, since run times

are highly dependent on the computer hardware and the version of the code. Since both the hardware

and the code changed during the course of this project, individual timings are not comparable to each

other and can not be seen as significant.

3.1 Parametrization without a Ligand Field Term

The parametrization algorithms were initially tested witha series of 17 transition metal compounds

coordinated by cyclam-based ligands (see appendix B for CSD reference codes, literature and struc-

tures)1. The weights in these structures were set only for stretch interactions which involve the CT-CT

(sp3 carbon-sp3 carbon) and CT-NT (sp3 carbon-sp3 nitrogen) atom types, both of which are already

well defined in the original Momec force field[56–61] (see Appendix C for details). However, the start-

ing parameters of the parametrization were also modified from their optimal positions in order to test

the parametrization algorithm. The overall parametrization therefore included only four parameters,

since both stretch interactions were described by a harmonic potential. Additional parameters were

added as constants to the force field in order to increase the overall accuracy of the parameter set

and avoid convergence problems (see Table 4.3.1). These parameters were not changed during the

parametrization process. Four parametrizations have beencarried out with this reference data set. The

results are shown in Table 4.3.2.

1 Most of the parametrizations presented in this Chapter weredone together with Markus Rössler during his research
internship.
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Table 4.3.1: Additions to the starting force field for the parametrization of the set of 17 transition metal com-
plexes coordinated by cyclam-based ligands. All parameters shown are only added to the force
field and not modified in the course of the parametrization.

interaction type atom 1 atom 2 atom 3 k[mdyn/(Å or rad)] r0 [(Å or rad)]

stretch NT NT 1.000 1.169

stretch H ND 1.000 0.801

stretch CON OC 1.000 1.289

stretch NI2 OW 1.000 2.155

stretch CO2 CT 1.000 1.910

stretch CO2 OW 1.000 2.208

stretch CR3 OW 1.000 1.970

bend CO3 NT NT 0.100 2.173

bend NT NT NT 0.100 3.061

bend NT CR3 OC 0.100 1.571

bend OC CR3 OC 0.100 3.142

bend CON OC CR3 0.100 2.298

bend CON ND H 0.100 2.068

bend ND CON OC 0.100 2.018

bend H ND H 0.100 2.078

bend OC CON OCO 0.100 2.163

bend CT OW CU2 0.100 2.239

bend OW CT OW 0.100 2.261

bend OR CT OW 0.100 2.011

bend NT NI2 OW 0.100 1.750

bend OW NI2 OW 0.100 2.331

bend H OW NI2 0.100 1.973

bend CT CO2 NT 0.100 1.615

bend NT CO2 OW 0.100 1.527

bend CT CO2 OW 0.100 3.106

bend CO2 CT OW 0.100 2.090

bend CO2 CT CT 0.100 2.166

bend CO2 OW H 0.100 2.210

bend OW CR3 OW 0.100 2.354

bend NT CR3 OW 0.100 1.767

bend CR3 OW H 0.100 2.015
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Table 4.3.2: Results of the automatic parametrization with the simplex or BFGS algorithm on a set of 17
transition metal compounds coordinated by cyclam-based ligands. Starting values for the initial
force field are given in parentheses.

algorithm k(CT-CT)[mdyn/Å] r0(CT-CT) [Å] k(CT-NT) [mdyn/Å] r0(CT-CT) [Å] RMSD

simplex
9.800 1.505 5.351 1.479 0.109

(5.000) (1.500) (6.000) (1.490) (0.175)

BFGS
4.989 1.496 5.989 1.482 0.109

(5.000) (1.500) (6.000) (1.490) (0.175)

simplex
2.825 1.495 1.670 1.461 0.109

(1.000) (2.000) (2.000) (2.000) (1.401)

BFGS
0.447 1.373 0.568 1.363 0.141

(1.000) (2.000) (2.000) (2.000) (1.401)

The RMSD (see Ch. 1 of this Part) was calculated with the reference information of 119 CT-CT

stretches and 150 CT-NT stretches with a relative weight of 110. Bends and torsions which involve

the CT-CT and CT-NT motif were also included with a relative weight of 5 and 1, respectively. How-

ever, since the parametrization did not include any degreesof freedom for the bends and torsions, the

effects on these interactions during the parametrization are minor and will not be discussed here.

As can be seen from Table 4.3.2, both simplex and BFGS algorithm perform equally well when start-

ing from the already well defined parameters of the Momec force field. The overall RMSD value

improves slightly and the r0 values do not deviate much from the starting values. However, the force

constants derived by the automatic parametrization differwhen comparing the two algorithms. The

BFGS algorithm returns force constants which are near their original values, whereas the simplex al-

gorithm returns force constants which differ notably from their starting values. Since the parametriza-

tion space is small and no reference energy criterion, whichaffects the value of the force constant was

included, both sets of parameters perform almost equally well.

If the starting parameters are modified from the values of theoriginal Momec force field, the situation

changes notably. While the simplex algorithm still converges to a set of parameters, which gives a

RMSD value in the same region as before, the BFGS algorithm gives a result which is slightly worse.

This can be explained by the fact, that multiple minima existon the parameter surface and since

the starting values are far from the minimum of the original values, the BFGS converged to another

minimum. Prepending an additional Monte Carlo simulation before the actual BFGS parametrization

can increase the chance of finding a minimum, which is near theglobal minimum of the parameter

surface from a qualitative point of view.

To compare the parametrized interactions with a reference data, a graph showing the calculated values

vs. the reference values is plotted after every parametrization by the automatic parametrization run

script. The graphs for the stretches in the cyclam parametrizations are shown in Fig. 4.3.1.
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Figure 4.3.1: Comparison between final geometries of an automatic parametrization and reference geometries
of a set of 17 transition metal complexes coordinated by cyclam-based ligands.

As the force constants for both the CT-CT and CT-NT stretches have a high value in the case of the

two parametrizations starting from the original force field(Figs. 4.3.1a and 4.3.1b), the resulting

distribution of the calculated bond lengths is narrow. Starting from the modified version of the force

field converges the parametrization to a set of parameters with smaller force constants (Figs. 4.3.1c

and 4.3.1d), which broadens the distribution and increasesthe flexibility of the stretch interactions.

As stated above, including an energy criterion in the parametrization may have had an effect on the

optimization of the force constant and may have produced a narrower distribution of the calculated

bond lengths.
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3.1.1 Incremental Parametrization

In order to test the concept of chunks, explained earlier in Ch. 2 of this part, the same set of transition

metal complexes coordinated by cyclam-based ligands was used in a chunked parametrization. The

final values of the parametrization variables are shown in comparison to the results of a parametriza-

tion with all variables optimized at the same time in Table 4.3.3. Bend interactions which involve

CT and NT atom types have been included in this parametrization to increase the number of possible

chunks.

Table 4.3.3: Final values of the parametrization variables during the chunked parametrization of a set of 17
transition metal compounds coordinated by cyclam-based ligands (values from a parametrization
with all variables at the same time are given in parentheses).

chunk
interaction

atom 1 atom 2 atom 3
k [mdyn/(Å or rad)] r0 or θ0 [(Å or rad)]

type

1 stretch CT CT 5.999 (5.118) 1.500 (1.502)

2 stretch CT NT 4.631 (6.303) 1.476 (1.480)

3 bend CT CT H 0.360 (0.488) 1.909 (1.920)

4 bend H CT NT 0.360 (0.377) 1.909 (1.894)

5 bend CT CT NT 0.450 (0.466) 1.911 (1.891)

6 bend CT CT CT 0.450 (0.448) 1.911 (1.908)

7 bend CT NT CT 0.450 (0.462) 1.911 (1.893)

8 bend CT NT H 0.397 (0.428) 1.883 (1.880)

The constants automatically added to the force field were identical to the parametrization shown in

Section 3.1 of this Part. The original Momec force field (see Appendix C) was used for all other

interactions in the molecule. The weights were again only set for interactions which involve the CT

and NT atom types and stretches were scaled by a factor of 110,bends by a factor of 5 and torsions

by a factor of 1.

As can be seen from Table 4.3.3, the final values from both parametrizations are within the same

region, which proves that the force field interactions are independent from each other and therefore

can be parametrized individually in this case.

The overall accuracy of the resulting force fields is shown inFigure 4.3.2.
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Figure 4.3.2: Comparison between final geometries of chunked and complete parametrizations of a set of 17
transition metal complexes coordinated by cyclam-based ligands.
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As can be seen from the plots, the resulting geometries from both parametrizations are practically the

same. Since both parametrizations start from the original Momec force field, where all interactions

involved in the parametrization already have highly optimized parameters, this test can certainly not

be seen as proof that this method will always lead to acceptable results. However, taking this result

as a proof of concept justifies the implementation of this method. Parametrizing variables, which are

highly sensitive to changes and easily lead to convergence failures can be effectively treated with this

method. The advantage of the chunked parametrization lies in the automatic process, since the user

has to specify the course of the parametrization only once opposed to optimizing one parametrization

after the other by hand.

3.2 Ligand Field Model Structure Parametrization

In order to test the functionality of the ligand field code in aparametrization, a set of highly sym-

metric model structures was used as reference data. The teststructures consist of a CuII transition

metal center (atom type CU2) coordinated to six nitrogen ligands (atom type NT) in an octahedral

coordination geometry. One of the three NT-CU2-NT axes is elongated (CU2-NT distance: 2.5 Å)

whereas the other two axes are left at a shorter value (CU2-NT distance: 2.0 Å) in order to mimic a

tetragonal distortion.

During the test parametrization the following parametrization variables were used (the final values

after the parametrization are tabulated), Table 4.3.4:

Table 4.3.4: Parametrization variables with final values for the test parametrization of the CU2-NT ligand field
interaction of a highly symmetrical CuII transition metal complex surrounded by six nitrogen lig-
ands.

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

Morse stretch CU2 NT 0.544 561.228 2.115

interaction type atom 1 rvdW [Å] ǫ

non-bonded CU2 0.023 0.001

non-bonded NT 2.221 0.079

interaction type atom 1 atom 2 a4 [cm-1Å4] a5 [cm-1Å5] a6 [cm-1Å6]

ligand fieldeσ CU2 NT 97754 108302 98562

ligand fieldeds CU2 NT 27997 10736 24972
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The parametrization used the simplex algorithm and weightswere set for the six CU2-NT stretches

and the NT-CU2-NT bend interactions. The weights were scaledto a value of 110 for the stretches

and 5 for the bends during the parametrization. The parameters of fourth, fifth and sixth order for

the σ-interaction and d-s-mixing of the original implementation of the ligand field potential were

used (see Eq. 3.3.7) together with an additional Morse potential for the CU2-NT bond. Although

the original ligand field potential allows for a total of seven variables per AOM parameter, only

three variables were chosen at this point, because of a theoretically suggested 1/r−5 dependence for

octahedral complexes[188,189] (see also Ch. 2 of this part).

Table 4.3.5 shows the comparison of the reference and calculated geometries:

Table 4.3.5: Comparison between reference geometry and calculated geometry which results from the final
force field of the automatic parametrization shown in Table 4.3.4.

interaction type atom 1 atom 2 atom 3 nref [Å or rad] ncalc [Å or rad]

stretch (short) CU2 NT 2.000 2.000

stretch (long) CU2 NT 2.500 2.499

bend (90◦) NT CU2 NT 1.571 1.571

bend (180◦) NT CU2 NT 3.142 3.142

The structure is a perfect match to the reference structure.For this model compound, the automatic

parametrization found a set of parameters which can model the distorted geometry.

