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Zusammenfassung
Chancen und Risiken der fortschrittlichen radiobiologischen

Bestrahlungsplanung in der Protonen– und Kohlenstofftherapie

Die technischen Möglichkeiten der Strahlentherapie mit Teilchen sind nach mehr als fünfzig
Jahren Erfahrung sehr weit fortgeschritten. Für die Strahlenbiologie gilt dies nur einge-
schränkt. Dosisverschreibung und die Berechnung des biologischen Effekts sind immer-
noch mit großen Fehlern behaftet. Das Ziel dieser Arbeit ist es, die Möglichkeiten aber
auch die Grenzen und Risiken der Teilchentherapie besser zu verstehen. Im ersten Teil
der Arbeit wurde eine existierende biologische Bestrahlungsplanung für Kohlenstoffionen
und Protonen untersucht und erweitert. Dabei verglichen wir die Anwendungen von si-
multanen und sequentiellen Kohlenstoffboostbestrahlungen, den Einfluss von konstanter
und variabler relativer biologischer Wirksamkeit in der Protonentherapie und die Robust-
heit von “Worst Case” optimierten und konventionellen Bestrahlungsplänen. Der zweite
Teil der Arbeit widmet sich der der Verbesserung radiobiologischer Modelle. Hierzu ent-
wickelten wir ein analytisches Modell, um den linearen Energietransfer von Kohlenstoff-
fragmenten zu berechnen, stellten eine Methode vor, die den Einfluss von Sauerstoff auf
das Zellüberleben in die Bestrahlungsplanung einbindet, und erweiterten das mechanis-
tische “Repair–Misrepair–Fixation” Modell, um den biologischen Effekt von realistischen
Protonen- und Kohlenstoffionenstrahlen besser vorhersagen zu können. Abschließend stel-
len wir fest, dass entscheidende Fortschritte in der Strahlenbiologie weitere langfristige und
systematische Studien voraussetzen. Kurzfristig sollte der Schwerpunkt daher auf den Ein-
satz ausgeklügelter Optimierungsroutinen gelegt werden.

Abstract
Potentials and Risks of Advanced Radiobiological Treatment Planning for

Proton and Carbon Ion Therapy

After fifty years of particle therapy the technical capabilities are far advanced. Neverthe-
less, radiation biology is still poorly understood. Dose prescription and biological effect
calculation are subject to large errors. It is the aim of this work to give a better understand-
ing of the benefits but also the limitations and risks of particle therapy. In the first part
of this thesis we studied and extended an existing biological treatment planning method
for protons and carbon ions. We compared the simultaneous and sequential application of
carbon ion boosts, the influence of constant and variable relative biological effectiveness
models in proton therapy, and the robustness of worst case and conventionally optimized
treatment plans. The second part of this thesis focuses on improving radiobiological mod-
els. We developed an analytical model to calculate the linear energy transfer of carbon ion
fragments, presented a method to incorporate oxygen effects into treatment planning, and
extended the mechanistic repair–misrepair–fixation model to predict the biological effect
of real proton and carbon ion treatment plans. In conclusion, we believe that significant
advances in radiation biology will require more long term experience from systematic stud-
ies where human influence on plan quality is minimized. Prompt improvements could be
achieved by drastically extending the use of advanced optimization algorithms.
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Chapter 1

Introduction

In 1979 Chen et al. introduced the first computer aided treatment planning system (TPS)

for heavy ion therapy. The authors motivate the TPS by stating that (Chen et al. 1979)

“In order to test the value of this new modality, the technical problems of dose

delivery must be adequately understood and solved.”

At that time patients had already been treated at Berkeley for more than two decades with

helium and for nearly five years with heavier ions∗. More than thirty years later, in March

2010, a total of nearly 80,000 patients had been treated with a broad variety of particles.

Have the technical problems been understood and solved? We can certainly say that most

if not all of the technical problems have been understood. Solutions have been developed

and are still frequently revised and improved. The correct translation of the Hounsfield

units into water equivalent ranges, for example, is a key point of the article by Chen et al.

(1979). The very same issue is still investigated frequently today (Schaffner and Pedroni

1998, Jäkel 2006, Lühr et al. 2011, to name just a few). Which leaves no doubt that the

nature of the problem is understood. And where problems cannot be resolved completely,

novel optimization strategies have been designed that optimize an ideal situation while at

the same time minimize the impact of known uncertainties. If you compare the sophistica-

tion of today’s treatment facilities and fast inverse TPS with their predecessors at Berkeley

it is justified to assume, that the technical problems of dose delivery are well understood.

Now we just need to know how much dose we want delivered.

The designers of this first particle therapy TPS already knew that dose by itself is an

insufficient measure to quantify whatever happens in the irradiated tissue. Consequently,

hardcopies of the treatment plans that their TPS created did not display the dose but the

biological effect. What the biological effect is and how it is calculated is not explained in

∗For an overview of particle treatment centers see the PTCOG website.
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1. Introduction

the paper and the sole listed reference was not available to us. But whatever is proposed

in the cited abstract, a glance through the last three decades of publications on the radi-

ation biology of particles shows that it was not a satisfying solution. A vast number of

approaches has been published in the meantime e.g. the repair–misrepair model (Tobias

1985), the lethal–potentially lethal model (Curtis 1986), the local effect model (Scholz et al.

1997), the repair–misrepair–fixation model (Carlson et al. 2008), and the microdosimetric

kinetic model (Sato et al. 2009). Not only the number of different approaches is a strong

indication for the complexity of the problem but also the vast amount of revisions that

exist for some models. In several recent publications the reader might get the impression

that he himself is not the only one who cannot keep up with all the modifications. Though

most of the technical aspects of particle therapy may have been mastered in the last fifty

years, it is safe to say that we still do not exactly know what we are heading for.

The aim of this thesis is to give some directions to a well founded dose prescription. The

first part of this thesis is dedicated to a better understanding of selected aspects of existing

radiobiological models and optimization algorithms. At the core of the biological optimiza-

tion that is used throughout this thesis is an objective function minimizing the biological

effect. It has a fourth order dependence on the particle fluence that may compromise its

convexity. If or under which circumstances the objective function is convex is studied in

section 3.1. When optimizing multiple radiation modalities in the same treatment plan the

optimizer has to be initialized with carefully selected starting weights. Two ways to deter-

mine these are presented in section 3.2. The following chapter is devoted to an application

of existing methods in the clinic. In section 4.1 we compare a constant and a variable

proton relative biological effectiveness (RBE) approach for the treatment planning of real-

istic patient cases to gain insight in the risks and potentials of delivering inhomogeneous

proton target doses. The following section (4.2) proposes a novel approach of combining

photon and carbon ion irradiation by using a simultaneous instead of a sequential carbon

ion boost. Chapter 4 is closed by a section on worst case optimization for the biological

effect. Assuming that our current models predict the biological effect sufficiently accurate

we can overcome the limits of accurate dose delivery by intelligent optimization algorithms.

The optimized biological effect distributions are tested in regard to their invariance towards

range calculation errors or misaligned patients and compared to the conventional margin

concept. One of the major issues of current radiobiological considerations is the lack of

beam quality measures. In chapter 5 we introduce an analytical model to calculate the

LET of primary ions and their fragments. Two potential approaches to improve particle

radiobiology are presented in chapter 6. In section 6.1 we propose an optimization method

that exploits the benefits of carbon ion irradiation for hypoxic tumors. This is followed by

2



1. Introduction

a section on the repair–misrepair–fixation model (RMF). The RMF is a recently developed

mechanistic radiobiology model which we extended from monoenergetic to realistic particle

beams. Finally, the results of this thesis are summarized in chapter 7 where we also hope

to be able to give some additional directions on the way to an improved understanding

and use of particle radiation biology.

This thesis covers a broad spectrum of topics with a similar wide range of basic methods.

There is still a significant overlap among many sections. The core of these methods is in-

troduced in chapter 2 which provides the reader with the specific physical, radiobiological,

and treatment planning methodology required for an understanding of this thesis. Chapter

2 does not give a general introduction into radiotherapy. It is assumed that the reader is

familiar with its basic terminology and ideas. Throughout this work we will follow the

recommendations of the ICRU for prescribing proton doses (ICRU 2007) employing the

terms absorbed dose (unit Gy) for the physical dose and RBE–weighted absorbed dose

(RWD, unit Gy (RBE)) for the product of absorbed dose and RBE.

3





Chapter 2

Radiation Therapy with Protons and

Carbon Ions

2.1 Energy loss of charged particles in matter

An ion – be it a proton or a heavier nucleus – that travels through matter continuously

looses energy in electromagnetic Coulomb interactions with electrons and in hadronic in-

teractions with target nuclei. The respective cross sections depend strongly on the kinetic

energy of the projectile. Therapeutic ions loose most of their energy in electromagnetic

interactions and only this share of the total energy loss will be considered in this section.

The most common hadronic interaction is the fragmentation of the projectile in which most

of its kinetic energy is transferred to the new fragments. The local energy deposition of a

fragmentation event is small compared to that of the electromagnetic interactions and can

be neglected. The fragments themselves cannot be ignored. They travel much further in

matter than the primary ions and deposit dose in regions that no primary ion reaches.

The energy loss is often measured in stopping powers S. It is defined as the change of

kinetic energy E with the depth z

S (z) = −∂E (z)

∂z
(2.1)

The electromagnetic stopping power of ions can be calculated using the Bethe formula

(Bethe 1930, Johns and Cunningham 1983)

S (E) = 0.307
ZT

AT

Z2

β2

[
1

2
ln

2mec
2γ2β2Tmax

I2
− β2

] [
MeV cm2

g

]
(2.2)
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2. Radiation Therapy with Protons and Carbon Ions

where some smaller corrections have been ignored. The kinetic energy of the projectile

(charge Z, mass number A, mass m) is reflected in the velocity

β = v/c =

√
1− (1 + E/mc2)−2 (2.3)

and γ = 1/
√

1− β2. It can maximally transfer the energy Tmax to an electron (mass me).

The target is characterized by the charge ZT, mass number AT and ionization potential

I. The continuous slowing–down–approximation (CSDA) defines the range R of an ion as

the distance after which it has on average lost all of its energy

R (E) =

E∫
0

dE ′
1

S (E ′)
. (2.4)

An analytical integration of (2.2) is not feasible. Instead a simple power law for the range

Rp of protons has been proposed by Wilson (1946)

Rp = kp · Ep. (2.5)

Bortfeld (1997) obtained the parameters kp = 0.0022 MeV−p and p = 1.77 as a best fit of

equation (2.5) to data published in ICRU report 49 (ICRU 1993). This power law can be

extended to heavier ions (charge Z, mass number A) using the relation between range and

stopping power that is defined by the CDSA range.

Rhi =
A

Z2
kp

(
E

A

)p
= khiE

p (2.6)

Here, we defined khi = A1−p/Z2 ·kp and made use of the functional relationship of stopping

power, charge, mass number and kinetic energy

S (E) ∝ Z2

β (E/A)
(2.7)

that can be inferred from equation (2.2). The range of particles of the same energy per

nucleon (E/A) differs by a factor equal to the ratio of A to Z2. A proton (A = 1, Z = 1)

has therefore three times the range of a carbon ion (A = 12, Z = 6) given that E/A is the

same. Most fragments are light remnants of the primary ions (Schardt et al. 1996), hence

the longer range.

The dose D at point x in a material of density ρ is defined as the energy absorbed per unit

6



2.1 Energy loss of charged particles in matter

mass

D (x) =
1

ρ

R0∫
−∞

dz S (z)ϕz (x) (2.8)

where the depth spectrum at x is φz and R0 is the ion’s residual range. The width of

the depth spectrum depends on the accelerator’s energy spectrum and on the straggling

width of the ions. The latter is proportional to ∼ Z−0.25A−0.87 (Bethe and Ashkin 1953).

At any point x the ion beam has an energy spectrum which can be directly translated

into a spectrum of ranges or depths. In a depth spectrum the ion’s energy is replaced by

the depth in which a monoenergetic particle would have the same energy. Equation (2.8)

can be used to calculate the depth–dose curve of ions with the well-known Bragg peak at

the end of their range. The width of the Bragg peak and the peak–to–entrance ratio are

strongly influenced by the straggling width, hence the sharper Bragg peak for carbon ions

than for protons. The fluence at point x is given by

Φ (x) =

R0∫
−∞

dz ϕz (x) . (2.9)

The lateral penumbra of an ion beam depends largely on multiple Coulomb scattering

(Gottschalk et al. 1993). The width of the Gaussian distribution of scattering angles is

proportional to Z/βpc (Highland 1975). Hence, proton dose falls off with a similar slope

as therapeutic photon beams while carbon ions are so heavy that lateral scattering can be

ignored (Krämer et al. 2000).

Stopping power has so far only be defined for monoenergetic particles. In reality, many

particles with different stopping powers interfere at a point x irradiated with one or many

ion beams. If the average stopping power is calculated as a fluence–weighted average it is

referred to as track–averaged linear energy transfer LETt

LETt (x) =

∫ R0

−∞ dz S (z)φz (x)∫ R0

−∞ dz φz (x)
(2.10)

In a radiobiological context it is often necessary to weigh the stopping power with the dose

instead.

LETd (x) =

∫ R0

−∞ dz S2 (z)φz (x)∫ R0

−∞ dz S (z)φz (x)
(2.11)

7



2. Radiation Therapy with Protons and Carbon Ions

The resulting average stopping power is called dose–averaged linear energy transfer LETd.

Radiation Ionization
& 

Excitation

10-18 to 10-10 s

10-6 s

Chemical Repair
10-3 s

Enzymatic Repair
102 s to 104 s

D
N

A
 d

am
ag

e

Correct
Repair

MisrepairCell death
103 s 105 s

Mutations

104 s -105 s

Figure 2.1: From the physical interaction of radiation with a target atom to biological
manifestation of the damage. Adapted from a figure courtesy of Robert D. Stewart. The
symbolic DNA double strand was extracted from Wikimedia.

2.2 Radiobiology of charged particles

Secondary electrons, also called δ–rays, created in Coulomb interactions of primary ions

with target atoms are the primary source of radiobiological damage. Figure 2.1 outlines

how the physical interaction of radiation with a target atom is translated into biological

damage. The primary radiation itself but mostly secondary electrons can excite or ionize

atoms in the DNA. In consequence, chemical bonds break up and bases are damaged or

strands break. Some of the broken bonds will be chemically repaired or fixed by oxygen

radicals. A fixed breakage is lethal as it cannot be repaired by cellular mechanisms anymore.

This illustrates the important role of cellular oxygen pressure in radiation therapy. The

remainder of damages will undergo enzymatic repair. Those cells that were not or cannot

be successfully repaired (misrepaired cells) either die or form mutated cells. In healthy

tissue both dead and mutated cells may lead to clinical responses like inflammation or

cancer. This is of course only simplified picture of radiation biology but it contains the

foundations of the radiobiological considerations presented in this work. For the design of

radiobiological models three observations are especially important:

(i) The initial DNA damage is a function of the radiation quality not the cell type.

(ii) Oxygen effects are independent of the cell type.

(iii) Enzymatic repair processes are cell but not radiation specific.

8
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2.2 Radiobiology of charged particles

In the light of these observations it is questionable if the term relative biological effective-

ness is appropriate. The difference between radiations is the physical damage, not in the

biology that reacts on the damage. It is the physical effectiveness that matters.

In this section four radiobiological models are presented out of which the linear–quadratic

(LQ) model (Kellerer and Rossi 1978) is probably the most prominent. In the LQ–model

cell survival is a function of two parameters and the dose. The other three models are

all used to calculate these parameters. We will present a linear scaling model (LSM) for

protons (Wilkens and Oelfke 2004), the local effect model (LEM) developed for particle

therapy (Scholz et al. 1997), and the repair–misrepair–fixation model (RMF) for photons,

electrons, and ions (Carlson et al. 2008). Each of these models incorporates the separation

of physics and biology to a different degree.

2.2.1 The linear–quadratic model

The LQ–model relates the absorbed dose D to the biological effect E through two cell and

radiation quality specific parameters α and β using

E (D) = αD +GβD2 (2.12)

where G is the time dependent Lea–Catcheside dose protraction factor (Sachs et al. 1997).

We will assume that the single radiation dose is delivered in such a short time that G = 1.

For each combination of radiation quality and tissue an individual set of parameters has to

be determined. The LQ–model itself does not provide any means to readjust parameters

from one situation to another. Hence, they have to be determined experimentally or from

distinctive models such as those presented in the following sections. We have purposely

used the undefined term radiation quality. Which properties of the radiation α and β relate

to eventually depends on the respective model.

The synergistic effects of multiple radiations can be determined through dose–averaged

parameters αD and
√
βD (Zaider and Rossi 1980). For N contributing radiations the

average parameters are given by (Wilkens and Oelfke 2006)

α =
1

D

N∑
i=1

αiDi and
√
β =

1

D

N∑
i=1

√
βiDi (2.13)

where D is the sum of the doses Di deposited by the respective radiation i. For continuous

distributions the sum in equation (2.13) can be transformed to an integral. RBE is defined

as the ratio of a reference radiation dose Dx to a test radiation dose D that produce the

9



2. Radiation Therapy with Protons and Carbon Ions

same biological effect. In the framework of the LQ–model the RBE can be expressed as a

function of the respective parameters and D

RBELQ (αx, βx, α, β,D) =

√
α2

x + 4βxD (α + βD)− αx

2βxD
. (2.14)

In the limit of very small and very large doses the RBE is proportional to α/αx and
√
β/βx,

respectively.

Figure 2.2: The influence of the parameter λ of the LSM on the proton RBE. A value
obtained from in vitro experiments with V79 cells (λ = 0.02 µm/(keV ·Gy)) is compared
with a second value (λ1.1 = 0.008 µm/(keV ·Gy)) reflecting the clinical experienced average
proton RBE of 1.1. The clinically employed proton RBE of 1.1 is also shown. Reference
photon parameters are αx = 0.112 Gy−1 and βx = 0.0298 Gy−2.

10



2.2 Radiobiology of charged particles

2.2.2 The linear scaling model for protons

Wilkens and Oelfke (2004) introduced a phenomenological model to determine LQ–model

parameters for protons. They assumed a linear dependence of αp on the LET

αp = α0 + λ · LETd (2.15)

and kept the second parameter βp constant and equal to the reference parameter βx. From

equation (2.13) follows that for non–monoenergetic particles the dose–averaged LET has

to be used. The parameter α0 was originally set equal to the reference radiation parameter

αx. In a recent publication (Frese et al. 2011a) we introduced a refined definition to

accommodate clinical experience that the RBE of a proton beam is approximately unity in

the entrance region (Paganetti et al. 2002). Now α0 is calibrated to reflect this observation

for an entrance LET of ∼ 0.5 keV/µm:

α0 = αx − λ · 0.5 keV/µm (2.16)

The entrance LET was averaged from three initial beam energies (160 MeV, 200 MeV,

250 MeV) that are frequently used in therapeutic setting (compare table 2.1). If the RBE

is expressed in terms of the LSM model we yield

RBELSM (αx, βx, λ,D, LET ) = − 1

2D

αx

βx

+

[
1

4D2

(
αx

βx

)2

+
1 + λ

αx
(LET − 0.5 keV/µm)

D

αx

βx

+ 1

]1/2

. (2.17)

The linear parameter λ can be obtained in two different ways. Wilkens and Oelfke (2004)

estimated λ by fitting equation (2.15) to α values previously published by other authors.

For V79 cells they yielded λ = 0.02 µm keV−1 Gy−1 with low LET reference parameters

αx = 0.112 Gy−1 and βx = 0.0298 Gy−2 . These α values emanate from in vitro experiments

and predict a mean RBE significantly greater than 1.1 which is observed in vivo (Paganetti

et al. 2002). The mean and maximum RBE across a 1 Gy spread–out Bragg peak (SOBP,

cf. figure 2.2) calculated with the in vitro λ are ∼ 1.24 and 1.74, respectively.

For clinical applications we therefore developed a method to ensure that the mean RBE in

the target is 1.1 (Frese et al. 2011a). A first treatment plan is optimized with a constant

RBE of 1.1. The mean LETd L and dose D of the target volume are extracted and λ is

11



2. Radiation Therapy with Protons and Carbon Ions

adjusted using

λ1.1 =
αx (RBE − 1) + βxD (RBE2 − 1)

L− 0.5 keV/µm
(2.18)

where RBE = 1.1. Equation (2.18) was obtained by solving equation (2.17) for λ. An

example of an RBE obtained with this method is also visualized in figure 2.2. Across the

SOBP D = 0.999 Gy and LET = 2.71 keV/µm which yields λ1.1 = 0.0080 µm keV−1 Gy−1.

The mean and maximum RBE are 1.1 and 1.33, respectively.

2.2.3 The local effect model

The local effect model (LEM) is a track–structure model developed at Gesellschaft für

Schwerionenforschung (GSI, Darmstadt, Germany) to determine RBE–weighted doses for

their heavy ion therapy project (Scholz et al. 1997, Krämer and Scholz 2000). Since its

first presentation it has been repeatedly modified for various reasons (Krämer and Scholz

2006, Elsässer and Scholz 2007, Elsässer et al. 2010) but to the author’s knowledge none

of these modifications has found its application for clinical treatment planning. At the

Heidelberg Ion–Beam Therapy Center (HIT, Heidelberg, Germany) the successor of the

prototype treatment facility at GSI the first LEM version is still in use. The biological

input for carbon ions in our in–house treatment planning system KonRad is also based

on this implementation (Wilkens and Oelfke 2006, Frese 2007). We will therefore limit

ourselves to a brief presentation of this version.

Like the first amorphous track–structure model developed by Butts and Katz (1967) the

LEM is based on the assumption that for equal doses the biological effect of δ-electrons of

ion tracks and of γ–rays is the same. The LEM uses a parameterized dose–response curve

derived from experimental photon data.

E =

αxD + βxD
2 for D ≤ Dt

αxD + βxDt (2D −Dt) for D > Dt

(2.19)

The parameter Dt marks the transition from a quadratic to a linear dose dependence of

the biological effect. The dose around a particle track is assumed to be radially distributed

with a constant dose inside a radius of 10 nm. It is locally scored in a disc shaped

target structure of similar size as a cell nucleus for which the deactivation probability is

determined. This leaves the model with four input parameters: the disc size, the transition

dose, and the two reference LQ parameters. Paganetti and Goitein (2001) found a strong

12



2.2 Radiobiology of charged particles

dependence of the predicted dose–response on Dt, which cannot be obtained properly from

photon measurements as it is in the order of 15 to 30 Gy for many cell lines. Irradiating a

cell dish with such doses will hardly leave any cell alive.

2.2.4 The repair–misrepair–fixation model

The repair–misrepair–fixation (RMF) model developed by Carlson et al. (2008) is the only

mechanistic radiobiological model discussed here. It describes the conversion of intrinsic

double strand breaks (DSB) into lethal cell damage by a non–linear differential equation.

It extends the previously published repair–misrepair (RMR) model (Tobias 1985) and

the lethal–potentially lethal (LPL) model (Curtis 1986) by adding further pathways of

DSB processing. The LQ–model is a time–integrated approximate solution to the RMF

differential equation. Here, we will give an introduction in the basic assumptions of the

RMF model and how it relates to the LQ–model.

The most important physical input parameter for the RMF model is the initial DSB yield.

From experiments it is known that the induction of DSB increases linearly with the dose

up to several 100 Gy (Rothkamm and Löbrich 2003) and their relative number is similar

among all eukaryotes (Carlson 2006, and references therein). This makes the DSB yield

an ideal measure of radiation damage as it depends only on the radiation quality and

not on the irradiated cell. The DSB yield can be determined from experiments or track–

structure simulations. For all calculations performed in this work we used output from the

Monte Carlo damage simulations (MCDS) tool (Semenenko and Stewart 2004, 2006), a fast

Monte Carlo algorithm that reproduces the results of detailed track–structure simulations

and DNA damage measurements.

The following description of the RMF closely follows the original description of the RMF

by Carlson (2006). In figure 2.3 five pathways are shown that potentially convert initial

DSB into lethal cell damage. Each of these pathways is reflected in the differential equation

of the RMF that describes the rate of change of lethal DNA damages per cell dF/dt at

time t by

dF

dt
= (1− fR) ΣḊ (t) + [(1− a)ϕλR + λF + γηε]L (t) + γηL2 (t) (2.20)

The dose rate Ḋ (t) and the average number of DSB per cell L (t) are time dependent

functions. The first term (1− fR) ΣḊ (t) describes the number of intrinsically unrejoinable

DSB where fR is the ratio of potentially rejoinable DSB and Σ is the initial number of

DSB per Gy and cell or giga base pair (Gbp). The probability λR that a single DSB

13
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Figure 2.3: Cellular processing of double strand breaks (DSB) created by one (red arrows)
or two (blue arrows) particle tracks. Figure adapted from Carlson (2006), symbolic DNA
double helix extracted from Wikimedia.

undergoes first–order repair that fails (misrepair) is given by (1− a)ϕλRL (t). Out of the

misrepaired DSB which occur with the probability (1− a) only ϕ are lethal. The third

lethal pathway λFL (t) is extrinsic damage fixation which occurs with the rate λF. This

leaves those pathways that are created by two interacting DSB. The probability of lethal

binary misrepair of two DSB created by the same track is given by γηεL (t) (intra–track

misrepair). In each track ε = z̄ffRΣ potentially rejoinable DSB are formed out of which η

undergo binary misrepair. The probability that the binary misrepair is not stable is given

by γ and the frequency–mean specific energy z̄f (in Gy) for a spherical water target of

diameter d is estimated by (ICRU 1983)

z̄f = 0.204
S

d2
(2.21)
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where S is the stopping power in keV/µm. The last term γηL2 (t) of equation (2.20)

defines the probability that two DSB created by different tracks are binary misrepaired

(inter–track misrepair).

