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Summary

Streptococcus pyogenes is a lactic acid bacteria that colonises the skin or throat and
causes many human diseases ranging from mild skin infections to serious systemic
diseases like rheumatic fever. As a lactic acid bacteria it relies on substrate-level
phosphorylation for its energy synthesis and ferments sugars primarily to lactate
via the glycolytic pathway followed by pyruvate degradation. So far, some S. pyo-
genes-specific allosteric regulations of glycolytic processes have been identified, but
no kinetic model of its glycolysis exists to study the dynamic interactions and un-
derstand their regulations. In order to explore the glycolytic pathway of S. pyogenes
and to be able to compare it to other lactic acid bacteria, we set up a quantitative
model of the central metabolism.

This first glycolytic model for the poorly-studied S. pyogenes is set up in close
collaboration with experimental and theoretical groups within a SysMO consortium.
Unknown parameters and allosteric regulation are adopted from related organisms,
especially from the well-studied Lactococcus lactis. Due to unknown enzyme mech-
anisms convenience kinetics are exploited. To gain a satisfactory fit between the
experimental data delivered from partners and the model, parameter estimation is
applied.

Our glucose-pulse experiments show that an increase in the extracellular phos-
phate concentration induces a rise in the FBP level and in the glucose uptake rate.
Both effects can be simulated with the developed model by integrating phosphate
uptake. S. pyogenes possesses an ATP-dependent transport system but also genes
predicted to encode a sodium phosphate symporter. Interestingly, so far, phosphate
usually has not been considered as a free variable in glycolytic models and therefore
its role has been underestimated.

Furthermore, a genome-scale model including all reactions required for growth

is constructed. The reconstruction is based on the genome sequence and takes
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advantage of already existing and curated metabolic networks of Escherichia coli,
Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis.

Metabolic network analysis and simulation is carried out using flux balance anal-
ysis. Measured amino acid and product fluxes are used to constraint the genome-
scale model. Since the network is constructed to simulate growth and reproduction
the biomass function is chosen as objective function. To validate the reconstructed
network, additional experiments are performed. We study growth on chemically
defined medium with amino acid leave-outs. Furthermore, we investigate growth on
different carbon sources. In accordance to our experimental data the n silico model
is able to utilise trehalose, sucrose, maltose and mannose. The model facilitates the
exploration of S. pyogenes behaviour to environmental perturbations. Based on the
model we predict essential amino acids and a minimal medium for the growth of S.
pYogenes.

Both models, the kinetic and the genome-scale model, facilitate discovering and
understanding the similarities and differences between S. pyogenes and closely re-
lated lactic acid bacteria, especially L. lactis. These models will help in the design

of strategies to control or reduce growth of the human pathogen S. pyogenes.
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Zusammenfassung

Streptococcus pyogenes gehort zu den haufigsten Erregern von Haut- und Atemwegs-
erkrankungen beim Menschen und verursacht verschiedene Krankheiten, von leichten
Hautinfektionen bis hin zu schweren immunologisch bedingten Folgeerkrankungen
der Streptokokkeninfektion, beispielsweise rheumatisches Fieber. Wie alle Milch-
sdurebakterien gewinnt S. pyogenes die zum Wachstum benétigte Energie mittels
Substratkettenphosphorylierung in der Glykolyse. Das dabei gebildete Pyruvat wird
hauptsachlich zu Lactat reduziert. Bisher ist die Regulation einiger glykolytischer
Enzyme von S. pyogenes untersucht worden, ein dynamisches Modell der Fermen-
tation ist aber noch nicht aufgestellt worden. Um die Glykolyse von S. pyogenes
verstehen und mit der anderer Milchsédurebakterien vergleichen zu konnen, entwi-
ckeln wir ein quantitatives Modell des zentralen Stoffwechsels.

Die Konstruktion dieses ersten glykolytischen Modells fiir S. pyogenes erfolgt in
enger Zusammenarbeit mit experimentellen und theoretischen Gruppen innerhalb
eines SysMO-Konsortiums. Zur Modellentwicklung werden die von unseren Part-
nern bereitgestellten Daten benutzt. Fehlende Parameter und Regulationen wer-
den von verwandten Organismen, insbesondere von Lactococcus lactis, iibernommen.
Aufgrund unbekannter Enzymmechanismen werden ,Convenience Kinetics* genutzt.
Um eine gute Ubereinstimmung zwischen unseren experimentellen Daten und dem
Modell zu erhalten, wird eine Parameterschatzung durchgefiihrt.

Unsere Glukosepulsexperimente zeigen, dass mit der extrazelluldren Phosphat-
konzentration das FBP-Level und die Rate der Glukoseaufnahme steigen. Mit der
Erweiterung um ein Phosphataufnahme-System kann unser kinetisches Modell bei-
de Effekte beschreiben. Zur Aufnahme von Phosphat aus dem Medium besitzt S.
pyogenes zwei Systeme. Zum einen besitzt es einen ATP-abhéngigen Uniporter,
zum anderen wurde ein Natrium-Phosphat-Symporter vorhergesagt. In bisher ver-

offentlichten glykolytischen Modellen wurde die Phosphatkonzentration nicht als
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freie Variable implementiert, der Einfluss von Phosphat auf die Glykolyse wurde
bislang unterschétzt.

Weiterhin wurde ein genomweites Modell zur Simulation von Wachstum und Re-
produktion von S. pyogenes konstruiert. Diese Rekonstruktion basiert auf der Ge-
nomsequenz und bereits existierenden metabolischen Netzwerken von FEscherichia
coli, Bacillus subtilis, Lactobacillus plantarum und Lactococcus lactis.

Zur Auswertung und Simulation wird ,,Flux Balance Analysis* angewandt. Gemes-
sene Aminosédure- und Produktfliisse begrenzen die Fliisse des genomweiten Modells.
Um Wachstum und Reproduktion zu simulieren, wurde die Produktion von Biomas-
se als Zielfunktion gewahlt. Die Validierung des rekonstruierten Netzwerks erfolgt
mit experimentellen Daten. Dazu haben wir das Wachstum auf einem chemisch
definierten Medium mit dem Fehlen von ausgesuchten Aminosduren untersucht.
Auferdem haben wir das Substratspektrum von S. pyogenes studiert. In Uber-
einstimmung mit den experimentellen Daten simuliert das Modell Wachstum auf
Trehalose, Sucrose, Maltose und Mannose. Das Modell erleichtert die Unteruschung
des Verhaltens von S. pyogenes auf Verdnderungen in seiner Umgebung. Basierend
auf dem Modell haben wir essentielle Aminosduren und ein Minimalmedium fiir das
Wachstum von S. pyogenes bestimmt.

Das kinetische und das genomweite Modell erleichtern das Bestimmen und Verste-
hen der Ahnlichkeiten und Unterschiede zwischen S. pyogenes und eng verwandten
Milchséaurebakterien, insbesondere L. lactis. Diese Modelle erleichtern die Entwick-
lung von Strategien zur Kontrolle oder Reduktion des Wachstums des Krankheits-

erregers S. pyogenes.
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2 Chapter 1. Introduction

The results presented in this thesis are collected in the context of the SysMO project
“Comparative systems biology: Lactic acid bacteria” which focuses on three simple
and highly related lactic acid bacteria, namely Streptococcus pyogenes, Lactococcus
lactis and Enterococcus faecalis. My task within this project consists in constructing
a kinetic as well as a genome-scale model of S. pyogenes. These models are used to
explore and understand the organism’s metabolism, compare it to related bacteria
and propose drug targets. A detailed description of the project can be found in

Section 1.3 and the goals of this thesis are defined in Section 1.4.

1.1 Streptococcus pyogenes

Streptococcus pyogenes is a Gram-positive, facultative anaerobic, non-motile and
non-sporeforming bacteria. Since streptococci divide along a plane they appear in
pairs of cells or in chains of varying length. The cell diameter ranges from 0.6 to 1.0
pm [Todar, 2011].

S. pyogenes colonises the skin, tonsils, mucous membrane and deeper tissues
and causes many different infections. Acute infections comprise pharyngitis, scarlet
fever, impetigo or cellulitis. Invasive infections may present necrotizing fasciitis and
streptococcal toxic shock syndrome. S. pyogenes can also cause immune-mediated
post-streptococcal sequelae, such as acute rheumatic fever and acute glomerulonephri-
tis, which follow acute infections [Todar, 2011]. Detailed information about strep-
tococcal infections and sequelae can be found in [Cunningham, 2000].

Streptococci are classified depending on their cell wall polysaccharides (groups A,
B, C, F and G) or lipoteichoic acids (LTA) (group D) via the Lancefield serotyping
scheme [Lancefield, 1928]. Streptococci found in humans such as S. pyogenes occupy
the group A antigen and, therefore, belong to the group A streptococci (GAS). The
group A polysaccharide is a polymer of N-acetylglucosamine and rhamnose. The
group-specific polysaccharide is also called the C substance or group carbohydrate
antigen. GAS are further classified into M protein serotypes. This division bases
on the fact that the N-terminal region of the M protein contains a type-specific
moiety. The M protein is a virulence factor that extends from the cell membrane of
GAS (see Section 1.1.1). More than 80 types of S. pyogenes M proteins have been
identified |Cunningham, 2000].

A commonly used and fast method for detecting the presence of GAS in the
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throat are throat cultures in blood agar. Since GAS are -hemolytic they can be
easily distinguished from normal throat flora which is usually a- or non-hemolytic
[Cunningham, 2000]. Hemolysis denotes the break-down of red cell hemoglobin.
If hemolysis is associated with hydrogen peroxide production, hemoglobin is oxi-
dised to methemoglobin, changing the agar colour to green. Such a bacterium is
called a-hemolytic. S-hemolysis is associated with complete lysis of red cells in the
medium surrounding the colony by streptolysin, indicated by a lightened colour.
Non-hemolytic or v-hemolytic colonies do not act on red blood cells and, thus, no

change within the agar surrounding the bacteria is observed [Todar, 2011].

1.1.1 Interactions between pathogen and host

S. pyogenes is one of the most widespread human pathogens. It is estimated that 5
to 15% of the population harbour this pathogen without signs of disease. When host
defences are impaired or when the organism can penetrate the immune defences S.
pyogenes is able to infect the host. Contact between the bacteria and vulnerable
tissues can lead to a variety of suppurative infections [Todar, 2011].

In the past, S. pyogenes infections demanded many lives. Today, due to the
antibiotic therapy, acute and invasive infections caused by S. pyogenes usually are
not fatal. However, S. pyogenes is of major concern because of the risk of serious
sequelae in untreated infections. There has been a recent increase in diversity,
seriousness and sequelae of S. pyogenes infections and a resurgence of severe invasive
infections [Todar, 2011|. Therefore, an exact knowledge about the interaction of the

pathogen with the host is essential.

Virulence factors

The first contact between pathogen and host is assembled by so called virulence
factors which are exposured on the cell surface. GAS produce a wide variety of
virulence factors that enable them to adhere to host tissues, circumvent immune

response and spread by invading host tissue layers. These factors include

e M protein, fibronectin-binding protein and LTA for adherence,

e hyaluronic acid capsule and M protein to inhibit phagocytosis,
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e invasins such as streptokinase, streptodornase, hyaluronidase and streptolysins,

and

e exotoxins, such as pyrogenic toxin [Cunningham, 2000, Todar, 2011].

Many of the virulence factors are present on the cell surface of S. pyogenes, espe-
cially those involved in colonisation, avoiding phagocytosis and the host immune
responses |Cunningham, 2000]. Antigenic components present on the cell surface
include the group-specific polysaccharide, peptidoglycan and LTA and a variety of
surface proteins, including M protein, fimbrial proteins, fibronectin-binding proteins
and cell-bound streptokinase. The cell wall of S. pyogenes contains some antigens
similar to those of mammalian muscle and connective tissue, resulting in molecular
mimicry and a tolerant or reduced host immune response |Todar, 2011].

The M protein as well as the capsule are considered to play a role in virulence
[Cunningham, 2000, Todar, 2011]. The M protein is involved in colonisation and
resistance to phagocytosis and is the major cause of antigenic shift and antigenic
drift in the GAS. It also binds fibrinogen from serum and inhibits the binding of
complement to the underlying peptidoglycan. This enables survival of the pathogen
by blocking phagocytosis. The capsule of S. pyogenes is built-up of a polymer of
hyaluronic acid. Since hyaluronic acid is chemically similar to that of host connective
tissue the pathogen can hide its own antigens. Therefore, the capsule also prohibits
opsonized phagocytosis by neutrophils or macrophages [Todar, 2011].

GAS can be opsonized by activation of the classical or alternate complement
pathway and by anti-streptococcal antibodies. These specific antibodies are able
to kill S. pyogenes rapidly following phagocytosis since the pathogen is catalase-
negative and produces no significant amounts of superoxide dismutase to inactivate
the oxygen metabolites produced by the phagocyte. Therefore, the streptococcal
defence must prohibit phagocytosis [Todar, 2011].

Adhesion

After the first contact is accomplished, interactions between the pathogen and the
host occur due to binding of surface streptococcal ligands to specific receptors on
host cells. S. pyogenes produces many adhesins differing in specificity. Evidence

suggests that S. pyogenes exploits LTA, M protein and fibronectin-binding proteins
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as adhesins [Todar, 2011]. Strong adherence of GAS to pharyngeal or dermal epithe-
lial cells is the most important initial step in colonisation of the host. Without these
mechanisms, the pathogen could not attach to host tissues and would be removed

by mucous and salivary fluid flow mechanisms [Cunningham, 2000].

Invasins and toxins

GAS not only adhere to epithelial cells but also invade them. The reason for invasion
is not absolutely clear [Cunningham, 2000|. However, two hypothesis have been con-
structed for the role of internalisation of GAS in disease pathogenesis. First, invasion
means to avoid host defence mechanisms and thus may play a role in the carriage and
persistence of streptococci. Second, studies imply that internalisation could lead to
invasion of deeper tissues [LaPenta et al., 1994], while other studies detected that
low virulence was associated with internalisation [Schrager et al., 1996]. Maybe both
hypothesis are correct depending on the virulence and properties of the invading bac-
terium as well as on the invaded epithelium. Perhaps internalisation describes suc-
cessful containment of the pathogen by the host. This theory is corroborated by the
observation that poorly encapsulated strains are internalised most efficiently but are
relatively avirulent in infection models [Schrager et al., 1996, Cunningham, 2000].
GAS secrete several proteins including virulence factors, invasins and toxins into
its host. These secreted proteins interact with human blood and tissue components
in such ways that kill the cells and provoke a damaging inflammatory response.
GAS invasins lyse eukaryotic cells and other host macromolecules and enable the
bacteria to spread among tissues by dissolving host fibrin and intercellular ground
substances. In the following, some of these invasins and protein toxins are shortly
described. Streptolysin is one of the streptococcal exotoxins killing leukocytes and
includes streptolysin S, an oxygen-stable leukocidin and streptolysin O which is
an oxygen-labile leukocidin. NADase also functions as a leukotoxic. S. pyogenes
produces hyaluronidase which degrades hyaluronic acid and is able to digest the
host’s as well as the organism’s own capsule. Streptokinase binds plasminogen
and converts it to plasmin, which further digests fibrin and other proteins. Fibrin
plays a role in blood coagulation. The plasminogen-binding activity of streptoki-
nase may also directly contribute to streptococcal virulence and invasion of tissues
[Cunningham, 2000]. GAS secrete up to four different streptodornases which posses

deoxyribonuclease activity and protect the bacteria from being trapped in neutrophil
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extracellular traps. Three streptococcal pyrogenic exotoxins secreted by GAS are
identified, namely types A, B and C, which act as superantigens on the immune
system. Superantigens are a class of antigens that do not require processing by
antigen-presenting cells and release immense amounts of cytokines. Compared to
conventional antigen-induced T cell response, superantigens activate a much larger
number of T cells [Cunningham, 2000, Todar, 2011].

Immunity

For effective clearance of the group A streptococci by polymorphonuclear leukocytes
or neutrophils opsonizing antibodies against type-specific M proteins are essential
[Lancefield, 1962|. Type-specific antibodies recognise epitopes in the amino-terminal
region of the M protein molecule [Jones & Fischetti, 1988]. Once the host is exposed
to the type-specific epitopes, a primary response occurs and long-term immunity to
the infecting serotype is acquired |[Lancefield, 1959]. Immune responses can also
appear to other parts of the M protein molecule but these antibodies are non-
opsonic and therefore not protective. Opsonic antibodies are probably produced late
in infection while non-opsonic epitopes are produced prior to the opsonic response
[Fischetti, 1977]. Non-type-specific epitopes are shared among GAS and a secondary
response would occur faster to the epitopes to which the host had been previously
exposed. Protective immunity has two major mechanisms. The pathogen can be
hindered from adherence to mucosal surfaces preventing colonisation. Second, after
invasion GAS is phagocytosed and killed due to opsonisation with type-specific
antibody and complement preventing multiplication in the host and elimination of

the bacterium in host tissues or blood [Cunningham, 2000].

Vaccination and prevention

Penicillin is still the drug of choice for GAS infections and is used as prophylaxis
to prevent streptococcal sequelae. GAS are highly sensitive to penicillin. In se-
vere diseases penicillin can be combined with clindamycin. Macrolides such as ery-
thromycin are an alternative antibiotic for the treatment of GAS infections in pa-
tients allergic to penicillin whereby erythromycin-resistance becomes more frequent
[Stille et al., 2005].

No vaccines preventing streptococcal infections and their sequelae are available

so far but are under study. These vaccines contain streptococcal surface components
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like M proteins and Cba peptidase. It was found that immunity to the M protein
is protective against GAS infection and that has initiated the study of M protein
vaccines. The immune response against the M protein results in the production
of antibodies which promote phagocytosis and killing. Due to its role as a major
virulence factor the M protein has the potential as a vaccine against streptococcal

infections [Cunningham, 2000].

1.1.2 Metabolic capabilities

S. pyogenes belongs to the group of lactic acid bacteria (LAB) which are charac-
terised by their capability to ferment glucose to lactic acid. LAB survive in distinct
biotopes, including foods, plants and even the human body. Some of these play
an essential role in the fermented food and beverage industry, while others possess
pathogenic features. There is a great biodiversity amongst lactic acid-producing
bacteria with respect to their genetics and consequent biochemical details, reflected
in differences in flavor production, acidification, pathogenicity and health benefits
[Levering et al., 2011].

Lactic acid bacteria are Gram-positive rods and cocci that rely primarily on fer-
mentation for energy generation (adenosine trisphosphate (ATP) production) and,
thus, can grow well anaerobically. Nevertheless, they can also grow in the presence
of oxygen as aerotolerant anaerobes. Although they are catalase-negative, LAB pos-
sess a superoxide dismutase and have alternative mechanisms to get rid of peroxide
radicals, generally through peroxidase enzymes. LAB ferment hexose sugars via the
Embden-Meyerhof-Parnas pathway either to lactate alone or to lactate and acetate,
ethanol and carbon dioxide [Tittsler et al., 1952].

On the basis of the amount of fermentation end-products lactic acid bacteria can
be classified into two groups, homofermentative and heterofermentative bacteria.
Under conditions of excess glucose and limited oxygen, homolactic LAB ferment
one molecule of glucose to two pyruvate molecules yielding two ATP per glucose
consumed. Redox balance is maintained through oxidating reduced nicotinamide
adenine dinucleotide (NADH) concomitant with the conversion of pyruvate to lac-
tate. Thereby, lactate is the major end-product (> 85%). The remaining products
are carbon dioxide and acetate. Heterofermentative bacteria produce up to 50%
lactate, 20 to 25% acetate and 20 to 25% carbon dioxide and ethanol from glucose.

Fermentation of pentoses yield equimolecular amounts of lactate and acetate in both
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organisms, homofermentative and heterofermentative bacteria [Tittsler et al., 1952].

Two mechanisms for the uptake and phosphorylation of carbon sources occur
in lactic acid-producing bacteria. First, the sugar is transported into the cell via a
permease and phosphorylated by an ATP-dependent glucokinase. Second, the phos-
phoenolpyruvate:carbohydrate phosphotransferase system (PTS) mediates the sugar
uptake and subsequent phosphorylation with phosphoenolpyruvate (PEP) function-
ing as phosphoryl donor [Postma et al., 1993]. Thereby, the main part of the sugar
is taken up via the PTS system |Cvitkovitch et al., 1995].

The requirement of PEP for sugar uptake and, thus, for initiating glycolysis inte-
grates a loop into the system since PEP is produced in the lower part of glycolysis.
The regulation of sugar uptake via the PTS system by a fructose-1,6-bisphosphate
(FBP) activated ATP-dependent protein kinase introduces another loop. These
feedback loops render the model into a complex system with much richer dynamics
and many interdependencies as compared to a linear system. Changes done in the
kinetics of one enzyme propagates through the whole system due to modifications
in the enzyme’s substrate and product concentrations.

In general, lactic acid bacteria have evolved in environments that are rich in
amino acids, vitamins, purines and pyrimidines. As a consequence, they have com-
plex nutritional requirements. Species differ in their ability to ferment individual
carbohydrates and in their preferred carbon source |Gunnewijk et al., 2001]. The
most commonly used sugar for their cultivation is glucose. Growth of LAB requires
supply of vitamins and related growth factors like p-aminobenzoic acid, biotin, ri-
boflavin, thiamine, vitamin Bg and vitamin By, whereby the amount of required
growth factors differ among the organisms |Tittsler et al., 1952].

The amount and combination of amino acids required for growth is characteristic
for each LAB and depends upon the medium composition, i.e. upon the supplied
vitamins. This explains the often contradicting data about essential amino acids
of LAB in literature. Some amino acids are non-essential for growth and can be
synthesised by transamination if vitamin Bg is supplied in high amounts. Biotin
is involved in aspartate synthesis and folic acid in serine synthesis. However, even
if all vitamins are supplied in excess, lactic acid bacteria still require many amino
acids for growth. Among the necessary growth factors are purine and pyrimidine
bases which are precursors for nucleic acid synthesis. Besides its function as a

buffer, acetic acid stimulates growth of most LAB. Furthermore, inorganic salts
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like potassium, manganese, magnesium and phosphate are required by lactic acid
bacteria. The complex nutritional requirements indicate that many biochemical
byways of metabolism present in other organisms are lacking in lactic acid bacteria.
As a consequence, these bacteria represent useful organisms for biochemical research
[Tittsler et al., 1952].

These examples of nutritional requirements and their interrelationships point out
that each lactic acid bacteria requires a specific medium for optimal growth. Within
the SysMO-LAB project, the three different lactic acid bacteria L. lactis, S. pyo-
genes and F. faecalis are examined. To be able to compare experimental results,
especially growth under different cultivation conditions, a specific medium support-
ing the growth of the examined organisms was designed by collaboration partners
(see Section 2.1.3).

As mentioned before, lactic acid bacteria such as S. pyogenes essentially ferment
glucose to lactic acid. However, under certain conditions, e.g. glucose limitation,
the metabolism of these bacteria shifts from homolactic to mixed acid fermentation
resulting in the production of formate, acetate and ethanol [Thomas et al., 1979|.
This is a more efficient way of fermentation since three molecules of ATP are pro-
duced per molecule of glucose. The oxidative part of the pentose phosphate pathway
(PPP) and the citrate cycle are missing in S. pyogenes. Therefore, this bacterium re-
lies on glycolysis and pyruvate metabolism for energy production. As stated above,
S. pyogenes is auxotroph for many amino acids and some vitamins. A detailed

overview of the genome-scale metabolism of S. pyogenes is given in Section 3.5.

1.1.3 Studied kinetics and primary metabolism

As stated above, S. pyogenes produces the energy required for growth by fermen-
tation. Thus, one possibility to reduce its growth is inhibiting its glycolysis and
pyruvate degradation. The identification of such targets is facilitated by using math-
ematical models. The development of a reliable model requires a good knowledge
about the studied pathway and its enzymes, e.g. the kinetic parameters and regu-
lation. The following section gives an overview about the studied parts of glycolysis
in S. pyogenes.

So far, the dynamics of S. pyogenes metabolism have hardly been studied. Some
S. pyogenes-specific allosteric regulations of glycolytic processes have been iden-

tified, but no dynamic model of S. pyogenes glycolysis exists so far. Due to its role
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as wide-spread human pathogen, focus of studies on S. pyogenes has been particu-
larly on the molecular mechanisms behind virulence rather than on metabolism.

One of the best studied part of energy metabolism in S. pyogenes is the con-
trol of sugar uptake. One component of the PTS, the histidine containing protein
(HPr), plays a crucial role in the sugar uptake control. In low-G+C Gram-positive
bacteria, HPr can be phosphorylated on two sites. It can be phosphorylated by
PEP at His-15 yielding HPr-His-P but also by ATP at Ser-46 resulting in HPr-Ser-P
[Ye et al., 1996]. In response to changes in its phosphorylation state HPr carries out
diverse regulatory functions. HPr-His-P is required for sugar uptake while HPr-Ser-
P regulates among others the extent of sugar-phosphate accumulation by inhibiting
uptake or by activating expulsion of the sugar.

Reizer and Panos demonstrated that S. pyogenes has a special mechanism con-
ducting catabolite regulation |[Reizer & Panos, 1980]. When S. pyogenes is grown
on thiomethyl-8-D-galactoside (TMG), a non-metabolisable lactose analogue, the
intracellular TMG-6-P pool is stable. When glucose is added, TMG-6-P is dephos-
phorylated and transported out of the cell. This mechanism, called inducer expul-
sion, is mediated by a sugar-phosphate phosphatase (Pasell) [Reizer & Saier, 1983|.
Under glucose excess conditions, FBP accumulates and inorganic phosphate (P;)
declines. FBP stimulates an ATP-dependent HPr kinase which phosphorylates HPr
on a serine residue. The resulting HPr-Ser-P regulates the inducer expulsion mech-
anism |Ye et al., 1996]. HPr-Ser-P can be dephosphorylated by HPr phosphatase,
which is activated by phosphate. Thus, P; and FBP regulate inducer expulsion
[Deutscher et al., 1985].

Inducer expulsion has been demonstrated in species of Lactococci, Enterococci
and some Streptococci. S. pyogenes and S. bovis exhibit inducer expulsion whereas
S. mutans and S. salivarius do not [Ye et al., 1996]. Furthermore, high-G+C Gram-
positive bacteria do not show HPr kinase activity. Therefore, the expression of
the HPr kinase may be a characteristic feature of low-G+C Gram-positive bacteria
[Ye et al., 1996].

Thompson and Saier [Thompson & Saier, 1981] demonstrated that sugar uptake
via PTS is strongly inhibited in the presence of high concentrations of any metabolis-
able PTS sugars. L. lactis cells grown on TMG accumulate this non-metabolisable
lactose analogue. The simultaneously addition of a PTS sugar such as glucose in-

hibited the uptake of TMG. This process is called inducer exclusion and provides
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a mechanism for creating a hierarchy of preferred sugars. In particular, it prevents
the accumulation of non-metabolisable sugar phosphates.

In contrast to L. lactis and E. faecalis, S. pyogenes possesses a non-phosphoryl-
ating NADP"-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) which
catalyses the irreversible conversion of glyceraldehyde-3-phosphate (GAP) to 3-
phosphoglycerate (3PG) by reducing oxidised nicotinamide adenine dinucleotide
phosphate (NADP") to NADPH. Since the oxidative part of the pentose phos-
phate pathway is missing in S. pyogenes, it functions as an alternative mecha-
nism to produce NADPH on the cost of one molecule ATP per molecule of GAP
[Iddar et al., 2003]. Originally, GAPN was reported to be exclusively present in
green eukaryotes. However, it has been found in various Gram-positive bacteria
with a characteristic low-G+C content, including Bacillaceae and Streptococcaceae
[Iddar et al., 2005].

Another process which has been reported about in the literature is uptake of phos-
phate in S. pyogenes. This transport reaction is inhibited by ATP and activated
by extracellular phosphate (P;**) [Reizer & Saier, 1987|. Except for the mentioned
paper of Reizer and Saier no further indication of an energy-independent phosphate
uptake mechanism could be found in the literature. However, the integration of
this transport process was crucial for simulating our experimental data (see Section
3.2.2). Interestingly, only recently the putative gene sequence of a sodium phos-
phate symporter has been reported for S. pyogenes (for prediction see accession
number B5XHT4 in UniProt [UniProt Consortium, 2010]). Since sodium is present
in excess in our specific medium (see Section 2.1.3), this finding supports our deci-
sion for integrating phosphate transport in the model. Additionally, in the genome
of S. pyogenes genes encoding an active phosphate transport system are present
[Ferretti et al., 2001]. No information about regulation was found.

Interestingly, the pyruvate kinases in S. mutans and L. latcis are regulated
differently although the organisms are closely related [Yamada & Carlsson, 1975b,
Collins & Thomas, 1974|. Based on this fact and missing information about gly-
colytic key enzymes in S. pyogenes we decided to study the kinetics of pyruvate

kinase and lactate dehydrogenase ourselves (see Section 3.1.4).
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1.2 Modelling strategies and existing glycolytic mod-

els

Since S. pyogenes is a human pathogen and no vaccines or specific antibiotics are
available so far, the exploration of drug targets is still one aspect of research. To find
such targets the metabolism of this pathogen is analysed. For this purpose systems
biology provides a variety of tools to explore the metabolism. Systems biology is
an interdisciplinary research field that focuses on complex interactions in biological
systems and involves the development of mathematical models to analyse for ex-
ample the interactions between the components of the system or the sensitivities of
model components towards perturbations.

Depending on the purpose of the model and the available experimental data,
different mathematical models can be used to analyse the system under investiga-
tion. In order to study the system behaviour along time under different conditions a
kinetic model can be used. Metabolic networks are modelled by a set of metabolites
that can be converted into each other through chemical reactions and are mathe-
matically described by ordinary differential equations (ODEs). The velocity of each
reaction is defined by a kinetic rate law. These rate laws have to be filled with
kinetic parameters. Kinetic parameters can be determined experimentally and can
be found in literature and databases such as SABIO-RK [Wittig et al., 2006] and
BRENDA [Schomburg et al., 2002]. Kinetic models can be analysed with metabolic
control analysis (MCA), sensitivity analysis and dynamic analysis methods such as
phase portrait and bifurcation analysis.

Stoichiometric models describe the flux distribution within a network without
knowing the rate constants for a particular reaction. As a consequence, these type
of models are especially interesting for describing large scale models such as genome-
scale models. In order to analyse such models flux balance analysis (FBA) is applied.
To be able to apply FBA, the studied system has to be homeostatic meaning that
the internal concentrations of metabolites within the system remain constant over
time. To reduce the solution space of the FBA model constraints are added to
the individual metabolic flux rates within the network and an objective function is
defined according to the purpose of the model.

Since the dynamics of S. pyogenes metabolism have hardly been studied no kinetic

model of S. pyogenes glycolysis exists so far. The metabolic network of S. pyogenes
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has not been reconstructed as well. Therefore, both models were developed within
the context of the SysMO-LAB project (see Section 1.3). Another LAB investi-
gated within the project is E. faecalis. Although some kinetic studies about this
bacterium exist especially about the pyruvate metabolism |[Harold & Levin, 1974,
Lindmark et al., 1969, Snoep et al., 1990, Wittenberger & Angelo, 1970], no kinetic
model has been constructed so far. A genome-scale model is also lacking for this
microorganism and is also reconstructed within the framework of the SysMO-LAB
project by Nadine Veith (see Section 1.3). In contrast to that, several kinetic models
have been developed of L. lactis glycolysis, each concentrating on a different aspect.
The existing models study either metabolic flux distributions [Hoefnagel et al., 2002a,
Hoefnagel et al., 2002b], metabolic regulation [Voit et al., 2006a, Oh et al., 2011] or
pH control [Andersen et al., 2009]. The kinetic model published by Hoefnagel et
al. [Hoefnagel et al., 2002a, Hoefnagel et al., 2002b| comprises glycolysis, pyruvate
metabolism and an overall reaction for polysaccharides for cell synthesis. All in
all the model gives a qualitative correct behaviour of glycolysis but fails to do so
quantitatively [Hoefnagel et al., 2002a]. The model studying regulation of glucose
consumption in L. lactis developed by Voit et al. [Voit et al., 2006a| comprise sim-
ple power-law kinetics. To simplify the model ATP and P; are modelled as constant
functions. The Andersen model [Andersen et al., 2009] is based on the existing
Hoefnagel model |[Hoefnagel et al., 2002a] and extends this model to simulate the
effect of lowering extracellular pH. The published models omitted phosphate trans-
port [Andersen et al., 2009, Hoefnagel et al., 2002b, Oh et al., 2011] or considered
phosphate as constant [Neves et al., 1999, Voit et al., 2006a).
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1.3 Project and cooperation partners

This dissertation is done in the context of the SysMO (Systems Biology of Microor-
ganisms) project “Comparative systems biology: Lactic acid bacteria” which focuses

on three relatively simple and highly related lactic acid bacteria, namely

1. Lactococcus lactis, the major microorganism used in the dairy industry,
2. Streptococcus pyogenes, a human pathogen, and

3. Enterococcus faecalis, a major contaminant in food and water as well as a

contributor to food fermentation.

Lactococci are not known to be pathogenic or to cause food poisoning in man.
A few species of streptococci, especially S. pyogenes, are known to be human
pathogens. Due to modern sanitary food handling methods food-borne epidemics
caused by streptococci have become unusual. Enterococci, one group of strepto-
cocci, is intestinal in origin but is also used as a contributor to food fermentation
[Tittsler et al., 1952].

Although these microorganisms have a similar primary metabolism, they persist
in different environments (milk, skin/mucous membrane/blood and faeces). Fur-
thermore, they exhibit significant differences in their functional relationship with
human beings. Within this consortium, detailed mathematical models of the pri-
mary metabolism of the three lactic acid bacteria are developed facilitating a thor-
ough understanding of the differences and similarities between the three lactic acid
bacteria and the extent to which these differences contribute to different functional-
ities. These models help in the design of strategies that allow metabolic engineering
but also control of growth. Modelling is done in close collaboration with experimen-
tal and theoretical groups within this consortium.

Within this project my part is the construction and analysis of a dynamic as
well as a genome-scale model of S. pyogenes. These models are used to under-
stand on the one hand the similarities and differences between S. pyogenes and
related lactic acid bacteria and, on the other hand, the growth requirements of this
human pathogen with the purpose of reducing its growth and identifying possible
drug targets. The strategy for the construction of the kinetic model of the central

metabolism of S. pyogenes consists in exploiting delivered data from partners (see
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Section 3.1.3 and 3.1.4) and the adoption of unknown parameters and allosteric reg-
ulation from related organisms, especially from L. lactis which is used as a reference
organism since it is by far the best studied lactic acid bacterium. Furthermore, sev-
eral genomes have been sequenced and diverse kinetic models have been developed
for its glycolysis including the pyruvate metabolism (see Section 1.2). By using a
comparative approach the development of the glycolytic model of S. pyogenes can be
accelerated starting with already existing models and modify or extend these. The
development of the genome-scale model of S. pyogenes is facilitated by applying a
semi-automatic approach and taking full advantage of already annotated reference
models from Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and L. lac-
tis (see Section 2.3.1). The constructed model is validated with experimental data
delivered by project partners (see Section 3.1.2 and 3.1.7).

The project focuses on the central carbon metabolism, change of carbon source
and the knock-out of the L-lactate dehydrogenase gene (Ildh). Cells are grown in a
glucose-limited chemostat at two pHs and two dilution rates as well as under batch
conditions with a defined glucose-pulse. A specifically medium used for the SysMO-
LAB project, the CDM-LAB medium [Fiedler et al., 2011, Jonsson et al., 2009|, was
designed to support the growth of all three lactic acid bacteria and to allow the
comparison of experimental results and the models of all three studied LAB (see
Section 2.1.3).

Table 1.1 gives and overview of the participating institutions and their roles
within the SysMO-LAB project. The schedular project description is divided into
the organisms and further into experimental and modelling part. Modelling was done
in close collaboration with the experimental groups. The experiments were designed
based on modelling results, e.g. the glucose-pulse experiments were performed with
varying extracellular phosphate concentration since free phosphate had a crucial role
in the model. The construction of the kinetic as well as the genome-scale model of
E. faecalis was done by Nadine Veith in the context of an internship and a bachelor
thesis and was supervised by Ursula Kummer and myself. The kinetic model of L.
lactis was developed by Mark Musters based on previously published models and

was improved and analysed by myself (see Section 3.4.1).



Table 1.1: Overview of all participating institutions and their roles within the SysMO-LAB project

Organism Type Part Person involved Affiliation
All Experiments | Design of CDM-LAB Martijn Bekker, Tomas Fiedler, Maria Jonsson 1,2,3
S. pyogenes | Modelling Conception of this dissertation Ursula Kummer, Jennifer Levering
Construction of kinetic and genome-scale model | Jennifer Levering 4
Experiments | Experimental design Tomas Fiedler, Bernd Kreikemeyer, Araz Zeyniyev 1
Ursula Kummer, Jennifer Levering 4
Construction of [dh-negative mutant Tomas Fiedler 1
Fermentation experiments Martijn Bekker, Tomas Fiedler 1,2
Glucose-pulse experiments Martijn Bekker 2
Measuring kinetics in vitro Tomas Fiedler 1
Amino acid leave-out experiments Araz Zeyniyev 1
L. lactis Modelling Construction of kinetic model Mark Musters, Jennifer Levering 5,4
Experiments | Experimental design Martijn Bekker, Jeroen Hugenholtz, 2
Bas Teusink, Mark Musters, 6,5
Ursula Kummer, Jennifer Levering 4
Fermentation and glucose-pulse experiments Martijn Bekker 3
E. faecalis Modelling Construction of kinetic and genome-scale model | Nadine Veith 4
Experiments | Experimental design Maria Jonsson, Ibrahim Mehmeti, Ingolf Nes, 3
Ursula Kummer, Jennifer Levering, Nadine Veith 4
Fermentation experiments Maria Jonsson, Ibrahim Mehmeti 3
Glucose-pulse experiments Martijn Bekker 2

Affiliations:
1. Institute of Medical Microbiology, Virology and Hygiene, Rostock, Germany
2. Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands

. Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, As, Norway

V]

. Department of Modelling of Biological Processes, BioQuant / COS Heidelberg, University of Heidelberg, Germany

ot

. Laboratory of Microbiology, Wageningen University, The Netherlands

6. Systems Bioinformatics IBIVU / Netherlands Consortium for Systems Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, The Netherlands
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1.4 Goals of the thesis

The purpose of this thesis is the development of a kinetic and a genome-scale model
of S. pyogenes and the understanding of the differences and similarities between
S. pyogenes and L. lactis and the extent to which these differences contribute to
different functionalities. Since the E. faecalis model is still under investigation, the
central conclusions are not based on this model. However, it is used for comparison

when appropriate. In the following the goals of this thesis are specified.

1. Construct a kinetic model of S. pyogenes using ODEs based on an extensive
literature survey and delivered experimental data.
e Simulate our glucose-pulse data.
e Simulate our fermentation data at two pHs and two dilution rates.

e Understand the differences and similarities between S. pyogenes and L.

lactis based on the developed kinetic models.
e Understand the adaption to different environments based on the models

of S. pyogenes and L. lactis.

2. Reconstruct the metabolic network of S. pyogenes based on a semi-automatic
approach which takes advantage of already existing and manually curated
models.

e Simulate our fermentation data.

e Understand the growth requirements of S. pyogenes and define optimal

and suboptimal conditions.
e Explore the organism’s reaction to perturbations in its environment.

e Find strategies to reduce the growth of the pathogen S. pyogenes and
propose drug targets.

e Describe differences and similarities between S. pyogenes and L. lactis.
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2.1 Experimental data

In this section the experimental methods used within the SysMO-LAB project are
described. Since my role in the project consists in modelling S. pyogenes and I
did no experiments myself, in each paragraph the experimentalist is named. For
an overview of all participating institutions and their roles within the project see
Section 1.3.

2.1.1 Bacterial strains

Within this project two different strains of S. pyogenes, namely S. pyogenes M49 591
and S. pyogenes M49 591 Aldh were investigated. Furthermore, L. lactis NZ9000
and the [dh-deficient strain NZ9010 [Hoefnagel et al., 2002a, Linares et al., 2010] as
well as F. faecalis V583 and V583 Aldh-1 [Jonsson et al., 2009| were analysed.

2.1.2 Construction of recombinant vectors and mutant strains

For the construction of a S. pyogenes M49 [dh-knock-out strain, a 2,977 bp frag-
ment comprising the Idh and 1,000 bp of the upstream and 993 bp of the downstream
flanking sequences was PCR-amplified from chromosomal DNA of S. pyogenes. The
resulting PCR fragment was digested with Sacl and Sphl and ligated into the
equally treated pUC18Erm1 vector [Baev et al., 1999]. The resulting plasmid was
used as a template for an outward-PCR. Thus, the resulting PCR product comprised
the whole plasmid including the upstream and downstream flanking regions of the
ldh gene but excluding the Idh gene itself. After restriction of this fragment with
BamHI and Sall it was ligated with an equally treated PCR fragment compris-
ing the spectinomycin-resistance gene aad9 from plasmid pSF152 [Tao et al., 1992|.
The resulting recombinant plasmid pUCerm-ldh-ko was transformed into S. pyogenes
and double crossover events were assayed by selection for erythromycin sensitive but
spectinomycin resistant transformants. The correct replacement of the Idh gene by
the aad9 gene in the respective transformants was confirmed by appropriate PCR as-
says and L-lactate dehydrogenase (LDH) activity assays. For all PCR amplifications
the Phusion High Fidelity PCR Kit (Finzymes) was used [Fiedler et al., 2011]. The
construction of recombinant vectors and the [dh-deletion strain for S. pyogenes were

done by Tomas Fiedler.
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2.1.3 CDM-LAB medium

All three bacteria persist in different environments and thus differ in their op-
tima cultivation conditions, e.g. the pH. To be able to compare the experimen-
tal results and thus the models, Martijn Bekker, Tomas Fiedler and Maria Jons-
son designed a medium used for the SysMO-LAB project, the CDM-LAB medium
[Fiedler et al., 2011, Jonsson et al., 2009], supporting the growth of all three lactic
acid bacteria. The medium contained per litre: 1 g KoHPO,, 5 g KHyPOy, 0.6 g
ammonium citrate, 1 g acetate, 0.25 g tyrosine, 0.24 g alanine, 0.125 g arginine,
0.42 g aspartic acid, 0.13 g cysteine, 0.5 g glutamic acid, 0.15 g histidine, 0.21 g
isoleucine, 0.475 g leucine, 0.44 g lysine, 0.275 g phenylalanine, 0.675 g proline, 0.34
g serine, 0.225 g threonine, 0.05 g tryptophan, 0.325 g valine, 0.175 g glycine, 0.125
g methionine, 0.1 g asparagine, 0.2 g glutamine, 10 g glucose, 0.5 g L-ascorbic acid,
35 mg adenine sulfate, 27 mg guanine, 22 mg uracil, 50 mg cystine, 50 mg xanthine,
2.5 mg D-biotin, 1 mg vitamin Bjs, 1 mg riboflavin, 5 mg pyridoxamine-HCI, 10 ug
p-aminobenzoeic acid, 1 mg pantothenate, 5 mg inosine, 1 mg nicotinic acid, 5 mg
orotic acid, 2 mg pyridoxine, 1 mg thiamine, 2.5 mg lipoic acid, 5 mg thymidine,
200 mg MgCly, 50 mg CaCls, 16 mg MnCl,y, 3 mg FeCls, 5 mg FeCly, 5 mg ZnSOy,
2.5 mg CoSOy, 2.5 mg CuSOy, 2.5 mg (NHy)sMo7094. Media was buffered with
either 100 mM MES buffer or 100 mM MOPS buffer for growth at pH 6.5 and 7.5,

respectively.

2.1.4 Fermentation experiments

S. pyogenes M49 wild-type strain and its [dh-negative mutant were grown in anaer-
obic glucose-limited chemostat cultures in CDM-LAB medium [Fiedler et al., 2011,
Jonsson et al., 2009] in a Biostat Bplus fermentor unit with a total volume of 750
and 1000 ml at a stirring rate of 100 and 400 rpm by Tomas Fiedler and Martijn
Bekker, respectively. The temperature was kept at 37°C. The pH was maintained at
6.5 and 7.5, respectively, by titrating with sterile 2 M NaOH. The supply of medium
occurs with different dilution rates (D) of 0.05 h'' and 0.15 h™!, respectively, con-
trolling growth rates. Culture volume was kept constant by removing culture liquid
at the same rate that fresh medium was added. Thus, the number of organisms
per volume is constant. The cultures were considered to be in steady state when

no detectable glucose remained in the culture supernatant and the optical densities
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(ODs), dry weights (DWs) and product concentrations of the cultures were constant
on two consecutive days. All chemostat results showed a carbon balance of 80% =
10% on the basis of glucose consumption and organic acid formation. Steady state
bacterial DW was measured as described previously [Alexeeva et al., 2000]. Glucose,
pyruvate, lactate, formate, acetate, succinate and ethanol were determined by high-
pressure liquid chromatography (HPLC, LKB) with a Rezex organic acid analysis
column (Phenomenex) at a temperature of 45°C with 7.2 mM H,SOy as the eluent,
using a RI 1530 refractive index detector (Jasco) and AZUR chromatography soft-
ware for data integration. Discrimination between D- and L-lactate was performed
using a D-/L-lactate assay kit (Megazyme). Aspartic acid, serine, glutamic acid,
glycine, histidine, arginine, threonine, alanine, proline, cysteine, tyrosine, valine,
methionine, lysine, isoleucine, leucine and phenyalanine were determined by HPLC
(Agilent) by use of the Waters AccQ Tag method. Fluorescence was analysed using
a Hitachi F-1080 fluorescence detector set to 250 nm excitation and emission was
recorded at 395 nm [Fiedler et al., 2011].

2.1.5 Glucose-pulse experiments

To measure intra- and extracellular metabolite profiles under batch conditions, e.g.
glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) , FBP, GAP, PEP, pyru-
vate, ATP, extracellular lactate and extracellular glucose (Glc®™), S. pyogenes cells
were grown in THY medium. This medium consists of 36.4 g/1 Todd-Hewitt Broth
(Oxoid) and 5 g/1 yeast extract (Oxoid). Mid-exponentially grown cells were har-
vested by centrifugation at 5000 rpm for 10 minutes at room temperature, washed
twice with 50 mM MES buffer (pH 6.5) and finally suspended in the indicated
buffer solution. Anaerobic conditions were established by flushing with nitrogen for
10 minutes. Glucose was added and 400 ul samples were taken at regular time in-
tervals. These samples were mixed immediately with 200 ul of a cold perchloric acid
(3.5 M) solution. The extracts were kept on ice for maximal 60 minutes. The pH was
neutralised with 160 ul 2 M KOH. The pH-adjusted samples were centrifuged and
the supernatants were stored at -80°C for subsequent analysis. All metabolites were
quantified by enzymatic methods coupled to the spectrophotometric determination
of NAD(P)H (M. Bekker, personal communication). Glucose-pulse experiments were

performed by Martijn Bekker.
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2.1.6 Kinetic measurements of individual enzymes
Kinetic analysis of L-lactate dehydrogenase

Kinetic measurements of L-lactate dehydrogenase of S. pyogenes were done by
Tomas Fiedler. For heterologous expression of the LDH of S. pyogenes chromo-
somal DNA of the M49 serotype strain was isolated according to the Qiagen Blood
and Tissue Kit (Qiagen, Hilden, Germany) and used as a template for PCR am-
plification with the Phusion™ High Fidelity PCR Kit (Finzymes).The resulting
PCR fragment was ligated into the pASK-IBA2 vector (IBA GmbH, Gottingen,
Germany) system via BamHI and Sall restriction sites. The recombinant vector
was heat-shock transformed in CaCl, competent E. coli DH5« cells. Correct inser-
tion of the PCR product was confirmed by plasmid sequencing. For heterologous
expression of the corresponding enzyme recombinant F. coli strains were grown
in 200 ml Luria-Bertani medium at 37°C under vigorous shaking. At an OD of
about 0.4 expression was induced by addition of anhydrotetracycline (0.2 ug/ml)
and growth of the bacteria was allowed for another two to four hours. Cells were
harvested by centrifugation and bacterial pellets were stored overnight at -20°C, sub-
sequently thawed, suspended in 1 ml of buffer W (100 mM Tris-HCI pH 8.0, 1 mM
EDTA, 150 mM NaCl) and disrupted using a Ribolyzer. Cell debris was removed
by centrifugation for 10 min at 13,000 g and 4°C. Clear supernatants were diluted
1:10 with buffer W and applied to StrepTactin sepharose (IBA GmbH, Gottingen,
Germany) columns. After washing the sepharose 3 times with 10 ml of buffer W
recombinant Strep-tagged protein was eluted with 6 x 0.5 ml of buffer E (buffer
W including 2.5 mM desthiobiotin). Elution fractions were checked for recombinant
protein by SDS-PAGE and Western Blots using Strep-Tag specific antibodies.