The test was extended to a set of three structures with slightly different geometries. The long CU2-NT

bond in the two additional structures was elongated or shortened, respectively, by 0.02 Å, so that the

parametrization should be able to find a minimum which modelsall three structures with a median

value of 2.50 Å for the long CU2-NT bond. Table 4.3.6 shows the resulting parametrization values

and Table 4.3.7 the corresponding geometries.
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Table 4.3.6: Parametrization variables with final values for the test parametrization of the CU2-NT ligand field
interaction of three highly symmetrical CuII transition metal complexes surrounded by six nitrogen
ligands.

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

Morse stretch CU2 NT 0.537 566.599 2.166

interaction type atom 1 rvdW [Å] ǫ

non-bonded CU2 0.003 0.001

non-bonded NT 2.228 0.064

interaction type atom 1 atom 2 a4 [cm-1Å4] a5 [cm-1Å5] a6 [cm-1Å6]

ligand fieldeσ CU2 NT 97714 105385 96677

ligand fieldeds CU2 NT 31538 29653 12923

Table 4.3.7: Comparison between reference geometry and calculated geometry which results from the final
force field of the automatic parametrization shown in Table 4.3.6. Only stretch interactions are
shown, as the bend interactions were reproduced with exactly the same values as in the reference
structure (see also Table 4.3.5).

interaction type atom 1 atom 2 nref [Å or rad] ncalc [Å or rad]

stretch (short) mol1 CU2 NT 2.000 2.000

stretch (long) mol1 CU2 NT 2.500 2.500

stretch (short) mol2 CU2 NT 2.000 2.000

stretch (long) mol2 CU2 NT 2.520 2.500

stretch (short) mol3 CU2 NT 2.000 2.000

stretch (long) mol3 CU2 NT 2.480 2.500

As can be seen from Table 4.3.7, the automatic parametrization again yielded a force field which

reproduces the tetragonal distortion in this set of model compounds with a combined effect of a

Morse stretch function and a ligand field interaction. We have taken this result as a proof of concept

that an automatic parametrization of the ligand field interaction is feasible.
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3.3 Ligand Field Single Molecule Parametrization

The insights on the parametrization gained during the experiments described in the preceding sec-

tions were used to parametrize a force field based on a “real” CuII crystal structure. The molecule

[Cu([9]aneN3)2]2+ [228] (refcode DUSJAC01, see Appendix B Fig. 6.3.2h) shows a Jahn-Teller dis-

torted geometry with one long axis (CU2-NT distances: 2.296 and 2.345 Å) and two short axes

(CU2-NT distances: 2.049 and 2.062 Åand 2.086 and 2.050 Å, respectively) and therefore has the

same general coordination geometry as the model structuresused in the preceding section.

In the first parametrization done with the geometry of this molecule as reference data, the same

parametrization conditions as described in the preceding section, namely the original implementation

of the ligand field potential with parameters foreσ andeds of fourth, fifth and sixth order, an additional

Morse stretch and the non-bonded interactions as parametrization variables, were used. The weights

were also scaled with a factor of 110 for the stretches and 5 for the bends and were only set of the

CU2-NT bonds and NT-CU2-NT bend interactions. Table 4.3.8 shows the final force field parameters

when a simplex algorithm is used during the parametrization:

Table 4.3.8: Parametrization variables with final values for the test parametrization of the CU2-NT ligand field
interaction of the DUSJAC01 reference structure (see Appendix B Fig. 6.3.2h).

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

Morse stretch CU2 NT 0.695 557.265 2.205

interaction type atom 1 rvdW [Å] ǫ

non-bonded CU2 1.120 0.032

non-bonded NT 2.086 0.041

interaction type atom 1 atom 2 a4 [cm-1Å4] a5 [cm-1Å5] a6 [cm-1Å6]

ligand fieldeσ CU2 NT 81587 113187 97858

ligand fieldeds CU2 NT 82711 31748 40148

Comparing the final parameters to the ones obtained during theparametrization of the model struc-

tures, the overall range is quite similar. The resulting geometry produced by the force field is com-

pared to the reference geometry in Figure 4.3.3.
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Figure 4.3.3: Calculated vs. reference data plots for the parametrization of DUSJAC01 with the original im-
plementation of the ligand field potential.

As can be seen from the figures, the overall agreement with thereference structure is good and both

short and long bonds are reproduced by the calculation within acceptable error.

As the parametrization only involved the ligand field parameters of fourth, fifth and sixth order,

the parametrization was repeated and parametersa2 to a6 were allowed to vary for the automatic

parametrizer in order to enhance the flexibility of the ligand field potential. The parametrization re-

sults and the comparison of the structural data to the reference geometry are shown in Table 4.3.9 and

Figure 4.3.4, respectively.
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Table 4.3.9: Parametrization variables with final values for the test parametrization of the CU2-NT ligand field
interaction of the DUSJAC01 reference structure (see Appendix B Fig. 6.3.2h). The ligand field
potential is expanded to include parametersa2−6.

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

Morse stretch CU2 NT 1.556 589.389 2.187

interaction type atom 1 rvdW [Å] ǫ

non-bonded CU2 0.049 0.000

non-bonded NT 2.040 0.066

interaction type atom 1 atom 2 a2 [cm-1Å2] a3 [cm-1Å3] a4 [cm-1Å4]

ligand fieldeσ CU2 NT 91540 100641 100765

ligand fieldeds CU2 NT 21896 18996 20670

interaction type atom 1 atom 2 a5 [cm-1Å5] a6 [cm-1Å6]

ligand fieldeσ CU2 NT 105382 93251

ligand fieldeds CU2 NT 28659 27858
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Figure 4.3.4: Calculated vs. reference data plots for the parametrization of DUSJAC01 with the original im-
plementation of the ligand field potential with parametrization variablesa2−6.

Figure 4.3.4 shows that increasing the flexibility of the ligand field potential does not have a positive

effect on the overall accuracy of the parametrization. In fact, the optimized structure calculated by the

force field does not reproduce the crystal structure and the result is worse compared to the restricted

version of the ligand field. Instead of an elongated geometry, the complex is modeled as a compressed
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octahedral structure, showing four long and two short bonds. Expanding the flexibility leads to an

over-parametrization of the problem and the two potentials, ligand field and Morse stretch, are no

longer balanced in the resulting force field. This is a general problem of the form of the potential, as

already discussed in Ch. 2 of this part.

In order to make the ligand field parametrization more robust, the original form of the potential was

substituted by a Morse and “Gauss-like” descriptions (see Ch. 2 for details). As these potentials

already have a minimum at an equilibrium bond length, the additional Morse stretch describing the

classical steric interaction between the metal and the ligand is no longer needed and the total en-

ergy (steric + LFSE) can be described with just one potential. The parametrization described in the

following paragraph therefore only included the ligand field variables in the parametrization and an

additional Morse stretch was only added after the ligand field was already parametrized to verify, that

all effects have been accurately described with the ligand field potential.

The parameters and resulting geometry information of the Morse (see Eq. 3.3.8) parametrization of

the molecule are shown in Table 4.3.10 and Figure 4.3.5. The parametrization used the Monte Carlo

routines to find a suitable set of starting parameters2 for the ligand field terms (500 steps each). The

weights were again set for CU2-NT stretches and NT-CU2-NT bends and were not scaled in this

parametrization, therefore having the value of one in all cases.

Table 4.3.10: Parametrization variables with final values for the test parametrization of the CU2-NT ligand
field interaction of the DUSJAC01 reference structure (see Appendix B Fig. 6.3.2h) with a Morse
ligand field approach.

interaction type atom 1 atom 2 α [1/Å] D [cm-1] r0 [Å]

1) ligand fieldeσ CU2 NT 13.368 6501 2.060
(Morse description)

2) ligand fieldeds CU2 NT 8.032 12902 2.314
(Morse description)

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

3) Morse stretch CU2 NT 1.078 76.543 2.446

2 As the implementation of the Morse potential changed the functional form of the ligand field, the choice of starting
parameters was difficult and therefore, the Monte Carlo routines were used in order to generate converging structures
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Figure 4.3.5: Calculated vs. reference data plots for the parametrization of DUSJAC01 with the Morse imple-
mentation of the ligand field potential.

As can be seen from Fig. 4.3.5, the accuracy of the parametrization is as good as with the original

implementation of the ligand field potential when only parameters of fourth, fifth and sixth power

(see Fig. 4.3.3) are used. The parametrization has been donein three steps, parametrizing only theeσ

interaction first, adding aneds term in the second step and adding an additional Morse stretch term in

the third step. The RMSD values obtained after these individual parametrizations are 0.026 aftereσ,

0.022 aftereds and 0.022 after the additional Morse stretch. The overall accuracy is therefore already

good with a single Morse description of the ligand fieldeσ interaction and does not improve much by

adding terms foreds and the classical Morse stretch.

The same parametrization has been done with the “Gauss-like” implementation of the ligand field.

Parametrization variables and resulting geometry information are shown in Table 4.3.11 and Figure

4.3.6:
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Table 4.3.11: Parametrization variables with final values for the test parametrization of the CU2-NT ligand field
interaction of the DUSJAC01 reference structure (see Appendix B Fig. 6.3.2h) with a “Gauss-
like” ligand field approach.

interaction type atom 1 atom 2 D[cm-1] aa ba ca

1) ligand fieldeσ CU2 NT 5923 1.092 1.967 2.154
(“Gauss-like” description)

2) ligand fieldeds CU2 NT 3633 4.524 2.080 2.893
(“Gauss-like” description)

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

3) Morse stretch CU2 NT 0.297 34.815 2.162

a Please note, that no unit is given for parametersa, b andc, as the “Gauss-like” potential (Eq. 3.3.9) does

not allow an easy deduction of the units of the individual parameters. As theAOM parameters represent

an energy,D is assumed to have the unitcm−1 whereas the remaining variables includingr are treated as

unitless.

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 1.95  2  2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

C
al

cu
la

te
d 

va
lu

es
 [Å

]

Reference values [Å]

RMSD:  0.017 Å

CU2−NT

(a) Stretch interactions

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 90  100 110 120 130 140 150 160 170 180

C
al

cu
la

te
d 

va
lu

es
 [°

]

Reference values [°]

RMSD:  1.654 °

NT−CU2−NT

(b) Bend interactions

Figure 4.3.6: Calculated vs. reference data plots for the parametrization of DUSJAC01 with the “Gauss-like”
implementation of the ligand field potential.

As with the Morse description of the ligand field potential, the reference structure is reproduced

within acceptable error. The “Gauss-like” description is also a bit more flexible, as the short bonds do

not all have the same bond length (see Fig. 4.3.5), but the small differences in bond length are also

reproduced with the “Gauss-like” form of the potential. Again, the parametrization involved a three

step procedure with a preceding Monte Carlo simulation for the ligand field parameters. The RMSD
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values found after each individual step were 0.0285 after the parametrization ofeσ, 0.026 aftereds

and 0.026 after the additional Morse stretch.