Carlson (2006) shows in detail how in the limit of small doses and dose rates the LQ–model

can be derived from the RMF differential equation using perturbation theory. In terms of

the RMF model the LQ parameters are given by

α = [1− fR (1− θ)] Σ + κz̄f (fRΣ)2 (2.22)

β =
κ

2
(fRΣ)2 (2.23)

where

θ =
(1− a)φλR + λF

λR + λF

and κ =
η

λR + λF

(γ − θ) (2.24)

are the fraction of initial DSB that undergo either lethal first order misrepair and damage

fixation (θ) or pairwise damage interaction (κ). Hence, in the RMF model α and β can

be interpreted as the respective contribution of one–track and two–track events to the

biological effect. For the sake of completeness we would like to note that the Lea–Catcheside

dose protraction factor G can also be derived from the RMF model and is given by

G (λ, T ) =
2

(λT )2

(
e−λT + λT − 1

)
(2.25)

where λ = λR + λF. Testing of the prediction capabilities showed that it best matches

measured data if it is assumed that all DSB are potentially repairable i.e. fR = 1 (Carlson

et al. 2008). This reduces equations (2.22) and (2.23) to

α = θΣ + κz̄fΣ
2 and (2.26)

β =
κ

2
Σ2. (2.27)

The latter assumption has also been applied to predict α and β in figure 2.4. For V79

cells irradiated by three ion species (He–3, C–12 and N–20) parameters were calculated

for a wide range of LET values. For comparison data points measured by Furusawa et al.

(2000) are shown. It appears that the RMF can predict LQ parameters up to an LET

of 100 keV/µm to 150 keV/µm. The downward trends observed for higher LET is not

reproduced. As we did not know the energy spectrum of the experimental particle beams

we assumed that they are monoenergetic. For monoenergetic particles dose– and track–
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2. Radiation Therapy with Protons and Carbon Ions

Figure 2.4: Prediction of LQ parameters for three different ions and a wide range of
LET values by the RMF model based on a single low LET reference point. The data points
shown were extracted from Furusawa et al. (2000).

averaged LET are equal.

So far the derivation of the RMF and the LQ–model as its time integrated solution have

been presented. For a recently submitted manuscript (Frese et al. 2011b) several equations

were derived to predict the biological effect for different radiation modalities. Given a set

of LQ parameters αx, βx for a low LET reference radiation equations (2.26) and (2.27) can

be rearranged to yield θ and κ

θ =
αx − 2βxz̄f,x

Σx

, (2.28)

κ =
2βx

Σ2
x

(2.29)

where Σx and z̄f,x are the DSB yield and frequency–mean specific energy of the reference

radiation, respectively. The latter equations can in turn be inserted into equations (2.26)

and (2.27) to express α and β for a test radiation in terms of the reference radiation

parameters and radiation quality

α =
Σ

Σx

[
αx + 2

βx

Σx

(Σz̄f − Σxz̄f,x)

]
, (2.30)

β =

(
Σ

Σx

)2

βx. (2.31)
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The last equation illustrates how α and β scale with the DSB yield. In a last step we

would now like to calculate the RBE in the RMF model.

RBERMF ((α/β)x , z̄f,x,Σx, z̄f ,Σ, D) =
1

2D
·√[(α

β

)
X

+ 2D
Σ

Σx

]2

+
8D

Σ2
x

(z̄fΣ2 − z̄f,xΣxΣ)−
(
α

β

)
x

 (2.32)

When predicting RBE with the RMF the only tissue specific parameter is the ratio of αx

and βx. The individual parameter values are not reflected. All other parameters are to

the most degree physical parameters and independent of the cell type. In appendix A it is

demonstrated that equation (2.32) fulfills the low and high dose limits.

2.3 Treatment planning for charged particles

The treatment planning system KonRad (Nill et al. 2004, Nill 2002) is the basic tool for

all treatment planning performed in this work. From its first days KonRad was designed

as a multi–modality treatment planning system using the same framework to optimize

treatment plans for photons, protons, electrons, carbon ions and even mixed radiation

modalities. At the core of KonRad is a dose influence matrix usually referred to as Dij

matrix. It contains the dose Dij that doseburst j deposits in voxel i for a unity fluence.

A doseburst is the smallest element of a field whose fluence can be independently varied

i.e. the smallest opening of an MLC for photons or a single Bragg peak for particles. The

dose Di in voxel i irradiated by NDB dosebursts is then given by

Di =

NDB∑
j=1

Dijwj (2.33)

where wj is the weight of doseburst j. The Dij matrix allows the separation of dose

calculation and optimization which makes KonRad very flexible and allows the use of

multiple dose engines and optimization algorithms. Originally KonRad optimized only the

physical dose. It was later extended to optimize the biological effect for protons (Wilkens

and Oelfke 2004) and carbon ions (Wilkens and Oelfke 2006).

We will give here a brief introduction into the basic concepts of KonRad. First, we will

present the dose delivery techniques used in this work followed by a section explaining

how dose and biological parameters are calculated and stored. Finally, the (biological)

optimization concept in KonRad will be outlined.
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2. Radiation Therapy with Protons and Carbon Ions

2.3.1 Dose delivery techniques

In analogy to intensity modulated radiotherapy (IMRT) for photons (Bortfeld 2006) par-

ticle therapy plans with homogeneous dose or RWD distributions can be delivered with

multiple inhomogeneous fields. While the intensity of IMRT fields can only be modulated

laterally to the incident beam direction the finite range of particles allows to modulate

the intensity in three dimensions. This led to the definition of four different modulation

techniques of different complexity (Lomax 1999). Out of the proposed methods 3D IMPT

(figure 2.5) is the only method that exploits the full potential of charged particles. A full

coverage of the targets with Bragg peaks whose intensity can be individually modulated

(Brahme et al. 1989) allows very accurate dose shaping and the highest potential for treat-

ment planning. It is 3D IMPT that is employed in modern particle therapy centers with

magnetic beam scanning systems (Lomax et al. 1996, Schulz-Ertner et al. 2004, Combs

et al. 2010) and it will also be employed throughout this thesis for all treatment plans.

The reader should bear in mind that the high degree of freedom in 3D IMPT comes at the

cost of very inhomogeneous treatment fields. A small shift of the patient or of the relative

position of two or more fields may lead to large changes in the dose distribution.

Figure 2.5: 3D IMPT: A target volume is covered with many Bragg peaks (black dots).
The intensity of each Bragg peak (represented by its diameter) is varied individually such
that the combination of multiple inhomogeneous fields (here two) results in a constant target
dose. The gray lines show which spots belong to the same ray i.e. are in the same lateral
position to the central field axis.

Protons as well as carbon ions were used for different parts of this thesis. For each particle

type a virtual therapy accelerator was defined. Our virtual proton accelerator has three

initial beam energies. The energies and additional beam properties are listed in table 2.1.

Depth dose distributions for every energy were calculated using an analytical model (Bort-

feld 1997). The initial energy spectrum of the beams is assumed to follow a Gaussian
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2.3 Treatment planning for charged particles

Figure 2.6: Depth–dose curve of a proton (solid red) and a carbon ion beam (dashed
blue) of similar residual range (26.0 cm) normalized to the maximum dose. Initial kinetic
energies are 200 MeV and 372 MeV/u for the proton and carbon ion beam, respectively.

distribution with a width of 0.5 % of the initial energy and the source to isocenter dis-

tance is 10 m. Intermediate and generally lower energies can be created using a virtual

continuous range shifter whose thickness KonRad determines internally such that spots

can be place in equidistant positions. The virtual carbon ion accelerator is designed to

reproduce the accelerator used at GSI and can choose from 252 initial energies covering an

energy spectrum from 88.83 MeV/u to 430.10 MeV/u. This corresponds to water equiva-

lent residual ranges of 2.1 cm to 33.6 cm with an approximate spacing of 1 mm in depth.

The longitudinal width of the Bragg peak is widened by a 3 mm ripple filter (Weber and

Kraft 1999). The lateral spot size is not fixed but can be varied continuously with the

magnetic beam scanning system at GSI (Haberer et al. 1993). According to their protocol

the full width at half maximum of the initial beam is selected to be three times the lateral

spot distance (Krämer et al. 2000). An example for a proton and carbon ion depth dose

curve as they are used as input for KonRad is shown in figure figure 2.6. Carbon ions have

a higher peak–to–entrance dose ratio and the dose falls off steeper after the Bragg peak

but there is also dose far behind it. This fragmentation tail with more than 10 % of the

peak dose is not observed for protons.
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2. Radiation Therapy with Protons and Carbon Ions

Table 2.1: The three initial beam Energies Einit, the respective residual range R0 in water,
the beam width at the entrance of the beam in tissue (σinit) and at the peak (σpeak), and the
total stopping power in water (Sinit) when entering water. Stopping powers were extracted
from ICRU (1993) .

Einit R0 σinit σpeak Sinit

160 MeV 17.5 cm 2.5 mm 4.4 mm 0.52 keV/µm
200 MeV 26.0 cm 2.5 mm 5.8 mm 0.45 keV/µm
250 MeV 33.3 cm 2.5 mm 8.0 mm 0.39 keV/µm

2.3.2 Calculating the dose and the biological effect

Once the spots have been set the Dij matrix has to be filled i.e. the dose has to be

calculated. For protons and carbon ions KonRad uses a build in pencil beam algorithm

(Nill et al. 2004). The lateral width of the proton beam is calculated using multiple

Coulomb scattering theory. Carbon ions are so heavy that we assume that the beam does

not widen (cf. section 2.1).

In order to calculate RBE–weighted doses the biological models in KonRad also need input

data. Currently two different models are implemented: one for protons and one for carbon

ions. Depending on the employed biological model additional influence matrices have to be

filled. The biological model for protons is based on the LSM (section 2.2.2) and requires

αx, α0, βx and LETd as input. The latter is a dose and depth dependent value and is

therefore stored in an additional Lij matrix. The LET is calculated with an analytical

model (Wilkens and Oelfke 2003) and assumed to be laterally constant for each pencil

beam (Wilkens and Oelfke 2004). For carbon ions no biological model is implemented

but a flexible biological optimization that requires LQ parameters for a reference radiation

and tabulated α depth curves (Wilkens and Oelfke 2006). The latter have been extracted

from the GSI treatment planning TRiP (Krämer and Scholz 2000) and are therefore based

on the LEM (section 2.2.3). β is assumed to be constant and equal to the reference

parameter. Hence, this model requires an αij matrix. For details on the extraction of α

and interpolation of missing values see Frese (2007).

2.3.3 Optimization of the biological effect

Conventional radiotherapy with photons aims to deliver a homogeneous absorbed dose

across the tumor which, due to the constant radiation quality of photons, is equal to a

homogeneous biological effect. Hence, for particles with variable radiation quality like
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protons and carbon ions not the dose has to be optimized but the RWD or directly the

biological effect. The latter approach was implemented in KonRad by Wilkens and Oelfke

(2004, 2006).

The optimization in KonRad minimizes an objective function F that is defined as the

weighted sum of objective functions for each volume

F (w) =
∑

v∈Targets

(
pU
v F

U
v (w) + pO

v F
O
v (w)

)
+
∑

v∈OAR

pO
v F

O
v (w) (2.34)

Here, w is the vector of weights defining the fluence of each of the dosebursts. The quadratic

objective functions for each target and each organ at risk (OAR) are weighted with indi-

vidual penalty factors pv that can be defined independently for underdosage (superscript

U) and overdosage (superscript O). For photons or protons with a generic RBE of 1.1 the

physical objective functions for volume v are given by (Oelfke and Bortfeld 2001)

FO
v (w) =

∑
i∈v

∣∣Di (w)− D̄O
v

∣∣2
+

(2.35)

FU
v (w) =

∑
i∈v

∣∣D̄U
v −Di (w)

∣∣2
+

(2.36)

where D̄v is the respective prescribed absorbed dose for volume v. The dose Di (w) is

calculated according to equation (2.33) and the |x|+ operator is defined as

|x|+ ≡

0 for x ≤ 0

x for x > 0.
(2.37)

Objective functions for the biological effect follow the same scheme. The quadratic differ-

ence between prescribed effect Ēv and actual effect Ei (w) is minimized using

FO
v (w) =

∑
i∈v

∣∣Ei (w)− ĒO
v

∣∣2
+

(2.38)

FU
v (w) =

∑
i∈v

∣∣ĒU
v − Ei (w)

∣∣2
+

(2.39)

Each doseburst j that deposits a dose Dijwj in voxel i has a different radiation quality and

therefore its specific LQ parameters αij and βij. If more than one doseburst hits a voxel

i the synergistic effects of radiation approach (section 2.2.1) has to be applied. Equation

(2.13) defines averaging methods for both α and
√
β. The total biological effect in voxel i
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is given by (Wilkens and Oelfke 2006)

Ei (w) = αi (w)Di (w) + βi (w)D2
i (w)

=
1

Di

(
N∑
j=1

αijDijwj

)(
N∑
j=1

Dijwj

)
+

1

D2
i

(
N∑
j=1

√
βijDijwj

)2( N∑
j=1

Dijwj

)2

=
N∑
j=1

αijDijwj +

(
N∑
j=1

√
βijDijwj

)2

. (2.40)

The biological objective function is therefore proportional to w4. The implications of

this proportionality on the convexity of the objective function will be studied in the next

chapter.

2.3.4 Treatment plan comparison

The termination criterion of the optimization is the relative change of the objective function

value. The absolute value of the objective function by itself is not a very helpful measure

to judge on the actual plan quality. It depends largely on the optimization algorithm

and the penalty factors. Common means of comparing two treatment plans are visual

comparison of dose distributions and the well known dose–volume histograms (DVH).

Differences between plans can be quantified by dose–volume statistics. Within this work

we employed the following volume specific measures:

• Dmean is the mean dose.

• Dp is the dose that p % of the volume receive.

• Vp is the relative volume that receives p % of the prescribed dose. Alternatively, we

also use Vx Gy or Vx Gy (RBE) to measure the relative volume that receives x Gy or

Gy (RBE).

• The inhomogeneity coefficients (IC1 and IC5) were defined as

IC1 =
D1 −D99

Dmean

and IC5 =
D5 −D95

Dmean

. (2.41)
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Chapter 3

Peculiarities of the (Biological)

Objective Function

In this chapter we are going to study technical issues of the biological optimization as

it is employed in KonRad. The first section will discuss the convexity of the biological

objective function. Convexity is a critical criterion as only convex functions have a single

well defined minimum that can be reached by gradient based optimization methods. The

following section presents two approaches to determine a set of weights to initialize our

optimization. This was necessary as it proved to be difficult for the optimizer to find a

solution for mixed radiation modality approaches.

3.1 Convexity of the quadratic objective function for

the biological effect

A rather technical issue in the design of a TPS is the convergence of the objective function.

An objective function is nothing but a mathematical description of the actual problem i.e. it

is supposed to characterize the quality of treatment plan. Now we can easily define two

different objective functions for the very same task i.e. when optimizing particle treat-

ment plans we can either minimize the difference between prescribed and an actual RWD

per fraction (Krämer and Scholz 2000) or the difference between prescribed and actual

biological effect per fraction (Wilkens and Oelfke 2006). For a single fraction RWD and

biological effect are the same but the complexity of the objective functions is different. In

the LQ–model the RBE (cf. equation (2.14)) and hence the RWD is proportional to the

square root of a second order polynomial while the biological effect (cf. equation (2.12)) is

a second order function of the dose. A common way to minimize the difference between
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a prescribed and an actual value are quadratic objective functions (Oelfke and Bortfeld

2001). This increases the complexity of the objective functions even more not to mention

their derivatives. Apart from the complexity the objective function’s convexity is a crucial

criterion for a good objective function. Only convex functions i.e. functions without multi-

ple local minima have a well defined global minimum that can be retrieved using gradient

based optimization algorithms (Boyd and Vandenberghe 2004).

The convexity of the quadaratic objective function for the biological objective employed in

KonRad will be studied in this section. Two different types of objective functions can be

distinguished in KonRad: those penalizing overdosage and those penalizing underdosage.

In my Diploma thesis (Frese 2007) I already showed that objective functions penalizing

overdosage are generally convex. Convexity of the underdosage objective functions of a

single doseburst is only sustained when the objective function’s domain is restricted. In

this section we will extend the study of the convexity of the underdosage objective function

first to 2 and than on to N dosebursts. Ahead of any specific considerations convexity is

briefly defined and a few relevant criteria to determine convexity are introduced.

3.1.1 Defining and determining convexity

A function f : <n → < is convex if for all x, y ∈ <n and all θ ∈ [0, 1] the inequality

f (θx+ (1− θ) y) ≤ θf (x) + (1− θ) f (y) (3.1)

is fulfilled (Boyd and Vandenberghe 2004). A function f is called strictly convex if the

inequality holds whenever x 6= y and θ ∈ (0, 1). Based on these definitions various theorems

have been developed to identify convex functions and operations that preserve convexity.

For an overview about these theorems see chapter 3 in Boyd and Vandenberghe (2004).

Within this section we are only going to use the second order condition stating that a

function f is convex if and only if its Hessian ∇2f is positive semi–definite i.e.

∇2f (x) ≥ 0⇐⇒ f is convex (3.2)

for all x. If the Hessian is positive definite f is strictly convex. The inversion of the latter

condition is not true (Boyd and Vandenberghe 2004). Once two functions f1, f2 have been

identified as convex it can be shown that the weighted sum f of these is convex if the

weights λ1, λ2 are non–negative.

f = λ1f1 + λ2f2 =⇒ f is convex (3.3)
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3.1.2 The underdosage objective function

In this part we will study the characteristics of the underdosage objective function (2.39).

Following the theorem that the weighted sum of convex functions with non–negative

weights is convex (3.3) we can study the objective function Fi for each voxel indepen-

dently. We restrict our considerations to those cases in which Ei > Ēv such that |x|+ ≡ x.

Hence, the |·|+ operator can be ignored.

Our method of choice to study the convexity of equation (2.39) is the second order criterion

(3.2). Therefore the first and second order derivatives of the objective function have to be

calculated. The first derivative of FU
i with respect to weight wk is

∂FU
i

∂wk
= 2

Ē − N∑
j=1

αijDijwj −

(
N∑
j=1

√
βijDijwj

)2


·

(
−αikDik − 2

(
N∑
j=1

√
βijDijwj

)√
βikDik

)
(3.4)

and the second derivative is

∂2FU
i

∂wkwm
= 2DikDim

√
βik
√
βim

[
αik√
βik

αim√
βim

+ 2

(
αik√
βik

+
αim√
βim

)

·

(
N∑
j=1

√
βijDijwj

)
+ 6

(
N∑
j=1

√
βijDijwj

)2

+ 2
N∑
j=1

αijDijwj − 2Ē

 . (3.5)

In the last step we assumed that βij > 0 which is reasonable for these investigations as

βij = 0 would reduce our objective function to a convex least–square problem. Using

rik = Dik ·
√
βik, sik = αik√

βik
, biw =

∑N
j=1

√
βijDijwj and

c = 6

(
N∑
j=1

√
βijDijwj

)2

+ 2
N∑
j=1

αijDijwj − 2Ē (3.6)

the second derivative can be rewritten to

∂2FU
i

∂wkwm
= 2rikrim (siksim + 2 (sik + sim) biw + c) . (3.7)
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3. Peculiarities of the (Biological) Objective Function

3.1.2.1 Convexity in one dimension

The case of a single doseburst has already been presented elsewhere (Frese 2007). We are

merely repeating the results here to complete the picture. The one dimensional objective

function for underdosage is convex for all absorbed doses di1w1 if the inequality

α2
i1 − 2ĒUβi1 ≥ 0 (3.8)

is fulfilled. Neither αi1 and βi1 nor ĒU are arbitrary. Biological parameters and treatment

constraints are intrinsic variables of the irradiated tissue and the treatment plan. The only

variable that can be influenced is the weight w1 of the doseburst and therefore a lower dose

limit

di1w1,min =
−3αi1 +

√
12βi1EU

v + 3α2
i1

6βi1
(3.9)

has been determined.

3.1.2.2 Convexity in two dimensions

Let us next consider a scenario where two beamlets (N = 2) irradiate a single voxel. The

Hessian H of the underdosage objective function is positive semidefinite and therefore the

objective function convex if and only if all its eigenvalues λ are greater than or equal to 0. A

general expression of the second derivative of equation (2.39) has already been calculated.

The eigenvalues can be determined by solving the characteristic polynomial

|H − λ1| =

∣∣∣∣∣∣∣∣
∂2FU

i

∂w2
1
− λ ∂2FU

i

∂w1∂w2

∂2FU
i

∂w2∂w1

∂2FU
i

∂w2
2
− λ

∣∣∣∣∣∣∣∣ (3.10)

=λ2 − λ
(
∂2FU

i

∂w2
1

+
∂2FU

i

∂w2
2

)
+
∂2FU

i

∂w2
1

∂2FU
i

∂w2
2

−
(

∂2FU
i

∂w1∂w2

)2

(3.11)

=λ2 − 2pλ+ q (3.12)

for its roots in λ

λ1,2 = p±
√
p2 − q. (3.13)
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3.1 Convexity of the biological objective function

We defined the variables p, q as

p = r2
i1

(
s2
i1 + 4si1biw + c

)
+ r2

i2

(
s2
i2 + 4si2biw + c

)
(3.14)

q = 4r2
i1r

2
i2 (si1 − si2)2 (c− 4 (biw)2)

)
. (3.15)

Given that we are only studying combinations of parameters where the underdosage ob-

jective function is non–zero the variable

q = 4Di1Di2

√
βi1
√
βi2

(
αi1√
βi1
− αi2√

βi2

)2

·

( N∑
j=1

√
βijDijwj

)2

+
N∑
j=1

αijDijwj − E

 (3.16)

is negative if we assume that αi1/
√
βi1 6= αi2/

√
βi2. Therefore the value of the square

root in equation (3.13) is always greater than p and whatever value p has one of the two

eigenvalues will always be negative. The Hessian is indefinite. In the unlikely case that

αi1/
√
βi1 = αi2/

√
βi2 the eigenvalues are λ1 = 2p and λ2 = 0 i.e the Hessian would be

positive semidefinite if p > 0. Based on these assumptions we can derive criteria similar

to those for the one dimensional case that preserve convexity in this special case.

3.1.2.3 Convexity in N dimensions

We cannot directly determine whether the Hessian of the objective function is positive

semi–definite and therefore convex. A weaker argument is that a function with positive

definite Hessian is strictly convex. Any positive definite matrix can be decomposed into

a lower triangular matrix using the Cholesky decomposition (Opfer 2001). The iterative

decomposition fails if the matrix is not positive–definite.

Every symmetric positive definite matrix A ∈ RN × RN can be decomposed into a lower

triangular matrix G with

A = GGT . (3.17)

and only positive elements on the diagonal. The elements Aij of A are given by

aij =

j∑
k=1

gikgjk for i ≥ j. (3.18)
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3. Peculiarities of the (Biological) Objective Function

The inverse of equation (3.18) can be defined as an iterative decomposition rule.

gij =


0 for i < j√
aii −

∑i−1
k=1 g

2
ik for i = j

1
gjj

(
aij −

∑j−1
k=1 gikgjk

)
for i > j

(3.19)

Let us apply this approach to the Hessian of the N dimensional underdosage objective

function. The first three elements of the iterative decomposition rule are given by

g11 =

√
∂2FU

i

∂w2
1

. (3.20)

g12 =

(
∂2FU

i

∂w2
1

)−1/2

·
(

∂2FU
i

∂w2∂w1

)
(3.21)

g22 =

√
∂2FU

i

∂w2
2

−
(
∂2FU

i

∂w2
1

)−1

·
(

∂2FU
i

∂w2∂w1

)2

(3.22)

From the one dimensional case we know that there are possible combinations of dose,

prescribed and biological parameters where g11 is real and non-zero. We do know that

the second derivative exists for all values of w in the domain of FU
1 and therefore g12 also

exists. The third non-zero element of the matrix is g22 which can be rearranged to

g22 =

√√√√(∂2FU
i

∂w2
1

)−1

·

[
∂2FU

i

∂w2
2

∂2FU
i

∂w2
1

−
(

∂2FU
i

∂w2∂w1

)2
]

(3.23)

=

√
q

(
∂2FU

i

∂w2
1

)−1

. (3.24)

We assumed that g11 is real and therefore
∂2FU

i

∂w2
1
> 0. In the previous section we already

determined in equation (3.16) that q is always negative if αi1/
√
βi1 6= αi2/

√
βi2. Hence g22

is complex, the Cholesky decomposition fails and the polynomial is not positive definite.

