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In this paper, we propose a geometric multigrid method for fluid-structure
interaction problems in ALE coordinates. We aim at complex three dimen-
sional systems describing the coupled dynamics of an incompressible fluid
with an elastic structure. The equations in ALE formulation are discretized
with stabilized finite elements on adaptively refined meshes.

The focus of this work is on the geometric multigrid method used to solve
the linearized equations. Key is the construction of a smoothing operation
based on a splitting of the problem into a fluid and structure part.

Besides analyzing the multigrid method, we will demonstrate the efficiency
of the resulting solver on a complex three dimensional benchmark problem.

1 Introduction

In this work we present a geometric multigrid method for solving three dimensional
fluid structure interaction problems in monolithic formulation. These kind of problems
describe the interaction of an fluid (here incompressible and Newtonian) with an elastic
structure.

Computational fluid mechanics and structure mechanics are two major areas of nu-
merical simulation of physical systems. With the introduction of high performance
computing it has become possible to tackle coupled systems with fluid and structure
dynamics. General examples of such fluid-structure interaction (FSI) problems are flow
transporting elastic particles (particulate flow), flow around elastic structures (e.g., air-
foils) and flow in elastic structures (e.g., heart valves). In all these settings the dilemma
in modeling the coupled dynamics is that the fluid model is normally based on an Eule-
rian perspective in contrast to the usual Lagrangian description of the solid model. This
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makes the setup of a common variational formulation difficult. However, such a varia-
tional formulation of FSI is needed as the basis of a consistent approach to residual-based
a posteriori error estimation and mesh adaptation as well as to the solution of optimal
control problems by the Euler-Lagrange method.

To achieve a closed variational formulation for the FSI problem, usually an auxil-
iary unknown coordinate transformation function Tf is introduced for the fluid domain.
With its help the fluid problem is rewritten on the transformed domain. Then, all
computations are done on the reference domain which is fixed in time. As part of the
computation, the auxiliary transformation function Tf has to be determined at each
time step. Such, so-called arbitrary Lagrangian-Eulerian (ALE) methods are described
for instance in Huerta and Liu [21] or Wall [27].

Traditionally, fsi-problems are treated by partitioned approaches: In every time-step
tn−1 → tn of an outer iteration, the problem is split into the flow problem and into
the structure problem. These problems are solved independently from each other in an
iterative manner, while the interface-condition is considered via boundary conditions in
an explicit manner. These partitioned schemes work well for large scale problems, e.g. in
aeroelasticity, where the coupling is week, see Piperno and Farhat [23], they however fail
to work efficiently, when the coupling gets strong. This is e.g. the case for applications
in hemodynamics, where the ratio of fluid density to solid density is close to one (the
added mass effect), see Causin, Gereau and Nobile [11].

The big advantage of partitioned approaches is that “Smaller and better conditioned
subsystems are solved instead of one overall problem”, see Förster, Wall and Ramm [13].
These subfields, fluid and structure can be treated with existing standard tools. Very
efficient black-box solvers exist for both subproblems. The drawback of these methods
is that many subiterations are necessary to reach convergence of the coupled problem in
every time-step. For strongly coupled problems like in hemodynamics these iteration can
even fail to converge, see various contributions in [9]. Further, Heil an co-workers [16]
have stated that even for problems with weak coupling, monolithic solvers can be more
efficient if good solvers exist. They develop efficient preconditioners for Krylov subspace
methods which utilize existing subfield solvers.

Efficient multigrid solvers for FSI problems in a monolithic formulation are still rare.
For two-dimensional problems Turek and co-workers [20] report good results with smoother
of Vanka type, where local sub-problems are solved for smoothing. Subject of the present
paper is to describe a geometric multigrid method for solving the coupled FSI problem.
Instead of using the subfield solvers for preconditioning, we split the problem within the
multigrid smoother. This stems from observations by Brummelen and co-workers [8],
which have stated that partitioned solvers serve as perfect smoothers within a multi-
grid method. In their work, they have theoretically analyzed a specific fluid-structure
interaction system, the panel-problem.

Outline of this paper is as follows. Section 2 (“Formulation”) introduces the basic
notation and we present the coupled ALE formulation of the fluid-structure interaction
problem. Section 3 (“Discretization”) describes the spatial finite element discretization.
In Section 4 (“Multigrid Solver”), the geometric multigrid solver is presented. Section 5
(“Analysis”) is devoted to the numerical examination and theoretical analysis of the

2



MULTIGRID FOR FSI-PROBLEMS

proposed solver. In Section 6 (“Numerical Examples”) numerical examples show the
feasibility and efficiency of the multigrid method and finally, the paper is closed by
Section 7 (“Summary”).

2 Formulation

We start by introducing some basic notation: let Ω ⊂ R3 be an open domain with
polyhedral boundary, split into Ωf and Ωs, both open polyhedral domains in R3 with
Ω̄ = Ω̄f ∪ Ω̄s and Ωf ∩ Ωs = ∅. By Γi := Ω̄f ∩ Ω̄s we denote the interface between the
two subdomains.

We split the boundaries of Ωf and Ωs into Dirichlet and Neumann boundaries: ∂Ωf =
ΓDf ∪ ΓNf ∪ Γi and ∂Ωs = ΓDs ∪ ΓNs ∪ Γi, respectively. For a Lebesgue measurable set

X ⊂ R3, we denote by L2(X) the Lebesgue space of square-integrable functions on X
equipped with the usual inner product and norm

(f, g)X :=

∫
X
fg dx, ‖f‖2X = (f, f)X ,

respectively, and correspondingly for vector- and matrix-valued functions. Mostly the
domain X will be Ω, in which case we will skip the domain index in products and
norms. By (·, ·)f and (·, ·)s we denote the products on the fluid and structure domain,
respectively. Further, by

〈f, g〉Γ :=

∫
Γ
fg ds,

we denote the L2-inner product on a lower-dimensional manifold. Here Γ can be part
of the domain’s boundary ∂Ω or the interface between the two subdomains. By nf and
ns we denote the out-bound unit-normal vectors on the boundary of Ωf and Ωs. The
functions in L2(X) (with X = Ω, X = Ωf , or X = Ωs) with first-order distributional
derivatives in LX make up the Sobolev space H1(X). Further, H1

0 (X; ∂XD) = {v ∈
H1(X) : v|∂XD = 0}, where ∂XD, is that part of the boundary ∂X at which Dirichlet

boundary conditions are imposed, usually ∂XD = ΓD, ∂XD = ΓDf or ∂XD = ΓDs .
In the context of fluid-structure interaction, we need to deal with moving domains.

Under load, the subdomains will change: forces of the fluid will lead to a deformation of
the obstacle Ωs → Ωs(t). This will hence give rise to a modification of the flow domain
Ωf → Ωf (t) and a moved interface Γi(t) = Ω̄f (t) ∩ Ω̄s(t). In this work, we focus on
the stationary case, where we are interested in the limit-configuration Ω→ Ωf (t∞) and
Ω→ Ωs(t∞) only.

On the fluid domain Ωs(t∞), the flow problem is described by the incompressible
Navier-Stokes equations and on the solid domain Ωs(t∞) we use an elastic material
governed by the St. Venant Kirchhoff law. The loaded domain configuration Ω =
Ωf (t∞) ∪ Ωs(t∞) is a priori unknown and part of the problem’s solution.

