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Abstract

Mechanical force is one important type of biomechanical signal, the specific
role of which, however, remains to be explored. The mechanism of force
signaling within a biomolecule is lacking a comprehensive understanding.
More importantly, how biomolecules such as proteins withstand high me-
chanical forces, thereby demonstrating their delicate mechanical properties,

is a missing page, yet is the basis for designing biomaterials.

Silk is a mysterious natural protein material that out-performs any indus-
trious counterparts. Its molecular combination of highly stiff as well as
tremendously elastic subunits gives rise to an invincible toughness, which
inspires extensive research efforts on silk mechanics. Here, multiscale mod-
elling and simulations using all-atom molecular dynamics and finite element
methods are used to study silk protein mechanics. Combining these two dif-
ferent methods allows to maintain a certain accuracy of the model, while
raising the computational limit of the modelled system to the micrometer
scale. Using this hybrid approach, we could suggest a silk fiber structure
with serially arranged stiff crystalline subunits in a soft amorphous peptide
matrix, which is stronger than the commonly assumed random arrangement.
Protein 3-sheet crystals with smaller cross section area and longer (-strand
length are found to better reinforce the fiber structure. These findings are
likely to apply to similar semi-crystal materials like polyamides, preliminary

studies of which have been performed in this thesis.

Muscle protein fibrils form networks for carrying the mechanical load present
in living cells. The complex muscle protein network consists of molecules
with well-tailored properties for mechanical adaptivity. The M-band pro-
tein myomesin is one such protein fibril. In collaboration with experimen-

talists using X-ray analysis and force spectroscopy, we analyzed myomesin’s



response to force using force-probe Molecular Dynamics simulations. My-
omesin comprises long a-helices between rigid domains, which we found to
act as strain absorbers in muscle contraction cycles in this study. It also
includes a highly force-resistant dimerization interface, which maintains the
stability of the fibril network in the M-band of the force generating unit of

muscle.

This thesis focused on the two biological systems, silk and myomesin, to dis-
sect the determinants of mechanical function. Using advanced techniques,
Molecular Dynamics simulations, Force Distribution Analysis and Finite El-
ement Methods, we could show how the two proteins have been optimized
by nature in terms of their mechanical properties. As a common theme,
these two proteins utilize a specific assembly of building blocks, most im-
portantly (-sheet structures oriented along the pulling direction, to achieve
their mechanical function. This study, as a theoretical approach, opens the
road for further efforts to dissect the role of forces in biosystems on a range
of scales. It can serve as a guideline for experiments on these and analogous
protein systems. As demonstrated for silk fibers, the computational ap-
proach employed in this thesis can be expected to aid the design of natural

or artificial nano-structured materials.



Zusammenfassung

Mechanische Kraft ist eine wichtige Form des biomechanischen Signals. Thre
Rolle und Wirkung jedoch sind noch unerforscht und der Mechanismus der
meisten Kraftsensoren wirft Ratsel auf. Wie widerstehen Biomolekiile wie
Proteine hohen mechanischen Kraften? Wie konnen sie so empfindlich auf
eine Anderung der mechanischen Umgebung reagieren? Antworten auf diese

Fragen wiirden neue Tiren fiir die Herstellung von Biomaterialien 6ffnen.

Seide ist ein natiirliches Protein. Es erscheint uns als geheimnisvolles Ma-
terial, ist es doch all seinen industriell hergestellten Pendants mechanisch
iiberlegen. Die Kombination von extrem steifen mit enorm elastischen Un-
tereinheiten fithrt zu einer ungewohnlich hohen Zahigkeit, die zu umfan-
greichen Forschungsaufwand auf dem Gebiet der Seidenmechanik inspiri-
ert. In dieser Arbeit wurde die Mechanik von Seidenproteinen mithilfe von
Multiskalen-Modelierung untersucht. Hierzu wurden molekular-dynamische
Simulationen, die alle Atome betrachten sowie Finite-Elemente-Methoden

verwendet.

Durch die Kombination dieser beiden Methoden konnten wir einerseits eine
hohe Genauigkeit des Modells erhalten, und andererseits das modellierte
System trotz des hohen Rechenaufwands ebenso auf der Mikrometerskala
betrachten. Mit diesem hybriden Ansatz liefern wir heute den Vorschlag
fiir eine seidene Faserstruktur, die stéarker ist, als was uns die Natur liefern
kann: FKEine serielle Anordnung der steifen kristallinen Untereinheiten in
einer weichen, amorphen Peptid-Matrix ist der gemeinhin angenommen
zufilligen Anordnung, die als die natiirliche gilt, iiberlegen. Protein (-
Faltblatt-Kristalle mit kleiner Querschnittsfliche und erhohter [§-Strang
Léange stiarken die Faserstruktur. Wir gehen davon aus, dass diese Erkennt-

nis ebenso auf dhnliche semi-kristalline Materialien wie Polyamide zutrifft.



Vorldufige Studien zu dieser Fragestellung wurden im Rahmen dieser Arbeit

durchgefiihrt.

Auch fiir Muskeln spielt Kraft eine entscheidende Rolle. Muskel Protein-
Fibrillen bilden Netzwerke, welche die mechanische Belastung in lebenden
Zellen tragen. Das komplexe Netzwerk aus Muskelproteinen besteht aus
Molekiilen, die fiir ihre mechanische Adaptivitdt magermafigeschneiderten

sind.

Das M-Band Protein Myomesin ist eine solche Proteinfaser. In Zusammen-
arbeit mit Experimentalisten, die uns mit Rontgenstrukturanalysen und
Daten aus ihrer Kraft-Spektroskopie unterstiitzten, untersuchten wir, wie
Myomesin in molekular-dynamischen Simulationen auf Krafteinwirkungen
reagiert. Myomesin besteht aus langen a-Helices die zwischen starren Do-
ménen lokalisiert sind. Unsere Analysen zeigen, dass diese als Stamm-
Absorber im Muskelkontraktionszyklus fungieren. Des weiteren enthélt My-
omesin eine Kraft resistente Dimerisierungs-Schnittstelle. Diese erhalt die
Stabilitét des Fibrillen-Netzwerks im M-Band der Kraft generierenden Ein-
heit im Muskel.

Der Fokus dieser Arbeit liegt auf zwei biologischen Systemen: Seide und My-
omesin. Ziel war, deren mechanische Funktion zu verstehen. Mit Hilfe mo-
dernster Techniken wie molekular-dynamischen Simulationen, Kraftvertei-
lungsanalyse und Finite Elemente Methoden konnten wir zeigen, dass die
Natur diese beiden Proteine in Hinsicht auf ihre mechanischen Eigenschaften
optimiert hat. Diese beiden Proteine teilen ihr Aufbauschema: Beide Struk-
turen werden vom (-Faltblatt dominiert, das sich entlang der Zugrichtung
ausrichtet, um seine mechanische Stabilitdt zu erreichen. Unser theore-
tischer Ansatz bildet einen Grundstein fiir weitere Untersuchungen, die
die Rolle von Kraft in Biosystemen analysieren. Er kann als Leitlinie fiir
neue Experimente auf diese und dhnliche Protein-Systeme dienen. Wie
wir fiir Seidenfasern zeigen konnten, lésst sich der rechnerische Ansatz bei
der Gestaltung natiirlicher oder kiinstlicher nanostrukturierter Materialien

nutzen.
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Introduction

1.1 Protein materials

Proteins are outstanding materials. As major constituents of fibers, such as muscle
fibers in vivo or silk fibers in vitro, protein materials demonstrate great adaptability
as well as extraordinary mechanical properties. These protein materials normally show
a high elasticity, and at the same time exhibit significant rupture strain and stresses,
that easily outperform man-made counterparts. Up to today, mankind can still not
reproduce materials with such properties at industrial scales. The secret lies in the
building blocks of protein and their intricate assembly mechanism, most of which has
remained largely unknown and awaits systematic studies.

Proteins are probably the most versatile biomolecules in nature. They are highly
optimized to fulfill the requirements of their environment. Not only do they perform
enzymatic functions to support life, they also serve as the most fundamental materials
to build the cell. The biggest and toughest protein found in a living cell is titin, (1))
which is found in different types of muscle and involved in withstanding the large forces
generated by a muscle cell. Silk (Fig. is mysterious in the ability of balancing
an outstanding resistance against rupture and a tremendous elasticity to reach an
extraordinary toughness for hunting and protection. (2H6) While it has been utilized by
mankind for thousands of years, silk nowadays still outperforms any similar industrial
materials produced by cutting edge modern technology.

The key determinants of the amazing features of protein materials lie in their molec-

ular architecture. Proteins, like other materials, use basic physical interactions to build
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Figure 1.1: Spider web. Spider silk is one of the strongest fiber in nature. Being made
of protein, silk has been optimized by evolution to provide the spider with an extremely
tough fiber. (This figure is provided by Dr. Frauke Grater.)

up their molecular structures. There are common building blocks of structural motifs
that can be further assembled to higher architectures. Understanding the physics be-
hind protein structures is the key to unraveling the robustness of protein materials.
This thesis focuses on theoretical studies of protein materials. Protein structures
of silk and the muscle protein myomesin are chosen as intriguing examples. Using
molecular structures either from molecular modeling or experiments, computer simula-
tions are performed to study their structural mechanics. Continuum modeling is also
used to link different study scales to clarify the relationship between material molec-
ular architectures and macro properties. The goal of this study is to understand how
protein building blocks affect structural mechanics and thereby influence the material’s

behavior, aiming at establishing a guideline for protein material design.

1.2 Protein mechanics

How and how much can proteins withstand force? Modern technologies such as atomic
force microscopy (AFM) or optical tweesers have been widely used to probe protein
mechanics. The principle of these experiments is to apply mechanical load to protein
structures (see Section 2.1.2). By monitoring the unfolding process and recording the

force and extension until rupture, and thus the overall mechanical response of protein
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structures can be obtained. Such experiments have been carried out extensively to
study ubiquitin and immunoglobulin (Ig) domains. (7 [8) They indicate that proteins
can withstand force as high as a few hundred piconewtons, although protein struc-
tures in equilibrium are held together by non-covalent interactions, each of which is
marginally stable and subjected to thermal fluctuations. The collection of these inter-
actions maintain the integrity of protein structures. They are described in the following

basis of molecular mechanics.

Protein structures

As this thesis will illustrate the structure of a protein is the major determinant of its
mechanical response. For this reason, the structures a protein can adopt are shortly
described in this section.

Protein structures are the folded states of unbranched polypeptides of amino acid
residues. Much effort has been dedicated to research on protein structures which have
been classified into four main levels.

The protein primary structure is the sequence of amino acids in a peptide (Fig.|1.2).
There are normally 20 different amino acids found in proteins. These amino acids are
attached to each other in a chain using their carboxyl group and amino group of the
next amino acid by dehydration reactions. The length of these unbranched peptide
ranges from a dozen to a couple of thousand residues.

Protein structures feature some common building blocks by assembly or local folding
of peptides. These building blocks are called protein secondary structures. The most
abundant protein secondary structures are the a-helix and the (-sheet, as shown in
Fig. An a-helix is a right-handed spiral. Amino acid residues in an a-helix interact
strongly via hydrogen bonds with residues which are four residue positions away in
sequence, which stabilizes the helix structure. Peptide strands in (-sheets are fully
extended and positioned in line with each other. Interactions in between create strands
through hydrogen bonds hold the structure together.

The relative arrangement of secondary structures is the tertiary structure (Fig. ,
i.e. the three-dimensional spatial structure, of a protein. Different proteins take up
very different tertiary structures. Some protein structures are similar and classified
into the same structure category called family. Spatially independent folds of peptides

are defined as domains. The keys for structural stability of protein tertiary structures
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sequence / primary structure
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Figure 1.2: Protein structural hierarchy as a determinant of protein mechanical function.
Protein primary structures fold into secondary structures which in turn serve as building
blocks for tertiary structures. a-helix and g-strands are shown as typical protein secondary
structures. Hydrogen bonds are depicted as blue dashed lines. Ubiquitin (PDB code:
3N32) and hemoglobin (PDB code: 3QJD) are shown as protein tertiary and quaternary
structures, respectively. Different colors are used for different subunits in hemoglobin;

heme groups are shown in sticks.

is the complicated pattern of both hydrophobic and hydrophilic interactions, which is
complemented by special bonds like disulfide bonds.

Some protein structures are further assembled from more than one peptide chain.
The assembly of protein tertiary structures subunits into a larger complex results in
the so-called quaternary structure. Covalent bonds between subunits are absent in a
protein quaternary structure. Proteins use quaternary structures to achieve special
molecular functions based on structural or chemical interactions between subunits, a
prime example of which is hemoglobin. (9) While silk protein fibers are dominated
by (-sheets as their secondary structure (Chapter 3), myomesin shows an interesting
alternation of a-helices and [-sheets (Chapter 3). This thesis gives numerous evidence

for that unstructured or a-helical structures are soft and (§-sheets are comparatively
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rigid and force-resistant.

Driving forces

A linear peptide is a polymer chain. It shares the same mechanical properties of a
polymer strand. A linear polymer chain tends to collapse into unorganized structures
to increase its entropy.

A protein folded structure is defined by its primary sequence. In many cases, a
given peptide sequence has a specific tertiary structure when properly folded. This fact
suggests that in a protein folding process from a linear peptide entropy first increases
during chain collapse and then decreases till the final well-defined low entropy structure
is reached. The decrease of entropy is unfavorable, and is compensated by the forming
of favorable interactions between different parts of the peptide. These interactions
optimize protein structures to lower energy states and stabilize the architecture.

These non-bonded interactions within a folded protein rupture when the structure
is unfolded by a mechanical force, the process primarily studied in this thesis. In a
classical mechanical description, interactions in proteins are classified into two types:
Coulombic interactions and van der Waals interactions. Two point charges can either
attract or repel each other with the energy given by Coulomb’s law:

I qge
4req e T

choul = ) (11)

where ¢; and g2 are point charges, r is the distance between them, ¢, is electric constant,
and €, is the permittivity of the medium which equals to 1 in vacuum. An atom consists
of a positively charged nucleus and a negative electron cloud. The electron distribution
around the nuclei of a molecule hence is approximated by partial charges on the atoms.

Van der Waals interactions are due to dispersion interactions between atoms. The
dynamics of electron clouds causes random fluctuations of the electrostatic field. Ran-
dom dipoles in adjacent atoms resulting from these fluctuations give rise to a short
range attractive potential. An approximate and computationally efficient description

of this interaction is the Lennard-Jones potential, given by
Vig = 4e[(2)2 = (2)° 1.2
g =4e[(-)7 = ()], (1.2)

where 7 is the distance between two atoms, ¢ is the depth of interaction energy, and

o is the interaction radius. The van der Waals interaction has two contributions: (i)



1. INTRODUCTION

London’s dispersion, which is negative and given by (%)6, is the attraction energy be-
tween two dipoles, and dominant for two distant dipoles; (ii) Pauli exclusion is positive
and given by (%)12; it is the repulsion energy between two atoms, and dominant if their
electron clouds overlap. The potential has an energy minimum, where the two atoms
are at the most favorable distance. This distance is the sum of the van der Waals radii

of two atoms.

Hydrogen bonds

Hydrogen bonds are maybe the most determinant of protein structures. Importantly,
they are generally the interactions stabilizing protein against force-induced rupture and
thus are of primary importance of this thesis (see e.g. Section 3.1.1 and Section 3.1.5 in
Chapter 3). They involve both Coulombic and van der Waals interactions. In contrast
to chemical bonds, hydrogen bonds are non-covalent, and thus reversible interactions
between polar group. When a hydrogen atom is covalently linked to an electronegative
atom such as oxygen, the electron cloud on the hydrogen atom shifts towards the
adjacent atom, leaving the hydrogen atom partially positively charged. This type of
hydrogen atoms then are likely to attract other electronically negative atoms such
as nitrogen atoms or oxygen atoms to form strong interactions, the hydrogen bonds
(Fig. [L.3).

Hydrogen bonds are far more weaker than real covalent bonds, with a lifetime
of some picoseconds, and an interaction energy of 2~10 kJ/mol. (10) Although an
individual hydrogen bond is weak and constantly breaks and reforms, several hydrogen
bonds ca n be strong and reach lifetimes of nanoseconds. There can be hundreds of
hydrogen bonds in a protein structure. These hydrogen bonds behave in clusters to
resist shearing or tearing forces, which impellingly stabilizes protein structures.

Amino acid residues are capable of forming hydrogen bonds because of their car-
bonyl and amino groups. These two groups are partially charged and ideal for forming
hydrogen bonds between each other. The protein backbone thereupon can form hy-
drogen bonds between amide groups close or distant in sequence. Hydrogen bonds
between different parts of the peptide backbone largely create and define secondary
structures. «-helices have hydrogen bonds between every fourth residues, resulting
in a helical shape. (-sheets exhibit clusters of hydrogen bonds, which can be either

arranged or in zig-zag patterns depending on the relative arrangement of the peptide
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Figure 1.3: A hydrogen bond formed between polar groups in the protein backbone.
Blue, white, red and green atoms are nitrogen, hydrogen, oxygen, and carbon atoms,
respectively. A hydrogen bond results from both the combination of Coulombic and van

der Waals interactions between the four atoms.

strands (Fig. [1.2]). These hydrogen can cooperatively strengthen a protein structure

such that they give rise to rupture forces up to a few nanonewton (Chapter 3).

Hydrophobicity and hydrophilicity

We so far focused on the structural rol of backbone hydroegn bonds, amino acid
side-chains also massively contribute to protein structural stability. One can classify
favourable contacts between sidechains into two types, hydrophobic and hydrophilic
interactions.

Some of the amino acid side-chains comprise ethyl groups, methyl groups or benzene
rings (such as leucine and phenylalanine). These chemical groups are largely apolar,
being in a neutral charge state with virtually no charge center displacement. Water
molecules, the main solvent in nature, are polar in contrast. There is a dipole in
each water molecule, rendering interactions with other dipoles of the solvent or solute
favorably. Introducing an apolar solute into water causes an ordering of water dipoles
at the solute surface, which entails an entropy penalty. Reducing the contact area of
waters with apolar groups therefore is entropically favorable, leading to the so-called
hydrophobic effect. (11]) Thus, apolar side-chains in proteins are excluded from water

molecules in general. Amino acids with hydrophobic (apolar) side-chains are likely



1. INTRODUCTION

to form the core of protein structure where they are far away from water molecules.
Again, a hydrophobic protein core can be a very efficiently stabilized structure against
mechanical forces (e.g. Chapter 3, Section 3.2).

The hydrophilic effect can be considered as the opposite of the hydrophobic effect.
Some amino acids have polar or charged side-chains (such as serine and threonine).
These amino acid side-chains are likely to favorably interact with water molecules and
are mostly found on the surface of protein structures.

Both hydrophobicity and hydrophilicity are important for organizing protein sec-
ondary structures to a higher structural hierarchy, and thus for th overall stability.
a-helices and (-sheets may have polar side-chains at one side to face solvents and ap-
olar side-chains at the other side to construct the core of a protein domain. These
effects are important driving forces of protein folding into their native structures, and

therefore also crucial molecular forces for resisting external pulling forces..

Salt bridges and disulfide bonds

Salt bridges and disulfide bonds are special bonds constructed by pairs of amino acid
side-chains. They are less commonly observed but are also important to protein struc-
tural stability. When negatively charged side-chains of either aspartic acid or glutamic
acid are close to positively charged side-chains of lysine or arginine, they form a non-
covalent interaction, termed salt bridges. Disulfide bonds are covalent chemical bonds.
They can only form between two cysteine residue side-chains. Disulfide bonds can
strongly reinforce protein structure from rupturing. The rupture of disulfide bonds
normally requires special enzymes, since covalent bond rupture in the absence of a

catalyst requires several nanonewton of force. (12I)

Protein mechanics from simulations

Experimental methods for single molecule studies have been revolutionized by ad-
vances in technology over the last few decades. In particular, atomic force microscopy
(AFM) and optical tweezers have greatly improved the experimental capabilities of sin-
gle molecule studies in molecular biology. Single molecule techniques reveal processes

which would remain obscured by statistical ensemble measurements such as Nuclear
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Magnetic Resonance (NMR) or Fluorescence Resonance Energy Transfer (FRET) ex-
periments.

Both AFM and optical tweezers are capable of applying mechanical force to a sin-
gle molecule. They are frequently used in probing dynamics on molecular transition
pathways, such as protein unfolding or ligand-protein interactions. Due to its ability to
work in liquids and at room temperature and pressure, AFM became a valuable tool in
structural molecular biology. (13)) The AFM uses an extremely sharp tip on a cantilever
to measure deflection at the surface of the tip. This can be used to apply mechanical
forces directly to the objects underneath the tip, and thus to manipulate the proteins
under dynamic load (see Section 2.1.2). AFM has been successfully used to open pro-
tein domains to probe molecular mechanisms. (14H16) It is also used to explore protein
refolding energy landscapes (I7-H19). Optical tweezers, on the other hand, use optically
trapped beads to apply force indirectly onto macromolecules. Optical tweezers are used
in studies of folding pathways, (20) as well as DNA-protein interactions and recognition
events. (21} 22)

NMR, spectroscopy, although it is not a single-molecule technique, is frequently used
for simultaneous determination of structure and dynamics of macromolecules. (23) The
principle of NMR spectroscopy is the non-zero nuclear magnetic moment of many el-
ements, such as 'H, 13C, N, or F. (24) When put into an external static magnetic
field (B), the different nuclear spin states of these elements become quantized with en-
ergies proportional to their projections onto vector B. The energy differences are also
proportional to the field strength and dependent on the chemical environment of the
element, which makes NMR an ideal technique to study 3-dimension structural and
dynamical properties of the systems. (25; 26) Development of techniques for incorpo-
ration of stable 13C and N isotopes into expressed proteins allows for application of
modern multidimensional heteronuclear NMR techniques. As a result, the maximum
size of the macromolecule studied using these techniques rose from about 10 kDa (when
'H homonuclear NMR is used) to 50 kDa and beyond (using '*C and ' N heteronu-
clear NMR with fractional 2H enrichment). Application of modern TROSY (transverse
relaxation optimized spectroscopy) techniques further expanded the size limitations of
NMR, reaching up to 900 kDa. (27; 28)

One of the major challenges in all single molecule techniques is the size of the system

studied, therefore, the requirement for macro-scale measurements of nano-scale objects.
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Another challenge lies within the physical variables measured by these techniques. In
case of both AFM and optical tweezers, the measurable quantities are force applied
and end-to-end distance of the investigated molecule; internal dynamics and transient
phenomena are not measurable. On the other hand, NMR, which is capable of probing
transient phenomena and internal dynamics on various time scales, lacks the ability to
apply mechanical force.

Molecular biology experiments have been traditionally limited by both the size and
time scales of single molecule events. Computer simulations helped to overcome these
limitations by providing insights into events at short time scales and high resolutions.
Dynamical behaviors of macromolecules can be studied using extensive molecular dy-
namics (MD) simulation. Computer simulations take great advantage of huge amount
of molecular structural data available nowadays. In a situation when experimental
structures of the protein target or its part is missing, computational techniques also
allow for generating such structure (e.g. by homology modeling) and use it for studies
which can be validated experimentally. (29) Computational approaches allow also for
investigations of transient phenomena, e.g. short-living conformers from an ensemble
that contribute to the binding event but which cannot be readily observed. Therefore,
usage of theoretical methods is indispensable — not only for the interpretation of the
existing experimental data, but also to direct and design new experiments.

Among computational methods suitable for macromolecular studies, high-level quan-
tum mechanical (QM) methods are the most accurate. QM methods, which rely on
solving the Schrodinger equation, are e.g. used for charge derivation for molecular
dynamics simulations, for description of intramolecular interactions, for calculations
of pKa, protonation, redox states, and for studying solvation effects, such as com-
puting the free solvation energies.(30) QM methods, on various levels of theory, have
been extensively used to study mechanisms of chemical reactions in biochemistry, and
macromolecular association events. (31H33]) The application area of QM methods is not
limited to equilibrium conditions. Recently, QM methods have been employed for stud-
ies of disulfide bond breaking under mechanical force with the great success. (34} [35)
Two main disadvantages of QM methodology are the computational cost of the cal-
culations and the size of the system suitable for studies, which is fairly small (up to

1000 atoms). These make QM calculations, despite their great accuracy, impractical

10
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for studies of protein structural transitions such as large conformational changes or
protein folding.

In order to improve computational efficiency, hybrid Quantum Mechanics/Molecular
Mechanics (QM/MM) methods are put forward. These calculations only treat the
most interesting part of molecule, such as the reaction center, with quantum mechanics
while other parts with molecular mechanics. (36H38) Hybrid QM /MM methods take
advantage of accuracy of QM and efficiency of MM, which are successfully applied in
structure-based drug design, enzymatic reaction, covalent bond breaking and forming
and others. Although these calculations have largely improved the computational per-
formance, QM potential calculations are still the time-limiting steps. Calculations of
bigger systems need a further approximation.

Molecular dynamics (MD) simulations introduce a level of approximation to study
the dynamics of atomic-level phenomena of larger systems. MD simulations are based
on the numerical solution of the Newton’s equations of motion of a macromolecular
system. The potential energy of the particle system is described by the so-called force
field (see Section 2.1.2), which is described as a sum of energy terms for covalent bonds,
angles, dihedral angles, van der Waals non-bonded terms, and non-bonded electrostatic
terms. (39; [40)) All-atom force fields provide parameters for every type of atom in a sys-
tem, united-atom force fields treat the functional groups such as methyl as single units,
while coarse-grained force fields, such as the Go-Model (41)), provide even more crude
representations for increased computational performance and simulations at larger time
scales.

MD simulations (see Section 2.1.2) are successful owing its efficiency when com-
pared to QM calculations. Since the kinetic energy is also taken into account, MD
simulation systems are able to move across the energy barriers on the potential energy
surface, which implies substantial changes (e.g. conformational) during the simulation.
This makes MD simulations suitable for studying dynamic events on atomic level. It
has been proven to be extremely potential in molecular biology research such as DNA,
RNA and protein mechanics. The wide usage of MD simulations is also reinforced by
dozens of effective and convenient simulation software packages. Different simulation
techniques also enable scientists to explore an even wider range in molecular science
on nanometer and microsecond scale. The combination of MD simulations with single

molecule experiments such as AFM or optical tweezers is even more significant. (42])
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1. INTRODUCTION

Force-probe MD and force-clamp MD, in which mechanical force is applied to molecular
structures, allow mimicking single-molecule experiments to gain insight into structural
and dynamical details of molecular processes such as protein unfolding. (43-45) The
results obtained not only help to explain experimental observations (e.g. AFM, optical
tweezers), but also shed light on the nature of the molecular processes under investiga-
tion.

In summary, MD simulations are an efficient and relatively straightforward tech-
nique suitable for studying structural, dynamical, and mechanical properties of macro-
molecules. They offer a good combination of atomic resolution, accuracy, and computer

performance, and hence are the primary tool used in this dissertation (Chapter 3).

1.3 Continuum mechanics

MD simulations are an efficient approach to study objects on the nanometer scale.
They become impracticable when the investigated system and its relevant properties
has significantly larger dimensions, i.e. on the meso or macroscales.. Large scale
simulations of protein materials are not feasible using MD simulation, neither can macro
scale structural and mechanical material properties be straightforwardly inferred from
MD simulations of subsystems due to the complexity of biological systems. Continuum
structural mechanics, by introducing a higher level of approximation, can significantly
extend the length and time scale of the system under investigation.

Continuum structural mechanics is a classical method applicable at all scales. Here,
as its name suggests, atomic details of the object are disregarded to focus on the effect
of the overall structure on mechanics only. In certain cases, such as determining an
elastic modulus of a rubber band, or understanding the stress bearing pattern of a
building, atomisation is normally not the determinant of the question asked. In such
cases, the object or parts thereof are treated as a continuum sharing the same physical
properties. This approach has invincible computational efficiency by greatly reducing
the complexity, while at the same time largely maintaining the accuracy, at least as
long as the continuum approximation is adequate.

Using different levels of simplifications, continuum mechanics is able to tackle prob-
lems for structure size that can not be reached by MD simulations. In spite of the con-

ceptual differences between continuum mechanics and all-atom simulations, the combi-
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nation of these two different methods is promising. Parameters for continuum mechan-
ics can be obtained from all atom simulations that ensure high accuracy. The efficiency
of continuum mechanics allows to infer mechanical properties on the macroscopic scale
from the molecular scale, which is the key to understand material’s interplay of the
atomic structure and its overall performance. We have employed continuum mechan-
ics to accompany all atom MD simulations in silk protein modeling. In collaboration
with Murat Cetinkaya, within this thesis, we have followed this approach (Chapter 3,
Sections 3.1.3 and 3.1.4). (46} 47)

Finite element method

Finite element method (FEM), also call finite element analysis (FEA), is a well estab-
lished continuum mechanics method. It is also the most common and efficient technique
as compared to other similar continuum methods. FEM was invented in the middle of
the 20th century, and has since then greatly developed to become an indispensable tool

in engineering science.

problem

solution

Figure 1.4: A scheme of problem solving using finite element method. A complicated
problem is divided into well understood smaller elements. Solutions in each element are
assembled to yield a final answer.

In structural mechanics, especially for odd structures, determining the partial dif-
ferential equations (PDE) that govern physical variables such as stress, strain and
displacement between each part is critically challenging. FEM is an approximate nu-
meric way to find the solution of the PDE. The first step in FEM involves dividing
the structure into different regular domains representing different material properties.
Domains are then further meshed down to smaller units the properties of which are

well understood. These units are the elements in FEM. Physical problems are solved in
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1. INTRODUCTION

each element based on the submitted conditions and elemental connection properties.
The results from every element are finally assembled to find the mechanical response
of the whole structure.

Because of its simplicity, FEM is widely applied in all kinds of continuum mechan-
ics analysis such as architecture engineering, force distribution, damage simulation,
thermodynamics, fluid dynamics studies and others. It is employed in wide aspects of
industry. FEM is used in this project to work with all atom MD simulation to study
silk fiber mechanics (Chapter 3, Section 3.1). Continuum mechanics models built in
FEM use parameters from all atom simulations in a bottom-up approach. Fiber me-
chanics are then predicted in FEM models for different types of fiber assembly. Overall,
combining MD with FEM results in a predictive scale-bridging technique far beyond
the capabilities of one of the two methods.

More details on FEM theory are given in Section 2.2. Technical details on FEM as

used in this thesis are provided in relevant sections in Chapter 3.
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Methods

2.1 Molecular Dynamics Simulations

The mechanical properties of a protein are determined by its dynamical behavior under
force. Protein dynamics cover a huge range of time scales. Bonds vibrate at a time
scale as small as few femtoseconds, yet folding of a medium sized protein takes several
microseconds. While dynamic processes determine the molecular and more importantly
the mechanical properties, their determination often is beyond the limitation of modern
technologies. With the fast growing computing power, computational approaches based
on well established physical laws to predict molecular dynamics of proteins on the
microsecond time scale have become possible.

Theoretically, the time-dependent Schrodiger equation can accurately predict any
molecular process at any size. It considers the electron distributions in molecules, and
deduces how the electron distribution governs molecular transitions. Such quantum
mechanics calculations have proven useful for various systems and problems.

