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Abstract

In this thesis a novel approach for the simulation of elastohydrodynamic prob-

lems is established. It is novel in modeling the fluid as non-Newtonian with a

free boundary and considering fluid-structure interaction at the same time.

We present a robust numerical algorithm for the simulation of problems of such

type. Furthermore, we analyze the difficulties and propose some improvements

for treating the free boundary as well as the non-Newtonian flow numerically. We

adress modeling aspects and model uncertainties with respect to material models,

parameters and experimental investigations.

For validation, we compare the numerical approximations with a widely accepted

analytic approximation from engineering literature and achieve a reasonable ac-

curacy. We conclude by bringing the thesis in relation with interesting further

points of investigation on the basis of the established methods which rely on the

novel modeling in this thesis.

Zusammenfassung

In dieser Arbeit wird ein neuartiger Ansatz zur Simulation von elastohydrody-

namischen Problemen vorgestellt. Dieser Ansatz ist neuartig, da das Fluid als

nicht-Newtonisch und mit freiem Rand modelliert wird und gleichzeitig Fluid-

Struktur-Interaktion betrachtet wird.

Wir stellen einen robusten numerischen Algorithmus für die Simulation solcher

Probleme vor. Weiterhin analysieren wir die Schwierigkeiten und schlagen einige

Verbesserungsmöglichkeiten bei der Simulation von nicht-Newtonischen Fluiden

sowie freien Randwertproblemen vor. Modellierungsaspekte und Modellunsicher-

heiten bezüglich der Materialgleichungen, Parameter und der experimentellen

Untersuchungen werden thematisiert.

Für Zwecke der Validierung werden die numerischen Lösungen mit einer in der in-

genieurswissenschaftlichen Literatur weit verbreiteten und akzeptierten Näherung

verglichen und man stellt eine gute Übereinstimmung fest. Wir diskutieren die er-

reichten Ergebnisse und schlagen auf dieser Basis weitere interessante Themen für

künftige Arbeiten vor, die auf der neuartigen Modellierung dieser Arbeit beruhen.
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Chapter 1

Introduction

In this thesis numerical methods are presented for the simulation of lubrication

flow and fluid-structure interaction in ball bearings. This is known in literature

as ”elastohydrodynamic” lubrication problem. We consider a generalized Newto-

nian fluid modelled by a Navier-Stokes system with pressure-dependent viscosity.

Furthermore a method will be presented, allowing not to fix a constant underlying

domain in the beginning, but to consider a free boundary value problem. Instead

of neglecting the important aspect of fluid-structure interaction or to treat it with

simple ad-hoc models, we use a fundamental fluid-structure interaction formula-

tion derived from basic continuum mechanical laws. Former work in this field of

research has thereby tended to base all studies on considerably simplified models.

For instance, in most cases an approximation for thin lubrication films, called

Reynolds’ equation, is used instead of the Navier-Stokes equations. In addition

in most former work available in literature at most one of the above aspects,

non-Newtonian flow, fluid-structure interaction or free boundary value problems

is considered. To the knowledge of the author, the present thesis is the first one

to consider all aspects at the same time.

In addition, no simplification with respect to geometry is done but the equations

will be solved on the complicated ball bearing domain (in two dimensions).

All of the generalizations and allowed pathologies of the problem stated above

lead to difficulties of very distinct nature.

• The fluid domain in a ball bearing possesses a free boundary, its shape is not

known a priori. In distinction to most other work on lubrication problems

this aspect will be covered in this thesis and is described in chapter 2. In
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this context we propose a new fully implicit manner of discretization and

verify it with a simple benchmark example. For the simulations concerning

the ball bearing it turns out that the free boundary has only small impact

on the local balance of forces so that it can indeed in some situations be

justified to neglect it. There is yet an indirect influence on the system

which will be explained. As we are not interested in complex models for its

own sake we will also sometimes neglect the free boundary. However the

methodology of this thesis is different to other work in that simplifications

of the model are only performed if numerical tests indicate them to be well

justified.

• The non-Newtonian character of the fluid leads to mathematical difficulties

when we try to formulate a well-posed problem. At this point there is a gap

between mathematical theory and those fluid models used and preferred

in applications. The resulting difficulties in this context and a comparison

between theoretically well-founded models, for which a proof of existence

is known and the ones from applications will be given in chapter 3. This

chapter depicts an attempt to diminish this gap: Different regularizations

of the problem leading to its numerical solvability will be presented and

their precise effect on the numerical scheme will be tested.

• In a ball bearing, locally very high pressure arises leading to a deforma-

tion of the surrounding structure. Often this fact is neglected at all and,

if not, mostly simple and imprecise models for the balance of forces be-

tween structure and fluid are used. This stems from the fact that already

for the fluid the thin film approximation, Reynolds’ equation, is adopted.

Therefore information about forces on the fluid are difficult to retrieve.

The present thesis is, to the knowledge of the author, the first one con-

sidering a fluid-structure interaction problem based on fundamental models

without simplifications for fluid and structure in the context of elastohydro-

dynamics. The fluid has a viscosity depending on pressure, concerning the

structure we deal with a (nonlinear) material model of St.-Venant-Kirchhoff

type. The numerical treatment of fluid-structure interaction problems on

its own is a subject of current research, in this specific case of application

there exist further different problems and details worth considering which

will be reviewed in chapter 4.

• The domain on which the fluid equations for the physical processes in a ball
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bearing are posed has an extremely anisotropic shape. The film thickness

of the surrounding fluid is at most of the order of some µm whereas the

radius of the ball amounts to some mm. This results in a high imbalance

in the volume of the fluid and the structure domain respectively. In order

to perform a discretization we need a grid which at least roughly accounts

for this extreme geometry. The generation of such a grid with some size

and shape regularity at any rate requires a lot of work. Furthermore the

necessity for anisotropic mesh cells causes a variety of problems for the

numerical scheme. These difficulties will be brought up at several instances

throughout this thesis though they are not accessible directly to a true

”solution”. As long as we keep to work on the real physical domain without

rude simplifications we have to deal with such problems. Related questions

will be subject of chapter 5.

• Any realistic modeling of fluids in ball bearings will inevitably lead to equa-

tions for which no rigorous mathematical theory of existence and uniqueness

of solutions is available. Therefore it is especially important in this field

to be able to judge the quality of the numerical approximation. Firstly

we will compare our simulations with one reference problem for which also

experimental data can be found in literature and achieve a high degree of

agreement. Secondly we show simulation results for a ball bearing. For this

purpose a precise definition of the problem, the geometry and all relevant

parameters is necessary and will be explicated in chapter 6.

• In this thesis a novel approach to elastohydrodynamic lubrication is pre-

sented. The results in the context of existing methods as well as interesting

questions for further research are discussed in chapter 7.

In this thesis all of the problem aspects stated above as well as strategies for

its solution will be considered and analyzed. Simplifications of the model will

only be made if they show up as insignificant for the quantitative results of the

numerical approximation. On this basis we can compare with a widely accepted

analytical approximation also confirmed by experiments and we will find a high

degree of accordance. The model we use is more complex and more fundamental

than in previous work. This will lead to a variety of scientific fields playing a role

for modeling and simulation such as non-Newtonian fluids, free boundary value

problems and fluid-structure interaction formulations. In this spirit the present
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Figure 1.1: Ball bearing.

thesis is representing a cross-sectional piece of work which shows what kinds of

simulations are possible on current computers with modern methods.

1.1 Introduction to ball bearings

Ball bearings are complex technical devices which are used wherever two bodies

rotating relative to each other have to be supported. The range of applications

spans from hard disk drives in computers to aircraft turbines and momentum

wheels for satellites, the latter being of special interest in the present thesis. Ball

bearings usually consist of a cylinder called ”bearing mandrel” which is fixed in

the reference frame of the observer. In addition there is a cylinder with a larger

radius surrounding the mandrel and rotating relative to it. In figure 1.1 the man-

drel with the balls is depicted, the outer ring will be the rotating part.

In simple journal bearings only a lubricating fluid resides in the middle of the two

concentric cylinders. In contrast, in ball bearings balls are used to support the

rotating cylinder. In order to prevent friction and wear the balls and cylinders

are also usually lubricated by a mineral oil.

Since the beginning of the use of ball bearings these components are subject to

research in engineering sciences in theoretical as well as experimental fields. Dur-

ing the last 40 years by the advent of more and more powerful computers the

possibility of numerical simulations has come up as well. The additional use of

numerical simulations in this domain is essential because in ball bearings a variety

of processes is present, coupling to one another in a highly nonlinear way. This is
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limiting the explanatory power of analytic methods, although for some quantities

analytical approximations exist which are astonishingly precise. We will compare

our results to some analytical approximations which are known in literature to

be good approximations for experimental data [Křupka et al. (2005)]. Neverthe-

less these analytical laws can always only answer some distinct questions whereas

numerical methods are more flexible and cover a broader variety of possible prob-

lems.

In this chapter we give an overview of the relevant processes in a ball bearing

and its mathematical treatment. The subject of this thesis is somehow in a bor-

der area between numerical analysis and engineering science. Therefore we will

present the precise mathematical models to the reader interested more in mathe-

matical aspects. For the reader interested in the physics of ball bearings we will

describe the system with its geometry and all relevant parameters. In addition,

literature related to physical modeling of processes in elastohydrodynamics will

be indicated. In this introduction we will address all aspects in a short manner

and the reader is referred to the later individual chapters where more details can

be found. The main numerical difficulties and their solution shall be described

to a degree of precision that the reader should be enabled to conduct simulations

for ball bearings himself if interested in doing so.

In the following, always one single ball in a ball bearing will be considered neglect-

ing possible interaction between two different balls or any other process in which

several balls play a role at the same time. In general such processes coupling

different balls may occur but we focus on the microscopic aspects in elastohydro-

dynamics.

This thesis has been established in cooperation with the company Rockwell

Collins Germany (RCD) from Heidelberg. Below ball bearings manufactured

by this company for use in momentum wheels in satellites are of special interest.

Consequently several aspects related to this particular situation are specifically

relevant, indeed a thorough understanding of the microscopic processes in a ball

bearing is not necessary for many industrial applications. For ball bearings used

in satellites a higher precision and running smoothness as well as long durability

is needed. This is why a more detailed analysis is useful in this application.

All results presented in this thesis are two-dimensional. Indeed a ball bearing

does not posses a cylindrical symmetry, therefore the situation is in principle

fully three-dimensional. However, the two-dimensional numerical model yields

accurate results. The technical difficulties as well as computation times would
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increase enormously for three dimensions. In this sense the two-dimensional nu-

merical simulation is a well-justified compromise between accuracy and technical

difficulties.

1.2 Fluid flow in ball bearings

The motion of fluids is often modeled by the Navier-Stokes equations. The ba-

sic underlying assumption herein is that all volume under consideration is much

larger than the mean free path of a particle in the fluid and the size of the

molecules. In this case it is appropriate to assume that any small, physically

”infinitesimal” volume still contains a huge number of particles so that it is

not necessary to distinguish single particles. Instead we use smooth functions

v ∈ C∞(R2), p ∈ C∞(R) for the description of velocity and pressure [Landau

& Lif̆sic (2007)]. At this point we mention directly that this usually uncritical

assumption can become delicate in the case of ball bearings. There is experimen-

tal data [Křupka et al. (2005)] where the film thickness is only of the order of

several nm and thus of similar size as the molecules and their mean free path.

In literature from engineering sciences it is usually assumed that down to film

thicknesses larger than 10nm a continuum assumption is reasonable, see [Szeri

(2000)]. In this thesis always higher film thicknesses are considered so that we

use exclusively continuum mechanical models. However it would be highly inter-

esting and challenging to consider the border region where single-particle effects

become important. Since such studies would require very different methods and

approaches both from a modeling point of view as for numerical analysis we leave

this point open for further research.

In general in lubrication problems we deal with laminar flow, thus Reynolds num-

bers are always very small. Consequently Stokes’ equations are in principle a valid

approximation, at least at low pressure. We are mostly interested in stationary

processes throughout this thesis. We therefore remark that any linearization or

even neglecting the transport term does not change the results considerably.

Basic continuum mechanical assumptions [Landau & Lif̆sic (2007)] lead to the

postulation of a symmetric tensor σ ∈ R2×2
sym, called the Cauchy stress tensor

depending on velocity v and pressure p. On a domain Ω with boundary Γ the

equations of balance of forces read

−∇ · σ(p, v) = f in Ω.
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If we consider incompressible fluids to begin with in addition we postulate the

constraint

∇ · v = 0 in Ω.

As boundary condition we have in general parts of the boundary where we either

prescribe a given velocity g or exert boundary forces h on the fluid

v = g on ΓD,

σn = h on ΓN .

Here ΓD and ΓN denote parts of the boundary where Dirichlet or Neumann type

boundary conditions are prescribed. For the case that (compatible) Dirichlet con-

ditions are posed on the entire boundary we require that the pressure has zero

mean value
∫

Ω
p dx = 0.

If we assume that the Cauchy stress σ(p, v) is depending on D(v) = ∇v+ (∇v)T

and p in a linear way, we end up with Stokes’ equations with the following ex-

pression for the Cauchy stress

σ(p, v) = −pI + µD(v). (1.1)

Herein µ is a material constant called ”dynamic viscosity”.

The assumption of a constant viscosity is valid for low pressure. However it is not

necessary for a consistent model that the viscosity is constant, see [Franta et al.

(2005)] for a discussion. In lubrication flow the pressure often reaches values as

high as 1GPa in parts of the domain and is close to ambient pressure elsewhere.

Under these circumstances viscosity has to be modeled as a function of pressure.

Furthermore a fluid at such conditions is no more completely incompressible.

Fluid models with constant viscosity are called ”Newtonian”, if viscosity is a

function of D(v) or p the models are called ”generalized Newtonian” or ”non-

Newtonian”.

There are many generalizations of Stokes’ equations with pressure dependent

viscosity. Instead of equation (1.1) we consider more general models for the fluid

with the following expression for the stress

σ(p, v) = −pI + µ(p, |D|)D(v).

The form of µ(p, |D|) is mostly given by fitting parameterized functions to exper-

imental data. They can usually not be derived from physical principles directly.
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One of the most common relationship between pressure and viscosity is called

”Barus” equation and reads

µ(p, |D|) = µ0 exp(αp). (1.2)

Barus’ equation is often used in engineering science however there is no theory of

existence of solutions to fluid models where the viscosity only depends on pres-

sure, see [Franta et al. (2005)]. A certain well-posed dependence of the viscosity

on the shear rate |D| is needed in theoretical analysis in order to control the

velocity gradient. So in this context it is crucial that in equation (1.2) there is no

dependence on the shear rate at all. Even if instead of the exponential function

a well-behaved bounded, but non-constant function is taken, no existence can

be shown easily. Of course the unbounded character makes theoretical and nu-

merical analysis even more challenging. The range of models for which there is a

proof of existence of a solution is small and uses rather artificial pressure-viscosity

functions to make the proof work. In some sense there exists a gap between the-

ory and applications at this point: The models allowing a rigorous mathematical

analysis with proof of existence are too restrictive for practical purposes. On

the other hand for the models people tend to use in applications, up to now no

mathematical theory is available for the well-posedness of the resulting problems.

In general the shape of the lubricant flow domain has to be considered as addi-

tional unknown because its boundary is changing due to the capillary and curva-

ture related boundary forces. Therefore the fluid phase has to be modeled as a

free boundary value problem. For free boundary value problems there also exist

only few restrictive existence results even in the case of Stokes’ equations, see e.g.

[Schweizer (1996)]. For the even more complex system of a non-Newtonian flow

with a free boundary no theory exists at all to the knowledge of the author.

1.3 Elastic deformation in ball bearings

In ball bearings the motion of the fluid together with the shape of the fluid

domain lead to high forces. Locally, these forces are high enough to deform the

surrounding steel. The resulting change in the fluid domain couples back to the

fluid motion so that a fluid-structure interaction problem results. This explains

the name of the discipline ”elastohydrodynamics”. We now specify the different

spatial dimensions, see also figure 1.2. Note that figure 1.2 does not reflect the
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Figure 1.2: Scheme of balls in a ball bearing.

correct ratio of the different length scales on purpose for better visualization.

The radius of the circle on which the center of mass of a ball is moving, denoted

R in figure 1.2, is in [1, 10] cm. A typical radius of a ball in a ball r bearing is in

[0.1, 1] cm. This size is very large compared to the typical film thickness. This

ranges from 10nm to 1µm in the case of ”starvation” lubrication which means

that very small amounts of lubricant are used. The change in film thickness stems

from the deformation of the ball so that the latter is in the same range as the film

thickness and thus also small compared to the radius of the ball. The deformation

of the ball being of the same order of magnitude as the film thickness results in the

fact that it cannot be neglected. Since deformation is indeed small compared to

the ball however a linear elastic model may be used. The most common material

for ball bearings is steel which can be described as a compressible material using a

St.Venant-Kirchhoff model. Since the derivation of such a model is standard and

can be found in many textbooks [Braess (2007)] we directly write the governing

equations for the deformation û

−∇̂ · (Ĵ σ̂F̂−T ) = ρ̂f̂ in Ω̂,

with σ̂ = Ĵ−1F̂
(

λtr(Ê)I + 2µÊ
)

F̂ T ,

F̂ = I + ∇̂û, Ĵ = det F̂ , Ê =
1

2

(

F̂ T F̂ − I
)

. (1.3)

In equations (1.3) the hat on the appearing variables indicates a constant fixed

domain which is used for the Lagrangian description of structural deformations.

We also pose boundary conditions g, h on the Dirichlet and Neumann part of the
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boundary as in the case of the fluid problem.

û = g on Γ̂D,

σ̂n̂ = h on Γ̂N .

As mentioned above also the linearization of these equations with respect to de-

formation can be considered a valid approximation.

Apart from the fluid flow there exists another cause for deformation in ball bear-

ings. Usually ball bearings are pre-loaded with some exterior force by means

of spring-like mechanical structures. Therefore the bearing surfaces are pressed

together and the pre-loading force is a variable parameter in experiments. Pre-

loading always leads to some flattening of the ball in a static situation without

rotation. In such a static situation due to pre-loading also a high pressure arises

in the bearing. Treatment of pre-loading is not a simple task from a modeling

point of view. Experimental data shows some dependence on the load [Křupka

et al. (2005)] which seems not always to be decisive. We will elaborate all aspects

related to deformation of the ball and pre-loading in chapter 4.2 and 4.3.

In addition to these reasons for deformation the ball may also undergo a rigid

translation influencing the film thickness.

1.4 Fluid-structure interaction in ball bearings

In a ball bearing the lubrication flow leads to locally very high pressure which

deforms the surrounding steel and couples back again to the fluid. Therefore

any model with fixed geometry will be inaccurate, instead we have to consider

fluid-structure interaction. In this introductory section we will show the resulting

equations, a detailed derivation will be postponed to chapter 4.

In this thesis we will stick to the most robust numerical method for the simulation

of fluid-structure interaction problems, namely the monolithic ”Arbitrary Eule-

rian Lagrangian method” (ALE). It will also be derived in chapter 4 or see [Hron

& Turek (2006)]. Here we just remark that we formulate a system of equations

on a domain Ω̂ consisting of a fluid domain Ω̂f and structure domain Ω̂s. On this

domain there exists a boundary Γfs between fluid and structure where the local

balance of forces will be fulfilled implicitly as a natural (nonlinear) boundary

condition for the weak formulation derived later. We indicate quantities in the

structural domain with an index s, in the fluid domain with an index f . The
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system of equations then reads

−∇̂ · (Ĵ σ̂sF̂
−T ) = ρ̂sf̂ in Ω̂s,

v̂ = F̂−T v̂0, in Ω̂s,

σ̂s = Ĵ−1F̂
(

λtr(Ê)I + 2µÊ
)

F̂ T ,

F̂ = I + ∇̂û, Ĵ = det F̂ , Ê =
1

2

(

F̂ T F̂ − 1
)

,

Ĵ ρ̂
(

F̂−1(v̂) · ∇̂)
)

v̂F̂ − ∇̂ ·
(

Ĵ σ̂f (p̂, v̂)F̂
−T
)

= ρ̂f f̂ in Ω̂f ,

∇̂ · (Ĵ F̂−1v̂) = 0 in Ω̂f ,

σ̂f (p̂, v̂) = −p̂I + µ(p̂)
(

∇̂v̂F̂−1 + F̂−T (∇̂v̂)T
)

, µ(p) = µ0 exp(αp). (1.4)

The fluid and the structure fulfill their proper boundary conditions on parts of

the boundary which are not an interface between fluid and structure as in the

sections above

v̂ = g on Γ̂f ,

û = h on Γ̂s.

The coupling happens via the boundary condition on the interface. On this

boundary Γ̂fs we postulate a balance of forces

Ĵ σ̂sF̂
−T n̂ = Ĵ σ̂f F̂

−T n̂ on Γ̂fs. (1.5)

This whole formulation is given on an undeformed reference domain therefore

transformations are used which appear as factors related to ∇̂û such as F̂ and

Ĵ , the specific form will be derived later. In practice the reference domain often

consists of the domain at the initial state.

