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Zusammenfassung

Heute stehen wir am Anfang einer neuen Ära der Informationsverarbeitung, in der
Quantentechnologien immer bedeutsamer werden. Ungeachtet bedeutender Fortsch-
ritte bei der experimentellen Erzeugung und Manipulation sowie der theoretischen
Beschreibung von einfachen Quantensystemen, in den letzten drei Jahrzehnten, gibt
es noch viele ungelöste Probleme im Verständnis des Verhaltens und der Eigenschaften
von komplexen Vielteilchenquantensystemen. In dieser Dissertation wird eine theo-
retische Untersuchung einer Reihe von Problemen im Zusammenhang mit der Ver-
schränkung — dem nichtlokalen Merkmal von komplexen Quantensystemen — in
Vielteilchenzuständen endlichdimensionaler Quantensysteme durchgeführt. Wir be-
trachten zu-sätzlich optimale Möglichkeiten zur Manipulation solcher Systeme. Der
Schwerpunkt der Arbeit liegt insbesondere auf optimalen Quantentransformationen
die eine gewünschte Operation unabhängig von den Anfangszuständen des Systems
erlauben. Der erste Teil dieser Arbeit widmet sich dabei einer detaillierten Analyse,
wie sich die Verschränkung in Qubit-Systemen unter Einwirkung einer nichtunitären
Dynamik (zeitlich) entwickelt. Im zweiten Teil der Arbeit konstruieren wir mehrere op-
timale zustandsunabhängige Transformationen, untersuchen ihre Eigenschaften und
schlagen Anwendungen in der Quantenkommunikation und im Quantencomputing
vor.

Abstract

Today we are standing on the verge of new enigmatic era of quantum tech-
nologies. In spite of the significant progress that has been achieved over the last
three decades in experimental generation and manipulation as well as in theoretical
description of evolution of single quantum systems, there are many open problems
in understanding the behavior and properties of complex multiparticle quantum sys-
tems. In this thesis, we investigate theoretically a number of problems related to the
description of entanglement — the nonlocal feature of complex quantum systems —
of multiparticle states of finite-dimensional quantum systems. We also consider the
optimal ways of manipulation of such systems. The focus is made, especially, on such
optimal quantum transformations that provide a desired operation independently on
the initial state of the given system. The first part of this thesis, in particular, is
devoted to the detailed analysis of evolution of entanglement of complex quantum
systems subjected to general non-unitary dynamics. In the second part of the thesis we
construct several optimal state independent transformations, analyze their properties
and suggest their applications in quantum communication and quantum computing.
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Introduction

We may hope that machines will eventually compete
with men in all purely intellectual fields.

Alan M. Turing

The fundamental problem of communication is that of
reproducing at one point either exactly of approxima-

tely a message selected at another point.

Claude E. Shannon

The concept of information is shaping our world from everyday communication
to sophisticated high technological devices, such as space satellites and supercomput-
ers. The investigation of the basic laws of information processing attracted attention
of many scientists in the past. The modern incarnation of information science was
announced by two great mathematicians of the last century: Alan Turing and Claude
Shannon. Turing developed in details an abstract notion of what we would now call a
programmable computer [1]. Approximately at the same time, Shannon mathemati-
cally defined the concept of information which became the foundation for the modern
theory of communication [2].

Not long after Turing’s paper, the first computers constructed from electronic
components were developed. Since then computer hardware has grown in power and
minimized in size at an amazing pace. However, most observers expect that this run
will end some time during the first two-three decades of the 21st century. Conventional
approaches to the fabrication of computers are beginning to suffer from fundamental
difficulties of size: quantum effects are beginning to interfere in the functioning of
electronic devices as they are made smaller and smaller. A possible way to overcome
this difficulties is to move to a different computing paradigm. One such paradigm is
provided by the theory of quantum computation which is based on the idea of using
quantum mechanics to perform computations, instead of classical physics [3].

What do we expect from a quantum computer? While a classical computer can
be used to simulate a quantum computer, it appears to be impossible to perform the
simulation in an efficient fashion [3]. This implies that quantum computers offer an
essential speed advantage over classical computers [4]. David Deutsch showed the
first example, a black-box problem that requires two queries to solve on a classical
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computer but that can be solved with single quantum query [5]. A series of related
results [6, 7] gave increasingly dramatic separation between classical and quantum
query complexities, culminating in the example from Simon [8] providing an expo-
nential separation. Based on these works, Shor discovered that a quantum computer
could efficiently factor integers and calculate discrete logarithms [9]. An algorithm
achieving quadratic speed-up over the best possible classical algorithm for the unstruc-
tured search problem was suggested by Grover [10]. Concept of the quantum walk,
developed by analogy to the classical random walk, has proven to be another useful
tool for quantum algorithms [11, 12]. Finally, the performance of game strategies
based on quantum principles superior the efficiencies of classical strategies [13].

What is the essential quantum effect that gives rise to increase in the computa-
tional power of a quantum computer? Although this question has not been answered
so far on a fundamental level [14, 15], there are many evidences that certain correlated
superpositions of multiparticle states, so-called entangled states, play the key role
[16, 17, 18]. Several proposals for architecture of quantum computer based on using
entangled states have been already suggested, such as linear optical quantum com-
puting [19, 20], teleportation-based [21] and one-way quantum computing [22, 23].
Although all basic steps required for the realization of the mentioned schemes have
been already experimentally demonstrated [24, 25, 26], it is still unclear whether it
will be ever possible to run a quantum computer that exceeds the performance of a
modern classical one.

In contrast to computation theory, there was no technological necessity to use
quantum systems in communication. This situation dramatically changed with the
discovery of the no-cloning principle [27, 28]. The direct consequence of this principle
is unconditional security of communication with quantum systems [29, 30] – the
most desirable goal of communication theory. Security of classical communication
is conditional and is based on computational complexity of an encoding protocol.
Under condition that the third (eavesdropping) person has limited computational
resources, classical communication is secure. However, this is not longer true, if the
eavesdropper possesses a classical supercomputer or a quantum computer. Quantum
communication is secure independently on the eavesdropper’s resources.

Up to now, a large number of quantum communication protocols have been
suggested. In some of these protocols the information is encoded in superposition
states of single quantum systems, for example, the BB84 [31], the B92 [32] and the
six-state protocol [33]. Some (so-called teleportation-based) protocols, are based on
utilizing entangled states of multiparticle systems [34, 35]. Many of the protocols for
quantum communication have been experimentally tested. The longest distance over
which quantum communication has been demonstrated using optic fibre is 148.7 km.
This was achieved by Los Alamos National Laboratory using the BB84 protocol [36].
The highest bit rate system currently demonstrated exchanges quantum information
at 1 Mbit/s (over 20 km of optical fibre) and 10 kbit/s (over 100 km of fibre),
achieved by a collaboration between the University of Cambridge and Toshiba using
the BB84 protocol with decoy pulses [37]. There are currently four companies offering
commercial quantum communication systems: id Quantique (Switzerland), MagiQ
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Technologies (USA), SmartQuantum (France) and Quintessence Labs (Australia).
In both, quantum computation and quantum communication, entangled states

of multiparticle quantum systems plays an important role. Although the notion of
entanglement is known since the early days of quantum mechanics [38], it took al-
most 50 years of theoretical challenge until quantum entanglement was demonstrated
experimentally [39] to be an element of physical reality.

Pure entangled states are best suited for technical applications because they bear
only quantum correlations and do not show classical probabilistic correlations that are
often detrimental to an application. However, there is no a quantum system that could
be isolated perfectly from environmental influence. This unavoidable environmental
coupling leads to non-unitary dynamics of initially pure states turning them to mixed
states.

In practice, we of course need to know whether a given state is entangled and, if it
is, how much entanglement is preserved in this quantum state. While entanglement
of pure states can be easily quantified, the theoretical description of mixed states
remains an open problem [40]. In general, amount of quantum correlation in a given
(mixed) state can be quantified with a scalar quantity called entanglement measure.
Although several such measures have been suggested, there is no a simple criteria to
distinguish entanglement from classical correlations. Calculation of most of proposed
entanglement measures that unambiguously discriminate classical against quantum
correlations involve some sophisticated optimization procedures [41].

Quantification of entanglement is one of the main problems in quantum compu-
tation and quantum communication theories. There is, however, a number of other
theoretical challenges. In quantum computation, for example, we need to read-out the
result of computation encoded in a(n unknown for us) quantum state. This state is
more likely given by a superposition of conventional basis states. According to quan-
tum mechanics the coefficients of a quantum superposition have statistical meaning
[42] and, therefore, can be experimentally identified only after a seria of measurements
on a sufficiently large ensemble of identical particles. Of course, we are not supposed
to run a quantum processor too many times in order to obtain a large ensemble of
output states, rather, we are going to run it just a few times. But, if we have a finite
and very limited ensemble of identical outputs1, what is the best strategy to extract
information about the superposition coefficients by a measurement. This problem is
known as state estimation of an unknown quantum state [43, 44, 45].

Another practically important example comes from quantum communication. Al-
though the no-cloning principle forbids exact replication of an unknown quantum
state, it is still possible to make an approximate copy of a given state at cost of some
perturbation [46]. This means that an eavesdropper can obtain some information
about the transmitting message introducing some errors. In practice, errors in the
transmission of a message can have very different reasons. Apart from the eaves-
dropper, the quantum control during the preparation or transmission of the quantum
systems might be incomplete for a given realization of the quantum channel. For all
practical realization of quantum communication protocols, therefore, a certain error

1We assume that the repeated computation did not cause any errors.
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rate need to be accepted, and the eavesdropper might be successful in extracting
some information about the message. That is why it is important to establish qual-
itative tradeoffs between the information acquired by an eavesdropper and the error
rate. For the calculation of such tradeoffs, one should assume that the eavesdropper
has applied the most powerful strategy consistent with quantum mechanics. The
problem of estimating the maximum information for a given error rate is equivalent
to the search for an optimal eavesdropping attack on the used protocol [47]. This is
a very difficult problem and the complete solution is not known for any of the existing
protocols2.

In this thesis we shall explore in details several problems related to:

1. the description of entanglement and entanglement dynamics of multiparticle
states of finite-dimensional quantum systems;

2. the optimal processing of information encoded in states of such systems.

The first part of this thesis, in particular, deals with the problem of quantifying
entanglement. After a brief introduction of parametrization and properties of two-
and multidimensional quantum systems in section 1.1, we shall present, in section
1.2, the entanglement theory (including the separability problem and constriction
of entanglement monotones and entanglement measures) that has been developed
over the past decade. The focus will be made especially on quantification of en-
tanglement of general multiparticle states of two-dimensional quantum systems with
certain entanglement measure – concurrence. In section 1.3, we shall analyze in de-
tails two essentially different ways of how this entanglement measure can be employed
to characterize entanglement dynamics of a quantum system subjected to a general
non-unitary evolution. The first part of this thesis ends with a summary on results of
our analysis with some remarks.

The second part of this thesis is devoted to the optimal processing of information
encoded in states of two-dimensional quantum systems. In section 2.1, in particular,
we shall present the existing theory of quantum cloning, which is consistent with the
no-cloning principle, and its application in eavesdropping of quantum communication.
In section 2.2 we shall extend this theory to arbitrary quantum transformations. The
focus will be made especially on transformations which do not depend on particular
form of input states, i.e. are input state independent. We also suggest and discuss an
application of these state independent transformations in quantum computing with
initially mixed states. In section 2.3, in addition, we shall briefly discuss the problem
of state estimation from a finite ensemble of identical particles and show an example
of how the suggested state independent transformations may serve in estimating the
fidelity between two finite ensembles of identical particles. We close the second part
of this thesis with a discussion of our results.

2It is important to note that the eavesdropper’s success does not dispute unconditional security of
quantum communication. Intercepted information can be always reduced to zero, if the authorized
users apply error correction and security amplification procedures [3] on their message. However,
it is still necessary to know the maximum information that can be accessed by the eavesdropper in
order to provide mentioned procedures in an optimal fashion.
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Chapter 1

Quantifying quantum entanglement

[Entanglement] is not one, but rather the characteristic
trait of quantum mechanics, the one that enforces its

entire departure from classical lines of thought.

Erwin Schrödinger

1.1 Basic notations: qubit and qudit

The bit is the fundamental concept of classical computation and classical commu-
nication. Quantum computation and quantum communication are built upon an
analogous concept, the q(uantum )bit. Just as a classical bit has a state – either 0 or
1 – a qubit also has two possible states |0〉 and |1〉. The difference between bits and
qubits is that a qubit lives in a two-dimensional Hilbert space H and can be written
as a complex linear combination of orthonormal basis states |0〉 and |1〉 as

|ψ〉 = α |0〉+ β |1〉 , (1.1)

where α and β are subordinated to the normalization condition |α|2 + |β|2 = 1. The
qubit state (1.1) is called pure superposed state.

A pure qubit state can be visualized as a point on the unit three-dimensional
(Bloch) sphere and can be also parameterized as

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiϕ |1〉 . (1.2)

In this representation, the parameters θ and ϕ take values in the range 0 ≤ θ ≤ π
and 0 ≤ ϕ < 2π, respectively, and we shall later use the Bloch sphere in order
to visualize the states of interest. From the context it will be always seen which
parametrization of a qubit state between (1.1) and (1.2) we use at the moment.

More generally, a qubit may also exist as a statistical mixture of pure states |ψi〉.
For example, a statistical mixture may represent an ensemble of states that is created
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Chapter1. Quantifying quantum entanglement

by a source that produces different states |ψi〉 with the according probabilities pi > 0
(with

∑
i pi = 1). This situation is described by a density matrix

ρ ≡
∑
ij

ρij |i〉 〈j| =
∑

k

pk |ψk〉 〈ψk| . (1.3)

This matrix is positive semidefinite and hermitian1, since all the operators |ψk〉 〈ψk|
are positive semidefinite and hermitian. Conversely, any positive semidefinite matrix
of trace one can be interpreted as a density matrix of some state. This leads to a
geometrical picture of the set of all states as a convex set restricted by the Bloch
sphere. A convex combination of two qubit states ρ1 and ρ2 is also a qubit state
ρ = αρ1 + (1− α)ρ2 with α ∈ [0, 1].

The decomposition of a mixed state ρ into pure states |ψk〉 is not unique and
depends on a chosen basis. If there exist a basis in which a qubit state ρ is given by
a single term in the sum (1.3), the qubit is in a pure state, otherwise the qubit is in
a mixed state. The simple criteria to distinguish between pure and mixed states is to
calculate Trρ2 of a given state, where the trace operation

Tr ρ =
∑

i

〈i| ρ |i〉 = ρii (1.4)

takes the diagonal elements of a given state in some basis {|i〉}. Iff Trρ2 = 1, the
qubit state ρ is pure. For Trρ2 < 1, the qubit state ρ is mixed.

Later we will be often interested in multiqubit systems. Such a system lives in
a Hilbert space that is a tensor product of Hilbert spaces H which are associated
with each individual qubit. The dimension of the N-qubit Hilbert space H⊗N is 2N .
Thus a pure state of a N-qubit system is given by a complex linear combination
of 2N mutually orthogonal basis vectors |i〉. It is convenient to write basis vectors
of multiqubit systems in the binary (computational) form. For example, vectors
|00〉 , |01〉 , |10〉 and |11〉 are the four computational basis vectors of a two-qubit
system. A mixed state of a two-qubit system can be written as

ρAB =
∑

ij,kl

ρij,kl |iAkB〉 〈jAlB| =
∑

ij,kl

ρij,kl |iA〉 〈jA| ⊗ |kB〉 〈lB| . (1.5)

This definition generalizes straightforwardly to multiqubit systems.
Knowing the state of a multiqubit system, we may be interested to find out the

state of some subsystem of this system. This task can be accomplished by taking
partial trace. For example, for the two-qubit density matrix ρAB, the state of the
qubit A is given by

ρA ≡ TrB (ρAB) = TrB

(∑

ij,kl

ρij,kl |iA〉 〈jA| ⊗ |kB〉 〈lB|
)

=
∑

ij,kl

ρij,kl |iA〉 〈jA| 〈kB | lB〉 . (1.6)

1A hermitian matrix M is called positive semidefinite iff its eigenvalues are non-negative.
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1.2. Entangled states

It is also useful to introduce a generalization of the qubit to higher dimensions,
qudit, a d-dimensional (d < ∞) quantum system. A pure state of qudit is defined by
analogy with Eq. (1.1) and is given by a complex linear combination of d orthonormal
basis states. A mixed state of qudit is then a statistical mixture of pure states (1.3).
The definitions of trace (1.4) and partial trace (1.6) are straightforward. Later we
will see that many results obtained for qubits can be extended to qudits.

Finally, after the mathematical introduction of the qubit concept, we would like
to note that the qubit is not just a mathematical abstraction, it is a model for
real physical systems. Electrons, nuclear or molecule spins, quantum dots or the
polarization states of photons are physical representatives of qubit.

1.2 Entangled states

For a single qubit system (1.1), the statistics of measurements in the computational
basis {|0〉 , |1〉} provides us with full knowledge about the coefficients α and β of
the qubit state. The measurement data for a multiqubit system, however, may not
be fully described by the collected statistics on the individual qubits, since there
may exist correlations which cannot be deduced from observing the individual parts
independently. For statistically independent quantum systems, say two qubits in pure
states |ψA〉 and |ψB〉, the state of the system AB is simply formed by the tensor
product of the states of its parts, i.e.

|ψAB〉 = |ψA〉 ⊗ |ψB〉 = |ψA〉 |ψB〉 . (1.7)

In this case, the statistics of measurements of the composite system AB is indeed
given by the individual measurement data. Whenever a pure state of two (or more)
qubits can be written as a tensor product of states of individual qubits, this state is
called separable or a product state.

However, there are multiqubit states, so-called entangled states, which cannot be
written as a tensor product of states of individual qubits. For such states the mea-
surement results on different qubit subsystems are correlated. A (local) measurement
of a single qubit causes a reduction of the multiqubit state and therefore changes the
probabilities for potential measurements on the rest of the multiqubit system. The
simplest example is a two-qubit system prepared in a pure (Bell) state

|ψAB〉 =
|0A〉 |1B〉+ |1A〉 |0B〉√

2
. (1.8)

After a local measurement of qubit B the state of the qubit A is not a pure state,
but is given by a statistical mixture of states, i.e. ρA = TrB |ψAB〉 〈ψAB| =
(|0〉 〈0|+ |1〉 〈1|) /2.

By analogy with pure states, a general mixed state of N -qubit system is called
separable iff it can be written as a convex combination of product states [48], i.e.

ρsep =
∑

i

pi ρ
i
1 ⊗ ρi

2 ⊗ ..⊗ ρi
N , (1.9)
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Chapter1. Quantifying quantum entanglement

where
∑

i pi = 1 and ρi
n = |ψi

n〉 〈ψi
n| for n = 1..N . If a mixed state cannot be written

in the form (1.9) it is entangled.

1.2.1 Separability criteria

Having the simple definitions of entanglement and separability, it is very natural to
verify whether a given multiqubit state is separable or entangled. In general, this
is a very difficult (so-called separability) problem. Indeed, to check whether a given
N -qubit density matrix admit decomposition (1.9) one should perform a search in 2N -
dimensional Hilbert space. Up to now, no general solution is known for the separability
problem [40].

However, the separability problem can be unambiguously resolved for a number
of special cases. For example, a simple criterion for separability of pure two-qubit
states can be obtained with the help of Schmidt decomposition [3]. According to this
decomposition any pure two-qubit state can be written in the form

|ψAB〉 =
∑

i

√
λi |ψA〉i |ψB〉i , (1.10)

where {|ψA〉} and {|ψB〉} are orthonormal bases for the qubit subsystems and
√

λi are
the real nonnegative (Schmidt) coefficients which fulfils

∑
i λi = 1. From Eq. (1.10),

it follows immediately that the pure state |ψAB〉 is separable iff there is just one term
in the Schmidt decomposition (1.10).

For a given pure two-qubit state, the decomposition (1.10) can be constructed
as follows. We start from a representation of |ψAB〉 in some basis

|ψAB〉 =
∑
ij

aij |iA〉 |jB〉 , (1.11)

so that the coefficients aij form a complex matrix A. Every complex matrix A can
be diagonalized by two unitary transformations U ≡ {uik} and V ≡ {vkj} such that

|ψAB〉 =
∑

ijk

uikdkkvkj |iA〉 |jB〉 , (1.12)

with real and nonnegative diagonal elements dk which provide the singular value de-
composition of A [49]. Hence, any pure state |ψAB〉 can be represented in terms of its
Schmidt coefficients λk ≡ d2

k and the associated Schmidt bases |ψA〉k =
∑

i uik |iA〉
and |ψB〉k =

∑
j vkj |jB〉.

It is important to note that Schmidt decomposition can be constructed for an ar-
bitrary pure two-qudit state |ψAB〉. The Schmidt coefficients in this case can be easily
founded with the help of one of the reduced density matrices ρA = TrB |ψAB 〈ψAB|〉
or ρB = TrA |ψAB 〈ψAB|〉. Let us assume, without loss of generality, d = dim(HA) <
dim(HB). Using Eq. (1.10) it is easy to check that the spectrum of ρA is given
by the Schmidt coefficients. The spectrum of ρB is the Schmidt coefficients and
dim(HB)− dim(HA) vanishing eigenvalues.
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1.2. Entangled states

However, the Schmidt decomposition can not be constructed for a general pure
state of a multiqubit (as well as a multiqudit) system with more than two subsystems.
Even for a three-qubit system there are pure quantum states which can not be brought
into the form [50]

|ψABC〉 =
∑

i

√
λi |iA〉 |iB〉 |iC〉 . (1.13)

In absence of the high-order Schmidt decomposition , it is possible to use a legal trick
– consider a N -qubit system as bipartite system of n1 and n2 qubits (n1 + n2 = N)
and construct a Schmidt decomposition for this bipartite system. This decomposition
tells us whether the first n1-qubit subsystem is separable from the second n2-qubit
subsystem.

The concept of Schmidt coefficients allows us to relate the degree of entanglement
of pure states to the degree of mixing of the corresponding reduced density matrices.
A pure reduced density matrix corresponds to a separable bipartite state. In the next
section we will see how the degree of mixing of the reduced density matrices can be
assign not only to distinguish between separable and entangled states, but also to
quantify entanglement.