Parametrization of a single reference molecule with all three descriptions of the ligand field potential

implemented so far show that the original implementation byDeeth et al. can only give accurate

results if both ligand field potential and an additional Morse stretch are precisely balanced. As soon

as this balance is no longer given or the system has too many degrees of freedom, the description of

the distorted coordination geometry breaks down. On the contrary, the ligand field description with a

Morse or a “Gauss-like” potential has the advantage of a defined minimum on the parameter surface,

which makes automatic parametrization easier and does not need an additional term for balance.

This is a significant advantage during the automatic parametrization procedure and therefore, these

approaches have been used during the parametrizations of larger reference data sets shown below.

3.3.1 Ligand Field Single Molecule Parametrization with UV/VIS Data

As discussed in greater detail in Ch. 2 of Pt. III, the eigenvalues of the symmetrical5 × 5 ligand

field matrix correspond to the d-orbital energy levels. Whilea routine, which derives the point group

of the molecule and the corresponding splitting of the d-orbitals into terms is still missing in the

current implementation of the ligand field code, the splitting in a simple CuII case is analogous to the

levels of the d-orbitals and thus, the energies can be compared to experimental findings. Therefore, a

parametrization with geometry and UV/VIS reference data ofa single transition metal complex has

been done.

The molecule [Cu(dien)2]2+ [229] (refcode ETACUB, see Appendix B Fig. 6.3.2i) shows a Jahn-Teller

distorted geometry and four transitions to the singly occupied dx2−y2 orbital[230] (see Table 4.3.13).

The parametrization was carried out with the original implementation of the ligand field potential with

variablesa4−6 for theeσ andeds parameters, an additional Morse stretch term and the non-bonding

parameters for CU2 and NT. In addition to the weights set for the stretches and bends which involve

the transition metal atom, weights were also set for the UV/VIS transitions. The weights were scaled

internally to a ratio of 115 (stretches) to 5 (bends) to 10-7 (transitions) during the parametrization to

account for the different scales of the data.

Tables 4.3.12 and 4.3.13 and Figure 4.3.7 show the results ofthe parametrization.
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Table 4.3.12: Parametrization variables with final values for the test parametrization of the CU2-NT ligand field
interaction of the ETACUB reference structure (see Appendix B Fig. 6.3.2i) with the original
implementation of the ligand field term and geometry plus UV/VIS data[230] for reference.

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

Morse stretch CU2 NT 0.572 548.586 2.027

interaction type atom 1 rvdW [Å] ǫ

non-bonded CU2 1.125 0.062

non-bonded NT 2.215 0.063

interaction type atom 1 atom 2 a4 [cm-1Å4] a5 [cm-1Å5] a6 [cm-1Å6]

ligand fieldeσ CU2 NT 29289 76228 88560

ligand fieldeds CU2 NT 100264 44297 45717
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Figure 4.3.7: Calculated vs. reference data plots for the parametrization of ETACUB with the original imple-
mentation of the ligand field potential with geometry and UV/VIS as reference data.
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Table 4.3.13: Comparison between reference and calculated bond lengths and UV/VIS transitions for the
parametrization of ETACUB.

bond rref [Å] rcalc [Å] from to nref [cm-1] ncalc [cm-1]

Cu–N1 2.350 2.380 dz2 dx2−y2 8800 7763

Cu–N2 2.040 2.131 dxy dx2−y2 9900 13977

Cu–N3 2.459 2.407 dxz dx2−y2 15400 14121

Cu–N4 2.131 2.101 dyz dx2−y2 15900 13694

Cu–N5 2.027 2.005

Cu–N6 2.065 2.051

While the Morse stretch and non-bonded parameters do not change much when including UV/VIS

data compared to previous parametrizations (see Table 4.3.8), the ligand field parameters show a large

variation. The overall accuracy concerning the geometry isworse compared to the parametrization

of DUSJAC01 (Fig. 4.3.3), but both calculated geometry and UV/VIS transitions show a definite

trend towards the reference data. Subsequent tests with larger reference data sets including UV/VIS

data not shown here did not give acceptable results concerning the modelling of the geometry and the

calculation of the d-d-transitions. To model both properties of the molecule accurately at the same

time, the form of the ligand field potential would have to be extended and/or, two sets of parameters

would be needed, one describing the geometry and one modeling the UV/VIS transitions. Both sets

should be independent from each other, i. e. the parameter set for the geometry should not influence

the calculation of the d-d-transitions and vice versa. Thiscan be achieved when different force fields

are used for the geometry optimization and a subsequent single point to calculate the d-d-transitions.

Further attempts to correctly predict the d-orbital transitions, also including systems with different

transition metals than CuII , will be carried out in the future.

3.4 Ligand Field Parametrization of Multiple Molecules

The set of CuII complexes used by Deeth et al. in the first LFMM publication[9] was used as a larger

training set for the automatic parametrization. The set includes 13 tetra-, penta- and hexacoordinate

complexes, where the CuII transition metal ion is coordinated by aliphatic nitrogen donor ligands (for

detailed structures see Appendix B). As a tetragonal distortion of the molecule is only seen in the

penta- and hexacoordinate cases of the training set, the parametrization is a good test case for the

automatic algorithms, since both distorted and non-distorted geometries have to be reproduced by a

single set of ligand field parameters.

The initial parametrization was carried out with the original implementation of the ligand field poten-

tial. However, even with 1000 Monte Carlo steps and a subsequent simplex optimization, a suitable set
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of parameters describing all 13 structures with acceptableaccuracy could not be found. The RMSD

values of the original publication by Deeth[9] are therefore used as a reference for the original form

of the ligand field potential. Deeth used a linear approximation for theσ interaction of the ligand

field. The structures were optimized to an RMSD of 0.071 Å for the bond stretches and 3.041◦ for the

valence angles. The results of our own parametrizations which involve the Morse and “Gauss-like”

description of the ligand field potential are shown in this Section.

Table 4.3.14 shows the final force field parameters of the parametrization with a Morse description

of the ligand field potential and Figure 4.3.8 shows the corresponding plots for the CU2-NT stretches

and NT-CU2-NT bends.

Table 4.3.14: Parametrization variables with final values for the test parametrization of the CU2-NT ligand
field interaction of a set of 13 reference structures (see Appendix B Figs. 6.3.2a to 6.3.2m) with
a Morse ligand field approach.

interaction type atom 1 atom 2 α [1/Å] D [cm-1] r0 [Å]

1) ligand fieldeσ CU2 NT 7.796 8413 2.037
(Morse description)

2) ligand fieldeds CU2 NT 7.072 38909 3.845
(Morse description)

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

3) Morse stretch CU2 NT 0.023 5.177 2.450
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Figure 4.3.8: Calculated vs. reference data plots for the parametrization of a set of 13 reference structures with
a CU2-NT ligand field interaction described by a Morse potential.
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As can be seen in the plots, the overall agreement of the calculated structure with experimental find-

ings is acceptable. The trend of the Morse potential giving one set of short bonds and a number of

different long bonds, which was already shown during the discussion of the parametrization of a sin-

gle molecule (see Fig. 4.3.5), is confirmed in the parametrization of the larger set. Describing the

ligand field interaction with a Morse potential does not leadto the needed flexibility near the equi-

librium bond length and therefore, all short bonds are described with a single calculated bond length.

With larger bond lengths the stiffness of the potential decreases and allows for an increased flexibility

in the calculated bond lengths.

Table 4.3.15 shows the final values of the parametrization with the same set of compounds and the

“Gauss-like” description of the ligand field potential. Thecomparison between calculated and refer-

ence data is given in Fig. 4.3.9.

Table 4.3.15: Parametrization variables with final values for the test parametrization of the CU2-NT ligand
field interaction of a set of 13 reference structures (see Appendix B Figs. 6.3.2a to 6.3.2m) with
a “Gauss-like” ligand field approach.

interaction type atom 1 atom 2 D[cm-1] a b c

1) ligand fieldeσ CU2 NT 35308 8.975 1.568 2.692
(“Gauss-like” description)

2) ligand fieldeds CU2 NT -5231 9.276 1.520 0.245
(“Gauss-like” description)

interaction type atom 1 atom 2 α [1/Å] D [kJ/mol] r0 [Å]

3) Morse stretch CU2 NT 0.887 23.696 1.971
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Figure 4.3.9: Calculated vs. reference data plots for the parametrization of a set of 13 reference structures with
a CU2-NT ligand field interaction described by a “Gauss-like” potential.
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As the figures show, the “Gauss-like” description of the ligand field potential increases the overall

accuracy compared to the experimental structures. Both stretches and bends are described more

accurately and the increased flexibility of the “Gauss-like” potential can clearly be seen in Fig. 4.3.9a.

Compared to the results of the parametrization which involves a Morse description of the ligand field

(see Fig. 4.3.8a), the shorter bonds are no longer describedby a single calculated bond length, but

the distribution is broader and more accurate compared to experimental findings. Also, the overall

convergence rate of the potential is faster and fewer Monte Carlo steps are needed to find a suitable

set of parameters.

With the force field given in Table 4.3.15, a series of leave-one-out tests was carried out. Although the

parametrization data set is diverse and small, we present these tests as a proof of concept for future

parametrizations which involve ligand field interactions.

Before carrying out the actual leave-one-out tests, the force field was once again relaxed. Starting

from the parameters given in Table 4.3.15, all variables were included in a simplex parametrizations

at the same time. The parametrization converged to a slightly better force field, which will not be

shown here in detail. This force field was then used as a starting point for the leave-one-out tests.

Table 4.3.16 shows the results of the tests.

Table 4.3.16: RMSD values of stretches and bends of the individual leave-one-out test molecules of a set of 13
CuII transition metal complexes. RMSD values of the full force field are given in parentheses.

compound left out RMSDstretches[Å] ∆RMSDstretches[Å] RMSDbends[◦] ∆RMSDbends[◦]

CEDHAU 0.032 (0.032) 0.000 1.750 (1.734) 0.016

CEFBEU 0.060 (0.042) 0.018 0.905 (0.566) 0.339

CHXCUA 0.037 (0.037) 0.000 0.617 (0.624) -0.007

CMENOX 0.023 (0.026) -0.003 0.274 (0.226) 0.048

CUENCL 0.051 (0.045) 0.006 2.862 (2.924) -0.062

DAPRCU 0.018 (0.018) -0.000 0.142 (0.149) -0.007

DMEDCU 0.020 (0.030) -0.010 6.434 (0.510) 5.924

DUSJAC01 0.174 (0.049) 0.125 3.840 (3.141) 0.699

ETACUB 0.025 (0.024) 0.001 1.969 (1.957) 0.012

ETEACU 0.030 (0.030) 0.000 1.027 (1.015) 0.012

JIBZUP 0.036 (0.035) 0.001 3.811 (3.819) -0.008

LATSII 0.040 (0.038) 0.002 1.907 (1.905) 0.002

TENCUB 0.030 (0.035) -0.005 4.824 (4.185) 0.639

The table shows the RMSD values of stretches and bends, respectively, of a single molecule each,
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which was not included in the parametrization. Given in parentheses are the RMSD values of the

same molecule from the complete force field, where all molecules were used as reference data. With

two exceptions, leaving one molecule out of the training setdoes not lead to drastic effects on the

RMSD value and therefore, the robustness and consistency of the resulting force field is retained.