Formulating a weak formulation of equation (1.4) is not straight forward espe-

cially due to the boundary conditions for the different components at the interface.

This will be subject of chapter 4.2.

The convective term
(

F̂−1(v̂) · ∇̂)
)

v̂F̂ can be neglected in equation (1.4) in lu-

brication flows. However the resulting fluid-structure interaction problem will be

nonlinear due to the nonlinear boundary condition on Γ̂fs and the transformation.

This holds even for linear models for the structure and the fluid. Certainly, the

fluid itself has to be modeled in a nonlinear way due to the pressure dependent

viscosity.
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1.5 Comparison with previous work in elasto-

hydrodynamics and goal of the thesis

As mentioned before we use more complete models in this thesis than in most of

the previously existing pieces of work. We will now substantiate this assertion

with a comparison. Furthermore we will specify the aim of this thesis.

In [Křupka et al. (2005)] Reynolds’ equation is used together with a non-

Newtonian compressible fluid. The non-Newtonian model is however treated

in a non-consistent way, see [Rajagopal & Szeri (2003)]. The use of Reynolds’

equation constitutes a severe reduction of the model in comparison with a gen-

eralized Navier-Stokes model considered in this thesis. At high pressure in the

elastohydrodynamic regime the sorrounding structure becomes deformable. This

fact is often neglected, in [Křupka et al. (2005)] it is modelled by a simple integral

formula for the lateral pressure. In our work we consider a full fluid-structure

interaction problem without continuum mechanical simplifications. In addition

there is no free boundary of the fluid in [Křupka et al. (2005)] in contrast to this

work.

A similar approach as in [Křupka et al. (2005)] is presented e.g. in [Jubault

(2002)] and [Jubault et al. (2003)]. Again a simplified elastic model is used.

These publications show besides interesting experimental results.

In [Gwynllyw et al. (1996)] a full generalized Newtonian fluid is considered in-

stead of Reynolds’ equation. In this case the fluid domain is however fixed and

thus the structure is assumed to be rigid. Due to the different geometry there is

no free boundary neither.

In [Olaru & Gafitanu (1993)] an analytical theory is developped for the free-

boundary aspect of a ball-bearing but it is based on simple geometric consider-

ations. Furthermore the analytic approximation is presumably not valid for all

relevant sets of parameters. Fluid-structure interaction is completely neglected.

The elastohydrodynamic film thickness is one of the most important quantities

in ball bearings. Whenever it is close to zero, a breakdown of the fluid film is

possible. Damage of the bearing may happen in such cases, therefore the film

thickness is such an important quantity. This is why there are also many ana-

lytical approximations and lots of experiments dealing with film thickness in ball

bearings. Most of the literature cited above is also considering this parameter.

Througout this thesis we will derive a method to simulate the elastohydrody-

namic film thickness in ball bearings. We will compare the results of the sim-



1.5 Comparison with previous work in elastohydrodynamics and goal of the thesis 13

ulation with an analytical approximation widely used in literature. There is a

reasonable accuracy in the regions of parameters where the analytical theory is

valid. The numerical method presented in this work will be more flexible with

respect to changes of parameters than analytical approximations. In addition it

will be based on fundamental continuum mechanical principles. The most impor-

tant result will be the prediction of the film thickness. Also other quantities are

interesting and can be determined by means of the numerical algorithm such as

pressure profiles or forces on the ball. The film thickness is of special importance

because it may predict a collapse of the fluid film and thus bearing failure.

From a methematical point of view we propose a way to deal with pressure-

dependent viscosities numerically. We achieve robustness so that we are able to

perform simulations in a wide range of relevant physical parameters. In addition

we propose a fully implicit discretization of the free-boundary value problem for

the lubricant flow.





Chapter 2

Free boundary value problems in

lubrication flow

This chapter is about free boundary value problems and their numerical simu-

lation. Since in ball bearings good mass preserving properties of the numerical

algorithm are needed, we analyze the algorithms with respect to this issue in de-

tail. Two stable and one stabilized discretization will be compared. It turns out

that stable discretizations have much better properties for such problems than

stabilized ones. We propose a new fully implicit scheme for the simulation of flow

with a free boundary which is based on weak imposition of boundary values. The

resulting algorithm is then stable for arbitrarily large time-steps in contrast to

previous discretizations proposed in literature.

2.1 Formulation of the free boundary value

problem

Ball bearings consist of balls and the bearing unit made of steel as well as a

lubricating fluid. Assuming for the moment that the parts made of steel are rigid

we know a priori the position of the interface between steel and fluid. However

the fluid also possesses a free boundary on the inlet and outlet. On the free

boundary there are thus forces due to the surface tension of the fluid. The free

surface will therefore depend on the inflow speed and the material parameters

and evolve in time until it reaches a stationary setting.
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Γ0
Ω f (t)

Γf(t) n
n

V v

Figure 2.1: Scheme of a free boundary value problem with fixed boundary Γ0, free

boundary Γf (t), exterior normal n, fluid velocity v and velocity of the boundary Vn.

The following derivation will be two-dimensional but all relations can be formally

extended to three dimensions.

The most common model for surface tension forces is to assume that they are

proportional to the local curvature of the free surface κ. For the Navier-Stokes

equations with a time dependent domain Ωf (t) and a free boundary Γf (t) which

moves with an associated velocity field Vn we pose the following problem derived

in [Bänsch (2001)]. The tangential and normal vector at the boundary are denoted

t and n respectively.

Problem 2.1. Let v0 be initial data, Ω0 the initial domain. Find v, p and Ωf (t)

such that

ρ∂tv + ρ(v · ∇)v −∇ · σ(p, v) = ρf in Ωf (t),

∇ · v = 0 in Ωf (t),

σ(p, v) = −pI + µD(v), D(v) = ∇v + (∇v)T ,

v(·, 0) = v0,

Ωf (0) = Ω0,

Vn = n(vn) on Γf (t),

v = 0 on Γ0,

σt = 0 on Γf (t),

σn = γκn on Γf (t). (2.1)

The fixed boundary is here denoted Γ0, γ is the constant material parameter of

surface tension. The existence of a solution to the system of equations (2.1) is
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far from self-evident but has to be postulated a priori. Even with small initial

data and smooth initial domains a change in topology may happen when for

example droplets develop and separate from the main fluid phase. Furthermore

cusps or similar pathologies may occur at the free boundary in the course of time.

This problem is very fundamental, in [Bänsch (2001)] and the reference therein

the interested reader finds more on these theoretical questions. In [Schweizer

(1996)] a proof of existence is given in a specialized situation with some additional

assumptions. Often in theoretical analysis it is assumed that the free boundary is

given as graph of a function which is a severe restriction and usually not physical.

The free boundary shall be a sharp interface so that no fluid particle is allowed

to cross the free boundary. This modelling assumption does not hold exactly in

real lubrication flows since evaporization may occur. For the moment however we

stick to this assumption. It follows that if a non-zero normal component of the

fluid velocity on the boundary exists, the interface moves in the normal direction.

Vn = n(vn) on Γf (t).

Here Vn is the velocity of the free boundary itself. This serves as boundary con-

dition for the evolution of the interface in equations (2.1).

We will now derive a formulation for the curvature which is well suited for numer-

ical treatment as well as theoretical analysis. It involves the Laplace-Beltrami

operator and its relation to curvature which we derive in the following, see [Delfour

& Zolésio (2001)] and the references therein for a detailed derivation.

Definition 2.1 (Tangential gradient). Let F be ∈ C1(U,R) where U ⊂ R2 is an

open set which contains Γ. The tangential gradient is then defined as

∇F := ∇F −
∂F

∂n
n.

We also need the tangential gradient of vector valued functions.

Definition 2.2 (Tangential Jacobian). Let F be ∈ C1(U,R2) where U ⊂ R2 is an

open set which contains Γ. The tangential Jacobian is defined componentwise as

(DF )ij := (∇Fi)j. (2.2)

Definition 2.3 (Tangential divergence). With the above notation and Dv as

usual Jacobian the tangential divergence is defined as

∇ · v := tr
[

Dv −DvnTn
]

. (2.3)
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We define the Laplace-Beltrami operator in a nearby manner as tangential diver-

gence of the tangential gradient.

Definition 2.4 (Laplace-Beltrami Operator). The Laplace-Beltrami operator ∆

is defined as

∆v := ∇ · ∇v. (2.4)

More details on the background of these definitions with respect to differential

geometry can be found in [Delfour & Zolésio (2001)].

Proposition 2.1 (Curvature). There holds for the identity mapping id : Γ → Γ

with κ as curvature

∆id|Γ = κn. (2.5)

Proof. A proof can be found in [Eschenburg & Jost (2007)].

In order to derive a weak formulation we need partial integration.

Proposition 2.2 (Partial Integration). For closed curves Γ and smooth test func-

tions φ there holds

∫

Γ

∆id|Γφ dx = −

∫

Γ

∇id|Γ∇φ dx. (2.6)

Proof. A proof can be found in [Gallot et al. (2004)].

With these definitions and relations we are able to formulate a variational formu-

lation of the free boundary value problem (2.1). As in the case of fluid-structure

interaction later in this thesis we transform the actual domain Ω(t) to the initial

domain. We use a method known as ”Arbitrary Lagrangian Eulerian” (ALE)

which will be described in detail in chapter 4.2. For the derivation how to trans-

form scalar, vector- or tensor valued fields on moving domains we also refer to

[Dunne (2007)] where additional formulas and details on calculus can be found.

The most important difference to fluid-structure interaction problems considered

later in this thesis stems from the fact that there is no structure, just a trans-

formation function which has only physical meaning on the free boundary. In
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equation (2.1) we have the boundary conditions for the deformation u at the

moving boundary

∂tu|Γ = Vn = (vn)n.

These boundary values are extended to the whole fluid domain by means of

harmonic extension.

In the following we will need to transform the normal on a moving boundary. For

this purpose we give a formula for the transformation of the exterior normal.

Proposition 2.3 (Transformation of the exterior normal). Let Γ̂ be the boundary

of the domain Ω̂ with exterior normal n̂ and û be a diffeomorphism from Ω̂ on Ω.

On the boundary of Ω which is denoted Γ the exterior normal is n. We denote

F̂ := I + ∇̂û.

It holds

n(x) = n (x̂+ u(x̂)) =
F̂ (x̂)−T n̂(x̂)

||F̂ (x̂)−T n̂(x̂)||
.

We also use the short notation

n =
F̂−T n̂

||F̂−T n̂||
.

Proof. The formula follows immediately by application of the chain rule and

normalization.

We will in the following consider the discretization of equation (2.1) by means of

finite elements of which the precise definition is given in chapter 5. In time we

use a standard implicit Euler scheme.

Problem 2.2 (Discrete formulation of the free boundary value problem, explicit

treatment of the curvature). Let the interval [0, T ] be divided in m equidistant

time-steps of size dt. For n ∈ {0, ...,m− 1}
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1. find vnh := vh(t
n), unh := uh(t

n) ∈ Vh, p
n
h := ph(t

n) ∈ Xh such that

1

dt
(Ĵn+1

h ρ̂v̂n+1
h , φ) +

(

Ĵn+1
h ρ̂(v̂n+1

h − ∂tû
n+1
h ) · ∇̂v̂n+1

h , φ
)

+
(

Ĵhσ̂(p̂
n+1
h , v̂n+1

h )F̂−T,n+1
h , ∇̂φ

)

=

1

dt
(Ĵn

h ρ̂v
n
h , φ) + (ρ̂fn+1, φ) + γ < κn, φ >Γn

(

∇̂ · (Ĵn+1
h v̂n+1

h F̂−1,n
h ), χ

)

= 0

(∇̂ûn+1
h , ∇̂ψ) = 0

for all φ, ψ ∈ Vh, χ ∈ Xh.

2. update the boundary

ûn+1
h = ûnh + dt(n̂n

h · v̂
n
h)v̂

n
h on Γ̂

For the Neumann boundary condition in the variational formulation of the fluid

(2.1) we use the above definitions and obtain
∫

Γ(t)

κnφ =

∫

Γ(t)

∆id|Γ(t)φ = −

∫

Γ(t)

∇id|Γ(t)∇φ.

The transformation of the tangential gradient ∇̂ can be easily computed with the

transformation laws derived in chapter 4. It holds

∇ = ∇− n∇n = F̂−1∇̂ −
F̂−T n̂

||F̂−T n̂||
F̂−1∇̂

F̂−T n̂

||F̂−T n̂||
.

Consequently we obtain the boundary condition on the reference domain in the

form
∫

Γ(t)

∇id|Γ(t)∇φ =

∫

Γ̂

[(

F̂−1∇̂ −
F̂−T n̂

||F̂−T n̂||
F̂−1∇̂

F̂−T n̂

||F̂−T n̂||

)

idΓ̂

(

F̂−1∇̂ −
F̂−T n̂

||F̂−T n̂||
F̂−1∇̂

F̂−T n̂

||F̂−T n̂||

)

φ

]

.

Before stating the discrete systems we comment on the discretization of the cur-

vature term

σn = γκn on Γf (t).

The formulation using the Laplace Beltrami operator is in summary particularly

advantageous because there is no need of evaluating the curvature, only the exte-

rior normal is needed. By using partial integration the order of derivatives needed
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is only one, instead of two when discretizing the curvature directly. Sometimes in

engineering literature the curvature is indeed directly evaluated on a discrete level.

However for many discretizations the boundary is not smooth and a node-wise

evaluation of the curvature is not defined directly. In fact there are also methods

to recover a node-wise curvature on polygonal domains but these methods can be

understood as (twice) numerical differentiation. Furthermore the implementation

of such an evaluation of the curvature is cumbersome.

The exterior normal we need is neither defined in a node-wise sense. In the subse-

quent we will show a method to approximate it nevertheless with the right order

of convergence under mesh refinement.

The discrete variational formulation is fully explicit with respect to the move-

ment of the boundary since its new position only depends on data of the last

time-step. Such a discretization therefore leads to a conditional stability, e.g. the

algorithm is only stable for small time-steps. In addition temporal and spatial

discretization are coupling, any refinement of the spatial grid requires also smaller

time-steps. This effect has shown up in the simulations conducted in this thesis

and is also well known in literature. In [Brackbill et al. (1991)] a qualitative as

well as quantitative analysis is given with a result for the stability condition

∆t <

√

h3ρ

γ
.

The first step to overcome this restriction is a semi-implicit treatment of the

curvature terms. This method was proposed in [Bänsch (2001)] and it consists of

evaluating parts of the curvature terms at the new time-step. If we consider the

curvature term on the boundary

< ∇idΓf
,∇φ >Γ (2.7)

we write for the new position of the boundary

Γn+1 = Γn + dt(vn+1 · nn)nn

and insert this new position in equation (2.7).

We thus introduce a coupling to the velocity field at the new time-step. The

following semi-implicit system results.

Problem 2.3 (Discrete semi-implicit formulation of the free boundary value

problem). Let the interval [0, T ] be divided in m equidistant time-steps of size dt.

For n ∈ {0, ...,m− 1}
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1. find vnh := vh(t
n), unh := uh(t

n) ∈ Vh, p
n
h := ph(t

n) ∈ Xh such that

1

dt
(Ĵn+1

h ρ̂v̂n+1
h , φ) +

(

Ĵn+1
h ρ̂(v̂n+1

h − ∂tû
n+1
h ) · ∇̂v̂n+1

h , φ
)

+
(

Ĵhσ̂(p̂
n+1
h , v̂n+1

h )F̂−T,n+1
h , ∇̂φ

)

=

1

dt
(Ĵn

h ρ̂v
n
h , φ) + (ρ̂fn+1, φ) + γ < ∇

(

idΓn
+ dt(vn+1

h · nn)nn
)

,∇φ >Γn

(

∇̂ · (Ĵn+1
h v̂n+1

h F̂−1,n
h ), χ

)

= 0

(∇̂ûn+1
h , ∇̂ψ) = 0

for all φ, ψ ∈ Vh, χ ∈ Xh.

2. update the boundary

ûn+1
h = ûnh + dt(n̂n

h · v̂
n
h)v̂

n
h on Γ̂

In problem (2.3) only the velocity field of the fluid is evaluated at the new time-

step, all integration is performed on the domain of the old time-step. Indeed

the domain and thus the normal is fixed throughout one time-step and updated

explicitely.

The semi-implicit term in problem (2.3) allows considerably larger time-steps in

practice. For many kinds of applications the still-present coupling of mesh-size

and time-step does not show up since for other reasons small time-steps are needed

anyway. A typical case are the Navier-Stokes equations with higher Reynolds

number. In such dynamical situations the convective term in the Navier-Stokes

equations requires small time-steps anyway.

Indeed the conditional stability is still present and not corrected completely in

the semi-implicit scheme as shown by numerical experiments in [Hysing (2006)].

This makes the method somehow unattractive for local mesh refinement which

we are interested in for simulations for elastohydrodynamics.

In all previous variants of discretization the integration happens on the domain of

the old time-step. The reason is that the evolution of the free boundary is given as

Dirichlet data and hence considered as known boundary values in each time-step.

Since the curvature is based on evaluation of the normal at the boundary it can

be only evaluated explicitely either. We overcome this problem in imposing the

boundary values only weakly. Consequently we are able to formulate the position

of the free boundary implicitly. Recall that in (2.2) the boundary values are given

as

un+1
h = unh + dt(nn

h · v
n
h)v

n
h on Γ.
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We impose these boundary values weakly using Nitsche’s method [Nitsche (1971)].

In such a way one can consider the new position at the boundary as an additional

unknown quantity in each time-step instead of imposing it. For this purpose we

add a boundary term with a small parameter ǫ

1

hǫ

〈

un+1
h − (unh + dt(vn+1

h nn+1)nn+1, φ
〉

.

Here h denotes the local mesh-size. We have therewith introduced an additional

nonlinear boundary condition for the transformation. As a result we recover a

fully implicit formulation

Problem 2.4 (Discrete implicit formulation of the free boundary value prob-

lem). Let the interval [0, T ] be divided in m equidistant time-steps of size dt. For

n ∈ {0, ...,m− 1} find vnh := vh(t
n), unh := uh(t

n) ∈ Vh, p
n
h := ph(t

n) ∈ Xh such

that

1

dt
(Ĵn+1

h ρ̂v̂n+1
h , φ) +

(

Ĵn+1
h ρ̂(v̂n+1

h − ∂tû
n+1
h ) · ∇̂)v̂n+1

h , φ
)

+
(

Ĵhσ̂(p̂
n+1
h , v̂n+1

h )F̂−T,n+1
h , ∇̂φ

)

=

1

dt
(Ĵn

h ρ̂v
n
h , φ) + γ < ∇idΓn+1 ,∇φ >Γn+1 +(ρ̂fn+1, φ)

+
1

hǫ

〈

un+1
h − (unh + dt(vn+1

h nn+1)nn+1, φ
〉

Γn+1

(

∇̂ · (Ĵ v̂n+1
h F̂−1,n

h ), χ
)

= 0,

(∇̂ûn+1
h , ∇̂ψ) = 0. (2.8)

for all φ, ψ ∈ Vh, χ ∈ Xh.

After all this formulation is most appropriate when we are interested in sta-

tionary limits. In this case it is possible to choose in principle arbitrarily large

time-steps. However due to the additional nonlinearity there is also a limit for

the time-steps arising from slow convergence of nonlinear iterations. In general it

can be stated that it is indeed favorable and less costly to work with the implicit

algorithm at a larger time-step. The higher number of nonlinear iterations is

more than compensated by the possibility of larger time-steps.

In the case of ball bearings we are in the present thesis only interested in station-

ary limits. Due to the much higher complexity inherently instationary processes

are not in our focus. When dealing with them we would also as a first step have

to be able to solve stationary problems efficiently.
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Curvature Domain

Explicit explicit explicit

Semi-implicit (Bänsch) semi-implicit explicit

Implicit implicit implicit

Table 2.1: Different types of discretization for free boundary value problems.

We summarize the different types of discretization for the sake of clearness in

table 2.1.

2.2 Numerical results under explicit and semi-

implicit treatment of the free boundary

In order to validate and compare the above methods we firstly describe the bench-

mark example given in [Bänsch (2001)]. It consists in two dimensions of an el-

lipsoid with semiaxis r1 = 1, r2 = 1.2 where the non-constant curvature of the

boundary leads to oscillatory behaviour if viscous damping is small enough. In

this example the Reynoldsnumber is Re = 300, allowing indeed oscillations. In

configurations for ball bearings the Reynoldsnumber is usually much smaller ≤ 1

so that no oscillations occur and larger time-steps are useful. This is the situation

where the fully implicit method is advantageous.

Figure 2.2 shows the velocity field at different instances in time. In order to derive

a quantitative comparison we consider the change in volume of the ellipsoid in

the course of time as well as the tip position. During the tests for this compari-

son we also considered the entire kinetic energy of the fluid but it seemed to be

less sensitive with respect to different types of discretizations. Therefore we omit

this quantity here. Recall that for an incompressible fluid an analytical solution

would of course show no change in volume at all whereas kinetic energy decreases

in a viscous fluid.

