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Abstract

This thesis presents a new mathematical model for segmenting volume im-
ages (Chapter 3). The model is an energy function defined on the state
space of all possibilities to remove or preserve splitting faces from an initial
over-segmentation of the 3D image into supervoxels. It decomposes into
potential functions that are learned automatically from a small amount of
empirical training data. The learning is based on features of the distribu-
tion of gray values in the volume image and on features of the geometry
and topology of the supervoxel segmentation.

To be able to extract these features from large 3D images that consist
of several billion voxels, a new algorithm is presented in Chapter 4 that
constructs a suitable representation of the geometry and topology of volume
segmentations in a block-wise fashion, in log-linear runtime (in the number
of voxels) and in parallel, using only a prescribed amount of memory.

At the core of this thesis is the optimization problem of finding, for a
learned energy function, a segmentation with minimal energy. This op-
timization problem is difficult because the energy function consists of 3rd
and 4th order potential functions that are not submodular. For sufficiently
small problems with 104 degrees of freedom, it can be solved to global op-
timality using Mixed Integer Linear Programming. For larger models with
107 degrees of freedom, an approximate optimizer is proposed in Chapter 5
and compared to state-of-the-art alternatives.

Using these new techniques and a unified data structure for multi-variate
data and functions (Chapter 6), a complete processing chain for segment-
ing large volume images, from the restoration of the raw volume image to
the visualization of the final segmentation, has been implemented in C++.
Results are shown for an application in neuroscience, namely the segmenta-
tion of a part of the inner plexiform layer of rabbit retina in a volume image
of 2048 × 1792 × 2048 voxels that was acquired by means of Serial Block
Face Scanning Electron Microscopy (Denk and Horstmann, 2004) with a
resolution of 22×22×30 nm3. The quality of the automated segmentation
as well as the improvement over a simpler model that does not take geo-
metric context into account, are confirmed by a quantitative comparison
with the gold standard.
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Zusammenfassung

Diese Arbeit stellt ein neues mathematisches Modell zur Segmentierung
von Volumenbildern vor (Kapitel 3). Das Modell ist eine Energiefunkti-
on im Zustandsraum aller Möglichkeiten, Trennflächen aus einer initia-
len Übersegmentierung des Volumenbildes in Supervoxel zu entfernen. Sie
zerfällt in Potenzialfunktionen, die aus einer kleinen Menge empirischer
Trainingsdaten maschinell gelernt werden. Das Lernen basiert auf Merk-
malen der Grauwertverteilung des Volumenbildes sowie auf Merkmalen der
Geometrie und Topologie der Supervoxel-Segmentierung.

Um diese Merkmale aus großen Volumenbildern mit mehreren Milliarden
Bildpunkten extrahieren zu können, wird ein neuer Algorithmus vorgestellt
(Kapitel 4), mit dessen Hilfe eine zweckmäßige Repräsentation der Geome-
trie und Topologie großer Volumen-Segmentierungen blockweise konstruiert
werden kann, parallel und in logarithmisch-linearer Laufzeit, bei vorgege-
benem, beschränktem Speicherbedarf.

Im Zentrum der Arbeit steht das Problem, für eine maschinell gelern-
te Energiefunktion eine Segmentierung mit minimaler Energie zu finden.
Dieses Optimierungsproblem ist schwierig, da die Energiefunktion nicht
submodulare Potenziale dritter und vierter Ordnung umfasst. Für hinrei-
chend kleine Modelle mit 104 Freiheitsgraden lässt sich das Problem mittels
Mixed Integer Linear Programming global optimal lösen. Für große Model-
le mit 107 Freiheitsgraden wird ein approximatives Optimierungsverfahren
vorgeschlagen und mit alternativen Verfahren verglichen (Kapitel 5).

Mit Hilfe der neuen Methoden und einer einheitlichen Datenstruktur für
multivariate Daten und Funktionen (Kapitel 6), ist eine vollständige Verar-
beitungskette zur Segmentierung großer Volumenbilder, von der Restaurati-
on der Rohdaten bis zur Visualisierung der finalen Segmentierung, in C++
implementiert worden. Gezeigt werden Ergebnisse für eine Anwendung in
den Neurowissenschaften, die Segmentierung eines Ausschnitts der inneren
plexiformen Schicht der Retina des Kaninchens in einem Volumenbild aus
2048 × 1792 × 2048 Bildpunkten, das mittels Serial-Block-Face-Scanning-
Electron-Microscopy (Denk and Horstmann, 2004) mit einer Auflösung von
22×22×30 nm3 aufgenommen wurde. Die Qualität der Segmentierung so-
wie die Verbesserung gegenüber einem einfacheren Modell, das keinen geo-
metrischen Kontext einbezieht, werden quantitativ, durch Vergleich dem
Gold-Standard, bestätigt.
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1 Introduction

Until recently, experimental techniques in neuroscience have either provided
detailed information on a small fraction of all neurons (cell recordings,
imaging of stochastically stained cells), or information averaged over relat-
ively large regions (fMRI, DTI, EEG). However, detailed knowledge of the
complete connectivity pattern of all neurons, the so-called connectome
(Sporns et al., 2005), would be of tremendous value for the understand-
ing of neural computation (Briggman and Denk, 2006; Helmstaedter et al.,
2008). Obtaining this knowledge has now become a realistic objective be-
cause serial block-face scanning electron microscopy (SBFSEM) (Briggman
and Denk, 2006; Denk and Horstmann, 2004) makes it possible to acquire
volume images of up to 1 mm3 at high isotropic resolution (≈ 25 nm),
cf. Fig. 1.1.

SBFSEM collects image stacks by backscattering-contrast electron mi-
croscopy and serial sectioning (Denk and Horstmann, 2004). Every image
in a stack is obtained by scanning the surface (block-face) of an embedded
sample with an electron beam and detecting the backscattered electrons.
A slice is then cut off from the sample with a specially designed diamond
microtome to expose the next plane. Sections can be as thin as 25 nm, and
a resolution of 10-20 nm is achievable in the lateral directions. Thus, the
resolution of the combined volume image is sufficiently uniform to permit
truly 3-dimensional image analysis. Moreover, alignment problems between
consecutive slices (Kaynig et al., 2010a) are avoided from the outset since
the sample remains stationary. SBFSEM volume images of 1 mm3 will be
as large as 400003 = 6.4 · 1013 voxels.

As decisive as the acquisition of these volume images is their semi- or
fully automated analysis because a manual reconstruction of neural cir-
cuits is too costly in terms of labor (Helmstaedter et al., 2008): Without
the help of computers, the manual reconstruction of the 300 neurons of
the nematode Caenorhabditis elegans from EM images took more than a
decade (White et al., 1986). Even with the help of computers, appropriate
visualization software and convenient user interfaces, a complete manual
segmentation of SBFSEM volume images takes in the order of 105 person-
years per cubic millimeter (Helmstaedter et al., 2008). Tracing only the
center lines (skeletons) of neurons, their axons and dendrites, is faster but
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a) b)

Figure 1.1: a) A subset of 5123 voxels from a volume image acquired by
serial block-face scanning electron microscopy (SBFSEM) (Briggman and
Denk, 2006; Denk and Horstmann, 2004) at the nearly isotropic resolu-
tion of 22 × 22 × 30 nm3. b) One of several hundred neuronal processes
reconstructed by means of the proposed method.

only by a factor of ten (Helmstaedter et al., 2008). An at least partially
automated procedure is therefore indispensable.

This thesis presents a fully automated procedure for segmenting SBF-
SEM volume images of neural tissue, including dense neuropil. The problem
is challenging because the intricate branching geometry of neurons poses
a high risk of introducing both over-segmentation (false splits) and under-
segmentation (false mergers). Furthermore, the volume image needs to be
segmented completely, into hundreds of distinct cells, which is different
from other biological and medical segmentation problems where the goal
is to segment only one organ or body part versus the image background
and which hampers the use of explicit shape models. Finally, the sheer
size of SBFSEM volume images narrows the class of practically applicable
algorithms to those whose runtime complexity is less than quadratic in the
number of voxels, a limitation that complicates the extraction of geometric
features.

Techniques from four research areas are used and developed further in
this thesis to tackle these problems:
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• Machine Learning is used extensively to learn from human experts
how to transform the raw SBFSEM volume image into a proper seg-
mentation.

• This learning is supported by geometric features that are extracted
from an initial over-segmentation of the volume image into super-
voxels using computational geometry.

• The final decision which supervoxel to merge in order to arrive at
neurons, inclduing their axons and dendrites, is cast as a combin-
atorial optimization problem in a graphical model over super-
voxel boundaries. This problem is solved exactly for small datasets
and approximately for large datasets.

• Efficient and parallel algorithms and adequate data structures
are developed so that the entire segmentation procedure can be ap-
plied in practice to volume images that extend well into the gigavoxel
regime.

This thesis is organized as follows: Chapter 2 summarizes important
theoretical foundations. Chapter 3 describes the entire segmentation pro-
cedure, from the restoration of the raw SBFSEM volume image and the
collection of training data to the evaluation of the final result on an SBF-
SEM benchmark dataset (Helmstaedter et al., 2011) of 2048× 1792× 2048
voxels that shows part of the inner plexiform layer of rabbit retina at a
resolution of 22 × 22 × 30 nm3 (Fig. 1.1). New methods whose develop-
ment was necessary for this procedure to be applicable in practice to large
volume images are described in the subsequent chapters. These chapters
constitute the methodological novelty of this thesis. Chapter 4 introduces
a new computational geometry algorithm for extracting geometric features
from large volume segmentations. Chapter 5 presents a new algorithm
for combinatorial optimization in higher-order graphical models. Finally,
Chapter 6 describes a versatile data structure for runtime-flexible multi-
dimensional arrays that is used throughout the segmentation procedure,
for computational geometry and combinatorial optimization.
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2 Methodological Foundations

This chapter describes established methods and concepts from machine
learning and computer vision that are fundamental to the novel approaches
presented in the subsequent chapters. These methods, Random Forests,
graphical models, and watershed segmentation, have attracted significant
attention in recent years. The purpose of this chapter is to summarize rel-
evant information contained in the cited research articles, to introduce a
unified notation and to serve as a self-contained methodological introduc-
tion to this thesis.

Random Forests (Section 2.1.1) are classifiers and regressors that can
be used to learn the relationship between high-dimensional observed data
and unobserved labels or responses from a small amount of empirical train-
ing data. Graphical models (Section 2.1.2) can help to put this learned
information into context.

Watershed segmentation (Section 2.2.1) has a long history in com-
puter vision. A comprehensive overview is given by Roerdink and Meijster
(2000). A little known fact is that the region growing algorithm by Meyer
(1991) can be implemented such that it works in linear runtime (in the
number of image points), provided that the elevation map can attain only
finitely many values. This aspect is emphasized in Section 2.2.1 because it
makes this algorithm suitable for segmenting large volume images.

2.1 Machine Learning

2.1.1 Random Forests

Random forests (Breiman, 2001) are ensembles of binary decision trees
(Breiman et al., 1984). In supervised statistical learning, these decision
trees are constructed from a training set S of observed or hand-labeled data.
The purpose of learning is either regression, i.e. function approximation,
or classification, i.e. the prediction of an object class based on a set of
object features.

In the regression setting, each observation (x(s), y(s)) = s ∈ S consists
of an input vector x(s) ∈ Rm (with m ∈ N) and a response y(s) ∈ R.
Under the assumption that the observations are i.i.d. according to some
(unknown) underlying distribution of the pair (X,Y ) of random variables,
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a random forest is an estimator of the regression function f : Rm → R with

∀x ∈ Rm : f(x) = E(Y |X = x)(x) . (2.1)

In the classification setting, each training sample (x(s), y(s)) = s ∈ S
consists of a feature vector x(s) ∈ Rm (with m ∈ N) and one class la-
bel y(s) ∈ C out of n ∈ N potential class labels C = {c1, . . . , cn}. Under
the assumption that the training samples are i.i.d. according to some (un-
known) underlying distribution, a random forest is an estimator of the most
likely assignment of feature vectors to class labels, i.e. of the classification
function c : Rm → C with

∀x ∈ Rm : c(x) = argmax
y∈C

P (Y |X = x)(y) . (2.2)

2.1.1.1 Training

The construction of decision trees from a finite training set works similarly
in both settings: First, the root vertex r ∈ V of each decision tree (V,E)
is associated with a subset Sr ⊆ S of the training data. Popular choices
are either the entire set S, or a bootstrap sample of S that consists
of |S| elements drawn randomly from S with replacement. The latter is
called bagging (Breiman, 1996); it turns the random forest into a bag of
classifiers (decision trees) each of which is trained on a different bootstrap
sample of S. Breiman (1996) shows that bagging can give substantial gains
in accuracy.

After the initialization of root vertices, the construction of each decision
tree proceeds as follows: As long as there exists a leave v ∈ V (initially,
the root is a leaf) for which the associated subset Sv of training data does
not fulfill a purity predicate (Section 2.1.1.2), a split function (Section
2.1.1.3) is invoked on Sv. This split function outputs a dimension jv ∈
{1, . . . ,m} and a value ξv ∈ R by which Sv is partitioned into

S′v = {s ∈ Sv|x(s)jv ≤ ξv} and (2.3)

S′′v = {s ∈ Sv|x(s)jv > ξv} . (2.4)

The sets S′v and S′′v are then associated with two new child vertices v′, v′′ ∈
V which are connected to v via the new edges (v, v′) and (v, v′′). The
construction of the tree ends when all leaves fulfill the purity predicate.
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2.1.1.2 Purity Predicate

The purity predicate requires that no more than a fixed number p ∈ N
of observations (in regression) or training samples (in classification) are
contained in the set Sv or else, all observations (training samples) have
the same response (label). The parameter p is one design parameter of
the learning algorithm. The smaller p is, the smaller the bias of individual
decision trees becomes. Lin and Jeon (2006) argue that p should be very
small, usually 1, for high-dimensional input spaces whereas p should be
optimized for low-dimensional input because the averaging over decision
trees performed during prediction (Section 2.1.1.4) reduces the variance but
not the bias of the random forest which suggests that the bias of individual
decision trees should be small.

2.1.1.3 Split Function

Breiman (2001) proposes to draw a fixed number mtry ∈ {1, . . . ,m} of di-
mensions of the input vector at random, without replacement, and to search
exhaustively over the selected dimensions and all values attained in these
dimensions in the training sample Sv for a combination that minimizes
an objective function over the partition of Sv into S′v and S′′v .

In regression, this objective function is the empirical variance of all
response variables of the training samples S′v, plus the empirical variance
of all response variables of the training samples S′′v . In classification, the
objective function is the Gini index (2.12) of the set of labels of the
training samples S′v, weighted by |S′v|, plus the Gini index of the set of
labels of the training samples S′v, weighted by |S′v|. A rigorous motivation
and unified perspective on these seemingly different approaches is given in
Section 2.1.1.5.

Choosing mtry =
√
m gives accurate results in practice (Breiman, 2001).

The smaller mtry is chosen to be, the greater becomes the risk of draw-
ing only dimensions for which no pronounced minimum of the objective
function exists. The effect of this increased risk on the prediction accuracy
depends on the purity predicate. In any case, it leads to deeper decision
trees and thus to increased runtimes for computing predictions.

One alternative is to setmtry = m. This renders the construction of single
decision trees deterministic and therefore only makes sense in conjunction
with bagging. The effect on the prediction accuracy again depends on the
purity predicate. The runtime spent on the exhaustive search for optimal
splits during training increases linearly with m. The depth of decision trees
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is smaller for larger mtry but need not be minimal because the feature space
is still partitioned in a greedy fashion. The construction of minimal decision
trees is in general NP-hard (Hyafil and Rivest, 1976; Sieling, 2008).

A second alternative proposed by Lin and Jeon (2006) is to first draw
one split value χj ∈ R for each input dimension j ∈ {1, . . . ,m} at random
and to then draw a dimension jv and associated split value ξv := χjv at
random from those that minimize the objective function for the partition
of Sv into S′v and S′′v . This approach is parameter-free. It specializes to
random sampling if the objective function is equal for all splits. Compared
to Breiman’s approach, the chance of making informative splits is increased.
However, the split values are no longer optimal but are distributed with
non-zero variance around the optima.

2.1.1.4 Prediction

Prediction from a trained random forest works by passing the input x ∈ Rm
down each tree, picking child nodes according to the inequalities in (2.3)
and (2.4) that partition the input space. This way, the input vector ends
up in a leaf node v ∈ V in each tree.

In regression, the prediction from a single tree is the average response
over all observations associated with the leaf node v. In consequence, the
tree encodes the function f̂(V,E) : Rm → R with

∀x ∈ Rm : f̂(V,E)(x) =
∑

(x,y)∈Sv

y

|Sv|
. (2.5)

The prediction of the entire random forest is the average prediction over
all decision trees.

In classification, each decision tree predicts one class label that occurs
most often in the training data associated with the leaf node. The tree thus
represents a function ĉ(V,E) : Rm → C with

∀x ∈ Rm : ĉ(V,E)(x) = argmax
c∈C

|{s ∈ Sv|∃x ∈ Rm : s = (x, c)}| . (2.6)

The prediction of the entire random forest is a label for which the number
of decision trees that predict this label is maximal.

The relative frequency of occurrence r̂(V,E),c : Rm → [0, 1] of any
label c ∈ C can be obtained from a single decision tree by relating the
absolute frequency of occurrence of this label to the total number of training
samples in the leaf node:

∀x ∈ R : r̂(V,E),c(x) =
|{s ∈ Sv|∃x ∈ Rm : s = (x, c)}|

|Sv|
. (2.7)
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The relative frequency of occurrence in the entire random forest is the
average relative frequency of occurrence over all decision trees.

2.1.1.5 Mean Distance and the Gini Index

Gini (1912) proposes to measure variability in a sequence of real numbers
by taking the mean absolute difference over all pairs of its entries. A
generalization of this statistic for arbitrary distance functions is introduced
in the following and shown to specialize to the Gini index (2.12) for the L0

distance, to the empirical variance (2.14) for the squared L2 distance, and
to a rank statistic (2.15) for the L1 distance. This generalization provides
a unified perspective on classification and regression with random forests.

Definition 1. For any sequence (yj)j∈{1,...,n} of n ∈ N elements of an ar-

bitrary set C 6= ∅ and any function d : C×C → R+
0 that is used to measure

distance in C, the mean distance D over all pairs of entries of (yj) is
defined as

D =
1

n2

n∑
j=1

n∑
k=1

d(yj , yk) . (2.8)

The mean distance is obviously invariant under all permutations of the se-
quence (yj), and it is non-negative because d is assumed to be non-negative.
There are no further restrictions on d in general. If d is positive definite, we
have D = 0 if and only if all entries of (yj) are equal. If d is symmetric, one
could divide the r.h.s. of (2.8) by 2 because each value d(yj , yk) = d(yk, yj)
is added at least twice. However, these specializations are unnecessary.
Important choices for d include the following symmetric positive definite
functions of which (2.9) and (2.11) are metrics:

d(yj , yk) =

{
0 if yj = yk

1 otherwise
(2.9)

d(yj , yk) = (yj − yk)2 (2.10)

d(yj , yk) = |yj − yk| . (2.11)

In classification, one deals with sequences (yj) in a set of m ∈ N distinct
class labels {c1, . . . , cm} = C. A distance function that distinguishes only
between similar and dissimilar labels is the L0 distance (2.9). The mean
distance w.r.t. this metric is called the Gini index. It can be expressed
in terms of the frequencies of occurrence of the labels c1, . . . , cm in the
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sequence (yj), i.e. in terms of n1, . . . , nm ∈ N with ∀j ∈ {1, . . . ,m} : nj =
|{k ∈ {1, . . . , n} : yk = cj}|:

D =
1

n2

n∑
j=1

n∑
k=1
k 6=j

njnk =
n∑
j=1

n∑
k=1
k 6=j

nj
n

nk
n

= 2
n∑
j=1

j−1∑
k=1

nj
n

nk
n

. (2.12)

The step from (2.8) to (2.12) is illustrated in Fig. 2.1.
In regression, one deals with sequences (yj) of response variables in R.

In this case, the mean distance D w.r.t. the L2 distance (2.10) equals twice
the empirical variance of the sequence (yn). This is shown in the following,
using Enj (yj) as a short hand notation for the empirical mean 1

n

∑n
j=1 yj ,

and the well-known relation

(Enj (yj))
2 + Enj

(
(yj − Enk(yk))

2
)

= (Enj (yj))
2 +

1

n

n∑
j=1

(yj − Enk(yk))
2

= (Enj (yj))
2 +

1

n

n∑
j=1

(
y2j − 2yjE

n
k(yk) + (Enk(yk))

2
)

= (Enj (yj))
2 + Enj (y2j )− 2Enk(yk)

1

n

n∑
j=1

yj + (Enj (yj))
2

= Enj (y2j ) . (2.13)
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Starting with (2.8) and (2.10),

D =
1

n2

n∑
j=1

n∑
k=1

(yj − yk)2 =
1

n2

n∑
j=1

n∑
k=1

(y2j − 2yjyk + y2k)

=
1

n2

n∑
j=1

(
ny2j − 2yj

n∑
k=1

yk +
n∑
k=1

y2k

)

=
1

n

n∑
j=1

(
y2j − 2yj

1

n

n∑
k=1

yk +
1

n

n∑
k=1

y2k

)

=
1

n

n∑
j=1

(
y2j − 2yjE

n
k(yk) + Enk(y2k)

)
=

1

n

n∑
j=1

(
y2j − 2yjE

n
k(yk) + (Enk(yk))

2 +
1

n

n∑
k=1

(yk − Enl (yl))
2

)

=
1

n

 n∑
j=1

(yj − Enk(yk))
2 +

n∑
k=1

(yk − Enl (yl))
2


=

2

n

n∑
j=1

(yj − Enk(yk))
2 = 2Enj

(
(yj − Enk(yk))

2
)
. (2.14)

If the L1 distance (2.11) is used instead and (yj) is ordered increasingly,

D =
1

n2

n∑
j=1

n∑
k=1

|xj − xk|

=
2

n2

∑
(j,k)∈{1,...,n}2

k≤j

(xj − xk)

=
2

n2

 n∑
j=1

j∑
k=1

xj −
n∑
k=1

n∑
j=k

xk


=

2

n2

 n∑
j=1

jxj −
n∑
k=1

(n− k + 1)xk


=

2

n2

n∑
j=1

(2j − n− 1)xj . (2.15)

The sum (2.15) is a rank statistic with coefficients −(n− 1), . . . , (n− 1).
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(yj) D D′

(1, . . . , n) n−1
n 1

(0, . . . , 0︸ ︷︷ ︸
q

, 1, . . . , 1︸ ︷︷ ︸
q

) 1
2

n
2(n−1)

Table 2.1: Difference between D and D′ for the L0 metric.

A final note concerns the difference between definition (2.8) and the mean
distance over all pairs of distinct entries of (yj). The latter is well-defined
if n ≥ 2:

D′ =
1

n(n− 1)

n∑
j=1

n∑
k=1
k 6=j

d(yj , yk) . (2.16)

If d(y, y) = 0 for all y ∈ C, the only difference between (2.8) and (2.16) is
in the normalization, i.e.

D′ =
n

n− 1
D . (2.17)

This distinction is particularly important in classification, i.e. w.r.t. the L0

distance (2.9). When this metric is used, the upper bound on D,

D ≤ 1

n2

n∑
j=1

n∑
k=1

d(yj , yk) =
n(n− 1)

n2
=
n− 1

n
, (2.18)

is attained if and only if the entries in the sequence (yj) are pairwise distinct.
Moreover, this bound depends on the length n of the sequence, in contrast
to the upper bound on D′ which is 1, by (2.17) and (2.18). It can be a
desired property that the upper bound be independent of n. If this is the
case, D′ should be used instead of D. Examples of the difference between
D and D′ for the L0 metric are given in Tab. 2.1.

2.1.1.6 Consistency

Random forest are not just a heuristic. Lin and Jeon (2006) establish a
close relationship between random forests and adaptive nearest neighbor
classifiers. This relationship opens a fundamental and principled view on
random forests and provides a starting point for analyzing their consistency
(Biau et al., 2008).
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n1n2 n1n3

n2n3n2n1

n3n1 n3n2

0

n

0 n

Figure 2.1: The L0 distances of all pairs of entries in the sequence (yj)
form the matrix A ∈ {0, 1}n×n depicted above. If (yj) consists of n1 labels
c1, followed by n2 labels c2, followed by n3 labels c3, the colored blocks
correspond to the entries which are one. All other entries are 0. The sum
of entries equals (2.12) and (2.8).
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2.1.2 Graphical Models

Graphical models (Cowell et al., 2007; Koller and Friedman, 2009; Laur-
itzen, 1996; Wainwright and Jordan, 2008) are structures that encode ex-
plicitly how a multi-variate function decomposes w.r.t. a given associ-
ative and commutative operation into functions that depend on subsets
of all variables (Aji and McEliece, 2000). As an example, consider a
function ϕ : {0, 1}4 → R that decomposes w.r.t. addition into functions
ϕ1, ϕ2 : {0, 1}2 → R, ϕ3 : {0, 1}3 → R and ϕ4 : {0, 1} → R such that
∀x1, . . . , x4 ∈ {0, 1}:

ϕ(x1, . . . , x4) = ϕ1(x1, x2) + ϕ2(x1, x3) + ϕ3(x2, x3, x4) + ϕ4(x4) . (2.19)

In general, the variables can have different domains that can be finite,
countably or uncountably infinite. The following discussion focuses on func-
tions with finite domain which are the only class that is used in this work.