Apart of the case of pure bipartite (two-qubit and two-qudit) states discussed
above, the separability problem can be unambiguously resolved for some two-partite
mixed states. The standard approach to decide on the separability of a given mixed
two-partite state relies on positive semidefinite map. A map Λ : A(H) → A(H) is
called positive semidefinite if it maps positive operators with nonnegative eigenvalues
onto positive operators with nonnegative eigenvalues, i.e. Λ(ρ) ≥ 0 for all ρ ≥ 0. A
crucial property of positive semidefinite maps is that an extension Λ ⊗ 1 to higher
dimensions is not positive, where 1 is the identity map. This property can be used
to conclude on separability of a mixed state. Consider a Hilbert space HA ⊗HB of
two d-dimensional systems (d < ∞) and a positive semidefinite map on the Hilbert
subspace HA, i.e. Λ : A(HA) → A(HA). If map Λ ⊗ 1 is applied on the Hilbert
space HA ⊗ HB, there are some states ρ for which this map is not positive, that
is (Λ⊗ 1) ρ � 0. However, if a state ρ is separable, its convex decomposition into
product states (1.9) implies that

(Λ⊗ 1) ρ =
∑

i

pi Λ(ρi
A)⊗ ρi

B , (1.14)

i.e. (Λ⊗ 1) ρ ≥ 0. Thus, a state ρ is necessarily entangled if (Λ⊗ 1) ρ � 0.
If, however, a given state ρ remains positive under the map (Λ⊗ 1), it does not

guarantee that this state is separable. Only if (Λ⊗ 1) ρ ≥ 0 for all positive maps Λ,
it can be concluded that the state ρ is separable [51]. This statement does not allow
to derive a sufficient separability criterion for a general case, since the classification
of positive maps is a currently unsolved problem.

An example of separability criteria based on positive semidefinite maps is positive
partial transpose (PPT ) criterion [52]. According to it the matrix transposition
operation T (ρ) = T (

∑
ij ρij |i〉 〈j|) ≡

∑
ij ρij |j〉 〈i| should be applied to one of

the subsystems of a bipartite system. If the partial transpose ρpt = (T ⊗ 1)ρ of a

9



Chapter1. Quantifying quantum entanglement

bipartite state ρ has at least one negative eigenvalue, the state ρ is entangled. The
PPT criterion unambiguously distinguishes separable and entangled states only for
low-dimensional (2 ⊗ 2 and 2 ⊗ 3) systems [51]. In higher dimensions there exist
entangled states [53, 54] that are not detected by the PPT criterion.

To sum up, entangled and separable states can be unambiguously distinguished
for: pure states of bipartite systems with arbitrary finite dimensions of the subsystems
and mixed states of bipartite systems with low dimensions of the subsystems. Even in
rather simple case of three qubits, there is no a simple (algebraic) criteria to distinguish
separable and entangled states. There is a number of numerical approaches to resolve
the separability problem [55]. However, for a N -qubit system a numerical solution of
the separability problem require optimization over 4N free real parameters.

1.2.2 Entanglement monotones and measures

The definition of separable states (1.9) is not constructive and, as we have just seen,
does not provide us with an algorithm to distinguish between separable and entangled
states. This definition, moreover, complicates finding a quantitative description of
entanglement. Therefore, one should base on a completely different idea to quantify
entanglement. Widely accepted strategy for a quantitative description of entangle-
ment is to classify all kinds of operations that in principle can be applied to quantum
systems. From all possible quantum operations we are interested in those which can
change only classical correlations in quantum states leaving quantum correlations in-
variant. Any number assigned to a state that does not change under such operations
can serve for a quantitative description of entanglement [56].

In general, a quantum operation describing evolution of a quantum system is
given by a linear map E : B (Hi) → B (Hf),

E (α1ρ1 + α2ρ2) = α1 E (ρ1) + α2 E (ρ2) , (1.15)

according to the underlying linear Schrödinger equation. In order to ensure positivity
of a quantum state ρ, the map E has to be positive. This requirement, however, is
not strong enough. It is always possible to consider a quantum system as a subsystem
of a larger one. In this case, the extended map E⊗1 acts on the entire system so that
the original map E affects the (sub)system of interest and the identity map 1 acts on
the appended subsystem. As it was mentioned in the previous section, an extension
E ⊗ 1 is not necessarily a positive map. In order to ensure that the map E ⊗ 1 is
positive we have to require that any extension of the positive map E to identity maps
in arbitrary dimensions is positive, i.e. the map E is completely positive. Accordingly,
any operation consistent with quantum mechanics have to be described by a linear
completely positive map. This implies, in particular, that separability criteria based
on positive maps are not part of quantum dynamics, but just a mathematical tool to
conclude on separability of a given quantum state.

The notion of quantum operation is a very general one that includes both unitary
and non-unitary, e.g. due to environment coupling or measurements, evolution of a
quantum system. A large class of quantum operations, such as

10



1.2. Entangled states

• unitary transformation, E1 (ρ) = UρU † ;

• addition to the original system ρ an auxiliary system σ, E2 (ρ) = ρ⊗ σ;

• partial trace over a part p, E3 (ρ) = Trpρ;

• projective measurement, E4 (ρ) = PkρPk/Tr (Pkρ), with P 2
k = Pk;

can be expressed as an operator sum

E (ρ) =
∑

i

EiρE†
i , (1.16)

where the linear operators Ei are subordinated to the condition
∑

i E
†
i Ei = 12.

Using the operator sum representation (1.16) we can classify all quantum operations
to three types [57]: local operations, global operations and local operations and
classical communication (LOCC). What type of operations can assist in quantifying
entanglement?

An operation is called local if under its action subsystems of a composite system
evolve independently from each other. For a bipartite system, for example, the effect
of a local operation can be described with the operator sum representation as

EL (ρ) =
∑
ij

Ei ⊗ Fj ρE†
i ⊗ F †

j with
∑
i,j

E†
i Ei ⊗ F †

j Fj = 1 . (1.17)

Local operations do not change initial classical correlations in quantum states, e.g. a
product state remains a product state under their action,

EL (ρ1 ⊗ ρ2) =

(∑
i

Eiρ1E
†
i

)
⊗

(∑
i

Fiρ2F
†
i

)
. (1.18)

Local operations also do not change quantum correlations,

EL

(∑
i

pi ρ
i
1 ⊗ ρi

2

)
=

∑
i

pi

(∑
i

Eiρ
i
1E

†
i

)
⊗

(∑
i

Fiρ
i
2F

†
i

)
. (1.19)

Therefore, local operation can not serve in quantifying entanglement.
Any operation that is not local is called global. Under this type of operations

both classical and quantum correlations may increase as well as decrease [57]. For
example, the most prominent and natural way of creating entangled states is a global
unitary evolution of a quantum system due to interaction between its subsystems
[58, 59]. Therefore, global operations do not help to quantify entanglement.

LOCC is the third type of quantum operations. These operations comprise local
operations and, in addition, allow exchange of classical information about locally
performed operations and their results. In term of operator sums this is expressed as

ELOCC (ρ) =
∑

i

Ei ⊗ Fi ρ E†
i ⊗ F †

i with
∑

i

E†
i Ei ⊗ F †

i Fi = 1 . (1.20)

2For a restriction on the operator sum representation (1.16) see section (1.3).
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Chapter1. Quantifying quantum entanglement

In contrast to Eq. (1.17), only a single sum is involved in the description of LOCC.
This implies the correlated application of the respective operations on the subsystems:
if the operator Ei is applied to the first subsystem, the operator Fi is applied to the
second subsystem.

LOCC can be used to create classical correlations between subsystems. In general,
a product state does not remain a product one under the action of LOCC

ELOCC (ρ1 ⊗ ρ2) =
∑

i

(
Eiρ1E

†
i

)
⊗

(
Fiρ2F

†
i

)
=

∑
i

pi ρ
i
1 ⊗ ρi

2 , (1.21)

where

ρi
1 =

Eiρ1E
†
i

Tr
(
Eiρ1E

†
i

) , ρi
2 =

Fiρ2F
†
i

Tr
(
Fiρ2F

†
i

) , (1.22)

and pi = Tr
(
Eiρ1E

†
i

)
Tr

(
Fiρ2F

†
i

)
. Thus, classical probabilistic correlations can

change under the action of LOCC. However, as it is seen from Eq. (1.21) separable
states remain separable and, therefore, LOCC can not change entanglement3.

Since it has been argued that entanglement can not be changed under LOCC, the
discussion at the beginning of this section suggests to consider quantities that are in-
variant under LOCC. Any scalar valued function that satisfies this criterion is called an
entanglement monotone [56] and can be used to quantify entanglement. For example,
let us consider a bipartite system prepared in a pure state |ψAB〉. Taking partial trace
over the subsystem B, we have a reduced density matrix ρA = TrB |ψAB〉 〈ψAB|.
As we mentioned in the previous section, the degree of mixing of the reduced den-
sity matrix can be assigned to the amount of entanglement of the pure state |ψAB〉.
Therefore, any scalar function of the reduced density matrix f (ρA) that is invariant
under LOCC is an entanglement monotone. The simplest example of the entangle-
ment monotone is Trρ2

A [57].
Because of its invariance under LOCC, f (ρA) can only be a function of unitary

invariants, i.e. spectrum of ρA. Accordingly, it is not necessary to distinguish between
ρA and ρB, since they have the same non-vanishing eigenvalues as we have seen during
the discussion of the Schmidt coefficients. If the dimensions of ρA and ρB are not
equal the reduced density matrix of the larger subsystem simply has some additional
vanishing eigenvalues.

For pure bipartite states, it is rather simple to find an entanglement monotones
due to the fact that there are no classical (probabilistic) correlations in these states.
For mixed states, there are both classical and quantum correlations that should be
discriminated against each other by the entanglement monotone. There are two
general requirements to an entanglement monotone for a mixed state [57]. It must

3It is important to note that LOCC do not change entanglement on average. If we interpret
a mixed state ρ as an ensemble of pure states, the non-increase of entanglement of ρ means that
the ensemble average does not increase, whereas a single instance of the ensemble may show an
increased amount of entanglement [60]. In section (1.3.2) a particular case of LOCC operation,
so-called filtering operation, which can change entanglement with some probability will be shown.
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1.2. Entangled states

be still invariant under LOCC and have to reduce to the original pure state definition
when applied to a pure state.

On the first glance, it might be obvious that an entanglement monotone for a
mixed state ρ =

∑
i pi |ψi〉 〈ψi| is a weighted by factors pi linear combination of the

monotones for pure states |ψi〉. However, the decomposition of a mixed state into
pure states is not unique, therefore, different decompositions lead to different values
for a chosen mixed state entanglement monotone. The unambiguous generalization of
a pure state monotone to a mixed state monotone is the extremum over all possible
decompositions into pure states – the so-called convex roof (extension) [41, 57].
Moreover, if a given mixed state is separable, the entanglement monotone should
have the minimum value among all possible decompositions, therefore a mixed state
monotone is the minimum over all possible decompositions

f(ρ) ≡ min{pi,ψi}
∑

i

pi f(|ψi〉) , with ρ =
∑

i

pi |ψi〉 〈ψi| . (1.23)

Entanglement monotones that satisfy some additional axioms are called entan-
glement measures EM. Although there are still some debates on the list of axioms
that should be accepted [57, 60], there are three most frequently used requirements:

• EM (ρ) vanishes for a separable state ρ;

• EM (ρ) is a convex function, i.e.
EM (λρ1 + (1− λ)ρ2) ≤ λEM (ρ1) + (1− λ)EM (ρ2), for 0 ≤ λ ≤ 1;

• EM (ρ) is subadditive4, the entanglement of a tensor product is not larger than
the sum of the entanglement of both individual states, i.e.
EM (ρ1 ⊗ ρ2) ≤ EM (ρ1) + EM (ρ2).

Up to now, a number of entanglement monotones and measures have been sug-
gested [40]. In the next section we shall focus especially on, probably, the most
powerful entanglement measure – concurrence.

1.2.3 Concurrence

Concurrence was originally introduced by Wootters to calculate entanglement of arbi-
trary states of two qubits [61]. Here, we shall first present the simple formula derived
by Wootters to compute the concurrence. Next, we shall show how this simple formula
can be derived from the optimization (1.23).

The formula for entanglement makes use a mathematical abstraction what can
be called the ‘spin flip’ transformation. For a pure state of a single qubit, the spin
flip, which is denoted by a tilde, is defined by

˜|ψ〉 = σy |ψ∗〉 , (1.24)

4There is a much stronger requirement – additivity of an entanglement measure, EM (ρ1 ⊗ ρ2) =
EM (ρ1)+EM (ρ2). This requirement would significantly simplify quantifying entanglement. How-
ever, none of the existing entanglement measures is shown to be additive in general case [40].
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Chapter1. Quantifying quantum entanglement

where |ψ∗〉 is the complex conjugate of |ψ〉 when it is expressed in a chosen basis
{|0〉 , |1〉} and σy is the matrix σy = −i (|0〉 〈1|−|1〉 〈0|) in the same basis. To perform
the spin flip on a general state of two qubits, one applies the above transformation
to each individual qubit, i.e.

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) , (1.25)

where again the complex conjugate is taken in the conventional basis. The concur-
rence for the mixed state ρ is given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} , (1.26)

where the λi, i = 1..4 are the square roots of the four nonvanishing eigenvalues of
the non-hermitian matrix ρ ρ̃, if taken in decreasing order.

The Eq. (1.26) for the concurrence can be derived from the optimization of
the convex roof (1.23) as follows. As it follows from Eqs. (1.25) and (1.26), the
concurrence for a pure two-qubit state is given by

C(|ψ〉) = | 〈ψ∗ | σy ⊗ σy|ψ〉 | . (1.27)

It is easy to check by direct calculation that C(|ψ〉) =
√

2 (1− Trρ2
red), where ρred

is a reduced single-qubit density matrix. Since the two-qubit concurrence (1.27) is a
function of Trρ2

red it does not increase under LOCC. The concurrence of a pure two-
qubit state also satisfies the three requirements at the end of the previous section to
be an entanglement measure.

The concurrence of a mixed state is given by the corresponding convex roof, alike
Eq. (1.23)

C(ρ) ≡ min{pi,ψi}
∑

i

pi C(|ψi〉) , with ρ =
∑

i

pi |ψi〉 〈ψi| . (1.28)

To perform the optimization of this expression it is convenient to use the following
characterization of ensembles of pure states. Using subnormalized states

|Ψi〉 =
√

pi |ψi〉 (1.29)

allows to reduce the number of involved quantities. Since the pi are positive, one
has |Ψi〉 〈Ψi| = pi |ψi〉 〈ψi|. Assume one ensemble {|Ψi〉} is known such that ρ =∑

i |Ψi〉 〈Ψi|. A new ensemble can be defined as

|Φi〉 =
∑

j

Vij |Ψj〉 , with
∑

i

V †
kiVij = δjk , (1.30)

which represents the same mixed state ρ =
∑

i |Ψi〉 〈Ψi| =
∑

j |Φj〉 〈Φj|. Moreover,
any ensemble representing ρ can be constructed in this way.

Using the subnormalized states (1.29) and taking into account that the quan-
tity 〈ψ∗ | σy ⊗ σy|ψ〉 in Eq. (1.27) can be understood as elements τij of a complex
symmetric matrix τ , the convex roof for the concurrence (1.28) can be written as

C(ρ) = minV

∑
i

∣∣[V τV T
]
ii

∣∣ . (1.31)
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1.2. Entangled states

The minimum of this quantity is known [61] to be given by C(ρ) = max{0, λ1−λ2−
λ3 − λ4} where λi are the square roots of the eigenvalues of the positive hermitian
matrix ττ †.

The concept of the concurrence can be extended to bipartite systems with arbi-
trary finite dimensions of the subsystems [62, 63]. The main ingredient to construct
the (extended) concurrence is to define by analogy with Eq. (1.24) the ‘spin flip’
transformation for a pure qudit state. This task is, however, far from being trivial.
The group of symmetry of a qubit, SU(2), has only single generator σy which was
used to construct the ‘spin flip’. The group of symmetry of a d-dimensional (d ≥ 3)
quantum system, SO(d), has n = d(d− 1)/2 generators. Each of this generators is
a potential ‘spin flip’. However, none of these generators by itself provide us with the
desired state inversion (i.e. ‘spin flip’) operation [63]. The best approximation for
the ‘spin flip’ transformation for a pure state |ψ〉 of a d-dimensional quantum system
is given by a combination of d(d − 1)/2 generators of the group SO(d). Thus, the
concurrence for a pure state of a bipartite d1 ⊗ d2 system can be written as

C(|ψ〉) ≡

√√√√√
d1(d1−1)

2∑
i=1

d2(d2−1)
2∑

j=1

|Cij|2 , (1.32)

where Cij = 〈ψ∗ | Li ⊗ Lj|ψ〉, Li and Lj are the generators of the groups SO(d1) and
SO(d2) respectively. In fact, the definition (1.32) is simply equivalent to C(|ψ〉) =√

2 (1− Trρ2
red) [64, 65]. However, this definition (1.32) provides us with a construc-

tive way to optimize the convex roof (1.28) for mixed bipartite states later. Indeed,
each operator Li⊗Lj describes a ‘spin flip’ transformation in just a 2⊗2-dimensional
subspace of the original d1 ⊗ d2-dimensional Hilbert state space of the bipartite sys-
tem [66]. The concurrence C(|ψ〉) is just the sum of all possible squared ‘two-qubit’
concurrences associated with the 2⊗ 2-dimensional subspaces. It is also notable that
the concurrence (1.32) reduces to the definition (1.27) for two qubits.

Having the definition of the concurrence (1.32) for a pure state |ψ〉 of a bipartite
system and taking into account the interpretation of this definition as given above, we
can repeat the optimization of the convex roof (1.28) in order to obtain the expression
for entanglement of a mixed state of a bipartite system. The concurrence for a mixed
state ρ of a bipartite system is given by [66]

C(ρ) =

√√√√√
d1(d1−1)

2∑
i=1

d2(d2−1)
2∑

j=1

|Cij|2 , (1.33)

where Cij = max{0, λ1
ij − λ2

ij − λ3
ij − λ4

ij} and λk
ij, k = 1..4 are the square roots of

the four nonzero eigenvalues, in decreasing order, of the non-Hermitian matrix ρ ρ̃ij,
where ρ̃ij = (Li ⊗ Lj)ρ

∗(Li ⊗ Lj) and i = 1..d1(d1 − 1)/2, j = 1..d2(d2 − 1)/2.
Being an entanglement measure for an arbitrary mixed state of a bipartite system,

the concurrence (1.33) should vanish for separable states and, therefore, may serve as
a simple separability criteria. However, in section 1.2.1 we stated that there is no a
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Chapter1. Quantifying quantum entanglement

separability criteria for a general bipartite state. On the first glance, there is a contra-
diction until we remember that the ‘spin flip’ transformation used in Eqs. (1.32) and
(1.33) is an approximation for the state inversion operation [63]. Thus, the bipartite
concurrence (1.33) is also an approximation for the convex roof (1.28) for bipartite
states and, therefore, can not be used for unambiguous discrimination between en-
tangled and separable states. In spite of this the concurrence (1.33) detects most of
mixed entangled states [66] what makes it quite a powerful entanglement measure.

1.2.4 A lower bound for concurrence

Unfortunately the concept of the concurrence cannot be straightforwardly extended
to multipartite systems. The definitions for the concurrence for pure two-qubit (1.27)
and two-qudit (1.32) states are based on our ability to distinguish between entangled
and separable states assigning the degree of mixing of the reduced (over one sub-
system) density matrix, i.e. C(|ψ〉) =

√
2 (1− Trρ2

red), to the entanglement of the
given bipartite state. As we have seen in section 1.2.1, in the case of multipartite
systems we are unable to say whether a given pure state is separable or entangled
and, therefore, none value can be assigned to quantify entanglement of a pure state.
The one way around is to consider a multipartite system as a bipartite system and
quantify entanglement of this ‘virtual’ bipartite system. Although such bipartite split
can not be unique we need to take into account all possible bipartite splits of a given
multipartite system.

For example, for a given pure N-qubit state |ψ〉, the concurrence can be approx-
imated by [64, 67]

CN(|ψ〉) =

√√√√1− 1

N

N∑
i=1

Tr ρ2
i , (1.34)

where the ρi = Tr |ψ〉 〈ψ| denotes the reduced density matrix of the i-th qubit which
is obtained by tracing out the remaining N − 1 qubits. This concurrence can be also
expressed as a linear combination of N bipartite concurrences (1.32) for (2⊗ 2N−1)-
dimensional bipartite systems.

Having the definition (1.34) for the concurrence for a pure state of multiqubit
system, we can formally define the concurrence for a mixed state through the convex
roof (1.28). So far, however, there is no a general solution for the optimization
problem (1.28) for multiqubit mixed states [40, 41]. Nevertheless, the convex roof
can be estimated by a function that does not exceed the convex roof, a so-called
lower bound for multiqubit concurrence. This function has a clear practical meaning:
it defines the minimum (nontrivial) amount of entanglement which is preserved in a
mixed state and can be further utilized [59].

So far, various numerically [41] and analytically [67] computable lower bounds
have been suggested [40]. Here, I focus on an analytical lower bound for multiqubit

16



1.2. Entangled states

concurrence as suggested by Li et al. [67]. The lower bound τN(ρ) is given by

CN(ρ) ≥ τN(ρ) ≡
√√√√ 1

N

N∑
n=1

K∑

k=1

(Cn
k )2 . (1.35)

This bound is defined in terms of the N ‘bipartite’ concurrences Cn that correspond
to the possible (bipartite) cuts of the multiqubit system in which just one of the
qubits is discriminated from the other N − 1 qubits. For the separation of the n-th
qubit, the bipartite concurrence Cn is given by a sum of K = 2N−2 (2N−1− 1) terms
Ck which are expressed as

Cn
k = max{0, λ1

k − λ2
k − λ3

k − λ4
k} , (1.36)

and where the λm
k , m = 1..4 are the square roots of the four nonvanishing eigenvalues

of the matrix ρ ρ̃n
k , if taken in decreasing order. These (non-hermitian) matrices ρ ρ̃n

k

are formed by means of the density matrix ρ and its complex conjugate ρ∗, and are
further transformed by the operators {Sn

k = Ln
k⊗L0, k = 1, ..., K} as: ρ̃n

k = Sn
k ρ∗Sn

k .
In this notation, moreover, L0 is the (single) generator of the group SO(2), while the
{Ln

k} are the K = 2N−2 (2N−1 − 1) generators of the group SO(2N−1). In fact, the
lower bound (1.35) is simply a linear combination of the squared bipartite concurrences
(1.33) for mixed states.

