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Zusammenfassung

Das Max-Cut-Problem ist ein auf ungerichteten gewichteten Graphen definiertes NP-
schweres kombinatorisches Optimierungsproblem. Es besteht darin, eine Teilmenge der
Knoten des Graphen zu bestimmen, so dass das summierte Gewicht der Kanten zwi-
schen der Teilmenge und ihrem Komplement maximiert wird. In der vorliegenden Arbeit
stellen wir einen neuen Separierungsansatz vor, der im Rahmen eines Branch-and-Cut-
Algorithmus verwendet werden kann, um Max-Cut-Probleme optimal zu lösen. Die Me-
thode basiert auf der Kontraktion des Graphen und erlaubt die effiziente Separierung
sogenannter Ungerader-Kreis-Ungleichungen. Darüber hinaus beschreiben wir Techni-
ken, um im bereits kontrahierten Graphen gegebenenfalls fehlende Kanten hinzuzufügen.
Dies ermöglicht es, Max-Cut-Probleme auf dünn besetzten Graphen unter Verwendung
von Methoden für vollständige Graphen zu lösen, die ansonsten nicht anwendbar ge-
wesen wären. Wir untersuchen die theoretischen Aspekte dieses kombinierten Ansatzes
und erläutern seine Umsetzung innerhalb eines Branch-and-Cut-Systems. Abschließend
bewerten wir die Leistungsfähigkeit unserer Separierungsroutine anhand einer Vielzahl
unterschiedlicher Testinstanzen.

Abstract

The max-cut problem is an NP-hard combinatorial optimization problem defined on
undirected weighted graphs. It consists in finding a subset of the graph’s nodes such that
the aggregate weight of the edges between the subset and its complement is maximized.
In this doctoral thesis we present a new separation approach to be used within a branch-
and-cut algorithm for solving max-cut problems to optimality. This method is based on
graph contraction and allows the fast separation of so-called odd-cycle inequalities. In
addition, we describe techniques to add possibly missing edges to an already contracted
graph. This allows solving max-cut problems on sparse graphs by using methods that
were originally intended for complete graphs and could not have been applied otherwise.
We investigate the theoretical aspects of this combined approach and also explain its
realization within a branch-and-cut framework. Finally, we evaluate the performance of
our separation procedure on a variety of test instances.





Acknowledgment

Above all I want to thank my advisor Prof. Gerhard Reinelt for raising my interest in
combinatorial optimization as well as for his support and guidance over the years. His
scientific thoroughness and profound knowledge were truly inspiring.

I had the honor of working with Dr. Giovanni Rinaldi. He was always glad to share
his expertise in general as well as his insights into the max-cut problem in particular. I
want to thank him for his enthusiasm and for the productive yet enjoyable time I spent
at his institute in Rome.

The members of my work group provided a pleasant working environment. Over
the years, I shared the office with Dr. Marcus Oswald and Stefan Wiesberg. Thanks
for the relaxed atmosphere and for your opinions on both important and unimportant
matters. I am grateful to Marcus for his ability to convey complex concepts and for always
being cheerful, enthusiastic, and supportive. Furthermore, I owe Stefan respect and
gratitude for all the effort he put into proofreading my entire thesis; of course, I take full
responsibility for any remaining errors. Dr. Hanna Seitz with her talent to encourage and
motivate people was always a pleasure to work with. I am thankful for our conversations
and for her help in putting large problems into perspective. Our secretaries, Catherine
Proux-Wieland and Karin Tenschert, as well as our system administrators, Georgios
Nikolis, Adrian Dempwolff, and Lucas Appelmann, took care of the administrative needs
and kept the machines running. I deeply appreciate all their help.

Furthermore, I would like to thank Dr. Christoph Buchheim, Dr. Frauke Liers, and
Dr. Marcus Oswald for sharing their insights into target cuts and for providing their
target cut software framework.

It is also a pleasure to thank the members of the Operations Research work group at
the University of Klagenfurt for the great time I spent with them. I owe special gratitude
to the head of the group, Prof. Franz Rendl, as well as to Dr. Angelika Wiegele and Anna
Perdacher for their warm welcome, their expertise, and their support.

Last but certainly not least, my heartfelt thanks go to my parents Gisela and Adolf
Bonato to whom I am indebted the most.





Contents

Introduction 1

0 Preliminaries and Notations 3

0.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.1.1 Nodes, Edges, and Density . . . . . . . . . . . . . . . . . . . . . . 3

0.1.2 Incidence and Adjacency . . . . . . . . . . . . . . . . . . . . . . . 4

0.1.3 Cuts and Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.1.4 Paths, Cycles, and Connectivity . . . . . . . . . . . . . . . . . . . 4

0.1.5 Subgraphs, Connected Components, and Contractibility . . . . . . 4

0.1.6 Trees and Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.1.7 Embeddings and Genera . . . . . . . . . . . . . . . . . . . . . . . . 5

0.1.8 Selected Classes of Graphs . . . . . . . . . . . . . . . . . . . . . . 5

0.2 Affine Geometry and Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . 6

0.2.1 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.2.2 Hyperplanes, Halfspaces, Polyhedra, and Polytopes . . . . . . . . . 6

0.3 Algorithms and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.3.1 Polynomial-time Solvability . . . . . . . . . . . . . . . . . . . . . . 8

0.3.2 NP-completeness and Reducibility . . . . . . . . . . . . . . . . . . 8

0.3.3 Complexity of Optimization Problems . . . . . . . . . . . . . . . . 8

0.4 Integer Programming and Combinatorial Optimization . . . . . . . . . . . 9

0.4.1 Linear Programming, Duality, and the Simplex Method . . . . . . 9

0.4.2 Integer and Binary Programming . . . . . . . . . . . . . . . . . . . 11

0.4.3 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . 11

0.4.4 Branch-and-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

0.4.5 Target Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 The Max-Cut Problem 19

1.1 Equivalent Optimization Problems . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Unconstrained Quadratic −1/+1 Optimization . . . . . . . . . . . 19

1.1.2 Unconstrained Quadratic 0/1 Optimization . . . . . . . . . . . . . 20

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Ising Spin Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Via Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.1 Spanning Tree Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2 Kernighan-Lin Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Cut Polytope and Polyhedral Results . . . . . . . . . . . . . . . . . . . . . 30

ix



x Contents

1.4.1 Selected Facet Defining Inequalities . . . . . . . . . . . . . . . . . 31
1.4.2 Lifting Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Solving Max-Cut to Optimality with Branch-and-Cut . . . . . . . . . . . 34
1.6 Short Summary of Known Results . . . . . . . . . . . . . . . . . . . . . . 35

2 Shrink Separation 39
2.1 Components of the Separation Procedure . . . . . . . . . . . . . . . . . . 40

2.1.1 Switching and Reverse Switching . . . . . . . . . . . . . . . . . . . 41
2.1.2 Contraction and Lifting . . . . . . . . . . . . . . . . . . . . . . . . 46
2.1.3 Extension and Projection . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.4 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.2 Numerical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Computational Results 77
3.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.1 Ising Spin Glass Problems . . . . . . . . . . . . . . . . . . . . . . . 77
3.1.2 Biq Mac Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.1.3 Mannino Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Computational Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 CPU Time Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.2 Gap Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 A Case Study: The Mannino Instances . . . . . . . . . . . . . . . . . . . . 88

4 Discussion and Conclusions 93

A Data on Test Instances 97

B Data on Computational Results 105

List of Algorithms 115

List of Figures 117

List of Tables 119

References 121

Symbols and Notations 127

Index 129







Introduction

The max-cut problem consists in partitioning the nodes of an undirected weighted graph
into two sets such that the aggregate weight of the edges between these sets is maximized.
This well-known combinatorial optimization problem is the reformulation, in graph the-
oretical terms, of the unconstrained 0/1 quadratic problem which aims at optimizing a
quadratic objective function over the set of all 0/1 vectors of fixed dimension. In gen-
eral, the max-cut problem is NP-hard, although selected special cases can be solved
in polynomial time. It has a number of interesting applications such as the optimal
design of very-large-scale-integration (VLSI) circuits or the study of minimum energy
configurations of spin glasses—alloys of magnetic impurities diluted in a nonmagnetic
metal—which is among the most investigated topics in the statistical physics literature.

In this doctoral thesis we are interested in finding provably optimal solutions of the
max-cut problem as opposed to approximate solutions. To do so, we use the established
and well-working branch-and-cut method, a generic solution technique whose perfor-
mance for a given type of optimization problem is mainly determined by two key ele-
ments: Firstly, a close yet manageable approximation of the polyhedron associated with
the problem. Secondly, efficient methods to solve the corresponding separation problem
which is to decide for an arbitrary point in the ambient space whether or not it lies inside
the polyhedron just mentioned.

For complete graphs, the max-cut problem and the associated cut polytope have
been extensively studied over the last decades. Their counterparts on arbitrary graphs,
in particular sparse ones, on the other hand, have received much less attention. Moreover,
the transferability of methods from the complete to the sparse case is limited. This is
mainly because the respective methods often require certain structures that are unlikely
to be found in a sparse graph. A generic possibility to work around this problem is
to make the graph artificially complete by adding zero-weighted edges. However, this
technique is only effective in conjunction with an efficient way to exploit the original
sparse structure. Otherwise, it will ultimately lead to the same computational complexity
as the problem on the complete graph.

In this study, we investigate a new contraction-based separation approach for the
max-cut problem that is primarily intended for problems on sparse graphs. The key idea
is to contract edges based on their value in a given linear programming (LP) solution.
In its simplest form, this technique presents an efficient way to separate so-called odd-
cycle inequalities. In addition, we describe sophisticated methods to add missing edges
to an already contracted graph as well as to compute suitable values to extend the
corresponding LP solution accordingly. This allows us to apply solution techniques that
were originally intended for problems on complete graphs and could not have been used
on a sparse graph otherwise.

The remainder of this thesis is structured as follows: In the first chapter, we introduce
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2 Introduction

fundamental concepts, methods, and results from the fields of graph theory, complexity
theory, linear and integer programming, as well as combinatorial optimization. This lays
the groundwork for understanding the rest of the thesis.

In Chapter 1 we precisely define the max-cut problem, including its reformulation
in terms of quadratic optimization. We proceed with the description of two interest-
ing applications coming from circuit layout design and statistical physics, respectively.
Following a brief introduction to approximate solution techniques, we give a survey of
the associated cut polytope and its facial structure. These combined results will help
in devising a branch-and-cut algorithm later on. Finally, we outline the literature and
previous work on the max-cut problem that is relevant in the scope of this thesis.

Our key contribution, the new shrink separation approach, is presented in Chapter 2.
Here, we elaborate on the single steps of the method and their respective underlying
theory. Afterwards, we describe an actual realization of the shrink separation and point
out its deviations from the theoretical conceptual design. Finally, we investigate some of
the algorithm’s numerical aspects.

Chapter 3 deals with the computational experiments that we carried out to test the
performance of the shrink separation. After introducing the considered test instances, we
specify the experiments’ setup, including the hard- and software used, chosen parameters,
and tested separation scenarios. We proceed by summarizing the results for the different
classes of test instances before concluding with a case study that takes an in-depth look
at a particularly interesting set of instances generated from real-world data.

The last chapter comprises a recapitulation of our contributions and findings in this
study, followed by our conclusions and some suggestions regarding future research direc-
tions.

Finally, Appendices A and B contain the collective tables with detailed information on
the characteristics of the test instances and the results of the computational experiments,
respectively.



Chapter 0

Preliminaries and Notations

In this chapter we introduce fundamental concepts and general terminology used through-
out this thesis. Definitions with a more restricted scope are provided in subsequent
chapters. Some elementary definitions are given to fix the terminology and to make the
presentation more self-contained.

0.1 Graphs

In this thesis we study problems that are defined on graphs. Various forms of graphs are
also encountered in the solution approaches to these problems. We now introduce selected
topics of graph theory. The statement below is mainly adopted from the introductory
chapters of [Die05, GY04].

0.1.1 Nodes, Edges, and Density

An undirected graph is a pair G = (V,E) consisting of a nonempty set V of nodes
and a set E of edges which are unordered pairs of nodes. Unless otherwise stated, the
graphs in this thesis are generally assumed to be undirected. Therefore, we will omit the
term “undirected” from now on. A weighted graph additionally associates a label, or
weight, with every edge in the graph. Weights are usually real numbers.

The node set of a graph G is referred to as V (G), its edge set as E(G). These
notations are independent of any actual names the sets may have in a given context. We
denote an edge e = {u, v} by uv. Also, we always equate a node v and the respective
1-element set {v}.

The cardinality of the node set V , written as |V |, is called the order of G. A graph of
order n can have at most

(n
2

)

edges, in which case we call the graph complete and denote
it by Kn. The ratio |E|/(n

2) of actual and potential edges is called the edge density, or
simply the density, of G. Graphs with a density near 0 and 1 are referred to as sparse
and dense, respectively. However, the decision whether a given graph is considered to
be sparse or dense is not absolute; it usually depends on both the context and the type
of graph at hand.

A graph is called finite if both V and E are finite. In the scope of this thesis we will
exclusively deal with finite graphs.

3



4 Chapter 0. Preliminaries and Notations

0.1.2 Incidence and Adjacency

A node v is called incident with an edge e, and vice versa, if v ∈ e. The two nodes
incident with an edge are its ends, and an edge joins its ends. Two nodes are adjacent,
or neighbors, if they are joined by an edge. Two edges e 6= f are adjacent if they share
a common end.

An edge joining a node with itself is called a loop. A collection of at least two
edges sharing the same ends is referred to as multiple edge or parallel edge. A graph
without loops or multiple edges is called simple.

0.1.3 Cuts and Degree

Let U,W ⊆ V be two node sets. We call the set of edges with precisely one end in U a cut
of G and denote it by δ(U). In this context, the set U and its complement U∁ := V \U
are referred to as the shores of the cut. We write δ(v) instead of δ({v}) for a node v ∈ V
and call δ(v) the star of v. We will also use the abbreviation (U : W ) := δ(U) ∩ δ(W )
for the set of edges with one end in U and the other end in W .

The degree deg(v) of a node v is the number of edges incident with v, loops counting
twice. Thus, for graphs without loops the degree of v is identical to |δ(v)|.

0.1.4 Paths, Cycles, and Connectivity

A path is a nonempty graph P = (V,E) with the node set V = {vi | i = 0, . . . , k} of
pairwise distinct nodes and the edge set E = {vivi+1 | i = 0, . . . , k − 1}. The nodes v0

and vk are linked by P and are called its ends. The remaining nodes v1, . . . , vk−1 are
called the inner nodes of P . A path is often referred to by the sequence of its nodes,
i. e., P = v0v1 . . . vk, and is called a path from v0 to vk or simply a (v0, vk)-path. The
number of edges of a path is its length. In weighted graphs, however, the length of a
path commonly refers to the aggregate weight of its edges rather than their number.

If P = v0 . . . vk−1 is a path of length at least 2 then the graph C := (V,E ∪ vk−1v0) is
called a cycle. As with paths, a cycle is often referred to by the (cyclic) sequence of its
nodes, e. g., the above cycle C could be written as v0 . . . vk−1v0. The length of a cycle
is the number of its edges (or nodes) and a cycle of length k is also called a k-cycle. A
chord of a cycle C is an edge that joins two nodes of C which are not adjacent in the
cycle.

Two nodes u, v in a graph G are connected if they are linked by a path in G. The
graph G itself is connected if this is true for any two of its nodes. The distance between
two nodes u and v in a graph G is the length of a shortest (u, v)-path in G; if no such
path exists, we set the distance to infinity.

0.1.5 Subgraphs, Connected Components, and Contractibility

Let G = (V,E) and G′ = (V ′, E′) be two graphs. If V ′ ⊆ V and E′ ⊆ E then G′ is a
subgraph of G (and G a supergraph of G′), written as G′ ⊆ G.

If G′ ⊆ G and G′ contains all the edges uv ∈ E with u, v ∈ V ′ then G′ is an induced
subgraph of G. We say that V ′ induces or spans G′ in G and write G′ = G[V ′]. Thus,
for any node set U ⊆ V , the (node-)induced subgraph G[U ] is the graph on U whose
edges are exactly the edges of G with both ends in U . Finally, G′ ⊆ G is a spanning
subgraph of G if V ′ spans all of G, i. e., if V ′ = V .
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A maximal (with respect to edge inclusion) connected subgraph of G is called a
connected component of G. A complete subgraph of G is called a clique of G.

We call the operation of identifying a pair of adjacent nodes—while preserving all
other adjacencies between nodes—an elementary contraction, or simply a contrac-
tion. We assume that multiple edges arising from a contraction are replaced by single
edges. A graph G is called contractible to another graph G′ if G′ can be obtained from
G by a sequence of contractions.

0.1.6 Trees and Forests

An acyclic graph, i. e., a graph not containing any cycles, is called a forest. A connected
forest is called a tree. Thus, a forest is a graph whose connected components are trees.
The nodes of degree 1 in a tree are its leaves, the remaining nodes are its inner nodes.

Sometimes it is convenient to consider one node of a tree as special. Such a node is
called the root of this tree. Note that the root of a tree is never called a leaf, even if it
has degree 1. A tree with a fixed root is called a rooted tree.

In a rooted tree T , the nodes at distance k from the root have height k and form the
k-th level of T . The root has height 0. The height of T itself is the maximum height of
its nodes. The nodes on level k + 1 which are adjacent to a node v on level k are called
the children of v and v is called the parent of its children. We refer to children of the
same parent as siblings. If every node in T has at most k children, k ≥ 2, we call it
a k-ary tree. In case of a 2-ary tree, we use the term binary tree instead.

0.1.7 Embeddings and Genera

Let Sk denote the orientable surface formed by adding k handles to the sphere. The
sphere itself is denoted by S0. It is topologically equivalent to the flat plane since we
can create a hole in the sphere’s surface and then stretch out the surface onto the plane.
The torus is S1, the double-torus S2, and so on. The genus of Sk is the number of
handles, k.

An embedding of a graph into a surface is a drawing of the graph on the surface
in such a way that its edges may intersect only at their ends. In other words, the graph
can be drawn on the surface without any edges crossing. The genus of a graph is the
minimum integer g such that the graph can be embedded into Sg.

0.1.8 Selected Classes of Graphs

A graph G = (V,E) is bipartite if its node set V can be partitioned into two nonempty
subsets V1 and V2 such that each edge has one end in V1 and the other end in V2. G
is complete bipartite if each node in V1 is joined to each node in V2. We denote the
complete bipartite graph with |V1| = m and |V2| = n by Km,n.

A graph is planar if it can be drawn in a plane without any edges crossing, i. e., if it
has genus 0. We call a nonplanar graph G almost planar if it contains a node v such
that G becomes planar by removing v and all its incident edges.

A graph is k-regular if all its nodes have the same degree k. A 3-regular graph is
called cubic.

A grid graph is a graph that can be mapped to a grid, i. e., each node corresponds
to a grid point and each edge corresponds to a tie between the respective grid points of
its ends.
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0.2 Affine Geometry and Polyhedra

A basic knowledge of polyhedral theory is essential to understand this thesis. We now
give an overview of the relevant concepts of affine geometry and polyhedral theory. It
is mainly based on the introductory chapters of [Brø83, Zie06]. We assume familiarity
with the standard linear theory of the real vector space Rd, in particular basic notions
such as subspaces, linear independence, dimension, scalar product, and so forth.
As a convention, vectors (e. g.: “x”) are typeset bold while scalars (e. g.: “α”), including
single vector entries (e. g.: “xi”), are typeset in regular font weight.

0.2.1 Affine Subspaces

A linear subspace of Rd is a nonempty set L ⊆ Rd such that λ1x1 + λ2x2 is in L for
all x1,x2 ∈ L and all λ1, λ2 ∈ R. Thus, a linear subspace always contains the origin 0
which is the appropriately sized vector of all zeros.

For a pair of sets X,Y ⊆ Rd, we define the Minkowski sum X + Y as the set of
all elements x + y with x ∈ X and y ∈ Y . An affine subspace of Rd is a translate of
a linear subspace, i. e., a subset A = x + L where x is a vector in Rd and L is a linear
subspace of Rd. Note that for a given affine subspace A, the linear subspace L is unique
whereas x can be chosen arbitrarily in A.

The dimension of an affine subspace is the dimension of its corresponding linear
vector space. Affine subspaces of dimension 0, 1, 2, and d − 1 in Rd are called points,
lines, planes, and hyperplanes, respectively.

Let λ,x1, . . . ,xn ∈ Rd and let 1 denote the appropriately sized vector of all ones. We
call the linear combination

n
∑

i=1

λixi (0.1)

an affine combination if the scalar product 1T λ =
∑n

i=1 λi equals 1. Furthermore, we
call (0.1) a conic combination if λ ≥ 0, and a convex combination if it is both conic
and affine. We say that the vectors x1, . . . ,xn are affinely independent if (0.1) with
1T λ = 0 can only have the value 0 when λ = 0. In other words, none of the vectors is
an affine combination of the remaining ones.

For any subset X ⊆ Rd, the affine hull aff(X) is the set of all affine combinations
of points of X. The conic hull cone(X) and the convex hull conv(X) are defined
analogously.

0.2.2 Hyperplanes, Halfspaces, Polyhedra, and Polytopes

For a ∈ Rd and α ∈ R, we denote the hyperplane defined by the equation aT x = α by

H(a, α) := {x ∈ Rd | aT x = α}.

The corresponding inequality aTx ≤ α defines a closed halfspace

K(a, α) := {x ∈ Rd | aT x ≤ α}

which is bounded by the hyperplane H(a, α). In other words, the bounding hyperplane
is the collection of all points for which the inequality is tight, i. e., for which the inequality
is satisfied with equality. For a given inequality aT x ≤ α, we call aTx the left hand
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side and α the right hand side. Where appropriate, we will use the abbreviation (a, α)
instead of aTx ≤ α.

The intersection of a finite number of closed halfspaces is called a polyhedron. Every
polyhedron is closed and convex. The convex hull of a nonempty finite set is called a
polytope. A polytope is a bounded polyhedron. Consequently, there are two ways
of describing a polytope: as the convex hull of a nonempty finite set, also called V-
representation, or as the bounded intersection of finitely many closed halfspaces, also
called H-representation. A nonempty subset C ⊆ Rd is a cone if with any finite set
of vectors in C it also contains all their conic combinations. In particular, every cone
contains the origin 0. A cone is called polyhedral if it can be obtained as the conic hull
of a finite set of vectors.

The concepts of polyhedron, polytope, and polyhedral cone are related by means of
the decomposition theorem for polyhedra.

Theorem 0.1 (Decomposition Theorem for Polyhedra). A subset Q ⊆ Rd is a polyhedron
if and only if Q = P + C for some polytope P and some polyhedral cone C.

Let P be a polyhedron in Rd and let K := K(a, α) be a closed halfspace in Rd with
the corresponding bounding hyperplane H. We say that K and its defining inequality
aT x ≤ α, respectively, are valid for P if P ⊆ K. If, in addition, P ∩ H 6= ∅, we call K
and H a supporting halfspace and a supporting hyperplane of P , respectively. If
a supporting hyperplane H of P does not contain the entire polyhedron P , we call it a
proper supporting hyperplane.

A face F of a polyhedron P is the intersection of P and the bounding hyperplane of
a valid halfspace K(a, α) of P , i. e.,

F = P ∩ H(a, α).

We also say that the inequality aT x ≤ α defines the face F . If H(a, α) is a proper
supporting hyperplane of P , we call F proper. There are only two improper, or
trivial, faces of P , namely the empty set and the polyhedron P itself.

The dimension dim(F ) of a face F of P is the dimension of its affine hull aff(F ).
Since aff(F ) is an affine subspace of Rd—and thus a translate of a unique linear sub-
space L—the dimension of the face F equals the dimension of L. As a convention, we
set the dimension of the empty set to −1. The faces of dimension 0, 1,dim(P ) − 2, and
dim(P )−1 are called the vertices, edges, ridges, and facets of P , respectively. A ver-
tex v of P is also referred to as extreme point. This is because v cannot be obtained
as a proper convex combination of two distinct points in P . In other words, there are no
two distinct points a, b ∈ P such that

v = λa + (1 − λ)b,

for a suited scalar λ in the open range (0, 1).

0.3 Algorithms and Complexity

Complexity theory investigates the difficulty of problems and the efficiency of the al-
gorithmic methods to solve them. Below, we give a brief and very informal introduc-
tion to algorithms and complexity, in particular to polynomial-time solvability and NP-
completeness. The following explanations are mainly adopted from [Sch03]. For an
in-depth description of the topic we refer to [GJ79].
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0.3.1 Polynomial-time Solvability

An algorithm can be interpreted as a finite set of instructions, where each instruc-
tion performs a sequence of elementary steps on certain data. A polynomial-time
algorithm, or simply polynomial algorithm, is an algorithm that terminates after a
number of elementary steps that is bounded by a polynomial in the size of the input. A
problem is called polynomial-time solvable, or polynomial, if it can be solved by a
polynomial algorithm.

For a more detailed specification of an algorithm’s complexity, we use the so-called O-
or Landau notation. Let f, g be two real-valued functions with common domain X ⊆ R.
We say that the function f(x) is O

(

g(x)
)

if there exists a nonnegative constant c such
that f(x) ≤ cg(x)+c for all x ∈ X. Using this notation, we call an algorithm polynomial
if it terminates after O

(

p(x)
)

elementary steps, where p is a polynomial in the size of the
input.

0.3.2 NP-completeness and Reducibility

A decision problem is a problem that can be answered by ‘yes’ or ‘no’. Note that a
decision problem is completely described by the inputs with positive answer.

We introduce two complexity classes which are collections of certain decision prob-
lems. The class P is the collection of all polynomial-time solvable decision problems. The
class NP is the collection of all decision problems for which one can verify in polynomial-
time that a positive answer to a given input is indeed correct. Obviously, P is a subset
of NP. Yet it is still unknown whether this inclusion is proper.

A decision problem Π is called polynomial-time reducible, or polynomially re-
ducible, to the decision problem Π′ if there exists a polynomial algorithm A that trans-
forms inputs x of Π into inputs x′ := A(x) of Π′ such that

x has positive answer ⇔ x′ has positive answer, for all inputs x of Π.

The above polynomial reduction characterizes the decision problem Π′ to be at least as
hard as Π.

A decision problem Π in NP is called NP-complete if each problem in NP is
polynomially reducible to it. Less formally speaking, the NP-complete problems are the
most difficult problems in NP.

0.3.3 Complexity of Optimization Problems

In the scope of this thesis, we are not concerned with decision problems but with opti-
mization problems of the form

max
x∈X

f(x),

where X is a collection of elements derived from the input and f is a function with
domain X. Since an optimization problem is not a decision problem, we cannot directly
apply the notions of complexity introduced so far. Instead, we assign to the optimization
problem an associated decision problem:

“Given a value λ, is there an x ∈ X with f(x) ≥ λ?”
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This decision problem is polynomially reducible to its associated optimization prob-
lem, since the optimization also answers the yes-no question. Thus, the notion of poly-
nomial reduction to an optimization problem extends the previously introduced concept
of polynomial reduction to a decision problem in a natural fashion.

Finally, we say that an optimization problem P is NP-hard if there exists an NP-
complete decision problem that is polynomially reducible to P . This is equivalent to
demanding that all decision problems in NP have to be polynomially reducible to P .

0.4 Integer Programming and Combinatorial Optimization

Optimization, or mathematical programming, is concerned with finding the best
elements from some set of available alternatives. To give an example, a possible optimiza-
tion problem is to minimize or maximize a function over a set of feasible solutions. We
now introduce selected subfields of mathematical programming that are relevant for this
thesis, namely linear programming, integer programming, and combinatorial optimiza-
tion. The following statement is based on the introductory chapters of [NW99, Thi95].

0.4.1 Linear Programming, Duality, and the Simplex Method

One of the fundamental models in mathematical optimization is linear programming.
Let Rm×n denote the set of (m × n) real matrices and let Rn

+ denote the set of non-
negative n-dimensional real vectors. The standard form of a linear programming
problem, or simply linear program (LP), is as follows:

max cT x

s.t. Ax ≤ b

x ∈ Rn
+,

(0.2)

where x := (x1, . . . , xn) is the vector of variables, A = (aij) is a matrix in Rm×n, and b

and c are vectors in Rm and Rn, respectively.
The conditions Ax ≤ b and x ∈ Rn

+ are referred to as constraints. We call the set
S := {x ∈ Rn

+ | Ax ≤ b} the feasible set of the LP. It is the intersection of finitely many
closed halfspaces and is sometimes also referred to as feasible polyhedron PLP. The
elements of S are the feasible solutions of the LP. If there exists at least one feasible
solution, i. e., S 6= ∅, then we call the LP feasible.

The linear function cT x : Rn → R is called the objective function. A feasible
solution x∗ ∈ S for which the value of the objective function is maximal, i. e.,

cT x∗ ≥ cTx, for all x ∈ S,

is an optimum solution. In this case, cT x∗ is the optimum value of the LP. A feasible
LP may not have an optimum solution. We say that an LP is unbounded if for any
scalar λ ∈ R there is a feasible solution x ∈ S such that cT x > λ.

The standard form (0.2) can be seen as the prototypical linear program. Any LP can
be converted into standard form. To give some examples: a minimization problem can be
transformed into a maximization problem by multiplying the objective function by −1;
or an equality constraint aT

i x = bi can be expressed by the two inequality constraints
aT

i x ≤ bi and −aT
i x ≤ −bi. Therefore, we can assume a given LP to be in standard form

without loss of generality.
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With every LP in standard form, also called the primal problem, we associate its
dual problem

min bT u

s.t. AT u ≥ c

u ∈ Rn
+.

A primal and its corresponding dual are closely related. Note that the dual of the dual
is again the primal. Hence, the denotation of an LP as primal or dual is arbitrary and
depends on the given context. Feasible solutions of the dual provide upper bounds on
the optimum value of the primal, while feasible solutions of the primal yield lower bounds
on the optimum value of the dual. A fundamental result of linear programming duality
is the following LP duality theorem.

Theorem 0.2 (LP Duality Theorem). Given a primal problem (P) and its corresponding
dual problem (D).

(i) If both (P) and (D) are feasible then (P) and (D) have optimum solutions and the
optimum values of (P) and (D) are equal.

(ii) If (P) (resp. (D)) is infeasible then (D) (resp. (P)) is either infeasible or unbounded.

(iii) If (P) (resp. (D)) is unbounded then (D) (resp. (P)) is infeasible.

There are several approaches for solving LPs systematically. The most prominent
solution techniques are the simplex method and the class of interior point methods.
There is also the ellipsoid method, but it has no practical relevance. It is of theoretical
interest, though, since it can be used to prove the polynomial-time solvability of LPs.

However, in this brief introduction we focus exclusively on the simplex method. It
was originally created by the American mathematician George B. Dantzig [Dan51]. The
initial method has since undergone numerous improvements and has become one of the
most important solution technique for LPs in practice. Its basic idea is best explained
geometrically. Maximizing the linear function cT x over the feasible polyhedron PLP is
equivalent to translating the hyperplane H = H(c, 0) alongside the vector c until it
becomes a supporting hyperplane H ′ of PLP. Then, all the points in the face H ′ ∩ PLP

are optimum solutions. Note that hyperplanes such as H and H ′ are also referred to as
iso-value planes. This is because all the points in an iso-value plane have the same
objective function value, namely the right hand side value of the equation that defines the
hyperplane. If the LP is feasible and bounded then at least one of the vertices of PLP is an
optimum solution. Hence, the search for optimum solutions can be restricted accordingly.

The simplex method exploits this fact by starting at a vertex of PLP and then it-
eratively moving from the current vertex to one of the adjacent vertices with a better
objective value. The method terminates if none of the adjacent vertices can improve the
objective value of the current vertex. Due to the convexity of the feasible polyhedron,
this locally optimal solution is also globally optimal.

However, the number of vertices of PLP can be exponential in the number of variables
and constraints. To give an example, the n-dimensional unit cube can be described us-
ing n variables and 2n inequalities, but it has 2n vertices. In 1972, Klee and Minty [KM72]
gave an example of an LP in which the feasible polyhedron PLP is a distortion of an n-
dimensional cube. They showed that the simplex method as formulated by Dantzig visits
all 2n vertices before arriving at the optimal vertex. This proves the exponential worst-
case complexity of the algorithm. Since then, similar examples could be constructed for
almost every known variant of the algorithm.
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Nevertheless, the simplex method is remarkably efficient in practice. In 2004, Spiel-
man and Teng [ST04] introduced the notion of smoothed complexity to provide a
more realistic analysis of the performance of algorithms. Using continuous interpolation
between the worst-case and average-case analyses of algorithms, they showed that “the
simplex algorithm usually takes polynomial time.”

In conclusion, the field of linear programming is very well studied and provides power-
ful methods to solve LPs efficiently. Unfortunately, only a minority of practical problems
can be modeled as pure LPs. In most cases, some or all of the variables are restricted to
integral values. By adding integrality conditions to a subset of the variables we obtain
the class of linear mixed integer programming problems. However, in the scope of
this thesis we only consider the special case where all the variables have to be integral.

0.4.2 Integer and Binary Programming

Let Zn
+ denote the set of nonnegative n-dimensional integral vectors. A linear integer

programming problem, or simply integer program (IP), has the form

max cTx

s.t. Ax ≤ b

x ∈ Zn
+.

(0.3)

Except for the integrality constraints x ∈ Zn
+, its structure is similar to that of an LP.

Yet, in contrast to an LP, the feasible set S := {x ∈ Zn
+ | Ax ≤ b} is not a polyhedron.

For an IP, we define the associated polyhedron PIP as the convex hull of the feasible
set. Clearly, the associated polyhedron PIP satisfies

S ⊆ PIP ⊆ {x ∈ Rn
+ | Ax ≤ b},

with the inclusions being proper in general.
By further restricting the variables to be either 0 or 1, we obtain a linear binary

programming problem, or binary program,

max cTx

s.t. Ax ≤ b

x ∈ {0, 1}n.

Binary programs are an important special case of integer programs and arise, for instance,
in the context of combinatorial optimization.

0.4.3 Combinatorial Optimization

Combinatorial optimization problems are concerned with the optimization of an objective
function over collections of subsets of a finite set. A generic combinatorial optimization
problem can be defined as follows. Let E be a finite set of n elements and let c ∈ Rn be
the vector of the weights assigned to the elements of E. For an arbitrary subset F ⊆ E,
we define its aggregate weight c(F ) :=

∑

e∈F ce. Suppose we are given a collection F
of subsets F ⊆ E. These subsets can be interpreted as the feasible solutions out of
the power set 2E of all possible subsets of E. The corresponding combinatorial
optimization problem is

max
F∈F

c(F ).
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To solve this problem, we need a characterization of the set F of feasible solutions. This
can be accomplished by using binary vectors to represent the elements of F .

The incidence vector χF of a subset F ⊆ E is a vector in {0, 1}n with

χF
e :=

{

1 if e ∈ F,

0 if e ∈ E \ F.

Moreover, we define the associated polytope PF of the combinatorial optimization
problem as the convex hull of the incidence vectors χF of all F ∈ F , i. e.,

PF = conv{χF | F ∈ F}.

Since the incidence vectors are binary vectors, they are exactly the vertices of the poly-
tope PF . In principle, we can now reformulate the combinatorial optimization problem
as

max cT x

s.t. x ∈ PF

x ∈ {0, 1}n.

Unfortunately, we do not know any efficient algorithm to solve such an optimization
problem whose feasible set is only described by a V-representation. However, since every
polytope also has an H-representation, there exists a finite set of inequalities Ax ≤ b,
also called a linear description, such that PF = {x ∈ Rn

+ | Ax ≤ b}. So, theoretically
we could transform the combinatorial optimization problem into a binary program. In
fact, there are techniques, like, for example, the Fourier-Motzkin elimination, to
transform the different representations of the polytope PF into one another. Yet, this
is only viable for very small problem instances. In general, a linear description of a
combinatorial optimization problem is either not completely known or it comprises too
many inequalities to be represented explicitly.