Unfortunately, this does not allow to judge if the objective function is convex as a positive

definite Hessian is not necessary. We could not determine if there is a limited domain for

which convexity is preserved.
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3.1 Convexity of the biological objective function

3.1.3 Discussion and Conclusions

Unfortunately it was not possible to clearly mark a domain for which the biological objec-

tive function is convex in N dimension. The limits derived in one and two dimensions can

be taken as a lower limit. In cases where the optimization does only converge slowly or

not at all it might be helpful to initialize the doseburst weights w with values larger than

a potential solution as the overdosage objective function is always convex. In the following

section two methods will be presented to initialize the weights.
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3. Peculiarities of the (Biological) Objective Function

3.2 Preconditioning spot weights for simultaneous op-

timization of multiple radiation modalities

A major feature of KonRad is the use of the Dij concept that does in principle allow to

combine different radiation modalities in the same treatment plan as dose calculation and

optimization are independent from one another. While the optimization algorithm is the

same for the whole plan an individual dose engine can be selected for each beam. Once the

Dij matrix is calculated optimization is in principle straight forward. In practice it turns

out that the problem is so ill conditioned that it will not converge to a satisfying solution

no matter if we employ physical or biological optimization. For a study presented in the

following chapter we have attempted to biologically optimize treatment plans consisting

of carbon ion and photon fields. Our standard optimization algorithm L–BFGS–B (Boyd

and Vandenberghe 2004) by default initialized with zero starting weights failed to achieve

an acceptable solution before the default termination criterion (5 iterations with less than

0.1 % change of the objective function value) struck. The obtained solution did only use

dose from the carbon ion beams. With the termination criterion turned off the optimizer

eventually started to rise the photon doses but required more than 500 iterations to obtain

an acceptable solution. When studying the problem in more detail the following issues

influencing the convergence could be identified:

• The shape of the depth dose curves is probably the most important influence factor.

While the peak dose of a carbon ion beam will usually be within the target it is most

likely outside the target for a photon beam. Hence, an increase of the weight is on a

first glance always more beneficial for particles than for photons.

• The size and shape of the Dij matrix of each radiation field depends largely on

the radiation modality. Not only is the number of dose bursts per field significantly

different (∼ 1, 000 up to more than 20, 000 for carbon ions vs. several 100 for photons)

but the number of voxels irradiated by each dose burst is smaller for carbon ions than

for photons.

• The biological parameters of the radiation modalities differ significantly. This im-

pacts the value of the gradient (compare equation (3.4)) and also the convexity of the

optimization function in general (cf. section 3.1). Let us briefly review the require-

ments for convexity of the one dimensional objective function where the minimum
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3.2 Preconditioning spot weights

dose dmin in a target voxel irradiated by a single dose burst is given by equation (3.9)

dmin =
−3α +

√
12βĒ + 3α2

6β
. (3.25)

Given a prescribed lower RWD of 1.8 Gy(RBE) per fraction and a target consisting

of chordoma tissue the prescribed effect Ē = 0.342. The smallest parameters will

occur for photon irradiation which is as effective as the reference radiation (Co–

60). A minimal dose preserving convexity in the one dimensional case is therefore

dmin = 0.62 Gy.

None of these three points can be directly influenced by the treatment planner. They are

part of the physical and biological condition of the problem. The low dose limit and the

delayed start of the optimizer lead us to develop two different approaches to ensure a solid

starting solution and improve the convergence speed.

3.2.1 Preoptimization

As a simple, straightforward solution we optimize each of the N fields separately to deliver

1/N of the prescribed dose for one iteration. A single iteration of the L–BFGS–B consists of

up to twenty internal iterations as the optimizer has to determine an appropriate step length

and search direction. The number of internal iterations depends on the available history

of previous iterations that can be used to update the Hessian. N first iterations with no

history can be very time consuming. A big advantage of this approach is its independence

of the radiation modality. If biological optimization is used one has to switch to physical

optimization to preoptimize photon beams. Otherwise the convexity criterion may not be

fulfilled and a single iteration is not sufficient to get appropriate starting weights.

3.2.2 Precalculation

In addition we implemented a heuristic approach where we precalculate the weights for

each doseburst. For the precalculation we compared various methods of different levels of

sophistication e.g. the analytical weight function for Bragg peaks to create a flat SOBP

(Bortfeld and Schlegel 1996) was adapted. Some of these methods resulted in very good

starting solutions but had the disadvantage that individual solutions were required for each

radiation modality. Most of the approaches also required knowledge about the lateral (and

longitudinal) doseburst distance. It turned out that a simple and universal solution was to
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3. Peculiarities of the (Biological) Objective Function

ensure that the mean RWD in all target voxels should be equal to 1/N times the prescribed

RWD Dbiol. A simple function setting appropriate weights wj of dosebursts j that belong

to field b is

wj =
D

N

Nt∑
j∈b

∑
i∈t
Dij

(3.26)

where Nt is the number of voxels i belonging to target volumes t and D is the prescribed

absorbed dose. When combining photon and carbon ions their different effect has to be

considered i.e. the treatment planner does not prescribe an absorbed dose but an RWD.

Photons are assumed to be as effective as the reference radition i.e. the prescribed absorbed

dose is equal to the prescribed RWD. For carbon ions the required absorbed dose depends

on the local particle spectrum which in turn depends on the dose distribution. In our

biological optimization the energy spectrum is reflected by the distribution of αij. As a

rapid approximation we calculate the absorbed dose that yields the prescribed RWD using

the maximum αij of each beam within the target.

D =

√
α2

max + 4β
(
αxDbiol + βxD

2

biol

)
− αmax

2β
with αmax = max

j∈b,i∈t
αij (3.27)

We assumed that β is constant across the target.

Figure 3.1: Photon and carbon ion RWD of a single field using only either preoptimized
(opt.) or precalculated (calc.) doseburst weights. No further optimization was used. An
RWD of 1 Gy (RBE) (dotted black) was prescribed as target dose. The target is outlined
by the dashed black lines.
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3.2 Preconditioning spot weights

3.2.3 Dose distributions of the initial weights

Figure 3.1 displays an RWD profile of a preoptimized and a precalculated treatment field

of either photons and carbon ions. Both methods are able to initialize the problem with

weights close to a potential solution. If any of the approaches reduces the number of

iterations until the problem converges to a satisfying solution has to be determined from

realistic patient cases. The carbon ion RWDs are of very similar shape and average RWD

while the absolute photon doses differ significantly. A significant difference is observed in

the time required for preoptimization (more than 10 seconds) and precalculation (less than

0.1 seconds). We expect these timing differences to increase if we go to clinically relevant

plan sizes. These considerations were employed in section 4.2 where we studied the time

and number of iterations cases of relevant size required to converge.
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Chapter 4

From Bench to Bed: Potential

Clinical Applications of Existing

Radiobiological Models

Radiobiology is a field of ongoing research. It is common knowledge that no understand-

ing has yet been achieved. As long as patients are treated with photons a constant beam

quality can be assumed throughout the patient i.e. dose may be a sufficiently accurate mea-

sure to estimate radiation damage. For particles on the other hand beam quality changes

consistently while particles travel through the patient. Radiobiological considerations are

essential to determine the dose that needs to be delivered to reach the treatment goals.

Notwithstanding our limited knowledge, more than 50,000 patients have been treated with

particles and there is a high demand for the application of biological models in the clinic.

In this chapter we will take a few steps towards the use of biological optimization in the

clinic. For carbon ions it is undisputed that a biological effect optimization is necessary

but for protons clinical standard is the use of a constant RBE. In section 4.1 we compare

the constant RBE to an existing variable proton RBE model to better understand the risks

but also the potential of a variable RBE optimization. Assuming our RBE predictions are

sufficiently accurate we can exploit new methods of treatment plan optimization. One

option is the combination of multiple radiation modalities in the same treatment plan, a

so far mostly unused feature of KonRad. A treatment planning procedure using a simul-

taneous carbon ion boost for a regular photon plan is introduced in section 4.2. A regular

technical issue in treatment planning is the accuracy of the range prediction and the pa-

tient positioning. Treatment plans that are robust against range and setup uncertainties

can be generated using worst case optimization. This concept was extended to biological
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4. From Bench to Bed: Clinical Applications of Radiobiological Models

optimization in section 4.3 and compared to the conventionally used margin concept.

4.1 Variable or constant proton RBE?

In the second chapter the functional relationship between radiation quality and biological

effectiveness was discussed. Currently it is practice in clinical radiotherapy with protons

to ignore the variability of these dependencies and assume a constant RBE of 1.1 as it is

recommended by the ICRU (Paganetti et al. 2002, ICRU 2007). Figure 2.2 shows estimates

of the proton RBE for a simple SOBP. Clearly, the RBE is both under– and overestimated

using a constant RBE of 1.1 by more than 10 % in some regions though its mean across

the SOBP is still 1.1. It can be questioned how much value a single field SOBP has for a

clinical setting were multiple beams overlap and irregular shaped fields are used. We are

therefore going to apply the LSM model (section 2.2.2) to four clinical cases and evaluate

the impact of the variable RBE. This comparison focuses on the differences in RWD that

are observed when a treatment plan optimized with a constant RBE is recalculated with a

variable RBE. The potential risks of using a constant RBE approach with respect to target

volumes and organs at risk (OARs) especially in regard to an underestimated extension

of the bioeffective range (Robertson et al. 1975) are also evaluated. This uncertainty in

variations of RBE values and the positioning of the bioeffective range of protons in the

tissues complicates the assessment of proton treatment plans and their safety for treatment

delivery. Additionally, we will study the influence of the choice of radiosensitivity parame-

ters for the same organ and show that it is feasible to optimize treatment plans biologically

and achieve a similar plan quality as a treatment plan optimized with a constant RBE.

This section has been previously published (Frese et al. 2011a).

4.1.1 Selecting patients, treatment plans, and biological input

parameters

Patient selection and definition of volumes of interest Four patients with nasopha-

ryngeal carcinoma who were treated previously with intensity-modulated photon radiother-

apy at the German Cancer Research Center (DKFZ), Heidelberg, Germany were selected.

These head and neck (HN) tumors are potentially suitable targets for proton therapy as

they require highly conformal dose distributions with steep dose gradients towards near

risk structures. The TNM classifications of the four tumors were were: T1N0M0, T2N2M0,

T3N2M0 and T4N1M0. The original computed tomography (CT) data sets with a slice

thickness of 3 mm were used for target definition and IMPT planning. Based on the clinical
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4.1 Variable or constant proton RBE?

data and pre–therapy diagnostic CT/MR images, the gross tumor volumes of the primary

tumor (GTV–T) and of the nodal metastases (GTV–N) were delineated on each CT slice.

In all cases, an automatic margin of 1.5 cm was added to GTVs in order to create PTVs.

The elective treatment volume (PTV-N) consisted of bilateral cervical lymph node stations

in levels Ib to V. All PTVs were modified wherever they encountered neural tissues or bony

structures without evidence of tumor infiltration. The delineated OARs and the applied

dose/dose–volume constraints are listed in table 4.1.

Table 4.1: Dose and dose–volume constraints for OARs in all plans. TM = temporo-
mandibular. Dmax is the absolute maximal dose in a single voxel.

Volume Dose (Gy (RBE))

Spinal cord Dmax ≤ 50
Brainstem Dmax ≤ 60
Temporal lobes Dmax ≤ 65
TM joints Dmax ≤ 60
Optic chiasm & nerves Dmax ≤ 54
Eyes Dmax ≤ 25
Inner ears Dmean < 45
Mid-external ears Dmean < 40
Larynx Dmean < 30
Trachea/esophagus Dmean < 30
Parotid glands (single gland) Dmean < 26

Dose prescription and treatment planning Dose prescriptions in RWD for all frac-

tions to PTVs of macroscopic tumor (PTV–66) and elective volumes (PTV–54) are 66 Gy

(RBE) and 54 Gy (RBE), respectively, to be delivered in 30 fractions with the simultane-

ous integrated boost technique.

For preparation of all IMPT plans we used KonRad. We used four coplanar beams with

gantry angles of 90◦, 135◦, 225◦, and 270◦ covering the nasopharyngeal cavity and upper

neck and three coplanar beams with gantry angles of 0◦, 135◦, and 225◦ covering the lower

neck. This setup was chosen to avoid range uncertainties originating from the nasal cavities

and unnecessary dose to the shoulder joints.

For each patient, three IMPT plans were prepared. The first treatment plan was physically

optimized (IMPT–PO plans) assuming a constant RBE value of 1.1 in the whole patient

i.e. the RWD is calculated from the absorbed dose by a simple multiplication with 1.1.

In the second step, the IMPT–PO plan was recalculated (IMPT–RE plans) employing a

variable RBE model. Here, the absorbed dose optimized for the IMPT–PO plans was kept
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4. From Bench to Bed: Clinical Applications of Radiobiological Models

constant and only the RWD changed. A comparison of these two plans gives information

about the variations in the RWD distributions purely due to the biological dose calculation.

Finally, IMPT–BO plans were biologically optimized to investigate whether it was possi-

ble to generate treatment plans of at least similar quality as the IMPT–PO plans when

a variable RBE model is applied. The 3D IMPT treatment plans were created using the

virtual proton device introduced in section 2.3.1. Proton spots were placed with a lateral

distance of 5 mm and in a distance of 3 mm along the beam axis.

Plan Comparison For comparison of the treatment plans we used the dose–volume

statistics outlined in section 2.3.4. During the 3D RBE calculation and optimization of

the plans one set of biological parameters was assigned to each defined tissue. Based on

the published data for parotid glands and the spinal cord we used more than one set of

parameters in order to evaluate the variations of RWD distributions within the organs in

the same plans.

In delineation of target volumes and OARs on CT images often two or more structures could

overlap and thereby the same voxel could belong to more than one structure. However,

in the optimization process only one structure with a certain set of parameters could be

assigned to each voxel. Since calculation of dose–volume data for each structure required

inclusion of all voxels within the structure we recalculated RWD distributions for each

structure individually. This means that different biological parameter sets were assigned

to the shared voxels depending on the structure to be evaluated. With this approach the

same voxel could contribute to more than one volume of interest with different RWDs.

In our target definition PTV–66 was embedded in PTV–54. In order to evaluate the

RWD distribution in PTV-54 more accurately with respect to dose homogeneity and dose

gradients we excluded all voxels from PTV–66 in calculation of the DVH and dose–volume

parameters. Overlapping regions with OARs were not excluded from PTV–54.

Deriving Model Parameters In order to calculate RBE variations within the treat-

ment volume, values of tissue specific parameters αx and βx for low–LET reference radiation

modality are required. These parameters were calculated in accordance to Lof et al. (1995)

based on the parameters D50, γ, and αx/βx extracted from the literature for each volume

of interest. Employed parameters can be found in table 4.2. If not stated differently the

values from Schultheiss (Schultheiss 2008) and Eisbruch (Eisbruch et al. 1999) for spinal

cord and parotids were employed, respectively. Non–specific normal tissues were assigned

a constant RBE value of 1.1.

In the LSM two model specific parameters have to be determined for each tissue: α0 and

38



4.1 Variable or constant proton RBE?
T

a
b
le

4
.2

:
B

io
lo

gi
ca

l
pa

ra
m

et
er

s
em

pl
oy

ed
in

th
is

st
u

dy
.
α

0
w

as
ca

lc
u

la
te

d
u

si
n

g
λ

1
.1

=
0.

00
8
µ

m
ke

V
−

1
G

y
−

1
.

T
is

su
e

E
n
d
p

oi
n
t

D
5
0

γ
R

ef
.

α
/β

α
x

β
x

=
β

p
α

0

(G
y
)

(G
y
)

(G
y
−

1
)

(G
y
−

2
)

(G
y
−

1
)

N
as

op
h
.

ca
n
ce

r
T

1
&

T
2

T
u
m

or
co

n
tr

ol
57

.0
2.

7
C

ro
n
q
v
is

t
(1

99
5)

10
0.

11
24

0.
01

12
0.

10
84

N
as

op
h
.

ca
n
ce

r
T

3
&

T
4

T
u
m

or
co

n
tr

ol
70

.5
2.

5
C

ro
n
q
v
is

t
(1

99
5)

10
0.

08
54

0.
00

85
0.

08
14

S
u
b

cl
in

ic
al

d
is

ea
se

T
u
m

or
co

n
tr

ol
27

.0
0.

6
W

it
h
er

s
et

al
.

(1
99

5)
10

0.
05

54
0.

00
55

0.
05

14
B

ra
in

st
em

N
ec

ro
si

s
/

in
fa

rc
ti

on
65

.1
2.

4
C

ro
n
q
v
is

t
(1

99
5)

2
0.

05
32

0.
02

66
0.

04
92

S
p
in

al
co

rd
M

ye
li
ti

s
/

n
ec

ro
si

s
68

.6
1.

9
C

ro
n
q
v
is

t
(1

99
5)

2
0.

04
07

0.
02

03
0.

03
67

S
p
in

al
co

rd
(S

ch
u
lt

h
ei

ss
)

M
ye

lo
p
at

h
y

(c
er

v
ic

al
co

rd
)

69
.4

4.
7

S
ch

u
lt

h
ei

ss
(2

00
8)

0.
87

0.
05

77
0.

06
63

0.
05

37

O
p
ti

c
n
er

ve
s

B
li
n
d
n
es

s
65

.0
2.

3
C

ro
n
q
v
is

t
(1

99
5)

2
0.

05
11

0.
02

56
0.

04
71

C
h
ia

sm
B

li
n
d
n
es

s
65

.0
2.

3
C

ro
n
q
v
is

t
(1

99
5)

2
0.

05
11

0.
02

56
0.

04
71

E
ye

s
B

li
n
d
n
es

s
65

.0
1.

8
C

ro
n
q
v
is

t
(1

99
5)

2
0.

04
07

0.
02

03
0.

03
67

B
ra

in
/

te
m

p
or

al
lo

b
es

N
ec

ro
si

s
/

in
fa

rc
ti

on
60

.0
2.

6
C

ro
n
q
v
is

t
(1

99
5)

2
0.

06
20

0.
03

10
0.

05
80

P
ar

ot
id

s
X

er
os

to
m

ia
46

.0
1.

8
C

ro
n
q
v
is

t
(1

99
5)

3
0.

06
75

0.
02

25
0.

06
35

P
ar

ot
id

s
(E

is
b
ru

ch
)

F
lo

w
ra

ti
o

<
25

%
/1

ye
ar

28
.4

2.
2

E
is

b
ru

ch
et

al
.

(1
99

9)
3

0.
13

00
0.

04
33

0.
12

60

P
ar

ot
id

s
(R

o
es

in
k
)

F
lo

w
ra

ti
o

<
25

%
/1

ye
ar

39
.0

0.
9

R
o
es

in
k

et
al

.
(2

00
1)

3
0.

04
13

0.
01

38
0.

03
73

In
n
er

E
ar

s
S
en

so
ri

-n
eu

ra
l

h
ea

ri
n
g

lo
ss

50
.0

0.
7

H
on

or
é
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4. From Bench to Bed: Clinical Applications of Radiobiological Models

λ. We calculated α0 using equation (2.15) and the linear parameter λ was obtained using

the second method presented in section 2.2.2. Hence, we are not using a λ value that was

obtained from measurements but one that reflects the clinically observed mean RBE of

1.1. We will refer to this value as λ1.1. As evidence for individual λ1.1 values for each tissue

is scarce we decided to use the same for all tissues. The mean RBE of 1.1 reported by

Paganetti et al. (2002) is based on the clinical experience in target volumes. We therefore

decided to extract the mean dose and LET from the GTV i.e. PTV–66 and calculated

individual λ1.1 values for each patient using equation (2.18). The resulting values were

then averaged for a global λ1.1 that was used for all variable RBE calculations.

4.1.2 Results

Determination of the linear parameter λ Table 4.3 shows the mean LET and

mean dose in PTV–66 for one single fraction extracted from the IMPT–PO plans for four

patients. Based on the parameters given in table 4.2 λ1.1 was calculated according to

equation (2.18). The average value for all four patients was λ1.1 = 0.008 µm/ (keV ·Gy).

It will be used for further calculations of the RWD and biological optimizations. Since

non–specific normal tissues were assumed to have a constant RBE of 1.1 for these tissues

λ = 0.0 µm/ (keV ·Gy).

Table 4.3: Mean LET L and absorbed dose D in the PTV–66 for IMPT–PO plans and
the value of λ1.1 for an RBE of 1.1 for the mean values.

Patient stage L D λ1.1

(keV/µm) (Gy) (µm/keV/Gy)

A T4 2.13 2.00 0.0074
B T3 2.22 2.00 0.0070
C T1 2.35 2.00 0.0086
D T2 2.25 2.00 0.0091

Treatment plan comparison Tables 4.4 and 4.5 show the mean values for dose–volume

statistics for IMPT–PO, IMPT–RE and IMPT–BO plans. The results demonstrate that for

PTV–54 there was a general increase of RWD in IMPT–RE plans compared to IMPT–PO

plans. For PTV–66, the RWD increments were seen mainly in the high dose regions (the

tail of DVHs) except for patient A whose IMPT–RE plan showed a general rise of the dose

in the whole target. Indeed, in patients C and D the mean doses in PTV–66 were 0.4 to

0.6 Gy (RBE) lower than the IMPT-PO plans. On average Dmean of PTV–66 and PTV–54
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4.1 Variable or constant proton RBE?

Table 4.4: Dose–volume statistics for PTV–66 and PTV–54 averaged over all four pa-
tients. To asses the difference between the patients the standard deviation (σ) of the mean
is also displayed. All doses are RBE–weighted absorbed doses given in Gy (RBE) and all
volumes are given in percent of the total volume of the structure.

IMPT–PO IMPT–RE IMPT–BO

Mean σ Mean σ Mean σ

PTV–66 D95 62.87 1.01 63.95 1.68 63.11 1.04
D5 67.37 0.75 70.42 2.35 67.29 0.8
D99 59.07 2.61 60.77 2 59.42 2.42
D1 68.59 1.59 72.91 3.34 68.39 1.56
Dmean 65.65 0.24 66.92 1.87 65.73 0.18
σDmean 1.84 0.54 2.17 0.68 1.56 0.63
V95 95.3 2.23 96.13 4.37 95.93 1.9
V105 0.91 1.36 18.35 24.14 0.84 1.43
IC 1 0.07 0.02 0.1 0.02 0.06 0.02
IC 2 0.14 0.06 0.18 0.06 0.14 0.06

PTV–54 D95 51.39 1.33 54.88 1.51 51.92 1.13
D5 56.53 2.53 65.77 2.25 58.05 4.28
D99 46.94 2.97 53.05 2.86 48.07 2.42
D1 58.29 3.78 69.54 3.01 60.57 6.09
Dmean 53.96 0.33 58.93 1.46 54.35 0.66
σDmean 1.86 1.05 3.48 0.79 2.08 1.46
V95 95.2 2.83 99.34 0.95 96.23 2.51
V105 4.32 6.34 69.51 17.77 6.48 9.31
IC 1 0.09 0.07 0.18 0.04 0.11 0.1
IC 2 0.21 0.12 0.28 0.08 0.23 0.15

increased modestly in the order of 1.3 and 5.0 Gy (RBE), respectively. The IMPT–RE

plans were in general more inhomogeneous than the original plans. The absolute difference

between mean V105 for PTV–66 and PTV–54 were 17.4% and 65.2%, respectively.

When the IMPT plans were biologically optimized the difference between the mean DVH

parameters became very modest for both PTV–66 and PTV–54.

With respect to OARs, there was a small increase of Dmean or Dmax in IMPT–RE plans

for most of the tissues (tables 7 and 8). In OARs with mostly parallel structures the dose

increments in Dmean was below 4.33 Gy (RBE). In neural structures, the increase of the

mean Dmax was < 3 Gy (RBE) and the doses were still far below the tolerance thresholds

of the structures. For structures such as inner ears, larynx and trachea–esophagus the

mean Dmax (D1 or D5) was increased up to 11 Gy (RBE). For the spinal cord and middle–

external ears, there was a slight decrease in Dmean and Dmax.
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Figure 4.1: RBE–weighted absorbed dose (DRBE) volume histograms for one exemplary
patient with a T4N1M0 tumor illustrating the difference between constant (IMPT–PO)
and variable (IMPT–RE) RBE for the same absorbed dose distribution. The biological
optimization (IMPT–BO) obtains similar results than IMPT–PO.
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4.1 Variable or constant proton RBE?

In IMPT–BO plans, mean Dmean or Dmax could be variable (lower or higher) for OARs

and in most cases doses could be kept below the dose–volume constraints.

Figure 4.1 shows the DVHs of three sets of IMPT plans for target volumes and some OARs

for the patient with the T4N1M0 tumor. As it was expected the effect of high LET in less

radiosensitive late responding tissues (lower α0 values) such as inner ears, optic chiasm and

larynx was higher which demonstrated itself by a shift of the DVH curves to the right in

IMPT–RE plans. However, in the parotid glands with a higher α0 value, a variable LET

made insignificant changes in the RWD distribution for the most parts of the tissue.

When we used different sets of biological data for biological calculation and optimization of

the dose in parotid glands and spinal cord (Cronqvist (Cronqvist 1995), Roesink (Roesink

et al. 2001) and Eisbruch (Eisbruch et al. 1999) for parotid glands and Cronqvist and

Schultheiss (Schultheiss 2008) for spinal cord) we could not see any major change in the

dose distribution parameters in either of the organs (see table 4.6).

Influence of the LET on RWD In figure 4.2 for each of the patients the distribution of

RWD, absorbed dose and LET in PTV–66 are visualized using adapted DVHs. Please note

that for patient A and B (T3 and T4 tumors) the applied biological parameters differed

from those used for patients C and D (T1 and T2 tumors).

For all four patients the IMPT–RE RWD distribution is smeared out as the LET variations

were not considered during optimization. Additionally for patients A and B the mean

target RWD is slightly increased. In the IMPT–BO plans the biological optimization

could compensate the influence of the LET in different ways for each of the patients. In

patient A the absorbed dose is reduced and the LET increased. In contrary in patient

B the mean absorbed dose does not change and the LET is reduced. In patients C and

D the mean absorbed dose increases and the mean LET is reduced. The absorbed dose

is less homogeneous in PTV–66 for all four patients in the IMPT–BO plans compared to

the IMPT–RE plans. General trends in the change of the LET distribution if optimized

biologically instead of physically were not observed.