Graphical models describe decompositions in terms of the associative and
commutative operation that leads to the decomposition, the operands of
the decomposition, i.e. the functions ϕ1, . . . , ϕ4 in the above example, and
a graph (Fig. 2.2a) that encodes which operands depend on which variables
in the form (2.19). A rigorous definition (Def. 3) is given below.

a)

v1 v2 v3 v4

f1 f2 f3 f4 b)

v1

v2

v3

v4

Figure 2.2: a) Operand graph of a graphical model representing the de-
composition (2.19). This undirected bipartite graph consists of variable
vertices v1, . . . , v4 that are associated with the variables x1, . . . , x4, and
operand vertices f1, . . . , f4 associated with the functions (operands)
ϕ1, . . . , ϕ4. A variable vertex is connected to an operand vertex if and
only if the operand depends on that variable in the form (2.19). b) The
variable adjacency graph connects any two variables for which there
exists at least one operand that depends on at least these two variables.
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Graphical models are an important concept for several reasons:

• Graphical models can be used to model complex systems. In
Chapter 3, a system of volume image segmentations is considered
that depends on 107 binary variables. A function that assigns an
energy to each of the 210

7
possible states of this system is defined in

terms of a graphical model.

• The decomposition made explicit by a graphical model can be ex-
ploited for optimization (cf. Section 2.1.3 and Chapter 5), e.g. to
find a volume image segmentation that has minimal energy (Chapter 3).

• Graphical models can be used in conjunction with statistical learn-
ing (cf. e.g. Franc and Savchynskyy, 2008). The energy function of
volume image segmentations defined in Chapter 5 decomposes accord-
ing to a graphical model into a sum of potential functions, and these
potential functions are learned independently from empirical data by
means of random forests (cf. Section 2.1.1 and Chapter 3).

One important application of graphical models are probability density
functions where conditional independence relations on random variables
lead to factorization (decomposition w.r.t. multiplication). Examples of
probabilistic graphical models include Markov Random Fields (Kinder-
mann and Snell, 1980; Lauritzen, 1996), Conditional Random Fields (Laf-
ferty et al., 2001) and Bayesian Networks (Cowell et al., 2007; Minka, 2001;
Pearl, 1988). Introductions to these closely related models are given e.g. by
Bishop (2007); Koller and Friedman (2009); Wainwright and Jordan (2008).
Graphical models are, however, not restricted to probabilistic modeling and
have also been used more generally to represent decompositions of arbitrary
multivariate functions (Aji and McEliece, 2000).

Different classes of graphs are used in graphical models, including but
not limited to undirected graphs, directed acyclic graphs and factor graphs.
Their relation is discussed e.g. by Bishop (2007); Kschischang et al. (2001);
Wainwright and Jordan (2008). While undirected graphs and directed acyc-
lic graphs contain one vertex for each variable and are suitable in particular
for probabilistic models, factor graphs (Aji and McEliece, 2000; Kschis-
chang et al., 2001) contain one vertex for each variable and one vertex for
each operand and can express general decompositions. Factor graphs can
be used with any associative and commutative operation and are there-
fore termed operand graphs in this thesis that deals with additive de-
compositions. The operand graph of a graphical model representing the
decomposition (2.19) is depicted in Fig. 2.2a.
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Definition 2. An operand graph is an undirected bipartite graph, i.e. a
triple (V, F,E) with E ⊆ V × F . The elements of V and F are termed
variable vertices and operand vertices, respectively. The elements of
E are termed edges. Two vertices v ∈ V and f ∈ F are said to be connected
if and only if (v, f) ∈ E. Neighborhoods of vertices are defined as

∀v ∈ V : N(v) = {f ∈ F |(v, f) ∈ E} , (2.20)

∀f ∈ F : N(f) = {v ∈ V |(v, f) ∈ E} . (2.21)

Each operand graph induces an undirected variable adjacency graph
(V ′, E′) that connects any two variables for which there exists at least one
operand to which both variables are connected, i.e.

(v, v′) ∈ E′ :⇔ ∃f ∈ F : (v, f) ∈ E ∧ (v′, f) ∈ E . (2.22)

An example is depicted in Fig. 2.2b. Variable adjacency graphs are a more
abstract representation of decompositions than operand graphs. Note, for
example, that a decomposition ϕ5(x1, x2, x3)+ϕ6(x2, x3, x4) of the function
ϕ has a different operand graph than the decomposition (2.19) but the same
variable adjacency graph (Fig. 2.2b).

Definition 3. A graphical model of a function ϕ : X1 × . . . ×Xn → Y
consists of (i) an associative and commutative operation ⊗ : Y × Y → Y ,
(ii) an operand graph (V, F,E) with V = {1, . . . , n}, and (iii) for each
f ∈ F , a function ϕf : Xjf (1) × . . . × Xjf (|N(f)|) → Y where jf (k) is the
k-th smallest number in N(f), such that ∀(x1, . . . , xn) ∈ X1×, . . . , Xn:

ϕ(x1, . . . , xn) =
⊗
f∈F

ϕf (xjf (1), . . . , xjf (|N(f)|)) . (2.23)

Graphical models define neither the order nor the hierarchy in which
the operations on the r.h.s. of (2.23) are executed. This makes sense only
because ⊗ is assumed to be associative and commutative. Otherwise, the
r.h.s. of (2.23) would be ill-defined. Beyond the scope of this thesis, one can
imagine a generalization of graphical models to operations that are non-
associative, non-commutative, or both. Such generalizations would include
explicit representations of the order and hierarchy in which the operations
are performed. However, many algorithms that operate on graphical models
exploit the invariance that arises from associativity and commutativity.
This holds in particular for optimization algorithms.
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2.1.3 Optimization of Graphical Model Functions

The optimization of functions that decompose according to a graphical
model is important, e.g. to arrive at maximum-a-posteriori estimates for
probabilistic models and to minimize energy functions as in Chapters 3. In
several special cases, the optimization problem can be solved exactly and
efficiently. In particular:

• If all operands in an additive graphical model are submodular w.r.t. a
lattice in X1 × · · · ×Xn and this lattice is induced by total orders in
X1, . . . , Xn, respectively, the global minimum can be found via a min-
imum s-t-cut in a graph that can be constructed efficiently from the
graphical model (Boykov et al., 2001; Kolmogorov and Zabin, 2004).
If total orders exist in X1, . . . , Xn that induce a lattice in X1×· · ·×Xn

w.r.t. which the operands become submodular, these total orders can
be found in polynomial time (Schlesinger, 2007). The global min-
imum can in this case be found via a graph cut w.r.t. the permuted
submodular function. The functions defined in Chapter 3 are prov-
ably not permuted submodular which rules out optimization by graph
cuts for this application (cf. Section 2.1.3.1).

• If the operand graph is a tree, the global optimum can be found by
means of dynamic programming (Pearl, 1988). If the operand graph
has loops, it is sometimes possible to group operands and variables
such that the operand graph on the grouped vertices becomes a tree
whose grouped operands are simple enough to be optimized exactly
in affordable runtime, e.g. by variable elimination, exhaustive search
or lazy flipping (Chapter 5). A more general and principled way of
agglomerating factors and variables is by construction of a junction
tree (Lauritzen, 1996; Lauritzen and Spiegelhalter, 1988) which re-
quires a triangulation of the variable adjacency graph. The runtime
for exact optimization is exponential in this case in the size of the
largest clique of the triangulation. This size is bounded below by
the treewidth of the variable adjacency graph which rules out this
method for the large and highly connected graphical models defined
in Chapter 3.

The optimization of non-submodular functions with loopy graphical mod-
els is NP-hard in the general case (Kolmogorov and Zabin, 2004). Some
functions of this class can still be optimized exactly in affordable runtime
using Mixed Integer Linear Programming (Schrijver, 1986, 2003) (Sec-
tion 2.1.3.4). However, the runtime is exponential in the worst-case and
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the memory requirement eliminates the use of this method for large models,
including those defined in Chapter 3.

Approximate solutions are therefore important. Several algorithms exist
for this purpose, including loopy belief propagation (Kschischang et al.,
2001; Pearl, 1988), tree-reweighted belief propagation (Kolmogorov, 2006;
Wainwright and Jordan, 2008; Wainwright et al., 2005), dual decomposition
Kappes et al. (2010); Komodakis et al. (2010), iterated conditional modes
(Besag, 1986) and the Lazy Flipper (Chapter 5; Andres et al., 2010a). The
performance of these algorithms on the optimization problem defined in
Chapter 3 is analyzed in Chapter 5. Theoretical aspects and algorithms
that are relevant for this optimization problem are discussed in the follow-
ing.

2.1.3.1 Submodularity and Permuted Submodularity

Submodularity is defined w.r.t. a lattice whose definition is recalled here.

Definition 4. For any partially ordered set (X,≤) and any subset Y ⊆ X,
an element s ∈ X is termed a least upper bound or supremum of Y if
and only if the following two conditions hold

∀x ∈ Y : x ≤ s (2.24)

∀s′ ∈ X :
(
∀x ∈ Y : x ≤ s′

)
⇒ s ≤ s′ . (2.25)

The definition of a greatest lower bound or infimum is analogous.

A supremum need not exist, either because there is no upper bound or
because the set of upper bounds has two or more elements of which none is
a least element of that set. If Y has a supremum, it is unique and denoted
by supY . (If s, s′ ∈ X are both suprema of Y then s ≤ s′ and s′ ≤ s by
(2.25) and thus, s = s′ by the antisymmetry of ≤).

Definition 5. A partially ordered set in which any two elements have a
supremum and an infimum is called a lattice.

Here are two examples:

1. Let n ∈ N and let (X1,�1), . . . , (Xn,�n) be finite sets, each equipped
with a total order. In the Cartesian product X1× · · ·×Xn =: X, the
relation “≤” ⊆ X ×X with ∀x = (x1, . . . , xn), x′ = (x′1, . . . , x

′
n) ∈ X:

x ≤ x′ ⇔ ∀j ∈ {1, . . . , n} : xj � x′j (2.26)
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defines a partial order. For any two elements x = (x1, . . . , xn), x′ =
(x′1, . . . , x

′
n) ∈ X,

(max{x1, x′1}, . . . ,max{xn, x′n}) and (min{x1, x′1}, . . . ,min{xn, x′n})

are well-defined w.r.t. the total orders �1, . . . ,�n and are the su-
premum and the infimum of x and x′. Thus, (X,≤) is in fact a
lattice.

2. As a more specific example, let n = 2 and (X1,�1) = (X2,�2) =
({0, 1},�) with the natural total order (0 � 1). From (2.26), it
follows, for instance:

sup{(0, 1), (1, 0)} = (1, 1) and inf{(0, 1), (1, 0)} = (0, 0) .

Definition 6. Consider a lattice (X,≤). A function f : X → R is called
submodular if and only if

∀x, y ∈ X : f(sup{x, y}) + f(inf{x, y}) ≤ f(x) + f(y) . (2.27)

With respect to the lattice in example (2), a function f : X1 ×X2 → R
is submodular if and only if f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0). If one
changes the order � in either X1 or X2 but not in both sets, e.g. such that
0 �1 1 and 1 �2 0, the submodularity condition becomes f(0, 1)+f(1, 0) ≤
f(0, 0) + f(1, 1).

Schlesinger (2007) shows that, given a function f : X1×· · ·Xn → R with
finite domain, the question whether there exist total orders in X1, . . . , Xn

such that f is submodular w.r.t. the partial order (2.26) in the Cartesian
product X1 × · · · × Xn can be answered in polynomial time, and that, in
case of existence, such a sequence of orders can be constructed efficiently.
Schlesinger (2007) terms this class of functions permuted submodular.

The exhaustive search over all combinations of orders shows that the
potential functions defined in Chapter 3 are not permuted submodular.

A close connection exists between submodularity and convexity. The
interested reader is referred to (Lovász, 1983). The optimization of sub-
modular functions by means of graph cuts is described by Kolmogorov and
Zabin (2004). Non-submodular functions can either be approximated by
submodular functions or optimized approximately as discussed in the fol-
lowing sections and in Chapter 5.
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2.1.3.2 Iterated Conditional Modes (ICM)

Iterated Conditional Modes (ICM) (Besag, 1986) is an algorithm for optim-
izing functions on discrete variables approximately. It starts from an initial
assignment of values to the variables (the current best assignment) that can
be chosen arbitrarily, e.g. at random. It then iterates over the variables in a
prescribed (possibly random) order, considering a single variable in each it-
eration. If the value of the objective function can be improved by changing
the value assigned to the selected variable and leaving the values assigned
to all other variables fixed, the best such update becomes the current best
assignment. ICM finishes when no change of the assignment that affects
just one variable can further improve the function value.

By definition, ICM is a strictly convergent algorithm. It need not con-
verge to the global optimum but the assignment attained after convergence
is guaranteed to be optimal within a Hamming distance of 1. ICM is a
greedy procedure and the output depends in general on the initialization.
If the objective function decomposes according to a graphical model, the
computation of function values is more efficient than in the general case
because in each iteration, only those operands that depend on the updated
variable need to be re-computed.

The strict convergence of ICM and the local optimality of the assignment
found after convergence make this procedure interesting as a means to
further improve approximations obtained by message passing algorithms
(Section 2.1.3.3). For this purpose, it is beneficial to extend the search
space of ICM to larger subsets of variables in order to arrive at assignments
of values to the variables that are guaranteed to be optimal within greater
Hamming distances. Chapter 5 presents a generalization of ICM (The Lazy
Flipper) that does just that.

2.1.3.3 Message Passing Algorithms

One message passing algorithm for optimizing functions that decompose
according to a graphical model is loopy belief propagation (Kschischang
et al., 2001; Pearl, 1988) (BP). BP specializes to exact optimization by
variable elimination if the graphical model is a tree and becomes an ap-
proximate optimizer (Yedidia et al., 2000) for loopy graphical models. BP
approximations have been shown to be useful for decoding (McEliece et al.,
1998) and are shown in Chapter 5 to outperform approximations obtained
by other algorithms for the optimization problem defined in Chapter 3.

Different message passing schemes exist for graphical models as general

34



as in Def. 3. Messages are functions that are associated with edges in the
operand graph. In the synchronous message passing scheme that is suitable
for models with loops, each message is associated with a variable node
v ∈ V , an operand node f ∈ F , and the iteration t ∈ N of message passing.

There are two types of messages: messages m
(t)
v→f that point from variable

nodes to operand nodes and messages m
(t)
f→v that point from operand nodes

to variable nodes. Every message is a unary function that maps from the
domain Xv of the associated variable to the codomain Y of the function
that decomposes according to the graphical model. The initialization of
these messages for t = 0 depends on the application. For the purpose of
optimization, identical constant functions are suitable.

During message passing, i.e. with increasing t, messages are updated
according to the rules below. In these rules, jf denotes the increasing
sequence of all variable nodes in N(f), and kfv denotes the increasing
sequence of all variables in N(f) \ {v}. Note that all possible assignments
to the variables associated with N(f) \ {v} are

(xkfv(1), . . . , xkfv(|N(f)|−1)) ∈ Xkfv(1) × · · · ×Xkfv(|N(f)|−1) . (2.28)

Operand to variable update: ∀f ∈ F ∀v ∈ N(f) ∀xv ∈ Xv:

m
(t)
f→v(xv) = min

(2.28)

ϕf (xjf (1), . . . , xjf (|N(f)|))⊗
⊗

v′∈N(f)\{v}

m
(t)
v′→f (xv′)

 (2.29)

Variable to operand update: ∀v ∈ V ∀f ∈ N(v) ∀xv ∈ Xv:

m
(t+1)
v→f (xv) =

⊗
f ′∈N(v)\{f}

m
(t)
f ′→v(xv) (2.30)

In each iteration t ∈ N, beliefs are defined ∀v ∈ V ∀xv ∈ Xv:

bel(t)v (xv) :=
⊗

f∈N(v)

m
(t)
f→v(xv) . (2.31)

If the operand graph is a tree, all messages are guaranteed to converge

(cf. Pearl, 1988). Each message m
(t)
f→v converges to the exact minimum

of the function that corresponds to the subtree of the operand graph that
is rooted at f and does not contain v (cf. Kschischang et al., 2001). If
the graphical model has loops, BP is not guaranteed to converge. If BP
converges for a loopy model, the assignment attained after convergence is
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an optimizer of a different function (Yedidia et al., 2000). It can be taken
as an approximate solution of the original optimization problem.

BP approximations can sometimes be improved by means of message
damping (Murphy et al., 1999). For an additive graphical model, message
damping works by replacing (2.30) with the following weighted average in
which α ∈ [0, 1] is a damping parameter:

m
(t+2)
v→f (xv) = (1− α)

∑
f ′∈N(v)\{f}

m
(t+1)
f ′→v(xv) + α

∑
f ′∈N(v)\{f}

m
(t)
f ′→v(xv) . (2.32)

Several generalizations of BP have been proposed, including tree-reweighted
belief propagation (Kolmogorov, 2006; Wainwright and Jordan, 2008; Wain-
wright et al., 2005) which establishes a close connection between message
passing and convex optimization, expectation propagation (Minka, 2001),
and survey propagation (Braunstein et al., 2005).

2.1.3.4 Algorithms based on Convex Optimization

Consider the min-sum problem

min
(x1,...,xn)∈X1×···×Xn

∑
f∈F

ϕf (xjf (1), . . . , xjf (|N(f)|)) (2.33)

and assume that X1, . . . , Xn are finite sets. For every variable node v ∈ V ,
let µv : Xv → {0, 1}, and for every operand node f ∈ F , let νf : Xjf (1) ×
. . .×Xjf (|N(f)|) → {0, 1}. The solution of (2.33) equals the solution of the
integer linear programming problem

min
µ,ν

∑
x∈X

∑
f∈F

νf (xjf (1), . . . , xjf (|N(f)|))ϕf (xjf (1), . . . , xjf (|N(f)|))

subject to ∀v ∈ V :
∑
x∈Xv

µv(x) = 1

∀v ∈ V ∀x̂ ∈ Xv ∀f ∈ N(v) :
∑

{x∈Xjf (1)×...×Xjf (|N(f)|)|xj−1
f

(v)
=x̂}

νf (x) = µv(x̂) .

(2.34)

This follows from the fact that (i) every µv is an indicator function of the
assignment µ−1v (1) to the variable v, i.e. µv(x) = 1 indicates that xv = x,
and (ii) every νf is an indicator function of the joint assignment ν−1f (1) to
all variables in N(f), i.e. νf (x) = 1 indicates that (xjf (1), . . . , xjf (|N(f)|)) =
x. The constraints ensure that µ and ν indicate precisely one consistent
assignment of values to the variables x1, . . . , xn.
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If the problem (2.34) is small enough, it can sometimes be solved in af-
fordable runtime by means of mixed integer linear programming (Schrijver,
1986, 2003) using branch-and-bound search (Dakin, 1965; Land and Doig,
1960). Otherwise, the corresponding relaxed linear programming prob-
lem where all µv and all νf map to [0, 1] instead of {0, 1} is the starting
point for applying convex optimization algorithms, including tree-reweighted
belief propagation (Kolmogorov, 2006; Wainwright and Jordan, 2008; Wain-
wright et al., 2005), and a dual decomposition ansatz using sub-gradient
descent methods (Kappes et al., 2010; Komodakis et al., 2010). In Chapter 5,
these algorithms are compared empirically as solvers for the optimization
problem defined in Chapter 3.

2.2 Computer Vision

2.2.1 Watershed Segmentation in Linear Runtime

A variety of algorithms for image segmentation has been built on the wa-
tershed transform (Digabel and Lantuéjoul, 1978). A comprehensive
overview is given by Roerdink and Meijster (2000). A little known fact
is that the region growing algorithm by Meyer (1991) can be implemen-
ted such that it works in linear runtime (in the number of image points),
provided that the elevation map can attain only finitely many values. This
holds true independent of the dimension of the image and makes Meyer’s
algorithm a suitable candidate for segmenting large volume images. The
basic idea is to replace the priority queue that is normally used for region
growing by as many independent queues as there are elevation levels.

The algorithm described below differs slightly from that presented by
Cousty et al. (2009). Here, a seeded region growing procedure is presented
that operates on a voxel grid G = {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3}
whose 3-dimensional extent is given by n1, n2, n3 ∈ N. Voxels are connected
in the so-called 6-neighborhood graph (G,∼) according to the following
relation: ∀v = (v1, v2, v3), v

′ = (v′1, v
′
2, v
′
3) ∈ G :

v ∼ v′ ⇔
3∑
j=1

|vj − v′j | = 1 . (2.35)

Segmentation means a partitioning of G into connected components that
are called segments. Algorithm 1 takes as input

• the extent n1, n2, n3 ∈ N of the voxel grid,
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• An elevation map ϕ : G→ {0, . . . , 255},

• a seed map σ : G → N0 that assigns labels to voxels such that,
for each label s ∈ N, the set of voxels σ−1(s) forms a connected
component in (G,∼) that is termed a seed.

On the computer, the mappings ϕ and σ are stored as 3-dimensional
arrays of unsigned integers, using 8 bits for each entry of ϕ and 32 or 64
bits for each entry of σ (32 bits resulting in 232−1 non-zero labels identifying
the same number of distinct segments are sufficient for the application in
Chapter 3). Algorithm 1 labels all voxels in G by incrementally growing
seeds until they touch. Ultimately, each voxel belongs to a segment and
no voxel explicitly represents a boundary between segments. In fact, each
voxel is assigned the label of a seed whose min-max distance to the given
voxel is minimal (cf. Cousty et al., 2009; Nguyen et al., 2003; Turaga et al.,
2009). The min-max distance between two points v, v′ ∈ G is the highest
point w.r.t. the elevation map ϕ on the lowest path C(v, v′) in (G,∼) from
v to v′:

d(v, v′) = min
C(v,v′)

max
w∈C(v,v′)

ϕ(w) . (2.36)

The region growing is performed in-place on the array σ. Voxels at the
border of growing regions are stored in 256 queues, one for each possible
elevation level. This makes a search for candidate voxels unnecessary and
thus allows the algorithm to work in linear runtime in the number of voxels.
The memory overhead for the queues is bounded by the number of voxels
in the surfaces of growing segments and thus by the total number of voxels.
These are important assets that facilitate the segmentation of large volume
images.
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Algorithm 1: Seeded Region growing

Input: ϕ : G→ {0, . . . , 255} (elevation map), σ : G→ N (seed
map)

Output: σ (segmentation)
1 queue q0, . . . , q255 ← ∅ ;
2 foreach r ∈ G do
3 if isSeedBorder(ϕ, r) then
4 qϕ(r).push(r) ;

5 end

6 end
7 for j = 0 to 255 do
8 while qj 6= ∅ do
9 r ← qj .pop() ;

10 for d = 1 to 3 do
11 if rd > 1 then
12 r′ ← r; r′d ← r′d − 1 ;
13 if σ(r′) = 0 then
14 σ(r′)← σ(r) ;
15 k ← max{ϕ(r′), j} ;
16 qk.push(r′) ;

17 end

18 end

19 end
20 for d = 1 to 3 do
21 if rd < nd then
22 r′ ← r; r′d ← r′d + 1 ;
23 if σ(r′) = 0 then
24 σ(r′)← σ(r) ;
25 k ← max{ϕ(r′), j} ;
26 qk.push(r′) ;

27 end

28 end

29 end

30 end

31 end
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Function isSeedBorder(ϕ, r)

1 if ϕ(r) = 0 then
2 return false;
3 else
4 for d = 1 to 3 do
5 if rd 6= 0 then
6 r′ ← r ;
7 r′d ← r′d − 1 ;
8 if ϕ(r′) = 0 then
9 return true;

10 end

11 end

12 end
13 for d = 1 to 3 do
14 if rd < nd then
15 r′ ← r ;
16 r′d ← r′d + 1 ;
17 if ϕ(r′) = 0 then
18 return true;
19 end

20 end

21 end
22 return false;

23 end
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3 Automated Segmentation of SBFSEM Volume
Images of Neuropil

3.1 Synopsis

The segmentation of large volume images of neuropil acquired by serial sec-
tioning electron microscopy is an important step towards the reconstruc-
tion of neural circuits (Helmstaedter et al., 2008). This chapter presents an
automated procedure that partitions the volume image into supervoxels and
selectively merges supervoxels based on features derived from these. The
problem which supervoxels to merge is posed as a combinatorial optimiza-
tion problem in a joint graphical model over supervoxel boundaries. This
joint model supersedes a previous approach in which all pairs of adjacent
supervoxels are considered separately. Higher-order potentials in the new
graphical model incorporate geometric information into the optimization
problem. This information improves segmentations of neuropil in the inner
plexiform layer of rabbit retina in a benchmark dataset of 20003 voxels.
The potentials are learned from training data collected by one expert in
three days. Runtime measurements confirm that the new procedure scales
well into the gigavoxel regime. C++ code is provided.

3.2 Introduction

Overall, the automated segmentation procedure consists of eight steps:

1. From the SBFSEM volume image, a set of rotation-invariant non-
linear features is extracted, describing the 3-dimensional neighbor-
hood of each voxel (cf. Section 3.4.1 and Fig. 3.2–3.6).

2. A classifier Cvoxel, trained to distinguish intra-cellular from extra-
cellular tissue based on these features, predicts the probability of
each voxel to belong to either class (cf. Section 3.4.1 and Fig. 3.1b).

3. Based on these probabilities, the volume image is over-segmented into
supervoxels (Armstrong et al., 2007; Ren and Malik, 2003) using the
marker-based watershed algorithm described in Section 2.2.1 (cf. Fig.
3.1c).
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4. The faces between supervoxels and the curves between these faces are
represented as lists of topological coordinates (Brice and Fennema,
1970), and the neighborhood system of these objects is stored in a
cellular complex (cf. Klette, 2000; Kovalevsky, 1989, 1993) using the
algorithm described in Chapter 4.