The two exceptions, DMEDCU and DUSJAC01, have been examined indetail. Looking at the ge-

ometry optimized structure of DMEDCU after the parametrization without the X-ray structure of the

molecule shows a distortion of the five-membered ring involving the CU2-NT-CT-CT-NT moiety (see

Fig. 6.3.2h). The ring is no longer planar in the calculated structure and therefore, the angles around

the CuII transition metal center are distorted, which explains the large deviation compared to the full

force field. The other exception, DUSJAC01 (see Fig. 6.3.2h),represents a highly symmetric com-

plex. Looking at the individual bond lengths of the geometryoptimized molecule shows a tetragonal

elongation, but the axes are perturbed compared to the result of the full force field. In the crystal

structure, the long axis is along the N2-Cu-N7 bond whereas inthe calculated structure the long axis

is found along the N4-Cu-N6 bond. If the axes are reordered to match the crystal structure, a RMSD

value of 0.054 is obtained, which gives a change in RMSD compared to the full force field of 0.005.

This value is in line with the remaining values. Omitting thestructure of DUSJAC01 seems to remove

the information of the position of the elongated axis and therefore, the geometry optimized structure

does no longer retain the order of the axes.

Summarizing the results of the parametrization of the ligand field potential, the “Gauss-like” descrip-

tion represents the best approach for an automatic parametrization of the interaction we have found so

far. The Morse potential gives similar results, but is less flexible concerning especially the modeling

of the short bonds in a complex. The original implementationof the ligand field potential gives rise to

convergence problems, since it always has to be correctly balanced with an additional Morse poten-

tial. Also, it does not show a defined minimum on the parametersurface. Two potentials working in

different directions at the same time represent a difficult problem for the parametrization algorithms.
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1 Parametrizations based on

DFT-Optimized Structures

The parametrizations shown in the preceding Part of this thesis are all based on X-ray structure ref-

erence data. Therefore, the resulting force field will yieldoptimized structures which are comparable

to X-ray geometries. However, as the aim of this project was to identify a method which can predict

exchange coupling constants between transition metal centers in a fast and reliable way, an X-ray

structure geometry may not be the desired starting structure. As already discussed in detail in Pt. II

Ch. 4, the X-ray structure of a molecule is not necessarily at aminimum on the PES of a DFT method.

Therefore, from the point of view of a theoretical chemist, the exchange coupling constant should be

calculated from the DFT-optimized structure1.

In order to transfer this approach to the MM-optimization ofmolecules, the force field parametrization

can be based on DFT- optimized structures. The parametrization process thus involves an additional

step, namely the geometry optimization of the structures ofthe reference data set by DFT, prior to the

actual force field parametrization. As the exchange coupling constants are calculated by B3LYP and

a combination of TZVP and 6-31G* basis, the geometry optimization should also be based on this

combination of method and basis set to assure the compatibility of the PES of the two calculations.

First tests towards a DFT-based force field were carried out with a set of CuII transition metal com-

plexes2. The structures were optimized with the B3LYP functional together with the SVP or TZVP

basis sets. However, with a set of 33 different CuII complexes, neither of the functional/basis set com-

binations gave acceptable results. While some of the calculations did not lead to a minimum structure,

others showed large discrepancies to the X-ray structure. Identifying a method which yields consis-

tent results for a large set of different transition metal complexes, was not possible in the course of

this work.

However, as a proof of concept, a set of three CuII structures geometry optimized with B3LYP/SVP

has been identified and used in a ligand field parametrization. The molecules CUENCL, DUSJAC01

and ETACUB (see Appendix B, Figs. 6.3.2e, 6.3.2h and 6.3.2i) all show a tetragonally distorted CuII

center surrounded by six aliphatic nitrogen donors and havealready been used in the parametrization

1 The X-ray structure however contains the distortions induced by crystal lattices, which are not reproduced by the
DFT geometry optimization. It is therefore a matter of errorestimation to decide whether the X-ray structure or the
DFT-optimized structure should be used for the calculationof exchange coupling constants.

2 The DFT optimizations were done together with Mariam Veschgini during her research internship.
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based on X-ray structures in Pt. IV Ch. 3. The force field parameters after the parametrization are

shown in Table 5.1.1.

Table 5.1.1: Parametrization variables with final values for the parametrization of the CU2-NT ligand field in-
teraction of a set of three DFT-optimized reference structures (CUENCL, DUSJAC01, ETACUB,
see Appendix B Figs. 6.3.2e, 6.3.2h and 6.3.2i) with a “Gauss-like” ligand fieldapproach.

interaction type atom 1 atom 2 D[cm-1] a b c

ligand fieldeσ CU2 NT 2658 4.651 2.182 1.684
(“Gauss-like” description)

The resulting force field was then used to optimize the geometry of the complex JIBZUP (see Ap-

pendix B, Fig. 6.3.2k), which has a CuII center coordinated by five aliphatic nitrogen donors with a

tetragonal distortion. The geometry was also optimized by DFT and both structures are shown in Fig.

5.1.1 in an overlay plot:

Figure 5.1.1: Overlay of DFT optimized (blue) and MM optimized (orange) structures of JIBZUP (see Ap-
pendix B, Fig. 6.3.2k for details). Hydrogen atoms are omitted for clarity.

The copper-nitrogen bond lengths for the X-ray structure, DFT-optimized structure, MM-optimized

structure with ligand field and MM-optimized structure without the ligand field are given in Table

5.1.2:

Table 5.1.2: Copper-nitrogen bond lengths of JIBZUP (see Appendix B, Fig. 6.3.2k for details) calculated with
DFT or MM optimizations in comparison to the X-ray structure.

structure rCu-N1 [Å] r Cu-N2 [Å] r Cu-N3 [Å] r Cu-N4 [Å] r Cu-N5 [Å]

X-ray 2.060 2.080 2.251 2.025 2.027

DFT-optimized 2.144 2.147 2.269 2.113 2.102

MM-optimized (LF) 2.137 2.142 2.356 2.137 2.131

MM-optimized (no LF) 2.164 2.205 2.202 2.271 2.016
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As can be seen from the table, the DFT-optimized structure shows an elongation in the short CuII -N

bond lengths whereas the long CuII -N bond has virtually the same length in both structures. The

MM-optimized structure including the ligand field term (seeTable 5.1.1) accurately resembles the

DFT-optimized structure. Turning off the ligand field term and optimizing the structure only with the

terms of the original force field, but no explicit CuII -N stretch term, yields a structure which does not

resemble the DFT-optimized structure. The ligand field termtherefore has an important effect for the

correct description of the molecule in this particular case. Given the right parametrization based on

DFT-optimized structures, a MM geometry optimization therefore can be used to accurately predict

DFT geometries with small computational effort.
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2 The “Maximum Force Field”

Approach: Jacobian and Hessian

Matrix Information as Reference Data

During the parametrizations of the ligand field term, one of the major problems encountered has been

the overall convergence of the ligand field parameters, or, when the original implementation of the

ligand field potential was used, the correct balancing of ligand field and classical stretch term. Many

of these convergence problems were found to be caused by non-converging geometry optimizations

due to non-matching parameters. As already discussed in Pt.IV Ch. 2, the parametrization algorithm

is not aware of Momec geometry convergence problems. Although modifications to the algorithm,

e. g. the additions to the simplex algorithm showed in Pt. IV Ch. 2, introduced a certain level of

awareness for convergence problems, the fundamental problem of the additional complexity of the

geometry optimization remains the same. Therefore, we havetested a method involving the use of

the Jacobian and Hessian matrices, which uses only single point calculations.

Looking at the information present in the Jacobian matrix first, one can use the fact that the first

derivatives of the energy with respect to the atomic coordinates have to be zero at a minimum struc-

ture. Therefore, the reference Jacobian matrix is zero for every matrix element. The single point

calculations done with varying parameters will also only give zero for all matrix elements, if a min-

imum structure is found. This represents a valuable information, but cannot be used as the only

reference date during the parametrization, since setting the force constant of an interaction to zero

would automatically induce Jacobian matrix elements with avalue of zero.

The second derivatives of the energy with respect to the atomic coordinates, the Hessian matrix,

contains information about the force constants of individual interactions, e. g. stretches, bends and

torsions. Those can be estimated by QC methods (see Pt. IV Ch. 1for details), but this would involve

another time-consuming calculation. However, the structure of a reference molecule can also be ex-

pressed with an overdetermined maximum force field. Given a hypothetical three-atomic molecule

A-B-A’, the connectivity can be described using two bond lengthsrA−B andrB−A′ and an additional

bend interactionaA−B−A′. The equilibrium values for the harmonic potentials are setto the exact

values from the crystal structure and the force constants are estimated from literature known values.

The Hessian matrix deduced from this information is then used as a reference for the succeeding

parametrization.

121



Part V. Outlook

The combination of Jacobian and Hessian reference matrix elements now represents the full set of

reference data. If multiple molecules should be included inthe parametrization, an additional set

of Jacobian and Hessian matrix in the maximum force field scheme just described is added to the

reference data set.

The actual parametrization is then started with a reduced number of parameters, e. g. in the exam-

ple presented above, the bondsA-B andB-A’ would both be represented by a single stretch inter-

action STR(A-B). Both equilibrium bond lengths and force constants are therefore included in the

parametrization and will relax to a median value, which gives a Jacobian and Hessian closest to the

reference matrices. The parametrization in this simple case would therefore be a parameter reduction

from a set of three interactions (two stretches, one bend) inthe maximum force field to a set of two

interactions (one stretch, one bend) in the parametrized force field.

Extending this scheme to the ligand field approach opens up another aspect, i. e. parameter substitu-

tion. Assuming an octahedral nitrogen-coordinated CuII compound with tetragonal distortion, each

individual Cu-N bond length will be described by a different set of parameters in the maximum force

field and thus, the tetragonally elongated geometry of the reference molecule will be retained in the

optimized strcuture. In the parametrization, the individual Cu-N parameters will be replaced with a

single ligand field parameter and, if needed, an additional stretch parameter, thus reducing a set of six

interactions to a set of one or two interactions and also substituting a classical harmonic description

by a ligand field term. Since all information about the molecule is given by the Jacobian and Hessian

matrices, we are confident, that this approach can be used foran initial estimation of ligand field

parameters. The parameters are then used as starting valuesfor a second parametrization, which uses

the geometry optimization as described in earlier Chapters of this thesis, in order to further refine the

force field.
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3 Future Developments

The combination of the ligand field parametrization shown inPt. IV, reference data based on DFT-

optimized structures discussed in Ch. 1 of this Part and the calculation of exchange coupling constants

with DFT single points shown in Pt. II creates the possibility of a virtual screening of transition

metal compounds, which are potential candidates for singlemolecule magnets (SMMs). Although

a successful parametrization of oligonuclear compounds, e. g. from the test-set used in Pt. II, has

not been completed, the results shown in the preceding Chapters of this work suggest that such a

parametrization is possible with the tools developed here.Apart from the convergence problems and

possible approaches to solve the problem, which were already discussed in Ch. 2 of this Part, a major

point for the improvement of the parametrization process isthe functional form of the ligand field

potential. The “Gauss-like” approach shown in Pt. III Ch. 3 yields promising results, but further

improvements to the functional form will have to be made in order to correctly describe not only the

geometry but also the electronic transitions of a transition metal complex with molecular mechanics

methods. The new functional form has to be tested with different transition metals as well, since the

CuII ion represents the simplest possible case of an one electronsystem. Also, the parametrizations

shown in this work are entirely based on compounds where noπ-bonding effect is found between the

d-orbitals of the metal and the ligand orbitals. The automatic parametrization may therefore break

down when more than one sets of ligand field parameters is usedat the same time. If that is the case,

the number of parameters which describe the functional formof the ligand field effect may have to be

reduced.