We use an ALE formulation (see [21] or [18] among many others) to model the fluid-
structure interaction problems: the flow-domain Ωf (t∞) is mapped to a reference flow
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domain Ωf via some mapping Tf : Ωf → Ωf (t∞). Likewise, the solid problem is for-
mulated on the fixed Lagrangian structure domain Ωs given by Ts : Ωs → Ωs(t∞). All
computations are carried out on the fixed reference partitioning Ω = Ωf ∪ Ωs. The
change of domains is implicitly taken care of by means of the transformations Tf and
Ts. The dynamics of the coupled system is driven by the interface conditions asking
for continuity of fluid’s and solid’s velocity as well as continuity of stresses across the
interface Γi. The mapping Ts : Ωs → Ωs(t∞) is defined by the structural deformation us
itself:

Ts(x, t) = x+ us(x, t), Fs := ∇Ts = I +∇us, Js := det(Fs).

We call Fs the deformation gradient. To define a mapping of the flow-domain we intro-
duce the fluid’s deformation uf to define likewise

Tf (x, t) = x+ uf (x, t), Ff := ∇Tf = I +∇uf , Jf := det(Ff ).

In order for uf to produce a feasible transformation, it must be an extension of us into
the flow domain with uf = us on Γi. Several approaches exist for the definition of this
ALE-mapping, see [12], here, we simply define uf as an harmonic extension. In the
following three subsections, we introduce both the fluid and solid problem as well as the
fully coupled fluid-structure interaction problem.

2.1 The Fluid Problem

The principal variables describing the flow field are the velocity vf , pressure pf and
deformation uf .

The fluid problem is formulated as having Dirichlet boundary conditions vf = vs on
the interface Γi. The fluid deformation uf is given as an harmonic extension of the
solid’s deformation us to Ωf . Then, velocity, deformation and pressure are found in the
spaces:

pf ∈ L2(Ωf ), vf ∈ vDf + [H1
0 (Ωf ; ΓDf )]3, uf ∈ uDf + [H1

0 (Ωf ; ∂Ωf )]3,

where vDf ∈ [H1(Ωf )]3 is a suitable extensions of the Dirichlet values on ΓDf := Γin ∪
Γwall ∪ Γi into the domain. While we allow an outflow condition for the velocity on
Γout we use Dirichlet conditions for uf on the complete boundary of Ωf . If no outflow
condition is present Γout = ∅, we restrict the pressure space to L2

0(Ωf ) := L2(Ω)/R in
order to guarantee uniqueness of the solution.

The incompressible Navier-Stokes equations are mapped via Tf to Ωf . See [12] for a
complete derivation of the equations. The solution vf , pf , uf is given by:

(div(JfF
−1
f vf ), ξ)f = 0 ∀ξ ∈ L2(Ωf ),

(JfρfF
−T
f vf ·∇vf , φ)f + (JfσfF

−T
f ,∇φ)f − 〈gout

f , φ〉Γout = 0 ∀φ ∈ [H1
0 (Ωf ; ΓDf )]3

(∇uf ,∇ψ)f = 0 ∀ψ ∈ [H1
0 (Ωf ; ∂Ωf )]3,

(1)
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where the stress-tensor transformed to ALE coordinates is given by

σf := −pfI + ρfνf (∇vF−1
f + F−Tf ∇v

T
f ), (2)

with the fluid’s density ρf and the kinematic viscosity νf . This formulation is well
defined, as long as the ALE-mapping Tf is a C2-diffeomorphism. For simplicity, external
forces have been neglected. The boundary term on Γout is necessary to prevent spurious
feedback of the do-nothing outflow condition, see [17], since using the full symmetric
tensor is necessary when dealing with fsi-problems. gout

f is given by:

gout
f := nf · (JfF−Tf ∇v

T
f F
−T
f ). (3)

2.2 The Structure Problem

The principal variables of the structure problem are the deformation us and the velocity
vs. For stationary problems we have vs = 0 in Ωs. The structure-problem is formulated
as a Neumann-problem taking care of the continuity of stress-fluxes on Γi. We find us
and vs in the spaces

us ∈ [H1
0 (Ωs; ΓDs )]3, vs ∈ [H1

0 (Ωs; ΓDs )]3,

where we assumed for simplicity that only homogenous Dirichlet conditions are given on
ΓDs for the solid’s velocity and deformation. We find the solution as

(JsσsF
−T
s , φ)s − 〈gis, φ〉Γi = 0 ∀φ ∈ [H1

0 (Ωs; ΓDs )]3,

(vs, ψ)f = 0 ∀ψ ∈ [H1
0 (Ωs; ΓDs )]3,

(4)

with the solid’s stress tensor given by

σs := 2µsEs + λstr(Es), Es :=
1

2
(F Ts Fs − I). (5)

Fs is the deformation gradient as mentioned above, ρs the solid’s density and λs and µs
are the Lamé coefficients. On the interface Γi, g

i
s are the fluid’s stresses given by

gis := nf · (JfσfF−Tf ). (6)

2.3 The Fluid-Structure Interaction Problem

If both problems (1) and (4) are solved simultaneously, the coupled FSI problem is
solved. The interface condition is taken care of by the Dirichlet-coupling vf = vs as seen
from the fluid-side and by the Neumann-condition ns · (JsσsF−Ts ) = nf · (JfσfF−Tf ) as
seen from the structure side.

We combine these two problems into one monolithic formulation. To accommodate
with the continuity of deformation and velocity across the interface, we search these
variables as one common field in all Ω. Since there is no demand for continuity here, the
pressure is extended with zero outside of Ωf :

v ∈ vD + [H1
0 (Ω; ΓD)]3, u ∈ [H1

0 (Ω; ∂Ω)]3, p ∈ L2(Ωf )ext,
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where ΓD := ΓDf ∪ ΓDs . Likewise, we define the transformation and its gradient on the
whole domain Ω as

T := x+ u, F := ∇T = I +∇u, J := det(F ).

Then, the solution of the coupled fsi-problem is given by the set of equations:

(div(JF−1v), ξ)f = 0 ∀ξ ∈ L2(Ωf ),

(ρJF−T v · ∇v, φ)f + (JσfF
−T ,∇φ)f + (JσsF

−T ,∇φ)s = 0 ∀φ ∈ [H1
0 (Ω; ΓD)]3,

(∇u,∇ψ)f − 〈nf · ∇u, ψ〉Γi − (v, ξ)s = 0 ∀ψ ∈ [H1
0 (Ω; ∂Ω)]3,

(7)

with the stress tensors defined as in (2) and (5). We have added the interface term in
the ψ-equation to prevent spurious feedback from the implicit Neumann condition given
due to integration by parts. While the continuity of velocity and deformation is included
in the trial spaces, the continuity of stresses is guaranteed due to the boundary terms,
implicitly given with integration by parts in the φ-equation.

3 Discretization

In this section, we detail the spatial discretization of the FSI problem based on its
variational formulation. Our method of choice is the Galerkin finite element (FE) method
with conforming finite elements. For a general introduction to the FE method, we refer
to Carey and Oden [10], Girault & Raviart [14], Brenner & Scott [7], or Braess [6].
Having a Galerkin method for the completely discretized scheme at hand rigorous error
estimation is accessible.

Let Ωh be a triangulation of Ω, consisting of elements denoted by K,

Ω̄ =
⋃

K∈Ωh

K̄,

which are (convex) hexahedrals in 3d. Such a decomposition Ωh is referred to as regular
if any element edge is either a subset of the domain boundary components, or a complete
face or edge of another element. However, to facilitate mesh refinement and coarsening,
we allow the elements to have a certain number of nodes that are at the midpoint of
sides or faces of neighboring cells. These hanging nodes do not carry degrees of freedom
and the corresponding function values are determined by linear or bilinear interpolation
of neighboring regular nodal points. For more details on this construction, we refer to
[10] or [5].