Let us display this lower bound (1.35) especially for three-qubits, τ3(ρ), for which
the entanglement dynamics of entangled states will be discussed in the next section.
For such states, the lower bound τ3(ρ) can be written in terms of the three bipartite
concurrences that correspond to possible cuts of the two qubits from the remaining
one, i.e.

τ3(ρ) =

√√√√1

3

6∑

k=1

(C
12|3
k )2 + (C

13|2
k )2 + (C

23|1
k )2 . (1.37)

The bipartite concurrence C
ab|c
k (for a, b, c = 1..3 and a 6= b 6= c 6= a) are obtained

as described above with the help of the operators {Sab|c
k = Lab

k ⊗ Lc
0, k = 1...6},

where L0 is the generator of the group SO(2) which is given by the second Pauli
matrix σy = −i (|0〉 〈1| − |1〉 〈0|). The (six) generators Lab

k of the group SO(4) can
be expressed explicitly by means of the totally antisymmetric Levi-Cevita symbol in
four dimensions as (Lkl)mn = −i εklmn; k, l, m, n = 1..4 [68].

Of course, the lower bound (1.35) is only an approximation to the convex roof
for the concurrence (1.28) as a measure of entanglement, therefore, it is useful to
understand how well this measure is represented by the given bound. Unlike the
analytical formula for the lower bound, the only way to compute the convex roof is
to provide a numerical optimization. How demanding this numerical simulation for a
given mixed state ρ of a multiqubit system is?

A given state ρ can be written using subnormalized states (1.29) as ρ =
∑

i |Ψi〉 〈Ψi|.
The minimum number i of the ensemble members in this decomposition is given by
the rank r, i.e. the number of nonvanishing eigenvalues, of the density matrix ρ.
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According to the Caratheodory (convex hull) theorem, the maximum number of the
ensemble members in the decomposition of the hermitian matrix ρ is r2 [69]. There-
fore, to find the optimal decomposition for ρ which minimize the convex roof (1.28)
one should first define a r2 × r matrix Vij in Eq. (1.30). By varying the parame-
ters of this matrix the optimal matrix V opt

ij that transforms a given decomposition
ρ = |Ψi〉 〈Ψi| into the optimal one should be found. This implies an optimization
procedure of dimensions r3 for a given rank-r mixed state density matrix [57].

1.3 Entanglement dynamics

Having the tool, the lower bound for the concurrence (1.35), to quantify entanglement
of general multiqubit states, we can describe entanglement dynamics of multiqubit
systems. Typically, the evolution of entanglement of a system is deduced from study-
ing its state evolution focusing especially on the most general nonunitary evolution
[41, 75, 76].

The state dynamics of a closed quantum system which does not interact with
the outside world is described by a unitary transform |φ〉 = U |ψ〉, where U †U = 1.
In many cases, however, a physical system S cannot be considered as closed owing
to its interaction with some environment E. Although the dynamics of the system S
cannot be described by a unitary transformation any more, it is possible to consider
a unitary evolution of a closed composite system SE. Assuming that the principal
system S and the environment E are initially uncorrelated and that the environment
was in some pure state |e0〉, the general unitary evolution of the whole system SE
can be written as

ρSE = USE (ρS ⊗ |e0〉 〈e0|) U †
SE . (1.38)

The evolution of the system S is obtained by tracing over the degrees of freedom of
the environment, i.e.

ρ′S = E(ρ) = TrE

[
USE (ρS ⊗ |e0〉 〈e0|) U †

SE

]

=
∑

i

〈
ei | USE (ρS ⊗ |e0〉 〈e0|) U †

SE |ei

〉
=

∑
i

KiρSK†
i , (1.39)

where {|ei〉} denotes an orthonormal basis for the environment and
∑

i K
†
i Ki ≤ 1

[70, 71]. Essentially, Eq. (1.39) is an operator representation of a quantum operation,
i.e. a completely positive map, E(ρ) =

∑
i KiρSK†

i which acts on the subsystem S.
The corresponding operation elements Ki are sometimes called Kraus operators [72].

It is also important to note that, in this section, a slightly more general def-
inition of quantum operation will be used in comparison to the definition (1.16)
in section 1.2.1. While before we considered only trace-preserving quantum opera-
tions with

∑
i K

†
i Ki = 1, here we include non-trace-preserving operations, i.e. with∑

i K
†
i Ki ≤ 1, into consideration. These non-trace-preserving operations describe

processes in which extra information about what occurred in the process is obtained
by a measurement [3].
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1.3. Entanglement dynamics

Operator representation (1.39) of quantum operation E is very simple and con-
venient tool to describe state dynamics of a system coupled to the environment.
However, this representation was obtained under two assumptions that the principal
system S and the environment E are initially uncorrelated and that the environment
was in some pure state |e0〉. Although there is no loss of generality in assuming that
the environment starts in a pure state (since if it starts in a mixed state it is always
possible to introduce an extra system purifying the environment), the first assump-
tion is indeed crucial. If the system S and the environment E are initially entangled,
the operator representation can not be given in the form E(ρ) =

∑
i KiρSK†

i [73].
Fortunately, in almost all cases in practice and as we shall always assume later, the
system S and the environment E are initially uncorrelated.

Quantum operations formalism is not the only possible description of non-unitary
behavior of a quantum system. The state dynamics of a quantum system can be
provided by the master equation, which can be written most generally in the Lindblad
form [74] as

∂ρ

∂t
= − i

~
[HS, ρ] +

∑
i

(
2LiρL†i − {L†iLi, ρ}

)
. (1.40)

where {a, b} = ab + ba is an anticommutator, HS is the system Hamiltonian that
represents the coherent part of the dynamic and Li are the Lindblad operators which
are giving the coupling of the system to its environment. This master equation pro-
vides a valid description of the state dynamics iff the system and environment begins
in product state [73] and the system-environment model Hamiltonian is consistent
with Born and Markov approximations [70, 71].

The master equation approach (1.40) to describe state dynamics of a given sys-
tem is less general than quantum operation formalism (1.39) [3]. Unlike the quantum
operation formalism, however, the master equation provides continuous time descrip-
tion of state evolution and, therefore, it is used more often in quantum communication
theory [70, 71]. Also, by analogy with classical communication theory, in quantum
communication the environment E that acts on the system of interest S is usually
called quantum noisy channel or simply quantum noise.

In the next section, we shall study entanglement dynamics of multiqubit states by
example of three qubits. The entanglement evolution will be deduced from the state
evolution of initially pure three-qubit states under the influence of environment. The
examples of state evolution of the initially pure three-qubit states was worked out in
[81] by solving analytically the master equation (1.40) for different models for the
coupling of the system to its environment. Using these analytical expressions for the
mixed-state density matrices, we shall quantify the (time-dependent) entanglement
of these states by using the lower bound for three-qubit concurrence (1.37). We
shall also discuss how the accuracy of the lower bound approximation for three-qubit
concurrence depends on parameters of density matrices under consideration. As we
have just seen at the end of the previous section, the numerical optimization for the
convex roof depends on the matrix invariant – its rank. We shall show that the lower
bound approximation also depends on this invariant. For density matrices with rank
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Chapter1. Quantifying quantum entanglement

r ≤ 4, moreover, the comparison between the analytically computed lower bound and
numerically optimized convex roof will be provided.

In section 1.3.2, a completely different approach for the description of entangle-
ment dynamics, an evolution equation for entanglement [82, 83, 84], will be presented.
An evolution equation for entanglement provides a direct relationship between the ini-
tial and the final entanglement of a quantum system without knowing underlying state
dynamics.

1.3.1 Entanglement dynamics from state evolution

The best way to discuss entanglement dynamics of three-qubit states is to focus on
some practical situations where such description is desired. At the beginning of the
discussion it is useful to introduce the maximally entangled states of three qubits, the
Greenberger-Horne-Zeilinger state

|GHZ〉 =
1√
2

(|000〉+ |111〉) , (1.41)

and the W state

|W〉 =
1√
3

(|001〉+ |010〉+ |100〉) . (1.42)

These states are the typical members of the two inequivalent with regard to LOCC
classes of three-qubit entangled states [77]. This implies that the GHZ state can not
be transformed to the W state by means of local operations and classical communica-
tion and vice versa and, therefore, leads to completely different protocols for utilizing
entanglement of the states (1.41)-(1.42). In particular, Karlsson and Bourennane [78]
have suggested (teleportation-based) protocols for quantum communication between
two and three partners based on the three-qubit GHZ state. Although the W can not
be used to perform perfect teleportation [79], protocols for quantum teleportation
between two partners and for superdense coding with an entangled state

|W ′〉 =
1

2

(√
2 |001〉+ |010〉+ |100〉

)
, (1.43)

which belongs to the class of W states have been proposed by Agrawal and Pati [80].
Recently, Jung et al. [81] have analyzed the time evolution of the three-qubit GHZ

(1.41) and W′ (1.43) states, if they are transmitted through noisy channels. As noise
models for the influence of the environment the Pauli channels σz, σx and σy as well as
the depolarizing channel were considered [3]. In this work, in more detail, an initially
pure entangled state ρ(0) was supposed to be transmitted through (one of) these
channels for the time t, and its time evolution ρ(t) obtained as solution of a (Lindblad-
type) master equation (1.40). In this master equation, the (Lindblad) operators Li,α

were assumed to act independently upon the i−th qubit; for example, the operator
L1,z ≡

√
kσz ⊗ 1⊗ 1 describes the decoherence of the first qubit under a phase-flip

σz, and where the coupling constant k is approximately inverse to the decoherence
time with regard to such a phase-flip. Later we shall refer the Pauli channels σx and
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1.3. Entanglement dynamics

σy to bit-flip and bit-phase-flip coupling of the three-qubit system to the environment,
since this channels have the corresponding operational interpretation. For any given
Pauli channel σα the master equation (1.40) only includes three Lindblad operators,
L1,α, L2,α and L3,α, while nine of these operators are needed for the depolarizing
channel, Li,α, (i = 1, 2, 3, α = x, y, z). In the latter case, each of the qubits can be
affected with equal coupling strength by all three Pauli channels simultaneously.

Knowing the time evolution of the three-qubit GHZ (1.41) and W′ (1.43) states in
transmission through the Pauli and the depolarizing channels, we can employ the lower
bound (1.37) to the concurrence τ3(ρ(t)) to analyze the decay of the entanglement
for these states. Using the definition (1.34), we can easily calculate the concurrence
C3(|GHZ〉) = 1/

√
2 and C3(|W〉′) =

√
3/8 for pure GHZ (1.41) and pure W′ (1.43)

states. The definition results in two different values; therefore, we shall re-normalize
the expression (1.34) for each state in such a way, that we have C3(|GHZ〉) =
C3(|W〉′) = 1. This re-normalization is justified from an experimental viewpoint,
since a three-qubit maximally entangled state can be viewed as a single unit of a
quantum communication protocol.

If an initially pure GHZ state (1.41) is transmitted through the Pauli channel σz,
its time evolution is obtained as solution of the master equation (1.40) with Lindblad
operators (L1,z, L2,z, L3,z) and can be expressed in terms of the rank-2 density matrix

ρ(t) =
1

2
(|000〉 〈000|+ |111〉 〈111|) (1.44)

+
1

2
e−6kt (|000〉 〈111|+ |111〉 〈000|) .

For this mixed state, the lower bound (1.37) to the three-qubit concurrence is a
monoexponential function of time,

τ3 (ρ(t)) = e−6kt . (1.45)

Since the rank of the density matrix (1.44) is just two, the convex roof (1.28) for this
density matrix can be even calculated analytically [75]. In this case, the convex roof
is shown to follow the behavior of the nondiagonal elements (up to the normalization
factor). In fact, the convex roof for the density matrix (1.44) coincides with the lower
bound (1.45).

If the GHZ state (1.41) is instead transmitted through the Pauli channel σx, its
time evolution is given by the rank-4 density matrix

ρ(t) =
1

8




α+ 0 0 0 0 0 0 α+

0 α− 0 0 0 0 α− 0

0 0 α− 0 0 α− 0 0

0 0 0 α− α− 0 0 0

0 0 0 α− α− 0 0 0

0 0 α− 0 0 α− 0 0

0 α− 0 0 0 0 α− 0

α+ 0 0 0 0 0 0 α+




, (1.46)
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with

α+ = 1 + 3e−4kt and α− = 1− e−4kt .

In this case, the lower bound (1.37) to the three-qubit concurrence becomes

τ3 (ρ(t)) = e−4kt . (1.47)

For the rank-4 density matrix (1.46) we also calculated numerically the convex roof
(1.28). The numerical simulation shows that the lower bound (1.47) coincides with
the convex roof.

For a transmission of the GHZ (1.41) state through the Pauli channel σy, the
density matrix

ρ(t) =
1

8




α+ 0 0 0 0 0 0 β1

0 α− 0 0 0 0 −β2 0

0 0 α− 0 0 −β2 0 0

0 0 0 α− −β2 0 0 0

0 0 0 −β2 α− 0 0 0

0 0 −β2 0 0 α− 0 0

0 −β2 0 0 0 0 α− 0

β1 0 0 0 0 0 0 α+




, (1.48)

has full rank (i.e. rank 8), with the two functions

β1 = 3e−2kt + e−6kt and β2 = e−2kt − e−6kt ,

respectively. For this matrix, the lower bound (1.37) to the concurrence gives rise to

τ3 (ρ(t)) = max{0, 1

4

(
3e−2kt + e−4kt + e−6kt − 1

) } , (1.49)

or, in other words, this lower bound vanishes already after some finite time. Using
the positive partial transpose separability criteria as it was discussed in section 1.2.1,
we verified that the state (1.48) becomes separable only asymptotically for t → ∞,
which implies that the lower bound (1.49) does not describe the long-term behavior
of the entanglement of an initial GHZ state if its is affected by bit-phase-flip noise.

For the rank-8 density matrix (1.48) the numerical calculation of the convex roof
(1.28) requires optimization over 83 = 512 free parameters. The numerical value of
the convex roof (1.28) for the rank-8 density matrix (1.48) as well as for other rank-8
density matrices discussed below has not been obtained.

If the state (1.41) is transmitted through the depolarizing channel, its density
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matrix has also rank-8 and takes the form

ρ(t) =
1

8




α̃+ 0 0 0 0 0 0 γ

0 α̃− 0 0 0 0 0 0

0 0 α̃− 0 0 0 0 0

0 0 0 α̃− 0 0 0 0

0 0 0 0 α̃− 0 0 0

0 0 0 0 0 α̃− 0 0

0 0 0 0 0 0 α̃− 0

γ 0 0 0 0 0 0 α̃+




, (1.50)

with

α̃+ = 1 + 3e−8kt, α̃− = 1− e−8kt and γ = 4e−12kt .

Here, again, the lower bound (1.37) to the entanglement vanishes already after some
finite time due to the condition

τ3 (ρ(t)) = max{0, 1

4

(
4e−12kt + e−8kt − 1

)} . (1.51)

Fig. 1.1 displays the time-dependent lower bound (1.37) for initial GHZ state
(1.41) if it’s transmitted through the different channels. In all cases, this lower bound
decays exponentially due to the noise of the channel; in transmission throw the Pauli
channels σx and σy the entanglement of the GHZ state decreases slowly comparing
to the Pauli channels σz. The depolarizing coupling of the three-qubit system to the
channel is the most destructive for the entanglement. It is also remarkable that for
density matrices with rank-2 and rank-4, the lower bound coincides with the convex
roof and describes the entanglement evolution for all times, while this bound is not
applicable for the long-time description of density matrices with rank-8 (the Pauli σy

and the depolarizing channels) for which it vanishes at a finite time.
A similar analysis can be made if the system is initially prepared in the W′ state

(1.43). If this state is transmitted through the channel σz, its time evolution is
described by the rank-three density matrix

ρ(t) =
1

4




0 0 0 0 0 0 0 0

0 2
√

2e−4kt 0
√

2e−4kt 0 0 0

0
√

2e−4kt 1 0 e−4kt 0 0 0

0 0 0 0 0 0 0 0

0
√

2e−4kt e−4kt 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, (1.52)
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Figure 1.1: The lower bound (1.37) for the three-qubit concurrence τ3 as function of time
t for an initial GHZ state (1.41), if transmitted through various noisy channels: Pauli
channels σz (solid red), σx (dashed green), σy (dotted blue) and the depolarizing channel
(solid black).

and this gives rise to the lower bound

τ3 (ρ(t)) = e−4kt (1.53)

for the evolution of the entanglement, which moreover coincides with the convex roof
(1.37) as we verified numerically.

If the (initially prepared) W′ state is transmitted through the Pauli channels σx

or σy, a full rank-8 density matrix ρ(t)± is obtained for its time evolution

1

16




2α2 0 0 ±√2α2 0 ±√2α2 ±α2 0

0 2α1

√
2α1 0

√
2α1 0 0 ±α3

0
√

2α1 2β+ 0 α1 0 0 ±√2α3

±√2α2 0 0 2β− 0 α4

√
2α4 0

0
√

2α1 α1 0 2β+ 0 0 ±√2α3

±√2α2 0 0 α4 0 2β−
√

2α4 0

±α2 0 0
√

2α4 0
√

2α4 2α4 0

0 ±α3 ±√2α3 0 ±√2α3 0 0 2α3




,

(1.54)
and where the + sign refers to the σx and − to the σy channel, respectively. The
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time-dependent parameters in expression (1.54) are given by

α1 = 1 + e−2kt + e−4kt + e−6kt

α2 = 1 + e−2kt − e−4kt − e−6kt

α3 = 1− e−2kt − e−4kt + e−6kt

α4 = 1− e−2kt + e−4kt − e−6kt and β± = 1± e−6kt .

Since two density matrices ρ(t)± have the same structure of matrix elements, the lower
bounds for these density matrices coincide. Unfortunately, the analytical expression
obtained for the lower bound for the density matrix (1.54) has no compact form and,
thus, we do not show it here explicitly. At Fig. 1.2 the lower bound is shown with
blue dashed line. As for all rank-8 density matrices above the lower bound for the
density matrix (1.54) vanishes after finite time.

Finally, if the W′ state (1.43) is transmitted through the depolarizing channel,
the density matrix ρ(t) has also rank-8 and is given by

1

8




α̃2 0 0 0 0 0 0 0

0 α̃1

√
2γ̃+ 0

√
2γ̃+ 0 0 0

0
√

2γ̃+ β̃+ 0 γ̃+ 0 0 0

0 0 0 β̃− 0 γ̃−
√

2γ̃− 0

0
√

2γ̃+ γ̃+ 0 β̃+ 0 0 0

0 0 0 γ̃− 0 β̃−
√

2γ̃− 0

0 0 0
√

2γ̃− 0
√

2γ̃− α̃4 0

0 0 0 0 0 0 0 α̃3




, (1.55)

where

α̃1 = 1 + e−4kt + e−8kt + e−12kt ,

α̃2 = 1 + e−4kt − e−8kt − e−12kt ,

α̃3 = 1− e−4kt − e−8kt + e−12kt ,

α̃4 = 1− e−4kt + e−8kt − e−12kt ,

β̃± = 1± e−12kt and γ̃± = e−8kt ± e−12kt .

The time-dependent lower bound (1.37) for initial W′ state (1.43) transmitted
through the different channels is shown in Fig. 1.2. As in the case of the GHZ
state the lower bounds for the W′ state decay exponentially due to the noise of the
channels. In contrast to the GHZ state, the entanglement of the W′ state decreases
slowly in transmission throw the Pauli channel σz comparing to the Pauli channels σx

and σy. However, the depolarizing coupling of the three-qubit system to the channel
is again the most destructive for the entanglement. For the rank-3 density matrix,
moreover, the lower bound coincides with the convex roof and describes the time
evolution of the entanglement for all times, while this bound is not suitable for the
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Figure 1.2: The same as in Fig. 1.1 but for an initial W′ state (1.43); the lower bound
(1.37) for the three-qubit concurrence τ3 as function of time t is shown for noisy channels:
Pauli channels σz (solid red), σx and σy (dashed blue) as well as the depolarizing channel
(solid black)

long-time description of density matrices with rank eight, the Pauli σx and σy as well
as depolarizing channels.

From the discussion above we have two important conclusions. First, the accuracy
of the lower bound with regard to the convex roof depends on the rank of the density
matrix under consideration. As we have shown on particular examples the lower
bound coincides with the convex roof for density matrices with rank r ≤ 4. For all
rank-8 density matrices the lower bound vanishes after finite time making impossible
long-time description of entanglement dynamics. In fact, this result can be easily
understood if we look back to the structure of the lower bound (1.37) and bipartite
concurrence (1.33). In both these formulas the concurrence is computed through
equations alike Eq. (1.36), where only four eigenvalues of the matrix ρ ρ̃n

k are used
independently on the rank of the given density matrix ρ. This is a drawback in the
construction of the lower bound (1.37) and the bipartite concurrence (1.33) which
has its roots in the approximate definition of the ‘spin flip’ operation (1.32).

Another practically important conclusion can be made based on the comparison of
entanglement dynamics of pure GHZ (1.41) and W′ (1.43) states under the influence
of noisy channels. Similar question was earlier investigated by Carvalho et al. [75],
who showed that an (initially pure) GHZ state is more fragile than the entanglement
of a W state if affected by a thermal bath at zero or infinite temperatures, or by
the so-called ‘dephasing’ (i.e. the Pauli σz) channel. Partially repeating this result we
showed that an initially pure W′ state preserves at all times t more entanglement than
a GHZ state when passed through the Pauli σz, while, in contrast to [75], the GHZ
state is doing better against decoherence for σx, σy, and the depolarizing channel.
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1.3.2 Evolution equation for the entanglement

In the previous section we used the analytical solutions of the master equation (1.40)
to describe entanglement dynamics of a three-qubit system. However, with increasing
the dimension of the system, e.g. number of qubits, the analytical solution of the
master equation dramatically complicates. For example, to describe state evolution
of a N -qubit system one needs to solve in general 4N differential equations for real
functions. Thus, only for special cases the solution becomes feasible. This fundamen-
tal difficulty manifests the necessity to find a direct method to describe entanglement
dynamics – an evolution equation for entanglement.

An evolution equation for quantum entanglement was originally suggested by
Konrad et al. [82] to describe the time evolution of an entangled qubit pair without
recourse to the time evolution of the underlying quantum state itself. Shortly, the
concept of the evolution equation was extended to bipartite systems [83]. Here,
we shall present the (extended) evolution equation for (finite-dimensional) bipartite
systems as suggested in [83], focusing especially on the key ideas of how this equation
can be derived. Next, we shall show how this evolution equation can be further
extended to multiqubit systems.