However, we do not necessarily need a complete linear description for finding an
optimum solution; it is sufficient to know the local facet structure of the associated
polytope PF near a vertex that represents such a solution. This idea is exploited by the
branch-and-cut method.

0.4.4 Branch-and-Cut

The branch-and-cut method is an algorithmic approach for solving integer programs.
Thus, it is also applicable to combinatorial optimization problems that are modeled
as binary programs as described above. Branch-and-cut is a conjunction of cutting
plane methods, used to dynamically generate valid inequalities, with a divide-and-
conquer technique called branch-and-bound that recursively splits the initial problem
into subproblems. The first description of this combined method can be found in [Mil76]
for the traveling salesman problem. However, a branch-and-cut algorithm of the form
to be outlined shortly was first published by Grötschel, Jünger, and Reinelt [GJR84] for
the linear ordering problem. The actual term “branch-and-cut” has been introduced by
Padberg and Rinaldi [PR87, PR91] for an algorithm for solving the traveling salesman
problem.

A key element of the branch-and-cut method is the use of relaxations to obtain bounds
on the optimum value of the problem to be solved. Let S be the feasible set of an integer
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program of the form (0.3). We call a maximization problem

max
x∈R

f(x)

a relaxation of the IP if

S ⊆ R and cTx ≤ f(x), for all x ∈ S.

So, an optimum solution of the relaxation provides an upper bound on the optimum
value of the integer program.

We obtain the so-called linear programming relaxation, or LP relaxation, by
replacing the integrality constraints of the IP with the weaker conditions x ∈ Rn

+. The LP
relaxation is a pure linear program and can be solved efficiently using, for instance, the
simplex method. A corresponding optimum solution will be referred to as LP solution.
However, since we dropped the integrality constraints, the LP solution may be fractional
and hence infeasible for the IP. Also, even an integral LP solution does not necessarily
represent a feasible solution of the IP. Yet, in both cases we can tighten the relaxation
by adding appropriate inequalities to improve the approximation of the polyhedron PIP

associated with the integer program. Such a tightening inequality aT x ≤ α has to be
valid for the polyhedron PIP while the LP solution has to lie outside the respective closed
halfspace K(a, α). We also say that the inequality has to be satisfied by all points
of PIP while being violated by the LP solution. Descriptively speaking, the bounding
hyperplane H(a, α) separates, or cuts, the LP solution from the polyhedron PIP. Hence,
we call H(a, α) a separating hyperplane, or cutting plane.

The task to decide whether a separating hyperplane exists and, if so, compute one,
is called separation problem, or simply separation. An important theorem in this
context is that, under some technical conditions, the optimization problem is polynomial-
time solvable if and only if the corresponding separation problem is polynomial [GLS93].

In theory, we could solve the IP by iterating the process of tightening and solving
the LP relaxation until we obtain an optimum solution. In practice, however, these pure
cutting plane methods tend to progress asymptotically towards the solution and need
too many iterations. Nevertheless, cutting plane generation proved to be very effective
in conjunction with branch-and-bound.

The workflow of a generic branch-and-cut algorithm is depicted in Figure 0.11 on
page 14. The algorithm uses a rooted tree, the so-called branch-and-cut tree, to store
and manage the subproblems, also called nodes. Each node maintains a local upper
bound lub on the optimum value of its corresponding subproblem. We initialize the
root node with the IP (0.3) to be solved. So, the lub of the root node is in fact a
global upper bound gub. In addition, we maintain a global lower bound glb that
equals the objective value of the best known feasible solution at any one time. We set
the initial values of gub and glb to plus and minus infinity, respectively, and enter the
bounding phase.

For a given subproblem, the bounding starts by solving the LP relaxation of the
IP and checking whether it is feasible. If not, we can prune the subproblem, i. e., we
can remove the node from the branch-and-cut tree. Otherwise, we update the lub with
the optimum value of the LP relaxation. Next, we check whether the lub is less than or
equal to the glb. If so, none of the feasible solutions of the subproblem can increase the

1This figure is adapted from [Thi95].
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Figure 0.1: Workflow of a generic branch-and-cut algorithm.
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glb and thus the node can be pruned. Otherwise, we proceed by testing whether the LP
solution is integral and feasible, in which case the subproblem has been solved and can
be pruned. If its optimum value increases the glb, we update the bound accordingly and
prune all remaining nodes with a lub less than or equal to the new glb.

If the LP solution is fractional, or integral but infeasible, we enter the separation.
The generated cutting planes are added to the LP relaxation and we move to the next
iteration of the bounding phase. There is also the option to try and increase the glb by
heuristically deriving an integral feasible solution from an infeasible LP solution. This
can be done in the step “exploit LP”.

To avoid a slow-down of computation by unnecessary growth of the number of con-
straints in the LP relaxation, we eliminate some of the inequalities from time to time.
For example, we could remove the inequalities that are no longer violated by the current
LP solution. The eliminated constraints are stored in a constraint pool. After a num-
ber of iterations, we can check whether some of the inequalities in the pool have become
violated again after their removal from the LP relaxation. This checking is called pool
separation.

If the separation fails to find cutting planes or if the lub does not decrease significantly
over a specified number of iterations (“tailing-off”) then the algorithm branches at the
current node. In other words, it splits the subproblem into two new subproblems such
that the union of their respective feasible sets equals the feasible set of the split problem.
This can be accomplished, for instance, by selecting a fractional component x̄j of the LP
solution and adding the constraint xj ≤ ⌊x̄j⌋ to the first new subproblem and xj ≥ ⌈x̄j⌉
to the second one. Here, ⌊x̄j⌋ is the largest integer not greater than x̄j while ⌈x̄j⌉ is
the smallest integer not less than x̄j . This strategy is called branching on a single
variable. After the branching, we select one of the remaining subproblems from the
branch-and-cut tree and reenter the bounding phase.

The branch-and-cut algorithm terminates as soon as the branch-and-cut tree is empty.
However, in particular for hard to solve problems it is common practice to abort the algo-
rithm once a specified time or iteration limit is exceeded. In this respect, the advantage
of the branch-and-cut algorithm is that, together with a feasible solution, it also provides
an estimate of the quality of the solution. The quality is measured by the relative gap
which is defined as (gub−glb)/glb. In particular, if the numerator gub − glb, also known
as the absolute gap, is 0—or less than 1 in case of an integral objective function—then
the solution is optimal.

Another advantage of branch-and-cut is its use of separation techniques to dynami-
cally generate valid inequalities. This allows us to start the optimization with a partial
and/or approximate linear description of the IP. The algorithm will then adaptively refine
this description in the vicinity of the current LP solution.

In conclusion, the branch-and-cut method is a powerful tool for solving integer pro-
grams. However, the overall success of the method heavily depends on the quality of the
lower and upper bounds provided by primal heuristics and the separation, respectively.
This is because the quality of the bounds determines the effectiveness of the pruning,
which is the only means of preventing the branching from degenerating into the total
enumeration of all feasible solutions.
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0.4.5 Target Cuts

When building a branch-and-cut solver for a specific combinatorial optimization problem,
one usually implements separation procedures for selected classes of inequalities that are
valid or even facet defining for the associated polyhedron. In most cases, these inequalities
follow the so-called template paradigm. This means that all the inequalities in a
given class share a similar structure. However, there are ways to separate facet defining
inequalities without putting any restrictions on their actual structure. In the following we
present such a procedure for the separation of so-called target cuts. These inequalities
were introduced by Buchheim, Liers, and Oswald [BLO08]. They are enhancements
of the so-called local cuts, which were proposed by Applegate, Bixby, Chvátal, and
Cook [ABCC01] in the context of the traveling salesman problem. Compared to their
predecessors, target cuts have the key benefit of being facet defining. We now provide a
brief survey of the theory of target cuts. For a detailed explanation of the topic, we refer
to Buchheim, Liers, and Oswald [BLO08].

Assume we are given a polytope P := conv {x1, . . . ,xt} in Rm and an infeasible
point x∗ that we want to separate from it. A crucial precondition for the efficiency
of both the local cut and the target cut generation procedure is the sufficient reduc-
tion of the problem size. Therefore, we need an appropriate projection π : Rm → Rr

with r ≤ m. This could be, for instance, the orthogonal projection. We then consider
the projected polytope P := π(P ) which is the convex hull of the points π(x1), . . . , π(xt)
in Rr. Also, we denote the projection of the infeasible point by x∗. In general, if r
is substantially less than m then many of the points xi := π(xi) will correspond, such
that P = conv {x1, . . . ,xs} with s substantially less than t. As a consequence, if r
is sufficiently small then the polytope P can be dealt with efficiently. Note that the
remainder of the procedure differs depending on whether or not the polytope P is full-
dimensional. However, we will focus entirely on the full-dimensional case since the other
one is irrelevant in the scope of this thesis.

Our task consists in answering the question whether or not x∗ is contained in the
projected polytope P . If not, we want to derive a respective cutting plane. To this end,
we first choose a point q in the interior of P . This could be, for instance, the barycenter of
its vertices. Then, the task can be accomplished by solving the following linear program:

min

s
∑

i=1

λi

s.t.
s

∑

i=1

λi(xi − q) = x∗ − q

λ ≥ 0.

(0.4)

By construction, the feasible solutions of the LP (0.4) are exactly all the possible ways
to obtain x∗ − q as a conic combination of the points xi − q. Strictly speaking, we need
a convex combination rather than a conic one, i. e., we require λ to satisfy

∑s
i=1 λi = 1.

However, since q is an interior point of P , we can obtain the origin 0 as a convex
combination of the points xi − q. This means that for any conic combination with
∑s

i=1 λi < 1 we can derive a respective convex combination that yields the same point.
Therefore, x∗ is contained in P if and only if the optimum value of (0.4) is at most 1.
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In order to obtain a cutting plane for x∗, we introduce the dual of the LP (0.4):

max aT (x∗ − q)

s.t. aT (xi − q) ≤ 1, for i = 1, . . . , s

a ∈ Rr.

(0.5)

In this context, the fact that q is an interior point of P has several important conse-
quences. First of all, it ensures that all the candidate inequalities are indeed of the form
aT (x − q) ≤ 1 (up to positive scaling) and thus correspond exactly to the feasible so-
lutions of (0.4). Furthermore, it guarantees that (0.4) is bounded. Finally, it enables
the handling of homogeneous inequalities which have right hand side zero. For more
information we refer to Section 2.3 about polarity in [Zie06].

If the optimum value of the LP (0.4)—and thus of its dual (0.5)—is greater 1 then
the corresponding optimum solution a∗ of the dual yields the desired cutting plane.
Theorem 0.3 summarizes the relevant characteristics.

Theorem 0.3 (cf. Theorem 1 in [BLO08]). Let a ∈ Rr and P be full-dimensional. Then,
aT (x − q) ≤ 1 is valid for P if and only if a is feasible for the dual (0.5). It defines a
facet of P if and only if a is a vertex of the polytope of feasible solutions of the dual.

There is also a geometrical interpretation of the target cut generation procedure.
Consider the following non-linear program:

min µ

s.t.
s

∑

i=1

λi ≤ 1

s
∑

i=1

λiµ(xi − q) = x∗ − q

λ ≥ 0, µ ≥ 0.

(0.6)

It is equivalent to the LP (0.4) and can be interpreted as follows: Let µP denote the
polytope P scaled by the factor µ with respect to the scaling center q. The optimum
value of (0.6) yields the minimal factor µ by which the polytope P has to be scaled in
order to contain the infeasible point x∗. If µ > 1 then the point x∗ lies outside P . A
graphical depiction is given in Figure 0.22.

Although the problem size has already been reduced by considering the projection P of
the initial polytope P , the formulation of the dual (0.5) still features one column for each
vertex of P . For large numbers of vertices it can be beneficial to use a so-called delayed
column generation procedure. This approach requires an oracle for maximizing an
arbitrary linear function over P . We start with a small set of vertices x1, . . . ,xh and
solve the corresponding reduced linear program to obtain a target cut aT x ≤ α for the
polytope P h = conv {x1, . . . ,xh}. Next, we call the oracle to decide whether or not
the target cut is violated by any vertex of P . This is done by using aTx as the linear
function to be maximized. If the returned solution y satisfies aTy ≤ α then the target
cut is valid for the polytope P . Otherwise, we define the additional vertex xh+1 := y,

2This figure is adapted from [BLO08].
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Figure 0.2: Scaling of the polytope P .

add the corresponding column to the reduced linear program, and search for the next
target cut.

In general, the number of columns generated in the course of the above procedure
is much smaller than the number of vertices of P . However, whether or not delayed
column generation will improve the performance ultimately depends on the efficiency of
the oracle.



Chapter 1

The Max-Cut Problem

The max-cut problem is one of the most studied combinatorial optimization problems.
It is a very generic problem that can be used to model various applications. Moreover,
it is equivalent to other interesting optimization problems as we will see in Section 1.1.

The max-cut problem can be defined as follows.

Definition 1.1 (Max-Cut Problem). Let G = (V,E) be an undirected graph with edge
weights c ∈ R|E|. The max-cut problem consists in finding a set of nodes U ⊆ V such
that the aggregate weight c

(

δ(U)
)

of the induced cut δ(U) is maximal.

The max-cut problem is NP-hard in general. Yet, there are certain special cases for
which it can be solved in polynomial time. We will elaborate on this topic in Section 1.6.

In this chapter we present heuristics to compute approximate solutions to the max-
cut problem. We also cover fundamental polyhedral aspects that are necessary to derive
a branch-and-cut algorithm. First, however, we start with two equivalent optimization
problems.

1.1 Equivalent Optimization Problems

We now introduce two optimization problems that can be reduced to the max-cut prob-
lem, namely unconstrained quadratic −1/+1 respectively 0/1 optimization. The equiva-
lence between quadratic 0/1 optimization and the max-cut problem has been pointed out
by Hammer [Ham65] (see also [PR74, Han79]). The corresponding reduction consists of
two steps: First, the quadratic 0/1 optimization problem is transformed into a quadratic
−1/+1 optimization problem, which is then modeled as a max-cut problem. For a better
understanding, the following sections present these two steps in reverse order.

1.1.1 Unconstrained Quadratic −1/+1 Optimization

The unconstrained quadratic −1/+1 optimization problem is a discrete quadratic
optimization problem of the form

min

n−1
∑

i=1

n
∑

j=i+1

qijxixj +

n
∑

i=1

pixi

s.t. xi ∈ {−1,+1}, for i = 1, . . . , n.
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By introducing an auxiliary variable x0 and defining q0j := pj, for j = 1, . . . , n, we can
eliminate the linear term and reformulate the problem as

min f(x) :=

n−1
∑

i=0

n
∑

j=i+1

qijxixj

s.t. xi ∈ {−1,+1}, for i = 0, . . . , n.

(1.1)

Obviously, we have f(x) = f(−x). Also, we can fix the auxiliary variable x0 to 1 without
loss of generality.

In order to model this quadratic problem as a max-cut problem, we construct the
graph G = (V,E) with node set V := {0, . . . , n}, edge set E := {ij | 0 ≤ i < j ≤ n} and
edge weights cij := qij. Each assignment of values −1 or +1 to the variables xi defines a
partition of the node set V into V − := {i ∈ V | xi = −1} and V + := {i ∈ V | xi = +1}.
Hence, we can write f(x) as

n−1
∑

i=0

n
∑

j=i+1

qijxixj =
∑

ij∈E(V −)

cij +
∑

ij∈E(V +)

cij −
∑

ij∈δ(V +)

cij

= −2 ·
∑

ij∈δ(V +)

cij + c(E).

The quadratic −1/+1 optimization problem (1.1) can thus be modeled as a max-cut prob-
lem on the graph G. It has the optimum value −2c∗ + c(E), where c∗ is the weight of a
maximum cut of G.

1.1.2 Unconstrained Quadratic 0/1 Optimization

The second quadratic optimization problem that is equivalent to the max-cut problem is
unconstrained quadratic 0/1 optimization. It has the form

min f(x) := xT Qx

s.t. xi ∈ {0, 1}, for i = 1, . . . , n,

where Q = (qij) is a symmetric (n×n) matrix. Without loss of generality, we can assume
that f(x) does not contain an additional linear term pTx. This is because x2

i = xi and
thus the linear term can be eliminated by replacing qii with q′ii := qii + pi.

The reduction to a max-cut problem consists of two steps. We first reduce the qua-
dratic 0/1 optimization problem to a quadratic −1/+1 optimization problem, which can
then be modeled as a max-cut problem as explained in Section 1.1.1.

For the first step, we exploit the symmetry of the matrix Q and get

f(x) = 2 ·
n−1
∑

i=1

n
∑

j=i+1

qijxixj +
n

∑

i=1

qiixi.

Next, we perform the variable transformation si = 2xi − 1. Obviously, the variables si

satisfy the following condition:

si =

{

+1 if xi = 1,

−1 if xi = 0.
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Hence, we obtain

f(s) =
1

2

( n−1
∑

i=1

n
∑

j=i+1

qij(si + 1)(sj + 1) +

n
∑

i=1

qii(si + 1)

)

=
1

2

( n−1
∑

i=1

n
∑

j=i+1

qij(sisj + si + sj) +

n
∑

i=1

qiisi + C

)

,

with a constant C :=
∑n−1

i=1

∑n
j=i+1 qij +

∑n
i=1 qii.

To uncover the inherent structure of a generic quadratic −1/+1 optimization prob-
lem, we rewrite the term

∑n−1
i=1

∑n
j=i+1 qijsj in the form

∑n
i=1

∑i−1
j=1 qjisi, which equals

∑n
i=1

∑i−1
j=1 qijsi due to the symmetry of Q. Thus, we get

f(s) =
1

2

( n−1
∑

i=1

n
∑

j=i+1

qijsisj +
n

∑

i=1

(

n
∑

j=i+1

qij +
i−1
∑

j=1

qij + qii

)

si + C

)

.

Note that the middle term
∑n

i=1 (
∑n

j=i+1 qij +
∑i−1

j=1 qij + qii )si features two so-called

empty sums, namely
∑0

j=1 q1j and
∑n

j=n+1 qnj. The value of any empty sum is con-
ventionally taken to be zero. Also, since the expression describing the terms of the
summation—in this case qij—is never instantiated in an empty sum, its value is irrele-
vant.

Finally, we introduce pi :=
∑n

j=1 qij for all i = 1, . . . , n and obtain

f(s) =
1

2

( n−1
∑

i=1

n
∑

j=i+1

qijsisj +
n

∑

i=1

pisi + C

)

.

Thus, the quadratic 0/1 optimization problem can be reduced to a quadratic −1/+1
optimization problem. It has the optimum value 1

2(q∗ + C), where q∗ is the optimum
value of the quadratic −1/+1 optimization problem.

In the second step, the quadratic −1/+1 optimization problem is modeled as a max-
cut problem as described in Section 1.1.1. Altogether, we obtain

1
2(−2c∗ + c(E) + C) = −c∗ + 1

2 (c(E) + C)

as the optimum value of the quadratic 0/1 optimization problem, where c∗ is the weight
of a maximum cut.

1.2 Applications

Due to its generic nature, the max-cut problem can be used to model a variety of ap-
plications. In the following we focus on two particular examples. From the field of
statistical physics, we present the problem of finding ground states of Ising spin glasses.
The second problem is the minimization of so-called vias—a problem that arises in very-
large-scale-integration (VLSI) circuit design as well as in the design of printed circuit
boards. The subsequent descriptions are mainly based on [BGJR88]. The figures are
adapted from [Rei07].
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1.2.1 Ising Spin Glasses

In statistical physics, a spin glass is an alloy of magnetic impurities diluted in a non-
magnetic metal. Each magnetic impurity i has a magnetic orientation, called spin, which
is represented by a three-dimensional unit vector si ∈ R3. Between each pair ij of impu-
rities there is an interaction Jij that depends on the nonmagnetic material as well as the
distance rij between the impurities. The absolute value of these interactions decreases
rapidly with the distance. Hence, it is customary to only consider interactions between
close impurities, i. e., the so-called nearest neighbor interactions. The resulting mod-
els are referred to as short range models.

Given a spin configuration ω, the energy of the system is measured by the Hamilto-
nian

H(ω) = −
n−1
∑

i=1

n
∑

j=i+1

Jij sT
i sj − h

n
∑

i=1

sT
i f ,

where f ∈ R3 represents the orientation of an external magnetic field of strength h.
At a temperature of 0◦K, the spin glass attains a minimum energy configuration called
ground state. Since the necessary conditions are hard to realize experimentally, re-
searchers rely on models to simulate the behavior of a spin glass. Regarding ground
states, the simulation consists in minimizing the Hamiltonian associated with the sys-
tem. However, the complexity of the Hamiltonian has led to various simplifications. We
will focus on one particular simplification called the Ising model.

In the Ising model we assume the spins and the external magnetic field to be Ising
spins, i. e., scalars si and f with a value of either +1 or −1. Ising spins correspond to the
notion of the magnetic north pole being ‘up’ or ‘down’. This seems to be quite restrictive
at first glance. However, there are, in fact, substances that show this up/down behavior
of the spins and for which the Ising model is accurate.

As further simplification, we assume the spins to be regularly distributed on a two-
or three-dimensional grid. Interactions are only considered between neighbors in the
grid graph. There are two particular grid models that have been studied intensively.
The first one is the Gaussian model, in which the interaction values are chosen from
a Gaussian distribution. The second one is the ±J-model, where interactions only
attain the values +J and −J , with J being a fixed positive number, according to some
distribution. Note that in the models just introduced, the spins are regularly distributed
on a grid while the interaction values are random. In a real spin glass, on the other hand,
the magnetic impurities themselves are randomly distributed.

We model a spin glass system using a graph G = (V,E) which we call the interaction
graph associated with the system. The nodes and edges of G represent the impurities
and the pairwise interactions between impurities, respectively. To each node i we assign
an Ising spin si ∈ {−1,+1} and to each edge ij we assign an interaction value Jij .
Without loss of generality, we assume the Ising spin f of the external magnetic field to
be +1. Let h denote the strength of this field. The associated Hamiltonian of the system
is a quadratic function in ±1-variables of the following form:

H(ω) = −
∑

ij∈E

Jijsisj − h

n
∑

i=1

si.

Therefore, the problem of finding a ground state can be formulated as an unconstrained
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quadratic −1/+1 optimization problem, which in turn can be modeled as a max-cut prob-
lem as explained in Section 1.1.1.

1.2.2 Via Minimization

The construction of a semiconductor chip comprises several phases, among which are
component placement, wire routing, and layer assignment. We assume that the single
components have been placed on the chip and all connecting wires have been routed. This
is called a transient routing. An example of a transient routing for six components
and eleven connections is depicted in Figure 1.1. As indicated by the figure, a transient

1

1

2

2

3

3

4

4

5 5 6 6

7 7

8

8

9

9

10 10

11 11

Figure 1.1: Example of a transient routing for six components and eleven connections.

routing may contain wire crossings. In order to avoid short circuits, the crossing wires
are assigned to different layers. In this brief introduction we only consider the two-layer
case.

Physically, a change of layers is achieved by placing a so-called via. In very-large-
scale-integration (VLSI), a via is a contact that requires special treatment during
the production process—it occupies additional space, is an obstacle in compaction, and
decreases the yield in the fabrication process. In printed circuit board design, a via
is a hole to be drilled—it causes additional costs and also contributes to failure of the
board due to cracking. Therefore, it is desirable to find a feasible layer assignment
with a minimum number of necessary vias. In the following we present a reduction of
the via-minimization problem to the max-cut problem. This reduction was described
independently by Pinter [Pin84] for VLSI and by Chen, Kajitani, and Chan [CKC83] for
two-layer printed circuit boards.

The placement of vias is restricted by certain design rules. In general, we can partition
each wire into free and critical segments, respectively, such that vias are allowed on
free segments while being forbidden on the critical ones. The partition of the wires for
our example is depicted in Figure 1.2. The critical segments, which are marked by solid
lines, are numbered from 1 to 17. Given such a partition of the wires, we construct the
corresponding layout graph G = (V,E). Its nodes represent the critical segments. We
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Figure 1.2: Partition of wires into free and critical segments.

distinguish two kinds of edges: The conflict edges join nodes whose critical segments
have to be placed on different layers; the continuation edges join nodes whose critical
segments are connected by a free segment. We define the edge set E of the layout graph
as the disjoint union of the set A of conflict edges and the set B of continuation edges.
Figure 1.3 shows the layout graph for our example. Conflict edges are represented by
solid lines and continuation edges by dashed lines, respectively.
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Figure 1.3: Layout graph with conflict edges (solid) and continuation edges (dashed).

We then consider the so-called conflict graph H = (V,A). It has the same node
set as the layout graph, but its edge set is restricted to the conflict edges. If H is not
bipartite then there is no feasible layer assignment and the transient routing has to be
changed. Otherwise, the conflict graph decomposes into bipartite connected components
(V1, A1), . . . , (Vk, Ak). Clearly, the assignment of one node of a component (Vi, Ai) to
a layer implies the assignment of all other nodes of Vi. As a result, we can contract
each component (Vi, Ai) to an arbitrary representative node vi ∈ Vi without loss of
generality. When applied to the layout graph G, this contraction removes all conflict
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edges and possibly merges some of the continuation edges. Altogether, we obtain a
reduced layout graph R = (W,F ) with the node set W = {v1, . . . , vk} and the edge
set F = {vivj | ∃u ∈ Vi, v ∈ Vj such that uv ∈ E}. The reduced layout graph R is planar
since, by definition, continuation edges do not cross. To each edge vivj in F we assign a
pair of weights αij and βij , where

αij := number of vias necessary between Vi and Vj if vi and vj are
assigned to the same layer, and

βij := number of vias necessary between Vi and Vj if vi and vj are
assigned to different layers.

Figure 1.4(a) shows the reduced layout graph for our example. The edges are labeled
with the weights (αij , βij).

Finally, a layer assignment corresponds to a cut (W1 : W2) of the reduced layout
graph R. For a given cut, the number of necessary vias ν is defined as follows:

ν(W1,W2) :=
∑

vivj ∈ F
vi, vj ∈ W1

αij +
∑

vivj ∈ F
vi, vj ∈ W2

αij +
∑

vivj ∈ F
vi ∈ W1, vj ∈ W2

βij.

Using the constant C :=
∑

vivj∈F αij, we obtain

ν(W1,W2) − C =
∑

vivj ∈ F
vi ∈ W1, vj ∈ W2

(βij − αij).

Therefore, the problem of minimizing the number of vias is equivalent to the max-
cut problem on the reduced layout graph R with the edge weights cij := αij − βij .
For a given maximum cut δ(S) of R, the minimum number of necessary vias in the
corresponding layer assignment is C −

∑

vivj∈δ(S) cij .

In our example, a maximum cut is, for instance, the cut
(

{1, 6} : {5, 7, 9}
)

with weight
zero, as illustrated in Figure 1.4(b). The corresponding optimum layer assignment, shown
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Figure 1.4: Reduced layout graph (a) and corresponding maximum cut (b).

in Figure 1.5, requires two vias and places the critical segments {1–4,6,11,12,14–17} on
the first layer and {5,7–10,13} on the second one.
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Figure 1.5: An optimum layer assignment using two vias.

1.3 Heuristics

A heuristic is a technique designed to obtain a feasible solution to a given problem
with little computational effort. In general, a heuristic does not provide the means to
estimate the quality of the solution. We distinguish two basic heuristic approaches: the
construction of feasible solutions from scratch and the improvement of existing solutions,
respectively. The following general survey is mainly based on [Rei94].

Construction heuristics are methods that determine a feasible solution according
to some construction rule but do not try to improve upon this solution. In other words,
a feasible solution is built successively and the parts already built remain in a certain
sense unchanged throughout the algorithm. Possible construction heuristics for the max-
cut problem include the following ones:

• greedy: nodes are successively assigned to the shores of the nascent cut. In each
step, we assign a remaining node that yields a maximum increase in the weight of
the cut with respect to the nodes already assigned.

• spanning tree: constructs a maximum weight spanning tree with respect to the
absolute values of the edge weights. Based on this tree, a cut is constructed that
contains all of the tree’s edges with a positive original edge weight but none of those
with a negative one.

• random: nodes are assigned randomly to the shores of the nascent cut.

The feasible solutions computed by construction heuristics are often of only moderate
quality. Though these heuristics might be useful for special applications, they are not
satisfactory in general. Their results, however, can be used as initial solutions for im-
provement heuristics.

Improvement heuristics are characterized by a certain type of basic move to alter
a given feasible solution. This move is applied iteratively to the solution until a certain
stop criterion is met. Common improvement heuristics for the max-cut problem are, for
instance, the following ones:
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• k-opt: checks whether the weight of the cut can be increased by assigning k nodes
to their respective opposite shore of the cut.

• local enumeration: chooses small subsets of the nodes and uses total enumeration
to determine the best possible assignment of the chosen nodes to the shores of the
cut.

• Kernighan-Lin: builds complicated modifications that are composed of simple
moves, for instance, 1-opt or 2-opt moves, where not all of these moves necessarily
have to increase the weight of the cut.

In the scope of this thesis, we are concerned with solving max-cut problems to op-
timality using the branch-and-cut method. In this regard, good heuristics are a vital
component as they affect the effectiveness of the pruning and thus the overall perfor-
mance of the branch-and-cut method. In the subsequent sections we elaborate on two of
the heuristics just mentioned, namely the spanning tree heuristic and the Kernighan-Lin
heuristic. For more information on the remaining heuristics, we refer to [Rei07].

1.3.1 Spanning Tree Heuristic

The spanning tree heuristic is a construction heuristic. It is particularly suitable
for sparse graphs. Initially, we calculate a maximum weight spanning tree Tmax of the
graph G with respect to the absolute edge weights we = |ce|, for all e ∈ E. From Tmax

we can derive a cut of G that contains all of the tree’s edges with positive ce but none of
those with negative ce. The pseudocode of the heuristic is given in Algorithm 1.1. The
overall running time is mainly due to the computation of the maximum spanning tree.
Using an efficient implementation of Kruskal’s algorithm (see, for instance, [CLRS09]),
the heuristic runs in time O(|E| log |E|). Easier implementations yield a running time
of O(|V |2).

Algorithm 1.1: Spanning Tree Construction Heuristic

Input: Undirected weighted graph G = (V,E, c).
Output: Cut (S : T ) of G.

// Initialization

Define absolute edge weights we = |ce|, for all e ∈ E;

// Compute a maximum weight spanning tree

Compute a maximum weight spanning tree Tmax of G′ := (V,E,w);
Mark an arbitrary node r ∈ V as root of Tmax and set S = {r} and T = ∅;

// Construct the cut based on Tmax

Traverse Tmax in a breadth-first-search manner starting at r. Let uv be the
current edge with u being the predecessor of v within Tmax, i. e., u has already
been assigned to either S or T ;

if cuv > 0 then
Assign v to the opposite shore of u;

else
Assign v to the same shore as u;
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With some minor adjustments we can use the spanning tree heuristic as a rounding
heuristic. The purpose of a rounding heuristic is to find a feasible solution that is
preferably close to a given fractional LP solution z. To this end, we set the initial
weights to we := |ze −

1
2 |, for all e ∈ E. Thus, the larger the edge weight we, the closer

the LP value of the respective variable is to either 0 or 1. From a maximum weight
spanning tree with respect to the weight vector w we then construct a cut of G. This
cut contains all of the tree’s edges with an LP value near 1 and none of those with an
LP value near 0. The pseudocode of this rounding heuristic is given in Algorithm 1.2.

Algorithm 1.2: Spanning Tree Rounding Heuristic

Input: Undirected graph G = (V,E) and fractional LP solution z.
Output: Cut (S : T ) of G.

// Initialization

Define edge weights we := |ze −
1
2 |, for all e ∈ E;

// Compute a maximum weight spanning tree

Compute a maximum weight spanning tree Tmax of G′ := (V,E,w);
Mark an arbitrary node r ∈ V as root of Tmax and set S = {r} and T = ∅;

// Construct the cut based on Tmax

Traverse Tmax in a breadth-first-search manner starting at r. Let uv be the
current edge with u being the predecessor of v within Tmax, i. e., u has already
been assigned to either S or T ;

if zuv > 1
2 then

Assign v to the opposite shore of u;

else
Assign v to the same shore as u;

1.3.2 Kernighan-Lin Heuristic

Two common observations regarding improvement heuristics in general are the following
ones:

• the more flexible and powerful the possible modifications are, the better results are
usually obtained,

• simple moves quickly get stuck in local optima of only moderate quality that cannot
be left anymore.

The approach of the Kernighan-Lin heuristic is based on the experience that some-
times a modification slightly decreasing the weight of a cut can open up new possibilities
for achieving considerable improvements afterwards. Its basic principle is to build com-
plicated modifications that are composed of simple moves where not all of these moves
necessarily have to increase the weight of the cut. Naturally, to obtain reasonable running
times, the effort to find the parts of the composed move has to be limited.

Originally, Kernighan and Lin [KL70] developed this heuristic to compute minimum
cuts with shores of equal cardinality. However, the general approach can easily be adapted
to the max-cut problem. The pseudocode of a Kernighan-Lin heuristic using 1-opt moves
is presented in Algorithm 1.3.
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Algorithm 1.3: Kernighan-Lin Improvement Heuristic

Input: Undirected weighted graph G = (V,E, c) and initial cut (S : T ) of G.
Output: Improved cut (S′ : T ′) of G.

Set S′ = S and T ′ = T ;

// Repeat until first iteration without improvement occurs

repeat
// Initialization

Set p = 1, Vp = V ;

for all nodes v ∈ V do
// Determine change of cut weight if v switches shores

Let N(v) be the set of nodes adjacent to v.

if v ∈ S′ then
Set Dv =

∑

u∈N(v)∩S′ cuv −
∑

u∈N(v)∩T ′ cuv;

else
Set Dv =

∑

u∈N(v)∩T ′ cuv −
∑

u∈N(v)∩S′ cuv;

// Assign |V | − 1 nodes to their respective opposite shore

while p < |V | do
// Determine best remaining node to switch shores

Set v∗p = arg maxv∈Vp
Dv and Vp+1 = Vp \ {v

∗
p};

// Update Du for remaining neighbors of v∗p
for all nodes u ∈ Vp+1 adjacent to v∗p do

if u and v∗p are in different shores then
Set Du = Du + 2cuv∗p ;

else
Set Du = Du − 2cuv∗p ;

Set p = p + 1;

// Determine best composed modification along the search path

Determine k ∈ {1, . . . , |V | − 1} such that ∆ =
∑k

i=1 Dv∗i
is maximal;

// Update (S′ : T ′)
if ∆ > 0 then

Assign the nodes v∗1 , . . . , v
∗
k to their respective opposite shore;

until ∆ ≤ 0 ;
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In our max-cut solver we use a combination of Algorithms 1.2 and 1.3 to compute
lower bounds on the optimum value. First, we use the spanning tree rounding heuristic
to obtain a feasible solution near the current fractional LP solution. Then, we apply
the Kernighan-Lin heuristic to improve upon this preliminary solution. In our experi-
ence, this combined approach provides solutions of high quality that quickly converge
towards an optimum solution. In particular, the resulting lower bounds are significantly
better than the ones obtained from the rounding heuristic alone or from initializing the
Kernighan-Lin heuristic with random solutions.

1.4 Cut Polytope and Polyhedral Results

The polyhedral study of the polytope associated with the max-cut problem serves an
important purpose. Not only does it provide a better understanding of the structure of
feasible solutions to the problem, but it is also essential to the development of a branch-
and-cut algorithm. The results below are mainly based on [BM86, DL97, Rei07]. The
figures are adapted from [Rei07].

