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Summary 
	
  
Dosage compensation is a biological phenomenon where a sexually dimorphic 

organism balances the inequality in gene expression that results from unequal 

distribution of sex chromosomes. Different organisms have invented different ways to 

carry out dosage compensation. For instance, in mammals females transcriptionally 

down-regulate one of the two X-chromosomes they possess to match the male gene 

expression. Flies, on the other hand, hyper-transcribe the single male X-chromosome 

to reach the transcriptional output generated by two X-chromosomes in females. A 

ribonucleoprotein complex, called the Male Specific Lethal (MSL) complex is 

essential for fly dosage compensation. It is composed of five proteins and two non-

coding RNAs called the roX RNAs. The complex contains at least two enzymes: 

MOF, an acetyltransferase that specifically acetylates Histone 4 Lysine 16; and MLE, 

a DNA/RNA helicase. Both enzymatic activities are indispensible for dosage 

compensation. 

 

Evidence coming from genetic studies have shown that male flies lacking both roX 

RNAs die due to a failure in dosage compensation, although these ncRNAs are 

redundant in function and only one of the two is enough to rescue male lethality. MLE 

was shown to be required for the incorporation of these RNAs into the MSL complex 

although it is not clear if this is the only function of MLE in dosage compensation 

 

During the first part of my PhD I carried out a tandem affinity purification to reveal 

proteins that interact with MLE in an effort to understand its role in dosage 

compensation. In accord with previous observations, I have not been able to detect 

any protein that stably interacts with MLE under various purification conditions. This 

work thus supports the view that MLE is a lone RNA-helicase and is recruited to the 

X chromosome by its interaction with the roX RNAs. 

 

In the second part of my thesis I describe the biochemical purification and analysis of 

roX2 interacting proteins in vitro. With this approach I have identified MLE and two 

novel proteins; CG5787 and CG3613 that interact with roX2 RNA specifically. 

Interestingly, CG5787 and CG3613 were found to co-localize with each other and 



Summary	
  
	
  

7	
  

with MLE on chromatin. CG3613 was also shown to interact with roX2 RNA in vivo 

validating the initial in vitro approach. By using ChIP analysis I was able to detect 

CG3613 on high-affinity sites on the X-chromosome, which might indicate that it is 

recruited to the X-chromosome via roX RNA similar to MLE. CG3613 was further 

characterized and found to be a phosphoprotein in vivo. CG3613 also co-localizes 

with RNA polymerase II and is recruited to heat-shock loci after a brief heat-shock, 

indicating a strong relationship with transcription. Knocking-down CG3613 in flies 

was lethal, but in S2 cells reduction of its levels lead to the stabilization of intron-

containing pre-mRNA suggesting a role in pre-mRNA processing. 

 

This work was the first attempt to biochemically define roX2 interacting proteins in 

flies and shows that the MSL proteins are not the only proteins that roX RNAs 

interact with. In fact, this study suggests that roX RNAs’ role may be to act as a 

platform that brings together various proteins in addition to the MSL complex to 

hyper-transcribe the male X chromosome. 
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Zusammenfassung 
	
  
Die Dosis-Kompensation ist ein biologisches Phänomen, in welchem ein 

geschlechtlich dimorpher Organismus das Ungleichgewicht in der Genexpression, das 

aus der ungleichmäßigen Verteilung der Sex-Chromosomen resultiert, ausgleicht. 

Verschiedene Organismen haben verschiedene Wege entwickelt, wie die Dosis-

Kompensation erreicht wird. Bei Säugetieren z.B. unterdrückt das Weibchen 

transkriptional eines der beiden X-Chromosomen, die sie besitzt, um mit der 

männlichen Genexpression gleichzuziehen. Auf der anderen Seite benutzt die 

Fruchtfliege Drosophila Melanogaster die Hypertranskription des einzigen 

männlichen X-Chromosoms, um die transkriptionelle Leistung , die durch die zwei X-

Chromosome bei Weibchen generiert wird, zu erreichen. Ein Ribonucleoprotein-

Komplex, den man MSL (Male Specific Lethal) Komplex nennt, ist in der Dosis-

Kompensation von Fruchtfliegen dabei unverzichtbar. Er besteht aus fünf Poteinen 

und zwei nicht kodierenden RNA’s, den sogenannten roX RNA’s. Dieser Komplex 

beinhaltet mindestens zwei Enzyme: MOF, eine Azetyltransferase, die spezifisch das 

Histone 4 an der Position Lysine 16 azetyliert, und MLE, eine DNA/RNA -Helicase. 

Beide enzymatische Aktivitäten sind essentiell für die Dosis-Kompensation. 

 

Genetische Studien belegen, dass männliche Fruchtfliegen, denen beide  

roX RNA’s fehlen, an einem Fehler in der Dosis-Kompensation sterben, obwohl diese 

ncRNA’s in der Funktion überflüssig sind und nur eine der Beiden ausreicht, um die 

männliche Lethalität zu retten. Es wurde gezeigt, dass MLE für die Inkorporation 

dieser RNA’s in den MSL Komplex notwendig ist, obwohl nicht klar ist, ob dies die 

einzige Funktion von MLE in der Dosis-Kompensation ist. 

 

Um die Rolle von MLE in der Dosis-Kompensation zu verstehen, führte ich während 

des ersten Teils meiner Doktorarbeit eine Tandem-Affinitäts-Reinigung durch, um 

jene Proteine  erkennbar zu machen, die mit MLE zusammenwirken.  

In Übereinstimmung mit früheren Beobachtungen konnte ich kein neues Protein 

entdecken, das stabil mit MLE unter verschiedenen Aufreinigungsbedingungen 

zusammenwirkt. Diese Arbeit untermauert deshalb die Ansicht, dass MLE eine 
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einzelne RNA-Helicase ist und durch das Zusammenwirken mit den roX RNA’s zu 

den X-Chromosomen rekrutiert wird. 

 

Im zweiten Teil meiner Thesis beschreibe ich die biochemische Aufreinigung und 

Analyse von mit roX2 zusammenwirkenden Proteinen in vitro. Mit diesem Ansatz 

habe ich MLE und zwei neuartige Proteine identifiziert; CG5787 und CG3613, die 

mit roX2 -RNA spezifisch zusammenwirken. Interessanterweise hat sich gezeigt, dass 

CG5787 und CG3613 miteinander und mit MLE auf Chromatin kolokalisieren. 

CG3613 bindet roX2 RNA auch in vivo, was den vorherigen in vitro Ansatz 

bestätigte. Durch eine ChIP Analyse  war es mir möglich, CG3613 auf hochaffinen 

Stellen auf dem X-Chromosom zu detektieren; dies könnte ein Hinweis dafür sein, 

dass die Rekrutierung zum X-Chromosom, ähnlich wie bei MLE, mit Hilfe  der roX 

RNA gewährleistet wird.  

CG3613 wurde weiter charakterisiert und dabei festgestellt, dass es sich in vivo um 

ein Phosphoprotein handelt. CG3613 tritt auch gemeinsam mit der RNA Polymerase 

II auf und wird nach einem kurzen Hitzeschock zu Hitzschockloci rekrutiert, was ein 

Hinweis auf eine starke Verbindung zur Transkription ist. Ein Knock-down von 

CG3613 in Fruchtfliegen war lethal, jedoch führte ihre Reduktion in S2 Zellen zu 

einer Stabilisierung von intronhaltigen pre-mRNA’s. Dies gibt zu der Vermutung 

Anlass, dass es eine Rolle in der pre-mRNA Verarbeitung spielt. 

 

In dieser Arbeit wurden zum ersten Mal die mit roX2 interagierenden Proteine in der 

Fruchtfliege biochemisch  definiert und dabei gezeigt, dass die MSL Proteine nicht 

die einzigen Proteine sind, mit denen roX RNAs zusammenwirken. Tatsächlich lässt 

diese Untersuchung darauf schließen, dass roX RNA’s  als Plattform dienen, um diese 

verschiedenen Proteine zusätzlich zu dem MSL-Komplex, zusammenzubringen und 

damit die Hypertranskription des männlichen X-Chromosoms  zu gewäherleisten. 
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1. Introduction 
 

The cell is the most basic form of life that we know of. It is a machine that replicates 

itself, responds and adapts to the environment. Almost all cells (with the exception of 

highly-specialized cells such as mature erythrocytes in mammals) contain DNA as 

their hereditary material that is replicated and passed onto the next generation during 

cell division. Another very important macromolecule and a major constituent of a cell 

is proteins. The “muscles” of the cell, proteins give the cell its shape as cytoskeleton, 

they form motor molecules such as myosin that gives mobility to the cells, and they 

make very efficient catalysts, called enzymes, that facilitate some of the most 

fundamental chemical reactions necessary for life. All proteins within a cell are 

encoded within its DNA, which is kept inside the nucleus in eukaryotic cells in a 

compacted form that is also known as the chromatin. The basic unit of chromatin is a 

nucleosome, which is made up of a tetramer of Histones H3 and H4 and two dimers 

of Histones H2A and H2B wrapped around by ~147bp of DNA [5]. Another core 

histone, H1, is known as the linker histone and usually found in regions of chromatin 

where a high level of compaction is observed. Nucleosomes are not only instrumental 

in blindly compacting DNA, they also provide a complex regulation platform that is 

acted upon by numerous chromatin modifying enzymes, such as methytransferases, 

acetyltransferases, demethylases, deacetylases, ubiquitin ligases, various ATP-

dependent chromatin remodelers and many more (see [6], [7] and [8]).  

 

In a process called transcription, message encoded in DNA is converted into a 

chemically similar molecule, RNA, that can be moved out of the nucleus where it is 

decoded into protein by a large ribonucleoprotein complex, the ribosome. 

 

There are different types of RNA molecules produced in a cell. There used to be three 

categories of RNA that were functionally defined: ribosomal RNAs (rRNAs) that 

form the ribosome together with ribosomal proteins, transfer RNAs (tRNAs) that are 

carriers of activated amino acids which are used during protein synthesis and finally 

messenger RNAs (mRNAs) that carry the protein code from the DNA to the 

ribosomes to be deciphered.  Today, however, we know that there are many more 

types of RNA, large and small, that participate in almost every aspect of cellular life. 
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In the next part I will mostly focus on the biogenesis of mRNAs and how its 

production is regulated. 

 

1.1 The biogenesis and degradation of mRNA 
 

From transcription to degradation, the life of an mRNA molecule involves many 

stages which are initiation of transcription, modification of the 5’end, splicing, 

termination of transcription and modification of the 3’ end, export from the nucleus to 

the cytoplasm, translation and finally degradation. Almost all of these stages are 

highly regulated and many of them are interconnected: the outcome of one process 

affects the efficiency of the other and some of them occur simultaneously as the RNA 

is transcribed by the polymerase. 

 

1.1.1 Initiation of Transcription 
 

Arguably the most important point of regulation is the initiation of transcription. 

Although the DNA includes all the information necessary for the production all 

proteins in the cell, when a particular gene should be expressed, where and how much 

should it be expressed must be determined with accuracy and precision. The final 

molecule that integrates all the information and initiates transcription is the RNA 

polymerase (RNAP). A polymerase molecule interacts with a plethora of factors 

(protein and RNA) to initiate transcription at certain stretches on the DNA 

(transcription start sites, TSSs) under the direction of certain DNA elements 

(promoters, enhancer cis-regulatory modules etc.). 

 

How does the polymerase know where to initiate? The human genome, for instance is 

made up of 3 billion nucleotides in 23 chromosomes. A very small fraction of this 

DNA actually codes for proteins (~1.5%, [9]), hence it is very important for the 

polymerase to find these genes and initiate transcription at those sites and not 

randomly. Promoters are special DNA sequences that are near or at the transcription 

start sites of genes. Eukaryotes have three types of polymerases (with the exception of 

flowering plants [10]) and different polymerases require  
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Figure 1 Initiation of transcription involves many factors In (A) two types of RNAPIII 
genes are depicted with the set of accessory factor required for the recognition of their 
promoter. In (B) the vast number of protein factors necessary for correct and timely 
initiation at an RNAPII promoter is shown. Adapted from Roeder, 2005 [3] 
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different types of promoters to initiate transcription. RNA polymerase I (RNAPI) is 

responsible for the transcription of a single gene which gives rise to 18S, 5.8S and 

28S ribosomal RNA after several processing steps [11]. RNAPI also produces another 

transcript that is transcribed from the spacer region between rDNA genes, whose role 

was only recently determined by the Grummt laboratory as an epigenetic silencer of 

rRNA transcription [12],[13]. As would be expected, RNAPI does not require so 

many accessory factors for promoter recognition and initiation of transcription [UBF, 

TIF-IB (a stable complex of TBP, TAFI48, TAFI68 and TAFI95/110), TIF-IA and 

TIFI-C] as it has a single promoter element in the genome. RNA Polymerase III, on 

the other hand, has several different genes that it transcribes which include the 5S 

rRNA gene, all tRNAs, U6 snRNA, RNaseP and other small RNAs [14]. There are 

two factors required for promoter recognition and correct initiation of RNAPIII genes, 

TFIIIC and TFIIIB [15]; however the 5S RNA gene requires an additional factor, 

TFIIIA that has to interact with the internal promoter elements (a peculiarity of 

RNAPIII genes) prior to TFIIIC and TFIIIB (Figure 1A).  

 

Unlike RNAPI, which produces a single transcript and RNAPIII that produces 

several, RNAPII transcripts vary widely in terms of their sequence, structure and 

length. The promoter elements and other proximal or distal regulatory sequences that 

determine when and where a productive initiation will happen are very diverse and 

thus require a vast number of polypeptides to decipher them (Figure 1B).  

 

The expression of a gene by RNAPII requires the formation of the pre-initation 

complex (PIC) on the core-promoter of that gene. PIC consists of RNAPII itself and 

general transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH. Distinct 

co-activators and ATP-dependent chromatin remodelers are required to expose the 

promoter by covalently modifying amino terminal tails of histones [16] and changing 

their positions along DNA. Sequence specific transcription factor binding to upstream 

sequences called enhancers can result in the recruitment of co-activators or co-

repressors to a gene of interest. These factors usually relay their positive or negative 

affect on the rate of transcription via a highly conserved multi-protein complex called 

Mediator [17]. Finally, the DNA template is locally melted and RNAPII catalyzes the 

formation of the first few phosphodiester bonds of the mRNA in a template dependent 

manner. Productive elongation requires the phosphorylation of RNAPII C-terminal 
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domain (CTD) first by Cdk7 subunit of TFIIH and later by the Cdk9 subunit of 

PTEFb which is required to release the “promoter-proximal paused” RNAPII into the 

gene [18]. As the RNA emerges from the polymerase, it starts to interact with a 

number of factors that help the RNA turn into a mature mRNA that can be translated 

into protein in the cytoplasm by the ribosomes [19] ,[20]. 

 

1.1.2 Capping the 5ʼ end 
 

When the nascent transcripts is ~30 nucleotides long, all mRNAs are co-

transcriptionally modified at their 5’-end by the addition of a guanosine moiety with 

an unusual 5’-5’ triphosphate linkage which is immediately methylated at least once 

at position N7. This structure is known as the m7GpppN cap [21]. Productive capping 

requires promoter proximal pausing and phosphorylation of ser5 residues of RNAPII 

CTD by TFIIH [22]. The 5’ cap structure, and the cap binding complex (CBC) that 

binds to it in the nucleus confers stability to the RNA by protecting it from nuclear 

exonucleases [23], and is required in almost all the processes that follow transcription, 

i.e. splicing [24], export [25], 3’end formation [26] and translation initiation (where 

the CBC is replaced by eIF4E [27]) and failure in capping results in decreased mRNA 

stability [28]. It is generally accepted that the nuclear 5’-3’ exonucleases such as Rat1 

eliminate un-capped mRNA in the nucleus thus providing a checkpoint for proper 

mRNA transcription (Figure 3, [29]). 

 

1.1.3 Splicing 
 

In higher eukaryotes most mRNAs are interrupted by non-coding regions called 

introns. These sequences are removed from the transcribed RNA by the concerted 

action of hundreds of proteins and small RNAs, collectively called as the 

Spliceosome, and the phenomenon itself is called splicing of mRNA. Splicing is 

essentially two trans-esterification reactions where the 3’end of an exon is joined to 

the 5’ end of the following exon, whereas the intron is released as a “lariat” (Figure 2 

and see [4] for the molecular details of this process).  
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Many eukaryotic mRNAs contain short RNA sequences that regulate splicing by 

stimulating (enhancers) or inhibiting (silencers) the use of proximal splice sites. The 

decision to splice or retain an intron is influenced by the concerted action of many 

RNA binding proteins such as serine/arginine (SR) proteins, hnRNPs and other RNA-

binding proteins (i.e. Nova, PTB) that interact with these RNA elements [30]. 

 

Splicing is also used as a means of regulation: the pattern of splicing can be altered by 

extracellular stimuli, which in the end may lead to different isoforms of a protein that 

may have different physical properties that result in different biological activities [31]. 
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Figure 2 pre-mRNA splicing is a highly regulated multi-step process (A)  
Conserved motifs that define an intron in metazoa and yeast. (B) The splicing 
cycle involving the sequential action of snRNP (circles) and other proteins on an 
intron is depicted. (C) SR proteins can influence splice site selection by 
interacting with RNA elements within exons or introns and proteins that bind to 
5ʼ-or-3ʼ-splice sites like U1 and U2AF. This can lead to splicing out an intron that 
would otherwise be retained in the final mRNA or retention of an intron that 
would otherwise be spliced depending on the nature of the SR protein. Adapted 
from Wahl, Will and Luehrmann, 2009 [4] . 
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1.1.4 Termination of transcription and polyadenylation of the 3ʼ 
end of mRNA 
 

When the polymerase reaches the end of a gene, transcription has to be terminated. In 

eukaryotes, polymerase does not fall off from the template as in bacteria [32], instead 

a cleavage/polyadenylation protein complex (polyA complex) by virtue of directly 

interacting with termination signals within the nascent pre-mRNA and with the Ser2 

phosphorylated RNAPII CTD creates mRNA ends that are competent for export and 

translation [33]. 

Formation of a proper 3’ end is thought to stimulate pre-mRNA splicing and 

ultimately protein expression [34]. Interestingly, components of polyA complex 

interact with general transcription factors such as TFIIB [35] and TFIID [36] that are 

situated at the core promoter of a gene. Such interactions are thought to be the result 

of gene looping, where the terminator of a gene interacts with the promoter of the 

same gene [37]. Failure to make a polyadenylated 3’end results in the retention of the 

pre-mRNA at the nucleus and finally to its degradation by the exosome [38], [39]. 

There is at least one more termination pathway in yeast that is independent of the 

polyA complex mentioned above. This pathway requires three polypeptides, Nrd1, 

Nab3 and Sen1 and is mainly used to form snRNA and snoRNA ends [40]. Nrd1 

interacts with the CTD of RNAPII and recognizes the sequence GUAA/G on the 

RNA whereas Nab3 recognizes the sequence UCUU and maturation of the RNA 

ensues by the action of the nuclear exosome assisted by the TRAMP complex. It was 

recently shown that cryptic unstable transcripts use this pathway of termination rather 

than the canonical polyA complex mediated termination in yeast [41]. 

 

1.1.5 Export of mRNA to the cytoplasm 
	
  
In eukaryotes, all mRNA have to be transported from the nucleus to the cytoplasm 

where they serve as templates for translation carried out by ribosomes. A general 

receptor composed of TAP-p15 heterodimer (also known as Mex67-Mtr2 or NXF1-

NXT1) facilitates the transport of almost all mRNAs from the nucleus to the 

cytoplasm. The physical interaction of TAP/p15 with the Phe-Gly domains of FG-

nucleoporins enables them to overcome the permeability barrier imparted by the 
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nuclear pore complex and enables the transport of mRNA from nucleus to cytoplasm 

[42]. 