As the major limitation of quantum mechanics, it can only deal with small systems
of typically less than 100 atoms by nowadays algorithms. The cost of quantum mechan-
ics calculations rises with the square of the number of electrons in the system, which
renders computational studies on large molecular systems impossible. Other compu-
tational methods with reasonable approximations are needed in order to overcome the
limitations of quantum mechanics. Molecular mechanics that ignore quantum effects is
such approximation; one most successful representative is Molecular Dynamics (MD).

The molecular mechanics framework describes atomic motion using classical physics
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laws. Atoms are modeled as spherical particles to each of which specific properties,
namely a charge, mass and van de Waals parameters are assigned. Different param-
eters are assigned to different atom types. Different interactions between atoms are
modeled by bonded or non-bonded interactions. All parameters to describe the in-
teraction potentials are termed as force field. They are point based, and obtained by
quantum mechanics calculation and more importantly by experimental measurements.
Comparing to quantum mechanics, the molecular mechanics description is not only
orders of magnitude faster, but can also produce reliable results on the nano to micro

second scale, when electron transitions are not relevant.

Figure 2.1: A molecular dynamics simulation system. Protein structure (colored cartoon
representation) in this system is solvated in water solvent with ions. Water molecules
are shown as lines, with oxygen atoms in red and hydrogen atoms in white; sodium and
chlorine ions are shown in blue and green spheres, respectively. The protein shown is the
dimerization interface of myomesin, the mechanics of which have been studied in this thesis
(Chapter 3, Section 3.2).

Using the molecular mechanics description detailed above, MD simulations calculate
the motion of every single atom in the studied system in time, termed a trajectory.
Molecular structures, like proteins, RNA or DNA, contain coordinates of all atoms, and

served as the starting structure for a simulation. They are obtained by experiments
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such as X-ray crystallography, Nuclear Magnetic Resonance (NMR), or other methods
like computer modeling. The molecular topology, the second requisite for the MD
simulation, contains the atomic and inter-atomic properties for the molecular structure,
as given by the force field (see below). It is a collection of parameters need to describe
the simulation system and does not change during the whole simulation process. Initial
velocities of all atoms are applied randomly, taken e.g. from a Poisson distribution.
Forces acting on every atom are calculated using the potential functions defined in the
force field. The dynamics of all atoms by calculated by integrating Newton’s equation
of motion:

oV (ri, - ,rN)

87“1'
= m;Qoy (2.1)

F=-—

where F; is the force acting on atom 4 by all other atoms; m; and «; are the atomic
mass and its acceleration under force, respectively. The coordinates and velocities of
all atoms are updated accordingly for next cycle of force calculation. This process is
repeated until the end of the simulation.

MD simulations are carried out for a certain simulation system such as the box
shown in Fig. The size and shape of the simulation system are chosen such that it
can accommodate the studied molecule which is normally incubated by water molecules
and ions. In order to remove artifacts from the box boundary, period boundary condi-
tions (PBC) are commonly used. When using PBC, images of the simulation system
are generated at each side of the box and repeated infinitely. The most obvious effect of
PBC is that molecules reappear at the opposite side of the simulation box if they cross
box borders. Because of PBC, artifacts due to molecular interaction with its image can
arise. Thus, the simulation box should be large enough to prevent these artifacts by
ensuring one single molecule not to interact with its own image.

The most time consuming step in MD simulations is the evaluation of non-bonded
potentials. These potentials are atom-wise interactions between non-bonded atoms. A
cut-off treatment, which only evaluates interactions between one atom and its neighbors
within the cut-off distance, is normally used to accelerate the computations. Introduc-
ing a cut-off into a simulation does not significantly affect the Lennard-Jones potentials

which decay rapidly with increasing distance. In contrast, a cut-off treatment ignores
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long range electrostatic interactions which can be large. For also taking long range elec-
trostatic into account, other techniques like Particle Mesh Ewald summation (PME)
are used as approximations beyond the cut-off distance. PME uses Fourier transforms
to estimate long-range Coulombic interactions. (48) It provides a mostly sufficient ac-
curacy and smooth energetic transitions, and thus stabilizes the simulation system.

An additional option to accelerate a simulation is to constrain covalent bond vibra-
tions. Covalent bond vibrations have a time scale of femtoseconds, and are the fastest
motion in the system. This high frequency motion is normally not of interest for MD
simulations, but is the most important determinant of the maximal length of the time
steps in the simulation. By constraining covalent bonds to rigid beams, the simula-
tion process can be speeded up by increasing the simulation time step. Covalent bond
constraint algorithms such as SHAKE (49)) and LINCS (50) are typically available in
most MD software packages. For most MD simulations, a time step length of 1 or 2
femtoseconds is used.

By delivering a trajectory of the molecular system, i.e. a conformational ensemble,
MD simulations can in principle yield thermodynamic quantities for comparison with
bulk experiments. The reason is that, theoretically, the time average of one system
in equilibrium should be the same with the ensemble average, given a long enough
observation time. Thus, the results that are provided by MD simulations should be
the same observed in a reaction test tube. However, while MD simulations can suc-
cessfully explain why sodium ions can pass through their specific transporter in the
cell membrane, they can not provide the electron voltage between the two sides of
the cell membrane. The reason is the limited nano to microsecond time scale of MD
simulations. Theoretical methods are therefore needed to infer such relationships.

Nowadays, many MD simulation software packages are available. Some of these
packages are commercial such as AMBER (51)), others are free and open-source, such
as NAMD (52) and GROMACS (53). GROMACS is known for its computational
efficiency and Linux command style, which enable it to be well embedded into a Linux
operating system. Being open-source, the source code is available for all users for
debugging and the implementation of new features. New simulation methods such as
force distribution analysis (FDA) (54) as used for this thesis (see 2.1.2) have been
implemented into GROMACS. For these reasons, in this study, the MD simulations
have been carried out using GROMACS.
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2.1.1 Force Fields

A force field is a collection of particle properties (atom mass, charge and so on) and
interaction potential functions, which are used to describe the molecular energy in
MD simulations. Both the parameters and potential functions are based on classical
mechanics and developed from quantum calculations and experimental results. The
potential energy is a function of the coordinates of particles that represent atoms.
Electrons of the atoms are ignored.

There is a variety of classical force fields nowadays available for MD simulations.
The most wide-spread ones are the OPLS-AA force field, (405 [55) the AMBER force
filed, (39) and the GROMOS force field (56), which vary in their strength and weak-
nesses. (57) Some of these force fields are all-atom force field like OPLS-AA and AM-
BER, in which all atoms are precisely described. Others, like the GROMOS force
field, are united-atom force fields that fuse non-polar atoms (hydrogen atoms) into its
bonded heavy atom to treat them as a single bead. Each force field has their own
characteristics: e.g. the AMBER force field is famous for DNA and RNA simulations,
and the OPLS-AA force field is famous for protein simulations. These force fields are
developed on the basis of different concepts put forward by different groups, and thus
have different particle properties to treat the same atoms. Nevertheless, they make use
of similar potential functions for energy calculation.

A force field classifies all interactions into two types, namely bonded and non-bonded

interactions:

Etotal = Ebonded + Enon—bonded (22)

Bonded interactions, FEionded, in molecules include covalent bond stretching, angle
bending and dihedral angle rotations (Fig. . Non-bonded interactions, Eyon_bonded,
include Lennard-Jones interactions and Coulombic interactions.

Covalent bonds are normally modeled as harmonic springs in force fields. The

potential equation of bond stretching follows the Hooke’s Law, which has a form of:
Ebonds - Z KT(T - Teq)Z 5 (23)
bonds

with K, as the spring constant that specifies the bond strength, and r¢, the equilib-
rium bond length that gives the potential minimum. Because of this potential form, a

chemical bond in a MD simulation can not break but only be extended (Fig. .
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Figure 2.2: Bonded interactions in molecules. A bond (blue), an angle (red) and a
dihedral angle (yellow) are three types of bonded interactions in molecules. The represented
bond has a length of 1.2 A, the angle and the dihedral angle are of 118.7° and 179.3°,
respectively.

A bonded angle is formed by three connected atoms. Similar to bond potentials,

angle potentials have functional form of:

Eangles = Z K9(0 - 96(])2 ) (2'4)

angles
with an angle force constant Ky and an equilibrium angle 6., (Fig. [2.3).

A dihedral angle is formed by four bonded atoms. The energy function has peri-
odicity for the rotation around the central bond of the four atoms. Its form (here for
OPLA-AA) is more complicated than two other bonded potentials above, as:

Vi Vz
Edihedral :71[1 + cos (¢)] + 72[1 — cos (2¢)]
V- V.
+ ?3[1 + cos (3¢)] + ?4[1 — cos (49)] , (2.5)

with Vq, V5, V3 and Vj the coefficients in the Fourier series and ¢ the corresponding

phase angle. The cosine function produces the periodicity (Fig. [2.3)).
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Figure 2.3: Bonded potentials in the OPLS-AA force field. Examples are shown for a
bond potential (black), an angle potential (red), and a dihedral angle potential (blue).

Atoms that are not bonded to each other and stay at least three bonds away also
obviously interact with each other if their positions are close enough. The interac-
tion between these atoms are classified as non-bonded interactions. The non-bonded
interactions include Van der Waals and Coulombic interactions, namely:

Fron—bonded = >, 3 {4€ij[(?)12 - (%)6} + f:gi?} : (2.6)

P i ij oT'ij

where the first two terms together describe the Lennard-Jones potential (Fig. , with
€ as the energy minimum, o as the distance between two atoms that gives the energy
minimum; and 7;; as the distance between atom 4 and j. The first term of the Lennard-
Jones potential is exclusively repulsive and dominates when two atoms are so close that
the electron densities overlap. The second term is London’s dispersion that dominates
and defines attraction when two atoms are far away. The third term in the equation is
the electrostatic potential (Fig. , ¢; and g; are the charges assigned to the atoms 7
and j. It is attractive (repulsive) if the atoms have opposite (the same) charges.

Hydrogen bonds and hydrophobic effects are produced by non-bonded interactions.

As one of the most important interaction in proteins or nuclear acid molecules, hydro-
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Figure 2.4: Nonbonded potential examples in OPLS-AA force field. The electrostatic

potential is shown in black; the Lennard-Jones potential is shown in red.

gen bonds are formed, without that specific parameters are used. The partial posi-
tive charge of hydrogen atoms and the partial negative charge of oxygen atoms have
strong Coulombic interactions which contribute to the strength of the hydrogen bond.
Lennard-Jones interactions of all the hydrogen bond forming atoms contribute as well.
Some important features of hydrogen bonds, such as a slight bonding angle dependence
or polarization effects, are not fully captured by force fields. However, the energetics of
hydrogen bonds are well produced in MD simulations. Hydrophobic attractions are also
generated between non-bonded interactions, even though they are not directly imple-
mented in the force field, but an indirect entropic effect. Atoms in hydrophobic groups
such as fatty chains or benzene rings of proteins are modeled as apolar atoms which
have a small or no charge. By doing so, interactions with polar groups, especially water
molecules, are reduced. The hydrophobic effect has been further described in Chapter

1, Section 1.2.
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Water

Water is the solvent in biological systems. Almost all proteins, or parts of a protein
(like membrane proteins), perform their function in the presence of water. Not only do
water molecules provide the reaction environment, they often also take part in molecular
reactions. As a consequence, the water model is of key importance for MD simulations.
Water models can determine the quality of MD simulations and even simulation results.

Water is a typical molecule with many-body effects. It has two partially positive
hydrogen atoms and also two partially negative 2s-2p hybridization electron orbitals
that are not coupled. The molecular structure enables a water molecule to be both
hydrogen bond acceptor and donator at the same time. Water molecules are capable
of forming hydrogen bonds between themselves which gives water a high melting and
boiling temperature. Water molecules also form hydrogen bonds with proteins, nuclear
acids and other biomolecules. Interactions between protein and water are the driving
forces of protein dynamics.

A handful of water models have been developed and are available nowadays. Some
of the water models use three particles to represent the atoms in water molecule, with
charge and mass at the same position as the atoms. The SPC water model (58; 59) and
TIP3P (60) water model are both well known three-point water models, as shown in
Fig. They are similar with slight differences in their molecular geometry and charge
distribution. Many previous studies show the power of these two water models when
used with force fields such as GROMOS and AMBER. Four-point and five-point water
models introduce more particles into the model in order to capture the water molecule
characteristics more precisely and thus better bulk mimic water behavior. The TIP4P
water model (60) is a well-known four-point water model. Combining the TIP4P water
model with OPLS-AA force field has been proven to give very accurate structures and
energetics in protein simulations.

Hydrogen bonding in water is directional because of the geometry of hybridized
electron orbitals of oxygen atoms. Three-point water models can not produce the cor-
rect hydrogen bonding direction caused by the electron distribution in water molecules.
Four-point water models, such as TIP4P (60)), separate the mass and charge of the oxy-
gen atom by introducing one extra dummy particle into the molecular structure, trying

to better represent the electron density distribution. The dummy particle of TIP4P sits
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(A) (B) ©)

Figure 2.5: Water models. Three-point (A), four-point (B) and five-point (C) water
models used in computational simulations are shown. Oxygen atoms are shown in red,
hydrogen atoms are shown in white and dummy particles, which only carry charge points,
are shown in blue.

close to the oxygen atom on the angular bisector line of the hydrogen-oxygen-hydrogen
angle, as shown in Fig. It only contains the charge of the oxygen atom while the
oxygen particle contains only its weight. Five-point water models, such as TIP5P (61)),
further separate the negative charge on the water molecule. Two massless dummy par-
ticles located at two empty 2s-2p hybridization positions are introduced into the water
molecular structure. These two dummy particles can greatly improve the hydrogen
bonding geometry.

Choosing a water model in MD simulation is a compromising task which should
balance accuracy and simulation costs. As water molecules normally take up more
than 80% of the simulation system, introducing one more particle in a water molecule
can result in a significant increase of computational cost. Although there are even
six-point water models available, the usage of multiple particle water models is quite
limited. MD simulations in this project use TIP4P water model with OPLS-AA force
field, a combination which has been specifically developed and validated in numerous

studies.

2.1.2 MD simulations with Force

Non-equilibrium processes driven by mechanical force are widely observed in biology.
The generation of mechanical force by muscle is one good example to demonstrate how
molecules response to these mechanical forces. Muscle fibrils in the sarcomere, the
force generating unit in muscle, withstand high forces to maintain the integration of
the muscle network. Molecules such as titin and myomesin, the latter of which has

been studied in this thesis (see Chapter 3, Section 3.2), mediate force propagation and
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restore inter-connection structures. Understanding these mechanical processes is still a
challenge in biology, yet it is often the only way to uncover biological function.

The biggest challenge in understanding biological mechanical forces is the magnitude
of these forces. Common biological forces, such as those generated by molecular motors,
are as small as couple of piconewtons. Force signals of such small scale are easily lost
in the noise of thermodynamic vibrations, which renders studies on these forces even
more difficult. A couple of modern experimental technologies have been developed to
study such extremely diminutive interactions. These experiments, such as atomic force
microscopy (AFM) and optical tweezers, provide extreme sensitivity combined with
a high resolution to allow to probe of mechanical forces in biological systems. FEven
so, atomic details of molecular transitions like protein unfolding or ligand dissociation
pathways under tensile forces are still out of range. For a higher resolution in our
understanding of these molecular processes, MD simulations serve as a complementary
tool for experiments.

Applying mechanical force onto molecular structures in MD simulations to manip-
ulate a biological process is a relative simple task when having the molecular structure
and the force field of the system at hand. MD simulations of processes under forces are
of particular value, if validated by single molecule experiments such as those using an
atomic force microscope (AFM). MD simulations can complement AFM experiments
by explaining the experimental observations. Unique insights have been gained pre-
viously and within this thesis (Chapter 3, Sections 3.1.5 and 3.2.1) using these two
techniques, (14} 45; [62) and more are likely to be under way.

Atomic Force Microscopy

Atomic force microscopy (AFM) is one of the most important and exciting single
molecule experimental methods developed in the last two decades. (I3} [63H65) The
major component of an AFM is a super sharp tip attached to a soft arm, called can-
tilever, to probe and record atomic interaction forces. It has a nanometer resolution
and a sensitivity at the piconewton scale, which falls into the range of biological inter-
actions.

AFM is an advanced experimental technology. An AFM setup mainly includes three
parts, a sample stage, a cantilever and a force detector, as shown in Fig. The sample

stage is a movable supporting platform for the samples under investigation. It can be
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very precisely positioned by a piezomotor. The cantilever is the force probing part of
the system. It contains a laser reflection point and a sharp tip. The force detector
contains a laser source and a signal detector. Laser is focused onto the cantilever which
reflects the laser beam into the signal detector. The atomic force can be measured by

the displacement of laser reflection point.

force signal detector

B

laser source

cantilever

h >

sample stage

Figure 2.6: Schematic AFM setup. The main components of the AFM are indicated.
The cantilever is shown in grey. Its bending causes changes in the laser beam reflection
that can be used as force measurements. The sample stage is shown in light blue, and a

protein sample is shown in green. The laser beam is shown in red.

AFM is widely used in surface imaging that utilizes atomic interaction between the
cantilever tip and the surface atoms on the sample. More importantly for the topic of
this thesis, a molecule or molecular system can be attached to the sample stage and the
cantilever tip to detect molecular interactions. This allows, among others, to unfold

single protein structures using the AFM. (13; 63)

Force-probe MD simulations

Manipulations of molecular structures are in principle easy and straightforward in MD
simulations. MD simulations keep track of coordinates of all atoms in the system during

the whole simulation time. Applying a mechanical force onto the macromolecule is one
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of the standard features of MD simulation software packages. Force-probe MD (FPMD)
simulations is one of such simulation techniques to mimic AFM experiments. (66) Me-
chanical force can be applied to specific parts of the simulated molecule that are of
interests, such as a single atom or atom groups. By applying a pulling force, protein
unfolding or DNA unwrapping can be monitored uand the required force recorded .
FPMD may be the most important way to interpret AFM experiments, as illustrated

by many previous studies.

Figure 2.7: Force-probe MD simulation setup. The molecular structure in this setup are
protein (-strands (for more details, see Chapter 3, section 3.1.1). A harmonic potential,
shown as an orange spring, is applied to the pulled strand which is shown in red. The force
application point is shown as a red sphere.

In FPMD simulations, a harmonic potential, represented as a virtual spring as in-
dicated in Fig. is assigned to the force application point. During the simulation,
the virtual spring steadily moves away from the force application point with constant
speed along the specified direction. With the increasing displacement between the vir-
tual spring and the force application point, force is generated according to the Hooke’s
law. Parameters in FPMD simulations thus include pulling speed, the virtual spring
force constant, and the pulling direction, which need to be predefined in the simulation

setup.
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The most significant difference between FPMD simulations and AFM experiments is
the pulling speed. MD simulations are still limited by the computational power available
today. The largest time scale that MD simulations can achieve on general-purpose high-
performance computers is normally some microseconds. In order to observe molecular
structural events such as protein unfolding or DNA double strand unzipping, the pulling
speed in MD simulation should be high enough to induce the structural transition
within the achievable time scale. This results in a pulling speed in MD simulations in
the range of nm/us, which is some orders higher than those used in AFM experiments.
This difference in pulling speed is reflected by the forces measured by the two methods.

More precisely, MD simulations with faster pulling speed tend to measure higher forces.

X -

-
>

Figure 2.8: Bell model of how mechanical force manipulates the energy landscape along
the reaction coordinate. An example of a protein structure under a pulling force is shown
in green, with force indicated as red arrows and force application points as red spheres.
The system energetic states are indicated as green spheres. Mechanical force lowers the
energy barrier by a value of the applied force times the transition distance x}, assuming

the pulling force acts only along the reaction coordinate.

A statistical model, the Bell model, postulated by G.I. Bell, has been successfully
used to connect FPMD simulations and AFM experiments, thereby explaining the dif-
ferent results. (67 68) Both in FPMD simulations and AFM experiments, unfolding of
molecular structures is induced by lowering the transition energy barrier using mechan-

ical force, as depicted in Fig. The mechanical force needed to drive the system to
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its transition state depends on the pulling speed, as follows:

ky- T ky- T
= o — 2w, , (2.7)
Ty Ty

F(v)
where kjp is the Boltzmann constant, T is the system absolute temperature, xp is the
distance between initial and the transition state along the reaction coordinate, which is
assumed to be the pulling direction in both FPMD simulations and AFM experiments.
Vo 1s the system’s intrinsic speed to reach the transition state, it depends on the height
of the energy barrier and also xy.

Bell’s model established a connection between simulations and experiments and
enables theoretical comparison. Because rupture forces of protein or DNA unfolding
depend logarithmically on the pulling speed, x; can be obtained from the linear depen-
dency of the force on Inwv, and the experimental and computed z; can be compared.
Force profiles from these two methods also can be qualitatively compared and were
found to agree with each other, which allows to explain AFM experimental observa-
tions with the details observed in MD simulations. (45; 69; [70) This connection is key
to our understanding of biomolecular mechanics, which is the general aim of this thesis.
On one hand, FPMD simulations can be verified by AFM experiments; on the other
hand, FPMD simulations can serve as a high resolution approach to interpret AFM
experiments. FPMD simulations, in combination with AFM experiments carried out
by collaborators, have been performed for silk protein and myomesin (see Chapter 3,

Sections 3.1.5 and 3.2.1).

Force-clamp MD simulations

Force-clamp MD (FCMD) simulations are also designed to mimic AFM experiments,
namely those carried out with constant loading force. Practically, the only difference
between FPMD and FCMD is the way of force application. FCMD uses a constant
pulling force during the simulation, while the pulling force varies in FPMD simula-
tions, depending on and reflecting the events of molecular transitions. They have other
simulation parameters in common.

Quenching macromolecules such as unfolded proteins to a constant pulling force
brings their structures to other equilibrium states, which allows monitoring their re-
folding. (I8)) This simulation method is important for deducing the kinetics and ther-

modynamics of biomolecules. It also is highly relevant considering that molecules can
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be under quasi-constant biological stress in the cell. It is also an important way to
understand how molecular structures cope with external forces, either by rearranging
structural building blocks or by carrying it by intramolecular interactions. Applying
a constant force to a structure also allows to understand how mechanical stress is dis-
tributed and propagated (see next paragraph). It therefore is another method of choice

for studying both silk and myomesion in this thesis.

Force Distribution Analysis

Mechanical properties play a crucial role for structural molecules such as muscle pro-
teins or fibrous proteins like silk. How these protein distribute mechanical stress is an
important measure for understanding their mechanical robustness. Force distribution
analysis (FDA) is the technique of choice to discover stress distribution in molecular
structures. (54) FDA is also an ideal method for investigating molecular stress triggered
by ligand binding and DNA-protein interactions. The pattern of stress distribution is

the pathway of mechanical signal transduction.

Figure 2.9: Force distribution analysis on a protein structure. The silk composite unit
model consisting of two (3-sheet crystals and a random-structure amorphous phase is shown
as a example. Red color represents high mechanical stress in the figure while blue represents

lower stress. For details see Chapter 3, Section 3.1.3.

Force distribution analysis (FDA) is a new method developed in the group of
Dr. F. Grater. It has been already applied to different systems and could yield in-
sightful results. (545 [71} [72) It is reminiscent of the mechanical analysis used in civil
engineering. A result from FDA is shown in Fig. [2.9

FDA is based on FCMD (see above). The principle of FDA is to equilibrate the

molecular structure in two mechanical states by applying different constant mechanical
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pulling forces which are low enough to prevent the structure from rupturing. Force
between each atom pair is collected at every simulation step and averaged during the
whole simulation time. The absolute value of the force difference between two states of
all the atom pairs are summed up in the whole simulation. Finally, the sum of absolute
value of force differences as given by the force field (Equation 2.2) is mapped onto the
corresponding atoms to give rise to the force distribution pattern. Details of the FDA
algorithm is give in the section where FDA has been used, namely Chapter 3, Sections

3.1.1, 3.1.2 and 3.1.3.

2.2 Finite Element Method

2.2.1 Introduction

The classical molecular mechanics description (Section 2.1) is successful in solving sim-
ple structural problems but becomes very complex and computationally costly for large
systems. This limitation of classical mechanics for structures can be overcome by an
approximation, the finite element method (FEM).

FEM, also called finite element analysis (FEA), is the most successful continuum
modeling method. Since first introduced in the mid twentieth century (73), FEM has
been applied to all possible aspects of physical modeling, including vibrational analysis,
structural analysis, fatigue analysis, fluid dynamics dynamics, heat transfer analysis,
and others. (74H706) It is a steadily revised method that is adjusted to the growing
computational capabilities.

The concept of FEM is to divide a complex continuum mechanics problem into
simple units whose properties are already well understood. Not only can FEM divide
structures made of different materials into different domains, but also divide odd struc-
ture to regular or symmetrical units. By doing so, FEM transforms the solving of a
mechanical problem with complex components into assembling the solutions of regular
and relatively simple questions. One example of solving the stress distribution in a
car wheel is demonstrated in Fig. [2.10] This thesis uses FEM to study the structural
mechanics in silk fibers.

The basic units of the structure after discretization are the elements in FEM. One
element in FEM is constructed by nodes which are also the connections to other ele-

ments, as shown in Fig. A stiffness matrix is used to describe the behavior of an
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Figure 2.10: Stress distribution analysis in a car wheel. Structures like a car wheel are
not symmetrical in shape and consist of different materials with complicated connections
between the parts, which makes it impossible to use pure classical methods to solve the
stress distribution. FEM discretizes a car wheel into parts and solves the stress in each
part using given conditions and connections to finally obtain an approximate solution. As
shown in the Figure, high stress concentrates in red areas in the structure, while blue
areas have lower stress. Figure is generated with the COMSOL FEM commercial package

(http://www.comsol.com).

element by vectorizing its nodes’ respond under load. This matrix contains the proper-
ties of the elements including elastic modulus, shearing modules and others. Commonly,
there are different kinds of elements used in applications, such as beam elements, rod
elements, mass elements. By correctly choosing element stiffness matrices, both linear

and non-linear systems can be modeled and studied.

A element
® node

. /

Figure 2.11: Example of elements and nodes in FEM. Triangle 2D plain elements are

shown in this Figure. Nodes are highlighted as red circles.

FEM creates a mesh map in the studied system by dividing the structure into a

combination of elements, as shown in Fig. The sizes of elements depends on the
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studied area and problem. A higher density of nodes and thus smaller size of elements
gives higher accuracy of solutions in FEM, though at higher computational cost. If
some area in the investigated system is more sensitive to mechanical loads, such as the
area subjected to massive changes in stress or initial points of structural facture, smaller
elements are normally used to achieve requirements of accuracy. It is also normal to
re-mesh the structure using different elements of smaller size to recalculate the solution.

Predefined conditions of physical problems in FEM are the boundary conditions.
These conditions include how loads are applied to the system and how the system
is subjected to some special restraints or constraints etc. They also include known

quantities such as some physical laws of equilibrium or constancy in mass or energy.

2.2.2 Theory

The core concepts of FEM are the elements, their types and their properties. The
properties of FEM elements, such as elastic modulus, shearing modulus and etc., are
the basis of mechanical properties of FEM models. The response of an element to
external load are described by a so-called stiffness matrix which contains the vectorized
elements’ behavior under mechanical load, namely the direction and amplitude of nodes
displacement, physical inflow and outflow, and so forth.

For most FEM software package, all kinds of elements for commonly found materials
such as metals (e.g. steel or cooper) are provided by experimental measurements. New
elements for constructing new materials should be implemented and parameterized by
the material scientists. In this thesis, the silk fiber is studied by FEM. Thus, new
elements needed for building a silk fiber are needed, as these are not provided by
the FEM commercial software. In order to create these new elements, more precisely
to determine element stiffness matrices, MD simulations are performed on all-atom
models of silk protein subunits. Mechanical properties of silk protein subunits are then
incorporated into stiffness matrices of new FEM elements for building and simulating
continuum silk fibers. For more details, see Chapter 3 (Sections 3.1.3 and 3.1.4).

Determining a stiffness matrix for the whole system is a process of constructing
polynomial functions. Because all the connections between elements are located at
their nodes, the behavior of elements depends on the states of these nodes. A stiffness
matrix of an element is developed from the equilibrium states equations of all the nodes

concerned. Its complexity grows dramatically with the increase of the node number
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and dimensions. A stiffness matrix can be developed using a simple model, as shown
in Fig. The principle of developing stiffness matrices for more complex elements
is the same.

Fig. shows a simple two-dimensional FEM element. The element is a harmonic
spring with one node at each end. The nodes can only move in z and y directions.
Given a certain tension in the spring, the force at each node in both z and y directions
depending of both nodes’ displacements in each direction can be summed up by the

equations below:

Fio = Kig—12712 + k:lelyrly + kiz—24T22 + k1x72yr2y
Fiy = kiy—1aT12 + F1y—1yT1y + F1y—20720 + F1y—2y72y
F2;B = k?x—lzrl.t + kQI—lyrly + kQCE_ZET?CC + k‘2$_2y7'2y
Foy = koy_12710 + koy—1y7T1y + koy—24s722 + Koz _2yT2y

(2.8)

where Fi, and Fy, are forces on node 1 and F, and Fy, are forces on node 2 in both
x and y directions, respectively; 714, r1y, 72, and 7o, are the displacements of both
nodes in x and y directions; k;_; is the stiffness coefficient of force because of the r;
displacement with respect to r; (x or y positions). For example, ki,—1, denotes the
spring force constant in y direction of node 1 with respect to its displacement in x

directions.

node 2

Figure 2.12: An example of a 2-dimensional FEM spring element. This element consists
of only one harmonic spring with a node at each end. The spring has a force constant of
k The nodes are allowed to move in the XY plane only. Force acting on each node in each
direction can be calculated by the Hooke’s law based on the displacement of the node in

each direction, which can be summed up into polynomial equations.
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The equations of the forces acting on each node of the example element shown above

can be written in the following way:

Fy, F1e—1z klx—ly k1p—2z klx—Qy Tlx

Fly _ kly—laﬁ kly—ly kly—ch kly—2y . Ty

Fy, koz—1z kafly koz—2s k'2:)372y T2z

FZy ka—la: k2y—1y k2y—2a: k2x—2y T2y
Tz
™

N (2.9)

T2
T2y

where the matrix consisting of all force constants, k;_;, is the stiffness matrix of the
example element, simplified as K;_;. If the harmonic spring has a force constant of k

and has an angle to = axis of 6, K;_; has a known form (74):

cos? 0 cos@sin @ —cos? 0 —cosfsinf
cosfsin sin2 6 —sinf cosf —sin%6
Kij =k —cos? 0 —cosfsinf cos? 6 cos@sin @ (2.10)
—sinf cos @ —sin%6 sin @ cos 6 sin2 6

The stiffness matrix, K;_;, contains the properties of the spring element. Not only
it contains the spring force constant, but also the geometrical response of the spring
under mechanical load. It emerges that the stiffness matrix becomes very complex,
when more nodes and dimensions are taken into account. Modern FEM computers and
software greatly simplified the development of stiffness matrices for different materials.
Modern commercial and open source FEM software packages contain a variety of dif-
ferent stiffness matrices for different elements. Materials, such as iron, copper or glass,
have been successfully modeled using experimental data as a guide.