As discussed before, support for different electronic states and their corresponding terms has to be

implemented in order to be able to treat the full range of transition metal ions. Also, the treatment of

intermediate spin systems (FeIII , FeII ), is not fully supported yet but can be quickly implemented,e. g.

with an additional flag in the parametrization command file.

To further improve the overall performance of the parametrizations shown in this thesis, the imple-

mentation of the ligand field code will be revised and improved using modern C++ libraries. The

parametrization algorithms and the Perl scripting environment will be integrated into the main Mo-

mec program and rewritten in C++, in order to support massively parallel computation and further

automation. This will help to generate new force fields in a more robust and also faster way and will

make the parametrization in Momec an easy to use tool for the everyday chemist.
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1 List of Abbreviations

5Z quintuple zeta

[9]aneN 3 1,4,7-triazacyclononane

[14]aneN 4 1,4,8,11-tetraazacyclotetradecane

adt N,N-bis(2-aminoethyl)diethylenetriamine

AO atomic orbital

AOM angular overlap model

apt 1,4-bis(3-aminopropyl)-1,4,7-triazacyclononane

bipym 2,2’-bipyrimidine

CASSCF complete active space SCF

CD circular dichroism

CFT crystal field theory

CGTO contracted Gaussian type orbital

chn 1,3-diaminocyclohexane

CI configuration interaction

cit citrate

cyclam 1,4,8,11-tetraazacyclotetradecane

DFT density functional theory

deen N,N-diethylethylenediamine

diammac 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine

dien diethylenetriamine
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dmed (dimethylamino)ethylamine

DTNE 1,2-bis(1,4,7-triazacyclonon-1-yl)ethane

DZ double zeta

ECP effective core potential

en ethylenediamine

EPR electron paramagnetic resonance

ESR Elektronenspinresonanz

Et5dien 1,1,4,7,7-pentaethyldiethylenetriamine

G03 Gaussian 03

G09 Gaussian 09

GGA generalized gradient approximation

GTO Gaussian type orbital

GUI graphical user interface

Hacac 2,4-pentanedione

H2Dopn 3,9-dimethyl-4,8-diazaundeca-3,8-diene-2,10-dione dioxime

H3BBAC N,N-bis(2-hydroxybenzyl)aminoacetic acid

H3sabhea N-salicyclidene-2-(bis(2-hydroxyethyl)amino)ethylamine

HF Hartree-Fock

KS Kohn-Sham

LDA local density approximation

LFMM ligand field molecular mechanics

LFSE ligand field stabilization energy

LFT ligand field theory

maltolato 3-oxy-2-methyl-4H-pyran-4-onato-O3,O4

MCD magnetic circular dichroism
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med N-methylethylenediamine

Me3tacn N,N’,N”-trimethyl-1,4,7-triazacyclononane

MM molecular mechanics

MO molecular orbital

MOE Molecular Operating Environment

nen N-ethylethylenediamine

OAc acetate

oxpn N,N‘-bis(3-aminopropyl)oxamide

papd 2,5,8,11,14-pentaazapentadecane

PES potential energy surface

PGTO primitive Gaussian type orbital

pz pyrazolyl

QC quantum chemistry

QZ quadruple zeta

RMSD root mean square deviation

SCF self-consistent field

SMM single molecule magnet

STO Slater type orbital

SVL Scientific Vector Language

tcn 1,4,7-triazacyclononane

tetren tetraethylenepentamine

tmpa tris(2-pyridylmethyl)amine

tn 1,3-diaminopropane

tpen N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine

TP− hydrotris(pyrazolyl)borate
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TPP tetraphenylphosphonium

tren tris(2-aminoethyl)amine

TZ triple zeta

ZFS zero-field splitting
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2 Appendix A - List of Transition Metal

Complexes used for the Calculation of

Exchange Coupling Constants

2.1 Polynuclear

(a) [HO-Cr(cyclam)-NC-Cr(CN)5]-

(TPP+ counterion)
(b) [HO-Cr(cyclam)-NC-Cr(CN)5]-

(Na+ counterion)

(c) trans-Cr[MnL1]2Cl (d) trans-Fe[MnL1]2Cl

(e) trans-Fe[MnL1]2PF6

Figure 6.2.1
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(f) [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+

Figure 6.2.1
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2.2 Dinuclear

(a) [Cu2(MeC(OH)(PO3)2)2]4- (b) [(Et5dien)2Cu2(µ-C2O4)]2+

(c) [Mn(Me6-[14]ane-N4)Cu(oxpn)]2+ (d) [(µ-OCH3)VO(maltolato)]2

(e) [Fe2OCl6]2- (f) [MnMn(µ-O)2(µ-OAc)DTNE]2+

(g) [Cu2(µ-OH)2(bipym)2]2+ (h) [(Dopn)Cu(OH2)Cr(OCH3)L]2+

Figure 6.2.2
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(i) [(Dopn)Cu(µ-CH3COO)MnL]2+ (j) [V2O2(µ-OH)2([9]aneN3)2]2+

(k) [Et3NH]2[(VO)2(BBAC)2] (l) [HB(pz)3VO(OH)2]2

(m) [(VO)2(cit)(Hcit)]3- (n) [V2O2(µ-OH)(tpen)]2+

Figure 6.2.2
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(o) [(VO)2L(µ-SO4)] (p) [V2O2(OH)(C4O4)2(H2O)3]-

(q) [(VO(Hsabhea))2] (r) [(VO(Hsabhea))(VO(acac)(HOMe))
(µ2-OMe)]

(s) [Cu2(tren)2CN]
(ClO4 counterions not shown)

(t) [Cu2(tren)2CN]
(BF4 counterions not shown)

Figure 6.2.2
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(u) [Cu2(tren)2CN]
(ClO4/PF6 counterions not shown)

(v) [Cu2(tmpa)2CN]
(ClO4 counterions not shown)

(w) [Cu2(tmpa)2CN]
(BF4 counterions not shown)

(x) [Cu2(tmpa)2CN]
(BF4 counterions and CH3CN present in the
crystal not shown)

(y) [Ni2(tetren)2CN]
([Cr(CN)6] counterion not shown)

Figure 6.2.2
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3 Appendix B - List of Transition Metal

Complexes used for Parametrizations

3.1 Cyclam-based

(a) trans-[Co(L)(N3)2]+

L=C-meso-5,12-
dimethyl-1,4,8,11-
tetraazacyclotetradecane
(AZMTCO [231])

(b) trans-
[Cr([14]aneN4)(OCONH2)2]+

(BINPET[232])

(c) [Co([14]aneN4)]2+

(COANEC[233])

(d) trans-
[Cu([14]aneN4)(O2COCH3)2]
(DOHXON[234])

(e) cis-
[Ni([14]aneN4)(OH2)2]2+

(FAGVUE[235])

(f) trans-
[Co(diammac)]3+

(FEBZOB[236])

Figure 6.3.1
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(g) [Co(diammac)]3+

(FEBZOB10[237])
(h) [Cu([14]aneN4)]2+

(HAFSUC[238])
(i) cis-[Cr(diammac)]3+

(HAHLOR [239])

(j) trans-
[Co([14]aneN4)(OH2)(COCH3)]2+

(PASGAR[240])

(k) trans-
[Fe(diammac)]3+

(SANLAU [241])

(l) cis-
[Co([14]aneN4)(en)]3+

(TZCECO[242])

(m) cis-
[Cr([14]aneN4)(en)]3+

(WAMWOW [243])

(n) cis-
[Cr([14]aneN4)(OH2)(OH)]2+

(WESLAH[244])

(o) trans-[Ni(OH2)2(cyclam)]2+

(ZIQXOM [245])

(p) trans-
[Fe(diammac)]3+

(ZUSCIZ[246])

(q) trans-
[Cr([14]aneN4)(OH2)(OH)]2+

(ZUZSOC[247])

Figure 6.3.1138
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3.2 CuII

Please note: axial ligands, which may be present in the crystal of the complexes shown here, have

been left out for the parametrization process. The structures are therefore identical to the training set

used by Deeth et al.[9]. It is assumed, that the additional ligands do not have a pronounced effect on

the parametrization of the CU2-NT ligand field interaction.

(a) [Cu(en)2]2+

(CEDHAU[248])

(b) [Cu(deen)2]2+

(CEFBEU[249])

(c) [Cu(chn)2]2+

(CHXCUA [250])

(d) [Cu(med)2]2+

(CMENOX[251])

(e) [Cu(en)3]2+

(CUENCL[252])

(f) [Cu(tn)2]2+

(DAPRCU[253])

Figure 6.3.2
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(g) [Cu(dmed)2]2+

(DMEDCU[254])
(h) [Cu(tcn)2]2+

(DUSJAC01[228])

(i) [Cu(dien)2]2+

(ETACUB[229])
(j) [Cu(nen)2]2+

(ETEACU[255])

(k) [Cu(apt)2]2+

(JIBZUP[256])
(l) [Cu(papd)2]2+

(LATSII [257])
(m) [Cu(adt)2]2+

(TENCUB[258])

Figure 6.3.2
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4 Appendix C - Momec Force Field

Parameters (April 2011) [56–61]

4.1 Atom Types

atom 1
chemical

mass[u] harmonic
multiple 1,3-

twist
environment harmonic interaction

H hydrogen 1.010 1 0 0 0

LP lone pair 3.000 1 0 0 0

C
N

C
C

O

C 12.010 1 0 0 0

C3 C N 12.010 1 0 0 0

CA
C

**

* *

* N
C

N

NH

12.010 1 0 0 0

CAH

**

N

C

*

H

*N

*

C

*

H

12.010 1 0 0 0

CB
N

C
C

C

C O

N

12.010 1 0 0 0

N
C

N

C

C C

N
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atom 1
chemical

mass[u] harmonic
multiple 1,3-

twist
environment harmonic interaction

CCC C
CC

*

O O

12.010 1 0 0 0

CCO

*
C

O

O

12.010 1 0 0 0

CFC

*

* *

* *

C

*
*

12.010 1 0 0 0

CI
* C

H

N Cu
12.010 1 0 0 0

CK
N

C
N

*

CC 12.010 1 0 0 0

CMC 12.010 1 0 0 0

COC
C

*

O C

C
O

12.010 1 0 0 0

CON

*
C

N

O

12.010 1 0 0 0

CT carbon 12.010 1 0 0 0

N*

N

C

N
C

C
**

*

N

* 14.010 1 0 0 0

N3 N C 14.010 1 0 0 0

NA

O

C

N

C
N

C

C

N

C

N

N
14.010 1 0 0 0
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atom 1
chemical

mass[u] harmonic
multiple 1,3-

twist
environment harmonic interaction

NAH

**

C

N

*
H

14.010 1 0 0 0

NAX

**

C

N

*
H

Cu

14.010 1 0 0 0

NB

O

C

C
N

C

N

14.010 1 0 0 0

ND

O

C

N *

14.010 1 0 0 0

NI
* C

H

N Cu
14.010 1 0 0 0

NOO

O

N O
14.010 1 0 0 0

NP
*

*

N
*

*

*

14.010 1 0 0 0

NT nitrogen 14.010 1 0 0 0

O

O

C

C N

C C

16.000 1 0 0 0

O2
O C O

16.000 1 0 0 0
O P

OC

O

C
O

16.000 1 0 0 0
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atom 1
chemical