5. From this explicit representation of the geometry and topology of the
volume segmentation, non-local features are extracted that describe
faces between supervoxels and the distribution of angles between these
faces (cf. Section 3.4.3).

6. For every supervoxel face, a second classifier Cface predicts the probab-
ility that this face should be preserved, given its features. Moreover,
for every curve in which three adjacent faces meet, a third classifier
Ccurve predicts the probabilities of the eight possible decisions to pre-
serve or remove these faces jointly, given the angles between them
(cf. Section 3.4.4).

7. The predicted probabilities from Cface and Ccurve are combined as first
and third order potentials in a graphical model, i.e. an energy function
that depends on as many binary variables as there are supervoxel
faces, indicating whether these faces should be preserved or removed
(cf. Sections 2.1.2 and 3.4.4).

8. A joint optimal decision to preserve or remove supervoxel faces is
found by minimizing this energy function approximately using loopy
belief propagation (Kschischang et al., 2001; Pearl, 1988) with mes-
sage damping (Murphy et al., 1999), and lazy flipping (Chapter 5).
Results are shown in Fig. 3.1d and Section 3.5.

This procedure is applied to the HRP-stained SBFSEM benchmark data-
set (Helmstaedter et al., 2011) that consists of 2048 × 1792 × 2048 voxels
and shows part of the inner plexiform layer of rabbit retina at a resolution
of 22 × 22 × 30 nm3. A subset is depicted in Fig. 1.1. The homogen-
eous intra-cellular space makes up more than 90% of this volume image
and contrasts the stained extra-cellular space that forms thin membranous
faces (cf. Fig. 3.1a). Compared to previous results (Andres et al., 2008) that
were obtained using only Cvoxel and Cface, the number of false mergers is re-
duced by more than 46% while the number of false splits is reduced by 28%
at the same time (Section 3.5). Although the thinnest neuronal processes
are still falsely split and the 3D reconstruction of complete neural circuits

42



remains an ambitious goal, the accuracy achieved by the new method con-
stitutes substantial progress (cf. Fig. 3.28) over (Andres et al., 2008), and
the resulting segmentations (Fig. 3.28) provide a basis for applying stitching
procedures.

3.3 Related Work

On the methodological side, the classification of voxels in Steps 1 and 2
shares aspects with edge detection in 2-dimensional images. Various stat-
istical methods have been used to learn from manually segmented images
which brightness, color and texture features identify edges: Generalized
linear models by Levner and Zhang (2007); Martin et al. (2004), support
vector machines by Martin et al. (2004), (boosted) classification trees by
Dollar et al. (2006); Martin et al. (2004), likelihood ratio tests by Konishi
et al. (2003), combinatorial search by Alpert et al. (2010), fuzzy classi-
fication by Derivaux et al. (2007), and k-means by Martin et al. (2004).
Consistent improvements over traditional edge detectors are reported. The
use of learned edge probabilities as elevation maps for the watershed al-
gorithm was proposed by Derivaux et al. (2007); Levner and Zhang (2007).

Over-segmentations that capture all boundaries between objects in an
image at the cost of introducing excessive splits (Step 3) have been studied
by Ren and Malik (2003) who introduce the term superpixel and demon-
strate the advantage of superpixel segmentations as intermediate structures
that support the extraction of non-local features. A similar concept is used
for volume images by Armstrong et al. (2007) who extract features from seg-
ments and the faces between segments. Steps 4 and 5 of the segmentation
procedure go beyond this approach by extracting features also from curves
between these faces, using the explicit representation of the geometry and
topology of the volume segmentation introduced in Chapter 4.

The removal of excessive supervoxel faces in Steps 6–8 builds on ex-
isting work on hierarchical segmentation, including multi-scale watershed
segmentation (Vanhamel et al., 2003) and the more closely related super-
pixel and supervoxel methods (Armstrong et al., 2007; Ren and Malik,
2003). While scale-space approaches are compromised by the undesirable
averaging of gray values across object boundaries, region merging on the
basis of statistics learned from superpixels and supervoxels can lead to sig-
nificant improvements of the initial segmentation (Armstrong et al., 2007;
Ren and Malik, 2003). We extend the existing methods in which boundaries
between segments are classified separately by considering sets of boundaries
jointly and combining the decisions to remove or preserve these boundaries
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Figure 3.1: a) A yz-slice of 2422 voxels from the HRP-stained SBFSEM
benchmark volume image (Helmstaedter et al., 2011) that consists of 2048×
1792 × 2048 voxels and shows part of the inner plexiform layer of rabbit
retina at a resolution of 22 × 22 × 30 nm3. b) Restoration by means of
the Random Forest classifier Cvoxel. c) Initial supervoxel segmentation. d)
Faces between supervoxels classified as either essential (blue) or excessive
(yellow) by the approximate solution of the combinatorial optimization
problem (3.3).
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in a global combinatorial optimization problem whose objective function
decomposes according to a graphical model (cf. Section 2.1.2).

Graphical models have been used successfully for image analysis, e.g. by
Bergtholdt et al. (2009); Besag (1986); Boykov et al. (2001); Geman and
Geman (1984); Glocker et al. (2008). They describe how a multi-variate
function decomposes w.r.t. an associative and commutative operation into
functions that depend on subsets of all variables. The majority of graphical
models used for image segmentation are Markov Random Fields (MRFs)
(Geman and Geman, 1984) in which each pixel holds one variable to which
a segment label is assigned. Energy functions that depend on one and
two variables respectively relate these variables to an observed image and
penalize label transitions. Neighboring pixels that are assigned the same
label at minimal energy are grouped into segments. MRFs of this class have
also been used with superpixels instead of pixels (He et al., 2006) which is
preferable if superpixels are distinguishable by texture and each superpixel
belongs to a specific class, e.g. foreground and background or sky, street,
building, car, etc.. Labels can in this case be identified with classes.

In the problem at hand, supervoxels are indistinguishable by texture. If
we were to use an MRFs of the class just described, there would be no
preference of assigning one particular label to a given supervoxel. Any as-
signment of labels to supervoxels that leads to the same segmentation would
have the same energy. The number of labels would have to be chosen large
enough to encode all possible aggregations of supervoxels into segments.
The objective function of the graphical model would be invariant under all
changes of the labeling that lead to the same segmentation. As the num-
ber of labels would have to be large, this degeneracy would complicate the
optimization.

One attempt to break this degeneracy is to assign a priori costs to the
labels themselves (Delong et al., 2010). Problems remain, however, because
even if the segmentation was known, finding an optimal assignment of la-
bels to (super-)pixels is a graph coloring problem that is NP-hard for the
problem at hand.

A different approach is therefore proposed here: Segmentation problems
are encoded not as labeling problems on the supervoxels but as decision
problems on the faces between supervoxels. Faces between supervoxels can
either be removed or preserved, and segments are defined as the connected
components of the supervoxels that are connected because faces inbetween
have been removed.

A similar model is defined by Zhang and Ji (2010) who connect the
decision and the labeling problem. We extend their work by dropping the
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labeling problem altogether. The graphical model built in Step 7 of the seg-
mentation procedure contains only one binary variable for each face between
adjacent superpixels, indicating whether this face is to be removed or pre-
served. While He et al. (2006); Zhang and Ji (2010) focus on 2-dimensional
superpixel segmentations, we apply our model to a 3-dimensional super-
voxel segmentation.

Energy functions that decompose according to a graphical model can be
minimized efficiently in several special cases (cf. Section 2.1.2) but none
of the conditions is fulfilled in this particular application. The minimiza-
tion of general energy functions is an NP-hard problem (Kolmogorov and
Zabin, 2004). For small enough problems, exact solutions can sometimes
be found by means of integer linear programming (Schrijver, 2003) using
branch-and-bound search (Dakin, 1965; Land and Doig, 1960) but the prob-
lem at hand is too large to apply this method. Among the algorithms that
compute approximations in affordable runtime, loopy belief propagation
(Kschischang et al., 2001; Pearl, 1988) outperforms tree-reweighted belief
propagation (Wainwright and Jordan, 2008) and a dual decomposition an-
satz using sub-gradient descent methods (Kappes et al., 2010; Komodakis
et al., 2010) for the given problem, as shown in Chapter 5. Approximate
solutions obtained by belief propagation are further improved by means of
lazy flipping (Andres et al., 2010a), a generalization of iterated conditional
modes (ICM) (Besag, 1986) described in Chapter 5.

On the application side, the classification of intra-cellular vs. extra-
cellular space is closely related to the segmentation of SBFSEM volume
images by means of convolutional neural networks (CNNs) (Jain et al.,
2007; Turaga et al., 2010). These approaches complement semi-automated
procedures that propagate contours of neuronal processes to subsequent
slices (Macke et al., 2008) and track axons (Jurrus et al., 2009) in SBF-
SEM volume images using explicit shape models. Neuron segmentation in
serial section transmission EM volume images in which intra-cellular struc-
tures are stained is addressed by Chklovskii et al. (2010); Jurrus et al.
(2010); Kaynig et al. (2010b). The identification of specific intra-cellular
structure is addressed by Kumar et al. (2010); Lucchi et al. (2010). A
semi-automated approach to reconstruct neuronal processes from fluores-
cent light microscopic images is presented by Lu et al. (2009).
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Table 3.1: Local structure in the SBFSEM volume image is restored by pre-
dicting the probability of each voxel to belong to the intra-cellular space,
based on 28 rotation-invariant non-linear features, including the gradient
magnitude, eigenvalues of the Structure Tensor (Bigun, 2005) and the Hes-
sian matrix. These features that are depicted in Fig. 3.2–3.6 are computed
for the volume image as well as from the output of a 4-fold iterated bilat-
eral filter for which the functions wσs and wσv with scale parameters σs
and σv are used in the spatial and the intensity domain. Derivatives are
computed by Derivative-of-Gaussian filters at scales σm, σi and σh. Entries
of the Structure Tensor are averaged with a Gaussian filter at scale σo.

Index Feature Scale

1 SBFSEM volume image
2 Gradient magnitude σm = 1
3-8 Structure Tensor eigenvalues σi ∈ {1, 1.5}, σo = 2σi
9-14 Hessian matrix eigenvalues σh ∈ {1, 1.5}
15 Iterated bilateral filter (Barash, 2002) σs = 1, σv = 3

wσs(r) = 1
σs(2π)3/2

exp
(
− r2

2σ2
s

)
wσv(v) = 1

1+ v2

σ2v

16-28 Analogous to 2-14 but on 15 instead
of 1
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3.4 Automated Segmentation

3.4.1 Restoration of Local Structure by Voxel Classification

Steps 1 and 2 of the segmentation procedure outlined in the introduction
serve to enhance the contrast between intra-cellular and extra-cellular space
and to close local gaps in the extra-cellular space. Towards this goal, 28
rotation-invariant non-linear features (Tab. 3.1, Fig. 3.2–3.6) are extracted
from the volume image, describing the distribution of gray values in a
31× 31× 31 neighborhood around each voxel. The 28-dimensional feature
vector of each voxel is mapped to an estimated probability of this voxel to
belong to the intra-cellular space. This mapping is not hard-coded into the
algorithm but learned automatically from hand-labeled data (Section 3.5)
by means of a Random Forest classifier (Cvoxel).

Random Forests (Breiman, 2001) are ensembles of decision trees. Their
construction during learning is described in Section 2.1.1. Each decision
tree partitions the feature space into subsets, classifying each subset as
either intra-cellular or extra-cellular. The fraction of decision trees in the
ensemble that classify a given feature vector as intra-cellular is an estimate
of the probability of the corresponding voxel to belong to this class. The
predicted probabilities of all voxels form a 3-dimensional probability map
that is essentially a restored and contrast-enhanced version of the SBFSEM
volume image (Fig. 3.7).

Feature extraction and Random Forest prediction are operations whose
runtime complexity is linear in the number of voxels. The construction
of decision trees during learning has log-linear runtime in the number of
training samples which is negligible in this application, compared to the
prediction time. Absolute runtimes are summarized in Section 3.5. The
C++ code of the Random Forest and the volume image features are avail-
able as part of the image processing library Vigra1 (Köthe, 2000).

3.4.2 Supervoxel Segmentation

To permit the extraction of non-local and geometric features, the restored
volume image is over-segmented into supervoxels (Armstrong et al., 2007;
Ren and Malik, 2003) such that as few neurons as possible are incorrectly
merged (cf. Section 3.5), at the cost of introducing excessive splitting faces
that do not correspond to cellular membranes. These excessive faces are
removed later, in Step 7 (Section 3.4.4), based on non-local features.

1http://hci.iwr.uni-heidelberg.de/vigra
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Figure 3.2: Voxel neighborhood features 1–6
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Figure 3.3: Voxel neighborhood features 7–12
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Figure 3.4: Voxel neighborhood features 13–18
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Figure 3.5: Voxel neighborhood features 19–24
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Figure 3.6: Voxel neighborhood features 25–28
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Figure 3.7: SBFSEM raw data and restoration predicted by Cvoxel.

53



The initial supervoxel segmentation is found by means of the marker-
based watershed algorithm described in Section 2.2.1. Markers are defined
as the connected components of those voxels that are classified as intra-
cellular space by all decision trees of the Random Forest Cvoxel, i.e. those
voxels whose predicted probability to represent intra-cellular space is 1
(Fig. 3.8a). These markers serve as supervoxel seeds. They are grown
until the entire volume is occupied such that each voxel is assigned the
label of a seed whose min-max distance to the given voxel is minimal
(cf. Section 2.2.1).

The runtime of this algorithm is linear in the number of voxels. Its output
is a 3-dimensional segment label map (Fig. 3.8b) that assigns a segment
label to each voxel. The segment label map encodes faces between super-
voxels and the curves between these faces only implicitly, as neighboring
voxels whose segment labels differ. Moreover, it does not store explicitly
which segments are adjacent, separated by which faces and in which curves
adjacent faces meet. Inspired by the work of Armstrong et al. (2007), we
have developed algorithms and data structures (Chapter 4) that encode
every face between two supervoxels and every curve between supervoxel
faces as a list of topological coordinates (Brice and Fennema, 1970) and
store the adjacency of these objects in a cellular complex (Klette, 2000;
Kovalevsky, 1989, 1993). This representation is constructed in a runtime
that is linear in the number of voxels and log-linear in the number of faces
and curves (cf. Chapter 4). It facilitates the extraction of non-local fea-
tures from the supervoxel segmentation based on which excessive faces are
identified and removed.

3.4.3 Extraction of Contextual Features

In order to learn from hand-labeled training data (Section 3.5) which gray
value structures distinguish essential from excessive supervoxel faces and
which configurations of adjacent supervoxel faces support a cell boundary,
contextual features are extracted from the supervoxel segmentation (Step
5), 31 features of supervoxel faces (Tab. 3.2) and 21 features of curves
between adjacent faces that describe the distribution of angles between the
faces along the curve.

The estimation of angles between supervoxel faces is described in the
following and illustrated in a video contained in the supplementary ma-
terial. For each point Pj on a given curve (P1, . . . , Pn) between three ad-
jacent faces, all points on these faces that lie within a radius of 7 voxels
from Pj are averaged, leading to average points Aj , Bj and Cj on the re-
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Figure 3.8: The initial supervoxel segmentation is found by means of the
marker-based watershed algorithm described in Section 2.2.1. Markers (a)
are defined as the connected components of those voxels that are classified
as intra-cellular space by all decision trees of the Random Forest Cvoxel,
i.e. those voxels whose predicted probability to represent intra-cellular space
is 1. These markers serve as supervoxel seeds. They are grown until the
entire volume is occupied such that each voxel is assigned the label of a
seed whose min-max distance to the given voxel is minimal (b).

Table 3.2: From every supervoxel face and the adjacent supervoxels, 31
statistical features are extracted. The size of a supervoxel face is estim-
ated by the number of topological coordinates, the size of a supervoxel by
the numbers of voxels. The statistics S include the mean, standard devi-
ation, minimum, 0.25-quantile, median, 0.75-quantile, and maximum over
all voxels that are adjacent to the supervoxel face.

Index Feature Details

1 Size of the face

2–3 Sizes v1 and v2 of adjacent super-
voxels

(v1+v2)
1/3, |v1−v2|1/3

4–10 Bilateral filter output S
11–17 Gradient magnitude of bilateral filter S
18–24 Hessian matrix of bilateral filter greatest eigenvalue, S
25–31 Probability predicted by Cvoxel S
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(0, 0, 0) (0, 0, 1)∗ (0, 1, 0)∗ (0, 1, 1)

(1, 0, 0)∗ (1, 0, 1) (1, 1, 0) (1, 1, 1)

Figure 3.9: Humans can often distinguish excessive from essential super-
voxel faces without seeing the SBFSEM volume image at all, merely from
the configuration or gestalt of supervoxel faces (left). There are 8 pos-
sibilities (right) to preserve or remove three supervoxel faces (blue) that
meet in one curve (green). In the biological problem studied, sharp edges,
(0, 1, 1) and (1, 0, 1), are unlikely, and smooth continuations, (1, 1, 0), are
more probable than junctions, (1, 1, 1). Isolated edges (*) do not occur
because all surfaces in the SBFSEM volume image are closed. The prob-
abilities of all other configurations are learned from hand-labeled data by
the Random Forest Ccurve.
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spective face and to angles αj = ∠(Aj , Pj , Bj), βj = ∠(Bj , Pj , Cj) and
γj = ∠(Cj , Pj , Aj) between the faces at Pj . For each point Pj on the curve,
a separate triple (αj , βj , γj) of angles is obtained. The mean, the standard
deviation, the minimum, the 0.25-quantile, the median, the 0.75-quantile
and the maximum of the sequences (αj), (βj), and (γj) make a total of 21
features that are associated with the curve.

The motivation behind the extraction of angles is that humans can of-
ten distinguish excessive from essential supervoxel faces without seeing the
SBFSEM volume image at all, merely from the configuration or gestalt of
supervoxel faces. It is, for instance, obvious to humans that smooth con-
tinuations of supervoxel faces are more probable in neural tissue than sharp
edges, the latter indicating possible over-segmentation (Fig. 3.9). The im-
provement achieved by learning and incorporating this information is shown
in Section 3.5.

3.4.4 Removal of Over-Segmentation

The last step towards the construction of the final segmentation is to remove
remaining over-segmentation, i.e. to identify and remove excessive super-
voxel faces based on the features just described. Three approaches are
considered in the following and compared experimentally in Section 3.5.

In all approaches, unique indices are assigned to each of the nf ∈ N
supervoxel faces and to each of the nc ∈ N curves between faces. Every
supervoxel face j is associated with a binary variable xj ∈ {0, 1} that
indicates whether this face is to be removed (xj = 0) or preserved (xj = 1).
Due to the discrete structure of the voxel grid, curves have either three or,
rarely, four adjacent faces (cf. Chapter 4). The sets N3 ⊆ {1, . . . , nc} and
N4 ⊆ {1, . . . , nc} contain the indices of the respective curves. The indices
of the adjacent faces are stored in the rows of matrices A ∈ N|N3|×3 and
B ∈ N|N4|×4.

In Approach A, a Random Forest Cface is trained on hand-labeled data
(Section 3.5) to distinguish essential from excessive faces based exclusively
on the features in Tab. 3.2, exactly as proposed in (Andres et al., 2008). The
distribution of angles between faces is ignored in this approach. For every

face j, Cface predicts a probability p
(1)
j (0) that this face should be removed

and the corresponding probability p
(1)
j (1) = 1−p(1)j (0) that this face should

be preserved, i.e. one probability mass function p
(1)
j : {0, 1} → [0, 1] for

every face j. The final segmentation is obtained by removing all faces

for which p
(1)
j (1) is below a confidence level β ∈ [0, 1]. This confidence
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level establishes a trade-off between false removals (under-segmentation)
and false preservations (over-segmentation) (Section 3.5).

In Approach B, the decision is based on a crude representation of the
gestalt of the over-segmentation, namely the 21 features that describe the
angles between supervoxel faces. All features in Tab. 3.2 are ignored in
this approach. A Random Forest Ccurve is trained on hand-labeled data
(Section 3.5) to predict for every curve k ∈ N3 between three adjacent
faces ak1, ak2, ak3 the probability of each of the eight possibilities to remove

or preserve these faces (Fig. 3.9). One probability mass function p
(3)
k :

{0, 1}3 → [0, 1] is thus obtained for every curve k (Tab. 3.3). It translates

into an energy function E
(3)
k : {0, 1}3 → R̄ that is minimal where the

probability p
(3)
k is maximal (Tab. 3.3). Curves at which only one adjacent

face is to be preserved (Fig. 3.9) do not occur in the SBFSEM volume image
that contains only closed surfaces. The energy of these configurations is
therefore set to infinity. The same argument applies to curves k ∈ N4

with four adjacent faces bk1, . . . , bk4 which motivates the introduction of
additional 4th order energy functions that suppress the 4 out of the 16
possible configurations in which only one face is preserved2:

E
(4)
k : {0, 1}4 → R̄ such that ∀x1, . . . , x4 ∈ {0, 1} :

E
(4)
k (x1, . . . , x4) =

{
∞ if x1 + . . .+ x4 = 1

0 otherwise .
(3.1)

It happens in practice that predictions from different curves that delimit
the same face lead to conflicting recommendations as to preserve or remove
the given face. Moreover, the decision to preserve or remove one face has
implications on the decisions for the neighboring faces, and these implica-
tions propagate across the adjacency graph of faces. The final segmentation
can thus no longer be obtained by a separate classification of supervoxel
faces but requires the joint minimization of the total energy comprising the
3rd order potentials of Tab. 3.3 and the 4th order potentials (3.1), i.e. the
solution of the following combinatorial optimization problem:

min
x∈{0,1}nf

∑
k∈N3

E
(3)
k (xak1 , xak2 , xak3) +

∑
k∈N4

E
(4)
k (xbk1 , xbk2 , xbk3 , xbk4)

 .(3.2)

2Learning to distinguish the remaining 12 configurations based on angles, similar as in
Tab. 3.3, would require substantially more training data and increase the labeling
time several times over, an effort that is not justified given that most curves have
only three adjacent faces. Thus, deterministic potentials (3.1) are used.
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Table 3.3: Probabilities p
(3)
k predicted by Ccurve for configurations of three

adjacent supervoxel faces, and corresponding energies E
(3)
k = − log p

(3)
k .

xak1 xak2 xak3 p
(3)
k (xak1 , xak2 , xak3) E

(3)
k (xak1 , xak2 , xak3)

0 0 0 pk(0, 0, 0) − log pk(0, 0, 0)

0 0 1 0 ∞
0 1 0 0 ∞
0 1 1 pk(0, 1, 1) − log pk(0, 1, 1)

1 0 0 0 ∞
1 0 1 pk(1, 0, 1) − log pk(1, 0, 1)

1 1 0 pk(1, 1, 0) − log pk(1, 1, 0)

1 1 1 pk(1, 1, 1) − log pk(1, 1, 1)

Approach C is the combination of A and B. For every supervoxel face

j, the function p
(1)
j obtained from Cface translates into a unary potential

E
(1)
j = − log p

(1)
j that assigns a higher energy to the less likely decision.

These unary potentials are added to the objective function in (3.2), leading
to the following joint optimization problem that specializes to Approach
A for α = 0 and to Approach B for α = 1. The mixture parameter
α ∈ [0, 1] is an adjustable parameter of the processing chain; it is optimized
on training data (Section 3.5).

min
x∈{0,1}nf

(1− α)

nf∑
j=1

E
(1)
j (xj) + α

∑
k∈N3

E
(3)
k (xak1 , xak2 , xak3)

+ α
∑
k∈N4

E
(4)
k (xbk1 , xbk2 , xbk3 , xbk4)

 . (3.3)

Finding solutions of (3.2) and (3.3), even approximately, is a formidable
problem. The objective functions are not submodular (cf. Section 2.1.3.1).

In particular, the projections E
(3)
k (1, ·, ·) are supermodular whereas the pro-

jections E
(3)
k (0, ·, ·) are submodular (cf. Tab. 3.3). An exhaustive search

over all permutations of labels shows that these functions are not per-
muted submodular either which rules out polynomial-time optimization by
graph cuts. Furthermore, a typical current dataset contains in the order of
one million faces and ten million curves. For small problems obtained from
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subsets of 1503 voxels (less than 1/2000) of the dense interior region of the
SBFSEM benchmark dataset, global optima of (3.2) and (3.3) can be found
by means of mixed integer linear programming (MILP) using branch-and-
bound search, as shown in Chapter 5. Less than 8 GB of RAM and a few
minutes of runtime are sufficient in this case. However, MILP is unsuitable
for large models. More than 512 GB of RAM would be required for mod-
els obtained from 10003 voxels. State-of-the-art approximate solvers are
therefore assessed in Chapter 5 on ten subsets of 1503 voxels where the en-
ergies can be compared to the global optimum found by MILP. The results
shown in Chapter 5 indicate that loopy belief propagation (Kschischang
et al., 2001; Pearl, 1988) with message damping (Murphy et al., 1999), per-
forms exceptionally well, significantly outperforming both tree-reweighted
belief propagation (BP) (Wainwright and Jordan, 2008) and a dual decom-
position ansatz using sub-gradient descent methods (Kappes et al., 2010;
Komodakis et al., 2010) on this problem. Approximate solutions found by
BP deviate by only 0.4% on average from the global optimum and are im-
proved further (to 0.1%) by means of lazy flipping (Chapter 5). Here, we
therefore use a combination of BP and lazy flipping to solve (3.2) and (3.3)
approximately.
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a) b)

Figure 3.10: The individual steps and the final result of the segmentation
procedure are evaluated on the gold standard validation dataset, a sub-
block of 1003 voxels (a) in which all intra-cellular voxels have been labeled
manually (b). The labels have been provided by Moritz Helmstaedter and
Winfried Denk.