In figure 2.3 some simulation results for the free boundary of the lubricant in a

ball bearing are shown. The simulations are based on the same discretization

methods presented above. For validation purposes the oscillating bubble is cho-

sen as a more simple benchmark problem.

In figure 2.4 the position of the tip of the oscillating bubble is depicted for small

time-steps at the beginning of the simulation. Later the mass loss throughout
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Figure 2.2: Oscillating bubble at different instances in time.

this interval in time will be measured and compared for different discretizations.

In figure 2.5 the position of the tip of the oscillating bubble is depicted for ap-

proximately one period of the oscillation.

In order to analyse in the following the numerical results we have to presuppose

the precise definition of finite element spaces which is given in chapter 5.

We thus continue with directly discussing the properties of the discretizations

and the numerical results. In this context we firstly discuss the reasons for a loss

of mass on a discrete level. Later on we confirm the statements with numerical

experiments.

In principle there are the following reasons for errors in mass-conservation:
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Figure 2.3: Lubricant in ball bearing with free boundary.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
1.2

1.2

1.2

1.2

1.2

1.2

Time [s]

T
ip

 p
os

iti
on

 [m
]

Position of tip for different levels of mesh refinement

 

 

337 nodes
1313 nodes
5185 nodes

Figure 2.4: Position of tip of the oscillating bubble for three levels of mesh refinement

in the course of time.

• Error in the approximation of the normal:

The discrete normal determines the evolution of the free boundary because

of the boundary condition for the transformation

Γn+1 = Γn + dt(nn
h · v

n
h)n

n
h on Γf . (2.9)

It follows that any error in the approximation of the normal leads to an

error in mass-conservation. In the benchmark example under consideration

the reference domain has ellipsoidal shape and hence an analytically known

normal. Due to proposition (2.3) the error in the approximation of the

normal is given by the order of approximation of ∇̂û. When using one of the

methods with explicit treatment of the boundary, the boundary values for

the transformation are given as Dirichlet data. Therefore they are evaluated
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Figure 2.5: Position of tip for the oscillationg bubble for longer time interval on fixed

mesh.

in nodes that is a pointwise manner. For the free boundary value problem

there are no rigorous pointwise error estimates available. If we neglegt

the coupling between the transformation and the fluid we can expect the

error of the transformation to behave like in the case of a Laplace equation

with Dirichlet data. We assume that the pointwise evaluation does not

degrade the order of convergence compared to mean errors as it is often

seen in practical applications. Under this assumption we expect an order of

approximation of O(h) in the case of (stabilized) Q1 elements, when using

Q2 elements the order is O(h2), see chapter 5 and the references therein.

Recall that the inf-sup-stable elements used in this thesis are the Q2Q1

Taylor-Hood element as well as the Q2P
disc
1 element, both using Q2 elements

for the transformation. The error in the approximation of the normal can

be improved when using stabilized Q1 elements by approximating only the

normal with Q2 elements. This increases the order of approximation to

O(h2) and will also be discussed and confirmed by numerical experiments

in more detail in the following.

• Approximation in the incompressibility constraint:

Stabilized elements as well as the Q2Q1 Taylor-Hood element are mass-

preserving only in a global way. Only the Q2P
disc
1 element using a discon-

tinuous pressure is mass-preserving cell-wise. However we only consider the

global error in the volume of the domain, hence all discretizations should in

principle preserve this quantity when working with an exact normal. On a
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n

Γ

Figure 2.6: Approximation of the normal when using Q1-elements.

continuous level the incompressibility constraint is equivalent to preserving

mass due to the Gauss theorem but on a discrete level this only holds up

to an error of O(h2).

• Evolution of the boundary in time:

The transformation at the boundary of the domain is given by equation

(2.9). This expression is a first order approximation in time. Recall that

expression (2.9) has to be evaluated in a pointwise manner when prescribing

Dirichlet data for the numerical approximation.

In the benchmark example the entire boundary of the domain is a free boundary

for the flow.

We will now study the different discretizations with respect to the different causes

of error in domain size. Firstly we consider the error in the approximation of the

normal. In the case of using a Q1 discretization the boundary of the discrete

domain is polygonal, see figure 2.6. In case of Q2 elements it is a piecewise

quadratic polynomial. Since we need a pointwise evaluation of the normal in the

case of explicit treatment of the boundary we face the problem to define it in a

nodal way. For this purpose we use averaging over adjacent edges weighted by

edge length. If we call the edges e with length |e| we thus define the normal at

the node K with the set of adjacent edges E(K) as

nK
h =

∑

e∈E(K) n
e
h|e|

||
∑

e∈E(K) n
e
h|e|||

.

The normal on an edge is of course also well defined for Q1 elements except at end

points. We check the node-wise approximation by comparing it to an analytical
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Number of nodes Normal Q1 Normal Q2

89 0.414192 0.366243

337 0.169722 0.091408

1313 0.083528 0.025255

5185 0.042307 0.006545

20609 0.021281 0.001657

Table 2.2: Convergence of the normal in the case of Q1- as well as Q2-elements.

normal field. Therefore we use the initial reference domain with ellipsoidal shape

and thus known normal. We consider the error between the numerical approx-

imation for the normal and the analytical one. As a measure for the error we

take.

eh = ||nh − n||L2(Γ)

where n = (nx, ny)T denotes the analytical and nh = (nx
h, n

y
h)

T the discrete nor-

mal. Results are given in table 2.2 and perfectly show linear and accordingly

quadratic behaviour. Having confirmed the error in the approximation of the

normal we pursue by considering mass-conservation. We start with the semi-

implicit methods with explicit treatment of the transformation at the boundary.

The surface tension forces are however coupling to the flow field in an implicit

way. Since we are for the moment not considering time discretization we choose

a small time-step neglecting the error belonging to time discretization. This

time-step will be larger for the stabilized methods since they lead to considerably

larger errors related to spatial discretization. For the Q1Q1−Lps element we take

∆t = 1.0−4s and conduct 10.000 time-steps on three levels of mesh refinement

and measure the change in volume of the domain. For the stable elements Q2Q1

Taylor-Hood and Q2P
disc
1 we choose ∆t = 1.0−6s and 50.000 time-steps.

In order to have a fair comparison we have to consider on each level of mesh

refinement the error in comparison to the initial state. The initial state itself

approximates the ellipsoidal shape with a rate of O(h2) to the analytical value of

the initial domain-size |Ω| = πr1r2 with r1 = 1.0 and r2 = 1.2.

Recall that the semi-implicit discretization and the fully explicit do not differ in

the treatment of the transformation at the boundary so that we do not consider

them separately. Later on we also analyze the fully implicit method on one fixed

grid with different time-steps to detect the error coming from time discretization.
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Figure 2.7: Order of convergence of the mass error for stable discretizations.
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Figure 2.8: Order of convergence of the mass error for stabilized discretizations.
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Figure 2.9: Mass error in the course of time (stabilized elements), Q1Q1 −Lps with

Q1 normal
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Figure 2.10: Mass error in the course of time (stabilized elements) Q1Q1−Lps with

Q2 normal
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disc
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element. The

stochastic nature of the mass-error becomes visible.
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Figure 2.12: Mass error in the course of time Q2P
disc
1

.

In figure 2.7 and 2.8 the experimental order of convergence for different discretiza-

tion is shown. The expectations stated above are in general confirmed. For the

stabilized Q1 element the order of convergence in case of a Q1 approximation of

the normal is approximately linear. By using a Q2 interpolation for the normal

this order can be increased to approximately quadratic convergence, the order

being indeed slightly smaller than one or two respectively.

For the stable elements the error is considerably smaller. The order of con-

vergence is also close to quadratic. Considering the much smaller error ∼ 10−10,

stable elements seem to be preferable in comparison with stabilized ones when

discretizing free boundary value problems. However the cell-wise mass-preserving
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Figure 2.13: Mass error in the course of time Q2Q1.

element shows very similar behaviour compared to the stable but only globally

mass preserving element. For both stable elements in practical applications the

error due to time discretization will be dominant. This numerical example is

precisely constructed to make the spatial error dominant by using very small

time-steps on rather coarse grids. For the stabilized elements the error related to

space discretization is dominant for a considerably larger range of time-steps.

In addition we show the mass error in the course of time for the stabilized dis-

cretization in figure 2.9 and figure 2.10 and for the stable one in figure 2.12 and

figure 2.13. Figure 2.11 shows the mass error in a more detailed view.

2.3 Numerical results under fully implicit treat-

ment of the boundary

There exists a stability bound for the time-step related to the mesh-size if the

boundary is treated explicitly. This is an important drawback so that we have

derived a fully implicit formulation above. It is a new method in the context of

arbitrary Lagrangian-Eulerian transformations to the knowledge of the author.

When using a fully implicit method, the time-step does not have to fulfill any sta-

bility condition. Due to the additional nonlinearity, nonlinear convergence may

however become slow at large time-steps. In numerical applications slow con-

vergence typically occurs at time-steps which are much larger than the stability

bound for the semi-implicit scheme. Thus the implicit method is often favorable.
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Figure 2.14: Order of convergence of the mass error for stable discretizations.
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Figure 2.15: Mass error for stable discretizations and four different levels of mesh

refinement.

Formula (2.9) for the evolution of the boundary is a first-oder approximation in

time. We thus expect linear convergence of the mass error with respect to time

discretization. In figure 2.14 we see the mass error depending on time for different

levels of mesh refinement. Here we observe a clear tendency to a mass loss. This

is different compared with the dominant spatial error where also positive errors

occurred, see figure 2.11.

In figure 2.15 the mass error is plotted in the last time-step for different time-

steps. Clearly linear convergence can be observed as expected.

When really large time-steps are required a linear order of convergence is un-

satisfactory. It is however not straightforward to derive a second order accurate

formulation. Therefore a different treatment of the free boundary would be neces-

sary. Indeed the exact expression for the position of a point of the free boundary
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at x̂ in the reference configuration is

x = x̂+

∫ ∆t

0

(v(s) · n(s))n(s)ds.

Formula (2.9) can be interpreted as an approximation of the integral with a box

rule

∫ ∆t

0

(v(s) · n(s))n(s)ds ∼ ∆t (v(0) · n(0))n(0).

For the construction of a higher order method the integral would have to be

approximated with a higher order integration formula.





Chapter 3

Numerical treatment of the

pressure-dependent viscosity

This chapter will deal with the numerical approximation for flows with pressure-

dependent viscosity. We briefly recall a theoretical existence result from literature

and analyze two different ways of regularizing the problem. One approach will

be to consider a slightly compressible fluid, the other one relies on cutting of the

pressure-viscosity function at a certain value. The effect on the number of non-

linear iterations in a benchmark example is studied. For both ”regularizations”

there is no proof for the existence of a solution on a continuous level. Later

in the thesis both regularization methods will be applied for the simulation of

elastohydrodynamic problems.

3.1 Pressure dependent viscosity in elastohy-

drodynamics

When modeling fluids with a continuum mechanical approach we postulate the

existence of a stress tensor σ called Cauchy stress fulfilling

−∇ · σ(p, v) = f in Ω

where f denotes an exterior volumetric force. The physical properties of the

fluid depend on the specific form of σ. For a physical model the tensor has to

fulfill certain requirements. The usual assumption is that the stress of a fluid
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shall only depend on pressure and on the symmetric part of the velocity gradient

D(v) = ∇v + (∇v)T . A general formula for the stress is derived in [Hron et al.

(2001)] and reads

σ = α0(p, ID, IID, IIID)I + α1(p, ID, IID, IIID)D + α2(p, ID, IID, IIID)D
2,

D = ∇v + (∇v)T ,

ID = tr(D), IID =
1

2

(

[tr(D)]2 − tr(D2)
)

, IIID = det(D). (3.1)

For details on the underlying assumptions and a derivation we also refer to [Hron

et al. (2001)] and the reference therein. Assuming that the stress depends on

pressure and the velocity gradient in a linear way we find Stokes’ equations

σ(p, v) = −pI + µD(v). (3.2)

Such a model with constant viscosity is called a ”Newtonian” fluid. Lubrication

flows in general do not obey such a model, but the viscosity µ is itself a function

of pressure and the velocity gradient. In elastohydrodynamics the fluid is often

modeled by a viscosity which only depends on pressure. However from a mathe-

matical point of view there exists no theory of existence for such equations. For

most theoretical results a certain dependence on the velocity gradient seems to

be indispensable in order to control this quantity, see [Franta et al. (2005)].

Many fluids do not change their volume noticeably even under large pressure.

This is modeled by an additional constraint for the velocity leading to the com-

plete Stokes system on a domain Ω with boundary Γ

−∇ · σ(p, v) = f in Ω,

∇ · v = 0 in Ω,

σ(p, v) = −pI + µD(v), D(v) = ∇v + (∇v)T . (3.3)

Let us for the moment suppose that we have Dirichlet boundary conditions ev-

erywhere

v = 0 on Γ.

The value of the pressure is normalized by the condition
∫

Ω

p dx = 0.

For the precise relationship between pressure and viscosity and or shear rate there

exist a lot of models. Most of them which are used in engineering applications
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contain at least as one part an exponential increase of viscosity with pressure

µ = µ0 exp(αp). (3.4)

This model is known as ”Barus” equation after its original author.

As a consequence the value of the pressure itself, not only the gradient enters

the equations. This is a remarkable difference in comparison to Stokes’ equa-

tions (3.3). When considering a channel flow we can prescribe Dirichlet data

everywhere together with a normalization of the pressure. Alternatively we can

prescribe a Neumann type boundary condition on the outflow µ∂nv − pn = 0.

This is leading to a pressure normalization at the Neumann boundary.

If we compare both solutions only the pressure is shifted by a constant, the veloc-

ity fields are equal. In the case of the Barus material law both solutions would be

completely different including the velocity fields. Consequently the precise way

of imposing boundary conditions is absolutely crucial.

We remark at this point that in an incompressible fluid model the variable de-

noted ”pressure” does not automatically play the role of the correspondent phys-

ical, thermodynamical variable. In a compressible fluid model there is an ad-

ditional equation relating pressure and density. Consequently the equations do

always depend on the absolute value of the pressure in this case. The pressure

of an incompressible model is more subtle do interpret and does not have to

be equivalent to the thermodynamical pressure. In fact incompressibility is an

approximation based on the experimental observation that many fluids do not

change their volume noticeably even when exerting large pressures. However ex-

act incompressibility does not occur in nature and also in lubrication flows there

is some change of volume under pressure. A model often used in engineering sci-

ence for the density as a function of pressure is stated in [Křupka et al. (2000)]

as

ρ(p) = ρ0

(

1 +
ap

1 + bp

)

. (3.5)

Here a = 0.6×10−9[ 1
Pa

] and b = 1.7×10−9[ 1
Pa

] are empirical parameters depending

on the specific fluid under consideration. The constraint ∇ · v = 0 is replaced by

∇ · (ρv) = 0

in a stationary setting. In this thesis we stick to dealing with incompressible

fluids anyway since changes in volume are quite small but the pressure-density

relation (3.5) would introduce an additional nonlinearity. The changes in density

with the given model and parameters would be insignificant.
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3.2 Formulation of the regularized problem

There exist many different models for fluids in lubrication flow. Usually these

models result from experiments. Different types of parameterized functions are

fitted to match measurements for fluids under certain conditions. These models

are often not very general within the meaning of applicability to different fluids.

For different fluids, different empirical material models or at least different sets

of parameters exist. Yet one fact is common for nearly all models coming from

application: There exists no theory of existence for Stokes’ equations if the vis-

cosity as function of pressure and/or shear rate is plugged in.

Recently some effort has been made in order to derive a theory of existence for

non-Newtonian fluids. The results do not cover the models coming from applica-

tions since there are restrictions for the increase of viscosity. Furthermore there

exists no theory for fluids where the viscosity only depends on pressure as it is

often the case for lubrication flow. A certain functional relation between veloc-

ity gradient and viscosity is needed theoretically in order to control the velocity

gradient.

In order to motivate the regularizations we will propose later, we now cite a theo-

retical result given in [Franta et al. (2005)]. They propose a slightly compressible

model with a small parameter ǫ determining the degree of compressibility. In their

proof the parameter tends to zero recovering a fully incompressible model. In nu-

merical simulations we will also use a simular term inspired by this theoretical

piece of work but keep a finite value of the regularization.

For the proof a specific form of the viscosity is required.

Definition 3.1 (Admissible viscosity). Let the viscosity be of the form

νi(p, |D|2) = (A+ γi(p) + |D|2)(r−2)/2 (3.6)

where A ∈ (0, 1] and r ∈ (1, 2), furthermore

γ1(p) =
(

1 + α2p2
)−q/2

,

γ2(p) = (1 + exp(αp))−q ,

γ3(p) =

{

µ0 exp(−αqp) if p ≥ 0,

1 else.

A viscosity of such form is called admissible if α and q are positive and in addition

some technical requirements on parameters are met, see [Franta et al. (2005)].
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With this definition we are now able to quote the existence result by [Franta et al.

(2005)].

Theorem 3.1. Let Ω ⊂ R2, 3
2
< r < 2 and f ∈ W 1,r

0,div(Ω)
2
.

Then there exists at least one weak solution such that v ∈ W 1,r
0,div(Ω)

2
, p ∈ Lr′(Ω)

∫

Ω

[∇v]vφ+

∫

Ω

ν(p, |D(v)|2)D(v) : D(φ)−

∫

Ω

p∇ · φ =< b, φ >

for all φ ∈ W 1,r
0,div(Ω)

2
(3.7)

Proof. The proof as well as further references and background on existence theory

for non-Newtonian fluids can be found in [Franta et al. (2005)].

As mentioned above the result is not directly applicable to lubrication problems.

The most common model in this case is Barus’ equation µ = µ0 exp(αp). This

form of the viscosity is not admissible in the sense of the theorem since the term

|Dv| does not appear. Furthermore the term A in (3.6) would equal zero and

the exponent p would equal two which both is not allowed. Even it these re-

quirements were met the additional prerequisite on the size of parameters for

admissible viscosities cannot be guaranteed in general.

In this thesis we consider Barus’ law together with some regularizations intro-

duced later on. Without regularization Barus’ law leads to unbounded numerical

approximations for realistic parameters and geometry. This could be a hint that

this model indeed does not possess a solution on the continuous level.

The weak formulation of the generalized Stokes equations with pressure depen-

dent viscosity reads

Problem 3.1 (Barus model). Find p ∈ L2(Ω), v ∈ H1(Ω)2 such that

(µ(p)∇v,∇φ)− (p,∇ · φ) = (f, φ),

(∇ · v, χ) = 0,

for all χ ∈ L2(Ω), φ ∈ H1(Ω)2.

For the Barus model we would in principle set

µ(p) = µ0 exp(αp).

However for p ∈ L2(Ω) the resulting problem might not be well-posed. Also the

numerical approximation in this case usually leads to unbounded solutions, we

therefore consider two ways of regularizing the problem:
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• Cutoff: We replace µ(p) = µ0 exp(αp) by a bounded expression

µ(p) =

{

µ0 exp(αp) if p < pmax,

µ0 exp(αpmax) else.

For the purpose of numerical approximation such a regularization does al-

ways lead to bounded solutions if pmax is sufficiently small. The existence

of a continuous solution to this problem is however no easy question. The

regularized problem does not fit in the theoretical framework cited above.

Since the nonlinearity in the main part of the differential operator is still

present in problem (3.1) there is also no other standard way to proof exis-

tence. Only numerical experience gives an indication that the regularized

problem might indeed possess a solution.

• Artificial compressibility: We let the viscosity unchanged µ(p) = µ0 exp(αp)

and change the divergence constraint with a small parameter ǫ such that

∇ · v + ǫ∆p = 0.

For the discretized problem we also observe that for sufficiently large ǫ there

exists a solution. This type of regularization is closely related to the approx-

imating problem of (3.7) in [Franta et al. (2005)]. In this reference a similar

Laplacian term in the divergence constraint is added as an approximating

problem. It is shown that there exists a weak solution also for the limit case

of vanishing compressibility. We remark that also this regularization does

not lead directly to the existence of a solution to the continuous problem.

Again the Barus law for the viscosity does not fit in the framework of the

existence theorem where the parameter ǫ tends to zero. The requirement

for the admissible form of the viscosity is not met.

When using artificial compressibility as a method we do not make the parameter

ǫ tend to zero on fine meshes. In doing so the problem would require more and

more nonlinear iterations as the mesh becomes finer. This effect can be seen

clearly in numerical simulations with e.g. the GLS-stabilized finite elements.

This stabilization method adds a similar mesh-dependent term for stabilizing the

linear systems arising from discretization.

Thus we will in our simulations keep a finite value for the regularization. Under

high pressure in lubricant flow we know that the fluid is no more completely

incompressible either. We remark that LPS-type stabilizations are not applicable
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Regularization: ǫ Drag Lift Nonlinear iterations

10−0 0.014776020 -0.00000315 4

10−1 0.063213262 0.000276081 3

10−2 0.165761649 0.002033453 4

10−3 0.293184182 0.005185094 8

9× 10−4 0.303288114 0.005408936 3

8× 10−4 0.318738514 0.005727693 4

7.5× 10−4 0.332383735 0.005984584 5

7.2× 10−4 0.349735928 0.006279133 5

7.15× 10−4 0.356868317 0.006390558 5

7.14× 10−4 0.359350505 0.006428111 3

7.13× 10−4 0.364035237 0.006497336 6

7.129× 10−4 0.365591922 0.006519875 5

Table 3.1: Influence of artificial-compressibility-regularization on functional values

and nonlinear iterations.

for large pressure dependent viscosity as they lead to oscillations in pressure and

singular matrices.