For LDH activity measurements protein concentrations in the purified recombi-
nant protein fractions were determined using the Bradford method (Bio-Rad Protein
Assay Kit, Bio-Rad, Munich, Germany). The standard assay for determination of
LDH activity was carried out by adding 50 ul protein solution, 25 ul FBP (20 mM)
and 25 ul NADH (6.75 mM) to 800 pl sodium-phosphate buffer (50 mM, pH 6.8).
The mixture was heated to 37°C and the reaction was started by adding 100 ul
pre-warmed (37°C) sodium pyruvate (100 mM) to the reaction mixture. The LDH-
activity was assayed by measuring the decrease of NADH in the mixture at 340 nm

in a spectrophotometer for 5 min. The conversion of 1 pumol of NADH (exapy =
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6220 I mol™ em™) to oxidised nicotinamide adenine dinucleotide (NAD™) per minute
was defined as one unit of LDH activity. The activity was expressed as enzyme unit
(U) per mg of protein. For determination of Michaelis binding constants (K,,) and
allosteric regulation the standard assay was modified by using varying concentra-
tions of P;, sodium pyruvate, FBP, NADH, ATP and NAD". For determination of
the K, -values for the reverse reaction, NADH and sodium pyruvate were replaced
by varying concentrations of NAD™ and L-lactate (T. Fiedler, personal communica-

tion).

Kinetic analysis of pyruvate kinase

Kinetic measurements of S. pyogenes pyruvate kinase (PYK) were done with pro-
tein crude extracts by Tomas Fiedler. For that purpose cells from 50 ml of an ex-
ponentially growing S. pyogenes culture in CDM-LAB medium [Fiedler et al., 2011,
Jonsson et al., 2009] were harvested by centrifugation. Bacteria were washed twice
in 1x PBS buffer, suspended in 1x PBS to an OD (600 nm) of 10 and lysed with 100
U of Phagelysin C per ml for 15 min at 37°C [Kéller et al., 2008, Nelson et al., 2006].
Subsequently, cell debris was removed by centrifugation (10 min, 15,000 g) and the
supernatant was filter-sterilised (0.22 pum). For the standard PYK assay 20 ul of
protein crude extract were mixed with 880 ul pre-warmed (37°C) reaction buffer
(120 mM cacodylic acid, 120 mM KCI, 12 mM ADP, 1.2 mM FBP, 30 mM MgCl,,
0.18 mM NADH, 5 U/ml L-LDH). The reaction was started by addition of 100 ul
pre-warmed (37°C) PEP (20 mM). The PYK activity was assayed by measuring the
decrease of NADH in the mixture at 340 nm in a spectrophotometer for 5 min. The
conversion of 1 gymol of NADH (exapn = 6220 1 mol! cm™) to NAD™ per minute was
defined as one unit of PYK activity. The activity was expressed as U per mg of pro-
tein. For determination of K, -values the concentrations of the respective substrates

were modified in the standard assay (T. Fiedler, personal communication).

2.1.7 Substrate utilisation assays

For substrate utilisation assays, bacteria were grown overnight in CDM-LAB medium
[Fiedler et al., 2011, Jonsson et al., 2009], pelleted by centrifugation, washed twice
in phosphate-buffered saline (pH 7.4) and suspended in glucose-free CDM-LAB

medium. Optical densities were adjusted to 0.05 and 100 ul bacterial suspension
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was applied to each well of Biolog phenotype microarray plates PM1 and PM2. The
microarray plates were incubated for 24 h at 37°C in a 5% CO, atmosphere and
the optical densities of each well were measured. The optical densities in well A1l
of the arrays containing no carbon source were subtracted from all values. Optical
densities in the wells containing a-D-glucose were set equal to 100% and all other
values were related accordingly [Fiedler et al., 2011]. Substrate utilisation assays

were done by Tomas Fiedler.

2.1.8 Calculation of specific ATP synthesis rates

The calculation of specific ATP synthesis rates was done by Tomas Fiedler, Martijn
Bekker, Maria Jonsson and co-workers |Fiedler et al., 2011|. The rate of ATP syn-
thesised by substrate-level phosphorylation is stoichiometrically coupled to the rate
of lactate, acetate and ethanol synthesis. From one molecule of glucose two ATP
can be synthesised by producing lactate whereas the mixed-acid fermentation yields
three ATP molecules

1 glucose +2 ADP +2 P; — 2 lactate +2 ATP,
1 glucose +3 ADP +3 P; — 1 acetate + 1 ethanol + 3 ATP.

The rate of energy required for maintenance (¢arp maintenance) Was estimated by ex-
trapolating the linear line of dilution rate plotted against the total rate of ATP
synthesis to D = 0. The ATP production rate at the maximal specific growth rate
fmax (GATP ymax) Was estimated by extrapolating the same line to the D at which
the specific organism has its maximal specific growth rate [Fiedler et al., 2011].
The cell mass in g produced per mol of ATP generated by substrate catabolism
(Yatp) was determined at a dilution rate of 0.15 h! since Y.aip at lower dilution rates

is Strongly influenced by JATP maintenance [TempeSt & Neijssel, 1984]

2.1.9 Amino acid leave-out experiments

For amino acid leave-out experiments S. pyogenes was grown overnight in CDM-
LAB medium [Fiedler et al., 2011, Jonsson et al., 2009], pelleted by centrifugation,
washed and suspended in full CDM-LAB medium or CDM-LAB medium with amino
acid leave-outs. Bacterial suspension was applied to 96-well plates and incubated

at 37°C in atmospheric air and the optical density of each well was measured at
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600 nm in a Spectramax Plate reader (T. Fiedler, personal communication). Amino

acid leave-out experiments were done in Tomas Fiedler’s lab and by Araz Zeyniyev.

2.2 Dynamic modelling

Biochemical networks comprise the chemical reactions converting the metabolites
into each other. Such networks are mathematically represented by a set of ODEs
which describe the concentration changes along time. Therefore, expressions describ-
ing the velocity at which the reactions proceed are needed. Each reaction velocity
is described by a rate law and depends on the concentration of substrates, prod-
ucts and modifiers of this reaction. The resulting set of ODEs is used to analyse
the model and simulate the metabolite concentrations along time. In the following
sections the set-up of the glycolytic model and methods used for simulation and

analysis are described.

2.2.1 COPASI

Modelling, simulation and analysis of the glycolytic model of S. pyogenes was done
in COPASI (COmplex PAthway SImulator) [Hoops et al., 2006]. COPASI is free
for academic user and is available at http://www.copasi.org.

As a first step the general model settings like the units for time, volume and
concentration quantities were specified. In the model of S. pyogenes the time is
defined as seconds, the volume as litre and concentrations are given in mmol. Since
the model comprises intra- and extracellular species, a new compartment was added.
Thus, the glycolytic model of S. pyogenes contains an intra- and extracellular com-
partment, both with fixed volumes and given by the experimental data. For the
continuous cultured cells as well as for the glucose-pulse experiments the ratio of the
intra- to extracellular compartment was adjusted for each experimental condition as
determined experimentally. Therefore, dry weights were calculated from measured
ODs (in arbitrary units (AU)) by multiplication with the L. lactis specific correla-
tion factor of 0.33 g DW per litre per AU [Pedersen et al., 2002]. From E. coli it is
known that the intracellular volume is 2.5 ml per g DW [Winkler & Wilson, 1966].

Thus, the ratio of intra- to extracellular volume, denoted by vol, can be derived
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from the OD by the following equation

DW
v01:OD-O.33gT-2.5-10 W
After defining certain parameters for the model the metabolites or species taking
part in the glycolysis and pyruvate branching were initialised. For each metabolite
its name, the compartment it is localised in, the simulation type and the initial
concentration were specified. For all species the concentration is determined by the
kinetic laws of the reactions that modify the species. The initial concentrations are
listed in Table A.6 and the compartment volumes are given in Section 3.2.1.

With this information the reactions are defined. A reaction is identified by its
name, an equation, whether the reaction is reversible or not, a rate law and corre-
sponding parameters for this law. The equation describes the chemical formula and
maybe additional modifiers like inhibitors and activators of the reaction. The rate
law for each reaction can be either chosen from a list of predefined kinetics or be
added by the user. Since the detailed enzymatic mechanism for most S. pyogenes
enzymes is unknown, convenience kinetics were used (see section 2.2.3). The rate
laws used in the glycolytic model of S. pyogenes can be found in Appendix A.2.1
and the corresponding parameters are listed in Appendix A.1 in the Tables A.1 —
A.6.

2.2.2 Ordinary differential equations

Within the network, each metabolite is represented by an ODE. Each ODE is com-
posed by a sum of terms that represent the velocities of all reactions affecting the

metabolite concentration. For a species X the time-dependent concentration change

a| X
%:Zsi-vi,

1

is defined as

where s; is the stoichiometric coefficient and v; is the velocity of reaction i. The
stoichiometric coefficient is the number of molecules of X that participate in reaction
1. If X is consumed s; is negative, positive if X is produced and zero if X is neither

produced nor consumed in reaction .
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2.2.3 Kinetics

Most of the kinetic rate equations v (see Appendix A.2.1) were implemented as con-
venience kinetics [Liebermeister & Klipp, 2006a] due to unknown parameters and
detailed underlying enzyme mechanisms.

Convenience kinetics are a general and simple rate law derived from Michaelis-
Menten kinetics and hold enzyme saturation for high substrate concentrations. Fur-
thermore, they cover all possible stoichiometries with a small number of parameters
and enzyme regulation can be easily modelled by multiplication with a prefixed
factor. Convenience kinetics can be derived from a rapid-equilibrium random-order
enzyme mechanism. The substrates bind in arbitrary order and are converted to
products which dissociate likewise in arbitrary order [Liebermeister & Klipp, 2006a).

For a reversible reaction S} + Sy +... < P, + P>+ ... with concentration vectors

s=([S1],[S9],...)T and p = ([P], [P],...)T, convenience kinetics are defined as

Si Vmax Di

Vmax' - 1, -
U~ %, U
v
1 Si 1 Di 1
I\ ) P ) -

with V.« measured in %, the metabolite concentrations s; and p; in mM and K,
in mM. The equilibrium constant K¢, is dimensionless. The maximal reaction rate
Vmax can be calculated from the product of enzyme concentration and the rate at
which bounded substrate is converted into product per time. The K,, value can be
determined from the substrate concentration at which the reaction rate reaches half
of its maximal velocity. The equilibrium constant is characteristic for each reaction
and indicates the side of the chemical reaction on which the equilibrium is located.

For general stoichiometries oy S1 + g S + ... <> 81 P1 + B2 P, + . .. the stoichio-

metric coefficients a; and 3; appear as exponents in the nominator and the formula

reads
Si Vmax D
Vmax . - - " B
i~ %, Uwn
U =
(e 73 ,81
. S; Si 1 Di Di 1
) ) )
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Regulation terms are incorporated in the kinetic law as prefixed factors. For an
activator A with binding constant K, both measured in mM, the factor is

4]

hy = —23
AT Ka+[A]

for an inhibitor / with binding constant Kj, both measured in mM, the regulation
term looks like
o K
Ky + [{]

To fill the rate laws with kinetic parameters an extensive literature search in the
SABIO-RK [Wittig et al., 2006] and BRENDA [Schomburg et al., 2002| databases
was performed. Enzyme specific activities were converted into V., values depend-
ing on their unit. Specific activities are often measured in U/mg of protein. Since
we have no information about the concentration of any glycolytic enzyme in strep-
tococcal cells velocity values having this unit cannot be converted into V., values.
Specific activities with the unit U/mg protein can be converted into V., values
by assuming that 42 % of cellular dry weight consists of protein [Even et al., 2002]
and by multiplication with the average measured dry weight of 13.67 g DW per 1
of reactor volume corrected by the assumed intracellular volume of 30 ml per litre
of reactor volume. The average measured dry weight is the mean value of the mea-

sured dry weights for 0, 10 and 50 mM P;**. The transformation of speciisc activities

measured in U/mg protein into V. values reads

U 1073 mmol
mg protein 60s - mg protein

1073 mmol 13.67 - 10° mg DW
60s - -5 mg DW 301031

0.42

0.42 - 13.67 - 10 mmol
30-601-s

M
— 3.1897 2%
S

Specific activity values in U/mg dried cells can also be converted into V., values by
multiplication with the protein content in L. lactis and with the average measured

dry weight transformed in g per | intracellular volume as follows

U 1073 mmol

mg DW  60s-mg DW
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1073 mmol  13.67 - 103 mg DW

60s-mg DW  30-10-31
13.67 mmol

60-30-10731-s

_ rsoua M
S

2.2.4 Simulation

Simulations of the biochemical network are achieved by numerical integration of the
system of ODEs which were performed with the LSODA algorithm as implemented in
COPASI [Hoops et al., 2006]. LSODA is a very robust adaptive step-size solver that
uses the non-stiff method initially and automatically switches to a stiff multistep
method if necessary [Hoops et al., 2006].

It is challenging to find a definition of stiffness since it is rather a phenomenon
showing itself in different behaviours. For some differential equations, application
of standard methods exhibit instability in the solutions, though other methods may
produce stable solutions. Stiffness is often caused by the presence of different time-
scales in the problem. Stiff problems are common among other in chemical kinetics.

For non-stiff problems Adam methods are used to solve the ODEs. For stiff
problems the backward differentiation formula is used as solver. Both methods are
implicit, linear multistep methods that, for a given function and time, approximate
the derivative of the function using information from already computed times and

solving a non-linear equation at each time step [Hoops et al., 2006].

2.2.5 Parameter estimation

Since not all kinetic parameters were determined for the glycolytic enzymes of S.
pyogenes and in vitro measurements can deviate considerably from in vivo condi-
tions |Teusink et al., 2000|, we fitted the parameters to match the time-series data
for various levels of extracellular P;. We therefore consider the parameters as initial
estimates for the parameter estimation. To fit the glycolytic model of S. pyogenes,
parameters found in literature were allowed to vary between 10% and 1,000%. Un-
known parameters were modified over a larger range, e.g. binding constants were
varied from 0.01 to 100 mM and V., values from 0.1 to 1,000 mM per s while

Vmax values of transport reactions were varied in a larger range, e.g. from 0.001 to
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1,000 mM per s. Subsequently, our fermentation experiments were used as input
for a particle swarm algorithm with an increased swarm size of 100 carried out with
the COPASI software [Hoops et al., 2006].

The particle swarm optimisation method written by James Kennedy and Rus-
sel Eberhart [Kennedy & Eberhart, 1995] is a stochastic optimisation technique for
non-linear functions. This method is inspired by a flock of birds or a school of fish
searching for food. The goal of the algorithm is to find a solution with minimal
objective function and thus a global minimum in the parameter space. The problem
is optimised by having a swarm of candidate solutions, so called particles. Each
particle has a position in the parameter space and a velocity. Additionally, it re-
members its best achieved objective value and position as well as the position of its
best neighbour. With this information in each step of the algorithm for one particle
a new velocity is calculated and the position is updated. With this new parameter

set P the so called objective value E(P) is calculated as the weighted sum of squares
E(P) =) w;- (zi;—yi;(P)),
2%

where the indices 7 and j denote rows and columns in the dataset, w; gives the weight
for each data column, z;; is a point in the dataset and y; ;(P) the corresponding
simulated value. Thus, the objective value gives the sum of the weighted quadratic
distance between simulated and experimentally determined value. If the calculated
weights are not satisfactory they can be adapted manually. If the corresponding
objective function value of the particle improves, the particle’s best known position is
updated. If the particle’s objective function is better than that of its best neighbour
this position is updated as well [Hoops et al., 2006].

2.2.6 Local sensitivity analysis

Sensitivity analysis is often applied to quantify the importance of each parameter
of the investigated model on the system’s behaviour. This is done by numerical
differentiation using finite differences. This approach can be used to identify pa-
rameters or parts of a model either having a small impact on the system or that are
most sensitive. The sensitivity S}?i of the output Y to an input factor X; is defined

as

)
Xo

oY
S, = ‘OX-




32 Chapter 2. Materials and Methods

where the subscript X indicates that this is a local method and the derivative is
taken at some fixed point in the input space.

Comparisons of sensitivities are difficult by issues of scale. Therefore, COPASI
also calculates scaled sensitivities ||SY, || describing the proportional effects by ap-

plying the log function

IS%,

dlogY
dlog X;
& Sy

= 3 %

A sensitivity higher than one means that a small change in the output factor Y

Xo

results in a big change of the input factor X;.

2.2.7 Global sensitivity analysis

To check the impact of each parameter on the metabolic intermediates and prod-
ucts and to be independent of the exact parameter space, we performed a global
sensitivity analysis. This approach carries out sensitivity analysis over a wide range
of values for all parameters and is therefore computationally expensive especially if

the system is high dimensional.

Random sampling

We performed a global sensitivity analysis by applying random sampling of the pa-
rameter space for varying extracellular P; concentrations (0, 10 and 50 mM) using
the software package COPASI [Hoops et al., 2006]. To get reliable results for the
sensitivities, a parameter scan with 10° iterations was done. The parameter values
taken from literature were varied in the same range as described for parameter esti-
mation (see Section 2.2.5). For each scanned point in the parameter space the scaled
sensitivity (see Section 2.2.6) was calculated under glucose consumption (t = 100
s). Scanning the parameter space for this large set of parameters is computationally
extremely expensive. Further processing and analyses of the data were performed
in MATLAB 7.8 (The Mathworks, Inc.).

Fitting and local sensitivity analysis

To use tighter boundary conditions on the parameter scan, we performed several

hundred fits and subjected the best 50 of them to the local sensitivity analysis. We
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calculated scaled sensitivities (see Section 2.2.6) of all parameters on the metabo-
lite concentrations and the concentration fluxes for 0, 10 and 50 mM extracellular

phosphate under glucose consumption (t = 100 s).

2.2.8 Steady state analysis

A system is in steady state when every metabolite M does not change over time
meaning that the partial derivative with respect to time is zero

oM

o,
This condition holds when the rates of synthesis are in balance with the rates of
degradation for every metabolite. If the steady state has zero fluxes the system is in
a chemical equilibrium, otherwise the fluxes are finite. Steady states can be found
using the Newton-Raphson method which finds the roots of the right-hand side of
the ODE. Alternatively steady states can also be calculated by integration of the
ODE. COPASI can use either one of these strategies or a combination of the two
[Hoops et al., 2006].

2.2.9 Metabolic control analysis

Metabolic control analysis [Heinrich & Rapoport, 1974, Kacser & Burns, 1973] is a
sensitivity analysis of metabolic systems and describes the control exerted by net-
work parameters on the system’s variables, such as fluxes and species concentrations.
This control is measured by applying a perturbation to the parameter under investi-
gation and then measuring the effect on the system’s variable (e.g. fluxes or species
concentrations) after the system has settled to a new steady state and is defined as

a_ OAvy;

Vi O A

where A is the system variable, ¢ the reaction and v; the steady state rate of the per-
turbed reaction. Two main control coefficients are those for fluxes and species con-
centrations, but any variable of the system can be analysed with MCA. To run MCA
the system does not need to be in steady state since COPASI calculates the steady
state before determining control coefficients. In COPASI the calculation of steady
state concentration- and flux-control coefficients is implemented, those for other

variables can be estimated by simulating small perturbations [Hoops et al., 2006].
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A very important property of steady state metabolic systems was uncovered with
the MCA formalism. It can be shown that the control is shared by all reactions in
the system. For the flux-control coefficients of a pathway it can be demonstrated

that the sum of all coefficients is equal to unity

d ocl=1,

where J is the reaction flux, ¢ the reaction and v; the steady state rate of the per-
turbed reaction. As a consequence, an increase in one of the flux-control coefficients
implicates a decrease of the same rate in at least one other control coefficient. For
the species concentration-control coefficients holds that the sum of all concentration-

control coefficients over all steps of the system is zero

S,

i

Analysing the properties of each enzyme can be done by using a sensitivity known
as the elasticity coefficient. This coefficient describes the effect of perturbations of
a reaction parameter (like substrate or product concentrations) on the reaction rate.
Elasticities are local coefficients and are defined as the ratio of relative change in

local rate to the relative change in one parameter

v ov; p

€p

B op v;’
where v; is the rate of the enzyme ¢ under investigation and p is the perturbed
parameter.

The elasticity coefficients and control coefficients of reactions with common inter-
mediate species can be related through the connectivity theorem which emphasises a
close relation between the kinetic properties of the individual reactions and the prop-
erties of the whole intact pathway. Two basic theorems exist, one for flux-control
coefficients and one for concentration-control coefficients. For a common species S
the sum of the products of the flux-control coefficients of all steps i affected by S
and its elasticity coefficients towards S vanishes

ZCiefg} =0.

1

The concentration-control coefficients are divided in two equations depending on

whether the reference species A is different from the perturbed species S or not
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[Westerhoff & Chen, 1984|

d ey = 0, for A#S,
[A] vi
ZCW €q = —L.

The connectivity theorems allow MCA to describe how perturbations on metabolites
of a pathway propagate through the chain of enzymes. The kinetic properties of each
enzyme effectively propagate the perturbation to and from its immediate neighbours
[Hoops et al., 2006].

2.3 Genome-scale modelling

Metabolic networks or genome-scale models comprise associations between genes
and metabolic reactions [Notebaart et al., 2006]. Since such a model lacks for S.
pyogenes we have constructed it. The reconstruction of the metabolism of S. pyo-
genes takes advantage of already existing and curated networks. The first step is the
comparison between the genome sequence of the organism of interest and already
annotated reference models, here from Bacillus subtilis, Escherichia coli, Lactobacil-
lus plantarum and Lactococcus lactis. This step of annotation can be automated
by using the AUTOGRAPH method [Notebaart et al., 2006] which uses INPARA-
NOID [Remm et al., 2001] for orthology detection and results in the generation of
a putative metabolic network (see Section 2.3.1). The output of the AUTOGRAPH
method was supplied by Michiel Wels. This step was followed by a manual curation.

The single steps of the reconstruction process are described below.

2.3.1 AUTOGRAPH and INPARANOID

The AUTOGRAPH method (AUtomatic Transfer by Orthology of Gene Associat-
ions of Pathway Heuristics) [Notebaart et al., 2006] is applied to the Genbank NCBI
[Bilofsky & Burks, 1988| annotation file of S. pyogenes M49 together with four man-

ually curated metabolic networks from

e B. subtilis subsp. subtilis str. 168 [Park et al., 2003],

e FE. coli K12 |[Edwards et al., 2001],
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e L. plantarum WCFS1 [Teusink et al., 2006] and

e L. lactis IL1403 [Notebaart et al., 2006].

The identification of genes having most likely an identical biological function in
different organisms bases on orthology detection. By definition orthologous genes
are homologs that originate from the same gene in the most recent ancestor of the
organisms that are compared. Such genes have often kept identical biological roles.
In many cases the sequences have duplicated after the speciation event and there
is more than one ortholog in one or both species. In such cases it is difficult to
determine which of the orthologs are functionally identical to the ortholog in the
other species. Thus, it is crucial to detect all of these homologous genes that arose
from a gene duplication, so-called paralogs. Here, one distinguishes between out-
paralogs which predate the species split and in-paralogs that arose after the species
split and are orthologs by definition [Remm et al., 2001].

To predict orthologs and in-paralogs from two organisms the algorithm INPARA-
NOID (IN-PARalog ANd Orthology Identification) [Remm et al., 2001]| is used.
It requires the genome sequences as input which were retrieved from Genbank NCBI
[Bilofsky & Burks, 1988]. The INPARANOID method bases on Bidirectional Best
Hits and predicts orthologous as well as in-paralogous genes. The idea is that two
orthologous sequences score higher with each other than with any other sequence of
the genome [Remm et al., 2001]. Here, INPARANOID was applied with the default
settings.

The output of the AUTOGRAPH method assigns each gene from the query
genome one ortholog from each reference organism’s metabolic network and the
corresponding score. The S. pyogenes genes and the corresponding orthologs in the

reference organisms were analysed manually.

2.3.2 Manual curation

The manual curation step comprised the assignment of reactions to each gene
of the query genome. To predict gene-reaction associations the annotations of
each query gene were compared with the functionality of the corresponding or-
thologs in the reference organisms with the help of the given score. This score
depends on the sequence length and, thus, no general rule for a sufficient high

score can be given. Instead, for each gene the scores of all orthologous genes
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in the four reference organisms were compared. The function corresponding to
the highest scoring ortholog was assigned to the query gene. Furthermore, in-
corporation of protein complexes was done to be able to use proteomics or gene-
expression data. In the case that for one gene no orthologs were found in the refer-
ence organisms or the functionality was contradicting, the needed information were
taken from Uniprot [UniProt Consortium, 2010], NCBI [Geer et al., 2010|, KEGG
|[Kanehisa & Goto, 2000] or BRENDA [Schomburg et al., 2002]. The reactions and
protein complexes were taken from the reconstruction of L. plantarum and L. lactis

which were provided as templates by Bas Teusink.

2.3.3 Flux balance analysis

Flux balance analysis [Price et al., 2004, Varma & Palsson, 1994] is a mathematical
method for analysing the flow through a metabolic network. It is suitable to analyse
high-dimensional models since it does not require knowledge about enzyme mech-
anisms and metabolite concentrations; this approach is based on the stoichiometry
of the model.

Mathematically, the reconstructed metabolic network is represented by the sto-
ichiometric matrix S. In this matrix, each column represents a reaction and each
row represents a metabolite. The elements of the matrix are the stoichiometric
coefficients.

To be able to apply FBA the studied system has to be homeostatic meaning that
the internal concentrations of metabolites within the system remain constant over

time. Thus, the system is in steady state and it can be represented by
S-v=0

with the m x n stoichiometric matrix S where m is the number of metabolites and
n the number of reactions and the vector v of all fluxes through the network.

To reduce the solution space of the FBA model constraints are added to the
individual metabolic flux rates within the network. For a particular reaction a

constraint to the flux can be applied by

min max

where v and v"®* represent lower and upper boundary conditions, respectively,

and can be set to zero for irreversible reactions. For measured flux rates v;" the



38 Chapter 2. Materials and Methods

corresponding reaction in the network is constrained within an error € by
vt —e <y <v Fe.

The constraints limiting nutrient uptake and excretion and the flux through the
reactions in the S. pyogenes model are defined according to the experimental set-up.
A compete list with lower and upper boundaries is given in Appendix B.3 in Tables
B3 -B.7.

Additionally, an objective function is defined that further reduces the number
of possible solutions. Since the network is constructed to simulate growth and
reproduction the biomass function denoted vy;omass i chosen. The biomass reaction
describes the rate at which all of the biomass precursors are made in the correct
proportions. Thus, the solution is a flux distribution v maximising the biomass
function, fulfilling the steady state condition and satisfying the constraints. This
particular flux distribution was found using linear programming provided by Brett

Olivier as a script written in the Python programming language [van Rossum, 1995].
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3.1 Experimental results

Within the project, different types of data were collected as basis and validation of
both computational models, the kinetic and the genome-scale model. These data
include concentration of products and amino acids measured in continuous cultured
cells, time-series profiles in response to a glucose-pulse, kinetic parameters, utili-
sation of different substrates and growth rates after amino acid leave-outs. The
methods are described in Section 2.1, the results and the corresponding experimen-

talist are given in the following sections.

3.1.1 Construction of recombinant vectors and mutant strains

S. pyogenes possesses two genes encoding two lactate dehydrogenases, one L-LDH
and one D-LDH. Fiedler et al. |Fiedler et al., 2011] reported that S. pyogenes L-
LDH is responsible for over 95% of total lactate synthesis, a fact that was shown
for L. lactis and E. faecalis before [Bongers et al., 2003, Jonsson et al., 2009|. To
achieve the [dh-deletion strain S. pyogenes M49 591 Aldh, this main [dh gene was
removed by Tomas Fiedler.

The mutant strain showed no significant difference in growth rate compared to
the wild-type strain when grown in CDM-LAB medium (see Table 3.1). In THY
medium the growth rate of the ldh-deletion strain was lower compared to the wild-
type at pH 6.5, at pH 7.5 the deletion of ldh did not result in a significant decrease in
growth. Under the tested conditions, a deletion of Idh is no significant disadvantage

to the organism |Fiedler et al., 2011].

Table 3.1: Maximal specific growth rates of S. pyogenes wild-type and its ldh-knock-out
mutant in CDM-LAB and THY medium at two pHs. Strains were grown in 96-well plates
at 37°C under low micro-aerobic conditions. Values indicate the average pmax + standard

deviation.

Medium pH M49 M49 Aldh
CDM-LAB | 6.5 | 0.43£0.01 | 0.39 +0.04
7.5 10.394+0.02 | 0.35+0.01
THY 6.5 | 0.86 £0.13 | 0.69 £ 0.01
7.5 1 0.57+0.06 | 0.53 +0.03
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3.1.2 Fermentation experiments

S. pyogenes M49 wild-type strain and its ldh-negative mutant were grown at two
dilution rates and two pH values in a bioreactor to which fresh CDM-LAB medium
was continuously added, while culture liquid was removed with the same rate to
keep the volume constant. As a consequence, the cells were grown in a physiological
steady state. Since in steady state the specific growth rate of the organism is
equal to the dilution rate [Davies et al., 1965], growth rate can be easily controlled
by changing the dilution rate with which medium is added to the fermentor vessel.
Here, two different dilution rates, 0.05 h' and 0.15 h™* and two different pHs (6.5 and
7.5) were investigated. Amino acid concentrations were measured once and product
levels as well as OD and dry weight were measured twice in the culture supernatant
with one exemplary data set displayed in the following tables. Measured OD and
dry weight are given in Table 3.2 for both dilution rates and both pH values. The
fermentation experiments were performed by Tomas Fiedler and Martijn Bekker.
S. pyogenes mainly exhibited homolactic fermentation but showed more mixed
acid fermentation at lower dilution rates at both pH 6.5 and pH 7.5 (see Table 3.3) as
compared to L. lactis and E. faecalis |Fiedler et al., 2011|. However, no significant
pH dependent differences were observed in the fermentation pattern. Interestingly,
E. faecalis showed a strong pH dependency with a more homolactic phenotype at
pH 6.5. Deletion of the main Idh of S. pyogenes resulted in complete mixed acid

fermentation in all conditions [Fiedler et al., 2011].

Table 3.2: Measured OD (AU) and dry weight (DW, g/1) of S. pyogenes wild-type and
ldh-knock-out at two dilution rates (D, h™!) and two pHs during continuous cultivation in
glucose-limited CDM-LAB medium.

M49 | M49 Aldh
pH| D | OD | DW | OD | DW
6.5 | 0.05 | 2.55 | 1.20 | 2.27 | 1.00
0.15 | 2.36 | 0.70 | 2.94 | 1.25

7.5 0.05| 222|065 | 1.65 | 0.65
0.15] 2.10 | 1.00 | 2.43 | 1.05
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Product concentrations

Measured product concentrations comprise glucose, ethanol, acetate, lactate, for-
mate, succinate, pyruvate, acetoin and 2,3-butanediol. Under all four investigated
experimental conditions, no glucose remained in the culture supernatant of S. pyo-
genes M49 wild-type strain and its ldh-negative mutant. Furthermore, neither suc-
cinate nor 2,3-butanediol were detected. The experimental data for the S. pyogenes
M49 wild-type strain and its [dh-negative mutant are shown in Table 3.4 and 3.5,
respectively.

The wild-type strain produces high amounts of lactate, ethanol, acetate and for-
mate under all four investigated conditions (see Table 3.4). Glucose, succinate,
acetoin and 2,3-butanediol were not detected in the supernatant. The amount of
pyruvate in the culture liquid is low and only detectable for the lower dilution rate
of 0.05 ht. The higher the flux towards lactate, the lower is the flux towards the
mixed-acid branch. The ratio of ethanol:acetate:formate is approximately 1:1:2 ex-
cept for pH 7.5, D = 0.05. In that case, no ethanol was produced by the wild-type
strain.

The ldh-knock-out strain is not able to produce lactate and thus the flux is redi-
rected. As a consequence, this mutant produces not only high amounts of ethanol,
acetate and formate but also acetoin (see Table 3.5). Glucose and succinate were
not detected in the supernatant. Acetoin production may be the result of a reac-
tion performed by pyruvate dehydrogenase. Compared to the wild-type strain, the

amount of extracellular pyruvate is explicitly increased.

Table 3.3: Relative flux distribution in S. pyogenes at two dilution rates (D, h!) and two
pHs during continuous cultivation in glucose-limited CDM-LAB medium. Values indicate

mol product/mol glucose + standard deviation.

pH| D Lactate | Formate
6.5 ] 0.05| 08 +04|05=+0.1
0.15]14+01]01x0.1

7510.05{06=£03]05=x0.2
015]11+03]02%0.2




Table 3.4: Product concentrations in S. pyogenes wild-type strain at two dilution rates (D, h™') and two pHs during

continuous cultivation in glucose-limited CDM-LAB medium. Values indicate mM end-product.

pH | D | Glucose | Ethanol | Acetate | Lactate | Formate | Succinate | Pyruvate | Acetoin | 2,3-Butanediol
6.5 | 0.05 0.00 19.26 35.10 69.97 35.41 0.00 1.50 0.00 0.00

0.15 0.00 8.32 22.84 83.79 13.63 0.00 0.00 0.00 0.00
7.5 1 0.05 0.00 0.00 20.82 99.67 8.14 0.00 1.44 0.00 0.00

0.15 0.00 11.00 20.22 56.22 20.69 0.00 0.00 0.00 0.00

Table 3.5: Product concentrations in S. pyogenes ldh-negative mutant at two dilution rates (D, h™!) and two pHs

during continuous cultivation in glucose-limited CDM-LAB medium. Values indicate mM end-product.

pH | D | Glucose | Ethanol | Acetate | Lactate | Formate | Succinate | Pyruvate | Acetoin | 2,3-Butanediol
6.5 | 0.05 0.00 44.14 40.34 1.75 65.44 0.00 8.20 3.15 0.00

0.15 0.00 61.08 40.80 1.72 71.47 0.00 15.35 2.60 0.00
7.5 1 0.05 0.00 55.65 42.12 2.25 74.60 0.00 19.53 2.98 0.00

0.15 0.00 55.26 39.59 0.80 69.00 0.00 15.02 2.51 0.00
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Table 3.6: Amino acid concentrations in S. pyogenes wild-type strain at two dilution rates (D, h'') and two pHs during

continuous cultivation in glucose-limited CDM-LAB medium. Values indicate mM amino acid.

pH | D | Aspartate | Serine | Glutamate | Glycine | Histidine | NH; | Arginine | Threonine | Alanine | Proline

6.5 | 0.05 0.42 0.04 0.51 0.35 0.09 1.70 0.00 0.22 0.38 0.84
0.15 0.35 0.01 0.42 0.28 0.09 1.94 0.05 0.20 0.38 0.79

7.5 | 0.05 1.04 0.03 1.15 0.73 0.18 5.58 0.00 0.57 0.74 2.27
0.15 0.21 0.01 0.26 0.25 0.11 1.24 0.02 0.17 0.22 0.63

pH | D | Cysteine | Tyrosine | Valine | Methionine | Ornithine | Lysine | Isoleucine | Leucine | Phenylalanine
6.5 | 0.05 0.00 0.26 0.34 0.12 2.55 0.25 0.16 0.39 0.25

0.15 0.00 0.16 0.32 0.09 1.30 0.22 0.16 0.38 0.23
7.5 10.05 0.00 0.58 0.86 0.24 4.89 0.62 0.09 0.99 0.00

0.15 0.00 0.27 0.23 0.10 0.47 0.14 0.10 0.27 0.27
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symsoy ¢ 1eydery)



Table 3.7: Amino acid concentrations in S. pyogenes ldh-negative mutant at two dilution rates (D, h™!) and two pHs during

continuous cultivation in glucose-limited CDM-LAB medium. Values indicate mM amino acid.

pH | D | Aspartate | Serine | Glutamate | Glycine | Histidine | NH; | Arginine | Threonine | Alanine | Proline

6.5 | 0.05 0.33 0.01 0.37 0.27 0.05 1.59 0.00 0.18 0.44 0.70
0.15 0.34 0.01 0.39 0.21 0.07 2.12 0.00 0.21 0.71 0.80

7.5 | 0.05 0.57 0.03 0.60 0.42 0.21 1.69 0.00 0.29 0.65 1.17
0.15 0.11 0.01 0.11 0.07 0.02 0.68 0.01 0.06 0.21 0.26

pH | D | Cysteine | Tyrosine | Valine | Methionine | Ornithine | Lysine | Isoleucine | Leucine | Phenylalanine
6.5 | 0.05 0.00 0.19 0.24 0.10 2.05 0.22 0.09 0.28 0.20

0.15 0.00 0.15 0.17 0.09 0.95 0.22 0.04 0.15 0.22
7.5 10.05 0.00 0.37 0.39 0.16 2.72 0.33 0.13 0.40 0.28

0.15 0.00 0.07 0.06 0.03 0.39 0.07 0.02 0.06 0.06

symsar rejuowtdxy 1€
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Amino acid concentrations

Since S. pyogenes is auxotroph for many amino acids, amino acids present in the
nutrient-rich CDM-LAB medium are taken up by both, the wild-type strain and
the [dh-knock-out mutant (see Tables 3.6 and 3.7). From the 17 measured amino
acids arginine (Arg), cysteine (Cys) and serine (Ser) are completely consumed in the
wild-type as well as in the ldh-knock-out strain. Ornithine and ammonia, which are
no compounds of CDM-LAB medium, are produced by S. pyogenes and transported
out of the cell. In these energy limited growth conditions, ornithine production is
likely due to use of arginine for ATP production [Fiedler et al., 2011].

All in all we can see for the wild-type strain as well as for the ldh-knock-out
mutant a difference in amino acid consumption under the investigated conditions.
Compared to the wild-type strain, the ldh-knock-out mutant consumes less amounts
of amino acids except for serine, arginine, alanine (Ala) and cysteine, which are

present with the same amounts in the supernatant of both strains.

3.1.3 Glucose-pulse experiments

In order to study the effect of extracellular phosphate on the glycolysis of S. pyo-
genes, approximately 8 mM glucose and 0, 10 or 50 mM phosphate were added
to pre-grown cells and samples were taken at regular time intervals. Under these
conditions initially all nutrients are in excess but their concentrations decrease dur-
ing growth and become limiting while the metabolic products accumulate. G6P,
F6P, FBP, GAP, PEP, pyruvate, ATP, extracellular lactate and extracellular glu-
cose were quantified in each sample. The glucose-pulse experiments were done by
Martijn Bekker and were reproduced several times with an exemplary data set for
0, 10 and 50 mM P;** displayed in Tables 3.8, 3.9 and 3.10.

In all experiments glucose is consumed after approximately 5 to 6 minutes whereas
the glucose uptake increases with 50 mM extracellular phosphate as compared to 0
mM P;**. Interestingly, the uptake rate is slightly inhibited in the presence of 10 mM
external phosphate as compared to 0 mM phosphate. The FBP level increases with
the phosphate level and reaches a maximum of 5.2 mM, 6.2 mM and 8.2 mM for 0,
10 and 50 mM P;**, respectively. We can also see a rise in the GAP level whereas the
amount of G6P, F6P and ATP is approximately the same under all experimental

conditions. This shows a crucial role of extracellular phosphate on the glycolysis
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of S. pyogenes and confirms the necessity of including phosphate transport in the

model.

Table 3.8: Metabolite concentration time-series in S. pyogenes for a glucose-pulse of ap-
proximately 8 mM without extracellular phosphate. Values are given in mM, the measured

OD is 43.3. n.d., not determined.

Time (min) | FBP | G6P | F6P | ATP | GAP | Glc®™ | Lactate®™
0 0.1 04 | nd. | 0.3 n.d. n.d. 2.8
1 4.6 1.4 14 0.6 n.d. 6.6 3.9
2 4.2 1.9 0.6 1.5 n.d. 5.2 4.8
3 4.7 1.2 2.2 1.8 n.d. 3.7 8.1
4 5 1.3 0.8 1.3 n.d. 2.5 9.6
5 5.2 1.3 1 1.5 n.d. 1.4 10.6
10 1.6 0.1 0.6 1.5 n.d. n.d. 11.1
15 0 0.2 0.6 0.7 n.d. n.d. 15.3
20 n.d. 0 0.2 0.4 n.d. n.d. 12.4
25 n.d. 0.9 0.5 0.2 n.d. n.d. 12.9

Table 3.9: Metabolite concentration time-series in S. pyogenes for a glucose-pulse of
approximately 10 mM and 10 mM extracellular phosphate. Values are given in mM, the

measured OD is 38.5. n.d., not determined.

Time (min) | FBP | G6P | F6P | ATP | GAP | Glc®™ | Lactate®™
0 n.d. 0.2 n.d. 0.1 1.1 n.d. 1.9
1 4.8 1.5 0 0.4 1.6 4.6 2.7
2 5.3 1.2 14 1.6 2.2 3.7 44
3 6.2 1 1.5 1.5 2.6 2.6 8.2
4 6.2 1.3 1.2 1.8 3.8 1.9 7.8
) 6.1 1.4 0.2 1.7 3.9 1.0 10.1
10 0.6 0.4 | nd. 0.9 2 n.d. 11.7
15 0.1 0.4 | nd. 0.9 1.6 n.d. 12.9
20 n.d. 0.1 n.d. 0.3 0.5 n.d. 11.1
25 0.6 | nd. | nd. | 0.2 1.1 n.d. n.d.
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Table 3.10: Metabolite concentration time-series in S. pyogenes for a glucose-pulse of
approximately 8 mM and 50 mM extracellular phosphate. Values are given in mM, the

measured OD is 41.5. n.d., not determined.

Time (min) | FBP | G6P | F6P | ATP | GAP | Glc®™* | Lactate®™
0 0.2 n.d. 0.1 0.2 3.3 n.d. 2.3
1 4 0.6 0 0.4 5 7.3 2.4
2 7.1 1 0.5 1.6 6.9 5.5 4.2
3 7.6 0.5 2.7 2.1 8.6 1.5 6.3
4 8.1 0.6 2.1 2.2 8.3 0.1 9.3
) 8.2 1 0.7 2 8.3 n.d. 12.3
10 0.5 0.6 | n.d. 0.6 4.3 n.d. 8.6
15 0.1 nd. | n.d. 0.6 5.8 n.d. 12
20 0.4 n.d. | nd. 0.3 4.9 n.d. 8.3
25 nd. | nd. | nd. | 0.2 3.6 n.d. 11.7

3.1.4 Kinetic parameters of individual enzymes

Since no information about the regulation of glycolytic enzymes in S. pyogenes has
been studied so far, we decided to investigate the kinetics of pyruvate kinase and

lactate dehydrogenase ourselves. The kinetic measurements in vitro were done by

Tomas Fiedler.

Kinetic parameters of L-lactate dehydrogenase

Kinetic measurements of LDH were done with heterologous expression. The binding
constant of the substrates pyruvate and NADH amounts 0.41 mM and 0.062 mM,
respectively, and the K, values for the products lactate and NAD" are 8.8 mM and
0.152 mM. The enzyme specificity of the forward reaction is 6 U/mg of protein.

Since no information about the regulation of LDH in S. pyogenes could be found
in literature, potential effectors were studied. We found out that FBP and phosphate
have a stimulating effect on LDH whereas NAD™ inhibits this enzyme.

Kinetic parameters of pyruvate kinase

Kinetic measurements of S. pyogenes pyruvate kinase were done with protein crude
extracts since the heterologous expression was inactive in E. coli. The measured

binding constants are 0.69 mM for PEP, 0.75 mM for ADP, 21 mM for pyruvate
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and 10 mM for ATP. The enzyme specificity of the forward reaction is 6 U/mg of

protein.

3.1.5 Substrate utilisation assays

Substrate utilisation assays were done by Tomas Fiedler. Thereto, Biolog Phenotype
Microarrays were used to investigate growth of the S. pyogenes wild-type and Idh-
knock-out strains on 190 different carbon sources. There were 20 substrates on which
the wild-type was able to grow on. The results from the experiment consisting of
four measurements are summarised in Table 3.11. The Idh-negative mutant showed
a decreased ability of utilising trehalose, sucrose, uridine, inosine, N-acetyl neuramic
acid, cyclodextrin and galactopyranosyl-d-arabinose.

S. pyogenes showed optimal growth on glucose and sucrose and ended up at lower
ODs after 24 h of growth for all other tested substrates. Compared to the wild-type,
the deletion of the Idh gene resulted in a significant reduced growth on D-mannose,

D-trehalose and sucrose [Fiedler et al., 2011].

3.1.6 Calculation of specific ATP synthesis rates

The energy required for maintenance and the rate of ATP synthesis at the maximal
specific growth rate were determined in conditions that varied in growth rate and
pH (see Table 3.12).

For the S. pyogenes wild-type strain ¢ rp maintenance did not show large pH depen-
dent differences. For the ldh-knock-out strain qupp (o, Was similar to the wild-type
strain |Fiedler et al., 2011]. This indicates deletion of ldh does not result in an
overall increase in ATP dissipating reactions.

Large differences were observed with respect to Yyu,. For S. pyogenes this value
was almost two-fold higher at pH 7.5 as compared to pH 6.5. The calculation of
specific ATP synthesis rates was done by Tomas Fiedler, Martijn Bekker and Maria
Jonsson et al. [Fiedler et al., 2011].

3.1.7 Amino acid leave-out experiments

As a human pathogen S. pyogenes is used to live in nutrient rich media such as
blood and, therefore, is auxotroph for many amino acids. Little is known about

the amino acid requirements of S. pyogenes. Studies focussing on the amino acid
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metabolism of S. pyogenes report rather about limiting amino acid concentrations
[Davies et al., 1965| or concentrate on different strains. In general, many conflicting
data concerning the amino acid requirements of lactic acid bacteria appear in liter-
ature. These are primarily due to the use of different levels of vitamins in media.
Thus, we decided to determine essential amino acids ourselves. This was done with
amino acid leave-out experiments.

For amino acid leave-out experiments, S. pyogenes was grown overnight in CDM-

Table 3.11: Substrate utilisation of S. pyogenes wild-type and its ldh-knock-out mutant
on different carbon sources. Optical densities of the cultures grown on glucose were set to
100% for the wild-type and the ldh-mutant strain and optical densities for growth on all

other substrates were related to this value.