For the max-cut problem on a given graph G = (V,E), we define the associated cut
polytope CUT(G) as the convex hull of the incidence vectors of all the cuts of G, i. e.,

CUT(G) := conv{χδ(S) | S ⊆ V }.

Figure 1.6 shows the cut polytope for the complete graph of order three. Note that the
origin 0 is a vertex of CUT(G).

(0, 0, 0)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

Figure 1.6: Cut polytope CUT(K3).

The cut polytope is full dimensional [BGM85], i. e., dim
(

CUT(G)
)

= |E|. It has 2|V |−1

vertices. This is exactly the number of possibilities to partition the |V | nodes into
two shores, one of which may be empty. The number of facets, however, grows super-
exponentially in the order of the graph.

Table 1.1 shows statistics on the facet structure of CUT(Kn) for n = 3, . . . , 9 as
published by Christof and Reinelt [CR97]. More detailed information is available in
the SMAPO “library of linear descriptions of SMAll combinatorial POlytopes” [Chr95].
The facet classes mentioned in the rightmost column of Table 1.1 classify the facets
with respect to two symmetries, namely the σ-symmetry—given by the permutations
of the nodes—and the symmetry of the switching operation which we will introduce in
Section 2.1.1. The linear descriptions of CUT(Kn) for n ≤ 7 are proven to be com-
plete [Gri90] whereas the completeness of those for n = 8 and n = 9 is only conjectured.
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n #Vertices #Facets in total #Facet classes

3 4 4 1
4 8 16 1
5 16 56 2
6 32 368 3
7 64 116,764 11
8 128 ≥ 217,093,472 ≥ 147
9 256 ≥ 12,246,651,158,320 ≥ 164,506

Table 1.1: Statistics on the facet structure of CUT(Kn) for n = 3, . . . , 9.

1.4.1 Selected Facet Defining Inequalities

We now introduce selected classes of valid inequalities for the cut polytope. Moreover, we
specify under which conditions these inequalities define facets. The subsequent theorems
are presented without the respective proofs which can be found in [BGM85, BM86, DL97].

We start with the most basic inequalities. By definition, an incidence vector is a
binary vector. Consequently, each of its entries must be in the closed range [0, 1].

Theorem 1.2. The trivial inequalities xe ≥ 0 and xe ≤ 1, e ∈ E, are valid for
CUT(G). They define facets of CUT(G) if and only if the edge e is not part of a 3-cycle.

In addition, if a given vector x is indeed the incidence vector of a cut of G then the
number x(C) is even for every cycle C of G. This is because a cut and a cycle can only
have an even number of edges in common. The following inequalities model this property.

Theorem 1.3. For each cycle C of G and each subset F ⊆ C with |F | odd, the odd-

cycle inequality

x(F ) − x(C \ F ) ≤ |F | − 1

is valid for CUT(G). It defines a facet of CUT(G) if and only if C has no chord in G.

We can also derive valid inequalities for CUT(G) from the cliques of the graph.

Theorem 1.4. Let (W,F ) be a clique of order p ≥ 3 of G. Then, the Kp-inequality,
or clique inequality,

x(F ) ≤
⌈p

2

⌉ ⌊p

2

⌋

is valid for CUT(G). It defines a facet of CUT(G) if and only if p is odd.

Note that the above clique inequality remains valid even if we only consider a subset of
the clique’s edge set F . This is because we can simply add the trivial inequality −xe ≤ 0
for each of the missing edges.

Another structure that yields valid inequalities for CUT(G) is depicted in Figure 1.7.
It is called a bicycle-p-wheel and consists of a cycle of length p as well as two additional
nodes that are adjacent to each other and to every node in the cycle.

Theorem 1.5. Let (W,F ) be a bicycle-p-wheel, p ≥ 3, contained in G. Then, the
bicycle-p-wheel inequality

x(F ) ≤ 2p

is valid for CUT(G). It defines a facet of CUT(G) if and only if p is odd.
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1

2

3

4

p

Figure 1.7: A bicycle-p-wheel.

Note that the bicycle-3-wheel inequality is identical to the K5-inequality, but this is
the only intersection of these two classes.

Finally, we introduce a class of valid homogeneous inequalities for the cut cone
associated with Kn which is the conic hull of the incidence vectors of the cuts of Kn.

Theorem 1.6. Let b = (b1, . . . , bn), n ≥ 2, be an integral vector satisfying
∑n

i=1 bi = 1.
Then, the hypermetric inequality

∑

1≤i<j≤n

bibjxij ≤ 0

is valid for the cut cone associated with Kn.

Note that the 3-cycle inequalities are a special case of the hypermetric inequalities.
A hypermetric inequality is called pure if bi ∈ {−1, 0, 1} for all i = 1, . . . , n.

Lemma 1.7. All pure hypermetric inequalities define facets of the cut cone associated
with Kn.

It is important to emphasize that the hypermetric inequalities are valid if and only if
the associated graph is complete. Moreover, they are first and foremost valid for the cut
cone. Of course, since the cut polytope is contained in the cut cone, this implies that the
hypermetric inequalities are also valid for CUT(Kn). Nevertheless, it limits the use of
this class of inequalities as cutting planes for a branch-and-cut method. For instance, if
we want to separate a fractional LP solution that lies outside the cut polytope but inside
the cut cone then hypermetric inequalities are of no use. Fortunately, this problem can
be circumvented using certain transformations. We will discuss this topic in detail in
Section 2.1.4.

1.4.2 Lifting Inequalities

Assume that we have found some valid or even facet defining inequalities for the cut
polytope on a given graph G. Then, an obvious question is the following: Can we use
the inequalities at hand to derive valid or facet defining inequalities for the cut polytope
on a supergraph G′ of G? This question leads to the concept of lifting which denotes a
procedure for constructing a valid, preferably facet defining, inequality of CUT(G′) from
a given valid or facet defining inequality for the cut polytope on a subgraph G of G′.
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In general, we distinguish the following two lifting operations: The first one is node
lifting which adds a new node v as well as a nonempty subset of the set δ(v) of possible
edges from v to the existing nodes. The second operation is edge lifting which adds
edges between already existing but nonadjacent nodes. We call these missing edges the
non-edges of the graph.

The simplest form of lifting is the so-called trivial lifting, or 0-lifting. When triv-
ially lifting an inequality aT x ≤ α for CUT(G) to an inequality (a′)T x ≤ α for CUT(G′),
the original edges in E(G) keep their left hand side coefficients while the newly added
edges in E(G′) \ E(G) get a coefficient of zero. In the scope of this thesis, the use of
trivial lifting is restricted to the case that G is a node-induced subgraph of G′. As a
result, we will focus exclusively on trivial node lifting.

To begin with, we consider the complete graph Kn = (Vn, En) of order n. We define
the 0-node lifting a′ ∈ REn+1 of a left hand side vector a ∈ REn by

a′ij = aij for ij ∈ En,

a′i,n+1 = 0 for 1 ≤ i ≤ n.

It is easy to see that 0-node lifting preserves the validity of inequalities. Suppose not
and that the 0-node lifting of the valid inequality aT x ≤ α for CUT(Kn) results in an
inequality (a′)T x ≤ α which is invalid for CUT(Kn+1). Consequently, there exists a
subset S of Vn+1 such that the incidence vector of the corresponding cut δ(S) violates
the lifted inequality. However, since the contribution of the edges in En+1 \ En to the
left hand side value is zero, the incidence vector of the cut δ(S ∩ Vn) of Kn must violate
the original inequality aT x ≤ α, thereby contradicting the assumed validity.

In addition, Deza and Laurent [DL97] proved that 0-node lifting even preserves an
existing facet-defining property of an inequality for the cut polytope.

Theorem 1.8 (cf. Theorem 26.5.1 in [DL97]). Given α ∈ R, a ∈ REn , and its 0-node
lifting a′ ∈ REn+1 , the following assertions are equivalent.

(i) The inequality aTx ≤ α is facet defining for CUT(Kn).

(ii) The inequality (a′)T x ≤ α is facet defining for CUT(Kn+1).

To illustrate the statement of Theorem 1.8, we consider the 0-node lifting of the
inequality classes introduced in Section 1.4.1. Note that the trivial inequalities do not
define facets of CUT(Kn) since every edge in a complete graph is part of a 3-cycle. Also,
the 3-cycle inequalities are the only facet defining odd-cycle inequalities for CUT(Kn).
This is because every cycle of length greater three has a chord.

Looking at the different inequality classes, we see that 0-node lifting preserves all the
relevant structures and properties. Take, for instance, the 3-cycle inequalities: Adding
another node and the edges En+1 \En can only create new 3-cycles, but it cannot destroy
the existing ones. The same holds for cliques and bicycle-p-wheels. Finally, the 0-node
lifting of a pure hypermetric inequality with the underlying vector b is again a pure
hypermetric inequality with the underlying vector b′ = (b, 0).

The situation is different, though, for the cut polytope on an arbitrary graph G.
While 0-node lifting still preserves the validity of an inequality—the proof is analogous
to the case that G is complete—it does not preserve an existing facet-defining property in
general. The simplest counterexample is the class of trivial inequalities. Consider, for
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instance, a graph G = (V,E) and an edge e = uv that is not part of a 3-cycle. Assume
that the 0-node lifting introduces an additional node w as well as the edges uw and vw.
Then, the lifted counterparts of the trivial inequalities xe ≥ 0 and xe ≤ 1, which define
facets of CUT(G), are still valid for the cut polytope on the supergraph G′ of G. Yet,
they do not define facets of CUT(G′) since the edge e is now part of a 3-cycle.

In conclusion, 0-node lifting for the cut polytope on arbitrary graphs always preserves
the validity of an inequality. Moreover, for certain inequalities such as odd-cycle-, clique-,
and bicycle-p-wheel inequalities it even preserves an existing facet-defining property. Still,
we have to keep in mind that the latter result is not true for arbitrary inequalities.

1.5 Solving Max-Cut to Optimality with Branch-and-Cut

Using the cut polytope, we can formulate the max-cut problem on a graph G = (V,E)
with edge weights c ∈ R|E| as the following linear program:

max cT x

s.t. x ∈ CUT(G).

Given a complete linear description of CUT(G), we can solve the above LP using, for
instance, the simplex method. In general, however, the required complete description
is either not known or it comprises too many inequalities to be handled efficiently as
indicated in Table 1.1 on page 31. For this reason, we use branch-and-cut to solve
the max-cut problem to optimality. As pointed out in Section 0.4, a key advantage of
branch-and-cut is that it can work with a partial and/or approximate linear description.

A suitable approximation of the cut polytope CUT(G) is the so-called semimetric
polytope MET(G). Barahona [Bar93] proved that the semimetric polytope is described
by the following linear system that comprises only trivial inequalities and odd-cycle in-
equalities:

x(F ) − x(C \ F ) ≤ |F | − 1 for all cycles C of G,
for each F ⊆ C, |F | odd,

xe ≥ 0 for all e ∈ E,
xe ≤ 1 for all e ∈ E.

(1.2)

For the complete graph Kn, however, the semimetric polytope is already completely
described by the triangle inequalities, i. e.,

xij − xik − xjk ≤ 0,
xij + xik + xjk ≤ 2,

for distinct nodes i, j, and k.

The semimetric polytope has the following two key properties:

CUT(G) ⊆ MET(G) ⊆ [0, 1]|E|, CUT(G) ∩ {0, 1}|E| = MET(G) ∩ {0, 1}|E|.

So, first of all, the semimetric polytope contains the cut polytope. Barahona and
Mahjoub [BM86] showed that the two polytopes are even identical if and only if the
underlying graph G is not contractible to K5. Moreover, both polytopes share the same
binary points, which are exactly the incidence vectors of the cuts of G. In other words,
the semimetric polytope is a domain relaxation of the cut polytope that preserves the
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set of feasible solutions. Hence, we can formulate the max-cut problem as the following
binary program:

max cT x

s.t. x ∈ MET(G)

x ∈ {0, 1}|E|.

In practice, however, even the linear description of MET(G) is too large to be han-
dled efficiently. Initializing the branch-and-cut algorithm with the complete set of odd-
cycle inequalities will considerably slow down the overall optimization process, in partic-
ular for larger instances. Nevertheless, Barahona and Mahjoub [BM86] showed that the
separation problem for the system (1.2) can be solved in polynomial time.

As a consequence, we start only with the trivial inequalities and let the separation
add further violated inequalities as required. Of course, we are not restricted to odd-
cycle inequalities, but we can separate any class of valid inequalities. In general, however,
this approach only works in conjunction with an additional feasibility test which is a
method to determine whether or not a given binary vector defines a cut of G.

A possible feasibility test for the max-cut problem works as follows. Suppose we
are given a binary vector x. If x indeed defines a cut of G then it must be possible to
label the nodes of G with two labels—representing the two shores of the cut—such that
the ends of an edge e have the same label if and only if xe = 0. This condition can
easily be checked by traversing the graph in a breadth-first-search manner and labeling
the nodes according to the above rule. If, at some point, the feasibility test reaches an
already labeled node that would now need to be assigned the opposite label then the
vector x is infeasible and we can abort the test. Otherwise, the test terminates without
contradictions and thus x defines a cut of G.

In conclusion, each time the branch-and-cut algorithm finds an integral solution, we
have to invoke the above feasibility test to check whether or not the solution defines a
cut of G. Other than that, the workflow of a branch-and-cut algorithm for the max-
cut problem conforms to the flowchart depicted in Figure 0.1 on page 14.

1.6 Short Summary of Known Results

We conclude this chapter with a survey of relevant results for the max-cut problem and
its associated polytope. The following summary is mainly adapted from [GJR87].

The max-cut problem is NP-hard for general graphs with either arbitrary edge
weights [Kar72] or all edge weights equal to 1 [GJS76]. Moreover, the problem is NP-hard
for many important special types of graphs, including the following ones:

• cubic graphs [Yan78],

• graphs not contractible to K6 [Bar83],

• almost planar cubic graphs [Bar83],

• three-dimensional grid graphs [Bar82],

• two layer grid graphs with weights 0,±1 [Bar82],

• planar grid graphs with weights 0,±1 and a universal node [Bar82].

However, there are certain classes of graphs and objective functions, respectively, for
which the max-cut problem is polynomial.
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For general graphs with exclusively nonpositive weights, the max-cut problem is
equivalent to the polynomial-time solvable min-cut problem.

Dorfman and Orlova [DO72] as well as Hadlock [Had75] independently found a reduc-
tion of the max-cut problem in planar graphs to the so-called T -join problem, which
can be solved in polynomial time for general graphs using an algorithm of Edmonds and
Johnson [EJ73].

Barahona [Bar83] proved that the max-cut problem is polynomial for graphs not
contractible to K5. To do so, he used a theorem of Wagner [Wag37] which shows that
every such graph can be decomposed into planar graphs and copies of a particular cubic
graph of order eight. This ultimately allowed Barahona to reduce the overall problem to
a sequence of polynomial-time solvable max-cut problems on planar and cubic graphs,
respectively.

Moreover, the max-cut problem is polynomial for the following special cases:

• weakly bipartite graphs with exclusively nonnegative edge weights [GP81],

• graphs of bounded tree-width [Dre86],

• graphs with no long odd-cycles [GN84],

• graphs with bounded genus and a bounded number of different edge weights [GL99]
(the special case of ±1 weights had been addressed earlier by Barahona [Bar81]),

• graphs with bounded genus and integral edge weights bounded in absolute value
by a polynomial of the size of the graph [GL99].

There have been extensive polyhedral studies of the max-cut problem on the complete
graph Kn as well as the associated polytope CUT(Kn). Several families of valid inequali-
ties for CUT(Kn), some of them facet defining, have been described (see, for instance, the
surveys [DL97, PT94]). For some of these inequalities, separation procedures have been
proposed (see, for instance, [BH93, DL97, DR94]). Very interesting computational re-
sults have been obtained after the introduction of a semidefinite programming (SDP)
relaxation of the max-cut problem on Kn. The incidence vectors of the cuts of Kn are
strongly related to certain symmetric positive semidefinite matrices. The set of all these
matrices is in a one-to-one correspondence with a convex body Hn that, after a suitable
affine transformation, contains CUT(Kn). In addition, the optimization of a linear func-
tion over Hn can be done efficiently via interior point techniques [HRVW96]. Using such
a relaxation, Goemans and Williamson [GW95] were able to provide an approximation
algorithm that delivers solutions with a guaranteed value of at least 0.87856 times the
optimal value. Finally, by strengthening the SDP relaxation with linear inequalities,
Helmberg and Rendl [HR95] have solved instances with up to one hundred nodes to opti-
mality. For a self-contained introduction to semidefinite programming and its application
in combinatorial optimization, we refer to [Hel00].

All the results in the previous paragraph are concerned exclusively with the max-
cut problem on complete graphs. However, there are also interesting applications that
require the exact solution of large max-cut problem instances on sparse graphs. A prime
example is the computation of ground states of Ising spin glasses as described in Sec-
tion 1.2.1. The question is whether the existing knowledge about CUT(Kn) can be
utilized to solve the max-cut problem on an arbitrary graph G.

The trivial way to reduce the max-cut problem on an arbitrary graph G of order n to
the max-cut problem on Kn is artificial completion. Here, we add all the missing edges
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to the graph G and assign a weight of zero to them. This technique has been successfully
used for other combinatorial optimization problems, where the sparsity of the original
graph can be exploited to handle the completed graph efficiently. This is, for instance,
the case for the traveling salesman problem [PR91]. Yet, for the max-cut problem, no
such way to take advantage of a possible sparse structure of the original graph is known
so far. Thus, the artificial completion will ultimately lead to the same computational
complexity as in the case of a complete graph.

These observations illustrate the need for a better understanding of the cut polytope
on arbitrary graphs in general as well as on sparse graphs in particular. But apart from
an initial polyhedral study by Barahona and Mahjoub [BM86] and some computational
results for spin glass instances on toroidal grid graphs (see, e. g., [DDJ+95, DDJ+96]),
little effort has been devoted to this topic. The apparent lack of results motivated our
investigation of a new separation approach for CUT(G) that we will present in the next
chapter.





Chapter 2

Shrink Separation

In this chapter we introduce the shrink separation approach for the cut polytope
CUT(G). The method uses a contracted version of the graph G, which has two main
advantages: On the one hand, the separation can be performed faster due to the reduced
size of the graph. On the other hand, we can introduce appropriate artificial LP values for
the non-edges of the contracted graph to obtain an LP solution on the complete graph.
This allows us to apply separation techniques for dense and complete graphs that we
possibly would not have been able to use otherwise. In this regard, the prior contraction
of the graph significantly reduces the number of non-edges and respective artificial LP
values that need to be added.

The chapter is organized as follows: We start with an outline of the shrink separation
to provide a basic understanding of the method as a whole. Afterwards, Section 2.1
elaborates on the single steps of the shrink separation and their respective underlying
theory. Finally, in Section 2.2 we describe our implementation of the method. We
also point out its differences to the theoretical conceptual design as well as some of its
numerical characteristics.

We now discuss the overall workflow of the shrink separation as depicted in Figure 2.1.
Suppose we are given a fractional LP solution z ∈ MET(G) \ CUT(G). The vector z

z

z̃

z

z′ (a′, α′)

(a, α)

(ã, α̃)

(a, α)

Switching

Contraction

Extension

Separation

Projection

Lifting

Reverse switching G

G

G
′

Figure 2.1: Workflow of the shrink separation.

decomposes into fractional components with an LP value in the range (0, 1) as well as
integral components whose LP value is either 0 or 1. The aim of the separation is to find
an inequality aT x ≤ α, which we abbreviate by (a, α), that separates z from CUT(G).

39
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In other words, we seek an inequality that is valid for the cut polytope but violated by
the given LP solution at the same time.

In the first step we apply a transformation called switching to z. As a result, all the
components of the switched LP solution z̃ have an LP value that is either fractional or
zero. Note that the zero components of z̃ correspond precisely to the integral components
of z.

Next, we contract all edges with a switched LP value of zero. This removes all the
integral components from z̃ and reduces it to a contracted LP solution z with exclusively
fractional components. The associated contracted graph G has at most the number of
nodes and edges of the original graph G and at least its density. However, there is no
guarantee that G is complete, i. e., there could still be edges missing.

To allow the use of separation techniques for dense and complete graphs, we extend
the contracted LP solution by introducing artificial LP values for the non-edges of G.
These LP values are chosen in such a way that the extended LP solution z′ is an ele-
ment of MET(G

′
). In other words, z′ does not violate any odd-cycle inequalities in the

associated extended graph G
′
.

The separation of the extended LP solution z′ yields an inequality (a′, α′) that is valid

for CUT(G
′
) but violated by z′. To make this inequality compatible with the original LP

solution z, we have to apply three transformations that compensate for the switching,
the contraction, and the extension of z.

First, we project out all nonzero left hand side coefficients of (a′, α′) that are related
to the non-edges of G. To do so, we add appropriate multiples of valid inequalities
to (a′, α′). In the projected inequality, all the left hand side coefficients of the non-edges
of G are equal to zero and can be truncated. We obtain a condensed inequality (a, α)
that separates the contracted LP solution z from CUT(G).

Next, we lift the condensed inequality. This is because the contracted LP solution z

may have less components than the switched LP solution z̃. Thus, we have to adapt
the dimension of the left hand side vector a to the dimension of z̃. The resulting lifted
inequality (ã, α̃) is valid for CUT(G) but violated by the switched LP solution z̃. Note
that z̃ has the same dimension as the original LP solution.

Finally, we switch the lifted inequality. This adjusts the coefficients of the inequality
subject to the initial switching of the LP solution z. Note that we also refer to the
switching of the inequality as reverse switching to distinguish it from the switching
operation on z as well as to stress its compensating nature. Ultimately, we obtain an
inequality (a, α) that separates the original LP solution z from the cut polytope thus
solving the initial separation problem.

In the next section we describe each of the components of the shrink separation in
greater detail and provide the respective underlying theory.

2.1 Components of the Separation Procedure

As depicted in Figure 2.1, the shrink separation comprises seven major steps: switch-
ing, contraction, extension, separation, projection, lifting, and reverse switching. The
first three steps modify a given LP solution, while the last three steps adjust separat-
ing inequalities subject to these previous modifications. The fourth step links the two
branches by generating separating inequalities for the modified LP solution. We see
that each transformation of the LP solution has its corresponding transformation of the
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separating inequalities. These pairs of transformations form the horizontal layers of the
diagram in Figure 2.1.

We now elaborate on the single steps of the shrink separation. For a better under-
standing, we group each of the LP transformations with its corresponding inequality
transformation, thereby covering the horizontal layers in Figure 2.1 top down.

2.1.1 Switching and Reverse Switching

The switching operation is a concept related to families of subsets of a given finite
set. Of particular interest are subset families that are closed under taking the symmetric
difference, which we will introduce shortly. In this case, there are interesting implications
regarding the structure of the convex hull of the incidence vectors of the subsets.

The switching operation has been formally introduced and studied by Deza and Lau-
rent [DL97]. In specific scopes, however, it has been discovered independently by several
other authors, for instance, by Barahona and Mahjoub [BM86] in the context of the cut
polytope on an arbitrary graph.

For the max-cut problem on a graph G = (V,E) we choose the edge set E as the
finite set and the set {δ(U) | U ⊆ V } of cuts of G as the family of subsets of E. We
define the symmetric difference X ∆ Y of two sets X and Y by

X ∆ Y := (X ∪ Y ) \ (X ∩ Y ) = (X \ Y ) ∪ (Y \ X).

The set of cuts of G is closed under taking the symmetric difference. This property is
stated more precisely in the following lemma.

Lemma 2.1. Let S, T ⊆ V . Then, δ(S)∆ δ(T ) = δ(S ∆ T ).

Proof. First, we write the cut δ(S) in its equivalent form (S : S∁) and proceed analogously
for the cut δ(T ). Also, we note that S = (S \T ) ·∪ (S∩T ) as well as T = (T \S) ·∪ (S∩T ).
Thus, we can write δ(S) ∪ δ(T ) as follows:

(S \ T : S∁) ∪ (S ∩ T : S∁) ∪ (S ∩ T : T ∁) ∪ (T \ S : T ∁).

Next, we partition S∁ into T \ S and (S ∪ T )∁ and proceed for T ∁ in the same manner.
This results in the following representation of δ(S) ∪ δ(T ):

(S \ T : T \ S) ∪
(

S \ T : (S ∪ T )∁
)

∪ (S ∩ T : T \ S) ∪
(

S ∩ T : (S ∪ T )∁
)

∪ (S ∩ T : S \ T ) ∪
(

T \ S : (S ∪ T )∁
)

.

(2.1)

Similarly, we can rewrite δ(S) ∩ δ(T ) in the following form:

(S \ T : T \ S) ∪
(

S ∩ T : (S ∪ T )∁
)

.

It comprises the first and the fourth clause of (2.1). As a result, we see that the symmetric
difference of the cuts δ(S) and δ(T ) equals

(

S \ T : (S ∪ T )∁
)

∪ (S \ T : S ∩ T ) ∪ (T \ S : S ∩ T ) ∪
(

T \ S : (S ∪ T )∁
)

,

which is exactly δ(S ∆ T ).
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For a vector z ∈ RE and a subset B ⊆ E we define the vector zB ∈ RE by

zB
e :=

{

−ze if e ∈ B,

ze otherwise.

Consider the mapping sB : RE → RE defined by sB(z) := zB + χB , where χB is the
incidence vector of the subset B. In other words,

(

sB(z)
)

e
:=

{

1 − ze if e ∈ B,

ze otherwise.
(2.2)

The mapping sB is called switching mapping alongside B. It is an involution, which
means that sB

(

sB(z)
)

= z. Furthermore, we have sB(χA) = χA ∆B for two arbitrary
subsets A,B ⊆ E. In conjunction with Lemma 2.1, this means that we can use the
switching mapping to transform the incidence vectors of any two cuts into one another.
Consider two arbitrary cuts δ(S) and δ(T ). Then, switching the incidence vector of δ(S)
alongside the cut δ(S ∆ T ) yields the incidence vector of the cut δ

(

S ∆(S ∆ T )
)

, which
is exactly δ(T ). This important conclusion is illustrated in Example 2.2.

Example 2.2. Consider the complete graph K3 as depicted in Figure 2.2(a). The dia-
gram in Figure 2.2(b) shows how to transform the vertices of CUT(K3) into one another
using the switching mapping.

u v

w

(a)

sδ(u)

s δ(
v)

sδ(w)

sδ(w)

s
δ(v)

sδ(u)

∅

δ(u) δ(v)

δ(w)

(b)

Figure 2.2: Switching operations on the vertices of CUT(K3): (a) shows the complete
graph K3; (b) shows how to transform the vertices of CUT(K3) into one another using
the switching mapping.

Similar to the switching mapping on vectors we can define a switching operation on
inequalities. Consider an inequality aT x ≤ α, with a ∈ RE , α ∈ R, and a cut δ(U). We
say that the inequality

(aδ(U))T x ≤ α − a
(

δ(U)
)

is obtained by switching the inequality aT x ≤ α alongside δ(U). Here, we used
the abbreviation a

(

δ(U)
)

for the sum
∑

e∈δ(U) ae. The switching operation on inequal-
ities preserves the validity as well as a possible facet-defining property of an inequality
for CUT(G). This fundamental result is rendered more precisely in the following theorem.

Theorem 2.3 (cf. Corollary 2.9 in [BM86]). Given a ∈ RE, α ∈ R, and a cut δ(U), the
following assertions are equivalent.
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(i) The inequality aTx ≤ α is valid or facet defining for CUT(G), respectively.

(ii) The inequality (aδ(U))T x ≤ α − a
(

δ(U)
)

is valid or facet defining for CUT(G),
respectively.

Moreover, if the switched inequality (aδ(U))T x ≤ α − a
(

δ(U)
)

is tight at a point z

then the original inequality aT x ≤ α is tight at the switched point sδ(U)(z).

Corollary 2.4. Given a ∈ RE, α ∈ R, and a cut δ(U), the inequalities aT sδ(U)(x) ≤ α

and (aδ(U))T x ≤ α − a
(

δ(U)
)

are equivalent.

Proof. By definition, we have sδ(U)(x) = xδ(U) + χδ(U). This allows us to rearrange the

inequality aT sδ(U)(x) ≤ α in the following form:

aTxδ(U) ≤ α − a
(

δ(U)
)

.

Now, the assertion results from the fact that aT xδ(U) equals (aδ(U))T x.

With the help of the above corollary we can characterize an interesting symmetry
of the cut polytope. First, we recall that the vertices of the cut polytope CUT(G) are
precisely the incidence vectors of the cuts of G. We have already seen that we can
transform the incidence vectors of two cuts δ(S) and δ(T ) into one another using the
switching mapping alongside their symmetric difference δ(S ∆T ). Now assume we are
given a facet defining inequality aT x ≤ α that is tight at the vertex χδ(S). Due to
Corollary 2.4, the inequality obtained by switching aTx ≤ α alongside the cut δ(S ∆ T )
defines a facet of CUT(G) which is tight at the switched vertex χδ(T ). Hence, the
switching of inequalities alongside the cut δ(S ∆ T ) maps the facets containing χδ(S) onto
those containing χδ(T ), and vice versa, in a one-to-one manner. Descriptively speaking,
the local facet structure of the cut polytope looks identical at each vertex.

As a consequence, if a given inequality separates the switched point sδ(U)(z) from the
cut polytope then the appropriately switched inequality does the same for the point z.
This allows us to solve the separation problem for the switched point rather than for
the original one. Any separating inequality for the switched point can then simply be
switched alongside δ(U) to obtain a solution to the initial separation problem. We will
also refer to this final switching of the inequality as reverse switching. We do so to dis-
tinguish it from the switching operation applied to z as well as to stress its compensating
nature.

Suppose we are given a fractional LP solution z ∈ MET(G)\CUT(G). Our goal is to
find an inequality that separates z from the cut polytope. With respect to the vector z,
the edge set E decomposes into the following subsets:

E0(z) := {e ∈ E | ze = 0},
E1(z) := {e ∈ E | ze = 1},
Ef (z) := {e ∈ E | 0 < ze < 1}.

The edges in E0(z) with an LP value of zero can easily be contracted, as we will explain in
Section 2.1.2. The contraction of edges reduces the size of the graph and thus accelerates
the separation process. Using the switching mapping we can even contract all the edges
in E0(z) and E1(z) combined. To do so, we switch the LP solution z alongside a
particular cut C of G that satisfies the following conditions:

E1(z) ⊆ C, E0(z) ∩ C = ∅. (2.3)
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According to (2.2), all components of the resulting switched LP solution z̃ := sC(z)
are either fractional or zero, i. e.,

0 ≤ z̃e < 1 for all e ∈ E.

Moreover, the edge sets E0(z̃) and E0(z) ·∪E1(z) are identical. In other words, the
contraction of the edges with a switched LP value of zero is equivalent to the contraction
of the edges with an integral original LP value.

The existence of a cut C with the desired properties (2.3) may not be instantly ap-
parent. It is, however, directly implied by the assumption that the LP solution z is an
element of the semimetric polytope.

Lemma 2.5. Let z ∈ MET(G). Then, there exists a cut C of G such that E1(z) ⊆ C
and E0(z) ∩ C = ∅.

Proof. Let E′ := E\Ef (z) be the set of integral edges with respect to z. The correspond-
ing graph G′ := (V,E′) features all the cycles of G except for those containing at least one
fractional edge. Since the vector z is an element of the semimetric polytope MET(G),
it satisfies in particular all odd-cycle inequalities on the cycles of G′. Thus, the binary
vector z′ := z|E′ , which is the vector z restricted to the index set E′, is an element
of MET(G′). As pointed out in Section 1.5, the binary vectors inside MET(G′) are pre-
cisely the vertices of CUT(G′). Hence, z′ is the incidence vector of a cut C′ := E1(z)
of G′. This cut already has the desired properties:

E1(z) ⊆ C′, E0(z) ∩ C′ = ∅.

Finally, we extend C′ with those edges of Ef (z) whose ends are in different shores of C′.
This results in the desired cut C of G that satisfies (2.3).

In addition, if the original LP solution z is an element of the semimetric polytope then
this is also true for the switched LP solution z̃. To facilitate the proof of this assertion,
we first show the following lemma.

Lemma 2.6. Any odd-cycle inequality of CUT(G) switched alongside a cut of G is again
an odd-cycle inequality of CUT(G) with respect to the same cycle.

Proof. Let x(F ) − x(C \ F ) ≤ |F | − 1 be an arbitrary odd-cycle inequality of CUT(G)
and let K be an arbitrary cut of G. We partition each of the sets F and C \ F into its
intersection with K and the complement of K, respectively. As a result, we obtain the
following representation of the odd-cycle inequality:

x(F \ K) + x(F ∩ K) − x
(

(C \ F ) \ K
)

− x
(

(C \ F ) ∩ K
)

≤ |F | − 1.

We now switch the inequality alongside the cut K. This reverses the signs of both
x(F ∩ K) and x

(

(C \ F ) ∩ K
)

. It also reduces the value of the right hand side by
|F ∩K| − |(C \F )∩K|. Finally, to simplify the notation, we introduce F ′ to denote the
set (F \ K) ·∪

(

(C \ F ) ∩ K
)

, which is highlighted in gray in Figure 2.3(a). Altogether,
we obtain the following switched inequality:

x(F ′) − x
(

(F ∩ K) ·∪ ((C \ F ) \ K)
)

≤
∣

∣F ′
∣

∣ − 1.

We then use basic set calculus to show that the set (F ∩ K) ·∪
(

(C \ F ) \ K
)

, which is
highlighted in gray in Figure 2.3(b), is actually identical to the set C \ F ′. As a result,
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C F

K

(a) F ′ := (F \ K) ·∪
`

(C \ F ) ∩ K
´

C F

K

(b) C \F ′ = (F ∩K) ·∪
`

(C \F )\K
´

Figure 2.3: Relevant edge sets of an odd-cycle inequality switched alongside a cut K.

the switched odd-cycle inequality simplifies to x(F ′)−x(C \F ′) ≤ |F ′|−1, which already
looks like an odd-cycle inequality. Still, we need to verify that the set F ′ has indeed odd
cardinality, i. e., |F ′| ≡ 1 (mod 2).

First, we note that (C \ F ) ∩ K equals (C ∩ K) \ F and thus we have

|F ′| = |F \ K| + |(C ∩ K) \ F | = |F \ K| + |C ∩ K| − |F ∩ K|.

In addition, we know that |C ∩K| ≡ 0 (mod 2). This is due to the well-known property
that a cut and a cycle can only have an even number of edges in common. Altogether,
we obtain

|F ′| ≡ |F \ K| − |F ∩ K| (mod 2).

Finally, we add the equation |F | = |F \ K| + |F ∩ K| to get

|F ′| + |F | ≡ 2 · |F \ K| ≡ 0 (mod 2).

The odd cardinality of F implies that |F ′| is also odd. Otherwise, the sum |F ′| + |F |
would be odd in contradiction to the above result. This proves the assertion.

Using Lemma 2.6, we can now easily prove that a point (vertex) of MET(G) switched
alongside a cut of G is again a point (vertex) of MET(G). This property will be a
fundamental prerequisite for the subsequent steps of the shrink separation.

Theorem 2.7. Let K be a cut of G. Then, z ∈ RE is a point (vertex) of MET(G) if
and only if this is true for sK(z).