In a similar spirit we can add a pseudo time derivative in the divergence equation

which often reduces the stiffness of the discrete system considerably. On the other

hand in this case a sequence of problems has to be solved and slow convergence

may occur. For completeness we show the regularized system with both types of

regularization

Problem 3.2 (Discretized Barus model). Find ph ∈ Xh, vh ∈ Vh, such that

(µ(ph)∇vh,∇φ)− (ph,∇ · φ) = (f, φ),

(∇ · vh, χ) + ǫ(∇p,∇χ) = 0,

µ(p) =

{

µ0 exp(αp) if p < pmax

µ0 exp(αpmax) else
,

for all χ ∈ Xh, φ ∈ Vh.

Furthermore the problem can be linearized around a known pressure p which

leads to a linear problem with variable coefficient. Usually linearizations in the

course of pseudo-time iterations unfortunately lead to instabilities in combination

with the fluid-structure interaction problem which will later be presented. In
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Regularization: pmax Drag Lift Nonlinear iterations

0.1 0.074497934 0.000716068 3

1.0 0.213158154 0.003156162 12

1.5 0.276729261 0.004785104 7

2.0 0.350177004 0.006586801 9

2.2 0.396552027 0.007509716 34

2.3 0.427896474 0.008082925 7

2.35 0.446375737 0.008408280 5

2.4 0.467081760 0.008762729 6

2.45 0.490313214 0.009149471 5

2.5 0.516395084 0.009573050 6

2.55 0.545690978 0.010035351 6

2.6 0.578588485 0.010542554 5

2.65 0.615534779 0.011096559 6

2.7 0.657028002 0.011703898 6

2.75 0.703540965 0.012368441 6

2.8 0.755685136 0.013093591 6

2.85 0.814035110 0.013894010 6

2.9 0.879400872 0.014774989 7

2.95 0.952504082 0.015747731 6

3.0 1.034190477 0.016827420 6

3.05 1.125495881 0.018035291 6

3.1 1.227434498 0.019402558 7

3.15 1.341277730 0.020976851 8

3.2 1.468508715 0.022821164 8

3.25 1.610758352 0.025058006 9

3.3 1.770061663 0.027860784 9

3.35 1.949233912 0.031562927 8

3.4 2.152502767 0.036890980 8

3.45 2.387306132 0.045527795 10

3.5 2.661934172 0.058078256 19

3.55 2.970108081 0.072271659 10

3.551 2.977626574 0.072824349 11

Newtonian fluid Drag Lift Nonlinear iterations

α = 0 0.064372508 0.001604307 1

Table 3.2: Influence of cutoff-regularization on functional values and nonlinear itera-

tions.
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table 3.1 and 3.2 we show the influence of the two types of regularization on the

nonlinear convergence as well as on the drag and lift on the cylinder in the flow.

The domain corresponds to the benchmark problem of flow around a cylinder

in two dimensions proposed by [Schäfer & Turek (1996)]. The pressure-viscosity

coefficient is 1.6 and the viscosity at zero pressure is 0.01. The boundary condi-

tions are the same as in [Schäfer & Turek (1996)] namely a parabolic inflow. In

this specific situation, the discrete nonlinear algebraic systems can not be solved

without a regularization. Newton’s method will not converge, without damping

it will explode, with strong damping it will stagnate. We consider two ways of

regularizing the problem which actually lead to the solvability of the discrete

systems. The numerical algorithm leading to the results shown in 3.2 is the fol-

lowing: The discretization consists of Q1 elements for pressure and velocity with

GLS-stabilization, see [Hughes et al. (1986)].

The problem was solved with initial value zero and the strongest regularization

parameter in the beginning. This leads to 4 Newton iterations for the method of

artificial compressibility and to 3 Newton iterations for cutoff regularization and

is shown in table 3.1 and 3.2 as first entry.

Figure 3.1: Surface plot of pressure for two dimensional benchmark flow example

without (l.) and with (r.) pressure dependent viscosity

For the solution considering all other regularization parameters, the regularization

was decreased and the last solution was taken as initial solution for the problem

with smaller regularization. The number of nonlinear iterations is shown in table

3.1 and 3.2. For the Newtonian case we deal with a linear problem and only need

one nonlinear iteration and no regularization, of course.

Both regularization strategies alter the problem in a way that the discrete equa-
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Figure 3.2: Drag depending on value of cutoff-regularization parameter.

tions become solvable for sufficiently strong regularization. However, when the

regularization is decreasing, there exists a limit where the number of nonlinear

iterations explodes and finally no convergence at all can be achieved. In practical

applications we will therefore have to work with finite regularization parameters.

The regularization with a cutoff of the exponential function leads to a non-convex

and non-differentiable viscosity-pressure relationship. This explains the higher

number of iterations generally needed for this method. One could also find a

differentiable cutoff-function instead of equation (3.2). Some numerical experi-

ments conducted by the author indicate that this is not leading to substantially

different results.

In this example the pressure dependent viscosity is still very moderate compared

to elastohydrodynamics, although the discrete equations can only be solved with

regularization. The benchmark configuration leads to a maximum increase in

viscosity by a factor of exp(αp) = exp(1.7 ∗ 2.7) ∼ exp(4.5) whereas in ball bear-

ings an increase of a factor exp(αp) = exp(2.4× 10−8 ∗ 5× 108) ≥ exp(12) is not

uncommon.

Figure 3.1 shows the somehow more pronounced pressure peak in the case of

benchmark flow with pressure dependent viscosity. Without regularization typi-

cally the pressure peak will increase and become unbounded as α is increasing. At

such a critical value of an exponent around 5 there seems to be a mesh dependent

limit for convergence of the algorithm. It leads to more and more iterations as

the regularization is decreased. This effect can be seen clearly in table 3.2: For

an increase of the cutoff parameter from 3.5 to 3.55 it takes 10 Newton iterations

to converge, for the subsequent increase from 3.55 to 3.551 it takes already 11

iterations although the difference in regularization is much smaller in the latter

case. We believe that this can be considered as a numerical hint that no con-
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Figure 3.3: Drag depending on value of artificial-compressibility-regularization pa-

rameter.

tinuous solution exists for the unregularized problem. Such a conclusion can be

also justified regarding figure 3.2 and figure 3.3. In both figures we observe that

there seems to be no convergence for decreasing regularization but the slope of

the drag becomes infinite for small regularizations at some point.

Figure 3.4: Simulation results of pressure profiles in a ball bearing with (l.) and

without (r.) pressure dependent viscosity. For pressure dependent viscosity a huge

pressure spike arises and the profile becomes highly unsymmetric compared to the

Newtonian case. Note also the regions of negative pressure, the region of nearly

constant pressure corresponds to zero pressure.

In figure 3.4 we show a typical pressure profile on a domain arising in simulations

for ball bearings. Notice that the pressure becomes highly unsymmetric for the

pressure dependent viscosity. The regions with high pressure are larger and the

maximum value of the pressure is much higher. This leads to a net force on

the surrounding structure which tends to increase the distance between ball and

structure thus stabilizing the motion and preventing contact. We conclude that

pressure dependent viscosities are absolutely crucial for realistic models for ball

bearings. One of the main goals of this thesis was to present a method to simulate
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the elastohydrodynamics film thickness in ball bearings. With the above remarks

it becomes clear that this quantity is very sensitive with respect to pressure

dependent viscosities. This fact also showed up in all numerical simulations. It

is one of our principal observations that pressure dependent viscosities always

play an important role in elastohydrodynamics. Therefore this effect should be

included in any realistic model.

3.3 Cavitation

During the simulation of lubrication flow another problem arises: The pressure

will in practically all situations and for all meaningful types of boundary con-

ditions show regions with negative pressure. We emphasize that this problem

can not be overcome by any physically motivated choice of boundary conditions.

Indeed the fluid domain always has parts at the inflow and outflow with a ”free

boundary”. We refer to chapter 3 for the derivation of the boundary condition

at the free boundary. It reads

σn = γκn.

This is enforcing a pressure normalization which in practice leads to a nearly

vanishing pressure drop throughout the domain as in figure 3.4. We remark that

in this situation the fluid motion is not driven by a pressure drop but by the

no-slip condition at the boundary of the ball. The regions with negative pressure

are caused by the curvature of the domain: Since the fluid domain consists of

one converging and one diverging part it comes to high positive pressure in the

first and to high negative pressure in the latter part. Indeed these pressure peaks

are in a Newtonian model close to symmetric and only the pressure dependent

viscosity leads to a strong increase in the positive part. In regions with small or

negative pressure the pressure is only changed less significantly.

Yet negative values of the pressure are in general nothing extraordinary e.g. when

using mean normal pressure
∫

Ω
p dx = 0 they always occur if the pressure does not

happen to be constant. Here the situation is different since a pressure normaliza-

tion at the outflow and inflow is given and yet the pressure reaches high negative

values. In this situation it is clear that a fluid in reality will not be able to sus-

tain this large negative pressure. Instead spontaneously gaseous or vacuum-like

cavitation will appear in the fluid. In these regions the Navier-Stokes equations
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are no longer a valid model but the cavitated region would need a different treat-

ment. In [Sahlin et al. (2007)] it is modeled as a free boundary value problem. In

[Nilsson & Hansbo (2008)] a cavitation model for Stokes’ equations is presented

which leads to a variational inequality in the divergence constraint.

However in huge parts of the engineering literature the problem of cavitation is

not mentioned explicitly. Alternatively it is covered with post-processing or dis-

regarding negative values of the pressure when evaluating functionals.

In experimental work cavitation is also rarely studied. In [Dhunput et al. (2007)]

pressure profiles with cavitating regions are shown. However this publication

deals with piston-rings and not with bearings directly. In [Dowson & Taylor

(1979)] some further examples for cavitation are given. In this thesis no spe-

cial cavitation model will be used. Where negative pressure arises in simulations

which is the case practically always we let it stand without any further handling.

In simulations for ball bearings the cavitating regions are small and the negative

values of pressure are also much smaller than the maximum positive pressure as

shown in figure 3.4. Consequently we neglect cavitation as physical phenomenon.

However we will for the sake of completeness shortly comment on how cavitation

could be included in elastohydrodynamic simulations leaving the implementation

open for further research. Mathematical model equations are derived in [Nilsson

& Hansbo (2008)] as follows:

Let K be the space of positive pressure

K = {p ∈ L2(Ω) | p ≥ 0}.

The modified Stokes equations then read

Problem 3.3 (Stokes equations with cavitation). Find v ∈ H1(Ω)2, p ∈ K, such

that

(µ∇v,∇φ)− (p,∇ · v) = (f, φ)

−(∇ · v, (p− q)) ≤ 0 (3.8)

for all φ ∈ H1(Ω)2, q ∈ K.

Problem (3.3) is the most fundamental cavitation model in the following sense:

• The solution does really fulfill p ≥ 0 by construction.

• The solution coincides with a solution to Stokes’ equations if the boundary

conditions and right hand side already result in positive pressure every-

where.
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We would be reasonable in requiring these two assumptions but in most cavitation

models used in engineering literature they are not fulfilled.

In [Nilsson & Hansbo (2008)] the authors claim using an Uzawa algorithm for the

solution of the discrete algebraic equations. Although this may be feasible for

discretizations of Stokes’ equations on a simple domain it will suffer from very slow

(if at all) convergence on anisotropic domains in lubrication flow. Furthermore

the generalization for solving fluid-structure interaction problems is not straight-

forward. Therefore it would be necessary to develop efficient solvers for treating

equations (3.3) which is why we refrain from considering this model any further.

Another cavitation formulation which meets the above criteria when using the

Reynolds equation is described in [Durany et al. (1996)]. This formulation is

based on a free boundary value problem to model the cavitating region.

In order to give an idea of a typical approach to deal with cavitation in engineering

literature we also describe such a model. In [Gwynllyw et al. (1996)] a change

of the viscosity for negative pressure is proposed. For this purpose the pressure

viscosity relation is also cut off for negative values in a smooth way

µ(p) = µmin(1− g(p)) + µ0 exp(αp)g(p)

g(p) =
ψ(p− δ)

ψ(p− δ) + ψ(p)

ψ(p) =

{

0 if p < 0

exp(−1/p) if p ≥ 0.
(3.9)

Therein equation (3.9) δ is a parameter of a minimal allowable pressure δ ∼ 0,

for this purpose 103Pa is a small value in lubrication flow.

Such a variation of the pressure-viscosity function will not lead to a solution which

has positive pressure everywhere.

Furthermore the Navier-Stokes equations break down in cavitating regions which

is not removed by merely changing the viscosity. Besides, numerical experiments

with equation (3.9) indicate that the nonlinearity introduced thereby can be very

problematic.

We cannot solve this problem entirely in the course of this thesis. When con-

sidering simulations for ball bearings negative pressure usually does appear but

not in a quantitatively decisive way. If cavitation happens in real physical ball

bearing systems is unclear, the number of experimental studies of this question

in literature is small. As a consequence we neglect cavitation and let the solution

stand with possibly occurring regions of negative pressure. In some cases espe-

cially when considering slow rotations cavitation can lead to a higher stiffness
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of the entire system with fluid-structure interaction. This stems from the fact

that in the cavitating region contact or at least close approach of the ball and

the bearing will arrive. In these regions the mesh will consequently degenerate as

described in detail in chapter 4. Since for very slow rotations the whole modeling

including the generalized Navier-Stokes equations is questionable due to small

film heights, we will not be considering this case and neglect cavitation.

3.4 Reynolds’ equation

In this thesis all simulations are based on generalized Navier-Stokes equations.

This is by no means the most common approach, contrarily in lubrication science

Reynolds’ equation is used almost exclusively. Since considering the Reynolds

equation would be the most common starting point we will shortly comment on

this possibility. Reynolds’ equation reads in strong form

∂x

(

h3

µ
∂xp

)

+ ∂y

(

h3

µ
∂yp

)

= 6U∂x(ρh) + 6h∂xU + 12V. (3.10)

Here h is the film height usually given as an exterior parameter describing the

geometry of the problem in consideration. The known, fixed velocity of the sur-

rounding structure is denoted U and V respectively. Hence all terms on the right

hand side of equation (3.10) are known. The equation can therefore be considered

as a second order elliptic equation with (often strongly) varying coefficients.

For a detailed derivation of Reynolds equation we refer to [Szeri (2000)]. We yet

state that Reynolds equation can be derived as an approximation of the Navier-

Stokes equations with constant viscosity considering thin films. It will therefore

be an accurate approximation for thin films. If the film thickness becomes too

small the Navier-Stokes equations are not valid anymore and consequently also

Reynolds’ equation is no accurate model. In this case all analytical and numeri-

cal methos based on continuum assumptions are questionable. This includes also

the models presented in this thesis, of course.

For high film thicknesses the scaling argument becomes a rough approximation

and Reynolds’ equation also breaks down. In equation (3.10) only the pressure

is considered as unknown, all information about the velocity field is lost.

Also notice that the analytical approximation for elastohydrodynamic film thick-

ness is derived from Reynolds’ equation with the implied limitations stated below.

We now conclude in reasoning why in this thesis Reynolds equation is not con-
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sidered.

• The film thickness can not simply be considered as unknown but has to

be fixed before. In the case of high pressure lubrication this is unrealis-

tic. Although there are heuristic approaches to deal with fluid-structure

interaction in the framework of Reynolds’ equation they rely on rough ap-

proximations, see e. g.[Křupka et al. (2000)]. Consequently the quality of

such approximation is more questionable than using a more fundamental

model based on the original continuum mechanical principles.

• Non-Newtonian fluid models can not be treated directly when considering

Reynolds’ equation. Indeed when deriving the Reynolds approximation vis-

cosity is considered constant. If afterwards a variable viscosity is plugged

in the equation, the derivation becomes inconsistent and violates the pre-

viously made assumptions. This is discussed in detail in [Rajagopal &

Szeri (2003)] and can be overcome by a different derivation. In literature

Reynolds’ equation is though also often used in an inconsistent way. Also

note that similar questions of existence like for Stokes’ equations are open

for the Barus pressure-viscosity model together with Reynolds’ equation.

For testing reasons we also conducted simulations based on the Reynolds equa-

tion while establishing this thesis. When using Reynolds’ equation in combination

with pressure dependent viscosity the numerical solution of the algebraic equa-

tions also becomes a difficult task. In summary we refrain from using Reynolds

equation.

Since the Navier-Stokes equations or its generalizations are no correct model for

arbitrarily small volume there exist also different techniques for the simulation

of very small films. In [Rajagopal & Szeri (2003)] molecular dynamics simula-

tions are proposed for film thickness ≤ 10nm. This method does not act on the

assumption of continuous media but describes single particles and their stochas-

tic interaction. It would be an interesting aspect to carry out simulations based

on such a discrete model and to compare them with the results coming from

the Navier-Stokes equations. Since molecular dynamics simulations require com-

pletely different numerical methods, this is difficult to put into practice at the

same time and we leave this question open for further work.



Chapter 4

Fluid-structure interaction in

elastohydrodynamics

In this chapter we will show a formulation of fluid-structure interaction problems

suitable for a robust numerical discretization. This method is called ”monolithic”

because it poses one common set of equations for fluid and structure simultane-

ously. The interior of the fluid domain will undergo an arbitrary transformation,

therefore we need to provide the equations of continuum mechanics on trans-

formed domains.

We proceed with details on discretization and some aspects specific to the simu-

lation of ball bearings like for example the treatment of pre-loading.

4.1 Derivation of the arbitrary Lagrangian Eu-

lerian formulation

In ball bearings high pressure is prevailing leading to the deformation of the

surrounding structure. Hence the domain of the lubricating flow cannot be con-

sidered as known a priori, not even if neglecting the free boundary at the inflow

and outflow. Rather the deformation is responding and finally reaching a state

fulfilling a balance of forces between the fluid and the structure. Thus we have

to consider a fluid-structure interaction problem.

The coupling of the deformation with the fluid flow in lubrication flow is called

elastohydrodynamic lubrication and is usually very pronounced. Even small
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changes in the shape of the fluid domain lead to a large response in the pres-

sure profile. Therefore it is suitable for numerical simulations to use also strongly

coupled, implicit algorithms because of the stiffness of the discrete systems. We

will in the subsequent describe such an implicit formulation and a numerical al-

gorithm to find approximate solutions.

When dealing with fluid-structure interaction the dilemma is that the natural

reference frame for a deformable structure is Lagrangian but for a fluid it is Eu-

lerian. Indeed when modeling deformable structures we identify points in the

domain with material points and consider their change of position under defor-

mation. The change of the position of single particles is often not a very useful

concept when dealing with fluids. For instance fluid particles may, depending on

boundary conditions, enter or leave the flow domain under consideration. For flu-

ids it is thus rather reasonable to consider the velocity field at a single fixed point

in the domain. This difference in the underlying description has to be resolved

somehow when dealing with fluid and structure at the same time. One way is

to keep the natural Lagrangian description of the structure and to transform the

fluid domain. The fluid is somehow also considered in a Eulerian domain but

on a moving domain which is recovered by the actual configuration of a given

reference state. We will now shortly derive this formulation, detailed calculations

and proofs can be found in [Quarteroni (2004)].

Definition 4.1 (Regular Transformation). Let Ω̂ ⊂ R2 be the refer-

ence domain, Ψ : Ω̂× R+ → R2 be a diffeomorphism Ψ(·, t) ∈ C1(Ω̂,Ω),

Ψ(·, t)−1 ∈ C1(Ω, Ω̂) ∀t. We call Ψ regular transformation if

det(∇̂Ψ(x̂, t)) > 0 ∀x̂ ∈ Ω̂, ∀t ≥ 0.

Definition 4.2 (Deformation). Let Ψ be a regular transformation. We call

û : Ω̂ → R2, û = Ψ− Id deformation.

Below we denote the gradient of the transformation as F̂ , F̂ = ∇̂Ψ the determi-

nant of the deformation with Ĵ = det(F̂ ). For the derivation of the differential

equations we need the change of vector- and tensor-valued functions under trans-

formation. We now show the formulas relating these quantities.

Proposition 4.1 (Scalar- and vector-fields under transformation). Let

f̂ : Ω̂× R+ → R, f : Ω× R+ → R, xt = ψ(x̂, t) be differentiable with the property

f(Ψ(x̂, t)) = f̂(x̂, t) ∀x̂ in Ω̂, ∀t ≥ 0. There holds

∇f(x) = F̂−T ∇̂f̂(x̂).
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For vector-valued differentiable function ĝ : Ω̂ × R+ → R2, g : Ω × R+ → R2

with g(Ψ(x̂, t)) = ĝ(x̂, t) ∀x̂ in Ω̂, ∀t ≥ 0 there holds

∇g(x) = F̂−1∇̂ĝ(x̂).

Proof. The assertion follows directly by applying the chain rule.