Substrate M49 M49Aldh

Sucrose 101.1 + 204 | 386 =+ 11.3
a-D-Glucose 1000 £ 0.0 ] 100.0 £ 0.0
D-Trehalose 904 + 165| 384 £+ 98
Maltotriose 874 £+ 16.5| 789 £ 9.0
D-Mannose 82.0 £ 17.7| 413 + 14.7
N-Acetyl-D-glucoseamine 775+ 107 903 £ 6.8
D-Glucoseamine 63.3 £+ 73| 682 + 179
B-Methyl-D-glucoside 626 =+ 17.1| 387 =+ 21.7
Maltose 523 £ 141 | 405 £ 15.2
Salicin 46.3 + 11.3| 241 + 16.6
D-Fructose 43.0 + 39.7| 265 £ 32.0
a-D-Lactose 266 + 24.2| 209 + 19.7
Gelatin 25.7 £ 42.0 53 + 2.2
N-Acetyl-#-D-mannosamine 229 £ 171 | 177 £ 14.7
Uridin 171 4+ 245| 105 + 11.2
3-0-5-D-Galactopyranosyl-D-arabinose | 17.0 4+ 26.9| 14.0 4+ 11.0
Pectin 139 4+ 185 | 44.0 + 23.7
Dextrin 138 &+ 90| 123 £ 55
2-Hydroxy benzoic acid 73 £ 37| 11.0 £ 6.5
Chondroitin sulfate ¢ 6.5 + 39| 19.1 4+ 11.6
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LAB medium, pelleted by centrifugation, washed and suspended in full CDM-LAB
medium or in CDM-LAB without Ala, Arg, asparagine (Asn), aspartate (Asp),
cystine (Cyn), Cys, glutamine (Gln), glutamate (Glu), glycine (Gly), histidine (His),
isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe),
proline (Pro), Ser, threonine (Thr), tryptophan (Trp), tyrosine (Tyr) and valine
(Val) or in the absence of combinations of amino acids. The optical density of each
well was measured at 600 nm for 12 h. The final growth rate measured after 12
h in the different reduced media was compared to the growth rate in full CDM-
LAB medium. Table 3.13 summarises the experimental data from two independent
experiments. Each experiment consists of eight measurements and, thus, mean value

and standard deviation are given.

Table 3.12: Specific ATP synthesis rates of S. pyogenes grown in glucose-limited continu-
ous cultures. ¢arp maintenance Was calculated according to the methods applied by Tempest
et al. |Tempest & Neijssel, 1984]. Yat, was determined at D = 0.15. GATPmax Was esti-
mated by extrapolation of the slope for qup (o4 t0 the D similar to pimax. Values indicate

mean value + standard deviation.

pH ‘ GATP maintenance Y&tp qATP,umax
6.5 2.6 &+ 2.2 5.2+ 0.7] 8 £9.2

7.5 29 £ 2.1 94+£23|38+£71

Table 3.13: Final OD at 600 nm after 12 h growth of S. pyogenes in full CDM-LAB
medium and medium with amino acid leave-outs as indicated. The results from two inde-
pendent experiments are given whereas each experiment consists of eight measurements.

Values indicate mean OD values + standard deviation. n.d., not determined.

Final growth rate
CDM-LAB medium Experiment 1 Experiment 2
Full 0.31 + 0.02 0.81 £ 0.02
w/o Ala n.d. 0.76 £ 0.00
w/o Arg n.d. 0.14 + 0.02
w/o Asn 0.25 £ 0.09 0.32 £ 0.00
w/o Asn, Asp 0.27 £+ 0.09 0.32 £ 0.05
w/o Asp 0.4 4+ 0.04 0.73 £ 0.00
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Table 3.13 — continued from previous page

CDM-LAB medium

Final growth rate

Experiment 1

Experiment 2

w/o Cyn
w/o Cyn, Cys
w/o Cys

w/o Cys, Gly
w/o Cys, Ser
w/o Cys, Thr
w/o Gln

w/o Gln, Glu
w/o Gln, Thr
w/o Glu

w/o Gly

w/o Gly, Ser
w/o Gly, Ser, Thr
w/o Gly, Thr
w/o His

w/o Ile

w/o Leu

w/o Lys

w/o Met
w/o Met, Ser
w/o Phe

w/o Pro

w/o Ser

w/o Ser, Thr
w/o Thr

w/o Trp

w/o Tyr

w/o Val

The first experiment shows that S. pyogenes is able to grow in CDM-LAB with
single leave-outs of Asp, Asn, Glu, Gln, Cys and Cyn or a double leave-out of

0.33 £ 0.07
0.15 + 0.02
0.25 £+ 0.05
n.d.
n.d.
n.d.
0.20 £+ 0.08
0.15 + 0.02
n.d.
0.36 = 0.04
n.d.
n.d.

0.73 £ 0.01
0.51 £ 0.02
0.62 £ 0.10
0.10 £ 0.00
0.11 £ 0.00
0.08 £ 0.00
0.13 £ 0.03
0.12 £ 0.01
0.10 £ 0.01
0.64 £ 0.03
0.15 £ 0.01
0.12 £ 0.00
0.12 £ 0.02
0.09 £ 0.00
0.15 £ 0.01
0.10 £ 0.00
0.14 £ 0.02
0.13 £ 0.02
0.15 £ 0.02
0.13 £ 0.02
0.15 £ 0.02
0.40 £ 0.02
0.13 £ 0.01
0.14 £ 0.00
0.10 £ 0.01
0.15 £ 0.02
0.13 £ 0.02
0.14 £ 0.01
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Asp and Asn. Hereby, we defined a final OD lower than 0.15 as loss of growth.
When suspended in CDM-LAB medium without Asn, Gln or Cys S. pyogenes shows
reduced growth. Surprisingly, in CDM-LAB medium without Asp, Glu or Cyn the
growth rate is increased. Growth of S. pyogenes in the absence of other amino
acids have not been tested in this experiment. This study was performed in Tomas
Fiedler’s lab.

In the second experiment growth of S. pyogenes in 35 media omitting the amino
acids as specified in Table 3.13 was tested. A final OD lower than 0.3 indicates loss
of growth. We found out that leaving out Arg, Gln (alone and in combinations),
Gly (alone and in combinations), His, Ile, Leu, Lys, Met, Phe, Ser (alone and
in combinations), Thr (alone and in combinations), Trp, Tyr and Val results in
complete loss of growth. In contrast, the organism is able to grow without Ala, Asn,
Asn and Glu, Asp, Cyn, Cyn and Cys, Cys as well as without Glu, but at a lower
growth rate as compared to full medium. The second experiment was performed by
Araz Zeyniyev.

From the eight amino acid leave-outs performed in both experiments the results
for the omission of Asn, Asp, Cyn, Cys, Glu, Gln and Glu show qualitatively the
same results, meaning growth or no growth in both experiments. Taking the stan-
dard deviation into account, the second experiment predicts no or at least very
low growth by omitting Asn and Asp in agreement with the results of the first
experiment. Both experiments give contrary results for growth of S. pyogenes in
the absence of Cyn and Cys as well as without Gln. Increased growth of S. pyo-
genes in the absence of Asp, Cyn and Glu as seen in the first experiment cannot
be reproduced. Table 3.14 summarises essential amino acids for the growth of S.
pyogenes based on our experimental data. This table shows preliminary data which
has to be validated by at least one additional independent experiment, especially
for glutamine since our experimental data give contradicting results for growth in

the absence of this amino acid.
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Table 3.14: Essential amino acids for growth of S. pyogenes in CDM-LAB medium based

on our experimental data. From the tested amino acids 14 are essential for growth of S.

pyogenes.

Essential Non-essential
Arginine Alanine
Glutamine Asparagine
Glycine Aspartate
Histidine Cysteine
Isoleucine Cystine
Leucine Glutamate
Lysine Proline
Methionine

Phenylalanine

Serine

Threonine

Tryptophan

Tyrosine

Valine
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3.2 Kinetic model of S. pyogenes

The kinetic model of S. pyogenes comprises glucose uptake, glycolysis and pyruvate
branching resulting in the production of lactate, acetate, ethanol and formate. Under
anaerobic conditions, the metabolism of one molecule of glucose to two molecules
of pyruvate has a net yield of two ATP. The conversion of pyruvate to the final
end-products recovers NAD™ via lactate or via ethanol production and yields one
additional molecule ATP by producing acetate. The construction of the glycolytic
model is described in the following sections. Modelling, simulating and analysing was
done in COPASI [Hoops et al., 2006]. We performed parameter estimation to tune
the parameters so that the model reproduces our experimental data (see Sections
3.1.2 and 3.1.3). To analyse the model in more detail, parameter sensitivity analysis
and metabolic control analysis were performed. The applied methods are described

in Section 2.2.

3.2.1 Setting up the model

In order to set up a computational model on the basis of the experimental data
described before (see Section 3.1) the metabolic reactions involved in fermentation
and their respective regulation are defined according to the metabolic capabilities of
S. pyogenes. In a second step this set of reactions is transformed into a mathematical

network.

Defining the metabolic reactions of the model

S. pyogenes has at least two glucose uptake systems showing different affinities for its
substrate [Cvitkovitch et al., 1995]. The main part of glucose in the medium is taken
up via the high-affinity PTS. The PTS is only found in bacteria and catalyses the
import and direct phosphorylation of sugar derivatives like mono- and disaccharides
or amino sugars [Deutscher et al., 2006]. Thereby, PEP serves as energy source and
phosphoryl donor.

The PTS consists of two unspecific cytoplasmic components, enzyme I (EI) and
HPr. Carbohydrate specificity resides in enzyme II (EII), and hence, bacteria usu-
ally contain many different Ells. EII is a complex itself and consists of one or two
hydrophobic integral membrane domains (domains C and D) and two hydrophilic

domains (domains A and B), which together are responsible for the transport of the
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carbohydrate across the bacterial membrane as well as its phosphorylation. The

16 complex of S. pyogenes consists of two distinct proteins,

glucose-specific EI
the cytoplasmic protein EIIA® and the membrane-associated protein EIICBSc.
Thereby, the EIIB®' domain is hydrophilic and in contact with the cytoplasm and
the EIIC®"* domain is buried within the membrane |[Postma et al., 1993].

The first step in transport and subsequent phosphorylation of incoming sugar
is the transfer of the phosphate group from PEP to HPr via EI. From there, the
phosphate group is delivered to EIIA®! and further to membrane bound EIIB%.
The phosphoryl group bound to EIIB®! is transferred to glucose after translocation
of the sugar by EIIC® across the membrane. Thus, the incoming sugar is directly
converted into G6P [Postma et al., 1993].

As mentioned before, HPr can be phosphorylated on His-15 or Ser-46 by PEP
or ATP, respectively, in low-G+C Gram-positive bacteria [Ye et al., 1996]. Con-
sequently, four different forms of HPr exist in these organisms: unphosphorylated
HPr, HPr phosphorylated at either His-15 or Ser-46 and doubly phosphorylated HPr
[Vadeboncoeur et al., 1991].

In response to changes in its phosphorylation state HPr carries out diverse reg-
ulatory functions. HPr-His-P is required for sugar uptake while HPr-Ser-P regu-
lates among others the extent of sugar-phosphate accumulation. This is done ei-
ther by inhibiting the uptake of less preferred sugars by a rapidly metabolisable
substrate, a process denoted inducer exclusion, or by activating inducer expulsion
which mediates the efflux of intracellular sugar-phosphates|Reizer & Panos, 1980,
Thompson & Saier, 1981].

The ratio of the two phosphorylated HPr forms is mainly adjusted by the bifunc-
tional enzyme HPr kinase/phosphatase (HPrK/P). The kinase catalyses the ATP-
dependent phosphorylation of HPr at Ser-46 and is activated by FBP and inhibited
by P; whereas the phosphatase catalyses the dephosphorylation of HPr-Ser-P and is
activated by P; and inhibited by ATP |[Deutscher et al., 1985, Reizer et al., 1984].
Thereby, HPr-His-P does not serve as a substrate for the kinase and PEP-dependent
phosphorylation of HPr-Ser-P is approximately five thousand times slower compared
to that of unphosphorylated HPr [Reizer et al., 1985].

In glycolysing cells, the FBP level is high whereas the P; concentration is low
[Mason et al., 1981|. As a consequence, a major fraction of HPr is present as HPr-

Ser-P or doubly phosphorylated HPr, which has a much lower affinity for EITAs
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compared to HPr-His-P, but there is little HPr-His-P and undetectable amounts
of unphosphorylated HPr [Vadeboncoeur et al., 1991]. Since the expulsion mecha-
nism is activated by HPr-Ser-P, only glycolysing cells hydrolyse the sugar-phosphate
followed by expulsion.

The exclusion mechanism is not modelled since the only carbohydrate source
in the medium is glucose. The expulsion mechanism preventing sugar-phosphate
accumulation is catalysed by Pasell which dephosphorylates G6P to glucose that is
subsequently transported out of the cell. This reaction is controlled by HPr-Ser-P
[Ye et al., 1996].

Besides the PTS, S. pyogenes possesses a low-affinity glucose permease (GlcP)
allowing the diffusion of glucose across the membrane |Cvitkovitch et al., 1995]. In-
tracellular glucose is phosphorylated by glucokinase (GK) yielding G6P. This re-
action is coupled to ATP hydrolysis and, thus, is irreversible. Furthermore, GK
is regulated by negative feedback [Porter et al., 1982]. G6P is transfigured into
F6P by phosphoglucose isomerase (PGI) and is further phosphorylated to FBP.
This reaction carried out by the phosphofructokinase (PFK) consumes ATP and
is irreversible. FBP is split by fructose-bisphosphate aldolase (ALDO) into two
triose phosphates, dihydroxyacetone phosphate (DAP) and GAP. DAP is converted
into GAP by the enzyme triosephosphate isomerase (TPI). GAP proceeds further
in glycolysis and is transformed into 1,3-bisphosphoglycerate (BPG) catalysed by
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thereby, the triose phop-
shate is dehydrogenated and P; is added while NAD™ is reduced to NADH. This
reaction is inhibited by one of its products, NADH [Pancholi & Fischetti, 1992].

As mentioned before, S. pyogenes has a non-phosphorylating NADP*-dependent
glyceraldehyde 3-phosphate dehydrogenase. GAPN catalyses the irreversible con-
version of GAP to 3PG with concomitant NADPH production [Iddar et al., 2003].

In the next step of glycolysis a phosphate group from BPG is transferred to
adenosine diphosphate (ADP) by phosphoglycerate kinase (PG), forming ATP and
3PG which is further converted into 2-phosphoglycerate (2PG) by phosphoglycerate
mutase (PGM). Enolase (ENO) forms PEP from 2PG. PEP and ADP are converted
into pyruvate and ATP by the enzyme PYK. This step is inhibited by P; and acti-
vated by G6P [Yamada & Carlsson, 1975b|.

The main part of pyruvate is converted into lactate with concomitant intercon-
version of NADH and NAD™ catalysed by LDH. The measurement of the kinetics
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done in Rostock by Tomas Fiedler yield that this enzyme is negatively regulated by
NAD™" and stimulated by FBP and P;.

Due to the fact that S. pyogenes shows more mixed acid fermentation at lower
dilution rates at pH 6.5 and pH 7.5 compared to L. lactis and E. faecalis (see
Section 3.1.2 and |Fiedler et al., 2011]), the mixed acid branch was included in the
model. Besides the conversion to lactate, pyruvate and coenzyme A (CoA) can be
converted into acetyl-CoA and formate by the pyruvate formate lyase (PFL). This
transformation is inhibited by DAP and GAP [Takahashi et al., 1982|. Acetyl-CoA
is metabolised to acetate via acetylphosphate yielding one molecule ATP. This con-
version is inhibited by FBP [Lopez de Felipe & Gaudu, 2009]. Furthermore, acetyl-
CoA is converted into acetaldehyde which is further metabolised to ethanol by
the alcohol dehydrogenase (ADH) and is inhibited by ATP [Palmfeldt et al., 2004].
Thereby, two molecules of NADH are recovered.

With the analysis of the experimental data in mind, we investigated the mech-
anism of P; uptake in S. pyogenes and based on experimental findings incorpo-
rated facilitated diffusion of P; which is inhibited by ATP and activated by P;**
[Reizer & Saier, 1987] as well as active import of P;* [Ferretti et al., 2001].

Furthermore, an ATPase reaction is included as a sink for the ATP generated in
glycolysis, replacing all ATP consuming reactions. Additionally, NADPH recovery
via the activity of a NADP™ regenerating reaction (NPOX) is included. To get
rid of the products, export reactions for formate, acetate and ethanol as well as
pyruvate-controlled export of lactate [Harold & Levin, 1974| were incorporated into
the model.

To simplify the model and reduce the number of parameters, some metabolites

were lumped based on near-equilibrium time-scale separation:

e double phosphorylated HPr was omitted since HPr-His-P is not a substrate
of HPr kinase and PEP-dependent phosphorylation of HPr-Ser-P occurs very
slow compared to that of unphosphorylated HPr,

e G6P and F6P were lumped into the G6P pool,
e DAP and GAP are defined as triose-P pool,

e 2PG, 3PG and PEP are collected in the PEP pool,

e acctate and acetylphosphate are summed up in the acetate pool and
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e acetaldehyde and ethanol are combined in the ethanol pool.

The ATP/ADP, NAD"/NADH, NADP* /NADPH and P; pools are set as free-state
variables, in contrast to other kinetic models [Neves et al., 1999, Voit et al., 2006a,
Voit et al., 2006b|. Furthermore, the PTS system is modelled as one step to reduce
the number of unknown parameters. Fig. 3.1 gives an overview of the molecular

interactions of the S. pyogenes glycolysis model.

Transformation into a mathematical model

After the reactions of the pathway and their regulation are defined, this set is trans-
formed into a computational model. Modelling was done using the software package
COPASI [Hoops et al., 2006]. Two compartments were considered, the extracellular
and the intracellular space. According to the experimental OD measurements the
ratio of intra- and extracellular volume was adjusted. For simulating the glucose-
pulse experiments, the extracellular volume was set to 1 1 whereas the intracellular
volume was calculated to be 0.036 1 for 0 mM P;**, 0.032 1 for 10 and 0.035 1 for
50 mM P;**. For the fermentation experiments, the extracellular volume was set
to 0.75 1 and the intracellular space determined from the measured dry weight was
0.003 1 for pH 6.5 and d = 0.05, 0.002 1 for pH 6.5 and d = 0.05 as well as for pH
7.5 and d = 0.15 and 0.003 1 for pH 7.5 and d = 0.15.

Due to unknown detailed enzyme mechanisms convenience rate laws were used
for most reactions |Liebermeister & Klipp, 2006b]. However, the glucose permease
as well as the passive phosphate transport are modelled as facilitated diffusion and
the ATPase is modelled as hill equation. The rate laws of the S. pyogenes model
are shown in Appendix A.2.1.

S. pyogenes is poorly studied and especially kinetic parameters are rarely de-
scribed in the literature. However, we were able to find kinetic constants for the
passive phosphate transporter and Pasell in the literature. From cooperation part-
ners the kinetics of PYK and LDH were experimentally studied (see Section 3.1.4).
All other kinetic parameters were either derived from enzymes of related organisms
found in the literature, e.g. from S. mutans or S. thermophilus, or, if no information
was available, we adopted the missing parameters from the L. lactis model. Enzyme
specific activities were converted into V., values by assuming that 42% of cellu-

lar dry weight consisted of proteins [Even et al., 2002] and by taking an estimated



60 Chapter 3. Results

GLUCOSE =
GlcP
ADP FBP ATP v N
( I PEP pool gl}\lcose
o ATP
HPr-ser-P <¥ HPr| / P N
HPrK '1'; PTS ( cop
Ii \ HPr-ser-P - —@
° pyruvate F - —a4DP
T \ \j HPr Pasell
HPrP : b G6P o ADP
ATP i ATP GK
PFK Pi‘?'r
ADP 1
ADP FBP
P, ATP PP
I FBA piT T '
-1—;1 protons 2?< ;
ATPase triose-P NAD"' ATP
P
GAPN | GAPDH - —'— — - NADH
K NADH ADP
NADP" P ATP
T B \/
NADPH ADP P __ pe
ENO PiT active !
ATP
— PEP pool
ACETATE — — — — — —>
Po— 4| 7 ADP ACK Con
NAD" I1G6P PYK triose-P --
: - - : FBP
| ATP ADP
LacT 1 & ipH pFL L P
LACTATE <———— lactate pyruvate <7T> acetyl-CoA i
T 2 NADH
I NAD" ; NADH CoA FORMATE
! F - = arp
pyruvate FBP | 5 NAD®
\ | ADH CoA
v \
ETHANOL

Figure 3.1: Overview of molecular interactions of S. pyogenes glycolysis. Allosteric
regulation (blue) is divided in barred arrows (inhibition) or open circle-ends (activation).

Enzymes are listed in green.
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intracellular volume of 30 ml per litre of reactor volume (see Section 2.2.3). The
parameters used for the S. pyogenes model are listed in Appendix A.1 in Tables A.1
— AL6.

Since the model is also used to simulate our fermentation data (see Section 3.1.2),
the experimental set-up has to be integrated into the model. In a chemostat the
cultures are constantly supplied with medium. To keep the volume constant culture
liquid is removed at the same rate that fresh medium is added. In our experiments
the supply of medium occurs with different dilution rates of 0.05 h™* and 0.15 h!,
respectively. A dilution rate of 0.05 h *! indicates that within one hour 5% of the
culture volume is exchanged with CDM-LAB medium. The dilution rate multiplied
by the volume gives the time needed to replace the whole culture volume. For a
total volume of 0.75 1 and D = 0.05 h *! fresh medium is added with a rate of

0.05 0.05-0.751

1
— 075l = ——— " = 1.0417-107° -,
h 60-60s S

In the model the permanent supply of CDM-LAB medium is represented by a
constant influx of every metabolite contained in the medium. Species included
in both compartments are glucose, phosphate and acetate. CDM-LAB medium
contains 61.1 mM glucose, 42 mM P; and 12 mM acetate (see Section 2.1.3). The
influx of these metabolites is given by the product of dilution rate and species
concentration (see Table 3.15). At the same rate that CDM-LAB medium was added,
culture liquid and contained metabolites like glucose, acetate, ethanol, formate, P;,
pyruvate and lactate were removed. The efflux of these metabolites is modelled
by mass action kinetics with the medium supply rate (see Table 3.15) as kinetic
constant describing the velocity. Since extracellular pyruvate was detected in the
supernatant a pyruvate efflux describing the transport from pyruvate out of the
cell was added to the model. Due to the lack of knowledge of the detailed enzyme

mechanism this reaction was modelled with mass action.

Table 3.15: Rate of medium supply in %1, influx of glucose, acetate and phosphate in
% for both dilution rates of 0.05 h™' and 0.15 h™!, respectively.

D ‘ Medium supply rate ‘ Glucose inflow ‘ Acetate inflow ‘ P; inflow
0.05 10.42 0.64 0.13 0.44

0.15 31.25 1.91 0.38 1.31
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The kinetic model is able to describe continuous cultured as well as glucose-
pulsed cells. For this purpose the dilution rate as well as the velocity constant of

the pyruvate efflux reaction are set to zero.

Parameter estimation

Since not all kinetic parameters were determined in S. pyogenes and in vitro mea-
surements can deviate considerably from in vivo conditions [Teusink et al., 2000]|, we
tuned the parameters to match our time-series or fermentation data. We therefore
consider the parameters as initial estimates for the parameter estimation. Subse-
quently, our glucose-pulse and fermentation experiments were used as input for a
particle swarm algorithm with an increased swarm size of 100 carried out with the
COPASI software package [Hoops et al., 2006].

Reactions describing a transport across the membrane demand attention if the
concerning compartments differ in volume since changing the volume affects the
concentration. COPASI overcomes this problem by considering particle numbers
instead of concentrations for all calculations. For the output the concentration is
recalculated from the particle number [Hoops et al., 2006]. In general, V. values
are given per | of intracellular volume. Since the transporters are located within the
membrane the V., has to be corrected by multiplication with a surface dependent
factor. As a consequence the velocity constants of transport reactions, i.e. PTS,
GlcP, lactate transport, ACK, ADH, passive and active phosphate transport, were
varied in a wider range for parameter estimation. Thereby, the lower bound was re-
duced since the surface dependent correction factor includes the ratio of extracellular

to intracellular compartment.

3.2.2 The role of phosphate

Fitting the first version of the S. pyogenes glycolytic model of continuous cultured
cells to our fermentation data (see Section 3.1.2) resulted in a system in an equilib-
rium state with zero fluxes. It was impossible to get the system into a steady state
with positive fluxes. As a consequence of the vanishing fluxes neither glucose was
taken up nor was energy produced due to depleted PEP. The reason for that was
an exhausted phosphate pool which stopped the glycolysis at the level of GAPDH.

The depleted phosphate pool motivated us to investigate the role of free inor-
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ganic phosphate in more detail. We found out that phosphate possesses a special
role in glycolysis. On the one hand, the intracellular P; concentration depends
on the metabolic activity of the cell. In starved streptococcal cells the phosphate
level is high but it decreases as soon as a carbon source is present in the medium
[Reizer & Saier, 1987|. Therefore, intracellular phosphate cannot be fixed in the
model but has to be modelled as an independent variable. On the other hand, P;
regulates glycolytic key enzymes (see Figure 3.1).Phosphate controls, for example,
the sugar uptake by inhibiting HPr kinase and activating HPr phosphatase. As a
consequence, dephosphorylated HPr is available which is a substrate for the PTS
system. Furthermore, phosphate controls the level of PEP by inhibiting PK and
activates the break down of pyruvate by activating LDH. Moreover, the availability
of P; determines the flux through glycolysis by virtue of its involvement as essential
substrate, i.e. of GAPDH and acetate kinase.

In the first version of the S. pyogenes model intracellular phosphate was mod-
elled as a free variable but, as stated above, it was depleted shortly after glu-
cose supply. In order to solve this problem we studied the literature concerning
the intracellular phosphate level and its effectors. Thereby, we identified a mis-
match between the total measured phosphate pool under starved and glycolysing
conditions based on ¥C- and 3!P-NMR measurements of Neves and co-workers
[Neves et al., 2002]. The data reveals that phosphate is primarily incorporated
in the PEP pool (15-30 mM) and unbound P; (45 mM) during starvation but
shifts towards FBP (55 mM) and ATP (8 mM) during glycolysis. The sum of
total measured phosphate is therefore approximately 60 mM during starvation, but
approximately 120 mM during glycolysis. Unidentified phosphorylated compounds
[Kulaev et al., 1999, Mijakovic et al., 2002, Sutrina et al., 1988| or phosphate in the
cell wall are not likely to explain this difference of approximately 60 mM between
these two physiological states, as the disappearance of phosphate upon starvation
is so immediate. A subsequent literature survey showed that the concentration of
phosphate in the medium has a pronounced effect on the intracellular FBP concen-
tration during glucose consumption. This implies that the pool of free and bound
phosphate (in PEP, FBP and so forth) is critically dependent on the external phos-
phate concentration.

We independently repeated the experiments of Neves et al. [Neves et al., 2002]
by use of NAD(P) coupled enzymatic assays (see Section 2.1.5). This revealed a de-
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pendency of the build-up of FBP on the extracellular phosphate concentration (see
Section 3.1.3 and Figure 3.2). Therefore, we concluded that the observed differences
in the total phosphate pool between glycolysing and starving cells must be due to
differences in external phosphate concentrations. In summary, we have shown that
the internal phosphate pool depends on the extracellular phosphate concentrations
which implies that the inclusion of phosphate exchange over the membrane is abso-
lutely necessary in the kinetic model.

Thus, we incorporated phosphate uptake in the glycolytic model for S. pyogenes.
Experimental findings by Reizer and Saier suggest a facilitated diffusion of P; which
is inhibited by ATP and dependent on extracellular phosphate [Reizer & Saier, 1987].
Additionally, we included an ATP-dependent uptake of phosphate since genes en-

coding this transporter are found in the genome of S. pyogenes |Ferretti et al., 2001].

3.2.3 Resulting fit

The developed kinetic model is initialised with the kinetic parameters found in
literature (see Appendix A.1). Since not all kinetic parameters were determined,
we fitted them to our experimentally obtained time-series profiles and steady state

product concentrations (see Section 3.1.3 and 3.1.2).

Glucose-pulsed cells

Firstly, the glycolytic model of S. pyogenes was fitted to time-series data. Since
the metabolite concentrations are measured at different time points, more data is
available as compared to the chemostat experiments. To fit the glucose-pulse data
all kinetic parameters of the model except for the equilibrium constants were tuned.
Equilibrium constants are dependent on the chemical reaction and thus are valid for
all organisms. In order to improve the goodness of the fit we increased the weights
for the quadratic distance between the measured and the simulated extracellular
glucose level to 1.

For the three different phosphate concentrations, initial concentrations of mea-
sured and fitted metabolites were allowed to differ. We have measured initial con-
centrations for G6P (at 0 and 10 mM P;**), FBP, triose-P (at 10 and 50 mM P;*),
ATP and extracellular lactate. HPr was assumed to be 0.16 mM [Reizer et al., 1984].
HPr-Ser-P, intracellular glucose, BPG, pyruvate, intracellular lactate, acetyl-CoA,
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ethanol, formate, actetate, NADH and NADPH are set to zero to reduce the dimen-
sion of the parameter space. The remaining initial metabolite concentrations are
fitted. The range for initial extracellular glucose is restricted to 5 and 10, initial
G6P (at 50 mM P;*) can vary between 0.01 and 5, the start values of trioseP (in
the absence of P;®*), intracellular phosphate and CoA are bounded by 1 and 5 and
the initial values of PEP, NAD and NADP can vary between 1 and 10. The model
with this constraints is able to almost perfectly fit our experimental data (see Fig-
ure 3.2), as long as the phosphate uptake system is in place. The experiments were
reproduced several times with an exemplary data set displayed in Figure 3.2.

Due to the fact that the experimental data does not allow an unambiguous fit
of the data and the parameters are not identifiable (between the different fits, all
parameters varied over a wide range within the set boundaries), we performed several
hundred fits and subjected the best 50 of them to the analysis below in order to
make sure that we are observing robust effects that do not depend on the exact
choice of the parameters. The selection of this 50 models is based on the objective
value of the parameter estimation and on visual inspection of the resulting fit. All
50 models have an objective value lower than 25. One exemplary simulation of our
measured time-series profiles is shown in Figure 3.2 and the corresponding parameter
set is displayed in Appendix A.1. In summary, it is clear that P; exchange plays an
important role in sustaining a large intracellular total P; pool, affecting the levels
of phosphorylated metabolic intermediates.

Interestingly, the glucose uptake rate in S. pyogenes does not simply correlate
with the extracellular phosphate concentration. Rather, low extracellular phos-
phate concentrations (e.g. around 1 mM) decrease the glucose uptake compared
to no phosphate in the environment whereas higher phosphate concentrations in-
crease the glucose uptake rate. This observation is not trivial to explain. Because
free phosphate has such a pronounced effect on glycolysis and glucose uptake, we
studied the behaviour of intracellular phosphate in our model. Intracellular phos-
phate is extremely hard to determine experimentally in the presence of extracellular
phosphate. Insights from computational models are therefore advantageous. Cu-
riously, we observe that due to the combination of active and passive phosphate
transport low extracellular phosphate concentration can lead to a decrease of the
intracellular phosphate level in S. pyogenes, if the concentration gradient is point-

ing to the outside of the cell. Figure 3.3 displays a parameter scan of intracellular
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Figure 3.2: Metabolic profiles and model simulations of glucose-pulse experiments in
S. pyogenes. We measured the influence of 0 mM (crosses), 10 mM (circles) and 50 mM
(triangles) extracellular P; on the dynamics of (A) glucose, (C) G6P, (E) FBP, (G) triose-
P, (I) ATP and (K) extracellular lactate. Simulations show similar quantitative trends in
(B), (D), (F), (H), (J) and (L), respectively. Initial concentrations are displayed in Table
A.6 and the ratio of intra- to extracellular volume was set to 0.036, 0.032 and 0.035 for 0,
10 and 50 mM P;®*, respectively (based on OD measurements).
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phosphate against extracellular phosphate (Figure 3.3A) as well as the effect of ex-
tracellular phosphate on the flux of the passive phosphate transport system (Figure
3.3B). For low extracellular phosphate levels (e.g. around 1 mM) the flux through
the phosphate transporter is directed towards the outside removing phosphate from
the cytosol whereas higher phosphate concentrations result in phosphate uptake.
Thus, it is obvious, that certain low concentrations of extracellular phosphate lead
to a decreased intracellular phosphate concentration compared to no extracellular
phosphate. Intracellular phosphate in turn activates the PTS and is an important
substrate for GAPDH and ACK. Therefore, a decreased intracellular phosphate con-
centration leads to a decreased glucose uptake rate (see Figure 3.3C). The effect on
glucose uptake was also observed experimentally and the respective data (which were
not used for fitting of the model) are also shown in Figure 3.3D. The experimentally
observed effect is however even more pronounced than the computationally pre-
dicted one. Due to the non-identifiability of the parameters, we studied the 50 best
fits of S. pyogenes with respect to this behaviour. The above reported behaviour
is the same in many (roughly 50%) of the fits, but not in all. Thus, it is obviously
crucial to experimentally verify the observations resulting from our canonical best
fit, since the behaviour is not completely robust irrespective of the parameter set.
This has been done as described above.

We performed additional in silico experiments with our kinetic model of S. pyo-
genes in which extracellular glucose and phosphate levels were varied within physi-
ological ranges. Our experimental studies showed that glucose uptake ceases when
extracellular glucose levels rise above 20 mM under the employed conditions. We
observed that S. pyogenes consumes 5 to 10 mM of the pulse and subsequently stops
sugar uptake. We therefore varied the amount of extracellular glucose in our simu-
lation for all fitted parameter sets in the model. In all models if no or low external
phosphate was present for S. pyogenes, the glucose uptake was completely stopped
or severely inhibited at high glucose levels (the exact numerical value varied between
the different fits). Often the actual value was much higher (and unphysiological)
compared to the experimental set-up (ranging between 25 mM — 963 M), but qual-
itatively this was robust behaviour irrespective of the exact parameter set. This
inhibition could be overcome by adding phosphate, underlining again the crucial

importance of this substance for glucose uptake and glycolysis in general.
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Figure 3.3: Model simulations after a 20 mM and metabolic profiles after a 8 mM glucose-
pulse in S. pyogenes. Model predictions of intracellular phosphate levels in (A) S. pyogenes
under 0, 0.4 and 2 mM extracellular phosphate. Due to the presence of a passive phosphate
transporter low extracellular phosphate concentrations result in phosphate efflux (B) and,
thus, decrease the intracellular phosphate concentration. Since the PTS system is regulated
by phosphate, the sugar uptake is slower at low extracellular phosphate concentrations (C)

which we also determined experimentally (D).

Continuous culture

The model fitted to the glucose-pulse data (see Section 3.2.3) was subsequently
fitted to steady state data. Hereby, only the velocity constants were modified. This
makes sense, since the V., value of an enzyme depends on the amount of enzyme
present which will certainly not be exactly the same in both experiments. K, values
are characteristics of the enzymes and independent from the amount of enzyme used

in the ansatz. The fitted velocity constants are displayed in Table 3.16. Table 3.17
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summarizes the initial metabolite concentrations and compares the simulated steady

state species levels with the measured end-product concentrations.

Table 3.16: Velocity constants (in %) of the steady state model.

Variable Optimized
VPTS 0.58
ValeP 0.003
VPP 731.28
VHPIK 176.47
VEK 1.44
VPFK 12.45
VPasell 0.13
VEBA 247.97
VGAPDH 7.92
VOAPN 1.14
VENO 20.45
VPYK 6.35
vEnT 0.03
Vi 5.75
VLacT 289.00
VPEL 134.23
VACK 8.67
VADH 29.89
VhIT 0.32
VEIi;I}‘{active 0.05
VATPase 112.74
VNPOX 210.97
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Table 3.17: Initial metabolite concentrations and simulated and measured steady state

end-products (mM) in the continuous cultured cells. n.d., not determined.

Initial End-product concentration
Species concentration Simulation Measurement
G6P 1.13 1.20 n.d.
FBP 6.20 25.90 n.d.
Triose-P 3.12 6.75 n.d.
BPG 0.20 0.08 n.d.
PEP 13.86 2921.8 n.d.
Pyruvate 3.78 0.008 n.d.
Acetyl-CoA 3.46 6.14 -107° n.d.
P; 17.36 42.00 n.d.
ADP 3.05 4.24 n.d.
ATP 1.95 0.76 n.d.
NAD 8.54 2.14 n.d.
NADH 0 6.40 n.d.
CoA 1.07 4.54 n.d.
Lactate 8.35 5.97 -107° n.d.
Glucose 2.40 9.36 -10~* n.d.
HPr-ser-P 0.16 0.12 n.d.
HPr 0 0.04 n.d.
NADP 0.72 0.72 n.d.
NADPH 0 2.93 1074 n.d.
Acetate 12.2 36.19 35.10
Glucose™ 61.1 3.37 -10~* 0.00
Lactate®™ 7.34 77.36 69.97
Py 42 42 40.07
Formate 5.20 21.58 35.41
Ethanol 3.03 21.48 19.26
Pyruvate®™ 8.54 23.27 1.50

Although the steady state concentrations of intracellular metabolites are not re-
stricted, all transient species levels show reasonable concentrations compared to

literature data (e.g. for L. lactis steady state levels are listed in [Even et al., 2001])
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except for PEP which is in the molar range and, thus, too high. The simulated
cell is not completely glucose-limited since small amounts of glucose remain in the
supernatant. Nevertheless, the model is able to reflect the measured end-product
concentrations of acetate, extracellular lactate, external phosphate and ethanol. Sur-

prisingly, the formate and extracellular pyruvate levels are too high.

3.2.4 Sensitivity analysis

The developed kinetic model contains many unknown parameters. In order to reduce
the search space in parameter estimation we determine the impact of each parameter
on the system by performing a sensitivity analysis with the model of glucose-pulsed
cells (see Section 3.2.3). If a parameter has a low sensitivity, it exerts a small
control on the system and the determination of its exact value is not needed. For
a parameter with a high impact, the knowledge of the accurate value improves the
model and, therefore, a measurement of this kinetic parameter is essential. Two
different sensitivity analysis methods were used to explore the parameter sensitivity
of the kinetic model of S. pyogenes. We performed a global strategy to identify
the general features of all parameters within a physiologically-feasible range and,
secondly, fitted the model several times to the experimental data and calculated the
local sensitivities of this set of models to use tighter boundary conditions on the

parameter scan.

Random sampling

We performed a global sensitivity analysis since the exact parameter set is not
known and a local method depends directly on the parameter space. One way
to perform a global sensitivity analysis is an extensive random exploration of the
parameter space. Thereby, the parameter values were allowed to vary within the
physiologically-feasible ranges which we also used for parameter estimation (see
Section 3.2.1). In each sampling iteration the parameters were randomly selected
within these defined boundaries. With this parameter set we subsequently calculated
scaled parameter sensitivities on the species concentrations. To analyse the results
of this approach, histograms with non-equidistant bins (being more precise for small
sensitivities and having larger ranges for higher sensitivities, e.g. lower or higher
than 10, respectively) were plotted using MATLAB 7.8 (The MathWorks, Inc).
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Figure 3.4: Results of the global sensitivity analysis of the velocity constant of the
passive phosphate transporter on the FBP level in S. pyogenes. The scaled sensitivities of
the evaluated models are shown on the z-axis and on the logarithmic y-axis the sensitivities

are plotted. This parameters can have a high impact on the FBP concentration.

Exemplary the impact of the velocity constant of the passive phosphate transporter
on FBP is shown in Figure 3.4.

Due to the random sampling the calculated sensitivities give the possible impact
of the parameters on the system but imply no information about the probabilities
of these values. However, if one histogram displays that the parameter has low
sensitivities we conclude that the knowledge of the exact parameter value does not
improve the model and, thus, the determination is not necessary. Therefore, we
concentrate on all parameters which can have high sensitivities. For each parame-
ter we calculated the maximal sensitivity from the data obtained from the random
sampling approach. For each species the maximal impact of each parameter on the
particular metabolite was plotted. As we focus on the role of phosphate and FBP,
Figure 3.5 shows the distribution of the parameter sensitivities on these concen-
trations. The model parameters are plotted on the x-axis and the sensitivities are
shown on the logarithmic y-axis. The figure reveals that almost all parameters can
exert a large control on FBP at 0, 10 and 50 mM and on P; in the absence of external
phosphate, respectively, in certain parameter sets. Interestingly, the parameters of

the glycolytic model of S. pyogenes show a low impact on the phosphate level in the
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Figure 3.5: Maximal parameter sensitivities on (A) FBP and (B) P; for S. pyogenes.
The parameters are shown on the z-axis and on the logarithmic y-axis the sensitivities
are plotted. All parameters can have a high impact on FBP at 0, 10 and 50 mM P;®*.
Contrary to FBP, all parameters show a low impact on the P; level at 10 and 50 mM

external phosphate.

presence of 10 or 50 mM P;**. Therefore, with this very general approach we are not

able to identify crucial parameters and we have to restrict our search space further.

Fitting and local sensitivity analysis

In order to use tighter boundary conditions we calculated scaled sensitivities of the
best 50 fits (see Section 3.2.3). Each model describes our experimental data but they
differ from each other in the parameter set. From these 50 models scaled parameter
sensitivities on all species concentrations and reaction fluxes were calculated for
varying extracellular phosphate concentrations (0, 10 and 50 mM) and plotted as
histograms. These results represent a subset of the outcome of the random sampling
method.

We concentrated on the parameter sensitivities on FBP, P;, PFK flux and PTS
flux. In order to analyse the outcome of this approach we classified the parameters
into groups according to their maximal effects on the studied system variable. Thus,
we obtain one set of parameters having a high impact on the particular species or
flux, one class exerting a medium effect and one set showing a low impact. According
to our definition, a parameter having a maximal scaled sensitivity higher than plus or
minus one exerts a high impact on the studied model parameter whereas a maximal

control lower than plus or minus 0.3 characterises a parameter having a low effect
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on the investigated system variable. Parameters showing a sensitivity between plus
or minus 0.3 and plus or minus one are classified as exhibiting a medium effect. The
results of this approach are summarised in the Tables A.7 — A.10.

As displayed in Table A.7, the control on the FBP concentration is distributed
among all parameters. In general, the maximal scaled parameter sensitivities are
lower than 10 (data not shown). The sensitivities of both phosphate transport sys-
tems, the active and the passive one, are affected by external phosphate. That
makes sense since both transporters are dependent on the presence of extracellular
phosphate and does not operate in the absence of that metabolite. We can iden-
tify the parameters of the lactate transporter and some single parameters such as
the equilibrium constant of PFL and PYK as parameters having a low impact on
the FBP level. The remaining parameters can have at least a medium effect. In
the presence of external phosphate, the parameters of the active and the passive
phosphate transport can exert a medium or high impact on FBP.

Considering the sensitivities on internal phosphate (see Table A.8) it is obvious
that the parameters have a lower impact on this species as compared to FBP. We
can identify the ATPase and the glucose permease as reactions which can have a
high impact whereas the mixed acid branch, LDH and the lactate transport have a
low effect on the phosphate concentration. The remaining processes are classified
in the group showing medium sensitivities.

Both fluxes through PTS and PFK are controlled by many parameters (see Ta-
bles A.9 and A.10). Again, we can identify the phosphate uptake systems in the
absence of phosphate, the lactate transporter and some single parameters such as
the equilibrium constant of ENO as having a low effect on the fluxes. However, the
remaining processes can exert at least a medium effect on the PTS and PFK flux,
respectively.

In summary, we are not able to identify crucial parameters even with the described

analysis and the usage of physiological conditions.

MCA

Having a model describing continuous cultivated cells (see Section 3.2.3), the control
exerted by the parameters on a system’s variable can be studied by means of MCA
(see Section 2.2.9). This local sensitivity analysis facilitates predictions concerning

the robustness and validity of a model.
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Similar to the global sensitivity analysis of the kinetic model of glucose-pulsed
cells, the control on the steady state fluxes and metabolite concentrations is broadly
distributed among the reactions of the model. Consequently, the steady state con-
centrations and fluxes are strongly influenced by small perturbations in the param-
eters.

However, we can identify some reactions having a low flux and concentration
control coefficient. Surprisingly, among these are the reactions involved in sugar
uptake such as PTS, GK and glucose permease. Furthermore, we found out that the
lactate transporter as well as the reactions describing pyruvate and lactate outflow
from the vessel have a small control. Since S. pyogenes carries out enhanced mixed
aicd fermentation as compared to L. lactis [Fiedler et al., 2011], the low impact of
the lactate transport makes sense.

Reactions showing a particular high impact on the steady state concentrations
and fluxes comprise PFK, PYK, ATPase, but also glucose inflow as well as phos-
phate in- and outflow with the medium. Since the glucose inflow maintains the
glucose supply of the system, a high impact makes sense. The high impact of the
phosphate in- and outflow on the steady state concentrations and fluxes can be ex-
plained by the effect this metabolite exerts on the intermediate FBP and the glucose
uptake rate. However, it is surprising that the passive phosphate transport system

does not show a high control coefficient.
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3.3 Comparison between S. pyogenes and L. lactis

The kinetic model of S. pyogenes glycolysis presented in the last section is used to
facilitate inter-species comparison between this lactic acid bacteria and the closely
related L. lactis. Although both LAB have a similar primary metabolism they
persist in different environments. In this section the L. lactis model, the similarities
and the differences to the model of S. pyogenes and the extent to which these
differences contribute to different functionalities are described. The L. lactis model
was developed by Mark Musters and modified by me to be comparable to the S.

pyogenes model. All analyses were done by myself.

3.3.1 Kinetic model of L. lactis

Setting up the kinetic model for L. lactis on the basis of existing models necessitated
a (re)assessment of all relevant processes and their respective regulation as described
in the following. Like in S. pyogenes, sugar is mainly taken up via the PTS and di-
rectly converted into G6P [Deutscher et al., 2006]. A low-affinity glucose permease
is present, but its contribution to the overall glucose uptake is limited in L. lactis
[Castro et al., 2009]. Therefore, this permease was omitted in our L. lactis model.
Furthermore, the PTS system is modelled as a single step reaction. The conversion
of glucose to its main product pyruvate proceeds via the Embden-Meyerhof-Parnas
pathway. Thereby, PYK is allosterically activated by FBP and inhibited by P;
[Crow & Pritchard, 1976].

In glucose excess conditions, the majority of the synthesised pyruvate is converted
into lactate, catalysed by LDH. This enzyme is allosterically activated and inhib-
ited by FBP and Pj, respectively, in L. lactis [van Niel et al., 2004|. PFL catalyses
the conversion of pyruvate and CoA into acetyl-CoA and formate. This reaction
is inhibited by GAP [Asanuma & Hino, 2000, Solem et al., 2008|. Acetyl-CoA is
metabolised to acetate via acetylphosphate or, alternatively, via acetaldehyde to
ethanol [Thomas et al., 1979]. The compounds acetate, ethanol and formate are
synthesised and subsequently transported out of the cell. An ATPase reaction is
included cleaving the produced ATP into ADP and P;.

Since our experiments show the significance of including phosphate exchange
over the membrane in the kinetic model, we extended the model with an ATP-driven

phosphate uniporter which is feedback regulated by the intracellular phosphate level
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[Poolman et al., 1987|; phosphate leakage was assumed to be negligible.
To simplify the model and reduce the number of parameters, the following metabo-

lites were lumped:
e G6P and F6P were lumped into the G6P pool,
e DAP and GAP are defined as triose-P pool,

e 2PG, 3PG and PEP are collected in the PEP pool and

e all mixed acid products (formate, ethanol and acetate) were lumped into the

mixed acids pool.

Under the conditions for which we developed the model, mixed acid formation
was negligible due to the fact that the measured final lactate concentration in the
medium corresponds to roughly twice the entered glucose concentration (see Figure
3.7, A and G). The ATP/ADP, NAD"/NADH and P; pools are set as free-state
variables, in contrast to other kinetic models [Neves et al., 1999, Voit et al., 2006a,
Voit et al., 2006b]. Fig. 3.6 shows the structure of the L. lactis model.