mass[u] harmonic
multiple 1,3-

twist
environment harmonic interaction

OCC

O

C

C

C

O

16.000 1 0 0 0

OCCT

O

C

C

C

O

16.000 1 0 0 0

OCO

O

C

O

O

C

N

16.000 1 0 0 0

OH O P 16.000 1 0 0 0

ONO
O

N
O

16.000 1 0 0 0

OP

O

Cu

*

*

*

*

16.000 1 0 0 0

OR
C

O
C

16.000 1 0 0 0

OS
C

O
P

16.000 1 0 0 0

OW oxygen 16.000 1 0 0 0

OXCO
Co

O
O

Co 16.000 1 0 0 0

OXCU
Cu

O
O

Cu 16.000 1 0 0 0

P phosphorus 30.970 1 0 0 0

SW sulfur 32.060 1 0 0 0

CL chlorine 35.450 1 0 0 0
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atom 1
chemical

mass[u] harmonic
multiple 1,3-

twist
environment harmonic interaction

TI3 titanium(III) 47.880 0 1 1 0

TI4 titanium(IV) 47.880 0 1 1 0

V3 vanadium(III) 50.940 0 1 1 0

CR2 chromium(II) 52.000 0 1 1 0

CR3 chromium(III) 52.000 0 1 1 0

MN3 manganese(III) 54.940 0 1 1 0

FE iron 55.850 0 1 1 0

FE2H high-spin iron(II) 55.850 0 1 1 0

FE2L low-spin iron(II) 55.850 0 1 1 0

FE3H high-spin iron(III) 55.850 0 1 1 0

FE3L low-spin iron(III) 55.850 0 1 1 0

FECP Fe 55.850 0 1 1 0

NI2 nickel(II) 58.700 0 1 1 0

NI2C Ni

O

C O

*

*

*

*

*

58.700 0 1 1 0

NI2P Ni

N
*

*

*

*

*

*

58.700 0 1 1 0

NI2T tetracoordinated nickel(II) 58.700 0 1 1 0

CO2 cobalt(II) 58.930 0 1 1 0

CO2T tetracoordinated cobalt(II) 58.930 0 1 1 0

CO3 cobalt(III) 58.930 0 1 1 0

CO3C

Co O

C

O

Co O

C 58.930 0 1 1 0
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atom 1
chemical

mass[u] harmonic
multiple 1,3-

twist
environment harmonic interaction

CU1 copper(I) 63.550 0 1 1 0

CU2 copper(II) 63.550 0 1 1 0

CU2C

Cu O

C

O

63.550 0 1 1 0

CU2P
Cu N

C

63.550 0 3 3 0

CU2T tetracoordinated copper(II) 63.550 0 1 1 0

ZN2 zinc(II) 65.380 0 1 1 0

ZN2T tetracoordinated zinc(II) 65.380 0 1 1 0

BR bromine 79.900 1 0 0 0

Y3 yttrium(III) 88.910 0 1 1 0

RH3 rhodium(III) 102.910 0 1 1 0

I iodine 126.900 1 0 0 0

LA3 lanthanum(III) 138.910 0 1 1 0

CE3 cerium(III) 140.120 0 1 1 0

PR3 praseodymium(III) 140.910 0 1 1 0

ND3 neodymium(III) 144.240 0 1 1 0

PM3 promethium(III) 146.920 0 1 1 0

SM3 samarium(III) 150.360 0 1 1 0

EU3 europium(III) 151.970 0 1 1 0

GD3 gadolinium(III) 157.250 0 1 1 0

TB3 terbium(III) 158.930 0 1 1 0

DY3 dysprosium(III) 162.500 0 1 1 0

HO3 holmium(III) 164.930 0 1 1 0

ER3 erbium(III) 167.260 0 1 1 0

TM3 thulium(III) 168.930 0 1 1 0

YB3 ytterbium(III) 173.040 0 1 1 0

LU3 lutetium(III) 174.970 0 1 1 0

PT2 platinum(III) 195.080 0 1 1 0

PT4 platinum(IV) 195.080 0 1 1 0

U6 uranium(III) 238.030 0 1 1 0
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4.2 Stretch Interactions

atom 1 atom 2 k[mdyn/Å] r0 [Å] atom 1 atom 2 k[mdyn/Å] r0 [Å]

C CB 6.210 1.419 CI NT 6.700 1.317

C NA 5.810 1.388 CK H 5.000 0.970

C O 7.920 1.229 CK N* 6.120 1.371

C3 N3 8.000 1.107 CK NB 7.350 1.304

CA CA 7.400 1.377 CO2 NP 0.820 2.100

CA CFC 7.400 1.377 CO2 NT 0.820 2.120

CA CON 7.400 1.377 CO2T ND 0.820 1.780

CA CT 5.000 1.500 CO2T NP 0.820 1.960

CA H 5.000 0.970 CO3 NI 1.750 1.905

CA NA 5.940 1.381 CO3 NP 1.750 1.865

CA NP 6.500 1.335 CO3 NT 1.750 1.905

CA NT 6.690 1.340 CO3C NP 1.750 1.865

CAH CA 1.500 1.380 CO3C NT 1.750 1.915

CAH CAH 1.300 1.335 CO3C OC 1.400 1.860

CAH CI 4.500 1.450 CO3C OCC 1.400 1.880

CAH CT 3.000 1.490 CO3P OXCO 1.750 1.840

CAH H 5.000 0.970 COC CT 5.000 1.500

CAH NAH 1.500 1.340 COC OCC 7.400 1.275

CAH NAX 2.500 1.340 COC OCCT 7.400 1.275

CAH NI 4.500 1.440 CON CT 5.000 1.500

CB CB 7.220 1.370 CON ND 6.500 1.310

CB N* 6.060 1.374 CON OCO 9.000 1.260

CB NA 6.410 1.354 CR3 NP 1.000 1.985

CB NB 5.750 1.391 CR3 NT 1.100 2.045

CCO OC 8.000 1.290 CR3 OC 0.750 1.935

CCO OCO 9.000 1.220 CT CT 5.000 1.500

CE3 O2 0.053 2.370 CT CTO 5.000 1.500

CE3 OH 0.053 2.370 CT CTOC 5.000 1.500

CFC CFC 5.000 1.470 CT H 5.000 0.970

CFC COC 5.000 1.470 CT N* 4.690 1.475

CFC NP 6.500 1.335 CT NAH 3.000 1.450

CI CA 5.000 1.460 CT ND 6.000 1.490

CI CI 15.000 1.526 CT NOO 5.000 1.530

CI CT 5.000 1.500 CT NT 6.000 1.490

CI H 3.900 0.950 CT OP 3.500 1.410

CI NI 7.200 1.270 CT OR 5.000 1.400
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atom 1 atom 2 k[mdyn/Å] r0 [Å] atom 1 atom 2 k[mdyn/Å] r0 [Å]

CT OW 0.500 1.340 ER3 O2 0.074 2.150

CT SW 2.640 1.820 ER3 OH 0.074 2.150

CTO CTO 5.000 1.505 EU3 O2 0.067 2.245

CTO CTOC 5.000 1.510 EU3 OH 0.067 2.245

CTOC CTOC 5.000 1.490 FE3H OC 1.000 1.990

CTOC NOO 5.000 1.528 FE3H OW 0.500 1.900

CTOC NTO 6.000 1.480 FE3L C3 1.700 1.923

CU1 NI 0.700 2.000 FE3L NP 1.700 1.925

CU1 NT 0.100 2.220 FE3L NT 1.700 1.950

CU2 ND 0.600 1.920 GD3 O2 0.069 2.226

CU2 NP 0.600 1.940 GD3 OH 0.069 2.226

CU2 NT 0.600 1.970 GD3 OW 0.069 2.226

CU2 OC 0.800 1.900 H NA 6.030 0.910

CU2 ONO 0.100 2.500 H NT 5.640 0.910

CU2 OP 0.100 2.150 H OP 5.000 0.910

CU2 OW 0.100 2.500 H OW 5.000 0.910

CU2 SW 0.600 2.290 HO3 O2 0.073 2.178

CU2C ND 0.600 1.920 HO3 OH 0.073 2.178

CU2C NP 0.600 1.940 HO3 OW 0.073 2.178

CU2C NT 0.600 1.970 LA3 O2 0.049 2.409

CU2C OC 0.800 1.900 LA3 OH 0.049 2.409

CU2C OW 0.100 2.500 LA3 OW 0.049 2.409

CU2C SW 0.600 2.290 LU3 O2 0.076 2.038

CU2P NAH 0.900 1.940 LU3 OH 0.076 2.038

CU2P NAX 0.300 2.300 LU3 OW 0.076 2.038

CU2P ND 0.600 1.920 MN3 OC 0.300 1.950

CU2P NP 0.600 1.940 NAH H 5.000 0.910

CU2P NT 0.600 1.970 NAH NAH 1.500 1.360

CU2P OC 0.800 1.900 NAH NAX 1.500 1.360

CU2P ONO 0.100 2.500 ND3 O2 0.058 2.320

CU2P OP 0.100 2.150 ND3 OH 0.058 2.320

CU2P OW 0.100 2.500 ND3 OW 0.058 2.320

CU2P OXCU 0.600 1.830 NI CT 4.000 1.420

CU2T ND 0.600 1.890 NI2 NT 0.600 2.090

CU2T NP 0.600 1.940 NI2C NP 0.600 2.025

DY3 O2 0.072 2.195 NI2C NT 0.600 2.035

DY3 OH 0.072 2.195 NI2C OC 0.650 2.040

DY3 OW 0.072 2.195 NI2P NP 0.600 2.025
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atom 1 atom 2 k[mdyn/Å] r0 [Å] atom 1 atom 2 k[mdyn/Å] r0 [Å]

NI2P NT 0.600 2.050 SM3 OW 0.064 2.258

NI2T ND 0.600 1.760 TB3 O2 0.071 2.213

NI2T NP 0.600 1.855 TB3 OH 0.071 2.213

NOO ONO 6.500 1.213 TI3 OC 0.800 2.080

OC CT 8.000 2.000 TI3 OW 0.500 2.035

OXCO OXCO 3.250 1.470 TI4 OCC 1.500 1.980

OXCU OXCU 3.250 1.430 TI4 OCCT 1.500 2.040

P O2 7.297 1.448 TI4 OW 0.500 1.722

P OH 3.197 1.665 TM3 O2 0.075 2.215

P OS 3.197 1.686 TM3 OH 0.075 2.215

PM3 O2 0.062 2.285 V3 OC 0.500 1.920

PM3 OH 0.062 2.285 V3 OW 0.500 1.980

PR3 O2 0.056 2.345 Y3 O2 0.074 2.160

PR3 OH 0.056 2.345 Y3 OH 0.074 2.160

PR3 OW 0.056 2.345 YB3 O2 0.076 2.095

PT2 NB 2.540 2.010 YB3 OH 0.076 2.095

PT2 NT 2.540 2.030 YB3 OW 0.076 2.095

RH3 NT 1.750 2.050 ZN2 ND 0.350 2.000

SM3 O2 0.064 2.258 ZN2 NP 0.350 2.100

SM3 OH 0.064 2.258 ZN2 NT 0.350 2.220

4.3 Bend Interactions

atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad] atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad]