Proof. Let z ∈ MET(G). Consider an arbitrary cycle C of G and an arbitrary subset F
of C with odd cardinality. We have to show that the switched point z̃ := sK(z) satisfies
the odd-cycle inequality defined by C and F , i. e.,

z̃(F ) − z̃(C \ F ) ≤ |F | − 1. (2.4)

As stated in Corollary 2.4, switching (2.4) alongside the cut K results in an equivalent
representation with respect to z instead of z̃. Moreover, due to Lemma 2.6 we know
that any switched odd-cycle inequality is again an odd-cycle inequality with respect to
the same cycle. Hence, the switched representation of (2.4) has the form

z(F ′) − z(C \ F ′) ≤ |F ′| − 1,
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where F ′ is a subset of C with odd cardinality. By assumption, however, the point z

is part of the semimetric polytope and therefore clearly satisfies the above inequality.
This in turn shows that the switched point indeed satisfies (2.4), which proves that z̃ is
a point of MET(G). The reverse direction works analogously by replacing z with z̃ and
using the fact that the switching mapping is an involution, i. e., sK(z̃) = z.

We now prove the second assertion, namely that the switching mapping preserves the
vertices of MET(G). First, we note that a point z ∈ MET(G) is a vertex of the polytope
if and only if there are no two distinct points a, b ∈ MET(G) such that z = λa+(1−λ)b
for a suited scalar λ in the open range (0, 1). In other words, the vertices of MET(G)
are exactly those points of the polytope that cannot be obtained as a proper convex
combination of two distinct points of MET(G) (see, for instance, §5 and §7 of [Brø83]
for further details). Now assume that z is a point but not a vertex of MET(G). This
means that z is the proper convex combination of two distinct points a, b ∈ MET(G).
Switching z alongside K yields the following switched point:

z̃ =
(

λa + (1 − λ)b
)K

+ χK

= λ(aK + χK) + (1 − λ)(bK + χK)

= λsK(a) + (1 − λ)sK(b).

From the first part of the proof we already know that the switched points sK(a) and sK(b)
are elements of MET(G) since this is true for a and b. Hence, z̃ is the proper convex
combination of two distinct points of MET(G) and therefore cannot be a vertex.

This proves, by contrapositive, that z is a vertex of MET(G) provided that z̃ satisfies
this property. As before, we obtain the proof of the reverse direction by replacing z

with z̃ and using the fact that sK(z̃) = z.

We conclude this section with a summary of the key results so far. The switching
operation allows to solve the separation problem for a switched LP solution z̃ instead of
the original fractional LP solution z ∈ MET(G) \ CUT(G). Any separating inequality
for z̃ can easily be transformed into a separating inequality for z. This transformation
preserves the validity as well as a possible facet-defining property of a given inequality
for CUT(G).

Moreover, by switching the LP solution z alongside a particular cut, we can force the
zero components of the switched LP solution z̃ to correspond precisely to the integral
components of z. As a consequence, the removal of these zero components during the
contraction reduces z̃ to its fractional part and thus lowers its dimension by the number of
integral components of z. In comparison, if we would contract the original LP solution z

instead, we could only lower its dimension by the number of zero components. Thus, it
is preferable to contract the switched LP solution z̃ since the additional reduction of the
dimension will benefit the subsequent separation process.

2.1.2 Contraction and Lifting

The aim of the contraction is to lower the dimension of the LP solution z̃ prior to its
separation. To do so, we remove all the components of z̃ with a value of zero. This is
because an LP value of zero indicates that the respective edge is not part of the optimum
solution. In the associated graph, the removal of the zero components of z̃ corresponds
to the contraction of the respective edges.
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Due to the switching step described in Section 2.1.1, we can assume the components
of z̃ to be either fractional or zero. In other words, we have 0 ≤ z̃e < 1 for all edges e.
Hence, the removal of the zero components effectively reduces the LP solution to its frac-
tional components. Also, by Theorem 2.7 on page 45, we can assume z̃ to be an element
of MET(G) \ CUT(G) since we imposed this condition on the original LP solution z.

Consider the set E0(z̃) of edges with a z̃ value of zero. We define the auxiliary
graph G0 :=

(

V,E0(z̃)
)

as a copy of the graph G with its edge set restricted to E0(z̃).
Furthermore, let {Wi}i∈I be the family of node sets of the connected components of G0.
We recall that (Wi : Wj) denotes the set of edges with one end in Wi and the other end
in Wj . Since we assume the LP solution to be an element of the semimetric polytope, all
the edges in (Wi : Wj) must have the same LP value, as shown in the following lemma.

Lemma 2.8. Let z̃ ∈ MET(G) and let Wi,Wj be the node sets of two connected compo-
nents of the graph G0. If f and g are two distinct edges in (Wi : Wj) then the values z̃f

and z̃g are identical.

Proof. Suppose the assertion is wrong and that, without loss of generality, z̃g is less
than z̃f . Since Wi and Wj induce connected components of G0, there exist paths that
link the ends of f and g in Wi and Wj, respectively. Moreover, all the edges in these
linking paths have a z̃ value of zero. In conjunction with the edges f and g, the paths form
a cycle C as depicted in Figure 2.4. Note that one of the paths, which are represented
by dashed lines, may be empty.

f

g

Wi Wj

Figure 2.4: Two distinct edges in the set (Wi : Wj).

We now define F := {f} and obtain

z̃(F ) − z̃(C \ F ) = z̃f − z̃g > 0 = |F | − 1.

Thus, z̃ violates the odd-cycle inequality defined by F and C. This, however, contradicts
the assumption that z̃ is an element of the semimetric polytope and thus proves the
assertion by contrapositive.

As already mentioned, the removal of the zero components of z̃ corresponds to the
contraction of the respective edges in the associated graph G. These edge-contractions
are carried out as follows:

1. contract each node set Wi to a supernode wi,

2. delete all loops,

3. replace parallel edges by a single edge with the same z̃ value.

Note that the third step is well defined due to Lemma 2.8. Ultimately, we obtain a
contracted graph G = (V ,E) as well as an associated contracted LP solution z

in RE with the following properties:
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(1) z has only fractional components,

(2) z is a point (vertex) of MET(G) if and only if z̃ is a point (vertex) of MET(G),

(3) every cut of G corresponds to one of the cuts of G that are disjoint from E0(z̃),

(4) G has at most as many nodes and edges as G.

The properties (1) and (4) are immediate consequences of the contraction. A proof
for (2) was given by Laurent and Poljak (cf. Proposition 2.4 of [LP95]). In particular,
this means that the contracted LP solution z is an element of MET(G) since we assumed
the switched LP solution z̃ to be an element of MET(G). Finally, property (3) follows
from the fact that in a given cut of G every supernode is the element of exactly one of
the two shores. In addition, the ends of an arbitrary edge in E0(z̃) are both elements of
the same set Wi. Thus, they are both assigned to the same shore as their corresponding
supernode wi.

As reverse transformation to the edge-contraction we introduce the so-called node-
splitting. This operation splits up the supernodes wi and thereby decompresses the
previously contracted edges. Thus, we can use node-splitting to lift valid inequalities
for CUT(G) to valid inequalities for CUT(G). For a better understanding we only con-
sider the case of splitting a single supernode into two (super-)nodes. The results below
can then be generalized by means of iteration.

Suppose we want to split a supernode w into the nodes h and t. For any parti-
tion (H,T,B) of the set of neighbors of w, we define the decompressed graph Ĝ = (V̂ , Ê),
with

V̂ := (V \ w) ·∪ {h, t},

Ê :=
(

E \ δ(w)
)

·∪ (h : H ∪ B) ·∪ (t : T ∪ B) ·∪ht.

We say that the graph Ĝ is obtained from the graph G by splitting w into the nodes h
and t with respect to the partition (H,T,B). On the decompressed graph, the
sets H and T correspond to the exclusive neighbors of h and t, respectively, while the
set B comprises the common neighbors of both nodes. An exemplary neighborhood of a
decompressed edge ht is depicted in Figure 2.5.

h t

H TB

Figure 2.5: Partition of the neighborhood of a decompressed edge ht.

Consider a valid inequality (a, α), a ∈ RE , for the cut polytope on the contracted
graph G. Without loss of generality, we assume that

∑

v∈T |awv| ≤
∑

v∈H |awv|. We

define the inequality (â, α), â ∈ RÊ , for the cut polytope on the decompressed graph Ĝ
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as follows:
âht = −

∑

v∈T |awv|,
âtv = 0 for all v ∈ B,
âtv = awv for all v ∈ T,
âhv = awv for all v ∈ H ∪ B,

âuv = auv for all uv ∈ Ê \
(

δ(h) ∪ δ(t)
)

.

(2.5)

We say that the inequality (â, α) is obtained from the inequality (a, α) by splitting w
into the nodes h and t with respect to the partition (H,T,B).

Descriptively speaking, splitting w into h and t replaces the end w of the edges
in (w : H) and (w : T ) with h and t, respectively. At the same time, it preserves the
coefficient values of the affected edges with respect to the inequality (a, α). The edges
in (w : B), on the other hand, have to be duplicated to join the nodes in B to both h and t.
Here, only the duplicates in (h : B) inherit the coefficient values of their counterparts
in (w : B), whereas the mate edges in (t : B) are assigned a coefficient of zero.

An important property of the node-splitting operation is that is preserves the validity
of inequalities for the cut polytope.

Lemma 2.9. If (a, α) is a valid inequality for CUT(G) then the inequality (â, α) obtained
by node-splitting is valid for CUT(Ĝ).

Proof. Let δ(U), U ⊆ V̂ , be an arbitrary cut of Ĝ. We have to show that â
(

δ(U)
)

≤ α.
Clearly, if the edge ht is not an element of the cut δ(U) then, according to (2.5), the
values â

(

δ(U)
)

and a
(

δ(U)
)

are identical. Thus, the assertion follows directly from the
validity of (a, α).

So, assume the opposite and that the edge ht is in fact part of δ(U). Without loss of
generality, let h ∈ U . We define the extended shore U ′ := U ·∪ t. Since the corresponding
cut δ(U ′) does not contain the edge ht, we have

â
(

δ(U ′)
)

= a
(

δ(U ′)
)

≤ α. (2.6)

The comparison of δ(U) and δ(U ′) shows that shifting the node t to the shore U removes
the edges ht and (t : T ∩U) from δ(U) while adding the edges (t : T \U). Note that the
edges in (t : B) are omitted since they have a coefficient of zero. Altogether, we obtain

â
(

δ(U ′)
)

= â
(

δ(U)
)

− âht −
∑

v∈T∩U

âtv +
∑

v∈T\U

âtv .

The value of the last two sums can be estimated as follows:

−
∑

v∈T∩U

âtv +
∑

v∈T\U

âtv ≥ −
∑

v∈T

|âtv|.

In addition, (2.5) states that âtv = awv, for all v ∈ T . This means that the above lower
estimate actually equals âht, which in turn shows that â

(

δ(U)
)

≤ â
(

δ(U ′)
)

. Now, the
assertion follows from (2.6).

Under the conditions specified in the lemma below, the node-splitting operation even
preserves an existing facet-defining property of a valid inequality for the cut polytope.
Note that this lemma reformulates Theorem 2.6(a) in [BM86] to adjust its assumptions
to our definition of the node-splitting in (2.5).



50 Chapter 2. Shrink Separation

Lemma 2.10. Let (a, α) define a facet of CUT(G) and let (â, α) be the inequality ob-
tained from (a, α) by splitting node w with respect to the partition (H,T,B). Then, (â, α)
defines a facet of CUT(Ĝ) if there exists a node set S ⊆ V that contains w and satisfies
the following conditions:

(i) a
(

δ(S)
)

= α,

(ii) awv ≥ 0 for all v ∈ T ∩ S,

(iii) awv ≤ 0 for all v ∈ T \ S,

(iv) a(v : S) = a(v : V \ S) for all v ∈ B.

Proof. Let the inequality (b̂, β) define a facet of CUT(Ĝ) that contains the face defined
by (â, α). This means in particular that the tight cuts of (â, α), which are the cuts
at whose incidence vectors the inequality (â, α) is tight, are a subset of the tight cuts
of (b̂, β). If we can show the following proposition:

∃λ > 0 such that b̂e = λâe, for all e ∈ Ê, (2.7)

then the assertion follows from the inclusion-maximality of facets.

First, we note that, due to (2.5), any cut δ(U) not containing the edge ht satisfies
the following equation:

â
(

δ(U)
)

= a
(

δ(U)
)

.

As a consequence, each tight cut of (a, α) corresponds to a tight cut of (â, α) that
does not contain the edge ht. Also, if the edge ht is not part of the cut δ(U) then we
know for all v ∈ B that δ(U) contains either both edges hv and tv or none of them.
Altogether, we obtain a one-to-one correspondence between the edges in E \ (w : B)
and those in Ê \

(

({h, t} : B) ·∪ht
)

as well as between the edges in (w : B) and the edge
pairs {hv, tv} for all v ∈ B. Since, by assumption, (a, α) defines a facet, the above results
imply the existence of a scalar λ > 0 such that:

b̂e = λâe for all e ∈ Ê \
(

({h, t} : B) ·∪ht
)

, (2.8a)

b̂hv + b̂tv = λâhv for all v ∈ B. (2.8b)

Consequently, the proposition (2.7) is correct for all edges in Ê \
(

({h, t} : B) ·∪ht
)

.

In the next step we will prove the proposition for the edges in ({h, t} : B). Note
that, due to (2.8b), it is sufficient to show that b̂tv = λâtv = 0 for all v ∈ B. To do so,
we use an auxiliary cut that is induced by the set S′ := (S \ w) ·∪ h ⊆ V̂ as depicted in
Figure 2.6(b). This cut δ(S′) is tight for (â, α), as we will see shortly. A comparison
of δ(S′) with δ(S) shows that we gain the edge ht as well as the edges in (w : T ∩ S)
while losing those in (w : T \S) (compare Figures 2.6(a) and (b)). As a consequence, we
obtain that

â
(

δ(S′)
)

= a
(

δ(S)
)

+ âht + a(w : T ∩ S) − a(w : T \ S).

Yet, due to conditions (ii) and (iii), we have

a(w : T ∩ S) − a(w : T \ S) =
∑

v∈T

|awv|
(2.5)
= −âht. (2.9)
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w

v

S

(a)

h t

v

S′

(b)

h t

v

S′\v

(c)

Figure 2.6: Contributions of a star δ(v) to the cuts induced by different node sets.

Thus, we see that

â
(

δ(S′)
)

= a
(

δ(S)
) (i)

= α,

which verifies that the auxiliary cut δ(S′) is tight for (â, α). With the help of δ(S′) we
can now show that b̂tv = λâtv = 0 for all v ∈ B. In the following, we distinguish two
cases, namely v ∈ B ∩ S and v ∈ B \ S, respectively.

For the first case ‘v ∈ B ∩ S’, we take the cut δ(S′) and let the node v switch shores.
We claim that the resulting cut δ(S′\v) is also tight for (â, α). To see this, we recall (2.5),
which states that âhv = awv as well as âtv = 0 for all v ∈ B. Therefore, condition (iv)
implies that â(v : S′) = â(v : V̂ \ S′) for all v ∈ B. In fact, since âtv = 0, we even have

â(v : S′) = â
(

v : V̂ \ (S′ ·∪ t)
)

, for all v ∈ B. (2.10)

As a result, the values â
(

δ(S′)
)

and â
(

δ(S′ \ v)
)

are identical, which proves that (â, α)
is indeed tight at δ(S′ \ v).

Let S′∁ denote the complement of S′ in V̂ . As we have seen, the two cuts δ(S′)
and δ(S′ \ v) are tight for (â, α) and thus also for (b̂, β). By removing v from S′, we lose
the edge tv as well as the edges in

(

v : S′∁ \ t
)

while gaining those in
(

v : S′
)

(compare
Figures 2.6(b) and (c)). Consequently, we have

0 = b̂
(

δ(S′)
)

− b̂
(

δ(S′ \ v)
)

= b̂tv + b̂
(

v : S′∁ \ t
)

− b̂
(

v : S′
)

.

We now show that the difference b̂
(

v : S′∁ \ t
)

− b̂
(

v : S′
)

actually equals b̂tv. Consider
the equation (2.10). First, we write â

(

v : S′
)

as the sum âhv + â
(

v : S′ \ h
)

. Next, we
multiply the whole equation by the scalar λ from (2.8):

λâhv + λâ
(

v : S′ \ h
)

= λâ
(

v : S′∁ \ t
)

.

Due to (2.8), the above equation is equivalent to the following one:

b̂hv + b̂tv + b̂
(

v : S′ \ h
)

= b̂
(

v : S′∁ \ t
)

.

After rearranging the terms, we obtain the desired equality b̂
(

v : S′∁\t
)

− b̂
(

v : S′
)

= b̂tv.
As a result, we get

0 = b̂
(

δ(S′)
)

− b̂
(

δ(S′ \ v)
)

= 2b̂tv ,

which proves that b̂tv = 0 for all v ∈ B ∩ S. The proof for the second case ‘v ∈ B \ S’
works analogously by using the tight cuts δ(S′ ·∪ v) and δ(S′).
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The only thing left to show is that b̂ht = λâht. To do so, we consider the cut δ(S′ ·∪ t),
which is tight for the inequality (â, α). This follows from condition (i) since the cut does
not contain the edge ht. In conjunction with the tightness of δ(S′), we obtain that

0 = b̂
(

δ(S′)
)

− b̂
(

δ(S′ ·∪ t)
)

= b̂ht + b̂(t : S′ \ h) − b̂
(

t : S′∁
)

.

However, we know that b̂tv = 0 for all v ∈ B. Thus, the difference b̂(t : S′ \h)− b̂
(

t : S′∁
)

simplifies to b̂(t : T ∩S′)− b̂(t : T \S′), which in turn equals λ
(

â(t : T ∩S′)− â(t : T \S′)
)

due to (2.8a). Moreover, according to (2.5) we have âtv = awv for all v ∈ T . Therefore,
the term λ

(

â(t : T ∩ S′) − â(t : T \ S′)
)

actually equals λ
(

a(w : T ∩ S) − a(w : T \ S)
)

,
which is exactly −λâht according to (2.9). Ultimately, we obtain the following equation:

0 = b̂ht + b̂(t : S′ \ h) − b̂
(

t : S′∁
)

= b̂ht − λâht.

In summary, we have shown that b̂ = λâ thus proving that (â, α) defines a facet of
the cut polytope CUT(Ĝ).

Finally, the node-splitting operation also preserves an existing odd-cycle structure of
a given inequality.

Lemma 2.11. An inequality obtained from an odd-cycle inequality of CUT(G) by node-
splitting is an odd-cycle inequality of CUT(Ĝ).

Proof. Let C and F be the cycle and its odd subset, respectively, that define the initial
odd-cycle inequality (a, α) of CUT(G). For ease of notation, we introduce the abbrevia-
tion

|a|(S) :=
∑

e∈S

|ae|.

Let w ∈ C be the node to be split into the nodes h and t with respect to the parti-
tion (H,T,B). In order to be consistent with (2.5) on page 49, we assume, without loss
of generality, that |a|(w : T ) ≤ |a|(w : H). Also, we denote the two neighbors of w in
the cycle C by u and v, respectively.

First, we assume that at least one of the neighbors u, v lies outside B. Without loss
of generality, let u ∈ H. Then, the remaining neighbor v can either be an element of T
or of B. If v ∈ T then both |a|(w : H) and |a|(w : T ) have a value of one. Hence, the
coefficient of ht is set to −1. The node sequence uwv of the supporting cycle C is replaced
by uhtv, thereby extending C to the cycle Ĉ := C ·∪ht. However, since ht has a coefficient
of −1, the odd subset F remains unchanged and the odd-cycle structure of the inequality
is preserved. If, on the other hand, v ∈ B then we have |a|(w : T ) = 0. Consequently,
the decompressed edge ht gets a coefficient of zero and the node sequence uwv of C is
simply replaced by uhv. Altogether, the odd-cycle inequality remains unaltered.

Finally, if both u and v are elements of B, we proceed analogously to the latter one
of the previous cases.

In conjunction with two earlier results to be specified shortly, the above Lemma 2.11
allows the following important conclusion: If necessary, we can perform the separation
of odd-cycle inequalities on the contracted graph G rather than on the initial graph G.
In general, this will be more efficient due to the reduced size of the contracted graph.
To see the correctness of this approach, we recall property (2) on page 48 concerning
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the semimetric polytope. The property states that a given contracted LP solution z is
an element of MET(G) if and only if the corresponding switched LP solution z̃ is an
element of MET(G). In other words, if the switched LP solution violates at least one
odd-cycle inequality then this is also true for the contracted LP solution. Moreover,
any violated odd-cycle inequality on the contracted graph can be transformed into a
separating odd-cycle inequality on the initial graph using lifting and switching. This is
because both steps of the transformation preserve the odd-cycle structure as stated in
the above Lemma 2.11 for the lifting and in Lemma 2.6 on page 44 for the switching,
respectively.

In conclusion, the contraction procedure described in this section projects the switched
LP solution z̃ onto the subspace {x ∈ RE | xe = 0, for all e ∈ E0(z̃)}. Since the com-
ponents of z̃ are either fractional or zero, the contracted LP solution z corresponds
precisely to the fractional part of the switched LP solution. Thus, z has at most the
dimension of z̃. Accordingly, the related contracted graph G has at least the density
of the initial graph G. Any separating inequality for the contracted LP solution can
be lifted to a separating inequality for the switched LP solution. The respective lifting
procedure always preserves the validity of an inequality for the cut polytope. Moreover,
it even preserves an existing facet-defining property of an inequality provided that the
conditions of Lemma 2.10 on page 50 are met.

Yet, the contraction procedure does not guarantee that the contracted graph G is
complete. This means that in order to allow the use of separation techniques for complete
graphs, we possibly have to take further steps, which we will elaborate on in the next
section.

2.1.3 Extension and Projection

In the previous section we have seen that the contracted graph G has at least the density of
the initial graph G. Still, it is possible that G is not complete. In this case, an associated
contracted LP solution z does not specify LP values for the non-edges of G. In order to
apply separation procedures for complete graphs, we have to introduce artificial variables
for the non-edges and assign suitable LP values to them. This results in an extended LP
solution z′. Once we have found a separating inequality for z′, we have to project out the
artificial variables to obtain a separating inequality for the contracted LP solution z. For
reasons of clarity we will only consider the extension by a single variable. The general
case can be derived by means of iteration.

Assume we are given a contracted yet non-complete graph G = (V ,E) as well as
an LP solution z ∈ MET(G) \ CUT(G). Let e = uv be a non-edge of G. We define

the extended edge set E
′
:= E ·∪ e and the respective extended graph G

′
= (V ,E

′
).

Our goal is to obtain an extended LP solution z′T = (zT , ξ) that is an element

of MET(G
′
). Note that the corresponding set {ξ | (zT , ξ) ∈ MET(G

′
)} of feasible values

of ξ is nonempty. This is because z is an element of MET(G), which is a projection

of MET(G
′
) along the variable xe (cf. Remark 6.1 in [Bar93]). In fact, the feasible set of

artificial LP values is precisely the interval [ξl, ξu] with the limits ξl := max {0, L} and
ξu := min {U, 1}, where L and U are defined as follows:

L := max {z(F ) − z(P \ F ) − |F | + 1 | P (u, v)-path of G, F ⊆ P , |F | odd},

U := min {−z(F ) + z(P \ F ) + |F | | P (u, v)-path of G, F ⊆ P , |F | even}.
(2.11)
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To simplify matters, we will refer to the feasible range of artificial LP values simply as
feasible LP range, the limits of which can be deduced as follows: First, we note that
each cycle of the extended graph G

′
is either a cycle of the contracted graph G or it

contains the artificial edge e. The cycles of G are negligible, though, since we already
know that z ∈ MET(G). So, let C be a cycle of G

′
that contains the artificial edge e.

As depicted in Figure 2.7, such a cycle decomposes into the edge e and a path P = C \ e
that links the ends u and v of e.

e

u v

P

Figure 2.7: A cycle of the extended graph G
′
containing the artificial edge e.

Let x(F ) − x(C \ F ) ≤ |F | − 1 be an arbitrary odd-cycle inequality on C. We solve
the inequality for the artificial variable xe. Depending on whether e is part of F or C \F ,
we obtain one of the following inequalities:

xe ≤ −x(F̂ ) + x(P \ F̂ ) + |F̂ |,

xe ≥ x(F ) − x(P \ F ) − |F | + 1,

where F̂ := F \e and thus |F̂ | is even. Setting x to z′ provides an upper and lower bound
on z′e, respectively. Finally, we get the preliminary limits L and U as specified in (2.11)
by maximizing the lower bound and minimizing the upper bound over all (u, v)-paths P
and all possible subsets F and F̂ , respectively, of P with appropriate parity.

The above construction makes sure that an extended LP solution (zT , ξ) satisfies all

odd-cycle inequalities of the extended graph G
′
if and only if ξ lies within the range [L,U ].

Note that the preliminary limits can be computed efficiently by solving a shortest-path
problem on an auxiliary graph proposed by Barahona and Mahjoub [BM86]. A detailed
description of this graph will be provided in the proof of Lemma 2.14 on page 57.

However, apart from the odd-cycle inequalities, the linear description of the semimet-
ric polytope also comprises the trivial inequalities, which we haven’t taken into account
yet. In fact, we will see in Example 2.12 that the preliminary limits L and U are not
restricted to the range [0, 1].

Example 2.12. Consider the graph G = ({s, t, u, v}, {f, g, h}) as depicted in Figure 2.8.
Since G is acyclic, we have MET(G) = [0, 1]3. Hence, the point zT := (0.5, 0.5, 0.5) is
an element of MET(G), but it does not represent a cut of G. We introduce the artificial
variable xe for the non-edge e. For the computation of the preliminary limits L and U
there is only one (u, v)-path to consider, namely P = {f, g, h}. Ultimately, we obtain the
following limits:

L = max
F⊆P, |F | odd

{z(F ) − z(P \ F ) − |F | + 1 } = −0.5,

U = min
F⊆P, |F | even

{−z(F ) + z(P \ F ) + |F | } = 1.5.

This clearly shows that the values of L and U are not restricted to the range [0, 1].
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e

f

g

h

u v

s t

Figure 2.8: Graph of order four with artificial edge e.

As a consequence, to ensure that the extended LP solution is an element of the semi-
metric polytope, we introduce the revised limits ξl := max {0, L} and ξu := min {U, 1}.

If lower and upper limit coincide, in which case the artificial LP value is uniquely
defined, we say that the artificial edge e is rigid. Furthermore, we call an odd-cycle-
and a trivial inequality, respectively, a lower inequality for e if it is tight at (zT , ξl).
Analogously, an upper inequality for e is an odd-cycle- or trivial inequality that is
tight at (zT , ξu). To be more precise, the trivial inequality −xe ≤ 0 is a lower inequality
for e if L ≤ 0. Otherwise, a lower inequality is given by the odd-cycle inequality derived
from the argument of the maximum of (2.11). Similarly, the trivial inequality xe ≤ 1 is
an upper inequality for e if U ≥ 1. Otherwise, we can derive an upper inequality from
the argument of the minimum of (2.11). When dealing with odd-cycle inequalities, we
always assume that they are written in the form x(F ) − x(C \ F ) ≤ |F | − 1. Then, the
coefficient of the artificial variable xe is −1 in a lower inequality and +1 in an upper
inequality, respectively. We will come back to this property shortly.

For the moment, let us assume that we have successfully extended the LP solu-
tion to z′. Let (a′, α′) be a corresponding separating inequality. Then, η := a′T z′−α′ > 0
is the amount by which z′ violates the inequality. Our next task is to derive a separating
inequality for the contracted LP solution z. If the coefficient a′e of the artificial edge is
zero, we can simply truncate the left hand side vector a′ to the index set E. Note that in
this case z violates the truncated inequality by the same amount η. Otherwise, we have
to project out the artificial variable xe. To do so, we need a valid inequality (b

′
, β

′
)

for CUT(G
′
) such that b

′
e is nonzero and has the opposite sign of a′e. Then,

(a′, α′) −
a′

e

b
′
e

(b
′
, β

′
) (2.12)

is a valid inequality for CUT(G
′
) that has a zero coefficient for xe. Thus, it can be

truncated in the manner just mentioned. Moreover, if (b
′
, β

′
) is tight at z′ then (2.12)

even preserves the original violation η. Otherwise, the violation can reduce and may even
become negative.

At this point we recall that the coefficient of the artificial variable xe is always −1 in a
lower inequality for e and +1 in an upper inequality for e, respectively. As a consequence,
a lower inequality is a natural choice for the auxiliary inequality (b

′
, β

′
) if the artificial

coefficient a′e is positive. Analogously, we can use an upper inequality if a′e is negative.
Note that if the edge e is rigid, which means that both the upper and the lower inequality
are tight at z′, the projection preserves the amount of violation in any case. Otherwise,
the actual loss of violation depends on the choice of the artificial LP value ξ within the
feasible LP range [ξl, ξu]. However, this loss is at most |a′e|(ξu − ξl).

Due to their favorable characteristics regarding the projection, rigid artificial edges
are particularly interesting. Therefore, we now specify a sufficient condition for the
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rigidity of a non-edge. It requires the notion of a tight cycle. We say that a cycle is tight
at a given point if this is true for at least one odd-cycle inequality with respect to this
cycle.

Lemma 2.13. A non-edge e /∈ E is rigid if it is the chord of a cycle that is tight at
z ∈ MET(G).

Proof. First, we note that the feasible LP range [ξl, ξu] of the non-edge e is nonempty.

This is because z is an element of MET(G), which in turn is a projection of MET(G
′
)

along the variable xe. Hence, there must exist an element (zT , ξ) of MET(G
′
) that is

projected onto z. As a result, we have ξl ≤ ξu.

Let x(F )−x(C \F ) ≤ |F |−1 be an odd-cycle inequality that is tight at z. If e = uv
is a chord of C then it partitions the cycle into two (u, v)-paths with the respective edge
sets C1 and C2. Let F1 := F ∩ C1 and F2 := F ∩ C2. Without loss of generality, we
assume that |F1| is odd. Accordingly, the set F2 has even cardinality. In conjunction
with (2.11) on page 53, this leads to the following estimates:

L ≥ z(F1) − z(C1 \ F1) − |F1| + 1,

U ≤ −z(F2) + z(C2 \ F2) + |F2|.

Since the odd-cycle inequality is tight at z, we have

z(F1) + z(F2) − z(C1 \ F1) − z(C2 \ F2) = |F1| + |F2| − 1.

This, however, implies that U ≤ L. Finally, since ξu ≤ U and L ≤ ξl by definition, we
obtain ξu ≤ ξl. Together with the earlier result ξl ≤ ξu, this proves the assertion.

Finally, we briefly discuss under which conditions the projection of a single variable
preserves an existing facet-defining property of a valid inequality for the cut polytope.
Geometrically speaking, this is the case if and only if the projected inequality defines a
ridge of CUT(G

′
). Let us assume that the separating inequality (a′, α′) defines a facet Q

of CUT(G
′
). Then, the projected inequality defines a ridge of CUT(G

′
) if and only if

the face defined by the auxiliary inequality (b
′
, β

′
) is either a facet of Q itself or a facet

of CUT(G
′
) that shares a common ridge with Q. There is also the special case that

the projection transforms a ridge of CUT(G
′
) into a facet of CUT(G). Since a ridge

is contained in exactly two facets, this can only happen if (a′, α′) defines a ridge R

of CUT(G
′
) and (b

′
, β

′
) defines one of the two facets containing R.

In conclusion, when using static extension, i. e., when assigning a fixed LP value
to the artificial variable xe, we can directly apply standard separation procedures to the
extended LP solution z′. However, it is possible that the projection later on reduces the
amount by which z′ violates an obtained separating inequality.

Adaptive Extension

We now introduce an alternative extension approach which we refer to as adaptive
extension. Here, we do not fix the LP value of the artificial variable xe. Instead,
we store the limits ξl and ξu of the feasible LP range and leave the artificial LP value
itself undetermined. We assume that it can take the value of either of the two limits
depending on the sign of the respective coefficient a′e in a given inequality (a′, α′). To be
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more precise, if, for instance, the artificial coefficient a′e is positive then we assume that xe

takes the value of the lower limit ξl. This is because we would use a lower inequality to
project out a positive coefficient. Accordingly, if a′e is negative then we assume that the
artificial LP value equals the upper limit ξu since we would use an upper inequality for
the projection. As a result, the lower/upper inequality used to project out the artificial
coefficient a′e is guaranteed to be tight at the adaptively extended LP solution. Thus,
the projection will not alter the amount of violation.

At this point we need to clarify that the term “violation” has a slightly different
meaning in the context of adaptive extension. Consider an extended LP solution z′ and
an inequality (a′, α′). Let η := a′T z′−α′ be the respective violation. For a statically ex-
tended LP solution, η measures the amount by which z′ violates the inequality (a′, α′).
In contrast, when using adaptive extension, η specifies the amount by which the con-
tracted LP solution z will violate the already projected inequality (a, α). Clearly, the
latter value is invariant under the projection.

Another key advantage of the adaptive extension is that the limits of the feasible LP
ranges of different artificial variables are mutually independent. Therefore, we can exploit
an existing sparse structure of the contracted graph. This accelerates the computation
of the limits and thus the overall shrink separation.

Lemma 2.14. Let z ∈ MET(G) be a contracted LP solution. Then, the respective limits
of the feasible LP ranges of different non-edges are mutually independent. In particular,
the values of the limits are only determined by the LP values of existing edges.

Proof. Let G = (V ,E) be the underlying graph of the contracted LP solution z. We
introduce two copies G1 = (V 1, E1) and G2 = (V 2, E2) of the graph G. In these copies
we denote the duplicate of a node v ∈ V by v1 and v2, respectively. We now define
the auxiliary graph Ga = (V a, Ea) with the node set V a := V 1 ·∪V 2 and the edge
set Ea := E1 ·∪E2 ·∪ {u1v2, u2v1 | uv ∈ E}. Each edge e ∈ Ea receives an edge weight we

as follows:

we :=

{

zuv if e ∈ {u1v1, u2v2},

1 − zuv otherwise.

Note that all edge weights in Ga have a value between zero and one. This is because
the contraction ensures that 0 < zuv < 1, for all uv ∈ E. The auxiliary graph Ga was
initially proposed by Barahona and Mahjoub [BM86] for the exact separation of odd-
cycle inequalities in polynomial time. For a better understanding, Figure 2.9 depicts the
subgraph of Ga that is induced by a single edge uv of the contracted graph G.

u1

v1

u2

v2

zuv zuv

G1 G2

1 − zuv

Figure 2.9: Subgraph of the auxiliary graph Ga induced by a single edge uv of G.

Our goal is to show that we can derive the limits L and U , as given in (2.11) on
page 53, from the lengths of certain shortest paths in Ga. To be more precise: For a
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given non-edge f = st of G, we obtain the respective limits Lf and Uf as

Lf := max
P (s, t)-path of G,

F ⊆ P, |F | odd

{z(F ) − z(P \ F ) − |F | + 1 } = 1 − w(P a
s1t2),

Uf := min
P (s, t)-path of G,

F ⊆ P, |F | even

{−z(F ) + z(P \ F ) + |F | } = w(P a
s1t1).

(2.13)

Here, P a
s1t2 and P a

s1t1 denote a shortest (s1, t2)- and (s1, t1)-path in Ga, respectively. Note
that, due to the symmetry of Ga, we can always assume the first node of a path to be an
element of V 1 without loss of generality.