As mentioned in the earlier sections, in this thesis, FEM was combined with MD
simulations. Stiffness matrices for protein materials were developed based on the pa-
rameters obtained from MD simulations. Using MD data, which were validated by
experimental results, allows for avoiding the usage of low-accuracy and scarce experi-
mental parameters. The combination of MD simulations and FEM enable us to tackle
the relationship between the nanoscale architecture and macroscopic properties of silk
proteins (see Chapter 3, Section 3.1). This is the first such attempt in material engi-

neering, to our knowledge.
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3.1 Silk

3.1.1 Mechanical Response of Silk Crystalline Units from Force Dis-
tribution Analysis

The outstanding mechanical toughness of silk fibers is thought to be mainly brought
about by embedded crystalline units acting as crosslinks of silk proteins in the fiber.
Here, we examine the robustness of these highly ordered (-sheet structures by molecu-
lar dynamics simulations and finite element analysis. Structural parameters and stress-
strain relationships of four different models, from spider and bombyx mori silk peptides,
in anti-parallel and parallel arrangement, were determined and found to be in good
agreement with X-ray diffraction data. Rupture forces exceed those of any previously
examined globular protein many times over, with spider silk (poly-alanine) slightly out-
performing bombyz mori silk ((Gly-Ala)y). All-atom force distribution analysis reveals
both intra-sheet hydrogen bonding and inter-sheet side-chain interactions to contribute
to stability to similar extent. In combination with finite element analysis of simplified
(-sheet skeletons, we could ascribe the distinct force distribution pattern of the anti-
parallel and parallel silk crystalline units to the difference in hydrogen bond geometry,
featuring a in-line or zigzag arrangement, respectively. Hydrogen bond strength was
higher in anti-parallel models, and ultimately resulted in higher stiffness of the crystal,
compensating the effect of the mechanically disadvantageous in-line hydrogen bond

geometry. Atomistic and coarse-grained force distribution patterns can thus explain
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differences in mechanical response of silk crystals, opening up the road to predict full

fiber mechanics. (72)

Introduction

Silk proteins build up the most tough yet elastic fibers known (77; [78). Relating the
extraordinary fiber mechanics to the underlying molecular architecture is a requisite for
rationally altering properties of natural silk fibers and for designing artificial analogues.
Understanding the intricate correlation of the elastic response with the complex nano-
scale protein structure of silk fibers, however, has remained a challenge.

Silk proteins produced from different insect species, the most commonly studied
representatives of which are spider drag line silk and cocoon silk from the silk worm
bombyx mori, share a common protein sequence and fiber architecture (Fig. and
B). Repeat units of six to nine amino acids in length, from alanine or from alternating
alanine and glycine residues, for spider and bombyz mori silk, respectively, build up
highly ordered (-sheet rich crystalline units (Fig. |3.1C) (79-81)). These crystals are
connected by and embedded into an amorphous matrix of disordered proteins from
non-repetitive sequence motifs. The ratio of #-sheet versus matrix forming motifs in
the silk block copolymer sequence as well as the spinning process define the relative
amount of g-sheet. The transition from highly ordered 3-sheet crystals to the disordered
region appears to be blurt and to involve semi-crystalline regions (82)). Crystals of a
few nanometers in size with highly ordered (3-strands oriented along the fiber axis have
been found by X-ray analysis to constitute 10-15 % of silk fibers (83)), with the overall
(-sheet content amounting to 40-50 % for spider and silkworm silk, respectively (84).
While the ratio of anti-parallel and parallel 3-sheets remains largely unknown for most
silk types, solid-state NMR experiments suggested roughly a 2:1 ratio of anti-parallel
to parallel conformations in wild silkworm fibers, independent of fiber stretch (85).

The crystalline units crosslink the protein chains in the fiber via hydrogen bonding.
In a stretched fiber, the external force propagates along the fiber axis by straightening
the disordered protein chains and subjecting the cystalline G-sheet regions to a tensile
force along the (-strand axis. Their elastic modulus in silkworm silk has been recently
determined by X-ray diffraction experiments (86). The extraordinary toughness of silk
fibers is assumed to be encompassed by the strong and stiff crystalline units, taking up

the mechanical load in stretched fibers as stiffness attracts force and thereby protecting
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Figure 3.1: Silk structure and simulation systems. (A) Silk is one of the toughest materials
known, and has evolved in nature for manifold purposes, from predation to protection. In
courtesy of Michael Goduscheit. (B) Silk proteins form an amorphous matrix of disordered
segments, into which crystalline units are embedded and serve as crosslinks, depicted as
boxes. (C)All atom models of silk crystalline units in cartoon representation, in both
anti-parallel (upper) and parallel (lower) arrangement. (D) Representative MD simulation

system of crystalline unit models, water is shown in transparent surface representation.

against failure. Theoretical studies that focus on mechanical properties of silk have been
restricted to simple models to date (87). Recent studies on the related amyloid fibers
and small g-strand topologies have shed light onto the mechanics of §-sheet dominated
fibers (88; 89). The molecular basis of the rupture strength and stiffness of (-sheet
stacks as they occur in silk is currently unknown. What are the forces necessary to
fracture silk protein crystals? How does the force distribute through such a structure
and what are the force-bearing molecular interactions?

We here present atomic-detail models of the crystalline units of bombyx mori and
spider drag line silk, in both parallel and anti-parallel arrangement. We determine and
compare the rupture forces, stiffness in terms of a backbone pull-out resistance and
internal force distribution from molecular dynamics simulations. We then develop sim-
plified model structures to dissect the contributions of hydrogen bond geometry and
strength to overall strength of the (-sheet. We find the weaker hydrogen bonding in
parallel G-sheets to be compensated for by the stiffer geometry with inclined hydrogen
bonds with respect to the anti-parallel analogue. Focusing onto idealized models of the
crystalline units as the major stabilizing building block of silk allows us to determine

the mechanics of silk-like crystals detached from the complex multi-layer organization
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of a full fiber. This study thereby presents a first step towards a comprehensive under-

standing of the molecular ingredients of silk fiber mechanics.

Methods

Modeling and equilibration

We here focus on the mechanical response of the g-sheet rich units in silk fibers. In
the absence of a high-resolution structure, we modelled highly ordered crystalline units
on the basis of the available substantial experimental data. We built all-atom models
composed of the repeat units found to be present in spider drag-line silk and cocoon
silk (77 [79; 90), AAAAAAAA (denoted AA model) and GAGAGAGAAS (denoted
GA model), respectively. Since silk fibers presumedly consist of a mixture of possible
[-sheet arrangements (85)), both parallel and anti-parallel models were constructed,
denoted here as AA,, AA,,, GA, and GA,,. We arranged five layers of 3-sheets, each
consisting of five §-strands of the respective sequence, such that the model exhibits
optimal hydrogen bonding in the absence of steric repulsion. We found 0.55nm and
0.47nm as inter-strand distances for the AA and GA models, respectively, to be a
reasonable choice. We obtained models approximately 2.5x2.5x3.0nm? in size, in
agreement with X-ray experiments that found crystals to be a few nanometers in size
in each direction (83). Since the detailed number of strands in a silk crystalline unit
is currently unknown and might vary within a fiber and between different silks, we
performed additional simulations of larger crystals. Uncharged peptide termini were
chosen to mimic the situation in a silk fiber, in which the g-strands do not terminate
but reach out into the amorphous region. We did not include the disordered parts of
the silk protein into the models, allowing us to focus on the mechanical properties of
the force-bearing crystalline units exclusively.

We used the Gromacs 3.3.1 package (53) for all subsequent molecular dynamics
(MD) simulations, and the OPLS-AA force field (40)) for the protein. Simulation
boxes of approximately 6.4x6.8x6.4nm>® were used. Periodic boundary conditions
were employed to remove artificial boundary effects. We chose a cutoff of 1.0nm for
non-bonded interactions, and the Particle-Mesh Ewald method (91]) to account for long-
range electrostatics interactions. In order to increase the simulation time step, we used
LINCS (92) to constrain all bond vibrations. The time step was 0.002 ps. Simulations

were performed in the NpT ensemble with a temperature of T'=300K and a pressure
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of p=1bar in all the simulations. We used Nosé-Hoover (93} [94)) temperature coupling
with a coupling time constant 77 =0.1 ps, and Berendsen (95) pressure coupling with
a coupling time constant of 7, =1ps.

We relaxed the modelled crystalline units by energy minimization and short MD
simulations in vacuum. The models were subsequently solvated in TIP4P water (60).
In a silk fiber, cyrstalline units are surrounded by amorphous peptide chains as well
as water molecules. Solvation with water was chosen to mimic this environment, a
condensed and polar phase, in an efficient and more realistic way than vacuum. The
solvent included Na and Cl ions with a concentration of 0.1 mol/liter, resulting in a
system size of ~35,000 atoms. After energy minimization using the steepest descent
method, we performed 500 ps position restrained simulations to further relax our sim-
ulation systems, subjecting each protein atom to a harmonic potential with a force
constant of 1000 kJ mol~! nm~2. Each model was then fully equilibrated for 10ns. En-
ergy and coordinates of the simulation systems were collected every 1000 time steps.
The resulting equilibrated simulation systems served as starting points for Force probe
and Force clamp MD simulations (see below).

Force-probe MD simulations

To assess the mechanical resistance of the four different silk models, we performed
force-probe molecular dynamics simulations (96). Final equilibrated structures ob-
tained from the free MD simulations of the four systems were exposed to an external
stress to monitor rupture. More precisely, the terminal residue of the central strand was
subjected to a pulling force along the strand direction by moving a spring with constant
velocity away from the silk block. A counter force was applied to the center of mass of
the protein to prevent translation of the protein by the pulling force. We alternatively
also considered applying the counter force to all strands except the pulled one, and
obtained the same mechanical response. In a silk fiber, the complex mechanical stress
pattern acting onto the silk crystal is determined by how the individual silk peptide
chains are embedded and connected within the amorphous matrix. As the simplest
scenario, we chose the central strand out of the unit of 5x 5 strands to be pulled. This
maximally reduces the effect of the protein-water interface, which does not exist as
pronounced in the more densely packed natural silk fiber. However, we do not expect
the rupture forces and force distribution patterns to largely depend on this choice. The

2

pulling velocity of 0.2nmns™!, and a spring constant of 500 kJ mol~' nm~—2 was used.
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To accomodate the protein also after rupture, we increased the box dimension along
the pulling direction to 12.0 nm, resulting in a system size of ~55,000 atoms. The sim-
ulated time of all the models to monitor their full rupture was 20-25 ns, depending on
the resistance against rupture. These non-equilibrium MD simulations used the same
simulation parameters as the equilibrium simulations (see above). A representative
simulation system is shown in Fig. [3.ID. Mechanical response is characterized by the
rupture force, which is the maximal force observed for rupturing the cystal, F'. Stiff-
ness was measured by a quantity we here denote backbone pull-out resistance, Ryy. In
analogy to the elastic modulus typically given to measure stiffness of a material, Ry},

is defined as

_ stress  F/A
P Strain | AL/L

where F' is the force acting on the strand, and A is the cross section area of the

(3.1)

interacting strands. We defined the cross-section as the area covered between adjacent

2. In a full silk fiber, the external stress applied to the

strands, which gives A=1nm
fiber’s area distributes highly inhomogeneously through the fiber. Depending on the
entanglement of the chains in the amorphous matrix, tensile stresses in the chains, and
thus the forces acting on the individual strands in the crystalline units, differ from
each other. Thereby, the applied stretching force acting on only one or a few peptides
in the silk crystals, are effectively translated into a shear force within the S-sheet
arrangement. However, in analogy to previous experimental measurements of stiffness
of crystalline units in terms of the Young’s modulus E (86)), we here defined a backbone
pull-out resistance to measure stiffness. How exactly the amorphous matrix structural
properties determine force distribution onto the (3-sheet rich phase will be subject of
future investigations, and will help to find a remedy for this definition.

Force-clamp MD (FCMD) simulations and force distribution analysis

To determine the internal strain of the crystalline units prior to rupture, we em-
ployed a newly developed force distribution analysis. We here shortly outline the basic
concept. Details have been published elsewhere (54)).

Force distribution analysis is based on Gromacs-3.3.1 modified to write out forces Fj;
between each atom pair i, j. Forces include individual bonded (bond, angle, dihedral)
and non-bonded (electrostatic, van der Waals) terms below the cutoff distance of 1 nm.
The force between an atom pair is represented as the norm of the force vector and

thus is scalar, attractive and repulsive forces are distinguished by oppoite signs. As we
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consider the direct force between each atom pair, the equilibrium force can be different
from zero, even for the theoretical case of a system without motion. Atomic forces,
i.e. the sum over all force vectors acting on a single atom would instead average out.
We hereby obtain the advantage to be able to observe strain propagation even through
stiff materials, such as the silk crystal, where forces propagate without causing major
atomic displacement.

Forces were monitored in the relaxed state during equilibrium simulation (EQ) and
in the strained state during FCMD simulation (FC). In the FCMD simulations, a con-
stant external force of 1660pN was applied to the terminal amino acid along the strand
direction as described above. The four silk models were equilibrated for 20 ns in total
in the strained and relaxed state in two independent FCMD / equilibrium simulations
each. Average forces were written every 10ps. To obtain converged averages, forces
were afterwards averaged over the complete simulation time.

A change in pairwise force reflects internal strain and thus is considered as a measure
for load-bearing interaction. Consequently, the force propagation pattern becomes
visible when observing the differences in forces Fj; between strained and relaxed state,
defined as:

AF,; = FE° - F° (3.2)

where F};C is the force between atom ¢ and j in the strained state and FEQ is the force
in the relaxed state. The mechanical coupling of a single atom with respect to all other

atoms is then defined as the absolute sum of changes in force A Fj:

AFj =) |AFy] (3.3)

Individual hydrogen bond forces were obtained from summing up over pair-wise Lennard
Jones and Coulombic forces between all atom pairs of the C=0 and N-H groups.

Finite element analysis

To predict the effect of hydrogen bond geometry on the mechanical response, we
developed a simplified 3-skeleton model for the anti-parallel and parallel G-sheets on
the basis of the all-atom models (Fig. [3.5). Distances and hydrogen bond geometry
were directly taken from the all-atom models. The geometries were imported into a
common beam frame analysis finite element software where the backbone, the hydrogen

bonds, and their short connections to the backbone, i.e. the C=0 and N-H groups,
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were modelled by rigid-jointed, linear-elastic beam elements with circular cross-sections.
For each of the elements an individual bending stiffness E1 and a tensile stiffness F A
were defined where A is the cross-sectional area and I denotes the geometrical moment
of inertia (second moment of area). The bending stiffness for the backbone element
was calculated as

El=p- kT (3.4)

where p is the persistence length of a peptide, kg is the Boltzmann constant and T’ is
the temperature, here 300 K. From the worm-like chain model (97) of a peptide that
only takes conformational flexibility into account, a persistence length of 1.2nm was
previously obtained and used here (98). A bending modulus of ET=58pNnm? was
obtained.

The tensile stiffness of the backbone element is defined as

F

EA=——
Al/l

(3.5)

In FCMD simulation, we obtained a strain of A1/l =0.06 at a force of 1660 pN, resulting
in a stretching modulus of A = 23300 pN.

FE A of the hydrogen bond elements, was calculated on the basis of the hydrogen
bond potential of the OPLS-AA force field, namely as the second derivative of the
energy summed up over all Lennard-Jones and electrostatic interactions between the
atoms in the C=0 and H-N groups (Fig. . As a first approximation, the curvature
at the potential energy minimum, i. e. at an O-H distance of 0.195 nm, was taken as the
tensile stiffness /A of both the parallel and anti-parallel skeletons, 3, and 3.y, resulting
in FA=1797pN. A bending modulus of hydrogen bonds cannot be straightforwardly
obtained from the all-atom models. We used an effective radius of 0.06 nm for hydrogen
bonds to obtain EI from FEA, using the relation r=2 \/W This radius is a
measure for the relative bending versus tensile stiffness and was chosen similarly to
the one obtained for the backbone. We obtained ET =1.62pNnm? for hydrogen bond
elements. The elastic modulus of the hydrogen bonds then is =159 GPa. However,
in fact, when calculating the hydrogen bond length distribution in the relaxed silk
crystals, we found that hydrogen bonds in all-atom parallel units were longer (0.203 nm
on average) than those in anti-parallel models (0.195nm on average), resulting in a

lower hydrogen bonding energy in parallel models.
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Figure 3.2: Hydrogen bond force profile. The first derivative of the potential energy
between C=0 and N-H atom groups in OPLS, including electrostatics and Lennard-Jones
interactions, is shown. The slope of the curve, indicated for the potential minimum at an
equilibrium length of 0.195 nm, and for extended average hydrogen bond length of 0.203 nm,
gives the hydrogen bond stretching modulus.

To account for the lower strength of hydrogen bonds in the parallel model an ad-
ditional parallel 3-skeleton was considered, 3, weak- At a distance of 0.203 nm, the
interaction potential from the OPLS-AA force field gives a stretching modulus of
EA=802pN (Fig. . The bending modulus then reduces to £I =0.72 pNnm?. The
elastic modulus of hydrogen bonds in 3, weax then is F=71 GPa.

For the C=0 and N-H elements, parameters similar to the backbone element were
applied. These elements had an only minor effect on the mechanics of the skeleton.
Using the parameters described above and the structures shown in Fig. [3.5] a finite
element analysis was performed to calculate the dislocation of the central strand in
each skeleton upon application of a force of 1660 pN, as in previous MD simulations.
This analysis gave effective Young’s moduli £ of the whole (-skeletons which were
directly compared to MD results. First, the anti-parallel and parallel 3-skeletons with
an identical hydrogen bond strength, EA = 1797 pN for 3., and 8, strong, Were compared
to focus on effects based on geometry only. Secondly, different hydrogen bond strength,

EA=1797 for Bap and EA =802 for 3, weax Were applied (see above). We note that the
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simple finite element models proceeded from geometrical as well as material linearity.
Non-linear effects, in particular for the hydrogen bonds, might be incorporated in future
analysis. Using finite element analysis, the backbone pull-out resistance, as defined in

Eq. above for the all-atom models, was determined and compared to the MD results.

Results and Discussion

Structural validation of models for silk crystalline units

The toughness of silk fibers is brought about by the (§-sheet rich crystalline units
which crosslink the protein chains. They consist of a poly-alanine or a GAGAGAGAAS
sequence, in spider and silkmoth silk, in an anti-parallel or parallel arrangement of the
strands. While the three-dimensional structure of any of these crystalline units remains
largely unknown, the inter-strand spacing within the crystal has been measured by X-
ray diffraction of silk fibers (83). We constructed four different models, denoted AA,,
AA,p, GA,, and GA,j, for the parallel and anti-parallel spider and silkmoth silk, respec-
tively. We here only considered purely parallel and anti-parallel arrangements within
and between (-sheets, and expect mixtures thereof to show intermediate behavior. Ar-
ranging the strands such that hydrogen bonding and sidechain packing is optimized
does not leave any other degrees of freedom. We equilibrated these models in water in
molecular dynamics (MD) simulations. The models show remarkable agreement with
the experimental (-strand spacing in the crystal, as shown for GA in Table In
addition, they show high conformational stability during the 10 ns equilibration, with a
root-mean-square deviation from the initial model not higher than 0.15nm in all mod-
els. Our idealized crystal units can be considered representatives of the most regular

(-sheet rich regions which occur with various degrees of regularity in real silk fibers.

Characterization of mechanical response

We characterize the mechanical response of the four different models by determining
their stress-strain relationship and backbone pull-out resistance (Fig. [3.3)). The way
the force acts onto a crystalline unit in a stretched silk fiber is complex and varies from
unit to unit. We here simplify the stress application by subjecting the terminus of the
central strand to a pulling force arising from a virtual spring moved along the strand
axis with constant velocity, as schematically shown in Fig. 3.3

The stress-strain curves of the AA models are shown in Fig. 3.3A. The elastic

response is mostly linear up to the rupture of the pulled strands. The slope of the
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Table 3.1: Structural and mechanical properties of crystalline units compared to exper-
imental data. dy, distance between two neigbouring C, along one peptide; ds, distance
between two (-sheet layers; d3 , distance between neigbouring strands in the same (§-sheet
layer. Ry, backbone pull-out resistance from force-probe MD simulations and experi-
ment (86). RpgMm, backbone pull-out resistance of 8-skeletons from finite element model,
with the same hydrogen bond strength, 3, strong and Bap, or with the weaker strength

found for parallel crystals, Bp weak-

AA,, AA,

dy (nm) 0.351£0.005 0.331+£0.008

dy (nm) 1.043+0.023 1.082+0.026

ds (nm) 0.477+0.011 0.485+0.016

Ry, (GPa)  68.1+1.5 28.9+1.4

Rppnt (GPa)  Bap:26.3 Boweak 1 171 Bpstrong : 24.3
GAqp GA, GA experiment

dy (nm) 0.351£0.005 0.330+£0.008 0.348

dy (nm) 0.905+0.023 1.025+0.025 0.970

ds (nm) 0.477+£0.013 0.480+£0.016 0.466

Ry, (GPa)  86.84+2.5 27.3+ 1.8 26.5 4 0.8

stress-strain relationship of AA,, gives an backbone pull-out resistance of 67.243.0 GPa
(Table , which is more than twice of the corresponding parallel crystalline unit
AA,(28.6£2.2GPa). The stiffness as measured by the backbone pull-out resistance
correlates for the two §-sheet arrangements of AA with the forces upon which rupture
occurs. With a rupture force of 4074pN, AA,, clearly outperforms AA, (2988 pN,
Fig. [3.3D). To assess the effect of the loading rate onto the obtained stress-strain
relation, we performed additional simulations with a 10-fold higher loading rate, using
a spring constant of 5000kJmol ' nm~2. We obtained the same backbone pull-out
resistance. We can therefore assume the stress-strain response, involving only slight
sub-nanometer structural rearrangements, to be independent from the loading rate or
magnitude of force applied, in contrast to the load-dependent forces inducing complete
rupture.

Similarly, linear stress-strain relations were found for the analogous GA crystalline

units, with a higher stiffness for the anti-parallel (red curve in Fig. ) over the
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Figure 3.3: Elasticity and stability of crystalline units from force-probe MD simulations.
(A) Stress-strain curves of AA, (blue) and AA,, (red), with solid black curves for averages.
The inset shows the complete extension and rupture process. (B) Stress-strain curves of the
GA, (blue) and GA,}, (red). (C) Simulation snapshots of the rupture process. Crystalline
unit is in green with the pulled strand in red. The pulling force is depicted as a spring.
(D) Rupture forces of different units, of titin 127 domain as comparison, and of AA,;, after

hydrogen bond or side-chain interaction of the central strand are switched off.

parallel structure (blue) (backbone pull-out resistance given in Table . Assuming a
mixture of 2:1 (GA,,:GA,) (85)), our simulations predict a modulus of GA crystals in the
range of 27-87 GPa, comparing to 26.5 GPa as the experimental value (86]). With regard
to the putative role of crystalline units as the major force-bearing units in silk fibers,
the total net area of crystalline units onto which force is primarily applied is effectively
smaller than the fiber cross-section used to calculate stress, suggesting the experimental
value to serve as a lower bound (personal communication, M. Miiller). We note that
an elastic modulus as given in the previous experimental work is not straightforwardly
defined for crystalline units due to the translation of tensile to primarily shear stress
within the nano-scale structure (see Methods). Nevertheless, in analogy to macroscopic
fiber stretch experiments and to previous experiments on the shear-deformation within
a silk crystal (86), we here define the mechanical response in terms of stress and strain

as well, resulting in a modulus to quantify the backbone pull-out resistance of the
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crystal. We conclude that the calculated backbone pull-out resistance are in good
agreement with the modulus recently obtained from X-ray diffraction measurements,
further validating our models for the crystalline silk units. Again, a higher stiffness
coincides with a higher rupture force for GA,, (3628 pN) comparing to GA,, (2435 pN,
Fig. [3.3D). The correlation of the stiffness with fracture resistance, as found for both
silk and spider crystalline units, was expected, since load-bearing interactions are of the
same nature and range of attraction. In all five independent simulated rupture events of
GA,, the first rupture leads to the formation of intermediate states with newly formed
hydrogen bonds, reflected by jumps in the stress-strain curve (Fig.|3.3B, inset). GA} as
the softest out of the four models considered here therefore shows a non-linear elastic
behaviour with an effectively even lower modulus by this sliding-snapping mechanism.

As shown in Fig. 33D, the rupture forces of the AA models are higher than the GA
models. Comparing to a change of ~1000pN when converting a parallel to an anti-
parallel conformation, replacing glycine by alanine only increases the rupture force
by ~400 pN. The additional methyl sidechain in alanine residues thus adds mechanical
resistance, but only marginally. Interestingly, all of the crystalline units (forces between
2 and 4nN) have several times higher rupture forces than titin 127 (700 pN at a very
similar pulling velocity of 0.4 nm/ns), one of the most stable protein domains known
to date (99; [100). Thus, the periodically arranged (-sheets in silk fibers have an
outstanding toughness, higher than any globular protein examined to date.

Force distribution from molecular dynamics

The elastic response and rupture forces we observe suggest silk crystalline units to
largely outperform other previously investigated globular proteins of high mechanical
toughness such as immunoglobulin-like domains (101)). This high toughness is further
fine-tuned by differences in the arrangement of strands into parallel or anti-parallel
sheets. What are the determinants of the robustness of the (3-sheet stacks in silk? To
reveal the force-bearing motifs in crystalline units, and to thereby rationalize the high
stiffness and differences in stiffness due to strand orientation, we performed a force
distribution analysis for AA,, and AA,, as shown in Fig. and B, respectively. In
this analysis, atomic pairwise forces were obtained from the strained structure, held at

constant force of 1660 pN in force clamp (FCMD) simulations. These forces, Ffjc, were

EQ
ij o

in the absence of force (see Methods). Force averages over time converged well within

compared to forces in the relaxed state, F obtained from equilibrium simulation, i. e.
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the total simulation time of 20 ns, with an average statistical error of ~3.6 pN. For both
models, strain is maximal (red) at the point of force application at the central strand,
and decays horizontally along the (-sheet involving hydrogen bonding, and vertically
along the layers of alanine sidechain packing. Thus, both inter-strand hydrogen bonding
and inter-sheet sidechain interaction are similarly involved in force propagation. Force
distribution therefore predicts that eliminating either the hydrogen bonds or sidechain
interactions will lead to a decrease in stability. We tested this by determining the
rupture force after selectively switching off (i) the electrostatic backbone interactions
of the central strand, or (ii) the Lennard Jones interactions of the alanine sidechain
methyl group of the central strand. Indeed the rupture force is lowered from 2988 pN to
2096 pN (Fig. 3.3D, SC) (i) and 1726 pN (Fig. [3.3D, HB) (ii), respectively, confirming
the notion from force distribution analysis that both types of non-covalent interactions
contribute to silk crystal toughness to similar extent.

In AA,, (Fig.[3.4B), most of the applied stress is already taken up by the strands
adjacent to the central strand, and the stress shows a fast non-linear decay with dis-
tance. Outer strands are merely strained (blue). The subset of a few central strands
suffices to sustain the external load, apparently due to strong non-bonded interactions,
rendering the crystal stiff and robust (compare Fig. and D). In sharp contrast,
in AA, (Fig. ), force is more widely distributed, along hydrogen bonding layers as
well as inter B-sheet layers. Along the central strand, strain decays in a linear way and
thus significantly more slowly than in AA,,. Each individual sidechain or hydrogen
bond interaction can take up less of the external strain, resulting in a softer structure
comparing to the anti-parallel model. Consequently, both the stiffness and rupture
force of parallel arrangements are generally lower. The same tendency is found for
the force distribution in the respective parallel and anti-parallel GA models of bombyz
mori.

We find the difference in hydrogen bond geometry between AA, and AA,;, to be the
major determinant for the difference in force distribution within one g-sheet (Fig. [3.4
C and D). By nature, parallel (-sheets feature an inclined zigzag geometry of hydro-
gen bonds, whereas anti-parallel counterparts show an in-line geometry. The hydrogen
bonds in AA,;,, being oriented in-line, are responding to the external load in a homo-
geneous way. Fig. [3.4[F shows the force differences between strained and relaxed state,

APF, for the two sets of hydrogen bonds formed by the central strand with two adjacent
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Figure 3.4: Force distribution analysis of crystalline units from MD simulations. Coloring
indicates internal strain, averaged over residues, from low (blue) to high (red) levels of A F.
Protein are shown as cartoon, force application sites as spheres. (A-B) Force distribution
in AA, (A) and AA,, (B). (C-D) Force distribution within inter-strand hydrogen bonding
between the central and the two adjacent strands for AA, (C) and AA,, (D), hydrogen
bonds between central and adjacent strands are shown as sticks. Coloring indicates A F' in
hydrogen bonds (sticks) and residues (cartoon), using the same color code as (A-B). (E-F)
A F for inter-strand hydrogen bonds along the strands. The upper and lower hydrogen
bonds in (C-D) are shown in red and blue, respectively, starting from the point of force
application in AA,, (E) and AA,, (F).

strands. All hydrogen bonds generally become strained by the externally applied force.
AF varies from ~50pN to ~10pN and decays along the strand to zero (Fig. and
color code in Fig. [3.4D).

The zigzag geometry of hydrogen bonds in parallel 3-sheets instead entails an anal-
ogous zigzag pattern in the force distribution (Fig. and E). Hydrogen bonds ori-
ented along the pulling direction are significantly strained, with AF up to ~160 pN,

while oppositely oriented hydrogen bonds merely respond to the external pulling force.
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The overall larger AF and the slower decay along the strand indicate that hydrogen
bonds in the parallel 8-sheet geometry are less capable of taking up load, rendering the
structure softer.

However, the impact of hydrogen bond geometry onto the overall elastic response
and rupture forces cannot be directly inferred from force distribution of the hydrogen
bonds when being part of the whole crystal unit, since other structural components may
have similar influence. To dissect the hydrogen bonding properties from other potential
determinants of mechanical stability, we next examined the impact of bonding geometry
only, using simplified (-sheet skeletons.

Force distribution of (3-sheet skeletons

To examine how hydrogen bonding geometry affects the mechanical properties of
the silk crystalline units, we built (-sheet skeletons, simplified models of one 3-sheet
layer, which are shown in Fig. and B for anti-parallel and parallel G-sheets models,
respectively. Structural and elastic parameters were adopted from the MD simulations,
to mimic hydrogen bonding geometry and strength and backbone elastic properties
of a (-sheet layer in silk. The backbone of each strand, hydrogen bonds, and the
connecting C=0 and N-H groups are each treated as one element. The parallel 3-sheet
skeleton, By strong, features a zigzag hydrogen bond geometry (Fig.|3.5/A), while hydrogen
bonds are oriented in-line in the anti-parallel (-sheet skeleton, [, (Fig. ) The
stretching modulus for hydrogen bonds was defined from the second derivative of the
all-atom hydrogen bond potential at the potential minimum, and thus was the same
for both geometries. The squares in Fig. and B represent connections between
elements. Details are given in the Methods section.

Distortion of the structure upon application of a pulling force of 1660 pN (arrow) was
determined by finite element analysis and is shown as solid black line (Fig. and B).
The resulting effective (macroscopic) backbone pull-out resistance are 24.3 GPa (3} strong)
and 26.3 GPa (fap). The zigzag geometry is generally the more stable structure from a
mechanical point of view, as reflected by the wide spread use of inclined cross beams
as e.g. in trusses exploiting the structural stability of triangular shapes. Here, the
hydrogen bonds are taking up the role of such cross beams, but due to their bending
stiffness, are not able to add considerable mechanical stability. Consequently, we find

nearly the same stiffness, and thus structural stability, for the two [-sheet skeletons.
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Figure 3.5: Force distribution in simple S-sheet skeletons. (A-B) Skeletons for parallel (A)
and anti-parallel (B) §-sheets, consisting of connected elements for the backbone, hydrogen
bonds and C=0/N-H groups (black). Dislocation at an external force of 1660 pN is ob-
tained from finite element analysis and shown in blue. (C-D) A F for interstrand hydrogen
bonds along the strand, as in Fig. —F, for parallel (C) and anti-parallel (D) 8-skeletons.