Suppose, |χ〉 is a pure state of a bipartite system d1⊗d2 with dimension d1 and d2

of the corresponding subsystems, and the second subsystem undergoes the action of a
general noisy channel S which is given by a completely positive (non-)trace-preserving
map. Then, the final state of the system is a mixed state in general and can be written
in the symbolic form ρ = (1 ⊗ S) |χ〉 〈χ|. On the other hand, any pure state |χ〉
can be obtained also from the maximally entangled state |φ〉 =

∑d2

i=1 |i〉 ⊗ |i〉 /
√

d2

of the bipartite system by |χ〉 = (M ⊗ 1) |φ〉. In this notation, M denotes a local
(filtering) operator that acts on the first subsystem of the maximally entangled state.
Therefore, the final state ρ of the bipartite system can be expressed as

ρ = (1⊗ S) (M ⊗ 1) |φ〉 〈φ| (
M † ⊗ 1

)
. (1.56)

As we have discussed in section 1.2.2 local operations cannot change entangle-
ment on average. There is a special case of LOCC, a filtering operator, which can
increase (as well as decrease) entanglement probabilistically [85]. Let us show an
example of filtering operation as it was given by Tiersch [60]. A filtering operation
can be given in computational basis by a single (Kraus) operator

F =
√

1− κ |0〉 〈0|+√
κ |1〉 〈1| , 0 < κ < 1. (1.57)

Since F †F 6= 1, the map associated with the filtering operation does not preserve
the trace. If this filtering operation affects one qubit from an entangled pair initially
prepared in state |ψ〉 =

√
λ |00〉 +

√
1− λ |11〉 with 0 < λ < 1, the final two-qubit

state is given by

|ψ′〉
‖ |ψ′〉 ‖ =

(1⊗ F ) |ψ〉
‖ (1⊗ F ) |ψ〉 ‖ =

√
λ(1− κ) |00〉+

√
κ(1− λ) |11〉

λ + κ− 2λκ
. (1.58)

27



Chapter1. Quantifying quantum entanglement

The entanglement of the initial state |ψ〉 can be quantified by means of the concur-
rence (1.26) and equals C(|ψ〉) = 2

√
λ(1− λ). The entanglement of the final state

is given by

C

( |ψ′〉
‖ |ψ′〉 ‖

)
=

2
√

λ(1− λ)
√

κ(1− κ)

λ + κ− 2λκ
, (1.59)

which becomes unity for λ = κ and hence increase. However, this increase is proba-
bilistic pF = λ + κ− 2λκ < 1. A maximally entangled state λ = 1/2 undergoing the
local filtering losses its entanglement from C(|ψ〉) = 1 to C(|ψ′〉) = 2

√
κ(1− κ).

With this remark about the filtering operator, we now come back to the discussion
of the bipartite system, i.e. to Eq. (1.56). Since the filtering operator M and the
noise S act only on either the first or the second subsystems, the final state ρ can
written in the form

ρ = (M ⊗ 1) [(1⊗ S) |φ〉 〈φ|] (
M † ⊗ 1

)
, (1.60)

which is equivalent to Eq. (1.56). The entanglement of the bipartite system under
consideration can be quantified with the (bipartite) concurrence (1.33). Assume (1⊗
S) |φ〉 〈φ| = ∑

i pi |ϕi〉 〈ϕi| is the optimal decomposition of the state (1⊗S) |φ〉 〈φ|
which minimize the convex roof (1.28). By convexity of the concurrence we have

C [ρ] = C

[∑
i

pi (M ⊗ 1) |ϕi〉 〈ϕi|
(
M † ⊗ 1

)
]

≤
∑

i

pi C
[
(M ⊗ 1) |ϕi〉 〈ϕi|

(
M † ⊗ 1

)]

≤ d2

2
C [χ]

∑
i

pi C [|ϕi〉] ≡ d2

2
C [χ] C [(1⊗ S) |φ〉 〈φ|] , (1.61)

where the Cauchy inequity was used in order to come to the third line and d2 denotes
the dimension of the subsystem subjected to the noisy channel S. Thus the evolution
equation for entanglement of a bipartite system is given by

C[(1⊗ S) |χ〉 〈χ|] ≤ d2

2
C[(1⊗ S) |φ〉 〈φ|] C[|χ〉] , (1.62)

i.e. the reduction of the entanglement of the system under the action of a noisy
channel S is independent on the initial state |χ〉, and is bounded from above by the
channel’s action upon the maximal entangled state |φ〉. If, moreover, the bipartite
system consists of a d1-dimensional and a single-qubit subsystem, and just the qubit
is affected by the noisy channel S, the equal sign applies in inequality (1.62) and we
obtain

C[(1⊗ S) |χ〉 〈χ|] = C[(1⊗ S) |φ〉 〈φ|] C[|χ〉] . (1.63)

That is, the entanglement dynamics of an arbitrary pure state of a d1 ⊗ 2 bipartite
system is completely determined by the channel’s action on the maximally entangled
state |φ〉 of the bipartite system if the single-qubit subsystem is affected by the noisy
channel S [83] .
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Based on Eq. (1.63) we can construct an evolution equation for the lower
bound for three-qubit concurrence (1.37). Suppose |χ〉 is a pure state of a three-
qubit system and just one qubit undergoes the action of a channel S. The final state
of the three-qubit system takes the form ρ = (1⊗ 1⊗S) |χ〉 〈χ|, which is equivalent
to the final state of a bipartite 4⊗ 2 system when the second subsystem is subjected
to the channel S. As we mentioned above, any pure state of a bipartite system can
be obtained from the maximally entangled state of the bipartite system by means of a
single local filtering operation M acting on the first subsystem as |χ〉 = (M ⊗1) |φ〉.

In contrast, two local filters M and M ′ are in general required to obtain an
arbitrary pure three-qubit state |χ〉 from a maximally entangled state of three qubits
|φ〉 by |χ〉 = (M ⊗M ′ ⊗ 1) |φ〉. For three-qubit systems, there are, moreover, two
maximally entangled states (1.41) and (1.42) as we mentioned before. Although
an arbitrary pure three-qubit state |χ〉 can be generated from one of the maximally
entangled states by means of local operations [77], we first need to identify the class
of states either (1.41) and (1.42) to which it belongs to.

For an arbitrary (pure or mixed) three-qubit entangled state, fortunately, this is
possible by following the procedure due to Dür et al. [77] which is simple and just
includes the computation of the 3-tangle as described in [86]. It leads to the distinction
that every entangled three-qubit state |χ〉, for which the 3-tangle vanishes, belong
to the W-class and can thus be obtained from the W state (1.42) by means of local
unitary operations. In contrast, any entangled three-qubit state with nonvanishing 3-
tangle is part of the GHZ-class. For a given pure three-qubit state |χ〉, it is therefore
always possible to find proper local (filtering) operations M and M ′ so that |χ〉 is
obtained from either (1.41) or (1.42) by |χ〉 = (M ⊗M ′⊗1) |φ〉. Moreover, we have
|φ〉 ≡ |GHZ〉 if |χ〉 belongs to the GHZ-class of entanglement, and |φ〉 ≡ |W 〉 for
|χ〉 being part of the W-class.

To summarize our discussion here, the final state of the three-qubit system when
one of its qubits undergoes the action of a noisy channel S is given by

ρ = (1⊗ 1⊗ S)× (M ⊗M ′ ⊗ 1) |φ〉 〈φ| (
M † ⊗ (M ′)† ⊗ 1

)
. (1.64)

where |φ〉 is one of the maximally entangled states {|GHZ〉 , |W 〉}. In this equation
(1.64), the filters M, M ′ and the noise S act on different subsystems. This allows us
to apply the evolution equation for bipartite concurrence (1.63) to a ‘bi-partite‘ split
12|3 of the three-qubit system. We therefore obtain

C12|3[(1⊗ 1⊗ S) |χ〉 〈χ|] = C12|3[(1⊗ 1⊗ S) |φ〉 〈φ|] C12|3[|χ〉] , (1.65)

while similar relations can be obtained for the ‘bi-partite’ concurrences C13|2 and
C23|1 of the three-qubit system. Although the Eq. (1.65) has similar structure to the
evolution equation for bipartite systems (1.63), they differ by the maximally entangled
state |φ〉 in their right-hand sides: the maximally entangled state |φ〉 =

∑d2

i=1 |i〉 ⊗
|i〉 /√d2 of the bipartite system is to be substituted in Eq. (1.63), while one of the
maximally entangled states (1.41)-(1.42) should be used in the right hand side of
Eq. (1.65).
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Chapter1. Quantifying quantum entanglement

Because of the symmetry of the maximally entangled states (1.41)-(1.42) with
regard to the qubits permutation we have a relation

C12|3[(1⊗ 1⊗ S) |φ〉 〈φ|] = C13|2[(1⊗ S ⊗ 1) |φ〉 〈φ|]
= C23|1[(S ⊗ 1⊗ 1) |φ〉 〈φ|] , (1.66)

where |φ〉 = {|GHZ〉 , |W 〉}. From Eqs. (1.65) and (1.66) it follows that for an
arbitrary pure three-qubit state |χ〉 the evolution of the bipartite concurrence is inde-
pendent on a bipartite cut of the three-qubit system, i.e

C12|3[(1⊗ 1⊗ S) |χ〉 〈χ|] = C13|2[(1⊗ S ⊗ 1) |χ〉 〈χ|]
= C23|1[(S ⊗ 1⊗ 1) |χ〉 〈χ|] . (1.67)

Substituting the evolution equation (1.65) into definition of the lower bound
(1.37) and taking into account relation (1.66), we finally obtain an evolution equation
of the lower bound for three-qubit concurrence

τ3[(1⊗ 1⊗ S) |χ〉 〈χ|] = τ3[(1⊗ 1⊗ S) |φ〉 〈φ|] τ3[|χ〉] , (1.68)

where τ3 [..] is defined in Eq. (1.37). The entanglement dynamics of an arbitrary
pure state |χ〉 of a three-qubit system, when one of its qubits undergoes the action
of an arbitrary noisy channel S, is subjected to the dynamics of one of the maximally
entangled states |φ〉 = {|GHZ〉 , |W 〉}. The choice between the maximally entangled
states should be done after determining the entanglement class of the given state
|χ〉 following the procedure in Ref. [77] and as briefly discussed above. We note,
that due to Eq. (1.67) the entanglement dynamics of a pure three-qubit state |χ〉 is
independent on which of the qubits is affected by the noise. In fact, this equation
(1.67) significantly simplifies the calculation of the lower bound (1.37). It is sufficient
to compute just one bipartite concurrence in definition (1.37) of the lower bound,
for example C12|3[|χ〉], while the bipartite concurrences C13|2[|χ〉] and C23|1[|χ〉] are
equal to it due to Eq. (1.67).

It is desirable, of course, to generalize the evolution equation (1.68) of the lower
bound to the three-qubit concurrence also for N -qubit states, if just one of the qubits
is affected by a noisy channel S. In contrast to the classification of the three-qubit
states, however, it is not known until now how many entanglement classes exist for
qubit systems with N > 4, while some classification is available for N = 4 [87]. It
is therefore not directly possible to generalize Eq. (1.68) to arbitrary pure states of
N qubits. Nevertheless, some entanglement classes are known also for general pure
N-qubit states, such as the GHZ- and W-class. If a given (pure) N-qubit state |χ〉
belongs to the GHZ- or W-class, the evolution equation (1.68) of the lower bound
can be extended to

τN [(1⊗N−1 ⊗ S) |χ〉 〈χ|] = τN [(1⊗N−1 ⊗ S) |φ〉 〈φ|] τN [|χ〉] , (1.69)
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where |φ〉 denotes the corresponding maximal entangled N -qubit state

|GHZ〉N =
1√
2

(
|0〉⊗N + |1〉⊗N

)
, (1.70)

|W 〉N =
1√
N

(|10, ..., 0〉+ |01, ..., 0〉+ |00, ..., 1〉) . (1.71)

We can further analyze the lower bound (1.37) for the three-qubit concurrence
in order to understand the entanglement evolution in those cases where one starts
already with an initially mixed state ρ0. If we make use of the convexity of the lower
bound (1.68), we have τ3[ (1 ⊗ 1 ⊗ S) ρ0 ] = τ3[

∑
i pi(1 ⊗ 1 ⊗ S) |ψ〉i 〈ψ|i ] ≤∑

i piτ3[ (1⊗1⊗S) |ψ〉i 〈ψ|i ]. Making use of this inequality in Eq. (1.68), we obtain

τ3[(1⊗ 1⊗ S)ρ0] ≤ τ3[(1⊗ 1⊗ S) |φ〉 〈φ|] τ3[ρ0] (1.72)

for the evolution of the lower bound and for an initially mixed state. As before, we
assume here that just one of the qubits is affected by the noisy channel S. Here, we
like to underline that the inequality (1.72) holds for an arbitrary mixed state ρ0, in
spite of the fact that this inequality has been formulated for a lower bound τ3. The
generality of the inequality (1.72) build upon the convexity of the lower bound for the
concurrence which is a valid entanglement measure.

The inequality (1.72) can be generalized for local two- and three-sided channels,
i.e. to cases in which two or even all three qubits are affected by some local noise.
For example, for a local two-sided channel S1⊗S2⊗ 1 = (S1⊗ 1⊗ 1) (1⊗S2⊗ 1)
we find

τ3[(S1 ⊗ S2 ⊗ 1)ρ0] ≤ τ3[(S1 ⊗ 1⊗ 1) |φ〉 〈φ|] (1.73)

× τ3[(1⊗ S2 ⊗ 1) |φ〉 〈φ|] τ3[ρ0] .

It is this particular form of Eq. (1.73) that gives rise to a sufficient criterion for finite-
time disentanglement of arbitrary initial states being subjected to local multi-sided
channels [82].

At the end of this section we would like to show three examples of the description
of entanglement dynamics with the help of the evolution equation (1.72). We shall
discuss the time evolution of entanglement of an initially mixed three-qubit state
composed of GHZ (1.41) and W (1.42) state

ρ(p) = p |GHZ〉 〈GHZ|+ (1− p) |W 〉 〈W | , (1.74)

if one of the qubits is affected by a phase, an amplitude or a generalized amplitude
damping channel.

Indeed, there are several reasons for studying the entanglement evolution of the
mixed state (1.74). For this state, first of all, an analytical expression is known for the
convex roof to the concurrence [88]. This enables one to compare the time-dependent
lower bound from the evolution equation (1.72) with the behavior of the convex roof
as deduced from the state dynamics under the influence of a certain noise. Second,
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Chapter1. Quantifying quantum entanglement

the mixed state density matrix (1.74) has simply rank two. As we have seen earlier
on particular examples, for rank-2 density matrices the lower bound (1.37) coincides
with the convex roof. Third, it will be quite easy to compare also the speed of
‘disentanglement’ for an (initially) pure GHZ state ρ(t, p = 1) and the pure W state
ρ(t, p = 0) under decoherence. We also note that the values for the lower bound for
these pure states are related to each other through the ratio

τ3(ρ(t = 0, p = 1))

τ3(ρ(t = 0, p = 0))
=

τ3(|GHZ〉)
τ3(|W 〉) =

3

2
√

2
, (1.75)

a result that was obtained in [75] by means of a lower bound to the concurrence,
different from definition (1.37).

Let us start with an example where a three-qubit system is prepared initially in the
state (1.74) and just one qubit undergoes the action of the phase damping channel.
A phase damping describes for instance a diffusive scattering interaction of the qubit
with its environment and is known to result into a loss of phase coherence information.
A possible representation of the phase damping in terms of time-dependent (Kraus)
operators is given by [3]

Kpd
1 =

(
e−Γt 0

0 1

)
, Kpd

2 =

( √
1− e−2Γt 0

0 0

)
. (1.76)

where Γ denotes a coupling constant. For this noise model, Fig. 1.3 displays the
time-dependent evolution of the lower bound τ3 for the initially prepared state (1.74)
for different parameters p of the mixed state and at different times of the system-
channel coupling. In this figure, the blue surface displays the left-hand side (lhs) of the
inequality (1.72), while the red lines shows the corresponding right-hand side. For all
parameters 0 ≤ p ≤ 1 of the mixed state, the lower bound τ3 decays exponentially and
vanishes only asymptotically for t → ∞. For the phase damping channel, moreover,
the lhs and rhs of (1.72) are always equal for an arbitrary parameter p and for all
times t.

If the same system is affected by a (local) amplitude damping channel, which
describes the dissipative coupling of a qubit to a thermal reservoir in the zero-
temperature limit, the operator elements are given by [3]

Kad
1 =

(
1 0

0 e−Γt

)
, Kad

2 =

(
0
√

1− e−2Γt

0 0

)
. (1.77)

For such an amplitude damping, the time evolution for the lower bound τ3 shows
completely different behavior in comparison to the corresponding dynamics in the
phase damping channel as seen from Fig. 1.4. Although the lhs and the rhs of (1.72)
differs significantly for some values of the parameter p, the rhs always exceeds the lhs
as it is predicted by Eq. (1.72).

The third example shows entanglement sudden death [76] in the three-qubit
system initially prepared in the state (1.74) and when just one qubits undergoes the
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Figure 1.3: Evolution of the lower bound τ3(ρ) for initially mixed state (1.74) if affected by
the phase damping channel. While the blue surface shows the lhs of inequality (1.72), the
red lines represents its rhs.
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Figure 1.4: The same as in Fig. 1.3 but for the amplitude damping channel.
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Figure 1.5: The same as in Fig. 1.3 but for the generalized amplitude damping channel.
The sudden death of entanglement is clearly seen for all 0 ≤ p ≤ 1.

action of the generalized amplitude damping channel. Based on the violation of
additivity in the case of entanglement decay in a multi-qubit system coupled to two
independent weak noises, entanglement sudden death reveals a practically important
aspect of time-dependent entanglement evolution. It is important to verify whether
such a phenomenon can be predicted with the suggested evolution equation of the
lower bound (1.72). The generalized amplitude damping channel can be understood
as a ‘superposition’ of two independent amplitude damping channels acting on a qubit
and can be expressed by four Kraus operators Kgad

1 = 1
2
Kad

1 , Kgad
2 = 1

2
Kad

2 and

Kgad
3 =

1

2

(
e−Γt 0

0 1

)
, Kgad

4 =
1

2

(
Kad

2

)†
, (1.78)

where Kad
1 and Kad

1 are defined by Eq. (1.77). The evolution of the lower bound τ3

for the three-qubit state (1.74) is shown in Fig. 1.5. Although the lhs and the rhs of
the inequality (1.72) differ for some parameters p of the initial state ρ(p), they both
vanish in a finite time for all values p. Eq. (1.72), therefore, successfully describes
the entanglement sudden death in this case.

1.4 Results and discussion

In this chapter, we have shown how entanglement and entanglement dynamics of an
arbitrary state of a multiqubit system can be described with the help of the con-
currence. While the computation of the (convex roof for the) concurrence for an
arbitrary mixed state of a multiqubit system requires high-dimensional optimization
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procedure, we have utilized a lower bound that can be computed analytically and
showed by examples how accurate this bound is with respect to the convex roof for
multiqubit concurrence.

In particular, based on the investigation of the entanglement dynamics of a three-
qubit system coupled to environment in section 1.3.1, we have concluded that the
accuracy of the lower bound depends on the rank of the density matrix under consid-
eration. We have shown numerically that this bound coincides with the convex roof
for density matrices with rank r ≤ 4 as they appeared in section 1.3.1. Further-
more, with the help of the numerical algorithm which has been used to compute the
convex roof for the concurrence for density matrices in section 1.3.1, we checked (by
sampling 100 randomly generated density matrices) that the lower bound coincides
with the convex roof for all (checked) density matrices with rank r ≤ 4.

Also, using earlier suggested evolution equation for entanglement of bipartite
quantum systems [83], we have proposed an evolution equation for entanglement of
multiqubit systems in section 1.3.2 and showed three examples of the entanglement
dynamics of a three-qubit system deduced from this new evolution equation.

Although much progress has been achieved during the last decade, the theory of
quantifying entanglement is by no means complete and many problems remain un-
solved [40]. The most fundamental problem is that it is still impossible to decide on
separability of a given pure state of a multipartite system with more than two subsys-
tems. As consequence none value can be assigned to describe ‘true’ entanglement of
pure states of such systems and, therefore, any entanglement measure (or entangle-
ment monotone) for multipartite systems is doomed to describe only entanglement
of the system with regard to some bipartition or a combination of bipartitions.

It is also important to note that, in section 1.2.4, we used definition (1.34) for
concurrence for a pure N -qubit state which was given by N bipartite concurrence
where a single qubit was discriminated from N − 1 qubits. There is, however, an
alternative definition for concurrence for a pure N -qubit state |ψ〉 [75], i.e.

CN(|ψ〉) = 21−N
2

√
2N − 2−

∑
i

Tr ρ2
i , (1.79)

where i runs over all possible 2N − 2 reduced density matrices which are obtained
by tracing out not only a single qubit but also possible groups of n = 1, 2, .., N − 1
qubits. However for this definition, the optimization of the convex roof becomes more
complicated in comparison to the definition (1.34) because number of terms to be
optimized growth. Moreover, the definition (1.79) does not give us any significant
advantage in quantifying entanglement of three qubit systems , if compared to (1.34).
In this particular case both definitions are equivalent. For a given pure three-qubit
state |ψ〉abc, the definition (1.79) requires computation of the traces of the six squared
reduced density matrices ρi and ρij for i, j = a, b, c and i 6= j. However, the reduced
density matrices ρa and ρbc have the same spectrum, and therefore there are only
three matrices with different spectrum ρa, ρb and ρc. Thus the definitions (1.34) and
(1.79) are equivalent indeed for an arbitrary pure three-qubit state.