4.1.3 Discussion

A constant lambda for all tissues The choice of λ is crucial for the estimation of

tissue response on higher LETs. Introduction of a single value for λ in all tissues might not

be the most accurate approach but it has been a feasible one in our model since currently

there are no clinically verified values available. The relative change in the biological effect

with LET is larger for those tissues that have a small α value, an effect that has been
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4. From Bench to Bed: Clinical Applications of Radiobiological Models

Table 4.5: Dose–volume statistics for organs at risk averaged over all four patients. To
asses the difference between the patients the standard deviation (σ) of the mean is also
displayed. All doses are RBE–weighted absorbed doses given in Gy (RBE) and all volumes
are given in percent of the total volume of the structure.

IMPT–PO IMPT–RE IMPT–BO

Mean σ Mean σ Mean σ

Spinal cord D1 24.95 0.68 23.74 1.89 24.83 0.16
D5 23.08 0.62 21.61 0.61 23.51 1.16

Brainstem D1 30.43 6.46 31.65 7.05 30.68 6.59
D5 22.62 4.93 23.49 6.9 22.84 5.7

Optic chiasm D1 15.66 17.98 17.71 19.97 15.11 17.86
D5 14.6 16.57 16.48 18.46 14.44 17.03

Optic nerves D1 21.19 19.68 23.57 20.63 20.96 19.55
D5 19.18 18.23 21.62 19.54 18.99 18.46

Temporal lobes Dmean 4.74 2.86 4.82 2.85 4.22 2.68
D1 40.21 9.94 42.23 10.34 37.25 9.69
D5 23.49 9.96 24.25 10.26 20.77 9.8

Eyes Dmean 0.26 0.54 0.38 0.76 0.18 0.34
Inner ears Dmean 16.36 8.34 19.17 10.39 19.32 9.32

D1 45.39 19.31 53.82 22.44 50.89 21.63
D5 39.21 20.44 45.43 23.05 42.95 20.71

Mid.–ext. ears Dmean 15.05 5.57 14.3 5.24 14.05 6.67
D1 30.48 5.29 29.78 4.93 28.88 5.85
D5 26.54 5.75 25.08 5.35 24.98 6.88

Parotid gl. Dmean 16.3 6.04 16.63 6.04 14.97 6.13
V26Gy(RBE) 12.16 12.53 14.41 12.04 9.12 12.38
D30 18.57 4.89 19.34 5.96 16.82 5.06

TM joints Dmean 19.12 5.31 22.45 4.34 20.25 3.31
D1 43.68 7.91 44.04 8.21 40.88 6.56
D5 35.16 3.93 35.81 4.46 34.36 3.49

Trachea Dmean 10.02 1.03 10.85 2.84 16.73 13.04
D1 36.17 3.29 40.99 3.95 31 3.67
D5 26.14 2.9 30.14 3.59 21.27 7.38

Larynx Dmean 16.33 6.76 20.75 7.25 20.55 6.64
D1 51.36 7.78 62.77 2.79 55.3 5.95
D5 47.48 11.38 55.04 7.36 51.43 9.02
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4. From Bench to Bed: Clinical Applications of Radiobiological Models

reported before for carbon ions (Weyrather et al. 1999). Compare, for example, the change

of RWD from IMPT–PO to IMPT–RE plans for parotid glands (largest αx value) and inner

ears or larynx. These changes are significantly more pronounced for the last two tissues.

The role of the LET Introduction of a biological optimization changes the LET dis-

tributions of a treatment plan. The optimizer combines absorbed dose and LET locally

and sometimes introduces distinct changes in the distribution. The resulting physical

dose distribution is definitely less homogeneous for the IMPT–BO plans compared to the

IMPT-PO plans but this is expected.

RBE–weighted dose distributions In this simulation study, we have used a theoreti-

cal model to estimate the 3D RBE variations in IMPT plans assuming that such variations

are tissue, absorbed dose, and LET dependent in the patients. The variable RBE calcula-

tions of our IMPT plans resulted in small RWD increments in the targets in general despite

of assuming a high value for the α/β–ratio (αx/βx = 10 Gy) in these tissues. A rise of

the RBE above 1.1 in the targets may translate into more favourable tumor control rates.

The disadvantage of such RWD increments especially on the high RWD side is when large

volumes of normal tissues are embedded within the target. Yet in other cases we observed

an RBE value slightly lower than 1.1 in IMPT–RE plans which could jeopardize the tumor

control rates. The change in RBE depends mainly on the relative size of αx to λ as it can

be expected from equation (2.17). The smaller αx the higher the impact of the LET . This

was demonstrated in the patient with T4N1M0 tumor where RBE variations in normal

tissues with higher sensitivity for dose per fraction, i.e. smaller αx values such as inner

ears and larynx, were more apparent. On the other hand, RBE variations in OARs such

as parotid glands with a relatively high radio–sensitivity (αx = 0.13 Gy−1) were insignif-

icant with practically no impact on the average dose deposited in the organ. For neural

structures such as optic apparatus, spinal cord, and brainstem, the dose depositions in the

IMPT–PO plans were low and thereby small increases in the Dmean or Dmax due to RBE

variations in IMPT–RE plans were still below the tolerance of these tissues. Altogether

our results suggest that the clinical significance of RBE variations in many late reacting

OARs is dependent on the tissue type, the physically deposited dose and the location of

the organ with respect to the high dose target volumes.

In the variable RBE model employed in this study, we have made several biological assump-

tions that might have confounded our results. Most of the basic biological parameters for

calculation of αx and βx (D50 and γ) for target volumes and normal tissues were adapted

from the literature. The uncertainty in the validity of these empirical parameters by itself
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Figure 4.2: Dose–volume histograms showing the absorbed dose D, the RBE–weighted
absorbed dose DRBE and the LET of each patient’s PTV–66.
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is a source of error. Nevertheless, these data are used in clinical photon radiation treatment

planning due to the absence of more reliable data and therefore their application in this

study can be justified. For organs such as parotid glands, spinal cord and inner ears we

applied biological parameters which were based on recent publications in which 3D dose

depositions in the organs were correlated with measurable endpoints (Schultheiss 2008,

Eisbruch et al. 1999, Roesink et al. 2001, Honoré et al. 2002). Neither for parotid glands

nor for the spinal cord could we find any clinically significant changes in the dose distribu-

tion parameters in IMPT–RE plans when different sets of tissue specific parameters (D50

and γ) were used. This reflects that at least for these two tissues and for the dose ranges

used in our plans, the variations of RBE values based on the tissue-specific parameters in

use will have no major clinical impact in terms of rate of xerostomia or myelopathy.

Finally, the results of this study showed that optimization of IMPT plans based on a vari-

able RBE model is also feasible. Our IMPT–BO plans were at least as good quality as

IMPT–PO plans. It is possible that further optimization of IMPT–BO plans with respect

to individual tissues and targets could have improved the quality of the plans.

Biological assumptions In the current study, variations in tissue oxygenation and their

impact on RBE were not considered. It is known that oxygen enhancement ratio (OER)

decreases with increasing LET (Barendsen et al. 1966, Furusawa et al. 2000). However,

these changes seem to be relevant for LET values higher than the maximum LET values

observed in this study. As OER is usually not considered in radiation treatment planning

for photons, we have used the same strategy for protons to get comparable results.

Fractionation effects were not explicitly considered in this work. We chose λ1.1 as a function

of the dose per fraction. Therefore it has to be adjusted for other fractionation doses to

keep the mean RBE at 1.1.

4.1.4 Conclusions

In conclusion, the results of this study indicate that the application of a variable RBE

model in the planning of IMPT plans is clinically more useful for accurate assessment of

feasibility of the plans from a biological point of view. However, more robust and clinically

validated biologically data are needed for accurate assessment of RBE variations within

the target and late responding tissues especially for those located in the vicinity of high

dose targets. According to our model radio–resistant normal tissues have a higher risk of

accidental overdosage than radio–sensitive tissues. Therefore the LET distribution in these

regions should be closely monitored. LET hot spots should be avoided in any case.
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4.2 A simultaneous carbon ion boost

Carbon ions and protons are frequently used in combination with photon therapy to give a

dose boost to the macroscopic tumor residual to improve local control. Usually the boost

is applied sequentially i.e. prior to the photon treatment or after it is completed (Schulz-

Ertner et al. 2004, Nihei et al. 2005). Slater et al. (2005) used a concomittant proton

boost: on the last 17 days of the conventional photon treatment patients received an addi-

tional fraction of proton radiotherapy to a boost volume. Both scenarios share certain issues

that compromise the plan quality. A treatment involving two different radiation modalities

(in different fractions) requires at least two treatment plans. These treatment plans have

to be optimized separately, they have to be combined for evaluation, and the treatment

planner has to go back to each TPS to adapt the plans. The combined dose distributions

have to be evaluated carefully as the overlap of two radiation modalities may create local

hot spots since the treatment planning systems do not know that the other treatment plan

exists. Overall this is a very time consuming procedure that does not even guarantee that

the best possible treatment plan is obtained. Additionally, this kind of treatment planning

disregards the potential of particles to shape steep dose gradients. With a fixed ratio of

carbon ion to photon dose we cannot properly combine the benefits of protons and carbon

ions. To overcome both problems, the fixed ratio and the multiple treatment plan issue,

we propose a novel approach where the patient is treated with a simultaneous carbon ion

boost as an addition to a regular photon plan. The latest generation of carbon ion therapy

centers like the NROCK in Kiel, Germany, will have photon and carbon ion treatment

rooms in such close proximity that it is possible to keep the time between both radiation

modalities so short that they can be considered to be in one fraction. The advantages of

such a simultaneous boost are evident: only one treatment plan has to be optimized and

the TPS decides on the best combination of particle and photon dose. Thereby, local hot

spots can be avoided and the high dose gradients of particles can be exploited. In addition,

the patient should receive a lower integral dose compared to a sequential particle boost.

Treatment plans for the latter tend to exhibit an increased normal tissue and non–boost

target area dose. In a simultaneous boost optimization additional doses from carbon ion

fields outside the boost are automatically considered in the photon dose prescription. This

method was developed for carbon ions and photons but it should work as well for protons

as boost irradiation.
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4.2.1 Preparation of the TPS and its input parameters

The Dij approach employed in our in–house TPS KonRad separates dose calculation from

optimization and allows to mix different radiation modalities in the same treatment plan.

For each radiation modality a dedicated dose calculation algorithm can be used (cf. section

2.3.2). The difficulty in combining two radiation modalities of different biological effective-

ness like carbon ions lies in the calculation of the total biological effect and its optimization.

The total effect of different radiations can be obtained using the synergistic effect of ra-

diations approach (Zaider and Rossi 1980) as it is used in the biological optimization for

carbon ions implemented in KonRad (Wilkens and Oelfke 2006). Details of this approach

are discussed in section 2.2.1. It requires in addition to each Dij element a respective set

of parameters αij and βij for each combination of voxel i and doseburst j. We already

assumed that the quadratic parameter βij is constant and equal to the reference parameter

βx. Additionally, therapeutic photon beams are assumed to be as biologically efficient as

the reference radiation. Therefore, αij ≡ αx if j is a photon doseburst. For carbon ions the

previously introduced depth dependent α input is used (section 2.3.2). The same tissue

parameters were applied throughout all volumes in both phantom and patient cases. In

accordance with the current clinical practice at HIT we used chordoma tissue (reference

parameters αx = 0.1 Gy−1 and βx = 0.05 Gy−2) for all tissues.

The aim of this study is to use a simultaneous carbon ion boost. Hence, we had to ensure

that carbon ions dominate the delivered dose only inside the boost volume. In all other

volumes the carbon ion dose shall only be considered in order to stay within the bounds of

the prescribed doses. Therefore, a modified version of KonRad was developed that allows

the user to choose individual targets for each field. Dosebursts are then only placed across

the respective target volumes. The optimization itself is not aware of any restrictions.

In the previous chapter we already discussed that treatment plans employing different ra-

diation modalities are generally ill conditioned and converge only slowly to an acceptable

solution. Placing dosebursts only in some regions of the target does not reduce this issue.

Hence, before using the novel method in multiple patient cases we tested the two methods

proposed in section 3.2 both in regard to the time it took to generate initial beam weights

and to the convergence speed.

4.2.1.1 Fractionation schemes

Whichever radiation modality is used to deliver a boost we can come up with a number of

fractionation schedules to combine it with a basic treatment plan:

(i) A simultaneous (carbon ion or photon) boost is given in all fractions.
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Table 4.7: Four fraction schemes delivering the same total RWD of 72 Gy (RBE) in the .
Each volume is irradiated for Nfrac fractions with a RWD Dfrac up to a total dose of Dtotal.
All RWD are given in Gy (RBE).

Boost Target Radiation

Scheme Nfrac Dfrac Dtotal Dfrac Dtotal X–rays C–12

SIM–X 30 2.4 72.0 1.8 54 X
SIM–30 30 2.4 72.0 1.8 54 X X
SEQ 6 3.0 18.0 – – X

30 1.8 54.0 1.8 54 X
SIM–15 15 3.0 45.0 1.8 27 X X

15 1.8 27.0 1.8 27 X

(ii) The boost volume is sequentially irradiated with carbon ions in additional fractions.

(iii) A simultaneous carbon ion boost is prescribed for only a limited number of fractions.

The second method has been employed at GSI (Schulz-Ertner et al. 2004). Here, we are

going to compare treatment plans of type (i) with a 30 fraction simultaneous photon (SIM–

X) or carbon ion boost (SIM–30), of type (ii) with a six fraction sequential carbon ion boost

(SEQ), and of type (iii) with a simultaneous carbon ion boost for 15 fractions (SIM–15).

Fractionation schedules delivering a total RWD of 72 Gy (RBE) and 54 Gy (RBE) to the

boost and the target, respectively, are listed in table 4.7.

4.2.1.2 Treatment plans

We investigated the potential of a simultaneous carbon ion boost in a phantom and several

patient cases. For a feasibility study and an easier understanding of the observed effects we

used a cylindrical water phantom with a C–shaped target molded around a cylindrical organ

at risk in the center of the phantom (left column of figure 4.3). Inside the target volume a

C–shaped boost volume was delineated. The phantom is irradiated with seven equidistant

photon beams and two opposing carbon ion beams from incident gantry angles of 90◦ and

270
◦
, respectively. Out of the several patient cases that were studied an exemplary case is

presented here. A brain tumor is irradiated with an identical beam configuration as the

phantom. The right column in figure 4.3 shows a representative CT slice of the patient

with the contours of the target, the boost, and the brainstem. Target and boost dose

prescriptions for both cases can be found in table 4.7.

Photon IMRT fields were simulated using a 6 MV linear accelerator equipped with an
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Figure 4.3: Phantom (left) and patient case (right) studied in this section. In the water
phantom the boost (red) is enclosed by the target (yellow) which is molded around the OAR
(green). The patient CT slice shows a boost volume (red) and a target volume (yellow).
The only organ at risk outlined in this CT slice is the brainstem (green). Gray and dashed
black arrows represent incident beam directions for photons and carbon ions, respectively.
The same directions were used for phantom and patient treatment plans

MLC with 5 mm leaf width. The optimized photon fields were not sequenced. Carbon ion

dosebursts are laterally and longitudinally spaced with 3 mm distance.

4.2.2 Results

4.2.2.1 Convergence performance of a simultaneous boost treatment plan

It turned out that the standard optimization with starting weights of zero and its preset

convergence criterion i.e. 5 iterations with less than 0.1 % change of the objective function

value, will not return an acceptable solution for a SIM–30 or SIM–15 treatment plan. The

optimizer returns a solution using only dose from the carbon ion beams and no photon

irradiation at all. Though the solution fulfills the planning constraints of the boost volume

it completely fails in the target volume. If the convergence criterion is turned off the

optimizer increases the carbon doseburst weights rapidly in the beginning followed by a

large number of iteration with very small changes i.e. several dozen of iteration with less

than 0.1 % change in the objective function value. In some cases the optimizer eventually

begins to rise the weights of the photon dose bursts and will finally return an acceptable

solution. In other cases it remains stuck in this unacceptable solution. As a representative
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Figure 4.4: The objective function value of the treatment plan with a simultaneous carbon
ion boost for 30 fractions in the phantom depends on the initial solution.

example figure 4.4 shows the objective function value as a function of the number of

iterations for a simultaneous carbon ion boost in the phantom applied for all 30 fractions.

In this example the objective function value is nearly constant for 65 fractions before the

optimizer starts to use the photon beams. Both the preoptimization and the precalcualtion

method generate starting solutions that ensure an acceptable solution found with less

iterations. In the case of our example the preoptimized and the precalculated optimization

fulfilled the termination criterion after 243 and 175 iterations, respectively. The objective

function value of the preoptimized (precalculated) plan after 243 (175) iterations is ∼ 63 %

(∼ 87 %) smaller than the regular optimization after the same number of iterations. After

500 iterations the objective function value of the regular optimization is still approximately

10 % larger than the termination value of both other methods.

Both methods generate starting solution of similar quality but they differ significantly in

their time consumption. The preoptimization of the weights of the example presented in

figure 4.4 took 679 s, the precalculation took 7.5 s. Due to this significant difference the
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precalculation method was employed for all simultaneous optimizations of carbon ion and

photon beams.

4.2.2.2 Comparison of the fraction schemes

The phantom

Figure 4.5 shows the DVHs of all four phantom treatment plans. Boost voxels were excluded

from the target for DVH calculation. On a first glance only minor clinically relevant

differences can be observed. Three general observations could be made:

• Any kind of carbon ion boost increased the homogeneity of the boost coverage.

• The SEQ plan received significantly more dose in the target than all other plans.

• The maximum OAR dose was also increased for the SEQ plan.

There is definitely an increase of the dose in the SEQ plans probably due to the separate

optimization of two treatment plans that are later added up. For a better understanding of

the observed effects figure 4.6 shows horizontal and vertical RWD profiles along the dashed

lines in figure 4.3. Clearly, the additional target dose of the SEQ plan is deposited in the

entrance channel of the carbon ion beams (panel a). Locally, the sum of the separately

Figure 4.5: Combined RWD DVHs of the SIM–X plan (dotted black), the SEQ plan
(dashed red), the SIM–15 (dashed–dotted blue), and the SIM–30 (solid green) plan of the
phantom. The target DVHs do not include the RWD of boost voxels.

optimized treatment plans of the SEQ plan increases the RWD along the incident beam

direction by 10 to 20 Gy (RBE) compared to the SIM–30 plan. There is literally no dif-

ference between target and boost dose in the carbon ion beam entrance channel for the
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Figure 4.6: Panels a) and b) are horizontal and vertical RWD profiles of the phantom’s
central CT slice, respectively. All four fractionation schemes are shown: The SIM–γ plan
as dotted black line, the SEQ plan as dashed red line, the SIM–15 plan as dash–dotted blue
line, and the SIM–30 plan as solid green line.

SEQ plan. Perpendicular to this axis no significant difference is observed between SIM–30,

SIM–15, and SEQ plan. The SIM–X plan shows an increased RWD in the lower half of

the phantom which is caused by the need of shaping the boost with photon beams. The

steepness of the RWD gradients towards the OAR does not differ among those plans using

carbon ions.

In the introduction to this chapter we claimed that a simultaneous optimization of carbon

ions and photons would allow to shape local dose gradients predominantly with carbon

ions. Figure 4.7 shows single fraction dose and RWD profiles of the SIM–30 plan for

each radiation modality. The RWD of the respective radiation modalities was calculated

by multiplying their absorbed dose with the RBE of the total dose distribution. As ex-

pected, the maximum carbon ion doses are observed at the edges of the boost volume

towards the OAR. In the horizontal profile (panel a) the maximum carbon RWD is only

∼ 0.4 Gy (RBE), less than the 0.6 Gy (RBE) difference between prescribed boost and tar-

get dose. Vertically (panel b) the maximum RWD is ∼ 0.75 Gy (RBE), more than the

difference between boost and target RWD. The gradient towards the OAR is shaped with

the lateral dose gradient not with the distal.

It should be noted that due to the synergistic effects of radiation that are reflected in the β

term of LQ–model (equation (2.13)) the RBE of photons is not unity when they irradiate

the same voxel as carbon ions. As a side aspect, we can also observe the dose dependence

of the RBE in figure 4.7 a). Though the carbon ion LET increases along the depth of the

carbon ion beam the total RBE decreases which is due to the mixing of photon and carbon
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ion doses. As a result the maximum RBE is observed in normal tissue, not in the target.

Figure 4.7: Dose (dashed) and RWD (solid) profiles for a single fraction of the SIM–30
plan by radiation modality. Carbon ions (green) and photon (blue) doses add up to the
total dose (red). Panels a) and b) are horizontal and vertical cuts through the phantom’s
central CT slice, respectively.

The patient case

Figure 4.8 shows the DVHs of the four fractionation schemes applied to a representative

patient case. Observations made when studying the phantom treatment plans are con-

firmed by these results. Again, all plans comprising carbon ions have a higher conformity

of the boost RWD. In the case of the SEQ plan this comes at the cost of a significant

increase in the target RWD due to the entrance dose of the carbon ion beams. Regarding

the OAR dose it seems far fetched to make any general statements. We can only state

that the SIM–30 plan has the lowest RWDs in any OAR. Those OARs not reported here

sustained doses well below the critical limits.

There are no detailed results presented here showing the dose distributions of the treatment

plans in depth as they are a mere repetition of the above results and do not add anything

to the understanding of the simultaneous optimization.

4.2.3 Discussion and Conclusions

In this section we have presented a novel approach for the combination of carbon ion and

photon irradiation. It is introduced as an alternative to a sequential carbon ion boost and

has two major advantages. The photon to carbon ion dose is not fixed in each fraction

56



4.2 A simultaneous carbon ion boost

Figure 4.8: Combined RWD DVHs of the SIM–X plan (dotted black), the SEQ plan
(dashed red), the SIM–15 (dashed–dotted blue), and the SIM–30 (solid green) plan of an
exemplary patient case. The target DVHs do not include the RWD of boost voxels.

which allows the optimizer to use the carbon ion dose to shape steep dose gradients towards

critical structures. Additionally, it is advantageous to optimize a single plan only and not

having to optimize two plans as it is done for a sequential boost where the treatment

planner has to go back and forth between the treatment plans to avoid hot spots. A very

time consuming procedure that can only overcome the extra dose to target and normal

tissue to a limited degree.

Still one has to be careful using a simultaneous carbon ion boost. If none homogeneous

fields are applied it is critical that the patient is correctly positioned. In most situations a

patient will have to be moved from one treatment room to another when treated with two

different modalities. At best he remains on the same couch and in the same position. If the

patient has to be repositioned for the second radiation modality the chance of misalignment

is not to be neglected. In a mixed field approach slight changes in the position may easily

lead to areas of over– and underdosage.

The major advantage of the simultaneous to the sequential boost seems to be that the

optimization of both modalities is performed simultaneously and we are automatically

compensating for additional doses. Obviously this could be overcome if the sequential boost

and the photon treatment plan are optimized simultaneously. While this sounds relatively

simple in the first place it is actually very challenging. Currently we are prescribing a

fixed RWD D̄biol or biological effect for Nfrac fractions and the treatment planning system

is optimizing the RWD or effect per fraction. If the sequential boost shall be optimized

simultaneously we would not only have to optimize the total RWD or biological effect. Let’s
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assume a target voxel receives an extra dose due to the sequential boost of 12 Gy (RBE) in

6 fractions. If we now reduce the target dose in the entrance channel by 0.4 Gy (RBE) per

fraction the total RWD is the same, but the total biological effect is different. Assuming

chordoma tissue the total effect due to carbon and photon dose is E = 9.54 while it is 10.26

for 30 photon fractions of 1.8 Gy. To keep the effect constant a photon fraction dose of

1.5 Gy would have to be applied with the sequential carbon ion boost. This calculation

has to be repeated for every voxel. Hence, the total RWD distribution in the target would

be inhomogeneous though the biological effect is constant. One way out of this dilemma

is the use of biological effective doses (BED) which are defined by

BED (d,Nfrac) = Nfrac ·
E (d)

α
= D

(
1 +

d
α/β

)
(4.1)

where d is the dose per fraction and D = d · Nfrac is the total dose after Nfrac fractions.

This way the biological effect is expressed in a well known unit (Gy) and incorporates

fractionation effects. BED solves the problem of displaying inhomogeneous doses but it

does not provide any means on the splitting of doses among the radiation modalities. In

some way or another it has to be decided that one of the modalities has to give a certain

fraction dose and the other modality is used to fill the gap to the prescribed BED. A possible

objective function that does not make a difference between under– and overdosage for a

target voxel i in this scheme is

Fi/∈boost (w) =

Ē −NC

∑
j∈C

αijDijwj +

(∑
j∈C

√
βijDijwj

)2


−NX

∑
j∈X

αijDijwj +

(∑
j∈X

√
βijDijwj

)2
2

(4.2)

where NC (NX) is the number of carbon ion (photon) fractions and C (X) is the assemble

of carbon ion (photon) dosebursts. A boost voxel i could be optimized using

Fi∈boost (w) =

ĒC −NC

∑
j∈C

αijDijwj +

(∑
j∈C

√
βijDijwj

)2
2

+

ĒX −NX

∑
j∈X

αijDijwj +

(∑
j∈X

√
βijDijwj

)2
2

. (4.3)
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Here, the total prescribed boost effect is Ē , the effect supposed to be delivered by the

carbon ion fractions ĒC and ĒX = Ē − ĒC. The treatment planner looses control over the

fractionation doses in the target and needs a lot of trust in the biological models.