The 3, model would more clearly outperform the 3,, model, if hydrogen bonds would
act as weaker cross beams in terms of bending, as depicted in Fig. [3.6

However, in contrast to this prediction, the all-atom simulations indicate AA,, and
GA,p to be stiffer and more robust than their parallel counterparts. A possible expla-
nation might lie in the fact that the hydrogen bond strength is found to be the second
major difference between the two alternative (-sheet arrangements. Namely, paral-
lel B-sheets showed extended hydrogen bonds stretched out of the potential energy
minimum, apparently due to steric restraints, which resulted in an effectively lower
stretching modulus of the hydrogen bond element of 71 GPa comparing to 159 GPa
(Fig. 3.2). By taking this difference of hydrogen bond strength between parallel and
anti-parallel G-sheet skeletons into account, we found the anti-parallel S-sheet skeleton
(26.3 GPa, as above) to clearly outperform the parallel, comparably weakly hydrogen
bonded, analogue with a backbone pull-out resistance reduced to 17.1 GPa. Not sur-

prisingly, the backbone pull-out resistance of the full G-sheet stacks at atomic detail
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Figure 3.6: Dislocation ratio of parallel (AX,,) to anti-parallel (AX,) (-skeletons on
different hydrogen bond bending moduli, FI. The X-axis has a unit of EI, =1.6 pNnm?.
The lower the bending stiffness, the more pronounced is the stabilizing effect of a zigzag
geometry (parallel) relative to the in-line geometry (anti-parallel). Caculations have been
done for a given hydrogen bond stretching modulus (EA=1797pN). For EI > EI,, the
geometry og hydrogen bonds (anti-parallel vs. parallel) has a negligible effect on the overall

(-skeleton stiffness.

are overall higher (68 GPa and 21 GPa for AA,, and AA,) than those of the one-layer
skeletons, since the former are additionally stabilized by inter-layer sidechain packing.

The force distribution within the (-sheet skeletons can be directly compared to
the force distribution from molecular dynamics simulations. We find good quantatitive
agreement of the changes in hydrogen bond forces AF between the simplified skeletons
(Fig. and D) and the all-atom crystalline units (Fig. and F). AF decays con-
tinuously and quickly along the strand in the anti-parallel 3-sheet skeleton (Fig. [3.5C)
from 170 pN to zero. Thus, as in the all-atom force distribution, the pulling force prop-
agates along the pulled strand and is taken up quickly. In the parallel skeleton, again,
the zigzag pattern is clearly recovered in the AF pattern along the strand (Fig. )
Bonds are alternatingly compressed and stretched, depending on their relative orienta-
tion towards the pulling force, as reflected by the change in sign of AF. In contrast,
even bonds oriented against the pulling force were stretched and weakened in the all-
atom parallel silk units. Apparently, due to sidechain imposed steric restrictions, the
hydrogen bond force changes are shifted upwards comparably (Fig. )

The good agreement of the finite element analysis of simplified silk single 3-sheet
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layers with the full silk unit analysis suggests that hydrogen bond force distribution is
largely determined by geometry and strength of the involved bonds. Thus, the presented
skeletons are good approximations for a silk crystalline G-sheet layer. We can conclude
that the difference in overall elasticity and structural stability between parallel and
anti-parallel crystal units can be largely explained by the differential geometry and

strength of hydrogen bonds, the latter compensating for the former.

Conclusion

We here suggested three-dimensional structural models of spider and silkmoth silk
crystals in two feasible conformations, namely anti-parallel and parallel arrangements.
We find the crystalline units to agree well with X-ray diffraction data, suggesting our
idealized highly ordered models to closely resemble the structure of crystalline regions
in silk fibers.

We examined the mechanical response of the silk crystalline units by three com-
plementary approaches. First, we performed force-probe molecular dynamics simula-
tions to determine relative stabilities from rupture forces. We find spider silk crystals
(poly(A)) to outperform silkmoth crystals (poly(GA)), and anti-parallel to outperform
parallel arrangements in terms of rupture forces and stiffness. Estimated backbone
pull-out resistance compare well to experimental data. Second, force distribution anal-
ysis was used to reveal how external forces propagate through the crystal. The analysis
determined inter-sheet alanine sidechain packing and inter-strand hydrogen bonding
as the major force-bearing elements. Third, simple (-sheet skeletons were developed
on the basis of all-atom MD simulations to focus on one layer of hydrogen bonds
allowing to investigate how the hydrogen bond geometry affected silk crystal stabil-
ity. While the zigzag motif as found in parallel 3-sheets renders a structure generally
stiffer than the in-line geometry of the anti-parallel analogues, the lower hydrogen
bond strength in parallel sheets compensates for this effect and renders parallel com-
formations overall less stiff and stable. The simple finite element analysis of (-sheet
skeleton semi-quantitatively reproduced the backbone pull-out resistance obtained from
all-atom MD simulations. The analysis is computationally highly efficient, and opens
the door towards simulations of full silk fibers. Incorporating silk crystal skeletons into

the amorphous matrix will lead to a model of disordered protein chains crosslinked in
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crystal units, a model that aims at accurately describing the complex force propagation
on the nano-scale. Studies in this direction are under way.

The idealized silk crystalline units studied here could withstand surprisingly high
forces up to 4nN. Interestingly, covalent bonds have been shown to rupture in this high
force regime (12} 102 [103). For example, siloxane bonds were shown to rupture at
4.4nN in ab initio molecular dynamics simulations (102). Similarly, for a peptide bond,
the bond under tensile stress in the silk crystal, we find a rupture force of roughly 4nN on
a picosecond time scale (unpublished results). However, in contrast to the elongated
chain molecules investigated in these studies, silk crystals very effectively distribute
the tensile stress throughout the crystal. In fact, forces as high as the externally
applied force are only found at the point of force application and then decrease rapidly,
according to our force distribution analysis. We also note that the rupture forces up to
4nN found in our simulations are a result of the high loading rates, which are typically
around six orders of magnitude higher than experimental rates. Therefore, rupture
forces for silk crystals can be expected to be significantly lower than those required to
induce covalent bond rupture in the backbone.

We note that our understanding of force propagation in silk crystal units ob-
tained from MD and finite element analysis is based on a molecular mechanics model.
Force fields are known to not accurately predict the angle dependency of hydrogen
bonds (104), which questions our detailed force distribution analysis on inter-strand
hydrogen bonds (Fig.. Quantum mechanical calculations at sufficient level of the-
ory might allow to assess the error involved in the classical mechanical approximation.

Our study presents a first step towards a physical structure-based model of silk
fiber mechanics. The ultimate aim of the ongoing effort in the field of silk mechanics is
to design new silk-inspired high-performance materials. As a first conclusion, we find
spider silk crystals to be slightly stiffer and structurally more stable than silkmoth silk
due to the additional Ala sidechain. How other alterations of the primary sequence
in the amorphous and crystalline regions will affect overall silk mechanical response

remains to be analyzed.
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3.1.2 Force Distribution determines Optimal Length of 3-sheet Crys-
tals for Mechanical Robustness

Atomistic models of G-sheet crystals with varying number of alanines were mechanically
tested in Molecular Dynamics simulations. The gain in mechanical robustness per
residue is maximal for strands that are eight residues long, because the external force
is efficiently deflected into neighbouring strands on the distance they span, rendering

eight residues a mechanical optimum for a semi-crystalline material like silk. (105])

Introduction

Among the secondary structure types a protein can adopt, 3-sheets are generally those
with the highest resistance to mechanical force. Consequently, evolution has selected
(-sheets as the major building blocks of the most resilient proteins, such as titin im-
munoglobulin and fibronectin domains, (106; [107) amyloid fibers, (108]) or the crys-
talline phase in natural silk fibers. (109; 110) As the hallmark of S-sheets and similarly
found in the crystalline phases of some polymers like polyamides or polyurethanes,
hydrogen bonds are periodically formed between adjacent (-strands in the sheet, the
concurrent rupture of which can resist high forces.

The mechanical stability of a molecular architecture like a (-sheet depends on a
number of important factors, such as the chemistry and relative arrangement of the
chains. Given a certain composition and geometry of a (-sheet crystal with respect to
the applied force, is there an optimal length of the strands in the crystal so that the
material maximizes its macroscopic mechanical toughness? Optimizing the resistance
against rupture gained by each unit of the protein or polymer would allow the efficient

usage of the material, a competitive advantage in a world of limited resources.

Calculation and Results

We first determined the preferred length of strands in naturally occurring (5-sheets, i.e.
the strand length dominantly selected by evolution. We measured the distribution of
B-strand length in the SCOP(Structural Classification of Proteins) (111) database by
determining the secondary structure of the SCOP domains using STRIDE(STRuctural
IDEntification). (I12)) STRIDE is known to give a more accurate assignment for 70%
of cases as compared to DSSP. (113)) The length distribution for all SCOP domains
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features a maximum at 4-5 residues (Fig. , which reflects a positive selection for
foldable and functional proteins in general and only partly an optimization for mechan-
ical robustness. Interestingly, when restricting the analysis to a protein fold known for
its mechanical function in the biological context and for its extra-ordinary stability
against mechanical force, namely the immunoglobulin-like G-sandwich fold, the overall
distribution shifts to longer strands, with a maximum at 6 residues per (-strand. A
similar distribution with a peak for 6 residues is found when only considering domains
of titin, tenascin, and fibronectin from this family, for which clear evidence for their
force-carrying function is at hand (data not shown).

A prime example for a natural §-sheet structure optimized for the ability of bear-
ing high mechanical load are the (3-sheets formed by silk proteins. Spider silk shows
strand lengths of 8-10 residues, (77) and thus another shift in the distribution towards
longer [(-strands as compared to other protein domains (Fig. [3.7, green bar). Silk is
a material with outstanding toughness not matched by any other synthetic material.
The crystalline units are formed from stacked (-sheets, each of which comprises sev-
eral strands of mostly eight alanine residues (or alternating alanine-glycine, depending
on individual type of silk). These crystals act as force-bearing units, cross-linking the
amorphous phase they are embedded in (Fig. [3.8/A). Since the primary evolutionary
constraint for silk crystalline regions is their mechanical stability, we conclude that
(B-strand lengths of 8-10 residues are an optimal choice from a material design point of
view. This length is roughly two times the length generally dominating proteins under
multiple evolutionary constraints.

In contrast, in a recent computational study, 2D models of (3-sheets consisting of
three §-strands were mechanically analyzed and found to reach a mechanical optimum
in terms of the pull-out resistance against force for a strand length of 4 residues. (88])
However, the validity of this number for the naturally occurring 3D structures, which
are stabilized by both intra-sheet hydrogen bonding and inter-sheet sidechain interac-
tions, remains to be investigated.

To reconcile these observations, we here ask how the rupture force of a [-sheet
structure varies with strand length to determine the mechanically optimal number of
residues in a B-strand. We have recently built and mechanically characterized atomistic

models of spider dragline silk protein crystals. (72]) Crystals differing in their protein
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Figure 3.7: [-strand lengths distribution in proteins. The distribution for all protein
structures in SCOP shows a peak at 4-5 residues (red), and for proteins of the SCOP
immonoglobulin-like fold a peak at 6 residues (black). (-strand lengths found in silk
protein sequences, shown as green bar, vary between 8 and 10 residues.

sequence and strand arrangement (parallel versus anti-parallel) were compared and val-
idated by experiments. (86) Their extra-ordinary rupture forces and stiffness explained
their function of reinforcing silk fibers. One thing that specifically interests us is that,
how B-strand length affects pulled out rupture force? Is there a correlation between
(B-strand lengths and rupture force, that governs nature selection of protein structures?
Here, we built silk G-sheet protein crystals which differed in their number of alanines
in each strand and therefore the number of inter-strand hydrogen bonds from 4 to 16
(Fig. ) Of which are the most nature occuring S-strand lengths. All of them con-
sisted of five strands per 3-sheet layer and five of these layers. We chose an anti-parallel
arrangement of strands in a (3-sheet. (72) Crystals of parallel sheets are softer, but can
be expected to show a similar scaling. We fully equilibrated the five all-atom structures
in explicit water for 10 ns, before subjecting them to force-probe molecular dynamics
(FPMD) simulations, (66 in which mechanical force was applied to the C-terminus of
the central strand as indicated in Fig. |3.8B.

We used the simulation package GROMACS 4.0.5 (114)) to perform all simulations.
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Figure 3.8: Molecular structure of silk. (A) Schematic drawing of a silk fiber comprising
two different phases, namely the §-sheet crystals simplified as brown anti-parallel arrows,
cross-linking the amorphous peptides shown in grey. (B) Molecular models of silk protein
crystals, varying in their strand length from 4 (top), 6, 8 (corresponding to natural dragline
silk), and 12 to 16 residues (bottom). Central strands are shown in red with arrows

indicating the external pulling force applied in FPMD simulations.

In FPMD simulations, we moved a virtual harmonic spring with a force constant of
500kJ/mol/nm? away from the pulled group, the terminal C-a atom of the central
strand, with a pulling rate of 0.2 nm/ns. More details have been published previ-
ously. (72) The resulting force profiles are shown in Fig. . A sudden drop of the
force reflects failure of the crystalline structures. In all cases, prior to failure, we ob-
served the same linear increase in force, indicating a high constant elastic modulus
steadily increasing with the length of the §-strands. However, rupture forces strongly
varied with strand length, with larger rupture forces for longer strands, as expected
(Fig.[3.94).

The interesting quantity for optimizing a material is the rupture force gained per
residue in the crystal. Thus, we calculated the force per residue, i.e. per hydrogen bond

and sidechain interaction, by normalizing the rupture force by the number of alanine
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groups in the strand (shown as black squares in Fig. ) We found a maximal
force load of 427 pN/residue for [-sheets of 8 residues. The rupture force per residue
in 4-residue-long crystals is 169 pN /residue, and thus less than half of the mechanical
optimum. For longer 3-sheets comprising 12 or 16 residues, the load carried per residue
decreases again. Apparently, adding additional residues to an 8-residue long crystal
does not lead to a significant gain in mechanical resistance. At even longer scales, we

expect the total rupture force to reach a plateau.
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Figure 3.9: Force for rupturing (-sheet crystals of varying strand length. (A) Force
profiles for models with strand lengths varying from 4 to 16 residues as indicated. We
observe a linear increase in force prior to failure in all cases. (B) Rupture forces, i.e.
maximal forces observed in FPMD simulations as shown in (A), again for models with
varying strand lengths (color bar). The longer the crystal, the higher the rupture force
required to pull out the central strand. By dividing the rupture force by the number of
residues in the strand, we obtained a normalized rupture force per residue (black curve),
which shows a maximum of 427 pN for strands of 8 residues.

What is a microscopic interpretation of the maximum force per residue for (Ala)g

(B-sheet crystals? Apparently, the external force, propagating along the pulled strand, is
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deflected vertically into adjacent strands via hydrogen bonds and sidechain interactions
such that the residues at a distance of 8 residues and more from the pulled terminus
do not take part in carrying any significant strain. To test this interpretation, we
performed force distribution analysis (FDA) to detect the internal propagation of stress
in the structure prior to rupture. (54)

The main idea of the newly developed FDA is to analyze the inter-atomic forces
as the structure is subjected to an external constant force in force-clamp molecular
dynamics (FCMD) simulations. The externally applied force is low enough to monitor
the force distribution in a mechanically equilibrated state prior to rupture. The atomic
pair-wise forces are averaged over time and substracted from those forces observed in
the relaxed state of the structure, i.e. in the absence of an external force. FDA is
reminiscent of finite element analysis performed for revealing the stress distribution
in macroscopic objects. The investigated molecular structure was equilibrated on two
states, namely a perturbed force loaded state and a non-force relax state. All possible
interacting atomic pairwise forces were collected and averaged for a long simulation
time. Corresponding pairwise forces are then subtracted each other to get the absolute
force differences which were then remapped onto the molecular structure. For more
technical details, please consult to the original FDA publication. (54) Here, we sub-
jected the (Ala)ig crystal to MD simulations in the absence of an external force, and
in presence of a constant force of 1660 pN. This external force is low enough to keep
the structure intact within the nanosecond time scale of the simulations. We then cal-
culated the internal force distribution in the (Ala)ig crystal from the difference in the
atomic pair-wise force between the resulting strained and relaxed state. The atomic
forces have been averaged over 10 ns simulations for each state. The details of this
method are published elsewhere. (54)

The forces carried by individual hydrogen bonds formed between the pulled central
strand and its two adjacent strands in the central 3-sheet layer are shown in Fig. [3.10A.
The hydrogen bond forces, also shown as color codes on the 3-sheet structure, are max-
imal at the point of force application, and decay along the strands. They reach almost
zero at the eighth residue in the central strand. Residues more than 8 residues away
from the point of force application are virtually not involved in the force distribution.
Similarly, the next rows of hydrogen bonds in the structure do not carry any significant

load (Fig.|3.10B). On the basis of this central result of the FDA, we predict the addition
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Figure 3.10: Force distribution in the hydrogen bonds of a (-sheet layer. (A) Forces
taken up by the hydrogen bonds between the central pulled strand and the two adjacent
strands, as indicated as dashed lines in the structure. The upper and lower strand hydrogen
bonds are shown in red and black, respectively. The same data is shown as a color code
mapped onto the (-sheet structure, where red indicates high and blue indicates low strain.
(B) Force distribution of hydrogen bonds between the outer strands of the (-sheet layer.
Otherwise same as (A).

of alanine residues to strands of eight residues or longer not to add to the 3-sheet crys-
tal’s mechanical stability. This is in agreement with and gives a molecular explanation
for our results from force-probe MD simulations above. We conclude that g-strands of
eight residues in length are the most efficient building block of mechanically resistant
structures.

We note that we obtained the consistent result of 8 residues as the optimal (-
sheet length from two complementary, yet very distinct simulations techniques, namely
FPMD and FDA. While in FPMD simulations, a constant loading rate leading to forces

as high as 6 nN is employed, FDA makes use of a constant and significantly lower force
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(1.66 nN). This underlines that our finding is independent from the details of force
application, but instead is largely determined by the nature of the molecular structure.

On the basis of the above results, we can explain the length of 3-strands found in
spider dragline silk. The segment of the sequence forming (-sheet crystals is poly(Ala)s.
Apparently, during evolution, spiders optimized the sequence such that the resource of
the natural material silk is most efficiently used, resulting in the maximal resilience of
the crystalline subunits at a given sequence length. Similarly, intra and extra-cellular
proteins with mechanical function often feature [-sheet sandwich domains with (-
strands in the range of 8 residues. Among others, the immunoglobulin domains of the
muscle protein titin are among the mechanically most resistant domains known and
consists of strands typically showing a length of 6+1 residues as shown in Fig. We
note that the optimum of eight residues is an approximate result. Differences in the
rupture forces conferred per residue for 6 and 12 residues, though significant, are not
large and might depend on the particular sequence and packing geometry. However, in
contrast to earlier results, (88)) we clearly show that (-sheets formed from four residues
or even less perform poorly in comparison and as a consequence have not been the

length of choice during evolution.

Conclusion

In conclusion, we compared the mechanical efficiency of (-sheet crystals of different
strand lengths in terms of rupture force per residue and found 8-residue long (-strands
to be the optimum. Further analysis by force distribution confirmed this view. Our
results explain the prevalence of -strands 8 residues in length in nature and also have
important implications for designing artificial semi-crystalline materials. For synthetic
silk-mimetic polymers, we predict eight residues, i.e. hydrogen bonds, in the crystalline

phase an optimal choice for the cross-linking and force-bearing properties of the crystals.
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3.1.3 Silk Fiber Mechanics from Multiscale Force Distribution Anal-
ysis

Here we decipher the molecular determinants for the extreme toughness of spider silk
fibers. Our bottom-up computational approach incorporates molecular dynamics and
finite element simulations. Therefore, the approach allows the analysis of the internal
strain distribution and load-carrying motifs in silk fibers on scales of both molecular
and continuum mechanics. We thereby dissect the contributions from the nano-scale
building blocks, the soft amorphous and the strong crystalline subunits, to silk fiber me-
chanics. We identify the amorphous subunits not only to give rise to high elasticity, but
to also ensure efficient stress homogenization through the friction between entangled
chains, which also allows the crystals to withstand stresses as high as 2 GPa in the con-
text of the amorphous matrix. We show that the maximal toughness of silk is achieved
at 10-40% crystallinity depending on the distribution of crystals in the fiber. We also
determined a serial arrangement of the crystalline and amorphous subunits in lamellae
to outperform a random or a parallel arrangement, putting forward a new structural
model for silk and other semi-crystalline materials. The multi-scale approach, not re-
quiring any empirical parameters, is applicable to other partially ordered polymeric
systems. Hence, it is an efficient tool for the design of artificial silk fibers. (47)

This Study was performed in collaboration with my colleague Dr. Murat Cetinkaya,

who performed the finite element analysis.

Introduction

Silk fibers constitute an intriguing class of natural materials. Through a flawless as-
sembly of strong and soft building blocks, they exhibit astonishing mechanical proper-
ties. Silk fibers may have an ultimate strength comparable to steel, toughness greater
than that of kevlar, and a density lower than that of cotton or nylon. (77) Further-
more, many natural silk fibers exhibit high rupture strain (~30%), which is one of
the major reasons for their energy-absorbent behavior upon impact. (77; 115) Even
today, natural silk fibers outperform their artificial counterparts in terms of mechani-
cal performance. Therefore, many experimental (77; 86; [87; 116-119) and theoretical
studies (72 86; 87; [116; [120; 121) have tried to understand the process of silk fiber

formation and the origins of the mechanical characteristics of silk fibers.
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Natural silk fibers share a common structural architecture consisting of two types of
major components, namely the crystalline and amorphous subunits (Fig. . (79; [109;
[I10) Crystalline subunits of spider silk involve short peptides of six to ten amino acids
containing alanine or glycine-alanine residues. These short peptides organize themselves
into mechanically strong crystal blocks measuring 2~5 nm on a side. (83) They are
made of parallel or anti-parallel layers of -strands (85) interacting via hydrogen bonds
and via non-covalent bonds between amino acid side chains. (72) Crystalline subunits
constitute 10-25% of the fiber volume in spider silk. (77; [84) They are axially oriented
along the fiber and reinforce the soft amorphous subunits by acting as comparably stiff
cross-linking sites. (I17) The amorphous subunit of a silk fiber is composed of longer,
glycine-rich peptide sequences. (77; [116; [117) Even though the amorphous subunit
may include some semi-ordered peptide chains with partial secondary structure (84}
[120; 122} 123)), it is predominantly disordered (118} 124} [125), rendering itself as a soft
matrix in stretching experiments. (77; [86} [’87; [117)

Figure 3.11: Schematic of the spider silk architecture from macro- to nanoscales. Spider
silk fibers are composed of crystalline subunits that are made of 8-sheets (pink), and semi-
extended disordered peptide chains (blue).

Assessing the determinants of the mechanics of natural silk fibers is challenging
not only due to the possible variety in the peptide chemistry, but also due to the
influence of the assembly conditions, such as the shear rate and ion concentration,
on the fiber mechanics. (I19; [126)) The macroscopic mechanical characteristics of silk
fibers originate from the nano-scale morphology and the interactions within the fiber
subunits. However, technical difficulties in experimental and computational studies
(e.g. isolation and structure determination of the subunits in experiments, simulations

of larger systems for longer time scales) prevent a comprehensive analysis of spider silk
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fibers and provide only partial information. In particular, computational studies on the
atomistic scale have so far considered only the crystalline subunits and, therefore, were
limited in the understanding of silk fiber mechanics. (72 120; 127) An approximate
yet elegant nanoscale mean approach by Vollrath, Porter, and co-worker (87; [128])
successfully predicted some features of macroscopic fiber mechanics and its dependence
of order.

In this study, our aim was to understand the mechanical properties of spider silk
fibers using a bottomup computational approach that incorporates both the crystalline
and amorphous subunits. Our approach bridges two discrete methods and scales: atom-
istic molecular dynamics (MD) simulations for individual and coupled subunits, and
finite element (FE) simulations for a comprehensive fiber model on the continuum scale.
The contributions from the subunits to the mechanical properties of spider silk were
investigated. Different structural architectures regarding fiber subunits were tested for
optimal mechanical performance. The calculated values for the elastic moduli, rupture
stress and strain, and toughness were in good agreement with experimental values. Our
results make testable suggestions for a synthetic silk-mimicking polymer. Since our ap-
proach is applicable to similar polymeric systems, it is a useful tool for the design of

artificial silk fibers.

Materials and Methods

All-atom Molecular Dynamics (MD) simulations

All MD simulations were performed with Gromacs 4.0.5 (53)). For force distribution
analyses, an extension of Gromacs (54) was utilized to write out atomic pair-wise forces.
The simulation parameters were the same as in the previous study (72). Shortly, the
OPLS-AA force field (40) for the protein and the TIP4P model (60) for water were
employed, a time step of 2 fs was used, and simulations were performed at constant
temperature (300 K) and pressure (1 bar), with periodic boundary conditions and
with Particle-Mesh Ewald summations for long-range (>1 nm) electrostatics (91). All
simulations were run without any bias regarding force field parameters or boundary
conditions.

Crystalline subunit

The all-atom model is composed of five layers, each layer containing five G-strands

with each §-strand having eight alanine repeats. Details on the modeling, equilibration,
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and force distribution analysis of the crystalline subunits have been published (72)). The
crystalline subunit was totally intact throughout the equilibration and up to the rupture
point in the force-probe simulations. Fig. shows the RMSD of the (-sheets in a
crystalline subunit during an equilibrium MD simulation. The overall RMSD is as low

as ~0.11 nm after 10 ns.
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Figure 3.12: RMSD of a crystalline subunit during an equilibrium MD simulation of
10 ns. The overall RMSD of all 25 §-sheets in the crystalline subunit (black) is shown
along with the RMSD regarding the inner 9 (red) and outer 16 (-sheets (blue).

Amorphous subunit

The all-atom model comprises the 24 residue sequence known to form the amorphous
subunit in Araneus diadematus spider silk (GPGGYGPGSQGPSG PGGYGPGGPG,
where G, P, Y, S, Q are glycine, proline, tyrosine, serine, and glutamine, respectively).
A single peptide chain was generated in a partially extended conformation (end-to-end
distance of 6.2 nm), solvated in water with physiological ion concentration (100 mM),
resulting in a system of 6x6x10 nm?® and ~47000 atoms. During 20 ns of equilibrium
MD simulations, the chain collapsed to an average distance of 0.38 nm. To obtain
a force-extension curve with minimal nonequilibrium effects, we used umbrella sam-
pling, in which harmonic potentials acted on the peptide termini along z-direction.
We sampled in 34 windows for 20 ns each, starting from snapshots with varying the
end-to-end distances (0.12 to 8.87 nm). The harmonic potential force constant was
100 kJ/mol/nm?. All other simulation parameters were kept the same as in the all-

atom simulations of the crystalline subunit. Weighted histogram analysis method (129))
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was applied to check the overlap between the umbrella samples and to calculate the
stretching force of the peptide as a function of its end-to-end distance.

Composite unit

Two crystalline subunits were serially coupled with an amorphous subunit and
pulled away from each other. The amorphous subunit was composed of eight entangling
peptide chains having 50% initial extension relative to the chain contour length. This
initial extension was chosen as an intermediate value of a polymer in shear flow (see
e.g. Rammensee, et al. (119))), as it is present in the spider gland during silk fiber
spinning. In natural spider silk fibers, cross linking of the crystalline units via disordered
chains occurs randomly to an extent that depends on the alignment of the chains
during fibrillogenesis due to shear flow. Our model corresponds to a situation where
approximately one third of the disordered peptide chains (8 out of 25) connected the
same crystalline subunit to another one. Conformations for the disordered peptide
chains at an extension of 50% of the contour length were taken from umbrella sampling
MD simulations (see above). The strands from the two crystals were connected by the
eight peptide chains as shown in Fig.|3.17p in the main text. For the skeleton model, we
find the connectivity not to influence the effective elastic response of the composite unit.
Probing a composite unit with different connectivity (e.g. with all straight chains) is
computationally demanding, and can be expected to also give a similar elastic response,
given the efficient cross-chain force distribution (see Results in the main text).

The composite unit was solvated with TIP4P water in a 7x7x45 nm?® box with
100 mM ion concentration. The system had a total number of 300,000 atoms. After
energy minimization using steepest descent method, 500 ps position restrained simu-
lations were followed by 10 ns equilibrium simulations. As a further validation of the
all-atom model, the density of the composite unit was calculated as 1.12 g/cm?, in good
agreement with ~1.14 g/cm3, calculated by Fossey (120) and in reasonable agreement
with the experimental results for similar silk fibers with ~1.35 g/cm? (130) and for
the amorphous regions with ~1.14 g/cm?® (I3I). To obtain a force-elongation curve,
crystalline subunits were pulled using virtual springs with harmonic force constants
(500 kJ/mol/nm?) acting at the center of mass of the alanines at the C and N-termini
of the composite unit. The springs were moved away from each other with a velocity
of 0.2 m/s. The force-probe MD simulations were stopped after rupture occurred at

~60 ns. For the force distribution analysis, constant forces of 1600 kJ/mol/nm and
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100 kJ/mol/nm were applied to the same pulling groups to sample the perturbed and
relaxed states, respectively. The system was equilibrated under this constant force and
the pairwise forces in the composite unit were averaged and written out over 10 ps
intervals. For both states, five independent MD simulations (10 ns each) were per-
formed and the pairwise forces averaged over the aggregated simulation time. All other
parameters were identical to those described above.

Finite Element (FE) simulations of the skeleton and comprehensive fiber
models

Crystalline subunit

We constructed a skeleton model of the crystalline subunit (5x5 [-strands) con-
sisting of four types of isotropic Euler beams. Each protein backbone was represented
by a single elastic member. We defined a linear elastic modulus, E, of ~743.0 GPa
as obtained from stretching a single (Ala)g chain in force-probe MD simulations. For
other members, representing single covalent bonds (i.e. C=0, N-H, and C,-Cg), the
elastic modulus was directly obtained from the force constant k of these bonds in the
OPLS/AA force field (40)), using E = kLgA, !, resulting in ~297.0 GPa. The nominal
cross sectional area Ao was calculated by assuming a bond radius of 0.1 nm for all co-
valently bonded members. Similar to the covalent bonds, the nonbonded interactions
between alanine side-chain (CHj) groups in the all-atom model were also represented
with linear elastic members in the skeleton model. These members connected backbone
members between 3-sheet layers. The elastic response was estimated from a Lennard-
Jones (LJ) potential fitted to the total interaction energy between alanine CHs groups
in equilibrium MD simulations. Nominal length of the corresponding members in the
skeleton model, Ly, was the equilibrium CH3z-CHjz distance observed in MD simulations.