As for the S. pyogenes model, the parameters in the L. lactis model were opti-
mised with parameter estimation to fit in vivo time-series data |Levering et al., 2011].
These time-series data comprised our own measurements (see Figure 3.7) as well as
the published NMR data by Neves et al. (see Figure 3.8) [Neves et al., 2002]. For
the two different data sets, initial concentrations of metabolites (both measured
and fitted ones), as well as the activity of the ATPase were allowed to differ. In
addition, initial concentrations that were not measured in our own or in the NMR
data were fitted for the respective data sets. Thus, initial concentrations of PEP,
extracellular lactate, ATP (without phosphate in the medium), ADP, intracellular
phosphate and NAD were fitted for our experiments (at 0, 10 and 50 mM extra-
cellular phosphate). For the Neves data, initial concentrations of ATP, ADP and
phosphate for the *C-NMR data set and FBP, lactate, NAD, PEP and ADP for the
3IP_NMR data set were fitted. All other parameters stayed the same irrespective of
the assumption that the V., values (that include the enzyme expression levels) for
the two different experimental data sets will certainly not be exactly the same. How-
ever, the model with these constraints is able to almost perfectly fit the dynamics
for different strains (i.e. MG1363 for the Neves experiments [Neves et al., 2002] and
NZ9000, a MG1363 derivative, for our glucose-pulse experiments) with one single
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thermodynamically-consistent parameter set (though with variable ATPase activi-
ties) as long as the phosphate uptake is included in the model (see Figure 3.7 and
3.8). Without this reaction, the data cannot be fitted since P; exchange plays an
important role in sustaining a large intracellular total P; pool, affecting the levels
of phosphorylated metabolic intermediates. The parameters of the L. lactis model
are given in |Levering et al., 2011].

Due to a high number of unknown parameters and little experimental data the
optimisation problem is underdetermined and the parameter set resulting from the
initial fit is not unique. As done for the S. pyogenes model we performed several
hundred fits and subjected the best 50 of them to the analysis below to overcome

this problem.

3.3.2 Topological and regulatory differences

After the glycolytic models of both LAB, S. pyogenes and L. lactis, are set up and
able to describe our experimental data, they are used to study the differences be-
tween the two bacteria. In a first step we concentrate on the topological differences.

In the model for S. pyogenes the PTS system is decomposed in HPr and serine-
phosphorylated HPr (see Figure 3.1 and 3.6) [Reizer et al., 1985]. In L. lactis, the
PTS is modelled as a single step. In S. pyogenes this refinement was motivated by
the presence of the expulsion mechanism.

The gene encoding the FBPase is not present in the genome of S. pyogenes and,
consequently, this reaction was removed from the model. Instead, an expulsion
mechanism of G6P was introduced, which is catalyzed by the HPr-Ser-P-activated
sugar-phosphate phosphatase IT (Pasell) [Ye et al., 1996]. In S. pyogenes this ex-
pulsion mechanism yields free inorganic phosphate in glycolysing cells whereas the
FBP dephosphoryltaion is not regulated in L. lactis. The incorporation of Pasell
led to an inclusion of a GlcP participating in the expulsion mechanism and in the
incorporation of a glucokinase that is allosterically inhibited by G6P and ADP
[Porter et al., 1982|. For L. lactis, GlcP and GK are both omitted.

Interestingly, S. pyogenes possesses a GAPN which is not present in the genome
of L. lactis. This reaction enables S. pyogenes to produce PEP required for sugar
uptake in the absence of phosphate or ADP.

Since S. pyogenes shows a higher heterofermentative capacity than L. lactis
[Fiedler et al., 2011], the mixed acid branch is subdivided into acetate and ethanol
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Figure 3.7: Metabolic profiles and model simulations of 5 mM glucose-pulse experiments
in L. lactis. (A) Extracellular glucose, (C) G6P, (E) FBP, (G) ATP and (I) external
lactate profiles as measured in glucose-pulse experiments with extracellular P; levels of 10
(circles) and 50 mM (triangles) and (B), (D), (F), (H) and (J) show the L. lactis model
simulations. Initial concentrations are given in [Levering et al., 2011] and the ratio of
intra- to extracellular volume was set to 0.0099 and 0.0129, respectively (based on OD

measurements).
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Figure 3.8: Metabolic profiles and model simulations of glucose-pulse experiments in L.
lactis. 13C- and 3'P-NMR time-series profiles [Neves et al., 2002] of (A) FBP, glucose and
lactate, (C) NAD™ and NADH and (E) PEP pool and ATP when 80 mM of glucose is
added; (B), (D) and (F) are corresponding model simulations. Simulations were performed
with a ratio of intra- to extracellular volume of 0.047 and the following initial concentra-
tions: [glucose] = 80 mM, [PEP pool| = 20 mM, [P;] = 120 mM, [P;**| = 50 mM, [ATP|
= 0.1 mM, [ADP] = 8.9 mM and [NAD"| = 5 mM. The other metabolic intermediates are

set to zero.

production via acetaldehyde whereas it is modelled as one step in L. lactis.
Furthermore, the pyruvate-controlled export of lactate [Harold & Levin, 1974] is
modelled explicitly in S. pyogenes but implicitly as one step with LDH in L. lactis.
We can also find differences in the phosphate uptake mechanisms of both LAB.
While S. pyogenes possesses two phosphate transporters, an active and a passive
system [Ferretti et al., 2001, Reizer & Saier, 1987|, L. lactis is dependent on active
phosphate uptake [Poolman et al., 1987].
Additionally, the regulation of some glycolytic enzymes differs between both LAB.
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In S. pyogenes, sugar uptake is regulated by the availability of unphosphorylated
HPr. Thus, it is activated by phosphate and inhibited by FBP and ATP. The
model of L. lactis lacks the regulation by ATP. GAPDH is inhibited by NADH in
S. pyogenes |Pancholi & Fischetti, 1992] what is not modelled for L. lactis. PYK
is also regulated differently in both LAB. In L. lactis, it is activated by FBP and
inhibited by P; [Crow & Thomas, 1982| while it is activated by G6P in S. pyogenes
[Yamada & Carlsson, 1975al. Interestingly, LDH is activated by FBP and inhibited
by P; in L. lactis [van Niel et al., 2004] whereas it is regulated by NAD™ (inhibition)
and FBP and P; (both activation) in S. pyogenes, which we determined experimen-
tally (see Section 3.1.4). Since the mixed acid branch is modelled as one step in L.
lactis no regulation of acetate kinase or alcohol dehydrogenase is included. These
steps are regulated by FBP and ATP, respectively, in the glycolytic model of S.
pyogenes |Lopez de Felipe & Gaudu, 2009, Palmfeldt et al., 2004].

3.3.3 Comparative systems biology of L. lactis and S. pyo-
genes glycolysis

As described above, we can identify differences between both LAB based on the
model topology. In the following section the impact of these differences is explored
computationally. As stated before (see Section 3.1.3), our glucose-pulse experiments
in resting cells with varied extracellular P; concentration (0, 10 and 50 mM) showed
that the FBP levels in both LAB are strongly influenced by the extracellular phos-
phate concentration. This is reflected and reproduced by our kinetic models. The
experiments were reproduced several times with exemplary simulations in Figure 3.2
and 3.7.

The rate of glucose uptake was also slightly altered by extracellular P; in L. lactis
and to a much larger extend in S. pyogenes with glucose uptake rates that were
higher in S. pyogenes than in L. lactis (Figure 3.2A and 3.7A). Once again, our
models reproduce this behaviour very well (see Figure 3.2B and 3.7B). As stated
before, the glucose uptake rate in S. pyogenes does not simply correlate with the ex-
tracellular phosphate concentration but low extracellular phosphate concentrations
(e.g. around 1 mM) decreased the glucose uptake slightly compared to no phos-
phate in the environment whereas higher phosphate concentrations increased the

glucose uptake rate (see Figure 3.2A). Due to the fact that free phosphate has such
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Figure 3.9: Model simulations of intracellular phosphate levels after a 20 mM glucose-
pulse in L. lactis under 0, 0.4 and 2 mM extracellular phosphate. Due to the presence of
an active phosphate transporter low extracellular phosphate concentrations does not result

in phosphate efflux as was observed for S. pyogenes.

a pronounced effect on glycolysis and glucose uptake in S. pyogenes, we studied the
behaviour of intracellular phosphate in our kinetic model of L. lactis. We observe
that the intracellular phosphate level in L. lactis raises with the extracellular level
(see Figure 3.9).

Our experimental glucose-pulse studies showed that extracellular glucose levels
of 20 mM and higher are no obstruction for glucose uptake in L. lactis although
uptake ceases in S. pyogenes as reported before (see Section 3.2.3). We therefore
varied the amount of extracellular glucose in our simulation for L. lactis. If no or
low external phosphate was present, the glucose uptake was completely stopped or
severely inhibited at high glucose levels (the exact numerical value varied between
the different fits). Often the actual value was much higher than in the experimental
set-up (ranging between 60 - 4500 M). As observed in the model of S. pyogenes,
this inhibition could be overcome by adding phosphate. However, this is not robust
behaviour and we have not verified this observation experimentally.

Another interesting observation is the fact that S. pyogenes seems to be more
efficient in converting glucose to ATP, exhibiting a higher uptake rate than L. lac-
tis. The model shows this to be a direct consequence of the antagonistic effects
of allosteric regulators (FBP, P;, NAD", NADH). PYK and especially LDH are
differently regulated in L. lactis (see Figure 3.1) and S. pyogenes (see Figure 3.6).
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In L. lactis, LDH is allosterically regulated by FBP and antagonistically by P;, in-
dicating that during glycolysis where P; is low and FBP high, the flux is directed
towards the less efficient lactate production. S. pyogenes LDH lacks this antagonis-
tic regulation by FBP and P;. Here, FBP and P; both activate LDH whereas the
product NAD™ inhibits LDH. This indicates that LDH is running at a submaximal
speed during glycolysis and more flux can be diverted to the more efficient mixed

acid fermentation.
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3.4 Oscillations caused by the stoichiometry

Biological systems such as biochemical networks can show complex behaviours like
oscillations. In this context, mathematical models facilitate the understanding of
the scope of behaviours that a biological system can exhibit. Glycolytic oscillations
have been extensively studied in yeast experimentally and computationally. There
are two hypotheses for the occurrence of oscillations. Firstly, oscillations might
result from the allosteric regulation of PFK or, secondly, from the stoichiometry
of glycolysis [Aon et al., 1991]. The use of PEP for sugar uptake [Aon et al., 1991]
but also the autocatalytic feedback loop caused by ATP [Cortassa et al., 1991] are
stoichiometric factors which are supposed to introduce oscillatory behaviour.

So far, E. coli is the only bacterium for which glycolytic oscillations were stud-
ied experimentally [Ju & Trivedi, 1998, Schaefer et al., 1999] and by simulations
[Chassagnole et al., 2002, Ricci, 2000]. Both published models include the PTS sys-
tem and regulation of PFK. Here again the occurrence of glycolytic oscillations is
believed to be generated by the regulation of PFK [Ju & Trivedi, 1998] and it is
proposed that ADP (and ATP) exerts a major influence on the dynamic behaviour
through the regulation of the enzymes PFK and PYK [Ricci, 2000].

While developing the glycolytic model of S. pyogenes we observed that some
models fitted to our glucose-pulse data show damped oscillations. Since the PFK is
not regulated in our model this oscillations are caused by the stoichiometric nature
of glycolysis. Since a living cell is mathematically described by a model in steady
state we searched for oscillations in the glycolytic model for continuous cultured
cells in glucose-limited CDM-LAB medium. In the following the method applied to

determine the parameter set for which the model shows oscillations is described.

3.4.1 Finding oscillations in the model

Since oscillations in lactic acid bacteria are not observed experimentally so far, we
studied the ability of the glycolytic model of S. pyogenes to show oscillations. There-
fore, the model of continuous cultured cells was used and the rate of one oscillating
species — we have chosen the FBP concentration — was maximised according to the

following equation by scanning the model parameters

FBP.Rate + FBP.Rate - FBP.Conc
1+ FBP.Conc + (FBP.Conc)?
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whereas FBP.Rate is defined as the integral of the absolute concentration change

given by

4IFBP]|dt, ift> 100,
FBP.Rate = J lalFBP l

0, else

and FBP.conc is the rate of change of the species concentration and is determined
by an ODE. In order to prevent a large peak or a depleted FBP concentration as
the optimisation result, a time delay of 100 s is introduced in FBP.Rate. After that
initial transient phase a spontaneous depletion or accumulation is unlikely. The
parameters were allowed to vary in the same physiologically ranges used for the

parameter estimation (see Section 3.2.1).

3.4.2 Results

Applying the above described optimisation yields a model showing glycolytic oscil-
lations. Exemplary the profiles of G6P, FBP, ATP, ADP, NADP" and NADPH
are shown in Figure 3.10. All metabolites show oscillatory behaviour whereas the
amplitude changes between the species. The metabolites glucose, BPG, pyruvate,
lactate, CoA, acetyl-CoA, the extracellular metabolites, NAD" and NADH show
small amplitudes which are hardly recognisable as compared to the other species
such as FBP. Compared to literature data from E. coli [Schaefer et al., 1999], the
simulated amplitudes are lower in S. pyogenes. However, in summary we have shown
that, according to our analyses, the glycolytic system of S. pyogenes is able to show
oscillatory behaviour and that these oscillations are caused by the stoichiometry

since a PFK regulation is missing in this organism.
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Figure 3.10: Model simulations of (A) G6P, (B) FBP, (C) ATP and ADP and (D)
NADP" and NADPH showing glycolytic oscillations.
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3.5 Reconstruction of the metabolic network of S.

pyogenes

Metabolic networks or genome-scale models comprise a list of associations between
reactions, enzymes, substrates and products. They can be used among others to
explore the response of an organism’s metabolism to changes in its environment, gain
insights into the genotype-phenotype relationship, identify the physiological states
which are achievable by a given metabolic network or to analyse perturbations like
gene deletions or drug applications [Durot et al., 2009].

The construction of a genome-scale model is based on the organism’s genome and
requires a large amount of knowledge about the organism’s metabolism. However,
the increasing availability of experimental high-throughput data like transcriptomics
and proteomics have facilitated the knowledge about metabolic components and the
interactions between them and, thus, the development of metabolic networks.

Here, we concentrated on all reactions essential for growth. To speed up the
development of the first genome-scale model of S. pyogenes the semi-automatic AU-
TOGRAPH method [Notebaart et al., 2006] (see Section 2.3.1) was used. AUTO-
GRAPH was applied to the annotated genome sequence of S. pyogenes and already
annotated reference models from Bacillus subtilis, Escherichia coli, Lactobacillus
plantarum and Lactococcus lactis. This approach predicts the query gene’s function
based on orthology detection. This step was followed by a manual curation of the
initial reconstruction which includes a consistency check and gap filling (see Sections
2.3.2,3.5.3 and 3.5.4).

According to the experimental set-up, the growing cell is simulated by a model in
steady state with continuous in- and outflow of CDM-LAB medium and metabolic
products from the reaction vessel. Nutrients contained in the medium and accumu-
lating products can be transported in and out of the cell, respectively. Consequently,
two compartments are considered, i.e. the reaction vessel and the cytosol. So called
exchange reactions in the model guarantee a constant supply of fresh medium and
contained nutrients but also prevent product accumulation in the reaction vessel.

These exchange reactions cover

e uptake reactions for the carbon source, here glucose, and amino acids,

e reversible transport reactions for vitamins, protons, water, carbon dioxide and
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e efflux of metabolic products.

Required compounds can be taken up by the organism from the extracellular space
by specific transport reactions and metabolic products can be transported into the
reaction vessel via efflux reactions. Thus, exchange reactions are defined by the
experimental set-up whereas transport reactions cover the abilities of the cultivated
organism to take up or secrete substances. Since transporters in S. pyogenes are
poorly studied, required reactions were incorporated based on experimental findings,
e.g. measurement of pyruvate in the supernatant, or adopted from the L. lactis

model.

3.5.1 Metabolic pathways incorporated in the model

All metabolic reactions essential for cell growth were reconstructed and included in

the model to simulate cell growth. The model comprises

e production of DNA and RNA,

e protein biosynthesis,

e synthesis of membrane, cell wall and capsule components,
e primary and (poly)saccharide metabolism,

e amino acid metabolism,

e pathways for the synthesis of fatty acids and

e production of vitamins and cofactors.

An overview of the single pathways is given in Section 3.5.5.

3.5.2 Orthology detection

After the reconstructed pathways are defined we apply the AUTOGRAPH approach

[Notebaart et al., 2006 to the genome sequence of S. pyogenes to predict the molec-

ular function of genes involved in cell growth based on orthology determination.
The molecular properties of a protein or a gene are encoded by its sequence.

Consequently, function prediction methods are often based on the determination of
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homology to molecules of known function. Two genes are homologous if they are
derived from a common ancestor. Homologous genes can be further classified in
orthologs and paralogs. Orthologs are homologous genes in different species that
were separated by a speciation event whereas paralogs were separated by a gene
duplication event within one species. Hereby, one has to distinguish between out-
paralogs which predate the species split and in-paralogs that arose after the species
split and are orthologs by definition [Remm et al., 2001|. Orthologous genes will in
most cases carry out identical functions, whereas paralogous genes will have similar
but possibly distinct functions [Francke et al., 2005].

For function prediction the AUTOGRAPH method is applied to the annotated
genome of S. pyogenes using four manually curated metabolic networks as input.
AUTOGRAPH uses INPARANOID |[Remm et al., 2001] for orthology detection.
INPARANOID is based on the idea that two orthologous sequences score higher
with each other than with any other sequence of the genome [Remm et al., 2001].
Thus, the algorithm searches for most similar sequences in the query and the ref-
erence organisms. The most similar sequences are called best hits. Confidence is
gained by bi-directional best hits. We predicted 332 genes of S. pyogenes to be
associated to 351 reactions and 223 non-gene associated reactions (see Appendix
B). Non-gene associated reactions comprise both transport reactions and reactions
which enzymes are not linked to a gene yet. For the reconstruction, we concentrated
on genes encoding enzymes involved in cell growth.

The main problem arising by homology detection are incomplete Enzyme Com-
mission (EC) numbers and annotation errors in databases [Notebaart et al., 2006].
By using manually curated reference networks, errors caused by misannotations can

be corrected. However, a manual curation step is crucial.

3.5.3 Manual curation

Manual curation of an initial metabolic reconstruction is laborious and requires the
combination of available information on protein sequence, phylogeny, gene context
and co-occurrence but also high-throughput data [Francke et al., 2005]. Manual

curation is required to

e couple the query gene to one of the orthologous genes from the reference net-

works and to define its function. Since homology based methods do not always
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yield a correct coupling the correctness of the predicted orthologs has to be

checked manually.

e trace back the experimental evidence since annotations in the database entries

are often incorrect.

e add organism-specific reactions or pathways that are absent in the reference

networks.

e check unspecific function identifiers like incomplete EC numbers manually.

These can lead to false reaction associations.

For all genes of S. pyogenes the enzymes encoded by the best hit were transferred
to the query gene. However, for some genes no ortholog was predicted. Missing gene-
reaction associations can be divided into two groups. Either the missing association

refers to

e organism-specific S. pyogenes genes that are not present in the reference or-

ganisms or

e predicted orthologs with a missing reaction association in the reference metabo-

lic networks, e.g. due to a lack of experimental evidence [Notebaart et al., 2006].

For manual curation BRENDA [Schomburg et al., 2002|, NCBI [Geer et al., 2010]
and UniProt [UniProt Consortium, 2010] were used as sources of information on
enzymes. Furthermore, KEGG [Kanehisa & Goto, 2000] as a collection of informa-
tion on genes, enzymes, function and pathways and TransportDB [Ren et al., 2004]
to find information on transport functions encoded by many already annotated
genomes were used.

Since the reaction stoichiometry is crucial for most quantitative modelling ap-
proaches like FBA (see Section 2.3.3) all reactions added to the network has to be
balanced with respect to oxygen atoms, hydrogen atoms and charges. Most reactions
were copied from the networks of L. plantarum |[Teusink et al., 2005] and L. lactis
(unpublished results) which was kindly provided by Bas Teusink. However, some
reactions had to be checked in databases. In most databases protons and cofactors

are omitted and, thus, the reaction had to be balanced manually.
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3.5.4 Filling gaps

Since the reconstruction is used to simulate growth and predict the flux through
the network the cell is required to achieve a steady state with balanced production
and consumption of all intermediate substrates and products. To ensure this, all
reactions have to be balanced and essential pathways have to be complete.

The initial reconstruction had several gaps, e.g. in pathways required for cell
wall assembly. In this context, a gap refers to a reaction in a pathway that is not
coupled to a gene and prevents the production of one or more essential components
of the biomass reaction. A gap in the initial metabolic network occurs because the
particular gene is either not present in the organism’s genome or it is present but
could not be recovered by the automatic reconstruction process due to differences in
the sequence. To fill these gaps a good knowledge about the organism’s physiology
is required.

The functionality of physiologically essential pathways in the reconstruction can
be tested using FBA. Therefore, a demand reaction in the form of an artificial sink
is added to the model and the flux through this step is maximised. A maximal flux
of zero through the end-product demand reaction indicates an unbalanced pathway.
To find the unbalanced step, the fluxes through the precursor producing reactions
are considered. If the first reaction in the pathway with a maximal flux of zero is
identified it has to be established if the flux is zero due to a missing substrate or
cofactor or due to an accumulating product. If a substrate or cofactor is missing in
most cases this problem is due to a missing reaction producing the species. If a prod-
uct is accumulating a consuming reaction lacks in the model. To solve this problem

a literature search or a search in KEGG [Kanehisa & Goto, 2000] was performed.

3.5.5 Characteristics of S. pyogenes

The manually curated metabolic reconstruction facilitates gaining insight into the
metabolic capabilities of S. pyogenes. In the following paragraphs for all metabolic
pathways incorporated in the genome-scale model the characteristics of S. pyogenes
are described. A list with all compounds and reactions included in the model can
be found in Appendix B.1 and B.2.
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Production of DNA and RNA

Nucleotides required for DNA and RNA production are synthesised in the pyrimidine
and purine biosynthesis. Since DNA and RNA synthesis is conserved, all enzymes
required for the synthesis of the according nucleotides are present. Like all other
Gram-positive bacteria, S. pyogenes lacks the adenylate cyclase and, thus, no cyclic
adenosine monophosphate (cAMP) is produced. cAMP is a second messenger which

is involved, for example, in the control of the lac operon.

Protein biosynthesis

Protein biosynthesis is represented by the assembly of charged transfer RNAs (tRNA)
in the model. tRNAs transport active amino acids to a growing polypeptide chain.
The covalent linkage of amino aicd to tRNA is catalysed by aminoacyl tRNA syn-
thetases. All genes encoding the synthetase enzymes are included in the initial
reconstruction except for the gene encoding a specific glutaminyl-tRNA synthetase
(tRNA®™) As in L. plantarum and L. lactis, no tRNAS™ exists in S. pyogenes.
Instead, tRNAC™ can be loaded with glutamine and, additionally, with glutamate.
The loading of tRNA®™ with glutamine follows the reaction

ATP + Gln + tRNA®"™ — AMP + Glu-tRNA®™ + H* + PP,
and is catalysed by the glutamyl-tRNAS!™ synthetase whereas discharging
ATP + Glu-tRNA®™ + NH; — AMP + tRNAC™ + H' + PP;

is carried out by glutaminyl-tRNA synthetase.

Synthesis of membrane, cell wall and capsule components

Within the reconstructed network the synthesis of membrane, cell wall and capsule
components is represented by the production of phospholipid, lipid II, peptidoglycan,
lipoteichoic acid and the capsule polysaccharide.

The cell membrane separates the cytosol from the environment and consists of a
phospholipid bilayer with integral proteins. Phospholipids contain a diglyceride, a
phosphate group and a simple organic molecule which is lysine in S. pyogenes, yield-
ing lysylphosphatidyl glycerol. Phospholipids determine the structure and flexibility
of the cell membrane [Seltmann & Holst, 2002|. Two lysylphosphatidyl glycerol form



94 Chapter 3. Results

cardiolipin, another component of the cell membrane which is involved in osmotic
adaption [Romantsov et al., 2009]. Phosphatidic acid, which is formed by the as-
sembly of all products of the fatty acid metabolism, can also be converted into
diacylglycerol which is required for LTA production. Since no information about
phospholipid biosynthesis could be found in the literature, but the compounds pro-
duced in this pathway are essential for cell wall and LTA production, phospholipid
biosynthesis is assumed to be present in S. pyogenes. Required enzymes are adopted
from the L. lactis reconstruction.

The cell wall of Gram-positive organisms is composed of peptidoglycan. This
macromolecule is made up of the repeating disaccharide N-acetylmuramic acid-
(B1-4)-N-acetylglucosamine (MurNAc-GlcNAc) whereby the MurNAc component
is often linked to short peptides composed of L-alanine, D-iso-glucose, L-lysine
and a D-alanine-D-alanine dipeptide [Swoboda et al., 2010]. In S. pyogenes this
peptide chains are cross-linked via a dialanine bridge. The peptidoglycan synthe-
sis starts with the production of UDP-MurNAc to which L-alanine, D-iso-glucose,
L-lysine and the D-alanine-D-alanine dipeptide are linked. In the next step this
UDP-MurNAc-pentapeptide is linked to a carrier molecule which is attached to the
membrane. The linking of UDP-GIcNAc to the muramoyl moiety results in the
formation of the lipid II precursor. By adding amino acids to lysine lipid II is fur-
ther modified. Lipid II serves as the substrate for the assembly of peptidoglycan
[Navarre & Schneewind, 1999).

Teichoic acids are a component of the cell wall or cell membrane of a wide range
of Gram-positive bacteria [Knox & Wicken, 1973]. Since Group A teichoic acid is
free of ribitol [Matsuno & Slade, 1970] and is present in the form of lipoteichoic
acid in S. pyogenes [Slabyj & Panos, 1976], reactions including ribitol teichoic acid
or WTA were removed from the model. In the model the only teichoic acid S.
pyogenes produces is lipoteichoic acid with a chain length of 25 and with alanine and
glucose substitutions. As indicated by experimental data [Slabyj & Panos, 1973,
the formation of teichoic acid is independent of peptidoglycan synthesis.

S. pyogenes is covered by a capsule which is made of polysaccharide. The capsular
polysaccharide is built-up of a polymer of hyaluronic acid (see Section 1.1.1). In the
model, hyaluronic acid is omitted and the capsule is represented by the capsular
polysaccharide which is composed of UDP-galactose, UDP-glucose and dTDP-6-

deoxy-L-mannose.
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Primary and (poly)saccharide metabolism

In the genome-scale model three pathways producing energy are included: glycolysis
followed by pyruvate metabolism, pentose phosphate pathway and the citric acid
cycle. The energy production in glycolysis is described in detail in Section 3.2.1.
All glycolytic enzymes are present in S. pyogenes and were included in the initial
reconstruction.

The PPP is divided into two parts. In the first or oxidative part NADPH is gen-
erated whereas in the non-oxidative phase pentoses are synthesised. In S. pyogenes
many genes encoding enzymes of the oxidative part of the PPP are missing.

Furthermore, in S. pyogenes many enzymes of the citric acid cycle, also called
tricarboxylic acid (TCA) cycle, are missing. This pathway is part of the cellu-
lar respiration and converts carbohydrates, fats and proteins into carbon dioxide
and water to generate a form of usable energy. The complete respiration pathway
includes glycolysis and pyruvate oxidation followed by TCA and oxidative phospho-
rylation. Within this pathway, precursors for many compounds including amino
acids are synthesised. Like all other Gram-positive bacteria, S. pyogenes has an
incomplete TCA cycle which means that no succinate or succinyl-CoA is produced.
Therefore, succinyl-CoA is substituted by acetyl-CoA in the model.

S. pyogenes can grow on several carbon sources. In the model the disaccharides
trehalose, sucrose, maltose and lactose and the monosaccharide mannose are in-
cluded. All saccharides are converted into G6P or F6P and further metabolised in
glycolysis.

Glycogen is a polysaccharide that is composed of a branched chain of glucose
residues and serves as energy storage. S. pyogenes lacks the enzyme synthesising
glycogen but possesses the enzyme degrading it. So far, no energy storage mechanism

is detected in S. pyogenes.

Biosynthesis of non-essential amino acids

From literature it is known that S. pyogenes is auxotroph for many amino acids
[Slade et al., 1951|. This fact is confirmed by the incomplete reconstructed amino
acid synthesis pathways. However, S. pyogenes can synthesise some amino acids
itself. According to the reactions included in the model, proline can be made of glu-

tamate which can be mutual converted with glutamine. Cysteine can be transformed
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into serine which is interconvertible with glycine. The latter one is mutual convert-
ible with threonine. Furthermore, aspartate and asparagine can be transformed into

each other.

Fatty acid synthesis

Fatty acids are an important compound of the cell membrane since phospolipids, car-
diolipin and LTA are made up of fatty acids. All genes encoding enzymes for the fatty
acid biosynthesis are present in S. pyogenes except for the gene encoding the cyclo-
propane fatty acid synthetase (CFAS). This enzyme catalyses the conversion of phos-
pholipid olefinic fatty acid into phospholipid cyclopropane fatty acid. This product,
like all other fatty acid synthesis products, is required for phospholipid biosynthesis.
CFAS is predicted to be present in L. lactis, L. plantarum, S. thermophilus and S.
agalactiae but for none of the genes a gene from S. poygenes with a high similarity
could be identified based on BLAST [UniProt Consortium, 2010, Geer et al., 2010].
Nevertheless, this enzyme is included in the model since it is required to simulate

cell growth.

Production of vitamins and cofactors

Cofactors included in the model comprise NAD(P) ", vitamin Bg, thioredoxin, biotin,
coenzyme A, riboflavin, folate, molybdopterin and glutathion.

NAD(P)" takes part in many redox reactions. Its production starts with the up-
take of nicotinate, also known as vitamin Bs. All enzymes required for the conversion
of nicotinate into NAD(P)" are present in S. pyogenes.

Pyridoxamine and pyridoxal are precursors of pyridoxal 5-phosphate, the acti-
vated form of vitamin Bg. Pyridoxamine is taken up and converted into pyridoxal
5’-phosphate via pyridoxal. One of the enzymes involved in this conversion is alanine
transaminase. For S. pyogenes, no information about the presence of this enzyme
could be found. However, genes encoding this enzyme are predicted for several
strains of S. pneumoniae and for L. lactis. A BLAST search |Geer et al., 2010] with
the S. pneumoniae alanine transaminase yielded genes in several strains of S. pyo-
genes having identities of 83% with the S. pneumoniae alanine transaminase. The
related genes in S. pyogenes are annotated to encode the aspartate transaminase.
Since annotations are often incorrect and the related genes have a high identity,

alanine transaminase is included in the model.
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Biotin is involved in fatty acid synthesis and amino acid metabolism. It is one
of the essential vitamins that are taken up from the medium, S. pyogenes cannot
produce it de novo.

Thioredoxins are small redox proteins that are reduced by the NADPH-dependent
thioredoxin reductase. The reduced form of thioredoxin acts as electron acceptor to
ribonucleoside-diphosphate and -triphosphate reductases.

Coenzyme A (CoA) participates in the oxidation of pyruvate and fatty acids. All
enzymes catalysing CoA production from pantothenate are annotated. Panthotenate
is an essential vitamin and is supplied with CDM-LAB medium.

Since many thiamin synthesis enzymes are missing in S. pyogenes we hypothesise
that thiamin is essential. Since thiamin is one of the compounds of CDM-LAB
medium, it is taken up from the medium.

Riboflavin is also taken up from the medium and is converted into flavin ade-
nine dinucleotide, a redox cofactor. The flavin reductase lacks in S. pyogenes and
therefore no reduced riboflavin is produced.

Furthermore, S. pyogenes cannot produce molybdopterin which serves as a co-
factor for some enzymes.

Most enzymes participating in the folate and C1-THF pool synthesis are present.
The enzyme catalysing the transformation of dihydropteridine triphosphate into
7,8-dihydropteridine, which is one of the first steps, is missing. In L. plantarum,
two enzymes, dihydroneopterin triphosphate pyrophosphatase (DNTPPA) and di-
hydroneopterin monophosphate dephosphorylase (DNMPPA), are catalysing this
conversion. DNMPPA is non-gene associated and for DNTPPA an EC number
lacks in the L. plantarum model. No UniProt [UniProt Consortium, 2010| entry
for DNTPPA in L. plantarum was found. As a consequence, no BLAST search of
DNTPPA against the genome of S. pyogenes could be performed. In L. lactis the
transformation of dihydropteridine triphosphate into 7,8-dihydropteridine is catal-
ysed by an enzyme which is not present in the provided reconstructed network.
A KEGG [Kanehisa & Goto, 2000| search yielded that this step can be catalysed
by the membrane-bound alkaline phosphatase (EC 3.1.3.1). This enzyme is not
listed for any lactococcal species but for Streptococcus dysgalactiae subsp. equisim-
ilis (strain GGS_124) in UniProt. A BLAST search of this enzyme against the
S. pyogenes genome results in genes having a very low score. It is likely that S.

pyogenes lacks a membrane-bound alkaline phosphatase. However, since all other
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enzymes are present in the pathway, it is likely that S. pyogenes possesses a mecha-
nism converting dihydropteridine triphosphate into 7,8-dihydropteridine. Therefore,
the transformation was adopted from the model of L. plantarum. Furthermore,
the NADPH-dependent enzyme methylenetetrahydrofolate reductase catalysing the
conversion of 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, i.e. the
active form of folate, is missing in S. pyogenes.

In most Gram-positive bacteria glutathione is not found but some bacteria like
S. mutans import it [Sherrill & Fahey, 1998]. However, some bacteria are able
to synthesise glutathione, e.g. L. plantarum. S. pyogenes possesses the enzymes
glutathione reductase and glutathione peroxidase which enables it to convert glu-
tathione into glutathione disulfide and back to glutathione with concomitant reduc-
tion of NADPH to NADP". Since no information about glutathione synthase in
S. pyogenes could be found, a BLAST search against the genome was performed
which indicated that this enzyme is not present in S. pyogenes. Since glutathione is
not present in CDM-LAB medium, no exchange and transport reaction is included
in the model. Glutathione is not essential for growth of S. pyogenes in CDM-LAB

medium.

Composition of the biomass reaction used in the model

In order to reduce the number of possible solutions and obtain a physiologically
solution of the reconstructed metabolic network, an objective function is specified.
Since the model is used to simulate growth, the flux towards the formation of biomass
is maximised. The biomass reaction comprises biomass components and growth-
associated ATP consumption. Among the biomass reactants are common biomass
components included in the biomass equation for all organisms, e.g. nucleotides for
DNA and RNA and amino acids for protein biosynthesis, but also reactants which
are specific for the organism like cell wall components.

Since no information about the biomass composition of S. pyogenes could be
found in literature, the biomass reaction of L. lactis is used. Biomass components
that are explicitly taken into account in this equation are DNA, RNA, protein,
cell wall components, membrane constituents and vitamins. The L. lactis specific

biomass production equation is given by

0.00074 DNA + 0.00329 RNA + 0.004201 protein + 0.1192 peptidoglycans+
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0.00015 lipoteichoic acids + 0.0064 CPS + 0.00041 lipids + 0.00222 vitamins+
18.15 ATP + 18.15 H,O — biomass + 18.15 ADP + 18.15 H" + 18.15 P;.

The stoichiometric coefficients in mmol per gDW indicate the relative proportion
of each component in an organism’s biomass. The individual composition of the
biomass components was maintained at a fixed stoichiometry and, for simplicity, is
independent of the growth rate [Oliveira et al., 2005]. The coefficients are based on
data available from the literature (see Additional file 2 from [Oliveira et al., 2005]).
The growth-associated ATP maintenance is set to 18.15 mmol per gDW per hour
as for L. lactis. In the following the biomass components are described.

DNA assembly is modelled as the hydrolysis of the four nucleotides deoxyadeno-
sine triphosphate (dATP), deoxycytidine triphosphate (dCTP), deoxyguanosine tri-
phosphate (dGTP) and deoxythymidine triphosphate (dTTP) with concomitant en-

ergy consumption summarised in the following equation

1.37 ATP + 0.32 dATP + 0.18 dCTP + 0.18 dGTP + 0.32 dTTP + 1.37 H,O
— 0.01 DNA + 1.37 ADP + 1.37 H" + 1.37 P; + 1 PP;.

Analogously to DNA assembly, RNA synthesis is modelled by the hydrolysis of
the four nucleotides adenosine triphosphate (ATP), cytidine triphosphate (CTP),
guanosine triphosphate (GTP) and uridine triphosphate (UTP) by

0.66 ATP 4+ 0.2 CTP + 0.32 GTP + 0.22 UTP + 0.4 H,O
— 0.0l RNA+04 ADP+04H" 404 P; +1PP;.

In general, proteins are assembled from amino acids using information encoded
in genes. Within the model, protein biosynthesis is modelled by the assembly of
loaded transfer RNAs (tRNAs) concomitant with ATP and GTP consumption by

0.086 Ala-tRNA™® 4+ 0.041 Arg-tRNA*™ 4 0.059 Asn-tRNAA™ + 0.031 Asp-tRNAAP+
0.034 Cys-tRNA®Y* 4 0.064 GIn-tRNA“™ 4 0.036 Glu-tRNA®™ + 0.092 Gly-tRNACY 4
0.015 His-tRNA™* 1 0.061 Ile-tRNA™ 4 0.087 Leu-tRNA™" 4+ 0.072 Lys-tRNA™* 4
0.025 Met-tRNAM®® 1 0.038 Phe-tRNAF™ 4+ 0.035 Pro-tRNA"™ 4 0.051 Ser-tRNAS" 4
0.056 Thr-tRNA™™ 1+ 0.017 Trp-tRNAT™® 4+ 0.027 Tyr-tRNA™" 4 0.072 Val-tRNA Y2+
0.306 ATP + 2 GTP + 2.306 H,O — 0.001 protein + 0.306 ADP + 2 GDP + 2.306 H +
2.306 P; + 0.086 tRNAM® 1+ 0.041 tRNAAE 4 0.059 tRNAA™ + 0.031 tRNAAP+
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0.034 tRNA®Y® 4 0.064 tRNAS™ 4 0.036 tRNAC™ 4 0.092 tRNA®Y + 0.015 tRNAHS -
0.061 tRNAM" 4+ 0.087 tRNA™ 4+ 0.072 tRNA™S 1 0.025 tRNAMe® 4 0.038 tRNAPhe+
0.035 tRNAF™ + 0.051 tRNAS + 0.056 tRNAT™ 4 0.017 tRNATP + 0.027 tRNAT"+
0.072 tRNAVal

whereas the superscript defines the specifity and the prefix indicates charging of
the tRNA.

The cell wall of Gram-positive organisms is a thick peptidoglycan layer to which
molecules like proteins and polysaccharides are anchored [Swoboda et al., 2010].

One of the major surface proteins are teichoic acids which are specific components
of the cell wall of Gram-positive bacteria. S. pyogenes possesses only LTA which may
be involved in the control of cell shape, autolytic enzyme activity and maintenance
of cation homeostasis [Kristian et al., 2005].

S. pyogenes is covered by a capsule which is made of polysaccharide and is denoted
in the model by CPS. The capsule belongs to the virulence factors and masks the
pathogen’s antigens [Todar, 2011].

In the model, cellular lipids of lactobacilli are mainly composed of five types of
phospholipids: 0.000061 mmol gDW-! phosphatidylglycerol, 0.000013 mmol gDW-!
1-lysyl phosphatidylglycerol, 0.000138 mmol gDW-! cardiolipin, 0.000096 mmol gDW-1
1,2-diacylglycerol and 0.000013 mmol gDW-! 1,2-monoacylglycerol. The acyl chain
is composed of seven different fatty acids: tetradecenoic acid (14:0), dodecanoic acid
(12:0), hexadecanoic acid (16:0), hexadecanoic acid (16:1), octodecanoic acid (18:0),
octodecanoic acid (18:1) and cyclopropanoyl octadecanoic acid.

As mentioned before, lactic acid bacteria are auxotroph for many vitamins. To
model the vitamin and vitamin-derived cofactor requirements these components were
included in the biomass equation. Vitamins and cofactors included in the biomass
equation were 0.00001 mmol gDW-! tetrahydrofolate, 0.00001 mmol gDW-! thiamin
diphosphate, 0.0002 mmol gDW! CoA, 0.002 mmol gDW- NAD™.

3.5.6 Results from flux balance analysis

After checking the consistency of the reconstructed metabolic network, the model is
validated and the metabolic capabilities of S. pyogenes are explored. One approach
to analyse metabolic networks is FBA (see Section 2.3.3). Therefore, exchange

and transport reactions are restricted with experimental measured values taking a
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measurement error into account and the growth rate is optimised. In continuous

cultures the time-dependent population change is given by

db
—=a-b—D-
7 a-b b,

where b is the bacterial dry weight per litre, a is the growth rate per hour and
D is the dilution rate (h'). Under steady state conditions the time-dependent
population change equals zero and as a consequence equals the growth rate the
dilution rate [Davies et al., 1965|. Therefore, the predicted growth rate is compared
to the measured value and — if predicted and measured value differ — the metabolic
model can be corrected accordingly. After the model resembles the experimental
data, FBA can be used among others to investigate the organism’s behaviour to

environmental perturbations.

Incorporation of measured ATP synthesis rates

Before the model can be used to predict growth rates, the energy required for growth
and maintenance has to be specified [Teusink et al., 2006]. The amount of ATP
required for biomass formation is determined in the biomass equation (see Section
3.5.5). The maintenance-associated ATP consumption coefficient was estimated
from measured ATP production rates at different growth rates (see Section 3.1.6).
In the model, setting the ATP maintenance rate to 1.35 at pH 6.5 and to 0.8 at
pH 7.5 accurately predicts the growth rate. These values are in accordance with

experimentally determined ATP maintenance rates (see Table 3.12).

Applying constraints to measured fluxes

S. pyogenes M49 wild-type and its ldh-negative strain were grown in a bioreactor
at two dilution rates and two pH values and the concentrations of amino acids
and products were measured (see Section 3.1.2). In order to apply FBA, these
concentrations are transformed into fluxes of utilisation given in mmol h™* gDW-L.
These fluxes were calculated as

D . [M]supernatant - [M]CDM—LAB
[biomass|

q; =

where [M] is the concentration of metabolite M in mmol per litre, [biomass| is

the measured biomass concentration in gDW per litre and D is the dilution rate
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per hour. These fluxes are used to restrict the reaction rates in the genome-scale
model (see Section 2.3.3). Since the product concentrations are measured twice but
amino acid levels are determined once, the upper and lower boundaries are given
by the measured fluxes taking a measurement error of 20% into account. If one has
performed three or more measurements the mean value plus or minus the standard
deviation would be used to limit the fluxes.

Some metabolites can be exchanged with the environment and are transported
in or out of the system through specific exchange reactions that can have lower and

upper bounds on their throughput. We restrict the following reactions
e glucose uptake,
e transport of amino acids and nucleotides which are taken up but not excreted,
e transport of precursors for vitamins and cofactors,

e citrate is taken up but not produced since the TCA cycle is incomplete in S.

pyogenes,
e water, CO, and protons are transported in and out of the cells,

e transport of metabolic byproducts like NH4, NO5, NO3, SOy, spermidine and
glycolate, and

e glycolytic end-products like lactate, formate and so on

according to measured values taking the measurement error into account.

Applying all calculated upper and lower boundaries results in an infeasible prob-
lem meaning that no solution exists which satisfies all the constraints. In order to
solve this problem and to find an optimal solution the constraints were widened,
e.g. from -1 to 0 for amino acid or from 0 to 10 for end-product exchange reactions.
After simulating the model it was checked which exchange reactions have their sim-
ulated value falling within the specified ranges. Fixing the bounds of those reactions
by taking the measurement error into account results in a feasible problem and an
optimal solution. The remaining reactions would give infeasible solutions if their
bounds would be fixed with experimentally measured values and have to be further
explored either experimentally or in the model. This strategy leads to the lists of
constraints for S. pyogenes wild-type and ldh-deletion strain given in Appendix B.3.
The predicted growth rates are shown in Table 3.18.
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Simulation results

For both strains, S. pyogenes wild-type and its ldh-deletion, the model is able to
predict the accurate growth rate of approximately 0.05 at pH 6.5 and about 0.15 at
both pHs, 6.5 and 7.5. The model fails to predict the growth rate of 0.05 at pH 7.5
for the wild-type and the knock-out mutant.

Product fluxes. Table B.8 and B.9 summarise the uptake or production fluxes at
both pHs, 6.5 and 7.5, for the wild-type and the [dh-knock-out strain, respectively.
The flux distribution for the ldh-negative mutant was simulated by setting the flux
through L-LDH to zero.

The model predicts that acetate, ethanol and formate production increases with
the dilution rate. Although acetoin production is measured in the Ildh-negative
mutant strain at both pHs and both dilution rates, the flux through acetoin pro-
ducing reactions is zero under all simulated conditions. The model further predicts
no uptake or production of biotin, pyridoxamine, pyridoxine and riboflavin and no
production of NOs, NO3, SO4 and spermidine under all simulated conditions. Fur-
thermore, xanthine is not taken up. The [dh-knock-out strain shows an increased
flux through D-LDH compared to the wild-type. Under all conditions, the model
predicts an uptake of phosphate.

Amino acid fluxes. According to the model simulations the amino acid uptake
fluxes decrease with increasing dilution rate in the wild-type. Thus, a higher amount

of amino acids is taken up for higher dilution rates. The Ildh-deletion strain does

Table 3.18: Predicted growth rates of S. pyogenes wild-type and its ldh-deletion at two
pHs and two dilution rates (D, h™') during continuous cultivation in glucose-limited CDM-

LAB medium. Values indicate mmol/gDW.

Experiment Simulation

pH D M49 | M49 Aldh
6.5 | 0.05 | 0.0506 0.0656
0.15 | 0.1577 0.1330
7.5 | 0.05 | 0.1443 0.1637

0.15 | 0.1505 0.1721
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not show this trend; the fluxes are comparable for both measured dilution rates in
the wild-type and the mutant strain. Cysteine is not taken up under all simulated

conditions.

Growth on different carbon sources

Biolog Phenotype Microarrays were applied to test the ability of S. pyogenes wild-
type and Ildh-knock-out mutant to utilise different substrates. From the 20 carbon
sources S. pyogenes was able to grow on (see Table 3.11) trehalose, sucrose, maltose
and mannose were already included in the model. In a first step, exchange reactions
were added for all of these sugars. In the following the degradation of these sugars
is described.

Trehalose is a disaccharide consisting of two glucose molecules which are linked
in a f(1—1) bond. Trehalose is transported into the cell via a specific PTS system
yielding trehalose-6-phosphate. Trehalose-6-phosphate is hydrolysed into glucose
and G6P. All required enzymes for uptake and conversion of trehalose were present
in the initial reconstruction.

Sucrose is a disaccharide composed of fructose and glucose linked via an «, 8-
1,2-glycolytic bond. Sucrose is taken up via a specific PTS uptake system and the
resulting sucrose-6-phosphate is dephosphorylated by sucrose-6-phosphate hydrolase
and subsequently hydrolysed to fructose and glucose. In the initial reconstruction
sucrose-6-phosphate hydrolase was missing. We included this enzyme based on
homology studies [UniProt Consortium, 2010].