 

Although TAP/p15 can interact with RNA, adaptor proteins usually mediate its 

interaction with diverse mRNAs. These adaptor proteins can be loaded onto the pre-

mRNA in a way that is coupled to transcription and/or splicing. The mRNA 

packaging complex THO (absence of which results in RNA:DNA hybrids that inhibit 

elongation [43]) together with UAP56/Sub2 and Aly/Yra1 form the TREX 

(Transcription/Export) complex that facilitates the export of mRNAs into the 

cytoplasm. In yeast, THO complex co-transcriptionally loads the generic adaptor 

Yra1/Aly/REF together with Sub2 (UAP56) onto the emerging pre-mRNA throughout 

transcription [44]. In humans, on the other hand, loading TREX onto the pre-mRNA 

depends on splicing and on the cap binding protein CBP80 [25]. Aly/REF interacts 

directly with TAP/p15 and functions as a general adaptor molecule for many mRNAs.  

THO complex is certainly not the only way to provide adaptors to the mRNAs [45], 

SR (Ser/Arg-rich) proteins, although well known for their roles in splicing, can also 

interact with and recruit TAP/p15 onto mRNAs in a way regulated by 

phosphorylation cycles [46]. 

 

1.1.6 RNA surveillance 
 
The cell is a dynamic bio-factory that has to recycle its products and as a major 

constituent of the cell RNA is no exception. There are broadly two reasons to return 

molecular RNA to its monomers: Either the RNA of interest is no longer needed, or 

that it has not completed its processing steps properly and/or has a pre-mature stop 

codon.  

 

An RNA molecule can be degraded in three ways: it can be churned from the 5’- or 

3’end by enzymes called exonucleases (5’-3’ and 3’-5’ exonucleases, respectively) or 

it can be digested in the middle by enzymes called endonucleases. Exosome is one of 

the most important protein complexes in eukaryotes and is the principle 3’-5’ 

exonuclease both in the nucleus and in the cytoplasm [47]. In the nucleus, it is 

necessary for tRNA, snRNA, snoRNA and rRNA maturation and surveillance, 

whereas in the cytoplasm it is mainly utilized in the degradation of mRNA. 
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Almost all stages of mRNA production is subject to a checkpoint that determines if 

the mRNA will make it to the cytoplasm and translated. For instance, due to the 

presence of 5’-3’ exonucleases such as Rat1, all mRNAs must acquire the m7GpppN 

cap structure to escape degradation in the nucleus [29]. Promoter-proximal pausing of 

RNAPII is a way to ensure that all mRNAs are capped before productive elongation 

ensues. The cap structure is then needed for loading of TREX to the mRNA that 

facilitates its export to the nucleus [25]. Removal of the cap structure by Dcp1-Dcp2 

protein complex in the cytoplasm makes the RNA a substrate for the abundant 

cytoplamsic 5’-3’ exonuclease Xrn1 and leads to the degradation of that mRNA [48] . 

 

Failure to splice out an intron can lead to the introduction of pre-mature stop codons 

in the final mRNA. The cell has various strategies to eliminate such transcripts from 

being translated. The first response is to get rid of these intron-containing pre-mRNAs 

within the nucleus, prior to their export into the cytoplasm [49]. Although the details 

are not clear, the nuclear exosome is reported to be involved in this process as loss of 

exosome function lead to a 20-50 fold increase in the abundance of unspliced pre-

mRNAs in the nucleus. In yeast, nuclear pore complex (NPC) component Mlp1 is 

involved in the retention of unspliced mRNA providing a final block in the way of 

these aberrant mRNAs reaching to the nucleus [50]. If these intron-containing 

mRNAs that now have premature terrmination signal reach the cytoplasm, there is 

another way to dispose of these transcripts that depend on the deposition of a group of 

proteins, called the Exon Junction Complex (EJC), on the mRNA in a sequence-

independent manner during splicing in mammals. The EJC is deposited ~20 

nucleotides upstream of exon-exon junctions following splicing [51]. The EJC core is 

composed of four proteins (eIF4AIII, MAGOH, MLN51 and Y14) and it travels with 

the mRNA into the cytoplasm. Once the mRNA engages with the ribosome, a 

“pioneer” round of translation takes place [52]. In a normal mRNA, all EJCs should 

be deposited downstream of a stop codon, in an mRNA with a premature termination 

signal, however, this is not the case and recognition of the premature stop codon by 

the release factors (eRF1 and eRF2) recruit a group of conserved proteins (UPF and 

SMG proteins) that, together with the EJC and CBP80 trigger events that lead to the 

rapid degradation of mRNA. This process is called non-sense mediated decay (NMD) 

and it highly conserved among eukaryotes [53]. 
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Figure 3 Many pathways of RNA degradation The cell has multiple layers of control 
over the production mRNAs both in the nucleus and in the cytoplasm. Adapted from 
Houseley and Tollervey, 2009 [1]. 
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As mentioned before, proper termination of transcription and 3’-end formation is a 

very important step in the life of an mRNA and pre-mRNAs that fail to get a polyA 

tail at the end of the transcription are retained at their sites of synthesis. This retention 

is dependent on Rrp6 and the nuclear exosome [54]. These RNAs that would become 

poor templates for protein synthesis in the cytoplasm are sequestered in the nucleus 

by the complex that will degrade them [55]. 

 

Regulated degradation of RNA is an important tool used by the cell for rapid response 

to extracellular stimuli. For instance, some mRNAs contain AU-rich elements (ARE) 

at their 3’UTR that make them unstable in the cytoplasm. These mRNAs usually code 

for proteins that are only transiently activated upon extracellular stimuli (i.e. proto-

oncogenes, cytokines) hence the mRNAs that code for these proteins must have short 

half-lifes. Cytoplasmic exosome is known to be mainly responsible for the 

degradation of these mRNAs, but the exosome requires adaptor proteins, collectively 

called as ARE-binding proteins, that recognize and bind to these AREs in the 3’UTR 

of target genes [56]. 

 

Cryptic initiation of transcription in the genome is probably unavoidable due to the 

stochastic nature of molecular events. The cell eliminates most of these transcripts 

rapidly and their detection usually requires tempering with Exosome function [57]. 

All the details of this process is not known, but a pathway involving Nrd1-Nab3 

(which, as discussed before, is used for the formation of snRNA and snoRNA ends) is 

well studied in yeast. [41]. The sequence that Nrd1 recognizes is very short 

(GUAA/G) and although many pre-mRNAs would be predicted to have it, this 

pathway does not eliminate most of these pre-mRNAs. It was proposed that such a 

system would make any mRNA that has trouble with one of the processing steps a 

target for degradation by Nrd1-Exosome pathway, but a correctly processed pre-

mRNA would escape this fate and become a mature mRNA that is transported into the 

cytoplasm [47]. 
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1.2 Large non-coding RNAs 
 
A very large proportion of a cell’s recourses go into the production of mRNAs and to 

the machinery that decodes its message into proteins, which are by and large the 

effector molecules of a cell. Yet, RNA is not just the medium between DNA and 

protein; catalytic RNAs, known as ribozymes, are known to exist for a long time [58]. 

Our knowledge about the repertoire of RNAs produced in the nucleus has increased 

significantly over the last two decades. It now seems like almost all of the genome of 

eukaryotes is transcribed [59] and this lead to the term “eukaryotic genomes as RNA 

machines” [60]. The debate about the functional relevance of these transcripts is 

ongoing (are these transcripts functional or are they just genomic noise, (see [61]) 

however the list of ncRNAs with an assigned function is growing rapidly ([62], [63]) 

and a description of all of them is far beyond the scope of this text. I will, however, 

discuss some of the large non-coding RNAs that take part in gene regulation at the 

chromatin level and especially dosage compensation in mammals and in Drosophila 

(see Table 1 for some of these RNAs). 

 

Long ncRNAs identified so far range from a few hundred base pairs to kilobases 

(Table 1). Classical examples include Xist and Tsix RNAs in dosage compensation in 

mammals [64] Air RNA [65], H19 RNA involved in genomic imprinting in mammals 

[88] and roX RNAs involved in dosage compensation in Drosophila. However, it is 

clear that the repertoire of these long RNAs and the roles they assume in the cell is 

ever increasing ([89]; [90] and [91]). For example, recently discovered, HOTAIR 

(~2kb) is situated in the HOXC loci in mammals, and when expressed leads to the 

repression of genes in the HOXD loci in trans [70]. Its depletion leads to loss of 

H3K27Me3 and PRC2 protein Suz12 from the HOXD cluster. HOTAIR was further 

shown to directly interact with Suz12. Detailed work on PRC2 showed that there are 

many other ncRNAs it interacts with ([92],[93]) and these interactions may be 

modulated by its phosphorylation [94]. Although the abovementioned examples may 

suggest so, ncRNA in mammals are not only used for down-regulating transcription. 

For example, heat-shock-RNA-1 (HSR-1) was shown to interact with HSF and 

activate heat-shock responsive genes [83] Shiekhattar laboratory has recently shown 

that some long ncRNAs can positively  
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regulate neighboring protein coding genes, acting similar to enhancer elements [87]. 

These examples show that mammals can regulate gene expression by altering 

chromatin via ncRNAs both in cis and in trans and both negatively and positively. 

 

 Eukaryotic long ncRNAs that play a role in gene regulation 
 Name Size Organism Function References 

Xist 
14-18 
kb 

Human, 
Mouse X chromosome inactivation [64] 

Tsix 40kb Mouse Down regulates Xist expression [64] 

7SK 331nt Vertebrates 
Inactivation of P-TEFb, repression 
of RNAPII transcription [66]; [67] 

Airn 108kb Mouse 

Monoallelic silencing of Igf2r in cis; 
Slc22a2 and Slc22a3 in trans. 
Interacts with G9a H3K9 HMT. [68],[69] 

HOTAIR 2.2kb Human 
Interacts with PRC2, represses 
target genes in trans [70] 

B2 178nt Mouse 
Binds RNAPII, represses 
transcription [71],[72] 

ncRNACCND1 
200-
330nt Human 

Represses transcription of CCND1 
in cis by interacting with TLS [73] 

NRON 2-4kb Human Repression of NFAT [74] 

Kcnq1ot1 91kb Mouse 

Interact with G9a and PRC2, 
represses transcription from Kcnq1 
locus in cis [75] 

R
ep

re
ss

iv
e 

R
N

A
s 

ANRIL 3.8kb Human 
Interacts with PRC2 and PRC1 to 
repress INK4b/ARF/INK4a locus [76],[77] 

roX1, roX2 
600nt – 
3.7kb Drosophila X chromosome hypertranscription [78] 

SRA 883nt Mammals Co-activator of nuclear receptors [79] 

tre-1, tre-2, 
tre-3 

950, 
1109, 
351nt Drosophila 

Activates transcription of target 
genes by Ash1 recruitment [80] 

U1 165nt Human 
Interacts with TFIIH, activates 
transcription [81] 

Evf-2 3.8kb 
Human, 
Mouse 

Interacts with Dlx-2 and increases 
its enhancer activity [82] 

HSR1 600nt Mammals 
Interacts with eEF1A and activates 
HSF1 upon heat-shock [83] 

LINoCR 1.9kb Chicken 
Activates lysozyme expression upon 
LPS exposure [84] 

Jpx 3.8kb Mouse Induction of Xist expression [85] 
HOTTIP 3.7kb Chicken Regulates HoxA locus [86] 

A
ct

iv
at

in
g 

R
N

A
s 

ncRNA-a1-
7 ~400nt Human 

Activation of specific genes within 
~300kb, enhancer-like RNAs 
(eRNAs) [87] 

Table 1 A selection of long ncRNAs that are involved in regulation of gene expression 
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1.2.1 Dosage compensation in mammals 
 

A recurring theme in evolution, dosage compensation is a system that evolves when 

the sex in a species is determined genetically by sex chromosomes, where one copy of 

the chromosome has degenerated in time, which causes an imbalance in gene dosage 

since one sex has one copy of the sex chromosome whereas the other one has two 

(discussed in detail [95]). Dosage compensation in mammals, as mentioned above, is 

a classical example where a long ncRNA, Xist, is paramount in the silencing of one X 

chromosome in females ([64],[96]). Xist is a ~17kb transcript in humans (~14kb in 

mice) that is exclusively transcribed from the inactive X chromosome. It is known 

that Xist only functions in cis, when moved to an autosome it leads to the silencing of 

flanking loci, and can not be detected on the X chromosome. One apparent advantage 

of such a mechanism is that the ncRNA can immediately mark the region to be 

silenced and bypasses the need to be transported to the cytoplasm and imported back 

to the nucleus to find its target [64]. Exact mechanism by which Xist functions is a 

matter of intense investigation. However, accumulating evidence suggests that Xist is 

unlikely to be the only player regulating this complicated process and epigenetic 

factors also pay at an important contribution. For instance, it has been shown that 

coating of the X chromosome with Xist RNA is followed by the accumulation of 

heterochromatin marks such as trimethylation of histone H3 lysine 27 [97]. This 

histone mark is thought to be catalyzed by Polycomb Repressive Complex 2 (PRC2) 

that contains the H3K27 specific histone methyl transferase (HMTase) EZH2, and is 

maintained by Polycomb Repressive Complex 1 (PRC1), which is thought to 

contribute towards silencing of the X chromosome [98].  

 

1.2.2 Dosage compensation in Flies 
 

Dosage compensation in flies, in principle, does the same job as in mammals that is to 

equalize the gene output from the unequal number of X chromosomes between the 

two sexes. The flies however, carry out dosage compensation by hypertranscription of 

the single X chromosome in males rather than silencing one of the two X 

chromosomes in females. This process is carried out by a ribonucleoprotein complex 

named the Dosage Compensation Complex (DCC) or the MSL complex. It is 

comprised of Male Specific Lethal (MSL) proteins; MSL1, MSL2, MSL3, a histone 
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H4 lysine 16 specific acetytransferase MOF (males absent on the first), and 

RNA/DNA helicase MLE (maleless). The complex also harbors two large ncRNAs, 

roX1 and roX2 (RNA on X) (Figure 4). The utilization of large ncRNAs and their 

indispensability in dosage compensation parallels between mammals and flies, 

although the mechanism by which they achieve the final effect seems to be entirely 

different. In the following sections I will discuss roX RNAs and their role in fly 

dosage compensation. 

 

 

 

 

 

 

 

 

1.2.3 Discovery of roX RNAs 
	
  
The roX RNAs were initially discovered in a screen looking for RNAs that are 

exclusively expressed in one sex but not in the other [99]. It was immediately 

understood that the regulation of these RNAs were under the control of the dosage 

compensation system as lack of msl-1, msl-3 or mle lead to the disappearance of the 

roX RNAs [99]. In an independent study, an enhancer trap strategy was used to look 

for lacZ expression in the mushroom bodies and one line showed expression of the 

reporter only in females [100]. The characterization of this line revealed that the 

transgene had landed on the roX1 gene. This study also looked in detail into the 

nuclear localization of the roX1 RNA using in situ hybridization on salivary glands 

which not only showed that MSL-1 and roX1 co-localized on the male X 

Figure 4 The MSL complex is required for dosage compensation (A) A polytene 
staining showing the classical X-localization of MSL1. All of the other four proteins of the 
MSL complex give similar staining patterns. (B) The MSL complex is a ribonucleoprotein 
complex. Various domains that facilitate protein-protein, protein-RNA and possibly preotin-
DNA in these proteins are depicted here. Adapted from Hallacli and Akhtar, 2010 [2]. 
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chromosome, but roX1 was still “painting” the male X chromosome when its locus 

was translocated onto an autosome. So whatever this RNA might have been doing, it 

was clear that it could function in trans and this was in marked contrast to the biology 

of the Xist ncRNA which only works in cis [101], [64]. 

 

1.2.4 Similar yet different: roX1 and roX2 
	
  
Both roX RNAs seemed to be transcribed by the RNAPII, since they could be isolated 

using oligo dT probes and contained putative introns which were spliced out in the 

isolated cDNAs ([100], [99]). In addition, recent studies showed strong RNAPII 

binding on both genes using ChIP-chip analysis, further indicating that RNAPII is the 

polymerase responsible for roX transcription [102]. 

It is important to note that, these two RNAs looked very different in both size and 

sequence; roX1 RNA being 3.7 kb roX2 being 0.6kb in length ([99], [100] and [103]). 

Yet, roX1 and roX2 RNAs seemed to be similar in many ways. They are both stably 

expressed in males and both genes map to the X chromosome (roX1: Location 3F, 

roX2: Location 10C) and they are stable only in the presence of the known MSL 

complex members [101],[64]. These RNAs could, at this point, be thought of as by-

products of a chromosome-wide dosage compensation system, since they were 

obviously expressed only from the hypertranscribed male X chromosome; but it was 

also possible that they were actually not the result of this hypertranscription but were 

taking part in its realization and hence were only detectable in males where this 

system is up and running. Initial experiments showed that roX1 was completely 

dispensable, its deletion had no apparent phenotype [100], which would argue that it 

has nothing to do with dosage compensation. Yet, the RNA coated the X chromosome 

in male nuclei, co-localizing with MSL-1 protein. One possibility would be that these 

two RNAs were redundant in function, although bearing almost no sequence 

similarity, and hence deletion of one would not result in any apparent phenotype, 

whereas a double mutant would reveal if they are both involved in dosage 

compensation. This hypothesis was tested with a deficiency that removed the roX2 

gene, which was combined with the roX1MB710 used as a null allele. The results were 

striking: The MSL proteins were no longer localized to the X chromosome as judged 

from immunostaining of male embryos with antibodies against MSL-2. The 

transcriptional effect of this loss of localization on dosage compensation could not be 
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determined as the deficiency that removed roX2 also removed essential genes like the 

large subunit of RNA polymerase II [101]. In the same study, a 30nt similarity 

between the otherwise completely different roX1 and roX2 RNAs was noticed. Later 

studies showed that deletion of this region as well as another ~110bp stretch of similar 

sequence in the two RNAs (the DNAseI Hypersensitive Site, DHS), the latter being 

able to recruit the MSL complex from roX1 or roX2, resulted in no obvious phenotype 

when these transgenes were the only source of roX RNA ([104], [105] and [106]). 

These results indicated that roX RNAs carry out their functions by virtue of 

degenerate primary, secondary or even tertiary structures that are very difficult to 

identify computationally, or that there might be further redundant elements in these 

RNAs so that deletion of one functional region would not yield a phenotype since it 

will be complemented by another element in these large RNAs. Such a redundancy 

was systematically tested for roX1 [106] and it was found that apart from a putative 

stem loop region at the 3’ end of the RNA, deletions of approximately 400 bases did 

not affect the rescue of male lethality by these truncated RNAs in roX1- roX2- mutant 

background. An analogous study on the roX2 RNA gave similar results: deletion of 

most of the conserved residues in small chunks (17bp) did not change the rescue of 

male lethality when the mutated RNA was the only source of roX RNA in these flies 

[107]. The redundant nature of these RNAs might be explained by their lengths. If 

they interact with their cognate proteins via an induced fit mechanism where the RNA 

rather than the protein assumes a stable 3D conformation upon binding, bulk of the 

primary sequences might be dispensable giving the RNA molecule much more 

flexibility [108]. These now dispensable sequences might evolve into novel protein 

interaction modules in time. 

 

Interestingly, the embryonic expression pattern of roX1 and roX2 is not identical. 

roX1 transcripts, for instance, are detected very early (2hrs AEL) and are detected in 

both sexes; roX2 on the other hand is not detectable before 6hrs AEL and thereafter is 

detected only in males [109]. Ectopic expression of MSL-2 in females, which leads to 

the formation of DCC in female flies and results in female lethality [110] has revealed 

another striking difference between the two RNAs: When females express MSL-2 

ectopically but are also mutant for mle, both roX RNAs were detected only at their 

sites of transcription, but not on other chromosomal sites when polytene squashes 

from these flies were investigated by in situ hybridizations carried out with probes 
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against roX1 and roX2. In msl-3 mutants, however, roX1 was still only detected at its 

site of synthesis, whereas roX2 could be detected in other regions, mostly on the X 

chromosome, including the 3F band which is the site of the roX1 gene [111].  