The mesh parameter h is a scalar cellwise constant function defined by h|K := hK =
diam(K). We set hmax := maxK∈Ωh

hK . To ensure proper approximation properties of
the finite element spaces which are constructed based on the meshes Ωh, we require the
uniform-shape condition to be fulfilled:

Mesh regularity condition: Each element K ∈ Ωh is the image of the reference unit
cube K̂ = [0, 1]d under some thee-linear mapping TK : K̂ → K. The Jacobian tensors
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∇TK of these mappings are invertible and satisfy the uniform bounds

sup
h>0

max
K∈Ωh

‖h−1
K ∇TK‖ ≤ c, sup

h>0
max
K∈Ωh

‖hK [∇TK ]−1‖ ≤ c. (8)

This condition is satisfied if the elements K ∈ Ωh possess the usual structural properties
of uniform non-degeneracy and uniform shape. We however do not ask for an uniform
size property to allow for local mesh refinement. The ratio of diameters hK and hK′ of
different elements K,K ′ ∈ Ωh does not need to be boundary for h→ 0.

In the context of fluid-structure interaction, we further assume, that no element K is
cut by the interface: K ∩ Γi = ∅ for all K ∈ Ωh. Hence, we can split the triangulation
into two matching (up to hanging nodes on the interface) parts Ωh,f and Ωh,s.

3.1 Finite element spaces

On Ωh we introduce the usual space of isoparametric finite elements of order r by

V
(r)
h = {φ ∈ C(Ω̄), φ ◦ T−1

K ∈ span{xαxyαyzαz , 0 ≤ αx, αy, αz ≤ r}, (9)

where by TK : (0, 1)3 → K we indicate the mapping from the reference element onto the
mesh element K. This mapping TK itself is a polynomial of degree up to r (in every
direction). We usually skip the superscript r if not especially required.

We introduce a basis Vh = span{φi, i = 1, . . . , N} of Vh by means of the usual nodal
basis functions φ̂j on K̂ = (0, 1)3 and by transforming via φi|K = φ̂j ◦ T−1

K . For all
mesh-nodes xi ∈ Ωh, we have φi(xj) = δij . On mesh nodes xi ∈ ΓD on parts of the
boundary where Dirichlet conditions are prescribed, we remove the corresponding nodal
basis function from Vh, such that all functions in Vh(Ω; ΓD) have trace zero on ΓD.

The FSI problem (7) is then discretized by searching the solution in the discrete spaces.
For pressure, velocity and deformation we use

ph ∈ Qh, Qh := Vh(Ω), vh ∈ vDh +Vh, Vh := [Vh(Ω; ΓD)]3, uh ∈ Wh, Wh := [Vh(Ω; ∂Ω)]3.

The pressure is defined on all Ω and harmonically extended to Ωs.
We combine Uh := (ph, vh, uh) and Φh := (ξh, φh, ψh) and introduce the following

semi-linear forms (linear in the second argument):

af (Uh)(Φh) = (div(JF−1vh), ξh)f + (ρJF−T vh · ∇vh, φh)f

+ (JσfF
−T ,∇φh)f − 〈nf · (JσfF−T ), φh〉Γi

+ (∇uh,∇ψ)f − 〈nf · ∇uh, ψ〉Γi ,

as(Uh)(Φh) = (JσsF
−T ,∇φh)s + 〈nf · (JσfF−T ), φh〉Γi

− (vs, ψh)s + (∇ph,∇ξh)s − 〈ns · ∇ph, ξh〉Γi ,

a(Uh)(Φh) = af (Uh)(Φh) + as(Uh)(Φh).

(10)

The coupled fsi-problem is given by finding Uh ∈ Qh × vDh + Vh ×Wh, such that

a(Uh)(Φh) = 0 ∀Φh ∈ Qh × Vh ×Wh. (11)
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In (10), the stress-coupling on the interface is artificially removed from the fluid-side
and added to the structure side to elaborate the Dirichlet-Neumann coupling type of the
problem. When solving the coupled equation like (11), this modification plays no role.
It will however be important for deriving the multigrid solver.

These equal-order finite element spaces are not stable for discretizing incompressible
flows, due to the lacking inf-sup stability. We use the Local Projection Method (LPS) for
stabilizing the discretized equations, see [4] for an overview about LPS and [24] for an
application to fsi-problems. In short, LPS works by adding certain stabilization terms
to the semilinear-form alps(·)(·) in order to control the fluctuations on the fines mesh
level. The LPS method is also applicable to problems with dominant convection.

3.2 Solution of the nonlinear problems

The nonlinear problem (11) is solved with a Newton’s method. Let U
(0)
h ∈ vDh + Vh be

some initial guess (satisfying the boundary values). Then, the Newton iteration aim at

finding updates W
(i)
h ∈ Vh such that:

i ≥ 1 : U
(i)
h := U

(i−1)
h +W

(i)
h , a′(U

(i−1)
h )(W

(i)
h ,Φh) = −a(U

(i−1)
h )(Φh) ∀Φh ∈ Vh.

(12)
Here, by a′(Uh)(Wh,Φh) we denote the directional derivative of the semilinear-form (10)
at point Uh in direction Wh:

a′(Uh)(Wh,Φh) :=
d

ds
a(Uh + sWh)(Φh)

∣∣∣
s=0

.

While this Jacobian could be evaluated by means of finite differences or automatic
differentiation, see [12], we analytically assemble the derivatives for reasons of numerical
stability.

Focus of the present paper is the solution of the linear systems arising in every step
of the Newton iteration (12). Hence, for the following considerations, we neglect all
iteration indices regarding the nonlinear scheme. By introducing a nodal basis of the
finite element space Qh × Vh ×Wh,

Qh × Vh ×Wh = span{Φi
h, i = 1, . . . , Ndofs}, (13)

each step of (12) can be written in the compact matrix-formulation:

Au = b, (14)

where system matrix A ∈ RNdofs×Ndofs and load vector b ∈ RNdofs are given by

(A)Ndofs
ij=1 , Aij = a′(Uh)(Φj

h,Φ
i
h), (b)Ndofs

i=1 , bi = −a(Uh)(Φj
h).

The system matrix A is usually very large Ndofs � 100 000, it is however very dense,
with only a fixed number of matrix entries (about 100 for 3d piece-wise quadratic finite
elements) in every row.
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4 Multigrid Solver

We aim at solving the linear system (14) by a geometric multigrid method using a
hierarchy of locally refined meshes and finite element spaces. The basic outline of our
multigrid method is presented in [2] and [22]. We assume, that coming from the fine
mesh Ωh, there exists a hierarchy of finite element meshes and spaces:

Ωh = ΩL ⊃ ΩL−1 ⊃ · · · ⊃ Ω0, Vh = VL ⊃ VL−1 ⊃ · · · ⊃ V0.