The equations of continuum mechanics can be written in the form ∇ · σ = f

where σ is a tensor of second order. We now consider the transformation of

tensors. In literature the following transformation τ̂ of a tensor σ is called ”Piola”

transformation.

τ̂(x̂) = Ĵ(x̂)σ(x̂)F̂ (x̂)−T

Proposition 4.2 (Divergence of the Piola transformation). For a differentiable

tensor-field σ : Ω → R2×2
sym there holds

∇̂ · τ̂ = J∇ · σ (4.1)

Proof. The proof is elementary and can be found for instance in [Quarteroni

(2004)].

In this thesis we mostly deal with stationary situations. For completeness we will

also consider time derivatives and their transformation.

Proposition 4.3 (Time derivatives). Let Ψ be a regular transforma-

tion f̂ : Ω̂× R+ → R, f : Ω× R+ → R differentiable with the property

f(Ψ(x̂), t) = f̂(x̂, t) ∀x̂ in Ω̂, ∀t ≥ 0. There holds

∂tf = ∂tf̂ − (F̂−1∂tΨ̂ · ∇̂)f̂ .

Proof. The proof is straightforward and can be found in [Quarteroni (2004)].

We will now show the equations describing the structure and the fluid. Ball bear-

ings are usually made of steel. In experiments sometimes parts of the surrounding

structure are made of sapphire. Relative deformations will be in general small. In
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this case both materials can be modeled as St.-Venant-Kirchhoff material. The

derivation of the equations is standard and can be found in [Braess (2007)]

ρ̂s∂
2
t û− ∇̂ · (Ĵ σ̂sF̂

−T ) = ρsf̂ in Ω̂s,

σ̂s = Ĵ−1F̂
(

λtr(Ê)I + 2µÊ
)

F̂ T ,

F̂ = I + ∇̂û, Ĵ = det(F̂ ), Ê =
1

2

(

F̂ T F̂ − 1
)

. (4.2)

The fluid is described as non-Newtonian and on a constant, undeformed domain

Ω̂f there holds

ρ̂f∂tv̂ + ρ̂f [∇̂v̂]v̂ − ∇̂ · σ̂f (p̂, v̂) = ρ̂f f̂ in Ω̂f ,

∇̂ · v̂ = 0 in Ω̂f ,

σ̂f (p, v) = −pI + µD(v), µ(p) = µ0 exp(αp), D(v) =∇v + (∇v)T . (4.3)

Thus we are in a position to formulate the fluid-structure interaction problem.

In figure 4.1 we show a scheme of the basic situation. The domain has an outer

boundary Γd where Dirichlet boundary conditions are posed for the structure.

There is also a free boundary with a Neumann condition. Furthermore we have

an interface between fluid and structure. Here we have to keep in mind that the

boundary is moving. Applying Gauss’ theorem to the Piola transformation (4.1)

we obtain
∫

∂Ω̂

τ̂ n̂ =

∫

Ω

∇ · σ.

The equation of balance of forces on the fluid-structure interface is

Ĵ σ̂sF̂
−Tn = Ĵ σ̂f F̂

−Tn on Γ̂. (4.4)

In both structural domains Ωs,1 and Ωs,2 the structure equation will be described

in its natural Lagrangian framework. Together with (4.4) we will thus obtain a

deformation up to the boundary Γ. The fluid domain will be transformed as

sketched in figure 4.1. The values of the transformation of the fluid d on the

boundary Γ are thus determined. In the interior of the fluid domain they have

no physical relevance and can therefore be extended in an arbitrary way. This

is why the resulting method is called Arbitrary Lagrangian Eulerian method. In

this thesis the deformation will always be extended by a harmonic mapping.

Consequently we obtain as equations for the deformation

∆d̂ = 0 in Ω̂f ,

d̂ = 0 on Γ̂d, d̂ = û on Γ̂.
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Figure 4.1: Scheme of a domain for a ball rotating in front of a plane, the situation

studied later in this thesis.

In order to close the system we need a boundary condition for the deformation

and the velocity. On Γd it vanishes, on Γ(t) holds

∂td̂ = v̂.

Altogether we obtain the following equations for the monolithic arbitrary La-

grangian Eulerian fluid structure interaction, see also [Quarteroni (2004)] for

more details on the derivation. Note that we pose parts of the equations for the

moment on a moving domain and parts on a fixed domain indicated by a hat as

before

Problem 4.1 (Monolithic fluid-structure interaction). Find v : Ω × R+ → R2,

p : Ωf × R+ → R, u : Ω̂s × R+ → R2, d : Ωf × R+ → R2 such that

ρf∂tv + ((v − ∂td)∇) v −∇ · σ(p, v) = ρfff in Ωf (t),

∇ · v = 0 in Ωf (t),

σf (p, v)n = g on ΓN(t),

σf (p, v)nf = σsns on Γ(t),

ρ̂s∂
2
t û− ∇̂Ĵ σ̂sF̂

−T = ρ̂sf̂s in Ω̂s,

û = 0 on Γ̂d,

∆d̂ = 0 in Ωf (t),

v̂ = ∂td̂ on Γ̂. (4.5)

In the subsequent we will derive the weak formulation and show algorithmic

details for the numerical approximation of solutions.
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4.2 Monolithic weak formulation and discretiza-

tion

The monolithic method as described above relies on considering fluid-structure

interaction as one single system of equations on a common domain. The solution

will fulfill a balance of forces at the interface by construction

Ĵ σ̂f F̂
−T n̂ = Ĵ σ̂sF̂

−T n̂.

Indeed this boundary condition is a natural boundary condition for the weak

formulation of equations (4.5). We directly show the variational formulation, for

further details on the derivation see [Quarteroni (2004)].

Problem 4.2 (Monolithic formulation). Find û ∈ H1(Ω̂s)
2, v̂, d̂ ∈ H1(Ω̂f )

2,

p̂ ∈ L2(Ω̂f ) such that

(ρf∂tv, φf )Ωf (t) + (ρ(v − ∂td) · ∇)v, φf )Ωf (t)
+ (∇ · v, χ)Ωf (t)

+
(

ρ̂s∂
2
t û, φs

)

Ω̂s
+ (σ(p, v),∇φf )Ωf (t)

+
(

σ̂s, ∇̂φs

)

Ω̂s

= (ρ̂sf̂s, φs)Ω̂s
+ (ρfff , φf )Ωf (t)

σf (p, v) = −pI+ µD(v), µ(p) = µ0 exp(αp),

σ̂s = Ĵ−1F̂
(

λtr(Ê)I + 2µÊ
)

F̂ T ,

v = ∂td on Γ(t), u = Ext(d|Γ). (4.6)

for all φf ∈ H1(Ω̂f )
2, φs ∈ H1(Ω̂s)

2, χ ∈ L2(Ω̂f ).

Here Ext : H
1

2 (Γ) → H1(Ω) denotes the extension operator which extends a

function with known values at the boundary to the interior (for instance harmon-

ically).

Now we consider some details related to discretization and refer to chapter 5 for

a definition of finite element spaces and an introduction to discretization. When

discretizing the equations the extension operator has to be considered separately.

The question arises how to discretize the extension operator, especially on the

boundary. In the interior of the domain it is a pure harmonic continuation. On

the boundary we have to take care that the unphysical extension does not influ-

ence the deformation of the structure. We have to discretize the extension on

the boundary as a one-sided Dirichlet condition. Therefore we eliminate, as for
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the treatment of usual Dirichlet boundary conditions, contributions from certain

test-functions. For the residual all contributions on the interface coming from

the extended side of the cell are eliminated. For implementation reasons we also

have to extend the pressure to the structure domain. A special treatment for

the pressure, which is most critical in this context, can be avoided when using

discontinuous finite element spaces for this unknown.

For the matrix all couplings between test-functions on the boundary to the in-

terior of the extension have to be eliminated. By this procedure we achieve the

discretization of a Dirichlet-Neumann boundary condition for the structure and

the extension. Consequently the extension has no unphysical spoiling effect on

the solution of the deformation of the structure. This kind of modification of the

integration has to be applied for the pressure as well as the structure. Yet the

pressure is, conversely to the structure, a physical variable in the fluid domain

and extended on the structure domain. One could also think about different

techniques disregarding the pressure on the structure domain completely. Indeed

the extension of the deformation of the structure is necessary in order to treat

the fluid in its actual transformed configuration. The extension of the pressure

carries no information at all and can be considered as merely artificial and a nu-

merical artefact. In the code used for this thesis GASCOIGNE [Becker & Braack

(1999)], it is difficult to implement a weak formulation for a system of equations

with different numbers of components in different parts of the domain. Therefore

we use also an extension of the pressure instead of disregarding it completely.

• The treatment of the pressure extension is crucial especially for elastohy-

drodynamic simulations. Without a separate integration the pressure in

the fluid domain will be strongly coupling with the extension especially due

to the extreme anisotropy and smallness of the fluid domain. Even when

treated accurately as described above the nonlinear character of the bound-

ary condition can have a negative influence on convergence. A change in

the value of the pressure leads to a changed residual of the extension so that

quadratic convergence may be lost. This effect can in practice be reduced

by scaling the extension with a small parameter.

• The specific choice of extension of the structure deformation to the fluid

should have no influence on physical values and functional evaluations of

the solution. Via the transformation this extension is entering the equations

on the fluid domain, there should be just no net effect when considering
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different types of extension or changing parameters of the extension. Yet

when discretizing, such parameters as well as the chosen extension operator

do have some influence in reality which decreases under mesh refinement.

Notice also that the choice of parameters may have a decisive influence on the con-

vergence speed of the nonlinear solver. The monolithic fluid-structure interaction

formulation leads to highly nonlinear equations with respect to

• the geometry, that is the deformation,

• the pressure dependent viscosity,

• the nonlinear boundary condition (balance of forces).

When carrying out numerical simulations in principle not all nonlinearities always

have to be considered at the same time. Especially when using fixed point iter-

ations or pseudo time iterations, it is possible to linearize e.g. the nonlinearities

coming from the transformation by plugging in the value of the transformation

at the last iteration. A similar remark holds for the pressure dependent viscosity

which is described in chapter 3. When establishing the simulations for this thesis

we were experimenting with such linearized models. However the problem turned

out to be extremely stiff. Linearization often leads to instabilities or at least to

very slow convergence of the outer fixed-point iteration. After all it proved to be

more efficient to keep all nonlinearities and solve them in a monolithic way with

a nonlinear solver. Again the high stiffness comes from the strong geometrical

coupling. Even small changes in the fluid domain lead to a large response in the

pressure profile.

When describing different degrees of explicit and implicit treatment we comment

shortly on entirely different techniques to solve fluid-structure interaction prob-

lems. The most explicit coupling is to consider the fluid and structure problem

separately iterating only on the boundary condition until a balance of forces is

fulfilled. Such a framework is also often used in theoretical analysis, in [Grand-

mont (2002)] a similar fixed point iteration is used to prove existence of a solution

to the coupled system. But also for numerical algorithms this decoupling is used

often and known as the ”partitioned” approach to fluid-structure interaction in

literature. In engineering science this approach is even more common than the

monolithic formulation because it allows to use existing codes for the simulation
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of fluid and structure promising an easy implementation. Due to the inherent ex-

plicit character of the decoupled algorithm however stability problems frequently

arise. Therefore this approach is prohibitive for the simulation of elastohydro-

dynamic lubrication. Even for simpler problems stability may not always be

guaranteed. In particular the coupling of an incompressible fluid with a structure

is critical and may lead to an unconditionally instable algorithm which is shown

in [Causin et al. (2005)]. If a partitioned algorithm does converge it also pos-

sesses some advantages. The local systems and elementary matrices are smaller

and no degrees of freedom are wasted for extensions without physical meaning

like the pressure extension.

4.3 Treatment of pre-loading

Ball bearings are pre-loaded which means that the ball is pressed on the race

with a spring-like structure and a defined force. This force changes the initial

geometry of the structure and leads to a high pressure between ball and race.

The value of the load therefore influences the physical properties of the bearing

and it turns out that it cannot be neglected completely.

When disregarding the fluid for the moment there exists an analytical contact

theory for simply shaped bodies pressed onto each other. This theory is known as

”Hertzian” theory in literature after its originator and can be found in [Hamrock

et al. (2004)]. As mentioned this theory was developed for pure contact problems.

However in elastohydrodynamic lubrication the fluid also plays a role and contact

will not happen as long as a lubrication film is present. Nevertheless the Hertzian

theory is used to treat pre-loading in most cases when considering ball bearings

in literature. We hence also use it to include pre-loading in our model. From

a modeling point of view another difficulty related to incompressibility arises:

As mentioned in chapter 3 in an incompressible fluid model the pressure does

not have to be identical to the thermodynamical physical pressure. Yet this

thermodynamical pressure is described in the Hertzian theory. Since modeling of

pre-loading in a fundamental way treating fluid as well as structure consistently

as a pseudo-contact problem seems out of the scope of this thesis, we stick to

using Hertzian theory.

Pre-loading leads to a flattening of the ball, see figure 4.2. Since the ball is more

elastic than the race in the experimental situation the deformation of the race
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can be neglected.

F

δ

Figure 4.2: Flattening of a ball pressed on an approximately rigid plane, force F =

130N , diameter of flattened region δ = 400µm

In this situation Hertzian theory predicts a pure flattening of the ball with a

diameter of the flattened part of δ and a pressure profile with maximum value

pmax in two dimensions as

p(x) = pmax

√

1− 2

(

2x

δ

)2

. (4.7)

These quantities are related to the material parameters and the force in the

following way

δ = 2

(

3FR

E ′

)
1

3

1

E ′
=

1

2

(

1− ν2ball
Eball

+
1− ν2plane
Eplane

)

where E is Youngs modulus and ν the Poisson ratio of the structure. These

formulas are derived in [Hamrock et al. (2004)].

For the thermodynamical pressure we can make the assumption that the force on

the boundary is proportional to pressure. We therefore insert a boundary term

in the weak formulation

λ < p̂0n̂, φ >Γ̂

where p̂0 is the function defined in equation (4.7) and λ is a scaling parameter.

With this approach we later show good agreement compared to reference solutions
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for the film thickness. However in the simulation of the entire problem with a fluid

the results for pressure and deformation are different compared to the Hertzian

theory. In particular the pressure tends to be lower than predicted and does not

posess the same sharp profile as predicted by equation (4.7).

The influence of pre-loading on film thickness is subject of many publications

like [Křupka et al. (2005)] and typically the influence is limited. The change

in the initial pressure profile can be important for numerical simulations since

it prevents contact between ball and race. The high pressure together with the

pressure dependent viscosity makes a contact impossible which would otherwise

happen as indicated by numerical simulations.

4.4 Rigid body motions in fluid-structure inter-

action

Compared to the standard formulation of fluid-structure interaction as derived

in chapter 4.2, some modifications have to be made for the simulation of ball

bearings. First of all we have to deal with rigid body motions in order to treat

rotating bodies in the monolithic formulation. Note that a stationary solution

in the sense that v = 0 holds in the entire structure domain is impossible. In

ball bearings ball and race are rotating around different axes and with different

frequencies. Therefore for each choice of reference frame at least one of the parts

will be moving. This movement will certainly not be arbitrary, neglecting the

deformation of the elastic structure it will consist merely of a rigid body motion.

A rigid body motion is characterized by the fact that it can be written as follows

x = Q(t)x̂+ a(t). Q(t) ∈ O(2) ∀t ≥ 0, a ∈ R
2 ∀t ≥ 0

where O(2) denotes the group of orthogonal 2× 2 matrices. Hence a rigid body

motion is a translation or a rotation or any linear combination of both. When

considering rotating bodies one has to keep in mind that a rotating system

is no inertial system anymore so that one has to account for fictitious forces.

Fictitious forces also arise from translations with non-constant velocity. Details

and formulas for fictitious forces can be found in [Scheck (2002)]. Yet in the case

of elastohydrodynamic lubrication fictitious forces are usually small and can be

neglected.

We will in the subsequent suppose that v in the structure domain is not zero
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ω

Ω
2d cut

Figure 4.3: Scheme of the experimental setting.

as in the usual stationary formulation but it equals a pure rigid body motion.

For the two-dimensional model of the experiments the motion will consist of a

rotation in the ball and of a translation in the race.

We now describe the experimental setting in more detail as it is used in [Křupka

et al. (2005)]. We adopt this benchmark configuration and later compare our

own results with the analytical approximation also used in this publication. One

kind of experiments consists of a ball rotating in front of an also rotating plane,

see figure 4.3 where the rotational frequency of the ball and plane is denoted ω

and Ω respectively. In real experiments there is a transparent window in the

plane used for light interference measurements of film thickness. More details

on the experimental setting as well as different measurement techniques can be

found in [Křupka et al. (2005)] or [Guangteng et al. (2000b)] and the references

therein. The rotational frequencies of ball and plane are tuned in a way leading

to equal radial velocity in the contact region between them. This is often called

”pure rolling” condition in literature and leads to small shear rates in the fluid.

Therefore no shear-dependent viscosities have to be modeled whereas this type

of non-Newtonian fluid behaviour always plays a role for different geometries

such as journal bearings.

We now come to the modification of the fluid-structure formulation for treating

rigid body motions. For this purpose we recall the monolithic weak formulation

derived in chapter 4.2.
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The term which causes (in a stationary setting) the velocity to vanish (weakly)

in the structure domain is

(v̂, φ)Ω̂s
.

We will instead of requiring v̂ = 0 require v̂ = ĝ weakly where ĝ is a given

rigid-body motion.

(

v̂ − F̂−T ĝ, φ
)

Ω̂s

. (4.8)

The term F̂−T is appearing due to transformation and may not be neglected in

applications, refer to chapter 4.1 for a derivation.

The rigid-body motion for the ball is a rotation with frequency ω and is given

as g = ω(−y, x)T , the translation is g = (0, ωr)T if r is the radius of the ball.

Recall that in contrast to the fluid tensor the structure tensor does not depend

on the velocity v. Since in physical SI-units the coefficients of the differential

equation for the deformation in the structure domain are large (∼ 1011) we may

also scale equation (4.8) with a large parameter. This may lead to better bal-

ancing of the terms for deformation and velocity. Alternatively one may also

non-dimensionalize all equations if desired. Yet the different order of magnitude

of the coefficients for structure and fluid will persist also an non-dimensional for-

mulation.

As aforesaid the value of the velocity does not appear in the structure tensor

(conversely to the fluid tensor) so that it does not influence the deformation a

role in the structure domain. However it does play a role on the boundary where

equation (4.8) enforces weakly the continuity of the velocity across the interface.

Thus the rotation of the ball carries over to the motion of the fluid by this implicit

no-slip boundary condition.

The mechanism of requiring v = 0 (without rigid body motion) in the structure

weakly by adding equation (4.8) which is also used in [Dunne (2007)] is delicate

to analyze theoretically. For a symmetric treatment of velocity and deformation

we would prefer to use a harmonic extension of the velocity. Recall that the

extension of the deformation in the fluid domain is also harmonic. When doing

so we have to replace the L2 scalar product in (4.8) by its H1-counterpart

(

∇̂v̂, ∇̂φ
)

Ω̂s

.

In this case v̂ = 0 does not hold any more on the boundary by construction but

it has to be imposed by an additional boundary condition. Requiring v̂ = 0 in a
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weak sense on the boundary leads after all to the terms

(

∇̂v̂, ∇̂φ
)

Ω̂s

+
1

ǫ
< v̂, φ >Γ̂ .

Herein ǫ is a small parameter related to the mesh size in the following way ǫ ∼ h.

The generalization to non-vanishing rigid-body motions is straightforward and

will be omitted.

The different methods of treating the velocity in the structure domain have been

implemented for test reasons but there are no clear differences with respect to

convergence or accuracy of the numerical approximation.

In this section we have focused on implementing velocity boundary conditions

for the fluid. The correct boundary conditions are not trivial to derive. We

always use no-slip boundary conditions but for fluid flow on a molecular level it

is known that a no-slip condition does not have to hold, see [Lauga & Squires

(2005)]. Since in the regime of elastohydrodynamics we are at least for small film

thicknesses in the range of molecular flow it is not clear without ambiguity if a

no-slip condition is valid. A generalization of the no-slip boundary condition is

the partial-slip boundary condition presented in [Lauga & Squires (2005)]. In our

simulations we stick to the no-slip boundary condition.
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Discretization

In this thesis we exclusively use finite element methods to discretize the partial

differential equations under consideration. The following chapter will give an

overview of the basic definitions and concepts without any claim to be complete.

For a complete detailed textbook introduction we refer to [Braess (2007)]. We

will comment on some aspects specific to the discretization of elastohydrodynamic

problems.

5.1 Basic definitions

Let Ω be a convex domain with polygonal boundary in R2 in the following. We

remark that practically all domains we will be interested in throughout this thesis

in practice are neither convex nor have a polygonal boundary. We stick to the

two-dimensional case and remark that some differences appear when considering

three dimensions. For example there exist two different types of hanging nodes

in three dimensions whereas in two dimensions only one type is possible.