CB C NA 0.970 1.943 CAH CA H 0.450 2.122

CB C O 1.110 2.248 CFC CA H 0.450 2.094

NA C O 1.110 2.105 CFC CA NP 0.970 2.094

FE3L C3 N3 0.450 3.141 CI CA CA 0.250 2.094

CA CA CA 0.970 2.094 CON CA NP 0.970 2.094

CA CA CFC 0.970 2.094 CT CA NP 0.450 2.094

CA CA CON 0.970 2.094 H CA NP 0.450 2.094

CA CA CT 0.450 2.094 NA CA NA 0.970 2.152

CA CA H 0.450 2.094 NA CA NT 0.970 2.025

CA CA NP 0.970 2.094 NA CA NT 0.970 2.091

CA CA NT 0.450 2.094 CAH CAH CA 0.150 2.122

CAH CA CA 0.450 2.024 CAH CAH CAH 0.100 1.850
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atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad] atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad]

CAH CAH CI 0.650 2.304 NP CO2 NP 0.023 1.571

CAH CAH CT 0.650 2.274 NT CO2 NT 0.017 1.571

CAH CAH H 0.450 2.215 NP CO3 NP 0.050 1.571

CAH CAH NAH 0.150 1.955 NP CO3 NT 0.050 1.571

CAH CAH NAX 0.150 1.955 NT CO3 NT 0.050 1.571

CI CAH NAH 0.650 2.112 NP CO3C NP 0.050 1.571

CT CAH NAH 0.650 2.112 NP CO3C NT 0.050 1.571

CT CAH NAX 0.650 2.112 NT CO3C NT 0.050 1.571

NAH CAH CA 0.150 2.292 NT CO3C OC 0.045 1.571

NAH CAH H 0.350 2.094 NT CO3C OCC 0.045 1.571

NAH CAH NAH 0.150 1.955 OC CO3C OC 0.040 1.571

C CB CB 1.180 2.080 OCC CO3C OCC 0.040 1.571

C CB NB 0.970 2.269 CCC COC CFC 0.350 2.094

CB CB N* 0.970 1.854 CCC COC CT 0.350 2.094

CB CB NA 0.970 2.229 CCC COC OCC 0.970 2.094

CB CB NB 0.970 1.911 CCC COC OCCT 0.970 2.094

NA CB N* 0.970 2.199 CFC COC OCC 0.350 2.094

COC CCC COC 0.970 2.094CFC COC OCCT 0.350 2.094

COC CCC H 0.970 2.094 CT COC OCC 0.350 2.094

CT CCO OC 0.250 2.067 CT COC OCCT 0.350 2.094

CT CCO OCO 0.250 2.067 CA CON ND 0.250 2.067

OC CCO CCO 0.800 1.993CA CON OCO 0.250 2.067

OC CCO OC 0.250 2.094 CT CON ND 0.250 2.067

OC CCO OCO 0.250 2.149CT CON OCO 0.250 2.067

OCO CCO CCO 0.950 2.115ND CON OCO 0.250 2.094

CA CFC CA 0.970 2.094 NP CR3 NP 0.025 1.571

CA CFC CFC 0.450 2.094 NP CR3 NT 0.025 1.571

CA CFC COC 0.350 2.094 NT CR3 NT 0.025 1.571

CA CFC NP 0.970 2.094 CA CT CA 0.450 1.911

CFC CFC NP 0.450 2.094CA CT CT 0.450 1.911

CA CI H 0.450 2.094 CA CT H 0.360 1.909

CAH CI H 0.450 2.094 CA CT ND 0.450 1.911

CAH CI NI 0.150 2.094 CA CT NT 0.450 1.911

NI CI CA 0.150 2.094 CA CT OP 0.450 1.911

NI CI H 0.450 2.094 CA CT OW 0.450 1.911

H CK N* 0.490 2.148 CAH CT CA 0.450 1.911

H CK NB 0.490 2.148 CAH CT CAH 0.450 1.960

NB CK N* 0.970 1.960 CAH CT CT 0.450 1.960
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atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad] atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad]

CAH CT H 0.360 1.909 H CTO H 0.320 1.911

CAH CT NT 0.450 1.911 ND CU2 ND 0.013 1.571

CAH CT OP 0.450 1.911 ND CU2 NP 0.013 1.571

CAH CT OW 0.450 1.911 ND CU2 NT 0.013 1.571

CCO CT CCO 0.450 1.911 ND CU2 OW 0.007 1.571

CCO CT CT 0.450 1.911 NP CU2 NP 0.013 1.571

CCO CT H 0.360 1.909 NP CU2 NT 0.013 1.571

CCO CT ND 0.450 1.911 NP CU2 ONO 0.007 1.571

CCO CT NT 0.450 1.911 NP CU2 OW 0.007 1.571

COC CT H 0.350 1.909 NP CU2 SW 0.013 1.571

CON CT CON 0.450 1.911 NT CU2 NT 0.013 1.571

CON CT CT 0.450 1.911 NT CU2 ONO 0.007 1.571

CON CT H 0.360 1.909 NT CU2 OW 0.007 1.571

CON CT NT 0.450 1.911 NT CU2 SW 0.013 1.571

CT CT CT 0.450 1.911 ONO CU2 ONO 0.002 3.141

CT CT H 0.360 1.909 ONO CU2 OW 0.002 1.571

CT CT N* 0.500 1.909 ONO CU2 SW 0.007 1.571

CT CT NAH 0.450 1.911 OW CU2 OW 0.002 3.141

CT CT ND 0.450 1.911 OW CU2 SW 0.007 1.571

CT CT NOO 0.450 1.911 SW CU2 SW 0.013 1.571

CT CT NT 0.450 1.911 ND CU2C ND 0.013 1.571

CT CT OW 0.450 1.911 ND CU2C NP 0.013 1.571

CT CT SW 0.690 1.911 ND CU2C NT 0.013 1.571

H CT H 0.320 1.902 ND CU2C OC 0.015 1.571

H CT N* 0.360 1.909 ND CU2C OW 0.007 1.571

H CT ND 0.360 1.909 NP CU2C NP 0.013 1.571

H CT NT 0.360 1.909 NP CU2C NT 0.013 1.571

H CT OW 0.360 1.909 NP CU2C ONO 0.007 1.571

H CT SW 0.450 1.911 NP CU2C OW 0.007 1.571

NAH CT H 0.360 1.909 NP CU2C SW 0.013 1.571

NAH CT OP 0.450 1.885 NT CU2C NT 0.013 1.571

NAH CT OW 0.450 1.885 NT CU2C OC 0.015 1.571

NI CT CT 0.450 1.911 NT CU2C ONO 0.007 1.571

NI CT H 0.450 1.911 NT CU2C OW 0.007 1.571

NI CT H 0.450 1.911 NT CU2C SW 0.013 1.571

NT CT NT 0.450 1.911 OC CU2C OC 0.017 1.571

OS CT H 0.485 1.911 OC CU2C OW 0.009 1.571

CT CTO CTO 0.450 1.920 ONO CU2C ONO 0.002 3.141

151



Part VI. Appendices

atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad] atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad]

ONO CU2C OW 0.002 1.571 CA NA CB 0.970 1.958

ONO CU2C SW 0.007 1.571 CA NA H 0.490 2.059

OW CU2C OW 0.002 3.141 CAH NAH CAH 0.150 1.842

OW CU2C SW 0.007 1.571 CAH NAH CT 0.650 2.243

SW CU2C SW 0.013 1.571 CAH NAH CU2P 0.050 2.147

ND CU2P ND 0.013 1.571 CAH NAH H 0.350 2.094

ND CU2P NP 0.013 1.571 CAH NAH NAH 0.200 1.885

ND CU2P NT 0.013 1.571 CU2P NAH NAH 0.200 2.269

ND CU2P OW 0.007 1.571 NAH NAH CT 0.650 2.094

NP CU2P NP 0.013 1.571NAH NAH H 0.350 2.094

NP CU2P NT 0.013 1.571 NAX NAH CAH 0.200 1.885

NP CU2P ONO 0.007 1.571NAX NAH CT 0.650 2.094

NP CU2P OW 0.007 1.571 CAH NAX CU2P 0.100 2.147

NP CU2P SW 0.013 1.571CAH NAX NAH 0.200 1.823

NT CU2P NT 0.013 1.571 CU2P NAX NAH 0.100 2.304

NT CU2P OC 0.015 1.571 CB NB CK 0.970 1.841

NT CU2P ONO 0.007 1.571 PT2 NB CB 0.300 2.221

NT CU2P OW 0.007 1.571 PT2 NB CK 0.300 2.221

NT CU2P SW 0.013 1.571 CT ND CON 0.250 2.067

OC CU2P OC 0.017 1.571CU2 ND CON 0.200 2.094

OC CU2P OW 0.009 1.571 CU2 ND CT 0.200 2.094

ONO CU2P ONO 0.002 3.141CU2C ND CON 0.200 2.094

ONO CU2P OW 0.002 1.571CU2C ND CT 0.200 2.094

ONO CU2P SW 0.007 1.571CU2P ND CON 0.200 2.094

OW CU2P OW 0.002 3.141 CU2P ND CT 0.200 2.094

OW CU2P SW 0.007 1.571 NI2T ND CON 0.200 2.094

SW CU2P SW 0.013 1.571NI2T ND CT 0.200 2.094

ND CU2T ND 0.013 1.571 CI NI CT 0.450 2.094

ND CU2T NP 0.013 1.571 CI NI CU2P 0.100 2.356

NP CU2T NP 0.013 1.571 CT NI CI 0.450 2.007

NP FE3L NP 0.042 1.571 CT NI CU2P 0.200 1.920

NP FE3L NT 0.042 1.571 CU1 NI CI 0.100 2.356

NT FE3L NT 0.042 1.571 CU1 NI CT 0.100 1.912

CB N* CK 0.970 1.859 NP NI2 NT 0.025 1.571

CB N* CT 0.970 2.196 NT NI2 NT 0.025 1.571

CK N* CT 0.970 2.248 NP NI2C NP 0.025 1.571

C NA CA 0.970 2.206 NP NI2C NT 0.025 1.571

C NA H 0.490 2.039 NP NI2C OC 0.026 1.571
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atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad] atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad]