35



Chapter1. Quantifying quantum entanglement

There are many alternative to the concurrence proposals for entanglement mea-
sures, such as entanglement cost, entanglement of distillation, negativity and distance
measures of entanglement [40, 59]. All these measures, except negativity, require
some sort of optimization which often can not be done analytically and, therefore,
do not have significant advantages over concurrence in entanglement description. In
contrast, the computation of negativity does not require any optimization procedure.
As discussed in section 1.2.1 in the context of the PPT separability criterion, the
‘positivity’ of the partial transpose of a density matrix is the necessary condition for
separability. Therefore the amount of ‘negativity’ in the spectrum of the partial trans-
pose gives rise to an entanglement measure. For a density matrix ρ of a bipartite
system, for example, the negativity is defined as [89]

N (ρ) =
Tr

√
(ρT )†ρT − 1

d− 1
, (1.80)

where ρT denotes the partial transpose with respect to one subsystem and d is the
dimension of smaller of the two subsystems. Of course, the negativity is incapable to
describe entanglement of those entangled states which can not be detected by the
PPT separability criterion. Moreover, it is unclear upon which of the given density
matrix parameters the negativity depends. This makes negativity less competable to
concurrence.

Finally, we would like to mention some approaches on quantification of entan-
glement in experiment. The most natural way to quantify entanglement of a given
(unknown) state is to ‘learn’ the state first by means of the quantum state tomog-
raphy [3] and quantify entanglement of this state thereafter. An alternative way is
to construct a special observable – an entanglement witness [59]. By definition, this
observable is a hermitian operator whose expectation value is positive for all separable
states and negative for entangled states. Although the construction of an entangle-
ment witness for an arbitrary multipartite state is a very complicated problem, an
optimal witness has been recently constructed for unknown two-qubit entanglement
[90]. Moreover, through the concept of entanglement witness a lower bound for
concurrence can be directly measured [59].

In practice, it is often required to characterize entanglement dynamics of a quan-
tum system that undergoes the action of some noisy channel. Usually, to estimate
the robustness of the quantum system subjected to such process, one should accom-
plish quantum process tomography on certain types of initially prepares states [3].
However, the concept of the evolution equation as it is presented in section 1.3.2 sim-
plifies the experimental characterization of entanglement dynamics under unknown
channels dramatically: instead of exploring the time-dependent action of the channel
on all initial states, it suffices to probe the entanglement evolution of the maximally
entangled states alone. Moreover, the evolution equation for quantum entanglement
has been recently successfully applied to characterize the entanglement dynamics of
two-qubit systems coupled to some environments [91, 92].
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Chapter 2

Optimal state independent quantum
transformations

A quantum state is nothing more or less
than a prediction of the future.

Robin Blume-Kohout

Using quantum systems to encode and process information offers impressive tech-
nological advantages in communication and computing in comparison to classical
information processing. Technological utilization of quantum systems necessarily re-
quires clear understanding of the fundamental features of quantum information pro-
cessing, such as the possibilities to copy, transform and read out the information. On
the first glance, it may be obvious that these possibilities are essential features of any
good encoding of information. This is, however, not the case: when information is
encoded in quantum systems, in general it can not be replicated, transformed or read
out without introducing errors. This limitation, however, does not make quantum
information useless – quite the contrary, as we will see in this chapter.

In section 2.1 we shall discuss the essential features of copying of quantum in-
formation. In section 2.1.1, in more details, we shall formulate the no-cloning and
the general impossibility theorems which postulate the fundamental restrictions on
quantum copying process. Although the no-cloning theorem forbids exact copying of
arbitrary states of quantum systems, we shall present, in section 2.1.2, a theory of
physical device (so-called quantum cloning machine – QCM) that may support imper-
fect cloning of unknown qubits. We shall show, moreover, how such a QCM can be
constructed from certain requirements. In section 2.1.3 we shall analyze how QCM
may assist in the eavesdropping in quantum communication by example of incoherent
attack on B92 protocol [32] for quantum key distribution.

In section 2.2 we shall move beyond quantum cloning and consider a general
class of unitary quantum transformations that do not depend on input states. We
shall start, in section 2.2.1, with single-qubit transformations that provide a desired
operation on unknown input states. In section 2.2.2, we shall construct an optimal
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approximation for the two-qubit state independent C-NOT operation — the opera-
tion that can not be constructed to be exact due to the general impossibility theorem.
Based on this construction we shall demonstrate a deep analogy between cloning and
state independent transformations. This analogy is extended to the case of multi-
qubit controlled unitary transformations in section 2.2.3. Section 2.2.4 is devoted to a
discussion of a possible application of state independent transformations in quantum
computing with initially mixed states. In contrast to standard input state dependent
transformations, we show that state independent transformations can be utilized ef-
ficiently to construct a quantum circuit for computation when the initial states are
mixed.

Finally, we shall briefly discuss, in section 2.3, the optimal way of extracting infor-
mation from finite ensembles of identically prepared particles. In particular, we shall
discuss state estimation from a finite ensemble of unknown (equatorial) qubit states
and suggest the best way of estimating fidelity between two ensembles of such states.
In the latter case we show that the best strategy for the fidelity estimation includes
two stages: a specific unitary state independent transformation on two ensembles and
state estimation of the output states of this transformation.

2.1 Quantum cloning

2.1.1 No-cloning theorem

It is well known that the state of a single quantum system can not be perfectly re-
constructed: the result of any single measurement of an observable O is one of its
eigenstates, bearing only very poor information about the state before the measure-
ment, namely, that is not orthogonal to the measured eigenstate. The only way to
achieve a perfect reconstruction of the state of quantum system is to compute the
statistical averages of different observables measured on a large ensemble of identi-
cally prepared systems. However, one can imagine how to overcome the impossibility
to reconstruct the state of a single quanta in the following way: take the system
in the unknown state |ψ〉 and let it interact (in some way consistent with quantum
mechanics) with N other systems previously prepared in some reference (blank) state
|R〉 in order to obtain N + 1 copies of the initial state:

|ψ〉 ⊗ |R〉⊗N −→ |ψ〉⊗N+1 . (2.1)

Such a procedure would allow one to determine the quantum state of a single system
without even measuring it because one could measure the N new copies and leave the
original state untouched. The no-cloning theorem of quantum information formalizes
impossibility of such a procedure: No quantum operation exists that can duplicate
perfectly an arbitrary quantum state.

The theorem was originally formulated and proven by Wootters and Zurek [27]
and independently by Dieks [28]. To understand the basic idea it is sufficient to prove
the theorem for the simplest case of 1 → 2 cloning of a qubit, i.e. when two copies are
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obtained from a single input qubit state. As we discussed already at the beginning of
section 1.3, the most general quantum operation can be given by a unitary evolution
of the principal system with some environment. In quantum information processing
the environment is usually called an auxiliary system or simply ancilla. So let us
suppose that perfect cloning of a quantum system initially prepared in a pure qubit
state |ψ〉 can be realized as a unitary evolution involving an ancilla, i.e.

|ψ〉 ⊗ |R〉 ⊗ |A〉 −→ |ψ〉 ⊗ |ψ〉 ⊗ |Aψ〉 . (2.2)

Since a qubit state |ψ〉 is just a superposition of the basis states |0〉 and |1〉, the
transformation (2.2) can be also written for the basis states as

|0〉 ⊗ |R〉 ⊗ |A〉 −→ |0〉 ⊗ |0〉 ⊗ |A0〉 ,

|1〉 ⊗ |R〉 ⊗ |A〉 −→ |1〉 ⊗ |1〉 ⊗ |A1〉 . (2.3)

Making a linear combination of these transformations we obtain

(|0〉+ |1〉)⊗ |R〉 ⊗ |A〉 −→ |0〉 ⊗ |0〉 ⊗ |A0〉+ |1〉 ⊗ |1〉 ⊗ |A1〉 . (2.4)

But, from the other hand, the cloning of the state (|0〉+ |1〉) should result to

(|0〉+ |1〉) (|0〉+ |1〉)
∣∣A(0+1)

〉
= (|00〉+ |01〉+ |10〉+ |11〉)

∣∣A(0+1)

〉
(2.5)

where we omitted the tensor product for simplicity. The right hand side of the
Eq. (2.4) can not be equal to Eq. (2.5). Since we used only linearity of quantum
mechanics to come to this contradiction, our initial assumption, that the perfect
cloning of a qubit can be realized, is wrong. This concludes the proof of the no-
cloning theorem.

Shortly after its discovery, the no-cloning theorem was extended to arbitrary
(pure and mixed) states of both finite- and infinite-dimensional quantum systems
[46]. Moreover, it was shown by Pati [93] that no quantum operation exists that can
provide perfectly the controlled unitary transformation

|ψ〉 ⊗ |R〉 ⊗ |A〉 −→ |ψ〉 ⊗ |U(ψ)R〉 ⊗ |Aψ〉 , (2.6)

on an arbitrary pure qubit state |ψ〉. This statement is known today as the general
impossibility theorem. The proof of this theorem is very similar to the proof of
the no-cloning theorem as it is given above and, therefore, we skip it here. The
general impossibility theorem can be interpreted as follows. To perform a unitary
transformation U(ψ) on the blank state |R〉, it is necessary to obtain some information
about the unknown input state |ψ〉 without changing this state. This would be
in conflict with the no-cloning principle which implies that no information can be
obtained about the quantum state without changing it.
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2.1.2 Quantum cloning machine

The first step beyond the no-cloning theorem was done by Bužek and Hillery [94], who
considered the possibility of imperfect cloning. Specifically, they considered ancilla
assisted 1 → 2 cloning of an unknown qubit state and found a unitary transformation
which provides this copying at cost of some perturbation of both original state and
the copy. They called the device that provides this transformation a quantum cloning
machine (QCM).

The discovery of the first QCM by Bužek and Hillery triggered an explosion in
the number of investigations on quantum cloning. Formally, any quantum operation
acting on M quantum systems, possibly mediated by an ancilla, which share the
information between all the systems is a QCM. Thus for N replicas of an unknown
qubit state |ψ〉 and M −N blank states |R〉 a unitary transformation

|ψ〉⊗N ⊗ |R〉⊗(M−N) ⊗ |A〉 −→ |Ψ〉 (2.7)

represents a N → M QCM and where |Ψ〉 gives the final state of the M copies with
the ancilla. Since, in general, the copies are entangled with the ancilla, the state of
each single copy is mixed and can be obtained by tracing out the auxiliary degrees of
freedom and remaining M − 1 copies.

To talk about efficiency of a QCM we need to have a quantitative characterization
of how good the copies are in comparison to the input state. The commonly used
quantity to characterize quality of the copies is fidelity which is defined for the original
state |ψ〉 and the approximate copy ρ as

F = 〈ψ|ρ | ψ〉 . (2.8)

All QCMs can be classified by their properties [46]:

• A QCM is called optimal if the fidelities of the clones are the maximal allowed
by quantum mechanics.

• A QCM is called universal if it copies equally well all the states of a given
quantum system, i.e. if the fidelity of the copy is independent on the input
state. Nonuniversal QCMs are called state dependent.

• A QCM is called symmetric if all the clones have the same fidelity in comparison
to the input, otherwise a QCM is called asymmetric.

• If the cloning process is supported by an auxiliary system, a QCM is called
ancilla assisted. There are several examples of QCM’s which do not require
ancilla [95, 96].

• Finally, QCMs can be split on deterministic and probabilistic. While in the spirit
of Bužek and Hillery a determined imperfect cloning is allowed, in probabilistic
cloning perfect copies are required [97, 98], but the price is that the QCM works
only with some probability.
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Figure 2.1: Bloch sphere representation of a qubit state.

Within this classification, only optimal deterministic symmetric and ancilla assisted
QCMs will be considered in this thesis.

To simplify our discussion of universal and states dependent QCMs, it is conve-
nient to introduce some additional notations. As we indicated in section 1.1, a pure
qubit state can be visualized with the help of the Bloch sphere as it is displayed in
Fig. 2.1 and parameterized as |ψ〉 = cos θ

2
|0〉 + sin θ

2
eiφ |1〉, where |0〉 and |1〉 are

the chosen (computational) basis states. Moreover, let us refer to the intersection of
the Bloch sphere with the z-y plane as the main circle, so that all states from this
intersection can be parameterized by means of just the (single) parameter θ as

|ψmc〉 = cos
θ

2
|0〉 ± sin

θ

2
|1〉 . (2.9)

These states are often called real states of qubit. While, in this expression, the ‘+’
sign refers to the right (Eastern) meridian of the main circle passing through the
positive direction of the y axis and includes for θ = π/2 also the diagonal state
|+〉 = 1√

2
(|0〉+ |1〉). The ‘–’ sign is associated with left (Western) meridian and

includes the state |−〉.
The intersection of the sphere with the x-y plane is called equator of the Bloch

sphere. All states from the equator can be parameterized with single parameter φ as

|ψe〉 =
1√
2

(|0〉+ eiφ |1〉) , (2.10)

and are called equatorial. For the sake of simplicity in visualizing the different states
on the Bloch sphere, we shall use this ‘geographical’ notation in our discussion below.

Let us show how an optimal quantum cloning transformation can be constructed
by example of 1 → 2 cloning of a qubit. Although the state |ψ〉 of a given qubit is
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Chapter2. Optimal state independent quantum transformations

typically in a superposition of the two basis states |0〉 and |1〉, it is of course sufficient
to know the transformation of just the basis in order to obtain a proper copying of
states. Therefore, the most general (1 → 2) quantum cloning transformation for the
qubit state |ψ〉 upon the blank state |0〉 can be cast into the form

|0〉 |0〉 |A〉 −→
1∑

i,j=0

|i〉 |j〉 |Aij〉 ,

|1〉 |0〉 |A〉 −→
1∑

i,j=0

|i〉 |j〉
∣∣A′

ij

〉
, (2.11)

where |A〉 denotes the initial state of the ancilla, and where we have assumed —
without loss of generality — that the blank qubit was prepared initially in the basis
state |0〉. Once, the transformation has been performed, |i〉 and |j〉 denote the output
basis states of the two copies, while |Aij〉 and

∣∣A′
ij

〉
are the corresponding states of

the apparatus. As seen from the transformation (2.11), here we do not assume any
additional condition for the final states of the cloning apparatus. However, in order
to ensure that the transformation (2.11) is unitary,

∑

k

ck |k〉 |A〉 −→
∑

k,λ

ckUkλ |λ〉 , (2.12)

for all possible input states, i.e. for |k〉 = {|0〉 |0〉 , |1〉 |0〉}, the final states of the
apparatus must fulfill certain requirements [99]. In Eq. (2.12), the three-partite basis
{|λ〉} refers to a complete and orthonormal basis for the overall system ‘the two
qubits + apparatus’. Thus, the requested unitarity U †U = 1 of the transformation
(2.11) implies the conditions

1∑
i,j=0

〈Aij | Aij〉 =
1∑

i,j=0

〈
A′

ij | A′
ij

〉
= 1 ,

1∑
i,j=0

〈
Aij | A′

ij

〉
= 0 . (2.13)

For any explicit construction of a (1 → 2) quantum cloning transformation, we must
therefore ‘determine’ the final states |Aij〉 and

∣∣A′
ij

〉
of the apparatus in line with

the conditions (2.13). These state vectors then define the cloning transformation
uniquely.

For a general pure input qubit state, the cloning transformation (2.11) leads to
the two-qubit output density matrix which is obtained by making a superposition
of the first and the second lines of this transformation for an input qubit state and
after the tracing over the auxiliary degrees of freedom. The two-qubit density matrix
contains 16 scalar products between different final state vectors |Aij〉 and

∣∣A′
ij

〉
of

the apparatus. Each scalar product introduces a (complex) parameter of the cloning
transformation. This gives rise to the 16 optimization parameters for the cloning

42



2.1. Quantum cloning

transformation, while only the 3 conditions (2.13) need to be fulfilled due to the
unitarity of the transformation.

Further conditions must therefore be formulated in order to define the QCM
properly. For example, Bužek and Hillery have analyzed the three-term transformation

|0〉 |0〉 |A〉 −→ |0〉 |0〉 |A00〉 + (|0〉 |1〉+ |1〉 |0〉) |A01〉 ,

|1〉 |0〉 |A〉 −→ |1〉 |1〉 |A11〉 + (|0〉 |1〉+ |1〉 |0〉) |A10〉 , (2.14)

with conditions

〈A01 | A01〉 = 〈A10 | A10〉 ≡ ζ , (2.15)

〈A01 | A11〉 = 〈A10 | A00〉 ≡ η/2 , (2.16)

〈A11 | A10〉 = 〈A00 | A01〉 ≡ κ/2 . (2.17)

Under these conditions, it follows from Eqs. (2.13) that 〈A00 | A00〉 = 〈A11 | A11〉 =
1− 2ζ.

With these additional conditions, we have arrived at the final-state two-qubit
density matrix ρout of the transformation (2.14) that now depends only on three
parameters ζ, η and κ. We note that in the original work of Bužek and Hillery
[94] the parameter κ was assumed to be zero. Thus the discussion below is slightly
more general. While the condition (2.17) introduces a nonorthogonality between the
final states of the apparatus, three parameters ζ, η and κ will eventually enable us
to provide high-fidelity copies for a region of input states from the Bloch sphere.
However, the three parameters ζ, η and κ are not completely independent of each
other but must fulfill the three inequalities

0 ≤ ζ ≤ 1

2
,

0 ≤ η ≤ 2
√

ζ(1− 2ζ) ,

0 ≤ κ ≤ 2
√

ζ(1− 2ζ) . (2.18)

due to Schwarz’ inequality for the state vectors of the cloning apparatus.
The quantum cloning transformation (2.14) can be further defined, in particular,

to copy real qubit states (2.9) with high fidelity. Making a superposition of the
first and the second lines of this transformation for an input qubit state and after
the tracing over the auxiliary degrees of freedom and one of the copies we obtain a
single-qubit density matrix

ρout =

(
cos2 θ

2
− ζ cos θ

)
|0〉 〈0| +

1

2
(κ± η sin θ) (|0〉 〈1|+ |1〉 〈0|)

+

(
sin2 θ

2
+ ζ cos θ

)
|1〉 〈1| , (2.19)

which is the same for both copies. We can utilize this expression (2.19) to calculate
the fidelity between the input and output for all states (2.9) along the main circle

F (θ) ≡ 〈
ψmc|ρout | ψmc

〉
= (1− ζ) − 1

2
(1− η − 2ζ) sin2 θ ± κ

2
sin θ . (2.20)
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Although the parameters ζ, η and κ are restricted by the inequalities (2.18), it
is this freedom in choosing these parameters that enables us to optimize the fidelity
F (θ) for certain (regions of) states. A general method for numerical optimization of
parameters of an unitary transformation was developed by Audenaert and De Moor
[100] and was successfully applied to show optimality of some cloning transformations
[101]. Within this method, the optimal cloning transformation maximizes average
single-clone fidelity

F =

∫

Ω

dθ

N
F (θ) (2.21)

for chosen region of states Ω on the Bloch sphere, where N is the normalization
factor. Since the integral (2.21) depends on parameters of the given fidelity function
F (θ), the maximum average fidelity can be obtained by varying numerically these
parameters. Sometimes, however, the maximization of the average fidelity can be
done even analytically.

If we require that the cloning transformation (2.14) copies an arbitrary real qubit
state with maximal and constant fidelity, by optimizing (2.21) we obtain the param-
eters

κ = 0, ζ =
1

6
, η =

2

3
, (2.22)

which correspond to the average fidelity F = 5/6 ≈ 0.83. Through these parameters,
using their definitions (2.15)-(2.17), the final states |Aij〉 and

∣∣A′
ij

〉
of the ancilla can

be defined as

|A01〉 =

{
1√
6
, 0

}
, |A10〉 =

{
0,

1√
6

}
,

|A00〉 =

{
0,

√
2

3

}
, |A11〉 =

{√
2

3
, 0

}
, (2.23)

It is quite interesting to admit that these four vectors span only a two-dimensional
subspace within the (four-dimensional) space of the general copying machine (2.11).
This implies that, in practice, a single qubit may play a role of the ancilla.

With the help of the final states (2.27) the quantum cloning transformation (2.14)
can be written explicitly as

|0〉 |0〉 |A〉 −→
√

2

3
|00〉 |0〉+

1√
6

(|01〉+ |10〉) |1〉 ,

|1〉 |0〉 |A〉 −→
√

2

3
|11〉 |1〉+

1√
6

(|01〉+ |10〉) |0〉 . (2.24)

This is the original quantum cloning transformation constructed by Bužek and Hillery.
Although we constructed this transformation by optimization of the fidelity (2.8) only
for real qubit states, this transformation was shown to be universal [95], i.e. it provides
two copies of an arbitrary pure qubit state with maximal possible fidelity F = 5/6.
The QCM that corresponds to the transformation (2.24) is called universal.
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The fidelity of the copies from the universal QCM can be exceeded for some
restricted set of input states. Since the parameter κ in the expression (2.20) for
the fidelity of the transformation (2.14) has a different sign for the two parts of the
main circle, a nonzero value of this parameter leads to a quite different behavior of the
fidelity along Western and Eastern meridians: the high fidelity along Eastern meridian
correspond to positive parameter κ, while the high fidelity along Western meridian is
achieved for negative κ. So, for proper values of ζ, η and κ we can obtain a high fidelity
for one meridian. In particular, let us require that the cloning transformation (2.14)
copies states from the Easter meridian with maximal average fidelity. Substituting in
the expression (2.21) the fidelity function (2.20) and integrating over all states from
Eastern meridian of the Bloch sphere, we obtain average fidelity as function of the
parameters ζ, η and κ, i.e.

F =

∫ π

0

dθ

π
F (θ) =

1

4

(
3− 2ζ + η +

4κ

π

)
. (2.25)

Following numerical optimization procedure over the three parameters, which are
restricted with inequalities (2.18), gives values

κ =
2

5
, ζ =

1

10
, η =

2

5
, (2.26)

approximately, that correspond to the maximal average fidelity F ≈ 0.927 which is
better that the fidelity of the universal QCM.

There is, however, another quite an elegant way to perform optimization of the
fidelity function (2.20) that does not require numerical calculations. It is known
that parameters of the universal QCM can be found from the requirement of optimal
copying of just the discrete set of six states that lie on x, y and z axis of the Bloch
sphere [46]. We may, for example, request an equal and maximum fidelity for just
three selected states from the meridian in order to determine optimal parameters
of the cloning transformation (2.14). If the input |ψ〉 is taken from the set of the
three states |0〉 , |1〉 and |+〉 and we request an equal-fidelity cloning of them, the
maximum fidelity F = 0.90 is obtained for the parameters (2.26). This result is not
surprising since the fidelity has local minima for the states |0〉 , |1〉 and |+〉; that is
the main reason for optimization with this three states. In fact, in this optimization
procedure we restricted the fidelity function (2.20) downwards.