 

1.2.5 Why males canʼt do without -at least one of- them? 
 

The data from MSL2+ females (females that over-express MSL2 in msl3 mutant 

background) discussed above had multiple implications: First of all, in the absence of 

MLE, it seems that roX RNAs are unable to co-localize with the rest of the complex at 

the remaining “high-affinity” sites on the X chromosome. Which would mean that 

whatever is left from the MSL complex is devoid of roX RNAs in this situation. 

Nevertheless, when MSL3 is absent, roX2 is able to co-localize with the partial MSL 

complexes on the X chromosome. This lead to the idea that MLE was indispensable 

in the integration of roX RNA into the complex and that these roX-free partial 

complexes were able to bind some of the X chromosomal sites. Co-localization, 

detected by microscopy, however, is no proof that the detected molecules do interact 

in vivo. However, immunoprecipitation (IP) analysis carried out with antibodies 

against MSL1, MSL3 and MOF and MLE showed that roX2 RNA is physically 

associated with the MSL complex ([112], [113] and [103]).  

The RNase sensitive chromatin association of MLE and the following discovery of 

the roX RNAs had begged the question whether MLE, as an ATP dependent 

RNA/DNA helicase associated with the roX RNAs and together with the other MSL 

proteins regulates dosage compensation ([114], [115] and [116]). Further evidence in 

support of this view emerged when the chromodomains (now known as the chromo-

barrel domain) of MOF and MSL-3 were shown to interact with RNA [112]. In the 

same study, association of MOF with the X chromosomal territory in SL2 cells was 

shown to be RNase sensitive. In addition, an IP with antibodies against MOF under 

conditions where MLE protein was no longer co-precipitated with the rest of the 

complex was carried out and yet roX2 RNA could still be detected with levels close to 

a less stringent IP where MLE protein is robustly detected. This interaction was 

dependent on the presence of the wild-type chromodomain of MOF. The presence of 

roX RNAs, and the interaction of MOF with these RNAs seems to be important for 

proper association of MOF with the X chromosome. Notably, a recent structural study 
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on the MOF homologue in yeast, Esa1 has revealed that the chromodomain together 

with an N-terminal extension is competent in binding RNA in vitro and interestingly, 

mutations that disrupt this structure were lethal. This might indicate that interaction 

with RNA might be a common feature that is necessary for MOF function conserved 

from yeast to flies [117].  

The results mentioned above clearly showed that the roX RNAs are stable members of 

the MSL complex; they actually seem to be even more stably associated with the rest 

of the complex than MLE, the protein they are required for stability and association 

with other MSL proteins in vivo [112], [118]. Their stability, however, is 

compromised in mutants with a single residue change that renders MLE incapable of 

hydrolyzing NTPs ([119],[115] and [120]). It is interesting to note that, in these 

mutants the MSL proteins are detected on the “chromatin entry sites” where they co-

localize with each other in total absence of both roX RNAs. Similarly in roX1- roX2- 

mutants, MSL proteins are mistargeted to autosomes and chromocenter where they 

co-localize with H4K16 acetylation [121]. Another line of evidence that might 

indicate that a roX-free MSL complex exist comes from the observation that in wild-

type females where MSL-2 is not present, the seemingly non-specific chromatin 

binding of MSL-1, MSL-3 and MLE is completely lost when either one of these 

proteins is not expressed [122]. MSL1 is also shown to directly interact with MSL-3 

and MOF in addition to its better known interaction with MSL-2 without which it is 

less stable [123], [124]. In a very intriguing experiment, MSL1 along with MSL2 is 

over-expressed in flies in the absence of roX RNAs. The results showed that this co-

over-expression of the core MSL proteins lead to a clear increase in the number of 

male progeny in the absence of roX RNAs (~6 to 70-fold) and improved the X 

chromosomal staining of the MSLs, with the notable exception of MLE. However, 

MSL proteins were still strongly localized to ectopic autosomal sites and the 

chromocenter [125].  

These studies raise the following question: If the MSL complex is able to form, land 

on the X chromosome and acetylate H4K16 in the absence of detectable roX RNA, 

then why do these RNAs exist and why does their absence result in male lethality? 

First of all, although all three claims are correct, they are at least inaccurate. There are 

indications that the complex does form without roX RNA –as mentioned above–; but 

the amount, stability and/or the stoichiometry of the individual components in these 

partial complexes are not known; and all of these parameters could be vital to the 
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ultimate function of the MSL complex. These partial complexes also seem to bind to 

the X chromosome, but almost only to the “high-affinity sites” reported for msl3 

mutant males as well as to the chromocenter and the autosomes and these complexes 

are engaged in acetyltransferase activity [126], [121]. In females that express MSL2 

ectopically and have only catalytically inactive MOF (mof1), the MSL complex 

localizes to a reduced number of sites on the X chromosome as judged from polytene 

squashes. Yet, when salivary gland nuclei are investigated, MSL proteins look like 

dispersed in the nucleoplasm but still co-localize. roX1 also follows this pattern by 

giving a diffuse staining in the nucleus [119]. 

Thus it seems likely that the function of roX RNAs is to make the MSL complex more 

competent in targeting the X chromosome rather than the autosomes and facilitate the 

binding of the MSL complex to more genes on the X chromosomes perhaps by 

increasing the local concentration of the DCC. 

 

1.2.6 RNA independent role of roX? 
	
  
The roX1 and roX2 loci coincide with the 35-40 “high-affinity sites”, named so 

because MSL1 and MSL2 was able to bind these sites in the absence of MSL3, MOF 

or MLE. In early experiments where genomic clones of roX1 or roX2 were integrated 

onto an autosome, the whole set of MSL complex proteins could be detected on the 

transgene; moreover, rather unexpectedly, “spreading” of the complex to the flanking 

chromatin was observed [127]. These experiments showed that the MSL complex 

could be recruited onto an autosomal position when a “high-affinity site” was 

transferred there; but more importantly they showed that the complex is recruited to 

chromatin that normally cannot recruit the complex but is now able to do so because it 

is now adjacent to a “high-affinity site”. A model for the X chromosome targeting of 

the MSL complex was proposed based on these observations: MSL1/MSL2 can 

recognize a small number of sites on the X chromosome in a sequence specific 

manner (the “high-affinity” sites) and then spreading of the complex occurs in cis to 

recognize all dosage compensated genes on the X chromosome [127]. This model was 

later challenged by experiments that looked into MSL recruitment in X to autosome 

or autosome to X transpositions. It was shown that independent of the presence of a 

previously defined “high-affinity site”, any piece of X chromosome larger that ~40kb 

was able to recruit MLS complex when inserted onto an autosome and “spreading” of 
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MSL proteins into flanking chromatin was not observed. Likewise, an autosomal 

region that normally does not recruit MSL proteins will still not do so when inserted 

onto the X [128]. Together with the findings of [129], a new hypothesis emerged that 

explains MSL recruitment, the “affinities model” [130], [131]. According to this 

model, the “high-affinity” sites are simply more efficient in recruiting the MSL 

complex and are not qualitatively different from “low-affinity” sites. When the MSL 

complex is limiting, or its composition is compromised, only “high-affinity sites” 

seem to recruit the MSL complex; but what happens is that they simply recruit the 

MSL complex much better than the “low-affinity sites” and hence are the only sites 

visible when analyzed by immunofluorescence. This model, however does not explain 

why MSL binding and up-regulation of transcription is observed in the loci that flank 

roX transgenes that are moved to autosomal positions. Furthermore, the recent 

findings show that MSL3, like its homologue in yeast Eaf3, can bind to trimethylated 

histone H3 lysine 36 (H3K36Me3), a histone modification that is found on the body 

of actively transcribed genes, and this modification seems to stabilize the MSL 

complex on target genes [132], [133] and [134]. These results implicate transcription, 

rather than specific sequence elements as cues that lead to MSL recruitment at least to 

some genes. As specific examples, the MOF and CG3016 genes, have been shown to 

be sitting in between these two models for MSL targeting. MOF, as an X-linked gene, 

is targeted by the MSL complex, and this does not change when it is inserted to an 

autosome. The gene retains MSL binding in the absence of msl3, making it 

technically a “high-affinity site”. Interestingly, however the binding of the MSL 

complex is dependent on the transcription of the gene and more interestingly the 

direction of the transcription is not important as long as polymerase runs through the 

gene. Finally, targeting of the complex is diminished when the 3’ end of the gene is 

deleted [135]. This lead the authors to propose a model where targeting requires 

redundant DNA elements at the 3’ end, but these elements have to be made accessible 

via transcription through the gene. It is interesting to note here that Kuroda and 

colleagues mapped the “high-affinity sites” by ChIP-on-chip and ChIP-seq in msl3 

mutants and identified enriched motifs on the X and named these motifs MSL 

recognition elements (MREs). The reported X chromosomal versus autosomes 

enrichment of these motifs is around 2-fold, but it increases to 4-fold when active and 

especially 3’end of the genes are taken into account [136]. 
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1.2.7 Relationship between roX and H4K16 acetylation 
	
  
Recent reports have suggested that evolutionarily conserved stretches present at the 

3’end of roX1 and roX2 RNAs are functionally important [107], [137]. A putative 

stem-loop was previously suggested to play an important role in roX1 function since 

its deletion resulted in the reduction of male viability [106]. roX1 contains three of 

these elements (roX1-box1-3) whereas roX2 has two. The 3’ stem of the stem-loop of 

roX1 entails roX1-box2. It was noticed that rox2-box1 could also reside in a stem-

loop at the end of the roX2 RNA. This stem-loop is reported to be able to recruit the 

MSL complex onto the X chromosome when concatemerized into a 6-mer and 

expressed in the absence of endogenous roX RNA [138]. The surprise was that, 

although the staining patterns of MSL proteins on polytene chromosomes were 

seemingly indistinguishable from wild-type (including H4K16Ac, but except 

occasionally for MLE), the rescue of male lethality was very low, ~17% but was 

significantly higher than a mutant that cannot form this stem-loop or a 6mer with the 

anti-sense sequence (~1%). A follow up study further established the importance of 

this putative secondary structure. In this study, the authors showed that deleting or 

mutating this secondary structure in roX2 leads to male lethality [107]. When 

polytene squashes were examined, it was seen that targeting of the MSL complex to 

the X chromosome was still normal, however H4K16Ac was not detectable. Since 

these conserved sequences were also present in roX1, their functionality were also 

tested in that context. As mentioned above, Stuckenholz et al. had previously reported 

that a stem-loop at the 3’ end of roX1 was important for the function of this RNA. 

Since this stem loop contained rox1-box2 in its 3’ stem, the authors tested MSL 

localization and H4K16Ac in these mutant flies where the stem-loop is deleted and 

found that all the stainings were normal. In accordance, they report a 55% male rescue 

as opposed to the 22% reported by [106]. When a mutation of rox1-box3, that did not 

alter MSL localization or histone acetylation by itself, was combined with the stem-

loop deletion, severe reduction of H4K16Ac from the X chromosome was observed 

while all other MSL complex members seemed to still co-localize on the X 

chromosome with a male rescue frequency of 9% [107].
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2. Aims and Objectives 
	
  

In flies, males hypertranscribe their single X-chromosome in order to equalize their 

gene expression to that of females which have two X-chromosomes. This process, 

called dosage compensation, is dependent on the presence of a ribonucleoprotein 

complex, the MSL complex, which coats the male X-chromosome in its entirety and 

acetylates H4K16. roX RNAs are an integral part of this complex, and although their 

exact role is unknown they are necessary for dosage compensation to take place.  

 

Genetic studies aimed at understanding the role of roX RNAs in dosage compensation 

have been very fruitful; nevertheless, biochemical approaches that complement these 

studies have been lagging behind. It is therefore essential to look into roX RNAs 

using biochemical tools in order to understand their function in the context and 

perhaps beyond dosage compensation. 

 

In my PhD work, I wanted to understand how roX RNAs take part in dosage 

compensation. We tackled this problem from two angles. The first approach was to 

affinity purify MLE, which is an RNA/DNA helicase that is part of the MSL complex 

and was shown to be required for the incorporation of roX RNAs into the MSL 

complex. This work is summarized in the first part of the Results section. 

 

In the second approach I purified roX2 interacting proteins in vitro using GRNA 

chromatography and then analyzed them using biochemical, cytological and 

immunological methods. This part of the work is summarized in the second part of the 

Results section.	
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3. Results 
	
  

3.1 Tandem Affinity Purification of Maleless 
 

Affinity purification of protein complexes can give invaluable information about the 

function of a protein if the co-purifying components are well-studied proteins, or if 

the components of the complex have protein domains that suggest a function 

altogether.   

 

Maleless, especially together with its mammalian orthologue RNA Helicase A, can be 

considered as a well-studied protein ([115, 116, 139 and 141]). Its activity as an 

RNA/DNA helicase is studied in detail, mostly in vitro and in vivo ([115], [139, 142 

and 143]. And yet, activity does not necessarily determine function: although MLE is 

known to be required for dosage compensation, it is not known how its 

helicase/ATPase activity is utilized for its function as a male specific lethal protein.  

 

 

 

DNA MLE

X

Figure 5 Maleless stains autosomal loci in addition to the male X-chromosome 
Salivary glands from a 3rd instar male are squashed and stained with antibodies 
against MLE (red). DNA is counter-stained with DAPI (blue). X-chromosome is 
indicated with an “X”. 
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MLE protein seems to have additional functions beside dosage compensation. A 

simple immunological staining of polytene squashes of male third instar larvae shows 

strong inter-band staining in some autosomal loci in addition to the classical X-

chromosomal staining (Figure 5). Encouraged by these observations, we wanted to 

carry out an affinity purification of MLE and identify proteins that co-purify with it.  

 

There are many different affinity tags available to a biochemist, all with their 

advantages and disadvantages. Perhaps the most commonly used affinity purification 

approach utilizes the interaction between S. aureus protein A and IgG as the first 

purification step, followed by the Calmodulin binding protein (CBP) calmodulin 

interaction in the presence of calcium as the second purification step [144]. TAP-tag 

forms a relatively bulky domain (~21kDa) and when used as an affinity tag it may 

interfere with the function of the protein of interest and/or alter its affinity towards 

some of its interaction partners. And although the elution from IgG beads is carried 

out under native conditions, a protease is used for this purpose. The elution from 

calmodulin beads is carried out by chelating calcium out of the solution using EGTA; 

but although EGTA is a strong chelator of Ca2+ it also chelates other divalent metal 

ions such as Mg2+ and Zn2+, which may destabilize the structure of certain proteins 

(i.e. Zinc-finger containing proteins) that require these ions.  

 

I have used FLAG [145] and hemagglutinin (HA) [146] tags in tandem for the affinity 

purification of MLE. HA tag corresponds to the amino acids 98-106 of human 

influenza hemagglutinin glycoprotein and has been used extensively for isolation, 

detection and purification of many proteins. The tag is very small (9 amino acids) and 

highly specific monoclonal antibodies as well as polyclonal antibodies are available 

that bind to it. Elution occurs under perfectly native conditions by competing the 

bound protein by high concentrations of HA-peptide. FLAG tag is a designer peptide 

selected for its hyrophilicity, which makes it readily accessible for detection/capture 

and is only 8 amino acids long. Elution, similar to the HA tag, is carried out by 

peptide competition.  
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Figure 6 MLE tagged with HA-FLAG (A) MLE is tagged with an HA and a FLAG tag at its C-
terminus. (B) Polytene chromosome spreads from  3rd instar male larvae carrying the HA-FLAG tagged 
MLE transgene is stained with antibodies against MSL1 (green) and FLAG (red). An extensive co-
localization of the two proteins shows that the transgene is targeted to the X-chromosome like the 
wild-type protein. Also note the autosomal puffs stained with FLAG antibody. (C) 10, 20, 30 and 40 µg 
of nuclear extract prepared from wild-type or MLE-HA-FLAG expressing embryos is analyzed by 
western blotting. The transgene is expressed only in the transgenic flies, and is not over-expressed 
with respect to the endogenous MLE protein as judged by the MLE immunoblot. 
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I have tagged full length MLE with an HA (YPYDVPDYA) and a FLAG 

(DYKDDDDK) tag in tandem at its C-terminus (Figure 6A). This construct was 

inserted into the Drosophila genome by P-element mediated transformation. Several 

insertions were recovered. Before carrying out a purification, I wanted to make sure 

that the transgene I have introduced into the fly was functional similar to the wild-

type protein. There were two ways to check this: First, the transgene should rescue the 

male specific lethality phenotype observed when the male fly lacks endogenous MLE 

protein. Second, the transgene should stain the X chromosome, co-localizing with 

other MSL proteins. Two of the lines I recovered had an insertion on the 3rd 

chromosome which makes it possible to complement mutant mle since the 

endogenous gene resides on the 2nd chromosome. These two lines were able to rescue 

the male specific lethality phenotype observed in mle1 mutants (45-50% of the flies 

were males in both lines when the only source of MLE protein was the transgene I 

introduced; there are normally no escaper males in mle mutants), so the first and the 

most important criterion was met; the transgene carries out its function as if it was the 

wild-type protein. I decided to continue with one of the lines and when polytene 

squashes from this line is immunostained with antibodies against the FLAG peptide 

and MSL1, an extensive co-staining could be observed on the male X chromosome, as 

can be seen in Figure 6B.  Knowing that the protein is functional, and is targeted to 

the X chromosome like the wild-type protein, I expanded this line into population 

cages in order to get enough material for a tandem affinity purification. Figure 6C 

shows a representative nuclear extract prepared from wild-type embryos and from the 

embryos carrying the MLE-HA-FLAG allele on their 3rd chromosome. It is not 

possible to differentiate wild-type MLE with the affinity tag containing transgene due 

to the very subtle size difference imparted by the tag, but it is clear that the transgene 

is not over-expressed with respect to the wild-type MLE.  

 

MLE-HA-FLAG and putative associated polypeptides were then immunoprecipitated 

out of the prepared nuclear extracts, first using FLAG M2 mAb, immobilized on 

agarose beads, followed by elution by FLAG peptide. This eluate was then loaded 

onto agarose beads coated with anti-HA mAb, and after several washes the 

immunoprecipitated material was eluted with 2xLaeammli buffer. The eluate was 

separated by PAGE, and the gel is silver stained to reveal the proteins (Figure 7). The 

background introduced by proteins that bind non-specifically to the beads was 
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controlled by a mock purification, carried out by using a nuclear extract prepared 

from wild-type embryos.  Three most prominent bands were cut from the lane that 

contained the eluate coming from the purification carried out with the transgenic 

embryos. Surprisingly, all of these bands turned out to be MLE and its degradation 

products. Considering that MLE’s association with the MSL complex is sensitive to 

high concentrations of salt, I have repeated the purification at a lower salt 

concentration (60mM NaCl, instead of 110mM). Apart from the increasing 

background the result was the same: there were no other proteins in the eluates, but 

MLE.  