Maltose is a disaccharide consisting of two glucose molecules which are linked by
an «(1—4) bond. Contrary to all previously mentioned disaccharides it is taken
up by an ATP-dependent system. Intracellular maltose is broken down into glu-
cose and [-D-glucose-1-phosphate (8-G1P) by a phosphorylase. This enzyme is
predicted to be present in L. lactis and E. faecalis but no information about a
gene encoding it in S. pyogenes could be found [UniProt Consortium, 2010|. The
enzyme [-phosphoglucomutase catalyses the mutual conversion of 8-G1P into (-
GO6P which is further transformed into G6P. This enzyme is predicted to be present
in other streptococcal serotypes and a BLAST search [Geer et al., 2010] revealed a
similarity of 100% to one gene from the here studied serotype M49.

Mannose is an epimer of glucose taken up via a PTS system and subsequently

rearranged to F6P. The mannose PTS as well as the mannose-6-phosphate isomerase
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were included in the initial reconstruction.

Since the remaining 16 sugars are neither present in the model of L. lactis nor
in the model of L. plantarum and S. pyogenes showed lower growth on these sugars
compared to the included ones, we decided to leave these sugars out and include
them perhaps at a later stage.

In accordance with experimental data the model predicts that S. pyogenes wild-
type and [dh-deletion strain can grow on trehalose, sucrose, maltose and mannose.
The uptake fluxes were constrained between [—2.4957, —2.4929] in the case of the
monosachharides glucose and mannose and between [—1.29735, —1.24645] for the
disaccharides trehalose, sucrose and maltose at pH 6.5 and D = 0.05. Growth on

the mentioned sugars was found to be the same as on glucose (data not shown).

Modelling amino acid leave-outs

For amino acid leave-out experiments S. pyogenes was grown in CDM-LAB medium
lacking specified amino acids. The optical density was monitored at 600 nm for 12
h (see Section 2.1.9). In the model the leave-out of amino acids was realised by
setting the uptake fluxes of the corresponding compounds to zero. The simulated
growth rates under the different conditions are given in Table 3.19. Although the
experimental data was measured under batch conditions we can compare it to the

simulated steady state data at pH 6.5 and D = 0.05 h™! qualitatively.

Table 3.19: Simulated growth rates (h'!) of S. pyogenes wild-type grown in full CDM-
LAB medium and medium without the indicated amino acids at D = 0.05 h™! and pH
6.5.

CDM-LAB medium Simulated growth rate
Full 0.0506

w/o Ala 0

w/o Arg 0

w/o Asn 0.0504

w/o Asn, Asp 0

w/o Asp 0.0506

w/o Cyn 0.0506

w/o Cyn, Cys 0

w/o Cys 0.0506
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Table 3.19 — continued from previous page

CDM-LAB medium Simulated growth rate
w/o Cys, Gly 0.0524
w/o Cys, Ser 0.0506
w/o Cys, Thr 0.0521
w/o Gln 0.0506
w/o Gln, Glu 0
w/o Gln, Thr 0.0521
w/o Glu 0.0505
w/o Gly 0.0524
w/o Gly, Ser 0.0480
w/o Gly, Ser, Thr 0
w/o Gly, Thr 0
w/o His 0
w/o Ile 0
w/o Leu 0
w/o Lys 0
w/o Met 0
w/o Met, Ser 0
w/o Phe 0
w/o Pro 0.0504
w/o Ser 0.0506
w/o Ser, Thr 0.0497
w/o Thr 0.0521
w/o Trp 0
w/o Tyr 0
w/o Val 0

In accordance to experimental data (see Section 3.1.7), the model predicts no
growth in the absence of Arg, Gln and Glu, Gly and Ser and Thr, Gly and Thr, His,
Ile, Leu, Lys, Met, Met and Ser, Phe, Trp, Tyr and Val. Furthermore, simulation
and experimental data agree that S. pyogenes can grow in the absence of Asp, Asn,
Cyn, Cys, Glu and Pro. The simulated and measured growth rate give contrary

results for the omission of Ala, Cys and Cyn, Cys and Gly, Cys and Ser, Cys and
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Thr, Gln, GIn and Thr, Gly, Gly and Ser, Ser, Ser and Thr, and Thr alone.

Predictions from the model

The constructed genome-scale model of S. pyogenes is used to explore its metabolism
and the response to environmental perturbations in more detail. Since this is recent
work and we are in the stage of model validation, we present preliminary results
which will be studied further in SysMO-LAB II.

Our first experimental data (see Section 3.1.7, Table 3.13, Experiment 1) show
that S. pyogenes is able to grow in the absence of Cys or Cyn whereas the omission
of both, Cys and Cyn, results in complete loss of growth. This finding indicates
that these amino acids are interconvertible. We could not find any information
about the uptake or metabolism of cystine in S. pyogenes in literature. Based
on an extensive literature search and BLAST [Geer et al., 2010] we propose that
Cyn is taken up via an ATP-dependent cystine transporter. A BLAST search
for a L-cystine import ATP-binding protein of Streptococcus pneumoniae (strain
Hungaryl19A-6) against the S. pyogenes genome yields a hit with an amino acid
ABC transporter having an identity of 80%. Cystine is converted into thiocysteine
by cystathionine ~-lyase. Studies on Lactobacillus fermentum DT41 revealed that
this enzyme has a wide substrate specificity whereby cystine was the best substrate
[Smacchi & Gobbetti, 1998]. Thiocysteine is non-enzymatically degraded to Cys
and H,S [Lowicka & Beltowski, 2007|. Based on these experimental results we in-
corporated the described transformation of cystine into cysteine. Surprisingly, the
following experiment suggests that S. pyogenes can grow in the absence of cystine
and cysteine. Since these data contradicts our first measurements we will perform
another independent experiment before changing the in silico model.

The model can also be used to determine essential amino acids for growth of
S. pyogenes in CDM-LAB medium by omission of each amino acid at a time. A
list defining essential and non-essential amino acids is given in Table 3.20. Refer-
ring to the literature [Slade et al., 1951|, 15 amino acids are essential for growth of
S. pyogenes. The model predicts 12 amino acids to be essential, 11 of them are
identical with literature data. Thereby, we define a proteinogenic amino acid that
cannot be produced from another standard one as essential. Although Cys can be
made of Cyn in the model we listed it as essential amino acid since Cyn is non-

proteinogenic. Referring to the model predictions but contrary to the literature,
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cystine is not essential for growth of S. pyogenes in CDM-LAB. Surprisingly, in the
literature serine, glycine and threonine are listed as essential amino acids although
they are interconvertible according to the model. The corresponding reactions were
incorporated in the model based on orthology detection. Experimentally we vali-
dated that Arg, His, Ile, Leu, Lys, Met, Phe, Trp, Tyr and Val are essential amino
acids whereas the model and the measurements give contrary results with respect
to Ala, Glu, Gly, Thr and Ser. Discrepancies between experimental and literature
data [Slade et al., 1951] concern Cys, Glu and Ser.

Additionally to essential amino acids, the minimal amino acid requirement was
determined. Adding the essential amino acids was not found to result in growth.
Growth occurs if Asn (or Asp), Gln (or Glu) and Gly (or Thr) can be taken up in the

presence of the essential amino acids. Therefore, glucose, Ala, Arg, Asn (or Asp),

Table 3.20: Essential amino acids for growth of S. pyogenes in CDM-LAB medium based
on simulations compared to literature data [Slade et al., 1951]. Referring to the literature,
15 amino acids are essential for growth of S. pyogenes while the model predicts 12 amino

acids to be essential, 11 of them are identical with literature data.

Model predictions | Literature data
Arginine Arginine
Cysteine Cystine
Histidine Histidine
Isoleucine Isoleucine
Leucine Leucine
Lysine Lysine
Methionine Methionine
Phenylalanine Phenylalanine
Tryptophan Tryptophan
Tyrosine Tyrosine
Valine Valine
Alanine Glycine

Proline

Serine

Threonine
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Cys, Gln (or Glu), Gly (or Thr), His, Ile, Leu, Lys, Met, Phe, Trp, Tyr and Val
were found to be the minimal required medium for growth of S. pyogenes. Growth

in the minimal media is 8.54% lower as compared to rich media.

3.5.7 Topological comparison with L. lactis and L. plantarum

Compared on the sequence level, S. pyogenes is more similar to L. lactis than to
any remaining reference organism. Thus, many reactions could be copied from the
metabolic network of L. lactis. However, there are some differences on the enzymatic
level. In the following a short and preliminary overview over the differences between
the whole cell metabolism of S. pyogenes, L. lactis and L. plantarum is given. This
will be further studied in SysMO-LAB II. The differences are based on the topology
of the models.

Since DNA and RNA synthesis are conserved, there are no significant differences
in purine and pyrimidine metabolism in S. pyogenes, L. lactis and L. plantarum.

The cell wall composition differs among the three organisms. Like in L. lactis, in
S. pyogenes the peptide chains of peptidoglycan are cross-linked by dialanine bridges
whereas they are linked by D-lactate in L. plantarum. The latter organism produces
wall and lipoteichoic acids whereas L. lactis and S. pyogenes possess only lipote-
ichoic acids. Neither L. lactis nor S. pyogenes produce ribitol-containing teichoic
acids whereas L. plantarum does. In L. plantarum and S. pyogenes two forms of
lipoteichoic acids are present, i.e. LTA with alanine substitutions and with glucose
residues. L. lactis produces LTA with alanine substitutions as well but also LTA
with galactose residues.

The lipid II and fatty acid synthesis is similar in all three organisms but they
show differences in the phospholipid biosynthesis. L. lactis and S. pyogenes produce
the LTA precursor in that pathway whereas L. plantarum produces the required
diacylglycerol compounds within the teichoic acid synthesis.

L. plantarum and L. lactis use glycogen as energy storage while S. pyogenes
probably lacks the enzyme synthesising glycogen. Furthermore, L. plantarum and
L. lactis have an almost complete pentose phosphate pathway while in S. pyogenes
the oxidative phase is missing. Instead, S. pyogenes possesses GAPN which is again
lacking in L. plantarum and L. lactis. Like all other Gram-positive bacteria, S.
pyogenes and L. lactis have an incomplete TCA cycle while L. plantarum can run

this cycle.
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We can also find differences in the amino acid metabolism. Again, there is a
clear hierarchy concerning the present enzymes. L. plantarum has a more complete
amino acid biosynthesis pathway than L.lactis. S. pyogenes lacks more genes en-
coding enzymes involved in this pathway compared to L. lactis. For L. lactis, the
leave-out of arginine, methionine and valine was found to prevent in silico growth
[Oliveira et al., 2005], whereas we identified twelve amino acids as being essential
for S. pyogenes.

L. plantarum is able to synthesise thiamin, molybdopterin and glutathion whereas
both, S. pyogenes and L. lactis, lack the genes for molybdopterin and glutathion
production. Furthermore, S. pyogenes relies on thiamin supply.

Compared on the enzyme level, L. plantarum has a more complex metabolic
pathway than L. lactis. Compared to L. plantarum and L. lactis, the model of S.
pyogenes covers less reactions which indicates more complex requirements and a

simpler metabolism.
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4.1 Kinetic model

We have developed a kinetic model of S. pyogenes energy metabolism (see Section
3.2.1) which is able to capture dynamic profiles of intracellular metabolites after
glucose-pulse experiments (see Figure 3.2) and compared this to a related lactic
acid bacteria, i.e. the well-studied L. lactis (see Section 3.3.1). S. pyogenes derives
energy from fermentation and, thus, the developed kinetic model covers glucose
uptake, glycolysis and pyruvate metabolism. Since the sum of measured fermenta-
tion products equals approximately the supplied glucose concentration (see Section
2.1.4), side-pathways such as the pentose phosphate pathway can be neglected. This
fact also points out that anabolic precursors are imported from the medium and
only a minor fraction is synthesised de novo from glucose. Due to its role as human
pathogen the investigation of S. pyogenes metabolism can help to identify possible

drug targets and facilitate the development of specific antibiotics.

4.1.1 Model set-up, topology and regulation

Mathematically the model is represented by a set of ODEs since we assume that all
metabolites are uniformly distributed in the cell and spatial effects can be neglected.
We decided to use COPASI [Hoops et al., 2006] as modelling framework since it is
free for academic user, available for the usual platforms and includes algorithms for
simulation as well as for optimisation. Since the model is deterministic, LSODA
was used for time-course simulation (see Section 2.2.4). The other algorithms im-
plemented in COPASI are either stochastic or hybrid methods. The steady state
analysis was performed with a combination of the Newton-Raphson method and
integration of the ODE which is set as default in COPASI (see Section 2.2.8). The
method applied for parameter estimation is discussed in Section 4.1.3.

Modelling is aggravated by the fact that very little is known about S. pyogenes on
the metabolic level. This involves also the regulation of many glycolytic enzymes.
Although glycolysis and pyruvate metabolism are conserved among bacteria, regu-
lation may differ even between two related species. Kinetic studies performed by
Tomas Fiedler revealed that LDH is activated by FBP and P; and inhibited by
NADT in S. pyogenes (see Section 3.1.4) whereas this enzyme is stimulated by FBP
and blocked by P; in L. lactis [van Niel et al., 2004]. NAD" does not effect LDH

in L. latcis. However, since the characteristics and regulation of glycolytic enzymes
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in S. pyogenes have not been studied before, kinetic parameters as well as enzyme
regulations were adopted from related organisms such as S. mutans and L. lactis.
Discrepancies between simulated and experimental data might be due to incorrect
parameter values or regulation.

Kinetic parameters often differ between various experimental conditions such as
temperature or pH value. Both have a high impact on the velocity of an enzyme.
Moreover, kinetic measurements are often performed in vitro and the parameters
can deviate considerably from in vivo conditions [Teusink et al., 2000]. Especially
the experimental determination of V., values is difficult. In most cases specific
activities having the unit U/mg of protein are measured. Since we have no infor-
mation about the concentration of any glycolytic enzyme in streptococcal cells, this
velocity cannot be converted into V., values required for modelling.

Since detailed enzyme mechanisms for the glycolytic enzymes in S. pyogenes have
not been studied, convenience kinetics are used |Liebermeister & Klipp, 2006a] (see
Section 2.2.3). These rate laws describe a generalised form of the Michaelis-Menten
kinetics and hold enzyme saturation for high substrate concentrations. Due to the
little information about S. pyogenes glycolytic enzymes, the small number of param-
eters required to implement all possible stoichiometries with convenience kinetics is
an obvious advantage. Comparing the convenience kinetics to ordered and ping-pong
mechanisms shows that the three rate laws differ mathematically in their denom-
inators. The latter two mechanisms contain mixed terms with a combination of
substrate and product concentrations and, furthermore, in ping-pong kinetics the
term ‘+1’ symbolising the free enzyme is missing. If the denominator of convenience
kinetics is multiplied out it contains all products of normalised substrate and product
concentrations but no mixed terms. In general, the convenience kinetics resemble
the ping-pong mechanism and the similarity between them is greater than that be-
tween the ordered and ping-pong mechanisms [Liebermeister & Klipp, 2006a|. Con-
sequently, choosing convenience kinetics instead of a ordered or a ping-pong mech-
anism is as risky as an incorrect choice between the latter two kinetics.

In order to reduce the number of parameters we summed up reactions, e.g. PGI
and PFK, and omitted species, e.g. F6P. However, in contrast to other glycolytic
models, the levels of ADP, ATP, NAD", NADH and phosphate are set as free vari-
ables since these metabolites determine the end-product pattern. As mentioned

before, acetate production yields one additional ATP whereas NAD™ can be syn-
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thesised either via lactate or ethanol composition.

The sugar uptake and its control have been extensively studied in lactic acid pro-
ducing bacteria [Deutscher et al., 1985, Reizer & Panos, 1980, Reizer & Saier, 1983,
Thompson & Saier, 1981, Ye et al., 1996|. Therefore, this part, especially the con-
trol by HPr, was modelled in more detail. Interestingly, in oral streptococci such as
S. mutans and S. salivarius inducer expulsion does not occur [Thevenot et al., 1995,
Ye, 1996]. Although B. subtilis lacks the sugar-phosphate phosphatase and, there-
fore, does not show expulsion, inducer exclusion could be observed. The exclu-
sion mechanism regulates the uptake of sugars by changing the direction and the
rate of transport depending on the energy concentration and metabolite levels
[Reizer et al., 1985]. Inducer exclusion guarantees the uptake of the preferred sugar
such as glucose and inhibits transport of less preferred carbon sources. However, the
findings in B. subtilis suggest that inducer exclusion is not likely solely mediated
by the stimulation of the sugar-phosphate phosphatase and subsequent expulsion.
Since we studied growth of S. pyogenes on glucose we modelled inducer expulsion
but omitted inducer exclusion.

Like all lactic acid bacteria S. pyogenes uses the PTS system to import sugars
from the medium (see Section 3.2.1). This uptake mechanism neither uses a mem-
brane potential nor ATP. Instead, the PTS is driven by PEP. Sugar uptake via the
PTS system is dependent on HPr and PEP. The HPr level is controlled by the bi-
functional enzyme HPr kinase/phosphatase. Under glucose-limited conditions HPr
kinase is inactive; HPr phosphatase is active and ensures the presence of unphospho-
rylated HPr required for sugar uptake. Under glucose excess conditions HPr kinase
is active and phosphorylates HPr at a serine residue. As a consequence, the level
of free HPr declines and limits the glucose uptake rate. Simultaneously, inducer ex-
pulsion is activated by HPr-Ser-P. Both effects, limiting the sugar uptake rate and
stimulating inducer expulsion, prevent a sugar shock caused by sugar phosphate
accumulation.

Recent studies on HPr-kinase discovered that the dephosphorylation is not a hy-
drolysis reaction as stated in [Deutscher et al., 1985], but a phospho-phospholysis
which requires P; and releases pyrophosphate (PP;) [Deutscher et al., 2006]. HPr-
Ser-P dephosphorylation is reversible and, thus, PP; can replace ATP as the phos-
phoryl donor for HPr phosphorylation. Interestingly, PP;-dependent HPr phospho-

rylation is the energetically favoured reaction resulting in an increased ATP level.
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The incorporation of the described phospho-phospholysis requires the addition of
metabolites, i.e. AMP and PP;, and reactions describing PP; hydrolysis to the
model. We decided to leave the model as described in Section 3.2.1 since it is able
to describe our experimental data (see Section 3.2.3), the incorporation would intro-
duce more unknown parameters and we have not identified one reaction hydrolysing
PP; in S. pyogenes.

To ensure a sufficient high PEP pool and, thus, carbon source uptake the PEP
level is controlled via the regulation of PYK. Under energy limited conditions, early
glycolytic intermediates such as FBP decline and P; increases resulting in PYK in-
hibition |[Thompson & Torchia, 1984|. This mechanism prevents further conversion
of PEP into pyruvate. Since PYKs and LDHs of lactic acid bacteria are often al-
losterically regulated in a similar way, LDHs also appear to be activated by early
glycolytic intermediates and are strongly inhibited by phosphate (see Fig. 3.1)
[Russell et al., 1996]. PFL is inhibited by triose-P but is unaffected by FBP and
P;. However, triose-P is in equilibrium with FBP and, thus, increases with FBP.
Acetate production is inhibited by FBP and ethanol production by ATP. The level
of both regulators is high under glucose excess conditions and consequently acts in
alignment with the PFL regulation.

This regulation by FBP and P; allows a shift in fermentation pattern depending
on the energy availability. As stated above, FBP and triose-P levels are low whereas
P; is high under energy limiting conditions. As a consequence, LDH is inhibited and
PFL converts pyruvate into acetate and ethanol. NAD™ regeneration is catalysed
concomitant with ethanol production by alcohol dehydrogenase and acetate produc-
tion yields one additional ATP. Under energy excess conditions, FBP and triose-P
levels are high and P; is low. In that case, LDH is active and converts pyruvate
to lactate assuring NAD™ availability. The crucial role of FBP as a regulator in
glycolysis might be due to the fact that it is the first common intermediate of all
metabolisable sugars [Reizer et al., 1984].

Lactate transport is regulated by pyruvate (see Fig. 3.1). To prohibit lactate
accumulation the pyruvate concentration has to be low under glucose excess con-
ditions. Our model predicts low intracellular lactate concentrations (lower than
0.0035 mM). The pyruvate level shows a fast build-up upon glucose up to 9 mM
which decreases immediatly under 4 mM and vanishes after glucose consumption.

S. pyogenes lacks the oxidative part of the pentose phosphate pathway. Con-
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sequently, it must have an alternative mechanism to produce NADPH which is
required for the biosynthesis of cellular components, e.g. amino acid biosynthesis.
One candidate is GAPN which has been reported to occur in green eukaryotes and
Gram-positive bacteria with a characteristic low-G+C content [Iddar et al., 2005].
This reaction introduces an alternative route into glycolysis whereby GAPDH and
PG are left out and NADPH is syntehsised. As a consequence, this process enables
S. pyogenes to produce PEP required for sugar uptake in the absence of phosphate.
Indeed, removing the GAPN reaction from our model led to a much stronger reduc-
tion of glucose uptake at low external phosphate concentrations. The role of GAPN
will be further studied by constructing a gapn-knock-out strain. If our hypotheses
about the crucial role of GAPN in the energy metabolism of S. pyogenes holds and
the gapn-deletion mutant shows reduced or no growth at low extracellular phosphate
levels, GAPN is essential for treatment. Inhibiting this reaction would lead to a de-
creased growth of S. pyogenes at low extracellular phosphate concentrations which
resemble the conditions this bacterium encounters in the human body. Therefore,
GAPN represents a possible drug target.

In our experiments we observe that S. pyogenes mainly exhibits homolactic
fermentation but shows more mixed acid fermentation at lower dilution rates at
both pH 6.5 and pH 7.5 (see Table 3.3) as compared to L. lactis and E. faecalis
|[Fiedler et al., 2011]. This fact supports our decision to include the mixed acid fer-
mentation pathway in more detail in the model of S. pyogenes (see Section 3.3.2).
Our model is able to simulate this enhanced mixed acid fermentation (see Fig. 3.2).

Although one of the published glycolytic models for L. lactis studies the pH con-
trol [Andersen et al., 2009] we decided not to include this aspect into our S. pyogenes
model based on the fact that no significant pH dependent differences in the fermen-
tation pattern of this organism were observed experimentally [Fiedler et al., 2011].
Interestingly, FE. faecalis showed a strong pH dependency with a more homolactic
phenotype at pH 6.5 [Fiedler et al., 2011]. Thus, the integration of protons in the
model to simulate the pH dependent effect on glycolysis is not necessary for S. pyo-
genes but could improve the model of E. faecalis. So far, the glycolytic model of
E. faecalis lacks the pH effect and, interestingly, fails to simulate our glucose-pulse

data (N. Veith, personal communication).
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4.1.2 The role of phosphate

The developed kinetic model was used to analyse the primary metabolism of S.
pyogenes in more detail (see Sections 3.2.1 and 3.2.3). Both the modelling stud-
ies and our experimental data reveal a crucial impact of intra- and extracellular
phosphate on glycolysis in S. pyogenes (see Section 3.2.2). Interestingly, the ob-
served trend of increasing FBP with increasing P;** was also noticed for L. lactis
[Levering et al., 2011] (see also Section 4.2.2) and E. faecalis (unpublished results).
In order to model this effect of P;** on the intracellular phosphorylated glycolytic
intermediates the incorporation of a phosphate uptake system turned out to be key.

Phosphate uptake seems also to prevent an incomplete or slow glucose metabolism
in both species, S. pyogenes and L. lactis, which is a consequence of phosphate be-
coming limiting (see Section 3.3.3). This is also demonstrated in our model sim-
ulations. The experimentally observed inability of S. pyogenes to ferment at high
glucose concentrations might be due to too low phosphate concentration in the
medium to counterbalance the high sugar level, such that phosphate becomes very
rapidly a limiting substrate.

Especially the large FBP concentration during glycolysis is crucial for the reg-
ulation of several glycolytic enzymes and the glucose uptake rate and is a direct
result of extracellular phosphate. So far, metabolite measurements were performed
in medium with defined but varying phosphate concentrations without consider-
ing its effect on the system (e.g. L. lactis, measurement of metabolites in buffers
with 25 mM |[Thomas et al., 1979, Mason et al., 1981, Thompson, 1978| and 50 mM
|Garrigues et al., 2001, Melchiorsen et al., 2001, Neves et al., 2005] P;**). Our stud-
ies indicate that especially the comparison of metabolite levels measured at various
phosphate concentrations in the medium is not possible. Furthermore, in glycolytic
models in other organisms inorganic phosphate is rarely a free metabolite (e.g. yeast
[Teusink et al., 2000]). Our study suggests that major improvements can be made

by studying phosphate dynamics more carefully also in these cases.

4.1.3 Parameter estimation and resulting fit

The parameters in the model were optimised to fit our glucose-pulse data (see Sec-
tion 3.2.1). Since many different optimisation algorithms are available and it is

known that the optimal method for global optimisation depends on the specific
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optimisation problem [Wolpert & Macready, 1997], it is important to use several al-
gorithms to verify that the solution obtained is the global minimum or at least a
good local optimum. Here, the particle swarm proofed to be the best suited optimi-
sation strategy. All other optimisation methods implemented in COPASI finished
with higher objective values. The applied increased swarm size also ensures that
the solution is the global (or at least a good local) minimum even if the landscape
of the objective function covers many local optima. The drawback of using particle
swarm for such a high dimensional optimisation problem is the computation time
which was approximately 50 hours per fit.

Since hardly any kinetic parameter of S. pyogenes glycolytic enzymes had been
identified beforehand, we were not able to use tight boundary conditions for param-
eter estimation. Due to the high number of unknown parameters compared to the
little amount of experimental data the resulting optimisation problem is underdeter-
mined and the parameters are not identifiable. Therefore, we decided to fit several
models to our experimental data and used the best 50 of them for our analyses
since different parameter combinations are capable of describing the same dynamic
behaviour. This set of models describing our data enables us to predict robust be-
haviour independent of the parameter set. Effects observed in all of the models are
caused by the model structure and, thus, are characteristics of the system. This
enables us to predict robust behaviour even if the parameters are not ifdentifiable.

Even though little is known about S. pyogenes and the regulation was adopted
from related organisms, the model is able to simulate our glucose-pulse experiments
(see Section 3.2.3). The kinetic model captures the increase in FBP concentration
and glucose uptake rate when more extracellular P; is present. This trend is robust in
all obtained fits. Due to the combination of active and passive phosphate transport,
low extracellular phosphate concentrations can lead to a decrease of intracellular
phosphate, if the concentration gradient is pointing to the outside of the cell. It
is obvious that certain low levels of extracellular phosphate lead to a decreased
intracellular phosphate concentration compared to no extracellular phosphate. This
behaviour is the same in roughly 50% of the fits, but not in all. However, we were
able to verify this effect experimentally (see Section 3.2.3). Intracellular phosphate
in turn activates the PTS and is an important substrate for GAPDH and ACK.
Therefore, a decreased intracellular phosphate concentration leads to a decreased

glucose uptake rate which we can also see in our experimental data (see Figure 3.2
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A and B).

After incorporating the chemostat set-up in the model, e.g. reactions describing
the medium in- and outflow, our glycolytic model is able to reproduce the measured
acetate, extracellular lactate, external phosphate and ethanol end-product concen-
trations at steady state but fails to reflect the formate and extracellular pyruvate
levels (see Section 3.2.3). Surprisingly, the ratio of the simulated end-product con-
centrations of acetate, ethanol and formate is 1:1:1 and not 1:1:2 which was observed
experimentally. This is caused by the PFL reaction which produces formate and di-
rectly releases it in the extracellular space. Formate is subsequently transported out
of the medium whereas this reaction is implemented with irreversible mass action
kinetics and the velocity is given by the dilution rate. The more formate is present,
the more is transported out of the supernatant. Thus, reducing the velocity of the
PFL or adjusting the binding constant for formate might solve the problem. Due
to the fact that the PEP level is as well too high, the model might miss a glycolytic
branch point at the level of pyruvate. This might be the production of acetoin
which was experimentally observed for the ldh-negative mutant. It is possible that
the wild-type produces little amounts of acetoin which were not detected with the
applied HPLC. Further measurements of end-product concentrations will be done

to solve this problem.

4.1.4 Sensitivity analysis

Sensitivity analysis can be exploited to determine those parts of a system that are
crucial and have the potential of becoming a drug target. Often a local sensitivity
analysis method is applied to identify these parts of a network. One disadvantage
of these local methods is their direct dependency on the actual parameter set. Due
to the fact that the exact parameter set is unknown for many biochemical systems,
global approaches have to be exploited in which the sensitivity analysis is carried out
over a wider parameter range to circumvent the dependency on the actual parameter
set. However, the interpretation of the results of a global sensitivity analysis is
crucial. Since this method is based on a sampling of the parameter space the results
from the global approach does not contain any statements about the probability of
parameters or sensitivity values but give an overview about the system’s achievable
sensitivities. Since we have only little knowledge about the kinetic parameters of

our glycolytic model of S. pyogenes we defined wide parameter ranges and a high
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iteration number for the parameter scan to obtain a robust result. One obvious
drawback of that method is the high computation time which is about two weeks
for 10 iterations.

With this random sampling method we were not able to identify any parameter
exerting a small control on metabolite concentrations such as FBP or internal phos-
phate. This might be caused by the large parameter ranges. In order to use tighter
boundary conditions on the sensitivity analysis we concentrated on our set of 50
fitted models and performed a local sensitivity analysis with each of it. Hereby, we
considered the distribution of the local sensitivities within the set of fitted models.
However, even by applying this approach we were not able to identify parameters
which always have a small impact on metabolite concentrations such as FBP or in-
ternal phosphate or on reaction fluxes like PTS and PFK fluxes (see Section 3.2.4).
Every single model from the whole set has individual parameters exerting a high
impact on the system variables but is robust. However, the distribution of local
sensitivities in our set of models is not robust.

Additionally, we performed MCA which denotes the sensitivity analysis of the
steady state model. Hereby, control coefficients are calculated which are defined
for infinitesimal small perturbations. Therefore, their predictive power for effects
of larger changes, like enzyme concentrations, is limited. However, applying MCA
on our steady state model shows that already small perturbations in the parameters
have a strong influence on the steady state fluxes and concentrations. This indicates
that the model is not robust. Due to the fact that biological systems are permanently
exposed to perturbations, robustness is a significant characteristic to ensure stability.
Accordingly, our fitted steady state model does not describe the physiological state
of the glycolytic system. In order to obtain the steady state model we fitted the
velocity constants of our glucose-pulse model to our fermentation data. Incorrect
kinetic binding constants might cause the observed sensitivity to perturbations. This
might be solvable by exploiting more data and by determining kinetic parameters
by performing additional enzymatic measurements.

In order to make sure that the lack of robustness in the chemostat model is not
caused by the actual set of V.« values, we will fit several models to our fermentation
data and study the best 50 of them by means of MCA like already done for the

glucose-pulse model.
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4.2 Comparison to L. lactis

We have developed an improved kinetic model of the well-studied L. lactis which
takes into account the effects of varying amounts of extracellular phosphate and
quantitatively describes the dynamics of extracellular metabolites (glucose and lac-
tate), main glycolytic intermediates (FBP, G6P, PEP) and co-factors (ADP, ATP,
NAD™, NADH, P;). This model was compared to the model of S. pyogenes.

4.2.1 Kinetic model of L. lactis

Previously published L. lactis models omitted P; transport [Hoefnagel et al., 2002b,
Hoefnagel et al., 2002a, Oh et al., 2011, Andersen et al., 2009] or considered phos-
phate as a constant input [Neves et al., 1999, Voit et al., 2006a, Voit et al., 2006b].
Consequently, the simulated FBP and intracellular phosphate levels were consid-
erably lower in these studies, which affects the regulation of glycolytic processes
such as the PTS [Deutscher et al., 2006], PYK [Crow & Pritchard, 1976] and LDH
[van Niel et al., 2004]. Especially the large FBP concentration during glycolysis was
crucial for the regulation of several glycolytic enzymes as well as for the glucose up-
take rate and was a direct result of extracellular phosphate.

We developed a substantially improved kinetic model of L. lactis glycolysis, which
accurately simulates our measured metabolite profiles quantitatively at different ex-
tracellular phosphate concentrations and is also consistent with published *C- and
3IP-NMR measured by Neves and co-workers [Neves et al., 2002]. Interestingly, the
Neves experiments were performed with MG1363 and we used NZ9000, a MG1363
derivative, for our glucose-pulse experiments. For both data sets, the initial con-
centrations as well as the activity of the ATPase were allowed to differ. All other
parameters stayed the same irrespective of the assumption that the V., values
for the two different experimental data sets will certainly not be exactly the same.
However, the model with these constraints is able to almost perfectly fit the data as
long as phosphate uptake is included in the model. Without this reaction, the data
cannot be fitted.

Thus, our developed model is able to capture dynamic profiles of intracellular
metabolites after glucose-pulse experiments with strongly improved accuracy (see
Section 3.3.1) and fits the dynamics for different strains with one single thermo-

dynamically-consistent parameter (though with variable ATPase activities). Like
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for S. pyogenes, we used a set of 50 models for our analyses described below due to

the non-identifiability of the parameters.

4.2.2 Role of phosphate in L. lactis and S. pyogenes

The role of phosphate is crucial in L. lactis and S. pyogenes even though uptake
and regulation show some differences. We can ascribe these to the phosphate uptake
mechanisms differing in both species. A passive transport (even a well regulated
one) as present in S. pyogenes will allow phosphate outflux, if the concentration
gradient points in this direction.

Having revealed the fundamental role of free phosphate for the metabolism of
these species, it is interesting to see, how the two bacteria cope with the phosphate
available in their respective natural environment. S. pyogenes which resides in the
human body (e.g. skin, mucous membrane and blood (0.8 - 1.8 mM phosphate in
the latter)) at relatively constant and low concentrations of phosphate has two phos-
phate uptake mechanisms, a passive and an active transport. Both have to supply
sufficient phosphate to the cells to enable them to efficiently metabolise glucose in
order to grow and multiply. However, according to the above, the relatively low
phosphate concentrations are not the optimal conditions for glucose uptake for this
organism. This raises the question why S. pyogenes still uses the passive trans-
port that causes this effect. The answer might be the fairly constant supply of
phosphate and glucose in the compartments of the human body. Thus, while not al-
lowing optimal glucose uptake rates, the passive transport system allows a cheap and
guaranteed minimal phosphate uptake (the phosphate concentration in its natural
environment will certainly never drop much) that is sufficient to sustain glycolysis.

L. lactis on the other hand encounters relatively high phosphate levels (ca. 20
mM) in fresh milk initially. However, here, the situation is more like in batch
experiments, since there is no further supply of phosphate once the milk has left
the body and L. lactis starts to reside in it. Thus, an active mechanism as found
for phosphate uptake in these bacteria makes sense, even though one may wonder,
why the bacteria do not own a passive one which would allow them to make use
of the initially high phosphate concentration without wasting ATP. As seen for S.
pyogenes, a passive transporter can slow down glucose uptake, if the extracellular
phosphate concentration starts to deplete. This might be dangerous for a species

that encounters highly variable environmental conditions. For L. lactis, no putative
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sodium phosphate symporter has been identified so far.

The above observations about the phosphate regulation of LDH are supported
on the kinetic level by the differences between plant- and dairy-strains of L. lactis.
Van Niel et al. [van Niel et al., 2004] measured that LDH activity in plant- and
dairy-strains of L. lactis are differentially regulated: dairy strains use FBP and P;,
whereas LDH of plant isolates are regulated by the NADH/NAD™ ratio. As a plant
environment is virtually devoid from phosphate [Asher & Loneragan, 1967|, these
observations support a close link between the organism’s natural environment and
its metabolic regulation.

In summary, the interspecies comparison gains insight in the crucial role of P;
transport and P; regulation of glycolysis, which we could relate to the phosphate

availability in the environmental niches of these organisms.
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4.3 Genome-scale model

In order to explore the whole-cell metabolism of S. pyogenes we have developed a
genome-scale model with predictive capabilities based on genomic, physiological and
biochemical information (see Section 3.5). Very little is known about the metabolism
of S. pyogenes due to the fact that it is a human pathogen and its cultivation is
subject to strict instructions. Moreover, our experiments show that the cultivation
of this organism is more difficult than the cultivation of L. lactis and E. faecalis. We
have not identified the reason for that yet. Therefore insights from a computational
model are very helpful. The model comprises 574 reactions and 552 metabolites (see
Appendix B.1 and B.2). The manual consistency check of the network (see Section
3.5.3) has taken much effort but guarantees high quality of the reconstruction. Since
the biomass components have not been measured yet, the biomass equation and its
stoichiometric coefficients are adopted from the closely related L. lactis (see Section
3.5.5). We have measured input and output fluxes under defined experimental
conditions. Finally, we used the model to explore the organism’s metabolism and
propose strategies to control growth. The presence or absence of functional pathways
can be predicted based on the model and will be validated experimentally. Hereby,

we concentrated on the investigation of essential amino acids.

4.3.1 Orthology detection

The quality of the reconstructed metabolic network depends on the orthology de-
tection method and on the quality of the reference networks selected for this pur-
pose. We used INPARANOID [Remm et al., 2001] for orthology detection which
is based on bi-directional best hits and does not use multiple alignments or phylo-
genetic trees and, therefore, avoids errors that might be introduced at these steps
[Remm et al., 2001]. The chosen networks are manually curated and, thus, guaran-
tee a high quality of the reconstructed network.

Several automatic methods for the reconstruction of genome-scale metabolic net-
works are available. Here, we used the AUTOGRAPH method. Notebaart et al.
compared this method to the well established Pathologic approach [Karp et al., 2002].
Pathologic takes annotated genomes as input and predicts gene-reaction associations
based on EC numbers and name comparisons. It is the first step in the development

of so-called pathway-genome-databases. Notebaart et al. found out that the recon-
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struction based on AUTOGRAPH contained organism specific genes and transport
system components which were absent in the automatic Pathologic reconstruction.
Since transport reactions often do not have complete EC numbers, the lack of these
reactions have to be expected in a network constructed with Pathologic and, con-
sequently, the according reactions have to be added manually. The prediction of
organism specific genes demonstrates the strength of the AUTOGRAPH method
[Notebaart et al., 2006].

4.3.2 Network composition

The purpose of the network reconstruction is to simulate cell growth and, conse-
quently, all metabolic reactions essential for cell growth were included in the model.
Due to simplicity, inorganic ions were negligible for modelling. The biomass pro-
duction was used as objective function. This reaction relates the maximal energy
production to the organism’s growth rate and was adapted from the L. lactis re-
construction since the biomass composition of S. pyogenes is not available from
experiments. According to this reaction, biomass is composed of six compounds,
namely DNA, RNA, protein, cell wall components, membrane constituents and vi-
tamins. Even though L. lactis and S. pyogenes are closely related we already iden-
tified some differences, e.g. in their energy metabolism (see Section 3.3.2 and 3.3.3).
Consequently, it is likely that their biomass composition will differ, especially the
stoichiometric coefficients.

Reconstructing the whole-cell metabolism was complicated by the fact that little
is known about S. pyogenes metabolism. Membrane and cell wall synthesis is well
studied due to the role of some of their components as virulence factors. Especially
the composition and role of teichoic acids was investigated [Knox & Wicken, 1973,
Navarre & Schneewind, 1999, Swoboda et al., 2010, Cunningham, 2000]. It is spec-
ulated that teichoic acids serve as specific decorations differentiating Gram-positive
bacteria from other organisms possessing an identical peptidoglycan composition
[Navarre & Schneewind, 1999|. Wide gaps exist, for example, in the folate and C1-
THF pool synthesis where information about an enzyme catalysing one of the first
steps is missing (see Section 3.5.5). Due to incomplete EC numbers and missing
annotation in UniProt [UniProt Consortium, 2010] we could not figure out how this
step is catalysed in S. pyogenes even though the genome-scale models of L. lactis

and L. plantarum served as a template. Consequently, we will study this part of the
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folate synthesis in more detail.

4.3.3 Simulation of experimental data

One approach to explore such large metabolic networks is FBA (see Section 2.3.3).
This method calculates the flux through the network based on its stoichiometry. To
reduce the number of possible solutions we specify an objective function and con-
straints on uptake and product fluxes (see Sections 3.5.5 and 3.5.6). The objective
function is defined as the flux towards the biomass formation and the constraints
on the fluxes are set according to our measured amino acid and end-product fluxes.

Without further constraints on the fermentation products, enhanced mixed-acid
formation would be observed. Since the acetate production yields one additional
ATP, mixed-acid fermentation is energetically more favourable for the cell than lac-
tate production. This points out that limiting the uptake and production fluxes is
essential; in general, the optimal solution found with FBA does not reflect a physio-
logical solution. To validate the reconstructed metabolic network of S. pyogenes we
simulated our fermentation data (see Section 3.1.2). Additionally, we studied the
substrate spectrum and growth in the absence of amino acids of S. pyogenes (see
Sections 3.1.5 and 3.1.7).

Fermentation data. The model correctly simulates the growth rate of approxi-
mately 0.05 at pH 6.5 and about 0.15 at both pHs, 6.5 and 7.5, but fails to predict
the growth rate of 0.05 at pH 7.5 for the wild-type and the ldh-knock-out mutant (see
Section 3.5.6). This might be due to an error in the measurements since all other
experimental set-ups could be simulated accurately. We will perform additional
fermentation experiments to verify the measured fluxes and validate the computa-
tional model. More than three measurements under each experimental condition
will facilitate the use of mean values and standard deviation to restrict the uptake
or production fluxes. So far, we assumed an error of 20% but had to widen the
upper boundaries of the amino acid fluxes to find an optimal solution (see Section
3.5.6). This again points to a measurement problem.

In all simulations under the objective of maximising the biomass formation, the
amino acid cysteine is not taken up even if it is present in the medium. The in silico
model prefers to synthesise it from cystine. This might be due to the fact that in

the model cystine can only be degraded into cysteine. We will concentrate on the
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cystine metabolism during the ongoing model improvement and validation.

Furthermore, no acetoin is produced by the computational model although it is
measured during growth of the ldh-negative mutant. According to the computational
model, the mutant ferments glucose to acetate, ethanol, formate and mainly to D-
lactate. The last mentioned flux is not limited since we have not measured it.
Under the simulated conditions, biotin, pyridoxamine, pyridoxine, riboflavin and
xanthine are not taken up although the first four compounds are essential for growth;
according to the model, xanthine can be synthesised de novo.

All in all, more experimental data is needed to apply tighter constraints on the
fluxes and, thus, reduce the achievable physiological states. Smaller ranges will also
decrease the possibility of having multiple model states showing identical objective

values.

Growth on different carbon sources. We identified 20 sugars out of 190 on
which the wild-type and the Idh-negative mutant are able to grow (see Section
3.1.5). Out of the 20 carbon sources four were already included in the model. After
integrating exchange, uptake and degradation of these sugars, the in silico model
predicts growth of S. pyogenes wild-type and Ildh-deletion strain on these sugars
(see Section 3.5.6). However, no quantitative prediction can be done due to the
experimentally determined growth rate under batch conditions. Tomas Fiedler will
measure product and amino acid concentrations in S. pyogenes wild-type and [dh-
negative mutant at two dilution rates and two pHs during continuous cultivation in
CDM-LAB medium with trehalose, sucrose, maltose and mannose as carbon source.

These data will be used to validate the model predictions.

Omission of amino acids. The amino acid leave-out experiments were carried
out in batch cultures (see Section 2.1.9). Consequently, we compare the outcome
of the two independent experiments (see Table 3.13) qualitatively to the model
predictions. Surprisingly, our first experiment indicates that the growth rate in the
absence of aspartate and glutamine is higher than in full medium. As described
in Section 3.5.6, the model fails to predict this increase. This might be due to a
measurement error, a missing connection between these two amino acids or to a
loss of competition for a single transport system which might occur under batch
conditions |[Davies et al., 1965|. The formation of correctly charged Asn-tRNA#sn
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through the transamidation of misacylated Asp-tRNAAS" establishes a connection

between aspartate and glutamine through the following reaction
ATP + Asp-tRNA%" + Gln <+ ADP + P; + Asn-tRNA#" + Glu.

However, due to the missing information regarding the presence of the non-discrimin-
ating aspartyl tRNA synthetase (EC 6.1.1.23) in S. pyogenes and the contradicting
data from our second experiment the reaction is not incorporated in the model.
Furthermore, the in silico model predicts no change in growth rate in the absence of
cysteine or glutamate as compared to full medium. Taking the standard deviation
into account, the difference in the measured growth rates of S. pyogenes in full
medium or medium without the mentioned amino acids is negligible.

The model predictions agree with our experimental data (see Section 3.1.7) for
growth in the absence of most tested amino acids. Thus, the model correctly predicts
Arg, His, Ile, Leu, Lys, Met, Phe, Trp, Tyr and Val to be essential for growth of S.
PYOGENES.

However, the simulation and the measured data give contrary results for some
amino acid leave-outs. While growth occurs in the absence of alanine in the mea-
surements, the in silico model does not grow in this medium. So far, we did not
identify the reaction producing Ala. Furthermore, our data give contrary results
concerning growth in the absence of cysteine and cystine. According to the first
experiment these amino acids are interconvertible whereas the second experiment
indicates that there must be an alternative way producing Cys.

The experimental data indicate that Gly, Ser and Thr are not interconvertible.
A database survey using BLAST |Geer et al., 2010] points out that the gene en-
coding the enzyme converting threonine into glycine is not present in the genome
of S. pyogenes. However, the enzyme converting glycine and serine is available.
Although this reaction is reversible, the flux only occurs in the direction of serine
production. The conversion of serine into glycine proceeds concomitant with the
transformation of tetrahydrofolate into 5,10-methylenetetrahydrofolate. Since the
enzyme metabolising 5,10-methylenetetrahydrofolate is missing in S. pyogenes (see
Section 3.5.5), this metabolite would accumulate while producing glycine from ser-
ine. Furthermore, referring to experimental data, serine is essential whereas the
model predicts it to be synthesised from cysteine.

According to both of our experiments, S. pyogenes can grow in the absence of

Glu. The first experiment also indicates growth omitting Gln whereas in the sec-
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ond experiment no growth occurs under this condition. Thus, the first experiment
indicates a conversion of Gln and Glu whereas the second experiment points out
that Gln cannot be produced from Glu. Additional experiments will be performed
to sort out mismatches between both data sets and the model simulations. Discrep-
ancies between the validated data and the computational model will be resolved by

removing or adding reactions.

4.3.4 Predictions from the model

We used the genome-scale model to predict essential amino acids and to propose
a minimal medium for growth of S. pyogenes (see Section 3.5.6). Based on the
developed model, we identified 12 amino acids to be essential for the growth of S.
pyogenes in CDM-LAB medium, 10 of them are identical with literature data (see
Table 3.19 and [Slade et al., 1951]). Referring to literature, 15 amino acids are re-
quired for the growth of S. pyogenes. Discrepancies between the model prediction
and literature data concern Ala, Gly, Pro, Ser and Thr. In order to validate the
model predictions we performed amino acid leave-out experiments ourselves (see
Section 2.1.9 and 3.1.7) and were able to validate 9 of the 12 amino acids predicted
to be essential (see Table 3.13). Although alanine, cysteine and valine are predicted
to be essential by the computational model, our experimental findings show that 5.
pyogenes is able to grow in the absence of these amino acid. Thus, trusting the data,
the computational model lacks reactions catalysing the production of these amino
acids. However, we have not identified the missing steps based on a KEGG search
|[Kanehisa & Goto, 2000]. Furthermore, according to our experimental and the liter-
ature data [Slade et al., 1951], glycine, serine and threonine are essential for growth
of S. pyogenes. Referring to the model, these amino acids are interconvertible. The
reactions catalysing the mutual transformation are included in the model based on
orthology detection. However, this is preliminary data and we will independently
repeat the amino acid leave-out experiments and adapt our model to our experi-
mental results. Furthermore, the amino acid requirements might differ depending
on the medium, especially on the vitamin content |Tittsler et al., 1952] which likely
explains the discrepancies between our data and literature [Slade et al., 1951].
Based on the predicted essential amino acids a minimal medium was proposed.
No in silico growth was observed when only the essential amino acids were allowed

to be taken up. If glutamine (or glutamate), glycine (or threonine) and asparagine



130 Chapter 4. Discussion

(or aspartate) are supplied additionally to the essential amino acids, growth occurs
(see Section 3.5.6).