To complete the construction of the state dependent QCM for states from the
Eastern meridian we need to define the final-state vectors |Aij〉 of the ancilla. With
the help of the parameters (2.26) the final-state vectors can be defined as

|A01〉 =

{
1√
10

, 0

}
, |A10〉 =

{
0,

1√
10

}
,

|A00〉 =

{√
2

5
,

√
2

5

}
, |A11〉 =

{√
2

5
,

√
2

5

}
, (2.27)

in line with the conditions (2.15)-(2.17) from above. As in the case of universal QCM,
these four vectors span only a two-dimensional subspace within the (four-dimensional)
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Figure 2.2: Fidelity (2.29) of the quantum cloning transformation (2.28) as function of the
angle θ. The fidelity between the input and output states are shown for the states (2.9)
from the main circle; Eastern meridian (solid line) and Western meridian (dashed line).

space of the general copying machine (2.11). If we introduce the orthogonal basis |0〉
and |1〉 for this subspace, the transformation (2.14) can be brought into the form

|0〉 |0〉 |A〉 −→
√

2

5
|00〉 (|0〉+ |1〉) +

1√
10

(|01〉+ |10〉) |0〉 ,

|1〉 |0〉 |A〉 −→
√

2

5
|11〉 (|0〉+ |1〉) +

1√
10

(|01〉+ |10〉) |1〉 , (2.28)

if the vectors (2.27) are substituted into the transformation (2.14). This makes our
suggested QCM now explicit. The QCM (2.28) is optimal for a symmetric cloning of
the states from the Eastern meridian by construction.

Substituting the parameters (2.26) into the formula for the input-output fidelity
(2.20) for the states from the main circle, we obtain

F (θ) =
9

10
− 1

5
sin2 θ ± 1

5
sin θ . (2.29)

Figure 2.2 displays the behavior of this fidelity for the two meridians of the main
circle. While the fidelity is F ≥ 0.9 for all states along Eastern meridian (associated
with the + sign in Eq. (2.29)), it drops quickly down up to F = 1/2 for the |−〉
state along Western meridian. Along the Eastern part, that includes the three states
{|0〉 , |1〉 , |+〉} from above, however, a remarkably small variation of the fidelity with
0.9 ≤ F ≤ 0.95 occurs and may favor this region to produce quantum copies with
high fidelity.
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So far, we have considered input states from the main circle for the transformation
(2.28). If we apply this transformation to other (pure) states from the Bloch sphere
|ψ〉 = cos θ

2
|0〉+ sin θ

2
eiφ |1〉 with φ 6= 0, the fidelity

F (θ, φ) =
9

10
− 1

5
sin θ (sin θ − cos φ) , (2.30)

becomes dependent on the angle φ also and makes the behavior slightly more complex.
Although this particular dependence (2.30) of the fidelity was obtained from the
request that the states from Eastern meridian can be copied in optimal way, a high-
fidelity cloning is possible also for other regions on the Bloch sphere by making similar
requirements for other meridians.

Of course, the meridional QCM given by the transformation (2.28) is not the one
state dependent QCM. There is also another well known state dependent QCM which
was originally proposed by Bruß et al. [102] and is known today as equatorial QCM.
This QCM provides two copies of an equatorial pure qubit state (2.10) with maximal
possible fidelity F = 1/2 +

√
1/8 and is given by the transformation

|0〉 |0〉 |A〉 −→ a |0〉 |0〉 |0〉+

√
1

8
(|0〉 |1〉+ |1〉 |0〉) |1〉+ b |1〉 |1〉 |0〉 ,

|1〉 |0〉 |A〉 −→ a |1〉 |1〉 |1〉+

√
1

8
(|0〉 |1〉+ |1〉 |0〉) |0〉+ b |0〉 |0〉 |1〉 ,(2.31)

where a = 1/2 +
√

1/8 and b = 1/2−
√

1/8. In comparison to the universal (2.24)
and meridional QCMs, this cloning transformation includes four terms in the right
hand side. In spite of this, the four final-state vectors of the ancilla still span a
two-dimensional subspace. It is also important to note that although transformation
(2.31) was constructed for optimal copying of equatorial states, it remains the optimal
cloning transformation for states from an arbitrary big circle of the Bloch sphere as
it is follows from the symmetry of the sphere.

The concepts of universal and equatorial quantum coping have been already
extended to N → M cloning transformations, i.e. when M copies are created from
N input replicas of a pure qubit state. Explicit formulas for such universal and
equatorial QCMs are rather complicated and, therefore, we do not show them here.
For future discussion in sections 2.2 and 2.3, it is important to note that the copies
from the universal N → M QCM have the fidelity

F u
N→M =

N

M
+

(M −N)(N + 1)

M(N + 2)
(2.32)

in comparison to the input state [103]. Each copy, moreover, is in a mixed (so-called
pseudo-pure) state of the form

ρ = η(N,M) |ψ〉 〈ψ| +
1

2
[1− η(N, M)] 1 , (2.33)

where |ψ〉 is the input state and where the shrinking factor is found to be η(N,M) =
(NM + 2N)/(NM + 2M).
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Each copy from the equatorial N → M QCM is given again by the mixed pseudo-
pure state (2.33), but with the shrinking factor

η(N, M) = 2M−N

∑N−1
l=0

√
CN

l CN
l+1

∑M−1
j=0

√
CM

j CM
j+1

, (2.34)

which is given in terms of the binomial coefficients Cβ
α [102]. The fidelity of each

copy is given by F e
N→M = [1 + η(N, M)] /2.

Motivated by practical necessities, most cloning transformations were developed
for input pure states. Recently, however, optimal universal N → M quantum cloning
transformations for initially mixed states were suggested by Dang and Fan [104]. They
showed, in particular, that pseudo-pure mixed qubit states can be copied equally as
well as pure states in the sense that the shrinking factor is the same for both cases.
This result allows us do not distinguish between pure and pseudo-pure mixed states
in construction of optimal cloning transformations.

2.1.3 Application of quantum cloning machines in the eaves-
dropping of quantum communication

As we have already stated in the introduction, the no-cloning principle is the corner-
stone of unconditional security of quantum communication. Although an eavesdrop-
ping of quantum communication between two partners, say Alice and Bob, is seriously
restricted by the impossibility to copy exactly quantum information, the generation of
approximate copies with a QCM gives opportunity to an eavesdropper, usually called
Eve, to intercept some information about the secret message. It is therefore worth to
know for both, the two partners who wish to communicate as well as for a potential
eavesdropper, how much information can be extracted about the message within an
attack with a QCM and what is the price (in terms of errors in the original message)
of such extraction. The eavesdropping attack that maximize Eve’s knowledge about
the Alice-Bob message under a given error rate is called optimal.

The simplest strategy for eavesdropping is to intercept each qubit from the Alice-
Bob communication channel independently from other transmitting qubits, provide
two copies from the intercepted qubit, send one of the copies back in the communi-
cation channel and measure the remaining copy following the same procedure as Bob.
Such an eavesdropping attack is called incoherent. In contrast, an attack, in which
Eve interacts individually with the states sent by Alice but delay her measurement
until the end of the transmission and then perform a collective measurements on the
intercepted data, is called coherent.

Optimal incoherent attacks with QCM’s have been found for several protocols
for quantum communication. In particular, for BB84 protocol [31], in which only four
states lying on ±x and ±y directions of the Bloch sphere are used for communication
between Alice and Bob, the attack with an equatorial QCM was proven to be optimal
[105]. Also, a universal QCM is optimal in the eavesdropping of the six-state protocol
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[33], where states ±z, ±x and ±y are used to encrypt the data. Although it has not
been proven in general case, there are several evidences that coherent attack has a
negligible advantage over incoherent strategy for protocols utilizing single-qubit states
[46], such as BB84, B92 and the six-state protocol.

To provide an explicit example of an eavesdropping attack on a communication
protocol, let us analyze with which success Eve may attack Bennett’s B92 protocol
[32] for quantum key distribution. In our analysis, moreover, we shall only focus on
incoherent strategy. In the B92 protocol, only two nonorthogonal quantum states are
utilized in order to encode and transmit the information about the cryptographic key.
As usual, we suppose that the information is sent from Alice to Bob by means of a
quantum communication channel. At the beginning of the protocol, Alice encodes
each logical bit, 0 or 1, into two nonorthogonal states, that can be parameterized in
a computational basis with a single real parameter ϑ [106] as

|u〉 = cos
ϑ

2
|0〉+ sin

ϑ

2
|1〉 ,

|v〉 = sin
ϑ

2
|0〉+ cos

ϑ

2
|1〉 . (2.35)

The overlap of the states O(ϑ) ≡ | 〈u | v〉 |2 = sin2 ϑ gives the distance between states
|u〉 and |v〉 in geometric sense. These qubits are then sent to Bob who performs a
positive operator-valued measurement (POVM), and the best operators for that are

G1 =
1

1 + 〈u | v〉 (1− |u〉 〈u|) ,

G2 =
1

1 + 〈u | v〉 (1− |v〉 〈v|) ,

G3 = 1−G1 −G2 . (2.36)

Only measurements with POVM elements G1 and G2 are conclusive, because certain
decision about the received state |u〉 or |v〉 can be made after the measurement. After
all the qubits have been sent (and measured), Bob tells to Alice numbers of conclusive
measurements via a public channel, which can be monitored but not modified by Eve.
Only those bits (obtained in Bob’s conclusive measurements) can be used to construct
the key, while all the rest need to be discarded because no definite conclusion can be
drawn from the outcome of Bob’s measurement. To test and recognize a (possible)
eavesdropper, Alice and Bob compare the values of some of their bits via the public
channel in order to get an estimate how likely their communication was disturbed.

To quantify the disturbance in the transmission of a single qubit, a convenient
measure is the probability that Alice and Bob detect an error. If Bob would know a
state |ψ〉 of one or several qubits in advance, that were sent to him by Alice, he could
easily test for a possible eavesdropping attack. In this case, he will receive in general
the qubits no longer in a pure but a mixed state that has to be described in terms of
its density matrix ρ. The discrepancy that is detected by Bob is given by

D = 1 − 〈ψ | ρ|ψ〉 . (2.37)
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Since Bob knows the maximal discrepancy Dmax for the given channel (due to the
incomplete quantum control of the given transmission), he could recognize an eaves-
dropping attack for D > Dmax and discard the key accordingly.

A central question for Eve is of how much information can be extracted from the
transmission of the key if the disturbance due to the attack is D < Dmax. From the
initial agreement between Alice and Bob about the basis states which are to be chosen
randomly, Eve knows that Alice prepares the qubits in one of the two states (2.35) with
probability pi = 1/2 (i = 0, 1). Before Eve has measured a given qubit, her (degree
of) ignorance is given by Shannon’s entropy H = −∑

pi log2 pi = − log2(1/2) [3].
After the measurement, the knowledge about the system increases by decreasing this
entropy, a measure that is called the mutual information that Eve has acquired due to
the measurement. Of course, Eve will try to obtain as much information as possible
keeping the discrepancy D < Dmax.

Let us suppose that Eve performs incoherent attack on the communication chan-
nel with a QCM. Here, we shall not yet specify the QCM explicitly in order to enable
us to compare different QCM’s below. As output of the cloning transformation, Eve
obtains two copies of one of the two possible states ρ|u〉 and ρ|v〉 which just corre-
spond to the two input states (2.35) with a fidelity as defined by the given QCM. To
calculate the mutual information between Alice and Eve that is to be extracted from
the eavesdropping, we can follow the procedure as described by Peres [107]. Using
the POVM elements (2.36), the probability for Eve to obtain the outcome µ is

Pµi = Tr(Gµρi) , (2.38)

and where the operators ρi refer to the two possible states {ρ|u〉, ρ|v〉} of her copy.
After the measurement, when she has obtained a particular outcome µ, the posterior
probability Qiµ that ρi was prepared by Alice is

Qiµ =
Pµipi

qµ

, (2.39)

where qµ =
∑

j Pµjpj, and pj = 1/2 is the probability for sending the states |u〉 and
|v〉 within the B92 protocol. With these probabilities, the Shannon entropy (which
was H = − log2(1/2) = 1 initially), becomes

Hµ = −
∑

i

Qiµ log Qiµ , (2.40)

once the result µ was obtained, and hence the mutual information is

I = H −
∑

µ

qµHµ . (2.41)

To determine the possible success of an eavesdropper, we only need to analyze the
explicit form of the output states ρ|u〉 and ρ|v〉 for a particular QCM. By substituting
the output states into Eqs. (2.41) and (2.37) we may then calculate the mutual
information and discrepancy in case of an eavesdropping with the QCM. Since we
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Figure 2.3: The mutual information between Alice and Eve I(O) as function of the overlap
O of the states (2.35) for eavesdropping with meridional (solid), equatorial (dashed) and
universal (dotted) QCM’s.

assumed that the copies from the QCM are identical (i.e symmetric), the mutual
information extracted by Eve IAE equals to the mutual information obtained by Bob
in his measurements IAB = IAE ≡ I. As it is seen from Eqs. (2.38)-(2.40), moreover,
this information depends on the overlap of the states (2.35).

If Eve applies universal QCM (2.24), which provides copies with fidelity F = 5/6,
she causes discrepancy D = 1/6 ≈ 0.17 independently from the choice of the states
(2.35). The mutual information extracted by Eve is given in Fig. 2.3 with dotted
line. For equatorial QCM (2.31) with the fidelity F = 1/2 +

√
1/8 of the copies,

discrepancy equals D = 1/2 −
√

1/8 ≈ 0.15 for arbitrary states (2.35) and the
mutual information is shown in Fig. 2.3 with dashed line. For the eavesdropping with
meridional QCM discrepancy depends on particular choice of the states (2.35) and is
given by 0.05 ≤ D ≤ 0.10. The mutual information in this case is shown in Fig. 2.3
with solid line. Consequently, our suggested QCM introduces a lower disturbance
into the data transmission between Alice and Bob than it is caused by universal or
equatorial QCM’s. It also enables Eve to extract in course of her eavesdropping
more information than obtained by means of these two QCM’s. Thus, the incoherent
eavesdropping attack on B92 protocol with meridional QCM is optimal.

As the final remark, we like to note that modern channels for quantum communi-
cation have discrepancy less than D < 0.03. This implies that even an eavesdropping
with meridional QCM would be easily found out by the legitime users. To remain
undetected Eve may, for example, intercept just a part of the transmitted message,
acquiring nevertheless some information. However, even if the eavesdropping was not
detected directly by observing discrepancy, Eve’s information about the message can
be always reduced to zero by the legitime users. This can be done with the help
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of security amplification protocols [3], which require additional comparison of Alice’s
and Bob’s bits through the public channel, i.e. waste of transmitted data. The es-
timation of Eve’s information, that can be intercepted by an optimal eavesdropping
attack remaining below the detection value for discrepancy, allows the legitime users
to spend minimal amount of data to ensure security of their communication.

2.2 State independent transformations

Having established the fundamental features of quantum copying, we eventually come
to a more general problem: ‘what is the optimal way to perform a quantum transfor-
mation with given properties on unknown quantum states?’ Here we like to underline
that we are only interested in those quantum transformations which do not depend
on input states, i.e. are input state independent. In order to explain the notion of
state independent transformation it is useful to consider a particular example.

Suppose, we are given a single qubit in an unknown state |ψ〉. We desire to find a
quantum transformation that generates from the input state |ψ〉 the orthogonal state∣∣ψ⊥〉

independently on the input state, so that
〈
ψ | ψ⊥〉 ≡ 0. A possible candidate

for such an ‘inversion’ transformation is the Pauli matrix σx which can be written
in a computational basis as σx = |0〉 〈1| + |1〉 〈0|. Indeed, applying the σx to basis
states |0〉 and |1〉 of the qubit, we obtain the desired inversion, i.e. σx |0〉 = |1〉 and
σx |1〉 = |0〉. However, if σx is applied to a superposed state |ψ〉 = α |0〉+ β |1〉, the
output state |ψ′〉 = β |0〉+ α |1〉 is not orthogonal to the input state in general case,
i.e 〈ψ | ψ′〉 = βα∗ + αβ∗ 6= 0. Therefore the σx does not provide us with the desired
state inversion transformation for an arbitrary input state of qubit. In fact, as we will
see in the next section, the exact inversion transformation can not be constructed for
an arbitrary state of qubit.

Independence of a quantum transformation from input states implies that this
transformation is basis independent, i.e. it remains invariant with regard to a basis
change. Indeed, if an operation given by quantum transformation does not depend on
input states, a basis transformation, which simply maps all qubit states to themselves,
do not act on this operation. In fact, it is very convenient to use the requirement of
basis invariance to construct state independent transformations with given properties.

2.2.1 Single-qubit transformations

The simplest case of state independent transformation is, of course, single-qubit
transformation. Let us consider in more details the state inversion transformation or,
as it is called sometimes, universal NOT operation [108, 109]. As we have already
mentioned, this operation generates the orthogonal state

∣∣ψ⊥〉
at the output from a

given unknown input state |ψ〉. Since the input state is, in general, a superposition
of basis states |0〉 and |1〉, the universal NOT operation should generate the state

∣∣ψ⊥〉
= NOT (α |0〉+ β |1〉) = β∗ |0〉 − α∗ |1〉 , (2.42)
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in order to ensure that
〈
ψ | ψ⊥〉 ≡ 0 for an arbitrary input state |ψ〉 = α |0〉 +

β |1〉 as it is required. This operation, however, can not be implemented exactly on
real quantum systems, since it is not a completely positive map. Nevertheless, the
universal NOT operation can be provided approximately as it was shown by Bužek et
al. [108] and is given by the unitary transformation

|ψ〉 |A〉 −→
√

2

3

∣∣ψ⊥〉 ∣∣Aψ⊥
〉

+

√
1

3
|ψ〉 |Aψ〉 , (2.43)

where |A〉 ,
∣∣Aψ⊥

〉
and |Aψ〉 are the state vectors of a four-dimensional auxiliary sys-

tem. The fidelity between the approximate output of the transformation (2.43) and
the ideal output

∣∣ψ⊥〉
equals FNOT = 2/3. More generally, a universal NOT op-

eration can be constructed for an ensemble of N input qubits that are prepared in
an unknown qubit state |ψ〉 [108]. This operation can be performed approximately
on the ensemble with fidelity F =

〈
ψ⊥ | ρ|ψ⊥〉

= (N + 1)/(N + 2) between the
approximate output ρ of the transformation and the ideal output

∣∣ψ⊥〉
.

Interestingly enough the exact state inversion transformation exists for an ar-
bitrary qubit state taken from a chosen one-dimensional subspace of the original
two-dimensional qubit state space [110]. Using the Bloch sphere representation of
the qubit state, a one-dimensional subspace can be visualized with a big circle which
is given by the intersection of the sphere with a plane. For an arbitrary qubit state
from the main circle (2.9), for example, the state inversion operation is given by

NOTmc = −iσy =

(
0 −1

1 0

)
. (2.44)

Knowing the state inversion operations for an arbitrary state of qubit (2.43) and
for (real) states from the main circle (2.44), we can in principle construct an arbitrary
single-qubit state independent transformation for qubit. For real qubit states, for
instance, any state independent transformation can be expressed as

U(ξ) ≡ cos
ξ

2
I + sin

ξ

2
NOTmc , (2.45)

where I is the identity matrix and ξ is a real free parameter 0 ≤ ξ ≤ π. This gate
(2.45) performs a rotation of the input qubit state (vector) on the angle ξ in the
main circle independently on the input state. An input state independent Hadamard
gate [93], that creates an equal superposition of a real qubit and its orthogonal,
corresponds to the rotation U(π/2).

2.2.2 Two-qubit Controlled-NOT transformation

In quantum information processing we are not restricted by single-qubit operations,
but interested mostly in optimal state independent transformations of multiqubit sys-
tems. In fact, we have already seen the trivial examples of two-qubit state indepen-
dent transformations: the (1 → 2) universal (2.24), meridional (2.28) and equatorial
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(2.31) QCM’s. Indeed, these transformations enables one to distribute information
about an input qubit state between two qubits. The straightforward generalization
of cloning transformation is state independent controlled unitary operation (2.6) that
transmits information about the state |ψ〉 of the input qubit to the reference qubit
state |R〉 by means of a conditional unitary transformation |U(ψ)R〉.

Although, due to the general impossibility theorem, the transformation (2.6) can
not be perfectly realized, it is possible to construct an optimal approximation for this
transformation. Let us construct a particular example of state independent controlled
unitary transformation – Controlled-NOT operation. By analogy with classical infor-
mation processing, the quantum C-NOT operation is defined to act on two qubits,
one of which is called control and the other target. By definition, the quantum C-
NOT operation leaves the meaning of the target qubit unchanged, if the control qubit
is given in the state |0〉; if the control qubit is in the state |1〉, the NOT operation is
to be performed on the target qubit, i.e.

|0〉c ⊗ |R〉t ⊗ |A〉 −→ |0〉c ⊗ |R〉t ⊗ |A0〉 ,

|1〉c ⊗ |R〉t ⊗ |A〉 −→ |1〉c ⊗ (NOT |R〉t)⊗ |A1〉 . (2.46)

where we introduced an auxiliary system to keep the discussion as general as possible.
Based on the definition (2.46), the C-NOT operation is usually defined in a

computational basis as [3]

UC−NOT = |0〉 〈0|c ⊗ It + |1〉 〈1|c ⊗ (σx)t , (2.47)

where σx = |0〉 〈1|+ |1〉 〈0|. However, this operation is not input state independent.
If the state of the control qubit is in one of the basis states |0〉 or |1〉, the C-NOT
operation (2.47) satisfies indeed the definition (2.46) leaving the states of the control
and the target qubit separable. If, in contrast, the control qubit is in a superposed
state, this operation (2.47) acts to the input qubit differently creating entanglement
between the control and the target qubits.

In contrast to the definition (2.47), the input state independent C-NOT operation
should act alike on the basis and superposed states of input qubit, always leaving the
states of the control and the target qubits separable. Indeed, a superposed state
of the control qubit in a given basis can be always transformed in one of the basis
states into a new basis by means of a basis transformation. In this new basis the
output states of the control and the target qubits are separable according to the
definition (2.46). On the other hand, the state independent C-NOT operation should
be invariant with regard to a basis transformation as we required earlier. Therefore,
for a given superposed input state of the control qubit, the output states of the
control and the target qubits should be separable.