 

MLEHA-FLAG Mock MLEHA-FLAG Mock

110mM 60mM :NaCl
!"#$%

Figure 7 Tandem affinity purification of MLE Nuclear extracts prepared from 0-12 hrs embryos 
(extraction with 420mM NH4SO4, extract finally equilibriated to 100mM KCl) are used for the 
affinity purification of MLE. FLAG purification using anti-FLAG M2 sepharose beads (Sigma) is 
followed by HA purification using anti-HA agarose beads (Sigma). Protein bound to the anti-HA 
agarose beads is eluted with 2XLaemmli buffer, separated by PAGE and revealed by silver 
staining. Two separate purifications are carried, using two different salt concentrations that are 
indicated at the bottom of the gel. 
Protein marker is indicated to the left. MLEHA-FLAG: Nuclear extract made from transgenic embryos; 
Mock: Nuclear extract made from wild-type embryos	
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Substoichiometric interactions are difficult to catch during a tedious tandem affinity 

purification, yet these interactions can be important to understand the function of a 

protein. Since the MLE transgene could rescue male specific lethality, and thus we 

could essentially replace all cellular MLE by the MLE-HA-FLAG that we have 

introduced, I decided to expand this fly line, make nuclear extracts from its embryos 

and carry out a purification using that extract. In addition, the classical way to prepare 

a nuclear extract involves lysing the nuclei with 420mM ammonium sulfate and 

extracting nuclear proteins at this salt concentration, and the precipitating the 

extracted proteins by increasing the salt concentration up to 4M, after which the 

precipitated proteins are re-solubilized and dialyzed down to 100mM salt. It might be 

possible that, in such an extraction procedure, all MLE associated proteins fall off, 

and hence cannot be co-precipitated with MLE, because the salt concentration is 

elevated to 420mM, kept there for a while, and further increased to precipitate almost 

all the proteins in the solution. It was therefore essential to test different ways of 

extraction to see if we could purify possible MLE associated proteins.  

 

In order to increase my chances to isolate polypeptides that interact with MLE, I have 

expanded the transgenic flies in which the only source of the transgene was the 

affinity tagged MLE that I had cloned. I have used two “milder” extraction methods 

to generate the material that was used for the affinity purification. Figure 8A shows 

two different extracts, and the efficiency of the FLAG pull-down in depleting MLE 

out of the extract, and the efficiency of elution by FLAG peptide competition as 

judged by the leftover MLE on the beads following elution. I have then proceeded 

with a small-scale purification using these extracts (Figure 8B). Although the 

background was high, due to the little amount of material I have used, it looks clear 

that there no major proteins bands in the lanes where I have immunoprecipitated MLE 

with respect to the mock purifications. 
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I have concluded, then, that if there are proteins that do interact with MLE, these 

interactions are very likely to be substoichiometric, possibly mediated by RNA (see 

Discussion) and very difficult to identify using a tandem affinity purification 

approach.  

These results in themselves are quite intriguing as MLE is a classical dosage 

compensation complex member that co-localizes with the rest of the MSL complex on 

the X-chromosome. Yet this protein does not co-purify when other members of the 

MSL complex are tagged, neither does it co-purify MSL proteins when when they are 

epitope-tagged. This suggest that MLE’s interaction with the X-chromosome is 

perhaps not mediated by interactions with other proteins but via, RNA with the most 

likely candidates being the roX RNAs.  
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Figure 8 MLE purification in an mle mutant background (A) Nuclear extracts prepared 
from wild-type embryos and transgenic embyos which lacked endogenous MLE protein 
which was replaced by the MLE-HA-FLAG we introduced were immunoprecipitated with 
anti-FLAG beads. Two types of extracts were prepared: KCl and SSNF (procedure is 
explained in detail in Material and Methods section). (B) A small scale purification using 
KCl and SSNF extracts does not show proteins enriched in the experimental lanes (mle1; 
mleHA-FLAG) compared to mock lanes (wt). IN: Input, S/N: Supernatant, E: Elution, B: Beads 
boiled after FLAG elution 
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3.2 Identification of novel roX interacting proteins 
 

In the second part of my thesis, I changed gears and concentrated on studying the roX 

RNAs. The aim was to establish an in vitro system where we could detect the 

interaction between roX RNAs and members of the MSL complex and also to find 

additional polypeptides that specifically interact with roX RNAs. In our case, we 

know that the roX RNAs interact with the MSL complex ([103],[113] and [112]), and 

in the absence of both roX RNAs, the MSL complex cannot be targeted to the male X 

chromosome, dosage compensation fails and male flies die [101], [121]. However, 

exactly how roX RNAs are required for dosage compensation is currently not known. 

We reasoned that, if we can identify proteins that interact with roX RNAs, besides the 

MSL complex, we might get a better understanding of its function, and thus, we have 

utilized GRNA chromatography (a scheme of which is given in Figure 9) to identify 

novel proteins that interact with roX RNA in vitro. GRNA chromatography, 

developed in the Hentze [147] and Mattaj [148] laboratories have been used 

successfully to identify novel proteins associated with an RNA of interest. Since then, 

similar methods have also been used by other laboratories to the same purpose [149, 

150]. For technical reasons , I have used roX2 RNA instead of roX1 in this study: 

long RNAs are more difficult to immobilize on beads, the probability of getting a 

correctly folded RNA in vitro gets lower and the background binding of non-specific 

proteins increases. Since roX RNAs are redundant in function, their RNP composition 

should also be similar. This assumption will be put to test in future studies. 
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Figure 9 An overview of the GRNA purification.  

(A) GST•λ•6His, a fusion protein that contains a GST moiety at its N-terminus is immobilized on 

sepharose beads coated with glutathione. An RNA of interest, tagged at its 5ʼ-end with two boxB 

hairpins is incubated with beads that have GST•λ•6His bound to them. Due to the high affinity 

interaction between the λN22 peptide and boxB hairpin (Kd~ 20nM), the tagged RNA in immobilized on 

the beads in a directional manner. This affinity matrix is then incubated with a Drosophila embryonic 

!"#$%$&'()*

+*,&%-(.*

!+/
!+/
!+/
!+/

!"#$%$&'()*

+*,&%-(.*
!+/

!+/

!"#$%$&'()*

+*,&%-(.*
!+/

!+/

!"#$%$&'()*

+*,&%-(.*
!+/

!+/

5) Analysis (Mass-spectrometry, Immunoblotting)

!" #$" %&'()*

+,

-.

01 +21 3 01 +21 3

4)$%55*67-(897:1; -(897$%55*67<'$&7=(>?

@AAA)$

BAA)$

9AA)$

A

B C

1 2 3 4 5 M



Results	
  
	
  

43	
  

extract, after which the proteins that interact with the matrix is releases with RNase A digestion. The 

eluate is then analyzed either silver-staining or immunoblotting followed by PAGE. (B) Immobilization of 

GST•λ•6His on Glutathione-Sepharose beads is specific and efficient. M: Bio-Rad Precision Plus All 

Blue protein marker; IN: input, S/N: supernatant, Bound: Protein immobilized on the beads. (C) The 

interaction between λN22 and boxB is highly specific. When untagged roX2 is incubated with beads that 

have GST•λ•6His immobilized on them, the RNA is not depleted from the supernatant (lane 2) and 

cannot be immobilized on beads (lane 3). When however, the same RNA is tagged with boxB, it is 

depleted from the supernatant (lane 5) and can be immobilized on GST•λ•6His bound beads (lane 6). M: 

Fermentas High-range RNA marker; IN: input, S/N: supernatant, E: Eluted RNA from the beads. The 

RNA is electrophoresed on a 1.2% agarose, 0.8M formaldehyde gel, after which it is revealed by SYBR 

Gold staining. 

 

3.2.1 GRNA Chromatography 
 

GRNA chromatography relies on the high affinity interaction between the λN22 

peptide and a 19-nt RNA hairpin called boxB. This peptide is tagged with a GST 

moiety at its N-terminus and six histidines at its C-terminus [148]. I have expressed 

GST•λ•6His fusion protein in E. coli BL21-CodonPlus cells and purified it using 

IMAC, yielding a highly pure protein as can be seen in Figure 10. This fusion protein 

is immobilized on Sepharose beads coated with glutathione. These beads are the 

incubated with in vitro transcribed RNAs tagged with boxB. Since the λN22 binds 

specifically to the boxB hairpin, the RNA with the tag is immobilized on the beads in 

a directional, non-random manner. This interaction is highly specific, as you can see 

from Figure 9C that an RNA without the boxB hairpin does not bind to the column. 

This affinity matrix is then incubated with a nuclear extract prepared from 0-12hrs 

wild-type Drosophila embryos. Bound proteins are eluted with RNaseA, thus making 

sure that the eluate contains proteins that interact with the RNA not with the tube, 

Sepharose or GST•λ•6His non-specifically. A representative purification shows that 

the background coming from the beads bound to GST•λ•6His is very low and that 

almost all the bands that are visible comes from an interaction with the RNA on the 

column (Figure 11, lane 1).  
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Upon visual inspection of the silver-stained polyacrylamide gels, I have cut out and 

sent bands for mass-spectrometric analysis to reveal the proteins that were only 

present or highly enriched in the roX purifications with respect to GFP purifications. 

There were four proteins that consistently interacted with roX2 but not with GFP: 

MLE, CG5792, CG5787 and CG3613.  

 

MLE was being pulled-down by roX RNA with very high efficiency thus showing 

that at least some, if not all aspects of roX RNA is present in the in vitro transcribed 

RNA. The interaction between roX2 and MLE seems to be fairly strong, as MLE was 

often depleted from the extracts that I have used during GRNA purifications. The 

efficiency of the MLE pull-down is very interesting indeed, since this protein is 

hardly ever detected when other MSL proteins are immunoprecipitated from cellular 
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Figure 10 Expression and purification if GST•λ•6His GST•λ•6His was expressed in 
BL21 (DE3) CodonPlus (Novagen) cells and purified using Ni-NTA chromatography 
(Qiagen). The samples are loaded to a 12% polyacrylamide gel and stained with GelCode 
Blue. Arrowheads show GST•λ•6His and BSA. 
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extracts and is certainly not detected in previous purifications of the MSL complex in 

our laboratory [118]. This observation, coupled with the MLE purification that I have 

carried out (see the first part of the Results) suggests that MLE interacts mainly with 

RNA rather than other proteins and binds to roX2 with high affinity. The fact that I 

could not detect any other MSL proteins even after immunoblotting and that MLE 

interacts strongly with roX2 might be an indication of how the MSL complex 

assembles in vivo. 

 

CG5787 is a 100kDa protein with a weak Nop17p homology domain close to its C-

terminus and has a glycine/asparagine rich N-terminal domain. It was recently shown 

to co-purify with Zn72D, a zinc-finger protein that is required for the productive 

splicing of mle pre-mRNA [151]. 

 

CG3613 is a 45 kDa protein with a single KH domain in the middle and has a 

serine/tyrosine rich C-terminus. It is a member of RNA binding proteins that are 

known as STAR (Signal Transducer and activator of RNA) proteins. Prototypical 

STAR protein Sam68 is known to bind RNA when it is non-phosphorylated, and this 

RNA interaction does not take place when Sam68 is phosphorylated [152]. Sam68 

also interacts with other nuclear factors, such as CBP and represses transcription; or 

with AR (Androgen Receptor) and activates transcription. These latter functions are 

independent of Sam68’s ability to bind RNA and mediated by direct protein-protein 

interactions. 

 

CG5792 has a complex gene structure where two almost complete separate 

polypeptides, and another polypeptide encompassing the two can be expressed. The 

small polypeptide (37kDa) that can be synthesized from this gene is the Drosophila 

homologue of yeast PIH1 protein [153]. In yeast cells, PIH1 was shown to be part of a 

complex (together with Hsp90, Tah1, Rvb1 and Rvb2) that is required for assembly 

and/or maintenance of box C/D snoRNP but does not interact with RNA directly 

[154]. 
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Figure 11 GRNA chromatography of roX2. At the end of GRNA chromatography, the 
proteins associated with the beads (no RNA, lane 1), GFP RNA (lane 2), full-length roX2 
RNA (lane 3), and exon3 of roX2 RNA (lane 4) are eluted with RNaseA, run on a 4-20% 
polyacrylamide gel and silver-stained. After visual inspection of the gel, proteins that are 
enriched on roX2 lanes are cut and analyzed by mass spectrometry along with the 
corresponding bands from the GFP lane.  
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Figure 12 Expression and purification of GST fusion proteins for antibody 
production (A) Fragments of CG5792 (2-334 aa), CG5787 (168-571 aa) and CG3613 
(220-395 aa) were cloned into pET41b vector and expressed in BL21 (DE3) cells. 
“Uninduced” lanes show total E. coli protein before the induction of the cells with 
0.5mM IPTG, and “induced” lanes show afterwards. “F/T” lanes show the proteins that 
did not bind to the Glutathione Sepharose resin. The bound protein is eluted with 2X 
Laemmli buffer and can be seen in lanes “eluate”. (B) The proteins that are injected; 
after purification over Glutathione Sepharose resin, dialysis and concentration. The 
expected sizes are 70 kDa for CG5792-GST fusion, 53 kDa for CG3613-GST fusion 
and 73 kDa for CG5787-GST fusion. CG579 was injected to 2 rabbits, CG3613 into 2 
rabbits and CG5787 into 3 rats.  Arrowheads indicate the respective protein bands. 
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3.2.1.1 Raising antibodies against CG5792, CG5787 and CG3613 
 

I wanted to study the abovementioned proteins in more detail therefore I raised 

antibodies against all three novel proteins that were identified following GRNA 

chromatography. For this purpose, fragments of CG5792 (amino acids 2-334), 

CG5787 (amino acids 168-571) and CG3613 (amino acids 220-395) were cloned into 

pET41b, creating GST fusions. All three proteins were expressed in E. coli and 

purified over Glutathione Sepharose beads (Figure 12). As predicted in silico, anti-

sera against CG5787 recognized a band at 100kDa, anti-sera against CG3613 

recognized a band at 45kDa and anti-sera against CG5792 recognized a band at 

37kDa. These bands were absent when the membranes were blotted with the 

corresponding pre-immune sera. To further validate the specificity of the antibodies, I 

knocked-down these proteins in S2 cells, and checked if the bands revealed by these 

anti-sera could be diminished upon reducing the protein from the cells. The result, 

shown in Figure 13, proves that all the anti-sera specifically recognize the proteins 

that they were raised against. 

 
Figure 13 Antibodies against CG5792, CG5787 and CG3613 are specific Drosophila S2 
cells are treated with dsRNA against CG5792, CG5787 and CG3613. Three days after 
incubation with dsRNA, the cells are lysed with 2XLaemmli buffer and analyzed by 
immunoblotting following PAGE.  
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3.2.2 Confirming the GRNA results 

3.2.2.1 Antibodies 
	
  
I have repeated the GRNA chromatography, on a smaller scale, to see if MLE, 

CG3613 and CG5787 interacted with roX2 RNA specifically. This time I have 

separated the eluates by 

PAGE and transferred 

the proteins to a PVDF 

membrane after which I 

revealed proteins by 

immunoblotting using 

the antibodies that I 

have generated (Figure 

14). In this experiment 

antisense roX2 RNA 

joined GFP RNA as a 

negative control. The 

result was clear; roX2 

interacts with MLE, 

CG5787 and CG3613, 

much more efficiently 

than anti-sense roX2 

RNA, or GFP RNA 

(Figure 14), hence 

confirming earlier GRNA experiments. Since western-blotting is a semi-quantitative 

method, I wanted to know if the RNAs bound to the beads at the end of the 

experiment were comparable to each other.  One could get a higher amount of binding 

of a certain protein to certain RNA, not because the affinity of that protein is 

appreciably higher towards the RNA of interest rather than the negative control, but 

because the RNA of interest is simply bound more to the beads. To rule this out, I 

split the sample into two before RNase A elution, and eluted the RNA from the beads 

using RNeasy columns (Qiagen) and visualized it by Sybr gold staining after 

Formaldehye-agarose gel electrophoresis.  

Figure 14 GRNA chromatography on a smaller scale. 
GRNA chromatography was carried out as in Figure B3. 
Before the elution, beads were divided into two and RNA was 
extracted from one half which separated by denaturing 
agarose electrophoresis and stained with Sybr gold. RNase A 
eluates were separated by PAGE and immunoblotted.	
  

!"#

$%&%

'()'

!*"'

+,-./
0123 ,4

56,
7

89
-5

7:
;<=>
:=>
5?4
@A

?4@
A

)BA257CD?4=>
*EF?5C4GH

6,754:5F>DH=

1 2 3 4 5 6



Results	
  
	
  

50	
  

3.2.2.2 PP7 pull-down 
	
  
Although the results from the GRNA chromatography were convincing, I have 

decided to change the affinity tag on the RNA to exclude any effect the affinity tag 

might have on the result of the experiment. To do that, I have used another viral 

protein: PP7 coat protein (PP7Cp) and its cognate RNA hairpin ([67]). 

 

I tagged GFP and roX2 RNA with a single PP7 hairpin at their 5’ end. The only 

difference with the GRNA chromatography was the use of Sepharose beads coated 

with rabbit IgG instead of Glutathione-Sepharose beads to immobilize the viral 

peptide since this protein is a fusion protein that contains two Protein A moieties at its 

N-terminus attached to the PP7Cp.  Similar to GST•λ•6His purification I have 

utilized IMAC (Ni-NTA, Qiagen) for the purification of the PP7Cp  (Figure 15A, the 

IN lane shows the purity of the protein). 

 

The result was the same; MLE, CG3613 and CG5787 interact preferentially with 

roX2 RNA as compared to GFP RNA (Figure 15B); hence these interactions are 

independent of the affinity pairs used to immobilize the RNA of interest on beads. 

 

Figure 15 PP7 pull-down gives identical results with GRNA chromatography (A) PP7Cp 
purified using IMAC (Ni-NTA, Qiagen) is free of contaminants as seen in lane IN: Input. This 
protein is immobilized on IgG conjugated sepharose beads (see text for details) which is very 
efficient as judged by the depletion of supernatant (lane S/N) and elution by boiling in 2XLaemmli 
(lane Bound). (B) GFP RNA and roX2 RNA are used in this pull-down, in increasing amount to see 
if the system is saturated for RNA (GFP: 2.7µg, 5.4µg, 10.8µg; roX2: 3.1µg, 6.2µg, 12.4µg; these 
amounts correspond to equimolar loading). As in GRNA chromatography, roX2 associates with 
MLE, CG5787 and CG3613 more than GFP does. 
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3.2.2.3 CG3613 interacts with roX2 RNA in vivo 
 
I have isolated CG3613 as a roX2 interacting protein using an in vitro experiment. 

Interactions such as these might be spurious and may occur only under the special 

conditions set-up for the in vitro RNA pull-down experiment. In order to test this 

interaction whether this interaction also occurs in vivo, I have created a stable cell 

line, which expresses full-length CG3613 tagged with the 3xFLAG tag at its C-

terminus. I have carried out an RNA Immunoprecipitation experiment with the FLAG 
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Figure 16 CG3613 interacts with the roX2 RNA in vivo  
(A) The scheme of RNA Immunoprecipitation (RIP) is presented. A stable cell line 
expressing 3XFLAG tagged CG3613 is used as a positive control, whereas wild-type cells 
are used to determine the background of RNA binding to the FLAG antibody and to the 
beads. (B) The actual experiment, RNA from the RIP experiment is reverse-transcribed 
and analyzed by quantitative PCR.  
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M2 mAb to pull-down CG3613 and checked if roX2 RNA co-precipitates with it (an 

outline of the RNA Immunoprecipitation experiment is presented in Figure 16A).  

 

In this experiment, wild-type S2 cells were used as a negative control, since S2 cells 

without any transgene would lack an antigen that would be recognized by the FLAG 

antibody, thus, one would expect not to pull-down any roX2 RNA. MLE anti-sera, on 

the other hand, was used as a positive control, with the expectation that it would pull-

down the same amount of roX2, but not an unrelated RNA such as tubulin, from the 

transgenic cell line containing tagged CG3613 and from wild-type S2 cells without 

any transgene. In MLE immunoprecipitations, roX2 RNA was pulled down robustly 

in both cell lines, whereas tubulin RNA was not. FLAG immunoprecipitations did not 

show any enrichment neither for roX2 nor tubulin RNA when the extract was made 

from wild-type S2 cells, interestingly, significant amounts of roX2 was pulled-down 

when the extract was from the stable cell line expressing FLAG tagged 3613, whereas 

co-precipitated tubulin RNA stayed at background levels (Figure 16B). This 

experiment shows that CG3613 protein interacts with roX2 RNA in vivo as well as in 

vitro and complements the results of the GRNA chromatography. 