Every mesh Ωl, l = 0, . . . , L in this hierarchy covers the whole domain and includes the
fluid-structure coupling. On every mesh-level Ωl, by Al we denote the system matrix.
The geometric multigrid approach is standard, see [15], and the unknown solution u ∈
RNdof on the finest mesh Ωh is approximated by Algorithm 1:

Algorithm 1: Geometric multigrid

Solve Au = b. Given Al, l = 0, . . . , L, bL and an initial guess u
(0)
l . For i ≥ 1 iterate:

u(i+1) = MG(Al,u
(i)
l ,bl),

MG(Al,ul,bl)

if l = 0: 1. solve exact u0 = [A0]−1b0

if l > 0: 1. smooth u1
l = SMOOTH(ul; Al,bl)

2. residual rl = bl −Alu
1
l

3. restrict rl−1 = Rl−1rl

4. coarse mesh u2
l−1 = MG(0; Al−1, rl−1)

5. update u2
l = u1

l + Pl−1u
2
l−1

6. smooth u3
l = SMOOTH(u2

l ; Al,bl)

return u3
l

This algorithm is the V -cycle of the standard geometric multigrid solver with pre- and
post-smoothing in Steps 1. and 6. In Step 4., the multigrid solver is invoked recursively
to approximate/solve the problem on the next coarse mesh. To improve the convergence
and stability of the multigrid solver, this algorithm is usually taken as preconditioner
in an outer Krylow subspace method. We use the multigrid to precondition a GMRES
iteration.

Success of the multigrid solver heavily depends on the method used for smoothing.
For simple problems like the Laplace equation very easy iterations like SSOR or Jacobi
will suit as perfect smoothers. Considering saddle-point systems like coming from the
incompressible Navier-Stokes equations, the problem of finding a suitable smoother gets
larger. Here, mostly iterations of Vanka-type are taken. E.g. Turek and co-workers [20,
26], local subproblems coupling pressure and velocity are solved for smoothing. This
method is reliable for difficult systems as visco-elasticity and complex flow problems.
Good results have been reported for two dimensional FSI problems. Our approach is
to use a block-incomplete LU decomposition of the matrices Al as smoother. This is
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comparable to Vanka-type solvers, with smaller blocks but stronger outer coupling, see
Kimmritz and Richter [22] for the application to reactive flow and complex ocean flow
problems. This smoother however fails for fluid-structure interaction problems. In this
work, we will adapt this block-ILU smoother to take advantage of a splitting of the
FSI-problem into a fluid and structure part.

In the following Section 4.1 we first introduce a special block-structure for the linear
system. Then, in Section 4.2 we present the splitting approach used as smoother in
Steps 1. and 6. of Algorithm 1.

4.1 Linear system with local block-structure

We introduce a local block-structure of the linear system (14). Here, we utilize the fact,
that only equal-order finite elements are considered, where the same nodal basis is given
for pressure, velocity and deformation. Hence, we can sort the basis (13) by clustering
all degrees of freedom in the mesh-nodes:

Qh × Vh ×Wh =
{

Φ1
1,Φ

2
1, . . . ,Φ

7
1, Φ1

2, . . . ,Φ
7
2, . . . Φ1

N , . . . ,Φ
7
N

}
,

where N is the number of mesh-nodes in Ωh. 7 is the number of solution components:
pressure, three velocities and deformations are given in the first node, followed by pres-
sure, velocities and deformations in the second node, and so on. The total number
of unknowns is Ndof = 7N . With this ordering of the unknowns, we obtain a local
block-matrix:

(Aij)
7
c,d=1, Acd

ij = a(Uh)(Φd
j ,Φ

c
i ), i, j = 1, . . . , N,

with the local matrix-blocks Aij ∈ R7×7. Likewise, we write every solution vector as

Uh =
N∑
i=1

7∑
c=1

uciΦ
c
i , ui ∈ R7.

We call this matrix (in the specific ordering of unknowns) to be in block-form since
all couplings between the different unknowns in one mesh-node are clustered. By
Aij ∈ R7×7 we denote the local matrix blocks which contain all couplings between
the 7 unknowns in nodes i and j. All linear algebra routines will work on this block-
form, e.g. when computing an incomplete LU decomposition of the matrix A, it will be a
block-ILU, where each matrix block Aij ∈ R7×7 is inverted exactly, see [22]. One obvious
advantage of this blocking is, that all linear algebra routines can be written indepen-
dent on the size of the partial differential equation system, whether a scalar Laplacian
or a four-component Navier-Stokes system. Further, for large systems of PDE’s (like
the seven solution components of the FSI problem) good cache efficiency is given for
free. The main advantage however is, that by clustering the couplings in mesh-nodes,
all routines are easily written as variants of the Vanka method.

By using the multigrid Algorithm 1. with a block-ILU smoother based on these matrix-
blocks, a huge variety of complex flow problems can be tackled, see [22]. Fluid-structure
interaction problems however still cannot be robustly solved by this multigrid scheme.

10
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4.2 Definition of the splitting-preconditioner

In the following Section 5.1 we find evidence, that standard schemes fail to work on fluid-
structure interaction problems due to the very bad conditioning of the system matrices.
This conditioning however is introduced not by the difficulty of the two subproblems
fluid and solid – which the block-ILU-smoother introduced above is able to solve very
efficiently – but by the coupling of these two problems.

To take advantage of the existing methods for problems in fluid- and structure-
dynamics, we introduce a splitting-approach within the multigrid smoother. The basic
idea is to use a preconditioned Richardson iteration for smoothing in Steps 1. and 6. of
the multigrid algorithm:

i ≥ 1, u(i) = ui−1 + P−1
(
b−Au(i−1)

)
, (15)

where P is the preconditioner. This preconditioner consists of separately solving the
fluid F and solid problem S, in short:

u(i) = ui−1 +
(
[F]−1 + [S]−1

)(
b−Au(i−1)

)
.

We need some further notation: let N by the set of mesh-nodes, Nf the mesh-nodes
entirely in the fluid-domain, Ni the nodes on the interface and Ns the solid-nodes. With
N := #N , Nf := #Nf Ni := #Ni and Ns := #Ns it holds N = Nf + Ns + N + Ni =
Ndofs/7. By Rf , Rs and Ri we denote the node-wise restriction of Ωh to the set of
sub-nodes and by Pf , Pi and Ps we denote the corresponding prolongation operators.

Next, by F ∈ RN
2
f ·7

2

and S ∈ R(Ns+Ni)
2·72

we denote the local matrices generated by
restricting A to the fluid nodes F and to the solid and interface nodes S only. Note,
that A 6= F + S, since the couplings i ↔ j with i ∈ Nf and j ∈ Ns ∪ Ni between the
two different subsets are neglected. Further note, that the solid matrix S includes the
interface nodes. This will be of importance to reflect the Dirichlet-Neumann coupling of
the problem. Both local matrices have the block-form discussed above, and each block
can be written as:

i, j ∈ Nf : Fij =

Fpp Fpv Fpu

Fpv Fvv Fvu

0 0 Fuu

 i, j ∈ Ns : Sij =

Spp 0 0
0 0 Svu
0 Suv 0


The matrices Fpp,Fpv,Fvp,Fvv assemble the Navier-Stokes system. In Fpu and Fvu

the coupling to the ALE-mapping is given. The matrix Fuu is the discretization of the
deformation’s extension to the fluid domain. Likewise, by Spp we denote the extension
of the pressure to the structure domain. In Svu the main part of the structure’s equation
and by Suv the velocity equals zero condition is given.

Matrix entries belonging to interface test-functions have a different structure since on
the interface Γi both equations are present. Here, we extend the fluid-system F to have
Dirichlet-boundary values for velocity and deformation on Γi. On the structure-side, the
interface includes the Neumann-condition of the fluid-tensor, see (6):

xi ∈ Γi : FΓ
ii =

Fpp 0 0
0 1 0
0 0 1

 SΓ
ii =

1 0 0
0 Fvv Svu + Fvu

0 Suv 0



11
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These modified matrices are again denoted by F and S.