3.5 Application to SBFSEM Volume Data

We apply the segmentation procedure to the HRP-stained SBFSEM bench-
mark dataset (Helmstaedter et al., 2011), a volume image of 2048× 1792×
2048 ≈ 7.5 ·109 voxels that shows part of the inner plexiform layer (IPL) of
rabbit retina at a resolution of 22× 22× 30 nm3 (Fig. 1.1). The perform-
ance is evaluated quantitatively and compared to the previous approach
(Andres et al., 2008) on the gold standard validation subset of 1003 voxels
in which all intra-cellular voxels have been labeled by hand (Fig. 3.10). In
addition, for a qualitative impression, reconstructions of neurons from the
entire volume image are compared to reconstructions of the same neurons
found by means of (Andres et al., 2008).

The Random Forests Cvoxel, Cface and Ccurve are learned from training
data collected in two blocks of 1503 voxels, one from the dense inside of
the IPL where neuronal processes intertwine, the other from the border of
the IPL. These blocks have no overlap with the validation set and make
up less than 0.1% of the volume image. For Cvoxel, 3200 voxels are labeled
as either intra-cellular or extra-cellular using the MATLAB tool contained
in the supplementary material, starting with 500 voxels per class that are
placed at least 5 voxels away from each other. The classifier is then trained,
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and the predicted probability maps for the training volumes are loaded in
the labeling tool. Another 500 voxels per class are labeled where the prob-
ability maps need improvement. The procedure is repeated another two
times, labeling 300 voxels per class. Incremental labeling according to this
protocol takes an expert approximately one day. All Random Forests in the
segmentation procedure are constructed with 255 decision trees, a number
that is large enough for the learning curve to converge and small enough
to store the prediction in 8 bits. The contrast enhancement achieved by
the trained Random Forest Cvoxel on validation data is depicted in Fig. 3.1.
On a maximal random stratified subset of the validation set that contains
as many intra-cellular voxels as extra-cellular voxels, 91.8% of all voxels
are classified in agreement with the manual tracing. 8.2% are classified
in disagreement with the manual tracing, 5.1% as extra-cellular space and
3.1% as intra-cellular space.

While a hard thresholding of these predictions fails to give accurate seg-
mentations, the topography of the probability map can still be exploited to
obtain a proper over-segmentation by means of the watershed transform. It
is crucial that as little under-segmentation as possible is introduced at this
stage because false mergers could not be corrected in subsequent steps of the
procedure as presented here. The following indicator of under-segmentation
corroborates this assumption: For every connected component j of voxels
labeled as intra-cellular in the validation set and every segment k in the
watershed segmentation of the same volume, Qjk denotes the number of
voxels that belong at the same time to the connected component (true
segment) j and to the watershed segment k. Let R be obtained from the
overlap matrix Q by column normalization. Rjk is then the fraction of
the watershed segment k overlapped by the true segment j. In an over-
segmentation, all except very small segments have no relevant overlap with
more than one true segment. This is quantified by the under-segmentation
index, the second largest entry of the k-th column of R. In this applic-
ation, all watershed segments that are larger than 100 voxels exhibit an
under-segmentation index of less than 10%.

Faces between supervoxels and the curves between these faces are extrac-
ted from the segmentation as lists of topological coordinates, along with
the adjacency of these objects. Features of individual faces and the angles
between adjacent faces are computed. The absolute runtime, memory con-
sumption and parallelization of these and all other processing steps are
summarized in Tab. 3.6.

To train Cface and Ccurve, 5000 supervoxel faces are labeled by hand in the
watershed segmentations of the training volumes using an interactive tool
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Table 3.4: Quality of automatically computed segmentations in terms of
the fraction of falsely preserved and falsely removed faces in the initial
over-segmentation of the gold standard validation dataset (Fig. 3.10). F/C
means false/correct. P/R means preservation/removal. All values are given
in percent.

FR FP CR CP C

Approach A (β = 0.45) 1.5 2.1 17.2 79.2 96.4
Approach B 6.1 5.3 13.9 74.7 88.6
Approach C (α = 0.17) 0.8 1.5 17.7 80.0 97.7

(Kröger, 2010) based on the Visualization Toolkit (www.vtk.org). Faces
that are easy to label are labeled first because less obvious decisions become
clear once the surrounding faces are labeled. It takes an expert roughly
two days to collect a training set of the given size. The labeled faces and
the features of these faces make up a training set for Cface. Triples of
adjacent labeled faces and the angles between these faces are used to train
Ccurve. The training set is extended by adding all permutations of adjacent
supervoxel faces. As an example, a triple where the first face is labeled
as excessive and the last two faces are labeled as essential (0, 1, 1) makes
up three items labeled (0, 1, 1), (1, 0, 1) and (1, 1, 0) in the training set for
which the angle features are permuted accordingly.

Over-segmentation is removed by identifying and removing excessive su-
pervoxel faces. Approaches A, B and C described in Section 3.4.4 are com-
pared. Optimization is performed by loopy belief propagation (75 steps)
with a message damping of 0.3, followed by lazy flipping (Chapter 5), using
a maximum subgraph size of 3. The quality of the final segmentation is
measured on the validation set in terms of the fraction of falsely removed
and falsely preserved supervoxel faces.

For Approach A, the trade-off between false removals and false preserva-
tions w.r.t. the confidence level β is depicted in Fig. 3.11a. At the optimal
β = 0.45, 96.4% of all faces are classified correctly (Tab. 3.4). Approach
B performs worse, classifying 88.6% of all faces correctly (Tab. 3.4). The
reason can be seen in the confusion matrix of Ccurve (Tab. 3.5): The con-
figurations (0, 1, 1), (1, 0, 1) and (1, 1, 0) are separated well by the angle
features which demonstrates their predictive power. However, it is not pos-
sible to distinguish these configurations from (1, 1, 1) based on the angles
alone. This motivates the combination of the predictions from Cface and
Ccurve in Approach C. Approach C yields the overall best results for all
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Figure 3.11: The quality of automatically computed segmentations is eval-
uated in terms of the fraction of falsely preserved and falsely removed faces
in the initial over-segmentation of the gold standard validation dataset
(Fig. 3.10). Falsely preserved and falsely removed faces respectively lead to
over-segmentation (false splits) and under-segmentation (false mergers). a)
Segmentations computed using Approach A with different confidence levels
β, b) Segmentations computed using the full graphical model (Approach C)
with different mixture parameters α. Approach B corresponds to the set-
ting α = 1. It can be seen from these figures that the full graphical model
(Approach C) outperforms Approaches A and B, reducing both the number
of false mergers and false splits (cf. Tab. 3.4).
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Table 3.5: At every curve in which three supervoxel faces meet, the classifier
Ccurve predicts a probability for each of the eight possibilities to remove (0)
or preserve (1) these faces (cf. Fig. 3.9). The three configurations (0, 0, 1),
(0, 1, 0) and (1, 0, 0) in which only one face is preserved do not occur in the
SBFSEM volume image that contains only closed surfaces. The table below
shows the confusion of the classifier Ccurve for the remaining five configura-
tions. Columns correspond to the predictions, rows to the truth. It can be
seen from this table that the configurations (0, 1, 1), (1, 0, 1) and (1, 1, 0) are
well separated whereas it is not possible to distinguish these configurations
from (1, 1, 1) by Ccurve alone. This motivates the combination of Cface and
Ccurve in the graphical model (3.3).

Ccurve: (0, 0, 0) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 0) 1.9% 0.7% 0.9% 0.5% 0.4%
(1, 1, 0) 1.7% 6.9% 0.9% 0.7% 2.9%
(1, 0, 1) 2.6% 0.9% 6.7% 1.1% 3.2%
(0, 1, 1) 2.3% 0.7% 1.6% 5.3% 2.9%
(1, 1, 1) 4.6% 5.0% 6.8% 5.2% 33.8%

mixture parameters α between 0.05 and 0.6 (Fig. 3.11b). At the optimal
α = 0.17, 97.7% of all faces are classified correctly (Tab. 3.4). Compared
to Approach A, the fraction of falsely removed faces is reduced by more
than 46% to 0.8%. At the same time, the fraction of false preservations
is reduced by 28% to 1.5% (cf. Tab. 3.4). For a visual comparison of the
three approaches, cf. Fig. 3.12–3.15.

Reconstructions of neurons are possible using Approaches A and C. Ap-
proach B produces severe under-segmentation because the false removal
rate is too high. This rate strongly affects the quality of large scale recon-
structions because neurons in the SBFSEM volume image have between
1000 and 10000 supervoxel faces all of which need to be correctly preserved.
In practice, a false removal rate below 1% is indispensable to prevent under-
segmentation in large scale reconstructions. This can be achieved with Ap-
proach A by setting β = 0.2 and by Approach C with α = 0.17. It can be
seen from Fig. 3.24 that the full-featured Approach C affords better recon-
structions; less boundaries are falsely preserved and thus, larger parts of
neuronal processes are correctly merged.

Reconstructions of neural processes are shown in Fig. 3.25–3.28. These
reconstructions are not perfect: Over-segmentation still occurs at points
where neuronal processes shrink in diameter to one voxel in the SBFSEM
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Table 3.6: Absolute runtime, memory consumption and parallelization of
the segmentation procedure on an Intel 4×Quad Xeon equipped with 128
GB RAM, running at 2.4 GHz. ∗) adjustable by selecting a block. ∗∗) per
CPU. size.

Computation Runtime CPUs RAM∗∗ HDD
Voxel features 1d 11h 59m 10 < 2 GB∗ 842 GB
Training of Cvoxel < 10m 1 < 2 GB < 1 GB
Voxel classification (Cvoxel) 11h 39m 10 < 2 GB∗ 8 GB
Supervoxel segmentation 2h 13m 1 72 GB 61 GB
Geometry extraction 19h 22m 10 < 2 GB∗ 273 GB
Supervoxel face features 2d 14h 28m 10 < 2 GB 3 GB
Training of Cface < 10m 1 < 2 GB < 1 GB
Face classification (Cface) < 10m 10 < 2 GB < 1 GB
Curve angle features 1h 25m 10 < 2 GB 2 GB
Training of Ccurve < 10m 1 < 2 GB < 1 GB
Curve classification (Ccurve) < 10m 10 < 2 GB < 1 GB
Lazy Flipper (d = 3) 2d 9h 38m 1 89 GB < 1 GB

volume image. However, making all supervoxel face preservation/removal
decisions jointly as in Approach C constitutes substantial progress over
the predictions from Approach A.

3.6 Conclusion

An automated procedure for segmenting SBFSEM volume images of neuropil
is presented. It starts by over-segmenting the volume image into super-
voxels and selectively merges supervoxels based on non-local features of
the over-segmentation. The coupling of the individual decisions in a joint
optimization problem allows clear evidence for the existence or absence of
a cell boundary to propagate over long distances to more dubious regions.
The representation used and the training set provided allow the inference
procedure to learn by itself some gestalt laws that are most salient for
the problem at hand. Compared to a previous approach where merging
decisions are made separately, the fraction of false mergers is reduced by
more than 46% to 0.8%. The fraction of false splits is reduced by 28% to
1.5% at the same time. The thinnest neuronal processes are still falsely
split, but advances in tissue preparation and imaging may alleviate this
problem in the future. In general, the method should carry over to other
biological or medical images that bear resemblance with the data studied
here.
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Figure 3.12: In a 2-dimensional slice of the SBFSEM volume image (top),
faces between adjacent supervoxels appear as inter-pixel curves (bottom).
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Figure 3.13: Faces between adjacent supervoxels (cf. Fig. 3.12) colored ac-
cording to the probability to preserve the respective face predicted by Cface.
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Figure 3.14: For each curve in 3D space in which three supervoxel faces
meet, a probability is predicted by Ccurve for all 8 possibilities (5 consist-
ent possibilities) to preserve or remove these faces. In the figure above,
configurations with maximum probability are color coded. Blue and yel-
low indicate preservation and removal, green indicates equal probability of
all configurations. Different predictions are usually obtained from several
curves that bound the same face. Thus, each point on each faces is colored
according to the prediction from the nearest curve. This figure can provide
only a limited insight to the geometry in 3D space and the reader is referred
to Fig. 3.11 to see the quantitative effect of incorporating this evidence into
the graphical model.
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Figure 3.15: Approximate optimal decision to remove or preserve super-
voxel faces obtained by means of loopy belief propagation and lazy flipping
from the full graphical model (Approach C).
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Figure 3.16: A slice (at z = 120) of the HRP-stained SBFSEM benchmark
dataset (Helmstaedter et al., 2011), a volume image of 2048×1792×2048 ≈
7.5 · 109 voxels that shows part of the inner plexiform layer (IPL) of rabbit
retina at a resolution of 22× 22× 30 nm3.
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Figure 3.17: A slice (at z = 120) of the 3-dimensional probability map that
corresponds to the slice of the SBFSEM benchmark dataset depicted in
Fig. 3.16.
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Figure 3.18: A slice (at z = 120) of the 3-dimensional supervoxel seed map.
Seeds are connected components (in 3D space) for which the estimated
probability (Fig. 3.17) to represent a membrane is zero.
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Figure 3.19: A slice (at z = 120) of the 3-dimensional supervoxel segmenta-
tion of the SBFSEM benchmark dataset (Fig. 3.17) computed by means of
marker-based watershed segmentation using the probabilities in Fig. 3.17
as an elevation map and the seeds in Fig. 3.18 as markers.
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Figure 3.20: Faces between supervoxels in a slice (at z = 120) of the 3-
dimensional supervoxel segmentation (Fig. 3.19) of the SBFSEM bench-
mark dataset (Fig. 3.17).
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Figure 3.21: Supervoxel faces colored according to the probability to pre-
serve the respective face predicted by Cface.
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Figure 3.22: For each curve in 3D space in which three supervoxel faces
meet, a probability is predicted by Ccurve for all 8 possibilities (5 consist-
ent possibilities) to preserve or remove these faces. In the figure above,
configurations with maximum probability are color coded. Blue and yel-
low indicate preservation and removal, green indicates equal probability of
all configurations. Different predictions are usually obtained from several
curves that bound the same face. Thus, each point on each faces is colored
according to the prediction from the nearest curve. This figure can provide
only a limited insight to the geometry in 3D space and the reader is referred
to Fig. 3.11 to see the quantitative effect of incorporating this evidence into
the graphical model.
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Figure 3.23: Approximate optimal decision to remove or preserve super-
voxel faces obtained by means of loopy belief propagation and lazy flipping
from the full graphical model (Approach C).
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Figure 3.24: Comparison of automatic segmentations by Approach A with
β = 0.2 (left) and the full graphical model (Approach C) with α = 0.17
(right). In this example, Approach C reduces over-segmentation without
introducing under-segmentation which is in accordance with the quantitat-
ive results in Tab. 3.4.
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Figure 3.25: Neurons reconstructed by merging supervoxels according to
the approximate optimizer of the full graphical model (Approach C).
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Figure 3.26: (Contd.) Neurons reconstructed by merging supervoxels ac-
cording to the approximate optimizer of the full graphical model (Approach
C).
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Figure 3.27: (Contd.) Neurons reconstructed by merging supervoxels ac-
cording to the approximate optimizer of the full graphical model (Approach
C).
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Figure 3.28: Automated reconstruction of 100 neurons in an SBFSEM
volume image of the inner plexiform layer of rabbit retina using the full
graphical model (Approach C).
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4 Geometry and Topology Extraction from Large
Volume Segmentations

4.1 Synopsis

The reconstruction of neurons from 3-dimensional images as introduced
in Chapter 3 relies on features of the geometry and topology of an ini-
tial over-segmentation into supervoxels. In order to extract such features,
an efficient algorithm and data structure are needed to encode segments,
faces between segments, curves in which several faces meet–as well as the
topology of these objects. Existing algorithms encode this information in
designated data structures, but require that these data structures fit en-
tirely in Random Access Memory (RAM). Today, 3D images with several
billion voxels are acquired (cf. Chapter 3). Since these large volumes can
no longer be processed with existing methods, a new algorithm is presen-
ted in this chapter that performs geometry and topology extraction with a
runtime linear in the number of voxels and log-linear in the number of faces
and curves. The parallelizable algorithm proceeds in a block-wise fashion
and constructs a consistent representation of the entire volume image on
the hard drive, making the structure of very large volume segmentations
accessible to image analysis.

4.2 Introduction

Segmentations of volume images partition the volume into different subsets:
Segments, faces between segments, curves in which several faces meet, as
well as the points between these curves, (Fig. 4.1). Features that describe
these subsets are essential in many analyses. To be able to extract such
features, a data structure is needed that provides fast access to

• the geometry of these subsets, i.e. for every segment, face, curve and
point, a list of coordinates that constitutes the respective set.

• the topology of the segmentation, i.e. the neighborhood system of
its subsets.

However, volume segmentations are usually stored simply as volume
labelings, i.e. as 3-dimensional arrays in which each entry is a label that
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uniquely identifies the segment to which the voxel belongs. This form of
storage does not represent geometry and topology explicitly. Instead, faces
between segments and the curves between these faces are encoded only
implicitly, by adjacent voxels whose segment labels differ. All that can
be obtained from an array in constant computation time is the segment
label at a given voxel. Neither is the set of voxels that belong to the same
segment readily available, nor are the faces between adjacent segments or
the curves in which several of these faces meet. It is not stored explicitly
which segments are adjacent, separated by which faces, and in which curves
adjacent faces meet.

The new algorithm presented in this chapter takes a volume labeling as
input and extracts the geometry and topology of all subsets in a block-wise
fashion, in a runtime that is linear in the number of voxels and log-linear
in the number of faces and curves. Blocks of the volume labeling can be
processed either sequentially, on a single computer that might have only a
few hundred megabytes of RAM, or in parallel, on several computers, which
facilitates geometry and topology extraction from datasets that consist of
more than 109 voxels. In both cases, a consistent representation of the
entire volume segmentation is constructed on the hard drive, in a data
structure from which all subsets and their adjacency can be obtained in
constant computation time. The new algorithm makes the geometry and
topology of large volume segmentations accessible to image analysis.

This chapter is organized as follows: Related work is discussed in Sec-
tion 4.3. In Section 4.4, the data structure that captures the geometry
and topology of a volume segmentation is introduced. The algorithm for
its construction is defined in Section 4.5 and extended in Section 4.6 to
work with limited RAM and in parallel. The correctness of the algorithm
is proved and its complexity analyzed. Section 4.7 describes the efficient
storage of the data structure on the hard drive, and Section 4.8 concludes
the chapter.
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Figure 4.1: A volume segmentation consists of segments, faces between ad-
jacent segments (left), the curves in which several of these faces meet, as
well as the points between these curves (right).

4.3 Related Work

An explicit representation of all subsets of an image segmentation was pro-
posed already by Brice and Fennema (1970); it encodes segments as sets
of pixels, curves between segments as sets of inter-pixel edges, and the
end points of these curves as pixel corners (cf. Fig. 4.2). Naive attempts
to represent the different subsets all as sets of pixels on the pixel grid of
the underlying image are topologically inconsistent, as shown by Pavlidis
(1977) and proven generally and rigorously by Kovalevsky (1989, 1993).
To overcome this inconsistency, Khalimsky et al. (1990) introduced the to-
pological grid whose points correspond to pixels, inter-pixel edges, and
pixel corners. The concept of a 3-dimensional topological grid is depicted
in Fig. 4.2.

Data structures that store, for every subset of a segmentation, all points
of the topological grid that constitute this subset were proposed and im-
plemented by Meine and Köthe (2005) for segmentations of images and
envisioned by Damiand (2008) for segmentations of 3-dimensional volume
images. However, a storage concept that is suitable for large volume seg-
mentations has so far been missing.

Along with representations that capture the subsets of a segmentation,
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at least three different structures have been used to encode the neighbor-
hood system: Region Adjacency Graphs (RAGs) (Pavlidis, 1977) en-
code the adjacency of segments. RAGs do not capture the topology of a
segmentation completely because several disconnected faces that separate
the same two segments correspond to the same edge in the RAG. Kropatsch
(1995) introduces multiple edges and self-loops in the RAG which results
in a multi-graph whose dual graph represents faces as vertices and the
adjacency of faces as edges. This concept can be implemented as a data
structure. However, both the graph and its dual have to be stored and
maintained which is algorithmically challenging.

Combinatorial maps were introduced in image analysis by Braquelaire
and Guitton (1991) and are used as data structures, e.g. by Meine and
Köthe (2005) and in some algorithms of the Computational Geometry Al-
gorithms Library (CGAL)1. The extension of combinatorial maps to higher
dimensions is involved but possible (Lienhardt, 1989, 1991) and has facilit-
ated the development of the 3-dimensional topological map (Bertrand et al.,
2000; Damiand and Resch, 2003). This map captures not only the topo-
logy of a segmentation but also its embedding into the segmented space,
i.e. containment relations and orders of objects (Damiand, 2008; Lienhardt,
1989). It is therefore more expensive to construct and manipulate than a
data structure that encodes only the topology.

A simple structure that encodes only the topology is a finite cellular
complex, cf. Hatcher (2002); Munkres (1995) also known as a cell com-
plex or CW-complex (Klette, 2000) where CW stands for the two axioms
closure-finiteness and weak topology, cf. Hatcher (2002). Cellular com-
plexes were first used in image processing by Kovalevsky (1989, 1993).
Their application in 3D is simple and intuitive.

The main focus of previous efforts to extract and encode the geometry
and topology of segmentations has not been on large volume segmentations
but on the efficient processing of the merging and splitting of segments.
These operations are required within the context of inter-active segment-
ation. Damiand (2008); Meine et al. (2004) construct representations of
the geometry and topology incrementally, using random access to already
constructed parts of the data structure. In order for these algorithms to
work efficiently, the underlying data structures need to be kept entirely in
RAM. To extract the geometry and topology of a volume segmentation of
2, 0003 voxels, 2, 0003 · 23 · 4 bytes ≈ 238 GB of RAM are required for the
labeling of the topological grid, an amount that is not available on present

1http://www.cgal.org
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Figure 4.2: A topological grid T is used to represent
the geometry of a volume segmentation explicitly. Its
elements are called cells. A cell (t1, t2, t3) ∈ T with
j odd entries is called a j-cell. 3-cells, 2-cells, 1-cells,
and 0-cells respectively represent voxels (blue), faces
between voxels (green), lines between faces (red), and
points between lines (purple).

day desktop computers. Beyond 3, 5003 voxels, even the 1 TB of RAM of
a large server are insufficient. The method presented in this chapter over-
comes this limitation by means of block-wise processing. It makes geometry
and topology extraction from large volume segmentations possible.

4.4 From Voxels to Geometry and Topology

The starting point for geometry and topology extraction is a volume image
on a voxel grid G = {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3} whose extent
in each of the three dimensions is given by n1, n2, n3 ∈ N. Two voxels
v, w ∈ G are said to be connected if

∑3
j=1 |vj − wj | = 1. Each voxel is

thus connected to 6 other voxels unless it is at the boundary of the grid.
For every voxel, the connected voxels are called its 6-neighbors. A set
of voxels U ⊆ G is called connected if and only if any two distinct voxels
v, w ∈ U are linked by a path in U , i.e. by a sequence of voxels in U that
starts with v and ends with w, in which each voxel is connected to its
predecessor.

A volume segmentation partitions the voxel grid G into connected com-
ponents called segments. A volume labeling

σ : G→ N (4.1)

assigns to each voxel a label that identifies the segment to which the voxel
belongs. Since each voxel belongs to a segment, the faces between seg-
ments, the curves between these faces and the points between these curves
(Fig. 4.1) cannot be represented on the voxel grid. The structure that is
used for this purpose is a topological grid,

T = {1, . . . , 2n1 − 1} × {1, . . . , 2n2 − 1} × {1, . . . , 2n3 − 1} . (4.2)

This grid has about eight times the size of the voxel grid. Its elements are
called cells. Cells with j odd entries are called j-cells, cf. Fig. 4.2.
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Figure 4.3: Two relations
are crucial to the definition
of connected compon-
ents of cells. (i) The
Γ-neighborhood of a j-cell
consists of all its 6-neighbors
on the topological grid T
that are (j + 1)-cells. (ii)
The connectivity relation
“↔” connects two cells
t1, t2 ∈ T if and only if there
exists a third cell t ∈ T
such that both t1 and t2 are
Γ-neighbors of t.

n n-cell Γ ↔

0 ∅

1

2
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Segments, faces between segments, curves between faces, and points
between curves correspond to connected components of cells. Two rela-
tions are crucial to the definition of these connected components. The first
relation the Γ-neighborhood of cells. It is depicted in the third column of
Fig. 4.3.

Definition 7. The Γ-neighborhood is the mapping Γ : T → P(T ) such
that, for each j ∈ {0, . . . , 3} and any j-cell t ∈ T , Γ(t) consists of all
6-neighbors of t on the topological grid T that are (j + 1)-cells.

Any 2-cell, for instance, has two Γ-neighbors that correspond to two voxels.

The second important relation is the connectivity of cells; it is depicted
in the last column of Fig. 4.3.

Definition 8. The connectivity relation “↔” ⊆ T × T connects any two
cells t1, t2 ∈ T (denoted t1 ↔ t2) if and only if there exists a t ∈ T such
that both t1 and t2 are Γ-neighbors of t.

Segments, faces, curves and points can now be defined recursively as
connected components of 3-cells, 2-cells, 1-cells, and 0-cells which are called
j-components. In the following definition, a distinction is made between
active and inactive cells.

Definition 9. Any 3-cell is said to be active. A set of all (active) 3-cells
that belong to the same segment is called a 3-component.