Hydrogen bonds in the crystalline subunit, connecting the backbone members within
a [-sheet layer, were represented with nonlinear elastic members in order to consider
the weakening of hydrogen bonds with increasing strain. The strain-dependent elastic
modulus of the hydrogen bonds was calculated from the first derivative of the hydrogen
bond potential, defined as the sum of the Lennard-Jones and Coulomb interactions be-
tween the four atoms taking part in hydrogen bonding (i.e., N-H and C=0) as defined
by the OPLS-AA force field (40)). The cross sectional radius of the members represent-
ing the nonbonded interactions (intrasheet hydrogen bonds and intersheet side-chain

interactions) was taken as 0.06 nm (details provided in Xiao, et al. (72))). Nominal
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length, Lo, of the members representing the hydrogen bonds was defined as the equi-
librium hydrogen bond (O---H) distance observed in MD simulations.

Amorphous subunit

The amorphous subunit was modeled with nonlinear elastic members, each of which
corresponds to a 24-mer peptide chain as in the all-atom model. The force elongation
curve of the amorphous chain from all-atom MD simulations (see above) was used as an
input for the skeleton model. The elastic modulus increases with chain length L, as a
result of the entropic stiffening characteristic for polymer chains (Fig.[3.13p). This me-
chanical behavior was observed at different portions of umbrella sampling MD simula-
tions, indicating that the simulation time scale was not a major limitation (Fig. [3.13p).
At low forces the convergence between force-extension curves is reasonable, and at
higher forces the curves overlap. The cross sectional radius of the corresponding mem-
bers in the skeleton model was 0.1 nm as for other covalent members, and nominal
member length, Ly, was taken as 0.38 nm, which was the average end-to-end distance

of the coiled peptide chain during equilibration MD simulations.
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Figure 3.13: Mechanical behavior of the disordered peptides in the amorphous subunits.
(a) Elastic modulus of the members representing the disordered chains of the amorphous
subunit in the skeleton model. The nonlinear behavior of these chains resembles a neo-
Hookean solid. Up to a certain chain length, a constant value of 1.6 GPa was used for
convenience. The upper limit was set as 743.0 GPa, which is the elastic modulus value for
the fully extended backbone members. Schematics represent the state of chain extension.
(b) Force- extension curves of a disordered peptide chain obtained from different portions of
umbrella sampling MD simulations. At low forces the convergence between force-extension

curves is reasonable, and at high forces the curves overlap indicating full convergence.

Composite unit
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Analogous to the all-atom composite unit, we serially coupled two crystalline sub-
units with an amorphous subunit consisting eight diagonally oriented chains. External
tensile stress was applied in a distributed manner at the termini of each crystal in
opposite directions. Parameters of the members in the composite unit were same as in
the skeleton models of the individual subunits.

Comprehensive fiber model

This model was only tested with FE simulations, since MD simulations of the same
system at atomistic scale (~1.2 million atoms) were computationally unfeasible. A three
dimensional solid stress-strain model was used for the fiber FE simulations. Amorphous
subunits were assumed to be completely isotropic (E, = 2.7 GPa) while the crystalline
subunits were modeled as transversely isotropic (E. = 80.0 GPa in the pulling direc-
tion). The elastic moduli of the subunits were calculated from the all-atom simulations
of the composite unit. Poissons ratio for both types of subunits was taken as ~0.33 in
the pulling direction, as suggested by Fossey for poly(Gly-Ala) crystals (120)). These
values were used as input for the comprehensive fiber model. The fiber was represented
by a linear elastic cylindrical solid member pulled by distributed loads acting on both
ends.

The fiber was 7 nm in radius and 39 nm in length. The crystalline subunits were
represented with linear elastic cubic members 12 nm?® in size, corresponding to the
dimensions of the all-atom crystalline subunit, and embedded into a continuous amor-
phous phase without any slip at the interfaces. We compared a random distribution
state of the crystals in the fiber with two other extreme states, named as serial (lamel-
lar) and parallel (longitudinal) distribution of the crystals. We note that the parallel
distribution, even though insightful for comparison, cannot be realized due to the block-
copolymer like silk protein sequence.

The elastic modulus of the fiber, F;, was determined with varying crystallinity,
which is the volume percentage of the crystals in the fiber (Fig. [3.18p). Rupture
strength and strain of the fiber were estimated from the stress distribution analysis
across the fiber (Fig.|3.18b). More precisely, the fibers rupture stress and strain were
the values at the instant where the average tensile stress in the crystalline subunits
reached 2.0 GPa. This was the value observed in the all-atom model of the composite
unit prior to rupture. Toughness, the integral of the stress-strain curve, of the fiber

was calculated as half the product of the rupture stress and the strain based on our
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definition. We here do not take yielding of the fiber into account, which allows for a
further increase in (plastic) strain without the failure of the fiber. We thus consider the
estimated rupture strain and toughness values to present the lower limits of the actual

rupture strain and toughness, respectively.

Results and Discussion

Mechanical characteristics of individual subunits

Silk mechanics on macroscale originates from the molecular characteristics of crys-
talline and amorphous subunits on nano-scale. Therefore, the first step of our approach
was to model the individual subunits with simplified skeleton models and validating
them by comparing to the all-atom models. We developed a threedimensional skeleton
model for the crystalline subunits formed by five layers of fivestranded anti-parallel
(B-sheets, in which the side-chain interactions link the twodimensional skeleton layers,
which were previously developed. (72)) The stress-strain curve and the resulting pull-out
resistance of the skeleton model obtained from FE simulations (54.1 GPa, Fig. and
Methods) compared well to that obtained from the more accurate all-atom model in

MD simulations (66.3 GPa).
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Figure 3.14: Pull-out resistance of the crystalline subunit. Results from the all-atom
(black) and skeleton models (red) as the middle strand is pulled out from the crystalline
subunit (indicated by the red (-strand in the lower inset). A linear fit for the all-atom
model is shown with blue line. The upper inset shows the pull-out resistance-strain curves

for a higher range of values.
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In addition, the skeleton model was able to reproduce the force distribution pattern
as observed in the all-atom model, namely a steady decay of the load along the pulled
strand and in lateral and vertical directions perpendicular to the plane of pulling. We
concluded that the skeleton model for FE simulations, being parameterized on the basis
of the all-atom description, captures the features of the crystalline subunit mechanics.

We straightforwardly modeled the second constituent of the spider silk fibers, the
disordered peptide chains of the amorphous subunit, by inputting the force-extension
data obtained from long-time-scale all-atom MD simulations. The non-linear elastic
response, approximately following a worm-like chain behavior up to intermediate ex-
tensions, was the basis for the non-linear elastic modulus of the amorphous subunits
(Fig. [3.13)).

Mechanical characteristics of the composite unit

We next serially coupled the crystalline and amorphous subunits to dissect their rel-
ative contributions to the strength and toughness of spider silk fibers. The connectivity
between the disordered chains in the amorphous subunit and the (-sheet crystal in a
silk fiber is unknown, but is likely to show a high variation within the fiber. We here
chose a symmetric connectivity, details of which are given in the Methods. The com-
posite unit comprised 300,000 atoms (including solvent) in the all-atom model, which
served as a reference, and 3,000 members in the simplified skeleton model. Fig.
shows the force-elongation curves for the skeleton and all-models of the composite unit.
In both models, the strength of the composite unit increased with higher elongation.
The skeleton structure showed a force-elongation relationship that one would expect
if the subunits, most importantly the individual disordered protein chains, behaved
additively.

More specifically, the non-linear elasticity of the chains in the amorphous subunit
dominated the overall mechanical response, and the crystalline subunits were strained
only at high stresses. This mechanical behavior was also independent of the way the
peptide chains connected the crystalline subunits, as entangled and straight peptide
chains gave indistinguishable force-elongation curves (data not shown). The force-
elongation behavior of the all-atom model shares the main features with the skeleton
model. However, the all-atom model yielded a significantly lower elasticity for the
amorphous chains, resulting in a smaller strain at rupture. Apparently, the more real-

istic all-atom description of the amorphous subunit took internal friction into account
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Figure 3.15: Mechanical response of the composite unit. (a) Force-elongation curves from
the skeleton (green, whole unit; blue, amorphous subunit) and all-atom models (black,
whole unit; red, amorphous subunit) (Insets at the top). Schematics for the composite
unit from all-atom (left) and skeleton models (right) (Inset next to the rupture point).
Representative structure of the all-atom model right after the rupture event, at which
peptide chains partially disengage from the crystal. Numbers 1~4 in panels a and b
indicate the events at which peptide chains rearrange themselves. (b) Root-mean-square
displacement (RMSD) of the peptide chains in the all-atom model during force-probe MD
simulations. Individual traces are vertically shifted for clarity.

that led to higher energy absorption than what was expected from the mere sum of the
individual chains.

Indeed, there were jumps in the force-elongation curve of the all-atom model (Fig.|3.15a)
correlating with structural rearrangements of individual disordered chains relative to
each other (Fig.[3.15b). Such short-range diffusional motion is characteristic for rubbery-
elastic mechanics of amorphous polymers. (I32) We interpret the difference between
the force-elongation curves of the all-atom and skeleton models as the additional me-
chanical work taken up by the entangled chains within the amorphous subunit. The
skeleton model failed to take this effect into account since inter-chain interactions were
neglected. We suggest that this non-additive behavior of the chains in the amorphous
subunit crucially enhances the toughness of spider silk fibers.

The all-atom model of the composite unit ruptured at a stress of 2.0 GPa with
33% strain (black curve in Fig.[3.15a). Gosline et al. reported an experimental rupture

stress of 1.1 GPa with 27% strain for the same spider silk type. (77) Experiments by
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Liu et al. resulted in a rupture stress of 1.7 GPa with 24% strain. (133)) Considering the
simplicity and the limited size of the all-atom system, our values are in good agreement
with the experimental results in literature. In fact, given the high crystallinity of our
composite model ( 65% as opposed to 25% for natural spider silk), the overestimation
of the rupture stress in the all-atom model was expected.

Varying the loading rate by one order of magnitude resulted in a change in rupture
stress of smaller than 10% and in toughness of only ~3%, due to the high extension
of amorphous chains at the rupture point. Complementary MD simulations with a
bare amorphous subunit showed that in the absence of crystalline subunits the peptide
chains would slide from each other and rupture at a low stress of 0.4 GPa (Fig. [3.16)).
Therefore, the crystalline subunits are the determinant factors in the rupture of the
composite unit, in agreement with the previous notion of crystalline subunits acting
as cross-links in silk fibers. (84 117, [121)) For further validation we also estimated the
toughness of the all-atom model and obtained 147 MJ/m3. Previous experimental stud-
ies reported values between 141-225 MJ/m3. (77; 133HI35) The agreement is striking

regarding the tremendous difference between the length scales.
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Figure 3.16: Stress-strain curve of the amorphous subunits in the absence of the crys-

talline subunits in an all-atom model. Inset shows the schematic of the pulling process.

The distribution of the pulling force within the composite unit gives additional
insight into the molecular contributions to the toughness of silk fibers. As a general
finding, the axial force was high in disordered peptide chains but decayed within the

crystalline subunits due to an efficient distribution of the pulling force along and across
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[-strands (Fig. [3.17p and b). This was in particular the case in the skeleton model,
where the peptide chains in the amorphous subunit acted as individual strings and
thus carried axial loads of very high and strongly varying magnitude (up to 400 pN)
depending on their linkage to the crystalline subunit (Fig. [3.17a). As a consequence,
the distribution of the pulling force within the crystalline subunit was heterogeneous
(Fig. ). In contrast, the amorphous chains in the all-atom model carried forces
only slightly higher than the ones in the crystalline subunit.

a Axial force (nN)
0.4

0.35
0.3
0.25

skeleton model all-atom model
—B—connecting strands —®— connecting strands
7| —*—free strands 300 | —e—free strands

w
=
(=]

the strand {pN)
- N
g 8

Axial force in

Alanine number in the strand

Figure 3.17: Distribution of the external pulling force (~2.5 nN) within the composite
unit. (a and b) The force distribution pattern in the skeleton (a) and all-atom models
(b) of the composite unit. (c and d) Average axial force along the poly(Ala) strands in
the crystalline subunits in the skeleton (¢) and all-atom (d) models. The order of alanines
are indicated in panels a and b. The term connecting strands’ in panels ¢ and d refers to
the poly(Ala) strands bonded to the disordered chains in the amorphous subunits. Error
bars represent the standard deviation for 34 free strands and 16 connecting strands in a

55 crystalline subunit. Smooth lines in panels ¢ and d are spline fits for the data points.

More importantly, these forces (~200 pN) were independent of the linkage and en-
tanglement of the chains (Fig.|3.17b). The distribution of the pulling force in the crys-

talline subunit was also more homogeneous (Fig. [3.17d). Overall, the skeleton model
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overestimated the absolute and relative axial loads in the composite unit due to the
heterogeneous distribution of the pulling force across amorphous subunits. The force
distribution analysis corroborates our earlier finding that the inter-chain interactions
enable efficient stress propagation and homogenization, as an important contribution to
toughness. Overall, the pronounced differences between the all-atom MD simulations
and the FE calculations of the skeleton model helped us to dissect the contributions of
the structure to mechanical resilience. Improving the skeleton model further by incor-
porating interchain interactions might be the subject of further investigations, but was
not of interest here, as the further upscaling was based on only the all-atom simulations.

Elastic moduli of the crystalline (E.) and amorphous (E,) subunits in the all-atom
model were calculated as 80.0 GPa and 2.7 GPa, respectively. The elastic modulus of
the poly(Ala) spider silk crystals is currently unknown, but Krasnov et al. reported
the E. for silkworm silk poly(AlaGly) crystals as 26.5 GPa. (86) In these experiments,
the stress in the crystalline subunits in a full fiber was inferred by assuming a homo-
geneous stress distribution. However, we below show that in the range of experimental
crystallinity values (10~25%), crystalline subunits carry stresses 2~3 times larger than
the macroscopic fiber stress (see the comprehensive fiber model).

Based on this information, the corrected experimental E, is ~50.0~80.0 GPa, thus
close to our calculated E. value. Regarding the amorphous subunits, Krasnov et al. re-
ported an E, value of 6.3 GPa as an indirect estimation based on their experiments with
silkworm silk. (86) In Termonia’s computational study (121)), the chains in the amor-
phous subunits were assumed to be entropic springs, with F, calculated as 70.0 MPa.
Apparently, similar to our skeleton model of the individual peptide chains, Termonia’s
study underestimated the stiffness of the amorphous subunit by two orders of magni-
tude because it overlooked the effects of inter-chain force distribution, suggests to be a
hallmark of rubbery behavior.

Mechanical characteristics of the comprehensive fiber model

The skeleton and all-atom models of the composite unit, albeit representing mini-
mal models of a spider silk fiber, proved useful in assessing the fiber mechanics. The
important question arises how the relative amount and arrangement of the two sub-
units influence the macroscopic mechanical properties. We built a comprehensive fiber
model with crystals embedded into an amorphous matrix and parameterized their elas-

tic properties from the all-atom simulations. The comprehensive fiber model enables
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us to reach higher length scales with a smaller computational cost (1~5 CPU hours as
compared to ~1 Mio CPU hours for a several million atom system and microsecond
time scales).

Fig. shows the dependence of the fiber elastic modulus, Ef, on the fiber’s
crystallinity. We considered three possible distributions of the crystalline subunits in
the fiber:

1. a serial (lamellar-like) arrangement of the crystalline and amorphous subunits.
2. a parallel (longitudinal) arrangement.

3. a random arrangement between these two extremes.

As shown in Fig. [3.18h, for any given crystallinity, a serial assembly resulted in lower
fiber elastic modulus £y dominated by the mechanical characteristics of the amorphous
subunits. On the other hand, a parallel assembly, being reinforced by the crystalline
subunits throughout the fiber axis, resulted in the highest values of E;. Unsurprisingly,
these two extremes follow the behavior of simple two-phase isotropic models (blue and
red curves in Fig. 3.18a), validating our FE simulations. A random distribution of
the crystalline subunits in the fiber yielded intermediate Ey values, as expected. At
natural (i.e. 25%) crystallinity, a fiber with randomly arranged crystals, as suggested
by Gosline et al. (77), has an E value of 6.4 GPa. This value is in excellent agreement
with the reported experimental data ranging between 4.0~10.0 GPa (77; [133HI35)
despite the approximations in our model such as a two-phase system with linear elastic
components.

While the serial arrangement at 25% crystallinity (E; = 4.2 GPa) is another fea-
sible model for natural spider silk, the parallel arrangement (Ey = 22.1 GPa) can be
excluded on the basis of our calculations. We note that our comprehensive fiber model
neglects the details of connectivity between the two phases and of the entanglement
within the amorphous matrix. Interestingly, given that the experimental results can
be reproduced, the amorphous and crystalline phases apparently act largely as a con-
tinuum, presumably due to the stress homogenization described above, and render this
approximation feasible.

Apart from high elasticity, spider silk was presumably also optimized for high rup-
ture strength. The comprehensive fiber model, being based on conventional FE calcu-

lations, is not capable of showing fiber rupture. However, the rupture can be indirectly
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Figure 3.18: Variation of the mechanical properties with respect to the silk fiber crys-
tallinity. (a) The effects on the fiber elastic modulus, Ey, are shown. Results for
three different crystalline subunit distributions are shown as indicated by the schemat-
ics. The parallel (triangles) and serial (circles) distributions obey simple two-phase
isotropic models, namely, the Voigt composite model (blue line) for the parallel distri-
bution: E; = E.u. + E,u, and the Reuss composite model (red line) for the serial dis-
tribution: 1/E¢ = uc/E. + uq/Eq, where E;, u., and E,, u, are the elastic moduli and
volume percentage of the crystalline and amorphous subunits, respectively. The small dis-
crepancy with the Reuss model is due to the geometric effects arising from nonzero Poissons
ratios used in three-dimensional FE simulations. The random distribution (squares) yields
intermediate values for E¢. (Dashed line) Percent crystallinity of dry spider silk in nature.
Green band spans the interval of experimental values from literature. (7’5 [I33HI35) (b)
Schematic of the comprehensive fiber model with random distribution of crystals (left)
and the stress distribution at an arbitrary cross section of a 25% crystalline fiber with
an external stress of 0.8 GPa (right). (c) Variation of the rupture stress (squares) and
rupture strain (circles) with respect to the fiber crystallinity, again for a fiber with ran-
dom distribution of crystals. Values for 0% crystallinity were calculated with the all-atom
model. (d) Variation of the toughness with respect to the silk fiber crystallinity. Results
for the parallel (triangles), serial (circles), and random (squares) distribution states of the
crystalline subunits are shown as indicated by the schematics. Smooth lines in panels a, c,
and d are spline fits for the data points.
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inferred from the average tensile stress in the crystalline subunits, as they failed at
a tensile stress of ~2.0 GPa in the all-atom model (Fig. [3.15h). The stress distribu-
tion across the fiber cross section showed that the crystalline subunits carried higher
stresses (by a factor of ~3 at 25% crystallinity with random distribution) compared to
the amorphous subunit (Fig. [3.18a).

In other words, the tensile stress was concentrated in the crystalline subunits. How-
ever, the distribution of tensile stress became more homogeneous within the fiber with
increasing crystallinity and it approached the upper limit of 2.0 GPa, the rupture
strength of the crystalline subunits (Fig. [3.18b). Our comprehensive model predicted
a fiber with 25% crystallinity to rupture at 0.8 GPa, which is close in magnitude to
the experimental value of 1.1 GPa reported by Gosline et al. (77). The corresponding
rupture strain was calculated as 11%, a clear underestimation of the experimental value
of 27%. (77)

Our model reached 27% rupture strain only with mechanically weak fibers having
5% crystallinity. A major reason for this discrepancy lies in the neglect of any plas-
tic deformation, as constant elastic moduli (i.e. FE, and E.) were employed for the
fiber model. In contrast, in silk stretching experiments and for many semi-crystalline
polymers, the linear elastic regime is followed by yielding that leads to a further in-
crease in the strain prior to rupture. (77; [132) Despite these discrepancies, Fig. [3.18
reveals interesting insight to the structural constraints of natural spider silk fibers. As
expected, a fiber purely composed of amorphous subunits would be highly elastic, but
also very weak, while a 100% crystalline fiber would be brittle. Thus, the crystalline
and amorphous subunits improve fiber strength and elasticity, respectively, resulting in
a balanced tradeoff between the two.

The question arises if this trade-off results in a maximal toughness, as another con-
sequence of the structural architecture in spider silk fibers. Fig. shows that the
parallel distribution of crystalline subunits resulted in the lowest toughness, while the
random distribution state yielded slightly higher values. Fibers with serial distribution
largely outperformed the other alternatives in terms of toughness. An optimal tough-
ness of silk fibers is achieved in the range of 10% (random distribution) and 40% (serial
distribution), which overlaps with the spider silk’s natural crystallinity level of 10-25%.
Naturally, the calculated toughness (41 MJ/m3 at 25% crystallinity for the random
distribution) underestimates the experimental results (141-225 MJ/m3 (77; 133-135]))
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due to neglecting plastic deformations prior to rupture in this linear elastic model.
Furthermore, a certain degree of serial arrangement in the fiber might further increase
the toughness, as suggested by our model. Overall, the qualitative comparison between
the possible geometries clearly reveals that the serial distribution is superior over other

alternatives in terms of toughness.

Conclusions

Our bottom-up computational approach incorporated both the crystalline and amor-
phous subunits in the fiber and provided a deeper understanding for the mechanical
nature of spider silk fibers. Mechanical properties such as strength, elasticity, rupture,
and toughness were investigated and we provided their calculated values (Table .
We compared the capabilities of the skeleton and all-atom models of spider silk com-
ponents. The skeleton models were in qualitative agreement with the all-atom models,
and the quantitative discrepancies between them allowed us to identify the important
determinants of spider silk mechanics — in particular, the friction between the entan-
gled chains causing higher stiffness and energy absorbance, and allowing an efficient
homogenization of stress. We show that the crystalline and amorphous subunits are
the sources of strength and elasticity, respectively. In particular, the crystalline sub-
units are crucial elements as they act as cross-linking sites at which the stress is higher
compared to the amorphous subunits in the fiber. The rupture in spider silk fibers
originates from the failure of the crystalline subunits.

We show that the crystalline and amorphous subunits are the sources of strength
and elasticity, respectively. In particular, the crystalline subunits are crucial elements as
they act as cross-linking sites at which the stress is higher compared to the amorphous
subunits in the fiber. The rupture in spider silk fibers originates from the failure of the
crystalline subunits.

We showed that Nature makes a balanced trade-off between elasticity, strength,
and toughness in spider silk fibers by choosing a moderate crystallinity level of 10-25%.
Different possibilities for the distribution of crystalline subunits provide advantages
in specific mechanical characteristics. We find that 10% crystallinity with random
distribution yields a moderate elastic modulus, rupture strength and rupture strain.
Interestingly, a significantly higher toughness can be achieved in fibers with lamellar

structures at 40% crystallinity. While being directly inferable from simple composite
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Table 3.2: Comparison of the calculations mechanical properties with the experimental
data in literature

all-atom FE* Experiment
Pull-out resistance
crystalline subunit 66.3 GPa 54.1 GPa® N/A
Rupture stress
crystalline subunit 2.0 GPa N/A
Amorphous subunit 0.4 GPs N/A
Fiber 2.0 GPa 0.8 GPal 1.1~1.7 GPahd
Rupture strain
crystalline subunit 25% N/A
Amorphous subunit  35% N/A
Fiber 33% 11%? 24~27%+H1
Elastic modulus
crystalline subunit 80.0 GPa 26.5 GPa%l
Amorphous subunit 2.7 GPa 6.3 GPal**
Fiber 4.2~6.4 GPa* 1T 4.0~10 GPab 1499
Toughness
Fiber 147 MJ/m3  41~137 MJ/m3*11T  141~225 MJ/m3HTH.99

*The term FE stands for finite element calculations regarding the comprehensive
fiber model.

®obtained by skeleton model.

"The result was obtained for 25% fiber crystallinity with transversely isotropic
crystalline members.

‘From Gosline et al. (77). YFrom Liu et al. (I33).

$From Krasnov et al. (86)). The result was reported for poly(GLY-ALA) crystals.
IThe corrected value we propose takes the higher stress in crystals into account
(see text), that should be 50~80 GPa.

xxThe result was reported for silkworm silk and it is an indirect estimation from
the overall fiber elastic modulus.

tThe results were obtained for serial and random distribution of the crystalline
subunits.

HFrom Swanson et al. (I35). Y9From Koehler and Vollrath. (T34)
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models, to our knowledge this has not yet been suggested for silk, and the current
picture for silk fibers is the one with randomly distributed crystals. However, a certain

tendency of silk proteins to assemble into lamellae is plausible, as:

1. We find that the mechanical properties of the lamellar structures fall into the

experimental range.

2. Multimerization domains in silk might enhance the alignment of the poly(Ala)

repeats to form lamellae.

3. Similar structures have been observed for synthetic polymer blends (see e.g.
(136)).

In conclusion, in order to reach the toughness of natural silk fibers with synthetic ana-
logues, our simulations emphasize the importance of well-defined segment lengths in
crystalline-amorphous copolymers in order to form lamellae (I37) and strongly inter-
acting, yet highly disordered polymer types for the amorphous subunit.

Using a bottom-up computational approach, our conclusions are not based on em-
pirical parameters. A major limitation, however, lies in the need of high loading rates
in the MD simulations, which entail an overestimation of the predicted rupture forces
and toughness, as discussed above. Together with the restricted system size of all-atom
models,here for the composite model several 100,000 atoms, moving to the contin-
uum scale for the full fiber, could relieve these limitations. The assumption of a simple
two-phase fiber with isotropic (amorphous) and transversely isotropic (crystalline) sub-
units is a drastic, but apparently a reasonable approximation in the elastic deformation
regime, as we could validate our model by a number of quantitative comparisons to the
experiments. The incorporation of viscous and plastic behavior will help to further
improve the accuracy of the model. The explicit treatment of water at the nanoscale
allows us to address the pivotal role of wetting in silk mechanics (I138), which will be
the subject of future investigations. Our computational approach is a helpful tool in
artificial fiber design, inasmuch as it does not require any empirical parameters and
therefore is straightforwardly applicable to other partially or highly ordered polymeric

and composite systems.
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3.1.4 The Effects of Crystalline Subunit Size on Silk Fiber Mechanics

Here, we utilize a computational bottom-up approach for deciphering the size effects
of crystalline subunits in silk fiber mechanics. We varied the crystal size in terms of
their cross-sectional area, i.e. the number of layers of b-strands, S, in the crystal, and
the backbone length along the fiber axis, N, while constraining other major parame-
ters such as chemical composition, fiber crystallinity and their relative orientation in
the fiber. The computational approach incorporates Molecular Dynamics and Finite
Element simulations of the crystalline subunits along with Finite Element simulations
of a two phase silk fiber in order to determine their stress-strain behavior, elastic mod-
uli and toughness. Overall, the fiber elastic modulus and toughness increase with the
length of the crystals as given by the number of residues in the beta-strands, and de-
creases with the crystal cross-section area, i.e. the number of strands per crystal. The
minimal cross-sectional area investigated, a 3x3 crystal, shows the highest sensitivity
of the mechanical properties towards the crystal length. The presented approach is a
versatile tool in artificial fiber design since it does not require any empirical parameters
and it is similarly applicable to other semicrystalline polymeric systems or composite
materials. (139)

As in Section 3.1.3, finite element analysis have been performed by Dr.Murat

Cetinkaya in this project.

Introduction

There has been a long-standing and growing interest in natural silk fibers due to their
intriguing mechanical properties. Mimicking the mechanical properties of these biologi-
cal materials has remained a challenge due to their structural complexity. Consequently,
natural silk fibers continue to outperform their artificial counterparts. Through a hi-
erarchical arrangement of the strong crystalline and elastic amorphous subunits at the
atomistic scale, silk fibers exhibit superior mechanical properties such as high toughness,
elasticity, and rupture strength. (77; [140) These properties can be further fine-tuned
by the amino acid sequences of the constituent proteins (77; 133} 135} 141)) and the
conditions during fiber formation. (119; 134} 142} [143) For instance, the reeling speed

of spider silk fibers and their interaction with water affects the size of the crystalline
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subunits (142), and the pretension (i.e. initial extension) of the disordered peptide
chains in the amorphous subunits (143), respectively.

Experimental studies on silk fibers have provided great detail about their chemical
and physical nature such as the mechanical response at the atomistic and macroscopic
levels (77 116} [134; 141H144), the crucial features of the silk protein sequences (133; 135}
145)), and the size and architecture of the building blocks. (83} [85} 123} 1425 [143; [146)
There has also been considerable effort regarding the artificial synthesis of spider
silk fibers. (I19) On the other hand, many computational studies at different length
scales aimed at understanding the mechanical characteristics of the nanoscale building
blocks (72; 1205 [127)) and the macroscopic properties of the spider webs as an assem-
bly. (121}, 144} 147) The size effects of the building blocks has been a recent point of
interest (105 [148)) as it is a requisite for designing artificial silk fibers with tailored
mechanical properties. Due to technical limitations in the experimental studies, com-
putational methods have been the method of choice for understanding the relationship
between the subunit size and macroscopic fiber properties.

In this study, we investigate the size effects of the crystalline subunits on silk fiber
mechanics by utilizing a bottom-up computational approach that bridges atomistic
Molecular Dynamics (MD) and continuum scale Finite Element (FE) calculations. (149)
First, the effects of the crystal length and the cross-sectional area on crystal elasticity
and crystal toughness as obtained from MD simulations are presented. The optimum
size for a crystalline subunit is discussed. On this basis, the relationship between
the size of the crystalline subunits and the fiber mechanical properties such as elastic
modulus, rupture strength and stress, and toughness are analyzed with FE models. In
comparison to other computational studies in literature (1205 121} 127 144; 147; 148),
we consider the contributions both from the crystalline and amorphous subunits of the
silk fibers, and combine atomistic and continuum scale methods. In our analysis, we
utilize a random distribution of crystalline subunits in the fiber and include the effects
of both tensile and shear forces on the crystals by a new pulling setup. The results
from our comprehensive fiber model are in good agreement with previous experiments,
and the model demands considerably less computational power compared to the purely

atomistic models.
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Methods

The spider silk fibers are built of fibrils composed of highly ordered crystalline sub-
units being surrounded by the amorphous subunits which are made of semi-extended,
disordered peptide chains (Fig.[3.19a). As in our previous study, (149) we consider the
crystalline and amorphous subunits of the spider silk fiber from the major ampullate
gland of Araneus diadematus. (77) The crystalline subunit is composed of layers of
beta-strands from poly(Ala) peptides. The size of the crystalline subunits is expressed
in terms of the backbone length (i.e. number of residues), N, and the number of layers,
S, that is proportional to the cross-sectional area of the crystals (Fig.|3.19p). Therefore,
crystalline subunits are composed of SxS [(-strands each of which are made up of N

amino acids (i.e. SXSxN amino acids).

(a)

(b) 1 layer= S x pB-strand

Figure 3.19: The structural hierarchy in spider silk fibers. (a) Fibers of spider dragline silk
are composed of fibrils which are made up of strong crystalline subunits (pink) segregated
in a soft amorphous matrix (blue). (b) The crystalline subunits (left: all-atom model,
middle: skeleton model) are composed of layers containing poly(alanine) S-strands with
their backbone axis oriented along the fiber axis. The size of the crystalline subunits is
quantified by the number of S-strands in one layer, S, and the backbone length (i.e. the
number of alanines in a G-strand), N.