Remark: By introducing Dirichlet boundary values in the fluid-part of the precondi-
tioner, the update of velocity and deformation will only be determined from the solid
part. This is obviously the right choice for the deformation, since this is only to be
considered as an artificial extension on the fluid domain.

These two sub-matrices are used to define the preconditioner of the Richardson iter-
ation (15). In every step of the smoothing process, two subproblems need to be solved:

Algorithm 2: Smoothing iteration

Smooth Au = b. Given A, b, F, S Given Al, l = 0, . . . , L, bL and an initial guess u
(0)
l .

For i ≥ 1 iterate:

1. residual r(i) = b−Au(i−1)

2. fluid problem Fw
(i)
f = Rfr(i)

3. update fluid u(i) = u(i−1) + Pfw
(i)
f

4. residual r(i) = b−Au(i−1) (for Gauss-Seidel coupling)

5. solid problem Sw
(i)
s = Rsr(i)

6. update solid u(i) = u(i) + Psw(i)
s

Remark: In Steps 2. and 5., the subproblems are not to be solved exactly. Instead,
at this point we apply the standard block-ILU-iteration for approximating the fluid and
structure problem.

The structure of this smoother is very similar to a non-overlapping domain decompo-
sition method with a Dirichlet-Neumann coupling. There is however the wide difference,
that varying equations are given on the different domains.

5 Analysis

This section aims at analyzing the multigrid smoother developed before. In view of the
lack of theoretical results for monolithic fluid-structure interaction problems, this task
is very difficult. We split the investigation into two parts: first, we gather numerical evi-
dence which supports the splitting approach by regarding the full nonlinear ALE model
of the FSI problem. Then, we aim at analyzing the coupling strategy used within the
multigrid smoother. Here, we consider a considerably simplified linear model-problem
which however still includes the specific fluid-structure coupling at the interface.

5.1 Numerical observation

A straightforward geometric multigrid-iteration used as preconditioner in an outer GM-
RES iteration applied to the coupled fsi-problem fails to converge on finer meshes. In
Table 1 we show convergence rates, obtained for the stationary two dimensional fsi-1
FSI benchmark problem introduced by Hron and Turek [19]. The system is solved with

12
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the geometric multigrid method as preconditioner in an outer GMRES iteration. We use
4 steps of the block-ILU iteration for pre- and post-smoothing of the coupled problem.
The coarse mesh problem is solved by a direct solver. In Table 1, we present the con-
vergence rates of the solver on a sequence of uniformly refined meshes and indicate the
number of steps necessary to reduce the error by 106. On the finest mesh, the desired
error reduction could not be reached within 50 steps. We see, that the convergence rates
deteriorate and the number of steps necessary increases. This standard multigrid solver
is thus not efficient.

levels # elements reduction rate steps
1 248 < 0.00 1
2 992 0.09 7
3 3 968 0.24 13
4 15 872 0.45 19
5 63 488 0.63 32
6 254 952 0.91 > 50

Table 1: Convergence rates of the coupled multigrid iteration for the 2d fsi-1 benchmark
problem.

We believe, that the bad convergence rates of the multigrid solver stems from the
condition numbers of the system matrix which causes coupled smoothers to fail on large
meshes. In Table 2 we list the numerically estimated condition numbers cond2(A) for
the entire system matrix A as well as for the all sub-matrices which play a role in the
splitting-smoother from Section 4.2: these are the Navier-Stokes part of the fluid-matrix
FNS , the deformation part in the fluid-matrix Fuu, the pressure part in the structure-
system Spp and the elastic-structure part SES .

#elements cond2(A) cond2(FNS) cond2(Fuu) cond2(SES) cond2(Spp)
248 4.77 · 1010 8.64 · 105 7.40 · 101 9.27 · 106 1.26 · 101

992 1.47 · 1011 1.54 · 106 4.12 · 102 9.27 · 106 7.76 · 101

3 968 5.06 · 1011 2.99 · 106 1.66 · 103 9.27 · 106 2.69 · 102

15 872 1.97 · 1012 7.91 · 106 6.68 · 103 9.27 · 106 9.95 · 102

63 488 7.84 · 1012 2.35 · 107 2.68 · 104 9.27 · 106 3.81 · 103

Table 2: Condition numbers for the system matrix and the sub-matrices on a sequence
of meshes. fsi-1 benchmark configuration.

The condition number of the coupled matrix A is much worse than that of the sub-
matrices. Here, on finer meshes, an ILU-iteration as smoother fails due to numerical
error accumulation. The conditioning of the subsystems is within reasonable limits and
the standard multigrid iteration is able to solve these systems.

In Table 3 we show convergence results of the multigrid-method, where we use the
splitting approach for the smoother but solve the two subsystems for the fluid and

13
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solid problem in Steps 2. and 5. of Algorithm 2. with an exact solver. Here, the
convergence rates are exceptionally good and do not worsen on finer meshes. This result
is in analogy to Brummelen and co-workers [8], where it is shown, that the partitioned
approach together with a coarse mesh correction is a perfect smoother for the panel
problem.

levels # elements reduction rate steps
1 248 < 0.01 1
2 992 < 0.01 2
3 3 968 < 0.01 2
4 15 872 < 0.01 2
5 63 488 < 0.01 2
6 254 952 < 0.01 2

Table 3: Convergence rates for a standard geometric multigrid iteration on the coupled
fsi-problem. All reduction rates are smaller than 0.01.

Hence, we can conclude, that the partitioned smoother is suitable for the multigrid
iteration, if the two subproblems for fluid and solid are approximated up to a sufficient
accuracy. Since the condition numbers of these subproblems is within limits, standard
methods like block-ILU iterations will be feasible for treating the fluid and structure
problem.

5.2 Analysis of a simplified model problem

Next, we aim at analyzing the coupling between the fluid and structure problem in de-
tail. For a better understanding we considerably simplify the fluid-structure interaction
model:

• We omit all nonlinearities (convection, domain-deformation, nonlinear elasticity)

• We use the Laplacian as fluid and structure tensor

• We remove the divergence condition and the pressure

• We use a scalar field for velocity and deformation

The complete simplified model states: find “velocity” and “deformation” v and u such
that:

−∆vf = f

−∆uf = 0

}
in Ωf ,

−∆us = f

−vs = 0

}
in Ωs,

vf = us

n · ∇vf = n · ∇us

}
on Γi.

The monolithic variational formulation is derived by finding “velocity” and “deforma-
tion” in the spaces u, v ∈ H1

0 (Ω), given by

(∇v,∇φ)f + (∇u,∇φ)s + (∇u,∇ψ)f − 〈nf · ∇u, ψ〉Γi
− (v, ψ)s = (f, φ) ∀φ, ψ ∈ H1

0 (Ω). (16)

14
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We consider the domain Ω = (0, 2) × (0, 1) split into Ωf = (0, 1) × (0, 1) and Ωs =
(1, 2) × (0, 1). Let Ωh be a uniform triangulation of Ω with mesh-size h. Further, let
Vh be the finite element space of piecewise bi-linear function on Ωh. By splitting the
nodes of Ωh into the fluid-nodes Nf , the interface nodes Ni and the solid nodes Ns, see
Section 4.2, the linear system (16) is equivalent to finding x = {vf ,uf ,vi,ui,vs,us},
given by: 

∆ 0 ∆ 0 0 0
0 ∆ 0 ∆ 0 0

∆ 0 ∆ ∆ 0 ∆
0 0 −1 0 −1 0

0 0 0 ∆ 0 ∆
0 0 −1 0 −1 0





vf
uf
vi
ui
vs
us

 = b, (17)

where ∆ stands for the discretization of the Laplacian, −1 for the (lumped) mass ma-
trix. The bold zeros arise from the subtracted boundary term in the fluid’s deformation
extension equation in (16).