For j ∈ {2, 1, 0} and any j-cell t ∈ T , let {t1, . . . , t6−2j} = Γ(t) be its Γ-
neighbors. For each k ∈ {1, . . . , 6−2j}, let τk be the connected component
of tk if tk is active, and let τk = ∅ otherwise. Define θ(t) to be the set of
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connected components that occur precisely once in (τ1, . . . , τ6−2j). These
connected components are said to be bounded by t. Moreover, t is called
active if θ(t) 6= ∅.

For each j ∈ {0, 1, 2}, a j-component is a maximal set U ⊆ T with the
following properties:

(i) Any t ∈ U is an active j-cell.

(ii) All t ∈ U bound the same connected components of (j + 1)-cells,
i.e. there exists a set Θ such that θ(t) = Θ, for all t ∈ U .

(iii) For any t1, t2 ∈ U , there exists a path in U from t1 to t2 in which
each cell is connected via ↔ to its predecessor.

This definition captures not only the geometry but also the topology a
a volume segmentation. Given, for instance, a face between two segments
(i.e. a 2-component) and any of its 2-cells, t, θ(t) identifies the two seg-
ments (3-components) that are bounded by the face. In practice, θ(t) can
be stored for each j-component. In theory, this corresponds to a cellular
complex representation that is isomorphic to the topology of the volume
segmentation Kovalevsky (1989). Cellular complexes are defined as follows.

Definition 10. A cellular complex is a triple (C,<,dim) in which “<”
is a strict partial order in C and dim : C → N0 maps elements of C to
non-negative integers such that ∀c, c′ ∈ C : c < c′ ⇒ dim(c) < dim(c′).
The elements of C are called cells, “<” the bounding relation and dim
the dimension function of the cellular complex.

As an example, consider the cellular complex that contains as cells all
points of the topological grid T (these points have already been referred
to as cells), and as a bounding relation the transitive closure of the Γ-
neighborhood, i.e. the strict partial order that relates any t1, t2 ∈ T pre-
cisely if there exist an n ∈ N and a sequence of n cells p : {1, . . . , n} → T
such that p(1) = t1, p(n) = t2, and ∀j ∈ {2, . . . , n} : p(j) ∈ Γ(p(j − 1)).
The dimension function simply maps each cell to its order, either 0, 1, 2 or
3. This cellular complex corresponds to the topology of the finest possible
segmentation in which each voxel is a separate segment.

A coarser cellular complex contains as cells the j-components (Def. 9).
Its bounding relation is the transitive closure of the bounding relation θ
of Def. 9. Its dimension function maps each connected component to the
order of its cells. This cellular complex captures the topology of the volume
segmentation. It would make sense to refer to its elements again as cells.
However, to avoid confusion, the term j-components is used throughout
this chapter.
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An important property of Def. 9 is that it is constructive and thus mo-
tivates an algorithm for the labeling of j-components.

4.5 Extraction of Segmentation Geometry and Topology

The geometry of a volume segmentation is made explicit by labeling not
only the segments but also the faces between segments, the curves between
faces and the points between curves, i.e. the j-components of the segment-
ation, on the topological grid T . The resulting topological label map

τ : T → N0 (4.3)

assigns a positive integer, representative of a j-component, to each active
cell, and zero to all inactive cells. On the computer, τ is stored as a 3-
dimensional array.

The first step towards this labeling is to copy all segment labels from the
volume labeling σ to the topological grid labeling τ by means of Algorithm
3. Subsequently, 2-components and 1-components are identified and labeled
by means of Algorithm 4 that performs a depth-first-search2. Finally, active
0-cells are identified and labeled by means of Algorithm 5. Besides labeling
the topological grid, these algorithms construct the bounding relation θ
of j-components (Def. 9) and thus, a cell complex representation of the
topology of the segmentation.

Overall, this connected component labeling is an exact implementation
of Def. 9 and is thus known to be correct. Its runtime is linear in the
number of voxels and so is its space complexity. The memory dynamically
allocated for the stack is in addition bounded by the number of cells in the
largest face.

The absolute memory requirement nevertheless renders the procedure
impractical for large volume segmentation. As shown in the introduction,
the topological label map τ of a volume segmentation that consists of 2,0003

voxels is too large to fit in the RAM of a desktop computer. Storing τ on
the hard drive and loading blocks into RAM on demand as a sub-routine of
Algorithm 4 does not solve the problem because any caching of blocks be-
comes inefficient if segments and faces extend unsystematically across large
parts of the volume which is often the case, in particular in connectomics

2The auxiliary function once used in this algorithm takes an input sequence of integers
and returns an ordered sequence of the same length that contains those positive
integers that occur precisely once in the input sequence. Additional entries in the
output sequence are filled with zeros.
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datasets (Chapter 3). Fortunately, the labeling itself can be constrained to
small blocks of the volume that can be chosen systematically and processed
independently, with very limited RAM and in parallel.

Algorithm 2: Labeling of 3-cells

Input: σ : G→ N (segment label map)
Output: τ : T → N (topological label map, preliminary), n ∈ N

(maximum segment label)
1 n← 0;
2 foreach r ∈ G do
3 τ(2r − 1)← σ(r);
4 if σ(r) > n then
5 n← σ(r);
6 end

7 end

4.6 Block-wise Processing of Large Segmentations

In order to extract the geometry and topology from large volume segment-
ations efficiently with limited RAM, the labeling of components is con-
strained to sufficiently small blocks of the topological grid. Each block is
processed independently using Algorithms 3, 4 and 5. The independent
results are stored on the hard drive and subsequently combined into a con-
sistent labeling of the entire topological grid. More precisely, the procedure
works as follows.

Step 1 (connected component labeling). The topological grid is
subdivided into blocks such that each block begins and ends in each direc-
tion with a layer that contains 3-cells. Adjacent blocks are chosen to overlap
each other by one cell in each direction as is depicted in Fig. 4.4. In con-
sequence, each 1-cell and each 2-cell within a region of overlap belongs to
two different blocks (Fig. 4.4b). Each block is then labeled independently
using Algorithms 3, 4, and 5, and the respective labelings are stored on the
hard drive. In consequence, the labeling of connected components starts in
each block with the label 1.

Step 2 (label disambiguation). The processed blocks are put in an
arbitrary but fixed order. If the j-th block in this order contains m2 2-
components, the offset m2 is stored along with block j+1 where it is added
on demand to all non-zero 2-cell labels, similarly for 1-cells and 0-cells,
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Algorithm 3: Labeling of 2-cells and 1-cells

Input: τ : T → N (topological label map, preliminary), c ∈ {1, 2}
(cell order)

Output: τ (modified), n ∈ N (number of c-components),
α ∈ Nn×(6−2c) (neighborhood relation of c-cells)

1 n← 0;
2 Stack s← ∅;
3 foreach c-cell t ∈ T do
4 if τ(t) = 0 then
5 p← (6− 2c);
6 (t1, . . . , tp)← Γ(t);
7 (x1, . . . , xp)← (τ(t1), . . . , τ(tp));
8 (y1, . . . , yp)← once(x1, . . . , xp);
9 if y1 6= 0 then

10 n← n+ 1;
11 for j = 1 to p do
12 α(n, j)← yj ;
13 end
14 s.push(t);
15 while s 6= ∅ do
16 u← s.pop();
17 τ(u)← n;
18 foreach v ∼ u do
19 if τ(v) = 0 then
20 (v1, . . . , vp)← Γ(v);
21 (x′1, . . . , x

′
p)← (τ(v1), . . . , τ(vp));

22 (y′1, . . . , y
′
p)← once(x′1, . . . , x

′
p);

23 if (y′1, . . . , y
′
p) = (y1, . . . , yp) then

24 s.push(v);
25 end

26 end

27 end

28 end

29 end

30 end

31 end
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Algorithm 4: Labeling of active 0-cells

Input: τ : T → N (topological label map, preliminary)
Output: τ (modified), n ∈ N (number of active 0-cells), α ∈ Nn×6

(neighborhood relation of 0-cells)
1 n← 0;
2 foreach 0-cell t ∈ T do
3 (t1, . . . , t6)← Γ(t);
4 (x1, . . . , x6)← (τ(t1), . . . , τ(t6));
5 (y1, . . . , y6)← once(x1, . . . , x6);
6 if y1 6= 0 then
7 n← n+ 1;
8 for j = 1 to 6 do
9 α(n, j)← yj ;

10 end
11 τ(u)← n;

12 end

13 end

arriving at maximal labels M0,M1,M2 of 0-, 1-, and 2-cells, respectively,
for the entire volume.

Step 3 (label reconciliation). Whenever connected components of
cells extend across block boundaries, their labels in the respective blocks
(with offsets added) need to be reconciled. Two disjoint set data structures
equipped with the operations union and find (Cormen et al., 2009) are
used for this purpose, one for 1-cells and one for 2-cells, the former with
M1, the latter with M2 initially distinct sets, each set containing one label.
First, union(l1, l2) is called for the pair (l1, l2) of distinct labels assigned to
any active 1-cells and 2-cells within a region of overlap. Second, each label
l is replaced by the representative find(l) of the union to which it belongs.

Step 4 (curve merging). As is elucidated in the correctness analysis
of this algorithm in Section 4.6.1, 1-components can still be falsely split
and 0-cells falsely labeled as active at this stage. Thus, in a last step, each
0-cell t0 and any pair (t1, t

′
1) of 1-components bounded by t0 is considered.

The labels of t1 and t′1 are reconciled if t1 and t′1 bound the same connected
components of 2-cells. If at least one reconciliation has taken place, the
activity of t0 is re-computed.
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a) b)

Figure 4.4: The topological grid is subdivided into blocks, leaving an over-
lap of one cell in each direction (a). Cells inside regions of overlap (b)
are assigned two different labels during the independent processing of the
blocks. These labels are subsequently reconciled.

4.6.1 Correctness of the Algorithm

In order to prove that the block-wise processing is correct, the segment
label map σ as well as the decomposition of the topological grid into blocks
are assumed to be arbitrary but fixed. The labeling τ ′ output by the block-
wise method is compared to the labeling τ obtained from the application
of Algorithms 3, 4 and 5 to the entire segment label map. While the
latter is known to be correct, the former is correct if the two labelings are
isomorphic:

Definition 11. Two labelings τ, τ ′ : T → N of the topological grid T are
isomorphic w.r.t. a subset U ⊆ T if and only if the following conditions
hold:

∀u ∈ U : τ(u) = 0⇔ τ ′(u) = 0 , (4.4)

∀u, v ∈ U : τ(u) = τ(v)⇔ τ ′(u) = τ ′(v) . (4.5)

If τ and τ ′ are isomorphic w.r.t. the entire domain T , they are simply
called isomorphic.

Proposition 1. τ and τ ′ are isomorphic w.r.t. all 3-cells of T .

Proof. 3-cell labels are copied from the segment label map σ to τ and
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τ ′, respectively by both algorithms. The labelings τ and τ ′ are therefore
identical and thus isomorphic w.r.t. all 3-cells of T . �

Proposition 2. τ and τ ′ are isomorphic w.r.t. all 2-cells of T .

Proof. During block-wise processing, the decision whether or not a 2-cell
obtains a non-zero label depends exclusively on the labeling of 3-cells w.r.t.
which τ and τ ′ are identical. Thus, (4.4) holds for all 2-cells of T .

Let u, v ∈ T be any 2-cells. If τ(u) 6= τ(v), u and v bound different pairs
of segments and hence obtain different labels during block-wise processing.
Such labels are not reconciled. Thus, τ ′(u) 6= τ ′(v).

If τ(u) = τ(v), there exists a path of 2-cells between u and v on which
all cells separate the same pair of segments. If this path is contained in one
single block, all its 2-cells obtain the same label during the independent
processing of that block. If the path crosses the boundaries of blocks, the
labels along the path are reconciled. Thus, τ ′(u) = τ ′(v).

Hence, (4.5) hold for all pairs of 2-cells. In conclusion, τ and τ ′ are
isomorphic w.r.t. all 2-cells of T . �

Proposition 3. For each block U ⊆ T , any 1-cell t1 ∈ U , and any 2-cell
t2 ∈ Γ(t1), the label assigned to t2 is unique among the labels assigned
to all 2-cells in Γ(t1) before label reconciliation if and only if it is unique
afterwards.

Proof. (⇒) Suppose t2 had a unique label among the elements of Γ(t1) be-
fore label reconciliation and the same label as another t′2 ∈ Γ(t1) afterwards,
i.e. in τ ′. Then, t2 and t′2 separated the same pair of segments because τ ′

is isomorphic to the correct labeling τ w.r.t the 2-cells. Moreover, we know
by definition that t2 ↔ t′2, so t2 and t′2 would have obtained the same label
before label reconciliation. A contradiction. (⇐) Trivial. �

Proposition 4. For all 1-cells t1 ∈ T holds τ(t1) = 0⇔ τ ′(t1) = 0.

Proof. During the independent processing of each block, any 1-cell t1 ∈ T
obtains a non-zero label if and only if at least one 2-cell label is unique
among the labels assigned to all 2-cells of Γ(t1). In this step, the 2-cell
labels before label reconciliation are considered. However, by Prop. 3, this
is no different than considering the 2-cell labels of τ ′. Moreover, τ ′ and τ
are isomorphic w.r.t. all 2-cell and thus, 1-cells obtain a non-zero label in
τ ′ precisely if they are labeled non-zero in τ , i.e. τ(t1) = 0⇔ τ ′(t1) = 0.�

Proposition 5. For all 1-cells u, v ∈ T holds τ(u) = τ(v)⇐ τ ′(u) = τ ′(v).

Proof. If τ ′(u) = 0, the conjecture holds by virtue of Prop. 4. If τ ′(u) 6= 0,
it follows that τ ′(v) 6= 0 (by assertion) as well as τ(u) 6= 0 and τ(v) 6= 0 (by
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Prop. 4). Moreover, τ ′(u) = τ ′(v) requires by construction of τ ′ that u and
v are connected by a path of 1-cells all of which bound the same connected
components of 2-cells (in τ ′). As τ and τ ′ are isomorphic w.r.t. the 2-cells
and as 1-cells are labeled correctly in τ , it follows that τ(u) = τ(v). �

Proposition 6. For all 0-cells t ∈ T holds τ(t) 6= 0⇒ τ ′(t) 6= 0.

Proof. If τ(t) 6= 0, at least one 1-cell label is non-zero and unique among
the labels assigned to all 1-cells in Γ(t), i.e.

∃u ∈ Γ(t) : τ(u) 6= 0 ∧ ∀v ∈ Γ(t) \ {u} : τ(u) 6= τ(v) .

For any such u follows by Prop. 4 and 5

τ ′(u) 6= 0 ∧ ∀v ∈ Γ(t) \ {u} : τ ′(u) 6= τ ′(v)

and thus, by construction of τ ′, the conjecture. �

In order to prove that τ and τ ′ are isomorphic, it remains to be shown
that the inverse implications of Prop. 5 and 6 also hold. Unlike the above
propositions which hold by construction of τ ′ in Steps 1–3 of the block
algorithm, the two missing implications are enforced explicitly, by Step 4.

As the following example shows, 1-components can indeed be falsely split
and 0-cells falsely labeled active if Step 4 is omitted. In Fig. 4.5a, a segment
label map on a grid of 3×3×2 voxels is shown. Six segments are identified
by the integers 1 through 6. The correct corresponding topological label
map is depicted in Fig. 4.5b, and the connected components are plotted in
Fig. 4.6a and 4.6b. The 1-cell labels in Fig. 4.5b are colored in accordance
with the graphical visualization in Fig. 4.6b.

Assume that the segment label map in Fig. 4.5a is processed block-
wise, with blocks of 2× 2× 2 voxels. Note that this block-size includes an
overlap of one voxel in each direction. The bold font in Fig. 4.5a indicates
one of these blocks. The topological label map that is constructed when
this block is processed independently is depicted in Fig. 4.5c. While the
1-cells labeled 1 and 2 are merged into one connected component during
label reconciliation after all blocks have been processed, the 1-cells labeled
3 and 4 are merged only in Step 4 of the algorithm. If Step 4 were omitted,
the incorrect labeling shown in Fig. 4.6c would be computed.

Theorem 1. τ and τ ′ are isomorphic.

Proof. In addition to the implications proven above, Step 4 of the block-
wise processing enforces:

(1) For all 1-cells u, v ∈ T holds τ(u) = τ(v)⇐ τ ′(u) = τ ′(v).
(2) For all 0-cells t ∈ T holds τ(t) 6= 0⇐ τ ′(t) 6= 0. �
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a)
z = 1

1 1 1
1 2 1
1 1 3

z = 2

4 4 4
4 5 4
4 4 6

b)
z = 1

1 0 1 0 1
0 0 1 0 0
1 1 2 1 1
0 0 1 0 2
1 0 1 2 3

z = 2

3 0 3 0 3
0 0 1 0 0
3 1 4 1 3
0 0 1 0 2
3 0 3 2 5

z = 3

4 0 4 0 4
0 0 6 0 0
4 6 5 6 4
0 0 6 0 7
4 0 4 7 6

c)
z = 1

2 1 1
1 0 2
1 2 3

z = 2

3 2 5
1 1 4
4 3 6

z = 3

5 7 4
7 0 8
4 8 6

Figure 4.5: a) A segment label map on a grid of 3 × 3 × 2 voxels. b) The
correct corresponding topological label map. Colors are in accordance with
the 1-cells shown in Fig. 4.6b. c) The topological label map of the block
depicted in bold font in (a). 1-cells are colored in accordance with Fig. 4.6c.
The 1-cells labeled 1 and 2 are merged during label reconciliation while the
1-cells labeled 3 and 4 are merged in Step 4 of the block-wise processing.

By virtue of this theorem, the block-wise processing is correct.

4.6.2 Complexity

The runtime overhead introduced by the merging of labels is O((N +M1 +
M2) log(M1+M2)) where N is the number of cells within regions of overlap.
Time O(N log(M1+M2)) is used for the O(N) calls of union, whereas time
O((M1 +M2) log(M1 +M2)) is required for the M1 +M2 find-operations.
In practice, this overhead is negligible compared to the runtime of the
connected component labeling.

4.6.3 Parallelization

The algorithm can be used in two different settings: Blocks can be pro-
cessed consecutively in order to extract the geometry of a large volume
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Figure 4.6: Connected components of 2-cells (a) and 1-cells (b) defined by
the topological label map in Fig. 4.5b. c) 1-cells and the 0-cell from a
block-wise labeling where Step 4 of the algorithm is omitted.

segmentation in limited RAM. Perhaps more interestingly, blocks can be
processed in parallel, possibly on several machines, with virtually no pro-
cess synchronization or inter-process communication.

Indeed, if it were not for parallelization, the block-wise connected com-
ponent labeling could have been implemented simpler, starting with only
the 2-cells, followed by the disambiguation and reconciliation of their la-
bels across all blocks even before any 1-cell or 0-cell is labeled. This would
render Step 4 of the block-wise processing unnecessary. However, the pro-
gram would have to wait until the 2-cells of all blocks have been labeled
before it could label the first 1-cell. In contrast, the proposed algorithm
starts labeling the 1-cells within a block as soon as the labeling of 2-cells
within that block is finished, regardless of the progress on other blocks.

4.7 Redundant Storage for Constant Time Access

The algorithm proposed in the last section labels segments, faces between
segments, the curves between faces and the points between curves on the
topological grid. The output is a topological label map that provides con-
stant time access to the label at any topological coordinate. It allows to
determine in constant time whether there is a face, curve, or point at a
given location and if so, to determine its label. This is important, e.g. for
the visualization of 2-dimensional slices of a segmentation that show not
only segments but also faces, curves, and points. The algorithm makes
explicit the bounding relations between the geometric objects.

However, not only the labels of individual cells and the adjacency of
geometric objects are important but also the set of all cells that belong to
the same component. For image analysis, it can for instance be useful to
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compute the mean gray value over a face between two segments. Yet, a
list of all 2-cells of the face cannot be obtained in constant time from the
topological grid labeling. Thus, a redundant representation of geometry is
constructed that contains, for each j-component, a list of all its j-cells.

This redundant representation as well as the topological grid labeling
are stored on the hard drive using the Hierarchical Data Format (HDF5).
HDF5 was originally developed by the National Center for Supercomput-
ing Applications (NCSA) and is now maintained by the non-profit HDF5-
Group3. It is widely used, especially in the life sciences (Dougherty et al.,
2009). An HDF5 file contains two principal types of objects, groups and
datasets. Datasets represent the actual storage containers and are multi-
dimensional arrays of a unique type, while groups represent an organiza-
tional concept analogous to a directory that enables the user to hierarch-
ically structure the data within the file. Furthermore, attributes may be
assigned to any dataset or group and contain meta information pertaining
to the data stored within these objects.

Two HDF5 files are used here. The first file is associated with the labeling
algorithm of Section 4.6. Its structure is depicted in Fig. 4.7a. For each
block and its index j in the order of blocks, a sub-group named j is created
in the group blocks. The sub-group j contains the dataset topological-
grid, a 3-dimensional array that stores the topological label map of the
block. Furthermore, it contains datasets for the neighborhood relations of
connected components as well as the label offsets of the block which are
computed during label disambiguation. During label reconciliation, the
datasets relabeling-k and neighborhood-k are created in the main file
to store the labeling and the neighborhood relations of k-components of
the entire topological grid.

Using this file, constant time access to the label of a given cell works as
follows. After identifying a block k to which the j-cell of interest belongs,
the label l is read off from the dataset topological-grid of that block.
Except for 3-cells and inactive cells, the offset m associated with cell order
j and block k is loaded and the dataset relabeling-j accessed at location
l+m for the globally consistent label of the cell. In practice, all data except
the topological label map can be kept in RAM.

The second HDF5 file stores one coordinate list for each 1-, 2-, and
3-component as well as the coordinates of all active 0-cells. Initially, the
most straight forward group hierarchy was chosen for this file: Three groups
associated with segments, faces, and curves, each containing one extendible

3http://www.hdf5group.org
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a) b)

t d Name

D 1 segmentation-shape
D 1 block-shape
G blocks
G 〈b〉
D 3 topological-grid
D 1 max-labels
D 1 label-offsets
D 2 neighborhood-0
D 2 neighborhood-1
D 2 neighborhood-2
D 1 max-labels
D 1 relabeling-1
D 1 relabeling-2
D 2 neighborhood-0
D 2 neighborhood-1
D 2 neighborhood-2

t d Name

A 1 number-of-bins
D 1 segmentation-shape
D 1 max-labels
D 2 0-cells
G 1-components
G bin-〈b〉
D 2 〈q〉-〈p〉
G 2-components
G bin-〈b〉
D 2 〈q〉-〈p〉
G 3-components
G bin-〈b〉
D 2 〈q〉-〈p〉
D 1 parts-counters-1
D 1 parts-counters-2
D 1 parts-counters-3

Figure 4.7: Two HDF5 files store the information extracted during block-
wise processing. Along with each data item, its type t (a group G, a dataset
D, or an attribute A) and dimension d are shown. a) The 1st file provides
constant-time access to the label of any cell as well as to the neighborhoods
of connected components of cells. b) The 2nd file provides constant-time
access to the coordinate lists of entire segments, faces and curves.
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dataset for each component. In addition, the coordinates of all 0-cells were
stored in one 2-dimensional array. This group hierarchy turned out to be
problematic when more than 106 datasets were created per group, using
version 1.8.4 of the HDF5 library. To overcome this problem, the more
complex group hierarchy shown in Fig. 4.7b is used instead. In each of
the groups 1-components, 2-components, and 3-components, a fixed
number of sub-groups is created into which datasets containing coordinates
lists are distributed. Also for performance reasons, the use of extendible
datasets was dropped, which means that due to the block-wise nature of
the algorithm, one complete j-component may be associated with several
datasets representing its fragments from different blocks. The HDF5 file
contains the datasets parts-counters-j for the number of datasets a single
j-connected is split into.

4.7.1 Alternatives

A more obvious way to store the coordinate lists is to create one binary file
for each list. The use of many files offers the advantage that the coordinate
lists may easily be extended by appending to files, an important asset for
block-wise processing. However, bearing in mind that large segmentations
easily contains in excess of 106 connected components, the vast amount of
files places a heavy burden on the file system, making simple operations
such as copying the data extremely time consuming. In contrast, HDF5
was designed to organize large numbers of binary datasets.

A good alternative to HDF5 is a relational database. Experiments with
a PostgreSQL database showed promising performance. This approach was
nevertheless abandoned in favor of HDF5 because the necessity to install
and configure a database might deter potential users from trying out the
software.

4.8 Conclusion

In this chapter, a new algorithm for geometry and topology extraction from
large volume segmentations is proposed. In contrast to previous methods,
this algorithms processes volume segmentations in a block-wise fashion.
This facilitates geometry and topology extraction from large volume seg-
mentations with limited RAM and in parallel. The geometry is stored in
HDF5 files that provide constant time access to the labels of segments, faces
between segments, curves between faces and points between curves at any
location as well as to lists of coordinates that constitute these objects. This
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representation makes a geometric analysis of large volume segmentations
practical.

4.9 Compiling and Installing the Software

The CGP software is provided as C++ source code with a CMake 2.6 build
system for the command line tools cgpx and cgpr as well as for MATLAB
mex files. CGP depends on the HDF5 Library (version 1.8.4 or higher4

and can optionally make use of the Message Passing Interface5 (MPI), and
the Visualization Toolkit6 vtk, . An example segmentation of 50× 50× 50
voxels is included, along with the according outputs of cgpx and cgpr.
The following paragraphs describe how CGP can be compiled on a system
that has HDF5 installed.