Molecular Dynamics (MD) simulations
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All MD simulations were performed with Gromacs 4.0.5. (53) The parameters for
equilibrating the simulation systems were assigned the same as in our previous stud-
ies. (725 [149) In summary, the OPLS-AA force field (40) for the peptides and the
TIP4P model (60]) for water were used. A time step of 2 fs was chosen, and simulations
were performed at constant temperature (300 K) and pressure (1 bar), with periodic
boundary conditions and with Particle-Mesh Ewald summations for long-range (>1
nm) electrostatics. (91))

The all-atom models of the crystalline subunits were composed of anti-parallel 3-
strands of alanine. Tensile stretching of the crystals was accomplished by symmetrically
pulling the 8-strands in opposite directions in parallel to the backbone axis (see Fig.|3.20)
inset). In this pulling setup, neighboring strands were pulled in opposite directions,
while no force was applied to the central strand. Compared to similar studies, (127 [148])
this way of pulling involves both the axial and shear effects on the peptides in the
crystal, and as such is more close to the situation in a fiber, where most of the strands
are subjected to forces of some magnitude depending on the connectivity between
crystals. The pulling setup described here is rather an idealized case that results
in a homogeneous distribution of pulling stress across the crystalline subunits, and
therefore, can be expected to give an upper limit of the rupture stress. The toughness
of a crystalline subunit was calculated by integrating its stress-strain curve up to the
rupture point, at which the §-strands in the crystals disengage from each other.

Finite element (FE) simulations

FE simulations were performed for (i) skeleton models of the crystalline subunits
and (ii) the fiber model. All FE simulations were carried out with the COMSOL
Multiphysics package. Nominal values of stress and strain were used in calculations.
We considered all systems as purely elastic, thereby neglecting rate-dependent viscous
and dissipative plastic effects.

The three-dimensional ’skeleton model’ of the crystalline subunit was described
previously. (149) In short, the skeleton models are built of isotropic Euler beams rep-
resenting peptide backbones and side-chain elements with linear elasticity, and hydro-
gen bonds with a strain dependent, non-linear elasticity. The starting geometry of the
N=8, S=5 structure, the nominal lengths of the included members and elastic (Young’s)
moduli of these members were obtained from the equilibrium MD simulations with the

corresponding all-atom model. For other crystal sizes, the skeleton models were built
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proportional to the N=8, S=5 structure. The pulling setup for the skeleton models was
the same as the one described for the all-atom models.

The fiber model was a three dimensional solid stress-strain model composed of trans-
versely isotropic crystalline subunits embedded into a matrix of isotropic amorphous
subunits without any slip at the interfaces. The fiber was represented by a cylindrical
solid member pulled by distributed loads acting on both ends. The fiber was 7 nm
in radius and 39 nm in length. The crystalline subunits were randomly distributed
in the fiber, but their longitudinal axes were kept aligned with the fiber axis. (123])
Both types of subunits were treated as linear elastic solids. All fiber models were 25%
crystalline by volume. The elastic modulus of the amorphous subunit (2.7 GPa) was
calculated from the all-atom model in our previous study. (149) For the crystalline sub-
units, the elastic moduli in axial and transverse directions and the shear moduli were
calculated with the skeleton models of the corresponding geometries. Poisson’s ratio
for both types of subunits was assigned as ~0.33 along the axial direction, as suggested
by Fossey for poly(Gly-Ala) crystals. (120) Here, we did not consider the yielding of the
fiber, which allows for a further increase in the strain without the failure of the fiber.
Therefore, the estimated rupture and toughness values present the lower limits of the
actual values, respectively. Fiber rupture was assumed to happen at the instant where
the average von Mises stress in the crystalline subunits reached their rupture stress in
the corresponding all-atom models, which naturally depends on the crystal size. Fiber

toughness was calculated as half the product of the fiber rupture stress and strain.

Results

Mechanical properties of artificial fibers could be tailored by controlling (i) the crys-
tallinity level, (ii) the structural architecture (e.g. lamellar or random distribution), or
(iii) the size of the subunits in the fiber. Recently, we have investigated the significance
of the former two factors and confirmed that natural spider silks choose a moderate crys-
tallinity level of 10~25% in order to achieve a balanced-trade off between strength and
elasticity. (I149) Furthermore, the crystalline subunits were suggested to be distributed
in a random or lamellar fashion due to the agreement between our calculations and
the experimental results. Considering the fiber toughness, lamellar distribution was
found to be a more advantageous option for the structural architecture when designing

artificial fibers. Here, we constrain the parameters regarding fiber crystallinity and
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structural architecture (i.e. random distribution with 25% crystallinity), and investi-
gate the size effects of the crystalline subunits by varying the length of the 3-strands,
N, and the number of layers that build up a crystalline subunit, S (Fig. 3.19pb).

Mechanical properties of the crystalline subunits

When pulling alternating (-strands from one end, crystalline subunits mostly ex-
hibited a linear stress-strain relationship (Fig. [3.20a). We have observed a similar
stress-strain profile also with other pulling setups (e.g. pulling out one strand out of a
crystal, or pulling all §-strands from both ends). (72; [149) Unlike the stick-slip mech-
anism of hydrogen bonds as suggested by Keten et al. (127) and Nova et al., (148) the
crystalline subunits in our all-atom simulations did not show such a plastic deformation
prior to rupture. Such a discrepancy might arise from the boundary conditions applied
on the crystalline subunit. In our simulations the top and bottom layers of a crys-
talline subunit were not constrained. Therefore, the hydrogen bond network between
the B-strands in the crystal did not lead to such a deformation regime.

Both the all-atom and skeleton models showed that the elastic modulus of the
crystalline subunits decreases with increasing number of layers, S (Fig. [3.20p). Hence,
a higher number of beta-strands results in softer crystals. For instance, the all-atom
models with S=3 and S=9 (with constant N=8) have elastic moduli of 96.0 GPa and
49.8 GPa, respectively. This observation qualitatively agrees with the one reported by
Nova et al. although a different pulling setup was used. (I48)) The backbone length
of the beta-strands, N, on the other hand, has an opposite effect on crystal elastic
modulus as shown in Fig. Longer crystalline subunits from the skeleton and all-
atom models have higher elastic modulus. The all-atom models with N=4 and N=16
(with constant S=5) had 19.8 GPa and 137.0 GPa elastic moduli, respectively. Despite
their simplicity, the skeleton models quantitatively agree with the all-atom models and
thus allowed us to investigate a larger set of values for N and S. Fig. summarizes
the effects of both geometrical parameters, S and N, on crystal elastic modulus. It is
clear that higher N and lower S values result in higher elastic modulus for the crystalline
subunits. Longer @-strands with more intra-layer hydrogen bonds and smaller layers
with less axial strain are the key determinants for a stiffer crystal, with a maximum
of the elastic modulus of 134.6 GPa for N=16 and S=3. However, when considering
the average contribution of each amino acid to the stiffness by normalizing by the total

number of alanines in the crystal, a different maximum emerges. As shown in Figure
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Figure 3.20: Mechanical properties of the crystalline subunits. (a) The stress-strain
curve from the all-atom simulations of a crystalline subunit (N=8, S=3). Blue line shows
a linear fit up to the rupture point. Inset shows the pulling setup. (b) A comparison of
the all-atom and skeleton models showing the decrease in the axial elastic modulus with
the number of layers, S. (¢) A contour map constructed for the skeleton models showing
the change in axial elastic modulus with respect to N and S. (d) The normalized version
of (c) showing the per residue contribution to the elastic modulus. Smooth lines in (b) are
spline fits to the data points.
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2d, we found a small cross-section (S=3) and an intermediate (-strand length (N=8)
to be the mechanically optimal configuration, with each of its residues providing an

average stiffness of 10.9 GPa.
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Figure 3.21: A comparison of the all-atom and skeleton models. The increase in the axial
elastic modulus with respect to the backbone length, N is shown. Smooth lines are spline
fits to the data points.

Toughness is a measure for the energy required to rupture these structures and
can be inferred from the stress-strain profile until rupture as observed for the all-atom
models in Molecular Dynamics simulations. The toughness follows a trend similar
to that observed for the crystal elastic modulus. Crystal toughness increases with
higher N (Fig. [3.22h) and decreases with higher S values (Fig. |3.22b). For instance,
the S=5, N=8 structure has 48.8 MJ/m? toughness, whereas the S=5, N=4 and S=7,
N=8 structures have 26.5 and 35.4 MJ/m? toughness, respectively. Unlike the crystal
elastic modulus, crystal toughness does not yield an optimum geometry in terms of
the contribution per residue within the probed range of crystal size, but continues to
increase (decrease) with N (S). Considering the same crystal sizes, our toughness values
overlap with the resilience values reported by Keten et al. (127) Resilience is calculated
by considering only the elastic deformation region, while toughness involves the total
energy input until the rupture point. In our simulations we have observed that the
crystalline subunits showed little or no plastic deformation as suggested by a linear

slope in the stress-strain curves (Fig. |3.20a). This renders toughness and resilience to
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be highly similar for silk crystals, in contrast to previous observations which, however,
might be driven by boundary effects. (127)
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Figure 3.22: Toughness of the crystalline subunits. All-atom models show a decrease
(a) and increase (b) with respect to the number of S-strands in the crystal, S, and the
backbone length given by N, respectively. Smooth lines in (a) and (b) are spline fits to the
data points.

The toughness and rupture properties of the crystalline subunits show size depen-
dencies parallel to the crystal elastic modulus, as compared in Fig.|3.23] Taken together,
they suggest that smaller S and larger N values yield stiffer and stronger crystals. In
contrast to the previously suggested geometries (127; 148), we find that crystals with
lower aspect ratios, namely with several nm beta-strand length and 1 nm cross-sectional
diameter, exhibit the highest mechanical performance. To the best of our knowledge,

there have been no experimental studies to compare our findings, except from the ob-
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servation that the crystal length along the fiber axis is indeed of several nanometers
8-16 alanine residues. (77} [83]) Hence, we consider our results as valuable predictions to

be tested by future experimental work.
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Figure 3.23: Rupture properties of the crystalline subunits obtained from MD simula-
tions. (a) The variation of the rupture stress and strain with respect to (a) the number
of layers in a crystal, S, and (b) the backbone length, N. Smooth lines in (a) and (b) are
spline fits to the data points.

Mechanical properties of the fibers

Crystalline subunits are one of the main constituents of natural silk fibers, but their
contribution to the fiber mechanical properties can not be straightforwardly predicted
solely on the basis of the crystals’ mechanical properties. Here, we employ FE analysis
to determine the fiber elasticity and toughness for varying silk crystalline sizes. We limit
our analysis by keeping the degree of ordering (25% crystallinity) and the structural
architecture of the fiber (randomly distributed crystals) as fixed parameters. Although
the total volume occupied by the crystalline subunits is the same in all fibers, on the
fiber elastic modulus changes with the crystal geometry. Fig. shows that a smaller
number of layers (i.e. smaller S) yields stiffer fibers, and this effect is more pronounced
as N increases. As an example, fibers having crystals with S=3 and S=7 have similar
elastic moduli at N=4 (6.2 GPa vs 5.2 GPa) while the difference is larger at N=16
(13.0 GPa vs 7.5 GPa). In a coarse grained fiber model with a higher crystallinity
rate (45%), Termonia has observed the same qualitative behavior for the fiber elastic
modulus. (121)) In an experimental study by Du et al., spider silk fibers are reported to

become stiffer with crystals having smaller S values. (142) In contrast to our finding,
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they also reported that smaller N leads to stiffer fibers, which, however, can be ascribed

to the higher crystallinity of their fibers with shorter crystals.

Fiber elastic modulus, E, (GPa)

{| —e—s=5
{| —A—s=7

N

Figure 3.24: The variation of the fiber elastic modulus with respect to the crystalline sub-
unit geometry obtained from FE calculations. Upper inset shows the pulling setup for the
fiber and the green band indicates the range of experimental results in literature. (77 133+
[I35) Representative crystal sizes are shown as schematics and highlighted by red circles.
Smooth lines are spline fits to the data points.

Our simulations with the all-atom and skeleton models showed that the elastic char-
acteristics of the crystalline subunits resemble transversely isotropic materials. Con-
sequently, the fiber model shows a non-isotropic behavior. Contrary to the general
assumption of isotropic crystals, (I43]) the crystalline subunits are stiff in the axial
direction and relatively weaker in the transverse directions while having low shear
moduli. For instance, the skeleton model of the S=5, N=8 structure has an axial,
transverse, and shear modulus of ~74.0, ~36.0, and ~6.2 GPa, respectively. Fibers
made of these crystals have 6.6 GPa axial tensile modulus, which falls well into the
range of experimental values regarding spider silk, 4~10 GPa. (77; [133H135) Moreover,
the compressive modulus of these fibers in the transverse direction, 0.7 GPa, agrees

well with the experimental results for spider silk, 0.6 GPa, (I44)) and silkworm silk,

0.7 GPa. (150)
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We next assessed the second parameter crucial for mechanical performance, fiber
rupture and resulting toughness, Despite the large number of experimental work ad-
dressing the toughness and rupture of natural silk fibers, (77; 133-135) there is limited
information regarding size effects of the crystalline subunits. Although Du et al. re-
ported the significance of the size effects on the silk fiber mechanics, the contribution
of fiber crystallinity was not explicitly considered in their study. (142) We here sys-
tematically investigated size effect by varying the crystalline subunit size at constant
crystallinity. Since our fiber model was based on conventional FE calculations, fiber
rupture could not be directly simulated, but instead was indirectly estimated from

the failure of crystalline subunits observed in the corresponding all-atom models (see
Methods).
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Figure 3.25: Fiber toughness and rupture properties obtained from FE calculations.
(a-b) The variation of the fiber toughness with respect to the crystal size parameters, N
(a) and S (b), is shown. Green bands in (a) and (b) indicate the range of experimental
results in literature. (77 [I33HI35) Fiber rupture stress and strain curves with respect to
the crystal size parameters, N (¢) and S (d). Smooth lines in (a-d) are spline fits to the
data points.

As the crystals within the fibers are composed of (-strand of increasing length
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N, the fiber toughness increases as much as an order of magnitude (Fig. [3.25p). A
similar behavior was observed for the all-atom models of the bare crystalline subunits
(Fig.[3.22b). On the other hand, the fibers with wider crystals (i.e. crystals with higher
S) tend to have lower toughness (Fig. [3.25p), again showing a similar trend as the bare
crystalline subunits (Fig [3.22h). However, the size dependency is less pronounced
for the parameter S, the cross-sectional area. The overall increase in toughness with
increasing N and decreasing S originates from two parallel tendencies, namely higher
ruptures strains and stresses (Fig. and d). Overall, at moderate crystallinity, the
highest fiber toughness is achieved with crystals composed of small layers of long (-
strands. This observation is also valid for a serial (lamellar) arrangement of crystalline
and amorphous subunits, but the toughness is of higher magnitude. For instance, fibers
with N=8, S=5 crystals have a toughness of 215.0 MJ/m? with a serial distribution
of crystals, as compared to 62.4 MJ/m? for the random arrangement conventionally
assumed and considered in Fig. In fact, we have already previously reported that
a serial arrangement of subunits is superior over a random arrangement in terms of high
fiber toughness. (149)) As we now show here, nanometer sized crystalline blocks of small
cross-sectional area are the components of choice within these lamellae, (86} [148; [157])
the detailed arrangement of which on the molecular scale, however, is still open for

discussion.

Conclusions

Here, we have quantified the crystalline size effects on silk fiber mechanics with a
bottom-up computational approach. All-atom models of crystalline subunits have
shown that the stiffness, toughness, and strength of the crystalline subunits increase
with respect to the backbone length of the §-strands, N, in the crystal. These quan-
tities,however, are inversely dependent on the number of the [-strand layers, S, in
the crystals. All-atom models also showed that the crystalline subunits do not undergo
plastic deformations, but instead feature a purely elastic regime up to the final rupture.

Finite element simulations of the skeletons models of the crystalline subunits were
in quantitative agreement with the all-atom models at tremendously decreased compu-
tational cost. The skeleton models enabled us to determine the mechanically optimal

size for the crystalline subunits. Based on the elastic modulus calculations, the N=8,
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S=3 structure shows the most efficient usage of protein crystalline material to maxi-
mize crystal stiffness, in close agreement with the prevalence of roughly eight alanine
residues in silk proteins and the experimentally determined crystal dimensions in silk
fibers. (83)

Finite element simulations of the comprehensive fiber model allowed us to reach
mesoscopic length scales at feasible computational cost in order to determine the con-
tribution of the crystalline subunits on fiber mechanical properties. Being composed of
transversely isotropic crystal blocks, the simulated silk fibers showed a similar material
behavior. The calculated tensile and transverse elastic moduli were in good agreement
with the experimental results in literature. Fiber stiffness is found to be strongly de-
pendent on the crystalline subunit stiffness when S=3, and this effect is less pronounced
for larger cross-sections. Fiber toughness substantially increases with the length of the
strands in the crystal, but again is largely unaffected for higher number of layers (i.e.
S>3).

In contrast to previous studies, other fiber parameters such as fiber crystallinity
and structural architecture were constrained, allowing us to systematically scan silk
fiber mechanics in function of crystal dimensions. Given the challenge to determine the
dimensions of crystalline phases in fibers experimentally, our study provides a guide for
artificial fiber design.

Our results on fiber toughness are based on three major approximations. First, the
fiber rupture stress was directly estimated from the crystal rupture stress so that plastic
deformations in the fiber following crystal rupture are neglected. Secondly, plasticity
within crystals was not taken into account as well. Thirdly, the non-linear elasticity
of the amorphous phase was approximated by a linear model. Therefore, toughness
values provided here have to be considered as lower bounds of results to be expected
in experiments (Fig. and b). Including plastic effects in the crystals and the
fiber, and employing model for the amorphous chains that takes connectivity and non-
linearity into account will be important future steps. Despite the above drawbacks,
the finite element models allow us to sample a large set of design possibilities with
acceptable accuracy and affordable computational cost. Our computational approach
combining MD simulations and FE analysis does not make use of any empirical param-
eters and is easily applicable to similar semi-crystalline systems such as non-biological

block copolymers or composite systems.
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3.1.5 Controlling the Structure of Proteins at Surface

With the help of single molecule force spectroscopy and molecular dynamics simula-
tions, we determine the surface-induced structure of a single engineered spider silk
protein. An amyloid like structure is induced in the vicinity of a surface with high
surface energy and can be prohibited in the presence of a hydrophobic surface. The
derived molecular energy landscapes highlight the role of single silk protein structure
for the macroscopic toughness of spider silk. (69)

The experiments presented in this section have been performed in the lab of Prof.

Thorsten Hugel, TU Munich.

Introduction

In many applications, proteins or polypeptides have to be immobilized at surfaces. (152}
153) To keep their functionality, conformational changes in polypeptides or even denat-
uration of proteins induced by substrates have to be avoided. Evidence has accumulated
that already soft surfaces like lipid membranes can cause polypeptides to lose their func-
tionality by forming amyloid-like secondary structures (154} [155) related to recognized
clinical disorders, including type II diabetes, and Alzheimer disease. (I56) Yet is it also
possible to use this obstacle to our advantage by creating functionality through surface
contact? Key to answer this question are molecular forces involved in the structure for-
mation and how these forces are affected by thermodynamic parameters. Here, we use
force spectroscopy to monitor structural changes with one and the same single polypep-
tide. We show that structure formation within a single protein, a genetically engineered
variant of spiders dragline silk, eADF4, which consists of 16 identical repeats, (119)) is
induced in the vicinity of surfaces with high surface energy and can be prohibited in
the presence of hydrophobic surfaces. In addition, we investigated how salts and tem-
perature modulate surface-induced folding. The experimentally determined molecular
structure agrees well with force probe molecular dynamics (FPMD) simulations. This
surface-induced structure bears striking similarities to the conformation of amyloido-
genic peptides in their fibrilar assemblies and gives insight into the molecular origin of

the enormous energy absorption and strength-bearing properties of silk threads.
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Materials and Methods

Experimental setup is shown in Fig. [3.26] The experimental material, eADF4, used
in this study comprises 16 repeats of the sequence GSSAAAAAAAASGPGGYGPEN-
QGPSGPGGYGPGGP and has a molecular mass of 47.7 kDa. (I57) The preparation
of this material and corresponding experiments are performed by cooperators of this
study, with details are published. (158)
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Figure 3.26: Monitoring surface-induced protein folding in eADF4. (a) Sketch of the
single molecule desorption experiment of eADF4 attached to the AFM tip via a PEG
linker (not to scale). Here, the molecule exhibits S-sheet structure on the steel surface.
(b) Force-extension traces of a single eADF4 moleculein water at varying temperatures
desorbed from stainless steel and (c¢) from hydrogenated diamond. Each graph shows the
superposition of 20 consecutive force-separation curves

Modeling and equilibration of eADF/ 3-sheets

Silk proteins are known to form beta-sheet patches via their poly(Ala) sequences.
Multi-layer [(-sheet stacks from spider silk (Ala)s have been modeled previously at
atomic detail (72). The models were found to be both structurally highly stable and
extraordinarily force-resistant, as well as to agree with X-ray diffraction data (83)). The
structural details of these models were published elsewhere (72).

Constructs consisting of two layers are the minimal building blocks to account

for the experimental force distributions. As expected for a hydrophilic surface, the
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polar backbone functions, namely the amide groups, were oriented towards the surface,
resulting in a beta-sheet orientation perpendicular to the surface. Five of these two-
stranded beta-sheets were packed against each other along the surface plane, allowing
alanine sidechain packing parallel to the surface plane. Here, we are interested in the
force-induced rupture of the poly(Ala) repeats in the eADF4.

Three different (-sheet patterns, namely an all-parallel structure (pp), a mixed
structure of anti-parallel sheets with parallel orientations between adjacent [-sheets
(ap), and all anti-parallel (aa), each consisting of two layers of 3-strands, were modeled
(Fig. . We used the OPLS-AA force field18 for the protein. A surface of 5x5 nm?
in size comnsisting of Lennard-Jones spheres was placed below the two-layer systems.
For this generic surface, €=0.276 kJ/mol and 0=0.35 nm were used as Lennard-Jones
parameters. The initial distance between protein and surface was 0.8 nm to ensure
that atoms do not overlap, and to allow water molecules to fill the gap between protein
and surface at the beginning of the equilibration. Because detailed knowledge of the
molecular details of the steel surface (highly oxidized and thus polar under experimental
conditions) is lacking, we kept the surface overall uncharged. Even though the modeled
surface is apolar, i.e. does not provide favorable electrostatic interactions partners
for the protein amide groups, the modeled structures remained highly stable within
the simulation time at the nanosecond scale. We conclude that the surface-induced
alignment was sufficient to keep the silk protein beta-sheet assembly in this energy
minimum.

We used the GROMACS 3.3.3 package (53) for all subsequent molecular dynam-
ics (MD) simulations. Simulation boxes of ~7.5x7.5x6 nm?® were used. The models
were solvated in TIP4P water20 mimicking the experimental environment. The solvent
included Na+ and Cl- ions with a concentration of 0.1 mol-17!, resulting in a total
system size of ~40,000 atoms. Periodic boundary conditions were employed to remove
artificial boundary effects. We chose a cutoff of 1.0 nm for non-bonded interactions,
and the particle mesh Ewald method (91) to account for long range electrostatics in-
teractions. To increase the simulation time step, we used LINCS (92) to constrain
all bond vibrations. The time step was 0.002 ps. Simulations were performed in the
NpT ensemble with a temperature of T = 300 K and a pressure of p = 1 bar in all
the simulations. We used Nosé-Hoover (93; 94) temperature coupling with a coupling

time constant 7 = 0.1 ps, and Berendsen (95]) pressure coupling with a coupling time
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constant of 7p = 0.1 ps. After energy minimization using the steepest-descent method,
we performed 500 ps position-restrained simulations to further relax our simulation
systems, subjecting each protein atom to a harmonic potential with a force constant
of 1000 kJ-mol~!nm~2. Each model was then fully equilibrated for 10 ns to allow
the protein to bind readily to the surface. Energy and coordinates of the simulation
systems were collected every 1000 time steps. The resulting equilibrated simulation
systems served as starting points for force-probe simulations.

Force-probe MD simulations

To monitor force-induced unfolding and to determine unbinding forces for the differ-
ent self-assembled silk protein structures, we performed force-probe molecular dynam-
ics (FPMD) simulations (66). Final equilibrated structures obtained from the free MD
simulations of the three systems were exposed to an external stress to monitor rupture.
To accommodate the pulled peptide also after the rupture occurred, we increased the
initial box dimension along the pulling direction to 12.0 nm, resulting in a system size
of ~90,000 atoms. The terminal residue of different strands in the 5x2 g-strand struc-
ture was subjected to a pulling force acting perpendicular to the surface by moving
a spring with constant velocity away from the protein fold, i.e. the central strand in
the upper and lower layer were pulled in the direction orthogonal to the surface plane.
Linear and angular motions of the center of mass of the surface were removed during
the simulation to serve as a reference. A pulling velocity of 0.2 nm-ns™!, and a spring

2 were used. The simulated time of all the models was

constant of 500 kJ-mol~'-nm™
15~20 ns each, depending on the resistance against unfolding. These non-equilibrium
MD simulations used the same simulation parameters as the equilibrium simulations
(see above). Representative simulation systems are shown in Fig. 3.29

For each configuration, pp, ap and aa, respectively, three independent pulling sim-
ulations were performed and the rupture forces and transition state distances were
averaged. We determined the distance to the transition state Az as the difference in
distance along the pulling direction (reaction coordinate) between the pulled group
and the surface as it changed from the equilibrium conformation to the onset of the
unfolding event.

Amorphous chain segments

We did not include the amorphous chain segments connecting the (Ala)g [-strands

into the simulation, because we focused on the force-induced unfolding of the ordered
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structural elements giving rise to the distinct pattern of force peaks in the force-
extension traces of our AFM experiments, rather than the underlying plateau stem-
ming from equilibrium desorption. However, as a reference, we also performed FPMD
simulations of a single disordered peptide comprising both the (Ala)g motif and the

amorphous chain sequence. The resulting force profile is shown in Fig. [3.27]
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Figure 3.27: Force profile for pulling a single silk peptide from the substrate surface in
the absence of secondary structure formation such as beta-sheets. The rupture forces are

overall lower and correspond to the plateau force observed experimentally.

Results and Discussion

For the following experiments a single eADF4 molecule has been covalently attached
with its N-terminus via a long flexible linker of poly(ethylene glycol) (PEG) to an
atomic force microscopy (AFM) cantilever tip (Fig. [3.26h). Covalent bonding provided
the necessary long-term stability to allow measurements for hours with one and the
same protein on different substrate materials in solution. The tip with the protein was
brought in contact with the surface for 1 s to adsorb and possibly to form its fold before
being retracted at a velocity of 1 ym/s.

Up to 48 °C, we obtain velocity independent force plateaus (Fig.|3.26p) with a length
equal to the contour length of the protein. Accordingly, the desorption of eADF4 from
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its N-terminus to its C-terminus occurs in equilibrium and stable structural features are
absent (I59)). As can be seen from Fig. , the traces above 48 °C on stainless steel
316 L, which is one of the most common alloys in medicine, are considerably different.
Here, a regular pattern of peaks with amplitudes ranging from 70 to 200 pN appears
on top of the desorption plateaus. Such regular peaks are the characteristic fingerprint
for unfolding secondary structures (8 [160). We still probe the full contour length of
eADF4 at 48 °C, and hence the unfolding of all structural elements. The observation
of a desorption plateau underlying the peaks is a fingerprint for a very high mobility
in the surface plane and excludes the presence of distinct adhesion sites in this plane.
In other words, the peptide is removed (perpendicular to the surface plane) in steps,
which are defined by the stability of its secondary structure, while it is highly mobile
in the surface plane.

All data in Fig. [3.26b were recorded with one and the same eADF4 molecule as
indicated by the single step drop of the force plateau to the zero line. (I58)) The only
parameter that was varied was the solution temperature. We identified the temperature
around 48 °C as the transition temperature for structure formation on hydrophilic
stainless steel. A second set of experiments in Fig. substantiates that the structure
is not formed in solution but is surface-induced, because the same experiments on
hydrophobic, hydrogenated diamond show no conformational transition (even up to
63 °C). Not only temperature, but also a higher ionic strength of phosphate of about
100 mM can facilitate the transition in line with previous bulk experiments, (161))
but again only on the hydrophilic metal substrate. The reason probably is the polar
character and thus the high interfacial energy of steel of 38 mJ/m? as compared to 18
mJ/m? for the diamond substrate (determined by contact angle measurements).

What are the characteristic features underlying the surface induced structure of
eADF4? Following previously described methods, (70)) we transformed the 20 force-
extension traces from Fig. into contour length space and obtained histograms
that directly reflect particular locations along the polymer contour that constitute an
energy barrier for unfolding (Fig.[3.28b). The histogram shows 16 equidistant unfolding
barriers corresponding to the 16 repeats of eADF4 plus one terminal barrier originating
from the detachment of the C-terminus from the surface. For a detailed analysis of
the force distributions, well-defined loading rate conditions (constant spacer lengths)

are essential. (I62) Therefore, all 16 rupture peaks have to be analyzed separately.
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Figure 3.28: Forced unfolding of the eADF4 structure. (a) Superposition of 20 force-

extension traces of eADF4 with odd peaks being marked in color. The traces were recorded

in salt solution on steel (316 L) at room temperature. (b) Averaged barrier position his-

togram obtained by transformation of each of the 15 unfolding peaks with a persistence

length of 5.1 A into contour length space and averaging the 20 resulting barrier position

histograms for each peak. (c¢) Unfolding force distributions and normalized unfolding prob-

ability density for two sequential unfolding barriers (same color coding). The shaded area

in the lower force regime illustrates the resolution limit of the instrumentation (cut-off).

The best fit to the data (solid black) reveals two discrete barrier binding potentials: a low
force unbinding around 75 pN (dashed) and high force unbinding around 90 pN (dotted).

Fig displays two consecutive force histograms out of the 16 together with their

probability functions fitted to the data based on the assumption of a one-barrier binding

potential (163)). These histograms differ from odd to even unfolding events. The former

have to be fitted with two separate potentials, while the even barrier numbers can be

fitted with one. The potential widths derived from these probability functions are all
summarized in Table We find a short potential width of 4.7 A for high force

unfolding and a longer width of 8.9 A for all low range forces. Only the last two values

are different due to the influence of the C-terminus interacting with the substrate. Our

study of the conformational transition caused by increased salt concentration on steel

yields similar values and suggests an equal folding mechanism. The high mobility in the
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plane of the surface and the two different barriers cannot be explained by the strong
interaction of a single amino acid in a repeat unit of eADF4. The slight broadening of
the rupture force peaks and the analogy of the transition barrier distances to diffraction
patterns of amyloidogenic structures make the (Ala)g repeats very likely candidates for

the observed structure.

Table 3.3: Potential Width (Az,, and Az, (A) ) and Unfolding Rate Constants (kolt

and k977 (1072s71)) at Zero Force (Water, 48 °C) for Parallel and Anti-parallel Arrange-

ments, Respectively®.

Event No.
1 2 3 4 5 6 7 8 9 10 11 12 13
Azy, 85 8.6 8.7 9.0 83 99 93 30 4.6
kelt 1.3 1.5 1.4 1.4 15 1.6 1.5 1x10° 2x10?
Azg, 47 40 51 48 49 49 45 49 45 46 48 14 1.7
keff 30 30 35 36 30 36 30 39 32 35 30 55 55

@ The unbinding events are numbered sequentially starting at the N-terminus.