4.3.5 Differences and similarities between S. pyogenes and

related bacteria

As described in Section 3.5.7, L. lactis has an almost complete pentose phosphate
pathway while the oxidative phase is missing in S. pyogenes. Concentrating on re-
lated bacteria, we found out that S. bovis, S. mutans and S. thermophilus also lack
the oxidative portion of the hexose monophosphate pathway [Asanuma & Hino, 2006,
Crow & Wittenberger, 1979, Kanehisa & Goto, 2000]. Interestingly, this incomplete-
ness seems to be related to the presence of the enzyme GAPN which is annotated
in the latter four organisms. On the other hand, L. plantarum and L. lactis have a
complete hexose monophosphate pathway for generating NADPH and lack GAPN
|[Kanehisa & Goto, 2000]. This underlines the significance of GAPN in NADPH
synthesis.

GAPN produces NADPH on the cost of one ATP. Therefore, this mechanism
is inefficient for the growing cell. We investigated the amino acid metabolism to
discover a more efficient way for NADPH recovery. NADPH can be generated
concomitant with the conversion of proline into glutamate, as is done in L. plan-
tarum. However, S. pyogenes lacks the required enzymes. So far, we could not
identify any NADPH recovery process neither in the amino acid metabolism nor
in another pathway. Interestingly, the same holds for S. bovis and S. mutans.
Both have genes encoding GAPN but do not have any other NADPH-producing
systems such as the pentose phosphate pathway or the NADPH:NAD™ oxidoreduc-
tase [Asanuma & Hino, 2006, Crow & Wittenberger, 1979]. The lack of any other
NADPH regenerating reaction underlines the crucial role of GAPN in S. pyogenes
and the suggestion of GAPN as drug target (see Section 4.1.1).

Based on the comparison between L. lactis and S. pyogenes, we propose that the
presence of GAPN can be further linked to nutritional requirements. This hypothesis
is supported by the higher number of essential amino acids for the growth of S.
pyogenes compared to L. lactis. Concerning required vitamins, S. pyogenes is not
able to synthesise thiamin while L. lactis can produce it de novo. However, this

hypothesis has to be verified by means of bioinformatic approaches in which the
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genomes of bacteria possessing GAPN as well as lacking it are investigated regarding
their nutritional requirements, e.g. the presence of enzymes involved in vitamin or

cofactor synthesis.
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4.4 Discussion of thesis goals

The purpose of this thesis was the development of a kinetic and a genome-scale model
of S. pyogenes and the understanding of the differences and similarities between S.
pyogenes and L. lactis. The following objectives have been investigated within the

scope of this thesis.

1. Construct a kinetic model of S. pyogenes using ODEs based on an

extensive literature survey and delivered experimental data.

e Simulate our glucose-pulse data. Our computational model is able to
reflect the effect of extracellular phosphate on glycolysis. In accordance
with our experimental data, the FBP level and the glycolytic flux increase

with the extracellular phosphate concentration (see Section 3.2.3).

e Simulate our fermentation data at two pHs and two dilution
rates. The developed glycolytic model is able to simulate our mea-
sured acetate, extracellular lactate, external phosphate and ethanol end-
product concentrations at steady state but fails to reflect the formate

and extracellular pyruvate levels (see Section 3.2.3).

e Understand the differences and similarities between S. pyogenes
and L. lactis based on the developed kinetic models. Based on the
models we could identify crucial differences in the regulation of glycolytic
key enzymes such as LDH. Furthermore, both LAB show differences in
the phosphate uptake and the way phosphate affects glycolysis (see Sec-
tions 3.3.2 and 3.3.3).

e Understand the adaption to different environments based on
the models of S. pyogenes and L. lactis. Free inorganic phosphate
has a crucial role on the metabolism of both S. pyogenes and L. lactis.
The uptake and impact of phosphate can be related to its availability in

the respective natural environments (see Sections 3.3.2, 3.3.3 and 4.2).

2. Reconstruct the metabolic network of S. pyogenes based on a semi-
automatic approach which takes advantage of already existing and

manually curated models.
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e Simulate our fermentation data. Our genome-scale model is able to
simulate the correct growth rates of approximately 0.05 at pH 6.5 and
about 0.15 at both pHs, 6.5 and 7.5, for the wild-type and the mutant
strain. It fails to predict the growth rate of 0.05 at pH 7.5 for the wild-
type and the Ildh-knock-out mutant (see Section 3.5.6). This might be

due to a measurement error and will be studied in more detail.

e Understand the growth requirements of S. pyogenes and define
optimal and suboptimal conditions. Based on the in silico model,
we identified 12 amino acids to be essential for the growth of S. pyogenes
in CDM-LAB medium. Furthermore, we propose a minimal medium

containing three additional amino acids (see Section 3.5.6).

e Explore the organism’s reaction to perturbations in its environ-
ment. We have studied the growth of S. pyogenes on different carbon
sources (see Section 3.5.6) and in the absence of selected amino acids (see
Section 3.5.6).

e Find strategies to reduce the growth of the pathogen S. pyo-
genes and propose drug targets. We propose GAPN as drug target
since it seems the only possibility to recover NADPH but also effects

glucose uptake (see Section 4.3.5 and 4.1.1).

e Describe differences and similarities between S. pyogenes and
L. lactis. Although S. pyogenes and L. lactis are closely related, we can
identify differences in their metabolism, e.g. in the cell wall composition

and the pentose phosphate pathway (see Section 3.5.7).
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We have presented the first kinetic model of S. pyogenes glycolysis. The com-
putational model was formulated using ordinary differential equations and was im-
plemented in the software package COPASI. We performed glucose-pulse and fer-
mentation experiments under varying conditions and measured the kinetics of PYK
and LDH in vitro to parametrise our model. In accordance with experimental data,
the kinetic model captures the effect of extracellular phosphate on FBP and the
glycolytic flux. We performed sensitivity analysis and emphasised differences and
similarities with L. lactis based on the kinetic models.

The sensitivity analyses revealed that all parameters are basically non-identifiable
with the available data and, thus, yielded no information about crucial parameters.
In order to gain more insight one could investigate the relationships between the
parameters. With this information, the dimensionality of the parameter space can be
reduced. Furthermore, we will concentrate on the arginine metabolism and include
this amino acid in the kinetic model since it limits the growth of S. pyogenes.

Besides, we have presented the reconstruction of the metabolic network of S.
pyogenes based on its annotated genome sequence and existing manually curated
reference networks. Network reactions were collected from the reconstructed net-
works of L. plantarum and L. lactis and from biochemical and metabolic pathway
databases. The constructed genome-scale model was analysed using FBA. We inves-
tigated essential amino acids and the substrate spectrum of S. pyogenes. Simulation
results were compared with experimental data delivered from consortium partners.

Improvement of the genome-scale model remains. For the validation of the model
more data are needed. In the first place, additional fermentation experiments are
important. Furthermore, an independent repeat of the amino acid leave-out experi-
ments is required since our data are conflicting. The scope of the reconstruction will
increase and transcriptional regulation will be incorporated. The metabolic network
will be used to simulate proteomic and transcriptomic data. Further advancements
will be achieved by measuring biomass components and parameters describing the
energy required for growth under the same experimental conditions.

Since we propose GAPN as a possible drug target, the construction of a gapn-
deletion strain and the study of its growth at different phosphate concentrations
will be done.

Furthermore, we will combine the kinetic and the genome-scale model to a hybrid
system. The kinetic model will replace the primary metabolism in the whole-cell

model and will constraint end-product fluxes and ATP maintenance.
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Appendix A. Glycolytic model of S. pyogenes

A.1 Kinetic parameters and initial concentrations

Initial estimates of the parameters were obtained from literature, as indicated. Pa-

rameter fitting was performed to tune the parameters to fit our own profiles.

Table A.1: Velocity constants (in %) Parameters with missing reference from literature

are indicated by “ -

7. Exemplary the parameters of one of the 50 fitted models are shown.

Variable Original ~ Optimised Reference

VPIS 0.49 26.83 [Cvitkovitch et al., 1995|
ValeP 0.007 0.0001  |Cvitkovitch et al., 1995]
VHPIP - 4646 -

VHPIK - 399.02 -

VOK 4.40 0.57 [Porter et al., 1982]
VPEK 1.66 16.44 [Simon & Hofer, 1981]
VPasell 0.175 0.92 [Ye et al., 1996|

VEBA 71.43 713.97  [Crow & Pritchard, 1982
VEAPDH 8.12 72.32 [Pancholi & Fischetti, 1992]
VEAPN 6.06 2.06 [Iddar et al., 2003]

VENO 2.23 3.82 [Brown et al., 199§]
VPYK 9.72 78.38 [Hoefnagel et al., 2002b]
VLDH 2.46 11.22 [Sommer et al., 1985]
yLacT - 433.63 -

VPIL 1.53 12.16 |Takahashi et al., 1982]
VACK 8.93 735.64  [Hoefnagel et al., 2002b]
VADH 1.93 59.79 [Hoefnagel et al., 2002b|
VP 0.35 0.03 [Reizer & Saier, 1987|
yPiTactive } 0.01 )

VATPase 2.73 25.84 [Sutton & Marquis, 1987]
VNPOX - 295.68 -

max
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Table A.2: Reversible processes: Ke¢q. These parameters were not optimised.

Variable Value Reference

KEBA 0.056 [Andersen et al., 2009]
KGAPPH 0.0007  [Andersen et al., 2009]
KENO 27.55 [Andersen et al., 2009|
KEY 6500 [Andersen et al., 2009|
KM 36000  [Andersen et al., 2009
K& 650 |[Andersen et al., 2009

Table A.3: Michaelis constants: Ky, (mM). Parameters with missing reference from

literature are indicated by “

are shown.
Variable Original ~ Optimised Reference
KPTS o 0.0068  0.0007 [Cvitkovitch et al., 1995]
KE e - 1222 -
KPIS - 1.08 -
Kgll;i,mvat o - 14.09 -
KPS, - 7443 -
K., Cop - 43.66 -
KHEE 0.066 0.42 [Reizer et al., 1984]
KHP 0.061 0.02 [Reizer et al., 1984]
Koy —ser—p - 7901 -
KIS, - 0.65 -
K e —ser—p - 1316 -
KHPrE ; 26.05 -
KB’ - 0.52 -
KO cose 0.61 2.70 [Porter et al., 1982
KEK 1p 0.21 1.46 [Porter et al., 1982]
KCE, : 0.01 -
KOK . 058 -
KPP 1.44 7.61 [Simon & Hofer, 1981]

- 7. Exemplary the parameters of one of the 50 fitted models
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TableA.3 — continued from previous page

Variable Original ~ Optimised Reference

KPS e 5.8 0.25 [Hoefnagel et al., 2002b]
KPEE 0.23 58.00  [Simon & Hofer, 1981]

KPS o 0.3 0.27 [Hoefnagel et al., 2002b|
KPasell - 0.01 -

Kl S o -

KPagen ; 580 -

KFBA L 1.1 0.63 |Crow & Pritchard, 1982]
KEBA b 2.8 4.46 [Hoefnagel et al., 2002b|
KGAPDIT | 1.33 0.79 |Crow & Wittenberger, 1979
KGALRH 0.16 0.17 |Crow & Wittenberger, 1979
KG4PDH 1.44 0.30 [Crow & Wittenberger, 1979
KEADRH 0.05 0.43 |[Hoefnagel et al., 2002b]
KEARDL 0.067 0.12 [Hoefnagel et al., 2002b|
KGAEN 0.67 6.69 [Iddar et al., 2002]

KEARN 0.39 3.90 [Iddar et al., 2002

KGAPN . 07.97 -

K NADPH - 2.99 -

KENO 0.44 0.15 [Brown et al., 1998|

KENO L 0.53 0.02 [Hoefnagel et al., 2002b]
KENO. 0.2 1.12 [Hoefnagel et al., 2002b]
KENG., 0.3 2.98 [Hoefnagel et al., 2002b]
KPYR o 0.69 1.12 T. Fiedler (Section 3.1.4)
KPYE 21 7.45 T. Fiedler (Section 3.1.4)
K uvate 0.75 12.22 T. Fiedler (Section 3.1.4)
KPYX 10 92.89  T. Fiedler (Section 3.1.4)
KoM vate 0.41 0.04 T. Fiedler (Section 3.1.4)
KLDE h 8.8 0.01 T. Fiedler (Section 3.1.4)
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TableA.3 — continued from previous page

Variable Original ~ Optimised Reference
KLDH 0.062 83.31  T. Fiedler (Section 3.1.4)
KMRE 5 0.152 1.12 T. Fiedler (Section 3.1.4)
KLacl 2 6.41 [Harold & Levin, 1974]
KRt e 1.93 33.84 |[Harold & Levin, 1974]
Ko ruvate 5.4 53.98 | Takahashi et al., 1982]
KPEL | 0.02 0.15  [Takahashi et al., 1982
T ametylCoA 0.05 0.37 [Hoefnagel et al., 2002b]
KL e 24 47.69 |[Hoefnagel et al., 2002b]
K o yicon 0.06 0.02 [Hoefnagel et al., 2002b|
Kr‘;%}f 5 9.68 [Hoefnagel et al., 2002b]
KACK L 0.5 3.86 [Hoefnagel et al., 2002b]
KACK 7 12.84 |[Hoefnagel et al., 2002b|
KAK, 0.1 0.24 [Hoefnagel et al., 2002b]
KACK, 7 64.13  [Hoefnagel et al., 2002b|
A eaty1CoA 0.007 0.03 [Hoefnagel et al., 2002b]
KARH n 0.025 0.05 [Hoefnagel et al., 2002b|
KADH 1 1.94 [Hoefnagel et al., 2002b|
KADH 0.08 0.03 [Hoefnagel et al., 2002b]
KADRIT 0.008 0.07 [Hoefnagel et al., 2002b]
KDG 1.1 5.75 [Reizer & Saier, 1987]
Kgligi 5 0.79 [Reizer & Saier, 1987|
KPiTetive - 7118 -
KFiTactive - 55.66 -
KEigetive - 812 -
KPiactive - 5.77 -
KAT ase 0.9 5.26 [Sutton & Marquis, 1987]
K NADpH - 9.32 -
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TableA.3 — continued from previous page

Variable ‘ Original ~ Optimised Reference

KN | - 99.46 -

Table A.4: Allosteric regulation binding constants (mM). Exemplary the parameters of

one of the 50 fitted models are shown.

Variable Optimised Reference

KHEP 0.04 [Reizer et al., 1984]

KL 20.01 [Reizer et al., 1984]

KHEES 86.97  [Crow & Pritchard, 1976]
KHEK 1.03 |Crow & Pritchard, 1976]
K&K, 0.02 [Porter et al., 1982

KEK L 0.05 [Porter et al., 1982]

Klasel p 25.15  [Ye et al., 1996]

KGAEDH 44.59 [Pancholi & Fischetti, 1992]
K&k 6.97 [Yamada & Carlsson, 1975a)
KK 72.05 [Yamada & Carlsson, 1975a]
KPR, 58.57  T. Fiedler (Section 3.1.4
KLBH 0.03 T. Fiedler (Section 3.1.4
KA 67.24 T. Fiedler (Section 3.1.4
Kl vate 1.10 [Harold & Levin, 1974]

KM b 0.08 |Takahashi et al., 1982]
KA, 7.42 [Lopez de Felipe & Gaudu, 2009]
KADH, 813  [Palmfeldt et al., 2004]

KPS 90.15 [Reizer & Saier, 1987|
K'ivp 16.04 [Reizer & Saier, 1987]
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Table A.5: Hill coefficients. This parameter was not optimised.

Variable

‘ Value Reference

N ATPase

‘ 3 [Andersen et al., 2009

Table A.6: Initial concentrations (mM) for 0, 10 and 50 mM extracellular phosphate.

Exemplary the parameters of one of the 50 fitted models are shown.

Optimised

Species P*=0mM P*=10mM P;* =50 mM
G6P 0.36 0.21 0.07
FBP 0.12 0.12 0.25
Triose-P 3.64 1.13 1.10
BPG 0 0 0
PEP 9.99 1.06 1.11
Pyruvate 0.46 0.02 0.11
Acetyl-CoA 0 0 0
P; 2.06 4.49 4.41
ADP 4.74 4.87 4.83
ATP 0.26 0.14 0.17
NAD 3.50 6.97 9.89
NADH 0 0 0
CoA 1.17 4.51 4.81
Lactate 0 0 0
Glucose 0 0 0
HPr-ser-P 0 0 0
HPr 0.16 0.16 0.16
NADP 6.97 1.00 8.77
NADPH 0 0 0
Glucose®™ 8.08 5.26 8.44
Lactate®™ 2.76 1.90 2.34
Py 0 10 50
Formate 0 0 0
Ethanol 0 0 0
Acetate 0.43 0.49 0.45




A.2 Rate laws, differential equations and moiety conservation

Due to unknown enzyme mechanism convenience kinetics were used for most reactions (see Section 2.2.3) [Liebermeister & Klipp, 2006b].

The kinetic laws and the differential equations of the S. pyogenes glycolytic model are described in the following.

A.2.1 Rate laws

VPTS | [HPr] ‘ [PEP] A [glucose,, ]
v e KE}’-I;-ISPr Kr}?;Il‘:‘SEP Krlzng?ucoseex
PTS —
- [HP1] 1y [PEP] - [glucose,, ] . [HPr] N [pyruvate] . [G6P] B
KEII‘{SPr KEI};SEP Kzg?ucoseex KglrII‘JSPr Kggilruvate KEITGSGP
valep = VS . ([glucose,, ] — [glucose])
VHPEK [HPr] [ATP]
Kipre [FBP] KGR KRATe

VHPrK = : :
Kip™ + [P KIEES + [FBP] [HP1] [ATP] [HPr — ser — P [ADP]
P )\ wm ) U T s ) U TR ) T
m r m m r—ser— m

VHP:P [HPr — ser — P]
I S =
K{WHE + [ATP] KUEED + [PL] [HPr — ser — P L P,
o o VEK . [glucose] . [ATP]
KiGep KiADp Km glucose GK K aTPGK

vGK = :
KGKp + [G6P]  KEK,p + [ADP] [glucose] [ATP] [G6P] [ADP]
It e Mt gee ) T\ VP gex ) |V e — 1

m glucose m ATP m G6P m ADP
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VPFK [G6P] [ATP]
max ' PFK  KPFK
UPFK = m G6P m ATP
[G6P] [ATP] [FBP] [ADP]
PFK ’ PFK PFK ’ PFK -
Krn G6P Km ATP Krﬂ FBP Km ADP
VPaseII . [SGPI]I
max a
UPasell = T Pagell APz P ' Fn G
K. Hbr—ser—p T [HPr —ser — P] [G6P) [glucose] [Pi]
Kol Ty
VFBA [FBf} B VEBA ‘ [trioie —P]
max FB FB
Km FBP KECFA m triose—P
VFBA = P
L [FBP] [triose — P] [triose — P]
+
FBA FBA FBA
Km FBP Km triose—P m triose—P
VGAPDI [triose — P] _ [NAD] _ Pi] VGAPDH . [BPG] . [NADH]
max GA GA GA GA GA
v KaaERE KMo, KON KORPT KGR KO KON
~ KGA ’
KE&bH + [NADH] [triose — P] [NAD] P, ., _Bral ., [NADH] )
GAPDH GAPDH GAPDH GAPDH GAPDH
Km triose—P Km NAD Km P; Km BPG Km NADH
VCGAPN | [triose — P] . [NADP]
max KGAPN KGAPN
VGAPN = m triose—P m NADP
[triose — P] [NADP] [PEP] [NADPH]
GAPN ' GAPN GAPN GAPN -
Krﬂ triose—P Km NADP Krﬂ PEP Km NADPH
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VENO =

UPYK =

ULDH =

VLacT =

UPFL —

VACK =

VENO | [BPG] . [ADP] - VENO . [PEP] . [ATP]
max ENO ENO ENO ENO
KmBPG KmADP Kg(lNO KmPEP KmATP
[BPG] [ADP] [PEP] [ATP]
+ [ — . [ —— JE—— . [
ENO ENO ENO ENO
Krﬂ BPG Km ADP Km PEP Krﬂ ATP
VPYE [PEP]  [ADP]  VEYEK  [pyruvate]  [ATP]
PYK max L PYK  KPYK " KPYK " KPYK
Ki P; . [GGP} . Km PEP Km ADP KS&(K Km pyruvate Km ATP
PYK : PYK -
Kip,~ + [Pij] K, gep + [GOP] [PEP) [ADP] ) [pyruvate] [ATP]
— 1. - + . - | =
PYK PYK PYK PYK
Km PEP Km ADP m pyruvate Km ATP
VLDH [pyruvate] [NADH] VLDH  [lactate] [NAD]
" KLDH " KLDH - " KLDH LDH
[FBP} [Pl] KlLl\]?ED s m pyruvate Km NADH KquH Krﬂ lactate Km NAD
LDH " KLDH " KLDH '
K. Fpp + [FBP] Kep, + [Pi] Kixap + [NAD] [pyruvate] [NADH] [lactate] [NAD]
— J _l’_ J JE——
LDH LDH LDH LDH
Km pyruvate Km NADH Km lactate Krn NAD
VlacT | [lactate]
LacT max KLacT
i pyruvate . m lactate
K};;;l:wate + [pyruvate] [lactate] [lactate,,]
LacT LacT
m lactate m lactateex
PFL [pyruvate] [CoA] VDFL  [acetyl — CoA]  [formate]
PFL Vinax - KPFL " KPFL =~ KPFL [KPFL " KPFL
itriose—P . m pyruvate m CoA eq m acetyl—CoA m formate
PFL :
K{triose—p T [triose — P] [pyruvate] [CoA] [acetyl — CoA] [formate]
bt e | KPFL | {1t e — L
m pyruvate m CoA m acetyl—CoA m formate
VACK [acetyl — CoA] [Ps] [ADP]
AC max = [-ACK " KACK = KACK
Ki FBKP . m acetyl—CoA Km P; Km ADP
ACK
Ki¥sp + [FBP] [acetyl — CoA] L [Ps] [ADP] [acetate] [CoA] [ATP]
ACK ACK ACK ACK ACK ACK
m acetyl—CoA Km P; Km ADP m acetate Km CoA Km ATP

Vo1
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VADH [acety]l — CoA] [NADH]
max ' T-ADH ’ ADH
K:AADT}{:’ e m acetyl—CoA Km NADH
VADH = -ADH .
Kiarp + [ATP] [acetyl — CoA] [NADH] [NADH] ., [ethanol [NAD] [NAD] [CoA]
ADH : ADH ADH ADH ADH ADH ADH
m acetyl—CoA Km NADH Km NADH m ethanol Km NAD Km NAD Km CoA
, KEihe Piox] VB - (Pied] - [P3)
PiT = H . T .
U Kfire + [ATP] KIE 4 [Piex] [Piex] [Pi]
PiT PiT
I<mll:’iex Km‘Pi
VPiT.active . [PiCX} . [ATP}
max PiT . acti PiT acti
. Kml%‘izzitlve Kmlgr[z‘al(::’twe
PiT.active = )
. [Pi ex] ) [ATP] . (Pi] [Pi] [ADP] L
+ KgiTi.zitive ’ + Kg]ig;[e‘ulgtive + Kgi’g;active Kii”ll;:active ’ E}i}.}gcptive -
n ase
[ATP] ATP
VATPase . KATPasc
m ATP
VATPase = [ATP] NATPase
ATP
KmTA"[E?Llge
yxpox | [NADPH]
max KNPOX
UNPOX = m NADPH
[NADPH] [NADP]
NPOX NPOX
Km NADPH Km NADP
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A.2.2 Differential equations and moiety conservation

d[Glc™

= —UpTS — UGIcP
dt ¢

d [HPr — Ser — P]

n = +Unprk — VHP:P
d [I(;ItPr] = —UgpP:K + VHP:P
d [(ilc] = —UgK + VGlcP + VPasell
d[G6P] _ 1 UpTS — UPFK + VGK — UPasell
dt
d [P(;]?P] = +VUprK — UFBA
w = —UGAPN + 2 - UrBA — UGAPDH
dt
d []sz] = +UGAPDH — VENO
d [EIE‘P] = —UpTs + UGAPN T VENO — UPYK
W = +UpTs + UpYK — UPFL — ULDH
M = —ULacT + ULDH
dt

d [Lactate™
dt

= +VULacT
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d [Acetyl — CoA]

= —VUADH + UPFL — VACK

dt
d [CoA
| | = +YADH — VPFL 1 VACK
dt
d [Formate] N
- - = v
e PFL
d [Acetate] N
[ S v
Tt ACK
d [Ethanol] N
- = v
e ADH
d[ATP
[ It | = —UpPFK — UATPase — YGK — UHPrK — UPiT.active T~ VENO + UPYK + VACK
d[NAD"
% = +2 - VADH — VGAPDH + ULDH
d[NADP*
g = —UGAPN t UNPOX
dt
d [Pi
([1 n | = +UATPase + UPIT + VHPrP + 2 * UPiT.active T UPasell — UGAPDH — VACK
d [Pi
ex]
= —UPpiT — UPiT.active
I PiT PiT.act

[ADP] = 9 — ATP

INADH] = [NAD*], — [NADH]

[NADPH] = [NADP '], — [NADPH]
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A.3 Results from sensitivity analysis

At first we performed a global sensitivity analysis by means of a random explo-
ration of the parameter space. Since this analysis did not allow to identify crucial
parameters we decided to use tighter boundary conditions. Therefore, we took our
set of 50 fitted models and calculated scaled sensitivities on the species concentra-
tions and reaction fluxes for varying extracellular phosphate concentrations (0, 10
and 50 mM) and plotted these as histograms. These results represent a subset of
the outcome of the random sampling method. The parameters were classified into
groups according to their maximal effects on the studied system variable. Thus, we
obtain one set of parameters having a high impact on the particular species or flux,
one class exerting a medium effect and one set showing a low impact. The results

from that analysis are summarised in the following tables.

Table A.7: Parameter sensitivities on FBP. For each parameter the scaled sensitivity on
FBP at t — 100 s was calculated and classified based on its maximal value in all 50 models

in one of three groups.

High effect (> +1) Medium effect (+0.3 to £+ 1) Low effect (< £0.3)
K Eh
Kﬁcaffetate
Ko Toa
Ko Ve
ﬁligetvlCoA
Kt
KpXbe
Vi
K0
K othanol
Ko XAD
KA
IﬁDaI(;IetleoA
KN Apm
Vi
NATPase
AT
VATre
KENO
KN,
KNG,
K
KE
VED




A.3. Results from sensitivity analysis 169

Table A.7 — continued from previous page

High effect (> £1) Medium effect (£0.3 to +1) Low effect (< £0.3)
FBA
Keq
FBA
m trioseP
FBA
Km FBP
FBA
Vmax
GAPDH
Keg
GAPDH
Ki NADH
KGAPDH
m BPG
KGAPDH
m NADH
GAPDH
m triose—P
KGAPDH
m NAD
GAPDH
Km P
GAPDH
Vmax
GAPN
Km PEP
KGAPN
m NADPH
GAPN
Km triose—P
KGAPN
m NADP
GAPN
Vmax
GK
Ki G6P
GK
Ki ADP
GK
Km G6P
GK
Km ADP
GK
m glucose
GK
Km ATP
GK
Vmax
GlcP
Vimax
HPrK
Ka FBP
HPrK
Ki Py
HPrK
Km HPr—ser—P
HPrK
Km ADP
HPrK
Km HPr
HPrK
Km ATP
HPrK
Vma)lz
HPrP
Ka Py
HPrP
i ATP
HPrP
Km HPr
HPrP
Km Py
HPrP
Km HPr—ser—P
HPrP
Vma)rc
LacT
i pyruvate
LacT
m lactatee
LacT
m lactate
LacT
Vmax
LDH
Keg
LDH
Ka FBP
LDH
Ka P
LDH
Ki NAD
LDH
m lactate
KLDH

m NAD
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Table A.7 — continued from previous page

High effect (> £1)

Medium effect (£0.3 to +1)

Low effect (< £0.3)

LDH
m pyruvate

LDH
Km NADH
LDH
Vmax
NPOX
Km NADP
KNPOX
m NADPH
NPOX
Vmax
Pasell
Ka HPr—ser—P
Pasell
m glucose
KPaseII
m Py
Pasell
Km G6P
Pasell
Vmax
PFK
Krn FBP
PFK
Km ADP
PFK
Km G6P
PFK
Km ATP
PFK
Vmax
PFL
Keq
PFL
itriose—P
PFL
m acetyl—CoA
PFL
Km formate
PFL
m pyruvate
PFL
Km CoA
PFL
Vmax

Kapgex for 10 and 50 mM P;®*
1

KPiT . for 0 mM P;¢*

aP.ex
1

KipiATFP for 10 and 50 mM P;°*

KPIL, for 0 mM P;ex

KE‘igi for 10 and 50 mM P;®*

Kﬁigi for 0 mM P;®*

KSE_CX for 10 and 50 mM P;®*

KB ex for 0 mM P

VPIT for 10 and 50 mM P;ex

max

VPIT for 0 mM P;ex

max

KPiT-active f5; 10 and 50 mM P;**

PiT.active .ex
K} P; for 0 mM P;

KPiTactive for 10 and 50 mM P;°x

PiT.active .ex
Ko ADP for 0 mM P;

KPiT.agtive for 10 and 50 mM P;**

PiT.acti
KPIT-2¢ve for 0 mM P;e

KPiT:active for 10 and 50 mM P;**

PiT.active .ex
K ate for 0 mM P;

vPiT.active for 10 and 50 mM P;°*

Vrl?lia’&active for 0 mM P;ex

PTS
Km HPr
PTS
Km pyruvate
PTS
Km G6P
KPTS
m HPr
PTS
Km PEP
PTS
Km glucoseg
VPTS
max
KEYK
PYK
Ka G6P
PY
Ki P;
PYK
Km pyruvate
PYK
Km ATP
KPYK
m PEP
PYK
Km ADP
VPYK

max
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Table A.8: Parameter sensitivities on P;. For each parameter the scaled sensitivity on

phosphate at t = 100 s was calculated and classified based on its maximal value in all 50

models in one of three groups.

High effect (> £1) Medium effect (£0.3 to £ 1) Low effect (< £0.3)
ACK
Ki FBP
ACK
m acetate
ACK
Km CoA
ACK
Km ATP
K
Km acetylCoA
ACK
Km P
ACK
Km ADP
ACK
Vmax
ADH
Ki ATP
ADH
m ethanol
ADH
Km NAD
ADH
Krn CoA
KADH
m acetylCoA
KADH
m NADH
ADH
Vinax
NATPase
ATPase
Km ATP
ATP
VATPase
ENO
Keq
ENO
Km PEP
ENO
Km ATP
ENO
Km BPG
ENO
Km ADP
ENO
Vmax
FBA
Keqg
FBA
m trioseP
FBA
Krn EFBP
VFBA
max
GAPDH
Keg
GAPDH
Ki NADH
GAPDH
Km BPG
KGAPDH
m NADH
KGAPDH
m triose—P
KGAPDH
m NAD
KGAPDH
m P;
GAPDH
Viax
GAPN
Km PEP 6
KGAPN
m NADPH
GAPN
m triose—P
KGAPN
m NADP
GAPN
Vmax
GK
Ki G6P
GK
Ki ADP
GK
Km G6P
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Table A.8 — continued from previous page

High effect (> £1) Medium effect (£0.3 to +1) Low effect (< £0.3)
GK
Km ADP
GK
m glucose
GK
Km ATP
GK
Vmax
GlcP
Vmax
HPrK
Ka FBP
HPrK
Ki P
HPrK
Km HPr—ser—P
HPrK
Krn ADP
HPrK
Km HPr
HPrK
Km ATP
HPrK
Vimax
HPrP
Ka P
HPrP
Ka ATP
HPrP
Km HPr
HPrP
Km Py
HPrP
Km HPr—ser—P
HPrP
Vinax
LacT
i pyruvate
LacT
m lactatee
LacT
m lactate
LacT
szcx
LDH
Keq
LDH
Ka FBP
LDH
Ka P
LDH
Ki NAD
LDH
m lactate
LDH
Km NAD
LDH
m pyruvate
LDH
Km NADH
LDH
Vmax
NPOX
Krn NADP
KNPOX
m NADPH
NPOX
Vmax
KPascII

aHPr—ser—P

Pasell
m glucose

Kialieill
KL

Vi

Kinrip
KinADP
Kindep
KiATP

Vinan
KPFL
PFL =
itriose—P
PFL

m acetyl—CoA
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Table A.8 — continued from previous page
Low effect (< £0.3)

High effect (> £1) Medium effect (£0.3 to +1)
PFL
m formate
KEF;)I;/ruvate
PFL
Km CoA
Viax
KSiPTiex for 10 and 50 mM P;e* Kggex for 0 mM P;e*
e
KiATe
PiT
KmlPi
K]'F.ex for 10 and 50 mM P;* KB ex for 0 mM P
VPIT for 10 and 50 mM P;°* VEIT for 0 mM P;°*
KPi’}EAactive
mb,
KPiT.active for 10 and 50 mM P;e* KPiT.active for 0 mM P;e*

PiT.acti
KPIT-8¢5ve for 0 mM Py

Kgi};{ggﬁve for 10 and 50 mM P;e*
KPiT:active for 0 mM P;**

KPiTactive for 10 and 50 mM P;®*
PiT.active
Vmax
PTS
Km HPr
PTS
Km pyruvate
PTS
Krn G6P
PTS
Km HPr
PTS
Km PEP
PTS
m glucosee
PTS
Vmax
KPYK
€q
PYK
Ka G6P
PYK
Ki P
PYK
m pyruvate
PYK
Km ATP
PYK
Km PEP
PYK
Km ADP
PYK
Vmax

Table A.9: Parameter sensitivities on the PFK flux. For each parameter the scaled

sensitivity on the PFK flux at t = 100 s was calculated and classified based on its maximal

value in all 50 models in one of three groups.

High effect (> £1) Medium effect (0.3 to £ 1) Low effect (< £0.3)
ACK
Ki EFBP
ACK
m acetate
ACK
Km CoA
ACK
Km ATP
ACK
m acetylCoA
ACK
Km Py
ACK
Km ADP
Vinax
ADH
Ki ATP
ADH
m ethanol
ADH
Km NAD
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High effect (> £1)

Table A.9 — continued from previous page

Medium effect (£0.3 to +1)

Low effect (< £0.3)

ADH
Km CoA

ADH
m acetylCoA

ADH
Km NADH

VADH

max

NATPase

ATPase
Km ATP

ATPase
Vmax

ENO
Keq

ENO
Krn PEP

ENO
Km ATP

ENO
Km BPG

ENO
Km ADP

VENO

max

FBA
Keq

FBA
Km trioseP

FBA
Km FBP

VFBA

max

GAPDH
Keg

GAPDH
Ki NADH

GAPDH
Km BPG

KGAPDH
m NADH

GAPDH
m triose—P

GAPDH
Km NAD

GAPDH
Km P

GAPDH
Vmax

GAPN
Km PEP

GAPN
Km NADPH

GAPN
m triose—P

GAPN
Km NADP

GAPN
Vmax

GK
Ki G6P

GK
Ki ADP

GK
Km G6P

GK
Km ADP

GK

m glucose

GK
Ki ATP

VGK

max

VGICP

max

HPrK
Ka FBP

HPrK
KiP-

HPrK
Km HPr—ser—P

HPrK
Km ADP

HPrK
Km HPr

HPrK
Km ATP

HPrK
Vmax

HPrP
Ka Py

HPrP
Ka ATP

HPrP
Km HPr
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High effect (> £1)

Medium effect (£0.3 to +1)

Low effect (< £0.3)

HPrP
Km P;
HPrP
Km HPr—ser—P
VHPrP
max
LacT
Ki pyruvate
LacT
m lactatee
LacT
m lactate
LacT
Vmax
LDH
Keg
LDH
Ka FBP
KLpY
LDH
Ki NAD
LDH
m lactate
KLDH
m NAD
LDH
Krn pyruvate
LDH
Km NADH
VvLDH
max
NPOX
Km NADP
KNPOX
m NADPH
VNPOX
max
Pasell
Ka HPr—ser—P
Pasell
m glucose
K Pasell
m P;
Pasell
Km G6P
Pasell
Vmax
PFK
Km FBP
KPFK
m ADP
PFK
Km G6P
PFK
Krn ATP
PFK
Vmax
PFL
Keq
PFL
itriose—P
PFL
m acetyl—CoA
PFL
m formate
PFL
Km pyruvate
PFL
Km CoA

VPFL

max

KPiT . for 10 and 50 mM P;e*

.ex
aP;

KPiT . for 0 mM P;¢*

.ex
aP;

KPIT., for 10 and 50 mM P;®*

KFPIT, for 0 mM P;°*

K} 'p. for 10 and 50 mM P;**

K15, for 0 mM Py

KPIT o for 10 and 50 mM P;®x

KPiT  for 0 mM P;ex

.ex
m P;

VEIT for 10 and 50 mM P;°*

VEIT for 0 mM P;e*

KPiT.active
m

KPiT.active for 10 and 50 mM P;°*

KPiT.active for 0 mM P;**

KPiT-active for 10 and 50 mM P;°

PiT.acti
KPIT-a¢tve for 0 mM Py

KPiT:active for 10 and 50 mM P;e*

KPiT.active for 0 mM P;°*

VEiT-active for 10 and 50 mM P;°*

PiT.active .ex
Vidax for 0 mM P;

PTS
Krﬂ HPr
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High effect (> £1)

Table A.9 — continued from previous page

Medium effect (£0.3 to +1)

Low effect (< £0.3)

PTS
m pyruvate

PTS
Krﬂ G6P
KPTS
m HPr
PTS
Km PEP
PTS
Km glucosee
VPTS
max
KPYK
eq
PYK
Ka G6P
PYK
Ki Py
PYK
Km pyruvate
PYK
Km ATP
KPYK
m PEP
PYK
Km ADP
VEYK

max

Table A.10: Parameter sensitivities on the PTS flux. For each parameter the scaled

sensitivity on the PTS flux at t = 100 s was calculated and classified based on its maximal

value in all 50 models in one of three groups.

High effect (> £1)

Medium effect (£0.3 to +1)

Low effect (< £0.3)

ACK
Ki FBP

KACK

m acetate

ACK
Km CoA

ACK
Km ATP

ACK
Km acetylCoA

ACK
Km Py

ACK
Km ADP

ACK
Vmax

ADH
Ki ATP

ADH
Km ethanol

ADH
Km NAD

ADH
Km CoA

ADH
m acetylCoA

ADH
Km NADH

ADH
Vmax

NATPase

ATPase
Km ATP

ATPase
Vmax

ENO
Keq

ENO
Km PEP

ENO
Km ATP

ENO
Km BPG

ENO
Km ADP

ENO
Vmax

FBA
Keq

FBA
m trioseP

FBA
Km FBP
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High effect (> £1) Medium effect (£0.3 to +1) Low effect (< £0.3)

FBA
Vmax

GAPDH

Keq

GAPDH
Ki NADH

GAPDH
Km BPG

KGAPDH
m NADH
GAPDH
m triose—P

GAPDH
Km NAD

GAPDH
Km P

GAPDH
Vmax

GAPN
Km PEP

KGAPN
m NADPH

GAPN
Km triose—P
KGAPN
m NADP
GAPN
Vmax
GK
Ki G6P
GK
Ki ADP
GK
Km G6P
GK
Km ADP
GK
m glucose
GK
Ki ATP
GK
Vmax
VGICP

max

HPrK
Ka FBP

HPrK
Ki P

K gl:l’-irl}:’(r —ser—P
K ADP
K i
KiATP

HPrK
Vmax

HPrP
Ka Py

HPrP
Ka ATP

HPrP
Km HPr
HPrP
Km P

HPrP
Km HPr—ser—P

VHPrP

max

LacT
i pyruvate
LacT
Km lactatee

LacT

m lactate
VLaCT

max

LDH
Keg

LDH
Ka EFBP

LDH
Ka P

LDH
Ki NAD

LDH
Km lactate
KLDH

m NAD

KLDH

m pyruvate

LDH
Km NADH

VLDH

max
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High effect (> £1)

Medium effect (£0.3 to +1)

Low effect (< £0.3)

NPOX
Km NADP
KNPOX
m NADPH
NPOX
Vmax
Pasell
Ka HPr—ser—P
K ehicose
Pasell
Km P
Pasell
Km G6P
Pasell
Vmax
PFK
Km FBP
PFK
Km ADP
PFK
Km G6P
PFK
Km ATP
PFK
Vmax
KEFL
PFL
itriose—P
PFL
m acetyl—CoA
PFL
Km formate
PFL
m pyruvate
PFL
Km CoA
PFL
Vmax
KPiT . for 10 and 50 mM P;** KPiT o for 0 mM P;e*
apiex 1 aPiEX 1
KPiL, for 10 and 50 mM P;e* KPiTp for 0 mM P;e*

KElilT)i for 10 and 50 mM P;®*

Kp'E. for 0 mM P;e

KPiT . for 10 and 50 mM P;¢*

m P;eX

KPiT . for 0 mM P;ex

m P; X

VPIT for 10 and 50 mM P;ex

max

VPIT for 0 mM P;ex

max

PiT.active
Km P

KPiT.adtive for 10 and 50 mM P;

KPiT.active for 0 mM P;e*

KPiT-active for 10 and 50 mM P;®*

PiT.acti
KPIT-2¢4v for 0 mM Py

KPiT:actve for 10 and 50 mM P;

KPiTactive for 0 mM P;e*

VDiT-active for 10 and 50 mM P;*

V]l;ia’LI)‘(.active for 0 mM P;e*

KElTHSPr
FHES ruvate
K Gop
Kgrliispr
K PEp
Kglg;?ucosee
VPTS
max KEqYK
K &op
KFYK
Kll?r?g;ruvate
Kiate
K rip
Kinabp

PYK
Vmax
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B.1 Compounds

The denotation of the metabolites of our genome-scale model was done analogously
to the reconstruction of L. plantarum since this network served as template. The
following table gives the abbreviation and the common name of each metabolite of

the S. pyogenes metabolic network.

Table B.1: Compounds included in the genome-scale model.