4.9.1 Linux/UNIX and GNU C++

Unpack the source archive and create a build directory. Execute CMake in
this directory, providing the path to the source as the last parameter:

unzip cgp.zip

mkdir build-cgp && cd build-cgp

CMake ../cgp

make

If HDF5, MATLAB, or vtk are installed in a non-standard way, CMake
will not find them automatically. In this case, paths to include files and
libraries need to be set manually in the above call, e.g. for HDF5:

CMake -DHDF5_INCLUDE_DIR=$HOME/inc \

-DHDF5_LIBRARY=$HOME/lib/libhdf5.so \

../cgp

4.9.2 Microsoft Windows and VisualStudio

Unpack the source archive, create a build directory, and use the CMake GUI
to configure. If CMake does not find HDF5, MATLAB, or vtk although
they are installed, set the include paths and library paths for these packages
manually. CMake will generate a VisualStudio solution file. Open this file,
build the target ALL BUILD in release mode, and install the binaries by
building the target INSTALL.

4http://www.hdfgroup.org/HDF5
5http://www.mcs.anl.gov/research/projects/mpi
6http://vtk.org
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4.10 Using the Software

4.10.1 From the Command Line

The command line tools cgpx and cgpr compute a representation of the
geometry and topology of a volume segmentation. The segmentation needs
to be stored as a 3-dimensional array of 32-bit unsigned integers in one
dataset in the root group of an HDF5 file. The command line tools are
then used as follows:

cgpx 〈input file〉 〈dataset〉 〈b1〉 〈b2〉 〈b3〉 〈output file〉
cgpr 〈input file〉 〈output file〉.
The first tool constructs a labeled topological grid in a block-wise fashion

using the block shape b1×b2×b3. The second tool writes a list of topological
coordinates for each geometric object. Suppose, as an example, that a
segmentation of 2,0003 voxels is stored as a 3-dimensional array in the
dataset seg of the HDF5 file segmentation.h5. On a desktop computer
equipped with 2 GB of RAM, a block-size of 2003 voxels is reasonable, so
a representation of the geometry and topology of the segmentation can be
obtained like this:

cgpx segmentation.h5 seg 200 200 200 grid.h5

cgpr grid.h5 objects.h5

In order to process several blocks in parallel, invoke the command line tool
cgpx via mpiexec, e.g.

mpiexec -n 2 cgpx segmentation.h5 seg

200 200 200 grid.h5

4.10.2 From MATLAB

In MATLAB, segmentations are conveniently stored as 3-dimensional ar-
rays whose entries are 32-bit unsigned integers that correspond to segment
labels. In order to extract the geometry and topology from a segmenta-
tion, the array has to be written to an HDF5 file by means of the function
cgp save. The following call of cgp save writes the array S as the dataset
seg into the HDF5 file seg.h5:

cgp_save(’seg.h5’, ’/seg’, S);

Geometry and topology extraction can now be performed either from the
command line, using the tools cgpx and cgpr as described in Section 4.10.1,
or directly from MATLAB, using the according mex-functions:
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cgpx(’seg.h5’, ’seg’, uint32([b1 b2 b3]),

’grid.h5’);

cgpr(’grid.h5’, ’objects.h5’);

where b1× b2× b3 specifies the block shape.
A number of functions named with the prefix cgp can be used to select-

ively load data from the geometry file. In the following example, one curve
and its adjacent faces are plotted.

desc = cgp_open(’objects.h5’);

curve_id = 100;

hold on;

tcl = cgp_load_object(desc, 1, curve_id);

cgp_plot_1cells(tcl);

neighbors = desc.neighborhoods{2}(curve_id,:);

for j = 1:length(neighbors)

if neighbors(j) == 0

break;

end

tcl = cgp_load_object(desc,2,neighbors(j));

tri = cgp_triangulate(tcl);

cgp_plot_triangulation(tri, rand(1,3),0.7);

end

hold off;

cgp_close(desc);

A 0-cell and its adjacent curves are plotted as follows:

desc = cgp_open(’objects.h5’);

point_id = 100;

hold on;

tcl = cgp_load_object(desc, 0, point_id);

cgp_plot_0cells(tcl);

neighbors = desc.neighborhoods{1}(point_id,:);

for j = 1:length(neighbors)

if neighbors(j) == 0

break;

end

tcl = cgp_load_object(desc,1,neighbors(j));

cgp_plot_1cells(tcl, rand(1,3));

end

hold off;

cgp_close(desc);
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4.10.3 From C++

The C++ API for parallelized geometry and topology extraction is defined
in the header files cgp hdf5.hxx, CgpxMaster.hxx, and CgpxWorker.hxx.
The construction of the topological grid is invoked by classes

template<class T, class C> class CgpxMaster;

template<class T, class C> class CgpxWorker;

that implement a master-worker-scheme using MPI. The type T is used
for labels of geometric objects; unsigned integers of at least 32 bits should
be used. The type C is used for coordinates to navigate in arrays. 16-bit
integers are sufficient if the segmentation is smaller than 32769 voxels in
each dimension.

The coordinate lists of all geometric objects can be constructed from the
topological grid by means of the function

template<class T, class C>

void geometry3blockwise(

const hid_t&, // input HDF5 file

const hid_t& // output HDF5 file

);

The source files of the command line tools,

src/cmd/cgpx.cxx

src/cmd/cgpr.cxx

show the interested reader how the classes and function are used.
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5 Energy Minimization in Higher-order Graphical
Models by Lazy Flipping

5.1 Synopsis

In Chapter 3, the problem of segmenting volume images of nervous systems
is cast into an NP-hard problem of optimizing functions of binary variables
that decompose according to a graphical model. Chapter 4 describes the
representation of the volume image on which the graphical model is built.
This chapter presents a new search algorithm for the approximate solu-
tion of the optimization problem raised in Chapter 3. The scope of this
algorithm goes beyond the application in Chapter 3. It can in fact be ap-
plied to binary-valued models of any order and structure. The main novelty
is a technique to constrain the search space based on the structure of the
graph. When pursued to the full search depth, the algorithm is guaranteed
to converge to a global optimum, passing through a series of monoton-
ously improving local optima that are guaranteed to be optimal within a
given and increasing Hamming distance. For a search depth of 1, the al-
gorithm specializes to Iterated Conditional Modes (ICM). Between these
extremes, a useful tradeoff between approximation quality and runtime is
established. Experiments on models derived from both illustrative and real
problems show that approximations found with limited search depth match
or improve those obtained by state-of-the-art methods based on message
passing and linear programming.

5.2 Introduction

Energy functions that depend on thousands of binary variables and decom-
pose according to a graphical model (Section 2.1.2) into potential functions
that depend on subsets of all variables have been used successfully for pat-
tern analysis, e.g. in the seminal works by Besag (1986); Boykov et al.
(2001); Geman and Geman (1984); McEliece et al. (1998). An important
problem is the minimization of the sum of potentials, i.e. the search for
an assignment of zeros and ones to the variables that minimizes the en-
ergy. This problem can be solved efficiently by dynamic programming if
the graph is acyclic (Pearl, 1988) or its treewidth is small enough (Laur-
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itzen, 1996), and by finding a minimum s-t-cut (Boykov et al., 2001) if the
energy function is (permuted) submodular (Kolmogorov and Zabin, 2004;
Schlesinger, 2007). In general, the problem is NP-hard (Kolmogorov and
Zabin, 2004). For moderate problem sizes, exact optimization is some-
times tractable by means of Mixed Integer Linear Programming (MILP)
(Schrijver, 1986, 2003). Contrary to popular belief, some practical com-
puter vision problems can indeed be solved to optimality by modern MILP
solvers (cf. Section 5.6). However, all such solvers are eventually over-
burdened when the problem becomes too large. In cases where exact
optimization is intractable, one has to settle for approximations. While
substantial progress has been made in this direction, a deterministic non-
redundant search algorithm that constrains the search space based on the
topology of the graphical model has not been proposed before. This art-
icle presents a depth-limited exhaustive search algorithm, the Lazy Flipper,
that does just that.

The Lazy Flipper starts from an arbitrary initial assignment of zeros
and ones to the variables that can be chosen, for instance, to minimize
the sum of only the first order potentials of the graphical model. Starting
from this initial configuration, it searches for flips of variables that reduce
the energy. As soon as such a flip is found, the current configuration is
updated accordingly, i.e. in a greedy fashion. In the beginning, only single
variables are flipped. Once a configuration is found whose energy can no
longer be reduced by flipping of single variables, all those subsets of two
and successively more variables that are connected via potentials in the
graphical model are considered. When a subset of more than one variable
is flipped, all smaller subsets that are affected by the flip are revisited. This
allows the Lazy Flipper to perform an exhaustive search over all subsets
of variables whose flip potentially reduces the energy. Two special data
structures described in Section 5.4 are used to represent each subset of
connected variables precisely once and to exclude subsets from the search
whose flip cannot reduce the energy due to the topology of the graphical
model and the history of unsuccessful flips.

Overall, the new algorithm has four favorable properties: (i) It is strictly
convergent. While a global minimum is found when searching through all
subgraphs (typically not tractable), approximate solutions with a guaran-
teed quality certificate (Section 5.5) are found if the search space is re-
stricted to subgraphs of a given maximum size. The larger the subgraphs
are allowed to be, the tighter the upper bound on the minimum energy
becomes. This allows for a favorable trade-off between runtime and ap-
proximation quality. (ii) Unlike in brute force search, the runtime of lazy
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flipping depends on the topology of the graphical model. It is exponential
in the worst case but can be shorter compared to brute force search by an
amount that is exponential in the number of variables. It is approximately
linear in the size of the model for a fixed maximum search depth. (iii) The
Lazy Flipper can be applied to graphical models of any order and topo-
logy, including but not limited to the more standard grid graphs. Directed
Bayesian Networks and undirected Markov Random Fields are processed in
the exact same manner; they are converted to factor graph models (Kschis-
chang et al., 2001) before lazy flipping. (iv) Only trivial operations are
performed on the graphical model, namely graph traversal and evaluations
of potential functions. These operations are cheap compared, for instance,
to the summation and minimization of potential functions performed by
message passing algorithms, and require only an implicit specification of
potential functions in terms of program code that computes the function
value for any given assignment of values to the variables.

Experiments on simulated and real-world problems, submodular and non-
submodular functions, grids and irregular graphs (Section 5.6) assess the
quality of Lazy Flipper approximations, their convergence as well as the
dependence of the runtime of the algorithm on the size of the model and
the search depth. The results are put into perspective by a comparison with
Iterated Conditional Modes (ICM) (Besag, 1986), Belief Propagation (BP)
(Kschischang et al., 2001; Pearl, 1988), Tree-reweighted BP (Wainwright
and Jordan, 2008; Wainwright et al., 2005) and a Dual Decomposition an-
satz using sub-gradient descent methods (Kappes et al., 2010; Komodakis
et al., 2010).

5.3 Related Work

The Lazy Flipper is related in at least four ways to existing work.
First, it generalizes Iterated Conditional Modes (ICM) for binary vari-

ables (Besag, 1986). While ICM leaves all variables except one fixed in
each step, the Lazy Flipper can optimize over larger (for small models: all)
connected subgraphs of a graphical model. Furthermore, it extends Block-
ICM (Frey and Jojic, 2005) that optimizes over specific subsets of variables
in grid graphs to irregular and higher-order graphical models. Naive at-
tempts to generalize ICM and Block-ICM to optimize over subgraphs of size
k would consider all sequences of k connected variables and ignore the fact
that many of these sequences represent the same set. This causes substan-
tial problems because the redundancy is large, as we show in Section 5.4.
The Lazy Flipper avoids this redundancy, at the cost of storing one unique
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representative for each subset. Compared to randomized algorithms that
sample from the set of subgraphs (Jung et al., 2009; Swendsen and Wang,
1987; Wolff, 1989), this is a memory intensive approach. Up to 8 GB of
RAM are required for the optimizations shown in Section 5.6. Now that
servers with much larger RAM are available, it has become a practical
option.

Second, the Lazy Flipper is a deterministic alternative to the randomized
search for tighter bounds proposed and analyzed in 2009 by Jung et al.
(2009). Exactly as in (Jung et al., 2009), sets of variables that are connected
via potentials in the graphical model are considered and variables flipped
if these flips lead to a smaller upper bound on the sum of potentials. In
contrast to (Jung et al., 2009), unique representatives of these sets are
visited in a deterministic order. Both algorithms maintain a current best
assignment of values to the variables and are thus related to the Swendsen-
Wang algorithm (Barbu and Zhu, 2003; Swendsen and Wang, 1987) and
Wolff algorithm (Wolff, 1989).

Third, lazy flipping with a limited search depth as a means of approx-
imate optimization competes with message passing algorithms (Glober-
son and Jaakkola, 2007; Kschischang et al., 2001; Minka, 2001; Wain-
wright and Jordan, 2008) and with algorithms based on convex program-
ming relaxations of the optimization problem (Globerson and Jaakkola,
2007; Kohli et al., 2008; Kumar et al., 2009; Werner, 2007), in particu-
lar with Tree-reweighted Belief Propagation (TRBP) (Kolmogorov, 2006;
Wainwright and Jordan, 2008; Wainwright et al., 2005) and sub-gradient
descent (Kappes et al., 2010; Komodakis et al., 2010).

Fourth, the Lazy Flipper guarantees that the best approximation found
with a search depth nmax is optimal within a Hamming distance nmax.
A similar guarantee known as the Single Loop Tree (SLT) neighborhood
(Weiss and Freeman, 2001) is given by BP in case of convergence. The
SLT condition states that in any alteration of an assignment of values to
the variables that leads to a lower energy, the altered variables form a
subgraph in the graphical model that has at least two loops. The fact that
Hamming optimality and SLT optimality differ can be exploited in practice.
We show in one experiment in Section 5.6 that BP approximations can be
further improved by means of lazy flipping.

5.4 The Lazy Flipper Data Structures

Two special data structures are crucial to the Lazy Flipper. The first data
structure that we call a connected subgraph tree (CS-tree) ensures
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that only connected subsets of variables are considered, i.e. sets of vari-
ables which are connected via potentials in the graphical model. Moreover,
it ensures that every such subset is represented precisely once (and not
repeatedly) by an ordered sequence of its variables, (cf. Moerkotte and
Neumann, 2006). The rationale behind this concept is the following: If the
flip of one variable and the flip of another variable not connected to the
first one do not reduce the energy then it is pointless to try a simultaneous
flip of both variables because the (energy increasing) contributions from
both flips would sum up. Furthermore, if the flip of a disconnected set of
variables reduces the energy then the same and possibly better reductions
can be obtained by flipping connected subsets of this set consecutively, in
any order. All disconnected subsets of variables can therefore be excluded
from the search if the connected subsets are searched ordered by their size.

Finding a unique representative for each connected subset of variables is
important. The alternative would be to consider all sequences of pairwise
distinct variables in which each variable is connected to at least one of its
predecessors and to ignore the fact that many of these sequences represent
the same set. Sampling algorithms that select and grow connected sub-
sets in a randomized fashion do exactly this. However, the redundancy is
large. As an example, consider a connected subset of six variables of a 2-
dimensional grid graph as depicted in Fig. 5.1a. Although there is only one
connected set that contains all six variables, 208 out of the 6! = 720 pos-
sible sequences of these variables meet the requirement that each variable
is connected to at least one of its predecessors. This 208-fold redundancy
hampers the exploration of the search space by means of randomized al-
gorithms; it is avoided in lazy flipping at the cost of storing one unique
representative for every connected subgraph in the CS-tree.

The second data structure is a tag list that prevents the repeated as-
sessment of unsuccessful flips. The idea is the following: If some variables
have been flipped in one iteration (and the current best configuration has
been updated accordingly), it suffices to revisit only those sets of variables
that are connected to at least one variable that has been flipped. All other
sets of variables are excluded from the search because the potentials that
depend on these variables are unaffected by the flip and have been assessed
in their current state before.

The tag list and the connected subgraph tree are essential to the Lazy
Flipper and are described in the following sections, 5.4.1 and 5.4.2. For a
quick overview, the reader can however skip these sections, take for gran-
ted that it is possible to efficiently enumerate all connected subgraphs of
a graphical model, ordered by their size, and refer directly to the main al-
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Figure 5.1: All connected subgraphs of a graphical model (a) can be rep-
resented uniquely in a connected subgraph tree (CS-tree) (b). Every path
from a node in the CS-tree to the root node corresponds to a connected sub-
graph in the graphical model. While there are 26 = 64 subsets of variables
in total in this example, only 40 of these subsets are connected.

gorithm (Section 5.5 and Alg. 5). All non-trivial sub-functions used in the
main algorithm are related to tag lists and the CS-tree and are described
in detail now.

5.4.1 Connected Subgraph Tree (CS-tree)

The CS-tree represents subsets of connected variables uniquely. Every node
in the CS-tree except the special root node is labeled with the integer index
of one variable in the graphical model. The same variable index is assigned
to several nodes in the CS-tree unless the graphical model is completely
disconnected. The CS-tree is constructed such that every connected subset
of variables in the graphical model corresponds to precisely one path in
the CS-tree from a node to the root node, the node labels along the path
indicating precisely the variables in the subset, and vice versa, there exists
precisely one connected subset of variables in the graphical model for each
path in the CS-tree from a node to the root node.

In order to guarantee by construction of the CS-tree that each subset
of connected variables is represented precisely once, the variable indices of
each subset are put in a special order, namely the lexicographically smallest
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order in which each variable is connected to at least one of its predecessors.
The following definition of these sequences of variable indices is recursive
and therefore motivates an algorithm for the construction of the CS-tree
for the Lazy Flipper. A small grid model and its complete CS-tree are
depicted in Fig. 5.1.

Definition 12 (CSR-Sequence). Given an undirected graph G = (V,E)
whose m ∈ N vertices V = {1, . . . ,m} are integer indices, every sequence
that consists of only one index is called connected subset represent-
ing (CSR). Given n ∈ N and a CSR-sequence (v1, . . . , vn), a sequence
(v1, . . . , vn, vn+1) of n + 1 indices is called a CSR-sequence precisely if
the following conditions hold:

(i) vn+1 is not among its predecessors, i.e. ∀j ∈ {1, . . . , n} : vj 6= vn+1.

(ii) vn+1 is connected to at least one of its predecessors, i.e. ∃j ∈ {1, . . . , n} :
{vj , vn+1} ∈ E.

(iii) vn+1 > v1.

(iv) If n ≥ 2 and vn+1 could have been added at an earlier position
j ∈ {2, . . . , n} to the sequence, fulfilling (i)–(iii), all subsequent vertices
vj , . . . , vn are smaller than vn+1, i.e.

∀j ∈ {2, . . . , n} ({vj−1, vn+1} ∈ E ⇒ (∀k ∈ {j, . . . , n} : vk < vn+1)) .
(5.1)

Based on this definition, three functions are sufficient to recursively build
the CS-tree T of a graphical model G, starting from the root node. The
function q = growSubset(T,G, p) appends to a node p in the CS-tree the
smallest variable index that is not yet among the children of p and fulfills
(i)–(iv) for the CSR-sequence of variable indices on the path from p to the
root node. It returns the appended node or the empty set if no suitable
variable index exists. The function q = firstSubsetOfSize(T,G, n) tra-
verses the CS-tree on the current deepest level n − 1, calling the function
growSubset for each leaf until a node can be appended and thus, the first
subset of size n has been found. Finally, the function q = nextSubset-
OfSameSize(T,G, p) starts from a node p, finds its parent and traverses
from there in level order, calling growSubset for each node to find the
length-lexicographic successor of the CSR-sequence associated with the
node p, i.e. the representative of the next subset of the same size. These
functions are used by the Lazy Flipper (Alg. 5) to construct the CS-tree.

In contrast, the traversal of already constructed parts of the CS-tree
(when revisiting subsets of variables after successful flips) is performed by
functions associated with tag lists which are defined the following section.
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5.4.2 Tag Lists

Tag lists are used to tag variables that are affected by flips. A variable is
affected by a flip either because it has been flipped itself or because it is
connected (via a potential) to a flipped variable. The tag list data structure
comprises a Boolean vector in which each entry corresponds to a variable,
indicating whether or not this variable is affected by recent flips. As the
total number of variables can be large (106 is not exceptional) and possibly
only a few variables are affected by flips, a list of all affected variables is
maintained in addition to the vector. This list allows the algorithm to
untag all tagged variables without re-initializing the entire Boolean vector.
The two fundamental operations on a tag list L are tag(L, x) which tags
the variable with the index x, and untagAll(L).

For the Lazy Flipper, three special functions are used in addition: Given
a tag list L, a (possibly incomplete) CS-tree T , the graphical model G,
and a node s ∈ T , tagConnectedVariables(L, T,G, s) tags all variables on
the path from s to the root node in T , as well as all nodes that are con-
nected (via a potential in G) to at least one of these nodes. The function
s = firstTaggedSubset(L, T ) traverses the first level of T and returns the
first node s whose variable is tagged (or the empty set if all variables are
untagged). Finally, the function t = nextTaggedSubset(L, T, s) traverses T
in level order, starting with the successor of s, and returns the first node t
for which the path to the root contains at least one tagged variable. These
functions, together with those of the CS-tree, are sufficient for the Lazy
Flipper, Alg. 5.

5.5 The Lazy Flipper Algorithm

In the main loop of the Lazy Flipper (lines 2–26 in Alg. 5), the size n
of subsets is incremented until the limit nmax is reached (line 24). Inside
this main loop, the algorithm falls into two parts, the exploration part
(lines 3–11) and the revisiting part (lines 12–23). In the exploration part,
flips of previously unseen subsets of n variables are assessed. The current
best configuration c is updated in a greedy fashion, i.e. whenever a flip
yields a lower energy. At the same time, the CS-tree is grown, using the
functions defined in Section 5.4.1. In the revisiting part, all subsets of sizes
1 through n that are affected by recent flips are assessed iteratively until
no flip of any of these subsets reduces the energy (line 14). The indices of
affected variables are stored in the tag lists L1 and L2 (cf. Section 5.4.2).
In practice, the Lazy Flipper can be stopped at any point, e.g. when a
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time limit is exceeded, and the current best configuration c taken as the
output. It eventually reaches configurations for which it is guaranteed that
no flip of n or less variables can yield a lower energy because all such flips
that could potentially lower the energy have been assessed (line 14). Such
configurations are therefore guaranteed to be optimal within a Hamming
radius of n:

Definition 13 (Hamming-n bound). Given a function E : {0, 1}m →
R, a configuration c ∈ {0, 1}m, and n ∈ N, E(c) is called a Hamming-n
upper bound on the minimum of E precisely if ∀c′ ∈ {0, 1}m(|c′ − c|1 ≤
n⇒ E(c) ≤ E(c′)).

5.6 Experiments

For a comparative assessment of the Lazy Flipper, four optimization prob-
lems of different complexity are considered, two simulated problems and
two problems based on real-world data. For the sake of reproducibility, the
simulations are described in detail and the models constructed from real
data are provided as supplementary material.

The first problem is a ferromagnetic Ising model that is widely used
in computer vision for foreground vs. background segmentation (Boykov
et al., 2001). Energy functions of this model consist of first and second
order potentials that are submodular. The global minimum can therefore be
found via a graph cut. We simulate random instances of this model in order
to measure how the runtime of lazy flipping depends on the size of the model
and the coupling strength, and to compare Lazy Flipper approximations to
the global optimum (Section 5.6.1).

The second problem is a problem of finding optimal subgraphs on a grid.
Energy functions of this model consist of first and fourth order potentials,
of which the latter are not permuted submodular. We simulate difficult
instances of this problem that cannot be solved to optimality, even when
allowing several days of runtime. In this challenging setting, Lazy Flip-
per approximations and their convergence are compared to those of BP,
TRBP and DD as well as to the lower bounds on local polytope relaxations
obtained by DD (Section 5.6.2).

The third problem is the graphical model for removing excessive bound-
aries from image over-segmentations introduced in Chapter 3 but applied in
2D, to the 100 natural test images of the Berkeley Segmentation Database
(BSD) (Martin et al., 2001). Energy functions of this model consist of first,
third and fourth order potentials. In contrast to the grid graphs of the Ising
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Algorithm 5: Lazy Flipper

Input: G: graphical model with m ∈ N binary variables,
c ∈ {0, 1}m: initial configuration, nmax ∈ N: maximum size
of subgraphs to be searched

Output: c ∈ {0, 1}m (modified): configuration corresponding to
the smallest upper bound found (c is optimal within a
Hamming radius of nmax).

1 n← 1; CS-Tree T ← {root}; TagList L1 ← ∅, L2 ← ∅;
2 repeat
3 s← firstSubsetOfSize(T,G, n);
4 if s = ∅ then break;
5 while s 6= ∅ do
6 if energyAfterFlip(G, c, s) < energy(G, c) then
7 c← flip(c, s);
8 tagConnectedVariables(L1, T,G, s);

9 end
10 s← nextSubsetOfSameSize(T,G, s);

11 end
12 repeat
13 s2 ← firstTaggedSubset(L1, T );
14 if s2 = ∅ then break;
15 while s2 6= ∅ do
16 if energyAfterFlip(G, c, s2) < energy(G, c) then
17 c← flip(c, s2);
18 tagConnectedVariables(L2, T,G, s2);

19 end
20 s2 ← nextTaggedSubset(L1, T, s2);

21 end
22 untagAll(L1); swap(L1, L2);

23 end
24 if n = nmax then break;
25 n← n+ 1;

26 end

model and the optimal subgraph model, the corresponding factor graphs
are irregular but still planar. The higher-order potentials are not permuted
submodular but the global optimum can be found by means of MILP in
approximately 10 seconds per model using one of the fastest commercial
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solvers (IBM ILOG CPLEX, version 12.1). Since CPLEX is closed-source
software, the algorithm is not known in detail and we use it as a black box.
The general method used by CPLEX for MILP is a branch-and-bound al-
gorithm (Dakin, 1965; Land and Doig, 1960). The 100 instances of this
model obtained from the test images are used to compare the Lazy Flip-
per to algorithms based on message passing and linear programming in a
real-world setting where the global optimum is accessible (Section 5.6.3).