To relate these data to three-dimensional surface-adhered structures of eADF4, we
therefore modeled structures formed by the amyloidogenic repeat units of eADF4, that
is, (Ala)g, to assess their mechanical response using FPMD simulations (see methods).
Force fields for steel-protein interactions are not available yet,16 but previous studies of
amino acids on noble metals have found polar interactions to prevail. (164; [165) We here
assume steel to mainly serve as a template, inducing order in the poly(Ala) segments
similar to the role of shear flow in silk fibrillogenesis. The backbone amide groups
in (Ala)8 are polar and therefore likely candidates to orient toward the hydrophilic
metal surface. We assembled a two-layer B-sheet, consisting of (Ala)g B-strand motifs
connected by interstrand hydrogen bonding, that are stacked against each other via
side-chain interactions parallel to the surface plane (Fig.|3.29a). Coil domains of eADF4
were omitted in the simulations. The various relative orientations in a double layer can

be grouped into antiparallel, parallel, and mixed arrangements (Fig. [3.29).
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Figure 3.29: Surface-induced structures probed by force-probe MD simulations. (a)
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Modeled two-layer (Ala)g arrangements: all parallel on the left, mixed in the middle, and
all antiparallel on the right. Red and black arrows make the connection to the energy
landscapes in Fig[3.31h. Directions of hydrogen bonds and side-chains are indicated. (b)
Representative FPMD simulation of rupturing one strand from the upper layer of the
antiparallel structure. Shown are the force profile (top), the displacement of the pulled
group from which Az is estimated (middle), and potential energies of hydrogen bonds
between the pulled strand and its neighbors (bottom). (c¢) Simulation snapshots, with
hydrogen bonds shown as blue sticks, are numbered to indicate the corresponding position
on the force profile.

From FPMD simulations, we find independently from the detailed arrangement
strands in the upper layer of the crystalline structure that detach with forces of 250-
450 pN. These forces are due to the rupture of strong hydrogen bonds to the adjacent
bottom strand (Fig. [3.29p). The subsequent rupture of the bottom strand, not stabi-
lized by interstrand hydrogen bonds anymore but only adsorbed to the surface, does
not give rise to a force peak. This also implies that a one-layer arrangement would
lead to a mere force plateau and thus cannot explain the experimental force pattern.
We note that the experimental distances to the transition state are wider than those

from simulations by a factor of about 3, most probably due to temperature soften-
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Figure 3.30: Self-healing of ruptured silk protein assemblies during FPMD simulations.
Snapshots show how the beta-sheets (red and green) adjacent to the pulled strands (blue)
form new direct interactions with each other after rupture, leading to a selfhealed structure.
The plot shows the changes in potential energy during rupture for the interaction of the
pulled strands with protein and surface (red) and for the newly forming interaction of the
two adjacent sheets with each other (black).

ing, (166) but the relative changes match very well. Strikingly, strands in antiparallel
arrangements show higher forces and smaller transition distances than those in parallel
arrangements, as previously found for the structurally related silk crystalline units in
bulk. (72) These differences qualitatively agree with the two discrete unfolding barriers
for odd numbered peaks observed in our AFM experiments (Fig. and Table [3.3).
One also has to consider strand-turn-strand motifs to be surface-assembled such that
the pulling force acts onto the strand in the lower layer first, resulting in a concurrent
detachment of the whole motif and therefore causing higher forces, as observed for
the rare peaks with even numbers in Fig. and in corresponding FPMD simula-
tions. Finally, the plateau of constant force underlying the unfolding pattern stems

from the desorption of the glycine-rich coiled segments between the poly(Ala) patches,
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which behave like a nonstructured flexible polymer with high in-plane mobility. When
detaching a B-strand-coil-G-strand motif from within the two-layer 3-sheet system as
described above, we observe the structure to self-heal by sealing the introduced flaw on
the nanosecond time scale of the simulations, as depicted in Fig. [3.30

Taken together, our structural model of a single eADF4 molecule derived from force
spectroscopy matches the MD simulations. It also shows remarkable similarities with
eADF4 assembled into nanofibrils and into microspheres (167)) and with typical protein
structures within amyloid aggregates. (168)) Our combined experimental and theoretical
data suggest parallel 8-sheets to outnumber antiparallel counterparts in the surface
induced assembly. This is in contrast to the observed preference of antiparallel 5-sheets
of many amyloidogenic peptides, (I68) but consistent with the parallel/antiparallel
mixture in silk fibres determined by Asakura et al. (85)
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Figure 3.31: Strength-bearing properties and energy absorption of eADF4. (a) Schematic
energy landscapes with potential widths (Az) and energy barrier heights (AG for unfold-
ing parallel (red) and antiparallel (black) sheets from the folded (F) to the unfolded (U)
state. (b) The area under the superposition of 20 typical force-extension traces of eADF4
is divided into the free energy contribution due to the equilibrium desorption (gray) at
negligible energy dissipation (friction) and the energy that is needed to break individual

elements of the secondary structure (orange) on steel 316L at 48 °C.

In the following, we quantify the stability of the molecular structure and its ori-
gin. The parallel structure exhibits a very low mean transition rate of 1.5x10"%s~! and
therefore high stability, which compares, for example, to that of the strong immunoglob-
ulin fold of the muscle protein titin, (8) to ubiquitin, (169)) or to the extracellular matrix
protein tenascin. (I70) In contrast, the mean transition rate of the antiparallel S-sheet
formed by eADF4 (3.3x1072s7!) is 2 orders of magnitude higher and is similar to

those of calmodulin (19)) and F-actin cross-linker filamin. (I66) Assuming an Arrhenius
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prefactor of 107s™!, the transition energy can be calculated (Fig [3.31k). Remarkably,
the parallel structure, which breaks first under load, is stronger and hence more stable
at zero force and will therefore rapidly reform the moment the molecule relaxes. (116])

The wider potential renders it more susceptible to force-induced destabilization. (I71)

Conclusion

We have shown that single engineered silk proteins can form secondary structures in a
solid substrate, salt, and temperature-dependent manner. On hydrogenated diamond
no secondary structure was observed, while the stainless steel induced an amyloid like
secondary structure. A control of such surface-induced structures should not only
help to sustain the functionality of protein coated devices, but also to create new
ones. Finally, our combined approach of single molecule force spectroscopy and MD
simulations allowed us to determine the response of the surface-induced structure to an

external force and provides an explanation for the toughness of spider silk threads.
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3.1.6 Mechanical Comparison of Polyamide Crystals by Molecular

Dynamics Simulations

Crystals of nanometer sizes are found in all industrial polyamide materials similar to
those in silk. These crystals are highly ordered polyamide strands serving as force
bearing subunits in the material. The molecular structures of these crystals feature
inter-strand hydrogen bonds and hydrophobic interactions, which are reminiscent of
crystals found in silk proteins. Despite of their importance for the material, the nano-
mechanics of these crystals have remained unclear. This study uses all-atom modeling
and Molecular Dynamics simulations to investigate different types of crystals in different
polyamides, namely polyamide-2, polyamide-4, polyamide-6 and polyamide-6,6, aiming
at understanding their structural mechanics and stability. By mechanical comparison of
these polyamide crystals with similar crystalline structures as in silk, their crystallinity,
robustness and elastic moduli are elucidated. This study can be regarded as a basis for

understanding and mechanically improving semi-crystalline materials.

Introduction

Polyamides are among most important materials in the society nowadays. Different
types of polyamides, such as nylon (polyamide-6), polyamide-6,6 and others, are used
in almost all aspects of daily life that make them indispensable to mankind. The
multiformity of polyamide materials originates from their molecular structures which
are comprehensively crystal-embedded amorphous peptide matrices.(172-174) Crystals
in polyamides serve as reinforcing subunits that maintain the integrity of the ran-
dom peptide structures under load. Different polyamides show diverse morphologies
of crystallinity, and thus mechanical properties. Despite this general understanding
of polyamides, molecular details of the peptide chain organization in crystals and the
interactions that bring about the structural stability are still not clear. As increasing at-
tention is paid to similar natural semi-crystalline materials such as silk (46} 47 [72; 105),
studies on polyamides, from atomic subunits to overall material performance, are re-
quired for a better understanding and more importantly mechanical improvement of
polyamide materials.

Polyamide chains are unbranched and consist of thousands of residues. Polyamide

residues which have no side-chain are covalently bonded via peptide bonds (-[C=0-N-
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HJ-). (175 176) The number of carbon atoms in the backbone of a polyamide residue
defines the type of polyamide, such as polyamide-6 has six carbon atoms in its residue
while polyamide-4 has four carbon atoms, as shown in Fig. All carbon atoms that
are not involved in the peptide bonds are ethenyl groups and hydrophobic in nature.
Some of the polyamides are co-polymer with two types of residues like polyamide-6,6.
In polyamide-6,6, one residue has amide groups at both sides and the other has carboxyl

groups (Fig. [3.32)).

polyamide-2

polyamide-4

polyamide-6 7 7

polyamide-6,6

Figure 3.32: Four all-atom chain models of different polyamides. Carbon atoms are
shown in green, oxygen atoms are in red, nitrogen atoms are in blue, and hydrogen atoms

are in white.

Polyamide materials are generally semi-crystalline. (I72-H177) More specifically, a
large part of the polyamide chains form unstructured random coils, while some parts
of the chains are ordered in arrays via a high number of hydrogen bonds. These
highly ordered peptide chain arrays are the crystalline subunits. These crystalline
units are stiff because of hydrogen bonds and hydrophobic packing. Former studies
of similar molecular organizations of silk proteins (see Chapter 3, Sections 3.1.3) have
suggested that both percentage and arrangement of crystals in amorphous peptides can
highly affect material performance. (47) Polyamide materials share a similar molecular

architecture with silk protein, which makes the morphology of polyamide crystals, both
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strand arrangement and mechanics, particularly interesting concerning the possibility
of improving polyamides’ mechanical performance.

This study focuses on molecular modeling and mechanical simulations of crystals
of four different types of polyamides (Fig. . All-atom polyamide chain models are
built and parameterized based on a universal force field. Crystalline models are then
built by arranging copies of chain models into ordered arrays to capture the features
of crystals in polyamide materials. All the crystalline models are relaxed by structural
energy minimization and equilibrated by Molecular Dynamics (MD) simulations. With
validation from experimental results, all the equilibrated crystalline models are submit-
ted to force-probe MD (FPMD) simulations to determine their mechanical properties.
The simulation results are compared with similar studies in crystals of silk protein.
Patterns in mechanical properties of different polyamide crystals in this study can be
used to achieve a better understanding of relevant materials and to lay the foundation

for further studies.

Methods

All-atom modeling and parameterizing of polyamide chains

Polyamide (PA) chains are modeled by modifying similar protein peptide chains. A
fully extended poly-glycine chain of 10 residues is taken as a model of the polyamide-2
chain. Other polyamide chain models are built simply by inserting different numbers of
ethenyl groups into the backbone of the poly-glycine chain depending on the chemistry
of the target polyamide chain model, namely polyamide-4, polyamide-6 and polyamide-
6,6 (two types of residues). In order to allow systematic comparisons, the lengths of all
models are kept within ~30 atoms. Both ends of all chains are capped with acetyl or
methlamide groups to keep them neutral, thereby avoiding artificially high Coulombic
interactions. This resulted in final lengths of all PA chain models of ~3.6 nm, as shown
in Fig. [3.32

Parameters for new polyamide residues are based on the OPLS-AA force field (40),
which allows direct comparison to the respective protein simulations. Bonded interac-
tion parameters of the peptide-bond atoms are kept the same with those in the protein,
which feature the planarity of the four peptide bond atoms, namely oxygen, carbon,
nitrogen and hydrogen. New parameters, atom types for carbon and hydrogen atoms,

angle bending potentials as well as dihedral rotation potentials, are introduced into the
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new polyamide residues accordingly. Details in force field parameters such as dihedral
angles between ethenyl groups in the backbone also feature other quantum mechanics
study results (178)). Finally, five new residues (polyamide-6,6 has two types of residues)
are introduced into the OPLA-AA force field, and are used in all subsequent MD sim-
ulations.

Building of polyamide crystals

Models of polyamide crystals are built by assembling copies of the four chains
models, respectively. Same copies of each four chains are either arranged in a parallel
or anti-parallel pattern to reach ordered structures. Thus, eight crystalline structures
are built from four chain models, namely parallel polyamide-2 (pPA-2), polyamide-4
(pPA-4), polyamide-6 (pPA-6), polyamide-6,6 (pPA-6,6) and anti-parallel polyamide-
2 (apPA-2), polyamide-4 (apPA-4), polyamide-6 (apPA-6), polyamide-6,6 (apPA-6,6).
Each model has five layers of strands with five strands in each layer. One sample of
the built structure of pPA-4 is shown in Fig. [3.33l The atoms in all these models are
arranged such that they do not overlap with each other. These initial structures are

then subjected to structural energy relaxations and subsequent MD simulations.

Figure 3.33: Initial all atom crystalline model of pPA-4. The strands are positioned
without any atomic overlap.

Crystalline structure optimization
The Gromacs 4.0.5 package (53) with the modified OPLS-AA force field (40)) con-
taining newly built polyamide residue parameters are used for all simulations. All crys-

talline models are accommodated in simulation boxes treated with periodical boundary
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conditions. All simulation boxes have additional space between boxes edges and the
polyamide models to avoid artificial interactions between molecular images, which is
1.5 times of a non-bonded interaction cutoff distance of 1.0 nm. The Particle-Mesh
Ewald method (91)) is used to account for the long-range electrostatic interactions. In
order to increase the simulation time step, LINCS (92) algorithm is used to constrain
all bond vibrations. The time step was 0.002 ps. All the simulations were performed in
the NpT ensemble with a temperature of 7'=300 K and a pressure of p=1 bar. Nosé-
Hoover (93; 94) temperature coupling method and Berendsen (95) pressure coupling
method are used with a coupling time constant of 77 =0.1 ps and 7, =1 ps, respectively.

All crystalline models are first relaxed by energy minimization and short MD sim-
ulations in vacuum. The models are subsequently solvated in TIP4P water (60). The
solvent includes Na and Cl ions with a concentration of 0.1 mol/liter, resulting in a
system size of ~30,000 atoms. After energy minimization using the steepest descent
method to remove possible atomic close contacts, position restrained simulations to
further relax the simulation systems are performed for another 500 ps, subjecting each
heavy atom in the polyamide chains to a harmonic potential with a force constant of
1000 kJ mol~'nm~2. Each model is then fully equilibrated using Molecular Dynamics
(MD) for 10 ns. Energy and coordinates of the simulation systems are collected every
1000 time steps. The resulting equilibrated simulation systems are then selected as
starting structures for Force-probe MD (FPMD) simulations (see below).

All molecular structures are stable during MD structural equilibration as shown in
Fig. [3.34 The highest structural root-mean-square deviation of ~0.4 nm among the
models is observed during simulations. The structural fluctuations are mainly because
of the vibration of chain terminals. The equilibrated structures of all the models after
a simulation time of 10 ns are found to well reproduce the main characteristics of
polyamide crystals. Distances between peptide stands and between layers of sheets
are found to be 0.48 nm and 0.37 nm, respectively, which are in good agreement with
previous experimental studies (1795 [180).

Force-probe MD simulations

All equilibrated crystalline models are further subjected to a pulling force in FPMD
simulations (96). The terminal residue of the central strand in each model is attached to
a harmonic pulling potential with a force constant of 500 kJ mol~' nm~2. The harmonic

potential moves along the strand direction at a pulling speed of 0.2nmns~!, generating
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mechanical force by the increasing displacement from the force application point. A
counter force is applied to the center of mass of the other stands to prevent translation of
the model because of the pulling force. The simulated time for monitoring the rupture
of the pulled strand is 20~25 ns, depending on the PA. These FPMD simulations used
the same simulation parameters as those in the equilibrium simulations (see above).
The backbone pull-out resistance, Ry}, is used to quantify the stiffness of the PA
crystals. (72) Ry, is in analogy to the elastic modulus typically given to measure the

stiffness of a material, as being defined as

R stress  F/A
P> Strain - AL/L

(3.6)
where F' is the force acting on the strand, and A is the cross section area of the
pulled strands. Here, the cross-section area is defined as the area covered between
adjacent strands, which gives A =0.69nm?. Measuring the elastic modulus of crystals
in polyamides is challenging in experiments because of their nanometer size. Only the

Young’s modulus of whole semi-crystalline fiber is available.

Results and Discussion

Crystallinity of polyamides

All eight crystalline models are stable during structural energy minimization and
subsequent MD simulation as described in the Methods section. The structures show
obvious fluctuations when compared to all-atom crystals from silk (72)), with an RMSD
reaching as high as 0.4 nm. In general, anti-parallel models are more ordered than
parallel models in general. Final equilibrated structures of the four parallel crystalline
models are shown in Fig.[3.34] The most extended strands are found in pPA-6,6, with
more ordered hydrogen bonds and strand arrangements, and thus higher crystallinity
than other models. The crystalline structure is not as stable as their silk protein
counter partner (72)), as strand bending, twisting and tilting are observed during the
simulations, especially in pPA-6. Despite of the structural flexibilities, hydrogen bonds
are firmly established in all models.

All-atom silk protein crystalline models are much more ordered and stable, as previ-
ously reported (72). A major difference between silk and polyamide crystalline models
are the side-chains, because silk proteins consist of protein peptide sequences of poly-

alanine or alternative alanine-glycine. When comparing the structure between pPA-2
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Figure 3.34: Equilibrated parallel polyamide crystalline models. Hydrogen bonds are
shown as blue dashed lines to indicate their bonding patterns. The disorder of pPA-6 as

compared to the others is obvious.

and parallel crystals of alternative alanine-glycine in silk, it is evident that the methyl
group side-chains of the protein peptide are the key maintainers of the crystal (72]). Ala-
nine has a side-chain of one methyl group, which can fill gaps between strands (77; 122)),
thereby effectively decreasing the rotational freedom of peptides and stabilizing them.

Crystalline phase and hydrogen bonds

Hydrogen bonds are the mechanical determinants of crystals in silk, which also
most likely applies to crystals in polyamides. It is known that different crystal forms
are observed in polyamides materials. Two most commonly observed of these forms are
the stable a-form and unstable y-form (179; [180)). The a-form of polyamide crystals is
characterized by an in-line hydrogen pattern in which all hydrogen bonds are mostly
orientated vertical to the strands. The ~-form of polyamide crystals features hydrogen
bonds in a zigzag pattern. The a-form is found to be more stable than the ~-form
because of the favorite hydrogen bonding positions and distances. Polyamides, such as
polyamide-6, can perform transitions between the two crystalline forms under different

conditions (181]).

Hydrogen bonds are monitored in the PA crystals during all the whole MD simula-
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tion trajectories. Conformational examples are shown in Fig. In the eight models,
especially in polyamide-6 and polyamide-6,6, the a-form is well produced. Fig. W(A)
and (B) show two hydrogen bonding patterns found in polyamide-6 starting from the
a-form and the «-form asinitial structures, respectively. After equilibration, the a-form
is preserved in the sheet structure (Fig. 3.35(A)), while the 7-form has partly trans-
formed (Fig. B)) The transition in the ~-form of polyamide-6 confirms former
studies that the ~-form is not a stable crystalline form. (I79HI8I) A sample of the
a-form of polyamide-6,6 is also shown in Fig.|3.35(A). Polyamide-6,6 favors the a-form
for most of the simulation time because of its different copolymer peptide chain struc-
ture. This allows strong hydrogen bonding and also results in high resisting pull-out

force (see below).
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Figure 3.35: hydrogen bonds in crystalline models. (A) a-form crystal pattern in
polyamide-6. (B)Partly o and -form of crystal pattern in polyamide-6. (C) a-form of

crystal pattern in polyamide-6,6. (D) hydrogen numbers from all 8 models in equilibrium.

Hydrogen bond numbers differ in the eight models as expected (Fig.[3.35(D)). With
more ethenyl groups separating neighboring peptide bonds, hydrogen bond densities
decrease. Unsurprisingly, two polyamide-2 models, pPA-2 and apPA-2, show higher
hydrogen bond numbers than the other models. Anti-parallel models, starting with

the a-form crystalline pattern, feature higher hydrogen bond numbers than their par-
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allel counter parts. Surprisingly, pPA-6,6 shows a higher hydrogen bond number than
polyamide-6 models and its anti-parallel counter part, for which same hydrogen bond
densities would be expected. The pPA-6,6 model maintains the a-form during the
whole simulation. Thus the a-form is most likely the hydrogen bonding pattern in
a polyamide-6,6 material. This stable hydrogen bonding pattern also explains, why
polyamide-6,6 is more robust than polyamide-6 in terms of high melting point and
toughness (see below).

Strand pull-out force and resistance

All eight equilibrated crystals are subjected to a pulling force in FPMD simulations.
Rupture forces of the pulled strands are the highest force peak observed in the pulling
force profiles and shown in Fig. [3.36(A). As a definition of the elastic modulus of
the PA crystals, strand pull-out resistance is measured during the FPMD simulation
(Fig. [3.36(B)) (72)).
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Figure 3.36: Strand pull-out forces and resistances of different PA-crystals.

The strand pull-out force correlates with the hydrogen bond number density in the
models. A higher hydrogen bond density results in a higher rupture force, as shown in
Fig.|3.36/(A). pPA-6,6 again shows a higher strand pull-out force among the polyamide-6
and polyamide-6 models, apparently directly reflecting its higher hydrogen bond density
(Fig. [3.35]).

More efforts are needed to understand strand pull-out resistance in the different PA
crystals. Surprisingly, pPA-6,6 shows the highest pull-out resistance of 90.1 GPa, even
higher than apPA-2, i.e. poly-glycine, which has a higher hydrogen bond density, and
already outperforms the stiffest silk crystal reported (~86 GPa) (72). This fact mostly

results from the strand extension when the models are subjected to pulling force, as
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shown in Fig. Strands are extended in the polyamide-6,6 model more strongly
than those in polyamide-4 and polyamide-2 models. The extension is limited in an
extended peptide strand, which gives rise to a much lower strain and thus higher pull-
out resistance. This result suggests pPA-6,6 to be a better choice for higher stiffness,

due to its straightened conformation in crystals.

Conclusion

This study uses all-atom molecular simulations to probe the mechanics of different
polyamide materials. Different crystalline morphologies in the models during the simu-
lations are characterized. Two important crystalline forms, a and y-forms, are identified
and compared. The a-form crystals represent the favored state in terms of hydrogen
bonding between polyamide peptides, especially for polyamide-6,6. The hydrogen bond
density determines the strand pull-out rupture force, with higher hydrogen bond den-
sity resulting in a higher stability against strand rupture. The a-form polyamide-6,6
is found to be extremely stiff, featuring the highest pull-out resistance of all models
studied. Both, favorite hydrogen bonding and fully extended strands, give rise to the
outstanding performance of the a-form polyamide-6,6 crystals. This study demon-
strates for the first time the mechanical properties of all-atom crystalline models of
different polyamides, which is a first step to analyze polyamide semi-crystalline fiber

mechanics for comparison with (silk) protein fibers.
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3.2 Myomesin

3.2.1 Fast Folding a-helices as Reversible Strain Absorbers in the
Muscle Protein Myomesin

The highly oriented filamentous proteins of muscle constantly experience significant
mechanical load during muscle operation. The dimeric protein myomesin has been
identified as an important M-band component to support the mechanical integrity of
the entire sarcomere. Recent structural studies have revealed long o-helical linkers
between the individual Immunoglobulin (Ig) domains in the C-terminal part of my-
omesin. In this paper we have used single molecule force-spectroscopy in combination
with molecular dynamics simulations to characterize the mechanics of the myomesin
dimer comprinsing Ig domains 9-13. We find that at forces of approximately 30 pN
the a-helical linkers elongate reversibly and allow the molecule to extend to 150% of
its folded length. High-resolution measurements directly reveal the equilibrium fold-
ing /unfolding kinetics of individual helices. We show that a-helix unfolding mechani-
cally protects the molecule homo-dimerization that would otherwise break before the
myomesin molecule can elongate. As fast and reversible molecular springs, myomesin

a-helices are essential components for the structural integrity of the M-band. (182)

Introduction

Filamentous modular proteins play a prominent role in the force-bearing structures of
the sarcomere (183} [184]). The most prominent example is the giant muscle protein titin.
For titin, a detailed mechanical hierarchy ranging from entropic stretching of unstruc-
tured segments to mechanical kinase activation and unfolding of individual domains
has been described (62 [185). While in the sarcomeric I-band titin provides the muscle
with its passive tension (I86)), within the M-band, the 185 kDa protein myomesin (I87)
as well as other filamentous proteins such as metabolic enzymes and kinase domains
form a large network to constitute a well organized compartment that has both struc-
tural and metabolic properties (188]). Myomesin comprises 13 domains, with the first
one (My1) being unique and the others (My2-My13) either of the immunoglobulin type
IT (Ig) or fibronectin type III fold (I89). It is part of a complex network that involves

interactions with myosin, titin, obscurin and obscurin-like 1 (190} 191)). Through its
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N-terminal myosin binding domain (My1) and the ability to form anti-parallel homo-
dimers via an interface residing in its C-terminal domain (My13) (192]), myomesin acts
as a cross-linker of myosin in the M-band. Ehler et al. have shown that together with
the C-terminal part of titin, myomesin is a requirement for the integration of myosin
into the sarcomere; they further suggest that myomesin in the M-band, a-actinin in
the Z-disk, and titin in between form the basic stabilizing structure of the sarcomere
( (193)), cf. also (194)). This implicates that myomesin is one of the key factors in
maintaining the structural integrity of the M-Band under load.

During normal muscle operation, the M-band and consequently myomesin will
constantly be subject to stress and strain imposed by muscle contraction and relax-
ation (195; 196). Hence its elastic properties are crucial (196]). A special isoform
of myomesin predominantly expressed in embryonic heart muscle (EH isoform) con-
tains a long unstructured repeat of amino acids. It has been shown that this insert
acts as an entropic spring providing significant elasticity to the EH isoform of my-
omesin (197; 198). However, other isoforms of myomesin lack the specific EH insert.
The extensibility of a rigid rod structure consisting of sequential poly Ig and FnllII do-
mains is limited and would therefore directly transmit stress to the dimerization bond
of myomesin thus jeopardizing its structural integrity.

Recent structural studies have revealed long a-helical freestanding linkers connect-
ing the C-terminal Ig domains of myomesin (199). Such a linker motif is novel in
Ig-repeat proteins. Pinotsis et al. have therefore speculated that the a-helical linker
segments of myomesin may provide the necessary elasticity for the C-terminal part of
this molecule (199). In this study we use high-resolution single molecule AFM force
spectroscopy accompanied by Molecular Dynamics simulations to reveal the unique
mechanical characteristics of these linkers for the elastic properties of the myomesin

molecule.

Materials and Methods

Preparation of materials as well as all experiments are carried out by our project
collaborator, Prof. M. Rief’s lab in TU Munich. Details of these experiments have
been published elsewhere. (I82) Here, only the computational methods are given.

Molecular Dynamics simulations
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The X-ray structure of the myomesin C-terminal dimer (PDB code 2R15) (199) con-
taining two immunoglobulin-like domains, My12 and My13, was subjected to molecular
dynamics (MD) simulations. We used the WHAT IF (200) package to determine the
protonation states of all histidine residues. On solvating the molecular structure with
TIP4P (60) water in a rectangular box, we ensured the distance between the protein
and the box edge to be 1.5 times of the non-bonded interactions cut-off distance |,
which is 1 nm. We used an ion concentration of 0.1 mM to mimic the physiological
environment, which finally resulted in a simulation system ~7.5x8.0x18.0 nm? in size,
containing ~135,000 atoms.

We used the GROMACS 3.3.1 package (201)) for all the subsequent MD simulations,
and the OPLS-AA force field (40) for the protein. Artificial boundary effects were
removed by employing periodic boundary conditions. We chose a cut-off of 1 nm
for non-bonded interactions, and the Particle-Mesh Ewald method (48) to account
for long-range electrostatics. In order to increase the simulation time step, we used
LINCS (50) to constrain all bond vibrations. The time step was 0.002 ps. Simulations
were performed in the NpT' ensemble with a temperature of T = 300 K and a pressure
of p = 1 bar in all the simulations. Nosé-Hoover (93; 04) temperature coupling with
a coupling time constant 7p = 0.1 ps, and Berendsen (95]) pressure coupling with a
coupling time constant of 7p = 1 ps were employed.

After we relaxed the simulation system by energy minimization using the steepest
descent method, we performed 500 ps position restrained simulations to further relax
our simulation system, subjecting each heavy atom in the protein to a harmonic po-
tential with a force constant of 1000 kJ-mol~™' - nm~2. The protein was then fully
equilibrated for 20 ns. Energy and coordinates of the simulation systems were collected
every 1000 time steps.

The resulting equilibrated simulation system served as starting point for force-
probe MD simulations (66) to mimic the atomic force microscopy experiments. It
was subjected to an external pulling force. More precisely, we applied the pulling force
onto both N-terminal residues of the My12 domains by moving two virtual springs with
constant velocity away from the center of the protein. We chose a pulling velocity of 0.5
nm-ns~', and a spring constant of 500 kJ-mol~! - nm~2. To accomodate the extending

protein, we increased the box dimension along the pulling direction to 30.0 nm, resulting
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in a system size of ~240,000 atoms. Other simulation parameters were the same as
listed above.

The resulting Gaussian-smoothed force profile and representative structures are
shown in Fig. 3:38] We monitored the initial helix unwinding by determining the
protein secondary structure using DSSP (113). For simulations longer than 20 ns, the
protein reached the simulation box borders. The helices were fully extended, and the

force started to rise to cause immunoglobulin domain unfolding.

Results

In order to focus on my contribution to this project within the thesis, the molecular
simulations, only those experimental results most relevant to the theoretical part are
presented here. For further details on experiments, we refer to the original publica-
tion. (182)

Mechanical stability of wild-type My9-My13 dimers

AFM force spectroscopy was performed on a construct consisting of the 5 C-terminal
Ig domains My9-My13 that formed a homo-dimer via the Ig domain My13 (Fig. A).
Typical force-extension traces exhibit saw-tooth like patterns as given in Fig.[3.37B and
C. The contour length increase of AL = 29.7+0.04 nm (n=965) is in good agreement
with the expected unfolding length of an Ig domain containing 86~90 residues and
exhibiting average unfolding forces of 87.9+0.4 pN (n=965) (Fig. 3.37D). The force
distribution is broad, likely reflecting the different stabilities of the individual Ig do-
mains within the construct. It is important to note that the adsorption to the cantilever
is of non-specific nature, and hence can occur anywhere along the protein chain. We
observe up to 6 Ig unfolding events in individual stretching curves (see section Mechan-
ical stability of the My13 dimer interface). At the beginning of the unfolding traces,
deviating from the typically observed force-extension behavior due to entropic polymer
elasticity (8) (black lines in force-extension traces are worm-like chain fits), regions of
apparently constant force can be detected (see arrows in Fig.[3.37B). These plateau re-
gions occur within a relatively narrow force range around 29.6+0.6 pN (n=95, dashed
line and black histogram in Fig.|3.37D). In contrast to the typical mechanical unfolding
of protein domains far from equilibrium, this force plateau reappears between peaks if
the force drops below the plateau value after the unfolding of an Ig domain (2nd arrow

in Fig. [3.37B). To test the reversibility of the plateau behavior, we performed a series
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Figure 3.37: (A) Schematic representation of a My9-My13 dimer in the AFM experimen-
tal setup (not to scale). The colored squares and the black bars represent the Ig domains
My9 to Myl13 and their linker helices, respectively (see bottom). (B) Exemplary force-
extension trace of My9-My13 unfolding. The circle marks a single unfolding event, black
traces represent worm-like chain fits providing the contour length increases ALof a single
unfolding. The arrows indicate plateau force regions. (C) Force-extension trace containing
stretch (red) and relax (orange) cycles to test the reversibility of the plateau. In the final
stretching cycles two unfoldings can be observed before the sample detaches. (D) Scatter
plot of unfolding forces and corresponding contour length increases with respective distri-
butions (red). The black histogram gives the plateau force distribution and the dashed line

its mean value.
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of subsequent stretching and relaxation cycles on one individual myomesin molecule.
The plateau exhibits no observable hysteresis between stretching and relaxation cycles
up to the highest velocity measured of 1 um/s (Fig. [3.37C). From these observations
we conclude that the elongation/shortening transitions underlying this force plateau
occur fast compared to the experimental time scale.