NT NI2C NT 0.025 1.571 CO2 NT CT 0.200 1.920

NT NI2C OC 0.026 1.571 CO2 NT H 0.100 1.915

OC NI2C OC 0.027 1.571 CO3 NT CA 0.200 1.920

NP NI2P NP 0.025 1.571 CO3 NT CT 0.200 1.920

NP NI2P NT 0.025 1.571 CO3 NT H 0.100 1.915

NT NI2P NT 0.025 1.571 CO3C NT CA 0.200 1.920

ND NI2T ND 0.025 1.571 CO3C NT CT 0.200 1.920

NT NI2T ND 0.025 1.571 CO3C NT H 0.100 1.915

NT NI2T NT 0.025 1.571 CR3 NT CT 0.200 1.920

CT NOO ONO 0.450 2.059 CR3 NT H 0.100 1.915

ONO NOO ONO 0.650 2.164 CT NT CT 0.450 1.911

CA NP CA 0.970 2.094 CT NT H 0.450 1.909

CA NP CFC 0.970 2.094 CU1 NT CT 0.200 1.920

CFC NP CFC 0.970 2.094CU1 NT H 0.100 1.915

CO2 NP CA 0.200 2.094 CU2 NT CA 0.200 1.920

CO2 NP CFC 0.200 2.094CU2 NT CT 0.200 1.920

CO3 NP CA 0.200 2.094 CU2 NT H 0.100 1.915

CO3 NP CFC 0.200 2.094CU2C NT CA 0.200 1.920

CO3 NP CT 0.200 2.094 CU2C NT CT 0.200 1.920

CO3C NP CA 0.200 2.094 CU2C NT H 0.100 1.915

CO3C NP CFC 0.200 2.094CU2P NT CA 0.200 1.920

CO3C NP CT 0.200 2.094 CU2P NT CT 0.200 1.920

CR3 NP CA 0.200 2.094 CU2P NT H 0.100 1.915

CR3 NP CFC 0.200 2.094FE3L NT CT 0.200 1.920

CU2 NP CA 0.200 2.094 FE3L NT H 0.100 1.915

CU2 NP CFC 0.200 2.094 H NT H 0.330 1.902

CU2C NP CA 0.200 2.094 NI2 NT CT 0.200 1.920

CU2C NP CFC 0.200 2.094NI2 NT H 0.100 1.915

CU2P NP CA 0.050 2.094 NI2C NT CT 0.200 1.920

CU2P NP CFC 0.200 2.094NI2C NT H 0.100 1.915

FE3L NP CA 0.200 2.094 NI2P NT CT 0.200 1.920

FE3L NP CFC 0.200 2.094 NI2P NT H 0.100 1.915

NI2C NP CA 0.200 2.094 NI2T NT CT 0.200 1.920

NI2C NP CFC 0.200 2.094 NI2T NT H 0.100 1.915

NI2P NP CA 0.200 2.094 PT2 NT CT 0.200 1.920

NI2P NP CFC 0.200 2.094 PT2 NT H 0.100 1.915

CA NT CT 0.450 1.911 RH3 NT CT 0.200 1.920

CA NT H 0.450 1.909 RH3 NT H 0.100 1.915

153



Part VI. Appendices

atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad] atom 1 atom 2 atom 3 k[mdyn/rad] a0 [rad]

ZN2 NT CT 0.200 1.920 CU2C OP H 0.100 1.915

ZN2 NT H 0.100 1.915 CU2P OP CU2P 0.100 1.745

CO3 OC CCO 0.050 2.094CU2P OP H 0.100 1.915

CO3C OC CCO 0.050 2.094H OP H 0.320 1.902

CR3 OC CCO 0.400 1.998CT OR CT 0.750 1.911

CU2C OC CCO 0.050 2.094P OS CT 1.386 2.065

CU2P OC CCO 0.050 2.094CU2 OW H 0.100 1.915

CU2P OC CU2P 0.100 1.830CU2C OW H 0.100 1.915

FE3H OC CCO 0.750 2.030CU2P OW CU2P 0.100 1.745

MN3 OC CCO 0.300 2.028 CU2P OW H 0.100 1.915

NI2C OC CCO 0.050 2.094 H OW H 0.320 1.902

TI3 OC CCO 0.450 2.062 TI4 OW CT 0.050 1.915

V3 OC CCO 0.500 2.030 CO3 OX OX 0.500 1.911

CO3C OCC COC 0.600 2.094CU2P OX OX 0.500 1.911

TI4 OCC COC 0.600 2.094 O2 P OS 1.386 2.003

TI4 OCCT COC 0.600 2.094 OH P O2 0.624 2.011

P OH H 0.624 2.039 OH P OS 0.624 1.764

CU2 ONO NOO 0.320 2.094 OS P OS 0.624 1.716

CU2C ONO NOO 0.320 2.094CT SW CT 0.500 1.740

CU2P ONO NOO 0.320 2.094CU2 SW CT 0.100 1.920

CT OP CU2P 0.200 2.094CU2C SW CT 0.100 1.920

CU2 OP H 0.100 1.915 CU2P SW CT 0.100 1.920

4.4 Torsion Interactions

atom 1 atom 2 atom 3 atom 4 k[mdyn/rad] multiplicity t0 [rad]

** C CB ** 0.007 2.000 1.571

** C NA ** 0.009 2.000 1.571

** CA CA ** 0.050 2.000 1.571

** CA CFC ** 0.050 2.000 1.571

** CA CON ** 0.003 2.000 1.571

** CA CT ** 0.005 6.000 0.524

** CA NA ** 0.010 2.000 1.571

** CA NP ** 0.050 2.000 1.571

** CA NT ** 0.001 6.000 0.524

** CA OW ** 0.150 3.000 4.680
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atom 1 atom 2 atom 3 atom 4 k[mdyn/rad] multiplicity t0 [rad]

** CA CCO ** 0.005 2.000 1.571

** CAH CA ** 0.065 2.000 1.571

** CAH CAH ** 0.015 2.000 1.571

** CAH CI ** 0.025 2.000 1.571

** CAH CT ** 0.001 6.000 0.524

** CAH NAH ** 0.009 2.000 1.571

** CAH NAX ** 0.003 2.000 1.571

** CAH NI ** 0.003 2.000 1.571

** CB CB ** 0.028 2.000 1.571

** CB N* ** 0.011 2.000 1.571

** CB NA ** 0.014 2.000 1.571

** CB NB ** 0.009 2.000 1.571

** CCC COC ** 0.030 2.000 1.571

** CCO CCO ** 0.000 2.000 3.097

** CCO CT ** 0.001 6.000 0.524

** CCO OC ** 0.005 2.000 1.571

** CFC CFC ** 0.030 2.000 1.571

** CFC COC ** 0.030 2.000 1.571

** CFC NP ** 0.003 2.000 1.571

** CI NT ** 0.001 6.000 0.524

** CI CT ** 0.001 6.000 0.524

** CI CA ** 0.010 6.000 1.571

** CK N* ** 0.011 2.000 1.571

** CK N* ** 0.011 2.000 1.571

** CK NB ** 0.034 2.000 1.571

** CK NB ** 0.034 2.000 1.571

** COC CT ** 0.005 6.000 0.524

** COC OCC ** 0.030 2.000 1.571

** COC OCCT ** 0.030 2.000 1.571

** CON CT ** 0.001 6.000 0.524

** CON ND ** 0.005 2.000 1.571

** CT CT ** 0.002 3.000 0.000

** CT NAH ** 0.001 6.000 0.524

** CT ND ** 0.001 6.000 0.524

** CT NOO ** 0.003 6.000 0.524

** CT NT ** 0.001 3.000 0.000

** CT OP ** 0.001 3.000 0.000

** CT OW ** 0.008 3.000 0.000
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atom 1 atom 2 atom 3 atom 4 k[mdyn/rad] multiplicity t0 [rad]

** CT SW ** 0.001 3.000 0.000

** CTO CTO ** 0.011 3.000 0.000

** CTO CTOC ** 0.011 3.000 0.000

** CTOC CTOC ** 0.011 3.000 0.000

** CU2P NAH ** 0.005 2.000 0.262

** CU2P NP ** 0.005 2.000 0.262

** NAH NAH ** 0.020 2.000 1.571

** NAH NAX ** 0.065 2.000 1.571

** NI CI ** 0.025 2.000 1.571

** NI CI ** 0.025 2.000 1.571

** NI CT ** 0.000 2.000 0.524

** O2 P ** 0.052 3.000 0.390

** OH P ** 0.052 3.000 0.635

** OR CT ** 0.008 3.000 0.000

** OS CT ** 0.080 3.000 0.050

** OS P ** 0.052 3.000 0.390

** OXCO OXCO ** 0.900 2.000 0.000

** OXCU OXCU ** 0.900 2.000 0.000

** PT2 NB ** 0.000 2.000 2.094

** PT2 NT ** 0.000 2.000 2.094

** SAH CAH ** 0.015 2.000 1.571

4.5 Non-bonded Interactions

atom 1 rvdW [Å] ǫ atom 1 rvdW [Å] ǫ atom 1 rvdW [Å] ǫ

C 1.900 0.044 CU2 0.000 0.000 O 1.700 0.055

C3 1.900 0.044 CU2C 0.000 0.000 OC 1.700 0.055

CA 1.900 0.044 CU2P 0.000 0.000 OCC 1.700 0.055

CAH 1.900 0.044 FE3L 0.000 0.000 OCCT 1.700 0.055

CB 1.900 0.044 H 1.440 0.024 OCO 1.700 0.055

CCC 1.900 0.044 N* 1.800 0.052 ONO 1.700 0.055

CCO 1.900 0.044 N3 1.800 0.052 OP 1.700 0.055

CFC 1.900 0.044 NA 1.800 0.052 OR 1.700 0.055

CI 1.900 0.044 NAH 1.800 0.052 OW 1.700 0.055

CK 1.900 0.044 NB 1.800 0.052 OXCU 1.700 0.055

CO2 0.000 0.000 ND 1.800 0.050 PT2 1.650 0.300
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atom 1 rvdW [Å] ǫ atom 1 rvdW [Å] ǫ atom 1 rvdW [Å] ǫ

CO3 0.000 0.000 NI 1.800 0.050 PT4 0.000 0.000

CO3C 0.000 0.000 NI2 0.000 0.000 RH3 0.000 0.000

COC 1.900 0.044 NI2C 0.000 0.000 SAH 2.000 0.185

CON 1.900 0.044 NI2P 0.000 0.000 SW 2.000 0.185

CR2 0.000 0.000 NOO 1.800 0.050 TI4 0.000 0.000

CR3 0.000 0.000 NP 1.800 0.050 ZN2 0.000 0.000

CT 1.900 0.044 NT 1.800 0.050

4.6 Out-of-plane Interactions

atom 1 atom 2 atom 3 atom 4 k[mdyn/rad] atom 1 atom 2 atom 3 atom 4 k[mdyn/rad]

CA CAH CA H 2.000 CCO OC OC OC 0.500

CA NP CA H 2.000 CI NI CAH H 1.500

CA NP CA CU2P 2.000 CO2T ND NI NA 0.070

CAH NAH CAH CU2P 2.000 COC CCC OCC CFC 0.500

CA NP CT H 2.000 COC CCC OCC CT 0.500

CA NP CA CCO 2.000 COC CCC OCCT CFC 0.500

CAH CAH CA NAH 2.000 COC CCC OCCT CT 0.500

CAH CAH CAH H 2.000 CCO CA OCO OC 0.120

CAH CAH NAH CT 2.000 CON CT OCO ND 0.120

CAH CAH NAH CI 2.000 CU2T ND NI NA 0.050

CAH CAH NAH H 2.000 NI2T ND NI NA 0.070

CAH CAH NAX CT 2.000 NOO CT ONO ONO 0.120

CAH CAH SAH H 2.000 OW CT CU2P CU2P 0.500

CAH NAH NAH CI 2.000 PT2 NB NB NT 1.000

CAH NAH NAH H 2.000 PT2 NB NT NB 1.000

CAH NAH NAH CT 2.000 PT2 NB NT NT 1.000

CCC COC COC H 0.500 PT2 NT NB NB 1.000

CCO CT OCO OC 0.120 PT2 NT NT NB 1.000
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