In conclusion, simultaneous carbon ion boosts provide the potential of steeper dose gra-

dients and reduced target and integral dose. The SIM–15 treatment plan seems to be a

reasonable alternative to a SIM–30 plan as none of the planning objectives is compromised

though the number of carbon ion fractions is reduced by a factor of two. It can be ques-

tioned if the simultaneously carbon ion boost can be applied in clinical routine due to the

difficulty of positioning the patient correctly. Additionally, one can argue that most of

the improvement from sequential to simultaneous boost is rather due to the simultaneous

optimization than the variable carbon ion to photon dose ratio. It has to be investigated

whether a simultaneously optimized sequential carbon ion boost is of similar treatment

plan quality than a simultaneous boost.
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4.3 Biological worst case optimization

The quality of a delivered 3D IMPT plan depends largely on accurate planning CTs and

patient positioning. Throughout this work we made use of the highly localized dose de-

positions of particles and their steep lateral and distal gradients. In consequence, the

optimization algorithms created treatment plans with individually inhomogeneous fields

that rely on accurate superimposition to generate the desired dose distributions. A slight

misalignment of the patient or an erroneous particle range could have large influences on

the outcome (Lomax 2008). Multiple authors have developed methods to include potential

errors into the optimization and reduce their impact (Unkelbach et al. 2007, Pflugfelder

et al. 2008, Fredriksson et al. 2011). During the work on this thesis the worst case opti-

mization by Pflugfelder et al. (2008) was adapted to optimize in addition to the absorbed

dose also RBE–weighted absorbed dose distributions for protons and carbon ions. The

methodology was applied to objective functions for the biological effect i.e. additionally to

worst case dose cubes this method also requires worst case α or LET cubes, respectively.

In conventional radiotherapy with photons and particles range uncertainties and setup er-

rors are accounted for by increasing the clinical target volume (CTV) to a planning target

volume (PTV) following margin recipes (van Herk et al. 2000). According to a publication

by van Herk et al. (2000) “the PTV is a geometrical concept, and it is defined to select ap-

propriate beam sizes and beam arrangements, taking into consideration the net effect of all

the possible geometrical variations and inaccuracies in order to ensure that the prescribed

dose is actually absorbed in the PTV.” A major assumption of the margin concept is that

a shift of the patient does not significantly alter the shape of the dose distribution. This

assumption is most likely not fulfilled for particle plans. Worst case optimization replaces

the margin concept by intrinsically creating margins according to the expected errors. Ad-

ditionally, the changing relative assembly of the beams is also taken into account.

In this section we will briefly review the worst case optimization and its implementation.

The modified method was applied to several patient cases out of which one exemplary case

irradiated with carbon ions will be presented here. We will compare the worst case to

conventionally optimized treatment plans especially in regard to their capability of com-

pensating errors. For these comparisons the conventional treatment plans were optimized

with the PTV as planning target volume while the worst case optimization used only the

CTV.
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4.3.1 Methods

4.3.1.1 Worst case optimization

The aim of the worst case optimization is the simultaneous optimization of the nominal

dose distribution and a worst case dose distribution. The objective function Fwco is defined

as the weighted sum of the values of an objective function F evaluating the nominal dose

distribution Dnom and the worst case dose distribution Dwco

Fwco (w) = F (Dnom (w)) + pwcoF (Dwco (w)) . (4.4)

Here, pwco is the worst case penalty weighting the influence of the worst case dose distri-

bution. In this work we will be employing pwco = 1. The objective function applied to

the respective dose distributions in equation (4.4) is not specified and not restricted to a

specific method. For physical and biological worst case optimization we could therefore

employ the quadratic objective for the dose and the biological effect, respectively (cf. sec-

tion 2.3.3).

The worst case dose distribution is defined as the worst dose that can be expected in a

voxel i. In a practical implementation a set of test distributions has to be defined out of

which the worst case is selected. Depending if a voxel belongs to a target volume or an

OAR this can be the voxel’s minimum or maximum dose in the test distributions. The

voxelwise selection makes the worst case dose distribution unphysical but it serves well as

a lower limit of the potential deviations of the nominal dose distributions. Which kind of

error the worst case optimization compensates is solely depending on the test distributions.

Pflugfelder et al. (2008) defined test distributions for three different scenarios:

(i) Range uncertainties have multiple possible sources both on the patient side and on

the treatment planning side. Here, we are only going to consider the uncertainties of

Hounsfield unit to stopping power conversion. The different errors all translate into

a change of the range of the Bragg peaks. Hence, a spectrum of potential ranges has

to be considered. In practical implementation it is sufficient to calculate additional

dose distributions for the smallest and greatest range (Pflugfelder et al. 2008). It is

assumed that the range uncertainties of all dose bursts with the same lateral position

i.e. on the same ray (cf. gray lines in figure 2.5) are correlated. Therefore for each

voxel the worst case of each ray has to be determined not for each dose burst. In

terms of computational efficiency it has to be considered that this method requires

two additional dose calculations that have to be performed and stored in additional

Dij matrices. In each iteration the worst case has to be determined for each ray.
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(ii) Setup uncertainties are most likely due to a misaligned patient. Here, not only the

shift of the voxels in each ray but in each field are correlated. It is again assumed

that it is sufficient to account for the extreme shifts. If a positive and a negative shift

are considered for each direction a total of six additional dose calculations has to be

performed. Due to the correlation of all spots for each voxel the worst case can be

determined by field which reduces the computational time in each iteration compared

to the evalutation by ray.

(iii) Combined range and setup uncertainties are treated in the same way as setup un-

certainties. Dose distributions are calculated for each extreme setup and range error

i.e. eight in total. To reduce the complexity of the problem the worst case is evaluated

by field.

In any of the above scenarios the required memory increases by the number of additional

Dijs that have to be stored. We will refer to WCO compensating for the range, setup, or

both uncertainties as WCO–R, WCO–S, and WCO–RS, respectively.

The above description has so far only considered physical optimization. For carbon ions

and to some extend also for protons it has to be extended to biological optimization This

can be done by using the objective function for the biological effect and replacing test

dose distributions by test biological effect distributions. Assuming that shifts in biological

parameters and dose are correlated for each test dose distribution a corresponding α dis-

tribution has to be calculated. It is assumed that β is constant. After each iteration the

worst case has to be determined from the test effect distributions and not the test dose

distributions. In all other means the worst case optimization remains unchanged.

4.3.1.2 Treatment plan comparison

Dose distributions The biological WCO was tested on several patient cases with similar

results. As an exemplary patient case a prostate carcinoma was selected. Figure 4.9 shows

a representative CT slice of this case. The CTV was outlined and used as target volume for

all worst case optimized treatment plans. For regularly optimized treatment plans a PTV

was created by adding an isotropic margin of 7 mm as suggested by Rasch et al. (2005).

The only organs at risk considered in this comparison are the bladder and the rectum. It

was decided to use three beams to irradiate the patient with gantry angles 0◦, 120◦, and

240◦. A 60 Gy (RBE) target RWD applied over 30 fractions was prescribed.

The aim of this study was a comparison of a regular plan with margins against a WCO plan

in regard to their capability of coping with either range, setup, or combined uncertainties.

Therefore we optimized four treatment plans: one regular plan and one for each of the worst
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Figure 4.9: A representative CT slice of the patient geometry. The CTV (red), the PTV
(yellow), the rectum (green), and the bladder (blue) have been delineated. White arrows
indicate gantry angles (0◦, 120◦, 240◦) of the three beams.

case scenarios. A comparison was performed as follows: Depending on the WCO mode

we recalculated each treatment plan with 98 different range errors (RE–R), setup errors

(RE–S), or combined errors (RE–RS). The regularly optimized plan was recalculated with

each of the error sets for comparison. DVHs and dose–volume statistics (cf. section 2.3.4)

were used to compare the results. Below is a description of the uncertainties that were used

in the WCO and the generation of the error cases by worst case scenario. The combined

scenario is not listed independently as it is a combination of the other two.

Range Uncertainties that were considered in the first scenario are assumed to be com-

pletely due to Hounsfield unit to stopping power conversion errors. Schaffner and Pedroni

(1998) report that in soft tissue and bone the water equivalent proton range is afflicted

with an error of ±1.1 % and ±1.8 %, respectively. As the worst case optimization in

KonRad can only handle a single relative range error value we assumed that all ranges are

afflicted with an error of ±1.8 %. Hounsfield unit (HU) is the unit of the greyscale value

CT in a CT voxel. They are defined as the attenuation µ of the CT beam in the respective

voxel relative to the attenuation µH2O of water

CT =
µ− µH2O

µH2O − µair

· 1000 HU, (4.5)
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Table 4.8: Random and systematic patient positioning errors extracted from Rasch et al.
(2005). The total error is the squared sum of the random and the systematic error.

Direction Random Systematic Total

Left–right 2.7 mm 2.1 mm 3.4 mm
Cranial–caudal 2.3 mm 2.8 mm 3.6 mm
Anterior–posterior 3.3 mm 3.6 mm 4.9 mm

where µair is the attenuation coefficient of air. We assume that the error in the range

calculation is usually given as a relative error ∆µ/µ of the attenuation coeffient. This

translates into an error ∆CT in the absolute CT value of

∆CT =

(
CT + 1000 · µH2O

µH2O − µair

)
∆µ

µ
. (4.6)

If we assume that air does not attenuate the beam (µair = 0) equation (4.6) is simplified

to

∆CT = (CT + 1000)
∆µ

µ
. (4.7)

This latter equation has been used to modulate errors in HU to stopping power conver-

sion error. The 98 scenarios were created by assuming that the actual ∆µ/µ is normally

distributed about 0 with a σ = 1.8 %.

Setup uncertainties that are considered in the second scenario translate simply into

shifts of the patient isocenter. Rotation of the patient is not considered. Rasch et al. (2005)

published an analysis of random and systematic patient positioning errors for prostate

patients. The squared sum of random and systematic errors is assumed to be the width of

a normal error distribution about 0 which was used to generate the error cases. The worst

case optimization assumes that the setup uncertainties are isotropic. To cover all errors

we used a setup error of 4.9 mm in the optimization.

4.3.2 Results

4.3.2.1 Evaluation of optimized plans

All treatment plans were optimized with the same penalty factors. A representative CT

slice with its RWD distribution of all four plans is shown in figure 4.10. Additionally,

figure 4.11 shows the dose, α, and RBE distribution of the same slice for the regular, the
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Figure 4.10: Comparison of a conventionally optimized treatment plan (panel a) and
worst case optimized plans correcting for a range error of 1.8 % (panel b), a setup error of
4.9 mm (panel c), and combined range and setup errors of 1.8 % and 4.9 mm (panel d),
respectively. Isodose lines are given as percentage of the prescribed RWD.
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WCO–R, and the WCO–S plan. Due to the similarity of the WCO–S and the WCO–RS

plan we refrain from showing details for this plan. The color coding for all panels showing

the same unit was normalized to the same value. A brief comparison of the four RWD

distributions shows that all treatment plans provide a similar CTV coverage. The extend

to which the high RWD volume (95 % of the prescribed RWD) exceeds the CTV differs

significantly. Figure 4.11 shows that the highest α values are always a the distal edge of

the anterior field, within or close to the CTV. The largest RBE values are observed in

those regions that receive predominantly fragment dose. Detailed descriptions for each

treatment plan follow below.

Regular optimization The homogeneous high RWD region of the regular plan (fig-

ure 4.10 a) covers as intended the full PTV. Dose gradients at the edge of the PTV

especially towards the rectum are shaped with distal field gradients. The α values in these

regions are especially large. A local RBE minimum is found in the center of the CTV

and a local RBE maximum in the rectum outside the PTV. The highest RBE values are

observed in fragment tails were the dose is very low and α large.

WCO–R The high RWD volume is nearly identical with the CTV and the color coding of

the incident beams suggests that most gradients are now shaped with lateral gradients that

are invariant under range changes. In consequence, the maximum α values are smallest

for this plan. Instead of using lateral gradients the optimizer could have also compensated

range uncertainties by adding a margin at the distal edge of each field. The necessary

margin of approximately 4.8 mm (1.8 % of 26.5 cm i.e. the depth of distal edge of the

posterior fields) cannot be observed. The overshooting fragment tail of the 0◦ gantry angle

beam is significantly shorter compared to the regular plan where it crosses through the

rectum. Due to the low dose in the rectum the WCO–R exhibits the highest RBE in the

rectum and there are two local RBE minima within the CTV.

WCO–S The dose is deposited by three homogeneous fields with the high RWD region

exceeding the CTV but not all the way across the PTV. The 0◦ gantry angle beam delivers

significantly more dose than the other two. It is the beam that is least affected by a shifted

isocenter. A lateral shift of this beam in any direction has the least impact on any OAR: the

rectum’s position exceeds the beam range and the bladder is anyway completely within the

beams entrance channel. As long as the anterior field is homogeneous a lateral shift should

not alter the dose in the bladder. Dose and α distribution support the previous findings.

High α values at the border of CTV and rectum indicate that here the RWD gradient is
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shaped with the distal field gradient. The RBE of the WCO–S is very homogeneous but

also lower in the target than anywhere else.

WCO–RS The RWD of the WCO–RS plan is shown in panel d) of figure 4.10. The

uncertainty in the patient setup is dominating the range uncertainty and hence panels c)

and d) look very much alike. Only the slight range difference of the fragment tail of the 0◦

gantry angle beam shows that the range errors are also accounted for.

4.3.2.2 Sensitivity of WCO and margin plans to errors

Range uncertainties Figure 4.12 a) and b) show the DVHs of the regular and the

WCO–R plan, respectively. Underlying in grey are the DVHs of the 98 recalculated plans.

While the CTV coverage of the regular plan is superior it is also sufficient for the WCO–R

plan but at a significantly reduced integral and rectum RWD. The latter is not astonishing

as the PTV partly overlaps with the rectum. How different the underlying dose distribu-

tions are becomes apparent when we compare the recalculated plans. The WCO–R plan

is significantly less sensitive to range uncertainties than the regular optimized plans. In

table 4.9 these visual observations are supported by numbers. The dose–volume statistics

of the nominal CTVs are very similar. Large deviations are only observed in the inho-

mogeneity coefficients. Both organs at risk benefit from the WCO as the margins of the

CTV are drastically smaller. The recalculated plans show that the worst case optimization

reduces the impact of range errors to a greater extend than margins. Smaller standard

deviations also indicate a reduced risks of unexpected overdoses for WCO–R plans due to

falsely determined ranges.

Setup uncertainties Figure 4.12 shows the DVHs of the regular optimized plan in panel

c) and the setup error compensating worst case plan in panel d). Corresponding dose–

volume statistics can be found in table 4.9. Visually we already observed a considerable

margin around the CTV when compensating for setup instead of range uncertainties. This

is also reflected in an increased RWD in bladder and rectum. The DVHs already show that

the WCO–S compensates significantly better for setup uncertainties than simple margins.

Disregarding a few extreme cases the worst case optimization ensures that on average the

dose distributions are well within the prescribed bounds and at the same time the dose to

the OARs is significantly reduced. Performing the WCO–S with an increased setup error

of 7 mm did not yield any major improvements. Both in the nominal plan and in the

recalculated plans we observed a similar target coverage as with a margin of 4.5 mm but at

the cost of a higher RWD in bladder and rectum (results not shown here). It is noteworthy
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Figure 4.11: Dose, α, and the RBE of the regular, the WCO–R, and the WCO–S plan.
The colormap ranging from blue (small values) to red (large values) was normalized in each
row to the same value.
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a) b)

c) d)

e) f)

Figure 4.12: DVHs of a regular plan (left column) and worst case optimized plans (right
column). The nominal plans are shown in red (CTV) and blue (rectum). WCO in panels
b), d), and f) compensated for range, setup, and both uncertainties, respectively. Each
nominal plan was recalculated with varying errors. Errors applied to both plans in a row
are those the respective worst case optimization compensated for. The nominal treatment
plan in the left column is the same across all rows.
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that WCO–S has reduced inhomogeneity coefficients compared to WCO–R though they

are still larger than those of regular optimized plan.

Combined uncertainties A first visual comparison of the dose distribution of the

WCO–S and WCO–RS plans already showed that they are very similar. The DVHs (fig-

ure 4.12 panels e) and f)) and dose–volume statistics (table 4.9) support this finding.

Visually it is difficult to determine differences between the WCO–S and WCO–RS plan.

It is also difficult to determine differences among the recalculated plans. Both the recal-

culated regularly optimized DVHs and the recalculated WCO–RS DVHs look very much

like those that were only subject to setup errors. It does seem like setup errors dominated

the range errors in our configuration. Hence, our observations for the WCO–RS plan and

the RE–RS distributions coincide with those for setup errors. An increased setup error of

7 mm did also not improve the results of the WCO–RS.

4.3.3 Discussion and Conclusions

We have extended the WCO to biological optimization modes. It is now possible to optimize

the biological effect of protons and carbon ions under consideration of range, setup, and

combined range and setup uncertainties. The ability of WCO to ensure ample target dose

under various error scenarios was compared to the margin concept. It could be shown that

for carbon ion IMPT both the range and setup errors are significantly better compensated

by WCO than by margins. The results indicate that the margin concept is not applicable

for particles.

4.3.3.1 Optimized plans

Though this is not a new result it is probably most striking that the current biological model

predicts significantly lower RBEs in the target region than everywhere else (Wilkens and

Oelfke 2008). For some combinations the RBE is even larger in the entrance channels of

the beams than in the target. The more beams are used the worse is the relation of target

to normal tissue RBE. Clearly, the effect of an increasing α value is lower than that of a

low dose i.e. it is not the biological effectiveness that creates good carbon ion plans but

only the good peak–to–entrance ratio of a carbon ion peak. The dose deposition actually

has to compensate the RBE.

Biological and physical WCO (Pflugfelder et al. 2008) give very similar RWD distributions.

The underlying dose and α distributions were as expected.
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4.3.3.2 Sensitivity analysis

The sensitivity analysis showed that the worst case optimization is superior to the margin

concept for both tested uncertainties. From the point of target coverage and OAR dose

the WCO–R plan is nominally favorable to all other plans. This would also be beneficial

in regard to time and memory constraints. But we have severe doubts that it withstands

even small setup uncertainties. This should be tested in a future project. The WCO-S

and WCO–RS plan on the other hand seem to be very robust in all regards. It should be

studied if a WCO–S by itself is also insensitive to range uncertainties which would reduce

the computational and time effort. For the WCO–S and WCO–RS plan we tested the two

different setup errors and concluded that considering larger setup uncertainties does not

necessarily result in more robust plans. In a future investigation the necessary error values

should be studied.
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Chapter 5

Accessing the Beam Quality:

Analytical Dose and LET Models for

Fragmenting Ion Beams

The quantification of the biological properties of an ion beam is difficult and physical

measures of beam quality are required. One of the most prominent and widely used

measures is the LET (Wilkens and Oelfke 2003). The importance of LET calculations

becomes apparent when we consider the change of heavy ion RBE with LET (Kraft 1987)

or the change of the hypoxia reduction factor (HRF) with LET (Barendsen et al. 1966,

Furusawa et al. 2000).

Analytical methods to calculate the energy deposition of ion beams by electromagentic

interactions and thereby dose and LET have been known for decades (Bethe 1930). While

analytical calculations for protons are straight forward, the situation for heavy ion beams

is far more complicated as we not only have to consider the LET of the primary ions but

also contributions from beam fragments created by inelastic nuclear interactions. They

have a significant dose contribution (about 6% at the Bragg peak of a 200 MeV/u carbon

ion beam (Gunzert-Marx et al. 2008)) but even more important their range exceeds that

of the primary ions by up to a factor of 9 (tritium fragments vs. carbon–12 ions) which

has to be considered in radiation therapy planning. Moreover, if in these regions also the

biological effects shall be considered we need to quantify the beam quality by calculating

the LET.

Now, why do we need additional analytical dose and LET models for fragments? The

physics of primary ions and their secondary fragments is the same. In a given depth the

dose or LET is the combined contribution of all the observed particles. The sole difference
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5. Accessing the Beam Quality: Analytical Models

between primary ions and fragments is the local energy spectrum. Primary ions are created

at a single source, fragments have an infinite number of sources all along the path of the

primary ions. Hence, for primary ions a single energy spectrum has to be considered

while for fragments the energy spectra of all the sources have to be combined. And the

contribution of all these spectra is what we are looking for.

In this section we present an analytical model to calculate the dose, the fluence, and both

the dose–averaged LET (LETd) and track–averaged LET (LETt) of a fragmenting ion

beam. First, we outline briefly how existing analytical models for proton dose calculation

(Bortfeld 1997) and proton LET calculation (Wilkens and Oelfke 2003) can be adapted

for primary heavy ions. Next, we develop an analytical model for the dose and LET of

fragments based on a simple power law for the range of protons as a function of their

energy (Wilson 1946). The model does not provide any means to calculate the magnitude

of the respective fragmentation channels. This required input will be taken form Monte

Carlo simulations. In order to get a first estimate on the LETd in therapeutic applications

we will take a look at two SOBP consisting of a single or two opposing fields respectively.

Though the model was designed with carbon ion therapy in mind it is also applicable to

other ion beams. All fragment calculations depend on the mass and the charge of the

fragment. Therefore the term “fragment” refers to a specific isotope not all isotopes of an

element.

5.1 From protons to primary heavy ions

In section 2.1 we have already introduced the basic definitions of dose and LET and a

simple power law for the range of protons as a function of their kinetic energy (equation

(2.5)). We already showed that in accordance with the Bethe–Bloch equation (Bethe 1930)

the power law can be adapted for heavier ions of charge Zhi, mass number Ahi, and kinetic

energy Ehi by

Rhi =
Ahi

Z2
hi

kp

(
Ehi

Ahi

)p
= khiE

p
hi (5.1)

using khi = A1−p
hi /Z2

hi · kp. The adapted power law allows to easily modify the analytical

proton dose (Bortfeld 1997) and LET (Wilkens and Oelfke 2003) models such that they

are valid for heavier primary ions.

It can be shown that the adapted straggling width σs,hi (Bortfeld 1997) for heavy ions is
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given by

σs,hi =
1

Z
4/p−2
hi A

2−2/p
hi

e4NZ

4πε0
p2 k

2/p
p

3− 2/p
R

3−2/p
hi , (5.2)

where NZ is the electron density of the irradiated matter, ε0 the vacuum permittivity and

e is the charge of the electron. A derivation of (5.2) can be found in appendix B.

5.2 From primary heavy ions to fragments

The analytical description for dose, fluence, and LET arising from a fragment of mass Af ,

charge Zf , and kinetic energy Ef produced from primary ions of mass Ahi, charge Zhi, and

kinetic energy Ehi were derived under the following assumptions:

• only remnants of primary ions are considered

• the kinetic energy per nucleon is conserved in the fragmentation process: Ehi/Ahi =

Ef/Af

• the additional fragmentation of fragments can be neglected

• the cross section of each respective fragmentation channel can be approximated by

an energy independent constant.

• the attenuation of the primary beam is the source of fragments. Each fragmentation

channel f has an associated attenuation coefficient µhif . The sum of the attenua-

tion coefficients is the total attenuation coefficient µhi. If we assume a very simple

attenuation model the fluence Φhi (z) is

Φhi (z) = Φ0e−µhiz ≈ (1− µhiz) Φ0 =

(
1−

∑
f

µhifz

)
Φ0 (5.3)

Here, Φ0 is the fluence of the primary particle beam. Therefore the production rate

of a specific fragment isotope f is equal to the loss of primary ions in the specific

fragmentation channel

dΦhi (z)

dz

∣∣∣∣∣
hif

≈ µhifΦ0. (5.4)
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Let’s consider a heavy ion beam of range Rhi,0 from which a fragment is created at depth

z′ < Rhi,0. The remaining energy Ehi of the primary ion at z′ is

Ehi (z′) = k
−1/p
hi (Rhi,0 − z′)1/p

. (5.5)

The kinetic energy per nucleon is conserved in fragmentation. Therefore, the newly created

fragment’s kinetic energy is given by Ehi (z)′ · Af

Ahi
. This energy translates into a range Rf,z′

given by

Rf,z′ =
Af

Z2
f

Z2
hi

Ahi

(Rhi,0 − z′) = λhi
f (Rhi,0 − z′) . (5.6)

Here, λhi
f = (Af/Z

2
f ) · (Z2

hi/Ahi). If the rate at which fragments are created is described by

equation (5.4) the fluence Φf,z′ (z) is given by

Φf,z′ (z) =

0 for z < z′ and z > Rf,z′

µhifΦ (0) dz′ for z′ < z < Rf,z′ + z′
(5.7)

where dz′ is an infinitesimal short distance around z′. Once a fragment is created it

undergoes the same physical interactions as any other ion. Rearranging equation (5.1) we

obtain an energy range relationship for fragments

Ef,z′ (z) = k
−1/p
f

(
λhi

f (Rhi,0 − z′)− (z − z′)
)1/p

(5.8)

where kf = A1−p
f /Z2

f · kp. Taking the derivative of equation (5.8) with respect to z yields

the stopping power Sf,z′ . The above set of equation enables us to determine the fluence,

dose, LETt, and LETd of fragments.

5.2.1 Monoenergetic fragments

For now we assume that all the fragments of the same isotope created at z′ have the same

kinetic energy. If we want to know the contribution of all the fragments of this isotope at

another depth z we have to combine the contribution of all fragments that are present at

that depth. Once those fragments have been determined, fluence and dose are simply the

sum of the respective contributions while LETt and LETd are the either fluence or dose

weighted average of all stopping powers. As there is an infinite number of depths at which

fragments are created the sums will be carried over to integrals. The lower (z′low) and

upper (z′max) integration limits are a function of z and can be determined using equation
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5.2 From primary heavy ions to fragments

(5.6). Two types of fragments with different integration limits can be distinguished by

their relative stopping power. The first looses less energy (λhi
f > 1) and the second looses

more energy (λhi
f < 1) per unit distance than primary ions of the same energy per nucleon.