The state independent single-qubit NOT operation is an essential part of the
state independent C-NOT operation, as it is seen from the definition (2.46). The
approximate character of the universal NOT operation (2.43), however, complicates
construction and interpretation of the universal C-NOT operation. In order to simplify
our discussion, let us focus on construction of the input state independent C-NOT
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operation, when input states of both the control and the target qubits belong to a
one-dimensional subspace of the two-dimensional qubit state space. As we have seen
in the previous section, for qubit states from the one-dimensional subspace the exact
state independent NOT operation is available. Suppose, for instance, that the input
states of the control and the target qubits belong to the main circle of the Bloch
sphere. Let us introduce the following notations for these qubits

|ψ±〉c = cos
θ

2
|0〉c ± sin

θ

2
|1〉c , (2.48)

|χ±〉t = cos
φ

2
|0〉t ± sin

φ

2
|1〉t , (2.49)

where |ψ±〉c and |χ±〉t denote the states of the control and the target qubits respec-
tively. According to the definition (2.46), for the input states |0〉c and |1〉c of the
control qubit, the state independent C-NOT operation should perform the unitary
transformation

|0〉c ⊗ |χ±〉t ⊗ |A〉 −→ |0〉c ⊗ |χ±〉t ⊗ |A0〉 ,

|1〉c ⊗ |χ±〉t ⊗ |A〉 −→ |1〉c ⊗
∣∣χ⊥±

〉
t
⊗ |A1〉 . (2.50)

As before, the state vectors |A〉, |A0〉 and |A1〉 denote the initial and the final states
of the auxiliary system. The output state

∣∣χ⊥±
〉

t
is orthogonal to the input target

qubit state |χ±〉t and is obtained by applying the NOT operation (2.44) to the input
state (2.49), i.e.

∣∣χ⊥±
〉

t
= NOTmc |χ±〉t. If the state of the control qubit is given

in the superposed state (2.48), the universal unitary C-NOT transformation should
leave the states of the control and the target qubits separable while performing some
transformation f(ψ, χ) on the target qubit, i.e.

|ψ〉c ⊗ |χ〉t ⊗ |A〉 −→ |ψ〉c ⊗ |f(ψ, χ)〉t ⊗ |Aψ〉 , (2.51)

where the function f(ψ, χ) is related to the original state |χ〉t by a unitary trans-
formation |f(ψ, χ)〉t = U(ψ) |χ〉t. On the other hand, making a superposition of
Eqs. (2.50) we obtain

(
cos

θ

2
|0〉c + sin

θ

2
|1〉c

)
⊗ |χ±〉t ⊗ |A〉 −→

cos
θ

2
|0〉c ⊗ |χ±〉t ⊗ |A0〉 + sin

θ

2
|1〉c ⊗

∣∣χ⊥±
〉

t
⊗ |A1〉 . (2.52)

Let us analyze this superposition (2.52) in order to specify the function f(ψ, χ) in
the transformation (2.51). Suppose one has two qubits prepared in the states |ψ0〉c =
cos θ0

2
|0〉c + sin θ0

2
|1〉c and |χ0〉t respectively. If one performs the transformation

(2.52) on them, so that the qubit |ψ0〉c is the control and the qubit |χ0〉t – the
target, the two-qubit state

cos
θ0

2
|0〉c ⊗ |χ0〉t + sin

θ0

2
|1〉c ⊗

∣∣χ⊥0
〉

t
, (2.53)
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is obtained at the output, as it follows from Eqs. (2.50) and (2.52). Making a pro-
jective measurement on the target qubit in the {|χ0〉t ,

∣∣χ⊥0
〉

t
} basis, one obtains the

outcomes |χ0〉t and
∣∣χ⊥0

〉
t

with probabilities cos2 θ0

2
and sin2 θ0

2
respectively. There-

fore, we conclude that the universal C-NOT operation (2.51) is to have the following
structure

|ψ+〉c ⊗ |χ±〉t ⊗ |A〉 −→ |ψ+〉c ⊗
(

cos
θ

2
|χ±〉t + sin

θ

2

∣∣χ⊥±
〉

t

)
⊗ |Aψ〉 , (2.54)

On the right hand side of this transformation (2.54), the control qubit is left without
changes as is required by Eq. (2.51) while the unitary transformation

U(ψ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(2.55)

is to be performed on the target qubit |χ〉t. After simple algebraic manipulation we
find that the state independent C-NOT operation can be written as

|ψ+〉c ⊗ (cos
φ

2
|0〉t ± sin

φ

2
|1〉t)⊗ |A〉 −→

|ψ+〉c ⊗ (cos
φ− θ

2
|0〉t ± sin

φ− θ

2
|1〉t)⊗ |Aψ〉 , (2.56)

where we have shown the states of the target qubit before and after the transformation
explicitly. The transformation (2.56) leaves the control qubit without changes and
rotates the target qubit on the angle θ clockwise. We note that if the state of the
control qubit is given in the state |ψ−〉c, the transformation (2.56) rotates the target
qubit counterclockwise to the angle θ. It is also remarkable that the state of the
output target qubit depends only on the difference φ− θ and does not depend on a
particular basis (as it should be for a basis/state independent transformation).

The transformation (2.56) introduces the ‘idealized’ state independent C-NOT
operation which can not be perfectly realized due to the general impossibility theorem
(2.6). As in the case of quantum cloning transformations considered in section 2.1.2,
it is, however, possible to construct an optimal approximation for the C-NOT opera-
tion. Formally, the procedure of such a construction is identical to the construction of
optimal cloning transformations: one should consider again the most general unitary
transformation of two qubits (2.11) subordinated to the conditions (2.13), introduce
free parameters of this transformation, define single copy fidelity (2.8) as function of
the parameters and optimize the fidelity function using, for example, the numerical
method (2.21). Since the procedure of construction of an optimal cloning transfor-
mation has been discussed in details in section 2.1.2, we skip here the derivation of
the approximate C-NOT operation and focus on the discussion of the result.

The optimal approximation for the state independent C-NOT operation for real

56



2.2. State independent transformations

input states (2.51) is given by the transformation

|0〉c |χ±〉t |A〉 −→
(

1

2
+

√
1

8

)
|0〉c |χ±〉t |0〉

+

√
1

8

(|0〉c
∣∣χ⊥±

〉
t
+ |1〉c |χ±〉t

) |1〉 +

(
1

2
−

√
1

8

)
|1〉c

∣∣χ⊥±
〉

t
|0〉 ,

|1〉c |χ±〉t |A〉 −→
(

1

2
+

√
1

8

)
|1〉c

∣∣χ⊥±
〉

t
|1〉

+

√
1

8

(|0〉c
∣∣χ⊥±

〉
t
+ |1〉c |χ±〉t

) |0〉 +

(
1

2
−

√
1

8

)
|0〉c |χ±〉t |1〉 .(2.57)

For this transformation, the fidelity between the ideal output and the actual output
for the states of the control as well as the target qubits equals F = 1/2 +

√
1/8 and

is constant for arbitrary input states of the control and target qubits taken from the
main circle of the Bloch sphere.

The transformation (2.57) has similar structure to the equatorial QCM (2.31).
This similarity has an important implication. The ‘idealized’ C-NOT transformation
(2.56) can be formally treated as a two-stage transformation. The first stage of the
device provides the cloning transformation on the input control qubit, the second
stage rotates the state vector of the copy in the main circle over the angle φ which
describes the state of the target qubit. While the first stage (cloning) transformation
is strongly restricted by the no-cloning principle, there are no limitations on the second
stage transformation. Thereby the problem to find an optimal C-NOT transformation
for the input states of the qubits taken from the main circle reduces to a search for
the optimal cloning transformation for such input states. Since equatorial QCM is
the optimal cloning transformation for the input states from equator and from any
big circle on the Bloch sphere, it is not surprising that the optimal state independent
C-NOT transformation (2.57) has structure similar to equatorial QCM.

2.2.3 Multiqubit Controlled-U transformations

Having discussed in details the particular example of state independent controlled
unitary transformation, the Controlled-NOT operation for real qubit states, we can
now analyze the general case of such transformation. Let us construct the optimal
approximation for two-qubit controlled unitary transformation

|ψ〉c ⊗ |χ〉t ⊗ |A〉 −→ |ψ〉c ⊗ U(ψ) |χ〉t ⊗ |Aψ〉 . (2.58)

without making any initial assumptions about the input states and the unitary that
is to be applied to the target qubit. As we mentioned before, the trivial controlled
unitary transformation is the (1 → 2) cloning transformation

|ψ〉c ⊗ |0〉t ⊗ |A〉 −→ |ψ〉c ⊗ |ψ〉t ⊗ |Aψ〉 . (2.59)

57



Chapter2. Optimal state independent quantum transformations

This transformation can be realized approximately with the help of the universal QCM
(2.24) with optimal fidelity F = 5/6 between the input state and each copy. In fact,
not only transformation (2.59) but also an arbitrary transformation

|ψ〉c ⊗ |0〉t ⊗ |A〉 −→ |ψ〉c ⊗ U(ψ) |0〉t ⊗ |Aψ〉 (2.60)

can be performed approximately with the optimal fidelity F = 5/6 between each of
the ideal outputs |ψ〉c and U(ψ) |0〉t in right hand side and the corresponding actual
results of the transformation. Indeed, any transformation U(ψ) |0〉t can be obtained
as a sequence of copying |0〉t → |ψ〉t (2.59) and a unitary transformation of the copy
U |ψ〉t. While the transformation of the copy U |ψ〉t is not restricted by the laws of
quantum mechanics, the efficiency of the optimal transformation (2.60) is completely
defined by the efficiency of the optimal cloning. Moreover, there is a freedom in
choice of the initial ‘blank’ state of the target qubit. Consequently, any two-qubit
Controlled-U transformation (2.58) on arbitrary input qubit states can be provided
approximately with the optimal fidelity F = 5/6 between the ideal outputs and the
corresponding actual outputs of the transformation.

This result can be further extended to the case of input qubit states taken from
some restricted set of states. As we have seen in the previous section, the efficiency
of the optimal C-NOT transformation for input real qubit states is defined by the
efficiency of the corresponding cloning transformation for these states. This statement
remains true for an arbitrary Controlled-U transformation for input states taken from
a restricted set: the efficiency of this transformation is defined by the corresponding
optimal cloning transformation.

By analogy with two-qubit Controlled-U transformation (2.58), we may consider
a multiqubit transformation

|ψ〉⊗N
c ⊗ |χ〉⊗K

t ⊗ |A〉 −→ |ψ〉⊗N
c ⊗ (U(ψ) |χ〉t)⊗K ⊗ |Aψ〉 , (2.61)

where a unitary is to be applied to K target qubits in presence of N control qubits.
Following the same logic as in case of two-qubit transformation (2.58), we obtain
that the efficiency of this multiqubit transformation (2.70) is completely defined by
efficiency of N → N + K quantum cloning transformation. In particular, the fidelity
between the ideal and the approximate outputs of the transformation (2.70) for an
arbitrary input states is given by Eq. (2.32). For input real qubit states, in con-
trast, the fidelity of state independent multiqubit controlled-U transformation equals
F e

N→N+K = [1 + η(N,N + K)] /2, where η(N,N + K) is given by Eq. (2.34).

2.2.4 Application of state independent transformations in
quantum computing

Apart of academic interest, single- and multiqubit state independent transformations
may have applications in quantum communication and quantum computing. Leaving
aside speculations about usefulness of state independent transformations in quantum
communication, we like to analyze especially how these transformations can be used
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in quantum computing. On the first glance the answer is evident: using state inde-
pendent transformations we can construct a quantum circuit [3] to realize quantum
computation. But, whether such a quantum circuit has any advantages comparing to
a circuit constructed from usual basis dependent operations? Yes indeed, as we will
see.

In general, a quantum computer is a device that runs a program through a
carefully controlled sequence of unitary operations (and/or measurements) applied
to initially prepared states of quantum systems. The answer is stored as classical
information that can be read out with high probability by a measurement. To be
more specific in definition of quantum computer, DiVincenzo formulated the five
requirements for the architecture and physical implementation of a quantum computer
[111], such as:

• Scalability. A scalable physical system with well characterized parts, usually
qubits – two-level quantum systems, is available.

• Initialization. It is possible to prepare the system in a simple state, such as
|00...0〉.

• Control. Control of a quantum computation is accomplished via some universal
set of elementary unitary operations.

• Stability. The system has long relevant decoherence time, much longer than
times of elementary transformations.

• Measurement. It is possible to read out the state of the computer in a conve-
nient product basis.

If a quantum computer satisfies the five requirements above, it is called a scalable
quantum computer (SQC). For such a computer, moreover, the entanglement of pure
multiqubit states is proven to be necessary to support computational advantages of
the quantum computer comparing to the classical one [14, 18].

However, first experiments on realization of SQC [112, 113, 114] faced many
difficulties mostly connected to the control and the stability of the quantum systems.
Indeed, real quantum systems are rarely in pure states and continuously interact with
their environments which lead to non-unitary (uncontrolled and unstable) evolution.
Furthermore, the proposals and experiments using nuclear magnetic resonance (NMR)
at high temperature to study quantum computation [114] involve manipulations with
initially mixed states giving rise to the problem of the initialization of the system.
Since fully controllable, scalable and “initializable” quantum computers are still quite
a way in the future, a less ambitious quantum processor, that may fail to satisfy one or
more of the five criteria above but can nonetheless carry out interesting computations,
is of great interest.

A particular paradigm for quantum computation which is different from SQC is
quantum computation with initially mixed states. Quantum computer that breaks the
second (initialization) requirement and operates with mixed states is recognized to
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be an intermediate model for quantum computation that lies somewhere in between
classical computers and SQCs [18]. The first investigation of the power of such
a quantum computer was presented by Knill and Laflamme [115], who discussed
deterministic quantum computation with just one qubit in an initially mixed state.
The computation with the mixed state was shown to be less powerful than SQC.
However, it was shown that some problems related to physical simulations, for which
no efficient classical algorithms are known, can be solved with its help.

The analysis of efficiency of quantum computation with initially mixed states was
performed for standard quantum algorithms. In particular, it was shown by Palma
with co-authors [116] that mixedness of the initial states decreases the probability
of successful computation of Shor’s algorithm exponentially with the length of input
data. This result implies that the computation of Shor’s algorithm with initially mixed
states has an exponentially small advantage over classical computation. Similar result
was obtained by Braunstein and Pati for Grovers algorithm: the computational speed-
up using mixed states is not possible except, however, for the special case of the search
space of size four [17].

Quite recently, nevertheless, Biham et al. [15] analyzed how fast the Deutsch-
Jozsa and the Simon problems can be implemented with a quantum computer oper-
ating with initially mixed states. It was found that these quantum algorithms can be
implemented more reliably by means of quantum computing with mixed states then
by the best possible classical algorithm. For an arbitrary pure N -qubit state |ψ〉 and
real (purity) parameter 0 ≤ ε ≤ 1, it was proven that quantum computation with the
pseudo-pure state

ρ = ε |ψ〉 〈ψ|+ (1− ε)I⊗N , (2.62)

where I denotes the identity operator, guarantees a speed-up over classical algorithms
even when the purity parameter ε is arbitrarily close to zero. However, the speed-up
of the quantum algorithms rapidly decrease with the number of qubits involved in the
computation. Although the question of the existence of a non-vanishing advantage
of quantum computing with mixed states is still open [14, 15], there is no doubt
that this type of quantum computing may support classically unavailable information
processing.

Keeping in mind quantum algorithms for which quantum computation with ini-
tially mixed states have advantages compared to classical computation, let us analyze
how these algorithms can be implemented, at least in principle, using quantum cir-
cuits constructed from single- and multiqubit transformations. To be more precise, let
us assume that the given input states are pseudo-pure. The well-known property of
single-qubit unitary transformations is that they do not change the purity parameter
of the input mixed state (2.62), if applied to a single qubit state [15], i.e.

UρU † = U (ε |φ〉 〈φ|+ (1− ε)I) U † = ε U |φ〉 〈φ|U † + (1− ε)I . (2.63)

As it is seen from Eq. (2.63), there is no loss of information, if a single qubit transfor-
mation is applied to an input pseudo-pure state. This statement is completely gen-
eral and covers both cases of basis dependent and basis independent transformations.
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Therefore, from the viewpoint of their efficiency, basis independent transformations
do not differ from basis dependent transformations, if applied to a single qubit.

For multiqubit systems, however, there is a crucial difference in resulting states
from basis dependent and basis independent transformations if they are applied
to pseudo-pure input states. The simplest example is the two-qubit Controlled-
NOT transformation. As we mentioned before the standard basis dependent C-
NOT transformation is given by Eq. (2.47). This transformation creates entangle-
ment between initially separable input (pure) states of control and target qubits,
if the control qubit is given in a superposed state of the basis states |0〉c and
|1〉c. For instance, if the input control and target qubits are given in the states

|+〉c =
√

1/2(|0〉 + |1〉) and |0〉t respectively, the output state is the maximally

entangled (Bell) state |φ〉 =
√

1/2(|00〉+ |11〉) of two qubits.

Suppose, the input states of the control and the target qubits are not pure
anymore but pseudo-pure. Assume, for simplicity, that the input state of the control
qubit is given by ρc = ε |+〉 〈+| + (1 − ε)I while the input state of the target qubit
is ρt = ε |0〉 〈0| + (1 − ε)I with an equal purity parameter ε. Applying the C-NOT
gate (2.47) to the input qubits in the mixed states, let us analyze how rapid the
entanglement of the output two-qubit state decreases with regard to the purity ε of
the input states. To quantify entanglement of the output two-qubit state we use
an entanglement measure, concurrence, as it was presented in section 1.2.3. Using
Eq. (1.26), we found that the concurrence for the output two-qubit state decreases
with the purity parameter as C = max{0, 1/2(ε2+2ε−1)}. While it is often required
to apply the C-NOT gate (2.47) many times during a computation, the significant loss
of entanglement of the output state after a single C-NOT operation makes impossible
an effective quantum computation with input mixed states and with basis dependent
transformations. Moreover, the computation with pseudo-pure states is not possible
at all for the input states with the purity ε < 0.414, since the concurrence for the
output two-qubit state from the C-NOT gate vanishes.

A completely different situation appear, if we apply state independent C-NOT
transformation (2.57) to input pseudo-pure states. As we have proven in section
2.2.3, efficiency of this state independent transformation is completely defined by the
efficiency of the corresponding cloning transformation. Each copy from the cloning
transformation is in pseudo-pure state (2.33), if the input states are pure. It is easy
to check that for input mixed states (2.62), the copies are also in pseudo-pure states
(2.33) but with the shrinking factor ε η(1, 2). This implies that applying the state
independent transformations to initially mixed states is equivalent to the shrinking of
the Bloch sphere representing these states by factor η(1, 2). The shrinking, moreover,
does not depend on the initial purity ε of the input states. This indifference in
action with regard to the purity of the input mixed states is the advantage of state
independent transformations in comparison to state dependent transformations.

Unfortunately, it is not possible to use the state independent C-NOT transfor-
mation (2.57) in realistic quantum computation. The reason for that is significant
shrinking of the Bloch sphere representing the input states and, as consequence, low
input-output fidelity F = 1/2 +

√
1/8 of this transformation. There is, however, a
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Figure 2.4: Fidelity of the state independent Toffoli operation (2.64) as a function of the
number N of control qubits.

native way to improve the fidelity of the state independent C-NOT transformation.
The approximate transformation (2.57) includes one control and one target qubit and
is based on the equatorial 1 → 2 cloning transformation. In classical information
processing there is a transformation, so-called Toffoli gate, that includes a few con-
trol qubits and just one target qubit [3]. By analogy with the classical Toffoli gate,
we propose the quantum state independent Toffoli operation to have the following
structure

|ψ〉⊗N
c ⊗ |χ〉t ⊗ |A〉d −→ |ψ〉⊗N

c ⊗ |f(ψ, χ)〉t ⊗ |B〉d . (2.64)

This operation provides a specific transformation |f(ψ, χ)〉t = U(ψ) |χ〉t on a single
target qubit in the presence of N control qubits. This transformation is a particular
case of the Controlled-U transformation (2.70) considered in section 2.2.3. Therefore,
the fidelity between the idealized and actual outputs of such state independent Toffoli
operation is given by F e

N→N+1 = [1 + η(N,N + 1)] /2, where η(N, N +1) is defined
by Eq. (2.34). This fidelity growth with number of control qubits and achieves the
unit asymptotically as it is displayed in Fig.2.4.

Up to now, we have not pay attention to the fact, that the state independent C-
NOT (2.57) and Toffoli (2.64) transformations are constructed to be optimal for real
input qubit states and, by implication, for pseudo-pure states (2.62) with real states
|ψ〉 as a part. This restriction is not, however, crucial. First of all, it is possible to de-
fine the state independent C-NOT and Toffoli transformations for arbitrary input pure
or mixed states following the procedure in section 2.2.2. Second, in many quantum
algorithms, the utilization of real states is already sufficient to achieve computational
advantages over classical computing [3].

Moreover, the construction of the multiqubit state independent transformations
for real input qubit states provides us with a constructive way to improve further the
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input-output fidelities of these transformations. As we have already see in section
2.1.2 by examples of universal, equatorial and meridional QCM’s, the optimal fidelity
of a cloning transformation increases for a small (in geometrical sense) set of input
states. It is possible, therefore, to adopt the state independent two-qubit C-NOT and
multiqubit Toffoli transformations for input states from a small circle on the Bloch
sphere that is formed by a plane that crosses the sphere away from its center. It is
known that for input states from a small circle, a much higher fidelity of the cloning
transformation can be achieved in comparison to input states from the main circle
[101].

Although during the realization of the single Toffoli transformation there is a loss
of information 1−F , it is always possible (by adding control qubits and/or by making
a proper choice of set of input qubits) to make this loss 1−F less then a given value
δ. In a particular algorithm, the overall fidelity between the ideal output and the
actual read-out of the algorithm can be estimated as F ζ , where F is the fidelity of
a single N-qubit Toffoli transformation and ζ is the average number of the Toffoli
transformations acting on an input qubit.

In fact, our suggestion to use basis independent transformations to perform quan-
tum computation opens more questions than gives answers. The most important
question to be answered: ‘what is the role of entanglement in implementation of the
presented basis independent operations?’ So far we are unable to answer this ques-
tion, since the role of entanglement is not clear in the cloning process in general. The
presence of entanglement in the cloning process is widely confirmed [46]. For exam-
ple, one may check that the copies from the universal QCM (2.24) are entangled with
concurrence C = 1/3. From the other hand, It is also known that no entanglement
is required for optimal cloning in the limit of large number of identical inputs [46].