Before we can prove the above proposition, we first need to characterize some im-
portant properties of paths in the auxiliary graph. We start by examining how shortest
paths in Ga relate to paths in G. For a given path in Ga, we obtain its counterpart
in G by identifying each node duplicate v1 and v2, respectively, with the corresponding
original node v. In general, however, the resulting structure is not a path but merely a
chain. This is because paths in Ga may contain nodes from both V 1 and V 2 at the same
time. The situation is different for shortest paths in Ga. Here, the respective counterpart
in G is indeed a path, as we will show now. Let P a be an arbitrary shortest path in Ga.
If the path contains no recurring duplicates, i. e., if P a does not contain both v1 and v2

for any of the nodes v ∈ V , then its counterpart in G is obviously a path. So, assume
that P a contains at least one recurring duplicate. Let (u1, u2) be the earliest such re-
currence in P a. In other words, u2 is the first node of P a for which there has already
been another duplicate, namely u1, of the same original node u before. We denote the
corresponding (u1, u2)-subpath of P a by P a

u1u2 . The pair (u1, u2) is, by construction, the
only recurring duplicate in P a

u1u2 and thus the subpath corresponds to a cycle C in G.
Next, we consider the edge set F a which consists of the common edges shared by P a

u1u2

and the cut (V 1 : V 2). Since the subpath starts in V 1 and ends in V 2, the set F a must
have odd cardinality. Moreover, F a corresponds to an odd subset F of the cycle C in G.
Finally, the length of P a

u1u2 is given by

∑

e∈F

(1 − ze) +
∑

e∈C\F

ze = |F | − z(F ) + z(C \ F ).

Since z is an element of MET(G), we have z(F ) − z(C \ F ) ≤ |F | − 1 and thus the
length of P a

u1u2 is greater or equal one. At this point we recall that all edge weights
in Ga have a value between zero and one. Consequently, we can reduce the length of the
path P a as follows: We omit the (u1, u2)-subpath entirely; instead, we traverse the edge
that joins u1 to the successor of u2 in P a. This, however, contradicts the assumption
that P a is a shortest path. In summary, we have shown that shortest paths in Ga cannot
contain recurring duplicates and thus correspond to paths in G.

The next important property of paths in Ga has already been mentioned above:
Any (u1, v2)-path shares an odd number of edges with the cut (V 1 : V 2). Analogously,
the number of edges in the intersection of (V 1 : V 2) with an arbitrary (u1, v1)-path is
always even.

With the above results we can finally show that the limits Lf and Uf in (2.13) are
indeed given by the lengths of appropriate shortest paths in Ga. Yet, we will only provide
the detailed proof for Uf . The result for Lf can be derived analogously. So, our task is
to minimize the objective −z(F ) + z(P \ F ) + |F | over all (s, t)-paths P of G and all
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subsets F of P with even cardinality. First, we recall the relationship between paths in G
and shortest paths in Ga. Since we are only interested in the (s, t)-paths of G, it suffices
to consider the shortest paths in Ga from the duplicate s1 to either of the duplicates t1

and t2 of t, respectively. Remember that, without loss of generality, we can assume the
shortest path to start in V 1 due to the symmetry of Ga. In the next step we rewrite the
objective −z(F ) + z(P \ F ) + |F | as follows:

∑

uv∈F

(1 − zuv) +
∑

uv∈P\F

zuv.

Note that the respective summands of the edges in F resemble the weights of the edges
in the cut (V 1 : V 2). Moreover, F is supposed to have even cardinality. As a result, we
only need to consider the shortest (s1, t1)-paths since these are the ones that cross the
cut (V 1 : V 2) an even number of times. Altogether, we see that the value of the upper
limit Uf equals the length of a shortest (s1, t1)-path in Ga.

As a direct consequence of (2.13), we obtain that the limits L and U of different non-
edges are mutually independent. This is because the auxiliary graph Ga is constructed
from the contracted graph G, which does not contain any artificial edges. To see that
this is indeed correct, let us consider the following scenario: We want to determine the
limits Lf and Uf of a given non-edge f = st of G. In this case, however, we also use
the information on another non-edge g = ij 6= st and its artificial LP limits Lg and Ug.
To do so, we add the artificial edges i1j1, i2j2, i1j2, and i2j1 to Ga. Yet, since we use
adaptive extension, the artificial LP value of the non-edge g is a priori undetermined.
Therefore, the actual weights of the newly introduced edges depend on the signs of their
respective coefficients in a given inequality. In this scenario, the relevant inequalities are
the tight odd-cycle inequalities that can be derived from the argument of the maximum
and the minimum, respectively, in (2.13). These tight odd-cycle inequalities have the
general form

x(F ) − x(C \ F ) ≤ |F | − 1,

where F is a subset of the cycle C with odd cardinality. Looking at the following equiv-
alent formulation

∑

e∈F

(1 − xe) +
∑

e∈C\F

xe ≥ 1,

we see that the edges in F correspond to edges in the cut (V 1 : V 2). Thus, in the general
form of the odd-cycle inequalities, the edges i1j2 and j1i2 have a respective coefficient
value of 1. Accordingly, the artificial LP value of g is set to the lower limit Lg, which
results in an edge weight of 1 − Lg. Analogously, the edges i1j1 and i2j2 correspond to
edges in C \ F with a coefficient of −1. Hence, we obtain an edge weight of Ug.

Now, according to (2.13) we can replace each occurrence of an edge i1j2 or j1i2 with
a shortest (i1, j2)- or (j1, i2)-path that does not contain any of the newly introduced
edges. The weight of such a shortest path is precisely the weight of the replaced edge,
namely 1− Lg. Moreover, this substitution does not change the parity of the number of
times the overall path crosses the cut (V 1 : V 2). This is because the intersection of a
shortest (i1, j2)- or (j1, i2)-path with (V 1 : V 2) has odd cardinality. Analogously, each
occurrence of an edge i1j1 or i2j2 can be replaced with a shortest (i1, j1)- or (i2, j2)-path.
As before, this neither changes the length of the overall path nor the parity of the number
of times it crosses (V 1 : V 2).
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In conclusion, we can eliminate any occurrence of a newly introduced edge without
loss of information. This proves the mutual independence of the limits of different feasible
LP ranges.

However, there is the following downside to adaptive extension: In general, the avail-
able separation procedures cannot handle the a priori undetermined LP values. This
means that we have to make certain adjustments, which in turn can increase the compu-
tational complexity. The exception are separation procedures for classes of inequalities in
which all nonzero coefficients have the same sign. Here, we can simply fix the artificial LP
value to the appropriate limit of the feasible LP range and then apply a standard separa-
tion procedure. This is, for instance, the case for bicycle-p-wheel- or clique inequalities,
which have exclusively nonnegative coefficients.

In summary, the key benefit of the extension—especially when dealing with sparse
graphs—is that it allows to apply separation techniques for dense and complete graphs
that we possibly would not have been able to use on a contracted LP solution otherwise.
For this purpose, we introduce artificial LP values for the non-edges. In doing so, we
can choose between the following two approaches: The first one is static extension,
which works with fixed artificial LP values. This allows us to use unmodified separation
procedures on the extended LP solution, but it also carries the risk of losing some of
the obtained separating inequalities during projection. The second approach is adaptive
extension, which uses a priori undetermined artificial LP values. Although it may require
extensive modifications of the separation procedures, this alternative method guarantees
that the projection does not affect the amount of violation of the separated inequalities.

Either way, each separating inequality has to be projected to remove all nonzero left
hand side coefficients related to non-edges. However, the necessary information for this
transformation is obtained as a byproduct of the extension without additional effort.

2.1.4 Separation

We now take a closer look at the separation of valid inequalities for the cut polytope.
Here, we focus on four specific classes of inequalities, namely bicycle-p-wheel-, clique-, and
hypermetric inequalities as well as target cuts. This is because these are the inequality
classes that we actually separate in our implementation of the shrink separation. In
addition, we pay special attention to the respective characteristics of the separation
procedures with regard to adaptive extension.

Bicycle-p-wheel- and Clique Inequalities

As pointed out in Section 1.4, bicycle-p-wheel- and clique inequalities are valid for the
cut polytope. We recall that bicycle-p-wheel inequalities have the following form:

x(B) ≤ 2p,

where B denotes the edge set of a bicycle-p-wheel as depicted in Figure 1.7 on page 32.
Clique inequalities, on the other hand, look as follows:

x(F ) ≤

⌈

k

2

⌉⌊

k

2

⌋

,

where F denotes the edge set of a clique of order k. Note that the left hand side coefficients
of both types of inequalities are all either zero or one. In particular, all nonzero left



2.1. Components of the Separation Procedure 61

hand side coefficients have the same sign. As a result, these two inequality classes are
convenient special cases regarding adaptive extension.

As explained in Section 2.1.3, the adaptive extension approach uses a priori undeter-
mined artificial LP values. We assume, however, that the possible values are restricted
to either of the limits of their respective feasible LP range. The decision, which of the
limits is actually taken, is made during the course of the separation. It depends on the
sign of the corresponding coefficient in a given inequality. However, things are different
for inequality classes in which for all contained inequalities the nonzero left hand side co-
efficients have the same sign. In this case, the adaptive extension either fixes all artificial
LP values to the lower limit of their respective feasible LP range or it fixes them all to
the upper one. Thus, under these circumstances, the adaptive extension is identical to
the static extension and therefore does not require any modifications to the separation
procedure.

As a result, we can separate both bicycle-p-wheel- and clique inequalities using stan-
dard procedures regardless of the chosen extension approach. In our implementation we
use the algorithm of Gerards [Ger85] for the bicycle-p-wheel inequalities and a greedy
heuristic for the clique inequalities, respectively. We now proceed with the class of hy-
permetric inequalities.

Hypermetric Inequalities

In Section 1.4 we have seen that hypermetric inequalities have the following form:
∑

1≤i<j≤n

bibjxij ≤ 0,

where b = (b1, . . . , bn), n ≥ 2, is an integral vector that satisfies
∑n

i=1 bi = 1. These
inequalities are valid for the cut cone associated with the complete graph Kn = (Vn, En).
Since the cut cone contains the cut polytope CUT(Kn), the hypermetric inequalities are
also valid for CUT(Kn). However, if the LP solution z to be separated lies in the interior
of the cut cone then the hypermetric inequalities are of no use. Fortunately, we can use
the switching operation from Section 2.1.1 to circumvent this problem in the following
way: First, we locate a vertex v of CUT(Kn) in the vicinity of the LP solution. This
can be accomplished, for instance, by using a rounding heuristic like Algorithm 1.2 on
page 28. Next, we apply the switching mapping alongside the cut that is associated
with the vertex v. This maps v to the origin 0, which is the apex of the cut cone.
At the same time, the LP solution z is mapped to a fractional point y near the apex.
Note that, due to Corollary 2.4 on page 43, the point y is guaranteed to lie outside
the cut cone. We can now separate y from the cut cone using separation procedures
for hypermetric inequalities. Finally, the resulting separating inequalities are switched
alongside the cut associated with v to obtain their respective counterparts for the original
LP solution z.

In our implementation we use a greedy heuristic to separate the hypermetric inequal-
ities. For a given fractional LP solution z we first initialize the integral vector b in such
a way that it already satisfies

∑n
i=1 bi = 1. The goal is to increase the amount of vio-

lation
∑

1≤i<j≤n bibjzij . However, for the considerations below it is more convenient to
refer to the edges as “uv ∈ En” rather than “ij, 1 ≤ i < j ≤ n”. So, let

viol(z, b) :=
∑

uv∈En

bubvzuv
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denote the amount by which the LP solution z violates the hypermetric inequality induced
by the vector b. In each iteration we perform a local change on b to obtain a new integral
vector b̂. To do so, we determine two node indices k, l and define b̂ as follows:

b̂u :=











bu + 1 if u = k,

bu − 1 if u = l,

bu otherwise.

By construction, the new vector also satisfies
∑

v∈Vn
b̂v = 1. Depending on the setting,

the indices k and l are either chosen at random or in such a way that the resulting
increase in violation is maximized over all possible choices. We obtain the amount of
violation with respect to the new vector b̂ via the following update formula:

viol(z, b̂) = viol(z, b) +
∑

v∈Vn\{k,l}

bv(zkv − zlv) + (bl − bk − 1)zkl.

If the local change on b increases the amount of violation then we accept it, which means
that we set b = b̂ and iterate.

When using adaptive extension, though, the update formula becomes more involved.
This is because the artificial LP value of a non-edge uv changes with the sign of the
product bubv. For a better understanding, consider the following example: Let zuv be
an artificial LP value with lower limit ξl and upper limit ξu. Furthermore, let the cor-
responding coefficients in the hypermetric inequalities induced by b and b̂ be bubv > 0
and b̂ub̂v < 0, respectively. This means that zuv takes the lower limit in viol(z, b) while
taking the upper one in viol(z, b̂). We see that a change to the vector b can affect
the artificial LP values that we take as a basis for the computation of the violation.
Consequently, the update formula has to take this effect into account.

To simplify the notation below, we denote the LP solutions subject to the old vector b

and the new vector b̂ simply by z and ẑ, respectively. Then, the new amount of violation
is as follows:

viol(ẑ, b̂) =
∑

uv∈En\(δ(k)∪δ(l))

bubvzuv +
∑

v∈Vn\{k,l}

bv

(

(bk + 1)ẑkv + (bl − 1)ẑlv

)

+ (bk + 1)(bl − 1)ẑkl.

Finally, we define duv := (ẑuv − zuv) and substitute the term bubvzuv + bubvduv for each
occurrence of bubv ẑuv where at least one of the indices u and v is in {k, l}. As a result,
we obtain the following update formula for the adaptive extension case:

viol(ẑ, b̂) = viol(z, b) +
∑

v∈Vn\{k,l}

bv

(

bkdkv + bldlv + (ẑkv − ẑlv)
)

+ bkbldkl + (bl − bk − 1)ẑkl.

In conclusion, compared to bicycle-p-wheel- or clique inequalities, it is considerably
more complex to adjust the respective separation procedure for hypermetric inequal-
ities to the use of adaptive extension. Still, the modifications are relatively easy to
accomplish since we wrote the procedure ourselves and therefore have full access to the
source code.

The final part of this section discusses the separation of target cuts. In particular,
we will give an example of how to use adaptive extension in conjunction with a target
cut application programming interface.
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Target Cuts

As explained in Section 0.4.5, target cuts are inequalities that do not put any restrictions
on their actual structure. In particular, they do not require a complete underlying graph.
As a result, we can separate target cuts directly on a contracted LP solution. At this point
we would like to thank Dr. Christoph Buchheim, Dr. Frauke Liers, and Dr. Marcus Oswald
for kindly providing their target cut software framework. This framework implements
an application programming interface (API) for the separation of target cuts. We
extended the framework to use it in our max-cut solver. In particular, we implemented
the virtual oracle function, which is necessary for the delayed column generation.

The framework expects two sets of vectors x1, . . . ,xs and y1, . . . ,yt as well as an
additional pair of vectors q and x∗ as input. All vectors must have the same dimen-
sion. The two vector sets, the second of which may be empty, define a polyhedron
Q = conv {x1, . . . ,xs}+cone {y1, . . . ,yt}. The remaining two vectors specify an interior
point q ∈ Q and an infeasible point x∗ to be separated from Q, respectively. Given this
input data, the framework solves the following generalized version of the LP (0.5) on
page 17:

max aT (x∗ − q)

s.t. aT (xi − q) ≤ 1 for all i = 1, . . . , s

aT yj ≤ 0 for all j = 1, . . . , t

a ∈ Rm

(2.14)

The above LP is more general than (0.5) since it optimizes over a polyhedron rather than
a polytope. Yet, the geometrical interpretation of the target cut separation is the same
in both cases.

For the separation of a contracted LP solution z, we choose Q to be the cut poly-
tope CUT(G). As first set of vectors x1, . . . ,xs we provide the incidence vectors of all
the cuts of G. Alternatively, if we enable delayed column generation then we only need a
suitable subset of the incidence vectors. In either case, the second set of vectors y1, . . . ,yt

is left empty. The interior point q can be, for instance, the vertex barycenter of the cut
polytope or, even simpler, the vector 1/2 ·1 of all one-halves. Finally, we set the infeasible
point x∗ to the contracted LP solution and call the target cut separation procedure.

Our preliminary computational experiments showed that the target cut software
framework can only handle graphs with up to twenty nodes within a reasonable time.
As a rule of thumb, for graphs with at most twelve nodes it is typically faster to provide
the incidence vectors of all the cuts at the very beginning than using the delayed column
generation. For larger graphs, though, the total enumeration of all incidence vectors is
out of the question.

However, for problem sizes beyond the limits just mentioned we have to restrict the
target cut separation to reasonably sized node-induced subgraphs of G. These subgraphs
are chosen as follows: We start with a random node and sequentially add more nodes
using a greedy criterion with respect to the fractionality of the involved edges. For a
given node set W , let N(W ) denote the set of nodes outside W that are adjacent to
at least one element of W . Then, the node set Wk of a subgraph of order k is built as
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follows:

W1 = random node u,

Wi = Wi−1 ·∪ arg max
v∈N(Wi−1)

∑

e∈(v:Wi−1)

(1
2 − |ze −

1
2 |), for i = 2, . . . , k.

Once we have chosen a subgraph G′ of G, we project the separation problem onto the
affine hull of CUT(G′) and apply the target cut separation. Note that the projection may
map the contracted LP solution to a point inside CUT(G′), in which case the separation
will fail. Yet, if we do find a facet defining inequality for the cut polytope on the subgraph
then we can use 0-node lifting to make it applicable to the contracted LP solution z. As
pointed out in Section 1.4.2, the lifted inequality is still valid for the cut polytope whereas
the facet-defining property of the original inequality may be lost.

In principle, it is also possible to separate target cuts on an extended LP solution.
We now explain how to use the target cut API in conjunction with adaptive extension.
However, these considerations are to be understood as a proof of concept and have no
practical relevance. For the separation of the extended LP solution z′, we choose Q to
be the cut polytope CUT(Kp), where p := |V | is the order of the contracted graph G.
Let m := p(p−1)/2 be the number of edges of Kp. As first set of vectors x1, . . . ,xs we
provide the m-dimensional incidence vectors of the cuts of Kp. As before, we leave the
second set of vectors y1, . . . ,yt empty and choose the interior point q to be either the
vertex barycenter of the cut polytope or the vector 1/2 · 1. Let l denote the number of
non-rigid non-edges of G. Then, the infeasible point x∗ is composed of the following
three parts: the contracted LP solution z, the unique artificial LP values of all rigid
non-edges, and l yet undetermined LP values of the non-rigid non-edges. Without loss of
generality, we assume that the last l entries of the m-dimensional vectors correspond to
the non-rigid non-edges. We now define the (m + l)-dimensional vectors x′

i, x′∗ and q′.
In these extended vectors, the k-th non-rigid non-edge corresponds to the pair of entries
at the positions m− l+k and m+k. We obtain the vector q′ by taking q and appending
copies of the last l entries to it. The vectors x′

i, i = 1, . . . , s, are constructed analogously.
For the extended infeasible vector x′∗ we carry over the first m − l entries of x∗. The
remaining entries m − l + k and m + k, for k = 1, . . . , l, are set to the lower and upper
limit, respectively, of the feasible LP range of the k-th non-rigid non-edge. Finally, we
define the polyhedron

Q′ = conv {x′
1, . . . ,x

′
s} + cone {−em−l+k,em+k | k = 1, . . . , l},

where ej denotes the j-th canonical unit vector of dimension m + l.
Given Q′, q′, and x′∗ as input, the target cut separation solves the following linear

program:
max a′T (x′∗ − q′)

s.t. a′T (x′
i − q′) ≤ 1 for all i = 1, . . . , s

a′m−l+k ≥ 0 for all k = 1, . . . , l

a′m+k ≤ 0 for all k = 1, . . . , l

a′ ∈ Rm+l

(2.15)

In each of the vertices x′
i of Q′ as well as in the interior point q′, the two respective

entries of a given non-rigid non-edge share the same value by construction. Moreover,
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the infeasible point x′∗ provides for each non-rigid non-edge the two possible LP values,
namely the respective lower and upper interval limits ξl and ξu. Finally, by introducing
the directions −em−l+k and em+k, k = 1, . . . , l, we force the a′ coefficients of the lower
and upper limits to have positive and negative sign, respectively.

Let a′∗ denote an optimum solution of the LP (2.15). Then, a′∗ induces an optimum
solution a∗ of the LP (2.14) if for each non-rigid non-edge at most one of the two re-
spective solution entries a′∗m−l+k and a′∗m+k is nonzero. This property, however, is already
implied by the LP formulation. Suppose not and that there exists a κ ∈ {1, . . . , l} such
that a′∗m−l+κ is positive and a′∗m+κ is negative. To simplify matters, we substitute the
indices m− l+κ and m+κ with the specifiers ‘pos’ and ‘neg’, respectively. Let ξl and ξu

be the limits of the feasible LP range of the κ-th non-rigid non-edge. We recall that
the entries q′pos and q′neg have the same value by construction. Thus, the corresponding
summands of the objective function are as follows:

a′∗pos(x
′∗
pos − q′pos) + a′∗neg(x

′∗
neg − q′neg) = a′∗posξl + a′∗negξu − (a′∗pos + a′∗neg)q

′
pos.

Let ∆ := min {a′∗pos,−a′∗neg}. We note that ξl < ξu and that a′∗pos and a′∗neg have opposite
signs. This means that we can increase the objective value by replacing a′∗pos with a′∗pos−∆
as well as a′∗neg with a′∗neg + ∆. The result is also feasible since the sum of the coefficients
remains unchanged and thus all the constraints are still satisfied. This, however, contra-
dicts the optimality of a′∗ and thus proves by contrapositive that at most one of the two
values a′∗m−l+k and a′∗m+k can be nonzero.

We conclude this section with some recapitulatory remarks on adaptive extension.
Except for some special cases like, for instance, bicycle-p-wheel- and clique inequalities,
the use of adaptive extension requires the modification of the applied separation proce-
dures. The difficulty of this task varies with the complexity of these procedures and the
level of access to their source code. However, in case of a black box procedure, i. e., a
program with fixed input/output interface and inaccessible source code, it may not be
possible to use adaptive extension at all.

2.2 Implementation

Based on the theory presented in Section 2.1 we implemented the shrink separation in
C++ and embedded it in the branch-and-cut framework ABACUS (“A Branch-And-CUt
System”). For more information regarding ABACUS we refer to [EGJR01, JT98, JT00,
Thi95].

However, parts of the theory turned out to be computationally inconvenient. In
Section 2.2.1 we discuss the workflow of the actual implementation and highlight the
differences to the underlying theory. Afterwards, we examine certain numerical aspects
of the procedure in Section 2.2.2.

2.2.1 Workflow

To provide a general idea of the implemented shrink separation, Figure 2.10 depicts a
flowchart of the overall workflow. The initial input is a fractional LP solution z that
we want to separate from the cut polytope. In the theory we simply assume that z is
an element of the semimetric polytope. In the procedure, on the other hand, we have
to verify this property using exact odd-cycle separation. Though being polynomial, the
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Figure 2.10: Workflow of the implemented shrink separation.



2.2. Implementation 67

exact separation of odd-cycle inequalities is still computationally expensive. Therefore,
we apply the following hierarchical approach: First, we perform a fast heuristic check.
As we will see shortly, this can be done efficiently during the combined switching and
contraction phase. If we detect any violated odd-cycle inequalities then we abort the
shrink separation and simply return the inequalities found so far. Otherwise, there could
still be violated odd-cycle inequalities that were missed by the heuristic. Thus, we have
to apply exact odd-cycle separation but with one important difference: At this point,
the LP solution has already been contracted, i. e., its dimension has been reduced. As a
result, the exact check can now be performed much faster than in case of the original LP
solution.

So, for the moment we simply accept the given fractional LP solution z as input
regardless of whether or not it is an element of the semimetric polytope.

Candidate Detection

Our first task is to detect the candidate edges for contraction. These are precisely the
edges with an LP value of either zero or one. However, the variables which store the LP
values are of floating point type. As a consequence, we can only detect the candidates
with a certain precision ε, where ε is a positive but sufficiently small real number. The
actual choice of ε can have a significant impact on the lifting procedure later on. We will
elaborate on this topic in Section 2.2.2.

Eventually we obtain a list of candidate edges for the contraction. To simplify matters,
we will refer to the candidates with an LP value near zero and one as 0-edges and 1-edges,
respectively.

Switching and Contraction

At this point we have the first major difference between theory and implementation. In
the theory, we switch the LP solution alongside a specific cut K (see Lemma 2.5 on
page 44 for more details). This results in a switched LP solution z̃ whose 0-edges cor-
respond exactly to the combined 0- and 1-edges of the original LP solution z. In the
implementation, however, we do not determine the actual cut K since this is computa-
tionally expensive. Instead, we successively contract single candidate edges.

Any 0-edge can be contracted directly. A 1-edge, on the other hand, needs to be
switched first. To be more precise, we have to switch the partially contracted LP solu-
tion alongside the star induced by either of the 1-edge’s ends. Yet, apart from transform-
ing the 1-edge into a 0-edge, this will also affect the LP values of the remaining edges
in the star. In particular, all the star’s 0-edges will be transformed into 1-edges, which
can increase the total number of necessary switching operations. This is even more of a
problem considering that for each switching operation applied at this stage we will have
to switch each of the obtained separating inequalities accordingly later on.

Evidently, the order of the contractions is crucial to this approach. Our procedure
uses the following strategy: First, we contract all original 0-edges. Then, we select a
1-edge and switch the partially contracted LP solution alongside the star induced by
either of the 1-edge’s ends. Afterwards, we contract all 0-edges that emerged from this
switching. We repeat the last two steps until all candidate edges have been processed.

Each time we contract a 0-edge e = ht, we also store the partition (H,T,B) of its
neighborhood (cf. Figure 2.5 on page 48). This information is required for the lifting later
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on. Note that contracting the edge ht merges each pair of edges (hv, tv) with v ∈ B into
a multiple edge. If the LP solution lies inside the semimetric polytope then the edges hv
and tv have the same LP value according to Lemma 2.8 on page 47. In this case, the
resulting multiple edge simply inherits this unique value. Otherwise, we can construct
a violated odd-cycle inequality as explained in the proof of the lemma just mentioned.
This is referred to as “LP conflict” in the flowchart in Figure 2.10. In particular, we see
that the above combined switching and contraction can be used as an efficient heuristic
to separate odd-cycle inequalities.

If we detect any violated odd-cycle inequalities, we cannot proceed with the shrink
separation. This is because the remainder of the procedure only works correctly if the
LP solution is an element of the semimetric polytope. The inequalities found so far are
lifted, reverse-switched, and then returned as separating inequalities for the original LP
solution z. Otherwise, we eventually obtain a contracted LP solution z that only contains
fractional values. Still, it is not clear whether z is an element of the semimetric polytope
since the previous heuristic check may have missed some violated odd-cycle inequalities.
Consequently, we have to apply exact odd-cycle separation. However, since we are now
working on the contracted LP solution, the exact check can be performed much faster than
for the original LP solution z. Either we verify that z is indeed part of the semimetric
polytope or we find at least one violated odd-cycle inequality. In the latter case, we
transform the separating inequalities as mentioned above and then terminate. Otherwise,
we proceed with the extension of the contracted LP solution.

Extension

In the extension phase we introduce artificial LP values for all non-edges of the contracted
graph G. This allows us to apply separation techniques for dense and complete graphs
that we couldn’t have used otherwise. The artificial LP values are chosen in such a
way that the extended LP solution z′ is an element of the semimetric polytope. To do
so, we determine for each non-edge its feasible LP range via a series of shortest-path
computations on a specific auxiliary graph. At the same time, we obtain the respective
lower and upper inequalities for the non-edges as a byproduct. These inequalities will
be crucial to the projection later on. Once we have computed the feasible LP ranges,
there are two possible ways to introduce the artificial LP values. The first one is the
static extension in which we choose for each non-edge a fixed element of its respective
feasible LP range. In the second approach, the so-called adaptive extension, we leave the
artificial LP values a priori undetermined, but we restrict them to either of the limits of
their feasible LP range. For the details, we refer to Section 2.1.3.

Our procedure uses the adaptive extension approach for the following reasons: First
and foremost, it preserves the violation of the separating inequalities during the projec-
tion. Furthermore, the limits of different feasible LP ranges are mutually independent
(cf. Lemma 2.14 on page 57). This allows us to exploit an existing sparse structure of the
auxiliary graph during the shortest-path computations. We use a version of Dijkstra’s
algorithm (see, for instance, [CLRS09]) for sparse graphs with a heap as priority queue
and some additional adjustments to account for the specific structure of the auxiliary
graph. We also experimented with a bidirectional search approach. Yet, the impact on
the performance was negligible at best.

Once we have obtained the extended LP solution z′, we proceed with the separation.
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Separation

We implemented separation procedures for bicycle-p-wheel-, clique-, and hypermetric in-
equalities as well as target cuts. For more information regarding these inequality classes
we refer to Sections 1.4 and 0.4.5.

As a consequence of using adaptive extension, we now have to deal with the problem
that separation procedures are generally unable to handle partially undetermined LP
solutions. Bicycle-p-wheel- and clique inequalities are exceptions, though, since their
nonzero left hand side coefficients all have the same sign. As a result, static and adaptive
extension are equivalent. To be more precise, since the nonzero left hand side coefficients
are all positive, we can simply fix each undetermined LP value to its respective lower
limit and apply a standard separation procedure. In case of hypermetric inequalities and
target cuts, on the other hand, we have to adjust the respective separation procedures
to make them compatible with adaptive extension.

However, at least the target cuts can be separated directly on the contracted LP
solution and thus the extension per se is not advisable in this case. We implemented
a target cut separation procedure using a framework provided by Buchheim, Liers, and
Oswald [BLO08]. As an oracle for the delayed column generation we used our own
max-cut solver but with more generic parameter settings. In particular, we deactivated
delayed column generation inside the oracle calls to prevent recursion.

If the separation succeeds, we obtain a set of violated inequalities. Yet, the left
hand sides of these inequalities possibly contain nonzero coefficients that are related to
non-edges. Thus, the next step is to project out the corresponding artificial variables.

Projection

For every nonzero coefficient related to a non-edge, we add the respective lower or upper
inequality to each of the violated inequalities found by the separation. As mentioned
earlier, the lower and upper inequalities are a byproduct of the computation of the
feasible LP ranges. In addition, since the limits of the different ranges are mutually
independent, the non-edges’ variables can be projected out in an arbitrary order.

Eventually we get a set of projected violated inequalities in which all artificial coef-
ficients are zero. By truncating these zero coefficients we obtain violated inequalities for
the contracted LP solution. Moreover, our use of adaptive extension guarantees that the
projection preserves the amount of violation of each inequality.

In a final step, we have to lift the separating inequalities for the contracted LP
solution to make them applicable to the higher dimensional switched LP solution.

Lifting and Reverse Switching

We lift the inequalities via a series of node-splitting operations. In this context, our com-
bined switching and contraction approach on single edges has the following consequences:

1) We have to perform the node-splitting operations in the exact reverse order of the
corresponding edge-contractions.

2) Since the initial switching operations have been applied to the partially contracted LP
solution, we cannot carry out the lifting and reverse switching sequentially. Instead,
we have to switch the partially lifted inequality directly after each node-splitting of a
former 1-edge.
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Note that the necessary information on the partitions (H,T,B) of the neighborhoods of
the contracted edges has already been gathered during the contraction.

Ultimately, we obtain a set of separating inequalities for the original LP solution z

and the shrink separation terminates. However, preliminary testing of the above imple-
mentation showed that specific parts of it are sensitive to numerical errors. Thus, we
now take a closer look at the numerical behavior of the shrink separation.

2.2.2 Numerical Behavior

In the previous section we have seen that some of the tasks in the course of the shrink
separation can only be performed with a certain precision. One such example is the
decision whether or not a given floating point value is integral. Yet, to what extend do
these numerical errors affect the outcome of our computations? Of particular interest are
the effects on the amount of violation during the projection, the lifting, and the reverse
switching of a separating inequality.

First, we note that the violation is invariant under reverse switching. Furthermore,
due to our use of adaptive extension, also the projection preserves the amount of violation.
As a result, we can focus our analysis entirely on the lifting of the already projected
inequalities. Here, we have the following two numerically critical operations to consider:
The first one is to check whether a floating point value is integral. The second critical
operation is to detect whether two floating point values are identical. We now discuss
each of these tasks in greater detail.

Integrality of a Floating Point Value

We consider a floating point value to be integral if its absolute difference to an integer
is at most the integrality precision ε, where 0 < ε ≪ 1 is a positive but sufficiently
small real number. We check for integral values to detect 0- and 1-edges as candidates
for the contraction.

Assume we are given a switched LP solution z̃ with 0 ≤ z̃e < 1, for all e ∈ E. In
the theory, the candidate edges for contraction are those which have a switched LP value
of zero. However, we can detect the integral floating point values only with a certain
accuracy, namely the integrality precision ε. So, from a computational point of view, the
candidate edges for contraction are in fact those which have a switched LP value of at
most ε.

During the lifting of a separating inequality (a, α) we reinsert each contracted edge ht
by splitting its corresponding supernode w. According to (2.5) on page 49, the edge ht
gets a coefficient of âht := −min

{
∑

v∈H |awv|,
∑

v∈T |awv|
}

. If the switched LP value
of ht is indeed zero, as assumed by the theory, then this does not affect the violation of
the inequality. Yet, we have just seen that the switched LP value of the edge ht can be up
to ε. So, if both the coefficient âht and the value z̃ht are nonzero then the node-splitting
alters the violation of the inequality. We will denote this integrality error by ρint.

Since we perform the lifting in an iterative manner, we introduce the following addi-
tional notations: We denote the intermediate states of the left hand side during lifting
by â and its final state by ã. Note that the transformation leaves the right hand side α
unchanged. Let {e1, . . . , em} be the sequence of contracted edges and let (Hi, Ti, Bi) be
the partition of the neighborhood of edge ei = hiti, i = 1, . . . ,m, as depicted in Figure 2.5
on page 48. Finally, we introduce z̃∗ to denote the version of the switched LP solution z̃
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in which all the LP values of contracted edges are set to zero. This allows us to write the
initial violation aT z −α in the form ãT z̃∗ − α. To simplify matters, we assume without
loss of generality that

∑

v∈Ti
|âwiv| ≤

∑

v∈Hi
|âwiv| for all i = 1, . . . ,m. Then, we get an

absolute error of

ρint = |ãT (z̃ − z̃∗)| =
∣

∣

∣

m
∑

i=1

z̃ei

∑

v∈Ti

|âwiv|
∣

∣

∣
≤ ε

m
∑

i=1

∑

v∈Ti

|âwiv|.

The following example describes an ill-conditioned scenario for the integrality error.

Example 2.15. Consider a graph as depicted in Figure 2.11. It is the union of 2l disjoint

ε εv1 v2 v3 v2l

L1 L2 L3 L2l

Figure 2.11: An ill-conditioned example for the integrality error ρint.

stars. Each star has a center node vi and a set Li of leaves that are exclusively adjacent
to vi. Moreover, the number of leaves |Li| =: c is constant for all i = 1, . . . , 2l. Finally,
the pairs of consecutive center nodes are joined by the edges vivi+1, i = 1, . . . , 2l − 1,
each with an LP value of ε. By sequentially contracting the edges vivi+1, we obtain the
following supernodes:

w0 = v1,

wi = {wi−1, vi+1}, for i = 1, . . . , 2l − 1.

When contracting the edge ei = wi−1vi+1, i = 1, . . . , 2l − 2, the partition (Hi, Ti, Bi) of
its neighborhood looks as follows:

hi = wi−1, ti = vi+1,

Hi = ·∪ i
j=1 Lj, Ti = Li+1 ·∪ vi+2, Bi = ∅.