 

3.2.3 CG3613, CG5787 and MLE co-localize on polytene 
chromosomes 
 

Both CG3613 and CG5787 were purified using roX2 as a bait. MLE, a well-known 

MSL protein was also purified along with these novel factors in these purifications. I 

have next used polytene squashing of salivary glands of third-instar larvae, followed 

by fluorescent immunostaining of the squashed chromosomes to see if there is any co-

localization between these factor, given that they were all identified as roX2 

interacting proteins.  
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In order to test whether CG3613 antibody recognizes the correct protein in fixed 

tissue, I have generated a fly which expresses patches of cells within a tissue, where 

dsRNA against CG3613 is expressed along with GFP to mark these cells. In this way, 

one can create cells that have reduced amounts of a protein, CG3613 in this case, 

surrounded by wild-type cells. Such a salivary gland is shown in Figure Figure 17. As 

can be seen, the CG3613 anti-sera recognize CG3613 specifically, as the nuclear 

staining is diminished only in the cells that are knocked-down for CG3613 (“green 

cells”). Thus, this anti-sera appears to be suitable for immunostaining of salivary 

glands fixed with formaldehyde.  

Hoecsht 
GFP

CG3613

Figure 17 Whole-mount salivary gland staining of CG3613 8-10 hour embryos with the 
genotype P{hsFLP}; P{Act<FRT> y+ <FRT>GAL4} P{UAS.GFP} / UAS.dsRNACG3613 are heat 
shocked at 37°C for 1hr. This creates patches of cells within a tissue that knock-down CG3613 
and express GFP concomitantly hence marking these cells. The depletion of signal coming from 
CG3613 staining (red) in green cells show that the antibody specifically recognizes CG3613 and 
corroborated biochemical data that shows that CG3613 is nuclear. 
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Intriguingly, a co-staining of a polytene squash with anti-sera against CG3613 and 

CG5787 reveals that these proteins co-localize with each other on many inter-bands 

and puffs (Figure 18). Inter-bands are considered to be sites of active transcription 

[155], and this type of staining suggests that these two proteins function on a similar 

set of genes and are involved in a process related to transcription. 

 
	
  
 

 

 

CG5787 CG3613

MERGE MERGE

Figure 18 CG3613 and CG5787 co-localize on inter-bands Polytene squashes 
made from 3rd instar larvae are stained with antibodies against CG3613 and CG5787 
and fluorescently labeled secondary antibodies against CG3613 and CG5787 that do 
not cross-react. DNA is stained with Hoechst 33258. 
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All the MSL proteins stain the X chromosome in a very particular way in polytene 

squashes. MLE, in addition to its X-chromosome staining, has additional autosomal 

loci to which it binds to (Figure 5), and it was very interesting to see whether CG3613 

and CG5787 co-localize with MLE either on the X chromosome or on the autosomes. 

Co-staining of polytene squashes of male third instar larvae with antibodies against 

CG5787 and MLE or against CG3613 and MLE was carried out (Figure 19). MLE, as 

expected, decorated the X-chromosome and some other loci on the autosomes. 

Interestingly, some of the densely stained autosomal sites were also occupied by both 

CG5787 and CG3613. When the intensity of autosomal staining was increased for 

MLE (since the X-staining is very bright, it may obscure less intense autosomal 

bands), it seems like many inter-bands that are stained with MLE are also co-stained 

with CG5787 and CG3613 (see inlets in Figure 19).  

3.2.4 Cellular localization 
 
GRNA chromatography was carried out using a nuclear 

extract. Polytene squash analysis showed that CG5787, 

CG3613 and MLE co-localize on chromatin. I wanted to 

see if these proteins were indeed nuclear, or if they also 

have a cytoplasmic pool. A fractionation experiment 

using S2 cells revealed that CG3613 and CG5787 were 

predominantly nuclear, whereas, to our surprise, CG5792 

was almost completely cytoplasmic (Figure 20). The 

gene structure of CG5792 can shed light this unexpected 

outcome. There are, as it were, two different 

polypeptides produced from the CG5792 locus, and these 

two polypeptides are totally different from each other 

except for a very short common N-terminus. One of 

these polypeptides is 37kDa, and the other is ~100kDa. In 

GRNA purification, CG5792 was detected at ~150kDa. 

This form of the protein is no longer annotated in 

FlyBase, but it can be transcribed from the CG5792 locus 

and it is more or less the fusion of the two polypeptides 
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Figure 20 Cellular localization of 
CG5792, CG5787 and CG3613 
Drosophila S2 cells are lysed in a 
hypotonic lysis buffer to separate 
nuclei from the cytoplasm (see 
Methods for details). The nuclear 
fraction and the cytoplasmic fraction 
are then analyzed by immunoblotting 
following PAGE	
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mentioned above. This large protein would contain the 37kDa fragment against which 

I raised the anti-sera, it should have been possible to detect it. However, I cannot 

distinguish this polypeptide in western blots from the background, perhaps due to its 

scantiness of this form of the protein in the cell. For this reason I have not pursued the 

characterization of this protein any further. 

 

3.2.5 Nature of the chromatin association 
 
A simple fractionation experiment that separated nucleus from the cytoplasm shows 

that CG3613 and CG5787 are nuclear proteins (Figure 20). A protein can be nuclear, 

yet it could spend its time in the nucleoplasm, or on the chromatin or both. In order to 

reveal where CG3613 and CG5787 reside in the nucleus, I have isolated nuclei from 

S2 cells, and extracted the soluble proteins at physiological salt concentration of 

140mM, and at higher salt concentrations (240mM, 340mM and 420mM). I call the 

soluble protein as the “nucleoplasmic fraction” (np), and the protein in the pellet as 

“chromatin bound” (ch). At physiological salt, CG3613 and CG5787 seem to be 

mostly chromatin bound (lane 2), with very little protein in the nucleoplasm (lane 1). 

As the amount of salt is increased, both CG3613 and CG5787 are rapidly extracted 

from the chromatin; and almost all is extracted into the nucleoplasm when the salt 

concentration reaches 340mM (lanes 5-6). In contrast, members of the MSL complex 

(MSL1, MSL3, MOF and MLE) are extracted gradually, and a rather significant 

amount is left at the chromatin even at 420mM sodium chloride.  
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Figure 20 CG3613 and CG5787 are chromatin bound but relatively sensitive to high salt 
concentrations In order to assess the localization of CG5788 and CG3613 in the nucleus, 
and to check their reaction to increasing salt, nuclei were isolated from Drosophila S2 cells by 
hypotonic lysis with 1% NP-40. After washing with lysis buffer without detergent, nuclei are re-
suspended in buffers with different amounts of NaCl in them (140mM, 240mM, 340mM and 
420mM). After 20 minutes, the nuclei are pelleted and supernatant is collected as 
“nucleoplasmic fraction” (np) whereas the insoluble proteins in the nuclei (which are 
solubilized in 2XLaemmli buffer).  as “chromatin bound” (ch). All the fractions are then run on a 
polyacrylamide gel, transferred to a PVDF membrane and analyzed by immunoblotting.	
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3.2.5.1 Sensitivity to RNase treatment 
 
Some proteins associate with the chromatin via an RNA bridge, one the most notable 

examples being the MLE protein [116]. MSL3 and MOF also show some RNAse 

sensitivity when it comes to their chromatin binding, indicating that at least some of 

their interactions with the chromatin may be bridged by RNA [112].  

 

Since I have isolated CG5787 and CG3613 via 

roX2 RNA, and I have shown that they are 

chromatin bound proteins, the next logical step 

was to check whether this association with the 

chromatin is mediated by RNA. Nuclei isolated 

from S2 cells, then, are treated with RNAse A at 

physiological salt, or not; and as before, soluble 

protein is called as the “nucleoplasmic fraction” 

and what is left behind in the nucleus as 

“chromatin bound” (Figure 21). As expected, 

MLE is extracted from the chromatin almost 

quantitatively with RNase A treatment (compare 

lanes 1-2 and 3-4). This result, together with the 

result of my affinity purification can be consistent 

with an MLE protein that works on RNA in the 

nucleus by itself with very little or no direct 

interaction with other polypeptides. The MSL 

proteins, apart from MLE, seem relatively 

unperturbed with the addition of RNase A. Most 

importantly the bulk of CG5787 and CG3613 

interact with the chromatin in an RNA-

independent manner. Of 

particular interest is the 

doublet of CG3613 

clearly visible in the 

nucleoplasm. Upon 

Figure 21 CG3613 and CG5787 interact with the chromatin in an RNase-
insensitive manner As proteins that are potentially RNA-binding, it was 
necessary to check if the chromatin association of CG3613 and CG5787 were 
bridged by RNA molecules. As in Figure 20, isolated nuclei is re-suspended in 
a buffer with 140mM NaCl, but treated with 1µg/µL RNaseA in one sample. 
The resulting fractions are analyzed by immunoblotting. MLE, as expected, is 
almost completely detached from the chromatin upon RNase treatment, 
whereas CG3613 and CG5787 were mostly unaffected. np: “nucleoplasmic”, 
ch: “chromatin bound”. 
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careful examination one can realize that the fast migrating CG3613 protein seems to 

be released into the nucleoplasm upon RNase A treatment (lane 2 vs lane 3), whereas 

the slow migrating CG3613 protein looks undisturbed by the presence of RNase A.  

 

3.2.6 CG3613 is a phosphoprotein 
 
As discussed before, CG3613 belongs to a family of proteins called STAR proteins 

that are involved in relaying extracellular signals to the nucleus and modulate 

transcription and related processes such as splicing and RNA export. Sam68, a 

hallmark STAR protein, binds to RNA when non-phosphorylated, and this interaction 

is inhibited when it is phosphorylated [156]. CG3613 contains many serine and 

tyrosine residues at its C-terminus that may be phosphorylated in vivo. Prompted by 

the doublet seen on Figure 21 we wanted to see if the slower-migrating form of 

CG3613 represents a phosphorylated form of the protein. In order to look into that, I 

have made a fractionation experiment, and treated each fraction (cytoplasmic, 

nucleoplasmic and nuclear) with λ-phosphatase that removes all phosphate groups 

from serine, tyrosine and threonine residues [157]. The experiment showed clearly 

that CG3613 is phosphorylated; very likely on multiple residues judging by the 

mobility shift upon dephosphorylation and that the antibody that I have generated 

recognizes both forms (Figure 22). Interestingly, this phosphorylated form seems to 

be mostly on the chromatin associated fraction.  
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Figure 22 CG3613 is a phosphoprotein As a STAR protein, and with a Y/S rich C-terminus, 
CG3613 is likely to be a phosphoprotein. Cytoplasmic, nucleoplasmic and nuclear fractions 
from S2 cells are treated with λ-Phosphatese (4u/µL, NEB) and then analyzed by 
immunoblotting. Chromatin bound CG3613 seems to have a phosphorylated fraction, that can 
be converted into the non-phosphorylated form by λ-Phosphatese treatment. WCE: Whole cell 
extract.  
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Knowing that CG3613 can be phosphorylated in vivo, and taking the data from 

Sam68’s RNA binding properties into account, one might argue that the RNase-

sensitive CG3613 seen on Figure 21 is probably a pool of CG3613 that is 

hypophosphorylated or non-phosphorylated and that interacts with the chromatin via 

RNA. How phosphorylation modulates CG3613 function, and how is the 

phosphorylation itself is regulated remains to be investigated. 
 

3.2.7 CG3613 and CG5787 associate with transcriptionally active 
loci 
 

Previous polytene squashes showed that CG3613 and CG5787 co-localize on puffs, 

which are usually loci of active transcription. In order to check if CG5787 and 

CG3613 are associated with transcriptionally active loci, I co-stained squashed 

polytene chromosomes with CG5787 or CG3613 and a monoclonal antibody against 
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Figure 23 CG3613 and CG5787 co-localize with the active form of RNA polymerase 
II To verify that the inter-bands bound by CG3613 and CG5787 represent transcriptionally 
active loci, co-staining of polytene squashes are carried out with the mAb against Serine-5 
phosphorylated RNAPII CTD (H14, Covance) and with antibodies against CG5787 (A) or 
CG3613 (B). DNA is stained with Hoechst 33258 in (A).  
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serine-5 phosphorylated form of RNA polymerase II CTD. The staining shows that 

almost at each locus with which CG5787 or CG3613 is detected, active form of RNA 

polymerase II can also be detected, indicating that CG3613 and CG5787 associate 

with actively transcribed regions (Figure 23).  

 

3.2.8 CG3613 cross-links to MSL rich regions on the X 
chromosome 
 
Polytene squash analysis revealed that CG3613 and CG5787 associated with active 

loci, and frequently co-localized on what looks like transcriptional puffs with each 

other and with MLE. There was, however, not a particular bias for the staining of the 

X chromosome. The resolution and the dynamic range of polytene squash analysis is 

low, thus another technique was needed to see the binding pattern of these proteins in 

more detail and as a result Chromatin Immunoprecipitation followed by qPCR  (ChIP-

qPCR) approach is used.  

 

 

 

 

 

 

 

Anti-sera against CG5787 did not give us any enrichment in any of the target regions 

that I have checked,  suggesting that this antibody does not ChIP efficiently and was 

excluded from further analysis. Anti-sera against CG3613, on the other hand, revealed 

a very interesting binding pattern (Figure 24). There was a relatively low, but 

consistent enrichment of CG3613 on the High Affinity Sites (HAS, [136], [158]), loci 

that are defined by their ability to recruit partial complexes in the absence of MSL3 

but are also known to be sites of high MSL complex occupancy. Although this pattern 

was very consistent, the percentage recovery was low. A better-controlled experiment 
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Figure 24 CG3613 can be detected at loci enriched for the MSL complex Wild-type 
S2 cells are fixed with formaldehyde, sonicated and chromatin prepared from these cells 
is used for ChIP-qPCR analysis. HAS: High-Affinity Site, CES: Chromatin Entry Site. 
roX2_e: roX2 high-affinity site.  
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was called for, so I have used the stable cell line, which expresses full-length CG3613 

tagged with the 3xFLAG tag at its C-terminus that I had used for the RIP experiment 

once again. The lack of the FLAG epitope in the wild-type S2 cells was once again 

the rational behind this experiment: the recovery coming from these cells served as 

the absolute background; enrichment over this level can only be explained by the 

presence of FLAG tagged CG3613. 

 

This experiment confirmed the previous ChIP experiment carried out with CG3613 

anti-sera (Figure 25): FLAG tagged CG3613 also cross-links to genomic regions of 

high MSL complex occupancy. MSL1 was used as a positive control, and as seen in 

Figure 25 it cross-links the same amount of DNA in both wild-type S2 cells and the 

stable cell line that contains FLAG tagged CG3613.  

 

Putting together the results of the GRNA chromatography, RNA Immunoprecipitation 

and Chromatin Immunoprecipitation, one can argue that CG3613 interacts with roX2 

RNA in vivo, and probably through its interaction with roX2, travels along with the 

MSL complex. The physiological role of this interaction in the context of dosage 

compensation remains to be investigated. 
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Figure 25 FLAG-tagged CG3613 is also localized to MSL-rich loci (A) The schematic 
representation of FLAG-Chromatin Immunoprecipitation (FLAG-ChIP) protocol. A stable cell 
line expressing 3XFLAG tagged CG3613 is used as a positive control, whereas wild-type cells 
are used to determine the background of chromatin binding to the FLAG antibody and to the 
beads. (B) The DNA from the ChIP experiment is reverse-cross-linked and analyzed by 
quantitative PCR. MSL1 is enriched similarly in both cell lines (wild-type or CG3613-3xFLAG 
cell line) on High-Affinity Sites (or Chromatin Entry Sites (CES)) whereas FLAG antibody 
shows enrichment only in the CG3613-3xFLAG cell line since FLAG epitope is only present 
there and not in wild-type cells. 
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3.2.9 CG3613 is re-distributed to some heat-shock loci upon heat-
shock 
	
  

Transcriptional response to heat-shock is an extensively studied phenomenon in flies. 

When flies are exposed to elevated temperatures, a rapid response takes place where 

many transcription-related proteins (i.e. RNAPII, Spt6, TopoI, PTEFb [159]) are 

recruited to a couple of genomic loci that code for heat-shock proteins (Hsps). Since 

polytene squashes of third instar larvae showed an extensive overlap of CG3613 and 

RNAPII (Figure 23) we wanted to know if CG3613 would also be recruited to heat-

shock genes following heat-shock. 

As mentioned above, CG3613 co-localizes with Serine-5 phosphorylated form of 

RNA polymerase II, which suggests that it is associated with active transcription.	
   In	
  

addition,	
   CG3613	
   can	
   be	
   cross-­‐linked	
   to	
   MSL-­‐rich	
   regions	
   of	
   the	
   genome,	
   yet	
  

polytene	
   squash	
   analysis	
   shows	
   that	
   there	
   are	
   many	
   more	
   loci	
   that	
   CG3613	
  

interacts	
  with. Some of these regions are the promoter of an autosomal gene, sda and 

two promoter elements of the autosomal gene shn at room temperature of 25˚C. 

However, when the temperature is increased to 37˚C, CG3613 seems to leave these 

promoters and localize to some heat-shock genes such as hsp22 and hsp26, where 

they localize to the body of the gene instead of the promoter (Figure 26). While the 

amount of CG3613 at the promoters of sda and shn decreases, CG3613 at MSL-

regions is not affected; meaning that CG3613 interacting with roX2 escapes this re-

distribution following heat-shock. This re-distribution of CG3613 protein after heat-

shock to actively transcribed heat-shock genes indicates that it is involved in a process 

that involves transcription by RNAPII.  
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Figure 26 CG3613 is depleted from promoters and recruited to heat-shock 
genes following heat shock Chromatin prepared from S2 cells kept at 25˙C and 
cells switched to 37˙C for 30 minutes is immunoprecipitated with antibodies 
against CG3613 and the corresponding pre-immune sera. Upon heat-shock, 
promoter bound CG3613 decreases whereas heat-shock gene bound CG3613 
increases. Interestingly, CG3613 cross-linked to MSL-rich sites do not change 
with heat-shock. 
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3.2.10 CG3613 is required for the viability of adult flies 
 

In order to see if the newly identified factors interacting with roX2 affect the viability 

of flies, I have ordered RNAi lines from Vienna and crossed them with a fly that 

carries GAL4 transgene driven by a tubulin promoter. A parallel cross between wild-

type flies and the tubulinGAL4 driver line was used to rule out any viability effects 

resulting from GAL4 over-expression. In this experiment, knocking-down CG5792 

did not show a major viability defect. Interestingly, CG5787 knock-down resulted in a 

partial-male-specific lethality, and knocking-down CG3613 resulted in complete 

lethality in both sexes (Figure 27).  