Of course, the final decision on usefulness of the suggested implementation of
state independent transformations in quantum computing can be done only after a
detailed analysis of the efficiency of particular quantum algorithms realized with these
transformations. At the moment the suggested implementation of basis independent
transformations in quantum computing should be considered just as an alternative
way of thinking about quantum computing with initially mixed states that, hopefully,
may be useful in the development of new algorithms and in future experiments.

2.3 State and fidelity estimation

Any quantum information processing, be it cloning, basis dependent or basis indepen-
dent unitary or non-unitary transformation, ends up with a measurement, the process
that allows us to access the result of the performed on the quantum system actions.
Although, the theory of quantum measurement has been known from the early days
of quantum mechanics, recent experiments and achievements induced discussions of
new earlier untouched problems such as state estimation [117], state discrimination
[118, 119] and state comparison [120]. All these problems lie in the very foundation
of quantum mechanics and, by implication, whole quantum information theory.

In the state estimation problem, we are given a finite ensemble of N independent
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identical quantum systems initially prepared in some pure or mixed state. Our task
is to find a measurement that provides us with the best possible estimation of the
unknown state. Of course, having an unlimited supply of identical particles, we
can estimate the state of interest with an arbitrary precision. In practice, however,
only finite and usually small ensembles of identically prepared quantum systems are
available. This leads to the problem of the optimal state estimation with limited
physical resources.

The first profound result concerning the state estimation problem was obtained
by Massar and Popescu [43], who showed that optimal measurement procedures
must necessarily view the ensemble of particles as a single composite system rather
than as a sum of its components. Soon after, a universal algorithm to construct an
optimal measurement for state estimation from a finite ensemble of pure states was
suggested by Derka et al. [45]. In the line of this algorithm a positive operator valued
measurement (POVM), which is characterized by a set of orthogonal projectors, need
to be performed on the composite system of all N particles.

Let us display explicitly the optimal POVM for the state estimation of a pure
qubit state |ψ〉 being given N copies of this state. Let us also focus on the case when
the state |ψ〉 is known to belong to the equator of the Bloch sphere. Later it will
become clear why this particular example is important for our discussion. Since the
state of the N -qubit system always remains within the totally symmetric subspace
of H⊗N

2 where H2 is the two-dimensional qubit state space, the dimensionality of
the space in which the POVM need to be defined is N + 1. If |n〉 , n = 0, ..., N is
an orthonormal basis in this N + 1-dimensional space, the optimal POVM for the
state estimation of the equatorial qubit is given by the set of k = 1, ..., N orthogonal
projectors Pk = |Ψk〉 〈Ψk| where

|Ψk〉 =
1√

N + 1

N∑
n=0

ei 2π
N+1

k n |n〉 . (2.65)

A convenient value that characterize the efficiency of the measurement procedure
is the mean fidelity between the original and the estimated states. For an ensemble
of N pure equatorial qubit states, the POVM defined through Eq. (2.65) is shown
[45] to maximize the mean fidelity between the original equatorial state |ψ〉 and the
reconstructed state |ψ′〉. The maximal mean fidelity is given by

f(|ψa〉 , |ψ′a〉) =
1

2
+

1

2N+1

N−1∑
i=0

√
CN

i CN
i+1 , (2.66)

where CN
i and CN

i+1 denote the binomial coefficients.
State estimation of an equatorial qubit state from a finite number of copies is a

practically important task. Equatorial qubit states may represent, for instance, polar-
ization states of photons. Therefore, any protocol for quantum communication and
computation based on implementation of photons requires the optimal measurement
procedure that is given by the optimal state estimation of equatorial qubits.
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We may also make a step beyond simple state estimation and consider a more
sophisticated problem of fidelity estimation. Suppose, we are given two finite en-
sembles of unknown equatorial qubit states. Each ensemble, moreover, contains N
separable particles initially prepared in pure states |ψa〉 and |ψb〉. As we mentioned
before, a pure equatorial qubit state can be parameterized with a single parameter as
(2.10) and can be visualized as a point lying on a big circle which is formed by the
intersection of the Bloch sphere in Fig. 2.1 with x − y plane. We may ask what is
the best strategy to estimate the fidelity

Fa,b ≡ | 〈ψa | ψb〉 |2 =
1

4
|1 + ei(φb−φa)|2 (2.67)

between the finite ensembles of equatorial qubit states |ψa〉 and |ψb〉?
Apart of academic interest the fidelity estimation problem may be relevant in

implementation of schemes for quantum communication with linearly polarized pho-
tons and for linear optics quantum computation [20]. For example, we are given with
a finite ensemble of 2N identical linearly polarized photons in some quantum state
|ψa〉. A half of the photons from the ensemble are subjected independently to some
unitary evolution so that the outputs are in the state |ψb〉. We like to know the effect
(2.67) of the unitary evolution by comparing the phases of the states |ψa〉 and |ψb〉.

The simplest (measurement-based) strategy to estimate the fidelity between the
ensembles of states |ψa〉 and |ψb〉 is to perform state estimation of each of these
states independently and compute the fidelity (2.67) between the estimated states
|ψ′a〉 and |ψ′b〉. Following this strategy, the maximal mean fidelity between each of the
original equatorial states |ψi〉 and the corresponding reconstructed states |ψ′i〉 where
i = {a, b} is given by (2.66). Since the states of interest are estimated independently,

the probability to reconstruct fidelity (2.67) correctly is given by f
2
(|ψa〉 , |ψ′a〉) and

displayed in Fig. 2.5 by dots. Here and later we use term “probability” in order to
avoid any confusion. This term is used in the sense of mean fidelity between estimated
and actual values of (2.67).

An alternative (cloning-based) strategy for the fidelity estimation can be viewed
to include two stages. At the first stage we provide infinite many copies from available
replicas of the unknown states |ψa〉 and |ψb〉. This task can be realized with equatorial
N −→∞ QCM [102]. Each copy from this QCM is given by the mixed state

ρout
k = η(N,∞) |ψk〉 〈ψk|+ 1

2
[1− η(N,∞)] I , (2.68)

where the shrinking factor η(N, M) is defined in Eq. (2.34). Having two infinite
ensembles of states ρout

a and ρout
b we can perform measurements in some chosen

basis and estimate these states by computing statistical averages. The measure-
ment procedure gives the second stage of the fidelity estimation. Knowing the es-
timated states we can calculate the fidelity (2.67). In the line of this strategy, the
fidelity between each of the original states |ψk〉 and their estimations ρout

k is given
by Fe = 〈ψk|ρout

k | ψk〉 = [1 + η(N,∞)] /2. Therefore, the probability to reconstruct
the fidelity (2.67) correctly equals F 2

e .
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Figure 2.5: The probabilities to reconstruct fidelity (2.67) by the first measurement-based
strategy (dots) and the third improved unified strategy (squares).

Surprisingly enough, the two discussed strategies for the fidelity estimation are

equivalent in the sense that the probabilities f
2
(|ψa〉 , |ψ′a〉) and F 2

e are equal. This
demonstrates the fundamental link between quantum cloning and state estimation
established by Bae and Acin [121] who showed that asymptotic quantum cloning is
equivalent to the state estimation.

The two strategies above are based on independent estimation of quantum states
and computation of the fidelity using the estimated states. However, to estimate the
fidelity (2.67) we do not need to know phases φa and φb of the unknown states, rather,
the difference between them. Based on this simple observation we now introduce the
third two-stage strategy for the fidelity estimation which unifies previous two strategies
in some sense. At the first stage we take a pair of qubits |ψ(φa)〉 and |ψ(φb)〉 from
different ensembles and perform a unitary transformation

|ψ(φa)〉 |ψ(φb)〉 |A〉 −→ |ψ(φa)〉 |ψ(φb − φa)〉 |Aψ〉 (2.69)

on these unknown input qubits. The matter of the first stage is to obtain a qubit
in the state |ψ(φb − φa)〉 at the output of this transformation. At the second stage,
the state estimation of the state |ψ(φb − φa)〉 is to be performed what allows us
eventually to access the fidelity (2.67).

Of course, the transformation (2.69) can not be performed exactly on unknown
quantum states due to the general impossibility theorem. However, we have al-
ready constructed the optimal approximation for this transformation — the state
independent C-NOT transformation (2.57)1. As we know, the output states of the

1Although the state independent C-NOT transformation in section 2.2.2 was originally con-
structed for real qubit states, it remains optimal for input states taken from an arbitrary one-
dimensional subspace of the two-dimensional qubit state space. This follows from the symmetry of
the Bloch sphere. The equatorial qubits is just a particular choice of the one-dimensional subspace.
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C-NOT transformation are in the mixed states of the form (2.68) with η(1, 2) and
|ψk〉 = {|ψ(φa)〉 , |ψ(φb − φa)〉}. The fidelity between the actual output states and
the idealized outputs of the transformation (2.57) equals FC−NOT = 1/2 + 1/

√
8.

Coming back to the original problem of the fidelity estimation and repeating
the C-NOT transformation N times on available copies of the states |ψ(φa)〉 and
|ψ(φb)〉 we have an ensemble of N particles in the mixed state (2.68) with η(1, 2)
and |ψk〉 ≡ |ψ(φb − φa)〉 at the output. Having this ensemble we can start the second
stage – the state estimation. Here we note that, in general, state estimation of mixed
states with unknown shrinking factor and phase require construction of a specific
POVM [122]. However, in our case the shrinking factor is known and, therefore,
state estimation of the mixed state reduces to the estimation of the phase of the
pure state |ψ(φb − φa)〉. As we discussed earlier, this task can be accomplished with
the POVM (2.65). Thus the probability to reconstruct fidelity (2.67) is given by
f(|ψ〉 , |ψ′〉)×FC−NOT . This probability is better than the probability to reconstruct
fidelity by independent state estimation only for ensembles consisting of single particle.
For ensembles of several particles the first (measurement-based) strategy becomes
more efficient.

The reason for the very limited advantage of the third (unified) strategy over the
measurement-based strategy is clear: we applied the universal transformation (2.69)
only on pairs of qubits from different ensembles. An improved unified strategy is to
apply a more general controlled unitary transformation to all states in two ensembles
at the first stage, i.e.

|ψ(φa)〉⊗N |ψ(φb)〉⊗N |A〉 −→ |ψ(φa)〉⊗N |ψ(φb − φb)〉⊗N |Aψ〉 . (2.70)

The optimal approximation for this transformation has been already constructed in
section 2.2.3. By our construction, the approximate transformation has similar struc-
ture to N −→ 2N equatorial QCM. The output states of the transformation (2.70)
are in the mixed states of the form (2.68) with η(N, 2N). The fidelity between the ac-
tual output states and the idealized outputs is given by F gen

C−NOT = [1 + η(N, 2N)] /2.
Coming to the second stage of the fidelity estimation, i.e. performing the state es-
timation on the ensemble of N output qubits ρout(φb − φa) with POVM (2.36), we
obtain that the probability to reconstruct fidelity (2.67) equals f(|ψ〉 , |ψ′〉)×F gen

C−NOT .
As displayed in Fig. 2.5, this probability always superior the probability of the fidelity
reconstruction by the measurement-based strategy. Therefore, the third improved
unified strategy for the fidelity estimation is the best among the three.

At the beginning of the discussion of the fidelity estimation problem we assumed
that both ensembles contain equal number of particles in separable and pure states.
In fact, the first assumption can be easily remover. It is easy to define the three
strategy for two ensembles with unequal number of particles N and K. By analogy
with transformation (2.70), a generalized N −→ N+K transformation can be defined
similar to Eq. (2.70). We checked that the third strategy remains the best among
the three in the case of unequal number of particles in the ensembles.

However, the other two assumptions, namely that the initial states in the ensem-
bles are separable and pure, are indeed crucial for present discussion. Being given two
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ensembles of correlated qubits or qubits in mixed states, one should accordingly revise
all three strategies. For example, without any knowledge about the shrinking factor
of given mixed states, one should use an optimal set of POVM for state estimation
of unknown mixed states as it was derived by Bagan et al. [122]. Moreover, in order
to apply the third strategy on two ensembles of correlated qubits or qubits in mixed
states one should find an optimal approximation for the transformation (2.70) for
these ensembles. It remains an open problem for us whether the third strategy is still
the best in the cases of two finite ensembles of unknown equatorial correlated qubits
or qubits in mixed states.

2.4 Results and discussion

In this chapter, we analyzed the fundamental features of optimal quantum information
processing and suggested several optimal quantum transformations. In particular, un-
like the well-known universal [94] and equatorial [102] quantum cloning, we presented
a QCM that provides high-fidelity copies for all states from a selected meridian (i.e.
half-circle) of the Bloch sphere. This (so-called) meridional QCM was constructed to
provide hight-fidelity copies with 0.95 ≥ F ≥ 0.90 for all states along the Eastern
meridian. Although this QCM provides high-fidelity copies for the Eastern meridian,
it can be applied with little adaptations also to other meridians. All what is needed
to follow the optimization procedures as described, in section 2.1.2. In addition, the
suggested QCM was applied to analyze a possible eavesdropping attack in the data
transmission between Alice and Bob, within Bennett’s B92 QKD protocol [32], in sec-
tion 2.1.3. From this analysis, it was shown that Eve, the eavesdropper, can obtain
more information from the meridional than from the universal or equatorial QCM’s.

We also defined and constructed the optimal approximation for state independent
C-NOT transformation (2.57) for two unknown input qubits taken form the main circle
of the Bloch sphere, in section 2.2.2. The C-NOT transformation, moreover, was
shown to have similar structure to equatorial QCM. Using obtained analogy between
this state independent controlled unitary transformation and cloning, we conjectured
in section 2.2.3, that the efficiency of an arbitrary N → N + K controlled unitary
transformation is defined by the efficiency of the corresponding optimal cloning.

In section 2.2.4, we suggested an implementation of the derived state independent
transformations in quantum computing. In spite of the approximate character of these
transformations, we argued that a quantum circuit constructed from state independent
transformations can be efficiently used for quantum computation when initially mixed
qubit states are available. We also discussed how the efficiency of such a quantum
circuit can be estimated and how this efficiency can be improved by increasing the
number of qubits involved in a state independent transformation and by decreasing (in
geometric sense) the set of input states. However, we did not analyze the efficiency
of quantum circuits constructed from basis independent transformations for particular
quantum algorithms. This analysis is necessarily to be made in the future to conclude
on usefulness of the suggested implementation.

Finally, we briefly discussed the state and the fidelity estimation problems, in
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section 2.3. While for the state estimation we just called existing results, we suggested
and analyzed the three possible strategies for the fidelity estimation between two finite
ensembles of unknown pure equatorial qubit states. We showed that the best strategy
for the fidelity estimation includes an optimal state independent transformation (2.70)
of all qubits and the state estimation of the output of this transformation by the
optimal POVM (2.65).

We also would like to admit that many physical realizations of QCM’s has been
demonstrated recently. An optical implementation of the universal 1 → 2 QCM
(2.24) for an arbitrary input qubit state based on parametric down-conversion has
been demonstrated to have fidelity 0.810± 0.008 [123] which is in a good agreement
with the theoretical prediction 5/6 = 0.833. Another physical realization of the
universal QCM was achieved by using optical fibers doped with erbium ions. The
universal cloning transformation based on this technique was shown to have fidelity
F ≈ 0.82 which is again in good agreement with the theoretical prediction [46].
Also, several realistic theoretical schemes for the physical realization of a QCM on
atoms in a cavity have been recently proposed [46]. However, to our knowledge no
experimental results are available at the moment. Also, some physical realizations of
universal and equatorial 1 → N QCMs where N = 2, 3... has been already reported.

Apart of the optimal cloning transformations, a single-qubit state independent
transformation — universal NOT operation (2.43) — has been experimentally demon-
strated with an optical setup to have fidelity 0.630± 0.008 which is in a good agree-
ment with the theoretical prediction 2/3 ≈ 0.666 [123]. However, it is worth noticing
that while most of efforts has been devoted to physical realizations of 1 → N QCMs
where N = 2, 3..., no attention has been paid to realization of universal and equa-
torial N → N + K QCMs. Therefore, it is hard to judge whether such cloning
machines and corresponding optimal multiqubit state independent transformations
can be efficiently realized in practice.

On the background of the experimental achievements in realization of QCM’s,
we like to mention recent progress in realization of standard state dependent C-NOT
transformation (2.47) which is considered to be the necessary element to construct a
quantum circuit for quantum computation. Several experimental realizations of this
transformation using linear optical elements has been suggested [20]. Up to now,
however, the best achieved C-NOT transformation (2.47) has been reported to have
an average fidelity F = 0.82±0.01 between the output and the ideal output, which is
indeed far from the theoretically predicted unit fidelity [26]. Significant progress has
been also achieved in the realization of the C-NOT transformation (2.47) with trapped
ions. To our knowledge the best realization of the C-NOT transformation is to have
an average fidelity F = 0.940± 0.004 between the output and the ideal output [26].
Although our suggested state independent C-NOT transformation (2.57) as well as
the multiqubit controlled unitary transformation (2.70) allow to perform the required
operations only approximately, the efficiency of their experimental realizations may
exceed the achieved efficiencies of the state dependent transformations.
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Chapter2. Optimal state independent quantum transformations
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Outlook

This thesis aimed to extend the existing knowledge about entanglement dynamics of
multiparticle finite-dimensional quantum systems and optimal ways of manipulation
of information encoded in states of such systems.

In the first chapter of our work, we recalled first how entanglement can be quan-
tified with the help of such entanglement measures as the convex roof for concurrence
and the lower bound for concurrence. Then, we applied these measures to analyze
entanglement dynamics of three-qubit systems subjected to non-unitary evolution. In
this analysis, in more details, we used the exact expressions for the three-qubit mixed
state density matrices obtained from analytical solutions of the master equation. We
found that the accuracy of the lower bound approximation with regard to the convex
roof depends on the rank of the given mixed state density matrix. For density matrices
with rank no higher than four, the lower bound is found to coincide with the convex
roof. By testing randomly generated density matrices, moreover, we checked that
this statement remains true for all (verified) density matrices. For density matrices
with higher rank, the lower bound was found to vanish just after finite time being
unable to describe long time entanglement evolution of the mixed state.

Knowing how the accuracy of the lower bound depends on the rank of the given
state, we considered another approach for describing the entanglement dynamics of a
three-qubit quantum system. We proposed an evolution equation for quantum entan-
glement of multiqubit systems which manifests that the entanglement dynamics of
an arbitrary state of a three-qubit system, when one or several of its qubits undergoes
the action of an arbitrary noisy environment, is subordinated to the dynamics of one
of the maximally entangled states of three qubits. Moreover, we verified this result
by analyzing three examples of the entanglement dynamics of a three-qubit system
which was deduced from the suggested evolution equation.

The results of the first chapter were mainly obtained for a particular case of three
qubits. However, the convex roof and the lower bound for concurrence can be easily
defined for multiqubit systems with more than three particles as well as for multiqudit
systems. Following to the same method of analysis as we used in section 1.3, one
may establish how the accuracy of the lower bound approximation depends on the
parameters of a given composite state and, hereinafter, construct evolution equa-
tions for quantum entanglement of general multiqudit systems. Therefore, from the
methodological point of view our analysis is not restricted by three qubits.

We also like to admit that during the last years significant progress in generation
of entangled states have been achieved: up to eight ions in a cavity [59] and up to
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six photons [58] can be prepared in entangled states. As the underlying techniques of
quantum control improve continuously, it can be expected that in the nearest future
even larger systems can be entangled. All these experimental achievements certify
actuality of our treatment in the first chapter.

In the second chapter, we discussed how information encoded in states of finite-
dimensional quantum systems can be copied, transformed and read out. Having
started from recalling the fundamental limitations on quantum information processing,
namely the no-cloning and the general impossibility theorems, we presented a theory
of quantum cloning machine (QCM) which has been developed during last 15 years.
Focusing on the particular case of optimal deterministic symmetric and ancilla assisted
QCM, we derived the (meridional) QCM that allows to provide two high-fidelity copies
from a single input qubit, if the state of the input is known to belong to a chosen
restricted set of states. We also analyzed an application of the suggested meridional
QCM in the eavesdropping attack on B92 protocol.

Having discussed optimal copying of quantum states, we considered a general
class of quantum transformations that allow us to perform certain operations on given
inputs independently on particular states of these inputs. In particular, we constructed
two- and multiqubit controlled unitary state independent transformations for qubits
and showed the deep analogy between such quantum transformations and QCMs. This
analogy allowed us to associate efficiencies of state independent transformations with
efficiencies of corresponding optimal cloning machines. Although we focused only on
construction of optimal state independent transformations for qubits, similar methods
as reported in section 2.1, can be applied to construct optimal state independent
transformations for qudits.

We also showed how a circuit for quantum computation can be constructed from
the suggested state independent transformations. While we have not been able to
perform a complete analysis of the efficiency of the suggested implementation of
state independent transformations in quantum computing in the framework of this
thesis, we pointed out several reasons why this implementation may have advantages
compared to the common ways to implement quantum computation. Namely that
the efficiency of a multiqubit state independent transformation decreases linearly (in
contrast to polynomial decrease for basis dependent transformations), if applied to
inial pseudo-pure states. This efficiency, moreover, can be improved by varying the
number of qubits involved in a transformation and/or by appropriate preparation of
the input qubits. In addition, we recalled recent experimental achievements in realiza-
tion of state dependent and state independent transformations which justify (but, of
course, not prove) our conjecture about usefulness of the suggested implementation.

In order to complete at some level our analysis of the fundamental features of
quantum information processing, we considered in addition state and fidelity estima-
tion problems by example of finite ensembles of uncorrelated pure equatorial qubit
states. We suggested and analyzed the best strategy for the fidelity estimation be-
tween two finite ensembles of pure equatorial qubit states which includes a specific
unitary state independent transformation on two ensembles and state estimation of
the output states of this transformation.
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[38] E. Schrödinger, Die gegenwärtige situation in der Quantenmechanik, Die Natur-
wissenschaften 23, 807 (1935). 3

[39] A. Aspect, J. Dalibar and G. Roger, Experimental test of Bell’s inequalities
using time-varying analysers, Phys. Rev. Lett. 49, 1804 (1982). 3

[40] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entangle-
ment, Rev. Mod. Phys. 81, 865 (2009). 3, 8, 13, 16, 35, 36

[41] F. Mintert, A.R.R. Carvalho, M. Kus and A. Buchleitner, Measures and dynam-
ics of entangled states, Phys. Rep. 415, 207 (2005). 3, 13, 16, 18
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