The a-helix linker is an extensible element

To understand the nature of the plateau in the force-extension traces, we performed
force-probe molecular dynamics (MD) simulations. A force-extension curve of a my-
omesin My12-My13 dimer is shown in Fig. [3.38| (red curve). Above extensions of 4 nm
a plateau region appears in which the molecule extends at constant forces. Beyond
13 nm the force again continues to rise. A series of snapshots of the associated molec-
ular conformations reveals the nature of the force plateau: While all four Ig domains
remain intact, the a-helical linkers start to unfold in the plateau region. In our simu-
lations a-helix unfolding starts at those segments of the helix that are solvent exposed
(C-terminal part; cf. Fig top). Part of this region has already unfolded when
the plateau force is reached. The other segments of the a-helix forming a hydrophobic
interface with the Ig domains are more stable and unfold later in the plateau. It is
important to note that the timescales are much smaller in the simulations than in the
experiments and hence, forces from these two methods cannot be directly compared.
However, the mechanical hierarchy within the molecule is likely conserved (45} [70) as
also suggested by the qualitative agreement between the experimental and calculated

force profiles, which both feature a plateau followed by a steep increase in force.

Discussion

Again, the discussion here mainly covers results from MD simulations. Details can be
found in the joint publication with the experimental partners. (182l

For its role as a cross-linker of myosin filaments, the elastic properties of myomesin
as well as the stability of its dimerization interface are important. In the absence of
detailed structural insight, early mechanical measurements of myomesin have naturally
focused on the stability of the fold of Ig and Fn domains within the myomesin rod (197}
198). In those earlier studies, in addition to the domain unfolding forces, the entropic
elasticity of the EH segment, a putatively unstructured element containing ca. 100

amino acid residues, was investigated. However this segment only occurs in an isoform
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Figure 3.38: Force-probe molecular dynamics simulation of My12-My13 dimer unfolding.
The red force-extension trace clearly exhibits a plateau. Corresponding structural snap-
shots at 2 nm, 5 nm, 10 nm, and 16 nm are given below in cartoon representation and show
that the plateau corresponds to a-helix unfolding. The individual conformational state of

both helices is mapped for each residue against extension (top).

predominantly expressed in embryonic heart muscle. The sources of elasticity for the
most commonly expressed myomesin isoforms lacking the unstructured segment have
so far remained unclear. The recent discovery of long a-helical linker segments as well
as the detailed structure of the dimerization complex has raised the possibility of a
novel elastic element within myomesin (199).

Generally, an elastic mechanism based on non-equilibrium processes such as Ig do-
main unfolding, exhibits broad force distributions and can therefore not supply sharply
defined force values. Equilibrium unfolding of the a-helical linkers combines two essen-

tial features for a reliable elastic mechanism: the possibility for considerable elongation

127



3. PROTEIN MATERIALS

at force values far below dimer dissociation at the level of 30 pN while still providing
stability and rigidity at forces below 20 pN. At first sight, the possible elongation upon
a-helix unfolding may appear small. Nevertheless, full extension of a total of 8 helices
in a dimer can elongate the molecule by approximately 50 nm, which corresponds to
50% of the total folded length of the myomesin dimer. This will provide the myomesin
with enough adaptability to react to misalignment or changes in spacing of thick fila-
ments (196). One of the most important roles we assign to unfolding of the a-helical
segments is the protection of the homo-dimerization against deleterious loads. We can
estimate a lifetime for the dimeric interface of 12 s at the plateau force of 30 pN. (182])
Hence, even under those extreme stretching conditions the molecule dimerization can
survive a significant time.

Intriguingly, according to current models of the M-line structure, myomesin is ori-
ented parallel to the sarcomere filaments only with its C-terminal part (My7-My13) (196).
This C-terminal portion of the myomesin dimer then spans the region between the M4
and M4’ line being a constituent of the M-filament as seen in EM micrographs (202}
203). Hence, in this region the whole mechanical stress will act on the dimer inter-
face. Towards the N-terminus, the myomesin will be oriented rather perpendicular to
the sarcomere axis and the axial mechanical stress will then be likely distributed over
many more supporting structures. Such binding partners interacting with myomesin in
the N-terminal region include myosin, titin, and obscurin (190} 191)).

In summary, we show that the unique a-helical linkers found between the C-terminal
Ig domains in myomesin have mechanical properties that make them ideally suited
to act as strain absorbers in the M-band. The fast and reversible two-state-folding
kinetics protect the stability of the myomesin dimer under load up to strains of 150%.
The mechanical properties of myomesin elasticity presented here form an important
building block for the emerging mechanical and structural understanding of the M-
band.
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3.2.2 Myomesin is an Elastic Structural Maintainer of the Sarcomere

The M-band, consisting of a complex assembly of fibrils, has long been speculated is one
of the most important structural maintainers of the sarcomere, the force generating unit
in striated muscle. Although much efforts has been devoted to studying the M-band, its
organization, and thus mechanism are still under debate. This study employs Molecular
Dynamics simulations to study the most crucial structural molecules, myomesin, of the
M-band. By quantifying the mechanical robustness of immunoglobulin domains and
the flexible domain-connecting helices, we are able to show that myomesin acts both
as a stress absorber and structural restoring element in the M-band during a force

generating cycle.

Introduction

The M-band is located in the middle of the muscle force generating unit, the sarcomere.
It comnsists of molecular fibrils shown as dark lines in microscopic images. These fibrils
interconnect tails of myosin thick fibrils and anchor titin C-termini in the M-band. (196])
As an integrating molecular network of myosin tails, the M-band acts as a safe guard
of the sarcomere. (195) Although a reconstructed three-dimensional structure of the
M-band is available nowadays from single-particle analysis, (204) the molecular details
of the M-band protein network are still missing. Thus, how the M-band molecular
network balances mechanical stress in a force generating cycle is unknown.

Three most important molecules have been identified up-to-date which are respon-
sible for the M-band lines, namely myomesin, M-protein and myomesin-3. (205) These
three molecules are genetically related. As the most important molecule, being found
in all types of striated muscles (187)), myomesin is the most promising candidate for
deciphering the secrets of the M-band mechanics.

Myomesin consists of 13 domains, as shown in Fig. [3.39] The first domain of
myomesin, myl, has a special molecular structure and binds to a myosin tail. The
other domains of myomesin are either immunoglobulin (Ig) domains or fibronection
type-IIT (FNIII) domains. The 13th domain, my13, is able to form a homodimer, and
thereby enabling two myomesin molecules to expand from the M4 to M4’ lines of the
M-band. (196]) One iso-form of myomesin, identified in early development of heart and

termed as EH-myomesin, has an unstructured peptide segment between the 6th and
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7th domains, my6 and my?7. (206) This unstructured molecular segment in this iso-form
of myomesin features a similar function as the PEVK segment in titin, providing the

molecule with elasticity. (197; 198} 207)
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Figure 3.39: Schematic figure of the molecular connections established by myomesin.
Myomesin domains are depicted as elliptic beads. Main components of the sarcomere are
labeled in the Figure. Two segments of detailed molecular structures are shown in cartoon
representation, with corresponding positions in the myomesin molecule highlighted with

relevant colors.

The interactions between myomesin and other muscle molecules are the key to the
integration of other fibrils in the M-band of sarcomere. It is already known that my-
omesin’s 4th domain, my4, interacts with titin and helps titin to anchor its C-terminus
in the M-band.(192) More importantly, the connection between two anti-parallel myosin
tails via two myomesin molecules not only serves as the structural organization in
M-band, but also as force transduction bridges to balance mechanical force in force
generating cycles of the sarcomere. (195) Although being critically important to the
M-band, the mechanical function of myomesin is still not very clear because of the lack
of molecular structures and adequate experimental studies.

Recently, the molecular structure of a homodimer of two C-terminal domains of
myomesin, my12 and my13, has been reported. (199) This molecular structure contains
two peptide chains dimerized by the two my13 domains, as depicted in Fig.[3.39| (cartoon
representation). More interestingly, there is a long a-helix between my12 and my13.
Studies both by experiments and Molecular Dynamics (MD) simulations showed that

this helix functions as strain absorber and elongation units upon force applications on
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the molecule (see Section 3.2.1). (I82) A mechanical plateau force of 30 pN is needed
to unfold this helix in Atomic Force Microscopy (AFM) experiment, which results in
an elongation of 150% of its initial helical length to an extended peptide (see Chapter
3, Section 3.2.1). In order to fully explore the mechanical properties of myomesin, here
additional MD simulations are performed to studies both reported and unreported
molecular segments of myomesin, my9-myl1l and myl12-my13 dimer. The my9-myl1
fragment is currently unpublished, but was provided to us by experimental partners
(Dr. M. Wilmanns). Force-probe MD (FPMD) simulations are carried out to apply
force to 5 Ig domains, my9-13, as well as the dimer formed by two m13 domains.
Force-clamp MD (FCMD) simulations are employed to quench selected helices to a low
constant force, namely the helix between my9 and my10 (helix910), the helix between

my10 and my11 (helix1011), and the helix between my12 and my13 (helix1213).

Methods

Structural equilibration

The molecular structure of a segment of the myomesin molecule, my9-13, is submit-
ted to Molecular Dynamics (MD) simulations for structural equilibration. We use the
WHAT IF (200) package to determine the protonation states of all histidine residues.
On solvating the molecular structure with TIP4P (60]) water in a rectangular box, we
ensure the distance between the protein and the box edge to be 1.5 times of the non-
bonded interactions cut-off distance of 1 nm. We use an ion concentration of 0.1 mM
to mimic the physiological environment in muscle. We choose the GROMACS 4.0.7
package (201)) for all subsequent MD simulations, the OPLS-AA force field (40)) for the
protein and TIP4P (60) to describe water. Artificial boundary effects are removed by
employing periodic boundary conditions. We use the Particle-Mesh Ewald method (91)
to account for long-range electrostatics. In order to increase the simulation time step,
we use LINCS (50)) to constrain all bond vibrations. The time step is 0.002 ps. All
simulations are performed in the NpT ensemble with a temperature of T = 300 K and
a pressure of p = 1 bar. Nosé-Hoover (93} [04) temperature coupling with a coupling
time constant 77 = 0.1 ps, and Berendsen (95]) pressure coupling with a coupling time
constant of 7p = 1 ps are employed, respectively.

The protein structure is energetically minimized and fully equilibrated for 20 ns.

The resulting equilibrated molecular structure is cut into different parts, namely the
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dimer of two my13 domains, my9-12 domains, and connecting helices. Each part of the
molecular structure is then solvated into simulation boxes with the same conditions as
listed above for subsequent MD simulations. More precisely, systems of the my13 dimer
and the of my9-12 domains are set up and equilibrated for force-probe MD simulations,
and the helix1213 for force-clamp MD simulations.

Force-probe MD (FPMD) simulations

The dimer and Ig domains of myomesin are subjected to FPMD simulations (66) to
mimic their unfolding process in the AFM experiments (see Section 3.2.1). Pulling force
is applied onto the molecular structures by moving two virtual springs with constant
velocity away from the force application points which are the two termini of each Ig
domain or two different peptide chains of the dimer, respectively. A pulling velocity of
0.5 nm-ns~', and a spring constant of 500 kJ-mol~! - nm~2 are chosen for all FPMD
simulations. In order to accommodate the extending protein during unfolding, the
box dimensions along the pulling direction are increased to ~25.0 nm, resulting in
system sizes of ~200,000 atoms. The pulling force and trajectories are constantly
recorded during the simulations until the domains are fully unfolded. Other simulation
parameters are the same as for the structural equilibration listed above.

Force-clamp MD (FCMD) simulations

Helices are subjected to FCMD simulations. Different constant forces are used to
hold the helices ranging from a high value of 100 pN to a low value of 6 pN. Secondary
structures of the helices are monitored during the simulations using DSSP (113). FCMD

simulation parameters are the same with those in equilibration simulation.

Results and Discussion

Mechanical robustness of Ig domain my9-13

All five Ig domains, my9-13, are independently subjected to pulling forces. Using
a pulling speed of 0.5 nmns~! and a spring constant of 500 kJ-mol~™' - nm~2. The
resulting loading rate is orders of magnitude higher than experiments, which results
in higher rupture forces in simulations than AFM experiments as predicted by Bell’s
model. (67) Five independent simulations are performed to rupture each Ig domain,
namely my9-13. The average rupture forces of each domain range from 443~716 pN,
as shown in Fig. The my9-13 Ig domains thus show a similar robustness as the Ig-

domains in titin, such as I1 and 127, studied by similar simulations. (43} 44]) As expected

132



3.2 Myomesin

800
9
J

rupture force (pN)
200 400 600

0

my9 myl0 myll myl2 myl3

Figure 3.40: Rupture forces of the five Ig domains in myomesin. Each rupture force is
the average of five independent FPMD simulations. Top snapshot shows my10, with red
spheres indicating the force application points and the force arrows indicating the pulling
directions in the FPMD simulations.

due to the higher loading rate, all rupture forces observed in MD simulations are higher
than corresponding those in AFM experiments, see also Section 3.2.1. The key patterns
of the unfolding processes and the critical features of the molecular mechanics obtained
by two methods, AFM and MD simulation, are likely to conserved, as being confirmed
by former studies. (45} [70) Interestingly, the mechanical stability of the Ig domains differ
by nearly 300 pN, in spite of their highly similar topologies. The sequence variations
causing these differences remains to be elucidated.

Stability of my13 homodimer

Force is applied to N-termini of two my13 domains of the dimer in FPMD simula-
tions as depicted in Fig. [3.41] The N-terminal S-strands of the two my13 domains in
the dimer are establishing the interaction between the two domains. Force induces the
detachment of the N-terminal 8-strands from each other. This dissociation of the dimer
does not significantly affect the molecular structures of the two my13 domains. They
instead remain in their folded states after rupture. We note that the FPMD simulations
of my13 homodimer use the same loading rate as those of other Ig domains.

The detachment force of the myomesin dimer obtained from MD simulations is
818+51 pN, which is higher than the rupturing forces of all Ig domains investigated
above. A higher force needed to detach the my13 homodimer is confirmed by AFM
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Figure 3.41: Molecular structure of a myomesin dimer and pulling setup in FPMD simula-
tions. The two peptide chains are shown in cartoon and transparent surface representation
and colored in blue and red, respectively. Pulling forces are shown as red arrows, and force

application points as red spheres.

experiments (see Section 3.2.1) (I82), which suggests that the linkage between two
myomesin molecules can survive over other Ig domains when over-stretching myomesin
fibrils. The elongation of domain-connecting helices and the unfolding of Ig domains
progresses under mechanical load are ensured by the integrity of the homodimer. As
a consequence, myomesin can elongate to an extreme extra yet maintains a bridge
between two anti-parallel myosin fibrils.

Helices in equilibrium

Myomesin is the only muscle molecule that possesses the unique structural archi-
tecture of helix-connected Ig domains, which is likely to present a molecular model
for elasticity. (I82) Former studies (Section 3.2.1) have already indicated that these a-
helices can serve as strain absorbers in the molecule that provide viscous extensibility.
Further investigations are needed to explore the mechanical properties of these helices,
such as their refolding abilities and their contribution to the molecular adaptability in
sarcomere.

To this end, each of the three helices, with the adjacent Ig domains being removed,
are first equilibrated separately for a simulation time ranging from 310 ns to 450 ns, as
shown in Fig. [3.42] None of the three helices is fully stable in solvent. As depicted in
Fig. [3.42] all three helices lose helix secondary structures gradually with the increase
of simulation time. In the end of the simulations, helix1011 and helix1213 have lost

nearly all of their helical secondary structure. When compared to helices in the full
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Figure 3.42: Secondary structure plots of three helices in myomesin in equilibrium. Ver-
tical axis is residue number (not shown in the Figure). Simulation times are indicated at
the end of horizontal axis of each plot. Blue color blocks indicate a-helical configuration

of the corresponding residues in the peptide sequence.

myomesin structure, the simulation environment of equilibration is artificial because
of the missing link to and interactions with the Ig domains. The destabilization and
unfolding of the a-helices in solvent, similar to other helices of similar sizes, can be
explained by the change in the environment, from a mainly hydrophobic Ig interface to
the polar water solvent.

Interestingly, all these helices, especially helix910, show refolding events of helical
turn on a short time scale during the simulations. Residues in these helices seem to have
a high tendency of a-helix refolding, as shown by secondary structure plots in Fig. [3.42
This fast refolding is likely to be a key function of myomesin helices, considering the fast
force generating circles in muscle operation. In order to probe this feature of myomesin,
FCMD simulation of these helices are carried out (see next section).

Helices under constant pulling force

We further perform simulations to mimic the situation of myomesin a-helices under
constant pulling force and assess their mechanics. We choose helix1213 as a represen-
tative helix for further investigations because of its complete unfolding in the end of
the equilibrium MD simulation (Fig. . Using constant force applied at each end of
helix1213, the freedom of rotation and bending of helix1213 is restrained. This simula-

tion setup also features the condition of how a helix in myomesin experiences external
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Figure 3.43: Secondary structure plot (blue) and end-to-end distance (black) of helix1213
under different constant forces. Secondary plots are obtained using DSSP, and shown along
helix sequence from bottom (N-terminal) to top (C-terminal) in each plot, with blue area
representing a-helical conformation. The inset shows the pulling setup in all simulations.
Black curves in each data set are the end-to-end distances recorded in the simulation.
Scales of the vertical axis are not shown, which are residue numbers for DSSP plots and

nm for distance curves.

force in the sarcomere. A pulling setup is schematically shown as inset in Fig.
Different constant forces ranging from 15 pN up to 100 pN are used in the FPMD sim-
ulations (Fig. . Simulation times are adopted to the pulling forces. Simulations
are stopped when the whole helix has unfolded. The secondary structure of helix1213
and its end-to-end distance are monitored during the simulations, as shown in Fig.
As expected, helix1213 loses its helicity quickly under high constant forces of 75~100 pN.
Correspondingly, its end-to-end distance increases extremely fast with the loss of he-
licity. AFM experiments of complete myomesin molecules indicated that the resisting

unfolding force of myomesin helices is ~30 pN (see Section 3.2.1). (I82) The isolated
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helix1213 dose show a longer life time in this force range, though only on a nanosec-
ond scale, presumably due to the lack of Ig domain interations. When the pulling
force further decreases to 15 pN, helix1213 keeps its helicity even longer and shows
obvious helical turn refolding events as indicated by the secondary structure shown in
Fig. This result indicates that helices in myomesin can partially refold on a very
short time scale of nanoseconds, much shorter than the refolding time of seconds of
an Ig domain. The reversibility of helix refolding under constant force is expected to
apply to other helices in myomesin, especially helix910 which showed refolding within
nanoseconds already in the absence of force (Fig|3.42). This result also confirms that
the decrease in bending flexibility of myomesin helices by applying of constant holding
force can enhance their helix propensity, similar to their incorporation in the myomesin

molecule.
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Figure 3.44: Secondary structure plot of helix1213 under constant forces of 10 and 5 pN
in FPMD simulations. FPMD Simulation using 5 pN (bottom plot) continues at 300 ns of
the FPMD simulation using 10 pN (top plot).

A simulation with low constant force of 10 pN with a simulation time of 300 ns
confirms the reversible helix unfolding described above (Fig. . Again, the helix
partly loses its helicity during the simulation. But pronounced helix refolding events
on this submicrosecond scale. The constant pulling force is then switched to 5 pN at
300 ns and maintained till the end of the FPMD simulation.

As being shown in Fig. [3:44] helix1213 under a pulling force of only 5 pN continues

to randomly refold or lose its turns. Remarkably, even longer sections of the helix also
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refold, as indicated by secondary structure plot in Fig. Shortening of the end-to-
end distance of helix1213 again accompanies the partial refolding of the helix (Fig.|3.45)).
Helix refolding is expected to be more pronounced in the presence of Ig domains and in
experiments at larger timescales, given the strong hydrophobic interactions between the
helix and the my12 Ig domain. Indeed, AFM experiments give unfolding and refolding

traces with low hysteresis for myomesin with intact Ig domains.
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Figure 3.45: End-to-end distance of helix1213 after switching of constant holding force

from 10 to 5 pN. Raw data is shown in gray curve with average shown in black curve.

Except from its iso-form, EH-myomesin, myomesin does not contain a disordered
elastic module equivalent to the PEVK segment in titin. However, the helices in my-
omesin here have been demonstrated to be extensible elements that provide elasticity
and serve as shock absorbers (see Section 3.2.1). These helices are thus able to serve
as elastic modules that a muscle molecule commonly features. Unfolding of Ig domains
are rare physiological events in muscle. Only extreme force lead to their unfolding, with
refolding only occurring on the second timescale. This represents a risk for the integrity
of the sarcomere given the fact that the main function of myomesin is to anchor the
titin filament and to interconnect anti-parallel myosin molecules. By integrating helices
into its molecular structure, myomesin is able to enormously elongate which lowers the
risk of unfolding its Ig-domains.

In an activated sarcomere, two anti-parallel myosin molecules consume energy to

move in opposite directions thereby exerting mechanical force onto the linking molecules,
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mostly myomesin, in the M-band. This cause an elongation of two dimerized my-
omesin molecules in the sarcomere axis direction due to the displacement of two myosin
molecules. Because myomesin molecules also interact with other fibrils in the M-band,
such as titin, myomesins are able to transduce mechanical force in the M-band net-
work and to balance stress distribution. Most importantly, fast helical refolding is
likely to play a crucial role in the relaxation period of the force generating cycle in
the sarcomere. The involved helix shortening produces a counter force to restore the
unactivated states of myosin filaments. The time scale of myomesin helix refolding is
short enough, as shown by our simulation results, to restore the sarcomere structure
for the next force generating cycle. The results confirm that myomesin is one of the

most important M-band, and thus the sarcomere safeguards.
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Conclusions

This thesis focuses on two types of force-withstanding proteins, namely silk and the
muscle protein myomesin, with the aim to understand the determinants of their me-
chanical properties. Two simulation methods, MD simulations and FEM, are used,
and results thereof validated by experimental data of various sources. New insights
into self-assembly, rupture mechanics, force bearing units and refolding were gained,

which will be outlined in the next paragraphs.

Proteins are materials tailored for bearing force

Proteins can achieve a toughness outperforming other materials like steel or Kevlar;
they can also show a high elasticity and extensibility which allow them to dynamically
and reversibly adapt to their environment. The determinants of protein mechanics lie

in the assembly of the protein structural building blocks.

Silk

Subunits of silk proteins, crystals and amorphous peptides, enable a silk fiber to carry a
mechanical load with outstanding robustness and tremendous elasticity, which together
result in an immense toughness.

Crystals in the silk protein are extremely stiff. These results are presented in
Chapter 3, Section 3.1.1. A force of ~4 nN is needed to rupture one peptide strand
from a crystal along the axial direction. The elastic moduli measured during the MD

simulations are also extremely high, reaching ~86 GPa. The peptide arrangements
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in silk protein crystals affect the mechanical properties of the molecular structure.
An anti-parallel arrangement of -strand is more mechanically robust than a parallel
counterpart, with a higher strand rupture force and a narrower distribution of internal
force as indicated by FDA.

The (-strand lengths found in silk protein crystals are about eight residues, which
also applies to other force bearing protein structures as investigated in Chapter 3,
Section 3.1.2. As the evolution of protein materials in nature suggests, the mechanical
performance for a given material volume is maximized for 8-residue long sheets. Higher
robustness, in term of g-strand rupture force, can be achieved by longer strand lengths,
but B-strands of 8-residue length show the best compromise between mechanical prop-
erties and material usage, especially given the fact that most of the mechanical load is
taken up by the first eight residues linked to the force application point.

Amorphous peptides in silk fibers are softer than crystals and can undergo a signif-
icant elongation under force. The topology of amorphous peptides is likely to involve
random entanglements with various interactions, which is captured by the composite
model of the crystal-amorphous-crystal structure in Chapter 3, Section 3.1.3. Typically,
the elongation of amorphous peptides features friction and reversible rupture of ran-
dom interactions between peptides. These resist pulling forces and consume substantial
mechanical energy.

The function of subunits in silk protein, namely crystals and amorphous peptides,
are obvious. Amorphous peptides are mechanical buffers used to consume mechanical
energy, while crystals are structural enhancers which prevent fiber disintegration. The
outstanding mechanical properties of silk fibers come from the synergy between the
two subunits of silk. By assembling two type of subunits with different mechanical
properties, a silk fiber is optimized for both load carrying and load-induced stretching.

The assembly mechanism of silk in vivo is still mysterious. By controlling the
percentage of crystals in silk protein, different types of silk are produced by spiders.
Although natural silk fibers include a volume percentage of 10%~25% of protein crystals
which is assumed to be randomly distributed in the amorphous phase, this study shows
that a better structural fiber hierarchy can be achieved. This is discussed in Chapter
3, Sections 3.1.3 and 3.1.4. A silk fiber model with a serial arrangement of crystals
in the fiber shows a higher toughness than other fiber models either with parallel or

random arrangements of crystals at any percentage of crystallinity. Our fiber model

142



also suggests that in the serial arrangements, 40% of crystallinity yields the best fiber
performance. Fiber performance is also sensitive to the sizes of crystals. Crystals
with longer strand length and smaller cross-section area can better reinforce the fiber
hierarchy. All these results are critical for material engineering and also shed light on
the refinement of semi-crystalline industrial materials like polyamides.

Polyamide materials such as nylon and polyamide-6,6 are similar to silk on the
atomistic scale, as they form highly similar hydrogen bonding patterns. Crystals of
different polyamide materials are modeled and investigated in Chapter 3, Section 3.1.6.
Hydrogen bond densities are found to differ for different polyamides crystals, which
results in different crystallinities, strand rupture forces, and elastic moduli. The a-form
polyamide-6,6 crystal is found to show the highest ordered in its atomic structure. It
also shows the highest rupture force and elastic modulus among all polyamide crystal

models. The results explain the outstanding mechanical properties of polyamide-6,6.

Myomesin

Myomesin is the most important structural molecule in the M-band of the sarcomere.
While largely differing from silk in term of structure and function, myomesin also con-
sists of rigid Ig domains rich in §-sheets which are oriented along the pulled direction.
Thus, both proteins have a primary determinant of mechanical resilience in common.
It is studied in Chapter 3, Sections 3.2.1 and 3.2.2.

The construct of rigid Ig domain with soft helical connections render myomesin a
new model for molecular elasticity. The helices in myomesin behave as mechanical ab-
sorbers when the molecule is subjected to external load. The unfolding of these helices
feature large elongations with a constant resistance against the pulling force. This ef-
fect provides myomesin with viscous elasticity to adapt to the mechanical environment
in the M-band in the middle of sarcomere. These a-helices compensate for the lacking
of an unstructured and entropically elastic peptide segment in myomesin. The helices
investigated also show a remarkable ability of fast refolding with a refolding time scale
of nanoseconds. The fast refoldability is crucial for myomesin considering the short
contraction-and-relaxation cycles of force generating of sarcomere.

The dimer formed by two myomesin via my13 domains is found to be stronger than
other Ig domains in the molecule. This result suggests the key contribution of myomesin

to the integrity of fibrils in the M-band. Two dimerized myomesin molecules connect
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two anti-parallel myosin fibrils which constantly apply force to the myomesin dimer in
opposite directions during the activation of the sarcomere. Elongation of myomesin
and rare unfolding events of Ig domains can take up considerable mechanical work.
As the last and strongest safeguard, the dimer of two myomesin molecules establishes
the connection and thus the integrity of the molecular network in the M-band, which
serves as a foundation for structure restoration of the M-band with the refolding and

shortening of myomesin helices occurring within the relaxation period of sarcomere.

Protein aggregation induced by a surface

Controlling protein folding has remained a highly challenging problem. Although it is
well accepted that a protein spatial structure is determined by its amino acid sequence,
amyloid-type B-sheets form from various peptides under certain conditions. Both chem-
ical or mechanical conditions such as ion concentration and shearing flow strength can
modify protein folding pathways. Controlling protein secondary structure formation
on a single molecule level opens the door for understanding protein material assembly
mechanisms.

As presented in Section 3.1.5, silk proteins form secondary structures on a high
energy metal surface, namely stacks of (3-sheets. Apparently, surfaces can create an
environment for controlling protein folding. MD simulation results confirm that (-
sheets can explain the force curves obtained from desorbing the protein from the metal
surface. A parallel arrangement of strands is preferred to form on the surface. It absorb
more mechanical energy upon detachment, and thus possesses a higher mechanical
stability. The studies by both AFM experiments and MD simulations open a road for

guiding protein self-assembly into new materials.

Combination of MD simulations and FEM

Combining of different methods for bridging length on time scales has been proven to
be very effective, a successful example of which are hybrid QM/MM methods used in
studying molecular transitions. Combining MD simulations with FEM modeling suc-
cessfully pioneered for studying protein mechanics on multiple scale has been demon-

strated in this thesis (Chapter 3, Sections 3.1.3 and 3.1.4), which can be easily applied
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to other similar problems.

MD simulations are fairly accurate yet limited to systems of nanometer size. In or-
der to unravel the mechanical relationship between the atomic structure and the overall
performance of materials using a bottom-up approach, a coarser description that yet
maintains the atomic characteristics of the investigated material is required. Contin-
uum mechanics based on finite elements is well established for structural mechanics
studies and can be applied to all scale. The efficiency of FEM largely outperforms MD
simulations and allows macroscale modeling. Accurate parameters needed for the FEM
modeling can be obtained from MD simulations, allowing the bridging of the two meth-
ods. Silk fiber modeling using both MD simulations and FEM conserves the accuracy
of MD simulations and benefits from the advantages of FEM. More successful studies

combining these two methods can be expected.

Outlook

This dissertation probes the mechanics of protein materials. All-atom simulations are
applied to model and quantify molecular mechanics. Continuum modeling method is
used to further increase the simulation scale. Our results can serve as guidelines for
artificial material design and provide a basis for further studies.

Our approach can be readily improved by refining the models. Bridging of MD
simulations and FEM entails open questions, such as the modeling of the amorphous
peptide chain topology in FEM and their mechanical properties. The FEM model used
in this study is in elastic regime of material deformation, while it shows visco-plastic
effects in real fiber. As for the study of myomesin molecular mechanics, a larger all-
atom molecular segment structure should be studied for better mechanical comparisons.
Improvements in this direction will make our methods predictive enough for systematic
comparisons to and interpretations of experiments. All these questions require more
research strength and time. This thesis is a starting point for more exciting studies on

protein mechanics.
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