In case of the last edge e2l−1, the partition is analogous except that the set T2l−1 is
simply L2l. Eventually we obtain the contracted graph, which is a star with the center
node w2l−1 and the set of leaves ·∪ 2l

j=1 Lj.
Now, consider an already projected violated inequality (a, α). To simplify matters,

we assume that all left hand side coefficients have the value 1. When splitting the super-
node wi, we reinsert the edge wi−1vi+1 with the following coefficient:

−min
{

∑

u∈Hi

|âwiu|,
∑

u∈Ti

|âwiu|
}

= −min{ic, (2l − i)c}.

Consequently, we set the coefficients of the edges vivi+1 with i = 1, . . . , l to −ic. The
remaining edges with i = l + 1, . . . , 2l − 1 get the coefficients −(2l − i)c. This results in
the following absolute error:

ρint = εc ·
(

l + 2

l−1
∑

i=1

i
)

= εcl2.
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Obviously, the absolute integrality error grows arbitrarily large for increasing values of l
and c, respectively. However, if we fix the order n of the graph then we can give an upper
bound on the error. In this example we have n = 2l(c + 1). By solving this term for l
and inserting it into the formula of the absolute integrality error, we obtain:

ρint(c) = εn2

4 · c
(c+1)2

.

It is easy to show that the above term is maximal if c equals one. Hence, the maximum
absolute integrality error for fixed order n is εn2/16.

Identity of two Floating Point Values

We consider two floating point values to be identical if their absolute difference is at
most the identity precision σ, where 0 < σ ≪ 1 is a positive but sufficiently small
real number. We check the identity of a given pair of values during the contraction of
0-edges.

Suppose we contract an edge ht. This merges the pair of edges hv and tv for each
node v that is adjacent to both h and t. According to Lemma 2.8 on page 47, the
LP values of hv and tv are identical if the switched LP solution z̃ is an element of the
semimetric polytope. Otherwise, the values may differ, in which case we can construct
a violated odd-cycle inequality. Therefore, the identity precision marks the threshold
above which we actually recognize a violated odd-cycle inequality as such. Moreover, the
choice of σ affects the lifting of inequalities as we will see shortly.

Let us assume that the LP values of the edges hv and tv differ by at most σ. Then,
we can merge them into a multiple edge without any problems. However, if the two
LP values are indeed different then we do not have a uniquely defined LP value for the
resulting multiple edge. In this case, we set the LP value of the multiple edge to the
arithmetic mean of the LP values of all the edges merged into it.

When splitting the supernode {h, t} later on, we separate the merged edges hv and tv
again. Here, only one of the two edges inherits the coefficient of the former multiple
edge whereas the coefficient of the remaining edge is set to zero. Without loss of gen-
erality, we assume tv to be the inheriting edge. However, the coefficient of tv has been
determined with respect to the LP value of the multiple edge. So, if the LP values of tv
and the multiple edge are different then the lifting process alters the amount of violation
of the given inequality. We will denote this identity error by ρid.

Now, consider a contracted graph G. Let M be its set of multiple edges. For a given
multiple edge p, let ι(p) denote the one edge merged into p that eventually inherits the
coefficient of p after the lifting. Finally, we introduce z̃∗ to denote the version of the
switched LP solution z̃ in which the LP values of all the edges merged into a multiple
edge p are set to zp, i. e., the value of p in the contracted LP solution. This allows us to
write the initial violation aT z − α in the form ãT z̃∗ − α. We thus obtain the following
absolute error:

ρid = |ãT (z̃ − z̃∗)| =
∣

∣

∣

∑

p∈M

ãι(p)(z̃ι(p) − z̃∗ι(p))
∣

∣

∣
.

Note that in the scope of the max-cut problem, the LP values are restricted to the
range [0, 1]. This is in particular true for any of the multiple edges. Thus, the above
difference (z̃ι(p)−z̃∗ι(p)) has an absolute value of at most 1. The following example discusses
an ill-conditioned scenario in which this maximum LP discrepancy is indeed attained.
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Figure 2.12: An ill-conditioned example for the identity error ρid.

Example 2.16. Consider a fan-shaped graph as depicted in Figure 2.12. The edges vivi+1,
for i = 1, . . . , k−1, have an LP value of zero and are contracted sequentially. We assume
that the LP value of a multiple edge is set to the arithmetic mean of the LP values of the
edges that were merged into it. Moreover, we choose the LP values of the edges uvi in
the following way:

z̃uv1 = 0, z̃uvi+1 = σ + 1
i

i
∑

j=1

z̃uvj
, for i = 1, . . . , k − 1. (2.16)

In other words, the LP value of the next edge to be merged into the multiple edge always
exceeds the current LP value of the latter by the identity precision σ. To derive the
corresponding recursion formula, we consider the following difference:

z̃uvi+1 − z̃uvi
= 1

i

i
∑

j=1

z̃uvj
− 1

i−1

i−1
∑

j=1

z̃uvj
.

By factoring out 1
i , we obtain

z̃uvi+1 − z̃uvi
= 1

i

(

i
∑

j=1

z̃uvj
− i

i−1

i−1
∑

j=1

z̃uvj

)

.

As i
i−1 = 1 + 1

i−1 , we can simplify the above term as follows:

z̃uvi+1 − z̃uvi
= 1

i

(

z̃uvi
− 1

i−1

i−1
∑

j=1

z̃uvj

)

(2.16)
= 1

i σ.

Thus, we get the following recursion formula:

z̃uv1 = 0, z̃uvi+1 = z̃uvi
+ σ

i , for i = 1, . . . , k − 1.

After the contraction of the edges vivi+1, i = 1, . . . , k−1, we obtain a single multiple edge p
with an LP value of σ(Hk − 1). Here, Hk denotes the k-th harmonic number which is
the k-th partial sum of the diverging harmonic series

∑∞
j=1

1
j . Note that Hk ≈ ln(k) + γ,

where γ denotes the Euler-Mascheroni constant with an approximate value of 0.5772.
Let us assume that the edge uv1, which has an LP value of zero, is the inheriting edge ι(p)
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of p. This means that in order to attain an LP discrepancy of |z̃ι(p)− z̃∗ι(p)| ≈ τ , τ ∈ [0, 1],

we need to merge k ≈ ⌈exp( τ
σ + 1 − γ)⌉ edges. In other words, to increase the LP

discrepancy by one order of magnitude, we have to raise the number of merged edges to
the tenth power.

Note that the above example is purely academic. For instance, assuming an identity
precision of 0.01—which is far too large for practical use—we would need to merge
more than 7 · 1043 edges in order to attain the maximum LP discrepancy of τ = 1
on a single multiple edge. Simply storing a graph of this size would already require
approximately 1033 terabytes of disk space.

Further Problems

Another possible problem is related to the so-called violation threshold εvio. This
parameter is common in branch-and-cut solvers. The idea is to only add a separating
inequality to the constraint pool if it is violated by the current LP solution by at least εvio.
Aside from numerical considerations, this is mainly due to the empirical result that a
marginally violated inequality is unlikely to substantially improve subsequent iterations
of the LP solver.

However, if we choose the value of εvio too large then we may encounter empty feasible
LP ranges for some of the non-edges.

Example 2.17. Consider the contracted LP solution z and its underlying graph G as
specified in Figure 2.13. We obtain the following limits on the feasible LP range of the

0 1

2

3

4
z01 = 0.179656

z02 = 0.389984

z03 = 0.272336

z04 = 0.007065

z12 = 0.209948

z23 = 0.66232

z34 = 0.265271

Figure 2.13: A contracted LP solution and its underlying graph.

non-edge from 1 to 4:

L := max {z(F ) − z(P \ F ) − |F | + 1 | P (1, 4)-path of G, F ⊆ P , |F | odd}

= z23 − z12 − z34 = 0.187101,

U := min {−z(F ) + z(P \ F ) + |F | | P (1, 4)-path of G, F ⊆ P , |F | even}

= z01 + z04 = 0.186721.

Note that we have U = L − 3.8 · 10−4. In other words, the upper limit is less than the
lower one and thus the feasible LP range is empty. As a consequence, there has to be
a violated odd-cycle inequality. In this example, the contracted LP solution violates the
inequality z02 − z01 − z12 ≤ 0 by precisely 3.8 · 10−4. However, if we chose a violation
threshold of, for example, 10−3 then an exact odd-cycle separation would not report the
above inequality, thus leading us to believe that z is an element of the semimetric polytope.
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Consequences in Practice

The complexity of the ill-conditioned scenarios in Examples 2.15 and 2.16 is due to their
specific combination of graph structure and contraction order, which is rather unlikely
to be encountered in practice. Nonetheless, these examples demonstrate the need to pay
attention to both the integrality- and the identity precision. We combined these two
parameters into a single one denoted by εint. Preliminary computational experiments, in
which we chose εint in the same order of magnitude as the violation threshold εvio, indeed
showed cases of violation reduction during lifting. Thus, we revisited Example 2.15 to
find a better setting for εint. In the example, the maximum absolute integrality error for
fixed order n is εn2/16. Consider a separating inequality with violation at least εvio. Then,
we need an integrality precision below 16εvio/n2 to assure that the lifted inequality is still
violated. For instance, given a violation threshold εvio = 10−3 and an order n = 100, we
need ε to be less than 1.6 · 10−6. After further experiments we finally chose the value
of εint approximately three orders of magnitude below the violation threshold εvio. This
proved to be sufficient throughout the course of our computations. In future work one
could also determine εint adaptively with respect to the given problem instance.

Finally, we addressed the problem related to the violation threshold (cf. Example 2.17)
by simply omitting the non-edges with an empty feasible LP range. As a result, the
contracted and extended graph may not be complete. However, except for the separation
of hypermetric inequalities, none of the involved separation procedures explicitly requires
a complete underlying graph. Therefore, omitting the non-edges with empty feasible LP
ranges is no major limitation.





Chapter 3

Computational Results

In the following we describe the computational experiments that we carried out to test
the shrink separation presented in Chapter 2. We start with an introduction of the con-
sidered problem instances in Section 3.1. In Section 3.2 we look at the computational
setup, including the hard- and software used, chosen parameters, and tested separation
scenarios. Section 3.3 compares the performance of the examined scenarios for the differ-
ent classes of test instances. Finally, in Section 3.4 we take a closer look at a particular
set of test instances generated from real-world data, namely the Mannino instances.

3.1 Test Instances

As a basis for our computational experiments we took several classes of test instances
for both the max-cut problem and unconstrained quadratic 0/1 optimization. Below,
we provide the details on how these instances were generated and where they can be
obtained. In addition, we point out the respective tables in Appendix A with exhaustive
data on the individual test problems such as sizes and densities of the underlying graphs,
known optimum values et cetera.

3.1.1 Ising Spin Glass Problems

In Section 1.2.1 we briefly introduced spin glasses and the corresponding Ising model. For
our computational experiments we considered two- and three-dimensional Ising spin glass
problems with nearest neighbor interactions, periodic boundary conditions, and without
external magnetic field. The respective underlying interaction graphs are toroidal grids
whose general structure is as follows: A two-dimensional toroidal grid is a square grid
with additional edges that join the outermost nodes of each row and column, respectively.
Consequently, a toroidal (k×k) grid graph has n = k2 nodes and 2n edges. An exemplary
toroidal (3 × 3) grid is depicted in Figure 3.1. Similarly, a three-dimensional toroidal
grid is a cubic grid with additional edges such that each horizontal and vertical layer,
respectively, is a two-dimensional toroidal grid. As a result, a toroidal (k × k × k) grid
graph has n = k3 nodes and 3n edges.

Any two-dimensional toroidal grid graph has genus 1, which means that it is embed-
dable into the torus S1. Galluccio and Loebl [GL99] showed that the max-cut problem is
polynomial on graphs with bounded genus if there is only a bounded number of dif-
ferent edge weights, or if the edge weights are integers bounded in absolute value by
a polynomial of the order of the graph. As a consequence, the max-cut problem is

77
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Figure 3.1: A toroidal (3 × 3) grid.

polynomial on two-dimensional toroidal grids whose edge weights satisfy the restrictions
just mentioned. However, the result of Galluccio and Loebl cannot be applied to three-
dimensional toroidal grids since their genus increases with the number of grid points, as
was shown by Regge and Zecchina [RZ00]. In fact, Barahona [Bar82] proved that the
max-cut problem on three-dimensional grid graphs is NP-hard.

We used a custom generator to produce toroidal grids with two types of random edge
weights. Either the weights have uniformly distributed ±1 values or Gaussian distributed
integral values. Moreover, to allow the efficient enumeration of the 4-cycles in the toroidal
grid, the nodes and edges are numbered consecutively in a specific way. Below, when
speaking about the layers of a grid we always refer to its horizontal layers.

We number the nodes of a given two-dimensional toroidal grid by traversing each of
the layers from left to right, starting at the topmost one. The numbering of the edges,
on the other hand, is done in two steps. First, we number the intralayer edges which
have both ends in the same layer. To do so, we process the layers in order from top to
bottom. Within each layer we number the edges from left to right, the last edge being
the one that joins the outermost nodes. In the second step we number the interlayer
edges which have ends in different layers. Here, we consider the pairs of adjacent layers
in order from top to bottom and number the edges in the respective interlayers from left
to right. The final interlayer in this process is the one that connects the bottommost to
the topmost layer. An exemplary numbering of the nodes and edges in a toroidal (3× 3)
grid is depicted in Figure 3.2.
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Figure 3.2: Numbering of the nodes and edges in a toroidal (3 × 3) grid.

In a three-dimensional toroidal grid, each layer in itself is a two-dimensional toroidal
grid. As before, the term ‘layer’ is used synonymously for ‘horizontal layer’. We number
the nodes by processing the layers in order from top to bottom, handling each layer as
described above. For the numbering of the edges we process layers and interlayers in an
alternating fashion. We start with the topmost layer and number its intra-edges using the
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rule for two-dimensional toroidal grids. Afterwards, we number the interlayer edges that
join the nodes in the topmost layer to those in the subjacent one. To do so, we traverse
the edges in ascending order of the indices of their respective ends inside the upper layer.
Then, we proceed with the intra-edges of the subjacent layer and so forth. As in the
two-dimensional case, the final interlayer to be processed is the one that connects the
bottommost to the topmost layer.

We now describe how we generated the two different types of random edge weights.

Uniformly Distributed ±1 Weights

We initialized the first and the second half of the edge weights with −1 and +1, re-
spectively. Then, we computed a random permutation of the edge weights by using the
so-called Knuth shuffle. This algorithm guarantees that every permutation is equally
likely. Its underlying method was first described in 1938 by Fisher and Yates [FY38].
A modern version, designed for computer use, was introduced by Durstenfeld [Dur64] in
1964 and was later popularized by Knuth [Knu97].

We considered toroidal (k × k) grids with k = 30, 35, . . . , 85 and three-dimensional
toroidal grids with k = 5, . . . , 8. For each grid size we generated ten random instances.
The respective optimum values or lower/upper bounds are provided in Table A.8 on
page 101 for the two-dimensional grids and in Table A.11 on page 104 for the three-
dimensional grids.

The Instance ‘toruspm-8-50’. In addition to our self-generated ±1-instances, we
looked at a toroidal (8 × 8 × 8) grid instance named ‘toruspm-8-50’ from the “DIMACS
library of mixed semidefinite-quadratic-linear programs” [PS00]. The challenge in this
case was to find the optimum value at all; the DIMACS library itself only provides an
upper bound of 527.808663 computed by a primal-dual interior point code. Therefore,
this instance is noncompetitive with regard to our remaining computational experiments
and is not considered in any performance evaluations. Krishnan and Mitchell [KM06] used
‘toruspm-8-50’ to test their polyhedral cut and price approach for the max-cut problem.
In the corresponding article the authors state an optimum value of 456. However, we
were able to compute a provably optimal solution with an objective value of 458. The
smaller of the shores is given below. The numbering of the nodes starts at 1. To simplify
matters, we specify sequences of more than two consecutive node indices as ranges.

{4–6, 13, 16, 19, 20, 23, 26, 30, 33, 36–38, 40–43, 52, 53, 58, 60, 61, 65–67,
69, 71–73, 75–78, 81–85, 87, 90, 93, 97, 98, 102–105, 109–116, 118, 119, 124,
126–128, 130–132, 137, 139–142, 148, 150, 153, 154, 156, 157, 159, 160, 163,
164, 167, 169, 171, 174, 175, 178–180, 185, 191, 192, 197, 199, 200, 203, 204,
206, 207, 209–213, 215, 217, 219–222, 224–226, 228, 229, 233, 234, 237, 238,
240, 243, 245, 247, 250, 253–257, 259, 266, 270, 271, 273, 278, 286, 288, 289,
291–293, 295–298, 300, 301, 303–306, 308, 310, 312, 313, 316, 319, 323, 331,
334–336, 339, 341, 342, 346, 351, 354–356, 362–367, 369–373, 378, 380, 381,
384, 386, 387, 392–394, 397, 399, 400, 402, 404, 406, 408, 409, 413, 414, 417,
420, 421, 425, 428, 430, 431, 433, 434, 436–438, 441, 442, 445, 446, 448, 452,
454, 456, 459, 461, 462, 464, 466, 469, 472, 474, 476, 477, 480, 482, 485, 488,
490, 495–498, 500–502, 504–507, 509, 512}.
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Gaussian Distributed Integral Weights

We initialized each edge weight with the value of a standard normal random variable.
These initial values were then multiplied by a scaling factor of 105 and typecast to an
integer. After that, we applied the Knuth shuffle to produce a random permutation of
the edge weights.

We generated the standard normal random variables using the Marsaglia polar
method. It transforms a pair u = (u1, u2) of independent uniformly distributed random
variables in the range [0, 1] into a pair s = (s1, s2) of independent standard normal ran-
dom variables. The polar method traces back to an algorithm by Box and Muller [BM58]
which uses Euclidean coordinates instead of polar ones. However, the use of polar coor-
dinates avoids the costly evaluation of trigonometric functions.

We now briefly outline the polar method. It starts with a pair u of independent
uniformly distributed random variables in the range [0, 1]. First, it computes v = 2u−1.
This results in a pair v = (v1, v2) of independent uniformly distributed random variables
in the range [−1, 1]. However, in order for the method to work, the point v has to lie in
the interior of the unit circle. In other words, the value q = v2

1 + v2
2 has to be less than 1.

Also, q has to be nonzero, as we will see shortly. If v does not meet the requirements
just mentioned then the method starts over with a new pair u. Otherwise, it continues
by computing the following scalar:

p =
√

−2 ln(q)
q .

Note that p is not defined for q equal to zero. Finally, the desired pair s of independent
standard normal random variables is obtained as s = pv.

We considered toroidal (k × k) grids with k = 30, 35, . . . , 185 as well as three-
dimensional toroidal grids with k = 5, . . . , 11. For each grid size we generated ten random
instances. The respective optimum values or lower/upper bounds are provided in Ta-
ble A.9 on page 102 and Table A.10 on page 103 for the two-dimensional grids as well as
in Table A.12 on page 104 for the three-dimensional grids.

3.1.2 Biq Mac Library

In addition to the Ising spin glass problems we used test instances from the Biq Mac
Library [Wie07]. As stated on the corresponding website, this library is a “collection
of Max-Cut instances and quadratic 0-1 programming problems of medium size. Most
of the instances were collected while developing Biq Mac, an SDP based Branch-and-
Bound code (see, e. g., [Wie06]). The dimension of the problems [...] ranges from 20
to 500.” We now provide detailed information on the problem classes that we considered
for our computational experiments.

Quadratic 0/1 Optimization Problems

As discussed in Section 1.1.2, the unconstrained quadratic 0/1 optimization problem is
equivalent to the max-cut problem. The Biq Mac Library features three different classes
of quadratic 0/1 optimization problem instances.

Beasley Instances. These data sets are due to Beasley [Bea98]. All problems have a
density of 0.1 and integer uniform coefficients in the range [−100, 100]. The respective
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sizes, optimum values or lower/upper bounds of the data sets are given in Table A.3 on
page 98.

Billionnet and Elloumi Instances. Billionnet and Elloumi [BE07] used the generator
introduced in [PR90] to generate instances of size n = 100, 120, 150, 200 and varying
density d = 0.3, 0.8, 1.0. For each class of problems, ten instances have been generated,
one for each seed in 1, . . . , 10. The coefficients of the instances are integral uniform
values in the range [−100, 100] for the diagonal entries and in the range [−50, 50] for the
off-diagonal ones. In the Biq Mac Library, these instances have been extended by an
additional ten instances of size 250 with density 0.1. The respective sizes, densities, and
optimum values of the different instances can be found in Table A.1 on page 97.

Glover, Kochenberger, and Alidaee Instances. These data sets are due to Glover,
Kochenberger, and Alidaee [GKA98]. Table 3.1 lists the different settings that were
used for the coefficient elements. The respective sizes, densities, and optimum values or
lower/upper bounds of the data sets are given in Table A.4 on page 99.

Integer uniform range

Set Diagonal Off-diagonal

a [−100, 100] [−100, 100]
b [ −63, 0] [ 0, 100]
c, e [−100, 100] [ −50, 50]
d, f [ −75, 75] [ −50, 50]

Table 3.1: Coefficient ranges of the Glover, Kochenberger, and Alidaee instances.

Max-Cut Problem Instances Generated With rudy

The Biq Mac Library contains several classes of max-cut problem instances whose under-
lying graphs have been generated using rudy [Rin98]. For each category, ten instances
have been generated which are numbered consecutively with i = 0, . . . , 9.

• G0.5 (g05 n.i)
Unweighted graphs with edge probability 1/2 and order n = 60, 80, 100.

• G−1/0/1 (pm1s n.i, pm1d n.i)
Weighted graphs of order n = 80, 100 and a density of either 0.1 (pm1s) or 0.99
(pm1d). The edge weights were chosen uniformly from {−1, 0, 1}.

• G[−10,10] (wd n.i)
Graphs of order 100 and varying density d = 0.1, 0.5, 0.9. The integral edge weights
were chosen from the range [−10, 10].

• G[0,10] (pwd n.i)
Graphs of order 100 and varying density d = 0.1, 0.5, 0.9. The integral edge weights
were chosen from the range [0, 10].

The respective optimum values of the instances are listed in Table A.5 on page 99 for
the G0.5 graphs, in Table A.6 on page 100 for the G−1/0/1 graphs, and in Table A.7 on
page 100 for the G[−10,10] and G[0,10] graphs.
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3.1.3 Mannino Instances

The Mannino instances were provided by Rinaldi [Rin10]. They were generated from real-
world data on radio frequency interferences between major Italian cities in the context of
a frequency allocation problem. Table A.2 on page 98 provides the details on the instances
such as respective sizes, densities, ranges of weight values, and optimum values.

3.2 Computational Setup

We implemented the algorithm in C++ and embedded it in the branch-and-cut frame-
work ABACUS (“A Branch-And-CUt System”, see [EGJR01, JT98, JT00, Thi95]). The
computational experiments were carried out on an IntelR© Xeon R© E5450 processor with
2.5 GHz clock rate, 2×6MB shared L2-Cache and 8GB RAM. The operating system
was Debian GNU/Linux 4.0. We used ABACUS 2.3 in conjunction with the LP solver
CPLEX 8.1 [Ilo02].

In addition to the new shrink separation, our branch-and-cut solver comprised four
separation procedures for odd-cycle inequalities, namely GEN3CYC, GEN4CYC, SHOC,
and OC. The latter three are almost identical to the procedures of the same name de-
scribed in [BGJR88], except for some minor modifications to meet the specifications of
the ABACUS framework. Yet, we only elaborate on GEN4CYC and OC since we did not
apply the remaining procedures in our experiments. Also, to simplify the O-notation, we
will use V and E instead of |V | and |E|, respectively, where necessary.

GEN4CYC is a heuristic for the separation of 4-cycle inequalities. It is specifically
designed for toroidal grid graphs, in which the chordless 4-cycles correspond precisely to
the grid squares. The algorithm requires a certain numbering of the nodes and edges,
which is described in Section 3.1.1. By exploiting this structure, we can enumerate the
chordless 4-cycles in time O(V ).

OC is an implementation of the exact odd-cycle separation as proposed by Barahona
and Mahjoub [BM86]. It uses an auxiliary graph consisting of two copies of the original
graph that are joined in a specific way. A detailed description can be found in the first
paragraph of the proof of Lemma 2.14 on page 57. In essence, a cycle in the original
graph corresponds to a shortest path in the auxiliary graph that links a node in the one
graph copy with its counterpart in the other copy. As a result, the odd-cycle separation
reduces to a shortest-path problem on the auxiliary graph. Assuming that the shortest-
path computation requires O(V 2) calculations, Barahona and Mahjoub stated a time
complexity of O(V 3) for their algorithm. Our implementation uses Dijkstra’s algorithm
(see, for instance, [CLRS09]) with heaps for the shortest-path computation, which has a
time complexity of O(E log V ). Thus, OC runs in time O(V E log V ).

As a primal heuristic we used a combined rounding and improvement approach. We
start with the spanning tree rounding heuristic described in Algorithm 1.2 on page 28
to obtain a feasible solution in the vicinity of the current fractional LP solution. Then,
we try to improve upon this solution by applying the Kernighan-Lin heuristic given in
Algorithm 1.3 on page 29. However, we did not invoke the primal heuristic for every
LP solution in the course of the optimization; instead, we let it pass through alternating
active and idle phases. In an active phase, the heuristic is called for every new LP
solution until it failed five consecutive times to improve the value of the best known
solution. Then, it enters an idle phase of a certain length. This idle length is initially
set to one hundred, which means that the heuristic ignores the next one hundred LP
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solutions before switching to an active phase again. Moreover, the idle length doubles
each time the preceding active phase failed at each of its improvement attempts. Yet,
if at least one of the attempts was successful then the idle length is reset to the initial
value of one hundred.

We proceed with the details on how we configured the ABACUS framework itself.
The list of settings that we used throughout the experiments is provided in Table 3.2.
Note that ‘<auto-detect>’ is not an actual setting for the option ‘Objective function
values all integers’. It means that we check for integral coefficients while reading a given
input file and then adjust the setting accordingly at runtime.

Enumeration strategy : BestFirst

Branching strategy : CloseHalfExpensive

Tested candidates for branching variables : 9

Maximal enumeration level : 99999

CPU time limit : 10:00:00

Wall-clock time limit : 99999:59:59

Objective function values all integers : <auto-detect>

Tailing-off control : No

Delayed branching threshold : 1

Minimal number of rounds a subproblem stays dormant : 1

Primal bound initialization : None

Frequency of additional pricing : 0 LPs

Cutting skip factor : 1

Skipping mode : SkipByNode

Fix/set by reduced costs : Yes

Maximal number of constraints added per iteration : 10000

Maximal number of constraints buffered per iteration : 100000

Maximal number of variables added per iteration : 100000

Maximal number of variables buffered per iteration : 1000000

Maximal number of iterations in cutting plane phase : -1

Elimination of fixed and set variables : No

Reoptimization after a root change : No

Show average distance of added cuts : No

Elimination of constraints : NonBinding

Elimination of variables : ReducedCost

Tolerance for constraint elimination : 0.001

Tolerance for variable elimination : 0.001

Age for constraint elimination : 1

Age for variable elimination : 1

Default LP-solver : Cplex

Machine accuracy : 0.0001

Table 3.2: List of ABACUS settings used for the computational experiments.

We compared the following four separation scenarios:

(i) CYC exclusively uses OC. The only exception are instances on toroidal grid graphs.
Here, we call GEN4CYC first and only invoke OC if no violated 4-cycle inequalities
could be found.

(ii) CON uses the graph contraction as a heuristic to detect violated odd-cycle in-
equalities. If none are found then we perform an exact odd-cycle separation on the
successfully contracted LP solution.

(iii) CLQ is initially identical to CON. However, if the contracted LP solution does not
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violate any odd-cycle inequalities then we extend it and separate cliques of order
five and seven, respectively.

(iv) TC only differs from CLQ in that it separates target cuts on the contracted LP
solution instead of clique inequalities on the extended one. For the Mannino in-
stances and those on toroidal grid graphs, respectively, the target cut separation
uses three hundred subgraphs of order ten of the contracted graph. For the re-
maining instances it uses six hundred subgraphs of order eight. Each subgraph is
initialized with a random node and then expanded by successively adding nodes in
a greedy manner. For more information, see the section about target cut separation
on page 63.

Note that we deliberately omitted bicycle-p-wheel- and hypermetric inequalities due to
poor results in preliminary computational experiments. The separation of bicycle-p-
wheel inequalities was simply too time-consuming. Moreover, it exclusively detected
violated bicycle-3-wheel inequalities. These are, however, identical to K5-inequalities
and are thus also covered by the CLQ scenario. Similarly, the separation of hypermet-
ric inequalities took too much time considering its overall poor success rate.

In a given iteration of the separation phase, we allowed each active separation pro-
cedure to add up to six hundred cutting planes to an individual preliminary constraint
pool. If the size of such a pool exceeded three hundred, we first sorted its elements in
descending order of their ranks. The rank of a cutting plane increases with the similarity
of its slope to that of the problem’s iso-value planes. After that, we discarded all but the
best three hundred elements. Finally, the remaining contents of the preliminary pools
were added to the overall constraint pool of the branch-and-cut framework.

We tested each of the four separation scenarios with the instances introduced in
Section 3.1. The CPU time to be spent per instance was limited to ten hours. Finally,
note that we facilitated the solution process of the Ising spin glass problems with ±1
weights by perturbing the edge weights prior to the optimization. This was necessary
because the ±1-instances with their limited diversity of edge weights are considerably
harder to solve than Gaussian weighted instances of equal size.

3.3 Performance Comparison

Before we evaluate the performance of the tested separation scenarios for the different
problem classes, we point out the respective tables with the detailed data on the results.
The combined tables can be found in Appendix B.

Ising Spin Glass Problems. For the two-dimensional grids, the Tables B.2 to B.6 on
the pages 106 to 110 list the CPU times required by the different scenarios. The results
for the three-dimensional grids are provided in the Tables B.1 and B.3 on the pages 105
and 107, respectively.

There are two notable observations regarding the two-dimensional instances. If an
instance could be solved to optimality within the ten hour CPU time limit then this
was achieved in the root node. Moreover, regardless of the separation scenario only odd-
cycle inequalities were added to the constraint pool in the course of the optimization. In
other words, the scenarios CLQ and TC are equivalent to CON for all two-dimensional
grids.
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Max-Cut Problem Instances Generated With rudy. In certain subsets of the
rudy-generated problem classes we could not solve any of the instances to optimality
within the ten hour time limit regardless of the separation scenario. For these subsets we
provide the relative gap at the end of the computations. Consequently, the results are
split into the comparison of the required CPU times in Table B.9 on page 113 as well as
the relative gaps in Table B.11 on page 114.

Note that the CON scenario ran out of memory for every G0.5 graph of order sixty
and eighty. This is because the odd-cycle inequalities give very poor bounds for these
instances. As a result, the solver is forced to branch constantly and thus the branch-
and-cut tree quickly grows in size. Technically, this would also have happened in the
CYC scenario. However, since CYC is generally slower than CON, the time limit was
reached before the algorithm could run out of memory.

Quadratic 0/1 Optimization Problems. Similar to the above rudy-generated in-
stances, the results are split into the comparison of the CPU times in Table B.7 on
page 111 and the relative gaps in Table B.8 on page 112, respectively.

Mannino Instances. The CPU times for the different scenarios are listed in Table B.10
on page 113.

In all the tables just mentioned, the minimum CPU time resp. relative gap over all
separation scenarios is typeset bold for each instance.

We now compare the performance of the four examined separation scenarios for the
different classes of test instances. As mentioned before, there are subsets of these classes
in which we could solve none of the instances to optimality within the ten hour time
limit regardless of the used separation scenario. Therefore, we split our overview into
two parts. In Section 3.3.1 we focus on the classes in which we could solve most or even
all of the instances to optimality. Here, we use the average CPU time reduction with
respect to the standard scenario CYC to measure the performance of the remaining ones.
Section 3.3.2 covers the instances which none of the scenarios could solve to optimality
within the ten hour time limit. In this case we use the gap closure with respect to CYC as
measure.

3.3.1 CPU Time Reduction

The results in terms of CPU time reduction are listed in Table 3.3 on page 90. The rows
refer to the different classes of test instances. The columns are organized as follows:

• Class specifies the class of test instances. We considered Beasley instances of size
n = 50, 100, 250 (beasley), Billionnet and Elloumi instances of size n = 120, 250
(be), Glover, Kochenberger, and Alidaee instances with the settings a, b, c, and d
(gka), two- and three-dimensional toroidal grids with uniformly distributed ±1
weights (tpm) resp. Gaussian distributed integral weights (tg), unweighted graphs
with edge probability 1/2 and order n = 60 (g05 60), ±1-weighted graphs of order
n = 80, 100 and density d = 0.1 (pm1s), graphs of order n = 100 and density
d = 0.1 with weights chosen from the ranges [−10, 10] (w01) resp. [0, 10] (pw01),
and finally the Mannino instances (mannino).

• #Files lists the total number of instances in each class.
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• #Limit gives the number of instances per class that could not be solved to opti-
mality within ten hours by any of the separation scenarios.

• #Wins lists for each separation scenario the number of instances per class for
which this scenario took the least time to solve them to optimality. Note that the
instances counted by ‘#Limit’ were excluded from this evaluation. Also, the line
total may exceed the number of remaining instances since different scenarios can
have identical CPU times. The maximum value over all scenarios is typeset bold
for each class.

• #Add. rejects gives for each of the scenarios CON, CLQ, and TC the number
of instances per class that were excluded from the evaluation of the respective av-
erage CPU time reduction in addition to those already counted by ‘#Limit’. We
rejected an instance if CYC or the respective scenario exceeded the time limit.
Nonzero entries consist of two values. The first one is the total number of addition-
ally rejected instances. The second value, given in parentheses, specifies how many
of these rejections were caused by a time limit exceedance of the respective scenario
itself rather than of CYC. Consequently, the difference between the first and the
second value gives the number of instances that could be solved to optimality by
the respective scenario while CYC exceeded the time limit. The nonzero entries
with maximum difference between first and second value are typeset bold for each
class.

• Avg. CPU time red. lists for each of the scenarios CON, CLQ, and TC its
respective average CPU time reduction compared to CYC. The entries specify the
reduction averaged over all instances in a given class except for those counted
by ‘#Limit’ and the respective entry of ‘#Add. rejects’. The maximum average
reduction over all scenarios is typeset bold for each class.

Note that in case of the class ‘g05 60’, the scenario CYC always exceeded the time limit.
As a result, we could not evaluate the actual average time reduction for the scenarios
CON, CLQ, and TC. However, rather than omitting the entire class, we used the ten
hour time limit as a lower bound on the computation time of CYC. Thus, the average
reduction values for the class ‘g05 60’ are to be understood as lower bounds as well.

We see that the CON scenario clearly dominates with average time reductions ranging
from 51 to 95% for most of the classes and an average reduction over all the classes of
approximately 50%. Particularly noteworthy are the good results for the two-dimensional
Ising spin glass problems. This is because for these instances the CYC scenario uses a very
efficient linear time heuristic to separate 4-cycle inequalities. It enumerates the squares in
a toroidal grid, which are chordless cycles and thus induce facets. It is quite remarkable
that a rather general approach like the shrink separation is able to outclass this highly
specialized heuristic—in particular since, unlike the heuristic, the shrink separation does
not require a specific numbering of the grid’s nodes and edges.

However, the results for the scenarios CLQ and TC are less distinct. Both per-
form well on some classes, poorly on others, and are sometimes even outperformed by
CYC. Take, for instance, the CLQ scenario: Despite partly good time reductions of up
to 95%, this scenario is on average approximately 40% slower than CYC. The results
for TC are even worse—at least at first glance—with a time increase of 2014% averaged
over all classes. Yet, this is mainly due to the extremely bad performance on the Glover,
Kochenberger, and Alidaee instances of setting b (gka.b). If we omit this class in the



3.4. A Case Study: The Mannino Instances 87

evaluation, we see that TC features a solid time reduction of almost 32% on average for
the remaining classes.