Remark: The off-diagonal entries are to be understood in a symbolic way: not all
fluid-nodes in the first row of (17) couple to the interface nodes vi, only those next to
the interface. These off-diagonal blocks are thus very sparse.

The preconditioner of the fluid problem is constructed to have Dirichlet conditions
for velocity and deformation on the interface. Hence, the interface unknowns do not
couple back to the flow-block. The structure part of the preconditioner is generated by
restricting (17) to the structure and interface nodes.

We aim at analyzing the error before e(i−1) = x− x(i−1) and after e(i) = x− x(i) one
step of the smoothing iteration, Algorithm 2. With (15), the error is related by

e(i) = x− x(i) = e(i−1) −P−1(b−Ax(i−1)) = [I −P−1A]e(i−1).

Depending on whether a Jacobi or Gauss-Seidel iteration is used for preconditioning, P
is given as:

PJ =



∆ 0 0 0 0 0
0 ∆ 0 0 0 0

0 0 ∆ ∆ 0 ∆
0 0 −1 0 −1 0

0 0 0 ∆ 0 ∆
0 0 −1 0 −1 0

 , PGS =



∆ 0 0 0 0 0
0 ∆ 0 0 0 0

∆ 0 ∆ ∆ 0 ∆
0 0 −1 0 −1 0

0 0 0 ∆ 0 ∆
0 0 −1 0 −1 0

 ,

with differences only whether the solid system couples back to the already computed
fluid-update. For simplicity we introduce the shorter notation, combining the interface
and solid nodes NS := Ni ∪Ns:

A =

(
F FS
SF S

)
, P−1

J =

(
F−1 0

0 S−1

)
, P−1

GS =

(
F−1 0

−S−1[SF]F−1 S−1

)
.
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Ωf Ωs

Fluid unknown

1 2 · · · N 0 1 · · · N

1

2

N

.

.

.

Interface unknowns

Solid unknowns

Figure 1: Domain layout for the simplified analysis.

Then, one iteration of the smoother alters the error by e(i) = [I −P−1A]e(i−1) with:

[I −P−1
J A] =

(
0 −F−1[FS]

−S−1[SF] 0

)
, [I −P−1

GSA] =

(
0 −F−1[FS]
0 −S−1[SF]F−1[FS]

)
Remark: Note, that for now we assume, that the subproblems are solved exactly. The
inversion of F and S needs to be replaced by a suitable approximation. We will give
further hints on this.

We perform a Fourier analysis of the error for a better insight in the smoothing
iteration. On the uniform mesh as shown in Figure 1 we introduce Fourier components:

Definition 5.1 (Fourier Components). For θ = 1, . . . , N we define the Dirichlet com-
ponents ΦD

θ

ΦD
θ = sin

(
i

N + 1
θπ

)
, i = 1, . . . , N,

and for θ = 0, . . . , N the Neumann components:

ΦN
θ = sin

(
i− (N + 1)

2N + 3
(2θ + 1)π

)
, i = 0, . . . , N.

In Figure 2 we show the Dirichlet and Neumann Fourier modes for N = 3. These
discrete Fourier components allow us to write the solution vector x = {xf ,xS} in the
Fourier basis by

xf =

N∑
θx=1

N∑
θy=1

xf (θx, θy)Φ
D
θxΦD

θy , xS =

N∑
θx=0

N∑
θy=1

xS(θx, θy)Φ
N
θxΦD

θy , (18)

Lemma 5.1 (Eigenvalues). Let ∆D
h be the discretization of the Laplacian in Ωf with

Dirichlet values on on ∂Ωf and ∆N
h be the discretization of the Laplacian in Ωs with

Neumann boundary values on Γi and Dirichlet boundary values on the remaining parts
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Figure 2: Fourier components for N = 3. Left: Dirichlet values on both sides, right:
Neumann values on the left, Dirichlet on the right boundary of the domain.

of the boundary. It holds:

∆D
h ΦDθxΦDθy =λD(θx, θy)ΦDθxΦDθy ,

λD(θx, θy) :=
2

3

{
4− cos

( θxπ

N + 1

)
− cos

( θyπ

N + 1

)
− 2 cos

( θxπ

N + 1

)
cos
( θyπ

N + 1

)}
,

∆N
h ΦNθxΦDθy =λN (θx, θy)ΦNθxΦDθy ,

λN (θx, θy) :=
2

3

{
4− cos

( (2θx + 1)π

2N + 3

)
− cos

( θyπ

N + 1

)
− 2 cos

( (2θx + 1)π

2N + 3

)
cos
( θyπ

N + 1

)}
.

(19)

Further, the Fourier components are orthogonal and it holds:

N∑
i=1

ΦD
θ (i)2 =

N + 1

2
,

N∑
i=0

ΦN
θ (i)2 =

2N + 3

4
. (20)

This result follows by easy calculation. See [28] for a detailed overview of Fourier
techniques in the context of multigrid smoothers.

By Lemma 5.1 we can express the product of the matrices (or their inverse) with the
Fourier components in terms of Eigenvalues. For high frequencies of the error (these are
all frequencies with θ > N/2 which are not seen on the next coarse mesh) it holds:

|λF (θx, θy)|, |λS(θx, θy)| ≥ 2 for θx >
N

2
or θy >

N

2
. (21)

After these preliminary introduction, we can state the central theorem:

Theorem 5.1 (Smoothing property). One step of the multigrid-smoothing iteration,
Algorithm 2. reduced high frequent error parts by a fixed rate ρ < 1/3 (not depending on
the mesh-size h).

Proof. We proof this theorem by splitting the iteration into the two parts for fluid and
solid:
(i) The fluid part. The new fluid-error e

(i)
f is given by

Fe
(i)
f = −FSe(i−1)

s . (22)
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The equations for velocity and deformation are completely decoupled. Hence, it is suf-
ficient to regard one of them. Then, the matrix F can be considered to be the Dirichlet
Laplace discretization ∆D

h . On the right hand side of (22), the matrix FS acts on the
interface unknowns only and couples only between the interface unknowns (on the solid
side) and the last column of fluid unknowns on the fluid-side, compare (17). Hence, let
ΦD
θy

be one Fourier component of the interface error e(i−1)|Γi before smoothing. Then,
we can write FS in stencil notation as

FS = −1

3

 1
1
1

 ,
where by the line we denote, that the matrix only acts on entries beyond the fluid-
domain. For the interface component ΦD

θy
we get

(−[FS]ΦD
θy)i=N,j =

1

3

(
sin

(
jπθ

N + 1

)
+ sin

(
(j + 1)πθ

N + 1

)
+ sin

(
(j − 1)πθ

N + 1

))
=

1

3

(
1 + 2 cos

(
πθ

N + 1

))
︸ ︷︷ ︸

λΓ(θy)

(ΦD
θy)j ,

(23)

and −([FS]ΦD
θy

)i,j = 0 for i = 1, . . . , N − 1. For all high frequencies θy ≥ N/2 it holds:

|λΓ(θy)| ≤
1

3
∀i = N/2 . . . N, (24)

This vector −[FS]Φθy is the right hand side of the fluid-error relation (22). We need to
express this vector in the Fourier basis (18) of the fluid-domain by finding coefficients
ef (θx, θy) ∈ R such that:

N∑
θx=1

ef (θx, θy)Φ
D
θx(i) = δiNλ

Γ(θy) ∀i = 1, . . . , N.