Let us first consider those fragments that have a smaller stopping power than the primary

particles (λhi
f > 1). No matter in which depth z′ these fragments are created their range

exceeds the range of the primary particles in the same depth and they reach at least the

depth Rhi,0:

Rf (z′) > Rhi (z′) =⇒ Rf (z′) + z′ > Rhi (z′) + z′ = Rhi,0 (5.9)

Hence, in depths z ≤ Rhi,0 all fragments that were already created in smaller depths

contribute i.e. z′low = 0 and z′max = z. In depth exceeding Rhi,0 the fluence is reduced as

some fragments come to rest. The maximum depth a fragment can reach decreases with the

depth in which it is created as the primary particles loose more energy per nucleon per unit

distance than the fragment. The fragments reaching the greatest depths are those created

at z′low = 0 cm and therefore reaching all depths in which the fragment can be observed.

The fragment with the lowest energy that still reaches z > Rhi,0 can be determined by

equation (5.6)

z = Rf,z′max
+ z′max =⇒ z′max =

λhi
f Rhi,0 − z
λhi

f − 1
. (5.10)

Next, we will consider those fragments that have a greater stopping power than the primary

particles (λhi
f < 1). These fragments loose more energy per nucleon per unit distance than

the primary ions. Hence, the smaller the depth in which a fragment is created the smaller

the maximum depth it can reach. The first fragment stopping is the fragment created at

z′ = 0 cm. The maximum depth it reaches is z = Rf,0 = λhi
f Rhi,0. In any smaller depth

all fragments already created contribute i.e. z′low = 0 and z′max = z. In depths z > λhi
f Rhi,0

some fragments have already come to rest and do not contribute any more. The fragments

with the lowest energy at z > λhi
f Rhi,0 are those created at

z′min =
λhi

f Rhi,0 − z
λhi

f − 1
. (5.11)

Any fragment created at a greater depth will contribute and therefore has to be considered

(z′max = z). To conclude our reasoning we explicitly list the lower and upper integration

limits:

i λhi
f > 1 and z ≤ Rhi,0: z′low = 0 and z′max = z
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ii λhi
f > 1 and z > Rhi,0: z′low = 0 and z′max =

λhif Rhi,0−z
λhif −1

iii λhi
f < 1 and z ≤ λhi

f Rhi,0: z′low = 0 and z′max = z

iv λhi
f < 1 and z > λhi

f Rhi,0: z′low =
λhif Rhi,0−z
λhif −1

and z′max = z

Cases i) and iii) have the same limits. Therefore, we will present their results together.

Following the above considerations the fluence Φ̃f of a monoenergetic fragment is given by

Φ̃f (z) = Φ0µhif

∫ z′max

z′low

dz′ =
Φ0µhif

λhi
f − 1

·


(
λhi

f − 1
)
z i) & iii)

λhi
f Rhi,0 − z ii)

λhi
f (z −Rhi,0) iv).

(5.12)

Next, we will take a look at the dose, LETt, and LETd of monoenergetic fragments that

are given by the following equations

D̃f (z) =
Φ0µ0

ρ

∫ z′max

z′low

dz′ Sf,z′ (z) . (5.13)

L̃ETt,f (z) =
Φ0µ0

∫ z′max

z′low
dz′ Sf,z′ (z)

Φ̃f (z)
(5.14)

L̃ETd,f (z) =

∫ z′max

z′low
dz′ S2

f,z′ (z)∫ z′max

z′low
dz′ Sf,z′ (z)

(5.15)

There are only two additional integrals that have to be solved. The solution of the first

integral is

∫ z′max

z′low

dz′ Sf,z′ (z) = S̃ ·


[
δ1/p − ε1/p

]
i) & iii)

δ1/p ii)

−ε1/p iv)

(5.16)

Here, S̃ = Af/Ahi · Ehi,0/
(
λhi

f − 1
)
, δ = 1− z/

(
λhi

f Rhi,0

)
and ε = 1− z/Rhi,0. In the same

fashion we obtained

∫ z′max

z′low

dz′ S2
f,z′ (z) =

λhi
f − 1

p (2− p)
S̃2

λhi
f Rhi,0

·


[
δ2/p−1 − ε2/p−1

]
i) & iii)

δ2/p−1 ii)

−ε2/p−1 iv)

(5.17)
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Calculation of dose, LETt, and LETd can be done easily using the above equations.

5.2.2 Including an energy spectrum

In the previous section we assumed that all fragments created at z′ have a) the same kinetic

energy per nucleon and b) do not straggle. This is of course an unrealistic approach. The

primary ions are not monoenergetic and the physical interactions of the fragments are of

statistical nature. Following the approaches for protons and primary ions we will assume

that fragments have a Gaussian energy spectrum. To keep the calculations simple the

energy spectrum is translated into an equivalent depth spectrum ϕz (z̄). Each energy is

identified with a water equivalent depth z̄ in which a monoenergetic ion would have the

same energy.

Let us first consider only fragments created at z′. For these fragments equations (2.8) to

(2.11) can be applied directly. As these integrals only represent intermediate steps we are

not going to present any results here. We can follow the arguments from the previous

section to combine the contribution from all fragments of a specific isotope following the

same arguments as in the previous section. Total fluence Φf and dose Df are given by

Φf (z) = µfΦ0

∫ z′max

z′low

dz′
∫ Rf,z′+z

′

−∞
dz̄ ϕz (z̄) and (5.18)

Df (z) =
µfΦ0

ρ

∫ z′max

z′low

dz′
∫ Rf,z′+z

′

−∞
dz̄ Sf,z′ (z̄)ϕz (z̄) (5.19)

=
µfΦ0

ρ
〈Sf〉z (5.20)

Here, the Gaussian depth spectrum

ϕz (z̄) = 1/
(√

2πσf

)
exp

(
−(z − z̄)2

2σ2
f

)
(5.21)

about the mean depth z has been simplified by using the same width σf for all fragments in

all depths. Comparison with numerical integration showed that the width due to straggling

can be approximated with the straggling width σf,max (equation (5.2)) at depth λhi
f Rhi,0

(the maximum range of the longest reaching fragment) without loss of accuracy. Additional

Gaussian spectra e.g. due to the energy spectrum of the primary particles can be incor-

porated by squared addition of the spectrum widths. Calculation of LETt and LETd is

not as straight forward at first glance as there are two levels of averaging. Exemplary we
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will show here which steps are necessary to calculate LETt. The first step is to calculate

LETt for a fragment created at z′

LETt,f,z′ (z) =

∫ Rf,z′+z
′

−∞ dz̄ Sf,z′ (z̄)ϕz (z̄)∫ Rf,z′+z
′

−∞ dz̄ ϕz (z̄)
(5.22)

=
µfφ0

∫ Rf,z′+z
′

−∞ dz̄ Sf,z′ (z̄)ϕz (z̄)

Φf,z′ (z)
(5.23)

where Φf,z′ is the fragment’s fluence. Next we will have to repeat the averaging to combine

all fragments of the same isotope

LETt,f (z) =
µFΦ0

∫ z′max

z′low
dz′LETt,F,z′ (z) Φf,z′

Φf (z)
(5.24)

=
µFΦ0

∫ z′max

z′low
dz′
∫ Rf,z′+z

′

−∞ dz̄ Sf,z′ (z̄)ϕz (z̄)

Φf (z)
(5.25)

=
µFΦ0 〈Sf〉z

Φf (z)
(5.26)

Hence, LETt can be obtained using the same integrals used for dose and fluence. If the

same method is applied to the LETd the following equation is obtained

LETd,f (z) =

∫ z′max

z′low
dz′
∫ Rf,z′+z

′

−∞ dz̄ S2
f,z′ (z̄)ϕz (z̄)∫ z′max

z′low
dz′
∫ Rf,z′+z

′

−∞ dz̄ Sf,z′ (z̄)ϕz (z̄)
(5.27)

=
〈S2

f 〉z
〈Sf〉z

(5.28)

which reduces the total number of integrals that have to be calculated to three. For

a detailed evaluation of the three integrals see appendix C. The solutions are presented

below in terms of the parabolic cylinder function Dν .

Φf (z) =
φ0µ0√

2π
(
1− λhi

f

)


e−ξ
2/4D−2 (ξ)− e−χ

2/4D−2 (χ) i) and iii)
√
π2−1/2 − e−χ

2/4D−2 (χ) ii)

e−ξ
2/4D−2 (ξ)−

√
π2−1/2 iv).

(5.29)
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To shorten the displayed equation we introduced χ =
z−λhif Rhi,0

σf,max
, ξ =

λhif (z−Rhi,0)
σf,max

.

〈Sf〉z = S̃1 ·


e−ξ

2/4D−1/p−1 (ξ)− e−χ
2/4D−1/p−1 (χ) i) and iii)

√
π2−1/2p

Γ((p+1)/2p)
− e−χ

2/4D−1/p−1 (χ) ii)

e−ξ
2/4D−1/p−1 (ξ)−

√
π2−1/2p

Γ((p+1)/2p)
iv).

(5.30)

where

S̃1 =
σ

1/p
f,maxΓ (1/p)

√
2πpk

1/p
f

(
1− λhi

f

) . (5.31)

and the third integral yields

〈
S2

f

〉
z

= S̃2 ·


e−ξ

2/4D−2/p (ξ)− e−χ
2/4D−2/p (χ) i) and iii)

√
π2−1/p+1/2

Γ(1/p)
− e−χ

2/4D−2/p (χ) ii)

e−ξ
2/4D−2/p (ξ)−

√
π2−1/p+1/2

Γ(1/p)
iv).

(5.32)

with

S̃2 =
σ

2/p−1
f,max Γ (2/p− 1)

√
2πp2k

2/p
f

(
1− λhi

f

) (5.33)

Using the solutions to the integrals dose, LETt, and LETd can be easily calculated. We

refrain from displaying the actual equations as this would be a mere repetition.

5.2.3 The contribution of each fragment isotope

The derived model allows to calculate fluence, dose, and LET for each fragment isotope.

Which is fine as a theoretical model but what we are eventually interested in is the beam

quality of the complete carbon beam. One of our major assumptions was energy invariance

of the cross section for each fragmentation channel. Hence, we need only one relative fluence

or dose value for each isotope and the primary ions to combine all contributions. We do

not intend to develop a model for this but instead want to go back to already published

dose distributions of fragment elements. Benitsch (2005) simulated depth dose curves for

all fragment elements with Z ≤ 6 in a therapeutic carbon ion beam. We combined up to

three isotopes to match the Monte Carlo depth dose curves of each element as good as

81



5. Accessing the Beam Quality: Analytical Models

possible. This gives us relative contributions to the total dose that we can use to calculate

the total dose and LET of a fragmenting ion beam.

5.3 Results

All results presented in this section were obtained for a carbon ion beam with a residual

range of 14.35 cm in water corresponding to an initial energy Ehi,0 ≈ 265 MeV/u. We

chose this energy to be able to compare our results to previously published Monte Carlo

simulations (Benitsch 2005).

5.3.1 Dose, LETd, and LETt for the primary ion beam

To verify our dose calculation we compared the primary carbon ion dose predicted by our

analytical model to results from Monte Carlo simulations (Benitsch 2005). The original

model (Bortfeld 1997) does not provide any means to calculate the absorption coefficient

µhi which we therefore fitted to the data. Similarly, the model includes already straggling

but the energy spread of the primary beam due to the employed ripple filter (Weber and

Kraft 1999) still had to be included. With an additional energy spread σripple = 3.5 mm

and an absorption coefficient µhi = 0.0215 cm−1 we did not observe any differences between

analytical model and simulation (cf. figure 5.1a).

5.3.2 Dose, dose–, and track–averaged LET of fragments

When comparing the shape of both the depth dose and the LETd curve of the different

isotopes we observed that the shape of the curves is similar for all fragments. Figure 5.2

shows the straggling corrected dose and LETd for two example fragments. All fragments

express the maximum dose and a simultaneous steep rise in LETd in the same isotope

dependent depth Rf (Dmax). The value of Rf (Dmax) depends only on λhi
f and is given by

Rf (Dmax) =

Rhi,0 if λhi
f > 1 and

λhi
f Rhi,0 if λhi

f < 1.
(5.34)

For each of the respective cases an example can be found in figure 5.2. Depth–dose and

LETd curves for beryllium–9 (figure 5.2a, λhi
f = 1.69) and carbon–11 (figure 5.2b, λhi

f =

0.91) are shown. Both the dose peak and the LETd rise can be explained by the fragment’s

range. Rf (Dmax) is the depth of the first Bragg peak of a fragment of this isotope where

the dose rises steeply.
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Figure 5.1: Comparison of the dose of primary carbon ions, hydrogen fragments, beryllium
fragments, and the total beam calculated with the analytical models and Monte Carlo sim-
ulations, respectively. All doses have been normalized to the entrance dose of the primary
ions.
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Figure 5.2: Straggling corrected dose, LETt, and LETd of beryllium–9 and carbon–11.
The Bragg peak of the primary ions is located at 14.35 cm (dashed black).

Figure 5.3: LETd and dose of beryllium–9 ions calculated with straggling and LETd cal-
culated without straggling. The range of the primary ions is highlighted by the dashed black
line.
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Our calculations showed that the energy spectrum cannot be omitted when calculating

LETd. Figure 5.3 shows LETd predictions for beryllium–9 obtained with and without an

energy spectrum. Up to Rf (Dmax) the same values are predicted. Further into the water

phantom the LETd is significantly overestimated if straggling is omitted. The maximum

value of the LET has to be considered carefully. The fluence is very small in this region and

therefore LETd approaches a singularity. No difference is observed among doses calculated

with and without energy spectra (results not shown).

5.3.3 Comparison to Monte Carlo depth dose curves

By comparing our model to Monte Carlo results we verified our dose calculations and

obtained the relative contribution of each fragment isotope to the total dose. The depth

dose curve of the Monte Carlo simulation and the analytical model (figure 5.1) agree for

the primary carbon ions and all fragments but hydrogen (figure 5.1b). When combining

the dose from primary ions and all fragments the analytical model predicts less dose right

ahead of the Bragg peak than the simulations (figure 5.1d). It does seem like we system-

atically underestimate the fragment dose in depths smaller than Rf (Dmax). The relative

contribution of each fragment isotope can be found in table 5.1.

Table 5.1: The table lists up to three isotopes for each element whose weighted sum is the
best analytical representation of a depth dose curve obtained by Monte Carlo simulation.
The dose is normalized to a primary carbon ion beam with unity entrance dose.

Isotope 1 Isotope 2 Isotope 3

Element A Dmax( a.u.) A Dmax( a.u.) A Dmax( a.u.)

Hydrogen 1 0.046
Helium 3 0.039 4 0.029
Lithium 5 0.0055 6 0.0034 7 0.0017
Beryllium 8 0.0876
Boron 9 0.0436 10 0.0533 11 0.0640
Carbon 9 0.0101 10 0.111 11 0.150

5.3.4 LETd of the complete beam

Using the relative contributions of each isotope we can calculate the LETd of the beam

with primary ions and all its fragments (figure 5.4). The LETd shows some very distinct

steps and peaks that are correlated with different fragment isotopes. Those steps that are

found in depth smaller than Rhi,0 are in depths Rf (Dmax) of fragments with λhi
f < 1. The
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Figure 5.4: Total LETd of a carbon ion beam

other steps are in depths were fragments with λhi
f > 1 reach their maximum depth Rf,max.

Despite the high maximum LETd values that we observed for individual fragment isotopes

and the primary ions the total LETd does not exceed 290 keV/µm. As high LETd values

are always linked to very low dose values the dose–averaging of the total LETd suppresses

most of these peaks. Hence, the only fully visible LETd peak is that of hydrogen–1 and

helium–4 as these fragments have the longest range in water. The peak is located at 45

cm water equivalent depth and therefore not visible in figure 5.4.

5.3.5 LET of SOBPs

The influence of dose–averaging is clearly visible when we turn to the LETd of SOBPs.

Figure 5.5 shows two SOBPs, one created with a single field (figure 5.5a) and the other

created with two opposing fields (figure 5.5b). The length of the respective SOBPs is

4 cm and they are placed in the center of a 20 cm water phantom. Across the first SOBP

(figure 5.5a) the LETd rises with increasing depth from ∼ 40 keV/µm up to ∼ 130 keV/µm

at the distal edge. It decreases monotonously behind the SOBP. The LETd in the second

SOBP is nearly symmetrical with two maxima (∼ 90 keV/µm) located at the edges of

the SOBP. In the center the LETd drops down to ∼ 40 keV/µm. Outside the target the

LETd does not exceed ∼ 25 keV/µm.

5.4 Discussion and Conclusions

In this section we have shown how to adapt already existing analytical dose and LET

calculation algorithms for protons such that they can be used for primary ions. The model
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Figure 5.5: Dose (solid red) and LETd (dashed blue) of a spread out Bragg peak created
with a single field (a) and two opposing fields (b).

for primary ions reproduces Monte Carlo depth dose curves with an appropriate absorption

coefficient and width of the energy spectrum. We also developed a novel analytical model

for the dose, the fluence, and the LET of the fragments of ion beams making various

assumptions. A comparison to Monte Carlo simulation results showed that the assumptions

seem to be valid for all elements but hydrogen. We assumed that all fragments are remnants

of primary ions. It turns out that the number of proton fragments that are not remnants

of the primary ions cannot be neglected. A similar observation was made by Grassberger

et al. (2010). They reported that for the LET calculation of therapeutic proton beams the

contribution of secondary protons cannot be neglected. When we assumed that the energy

per nucleon is conserved this included that the angular spread of newly created fragments

is very small. This is clearly violated for secondary protons as experiments by Matsufuji

et al. (2005) have shown. Straggling can definitely not be neglected. Ignoring it would

overestimate the influence of fragments on LETd behind the Bragg peak. As we expected

we can more or less ignore the dose of fragments in front of the Bragg peak but the increase

of 10 keV/µm in the LETd cannot be ignored as this is the region where the fastest RBE

changes are observed (Kraft 1987). Therefore the contribution of fragments to the total

LETd must not be ignored.

The actual single Bragg peak is unlikely to be used to irradiate a patient but it is more

likely that large fields consisting of many Bragg peaks are used. When choosing the beam

configuration it has to be considered that single fields offer higher LETds at least at their

distal edge than SOBPs consisting of more than one field.
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In conclusion we expect that the novel model for the calculation of LETd and dose of

fragmenting ion beams is sufficiently accurate to be used in the development of biological

optimization routines for carbon ion therapy. It provides a fast and easily implementable

way to assess the beam quality. For future developments we would like to conduct enhanced

Monte Carlo simulations to verify our LETd results and to improve the cross sections for

each fragmentation channel. The high difference in LETd within a SOBP underlines the

high potential for selective shaping of the dose to radioresistant tumor regions. This

potential can only be exploited by intensity modulated particle therapy where locally high

dose gradients can be applied.
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Chapter 6

Opening up New Avenues:

Advancing Radiobiological Models

The aim of the following chapter is to make use of the newly developed beam quality

measures and actually improve biological models. First, we will present a newly developed

model to include the effect of oxygen on tissue radiosensitivity into treatment planning.

Biological parameters for well oxygenated tissue are adapted for hypoxic tissues and it is

demonstrated how this could be integrated into treatment planning. Recently, Carlson

et al. (2008) introduced the RMF model, a mechanistic approach to describe the radiobio-

logic damage by relating double strand breaks to cell kill. The model has so far only been

applied to monoenergetic proton and carbon ion beams. Here, we are going to show how

it can be used to predict biological parameters and RBE of realistic particle beams.

6.1 Could C–12 overcome hypoxia effects? An ap-

proach to include hypoxia into particle treatment

planning

The higher the LET of a radiation modality, the more sensitive is tissue to its dose (Ando

and Kase 2009). The actual change of RBE with the LET depends not only on the cell

type but also on the cell’s microenvironment. One of the key factors in the microen-

vironment that impact radiosensitivity is the partial oxygen pressure (pO2) (Alper and

Howard-Flanders 1956). The lack of oxygen supply that can be observed in many tumors

increases their radioresistance significantly. How much more dose is required to gain the

same biological effect in poorly (hypoxic) compared to well oxygenated (aerobic) tissues
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can be quantified by the hypoxia reduction factor (HRF; a description of the HRF and its

relation to the oxygen enhancement ratio can be found in the following paragraph). In

vitro some cell lines irradiated with photons have expressed HRF values exceeding 3, in vivo

HRF values of up to 1.8 have been estimated (Carlson et al. 2006). When investigating the

radiosensitivity of cells to heavy ion irradiation in the absence of oxygen it was observed

that the HRF decreases with increasing LET (Barendsen et al. 1966). Hence, the RBE

of high–LET radiation is reinforced by a decreasing HRF making it even more effective.

There has been some speculation on the benefit of the reduced HRF but most studies have

focused on measuring it in vitro (Furusawa et al. 2000). In order to get first estimates on

the effectiveness of particles in the patient we developed a model to incorporate the HRF

in an already existing treatment planning system for heavy ions. In modern 3D IMPT

plans (Lomax 1999) the absorbed dose and LET distributions are highly degenerated, such

that it is very complicated to estimate the biological effect in advance. Hence, it is difficult

to infer from in vitro data points on the impact of actual distributions without knowing

them. We do not claim to be able to predict real outcome in the patient as too many of the

input parameters are subject to large uncertainties. We rather focused on clarifying our

assumptions and ensuring that our results provide a reasonable guess i.e. our results shall

give a realistic insight in what we may expect from using carbon ions for hypoxic tumors.

The model was designed with carbon ions in mind but is not restricted to them. It can

easily be extended to protons, other heavy ions, and even photons. All further calculations

were performed for carbon ions.

Hypoxia reduction factor With decreasing partial oxygen pressure p more dose is

required for the same rate of cell kill. The ratio of the doseD (p) required in oxygen depleted

cells to the dose D (paerobic) required for the same rate of cell kill in fully oxygenated cells

is called hypoxia reduction factor (HRF) (Carlson et al. 2011)

HRF (p) =
D (p)

D (paerobic)
(6.1)

It is common practice to measure the influence of oxygen on the biological effect in terms

of the oxygen enhancement ratio (OER) which is defined as

OER (p) =
D (phypoxic)

D (p)
(6.2)
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where D (phypoxic) is the dose required for fully hypoxic cells. The two definitions are related

by the equation

HRF (p) = m
1

OER (p)
(6.3)

Here m is the maximum HRF/OER. We believe that the definition of the HRF is more

intuitive than OER as it is based on the normal situation of healthy cells (aerobic). With

increasing abnormality and decreasing pO2 the factor increases i.e. healthy aerobic cells

have an HRF of 1. The OER on the other hand is based on hypoxic cells that are usually not

observed in healthy tissue. Healthy cells have the highest OER which is counterintuitive

as the author has frequently observed in discussions with colleagues.

6.1.1 Methods and Materials

The new model was designed to be used within the existing biological effect optimization

in KonRad. The two parameters of the LQ model, α and β, are input parameters for the

treatment planning system. Due to the physical properties of carbon ions those parameters

depend on the irradiated tissue, the initial energy of the carbon ion beam, and the depth

of the tissue inside the patient. The new model adds another dependency: within the

tumor the pO2 shall also be considered. Hence, two major sections of the new model can

be identified: the generation of new pO2 dependent input parameters that are patient

independent and the patient specific calculation of the pO2 in each voxel in the TPS.

Therefore, the flowchart in figure 6.1 is split in two major parts. Within this section we

will follow the circled numbers in the flowchart to describe each of the steps of the new

model. A big effort was put on retaining a high degree of flexibility in the model. Each

part is designed as a module that can be easily exchanged for future enhancements.

6.1.1.1 The preparation part

The first part of the model generates the patient independent input data for the treatment

planning system. The current biological optimization uses the biological effect E instead

of the RWD. The LQ–parameters α and β are input parameters derived from the LEM

(Scholz and Kraft 1996) that are stored in tables. Parameters are available as a function

of irradiated tissue, initial particle energy, and water equivalent depth. We assume that

these parameters represent aerobic tissue and are going to use the dependency of the HRF

on the LET to transform them for lower pO2. The work flow of generating these input

parameters is outlined in figure 6.1. Starting from a data point on a depth dose curve
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parameters from table

Optimze treatment plan 
for a homogeneous 

biological effect

Convert PET to oxygen 
pressure in every target 

voxel
7

Get the LET and aerobic LQ 
parameters 1

Calculate maximum HRF 2

For each mean voxel 
oxygen pressure

Calculate HRF for the 
subvoxel distribution 4

Obtain HRF corrected LQ 
parameters 5

Figure 6.1: A flow chart outlining the proposed treatment planning procedure.

we take the respective biological parameters out of our tables and calculate the LET 1 .

The LET is calculated using the analytical model presented in chapter 5. Thereafter, we

can use the dependence of LET and HRF to calculate the maximum HRF m 2 . In the

next step we take a look at a single voxel’s pO2. For numerous voxel pO2 values we have

simulated average underlying subvoxel pO2 distributions 3 . Given the LET and m the

pO2 distributions are converted into HRF distributions 4 for which we can determine

surival curves. By fitting equation (2.12) to these curves the HRF–corrected parameters

αH and βH are extracted 5 . The data is then stored in a table 6 as input parameters

for the treatment planning system.

HRF and LET Once we have calculated the dose–averaged LET for every data point we

can turn towards its influence on the HRF. Based on published cell survival data obtained

under hypoxic and aerobic conditions for a wide range of LET values (Furusawa et al.