 

 
Figure 27 Knock-down of CG3613 kills the flies whereas CG5787 reduces the viability 
of males (A) RNAi lines from Vienna Biocenter, that contain dsRNA against the gene of 
interest under a UAS promoter is crossed with a driver fly line that contains GAL4 under the 
control of a tubulin promoter. A parallel cross between the GAL4 driver line and w1118 flies is 
carried out for normalization and correction of discrepancies from Mendelian segregation due 
to the presence of the TM6 balancer and GAL4 over-expression (n= 678). (B) Knocking-down 
CG3613 leads to complete lethality in both sexes (n= 136) whereas knocking-down CG5787 
lead to a partial lethality in males (n= 473). Knock-down of CG5792 lead to a slight decrease 
in female viability (n= 558).  
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3.2.11 Depletion of CG3613 results in pre-mRNA stabilization 
 

Since we do not have CG3613 mutants available to us, we decided to knock it down 

in S2 cells by RNAi in order to see if it affects gene expression and/or mRNA 

stability. Interestingly, there was a general, but slight increase in the RNA levels of 

some genes that we checked (Figure 27). This, however, is probably not because of 

elevated transcription levels because when we checked the expression of a subset of 

genes with primer pairs that span intronic regions, we have observed a striking up-

regulation, a 2-3 fold difference as compared to control cells. This pre-mRNA 

stabilization is not specific to the X chromosome as genes like pyruvake kinase (PyK, 

3R) and Thor (2L) are also affected similarly. It is important to note that the up-

regulation observed in X-chromosomal genes (Suv4-20, armadillo and pcx, which are 

also high-affinity sites) is more pronounced when the primer pairs amplify exonic 

regions. Whether this is a general phenomenon, or restricted to a subset of genes 

remains to be seen. 
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4. Discussion 
 

Sex determination and dosage compensation in flies have been excellent model 

systems to study many cellular processes and how these processes exert genome-

wide, far reaching consequences. For instance, initiation of dosage compensation is a 

prime example of concentration dependent modulation of gene expression by 

transcription factors: The so-called X-linked numerator genes lead to the expression 

of the master sex regulator protein, sxl, in females when there are two copies of them, 

but not in males when there is a single copy of each. Alternative splicing is also 

central to dosage compensation, as SXL, in turn, regulates its own splicing and leads 

to an mRNA that codes for full-length SXL, forming an auto-regulatory loop in 

females, whereas in males an exon containing a stop codon is retained in the mRNA, 

leading to truncated, non-functional protein. Stable expression of SXL results in two 

events: repression of msl-2, the key protein that is required for the formation of the 

dosage compensation complex in males, and alternative splicing of dsx, which yields 

two sex-specific proteins DSXM and DSXF that in turn lead to sexual differentiation 

in both sexes. Upon expression of msl-2 the dosage compensation complex is formed 

(MSL1, MSL2, MSL3, MOF and MLE), which is targeted to the male X-

chromosome, where it leads to approximately 2-fold up-regulation of transcription 

together with the acetylation of histone 4 lysine 16 throughout the male X-

chromosome, thus making dosage compensation a suitable system for studying 

epigenetic control of gene expression. 

 

The aspect that was the subject of my thesis, however, was the role of ncRNAs in the 

transcriptional regulation of the male X chromosome, another phenomenon that one 

can study by using dosage compensation as a model system. The dosage 

compensation complex, in addition to the aforementioned polypeptides, contains two 

redundant ncRNAs that are stably associated with the complex, roX1 and roX2. 

Previous work on the role of these ncRNAs suggests that these RNAs are required for 

targeting the complex to the X-chromosome [101], and perhaps are required for the 

acetyltransferase activity of MOF on target genes [107]. We sought to investigate the 

role of these RNAs further, and as a strategy we decided to identify the polypeptides 

that roX RNAs interact with and investigate their biology with respect to roX RNAs.  
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4.1 MLE: a male specific lethal protein 
	
  
Among the known components of the DCC, MLE was the first one found to be 

localized to the male X-chromosome [114] and also the first one that was shown to be 

associated with the chromatin mostly via RNA [116]. MLE, as an RNA/DNA helicase 

with domains that are shown to interact with RNA, was the primary suspect for the 

interaction with roX RNAs, and indeed was documented to be required for the 

incorporation of the roX RNAs into the DCC [113]. There is one caveat though, it is 

notoriously difficult to co-immunoprecipitate MLE together with other members of 

the DCC, and biochemical purifications of MOF and MSL-3 are essentially MLE-free 

[118]. This contrasts with the immunological stainings that show clear enrichment of 

MLE on the X chromosome in males and of course the genetic studies that lead to its 

discovery showing MLE’s indispensability for dosage compensation.  

 

We decided to purify MLE from Drosophila embryos using a tandem affinity 

purification approach. The reason was to identify additional polypeptides that interact 

with MLE which could explain its role in the incorporation of roX RNAs into the 

DCC and perhaps also give us clues about other functions of MLE within the cell 

beyond dosage compensation. The result of the purification was elusive: there were 

no proteins we could detect aside from MLE itself. There are two possible 

explanations for these observations: either MLE does not interact with any other 

protein in the nucleus, or it does interact with other proteins but these interactions are 

too weak to be detected by a biochemical purification. Either way, based on this 

purification, it is safe to say that there is no stable MLE-complex in the nucleus that 

can be purified by tandem affinity purification and analyzed.  

 

As mentioned above, MLE was the first MSL protein shown to localize to the X 

chromosome, and strangely this interaction was shown to be mostly RNase-sensitive, 

arguing against the hypothesis that it stably interacts with the DCC. I have also shown 

that MLE’s interaction with chromatin is very sensitive to RNase treatment and I 

could not detect any protein interacting with MLE after an affinity purification. And 

yet, when roX2 RNA is used to pull-down proteins from a nuclear extract using 

GRNA chromatography, MLE is robustly purified under conditions where no other 
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MSL protein can be detected. This data is consistent with a model where MLE acts as 

a general “RNA chaperone” ([160],[161] and [162]) which interacts directly with 

many cellular RNAs that are kinetically trapped in an unfavorable conformation, 

including but not restricted to roX RNAs (perhaps by recognizing some RNA 

sequences, or secondary structures with its many RNA binding domains [139]), re-

models their overall folding by melting secondary structures that form after 

transcription and/or dissociate certain RNA binding proteins and allow others to bind 

to the re-modeled RNA. An excellent support for this model comes form para slicing. 

MLE is involved in the splicing of a Na+ channel, para, however in a very peculiar 

way. In the mutant background of mlenapts the splicing of para disturbed and only 20% 

of the cDNAs can be identified as full-lentgh transcripts. Upon detailed analysis of 

this phenotype Reenan and colleagues [140] found that MLE resolves a stable 

secondary structure between an exon and the following intron, a structure which is 

evolutionarily conserved and required for the editing of the para transcript by ADAR, 

but when left unresolved leads to various exon-skipping events and the splicing 

catastrophe is the end result. Interestingly, MLE is not absolutely required for this re-

modeling, in the background of a null allele of MLE, both para editing and splicing 

seems to be unperturbed, indicating that there are other RNA helicases that can 

compensate for the lack of MLE, which is in accord with the observation that females 

lacking MLE protein look the same as wild-type females in terms of viability and 

fertility. 

 

In a way similar to the resolution of the stable secondary structure in the para pre-

mRNA which is initially required for ADAR to edit the RNA but is detrimental when 

left un-resolved, MLE may be responsible for re-modeling roX RNAs, without which 

the RNAs cannot interact with the MSL complex and targeted for degradation in the 

cytoplasm if they are exported, or in the nucleus if they are retained there. MLE’s 

robust interaction with roX2 can enable it to interact with the RNA emerging from 

RNAPII and rapidly make it available for MSL interaction. In this scenario, MLE 

does not have to interact with any other DCC component but the roX RNAs and yet it 

would be required for the stabilization of roX RNAs and for a functional DCC (Figure 

29).  

Designing an RNA that does not require MLE’s re-modeling activities for DCC 

interaction is the most straightforward way to test this hypothesis. Such an RNA 
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would be able to function as the wild-type roX RNAs in the absence of MLE protein 

assuming that MLE is not required anymore once DCC incorporates the roX RNAs 

(although it was shown that roX2 indeed keeps on interacting with the DCC in the 

absence of MLE [112], it is not clear if such a complex is fully functional in vivo). 

Notably, Park and colleagues [138] have shown that a 6-mer of an evolutionarily 

conserved stem-loop structure in the roX2 RNA can target MSL proteins to the X-

chromosome. Interestingly, MLE is reported to show a heterogeneous staining unlike 

other MSL proteins, suggesting that it can interact with other RNA species than roX 

RNAs or that roX RNAs have additional uncharacterized functions in the autosomes.  

 

4.2 CG3613: a roX2 interacting protein 
 

An RNA that is transcribed in the nucleus associates with many proteins as soon as it 

is transcribed. Some of these proteins are necessary for the correct splicing of the 

RNA, some are necessary for proper 3’ end formation, some are necessary for its 

export, some are necessary to degrade the RNA if one of the RNA processing steps 

fail or if the RNA is a cryptic transcript that is not meant to freely diffuse in the 

nucleoplasm. All of these decisions depend on the nature of the RNP, and the proteins 

an RNA interacts with ultimately determine its fate. Until this study, the only proteins 

that were known to interact with roX RNAs were MSL proteins. MLE was proposed 

to be the primary point of contact, but immunoprecipitation experiments carried out 

under conditions where MLE protein can no longer be co-immunoprecipitated, one 

can still detect roX2 co-immunoprecipitating with the rest of the complex. However, 

all the MSL proteins, with the exception of MSL1 has some RNA binding potential 

([112], [115] and [163]), making it difficult to pinpoint exactly which member or 

members of the complex roX RNAs interact with.  

 

Finding out additional proteins that interact with roX RNAs can lead a way to shed 

light to their function in the context of dosage compensation or it can help us 

understand what makes roX RNAs what they are: male specific lethal RNAs. I have 

used GRNA chromatography to this end and identified four polypeptides that were 

consistently purified with roX RNA but not with control RNA. These were MLE, 
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CG5792, CG5787 and CG3613. MLE was the only MSL protein that I could detect in 

these purifications.  

 

By generating antibodies against these polypeptides, I was able to study them in more 

detail. MLE, as a reasonably well-studied MSL protein, is mostly nuclear with some 

cytoplasmic fraction. The form of CG5792 that I could pick up in western blots turned 

out to be completely cytoplasmic, and although it is very well possible that it might 

have a role in the biogenesis of the MSL complex in the cytoplasm by regulating 

perhaps a structural aspect of roX RNAs I have decided not to pursue it and restrict 

my studies on the other proteins.  

 

By using the antibodies I have generated during the course of this study, I have shown 

that both CG3613 and CG5787 are chromatin bound proteins with a detectable 

cytoplasmic fraction. Unlike MLE, these proteins do not interact with the chromatin 

in an RNase-sensitive manner. CG3613, however, seems to have a minor, fast-

migrating fraction that is indeed released from the chromatin by RNase treatment. In 

addition, chromatin bound CG3613 seems to be mostly phosphorylated, as treating 

extracts with λ-phosphatase converts all slow-migrating species to fast-migrating 

species. It remains to be seen if the fast-migrating RNase-sensitive fraction of 

CG3613 represents roX-interacting fraction of the protein on chromatin. 

 

CG3613 and CG5787 stain large and small puffs and other inter-bands on polytene 

spreads. Their staining pattern is very similar and a generally overlap. Interestingly, 

the autosomal loci stained by MLE are also mostly occupied by CG3613 and 

CG5787, suggesting that these proteins might work on a similar subset of RNAs.  

 

I have confirmed the in vitro interaction between roX2 and CG3613 in vivo by RNA 

immunoprecipitation. If CG3613 does interact with roX2, similar to MLE, one would 

predict to immunoprecipitate it on MSL target sites. As expected, I was able to show, 

both with antibodies against CG3613 generated in this study, and by using a FLAG-

tagged transgene and antibodies against the FLAG antigen that CG3613 is present at 

loci where we can detect MSL binding by chromatin immunoprecipitation.  
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In order to elucidate the role CG3613 plays in the nucleus, I have knocked it down in 

S2 cells and checked changes in gene expression. There is a reproducible, ~3-fold 

increase in many intron-containing mRNAs (pre-mRNAs) in cells that are knocked-

down for CG3613. The spliced mRNAs also increase to approximately 1.1-to 1.3-fold 

of wild-type levels. This result is confirmed by using two different dsRNAs targeting 

two different portions of CG3613 mRNA (one targets an exon and the other targets 

the 3’UTR) showing that the effects that we observe do not result from the reduction 

of an off-target gene. At steady-state, the rate of transcription, the rate of degradation 

of mis-spliced, mis-processed transcripts in the nucleus, and the rate of degradation of 

cytoplasmic mRNA should be at equilibrium. Under these circumstances, barring the 

mRNAs with extremely short half-lives, the amount of mRNA should greatly exceed 

the amount of pre-mRNA that are just being transcribed by RNAPII and processed 

co-transcriptionally. It is, then, reasonable to assume that a 3-fold increase in the pre-

mRNA levels can account for the 10-20% increase in the mRNA levels detected upon 

CG3613 knock-down. Such a result can be obtained when the splicing is machinery is 

disturbed, leading to mRNA with introns in them. However, there are various factors 

in the nucleus and in the cytoplasm that deal with such transcripts, destroying them as 

fast as possible [38], [164]. Similar pre-mRNA stabilization has been shown to occur 

in yeast cells depleted of a component of the exosome, Rrp41p by the Tollervey 

laboratory [49]. Like our observations in this study, Tollervey and colleagues report a 

2- to 8-fold increase in the unspliced pre-mRNA levels for some genes where the 

increase in the mRNAs levels for the same genes are around 1.2- to 1.5-fold. They 

also show that yeast cells harboring a prp2-1 TS mutant, an RNA-helicase that is 

required for the first transesterification step during splicing, but not required for the 

assembly of the Spliceosome on the pre-mRNA, do not show this pre-mRNA 

stabilization phenotype. Yeast cells lacking prp2 and rrp41 together, however, show a 

much higher level of pre-mRNA stabilization, 20- to 50-fold. 

 
A direct link between CG3613 and the exosome has not yet been established, 

however, changes in gene expression suggests that such a link exists. If that is the 

case, roX2 might be targeted for degradation by CG3613 and that would be the role of 

this protein. Indeed, an increase in roX2 levels is observed upon CG3613 knock-

down, but only about 1.5-fold. Alternatively, roX2 might be acting as a platform to 

recruit CG3613 and the complex associated with it to the hypertranscribed X-
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chromosome as a measure against increased cryptic transcripts and/or mis-processed 

mRNAs. Further experiments are required to elucidate the exact role of CG3613 in 

general and within the context of dosage compensation. 

 

In summary, the work detailed in this thesis describes the identification of a novel 

roX2 interacting protein, CG3613, which is required for the viability of Drosophila 

adults. A member of the STAR family of proteins, CG3613 is phosphorylated in vivo 

and is very likely to be regulated by phosphorylation. The protein localizes to MSL-

rich regions, also to other transcriptionally active loci, and is recruited to heat-shock 

genes upon heat shock. Knocking it down in S2 cells results in the stabilization of 

intron containing pre-mRNAs transcribed from the X-chromosome and the 

autosomes. Its role in dosage compensation has not been clarified, but it is possible 

that roX2 acts as a platform for recruiting CG3613 and associated proteins to cope 

with hypertranscription from the X chromosome in males.  

	
  
Due to time constraints I have not been able to complete the analysis of CG3613 

protein. In the near future, we are planning to utilize mutants of MSL proteins to see if 

the MSL complex affects localization and function of CG3613 protein. Likewise, we 

are generating mutants of CG3613 and we will use these flies to see if CG3613 

modulates MSL function. There is a possibility that binding of CG3613 to RNA 

depends on its phosphorylation levels. We will investigate this possibility and see if 

this “phospho-switch” and CG3613’s interaction with roX2 is important for dosage 

compensation.	
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Figure 29 The interdependency of roX RNAs and the MSL proteins roX RNAs interacts with many 
polypeptides, and these interactions determine their role and fate in the cell. In this model, MLE interacts only with 
roX RNA and re-models its structure. This re-modeling makes the RNA competent to bind the MSL complex 
(MSL1, 2 and 3 and MOF). This interaction protects roX from degradation and the complete-MSL complex is 
targeted to hundreds of sites on the X chromosome. CG3613 also travels with the MSL complex via its interaction 
with roX2, but is not required for roX2 stability. In females, although MLE is present and very likely interacts with 
scarcely expressed roX, lack of the MSL complex leads to the degradation of roX RNA. This explains the robust 
accumulation of roX RNAs and proper targeting of the MSL complex to the X chromosome in females ectopically 
expressing MSL2. According to this model, in males lacking MLE, roX RNA would not be able to interact with the 
MSL complex, leading to its degradation and failure of dosage compensation. 
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5. Materials and Methods 
	
  

Cloning MLE-HA-FLAG 
 

cDNA of full-length MLE, missing the last 6 amino acids was digested from 

pBBHisMLE vector with NcoI (blunt) and NotI. An oligo that has the C-terminal 6 aa 

that is lost after NotI digestion, an HA tag and a FLAG tag was assembled in a way 

that creates a NotI site at its 5' end and an XbaI site at its 3' end. A three way ligation 

using MLE (NcoI[blunt]-NotI), the oligo (NotI-XbaI) and pCasper4 (with a tubulin 

promoter) digested with Asp718(blunt)-XbaI created the vector pMLE-HA-FLAG. 

Flies containing this vector are generated by P-element mediated transformation 

 

Oligo: 

gcGGCCGCTGGGGTAACTTTTACCCATACGATGTTCCAGATTACGCTCCCG

ACTACAAGGACGACGATGACAAGTAATctaga 

 

Last 6 amino acids of MLE, HA-tag. FLAG-tag. 

NotI and XbaI restriction sites are underlined. 

 

Nuclear Extract Preparation from Embryos 
 

Three types of embryonic nuclear extracts were prepared and used in this thesis. All 

three protocols start with the same procedure for isolation of the nuclei from embryos 

but differ in the way protein was extracted from these nuclei. 

 

Nuclei isolation 

12-16hrs embryos laid on large apple-juice agar plates placed in population cages 

were collected by the help of a series of sieves and dechorionated. Dechorionated 

embryos are immediately rinsed with 120mM NaCl, 0.04% Triton X, and washed 

extensively with water. The embryos are then dried over a vacuum trap (they are left 

humid, not dried completely) and weighed. 3mL of NU-I (15mM HEPES-KOH 7.6, 

10mM KCl, 5mM MgCl2, 0.1mM EDTA, 0.5mM EGTA, 350mM sucrose, 2mM 

DTT, 1x Protease Inhibitors) per gram of embryos was added and homogenization 
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was carried out using a Potter-Elvehjem type Teflon pestle mounted on a rotor (1000 

rpm, 30-40 strokes). The homogenate was filtered through Miracloth twice and 

centrifuged at 10,000g for 15 minutes using a GSA rotor. The nuclear pellet is very 

loose after this step. 

 

Conventional nuclear extraction 

This type of extract was used for the initial MLE purifications (Figure 7). It involves 

protein extraction from the nuclei using ~400mM ammonium sulfate, and later 

precipitation of all proteins by ~3M ammonium sulfate in order to obtain a 

concentrated protein extract in the end. 

 

The nuclei are resuspended in 1mL NU-II (15mM HEPES-KOH 7.6, 110mM KCl, 

5mM MgCl2, 0.1mM EDTA, 1x Protease Inhibitors) per gram of embryo. The 

suspension is distributed into SW40 ultracentrifucation tubes and 1/10 volume of 4M 

ammonium sulfate is added on top. The tubes are sealed and rotated for 20 minutes in 

the cold room. Then, ultracentrifugation is carried out in an SW40 rotor at 38 krpm 

for 1hr at 4˙C. The lipid layer on top is removed and the nuclear extract is collected 

into a cold beaker. While stirring and over a period of 5 minutes, 0.3g of ammonium 

sulfate per milliliter extract is added. The mixture is stirred for another 10 minutes 

and then transferred into SS34 bottles and spun at 15 krpm for 30 minutes at 4˙C. The 

supernatant is discarded. Per gram of embryo 20µL of HEMG40 (25mM HEPES-

KOH pH7.6, 40mM KCl, 12,5mM MgCl2, 0.1mM EDTA, 10% Glycerol, 1mM DTT, 

1x Protease Inhibitors) is added and the nuclei is re-suspended with the help of a glass 

rod. Then 180µL of HEMG40 per gram of embryo is added and the mixture is fully 

re-suspended with the help of a 5mL pipette. Dialysis was against HEMG40 and 

allowed to continue until the conductivity of the extract was equal to HEMG100 

(25mM HEPES-KOH pH7.6, 100mM KCl, 12,5mM MgCl2, 0.1mM EDTA, 10% 

Glycerol, 1mM DTT, 1x Protease Inhibitors). The precipitated material is removed by 

spinning the extract in an SS34 rotor at 15 krpm for 5 minutes at 4˙C. The clear 

supernatant is snap-frozen in liquid nitrogen and kept at -80˙C until use. 