3.3.2 Gap Closure

In general, the gap closure of a maximization problem is the percentage by which the
gap between the lower bound cbest and an old upper bound c as well as a new upper
bound c′ could be closed, i. e.,

gap closure =
(

1 −
c′ − cbest

c − cbest

)

· 100%.

Thus, we obtain the gap closure with respect to CYC by setting c to the upper bound
given by the CYC scenario at the end of the computations and c′ to the one given by
the respective remaining scenario whose performance we want to measure. The results
are provided in Table 3.4 on page 91. As before, the rows refer to the different classes of
test instances. The columns are organized as follows:

• Class specifies the class of test instances. We considered Beasley instances of size
n = 500 (beasley500), Billionnet and Elloumi instances of size n = 100, 120, 150, 200
(be), Glover, Kochenberger, and Alidaee instances with the settings e and f (gka),
unweighted graphs with an edge probability of 1/2 and order n = 80, 100 (g05),
±1-weighted graphs of order n = 80, 100 and density d = 0.99 (pm1d), and graphs
of order n = 100 and varying density d = 0.5, 0.9 with weights chosen from the
ranges [−10, 10] (w) resp. [0, 10] (pw).

• #Files lists the total number of instances in each class.

• #Wins specifies for each separation scenario the number of instances per class for
which this scenario gave the smallest relative gap after ten hours of computation.
Note that the line total may exceed the number of instances since different scenarios
can result in the same relative gap. The maximum value over all scenarios is typeset
bold for each class.

• Avg. gap cl. lists for each of the scenarios CON, CLQ, and TC, respectively, its
average gap closure with respect to the CYC scenario after ten hours of compu-
tation. The maximum average closure over all scenarios is typeset bold for each
class.

Although CON delivered the smallest gaps in most cases, its average gap closure over
all classes is only about 15% with a peak value of 68% on single classes. The scenarios
CLQ and TC, on the other hand, both feature a gap closure of approximately 19%
averaged over all classes and peak values of 85 and 77%, respectively. Still, all three
scenarios only work well for about one third of the tested classes. For the remaining ones,
the results are mediocre at best. In some cases, the scenarios are even outperformed by
CYC.

In conclusion, for most of the considered classes the scenarios CON, CLQ, and TC are
superior to CYC. Yet, apart from CLQ and TC performing slightly better on average
than CON, there is no clearly dominant scenario.
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3.4 A Case Study: The Mannino Instances

Unlike the remaining test problems, the Mannino instances introduced in Section 3.1.3
were generated from real-world data. With the exception of ‘mannino k48’, the respec-
tive underlying graphs are extremely sparse with densities ranging from 1 to 7%. The
instance ‘mannino k48’, on the other hand, is based on a complete graph. However, it is
extremely easy to solve and will thus be omitted. In summary, the combination of real-
world data and low densities makes these problems particularly interesting for testing
the shrink separation. This is why we performed additional experiments using a varia-
tion of the CYC scenario which we will refer to as CYC′. Here, we removed the CPU
time limit and also activated the tailing-off control to accelerate the optimization. This
control enforced a branching step if the minimal change of the objective function value
between the solution of one hundred successive linear programming relaxations in the
subproblem optimization was below 0.0015%. The remaining scenarios were identical to
the ones introduced in Section 3.2. In particular, they did not use the tailing-off control.
However, like the original CYC scenario, its variation could not solve the largest instance
‘mannino k487c’ to optimality. Due to the steadily growing branch-and-cut tree, the al-
gorithm eventually ran out of memory. We will discuss this particular problem in greater
detail shortly, but first we look at the results for the remaining two instances.

In terms of CPU times, Table 3.5 on page 91 clearly shows that CON was the domi-
nant scenario with an average time reduction of 98% compared to CYC′. The scenarios
CLQ and TC performed slightly worse. However, with average reductions of 81 and 75%,
respectively, they were still far superior to CYC′.

Next, we look at the size of the branch-and-cut tree at the end of each optimiza-
tion run. Table 3.6 on page 91 shows that CON, despite a slight increase in case of
‘mannino k487a’, reduced the number of nodes in the branch-and-cut tree by almost 12%
on average. Still, the CON scenario needed to branch, which indicates that odd-cycle in-
equalities alone are not sufficient to solve the Mannino instances in the root node. In
this regard, the remaining two scenarios are clearly preferable. CLQ reduced the tree
size by 69% on average while TC was even able to solve both instances in the root node.
A check of the final constraint pools showed that the TC scenario achieved this with
only 179 resp. 134 target cuts in addition to the odd-cycle inequalities.

The instance ‘mannino k487c’, however, was a greater challenge. As mentioned ear-
lier, CYC′ ran out of memory during the optimization while the remaining scenarios
exceeded the ten hour CPU time limit. By dropping this limit also for CON, CLQ,
and TC, we were finally able to solve the largest instance to optimality. In fact, only
the TC scenario achieved this goal. The optimization took 17.5 hours and required 45
nodes in the branch-and-cut tree. The number of target cuts in addition to odd-cycle in-
equalities in the final constraint pool was 766. By increasing the size of the subgraphs
for the target cut separation from ten to eleven, we managed to solve the problem to
optimality within a reduced running time of 10.2 hours and with only eleven nodes in
the branch-and-cut tree. In this case, the final constraint pool contained 758 target cuts.
Regarding the remaining two scenarios: CON ran out of memory due to the steadily
growing branch-and-cut tree while CLQ was manually aborted after three days, at which
point the relative gap was slightly below 0.015%.

In conclusion, we see that the CON scenario, though capable of accelerating the opti-
mization significantly, may not be sufficient to solve certain problems to optimality. The
more difficult problems can be dealt with by separating additional clique inequalities or
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target cuts. If a slight increase in CPU time is not an issue, one can even apply the target
cut separation to the easier problem instances, which allows to solve them in the root
node instead of resorting to branching. Finally, we saw that an additional fine tuning of
the target cut parameters can improve the already good results even further.
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#Wins Avg. gap cl. [%]

Class #Files CYC CON CLQ TC CON CLQ TC

beasley500 10 0 2 0 8 68 69 69
be100 10 0 10 0 0 13 8 −11
be120.8 10 0 10 0 0 10 4 −1
be150.3 10 0 10 0 0 15 −26 −1
be150.8 10 4 1 3 3 2 3 3
be200.3 10 0 1 0 9 9 0 11
be200.8 10 9 0 0 1 −21 −25 −22
gka.e 5 1 3 1 3 19 10 20
gka.f 5 3 0 2 0 −5 −5 −4
g05 80 10 0 —a 10 0 —a 85 77
g05 100 10 0 0 9 1 26 65 57
pm1d 20 0 20 1 0 19 10 6
w05 10 0 10 0 0 43 23 37
w09 10 0 10 0 0 19 14 9
pw05 10 0 0 9 1 12 56 50
pw09 10 0 0 8 2 6 13 8

a The CON scenario ran out of memory for every instance. See page 85 for
more information.

Table 3.4: Statistics on the gap closure with respect to CYC after ten hours of compu-
tation for different separation scenarios.

CPU time [sec]

Instance CYC′ CON CLQ TC

mannino k487a 209 8 71 99
mannino k487b 38167 68 1262 1232

mannino k487c —a —a >259200b 63022b

a ‘Out of memory’ error.
b No limit on CPU time.

Table 3.5: CPU times for Mannino instances.

#Nodes in B&C-tree

Instance CYC′ CON CLQ TC

mannino k487a 31 45 11 1
mannino k487b 41 13 11 1

mannino k487c —a —a ≥27b 45b

a ‘Out of memory’ error.
b No limit on CPU time.

Table 3.6: Number of nodes in the branch-and-cut tree for Mannino instances.





Chapter 4

Discussion and Conclusions

We have presented a new shrink separation approach that can be used within a branch-
and-cut algorithm for solving max-cut problems to optimality. The key idea is to contract
all edges with a respective integral LP value. In its simplest form, this graph contraction
allows the efficient separation of odd-cycle inequalities. We described how to lift cutting
planes for the contracted LP solution to cutting planes for the original one. Moreover, we
specified under which conditions the lifting preserves existing facet-defining properties of
valid inequalities for the cut polytope.

Building upon the contraction approach, we contributed means to make methods
intended for max-cut problems on complete graphs applicable to problems on sparse
graphs. We proposed two techniques to add missing edges and to efficiently compute
suitable LP values in order to extend the contracted LP solution accordingly. The static
extension assigns fixed LP values to the artificial edges while the adaptive extension uses
adjustable LP values that are a priori undetermined. In this regard, the prior contraction
of the graph has the benefit of lowering the number of edges that need to be added and
thus reducing the subsequent computational effort. We described how to project out
the variables associated with artificial edges from the separating inequalities for the
extended LP solution. The properties of this projection differ depending on the choice
of the extension technique. In summary, the static extension allows to use standard
separation procedures for the max-cut problem, but the projection can alter the amount
by which the extended LP solution violates the obtained separating inequalities. The
adaptive extension, on the other hand, always preserves the amount of violation during
the projection. However, standard separation procedures are typically unable to handle
the adaptive LP values and may need adjustment. In this context we presented a proof of
concept by customizing an existing target cut separation procedure to the use of adaptive
extension.

Finally, we implemented the shrink separation in C++ and embedded it in an exact
branch-and-cut solver based on the ABACUS framework. After pointing out some of
the realization’s numerical aspects, we evaluated its performance on a variety of test
instances. First, we looked at the CPU times, with the focus on those instances that
could be solved to optimality within a time limit of ten hours. Here, using the graph
contraction as means to separate odd-cycle inequalities proved to be the dominant strat-
egy. Compared to standard odd-cycle separation techniques, the contraction approach
on average halved the time required to solve the problems to optimality, with peak time
reductions of up to 95% on selected problem classes. Particularly noteworthy is the sig-
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nificant acceleration when optimizing two-dimensional Ising spin glass problems. This is
because the standard techniques involved an efficient linear time separation procedure
specifically designed for toroidal grid instances. It enumerates the grid squares, which
are chordless cycles. Consequently, the respective 4-cycle inequalities define facets of the
cut polytope. Still, the more general contraction-based odd-cycle separation was able to
outclass this highly specialized method. These results are even more stunning consider-
ing that, unlike the enumeration method, the contraction approach does not require a
specific numbering of the grid’s nodes and edges. We also experimented with separating
additional clique inequalities and target cuts on the already contracted LP solutions but
obtained mixed results. While the computation of these extra cutting planes can be
worthwhile for some problem classes, it generally only produces an overhead. This can
slow down the entire shrink separation up to the point where it is even outperformed by
the standard odd-cycle separation techniques.

Next, we considered the test instances that could not be solved to optimality within
the time limit. Here, we evaluated the gap closure that the shrink separation could achieve
compared to the standard odd-cycle separation. The contraction-based odd-cycle sepa-
ration could close the gap by 15% on average. The addition of clique inequalities and
target cuts slightly improved this value to 19%. Still, the results were mixed and the
standard odd-cycle separation partly outperformed the shrink separation.

As a final part of our computational experiments we presented a case study in which
we looked closer at the Mannino instances—a set of problems generated from real-world
data in the context of a frequency allocation problem for major Italian cities. Here,
the contraction-based odd-cycle separation was extremely effective and reduced the CPU
time required on average by 98%. The only exception was the largest instance, for
which the approach ran out of memory due to the steady growth of the branch-and-
cut tree. However, with the addition of target cuts we were able to also solve the largest
problem to optimality. Moreover, the target cuts, though slightly slowing down the overall
optimization, even allowed to solve the remaining instances in the root node while all the
other separation scenarios required branching.

In conclusion, the presented shrink separation shows great potential to facilitate the
optimization of max-cut problems. As a rule of thumb, the approach seems to be most
effective on problems whose underlying graphs are sparse. Its use for problems on dense or
complete graphs, on the other hand, is limited and dwindles with increasing problem size.
This is partly due to the fact that we use a formulation of the max-cut problem which
introduces a decision variable for each edge in the graph. So, for problem instances
based on a dense or even complete graph, an SDP based solver like, for instance, Biq
Mac [Wie06] is preferable. However, this type of solver tends to easily run out of memory
for large sparse problems. To give an example, we experimented with a version of Biq
Mac [RRW10] that is made available through a web interface1. We used two-dimensional
Ising spin glass problems as test instances. In our experience, the solver returned a
storage allocation failure for grid sizes beyond (65 × 65). Using the shrink separation,
on the other hand, our branch-and-cut algorithm successfully solved problems with sizes
up to (185 × 185) to optimality within ten hours and, by dropping the time limit, can
handle even larger instances.

Concerning future work, there are several aspects we did not explore that could im-
prove our results even further. First of all, the use of target cuts shows great potential

1Biq Mac (“Binary quadratic and Max cut”) Solver, http://biqmac.uni-klu.ac.at.
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in principle. However, in its current form it often slows down the overall optimization
significantly. Thus, investigating efficient methods to generate stronger target cuts may
be worthwhile, in particular the development of an advanced strategy to select the sub-
graphs for the target cut separation. One could also think of maintaining a repository of
promising subgraphs—or subgraph seeds—from prior iterations, which could be exploited
in the further course of the optimization. It may also improve the results to use local
cuts instead of target cuts. Although local cuts in general do not produce facet defining
inequalities, their computation requires less effort, which could accelerate the overall op-
timization. Lastly, the use of custom branching strategies that aim at maximizing the
number of contractible edges could be worth investigating.

Ultimately, the shrink separation with its unique combination of graph contraction
and extension provides the means to apply arbitrary separation methods for the well-
studied max-cut problem on complete graphs to problems on sparse graphs and thus
could prove to be a solid base for further research.





Appendix A

Data on Test Instances

In the tables below we provide exhaustive data on the individual test instances that
we used for our computational experiments. The data comprises sizes and densities of
the underlying graphs as well as optimum values, if known, or bounds on the optimum
otherwise.

n = 100, d = 1.0

Name Opt

be100.1 −19412
be100.2 −17290
be100.3 −17565
be100.4 −19125
be100.5 −15868
be100.6 −17368
be100.7 −18629
be100.8 −18649
be100.9 −13294
be100.10 −15352

n = 120, d = 0.3

Name Opt

be120.3.1 −13067
be120.3.2 −13046
be120.3.3 −12418
be120.3.4 −13867
be120.3.5 −11403
be120.3.6 −12915
be120.3.7 −14068
be120.3.8 −14701
be120.3.9 −10458
be120.3.10 −12201

n = 120, d = 0.8

Name Opt

be120.8.1 −18691
be120.8.2 −18827
be120.8.3 −19302
be120.8.4 −20765
be120.8.5 −20417
be120.8.6 −18482
be120.8.7 −22194
be120.8.8 −19534
be120.8.9 −18195
be120.8.10 −19049

n = 150, d = 0.3

Name Opt

be150.3.1 −18889
be150.3.2 −17816
be150.3.3 −17314
be150.3.4 −19884
be150.3.5 −16817
be150.3.6 −16780
be150.3.7 −18001
be150.3.8 −18303
be150.3.9 −12838
be150.3.10 −17963

n = 150, d = 0.8

Name Opt

be150.8.1 −27089
be150.8.2 −26779
be150.8.3 −29438
be150.8.4 −26911
be150.8.5 −28017
be150.8.6 −29221
be150.8.7 −31209
be150.8.8 −29730
be150.8.9 −25388
be150.8.10 −28374

n = 200, d = 0.3

Name Opt

be200.3.1 −25453
be200.3.2 −25027
be200.3.3 −28023
be200.3.4 −27434
be200.3.5 −26355
be200.3.6 −26146
be200.3.7 −30483
be200.3.8 −27355
be200.3.9 −24683
be200.3.10 −23842

n = 200, d = 0.8

Name Opt

be200.8.1 −48534
be200.8.2 −40821
be200.8.3 −43207
be200.8.4 −43757
be200.8.5 −41482
be200.8.6 −49492
be200.8.7 −46828
be200.8.8 −44502
be200.8.9 −43241
be200.8.10 −42832

n = 250, d = 0.1

Name Opt

be250.1 −24076
be250.2 −22540
be250.3 −22923
be250.4 −24649
be250.5 −21057
be250.6 −22735
be250.7 −24095
be250.8 −23801
be250.9 −20051
be250.10 −23159

Table A.1: Data on the Billionnet and Elloumi instances.
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Name #Nodes #Edges Density Range of weights Opt

mannino k48 48 1128 1.0 [13146, 841699] 252518838
mannino k487a 487 1435 ≈ 0.01 [101, 33631] 1110926
mannino k487b 487 5391 ≈ 0.05 [5, 176030] 3655475
mannino k487c 487 8511 ≈ 0.07 [5, 203785] 8640860

Table A.2: Data on the Mannino instances.

n = 50

Name Opt

beasley50.1 −2098
beasley50.2 −3702
beasley50.3 −4626
beasley50.4 −3544
beasley50.5 −4012
beasley50.6 −3693
beasley50.7 −4520
beasley50.8 −4216
beasley50.9 −3780
beasley50.10 −3507

n = 100

Name Opt

beasley100.1 −7970
beasley100.2 −11036
beasley100.3 −12723
beasley100.4 −10368
beasley100.5 −9083
beasley100.6 −10210
beasley100.7 −10125
beasley100.8 −11435
beasley100.9 −11455
beasley100.10 −12565

n = 250

Name Opt

beasley250.1 −45607
beasley250.2 −44810
beasley250.3 −49037
beasley250.4 −41274
beasley250.5 −47961
beasley250.6 −41014
beasley250.7 −46757
beasley250.8 −35726
beasley250.9 −48916
beasley250.10 −40442

n = 500

Name Opt

beasley500.1 [−121588.41, −116586]
beasley500.2 [−132216.45, −128223]
beasley500.3 [−134214.12, −130812]
beasley500.4 [−134781.02, −130097]
beasley500.5 [−129572.87, −125487]
beasley500.6 [−126429.50, −121772]
beasley500.7 [−127136.37, −122201]
beasley500.8 [−128574.61, −123559]
beasley500.9 [−125821.63, −120798]
beasley500.10 [−134352.34, −130619]

Table A.3: Data on the Beasley instances. All problems have a density of 0.1 and integer
uniform coefficients in the range [−100, 100].
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Set a

Name n d Opt

gka1a 50 0.1 −3414
gka2a 60 0.1 −6063
gka3a 70 0.1 −6037
gka4a 80 0.1 −8598
gka5a 50 0.2 −5737
gka6a 30 0.4 −3980
gka7a 30 0.5 −4541
gka8a 100 0.0625 −11109

Set c

Name n d Opt

gka1c 40 0.8 −5058
gka2c 50 0.6 −6213
gka3c 60 0.4 −6665
gka4c 70 0.3 −7398
gka5c 80 0.2 −7362
gka6c 90 0.1 −5824
gka7c 100 0.1 −7225

Set b (d = 1.0)

Name n Opt

gka1b 20 −133
gka2b 30 −121
gka3b 40 −118
gka4b 50 −129
gka5b 60 −150
gka6b 70 −146
gka7b 80 −160
gka8b 90 −145
gka9b 100 −137
gka10b 125 −154

Set d (n = 100)

Name d Opt

gka1d 0.1 −6333
gka2d 0.2 −6579
gka3d 0.3 −9261
gka4d 0.4 −10727
gka5d 0.5 −11626
gka6d 0.6 −14207
gka7d 0.7 −14476
gka8d 0.8 −16352
gka9d 0.9 −15656
gka10d 1.0 −19102

Set e (n = 200)

Name d Opt

gka1e 0.1 −16464
gka2e 0.2 −23395
gka3e 0.3 −25243
gka4e 0.4 −35594
gka5e 0.5 −35154

Set f (n = 500)

Name d Opt

gka1f 0.1 [−63400.98, −61194]
gka2f 0.25 [−104868.34, −100161]
gka3f 0.5 [−145420.14, −138035]
gka4f 0.75 [−181507.74, −172771]
gka5f 1.0 [−201130.98, −190507]

Table A.4: Data on the Glover, Kochenberger, and Alidaee instances.

n = 60

Name Opt

g05 60.0 536
g05 60.1 532
g05 60.2 529
g05 60.3 538
g05 60.4 527
g05 60.5 533
g05 60.6 531
g05 60.7 535
g05 60.8 530
g05 60.9 533

n = 80

Name Opt

g05 80.0 929
g05 80.1 941
g05 80.2 934
g05 80.3 923
g05 80.4 932
g05 80.5 926
g05 80.6 929
g05 80.7 929
g05 80.8 925
g05 80.9 923

n = 100

Name Opt

g05 100.0 1430
g05 100.1 1425
g05 100.2 1432
g05 100.3 1424
g05 100.4 1440
g05 100.5 1436
g05 100.6 1434
g05 100.7 1431
g05 100.8 1432
g05 100.9 1430

Table A.5: Data on G0.5 instances. The underlying graphs are unweighted with edge
probability 1/2.
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n = 80, d = 0.1

Name Opt

pm1s 80.0 79
pm1s 80.1 85
pm1s 80.2 82
pm1s 80.3 81
pm1s 80.4 70
pm1s 80.5 87
pm1s 80.6 73
pm1s 80.7 83
pm1s 80.8 81
pm1s 80.9 70

n = 100, d = 0.1

Name Opt

pm1s 100.0 127
pm1s 100.1 126
pm1s 100.2 125
pm1s 100.3 111
pm1s 100.4 128
pm1s 100.5 128
pm1s 100.6 122
pm1s 100.7 112
pm1s 100.8 120
pm1s 100.9 127

n = 80, d = 0.99

Name Opt

pm1d 80.0 227
pm1d 80.1 245
pm1d 80.2 284
pm1d 80.3 291
pm1d 80.4 251
pm1d 80.5 242
pm1d 80.6 205
pm1d 80.7 249
pm1d 80.8 293
pm1d 80.9 258

n = 100, d = 0.99

Name Opt

pm1d 100.0 340
pm1d 100.1 324
pm1d 100.2 389
pm1d 100.3 400
pm1d 100.4 363
pm1d 100.5 441
pm1d 100.6 367
pm1d 100.7 361
pm1d 100.8 385
pm1d 100.9 405

Table A.6: Data on G−1/0/1 instances. The underlying graphs are weighted with edge
weights chosen uniformly from {−1, 0, 1}.

n = 100, d = 0.1

Name Opt

w01 100.0 651
w01 100.1 719
w01 100.2 676
w01 100.3 813
w01 100.4 668
w01 100.5 643
w01 100.6 654
w01 100.7 725
w01 100.8 721
w01 100.9 729

n = 100, d = 0.5

Name Opt

w05 100.0 1646
w05 100.1 1606
w05 100.2 1902
w05 100.3 1627
w05 100.4 1546
w05 100.5 1581
w05 100.6 1479
w05 100.7 1987
w05 100.8 1311
w05 100.9 1752

n = 100, d = 0.9

Name Opt

w09 100.0 2121
w09 100.1 2096
w09 100.2 2738
w09 100.3 1990
w09 100.4 2033
w09 100.5 2433
w09 100.6 2220
w09 100.7 2252
w09 100.8 1843
w09 100.9 2043

n = 100, d = 0.1

Name Opt

pw01 100.0 2019
pw01 100.1 2060
pw01 100.2 2032
pw01 100.3 2067
pw01 100.4 2039
pw01 100.5 2108
pw01 100.6 2032
pw01 100.7 2074
pw01 100.8 2022
pw01 100.9 2005

n = 100, d = 0.5

Name Opt

pw05 100.0 8190
pw05 100.1 8045
pw05 100.2 8039
pw05 100.3 8139
pw05 100.4 8125
pw05 100.5 8169
pw05 100.6 8217
pw05 100.7 8249
pw05 100.8 8199
pw05 100.9 8099

n = 100, d = 0.9

Name Opt

pw09 100.0 13585
pw09 100.1 13417
pw09 100.2 13461
pw09 100.3 13656
pw09 100.4 13514
pw09 100.5 13574
pw09 100.6 13640
pw09 100.7 13501
pw09 100.8 13593
pw09 100.9 13658

Table A.7: Data on G[−10,10] (w) and G[0,10] (pw) instances. The underlying graphs are
weighted with integral edge weights chosen from the specified ranges.
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k = 30

Seed Opt

11653 636
13441 620
14579 624
16241 626
22000 630
23307 626
30533 640
32642 626
4527 626
7903 646

k = 35

Seed Opt

14423 858
15415 840
15846 836
20849 848
23778 858
23798 856
27102 858
28373 852
28708 868
457 864

k = 40

Seed Opt

12504 1126
13024 1116
17666 1118
21887 1124
24026 1144
2566 1128
31352 1108
3336 1102
8193 1132
8614 1114

k = 45

Seed Opt

12027 1408
12898 1402
14407 1400
16600 1406
16710 1428
19930 1416
27477 1418
4946 1432
7500 1418
965 1410

k = 50

Seed Opt

12205 1740
14092 1740
14211 1752
17695 1764
18152 1754
24084 1750
31133 1770
3235 1726
5102 1744
8545 1746

k = 55

Seed Opt

11787 2112
13203 2102
13295 2110
15123 2126
21910 2130
23960 2094
30290 2142
3697 2112
6263 2128
6808 2112

k = 60

Seed Opt

17049 2524
19697 2502
22181 2514
27127 2524
28147 2518
2987 2500
4211 2532
5022 2524
7774 2534
8278 2500

k = 65

Seed Opt

10959 2990
17716 2956
18062 2950
21384 2954
21907 2970
23164 2946
26400 2962
32274 2966
7291 2982
8051 2970

k = 70

Seed Opt

25063 3412
26486 3424
28924 3422
2941 3442
2964 3428
30920 3432
32012 3430
7014 3430
9204 3394
9939 3430

k = 75

Seed Opt

10738 3934
11748 3928
151 3928
20442 3918
241 3916
27279 3934
28720 3982
28797 3972
31708 3964
6726 3924

k = 80

Seed Opt

11489 4478
18055 4464
18637 4500
22148 4482
22267 4534
28635 4474
29439 4470
3438 4478
3932 4490
5470 4506

k = 85

Seed Opt

10733 5086
11774 5078
13674 5078
14944 5054
15307 5074
18788 [5060, 5062]
22879 5068
5367 5100
7215 5072
7602 5040

Table A.8: Data on toroidal (k × k) grids with uniformly distributed ±1 weights. ‘Seed’
lists the random seeds used for generating the instances.
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k = 30

Seed Opt

11495 58661632
13235 57521425
13605 57519669
13937 62318169
14964 59736718
20209 62734462
22312 62001902
3934 61760927
7382 58959125
8289 62797247

k = 35

Seed Opt

10018 77903675
18452 82627972
23988 83242094
278 80942210
30846 81373652
3294 82910165
4430 74894853
4948 82055249
7040 81448751
8883 81816684

k = 40

Seed Opt

11761 108114447
1312 104346958
14029 102247437
21074 104539379
2480 104579088
30667 107862915
5273 102345107
7115 103566694
7974 103894527
9512 106727304

k = 45

Seed Opt

16083 133047085
20652 134083067
21007 132511460
21053 135233420
22054 130039421
24987 139060536
2848 140104818
31108 134968926
508 134683245
8448 134798284

k = 50

Seed Opt

10929 171848787
11184 170781311
16132 159143501
16361 164406485
1813 170718815
25245 165605411
32072 168784903
3735 160158697
7352 161761289
7890 161235815

k = 55

Seed Opt

10166 193942133
12625 198025786
18140 209770015
20590 205590122
22691 197378402
25255 205204723
26654 196886913
29134 192367236
8853 202393689
8897 206313116

k = 60

Seed Opt

13540 242986106
15097 238317681
15359 236994157
18207 228999999
18409 237511199
27474 234495440
4383 242539481
5759 242683201
6267 232971654
6648 240280455

k = 65

Seed Opt

10361 283876459
14157 282183788
1523 273163929
17884 279329643
21291 271073381
25341 271730791
3687 282992077
7422 278638796
8705 277178635
9236 277928660

k = 70

Seed Opt

11214 317363325
13627 320960806
16057 319932831
18089 330764188
18936 329757133
22569 320236499
28255 321306022
28683 320853901
31804 311688502
7933 324216743

k = 75

Seed Opt

13642 365150433
14441 374041360
15320 370132837
19655 364224909
223 368534208
25415 369334665
26342 369300324
29001 376175177
31682 366127730
6115 377356725

k = 80

Seed Opt

1080 423144297
11442 422412343
13072 427116250
14351 418671807
15964 410831544
19703 430114984
23390 428526647
30813 414180192
5645 425872291
7281 426672072

k = 85

Seed Opt

10215 467825042
11179 477196491
16125 476320157
1717 465704743
18149 471497118
20858 477104803
25370 482438183
26323 473569889
30408 474399045
32733 481312064

k = 90

Seed Opt

11723 533220177
11946 529382174
12169 524132585
15935 546858680
20135 527458256
2293 553702134
26610 526188217
27266 529484077
27488 522234384
7832 526748720

k = 95

Seed Opt

10886 584204645
14201 602601022
19049 590767377
19350 590993482
22328 597801401
2869 577597448
32121 595326543
4824 582940077
4999 589115927
9806 606496065

k = 100

Seed Opt

10150 647462060
10546 656447418
10920 662711750
16990 665569618
22293 661488251
23610 667363738
25328 647582676
26671 655949369
2752 657715351
704 668132036

k = 105

Seed Opt

12131 705314014
14469 695811951
15247 727872937
19971 720330842
24300 721068736
27880 730942629
28964 720885443
29069 715974914
392 721280937
8024 721615970

Table A.9: Data on toroidal (k × k) grids with Gaussian distributed integral weights.
‘Seed’ lists the random seeds used for generating the instances.
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k = 110

Seed Opt

1529 786076341
18142 796316551
27948 792672585
28395 817300054
28671 800360679
3596 782391463
5881 818299433
6067 814908693
727 794719145
882 786157215

k = 115

Seed Opt

13746 851492054
13903 883597024
16498 870966055
17921 865980373
18625 877859936
20000 863656579
25231 876770372
29545 882445579
7341 865413023
9454 858204759

k = 120

Seed Opt

10099 929775752
10653 940987796
1103 957288806
13763 952964879
21074 944261721
22230 940620699
25846 957891409
28174 949858046
293 953482659
32669 954207089

k = 125

Seed Opt

12182 1037328839
13065 1006709807
18946 1022713614
27086 1021566382
2775 1025226450
3001 1008264367
31446 1017882277
31905 1033180558
32173 1049685293
385 1012971346

k = 130

Seed Opt

11410 1117069724
13933 1107572557
16747 1105037481
20864 1101819808
28780 1113174714
29336 1120129406
32559 1114523437
478 1122924115
7819 1109309901
8096 1111734667

k = 135

Seed Opt

11824 1201815986
21560 1214623380
21999 1225925302
22415 1200555575
23518 1180843686
2555 1186016038
32098 1207605121
3419 1207536593
7720 1209588264
8013 1208970367

k = 140

Seed Opt

12683 1291907082
13278 1302748132
14073 1284999528
14599 1297722942
1693 1292972751
25499 1308500561
26255 1283518711
28779 1298772984
29164 1275833161
6552 1296919925

k = 145

Seed Opt

142 1388313544
15685 1386757987
25005 1393086100
25176 1390586096
32432 1369056460
333 1377066313
4141 1371876611
6133 1384196921
6342 1392459524
7961 1377978454

k = 150

Seed Opt

10454 1495662545
15681 1488132003
15866 1496016572
21662 1467898813
22332 1465634683
23695 1473809878
25116 1494238043
2701 1494610559
27114 1467453627
27690 1477356020

k = 155

Seed Opt

10714 1568656847
13010 1607258237
14703 1585294184
1907 1608298507
22800 1569569580
2715 1590096121
7110 1593678895
8419 1578562361
8459 1599849310
9522 1575205489

k = 160

Seed Opt

1190 1678959821
11993 1679440535
18065 1696606503
18207 1683659852
18400 1669539689
30336 1686943303
30669 1703245021
32286 1688962563
5331 1674970620
5860 1663114284

k = 165

Seed Opt

14695 1777307109
19582 1804372242
20233 1780198903
22910 1795283389
26169 1782142526
27124 1815654692
7043 1796130633
9082 1785623675
9127 1795794685
9 1787015996

k = 170

Seed Opt

13142 1918859526
14527 1913313421
17386 1903720020
17832 1897617261
20102 1902263711
25241 1907735069
27354 1910625897
2775 1893032209
32592 1913511760
4682 1893351395

k = 175

Seed Opt

14332 1993423320
16955 1998196998
17232 2007186053
19664 2008045971
23799 2010109644
31869 2030296750
32351 2033138819
4962 2007993837
5734 2004793199
9239 2011592040

k = 180

Seed Opt

11722 2088434640
11727 2133952195
11732 2120075491
15134 2127366027
2599 2128278450
2640 2120473523
28836 2139781710
31309 2135103581
31650 2120501740
5926 2134297213

k = 185

Seed Opt

12892 2249859504
13546 2269160653
13900 2227052097
25873 2258987453
26688 2256515990
31133 2244125602
5365 2276870074
6088 2234314746
8487 2237620682
8863 2239039934

Table A.10: Data on toroidal (k × k) grids with Gaussian distributed integral weights
(cont.).
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k = 5

Seed Opt

12146 112
14840 108
16870 110
19456 110
26312 110
2721 110
31519 110
3375 110
6254 110
6842 112

k = 6

Seed Opt

15089 186
18073 192
18549 192
22061 190
2351 188
24098 194
24312 190
31266 190
9457 192
9952 188

k = 7

Seed Opt

12691 302
13147 310
15920 302
18333 308
18420 308
2081 302
26164 304
31795 306
6390 302
6652 306

k = 8

Seed Opt

10395 452
11644 [450, 454]
12169 456
1237 [460, 462]
15544 452
16077 [456, 458]
22 456
2765 458
27750 458
8923 [454, 456]

Table A.11: Data on toroidal (k × k × k) grids with uniformly distributed ±1 weights.
‘Seed’ lists the random seeds used for generating the instances.

k = 5

Seed Opt

10441 9277464
17970 9360308
18923 12073082
2188 10946102
22776 9599268
29184 8988032
466 9829525
5589 8909853
8950 12791739
9477 10390827

k = 6

Seed Opt

10064 17713143
12717 18017627
19137 18063240
25533 17315858
2676 21077885
27220 16919770
27526 16357410
28027 18362589
5368 19286131
7798 19344366

k = 7

Seed Opt

11280 25519376
18835 30003302
19609 25897495
20848 28091114
21148 30089554
26425 25288073
26752 27387188
27585 32567124
29416 29275320
32731 27507640

k = 8

Seed Opt

10303 43592459
10856 46344821
14867 45205148
16663 39981474
19806 45373707
31605 41832185
5962 42259324
6720 45544519
7186 39205148
9278 38618779

k = 9

Seed Opt

1042 64108058
11330 62327221
12787 63403107
14098 58991509
19340 64382053
22851 64756627
5782 61752437
6863 61533895
70 56542382
9221 60596017

k = 10

Seed Opt

20294 85081904
21289 81325562
22003 87880828
23646 87831577
2498 86337174
26472 84592459
3168 83267779
3205 86954873
32569 86902034
8840 85105005

k = 11

Seed Opt

10509 111586711
13445 [112234762, 112598912]
18545 [115135667, 115666548]
19131 115771689
20650 [111563590, 111639398]
24507 [112481294, 112602779]
28409 [113447934, 113761126]
31506 [111199947, 111906046]
32307 109252542
6259 [110034060, 110237155]

Table A.12: Data on toroidal (k×k×k) grids with Gaussian distributed integral weights.
‘Seed’ lists the random seeds used for generating the instances.