The fourth problem is identical to the third, except that instances are
obtained from the 3-dimensional volume images of neural tissue acquired
by means of Serial Block Face Scanning Electron Microscopy (SBFSEM)
(Denk and Horstmann, 2004), cf. Chapter 3. Unlike in the 2-dimensional
case, the factor graphs are no longer planar. Whether exact optimization
by means of MILP is practical depends on the size of the model. The
full SBFSEM datasets considered in Chapter 3 consist of more than 20003

voxels. To be able to compare approximations to the global optimum,
we consider 16 models obtained from 16 SBFSEM volume sub-images of
only 1503 voxels for which the global optimum can be found by means of
MILP within a few minutes (Section 5.6.4). The application of the best
approximate solver (BP followed by lazy flipping) to the full dataset is
shown in Chapter 3.

5.6.1 Ferromagnetic Ising model

The ferromagnetic Ising model consists ofm ∈ N binary variables x1, . . . , xm ∈
{0, 1} that are associated with points on a 2-dimensional square grid and
connected via second order potentials Ejk(xj , xk) = 1−δxj ,xk (δ: Kronecker
delta) to their nearest neighbors. First order potentials Ej(xj) relate the
variables to observed evidence in underlying data. The total energy of this
model is the following sum in which α ∈ R+

0 is a weight on the second order
potentials, and j ∼ k indicates that the variables xj and xk are adjacent
on the grid:

∀x ∈ {0, 1}m : E(x) =

m∑
j=1

Ej(xj) + α

m∑
j=1

m∑
k=j+1
k∼j

Ejk(xj , xk) . (5.2)

For each α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, an ensemble of ten simulated Ising
models of 50 · 50 = 2500 variables is considered. The first order potentials
Ej are initialized randomly by drawing Ej(0) uniformly from the interval
[0, 1] and setting Ej(1) := 1 − Ej(0). The exact global minimum of the
total energy is found via a graph cut.
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For each model, the Lazy Flipper is initialized with a configuration that
minimizes the sum of the first order potentials. Upper bounds on the
minimum energy found by means of lazy flipping converge towards the
global optimum as depicted in Fig. 5.2. Color scales and gray scales in
this figure respectively indicate the maximum size and the total number
of distinct subsets that have been searched, averaged over all models in
the ensemble. It can be seen from this figure that upper bounds on the
minimum energy are tightened significantly by searching larger subsets of
variables, independent of the coupling strength α. It takes the Lazy Flipper
less than 100 seconds (on a single CPU of an Intel Quad Xeon E7220 at
2.93GHz) to exhaustively search all connected subsets of 6 variables. The
amount of RAM required for the CS-tree (in bytes) is 24 times as high as
the number of subsets (approximately 50 MB in this case) because each
subset is stored in the CS-tree as a node consisting of three 64-bit integers:
a variable index, the index of the parent node and the index of the level
order successor (Section 5.4.1)1.

For nmax ∈ {1, 6}, configurations corresponding to the upper bounds on
the minimum energy are depicted in Fig. 5.3. It can be seen from this figure
that all connected subsets of falsely set variables are larger than nmax. For
a fixed maximum subgraph size nmax, the runtime of lazy flipping scales
approximately linearly with the number of variables in the Ising model
(cf. Fig.5.4).

5.6.2 Optimal Subgraph Model

The optimal subgraph model consists ofm ∈ N binary variables x1, . . . , xm ∈
{0, 1} that are associated with the edges of a 2-dimensional grid graph. A
subgraph is defined by those edges whose associated variables attain the
value 1. Energy functions of this model consist of first order potentials,
one for each edge, and fourth order potentials, one for each node v ∈ V in
which four edges (j, k, l,m) = N (v) meet:

∀x ∈ {0, 1}m : E(x) =

m∑
j=1

Ej(xj) +
∑

(j,k,l,m)∈N (V )

Ejklm(xj , xk, xl, xm) . (5.3)

1The size of the CS-tree becomes limiting for very large problems. However, for regular
graphs, implicit representations can be envisaged that overcome this limitation.
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Figure 5.2: Upper bounds on the minimum energy of a graphical model
can be found by flipping subsets of variables. The deviation of these upper
bounds from the minimum energy is shown above for ensembles of ten ran-
dom Ising models (Section 5.6.1). Compared to optimization by ICM where
only one variable is flipped at a time, the Lazy Flipper finds significantly
tighter bounds by flipping also larger subsets. The deviations increase with
the coupling strength α. Color scales and gray scales indicate the size and
the total number of searched subsets.
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nmax α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

1

6

∞

Figure 5.3: Configurations found by lazy flipping converge to a global op-
timum as the search depth nmax increases. For Ising models with differ-
ent coupling strengths α (columns), deviations from the global optimum
(nmax = ∞) are depicted in blue (false 0) and orange (false 1), for
nmax ∈ {1, 6}. As the Lazy Flipper is greedy, these approximate solu-
tions depend on the initialization and on the order in which subsets are
visited.
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Figure 5.4: For a fixed maximum subgraph size (nmax = 6), the runtime
of lazy flipping scales only slightly more than linearly with the number of
variables in the Ising model. It is measured for coupling strengths α = 0.25
(upper curve) and α = 0.75 (lower curve). Error bars indicate the standard
deviation over 10 random models. Lines are fitted by least squares. Lazy
flipping takes longer (0.0259 seconds per variable) for α = 0.25 than for
α = 0.75 (0.0218 s/var) because more successful flips initiate revisiting.

All fourth order potentials are equal, penalizing dead ends and branches of
paths in the selected subgraph:

Ejklm(xj , xk, xl, xm) =



0.0 if s = 0

100.0 if s = 1

0.6 if s = 2

1.2 if s = 3

2.4 if s = 4

with s = xj + xk + xl + xm .

(5.4)

An ensemble of 16 such models is constructed by drawing the unary
potentials at random, exactly as for the Ising models. Each model has
19800 variables, the same number of first order potentials, and 9801 fourth
order potentials. Approximate optimal subgraphs are found by Min-Sum
Belief Propagation (BP) with parallel message passing (Kschischang et al.,
2001; Pearl, 1988) and message damping (Murphy et al., 1999), by Tree-
reweighted Belief Propagation (TRBP) (Wainwright and Jordan, 2008), by
Dual Decomposition (DD) (Kappes et al., 2010; Komodakis et al., 2010)
and by lazy flipping (LF). DD affords also lower bounds on the minimum
energy. Details on the parameters of the algorithms and the decomposition
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of the models are given in Appendix 5.7.

Bounds on the minimum energy converge with increasing runtime, as
depicted in Fig. 5.5. It can be seen from this figure that Lazy Flipper
approximations converge fast, reaching a smaller energy after 3 seconds
than the other approximations after 10000 seconds. Subgraphs of up to 7
variables are searched, using approximately 2.2 GB of RAM for the CS-
tree. A gap remains between the energies of all approximations and the
lower bound on the minimum energy obtained by DD. Thus, there is no
guarantee that any of the problems has been solved to optimality. However,
the gaps are upper bounds on the deviation from the global optimum. They
are compared at t = 10000 s in Fig. 5.5. For any model in the ensemble,
the energy of the Lazy Flipper approximation is less than 4% away from
the global optimum, a substantial improvement over the other algorithms
for this particular model.

5.6.3 Pruning of 2D Over-Segmentations

The graphical model for removing excessive boundaries from image over-
segmentations contains one binary variable for each boundary between
segments, indicating whether this boundary is to be removed (0) or pre-
served (1). First order potentials relate these variables to the image con-
tent, and non-submodular third and fourth order potentials connect ad-
jacent boundaries, supporting the closedness and smooth continuation of
preserved boundaries. The energy function is a sum of these potentials:
∀x ∈ {0, 1}m

E(x) =
m∑
j=1

Ej(xj) +
∑

(j,k,l)∈J

Ejkl(xj , xk, xl) +
∑

(j,k,l,p)∈K

Ejklp(xj , xk, xl, xp) . (5.5)

We consider an ensemble of 100 such models obtained from the 100 BSD
test images (Martin et al., 2001). On average, a model has 8845±670 binary
variables, the same number of unary potentials, 5715 ± 430 third order
potentials and 98± 18 fourth order potentials. Each variable is connected
via potentials to at most six other variables, a sparse structure that is
favorable for the Lazy Flipper.

BP, TRBP, DD and the Lazy Flipper solve these problems approximately,
thus providing upper bounds on the minimum energy. The differences
between these bounds and the global optimum found by means of MILP are
depicted in Fig. 5.6. It can be seen from this figure that, after 200 seconds,
Lazy Flipper approximations provide a tighter upper bound on the global
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Figure 5.5: Approximate solutions to the optimal subgraph problem (Sec-
tion 5.6.2) are found by BP, TRBP, DD and the Lazy Flipper (LF). De-
picted are the median, minimum and maximum (over 16 models) of the
corresponding energies. DD affords also lower bounds on the minimum
energy. The mean search depth of LF ranges from 1 (yellow) to 7 (red).
At t = 104 s, the energies of LF approximations come close to the lower
bounds obtained by DD and thus, to the global optimum.
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minimum in the median than those of the other three algorithms. BP and
DD have a better peak performance, solving one problem to optimality.
The Lazy Flipper reaches a search depth of 9 after around 1000 seconds
for these sparse graphical models using roughly 720 MB of RAM for the
CS-tree. At t = 5000 s and on average over all models, its approximations
deviate by only 2.6% from the global optimum.

5.6.4 Pruning of 3D Over-Segmentations

The model described in the previous section is now applied in 3D to re-
move excessive boundaries from the over-segmentation of a volume image.
In an ensemble of 16 such models obtained from 16 SBFSEM volume im-
ages, models have on average 16748±1521 binary variables (and first order
potentials), 26379 ± 2502 potentials of order 3, and 5081 ± 482 potentials
of order 4.

For BP, TRBP, DD and Lazy Flipper approximations, deviations from
the global optimum are shown in Fig. 5.7. It can be seen from this figure
that BP performs exceptionally well on these problems, providing approx-
imations whose energies deviate by only 0.4% on average from the global
optimum. One reason is that most variables influence many (up to 60)
potential functions, and BP can propagate local evidence from all these
potentials. Variables are connected via these potentials to as many as 100
neighboring variables which hampers the exploration of the search space by
the Lazy Flipper that reaches only of search depth of 5 after 10000 seconds,
using 4.8 GB of RAM for the CS-tree, yielding worse approximations than
BP, TRBP and DD for these models.

In practical applications where volume images and the according models
are several hundred times larger and can no longer be optimized exactly,
it matters whether one can further improve upon the BP approximations.
Dashed lines in the first plot in Fig. 5.7 show the result obtained when
initializing the Lazy Flipper with the BP approximation at t = 100s. This
reduces the deviation from the global optimum at t = 50000 s from 0.4%
on average over all models to 0.1%.

5.7 Parameters and Model Decomposition

In all experiments, the damping parameters for BP and TRBP are chosen
optimally from the set {0, 0.1, 0.2, . . . , 0.9}. The step size of the sub-
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Figure 5.6: Approximate solutions to the problem of removing excessive
boundaries from over-segmentations of natural images. The search depth
of the Lazy Flipper, averaged over all models in the ensemble, ranges from
1 (orange) to 9 (red). At t = 5000 s, 3·107 subsets are stored in the CS-tree.
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Figure 5.7: Approximate solutions to the problem of removing excessive
boundaries from over-segmentations of 3-dimensional volume images. The
search depth of the Lazy Flipper, averaged over all models in the ensemble,
ranges from 1 (yellow) to 5 (purple). After 50000 s, 2·108 subsets are stored
in the CS-tree. Dashed lines in the first plot show the result obtained when
initializing the Lazy Flipper with the BP approximation at t = 100s. This
reduces the deviation from the global optimum at t = 50000 s from 0.4%
on average over all models to 0.1%.
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gradient descent is chosen according to

τt = α
1

1 + βt
(5.6)

where β = 0.01 and α is chosen optimally from {0.01, 0.025, 0.05, 0.1, 0.25, 0.5}.
The sequence of step sizes, in particular the function (5.6) and β could be
tuned further. Moreover, (Komodakis et al., 2010) consider the primal-dual
gap and (Kappes et al., 2010) smooth the sub-gradient over iterations in
order to suppress oscillations. These measures can have substantial impact
on the convergence.

The upper bounds obtained by BP, TRBP and DD do not decrease mono-
tonously. After each iteration of these algorithms, we therefore consider the
elapsed runtime and the current best bound, i.e. the best bound of the cur-
rent and all preceding iterations. All five algorithms are implemented in
C++, using the same optimized data structures for the graphical model
and a visitor design pattern that allows us to measure runtime without
significantly affecting performance.

The same decomposition of each graphical model into tree models is
used for TRBP and DD. Tree models are constructed in a greedy fashion,
each comprising as many potential functions as possible. The procedure
is generally applicable to irregular models with higher-order potentials:
Initially, all potentials of the graphical model are put on a white list that
contains those potentials that have not been added to any tree model. A
black list of already added potentials and a gray list of recently added
potentials are initially empty. As long as there are potentials on the white
list, new tree models are constructed. For each newly constructed tree
model, the procedure iterates over the white list, adding potentials to the
tree model if they do not introduce loops. Added potentials are moved
from the white list to the gray list. After all potentials from the white list
have been processed, potentials from the black list that do not introduce
loops are added to the tree model. The gray list is then appended to
the black list and cleared. The procedure finishes when the white list is
empty. As recently shown by Kappes et al. (2010), decompositions into
cyclic subproblems can lead to significantly tighter relaxations and better
integer solutions.

5.8 Conclusion

The optimum of a function of binary variables that decomposes according
to a graphical model can be found by an exhaustive search over only the
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connected subgraphs of the model. We implemented this search, using a
CS-tree to efficiently and uniquely enumerate the subgraphs. Our algorithm
is guaranteed to converge to a global minimum when searching through all
subgraphs which is typically intractable. With limited runtime, approx-
imations can be found by restricting the search to subgraphs of a given
maximum size. Simulated and real-world problems exist for which these
approximations compare favorably to those obtained by message passing
and sub-gradient descent. For large scale problems, the applicability of the
Lazy Flipper is limited by the memory required for the CS-tree. However,
for regular graphs, this limit can be overcome by an implicit representation
of the CS-tree that is subject of future research.
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6 Representation of Multi-dimensional Functions
and Data

6.1 Synopsis

Multi-dimensional arrays are the fundamental data structure used in Chapter 4
to store labelings of the voxel grid and the topological grid and in Chapter 5
to store the value tables of multi-variate potential functions. In C++,
excellent template libraries exist for arrays whose dimension is fixed at
runtime. Arrays whose dimension can change at runtime have been imple-
mented in C. However, a generic object-oriented C++ implementation of
runtime-flexible arrays has so far been missing. In this chapter, a new im-
plementation called Marray is presented, a package of class templates that
fills this gap. Marray is based on views as an underlying concept which
brings some of the flexibility known from high-level languages such as R
and MATLAB R© to C++. It is used throughout the implementation of the
algorithms of Chapters 4 and 5.

6.2 Introduction and Related Work

A d-dimensional array is a data structure in which each data item can be
addressed by a d-tuple of non-negative integers called coordinates. Ad-
dressing data by coordinates is useful in many practical applications. As
an example, consider a digital image of 1920x1080 pixels. In this im-
age, each pixel can either be identified by the memory address where the
associated color is stored or, more intuitively, by a pair of coordinates
(y, x) ∈ {0, . . . , 1919}×{0, . . . , 1079}. Closely related to multi-dimensional
arrays are multi-dimensional views. While arrays are the storage containers
for multi-dimensional data, views are interfaces that allow the programmer
to access data as if it was stored in an array. In the above example, views
can be used to treat any sub-image as if it was stored in a separate ar-
ray. Scientific programming environments such as R1 (Ligges, 2008) and
MATLAB R©2 exploit the versatility of views.

1http://www.r-project.org
2http://www.mathworks.com/products/matlab
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Some of the best implementations of arrays whose dimension is fixed at
runtime are written in C++, among these are the Boost Multidimensional
Array Library (Garcia and Lumsdaine, 2005), Blitz++ (Veldhuizen, 1998),
and MultiArray of the image processing library Vigra3 (Köthe, 2000). All
three packages implement a common interface for views and arrays. Boost
in addition allows the programmer to treat arrays as a hierarchy of nes-
ted containers. In a hierarchy of nested containers, an (n+ 1)-dimensional
array is a container for n-dimensional arrays that have the same size. In
this hierarchy, 1-dimensional arrays differ from all other arrays in that
they are containers of array entries that need not be arrays themselves.
This distinction is realized in all three implementations by means of tem-
plate specialization with respect to the dimension of an array, an approach
that achieves great runtime performance and compatibility with the simple
multi-dimensional arrays that are native to C. However, template special-
ization also means that the data type of an array depends on its dimension.
Thus, the hierarchy of nested containers does not generalize well in C++ to
arrays whose dimension is known only at runtime. This chapter therefore
presents an implementation that is based exclusively on views. Little is
lost because the hierarchy of nested containers can still be implemented as
a cascade of views.

Many practical applications do not require runtime-flexibility because the
dimensions of all arrays are either known to the programmer or restricted to
a small number of possibilities that can be dealt with explicitly. However,
the range of applications where the dimension of arrays is not known a
priori and can change at runtime, possibly depending on the user input,
is significant. In particular, these are applications that deal with multi-
variate data (Chapters 3 and 4) and/or multi-variate functions of discrete
variables (Chapter 5). It is no surprise that the runtime-flexible arrays of
R and MATLAB R© have proven useful in these settings.

In this chapter, Section 6.3 summarizes the mathematics of runtime-
flexible multi-dimensional views and arrays. It is a concise compilation of
existing ideas from excellent research articles (Garcia and Lumsdaine, 2005;
Veldhuizen, 1998) and text books, e.g. (Brass, 2008). Section 6.4 deals with
the C++ implementation of the mathematical concepts and provides some
examples that show how the classes can be used in practice. Readers who
prefer a practical introduction are encouraged to read Section 6.4 first. Sec-
tion 6.4.4 discusses already implemented extensions based on the C++0x
standard proposal (Stroustrup, 2006). Section 6.5 concludes the chapter.

3http://hci.iwr.uni-heidelberg.de/vigra
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6.3 The Mathematics of Views and Arrays

6.3.1 Views

Views provide an interface to access data as if it was stored in an array. A
few definitions are sufficient to describe the properties (syntax), function
(semantics), and transformation of views. These definitions are dealt with
in this section. As they are implemented one-to-one in the Marray classes,
this section also explains in detail how these classes work internally.

Definition 14 (View). A non-degenerate multi-dimensional view is a quad-
ruple (d, s, t, p0) ∈ N×Nd ×Nd ×N in which d is called the dimension, s
the shape, t the strides, and p0 the offset of the view. A tuple (0, ∅, ∅, p0)
is called a degenerate/scalar/0-dimensional view.

Views allow the programmer to address data by tuples of d positive
integers called coordinates. These coordinates are taken from ranges of
values that are determined by the view’s shape:

Definition 15 (Coordinates). Given a view V = (d, s, t, p0),

CV :=

{
{0, . . . , s0 − 1} × . . .× {0, . . . , sd−1 − 1} if d 6= 0

∅ otherwise
(6.1)

is called the set of coordinate tuples of V .

According to this definition, coordinates start from 0 as is the standard
for C++, and not from 1 as in many high-level languages. Which data
item is addressed by a coordinate tuple (c0, . . . , cd−1) ∈ CV is determined
by the addressing function of the view. This function is parameterized by
the view’s strides and offset:

Definition 16 (Addressing Function). Given a view V = (d, s, t, p0)
with d 6= 0, the function aV : CV → N0 with

∀c ∈ CV : aV (c) = p0 +
d−1∑
j=0

tjcj (6.2)

is called the addressing function of V .

Semantically, a coordinate tuple c = (c0, . . . , cd−1) identifies the data
item that is stored at the address aV (c) in memory. Here are some examples:
Assume that the integers 1, . . . , 6 are stored consecutively in memory at the
addresses 100, . . . , 105. The six views in Tab. 6.1 address this memory and
are written down next to the table in matrix notation, i.e. as tables in which
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the entry at row j and column k corresponds to the integer addressed by
the coordinate (j, k):

Table 6.1: Multi-dimensional views on the same data can differ in dimen-
sion, shape, strides, and offset.

View Dim d Shape s Strides t Offset p0
V1 2 (3, 2) (1, 3) 100
V2 2 (3, 2) (2, 1) 100
V3 2 (2, 3) (1, 2) 100
V4 2 (2, 3) (3, 1) 100
V5 2 (2, 2) (3, 1) 101
V6 1 (3) (2) 101

V1 :

 1 4
2 5
3 6

 V2 :

 1 2
3 4
5 6

 V3 :

(
1 3 5
2 4 6

)

V4 :

(
1 2 3
4 5 6

)
V5 :

(
2 3
5 6

)
V6 : (2, 4, 6)

The views V1, . . . , V4 address the same set of integers but in a different
shape and with different addressing functions. Perhaps more interestingly,
V5 is a sub-view of V4 that has the same dimension but a different shape,
and V6 is a sub-view of V3 whose dimension has been reduced. In general,
sub-views can be defined as follows:

Definition 17 (Sub-View). Given a view V = (d, s, t, p0) with d 6= 0, a
start coordinate c ∈ CV , and a shape s′ ∈ Nd such that ∀j ∈ {0, . . . , d−1} :
cj + s′j ≤ sj ,

sub-view(V, c, s′) := (d, s′, t, p0 + aV (c)) (6.3)

is called the sub-view of V with the shape s′, starting at the co-
ordinate c.

The convenient access to sub-views is one of the main reasons why multi-
dimensional views are useful in practice.

As important as the construction of sub-views is the binding of coordin-
ates. If one coordinate in a d-dimensional view is bound to a value, the
result is a (d− 1)-dimensional view. In the above example, V6 arises from
V3 by binding coordinate 0 to the value 1. In general, coordinate binding
works as follows:
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Definition 18 (Coordinate Binding). Given a view V = (d, s, t, p0) with
d 6= 0, a dimension j ∈ {0, . . . , d− 1} and a value x ∈ {0, . . . , sj − 1},

bind(V, j, x) := (d− 1, s′, t′, p′0) (6.4)

with s′ = (s0, . . . , sj−1, sj+1, . . . , sd−1), t
′ = (t0, . . . , tj−1, tj+1, . . . , td−1)

and p′0 = aV (c) with c ∈ CV such that ∀k ∈ {0, . . . , d − 1} : ck = xδjk
is said to arise from V by binding coordinate j to the value x.

By Def. 17, sub-view(V, c, s′) has the same dimension as V . However, the
shape of the sub-view may be equal to one in some dimensions, i.e. s′j = 1
for some j. Since 0 is the only admissible coordinate in these singleton
dimensions, it makes sense to bind such coordinates to 0. Binding the
coordinates in all singleton dimensions to 0 is called squeezing.

An operation that preserves both the dimension and the memory ad-
dressed by a view is permutation. Permuting a view permutes the view’s
shape and strides, respectively:

Definition 19 (Permutation). The permutation of a non-degenerate
view V = (d, s, t, p0) w.r.t. a bijection σ : {0, . . . , d− 1} → {0, . . . , d− 1} is
the view

permute(V, σ) := (d, s′, t′, p0) (6.5)

where s′, t′ ∈ Nd and ∀j ∈ {0, . . . , d− 1} : s′j = sσ(j) ∧ t′j = tσ(j).

Two special cases of permutations are transpositions and cyclic shifts.
Transpositions exchange the shape and strides in only two dimensions. In
the above example, V1 and V4 are transposes of each other, and so are V2
and V3. Cyclic shifts permute a view in a cyclic fashion. As an example,
consider a 3-dimensional view whose shape is (2, 3, 7). If this view is shifted
by 1, the resulting view has the shape (7, 2, 3), and a shift by -1 yields a
view having the shape (3, 7, 2). In general, cyclic shifts can be defined and
computed as follows:

Definition 20 (Cyclic Shift). The cyclic shift of a non-degenerate view
V = (d, s, t, p0) w.r.t. z ∈ Z is the view

shift(V, z) :=


shift(V, z mod d) if d ≤ |z|
shift(V, z − d) if 0 < z < d

(d, s′, t′, p0) otherwise

(6.6)

with s′, t′ ∈ Nd and ∀j ∈ {0, . . . , d−1} : s′j = s(j−z) mod d∧t′j = t(j−z) mod d.
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6.3.2 Scalar Indexing and Iterators

The coordinate tuples of a view can be put in some order. Imposing such
an order allows the programmer to access any data item under the view
by a single index, namely the index of the associated coordinate tuple in
the given order. This is useful in practice because it in turn allows us to
handle sub-views as if they were single-indexed containers holding a subset
of data. Moreover, it facilitates the definition of iterators (Austern, 1998)
on views.

Among all possible orders that can be imposed on coordinate tuples, two
are most commonly used4. In the First Coordinate Major Order (FCMO),
the first coordinate is used as the strongest ordering criterion, meaning
that one tuple is greater than all tuples whose first coordinate is smaller.
Coordinates at higher dimensions are used for ordering only if all coordin-
ates at lower dimensions are equal. In the Last Coordinate Major Order
(LCMO), the last coordinate is the strongest ordering criterion. In the
special case of 2-dimensional views, FCMO and LCMO are called row-
major order and column-major order, respectively. These terms refer
to the matrix notation of data under 2-dimensional views. FCMO is used
in native C arrays whereas LCMO is used in Fortran and MATLAB. Both
orders are defined implicitly by a function that maps coordinate tuples to
unique integer indices. One coordinate is smaller than another precisely if
the associated index is smaller.