 

 

 

 



Materials	
  and	
  Methods	
  
	
  

80	
  

KCl and Sonicated Soluble Nuclear Fraction (SSNF) extraction 

 

“KCl” type of extract was used for GRNA purifications (Figures 11, 14, 15) and also 

for small-scale MLE purifications (Figure 8). It involves using only KCl as the salt 

and skips total protein precipitation by ammonium sulfate. SSNF type extract was 

only used for small-scale MLE purifications (Figure 8). This protocol mainly relies on 

squeezing out nuclear proteins by ultracentrifugation, but a brief sonication is 

introduced before centrifucation to increase the protein yield. Since there is no salt-

extraction in this protocol dialysis is not required. Theses two protocols differ after 

the re-suspension of the nuclei in HEMG20. 

 

For both protocols, the nuclei are re-suspended in 1mL buffer AB (15mM HEPES-

KOH 7.6, 110mM KCl, 5mM MgCl2, 0.1mM EDTA, 2mM DTT, 1xProtease 

Inhibitor Coctail) per gram of embryos. Yellow yolk is left behind, and the nuclei are 

dispersed with loose pestle (A, if Kontes, B if Wheeton) by three strokes. The 

suspension is centrifuged at 10,000g in the GSA rotor for 10 minutes at 4˙C. 

Supernatant is discarded and the pellet is dissolved in 100µl HEMG20 (25mM 

HEPES-KOH 7.6, 100mM KCl, 12.5mM MgCl2, 0.1mM EDTA, 20% Glycerol, 1 x 

Protease Inhibitors, 2mM DTT) for every gram of embryo.  

 

For KCl extration, the nuclei suspension in HEMG20 is distributed to 

ultracentrifugation tubes (SW40, 14mL capacity), KCl is added to 420mM from 3M 

stock, tubes are sealed with parafilm and incubated in the cold room for 30 minutes 

and then centrifuged in an SW40 rotor at 38 krpm for 1hr at 4˙C. The lipid layer on 

top is sucked away and the supernatants from different tubes are pooled for dialysis. 

Nuclear debris at the bottom of the tube is avoided. The dialysis was against 

HEMG20, and was allowed to continue until the salt concentration of the extract was 

equal to that of HEMG20 (i.e. 100mM KCl). The precipitated material is removed by 

centrifugation in an SS34 rotor at 15 krpm for 10 minutes at 4˙C and the clear 

supernatant is snap-frozen in liquid nitrogen and kept at -80˙C until use. 

 

For SSNF extraction, the nuclei suspension in HEMG20 is mildly sonicated using a 

Branson sonicator (Output: 2, Duty cycle 40, 3 times 5 pulses) and then distributed 

into ultracentrifugation tubes (SW40, 14mL capacity). Centrifugation was in an SW40 
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rotor for 1hr at 38 krpm at 4˙C. The lipid layer on top is sucked away and the 

brownish supernatant is transferred into fresh tubes. Dialysis is not required thus the 

extract is snap-frozen in liquid nitrogen and kept at -80˙C until use. 

Tandem Affinity Purification 
 

Nuclear extract prepared from embryos (wild-type and transgenic in parallel) are 

diluted in Binding buffer (BB, 25mM HEPES-KOH 7.6, X mM NaCl, 5mM MgCl2, 

0.05% Igepal CA 630, 2mM DTT, 5% Glycerol, 40u/mL RNasin, 1xProtease 

Inhibitor Coctail. Concentration of NaCl differed between purifications, In Figure 7 it 

was 110mM or 60mM, in Figure 8 it was 125mM). For 10mL of solution, 100µL of 

50% anti-FLAG(M2) agarose beads (Sigma) was used to collect FLAG-tagged MLE, 

for 2hrs at 4˙C. The beads were washed 4 times with 5mL of BB. The elution was 

with 500µL of BB + 250µg/µL FLAG peptide for 1hr at 4˙C, twice. The eluate is 

incubated with 50µL of 50% slurry of anti-HA agarose (Sigma) for 90 minutes at 4˙C. 

The beads are washed 3 times with BB. The bound proteins were eluted with 50µL of 

non-reducing 1XLaemmli sample buffer at 70˙C for 30 minutes. The eluate is 

examined by immunoblotting or silver staining after PAGE.  

 

Silver staining 
	
  
Mass-spectrometry friendly silver-staining protocol is adapted from Schevchenko, 

1997 ([165]). The gel is fixed in 50% MeOH, 12% AcOH, 0.05% formalin for 2 hrs. 

It is washed three times with 35% EtOH for 20 mins each, and twice with water for 10 

minutes each. The gel is then sensitized with 0.02% Na2S2O3 for 2 mins and washed 

with water three times, 5 minutes each. Gel is Stained with 0.2% AgNO3, 0.076% 

formalin for 30 mins in the cold room after which it is rinsed with water twice, 1 

minute each. The gel is developed in 6% Na2CO3, 0.05% formalin, 0.0004% Na2S2O3 

until the bands were sufficiently visible. The gel is rinsed with water and staining is 

stopped with 50% MeOH, 12% acetic acid. The gel is rinsed with water and kept in 

1% acetic acetic in the cold room. 
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Coomassie staining 
	
  
A commercial preparation of colloidal Coomassie stain G-250 was used (GelCode 

Blue, Thermo). After PAGE, the gel is washed three times with water, 5 minutes 

each. Then GelCode Blue solution is added onto the gel and incubation at room 

temperature is carried on until the bands were sufficiently visible. De-staining is not 

necessary, but gels are kept in water to get rid of the background staining when 

desired.  

 

Mass spectrometry 
 

All mass-spectrometry related data presented in this work was carried out by Innova 

Proteomics (Rennes, France). Briefly, silver stained 1-D gel pieces were cut and sent 

to Innova Proteomics where they are reduced and alkylated (DTT/iodoacetamide), 

digested with 6.7ng/µL trypsin overnight at 37˙C followed by salt removal with 

POROS 20 R2 (Perseptive Biosystems) and deposition on MTP AnchorChip 600/384 

S/N 11169 with HCCA matrix (a-Cyano-4-hydroxycinnamic acid). Mass spectra was 

acquired using a MALDI-TOF/TOF system (Ultraflex, Bruker Daltonics). Peptide 

fingerprint acquisition was carried out by FlexControl, FlexAnalysis and Proteinscape 

software from Bruker Daltonics. NCBInr was used for database searches. 

 

GRNA Chromatography and PP7 pull-downs 
 

GRNA protocol is adapted from Czaplinski [148] and Duncan [147] 

 

Cloning and synthesis of boxB and PP7 tagged RNAs 

All RNAs used in GRNA chromatography and PP7 pull-downs were made by in vitro 

transcription using Ribomax T7 kit from Promega. The run-off transcripts were 

purified using Megaclear columns (Ambion). The templates were all cloned into 

pBlueScript KS and linearized with Asp718 or XhoI after which the 3’-ends were 

filled in with Klenow (NEB) and purified by phenol/chloroform extraction. 

 

The sequence of the boxB tag used in this study is as follows: 
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GGGCCCTGAAGAAGGGCCC 

 

The sequence of the PP7 hairpin used in this study is as follows: 

AAGGAGTTTATATGGAAACCCTT 

 

All the tags were cloned at the 5’-end of the RNA of interest. 

 

GFP RNA is the NheI/XhoI digest from pEGGP-C2 (Clontech). 

 

roX2_FL is the NotI/XhoI digest from the vector roX2 78.2.2 (a gift from Mitzi 

Kuroda) and contains the fist and third exons of roX2 and a partially spliced second 

exon. 

 

roX2_ex3 is the amplicon generated by amplifying roX2 78.2.2 with these primers: 

L:	
  ATACTGCAGTAGCTCGGATGGCCATCG 

R: ACTCGAGTATTATTTGGCAATTGTTAAG 

PstI and XhoI sites are underlined. 

 

anti-sense_roX2_ex3 is created by switching the restriction sites in the primers given 

above and cloning into the same boxB containing vector. 

 

To generate templates that were used to synthesize RNAs for use in PP7 pull-downs, 

the constructs above were sub-cloned into a vector that contained the PP7 hairpin at 

the 5’-end. 

 

Expression and purification of GST•λ•6His and ZZ•tev•PP7cp•6His 

 

Plasmid expressing GST•λ•6His was a gift from Matthias Hentze, plasmid encoding 

ZZ•tev•PP7cp•6His was a gift from Kathleen Collins ([67]). GST•λ•6His requires co-

expression of rare codon expressing bacteria and BL21(DE3) CodonPlus was used for 

this purpose. ZZ•tev•PP7cp•6His can be expressed readily using BL21 (DE3) 

bacteria. Both proteins were purified to near homogeneity using single-step IMAC 

(Ni-NTA, Qiagen).  

 



Materials	
  and	
  Methods	
  
	
  

84	
  

GRNA Protocol 

30µg GST•λ•6His was incubated with 25µL of Glutathione-Sepharose beads (GE 

Healthcare) for 1hr at 4˙C in binding buffer (BB, 50mM Tris•Cl pH 7.6, 100mM KCl, 

2mM MgSO4, 0.1% Igepal CA-630 (Sigma), 0.1mg/mL tRNA (Roche), 0.01mg/mL 

Heparin, 1x Protease inhibitor coctail (Roche)) and washed several times with BB. 

Then 100pmol of RNA (tagged with boxB if to be immobilized on beads) was 

incubated with the GST•λ•6His bound beads in BB+40u/mL RNasin (Promega) for 

12-16hrs. The beads are washed twice with BB and are then incubated with 250-

500µg of embryonic nuclear extract (KCl method, see above) in 300µL BB+40u/mL 

Rnasin for 45 minutes at 18˙C. The beads are washed with BB extensively. The 

elution was with 30µL BB with 100mM NaCl instead of KCl and without tRNA and 

with 0.5µg Protease-free RNaseA (Chembiochem) at 30˙C for 30 minutes. The eluate 

was analyzed by silver staining or by immunoblotting. 

 

 

PP7 pull-downs 

GRNA protocol was followed exactly, only that GST•λ•6His is replaced by 

ZZ•tev•PP7cp•6His and Glutathione-sepharose beads were replaced by IgG beads 

(GE healthcare). The RNA to be immobilized contained a PP7 hairpin instead of 

boxB. 

 

Chromatin Immunoprecipitation from S2 cells 
 

Wild-type S2 cells maintained in Drosophila S2 medium (Invitrogen) + 10% FCS 

were fixed with 1.8% Formaldehyde for 15 minutes at room temperature. 

Formaldehyde is quenched with 125mM Glycine for 5 minutes at room temperature. 

All the steps that follow were carried out either on ice or in the cold room (~4˙C). The 

cells were pelleted by centrifugation at 2000 rcf for 2 minutes. The cells were washed 

(i.e. resuspended in the given buffer and rotated in the cold room for 5 minutes each 

step) two times with Paro 1 (10mM Tris pH 8.0, 10mM EDTA, 0.5mM EGTA, 0.25% 

TritonX-100), two times with Paro 2 (10mM Tris pH 8.0, 200mM NaCl, 1mM 

EDTA, 0.5mM EGTA) and twice with RIPA (140mM NaCl, 25mM HEPES pH 7.5, 

1mM EDTA, 1% TritonX-100, 0.1% SDS, 0.1% DOC). Cell pellets not exceeding 



Materials	
  and	
  Methods	
  
	
  

85	
  

100µL were resuspended with 500µL RIPA and sonicated (Branson sonifier. Power 

output: 3, Duty cycle: 40, 30 cycles. Each cycle: 20 seconds on, 50 seconds off). After 

sonication the sample is centrifuged at 14 krpm for 30 min and the pellet is discarded. 

The supernatant is incubated with 50µL of Protein A Sepharose beads for pre-

clearing. After a brief centrifugation the supernatant is aliquoted and snap-frozen in 

liquid nitrogen if not used immediately. 

 

For each IP, chromatin coming from ~1x106 cells is diluted in RIPA and antibodies 

are allowed to form immune-complexes for 12-16 hrs, rotating in the cold room 

(CG3613, 4RAP: 5µl, MLE, rat1 or rat2: 2µl, MSL1, 3BVM: 3µl, anti-FLAG(M2): 

3µl). All the IPs were centrifuged for 10 min at maximum speed, and supernatants 

were transferred into new tubes that contain 40µl of 50% protein A sepharose (GE 

healthcare) if the antibody comes from a rabbit, or protein G agarose (Roche) if it 

comes from a rat (blocked with 1µg/µl BSA (NEB), 1µg/µl salmon sperm DNA 

(Invitrogen) in RIPA, for 1hr). After collecting the immune-complexes with protein A 

or G beads, the IPs are centrifuged for 2min at 2000rpm. The beads are washed 4 

times with RIPA and once with LiCl buffer (10mM Tris-Cl 8.0, 250mM LiCl, 1mM 

EDTA, 0.5% Igepal CA 630, 0.5% DOC) and then once again with RIPA. The 

supernatant is removed as much as possible and 100µl of 10% Chelex beads (Bio-rad, 

in water) is added to each IP. De-crosslinking was carried out by incubating the beads 

for 15 minutes at 95˙C. The tubes are then spun at 10 krpm for 1 minute and allowed 

to cool down to room temperature. 1µl of 10mg/mL Proteinase K (Roche) is added to 

each tube, and incubated at 56˙C for 30 minutes. Proteinase K is then de-activated by 

boiling the beads at 95˙C for 15 minutes. The supernatant is then transferred to a fresh 

tube, diluted with water and used in qPCR. 
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Primer pairs used in qPCR: 

 

roX2_p AGCTAGATGTTGCGGCATTC Shn_p1 TCACTTTGGGTGTGCTCTTG 

 CGCTTACCTAAACGCTCGAC  AAACAGAGCCAGCGAGAATC 

roX2_m TCCAACCAGTGTAGCATCCA Shn_p2 TCTCTTTACGGTTGATCGGC 

 AGGATTGTCATAGGCGCAAC  TGGTGCCCACTCTCTCTTTC 

roX2_e 
(HAS) ACGGTGCTGGCTTAGAGAGA Shn_m ACCAAGAAGCGGACATATCG 

 GGCGGAAATGTATTTGCAGT  AGATGCTGATGCTGATGCTG 

CES11D1 GTGGAAACGGACAGCGTAA Hsp22_p CTCGCACTCAGAAAGCTGTG 

 CACATCAGCGACAAGAGGC  AGCGAAGTTCTCTCTCGCTG 

HAS20 ATCTCGCTGTTATCGGTTGC Hsp22_m CGAGCTAAAGGTCAAGGTGC 

 TCAAGTTGATCGTGGAGCAG  TCTGATTTTCCCTCCACCAG 

HAS21 GTCTGCAAGGATGAACAGCA Hsp26_m AAGGATGGATTCCAGGTGTG 

 GATTGGGTTTGGTGGAATTG  ACCAAGATGGAGTCGTCCAC 

HAS29 GCGACTATATAGGACCGCCA roX1_HAS ACTGCAAGTCCCGAAAGAGA 

 TCCAGAAGTCCGTGTTCCAT  ACTTTTTCCTTTCCGAGGGA 

HAS34 GCTAAGTTTGGATTGCCCTG Hsp67_m CATCGAAGAGGAGCAAAAGG 

 CTGCATATAGGGTTTGCCGT  TGGAGATTTCCGGTTTCTTG 

Sda_p CCTTAACTCGCATCGCTTTC Intergenic ACTCGGTTCAGATCCTGTGG 

 CGAAAAAGTAAAACCGTCGC  GGCCAGTGGGCTTGTAATAA 

Sda_m TTTGGAGAGCATTGCTGTTG   

 GAAATCTGTGTTGCAATGCG   

Antibody production 
	
  
Plasmids expressing GST-enterokinase cleavage site-Antigen-6His fusion proteins 

were cloned with the following primers and cDNA clones. 

 
 

Clone 
name 

Covered 
antigen Forward primer Reverse primer 

CG5792 LD15349  38kDa/38kDa taatgacaagTGTCGgCGTCGTTCCAAT aatactcgagACTGAACACTGGAATGCGAA 

CG5787 LD23647  40kDa/100kDa tatagacaaaggTCACTATCGAGGTCCCCAG tatactcgagCTGTGGTCCTGTCCTGTTT 

CG3613 GH05812  20kDa/45kDa tatagacaaagGtCTTCGGTTGGAGCAACT tatactcgagTATTTTCGGATATGGAGCCG 
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The primers introduce a PshAI at the 5’-end and a XhoI site at the 3’-end. These 

restriction sites were used to clone all amplicons into pET41b. All proteins were 

expressed in BL21(DE3) cells. Briefly, BL21(DE3) bacteria were transformed with 

the expression vectors and single colonies were picked into LB media containing 

50µg/mL kanamycin and grown at 37˙C overnight. The next day 1L culture is 

inoculated with 10mL of overnight grown culture and incubated at 30˙C until the OD 

reached 0.4-0.6 at which point protein expression was induced with 0.5mM IPTG. 

The bacteria was let to express the protein for 4hrs at 25˙C after IPTG induction and 

collected in a GSA rotor by centrifugation at 5000rpm for 15 minutes. The pellet was 

then re-suspended in Lysis buffer (50mM Tris 8.0, 500mM NaCl, 5% Glycerol, 

1xProtease Inhibitors) and the suspension is then made to 0.1% TritonX and 1mM 

DTT. Sonication was used to break the bacteria, and the lysate is cleared by 

centrifugation using an SS34 rotor, 20,000g for 20 minutes at 4˙C. 0.5mL of 

Glutahione coated Sepharose (GE Healthcare) resin is used to pull-down GST fusion 

proteins. After several washed with the Lysis buffer, bound proteins were eluted using 

the lysis buffer supplemented with 20mM Glutathione for 1 hour in the cold room. 

The eluates were then dialyzed against PBS + 0.1% TritonX, concentrated with 

Centricon spin-columns (Millipore) when necessary, snap-frozen in liquid nitrogen 

and stored at -80˙C. Titre-Max (Sigma) is used as an adjuvant when immunizing 

animals with these protein preps. 

 

For CG5792 two rabbits (4QYT and 4QZF) were injected for 5 times, for CG5787 

three rats for 6 times and later 2 rabbits for 5 times (ATOM and ATDE) and for 

CG3613 two rabbits for 5 times (4RAP and 4QRM). 

RNA Immunoprecipitation from S2 cells 
	
  
Adapted from Selth, Gilbert and Svejtrup [166] 
 

S2 cells, wild-type or the CG3613_3xFLAG6His line, are grown in S2 media + 10% 

FCS. 12-16hrs before the experiment expression of CG3613 was induced with 

0.25mM CuSO4. The cells were fixed with 1% formaldehyde at room temperature for 

15 minutes. Formaldehyde is quenched with 200mM Glycine for 5 minutes at room 

temperature. The cells are pelleted by centrifugation at 1000g for 5 minutes and 

washed twice with ice-cold PBS. Then the cells are re-suspended in 500µL of FA 



Materials	
  and	
  Methods	
  
	
  

88	
  

lysis buffer (50mM HEPES-KOH 7.6140 mM NaCl, 1 mM EDTA, 1% (v/v) Triton 

X-100, 0.1% (w/v) sodium deoxycholate, 40u/mL RNasin, 1xProtease inhibitors) and 

spun at 3000g for 30 seconds. Supernatant is discarded and the pellet is re-suspended 

in 600µL of FA lysis buffer and sonicated using a Branson sonifier (Power output: 3, 

Duty cycle: 40, 10 cycles. Each cycle: 20 seconds on, 50 seconds off). Sonicated 

extract is transferred into a new tube and centrifuged at maximum speed for 10 

minutes at 4˙C. Supernatant is transferred to a new tube and the centrifugation is 

repeated once. The extract is then pre-cleared over 50µL of Protein A sepharose beads 

for 1 hr at 4˙C. Beads are removed by centrifuging at 1000g for 2 minutes at 4˙C. 