Abbreviation Official name

10fthf 10-Formyltetrahydrofolate

13dpg 3-Phospho-D-glyceroyl phosphate

13ppd Propane-1,3-diol

1pyr5c 1-Pyrroline-5-carboxylate

23dhdp 2,3-Dihydrodipicolinate

25aics (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate
26dap-LL LL-2,6-Diaminoheptanedioate

26dap-M meso-2,6-Diaminoheptanedioate

2aeppn (2-Aminoethyl)phosphonate

2ahbut (S)-2-Aceto-2-hydroxybutanoate

2ahhmd 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate
2ahhmp 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine
2beacp But-2-enoyl-[acyl-carrier protein]|

2c25dho 2-Carboxy-2,5-dihydro-5-oxofuran-2-acetate

2chdeacp cis-Hexadec-2-enoyl-[acyl-carrier protein]

2cocdacp cis-Octadec-2-enoyl-[acyl-carrier-protein]

2cprbp 1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate
2dda7p 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate
2ddgbp 2-Dehydro-3-deoxy-D-gluconate 6-phosphate

2ddglen 2-Dehydro-3-deoxy-D-gluconate

2dhp 2-Dehydropantoate

2drlp 2-Deoxy-D-ribose 1-phosphate

2dr5p 2-Deoxy-D-ribose 5-phosphate

2hxic-L L-2-hydroxyisocaproate

2ins 2-Inosose

2mahmp 2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate
2mba 2-Methyl butanoic acid

2mbal 2-Methylbutanal

2mbol 2-Methylbutanol

2mop 2-Methyl-3-oxopropanoate

2mpa 2-Methylpropanoic acid

2mpal 2-Methylpropanal

2mpol 2-Methylpropanol

2o0but 2-Oxobutanoate

2oph 2-Octaprenylphenol

2p4c2me 2-phospho-4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol
2pg D-Glycerate 2-phosphate

2pglyc 2-Phosphoglycolate

2tddacp trans-Dodec-2-enoyl-[acyl-carrier protein]|

2tdeacp trans-Dec-2-enoyl-|acyl-carrier protein]

2thdeacp trans-Hexadec-2-enoyl-[acyl-carrier protein]|

2theacp trans-Hex-2-enoyl-[acp]|

2tocdacp trans-Octadec-2-enoyl-[acyl-carrier-protein]

2toceacp trans-Oct-2-enoyl-[acp]

2ttdeacp trans-Tetradec-2-enoyl-[acyl-carrier protein]

34dhpha 3,4-Dihydroxyphenylacetate

34hplac (R)-3-(4-Hydroxyphenyl)lactate

34hpp 3-(4-Hydroxyphenyl)pyruvate

35ccmp 3’,5’-Cyclic CMP

35cdamp 37,5’-Cyclic dAMP

35cgmp 3’,5’-Cyclic GMP

35cimp 3’,5’-Cyclic IMP

3dhq 3-Dehydroquinate

3dhsk 3-Dehydroshikimate
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Abbreviation Official name

3hbacp (3R)-3-Hydroxybutanoyl-[acyl-carrier protein]
3hddacp (R)-3-Hydroxydodecanoyl-|acyl-carrier protein]|
3hdeacp (3R)-3-Hydroxydecanoyl-[acyl-carrier protein]
3hhacp (R)-3-Hydroxyhexanoyl-[acp]

3hmp 3-Hydroxy-2-methylpropanoate

3hocacp (R)-3-Hydroxyoctanoyl-[acyl-carrier protein]|
3hocdacp (3R)-3-Hydroxyoctadecanoyl-[acyl-carrier protein
3hpaacp (3R)-3-Hydroxypalmitoyl-[acyl-carrier protein]
3hppnl 3-Hydroxypropanal

3htdacp (3R)-3-Hydroxytetradecanoyl-[acyl-carrier protein]
3ig3p C’-(3-Indolyl)-glycerol 3-phosphate

3mba 3-Methylbutanoic acid

3mbal 3-Methylbutanal

3mbol 3-Methylbutanol

3mob 3-Methyl-2-oxobutanoate

3mop (S)-3-Methyl-2-oxopentanoate

3ophb 3-Octaprenyl-4-hydroxybenzoate

3oxddacp 3-Oxododecanoyl-|acyl-carrier protein]|
3oxdeacp 3-Oxodecanoyl-[acyl-carrier protein]|

3oxhacp 3-Oxohexanoyl-[acyl-carrier protein]

3oxhdacp 3-Oxohexadecanoyl-[acp]|

3oxocacp 3-Oxooctanoyl-[acyl-carrier protein]|
3oxocdacp 3-Oxooctadecanoyl-[acp]|

3oxtdacp 3-Oxotetradecanoyl-[acyl-carrier protein]|

3pg 3-Phospho-D-glycerate

3php 3-Phosphohydroxypyruvate

3psme 5-O-(1-Carboxyvinyl)-3-phosphoshikimate
4abut 4-Aminobutanoate

4abz 4-Aminobenzoate

4adcho 4-Amino-4-deoxychorismate

4ahmmp 4-Amino-5-hydroxymethyl-2-methylpyrimidine
4ampm 4-Amino-2-methyl-5-phosphomethylpyrimidine
4c2me 4-(Cytidine 5’-diphospho)-2-C-methyl-D-erythritol
4coum 4-Coumarate

4h2oxg D-4-Hydroxy-2-oxoglutarate

4hglu 4-Hydroxy-L-glutamate

4hphac 4-Hydroxyphenylacetate

4met2obut 4-Methylthio-2-oxobutanoate

4mhetz 4-Methyl-5-(2-hydroxyethyl)-thiazole

4mop 4-Methyl-2-oxopentanoate

4dmpetz 4-Methyl-5-(2-phosphoethyl)-thiazole

4pasp 4-Phospho-L-aspartate

4ppan D-4’-Phosphopantothenate

4ppcys N-((R)-4-Phosphopantothenoyl)-L-cysteine
4vcoum 4-Vinyl p-coumaric acid

5aizc 5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate
5dpmev (R)-5-Diphosphomevalonate

5fothf 5-Formyltetrahydrofolate

S5mta 5-Methylthioadenosine

5mthf 5-Methyltetrahydrofolate

5mthglu 5-Methyltetrahydropteroyltri-L-glutamate
5mtr 5-Methylthio-D-ribose

50dhf2a 5-Oxo0-4,5-dihydrofuran-2-acetate

S5pmev (R)-5-Phosphomevalonate

6pgc 6-Phospho-D-gluconate

6pgg 6-Phospho-3-D-glucosyl-(1,4)-D-glucose

6pgl 6-phospho-D-glucono-1,5-lactone

a-gal-D a-D galactose

aaacp Acetoacetyl-[acyl-carrier protein]

aacoa Acetoacetyl-CoA

ac Acetate

acald Acetaldehyde

acamoxm N-Acetyl-L-2-amino-6-oxopimelate

accoa Acetyl-CoA

acetone Acetone

acgbp N-Acetyl-L-glutamyl 5-phosphate

acgbsa N-Acetyl-L-glutamate 5-semialdehyde

acgal6p N-Acetylgalactosamine 6-phosphate
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Abbreviation Official name

acgala N-Acetyl-D-galactosamine

acgam N-Acetyl-D-glucosamine

acgamlp N-Acetyl-D-glucosamine 1-phosphate
acgam6p N-Acetyl-D-glucosamine 6-phosphate
acglu N-Acetyl-L-glutamate

achms O-Acetyl-L-homoserine

acmalt Acetyl-maltose

acmam N-Acetyl-D-muramoate

acmama N-Acetyl-D-muramoyl-L-alanine
acmana N-Acetyl-D-mannosamine

acmanap N-Acetyl-D-mannosamine 6-phosphate
acnam N-Acetylneuraminate

acorn N2-Acetyl-L-ornithine

acp Acyl-carrier Protein

acser O-Acetyl-L-serine

actn-R (R)-Acetoin

actp Acetyl phosphate

ade Adenine

adn Adenosine

adp ADP

adpglc ADPglucose

adprib ADPribose

agly3p_LLA 1-Acyl-sn-glycerol 3-phosphate (L. lactis specific)
ahcys S-Adenosyl-L-homocysteine

ahdt 2-Amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)dihydropteridine triphosphate
aicar 5-Amino-1-(5-Phospho-D-ribosyl)imidazole-4-carboxamide
air 5-amino-1-(5-phospho-D-ribosyl)imidazole
akg 2-Oxoglutarate

al26da N6-Acetyl-LL-2,6-diaminoheptanedioate
ala-B B-Alanine

ala-D D-Alanine

ala-L L-Alanine

alac-S (S)-2-Acetolactate

alalac D-Alanyl-D-lactate

alatrna L-Alanyl-tRNA (Ala)

amet S-Adenosyl-L-methionine

amp AMP

anth Anthranilate

apoACP Apoprotein [acyl carrier protein]|

aps Adenosine 5’-phosphosulfate

arab-L L-Arabinose

arg-L L-Arginine

argsuc N(omega)-(L-Arginino)succinate
argtrna L-Arginyl-tRNA(Arg)

asn-L L-Asparagine

asntrna L-Asparaginyl-tRNA (Asn)

asp-D D-Aspartate

asp-L L-Aspartate

aspsa L-Aspartate 4-semialdehyde

asptrna L-Aspartyl-tRNA (Asp)

atp ATP

btd-RR (R,R)-2,3-Butanediol

btn Biotin

butacp Butyryl-[acyl-carrier protein]

bzal Benzaldehyde

camp cAMP

cbasp N-Carbamoyl-L-aspartate

cbp Carbamoyl phosphate

cdp CDP

cdpdag_LLA CDPdiacylglycerol (L. lactis specific)
cdpglyc CDPglycerol

cdprbtl CDPribitol

cellb Cellobiose

chol Choline

chor Chorismate

cit Citrate

citr-L L-Citrulline

clpn_LLA Cardiolipin (L. lactis specific)
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Abbreviation Official name

cmp CMP

co2 CO2

coa Coenzyme A

cdpdag LLA CDP-Diacylglycerol, L. lactis specific
cpocdacp Cyclopropanoyl octadecanoyl-[acyl-carrier protein]
CPS_LLA Capsular polysaccharide linkage unit, L. lactis specific
csn Cytosine

ctp CTP

cyn Cystine

cys-L L-Cysteine

cysth-L L-Cystathionine

cystrna L-Cysteinyl-tRNA(Cys)

cytd Cytidine

dad-2 Deoxyadenosine

dadp dADP

damp dAMP

datp dATP

db4p 3,4-dihydroxy-2-butanone 4-phosphate
dcamp N6-(1,2-Dicarboxyethyl)-AMP

dcdp dCDP

dcmp dCMP

dctp dCTP

deyt Deoxycytidine

ddeacp Dodecanoyl-[acyl-carrier protein]
decacp Decanoyl-[acyl-carrier protein]

dgdp dGDP

dgmp dGMP

dgsn Deoxyguanosine

dgtp dGTP

dha Dihydroxyacetone

dhap Dihydroxyacetone phosphate

dhf 7,8-Dihydrofolate

dhnpt 2-Amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine
dhor-S (S)-Dihydroorotate

dhpmp Dihydroneopterin monophosphate
dhpt Dihydropteroate

diact Diacetyl

dimp dIMP

din Deoxyinosine

dmpp Dimethylallyl diphosphate
DNA_LLA DNA, L. lactis specific

dnad Deamino-NAD ™

dpcoa Dephospho-CoA

drib Deoxyribose

dtdp dTDP

dtdp6dm dTDP-6-deoxy-L-mannose

dtdpddg dTDP-4-dehydro-6-deoxy-D-glucose
dtdpddm dTDP-4-dehydro-6-deoxy-L-mannose
dtdpglec dTDPglucose

dtmp dTMP

dttp dTTP

dudp dUDP

dump dUMP

duri Deoxyuridine

dutp dUTP

dxyl5p 1-Deoxy-D-xylulose 5-phosphate

edp D-Erythrose 4-phosphate

eig3p D-Erythro-1-(Imidazol-4-yl)glycerol 3-phosphate
etha Ethanolamine

etoh Ethanol

flp D-Fructose 1-phosphate

fép D-Fructose 6-phosphate

fad FAD

fdp D-Fructose 1,6-bisphosphate

fgam N2-Formyl-N1-(5-phospho-D-ribosyl)glycinamide
fmet N-Formyl-L-methionine

fmn Flavin mononucleotide

fol Folate
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Abbreviation Official name

for Formate

fpram 2-(Formamido)-N1-(5-phospho-D-ribosyl)acetamidine
fprica 5-Formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
frdp Farnesyl diphosphate

fru D-Fructose

fuc-L L-Fucose

fum Fumarate

glp D-Glucose 1-phosphate

glp-B B-D-Glucose 1-phosphate

g3p Glyceraldehyde 3-phosphate
g3pc sn-Glycero-3-phosphocholine
g3pe sn-Glycero-3-phosphoethanolamine
g3pg Glycerophosphoglycerol

g3pi sn-Glycero-3-phospho-1-inositol
g3ps Glycerophosphoserine

g6p D-Glucose 6-phosphate

g6p-B B-D-glucose 6-phosphate

gal D-Galactose

gallp a-D-Galactose 1-phosphate
galt Galactitol

galtlp Galactitol 1-phosphate

gamlp D-Glucosamine 1-phosphate
gam6p D-Glucosamine 6-phosphate
gar N1-(5-Phospho-D-ribosyl)glycinamide
gcald Glycolaldehyde

gdp GDP

gdptp Guanosine 3’-diphosphate 5’-triphosphate
gle-D D-Glucose

glen-D D-Gluconate

gln-L L-Glutamine

glntrna L-Glutaminyl-tRNA(Gln)
glu-D D-Glutamate

glu-L L-Glutamate

glubp L-Glutamate 5-phosphate
glubsa L-Glutamate 5-semialdehyde
glucys ~-L-Glutamyl-L-cysteine
glutrna L-Glutamyl-tRNA (Glu)

gly Glycine

glyald D-Glyceraldehyde

glyb Glycine betaine

glyc Glycerol

glyc-R (R)-Glycerate

glyc3p sn-Glycerol 3-phosphate

glyclt Glycolate

glycogen Glycogen

glytrna Glycyl-tRNA(Gly)

gmp GMP

grdp Geranyl diphosphate

gsn Guanosine

gthox Oxidised glutathione

gthrd Reduced glutathione

gtp GTP

gua Guanine

h HT

h2o H2O

h202 Hydrogen peroxide

h2s Hydrogen sulfide

hco3 Bicarbonate

hcys-L L-Homocysteine

hdeacp Hexadecanoyl-[acyl-carrier protein]
hexacp Hexanoyl-[acyl-carrier protein]|
his-L L-Histidine

hisp L-Histidinol phosphate

hista Histamine

histd L-Histidinol

histrna L-Histidyl-tRNA (His)

hmgcoa Hydroxymethylglutaryl-CoA

hom-L L-Homoserine
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Abbreviation Official name

hxan Hypoxanthine

idp IDP

idt L-Iditol

ile-L L-Isoleucine

iletrna L-Isoleucyl-tRNA (Ile)

imacp 3-(Imidazol-4-yl)-2-oxopropyl phosphate
imlac Imidazole lactate

imp IMP

impyr Imidazole pyruvate

indlac Indolelactate

indpyr Indolepyruvate

inost myo-Inositol

ins Inosine

ipdp Isopentenyl diphosphate

itp ITP

lac-D D-Lactate

lac-L L-Lactate

lald-L L-Lactaldehyde

Icts Lactose

leu-L L-Leucine

leutrna L-Leucyl-tRNA (Leu)

LTA LLA lipoteichoic acid (n=25, L. lactis specific)
LTAala_LLA Lipoteichoic acid (n=25) with 100% D-Ala substitutions (L. lactis specific)
LTAglc_LLA Lipoteichoic acid (n=25 with glucose residues, L. lactis specific)
LTAAlaGAL_LLA Lipoteichoic acid (n=25 with alanine and galactose residues, L. lactis specific)
lys-L L-Lysine

lyspg_LLA 1-Lysyl-phosphatidyl glycerol (L. lactis specific)
lystrna L-Lysine-tRNA (Lys)

mal-L L-Malate

malacp Malonyl-[acyl-carrier protein]

malcoa Malonyl-CoA

malt Maltose

man D-Mannose

manlp D-Mannose 1l-phosphate

man6p D-Mannose 6-phosphate

MCOOH MPT synthase small subunit MoaD

MCOSH MPT synthase sulfurylated small subunit (MoaD-SH)
melib Melibiose

mercppyr Mercaptopyruvate

met-L L-Methionine

methal Methional

methf 5,10-Methenyltetrahydrofolate

mettrna L-Methionyl-tRNA (Met)

mev-R (R)-Mevalonate

MGD Moldybdopterin guanine dinucleotide
milp-D 1D-myo-Inositol 1-phosphate

mlthf 5,10-Methylenetetrahydrofolate

mn?2 Mn2F

mnl D-Mannitol

mnllp D-Mannitol 1-phosphate

Moco Molybdenum cofactor

MPT Molybdopterin

mql7 Menaquinol 7

mqn7 Menaquinone 7

n2ppn 2-Nitropropane

nal Sodium

nac Nicotinate

nad Nicotinamide adenine dinucleotide

nadh Nicotinamide adenine dinucleotide - reduced
nadp Nicotinamide adenine dinucleotide phosphate
nadph Nicotinamide adenine dinucleotide phosphate - reduced
ncam Nicotinamide

nh3 Ammonia

nh4 Ammonium

nicrnt Nicotinate D-ribonucleotide

no2 Nitrite

no3 Nitrate

02 Oo
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Abbreviation Official name

oaa Oxaloacetate

ocdacp Octadecanoyl-|acyl-carrier protein]

octacp Octanoyl-|acyl-carrier protein]|

orn-L L-Ornithine

orot Orotate

orot5p Orotidine 5’-phosphate

oxa Oxalate

pa_LLA Phosphatidic acid (L. lactis specific)

pacald Phenylacetaldehyde

pandp Pantetheine 4’-phosphate

pant-R (R)-Pantoate

pap Adenosine 3’,5’-bisphosphate

paps 3’-Phosphoadenylyl sulfate

pea Phenylethyl alcohol

pep Phosphoenolpyruvate

pg_LLA Phospatidylglycerol (L. lactis specific)

PGlac2 Peptidoglycan with D-lac as C-terminal residue to form pentadepsipeptide
pgp_LLA Phosphatidylglycerophosphate (L. lactis specific)
phe-L L-Phenylalanine

phenol Phenol

phetrna L-Phenylalanyl-tRNA (Phe)

phlac Phenyl lactate

phom O-Phospho-L-homoserine

phpyr Phenylpyruvate

pi Phosphate

pnto-R (R)-Pantothenate

polypi Polyphosphate

ppaca Phosphonoacetaldehyde

pphn Prephenate

ppi Diphosphate

pppi Inorganic triphosphate

pram 5-Phospho-j3-D-ribosylamine

pran N-(5-Phospho-D-ribosyl)anthranilate

prbamp 1-(5-Phosphoribosyl)-AMP

prbatp 1-(5-Phosphoribosyl)-ATP

PreZ Precursor Z in molybdenum cofactor biosynthesis
prfp 1-(5-Phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino|imidazole-4-carboxamide
prlp 5-[(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino|-1-(5-phosphoribosyl)imidazole-4-carboxamide
pro-L L-Proline

PROT_LLA L. lactis-specific protein composition for biomass
protrna L-Prolyl-tRNA (Pro)

pPrpp 5-Phospho-a-D-ribose 1-diphosphate

psd5p Pseudouridine 5’-phosphate

pser-L O-Phospho-L-serine

ptrc Putrescine

pyamb5p Pyridoxamine 5’-phosphate

pydam Pyridoxamine

pydx Pyridoxal

pydx5p Pyridoxal 5’-phosphate

pydxn Pyridoxine

pyr Pyruvate

rlp a-D-Ribose 1-phosphate

r5p a-D-Ribose 5-phosphate

raffin Raffinose

rbl-L L-Ribulose

rbt Ribitol

rbt5p D-Ribitol 5-phosphate

rhcys S-Ribosyl-L-homocysteine

rib-D D-Ribose

ribflv Riboflavin

ribflvRD Reduced riboflavin

rml L-Rhamnulose

rmllp L-Rhamnulose 1-phosphate

rmn L-Rhamnose

RNA_LLA RNA, L. lactis specific

RTA Teichoic acid containing ribitol-P

RTAala Ribitol teichoic acid (n=25) with D-Ala substitutions

RTAglc Ribitol teichoic acid (n=25) with glucose substitutions
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Abbreviation Official name

ru5p-D D-Ribulose 5-phosphate

rubp-L L-Ribulose 5-phosphate

sTp Sedoheptulose 7-phosphate

sbt-D D-Sorbitol

sbt-L L-Sorbitol

sbt6p D-Sorbitol 6-phosphate

ser-D D-Serine

ser-L L-Serine

sertrna L-Seryl-tRNA (Ser)

skm Shikimate

skmbp Shikimate 5-phosphate

sl26da N-Succinyl-LL-2,6-diaminoheptanedioate

sl2a6o N-Succinyl-2-L-amino-6-oxoheptanedioate

sod Sulfate

spmd Spermidine

srb-L L-Sorbose

sucbp Sucrose 6-phosphate

succ Succinate

succoa Succinyl-CoA

sucr Sucrose

sucsal Succinic semialdehyde

tartr-L L-tartarate

tcys Thiocysteine

tdeacp Tetradecanoyl-[acyl-carrier protein]

thdp 2,3,4,5-Tetrahydrodipicolinate

thf 5,6,7,8-Tetrahydrofolate

thfglu Tetrahydrofolyl-[Glu](2)

thglu Tetrahydropteroyltri-L-glutamate

thm Thiamin

thmmp Thiamin monophosphate

thmpp Thiamine diphosphate

thr-L L-Threonine

thrtrna L-Threonyl-tRNA (Thr)

thymd Thymidine

trdox Oxidised thioredoxin

trdrd Reduced thioredoxin

tre Trehalose

tre6p a,a’-Trehalose 6-phosphate

trnaala tRNA(Ala)

trnaarg tRNA(Arg)

trnaasn tRNA(Asn)

trnaasp tRNA(Asp)

trnacys tRNA(Cys)

trnaglu tRNA (Glu)

trnagly tRNA(Gly)

trnahis tRNA (His)

trnaile tRNA(Ile)

trnaleu tRNA(Leu)

trnalys tRNA(Lys)

trnamet tRNA(Met)

trnaphe tRNA(Phe)

trnapro tRNA(Pro)

trnaser tRNA(Ser)

trnathr tRNA(Thr)

trnatrp tRNA(Trp)

trnatyr tRNA(Tyr)

trnaval tRNA(Val)

trp-L L-Tryptophan

trptrna L-Tryptophanyl-tRNA (Trp)

tyr-L L-Tyrosine

tyrtrna L-Tyrosyl-tRNA(Tyr)

uaagmdalac Undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-L-alanyl-D-glutamyl-meso-2,6-
diaminopimeloyl-D-alanyl-D-lactate

uaccg UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine

uacgam UDP-N-acetyl-D-glucosamine

uacmam UDP-N-acetyl-D-mannosamine

uAgl UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine

uagmdalac Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-

lactate
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Abbreviation Official name

uama UDP-N-acetylmuramoyl-L-alanine

uamag UDP-N-acetylmuramoyl-L-alanyl-D-glutamate

uamr UDP-N-acetylmuramate

udcp Undecaprenol

udcpdp Undecaprenyl diphosphate

udcpp Undecaprenyl phosphate

udp UDP

udpg UDPglucose

udpgal UDPgalactose

udpgalfur UDP-D-galacto-1,4-furanose

ugmd UDP-N-acetylmuramoyl-L-alanyl-D-v-glutamyl-meso-2,6-diaminopimelate
ugmdalac UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-lactate
ump UMP

unaga Undecaprenyl diphospho N-acetyl-glucosamine

unagama Undecaprenyl-diphospho-N-acetylglucosamine-N-acetylmannosamine
unagamagp Undecaprenyl-diphospho-N-acetylglucosamine-N-acetylmannosamine-glycerolphosphate
unRTA Undecaprenyl-teichoic acid with ribitol

ura Uracil

uri Uridine

utp UTP

val-L L-Valine

valtrna L-Valyl-tRNA (Val)

xan Xanthine

xmp Xanthosine 5’-phosphate

xtsn Xanthosine

xubp-D D-Xylulose 5-phosphate

B.2 Reactions

Since the reaction stoichiometry is crucial for most quantitative modelling approaches
like FBA all reactions added to the network has to be balanced with respect to
oxygen atoms, hydrogen atoms and charges. Most reactions were copied from the
networks of L. plantarum |[Teusink et al., 2005] and L. lactis (unpublished results).
However, some reactions had to be checked in databases. In most databases protons
and cofactors are omitted and, thus, the reaction had to be balanced manually. The

reactions included in the S. pyogenes metabolic network are given in the following

table.

Table B.2: Reactions included in the genome-scale model.

Name

Equation

L-2-Hydroxyisocaproate transport (H+ symport)
2-Methylbutanal dehydrogenase (acid forming)
2-Methylbutanal transport

2-Methylbutanoic acid transport (H+-symport)
2-Methylbutanol dehydrogenase
2-Methylbutanol transport

2-Methylpropanal dehydrogenase (acid forming)
2-Methylpropanal transport

2-Methylpropanoic acid transport (H+—symport)
2-Methylpropanol dehydrogenase
2-Methylpropanol transport

3-Methylbutanal dehydrogenase (acid forming)
3-Methylbutanal transport

2hxic-Lc|] + h[c] <+ 2hxic-L[e] + h[e]

[c] : 2mbal + h20 + nad <> 2mba + (2) h + nadh
2mbal(c] <> 2mballe]

2mbalc| + hlc] <> 2mbale] + hle]

[c] : 2mbal + h + nadh < 2mbol + nad

2mbol[c] > 2mbol[e]

[c] : 2mpal + h20 + nad <> 2mpa + (2) h + nadh
2mpallc] <> 2mpalle|

2mpalc] + hlc] <> 2mpale| + h[e]

[c] : 2mpal + h + nadh <> 2mpol + nad

2mpol[c] <> 2mpolle]

[c] : 3mbal + h20 + nad <> 3mba + (2) h + nadh
3mballc] <> 3mballe]
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Name

Equation

3-Methylbutanoic acid transport (HT-symport)
3-Methylbutanol dehydrogenase

3-Methylbutanol transport
3-Methyl-2-oxobutanoate decarboxylase
3-Methyl-2-oxopentanoate decarboxylase
4-Methyl-2-oxopentanoate decarboxylase
4-Methylthio 2 oxobutyrate decarboxylase
Aryl-alcohol dehydrogenase

Acetyl-CoA C-acetyltransferase

Acetaldehyde dehydrogenase (acetylating)
Acetaldehyde reversible transport

Acetyl-CoA carboxylase

N-Acetylgalactosamine PTS
N-Acetyl-D-glucosamine transport via PEP:Pyr PTS
Acetate kinase

N-Acetylneuraminate lyase

Acetylornithine deacetylase

Acyl-carrier protein synthase

Acetolactate decarboxylase

(R)-Acetoin diffusion

Acetate transport in/out via proton symport
Acylphosphatase

4-Amino-4-deoxychorismate synthase

Adenine transport via proton symport (reversible)
Adenylate kinase

Adenylate kinase (Inorganic triphosphate)
ADPribose diphosphatase

Adenine phosphoribosyltransferase
Adenylosuccinate lyase
Adenylosuccinate lyase
Adenylosuccinate synthetase
1-Acyl-glycerol-3-phosphate acyltransferase

(lactis specific

specific)

N-Acetylglucosamine-6-phosphate deacetylase
Adenosylhomocysteine nucleosidase
Phosphoribosylaminoimidazolecarboxamide formyltransferase
Phosphoribosylaminoimidazole carboxylase
L-Alanine transport in/out via proton symport
D-Alanine-D-alanine ligase (reversible)
D-Alanine-D-lactate ligase (reversible)
Alanine racemase

L-Alanine transaminase

Alanyl-tRNA synthetase

Alcohol dehydrogenase (glycerol)

Alcohol dehydrogenase (ethanol: NAD)
N-Acetylmannosamine 6-phoshpate epimerase
N-Acetyl-D-mannosamine kinase
Anthranilate synthase

L-Arginine transport via ABC system
Arginine deiminase

L-Arginine transport in via proton symport
Arginyl-tRNA synthetase

L-Asparaginase

Asparagine synthetase

L-Asparagine transport in/out via proton symport
Asparaginyl-tRNA synthetase

Aspartate carbamoyltransferase

L-Aspartate transport in via proton symport
Aspartate transaminase

Aspartate transaminase

Aspartate transaminase

Aspartate transaminase

Aspartate transaminase

Aspartyl-tRNA synthetase

ATP maintenance requirment

ATP synthase (three protons for one ATP)

B-Glucosidase (cellobiose)

3mbalc|] + h[c] <+ 3mbale] + hle]

[c] : 3mbal + h + nadh <> 3mbol + nad

3mbol[c] ++ 3mbol[e]

[c] : 3mob + h — 2mpal + co2

[c] : 3mop + h — 2mbal + co2

[c] : 4mop + h — 3mbal + co2

[c] : 4met20but — co2 + methal

[c] : h + nadh + pacald <> nad + pea

[c] : (2) accoa — aacoa + coa

[c] : acald + coa + nad <> accoa + h + nadh

acaldle] <> acald|c]

[c] : accoa + atp + hco3 — adp + h + malcoa + pi
acgalale] + pep|c] — acgal6plc] + pyr[c|

acgamle] + pep[c] — acgam6plc] + pyr|[c]

[c] : ac + atp <> actp + adp

[c] : acnam — acmana + pyr

[c] : acorn + h20 — ac + orn-L

[c] : apoACP + coa — acp + h + pap

[c] : alac-S + h — actn-R + co2

actn-R[e| <> actn-R]c]

acle] + h[e] <> ac[c] + h[c]

[c] : actp + h20 — ac + h + pi

[c] : chor + gln-L — 4adcho + glu-L

adele] + h[e] +» ade[c] + h[c]

[c] : amp + atp <> (2) adp

[c] : amp + pppi > adp + ppi

[c] : adprib + h20 — amp + (2) h + r5p

[c] : ade + prpp — amp -+ ppi

[c] : dcamp — amp + fum

[c] : 25aics — aicar + fum

[c] : asp-L + gtp + imp — dcamp + gdp + (2) h + pi
[c] : (0.03) 2chdeacp + (0.44) 2cocdacp + (0.005) 2ctdeacp
+ (0.01) agly3p_LLA + (0.13) cpocdacp + (0.295) hdeacp +
(0.01) ocdacp + (0.09) tdeacp — acp + (0.01) pa_LLA
[c] : acgam6p + h20 — ac + gam6p

[c] : ahcys + h20 — ade + rhcys

[c] : 10fthf + aicar <> fprica + thf

[e] : air + co2 — 5aizc + h

ala-L[e| + hle] +» ala-L[c] + hc]

[c] : (2) ala-D + atp <> adp + alaala + h + pi

[c] : ala-D + atp + lac-D <» adp + alalac + pi

[c] : ala-L <> ala-D

[c] : akg + ala-L <> glu-L + pyr

[c] : ala-L + atp + trnaala — alatrna + amp + h + ppi
[c] : glyald + h + nadh <+ glyc + nad

[c] : etoh + nad <> acald + h + nadh

[c] : acmanap — acgam6p

[c] : acmana + atp — acmanap + adp + h

[c] : chor + gln-L — anth + glu-L + h + pyr

arg-Le] + atp[c] + h2o[c] — adp|c] + arg-L[c| + hlc] + pi[c]
[c] : arg-L + h20 — citr-L 4+ h + nh3

arg-L[e] + hle] <> arg-L[c] + h[c]|

[c] : arg-L + atp + trnaarg — amp + argtrna + h 4 ppi
[c] : asn-L + h20 — asp-L + nh4

[c] : asp-L + atp + nh4 — amp + asn-L + h + ppi
asn-L[e| 4 h[e] <> asn-L[c] + h|c]

[c] : asn-L + atp + trnaasn — amp + asntrna + h -+ ppi
[c] : asp-L + cbp — cbasp + h + pi

asp-L[e| + hle] +» asp-L[c] + h|c]

[c] : akg + asp-L <> glu-L + oaa

[c] : 4hglu + akg <> 4h2oxg + glu-L

[c] : akg + cys-L + h <> glu-L + mercppyr

[c] : akg + tyr-L <> 34hpp + glu-L

[c] : akg + phe-L <> glu-L + phpyr

[c] : asp-L + atp + trnaasp — amp + asptrna + h + ppi
[c] : atp 4+ h20 — adp + h + pi

adple] + (3) hle] + pile] © atple] + (2) hlc] + h2olc]

[e] : cellb + h2o0 — (2) gle-D
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Name

Equation

Biomass equation LLA specific

(R,R)-butanediol dehydrogenase

(R,R)-butanediol transport in/out via diffusion reversible
Butyryl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase
Biotin uptake

Benzaldehyde transport

Carbamate kinase

Carbamoyl-phosphate synthase (glutamine-hydrolysing)

4-(Cytidine 5’-diphospho)-2-C-methyl-D-erythritol kinase
Cellobiose transport via PEP:Pyr PTS

Cyclopropane fatty acid synthase (n18:0)

Chorismate mutase

Chorismate synthase

Citrate lyase

Citrate transport in/out via proton symport

Cardiolipin Synthase (lactis specific)

COg2 transport out via diffusion

CPS synthase complex, LLA specific

Cytosine deaminase

Cytosine transport in/out via proton symporter
CTP synthase (NHg)

CTP synthase (glutamine)

Cystine transport in via proton symport
cysteine synthase

L-Cysteine transport in via proton symport
Cystathionine g-lyase

Cystathionine g-lyase

Cystathionine b-lyase

Cysteinyl-tRNA synthetase

Cytidine kinase (ATP)

Cytidine kinase (GTP)

Cytidine kinase (ITP)

Cytidylate kinase (CMP)

Cytidylate kinase (dCMP)

D-Lactate transport via proton symport
Deoxyadenosine kinase

1,2-Diacylglycerol 3-glucosyltransferase (Lactis specific)

Diacylglycerol kinase (Lactis specific)
3-deoxy-D-Arabino-heptulosonate 7-phosphate synthetase

D-Alanine lipoteichoic acid ligase

CDP-Diacylglycerol synthetase (Lactis specific)
2-dehydro-3-deoxy-Gluconokinase
Dodecanoyl-|acyl-carrier protein]|: malonyl-CoA C-
acyltransferase

Decanoyl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase
Deoxyguanosine kinase (dgsn)

Deoxyguanosine kinase (gmp)

Deoxyguanosine kinase (xmp)

Deoxyguanosine kinase (imp)

Deoxyguanosine kinase (amp)

Deoxyguanosine kinase (damp)

Deoxyguanosine kinase (cmp)

Deoxyguanosine kinase (dtmp)

Dihydroxyacetone phosphotransferase

Dihydroxyacetone transport via facilitated diffusion
Dihydrofolate reductase

Dihydrofolate reductase

[c] : (0.0064) CPS_LLA + (0.00074) DNA_LLA + (0.00015)
LTAAlaGal _LLA + (0.119) PG + (0.00329) RNA_ LLA -+
(60) atp + (0.000138) clpn_LLA + (0.0002) coa + (0.000096)
d12dg_LLA + (60) h2o + (0.000013) lyspg_LLA + (0.000013)
m12dg_LLA + (0.002) nad + (0.000061) pg_LLA + (0.004201)
prot_LLA + (0.00001) thf 4 (0.00001) thmpp + (0.0002) ud-
cpdp — (60) adp + (60) h + (60) pi

[c] : btd-RR + nad < actn-R + h + nadh

btd-RR[c] <> btd-RR[e]

[c] : 2beacp + h + nadh — butacp + nad

btnle] + h[e] — btn[c] + h[c]

bzal[c| <> bzalle]

[c] : atp + co2 + nh4 — adp + cbp + (2) h

[c] : (2) atp + gln-L + h20 + hco3 — (2) adp + cbp + glu-L
+(2) h + pi

[c] : 4c2me + atp — 2p4c2me + adp + h

cellble| + pep[c] — 6pgglc] + pyr|c]

[c] : 2cocdacp + amet — ahcys + cpocdacp + h

[c] : chor — pphn

[c] : 3psme — chor + pi

[c] : cit — ac + oaa

citle|] + hle] <> cit[c] + h|c]

[c] : (0.02) pg_LLA < (0.01) clpn_LLA + glyc

co2le] +> co2|c]

[c] : dtdp6dm + (4) h20 + (2) udpg + udpgal ++ CPS_LLA +
dtdp + (5) h + (2) udp + ump

[c] : esn + h + h20 — nh4 + ura

csnle] + hle] > csnlc] + h|c]

[c] : atp + nh4 + utp — adp + ctp + (2) h + pi

[c] : atp + gln-L + h20 + utp — adp + ctp + glu-L + (2) h +
pi

cynle] + hle] ¢ cynle] + hlc]

[c] : acser + h2s — ac + cys-L + h

cys-L[e] + hle] <> cys-L[c] + h[c]

[c] : cysth-L 4+ h20 — 2obut + cys-L + nh4

[c] : cyn + h20 — tcys + nh3 + pyr

[c] : cysth-L + h20 — hcys-L + nh4 + pyr

[c] : atp + cys-L + trnacys — amp + cystrna + h + ppi

[c] : atp + cytd — adp + cmp + h

[c] : cytd + gtp — cmp + gdp + h

[c] : cytd + itp — cmp + h -+ idp

[c] : atp + cmp <> adp + cdp

[c] : atp 4+ demp <> adp + decdp

hle] + lac-D[e] <> hc] + lac-D[c]

[c] : atp + dad-2 — adp + damp + h

[c] : (0.01) 12dgr_LLA + (2) udpg — (0.01) d12dg_LLA + (2)
h + (2) udp

[c] : (0.01) 12dgr LLA + atp — adp + h + (0.01) pa_LLA
[c] : e4dp + h20 + pep — 2dda7p + pi

[c] : (0.01) LTA_LLA + (6) ala-D + (6) atp — (0.01)
LTAala_LLA + (6) adp + (6) pi

[c] : ctp + h + (0.01) pa_LLA <« (0.01) cdpdag LLA + ppi
[c] : 2ddglen + atp — 2ddg6p + adp + h

[c] : 2tddacp + h + nadh — ddeacp + nad

[c] : 2tdeacp + h + nadh — decacp + nad
[c] : atp 4 dgsn — adp + dgmp + h
[c] : atp + gmp — adp + gsn + h

[c] : atp + xmp — adp + xtsn + h

[c] : atp + imp — adp + ins + h

[c] : atp 4+ amp — adp + adn + h

[c] : atp 4+ damp — adp + dadn + h
[c] : atp + cmp — adp + cytd + h

[c] : atp + dtmp — adp + thymd + h
[c] : dha + pep — dhap + pyr

dhale] «> dha|c]

[c] : dhf + nadp <> fol + nadph

[c] : dhf + h + nadph <> nadp + thf
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Equation

Dihydrofolate synthase

Dihydroneopterin aldolase
Dihydoorotic acid dehydrogenase (NAD)
Dihydoorotic acid dehydrogenase (Og2)

Dihydroorotase

Dihydropteroate synthase
3-Dehydroquinate dehydratase
3-Dehydroquinate synthase

Diacetyl diffusion

Dimethylallyltranstransferase
DNA synthesis, LLA specific

Dihydroneopterin monophosphate dephosphorylase
Dihydroneopterin triphosphate pyrophosphatase

Dephospho-CoA kinase

Diphosphomevalonate decarboxylase
2-Dehydropantoate 2-reductase
Deoxyribose-phosphate aldolase

dTMP kinase

Deoxyuridine kinase (ATP:Deoxyuridine)
Purine-nucleoside phosphatase (deoxyuridine)

dUTP diphosphatase

2-dehydro-3-deoxy-Phosphogluconate aldolase

Enolase

Ethanol transport in/out via diffusion

4-Aminobenzoate exchange

Acetate exchange
(R)-Acetoin exchange
Adenine exchange
L-Alanine exchange
L-Arginine exchange
L-Asparagine exchange

L-Aspartate exchange

(R,R)-2,3-Butanediol exchange

Biotin exchange
Cellobiose exchange
Citrate exchange
COg2 exchange
Cytosine exchange
Cystine exchange
L-Cysteine exchange
Ethanol exchange
Formate exchange
D-Glucose exchange
L-Glutamine exchange
L-Glutamate exchange
Glycine exchange
Glycolate exchange
Guanine exchange
HT exchange

H5O exchange
L-Histidine exchange
L-Isoleucine exchange
Inosine exchange
D-lactate exchange
L-Lactate exchange
L-Leucine exchange
L-Lysine exchange
Maltose exchange
D-Mannose exchange
L-Methionine exchange
Nicotinate exchange
NHj3 exchange
Ammonium exchange
Nitrite exchange
Nitrate exchange

O3 exchange

e] :
e] =
e] =
[e] =
[e] =
e] =
e] =
e] =

atp + dhpt + glu-L — adp + dhf + h + pi
dhnpt — 2ahhmp + gcald

dhor-S + nad <> h + nadh + orot

dhor-S + 02 <+ h202 + orot

dhor-S + h20 <> cbasp + h

2ahhmd + 4abz — dhpt + ppi

3dhq <> 3dhsk + h2o

2dda7p — 3dhq + pi

diact[c] > diact[e]

[e] -

dmpp + ipdp — grdp + ppi

[c] + (1.37) atp + (0.32) datp + (0.18) dctp + (0.18) dgtp +
(0.32) dttp + (1.37) h2o — (0.01) DNA_LLA + (1.37) adp +
(1.37) h + (1.37) pi + ppi

[e] =
e] :
le] =
e] =
[e] =
e] :
le] =
e] :
[e] =
e] =
e] =
e] =

dhpmp + h20 — dhnpt + h + pi
ahdt + h2o0 — dhpmp + ppi

atp + dpcoa — adp + coa + h
5dpmev + atp — adp + co2 -+ ipdp + pi
2dhp + h + nadph — nadp + pant-R
2dr5p — acald + g3p

atp + dtmp <« adp + dtdp

atp + duri — adp + dump + h

duri + pi «> 2drlp -+ ura

dutp + h20 — dump + h + ppi
2ddgbp — g3p + pyr

2pg <> h20 + pep

etohle] <> etoh|c]

le] =
e] :
le] :
e] :
[e] :
le] =
le] =
le] =
e] =
[e] =
e] :
le] :
e] =
[e] =
e] :
le] :
le] :
e] =
[e] =
e] :
le] :
le] :
[e] =
e] :
le] :
le] :
e] :
e] =
e] :
le] =
le] =
[e] =
e] :
e] :
le] =
e] =
e] :
le] =
le] :
le] :
le] =
e] :

4abz >
ac <>
actn-R <>
ade <>
ala-L <
arg-L <
asn-L <>
asp-L <
btd-RR «
btn <
cellb +
cit <>
co2 >
csn 4>
cyn <
cys-L <
etoh <«
for <
gle-D
gln-L <>
glu-L «
gly <
glyclt <>
gua <>

h <
h2o0 <
his-L >
ile-L <>
ins <
lac-D «»
lac-L <+
leu-L
lys-L <
malt <
man <>
met-L <
nac <>
nh3 <«
nh4 <
no2 <«
no3 <+
02
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Name

Equation

Ornithine exchange

Orotate exchange

L-Phenylalanine exchange

Phosphate exchange

(R)-Pantothenate exchange

L-Proline exchange

Pyridoxamine exchange

Pyridoxine exchange

Pyruvate exchange

Riboflavin exchange

Exchange for Serine

Sulfate exchange

Spermidine exchange

Succinate exchange

Sucrose exchange

Thiamin exchange

L-Threonine exchange

Thymidine exchange

Trehalose exchange

L-Tryptophan exchange

L-Tyrosine exchange

L-Valine exchange

Xanthine exchange

Fructose-1-phosphate kinase

Fatty acid enoyl isomerase (FabM reaction)
Fatty acid enoyl isomerase (FabM reaction)
Fatty acid enoyl isomerase (FabM reaction, 18:1)
Fructose-bisphosphate aldolase
B-Fructofuranosidase

Flavin reductase

Formylmethionine deformylase

Acid phosphatase / phosphotransferase (FMN)
FMN adenylyltransferase

Methionyl-tRNA formyltransferase

Folate transport via proton simport

Formate transport in via proton symport
Fructokinase

D-Fructose transport via PEP:Pyr PTS
Formate-tetrahydrofolate ligase
Glucosamine-1-phosphate N-acetyltransferase
Glucose-1-phosphate thymidylyltransferase
Glycerol-3-phosphate dehydrogenase (NAD)
Glycerol 3-phosphate oxidase

L-Glutamate 5-semialdehyde dehydratase (spontaneous)
Glutamate-5-semialdehyde dehydrogenase
Glucosamine-6-phosphate deaminase
Glucose-6-phosphate isomerase
4-Aminobutyrate transport in/out via proton symport

Galactose lipoteichoic acid ligase

Galactitol transport via PEP:Pyr PTS
UTP-glucose-1-phosphate uridylyltransferase
Glyceraldehyde-3-phosphate dehydrogenase (NAD)
Non-phosphorylating glyceraldehyde-3-phosphate dehydroge-
nase (NADP)

Phosphoribosylglycinamide formyltransferase
Phosphoribosylglycinamide formyltransferase (metthf)
Glycerol 3-phosphate acyltransferase (Lactis specific)

Glycolaldehyde dehydrogenase
Glutamine-fructose-6-phosphate transaminase
Glycine hydroxymethyltransferase

Guanylate kinase (GMP:ATP)

Guanylate kinase (GMP:dATP)

Glycogen phosphorylase

D-Glucose transport via PEP:Pyr PTS

Glucose transport via facilitated diffusion

orn-L[e| <> orn-Lic]

le] : orot «»

le] : phe-L

[e] : pi <>

[e] : pnto-R «+

[e] : pro-L «»

le] : pydam <«

le] : pydxn «

le] : pyr +

[e] : ribflv «»

le] : ser-L <«

le] : sod «

le] : spmd >

[e] : succ «+»

[e] : sucr «»

le] : thm <«

le] : thr-L <

le] : thymd <

le] : tre «+»

le] : trp-L <«

le] : tyr-L <>

le] : val-L <

le] : xan <«

[c] : atp + flp — adp + fdp + h

[c] : 2ttdeacp <> 2ctdeacp

[c] : 2thdeacp <> 2chdeacp

[c] : 2tocdacp «> 2cocdacp

[c] : fdp > dhap + g3p

[c] : h20 + suc6p — fru + gbp

[c] : h + nadph + ribflv — nadp + ribflvRD
[c] : fmet + h20 — for + met-L

[c] : fmn + h20 — ribflv + pi

[c] : atp + fmn + h — fad + ppi

[c] : 10fthf + mettrna + h20 — fmet + thf
folle] + hle] <> fol[c] + h[c]

for[e] + hle] <+ for[c] + h[c]

[c] : atp + fru — adp + f6p + h

frule] + pep|c] — flp|c] + pyr[c]

[c] : atp + for + thf — 10fthf + adp + pi
[c] : accoa + gamlp — acgamlp + coa + h
[c] : dttp + glp + h — dtdpglc + ppi

[c] : glyc3p + nad <+ dhap + h + nadh

[c] : glyc3p + 02 — dhap + h202

[c] : glubsa <« lpyr5c + h + h2o0

[c] : glubp + h + nadph — glubsa + nadp + pi
[c] : gam6p + h20 — f6p + nh4

[c] : gbp <> gbp-B

4abut[e] + hle] «» 4abut|c] + h]c]

[c] : (0.01) LTAala_LLA + (9.8) udpgal — (0.01) LTAAla-
Gal _LLA + (9.8) h + (9.8) udp

galt[e] + pep[c] — galtlp[c] + pyr[c]

[c] : glp + h + utp <> ppi + udpg

[c] : g3p + nad + pi <> 13dpg + h + nadh
[c] : g3p + nadp + h20 — 3pg + nadph + (2) h

[c] : 10fthf + gar <> fgam + h + thf

[c] : methf 4 h20 + gar — fgam -+ (2) h+ thf

[c] : (0.03) 2chdeacp + (0.44) 2cocdacp + (0.005) 2ctdeacp +
(0.13) cpocdacp + glyc3p + (0.295) hdeacp + (0.01) ocdacp +
(0.09) tdeacp — acp + (0.01) agly3p_LLA

[c] : gcald + h20 + nad — glyclt + (2) h 4 nadh

[c] : f6p + gln-L — gam6p + glu-L

[c] : ser-L + thf <» gly + h2o0 + mlthf

[c] : atp + gmp < adp + gdp

[c] : datp + gmp <> dadp + gdp

[c] : glycogen + pi — glp

gle-Dle] + pep[c] — gbplc] + pyr|c]

gle-Dle] «+» gle-Dc]|
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Table B.2 — continued from previous page

Name

Equation

L-glutamine transport via ABC system
Glutamine synthetase
Glutamyl-tRNA(Gln):L-glutamine
forming)

Glutaminyl-tRNA synthetase

Glucose lipoteichoic acid ligase

amido-ligase (ADP-

Glutamate 5-kinase

L-Glutamine transport via ABC system

Glutamine phosphoribosyldiphosphate amidotransferase
Glutamate racemase

L-Glutamate transport in/out via proton symporter
Glutamyl-tRNA synthetase

Glutamyl-tRNAgIn synthetase

glycine betaine transport via ABC system

glycerate kinase

glycolate transport via proton symport, reversible
storage/mobilisation of glycogen

glycerol transport via uniport (facilitated diffusion)
glycerol kinase

glycine transport in/out via proton symport
Glycyl-tRNA synthetase

GMP reductase

GMP synthase (glutamine-hydrolysing)

Glycerophosphodiester phosphodiesterase (sn-Glycero-3-
phosphocholine)
Glycerophosphodiester phosphodiesterase (Glycerophospho-

ethanolamine)

Glycerophosphodiester phosphodiesterase (Glycerophosphoser-
ine)
Glycerophosphodiester phosphodiesterase (Glycerophospho-
glycerol)
Glycerophosphodiester phosphodiesterase (Glycerophospho-
inositol)

geranyltranstransferase

glutathione peroxidase

glutathione-disulfide reductase

GTP cyclohydrolase I

GTP diphosphokinase

guanine phosphoribosyltransferase

guanine transport in via proton symport

H5O transport via diffusion
(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase
(3R)-3-Hydroxybutanoyl-[acyl-carrier protein]:NADP+ oxi-
doreductase

carbonate dehydratase (HCOg equilibration reaction)
homocysteine S-methyltransferase
(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein| hydro-lyase
3R)-3-Hydroxydodecanoyl-|acyl-carrier-protein]:NADP+  oxi-
doreductase

(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase
(3R)-3-Hydroxydecanoyl-|acyl-carrier-protein]:NADP+ oxi-
doreductase
Hexadecanoyl-|acyl-carrier protein|:malonyl-CoA C-
acyltransferase

Hexanoyl-[acyl-carrier protein|:malonyl-CoA C-acyltransferase
hexokinase (D-glucose:ATP)
(3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein] hydro-lyase
(3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein]:NADP+ oxi-
doreductase

(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein| hydro-lyase
(3R)-3-Hydroxyhexanoyl-|acyl-carrier-protein|:NADP + oxi-
doreductase

histidine decarboxylase

L-histidine transport in via proton symport

histidine transaminase

histide/histamine antiporter

atp[c] + gln-L[e] + h2o[c] — adp|c] + gln-L[c| + h[c] + pi[c]
[c] : atp + glu-L + nh4 — adp + gln-L + h + pi

[c] : atp + gln-L + glutrna + h2o0 <> adp + glntrna + glu-L +
h + pi

[c] : atp + glutrnagln + nh4 — amp + glntrna + h + ppi

[e] : (0.01) LTA_LLA + (25) udpg — (0.01) LTAglc_LLA +
(25) h + (25) udp

[c] : atp + glu-L — adp + glubp

atp[c] + gln-L[e] + h2o[c] — adp|c] + gln-L{c] + h[c] + pi[c]
[c] : gln-L + h20 + prpp — glu-L + ppi + pram

[c] : glu-D < glu-L

glu-Lle| + hle] +» glu-L[c] + h[c]

[c] : atp + glu-L + trnaglu — amp + glutrna + h + ppi

[c] : atp + glu-L + trnagln — amp + glutrnagln + h + ppi
atp[c] + glyb[e] + h2o[c] — adp[c] + glyb[c] + h[c] + pi[c]

[c] : atp + glyc-R — 3pg + adp + h

glycltle] + hle] <> glyclt[c] + h]c]

glycogen|c| ++ glycogenl|e|

glyc[e] — glyclc]

[c] : atp + glyc — adp + glye3p + h

glyle] = hle] < glylc] + hlc]