Definition 21 (Indexing). Given a view V = (d, s, t, p0) with d 6= 0 and
a coordinate c = (c0, . . . , cd−1) ∈ CV ,

fcmo(c) :=
d−1∑
j=0

ujcj with uj =
d−1∏
k=j+1

sk , (6.7)

lcmo(c) :=

d−1∑
j=0

ujcj with uj =

j−1∏
k=0

sk . (6.8)

are called the FCMO- and LCMO-index of c, respectively. Given that
either FCMO or LCMO is used, u0, . . . , ud−1 are called the shape strides
of V .

As an example, consider a 3-dimensional view V = (d, s, t, p0). Herein,
the indices that correspond to a given coordinate c ∈ CV are computed

4Note, however, that more complex orders can be obtained by defining views with
specific strides.
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according to

fcmo(c) = s1s2c0 + s2c1 + c2 ,

lcmo(c) = c0 + s0c1 + s0s1c2 .

The index that corresponds to a coordinate tuple can be computed ac-
cording to Def. 21. Conversely, the coordinates that correspond to a given
FCMO- or LCMO-index are computed by means of Alg. 7. Given that
either FCMO or LCMO is used, it can happen that the strides are equal
to the shape strides of a view. Such views are called unstrided. In an
unstrided view V = (d, s, t, p0), the address that corresponds to an index
x ∈ N0 is simply x + p0, whereas in a strided view, one needs to compute
first the coordinate c that corresponds to the index x (Alg. 7) and then
the address aV (c) (Def. 16).

Algorithm 6: IndexToCoordinates

Input: x ∈ N0 (index), (u0, . . . , ud−1) ∈ Nd (shape strides)
Output: (c0, . . . , cd−1) ∈ Nd (coordinates)

1 if u0 = 1 then
2 // LCMO
3 for j = d-1 to 0 do
4 cj ← bx/ujc;
5 x← x mod uj ;

6 end

7 else
8 // FCMO
9 for j = 0 to d-1 do

10 cj ← bx/ujc;
11 x← x mod uj ;

12 end

13 end

In summary, we have seen that views are powerful interfaces to address
data either by coordinates or by single indices. It is simple to obtain sub-
views and to bind and permute coordinates.

6.3.3 Arrays

A multi-dimensional array is a data structure whose interface is a view.
While views only reference data via their addressing function, arrays con-
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tain data. In the following definition, the memory is modeled as a function
µ that maps addresses to memory content.

Definition 22 (Array). A d-dimensional array is a tuple (V, q, µ) such
that V = (d, s, t, p0) is a view, q ∈ {FCMO, LCMO}, V is unstrided w.r.t. q,
and µ is a function

µ :

p0, . . . , p0 +

d−1∏
j=0

sj

− 1

→ N . (6.9)

For each c ∈ CV , µ(aV (c)) is called the entry of the array at position c.
Moreover, |CV | is termed the array’s size.

Two transformations are defined on arrays, namely reshaping and res-
izing. Reshaping can change the dimension and shape of an array while
preserving its size and entries.

Definition 23 (Reshaping). Given an array A = ((d, s, t, p0), q, µ) as

well as d′ ∈ N, and s′ = (s0, . . . , sd′−1) such that
∏d′−1
j=0 s

′
j =

∏d−1
j=0 sj ,

the reshaping of A w.r.t. s′ is the array

reshape(A, s′) := ((d, s′, t′, p0), q, µ) (6.10)

in which (d, s′, t′, p0) is a view that is unstrided w.r.t. q.

In fact, reshaping can not only be defined for arrays but also, more
generally, for unstrided views.

In contrast to reshaping, resizing can change the size and hence the
interval of memory of an array:

Definition 24 (Resizing). Given an array A = (V, q, µ), a new dimension
d′ ∈ N and a new shape s′ = (s0, . . . , sd′−1), an array (V ′, q, µ′) is called
a resizing of A w.r.t. s′, denoted resize(A, s′), if and only if the following
conditions hold:

(i) V ′ = (d′, s′, t′, p′0) is a view that is unstrided w.r.t. q. (Note that
the offset p′0 of the new array can differ from that of V due to a possible
re-allocation of memory).

(ii) entries of A are preserved according to the following rule:

∀(c, c′) ∈ D : µ(aV (c)) = µ′(aV ′(c
′)) (6.11)

with

D = {(c, c′) ∈ CV × C ′V | ∀j ∈ {0, . . . ,min(d, d′)− 1} : cj = c′j

∧∀j ∈ {min(d, d′), . . . , d− 1} : cj = 0

∧∀j ∈ {min(d, d′), . . . , d′ − 1} : c′j = 0)}
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Figure 6.1: Class template hierarchy of the Marray package. The five ma-
jor class templates are View, Marray, Matrix, Vector, and Iterator. The
Boolean template parameter isConst is used to determine whether the
data addressed by views and iterators is constant or mutable.

Finally, all transformations of views can be used similarly with arrays.

6.4 Implementation

The definitions introduced above are implemented in C++ in the Marray
package (cf. Chapter 7). Marray depends only on the C++ Standard Tem-
plate Library (STL) (Austern, 1998). The single header file marray.hxx

is sufficient to use the package. This header file contains the source code
as well as reference documentation in the doxygen format5. In addition to
this file, we provide unit tests (Hamill, 2004) in the file tests.cxx as well
as the reference documentation in HTML.

Five major class templates are defined in the namespace marray. These
are View, Marray, Matrix, Vector, and Iterator. Their organization is
depicted in Fig. 6.1. The Boolean template parameter isConst is used to
determine whether the data addressed by views and iterators is constant or
mutable. This facilitates a unified implementation for both cases without
any redundancy in the code (cf. Meyers, 2005). The class templates Marray,
Matrix, and Vector inherit the interface from View<T, false>.

5http://www.doxygen.org/
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6.4.1 Using Arrays

The simplest means to construct an array is a pair of iterators that point to
the beginning and the end of a sequence that determines the array’s shape:

size_t shape[] = {3, 2, 4};

marray::Marray<float> a(shape, shape+3);

Constructing matrices and vectors is even simpler and works as most pro-
grammers will expect, namely by providing the size and the number of rows
and columns, respectively:

marray::Vector<float> v(42);

marray::Matrix<float> m(7, 8);

In addition to the shape, one can specify an initial value for all array entries
as well as the order in which entries are stored, e.g.

marray::Marray<float> b(shape, shape+3, 1.0f,

marray::FirstMajorOrder);

By default, all entries of a marray::Marray<T> are initialized with T() and
are stored in Last Coordinate Major Order, cf. Section 6.3. Depending on
the application, the initialization of array entries is sometimes unnecessary
and can thus be skipped to improve performance. Initialization skipping
works as follows:

size_t shape[] = {3, 2, 4};

marray::Marray<float> a(marray::SkipInitialization,

shape, shape+3);

marray::Vector<float> v(marray::SkipInitialization, 42);

marray::Matrix<float> m(marray::SkipInitialization, 7, 8);

After construction, the dimension, size, shape, and storage order of an
array can be obtained as follows.

unsigned short dimension = a.dimension();

size_t size = a.size();

bool firstMajorOrder = a.firstMajorOrder();

marray::Vector<size_t> shape(dimension);

for(size_t j=0; j<dimension; ++j)

shape[j] = a.shape(j);
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The entries of an array can be accessed in three different ways: by co-
ordinates, by single indices, and by means of STL compliant random access
iterators (cf. Austern, 1998). In fact, the following four assignments have
the same effect on the array a.

// 1.

a(1, 0, 2) = 4.2f;

// 2.

size_t pos[] = {1, 0, 2};

a(pos) = 4.2f;

// 3.

a(13) = 4.2f;

// 4.

marray::Marray<float>::iterator it = a.begin();

it[13] = 4.2f;

It can sometimes be useful to print the entries of an array to std::cout.
This can be done using

std::cout << a.asString(marray::TableStyle);

std::cout << a.asString(marray::MatrixStyle);

std::cout << a.asString(); // MatrixStyle is the default

In table style output, each printed row consists of a coordinate tuple and
the corresponding array entry. In the more compact matrix notation only
the entries of the array are printed.

Both the shape and the size of an array can be changed at runtime.
Reshaping modifies an array’s shape and dimension while preserving its
size. Resizing can in addition cause the amount of memory allocated by
the array to grow or shrink.

size_t newShape[] = {2, 2, 3, 2};

a.reshape(newShape, newShape+4);

newShape[0] = 4;

a.resize(newShape, newShape+4);

The function resize can alternatively be called with a third parameter
that specifies the initial value for newly allocated entries. For matrices and
vectors, reshaping and resizing works as follows:

v.resize(56);

m.reshape(8, 7);

m.resize(2, 4);
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It can sometimes be useful to permute the dimensions of an array, e.g. to
transpose a matrix. Three functions, permute, transpose, and shift serve
this purpose. While permute deals with the most general case of permut-
ing dimensions in any desired way, transpose with two parameters swaps
any two dimensions, transpose with no parameters reverses the order of
dimensions, and shift shifts them in a cyclic fashion. No matter which
function is used, only the array’s interface is adjusted; no data is moved or
copied.

size_t shape[] = {3, 2, 4};

marray::Marray<float> c(shape, shape+3);

size_t permutation[] = {1, 0, 2};

c.permute(permutation); // (2, 3, 4)

c.transpose(0, 2); // (4, 3, 2)

c.shift(-1); // (3, 2, 4)

c.shift(2); // (2, 4, 3)

c.transpose(); // (3, 4, 2)

Finally, the arithmetic operators +, -, *, /, +=, -=, *=, /= are defined.
They operate on an array and its entry data type (in any order), as well
as on pairs of arrays that have the same shape. In the latter case, the
operation is performed on each pair of entries, for every coordinate. In
summary, this allows the programmer to use arithmetic expressions like
these:

marray::Marray<float> d;

d = -a + 0.5f*a - 0.25f*a*a;

d = 1.0f / (1.0f + a*a);

d = (a /= 2.0f);

--a;

6.4.2 Using Views

Arrays, including matrices and vectors, are containers. Views are inter-
faces that allow the programmer to access data as if it was stored in an
array. A view can be constructed either as a sub-view of another view or
array, or directly on an interval of memory. In the following example, a
2-dimensional sub-view is constructed that ranges from position (3, 2, 4) to
position (7, 2, 8) in a 3-dimensional array.

size_t shape[] = {20, 20, 20};

marray::Marray<float> d(shape, shape+3);

142



size_t base[] = {3, 2, 4};

size_t subShape[] = {5, 1, 5};

marray::View<float> v = d.view(base, subShape);

v.squeeze(); // collapse singleton dimension

Each view defines an internal order of coordinates, either First or Last
Coordinate Major Order. This order determines how an iterator traverses
the view as well as how single indices are mapped to coordinates, e.g. which
entry of d in the above example is referenced by, say, v(7). The coordinate
order of a sub-view need not be the same as the coordinate order of the
view based on which it is constructed, although this is the default. Instead,
it is possible to specify the coordinate order of sub-views explicitly, e.g.

marray::View<float> v =

d.view(base, subShape, marray::FirstMajorOrder);

This facilitates the construction of sub-views that behave exactly like the
views or arrays on which they are based, except that the coordinate order
is reverted:

marray::Vector<size_t> base(d.dimension());

marray::Vector<size_t> subShape(d.dimension());

for(size_t j=0; j<d.dimension(); ++j)

subShape(j) = d.shape(j);

marray::View<float> v = d.view(base.begin(), subShape.begin(),

marray::FirstMajorOrder);

Views can be constructed directly on an interval of memory. If all data
in this interval is to be referenced by the view, i.e. if the view is to be
unstrided (cf. Section 6.3), it is sufficient to provide the view’s shape and
a pointer to the beginning of the data.

float data[24];

size_t shape[] = {3, 2, 4};

marray::View<float> w(shape, shape+3, data);

The same constructor can be used with two additional parameters,

marray::View<float> w(shape, shape+3, data,

marray::LastMajorOrder, marray::FirstMajorOrder);

These parameters specify the external coordinate order based on which
the strides of the view are computed as well as the internal coordinate order
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that is used for indexing and iterators. By default, Last Coordinate Major
Order is used for both. Views on constant data are constructed similar to
views on mutable data, e.g.

marray::View<float, marray::Const> w(shape, shape+3, data);

Constructing unstrided views is only the simplest case. In general, the
strides as well as the offset of a view (cf. Section 6.3) can be set explicitly,
e.g.

size_t shape[] = {3, 2, 4};

size_t strides[] = {2, 1, 6};

size_t offset = 0;

marray::View<float> w(shape, shape+3, strides, data, offset,

marray::FirstMajorOrder);

The data under a view is accessed similar to the entries of arrays, i.e. by
coordinates, by single indices, or by means of iterators. Coordinate per-
mutation works on views exactly the same way it works on arrays. A sub-
view where one coordinates is bound to a certain value can be obtained as
follows:

marray::View<float> x = w.boundView(2, 1);

// binds dimension 2 to coordinate 1

The member functions reshape, permute, transpose, shift, and squeeze

transform the view for which they are called. They are complemented by
member functions called reshapedView, permutedView, etc. that leave the
view for which they are called unchanged and return a new view that is
transformed in the desired way. The latter functions are first of all con-
venient but they also resemble the way transformations are implemented in
Boost for views whose dimension is fixed at runtime. In fact, all operations
that change the dimension of a view need to be implemented in this way if
the dimension of the view is a template parameter because the data type
changes together with the dimension.

All arithmetic operators are defined on views. Assigning a view x to a
view on mutable data y via y = x copies the data under x to the memory
addressed by y, provided that x and y have the same shape. The copy
is performed per coordinate, not per scalar index or iterator. Potential
memory overlaps between the two views x and y are taken care of. Data is
copied if necessary, in an assignment y = x, as well as in in-place operations
such as x += y. Assigning a view x to a view on constant data z copies
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the view, not the data. This is useful to recycle the memory allocated for
a view on constant data.

In summary, the views, arrays, matrices, and vectors provided in the Mar-
ray package behave exactly like STL containers (Austern, 1998) in terms
of their fundamental interface. Additional functions going beyond the in-
terface of STL containers allow the programmer to adjust the dimension,
shape, strides, as well as the storage order at runtime.

6.4.3 Invariants

For the sake of runtime performance, some redundancy is built into the
view classes. In particular, the size and the shape strides of views are stored
explicitly as attributes although they could be computed on demand from
the shape and the internal order of coordinates. An additional Boolean
flag indicates whether a view is unstrided and has a zero offset. This
flag supports the fast copying of data via memcpy, provided that views do
not overlap. In case of overlap, the necessary temporary copy is created
internally.

The redundant attributes need to be kept consistent under all possible
transformations of views and arrays. The private member functions

testInvariant()

check for consistency. They are called after any transformation in debug
mode. The reader is encouraged to look these functions up in the source
code. Since views and arrays are fundamental data structures that should
work at peak performance in released code, it is important that all tests
can be removed. A function proposed by Stroustrup (2000) is used to meet
this requirement.

template<class A> inline void Assert(A assertion) {

if(!assertion)

throw std::runtime_error("Assertion failed.");

}

Along with this function, the Boolean constants NO_DEBUG and NO_ARG_TEST

are defined in the namespace marray. Invariant testing and the testing of
function arguments is conditioned on these variables, e.g.

Assert(NO_DEBUG || this->dimension_ > 0);

Assert(NO_ARG_TEST || std::distance(begin, end) != 0);

145



In consequence, compilers will remove the respective tests if NO_DEBUG and
NO_ARG_TEST are set to true. By default, both variables are set in accord-
ance with NDEBUG.

6.4.4 C++0x Extensions

Features of the C++0x standard proposal (Stroustrup, 2006) facilitate
three highly desirable extensions whose implementation in C++98 would
have drawbacks. The C++0x code is part of the Marray package. How-
ever, since C++0x is not yet approved, these extensions are considered
experimental and have to be enabled explicitly by defining the variables

HAVE_CPP0X_TEMPLATE_TYPEDEFS

HAVE_CPP0X_VARIADIC_TEMPLATES

HAVE_CPP0X_INITIALIZER_LISTS

6.4.4.1 Template Aliases

Views are declared as class templates in the namespace marray:

template<class T, bool isConst = false> class View;

To support the writing of self-explanatory code, the constants Const = true

and Mutable = false are defined. Still, having to write

marray::View<float, marray::Const> v;

to declare a view on constant data is perhaps not what a programmer would
guess. We could have implemented a class template ConstView separately.
However, even with inheritance, this would have led to excessive redund-
ancy in the code that would have made the implementation error prone
and hard to maintain (Sutter and Alexandrescu, 2004). C++0x provides
an elegant solution, namely the definition of the template alias (Reis and
Stroustrup, 2007)

template<class T> using ConstView = View<T, true>;

This alias allows the programmer to construct a view on constant data in
a straightforward way:

marray::ConstView<float> v;
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6.4.4.2 Variadic Templates

The entries of views and arrays can be accessed by coordinates. For the sake
of convenience, it should be possible for the programmer to use operator()
with any number of parameters.

C++98 has inherited from C a syntax for functions whose number of
parameters is unspecified at compile time. However, this mechanism is
not type safe (Stroustrup, 2000) and its use is therefore discouraged. In
the C++98 compatible part of the code, we thus make a compromise and
implement the operator in a type safe manner for up to four parameters.
A runtime error is issued if the wrong instance is used. Beyond four di-
mensions, operator() can be used with one argument, an iterator to a
coordinate sequence.

C++0x defines variadic templates (Gregor et al., 2006, 2007) that allow
us to recursively define operator() in a type safe manner for any number
of parameters. We quote here the main recursive declaration and refer to
the source code for details.

template<typename... Args>

reference_type operator()(const size_t &&,

const Args && ...);

reference_type operator()(const size_t &&);

6.4.4.3 Initializer Lists

Constructors and member functions of Marray classes take iterators into
coordinate sequences as input. One iterator that points to the beginning
of the sequence is sufficient if the length of the sequence can be derived,
e.g. in the member function permute of View. Iterator pairs are required
otherwise, e.g. in the member function resize of Marray. Iterators are
used extensively in the STL, so most programmers will find them familiar.
However, the use of iterators and iterator pairs is cumbersome if sequences
are known at compile time. In fact, neither of the following alternatives is
really convenient:

size_t shape[] = {4, 2, 3};

marray::Marray<float> a(shape, shape+3);

std::vector<size_t> shape(3);

shape[0] = 4;

shape[1] = 2;
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shape[2] = 3;

marray::Marray<float> a(shape.begin(), shape.end());

C++0x defines initializer lists (Stroustrup and Reis, 2007) that allow us
to overload functions such that the programmer can simply write

marray::Marray<float> a({4, 2, 3});

6.5 Conclusion

C++ class templates are provided for multi-dimensional views and arrays
whose dimension, shape, and size can change at runtime. The C++98
interface of these templates is as convenient as in the best implementations
of arrays with fixed dimensions. Usability is further improved by C++0x
extensions.
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7 Conclusion

This thesis has introduced a new graphical model for segmenting volume
images based on an initial over-segmentation of the volume into supervoxels
(Chapter 3). The problem which supervoxels to merge in order to arrive at
the correct segmentation has been formulated as an energy minimization
problem on binary variables that are associated with faces between super-
voxels and indicate whether these faces should be preserved or removed.
This new formulation constitutes substantial progress over models that cast
the segmentation problem into a supervoxel labeling problem (Section 3.3)
because it has the same expressiveness but an exponentially smaller and
less degenerate state space. Non-binary variables and the arbitrariness as
to which label to assign to which segment are avoided altogether.

Chapter 4 has presented a new algorithm that encodes the geometry and
topology of volume segmentations explicitly, in a designated data structure.
This algorithm has facilitated the extraction of features from supervoxel
segmentations of volume images based on which the potential functions
of the graphical model could be learned from a small amount of empir-
ical training data. The new algorithm operates on the volume image in a
block-wise fashion and in parallel, thus limiting memory consumption to
a prescribed amount while keeping runtime linear in the number of voxels
and log-linear in the number of faces and curves. This is of fundamental
importance for the analysis of large volume images because it makes compu-
tational geometry applicable in practice in the gigavoxel regime (Tab. 3.6).

The problem of finding a segmentation with minimal energy for a learned
graphical model has been solved to optimality for problems with up to 105

variables (Chapter 5). This result is important because superpixel seg-
mentation of 2-dimensional natural images have exactly this complexity
(Section 5.6.3). For models that are too large to be optimized exactly (the
full model in Chapter 3 has 107 variables, and 5 GB are required to store
only the values of its potential functions), tight approximate solutions have
been found by means of a new constrained search algorithm (the Lazy Flip-
per) introduced in Chapter 5. The Lazy Flipper is the first generalization
of Iterated Conditional Modes (ICM) for binary variables that handles a
search depth greater than one efficiently in graphical models with arbitrary
and possibly irregular structure.
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A practical application of the segmentation model, the geometry extrac-
tion and the optimization algorithm to the problem of segmenting volume
images of neural tissue acquired by means of Serial Block Face Scanning
Electron Microscopy (SBFSEM) (Denk and Horstmann, 2004) for the pur-
pose of neural circuit reconstruction (connectomics) has been shown in
Chapter 3. Compared to an automated segmentation approach that does
not take the geometry of supervoxels into account (Andres et al., 2008), the
reconstruction quality has improved substantially (Fig. 3.11), as measured
on a benchmark dataset of 2048 × 1792 × 2048 voxels that shows a part
of the inner plexiform layer of rabbit retina, by comparing the final seg-
mentation to the gold standard. The thinnest neuronal processes are still
falsely split, but advances in tissue preparation and imaging may alleviate
this problem in the future.

The new algorithms and data structures introduced in this work have
been put into generally applicable C++ source code and software and are
available for download1. These are:

• CGP, the C++ package for geometry and topology extraction from
very large volume segmentations described in Chapter 4

• OpenGM, a library for optimization in higher order graphical models
with discrete variables (Andres et al., 2010b) that includes an imple-
mentation of the Lazy Flipper (Chapter 5) and other state-of-the-art
optimization algorithms

• Marray, the fundamental data structure for multi-variate functions
and data (Chapter 6).

The most important result from this work is that boundary-based seg-
mentation models and computational geometry on supervoxel segmenta-
tions are applicable in practice in the gigavoxel regime. Given the rapid
development of volume image acquisition techniques, these concepts will
become more important and see applications and adaptations beyond the
scope of this thesis.

1http://hci.iwr.uni-heidelberg.de/Software/
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position and tight Lagrangian relaxation. In K. Daniilidis, P. Maragos,
and N. Paragios, editors, Proceedings of the European Conference
on Computer Vision 2010, pages 735–747. Springer, 2010.

V. Kaynig, B. Fischer, E. Müller, and J. M. Buhmann. Fully automatic
stitching and distortion correction of transmission electron microscope
images. Journal of Structural Biology, 171(2):163–173, 2010a. DOI
http://dx.doi.org/10.1016/j.jsb.2010.04.012.

V. Kaynig, T. Fuchs, and J. M. Buhmann. Neuron geometry extraction by
perceptual grouping in ssTEM images. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition, 2010b.

156

http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1109/ICCV.2007.4408909
http://dx.doi.org/10.1109/ICCV.2007.4408909
http://dx.doi.org/10.1016/j.media.2008.05.002
http://dx.doi.org/10.1016/j.media.2010.06.002
http://dx.doi.org/10.1016/j.jsb.2010.04.012


E. Khalimsky, R. Kopperman, and P. Meyer. Computer graphics and
connected topologies on finite ordered sets. Topology and its
Applications, 36:1–17, 1990. DOI http://dx.doi.org/10.1016/

0166-8641(90)90031-V.

R. Kindermann and J. L. Snell. Markov Random Fields and Their
Applications. AMS, 1980. URL http://www.ams.org/publications/

online-books/conm1-index.

R. Klette. Cell complexes through time. In L. J. Latecki, D. M. Mount, and
A. Y. Wu, editors, Vision Geometry IX, volume 4117, pages 134–145.
Society of Photo-Optical Instrumentation Engineers (SPIE), 2000.

P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr. On
partial optimality in multi-label MRFs. In Proceedings of the 25th
International Conference on Machine Learning, 2008. DOI http:
//dx.doi.org/10.1145/1390156.1390217.

D. Koller and N. Friedman. Probabilistic Graphical Models. MIT
Press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy
minimization. Transactions on Pattern Analysis and Machine
Intelligence, 28(10):1568–1583, 2006. DOI http://dx.doi.org/10.

1109/TPAMI.2006.200.

V. Kolmogorov and R. Zabin. What energy functions can be minimized
via graph cuts? Transactions on Pattern Analysis and Machine
Intelligence, 26(2):147–159, 2004. DOI http://dx.doi.org/http://

dx.doi.org/10.1109/TPAMI.2004.1262177.

N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and
beyond via dual decomposition. Transactions on Pattern Analysis
and Machine Intelligence, 99(PrePrints), 2010. DOI http://dx.doi.
org/10.1109/TPAMI.2010.108.

S. Konishi, A. Yuille, J. Coughlan, and S. Zhu. Statistical edge de-
tection: Learning and evaluating edge cues. Transactions on Pat-
tern Analysis and Machine Intelligence, 25(1):57–74, 2003. DOI
http://dx.doi.org/10.1109/TPAMI.2003.1159946.
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