Appendix B

Data on Computational Results

Below, we provide the collective data on our computational results for the different classes
of test instances. The abbreviations CYC, CON, CLQ, and TC denote the separation
scenarios that were introduced in Section 3.2. For those classes in which we could solve
most or even all of the instances to optimality within the given time limit of ten hours,
we provide the CPU times required by the different scenarios. The minimum CPU time
is typeset bold for each instance. For the remaining classes, i. e., those in which none
of the instances could be solved to optimality within ten hours regardless of the used
scenario, we provide the relative gaps at the end of the computations. The minimum gap
is typeset bold for each instance. Note that in case of the two-dimensional toroidal grids
the scenarios CLQ and TC are equivalent to CON and are hence omitted.

Instance CPU time [sec]

k Seed CYC CON CLQ TC

5: 12146 0 0 0 0
14840 2 2 3 4
16870 0 0 0 0
19456 4 5 15 16
26312 0 0 0 0
2721 2 2 1 5

31519 4 3 8 4
3375 11 12 6 15
6254 5 7 12 18
6842 0 0 0 0

6: 15089 298 161 1071 493
18073 1 1 0 0
18549 3 4 5 4
22061 535 774 4637 1366
2351 100 94 390 146

24098 32 46 122 74
24312 1 2 1 1
31266 65 57 688 114
9457 81 93 701 120
9952 157 130 767 444

Instance CPU time [sec]

k Seed CYC CON CLQ TC

7: 12691 2637 3355 limit 3541
13147 78 61 310 104
15920 9884 10028 limit 8000
18333 629 316 2190 583
18420 1732 1862 6711 2785
2081 902 645 3927 2290

26164 8894 25508 limit 17296
31795 639 131 639 99
6390 1487 1303 5250 2011
6652 460 369 1921 354

8: 10395 limit limit limit limit
11644 limit limit limit limit
12169 limit limit limit limit
1237 limit limit limit limit

15544 21267 16409 limit 8345
16077 limit limit limit limit

22 22914 29770 limit 34471
2765 10089 12835 limit 17875

27750 14891 30625 limit 22836
8923 limit limit limit limit

Table B.1: CPU times for toroidal (k×k×k) grids with uniformly distributed ±1 weights.
‘Seed’ lists the random seeds used for generating the instances.

105



106 Appendix B. Data on Computational Results

Instance CPU time [sec]

k Seed CYC CON

30: 11653 8 0
13441 91 21
14579 37 0
16241 21 0
22000 13 1
23307 25 2
30533 46 1
32642 18 0
4527 34 2
7903 33 2

35: 14423 58 3
15415 1359 48
15846 157 15
20849 54 2
23778 82 7
23798 71 5
27102 82 3
28373 183 7
28708 56 2

457 24 1
40: 12504 296 20

13024 25 5
17666 467 56
21887 207 43
24026 247 14
2566 175 5

31352 334 45
3336 241 18
8193 109 9
8614 288 10

45: 12027 217 13
12898 408 11
14407 54 7
16600 142 47
16710 210 21
19930 639 256
27477 3264 116
4946 124 3
7500 1966 90
965 68 10

Instance CPU time [sec]

k Seed CYC CON

50: 12205 4595 427
14092 3145 194
14211 395 12
17695 339 11
18152 894 46
24084 127 18
31133 2128 264
3235 108 20
5102 403 18
8545 189 6

55: 11787 17925 343
13203 866 33
13295 1368 106
15123 523 49
21910 910 83
23960 1105 50
30290 4216 407
3697 3073 254
6263 701 142
6808 896 300

60: 17049 7793 3613
19697 4526 296
22181 2425 51
27127 9765 limit
28147 532 25
2987 2663 354
4211 843 22
5022 1117 56
7774 1100 54
8278 1514 112

65: 10959 516 33
17716 limit limit
18062 82 117
21384 5062 30571
21907 10709 limit
23164 4914 182
26400 16494 limit
32274 7199 681
7291 347 92
8051 12029 2613

Instance CPU time [sec]

k Seed CYC CON

70: 25063 16710 limit
26486 limit limit
28924 21222 2541
2941 1348 506
2964 limit 2132

30920 2109 300
32012 1238 1033
7014 3204 82
9204 limit limit
9939 9407 1776

75: 10738 4312 2332
11748 limit limit

151 limit limit
20442 limit limit

241 limit 5215
27279 limit limit
28720 14352 21860
28797 4989 1319
31708 limit limit
6726 limit limit

80: 11489 limit limit
18055 limit limit
18637 19844 925
22148 limit limit
22267 limit limit
28635 limit limit
29439 limit 1309
3438 limit limit
3932 limit limit
5470 limit limit

85: 10733 limit limit
11774 limit limit
13674 2855 4933
14944 13727 limit
15307 limit limit
18788 limit limit
22879 limit limit
5367 limit limit
7215 14366 limit
7602 3907 2711

Table B.2: CPU times for toroidal (k × k) grids with uniformly distributed ±1 weights.
‘Seed’ lists the random seeds used for generating the instances.
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Instance CPU time [sec]

k Seed CYC CON CLQ TC

5: 10441 0 0 0 0
17970 0 0 0 0
18923 0 0 0 0
2188 0 0 0 0

22776 0 0 0 0
29184 0 0 0 0

466 0 0 0 0
5589 0 0 0 0
8950 0 0 0 0
9477 0 0 0 0

6: 10064 1 2 2 1
12717 1 1 1 1
19137 3 3 3 3
25533 0 0 0 0
2676 18 19 60 116

27220 1 0 0 0
27526 2 2 2 2
28027 1 1 1 1
5368 1 0 1 1
7798 1 1 1 1

7: 11280 5 6 6 6
18835 5 5 6 5
19609 16 12 68 15
20848 30 21 94 31
21148 3 3 3 3
26425 40 22 162 69
26752 6 5 4 4
27585 2 2 2 2
29416 5 5 4 4
32731 95 71 433 150

8: 10303 11 11 10 9
10856 46 36 75 48
14867 210 122 632 138
16663 125 50 251 154
19806 62 47 385 73

Instance CPU time [sec]

k Seed CYC CON CLQ TC

8: 31605 19 19 22 19
5962 72 47 106 92
6720 18 21 24 20
7186 52 58 97 52
9278 1321 458 2930 1261

9: 1042 40 49 54 45
11330 1808 840 4529 1490
12787 limit limit limit limit
14098 5523 3030 16997 4004
19340 1332 663 2760 1282
22851 116 87 86 92
5782 6930 3739 12638 4105
6863 20 31 31 30

70 1686 1432 8071 2052
9221 153 87 289 119

10: 20294 4405 1905 14172 2418
21289 4102 1471 8196 2562
22003 11813 9461 25396 10244
23646 limit 21839 limit 20465
2498 1153 1100 2207 929

26472 11056 4371 10173 7262
3168 8083 3690 21456 4850
3205 2586 1204 9136 2154

32569 limit limit limit 34661
8840 27466 19281 limit 25674

11: 10509 644 509 644 458
13445 limit limit limit limit
18545 limit limit limit limit
19131 16161 8815 limit 10902
20650 limit limit limit limit
24507 limit limit limit limit
28409 limit limit limit limit
31506 limit limit limit limit
32307 9578 3980 10121 4144
6259 limit limit limit limit

Table B.3: CPU times for toroidal (k × k × k) grids with Gaussian distributed integral
weights. ‘Seed’ lists the random seeds used for generating the instances.
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Instance CPU time [sec]

k Seed CYC CON

30: 11495 2 0
13235 4 0
13605 2 0
13937 2 0
14964 2 0
20209 4 0
22312 3 0
3934 4 0
7382 4 0
8289 10 1

35: 10018 11 1
18452 19 2
23988 8 1

278 19 1
30846 14 4
3294 7 1
4430 3 0
4948 11 1
7040 9 2
8883 4 0

40: 11761 16 5
1312 17 5

14029 19 1
21074 14 1
2480 9 0

30667 18 2
5273 13 2
7115 26 4
7974 9 1
9512 17 1

45: 16083 18 2
20652 21 1
21007 38 3
21053 27 3
22054 53 8
24987 15 2
2848 18 1

31108 66 7
508 58 8

8448 25 3

Instance CPU time [sec]

k Seed CYC CON

50: 10929 67 4
11184 43 5
16132 96 19
16361 69 10
1813 89 19

25245 48 6
32072 77 8
3735 51 5
7352 42 2
7890 36 14

55: 10166 106 26
12625 36 7
18140 76 20
20590 119 11
22691 119 30
25255 93 14
26654 36 4
29134 74 17
8853 41 5
8897 48 7

60: 13540 179 19
15097 110 26
15359 111 10
18207 112 15
18409 71 10
27474 142 31
4383 114 25
5759 67 7
6267 83 12
6648 66 7

65: 10361 114 22
14157 113 13
1523 143 12

17884 327 54
21291 115 46
25341 200 40
3687 230 32
7422 189 69
8705 68 8
9236 249 84

Instance CPU time [sec]

k Seed CYC CON

70: 11214 158 29
13627 208 46
16057 313 35
18089 204 25
18936 410 143
22569 258 25
28255 204 25
28683 162 18
31804 303 30
7933 166 22

75: 13642 567 73
14441 390 47
15320 226 40
19655 328 43

223 276 82
25415 250 28
26342 255 56
29001 477 46
31682 395 65
6115 317 91

80: 1080 392 58
11442 321 46
13072 311 120
14351 369 91
15964 451 68
19703 250 45
23390 238 74
30813 396 72
5645 407 38
7281 456 140

85: 10215 474 109
11179 464 133
16125 660 180
1717 636 101

18149 815 114
20858 473 87
25370 484 142
26323 271 57
30408 449 98
32733 534 131

Table B.4: CPU times for toroidal (k×k) grids with Gaussian distributed integral weights.
‘Seed’ lists the random seeds used for generating the instances.
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Instance CPU time [sec]

k Seed CYC CON

90: 11723 496 126
11946 1013 139
12169 652 133
15935 885 178
20135 428 147
2293 1356 326

26610 753 58
27266 1238 256
27488 770 247
7832 1334 217

95: 10886 870 338
14201 867 270
19049 926 390
19350 1088 247
22328 773 129
2869 994 272

32121 701 206
4824 805 97
4999 969 376
9806 802 342

100: 10150 787 203
10546 1804 756
10920 516 284
16990 1299 491
22293 862 186
23610 904 224
25328 930 293
26671 1386 453
2752 852 223
704 1103 226

105: 12131 1148 252
14469 1439 592
15247 1868 498
19971 2087 737
24300 2559 488
27880 2196 1011
28964 1712 265
29069 709 326

392 1064 415
8024 1012 296

Instance CPU time [sec]

k Seed CYC CON

110: 1529 3340 453
18142 770 337
27948 773 353
28395 1506 683
28671 1665 493
3596 1033 591
5881 3943 1315
6067 1345 859
727 1613 736
882 1269 1011

115: 13746 1186 597
13903 3467 1177
16498 2274 546
17921 1960 810
18625 982 291
20000 2700 1086
25231 4592 923
29545 2312 464
7341 1041 357
9454 1458 743

120: 10099 1686 935
10653 4184 1800
1103 1717 700

13763 2681 1242
21074 1728 1217
22230 2641 737
25846 3094 1947
28174 2649 973

293 2531 2920
32669 3647 1303

125: 12182 2997 1177
13065 1186 603
18946 2836 1858
27086 3077 1876
2775 2003 759
3001 1154 431

31446 2254 1083
31905 2754 1442
32173 2285 1191

385 2250 1432

Instance CPU time [sec]

k Seed CYC CON

130: 11410 4957 4027
13933 2401 2115
16747 1795 1075
20864 1459 682
28780 3103 2747
29336 3103 1074
32559 5245 3187

478 3701 1545
7819 4013 1359
8096 3572 1213

135: 11824 4171 2158
21560 1562 538
21999 6468 3233
22415 4441 2464
23518 1775 1035
2555 2868 6967

32098 6814 4320
3419 3028 1573
7720 5158 2333
8013 3443 2455

140: 12683 2544 1458
13278 3598 2030
14073 4710 2310
14599 1972 1342
1693 5146 1680

25499 10670 3329
26255 7105 2370
28779 4141 2032
29164 5459 2853
6552 11814 2672

145: 142 6403 3048
15685 4514 2050
25005 8876 3078
25176 5857 3483
32432 8837 4757

333 3342 1905
4141 5502 2578
6133 6368 3051
6342 3201 3747
7961 6768 6288

Table B.5: CPU times for toroidal (k×k) grids with Gaussian distributed integral weights
(cont.).
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Instance CPU time [sec]

k Seed CYC CON

150: 10454 4931 5295
15681 5124 4247
15866 5210 4629
21662 6210 8581
22332 3225 9211
23695 9088 7224
25116 9604 4469
2701 4634 3483

27114 5418 4354
27690 4506 2563

155: 10714 3527 6484
13010 9056 6200
14703 10005 8754
1907 7294 3188

22800 9160 5284
2715 9234 1402
7110 6799 4897
8419 6294 15626
8459 8616 5576
9522 7839 8736

160: 1190 6432 4193
11993 5312 1964
18065 6720 5685
18207 8114 4849
18400 14124 20912
30336 14431 11071
30669 4573 4033
32286 5328 3719
5331 4927 4877
5860 6139 3179

165: 14695 13855 13710
19582 8784 5683
20233 6805 16319
22910 8128 5759
26169 9458 8339
27124 6943 9589
7043 7584 6331

9 6183 7318
9082 8625 6421
9127 6400 7068

Instance CPU time [sec]

k Seed CYC CON

170: 13142 11448 6676
14527 4548 6043
17386 12288 6678
17832 8619 7036
20102 10034 7848
25241 10079 9412
27354 12817 17937
2775 10534 12115

32592 14373 12126
4682 14587 15379

175: 14332 14706 9590
16955 10773 10303
17232 9651 12139
19664 7429 4908
23799 11448 6780
31869 7818 8414
32351 limit 22750
4962 12006 8030
5734 12856 12879
9239 10762 8326

180: 11722 7343 14066
11727 12152 12898
11732 12520 31134
15134 15861 11434
2599 18530 14852
2640 24974 35080

28836 10463 9767
31309 15951 limit
31650 8491 26801
5926 21715 31131

185: 12892 14056 20036
13546 29979 26204
13900 19476 24808
25873 21303 limit
26688 10967 14909
31133 14626 26184
5365 26400 28270
6088 20601 limit
8487 14400 10770
8863 10031 19130

Table B.6: CPU times for toroidal (k×k) grids with Gaussian distributed integral weights
(cont.).
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CPU time [sec]

Instance CYC CON CLQ TC

be120.3.1 5277 3059 11295 5532
be120.3.2 1827 686 2971 1677
be120.3.3 4505 2543 9176 3940
be120.3.4 2443 1141 4609 2153
be120.3.5 3389 1712 7350 3714
be120.3.6 2500 1229 5666 2618
be120.3.7 689 95 100 107
be120.3.8 1757 792 2082 1366
be120.3.9 limit 26827 limit limit
be120.3.10 5094 3317 11906 5365
be250.1 9857 4536 10603 4989
be250.2 limit limit limit limit
be250.3 30020 18721 limit 18297
be250.4 13377 5855 14525 8163
be250.5 limit limit limit limit
be250.6 limit limit limit limit
be250.7 10898 4370 16399 5574
be250.8 limit limit limit limit
be250.9 limit limit limit limit
be250.10 limit limit limit limit
beasley50.1 0 0 0 0
beasley50.2 0 0 0 0
beasley50.3 0 0 0 0
beasley50.4 0 0 0 0
beasley50.5 0 0 0 0
beasley50.6 0 0 0 0
beasley50.7 0 0 0 0
beasley50.8 0 0 0 0
beasley50.9 0 0 0 0
beasley50.10 0 0 0 0
beasley100.1 5 0 0 0
beasley100.2 3 0 0 0
beasley100.3 3 0 0 0
beasley100.4 3 0 0 0
beasley100.5 3 0 0 0
beasley100.6 9 0 0 1
beasley100.7 4 0 0 0
beasley100.8 3 0 0 0
beasley100.9 2 0 0 0
beasley100.10 2 0 0 0
beasley250.1 18297 10341 limit 11526
beasley250.2 limit limit limit limit
beasley250.3 7592 2714 7905 3041

CPU time [sec]

Instance CYC CON CLQ TC

beasley250.4 limit limit limit limit
beasley250.5 6996 2331 2737 2201
beasley250.6 limit limit limit limit
beasley250.7 limit 23769 limit 23561
beasley250.8 limit limit limit limit
beasley250.9 limit 29894 limit 35494
beasley250.10 limit limit limit limit
gka1a 0 0 0 0
gka2a 0 0 0 0
gka3a 0 0 0 0
gka4a 0 0 0 0
gka5a 0 0 0 0
gka6a 0 0 0 0
gka7a 0 0 0 0
gka8a 0 0 0 0
gka1b 0 0 0 532
gka2b 3 1 3 2410
gka3b 12 4 14 5610
gka4b 45 12 62 10449
gka5b 119 29 104 15217
gka6b 298 74 244 22709
gka7b 674 223 664 31338
gka8b 1500 402 1470 limit
gka9b 2971 1202 3169 limit
gka10b 13542 9235 17842 limit
gka1c 3 0 0 0
gka2c 9 0 0 0
gka3c 6 0 0 0
gka4c 9 0 0 0
gka5c 5 0 0 0
gka6c 1 0 0 0
gka7c 2 0 0 0
gka1d 3 0 0 0
gka2d 168 67 244 138
gka3d 361 166 511 188
gka4d 2980 2094 9590 4303
gka5d limit limit limit limit
gka6d 29047 23959 limit limit
gka7d limit limit limit limit
gka8d limit limit limit limit
gka9d limit limit limit limit
gka10d limit limit limit limit

Table B.7: CPU times for quadratic 0/1 optimization problems.
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Rel. gap [%]

Instance CYC CON CLQ TC

be100.1 20.9 17.6 18.2 23.9
be100.2 31.0 27.9 28.8 34.8
be100.3 27.7 23.6 25.0 31.3
be100.4 25.5 21.4 22.9 27.8
be100.5 39.2 34.1 35.9 42.5
be100.6 30.9 27.3 28.5 33.4
be100.7 30.1 26.1 28.1 32.5
be100.8 30.4 26.9 29.0 34.8
be100.9 51.4 46.3 49.3 57.2
be100.10 44.0 39.7 41.3 47.9
be120.8.1 43.0 39.2 41.9 42.7
be120.8.2 38.8 35.5 38.0 38.8
be120.8.3 37.9 34.7 36.7 38.0
be120.8.4 31.6 28.0 29.4 32.0
be120.8.5 27.0 23.8 25.6 26.7
be120.8.6 40.7 36.7 39.1 40.4
be120.8.7 29.7 27.0 28.7 30.2
be120.8.8 39.4 36.2 39.0 40.9
be120.8.9 40.4 36.7 39.4 40.7
be120.8.10 35.5 31.1 33.5 35.9
be150.3.1 3.4 2.6 4.2 3.3
be150.3.2 4.9 4.1 5.9 5.1
be150.3.3 2.8 1.9 3.7 2.4
be150.3.4 1.6 0.9 2.3 1.5
be150.3.5 5.8 5.4 7.1 5.8
be150.3.6 7.9 7.7 9.9 8.7
be150.3.7 4.3 4.0 5.7 4.7
be150.3.8 6.7 6.2 8.3 7.0
be150.3.9 16.7 16.6 18.6 16.8
be150.3.10 5.4 4.7 6.7 5.6
be150.8.1 76.4 60.2 56.9 58.4
be150.8.2 67.2 64.3 60.9 62.4
be150.8.3 51.5 51.7 50.1 50.8
be150.8.4 61.9 63.6 62.8 64.0
be150.8.5 52.1 54.2 53.5 54.3
be150.8.6 53.2 53.3 52.7 52.3
be150.8.7 50.6 48.4 48.0 48.0
be150.8.8 52.0 52.9 52.7 51.1
be150.8.9 63.9 66.3 65.8 65.7
be150.8.10 54.5 54.5 54.5 54.7

Rel. gap [%]

Instance CYC CON CLQ TC

be200.3.1 32.2 22.1 23.7 21.8
be200.3.2 29.1 20.0 21.6 19.7
be200.3.3 12.5 12.1 13.4 11.6
be200.3.4 13.6 13.2 14.5 12.8
be200.3.5 16.0 15.4 17.1 15.3
be200.3.6 18.8 18.4 19.9 18.2
be200.3.7 9.1 8.4 9.9 8.5
be200.3.8 16.2 15.4 17.2 14.9
be200.3.9 19.8 19.1 21.1 18.8
be200.3.10 22.6 21.8 24.0 21.4
be200.8.1 98.6 77.9 99.8 75.2
be200.8.2 125.3 149.1 147.6 146.1
be200.8.3 115.8 144.0 148.2 148.0
be200.8.4 115.4 142.6 144.1 146.6
be200.8.5 120.7 152.0 155.8 158.6
be200.8.6 95.1 117.3 119.7 116.8
be200.8.7 100.1 130.8 134.9 132.1
be200.8.8 107.3 134.8 142.8 135.0
be200.8.9 109.9 142.7 143.1 140.2
be200.8.10 112.4 143.9 144.0 150.3
beasley500.1 88.9 30.8 30.3 30.3
beasley500.2 80.1 22.4 21.7 21.6
beasley500.3 79.8 23.7 22.9 22.7
beasley500.4 73.3 25.0 24.3 24.1
beasley500.5 80.2 25.4 24.8 24.5
beasley500.6 86.3 27.2 27.0 26.4
beasley500.7 86.7 27.7 27.4 26.6
beasley500.8 82.4 29.0 28.3 27.7
beasley500.9 87.5 28.6 28.7 28.7
beasley500.10 74.2 22.4 22.9 23.5
gka1e 0 0 0 0
gka2e 6.8 6.2 7.4 6.2
gka3e 17.1 17.0 18.3 17.0
gka4e 28.1 18.2 19.5 17.7
gka5e 64.1 44.7 46.8 42.8
gka1f 81.0 27.3 27.3 27.4
gka2f 156.4 89.9 89.0 89.4
gka3f 263.8 348.8 351.2 350.3
gka4f 349.1 521.4 521.8 514.2
gka5f 444.3 672.7 673.9 662.3

Table B.8: Relative gaps for quadratic 0/1 optimization problems after ten hours CPU
time.
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CPU time [sec]

Instance CYC CON CLQ TC

g05 60.0 limit —a 6089 13014
g05 60.1 limit —a 7330 22177
g05 60.2 limit —a 17760 limit
g05 60.3 limit —a 2864 22492
g05 60.4 limit —a limit limit
g05 60.5 limit —a 9494 19342
g05 60.6 limit —a 15219 limit
g05 60.7 limit —a 7633 17601
g05 60.8 limit —a 18834 limit
g05 60.9 limit —a 11419 22269
pm1s 80.0 1 1 0 0
pm1s 80.1 3 2 6 3
pm1s 80.2 81 68 202 148
pm1s 80.3 6 6 14 10
pm1s 80.4 4 3 11 4
pm1s 80.5 7 5 18 7
pm1s 80.6 30 30 60 51
pm1s 80.7 10 8 28 15
pm1s 80.8 11 11 41 15
pm1s 80.9 5 5 14 6
pm1s 100.0 359 400 1119 589
pm1s 100.1 2331 2285 5772 3261
pm1s 100.2 343 341 971 569
pm1s 100.3 1491 2081 4596 4743
pm1s 100.4 784 741 2260 1356

CPU time [sec]

Instance CYC CON CLQ TC

pm1s 100.5 367 357 1906 642
pm1s 100.6 1480 1019 3411 1767
pm1s 100.7 93 109 343 139
pm1s 100.8 227 225 1065 404
pm1s 100.9 85 93 359 138
pw01 100.0 178 144 1047 183
pw01 100.1 139 184 1000 304
pw01 100.2 182 208 1177 372
pw01 100.3 356 288 1252 406
pw01 100.4 35 46 172 62
pw01 100.5 62 63 248 84
pw01 100.6 268 277 961 296
pw01 100.7 443 512 1336 395
pw01 100.8 24 23 99 36
pw01 100.9 343 382 2490 671
w01 100.0 44 46 203 65
w01 100.1 30 32 215 43
w01 100.2 392 570 1891 664
w01 100.3 67 85 327 114
w01 100.4 33 21 103 36
w01 100.5 68 67 284 118
w01 100.6 18 16 57 21
w01 100.7 75 75 549 177
w01 100.8 6 5 5 4
w01 100.9 25 31 99 27

a ‘Out of memory’ error.

Table B.9: CPU times for rudy-generated instances.

CPU time [sec]

Instance CYC CON CLQ TC

mannino k48 8 5 5 5
mannino k487a 269 8 71 99
mannino k487b limit 68 1262 1232
mannino k487c limit limit limit limit

Table B.10: CPU times for Mannino instances.
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Rel. gap [%]

Instance CYC CON CLQ TC

g05 80.0 13.3 —a 1.9 3.1
g05 80.1 11.9 —a 0.9 1.9
g05 80.2 12.8 —a 1.6 2.7
g05 80.3 14.2 —a 2.5 4.0
g05 80.4 13.1 —a 1.8 2.8
g05 80.5 13.8 —a 2.4 3.3
g05 80.6 13.5 —a 1.9 3.1
g05 80.7 13.3 —a 1.9 3.0
g05 80.8 13.8 —a 2.3 3.5
g05 80.9 14.2 —a 2.5 3.9
g05 100.0 15.4 11.6 4.7 5.7
g05 100.1 15.8 11.9 12.6 6.3
g05 100.2 15.4 11.4 4.4 5.4
g05 100.3 15.9 11.9 5.1 5.8
g05 100.4 14.7 10.7 4.0 5.0
g05 100.5 15.0 11.1 4.2 10.6
g05 100.6 15.2 11.2 4.4 5.4
g05 100.7 15.4 11.4 4.5 5.4
g05 100.8 15.3 11.3 4.5 5.5
g05 100.9 15.4 11.4 5.0 10.8
pm1d 80.0 112.3 78.0 97.4 103.1
pm1d 80.1 109.8 79.6 95.1 97.1
pm1d 80.2 95.1 69.0 78.9 89.1
pm1d 80.3 88.7 62.9 75.6 81.8
pm1d 80.4 104.4 74.5 91.6 96.8
pm1d 80.5 113.2 83.5 97.1 103.3
pm1d 80.6 128.3 90.7 115.6 118.0
pm1d 80.7 107.6 77.5 95.6 98.8
pm1d 80.8 90.4 65.2 78.5 83.6
pm1d 80.9 102.7 73.3 89.5 95.3
pm1d 100.0 136.2 121.8 127.1 130.0
pm1d 100.1 142.6 126.5 134.6 136.7
pm1d 100.2 119.3 105.7 107.7 112.6
pm1d 100.3 114.8 101.8 101.8 108.8
pm1d 100.4 125.6 112.7 117.6 119.3
pm1d 100.5 100.5 90.5 93.4 95.5
pm1d 100.6 120.4 110.4 113.1 114.2
pm1d 100.7 120.5 107.2 113.3 115.0
pm1d 100.8 116.1 103.9 109.1 111.2
pm1d 100.9 111.4 99.5 104.7 105.7

Rel. gap [%]

Instance CYC CON CLQ TC

pw05 100.0 9.7 8.5 3.9 5.0
pw05 100.1 9.4 8.3 3.6 4.8
pw05 100.2 9.2 8.0 3.4 4.6
pw05 100.3 9.1 7.9 3.2 4.4
pw05 100.4 9.6 8.5 3.8 4.8
pw05 100.5 9.1 7.7 8.9 4.4
pw05 100.6 9.2 8.3 3.7 4.7
pw05 100.7 8.8 7.7 3.3 4.4
pw05 100.8 8.8 7.9 3.0 4.2
pw05 100.9 9.6 8.6 3.7 4.8
pw09 100.0 19.0 18.0 17.3 17.2
pw09 100.1 18.9 17.7 16.1 17.6
pw09 100.2 19.0 18.1 16.1 17.9
pw09 100.3 18.8 17.8 17.1 17.6
pw09 100.4 18.9 17.9 16.7 17.7
pw09 100.5 19.2 18.1 16.1 17.6
pw09 100.6 19.3 18.1 16.3 17.8
pw09 100.7 19.4 18.2 17.3 17.8
pw09 100.8 18.9 17.9 15.6 17.4
pw09 100.9 18.8 17.8 17.4 17.3
w05 100.0 37.7 22.7 28.8 25.0
w05 100.1 39.4 22.7 30.6 23.8
w05 100.2 29.3 16.7 22.7 19.0
w05 100.3 39.3 23.1 30.9 25.1
w05 100.4 39.3 23.3 30.0 26.4
w05 100.5 40.0 23.1 31.2 26.2
w05 100.6 41.9 23.0 33.0 25.8
w05 100.7 27.2 14.1 20.3 16.1
w05 100.8 47.9 27.7 38.1 30.7
w05 100.9 29.2 15.1 21.1 17.8
w09 100.0 85.1 69.5 73.4 77.6
w09 100.1 88.9 72.7 77.7 81.3
w09 100.2 67.3 54.6 56.8 61.1
w09 100.3 94.6 77.8 81.5 85.1
w09 100.4 87.2 71.0 75.8 79.1
w09 100.5 68.4 54.7 58.2 60.8
w09 100.6 77.6 62.5 67.3 69.7
w09 100.7 78.6 63.4 68.3 71.3
w09 100.8 92.1 74.4 79.8 83.0
w09 100.9 87.9 71.6 76.4 80.4

a ‘Out of memory’ error.

Table B.11: Relative gaps for rudy-generated instances after ten hours CPU time.
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Symbols and Notations

The entries below are divided into the following groups: We start with basic mathematical
operators and relations. The subsequent group covers sets, spaces, and vectors as well
as associated fundamental operations. The next three groups are related to complexity
theory, graph theory, and polyhedral theory, respectively, in this order. Finally, we have
the entries that come from combinatorial optimization in general as well as from the
theory of the max-cut problem and the shrink separation in particular.
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z, G Contracted LP solution and associated graph. . . . . . . . . . . . . . . . . . . . . . . . . 47
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Extended LP solution and associated graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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H-representation, 7
O-notation, see Landau notation
V-representation, 7
NP-complete, 8
NP-hard, 9

A
ABACUS, 65
adjacent, 4
affinely independent, 6
API, 63
application programming interface, 63
artificial

completion, 36
edge, 54
LP value, 53
variable, 53

B
bicycle-p-wheel, 31
binary program, 11
bound, 10

global lower, 13
global upper, 13
local upper, 13
lower, 10
upper, 10

bounding, 13
branch-and-bound, 12
branch-and-cut method, 12–15
branch-and-cut tree, 13
branching, 15

on a variable, 15

C
characteristic vector, see incidence vector
child in a tree, 5
chord, 4
clique, 5

combination
affine, 6

conic, 6

convex, 6

linear, 6
combinatorial optimization problem, 11

complement, 4

complexity class, 8

complexity theory, 7–9

cone, 7
polyhedral, 7

connected, 4

connected component, 5

constraint, 9
integrality, 11

constraint pool, 15

contraction, 5

CPLEX, 82
cut, 4

tight, 50

cut cone, 32

cut polytope, 30

cutting plane, 13
cutting plane method, 12

cycle, 4

k-cycle, 4

tight, 56

D
decision problem, 8

associated, 8
decomposition theorem for polyhedra, 7

degree, 4

delayed column generation, 17

density of a graph, 3
dimension

of a face, 7

of an affine subspace, 6

distance between nodes in graph, 4

dual problem, 10
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E
edge

adjacent, 4
mate, 49
multiple, 4
of a graph, 3
of a polyhedron, 7
parallel, 4

elimination of an inequality, 15
embedding of a graph, 5
end

of a path, 4
of an edge, 4

error
identity, 72
integrality, 70

extension
adaptive, 56
static, 56

extreme point, 7

F
face, 7

proper, 7
trivial, 7

facet, 7
feasibility test, 35
feasible LP range, 54
feasible set, 9

G
gap, 15
gap closure, 87
genus

of a graph, 5
of a surface, 5

graph
acyclic, 5
almost planar, 5
bipartite, 5
complete, 3
complete bipartite, 5
connected, 4
contracted, 47
contractible to another graph, 5
cubic, 5
dense, 3
extended, 53
finite, 3
planar, 5
simple, 4
sparse, 3

undirected, 3
weighted, 3

grid (graph), 5
ground state of a spin glass, 22

H
halfspace

closed, 6
supporting, 7
valid, 7

height
of a tree, 5
of a tree node, 5

heuristic, 26
k-opt, 27
construction, 26
greedy, 26
improvement, 26
Kernighan-Lin, 28
local enumeration, 27
random, 26
rounding, 28
spanning tree, 27

hull
affine, 6
conic, 6
convex, 6

hyperplane, 6
(proper) supporting, 7
bounding, 6
defined by an equation, 6
separating, 13

I
incidence vector, 12
incident, 4
inequality, 6

(pure) hypermetric, 32
bicycle-p-wheel, 31
clique, 31
defining a face, 7
homogeneous, 17
lower, 55
odd-cycle, 31
satisfied, 13
tight, 6
triangle, 34
trivial, 31
upper, 55
valid, 7
violated, 13

inner node
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of a path, 4
of a tree, 5

integer program, 11
interaction graph, 22
IP, 11
iso-value plane, 10

J
join, 4

K
Knuth shuffle, 79

L
Landau notation, 8
leaf, 5
left hand side, 7
length

of a cycle, 4
of a path, 4

level of a tree, 5
lifting, 32

0-, trivial, 33
0-node, 33

line, 6
linear description, 12
linear program, 9

feasible, 9
unbounded, 9

link, 4
local cut, 16
loop, 4
LP, 9
LP duality theorem, 10
LP relaxation, 13
LP solution, 13

contracted, 47
extended, 53
switched, 44

M
max-cut problem, 19
min-cut problem, 36

N
neighbor, 4
node

adjacent, 4

of a branch-and-cut tree, 13
of a graph, 3

node-splitting, 48
on graphs, 48
on inequalities, 49

non-edge, 33
rigid, 55

non-linear program, 17

O
objective function, 9
optimum value, 9
oracle, 17
order of a graph, 3
orientable surface, 5
origin, 6

P
parent in a tree, 5
path, 4

(u, v)-path, 4
linking, 4
shortest, 4

plane, 6
point, 6
polyhedron, 7

associated, 11
feasible, 9

polynomial(-time solvable) problem, 8
polynomially reducible, 8
polytope, 7

associated, 12
precision

identity, 72
integrality, 70

primal problem, 10
project out a variable, 55
pruning, 13

Q
quadratic −1/+1 optimization, 19
quadratic 0/1 optimization, 20

R
rank of a cutting plane, 84
relaxation

linear programming, 13
of an integer program, 13

reverse switching, 43
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ridge, 7
right hand side, 7
root, 5
root node, 13

S
SDP, 36
semidefinite programming, 36
semimetric polytope, 34
separation (problem), 13
shore of a cut, 4
shrink separation, 39
simplex method, 10–11
solution

feasible, 9
fractional, 13
optimum, 9

spin glass, 22
Ising, 22

standard form of a linear program, 9
star, 4
subgraph, 4

(node-)induced, 4
spanning, 4

subproblem, 13
subspace

affine, 6
linear, 6

supergraph, 4

switching mapping, 42
switching operation, 41

on inequalities, 42
on vectors, 42

symmetric difference, 41

T
tailing-off, 15
tailing-off control, 88
target cut, 16–18
template paradigm, 16
toroidal grid, 77
torus, 5
tree, 5

binary, 5
rooted, 5

V
variable, 9
vertex, 7
violation threshold, 74

W
weight

aggregate, 11
of an edge, 3