2000) we model the change of the maximum HRF m with the LET using

m = r · erf (−s · LET + t) + 2 (6.4)
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where r, s, and t are fit parameters. The term erf denotes the Gauss error function.

According to equation (6.4) m decreased from ≈ r + 2 to 1 with increasing LET. This

model cannot describe all the effects of oxygen on the processing of radiation damage. We

do make the assumption that the key role of oxygen is the fixation of initial DNA damage,

a process that is independent of the cell type. Hence, we can use the same parameters

r, s, and t for all cell lines. Parameters were determined by fitting the equation to the

10 % survival doses published in Furusawa et al. (2000) of carbon ions. Following our

assumption that the HRF is cell line independent we combined the data for HSG and V79

cells.

HRF and pO2 So far we can only describe the extreme situations of fully hypoxiy

or aerobic cells. The critical cells at intermediate oxygen levels (Wouters and Brown

1997) cannot be considered correctly as there is no published data on the change of the

HRF with pO2 and LET. In the previous paragraph we assumed that the oxygen directly

fixes the initial DNA damage. How much DNA is damaged depends on the radiation

modality but the processing of the damage and the fixation by oxygen are independent

of the radiation modality. Therefore, the change of radiosensitivity with pO2 is modeled

in analogy to the Alper–Howard–Flanders model (Alper and Howard-Flanders 1956) for

photons by employing

HRF (p) =
m ·K + p

p+ k
(6.5)

as in Carlson et al. (2011).∗ The authors of the latter publication analyzed the data of

various other publications and found that for photons m = 2.8 and K = 1.47 mmHg

represent the data best. Following our assumptions we are going to use the same K value

for carbon ions but replace m with equation (6.4). In combination with equation (6.5) we

are going to use it to perform step 4 in figure 6.1.

Subvoxel oxygen distributions Whatever imaging modality is used to determine the

pO2 distribution in the tumor the information will always be per voxel. Due to physical

limitations the spatial resolution of PET images is in the order of several mm. As the

pO2 changes on the µm scale within tissue, the actual oxygen supply of a cell within a

voxel will certainly differ from the value measured for the whole voxel. We assume that

the measured value is the mean of the underlying subvoxel oxygen distribution. Hence, we

∗A very similar equation is used to describe the relation of the partial oxygen pressure and OER
OER (p) = [KOER +mp] / [KOER + p] where KOER = m ·K.
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simulated possible underlying distributions using a published method (Petit et al. 2009).

We are not going to present any details here as our simulation merely confirmed previously

published results. In total we simulated subvoxel oxygen distributions for mean pO2 values

ranging from 0.5 mmHg up to 31.5 mmHg (maximum mean pO2 in our simulation) in steps

of 1.0 mmHg. For each mean pO2 value at least 200 simulated distributions were averaged.

HRF–corrected parameters The simulated subvoxel oxygen distributions contain each

10,000 cells. To ease the storage of these data points the average subvoxel distributions

are stored as histograms with a bin resolution of 0.1 mmHg. The value of each bin i is

normalized such that it represents the relative number qi of cells with a certain pO2 pi .

For a given mean pO2 p̄, dose D, LET LET , and aerobic LQ parameters αA and βA the

relative cell survival per voxel is

S (p̄) =
∑
i

qi exp

(
− αA

HRF (pi, LET )
D − βA

HRF 2 (pi, LET )
D2

)
(6.6)

= exp
(
−αH (p̄, LET )D − βH (p̄, LET )D2

)
(6.7)

We calculate cell survival curves up to 20 Gy using equation (6.6) and fitted equation (6.7)

to them. Thereby we obtained the HRF–corrected LQ parameters αH and βH .

6.1.1.2 The TPS part

Once all the patient independent calculations have been performed the treatment planning

system takes over. The crucial point at this stage is how to obtain the pO2 in every single

voxel. We assume at this point that it is possible to infer the pO2 from functional images

that have been co–registered to the treatment planning CT. Various dose–painting–by–

numbers studies (Bentzen 2005) have been published, all using very different methods to

prescribe the dose based on image intensities. Currently three different approaches are used

to link imaging information to dose prescription. The first approach is to linearly scale the

prescribed dose with the intensity obtained from the functional image (Grosu et al. 2007,

Flynn et al. 2008, Rickhey et al. 2008, Alber et al. 2003). The second approach is to deter-

mine the partial oxygen pressure in a voxel from the imaging information and use known

relationships between the pO2 and cell survival to scale the dose (Petit et al. 2009, Mali-

nen et al. 2006). The third approach is to relate radiosensitivity to information obtained

from time resolved images and use a tumor control probability model for optimization

(Thorwarth et al. 2005, 2007). We are not going to describe the existing methods in detail

at this point. Within this model we will focus on the relationship of the partial oxygen
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pressure and PET image intensities. In a recently published study (Chang et al. 2009) the

authors performed FMISO PET scans and locally co–registered pO2 measurements with

Eppendorf electrodes. Though the exact relation between pO2 and FMISO PET image

intensity varied for each tumor they concluded that in voxel i the relationship of FMISO

image intensity Fi and partial oxygen pressure pi can be approximately described by

pi = K50 ·
(
Fmax

Fi
− 1

)
(6.8)

The maximum FMISO PET image intensity within the tumor is Fmax and K50 is a fit

parameter describing the partial oxygen pressure for which the image intensity is at half

maximum. In their study they calculated a mean value of K50 = (6.4± 5.4) mmHg. We

will be using this value in our study. We would like to clarify at this point that the choice

of this model is not crucial for the feasibility of this project. As long as this model creates

realistic distributions of the pO2 in the tumor any other model would only change the

local oxygen distribution but not the complete picture of the method. If any other more

accurate model is available we can easily replace the current.

Once the pO2 is determined, appropriate biological parameters can be selected from the

table created in the preparation part and the standard biological optimization for carbon

ions can be launched. To demonstrate the capability of the treatment planning system we

optimized SOBPs in various scenarios. We also optimized treatment plans for two patient

cases but are unfortunately not able to show these. The institution providing the PET

data did not grant permission to publish any results based on them.

6.1.2 Results

HRF and LET A model for the change of the maximum HRF m with LETd was ob-

tained by fitting a simple model to the data extracted from Furusawa et al. (2000). Fig-

ure 6.2 depicts the data points for two different cell lines (V79 and HSG) and the maximum

HRF m our fit of equation (6.4) to the data predicts. The goodness of the fit is R2 = 0.90.

The fit parameters can be found in table 6.1. According to figure 6.2 m changes mainly

in the region of of 40 keV/µm to 110 keV/µm which corresponds to the LETd range in a

C–12 SOBP (cf. figure 5.5). The original publication contains data for two cell lines (V79

and HSG cells) for carbon ions. As it can be seen in figure 6.2 there is no obvious difference

between the two cell lines. This goes along with our previous assumption that the HRF is

independent of the cell type.
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Table 6.1: Parameters r, s, and t obtained by fitting equation (6.4) to data published by
Furusawa et al. (2000).

Parameter Value

r 0.98
s 1.65 · 10−2 µm/keV
t 1.73

Figure 6.2: Maximum HRF m as a function of the LET for two different cell lines. Data
extracted from Furusawa et al. (2000). The dashed black line is the value of m predicted
by equation (6.4) using parameters in table 6.1.

HRF corrected LQ parameters α and β The influence of LETd and the pO2 on cell

survival is clearly reflected in the HRF corrected α and β curves we calculated. As an

example figure 6.3 shows five curves of α as a function of depth for a carbon ion beam with

an initial energy of 276 MeV/u. Each curve represents differently oxygenated chordoma

tissue. The parameter α decreases with decreasing pO2. Assuming that tissue with a pO2

of 31.5 mmHg is aerobic the values drop down to half for fully hypoxic cells in low LET

regions. Only very little change can be observed in the high LET region around the Bragg

peak. According to figure 6.3 α changes more rapidly once the pO2 drops below 10 mmHg.

Observations for β are similar. For very low pO2 values β is negligible.
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Figure 6.3: The HRF–corrected parameters α and β for chordoma tissue as a function
of depth for five different pO2 values. Regular cells are assumed to have a pO2 of 31.5
mmHg (solid blue). Additional curves are given for 10.5 mmHg (dashed green), 3.5 mmHg
(dash–dotted red), and 0.5 mmHg (dotted black). Curves generated for a 276 MeV/u C–12
beam with a residual range of 14.3 cm (vertical dashed black line).

Constant biological effect and different pO2 values: SOBP and the simultaneous

boost The new routine in the treatment planning system is able to optimize treatment

plans with constant RWD. Figure 6.4 depicts the physical dose of five SOBP each delivering

a constant RWD of 3 Gy (RBE) given different pO2 values. The latter is constant across

the whole target. We can clearly see that with reduced pO2 more dose is necessary for the

same biological effect. The additionally required dose depends significantly on the local

LET. At the distal edge of the SOBP only little extra dose is required compared to the

dose at the proximal edge. The increase in dose is not only due to the higher HRF but also

due to the lower RBE. The LQ–model predicts a decreasing RBE with increasing dose.

Please note that the dose distributions for the low pO2 values could never be delivered

in a patient. The normal tissue dose exceeds the allowed limits by far if we assume that

normal tissue has similar biological parameters as a fully oxygenated tumor. HRF alone is

an inadequate measure to quantify the benefit from carbon ions under hypoxic conditions.

Oxygen depleted regions require more dose which reduces the RBE i.e. the benefit is

reduced. The ratio of hypoxic and aerobic doses shown in figure 6.5 includes both effects.

Essentially, the RBE decrease did not outrun the benefit of an reduced HRF and we need

significantly less additional carbon ion than photon dose. Among the carbon ion doses the

inhomogeneity of the distributions indicates that the high LET effect is pronounced for

low pO2 situations. The photon ratios were calculated by applying equation (6.5) to the

respective subvoxel oxygen distributions.

97



6. Opening up New Avenues: Advancing Radiobiological Models

Figure 6.4: Absorbed dose of five SOBPs delivering a constant RWD of 3 Gy (RBE) given
a respective pO2 of 0.5 mmHg (dotted black), 2.5 mmHg (short–dashed pink), 5 mmHg
(dash–dotted red), 10 mmHg (long–dashed green), and 31.5 mmHg (solid blue) across the
target (dashed black).

The capability of carbon ions to deliver highly conformal RWD distributions with very

steep absorbed dose gradients is shown in figure 6.6. A dose of 3 Gy (RBE) was prescribed

to a target with an oxygen depleted region in its center. We varied the pO2 of the oxygen

depleted region and kept it constant in the remainder of the target at 31.5 mmHg (fully

oxygenated). In any case the treatment planning system optimized a treatment plan with

a constant RWD across the whole target volume created by two opposing fields. The dose

at the edges of the oxygen depleted region is in any case lower than in the center due to

the increased LET at the edges. The lower the pO2 the higher the influence of the LET

(cf. figure 6.3). In order to generate constant RWD distributions the TPS creates highly

degenerated dose distributions. For the low pO2 cases the dose has to be varied within the

oxygen depleted region by up to 20 %. The reduction of the radiosensitivity in an oxygen

depleted region within the target is significantly lower for carbon ions than for photons.

Figure 6.7 shows the ratio of doses required in the oxygen depleted region to the dose

required in the fully oxygenated case. The influence of the LET is visible in the drop of

the ratio at the edges of the oxygen depleted region. Comparing figures 6.5 and 6.7 we

observe that the optimizer is able to model the biological effect better if only a small region

within the target is oxygen depleted and not the whole target.
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Figure 6.5: The ratio of doses required to deliver a constant RBE-weighted dose of 3 Gy
(RBE) across a 5 cm wide target for carbon ions and photons if the pO2 across the whole
target drops from 31.5 mmHg (aerobic) to the respective value. Carbon ion doses were
optimized with the treatment planning system while the photon doses are ideal doses.

Figure 6.6: Absorbed dose of five opposing field SOBPs all delivering a constant RWD of
3 Gy (RBE) across a target with a central boost region of 0.5 mmHg (dashed black), 2.5
mmHg (short–dashed pink), 5 mmHg (dash–dotted red) and 10 mmHg (long–dashed green)
pO2. The target region outside the boost is fully oxygenated.
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Figure 6.7: The ratio by which the carbon ion and photon dose across four different
low pO2 boost volumes has to be increased compared to an aerobic case (31.5 mmHg) in
order to maintain a constant RWD of 3 Gy (RBE). Carbon ion ratios were calculated from
figure 6.6 while the photon ratios are ideal calculations for simulated subvoxel distributions
using equation (6.5).

6.1.3 Discussion and Conclusions

The aim of this study was the design and testing of a treatment planning routine for

carbon ions that incorporates the influence of the partial oxygen pressure on the tumor

radiosensitivity. The complexity of the novel approach ranging from unknown branching

fractions of fragmentation channels to the relation of PET tracer uptake and pO2 forced

us the make numerous severe assumptions. In this section we are going to revisit those

assumptions that have the biggest influence on the outcome of the treatment plans.

Knowing the LET of the carbon ion beam is a prerequisite for our model as the maximum

HRF m depends on it. Based on cell survival data for two different cell lines (V79 and

HSG) we obtained a function describing the change of m with LET. The differences among

parameter sets for each cell line were small compared to other uncertainties such that

we cannot see our assumption that m is independent of the cell type affected. Using an

error function to model the data is a best guess and not based on biological or physical

considerations. The definition of the HRF suggests that it should approach unity for high

LET values. On the other hand we know that low LET particles express similar cell

survival curves as photons. Our results predict a maximum HRF for particles greater than

that of photons (2.98 for C–12 ions vs. 2.8 for photons). There is a variety of possible

explanations for this. On one hand the maximum HRF for carbon ions was obtained for

two cell lines only while the photon values were obtained from a broad variety of cell lines

and experiments. On the other hand carbon ion beams with LET values below 10 keV/µm
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are most likely never observed in a patient. In several simulations of carbon ion SOBPs

we never observed an LET of less than 40 keV/µm within the target, approximately the

same value for which carbon ions and photons have the same maximum HRF.

The high potential of dose shaping in hypoxic tumors with carbon ions is apparent when

we consider the change of α and β with pO2 and depth. Their peak–to–entrance ratio is

nearly doubled when we compare fully hypoxic to aerobic voxels. This potential cannot

be fully exploited in the patient due to dose–averaging of the LET and the biological

parameters in large fields but still we expect high dose and RBE gradients in the presence

of inhomogeneous oxygen distributions.

The single field SOBP confirmed that the ratio of doses required for the same RBE–

weighted absorbed dose in oxygen depleted and aerobic tumors varies significantly from

the distal to the proximal edge of the SOBP. This is not equivalent to the HRF as the RBE

is not the same for aerobic and hypoxic voxels. Lower pO2 values require more dose and

therefore the RBE decreases. Hence, the dose has to be increased even more to obtain the

required biological effect. But still the ratio is always smaller than the HRF of photons

even if the difference is relatively small.

On the other hand we obtained RWD distributions with two fields for a target with an

oxygen depleted region in its center that could be delivered safely. Though the physical

dose required varies significantly across the target the RWD could be kept constant and

the increase in physical dose outside the target is a lot smaller. The high potential in

shaping doses for tumors with varying pO2 values is confirmed by the fact that the ratio of

doses required for aerobic and oxygen depleted voxels is smaller than for the single field.

This may well be due to the small size of the oxygen depleted region and the therefore

higher LET. The capability of the treatment planning system to shape the dose along

these unrealistically steep oxygen distributions gives confidence that in cases with realistic

oxygen distributions dose shaping should be easily possible.

The most critical assumption of our model is that we can actually derive pO2 distributions

from PET images. We are aware that there are many problems associated with this and

that it will not be possible to present any reliable results is the near future. Yet the aim

of this study was a feasibility test and therefore we are not expecting to get most accurate

results. As long as the results are realistic and in the right order of magnitude we can get

estimates on the potential and the risks of using carbon ion therapy on hypoxic tumors.

For future projects we will continue at this point. We want to evaluate current treatment

plans on how they perform in the presence of hypoxia and define new treatment planning

strategies that reduce the risk of treatment failure in hypoxic tumors.
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6.2 Predicting the RBE of particles with the mecha-

nistic repair–misrepair–fixation model

In this section, we develop a mechanism–based approach to predict spatially varying proton

and carbon ion RBE for representative SOBP. In section 2.2.4 we used the repair-misrepair-

fixation (RMF) model (Carlson et al. 2008) to develop formulas explicitly linking radiosen-

sitivity parameters in the widely used LQ model to induction and biological processing of

DNA double strand breaks (DSB). To minimize the number of ad hoc adjustable parame-

ters, a published Monte Carlo Damage Simulation (MCDS) (Semenenko and Stewart 2004,

2006) is used to predict the effects of radiation quality on DSB induction. A multiscale

modeling approach such as this is potentially advantageous because the RBE for clinically

relevant particle distributions is guided by well-established physical and biological consid-

erations. Here, we will briefly describe how a model developed for monoenergetic particles

can be extended to particle beams including an energy spectrum. A correct averaging is

crucial in order to predict the RBE correctly within the model. The models and methods

are used to examine the impact of tissue radiosensitivity on RBE for monoenergetic pro-

tons and carbon ions as well as more clinically relevant proton and carbon ion SOBP. This

section has been submitted for publication (Frese et al. 2011b).

6.2.1 Methods and Materials

Determination of LQ parameters in a pristine Bragg peak Particle beams used

in clinical radiotherapy have an energy spectrum that cannot be neglected. The two main

components are the initial energy spectrum of the accelerator and contributions of stochas-

tic interactions of particles in matter that give rise to so–called straggling. Assuming that

both components of the particle distribution have a Gaussian spectrum (Bortfeld 1997),

the width of the combined spectrum can be obtained by quadratic addition of the indi-

vidual widths. Particles of different kinetic energies, and hence different RBE, contribute

to the total physical dose deposited at any given location. Within the framework of the

LQ–model, the synergistic effects of radiation may be incorporated into RBE calculations

by computing dose–averaged parameters αD and
√
βD (Zaider and Rossi 1980, Wilkens

and Oelfke 2006, and section 2.2.1). We extend this approach to an energy spectrum

using the same method that Wilkens and Oelfke (2003) used to calculate dose–averaged

LET for a proton beam with an energy spectrum. As energy, range, and depth in tissue

are directly correlated (Wilson 1946), a spectrum of energies can also be expressed as a
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spectrum of ranges or depths. The latter is used here so that dose and dose–averaged

radiation sensitivity parameters αD and βD are presented as a function of depth:

αD (z) =

R0∫
−∞

dz′ α (z′)φz′ (z)S (z′)

R0∫
−∞

dz′ φz′ (z)S (z′)

(6.9)

√
βD (z) =

R0∫
−∞

dz′
√
β (z′)φz′ (z)S (z′)

R0∫
−∞

dz′ φz′ (z)S (z′)

(6.10)

Here, φz′ (z) is the Gaussian distribution of particles about depth z that have the same

stopping power S (z′) as monoenergetic particles would have at depth z′. If we apply

equations (6.9) and (6.10) to equations (2.26) and (2.27), respectively, we obtain

αD (z) = θ 〈Σ (z)〉D + κ
〈
z̄f (z) Σ (z)2〉

D
(6.11)

βD (z) =
κ

2
〈Σ (z)〉2D . (6.12)

Here, 〈·〉D denotes a dose–averaged value.

Low–LET reference radiosensitivity parameters As indicated by equation (2.32),

RBE depends on radiation quality through the z̄f and Σ parameters, absorbed dose, and

(α/β)x. Because dose, z̄f and Σ are estimated using physical models or an independently

tested Monte Carlo simulation, our approach predicts that RBE varies among tumor–types

and tissues solely because of differences in (α/β)x. For this reason, multiple sets of low–

LET radiosensitivity parameters (table 6.2) were employed. For comparison with measured

trends in radiosensitivity (Furusawa et al. 2000), we used the respective low–LET reference

parameters for each cell line. The reference DSB yield Σ200 kVp = 8.68 Gy−1 Gbp−1 for

200 kVp X–rays was simulated in MCDS with a secondary electron spectrum obtained

from MCNP†. The frequency–mean specific energy z̄f,200 kVp was calculated for S200 kVp =

1.53 keV/µm. For all other calculations, we used three additional reference data sets

representing chordoma (Krämer and Scholz 2000), prostate (Carlson et al. 2004), and head

and neck tumors (Girinsky et al. 1993, Stuschke and Thames 1999), which cover a large

range of (α/β)x observed in vivo. To calculate RMF model parameters θ and κ for the

†Simulations provided by personal communication from Mr. Joo Han Park from Purdue University,
West Lafayette, Indiana, USA.
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Table 6.2: Low–LET reference parameters derived from published in vitro and in vivo data.
θ and κ are calculated based on these reference parameter values using equations (2.26) and
(2.27), respectively. T1, HSG, and V79 data reported by Furusawa et al. (2000), chordoma
data by Krämer and Scholz (2000), prostate data by Carlson et al. (2008), and head & neck
data by Girinsky et al. (1993) and Stuschke and Thames (1999).

Cell or αx βx (α/β)x θ κ θ/κ Ref. rad.

tissue type ( Gy−1) ( Gy−2) ( Gy) (Gbp) ( Gbp2) ( Gbp−1)

T1 0.0305 0.0585 0.52 0.0033 1.6 · 10−3 2.15 200 kVp
HSG 0.313 0.0615 5.1 0.0359 1.6 · 10−3 21.98 200 kVp
V79 0.184 0.020 9.2 0.0211 5.3 · 10−4 39.82 200 kVp
Chordoma 0.1 0.050 2 0.0121 1.5 · 10−3 8.25 Co-60
Prostate 0.15 0.048 3.1 0.0181 1.4 · 10−3 12.79 Co-60
Head & Neck 0.25 0.025 10 0.0302 7.3 · 10−4 41.33 Co-60

clinical conditions, we assumed that all reference radiosensitivity parameters were obtained

with Co–60 irradiation. Including a secondary electron spectrum (Hsiao and Stewart 2008),

we simulated the reference DSB yield Σx = 8.27 Gy−1 Gbp−1 with a reference stopping

power of Sx = 0.36 keV/µm. To represent the nucleus of a cell, we employed a diameter

of 5 µm to calculate z̄f using equation (2.21).

6.2.2 Results

Predicting trends in intrinsic radiosensitivity with particle LET Figure 6.8

shows predicted radiosensitivity parameters for V79, HSG, and T1 cells, for three dif-

ferent ion species (helium–3, carbon–12, and neon–20) over a wide range of LET values.

Reference radiosensitivity parameters (table 6.2) were measured using 200 kVp X–rays

(Furusawa et al. 2000). Model predictions were calculated using equations (2.26) and

(2.27). DSB yields were obtained with the MCDS model and the physical properties of

the monoenergetic particles were calculated with analytical functions. The predictions are

contrasted with measured data points published by Furusawa et al. (2000). The model

predicts the same trends as the measured data but tends to underestimate α and overesti-

mate β for lower LET values. The measured parameters reach their respective maximum

between 100 keV/µm and 250 keV/µm depending on the ion species while the RMF model

predicts increasing parameters beyond this point as both Σ and z̄f increase with LET. For

LET values exceeding ∼ 150 keV/µm, the model overpredicts α and β.
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Figure 6.8: Predictions of α and β as a function of particle LET for He–3 (dashed line),
C–12 (dash-dotted line), and Ne–20 (solid line) ions based on a single reference point
(triangle) for X–rays. Symbols show measured values of He–3 (circles), C–12 (upward
triangle), and Ne–20 (square) derived from cell survival data for V79, HSG, and T1 cells.
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Physical and radiobiological properties of a pristine Bragg peak Modern particle

therapy facilities use narrow scanned pencil beams. Figure 6.9 shows α, β, and the DSB

yield of a proton and a carbon ion pencil beam with a range of 15 cm in water assuming

the radiosensitivity of chordoma tissue. All calculations include depth straggling and an

additional depth spectrum created by a 3 mm ripple filter (Weber and Kraft 1999). DSB

yields are dose–averaged. αD and βD were calculated using equations (6.11) and (6.12),

respectively, and are determined primarily by the DSB yield. This is consistent with the

results in figure 6.9. All three curves show a similar shape with a plateau in the entrance

channel of the beam. For protons, parameters in the entrance channel equal the reference

parameters (αx = 0.1 Gy−1, βx = 0.05 Gy−2). For carbon ions, they are increased by

∼ 50 %. All values rise sharply as the depth approaches the Bragg peak. The significance

of the maximum values must be carefully considered as they are associated with very

low doses. Values that coincide with the maximum dose are likely of greater clinical

relevance. At the maximum dose, we observe values of αD = 0.16 Gy−1 for protons and

αD = 2.31 Gy−1 for carbon ions, i.e., an increase by a factor of 1.5 and 15, respectively.

Similarly, βD increases to values of 0.08 Gy−2 and 0.38 Gy−2 for protons and carbon ions,

respectively.

Physical and radiobiological properties of SOBPs Figure 6.10 shows physical and

radiobiological properties of a proton and a carbon SOBP consisting of 17 pencil beams

with residual ranges spaced 3 mm apart. The fluence of the pencil beams is optimized such

that a constant absorbed dose of 1 Gy is deposited from the proximal edge of the SOBP

at 10 cm water equivalent depth to its distal edge at 15 cm. Dose–averaged values of αD,

βD, the DSB yield, and LET are calculated from the contributions of the individual pencil

beams. Apart from the absorbed dose, all quantities are nearly constant for depths < 10 cm

and exhibit the same trends in the SOBP and past the distal edge. At the proximal edge

where the first Bragg peak is located, each measure rises to a second plateau and then

rises slowly across the width of the SOBP. Approaching the distal edge of the SOBP all

quantities rise steeply as they are dominated by the Bragg peak with the greatest range.