Supernatant is transferred into a new tube and made to 25mM MgCl2 and 5mM 

CaCl2. 3µL RNasin and 6µL RQ1 RNase-free DNase (Promega) is added and the 

extract is incubated at 37˙C for 30 minutes. The reaction is stopped by adding EDTA 

to 20mM. Insoluble material is disposed of by centrifuging at maximum speed for 10 

min at 4˙C. Supernatant is either used immediately or snap-frozen in liquid nitrogen 

and stored at -80˙C until use.  

Extract coming from about a million cells is diluted to 500µL with FA lysis buffer for 

each IP. 50µL of this solution is saved as INPUT. 3µL of anti-FLAG(M2) or 3µL of 

anti-MLE antibody is added and the tubes are incubated in the cold room overnight 

with end-over-end rotation. The RIPs are centrifuged at maximum speed for 10 

minutes at 4˙C and the supernatants are transferred into a new tube that contains 40µL 

of Protein A or G slurry. Incubation was for 90 minutes in the cold room. Then, the 

beads are pelleted by centrifugation at 1000g for 2 minutes and washed once with FA 

lysis buffer, once with FA500 buffer (50 mM HEPES, pH 7.5, 500 mM NaCl, 1 mM 

EDTA, 1% (v/v) Triton X-100, 0.1% (w/v) sodium deoxycholate, 1xProtease 

Inhibitors, 40u/mL RNasin), once with LiCl buffer (10 mM Tris·Cl, pH 8, 250 mM 

LiCl, 0.5% (v/v) Igepal CA 630, 0.1% (w/v) sodium deoxycholate 1 mM EDTA, 

1xProtease Inhibitors, 40u/mL RNasin) and once with TE buffer (10 mM Tris·Cl, pH 

8, 1 mM EDTA, 100 mM NaCl) for 5 minutes each in the cold room with end-over-

end rotation. TE buffer is removed as much as possible and the immune complexes 

are eluted with 75µL of RIP elution buffer (100 mM Tris·Cl, pH 8, 10 mM EDTA, 

1% (w/v) SDS, 40U/mL RNasin) by incubation at 37˙C for 10 minutes. The beads are 

pelleted by centrifugation at 1000g for 2 minutes at room temperature, the supernatant 

is transferred into a new tube and the elution is repeated with another 75µL of RIP 

elution buffer. 
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Eluates are pooled, made to 200mM NaCl and 0.13µg/µL Proteinase K. Protease 

digestion was carried out by incubating the eluates at 42˙C for 1 hour, followed by 

reversal of formaldehyde cross-links by incubating at 65˙C for 1 hour. Input samples 

saved before are processed in parallel. Onto each RIP, 100µL nuclease-free water and 

250µL acid-phenol:chloroform is added. Phase separation is carried out in MaxTrak 

tubes (Qiagen) by centrifugation at 10000g for 3 minutes at room temperature. The 

aqueous phase is transferred into a new tube and the RNA is precipitated by adding 

25µL of 3M sodium acetate, 20µg glycogen and 625µL ice-cold absolute ethanol and 

incubating the mixture at -20˙C overnight. RIPs are centrifuged at maximum speed 

for 30 minutes are 4˙C. Supernatant is discarded and the pellet is washed with ice-

cold 70% ethanol. After a final centrifugation at maximum speed for 5 minutes at 4˙C, 

supernatant is discarded and the pellet is air-dried for 5-10 minutes. 90µL nuclease-

free water is used for re-solubulizing the RNA pellet. 10µL TURBO DNase buffer 

and 1µL TURBO DNase (Ambion) is added and the mixture is incubated at 37˙C for 

30 minutes. 10µL DNase inactivation reagent is pipetted to each tube and the tubes 

are incubated at room temperature for 2 minutes with occasional shaking. The tubes 

are centrifuged at 10,000g for 2 minutes and the supernatants are transferred into fresh 

tubes. These RNA samples are either used immediately for reverse transcription-

qPCR or stored at -80˙C until use. Reverse transcription and PCR were carried out in 

the same tube by using reverse transcriptase and RNasin in the SYBR mix, and 

adding a step of 50˙C for 30 minutes before the start of PCR amplification. 

 

Primer pairs used in RT-qPCR: 

 
roX2  L: TCGCAATGCAAACTGAAGTC 
  R: AGGCGCGTAAAACGTTACC 
Tubulin L: AACCTGAACCGTCTGATTGG 
  R: GTCAGATCCACGTTAAGGGC 
 

Immunostaining of polytene chromosomes 
	
  
Adapted from Johansen et al. [167] 

	
  
Wandering 3rd instar larvae were dissected in PBS and the salivary glands are 

separated from larval imaginary discs and other tissue as much as possible. A pair of 

glands is then transferred into Fix1 (1x PBS, 3.7% formaldehyde, 1% TritonX) and 
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kept there for 2 minutes and then transfer to Fix2 (3.7% formaldeyde, 50% acetic 

acid) and kept in this solution for another 2 minutes. The gland is then transferred 

onto a clean Sigmacoated coverslip that has a drop of Lactoacetic acid solution (50% 

acetic acid, 17% lactic acid) on it. Then a poly-L-lysine coated microscope slide is 

lowered on top of the coverslip. Cell lysis is achieved by moving the coverlip back 

and forth 3-4 times with a pencil without applying any vertical pressure on it. Tapping 

the coverslip a few times with a pencil can be helpful in spreading the chromosomes 

at this stage. To flatten the chromosomes, using the inside of a thumb, pressure is 

applied on top of the coverslip, absolutely avoiding and lateral movement at this 

stage, which breaks the chromosomes. Putting the slide on top of a stack of Kim 

Wipes, and putting another one on top of the coverslip can be helpful. The slide is 

then dipped into liquid nitrogen and the coverslip is removed with the help of a razor 

and placed into a Coplin jar filled with PBS and kept at 4˙C until all slides are ready. 

The slides are then washed with PBST (1xPBS, 0.4% TritonX) for 30 minutes. The 

slides are taken out of the jar, touched on the corner with a Kim-Wipe to get rid of 

excess PBST. 50µL of blocking buffer (PBST, 0.2% BSA, 5% normal goat serum) is 

applied on top of the slide and the slide is covered with a piece of parafilm. The slide 

are kept in a humid chamber for 1 hour. The primary antibody is diluted with blocking 

buffer (CG3613, 4RAP: 1:100; MSL1: 1:200; MLE: 1:200; H14: 1:100) and 50µL of 

this dilution is applied on top of the slides after the blocking buffer is drained by 

touching the corner of the slide with a Kim-Wipe. The slide is covered with a 

20x44mm coverslip, placed in a humid chamber and kept in the cold room overnight. 

The slides are then washed three times with PBST for 10 minutes each time. The 

fluorescently labeled secondary antibody is diluted with blocking buffer (1:200) and 

50µL of it is applied to the slides similar to the primary antibody. Incubation was for 

2 hours in the dark. The slides are then washed 3 times with PBST, 10 minutes each 

and twice with PBS for 5 minutes each, in dark. Then, the DNA is stained with 

Hoechst solution (1xPBS, 0.2µg/mL Hoechst 33258) for 30 minutes. Finally the 

slides are washed twice with PBS for 5 minutes each. Two-three drops of Fluromount 

G is added on top of the tissue, and a coverslip was placed upon the slide. After 2-3 

hours, the coverslip is sealed with nail polish. Images were captured with an 

AxioCamHR CCD camera on a Leica SP5 (Leica Microsystems) using an 

Apochromat NA 1.32 oil immersion objective. Images were arranged with Adobe 

Illustrator. 
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Fractionation of S2 cells 
 

Wild-type S2 cells grown in S2 cell medium + 10% FCS were pelleted by spinning 

them at 500g for 5 minutes. The pellet is washed once with PBS and pelleted again. 

All the steps that follow should performed in cold. The cell pellet is re-suspended 

with 10 pellet volume of HLB (10mM HEPES-KOH, 10mM KCl, 1,5 mM MgCl2, 1X 

Protease Inhibitors) and kept on ice for 15 minutes. Then, 1/10 volume of 10% Igepal 

CA 630 is added to this suspension and immediately vortexed at full-speed for 30 

seconds. Nuclei is pelleted by centrifugation at 2000g for 2 minutes at 4˙C. 

Supernatant can be saved as cytoplasmic extract, but it is necessary to increase the salt 

concentration to 140mM NaCl and to centrifuge the extract at maximum speed for 10 

minutes to remove insoluble material before storage. The nuclear pellet is quickly re-

suspended in 5 cell volume of HLB (half of the initial amount) to remove the 

detergent and spun again at 2000g for 2 minutes at 4˙C. The supernatant is discarded 

and the nuclear pellet is re-suspended in extraction buffer at 150mM monovalent salt 

(25mM HEPES-KOH, 140mM NaCl, 10mM KCl, 1,5mM MgCl2, 0.1% TritonX, 

0.2mM EDTA, 25% Glycerol, 1XProtease Inhibitors). Once the nuclei are properly 

re-suspended with the help of a micropipette, the salt concentration is raised using a 

stock of 5M NaCl (up to 240-420mM) and extraction is carried out by rotating the 

tubes in the cold room for 30 minutes. When desired, RNase A is added to the 

solution at this stage at a final concentration of 1µg/µL. Following the extraction the 

samples are centrifuged at maximum speed for 15 minutes to remove the nuclear 

debris and insoluble material. Supernatant is saved as the nuclear extract (or 

nucleoplasm when the salt is kept at 150mM). The pellet is re-suspended in 

1XLaemmli sample buffer, sonicated briefly to breake the genomic DNA and stored 

as the “chromatin fraction”.  

 

Whole gland immunostaining 
 

Flies with the genotype P{hsFLP}1, y1 w1118; P{AyGAL4}25 P{UAS_GFP.S65T}T2 

were crossed to RNAi flies from Vienna that have inverted repeats of RNA constructs 

targeting CG3613 under the control of a UAS promoter. 12 hour old embryos are heat 
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shocked at 37˙C for 1hr in an air incubator. This heat shock leads to the expression of 

FLP recombinase, which removes the yellow gene that seperates a GAL4 gene and an 

actin promoter, leading to GAL4 expression randomly in some cells. These cells start 

to express GFP and also knock-down CG3613 as both are under the control of UAS 

promoters. 

 

Wandering 3rd instar larvae were dissected in PBS by cutting the animal in half and 

inverting the anterior half to expose salivary glands. These inverted larvae are fixed 

with 4% formaldehyde, freshly prepared from paraformaldehyde by dissolving the 

powder in PBS. After 15 minutes of fixation at room temperature the larvae are 

washed extensively with PBS+0.1% TritonX. The glands were permeabilized with 

PBS + 0.4% Triton X for 30 min, changing the buffer every 10 minutes. Blocking was 

with PBS + 3% BSA + 0.4% TritonX for 1hr at room temperature. Primary antibody 

(CG3613, 4RAP) is added to the blocking solution at 1:100 dilution, and the glands 

are kept at 4˙C overnight. Excess antibody is washed with PBS+0.4% Triton X, for 3 

times 10 minutes each. The TRITC conjugated goat anti-rabbit secondary antibody 

(Molecular Probes) was used at 1:200 dilution in the blocking buffer mentioned above 

for 2 hours at room temperature. Larvae are washed three times with PBS+0.4% 

TritonX and once with PBS for 10 minutes each and then incubated with 

PBS+10µg/mL Hoechst 33258 (Invitrogen) for 10 minutes. After two more washes 

with PBS, the larvae are allowed to settle in Fluromount G (Southern Biotech) 

overnight in the cold room or several hours at room temperature. Finally salivary 

glands are dissected on a glass slide and the coverslip is sealed with nail polish before 

microscopy. All the steps involving fluorescently labeled secondary antibody were 

carried out in dark.  

 

Quantitative Real-Time PCR (qPCR) 
 

Immunoprecipitated material (DNA from ChIP samples or RNA from RIP samples) 

and total RNA samples reverse-transcribed by random hexamers were analyzed by 

quantitative PCR using SYBR Green Master Mix and Applied Biosystems 7500 Fast 

Real-Time PCR system. For ChIP samples, 10% and 1% INPUT material was used to 
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calculate PCR efficiency and cycle differences are normalized using this information. 

2ΔΔ
Ct method was used to calculate recoveries and fold-changes. 

RNAi in S2 cells, total RNA isolation, reverse transcription 
	
  
Double stranded RNA was generated using PCR products with T7 promoter 

sequences attached to both forward and reverse primers as templates and Ribomax 

Large Scale T7 in vitro transcription system (Promega) according to manufacturer’s 

recommendations. RNA was purified using Megaclear columns (Ambion). To 

generate double stranded RNA, purified RNA is made to 250mM NaCl and incubated 

at 70 ˙C for 10 minutes, then slowly cooled down to room temperature.  

10-20µg of RNA was transfected to 1-2 million cells in 6-well dishes using 

RNAiMAX transfection reagent (Invitrogen). 3 days later, media is removed from the 

plates, cells are washed with PBS and lysed with Buffer RLT on the plate. The lysate 

is homogenized with Qiashredder columns (Qiagen) and total RNA is purified using 

RNeasy kit (with on-column DNAse digestion, Qiagen). Total RNA is reverse 

transcribed using Superscript III (Invitrogen) and random hexamers as primers 

(Invitrogen). The cDNA is diluted with water and used for qPCR.  

 

Primer pairs used to amplify IVT templates: 

 

CG5792   L: GCATCCTTCTCGTCGATCTC 
   R: CTCCTGGCTCCTATCGAGTG 
CG5787  L: CTCCTGGCTCCTATCGAGTG 
   R: AACAGGAAACGCATACGGTC 
CG3613 (exon) L: GTGCTTCTTCTCGAGCGTCT 
   R: AATCGGTGATGCCGATTTAC 
CG3613 (3’UTR) L: TTTTCCAAAACCCCAAGAAA 
   R: TCGGACAACAGTTGCAATAAA 
GFP   L: TGAAGTTCATCTGCACCACC 
   R: AGTTCACCTTGATGCCGTTC 
 
The T7 promoter sequence (ATATAATACGACTCACTATAGGG) precedes each 
primer. 
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Primer pairs used in RT-qPCR: 

CG3613 ATCCAGCAAAACCAAGCAAC Suv4-20 (int) GTCTGCAAGGATGAACAGCA 

 AGATGAATGTGATCCCGAGC  GATTGGGTTTGGTGGAATTG 

Pfk CTGAGGGCAAGTTCAAGGAG Arm (exon) TCAGGTGGTAGTTTCCCAGG 

 AAGCCACCAATGATCAGGAG  TTGCTGTTAGAGATGGCACG 

Sda TTTGGAGAGCATTGCTGTTG Arm (intron) AGAGTGGGGTGAGGTTGTTG 

 GAAATCTGTGTTGCAATGCG  CAACAACAACCGAAATGACG 

Socs16D AGCTTTAGCATCATGCCACC Pcx (exon) AACAAATCGTCTCTGGTGGG 

 TGGAACTCCACTATCATCGC  CTCTTAATGCGCCTCACTCC 

Ucp4a CTCCATTTGGATTTGCACCT Pcx (intron) GCTAAGTTTGGATTGCCCTG 

 GGCAAGGAGTTCACACAGAA  CTGCATATAGGGTTTGCCGT 

Pepck CATTGCGTGGATGAAGTTTG Pyk (exon) AATGGTGAAGAAGCCACGTC 

 TTGGTCTCCATTGAGGTTCC  CCAGACAACATGACGCAATC 

Hsp22 CGAGCTAAAGGTCAAGGTGC PyK (intron) ACCATCTACGATGAGGCACC 

 TCTGATTTTCCCTCCACCAG  TTTCCTCCCCAATGACTCTG 

Hsp26 AAGGATGGATTCCAGGTGTG Pgk (exon) AGCTGGGCGATGTCTATGTC 

 ACCAAGATGGAGTCGTCCAC  TTGTTCAGCAACAGACCAGC 

Hsp67 CATCGAAGAGGAGCAAAAGG Pgk (intron) ATAAACATTGCCCGTGCTTC 

 TGGAGATTTCCGGTTTCTTG  TCTGGTTGCTGGTGATCTTG 

Mof AGGAGGGCGTAATCGGTAGT Thor (exon) TGGAAGATAATCCCGAGCAC 

 CCCAATAGCTGCGATAGCTC  GAGTAAACGCTTCTTTGCCG 

roX2 TCGCAATGCAAACTGAAGTC Thor (intron) GCTAAGATGTCCGCTTCACC 

 AGGCGCGTAAAACGTTACC  AACCTTCCTGGTGATCATGG 
Suv4-20 
(ex) TGGGGAACAAGACTTTCTGG Hexokinase AGTGTGTACCGCTTCCATCC 

 CTAAACCTAACCGGCAGCAG  ATCAGATCGAAGGTGATGCC 
 
Generation of the CG3613 stable cell line 

 
A cDNA clone containing full-length CG3613 was obtained from GeneCore, EMBL 

(clone id: GH05812). This clone is digested with EcoRI-HpaI and cloned into EcoRI-

XhoI (blunt) cut pIBU1.C2 (a custom made plasmid that contains MtnA promoter to 

drive gene expression, an SV40 terminator and a neomycine resistance cassette) in 

frame with 3XFLAG and 6His tags at the C-terminus. The cloning was verified by 

sequencing. 
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This plasmid is transfected into S2 cells by Effectene reagent (Qiagen). 24hrs after the 

transfection, the cells were split into three (1:2, 1:5 and 1:10 dilutions) and let to 

recover for 24 hours. The cells were put under selective pressure by adding 1µg/µl 

geneticin (Gibco) in fresh media. The media is replaced every two days until there 

were no living cells left in mock transfected dishes. The cells that contained CG3613 

stably integrated into their genome were expanded and kept under 0.5µg/µl geneticin. 

 

Phosphatase treatment of cell extracts 
	
  
Wild-type S2 cells were fractionated as described above with the exception that after 

incubating the nuclei in extraction buffer at 150mM salt for 20 minutes in cold room, 

the nuclei are pelleted by centrifugation at 10,000g for 2 minutes and the pellet is re-

suspended in extraction buffer at 420mM salt and incubated in the cold room for 

another 20 minutes. All three fractions were made to 150mM NaCl, 2mM MnCl2 and 

1X Phosphatase Buffer (NEB). λ-Phosphatase (NEB) was added to 4U/µL for “+ 

Phosphatase samples” and omitted for “- Phosphatase samples”. Samples are 

incubated at 30˙C for 15 minutes. Reactions were stopped by addition of 4XLaemmli 

buffer to 1X and boiling at 90˙C for 5 minutes. Samples are separated by PAGE and 

analyzed by immunoblotting.  

 

RNAi in flies 
	
  
The fly lines containing an inducible UAS-RNAi construct targeting CG5792 

(Stock#: 34143), CG5787 (Stock#: 35043) and CG3613 (Stock#: 26332) were 

obtained from Vienna Drosophila RNAi Center. RNAi was induced by crossing these 

flies with a tubGAL4/TM6 line (a gift from Anne Ephrussi). As a control, w1118 flies 

were crossed to tubGAL4/TM6 line. Adult flies were counted as they eclosed from 

pupae. The flies were kept at 25˙C and 70% humidity. 
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