Using the orthogonality of {ΦD
θ , θ = 1, . . . , N} and (20) we have

ef (θx, θy) =
2λΓ(θy)Φ

D
θx

(N)

N + 1
.

Then, with the eigenvalues of the discrete Laplacian (19) we get

[∆D
h ]−1[FS]ΦD

θy =

N∑
θx=1

2ΦD
θx

(N)

N + 1
λF (θx, θy)

−1λΓ(θy)Φ
D
θxΦD

θy . (25)

For high frequencies of the interface error θy ≥ N/2 it holds with (21) and (24):

N∑
θx=1

∣∣∣ 2ΦD
θx

N + 1
λF (θx, θy)

−1λΓ(θy)Φ
D
θx

∣∣∣ ≤ N∑
θx=1

∣∣∣ 2

N + 1
· 1

2
· 1

3

∣∣∣ ≤ 1

3
.
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Hence, all error components of the new fluid error are at least reduced by a factor 3 for
high frequent interface errors.
(ii) The structure part (Jacobi). Considering Jacobi coupling, the structural error
is propagated by

Se
(i)
S = −[SF]e

(i−1)
f .

On the right hand side, non-zeros only appear only in the φ-equation since the matrix

[SF] acts only on the velocity unknowns, compare (17). Hence, the velocity error vs−v
(i)
s

in e
(i)
S will be zero and it is sufficient to analyze the deformation part, given as the solution

of the Laplace equation with Neumann data ∆N
h .

The right hand side is similar to the corresponding one of the fluid-problem (22). The
operator FS has the same structure as the SF and acts only between the interface and

the first row of adjacent solid-nodes (j = N in Figure 1). Assume, that e
(i−1)
f |i=N

is

here given by the component ΦD
θy

. Then:

−[SF]ΦD
θy =

(
λΓ(θy)Φθy 0 0 . . . 0︸ ︷︷ ︸

N

)
. (26)

where λΓ is as in (23), in particular with |λΓ| ≤ 1
3 for all high frequencies.

The structure problem has Neumann boundary values on the left part of the domain
i = 0 and Dirichlet-values on the right part of the domain i = N + 1. Like in the
fluid sub-problem, we need to express the right hand side (26) in the appropriate basis
functions (18) and find with (20):

−[SF]ΦD
θy =

N∑
θx=0

4λΓ(θy)Φ
N
θx

(0)

2N + 3
ΦN
θxΦD

θy .

By using (19) for the new solid error it holds:

S−1[SF]ΦD
θy =

N∑
θx=0

4ΦN
θx

(0)

2N + 3
λS(θx, θy)

−1λΓ(θy)Φ
N
θxΦD

θy . (27)

For all high frequencies of the error θy ≥ N/2 we get:

N∑
θx=0

∣∣∣4ΦN
θx

(0)

2N + 3
λS(θx, θy)

−1λΓ(θy)Φ
N
θx

∣∣∣ ≤ N∑
θx=0

∣∣∣ 4

2N + 3
· 1

2
· 1

3

∣∣∣ ≤ 1

3
.

Considering a Jacobi coupling we find the theorem proven with

ρJ ≤
1

3
.

(iii) The structure part (Gauss-Seidel). If the smoother is set up in a Gauss-Seidel
type by reusing the solution of the fluid-problem for the solid-problem, we need to extract
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the right hand side for the solid-problem from (25). The error in the last column i = N
of the fluid domain is:

(F−1[FS]ΦD
θy)i=N =

N∑
θx=1

2(ΦD
θx

(N))2

N + 1
λF (θx, θy)

−1λΓ(θy)Φ
D
θy .

Then, the forthcoming error on the interface gets

S−1[SF]F−1[FS]ΦD
θy =

 N∑
θNx =0

ΦN
θNx

(0)2

λS(θNx , θy)

 N∑
θx=1

ΦD
θx

(N)2

λF (θx, θy)

 8λΓ(θy)
2

(N + 1)(2N + 3)
.

With |ΦD| ≤ 1, |ΦN | ≤ 1 and |λS(θx, θy)| ≥ 2 and |λF (θx, θy)| ≥ 2 for θy ≥ N/2 the
reduction rate is estimated to be

N + 1

2
· N

2
· 8

(N + 1)(2N + 3)
|λΓ(θy)|2 ≤ |λΓ(θy)|2 ≤

1

9
,

resulting in the reduction rate

ρGS ≤
1

9
.

This completes the proof. �
Even though this analysis only considers a simplified set of equations, the typical

coupling mechanism from fluid-structure interaction problems is present.
In this analysis we have assumed, that the matrices F and S are inverted exactly

instead of approximating by the block-ILU iteration. However we know, that the block-
ILU iteration is an optimal smoother for these two subproblems and high frequent error
contributions are damped by a fixed rate. By F̃−ν we denote ν steps of the block-ILU
iteration applied to the fluid-problem. Then, for all high frequent error modes ΦθxΦθy

it holds: ∣∣(F−1 − F̃−ν)ΦθxΦθy

∣∣∣ ≤ cqν |ΦθxΦθy |,

with some q < 1 independent on h for high frequencies. By inserting this approximate
inverse in (25) and (27), we get additional error contributions which are easily controlled
by choosing some ν > ν0.

6 Numerical Examples

In this section we discuss a numerical model example: the three dimensional flow around
an elastic obstacle. This example is a modification of a classic fluid-dynamics benchmark
problem described by Schäfer and Turek [25]. In a domain Ω, a laminar incompressible
flow is acting on an inscribed elastic body Ωs. The body is firmly attached to parts of
the boundary Γbase ⊂ ∂Ω but can deform inside the domain. Aim of the benchmark
problem is to identify certain values like pressure drops, drag- and lift-coefficients or the
deformation of the obstacle. A similar fsi-benchmark problem has been proposed by
Hron and Turek [19]. Here, also two-dimensional benchmarks based on [25] have been
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Figure 3: Configuration of the 3D fsi benchmark-problem.

elements unknowns ux(A) uy(A)

54 4 655 4.835 · 10−3 5.638 · 10−5

432 30 303 4.765 · 10−3 7.003 · 10−5

3 456 217 175 4.980 · 10−3 5.450 · 10−5

27 648 1 641 255 5.039 · 10−3 5.535 · 10−5

221 184 12 755 015 5.070 · 10−3 5.576 · 10−5

Table 4: Deformation ux(A) and uy(A) obtained by a calculation with piecewise bi-
quadratic finite elements on uniform meshes.

considered. While the two-dimensional test-cases are well suitable for direct solvers, the
three-dimensional problem is by far too complex.

See Figure 3 for a sketch of the configuration. In the original benchmark-problem [25],
the incompressible Navier-Stokes equations where given in the domain Ωf , and an inflow
profile was prescribed on Γin, the no-slip condition on Γwall and an outflow-condition on
Γout. Here, we modify the configuration by assuming that the obstacle Ωs is filled
with an elastic material. On the boundary Γbase the obstacle is fixed by a homogenous
Dirichlet condition to the wall of the domain Γwall, on the inner boundary to the fluid
domain Γi, the obstacle can freely move. Aim is to estimate the deformation in the
midpoint A = (0.5, 0.2, 0.205) of this deformable obstacle. On the inflow boundary Γin

we prescribe a Dirichlet condition for the velocity:

v = 0.3
yz(0.41− y)(0.41− z)

0.2054
on Γin.