Our goal is to approximate the function space H1(Ω) with a finite dimensional

space which can be dealt with on a computer. Therefore we subdivide the domain

in a set of convex cells of convex quadrilateral shape where each edge is either

identical to an edge of a neighbor cell or part of the boundary of the domain ∂Ω.

We denote the set of these cells a triangulation Th = {K}. The index h indicates
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ThT2h

Figure 5.1: Mesh with patch structure.

how fine the triangulation is h = maxTh
diam(K), furthermore we require

Ω̄ =
⋃

K∈Th

K̄. (5.1)

For practical purpose these definitions have to be weakened twofold

• For the case of curved boundaries of the domain we only require that nodes

(not edges) lie on the boundary.

• We also allow cells with nodes which are the midpoint of another edge, such

nodes are called ”hanging”.

A global refinement of a mesh is a bisection of each edge of the triangulation thus

obtaining four finer cells out of one cell on the coarse original mesh. We require

for the triangulation Th to possesses a patch structure that is it can be obtained

by global refinement of a coarser mesh T2h, see figure 5.1.

The formal regularity requirements are more difficult to pose for quadrilateral

than for triangular meshes. We refer to [Matthies & Tobiska (2002)] for this

technical aspect.

5.2 Finite element spaces

We define the spaces

P̂1 = span{1, x, y},

Q̂1 = span{1, x, y, xy},

Q̂2 = span{1, x, y, xy, x2y, y2x, x2y2}.
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The unit square K̂ = [0, 1] × [0, 1] is mapped on an actual element by means of

a transformation T : K̂ → K. We define the finite element spaces now as

Qr(K) = {u : K → R | u (T (x̂)) ∈ Q̂r(K̂)}.

In this thesis we exclusively use iso-parametric finite elements that is the trans-

formation itself is in the space T ∈ Qr(K̂).

Recall also that the domains of interest are neither convex nor have polygonal

boundaries. In this case the constructed finite element spaces are not subspaces

to H1(Ω) and condition (5.1) does not hold. For some problems one may show

that this is (under certain conditions) not influencing the order of convergence of

the approximation, see [Scott (1973)] for details.

The problems we are interested in are not scalar but possess different variables

with different physical meaning. Indeed for Stokes’ equations with pressure p and

velocity v we require p ∈ L2(Ω), v ∈ H1(Ω)2. These spaces fulfill the following

inf-sup condition

inf
p∈L2(Ω)

sup
v∈H1(Ω)2

{

(p,∇ · v)

||p||||∇v||

}

> C > 0. (5.2)

It is known that this condition is essential in order to obtain a well-posed problem

[Girault & Raviart (1979)]. Furthermore also the discrete spaces either have to

fulfill such a condition independently of h or the discretization has to be stabilized.

In the course of this thesis we work with three types of discretization

• Q1Q1 Discretization:

Here we use the same spaces for vh and ph Vh = {uh ∈ C0(Ω)|uh|K ∈ Q1(K)}.

This requires stabilization because the inf-sup condition (5.2) is not ful-

filled. As stabilization technique we either use the Local Projection

stabilization (LPS) described in [Becker & Braack (2001)] or the Galerkin

Least Squares-stabilization, see [Hughes et al. (1986)].

• Q2Q1 Discretization:

For ph we use again Xh = {uh ∈ C0(Ω) | uh|K ∈ Q1(K)}, for vh we use

Vh = {uh ∈ C0(Ω) | uh|K ∈ Q2(K)}. This discretization is stable which

may be favorable if used for free-boundary value problems since at the free

boundary unphysical boundary layers in the pressure arise frequently due

to stabilization.

• Q2P
disc
1 Discretization:

In this case we use a discontinuous pressure
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ph in Xh = {uh | uh|K ∈ P1(K)}, for vh we use

Vh = {uh ∈ C0(Ω) | uh|K ∈ Q2(K)}. Also this discretization is stable but

solutions to Stokes’ equations are also mass-conserving in a cell-wise way

which is an advantage for free boundary value problems. For fluid-structure

interaction problems it may be advantageous to have a discontinuous pres-

sure along the interface.

The discretization with stabilization on highly anisotropic meshes is not straight-

forward but we have to take care particularly of the stabilizing terms. We will

not go into detail here, instead we refer to [Braack (2008)] for the case of LPS-

stabilization and [Apel et al. (2008)] for GLS-stabilization.

We remark that all numerical results shown later are established by using

anisotropic stabilization. The type of stabilization is crucial when considering

pressure dependent viscosities fulfilling for instance Barus’ equation, see chapter

3 for details. When employing the LPS-stabilization spurious oscillations in the

pressure occur. Furthermore the stabilized discrete system matrix may become

singular.

The GLS-stabilization is robust in this case as well as all stable element pair-

ings. Therefore we use these discretizations in these cases. The disadvantage of

the GLS-stabilization is the spurious boundary layer in the pressure occurring

at Neumann boundaries of the fluid. This is in particular problematic for free

boundary value problems.

5.3 Solution of the discrete algebraic equations

Discretization of the studied partial differential equations with finite elements,

and as the case may be with the implicit Euler scheme in time, leads to nonlinear

algebraic equations. The nonlinear iterative solver used is Newton’s method. In

practice often damping has to be applied for a more robust convergence. The

necessary directional derivatives of the operator are calculated analytically.

In the case of fluid-structure interaction problems the evaluation of these terms

is awkward as it leads to complicated formulas, see [Dunne (2007)] for more

details. Therefore many people working in this field also use finite differences to

approximate the derivatives

A′(u)(Φ)(Z) ∼
A(uh + ǫZh)(Φ)− A(uh − ǫZh)(Φ)

2ǫ
. (5.3)
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This method was also implemented for testing reasons but for use in elastohydro-

dynamic simulations there are several severe drawbacks. In lubrication flow the

pressure can vary up to ten orders of magnitude. Therefore it is delicate to figure

out the correct value for ǫ as long as it is taken constant in the domain. Also

the order of magnitude for velocity (∼ 1m
s
) and deformation (≤ 1µm) is very

different and would require an adapted possibly non-constant choice of ǫ. When

using analytical derivatives no such problems arise.

To proceed we now consider the solution of the linear problems which have to be

solved to determine the update in the Newton iteration. These linear problems

consist of large sparse matrices coming from the discretization of elliptic partial

differential equations. In principle multi-grid methods are efficient algorithms for

such problems as described in many textbooks on numerics, see e.g. [Kanzow

(2005)]. In this specific situation there are special reasons degrading multi-grid

convergence to an extent that it becomes practically useless. We shortly describe

these reasons:

• Elastohydrodynamic fluid-structure interaction typically deals with steel as

structure and a viscous fluid. The material parameters for these materials

are of highly different order of magnitude. Since there are two sets of

dimensional physical parameters for fluid and structure it is difficult to

rescale all of them so that they are balanced at the same time. These

parameters lead to a badly conditioned of the Newton matrix.

• The anisotropic mesh cells cause very slow, if at all, multi-grid convergence.

In [Braack (2008)] it is reported that the anisotropic stabilization leads to

improved robustness of the multi-grid algorithm. We however are not able

to confirm this observation. In our simulations the underlying mesh has cells

with much higher aspect-ratio ∼ 1000 compared to [Braack (2008)] where it

is at most ∼ 80. The lack of robustness of multi-grid methods with respect

to anisotropy is a well-known problem but has not been solved completely

yet. In [Wienands (2001)] and the references therein some information on

robust multi-grid methods is presented. However the proposed solution

strategies seem to be quite specialized and it is difficult to estimate their

effect under the presence of several pathologies at the same time.

• The pressure dependent viscosity leads to coefficients of the fluid equation

which vary strongly throughout the domain. This variation can be more

than ten orders of magnitude for the viscosity in the pressure peak compared
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to the viscosity at low pressure. This extreme variation in the coefficients

results in a bad condition number of the matrix.

• Fluid-structure interaction problems in itself lead to difficulties with multi-

grid behaviour, even without non-Newtonian fluid models or anisotropic

meshes. If the multi-grid algorithm is not adopted carefully slower con-

vergence is observed on finer grids contrarily to the theoretically desired

properties.

In this work we will therefore in practically all cases use direct solvers for the

solution of the linear systems. These solvers are UMFPACK, see [Davis (2004)]

and MUMPS, see [Amestoy et al. (1998)].

The discrete algebraic equations can not always be solved up to an absolute pre-

cision of 10−10 when using double precision due to bad conditioning.

The finite element library in use is ”GASCOIGNE” and is developed in the nu-

merical analysis group since several years, s. [Becker & Braack (1999)].

5.4 Mesh generation

The generation of a mesh for a realistic ball bearing geometry is involved and

only feasible with commercial grid generators. The grid generator used for this

thesis is ”ANSYS ICEM CFD”. The need of commercial mesh generators results

from the extreme ratio between radius of the ball and film thickness ≥ 104. The

basic geometry in the case of ball bearings consists in a ball of radius 3mm with

a surrounding fluid flow of 1µm. The surrounding structure is also curved, see

figure 5.2. In reality the system is three dimensional without cylindrical symme-

try. The races are curved perpendicular to the plane of projection.

In the software package used for this thesis, GASCOIGNE [Becker & Braack

(1999)], the treatment of curved boundaries works as follows: When a curved

boundary is present it is described as an implicit function. For each refinement

concerning this boundary each new vertex on the boundary is moved to fulfill the

implicit function constraint. Thus only vertices at the boundary are moved. This

corresponds to the requirement made above in the theoretical section. For curved

boundaries vertices shall lie on the curved boundary since it is no more possible

for entire edges. The problem is that moving only vertices on the boundary is

only practicable if the cells are fairly isotropic. If cells with higher aspect-ratio
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Figure 5.2: Scheme of ball bearing geometry.

Figure 5.3: When refining anisotropic mesh cells on curved boundaries the refined

cell becomes degenerated when only vertices on the boundary are moved.

exist on the boundary, formerly interior nodes will become exterior and the cells

become completely distorted, see figure 5.3 for a visualization of this effect.

Treating curved boundaries together with anisotropic cells would need a more

elaborate treatment. The displacement at the boundary could for example be

extended harmonically to the interior. This was used in parts of this thesis but

requires the solution of a partial differential equation for each mesh refinement.

In this thesis we do not work with changing meshes in time nor with adaptive

mesh refinement, therefore this approach is acceptable. An additional possibility

is using locally finer meshes beforehand where a high resolution of the curved

boundary is needed. This is most efficiently done with the help of commercial

grid generators which treat curved boundaries correctly by themselves. If we were

interested in dynamical meshes and very different resolution of curved boundaries

on this extreme geometry, the treatment of boundary nodes would pose consid-
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Figure 5.4: Typical Mesh: Right and left meniscus of the free boundary of the fluid

(above), Fluid film between ball and bearing at y = −0.0127m and overview (below).

The fluid film is only recognizable as a line due to its little height, the ”dark” regions

in the overview in the middle correspond to locally smaller mesh sizes around the tip

of the ball.

erable problems.

In figure 5.4 a typical mesh is shown comprising the ball, the race and the fluid

film with a free boundary. The coarse mesh contains cells with aspect ratio at

most ∼ 1000. The fluid film in the middle, where the point of closest approach

of ball and race x = 0 lies, has a thickness of 1nm. This explains the necessary

degree of anisotropy because the dimension of the entire mesh in y-direction is

2 × 10−3m that is 2 × 106 times higher than the minimal film thickness. The

minimal film thickness of 1nm is indeed smaller than the minimal length scale

for which the Navier-Stokes equations begin to hold. In [Szeri (2000)] this length

scale is stated ≥ 10nm. Due to our treatment of pre-loading, see chapter 4.3,

the initial film thickness will somehow be higher caused by the additional force.

Therefore it will be always larger than the critical distance 10nm. In figure 5.5 a
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Figure 5.5: Coarse mesh of a ball in a ball bearing.

coarse mesh for a simulation for an entire ball in a ball bearing is shown.

As a last remark concerning this technical point of mesh generation we emphasize

the need to reflect the real geometric situation in the mesh accurately. Such a

tight coupling of fluid flow and geometry is prevailing that a coarse treatment of

the geometry will immediately lead to completely different results. On too coarse

meshes also nonlinear convergence becomes slow or there is no convergence at all.

This is also the reason why we may not just neglect fluid-structure interaction at

all. In simulations it appears frequently that a small change in the geometry of

the mesh is leading to a severe change in the solution.

In reality a ball in a ball bearing is also no perfect ball but has a finite surface

roughness. In our simulations we neglect this effect but keep in mind that for

small film thicknesses surface roughness indeed also plays a role in reality. The

exact effect of surface roughness is difficult to estimate. Recently the effect of sur-

face roughness on elastohydrodynamic lubrication has been subject to research.

In [Guangteng et al. (2000a)] a synthetic 160-nm high asperity ridge is placed on

a ball and surface roughness and non-Newtonian fluid-behaviour, see [Chapkov

et al. (2006)]. In the experimental situation we are considering the root mean

square of the surface roughness is stated to be 4nm, [Křupka et al. (2005)].

This would mean a relative precision compared to the radius smaller than 10−6

and therefore seems unrealistic. Even in this case some of the measured film

thicknesses would be smaller than the mean surface roughness.
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5.5 Multi-grid algorithm

5.5.1 Introduction to multi-grid methods

When solving the linear systems arising from the discretization of elliptic par-

tial differential equations, multi-grid algorithms are in general, if applicable, the

method of choice. An introduction to multi-grid methods as well as some theo-

retical results can be found in [Hackbusch (1985)]. In this section we broach the

issue of problems arising in practice when using multi-grid for somehow patho-

logical situations. Our goal is a greater robustness of the algorithm against such

pathological problem aspects. We study a multi-grid smoother with higher com-

plexity but also more robust convergence properties with respect to the presence

of anisotropic grid cells. In the end the higher complexity compared to standard

smoothers does not pay off and leads to no clear advantage compared to direct

solvers. We thus still see an open problem demanding further research in this

area.

We consider the linear equation Ax = b with given symmetric positive definite

matrix A ∈ Rn×n and x, b ∈ Rn, the defect is then given by b− Ax. We will now

give a rough introduction to multi-grid, a more precise definition is found below

and for more details we also refer to [Hackbusch (1985)]. One method to solve

this system of equations iteratively would be the application of a classical Jacobi,

Gauss-Seidel or even Richardson iteration. It turns out that these iterations lead

to very slow convergence rates when applied directly to the system. However

they reduce high frequent components of the defect efficiently. Since by elim-

inating these high frequent components the residual becomes smooth (but not

necessarily small everywhere) this process is called smoothing. The underlying

linear operation is denoted ”smoother”. The smoothing property is exploited by

restricting the residual to a coarser mesh. On this coarser mesh the complexity

is lower and additional error components have become high frequent and will

thus be reduced. In the case of a two-grid algorithm we would prolongate the

residual back to the finer mesh, smooth again and obtain an approximation to

the solution. In practice we deal with more than two levels in most of the cases.

The algorithm will then be applied recursively. In addition we solve the system

exactly with a direct solver on the coarsest mesh.

This algorithm will result in an approximate solution with O(N) arithmetic op-

erations (when applied in a nested way) if N is the number of unknowns (on the
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finest mesh). For scalar elliptic problems without pathologies this approach is in

practice of unrivaled efficiency. Such a situation would be the discretization of a

Poisson problem on the unit square. For some moderate difficulties like (small)

nonlinearities or saddle-point problems like Stokes’ equations it can be still used

very efficiently. When a more robust solver is needed multi-grid may also be

used as a pre-conditioner for a Krylovspace iteration like CG or GMRES, see

[Wienands (2001)].

5.5.2 Description and numerical analysis of a different

smoother

We firstly describe the standard approach for multi-grid and show the problems

arising on anisotropic meshes and present a variant to achieve greater robustness.

In the software package used in this thesis GASCOIGNE, see [Becker & Braack

(1999)] an incomplete LU-factorization is used as smoother. For scalar problems

it consists of a formal LU-decomposition of the matrix A where all elements of

the inverse A−1
ij are neglected if the coupling does not exist in the matrix itself,

that is if Aij = 0.

For details of the LU-algorithm see [Kanzow (2005)] or any other basic textbook.

Just applying the complete LU-decomposition would in general lead to a dense

inverse matrix, this is often called ”fill-in” in literature. The amount of fill-in

depends intensely on the ordering of the degrees of freedom. Different ordering

strategies may lead to very different sparsity patterns and thus to a different

number of neglected degrees of freedom in the incomplete LU-factorization. At

this point we have to state that the usual ordering of nodes in GASCOIGNE is

not mathematically motivated but exclusively helpful for simple implementation.

Especially for anisotropic problems a lexicographic ordering proves to be useful.

It is defined by the following order relation >̃ of the node nk := (xk, yk). It is

nk>̃nl if xk > xl or, if xk = xl, there holds xk>̃xl if yk > yl.

When considering discretizations of saddle-point problems like Stokes’ equa-

tions with stabilized finite elements we need a further modification of the LU-

decomposition. In this case we ”block” degrees of freedom in a node-wise way.

That is we consider node-wise local matrices as single degrees of freedom and

invert them exactly when evaluating formally the elements of the inverse A−1
ij . In

the case of Stokes’ equations in two dimensions there holds Aloc ∈ R3×3, for the

two dimensional fluid-structure interaction problem Aloc ∈ R5×5.
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The fluid-structure interaction problem with non-Newtonian fluid contains several

problem pathologies which already individually lead to a break down of multi-

grid convergence. This is explicated in more detail in chapter 5.3. If we consider

Stokes’ equations and the mesh contains cells with an aspect ratio ≥ 5 multi-grid

convergence rates begin to degrade. Convergence results can be found in tabular

5.1. While on the unit square the convergence rates are as fast as for Poisson’s

equation ≤ 0.1 they become slower with increasing aspect ratio. At an aspect ra-

tio of ∼ 1000 no convergence is found at all. Recall that this applies to the system

matrix with anisotropic (LPS) stabilization, see [Braack (2008)]. For isotropic

stabilization the behaviour is even a bit worse but comparable. In the case of ball

bearings we need to work with aspect ratios in the region ≥ 1000 so that it lies

outside the range of convergence for the multi-grid algorithm as described above.

Furthermore for the entire system with pressure dependent viscosities and fluid-

structure interaction the application of multi-grid becomes even more delicate.

We now concentrate on the effect of anisotropy on a simple benchmark saddle-

point problem without additional difficulties. Therefor we consider Stokes’ equa-

tions (5.4) on a rectangle Ω = [0, L] × [0, 1] with aspect ratio L and global

refinement of the mesh.

Problem 5.1. Find vh ∈ Vh(Ω), ph ∈ Xh(Ω), so that

ν(∇vh,∇φ)− (ph,∇ · φ) = (f, φ)

(χ,∇ · vh) + ΠLPS(χ, ph) = 0 (5.4)

∀φ ∈ Vh(Ω), χ ∈ Xh(Ω).

Here Π(χ, ph) is the anisotropic LPS stabilization operator as described in [Braack

(2008)]. On the boundary x = 0 we pose a parabolic inflow, on the boundary

x = L there holds ν∂nv = pn (neglecting stabilization) and on the rest of the

boundary we pose no-slip boundary conditions v = 0. In table 5.1 the number of

linear iterations for different aspect ratios and different smoothers is compared.

For greater robustness we use one multi-grid(-V-)cycle as pre-conditioner for a

GMRES iteration, see [Kanzow (2005)]. Thus one linear iteration as shown in

table (5.1) is equivalent to one GMRES step preconditioned by one V-cycle multi-

grid iteration with one pre-smoothing and one post-smoothing step.

We applied the nested multi-grid-algorithm, starting on a coarse mesh we solve

the problem and use this solution as initial solution on a finer level. In this way

three global refinement cycles are conducted. For this algorithm the number of
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Number of nodes: 4225 16641 66049 263169

AR 1, ILU 1 5 6 6

AR 10, ILU 4 11 13 13

AR 100, ILU 8 10 22 32

AR 1000, ILU 4 40 2209 *

AR 10,BLOCK 5000 4 6 12 86

AR 100,BLOCK 3000 9 14 14 91

AR 100,BLOCK 7500 8 10 13 15

AR 100,BLOCK 15000 8 10 17 19

AR 1000,BLOCK 500 31 43 63 190

AR 1000,BLOCK 5000 4 21 19 26

AR 1000,BLOCK 15000 4 7 18 25

Table 5.1: Linear iterations on different levels of mesh refinement and for different

aspect ratios (AR) with different number of blocked degrees of freedom (BLOCK), *

means divergent.

iterations should not increase on finer levels of the mesh but remain constant.

When studying the performance of the ILU-smoother we remark that it is not

at all robust against anisotropy. Especially for aspect-ratios larger than ten the

number of iterations explodes on finer grids. For aspect-ratio 1000 which cor-

responds to a realistic value for elastohydrodynamic simulations, the algorithm

is no more convergent. At this point we remark that the algorithm also sensi-

tively depends on further numerical parameters. The multi-grid update can for

instance be damped with a parameter ω ∈ (0, 1]. We do not claim that the shown

numbers of iterations are optimal with respect to variations of all such numerical

parameters. What we do assert is that no qualitatively different result can be

found with the ILU-smoother. Just by means of variations of these parameters

no convergence on fine meshes with arbitrary aspect ratios can be achieved.