[c] : atp + gly + trnagly — amp -+ glytrna + h -+ ppi

[c] : gmp + (2) h + nadph — imp + nadp + nh4

[c] : atp + gln-L 4+ h20 + xmp — amp + glu-L + gmp + (2) h
+ ppi

[c] : g3pc + h20 — chol + glyc3p + h

[c] : g3pe + h20 — etha + glyc3p + h
[c] : g3ps + h20 — glyc3p + h + ser-L
[c] : g3pg + h20 — glyc + glye3p + h
[c] : g3pi + h20 — glyc3p + h + inost

[c] : grdp + ipdp — frdp + ppi

[c] : (2) gthrd + h202 — gthox + (2) h2o

[c] - (2) gthrd + nadp <> gthox + h + nadph
[c] : gtp + h20 — ahdt + for + h

[c] : atp + gtp — amp + gdptp + h

[c] : gua + prpp — gmp + ppi

guale] + hle] — gualc] + hc]

h2o[e] <> h2o|c]

[c] : 3hbacp — 2beacp + h2o

[c] : aaacp + h + nadph — 3hbacp + nadp

[e] : co2 + h20 <> h + hco3

[c] : amet + hcys-L — ahcys + h + met-L

[c] : 3hddacp — 2tddacp + h2o

[c] : 3oxddacp + h + nadph — 3hddacp + nadp

[c] : 3hdeacp — 2tdeacp + h2o
[c] : Boxdeacp + h + nadph — 3hdeacp + nadp

[c] : 2thdeacp + h + nadh — hdeacp + nad

[c] : 2theacp + h + nadh — hexacp + nad

[c] : atp + gle-D — adp + gbp + h

[c] : 3hpaacp — 2thdeacp + h2o

[c] : 3oxhdacp + h + nadph — 3hpaacp + nadp

[c] : 3hhacp — 2theacp + h2o
[c] : 3oxhacp + h + nadph — 3hhacp + nadp

[c] : h + his-L — co2 + hista

hle] + his-L[e| <> h[c| + his-L|c]

[c] : akg + his-L <> glu-L + impyr
his-L[c] + histale] > his-L[e] + histalc]
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Name

Equation

Histidyl-tRNA synthetase

Hydroxymethylglutaryl CoA reductase
Hydroxymethylglutaryl CoA synthase
hydroxymethylpyrimidine kinase (ATP)
(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein| hydro-lyase
(3R)-3-Hydroxyoctanoyl-[acyl-carrier-protein]:NADP-+ oxi-
doreductase
(3R)-3-Hydroxyoctadecanoyl-|acyl-carrier-protein| hydro-lyase
(3R)-3-Hydroxyoctadecanoyl-|acyl-carrier-protein|:NADP+ ox-
idoreductase

hydroxyphenylpyruvate reductase

hydroxyphenyl lactate transport (HT symport)
2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphos-
phokinase

Acetyl-CoA:L-homoserine O-acetyltransferase

homoserine kinase
(3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein] hydro-lyase
3R)-3-Hydroxytetradecanoyl-|acyl-carrier-protein|:NADP+ ox-
idoreductase

hypoxanthine transport in via proton symport

hypoxanthine phosphoribosyltransferase (Hypoxanthine)
indolelactate dehydrogenase

L-isoeucine transport in/out via proton symport

isoleucine transaminase

Isoleucyl-tRNA synthetase

imidazole lactate transport (HJr symport)

imidazole dehydrogenase

IMP cyclohydrolase

IMP dehydrogenase

indolelactate diffusion

inosine transport in via proton symport, reversible
isopentenyl-diphosphate D-isomerase

B-ketoacyl-ACP synthase III

L-lactate reversible transport via proton symport

D-lactate dehydrogenase

L-lactate dehydrogenase

L-leucine transport in/out via proton symport

leucine transaminase

Leucyl-tRNA synthetase

L-lactate oxidase

lysylphosphatidyl-glycerol synthetase

Lipoteichoic acid synthase (L. lactis specific)

L-lysine transport in/out via proton symport
Lysyl-tRNA synthetase
Malonyl-CoA:[acyl-carrier-protein| S-malonyltransferase
maltose phosphorylase

malate symporter

maltose transport via ABC system
mannose-6-phosphate isomerase

D-mannose transport via PEP:Pyr PTS
Butyryl-[acyl-carrier protein]:malonyl-[acyl-carrier-protein|C-
acyltransferase (decarboxylating)

Hexanoyl-[acyl-carrier  protein|:malonyl-|acyl-carrier-protein]|
C-acyltransferase
Octanoyl-[acyl-carrier  protein|:malonyl-[acyl-carrier-protein]
C-acyltransferase (decarboxylating)

Decanoyl-[acyl-carrier  protein|:malonyl-|acyl-carrier-protein]|
C-acyltransferase
Dodecanoyl-[acyl-carrier-protein]:malonyl-[acyl-carrier-
protein] C-acyltransferase
Tetradecanoyl-|acyl-carrier-protein]:malonyl-[acyl-carrier-
protein] C-acyltransferase
Hexadecanoyl-[acyl-carrier-protein]|:malonyl-[acyl-carrier-
protein] C-acyltransferase

malic enzyme (NAD)

L-methionine transport via ABC system

O-Acetyl-L-homoserine acetate-lyase (adding methanethiol)

[c] : atp + his-L + trnahis — amp + h + histrna + ppi

[c] : coa + mev-R + (2) nadp <> (2) h + hmgcoa + (2) nadph
[c] : coa + h + hmgcoa <> aacoa + accoa + h20

[c] : 4ahmmp + atp — 4ampm + adp + h

[c] : 3hocacp — 2toceacp + h2o

[c] : 3oxocacp + h + nadph — 3hocacp + nadp

[c] : 3hocdacp — 2tocdacp + h20
[c] : 3oxocdacp + h + nadph — 3hocdacp + nadp

[c] : 34hpp + h + nadh <> 34hplac + nad
34hplac|c] + h[c] <> 34hplac|e] + h[e]
[c] : 2ahhmp + atp — 2ahhmd + amp + h

[c] : accoa + hom-L < achms + coa

[¢] : atp + hom-L — adp + h + phom

[c] : 3htdacp — 2ttdeacp + h2o0

[c] : 3oxtdacp + h + nadph — 3htdacp + nadp

hle] + hxan[e] — h[c] + hxan|c]

[c] : hxan + prpp — imp + ppi

[c] : (2) h + indpyr + nadh <« indlac + nad

hle] + ile-L[e] «+ hlc] + ile-Lc]

[c] : akg + ile-L <> 3mop + glu-L

[c] : atp + ile-L + trnaile — amp + h + iletrna + ppi
h[c] + imlac[c] <> hle] + imlac[e]

[c] : h + impyr + nadh <+ imlac + nad

[c] : h20 + imp <> fprica

[c] : h20 + imp + nad — h + nadh + xmp

indlac[c] — indlac|e]

hle] + ins[e] ++ h[c] + ins[c]

[c] : ipdp > dmpp

[c] : accoa + h + malacp — aaacp + co2 + coa

hle] + lac-L[e] <+ h[c] + lac-L[c]

[c] : lac-D + nad <> h 4 nadh + pyr

[c] : lac-L + nad <> h + nadh -+ pyr

hle] + leu-Lle] > hc] + leu-Lic]|

[c] : akg + leu-L <> 4mop + glu-L

[c] : atp + leu-L + trnaleu — amp + h + leutrna + ppi
[c] : lac-L + 02 — h202 + pyr

[c] : lystrna + (0.01) pg_LLA — (0.01) lyspg_LLA + trnalys
[e] : (0.01) d12dg_LLA + (0.16) pg_ LLA — (0.16) 12dgr LLA
+ (0.01) LTA_LLA

hle] + lys-Lle] <> hlc] + lys-L[c|

[c] : atp + lys-L + trnalys — amp + h + lystrna + ppi
[c] : acp + malcoa — coa + malacp

[c] : malt + pi <> glp-B + gle-D

hle] + mal-L[e| <> h[c| 4+ mal-L]c]

atp[c] + h2o[c] + malt[e] — adp|c|] + h[c] + malt|c] + pi|c]
[c] : man6p < f6p

manle| + pep[c] — man6p[c| + pyr|[c]

[c] : butacp + h + malacp — 3oxhacp + acp + co2

[c] : h + hexacp + malacp — 3oxocacp + acp + co2
[c] : h + malacp + octacp — 3oxdeacp + acp + co2
[c] : decacp + h + malacp — 3oxddacp + acp + co2
[c] : ddeacp + h + malacp — 3oxtdacp + acp + co2
[c] : h 4 malacp + tdeacp — 3oxhdacp + acp + co2
[c] : h + hdeacp + malacp — 3oxocdacp + acp + co2
[c] : mal-L 4+ nad — co2 + nadh + pyr

atp[c] + met-Lle] + h2o[c] — adp|c| + met-L|c| + h[c] + pi[c]
[c] : achms + h2s <> ac + h + hcys-L
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Name Equation

methionine adenosyltransferase [c] : atp + h20 + met-L — amet + pi + ppi

Methional transport methal[c] <> methalle]

methionine synthase [c] : Bmthf 4+ hcys-L — h + met-L + thf

L-methionine transport in/out via proton symport met-L[e|] + hle] <> met-L[c] + h[c]

methionine transaminase [c] : akg + h + met-L <> 4met2obut + glu-L

Methionyl-tRNA synthetase [c] : atp 4+ met-L + trnamet — amp + h + mettrna + ppi

mevalonate kinase [c] : atp + mev-R — 5pmev + adp + h

myo-inositol 1-phosphatase [c] : h20 + milp-D — inost + pi

manganese transport via ABC system atp[c] + h2o[c] + mn2[e] — adp[c] + h[c] + mn2[c] + pi[c|

mannitol transport via PEP:Pyr PTS mnlle] + peplc] — mnllp[c] + pyr[c]

MoaD:cysteine sulfur transferase [c] : MCOOH + atp + cys-L + h20 — MCOSH + amp + ppi
+ ser-L

Methylthioadenosine nucleosidase [c] : Bmta 4 h20 — 5mtr + ade

methenyltetrahydrofolate cyclohydrolase [c] : h20 + methf <» 10fthf + h

Methylenetetrahydrofolate dehydrogenase (NADP) [c] : mlthf + nadp <> methf + nadph

Nicotinic acid uptake nacle] — nac|c]

NAD kinase [c] : atp 4+ nad — adp + h + nadp

NAD nucleosidase [c] : h20 + nad — adprib + h + ncam

NAD synthase (nh4) [c] : atp + dnad + nh4 — amp + h + nad + ppi

NAPRTase [c] : h + nac + prpp — nicrnt + ppi

nucleoside-diphosphate kinase (ATP:GDP) [c] : atp + gdp <> adp + gtp

nucleoside-diphosphate kinase (ATP:UDP) [c] : atp + udp <> adp + utp

nucleoside-diphosphate kinase (ATP:CDP) [c] : atp + cdp <> adp + ctp

nucleoside-diphosphate kinase (ATP:dTDP) [c] : atp + dtdp <> adp + dttp

nucleoside-diphosphate kinase (ATP:dGDP) [c] : atp + dgdp <> adp + dgtp

nucleoside-diphosphate kinase (ATP:dUDP) [c] : atp 4 dudp <> adp + dutp

nucleoside-diphosphate kinase (ATP:dCDP) [c] : atp + dedp < adp + dctp

nucleoside-diphosphate kinase (ATP:dADP) [c] : atp + dadp <« adp + datp

nucleoside-diphophate kinase (ATP:IDP) [c] : atp + idp <> adp + itp

ammonia transport via diffusion nh3[e| <> nh3|c]

nh4 Dissociation [c] : nh4 <> h + nh3

nh4 Dissociation extracellular le] : nh4 <> h + nh3

nicotinamidase, reversible [c] : h20 4+ ncam <> nac + nh4

nicotinate-nucleotide adenylyltransferase [c] : atp + h + nicrnt — dnad + ppi

nitrite transport out via proton antiport hle] + no2[c] — h[c| 4 no2[e]

nitrate transport via ABC system atp[c] + h2o[c] + no3[e] — adp|c] + h[c] + no3[c] + pi[c]

NADH oxidase (H3Oz forming) [c] : h + nadh + 02 — h202 + nad

NADH oxidase (H2O forming) [e] - (2) h 4+ (2) nadh + 02 — (2) h20 + (2) nad

NADH peroxidase [c] : h 4+ h202 + nadh — (2) h20 + nad

Oy transport in via diffusion o2[e] +> o2|c|

ornithine carbamoyltransferase [c] : cbp + orn-L < citr-L + h + pi

Octadecanoyl-|acyl-carrier protein]|:malonyl-CoA C- [c] : 2tocdacp + h + nadh — nad + ocdacp

acyltransferase

Octanoyl-[acyl-carrier protein|:malonyl-CoA C-acyltransferase [c] : 2toceacp + h + nadh — nad + octacp

orotidine-5’-phosphate decarboxylase [c] : h + orot5p — co2 + ump

L-ornithine transport in/out via proton symport orn-L[e] + hle] «» orn-L[c] + hlc]

Orotic acid transport in/out via proton symporter hle] + orotle] > hc] + orotc]

orotate phosphoribosyltransferase [c] : orot5p + ppi <> orot + prpp

pyrroline-5-carboxylate reductase [c] : 1pyr5c + (2) h + nadph < nadp + pro-L

para aminobenzoic acid transport 4abzle] «» 4abz[c|

phenylacetaldehyde transport pacald[c| <> pacald[e]

phosphatidic acid phosphatase [c] : h20 + (0.01) pa_ LLA — (0.01) 12dgr LLA + pi

phospho-N-acetylmuramoyl-pentapeptide-transferase (meso- [c] : uAgla + udcpp — uaAgla + ump

2,6-diaminopimelate)

pyruvate dehydrogenase [c] : coa + nad + pyr — accoa + co2 + nadh

pyridoxin transport via proton symport hle] + pydxn[e] — h[c] + pydxn|c]

phenylethylalcohol transport pealc] <+ peale]

phosphofructokinase lc] : atp + f6p — adp + fdp + h

Formate C-acetyltransferase [c] : coa + pyr <+ accoa + for

phosphoglucosamine mutase [c] : gamlp > gam6p

6-phospho-3-glucosidase [c] : 6pgg + h20 — gbp + gle-D

peptidoglycan glycosyltransferase [c] : vaaAgla — PG + udcpdp

glucose-6-phosphate isomerase [c] : gbp <> f6p

phosphoglycerate kinase [c] : 13dpg + adp <+ 3pg + atp

phosphoglycolate phosphatase [e] : 2pglyc + h20 — glyclt + pi

phosphoglycerate mutase [c] : 3pg <> 2pg

phosphoglucomutase [c] : glp «» gbp

b-phosphoglucomutase [c] : gbp-B <> glp-B
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Name

Equation

Phosphatidylglycerol phosphate phosphatase (Lactis specific)
Phosphatidylglycerol synthase (lactis specific)

Phenol transport

L-phenylalanine transport in/out via proton symport
Phenylalanyl-tRNA synthetase

phosphate transport via ABC system

phosphate transport in/out via proton symporter
phosphomannomutase

phosphomevalonate kinase

phosphomethylpyrimidine kinase

pantothenate kinase

Pantothenate reversible transport via proton symport
inorganic diphosphatase
phosphopantothenoylcysteine decarboxylase
phosphopentomutase (deoxyribose)
phosphopantothenate-cysteine ligase
phosphoribosylglycinamide synthetase
phosphoribosylaminoimidazole synthetase
phosphoribosylaminoimidazolesuccinocarboxamide synthase

phosphoribosylformylglycinamidine synthase

L-prolin transport via ABC system

L-proline transport in/out via proton symport
Prolyl-tRNA synthetase

protein synthesis_ LLA for lactis

phosphoribosylpyrophosphate synthetase
3-phosphoshikimate 1-carboxyvinyltransferase
pseudouridylate synthase

phosphotransacetylase

pantetheine-phosphate adenylyltransferase
putrescine transport via ABC system
purine-nucleoside phosphorylase (Adenosine)
purine-nucleoside phosphorylase (Deoxyadenosine)
purine-nucleoside phosphorylase (Guanosine)
purine-nucleoside phosphorylase (Deoxyguanosine)
purine-nucleoside phosphorylase (Inosine)
purine-nucleoside phosphorylase (Deoxyinosine)
purine-nucleoside phosphorylase (Xanthosine)
pyridoxal kinase (Pyridoxamine)

pyridoxamine transport

pyridoxal kinase (Pyridoxal)

pyruvate kinase

pyruvate reversible transport via proton symport
riboflavin kinase

ribokinase

L-ribulose-phosphate 4-epimerase
ribosylhomocysteinase

riboflavin transport in via proton symport
ribose transport in via proton symporter

RNA synthesis, lactis specific

ribonucleoside-diphosphate reductase (ADP)
ribonucleoside-diphosphate reductase (GDP)

[c] : h20 + (0.01) pgp_LLA — (0.01) pg_LLA + pi

[c] : (0.01) cdpdag_ LLA + glyc3p <> cmp + h + (0.01)
pgp_LLA

phenol[c] <> phenolle]

hle] + phe-Lle] > hlc] + phe-L|c]|

[c] : atp + phe-L + trnaphe — amp + h + phetrna + ppi
atp[c] + h2o[c] + pile] — adp[c] + h[c] + (2) pi[c]

hle] + pi[e] <> h[c] + pi[c]

[c] : manlp <> man6p

[c] : 5pmev + atp — 5dpmev + adp

[c] : 4ampm + atp — 2mahmp + adp

[c] : atp + pnto-R — 4ppan + adp + h

hle] + pnto-Rle] <> h[c] + pnto-R[c]|

[c] : h20 4 ppi — h + (2) pi

[c] : 4ppcys + h — co2 + pandp

[c] : 2drlp > 2dr5p

[c] : 4ppan + ctp + cys-L — 4ppcys + cdp + h + pi

[c] : atp + gly + pram — adp + gar + h + pi

[c] : atp + fpram — adp + air + h + pi

[c] : Baizc 4 asp-L + atp <> 25aics + adp + h + pi

[c] : atp + fgam + gln-L 4 h20 — adp + fpram + glu-L + (2)
h + pi

atp|c] + pro-Le] + h2o[c] — adp|c] + pro-L|c|] + h[c] + pilc]
hle] + pro-L[e] <+ h[c] + pro-L|c]

[c] : atp + pro-L + trnapro — amp + h + ppi + protrna

[c] : (0.086) alatrna -+ (0.041) argtrna -+ (0.059) asntrna -+
(0.031) asptrna + (0.306) atp + (0.034) cystrna + (0.064)
glntrna + (0.036) glutrna + (0.092) glytrna + (2) gtp + (2.306)
h2o0 + (0.015) histrna + (0.061) iletrna + (0.087) leutrna -+
(0.072) lystrna + (0.025) mettrna + (0.038) phetrna + (0.035)
protrna + (0.051) sertrna + (0.056) thrtrna + (0.017) trptrna
+ (0.027) tyrtrna + (0.072) valtrna — (0.306) adp + (2) gdp +
(2.306) h + (2.306) pi + (0.001) prot _LLA 4 (0.086) trnaala +
(0.041) trnaarg + (0.059) trnaasn + (0.031) trnaasp + (0.034)
trnacys + (0.064) trnagln + (0.036) trnaglu + (0.092) trnagly
+ (0.015) trnahis + (0.061) trnaile + (0.087) trnaleu + (0.072)
trnalys + (0.025) trnamet + (0.038) trnaphe + (0.035) trnapro
+ (0.051) trnaser + (0.056) trnathr + (0.017) trnatrp + (0.027)
trnatyr 4 (0.072) trnaval

[c] : atp + r5p <> amp + h + prpp

[c] : pep + skm5p <> 3psme + pi

[c] : r5p + ura — h2o0 + psd5p

[c] : accoa + pi > actp + coa

[c] : atp + h + pandp <> dpcoa -+ ppi

atp|c] + h2o[c] + ptrcle] — adplc] + h[c| + pi[c] + ptrc|c]

[c] : adn + pi <> ade + rlp

[c] : dad-2 + pi <> 2drlp + ade

[c] : gsn + pi < gua + rlp

[c] : dgsn + pi <> 2drlp + gua

[c] : ins + pi «> hxan + rlp

[c] : din + pi > 2drlp + hxan

[c] : pi + xtsn <> rlp + xan

[c] : atp + pydam — adp + h + pyam5p

hle] + pydaml[e| <> h[c| + pydam]c]

[c] : atp + pydx — adp + (2) h + pydx5p

[c] : adp + h + pep — atp + pyr

hle] + pyrle] > hlc] + pyr[c|

[c] : atp + ribflv — adp + fmn + h

[c] : atp + rib-D — adp + h + r5p

[c] : rubp-L <> xubp-D

[c] : h20 + rhcys — hcys-L + rib-D

hle] + ribflvle] — h[c] + ribflv|c|

hle] + rib-Dle] — h[c] + rib-Dlc]|

[c] : (0.66) atp + (0.2) ctp + (0.32) gtp + (0.4) h2o + (0.22)
utp — (0.01) RNA_LLA + (0.4) adp + (0.4) h + (0.4) pi +
ppi

[c] : adp + trdrd — dadp + h2o0 + trdox

[c] : gdp + trdrd — dgdp + h2o + trdox
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Name

Equation

ribonucleoside-diphosphate reductase (CDP)
ribonucleoside-diphosphate reductase (UDP)
ribonucleoside-triphosphate reductase (ATP)
ribonucleoside-triphosphate reductase (GTP)
ribonucleoside-triphosphate reductase (CTP)
ribonucleoside-triphosphate reductase (UTP)
ribulose 5-phosphate 3-epimerase
ribose-5-phosphate isomerase
sorbitol-6-phosphatase

D-sorbitol transport via PEP:Pyr PTS
D-sorbitol transport in via proton symport
succinyl-diaminopimelate desuccinylase
serine O-acetyltransferase

L-serine deaminase

L-serine transport in/out via proton symport
Seryl-tRNA synthetase

shikimate dehdrogenase

shikimate kinase

O-acetylhomoserine lysase (L-cysteine)
sulfate transport in/out via sodium symport
spermidine transport via ABC system
succinate-semialdehyde dehydrogenase (NADP)
sucrose 6-phosphate hydrolase

succinate transporter in/out via proton symport
succinate dehydrogenase (menaquinone 7)
a-glucoside glucohydrolase

sucrose transport via PEP:Pyr PTS
transaldolase
Thiocysteine degradation
Tetradecanoyl-[acyl-carrier protein]|:malonyl-CoA C-
acyltransferase

dTDP-4-dehydrorhamnose 3,5-epimerase
dTDP-4-dehydrorhamnose reductase

dTDPglucose 4,6-dehydratase
Tetrahydrofolate:L-glutamate vy-ligase (ADP-forming)
thiamine transport via ABC system

thymidine transport in via proton symport

threonine aldolase

threonine synthase

L-threonine transport in/out via proton symporter
Threonyl-tRNA synthetase

transketolase

transketolase

thymidine kinase (ATP:thymidine)

thymidine kinase (GTP:Thymidine)

thiamine diphosphokinase

thymidylate synthase

thiamine-phosphate kinase

triose-phosphate isomerase

thioredoxin reductase (NADPH)

trehalose-6-phosphate hydrolase

trehalose transport via PEP:Pyr PTS

L-tryptophan transport in/out via proton symport
Tryptophanyl-tRNA synthetase

L-tyrosine transport in/out via proton symport
Tyrosyl-tRNA synthetase
UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-
diaminopimelate synthetase
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-lysine syn-
thetase (a-glutamate)

UDP-N-acetylglucosamine 1-carboxyvinyltransferase
UDP-N-acetylglucosamine diphosphorylase
UDP-N-acetylglucosamine-N-acetylmuramyl-
(pentapeptide)pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase
UDP-N-acetylmuramoyl-L-alanine synthetase

UDP-N-acetylenolpyruvoylglucosamine reductase

[c] : cdp + trdrd — dedp + h2o0 + trdox

[c] : trdrd + udp — dudp + h20 + trdox

[c] : atp + trdrd — datp 4+ h20 + trdox

[c] : gtp + trdrd — dgtp + h20 + trdox

[c] : ctp + trdrd — dctp + h20 + trdox

[c] : trdrd + utp — dutp + h2o0 + trdox

[e] : rubp-D <+ xubp-D

[c] : r5p > rubp-D

[c] : h20 + sbt6p — pi + sbt-D

pep|c] + sbt-Dle] — pyr[c] + sbt6p]c]

hle] + sbt-Dle] «> hlc] + sbt-D[c]|

[c] : h20 + sl26da — 26dap-LL + succ

[c] : accoa + ser-L <> acser + coa

[c] : ser-L — nh4 + pyr

hle] + ser-L[e| < h[c| + ser-L|c]

[c] : atp + ser-L + trnaser — amp + h + ppi + sertrna
[c] : 3dhsk + h + nadph <> nadp -+ skm

[c] : atp + skm — adp + h + skmb5p

[c] : achms + cys-L — ac + cysth-L + h

nalle] + sod[e] <> nallc] + sod[c]

atp[c] + h2o[c] + spmd[e] — adp|c] + h[c] + pi[c] + spmd]c]
[c] : h20 + nadp + sucsal — (2) h + nadph + succ
[c] : h20 + suc6p — pi + sucr

hle] + succle] <> hc] + succ[c]

[c] : mgn7 + succ > fum + mql7

[c] : h20 + sucr — fru + gle-D

pep|c] + sucrle] — pyr[c] + suc6p]c]

[c] : g3p + sTp <> edp + f6p

[e] : teys + (2) h — cys-L + h2s

[c] : 2ttdeacp + h + nadh — nad + tdeacp

[c] : dtdpddg <+ dtdpddm

[c] : dtdp6dm + nadp <> dtdpddm + h + nadph

[c] : dtdpgle — dtdpddg + h2o

[c] : atp + glu-L + thf <> adp + h + pi + thfglu

atp[c] + h2o[c] + thml[e] — adp|c] + h[c] + pi[c] + thm|c]
hle] + thymd[e] — h[c| + thymd|c]

[e] : thr-L <« acald + gly

[c] : h20 4+ phom — pi + thr-L

hle] + thr-Lle] <+ hc] + thr-L]c]

[c] : atp + thr-L + trnathr — amp + h + ppi + thrtrna
[c] : r5p + xubp-D > g3p + s7p

[c] : edp + xubp-D <« f6p + g3p

[c] : atp 4+ thymd — adp + dtmp + h

[c] : gtp + thymd — dtmp + gdp + h

[c] : atp + thm — amp + h + thmpp

[c] : dump + mlthf — dhf + dtmp

[c] : atp 4+ thmmp < adp + thmpp

[c] : dhap <+ g3p

[c] : h + nadph + trdox — nadp + trdrd

[c] : h20 + tre6p — gbp + glc-D

peplc] + trele] — pyr[c] + tre6p|c|

hle] + trp-L[e] <> h[c] + trp-Lc|

[c] : atp + trnatrp + trp-L — amp + h + ppi + trptrna
hle] + tyr-Lle] > hlc] + tyr-Lc]

[c] : atp + trnatyr + tyr-L — amp + h + ppi + tyrtrna
[c] : 26dap-M + atp + uamag — adp + h -+ pi 4 ugmd

[c] : atp + lys-L + uamag — adp + (2) h + pi + uAgl

[c] : pep + uacgam — pi + uaccg
[c] : acgamlp + h + utp — ppi + uvacgam
[c] : uaAgla + uacgam — h + uaaAgla + udp

[c] : atp + glu-D + uama — adp + h + pi + uamag
[c] : ala-L + atp + uamr — adp + h + pi + uama
[c] :+ h + nadph + uaccg — nadp + uamr
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undecaprenyl-diphosphatase
Undecaprenyl diphosphate synthase
UDPglucose 4-epimerase

[e] -
e] :
e] :

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl- [e] -

D-alanine synthetase (a-glutamate)

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6- [e] -

diaminopimeloyl-D-alanyl-D-lactate synthetase

UDP-glucosyltransferase (monoacylglycerol)
UDP-glucosyltransferase (diacylglycerol)

uracil phosphoribosyltransferase

uracil transport in via proton symport
uridylate kinase (UMP)

uridylate kinase (dUMP)

uridine kinase (ATP:Uridine)

uridine kinase (GTP:Uridine)

uridine kinase (ITP:Uridine)

L-valine transport in/out via proton symport
valine transaminase

Valyl-tRNA synthetase

xanthine transport in via proton symport
xanthine phosphoribosyltransferase
yUMP synthetase

B.3 Constraints

[e] :
udp
[e] :
udp
[c] :

h20 + udcpdp — h + pi + udcpp

frdp + (8) ipdp — (8) ppi + udcpdp

udpg <> udpgal

alaala + atp + uAgl — adp + pi + uAgla

alalac + atp + ugmd — adp + h + pi + ugmdalac

(0.01) 12dgr LLA + udpg — h + (0.01) m12dg LLA +

(0.01) m12dg_LLA + udpg — (0.01) d12dg_LLA + h +

prpp + ura — ppi + ump

hle] + urale] — h[c] + ura|c|

[e] =
e] :
e] =
e] =
e] =

atp + ump — adp + udp

atp + dump — adp + dudp
atp + uri — adp + h + ump
gtp + uri — gdp + h 4 ump
itp + uri — h + idp + ump

hle] + val-L[e] <> h[c] + val-L|c]

e] :
e] =
hle]
e] :
e] :

akg + val-L <> 3mob + glu-L

atp + trnaval + val-L — amp + h + ppi + valtrna
t xanle] — h[c] 4 xan|c]

prpp + xan — ppi + xmp

r5p + ura <> h2o0 + psd5p

For every experimental condition, boundaries for the exchange reactions were cal-

culated from the measured fluxes v}*. The lower and upper bounds are calculated
as v* + e with € = 20%. We calculated constraints for both pHs and both dilution

rates for the wild-type and the ldh-deletion strain. For some species no fluxes were

measured. In that case we assumed lower and upper boundaries which were applied

for the simulation of all experimental set-ups (see Table B.3). The constraints are
given in the following Tables B.3 to B.7.

Table B.3: Assumed constraints on reaction fluxes which were not measured. These

boundaries are used for all experimental conditions.

Uptake or production

Lower Bound

Upper Bound

Aminobenzoate
Acetoin
Adenine
Asparagine
Butanediol
Biotin
Cellobiose
Citrate

O O R O O O O =
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Uptake or production

Lower Bound

Upper Bound

COq
Cytosine
Cystine
Glutamine
Glycolate
Guanine
Inosine
Maltose
Mannose
Nicotinate
NH4

NO,

NOs

O2

Orotate
Phosphate
Pantothenate
Pyridoxamine
Pyridoxine
Riboflavin
SOy
Spermidine
Succinate
Sucrose
Thiamine
Thymidine
Trehalose
Tryptophan
Xanthine

O O O O = O O = = o O = OO O RO OO

Table B.4: Constraints calculated from measured reaction fluxes for S. pyogenes wild-

type strain at pH 6.5 and both dilution rates, d = 0.05 h™! and d = 0.15 h!.

Uptake or production

ATP maintenance
Acetate
Alanine

Arginine

d = 0.05 h!

Lower Bound Upper Bound
1.35 1.35
0.9351 0.9733
-0.0988 0
-0.0306 0

d=0.15h!
Lower Bound Upper Bound
1.35 1.35
0.8021 10
-0.1817
-0.0526
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Uptake or production

Table B.4 — continued from previous page

Aspartate
Cysteine
Ethanol
Formate
Glucose
Glutamate
Glycine
o+

H-0
Histidine
Isoleucine
D-Lactate
L-Lactate
Leucine
Lysine
Methionine
NHj;
Ornithine
Phenylalanine
Proline
Pyruvate
Serine
Threonine
Tyrosine

Valine

d = 0.05 h!

Lower Bound Upper Bound
-0.1156 0
-0.0352 0
0.7865 0.8186
1.4459 2
-2.5947 -2.4929
-0.1228 0
-0.0844 -0.081
-1000 1000
-1000 1000
-0.0373 0
-0.0611 0

0 1
2.8571 2.9737
-0.1363 0
-0.0916 0
-0.0305 0
0.0695 0.0723

0.000104 0.000108
-0.0598 0
-0.2134 0
0.0613 0.0648
-0.1360 0
-0.0711 -0.0683
-0.0475 0
-0.1033 0

d = 0.15h!
Lower Bound Upper Bound
-0.2205 -0.2119

-0.065 0
0.6272 10
1.0275 10
-4.7901 -4.6060
-0.2338 0
-0.161 -0.1546
-1000 1000
-1000 1000
-0.0693 0
-0.113 0
0 1
1 6.5743
-0.2523 0
-0.1716 0
-0.059 0
0.1459 0.1519
0.000098 0.000102
-0.1123 0
-0.3979 0
0 0
-0.2532 -0.2432
-0.1329 0
-0.0961 0
-0.1921 0

Table B.5: Constraints calculated from measured reaction fluxes for S. pyogenes wild-

type strain at pH 7.5 and both dilution rates, d = 0.05 h™* and d = 0.15 h™!.

Uptake or production

ATP maintenance
Acetate

Alanine

Arginine
Aspartate
Cysteine

Ethanol

d =0.05h!

Lower Bound Upper Bound
0.8 0.8
1.812 1.884

-0.4287 0
-0.1574 0
-0.4634 0
-0.1813 0

0 0

d=0.15ht
Lower Bound Upper Bound
0.8 0.8
1.1789 5
-0.3798 0
-0.1073 0
-0.4514 0
-0.1267 0
1.6170 1.6830
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Uptake or production

Table B.5 — continued from previous page

Formate
Glucose
Glutamate
Glycine
o+

H>0
Histidine
Isoleucine
D-Lactate
L-Lactate
Leucine
Lysine
Methionine
NH;3
Ornithine
Phenylalanine
Proline
Pyruvate
Serine
Threonine
Tyrosine

Valine

d = 0.05 h!

Lower Bound Upper Bound
1.7094 1.7792
-8 0

-0.4917 0
-0.3492 0
-1000 1000
-1000 1000
-0.1725 0
-0.3297 0
0 10
10 21.7851
-0.5711 0
-0.3909 0
-0.1312 0
1.1711 1.2189
0.001028 0.001070
-0.3628 0
-0.7857 0
0.03024 0.3148
-0.7025 0
-0.2880 0
-0.1740 0
-0.4180 0

d = 0.15h!
Lower Bound Upper Bound
2 3.1656
-6.75 -4
-0.4806 0
-0.3186 -0.3062
-1000 1000
-1000 1000
-0.1313 0
-0.2289 0
0 10
8.2643 8.6017
-0.5089 0
-0.3466 0
-0.1128 0
0.1816 0.189
0.000069 0.000071
-0.2135 0
-0.8001 0
0 0
-0.4948 -0.4754
-0.2628 -0.2524
-0.1700 0
-0.3893 0

Table B.6: Constraints calculated from measured reaction fluxes for S. pyogenes ldh-
deletion strain at pH 6.5 and both dilution rates, d = 0.05 h™! and d = 0.15 h™!.

Uptake or production

ATP maintenance
Acetate

Alanine

Arginine
Aspartate
Cysteine

Ethanol

Formate

Glucose

Glutamate

d = 0.05 h!

Lower Bound Upper Bound
1.35 1.35
1.3789 1.4351

0 0.1607
-0.1151 0
-0.0367 0
-0.1443 0

0 0
-0.0422 0
2.1629 2.2511
3.2066 3.3374

d=0.15h"!

Lower Bound Upper Bound
1.35 1.35
2.156 2.244

0 0.204
-0.1558 0
-0.0565 0
-0.2209 0

0 0
-0.0649 0
4.6045 4.7925
5.3877 5.6077
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Uptake or production
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Glycine

o

H>0
Histidine
Isoleucine
D-Lactate
L-Lactate
Leucine
Lysine
Methionine
NH;
Ornithine
Phenylalanine
Proline
Pyruvate
Serine
Threonine
Tyrosine

Valine

d = 0.05 h!

Lower Bound Upper Bound
-3.1136 -2.9915
-0.1544 0
-0.1053 0
-0.0469 0
-0.0771 0

0 5

0 0.0893
-0.1693 0
-0.1115 0
-0.0379 0
0.0781 0.0813
0.0001 0.000104
-0.0745 0
-0.263 0
0.4018 0.4182
-0.1647 0
-0.0873 0
-0.0605 0
-0.1288 0

d = 0.15h!
Lower Bound Upper Bound

-8 -4.6023
-0.2364 0
-0.1665 0
-0.071 0
-0.1223 0
0 10

0 0.1349
-0.271 0
-0.1722 0
-0.0587 0
0.1594 1
0.000072 1
-0.113 0
-0.3972 0

1.1572 1.2044
-0.2536 0
-0.1316 0
-0.0968 0
-0.2043 0

Table B.7: Constraints calculated from measured reaction fluxes for S. pyogenes ldh-
deletion strain at pH 7.5 and both dilution rates, d = 0.05 h™' and d = 0.15 h™'.

Uptake or production

ATP maintenance
Acetate
Alanine
Arginine
Aspartate
Cysteine
Ethanol
Formate
Glucose
Glutamate
Glycine
o+

H50

d = 0.05 h!

Lower Bound Upper Bound
0.8 0.8
3.5186 3.6622

0 0.3648
-0.2505 0
-0.0881 0
-0.3171 0

0 0
-0.1013 0
6.5444 6.8116

8.773 9.131
-7.4725 0
-0.3421 0
-0.2337 0

d = 0.15 h!
Lower Bound Upper Bound
0.8 0.8
3.8346 3.9912

0 0.3658
-0.3634 0
-0.1038 0
-0.4448 0

0 1
-0.1204 0
7.7364 8.0522

9.66 10.0542
-8.8958 -8
-0.4791
-0.3291
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d = 0.05 h! d = 0.15h!
Uptake or production Lower Bound Upper Bound Lower Bound Upper Bound
Histidine -0.093 0 -0.138 0
Isoleucine -0.18 0 -0.2304 0
D-Lactate 0 1 0 1
L-Lactate 0 0.2754 0 0.1166
Leucine -0.3913 0 -0.5159 0
Lysine -0.2549 0 -0.3406 0
Methionine -0.0831 0 -0.1175 0
NH; 0.1984 0.2064 0.0946 0.0984
Ornithine 0.00032 0.000334 0.000055 0.000057
Phenylalanine -0.1687 0 -0.2329 0
Proline -0.5738 0 -0.8162 0
Pyruvate 2.2967 2.3905 2.1028 2.1886
Serine -0.3928 0 -0.4711 0
Threonine -0.1955 0 -0.2666 0
Tyrosine -0.1231 0 -0.1907 0
Valine -0.2908 0 -0.3948 0

B.4 Simulation results

After the definition if the biomass equation as objective and the application of

boundaries on the uptake and production fluxes the developed genome-scale model

is simulated using FBA. The results for two different dilution rates and two different

ph values are displayed in the following tables.

Table B.8: Optimal solution from FBA for S. pyogenes wild-type and its ldh-deletion at

pH 6.5 and two dilution rates (D, h™!) in continuous fermentation on CDM-LAB medium.

Values indicate flux through the reaction taking up or secreting the compound per hour.

M49 M49 Aldh
Uptake or production | D=0.05 | D=0.15 | D=0.05 | D =0.15
ATP maintenance 1.35 1.35 1.35 1.35
Biomass 0.050626 | 0.157688 | 0.065553 | 0.132988
Acetate 0.9733 5.189755 1.4351 2.156
Acetoin 0 0 0 0
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M49 M49 Aldh

Uptake or production | D=0.05 | D=0.15 | D=0.05 | D=0.15
Alanine -0.04092 | -0.127457 | -0.052986 | -0.107493
Arginine -0.00872 -0.02716 | -0.011291 | -0.022906
Asparagine -0.012548 0 -0.267972 | -0.829382
Aspartate -0.006593 -0.2119 0 -0.2209
CO, 0.028568 0 0 0
Cystine -0.00322 | -0.010029 | -0.004169 | -0.008458
Cysteine 0 0 0 0
Ethanol 0.7865 4.767266 2.1629 4.6045
Formate 1.627911 | 9.773135 3.3374 5.6077
Glucose -2.5947 -5.5 -3.1136 -8
Glutamine -0.012049 | -0.03753 | -0.015602 | -0.071695
Glutamate -0.015244 | -0.047482 | -0.019739 0
Glycine -0.081 -0.1546 0 -0.1665
Histidine -0.00319 | -0.009937 | -0.004131 | -0.00838
I[soleucine -0.012974 | -0.040409 | -0.016799 | -0.03408
D-Lactate 0.492684 0 2.141865 | 8.110925
L-Lactate 2.9737 1 0 0
Leucine -0.018503 | -0.057633 | -0.023959 | -0.048605
Lysine -0.021403 | -0.066666 | -0.027714 | -0.056224
Methionine -0.006119 | -0.019058 | -0.007923 | -0.016073
NHj3 0.0723 0.1459 0.0781 0.18095
Ornithine 0.000108 | 0.000102 | 0.000104 1
Phenylalanine -0.008082 | -0.025173 | -0.010465 | -0.02123
Proline -0.007444 | -0.023186 | -0.009639 | -0.019554
Pyruvate 0.0613 0 0.4182 1.1572
Serine 0 -0.2532 -0.059649 | -0.180812
Threonine -0.0683 -0.11648 | -0.077728 -0.1316
Tryptophan -0.003616 | -0.011262 | -0.004682 | -0.009498
Tyrosine -0.005742 | -0.017886 | -0.007436 | -0.015084
Valine -0.015313 | -0.047696 | -0.019828 | -0.040225
Xanthine 0 0 0 0
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M49 M49 Aldh
Uptake or production | D=0.05 | D=0.15 | D=0.05 | D=0.15
D-LDH -0.392684 0 -2.141865 | -8.110925
L-LDH -1000 -1000 0 0
Aminobenzoate -0.000001 | -0.000002 | -0.000001 | -0.000001
Adenine -0.005641 | -0.01757 | -0.007304 | -0.014818
Butanediol 0 0 0 0
Biotin 0 0 0 0
Cellobiose 0 0 0 0
Citrate 0 0 0 0
Cytosine 0 0 -0.009931 | -0.023297
Glycolate 0.000001 | 0.000002 | 0.000001 | 0.000001
Guanine -0.006005 | -0.018703 | -0.007775 | -0.015774
H* 5.953719 | 15.742469 | 7.518837 | 17.735504
H,O -0.423779 | -3.328439 | -0.614428 | 0.346263
Inosine 0 0 0 0
Maltose 0 0 0 0
Mannose 0 0 0 0
Nicotinate -0.000101 | -0.000315 | -0.000131 | -0.000266
NH4 0.16958 0 0 0
NO, 0 0 0 0
NO;3 0 0 0 0
(02 0 0 0 0
Orotate -0.00767 0.12839 0.243187 1
Phosphate -0.034903 | -0.108714 | -0.045194 | -0.091685
Pantothenate -0.00001 | -0.000032 | -0.000013 | -0.000027
Pyridoxamine 0 0 0 0
Pyridoxine 0 0 0 0
Riboflavin 0 0 0 0
SOy 0 0 0 0
Spermidine 0 0 0 0
Succinate 0 0 0 0
Sucrose 0 0 0 0
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M49 M49 Aldh
Uptake or production | D=0.05 | D=0.15 | D=0.05 | D=0.15
Thiamine -0.000001 | -0.000002 | -0.000001 | -0.000001
Thymidine -0.001199 | -0.003734 | -0.001552 0
Trehalose 0 0 0 0

Table B.9: Optimal solution from FBA for S. pyogenes wild-type and its ldh-deletion at
pH 7.5 and two dilution rates (D, h™!) in continuous fermentation on CDM-LAB medium.

Values indicate flux through the reaction taking up or secreting the compound per hour.

M49 M49 Aldh

Uptake or production | D=0.05 | D=0.15 | D=0.05 | D =0.15
ATP maintenance 0.8 0.8 0.8 0.8
Biomass 0.144266 | 0.150519 | 0.163726 | 0.172089
Acetate 1.812 2.402287 3.5186 3.9912
Acetoin 0 0 0 0
Alanine -0.116608 | -0.121662 | -0.132337 | -0.139097
Arginine -0.024848 | -0.025925 -0.0282 -0.029641
Asparagine -0.035758 | -0.037307 | -0.678136 | -0.567619
Aspartate -0.019134 | -0.379254 | -0.059297 | -0.408041
COq 0 0 0 1
Cystine -0.009175 | -0.009573 | -0.010413 | -0.010945
Cysteine 0 0 0 0
Ethanol 0 1.617 6.5444 8.0522
Formate 1.7094 3.1656 9.131 10.0542
Glucose -8 -6.75 -6.781085 -8
Glutamine -0.034335 0 -0.038967 | -0.040957
Glutamate -0.064652 | -0.081146 | -0.049299 | -0.051818
Glycine -0.3492 -0.3062 -0.210246 -0.3291
Histidine -0.009091 | -0.009485 | -0.010317 | -0.010844
I[soleucine -0.03697 | -0.038572 | -0.041956 -0.0441
D-Lactate 3.9312 1.850163 1 1
L-Lactate 10 8.2643 0 0
Leucine -0.052727 | -0.055013 | -0.05984 | -0.062896
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M49 M49 Aldh

Uptake or production | D=0.05 | D=0.15 | D=0.05 | D=0.15
Lysine -0.060992 | -0.063635 | -0.069219 | -0.072754
Methionine -0.017436 | -0.018192 | -0.019788 | -0.020798
NHj3 1.2189 0.189 0.1984 0.0946
Ornithine 0.00107 0.000071 | 0.000334 | 0.000057
Phenylalanine -0.02303 | -0.024028 | -0.026137 | -0.027472
Proline 0 -0.022132 | -0.024073 | -0.025303
Pyruvate 0.03024 0 2.3905 2.1886
Serine -0.7025 -0.4754 0 0
Threonine -0.026718 -0.2524 -0.1955 -0.053909
Tryptophan -0.010303 | -0.01075 | -0.011693 | -0.01229
Tyrosine -0.016364 | -0.017073 | -0.018571 | -0.019519
Valine -0.043636 | -0.045528 | -0.049522 | -0.052052
Xanthine 0 0 0 0
D-LDH -3.9312 -1.850163 -1 -1
L-LDH -1000 -1000 0 0
Aminobenzoate -0.000001 | -0.000002 | -0.000002 | -0.000002
Adenine -0.016074 | -0.016771 | -0.018242 | -0.019174
Butanediol 0 0 0 0
Biotin 0 0 0 0
Cellobiose 0 0 0 0
Citrate 0 0 0 0
Cytosine -0.025272 | -0.022804 | -0.024804 | -0.030146
Glycolate 0.000001 | 0.000002 | 0.000002 | 0.000002
Guanine -0.437389 | -0.017853 | -0.019419 | -0.29158
H* 17.183959 | 15.202423 | 16.514181 | 17.587141
H>O 0.996741 | 0.078548 | -1.129835 | -0.151876
Inosine 0.420278 0 0 0.271169
Maltose 0 0 0 0
Mannose 0 0 0 0
Nicotinate -0.000289 | -0.000301 | -0.000327 | -0.000344
NH4 0.133625 | 0.293816 0 0
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M49 M49 Aldh
Uptake or production | D=0.05 | D=0.15 | D=0.05 | D=0.15
NO, 0 0 0 0
NO;3 0 0 0 0
O, 0 0 0 0
Orotate 0.000346 | 0.359652 0.67553 0.910595
Phosphate -0.940016 | -0.103771 | -0.112876 | -0.660979
Pantothenate -0.000029 | -0.00003 | -0.000033 | -0.000034
Pyridoxamine 0 0 0 0
Pyridoxine 0 0 0 0
Riboflavin 0 0 0 0
SOy 0 0 0 0
Spermidine 0 0 0 0
Succinate 0 0 0 0
Sucrose 0 0 0 0
Thiamine -0.000001 | -0.000002 | -0.000002 | -0.000002
Thymidine 0 -0.003564 | -0.003877 0
Trehalose 0 0 0 0
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