Dominated by the rise in DSB yield, αD and βD increase by ∼ 10 % for protons and

∼ 100 % for carbon ions. Across the SOBP, αD increases by another 50 % for protons and

> 500 % for carbon ions. The increase in βD is smaller as it depends only on the DSB

yield and not particle LET. The relative rise of the latter is considerably steeper at the

proximal edge of the SOBP.
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Figure 6.9: α (solid red), β (dash–dotted green), and the DSB yield Σ (dashed blue) of
a pristine proton and a pristine C–12 Bragg peak in chordoma tissue. The range of both
Bragg peaks (dashed black) in water is 15 cm.

Influence of (α/β)x on RBE According to equation (2.32), the tissue dependence of

RBE is only reflected in the (α/β)xvalue of the reference parameter set. This dependence is

shown in figure 6.11 where the RWD of three tissues with different (α/β)x values (table 6.2)

are compared for an SOBP with a constant absorbed dose of 1 Gy. RWD is shown to

increase with a decrease in (α/β)x. Differences in RBE estimates are as large as 25 % for

carbon ions and smaller than 5 % for protons.

Low doses have a high effect on the RBE Figure 6.12 shows predicted RBE values in

SOBPs optimized for constant absorbed doses ranging from 0.1 to 10 Gy. RBE estimates

are nearly independent of absorbed doses > 2.5 Gy. The carbon ion RBE for lower doses

depends up to 50 % on the absorbed dose. For protons, this influence is on the order of 5 %.

For particles with higher (α/β)x, the impact of dose on RBE estimates is smaller (data not

shown). No significant dose dependence is observed outside of the SOBP. Table 6.3 shows

RBE values for cell killing for protons and carbon ions for a range of tissue radiosensitivities

and physical doses. The average RBE of protons is ∼ 1.1 and is nearly independent of dose

and (α/β)x while the average carbon ion RBE ranges from 2.0 − 4.5 for (α/β)x = 2 Gy

and from 1.9− 2.5 for (α/β)x = 10 Gy.

Optimizing physical dose to achieve constant biological effect In figures 6.10

to 6.12, a constant physical dose is deposited across the volume covered by the SOBP.

Ideally, the true clinical objective in radiotherapy is to deliver a constant biological effect

across the tumor volume. Employing the method developed by Wilkens and Oelfke (2006),
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Figure 6.10: Top row shows the dose (solid red) and LETd (dashed blue) of a proton and
a carbon ion SOBP. α (solid red), β (dash–dotted green), and the DSB yield Σ (dashed
blue) of the respective SOBP are displayed in the bottom row. Dashed black lines indicate
the extend of the Bragg peak.

we optimized the RWD for protons and carbon ions for a constant RWD of 3 Gy (RBE).

Figure 6.13 shows a relatively flat RWD in the SOBP and the underlying physical doses

for both protons and carbon ions. In order to keep the RWD constant across the SOBP,

the physical dose must decrease from the proximal to the distal edge. Here, the increase

of the RBE with LET reduces the required dose which in turn increases the RBE. Though

this effect is more pronounced for carbon ions due to lower doses and higher LET it can

also be observed for protons. Comparing the RBE–weighted doses of protons and carbon

ions, we found that the entrance to plateau ratio is approximately 2 to 3 for protons and

1 to 3 for carbon ions.
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Figure 6.11: RWD of a proton and a carbon ion SOBP calculated with different biologi-
cal parameters representing chordoma (dashed blue, (α/β)x= 2 Gy), prostate (dotted red,
(α/β)x= 3 Gy), and head & neck cancer (dash–dotted green, (α/β)x= 10 Gy) from the
same absorbed dose distribution (solid black).

6.2.3 Discussion

Predicting radiobiological parameters In its current form, the RMF model tends to

overpredict for LET values above ∼ 150 keV/µm (figure 6.8). This discrepancy can be

attributed to both potential limitations of the RMF model and neglected nuclear fragments.

The limitations of the RMF model have been discussed elsewhere (Carlson et al. 2008)

and model improvements are currently being investigated. The potential overprediction

of radiosensitivity for LET >∼ 150 keV/µm does not affect the proton calculations as

the LET of therapeutic protons is well below this limit (figure 6.10a). This limitation

will introduce uncertainty in the prediction of carbon ion RBE as LET values exceed

150 keV/µm at the position of the Bragg peak (figure 5.4). The proposed approach is

therefore expected to overpredict the carbon ion RBE at the distal edge of the SOBP.

The effects of nuclear fragments are neglected in this work and will be investigated in a

future study. It is not known how the measurements of the data presented in figure 6.8 were

performed but one must consider that any passive means of degrading the beam energy

will introduce a spectrum of lighter secondary particles. Most of these fragments will have

a lower charge squared to mass ratio than the primary ions and therefore a lower LET and

longer range. A real beam with a secondary particle spectrum will therefore produce a

reduced biological effect for the same dose compared to the single particle beam assumed

here.

Trends in β have been discussed elsewhere (Carlson et al. 2008, Carabe-Fernandez et al.

2010). We studied the influence of β by replacing it with a constant value equal to the
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Figure 6.12: RBE values for chordoma tissue in proton and carbon ion SOBPs ranging
from 10 cm (dashed black) to 15 cm for physical doses ranging from 0.1− 10 Gy.

reference parameter (data not shown). In chordoma, we observed differences in the RBE of

1−10 % for protons and 10−20 % in carbon ions across the SOBP. This is in agreement with

recently published findings that the correct choice of β is critical for predicting outcome in

proton therapy (Carabe-Fernandez et al. 2010).

Good agreement of the proposed approach with measured data can also be found in the

observed proton RBE values. The average proton RBE of 1.1 reported for a wide range

of tissues and doses (table 6.3, figures 6.11 and 6.12), compares well to the accumulated

published data (Paganetti et al. 2002). For carbon ions, a greater change in RBE across

the SOBP is predicted than obtained using the local effect model (LEM) in clinically

implemented settings (Krämer and Scholz 2000, Scholz and Kraft 1996). The LEM model

used at the HIT facility in Heidelberg for patient treatment predicts an RBE range of

3 − 3.5 across a SOBP (Wilkens and Oelfke 2008) which is a significantly smaller range

than the 1.8 − 5.4 reported here. Similar trends in α across a SOBP are found in the

recent application of the microdosimetric kinetic model (MKM) for carbon ion treatment

planning (Inaniwa et al. 2010). The MKM predicts a decrease in α beyond the distal edge

of the SOBP, which may be due to more sophisticated modeling of proximity or over–kill

effects as well as limitations of using an approximate analytical formula to estimate the

frequency–mean specific energy.
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Table 6.3: RBE values for cell killing for protons and carbon ions for a range of tissue
radiosensitivities and physical doses. Estimates are shown for the proximal edge (z =
10 cm), distal edge (z = 15 cm), and target average for a clinical SOBP of 5 cm.

Protons

Dose RBE ((α/β)x = 2 Gy) RBE ((α/β)x = 10 Gy)

(Gy) Proximal Distal Avg. Proximal Distal Avg.

0.1 1.06 1.44 1.13 1.04 1.28 1.09
0.5 1.06 1.38 1.12 1.04 1.28 1.09
1 1.03 1.34 1.11 1.03 1.27 1.09
2 1.03 1.30 1.10 1.03 1.27 1.09
5 1.02 1.27 1.09 1.02 1.26 1.08
10 1.02 1.26 1.08 1.02 1.25 1.08

Carbon ions

Dose RBE ((α/β)x = 2 Gy) RBE ((α/β)x = 10 Gy)

(Gy) Proximal Distal Avg. Proximal Distal Avg.

0.1 2.69 10.85 4.48 1.81 5.11 2.49
0.5 2.26 6.74 3.32 1.77 4.59 2.39
1 1.83 5.38 2.82 1.62 4.21 2.29
2 1.60 4.35 2.43 1.53 3.79 2.17
5 1.52 3.44 2.10 1.50 3.28 2.02
10 1.49 3.04 1.96 1.48 2.99 1.93

Radiosensitivity of different tissues Our modeling approach predicts that the RBE

depends only on the value of (α/β)x. Tissues were purposely chosen to cover a large range

of biologically–plausible (α/β)x values. A large dependence on tissue type was not observed

for protons, while carbon ion peak RBEs varied by more than 20 % for different tissues.

This implies that the largest uncertainties in clinical application will arise for tumors with

high (α/β)x values surrounded by healthy tissues with low (α/β)x values. Positional errors

in patient setup could also result in larger than expected cell death in healthy tissues as

a result of an unexpected increased RBE values. Our results contradict the reasoning of

Jäkel et al. (2003) that it is safest to use brain tissue with (α/β)x = 2 Gy (van der Kogel

1986) as a lower limit assumption for the RBE in brain tumors. As an (α/β)x value of

2 Gy is at the lower limit of the expected range it returns the most we can expect as RBE

i.e. one risks to significantly overestimate the RBE in the target if the (α/β)x value is

actually higher.
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Figure 6.13: RWD optimized SOBP of protons and carbon ions in chordoma tissue.
RWD in dashed blue, absorbed dose in solid red. The extend of the SOBP is indicated by
the dashed black line.

The influence of dose on RBE predictions We observed a considerable dose effect for

carbon ions for doses < 2.5 Gy. Most treatments with conventional fractionation schemes

employ doses in the range of 0.1 − 1 Gy (figure 6.12). The dose dependence is on the

same order of magnitude as the change of RBE with radiation quality. Wilkens and Oelfke

(2008) reported the RBE outside an SOBP peak may be higher than within due to this

dose effect. In contrast to their findings, we predict a small dose effect in the normal tissue

outside a SOBP (figure 6.12).

Optimization of RWD There is no debate regarding the necessity for the optimization

of physical dose to obtain a constant RWD in carbon ion therapy. The results of this study

strongly suggest that this approach should also be considered in proton radiotherapy. Our

simulations show that RWD can change by up to 30 % across a 5 cm SOBP. RBE values

can consistently deviate by more than 10 % from the assumed nominal value of 1.1 in

some parts of the SOBP regardless of the tissue and absorbed dose. We also show that

the proton RWD is relatively insensitive to tissue radiosensitivity. The potential errors in

predicting RBE introduced by assuming the wrong tissue radiosensitivity are likely smaller

than the errors introduced by assuming a constant RBE of 1.1.

6.2.4 Conclusions

The proposed approach allows for the quantitative evaluation of the effect of particle LET

on DSB induction and cell death in proton and carbon ion radiotherapy. The results of

this study indicate the potential for biological hot and cold spots within the SOBP in both
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proton and carbon ion radiotherapy. The development of biologically motivated models

of RBE results in an enhanced understanding of the biophysical mechanisms underlying

cell killing in X–ray and particle therapy, as well as the determination of RBE estimates

that can be practically used in charged particle radiotherapy to optimize physical dose

for a uniform biological effect. The approach proposed in this paper allows for a robust

inclusion of oxygen effects by correcting the DSB yields for oxygen concentration in the

MCDS algorithm. Future work is under way to investigate the impact of tumor hypoxia

on the relative effectiveness of proton, carbon ion, and X–rays.
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Chapter 7

Summary and Conclusions

Before we draw some final conclusions, the main aspects of this thesis shall be briefly

summarized. This thesis is divided into two parts. In the first part technical aspects and

potential clinical applications of an existing biological effect optimization were studied.

Some limitations of radiobiological models were tackled in the second part by introducing

an analytical LET model for fragments of heavy ion beams to improve beam quality mea-

sures, including oxygen effects into treatment planning, and predicting particle RBE with

the recently developed mechanistic RMF model.

Technical aspects of the biological optimization were investigated in chapter 3. It was

found that the quadratic objective function employed to minimize the biological effect is

only convex for one or two dosebursts on a limited domain. For N dosebursts we were not

able to confirm this result but a non positive definite Hessian of the objective function is

a strong indication that the domain has to be kept restricted.

KonRad has the built–in capability to combine multiple radiation modalities in a single

treatment plan. Optimization of the dose or effect distribution is in theory independent of

the number of radiation modalities. In practice, the highly degenerated Dij matrix reduces

the convergence speed or even makes convergence impossible. Two methods were proposed

to initialize the optimizer. A simple precalculation of the doseburst weights that ensures

that the average actual and prescribed dose/effect are the same has proven to be most

efficient.

Clinical application and potential modifications of an existing biological optimization

are studied in chapter 4. In the first section 4.1 we compared a variable proton RBE

approach to the clinically used generic RBE of 1.1. Dose distributions optimized with a

constant RBE were recalculated using a variable proton RBE model (Wilkens and Oelfke

115



7. Summary and Conclusions

2004). We found significant differences in the RWD distributions depending mostly on the

LET distribution and less on the employed radiobiological parameters. We also showed

that treatment plans optimized with either a constant or a variable RBE model do not

exhibit any significant differences in the RWD distributions calculated with the respective

approach.

Section 4.2 demonstrates the simultaneous optimization of carbon ion and photon irradia-

tion. We optimized treatment plans consisting of multiple photon beams and two carbon

ion beams. The latter are only used to irradiate a boost volume. It turned out that a

simultaneous boost is preferential to a sequential boost in plan quality. A local mixing of

radiation modalities ensures steeper dose gradients and simultaneous optimization reduces

the integral dose.

The worst case optimization (Pflugfelder et al. 2008) was extended from physical to bio-

logical optimization in section 4.3. After demonstrating general feasibility we compared

worst case optimized treatment plans without any safety margins to plans created with

classical safety margins. Each plan was recalculated 98 times assuming range, setup, or

both errors of varying magnitude. It was evident that margins in contrast to worst case

optimization are an insufficient tool in 3D IMPT to create plans robust against range or

setup uncertainties.

An analytical model to calculate the LET of fragments is derived in chapter 5.

Analytical models for proton dose (Bortfeld 1997) and LET (Wilkens and Oelfke 2003)

were extended to heavier ions. By making several assumptions about the fluence and

energy distribution of fragments we could derive equations describing the track– and dose–

averaged LET, the fluence, and the dose of each fragment isotope that is a remnant of

the primary particles. Depth dose curves calculated with the model agree well with Monte

Carlo simulations for primary carbon ions and all its fragments but hydrogen. In contrast

to our assumptions secondary protons that are accelerated in nucleon–nucleon interactions

have to be considered. It is well known that fragments cannot be neglected due to their dose

behind the Bragg peak. Our calculations show that from radiobiological considerations the

fragment LET is so high that it cannot be neglected both in front and behind a carbon

ion Bragg peak.

Advancing radiobiological models in two different ways is the aim of chapter 6. In

section 6.1 a method is introduced to incorporate the radiosensitizing effect of oxygen into

treatment planning for carbon ions. We assumed that the influence of the pO2 on cell

survival is a function of the LET. From PET images we inferred the pO2 in each voxel
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and selected the biological input parameters for the optimization now as a function of

water equivalent voxel depth, initial beam energy, and pO2. It is possible to generate dose

distributions across tumors with oxygen depleted regions that correspond to a homogeneous

RWD even across steep partial oxygen pressure gradients. Unfortunately, we lack access

to PET data from which oxygen maps could be derived such that we could test the model

in real treatment plans.

Section 6.2 describes how the mechanistic RMF model (Carlson et al. 2008) was adapted to

predict radiosensitivity parameters and eventually the RBE of realistic proton and carbon

ion beams. The RMF predicts LQ parameters α and β as a function of particles given the

DSB yield, the LET, and LQ parameters of a reference radiation whose LET and DSB yield

are known. In the RMF RBE is only a function of (α/β)x value not the respective individual

contributions. RBE is high for lower (α/β)x values i.e. using a low (α/β)x value in target

tissues might overestimate the real RBE which is clinically relevant. Our calculations

predict a more than 10 % deviation of the RBE of a proton SOBP from the clinical used

RBE of 1.1. For protons we could also confirm our previous result that the RBE depends

mostly on physical parameters and not on the tissue.

From the specific conclusions that we have made in each section and summarized above

the following four general conclusions can be drawn: (1) A well conditioned and well

formulated optimization is a key to safe treatment plans of superior quality. (2) The

potentials of proton therapy should be exploited by using variable RBE models. (3) RBE

may be the wrong concept to quantify radiation damage by particles. (4) Dose painting

with particles is feasible.

(1) Employ sophisticated optimization strategies! Optimization is the key concept

to improve particle therapy in a timely manner. 3D IMPT treatment plans consisting of

thousands of individual dosebursts represent a highly degenerated inverse problem. It is

most important to formulate the problem accurately, use a good optimization method,

and initialize this method correctly. Many of the daily challenges like range and setup

uncertainties, consideration of doses from other radiation modalities, let alone the variable

radiation biology are too complex to be included inherently by the treatment planner. It

seems to be evident that the regular (biological) optimization algorithms generate treat-

ment plans that cannot be made robust against range and setup uncertainties by simply

adding margins to target volumes. Worst case optimization creates more robust plans

with less integral dose. Carbon ions and photons may never be applied within one fraction

in the clinics. Nevertheless, our investigations have shown that correct initialization and

simultaneous optimization are key features that can drastically improve plan quality. And
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if we know the local radiosensitivity (an implicit assumption we make all the time, not

only when we consider hypoxia) only an optimization routine will be able to exploit all the

potential benefits.

(2) Investigate the radiobiological potential of protons! Treatment planning for

protons should employ variable RBE models. From our investigations comparing different

radiosensitivity parameters for the same volume we observed only little differences. Large

differences among constant and variable RBE are always correlated with high LET values.

Today the local LET distribution is completely neglected in proton therapy treatment

planning. As a starting point one could design treatment plans of sufficient quality when

calculated with either constant or variable RBE.

(3) Get rid of RBE! RBE is a tempting concept. It promises to convert a particle

dose whose biological effect depends on so many parameters into an equivalent low–LET

photon dose that we are used to. The product of RBE and dose seems to be something

physical and measurable like absorbed photon dose though it is not. The corresponding

photon dose is completely unphysical. Each voxel’s dose by itself could be delivered but

the distribution as a whole cannot be created with photons. Additionally, RBE does not

account for fractionation effects. This is frequently neglected especially when comparing

simultaneous and sequential boost schemes. RBE may also be a misleading concept. The

clinical implementation of the local effect model predicts the lowest RBE values in the

target region and the highest outside. But this does not allow to judge the quality of

the plan. Low RBE values are not equivalent to a low biological effect. Nevertheless, if

the RBE decreases from entrance to target region the absorbed dose has to increase at a

higher proportion to make the distribution beneficial i.e. physics has to outweigh biology.

And last but not least the term “relative biological effectiveness” by itself is questionable.

Though radiation biology is a relatively unexplored field it is well known that the initial

radiation damage depends purely on physical interactions and not on the cell while the

biological repair processes are cell and not radiation specific. Hence, the term “relative

physical effectiveness” might be more appropriate. It would be a good start to think in

terms of the biological effect instead of RBE and RBE–weighted dose.

(4) Pursue active dose painting with particles! At first we should acknowledge

that in particle therapy dose painting is performed in every single treatment plan. By

prescribing an RBE–weighted dose the underlying physical dose distribution is not defined.

It is chosen by the optimizer and depends solely on the biological model. The dose varies
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from one voxel to another in a fashion that is uncontrolled by the treatment planner. To

do so we trust radiobiological models that are afflicted with large errors i.e. we are doing

dose painting just not by numbers. Instead of employing the information of functional

images we trust the visual conception of a physician. Nevertheless, the treatments have a

high rate of success which means that either the models are better than we think or the

therapeutic ratio is larger than expected. Assuming that the latter is correct means that

there may be a range of doses that can be used without increasing the risk for the patient.

This dose range could be explored by locally varying the dose based on functional images.

Dose painting by numbers would detach the dose prescription from a single person’s action

and instead offer the chance to systematically evaluate treatment outcome.

All the arguments we have made above have a tendency to reduce human interaction into

the treatment planning process. Eventually, the treatment planner should define the goals

and let the treatment planning system choose the best options.
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Appendix

A Low and high dose limits of the RBE in the RMF

model

For a low LET reference radiation with LQ parameters αx and βx the RBE in the RMF

model is given by (equation (2.32))

RBERMF =
1

2D

√[(α
β

)
x

+ 2D
Σ

Σx

]2

+
8D

Σ2
x

(z̄fΣ2 − z̄f,xΣxΣ)−
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where Σx, Σ and z̄f,x, z̄f are the DSB yield and the frequncy–mean specific energy of the

reference radiation and the test radiation, respectively. For very high doses (D � α/β)

and very low doses (D � α/β) the RBE has to be proportional to
√
β/βx and α/αx,

respectively.

The high dose limit D →∞ the RBERMF is proportional to

lim
D→∞

RBERMF ∝
1

2D

[(
α

β

)
x

+ 2D
Σ

Σx

−
(
α

β

)
x

]
(A.2)

=
Σ

Σx

(A.3)
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=
√
β/βx (A.5)

Here, we used that in the RMF model β scales with the squared ratio of Σ and Σx (cf. equa-

tion (2.31)). The low dose limit D → 0 cannot be inferred directly from equation (A.1) as

both the numerator and the denominator are going towards 0. Hence, we can make use of

L’Hôpital’s rule (Königsberger 2001, and many other basic calculus textbooks). It states
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that if lim
x→c

f (x) = lim
x→c

g (x) = 0 or ±∞ and the derivatives of f and g exist then
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g (D) = 2D. (A.8)

The derivatives of f and g with respect to D are
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and

g′ (D) = 2. (A.10)

For the limit of D → 0
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For the last step we used equation (2.26) that defines the scaling of α with changing

radiation quality.
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B Range straggling width for ions

The straggling width for heavy ions can be determined in the same way as the straggling

width for protons (Bortfeld 1997). Following the method by Bethe and Ashkin (1953)

the width σE of the energy spectrum of a heavy ion beam due to nuclear interactions is

approximated by Bohr’s classical formula

d

dz

(
σ2

E

)
≈ 1

4πε20
e2NZZ2

hi (B.1)

where NZ is the electron density, e the charge of the electron, ε0 the vacuum permittivity

and Zhi the charge of the ion. This width can be transformed into a depth spectrum width

σ by

σ2 =

∫ Rhi,0

0

dz
d

dz
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σ2

E

)(dE

dz

)−2

(B.2)

where −dE/dz is the stopping power of the ion with residual range Rhi,0. The stopping

power can be obtained by solving equation (2.6) for E and taking its negative derivative

with respective to z

−dE
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=

1

p
α
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The solution for the integral in equation (B.2) is given by
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The same equation can be used to obtain the straggling width of fragments.

C The solution of the stopping power integral for

fragments

Next we will demonstrate how to solve integrals of the type

I (z) =

∫ z′max

z′low

dz′
∫ Rf,z′+z

′

−∞
dz̄ q (z̄, z′)

x
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(
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)
(C.5)
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where we identify q = λhi
f (Rhi,0 − z)− (z̄ − z′). Performing variable transformtion we yield

I (z) =

∫ z′max
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−(q − s)2

2σ2
f,max

)
(C.6)

using s = λhi
f Rhi,0 − z − z′

(
λhi

f − 1
)

and ν = −x− 1. We evaluate the inner integral using

the parabolic cylinder function Dν (x) and the Gamma function Γ (x) (Wilkens 2004)

I (z) = σ−νf,maxΓ (−ν)

∫ z′max

z′low

dz′ exp
(
−s2/4σ2

f,max

)
Dν

(
− s

σf,max

)
(C.7)

To solve this integral we perform another variable transformation using y = −s/σf,max.

The three different integration limits are

y (z′ = 0) =
[
z − λhi

f Rhi,0

]
/σf,max = χ (C.8)

y (z′ = z) =
[
λhi

f (z −Rhi,0)
]
/σf,max = ξ (C.9)

y
(
z′ =

(
λhi

f Rhi,0 − z
)
/
(
λhi

f − 1
))

= 0 (C.10)

According to Mathematica equation (C.7) can be evaluated analytically. The result is

given by

I (y) = t

[
y

Γ
(

1
2

(1− ν)
) 1F1

(
ν + 1

2
;
3

2
;−y

2

2

)
+

√
2

Γ
(
1− ν

2

) (1F1

(
ν

2
;
1

2
;−y

2

2

)
− 1

)]ymax

ylow

. (C.11)

Here, 1F1 (a; b; c) is the confluent hypergeometric function of the first kind and

t =
√
π2ν/2σ1−νΓ (−ν)

(
λhi

f − 1
)−1

. (C.12)
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C Fragment stopping power integral

The above equation can be simplified using the identities

1F1

(
a;

1

2
;−x

2

2

)
− 2

√
−x

Γ
(

1
2
− a
)Γ (1− a) 1F1

(
a+

1

2
;
3

2
;x

)
=

π−1/221−2aexΓ (1− a)H2a−1

(√
−x
)

(C.13)

and

Hd (v) = 2d/2ev
2/2Dd

(√
2v
)

(C.14)

where Hd (v) is the Hermite function. The simplifiaction yields

I (y) = Γ (−ν)
σ1−ν

1− λhi
f

[
e−y

2/4Dν−1 (y)
]ymax

ymin

. (C.15)

The solution of the integral with the integration limits for the respective case is

I (z) =
σ1−ν

f,maxΓ (−ν)

1− λhi
f


e−ξ

2/4Dν−1 (ξ)− e−χ
2/4Dν−1 (χ) i) and iii)

√
π2ν/2

Γ( 1−ν
2 )
− e−χ

2/4Dν−1 (χ) ii)

e−ξ
2/4Dν−1 (ξ)−

√
π2ν/2

Γ( 1−ν
2 )

iv).

(C.16)

Here, we used the identity Dν (0) =
√
π2ν/2 Γ

(
1−ν

2

)−1
.
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