The block-smoother is defined as follows: When blocking N nodes we take the

lexicographic order defined above and build sub-matrices of N nodes (with all

components) and invert them with a direct solver for sparse matrices. Since N

is large the resulting sub-matrices will be sparse. In the most simple case we use

a block-Jacobi iteration for smoothing with the blocked matrices, in the results

presented we used a block-Gauss-Seidel iteration instead.
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Figure 5.6: Scheme of the definition of sub-matrices for the blocked smoother.

More precisely, for the matrix A we define sub-matrices dk for k ∈ {1, · · · , K}

di,jk = Ai+kN,j+kN , 1 ≤ i, j ≤ N if k < K

di,jk = Ai+kN,j+kN , 1 ≤ i, j ≤ N if k = K

We do not require that N is a factor of the size n of the matrix A, so that not

all sub-matrices need to be of equal size. The size N of the last sub-matrix dK is

the remainder of the division of n by N . For the block-Gauss-Seidel iteration we

also define rectangular upper and lower matrices

rk = A(k−1)N<i≤kN,j>kN , if 1 ≤ k < K,

lk = A(k−1)N<i≤kN,j≤(k−1)N , if 1 < k ≤ K.

A visualization of these definitions is found in figure 5.6. Furthermore we define

the block-diagonal matrix DK as the matrix consisting of the block-wise inverse

matrices d−1
k , 1 ≤ k ≤ K. In addition LK is the remaining lower block-matrix,

RK the upper block-matrix. With these definitions the block-Jacobi iteration for

an initial solution x0 reads

x0 ∈ R
n, for 0 ≤ t ≤ nmax,

xt+1 = xt +DK(b− Axt).

In a similar manner we define the block-Gauss-Seidel iteration as

xt+1 = DK

(

b− LKx
t+1 −RKx

t
)

.

When implementing this block-smoother the initial motivation was to come to a

robustly convergent multi-grid method with as little as possible blocked degrees

of freedom N ∼ 100. For the highest value of the aspect-ratio 1000, this is indeed

the case. Here the blocking of 500 degrees of freedom is sufficient. However, also

in this case, the exploding number of iterations on the finest grid leads to the
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supposition that the algorithm would no more converge when refining the grid

once more. In general the number of blocked degrees of freedom has to be so

high that there remains no real advantage compared to solving the linear system

of equations entirely with a direct method.

Both the block-Jacobi and the block-Gauss-Seidel iterations are in principal

equivalent to a direct solver when the number N is greater or equal than the

size of the matrix n, of course. However in table 5.1 we see that the entire

preconditioned algorithm takes more than one iteration even in cases where N

is larger than the number of nodes. An example would be the BLOCK-5000

smoother on the mesh with 4225 nodes which takes four iterations. We remark

that due to implementation aspects the GMRES iteration is completely operating

on the preconditioned system that means also the residual evaluation results in

the residual of the preconditioned system. As stated above one linear iteration

is not just the direct solution of the linear system even if the number of blocked

nodes exceeds the number of unknowns.

To conclude we state that our numerical experiments confirm that the ILU-

smoother is not robust with respect to anisotropy. The block-Gauss-Seidel

smoother performs better when the number of blocked nodes is large enough.

Unfortunately on finer grids the number has to be so high ∼ 10000 that there

often is no clear advantage in terms of cost and memory consumption compared

to a direct solver.

In our study we focused on the smoother as one part of the multi-grid algo-

rithm. However the grid transfer operations might also be important in this

context. Furthermore the benchmark problem using globally refined rectangles

with aspect-ratio Lmight be to pessimistic for real applications. In many applica-

tions only a small part of the mesh consists of anisotropic cells whereas the rest is

more or less isotropic. A typical example is the simulation of turbulent flow with

the necessity of resolving boundary layers leading to anisotropic mesh cells only

close to the boundary. In such situations it might be useful to divide the mesh

into an isotropic and anisotropic part and use blocking only in the anisotropic

part. For elastohydrodynamic simulations indeed most of the fluid mesh consists

of anisotropic cells.





Chapter 6

Comparison with analytic

approximations for

elastohydrodynamic lubrication

In this chapter we will use the fluid-structure interaction formulation as well as

the methods for non-Newtonian flow and free boundary value problems proposed

in the preceeding sections of this thesis for elastohydrodynamic simulations. We

compare the results of the simulations to an analytical approximation widely

used in engineering literature, the ”Hamrock-Dowson” formula for the elastohy-

drodynamic film thickness. Since these analytical approximations are known to

represent experimental data accurately we can conclude that our simulations also

match real experiments approximately.

The complexity of the model and the diversity of aspects covered by this model

make these simulations unique in the context of elastohydrodynamic research.

6.1 Experimental data and analytical approxi-

mations for ball bearings

Due to the immense technical importance of ball bearings there exist a lot of

experimental, numerical and also analytical studies. The typical experimental

configuration is a somehow simplified model system for ball bearings. Only one

ball without bearing unit is considered as in [Křupka et al. (2005)] or [Křupka
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et al. (2000)]. In some publications admittedly also entire ball bearings are

studied, see [Olaru & Gafitanu (1997)]. In this thesis we restrict ourselves to

considering single balls due to the complexity of the simulations.

The most common quantity measured by experiments is the film height at certain

points and the film profile. For reasons of comparability often the central as well

as the minimal film thickness is considered. Anymore the pressure profile can be

also measured but apparently with less accuracy as indicated by larger scattering

of the experimental results.

The experimental setup consists of a ball race with a transparent window which

can be lighted from exterior. The reflected light is analyzed. Since the fluid

changes its optical properties under high pressure the pressure can be also fig-

ured out. Such measurements are feasible in principle up to a film thickness of

1nm which would be far below the film thicknesses we are interested in. An

introduction to different experimental techniques is presented in [Spikes (1999)]

where the interested reader also finds more details on the physical aspects of

measurements for ball bearings.

For central and minimal film thickness there exists an analytical approximation

which turns out to be rather precise at least for some situations. In [Křupka

et al. (2005)] the two quantities are both measured and compared to the analyt-

ical theory and are in good agreement. We will also compare our simulations to

this analytical formula. In the following we present it as well as the experimental

situation with all parameters.

The first difficulty in trying to conduct simulations for elastohydrodynamic lu-

brication is pre-loading. This process is described in more detail in chapter 4.3.

It consists of exerting an external force pressing the ball onto the race. Together

with the pressure dependent viscosity only this effect without any rotation of

the ball can lead to a remarkable pressure and viscosity. In literature an ana-

lytical approximative contact theory is applied often though it is not clear if it

is applicable if a fluid is present and no real contact happens. This ”Hertzian”

theory predicts a maximal pressure in the specific situation described in [Křupka

et al. (2005)] of 1.54GPa. The coefficient of pressure-dependent viscosity is

stated to be 24.0 1
GPa

and Barus’ law is assumed to hold: µ = µ0 exp(αp). Con-

sequently in such a setting we would have to account for a change in viscosity of

exp(24.0 ∗ 1.54) ≥ exp(30). This makes the difficulties in consistently modeling

pre-loading clear. With such an enormous increase in viscosity we could by no

means expect that the model equations remain valid. Indeed in [Ohno & Kuwano
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(1995)] the point of phase-transition to a glass is stated to be at a value of the

exponent αp ∼ 13. For exponents αp ∼ 25, which would be exceeded following

[Křupka et al. (2005)], a further phase-transition to a visco-plastic solid hap-

pens. We are thus reasonable in supposing that the oil used in the experiments

in [Křupka et al. (2005)] will not be subject to the pure Barus law for the same

constant exponent up to the maximal Hertzian pressure of 1.54GPa. Either a

phase transition will occur indeed or the Barus equation is an approximation up

to some intermediate pressure where another material law begins to hold. Be-

sides we would not at all be able to treat a change of coefficients of the differential

equation of ∼ exp(30) with any numerical algorithm with double precision. In

engineering literature unfortunately such inconsistencies are seldom brought up

explicitely. In [Křupka et al. (2005)] no comment at all is made on this sub-

ject. We treat the pressure dependent viscosity, as described in more detail in

chapter 3, by cutting off the exponential function at some value. This can be

interpreted as requiring a different pressure-viscosity law at high pressures. If

there are phase transitions happening of course the whole type of model equa-

tions would change and the models would in these cases be even more dubious

than the non-Newtonian fluid models itself. Therefore we refrain from consider-

ing phase transitions throughout this thesis.

The field of elastohydrodynamic lubrication research is much older than comput-

ers, hence experimental and analytical studies were used exclusively for a long

time in this field. This explains why there are so many analytical approximations

which are often astonishingly precise approximations at least for certain aspects

of experimental data. One of the most important formulas predicts the central

and minimal film thickness related to several non-dimensionalized parameters.

All details and the derivation can be found in [Hamrock & Dowson (1976)], we

will directly show the result.

Hcentral = 3.63U0.68G0.49W−0.073 (1− exp(−0.68k)) ,

Hminimal = 2.69U0.67G0.53W−0.067 (1− 0.61 exp(−0.73k)) . (6.1)

All physical quantities are non-dimensionalized with the scalings shown in table

6.1. In equations (6.1) H denotes the film thickness, G the elasticity modulus,

W the pre-loading and k a geometry parameter depending on the curvature of

the bodies and U is the inflow velocity of the fluid. The latter equals the radial

velocity of the rotating ball in the case of the experimental benchmark problem

considered below.
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U ηv
E′Rx

W F
ER2

x

G αE ′

k Rx

Ry

Rx, Ry [m] Radius of the Hertzian contact ellipsoid

E ′ αE, E Elasticity modulus

Table 6.1: Non-dimensionalizing ball bearing parameters.

There are also some variants of this formula for instance to incorporate larger

classes of non-Newtonian fluid models, see e.g. [Moore (1997)]. In this publica-

tion also the accuracy of formula (6.1) itself is discussed. Indeed for the derivation

several approximations are entering. The formula is based on Reynolds’ equation,

see chapter 3.4, which is itself an approximation of the Navier-Stokes equations.

This approximation is supposed to be accurate for small film thicknesses. Non-

Newtonian fluid models are delicate to include in the derivation of a formula for

the film thickness as this is the case for Reynolds’ equation. In [Rajagopal & Sz-

eri (2003)] a consistent derivation is presented but, as stated in this publication,

often in literature a somehow contradictory derivation can be found.

In equations (6.1) both central and minimal film thickness tend to zero when

α tends to zero which immediately shows the limitations of this approximation.

When the pre-load tends to zero, both film thicknesses tend to infinity.

Parts of the experimental data can yet be matched precisely by analytical ap-

proximations such as the Hamrock-Dowson formula (6.1). Yet even if these ap-

proximations are accurate they only predict some very specific quantities. The

advantage of numerical methods is to predict not only film thickness but also for

instance drag and lift, film thickness profiles and pressure profiles amongst others

for which no analytical formula is available.

Some experiments measure not only the central and minimal film thickness but

the entire film profile with its spatial variation. The pressure profile is often de-

picted as well. Unfortunately it is not common to show error bars in this field even

if the experimental data is apparently affected by measuring error. Often experi-

mental results for film thicknesses are scattering considerably, especially for very

small values of the film thickness ∼ 1nm. Also pressure profiles are sometimes

measured, see e.g. [Jubault et al. (2003)], but evidently these measurements are

also not very accurate and scatter. For numerical simulations it can be concluded

that modeling and measurement errors are so large that there is no use to seek for
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Figure 6.1: Scheme of ball in front of plane. The computational domain consists of

the framed region. The tangential velocity on the ball and the race is indicated with

arrows.

numerical simulations, which are precisely matching experimental data. Instead

our goal is a numerical algorithm showing a qualitatively similar behaviour to

the main features observed in experiments. The most important feature is the

functional relation between film thickness and rotational speed. This quantity

follows approximately a power-law over a wide range of rotational speeds. The

numerical simulations will show a very similar behaviour with a similar value for

the film thickness as the analytical approximation predicts.

6.2 Numerical results

We will now compare the numerical results with the analytical approximation also

used in [Křupka et al. (2005)] where it represents experimental data accurately.

For this purpose a sketch of the experimental setup is shown in figure 6.1. The

material parameters stated in [Křupka et al. (2005)] are shown in table 6.2.

Ball Race

Poisson number 0.29 0.3

Elasticity modulus GPa 2.1× 1011 4.2× 1011

Fluid viscosity Pas 0.457

Pressure-viscosity coefficient GPa−1 24.0

Figure 6.2: Material parameters for experimental configuration.
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Not all material parameters are precisely defined in [Křupka et al. (2005)], for

instance we find no information about the density of the fluid. For mineral oil

it is usually in the interval 850 ± 100 kg
m3 and the numerical approximation does

not depend on this quantity sensitively. In addition the diameter of the ball is

25.4mm and the pre-loading force is 5N , 36N and 130N . The process of pre-

loading is difficult to treat, we have included it as explained in chapter 4.3.

The viscosity of a fluid strongly depends on temperature as well as the pressure-

viscosity coefficient. The experiment was conducted at a temperature of

40± 0.4◦C. We interpret this in the following way: The temperature of the oil

and possibly the ball or race at some measuring point was in the stated interval.

This does not necessarily mean that the temperature throughout the domain was

entirely constant. There could be local sources of heat due to viscous effects in

the fluid or the periodic deformation of the ball. Since nothing is reported on that

effect we also neglect (local) temperature effects in our simulations. In literature

many experiments exist with measurements at different constant temperatures.

This mainly causes a change in viscosity and in the pressure-viscosity coefficient

and can thus also be treated in simulations by changing these parameters.

In [Křupka et al. (2005)] no precise information is given on the relation between

pressure and viscosity for the lubricant. Only a ”pressure-viscosity coefficient” is

stated in a table of material parameters. In such cases we may always assume in

engineering literature that Barus’ equation µ = µ0 exp(αp) is postulated implic-

itly. The Barus model is known to be not applicable for arbitrarily large ranges

of pressures, either phase transitions occur or the pressure-viscosity function de-

viates from the purely exponential behaviour at high pressures, see e.g. [Ohno

& Kuwano (1995)]. Since we have no additional information we stick to Barus’

law and introduce a cutoff at some high value of the pressure, see chapter 3 for

details.

We will now proceed to the comparison of our numerical results with experimen-

tal data. We do not compare the results directly with experimental data but with

an analytic approximation. In [Křupka et al. (2005)] this analytic approximation

is also used and shows good accuracy in comparison with experimental data. The

analytic theory was explained in chapter 6.1.

For slow rotations and thus low film thicknesses ≤ 10nm analytical, numerical

and experimental data have to be interpreted with care. First of all in a real

bearing the ball has no perfect surface but inevitably some surface roughness

will be present. In [Křupka et al. (2005)] the surface roughness is stated to
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have ”a root mean square [...] about 4nm”. To the knowledge of the author

such a precision is unrealistic, in [Hamrock & Dowson (1976)] surface roughness

is assumed for instance to be ≥ 10µm. In the range of high precision bearing

components which might have been used for the experiments, surface roughness

is probably particularly small. However any value smaller than 500nm seems to

underestimate surface roughness. This means that all measured film thicknesses

in [Křupka et al. (2005)] are smaller than the surface roughness of the bodies.

Note however that pre-loading leads to a flattening of the bodies in contact with

deformations of several µm so that surface roughness might be equalized by this

effect.

Secondly for film thicknesses smaller than 10nm the Navier-Stokes equations can-

not be considered a valid model anymore. Since simulations and analytical theory

somehow depend on the Navier-Stokes equations as basic model we should not

expect them to be valid for such ultrathin film thicknesses. From the experi-

mental point of view it also becomes more difficult to measure extremely small

film thicknesses. Only recently such studies have become possible, see [Spikes

(1999)]. In [Křupka et al. (2005)] the authors state that each point on their

data sheet below 10nm corresponds to three experimental values with maximum

difference of 0.6nm to the mean value. That is, not all data is shown but some

arbitrary mechanism is introduced to drop undesired scattering points. From a

scientific point of view this is a doubtable approach, it would be more transparent

to keep all data points and let the interpretation up to the reader. We draw the

conclusion that all modeling and simulations based on continuum mechanics is

not appropriate for very small film thicknesses. This region of parameters and

operating conditions has to be treated with models and methods wich do not rely

on a continuum description of a liquid, but consider single particle effects. The

methods established in this thesis break down at very small film thicknesses.

In [Křupka et al. (2005)] three measurements with variable pre-load are pre-

sented. In our numerical simulations we have treated pre-loading as described

in chapter 4.3. We present three simulations for three different values of the

pre-loading force, 0.01N , 0.1N and 1N . The simulations are compared to the an-

alytical approximation and both are in general not sensitively depending on the

pre-loading force. The reasons for taking different values of the pre-loading force

than in [Křupka et al. (2005)] are diverse: Firstly the modeling error related to

this process is considerable as stated in chapter 4.3. This also leads to a lower

accuracy of the numerical simulation in comparison to the analytical theory at
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Figure 6.3: Film thickness depending on rolling speed for small pre-load. Solid lines

represent the analytical approximation, points simulation results. The upper curve is

the central film thickness, the lower the minimal film thickness.

high pre-loads. At the resulting high pressure the pressure-viscosity relation is

not known and may not be modeled by the Barus law.

In general the shape of the film thickness function in numerical simulations is a

function influenced mostly by the pressure-viscosity relationship and the regular-

izing parameters described in chapter 3. Another important factor is the initial

geometry with the position of the right and left meniscus of the fluid. In the fol-

lowing all simulation results are realized with a fixed boundary for the fluid if not

stated otherwise. The reason is that the free boundary value problem introduces

a very stiff numerical problem aspect. The transformation at the boundary de-

generates quickly for small deformations. Therefore systematic simulations with

a free boundary for different parameters require many different meshes with dif-

ferent initial position of the boundary. This is of course awkward and we refrain

from systematic studies of the fully coupled system with a free boundary and

leave this question open for further research.

In figure 6.3 we depict the film thickness depending on inflow velocity. The solid

line corresponds to the analytic formula (6.1), the points are results of numerical

simulations. The same applies to figures 6.4 and 6.5. In figure 6.3 which corre-

sponds to a very small pre-loading force of 0.01N the central film thickness is in

almost perfect agreement with the analytical theory. Only for very small rota-

tional inflow velocity a systematic error exists. This happens in a region of film

thicknesses of ∼ 10nm. In this region the deformation is small, indeed it is always

of the same order of magnitude as the film thickness and thus still influenced by
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Figure 6.4: Central and minimal film thickness depending on rolling speed for medium

pre-load. Solid lines represent the analytical approximation, points simulation results.

The upper curve is the central film thickness, the lower the minimal film thickness.

the initial geometry. The treatment of pre-loading described in chapter 4.3 also

leads to an initial deformation influencing the results at low speeds. Hence we

will remark that the agreement between numerical simulation and analytical ap-

proximation is better for low values of the pre-loading force. For higher pre-load

the range of values influenced by the initial geometry becomes larger and extends

to higher rotational speeds. For a very high inflow velocity the simulation re-

sults tend to deviate from a linear behaviour. We may assume that at such high

velocity the resulting high pressure leads to a variation of the pressure-viscosity

relation.

The minimal film thickness is always represented less accurately in our simula-

tions. It is always larger than predicted by the analytical theory and also has a

different slope. For large speeds the agreement is usually better. In [Křupka et al.

(2005)] the experimental data for the minimal film thickness is also not perfectly

matching the analytical theory so that this does not have to be a disadvantage

of our simulations. This quantity may also depend strongly on the initial shape

of the geometry which is flattened by pre-loading in experiments but not to the

same extent in our simulations.

In figure 6.5 the simulations for a pre-loading force of 1N are shown and for

the reasons stated above the accuracy is slightly worse than in the two examples

with lower pre-load. Similar remarks as made above for the examples with smaller

pre-load also apply to this situation. For low speeds we see some difference which

tends to become smaller as the speed increases. The accuracy for the central film
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Figure 6.5: Central and minimal film thickness depending on rolling speed for large

pre-load. Solid lines represent the analytical approximation, points simulation results.

The upper curve is the central film thickness, the lower the minimal film thickness.
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Figure 6.6: Drag depending on inflow velocity for different pre-loads.

thickness is better than for minimal film thickness. At high speeds we remark a

deviation from a linear relation.

In figure 6.6 and figure 6.7 the drag and lift depending on different pre-loading

forces is shown. For these quantities no analytical approximation exists to com-

pare with. We show these results to illustrate the potential of the method estab-

lished in this thesis.

In general the numerical results in comparison with the analytic theory are in

good agreement, they lie in a reasonably close region and show a qualitatively

similar behaviour. Besides we have made no effort to optimize parameters with
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Figure 6.7: Lift depending on inflow velocity for different pre-loads.
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Figure 6.8: Central and minimal film thickness for Newtonian (dotted) and non-

Newtonian fluid (crosses). The upper curve represents the central film thickness, the

lower the minimal film thickness.

respect to a better approximation. However there is some difference and studying

this difference may also help to gain physical knowledge of the relevant processes

in a ball bearing.