On the outflow boundary Γout, the do-nothing condition (3) is given. On the remaining
boundaries Γwall∪Γbase, homogenous Dirichlet conditions are given. For the deformation,
we prescribe homogenous Dirichlet condition on all external boundaries ∂Ω. The physical
parameters are chosen as

ρf = ρs = 103, νf = 10−3, µs = 103, λs = 4 · 103,
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levels # elements # unknowns memory rate steps time

1 432 4 655 48 MB < 0.001 1.0 < 1 s
2 3 456 30 303 213 MB 0.010 4.0 18 s
3 27 648 217 175 1 425 MB 0.039 5.0 149 s
4 221 184 1 641 255 10 803 MB 0.045 5.5 1460 s
5 1 769 472 12 755 015 85 467 MB 0.051 5.8 13270 s

Table 5: Convergence of the multigrid method for the 3D test-case: number of mesh lev-
els, elements and unknowns. Memory usage, error reduction rate per multigrid
iteration, average number of MG-iterations per Newton-cycle and average time
for the solution of the linear system.

making the structure very elastic. The Reynolds number is Re = 20 and the Poisson
ratio is νs = 0.4. With a density ratio of ρf/ρs = 1 this FSI problem is strongly coupled.
In Table 4 we show the results for the two output functionals, the deformation in point
A ∈ Ωs. These results are obtained on uniform meshes using piece-wise bi-quadratic
finite elements.

Next we compare the proposed multigrid solver using the splitting-smoother with the
performance of a direct solver. In all calculation, piecewise tri-quadratic finite elements
are used. As direct solver, the software package MUMPS [1] is taken. The computations
have been carried out on a shared memory system without any parallelization.

Two steps of pre- and post-smoothing are taken on every level of the multigrid solver.
The coarse mesh problem is solved by an exact solver. For approximating the fluid and
solid sub-problem, four steps of an block-ILU preconditioned Richardson iteration are
carried out. The combined effort corresponds to 8 steps of pre- and post-smoothing in
a standard coupled iteration.

First, in Table 5 we show the memory consumption, multigrid convergence rates and
running times on uniform meshes.

Due to the immense memory requirement of the direct solver, further simulations have
been run using locally refined meshes. These meshes are adaptively created by using
an energy-norm like a posteriori error estimator. In Tables 6 and 7 we compare the
memory usage, running times and convergence rates (in the case of multigrid) for the
two different solver, multigrid and direct.

What is approved from these calculations is the robustness of the multigrid solver. On
uniform meshes in Table 5 as well as on locally refined meshes in Table 6, the convergence
rates are stable and very good, at about 0.05 in every step. Memory usage grows linearly
with the problem size and fairly large problems can be handled. Especially in terms of
computational time, the direct solver is not competitive. On the fourth mesh with less
than 5 000 quadratic elements, solution of one linear system takes nearly three hours
compared to five minutes using the multigrid solver.

Finally, in Figure 4 we plot the running times and memory usage comparing the
performance of the direct solver with the multigrid scheme. These numbers are taken
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levels # elements # unknowns memory rate steps time

1 54 4 655 48 MB < 0.001 1.0 < 1 s
2 236 17 423 144 MB 0.005 3.5 9 s
3 1 314 87 871 610 MB 0.045 5.0 65 s
4 4 646 311 899 2 200 MB 0.055 5.7 297 s
5 13 886 928 305 7 045 MB 0.050 5.6 854 s
6 39 338 2 596 769 21 049 MB 0.052 5.7 2552 s
7 119 432 7 850 437 63 128 MB 0.050 5.7 8156 s

Table 6: Convergence of the multigrid method for the 3D test-case on locally refined
meshes: number of mesh levels, elements and unknowns. Memory usage, error
reduction rate per multigrid iteration, number of iterations per Newton-cycle
and time per multigrid-iteration.

levels # elements # unknowns memory time

1 54 4 655 82 MB < 1 s
2 236 17 423 420 MB 8 s
3 1 314 87 871 3 073 MB 520 s
4 4 646 311 899 14 089 MB 10 688 s
5 13 886 928 305 ∼ 70 000 MB ∗ s

Table 7: Convergence history of the direct solver MUMPS for the 3D test-case on locally
refined meshes: number of mesh levels, elements and unknowns. Memory usage,
time for direct solver. (∗ the last calculation has been aborted after 48h of
running time).

from Tables 6 and 7 on locally refined meshes.
All numerical simulations have been carried out with the software library Gascoigne,

see [3].

7 Summary

We have presented a geometric multigrid solver for solving complex, three dimensional
fluid-structure interaction problems in a monolithic formulation. As major source of
difficulties dealing with fluid-structure interaction problems, the coupling between the
two subproblems has been identified. This coupling significantly worsens the condition
numbers of the system matrices as opposed to pure incompressible fluid problems or
problems of elasticity.

Key of the proposed multigrid method is a splitting approach within the smoothing
iteration. Here, fluid and structure problem are decoupled in a Dirichlet-Neumann type
domain decomposition iteration. For a simplified equation it has been shown by Fourier
analysis that this approach is suitable to damp all high frequent error of the coupled
problems.

23



MULTIGRID FOR FSI-PROBLEMS

 1

 10

 100

 1000

 10000

 100000

 1000  10000  100000  1e+06  1e+07

tim
e 

(s
ec

)

degrees of freedom

splitting MG solver
direct solver

linear
 10

 100

 1000

 10000

 100000

 1e+06

 1000  10000  100000  1e+06  1e+07

m
em

or
y 

(M
B

)

degrees of freedom

splitting MG solver
direct solver

available memory limit

Figure 4: Comparison of the splitting multigrid solver with the direct solver MUMPS.
Left: computational time, right memory consumption.

Finally, the multigrid method has proved its feasibility and efficiency for a three-
dimensional test-case. In [22] the parallelization of the multigrid solver using the local
block-structure has been demonstrated. The expansion to FSI problems and the specific
splitting within the smoother is straightforward since in [22] a similar non-overlapping
decomposition of the matrix is already used to construct the parallel smoother. This is
subject of ongoing work.
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[25] M. Schäfer and S. Turek, Benchmark computations of laminar flow around
a cylinder. (With support by F. Durst, E. Krause and R. Rannacher), in Flow
Simulation with High-Performance Computers II. DFG priority research program
results 1993-1995, E. Hirschel, ed., no. 52 in Notes Numer. Fluid Mech., Vieweg,
Wiesbaden, 1996, pp. 547–566.

[26] S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and
Computational Approach, Springer, 1999. ISBN 3-540-65433-X.

[27] W. Wall, Fluid-Structure Interaction with Stabilized Finite Elements, PhD thesis,
University of Stuttgart, 1999. urn:nbn:de:bsz:93-opus-6234.

[28] R. Wienand, Extended Local Fourier Analysis for Multigrid: Optimal Smoothing,
Coarse Grid Correction and Preconditioning, no. 20 in GMD Research Series, GMD
Forschungszentrum Informationstechnik GmbH, Sankt Augustin, 2001. ISBN 3-
88457-403-5.

26