For a comparison we have also conducted a simulation with constant viscosity

and compare it to the Barus’ fluid in figure 6.8. It turns out that there is a large

difference between the results. Especially it is much larger than the difference

between the results with pressure-dependent viscosity and the analytical approx-

imation for these results. Once more we claim that pressure-dependent viscosity

itself as well as the exact functional relation is one of the dominating influences
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on elastohydrodynamic simulations.

We will now analyze the possible reasons for the partial deviation of the analytic

theory and the simulation results.

• The ad-hoc treatment of pre-loading, see chapter 4.3, is perhaps a coarse

approximation. Pre-loading consists in pressing the ball onto the race thus

involving a contact problem as well as a fluid-structure interaction problem

at the same time. For such processes no simple model is available in litera-

ture and it is difficult particularly from a modeling point of view to treat it

consistently. In our simulations we include the pre-load as an exterior force

derived from an analytic contact problem formulation.

• Information on the pressure-viscosity relationship is incomplete. It seems

sensible to suppose that the lubricant follows the Barus law for some range

of pressures. It is however not clear that the Barus law is valid for the

whole range of pressures appearing in the simulation. Furthermore we need

to introduce regularizing terms in order to be able to solve the discrete

equations, see chapter 3. This has considerable influence on the pressure

profile and thus the film thickness. Also different material laws as proposed

in [Ohno & Kuwano (1995)] or [Bair et al. (2006)] would lead to different

results.

• Compressibility has been neglected in our simulations (except the regular-

izations leading to small compressibility). It is known that under very high

pressure lubricants become slightly compressible. There is again no lack of

models for compressibility, see [Dowson et al. (1986)], but since there is

also no evidence that compressibility does play an important role we neglect

it. For further research it would be interesting to study the results of the

incompressible case compared to different compressible models.

• Cavitation might happen and influence especially the minimal film thick-

ness. The point of minimal film thickness usually lies in a region with

negative values of the pressure of the fluid. Such negative pressure is in

principle unphysical and a cavitation model would have to be used to guar-

antee positive pressure everywhere. The main problem in this context is

to couple the cavitation model with the fluid-structure interaction formu-

lation. Furthermore cavitation as described in [Nilsson & Hansbo (2008)]

leads to variational inequalities for which special numerical algorithms have
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Figure 6.9: Drag and lift coming from simulations with free and fixed boundary.

to be developed. Since positive pressure is dominant and we do not see

any numerical hint that cavitation is decisive we refrain from a systematic

study.

• All simulation results come from a two-dimensional model. The quality

of the two-dimensional approximation of the three-dimensional real system

is difficult to estimate. It would indeed be a fascinating task to establish

three-dimensional simulations to compare with. Yet even in two dimensions

the technical difficulties especially concerning mesh generation are consid-

erable. Furthermore there exists no efficient method of solving the discrete

equations, the nonlinear solver takes a lot of iterations due to fluid-structure

interaction and non-Newtonian fluid equations. The linear systems have to

be solved by means of direct solvers because no efficient working multi-grid

algorithm exists. Consequently we face substantial computation times for

two dimensions, in three dimensions simulations would be practically re-

stricted to very coarse meshes. Hence numerical errors would be larger and

partly countervail the more realistic model.

We can conclude that certain modeling uncertainties exist and often it is difficult

for a numerical analyst to judge on the quality and applicability of different ma-

terial laws, models or simplifications proposed in literature.

In chapter 2 we have established a method to discretize free boundary value

problems. We have used this method for the simulation of elastohydrodynamic

lubrication and compared the effect of the free boundary to other problem aspects.

For this purpose we conducted two simulations with identical initial domain. For
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Figure 6.10: Lift for two different initial geometries.

one simulation the boundary remains fixed in time and a do nothing boundary

condition is posed for the fluid. The other one has a free boundary with surface

tension. In figure 6.9 the results for drag and lift are shown and it turns out

that there is practically no difference except for very small rotational frequen-

cies. This means that the direct influence of forces related to surface tension can

be neglected. However, qualitatively the free boundary shows if the meniscus of

the fluid is situated roughly at a physically meaningful place. If not, high nor-

mal velocities at the boundary appear, indicating an unphysical position of the

meniscus. Indeed the position of the meniscus does have a considerable influence

on the solution which can be observed in figure 6.10. In this figure two different

positions of the initial meniscus and the resulting film thickness is shown, the

difference is up to 70%. This effect has also been reported in literature when

starvation lubrication is modeled by a smaller distance between the inlet and

outlet meniscus of the fluid, see [Hamrock & Dowson (1976)]. In the simulations

two extreme cases are compared, for the first simulation the left meniscus is at

−300µm and the right at 90µm and conversely for the second simulation. Such

a large change in the position of the meniscus seems unrealistic, for simulations

with a free boundary the change is always much smaller. We nevertheless present

these results to figure out the influence of the initial geometry.

Such a study is one example of the benefit of a fundamental model using full

fluid equations instead of the Reynolds equation. Firstly the calculation of drag

and lift will always be a crude approximation when based on the Reynolds equa-

tion. Recall that only the pressure is kept as variable in the Reynolds equation

disregarding all forces related to fluid velocity and shear. Secondly the position
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Figure 6.11: Simulation results of x-velocity (right) and deformation (left) of the

experimental benchmark problem.

of the meniscus and the free boundary value problem may not be included in the

Reynolds equation in a simple meaningful way. To our knowledge the model on

which our simulations are based is in this sense the most complete one compared

to literature.

An optimal discretization method would be robust so that any set of parame-

ters and operating conditions is compatible to any initial geometry. Since this

involves large deformations of the free boundary this robustness is in practice

limited. Two further aspects are important in this context. Firstly if mass is not

preserved exactly by our discretization, see chapter 2 for a detailed discussion,

mass loss or mass gain will cause an additional unphysical boundary movement.

This can be overcome by using fine (locally refined) meshes and small time-steps.

Secondly we remark that the deformation in the free boundary value problem

arises at the boundary. Therefore it is not possible to treat larger deformations

with different extensions of the deformation to the interior as it is often the case

for instance in fluid-structure interaction problems.

Figure 6.11 and figure 6.12 show simulation results for the experimental bench-

mark configuration. Notice that the velocity profile can not be determined by

using Reynolds’ equation since velocity is no independent variable in that case.
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Figure 6.12: Simulation results of the pressure profile of the experimental benchmark

problem.
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Figure 6.13: Error under mesh refinement the lift of the cylinder.

Since we deal with a compressible material the pressure profile has only a physi-

cal meaning in the thin fluid film in figure 6.12. In the structure it is merely an

arbitrary harmonic extension of the fluid pressure.

In figure 6.13 the asymptotic error under mesh refinement is shown. It is close to

linear compared to the quadratic convergence in the ball bearing example where

the lift is evaluated on a closed boundary. Therefore a different higher order
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Figure 6.14: Central and minimal film thickness with and without any regularization.

The upper curves represent the central film thickness, the lower the minimal film

thickness.

evaluation method for the lift can be applied, see [Giles et al. (1991)]. It is not

directly applicable for a situation without closed boundary as in this geometrical

situation.

In figure 6.14 film thickness results with and without any regularization is shown.

There exists a difference of approximately 15% for slow rotational speeds. For

higher speeds the difference would probably increase but the scheme without any

regularization fails. The value for the articial compressibility is ǫ = 1.0 × 10−17,

the cutoff for the viscosity is 1.0 × 105, see chapter 3 for the definition of these

regularization parameters. This choice of parameters is also used in the diverse

simulation results presented in this and the subsequent chapter. Once more we

conclude that the precise non-Newtonian fluid model as well as any regularization

leads to a pronounced change in simulation results. The curve without regular-

ization fits the analytical theory more precisely.

6.3 Simulations for ball bearing geometry

The simulation methods presented in the last chapter were adopted in terms

of geometry and parameters for the comparison with the situation described in

[Křupka et al. (2005)]. It consists of a somehow simplified geometry and was

implemented for validation reasons. We will now proceed to a ball bearing ge-
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Figure 6.15: Scheme of a ball bearing with several balls. The computational domain

corresponds to the box and is sketched in more detail on the right.

ometry as employed in reality. In this case there exist two film thicknesses since

the ball is confined between inner and outer race which are both curved. We

will therefore have an inner and outer film thickness. In reality the races do not

possess a cylindrical symmetry but the geometry is fully three dimensional. We

restrict ourselves to two-dimensional simulations.

For ball bearings it is reasonable to act on the assumption of ”pure rolling”, that

is the radial velocity of the ball at the boundary equals the velocity of the corre-

sponding race, see figure 6.15.

We have to distinguish three rotational velocities and choose a coordinate system

in which the inner race is at rest:

• Ω is the rotational frequency of the outer race.

• Ωk is the rotational frequency of the center of mass of the ball around the

center of the inner race.

• ω is the rotational frequency of the ball around its own center of mass.

If we denote Rk the radius of the circle followed by center of mass and r its radius

the pure-rolling condition implies the following relations for the frequencies

Ωk =
Ω(Rk + r)

2Rk

,

Ω =
2ωr

Rk + r
.

In reality the pure-rolling condition is not fulfilled exactly and the ball may also

experience precession-nutation. When this effect becomes stronger shear-related
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changes in the viscosity also have to be considered. We stick to using the

pure-rolling condition since precession-nutation can only be accounted for in

three dimensions.

Further more we only consider one single ball and neglect all effects related to

the coupling of different balls in a ball bearing.

We consider a coordinate system in which the ball is only rotating around its

center of mass, its center of mass is at rest. In this coordinate system inner and

outer race are rotating, in an inertial system outer race and the center of mass of

the ball would be rotating. Formally we have to include fictitious forces because

we are no more considering an inertial system anymore, these can however be

neglected.

Ball Race

Poisson number 0.3 0.3

Elasticity modulus GPa 2.1× 1011 2.1× 1011

Fluid viscosity Pas 0.2151

Pressure-viscosity coefficient GPa−1 16.5

Figure 6.16: Material parameters for ball bearing.

All material parameters are given in table 6.16 and we may again assume a Barus’

fluid. Note that in ball bearings ball and race are made of the same material in

contrast to the experimental situation in the preceeding section. In a ball bearing

geometry their exist four distinguished film thicknesses: Outer central and mini-

mal film thickness as well as inner central and minimal film thickness. Results for

these quantities for a pre-load of 1N are shown in figure 6.17. The accuracy of

the outer central film thickness is almost perfect. Both minimal film thicknesses

and the inner central film thickness is represented less accurately. However we

remark that the analytical theory is unphysical in one detail: In the analytical

approximation no coupling between inner and outer film thickness exists at all.

Only the different geometry parameters of the ball at the inner and outer race

lead to different results for the film thickness. In reality the ball may also undergo

a translational rigid body motion. If it rigidly moves in outer direction the outer

film thickness becomes smaller to the same extent as the inner becomes larger.

Thus the film thicknesses are coupled. This effect exists in our simulations due

to the fundamental physical modeling but not in the analytical approximation.

It would be hence interesting to compare with real experimental data, but such
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Figure 6.17: Central and minimal, inner and outer film thickness results for ball

bearing. Since there are two contact regions of the ball (inner and outer) there are

four film thicknesses. The outer film thickness is larger. Dashed straight lines indicate

the analytical approximation, solid lines stand for simulation results. These are in

ascending order inner minimal, inner central, outer minimal and outer central film

thickness.

data for in-situ measurements in ball bearings is rare.

In figure 6.18 we see some simulation results for pressure, deformation and ve-

locity in the ball bearing geometry. Again the pressure spikes due to pressure

dependent viscosity are remarkable. Indeed the pressure is approximately con-

stant throughout the entire fluid domain except the contact zone between ball

and bearing structure. Consequently, the deformation also reaches its maximal

value in the contact zone. However, due to the elastic properties of the structure,

there is no spike in the structure, but the deformation field is smoother than the

pressure.

In figure 6.19 the asymptotic error under mesh refinement is shown. The order

is close to quadratic and thus higher compared to the experimental situation of

the previous section because a different method of evaluating the lift is used, see

[Giles et al. (1991)] for details. It leads to a higher order of convergence but is

not easily applicable for the other situation where no closed boundary is present.
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Figure 6.18: Simulation results for the pressure profile (top left), y-velocity (top

right) and y-deformation (bottom) for a ball in a ball bearing.
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Figure 6.19: Error under mesh refinement the lift of the cylinder.

6.4 Conclusion and discussion of the numerical

results

In this chapter we have presented the results of simulations of the elastohydrody-

namic film thickness in two experimental situations. It was the main goal of this

thesis to derive a validated numerical method for such simulations. A compar-

ison with analytical approximations for elastohydrodynamics shows a resonable

degree of consistency.

The film thickness is the most important quantity for lubrication problems since

it is an indicator of bearing failure: When the film thickness is close to zero, a

collapse of the fluid film is possible. Therefore we concentrated on this aspect.

The novel aspect of the presented method is its foundation on basic continuum

mechanical models. The method relies on simulation of generalized Newtonian

fluids and a complete fluid-structure interaction formulation. It is flexible and

robust with respect to fluid and structure models, geometry and parameters. The

results presented in this chapter are exemplary and the numerical algorithm eas-

ily carries over for different types of lubrication problems with different fluids. It

may also be used for the prediction of different quantities such as drag and lift

or processes related to the free boundary.
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Conclusion and outlook

In this thesis a novel approach for the simulation of elastohydrodynamic lubri-

cation problems is presented. It relies on modeling the system as fluid-structure

interaction problem with free boundary and non-Newtonian fluid. The structure

is described as St.-Venant-Kirchhoff material. This kind of modeling is based on

much more fundamental physical assumptions than the previously existing work

in literature. Often Reynolds’ equation is considered instead of the Navier-Stokes

equations. The elasticity of the bearing and fluid-structure interaction is often

neglected or, if at all, treated with simple ad-hoc approximations. We believe

that with the recent evolution of computers and numerical algorithms there is no

need any more to base simulations on simple models. In elastohydrodynamics it

is often difficult to judge on the quality of approximation of simplified models.

In-situ measurements are usually challenging and do not cover the whole range

of interesting parameters as for instance for the viscosity. Thus the introduction

of further simplifications leads to diverse sources of modeling errors which are

difficult to distinguish and to study separately. In our simulations the limits of

the underlying models are conversely clear: The Navier-Stokes equations hold for

film thicknesses ≥ 10nm, the elasticity and fluid-structure interaction formula-

tion are widely accepted continuum mechanical models. This thesis gives proof

that such complex coupled nonlinear systems can indeed be treated altogether

simultaneously on modern computers.

The most important physical prediction in the context of elastohydrodynamics

lies in predicting a fluid-film collapse. This may happen whenever the film thick-

ness is close to zero. We have presented a method which is capable of simulating

the film thickness. For applications this will therefore constitute the most im-
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portant result of this thesis. The potential of the numerical simulations is much

larger than this: Generalizations to non-Newtonian fluids, different geometries,

parameters and physical effects related to the free boundary can be easily treated

with the existing method. The results presented in the last chapter are only

exemplary for two experimental situations. There is also an analytical approx-

imation for the film thickness in bearings. This approximation is however only

valid for certain parameters and operating conditions. We claim that numerical

simulations are much more flexible with respect to variations of such parame-

ters. Furthermore analytical approximations do not exist for all relevant physical

quantities such as e.g. drag and lift of a ball in a ball bearing or spatial variations

of pressure or velocity.

The overwhelming majority of publications dealing with elastohydrodynamics

uses simplified models like Reynolds’ equation. We suspect that this fact is

more related to the historical development of the field than to any other rea-

son. Reynolds’ equation is a scalar equation which admits an analytical solu-

tion for some lubrication problems in contrast to the full Navier-Stokes system.

This might have been an advantage when engineers began to investigate lubrica-

tion problems. At that point no powerful computers existed, of course. Today

we state that the numerical solution of Reynolds’ equation is by no means far

more simple, only the number of unknowns is smaller due to the scalar equation.

Also from a theoretical point of view the analysis of a non-Newtonian Reynolds

equation is difficult because of the nonlinear expression in the main part of the

differential operator. On the other hand Reynolds’ equation is a mere simplifi-

cation of the Navier-Stokes equations. It follows that the set of problems where

Reynolds’ equation applies, is a true subset of all problems which can be treated

by the Navier-Stokes equations. This brings us to the conclusion that numerical

and theoretical investigations based on generalized Navier-Stokes systems are in

this sense more adequate for lubrication problems. We do not see any impor-

tant disadvantage or additional problem arising when considering such models in

comparison with Reynolds’ equation.

In such a novel approach presented in this theses as a matter of fact not all

arising questions can be answered completely. We will now comment on aspects

which came up in the course of this thesis and would be interesting for further

investigation. To begin with the comparison between simulation results and an-

alytic approximation yields a qualitative agreement but also some quantitative

error. We now state some aspects related to the physical processes in a ball bear-
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ing which would be interesting to study in more detail in conjunction with the

comparison of simulation and experiments.

• In terms of physical processes in a ball bearing the pre-loading would cer-

tainly pose the most important cause for further investigation. For a math-

ematically consistent treatment we would have to use a contact formulation

between two bodies which are somehow separated by a fluid. Since pre-

loading changes the initial state considerably this could be a promising

approach for an even better insight to fluid-structure interaction in ball

bearings.

• The exact functional relation between pressure and viscosity could be stud-

ied systematically. Since this function is decisive for the film thickness it

would be interesting to consider a parameter estimation problem. In this

context we would search for the pressure-viscosity function which leads to

the best approximation of experimental data. Different fluid models may

also differentiate in their properties with respect to numerical treatment.

There could be fluid models which have better properties than the Barus’

law in terms of nonlinear convergence of the numerical approximation.

• In this thesis the fluid was assumed incompressible (except a small regular-

ization). Though it is known that lubricants under high pressure are slightly

compressible. Similar to the case of pressure-dependent viscosity we could

study the effect of compressibility for different material laws and their in-

fluence systematically. Also compressibility could lead to better properties

of the problem for a numerical approximation.

• In this thesis the ball bearing is considered to be isothermal (at a given

fixed temperature). In reality there will be also sources of heat like the

periodic deformation of the ball and the shear of the fluid. Hence there

will develop a non-constant temperature field in the fluid influencing the

strongly temperature-dependent viscosity. Such effects are rarely studied

in literature but could be an interesting extension of the existing models.

The numerical discretization we have presented in this thesis allows treating real-

istic models for ball bearings. We have validated it by comparing to an analytic

approximation. This enables to approach even more complex problems such as
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dynamic processes related to changes of operating conditions or the effect of sur-

face roughness.

We will in the following state some open problems more related to the numerical

algorithm. These are partly known for a long time like the lack of convergence

of multi-grid methods on anisotropic meshes. However no fundamental solution

seems to be available in literature at least for our specific numerical methods.

When dealing with elastohydrodynamic problems many geometry- and material-

parameters are in a problematic range with respect to numerical approximation.

The most prominent one is the anisotropic geometry leading to the failure of

iterative linear solvers. Further difficulties are caused by the pressure dependent

viscosity leading to slow nonlinear convergence as well as linear convergence due

to huge variation of coefficients. As a last example we recall that robust itera-

tive linear and nonlinear solvers for fluid-structure interaction systems are by no

means easy to design. This brings us to the following concrete suggestions for

further studies of numerical algorithms in the context of elastohydrodynamics.

• The linear systems coming from the discretization of elastohydrodynamic

problems with finite element methods have a high number of unknowns

calling for robust iterative linear solvers. In this context a robust multi-grid

method for anisotropic meshes would be indispensable for three dimensional

simulations. Our work on this topic could be a starting point for further

research in this field. In addition one could work on more robust algorithms

for strongly varying coefficients and for fluid-structure interaction.

• As for nonlinear iterations we propose a systematic study of different reg-

ularizations and their effect on convergence rates. Especially for the func-

tional relation between viscosity and shear rate there exists a large variety

of different models. These are probably not all applicable for elastohydro-

dynamics but it would however be interesting to find out which models

have better properties with respect to convergence rates of the numerical

algorithm. Such a study could eventually indicate further regularization

methods.

• The ill-conditioned linear systems raise the question to what extent there

are differences when using four-fold precision instead of double precision for

floating point numbers. Due to the increased cost such an approach would

however be only useful for the purpose of testing.
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• The discretization of the free boundary value problem leads to a (temporal)

accuracy of only first order. When higher accuracy is needed one could work

on an improved second-order-accurate discretization scheme.

The present thesis is pointing out a novel possibility to model and simulate elasto-

hydrodynamic processes. The numerical solution is robust enough to deal with a

realistic system. This allows the validation of models and numerical algorithms.

A comparison with a widely accepted analytic approximation shows that in a

range of parameters the method leads to reasonable accuracy. Altogether this

thesis may serve as basis for numerous further investigations.
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et des Télécommunications.

Apel, T., Knopp, T., & Lube, G. 2008. Stabilized finite element methods with

anisotropic mesh refinement for the Oseen problem. Applied Numerical Math-

ematics, 58, 1830–1843.

Bair, S., Yuchuan, L., & Wang, Q.J. 2006. The Pressure-Viscosity Coefficient for

Newtonian EHL Film Thickness With General Piezoviscous Response. Journal

of Tribology, 128, 624–631.
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